
   

 

A University of Sussex PhD thesis 

Available online via Sussex Research Online: 

http://sro.sussex.ac.uk/   

This thesis is protected by copyright which belongs to the author.   

This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author   

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author   

When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

Please visit Sussex Research Online for more information and further details   



Constraining the physics of the early

Universe

José Pedro Pinto Vieira

Submitted for the degree of Doctor of Philosophy

University of Sussex

March 2018



ii

Declaration

I hereby declare that this thesis has not been and will not be submitted in whole or in part

to another University for the award of any other degree.

The work in this thesis was done in collaboration with Christian Byrnes, Djuna Croon,

Antony Lewis, Carlos Martins, Sonali Mohapatra, and Paul Shellard. This thesis incor-

porates the following papers:

• J.P.P. Vieira, Christian T. Byrnes, and Antony Lewis. �Cosmology with Negat-

ive Absolute Temperatures�, published in JCAP 1608 (2016) no.08, 060. DOI:

10.1088/1475-7516/2016/08/060. arXiv:1604.05099.

I was responsible for the original idea for this paper. The paper and calculations were

completed by myself under the supervision of Christian Byrnes and Antony Lewis,

who also made some minor adjustments and additions.

• J.P.P. Vieira, C.J.A.P. Martins, and E.P.S. Shellard. �Models for small-scale struc-

ture on cosmic strings. II. Scaling and its stability�, published in Phys. Rev. D94

(2016) no.9, 096005. DOI: 10.1103/PhysRevD.94.099907. arXiv: arXiv:1611.06103.

This paper follows naturally from a previous one by the same authors [120]. Most

calculations were completed by myself under the supervision of Carlos Martins. Most

of the theoretical portions of the paper were written by myself with important con-

tributions and adjustments by Carlos Martins. I made a few minor contributions to

the writing of the remainder of the paper. The main results in 3.3.1 and 3.3.3 were

found during my MSc at the University of Porto and are also in my MSc thesis.

• J.P.P. Vieira, Christian T. Byrnes, and Antony Lewis. � Can power spectrum ob-

servations rule out slow-roll in�ation?�, published in JCAP 1801 (2018) no.01, 019.

DOI: 10.1088/1475-7516/2018/01/019. arXiv:1710.08408.

The concept for this paper came from my adaptation of an original idea by Christian

Byrnes. The paper and calculations were completed by myself under the supervision



of Christian Byrnes and Antony Lewis, who also made some minor adjustments and

additions.

Signature:

José Pedro Pinto Vieira



iv

UNIVERSITY OF SUSSEX

José Pedro Pinto Vieira, Doctor of Philosophy

Constraining the physics of the early Universe

Summary

The established cosmological theory which describes the history of the Universe since
shortly after the �Big Bang� until today is remarkably successful. Thanks to the increasing
precision of available observational data, we are now able to considerably constrain the
geometry and composition of the Universe � and to glimpse how these will evolve in
the near future. However, this success comes at a price: one must assume the Universe
�started� in a highly �ne-tuned initial condition. Understanding what came before this is
therefore one of the main goals of modern cosmology.

This thesis attempts to further our understanding of the epoch before this initial con-
dition in three di�erent ways.

Firstly, the concept of negative absolute temperatures (NAT) is introduced and its
potential relevance for cosmology is investigated. In particular, it is shown that a Universe
at a NAT should undergo a period of in�ation � although it is unclear whether this would
be consistent with current observations.

Secondly, work is done on the topic of the evolution of networks of cosmic strings �
topological defects which are expected to form in a broad class of phase transitions the
Universe may have gone through. A model which takes into account the presence of small-
scale structure in strings is used to address questions concerning the existence and stability
of scaling regimes for these networks.

Finally, it is investigated how future experiments might try to falsify a simple class of
canonical single-�eld slow-roll in�ation models by measuring the running and the running
of the running of the spectral index of scalar perturbations.
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��Faz-te mercê, barão, a Sapiência

Suprema de, cos olhos corporais,

Veres o que não pode a vã Ciência

Dos errados e míseros mortais.

Sigue-me �rme e forte, com prudência,

Por este monte espesso, tu cos mais.�

Assi lhe diz e o guia por um mato

Árduo, difícil, duro a humano trato.�

Luís Vaz de Camões, in Os Lusíadas

�Máquina do Mundo

O Universo é feito essencialmente de coisa nenhuma.

Intervalos, distâncias, buracos, porosidade etérea.

Espaço vazio, em suma.

O resto, é a matéria.

Daí, que este arrepio,

este chamá-lo e tê-lo, erguê-lo e defrontá-lo,

esta fresta de nada aberta no vazio,

deve ser um intervalo.�

António Gedeão, in Máquina de Fogo



��To thee supremest wisdom guerdon gave,

Baron ! who hast beheld with �eshly eyne

what things the Future hath the pow'er to save

from Mortals' petty pride and science vain.

Follow me �rmly, prudent as thou'rt brave,

to yonder craggy brake with all thy train !�

Thus she, and straightway through a long wood led

arduous, gloomy, fere for foot to tread.�

Luís Vaz de Camões, in Os Lusíadas [translation by Richard Francis Burton]

�Engine of the World

The Universe is made essentially of no thing.

Intervals, distances, holes, aetherial porosity.

Empty space, in sum.

The rest, is matter.

Thus, this shiver,

this calling it and having it, holding it and facing it,

this crack of nothing open in the void,

must also be an interval.�

António Gedeão, in Máquina de Fogo
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Chapter 1

Introduction

The study of the early Universe is one of the most important endeavours of modern physics

� not only because of its implications for some of the oldest �big questions� about our

origin and place in the Universe, but also because the primordial Universe is an ideal

system to test theories of particle physics at the highest energies. At a time when ever

more precise cosmological observations are becoming available, a solid understanding of

the implications of new physics in the early Universe is of the utmost importance to gain

knowledge of cosmic history and physics as a whole. This thesis seeks to contribute to this

understanding by way of three di�erent projects making up three separate chapters.

The current chapter provides an introduction to standard cosmology and useful con-

cepts which will be needed ahead. Afterwards, the cosmological consequences of negative

absolute temperatures in the early Universe are investigated in chapter 2. Chapter 3 ex-

plores the problem of modelling the evolution of networks of cosmic strings with small-scale

structure. Chapter 4 studies how the scale-dependence of the inferred spectrum of primor-

dial perturbations may be used to test a simple class of slow-roll in�ation. Finally, chapter

5 summarises the main conclusions of each project and outlines possible directions of future

work.

For the sake of simplicity, natural units with c = ~ = kB = (8πG)−1 = 1 are used

thoughout this thesis.

1.1 Standard cosmology

1.1.1 Short-sighted cosmology

In a sense, cosmology (de�ned as the study of the structure, dynamics, origin, and ultimate

fate of the Universe) is one of the most ancient �elds of human enquiry. Notwithstanding,
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it was one of the last to mature into a fully-�edged (or even just a �edgling) science - which

is not surprising, given that for most of human history we have lacked the basic theoretical

and observational tools necessary for this pursuit.

While astronomy has been with us pretty much since the dawn of civilization, its initial

reliance on naked-eye observations meant that, before telescopes became available in the

early 17th century, there was a limited number of observations of objects beyond our

immediate cosmic vicinity. To make matters worse, it took millenia of observations before

we even realised just how distant these objects are1. Not to mention how hard it was for

us to grasp the basic dynamics of just the easily observable bits of our solar system.

And yet progress was made. Granted, it was slow progress, but little by little our

knowledge of our surroundings did improve. By the beginning of the 20th century, this

progress may not have seemed like much compared to what was about to come; however,

it was a radical enough departure from the sort of cosmology that was the norm until

Copernicus and Galileo. Radical enough for Neptune's existence to have been inferred

from its e�ect on Uranus' orbit. Radical enough for there being a debate about whether

our galaxy might not constitute the bulk of the Universe. Radical enough that cosmology

was ready to play a role in the revolution that marked physics in the �rst few decades of

the century...

1.1.2 The Big Bang: story of an idea

The advent of modern cosmology began with the introduction of general relativity by

Albert Einstein, in 1915. For the �rst time in history, the scienti�c paradigm which

was about to be established provided mathematical tools which enabled a consistent and

rigorous study of the geometry and dynamics of the Universe as a whole2. When, in 1917,

Einstein wrote his �Cosmological considerations in the general theory of relativity� [61], he

was still arguably more interested in using cosmological considerations as added constraints

on general relativity (leading to the infamous �blunder� of the introduction of a cosmological

1The visible part of the Milky Way, for example, was believed by Aristotle to be due to �res in the

upper atmosphere [125], and it wasn't until Ibn al-Haytham's observations in the 11th century that it

became clear that it had to be much more distant from us [27].
2Interestingly, in �Cosmological considerations in the general theory of relativity� [61], Einstein does

brie�y discuss an attempt to apply Newtonian gravity to the entire Universe. This approach, however,

was marred by the di�culty of maintaining the stable �nite Universe it required. It is perhaps ironic that

similar considerations ended up leading to the abandonment of the Einstein Universe model put forward in

this work [137]. Failure to consider these issues, it has been argued, is the real reason Einstein alledgedly

made his famous �biggest blunder� comment [136].
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constant) than the other way round3. Nonetheless, the door was �nally open for a fruitful

symbiosis between cosmology and relativity.

The �rst to take full advantage of this new relationship was the theoretical meteor-

ologist Alexander Friedmann, who in 1922 put forth the possibility of an expanding (or

contracting) Universe allowed by general relativity [67,145]. Unfortunately, Einstein didn't

appreciate the physical relevance of Friedmann's contribution (even after retracting an ini-

tial attack on his calculations [62, 136]) and, despite Friedmann's own international con-

nections, his work seems to not have reached that many outside of the USSR.

In 1927, two years after Friedmann's death, Georges Lemaître independently rederived

Friedmann's expanding solution and predicted a linear relation between distance and ve-

locity for extragalactic nebulae [99]. This relation was observationally demonstrated two

years later by Edwin Hubble [85], and thus became known as Hubble's law4. This devel-

opment crucially contributed to the growing acceptance of Lemaître's approach, notably

by Einstein (who had initially opposed it as he had Friedmann's).

Not long after, in 1931, Lemaître once again espoused controversy by suggesting that

the Universe may have had a beginning �a little before the beginning of space and time�5

[100]. At �rst, this was not a popular assumption, with even Eddington, the most in�uential

proponent of Lemaître's earlier work on expanding cosmologies [59] (and under whom

Lemaître had worked in Cambridge), �nding the basic notion �repugnant� [17] � despite

his own re�ections on the nature of time and the �end of the world� having provided the

seed for Lemaître's original argument [60].

3Not that there is anything �uncosmological� about that sort of mindset. In fact, using the Universe

as a �laboratory� for constraining fundamental physics is a most common motivation. Nevertheless, the

converse is still an important component of cosmology � and Einstein's dismissal of that component may

explain why something like the Friedmann equations did not feature in this paper.
4Lemaître himself is actually responsible for the �rst estimate of the numerical value of the proportion-

ality constant (now known as Hubble's constant), but he did not have access to enough data to prove there

was a linear relation in the �rst place. Hubble and his assistant, Milton Humason, did so by combining

their own distance measurements with earlier velocity measurements by Vesto Slipher [161]. Sadly, Hubble

would only give due credit to Slipher two years later, once the discovery had already become associated

with his own name [86].
5Nowadays, it is commonplace to justify the idea of a Universe with a beginning in a mysterious

singularity by applying the sorts of models Friedmann and Lemaître introduced to look at the past instead

of the future. Curiously, Lemaître's original argument relied not on relativity but on a quantum formulation

of thermodynamical principles. This argument is where the term �primeval atom� comes from: in his

original theory, Lemaître supposed that, in its initial state, the Universe would be a literal atom �the

atomic weigh of which is the total mass of the universe� which would then decay into �smaller and smaller

atoms�.
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This hypothesis, which came to be known as the Big Bang theory, would remain an

important bone of contention for decades. Although initially viewed with cautious suspicion

(which Lemaître's status as a Catholic priest did little to dispel), the idea survived through

the 1930's proliferation of alternative cosmologies [51,123,124,165,166,175] and eventually

found its most persistent contender in Fred Hoyle's post-war (1948) steady state theory [82]

(which assumed particle creation made up for the then-established expansion so that the

Universe would look the same at any given time).

It was also around that time that Friedmann's former student, George Gamow, star-

ted working on cosmology on the side of the Big Bang theory [134]. Drawing from his

background in nuclear physics, Gamow investigated how chemical elements could be pro-

duced in a hot expanding Universe. On the 1st of April of 1948, Gamow and his student

Ralph Alpher (famously, Hans Bethe's name was added as an author to the paper for its

comic potential) showed how light elements could be produced by neutron capture in the

early Universe [15], e�ectively introducing the �eld of Big Bang nucleosynthesis. Although

Gamow's and Alpher's original vision of all elements being produced in the hot early Uni-

verse [14] ended up being refuted by Hoyle's (later in collaboration with William Fowler

and Margaret and George Burbidge) work on stellar nucleosynthesis [33,81,83], the success

of this approach at explaining the observed overabundance of helium (compared to what

would be expected from just stellar nucleosynthesis) became an important argument in

favour of the Big Bang.

The last conclusive piece of evidence that de�nitely established the Big Bang as the

dominant paradigm was the discovery of the cosmic microwave background (CMB) � just

two years before Lemaître's death. The CMB is a thermal black body spectrum left over

from the time of recombination (when the �rst hydrogen atoms formed), which was initially

predicted by Ralph Alpher and Robert Herman in 1948 [16]. This prediction was however

only brie�y mentioned in Alpher and Herman's paper and was thus easily overlooked6.

Having been independently repredicted by Robert Dicke and Jim Peebles in the early

1960s, the CMB was �rst presented as a detectable relic by Andrei Doroshkevich and Igor

Novikov in 1964 [53]. Later that same year, Robert Dicke, David Wilkinson, and Peter

Roll set out to measure the CMB; just late enough for Arno Penzias and Robert Wilson

to inadvertedly do it �rst7 (for which they would receive part of the 1978 Nobel Prize

6The main focus of the paper was to correct the calculations in a previous Gamow paper on Big Bang

nucleosynthesis [69]. The reference to the CMB is simply a one-sentence statement of the �temperature of

the gas� and no suggestion of its relevance as a potentially observable signal is made.
7Interestingly, some have argued that this was actually only the second �accidental� discovery of the
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in Physics) [141]. While alternative theories for a �more local� origin of the CMB [132]

meant this new detection did not change opinions on the issue of the Big Bang as quickly

as Hubble's observations did on the issue of expansion, the following decade was marked

by a steady shift in opinion as new measurements con�rmed the black body nature of the

observed spectrum [140].

Nowadays, Big Bang cosmology is almost universally accepted as the standard frame-

work for dealing with the early Universe � with the important caveat that the �initial

state� is taken to be slightly later than the actual singularity8, thus for the time being

keeping the question of whether the Universe had a beginning outside of the realm of

scienti�c enquiry.

1.1.3 Growing a simple Universe

The �rst and most basic postulate on which standard cosmology is based is the so-called

cosmological principle: the assumption that the Universe is statistically homogeneous and

isotropic over its spatial dimensions. It follows naturally from the notion that Earth-

dwellers are not privileged observers and thus, were we to be at any other point in the

Universe, we should expect our observations to be statistically indistinguishable from the

ones we have access to9.

At large scales, the most general metric which is consistent with the cosmological

principle is the Friedmann-Lemaître-Robertson-Walker (FLRW) metric [79], de�ned by

the line element

ds2 = dt2 − a2 (t)

[
dr2

1−Ka2 (t) r2
+ r2dθ2 + r2 sin2 (θ) dφ2

]
, (1.1)

CMB. As early as 1940, Andrew McKellar proposed that then-unidenti�ed spectral lines of interstellar

origin could indicate the presence of cyanogen (CN) and methyne (CH); and from the analysis of those

spectral lines concluded that the e�ective temperature of interstellar space �must be extremely low�, going

as far as giving an estimate of 2.7K as an upper limit for this temperature. However, it seems unlikely

that at the time he thought of this as related to anything like the CMB, having then remarked that �the

concept of such a temperature in a region with so low a density of both matter and radiation� may have

no meaning [121].
8Lest general relativity (and all known physics) not apply.
9Of course, although both Occam's razor and historical caution suggest this is a reasonable assumption

to make, the fact that we are mostly con�ned to the Earth means that we are extremely limited in our

ability to test this hypothesis. Therefore, it can be argued that this assumption originally arose more

from necessity of mathematical simplicity than from any sort of real understanding of the cosmos [96] �

although later tests of violations of this principle in the context of general relativity have provided no

conclusive evidence against it [21, 47,153].
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where t is cosmic time; r is a radial coordinate; θ and φ are angular coordinates; a (t) is

(for now) a free function called the scale factor; and K can be negative, null, or positive,

depending on whether the Universe is closed, �at, or open, respectively. A correspondingly

general energy-momentum tensor for a homogenous and isotropic perfect �uid takes the

simple form Tµν = diag (ρ (t) , P (t) , P (t) , P (t)), where ρ is the �uid energy density and P

is its pressure. The Einstein �eld equations for this metric and energy-momentum tensor

are called the Friedmann equations and can be expressed as

H2 ≡
(
ȧ

a

)2

=
ρ+ Λ

3
− K

a2
(1.2)

and

ρ̇ = −3H (ρ+ P ) , (1.3)

where H is the Hubble parameter, Λ is the cosmological constant, and a dot denotes

di�erentiation with respect to cosmic time. Eq. (1.3) is equivalent to the requirement that

the energy-momentum tensor be covariantly conserved. Eq. (1.2) is often written using

the alternative notation

1 = Ω + Ωk + ΩΛ (1.4)

where, making the formal identi�cation between the terms with Λ and K and energy

densities (so that ρΛ ≡ Λ and ρK ≡ −3Ka−2), Ωi are density parameters de�ned so that

Ωi = ρi/ρc (ρc ≡ 3H2 being the critical density, which would correspond to an exactly �at

Universe if Λ = 0).

Of particular interest is the case of a barotropic �uid with a constant equation of state

w ≡ P/ρ, as the contents of the cosmic �uid can usually be taken to be in the form of

either radiation (with w = 1/3) or matter (often also called dust; with w = 010) and the

cosmological constant can be interpreted as a component with w = −1. For this important

special case, Eq. (1.3) imposes a simple scaling of the energy density with the scale factor,

ρ ∝ a−3(1+w). (1.5)

Note that for matter (w = 0) this gives the result one would expect simply from the

assumption that the total energy in a comoving volume remains constant as said volume

increases by a3. Conversely, the result for radiation (w = 1/3) corresponds to an added

loss of a−1 due to radiation being redshifted as a increases, on top of the aforementioned

dilution e�ect.
10Naturally, realistically most dust will not have exactly null pressure. Regardless, as long as the peculiar

velocities of its constitutent particles are non-relativistic, this should be a good approximation [107].
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Writing ρ = ρm + ρr (with ρm corresponding to the energy density in matter and ρr to

the energy density in radiation) and assuming that the two components do not exchange

energy11, Eq. (1.2) becomes

H2 =
ρr0
3
a−4 +

ρm0

3
a−3 −Ka−2 +

Λ

3
, (1.6)

where the subscript 0 indicates a quantity evaluated at the time when a = 1. Equivalently,

Eq. (1.4) can be written as

(
H

H0

)2

= Ωr0a
−4 + Ωm0a

−3 + Ωk0a
−2 + ΩΛ0, (1.7)

where the scale factor is normalised so that a = 1 today.

Some important epochs in cosmic history can be well described by the simple limit

in which the right-hand sides of Eq. (1.6) and Eq. (1.7) are dominated by just one term.

When radiation is the dominant component

a (t) ∝ t1/2, (1.8)

whereas if the matter term prevails then

a (t) ∝ t2/3. (1.9)

If instead the curvature term eclipses the rest12 then

a (t) ∝ t. (1.10)

Finally, if the Λ/3 term takes over (as must eventually happen in a strictly expanding13

Universe), then

a (t) ∝ exp

(
±
√

Λ

3
t

)
, (1.11)

where the sign will depend on whether the Universe is �initially� contracting or expanding

and Λ has to be positive if it dominates (see footnote 12).

11Which is usually a fair approximation, although realistically there will be times when it will fail; i.e.,

when a component of initially ultra-relativistic massive particles (which behave like radiation to a good

approximation) slows down su�ciently (behaving like pressureless matter in the non-relativistic limit).
12This can only happen if the curvature is non-positive since H must always be real. If the curvature is

positive and the Universe is expanding then once H = 0 the Universe will start contracting.
13If K = 1 and Λ is su�ciently small, it is possible for H to be forced to change to a negative sign before

the other terms become smaller.
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1.1.4 Recombination, the CMB, and the primordial perturbation

When it was very young, the Universe was too energetic for atoms to exist; instead, there

was a hot plasma in which light atomic nuclei (mostly hydrogen and helium) and electrons

were tightly coupled: with each other due to electromagnetic interactions, and with photons

due to the high cross section of Compton scattering in such an electron-rich medium. As

a result, the photon mean free path was then too short for there to be an appreciable

chance of light from that time to ever reach us. Only after the epoch of recombination,

when the Universe became cool enough for charged particles to form atoms, did photons

decouple from the rest of the cosmic �uid (then transitioning to the form of a neutral

gas) and become able to propagate freely so that they could reach us today [107]. These

are thus the oldest photons we can see in the Universe, and constitute what is known as

the cosmic microwave background (CMB) � originally, they would be at a much higher

frequency, consistent with a correspondingly hot thermal spectrum, but have since been

severely redshifted by cosmic expansion.

An interesting use of the CMB is the study of its anisotropies. If the Universe were

exactly homogeneous and isotropic over all scales (which there is no good reason to ex-

pect) then the CMB would also be an isotropic thermal spectrum, corresponding to the

same temperature in every direction. Since we do observe small angular variations in the

CMB, we can trace back their evolution using cosmological perturbation theory. Thus the

observed CMB anisotropies can be related to a primordial perturbation which had to be

present in the �initial state� of Big Bang cosmology. Moreover, this calculation assumes

knowledge of the evolution of the scale factor between this �initial state� and today, making

the CMB an important probe of the consistency of the accepted cosmological model.

This primordial perturbation is most conveniently characterised in terms of the de-

parture of the actual metric from (�at) FLRW in a physically meaningful gauge. In the

uniform density gauge (in which ρ is merely a function of time), we consider linearly per-

turbed metrics whose line element can be written as

ds2 = dt2 − a2 (t) (1 + 2ζ) (δij + 2hij) dxidxj , (1.12)

where ζ is the scalar perturbation and the tensor perturbation, hij , is transverse (∂ihij = 0)

and trace-free (hii = 0). In general, there could also be a vector perturbation, but we neglect

such a component because it is expected to decay in an expanding Universe [101].

Usually, these primordial perturbations are assumed to be well described by small
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Gaussian stochastic �uctuations de�ned by their 2-point correlators,

〈ζkζk′〉 ≡
2π2

k3
P (k) δ3

k+k′ , (1.13)

16〈h(+)kh(+)k′〉 = 16〈h(−)kh(−)k′〉 ≡
2π2

k3
PT (k) δ3

k+k′ ; (1.14)

where 〈Q〉 is the expected value of the stochastic quantity Q; the subscripts k and k′

indicate a Fourier transform (de�ned �symmetrically�, with a (2π)−3/2 factor); δ3
k+k′ is a 3-

dimensional Dirac delta �function� in Fourier space; h(+) and h(−) are the two independent

components of hij ; P is called the scalar power spectrum; and PT is called the tensor

power spectrum. The assumption of Gaussianity means that higher-order correlators can

be straightforwardly computed if the power spectra are known (all odd ones just vanishing).

Often constraints on PT are expressed as constraints on the tensor-to-scalar ratio,

r ≡ PT
P
. (1.15)

1.1.5 Observing the primordial perturbation today

The simplest way to learn about the primordial perturbation is via the study of CMB an-

isotropies. Thanks to the scales probed by CMB observations being so large, the evolution

of the perturbation since its generation until recombination (when the CMB is formed)

can be accurately modelled using linear perturbation theory at these scales. In recent

decades, the characterisation and study of these anisotropies has been a major goal of

observational cosmology. Notably, NASA's COBE (1989-1993) and WMAP (2001-2010),

as well as ESA's Planck satellite (2009-2013), have collected remarkably precise CMB data

which has crucially contributed to progress in this area.

Scalar perturbations are seen in the CMB as temperature �uctuations. When seen from

the Earth, these �uctuations are most conveniently decomposed in spherical harmonics

according to
δT

T
(e) =

∑
`m

a`mY`m (e) , (1.16)

where δT/T is the observed relative temperature �uctuation, Y`m are spherical harmonics,

e is the unit vector corresponding to the direction of an incident CMB photon, and a`m

are the observed CMB multipoles. Note that the Earth's motion relative to the CMB

rest frame a�ects the values of the multipoles, but only noticeably for ` = 1 (for which it

dominates) and ` = 2 (for which it contributes at about 10% of the observed value) [107].

The stochastic properties of these �uctuations are usually described in terms of 2-point

correlators, which due to (stochastic) rotation invariance must be of the form

〈a`ma∗`′m′〉 = δ``′δmm′C`, (1.17)
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where C` is called the spectrum of the CMB anisotropy and is completely determined if the

three-dimensional scalar power spectrum (which evolved from the primordial perturbation)

is known.

More information can be gathered if one has access to the polarisation of CMB photons,

as we do since WMAP and Planck [3, 22]. Of particular interest to us is the possibility

of B-mode polarisation due to the primordial tensor power spectrum being detected �

although current B-mode observations only allow upper limits to be set on the scale of this

spectrum14.

Even more information (on di�erent scales and di�erent parameters) can be obtained

by a number of alternative methods. In this thesis we are interested in two promising

examples in particular: spectral distortions and 21cm observations.

Spectral distortions are deviations in the CMB from a perfect black-body spectrum.

Despite no such distortions having been measured to date (making the CMB spectrum the

most perfect black-body spectrum ever to be measured in Nature [172]), they are expected

to be caused by several out-of-equilibrium processes in the early Universe, including a few,

like recombination, which are assumed in the current standard model of cosmology [43].

The most well-studied types of spectral distortions are: µ−distortions, characterised by

the introduction of a chemical potential (typically generated at very early epochs when

Compton scattering by free electrons is still common); and y−distortions, characterised

by a non-constant �temperature� which increases with frequency (typically generated at

later epochs when Compton scattering is ine�cient) [41]. A detection of these types of

distortions would constrain an integrated version of the power spectrum for scales in the

range 1Mpc−1 . k . 104Mpc−115, but a more complicated type of distortion could provide

even more valuable scale-dependent information [42].

21cm observations provide an observational window into the so-called dark ages, the

time between recombination and the formation of the �rst stars. During this time, the

Universe is expected to have been �lled with neutral hydrogen which must have resonantly

absorbed CMB photons of wavelength ∼21cm, corresponding to the hydrogen atom's spin-

�ip transition [106]. Looking for the resulting absorption signal in the CMB thus allows the

inhomogeneities in the hydrogen gas distribution during this time to be probed, providing

information about the power spectrum down to scales as small as k ∼ 100Mpc−1.

14r < 0.12 being the current 2σ limit at the Planck pivot scale of k = 0.05Mpc−1 [9].
15For comparison, CMB observations constrain the power spectrum most strongly for scales in the range

10−3Mpc−1 . k . 0.3Mpc−1 [8].
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1.1.6 ΛCDM

The ΛCDM model is the simplest known model which accounts for currently available cos-

mological observations [7, 107]. It assumes a �at16 FLRW cosmology with a non-null cos-

mological constant in which the Universe is �lled with radiation as well as non-relativistic

matter in two forms: ordinary (baryonic) matter and cold dark matter (CDM). Dark matter

is a hypothetical type of matter which interacts with known particles primarily (possibly

exclusively) through gravity on large scales. Its existence is inferred from a number of

observed gravitational phenomena17 which, in the framework of Einstein gravity, cannot

be explained without it18. Its �coldness� refers to this dark matter being assumed to be

non-relativistic (i.e., behaving like pressureless dust).

