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SUMMARY

The use of networks to model the spread of epidemics through structured popula-

tions is widespread. However, epidemics on networks lead to intractable exact systems

with the need to coarse grain and focus on some average quantities. Often, the un-

derlying stochastic processes are Markovian and so are the resulting mean-field models

constructed as systems of ordinary differential equations (ODEs). However, the lack of

memory (or memorylessness) does not accurately describe real disease dynamics. For

instance, many epidemiological studies have shown that the true distribution of the

infectious period is rather centred around its mean, whereas the memoryless assump-

tion imposes an exponential distribution on the infectious period. Assumptions such

as these greatly affect the predicted course of an epidemic and can lead to inaccurate

predictions about disease spread. Such limitations of existing approaches to modelling

epidemics on networks motivated my efforts to develop non-Markovian models which

would be better suited to capture essential realistic features of disease dynamics.

In the first part of my thesis I developed a pairwise, multi-stage SIR (susceptible-

infected-recovered) model. Each infectious node goes through some K ∈ N infectious

stages, which for K > 1 means that the infectious period is gamma-distributed. Anal-

ysis of the model provided analytic expressions for the epidemic threshold and the

expected final epidemic size. Using available epidemiological data on the infectious

periods of various diseases, I demonstrated the importance of considering the shape of

the infectious period distribution.

The second part of the thesis expanded the framework of non-Markovian dynamics

to networks with heterogeneous degree distributions with non-negligible levels of clus-

tering. These properties are ubiquitous in many real-world networks and make model

development and analysis much more challenging. To this end, I have derived and anal-

ysed a compact pairwise model with the number of equations being independent of the

range of node degrees, and investigated the effects of clustering on epidemic dynamics.

My thesis culminated with the third part where I explored the relationships between
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several different modelling methodologies, and derived an original non-Markovian Edge-

Based Compartmental Model (EBCM) which allows both transmission and recovery to

be arbitrary independent stochastic processes. The major result is a rigorous mathe-

matical proof that the message passing (MP) model and the EBCM are equivalent, and

thus, the EBCM is statistically exact on the ensemble of configuration model networks.

From this consideration I derived a generalised pairwise-like model which I then used to

build a model hierarchy, and to show that, given corresponding parameters and initial

conditions, these models are identical to MP model or EBCM.

In the final part of my thesis I considered the important problem of coupling epi-

demic dynamics with changes in network structure in response to the perceived risk

of the epidemic. This was framed as a susceptible-infected-susceptible (SIS) model on

an adaptive network, where susceptible nodes can disconnect from infected neighbours

and, after some fixed time delay, connect to a random susceptible node that they are

not yet connected to. This model assumes that nodes have perfect information on the

state of all other nodes. Robust oscillations were found in a significant region of the pa-

rameter space, including an enclosed region known as an ’endemic bubble’. The major

contribution of this work was to show that oscillations can occur in a wide region of the

parameter space, this is in stark contrast with most previous research where oscillations

were limited to a very narrow region of the parameter space.

Any mathematical model is a simplification of reality where assumptions must be

made. The models presented here show the importance of interrogating these assump-

tions to ensure that they are as realistic as possible while still being amenable to anal-

ysis.



iv

Acknowledgements

I must start by thanking the people who, more than anyone else, made this thesis

possible. I feel incredibly fortunate that both of my supervisors, Dr Konstantin Blyuss

and Dr Istvan Kiss, have been so engaged and enthusiastic throughout the entirety

of my studies. Their guidance, advice and support was never lacking over almost four

years working together. They have set the standard for my future working relationships,

and they have set it very high.

I would also like to thank Joel C Miller, who I had the privilege to collaborate with.

The EPSRC and the University of Sussex have provided the funding and support

that enabled me to undertake this research and develop my knowledge and my skills. I

would also like to thank the staff in the School of Mathematical and Physical Sciences

for their kind support of all doctoral students.

Lastly, I would like to thank my friends, family and my partner for their consistent

emotional support and encouragement.



v

List of publications and author

contributions

1. Dynamics of multi-stage infections on networks

Sherborne, N., Blyuss, K.B. and Kiss, I.Z., 2015. Bulletin of Mathematical Biol-

ogy, Vol. 77, pp. 1909-1933.

• N. Sherborne proved the final epidemic size relation and found the value of

the epidemic threshold parameter R0, produced all of the numerical solution

and simulation results and wrote the bulk of the paper.

• K.B. Blyuss conceived the goals of the study, assisted with the linear stability

analysis and numerical solution to the system of ODEs, and wrote a portion

of the paper.

• I.Z. Kiss conceived the goals of the study, assisted with stochastic simulation,

and wrote a portion of the paper.

2. Compact pairwise models for epidemics with multiple infectious stages

on degree heterogeneous and clustered networks

Sherborne, N., Blyuss, K.B. and Kiss, I.Z., 2016. Journal of Theoretical Biology,

Vol. 407, pp. 387-400.

• N. Sherborne derived the models for unclustered and clustered networks,

performed the model analysis, numerical ODE solution and stochastic sim-

ulation, and wrote the bulk of the paper.

• K. B. Blyuss assisted with the analysis of the epidemic threshold and wrote

a portion of the paper.

• I. Z. Kiss developed the compact moment closure approximation and assisted

with network clustering algorithm.



vi

3. Mean-field models for non-Markovian epidemics on networks

Sherborne, N., Miller, J.C., Blyuss, K.B. and Kiss, I.Z., 2018. Journal of Mathe-

matical Biology, Vol. 76, pp. 755-778.

• N. Sherborne conceived the goals of the study, derived the pairwise-like model

and all subsequent equivalences, and contributed to the proof of theorem 1.

He produced all model solution and simulation results and wrote the bulk of

the paper.

• J.C. Miller derived the non-Markovian edge-based compartmental model and

the final epidemic size result, and played a significant role in the proof of

Theorem 1.

• K.B. Blyuss conceived the goals of the study, assisted with and corrected

some of the model equivalences, and edited the paper.

• I.Z. Kiss conceived the goals of the study, played a significant role in the

proof of Theorem 1, and edited the paper.

4. Bursting endemic bubbles with adaptive rewiring

Sherborne, N., Blyuss, K.B., and Kiss, I.Z., 2018. arXiv preprint arXiv:1712.04536.

Accepted for publication in Physical Review E

• N. Sherborne developed the model and all analysis, the numerical solutions

and comparisons to stochastic simulation.

• K.B. Blyuss helped produce the figures and edited the paper.

• I.Z. Kiss devised the subject of the paper and wrote a portion of it.



vii

Contents

Acknowledgements iv

List of publications and author contributions v

1 Introduction 1

1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Network/Graph theory and epidemic simulation . . . . . . . . . . . . . 2

1.2.1 Graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Constructing random graphs . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Simulation methods . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Modelling techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Compartmental models . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Exact models on networks . . . . . . . . . . . . . . . . . . . . . 13

1.3.3 Pairwise models . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.4 Bond percolation and the Message-passing method . . . . . . . 19

1.3.5 Edge-based compartmental model . . . . . . . . . . . . . . . . . 22

1.3.6 Dynamic network models . . . . . . . . . . . . . . . . . . . . . . 25

1.4 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Paper 1: Dynamics of multi-stage infections on networks 28

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Dynamics of the well-mixed model . . . . . . . . . . . . . . . . . . . . 32

2.4 Network dynamics with multiple stages . . . . . . . . . . . . . . . . . . 35

2.4.1 Pairwise model . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.2 The probability of transmission across an infected edge . . . . . 37

2.4.3 R0-like threshold parameter . . . . . . . . . . . . . . . . . . . . 39



viii

2.4.4 The final size of an epidemic . . . . . . . . . . . . . . . . . . . . 40

2.5 Impact of a realistic infectious period distribution: case studies . . . . . 46

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.7 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.7.1 Appendix A - Transmissibility . . . . . . . . . . . . . . . . . . . 51

2.7.2 Appendix B - R0-like threshold parameter . . . . . . . . . . . . 52

2.7.3 Appendix C - Final epidemic size . . . . . . . . . . . . . . . . . 53

3 Paper 2: Compact pairwise models for epidemics with multiple infec-

tious stages on degree heterogeneous and clustered networks 56

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Disease dynamics in the absence of clustering . . . . . . . . . . . . . . 60

3.3.1 Numerical simulation results . . . . . . . . . . . . . . . . . . . . 64

3.3.2 Characteristics of the multi-stage compact model . . . . . . . . 66

3.3.3 Limiting cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 The pairwise model on clustered networks . . . . . . . . . . . . . . . . 71

3.4.1 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . 73

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Paper 3: Mean-field models for non-Markovian epidemics on net-

works 82

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Model summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.1 The message passing (MP) method . . . . . . . . . . . . . . . . 85

4.3.2 EBCM for general transmission and recovery processes . . . . . 88

4.3.3 Model Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Model Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.1 Degree-regular networks . . . . . . . . . . . . . . . . . . . . . . 101

4.4.2 Special distributions of the infectious period . . . . . . . . . . . 103

4.5 Numerical simulation results . . . . . . . . . . . . . . . . . . . . . . . . 105

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



ix

5 Paper 4: Bursting endemic bubbles with adaptive rewiring on net-

works 109

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 Model derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Discussion 122

Bibliography 127



1

Chapter 1

Introduction

1.1 Background and motivation

There are many examples throughout history of the devastating impact that infectious

diseases have had [110]. For centuries the causes of infection were poorly understood;

until the 19th century many physicians believed in the miasma theory of disease which

stated that the origin of an epidemic was a miasma or “bad air” given off by rotting

organic material. With the discovery and development of germ theory, proposed by

Fracastoro and later popularised by Pasteur [130], the bacterial and viral causes of

many diseases were identified. In many cases this led to cures and vaccines being

available. Despite this, infectious diseases have been a consistent danger to humans

and their livelihoods, and are still a threat today, as evidenced by major outbreaks

of foot-and-mouth disease [157], SARS [41, 97], influenza [50, 113], and Ebola [156]

since the turn of the millennium. Naturally, therefore, people have long desired to

understand how these diseases spread, so that preventative measures can be put in

place and optimised to minimise the negative impact of infectious disease outbreaks.

The first attempt to model the spread of an infectious disease was the smallpox

model of Bernoulli in the 18th century [40]. However, the field of mathematical epi-

demiology is generally accepted to have truly begun with the system of differential

equations proposed by Kermack and McKendrick in 1927 [89]. They were the first to

divide the population into compartments based on their disease status and to model

infection as a result of contact between healthy and infected individuals.

As with any mathematical model, assumptions about the underlying processes must

be made. In the case of infectious disease dynamics two major assumptions are the
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timing and regularity of contact capable of transmitting the disease from an infectious

individual to a healthy and susceptible person, as well as the length of time people

remain infectious after they first become infected, known as the infectious period. Typ-

ically, for model simplicity and tractability, it is assumed that the infection and recovery

processes are Markovian (memoryless), and thus, the inter-event times, i.e. the time

between an infectious individual attempting to transmit the disease, or between infec-

tion and recovery, are exponentially distributed. However, this assumption does not

accurately reflect true epidemic dynamics. In the case of human interactions, although

it is difficult if not impossible to be precise, studies of various activities have suggested

that our true behaviour is much more irregular and “bursty” [77, 153, 160]. For re-

covery processes the picture is clearer - the typical infectious period of a disease has

a uni-modal shape centred around a mean duration [8, 152, 168]. Both of these true

representations differ significantly from the Markovian assumption and thus, however

useful Markovian models are, they are always flawed in this manner.

In this thesis I consider the modelling and analysis of the spread of infectious disease

on networks, especially in cases where the epidemic dynamics are non-Markovian, in

order to better understand how non-Markovianity impacts the dynamics of a disease

and quantities, such as the epidemic threshold and final epidemic size, or long-term

behaviour of the epidemic. In this introduction I provide an overview of networks and

discuss some of their relevant properties, outline the main techniques for modelling epi-

demics on networks, and give an overview of the research presented in the subsequent

Chapters.

1.2 Network/Graph theory and epidemic simula-

tion

The use of networks to model the spread of epidemics through structured populations

is widespread [35, 91, 131]. Using networks to model explicit contact structures has

reinvented mathematical epidemiology and led to the development of a range of new

techniques [84, 119, 162]. We begin by introducing the fundamental concepts of net-

works and their metrics.
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Figure 1.1: A toy undirected network of five nodes, with the corresponding adjacency

matrix A.

1.2.1 Graph theory

A graph G = {V , E} is defined as a set of vertices (or nodes), V , and edges, E , which

connect them. These edges describe the relationships between nodes. Assuming that

|V| = N we have a network of N nodes. In an epidemiological context nodes usually

denote individuals, and edges describe possible paths for disease transmission. An

N ×N adjacency matrix A is often used to describe the network. For a pair of nodes

i and j we say that ai,j = 1 if node i is connected to node j, and zero otherwise. On

weighted networks some variable may be used in place of 1 to confer information about

the closeness/weight of a relation between nodes. Since nodes cannot infect themselves,

we set ai,i = 0 for all i. In general we consider undirected networks, with ai,j = aj,i.

Practically, this means that if node i can transmit a pathogen to j, then j also has

the potential to transmit to i. Figure 1.1 shows an example of a network and its

corresponding adjacency matrix.

The total number of neighbours of a node is known as its degree, which for any node

i can be found as ki =
∑

j ai,j. The degree distribution, pk, gives the probability that a

randomly chosen node will have degree k. It is useful to define the moment generating

function (MGF), G0 for this distribution as follows

G0(x) :=
∑
k

pkx
k, (1.1)

which gives the mean degree as 〈k〉 = G′0(1).

Related to the degree distribution is the excess degree distribution, which gives the

probability, qk, that a node reached by traversing a randomly selected edge reaches a
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node of remaining degree k− 1 (i.e. excluding the initially selected edge) [126]. To find

this distribution, we first note that there are 〈k〉N edges in the network, for a given

k there are pkN nodes with degree k and kpkN edges connecting to these nodes, and,

therefore, qk = kpk/〈k〉. Then the generating function for this distribution, G1(x), is

given by

G1(x) :=
∑
k

qkx
k−1 =

1

〈k〉
∑
k

pkkx
k−1 = G′0(x). (1.2)

Equations (1.1) and (1.2) will play an important role for the analysis in Chapter 3.

Another network property that is relevant to epidemic spread is clustering, which

measures the extent to which neighbours of a common node are likely to also be directly

connected [166]. Data collected from real networks often identifies significant levels of

clustering [51, 128, 167]. This makes intuitive sense, as friends and colleagues are likely

to interact as part of a clique, and families that live together will all interact with each

other. Clustering is defined as the ratio of closed three-node paths (triangles) to all

triples in the network. This can be found for any network with the adjacency matrix

A by calculating the clustering coefficient [84]

ϕ =
trace(A3)

||A2|| − trace(A2)
,

where || · || denotes the sum of all the elements of the matrix.

Generally, there are two options when using networks to model disease transmission.

Firstly, we may use real-world data or, secondly, we can construct a synthetic network

model that is designed with some tunable properties similar to those observed in real-

world networks, e.g. heterogeneous degree or clustering. Next, I review a few algorithms

which create such networks.

1.2.2 Constructing random graphs

The earliest known algorithm for generating random networks is known as the Erdős-

Rényi model, or the random graph model [46]. This model is sometimes expressed as

G(N, p) where N is the number of nodes in the network, and p is the probability of any

two nodes i, j (i 6= j) being connected. To construct the network, a Bernoulli trial with

success rate p is performed for every possible pair of nodes. The resulting network has

a binomial distribution with mean degree 〈k〉 = Np.

Extensive studies of real-world social, biological and technological networks suggest

that such networks do not conform to this structure and that, in reality, there is much
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greater variance in the degree distribution [1, 99, 104, 167]. Motivated by the scale-free

structure of the internet and the processes that dictate how new nodes join the network,

Barabási and Albert introduced a new algorithm to construct random networks based

on preferential attachment [1, 11]. The method which bears their names works as

follows: a small fully-connected network of some m0 nodes is created. Then at every

step a new node is introduced to the network, and it draws m ≤ m0 edges to existing

nodes in the network. The probability that an existing node i will be chosen for a

connection, Π(ki), is based on its existing degree, such that Π(ki) = ki∑
j kj

. This process

results in a network with scale-free degree distribution proportional to a power law

pk ∼ k−3.

In many cases, we wish to have total control over the degree distribution. Introduced

by Bollobás [20], based on the work of Bender and Canfield [15], the configuration

model (CM) is a method for generating networks with a desired degree distribution.

The method starts by assigning a degree ki to each node i according to the prescribed

degree distribution. Then ki half-edges (or stubs) are drawn. The half-edges are then

randomly paired to form full edges connecting pairs of nodes. In order to successfully

complete the algorithm there must be an even number of half-edges. In addition, there

are several other limitations to the method. Multi-edges can occur when the same pair

of nodes is selected multiple times, and self-loops emerge when two half-edges from

the same node are paired. However, such occurrences are rare for large networks. So

long as the network is sparse, CM networks are locally tree-like. This means that short

cycles are rare, two connected nodes are unlikely to share any other neighbours. Thus,

as it stands this method is unsuitable to generate clustered networks.

However, there are numerous algorithms available to generate clustered networks

[61, 140]. One method is the so-called big-V rewiring method [10]. The algorithm takes

an existing network and searches for chains of five nodes u − v − w − x − y, cuts the

edges u− v and x− y, and draws new edges u− y and v − x, introducing a triangle to

the network without changing the degree of any node, as shown in Fig. 1.2. If the local

clustering is increased by the rewiring then it is accepted, otherwise it is rejected. The

process continues until some target value of the clustering coefficient is achieved. When

the CM and big-V rewiring methods are used in conjunction, the resulting random

networks have tunable degree distribution and clustering.
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Figure 1.2: The central step of the big-V rewiring process. V-shaped chains are found,

edges u− v and x− y are cut and replaced to form a triangle and an independent edge.

1.2.3 Simulation methods

The Gillespie algorithm

Once a network has been constructed, it is possible to simulate an epidemic spread-

ing on that network. The Gillespie algorithm is a commonly used method to simulate

statistically exact trajectories of large systems [55]. Although initially proposed to sim-

ulate systems of chemical reactions, it has subsequently been used to simulate stochastic

dynamics in a variety of contexts, including infectious diseases. The algorithm relies on

all processes being memoryless and uses the fact that, for any independent Poisson pro-

cesses, the combined (or pooled) process is also Poisson, with the rate being equal to the

sum of all the independent processes. This means that for each susceptible individual,

the rate at which they will become infected is equal to the transmission rate multiplied

by the number of infectious neighbours. Here we detail the algorithm in the case of a

simple SIS (susceptible-infected-susceptible) epidemic on a network of N nodes, where

τ is the per-contact transmission parameter, and γ is the recovery parameter. We also

have an N × N adjacency matrix A, and an N × 1 vector v holding the current state

of all nodes. The algorithm then proceeds as follows.

1. Randomly select n nodes i1, i2, . . . , in to be the index cases of the epidemic, set

v(ik) = 1 for k = 1, 2, . . . , n, all others zero.

2. For each node i calculate its rate λi at which it will either become infected or

recover:
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• If node i is susceptible, then λi = τ
∑

j ai,jv(j).

• If node i is infected, λi = γ.

3. Generate two random numbers u1, u2 ∼ U(0, 1).

4. Calculate

∆ =
N∑
i=1

λi. (1.3)

5. To determine the time of the next event, set dt = 1/∆ ln(1/u1). This is equivalent

to randomly drawing from an exponential distribution with rate equal to ∆.

6. The node that is updated during this step is chosen uniformly at random, so that

the probability that a node i is chosen is given by

Pi =
λi
∆
. (1.4)

7. Let x denote the chosen node. Set t = t + dt and update v(x): if x is newly

infected, then v(x) = 1, otherwise if it is newly recovered, set v(x) = 0. Update

λ for node x and its neighbours according to step 2.

8. Return to step 3 and repeat until the infection dies out or some cut-off time is

reached.

With some simple modifications this algorithm can be adapted to SIR-type infections,

for instance, if node i is recovered/removed, then λi ≡ 0.

To get an idea of the typical dynamics of an epidemic it is often necessary to average

across multiple iterations of a simulation. Care must be taken when this is done because

the times of transmission and recovery events are irregular. Figure 1.3 shows how

regular time intervals can be imposed.

The Gillespie algorithm with delays

In its classical formulation, the Gillespie algorithm is limited to Markovian processes.

However, some modified versions of the algorithm exist that allow certain non-Markovian

processes to be included as part of the dynamics [5]. Bratsun et al. [21] and Barrio et

al. [13] developed an algorithm that incorporated time delays into chemical reactions,

and this algorithm is used later in the thesis. For our purposes, suppose we wish to

simulate an epidemic outbreak where the transmission process is memoryless, but the
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Figure 1.3: In (a) we show a realisation of a stochastic SIR epidemic on a random graph

of 1000 nodes. The crosses in (b) show the early behaviour of the same epidemic, the

dots show the number of infected individuals at regular time intervals.

infectious period is distributed according to some arbitrary, independent distribution

ρ(a). Whenever a node is infected, an infectious period is randomly selected according

to this distribution and stored in an array; for all infected nodes we set λi = 0. The

algorithm continues through the steps shown above up to and including step 5. Then

the timestep dt is compared to the minimum time remaining in the delayed events (i.e.

the node that will be next to recover), denoted dtD. If dt < dtD, the method in Step 6

is repeated to find the new node to infect, otherwise the recovery takes place, and dt is

discarded. The overall time is then updated according to which event takes place, and

min(dt, dtD) is subtracted from the stored recovery waiting times.

Fully non-Markovian simulation methods

Due to the large number of realistic systems which exhibit non-Markovian behaviour,

there is naturally a need for efficient algorithms to simulate their evolution. One such

approach is the non-Markovian Gillespie algorithm (nMGA) derived by Boguñá et al.

[19]. The steps of the algorithm remain largely the same as detailed above for the

classical Gillespie algorithm, with changes made to (1.3) and (1.4).

As the authors discuss, one can no longer calculate the risk of infection for a sus-

ceptible node by simply summing across its infected neighbours, since the chance of

being infected across an S − I link depends on the age of infection of each infected
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neighbour. In this case, the recovery of each infected node and the transmission across

each S−I edge are independent processes with their own inter-event time distributions.

A susceptible node with more than one infected neighbour will be infected at the time

of the first firing event of the active edges.

Suppose that the inter-event time for each process i is distributed according to ψi(τ),

with survival function

Ψi(ti) =

∫ ∞
ti

ψi(t
′) dt′

where ti is the time elapsed since i was last active. We also introduce Φ as the probability

that no event occurs for an interval δt. For each i this is conditional on the last time it

was active, so that we have the product

Φ(δt|{tj}) =
∏
j

Ψj(tj + δt)

Ψj(tj)
, (1.5)

where {tj} is the set of times elapsed since the last occurrence of each process. This

quantity is then equated to u1 in Step 5 of the Gillespie algorithm above. Choosing

which event is active is done in the same manner as step 6 of the Gillespie algorithm,

although now for each i we have

λi(ti + δt) =
ψ(ti + δt)

Ψi(ti + δt)
. (1.6)

Finally, ti must be updated for each event and the overall time is updated to t+ δt.

In practice, Φ(δt|{tj}) is expensive to compute, and thus an approximation can be

preferred. When the total size of the network N is large, this quantity is close to zero

for all but very small δt, and can, therefore, be approximated by a Taylor expansion

around δt = 0. Performing this expansion in (1.5) yields the following approximation

Φ(δt|{tj}) ≈ e−δt∆,

where ∆ =
∑

i λi({ti}) [19].

A more efficient algorithm for simulating non-Markovian dynamics is the Laplace

Gillespie algorithm of Masuda and Rocha [109]. The algorithm starts with a density

function, pi(λ), for each process i, and then imposes the condition that the inter-event

time distribution for process i is given by

ψi(a) =

∫ ∞
0

pi(λ)λe−λa dλ,

which then means that the survival function, Ψi(a), is the Laplace transform of pi(λ).

In terms of practical implementation, the algorithm is similar to the classical Gillespie
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algorithm, but with the rate of the Poisson process λi for event i being drawn from the

density pi(λi). This algorithm does not rely on an approximation to be efficient and is

faster than the nMGA [109]. However, the inter-event time cannot be directly chosen,

and the survival functions must be completely monotone, i.e.

(−1)n
dnΨi(a)

dan
≥ 0 n ∈ Z+

0 , a > 0, ∀ i.

However, many inter-event time distributions are possible. The authors use this algo-

rithm to simulate an SIR-type epidemic on networks using a node-centric approach.

Now, with networks in place modelling social contact and having discussed the

stochastic epidemic process we are ready to present an overview of the main modelling

techniques for epidemics on networks. However, we begin with simple compartmental

models.

1.3 Modelling techniques

1.3.1 Compartmental models

The earliest mathematical models for the spread of an infectious disease commonly

made the assumption that the population was fully mixed. This means that every

individual has the potential to directly transmit the pathogen to any other member of

the same population. This is equivalent to a fully connected network, or edges rewiring

at an infinitely fast rate. One of the best known models of this type is that of Kermack

and McKendrick [89]. Other standard models of this kind have been summarised by

Anderson and May, Keeling and Rohani, and others [6, 83]. Typically, these models

begin by splitting the population of size N into compartments based on the disease

status of individuals at a given time. Individuals that are healthy but can be infected

are considered susceptible, S, individuals that are infected and infectious are put into

the infected compartment, I, and those who have recovered or died from the disease -

or have been vaccinated - and have immunity are placed into the recovered/removed

compartment, R. For some diseases it is desirable to have a compartment for individuals

in the latent phase of infection, when they have acquired the infected but are not yet

capable of transmitting the disease to others, this is usually referred to as the exposed

compartment, E.

Diseases are then modelled as being either SIR (susceptible-infectious-recovered) or

SIS (susceptible-infectious-susceptible) type (or SEIR, SEIS) according to the nature
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Figure 1.4: State changes and rates for SI, SIS and SIR models with Markovian trans-

mission and recovery processes.

of the disease. For example, SIR models are used for diseases such as varicella where,

typically, lifelong immunity is acquired after recovery [56]; whereas SIS models are

appropriate for diseases where newly recovered individuals are still under threat of

further infection, as is the case for some sexually transmitted diseases [171]. In rare

cases it may be desirable to consider a disease where recovery is impossible, which

can be modelled using SI dynamics. The transitions between different states for these

models are illustrated in Fig. 1.4.

Under the above assumptions, the SIR and SIS models can be formulated as systems

of ordinary differential equations (ODEs):

dS

dt
= Ṡ = −βI S

N
,

dI

dt
= İ = βI

S

N
− γI,

dR

dt
= Ṙ = γI,

(1.7)

for the SIR model, and

dS

dt
= Ṡ = −βI S

N
+ γI,

dI

dt
= İ = βI

S

N
− γI,

(1.8)

for the the SIS model, where γ is the rate at which an infected individual recovers,

and β is the population-level transmission rate, i.e. the rate at which an individual

makes contact with another random member of the population and, if they are infected,

transmits the disease.
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These models have been studied thoroughly, and several well-known results have

emerged from their analysis. One of the most fundamental characteristics of epidemic

dynamics is the basic reproductive ratio, R0, defined as the expected number of sec-

ondary infections caused by a single typical infectious individual in a completely sus-

ceptible population. If R0 > 1, then the initial outbreak will produce an epidemic,

while if R0 < 1, the disease will die out. For these models, stability analysis of the

disease free equilibrium (DFE) gives the value of the basic reproduction number as

R0 = β/γ. This can also be seen directly from the equation for I(t) taking I(0) ≈ 0,

S(0) ≈ N , which shows that for a pathogen to spread beyond the initial number of

infectives, and for I(t) to grow, we need İ(t) > 0 for small t, which is satisfied iff

R0 > 1. In the SIS model this transition also marks the point where the disease is

expected to reach an endemic equilibrium within the population. By contrast, every

SIR epidemic must reach a point where the infection dies out, having infected some

fraction R(∞)/N of the population. This fraction, known as the final epidemic size, is

given by R(∞)
N

= (N−S(∞))
N

= 1− e−R0R(∞)/N [6, 105].

