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Summary 

This thesis applies catFISH, a variant of the standard fluorescence in situ hybridisation 

technique, to study the neuronal ensembles activated by heroin and cocaine across 

brain structures involved in motivated behaviour, in the Sprague-Dawley rat. 

The first chapter reviews the pharmacology of heroin and cocaine, rodent models of 

drug-related behaviours, and heroin and cocaine’s ability to trigger immediate-early 

gene expression when administered acutely or chronically. It is suggested that the 

empirical evidence points towards a significant separation between the neuronal 

systems engaged by the two drugs. The main goal of this thesis was to test whether this 

separation can be seen within brain areas playing a key role in motivation and reward 

(e.g. the nucleus accumbens). Since immediate-early genes serve as markers of neuronal 

activity, and catFISH is a technique which can detect the expression of such genes in 

response to two separate stimuli, the technique was chosen as the best method to test 

if heroin and cocaine activate the same neuronal ensembles when administered acutely. 

The second chapter summarises the methods used across experiments described in 

following chapters. 

The third chapter presents an experiment addressing the methodological issues 

associated with using catFISH to study pharmacological stimuli. The technique was 

originally used to study the hippocampus and brain activity triggered by stimuli with 

well-controlled on- and offset (e.g. exposure to a novel environment or discrete cues). 

Arguably, acute drug injections comprise a stimulus with an on- and offset which can 

only be controlled indirectly – they depend on the drug dose and route of administration, 

among other factors. It was shown that acute intravenous injections of heroin and 

cocaine at doses usually self-administered by animals are suitable stimuli to use with 

catFISH. 

Chapter four describes an experiment showing that, across the striatum, the neuronal 

ensembles activated by an injection of cocaine followed by an injection of heroin overlap 

significantly less than the neuronal ensembles activated by two consecutive injections 

of cocaine. This is interpreted as direct evidence for a significant separation between 
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the neuronal pathways activated by heroin vs. cocaine, even in brain areas often 

considered a common neurobiological substrate for the effects of the two drugs. It must 

be noted that the magnitude and the nature of this separation depends on the particular 

part of the striatum and the order in which drugs are administered. 

Chapter five describes a pilot experiment attempting to incorporate the logic of the 

catFISH technique into a rodent drug self-administration paradigm. It was found that the 

rats preferred self-administering heroin over cocaine, and that there was no detectable 

expression of the homer 1a gene across the striatum in response to acute heroin and 

cocaine after extended experience with the two drugs. There was also no change from 

baseline expression of the homer 1a and arc genes in areas of the prefrontal cortex. 

Finally, chapter six summarises the main findings and the key methodological 

considerations from all three experiments. As a whole, it is suggested that the 

experiments in this thesis provide a proof of concept that heroin and cocaine are 

processed differently by the brain, even within brain areas considered to be common 

substrates for the reinforcing and addictive properties of the two drugs. Future studies 

should take this separation into account, as it may have important implications for 

understanding drug addiction as a whole. 

The appendices contain representative fluorescence microscopy images of brain tissue 

analysed for catFISH. 
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Chapter 1 – Introduction 

 

1. Why study heroin and cocaine?  

Recreational drug use and addiction 

For the year 2015, estimates of drug use and abuse across the world are proportionally 

low, but numerically high – an estimated 5% of people have used illicit drugs at least 

once in that year, and 29.5 million of those people have a diagnosed drug use disorder. 

The highest level of harm in health terms is caused by opioids, including heroin, and 

psychostimulants (methamphetamine and cocaine) follow after. Overall, 70% of total 

drug-induced health problems is attributable to opioids. This is in great part the result 

of rising misuse of pharmaceutical opioids and the risks associated with injectable drugs 

(United Nations Office on Drugs and Crime, 2017). Overall, heroin and cocaine still 

deserve their place at the top of the harm scale (D. Nutt, King, Saulsbury, & Blakemore, 

2007).  