Additionally, a small nearly-Gaussian scalar perturbation is assumed and its power

spectrum19 is parameterised by

P (k) ≡ As
(
k

k0

)ns(k)−1

, (1.18)

where ns is called the spectral index and As is the spectral amplitude at the pivot scale

k0. Current observations are consistent with a constant spectral index, therefore ΛCDM

need only assume two numbers to characterise primordial �uctuations: As and ns at a

pivot scale. In general, however, the spectral index is not necessarily constant and its

variations with scale are still allowed to be relatively large (a possibility which provides

the motivation for chapter 4) [8].

In the end, the ΛCDM model requires the speci�cation of six parameters to fully

determine the evolution of the Universe, for example: the Hubble parameter today, H0

(often speci�ed by h ≡ H0/100km s−1Mpc−1); the present values of the density parameters

for baryonic matter (ΩB0), cold dark matter (Ωc0), and the cosmological constant (ΩΛ0); as

well the spectral amplitude (As) and the spectral index (ns) of the primordial perturbation.

Note that the present value of the density parameter for radiation (Ωr0) can be computed

from Eq. (1.4) if the rest are known. However, this parameter can be more accurately
16Current constraints by the Planck collaboration give |Ωk| < 0.005 to a 2σ accuracy [7].
17Notably, discrepancies in galaxy rotation curves relative to what would be expected if all the mass in

galaxies were currently visible to us [143].
18Naturally there are those who worry about the potentially unsurmountable obstacles in the way of

detection of dark matter particles [108, 143] and �nd it more scienti�c to attribute such phenomena to

manifestations of a more general theory of gravity [133]. At the time of writing, however, there is no

known theory of gravity which can �t the available data as well as the assumption of dark matter.
19In general, a tensor perturbation with a corresponding tensor power spectrum is also expected. Here

we shall omit it as its observational consequences are yet to be detected � thus �power spectrum� will

henceforth be taken to mean the scalar one unless explicitly stated otherwise.
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determined to be Ωr0 = 2.47×10−5h−2 directly from the observed CMB temperature T =

2.7255 ± 0.0006 K [97] (neglecting contributions from ultra-relativistic neutrinos). Given

this remarkable precision, it is often not varied when �tting other parameters, e�ectively

bringing the number of independent parameters in the model down by one � i.e., making

it so that only two of the density parameters are needed.

In practice, an additional parameter is needed to make up for our lack of understanding

of the processes that lead to the reionization of the cosmic medium following the formation

of early objects: the optical depth, τ , de�ned so that e−τ is the probability that a photon

emitted between recombination and reionization is scattered [107]. Current observational

constraints from the Planck collaboration for these parameters indicate h = 0.6774 ±

0.004620, ΩB0h
2 = 0.02230 ± 0.00014, Ωc0h

2 = 0.1188 ± 0.0010, ΩΛ0 = 0.6911 ± 0.0062,

ln
(
1010As

)
= 3.064±0.023 (for the Planck pivot scale of 0.05Mpc−1), ns = 0.9667±0.0040,

and τ = 0.066± 0.012.

According to this picture, the Universe was initially dominated by hot radiation which

was quickly overcome by the matter component due to its slower scaling with the scale

factor. The matter component then dominated the Universe during most of its history,

until recent times when the cosmological constant is starting to become the main driver of

cosmic expansion.

One of the most iconic successes of ΛCDM is the remarkable accuracy to which the CMB

temperature spectrum predicted by the model's best �t to data approximates observations

(see �gure 1.1). Although this relatively simple model is not free of problems, this kind

of observational success makes it the most widely accepted model of our Universe at the

largest scales.

1.1.7 Trouble on the horizon

One of the main shortcomings of the standard picture we have presented is arguably the

lack of justi�cation for our assumed �initial state�. While there are other well-known

problems with it, particularly when small scales are considered [50], those can usually

be blamed on computational di�culties when modelling complex phenomena, unknown

features of more fundamental physical theories (e.g., quantum gravity), or fairly minor

modi�cations of ΛCDM (e.g., adding a new component, but keeping the basic framework).

This, however, raises critical questions about the theoretical and epistemic foundations of

20There seems to be a tension with more direct estimations of the Hubble parameter which prefer slightly

higher values (with h ≈ 0.70) [7].
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Figure 1.1: Planck 2015 temperature power spectrum rescaled by DTT` ≡ ` (`+ 1)C`/ (2π)

(blue with 1σ error bars) against the best-�t base ΛCDM theoretical spectrum (red line) �

image from Ade et al [7]. The bottom plot shows residuals relative to ΛCDM and changes

scale (to the one on the right-hand side) for ` > 30.

Big Bang cosmology. To illustrate these, we focus on three speci�c problems: the �atness

problem, the horizon problem, and the relic problem.

The �atness problem

The Universe we observe is spatially �at as far as any current observation can tell. An

immediate consequence of this fact is that the density of the Universe must be very close

to the critical value ρc = 3H2. However, ρ = ρc is known to be an unstable equilibrium

point for the Friedmann equations under normal circumstances. This can be easily seen

by neglecting Λ (which in ΛCDM is a fair approximation during most of cosmic history)

and rewriting Eq. (1.2) as

(
1− Ω−1

)
ρa2 = 3K = const. (1.19)

Since, as we have seen, ρ is usually expected to decrease much faster than a−2, Ω must

evolve away from its critical value (Ω = 1) correspondingly fast as long as Ω 6= 1. In

particular, the condition that |1− Ω| = |Ωk| < 0.005 today (imposed by Planck constraints
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[7]) leads to the expectation that |Ωk| . 10−58 at the Planck time (a popular time to choose

for the �initial condition� due to quantum gravity becoming important then) [168]. The

�atness problem refers to the lack of a natural explanation for such stringent �ne-tuning

in the �initial state� of Big Bang cosmology.

The horizon problem

A well-known lesson of relativistic physics is that no information can travel faster than

the speed of light in vacuum. A consequence of this in the context of a �nite-age in�nite

Universe is that, at any given time, su�ciently distant points will be causally disconnected

(i.e., unable to have in�uenced each other as light has not had time to travel between

them). The maximum distance that light can have travelled since the �Big Bang�, when

a = 0, is called the particle horizon and can be written as

dH (t) = a (t)

t∫
0

dt′

a (t′)
. (1.20)

If a (t) ∝ tλ, as is the case when the Universe is dominated by either matter (λ = 2/3)

or radiation (λ = 1/2), then (for λ 6= 1)

dH (t) =
t

1− λ
=

λ

1− λ
H−1, (1.21)

meaning that for most of cosmic history dH is well approximated (up to a multiplicative

factor of order unity) by H−1, which is simply called the horizon (and is usually more

useful to estimate the distance over which two points may interact at a given time before

being �cut o�� by cosmic expansion).

The horizon problem is the realization that the observable Universe contains regions

which appear to be correlated (due to the observed homogeneity/isotropy) even though

they should be causally disconnected. For example, the smallness of CMB anisotropies

indicates that the entire observable Universe was at the same temperature at the time

of recombination; yet CMB photons coming from regions separated by more than a few

degrees in the sky should have been outside of each other's horizons when they were

emitted [107].

The relic problem

Tracing back the evolution of the Universe requires knowledge of particle physics at high

energies and, conversely, cosmological observations probing the early Universe provide a

wealth of information about particle physics. A classic example of the latter is neutrino
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physics, with CMB observations being su�cient to strongly constrain the e�ective number

of neutrino species (Neff = 2.94± 0.38) and the sum of neutrino masses (Σmν < 0.589 to

2σ accuracy) [7].

If the �initial state� of Big Bang cosmology were taken to be shortly after the Planck

time (corresponding to temperatures around T ∼ 1019GeV), then the Universe must have

gone through a number of important phase transitions as it cooled. Some of these trans-

itions are well understood from the points of view of both cosmology and particle physics:

like recombination (T ∼ 1eV) and nucleosynthesis (T ∼ 1MeV). At high enough temper-

atures, however, knowledge of particle physics beyond the standard model is required and

thus we don't even know what transitions to expect.

Broad classes of possible phase transitions at very high energies predict the forma-

tion of so-called exotic relics: exotic particles; small black-holes; and topological defects,

which correspond to non-trivial �eld solutions arising due to topological considerations in

symmetry-breaking transitions (they are typically classi�ed as monopoles, strings21, walls,

and textures, depending on whether they are e�ectively point-like, line-like, membrane-

like, or three-dimensional, respectively). In particular, grand uni�ed theories (GUTs) seem

to very generally lead to the overproduction of monopoles.

The relic problem is that it seems to be di�cult to write down a well-motivated theory of

particle physics at high energies which does not lead to the production of large quantities

of these relics which should have persisted until today despite none having ever been

observed [168].

1.2 Cosmic in�ation

The problems with the standard Big Bang cosmology described in subsection 1.1.7 can be

thought of as essentially �ne-tuning problems. Some might (and do) argue that such �ne-

tuning problems are not so much an indication of something wrong with the theory as a sign

of theorists struggling to make physical sense of unphysical models. A typical argument in

this sort of epistemological tradition might say that a physical model is successful merely

if it can reproduce available observations, and that it is thus moot to ask questions about

what it would have to say about alternative imaginary realities22.

In the end, the importance of these problems is undeniable because of the fact that Big

21Chapter 3 is specially dedicated to the study of cosmic strings.
22An interesting review of alternative arguments and counter-arguments regarding the validity of these

sorts of �ne-tuning concerns can be found in [66].
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Bang cosmology is intrinsically incomplete, in the sense that its foundations must break

down at su�ciently early times. In order to understand what happened before this time, a

new and more fundamental theory of high energy physics will be needed. From this point

of view, these problems with the �initial state� of Big Bang cosmology are of the utmost

importance not because they raise doubts about the successes of the theory in the regimes

where its validity is well-established but because they provide important constraints for

any theory seeking to explain cosmology before this point.

We now brie�y review the paradigm of cosmic in�ation, which is currently the most

popular solution to these problems.

1.2.1 A natural solution

Let us �rst focus on the �atness problem as stated in terms of the dynamical repeller nature

of the Ω = 1 solution to Eq. (1.19). If we momentarily abstract from the physical meaning

of ρ, we are allowed to ask under which conditions the critical solution could become an

attractor instead. As it turns out, this is when

d

dt

(
ρa2
)
> 0⇒ P

ρ
≡ w < −1

3
, (1.22)

where the second inequality is derived assuming only Eq. (1.3) and H > 0 (in a contracting

Universe there would be no �atness problem).

Interestingly, if we assume that the �atness problem is solved by the Universe being

dominated by some exotic component obeying Eq. (1.22) during early times, we �nd that

while this component dominates and the Universe can be assumed to be �at we have ä > 0

or, equivalently,
d

dt
(aH)−1 < 0; (1.23)

i.e., the comoving radius of the horizon shrinks, meaning that the horizon expands more

slowly than the cosmic �uid. In practice, this will make it so that the particle horizon

during (and, consequently, after) this epoch is larger than it appears � and thus this

tentative solution to the �atness problem can potentially solve the horizon problem as

well.

The requirement that the scale factor be accelerating (or, equivalently, Eq. (1.23)) is

usually taken as de�ning an epoch of in�ation23. Whether it can really solve the �atness

and horizon problems essentially boils down to whether it can last long enough for Ωk to

23So technically an epoch of Λ domination is also an in�ationary phase, although many authors reserve

the term for hypothetical eras taking place before the �initial state� of Big Bang cosmology.
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be naturally negligible today and for today's observable Universe to have been inside the

horizon before in�ation. Typical in�ation models can, usually lasting long enough for the

scale factor to increase by at least around 60 e-folds (i.e., by a multiplicative factor of

& e60) [107]. Such a dramatic amount of expansion also provides a natural solution to the

relic problem: even if copious amounts of relics were produced before in�ation, this rapid

expansion would have diluted them so much that the likelihood of coming across one is

very low.

It should be noted that in�ation is not the only known way to solve these problems

of the standard model. An equally natural solution (at least before speci�c realisations

are considered) is given by ekpyrosis, in�ation's old rival theory [31, 91]. Assuming that

before the �Big Bang� the Universe was contracting and contained an exotic component

with w � 1, this component should come to dominate the Universe (due to Eq. (1.5))

� solving the �atness and relic problems due to the contributions of curvature and relics

to cosmic evolution becoming negligible24. Given enough time to contract (before the

�bounce� which must eventually happen if the standard picture is to be recovered), the

horizon problem is solved in the same way as in in�ation, since during this epoch

d

dt
|aH|−1 < 0. (1.24)

1.2.2 Implementing in�ation

Currently, there are myriads of di�erent known models of in�ation [109, 110]. Without

modifying general relativity [19], the most natural way to implement in�ation is by postu-

lating that at early times the energy density of the Universe is dominated by some exotic

component which obeys Eq. (1.22). If, for the sake of simplicity, this component is as-

sumed to be made up of a single uniform scalar �eld25 (usually called the in�aton) with

the canonical Lagrangian density

L = −1

2
∂µφ∂µφ− V (φ) , (1.25)

24Note that our corresponding arguments for in�ation could have been phrased in this manner too, as

we can see from Eq. (1.5) that w < −1/3 corresponds to the condition that the energy density of the

component sourcing in�ation decays with the scale factor slower than Ωk (and thus than any matter-like

component).
25In�ation models which can be written down in this way are known as (canonical) single-�eld in�ation

models, as opposed to multi-�eld in�ation models in which more than one �eld is involved. Note that,

while in�aton �elds are usually assumed to be scalar (due to di�culties in obtaining a homogeneous and

isotropic Universe if they are not [72]), in chapter 2 we focus on a model in which in�ation is driven by

fermions.
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then its energy density and pressure are given by

ρ =
1

2
φ̇2 + V (φ) , P =

1

2
φ̇2 − V (φ) ; (1.26)

the Friedmann equations (Eqs. (1.2) and (1.3), respectively) now being expressable (neg-

lecting Λ) as

3H2 =
1

2
φ̇2 + V (φ) (1.27)

and

φ̈+ 3Hφ̇+ V ′ (φ) = 0, (1.28)

where prime denotes di�erentiation with respect to φ (and Eq. (1.28) is just the equation

of motion associated with the Lagrangian in Eq. (1.25)). Imposing Eq. (1.22) thus leads

to the condition that in�ation will take place if and only if

ε ≡ − Ḣ

H2
≡ 1

2

φ̇2

H2
< 1, (1.29)

where the two ratios on the left-hand side can be seen to coincide using the relation

Ḣ = −1

2
φ̇2, (1.30)

which follows from Eqs. (1.27) and (1.28).

Of special interest is the case of slow-roll in�ation, de�ned by the homonymous approx-

imation26

ε� 1, |δ1| ≡

∣∣∣∣∣ φ̈Hφ̇
∣∣∣∣∣� 1; (1.31)

due to which ε and δ1 are known as the slow-roll parameters27.

With this approximation, the system of equations to be solved is signi�cantly simpli�ed.

Eqs. (1.27) and (1.28) can now be written as the slow-roll equations:

3H2 ' V (φ) (1.32)

and

3Hφ̇ ' −V ′ (φ) ; (1.33)

which can be solved in a more straightforward manner (even if not necessarily easily for

all choices of V (φ)).

26With a few exceptions, most in�ation models require the slow-roll approximation to hold most of the

time in order to in�ate for long enough.
27δ1, in particular, has a few mostly equivalent de�nitions, which are often called η in the literature.
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1.2.3 The seeds of structure

Although in�ation does provide a natural explanation to some of the main problems of

standard cosmology, the reason it is currently the most popular paradigm of the very early

Universe is its ability to also explain the generation of small primordial perturbations con-

sistent with CMB observations. The basic mechanism is qualitatively easy to understand:

while pre-existing large-scale inhomogeneities are expected to be smoothed out by in�ation,

the Universe expands so fast that quantum �uctuations will at some point �nd themselves

at cosmological scales.

If we do not assume that the in�aton �eld is uniform, but still assume the FLRW metric

(i.e., if we work in the so-called �at gauge28), the equation of motion dictated by Eq. (1.25)

is

φ̈+ 3Hφ̇− ∇
2φ

a2
+ V ′ = 0. (1.34)

Making the change of variables φ (t,x) ≡ φ (t) + δφ (t,x) (where the background quantity

φ (t) still obeys Eq. (1.28)) and taking a Fourier transform we �nd the equation of motion

for the �eld perturbation in Fourier space (neglecting second-order terms),

δ̈φk + 3H ˙δφk +

(
k

a

)2

δφk + V ′′δφk = 0. (1.35)

In order to quantise these �uctuations it is convenient to rewrite Eq. (1.35) in conformal

time (given by dη = a−1dt and varying from η = −∞ in the past to η = 0 in the future)

and using ϕ ≡ aδφ, so that it can be made to look like the equation of motion of a harmonic

oscillator:
d2ϕk (η)

dη2
+ ω2

k (η)ϕk (η) = 0, (1.36)

where

ω2
k ≡ k2 − 1

z

d2z

dη2
(1.37)

and z ≡ aφ̇
H .

We now quantise these �uctuations by de�ning the �eld operator

ϕ̂ (η,x) ≡
∫

d3k

(2π)3/2

[
ϕk (η) eik·xâk + ϕ∗k (η) e−ik·xâ†k

]
, (1.38)

where â†k and âk are creation and annihilation operators, respectively, and the mode func-

tions ϕk (η) obey Eq. (1.36) as well as

ϕk (η)
dϕ∗k (η)

dη
− ϕ∗k (η)

dϕk (η)

dη
= i, (1.39)

28Note that, in this gauge, the �eld perturbation is related to the curvature perturbation in the uniform

�eld gauge by ζ = −H δφ

φ̇
[107].
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so that
[
ϕ̂ (η,x) , ϕ̂(η,x̃)

dη

]
= iδ3

x−x̃, as required by canonical commutation relations29.

Additionally, it can be shown that ϕ = −zζ and it is known that, in single-�eld

in�ation, ζk is usually30 conserved when scales ∼ k−1 are well outside the horizon (i.e.,

when k � aH) [171], therefore Eq. (1.36) is to be solved with the boundary conditions

ϕk (η) −→


1√
2k
e−ikη, −kη →∞

Akz, −kη → 0

, (1.40)

where Ak is a constant and the −kη →∞ limit corresponds to the usual �at space vacuum

for scales well inside the horizon.

Finally, we can use the equivalent form of Eq. (1.13),

〈ζ (x) ζ (x̃)〉 =

∫
d3k

4πk3
P (k) eik·(x−x̃), (1.41)

together with Eq. (1.38) (making the correspondence 〈Q〉 = 〈0| Q̂ |0〉, where |0〉 is the

vacuum state of the Fock space generated by âk) to �nd that the power spectrum is given

by

P (k) =
k3

2π2
lim
−kη→0

∣∣∣∣ϕk (η)

z

∣∣∣∣2 =
k3

2π2
|Ak|2 . (1.42)

Eq. (1.42) shows us how, if the background evolution of the in�aton is known, the power

spectrum can in principle be found by solving Eq. (1.36). In general, the resulting system of

di�erential equations can be arbitrarily di�cult to solve, requiring numerical approaches.

The assumption of slow-roll, however, simpli�es this task enough that remarkably accurate

spectra can usually be computed from relatively simple formulas.

Under the slow-roll approximation (Eq. (1.31)), the Hubble parameter varies slowly (as

˙(H−1) = ε� 1). When H is almost constant η ' −1/aH and thus Eq. (1.37) becomes

ω2
k ' k2 − 2

η2
, (1.43)

so that the solution to Eq. (1.36) with the appropriate boundary conditions is

ϕk (η) =
(kη − i)√

2k3η
e−ikη −−−→

η→0
− i√

2k3

1

η
' iz√

2k3

H2

φ̇
, (1.44)

leading to the well-known result (which now follows from Eq. (1.42))

P (k) ' H4(
2πφ̇

)2 , (1.45)

29That ϕ̂(η,x̃)
dη

is the canonical conjugate of ϕ̂ (η,x) can be seen, for example, from the action that

generates Eq. (1.36): S =
∫

1
2

[(
dϕ
dη

)2

− (∇ϕ)2 +
(

1
z
d2z
dη2

)
ϕ2

]
dηd3x.

30Ultra slow-roll in�ation (for which ε� 1 and δ1 = −3) is a notable exception. Since in this thesis we

only deal with slow-roll in�ation, we need not worry about such cases [94,150].
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where in practice the right-hand side is to be evaluated around the time of horizon crossing

(when k ∼ aH) because that is when cosmological dynamics have a sizeable impact on

perturbations31.

Crucially, we can di�erentiate Eq. (1.45) to �nd

ns (k)− 1 =
d lnP
d ln k

= −4ε− 2δ1, (1.46)

where the right-hand side is still to be evaluated at horizon crossing.

Interestingly, this calculation can be adapted to yield the tensor power spectrum. Work-

ing in the uniform �eld gauge, the perturbed metric can be written as

ds2 = dt2 − a2 (t) (δij + 2hij) dxidxj , (1.47)

for which the Einstein equations give [107]

ḧ+ 3Hḣ+

(
k

a

)2

h = 0, (1.48)

where h can be taken to be any component of (hij)k.

The formal equivalence between Eq. (1.48) here and Eq. (1.35) for a massless �eld is

because the perturbed version of the full action (i.e., with the Lagrangian density from

Eq. (1.25) as well as the Einstein-Hilbert term) for h in this gauge is the same as that for

δφ/
√

2 with V ′′ = 0 in the �at gauge. Therefore, comparing with Eq. (1.14), the tensor

power spectrum can be found from the scalar result to be

PT (k) =
16

2
× φ̇2

H2
× P (k) = 8

(
H

2π

)2

, (1.49)

where the right-hand side is still to be evaluated at horizon crossing. The two spectra are

usually related by the tensor-to-scalar ratio, de�ned by

r ≡ PT
P

= 16ε. (1.50)

Despite relatively accurate observational limits on ns and r, it is fairly easy to write

down in�ation models whose spectrum is compatible with current observational constraints

(see, e.g., �gure 1.2). In fact, it is so easy to do so that critics of in�ation often present the

huge number of in�ation models compatible with current observations [109,110] as evidence

that the in�ationary paradigm is practically unfalsi�able [87] � which is why the search

31In other words, since ϕk well inside the horizon is set by the �at space vacuum condition and ζ is �frozen

out� on superhorizon scales, we are allowed to use our result derived with the constant H approximation

provided that for each k we use the value of H that corresponds to the transition period between these

limits.
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for observational tests able to rule out classes of in�ation models, and particularly the

simple class of canonical single-�eld slow-roll in�ation models, is a major goal of modern

cosmology32.

Figure 1.2: Marginalised 68% and 95% limits for ns at k = 0.05Mpc−1 and r at k =

0.002Mpc−1 from Planck in combination with other data sets, compared to the theoretical

predictions of selected in�ationary models (N∗ being the number of e-folds to the end of

in�ation) � image from Ade et al [8].

1.2.4 Reheating and the end of in�ation

Useful as in�ation is, in order to e�ectively solve the problems of standard Big Bang

cosmology it is meant to solve, it must eventually end to give way to the hot radiation-

dominated Universe required by nucleosynthesis. Reheating is the name given to the

intermediate epoch between the end of in�ation and the establishment of this radiation-

dominated initial state.

Ending in�ation is not usually hard from a model-building perspective. In single-�eld

in�ation, for example, it is usually relatively simple to make sure that ε ≥ 1 at some point

by making the potential steep enough. Alternatively, there are even models for which

in�ation never really ends classically but in which parts of the Universe still spontaneously

stop in�ating due to stochastic quantum processes [75].

32In chapter 4 we discuss a speci�c attempt to do this with parameters which quantify the scale depend-

ence of ns (k).
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Reheating is a di�erent matter. Since at the end of in�ation the Universe is practically

empty of �normal� matter, it requires the dominant component of the cosmic �uid to almost

completely decay into standard model particles which need to be able to thermalise at some

temperature T & 1MeV (needed at the onset of nucleosynthesis). In the simplest models

for single-�eld scenarios this is achieved by having the in�aton �eld lose a fraction of its

energy as it oscillates around a minimum of its potential, but in general it can be a lot

more complicated, possibly with more than one reheating phase taking place before the

Universe becomes radiation-dominated [107]. To make matters worse, in in�ation models

with more than one degree of freedom there is no guarantee that the curvature perturbation

is conserved after horizon exit, leading to the necessity of an understanding of reheating

mechanisms in order to make reliable observational predictions [109,110,171].

1.3 Cosmic strings

Cosmic strings are line-like topological defects whose production in phase transitions in

the early Universe is predicted in several particle physics scenarios (particularly in grand

uni�cation theories) [48]. If cosmic strings are formed before in�ation, there should be

almost no chance of coming across one today. However, it is possible for them to be

produced at the end of in�ation, in particular in popular models in good agreement with

observations such as brane in�ation and hybrid in�ation [1, 155]. If this is the case, an

eventual cosmic string detection may be able to teach us a great deal about particle physics

at very high energies in general and in�ation in particular � but only if we are able to

properly model the evolution of the properties of realistic cosmic string networks through

cosmic history. Chapter 3 is dedicated to an e�ort to improve the way in which the

evolution of the simplest cosmic string networks is modelled. In preparation for that, this

section brie�y reviews some basic concepts of cosmic string formation and dynamics.

1.3.1 Topological defects from the Kibble mechanism

The Kibble mechanism (also known as the Kibble-Zurek mechanism33) is the main pro-

cess by which topological defects can be formed in cosmological symmetry-breaking phase

33The mechanism revolving around the topology of broken symmetry groups was �rst proposed by Tom

Kibble when he introduced the study of topological defects to cosmology [92]. Wojciech Zurek later had his

name added in recognition for his work in condensed matter tests of this scenario [174]. Here we will favour

the designation of �Kibble mechanism� because we will merely be referring to Kibble's original argument

without any of the insights introduced by Zurek.
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transitions.

The basic idea of this mechanism can be grasped in a situation in which a �eld is initially

in a symmetric state (relative to some symmetry of its action) and is forced to settle in

a broken-symmetry ground state (of which there must be more than one as a symmetry

of the action must produce a ground state when acting on a ground state). Since all

ground states are energetically equivalent, the speci�c ground state the �eld will �choose�

will be determined by random �uctuations which must be uncorrelated over large enough

distances (e.g. distances larger than the horizon). Depending on the speci�c topology of

the set of ground states, it is possible that the requirement that the �eld be continuous

(which is generally imposed by a kinetic term in the action) in the face of these �uctuations

will force some regions of space not to be in any ground state � and these regions will

correspond to topological defects (the exact type of defect depending on the topology of

the set of ground states34).

As an illustrative example one can think of a scalar �eld with a �mexican hat� potential

whose Lagrangian density is given by

L = ∂µφ∂
µφ∗ − λ

4

(
|φ|2 − α2

)2
, (1.51)

where λ and α are positive constants. If φ is allowed to be a complex �eld, this theory is

invariant under global transformations of the form φ (x) → eiθφ (x), where θ is any real

constant; whereas if φ is forced to be a real �eld this symmetry only relates to sign changes

φ (x)→ −φ (x). Note that the potential term in Eq. (1.51) (illustrated in �gure 1.3) has a

local maximum at φ = 0 (where the �eld tends to settle at high temperatures) and a set of

global minima at |φ| = α (where the �eld settles at low temperatures). Therefore, if this

�eld cools down from a high enough temperature there should be a transition at which φ

will be forced to choose a phase in di�erent regions of space.

Depending on whether the �eld is real or complex, this should lead to the formation of

di�erent topological defects. If the �eld is real, there are only two ground states (φ = ±α)

and it is easy to see that distant regions of space will �choose� di�erent ones leading to there

being relatively large three-dimensional domains of positive and negative φ, at the border

of which the �eld must quickly vary between them; e�ectively de�ning �false vacuum�

membranes which are examples of domain walls. If, instead, the �eld is complex, the set of

ground states corresponds to the circle de�ned by φ = αeiθ and distant regions will have

to settle for di�erent values of θ. It is then likely that there will be closed paths in space

along which the �eld will wind around this circle (i.e., θ will continuously vary from 0 to a
34More speci�cally, on its homotopy group [168].
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Figure 1.3: Illustration of the �mexican hat� potential of Eq. (1.51) for a complex �eld φ

� image from Vilenkin and Shellard [168].

multiple of 2π). For this to be possible in a situation in which φ is continuous everywhere,

in every two-dimensional surface with support in this closed path there must be at least

one point at which θ is not de�ned. In other words, if there is at least one in�nite line-like

region of false vacuum going through the closed path in which the �eld is not in a ground

state35: an example of a cosmic string.