Whilst mathematically convenient, these models rely on the not entirely realistic

assumption that disease transmission and recovery are both exponentially distributed

processes. However, built on this framework, models have been proposed which no

longer rely on this assumption and thus better reflect reality. These models can be

represented as systems of integro-differential equations (IDEs) [86, 89], or systems of

partial differential equations (PDEs) where the age of infection is explicitly included in

the model [6]. Other models have included temporary immunity in the form of a system

of delay differential equations (DDEs), where after some delay recovered individuals

again become susceptible to the disease [17, 96].

A relatively simple methodology to overcome the non-exponentially distributed na-

ture of infection and recovery is to employ a multi-stage approach to the infection

[4, 102, 103, 168]. Let the number of disease stages be some positive integer K, the

newly infectious individuals enter the compartment I1, with rate Kγ they then transi-

tion into I2, where they are still infectious, and this process repeats until they exit IK

and recover. The states and transition rates for this model are illustrated in Fig. 1.5.

The total time spent being infected is then the sum of K exponentially distributed

times, which obeys a well-known gamma distribution [42]. Modifying the transition

rates to Kγ ensures that the mean infectious period of the underlying stochastic pro-

cess remains 1/γ. For K ≥ 2 this gives a peaked distribution more closely resembling
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Figure 1.5: State transitions of the SIKR model.

the distribution of infectious periods for many real diseases. The number of stages K

provides a additional free parameter that can be tuned to better represent the disease

being studied. Wearing et al. [168] showed that compared to a multi-stage SIKR model

using realistic data, the standard SIR model with the same disease parameters under-

estimates the speed of an epidemic but does not affect R0 or the final epidemic size. In

Chapters 2 and 3 we extend this approach to network-structured populations.

Whilst these models can provide valuable insights into disease dynamics, they are

limited by a fundamental assumption of a well-mixed population. In reality, however,

social interactions between individuals are rather more structured, and most people

only directly interact with a small fraction of the total population. This suggests the

need for using network-based formulations of epidemic models.

1.3.2 Exact models on networks

Let us begin by defining an exact system using the forward Kolmogorov equations,

also known as master equations [78]. The model gives the probability of the network

being in each possible state. For SIS dynamics each node can be either susceptible or

infected, for a network of N nodes this means that there are 2N possible states. For

SIR dynamics there are 3N states. As an example of an exact model consider a fully

connected network of three nodes, i.e. a triangle. Further, assume SIS dynamics and

exponentially distributed inter-event times. Given these assumptions we can construct

a continuous time Markov chain that will describe the probability of the network being

in any state. The state space for this model is

{SSS, SSI, SIS, ISS, SII, ISI, IIS, III}.

Define XXY Z as the probability of the network being in state XY Z where X represents

the state of the first node, Y the second and Z the third, and X, Y, Z ∈ {S, I}. It is

possible to write a system of differential equations to describe the transitions between

different states. The epidemic spreads in the same manner as the stochastic model,

recovery events occur with rate γ and transmission events occur with rate τ multiplied

by the number of infected neighbours the node being infected has. For the given example
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this yields

ẊSSS = γ (XSSI + XSIS + XISS) ,

ẊSSI = γ (XSII + XISI)− (2τ + γ)XSSI ,

ẊSIS = γ (XSII + XIIS)− (2τ + γ)XSIS,

ẊISS = γ (XISI + XIIS)− (2τ + γ)XISS,

ẊSII = γXIII + τ (XSSI + XSIS)− 2(τ + γ)XSII ,

ẊISI = γXIII + τ (XSSI + XISS)− 2(τ + γ)XISI ,

ẊIIS = γXIII + τ (XSIS + XISS)− 2(τ + γ)XIIS,

ẊIII = −3γXIII + 2τ (XSII + XISI + XIIS) ,

as the exact model [91]. For this topology it is possible to reduce the size of the system

if we only care about the probability of a given number of nodes having each status by

introducing, for example, Y0 = XSSS, Y1 = XSSI+XSIS+XISS and so on [91]. However,

this is not possible in general. For larger networks the system is prohibitively large and

so we desire more manageable models which describe the dynamics at a coarser level.

We now move on to give an overview of some of these modelling techniques.

1.3.3 Pairwise models

Pairwise approximation is a well-known tool for constructing epidemic models on net-

works, and has been successfully applied to both SIR and SIS dynamics [10, 35, 69, 82].

A comprehensive introduction into pairwise models for epidemic spread is found in [91].

Pairwise models successfully extend the scope and usefulness of classic compartmental

models while in most cases still providing transparency and mathematical tractability.

The total number of transmission events in a network is clearly proportional to the

number of edges which connect susceptible and infectious nodes. Classical compart-

mental models assume that the number of such edges is proportional to the product

of the number of nodes in susceptible and infectious states. Pairwise models instead

introduce new relations that describe the expected number of connected pairs of nodes

in each state. This gives an analytically tractable system of differential equations which

capture the fact that individuals are limited in who they have contact with.

First, let us introduce the necessary notation. For each node i ∈ N we say that

if the node is in state X then Xi = 1, and zero otherwise. The total number of
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nodes in state X across the whole network at time t is [X] =
∑N

i=1 Xi. A pair X −
Y describes a connected pair of nodes where one node is in state X, and the other

node is in state Y . Across the whole network the expected number of such pairs is

[XY ] =
∑

i,j XiYjai,j, where A is the adjacency matrix of the network. Since we

assume an undirected network, this means that [XY ] = [Y X], and any pairs [XX]

are counted twice, once in each direction. Finally, a triple X − Y − Z describes a

chain of three connected nodes, with the central node in state Y being connected

to a node in state X and a node in state Y . The network-level count of triples is

[XY Z] =
∑

i,j,kXiYjZkai,jaj,k. Applying these notions to the spread of infectious

disease, and specifically SIR and SIS dynamics, we see that the different states satisfy

X, Y, Z ∈ {S, I, R}. These quantities also become time dependent, that is [S] = [S](t).

It is common to write these quantities without highlighting time dependence, as will be

done later. However, as an introduction it is useful to make this dependence explicit.

From these quantities it is possible to construct a pairwise model for an infectious

disease on a static network with wholly Markovian dynamics. Defining τ as the per-edge

transmission rate and γ as the recovery rate, in the case of SIR dynamics we have

˙[S](t) = −τ [SI](t), ˙[I](t) = τ [SI](t)− γ[I](t).

This system of differential equations is not closed, and in order to close it, we must

obtain an evolution equation for [SI](t) by deriving differential equations at the level

of pairs. As an example consider the dynamics of S − I edges. A new S − I edge can

only emerge from an S−S pair where one of the nodes has become infected. Across the

whole network the rate of such infections is τ [SSI](t). Destruction of an S−I edge can

occur in several different ways. Internally, i.e. within the pair, the infected node may

transmit the disease to its susceptible neighbour or recover without transmitting the

disease, with the rates of these events being given by τ [SI](t) and γ[SI](t), respectively.

Finally, a susceptible node can become infected by acquiring the infection from one of

its infected neighbours outside the pair, which leads us to a consideration of triples of

the form I − S − I. These arguments are presented visually in Fig 1.6. Applying the

same process to the other pairs allows us to write the following full system of ODEs at
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Figure 1.6: Illustration of different ways how S− I edges can be created and destroyed.

the level of pairs

˙[S](t) = −τ [SI](t),

˙[I](t) = τ [SI](t)− γ[I](t),

˙[R](t) = γ[I](t),

˙[SS](t) = −2τ [SSI](t),

˙[SI](t) = τ([SSI](t)− [ISI](t)− [SI](t))− γ[SI](t),

˙[SR](t) = −τ [ISR](t) + γ[SI](t),

˙[II](t) = 2τ([ISI](t) + [SI](t))− 2γ[II](t),

˙[IR](t) = τ [ISR](t) + γ([II](t)− [IR](t)),

˙[RR](t) = 2γ[IR](t).

(1.9)

A similar approach can be used to construct the full set of ODEs for an SIS-type

epidemic.

Although these equations have been obtained by using a heuristic argument rather

than a rigorous derivation, it has been proved using Kolmogorov equations, at least for

SIS dynamics, that the unclosed system of equations is an exact representation of the

expected dynamics of an outbreak [154]. The top 5 equations of (1.9) decouple, and

since [R](t) = N − [S](t) − [I](t) only 4 differential equations are needed to describe

the dynamics of epidemic spread, namely ˙[S], ˙[I], ˙[SS] and ˙[SI].

A much more important issue to note is that this system is currently not closed, as

it depends on the numbers of triples in various states. In theory, it is possible to write

down differential equations for each of these triples, which would in turn depend on the

number of connected quadruples, and so on. Instead, we choose to close the system by

approximating triples in terms of the pairs and singles, known as a moment closure.

To this point no knowledge of the network topology has been necessary. However, to

close the model knowledge of the degree distribution and clustering is necessary. For

the simplest case, a regular tree (or tree-like) network where every node has degree n,
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the classical moment closure is [82]

[XY Z] ≈ n− 1

n

[XY ][Y Z]

[Y ]
. (1.10)

To see why this is appropriate, consider edges emanating from the central node. As-

suming a uniform distribution, the probability of an edge reaching a node with status

X can be approximated as [XY ]
n[Y ]

since n[Y ] is the total number of edges emanating from

nodes with disease status Y . Similarly, we have [Y Z]
n[Y ]

for the probability of reaching a

node with status Z. There are n(n − 1) choices for the two end nodes in the triple.

Taking the product of these terms and multiplying by the expected number of nodes

with disease status Y gives the result in (1.10).

When clustering is present, some of the triples will form closed loops, i.e. in an

X − Y − Z chain the nodes in state X and Z may also share an edge. Given the

clustering coefficient ϕ, a fraction (1−ϕ) of identified triples will not be closed triangles,

and thus the standard closure can be applied, for the remainder the correlation between

X and Z must be considered. This is CXZ = N [XZ]
n[X][Z]

, and therefore

[XY Z] ≈ n− 1

n

[XY ][Y Z]

[Y ]

(
(1− ϕ) + ϕ

N [XZ]

n[X][Z]

)
,

is an appropriate extension for the closure [82]. Under the standard closure (1.10),

Keeling [84] proposed the basic reproductive ratio

R0 =
τ(n− 2)

γ
,

and the final epidemic size

R∞ = 1−
(

1− τ

γ + τ
+ u

τ

τ + γ

)n
,

u =

(
1− τ

τ + γ
+ u

τ

τ + γ

)n−1

.

These closures are appropriate for regular networks, but fail when applied to net-

works with degree heterogeneity. A number of different approaches have been proposed

that extend pairwise approximation to heterogeneous networks [69, 133]. Eames and

Keeling [44] constructed a model where a separate differential equation is used for indi-

viduals and pairs of each type and each degree, i.e. ˙[Xk](t) describes the rate of change

of nodes with degree k in state X. For networks with significant degree heterogeneity

this approach can become infeasible due to the very large size of the resulting system of
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equations. Numerous approaches have been made to overcome this limitation [70]. Si-

mon and Kiss [151] proposed a super-compact SIS model. Using numerical simulation,

they observed that the degree distribution of susceptible nodes, given by [Sk]/[S], is

approximately linearly related to the overall degree distribution. Using this, and other

established approximations [44, 69], they derived the closure

[XY Z] ≈ [XY ][Y Z]
T2 − T1

T 2
1

,

where T1 and T2 are the first and second moments of the degree distribution of suscep-

tible nodes. In Chapter 3 we extend this method to a multi-stage SIKR model, and

also to clustered networks.

Non-Markovian pairwise models

Recently, several non-Markovian pairwise models have been proposed. Kiss et al. [92]

derived a DDE model for epidemics with an infectious period of fixed length, σ on a

random regular network. Non-Markovianity requires a careful approach to the removal

of S − I edges created precisely σ time ago. This term is proportional to τ [SSI](t− σ)

but one must realise that not all S − I edges will survive that long, both external and

internal transmission can destroy these edges before they reach age σ and the infected

node recovers. To model this, the authors introduced x(t) as a cohort of S − I edges

all created at the same time. The number of edges in this cohort evolves according to

ẋ(t) = −τ k − 1

k

[SI](t)

[S](t)
x(t)− τx(t). (1.11)

The removal term for S − I edges that were created precisely σ time ago is given by

the solution of (1.11) over the interval [t− σ, t], namely

x(t) = x(t− σ)e−
∫ t
t−σ(τ

k−1
k

[SI](a)
[S](a)

+τ) da,

= τ
k − 1

k

[SS](t− σ)[SI](t− σ)

[S](t− σ)
e−

∫ t
t−σ(τ

k−1
k

[SI](a)
[S](a)

+τ) da.

In Chapter 5 I consider a model with delayed rewiring of edges. The potential for

nodes to change disease status while waiting to rewire, and therefore change the status

of edges, is accounted for in a similar manner to that detailed above for delayed recovery.

This was later generalised to arbitrary infectious period by Röst et al. [143]. The

authors assume Markovian transmission with per-edge transmission parameter τ and

that the infectious period is distributed according to some ρ(a) where a is the age of
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infection, i.e. the time elapsed since infection was acquired. If i(t, a) and Si(t, a) are

the numbers of infected nodes and S − I edges with age a at time t, then with the

hazard function h(a) being defined as

h(a) =
ρ(a)

1−
∫ a

0
ρ(a′) da′

,

they arrive at the unclosed system of PDEs

˙[S](t) = −τ [SI](t),(
∂

∂a
+
∂

∂t

)
i(t, a) = −h(a)i(t, a),

˙[SS](t) = −2τ [SSI](t),(
∂

∂a
+
∂

∂t

)
Si(t, a) = −τISi(t, a)− [τ + h(a)]Si(t, a),

where ISi(t, a) is the number of I − S − I triples and the age of the first (external)

infected node is unimportant. The total number of infected nodes can be found as

[I](t) =
∫∞

0
i(t, a) da, and similarly, the number of [SI] edges is given by [SI](t) =∫∞

0
Si(t, a) da. In order to obtain a self-consistent system of equations they use the

relations

˙[I](t) =

∫ ∞
0

∂

∂t
i(t, b) db and ˙[SI](t) =

∫ ∞
0

∂

∂t
Si(t, a) da,

to reach a system of integro-differential equations.

Despite these advances, all of these models are limited to Poisson transmission pro-

cesses, and it is currently unclear whether pairwise models could be extended beyond

this assumption. We now turn our attention to a modelling technique which can incor-

porate general inter-event time distributions for the transmission process.

1.3.4 Bond percolation and the Message-passing method

Bond percolation models for infectious disease are concerned only with the epidemic

threshold and the final epidemic size. As such, it is relatively straightforward to apply

percolation to study diseases with arbitrary transmission and recovery processes, since

the dynamics are not considered [88, 126]. The central notion is that of transmissibility,

τ̃ , defined as the overall probability that an infectious node will attempt to transmit the

pathogen across a given network edge before it recovers. In bond percolation, each edge

in the network is said to be occupied with probability τ̃ and empty with probability

(1 − τ̃) [23]. For the purposes of modelling the dynamics of an infectious disease, an
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occupied edge means that, should the node at either end of the edge become infected,

it will transmit the disease at some point before recovery, while empty edges will not

transmit and thus can be removed with no effect. The size of the giant connected

component, the largest subgraph where a path exists between any two nodes, then

provides the final epidemic size.

Using this approach on the ensemble of large CM networks Newman [126] was able

to find the epidemic threshold as the point where the size of the typical outbreak is a

measurable fraction of the graph, even in the limit of large size. This divergence point

can be found as

τ̃c =
1

G′1(1)
, (1.12)

where G1(x) is defined in (1.2). The final epidemic size of a major outbreak is given by

the size of the giant connected component (GCC), since a disease introduced anywhere

in the GCC will eventually spread through all members. This gives

r∞ = 1−G0(1− τ̃ + uτ̃), (1.13)

where u satisfies an implicit equation

u = G1(1− τ̃ + uτ̃). (1.14)

On a regular network, this is equivalent to results found from pairwise models [84].

In some sense the message passing (MP) model of Karrer and Newman [80] can

be seen as an attempt to reinstate time into the bond percolation models. Whereas

percolation theory asks: will this edge transmit the disease?, MP asks will this edge

transmit the disease before a given time? Given arbitrary independent transmission

and recovery processes represented by distributions τ(a) and q(a), where a is the age

of the infection, the probability that an S − I edge will carry a transmission in a small

interval (a, a+ dt) is the transmission rate multiplied by the survival probability of the

infected node. Formally, this can be written as

f(a) := τ(a)

∫ ∞
a

q(x)dx. (1.15)

In some sense, f acts a density function. For a node infected at time t1 the probabil-

ity that it will attempt to transmit the disease to a given neighbour before time t is∫ t
t1
f(a)da. It should be noted that the integral of this function over all time gives the

transmissibility, τ̃ , used in percolation models of disease spread, and introduced earlier.
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The message, denoted H i←j(t), is then defined as the probability that node j has not

transmitted the disease to node i before time t. This can be calculated for each edge by

considering two possibilities. Firstly, the age at which the node would transmit along

the edge in question (if it would transmit at all) is larger than time t, and so regardless

of when i became infected, it would not have transmitted the disease to j before time

t, the probability of which is given by 1−
∫ t

0
f(a)da. Alternatively, it could be that j is

infected, but its age is not sufficient to have then also transmitted the disease to node

i. More precisely, imagine j will transmit the disease at age a but was itself infected at

some time t1 > t− a. The probability of this event is equal to z
∏

l∈N (j)\iH
j←l(t− a),

where z is the probability of a node being susceptible at t = 0, and the product is taken

across all neighbours of node j with the exception of i. This is equivalent to placing

node i in a cavity state where it is unable to transmit the disease to its neighbours, on

a tree-like network this does not alter the dynamics [118, 119]. These possibilities can

now be combined to give

H i←j(t) = 1−
∫ t

0

f(a)

1− z
∏

l∈N (j)\i

Hj←l(t− a)

 da, (1.16)

and the overall state probabilities can then be written in terms of these messages as

follows,

P (Si) = z
∏

j∈N (i)

H i←j(t),

dP (Ii)

dt
= −dP (Si)

dt
− (1− z)q(t) +

∫ t

0

q(t− t1)
dP (Si)

dt1
dt1,

P (Ri) = 1− P (Si)− P (Ii).

(1.17)

Alternatively, one can use the relation [170]

P (Ri) =

∫ t

0

q(a) [1− S(t′) dt′] .

Theoretically, on a tree network, one can solve for H i←j across all edges to find

an exact solution to the problem of epidemic spread. When clustering is present, MP

gives an upper bound on the size of epidemic at any time t [80]. Clearly, this approach

becomes computationally expensive for large networks. However, on the ensemble of

CM networks it is possible to find an average message H1(t) which can replace the

edge-specific messages, so that, when weighted by the generating function of the degree
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and excess degree distributions, we are left with a concise system of equations to model

an SIR epidemic which is exact on the ensemble of CM networks of infinite size

H1(t) = 1−
∫ t

0

f(a) [1− zG1(H1(t− a))] da,

〈S〉(t) = zG0(H1(t)),

〈R〉(t) =

∫ t

0

q(a) [1− 〈S〉(t− a)] da,

〈I〉(t) = 1− 〈S〉(t)− 〈R〉(t).

(1.18)

When the transmission process τ(a) is assumed to be Markovian and the network is

a regular tree connections between MP and pairwise approximation models have been

found by introducing new differential equations for the states of edges [169, 170]. In

Chapter 4 we extend this methodology to networks with an arbitrary degree distribu-

tion.

1.3.5 Edge-based compartmental model

Another modelling technique that is able to consider arbitrary degree distribution is

the Edge-based compartmental model (EBCM) [117, 119]. Initially designed only for

diseases with Markovian dynamics, the EBCM shares certain elements of its approach

with MP methods described above. The central quantity in the EBCM is θ(t), the

probability that a randomly chosen neighbour of a test node i has not transmitted the

disease before time t. Clearly this mirrors the message H1(t) in MP models. Given this,

the probability that a representative test node i is susceptible at time t is the product

of θ(t) across all neighbours. Then, given a recovery rate γ, it is easy to see that

S(t) = G0(θ), Ṙ = γI, I = 1− S −R,

where G0(x) is defined in (1.1), and it is further assumed that I(0) ≈ 0. The remaining

difficulty lies in calculating θ(t). There are three distinct possibilities why a random

neighbour may not have transmitted the disease: with probability φS the neighbour

itself is susceptible, with probability φI it is infected and has not yet transmitted the

disease, but may do in the future, or with probability φR it has already recovered

from the disease, and did not transmit while infected. Thus, θ(t) = φS + φI + φR.

Additionally, the rate of change of θ is determined by transmission events which occur

with rate τ for each S − I edge. Therefore, we have

θ̇ = −τφI . (1.19)
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Calculating φS is equivalent to finding the probability that this neighbour is sus-

ceptible, keeping in mind that it cannot have been infected by node i, that is, node i is

once again in a cavity state. Thus, similarly to the MP we have

φS =
G′0(θ)

G′0(1)
=

1

〈k〉
G1(θ).

Finally, φR is found by first noting that

φ̇R = γφI = −γ
τ
θ̇,

where the last step follows from (1.19). Integrating this equation from 0 to t gives

φR = γ/τ(1− θ(t)). This is enough to write the model as

θ̇ = −τφI = −τ
(
θ +G1(θ) +

γ

τ
(1− θ)

)
,

S = G0(θ),

Ṙ = γI,

I = 1− S −R.

(1.20)

This system is equivalent to the so-called Volz equations [162]. Given the similarities

in the models, it is not surprising that the same methods used to calculate the epidemic

threshold and final epidemic size for MP methods are also applicable here [119]. In

agreement with many previous studies, including Newman’s work detailed above [88,

126, 162], they find the basic reproduction number as

R0 =
τ

τ + γ

(
〈k2 − k〉
〈k〉

)
(1.21)

and the final epidemic size agrees with Newman’s results stated earlier (1.13), (1.14).

Further work on this modelling technique has removed the assumption that the

initial level of infection is infinitesimally small [117], applied the techniques to weighted

networks [137, 165], and to multiplex networks that consider a clustered static network

on one layer and a dynamic tree-like network on the other [12]. In Chapter 4, I extend

the static EBCM to account for arbitrary, independent non-Markovian transmission

and recovery processes and go on to prove that, on the ensemble of CM networks, the

EBCM and MP frameworks are equivalent. This result forms the basis of a model

hierarchy, the MP model is used to derive a general pairwise-like model (PLM) which

reduces to existing models under the appropriate assumptions. These relationships are

detailed here in Fig. 1.7.
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Figure 1.7: Hierarchy of models, full details of its derivation are given in Chapter 4.
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1.3.6 Dynamic network models

Up to this point, it has been assumed that the contact network is static, and the con-

nections between nodes do not change over time. We now relax this assumption by

considering the network as dynamic. Dynamic network modelling encompasses all po-

tential changes to a network over time, which involves edges being created, deactivated

and reactivated, or destroyed, or nodes being introduced or removed. These changes in

network topology may result in significant changes in the degree distribution, clustering

and assortativity of the network. Dynamic networks are particularly relevant to the

spread of disease because it is well-known that people alter their behaviour in response

to the perceived threat of infection [53], which is a natural response taken by individuals

[57, 134, 144], but it can also be dictated or influenced by governmental policy and/or

media coverage [111, 142].

In dynamic network models the state of the network changes, either as an ongoing

natural process [108, 119], or as a response to the threat of infection [52, 53, 62, 63, 64].

Due to their transparency, pairwise models have been a popular choice when modelling

the spread of infectious diseases on temporal networks [63, 64, 158]. Gross et al. [64]

introduced a simple SIS model for edge rewiring. Susceptible nodes which share an

edge with infectious nodes break the edge with rate ω and immediately draw a new

edge to an unconnected susceptible node selected uniformly at random. They were able

to identify an R0-like threshold parameter, and found that rewiring makes epidemic

outbreaks less likely if they are starting from an initial seed which is vanishingly small.

The dynamics of the epidemic were much richer than in the standard model, with

bistability and stable oscillatory behaviour observed in certain regions of the parameter

space.

Besides pairwise models, other approaches have examined the effects of decisions

based on available information about the prevalence of disease [172]. The delay in

an individual’s response reflects poorer quality information and can cause oscillatory

dynamics. Risau-Gusman and Zanette [139] consider the case where, with a given prob-

ability, it is the infectious node that rewires rather than the susceptible one, reflecting

that people infected with a disease change their behaviour, as well as those trying to

avoid infection.

In Chapter 5, I present an SIS epidemic spreading on an adaptive network where

susceptible nodes can rewire at rate ω but must wait for a fixed period of time before

creating a new edge.
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1.4 Thesis overview

The remainder of this thesis is based on four published papers, with each Chapter

corresponding to one paper.

In Chapter 2, I consider how a multi-stage approach can be used to analyse an SIR

epidemic on a random regular network. After summarising results from the classical

homogeneously mixed model, I introduce a new pairwise model with multiple stages of

infection, with the overall infectious period being gamma distributed. Through linear

stability analysis I identify the epidemic threshold, using the transmissibility of the

disease I make an argument for the appropriate formulation of the R0-like threshold

parameter. I also analytically find the final epidemic size directly from the system

of ODEs and observe that it is in agreement with previous findings [126]. Both the

final epidemic size and R0 are found to increase with the number of stages. This

is in contrast to the equivalent well-mixed models, where final epidemic size remains

constant [4, 105]. The model is compared to numerical simulation, and it shows excellent

agreement. Results from numerical solution and simulation are used to highlight the

impact of including the true distribution of the infectious period in a case study based

on data for SARS, smallpox, and influenza.

In Chapter 3, the multi-stage model derived in Chapter 2 is extended to heteroge-

neous and clustered networks. Using the super-compact approach of Simon and Kiss

[151], I derive a new model whose size is independent of the heterogeneity of the net-

work. Comparison with numerical simulation remains favourable. I obtain an R0-like

threshold parameter through two methods: a linear stability analysis and a generational

approach. Although it does not prove possible to extend the method used in Chapter

2 to find the final epidemic size directly from the system of ODEs, I do show that the

final epidemic size obtained from the numerical solution is approximately equal to the-

oretical results from percolation theory. I discuss how the proposed mode interpolates

between the limiting cases of the classical pairwise methods equivalent to a single in-

fectious stage and the model of Kiss et al. [92] with fixed infectious period. The model

is extended to clustered networks, and still shows a good agreement with numerical

simulation.

In Chapter 4, the MP method is introduced for the spread of disease with arbitrary

independent transmission and recovery processes, after which I introduce a novel non-

Markovian EBCM that has the same degree of generality. I explain how this model is

constructed and rigorously prove that under the same initial conditions the MP method
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and our model produce identical solutions, and, therefore, the models are equivalent.

Since the MP method is exact on the ensemble of CM networks, this implies that our

model is also exact under the same conditions. I then present a proof for the final

epidemic size derived directly from the EBCM. By assuming a Markovian transmission

process it is shown that a pairwise-like model (PLM) can be derived, which generalises

the work of Wilkinson et al. [169] to heterogeneous networks. The PLM is then

used to build a model hierarchy; being the most general pairwise model I show how

it reduces to many well-known pairwise models under appropriate assumptions, such

as, homogeneous degree distribution or Markovian recovery. Many pairwise models

are defined heuristically [44, 64, 70]. Placing them within the hierarchy validates the

conditions under which they become exact. Once again, the output from the model

is compared to numerical simulation with excellent agreement for various choices of

infectious period distribution.