Heroin and cocaine produce feelings of intense pleasure as well as other desirable 

effects (e.g. overcoming tiredness or alleviation of negative emotions) making the two 

drugs very attractive for recreational users. From a certain perspective, heroin, cocaine 

and other psychoactive substances can be used for self-medication: many recurrent 

drug users are struggling with some kind of a psychological issue such as aggression, 

depression or social anxiety, and drugs of abuse can ameliorate such problems 

(Khantzian, 1985). Alternatively, recreational drug use can be understood in terms of 

“drug instrumentalisation” where psychoactive substances are used as a means to 

control mental states at the will of the user. In the modern-day social environment 

humans often have to quickly switch between micro-environments demanding very 

different mental states (e.g. work vs. leisure). Drugs can provide such rapid changes in 

mental states in different ways such as enhancing social interaction, combating fatigue 

or enhancing cognitive performance (Muller & Schumann, 2011).  
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However, prolonged use of some drugs under certain circumstances and by certain 

individuals may transition to pathological use; i.e. addiction. Addiction is characterised, 

above all, by loss of control over drug intake, drug-taking despite negative consequences 

and at the expense of other pleasurable activities. Drug addiction can be very costly to 

both individuals and society. 

Prevention and treatment of addiction could benefit from the study of the neural 

circuitry engaged by both acute and chronic administration of drugs, as well as the study 

of the changes in this circuitry which are believed to mark the transition from 

recreational use to pathological use. Such has been the aim of both psychiatric and 

psychological research over the past few decades, but only recently scientists and 

medical practitioners have begun to acknowledge the complexity and diversity of drug 

abuse disorders.  

Diagnosis and theory of substance use disorders (drug addictions) 

As discussed above, addiction can be broadly defined as compulsive drug-seeking and -

taking despite negative consequences, and at the expense of other recreational 

activities. Within the mental health practice, this phenomenon has been termed 

substance use disorder, and the problematic use of different classes of drugs has been 

classified into a number of substance use disorders. The latest edition of the DSM-V 

classifies substance use disorders into 10 separate categories encompassing alcohol, 

cannabis, some hallucinogens, inhalants, opioids, sedatives, stimulants, tobacco and 

other/unknown (APA, 2013). There are 11 diagnostic criteria to describe these 

substance use disorders, which generally cover three aspects of problematic behaviour 

surrounding the use of the substance in question: loss of control, social impairment, and 

problematic use, plus two pharmacological criteria. The first grouping of criteria, loss of 

control, refers to the inability to stop or reduce use of the substance despite wanting to 

do so, using in higher quantities than intended, and craving – the intense desire to take 

the drug. Social impairment criteria cover aspects of substance use which interfere with 

the ability of the user to fulfil social roles or invest time in activities other than drug 

taking. Problematic use includes criteria describing the use of the substance in 

hazardous situations (e.g. while driving), or despite known physiological or psychological 
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problems caused by the substance. Finally, pharmacological criteria include tolerance 

and withdrawal. 

Although most diagnostic criteria can apply to all problematic use of substances, the 

separation of substance use disorders in the latest edition of the DSM-V comes from the 

recognition of important differences between the brain mechanisms underlying the 

abuse potential of different substances (Badiani, Belin, Epstein, Calu, & Shaham, 2011). 

This separation is also a step away from the commonly used term “addiction” which can 

refer to behavioural addictions such as pathological gambling. Regardless of the 

separation of drug abuse diagnoses, currently prominent psychobiological theories 

explaining the mechanisms behind substance abuse still revolve around the idea of a 

common mechanism for substance abuse (Piazza & Deroche-Gamonet, 2013). 

For example, Homeostatic Dysregulation Theory (Koob & Le Moal, 1997) suggests that 

pathological substance use arises from a persistent change in the set point of the reward 

circuitry of the brain – the dopamine system. That is, with prolonged use of substances 

that directly activate the brain’s reward system, the system becomes less sensitive 

(manifesting as tolerance to the acute effects of the drug and reduced sensitivity to 

other rewards). That, in turn, leads to a negative affective state in the absence of the 

drug (i.e. withdrawal) rendering drug-taking necessary to maintain a functional level of 

motivation. Central notions for this theory are the withdrawal syndrome (both 

physiological and psychological) and reduction in the sensitivity of the reward system. 