1.3.2 Goto-Nambu strings

There are many di�erent �eld theories which may give rise to many di�erent types of

cosmic strings: with di�erent interaction terms, di�erent (linear) energy densities, di�erent

associated charges, etc. Here we are interested in the simplest class of cosmic strings, which

are free of long-range interactions and whose large-scale dynamics (when typical distances

are considerably larger than the string thickness) depend only on their con�guration. These

are well described by the Goto-Nambu action

S = −µ0

∫ √
−γd2σ, (1.52)

where µ0 is a constant related to the symmetry breaking scale and γ is the determinant of

the metric

γab = gµνx
µ
,ax

ν
,b, (1.53)

35Note that, although this is a little harder to visualise than in the domain wall case, there must be

an actual one-dimensional region where φ = 0 (like in the domain wall example there must be a two-

dimensional one) so that all such paths may be continuously �glued together�.
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induced by the metric gµν on the (1 + 1)-dimensional string worldsheet parameterised by

xµ (σ) ≡ xµ
(
σ0, σ1

)
, where σ0 is a timelike coordinate and σ1 is spacelike.

The equations of motion which follow from Eq. (1.52) are given by

∇2xµ + Γµνλγ
abxν,ax

λ
,b = 0, (1.54)

where Γµνλ are the Christo�el symbols associated with the background metric gµν and the

Laplacian operator acts on xµ as

∇2xµ =
1√
−γ

∂a

(√
−γγabxµ,b

)
. (1.55)

For a �at FLRW background metric and in the transverse temporal gauge, de�ned by

σ0 = η and ẋ · x′ = 0 (where Q̇ ≡ dQ
dη and Q′ ≡ dQ

dσ1 ), Eq. (1.54) yields

ε̇+ 2ε
ȧ

a
ẋ2 = 0, (1.56)

ẍ + 2
ȧ

a
ẋ
(
1− ẋ2

)
=

1

ε

(
x′

ε

)′
, (1.57)

where we have de�ned

ε ≡ − x′2√
−γ

=

√
x′2

1− ẋ2
, (1.58)

so that the energy in a string segment is given by [168]

E = µ0a

∫
εdσ1. (1.59)

Note that often the Nambu-Goto equations of motion will predict that two segments

of string will intersect each other. When this happens, the zero-width approximation

behind Eq. (1.52) breaks down and microscopic interactions may have to be taken into

account. In the simplest models (and in the simplest Goto-Nambu simulations which will

be considered in chapter 3) these intersections result in intercommutation, meaning that

the two segments �break� at the point of intersection and the resulting ends reattach to

the other segment's corresponding ends (see �gure 1.4). Intercommutation leads to the

appearances of kinks in strings and often leads to the production of string loops. In more

complicated models, in addition to intercommutation, there may be a probability of the

two segments becoming connected by a �bridge�36 or of no interaction taking place and the

segments just going through each other.

36Called a junction if it is point-like and a zipper if it is string-like.
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Figure 1.4: Outcome of an intercommutation event between two strings (the bisecting

planes A and B serving the purpose of evidencing the two-dimensional nature of the inter-

action) � image from Vilenkin and Shellard [168].

1.3.3 The Velocity-dependent One-Scale model

On large scales, cosmic string networks are expected to resemble a collection of trajectories

of Brownian random walks. This expectation is what leads to the popular simplifying

assumption (known as the one-scale approximation) that the large-scale properties of these

networks should be determined by a single characteristic length scale (meaning that it is

assumed that quantities like the string correlation length and the string curvature radius

can be assumed to be roughly the same) [93,114,119,126]. This characteristic length, L, is

usually de�ned in terms of the energy density in long strings (i.e., excluding string loops)

as

ρ ≡ µ0

L2
, (1.60)

where it is assumed that there is about one string segment of length L per volume L3

(since L is also the typical separation between segments).

A less trivial consequence of this one-scale approximation is that the rate of energy

loss in the form of loops inside a correlation volume L3 must be just proportional to the
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characteristic velocity of string segments, v37. As a result, we can write(
dρ

dt

)
to loops

= cv
ρ

L
, (1.61)

where c is known as the loop chopping e�ciency parameter (which depends on the speci�c

model in which strings arise) and for the characteristic velocity v we consider the root

mean square velocity

v2 ≡
∫
εẋ2dσ1∫
εdσ1

. (1.62)

Finally, integrating Eqs. (1.56) and (1.57) over the whole network (introducing the

de�nitions from Eqs. (1.59), (1.60), and (1.62), and adding Eq. (1.61) by hand), we arrive

at the system of equations which de�nes the Velocity-dependent One-Scale (VOS) model

for the evolution of a network of Goto-Nambu cosmic strings which only loses energy by

redshifting and by loop production,

2
dL

dt
= 2HL

(
1 + v2

)
+ cv, (1.63)

dv

dt
=
(
1− v2

) [ k
L
− 2Hv

]
, (1.64)

where k is called the momentum parameter and is de�ned by

k ≡
〈
(
1− ẋ2

)
(ẋ · u)〉

v (1− v2)
, (1.65)

where u is a unit vector parallel to the curvature vector, and in most relevant limits k can

just be written as [118]

k (v) =
2
√

2

π

1− 8v6

1 + 8v6
. (1.66)

An important property of this model is that when a ∝ tλ it has the attractor scaling

solution
L

t
=

√
k (k + c)

4λ (1− λ)
, v2 =

k (1− λ)

λ (k + c)
, (1.67)

which is useful for comparison with simulations assuming matter or radiation domination.

1.3.4 Small-scale structure on cosmic strings: a mathematical formalism

The VOS model has become a mainstream tool in the �eld of cosmic strings [5] owing to

its relative simplicity and quantitative agreement with simulations (particularly in scaling

37This is because the number of loops of size l being formed per intercommutation should only depend on

l/L, but the rate at which they form is proportional to the probability of a segment of size l encountering

one of the other segments within a time δt, which is of order vlδt/L2. In other words, the typical size of

loops being formed in the correlation volume L3 is proportional to L, but the probability of them forming

is proportional to v/L.



29

regimes) [119,126]. Moreover, even though the VOS model as we have described it applies

only to networks of simple strings (de�ned by the Goto-Nambu action), its basic framework

can be naturally extended to describe networks of more complex strings - for example,

superconducting strings [116,117].

One of the most serious shortcomings of the VOS model is its inability to account

for the presence and e�ect of small-scale structure (on scales much below L) in a cosmic

string network throughout its evolution. The one-scale approximation makes the model

intrinsically limited at such small scales; however, realistic networks should develop a

non-negligible amount of such small-scale struture (chie�y due to kinks created by inter-

commutation) [12,119].

One way of generalising the VOS model in order to take this small-scale structure into

account [120] involves substituting the Goto-Nambu action (Eq. (1.52)) with the elastic

string action given by

S = −µ0

∫ √
1− γabφ,aφ,b

√
−γd2σ, (1.68)

where the additional scalar �eld φ is to be thought of as a stream function (de�ned on the

string worldsheet) that is constant along the �ow lines of an associated current � which

in this case we interpret as a mass current due to wiggles propagating along the string.

The main idea is that, in a course-grained sense (i.e., as long as we are only interested in

quantities de�ned as averages over large string segments), a smooth elastic string obeying

the action in Eq. (1.68) should behave in the same way as a Goto-Nambu string with

small-scale structure [169].

The resulting equations of motion, analogous to Eqs. (1.56) and (1.57), can now be

written as ( ε
w

)̇
+
( ε
w

) ȧ
a

[
2w2ẋ2 +

(
1 + ẋ2

) (
1− w2

)]
= 0, (1.69)

ẍ +
ȧ

a
ẋ
(
1− ẋ2

) (
1 + w2

)
=
w2

ε

(
x′

ε

)′
, (1.70)

ẇ

w
=
(
1− w2

)( ȧ
a

+
x′ · ẋ′

x′2

)
, (1.71)

where

w ≡
√

1− γabφ,aφ,b. (1.72)

The formula for the total energy in a piece of string is now

E = µ0a

∫
ε

w
dσ1, (1.73)
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whereas the corresponding result neglecting small-scale structure is called the bare energy

and is written as (according to Eq. (1.59))

E0 = µ0a

∫
εdσ1. (1.74)

Each of these energies will be associated with a di�erent characteristic length (via Eq. (1.60)).

We shall henceforth refer to the one associated with E as L and to the one associated with

E0 as ξ.

The greater the di�erence between these two energies/lengths the more small-scale

structure there is in a given network. Therefore, a natural measure of the wiggliness in a

cosmic string network is the renormalised string mass per unit length factor given by

µ =
E

E0
=
ξ2

L2
=

∫
ε
wdσ

1∫
εdσ1

, (1.75)

which is unity in the absence of small-scale structure and increases in its presence. However,

it must be stressed that this quantity is not an intrinsic property of the network: rather,

it depends on the characteristic scale of the coarse-graining procedure from which the

distinction between small and large-scale structure on the strings arises38. If we designate

this coarse-graining scale (also sometimes called a renormalisation scale) by `, the scale

dependence of µ must follow
∂ lnµ

∂ ln `
∼ dm (`)− 1, (1.76)

where dm (`) is the multifractal dimension of the network at the scale `.

In order to obtain VOS-like equations from these results, it will be necessary to take

averages of Eqs. (1.69)-(1.71). The most natural way to de�ne averages in this context is

according to

〈Q〉 ≡
∫
Q ε
wdσ

1∫
ε
wdσ

1
. (1.77)

Consistently, we also de�ne the root mean square velocity as

v2 ≡ 〈ẋ2〉 =

∫
ε
w ẋ

2dσ1∫
ε
wdσ

1
. (1.78)

At last, Eqs. (1.69)-(1.71) can be integrated to yield (identifying the typical curvature

of the network with ξ, as in the VOS model)

Ė

E
=
ρ̇

ρ
+ 3

ȧ

a
=
Ė0

E0
+
µ̇

µ
=
[
〈w2〉 − v2 − 〈w2ẋ2〉

] ȧ
a
, (1.79)

µ̇

µ
=
aµ

ξ
〈w(1−w2)(ẋ · u)〉+

ȧ

a

[
〈w2〉 − 1 + 〈(µw − 1)(1 + w2)ẋ2〉

]
+ [dm(`)− 1]

˙̀

`
, (1.80)

38Much like the relation between the total length of a segment of coastline and its length on a map

depends on the scale of the map.
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˙(v2) =
2a

ξ
〈w2(1− ẋ2)(ẋ · u)〉 − ȧ

a
〈(v2 + ẋ2)(1 + w2)(1− ẋ2)〉+

1− v2

1 + 〈w2〉
∂
〈
w2
〉

∂`
˙̀, (1.81)

where the �nal terms in the last two equations are called scale drift terms and take into

account the possible temporal dependence of `39.

At this point, the only thing needed for these equations to constitute a full VOS-like

model of a wiggly string network is the addition of energy loss terms analogous to the one

in Eq. (1.61). This, as well as an in-depth exploration of the resulting model, is done in

chapter 3.

1.4 Thermodynamics and Negative Absolute Temperatures

Chapter 2 is dedicated to the study of possible cosmological consequences of the existence

of negative absolute temperatures (NAT). The present section provides a preliminary in-

troduction to this work by reviewing some basic results associated with this exotic concept.

1.4.1 What is a temperature?

Temperature is a rather unique physical concept. Despite being practically ubiquitous in

quotidian scenarios, its actual physical meaning remains elusive to the intuition of most

who use it.

What the vast majority of people really have in mind when they use the word �temper-

ature� in informal settings is the related concept of hotness. When they say something is

at a higher temperature than something else, what they really mean is that it feels hotter;

i.e., touching it will cause heat to be transferred to their skin. In fact, if two objects at

di�erent temperatures are put in thermal contact, most intuitions will unquestioningly ex-

pect heat to �ow from the higher temperature one to the other � in line with the de�nition

of �hotness� implied in the Clausius formulation of the second law of thermodynamics40.

In reality, temperature is a little more complicated than that (and even than more

sophisticated versions of that which use temperature as merely a complicated measure of

the internal energy in a system). Naturally, such views endure because in daily life, and

indeed in most applications, temperature can be thought of in this way. However, those

expectations do break down in rare but achievable conditions, and thus should not be

mistaken for fundamental properties.

39The scale drift term in Eq. (1.80) following trivially from Eq. (1.76), while the one in Eq. (1.81)

results from the realisation that Eq. (1.79) must not depend on ` (and using also the assumption that the

microscopic string velocity is locally independent of w).
40�No process is possible whose sole result is the transfer of heat from a colder to a hotter body.� [25]
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In the usual formulation of the �rst law of thermodynamics [25], the temperature of an

isolated system is de�ned by
1

T
=

(
∂S

∂U

)
V,N

, (1.82)

where T is the temperature, U the internal energy, V the volume, N the number of particles,

and S is the Boltzmann entropy de�ned as

S = kB lnW, (1.83)

where kB is the Boltzmann constant and W is the number of microstates corresponding

to the macrostate the system is in.

Alternatively, in a canonical ensemble, temperature can be given in terms of the oc-

cupation numbers of one-particle states given by the Fermi-Dirac and the Bose-Einstein

distributions:

〈ni〉 =
1

e
(εi−µ)
kBT ± 1

, (1.84)

where 〈ni〉 denotes the average occupancy of a single-particle state of energy εi, µ is the

chemical potential, and the ± sign is positive for fermions (Fermi-Dirac distribution) and

negative for bosons (Bose-Einstein distribution). Mathematically, in this picture 1/kBT

is a Lagrange multiplier associated with energy conservation and −µ/kBT is a Lagrange

multiplier associated with number conservation. Physically, the temperature indicates how

much more likely a particle is to be in a lower-energy state than in a higher-energy one.

1.4.2 Negative absolute temperatures

In order to illustrate how common intuitions regarding the behaviour of temperature may

fail, let us consider the example of an isolated system with a �nite number of distinguishable

particles which can each be in one of two states with di�erent energies. A notable example

of such a system is given by an Ising model of a ferromagnet subject to an external magnetic

�eld [30]. In the following analysis we call the lower-energy one the ground state and the

higher-energy one the excited state.

In this system, macrostates are characterised only by their energy � or, equivalently,

by the number of particles in the excited state. Therefore, the number of microstates

associated with a given macrostate is just the number of ways in which the particles can

be distributed with the corresponding number in the excited state:

W =
N !

n! (N − n)!
, (1.85)
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where N is the total number of particles and n is the number of particles in the excited

state.

Crucially, W given by Eq. (1.85) remains unchanged if n is rede�ned as the number of

particles in the ground state (as it should, since W is a purely combinatorial quantity). As

a result, the entropy as a function of n must be symmetric around n = N/2 (corresponding

to equal numbers of particles in both states and the maximum of W ) and is a decreasing

function for n > N/2. In fact, inserting this result into Eq. (1.83) and then into Eq. (1.82)

leads to (using the Stirling approximation for large N)

1

T
=
kB
∆ε

[
ln

(
N

n
− 1

)]
, (1.86)

where ∆ε is the energy di�erence between the two states.

In Eq. (1.86) we �nd a classical example of a temperature defying the usual expectations

whenever n > N/2, i.e., when there are more particles in the excited state than in the

ground state and the temperature becomes non-positive (when all particles are excited both

the temperature and the entropy vanish, as in the symmetric con�guration41; otherwise

the temperature is negative). Interestingly, the temperature here can also be seen to be

singular at n = N/2; a sign that the physically meaningful quantity is the inverse of the

temperature rather than the temperature itself.

The role of these negative absolute temperatures (NAT) is easier to see in the ca-

nonical ensembles assumed in Eq. (1.84). Regardless of the spectrum of available one-

particle states, positive-temperature distributions favour the occupation of lower-energy

states whereas NAT lead to higher-energy states being preferred (and if all states are uni-

formly occupied that corresponds to a singularity in the temperature). This also makes

it easier to see that the key feature of the two-level quantum system that makes NAT

possible is the existence of a maximum possible energy of the system: without that, NAT

distributions following Eq. (1.84) would not be normalisable.

1.4.3 Negative temperatures and negative pressures

In the end, NAT are a consequence of the physically non-obvious (although mathematically

rigorous) manner in which temperature is canonically de�nded. At �rst glance, it appears

that one could simply think in terms of occupation numbers and everything else would work

similarly as it does for T > 0. However, the importance of temperature in thermodynamics

does lead to some exotic results in the calculation of speci�c observables. In this work,

41In fact, Eq. (1.86) is odd with respect to all transformations which swap all the particles in both states.



34

we are especially interested in the consequences for the pressure: which will be naturally

negative when T < 0.

One way of showing this result [28] uses the fact that the maximum entropy principle

generally requires (
∂S

∂V

)
U

≥ 0, (1.87)

as otherwise the system would spontaneously contract to increase its entropy.

Using the total di�erential of the internal energy,

dU = TdS − PdV, (1.88)

where P is the pressure, we can then �nd that(
∂S

∂V

)
U

=
P

T
, (1.89)

and thus the pressure must have the same sign as the temperature42. The potential relev-

ance of this result for cosmology is discussed in the following chapter.

42An independent derivation which takes into account how chemical potentials may preserve the posit-

ivity of P even when T < 0 can be found in subsection 2.2.1.
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Chapter 2

Cosmology with Negative Absolute

Temperatures

J.P.P. Vieira,1 Christian T. Byrnes,1 and Antony Lewis1

1Department of Physics & Astronomy, University of Sussex, Brighton BN1 9QH, UK

Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of

quantum physics which has been known since the 1950's (having been achieved in the lab

on a number of occasions). Recently, the work of Braun et al [28] has rekindled interest

in negative temperatures and hinted at a possibility of using NAT systems in the lab as

dark energy analogues. This paper goes one step further, looking into the cosmological

consequences of the existence of a NAT component in the Universe. NAT-dominated

expanding Universes experience a borderline phantom expansion (w < −1) with no Big Rip,

and their contracting counterparts are forced to bounce after the energy density becomes

su�ciently large. Both scenarios might be used to solve horizon and �atness problems

analogously to standard in�ation and bouncing cosmologies. We discuss the di�culties

in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density

perturbations with an acceptable spectrum.
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2.1 Introduction

2.1.1 How can temperature be negative?

Say the words �negative absolute temperatures� (NAT) to anyone who hasn't heard of them

before, and your remark will most likely be met with a look of bewilderment (and perhaps

the question in the title). Even more than sixty years after negative temperatures were

achieved in the lab, this is by no means an unexpected reaction. In informal parlance we

all get used to perceiving temperature as a measure of the energy in a macroscopic system,

and thus necessarily a positive quantity. In fact, temperature is canonically de�ned in

terms of the rate of change of entropy with internal energy in thermal equilibrium, which

can be negative. Speci�cally
1

T
=

(
∂S

∂U

)
V,N,Xi

(2.1)

where T is the absolute temperature, U the internal energy, S the entropy, V the volume,

N the number of particles and Xi represents any other (eventually) relevant extensive

property of the system. In this work, S is de�ned as1

S = kB lnW (2.2)

where kB is the Boltzmann constant and W is the number of microstates corresponding

to the macrostate the system is in.

The reason we do not expect NAT in classical scenarios is that for those we generally

expect the number of states with energy U to increase with U . In quantum mechanical

systems, however, it is fairly easy to construct situations in which the energy is bounded

from above as well as from below. When that happens, if the entropy is a continuous

function of the energy, S must have a maximum somewhere between the upper and the

lower energy bounds (where S is zero). By Eq. (2.1), T must then allow negative values.

The simplest example is a two-level quantum system which can be populated by a

�xed number of distinguishable particles. As the energy of the system is increased, more

particles will populate the higher-energy level. At in�nite temperature the number of
1 There has recently been some controversy [32,54,55,64,65,68,76,158] regarding whether this quantity,

known as the Boltzmann entropy, is correct; the alternative being the Gibbs-Hertz entropy, brought under

the spotlight by [55] (in the original reference, they just call it the �Gibbs entropy� since Gibbs was

apparently the �rst to propose this entropy formula despite it traditionally being credited to Hertz).

While this debate is an important one (especially for anyone interested in NAT, which are impossible in

the Gibbs-Hertz formalism), it is not completely clear in which situations the disagreement actually a�ects

obervables in the thermodynamic limit [64]. Moreover, it has recently been shown [32] that the Boltzmann

formula is the appropriate one for systems with equivalence of statistical ensembles.
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particles is the same in both energy levels (corresponding to maximum entropy), but it

is quite possible to give the system more energy than that, so that there are then more

particles in the higher-energy state, corresponding to a negative temperature. Note that

the system at a negative temperature has more energy, and is therefore �hotter�, than at a

positive temperature.

In practice, negative temperatures can be realized in a number of ways. As an illustra-

tion, consider a lattice of localized spin-1/2 particles interacting with an external magnetic

�eld. There are two one-particle energy levels, corresponding to the two possible spin

orientations relative to the magnetic �eld. At low temperatures, we expect most spins

to be in the lowest-energy state. However, if the sign of the external magnetic �eld is

switched at very low temperatures, then suddenly the most populated state will become

the highest-energy state and if the system can then be isolated (so that energy cannot be

lost and most particles are forced to be in the highest-energy state) then we are left with a

state corresponding to T < 0. This was essentially the set-up used by Purcell and Pound

in 1951 [146], in the �rst experiment in which it is claimed that NAT were measured (the

magnetic material they used was crystal of Lithium �uoride, which was known to have

very long magnetic relaxation times).

2.1.2 From the lab to the sky

The �rst thorough theoretical study of the conditions under which NAT occur is due to

Ramsay [147], �ve years after the experiment by Purcell and Pound [146] (although the

�rst known appearance of the concept of NAT seems to have been two years earlier, when

Onsager used them to explain the formation of large-scale persistent vortices in turbulent

�ows [63]). Even today, most discussions revolving around NAT take this treatise as a

starting point.

After Ramsay (1956), there was not much big news regarding NAT until 2012, when

Braun et al. [28] reported the �rst experimental realization of NAT in a system with

motional degrees of freedom (an ultra-cold boson gas). Important as this may be as an

experimental landmark, one of its main consequences was arguably the revival of theoretical

interest in NAT which led to the debate about Boltzmann vs Gibbs-Hertz entropies we

have already mentioned (see footnote 1). Interestingly, Braun et al. also noticed that

an (almost) inevitable consequence of negative temperatures, negative pressures, are �of

fundamental interest to the description of dark energy in cosmology, where negative pressure

is required to account for the accelerating expansion of the universe�. Apparently, this
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remark was mostly interpreted as a suggestion that known NAT systems could be useful

as laboratory dark energy analogues. Some people, however, seem to have read this hint

di�erently, meaning that some analogous mechanism could be responsible for the observed

accelerated expansion of the Universe. This interpretation seems to have inspired Brevik

and Grøn [29] to come up with a class of models where, while not using NAT directly,

an analogous e�ect is achieved by means of a negative bulk viscosity. Nevertheless, as far

as we are aware, nobody has proposed a model where this is done with actual negative

temperatures, possibly due to not having found a well-motivated physical assumption that

could lead to NAT at cosmological scales2.

2.1.3 A natural cut-o�?

The key requirement for a NAT is an upper bound to the energy of the system. This could

either be an absolute upper bound, or there could be an energy gap allowing a metastable

population inversion. As long as the interaction time for particles below the energy gap is

much shorter than the typical time scale for thermal equilibrium to be reached, an e�ective

NAT can develop (as in the experimental realizations).

In the context of cosmology, where we are mainly interested in the properties of the

total density, a NAT could be obtained if there is a fundamental energy cut-o�. This could

be related to a minimum length scale, for example as discussed in the context of quantum

gravity (see for example [70, 80] and references therein). For the purpose of this paper

we are not assuming any particular model, and simply consider the possibility that the

fundamental model features a cut-o� and investigate the consequences. Nevertheless, it

must be kept in mind that there is a number of non-trivial requirements that must be met

by any well-motivated realization of this idea.

One major such di�culty is raised by the existence of particles which can never thermal-

ize at NAT, like photons3. Even if a physically well-motivated scenario in which certain

particles can reach thermal equilibrium at NAT can be found, for them to do so at cosmo-

logical scales it is necessary that they be able to do so despite the presence of photons. The

problem here is that, if there is exchange of energy between the NAT �uid and a photon

2A connection between NAT and phantom in�ation seems to have been �rst independently suggested in

Ref. [74]. However, the word "temperature" there is really referring to an out-of-equilibrium generalisation

of temperature and none of their examples can correspond to NAT as de�ned here. Those following the

ensuing discussion [105, 131, 138, 142, 156, 160] might be interested in the questions we raise regarding the

introduction of a non-null chemical potential in this context (see Appendix A.1).
3Since they are not subject to number conservation, there can never be a maximum energy for a photon

�uid, even if individual photons have their energy bounded from above.



39

�uid, then thermal equilibrium must occur at the same temperature for both �uids � and

since the photon �uid cannot be at NAT then equilibrium at NAT becomes impossible.

Moreover, even if there is no direct coupling between these two �uids, they must both

couple to gravity and thus some measure of thermal contact is unavoidable. Therefore, in

order for any eventual theory of NAT at cosmological scales to be successful, it must be

possible to show that the characteristic timescale of this energy transfer is long enough

compared to other relevant timescales that there can be an e�ective thermal equilibrium

at NAT over cosmological time scales.

Another important requirement concerns the interaction time for dominant particles

with energies up to the cut-o�. This must be short relative to other relevant timescales,

particularly the Hubble time. Otherwise, any population inversion could rapidly go out of

equilibrium as the particles decouple, rendering the very concept of temperature meaning-

less.

In the end, we focus on the possibility that equilibrium is maintained and see what a

phenomenological NAT description would imply. The relevant quantity that needs to be

extracted from an eventual fundamental theory is the number density of states at a given

energy ε, g (ε), which at low energies is constrained to take a standard form. Given the

lack of an actual complete fundamental theory to work with, we shall express all results in

the most general form possible. Any time we want to illustrate a calculation for a speci�c

model we consider a simple ansatz for a gas of independent particles with a cut-o� at ε = Λ

and the right behaviour at low (i.e., currently observed) energies,

g (ε) =


g

2π2 ε
√
ε2 −m2 if m < ε < Λ

0 otherwise,
(2.3)

where g is the usual degeneracy factor and m is the particle mass (note we are using units

in which c = ~ = MP = kB = 1). Interestingly, it turns out that our most important

results in section 2.3 will be essentially independent of the speci�c form of g (ε) as long as

it behaves as it should at low energies.

In the remainder of this paper, we shall focus on the cosmological implications of

NAT. The discussion is organised as follows. In section 2.2 we show how to calculate

thermodynamical functions as model-independently as possible. In section 2.3 we use

the results from section 2.2 to model the evolution of generic expanding and contracting

NATive Universes. In particular, we show that exactly exponential in�ation is an attractor

regime in these models and address the problems associated with ending it. Finally, the

main successes and problems of this approach are summarised in section 4.5. Additionally,
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appendix A.2 deals with the challenges of thermal perturbation generation at NAT.

2.2 Thermodynamical functions

The main goal of this section is to investigate the temperature dependence of the most

relevant thermodynamical quantities (which we will later need to substitute into the Fried-

mann equations in order to do cosmology). In particular, we are interested in �nding model-

independent relations between results at very low positive temperatures (the kind that has

been extensively studied) and results at negative temperatures very close to T = 0− (which

we shall see generally corresponds to the highest possible energy scales, which have never

been probed).

2.2.1 Negative pressure

Our main motivation for studying NAT is that they naturally give rise to negative pressures.