Chapter 5 is devoted to adaptive networks. I consider an SIS epidemic on a ran-

dom graph with delayed adaptive rewiring of edges. Susceptible nodes disconnect from

infected neighbours at a given rate, but then they must wait for a delay of fixed length

before they can draw a connection to a random susceptible node. I discuss why it is

important to consider a delay in the rewiring process and discuss the complexities it

adds when constructing the model. In particular, I discuss in detail how to model the

fact that susceptible nodes can become infected while waiting to draw a new edge. A

threshold parameter is found using linear stability analysis of the disease-free equilib-

rium, but an analytical solution for the long-term behaviour is not possible. Numerical

solution shows that increasing the delay can cause a Hopf bifurcation and the emergence

of stable oscillatory solutions. These oscillations are found in a much larger region of

the parameter space than when rewiring is instantaneous [64]. Continuing to increase

the duration of the delay causes the amplitude of oscillations to grow. Altering ω, the

rate at which nodes disconnect edges reveals an enclosed ’endemic bubble’ in the pa-

rameter space within which stable oscillations are observed. We explain the likely cause

of this phenomenon by showing how the network topology changes as a result of the

adaptive behaviour. When the response is swift enough and the delay significant, the

pathogen is effectively starved of transmission routes, and prevalence begins to decay,

until the edges are redrawn, and the disease is able to spread once more.

The thesis concludes in Chapter 6, with a discussion of results and open problems.
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2.1 Abstract

This Chapter investigates the dynamics of infectious diseases with a non-exponentially

distributed infectious period. This is achieved by considering a multi-stage infection

model on networks. Using pairwise approximation with a standard closure, a number

of important characteristics of disease dynamics are derived analytically, including the

final size of an epidemic and a threshold for epidemic outbreaks, and it is shown how

these quantities depend on disease characteristics, as well as the number of disease

stages. Stochastic simulations of dynamics on networks are performed and compared

to the results of pairwise models for several realistic examples of infectious diseases to

illustrate the role played by the number of stages in the disease dynamics. These results

show that a higher number of disease stages results in faster epidemic outbreaks with a

higher peak prevalence and a larger final size of the epidemic. The agreement between

the pairwise and simulation methods is excellent in the cases we consider.

2.2 Introduction

Mathematical models of infectious diseases are known to provide an invaluable insight

into the mechanisms driving disease invasion and spread. In many cases, to obtain the

first approximation of the spread of a disease it is sufficient to use a version of the

classical SIR model [89]. However, major outbreaks of avian and swine influenza [48],

SARS [41], and more recently, Ebola [33], have highlighted the need for a more accurate

description of the disease dynamics that would provide predictive power to be used for

developing measures for disease control and prevention [83].

One of the major simplifying assumptions often used in mathematical models of

disease dynamics is the exponential distribution of infectious periods. Effectively, this

means that the chance of an individual recovering during any given time period does not

depend on the duration of time that individual has already been infected. Whilst such

an assumption may provide significant mathematical convenience and be reasonably

realistic in some situations, most often it is violated, and this requires the inclusion of

the precise distribution of infectious periods in the model [8, 152]. There are several

methods that can be employed to explicitly include a non-exponential distribution, in-

cluding a multi-stage approach [4, 34], an integro-differential formulation [68, 89, 86],

and a PDE-based formulation akin to that for age-structured models [6]. In the multi-

stage framework, it is assumed that the infectious stage of a disease is characterised by
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a number K of distinct stages [34, 102, 103], with the duration of each stage being an

independent exponentially distributed random number. Due to the fact that the sum

of independent exponentially distributed random variables obeys a gamma distribution

[42], one can replace an exponential distribution with the mean infectious period 1/γ

by a gamma distribution Γ(K, 1/(Kγ)) that has the same mean infectious period 1/γ.

The so-called linear chain trick [34, 106] then consists in replacing a single infectious

stage with K identical exponentially distributed sub-stages, each having a mean period

1/(Kγ). These multiple stages of infection can be used to represent periods of increased

or decreased risk of transmitting the disease [105]. The same approach can be extended

to models with multiple classes [87, 129], as well as non-exponentially distributed la-

tency and temporary immunity periods [17, 168]. Following the methodology of intro-

ducing multi-stage of infection to better represent the distribution of infectious periods,

we proceed with dividing the infected population into K identical stages I1, I2, . . . , IK

to create the so-called SIKR model [103], and we denote the total infected population

by I =
∑K

i=1 Ii. One should note that Kγ is now used as the transition rate between

successive infectious stages in order to keep the average duration of infection as 1/γ.

With these notations, the SIKR model takes the form

dS/dt = −βSI,

dI1/dt = βSI −KγI1,

dI2/dt = KγI1 −KγI2,

...

dIK/dt = KγIK−1 −KγIK ,

dR/dt = KγIK ,

(2.1)

where S denotes the proportion of susceptible individuals, R is the proportion of re-

covered or removed individuals, β is the disease transmission rate taken to be the same

for all stages of infection, and the disease is assumed to confer a life-long immunity.

The importance of including not just the mean infectious period, but the actual distri-

bution of infectious periods, as achieved by the system (2.1) is further highlighted by

the inspection of actual values of epidemiological parameters for several real diseases

as presented in Table 2.1. This table illustrates that whilst the transmission rate and

the average infectious period may vary between different diseases, in all of these cases

the number of stages that has to be included in order to correctly represent the dis-

ease dynamics may also be quite high, this reinforces an earlier observation about the
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non-exponential nature of infectious period distribution.

Whilst this method of introducing multiple stages of infection is clearly more realis-

tic, the assumption of a homogeneous fully mixed population remains very important,

having significant effects on the disease dynamics [83]. Although this assumption often

provides a good approximation that helps reduce complexity of the model, in many

cases it is just not realistic and results in erroneous conclusions about the onset and

development of epidemic outbreaks [9, 25]. To address this issue, networks have been

and are being used successfully to model the contact structure of the population to a

high degree of detail [35, 85]. Typically, network models are parameterised with empir-

ical data or synthetic models that can be either purely theoretical, e.g. regular random

networks or Erdős-Rényi random graphs, or obey some widely observed network char-

acteristics, such as a particular degree distribution or clustering. However, with added

model realism comes complexity, which in the case of epidemic network models can be

handled via mean-field models, such as pairwise models [70, 84] that are able to better

account for the explicit nature of network links. As long as such mean-field models

provide a good approximation to the explicit stochastic network models, they open up

the possibility to analyticaly compute important quantities such as epidemic threshold,

final epidemic size and so on. Thus, the explicit stochastic network simulation model

and the pairwise model combine favourably to provide a more accurate model with

some degree of analytical tractability.

In this Chapter we are concurrently relaxing the assumptions of homogeneous ran-

dom mixing and exponentially distributed infectious periods to generate a multi-stage

pairwise model for the spread of epidemics on networks. The Chapter is organised as

follows. The next Section contains a brief summary and discussion of earlier results on

the properties of the SIKR model (2.1). In Section 2.4 we employ the framework of

pairwise approximations to derive a multi-stage infection pairwise model and use this

to derive analytical expressions for the probability of transmission of infection along

an infected edge in a network, a threshold parameter controlling the onset of epidemic

outbreaks, and the final size of an epidemic. In Section 2.5 numerical simulations of

the pairwise and the full network models are performed using realistic parameter values

from Table 2.1 to investigate the accuracy of pairwise approximation and to illustrate

the role played by the number of stages in the multi-stage distribution in the disease

dynamics. The Chapter concludes in Section 2.6 with discussion of results and future

outlook.
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Table 2.1: Estimates of epidemiological parameters for different infectious diseases.

Disease β γ−1 (days) Stages K Source(s)

Measles Seasonal 5 20 [152]

SARS 0.545 5-6 3 [14, 138]

Influenza 1.66 2.2 3 [30, 83]

Smallpox 0.49 8.6 4 [49, 93]

2.3 Dynamics of the well-mixed model

As a first step, we consider the SIKR model (2.1), which has an implicit assumption that

every member of the population has a sufficient level of contact so that the infection can

be passed from any individual to any other. This is a natural extension of the basic SIR

model [89], and as such it has been well-studied in a number of papers [103, 105, 159].

Perhaps, one of the most important and commonly used parameters characterising

the severity of epidemics and stability of the disease-free equilibrium is the basic re-

production number R0 defined as the expected number of secondary infections caused

by a single typical infectious individual in a wholly susceptible population. The value

of R0 is related to the stability of the disease-free equilibrium, and it is an important

threshold parameter signifying that an epidemic will spread when R0 > 1 and die out

otherwise.

The basic reproduction number for the system (2.1) can be found as follows [73,

105, 159]:

R0 =
β

γ
, (2.2)

which depends on the average duration of infection 1/γ but is independent of the number

of stages in the model. A practically important characteristic of an epidemic outbreak

is the final epidemic size [83]. Since the total population size is closed with no inflow

or outflow of individuals, i.e. S(t) + I1(t) + I2(t) + ... + IK(t) + R(t) = 1, at the end

of an outbreak we have a burn-out of the epidemic, i.e. I1 = I2 = . . . = IK = 0, and

hence S(∞) +R(∞) = 1 and R(∞) = 1− S(∞). This results in the following implicit

equation for the final size of an epidemic that determines the proportion of individuals

not affected by the disease [6, 39]

R(∞) = 1− e−R0R(∞), (2.3)
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Figure 2.1: A comparison of infection dynamics for a one-, three- and five-stage SIKR

models with data from Keeling and Rojani [83]. Each curve represents the sum of all

Ii in the model. Adding extra stages causes epidemics to occur earlier and result in a

higher peak of epidemic, although R0 and the final size are identical for each curve.

The parameter values are N = 1000, β = 1.66/day, γ = 0.4545/day.

which coincides with the final epidemic size in the original SIR model [89]. Ma and Earn

[105] have recently discussed various aspects related to the derivation and validity of

formula (2.3), and Andreasen [7] has studied the effects of population heterogeneity on

the size of epidemic. A major implication of the above results is the fact that inclusion

of possibly more realistic gamma distribution of infectious periods does not alter the

threshold of an epidemic outbreak, nor does it affect the final epidemic size. One

should note, however, that when a stochastic version of the SIKR model is considered,

the number of stages influences the distribution of final epidemic sizes, while the average

final size remains the same [16, 71]. We see that in Fig. 2.1 the three curves show that

considering multi-stage infectious periods has a significant effect of the dynamics of the

epidemic. In order to get a better understanding of the distinction in the dynamics of

SIR and SIKR models, it is therefore instructive to look at the development of epidemics.

In the standard SIR model, an outbreak can only take place if R0 > 1, and at the initial

stage, the number of infected individuals can be approximated as I(t) ≈ I(0) exp(λt),

where the growth rate is λ = γ(R0 − 1). In the case of a multi-stage SIKR model,

however, the basic reproduction number R0 does not depend on the number of stages,

hence, it cannot by itself be used to determine the exponential growth rate during

an early stage of an outbreak. For this model Wearing et al. [168] have derived the

following relation between the basic reproduction number R0 and the initial growth
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Figure 2.2: Proportion of infected individuals during a boarding school influenza out-

break with β = 1.66/day and γ = 0.4545/day [83]. In each plot the solid black line is

the numerical solution of the model (2.1) with an appropriate number of stages, and

the dashed line is the exponential growth curve with the rate determined by equation

(2.4) shown on a logarithmic scale. (a) One-stage model with λ ≈ 1.2055, (b) Two-

stage model with λ ≈ 1.4035, (c) Three-stage model with λ ≈ 1.4762, (d) Five-stage

model with λ ≈ 1.534. In each case note that in the earliest stages the exponential

approximation is virtually identical to the infection curve.

rate λ

R0 =
λ

γ

(
1−

(
λ

Kγ
+ 1

)−K) . (2.4)

Figure 2.2 illustrates early dynamics of epidemic outbreaks for different numbers of

stages; in each case an exponential curve was fitted, which provides an accurate ap-

proximation for the initial growth rate of the infection as determined by equation (2.4).

This figure shows the effects of the gamma distribution on the early growth rate, peak

prevalence and overall time frame of the disease, and it also suggests that the largest

effect of the gamma distribution on the disease dynamics occurs during intermediate

stages of disease progression.

Besides the basic reproduction number, final epidemic size and the initial growth rate

of an epidemic, another practically important characteristic of epidemic outbreaks is the

peak prevalence defined as the maximum number or proportion of infected individuals
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that can be achieved during an outbreak. In the case of an SIR model, the peak

prevalence can be found as follows [47, 69]:

Imax = 1− 1

R0

[1 + ln(R0)].

Feng [47] has recently considered an SEIR model with gamma distributed infectious

period and derived an expression for the peak of a weighted average of infectious com-

partments. This result gives some intuition into how the number of stages affects peak

prevalence, but it does not provide a closed form expression for the actual peak preva-

lence in an SIKR model. Numerical results in Fig. 2.2 suggest that for the same average

infectious period, the overall peak prevalence increases with the number of stages in-

cluded in the model.

2.4 Network dynamics with multiple stages

Inclusion of multiple stages of infection in the SIKR model gives a more realistic repre-

sentation of the infectious period, but the model still has certain limitations due to its

underlying assumptions. In the model (2.1) it is assumed that the disease is not fatal,

and that transitions between different infected classes, or stages of infection, take place

at exactly the same rate Kγ. Another major assumption behind model (2.1) is that

the population is well-mixed, i.e. each individual has equal chances of encountering

and transmitting a disease to any other individual in a population. Whilst this may be

appropriate in the case of outbreaks in small closed communities, for a large number of

communicable diseases, such as SARS, influenza and most sexually transmitted infec-

tions, this assumption is a gross simplification of the actual dynamics as it overlooks

spatial variability, as well as the complexities of a network structure for infections that

are transmitted through direct close contact between individuals [70, 85].

Modelling complex contact patterns explicitly via networks has had a profound effect

on mathematical epidemiology. This new modelling framework has led to a myriad of

models ranging from exact to mean-field and simulation models [18, 35, 85, 127, 131].

The many degrees of freedom in modelling offered by networks however, often comes at

the price of increasing levels of complexity, where models can be challenging to evaluate

analytically and sometimes even numerically. Nevertheless, many valuable paradigm

models have been developed which have furthered our understanding of the impact of

contact heterogeneity, preferential mixing and clustering on the outbreak threshold and
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other epidemic descriptors. A particularly useful way of capturing epidemic dynamics

on networks is by using the pairwise model [84]. This model is based around deriving in

a hierarchical way evolution equations for the expected number of nodes, edges, triples

and so on. A closure is then employed that curtails the dependence on ever higher

order moments. Its premise is simple and quite intuitive, although it can be also shown

rigorously [154] that pairwise models before closure are exact. The basic idea of the

model is to recognise that changes at node level depend on the status of the neighbours

and thus involves edges, e.g. the rate of change in the number of infectious nodes is

proportional to the number of S−I links in the network. Similarly, the number of edges

can change due to pair interactions and transitions but also due to interactions induced

from outside the edge, e.g. the number of S − S links decrease proportionally to the

number of S−S−I triples, where infection from the I node destroys the fully susceptible

pair. This framework has been used and extended extensively, to asymmetric [148] and

weighted networks [136] for example, and has proved to be a valuable framework.

2.4.1 Pairwise model

As a first step in the analysis of dynamics of multi-stage epidemics on networks, we

re-formulate the SIKR model using the framework of pairwise equations, which allows

one to analyse the expected values for the number of nodes and links of each type as a

function of time [70, 84, 154]. The particular strength of pairwise models lies in their

analytical tractability and the fact that they provide a more accurate description than

well-mixed ODE models but do not go to the level of full individual-based stochastic

simulations [70]. In this formalism of pairwise models, notations [X], [XY ] and [XY Z]

are used to denote the expected numbers of individuals in state X, the expected number

of links between nodes of type X and Y and the expected number of triples of the form

X − Y −Z, respectively. More precisely, given a ‘frozen’ network with nodes labels X,

Y or Z and subscripts indicating nodes i, j and k then

[X] =
N∑
i=1

Xi, [XY ] =
N∑

i,j=1

XiYjaij, [XY Z] =
N∑

i,j,k=1

XiYjZkaijajk,

where X, Y, Z ∈ {S, I1, I2, . . . , IK , R}, and A = (aij)i,j=1,2,...,N is the adjacency matrix

of the network such that aii = 0, aij = aji and aij = aji = 1 if nodes i and j are

connected and zero otherwise. Moreover, Xi returns one if node i is in state X and

zero otherwise. The average degree of each node is denoted by n, and the number of
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nodes in the network by N . The new pairwise SIKR model with a gamma distributed

infectious period can then be written as follows,

˙[S] = −τ
∑K

i=1 [SIi],

˙[I1] = τ
∑K

i=1 [SIi]−Kγ[I1],

˙[Ij] = Kγ[Ij−1]−Kγ[Ij], for j = 2, 3, . . . , K,

˙[SS] = −2τ
∑K

i=1[SSIi],

˙[SI1] = −(τ +Kγ)[SI1] + τ
(∑K

i=1 [SSIi]−
∑K

i=1 [IiSI1]
)
,

˙[SIj] = −(τ +Kγ)[SIj] +Kγ[SIj−1]− τ
∑K

i=1 [IiSIj], for j = 2, 3, . . . , K.

(2.5)

where τ = β/n is the transmission rate per link. Since we consider a closed population,

this immediately implies [S] +
∑K

i=1[Ii] + [R] = N . The system (2.5) is not closed as

additional equations describing the dynamics of triples are needed. To eliminate this

dependence on higher moments and close the system, we will use the classical moment

closure approximation which assumes that short loops and clusters are excluded from

the network and that there is no correlation between nodes with a common neighbour

[84].

[SSIi] ≈
(n− 1)

n

[SS][SIi]

[S]
, for i = 1, . . . , K,

[IjSIi] ≈
(n− 1)

n

[IjS][SIi]

[S]
, for i, j = 1, . . . , K.

(2.6)

Applying these closures to the system (2.5) makes it a self-consistent system of (2K+2)

equations.

2.4.2 The probability of transmission across an infected edge

When one considers a stochastic network-based simulation, an important quantity char-

acterising the disease dynamics is the probability τ̃ of disease transmission across a given

S−I link. In a simple one-stage model, where both infection and recovery are assumed

to be distributed exponentially, the probability of no infection event occurring during
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time t is given by p0(t) = e−τt; hence 1 − p0(t) is the probability that infection does

take place over the same time period. Averaging this via integration for all possible

recovery times yields the probability that the susceptible node becomes infected. In a

standard SIR model with exponentially distributed infectious and recovery period, this

probability is, therefore [35, 36]

τ̃ = 1− γ

τ + γ
=

τ

τ + γ
. (2.7)

In the case of an SIKR model, the duration of infection is described by the density

function of the appropriate gamma distribution

g(x;K, 1/(Kγ)) =
1

(K − 1)!
(Kγ)KxK−1e−Kγx. (2.8)

The implication of this fact is the following result for the probability of transmission

across an edge.

Lemma 1. For the stochastic SIKR model with the period of infection following the

gamma distribution (2.8), the probability of disease transmission across a given S − I
link is given by

τ̃ = 1−
(

Kγ

τ +Kγ

)K
. (2.9)

The proof of this lemma is given in Appendix A.

By rewriting expression (2.9) in the form

τ̃ = 1−
(
Kγ + τ − τ
τ +Kγ

)K
= 1−

(
1− τ

τ +Kγ

)K
,

and using the fact that ex = limn→∞ (1 + x/n)n, it follows that

lim
K→∞

τ̃(K) = 1− exp

(
−τ
γ

)
. (2.10)

Figure 2.3 illustrates the dependence of τ̃ on the number of stages K, as well as a

limiting behaviour as K →∞. This figure illustrates that while τ̃ is growing with the

increasing number of stages K, it eventually saturates at a level determined by Eq.

(2.10). In fact, this saturation at higher K is observed not only in the probability of

transmission, but also in the peak prevalence rate, as well as in the early growth rate.

When compared to an exponential distribution, it is these substantial changes in τ̃
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Figure 2.3: Dependence of the probability of transmission across an S − I edge τ̃ on

the number of stages K as given by Eq. (2.9) for different mean infectious periods with

τ = 0.166. Crosses, circles and diamonds correspond to integer values of K on each

curve.

observed for smaller values of K that explain the changes in the profile of the infection

curves. As will be shown later, τ̃ is a very important quantity that controls various

properties of epidemic dynamics, such as the threshold for an outbreak and the final

size of an epidemic.

2.4.3 R0-like threshold parameter

Unlike epidemic models in well-mixed populations, defining an appropriate R0 for pair-

wise models is more challenging. This is in part due to the difficulty of identifying the

typical infectious individual. In order to derive a value for R0, one needs to consider

and correctly account for the correlation between susceptible and infected nodes and

measure R0 when this has stabilised, see Keeling [84] and Eames [43]. Intuitively, this

means that the epidemic is allowed to spread in order to become established in the

network. This allows for ‘typical’ infectious individuals to develop and for R0 to be

measured. In large networks this regime can still be considered to be close to or only a

small perturbation away from the disease-free steady state.

We now proceed to derive an R0-like threshold parameter R which can be used to

predict when the epidemics occur, by allowing outbreaks only when R > 1 [136]. To
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this end, we linearise the model (2.5) with a classic closure (2.6) near the disease-free

equilibrium which has the form [S] = N , [SS] = nN , and all other quantities being

zero. As in the standard approach, the condition necessary for the initial growth of an

epidemic is that the real part of the dominant eigenvalue λmax of the resulting charac-

teristic polynomial is positive, and a threshold parameter is obtained as a condition on

system parameters that ensure the stability change, i.e. λmax = 0. In the Appendix B

it is shown that the characteristic equation for eigenvalues λ of the linearised system

near the disease-free steady state for a K-stage model (2.5) is given by

λ2(λ+Kγ)K

[
(τ +Kγ + λ)K − τ(n− 1)

[
(τ +Kγ + λ)K−1

+
K−1∑
i=1

(Kγ)K−i(τ +Kγ + λ)i−1

]]
= 0.

In Appendix B we prove that the largest eigenvalue λ satisfying this equation goes

through zero, i.e. λmax = 0, when

R := (n− 1)τ̃ = 1. (2.11)

This defines a new R0-like threshold parameter with τ̃ introduced in (2.9). A closer

inspection shows that this parameter R describes the probability of spreading the dis-

ease across a given link multiplied by the likely number of susceptible contacts of the

individual assuming that they are the earliest people being infected, which perfectly

agrees with the standard definition of R0 as the average number of secondary cases pro-

duced in a fully susceptible population by a single typical infectious individual. Whilst

R does not quantify the early growth rate of an epidemic, through its dependence

on τ̃ and K it allows one to better predict epidemic outbreaks in the case of a more

realistic gamma distribution of infectious period, where in the case of an exponential

distribution with the same mean infectious period. We also note that whilst in the

implementation of the classic SIKR model there was no effect of changing the number

of stages on R0, this more sophisticated model results in a threshold which implicitly

accounts for multi-stage infectious periods.

2.4.4 The final size of an epidemic

Since the pairwise model (2.5) is a network representation of an epidemic with life-

long immunity and fixed population size, eventually an epidemic will burn out, leaving
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some proportion of the population unaffected and still susceptible to the disease. Since

[I1](∞) = [I2](∞) = . . . = [IK ](∞) = 0, the final size of an epidemic is given by the

proportion of people in the removed class, i.e. [R]∞ = N − [S]∞. As we saw earlier

for the SIKR model (2.1) in a well-mixed population, the final size of a single epidemic

does not change with the number of stages. However, the same conclusion no longer

holds for the pairwise model (2.5) with the closure (2.6), in which case we have the

following result.

Theorem 1. For a single epidemic outbreak in a closed population with a vanishingly

small starting level of infection, the final size of an epidemic in the pairwise model (2.5)

with the classical closure (2.6) is given by

R∞ = 1− (1− τ̃ + τ̃ θ)n , (2.12)

where

θ = (1− τ̃ + θτ̃)n−1 , (2.13)

and τ̃ is defined in (2.9).

Proof. To prove this statement we extend the methodology developed by Keeling [84]

for one-stage epidemics. We first introduce some new variables and parameters

a =
n− 1

n
, F =

∑K
i=1[SIi]

[S]a
, G =

[SR]

[S]a
, L =

[SS]

[S]a
, M =

[SS]

exp(n[S]1/n)[S]2a
,

and

Pi =
[SIi]

[S]a
for i = 1, 2, . . . , K. (2.14)

From (2.5) and the easily derived function

˙[SR] = −τa [SR]
∑K

i=1[SIi]

[S]
+Kγ[SIK ],

it follows that these new variables satisfy the following system of equations

Ḟ = −τF −KγPK + aτ
[SS]

[S]
F,

Ġ = KγPK ,

L̇ = −aτ [SS]

[S]
F,

Ṁ = τMF.

(2.15)
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Since [Ii](0) = [Ii](∞) = 0 for any i = 1, 2, . . . , K, this implies F (0) = F (∞) = 0.

Integrating the first equation in (2.15) gives

F (∞)− F (0) = 0 = −τ
∫ ∞

0

Fdt−Kγ
∫ ∞

0

PKdt+ aτ

∫ ∞
0

[SS]

[S]
Fdt

= −[ln(M(∞))− ln(M(0))]− [G(∞)−G(0)]− [L(∞)− L(0)]

= −[ln(M(∞))− ln(M(0))]− τ̃ [L(∞)− L(0)] ,

(2.16)

where in the last step we have used the fact that G(0) = 0 and the relation

G(∞) =
[SR]∞
[S]a∞

= (τ̃ − 1)[L(∞)− L(0)], (2.17)

derived in Appendix C together with another relation

[SS]∞ =
n[S]2a∞
Na−1/n

. (2.18)

Substituting these two relations into Eq. (2.16) and using the fact that [S](0) = N

yields

0 = −nN1/n + n[S]1/n∞ − τ̃
(
n[S]a∞
Na−1/n

− nN1/n

)
= −1 +

(
[S]∞
N

)1/n

− τ̃
[(

[S]∞
N

)a
− 1

]
.

Introducing the fraction of susceptible individuals as S∞ = [S]∞/N , the above equation

can be rewritten as follows,

1− S1/n
∞ = τ̃ (Sa∞ − 1) ,

or alternatively, as another implicit equation for S∞

S∞ = (1− τ̃ + τ̃ θ)n , where θ = Sa∞. (2.19)

Since [I]i(∞) = 0, introducing R∞ = [R]∞/N yields the desired expression for the final

size of an epidemic

R∞ = 1− S∞ = 1− (1− τ̃ + τ̃ θ)n .

Using the fact that θ = Sa∞, equation (2.19) can be rewritten in the form

θ1/a = (1− τ̃ + τ̃ θ)n =⇒ θ = (1− τ̃ + τ̃ θ)n−1 ,
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Figure 2.4: Dependence of the final size of an epidemic (2.12) on the per-link transmis-

sion rate τ and the number of stages K in the pairwise model (2.5) with γ = 0.4545

for different average node degrees. (a) n = 2. (b) n = 4. (c) n = 7. (d) n = 10. (e)

n = 4, τ = 0.3 (solid), τ = 0.6 (dashed), τ = 0.9 (dotted). (f) n = 10, τ = 0.09 (solid),

τ = 0.18 (dashed), τ = 0.27 (dotted). Circles correspond to integer values of K on each

curve. The case n = 2 is used solely for illustrative purposes, as the resulting networks

would be disconnected and thus inappropriate for direct comparison to results from the

pairwise model.
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Figure 2.5: Numerical solution of the pairwise SIKR model (2.5) with different average

infectious periods and a different number of stages, but the same final size due to

identical transmissibility τ̃ . Parameter values are τ = 0.2, n = 10, γ = 1 and K = 1

(solid) and τ = 0.2, n = 10, γ ≈ 1.06 and K = 3 (dashed). The solution curves for the

overall infected population show a radically different intermediate behaviour, but with

τ̃ = 1/6 in both cases, they have the same final epidemic size.
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where in the last step we have used the relation a = (n − 1)/n. This completes the

proof.

We note that our result in Theorem 1 is functionally identical to the result achieved by

Keeling [84], and it generalises the final size equation by replacing τ/(τ + γ) with the

parameter τ̃ . In the case K = 1 these two values are equivalent, thus we have perfect

agreement with the existing theory. Equivalent relations have also been derived by

Newman [126] using percolation theory. Those results were later corrected and shown

to hold in all cases where the distribution of infectious periods is degenerative [88]. An

equivalent relation has been derived for a static configuration network model with an

arbitrary degree distribution [116]. Figure 2.4 illustrates Theorem 1 by showing how the

final size of an epidemic on a network depends on the number of infectious stages and,

hence, the shape of the distribution of infectious period, which makes it different from

earlier analytical results for a well-mixed population [105]. This suggests that inclusion

of a more realistic population structure has effect not only on the intermediate disease

dynamics, but also on the final proportion of the population that will be affected by the

disease. Furthermore, this Figure suggests that for the same mean infectious period,

the final size of an epidemic is increasing with the increasing number of stages K.