Let us start by seeing why this is so. One of the most straightforward ways of calculating

the pressure of a system is by making use of the grand potential, de�ned as

Φ = U − ST − µN, (2.4)

and whose gradient can be written as

dΦ = −SdT − PdV −Ndµ+ xidXi, (2.5)

where µ is the chemical potential and xi represent the thermodynamic potentials corres-

ponding to the quantities Xi. Assuming there is no relevant Xi, we get the well-known

Euler relation:

P = −
(
∂Φ

∂V

)
T, µ

= −ρ+ sT + µn. (2.6)

Note that when T < 0 the only term in Eq. (2.6) which is not necessarily negative is

µn, and the pressure will be very negative unless this term is signi�cant in comparison to

the others. In particular, if µ = 0 (as must be the case in regimes where the total number

is not conserved) we recover the better-known result

P = −ρ+ sT, (2.7)

which corresponds to an equation of state with w < −1 (leading to what is known as

phantom in�ation) for any T < 0.
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2.2.2 Fermions and holes

For now we deal only with fermions (in appendix A.1 we discuss why we do not want to

work with bosons). We will therefore use the Fermi-Dirac distribution,

N (ε;T, µ) =
1

eβ(ε−µ) + 1
, (2.8)

which should still be valid for β = (kBT )−1 < 0 since microstate probabilities are still

associated with the Boltzmann factor e−β(E−µN) (where E is the total energy associated

with a speci�c microstate, so that U = 〈E〉).

We can now use standard thermostatistics to �nd the relevant quantities as a function

of temperature and chemical potential. The energy and the number density are trivial,

ρ (T, µ) =

Λ∫
m

εg (ε)N (ε;T, µ) dε, (2.9)

n (T, µ) =

Λ∫
m

g (ε)N (ε;T, µ) dε, (2.10)

as are their maximum possible values,

ρmax ≡
Λ∫

m

εg (ε) dε, (2.11)

nmax ≡
Λ∫

m

g (ε) dε. (2.12)

Note that these maximum values correspond only to the NAT fermion gas, so in situations

in which there is more than one component the total ρ and n can exceed these values.

The pressure is less simple, but can be found from the grand potential given by [25]

Φ = − 1

β
lnZ, (2.13)

where Z is the grand canonical partition function. For fermions this is just given by

Z =
∑
s

e−β(Es−µNs) =
∑
{Ni}

∏
i

e−β(εi−µ)Ni =
∏
i

(
1 + e−β(εi−µ)

)
, (2.14)

where s are the states of the whole system and we used i to label di�erent one-particle

states, εi and Ni representing their energy and occupation number (0 or 1) respectively,

and {Ni} represents a sum over all possible combinations of Ni. Inserting Eq. (2.14) into

Eq. (2.13) and then taking the continuous limit before applying Eq. (2.6) we �nally �nd

P (T, µ) =
1

β

Λ∫
m

g (ε) ln
[
1 + e−β(ε−µ)

]
dε. (2.15)



42

So far, it looks as though all these results should be highly dependent on the speci�c

form of g (ε). The reason this is not true is because we can relate results at positive and

negative temperatures using the well-known symmetry of the Fermi-Dirac distribution:

N (ε;T, µ) =
1

eβ(ε−µ) + 1
= 1− 1

e−β(ε−µ) + 1
= 1−N (ε;−T, µ) . (2.16)

This allows us to borrow the concept of holes from solid state physics. A hole here is

just a way to conceptualize the absence of a particle in a given state as a quasi-particle

of negative energy in a positive energy �vacuum�. This just means that it is as valid to

describe our system in terms of which states are occupied by particles as in terms of which

states are unoccupied. For us it is particularly useful in the limit where most particles

are occupying the highest-energy states (which correspond to T < 0), since this can be

thought of as the limit where holes are populating the lower-energy states (corresponding

to T > 0). Note that there exists a similar identity for the kind of logarithmic term in the

integral in Eq. (2.15),

ln
[
1 + e−β(ε−µ)

]
= −β (ε− µ) + ln

[
1 + eβ(ε−µ)

]
. (2.17)

It is now easy to combine Eqs. (2.16) and (2.17) with Eqs. (2.9), (2.10), and (2.15),

yielding

ρ (T, µ) = ρmax − ρ (−T, µ) (2.18)

n (T, µ) = nmax − n (−T, µ) (2.19)

P (T, µ) = −ρmax + µnmax − P (−T, µ) . (2.20)

These functions depend on very few parameters from the fundamental theory as long as

holes are at �low� temperatures (which here just means low enough that we know how

physics works at those temperatures). If µ = 0, as will be the case in most relevant

scenarios in this paper, the pressure has an even simpler form4:

P (T, µ = 0) = −ρmax − P (−T, µ = 0) (2.21)

(note that only in this case can we be sure that a barotropic �uid at T > 0 will correspond

to a barotropic �uid at T < 0). Note also the useful symmetry

ρ (T, µ = 0) + P (T, µ = 0) = −ρ (−T, µ = 0)− P (−T, µ = 0) . (2.22)
4It is interesting to notice that this seemingly surprising relation still makes sense physically. Since (if

µ = 0) P = −
(
∂U
∂V

)
S
, in a situation in which all single-particle states are �lled the entropy is zero, and

keeping the entropy constant as V varies corresponds to always keeping all states �lled, yielding U = ρmaxV

and thus P = −ρmax. If not all states are �lled, then it makes sense to think of holes as negative momentum

particles that contribute negatively to the total pressure as in Eq. (2.21).
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−∞ (T=0− ) 0 (T= ±∞) +∞ (T=0+ )

β

0

1
2
ρmax

ρmax

ρ

−∞ (T=0− ) 0 (T= ±∞) +∞ (T=0+ )

β

0

−ρmax

P

Figure 2.1: Energy density and pressure as functions of β for a massless fermion with µ = 0

and g (ε) given by Eq. (2.3).

If, in addition to having µ = 0 and T < 0, we have holes behaving like cold matter

(corresponding to m � −T ), the quantity ρ + P and the equation of state parameter

w ≡ P/ρ are given by

ρ+ P = ρ− ρmax < 0, w = −ρmax

ρ
< −1, (2.23)

whereas if they behave like radiation (the opposite limit)

ρ+ P =
4

3
(ρ− ρmax) < 0, w = −1

3

(
4
ρmax

ρ
− 1

)
< −1. (2.24)

Alternatively, it can be interesting to consider the high |T | region separating T < 0

and T > 0, where |βΛ| � 1. Then, just looking at the limit when β → 0 yields (from

Eqs. (2.9) and (2.15)), to leading order in β and still assuming µ = 0,
ρ = 1

2ρmax −
〈ε2〉

0
4 β

P = ln 2
β nmax − 1

2ρmax +
〈ε2〉

0
8 β

, (2.25)

where

〈εn〉0 ≡
Λ∫

m

εng (ε) dε. (2.26)

Notice that thanks to this we can know that the energy density and pressure pro�les

have to look like those in Fig. 2.1 (except for intermediate values of β).

2.3 Cosmology

We are �nally ready to investigate the cosmological consequences of NAT. In this section

we answer the question �How does a Universe at negative absolute temperature behave?�.
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In order to answer this, and motivated by our analysis so far, we �rst assume that an

FLRW Universe is �lled by a single perfect �uid in thermal equilibrium at NAT, and that

this �uid is made up of fermions not subject to number conservation (which we shall refer

to as temperons). The requirement of thermal equilibrium can probably be translated

into a requirement for temperon-producing interactions to operate quickly compared to

the Hubble time. We do not consider scenarios with number conservation and/or bosons

because those entail additional (model-dependent) problems discussed in Appendix A.15.

We further assume that at �low� energy scales these temperons should behave like all other

known particles; i.e., like matter or radiation, depending on their mass.

New physics giving rise to the maximum energy cut-o� required for NAT could pro-

duce new dynamics when many particles have energies close to the cut-o�. However, to

make progress, here we simply assume that general relativity still holds at the relevant

macroscopic scales so that the dynamics of the NATive Universe will then be governed by

the usual Friedmann equations 
3H2 = ρ

Ḣ = −1
2 (ρ+ P )

, (2.27)

where ρ and P will be calculated according to the process outlined in section 2.2. The

energy conservation equation,

ρ̇ = −3H (ρ+ P ) , (2.28)

can also be integrated to give a useful relation between the number of e-foldings the Uni-

verse has expanded (or contracted) and its initial and �nal energy densities:

N = −1

3

ρf∫
ρi

dρ

ρ+ P
= −1

3

ρf∫
ρi

dρ/ρ

1 + w
, (2.29)

where, as usual, N ≡ ln
af
ai

and subscripts i and f denote �initial� and ��nal�, respectively.

In the �rst two subsections of this section we shall focus on analysing the background

dynamics of two qualitatively di�erent scenarios: NAT in expanding cosmologies (subsec-

tion 2.3.1), and NAT in contracting cosmologies (subsection 2.3.2). The remainder of this

section will then be dedicated to discussing perturbation generation and the transition to

a normal positive-temperature Universe.

5Note that, even if those problems can be overcome, the cosmological relevance of temperons subject

to number conservation is reduced by the fact that they cannot play an important role in the dynamics

of an expanding Universe for more than a few e-foldings due to their quick dilution (although they might

play a role in a contracting or bouncing scenario).
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2.3.1 NATive in�ation

It can be easily seen from Eq. (2.28) that expanding cosmological solutions with negative

temperature (H > 0, T < 0) have an attractor �xed point at T = 0−, corresponding to

de Sitter expansion with ρ = ρmax and w = −1. This has the interesting consequence

that all expanding NATive Universes should tend towards a phase of exactly exponential

in�ation (although not necessarily reaching it)6 � therefore, if this limit is reached, we

should expect ρmax . 10111GeVm−3 just from the fact that we have not seen primordial

tensor modes.

Interestingly, unlike with most phantom in�ation models (recall that Eq. (2.7) implies

our expansion must either be phantom or exactly exponential), we do not have to worry

about a Big Rip � a divergence of the scale factor in a �nite interval of time [37]. This

is simply because the energy density (and therefore H) here is bounded, so the evolution

asymptotes to exponential expansion with constant density su�ciently quickly that the

impact of the transient phantom period is small.

We start our quantitative analysis by showing that even if we begin very close to

T = −∞ we should expect to evolve towards the vicinity of T = 0− extremely rapidly.

If we are in the high |T | regime where |βΛ| � 1 then, from Eqs. (2.25) and (2.29), the

number of e-foldings between two densities while in this regime is

N ≈ 4/3

(ln 2)nmax 〈ε2〉0

ρf∫
ρi

(
ρ− 1

2
ρmax

)
dρ

=
2/3

(ln 2)nmax 〈ε2〉0

[(
ρf −

1

2
ρmax

)2

−
(
ρi −

1

2
ρmax

)2
]

≈
〈
ε2
〉

0

nmax

β2
f − β2

i

24 ln 2
, (2.30)

where we have used

β ' 4

〈ε2〉0

(
1

2
ρmax − ρ

)
. (2.31)

In order to get some intuition regarding the order of magnitude we should expect from

this N , we can assume the simple ansatz from Eq. (2.3) withm = 0 (the order of magnitude

6This property suggests it might be possible to explain the accelerated expansion we measure today

with a dark temperon component. Unfortunately, any such mechanism would have to rely on a very low

energy cut-o�, and one would have to explain why this dark temperon behaves so di�erently from every

other particle at that energy (we would expect ρmax ∼ ρΛ0 ' 10.5h2ΩΛ0GeVm−3).
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should not change signi�cantly as long as m� Λ) and �nd

nmax = g
6π2 Λ3

ρmax = g
8π2 Λ4〈

ε2
〉

0
= g

10π2 Λ5

(2.32)

leading to

N = O

{〈
ε2
〉

0
β2
f

nmax

}
= O

{
(βfΛ)2

}
, (2.33)

which is small by de�nition. Therefore, we should not expect to remain in this low-|β|

regime long enough for this epoch to signi�cantly contribute to the total number of e-

foldings.

Once −β becomes comparable to Λ it is harder to make predictions as the speci�c shape

of g (ε) we are working with starts to make a di�erence. In other words, as −β increases,

we start needing more and more higher-order terms in the expansion in Eq. (2.25) which

makes model-independent predictions impossible. Nevertheless, we know β will have to

keep evolving towards −∞ and, sooner or later, we will be in the opposite limit where

−T � Λ and we can make use of the fact that holes should behave like either matter or

radiation.

If holes behave like matter then

N =
1

3

ρf∫
ρi

dρ

ρmax − ρ
= −1

3

ρmax−ρf∫
ρmax−ρi

dx

x
=

1

3
ln

[
ρmax − ρi
ρmax − ρf

]
=

1

3
ln

[
1 + w−1

i

1 + w−1
f

]
(2.34)

where wi and wf are the initial and �nal w, respectively.

If instead holes behave like radiation then

N =
1

4

ρf∫
ρi

dρ

ρmax − ρ
=

1

4
ln

[
ρmax − ρi
ρmax − ρf

]
=

1

4
ln

[
(1 + wi) (1− 3wf )

(1 + wf ) (1− 3wi)

]
(2.35)

with essentially the same type of behaviour.

Notice that the density becomes exponentially close to ρmax in just a few e-foldings,

since Eq. (2.35) implies that

ρf = ρmax − (ρmax − ρi) e−4N (2.36)

and ρi = O(ρmax/2). An analogous result holds for Eq. (2.34)).

In addition, note that if we compute the adiabatic sound speed

c2
s ≡

Ṗ

ρ̇
, (2.37)
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we have

c2
s =


1 + 4 ln 2

β2
nmax
〈ε2〉0

= O
{

1
(βΛ)2

}
� 1 if |βΛ| � 1

0 if holes behave like matter

1
3 if holes behave like radiation

(2.38)

which shows that the sound speed only seems to be problematically large in the very high

(negative) temperature regime which should only be valid at most during a very short time

interval.

2.3.2 NATive bouncing Universe

Let us now turn our attention to a scenario where the Universe is contracting (i.e. H < 0)

and, normally, there would be a Big Crunch. For simplicity, we shall assume a spatially

�at Universe (in the end we should expect the same type of qualitative evolution).

With an energy cut-o�, a fermion component cannot be inde�nitely compressed due to

the Pauli exclusion principle. So either the fermions have to be destroyed as the universe

collapses, or the contraction has to stop, preventing a Big Crunch (or there is new physics).

If w = −1 exactly, so that ρ = ρmax and contraction does not change the temperon energy

density, we have the situation where fermions are destroyed at just the right rate for

exponential contraction to continue inde�nitely. However, in other cases we can hope for

a bounce.

An expanding Universe tends towards T = 0± (depending on the initial sign of T ),

but in the contracting case it should tend towards β = 07. This is because the energy

conservation equation forces ρ̇ to have the same sign as T and to be proportional to −H
β

once |β| becomes su�ciently small. This causes ρ to approach 1
2ρmax, corresponding to

β = 0 (recall that ρ+P must change sign at that point). At some point, then, the small β

approximation must become valid and we can follow the evolution of H analytically8. Note

also that the dynamics of this system should not change appreciably even in the presence

of other (normal) types of matter. This is because the NATive pressure singularity (which

occurs for �nite a) should dominate the Friedmann equations even if the energy density of

temperons is subdominant (as for "normal" matter ρ+ P can only diverge when a = 0).

7Note that an interesting consequence of this fact is that the mere existence of the energy cut-o�

will lead to exotic cosmological dynamics due to �excess� positive pressure (in particular, as we shall see,

possibly preventing a Big Crunch) even if the Universe is at a positive temperature all the time.
8If one simply wishes to verify it is not possible to contract forever in this regime it su�ces to take a

look at Eq. (2.30) (for which the sign of H makes no di�erence) and con�rm that N is bounded.
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Combining Eqs. (2.27) and (2.31), we can �nd a relation for the temperature as a

function of H2

β =
2ρmax − 12H2

〈ε2〉0
. (2.39)

Using this we can write

dH

dt
= − ln 2

2
nmax

〈
ε2
〉

0

2ρmax − 12H2
, (2.40)

which can be integrated to yield

− 2
(
H3 −H3

i

)
+ ρmax (H −Hi) +

ln 2

4
nmax

〈
ε2
〉

0
(t− ti) = 0. (2.41)

This encodes the evolution of H (t) in a cubic equation; it has a well-known set of solutions,

however it is easier to understand what happens next graphically.

0
H

Figure 2.2: A graphic representation of Eq. (2.41) for increasing values of t starting from

ti (increasing from blue to red and bottom to top). The physical value of H (when it

exists) is indicated by a black star. The proportions between
〈
ε2
〉

0
, nmax, and ρmax here

correspond to those in Eqs. (2.32), however, it can be shown that a di�erent scenario would

look qualitatively the same.

From Eq. (2.41) we can see that H at a given time is given by a root of a third order

polynomial whose zeroth order coe�cient is proportional to t − ti (see Fig. 2.2). At time

t = ti there are three such roots, the physical solution corresponding to the middle one

(H = Hi), which must be followed by continuity until the moment the temperature (and

thus Ḣ) becomes in�nite (when H2 = 1
6ρmax, meaning β = 0). At that point, the root
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we were following disappears and there is no physically meaningful solution to Eq. (2.41)9

� which is not surprising since our formula for the pressure yields a division by zero at

this point. Given that our equations are clearly invalid, we have to resort to physical

arguments in order to know what must happen next. If we impose that the energy density

is continuous and the thermal equilibrium assumption remains valid then H must change

sign discontinuously causing a bounce. However, since the pressure is discontinuous at that

point, this is still not enough to determine the subsequent cosmological evolution. Both a

scenario with β̇ < 0 leading to the kind of NATive in�ation discussed in subsection 2.3.1

and a scenario with β̇ > 0 leading immediately to a �normal� expanding Universe seem

possible. The discontinuity in H is likely to be an indication that our approach is not valid

at the moment of the bounce. Nevertheless, it is not unreasonable to assume that thermal

equilibrium should be restored relatively quickly after the bounce, leading to one of these

two options.

As in the previous section, a contracting Universe can solve the horizon problem. In

this case, the mechanism would be essentially the same as in most other bouncing Universe

models: homogeneity would be brought about by a large positive pressure acting during a

cosmological contraction. In order to solve this problem, bouncing cosmology models need

to allow the quantity

NH ≡ ln |aH| (2.42)

to grow by a factor of order 60 [98]. This seems to be achieved as long as the contraction

starts at su�ciently small H. For example, assuming a matter or radiation dominated

Universe at the beginning of the contraction,

NH (t)−NH (ti) =

(
2

3 (1 + w0)
− 1

)
ln

∣∣∣∣ Hi

H (t)

∣∣∣∣ (2.43)

where w0 = 1/3 if radiation dominates. Since the left-hand side of Eq. (2.43) is always

negative and H2 is increasing during the contraction, it is always possible to get the right

amount of contraction as long as the initial energy density is low enough10.
9Note that we are not entitled to then follow the remaining root, as it always corresponds (at this time)

to ρ = 2ρmax, which is clearly physically impossible.
10Actually, one might raise the question of whether we are demanding the initial energy density to be too

low. Assuming that N (t?)−N (ti) ∼ 60 and that H (t?) is low enough that we can still treat temperons

as radiation, as is implicit in Eq. (2.43), then Hi/H? ∼ e−120. In a �at Universe this would correspond

to ρi/ρ? ∼ 10−104, which is not a particularly small number if we keep in mind that if ρmax is of order

10111GeVm−3 (the maximum order of magnitude for ρ during in�ation from tensor modes constraints)

then the ratio between the critical energy density today and ρmax is ∼ 10−110. Moreover, Eq. (2.43) should

underestimate N since at very late times a correct formula should account for the diverging increase in

positive pressure.
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If, instead, the Universe is initially at a very low negative temperature (let us assume,

for simplicity, that holes behave like radiation), then

NH (t)−NH (ti) =
1

4
ln

∣∣∣∣ρ2 (t) (ρmax − ρ (t))

ρ2
i (ρmax − ρi)

∣∣∣∣ (2.44)

which can also be as large as needed provided that the initial hole density is small enough.

This would mean the NAT themselves would not really contribute to solving the horizon

problem (though the extra positive pressure close to the bounce would help). In fact, NAT

might not even occur in this scenario � it is enough for temperons to force a bounce in a

model that would otherwise still solve these problems but end in a Big Crunch.

2.3.3 Perturbations

If NATive models are to be taken as realistic candidates to realise in�ation or bouncing

cosmologies, then a complete study of perturbation generation will be necessary. One of

the main successes of standard in�ation is how easy it is to write down a model which yields

a nearly scale-invariant spectrum of scalar perturbations (which is in excellent agreement

with CMB observations). One might think that the nearly-exponential expansion of a NAT

�uid also would give a scale invariant spectrum of thermal �uctuations. However an exactly

de Sitter phase produces no density �uctuations, and this limit is rapidly approached.

Moreover, ρ+P goes to zero su�ciently fast that curvature perturbations rapidly increase

with time, leading to a blue spectrum until the de Sitter limit is saturated (see Appendix

A.2 for details). Thus pure NATive in�ation cannot be a realistic model for the early

Universe.

Instead we can consider a simple scenario with a spectator �eld that has negligible

e�ect on the background evolution. Suppose that besides the temperons there exists a

canonical scalar �eld σ whose potential V (σ) is much smaller than the temperon energy

density (and does not interact with temperons). Since the background evolution is almost

unchanged, the temperon density will still tend towards its maximum possible value with

Pt = −ρt = −ρmax, and its contributions to the Friedmann equations will quickly become

constant. The evolution is then the same as we would have for just a canonical scalar �eld

with potential Veff (σ) = V (σ) + ρmax.

We can also look at the curvature perturbation produced in the same limit. Using

the fact that the density perturbation due to temperons should tend to zero (since δρt =

−δρholes and there are no holes at T = 0), we have the interesting result that in the �at

slicing

ζ = −Hδρ

ρ̇
→ −Hδρσ

ρ̇σ
≡ ζσ, (2.45)
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where ζσ is the curvature perturbation we would get from the same scalar �eld (with po-

tential Veff (σ) = V (σ) + ρmax). However, since the spectator �eld has (by construction)

negligible density, this would not signi�cantly contribute to an observable curvature per-

turbation if the dominant uniform temperon density somehow decays to give a radiation

dominated universe. Instead, the spectator �eld �uctuation would either have to become

dynamically important after temperon decay or somehow modulate the decay process. We

discuss this further at the end of the next section.

2.3.4 Ending NATive in�ation

The analysis so far has focused mostly on the basic cosmological implications of the pos-

sibility of domination by a temperon gas. Since an in�ationary and a bouncing Universe

both seem to be naturally realized in this sort of scenario, it is worth considering whether

the transition from NATive in�ation to a normal positive-temperature Universe � which

we may call recooling, by analogy with reheating � can also happen naturally, giving rise

to the standard Hot Big Bang cosmology.

The main di�culty in an expanding universe is that we have shown that a NAT �uid

rapidly tends to the stable attractor solution with constant density ρ = ρmax, so on its

own there is no dynamical evolution that could naturally set a timescale for recooling.

However, as with reheating, the process of recooling to a universe dominated by familiar

content must require some level of interaction with normal particles, however indirect, so

it is possible that additional degrees of freedom could be responsible for ending NATive

in�ation.

Note that for ρ > 1
2ρmax, the energy conservation equation for the temperons has ρ̇t =

−3H(ρt+Pt) > 0 (with singular negative pressure term at the ρ = 1
2ρmax threshold between

positive and negative temperatures), which prevents the temperon �uid from dynamically

evolving to normal temperatures even if other components modify the background. The

temperons also cannot be in equilibrium with normal matter (involving particles which do

not admit negative temperatures), since equilibrium would be reached with both systems at

a positive temperature, regardless of how small the additional positive-temperature system

might be [151]. Any end to the NATive epoch must therefore involve an out of equilibrium

process.

With this in mind, if we naively postulate that above a critical energy density temper-

ons can interact with bosons slightly and even decay into bosons with some low probability,

we should expect to recover a positive-temperature Universe some time after that critical
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energy density is reached. This whole process would necessarily take us away from equi-

librium, so the formalism we have been using is no longer valid and it is not possible to

make model-independent predictions. It seems plausible that it should be possible to get

more e-foldings of in�ation by forcing the temperon-photon interaction to be weaker, at

the possible expense of �ne-tuning the interaction timescale to be close to the Hubble time.

However we can see from Eqs. (2.34) and (2.35) that we would not get more than a few

e-foldings of expansion in equilibrium unless the critical energy density is also �ne-tuned

to be extremely close to ρmax: if we wanted about 60 e-foldings in this regime we would

need 1− ρc
ρmax

. 10−6. Note also that out of equilibrium the perturbation calculations from

Appendix A.2 would also not be applicable.

An added di�culty is how to calculate the e�ective pressure in a non-equilibrium set-

ting. Unfortunately, this requires calculating the pressure from �rst principles, which is

non-trivial and model-dependent - even in equilibrium. The mechanical pressure is usually

given by the standard formula

Pmech =

∫ Λ

m

(
ε2 −m2

3ε

)
g (ε)N (ε)dε. (2.46)

However, we have been using the result of Eq. (2.15) (which assumes thermal equilibrium).

These are not equivalent in the presence of a cut-o�, and are only equivalent in the limit

where Λ → ∞ if β > 0. This can be seen using integration by parts and assuming the

ansatz in Eq. (2.3) as well as N = 1/
(
eβε + 1

)
, which yields

P = Pmech +
g

2π2

(
Λ2 −m2

)3/2
3β

ln
(

1 + e−βΛ
)

(2.47)

for β > 0. For negative temperatures the result instead follows Eq. (2.20).

It may seem a problem that Eq. (2.46) does not work for NAT (and in particular fails

to even allow P < 0). However, it was originally written down for ideal gases of classical

particles and, at these high energy (and momentum) scales, close to the cut-o�, there is

no reason why that picture should still be valid. It is interesting to note that the pressure

in the Friedmann equations should always coincide with that given by Eq. (2.15). This

can be seen by noting that the �rst Friedmann equation is equivalent to the First Law of

Thermodynamics in the case of adiabatic expansion/contraction.

Although we do not know how to calculate these "microscopic" pressures, some hints are

given by the work of [139], who did something similar for the case of a scalar �eld, �nding

that there was a negative correction to the pressure that made some normal in�ation

models become phantom. The main idea is to make use of the known fact [26] that in

these theories there is a signi�cant deviation from the canonical commutation relation
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between the usual position and momentum operators, implying that the usual momentum

operator is no longer the conjugate momentum of the position operator and invalidating

the standard result. In principle, it should be possible to rewrite the Lagrangian in terms

of the correct momentum operator and from that compute the corrections to the standard

energy-momentum tensor due to this deformed algebra. This would then have the e�ect

of adding corrections to both the pressure and the energy density11, essentially solving our

problem and enabling the accurate calculation of non-equilibrium pressures. The pursuit of

this approach is left for future work. In principle, if it succeeds, it may help us understand

what is required for a complete microphysical description of these �uids (at the Lagrangian

level).

An alternative way to end NATive in�ation would be to make use of a spectator �eld as

described in Sec. 2.3.3. A natural way to do this might be for the scalar �eld to precipitate

the end of in�ation, for example by having it decay into bosons which then interact with

the temperons, ending in�ation by full thermalisation. However, since the energy density

of the spectator �eld should be subdominant, this would probably require a sharp feature

in the potential to compensate the large Hubble damping from the background.

The curvature perturbation from the spectator �eld (Eq. (2.45)) will have a nearly

scale-invariant spectrum during temperon domination provided that it is light compared

to the Hubble scale, but it does not automatically give rise to a signi�cant amplitude of

the curvature perturbation after recooling. Note that with two independent components

ζ can change in time on superhorizon scales [171]. However, the temperon �uid should be

very homogeneous, so the recooling surface would be determined by the scalar �eld per-

turbations δρσ. The quasi-scale-invariant δρσ �uctuations can therefore convert into local

variation in the recooling time, and hence a total curvature perturbation (i.e. essentially

the same mechanism as the modulated reheating mechanism for multi-�eld in�ation [56]).

Non-Gaussianities could also be introduced at this stage analogously to similar scenarios

in the context of in�ation [34, 170]. A speci�c model would be required to make quantit-

ative predictions, in particular the perturbation amplitude is model dependent even if the

�uctuation scale dependence is more generally preserved.

11The changes to the energy density being interpretable as di�erences in the function g (ε) due to in one

case it being related to the deformed momentum operator and in another to the actual eigenvalues of the

correct Hamiltonian
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2.4 Conclusions

A �uid with negative temperature is an interesting e�ective macroscopic model for a com-

ponent of the Universe, even without any compelling microphysical motivation. Regardless

of the microphysics, the evolution of a NAT �uid dominated cosmology will be qualitatively

the same and depend only on the initial value of the Hubble parameter (as summarised in

table 2.1). It might be an attractive way to realise both in�ation and bouncing cosmologies.

H < 0 H > 0

H2 < 1
6ρmax NATive bouncing standard cosmology

H2 > 1
6ρmax NATive bouncing NATive in�ation

Table 2.1: Fate of a temperon-dominated Universe depending on its initial conditions.

However, there are a number of signi�cant problems with a naive application to cos-

mology:

• The physical plausibility of obtaining a maximum energy cut-o� is unclear.

• For a NAT description to apply, the system must remain in equilibrium. In an

expanding universe the NAT �uid has to be able to produce more particles rapidly

as the universe expands (but no bosons), and any microphysical model would have

to explain why this happens rather than simply rapidly decoupling and going out of

equilibrium.

• In an expanding universe, the NAT component rapidly becomes indistinguishable

from a cosmological constant at the background level, and it is therefore of limited

interest for obtaining realistic dynamics that lead to the end of in�ation.

• An additional component, such as a light scalar spectator �eld, would be required to

produce an acceptable �uctuation spectrum.

• Any end of NATive in�ation, or resolution of a bounce, requires non-equilibrium

evolution that cannot be modelled in a model-independent way.

Nevertheless, it must be noted that, as long as the �rst assumption (about the existence

of the energy cut o�) holds, there will be interesting consequences even if the following

problems cannot be overcome and our formalism cannot be used most of the time. Even if

thermalization at a NAT turns out to be impossible, a universe with a cut-o� would likely
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still lead to interesting dynamics (for example due to the pressure discontinuity at T =

+∞). Moreover, even if this component turns out to be unable to provide an acceptable

explanation to horizon and �atness problems, it may still have interesting consequences in

systems where it might be found if it exists � as in the interior of black holes.

The discussion of Appendix A.2 suggests some ways in which acceptable �uctuations

could be produced, though with additional ingredients and �ne-tuning such models have

limited appeal.

Above all, we have shown that there are interesting cosmological consequences of NAT,

and that it is possible that popular paradigms like in�ation and bouncing cosmologies

may be successfully realised in scenarios which are fundamentally di�erent from the usual

domination by simple scalar �elds.
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Chapter 3
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Cosmic Strings: II. Scaling and its
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We make use of the formalism described in a previous paper [120] to address general

features of wiggly cosmic string evolution. In particular, we highlight the important role

played by poorly understood energy loss mechanisms and propose a simple ansatz which

tackles this problem in the context of an extended velocity-dependent one-scale model.

We �nd a general procedure to determine all the scaling solutions admitted by a speci�c

string model and study their stability, enabling a detailed comparison with future numerical

simulations. A simpler comparison with previous Goto-Nambu simulations supports earlier

evidence that scaling is easier to achieve in the matter era than in the radiation era. In

addition, we also �nd that the requirement that a scaling regime be stable seems to notably

constrain the allowed range of energy loss parameters.
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3.1 Introduction

Vortex-lines or topological strings are ubiquitous in physical contexts, with perhaps the

most interesting and well-studied examples being cosmic strings in the early universe and

vortex-lines in super�uid helium. (For extensive reviews on the subject see [71, 122, 154,

168].) Their nonlinear nature and interactions imply that the detailed quantitative under-

standing of their properties and experimental or observational consequences is a signi�cant

challenge, which is compounded by the the complexity of evolving a full network. This is

particularly topical given the recent availability of high-quality data which one may use to

constrain these models, such as that of the Planck satellite [5]. In the future, gravitational

waves should become an additional observational window [49].

A signi�cant part of this e�ort must therefore be based on numerical simulations,

but these are both technically di�cult and very computationally costly [13, 23, 24, 77,

78, 119, 135, 149]. This is among the motivations for developing complementary analytic

approaches, essentially abandoning the detailed statistical physics of the string network

to concentrate on its thermodynamics. For the simplest Goto-Nambu string networks,

which have been the subject of most studies so far, the velocity-dependent one-scale (VOS)

model [112, 114, 115, 118] has been exhaustively studied, and its quantitative success has

been extensively demonstrated by direct comparison with both �eld theory and Goto-

Nambu numerical simulations [119,126]. The model allows one to describe the scaling laws

and large-scale properties of string networks in both cosmological and condensed matter

settings with a minimal number of free parameters. More elaborate approaches have also

been adopted [18,144], though usually at a cost of a larger number of free phenomenological

parameters and/or (arguably) loss of intuitive clarity.

However, cosmologically realistic string networks are not expected to be of Goto-Nambu

type. In particular, the previously mentioned simulations of cosmic strings in expanding

universes have established beyond doubt the existence of a signi�cant amount of short-

wavelength propagation modes (commonly called wiggles) on the strings, on scales that

can be several orders of magnitude smaller than the correlation length. In a previous paper

[120] we introduced a mathematical formalism suitable for the description of the evolution

of both large-scale and small-scale properties of a cosmic string network in expanding

space. In particular, we arrived at a complete set of equations which allows us to model

the evolution of such important quantities as the characteristic length of the network, a

characteristic velocity, and both the multifractal dimension and the e�ective energy per

unit length of the strings. There the focus of the applications was on two simpli�ed
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limits of physical relevance: the tensionless and the linear limit (the latter being especially

appropriate for comparison with Abelian-Higgs network simulations).

This paper continues the exploration of this formalism. After a brief overview of the

main results of the �rst paper, we focus our attention on a general study of the scaling

regimes allowed by this model, including their attractor behavior. These results will be

illustrated for the case of a simple ansatz which naturally generalizes the energy loss mech-

anisms considered in the simpler one-scale-type models. Finally, we use our results to make

a �rst comparison with previously existing numerical simulations. A more detailed com-

parison will require new simulations (both because additional diagnostics should be output

and because a higher resolution would be desirable) and is left for subsequent work.

3.2 Elastic String Evolution

The VOS model [111,114,115] is the simplest and most reliable method for calculating the

evolution of the large-scale properties of a network of Goto-Nambu cosmic strings obeying

the action

S = −µ0

∫ √
−γd2σ (3.1)

where σa are the string worldsheet coordinates, γ is the determinant of γab, the pullback

metric on the worldsheet, and µ0 is the string mass per unit length (equal to the local

string tension) which is generally expected to be of the order of the square of the symmetry

breaking scale associated with the formation of the strings. At the expense of assuming

there is only one relevant length scale L in the network (as in Kibble's one-scale model [93]),

this model allows us to make quantitative predictions about the evolution of the energy in

the network E as well as a RMS velocity v de�ned by

E = µ0a

∫
εdσ ∝ µ0a

3

L2
, v2 =

∫
ẋ2εdσ∫
εdσ

(3.2)

where a is the scale factor of an FLRW metric

ds2 = a2
(
dτ2 − dx2

)
. (3.3)

In particular, it is found that if the scale factor behaves as a power law of the form

a ∝ tλ (3.4)

where λ is a constant between 0 and 1, then there is an attractor scaling regime de�ned

by L/t = const. and v = const.
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Throughout this discussion, our aim is to emulate the success of the VOS model whilst

taking into account the presence and evolution of small-scale structure (i.e., wiggles) in

the network - to which we are 'blind' in the standard VOS model due to the one-scale

approximation. This is achieved by considering that the dynamics of a wiggly Goto-Nambu

string can be approximated by that of a smoother (i.e., with no signi�cant structure at

scales below L) elastic string which obeys the generalised action [39]

S = −µ0

∫ √
−γ
√

1− γabφ,aφ,bd2σ (3.5)

where φ is a scalar �eld whose associated current is regarded as a mass current resulting

from the propagation of wiggles on the string.

Note that φ is an e�ective quantity which is related to an unde�ned renormalization

procedure by which structure below some length scale ` is smoothed. Naturally, ` should

be no greater than the string correlation length, but still large enough for the e�ective

string energy per unit length (and φ) to depend solely on the worldsheet time, at least

in regions large enough for an eventual spatial dependence to be negligible in the local

equations of motion.

3.2.1 Basic properties

Besides a�ecting the evolution of the string con�guration, the presence of this mass current

also changes the way some relevant quantities are de�ned on the string.

Given the mesoscopic nature of φ we can simplify our equations by introducing the

dimensionless quantity

w =
√

1− γabφ,aφ,b (3.6)

in terms of which the local string tension and energy density can be simply written as

T = µ0w, U = µ0w
−1. (3.7)

As in the VOS case, the coordinate energy per unit length along the string is given by

ε =

√
x′2

1− ẋ2
. (3.8)

However, there are now two relevant independent energies which can be de�ned: the total

energy in a piece of string

E = µ0a

∫
ε

w
dσ (3.9)

and the energy in a Goto-Nambu string with the same con�guration as our smoothed

elastic string, called the bare energy,

E0 = µ0a

∫
εdσ. (3.10)
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Since it is generally assumed that the basic VOS assumptions apply to the smoothed

string, it is the bare energy that should be associated with the network correlation length

via

ρ0 =
µ0

ξ2
. (3.11)

Analogously, there are now two natural averaging procedures de�ned for a generic

quantity Q by

〈Q〉 =

∫
Q ε
wdσ∫
ε
wdσ

(3.12)

and

〈Q〉0 =

∫
Qεdσ∫
εdσ

(3.13)

the former appearing more naturally in our equations but the latter possibly being more

convenient to use in applications when the wiggliness of a string is not well known. Note

that, in an in�nite string, the two procedures are equivalent if and only if Q is independent

of w (i.e., 〈Qw〉 = 〈Q〉 〈w〉).

Finally, these concepts can be combined in the de�nition of the renormalized string

mass per unit length factor

µ ≡ E

E0
≡ ξ2

L2
= 〈w〉−1 =

〈
w−1

〉
0

(3.14)

which is trivially at least unity (µ = 1 corresponding to the Goto-Nambu limit, when there

is no small-scale structure) and quanti�es the wiggliness of a network.

3.2.2 Averaged evolution

The system of equations which de�ne the model introduced in the previous paper [120] can

be found by using the equations of motion obtainable from the action given by Eq. (3.5)

together with the following phenomenological terms that model energy loss to loops as

well as energy transfer from the bare to the wiggly component due to kink formation by

intercommutation (
1

ρ

dρ

dt

)
loops

= −cf (µ)
v

ξ
(3.15)

(
1

ρ0

dρ0

dt

)
loops

= −cf0 (µ)
v

ξ
(3.16)

(
1

ρ0

dρ0

dt

)
wiggles

= −cs (µ)
v

ξ
(3.17)

where v ≡
〈
ẋ2
〉
, c is a constant of order unity which corresponds to the loop-chopping

parameter of the VOS model, and f , f0, and s are functions of µ which are unity (in the
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case of f and f0) and zero (in the case of s) if µ = 1, lest we not recover the VOS model

in the Goto-Nambu limit.

Apart from these energy loss mechanisms, it is important to take into account that

varying the renormalization scale ` is tantamount to rede�ning what small-scale structure

is, and thus must have an e�ect on the value of E0 (as well as v since w is also changed).

This can be done by introducing the following scale-drift terms

1

µ

∂µ

∂`

d`

dt
∼ dm − 1

`

d`

dt
(3.18)

∂v2

∂`

d`

dt
=

1− v2

1 + 〈w2〉
∂
〈
w2
〉

∂`

d`

dt
(3.19)

where dm (`) is the multifractal dimension of a string segment at scale ` [164]. Note that

Eq. (3.18) is essentially just a geometric identity whereas Eq. (3.19) comes from imposing

total energy conservation across di�erent scales.

If we further assume uniform wiggliness (i.e., w to be just a function of time) then the

system of equations we are looking for is just

2
dξ

dt
= Hξ

[
2 +

(
1 +

1

µ2

)
v2

]
+ v

[
k

(
1− 1

µ2

)
+ c (f0 + s)

]
+ [dm (`)− 1]

ξ

`

d`

dt
(3.20)

dv

dt
=
(
1− v2

) [ k

ξµ2
−Hv

(
1 +

1

µ2

)
− 1

1 + µ2

[dm (`)− 1]

v`

d`

dt

]
(3.21)

1

µ

dµ

dt
=
v

ξ

[
k

(
1− 1

µ2

)
− c (f − f0 − s)

]
−H

(
1− 1

µ2

)
+

[dm (`)− 1]

`

d`

dt
(3.22)

where H ≡ ȧ/a is the Hubble parameter and k, called the momentum parameter, is de�ned

as

k =

〈(
1− ẋ2

)
(ẋ · û)

〉
v (1− v2)

∼ 〈ẋ · û〉
v

(3.23)

and in the relevant relativistic regime it can be written as (see [118])

k (v) =
2
√

2

π

1− 8v6

1 + 8v6
. (3.24)

Note that in order for this formalism to be consistent it is already necessary that

the uniform wiggliness condition be locally true, even though it can still not be so over

cosmological length scales (i.e., w′ can be very small but non-zero).

Some interesting considerations can be drawn from the fact that Eqs. (3.18�3.19) can

be integrated. The former trivially yields

log [µ(`)] =

∫ `

0
[dm(`′)− 1]d ln `′ (3.25)

while for the latter, assuming uniform wiggliness and de�ning the convenient parameter

X ≡ 1

µ2
(3.26)
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we have

v2 (`) = 1− 2
1− v2 (` = 0)

1 +X (`)
(3.27)

which is an important equation linking a 'microscopic' velocity to wiggliness, and which

forces us to face a non-trivial crossroads.

The most natural way to proceed is clearly to keep to the spirit of the VOS model and

just interpret the velocity for ` = 0 as the RMS velocity that was seen in that model.

v2 (`) = 1−
2
(
1− v2

RMS

)
1 +X (`)

. (3.28)

That interpretation, however, necessarily entails an unexpected limitation to the applic-

ation of the formalism: since this scale-dependent v2 must still be positive, we have to

be beyond our domain of applicability whenever X (`) < 1 − 2v2
RMS . In other words, we

should expect our wiggly models to break down in the non-relativistic regime. In particu-

lar, this means that our formalism cannot make trustworthy predictions in the tensionless

limit. If so, the calculations in this limit in the previous paper worked only because v

was arti�cially �xed at v = 0 (although the calculations for a �xed ` should still hold).

Even though there is in principle no reason why our formalism should be valid all the time

(including in regimes in which the VOS model has not been properly tested) this should

at least serve as motivation to entertain a possible alternative.

A perhaps more serious motivation for questioning the validity of Eq. (3.28) is related

to a certain tension between di�erent types of simulations regarding what this microscopic

velocity should be. The RMS velocity measured in expanding universe Goto-Nambu simu-

lations is close to, but slightly below 1/
√

2 (highlighting the presence of small-scale wiggles),

whereas in Minkowski space Goto-Nambu simulations or �eld theory simulations the meas-

ured velocities are consistent with 1/
√

2. This might motivate an even simpler form for

the scale dependence of the characteristic velocity,

v2(`) =
1

1 + µ2(`)
; (3.29)

which as we shall see is qualitatively (though not quantitatively) in agreement with numeric

simulations if we interpret v as the coherent velocity.

In the end, it seems that which formula is correct is related to whether Goto-Nambu

or �eld theory simulations are more accurate at the relevant scales�see for example the

comparison between both types of simulations in [126]. Naturally, Goto-Nambu simulations

should never be expected to favour Eq. (3.29) over Eq. (3.28), but one should keep in mind

that ultimately we want to model realistic networks rather than simply �t the output of

any type of simulation.
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Moreover, there is even no guarantee that either formula has to be correct. The same

way we have already mentioned there is no a priori reason why our formalism should have

to be valid in the tensionless limit, there is no reason that it has to be valid down to

arbitrarily small scales; especially if we keep in mind this formalism is based on a 'string

renormalization' procedure, connecting wiggly and elastic strings, which we do not fully

comprehend (especially when it comes to transforming velocity vectors). All we really

need in order to use our evolution equations is that it be valid over a range of scales that

includes our choice for `.

Nevertheless, it should be noted that this dilemma can have a non-trivial e�ect in

the complexity of our equations. If Eq. (3.29) is true then we can reduce the number of

equations in our system since v and µ are now completely correlated and thus Eqs. (3.21�

3.22) cannot be independent. This realisation allows us to relate the loop-chopping terms

to the momentum parameter and the Hubble parameter via

v

ξ
[2k − c (f − f0 − s)] = 2H (3.30)

which in particular implies, since k
(
v = 1√

2

)
= 0, that

ξ (` = 0) = −cf (1)− f0 (1)− s (1)

2
√

2H
(3.31)

and the numerator, usually assumed to be null in this limit, now has to be non-zero. This

is not wholly unexpected since the null case corresponds to an attempt to recover the VOS

model exactly as ` goes to zero, which this approach must necessarily contradict.

Finally, note that Eqs. (3.27�3.29) are all very useful tools since they provide us with a

way to test whether a scale-dependent velocity is the characteristic velocity in our model

(independently of the multifractal dimension), which may further our physical understand-

ing of this formalism. Nonetheless, most of the following calculations will only assume

Eq. (3.27) simply because most simulations available to us are Goto-Nambu and using

Eq. (3.29) would require knowing more about energy-loss mechanisms (i.e., more freedom

in parametrizing f , f0, and s). Regardless, it would be straightforward to carry out the

analogous calculations, which would actually be simpler to solve, as they would typically

involve systems of two equations instead of three, with Eq. (3.30) working as a consistency

relation among the parameters of the model.

3.3 The Scaling Regime

The prediction of an attractor scaling regime when the scale factor is a power law (as in

Eq. (3.4)) is one of the main predictions of the VOS model which is in quantitative agree-
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ment with numerical simulations. This regime is characterised by a constant velocity and

a characteristic length proportional to time (or, equivalently, to the cosmological horizon

length). Speci�cally, the VOS model predicts [118](
L

t

)2

≡ γ2 =
k (k + c)

4λ (1− λ)
(3.32)

v2 =
k (1− λ)

λ (k + c)
(3.33)

and since this result is con�rmed by Abelian-Higgs simulations (for c = 0.23) our corres-

ponding prediction should not signi�cantly deviate from this.

An important open question in cosmic string evolution is whether the small-scale com-

ponent also scales, i.e., whether we should also expect µ to evolve towards a constant value.

Despite current simulations not answering this question de�nitely [119], they suggest that

such a small-scale scaling is reached at least in a matter era (when λ = 2/3). In the

radiation era simulations show a more complex behavior, which could re�ect the fact that

the approach to scaling is slower in this case (since there is less Hubble damping) or could

be due to the existence of more than one scaling solution.

3.3.1 Finding wiggly scaling

Scaling solutions can be straightforwardly sought by making the appropriate substitutions

on the left-hand side of Eqs. (3.20�3.22) and assuming that ` is also scaling. At this point

we need to specify a speci�c behavior for the fractal dimension dm as a function of the other

parameters. (A mathematically simpler but physically less realistic alternative would be to

consider it a constant phenomenological parameter at the scale ξ that we'll be interested

in.) This turns out to be a more subtle question than it may appear, and a full derivation

is left for subsequent work, but we can nevertheless provide an approximate derivation

here.

It is obvious that the fractal dimension will be scale-dependent, ranging from dm = 1

on very small scales to dm = 2 (Brownian) on super-horizon scales, and interpolating

between the two limits on scales around the correlation length. Such a behavior has been

explicitly shown to occur in Goto-Nambu simulations [119]. We can therefore construct a

fairly generic phenomenological function that reproduces this behavior

dm(`) = 2−

[
1 +B

(
`

ξ

)b]−1

. (3.34)

This allows freedom both in the characteristic scale at which the transition occurs an in

how fast it occurs as one changes scale. Now, the fractal dimension and µ are related by
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Eq. (3.25) and in this case this yields

µ(`) =

[
1 +B

(
`

ξ

)b]1/b

. (3.35)

By simple substitution we can now remove the ` dependence and obtain an explicit relation

between dm and µ

dm(µ) = 2− 1

µb
. (3.36)

Notice that this depends only on the parameter b, not on B.

All that remains to be done is to �x the free parameter b. Comparing to expand-

ing universe numerical simulations [119] we �nd that b = 2 provides a fairly reasonable

approximation. Thus in what follows we will use

dm = 2− 1

µ2
. (3.37)

Note that combining this with Eq. (3.28) we can also write

v2(`) = 1−
2
(
1− v2

RMS

)
3− dm(`)

=
1− dm(`) + 2v2

RMS

3− dm(`)
, (3.38)

or equivalently

dm(`) = 3−
2
(
1− v2

RMS

)
1− v2(`)

=
1 + 2v2

RMS − 3v2(`)

1− v2(`)
; (3.39)

naturally the analogous expressions for the ansatz of Eq. (3.29) ensue by taking the par-

ticular case vRMS = 1/
√

2.

With these assumptions we can now reduce our problem to solving the algebraic system

v2 =

[
4X2 − 2λX (1 +X)

]
(k/c)−X(1−X) (f0 + s)

λ (1 +X)2 [(k/c) + f0 + s]
(3.40)

γξ = v
k (1−X) + c (f0 + s)

1 +X − λ [2 + (1 +X) v2]
(3.41)

v

γξ
[k (1−X)− c (f − f0 − s)] + (1− λ) (1−X) = 0 (3.42)

which interestingly has at most two solutions with the same �xed value of X 6= 1 (assuming

that the shape of the energy loss functions is �xed). In other words, for any given X there

are at most two values of c such that there is a scaling solution with that constant value

of X; in what follows we will denote these by cX . These solutions, if they exist, can be

found by the following algorithm: �rst just compute

v2
X =

[
4X2 − 2λX (1 +X)

]
ϕX −X(1−X) (f0 + s)

λ (1 +X)2 [ϕX + f0 + s]
(3.43)

where ϕX is a real solution of the quadratic equation

Aϕ2
X +BϕX + C = 0 (3.44)
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whose coe�cients are

A = (1− λ) (1−X)
(
1−X2

)
− (1−X)

[
4X2 − 2λ (1 +X)X

]
+
(
1−X2

)
[1 +X − 2λ]

(3.45)

B = (1− λ)
(
1−X2

)
(2−X) (f0 + s) + (f − f0 − s)

(
4X2 − 2λ (1 +X)X

)
(3.46)

+ (f0 + s)X (1−X)2 + [(f0 + s) (1−X)− f + f0 + s]
[
(1 +X)2 − 2λ (1 +X)

]
C = (f0 + s)2 (1− λ)

(
1−X2

)
−(f0 + s) (f − f0 − s)

[
X (1−X) + (1 +X)2 − 2λ (1 +X)

]
(3.47)

(of course, if there are no real solutions to Eq. (3.44) that just means that scaling is

impossible for that X), then compute k (vX) using Eq. (3.24) and the cX we are after is

simply

cX =
k (vX)

ϕX
(3.48)

if it is positive and less than 1 - otherwise there is no scaling. Obviously, there is also

no scaling if the velocity v and the correlation coe�cient γξ calculated in this way have

non-physical values.

Interestingly, one can see by setting X = 1 that the VOS solutions are also solutions

of our model provided that f0 (X = 1) = f (X = 1) = 1 and s (X = 1) = 0. That is by no

means unexpected, since when building this model we required that the VOS equations be

recovered whenever X = 1, f0 = f = 1, and s = 0. This is not to be regarded as a problem

since s (X = 1) = 0 is an approximation which is to some extent motivated by the success

of the VOS predictions. In a way, we are just saying that s (X = 1) gives a contribution

which is much weaker than those of competing energy loss mechanisms.

3.3.2 Wiggly scaling stability

Ultimately, the feature that made scaling regimes in the VOS model interesting was their

attractor nature - which, in particular, enables us to use them to calibrate the loop-

chopping e�ciency c by comparison with simulations. Therefore, a study of the stability

of the non-trivial (here meaning those with X 6= 1) scaling solutions found above is needed.

With this in mind, it is straightforward to linearize our equations around these solutions
γξ,

v

X

 ∼

γs

vs

Xs

+


γξ

v

X̄

 (3.49)
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and write them in matrix form

t
d

dt


γξ

v

X̄

 =

 M i
j



γξ

v

X̄

 (3.50)

where γs, vs, and Xs are the scaling values of γξ, v, and X, respectively. The components

of M can be shown to be

M1
1 = −1 + λ

(
2

1 +Xs
+ v2

s

)
(3.51)

M1
2 = 2λγsvs +

Bs + (ks + vsk?) (1−Xs)

1 +Xs
(3.52)

M1
3 =

vs (λγsvs − ks +B?)

1 +Xs
(3.53)

M2
1 =

(
1− v2

s

)(
−λvs
γs

[1 +Xs]−
Xs [1−Xs]

γsvs [1 +Xs]

(
1 +M1

1

))
(3.54)

M2
2 =

(
1− v2

s

)(Xsks
γsvs

+
k?
γs
− 2λ [1 +Xs]−

Xs [1−Xs]

γsvs [1 +Xs]
M1

2

)
− 2ksvsXs

γs
+ 2λv2

s (1 +Xs) +
2Xs (Xs)

1 +Xs
(3.55)

M2
3 =

(
1− v2

s

)(ks [1 + 2Xs]

γs [1 +Xs]
− 2λvs −

(1− 2Xs)

vs (1 +Xs)
− Xs [1−Xs]

γsvs [1 +Xs]
M1

3

)
(3.56)

M3
1 =

2λXs (1−Xs)

γs
− 2Xs (1−Xs)

γs

[
1 +M1

1

]
(3.57)

M3
2 = −2Xs [(1−Xs) vsk? + (ks [1−Xs]−Ms)]

γs
− 2Xs (1−Xs)

γs
M1

2 (3.58)

M3
3 = 2

Xs

γs
vs (ks +M?) + 2Xs (1− λ)− 2Xs (1−Xs)

γs
M1

3 (3.59)

where

k ≡ ks + k?v̄ , (3.60)

meaning that

k? = −ks
96v5

s

1− 64v12
s

, (3.61)

c (f0 + s) ≡ Bs +B?X̄ , (3.62)

and

c (f − f0 − s) ≡Ms +M?X̄ . (3.63)

In writing these formulas for the components of M one also has to assume the natural

relation for the mesoscopic scale `

` ∝ ξ (3.64)
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which is logical given that ξ is the most important scale governing loop production (not to

mention that it scales), but similar expressions for the components of M could be found

by assuming any alternative of similar form.

If uk (with k = 1, 2, 3) are the eigenvectors of M i
j with eigenvalues αk then it is easily

seen that uk ∝ tαk and, in particular, a scaling solution is stable in this linearized limit if

and only if the real parts of all three eigenvalues of M i
j are negative. Therefore, whether

and how fast our three independent variables approach their scaling values is completely

determined by the values of the three eigenvalues (and respective eigenvectors) of the

matrix M .

3.3.3 Exploring Scaling

Let us now illustrate the procedure described above, starting by introducing a particular

ansatz for the energy loss terms. As has been noted, the dependence of f and f0 on µ can

in principle be investigated using high-resolution network simulations. In the absence of

such information, however, when forced to consider a speci�c type of dependence, we shall

resort to a more ad-hoc argument.

Recall that when the loop-chopping parameter c is introduced in one-scale-type models

it is usually as a result of the appearance of a loop-production function, g, which only

depends on the ratio between the size of loops being produced and the correlation length

of the network. This is typically de�ned [168] so that

dρ0

dt

∣∣∣∣
loops

= −µ0v

ξ3

∞∫
0

g (l/ξ)
dl

ξ
≡ −cvρ0

ξ
. (3.65)

Since we generally assume that the bare string is one for which the VOS assumptions apply,

it makes sense to not change this relation and simply use

f0 = 1 . (3.66)

Bearing in mind that deviations in the total energy lost to loops should be due to

a second loop-production mechanism operating on a scale signi�cantly smaller than the

correlation length, it makes sense to expect that f > 1. Furthermore we conjecture that,

in the context of this formalism, the typical length of these smaller loops can be related to

a combination of L and ξ that vanishes in the Goto-Nambu limit, when L = ξ. Clearly,

the simplest such scale is just ξ? = ξ − L. We are then justi�ed to write

dρ

dt

∣∣∣∣
loops

= −µ0µv

ξ3

∞∫
0

g (l/ξ)
dl

ξ
− µ0µv

ξ3

∞∫
0

g? (l/ξ?)
dl

ξ
(3.67)
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which corresponds to

f (µ) = 1 + η

(
1− 1
√
µ

)
(3.68)

where we have de�ned η = c−1
∫
g? (x) dx, which is a positive parameter quantifying how

much energy is lost to small-scale loops. For the sake of simplicity, let us further assume

that s can be approximated by

s (µ) ' D
(

1− 1

µ2

)
(3.69)

which we expect to be the case as long as µ is not too large.