One should note that the number of stages K has the largest effect on the final size

of an epidemic for sufficiently low values of K, and then this dependence saturates.

As expected, the average node degree n plays an important role, with the minimum

value of τ or K required for an epidemic outbreak decreasing with increasing n in

perfect agreement with an earlier result in Eq. (2.11). Stochastic simulations (not

shown) demonstrate excellent agreement with the results in Fig. 2.4, especially for

denser networks. The conclusions of Theorem 1 highlight the importance of collecting

accurate and reliable data about the infectivity profile of a disease for predicting the

scale of an outbreak.

It is worth noting that whilst the final size depends on the distribution of the infec-

tious period, this dependence is not necessarily unique. This means that two different

distributions of infected periods can provide the same transmissibility τ̃ , resulting in

the same final epidemic size in accordance with Theorem 1 but having different in-

termediate dynamics of infection, as illustrated in Fig. 2.5. The consequence of this

observation is that although the epidemic threshold and final epidemic size can both

be accurately computed using an estimate for the transmissibility of the disease [126],

it is not sufficient to correctly predict the dynamics of the infection spreading process
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Figure 2.6: Simulation of a SARS outbreak using data from Table 2.1 with n = 10

and N = 1000. Lines correspond to a numerical solution of the pairwise model (2.5)

(K = 1 solid line, K = 3 dashed line), while symbols represent the average of 250

serious outbreaks (K = 1 filled circles, K = 3 triangles). (a) Homogeneous network.

(b) Erdős-Rényi random graph.

over time, which can be done with our model.

2.5 Impact of a realistic infectious period distribu-

tion: case studies

In order to test the accuracy of the pairwise model (2.5) and to illustrate the role played

by the distribution of infectious period, we consider the examples of outbreaks of several

diseases mentioned in Table 2.1 in a population that is initially fully susceptible. We

concentrate on two common and fairly simple network structures, namely, random

regular and Erdős-Rényi networks [124], with stochastic simulations being performed

using a Gillespie algorithm [55, 32]. We restrict our attention to these network types as

we have a pairwise model with closures for regular networks and we would not expect it

to work well for other networks. Following the derivation of the pairwise model, the per-

link transmission rate is taken to be τ = β/n, and we now perform the comparison of

an average of 250 stochastic outcomes of serious epidemics on regular and Erdős-Rényi

networks against the results of a pairwise model with gamma distributed infectious

period. To highlight the impact of including a realistic distribution for the infectious

period, we compare the results of simulations with realistic values of parameters from

Table 2.1 against those obtained using an exponentially distributed infectious period

as assumed in many existing models.
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Figure 2.7: Simulation of a smallpox outbreak using data from Table 2.1 with n = 10

and N = 1000. Lines correspond to a numerical solution of the pairwise model (2.5)

(K = 1 solid line, K = 4 dashed line), while symbols represent the average of 250

serious outbreaks (K = 1 filled circles, K = 4 triangles). (a) Homogeneous network.

(b) Erdős-Rényi random graph.

Severe Acute Respiratory Syndrome (SARS) is a viral disease characterised by flu-

like symptoms which is primarily spread through close contacts with infected individuals

that makes it a perfect candidate for deducing some basic parameters from epidemio-

logical observations. Figure 2.6 illustrates the comparison of SARS dynamics on regular

and Erdős-Rényi networks with a pairwise approximation. One can observe that the

effects of including more stages in the disease model on intermediate behaviour are sim-

ilar to those seen earlier, namely, that gamma distribution of infectious period shortens

the overall duration an epidemic and increases peak prevalence. It is also worth noting

that, in accordance with Theorem 1, the final size of an epidemic also increases with

K.

The second example we consider is smallpox, a viral disease that has been eradicated

globally except for two stocks kept in the secure labs and being used for further research.

Several papers have modelled the effectiveness of smallpox when used as a bio-weapon,

as well strategies for its containment during possible outbreaks [49, 79, 112]. Due to a

profound impact smallpox has had on a human population over several centuries, an

extensive and quite accurate data has been collected about its transmission. Smallpox

is spread through a contact with the mucus of an infected individual, which implies

that a close contact is essential for a successful disease transmission. In Fig. 2.7 we

show the simulations of smallpox outbreaks on regular and Erdős-Rényi networks using

parameter values from Table 2.1 compared to results of the numerical solution of the

corresponding pairwise model (2.5). The first important observation that the higher
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severity of epidemics outbreaks as suggested by these data makes the pairwise model

more accurate, as expected. The effect of including the realistic distribution of infectious

period is more pronounced in this case as compared to the SARS simulations, which can

be attributed to the fact that smallpox model includes four stages of infection, while

the SARS model had only three stages. Despite changes in the intermediate behaviour

for smallpox being more pronounced compared to SARS, the final size of an epidemic as

given by the pairwise model only increases from 96.34% to 97.89%, which is consistent

with an earlier observation that the effect of increasing the number of stages on the

final epidemic size is less noticeable for higher K.

Figure 2.8 illustrates the comparison of a pairwise model (2.5) with the closure (2.6)

and a stochastic simulation on the example of influenza data with different number of

stages of infection. Comparison of figures (a) and (b) shows that the heterogeneity

introduced by the degree distribution makes the pairwise model less accurate due to

the fact that this model only takes into account the mean degree n. This suggests

that whilst our model is very helpful for understanding general features of multi-stage

disease dynamics on networks, it has to be extended further to deal effectively with

wider and more realistic node degree distributions. One should note that the effects

of increasing the number of stages on peak prevalence and the duration of epidemics

reduce for higher values of K, as can be observed by comparing the minor changes

between temporal profiles of the three- and five-stage influenza epidemics presented as

shown in Fig. 2.8.

2.6 Discussion

In this Chapter we have analysed the behaviour of multi-stage infections with particular

emphasis on contact networks. Unlike the well-mixed models, for which the number

of stages modifies the temporary profile of an outbreak but does not affect the final

epidemic size or the condition for disease outbreak, in the case of disease spread on a

network, the number of stages, i.e. the precise distribution of infectious period, plays a

much more prominent role.

In order to make analytical progress with the analysis of disease dynamics on net-

works, we have employed the framework of pairwise approximation. This has allowed

us to determine the probability of disease transmission across a network edge and to

find an R0-like threshold that controls the onset of epidemics. We have also derived an
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Figure 2.8: Simulation of an influenza outbreak using data from Table 2.1 with n = 10

and N = 1000. Lines correspond to a numerical solution of the pairwise model (2.5)

(K = 1 solid line, K = 3 dashed line, K = 5 dotted line), while symbols represent the

average of 250 serious outbreaks (K = 1 filled circles, K = 3 triangles, K = 5 squares).

(a) Homogeneous network. (b) Erdős-Rényi random graph.

analytical expression for the final size of an epidemic, which is in perfect agreement with

the final size computed using percolation theory [88, 126], and therefore, our findings

can be considered exact in the limit of infinite population size. All of these quantities

depend not only on the basic disease characteristics, such as, the transmission rate and

the average infectious period, but also on the distribution of the infectious period as

represented by the number of stages in the model. The importance of this result lies

in the fact that unlike earlier studies of multi-stage models in well-mixed populations

[4, 105], for the same average duration of the infection period, the final epidemic size is

not constant but increasing with the number of stages. We also observe that the thresh-

old at which point a major epidemic is expected depends on the number of infectious

stages, with epidemics becoming more likely as the number of stages is increased. This

dependence emerges due to the higher resolution of our model which allows us to iden-

tify new links between model ingredients and disease dynamics. Similar results have

been noted in related studies, for example, in models concerned with contact tracing

[45] and models of coupled disease and information transmission on networks [52].

Numerical simulations of epidemic outbreak for several different multi-stage infec-

tions demonstrate that while the pairwise model provides a reasonably good approxi-

mation of the network dynamics, the agreement with stochastic simulations is affected

by clustering and local network structure that can induce correlations in the dynamics

of different nodes, as well as the inhomogeneity in the node degree distribution, as

should be expected from the fact that the pairwise closure only depends on the average
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node degree.

There are several directions in which the approach presented in this Chapter could

be extended. These include the analysis of SIS and SEIR models, as well as inclusion

of multiple stages for both the latent and infected classes (Nguyen and Rojani 2008)

[129]. Whilst inclusion of latent classes may have no effect on the basic reproduction

number or the final size distribution in a fully well-mixed model (Black and Ross 2015;

House et al. 2013) [16, 71], whether the same would be true in a network model remains

to be seen. Another interesting and important problem would be the consideration of

network dynamics for epidemic models with temporary immunity (Blyuss and Kyrychko

2010) [17]. Allowing the level of infectiousness of different nodes to vary depending on

the stage of infection they belong to would result in even more realistic models of

multi-stage diseases on networks.

It should also be possible to apply such a multi-stage approach to other elements

of the model. For instance, a multi-stage progression for susceptibles, where each

transmission event moves them into a latter stage and, ultimately, to becoming infected.

This would represent a disease where multiple exposures were needed in order to become

infected. It is known that repeated exposure can increase the risk of infection [98], but

extra justification would be needed for repeated exposure to be required in order for the

disease to spread. S-I edges could also go through some number of stages. This would

lead to a gamma distributed transmission process by the same reasoning that altered

the infectious period in the model presented in this paper. There is growing evidence

that transmission may be distributed according to a power law [29, 31]. Imposing a

gamma distribution may be able to replicate the heavy-tail of power law distributions

but, crucially, it will not be able to also capture the tendency for multiple events to

occur rapidly within a short window of time.

One of the challenging but practically important generalisations of the present

framework would be an extension of a pairwise model that would account for hetero-

geneity in node degree distribution (House and Keeling 2011) [70]. This would provide

deterministic models potentially amenable to analytical treatment that would more ac-

curately represent stochastic disease dynamics.
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2.7 Appendices

2.7.1 Appendix A - Transmissibility

In this Appendix we prove an expression (2.9) for the probability of transmission across

a given link. For an arbitrary number of stages and transition/recovery parameter Kγ,

the distribution of the infectious period is gamma distributed, and hence we consider

here the density function originally stated in (2.8)

g(x;K, 1/(Kγ)) =
1

(K − 1)!
(Kγ)KxK−1e−Kγx.

Since the probability of infection taking place for a given S − I link during time t is

given by 1− e−τt, the probability of transmission across this link in a K-stage is given

by

τ̃ =

∫ ∞
0

(1− e−τx)
(

1

(K − 1)!
(Kγ)KxK−1e−(Kγ)x

)
dx

=
(Kγ)K

(K − 1)!

[∫ ∞
0

xK−1e−(Kγ)xdx−
∫ ∞

0

xK−1e−(τ+Kγ)xdx

]

= 1− (Kγ)K

(K − 1)!

∫ ∞
0

xK−1e−(τ+Kγ)xdx,

(2.20)

where the final equality is obtained by noting that the first integral is simply the integral

of the gamma distribution function over R+, and, hence, is equal to one. Integration

by parts yields a recursive relation∫ ∞
0

xK−1e−(τ+Kγ)xdx =
K − 1

τ +Kγ

∫ ∞
0

xK−2e−(τ+Kγ)xdx,

which is valid for any integer K > 1, and this then implies∫ ∞
0

xK−1e−(τ+Kγ)xdx =
(K − 1)!

(τ +Kγ)K
.

Substituting this expression into Eq. (2.20) yields

τ̃ = 1− (Kγ)K

(K − 1)!

(K − 1)!

(τ +Kγ)K
= 1− (Kγ)K

(τ +Kγ)K
.
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2.7.2 Appendix B - R0-like threshold parameter

Linearisation of the pairwise model (2.5) with the closure (2.6) at the disease-free equi-

librium yields the stability condition for eigenvalues λ as a (2K+ 2)× (2K+ 2) matrix.

It is useful to first consider it in a block form as follows,(
A B

C D

)

where C is a zero (K + 1) × (K + 1) matrix, and the matrix A is lower-diagonal, and

therefore, its determinant is the product of the diagonal terms. Hence, the characteristic

equation can be written as

λ2(λ+Kγ)K

∣∣∣∣∣∣∣∣∣∣∣∣∣

τ(n− 1)−Kγ − τ − λ τ(n− 1) . . . τ(n− 1)

Kγ −Kγ − τ − λ 0 . . . 0

0 Kγ
. . . . . .

...
... 0

. . . . . . 0

0 . . . 0 Kγ −Kγ − τ − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

This matrix can now be reduced to a series of lower-diagonal matrices to give the

following general form of the characteristic equation

0 = λ2(λ+Kγ)K

[
(τ(n− 1)−Kγ − τ − λ)(−Kγ − τ − λ)K−1

− τ(n− 1)

(
K−1∑
i=1

(−1)K−i(Kγ)K−i(−Kγ − τ − λ)i−1

)]

= λ2(λ+Kγ)K

{
(τ +Kγ + λ)K

− τ(n− 1)

[
(τ +Kγ + λ)K−1 +

K−1∑
i=1

(Kγ)K−i(τ +Kγ + λ)i−1

]}
.

It immediately follows that the above equation has roots of λ = 0, λ = −Kγ, the other

K roots are determined by the roots of the expression in curly brackets. The two zero

roots exist because the system has a line of equilibria. So long as
∑

i[Ii] = 0 the system

is in equilibrium, with [S]+ [R] = N and [SS]+2[SR]+ [RR] = nN . We thus ascertain

the stability of the DFE based on having zero recovered population, to mimic the early

stage of the epidemic. If all of the remaining eigenvalues are negative, then there is no

exponential growth phase and the DFE is stable.
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Since an epidemic outbreak occurs when the disease-free equilibrium becomes unsta-

ble, one has to identify conditions on parameters when the stability of the disease-free

steady state changes, i.e. where λ = 0. Substituting λ = 0 into the expression in curly

brackets yields

0= (τ +Kγ)K + τ(n− 1)

[
(τ +Kγ)K−1 −

K−1∑
i=1

(Kγ)K−i(τ +Kγ)i−1

]

= (τ +Kγ)K − (n− 1)
[
(τ +Kγ)K − (Kγ)K

]
.

This relation can be recast as

1 = (n− 1)

(
1− (Kγ)K

(τ +Kγ)K

)
= (n− 1)τ̃ ,

which gives the desired expression of R = (n− 1)τ̃ in Eq. (2.11).

2.7.3 Appendix C - Final epidemic size

To prove relation (2.17), we consider the time derivatives of the functions Pi = [SIi]
[S]a

for

i = 1, 2, . . . , K, which can be found from the pairwise model (2.5):

Ṗ1 = −(τ +Kγ)P1 + τa
[SS]

[S]
F,

Ṗi = −(τ +Kγ)Pi +KγPi−1, i = 2, 3, . . . , K.

We also remind the reader of the functions G and L and equations for their dynamics

G =
[SR]

[S]a
=⇒ Ġ = KγPK , L =

[SS]

[S]a
=⇒ L̇ = −aτ [SS]

[S]
F.

Integrating the equation for P1 and using the fact that [SI1](0) = [SI1](∞) = 0, gives

0 =

∫ ∞
0

Ṗ1dt = −(τ +Kγ)

∫ ∞
0

P1dt+ aτ

∫ ∞
0

[SS]

[S]
Fdt

= −(τ +Kγ)

∫ ∞
0

P1dt− [L(∞)− L(0)].

(2.21)

In a similar way, integrating the equation for P2 yields

0 =

∫ ∞
0

Ṗ2dt = −(τ +Kγ)

∫ ∞
0

P2dt+Kγ

∫ ∞
0

P1dt,
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which can be rewritten as ∫ ∞
0

P1dt =
τ +Kγ

Kγ

∫ ∞
0

P2dt.

Proceeding the the same way, one obtains∫ ∞
0

Pidt =
τ +Kγ

Kγ

∫ ∞
0

Pi+1dt, i = 2, 3, . . . , K − 1.

Going through all stages of infections, we find∫ ∞
0

P1dt =
(τ +Kγ)K−1

(Kγ)K−1

∫ ∞
0

PKdt.

On the other hand, integrating equation for G and using G(0) = 0 gives

G(∞)−G(0) =
[SR]∞
[S]a∞

= Kγ

∫ ∞
0

PKdt =⇒
∫ ∞

0

PKdt =
1

Kγ

[SR]∞
[S]a∞

.

Combining the last two expressions, we obtain∫ ∞
0

P1dt =
(τ +Kγ)K−1

(Kγ)K
[SR]∞
[S]a∞

,

and substituting this result into Eq. (2.21) gives the final relation (2.17):

[SR]∞
[S]a∞

= (τ̃ − 1)[L(∞)− L(0)]. (2.22)

In order to prove relation (2.18), we examine the ratio [SS]/[S], whose dynamics is

governed by the following equation

d

dt

[SS]

[S]
= −τ (n− 2)

n

[SS]

[S]

∑K
i=1[SIi]

[S]
.

Separating variables and integrating this equation gives[
ln

(
[SS]

[S]

)]∞
0

= −τ (n− 2)

n

∫ ∞
0

∑K
i=1[SIi]

[S]
dt. (2.23)

Rather than compute the integral in the right-hand side of the above equation, we use

the first equation of the pairwise model (2.5), which can be written as

1

[S]

d

dt
[S] = −τ

∑K
i=1[SIi]

[S]
.

Integrating this equation gives∫ ∞
0

1

[S]
d[S] = −τ

∫ ∞
0

∑K
i=1[SIi]

[S]
dt =⇒ (ln[S])∞0 = −τ

∫ ∞
0

∑K
i=1[SIi]

[S]
dt.
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Using this expression to replace an integral in (2.23) gives

ln

(
[SS]∞
[S]∞

)
− ln

(
[SS]0
[S]0

)
=
n− 2

n
ln

(
[S]∞
[S]0

)
.

Substituting [S]0 = N and [SS]0 = nN , this formula can be rewritten as

ln

(
[SS]∞
[S]∞

)
= ln

(
nN

N

)
+ ln

(
[S]∞
N

)n−2
n

,

or alternatively,

[SS]∞
[S]∞

= n

(
[S]∞
N

)n−2
n

.

Multiplying both sides by [S]∞ and using the definition a = (n− 1)/n, we obtain

[SS]∞ = n
[S]

2(n−1)/n
∞

N (n−2)/n
= n

[S]2a∞
Na−1/n

,

which gives the desired relation (2.18).
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3.1 Abstract

This Chapter presents a compact pairwise model that describes the spread of multi-stage

epidemics on networks. The multi-stage model corresponds to a gamma-distributed in-

fectious period which interpolates between the classical Markovian models with expo-

nentially distributed infectious period and epidemics with a constant infectious period.

We show how the compact approach leads to a system of equations whose size is inde-

pendent of the range of node degrees, thus significantly reducing the complexity of the

model. Network clustering is incorporated into the model to provide a more accurate

representation of realistic contact networks, and the accuracy of proposed closures is

analysed for different levels of clustering and number of infection stages. Our results

support recent findings that standard closure techniques are likely to perform better

when the infectious period is constant.

3.2 Introduction

Mathematical models of infectious diseases have proven to be an invaluable tool in

understanding how diseases invade and spread within a population, and how best to

control them [6, 37, 131].

Given a good understanding of the biology of the disease and of the behaviour and

interaction of hosts, it is possible to develop accurate models with good predictive power,

which provide the means to develop, test and deploy control measures to mitigate the

negative impacts of infectious diseases, a good example being influenza [48]. However,

as has been highlighted by the recent Ebola outbreak in West Africa [33], models can

be very situation-specific and can become highly sophisticated or complex depending

on intricacies of the structure of the population and the characteristics of the disease.

In the last few decades the use of networks to describe interactions between individ-

uals has been an important step change in modelling and studying disease transmission

[35, 84, 85, 131]. There is now overwhelming empirical evidence that in many practical

instances individuals interact in a structured and selective way, e.g. in the case of sexu-

ally transmitted diseases [99]. Thus, the well-mixed assumption of early compartmental

models [89] has to be relaxed or models need to be refined by including multiple classes

and mixing between classes. However, in some cases a network representation could

be more realistic than a description based on compartmental models. Conventionally,

nodes in network-based models represent individuals, and the edges describe connec-
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tions between people who have sufficient contact to be able to transmit the disease

[35, 85, 131]. The total number of edges a node has is known as its degree, and the

frequency of nodes with different degrees is determined by a specific degree distribution

pk which can either be empirically measured or given theoretically. In either case pk

is the probability of a randomly chosen node having degree k. Early network models

often assumed regular networks where all nodes have the same degree, or well-studied

networks from graph theory, such as the Erdős-Rényi random graphs [46]. However,

empirical research showed that real biological, social or technological networks do not

conform to such idealised models. In fact, many studies on human interactions ranging

from sexual contact networks [99] to using the travel of banknotes as an indicator of

human activity [24], or even internet connectivity [26] have observed wide-tail distribu-

tions, with the majority of nodes having a low number of contacts, and a few nodes in

the network having a much higher degree. This structure is most closely approximated

by scale-free networks described by a power-law degree distribution pk ∼ k−α with some

positive exponent α, which for most accurately described human contact patterns lies

in the range α ∈ [2, 3] (see, for example, [132]). The impact of contact heterogeneity on

the spread of epidemics is significant, and studies have highlighted the disproportionate

role which may be played by a few highly-connected nodes [75].

Another striking feature of real social contact patterns is the presence of small and

highly-interconnected groups which occur much more frequently than if edges were to

be distributed at random. This is known as clustering, and its presence in empirical

data [51, 128] has driven the need to consider network models that include this fea-

ture. Perhaps, one of the most well-known and parsimonious theoretical models with

tuneable clustering is the small-world network [167], where nodes are placed on a ring,

and the network is dominated by local links to nearest neighbours with a few links

rewired at random, which means that the average path length is not too large and

comparable to that found in equivalent random networks. For a summary of numerous

alternative algorithms that can be used to generate clustered networks see, for exam-

ple, [61] or [140]. It is well known that modelling epidemic spread on such networks

is more challenging, although some models have successfully incorporated clusterings

[81, 115, 141, 163, and references therein]. However, it is often the case that such mod-

els only work for networks where clustering is introduced in a very specific way, e.g. by

considering non-overlapping triangles or other subgraphs of more than three nodes.

Besides the details of the network structure, another major assumption that sig-
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nificantly reduces the mathematical complexity of models and makes them amenable

to analysis with mean-field models of ordinary differential equations and tools from

Markov chain theory is the assumption that the spreading/transmission of infection

and recovery processes are Markovian. However, it has long been recognised that this

is often not the case, and, for example, the infectious periods are typically far from

exponential, and, perhaps, are better described by a normal-like or peaked distribution

[58, 103, 168]. Modelling non-Markovian processes can be challenging and often leads to

delay differential or integro-differential equations that are much more difficult to anal-

yse. Recently, Kiss et al. [92] have put forward a generalisation of a pairwise model

for Markovian transmission with a constant infectious period for a susceptible-infected-

recovered (SIR) dynamics. The resulting model is a system of delay differential equa-

tions with discrete and distributed delays which makes it possible to gain insight into

how the non-Markovian nature of the recovery process affects the epidemic threshold

and the final epidemic size. Other important recent research in this direction includes

the message passing formalism [80, 170] and an approach based on renewal theory [28].

In light of the importance of the above-mentioned network properties (i.e. degree

heterogeneity and clustering) and the non-Markovian nature of the spreading and/or

recovery processes driving the epidemics, in this Chapter we generalise our recent re-

search on a multi-stage SIR epidemic model [149] and focus on modelling a Markovian

spreading process with gamma-distributed infectious period on networks that account

for heterogeneous degree distribution and clustering. This is achieved within the frame-

work of pairwise models [84], and we show that the additional model complexity induced

by degree heterogeneity and non-Markovian recovery can be effectively controlled via a

reduction procedure proposed by Simon and Kiss [151]. This allows one to derive an ap-

proximate deterministic model that helps numerically determine the time evolution of

the epidemic and the final epidemic size. Moreover, the model allows us to gain insights

into the interactions of the three main model ingredients, namely, degree heterogeneity,

clustering and non-exponential recovery and the agreement between the model and the

stochastic network simulation. The Chapter is organised as follows. In the next section

we derive a compact pairwise model for unclustered networks whose size is independent

of the range of degrees and derive and discuss some analytical results for this model. All

results are validated by comparing the numerical solution of the pairwise model to re-

sults from direct stochastic network simulation. In Section 3.4, we investigate the case

when the same epidemic unfolds on clustered networks. The corresponding pairwise
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model is derived, and we discuss the extra complexities necessary to more accurately

approximate the spread of the disease. More importantly, we investigate how clustering

and the non-Markovian recovery affect the agreement between the pairwise model and

simulations. Finally, in Section 3.5 we conclude with a discussion of our results and

future work.

3.3 Disease dynamics in the absence of clustering

As a first step in the analysis of the spread of epidemics on unclustered networks, we

introduce the necessary concepts from multi-stage infections and pairwise models [149].

In the SIKR model, once a susceptible individual S becomes infected, they progress

through K equally infectious stages denoted as I(i), 1 ≤ i ≤ K. The transition rates

between successive stages are given by Kγ. Thus, in simulation the times spent in each

of the K stages are independent exponentially distributed random numbers. The total

time of infection is, therefore, the sum of K exponential distributions, which is a gamma

distribution with the mean time of γ−1 [42]. In order to describe the dynamics of an

epidemic we consider the state of the nodes in the network and the edges connecting

them. Since a susceptible individual can only become infected upon a transmission

across an S − I(i) link we need to consider the expected number of edges connecting

susceptible and infected individuals (in any of the K stages) at time t over the whole

network, to be denoted as [SI(i)](t). Here we have taken [SI(i)] independently of the

degrees of the nodes in state S and I(i), i.e. [SI(i)] =
∑

a,b[SaI
(i)
b ] where a and b

denote the degrees in the range between the minimum and maximum degrees in the

network, denoted as kmin and kmax, respectively. This definition applies to all pairs, i.e.

[AB] stands for the population level count of all A− B edges taken across all possible

connections between nodes of different degrees;

[AB] =
∑
a,b

[AaBb], and A,B ∈ {S, I1, I2, . . . , IK , R} := S.

Here and henceforth S will denote the set of all possible states for a node. The expected

number of S − S edges depends on the expected number of S − S − I i triples, with

this being the case for other edge types as well. To break the dependency on higher

order moments, closure relations must be introduced which allow us to approximate

the number of triples using the number of pairs and nodes in different states [84].

We begin our analysis by considering the simpler case where the contact network

has a locally tree-like structure characterised by zero clustering. The Markovian, or
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single stage, pairwise model has been proven to be exact prior to closure [154], and the

approach can be extended to a SIKR multi-stage model. In order to obtain a pairwise

model for the SIKR dynamics for unclustered and degree heterogeneous networks, we

start with the unclosed model for a general K-stage disease and describe an a priori

method to derive a new set of closures at the level of triples. It should be noted that

our approach resembles that used in recent works of Simon and Kiss [151] and House

and Keeling [70]. The system describing the dynamics of a K-stage disease has the

following form [149]

˙[S] = −τ [SI],

˙[I(1)] = τ [SI]−Kγ[I(1)],

˙[I(j)] = Kγ[I(j−1)]−Kγ[I(j)], for j = 2, 3, . . . , K,

˙[SS] = −2τ [SSI], (3.1)

˙[SI(1)] = −(τ +Kγ)[SI(1)] + τ
(
[SSI]− [ISI(1)]

)
,

˙[SI(j)] = −(τ +Kγ)[SI(j)] +Kγ[SI(j−1)]− τ [ISI(j)], for j = 2, 3, . . . , K,

˙[SR] = −τ [ISR] +Kγ[SI(K)],

where τ is the per-link disease transmission rate, and the terms without superscripts

represent summation over all infected compartments, i.e. [SI] =
∑K

i=1[SI(i)], [SSI] =∑K
i=1[SSI(i)] and [ISI(j)] =

∑K
i=1[I(i)SI(j)]. While the above equations do not seem to

account separately for the degrees of the nodes, we will show that it is possible to keep

such a system and include all the information about the degree distribution in a new

closure relation at the level of pairs. The closure for this model can be obtained by first

considering the classical triple closure for a regular network proposed by Keeling et al.