To begin with, let us look for non-trivial scaling solutions without worrying about

stability; we address the latter issue in the following section. We start by focusing on the

matter era ( λ = 2/3), which is when simulations suggest that it is the easiest to achieve

scaling [119].

Applying the procedure described in subsection 3.3.1 to �nd cX , we get the results

summarized in Fig. 3.1. In accordance with our simplistic interpretation of η is the

observation that increasing η leads to a decrease in the cX necessary to maintain scaling

with a �xed wiggliness value (essentially, since more energy is lost per collision, we need

not be so e�cient at colliding). More counterintuitive is the realization that an increase in

η for a �xed c leads to a higher scaling wiggliness - one would naively expect the opposite

behaviour, that more small-scale energy loss led to a lower scaling wiggliness.

Instead, our results indicate that the network needs a higher wiggliness in order to sur-

vive the more violent energy loss in equilibrium. In fact, this behaviour hints at something

we will notice when we study the stability of these models: that the wiggly component

of our equations leads to instabilities in the scaling regime of these simple models. In

other words, the reason our intuition fails us in this analysis is because when we deviate

the network from a non-trivial scaling regime it does not generically tend to go back to

equilibrium on its own; these scaling regimes are not usually attractors. Also of partic-

ular interest is that for these small values of D there appears to be a maximum allowed

value of µ in scaling, µ . 2.2. This feature disappears if we allow much larger values of

this parameter, which however does not seem desirable when we study the stability of the

model. Notice also how a slight increase in D seems to dramatically decrease the amount

of small-scale structure in any given model (with �xed η and c) - or, conversely, how it

seems to increase the value of c necessary to maintain �xed values of µ and η.

The analogous results for γs and v2
s can be found in Figs. 3.2 and 3.3. Naturally,

scaling is only allowed for a certain model if it is allowed in all three �gures.
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Figure 3.1: Values of the loop-chopping parameter c for which there can be non-trivial

scaling, as a function of wiggliness during scaling and for di�erent values of D, calculated

in the matter era. The dashed line is c = 0.23, the best �t for the VOS model (the best �t

for our model does not have to be the same, but we expect it to be close). We only show

the physically meaningful values that stem from Eq. 3.44�the complementary solution

would lead to non-physical (negative) values of c.

We can also carry out a similar analysis for the radiation era (λ = 1/2), whose results

for the solutions that come from using the greater roots of Eq. (3.44) are analogous to the

ones we have just seen. The results from the other solution, however, are of a much less

straightforward interpretation (and are probably of reduced physical signi�cance). If we

take a look at the analog of Fig. 3.1, which is Fig. 3.4, this di�erence is stark: not only is

the line corresponding to this new solution of a much di�erent shape and size, but it seems

to be extremely insensitive to large variations of η while being very sensitive to D (which

appears to consistently suppress it).
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Figure 3.2: Values of the correlation scaling parameter for which there can be non-trivial

scaling, as a function of wiggliness during scaling and for di�erent values of D in the matter

era. As before, only physically meaningful values are shown(in this case, 0 < γs <
1

1−λ).

If we focus instead on the radiation epoch results for γs, shown in Fig. 3.5, the situation

is even slightly worse: because at some point during our calculations we need to divide very

small numbers, our graphs are vulnerable to computational uncertainties. Nevertheless,

we are still able to discern a di�erence in the behaviour from the previous case, as well as

a robust independence of η. Without this numerical 'noise', the same kind of di�erences

can be seen in the velocity, which can be found in Fig. 3.6.

3.3.4 Exploring (in)stability

Now that we have found a large family of non-trivial scaling solutions, the time has come

to test their stability. We have already mentioned that the shapes we see in Figs. 3.1 and

3.4 suggest that the introduction of µ in our equations has spoiled the attractor feature of



72

Figure 3.3: Values of the velocity for which there can be non-trivial scaling, as a function

of wiggliness during scaling and for di�erent values of D in the matter era. As before, only

physically meaningful values are shown(in this case, 0 < v2
s < 1).

non-trivial scaling regimes.

Indeed, a direct application of the methodology described in section 3.3.2 reveals that

it is not easy (if possible at all) to �nd stable non-trivial scaling for our heuristic choice of

f , f0, and s as well as our ansatz for dm (`). This di�culty is illustrated in Fig. 3.7.

It should be noted, however, that checking stability requires knowing our energy-loss

and multifractal dimension functions with more accuracy than if we just wanted to look for

scaling solutions. The reason is that, since M i
j depends on derivatives of these functions,

second-order corrections can have a �rst-order impact. As such, what this problem is telling

us is not that our ansatze are bad �rst-order approximations, but rather that we need to

go to higher orders if we want to draw conclusions from this sort of stability analysis.
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Figure 3.4: Values of the loop-chopping parameter c for which there can be non-trivial

scaling, as a function of wiggliness during scaling and for di�erent values of D, calculated

in the radiation era. The dashed line is c = 0.23, the best �t for the VOS model (the best

�t for our model does not have to be the same, but we expect it to be close). The darker

line is there essentially because points of all colours are being plotted on top of each other.

Notice that we are only showing the physically meaningful values (in this case, 0 < c < 1).

3.4 Comparison with simulations

Some data from the Goto-Nambu simulations �rst presented in [119] is shown in Figs.

3.8, 3.9 and 3.10. These are ultra-high resolution simulations, performed in the matter

and radiation epochs as well as in �at (Minkowski) spacetime. The initial networks have

resolutions of 75 points per correlation length (PPCL), and the simulations subsequently

enforce a constant resolution in physical coordinates. Although computationally costly, this

is mandatory to obtain accurate diagnostics of the small-scale properties of the network.

Figure 3.8 shows the scale dependence of key properties for the �nal timestep of each
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Figure 3.5: Values of the correlation scaling parameter for which there can be non-

trivial scaling, as a function of wiggliness during scaling and for di�erent values of D in

the radiation era. As before, only physically meaningful values are shown (in this case,

0 < γs <
1

1−λ). Note that these graphs are fairly contaminated by "noise" generated by

computational errors.

simulation�respectively we have the multifractal dimension, the renormalized mass per

unit length, and the coherent velocity. Note the similarity between the pro�les for the dif-

ferent expansion rates (once lengths are re-scaled by the corresponding correlation length

ξ). As emphasized in [119], the main di�erence is the persistence of a signi�cant amount

of small-scale structure on scales slightly below the correlation length for the case of

Minkowski space. In the expanding universe these structures gradually �ow to smaller

scales, but this does not happen in the absence of expansion: this interpretation is suppor-

ted by the fact that on large scales (above the correlation length) the renormalized mass

per unit length µ is larger in Minkowski space than in the expanding case, but the opposite
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Figure 3.6: Values of the velocity for which there can be non-trivial scaling, as a function

of wiggliness during scaling and for di�erent values of D in the radiation era. The darker

line is there essentially because points of all colours are being plotted on top of each other.

As before, only physically meaningful values are shown (in this case, 0 < v2
s < 1).

happens for scales below about 1/3 of the correlation length.

Figure 3.9 compare the values obtained from the simulations for the dimensionless

lengthscale L/t in two di�erent ways: calculated from L = ξ/
√
µ using the values of ξ and

µ measured directly from the simulation (colored points with error bars, for each of the

three epochs), and inferred from the measured total string energy in the simulation box

(black line for each case). In the former case, the statistical error bars have been estimated

from averaging values between neighboring timesteps (hence they are not independent). We

�nd good overall agreement, although we see that the total string energy diagnostic gives

values that are systematically high (though by a small amount) throughout the Minkowski

and radiation era simulations as well as early in the matter era one. Is is encouraging
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Parameter Flat space Radiation era Matter era

L/t 0.10 0.27 0.62

vrms 0.65 0.64 0.59

ξ/t 0.13 0.31 0.70

µ(ξ) 1.61 1.42 1.26

v`(ξ) 0.35 0.35 0.35

µ(`) from Eq. (3.14) 1.69 1.32 1.27

v(`) from Eq. (3.28) 0.38 0.50 0.44

v(`) from Eq. (3.29) 0.51 0.60 0.62

Table 3.1: Asymptotic values of key network parameters in the simulations of [119]. The

�rst �ve lines are measured directly from simulations. Although no explicit error bars are

provided, they are nominally expected to be around the ten percent level. The last three

lines are inferred from the wiggly model, as discussed in the paper.

that the agreement between the two is much better in the second half of the matter era

simulation, where the network is expected to be scaling, as discussed in [119].

Finally, Fig. 3.10 compares the behavior of the average coherent string velocity as a

function of scale for the �nal timestep each simulations in �at space (solid color lines) to

the coherent velocity estimated using Eq. (3.28) (solid dashed lines) and using Eq. 3.29

(solid dotted lines). One sees that the former provides a good �t on small scales but breaks

down (as expected) on scales around 3 times that of the correlation length (thus, around

the scale of the horizon). On the other hand the latter reproduces the overall shape of

the curve reasonably well but systematically overestimates its values�by a value which is

larger for faster expansion rates.

The asymptotic values of the key network parameters in these simulations are listed

in Table 3.1. These can be used for some preliminary calibration of the energy loss terms

(which we will do shortly), although a full exploration of the parameter space (as was

recently done for domain walls [113]) requires additional data that must come from future

simulations.

The last three values in Table 3.1 are calculated by noting that ` must be the scale that

makes ξ (`) the correlation length. This way µ (`) is simply given by Eq. (3.14) and can be

combined with vrms to yield v(`) according to Eq. (3.28). The equivalent result according

to Eq. (3.29) is included for purely illustrational purposes (since, as has been discussed,

we do not expect that to apply to these types of simulations).
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It is interesting to notice that µ (`) calculated in this way is compatible with µ (ξ)

taken directly from the simulations. This could be seen as evidence in favour of the natural

identi�cation ` = ξ. Note also that, since µ (`) must be a non-decreasing function of `, the

central values in Table 3.1 actually seem to favour ` > ξ in �at space and in the matter

era. Nevertheless, this counter-intuitive apparent preference should not be too worrying

as it is not statistically signi�cant (after all, if ` truly is just ξ, then one would expect this

sort of spread where some estimates of ` are above and some below the correlation length).

There is, however, at least one theoretical consequence of ` and ξ being at least of the

same order. That is that, strictly speaking, we are not working with normal multifractal

dimensions, as Eq. (3.18) has only been shown to hold in the `� ξ limit [120]. Nevertheless,

this has no practical impact on our conclusions as the simulations we have used to calibrate

dm actually probe the left-hand side of Eq. (3.18) rather than the right one.

The graphs in Fig. 3.11 show us which combinations of η, D, and Xs (where Xs can

easily be related to c when the other two are known) admit scaling regimes allowed by the

results in Table 3.1. The blue region in this �gure corresponds to scaling values of v (`)

which are consistent with the values in Table 3.1, and the yellow region is the analogous

region concerning the correlation length. As X is plotted in the range allowed by the

uncertainty on µ (ξ) in the table, the allowed combinations of parameters are those in which

the two regions overlap. (There would not be a qualitative di�erence if we did not use the

` = ξ identi�cation and instead used the uncertainty on µ (`).) These theoretical scaling

values were obtained by a simple brute force implementation of the process described in

subsection 3.3.1. Note also that the scaling regimes depicted here all come from choosing

the same root of Eq. (3.44) as the other root yields unphysical values of c in the matter

era and too high velocities in the radiation era.

Interestingly, the two coloured regions in Fig. 3.11 do not overlap in the radiation era,

which supports our suspicions that a scaling regime is not being approached in that case.

For the matter era, it is curious that allowed combinations of parameters seem to keep

existing for arbitrarily large η (corresponding to most energy lost to loops being in the

form of small-scale loops).

3.5 Conclusions

With the recent availability of high-quality CMB datasets and the forthcoming availability

of comparable gravitational wave datasets, having realistic and accurate models of the

evolution of networks of cosmic strings becomes a pressing problem. In this work we have
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taken further steps towards this goal. Speci�cally, we have built upon the mathematical

formalism described in [120] for a wiggly extension of the VOS model for Goto-Nambu

cosmic strings, which can describe the evolution of small-scale structure on string networks,

and explored some of the consequences of this model.

Our analysis highlights the fact that the physical nature of the solutions on the model

crucially depends on the dominant energy loss mechanisms for the network. Since at present

these are still poorly understood, we have introduced a simple ansatz which tackles this

problem in the context of an extended velocity-dependent one-scale model. We thus de-

scribed a general procedure to determine all the scaling solutions admitted by a speci�c

string model and studied their stability, enabling detailed comparisons with future numer-

ical simulations.

Unfortunately, currently available Goto-Nambu and �eld theory simulations do not

yet provide enough information on the small-scale properties of the network to enable a

detailed comparison. (Naturally one expects that Got-Nambu simulations will be more

useful in this regard, but �eld theory ones can also play a useful complementary role in

the overall calabration of the model's large-scale properties.) The most useful currently

available data is that from the Goto-Nambu simulations described in [119]. A comparison

of our results with this data supports earlier (more qualitative) evidence that overall scaling

of the network is easier to achieve in the matter era than in the radiation era. Still, the

fact that a scaling solution can be reached does not per se ensure that such a solution is

stable, and indeed our results show that imposing the requirement that a scaling regime

be stable seems to notably constrain the allowed range of energy loss parameters.

In any case, a fully developed model for wiggly cosmic strings is now available. While

it has several more free parameters than the original VOS model [112, 114, 115, 118], we

emphasize that recent advances in high-performance computing make a detailed calibration

of the model's parameters a realistic possibility. Indeed this has been recently done for

the analogous model for domain walls [113], by comparing it to �eld theory simulations in

universes with a range of �xed expansion rates as well as in the radiation-matter transition.

In the case of cosmic strings, the possibility of comparing �eld theory and Goto-Nambu

simulations is particularly exciting, both because it will make the calibration process more

robust and because it should enable a clearer physical understanding of the relevance of

the various energy loss mechanisms.
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Figure 3.7: Stability analysis for our ansatz. The red region corresponds to parameters

that make the real parts of all eigenvalues of M i
j negative in the matter era. The green

region corresponds to parameters that yield physical values of c, v, and γ. As is, the scaling

regimes we are predicting are clearly not attractors since the two regions do not overlap

for X < 1.
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Figure 3.8: The behavior of the multifractal dimension, renormalized mass per unit length,

and ratio of coherent and RMS velocities as a function of scale, for the �nal timestep of

simulations in �at space (green dotted), radiation era (red dashed) and matter era (blue

dotted).
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Figure 3.9: The behavior of the dimensionless lengthscale L/t, calculated from L = ξ/
√
µ

using the values of ξ and µ measured directly from the simulation box, in �at space

(green data points), radiation era (red) and matter era (blue). Statistical error bars have

been estimated from averaging values between neighboring timesteps (hence they are not

independent). In all cases the black solid lines depict L/t inferred from the measured total

string energy in the simulation box.
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Figure 3.10: The behavior of the average coherent string velocity as a function of scale,

for the �nal timestep of simulations in �at space (solid green), radiation era (solid red)

and matter era (solid blue). In all cases the black dashed lines depict the coherent velo-

city estimated using Eq. 3.28 while the black dotted lines depict the one estimated using

Eq. 3.29.
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Figure 3.11: Model parameters that allow scaling in agreement with the results in Table

3.1 in the radiation era (top) and in the matter era (bottom). The blue region corresponds

to scaling velocities allowed by the numerical uncertainty of our simulations and the yellow

region is the equivalent for the correlation length. Interestingly, both constraints do not

seem to be satis�able in the radiation era, which seems to con�rm our suspicion that strings

are not approaching scaling in this era. In the matter era, it appears the overlap between

the two regions is not bounded with respect to η.
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Chapter 4

Can power spectrum observations

rule out slow-roll in�ation?

J.P.P. Vieira,1 Christian T. Byrnes,1 and Antony Lewis1

1Department of Physics & Astronomy, University of Sussex, Brighton BN1 9QH, UK

The spectral index of scalar perturbations is an important observable that allows us to

learn about in�ationary physics. In particular, a detection of a signi�cant deviation from

a constant spectral index could enable us to rule out the simplest class of in�ation models.

We investigate whether future observations could rule out canonical single-�eld slow-roll

in�ation given the parameters allowed by current observational constraints. We �nd that

future measurements of a constant running (or running of the running) of the spectral index

over currently available scales are unlikely to achieve this. However, there remains a large

region of parameter space (especially when considering the running of the running) for

falsifying the assumed class of slow-roll models if future observations accurately constrain

a much wider range of scales.
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4.1 Introduction

One of the main achievements of the recent era of precision cosmology has been the in-

creasing quality of measurements of the cosmic microwave background (CMB) across the

sky, for example by the Planck mission [8]. These have been invaluable in constraining

physics in the very early Universe. In particular, these measurements can be used to meas-

ure the scale-dependence of the primordial power spectrum, and have been instrumental

in establishing cosmic in�ation as the most popular paradigm for the universe before the

hot big bang.

Despite this success, so far only two perturbation parameters of relevance to in�ationary

models have been measured to be non-zero: the amplitude of the scalar power spectrum

and its spectral index, ns. One consequence of this lack of measured observables is a

di�culty in di�erentiating between di�erent speci�c models of in�ation, though the non-

observation of primordial tensor modes already provides a powerful constraint on broad

classes of in�ationary models [110]. Finding new measurable observables that could falsify

some of the remaining allowed models is one of the main goals of modern cosmology.

Although recent attempts at �nding such observables have focused mostly on non-

Gaussian signals in higher-order correlation functions [148,167], there are still a few relevant

quantities at the level of the power spectrum whose precision should be noticeably improved

by future probes [10, 36, 95, 129, 159]. The running (αs) and the running of the running

(βs) of the spectral index of scalar perturbations are examples of parameters that can be

measured more accurately in the future and are predicted to have very small magnitude

(compared to ns−1) in the simplest classes of canonical single-�eld slow-roll in�ation. This

is especially interesting because, even though current constraints on these quantities are

compatible with zero, their best-�t values have an amplitude comparable to ns−1 [8,9,35].

A future detection of αs or βs could in principle provide strong evidence against these

simplest classes of in�ationary models.

While a detection of αs or βs at the same order as ns − 1 would rule out the simplest

slow-roll models, the implications for the wider class of canonical single-�eld slow-roll

in�ation models are less obvious and require a more general treatment. In this paper, we

study the more general implications using the well-studied formalism for computing power

spectra developed in Refs. [46,52,88,89,162]. Although we fall short of a completely generic

conclusion, our results are su�cient to show that it is much harder to rule out slow roll

than the simplest arguments suggest.

Section 4.2 of this paper is devoted to motivating our treatment and introducing the
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formalism it is based on; section 4.3 explains how to assess whether speci�c values of

αs and βs are compatible with slow-roll in�ation; and section 4.4 presents the results

(with the main technical details of the calculations being left to the appendices), including

a comparison with current observational bounds (e�ectively extending the analysis made

with WMAP data in [58]). Finally, in section 4.5, we summarize our conclusions, including

a discussion of future prospects.

Throughout this work we assume a ΛCDM cosmology evolving according to general

relativity seeded by �uctuations from single-�eld in�ation, and use natural units with

c = ~ = M2
P = (8πG)−1 = 1.

4.2 General slow-roll approximation

In canonical single-�eld in�ation, the energy density of the Universe is dominated by that

of a scalar �eld, φ (the in�aton), and thus the Hubble parameter of a �at FLRW metric is

given by the �rst Friedmann equation as

3H2 =
1

2
φ̇2 + V (φ) , (4.1)

where V is the in�aton potential and H is the Hubble parameter. The in�aton obeys the

equation of motion

φ̈+ 3Hφ̇+ V ′ (φ) = 0, (4.2)

where the prime denotes di�erentiation with respect to argument (here with respect to φ)

and the dot denotes di�erentiation with respect to time.

A simplifying assumption often used to study in�ation models is the slow-roll approx-

imation, which states that the in�aton rolls down its potential slowly enough that:

1. its kinetic energy is much less than its potential energy, i.e.,

ε ≡ − Ḣ

H2
=

1

2

(
φ̇

H

)2

� 1; (4.3)

2. φ̈ can be neglected in Eq. (4.2), i.e.,

|δ1| ≡

∣∣∣∣∣ φ̈Hφ̇
∣∣∣∣∣� 1. (4.4)

If this simpli�cation is valid (which is the case for most models compatible with observa-

tions), it is straightforward to compute the evolution of background quantities from the

slow-roll equations

3H2 ' V, (4.5)
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3Hφ̇+ V ′ ' 0 (4.6)

(which follow trivially from applying the slow-roll approximation to Eqs. (4.1) and (4.2),

respectively).

The quantities ε and δ1 de�ned above are known as the slow-roll parameters (note that

there are several popular alternative de�nitions and notations for δ1). It is also possible to

de�ne �higher-order� slow-roll parameters, for example as

δn ≡
1

Hnφ̇

dnφ̇

dtn
. (4.7)

Although these parameters are not strictly important for establishing whether the slow-

roll approximation is valid, in practice it is often necessary to make assumptions regarding

their relative smallness in order to be able to compute the corresponding spectrum of scalar

perturbations consistently to a given order.

4.2.1 The scalar power spectrum in slow-roll in�ation

As previously noted by Stewart and Gong [73, 162], the slow-roll approximation is not

always su�cient to accurately calculate the power spectrum of scalar perturbations.

The equation of motion for the Fourier modes of the scalar perturbations is [163]

d2ϕk
dξ2

+

(
k2 − 1

z

d2z

dξ2

)
ϕk = 0, (4.8)

where z ≡ aφ̇
H , the gauge-invariant curvature perturbation is −ϕk/z, ξ ≡ −η is minus the

conformal time (varying from ∞ in the in�nite past to 0 in the in�nite future), and we

assume asymptotic boundary conditions

ϕk −→


eikξ√

2k
, kξ →∞

Akz, kξ → 0

, (4.9)

where Ak is a constant for each wave vector k.

To keep track of the approximations that will be needed, it is useful to use the rescaled

variables

y ≡
√

2kϕk, (4.10)

x ≡ kξ. (4.11)

Using these we can rewrite the equation of motion for each Fourier mode as

d2y

dx2
+

(
1− 2

x2

)
y =

g (lnx)

x2
y, (4.12)
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where the important function g is de�ned in terms of

f (ln ξ) ≡ 2πaξφ̇

H
(4.13)

as

g (lnx) ≡
[
f ′′ − 3f ′

f

]
ξ=x

k

. (4.14)

The power spectrum can be straightforwardly (although not necessarily easily) calcu-

lated by solving Eq. (4.12) and then �nding

P (k) = lim
x→0

∣∣∣∣xyf
∣∣∣∣2 . (4.15)

The homogeneous solution (for g = 0),

y0 (x) =

(
1 +

i

x

)
eix, (4.16)

together with the relation (which is justi�ed later in appendix B.1)

ξ =
1

aH
(1 +O (g)) (4.17)

lead, at zeroth order in g, to the simple scale-invariant1 power spectrum

P0 (k) = lim
x→0

∣∣∣∣ if
∣∣∣∣2 =

H4(
2πφ̇

)2 . (4.18)

The standard slow-roll result can then be obtained by arguing that in a more general

slow-roll scenario (with small g 6= 0) the leading contribution to the power spectrum (with

corrections being suppressed by terms of order g) will still be given by Eq. (4.18) if the

now non-constant terms are evaluated at some point around horizon crossing.

4.2.2 The spectral index in general slow-roll in�ation

The slow-roll approximation has been su�cient to derive the standard lowest-order result

of Eq. (4.18). However, to derive the standard �rst-order prediction for the spectral index

[104],

ns − 1 ≡ d lnP
d ln k

= −4ε− 2δ1 (4.19)

(where the slow-roll parameters are to be evaluated around the time of horizon crossing),

the �rst-order corrections to Eq. (4.18) must only give at most a second-order contribution

1It can be seen (for example through Eq. (4.1)) that this result is divergent, as expected in a de Sitter

background. This is not a problem as all that matters is that when this becomes the leading contribution

to a more realistic power spectrum it is approximately scale-invariant (which is guaranteed by the slow-roll

approximation).
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to ns − 1, which is not true in general. Ignoring those corrections, as is usually done,

requires a hierarchy for higher-order slow-roll parameters such that [52,162]

|δn+1| � |δn| , (4.20)

which does not necessarily follow from the �vanilla� slow-roll assumptions.

Assuming this hierarchy of slow-roll parameters, the leading-order prediction for the

running of the spectral index becomes

αs ≡
dns
d ln k

= −2δ2 − 8ε2 + 2δ2
1 − 10εδ1, (4.21)

so that (barring �ne-tuning e�ects) αs ∼ O
(
|ns − 1|2

)
� |ns − 1|, which motivates the

naive expectation that αs be negligible in slow-roll in�ation. Mutatis mutandis, it can be

seen that the equivalent expectation for the running of the running,

βs ≡
d2ns
d ln k2

, (4.22)

is that |βs| ∼ O
(
|ns − 1|3

)
� |αs| � |ns − 1|.

As is shown in �gure 4.1, although current constraints are consistent with small αs

and βs as predicted by the naive hierarchy, much larger values are still currently allowed.

Indeed, the posteriors currently peak substantially away from zero, especially for βs (largely

due to the low-` feature in the CMB temperature power spectrum [4]). Improved future

constraints2 on αs and βs that peak away from zero could rule out the simplest class

of in�ationary models (characterized by the slow-roll approximation and the hierarchy in

Eq. (4.20)), but a more general statement about the wider class of canonical single-�eld

slow-roll in�ation models requires a more general treatment.

A few ways to approach modelling a more general slow-roll scenario are available in

the literature [2, 11, 46, 57, 84, 88, 89, 127, 128, 162]. In this work, we use the results from

Ref. [88] (which in turn use the results from Ref. [46]), which we brie�y review.

To solve for the power spectrum (Eq. (4.15)) we need to solve for the modes y. The

second-order linear di�erential equation in Eq. (4.12) can be solved for y using Green's

functions, with the solution satisfying the boundary conditions of Eq. (4.9) given implicitly

by

y (x) = y0 (x) +
i

2

∞∫
x

du

u2
g (lnu) [y∗0 (u) y0 (x)− y∗0 (x) y0 (u)] y (u) . (4.23)

This can be solved iteratively for y to successively higher order in g (assuming |g| < 1)

by substituting the previous order result into the right-hand side of Eq. (4.23) (starting

2Note that next-generation missions may improve these bounds by about an order of magnitude [95,129].
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Figure 4.1: Constraints from Planck 2015 TT+lowTEB [8] and BICEP-Keck [6] on a

constant αs (left) and a constant βs (marginalized over αs at the pivot scale; right), both

against ns at the pivot scale. Dashed black contours assume a null tensor-to-scalar ratio,

r, whereas blue contours marginalize over it. The light shaded region corresponds to the

part of the parameter space where the quantity in the vertical axis becomes greater than

|ns − 1|2 and the dark shaded region is where it becomes greater than |ns − 1|. The naive

expectation is that the true value of αs (left) should be close to the boundary of the

unshaded region and far away from the dark shaded region, whereas that of βs (right)

should be well inside the unshaded region. Current constraints allow a much greater area

of the parameter space.

with y (u) = y0 (u)). The result for the power spectrum at the desired order can then be

obtained by substituting into Eq. (4.15) and simplifying as much as possible. The result

for the scalar power spectrum correct to quadratic order in g is then [46]

lnP (ln k) =

∞∫
0

dξ

ξ

[
−kξW ′ (kξ)

] [
ln

1

f (ln ξ)2 +
2

3

f ′ (ln ξ)
f (ln ξ)

]
+
π2

2

 ∞∫
0

dξ

ξ
m (kξ)

f ′ (ln ξ)
f (ln ξ)

2

− 2π

∞∫
0

dξ

ξ
m (kξ)

f ′ (ln ξ)
f (ln ξ)

∞∫
ξ

dζ

ζ

1

kζ

f ′ (ln ζ)

f (ln ζ)
+O

(
g3
)
, (4.24)

where W and m are window functions de�ned by

W (x) =
3 sin (2x)

x3
− 3 cos (2x)

x2
− 3 sin (2x)

2x
− 1 (4.25)

and

m (x) =
2

π

[
1

x
− cos (2x)

x
− sin (2x)

]
. (4.26)

In this paper we are interested in relating properties of the observable power spectrum

to those of the in�ationary model, so we need the inverse version of this result, which can
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be shown to be [88]

ln
1

f (ln ξ)2 =

∞∫
0

dk

k
m (kξ) lnP (ln k)−π

2

8

∞∫
0

dk

k
m (kξ)

 ∞∫
0

dl

l

P ′(ln l)
P(ln l)

∞∫
0

dζ

ζ
m (kζ)m (lζ)

2

+
π

2

∞∫
0

dl

l

P ′(ln l)
P(ln l)

∞∫
0

dq

q

P ′(ln q)
P(ln q)

∞∫
0

dζ

ζ
m (lζ)

∞∫
0

dk

k2
m (kξ)m (kζ)

∞∫
ζ

dχ

χ2
m (qχ) . (4.27)

4.3 Exploring the limits of slow-roll

4.3.1 How slow is slow-roll?

To assess how much running there can be in slow-roll in�ation, we would like some objective

criteria to decide whether any given in�ationary model is slow-roll or not. The ��� signs

in Eqs. (4.3)-(4.4) de�ning the slow-roll approximations do not allow a clear distinction

unless the numbers being compared are orders of magnitude apart. To make matters worse,

Eq. (4.4) has been de�ned in the literature in terms of a number of slightly di�erent slow-

roll parameters (usually referred to as η), all of which would lead to di�erent classi�cations

of borderline cases even if we were to decide on an objective meaning for ��� in these

equations.

When faced with this sort of problem it is important not to get lost in an overly semantic

discussion. One pragmatic reason to care about whether a model falls under the category of

slow-roll is simply to know whether the power spectrum can be straightforwardly computed

using results like Eq. (4.18) and Eq. (4.24). Therefore, from the perspective of this work,

the best way to de�ne slow-roll is in terms of a quantity that can quantify how precise

this formula actually is. From the derivation, the most natural quantity appears to be

the parameter g. Unfortunately, this will result in a slightly stronger de�nition than using

just the slow-roll approximation, as it discards scenarios in which δ2 is large but ε and δ1

remain small (see appendix B.1). Nevertheless, it is a weak enough de�nition that we will

be able to qualitatively improve on the simplistic constraints in subsection 4.2.23.

Instead of committing to any arbitrary de�nition of what a �very small� number is, we

show, for each combination of observable parameter values, how large g can become during

3 To calculate the power spectra for speci�c slow-roll potentials, one could always resort to the more

general formalism of Generalized Slow-Roll [57], which relies on a weaker assumption than the slow-roll

approximation (allowing for even δ1 to become large for short periods of time). However, our analysis

would be much more complicated in that context, both due to di�culties in de�ning slow-roll (which is

the regime we are interested in here) and due to the added di�culties in solving the inverse problem of

�nding the model that corresponds to a given power spectrum.
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the period of time in which observable scales crossed the horizon. The reader can not only

decide which values are �not small� on his/her own, but also have a good understanding

of the meaning of any speci�c choice: the larger the allowed values, the less accurate our

formulas.

4.3.2 Outline of the method

We start by parameterizing the observed scalar power spectrum as

lnP (ln k) =
N∑
n=0

βn
n!

(
ln

k

k0

)n
, (4.28)

where k0 is a pivot scale and the βn coe�cients are to be constrained by observations. Of

course,

β0 ≡ lnP0

β1 ≡ ns − 1

β2 ≡ αs

β3 ≡ βs

(4.29)

where P0 is the magnitude of the power spectrum at the pivot scale. For the purposes of this

work, we will be interested in the cases with N = 2 and N = 3, for which βN have already

been constrained by the Planck collaboration [8]4. A natural extension of our calculations is

su�cient to deal with cases with higher N should observational constraints on higher-order

runnings become available (it has been claimed such constraints could come from minihalo

e�ects on 21cm �uctuations [159]). Likewise, radically di�erent parameterizations of the

power spectrum can be incorporated by making the appropriate changes to Eq. (4.28).

For each point in the (β0, β1, ..., βN ) parameter space, we want to know to what extent

a canonical single-�eld in�ation model must violate slow-roll during the interval of time

during which observable scales left the horizon (i.e., how large its respective g function

must become during that time).

We proceed by de�ning a g (lnx) for every k by inserting the power spectrum from

Eq. (4.28)5 into Eq. (4.27), and then the resulting f (ln ξ) into Eq. (4.14). The main

obstacle in the way of this calculation is the computation of the integrals in Eq. (4.27)

when the power spectrum is a polynomial in ln k
k0
, as we assume (in Eq. (4.28)). To

solve these integrals for power spectra with non-null βs, we extended known results for
4 Other works [35] have claimed slightly more dramatic constraints for the N = 3 case.
5We can ignore the term with β0 since, from Eq. (4.27), it only contributes to a proportionality constant

in f , and thus has no e�ect on g.
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the standard hierarchy in the slow-roll approximation [88] (see appendix B.2). The results

are polynomials in ln (k0ξ), so g can then be found straightforwardly from Eq. (4.14) by

di�erentiation.

Once these g functions have been found for k corresponding to observable scales, we

check the absolute value of g at x = 1 + ε = 1 + r
16 , corresponding to the time of horizon-

crossing to leading order in ε (see, e.g., Eqs. (B.2) and (B.9) in appendix B.1)6.

4.4 Results

The method described in section 4.3 was implemented in a Python code using the results

from appendix B.2. This allowed us to draw contour plots indicating how large g can

get during the relevant epochs for di�erent pivot values of ns, αs, and βs, assuming that

Eq. (4.28) holds for a speci�c range of observable scales. In this work we present results

for three di�erent ranges of observable scales, from kmin = 10−3Mpc−1 (set by the largest

scales that can be reasonably well measured) up to: kmax = 0.3Mpc−1 (spanning about 6

efoldings), roughly corresponding to the smallest scale well constrained by Planck; kmax =

100Mpc−1 (spanning about 12 efoldings), roughly corresponding to a future constraint

from 21cm observations [106, 159]; and kmax = 104Mpc−1 (spanning about 16 efoldings),

roughly corresponding to the smallest scale constrained by spectral distortions [44, 90]7.

The pivot scale is taken to be k0 = 0.05Mpc−1, the Planck pivot scale8.

In order to make statements about the status of this class of canonical single-�eld slow-

roll in�ation, we use CosmoMC [102,103] to superimpose current constraints from Planck

2015 data (temperature plus low-` polarization, TT + lowTEB [8]) and the latest BICEP-

KECK-Planck joint analysis [6], showing the 1σ and 2σ allowed regions. Additionally, we

plot contours for the inferred maximum values of g from current observations against αs

and βs.

6 The reason we are justi�ed in resorting to a �rst-order result after using second-order results up until

this point is that r is already observationally constrained to be so small that even the leading order term

has no signi�cant e�ect on our constraints.
7We note that the supernova lensing dispersion can also probe the averaged value of the power spectrum

on small scales, down to kmax & 100Mpc−1, but there is a degeneracy with the e�ect of baryons on the

small-scale low-redshift power spectrum [20].
8Note that this value is only important for including observational constraints in our plots. Naturally,

if one merely wanted to know how large a constant αs or βs are allowed to be over a certain range of scales,

the pivot scale would be irrelevant (for example because it plays no role in Eq. (4.27)).
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4.4.1 Constant running (N = 2)

If we limit ourselves to the case with constant αs (corresponding to N = 2 in Eq. (4.28))

we have only two relevant observables: αs and ns at the pivot scale. The corresponding

plots for the magnitude of g can be found in �gure 4.2.
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Figure 4.2: Slow-roll and observational constraints on parameterizations of the power

spectrum with a constant αs. The observational contours are Planck 2015 TT+lowTEB

and joint BICEP-Keck-Planck constraints for a constant αs and ns at the pivot scale. Blue

contours assume a null tensor-to-scalar ratio, r, whereas dashed black contours marginalise

over allowed values of r ≥ 0. The coloured areas indicate the maximum magnitude of g

during the interval of time during which constrained scales left the horizon. Note that for

g > 1 our method breaks down as Eq. (4.24) ceases to be valid.

For the currently constrained range of scales even the 2σ observational contours never

go beyond the |g| < 0.2 line (which is still comfortably much less than unity). Even our

futuristic scenario with kmax = 100Mpc−1 has the 2σ contour being well inside the |g| < 0.5

region (which corresponds to a borderline case for which the designation of �slow-roll� is
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rather dubious, but which still does not allow us to make a very strong statement9). Only

a futuristic scenario with kmax = 104Mpc−1 would permit a measurement of constant

αs to provide a strong test of slow roll. However, the usual constraints from µ- and y-

type spectral distortions would depend on integrals of the power spectrum over the range

1Mpc−1 . k . 104Mpc−1, and cannot on their own establish the constancy of αs (even if

they could accurately measure αs provided it is assumed to be constant [44]). Nevertheless,

smaller residual distortions of a di�erent type might provide some information on the shape

of the power spectrum [45].

These conclusions are con�rmed (and more easily seen) in the plots in �gure 4.3, which

show the bounds on the maximum magnitude of g inferred from the bounds on the running

and the spectral index. Note that their asymmetric boomerang shape is due to the modulus

sign in |g| as well as the signi�cant deviation of the Planck best-�t value for αs from zero.

4.4.2 Constant running of the running (N = 3)

If we allow the running to vary with a constant βs (corresponding to N = 3 in Eq. (4.28))

we have three relevant observables: the constant βs, as well as the values of αs and ns at

the pivot scale. In order to illustrate typical constraints, we present the plots corresponding

to βs = 0.029 (the Planck best �t) in �gure 4.4 (higher values of βs would result in a more

dramatic version of these plots, whereas lower values would yield plots more similar to

those in �gure 4.2).

To comment more generally on whether this class of slow-roll models can be ruled

out by measuring βs over the range of its currently allowed possible values, it is easier to

focus on the constraints on the maximum magnitude of g shown in �gure 4.5 (since they

conveniently reduce the relevant three-dimensional information to simple two-dimensional

contours). The current preference for βs 6= 0 is driven by large scales, but small-scale

data is consistent with constant spectral index, so as more small-scale data is added it is

plausible that constraints on βs will converge to be closer to zero in the future. However,

if they do not, it is quite possible that a future detection of non-zero running of the

running could signi�cantly disfavour this class of single-�eld slow-roll in�ation, but only if

information on a slightly wider range of scales is obtained (about an extra efolding should

su�ce for large values of βs to clearly lead to high values of |g|, given how some are already

at the borderline |g| ∼ 0.5.). In particular, a future detection near Planck 's current best

9Note that for such high values of |g| we also need to worry about corrections to Eq. (4.24) possibly

becoming comparable to the observational uncertainty for the power spectrum at the (futuristic) scale at

which this maximum value is reached.
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Figure 4.3: Bounds, over the constrained ranges of scales, on the maximum magnitude of

g inferred from Planck 2015 TT+lowTEB and joint BICEP-Keck-Planck constraints on a

constant αs marginalized over ns at the pivot scale. Filled contours assume r = 0 whereas

dashed lines marginalize over allowed values of r ≥ 0.

�t (βs = 0.029) could clearly rule out this class of slow roll.

That the larger values of constant βs would rule out simple slow-roll in�ation models

should not be a surprise. An intuitive argument for this uses the fact that, under fairly

general assumptions, to leading order in slow roll, ns − 1 can be written in a simpler form

as a sum of small δn parameters (of which Eq. (4.19) is a truncation) [162]. If βs = O(0.05)

and constant, ns would change by O(1) over the observable range of scales, implying that

this form of ns − 1 cannot be valid everywhere.

4.4.3 Consequences for the power spectrum

It is interesting to consider what current data say about the allowed range for the small-

scale power spectrum that could be observed by future data. Assuming that the para-

meterization we have used (with constant βs) can be extended, current Planck constraints
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Figure 4.4: Slow-roll and observational constraints on parameterizations of the power spec-

trum with a constant βs = 0.029. The observational contours are Planck 2015 TT+lowTEB

and joint BICEP-Keck-Planck constraints for αs and ns at the pivot scale. Blue contours

assume a null tensor-to-scalar ratio, r, whereas dashed black contours marginalise over

allowed values of r ≥ 0. The coloured areas indicate the maximum magnitude of g during

the interval of time during which the constrained scales left the horizon (�futuristic scales�

denoting both kmax = 100Mpc−1 and kmax = 104Mpc−1). Note that for g > 1 (as is the

case everywhere on the plot on the right-hand side) our method breaks down as Eq. (4.24)

ceases to be valid.

with non-zero βs allow the power spectrum to grow to order unity at the smallest scales

we consider (which would already be ruled out by other probes [38, 44]). Therefore, it

is instructive to see how the requirement of slow roll (as de�ned by a maximum allowed

magnitude of g over constrained scales) would a�ect this extrapolation, and how that com-

pares with the e�ect of the naive expectations resulting from the imposition of the usual

hierarchy on slow-roll parameters.

Our inferred constraints on the power spectrum are shown in �gure 4.6: the assumption

of slow roll leads to signi�cantly tilted and narrower bounds on the small-scale power spec-

trum (compared to assuming only Planck constraints), especially for the case of constant

βs.

4.5 Conclusions

We devised a straightforward method to assess whether speci�c observed values of the

running (of the running) of the spectral index are consistent with canonical single-�eld slow-

roll in�ation. We showed that slow roll is much harder to discard than simple expectations



99

0.0 0.2 0.4 0.6

max |g|

−0.03

0.00

0.03

0.06

β
s

kmax =0.3Mpc−1

r = 0

r 6= 0

0.0 0.8 1.6 2.4

max |g|

−0.03

0.00

0.03

0.06

β
s

kmax =100Mpc−1

r = 0

r 6= 0

0.0 0.6 1.2 1.8 2.4 3.0

max |g|

−0.03

0.00

0.03

0.06

β
s

kmax = 104Mpc−1

r = 0

r 6= 0

Figure 4.5: Bounds, over the constrained ranges of scales, on the maximum magnitude

of g inferred from Planck 2015 TT+lowTEB and BICEP-Keck constraints on a constant

βs marginalized over αs and ns at the pivot scale. Filled contours assume r = 0 whereas

dashed lines marginalize over allowed values of r ≥ 0. Note that for g > 1 our method

breaks down as Eq. (4.24) ceases to be valid.

based on a hierarchy of slow-roll parameters suggest, and in particular that for constant

running any of the currently allowed values would not necessarily imply a violation of slow

roll over observable scales. However, a detection of constant βs signi�cantly away from zero

could be much more powerful10: a �rmer detection over currently-available scales could

be enough to restrict slow-roll in�ation to a region of borderline validity, and future data

over a wider range of scales could invalidate slow roll for the simple parameterization of

10This is partly because current constraints allow for larger constant βs than constant αs. However,

mostly, it is because allowing signi�cant higher-order runnings implies allowing signi�cant higher-order

slow-roll parameters, which naturally makes g vary faster. In other words, g (ln ξ) computed from f (ln ξ)

in Eq. (4.27) is a polynomial in ln (ξ) whose order is higher if the power spectrum has higher-order runnings.

This can also be seen from the di�erent rates of deviation between the blue and the red limits on plots in

�gure 4.6.
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Figure 4.6: Consequences of the imposition of slow roll (de�ned by the smallness of g) for

the power spectrum scaled by e−2τ , where τ is the optical depth (whose value a�ects the

amplitude of the spectrum, but not its shape). The blue contours represent the 68% (dark

blue) and 95% (light blue) limits on the allowed values of the power spectrum (rescaled

by a factor of e−2τ ) extrapolated from Planck 2015 TT+lowTEB constraints (over gray

shaded scales) assuming a constant αs (left) and a constant βs (right), for di�erent values

of k. The solid and dashed red contours represent the 68% and 95% limits on the fraction

of these spectra for which |g| < 0.2 for the range of scales corresponding to 10−3Mpc−1 <

k < 104Mpc−1. The solid and dashed black contours represent the 68% and 95% limits on

the fraction of these spectra corresponding to the unshaded regions in �gure 4.1 (note that

for the plot on the right the limits of this region already violate the naive expectation for

the magnitude of βs).

the power spectrum assumed.

There are, however, a couple of limitations of our approach:

- Firstly, we rede�ned slow-roll as meaning |g| � 1, which, despite not assuming

any hierarchy of slow-roll parameters, is a somewhat stronger condition than the general

de�nition of ε, |δ1| � 1 (see the conclusions of appendix B.1). Nevertheless, this still

corresponds to a very simple and wide class of models, including all the ones which make

the wider class so popular (slow-roll formulae for the power spectrum should break down

for the models left out).

- Secondly, we follow a constructive approach: for each speci�c combination of ob-

servable parameters {ns, αs, βs, ...} we �nd a function g (ln ξ) which generates them and

check whether it breaks our weaker de�nition of slow-roll during the time during which

observably measurable scales crossed the horizon. Inevitably, we can only �nd (or fail to

�nd) examples of models which generate power spectra of the speci�c kind assumed (in the
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case of this work, with constant αs or βs). In the case of constant αs, an existence proof

is su�cient to demonstrate that models do not violate slow roll. However, in cases where

slow-roll is violated, our assumption is restrictive and di�erent parameterizations (e.g., in-

volving oscillatory features, or large-scale features) might lead to di�erent conclusions. It

would be straightforward to generalize our method to constrain both higher-order runnings

and completely di�erent parameterizations by making appropriate changes to Eq. (4.28).

Due to its smallness, the tensor-to-scalar ratio does not noticeably a�ect our results.
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Chapter 5

Conclusions and Discussion

This is an exciting time for cosmology in general and for the study of the early Universe

in particular. The observational advances of the last few decades have �rmly established

ΛCDM as the standard model of cosmology and led to in�ation arising as the dominant

paradigm in the primordial Universe. In the next decades, new observations will enable

us to test these ideas like never before, allowing for a better understanding of not just

cosmic history but also of particle physics at very high energies. However, in order to

make full use of these future measurements, our theoretical understanding of important

physical mechanisms in these theories must also be improved. In particular, it is paramount

to know which observational tests can distinguish between which di�erent early Universe

scenarios, and it is necessary to learn more about possible exotic signatures of some of

these scenarios (like topological defects).

This thesis presents three distinct projects which aim to contribute to this improved

understanding in three distinct ways. In this chapter, we brie�y review the main �ndings

and prospects for future work of each.

5.1 Negative absolute temperatures in cosmology

In chapter 2, we presented the �rst (thermodynamically) consistent discussion of the pos-

sible role of negative absolute temperatures (NAT) in cosmology. Aiming to be as general

(i.e., model-independent) as possible, we postulated that NAT are possible on cosmological

scales due to the energy of single-particle states being bounded from above1 but made no

a priori assumptions about the origin and scale of this cut-o�. For the sake of simplicity,

we focused on the special case in which the Universe is dominated by a single component
1Technically, our work requires only that this be true for one speci�c species of particles, although it

seems unlikely that such a feature should not be universal in realistic scenarios.



103

which can be in thermal equilibrium at NAT and investigated how it should evolve ac-

cording to Friedmann's equations. We also assumed that the particles this component is

made of, temperons, are fermions whose number is not conserved � both because we see in

appendix A.1 that otherwise only very special (and not very relevant) models, if any, may

permit thermalisation at NAT, and because this allows for their statistics to be described

in terms of holes rather than particles (which leads to a convenient correspondence between

quantities at positive and negative temperatures).

In the end, we found NAT led to two physically relevant solutions: an in�ationary

epoch and a bouncing Universe, depending on whether the Universe is initially expanding

or contracting (the latter case not even requiring that NAT ever actually occur, but only

that the cut-o� allows in�nite temperature). Whether either of them are viable as realistic

models of the very early Universe, however, is still unclear. In both situations, observational

predictions seem to require an out of equilibrium treatment which is likely not possible

in this type of model-independent approach. Moreover, it seems that the most appealing

of the two solutions (the in�ationary one) may additionally require an extra curvaton-like

component in order to �t current CMB observations � which is a major blow to the relative

simplicity of the idea, unless this component can be seen to naturally arise in speci�c NAT

scenarios.

Necessarily, future work on NATive cosmology will have to address the shortcomings

of our results, particularly concerning the end of in�ation and perturbation generation.

Given that it is unlikely that this may be done in a model-independent way, it will also be

necessary to better understand under which conditions speci�c models with energy cut-o�s

can lead to NAT (instead of just not allowing thermalisation at too high energies). The

following insights on this thermalisation issue are informed by ongoing work in collaboration

with Djuna Croon (Dartmouth College) and Sonali Mohapatra (University of Sussex).

One basic question that must be properly answered in the context of any speci�c model

with the sort of cut-o� we are interested in is: where does the negative pressure come from?

In the usual picture of particles �in a box� the pressure is just the total force per unit area

exerted by the particles on the walls of the box, and therefore it can never be negative.

This tells us that if we were to just take the states of a normal theory of particle physics

and postulate that states above a certain cut-o� aren't accessible anymore we wouldn't be

able to achieve NAT. Of course, as we mention in subsection 2.3.4, this conceptual picture

is expected to break down at high energies, at which we have suggested that an alternative

sort of picture, based on a deformed version of the momentum operator, might o�er a
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principled solution to this problem. However, we should not expect such a method (or any

other method) to allow thermalisation for all temperatures T < 0. This is because, writing

the �mechanical� pressure as

Pmech =

Λ∫
m

g (ε) p (ε)

eβε + 1
dε, (5.1)

where p (ε) → ε2−m2

3ε at low energies (to recover Eq. (2.46)) but whose full form should

depend on how the cut-o� is implemented, we �nd that the requirement of thermalisation

at β = −∞ implies
Λ∫

m

g (ε) p (ε) dε = −ρmax, (5.2)

whereas thermalisation at β = 0± implies

Λ∫
m

g (ε) p (ε) dε = ±∞. (5.3)

While this still allows for cosmologically relevant phenomena (which all take place

either in the vicinity of β = −∞ or of β = 0), it is an indication that the conditions for

thermalisation at NAT seem to be much more constraining than originally realised; and

thus full calculations in speci�c working models are needed. Nevertheless, there is still good

reason to think that thermalisation should be possible at least close to β = −∞ because

the thermodynamical solution there makes physical sense: P = −ρmax corresponds to the

term that cancels the temperon contribution to the cosmological constant2 [157,173].

5.2 Modelling small-scale structure in cosmic strings

In chapter 3, we presented a new model for the evolution of cosmic string networks which

takes into account both the dynamics of small wiggles and their e�ect on the evolution of

large-scale string properties. While the basic formalism for taking into account these small-

scale e�ects was provided by previous work [120], there are important parameters (notably

energy loss parameters) whose functional form is not adequately constrained by current

simulations � and for those we had to settle for more or less well-motivated ansatze.

The result was a partial success. It is encouraging that parameters derived from matter

era simulations are consistent with the type of scaling allowed by this model. Likewise,

2In other words, the quantum zero-point contribution of the �vacuum� to the pressure is cancelled out

when there is no �vacuum� left because all states are completely �lled. In a sense, it seems that it is the

�hole vacuum� that is truly empty (as opposed to the �fermion vacuum�), as its total energy and pressure

both vanish.
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it is potentially positive that the same agreement is not found in the radiation era, when

it is not clear that scaling has been reached. Nevertheless, a full explanation of these

scaling phenomena in the context of this model warrants a detailed study of the stability of

scaling in the di�erent epochs � which requires more knowledge of some poorly understood

parameters, including fractal dimensions as well as energy loss parameters.

A main focus of future work will therefore have to be on understanding energy loss

mechanisms and their relation to the multifractal structure of cosmic string networks.

This is necessary to make this model su�ciently complete to enable a detailed study of

how small-scale structure should a�ect observational bounds on models which lead to

cosmic string formation3. This is particularly relevant now in the advent of gravitational

wave cosmology, when the detection of a stochastic gravitational wave background due to

cosmic strings is becoming a real possibility (e.g., with an experiment like LISA) � and

could in the future potentially provide precious information on the scale of in�ation [?].

Given the advances in high-performance computing since 2006, when the simulations

used in this work came out [119], it is expected that upcoming high-resolution simulations

will enable a more rigorous calibration of the relevant free parameters. Such a calibration

would be analogous to recent work on domain walls [113], with the added complication of

the need for a study of multifractality.

5.3 Testing slow-roll in�ation

In chapter 4, it was shown that the implications to the validity of the slow-roll approx-

imation of an eventual detection of signi�cant running (or running of the running) of the

spectral index of scalar perturbations are less straightforward than the simplest arguments

suggest. While this is not a new realisation [58], this work studies these implications more

generally and in light of more accurate data than ever before (at least as far as the authors

are aware).

At the core of this work is a method for �nding the family of models that corresponds

to a given power spectrum given a relatively general de�nition of slow roll (somewhat

stronger than just the standard de�nition of slow-roll, but weaker than imposing the usual

hierarchy to the slow-roll parameters). Using this method, it is found that slow roll can

in fact account for signi�cantly larger regions of the available parameter space than the

3An example of the kind of study that can be done in the case of CMB observables is given by the work

of Rybak et al [152], where a version of this model with ` = const was shown to lead to laxer constraints

than those for Goto-Nambu strings.
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usually assumed slow roll hierarchy. In particular, it is shown that it is unlikely that any

future detections of running or running of the running over currently constrained scales

will be able to falsify the assumption of slow roll in canonical single-�eld scenarios.

Naturally, prospects for testing slow roll with the running and the running of the

running are better for future observations constraining much wider ranges of scales (and

thus more e-folds of cosmic history). While the size of the observable Universe sets a hard

limit on the largest scales that can be observed, future probes are expected to considerably

improve constraints on the smallest scales. In this work we focus mainly on two types

of future probes: 21cm cosmology and spectral distortions. The former is expected to

roughly double the number of e-folds over which the power spectrum is well constrained

(relative to what is currently done with CMB observations) and the latter is expected to

almost triple it (although usually via integrated constraints which are not generally able

to distinguish the scale dependence of the power spectrum). Given that large values of the

relevant runnings of the spectral index are much harder to maintain for longer periods of

time, this increase in the range of constrained scales is critical for future tests of slow roll

using this sort of method. In fact, it turns out that these future probes would not even

need to reduce current error bars on the runnings4 (but merely to maintain the current

central values) in order for the simple slow-roll models considered to be falsi�ed.

Perhaps the most concerning limitation of this approach is the need for a speci�c para-

meterisation of the power spectrum to be assumed. Even though it should be straightfor-

ward to modify this analysis for radically di�erent types of scale dependences (e.g., with

oscillatory features), it gives no rigorous way to decisively rule out a region of parameter

space in this class of slow roll � as it relies on an explicit construction to provide ex-

amples of models, but says nothing about whether other types of examples may exist when

this construction fails. In other words, this method is good for showing that slow roll

can account for power spectra which are not obviously consistent with slow roll due to

their unusual scale dependence, but it can never show that a given power spectrum (given

observational uncertainties) is inconsistent with slow roll.

Future work should try to surpass this limitation, especially if evidence for large run-

ning of the running does not decrease as smaller scales are better constrained. Ideally,

future versions of this method should be able to point to the family of models consistent

with observations which leads to the smallest variation in |g| over constrained scales, in-

stead of assuming any speci�c parameterisation of the power spectrum. Possibly, this may

4Which they are expected to do.
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require an extra assumption on the hierarchy of slow-roll parameters5, leading to stronger

statements about a stronger de�nition of slow roll.