[82]

[XSI(i)] ≈ n− 1

n

[XS][SI(i)]

[S]
, (3.2)

where n is the degree of every node in the network (and thus also the mean degree),

and X ∈ S. The derivation of a new closure for heterogeneous networks starts from

noting that closure (3.2) depends on the degree of the middle node, which allows us to

write

[XSjY ] ≈ j − 1

j

[XSj][SjY ]

[Sj]
, X, Y ∈ S, (3.3)
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for a susceptible node of degree j, with j ∈ [kmin, kmax]. To make further progress, one

can use the approximation used by Eames and Keeling [44],

[SjY ] ≈ [SY ]
j[Sj]∑kmax

m=kmin
m[Sm]

. (3.4)

This assumes that the number of Sj − Y pairs is approximately equal to the number

of S − Y pairs (regardless of node degree) multiplied by the fraction of S nodes with

degree j. Substituting this approximation into (3.3) yields

[XSjY ] ≈ [XS][SY ]
j(j − 1)[Sj]

T 2
1

, (3.5)

where

T1 :=
kmax∑

m=kmin

m[Sm] = [SS] +
K∑
i=1

[SI(i)] + [SR]

denotes the total number of edges emanating from susceptible nodes. The second

expression for T1 above follows directly from the pairwise model (3.1) and explains the

need for explicitly including an equation for [SR]. Taking the sum of all triples in (3.5)

over all degrees j gives

[XSY ] =
kmax∑
j=kmin

[XSjY ] ≈ [XS][SY ]
T2 − T1

T 2
1

, (3.6)

with

T2 =
kmax∑

m=kmin

m2[Sm].

Unfortunately, T2 cannot be expressed in a closed form from the solution of system

(3.1). However, it should be possible to estimate the degree distribution of susceptible

nodes [150, 151]. This distribution is given by

sk := [Sk]/[S],

and has the mean

nS = T1/[S].

Simon and Kiss [151] have shown by means of numerical simulations that the (dynamic)

degree distribution of susceptible nodes is proportional to the degree distribution pk.

Numerical simulations shown in Fig. 3.1 demonstrate that despite being entirely heuris-

tic, this relation between the two distributions holds for all the different networks it
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was tested on. We use this linear relationship between sk and pk in order to derive a

compact model. A brief explanation is given below, for the full method one can refer

to [151]. As they will be needed later, we first introduce the moments of the degree

distribution pk, namely,

ni =

∑kmax
m=kmin

miNm

N
=

kmax∑
m=kmin

miP (m),

where N is the total population size. It is easy to see that

T2 = [S]
kmax∑

m=kmin

m2sm,

and so our goal is to find an estimate for sk. Introducing a new variable qk = sk/pk

linearity enforces the following relation for all k ∈ [kmin, kmax]

qk − qkmin
k − kmin

=
qkmax − qkmin
kmax − kmin

.

By manipulating this equation one can identify a relation between sk and pk; namely

sk =
(k − kmin) qkmax + (kmax − k) qkmin

kmax − kmin
pk. (3.7)

Since the sum of all sk’s is one, and the distribution has the mean nS, it is then possible

to recast qkmin and qkmax in terms of the known quantities n1, n2, n3 and nS. Feeding

these back into (3.7) gives an estimate for sk, and thus T2. Using this estimate we arrive

at the following relation

T2 − T1

T 2
1

≈ 1

n2
S[S]

(
n2(n2 − n1nS) + n3(nS − n1)

n2 − n2
1

− nS
)
.

This gives the closure for the heterogeneous compact pairwise SIKR model (3.1) in the

form

[XSY ] ≈ ζ(t)
[XS][SY ]

[S]
, (3.8)

where

ζ(t) =
n2(n2 − n1nS) + n3(nS − n1)

n2
S (n2 − n2

1)
− 1

nS
. (3.9)

It is evident that the range of degrees and the degree distribution have been implicitly

accounted for in the closure relation, thus allowing us to work with a set of equations

whose size is independent of the range of degrees. In other words, regardless of the
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Figure 3.1: The results of testing the relation between the degree distribution pk and

the distribution of susceptible nodes sk over time for a truncated scale-free network.

The black line represents the degree distribution pk that coincides with sk at t = 0,

and the green, red and light blue lines represent sk at times 10, 15 and 20, respectively

from 100 simulations of the epidemic. Note that all lines show the same qualitative

behaviour.

exact nature of the contact network we will only ever need 2K+ 3 equations in (3.1) to

model the epidemic. This is due to all of the information about the degree distribution

being included in ζ(t). In the special case of regular contact networks, where every

node has the same degree n, one has that nS = n1 = n, n2 = n2 and n3 = n3, hence

ζ(t) reduces to

ζ =
n− 1

n
,

and the closure reverts back to the simpler version given in (3.2).

3.3.1 Numerical simulation results

In order to test the effectiveness of model (3.1) with closure (3.8), we compare its

output to numerical simulation of epidemics spreading on networks with bimodal and

truncated scale-free degree distributions, with both types of networks being constructed

using the configuration model [15]. For bimodal networks, all nodes have degree k1 or

k2, and the proportion of nodes with degrees k1 and k2 in the network; each node is

then given either k1 or k2 half-edges which are connected to other half-edges at ran-
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Figure 3.2: Dynamics of epidemics spreading on unclustered networks of 1000 nodes

with (a) bimodal degree distribution with an even split of nodes having degrees 4 or

12, and (b) truncated scale-free degree distribution pk ∼ k−α bounded by kmin = 4,

kmax = 60, and with α = 2.5, and the mean degree of around 8. For both topologies,

the simulations are performed for K = 1 (black line, circles) and K = 4 (dashed line,

squares). Lines show the solution of the pairwise model (3.1) with the closures given

in (3.8), and symbols correspond to stochastic network simulation. Other parameter

values are τ = 0.07, γ = 0.15.

dom to create the edges. The generation of truncated scale-free networks begins by

choosing bounds of minimum and maximum degree kmin and kmax. One then gener-

ates a power law distribution with a chosen exponent α and samples the normalized

probability of a node having degree k ∈ [kmin, kmax], after which half-edges are drawn

and connected at random. If the total number of half-edges is odd, one is removed

at random, the effect of which is small and diminishes rapidly as the total number of

nodes N grows. Each simulation begins with a single infected individual, and the time

is rescaled to zero after the number of infected individuals reaches ten, when counted

across all compartments. The results of these tests are presented in Fig. 3.2, which show

the comparison of an average of 100 simulations (consisting of 20 simulations for five

different random networks with the same topology) and the output from the pairwise

model (3.1). Figure 3.2 shows that increasing the number of infectious stages leads

to a more rapid spread of the disease with higher peak prevalence, despite the mean

duration of infection remaining unchanged. This suggests that the lead time to imple-
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ment any control measures is much shorter than estimates based on standard models

where recovery is Poisson would suggest. This behaviour was also observed in the case

of homogeneous populations [149]. We further note that for the same parameters of

the disease dynamics, the trend of faster growth is even more profound for scale-free

networks. This effect can be attributed to the influence of a small number of highly

connected nodes; these individuals are at greater risk of receiving infection, and also

have a much greater capacity to spread the disease, thereby causing a rapid increase

in the number of new infections. This also has a significant impact on the threshold

parameter which describes the point at which an epidemic occurs, as will be discussed

later.

3.3.2 Characteristics of the multi-stage compact model

Now that the system of pairwise equations (3.1) with closures given in (3.8) has been

shown to accurately match simulations for a range of networks, we focus on deriving

analytical results from this model. The first quantity we consider is the transmissibility

of the disease, defined as the probability of the disease being successfully transmitted

across a given S − I link, when considered in isolation. To compute this quantity, we

recall that the recovery times are now gamma-distributed. For a successful infection

attempt to occur across an S − I link, the infection must be transmitted before the

infected node recovers, hence, it can be computed as follows [149],

τ̃ :=

∫ ∞
0

(
1− e−τx

) 1

(K − 1)!
(Kγ)KxK−1e−(Kγ)xdx = 1−

(
Kγ

τ +Kγ

)K
. (3.10)

Although this estimate for the probability of transmission provides some indica-

tion of how likely a major epidemic is, it does not, however, take into account the

heterogeneity in the network structure. To identify a threshold parameter that can

indicate whether an epidemic will occur, we perform a linear stability analysis of the

disease-free equilibrium (DFE) with [S] = N , [SS] = n1N , [I(j)] = [SI(j)] = [SR] = 0,

j = 1, 2 . . . , K of system (3.1) with the closure given in (3.8). If the DFE is stable, then

any small outbreak will die out. The stability of the DFE is determined by eigenvalues

of the Jacobian matrix J ∈ R(2K+2)×(2K+2) ([SR] can be safely excluded as it only in-

troduces a further row and column of zeros). Due to the nature of the system, J can be

recast in the block form J =

(
A B

C D

)
, where A is a lower-diagonal (K+2)×(K+2)

matrix, B is a (K + 2)×K matrix, C is a zero K × (K + 2) matrix, and D is a K ×K
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matrix. This simplifies the calculations, since the characteristic equation can be rewrit-

ten as the product of diagonal elements of the matrix A multiplied by the determinant

of the matrix D, i.e.

λ2(λ+Kγ)K

∣∣∣∣∣∣∣∣∣∣∣∣∣

τn1ζ(0)−Kγ − τ − λ τζ(0) . . . τζ(0)

Kγ −Kγ − τ − λ 0 . . . 0

0 Kγ
. . . . . .

...
... 0

. . . . . . 0

0 . . . 0 Kγ −Kγ − τ − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

This equation is similar to the one analysed by Sherborne et al. [149]. At time t = 0 note

that nS = n1, thus from (3.9) ζ(0) = (n2−n1)/(n2
1). By considering the conditions under

which the maximum eigenvalue changes its sign, it is possible to identify a threshold

parameter

R := n1
n2 − n1

n2
1

τ̃ =
n2 − n1

n1

τ̃ , (3.11)

such that for R < 1 the epidemic will die out, and for R > 1 the epidemic will develop

in the deterministic model (3.1). This threshold translates to stochastic simulations,

however, there is still a small possibility that an early disease die-out can occur even

when R > 1. Similarly, small epidemics may occur in some cases where R < 1. It

is important to note that although τ̃ emerges directly from the linear stability analy-

sis, identifying it as the transmissibility restores the conventional interpretation of the

threshold for epidemic spread as the expected number of secondary infections caused by

a single infected individual in a fully susceptible population. In this way, our findings

agree with the literature (see, for example, [36]).

An interesting result can be reached by considering R in the case of a scale-free

distribution with pk ∼ k−α where α ≤ 3. In this case, unless pk is truncated, higher

moments n2, n3 of the degree distribution are not defined as the population size tends

to infinity, and, hence, as the population size grows, the threshold parameter R will

diverge for any non-trivial choice of the disease parameters τ , γ and K. Under these

circumstances, the network topology dominates the dynamics of disease, and unless the

contact structure can be altered or influenced, the disease will always spread through

the population. This conclusion has been reached before in other models [132].

Since we are studying the spread of epidemics in a closed population, every epidemic

will reach an end when there are no more infected individuals, at which point every

member of the population is either still susceptible or in the removed class. To quantify
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Figure 3.3: Comparison of the final epidemic size as determined by equations (3.12) and

(3.13) (lines) and solutions of the pairwise model (3.1) (markers) for bimodal (a)-(b)

and truncated scale-free networks (c)-(d), respectively. The parameter values are: (a),

(c) K = 1, γ = 1 (solid line, crosses), K = 4, γ = 1 (dashed line, pluses), K = 1,

γ = 0.5 (dotted line, stars); (b), (d) τ = 0.15, γ = 1 (solid line, crosses), τ = 0.25,

γ = 1 (dashed line, pluses), τ = 0.15, γ = 0.5 (dotted line, stars).

the severity of an epidemic, it is instructive to look at the proportion of the population

who will become infected over the entire lifetime of the epidemic; this quantity is

known as the final epidemic size. In principle, it may be possible to manipulate the

equations in (3.1) with the newly derived closure approximation (3.8) to find first-

integral-like relations and thus find an expression for the final epidemic size [84, 149].

However, by considering the final epidemic size problem using a bond percolation model,

Newman [126] showed that it is possible to obtain an exact result for the mean final

epidemic size. Based on the generating function for the degree distribution G0(x) :=∑
k pkx

k, the generating function for the excess degree distribution G1(x) = 1
n1
G′0(x) =

1
n1

∑
k kpkx

k−1, and the transmissibility, which for our model is given by τ̃ in (3.10),

the final epidemic size is given by [126]:

R∞ = 1−G0(1 + (θ − 1)τ̃) = 1−
∑
k

pk(1 + (θ − 1)τ̃)k, (3.12)

where θ is the unique solution in (0, 1) of the following equation

θ = G1(1 + (θ − 1)τ̃) =
1

n1

∑
k

pk(1 + (θ − 1)τ̃)k−1. (3.13)
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Newman’s work has been revisited by Kenah and Robins [88], and whilst they showed

that the distribution of final sizes suggested by Newman’s original work was incorrect for

non-constant infectious periods the mean final epidemic size given by (3.12) and (3.13)

is correct.

Figure 3.3 shows the comparison of the final epidemic size results based on equa-

tions (3.12) and (3.13) to results from the numerical solution of the new pairwise model

(3.1), and the agreement is excellent. It is noteworthy that in all cases the final epi-

demic size behaves as expected with respect to the disease parameters, i.e. a higher

(lower) transmission rate τ results in a larger (smaller) final epidemic size, the mean

duration of infection (γ−1) has a similar effect, and a tighter distribution of the infec-

tious periods (higher K) increases the predicted final epidemic size. Furthermore, a

careful comparison of bimodal and truncated scale-free networks shows that having a

broader degree distribution leads to certain differences in the dynamics. Namely, for

relatively low transmission rates, epidemics of measurable size are predicted in trun-

cated scale-free networks but not necessarily for the bimodal distribution. However, as

the transmissibility grows (either through increasing τ or K) there comes a point where

the final epidemic size becomes larger for the bimodal network. This is likely due to the

large number of low-degree nodes in truncated scale-free networks, it is difficult for any

epidemic to reach these nodes, even once highly-connected nodes have been infected.

3.3.3 Limiting cases

It is instructive to look at the behaviour of model (3.1) in two particular limits of

the number of infectious stages. When K = 1, model (3.1) reverts to the classical

Markovian pairwise model which has been thoroughly studied [44, 69]. As the number

of stages increases, the shape of the distribution for the infectious period changes, as

shown in Fig. 3.4. For larger K one can see that the distribution grows tighter around

the mean, which is kept constant at γ−1 due to the particular formulation of the model,

and there is also much less variation in the duration of infection. The limiting case

of K → ∞ results in the infected period having a Dirac delta distribution δ (t− γ−1)

around the mean infectious period. It has been recently shown that this case can be

accurately described by a system of pairwise delay differential equations (DDEs) for

homogeneous populations [92], in which case the above-mentioned concept of trans-

missibility is also applicable. In this case, the transmission process is still Markovian

(thus the spreading process is characterised by the probability density function τe−τt),
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Figure 3.4: The distribution of infectious periods in the Markovian case of K = 1

(solid), for K = 3 (dashed), K = 20 (dash-dotted), and, the Dirac delta distribu-

tion corresponding to K = ∞. The mean infectious period is equal to 2 for all four

distributions.

however, the infectious period is now constant, hence the probability of the infected

node recovering is given by ξ(t), where

ξ(t) =

0 if 0 ≤ t < γ−1,

1 if t ≥ γ−1.

Under these circumstances the transmissibility for a disease with a constant infectious

period is given by

τ̃const. =

∫ ∞
0

τe−τxξ(x)dx = 1− e−τ/γ.

It is easy to show that taking the limit K →∞ in (3.10) yields the same result, i.e.

lim
K→∞

τ̃ = 1− e−τ/γ.

This suggests that results for the final epidemic size and the threshold parameter R
for the case of a constant infectious period can be derived independently from the DDE

system [92], and they coincide with the result of taking the limit as K → ∞ for the

multi-stage model (3.1). This model, therefore, bridges the gap between the traditional

Markovian and delay-based scenarios, and accurately represents the spread of a disease

with a distribution of infectious period which cannot be modelled by either.
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3.4 The pairwise model on clustered networks

As has already been mentioned, clustering is known to play an important role in the

spread of epidemics on networks. A convenient way to quantitatively characterise the

level of clustering in a given network is through the clustering coefficient ϕ, most com-

monly defined as the proportion of closed triangles of nodes out of the total number of

triples (open and closed together) in the network. This coefficient can be computed as

follows [84]

ϕ =
trace(A3)

||A2|| − trace(A2)
, (3.14)

where A = (aij)i,j=1,2,...,N is the adjacency matrix of the network, with aij = aji, aii = 0

for all i, j, aij = 1 if nodes i and j are connected and zero otherwise, and || · || stands

for the sum of all the elements of the matrix. In the previous section it was assumed

that ϕ = 0. The challenge presented by clustered networks is that one can no longer

assume that all triples are open, and, therefore, the closures of pairwise models have to

be reconsidered and appropriately modified to effectively approximate the dynamics.

In the most general formulation, one can start from a triple [XaSbYc] where the degree

of nodes is considered explicitly. Based on House and Keeling [69], we can write

[XaSbYc] ≈
b− 1

b

[XaSb][SbYc]

[Sb]

(
1− ϕ+ ϕ

n1N

ac

[XaYc]

[Xa][Yc]

)
, (3.15)

where again X, Y ∈ S. In order to remove the dependency on node degree, we employ

two a priori approximations first introduced by Eames and Keeling [44]. The first of

these approximations has already featured earlier in (3.4), namely,

[XaY ] ≈ a[Xa]∑
j j[Xj]

[XY ],

and the second has the form

[XaYb] ≈
[XaY ][XYb]

[XY ]

[ab]n1N

a[a]b[b]
≈ [XaY ][XYb]

[XY ]
, (3.16)

where n1 is the mean degree, and [a] is the expected number of individuals with degree

a in the network. The new approximation assumes that the joint probability of a pair

can be accurately estimated by removing dependence on the degree of the other node

and multiplying by a second term that captures the specifics of the network structure.

This term is known as the assortativity of nodes with degrees a and b, and it measures

whether nodes with similar degrees are more likely or less likely to connect to each
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other [127]. The simplification shown in (3.16) assumes null assortativity (i.e. random

connection between nodes) and will be used throughout this section.

We are now in a position to derive closures for the multi-stage model on clustered

networks. In (3.15) the terms outside the bracket are similar to the closure in (3.8) and

(3.9) for unclustered networks. In fact, the sum over all degrees a and c will result in

the same expression but with the subscripts dropped, as can be checked using (3.4) and

(3.16). Thus, the first part of the derivation follows exactly the same methodology as

for the unclustered network case discussed in Section 3.3. Focusing on the final term in

(3.15), which is responsible for clustering, we use the above approximations to obtain

n1N

ac

[XaYc]

[Xa][Yc]
≈ n1N

ac

[XaY ]

[XY ][Xa]

[XYc]

[Yc]
≈ n1N

ac

a[Xa][XY ]

[XY ][Xa]
∑

i i[Xi]

[XYc]

[Yc]
,

≈ n1N

c

1∑
i i[Xi]

c[Yc][XY ]

[Yc]
∑

j j[Yj]
≈ n1N

[XY ]∑
i i[Xi]

∑
j j[Yj]

.

In a similar way as it was done for T1, it is possible to define J
(i)
1 and P1 as the sums

of all edges emanating from infected nodes in the i-th stage and from removed nodes,

respectively. Then J1 =
∑K

j=1 J
(j)
1 is the number of edges pointing outwards from all

infected nodes, regardless of their degree and the stage of the disease which they are in.

The full closures necessary for the model with clustering can now be stated as follows,

[SSI] = ζ(t)
[SS][SI]

[S]

(
1− ϕ+ ϕn1N

[SI]

T1J1

)
,

[ISI(i)] = ζ(t)
[IS][SI(i)]

[S]

(
1− ϕ+ ϕn1N

[II(i)]

J1J
(i)
1

)
, for i = 1, 2, . . . , K,

[ISR] = ζ(t)
[SI][SR]

[S]

(
1− ϕ+ ϕn1N

[IR]

J1P1

)
,

(3.17)

where ζ(t) is still given by (3.9), and we have defined the time dependent quantities

T1 = [SS] +
K∑
i=1

[SI(i)] + [SR],

J
(j)
1 = [SI(j)] +

K∑
i=1

[I(i)I(j)] + [I(j)R], J1 =
K∑
j=1

J
(j)
1 ,

P1 = [SR] +
K∑
i=1

[I(i)R] + [RR].
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The model now has to explicitly consider every possible combination of pairs, which,

for a disease with a K-stage gamma distributed infectious period, yields the following

system of (K2 + 3K + 4) equations

˙[S] = −τ [SI],

˙[I(1)] = τ [SI]−Kγ[I(1)],

˙[I(j)] = Kγ[I(j−1)]−Kγ[I(j)], for j = 2, 3, . . . , K,

˙[SS] = −2τ [SSI],

˙[SI(1)] = −(τ +Kγ)[SI(1)] + τ
(
[SSI]− [ISI(1)]

)
,

˙[SI(j)] = −(τ +Kγ)[SI(j)] +Kγ[SI(j−1)]− τ [ISI(j)], for j = 2, 3, . . . , K,

˙[SR] = −τ [ISR] +Kγ[SIK ], (3.18)

˙[I(1)I(1)] = 2τ [SI(1)] + 2τ [ISI(1)]− 2Kγ[I(1)I(1)],

˙[I(1)I(j)] = τ [SI(j)] + τ [ISI(j)] +Kγ
(
[I(1)I(j−1)]− 2[I(1)I(j)]

)
, for j = 2, 3, . . . , K,

˙[I(j)I(k)] = Kγ
(
[I(j−1)I(k)] + [I(j)I(k−1)]− 2[I(j)I(k)]

)
, for j, k = 2, 3, . . . , K,

˙[I(1)R] = τ [ISR] +Kγ
(
[I(1)I(K)]− [I(1)R]

)
,

˙[I(j)R] = Kγ
(
[I(j)I(K)] + [I(j−1)R]− [I(j)R]

)
, for j = 2, 3, . . . , K,

˙[RR] = 2Kγ[I(K)R],

with the closures for [SSI], [ISI(j)] and [ISR] given in (3.17). Note that, as one would

expect, setting ϕ = 0 reduces this model back to the simpler compact model introduced

and discussed in Section 3.3.

3.4.1 Numerical Simulations

To investigate the accuracy of model (3.18), we compare its output to stochastic network

simulation. First, it is necessary to explain how one can construct clustered networks,

which is achieved using the big-V rewiring method [10]. This algorithm takes as an

input a random unclustered network constructed with the configuration model, and

at each iteration it looks for a chain of five nodes u − v − x − y − z, such that newly

created links after the rewiring process do not yet exist. Once such a chain is found, the
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Figure 3.5: Comparisons of numerical results (circles) and the compact pairwise model

on a bimodal network with an even split of nodes having degrees 4 and 12. (a) K = 1,

ϕ = 0, (b) K = 5, ϕ = 0, (c) K = 1, ϕ = 0.2, (d) K = 5, ϕ = 0.2. Other parameter

values are τ=0.1, γ = 0.2.

algorithm deletes u−v and y−z edges, and connects v−y and u−z in order to replace

the five-node chain with a triangle and a separately connected edge. If this procedure

increases local clustering, then the rewiring is accepted, and the algorithm continues

until the target clustering coefficient ϕ is reached. The benefit of this approach is that

while the level of clustering can be varied, the degree distribution remains the same.

Figure 3.5 illustrates the results of simulations on bimodal networks both for un-

clustered networks and for rewired networks with the clustering coefficient ϕ = 0.2.

Whilst the agreement is good in all cases, the clustering introduces some inaccuracy.

This is to be expected since the number of susceptible neighbours of a node is now

harder to predict due to the presence of short cycles. Furthermore, the inclusion of

triangles appears to slow down the spread of the epidemic. The grouping of nodes

into small communities decreases the number of individuals at risk of infection at any

time, because the disease has fewer routes to spread away from an infectious seed. One

should also note that with the introduction of a gamma-distributed infectious period,

the trend of faster epidemic growth and higher peak prevalence with increasing values

of K is preserved. This reinforces the earlier conclusion that the inclusion of a more

realistic distribution of infectious periods can lead to more rapid severe epidemics than

what would be predicted by the traditional models with an exponentially distributed
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Figure 3.6: Numerical simulations (circles) compared to the pairwise model (black line)

for truncated scale-free networks with exponent α = 2.5, τ=0.1, γ = 0.2. (a) K = 1,

ϕ = 0; (b) K = 5, ϕ = 0; (c) K = 1, ϕ = 0.2; (d) K = 5, ϕ = 0.2.

infectious period.

Similar changes in the dynamics are observed in the case of truncated scale-free

networks, as shown in Fig. 3.6. However, unlike the bimodal case, the impact of higher

clustering has a less pronounced effect on the timescale of the epidemic. This is likely

due to the fact that highly connected nodes cannot be effectively restricted to a single

small community, and, therefore, their ability to spread the disease is not significantly
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Figure 3.7: Comparison between the clustered pairwise model (3.18) (solid lines) and

network simulation (circles) for different values of the clustering coefficient ϕ. The

left column shows results for bimodal networks with an even split of nodes having

degrees 4 or 12, the right column shows the results for truncated scale-free networks

with the exponent α = 2.5 and node degrees bounded between kmin = 4 and kmax = 60.

Parameter values are τ = 0.1, γ = 0.15, K = 3, with ϕ increasing through 0.1, 0.2, 0.3,

0.4 from top to bottom. As the clustering ϕ increases beyond 0.2, the inaccuracy of

the clustered pairwise model becomes more pronounced.

affected. It can also be seen that a larger value of K appears to improve the accuracy

of the pairwise model (3.18).

Despite its successes, the pairwise model (3.18) becomes less accurate as clustering in

the network increases. To investigate this in more detail, we have performed numerous

comparisons between simulations and the numerical solution to the pairwise model

(3.18) for networks with bimodal and truncated scale-free degree distributions, with

increasing levels of clustering. The results of these tests are presented in Fig. 3.7
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which shows that system (3.18) is reasonably accurate for low levels of ϕ, however, this

accuracy reduces as ϕ increases. The most likely explanation for this reduction in model

accuracy is the assumption of null assortativity explicitly made in (3.16) when deriving

closures for the clustered model, since it is known that clustering in networks increases

assortativity [51]. Furthermore, it has also been shown in a number of earlier studies

that high levels of assortativity are the norm in real social networks (see, for example,

[125]). Since the null assortativity assumption is violated in such networks, it is not

surprising that the pairwise model (3.18) does not provide an accurate representation

of dynamics for high levels of clustering. Figure 3.8 shows the comparison in terms of

the final epidemic size recorded from simulation and the pairwise model. Again, it is

clear to see that the pairwise model performs less well for higher levels of clustering.

However, what can be seen from the results is that when clustering is present in the

network the threshold appears to increase and thus measurable epidemics are less likely

to occur. This can be seen in Fig. 3.8, as a higher transmission rate is required in

order for the final epidemic size to diverge away from zero when the epidemic takes

place in a clustered network. Similarly, for clustered networks, simulation results show

that the final epidemic size will be reduced when compared to equivalent networks with

the same degree distribution, no clustering and the same parameters of the disease

dynamics. This makes sense intuitively, since rewiring a network makes the population

more segregated and thus less at risk of widespread epidemics.

Figure 3.8 further suggests that the difference between the pairwise model and

simulations is less marked for the non-Markovian case (i.e. K > 1). In an extensive

recent study of small/toy networks, Pellis et al. [133] proved that for an SIR epidemic

on a single open triple or closed triangle the classical closures, such as those given in

(3.3) and (3.15), are exact for constant infectious periods (see Proposition 3 in [133]).

As has been previously discussed in Section 3.3.3, as the number of stages, K, increases

in the pairwise model, we approach the limit of a constant infectious period. Therefore,

if the results of Pellis et al. [133] extend to larger networks, one would expect that

the accuracy of our pairwise model for clustered networks (3.18) should improve as K

increases. To test the validity of this hypothesis, in Fig. 3.9 we plot the value of the

error between the final epidemic size computed from the pairwise model (3.18) and the

results of 100 simulations under the same parameters, for bimodal and truncated scale-

free networks. Figure 3.9 indicates that the error does indeed decrease for any ϕ as the

infectious period becomes tighter around the mean (as characterised by an increasing
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Figure 3.8: Dependence of the final epidemic size on the per-link transmission rate for

bimodal networks with degree 4 or 12, split equally. The parameter γ is fixed at 1, and

in (a) K = 1, (b) K = 3. Solid lines correspond to epidemics on unclustered networks,

dashed lines illustrate equivalent epidemics on a network with ϕ = 0.4, and the crosses

represent results from 100 numerical simulations on the same clustered networks.

K), thus providing evidence that Pellis et al.’s results are relevant for large networks

where both open and closed triples are present. Furthermore, one should note that in

all but two cases the pairwise model (3.18) over-estimates the final epidemic size when

compared to simulations. This suggests that in most cases the model can be expected to

give an upper bound on the size of an epidemic. Even though our newly derived compact

closures (3.17) are not exact, their performance improves greatly when the infectious

period approaches the limit of a fixed infectious period. This is an important result

that justifies the continued use of pairwise-like methods for non-Markovian epidemics

on networks.

3.5 Discussion

In this Chapter we have derived and studied a new pairwise model for the spread of

infectious diseases which includes three major characteristics that are not consistently

studied concurrently, despite being essential for understanding disease dynamics in

many realistic scenarios. Our pairwise model can account for degree heterogeneity,

clustering and gamma-distributed infectious periods, and the number of equations in
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Figure 3.9: The error between the final epidemic sizes obtained from the solution of

the pairwise model (3.18) and from the average of 100 numerical simulations plotted

against the clustering coefficient ϕ and the number of stages of infection K. (Plotted

as pairwise subtract simulation). Parameter values are τ = 0.3, γ = 1. (a) A bimodal

network with an even split of nodes having degrees k1 = 4 and k2 = 12. (b) A scale-

free network of 1000 nodes with kmin = 4, kmax = 60, and pk ∼ k−2.5. Note that as

predicted, even in the presence of clustering, as K grows the error becomes smaller,

and hence the pairwise model becomes more accurate.

the pairwise model does not depend on the range of different node degrees. This

approach follows the methodology of the so-called compact pairwise models [70, 151],

and the output from the resulting pairwise model shows excellent agreement with results

of numerical simulation for networks with either no or low levels of clustering, and for

all the different degree distributions that have been considered.

In the absence of clustering we have used linear stability analysis to determine a

threshold parameter from the pairwise model, and we have shown that existing methods

for finding the final epidemic size [126] can be applied. Equivalent results have not been

found in the case of clustered networks. However, extensive numerical simulations have

shown that introducing multiple stages of infection increases the speed of epidemic

spread, as well as the peak prevalence and the final epidemic size. The interactions

of degree heterogeneity, clustering and the distribution of infectious period all have

significant yet contrasting impacts on an outbreak. For example, we have seen that

both degree heterogeneity and a larger number of infectious stages (corresponding to
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a tighter distribution for the duration of infection) increase the growth rate of the

epidemic in the early stages, however, this is countered when one includes clustering

that is likely to be present in real contact networks. These findings are consistent with

earlier results on the effects of clustering on the spread of epidemics [43]. Serrano and

Boguñá [147] have shown that whilst clustering makes epidemics less likely, for scale-free

topologies, and in the limit of infinite networks, an epidemic threshold does not exist,

and a significant outbreak will always occur. The complexity of the pairwise model for

clustered networks has meant that analytical expressions for the epidemic threshold and

the final epidemic size have not been found. In fact, analytical results have so far only

been obtained for clustered networks with a specific construction, e.g. non-overlapping

triangles [115]. Random rewiring enforces fewer restrictions on the network and thus

allows for more complex topologies to emerge; it is likely to provide more realistic but

also more challenging scenarios for modelling than networks with a prescribed nature

of clusters.

A strength of the final pairwise model which we have presented is that it can be

tuned based on the characteristics of the disease and population being studied. There

are several ways to include more features into this model. For example, assortativity

could be made an explicit consideration in the closures, and by allowing the transmission

rate to vary depending on the stage of infection, one could model diseases with varying

infectivity. Setting τ = 0 in any number of initial stages also opens the possibility for

multi-stage SEIR models to be studied, again without altering the basic framework of

the model.

Models, such as the one presented in this paper, could also be used for a more thor-

ough study of the performance of closures and for mapping out how different approxi-

mations behave under different regimes, such as stochastic models for the transmission

and recovery processes. Furthermore, one could consider whether non-Markovian trans-

mission processes can be incorporated into pairwise or pairwise-like models. Additional

motivation for research into this area comes from studies which have suggested that

human contact patterns are typically very ‘bursty’ [29, 31]. This means that there are

many short periods with high levels of interaction and longer periods of little or no

action, and this may have a significant impact on how an epidemic may spread. In-

corporating this into some future development would be a radical departure as, to our

knowledge, no published pairwise model has ever featured a non-Markovian transmis-

sion process. However, it may be possible to use partial or integro-differential equations
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to achieve this, since they have been successfully applied to model non-Markovian dis-

tributions of the infectious period, as described further in Chapter 4. The message

passing method [80], and the novel EBCM introduced in Chapter 4 are both formu-

lated for general transmission and recovery processes, so these models are better suited

to exploring the effect that a bursty transmission process has on the dynamics of an

epidemic.

There have been many recent developments in the area of dynamic or adaptive net-

works [64, 90, 139, 146] where pairwise models have been used successfully to couple

the dynamics of an epidemic on the network with the dynamics of the network. These

models have shown that using pairwise approximation techniques it is possible to cap-

ture non-trivial properties of both network and epidemic dynamics in a single model.

There is a wide scope for further research focussed on modelling the rewiring process, as

well as for analysis of a reaction of networks to a spreading epidemic when considered

as a non-Markovian process.

The pairwise model presented in this Chapter does well at accounting for non-

Markovian infectious periods, indeed, it becomes more accurate in this case, yet it is

limited in capturing epidemics on realistic clustered networks. This highlights that

complexities in the structure of social networks are difficult to model even with a large

number of equations. The above suggests that when studying epidemics on networks

and designing disease control strategies or interventions, it is essential to use accurate

and reliable data about the population being studied, as well as about epidemiological

characteristics of the disease.
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4.1 Abstract

This paper introduces a novel extension of the edge-based compartmental model to epi-

demics where the transmission and recovery processes are driven by general independent

probability distributions. Edge-based compartmental modelling is just one of many dif-

ferent approaches used to model the spread of an infectious disease on a network; the

major result of this Chapter is the rigorous proof that the edge-based compartmental

model and the message passing models are equivalent for general independent transmis-

sion and recovery processes. This implies that the new model is exact on the ensemble

of configuration model networks of infinite size. For the case of Markovian transmission

the message passing model is re-parametrised into a pairwise-like model which is then

used to derive many well-known pairwise models for regular networks, or when the

infectious period is exponentially distributed or is of a fixed length.

4.2 Introduction

The use of mathematical tools to study and understand the spread of infectious diseases

is a mature and fruitful area of research. In their 1927 paper Kermack and McKendrick

[89] established the susceptible-infected-recovered (SIR) framework which forms the

basis of many models to this day. However, their model assumes that any individual

can interact with any other. In reality, in large populations each individual only inter-

acts with a few others, and these connections determine the possible routes of disease

transmission. Moreover, studies have found significant heterogeneity in the number of

contacts a single individual may have [132]. The use of graphs or networks to describe

these contact patterns represented a major advance in our ability to model more real-

istic social behaviour. In network-based models individuals are represented by nodes

in the network, with edges (or links) encoding the interactions between nodes.

Since the direct analysis of stochastic epidemics on networks is far from trivial, one

often relies on deterministic mean-field models that are aimed at approximating some

average quantities taken from the stochastic models. Deriving mean-field models can

be done in several different ways depending on what one chooses to focus on. For

example, considering all nodes and edges in all possible states leads to pairwise models

[70, 84], while considering separately each individual and all possible ways in which it

can become infected by its neighbours leads to the message passing (MP) formalism

[80]. Focussing on all possible star-like structures, typically defined by a node and all
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its neighbours, and also taking into account their disease status, yields the so-called

effective-degree models [100]. Edge-based compartmental models (EBCM) are based on

considering a randomly chosen test node and working out the probability of it staying

susceptible, with this probability being then equivalent to the proportion of susceptible

nodes in the entire population [119]. See Danon et al. [35], Pastor-Satorras et al. [131]

and Kiss et al. [91] for reviews. All of these models start from the same stochastic

model, thus, it is not surprising that some of these models [70, 91, 118, 155] are, in fact,

equivalent, as we will demonstrate later.

While network models capture contact more accurately, the assumption that the

underlying stochastic transmission and recovery processes are memoryless [70, 85, 162]

remains restrictive. Of course, memoryless processes are mathematically more tractable

and relatively simple to analyse when compared to models where the inter-event times

are chosen from distributions other than the exponential. However, when compared to

data, these assumptions are often violated. For example, diseases can exhibit unique

and non-Markovian behaviour in terms of the strength and duration of infection. In

this respect, the distribution of the infectious period is usually better approximated by

some peaked distribution with a well defined mean, see e.g. [8, 58, 168] and references

therein.

The MP method does not rely on these assumptions and is able to predict the aver-

age behaviour of an epidemic outbreak with general distributions for the transmission

times and the duration of infection, although we still require these be independent.

Throughout the Chapter we will denote these distributions as τ(a) and q(a), where

a is the time since the node became infected, known as the age of infection. Once a

susceptible node has been exposed to a transmission event, it becomes infected imme-

diately, while the recovery from the disease grants a lifetime immunity. Using these

distributions assumes a homogeneous response to disease; whilst this restriction is not

always necessary (see e.g. [170]), it is a common simplification in order to obtain a con-

cise model. However, the main focus of this Chapter is to explore the flexibility of the

EBCM in being able to capture epidemics where the infection and recovery processes

are described by general independent distributions.

The rest of the Chapter is organised as follows. In the following Section we introduce

the MP method [80] and show how the epidemic model is constructed. We then go on

to present the extension of the edge-based compartmental model [119] to SIR epidemics

with general but independent distributions for time to transmission and duration of the
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infectious period. This Section also contains the main result of the Chapter, namely,

a full rigorous proof that MP model and the EBCM are equivalent, and hence, that

the EBCM provides an exact representation of the average stochastic behaviour on the

ensemble of infinite Configuration Model (CM) networks [15, 122, 123]. Section 4.4

contains a re-parametrisation of the MP model in the special case of Markovian trans-

mission. This proves to be a useful tool in showing how several well-known models can

be derived from the MP model or the EBCM when additional assumptions about the

network or recovery process are made. In Section 4.5, we compare numerical solutions

of the mean-field models to averaged results from explicit stochastic network simula-

tions. The Chapter concludes with a discussion of main results and possible directions

for future research.

4.3 Model summary

4.3.1 The message passing (MP) method

In their 2010 paper, Karrer and Newman [80] introduced the message passing approach

to model SIR dynamics on networks. Here, we briefly present the ideas behind their

model and its assumptions. Recalling τ(a) and q(a) as the densities for transmission

and duration of the infectious period one can introduce a new function f(a)

f(a) = τ(a)

∫ ∞
a

q(x) dx, (4.1)

such that the probability that a node infected at time 0 attempts to transmit the disease

to a given neighbour before time t is
∫ t

0
f(a)da, since a neighbour can only transmit the

disease if it has not yet recovered. Note that the integration of (4.1) over all time is the

overall probability of an attempted transmission of the disease across a given network

edge, commonly known as the transmissibility of the disease. This is a quantity which

is important in percolation models to determine the epidemic threshold and expected

final epidemic size of a major outbreak [88, 126].

In order to model the dynamics of disease spread, consider a test node u. This node

is placed into a cavity state where it can become infected but is not able to transmit the

disease to any of its neighbours. This has no effect on the probability of the node being

in any given state [119]. Now consider a node v which is a neighbour of u; the message

is the probability that v has not attempted to transmit the disease to u by calendar

time t, denoted Hu←v(t). This probability is comprised of two distinct possibilities; the
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first possibility is that v will make no attempt to transmit the disease before age t, this

is given by 1 −
∫ t

0
f(a) da. This means that even if v is one of the initially infected

nodes, it would not attempt to transmit to u. Alternatively, it could be that v will

transmit to u at some age a < t, but v itself was infected at some time t1 > t − a

and has, therefore, not yet attempted to transmit the disease to its neighbour u. This

requires v to have initially been susceptible (with probability z) and to have escaped

transmission from each of its neighbours until at least time (t− a). On a tree network

with no loops, this is exactly z
∫ t

0
f(a)

∏
w∈N (v)\uH

v←w(t− a) da, where N (v) denotes

the set of neighbours of v. Hence, combining these two gives

Hu←v(t) = 1−
∫ t

0

f(a)

1− z
∏

w∈N (v)\u

Hv←w(t− a)

 da. (4.2)

In principle, one could calculate (4.2) for all edges (in both directions) to find a full

solution for the proportion of the population that is susceptible, infected or removed

at any time t. For example, the probability that u is susceptible is the product of

Hu←w(t) across all neighbours w ∈ N (u) multiplied by the probability that it was

initially susceptible, z. On a single fixed finite tree network, solving (4.2) for all edges

will, in fact, yield the exact solution of the stochastic epidemic [80]. The size of such a

system of equations would be twice the number of all edges in the network (since both

Hu←v(t) and Hv←u(t) would need to be calculated).

Throughout this Chapter we consider unweighted, bi-directional and static networks

constructed according to the configuration model (CM). Every node is assigned a num-

ber of neighbours, known as its degree, according to a probability distribution pk, known

as the degree distribution, that describes the probability that a randomly chosen node

has degree k. Let us now focus on an ensemble of CM networks and consider an average

message, H1, instead of considering distinct messages across every edge [80]. For CM

networks, as the size of the network tends to infinity, so does the length of the shortest

loops, and, therefore, the network becomes locally tree-like. This means that the mes-

sages that a node receives from each of its neighbours are independent, and the average

message received by the test node u is equal to the product of the average message for

each neighbour.

The product in (4.2) is then this H1 raised to the power of the excess degree of the

node, its degree excluding the edge which connects it to the test node. The following
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moment generating functions average this product over the degree distribution

G0(x) :=
∑
k

pkx
k, G1(x) :=

1

〈k〉
∑
k

pkkx
k−1,

G2(x) := G′1(x) =
1

〈k〉
∑
k

pkk(k − 1)xk−2,

(4.3)

where 〈k〉 = G
′
0(1) is the mean degree. G1(x) is the generating function for the excess

degree distribution, since kpk/〈k〉 describes the probability that a node reached by

traversing a randomly selected edge has (k − 1) other contacts [126]; the mean excess

degree is given by G′2(1). The moment generating function G2(x) will be used to trace

the route of infection in later models. Using G1 to replace the product in (4.2), the

equation for the average message H1(t) is

H1(t) = 1−
∫ t

0

f(a) [1− zG1(H1(t− a))] da, (4.4)

with H1(0) = 1.

In practice, the trajectory of H1(t) is found by identifying and then solving a dif-

ferential or integro-differential equation. For example, the purely Markovian case (i.e.

τ(a) and q(a) are both exponential distributions), with transmission and recovery pa-

rameters β and γ, leads to

dH1

dt
= γ − (β + γ)H1(t) + βzG1(H1(t)),

where, again, z is the fraction of the population which was initially susceptible at time

t = 0 [80]. However, the precise form of this equation is not universal, it depends on

the particular choice of τ(a) and q(a). The proportions of susceptible, infected and

recovered individuals at any time t are then given, in terms of the message H1(t), as

〈S〉(t) = zG0(H1(t)),

〈R〉(t) =

∫ t

0

q(a) [1− 〈S〉(t− a)] da,

〈I〉(t) = 1− 〈S〉(t)− 〈R〉(t).

(4.5)

The MP model (4.5) with the average message H1 is exact when the stochastic

epidemic is considered on the ensemble of infinite CM networks [80]. This approach is

able to model dynamics for general choices of independent transmission and recovery

processes, see Karrer and Newman [80], or Wilkinson and Sharkey [170], for several

examples where output from the MP model is compared to results based on simulations.
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4.3.2 EBCM for general transmission and recovery processes

The edge-based compartmental model is an established tool for Markovian dynamics

[119]. We introduce a new extended EBCM which generalises the method to general

transmission and recovery processes τ(a) and q(a). Again, the EBCM uses the fact

that the probability that the test node u remains susceptible is the probability that u

escapes transmission from all of its neighbours. This concept is similar to the notion

and use of H1 in MP models. What separates the two models, conceptually at least,

is in the construction of the models. Whereas MP rigorously derives equations for all

quantities, the EBCM is constructed by directly and heuristically defining a system of

differential equations which describe the trajectory of an epidemic.

Recovery is modelled using age-structured differential equations. However, the

EBCM uses the instantaneous rates of transmission and recovery given by the haz-

ard functions rather than the raw densities τ(a) and q(a). These are defined as

ζ(a) :=
τ(a)

ξτ (a)
, and ρ(a) :=

q(a)

ξq(a)
, (4.6)

where ξτ (a) and ξq(a) are the respective survival functions (see, e.g., [121]).

ξτ (a) =

∫ ∞
a

τ(â) dâ = e
−
∫ a

0

ζ(â) dâ
,

ξq(a) =

∫ ∞
a

q(â) dâ = e
−
∫ a

0

ρ(â) dâ
.

(4.7)

All of these disease variables and related functions are summarised in Table 4.1. As

before, the contact network is a CM network with degree distribution and generating

functions as defined in (4.3). The basis of the EBCM revolves around finding the

probability that a random test node (in a cavity state) is in a susceptible, infected or

recovered state at time t. As this test node is chosen at random, these probabilities are

equal to the proportions of the population in each state at time t, denoted S(t), I(t)

and R(t), respectively.

The first important quantity is Θ(t), defined in a manner similar to H1(t) in (4.4) as

the probability that the representative test node has not received transmission from a

given neighbour by time t. This approach then differs from MP by directly expressing

a differential equation for the dynamics of Θ. The model is known as “edge-based”

because it considers the state of the neighbours of the test node; the densities ΦS(t),
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ΦI(t) and ΦR(t) describe the probability that at time t a random neighbour of the test

node is (i) still susceptible, (ii) infected but has not attempted to transmit the disease to

the test node, (iii) recovered, and did not transmit to the test node whilst it was infected.

The age of infection is, in general, crucial in determining the hazard rates, and so we

introduce i(t, a) as the density of infected nodes with the age of infection a. Similarly,

φI(t, a) is the density of infected neighbours who have not transmitted to the test node

and have age a. Thus, it is clear that I(t) =
∫ t

0
i(t, a)da and ΦI(t) =

∫ t
0
φI(t, a)da. These

variables are summarised in Table 4.2. We also introduce the Dirac delta distribution

as follows [54]:

δ(x) =

+∞, x = 0

0, x 6= 0
,

∫ ∞
−∞

δ(x)dx = 1.

Before writing down the new edge-based compartmental model it is worth intro-

ducing and explaining the structure of its equations. The message Θ is monotonically

decreasing, and it depends on the density and age of infected neighbours, φI(t, a), and

the hazard rate ζ(a). We must consider the possibility of an infected neighbour of any

age up to time t transmitting the disease, hence, we have

dΘ(t)

dt
= −

∫ t

0

ζ(a)φI(t, a) da.

Given Θ(t) it follows that ΦS(t) = zG1(Θ(t)). Since the test node is in a cavity state,

the probability of a neighbour being susceptible is the probability of it escaping infection

from its other contacts averaged over the excess degree distribution.

The rate at which susceptible neighbours are infected is the boundary condition for

infected neighbours, i.e.

φI(t, 0) = −Φ̇S(t) = (1− z)δ(t) + zG2(Θ(t))

∫ t

0

ζ(a)φI(t, a) da,

where the first term represents the introduction of the disease at time t = 0, and is zero

everywhere else. As these neighbours age, they may attempt to transmit the disease,

and will eventually recover from it. These events depend on the calendar time and the

age of infection, and so we have a von Foerster-type equation(
∂

∂t
+

∂

∂a

)
φI(t, a) = − [ζ(a) + ρ(a)]φI(t, a), 0 < a ≤ t.

The density of nodes in each state depends on Θ and φI . By the same logic seen

in the MP model, the density of susceptible nodes is S(t) = zG0(Θ(t)). The rate at
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Variable Definition

τ(a) The density of the transmission process.

q(a) The density of the duration of the infectious period.

ξτ (a)

The survival function of the transmission process. The probability

that an infected node of age a has not yet attempted to transmit the

disease along a given edge:
∫∞
a
τ(x) dx.

ξq(a)
The survival function of the recovery process. The probability that

an infected node reaches at least age a before recovering:
∫∞
a
q(x) dx.

ζ(a)

The hazard function of the transmission process. The probability of

an edge of age a transmitting in a small interval of time (a, a + ∆a):
τ(a)
ξτ (a)

.

ρ(a)

The hazard function of the recovery process. The probability of an

infected node of age a recovering in a small interval of time (a, a+∆a):
q(a)
ξq(a)

.

f(a)
The probability that, in a small interval, an infectious contact is made

by an infected node of age a :τ(a)
∫∞
a
q(x) dx.

g(a)

The probability that, in a small interval, an infectious node of age

a recovers, without attempting to transmit the disease to a given

neighbour: q(a)
∫∞
a
τ(x) dx.

Table 4.1: The variables and functions describing the transmission and recovery pro-

cesses.
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Variable Definition

Θ(t)
The probability that the initially susceptible test node has not received

a transmission from a random neighbour by time t.

ΦS(t)
The probability that a random neighbour of the test node u is still

susceptible.

ΦI(t)
The probability that a random neighbour of the test node u is infected,

but has not transmitted to u.

φI(t, a)

The probability a random neighbour of the test node u to be infected,

have not transmitted to u by time t and have age of infection a,

ΦI(t) =
∫ t

0
φI(t, a) da.

ΦR(t)
The probability a random neighbour of the test node u has been in-

fected and recovered without transmitting to u.

S(t) The density of susceptible nodes.

I(t) The density of infected nodes.

i(t, a) The density of infected nodes with age of infection a.

R(t) The density of recovered nodes.

G1(x)
The generating function of the excess degree distribution:
1
〈k〉
∑∞

k=0 pkkx
(k−1).

G2(x)
The derivative of the generating function of the excess degree distri-

bution: 1
〈k〉
∑∞

k=0 pkk(k − 1)x(k−2).

Table 4.2: The list of variables in the EBCM.

which susceptible nodes become infected gives the boundary condition of newly infected

nodes. Therefore, infected nodes are replenished according to

i(t, 0) = −Ṡ(t) = (1− z)δ(t) + 〈k〉zG1(Θ(t))

∫ t

0

ζ(a)φI(t, a) da,

where the first term represents the introduction of the disease. As infected nodes age,

they recover according to ρ(a); these dynamics depend on t and a, and we have a second
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partial differential equation in the model(
∂

∂t
+

∂

∂a

)
i(t, a) = −ρ(a)i(t, a), 0 < a ≤ t.

These equations together form the EBCM for general but independent transmission

and recovery processes,

dΘ(t)

dt
= −

∫ t

0

ζ(a)φI(t, a) da, (4.8a)

ΦS(t) = zG1(Θ(t)), (4.8b)

φI(t, 0) = −Φ̇S(t)

= (1− z)δ(t) + zG2(Θ(t))

∫ t

0

ζ(a)φI(t, a) da, (4.8c)(
∂

∂t
+

∂

∂a

)
φI(t, a) = − [ζ(a) + ρ(a)]φI(t, a), 0 < a ≤ t, (4.8d)

ΦI(t) =

∫ t

0

φI(t, a) da, (4.8e)

ΦR(t) = Θ− ΦS − ΦI , (4.8f)

S(t) = zG0(Θ(t)), (4.8g)

i(t, 0) = −Ṡ(t)

= (1− z)δ(t) + 〈k〉zG1(Θ(t))

∫ t

0

ζ(a)φI(t, a) da, (4.8h)(
∂

∂t
+

∂

∂a

)
i(t, a) = −ρ(a)i(t, a), 0 < a ≤ t, (4.8i)

I(t) =

∫ t

0

i(t, a) da, (4.8j)

R(t) = 1− S(t)− I(t). (4.8k)

The new edge-based compartmental model (4.8) offers an alternative way to derive a

system of equations that are able to characterise the dynamics of an epidemic outbreak.

Although it seems more complex than the MP model, the EBCM is perhaps more

intuitive, as many of the variables it involves relate directly to densities of nodes in
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different states and to the transitions between different states. The EBCM has also

proven to be quite versatile and easily extendable to account for different scenarios.

For instance, Miller et al [119] extended the original EBCM for static networks to

dynamic networks where edges are deleted, created or rewired. It may be possible to

use similar techniques to extend (4.8) to model diseases spreading through dynamic

networks. To our knowledge, the MP model has so far not been extended beyond static

networks, although it may be possible.

As the MP model (4.5) and the non-Markovian edge-based compartmental model (4.8)

are based on the same underlying stochastic epidemic, it is natural to question how

accurate and how similar they are. Karrer and Newman [80] showed that the MP

model (4.5) is exact on the ensemble of CM networks. Therefore, proving that the

EBCM and MP model are equivalent will imply that the EBCM is exact under the

same circumstances.

4.3.3 Model Equivalence

We now present and prove the main result of this Chapter, that the edge-based com-

partmental and MP model are equivalent for any suitable choices of τ(a) and q(a).

Theorem 1. If τ(a) and q(a) are independent, integrable probability density functions,

then the MP model (4.5) and the EBCM (4.8) are equivalent, and will produce identical

trajectories for any shared initial conditions.

Proof. The proof consists of showing equivalence for two main elements: the messages

for the respective models H1(t) and Θ(t), and the densities of nodes in each state.

We first show that H1 and Θ satisfy the same evolution equation. To do this,

H1(t) (4.4) is differentiated using Leibniz’s rule, which yields

dH1

dt
= −f(t)[1− zG1(H1(0))]−

∫ t

0

f(a)

[
−zG2(H1(t− a))

dH1(t− a)

dt

]
da

= −f(t)[1− zG1(1)] +

∫ t

0

f(a)

[
zG2(H1(t− a))

dH1(t− a)

dt

]
da

= −f(t)(1− z) +

∫ t

0

f(a)

[
zG2(H1(t− a))

dH1(t− a)

dt

]
da. (4.9)

The dynamics of Θ are governed by the following equation

dΘ

dt
= −

∫ t

0

ζ(a)φI(t, a) da.
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u v w
(t− a)

ξτ (a)

Figure 4.1: Consider the node labelled u as the test node and thus in a cavity state.

For its link with node v to contribute to φI(t, a), it must be the case that v received

transmission from some neighbour w at time (t − a). If t − a = 0, then this is equal

to the initial proportion of infected nodes. Otherwise, we take the probability of a

transmission event a time ago, which is dΘ(t−a)
dt

. For v to have been successfully infected

at this time, it must have been susceptible until that point, since two of its neighbours

will not have transmitted before this time (u is in a cavity state and w will transmit at

(t− a)). The probability of this is zG2(H1(t− a)) for t > a, illustrated by the dashed

lines. The probability of v not transmitting to u before time t is ξτ (a). Finally, the

neighbour v must still be infected at age a, which is given by the survival function ξq(a).