5One natural such assumption would be that only a small number of slow-roll parameters are non-null

to the desired accuracy in slow roll, similarly to what is done in Easther and Peiris [58] (but possibly

allowing more relevant parameters).
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Appendix A

Cosmology with Negative Absolute

Temperatures

A.1 Problems maintaining negative temperatures with num-

ber conservation and bosons

Let us start by assuming number conservation so that we can explore the kind of problems

it causes. In an FLRW Universe with scale factor a and Hubble parameter H, there will

then be two equations governing the dynamics of these functions, the continuity equation

ρ̇ = −3H (ρ+ P ) (A.1)

and the number conservation equation

ṅ

n
= −3H. (A.2)

Equivalently, one can make use of the symmetries in Eqs. (2.18), (2.19), and (2.20) to

rewrite these for holes as

ρ̇h = −3H (ρh + Ph) (A.3)

ṅh = 3H (nmax − nh) (A.4)

where the subscript h denotes a quantity relative to holes (with Th = −T ). Note that

the formal equivalence between Eqs. (A.1) and (A.3) is due to the fact that they both ex-

press the constraint that the entropy be conserved and entropy cannot distinguish between

particles and holes (since it is purely combinatorial).

Suppose now that the Universe is �lled with a temperon gas at NAT with m� Th. If

the very low-energy holes behave like normal (pressureless) matter then ρh = mnh and the
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previous equations are reduced to

ρ̇h = −3Hρh (A.5)

ρ̇h = 3Hmnmax − 3Hρh (A.6)

which is an inconsistent system as long as H 6= 0. This would mean that in this situation

equilibrium could not be maintained during the expansion.

Of course, this problem assumes a speci�c low-energy form of g (ε) and thus it can by

no means be considered a refutation of the µ 6= 0 case. Nevertheless, it is a di�culty that

has to be taken into account and which raises questions about how model-independent

(i.e., how independent of g (ε)) such an analysis can be. In addition, if we just assume g (ε)

is whatever is necessary to make this system of equations consistent, we have to live with

the fact that there are possible situations in which the energy density will be increasing

while the number density decreases (and vice-versa, if the Universe is contracting), since

ρ̇/ṅ has the same sign as ρ+ P and ρ is bounded whereas P is not.

Moreover, it can be easily seen that, even accepting these odd behaviours, such a

solution can never be consistent in all situations. For example, consider the case where

temperons are massless fermions at T = 0−. In this situation, the energy density must be

constant and equal to its maximum possible value, whereas the number density must vary

according to H. This is clearly absurd as there is no way the system can be at ρ = ρmax

unless all states are �lled.

Note that once we restrict ourselves to the study of cases without number conservation

it becomes clear that we cannot use bosons: without number conservation, the energy of

the system is no longer bounded from above, which makes NAT impossible.

A.2 Thermal Perturbation Generation

A system in equilibrium will in general have thermal �uctuations. Here we consider the case

where the Universe is dominated by temperons in thermal equilibrium, and calculate the

density and curvature perturbations produced. We focus on the case where holes behave

like radiation as β → −∞1.

The main di�erence between perturbations here and in the standard in�ationary scen-

ario is that density perturbations here are produced due to classical thermal �uctuations

rather than by quantum e�ects. The basic methodology used in this subsection is therefore

1Ignoring any contributions from whatever process might be responsible for ending in�ation.
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essentially the same as the one used to work out thermal �uctuations in models such as

chain in�ation or warm in�ation in the very weakly dissipative regime [40].

A.2.1 Moments in position space

For a canonical thermal system with volume V , the n-th moment of the energy density

distribution is given by

〈ρn〉 =
〈En〉
V n

=
1

Z

(
− 1

V

)n ∂nZ
∂βn

(A.7)

where Z is the partition function as given by Eq. (2.14) with µ = 0. Making the substitution

∂α ≡ −V −1∂β , we can �nd the simple recursive relation

〈
ρn+1

〉
= [〈ρ〉+ ∂α] 〈ρn〉 (A.8)

which we can then use to �nd an analogous formula for the moments of δρ = ρ − 〈ρ〉.

Taking a derivative with respect to α of

〈(δρ)n〉 =
n∑
k=0

n!

(n− k)!k!
(−〈ρ〉)n−k

〈
ρk
〉

(A.9)

and then making use of Eq. (A.8) yields

〈
(δρ)n+1

〉
= ∂α 〈(δρ)n〉+ n∂α 〈ρ〉

〈
(δρ)n−1

〉
. (A.10)

Eq. (A.10) has the interesting feature of separating contributions from even and odd

momenta in the right-hand side. Because of it, and since 〈δρ〉 = 0, if we assume that〈
(δρ)3

〉
= ∂2

α 〈ρ〉 = 0 then (as can be easily checked by induction) every odd moment

has to be zero and
〈

(δρ)2n
〉

= (2n− 1)!!
〈

(δρ)2
〉n

, corresponding to exactly Gaussian

perturbations whose statistics depend only on the size of the thermal system V (and not

on β). In other words, in this scenario Gaussianity is equivalent to the third moment of

δρ being null and to the second (and indeed every even) moment being independent of β.

Since 〈
(δρ)3

〉
= ∂2

α 〈ρ〉 =
1

V 2

∫
g (ε) ε3

[
e2βε − eβε

(eβε + 1)
3

]
dε, (A.11)

then density perturbations must always be exactly Gaussian for β = 0 (at the bounce) and

for the attractors β = ±∞. This exact Gaussianity at the attractors, however, is misleading

since it corresponds to a limit in which density perturbations must vanish � recall that

from Eq. (2.18) we have δρ = −δρholes (where the temperature of holes is symmetric to

that of particles) and δρ has to be zero for T = 0+ since at that temperature the density

itself is zero. We should thus look at the relevant perturbation, the curvature perturbation,
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which can be written in terms of the density perturbation in the zero curvature frame (in

which the previous calculations make sense as the shape of the �box� is not perturbed) as

ζ =
1

3

δρ

〈ρ〉+ 〈P 〉
. (A.12)

In the case of a bounce, this also shows that even the Gaussian perturbations are less inter-

esting than one might think, since despite the numerator being non-zero the denominator

diverges, making the relevant curvature perturbation negligible.

The variance of the curvature perturbation can now be found to be given by

〈
ζ2
〉

=
1

9

〈
δρ2
〉

(ρ+ P )2 = − 1

9V

∂βρ

(ρ+ P )2 , (A.13)

where for simplicity we are using ρ and P interchangeably with their averages.

The most interesting limit for Eq. (A.13) is when β → −∞ as the spacetime then tends

towards unperturbed de Sitter, yet the curvature perturbation does not necessarily tend

to zero as the denominator in the right-hand side also goes to zero in this limit2. For

example, if holes behave like radiation, the denominator vanishes at a faster rate than the

numerator, causing ζ to diverge as (see table A.1 for a breakdown of the relevant terms in

Eq. (A.13) in this limit)

〈
ζ2
〉

=

(
15

7π2g

)1/4 (ρmax − ρ)−3/4

2V
. (A.14)

ρh = ρmax − ρ a? = aV
−1/3

0

ρ+ P −4
3ρh −4

3a
−4
?

β -
(

7π2

240
g
ρh

)1/4
−
(

7π2

240 g
)1/4

a?〈
(δρ)2

〉
8
V

(
15

7π2g

)1/4
ρ

5/4
h

8
V

(
15

7π2g

)1/4
a−5
?〈

ζ2
〉

1
2V

(
15

7π2g

)1/4
ρ
−3/4
h

1
2V

(
15

7π2g

)1/4
a3
?

Table A.1: Summary of relevant quantities as functions of hole energy density, ρh, and

rescaled scale factor, a? = ρ
−1/4
h , when holes behave like radiation. The row for β comes

from applying the standard result for the fermion energy density to ρh. V0 is the integration

constant used later in Eq. (A.24).

2These calculations may not even be physically meaningful too close to that limit, since then most

Hubble volumes will have no holes and will be indistinguishable from de Sitter space, for which ζ is not

well de�ned since there isn't a unique constant-density frame. There could also be additional e�ects, for

example if the equilibration time is not negligibly smaller than the Hubble time the density perturbation

could be dominated by �uctuations in the equilibration process.
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A.2.2 The thermal power spectrum

In order to turn the results from the previous section into predictions for the power spec-

trum, we must introduce a couple of mathematical objects and endure some integral ma-

nipulations.

Let us start by considering the average density �uctuation in the vicinity of a point,

δρx0 (r) ≡ 1

Vr

∫
Sr,x0

d3xδρ (x) =
1

Vr

∫
Sr

d3xδρ (x0 + x)

=
1

Vr

∫
d3k

(2π)3/2
δρk

∫
Sr

d3xeik·(x0+x), (A.15)

where Sr,x0 is the sphere of comoving radius r centred around x0, Sr = Sr,0, and Vr = 4
3πr

3.

We can de�ne the average power of this quantity as

δρ
2

(r) ≡ lim
R→∞

1

VR

∫
SR

d3x0 |δρx0 (r)|2 (A.16)

which can be rewritten as

δρ
2

(r) = lim
R→∞

∫
d3k

(2π)3/2

∫
d3k′

(2π)3/2
× δρkδρk′Wr (k)Wr

(
k′
)
WR

(∥∥k + k′
∥∥) , (A.17)

where we have used the window function de�ned as

Wr (k) ≡ 1

Vr

∫
Sr

d3xeix·k = 3
sin (kr)− kr cos (kr)

(kr)3 . (A.18)

Taking the expected value on both sides and using the usual de�nition 〈δρkδρk′〉 ≡

δ (k + k′)Pδρ (k) then yields〈
δρ

2
(r)
〉

=

∫
d3k

(2π)3 |Wr (k)|2 Pδρ (k) . (A.19)

Alternatively, using the usual de�nition of the power spectrum P (k) = k3P (k) /
(
2π2
)
,

this is 〈
δρ

2
(r)
〉

=

∞∫
0

dk

k
|Wr (k)|2 Pδρ (k) . (A.20)

Provided that Pδρ (k) doesn't diverge faster than k−3 as k → 0, the integral in Eq. (A.19)

is dominated by k ∼ r−1 and [130]

Pδρ (k) ∼ (2π)3

k3

〈
δρ

2 (
k−1

)〉
. (A.21)

Assuming there is a thermal horizon3, Lth, corresponding to the physical distance

beyond which there can be no thermal correlation, the actual observed density power
3 In the literature, some measure of the typical wavelength of a particle (usually a photon) in the

thermal system has been used as the thermal horizon, although [40] note it can in principle be any scale

between that and the acoustic horizon, csH
−1.
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spectrum can be calculated from Eq. (A.21) evaluated around thermal horizon exit, when

k ∼ a/Lth. Using
〈
δρ

2
(L/a)

〉
=
〈

(δρ)2
〉
Vth

we conclude that

〈
δρ

2
(r)
〉

=
〈

(δρ)2
〉
V=a3Vr

, (A.22)

and hence

Pζ (k ∼ a/Lth) ∼
(2π)3 L3

th

9a3 (ρ+ P )2

〈
δρ2
〉
V= 4π

3
L3

th
∼ −(2π)3

12a3

∂βρ

(ρ+ P )2 , (A.23)

where everything is evaluated around thermal horizon crossing.

If we further assume holes behave like radiation, we can use this together with equation

(A.14) and immediately get

Pζ (k) ∼ 3

8

(
15

7π6g

)1/4 (2π)3

V0
, (A.24)

where V0 ≡ a3 (ρmax − ρ)3/4 is a constant thanks to Eq. (2.35). Note that this corresponds

to a white noise spectrum with ns = 4.

If the NAT model were to describe a realistic cosmology, we would need the power

spectrum to be (approximately) scale-invariant, at least in the attractor β → −∞ limit.

Unfortunately, we can show that is not necessarily possible even if we allow drastic depar-

tures from Eq. (2.3). From Eq. (A.21) it is clear that the spectrum will be scale invariant

if and only if
〈
δρ

2 (
k−1

)〉
is independent of k. In other words, the power spectrum can be

written as

Pζ (k) ∼ − 4π

9V

∂βρ

(ρ+ P )2 , (A.25)

which is a constant if and only if

∂k

(
V −1 ∂βρ

(ρ+ P )2

)
= 0. (A.26)

Assuming, as before, that V ∝ L3
th = const, this can be rewritten as

∂βρ
−1

(1 + w)2 = const. (A.27)

Note that if wh is the equation of state of holes then Eqs. (2.18) and (2.21) yield ρ+ P =

−ρh−Ph (where the subscript h once again denotes holes) and thus Eq. (A.27) is equivalent

to
∂βhρ

−1
h

(1 + wh)2 = const. (A.28)
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Consequently, if wh = const then in this large β > 0 limit

ρ =
1

A+Bβ
, (A.29)

where A and B are positive constants of integration � they have to be positive because B

is related to the power spectrum by Pζ (k) ∼ 4π
9V

B
(1+wh)2 . If we now equate the right-hand

sides of Eq. (2.9) and Eq. (A.29) and take a derivative with respect to T at T = 0+ we get

lim
β→∞

β2

∫
g (ε) ε2eβε

(eβε + 1)
2dε = 1 (A.30)

which is absurd since the left-hand side should be zero as long as there is a �nite total

number of one-particle states.



130

Appendix B

Can power spectrum observations

rule out slow-roll in�ation?

B.1 g and the slow-roll parameters

In this work, slow-roll is tested via the g function de�ned in Eq. (4.14) rather than directly

via the slow-roll parameters. We relate the two here.

B.1.1 Slow-roll parameters from conformal time

The main di�culty in relating g to the slow-roll parameters stems from the terms in g which

are related to the conformal time. We thus start by manipulating the usual expression for

(minus) the conformal time,

ξ (t) =

∞∫
t

dt
′

a (t′)
=

∞∫
a(t)

da

Ha2
=

1

a (t)H (t)
−
∞∫

a(t)

Ḣ

H2

da

aȧ
=

1

a (t)H (t)
−
∞∫

a(t)

Ḣ

H2

da

a2H
. (B.1)

Using Eq. (4.3), we write it as

ξ =
1

aH
[1 + ε̄] , (B.2)

where ε̄ is given by

ε̄ (ξ) ≡ a (ξ)H (ξ)

ξ∫
0

ε(ξ̃)dξ̃ =
1

〈ε〉−1
ξ − 1

, (B.3)

〈ε〉 being the conformal time average of ε at a given instant, de�ned as

〈ε〉ξ ≡
1

ξ

ξ∫
0

ε(ξ̃)dξ̃. (B.4)

From Eq. (4.3), it can be easily seen that

dε

d ln ξ
= − (1 + ε̄)

(
2ε2 + 2εδ1

)
, (B.5)
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so variations in ε are second-order in slow roll and thus 〈ε〉 and ε̄ are not expected to di�er

from ε at �rst order.

In fact, if we further assume that ε is well-behaved (in the sense that it can be expressed

as a Taylor series in the domain of integration of Eq. (B.4)1), we can write 〈ε〉 as

〈ε〉ξ = ε+

∞∑
n=1

dnε

dξn
(−ξ)n

(n+ 1)!
= ε+

∞∑
n=1

(−aH)−n
dnε

dξn
(1 + ε̄)n

(n+ 1)!
. (B.6)

Combining this with Eq. (B.5) and its equivalent for δn,

dδn
d ln ξ

= − (1 + ε̄) (δn+1 + nεδn − nδ1δn) , (B.7)

it can be seen that, to second order in the slow-roll parameters,

〈ε〉ξ ≈ ε+ 2

ε+

∞∑
p=1

δp

 ε (B.8)

(the right-hand side being evaluated at minus conformal time ξ) and

ε̄ ≈ ε

1 + 3ε+ 2

∞∑
p=1

δp

 . (B.9)

B.1.2 g from f

Using these results, the f function de�ned in Eq. (4.13) can be written as

f (lnx) = 2π
φ̇

H2
[1 + ε̄] . (B.10)

Now, using
d ln φ̇

d ln ξ
= − (1 + ε̄) δ1, (B.11)

d lnH

d ln ξ
= (1 + ε̄) ε, (B.12)

and
dε̄

d ln ξ
= (1 + ε̄) (ε− ε̄+ εε̄) , (B.13)

we can �nd
d ln f

d ln ξ
= −ε̄− ε− δ1 − ε̄ε− ε̄δ1. (B.14)

1Since the integration domain for 〈ε〉 stretches all the way to the in�nite future, a drastic departure

from slow-roll at (or even after) the end of in�ation may cause this assumption to be violated - potentially

leading to |ε̄− ε| being larger than expected. However, as long as this violation is far enough in the

future, for our purposes we can always ignore it and pretend that slow-roll goes on forever (or alternatively

stop the integration at a very distant point before slow-roll is violated) since we know that the curvature

perturbation is conserved on very large superhorizon scales [171].
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In addition, using also Eqs. (B.5) and (B.7), we can �nd

d2 ln f

d ln ξ2
= (1 + ε̄)

(
ε̄− ε+ δ2 + ε̄δ1 + ε̄δ2 + ε2 + 2εδ1 − δ2

1 + ε̄ε2 − ε̄δ2
1

)
. (B.15)

Finally, using the de�nition of g (Eq. (4.14)), we have

g (lnx) =
[
4ε̄+ 2ε+ 3δ1 + δ2 + 2ε̄2 + 4ε̄ε+ 5ε̄δ1 + 2ε̄δ2 + 2ε2 + 4εδ1 + 2ε̄2ε+ 2ε̄2δ1

+ε̄2δ2 + 4ε̄ε2 + 6ε̄εδ1 + ε̄δ2
1 + 2ε̄2ε2 + 2ε̄2εδ1 + ε̄2δ2

1

]
ξ=x

k
. (B.16)

B.2 Evaluating the integrals

We shall see how each of the integrals in Eq. (4.27) can be calculated in a straightforward

(albeit tedious) manner when assuming Eq. (4.28).

B.2.1 I1(ξ) ≡
∫∞

0
dk
k
m (kξ) lnP (ln k)

Assuming Eq. (4.28), this term can be rewritten as

I1(ξ) =
N∑
n=0

βn
n!

∞∫
0

dk

k
m (kξ)

(
ln

k

k0

)n
≡

N∑
n=0

βn
n!
In (k0ξ) , (B.17)

where we have de�ned

In (y) ≡
∞∫

0

dx

x
m (x)

(
ln
x

y

)n
=

n∑
k=0

 n

k

 In−k (1) (− ln y)k =
n∑
k=0

 n

k

 Ik (1) (− ln y)n−k .

(B.18)

One way of iteratively computing the constant terms Ik (1) is by considering the more

general family of integrals,

Ĩk (α) ≡
∞∫

0

dx

x
m (x) (lnx)k xα, (B.19)

which are related to the terms we want to compute by

Ĩk (0) = Ik (1) . (B.20)

The Ĩk obey the recursive formula

∂Ĩk (α)

∂α
= Ĩk+1 (α) , (B.21)

which gives us a simple way to generate all the integrals we are interested in (since we are

not interested in non-integer n). The recursion can start from Ĩ0, which can be shown to
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be2 the continuous version of

Ĩ0 (α) = −21−α

π
(1 + α) Γ (α− 1) sin

(π
2
α
)
. (B.22)

Putting all of this together, we can �nally write the relevant integrals up to N = 3 as

I0 (k0ξ) = 1 (B.23)

I1 (k0ξ) = − ln (k0ξ)− γ + 2− ln 2 (B.24)

I2 (k0ξ) = ln2 (k0ξ) + (−4 + 2γ + 2 ln 2) ln (k0ξ) +
π2

12
+ γ (−4 + γ + 2 ln 2) + (ln 2− 2)2

(B.25)

I3 (k0ξ) = − ln3 (k0ξ) + 3 (2− γ − ln 2) ln2 (k0ξ)

− 1

4

(
12 (γ − 2)2 + π2 + 12 ln 2 (−4 + 2γ + ln 2)

)
ln (k0ξ)

+
1

4

(
48 + 2π2 − 8ζ (3)− γ

(
48 + 4 (γ − 6) γ + π2

)
−4 ln3 2 + 24 ln2 2− 12γ ln2 2−

(
12 (γ − 2)2 + π2

)
ln 2
)
, (B.26)

where γ ' 0.5772 is the Euler-Mascheroni constant and ζ is the Riemann zeta function,

the next integral (which it turns out will be relevant further ahead) being given by

I4 (k0ξ) = ln4 (k0ξ) + 4 (−2 + γ + ln 2) ln3 (k0ξ)

+
1

2

(
12γ2 + π2 + 24γ (ln 2− 2) + 12 (ln 2− 2)2

)
ln2 (k0ξ)

+
(

8ζ (3)− 48 + 4 ln3 2− 24 ln2 2 + 48 ln 2 + 4γ3

+γ
(
π2 + 12 (ln 2− 2)2

)
+ 12γ2 (ln 2− 2) + π2 (ln 2− 2)

)
× ln (k0ξ)

− 16ζ (3) + γ
(
4
(
2ζ (3)− 12 + ln3 2− 6 ln2 2 + 12 ln 2

)
+ π2 (ln 2− 2)

)
+ 8ζ (3) ln 2 +

19π4

240
+ 2π2 + γ4 + 48 + ln4 2− 8 ln3 2

+
1

2
π2 ln2 2 + 24 ln2 2− 2π2 ln 2− 48 ln 2 + 4γ3 (ln 2− 2) +

1

2
γ2
(
π2 + 12 (ln 2− 2)2

)
.

(B.27)

B.2.2 I2(ξ) ≡ −π2

8

∫∞
0

dk
k m (kξ)

[∫∞
0

dl
l
P ′(ln l)
P(ln l)

∫∞
0

dζ
ζ m (kζ)m (lζ)

]2

Assuming Eq. (4.28), this term can be written as

I2(ξ) = −π
2

8

∞∫
0

dk

k
m (kξ)

N−1∑
n=0

βn+1

n!

∞∫
0

dl

l

∞∫
0

dζ

ζ
m (kζ)m (lζ)

(
ln

l

k0

)n2

. (B.28)

2For example by �rst calculating the inde�nite version of the corresponding integral by expressing the

trigonometric functions in Eq. (4.26) as combinations of complex exponentials and then using the de�nition

of the incomplete gamma function, before taking the relevant limits of the result.
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It is convenient to focus �rst on the integral being squared, which we can write as a sum

of terms of the form
∞∫

0

dl

l

∞∫
0

dζ

ζ
m (kζ)m (lζ)

(
ln

l

k0

)n
=

∞∫
0

dζ

ζ
m (kζ) In (k0ζ) , (B.29)

where we changed the order of integration and used the de�nition of In from Eq. (B.18).

Given that these functions can be quite messy in appearance, but are always polynomials

in ln (k0ξ), we write them as

In (k0ξ) ≡
n∑
i=0

cn [i] lni (k0ξ) , (B.30)

where the cn [i] coe�cients can be found as described in subsection B.2.1 (the relevant

ones being trivially obtained by comparison with Eqs. (B.23), (B.24), (B.25), (B.26), and

(B.27)). This �inner� integral thus becomes
∞∫

0

dζ

ζ
m (kζ) In (k0ζ) =

n∑
i=0

cn [i]

∞∫
0

dζ

ζ
m (kζ) lni (k0ζ) =

n∑
i=0

i∑
j=0

cn [i] ci [j]

(
ln

k

k0

)j
.

(B.31)

Substituting this into Eq. (B.28) and changing the order of summation we are left with

N−1∑
n=0

βn+1

n!

∞∫
0

dl

l

∞∫
0

dζ

ζ
m (kζ)m (lζ)

(
ln

l

k0

)n
=

N−1∑
j=0

c̃N [j]

(
ln

k

k0

)j
, (B.32)

where we have de�ned

c̃N [j] ≡
N−1∑
n=j

n∑
i=j

βn+1

n!
cn [i] ci [j] . (B.33)

Finally, we can tackle the full double integral, writing

I2(ξ) = −π
2

8

N−1∑
i=0

N−1∑
j=0

c̃N [i] c̃N [j]

∞∫
0

dk

k
m (kξ)

(
ln

k

k0

)i+j
(B.34)

which, using Eq. (B.30) once more, simpli�es to

I2(ξ) = −π
2

8

N−1∑
i=0

N−1∑
j=0

i+j∑
s=0

c̃N [i] c̃N [j] ci+j [s] lns (k0ξ) . (B.35)

Here, we �nally see why Eq. (B.27) was needed (since s can vary up to s = 4 for N = 3).

B.2.3 I3(ξ) ≡ π
2

∫∞
0

dl
l
P ′(ln l)
P(ln l)

∫∞
0

dq
q
P ′(ln q)
P(ln q)

∫∞
0

dζ
ζ
m (lζ)

∫∞
0

dk
k2m (kξ)m (kζ)

∫∞
ζ

dχ
χ2m (qχ)

Assuming Eq. (4.28), this term can be written as

I3(ξ) =
π

2

N−1∑
n=0

N−1∑
s=0

βn+1

n!

βs+1

s!
×

∞∫
0

dl

l

∞∫
0

dq

q

∞∫
0

dζ

ζ
m (lζ)

∞∫
0

dk

k2
m (kξ)m (kζ)

∞∫
ζ

dχ

χ2
m (qχ)

(
ln

l

k0

)n(
ln

q

k0

)s
, (B.36)
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which we now can solve using a similar method to the previous subsections. For example,

using Eq. (B.30) and integrating with respect to l and q we are left with

N−1∑
n=0

N−1∑
s=0

n∑
i=0

s∑
j=0

π

2

βn+1

n!

βs+1

s!
cn [i] cs [j]

∞∫
0

dζ

ζ
lni (k0ζ)

∞∫
0

dk

k2
m (kξ)m (kζ)

∞∫
ζ

dχ

χ2
lnj (k0χ) .

(B.37)

Focussing on the integral with respect to χ, a simple change of variables gives

∞∫
ζ

dχ

χ2
lnj (k0χ) = k0

∞∫
k0ζ

dx

x2
lnj (x) = k0

∞∫
ln(k0ζ)

tje−tdt ≡ k0Γ (j + 1, ln (k0ζ)) (B.38)

where Γ is the (upper) incomplete gamma function. Since j is an integer, this can be

explicitly written as the type of polynomial we are interested in by using the known relation

Γ (j + 1, ln (k0ζ)) =
j!

k0ζ

j∑
σ=0

lnσ (k0ζ)

σ!
. (B.39)

The full integral thus becomes

N−1∑
n=0

N−1∑
s=0

n∑
i=0

s∑
j=0

j∑
σ=0

βn+1

n!

βs+1

s!

π

2

j!

σ!
cn [i] cs [j]

∞∫
0

dζ

ζ2

∞∫
0

dk

k2
m (kξ)m (kζ) lni+σ (k0ζ) ,

(B.40)

which can be tackled by noticing that

∞∫
0

dζ

ζ2
m (kζ) lni+σ (k0ζ) = k

∞∫
0

dx

x2
m (x) lni+σ

(
k0

k
x

)

=
i+σ∑
ρ=0

(
i+ σ

ρ

)
k

(
ln
k0

k

)ρ ∞∫
0

dx

x2
m (x) (lnx)i+σ−ρ ≡

i+σ∑
ρ=0

(
i+ σ

ρ

)
k

(
ln
k0

k

)ρ
Ĩi+σ−ρ (−1) ,

(B.41)

where in the last step we used the de�nition of Ĩ from Eq. (B.19). The full integral is

therefore reduced to a sextuple sum of single integrals,

N−1∑
n=0

N−1∑
s=0

n∑
i=0

s∑
j=0

j∑
σ=0

i+σ∑
ρ=0

βn+1

n!

βs+1

s!

π

2

(
i+ σ

ρ

)
j!

σ!
Ĩi+σ−ρ (−1) cn [i] cs [j]

∞∫
0

dk

k
m (kξ)

(
− ln

k

k0

)ρ
.

(B.42)

The remaining integral is simply (−1)ρ Iρ (k0ξ), allowing us to write the �nal result as the

following septuple sum of known and given terms (keeping in mind that the method for

�nding out any Ĩ was shown in subsection B.2.1)

N−1∑
n=0

N−1∑
s=0

n∑
i=0

s∑
j=0

j∑
σ=0

i+σ∑
ρ=0

ρ∑
δ=0

βn+1

n!

βs+1

s!

π

2

(
i+ σ

ρ

)
j!

σ!
(−1)ρ Ĩi+σ−ρ (−1) cn [i] cs [j] cρ [δ] lnδ (k0ξ) .

(B.43)
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