From (4.8d), one can use the integrating factor exp
(∫ a

0
[ζ(â) + ρ(â)] dâ

)
to find

φI(t, a) = φI(t− a, 0)e
−
∫ a

0

[ζ(â) + ρ(â)] dâ
(4.10)

where

φI(t− a, 0) = (1− z)δ(t− a)− zG2(Θ(t− a))
dΘ(t− a)

dt
.

As an alternative, we offer a graphical explanation of (4.10) in Fig. 4.1.

Introducing f̂(a) := ζ(a)e
−
∫ a

0

[ζ(â) + ρ(â)] dâ
, we have

dΘ

dt
= −

∫ t

0

f̂(a)

[
(1− z)δ(t− a)− zG2(Θ(t− a))

dΘ(t− a)

dt

]
da

= −f̂(t)(1− z) + z

∫ t

0

f̂(a)G2(Θ(t− a))
dΘ(t− a)

dt
da. (4.11)

Thus, H1 and Θ have the same dynamics if one can show that f(a) = f̂(a). From the

definition of f(a) in (4.1) and using (4.7), we obtain

f(a) = ζ(a)ξτ (a)ξq(a) = ζ(a)e
−
∫ a

0

[ζ(â) + ρ(â)] dâ
= f̂(a).
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Since H1 and Θ have the same initial condition, this implies that H1(t) and Θ(t)

will exhibit identical dynamics for general but independent transmission and recovery

processes. As a direct consequence, this means that the dynamics of susceptibles are

the same in both models, since S(t) in (4.8g) and 〈S〉(t) in (4.5) differ only in that Θ

is replaced by H1, which are identical and thus interchangeable.

All that remains is to show that the evolution equations for 〈I〉(t) in (4.5) and I(t)

in (4.8j) are identical. From the EBCM we have that

I(t) =

∫ t

0

i(t, a) da,

which can be differentiated with respect to t

dI

dt
=

∫ t

0

∂i(t, a)

∂t
da+ i(t, t)

= −
∫ t

0

∂i(t, a)

∂a
da−

∫ t

0

ρ(a)i(t, a) da+ i(t, t)

= i(t, 0)−
∫ t

0

ρ(a)i(t, a) da,

making use of (4.8i). The density of infected individuals of age a is the same as the

density of infected individuals created at time t−a multiplied by the survival probability

for the duration of infection, ξq(a), i.e.

i(t, a) = ξq(a)i(t− a, 0) = ξq(a)Ṡ(t− a).

Utilising this substitution and the second identity in (4.6) gives

dI

dt
= −dS

dt
−
∫ t

0

q(a)
dS(t− a)

dt
da. (4.12)

From the MP model (4.5) we can see that

d〈I〉
dt

= −d〈S〉
dt
− d〈R〉

dt

= −d〈S〉
dt
−
∫ t

0

q(a)
d〈S〉(t− a)

dt
da− q(t)(1− z). (4.13)

This final term describes the rate at which the initially infected individuals recover;

this term is implicitly considered in the EBCM in (4.8h) and so dI/dt ≡ d〈I〉/dt. This

completes the proof.
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An implicit analytical relation for the final epidemic size can be found directly

from (4.8). This result corresponds to well-known results based on tools from percola-

tion theory [88, 114, 126], and to the final epidemic size obtained for MP models [80].

It is given in the following corollary.

Theorem 1. The final size of the epidemic r∞ = R(∞) in the EBCM (4.8) with a

vanishingly small proportion of infected nodes at time t = 0 is given by

r∞ = 1−G0(Θ∞),

where Θ∞ solves the equation

Θ∞ = 1− T̃ + T̃G1(Θ∞),

and T̃ =
∫∞

0
f(a) da =

∫∞
0
ζ(a) exp(−

∫ a
0

[ζ(â) + ρ(â)] dâ) da is the transmissibility of

the disease, i.e. the probability that the disease is transmitted along an edge (in isolation)

before recovery.

Proof. From (4.8g), for z → 1 and t→∞, it immediately follows that

r∞ = 1− S(∞) = 1−G0(Θ(∞)).

Furthermore, we have

Θ(∞) = 1−
∫ ∞

0

∫ t

0

ζ(a)φI(t, a) da dt.

Interchanging the order of integration yields

Θ(∞) = 1−
∫ ∞

0

∫ ∞
a

ζ(a)φI(t, a) dt da.

Setting u = t−a and noting from (4.10) that φI(t, a) = φI(u, 0) exp
(
−
∫ a

0
[ζ(â) + ρ(â)] dâ

)
yields

Θ(∞) = 1−
∫ ∞

0

∫ ∞
0

φI(u, 0)ζ(a)e−
∫ a
0 [ζ(â)+ρ(â)] dâ du da

= 1−
[∫ ∞

0

φI(u, 0)du

] ∫ ∞
0

ζ(a)e−
∫ a
0 [ζ(â)+ρ(â)] dâ da

= 1 +

[∫ ∞
0

Φ̇S(u) du

] ∫ ∞
0

ζ(a)e−
∫ a
0 [ζ(â)+ρ(â)] dâ da

= 1 + (ΦS(∞)− ΦS(0))T̃

= 1 + T̃G1(Θ(∞))− T̃ .
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Now that the equivalence between the edge-based compartmental and MP mod-

els has been established, we consider the special cases resulting from making extra

assumptions about the network (e.g. fully connected and regular) and the infection

(e.g. Markovian) and recovery processes (e.g. Markovian or infectious periods of fixed

length). This is motivated by the observation that many earlier epidemic models are

based on τ(a), q(a) and/or pk having the specific forms listed above.

In the following section we aim to produce a model hierarchy by recasting/reducing

the EBCM or MP models to earlier models. However, it is not straightforward to see

how such earlier models can be derived directly from the EBCM or MP model. This

problem can be solved by a re-parametrisation of the MP model in the spirit of pairwise

models, and, as a result, one can begin to build a hierarchy of models starting from the

most general formulation.

4.4 Model Hierarchy

Different model families (pairwise, effective degree, MP, EBCM etc.) emerge from

different considerations of the same underlying stochastic process. In this section we

aim to produce a model hierarchy on CM networks by showing that for specific choices

of network topology or recovery process, many well-known models can be derived from

the more general MP model. In particular, we will focus on deriving pairwise models

[86, 92, 162, 169]. In order to do this, we first present a general re-parametrisation of

the MP model (4.5), and this will act as stepping stone or interpolation between the

EBCM/MP and the well-known earlier models. Since all earlier models use a Markovian

infection process, the re-parametrisation also uses this assumption.

Pairwise models are based on differential equations for the expected number of

nodes in each state. These depend on the number of edges connecting susceptible and

infected nodes, and so differential equations are constructed for the expected number

of such edges, which themselves depend on the numbers of triples in certain states

(e.g. susceptible-susceptible-infected). To break this dependence, a moment closure

approximation is commonly used to express the number of triples in terms of pairs and

individuals [84].

Recently, Wilkinson and Sharkey [170] and Wilkinson et al. [169] have shown that

for regular tree networks exact pairwise models can be derived from the MP model when

the transmission process is assumed to be Markovian. Here we use similar methods and
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the notation from Section 4.3.1 to extend this result to the class of CM networks.

Firstly, we define the new variable 〈SI〉(t) as the proportion of edges in the network

which connect a susceptible node to an infected one at time t. This can be defined

in terms of existing quantities from the MP model. The susceptible node must have

been initially susceptible and escaped infection from all other neighbours until time t,

given by zG1(H1(t)). This must be multiplied by the probability that the remaining

neighbour of the susceptible node is infected and has not yet transmitted the disease to

this neighbour. To find this probability it is easier to calculate all other possibilities and

subtract them from one. These possibilities are: (i) the neighbour is still susceptible,

(ii) the neighbour has already transmitted the disease, (iii) the neighbour was infected

but has recovered without transmitting the disease. Combining these gives

〈SI〉(t) = zG1(H1(t))

[
1− zG1(H1(t))

−
∫ t

0

{f(a) + g(a)} [1− zG1(H1(t− a))] da

]
, (4.14a)

= zG1(H1(t))

[
H1(t)− zG1(H1(t))

−
∫ t

0

g(a) [1− zG1(H1(t− a))] da

]
, (4.14b)

where

g(a) := q(a)

∫ ∞
a

τ(x) dx, (4.15)

is the probability of an infected node recovering in the interval (a, a + ∆a) without

transmitting to a given neighbour. The corresponding population-level quantity is

given by

[SI](t) = 〈k〉N〈SI〉(t), (4.16)

where N denotes the total size of the population.

The transmission process is τ(a) = βe−βa which can be substituted into (4.4).

Introducing the change of variable t′ = t− a, and using the Leibniz rule gives

dH1

dt
= −β

[
1− zG1(H1(t))−

∫ t

0

q(t− t′)e−β(t−t′) [1− zG1(H1(t′))] da

−
∫ t

0

βe−β(t−t′)
(∫ ∞

t−t′
q(x)dx

)
[1− zG1(H1(t′))] dt′

]

= −β
[
1− zG1(H1(t))−

∫ t

0

{f(a) + g(a)} [1− zG1(H1(t− a))] da

]



99

= −β 〈SI〉(t)
zG1(H1(t))

(4.17)

= −β [SI]

z〈k〉NG1(H1(t))
. (4.18)

For the infected population, using (4.5) and identities, such as [S](t) = N〈S〉(t),
leads to

˙[I] = − ˙[S]− ˙[R] (4.19)

= β[SI]− β
∫ t

0

q(a)[SI](t− a)da− q(t)N(1− z). (4.20)

The majority of pairwise epidemic models retain an explicit differential equation for

the infected population [70, 169]. However, we choose to integrate (4.20) to reduce the

number of differential equations that have to be integrated numerically. By noting that

[SI] = β
∫ t

0
˙[SI](t− a)ξq(a) da and q(a) = −ξ′q(a), we have

˙[I] = β

∫ t

0

(
˙[SI](t− a)ξq(a) + ξ′q(a)[SI](t− a)

)
da− q(t)N(1− z),

which is the result of differentiating

[I] = β

∫ t

0

[SI](t− a)ξq(a) da+N(1− z)ξq(t). (4.21)

Whilst (4.20) facilitates easier comparison to existing models, its equivalent represen-

tation (4.21) offers greater computational efficiency.

For the variable 〈SI〉 the calculation is more laborious; working term-by-term

from (4.14b) and using the new relation (4.18) one obtains

˙〈SI〉 = −zG2(H1)

(
β

[SI]

z〈k〉NG1(H1(t))

)[
·

]

− β [SI]

〈k〉N
+ zβ[SI]

G2(H1(t))

〈k〉N
− q(t)e−βt(1− z)zG1(H1(t))

− zβ
∫ t

0

q(a)e−βa[SI](t− a)G2(H1(t− a))
G1(H1(t))

N〈k〉G1(H1(t− a))
da,
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where [·] denotes the large bracket in (4.14b), and the Leibniz rule has been used again

to resolve the integral term. Finally, based on (4.14), [·] = 〈SI〉
zG1(H1)

, which allows us to

eliminate [·] and replace it with a term involving 〈SI〉. Then, multiplying through by

〈k〉N one obtains ˙[SI] in (4.22) below.

Ḣ1 = −β [SI]

z〈k〉NG1(H1)
, (4.22a)

˙[SI] = −β[SI]2
G2(H1)

z〈k〉N [G1(H1)]2
− β[SI]

+ zβ[SI]G2(H1)− q(t)e−βt(1− z)zG1(H1)〈k〉N (4.22b)

− zβ
∫ t

0

q(a)e−βa[SI](t− a)G2(H1(t− a))
G1(H1(t))

G1(H1(t− a))
da,

[I] = β

∫ t

0

[SI](t− a)ξq(a) da+N(1− z)ξq(t). (4.22c)

At any time t the expected number of susceptibles is [S](t) = zNG0(H1(t)). Sys-

tem (4.22) has been derived directly from the MP model, and thus it becomes exact

under the same conditions - on the ensemble of CM networks as the network size

tends to infinity. Moreover, retaining the concept of the message, H1, has meant that

system (4.22) does not depend on higher order arrangements of nodes (e.g. triples).

Therefore, unlike most pairwise models, no further approximations are required to close

the model. Similar results have been achieved in the past using heuristic arguments

[70]. Whilst we chose to begin from the MP model, it should be possible to achieve the

same result using the variables in the EBCM (4.8) to derive the differential equations

in (4.22).

This re-parametrised system (4.22) is the first crucial step in being able to move

from general to specific models on CM networks, with special focus on unifying various

approaches by considering different models from the same perspective.

As one would expect, earlier population-level models were constructed based on

some more restrictive assumptions on network and epidemic dynamics. We will show

that when these are applied to system/model (4.22), earlier models can be easily recov-

ered. The simplifying assumptions refer either to the network (e.g. fully connected or

regular [169]), or the distribution of the infectious period (e.g. Markovian [162], fixed

length [92]). The remainder of this section is devoted to the explicit derivation of the

relationships between models as illustrated in Fig. 4.2.
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Figure 4.2: Diagram showing the relationship between the various models discussed in

the Chapter. Labels on each branch state the necessary assumptions in order to reach

the model at the end of the arrow.

4.4.1 Degree-regular networks

The first of these reductions concerns the special case of regular networks. For a k-

regular (homogeneous) network, all nodes have the same degree, i.e. ku = 〈k〉 = k, and

so the generating functions from (4.3) simplify to

G0(x) = xk, G1(x) = xk−1, and G2(x) = (k − 1)xk−2.

We also introduce two new variables

[S](t) = zNG0(H1(t)) = zN [H1(t)]k,

[SS](t) = 〈k〉N (zG1(H1(t)))2 = kN
(
z[H1(t)]k−1

)2
,

(4.23)
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that represent the expected number of susceptible individuals and the expected number

of edges connecting two susceptible nodes, respectively. [S](t) follows directly from

(4.5), and [SS](t) is defined as the number of edges connecting two nodes who were

both initially susceptible at time t = 0 and have escaped infection from their (k − 1)

other neighbours.

Now we return to the system (4.22) and the differential equation for [I] (4.20).

Substituting the simpler generating functions yields

Ḣ1 = −β [SI]

zkNHk−1
1

,

˙[I] = β[SI]− β
∫ t

0

q(a)[SI](t− a)da− q(t)N(1− z),

˙[SI] = −β[SI]2
(k − 1)Hk−2

1

zkN [Hk−1
1 ]2

− β[SI]

+ zβ[SI](k − 1)Hk−2
1 − q(t)e−βt(1− z)zHk−1

1 kN

− zβ
∫ t

0

q(a)e−βa[SI](t− a)(k − 1)[H1(t− a))]k−2 [H1(t)]k−1

[H1(t− a)]k−1
da.

(4.24)

This can be simplified further using (4.23), firstly noting that

[SS]

[S]
=
Nkz2H

2(k−1)
1

NzHk
1

= kzHk−2
1 , (4.25)

and, from Ḣ1 we see that

d(Hk−1
1 )

dt
= −β(k − 1)

[SI]

zkNHk−1
1

Hk−2
1 = −β (k − 1)

k

[SI]

[S]
Hk−1

1 . (4.26)

Solving for Hk−1
1 using separation of variables gives

Hk−1
1 (t) = exp

(
−β
∫ t

0

(k − 1)

k

[SI](u)

[S](u)
du

)
. (4.27)

The result of this is that the system no longer requires the message H1, as one

can calculate the time derivatives of [S] and [SS] directly from (4.23). Using the new
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relations (4.25) and (4.27), system (4.24) can be rewritten to give

˙[S] = −β[SI],

˙[I] = β[SI]− β
∫ t

0

q(a)[SI](t− a)da− q(t)N(1− z),

˙[SS] = −2β
(k − 1)

k

[SS][SI]

[S]
,

˙[SI] = −β (k − 1)

k

[SI][SI]

[S]
− β[SI] + β

(k − 1)

k

[SS][SI]

[S]

− kNq(t)e−βt(1− z)z exp

(
−β
∫ t

0

(k − 1)

k

[SI](a)

[S](a)
da

)

− β
∫ t

0

q(a)e−βa
(k − 1)

k

[SS](t− a)[SI](t− a)

[S](t− a)
F(t)da,

(4.28)

where

F(t) = exp

(
−β
∫ t

t−a

(k − 1)

k

[SI](u)

[S](u)
du

)
. (4.29)

This is identical to the system proposed by Wilkinson et al [169]. Recently, Röst

et al. [143] have considered the same problem, namely, an SIR epidemic with Poisson

transmission and an arbitrary distribution of the infectious period on a regular network.

By constructing an age-structured system of PDEs they were able to reach a more

compact model which is can also handle arbitrary initial conditions. We have, therefore,

shown that (4.22) extends these recent models by allowing general degree distributions

to be modelled.

4.4.2 Special distributions of the infectious period

As mentioned previously, a popular choice for the duration of infection is to assume an

exponential distribution, i.e. q(a) = γe−γa for γ > 0, where 1/γ is the mean duration

of infection. We briefly explain how this assumption simplifies the model and leads to

familiar or well-known models. When this choice for q(a) is substituted into (4.20), we

have

˙[I] = β[SI]− γ
[∫ t

0

e−γaβ[SI](t− a)da+ e−γtN(1− z)

]
. (4.30)

Note that e−γa is the probability of an infected node not recovering before age a, and

since the number of infected nodes created a time ago is β[SI](t − a) for a < t and
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N(1− z) for a = t, (4.30) can be rewritten as

˙[I] = β[SI]− γ[I]. (4.31)

A similar result is reached in (4.22b). In this case the extra terms in the integral de-

scribe the probability for the susceptible node of an [SI] edge to have survived until age

a without receiving transmission, either along this edge or from another infected neigh-

bour. Therefore, by the same logic one can replace the final two terms in (4.22b) with

γ[SI]. This leads to a model, which, although formulated differently, is dynamically

equivalent to models of Volz [162] and House and Keeling [70], namely,

Ḣ1 = −β [SI]

z〈k〉NG1(H1)
,

˙[I] = β[SI]− γ[I],

˙[SI] = −β[SI]2
G2(H1)

z〈k〉N [G1(H1)]2
− (β + γ)[SI] + zβ[SI]G2(H1).

(4.32)

If one further assumes that the degree is regular, repeating the steps used to derive

system (4.28) recovers the early pairwise model [86].

We examine one final special case, when the duration of infection is a fixed period

of time, σ, so that q(a) = δ(a − σ). This means that as soon as a node is infected

at time t1, it is known that this node will recover at exactly t2 = t1 + σ. Therefore,

the integral terms are non-zero only at the point a = σ. In this case the system of

integro-differential equations (4.22) simplifies to a delay differential equation model, as

stated below

Ḣ1 = −β [SI]

z〈k〉NG1(H1)
,

˙[I] = β[SI]− β[SI](t− σ)− δ(t− σ)N(1− z),

˙[SI] = −β[SI]2
G2(H1)

z〈k〉N [G1(H1)]2
− β[SI]

+ zβ[SI]G2(H1)− δ(t− σ)e−βt(1− z)zG1(H1)〈k〉N

− zβe−βσ[SI](t− σ)G2(H1(t− σ))
G1(H1(t))

G1(H1(t− σ))
.

(4.33)

This model generalises the recent work of Kiss et al. [92] to heterogeneous networks,

and once again the original model in that paper can be retrieved when q(a) is chosen to
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be a delta distribution in (4.28) (although that original model did not explicitly account

for the recovery of initially infected nodes).

Finally, it is worth briefly noting that in the case of a fully connected network,

corresponding to a homogeneously well-mixed population we have that [SI] = [S][I],

and thus, the Markovian mass-action SIR model, which assumes that the population

is unstructured, is recovered. Moreover, with the proper conditions, Wilkinson et al.

[169] proved that the message passing model is equivalent to the mass action model of

Kermack and McKendrick [89] for general transmission and recovery processes.

4.5 Numerical simulation results

In order to illustrate the accuracy of (4.22), we compare the numerical solution of

this model to results of direct stochastic network simulation. A common approach

for simulating traditional Markovian models has been to use the Gillespie algorithm

[55]. However, as modelling started to move away from the purely Markovian models,

novel stochastic simulation methods have been derived [5, 19] which provide efficient

simulation algorithms that are able to generate true sample paths of the stochastic

process.

In this section we take advantage of the fact that in the system (4.22) transmission

is a Poisson process in order to use an algorithm similar to those described by Barrio

et al. [13]. This approach is sometimes known as the rejection method and was proven

to be stochastically exact by Anderson [5]. The transmission process is run as in the

standard Gillespie algorithm; whenever a node becomes infected, a duration of infection

is drawn from the distribution q(a); at each time step the time of next transmission is

randomly generated, but if an infected node is scheduled to recover sooner, then the

transmission event is rejected, and time is updated to the next recovery time (for full

details see [5]).

In the very early stages of an outbreak stochastic effects dominate the dynamics of

the epidemic spread, which means that numerical simulations can often produce results

that significantly differ from deterministic predictions. In this situation, methods such

as branching process approximations [38] are more appropriate. To ensure that this

does not affect our results, we allow every iteration of the algorithm to reach a point

where the stochastic effects are no longer a concern, and the infected population behaves

deterministically. In practice this is achieved by running each individual realisation of
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the epidemic from a single initial seed until a specified level of infectivity is reached, at

which point time is reset to zero in both the simulation and the mean-field model.

A sufficient number of individual simulations are averaged to ensure that the mean

behaviour of the stochastic model is correctly captured and is suitable for comparison

with results derived from the deterministic models.

In Fig. 4.3 the results of numerical simulations are shown for three different distribu-

tions of the infectious period all having the same mean: a normal distribution, an expo-

nential distribution, and a fixed infectious period, σ. Two important observations can

be made. Firstly, the excellent agreement between the average of simulations (markers)

and the mean-field model (lines) provides empirical validation of the mean-field model.

Secondly, Figure 4.3 shows marked differences between the epidemics despite the mean

of the infectious periods being the same. In particular, the exponential distribution

leads to the slowest epidemic growth (and smallest epidemic peak) with the infectious

periods of fixed length leading to the fastest growing epidemics (and largest epidemic

peak). These results highlight the potential risks of using inaccurate modelling assump-

tions. The results also suggest that the variance in the duration of the infectious period

has a significant effect on the time evolution of the epidemic: a decrease in variance

leads to an increase in the initial growth rate [92].

Changes to the degree distribution, transmission and infectious processes will all

have an impact on the final epidemic size, as determined by Corollary 1. In the tests

shown in Fig. 4.3 only the distribution of the infectious period changes. Whilst this will

affect the final epidemic size, it is not possible to tell which of the epidemics is going

to produce the largest final epidemic size purely from examining the time evolution of

the epidemic in Fig. 4.3. Indeed, it is possible for two epidemics with different time

evolutions to have the same final epidemic size. For example, if the degree distribution

remains the same, different choices for the distributions of the time to infection and

infectious periods can produce identical values for the transmissibility, and the same

final epidemic size.

4.6 Discussion

In this Chapter we have reviewed the message passing formalism for SIR epidemics on

networks, and introduced a novel extension of the edge-based compartmental model

to the case of general but independent transmission and recovery processes. Both
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Figure 4.3: Comparison between system (4.22) and the average of numerical simula-

tions. All tests are carried out on randomly generated, truncated scale-free networks

of 1000 nodes with exponent 2.5, and the degree bounded between 3 and 60. The

transmission rate is set to β = 0.3 in all cases. Results are plotted where the infectious

period is exponentially distributed with parameter γ = 0.5 (solid line, circles), normally

distributed with mean 2 and standard deviation 0.75 (dashed line, squares), and a fixed

duration σ = 2 (doted line, diamonds). The mean duration of the infectious period is

equal to 2 for all cases. The differences between the epidemics show that the shape of

the distribution of the infectious period can have a significant effect on the dynamics

of the epidemic.

of these models are capable of accurately describing the expected dynamics of non-

Markovian epidemics on tree networks. The main result of the Chapter is the complete

and rigorous proof of equivalence between these models, and, as a result, the non-

Markovian EBCM (4.8) is exact on the ensemble of infinite-size CM networks.

Adapting recent methods [169, 170] enabled us to re-parametrise the MP model for

the special case of a Markovian transmission process but arbitrary CM networks. The

compact model (4.22) remains exact and is, in fact, a hybrid between MP and classical

pairwise models.

Many pairwise models are defined heuristically [44, 64, 70], but by deriving the

model (4.22) as a re-parametrisation of the MP model we have developed a general

model from which existing pairwise models can be extracted. By demonstrating this

we hope to provide some intuition for how these newer models work and to illustrate that
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they build on existing models whilst providing a modern twist. It is encouraging that

such mean-field models remain compact, consisting of only a few differential equations,

highlighting that the SIR epidemic can be modelled quite effectively, as long as a small

number of key characteristics of the network and the epidemic process are known.

The results from our numerical simulations illustrate the dangers of using inaccurate

or overly simplistic data to make predictions, in particular, the common assumption

of fully Markovian dynamics. The MP and non-Markovian edge-based compartmental

models are, therefore, crucial if we are to develop accurate epidemic models on networks.

Numerous extensions of the present work are possible. For example, the implemen-

tation of an efficient solver of the novel EBCM is still outstanding. Efficient numerical

methods to solve such age-structured models exist, but this was outside the scope of

our study. In some sense the novel EBCM is the most complete mean-field model when

one considers SIR epidemics on CM networks. This is due to the model being able to

handle arbitrary degree distributions, as well as general independent transmission and

recovery processes.

The restriction to CM networks implies zero clustering, i.e. there are no small,

highly connected groups of nodes. This is a necessary simplification to derive these

models, but is unrealistic. Real social networks often have high levels of clustering

[167]. Although it can be shown that these models place an upper bound on the true

expected behaviour [80], future research should strive to develop exact models where

clustering is present. As the inspiration for MP methods came from percolation theory,

new models could begin from the work of Serrano et al. [147]; who developed the theory

for percolation in networks with community structure.

Additionally, it could be refined to account for dynamic or adaptive contacts. Dy-

namic networks have already been incorporated in edge-based modelling in the purely

Markovian setting [119], and it may be possible to extend this to a more general frame-

work to allow for a more unified treatment of models that include the concurrent spread

of the disease and link turnover.
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5.1 Abstract

The spread of an infectious disease is known to change people’s behaviour, which in turn

affects the spread of disease. Adaptive network models that account for both epidemic

and behaviour change have found oscillations, but in an extremely narrow region of the

parameter space, which contrasts with intuition and available data. In this Chapter

we propose a simple SIS epidemic model on an adaptive network with time-delayed

rewiring, and show that oscillatory solutions are now present in a wide region of the

parameter space. Altering the transmission or rewiring rates reveals the presence of

an endemic bubble - an enclosed region of the parameter space where oscillations are

observed.

5.2 Introduction

The spread of an infectious disease changes the behaviour of individuals, and this, in

turn, affects the spread of the disease [52]. Broadly speaking, responses to an epidemic

fall into two categories: coordinated and uncoordinated. Coordinated responses in-

clude vaccination and quarantine schemes, travel restrictions, and information spread

through mass media. Uncoordinated responses cover individuals adapting their be-

haviour based on their own perceived risk, this includes improved hygiene regimens and

avoiding crowded places and public transport during outbreaks. Surveys consistently

identify such precautionary measures taken by individuals during epidemic outbreaks

[57, 144]. Fear of becoming infected during the 2003 SARS epidemic in Hong Kong

caused huge behavioural shifts; air travel into Hong Kong dropped by as much as 80%

[48]. Responses to a large study covering numerous European and Asian regions re-

vealed that, in the event of an influenza pandemic, 75% of people would avoid public

transport, and 20 − 30% would try to stay indoors [145]. These behavioural shifts

change the potential routes for transmission and can alter the size and time-scale of an

epidemic [53].

In the context of epidemic models on networks, perhaps, the most widespread ap-

proach to couple epidemics and behaviour is by using adaptive networks, where be-

havioural changes are captured by link rewiring based on the disease status of nodes

[63, 53]. Gross et al. [64, 65] considered a simple SIS model with rewiring, in which

susceptible nodes disconnect from infected neighbours at rate ω, and immediately re-

connect to a randomly chosen susceptible node. This simple model led to bistability and
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to oscillatory solutions, albeit with oscillations limited to an extremely narrow region

of the parameter space. This rewiring procedure has since been extended to consider

scenarios where both the susceptible and infected nodes can rewire, and diseases with

a latent period [139]. Zhang et al. [172] presented a further alternative, where news

about past prevalence influences whether nodes choose to disconnect edges. The authors

found an estimate of the critical delay that induces a Hopf bifurcation, thus causing

periodicity. Tunc et al. [158] studied a network model with temporary deactivation of

edges between susceptible and infected individuals. On a growing network, Zhou et al.

[173] showed that cutting links between susceptible and infected individuals can lead

to epidemic re-emergence, with long periods of low disease prevalence punctuated by

large outbreaks.

Periodic cycles and disease re-emergence are evident in real-world data. Many dis-

eases are subject to seasonal peaks, which have been studied extensively [3, 59]. Often

a sinusoidal or other form of time-varying transmission parameter is used to imitate

seasonality, which can lead to multiennial peaks [95]. A number of models have iden-

tified other possible causes of periodicity in epidemic dynamics. To give one example,

Hethcote at al. [67] showed that in a well-mixed population temporary immunity in

SIRS- or SEIRS-type models as represented by a time delay can result in the emergence

of periodic solutions when the immunity period exceeds some critical value.

One should note that seasonality alone cannot explain all cases of oscillations. In

both the UK and the USA, the 2009 H1N1 pandemic occurred in two distinct waves

separated by a few months [27, 76]. Other diseases have shown more long-term trends.

Incidence reports of mycoplasma pneumonia have found evidence of epidemic cycles in

many different countries, with periodicity of 3 to 5 years [74, 164]. Recently, it has

been suggested that syphilis exhibits periodic cycling [60], although these findings have

been subsequently questioned [22]. Whilst it is difficult to pinpoint the specific causes

of periodicity in the dynamics of these diseases, if syphilis epidemics are indeed cyclical,

then changes in human behaviour have been proposed as the likely explanation [2].

Intuitively, and as shown by empirical observations, one would expect oscillations to

appear in epidemic models where behaviour is considered. If an individual is aware of

the state of their neighbours and responds accordingly, then times of high prevalence will

be associated with greater caution, curbing further spread. Conversely, without advance

warning, behaviour will return to normal as prevalence wanes, enabling a second wave of

the epidemic. Despite this intuition, adaptive network models have so far not been able
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to show such robust oscillations over reasonable regions of the parameter space. This

means that, in situations where adaptive behaviour is expected, modelling is unlikely to

identify the risk of oscillations in prevalence. As a result policymakers and healthcare

services will have a poor, and potentially misleading prediction of the expected pattern

of an impending epidemic outbreak. Clearly, this could have severe consequences.

To tackle this problem, we introduce a simple SIS model on an adaptive network

with N nodes. Infected nodes transmit the disease to susceptible neighbours at rate

β across links, and recover and become susceptible again at rate γ, independently of

the network. Susceptible nodes cut links that connect them to infected neighbours

at rate ω and, after a fixed time delay of length τ , reconnect to susceptible nodes

chosen uniformly at random from all such available nodes. The delay between cutting

and reconnecting is crucial. It is unrealistic to expect that alternative contacts can

be identified and established arbitrarily quickly. The delay represents both people’s

hesitance to make new contacts and also the potential lack of availability of such new

contacts when an epidemic is spreading thorough a population [145].

5.3 Model derivation

To construct the mean-field model, we use the pairwise approximation method [82].

The number of nodes in the susceptible or infected state at time t is denoted by [S]

and [I], respectively; [SS], [SI] and [II] denote the number of connected pairs of nodes

in the respective states, with all pairs being doubly counted. The explicit dependence

on time is dropped for simplicity. For the moment closure approximation we use the

assumption that once a node is fixed, typically a susceptible node, then the states of

the neighbours are Poisson-distributed [135]. This leads to:

[XY Z] =
[XY ][Y Z]

[Y ]
, X, Y, Z ∈ {S, I}, (5.1)

to express the number of connected triples [64, 82].

The delay before an S − I edge is rewired to an S − S edge introduces a compli-

cation to the modelling, as not all newly formed edges will be between two susceptible

nodes. To see this, consider an example of a susceptible node with two or more infected

neighbours. At some time t1 it disconnects from one of these neighbours. Then, in

the interval (t1, t1 + τ) another infected neighbour transmits the disease to it. If it

then remains infected until time t1 + τ , the new edge will be of an I − S type rather
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than S − S. To deal with this issue we use a technique similar to that used by Kiss et

al. [92] for a pairwise model with an infectious period of fixed length. Consider yp(t) to

be the cohort of susceptible nodes that have cut a link at time t − τ and are waiting

to reconnect. The expected number of infected neighbours a susceptible node has is

approximated by [SI]/[S]. Therefore, the rate at which nodes in the cohort become

infected over the interval (t− τ, t) is

ẏp = −βyp
[SI]

[S]
.

The solution to this ODE is

yp(t) = ω[SI](t− τ) exp

−β t∫
t−τ

[SI](u)

[S](u)
du

 , (5.2)

since yp(t− τ) = ω[SI](t− τ).

A member of the cohort infected at some time u ∈ (t− τ, t) may recover before time

t. To ensure that we only consider nodes which remain infected, we must include the

probability that a node infected at time u remains infected until time t in the integral

term of (5.2). This is the survival probability of the recovery process, and it is given

by e−γ(t−u). Therefore, the rate at which new S − S edges are formed is,

y(t) := ω[SI](t− τ) exp

−β t∫
t−τ

[SI]

[S]
e−γ(t−u) du

 . (5.3)

If the exponential term in (5.3) is denoted by x(t), the rate at which new I − S edges

are formed is ω[SI](t− τ)(1− x(t)). With this in mind, the mean-field model is

˙[S] = −β[SI] + γ[I],

˙[I] = β[SI]− γ[I],

˙[SS] = 2γ[SI]− 2β
[SS][SI]

[S]
+ 2ω[SI](t− τ)x(t),

˙[SI] = −(β + γ + ω)[SI] + β[SI]

(
[SS]

[S]
− [SI]

[S]

)
+ γ[II] + ω[SI](t− τ)(1− x(t)),

˙[II] = −2γ[II] + 2β

(
[SI][SI]

[S]
+ [SI]

)
,

ẋ = −x
{
γ lnx+ β

(
[SI]

[S]
− [SI](t− τ)

[S](t− τ)
e−γτ

)}
,

(5.4)
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Figure 5.1: Comparison between the solution of (5.4) and numerical simulation. Three

sets of results are shown, ω = 0 (top), ω = 1 (middle) and ω = 1.4 (bottom). Other

parameters are β = 0.6, γ = 1, τ = 6 and 〈k〉 = 10. Simulation results are averaged

across 100 iterations on random networks of 1000 nodes. All simulations begin by

randomly selecting a node to infect at time t = 0. Simulation runs which die out are

discarded and performed again.
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Figure 5.2: (a) shows a two-parameter bifurcation diagram indicating different dynam-

ical regimes in the behaviour of model (5.4) with β = 0.6. (b) shows the endemic bubble

for model (5.4) for τ = 6. The endemic equilibrium is stable on the grey surface and

unstable on the green. Green surface is constructed using the minima and maxima of

oscillations and shows the shape of the endemic bubble. In (c) the value of the endemic

equilibrium is plotted against the rewiring delay τ for β = 0.6 and ω = 2. Increasing τ

decreases the expected number of infected individuals at endemic equilibrium until the

Hopf bifurcation point, beyond which the amplitude of oscillations grows. In (d) the

average behaviour from 100 numerical simulations on random networks of 1000 nodes

is compared to the mean-field model (5.4). The solid black line (circles) denote the

prevalence of the disease in the mean-field model (simulations), and the red dashed

line (diamonds) denotes the normalized mean degree calculated from (5.6). Parameter

values are β = 0.55, ω = 1.5, τ = 5.5, γ = 1, 〈k〉 = 10. Simulations in which epidemic

outbreaks died out were discarded and performed again.

where x(t) = 1 for t ≤ 0. When τ = 0, the dynamics of (5.4) are equivalent to the

well-known model of Gross et al [64].

Fig. 5.1 shows a comparison between the solution of the new model (5.4) and nu-

merical simulation. The agreement is excellent despite the simplicity of the model and

the fact that the moment closures do not reflect the changing network structure. In

particular, both the solution and simulation results exhibit similar oscillatory behaviour

for the same parameter values. These results validate the model and allow us to analyse
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Figure 5.3: Real part of the maximum characteristic eigenvalue of the endemic equilib-

rium of (5.4) for β = 0.2 (a), 0.4 (b), and 0.6 (c). Other parameters are the same as

in Fig. 5.2 (a). The endemic equilibrium is unstable in the red/yellow region, stable in

the green/blue region, and biologically infeasible in the white region.

its behaviour.

5.4 Results

Firstly, consider the basic reproductive ratio, R0, defined as the expected number of sec-

ondary infections caused by a single typical infectious node in an otherwise wholly sus-

ceptible population. One can find R0 for the delayed rewiring model (5.4) via linear sta-

bility analysis near the disease-free equilibrium (DFE), ([S]∗, [I]∗, [SS]∗, [SI]∗, [II]∗, x∗) =

(N, 0, 〈k〉N, 0, 0, 1). Performing this analysis gives

R0 =
β〈k〉
γ + ω

. (5.5)

Note that increasing the rewiring rate decreases the epidemic threshold R0, but the

length of the delay, τ , has no effect on the threshold. However, as we will show later,

it does affect the final outcome of the epidemic.

System (5.4) also has an endemic steady state, but its value is determined by a

transcendental equation which can only be solved numerically. Using this result in

the numerical linear stability analysis of (5.4) allows us to analyse the stability of the

endemic equilibrium. As shown in Fig. 5.2 (a), changes to both τ and ω are capable

of destabilising the endemic equilibrium. Regardless of the value of τ , eventually high

values of the rewiring rate make the DFE stable again. For most values of τ this

coincides with the point where the endemic steady state becomes biologically infeasible

(less than or equal to zero), leaving the DFE as the only plausible steady state for the
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system. However, for sufficiently small values of τ , the endemic steady state remains

feasible, and there is a small region of bistability. Qualitatively, this behaviour is the

same for any choice of the other parameters, as long as the endemic steady state remains

biologically feasible, as illustrated for different values of β in Fig. 5.3. This figure shows

that increasing the disease transmission rate results allows the endemic steady state to

be feasible for a wider range of link-cutting rate ω, and it also lowers the critical time

delay τ , at which this steady state becomes unstable.

Figure 5.2 (b) shows the endemic equilibrium, as well as the minima and maxima of

oscillations for a range of β and ω values, with oscillations being observed in a significant

part of the parameter space. One can clearly see the formation of an endemic bubble

that has been discovered earlier in other epidemic models [94, 101]. Interestingly, both

ω and β appear to play similar roles in the formation of endemic bubble, namely they

open it through a supercritical Hopf bifurcation of the endemic equilibrium and then

close it through a subcritical Hopf bifurcation.

Increasing the length of the delay can only induce a supercritical Hopf bifurcation,

resulting in the emergence of stable oscillations, beyond which point larger values of

τ only increase the amplitude of oscillations until it settles on some steady level, as

shown in Fig. 5.2 (c). One should note that the minima of oscillations get closer to

zero for larger τ , suggesting that for large rewiring times, there are periods of time with

negligible disease prevalence, followed by major outbreaks, as illustrated in Fig. 5.2 (d).

In the limit τ → ∞, disconnected edges are never redrawn and the epidemic dies out,

partially due to the network becoming sparser.

For the case without time delay, Gross et al. [64] found bistability in a large region

of the parameter space, and periodic oscillations in a much smaller region. By con-

trast, results shown in Fig. 5.2 demonstrate a large region in the parameter space with

oscillatory behaviour. DDEs are known to often produce oscillatory dynamics, and

bubbles similar to those shown in Fig. 5.2 (b) have been reported in other biological

and epidemic models [94, 101].

Let us now discuss the oscillatory behaviour in our model. The delay between

disconnecting an edge and drawing a new one means that the total number of edges,

and thus also the mean degree, is not constant. Whenever a susceptible node chooses

to rewire, the total number of edges in the network decreases by two (since all edges

are bidirectional) until time τ passes, and the edge is redrawn. The mean degree k(t)
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at any time t can be calculated directly from this argument as follows,

k(t) = 〈k〉 − 2ω

∫ t

t−τ
[SI](u) du. (5.6)

Figure 5.2 (d) shows that oscillations are the result of the influence that the dynamics

of k(t) and [I](t) have on each other. During the early stages of an outbreak with a

high rewiring rate k(t) falls rapidly, as susceptible nodes cut links in response to the

propagation of the disease. If the value of τ is large enough, then after a certain time

the number of edges in the network is small enough to effectively starve the disease of

transmission routes, and prevalence falls. These edges are then redrawn at the same

rate as they were cut τ time ago, and k(t) grows, which allows the disease to spread

again. Figure 5.2 (d) illustrates this behaviour both in simulation and in the mean-

field model (5.4), showing how after the initial outbreak each new wave of infection is

preceded by the recovery of network connectivity.
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Figure 5.4: Snapshots of the degree distribution for networks of 104 nodes. In each plot

the solid black solid is the initial degree distribution, the blue line is for the early growth

phase, red shows the degree distribution at the initial peak of disease prevalence, and

green and magenta later snapshots. Disease parameters are β = 0.6, γ = 1, ω = 1.4,

τ = 6. (a) Erdős-Rényi network with 〈k〉 = 10. (b) Homogeneous network with k = 10

for all nodes. (c), (d) Truncated scale-free networks with the scaling exponents α = 2

and α = 3, respectively.

The effect of oscillatory interactions between network connectivity and the propa-

gating disease may be more pronounced in network simulations. Gross et al. [64] found
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that adaptive rewiring without delay can lead to the formation of highly connected

clusters of susceptible nodes that are vulnerable to disease once any one node becomes

infected. Since the model (5.4) does not account for changes in network structure, i.e.

the closure is the same for all times and it does not depend on the average degree

or degree distribution, this can potentially explain the small discrepancy between the

solution of the deterministic and simulation models observed in Fig. 5.1.

To get a better understanding of the interplay between network topology and dy-

namics, it is worth looking at how delayed rewiring alters degree distribution. Time

snapshots of several large networks in Fig. 5.4 show the evolution of the degree dis-

tribution at various key points of an epidemic in an oscillatory regime. The initial

network topology (black lines) is quickly reorganised to a peaked distribution. The

oscillations in prevalence cause slight but repeated changes in the degree distribution.

Unsurprisingly, when prevalence is at or near its peak, nodes with a lower degree are

more common. When the prevalence falls, the distribution curves shift to the right, and

the shape of the distribution flattens slightly. When the endemic steady state is stable,

the degree distribution stabilises to a peaked distribution between the two extremes of

the oscillatory regime. A very important observation is that irrespective of the initial

network topology, due to rewiring different networks eventually settle on a very similar

skewed degree distribution. This implies that earlier conclusions derived for the specific

closure (5.1) appropriate for Erdős-Rényi graphs are actually applicable to modelling

long-term dynamics of different types of networks, for which the influence of the initial

topology is low since significant amount of rewiring has already taken place.

5.5 Discussion

The particular strength of this model lies in its ability to exhibit rich behaviour from a

simple system of DDEs. Time delay captures the fact that finding alternative contacts

takes time, and also during an epidemic many people try to temporarily reduce the

number of their contacts. Such behaviour can be modelled using this delayed rewiring

process. Previous work separated the processes of edge destruction and creation, and

with edge creation occurring at a fixed rate, the number of edges in the network was

bounded only by the network size [2, 72]. In the new model presented above, edge

creation is reduced to replenishing global network connectivity towards its original

level. Therefore, this model is fundamentally different to those earlier models, even
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when parameters are matched.

During the initial growth phase it is the rate at which potential transmission is

avoided by cutting a link, not the delay before drawing a new edge, that determines

whether a major outbreak will occur. Although the delay does not affect the basic

reproductive ratio R0, it does impact the outcome of the epidemic (see Fig. 5.2 c).

The result of introducing the delay is that oscillations occur in a large region of the

parameter space. This happens due to the interplay between the spread of the disease

and the behavioural changes in response to the epidemic. When the length of the delay

is significant, the network becomes more sparse, healthy individuals are at lower risk

of infection, and over time the prevalence falls. When the new edges are then formed,

the disease is once again able to spread, and the cycle repeats.

Understanding the nature and cause of oscillations may provide opportunities to

eradicate the disease. For example, if public awareness campaigns can lead to an

increase in the length of the delay, the prevalence of the disease will naturally fall close

to zero, at which time a relatively minor intervention, such as quarantining those who

remain infected, may be enough to eradicate the disease from the population entirely.

Currently, the model assumes that only susceptible nodes rewire. However, in real-

ity, infected nodes are also likely to change their behaviour. Risau-Gusman and Zanette

[139] considered a model of rewiring where infected nodes rewire with a given proba-

bility. It would be of great value to examine a similar situation under delayed rewiring,

with time delay representing the time for which infected nodes partially isolate them-

selves before rewiring, in accordance with advice given by public health authorities.

This would alter the nature of the variable x(t) in the model. For example, if only

infected nodes rewire, x(t) ≈ e−γτ . Preliminary tests of this rewiring scheme show

behaviour similar to the present model.

In addition to changing who rewires it would also be worthwhile to examine dis-

tributed delay models. One relatively straightforward approach would be to introduce

a multi-stage approach. Once cut, an edge would change its state so that it is no longer

active in the spread of the pathogen. It would then progress through some prescribed

number of stages, W , according to some chosen rate. At the end of which, the edge

would be rewired at random in the same manner described previously. The effect would

be a gamma-distributed waiting time between edge deletion and rewiring similar to the

gamma distributed infectious period achieved in Chapters 2 and 3 of this thesis. The

limit of this would be either the model of Gross et al. [64] where rewiring is immediate
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(W = 0) or the system (5.4) (W → ∞). Other distributions can be modelled with

distributed delay differential equations. Any novel distribution for the waiting time

should be chosen based on evidence from real-world data on behaviour modification.

Numerical simulations have shown that a similar oscillatory behaviour is observed

for other initial network topologies, including scale-free networks. Furthermore, since

rewiring nodes choose their new neighbours uniformly at random from all unconnected

susceptible nodes, the initial network topology itself is transient, as shown in Fig. 5.4,

and, as a result, over time our model becomes more relevant. A more thorough ex-

amination of limiting network behaviour is needed. Our initial investigation was based

on studying a handful of network snapshots taken at qualitatively different points of

the epidemic (e.g. initial growth, decline, local extrema). One particularly interesting

approach could be to construct a discrete time model based on the same assumptions.

It should then be possible to look at changes to the network structure in more detail,

and potentially at each individual time step.

Future work will look at how the degree distribution and oscillations are affected in

the case when the network links are rewired not randomly but according to a preferen-

tial attachment or some fitness-based rule. This could result in some interesting new

dynamics due to the competition between the increased probability of highly-connected

nodes receiving new links, and the increased probability of infection.
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Chapter 6

Discussion

This thesis presented a contribution to the field of epidemiology focused on the spread of

infectious disease on networks. Specifically, it dealt with the construction and analysis

of models with non-Markovian dynamics. This final Chapter presents a review of the

main results as well as possible extensions and areas for future research where they

arise.

In Chapter 2, the research paper entitled “Dynamics of multi-stage infections on

networks” we focused on a gamma-distributed infectious period characterised within

the model by subdividing the infectious compartment into K stages. This is known as

the SIKR model [103]. We began by summarising the known results for the case where

the population is homogeneously well-mixed. This included the basic reproductive ratio

and the final epidemic size, both of which do not depend on the number of infectious

stages [73, 105]. To show the impact that K has on the dynamics of the spread we gave

examples of how the trajectories change when K is changed but all other parameters

remain identical, this was analytically reinforced by results for the early-stage epidemic

growth rate which we summarised and verified [168].

We then moved on to network modelling. The new multi-stage pairwise model

was constructed based on the classical structure and closures [84]. We used linear

stability analysis to find a threshold parameterR and, using knowledge of the equivalent

stochastic network model, we were able to link this to the transmissibility of the disease

to give an intuitive result. Extending the work of Keeling [84], we were able to use

first-integral relations to give a proof for the final epidemic size directly from the new

model. Both of these quantities depend on K, with larger K increasing R and the final

epidemic size. This result contrasts with the same model in homogeneous randomly

mixing populations and highlights the importance of representing social structures.
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The model was then used with numerical simulation to illustrate the importance of

considering the shape of the infectious period distribution. Previous studies have used

the gamma distribution to approximate the infectious period for numerous diseases

[168]. Using these estimates we showed how the trajectory of an epidemic in a network

using our model can be dramatically different than the classical Markovian models

would predict. We also observed excellent agreement between the pairwise model and

simulation.

Further extensions to this model may include considering the impact of a multi-stage

approach in SIS models on networks and examining whether the threshold parameter

is the same and how the endemic equilibrium is affected by changing the number of in-

fectious stages. This would be particularly useful given the comparative lack of options

for non-Markovian SIS models on networks. Another practical extension would be to

consider a latent compartment comprised of multiple stages. This has been studied with

well-mixed models [168]. However, we have shown that incorporating network structure

can render findings based on well-mixed populations inaccurate and misleading. Thus,

revisiting such studies could be beneficial.

In constructing the model we made several unrealistic assumptions, not least that

the contact network was regular and unclustered. These are major simplifications,

and ones which are often violated by real-world networks [167, 26, 99]. Therefore we

decided to generalise the model to heterogeneous and clustered networks in Chapter

3, the research paper “Compact pairwise models for epidemics with multiple infectious

stages on degree heterogeneous and clustered networks”. While we were still able to

recover a threshold parameter R the first integral relations previously used to find the

final epidemic size break down under the new closure and thus we were unable to find

an analytic expression. When clustering was introduced in the model the required size

of the system grew from 2K+ 3 equations to K2 + 3K+ 4 due to the added complexity

of the closures. We observed good agreement with numerical simulation for all degree

distributions that we tested and for zero or low levels of clustering. In constructing the

model we assumed that the degree distribution of susceptible nodes is linearly related

to the overall degree distribution in order to derive the closures, an approach previously

used for SIS dynamics [151]. The accuracy of this approximation cannot be guaranteed,

although this was not significantly detrimental to the accuracy of the model. Analysis

of closure approximations and their accuracy is crucial to improving our understanding

and the quality of our models. Thorough studies on toy networks and motifs are a
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fundamental part of this [133]. Despite clustering being ever-present in data collected

on real networks [128, 66] it is relatively rarely studied. Future research must tackle

this disparity.

In Chapter 4, the research paper titled “Mean-field models for non-Markovian epi-

demics on networks” we introduced a new EBCM and provided a full explanation of

its construction. This model extends the original [119] to general independent trans-

mission and recovery processes. The major result of the paper is the full proof that

the new EBCM is equivalent to the MP method of Karrer and Newman [80]. A direct

consequence is that the new model is exact on the ensemble of CM networks in the

limit of infinite size. We also show that the well known final epidemic size result [126]

can be retrieved directly from the EBCM.

We go on to impose an exponentially distributed transmission process and derive a

pairwise-like model from the MP equations [169]. This is used as the basis for a model

hierarchy where, under further conditions, many well known models are recovered. Not

only does this validate many models which were originally constructed heuristically, it

can also reconcile disparate modelling paradigms. There are many different models in

existence and more are always being proposed. Efforts to identify model equivalences

and hierarchies [70, 120, 169] should be encouraged, as we believe that it will lead

to a more unified approach to tackling future problems and infectious disease threats.

There are numerous valuable options for future research based on this work. The

original EBCM was applied to dynamic networks [119] and we see no reason why this

new model cannot also be extended in this manner. Furthermore, the model is limited

to unclustered networks. Efforts have been made to quantify threshold parameters and

final epidemic size using percolation theory on clustered networks [147, 115], and there

may be scope to extend these to MP or EBCM methods. Another option would be

to use muliplex networks, an upcoming paper applied the methods of the EBCM to a

dual-layer network with a static clustered layer and an adaptively rewiring layer [12].

However, more work in this area needs to be done.

Considering the real-world causes and effects of behavioural changes led us to con-

sider a delayed rewiring process in Chapter 5, entitled “Bursting endemic bubbles in

an adaptive network”. Here we imposed a fixed length delay in the rewiring process

between a susceptible node disconnecting from an infectious neighbour and randomly

selecting a susceptible to be a new neighbour, in contrast to previous work which has

assumed that these processes occurred in the same instant [64, 65, 119]. Inspired by
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Kiss et al. [92] we correctly modelled the potential for nodes waiting to rewire to be

infected by an infectious neighbour they had not yet disconnected from. Model anal-

ysis found the threshold parameter and an analytical expression for the mean node

degree at any time t. We were limited to numerical methods to analyse the stability

of the endemic equilibrium. This analysis revealed the presence of enclosed regions of

the parameter space where oscillations occur, known as endemic bubbles. Oscillatory

behaviour is found in a much larger region of the parameter space when the delay is

included in the model, we suggest this is due to total network connectivity decreasing

in response to the disease. Although the model only directly applies to unclustered

random graphs we showed that the network topology is transient due to the rewiring

process, and thus initial network topology is only a factor in the early stages of the

epidemic. The model was designed to be as simple as possible and as a result it can

be extended or generalised in many different ways. More work should be done to study

how the network topology evolves over time and, if possible, to try and find evidence

of similar changes in real-world networks. It would be particularly useful to study gen-

eral, distributed delays in the rewiring process and to consider documented behavioural

changes and how long they last [144, 57, 145]. Such comparisons remain rare in the

literature despite the increasing attention paid to the topic [161].

The model assumes that the level and rate of response remains constant, and in-

dividuals have perfect information on the state of all others in the network. These

are both unlikely to be true. Other behaviours and influences on behaviour have been

suggested, such as belief-based models where avoidance is based on the perceived threat

or prevalence of disease, allowing media influence or hysteria to be explicitly consid-

ered; others have modelled disease awareness spreading through a network in a similar

way to the disease itself. See Manfredi et al. [107] for examples. Within the delayed

rewiring model, these approached could influence which nodes cut edges, and what they

do afterwards.

Lastly, applying this approach to SIR dynamics could reproduce epidemics which

feature multiple peaks before dying out, such as the recent H1N1 influenza outbreak

[27].

Constructing and analysing non-Markovian models for the spread of infectious dis-

ease is likely to remain a challenge for years to come. Paradigms such as the EBCM

or MP achieve success in this regard but still have limitations. Both models assume

that the neighbours of a node can be considered independent of each other. Difficulties
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arise when it comes to clustered networks, multiple paths between nodes violates the

assumption of independence of neighbours. For now at least we are limited to approx-

imate models or models with specific definitions of clustering. This assumption also

breaks down when the disease confers no immunity or when immunity wanes. New

modelling paradigms will likely be needed before exact SIS (and SIRS, etc.) models

exist with the same generality.

Within the growing field of adaptive networks there are several issues which must

be dealt with. For instance, the majority of models are constructed without using real

data for validation or parametrization [161]. In many cases, the behavioural response

may be influenced more by information spreading on a different network, such as social

media, than the physical contact network.

Clearly, the main goal of modelling epidemic dynamics is to inhibit or even prevent

major outbreaks of infectious disease. While they have not been explicitly discussed

within this thesis, control procedures - such as vaccination, quarantining and ensuring

improved hygiene - are the major part of this, and must be included in modelling

scenarios. However, to make good decisions the models must represent reality as closely

as possible. The models in this thesis show the importance of this, and highlight

phenomena that are rare in the more established Markovian models.

A coordinated effort between modelling and data gathering, taking advantage of the

latest tools for studying behaviour and tracking epidemic spread has the best chance of

answering these questions and providing new insight when it comes to controlling and

preventing future infectious disease epidemics.
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