Another theoretical framework is set out by Incentive-Sensitization Theory (Berridge & 

Robinson, 2016; Robinson & Berridge, 1993) which emphasizes the difference between 

liking and “wanting” of abused substances, and sensitization of the mechanisms 

underlying the latter (the dopamine system). “Wanting” within this framework refers to 

the motivational drive elicited by substance-associated stimuli through classical 

conditioning, while liking refers to the hedonic responses elicited by the consumption of 

the substance (the “high”). According to the theory, prolonged drug use and individual 

genetic predisposition renders the dopaminergic system hyper-reactive to drug-

associated stimuli in such a way that exposure to these stimuli precipitates further drug 

use at the expense of other activities, and promotes relapse following abstinence. 
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Finally, substance abuse has also been viewed from the perspective of compromised 

executive control (Jentsch & Taylor, 1999) and aberrant learning (Everitt, Dickinson, & 

Robbins, 2001). Theory focusing on executive dysfunction emphasises the role of the 

prefrontal cortex (PFC) in the inhibition of impulsive responses, and the role of the 

amygdala in the influence of conditioned stimuli on behaviour. For example, impaired 

function of the PFC humans leads to impairments in tasks that tap into decision making 

and inhibitory control (Goldstein & Volkow, 2011). On the other hand, the amygdala is 

responsible for the suppression of behaviour by fear-conditioned stimuli and 

invigoration of behaviour in the presence of reward-associated stimuli (Everitt et al., 

1999). Thus, from this point of view, addiction arises in part because the individual is 

highly responsive to drug-associated cues because of amygdala hyperfunction, and less 

able to withhold engaging with these stimuli due to PFC hypofunction. On the other 

hand, aberrant learning theory emphasises the difference between outcome-sensitive 

behaviour (i.e. goal-directed behaviour) and stimulus-response (i.e. habitual behaviour), 

which are mediated by separate brain mechanisms involving the ventral vs. dorsal 

striatum dopamine, respectively (Everitt & Robbins, 2005). The mechanism underlying 

substance abuse proposed by such theories is that adaptive learning mechanisms are 

altered in substance abusers so that behaviour becomes less dependent on its outcome 

and more dependent on impulses and conditioned responses. 

There is no definite consensus yet as to which of the hitherto mentioned theories 

focuses on the key mechanisms by which substance abuse disorders are developed and 

maintained. However, aberrant learning theory has recently been challenged by one 

study clearly showing that addictive behaviour can arise even when drug-seeking is not 

habitual, and when it is controlled by dopamine in the ventral striatum (Singer, Fadanelli, 

Kawa, & Robinson, 2018). Nevertheless, it is safe to say that there are separate brain 

circuits engaged and altered by different classes of drugs. More importantly, in some 

cases, even when circuits overlap between drugs, drug effects go in opposite directions. 

This is particularly true for opiates and psychostimulants, and therefore – heroin and 

cocaine. If any psychobiological theory was to explain drug abuse, it would have to 

account for the mechanisms involved in each of the stages of development of the 

disorder. First, the acute rewarding effects of the drug, which drive initial recreational 
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use. Second, the physiological and psychological changes which accompany the 

transition to compulsive (pathological use), taking into account that such changes occur 

only in some individuals. Third, the mechanisms underlying the propensity to relapse 

after long periods of abstinence. Understanding these mechanisms requires 

manipulation of brain function which is currently possible only in the field of animal 

research. Rodent models have been especially useful in that endeavour, and have served 

as the basis for all currently available psychobiological theories of drug addiction. In 

many cases, however, such theories have overlooked some important differences 

between the mechanisms of heroin and cocaine which can have implications for the 

prevention and treatment of substance abuse disorders. 

Modelling drug reward and relapse into drug-seeking 

Before reviewing any animal models of drug reward and other aspects of substance 

abuse, it must be noted that the concept of reward in psychology is multifaceted. First, 

rewards serve as reinforcers. Second, rewards can include a hedonic/pleasure aspect; 

i.e. they produce positive affect when obtained. The definition of rewards as reinforcers 

is grounded in classical and operant conditioning: it refers to stimuli that elicit approach 

and consummatory behaviours, or to outcomes of actions that increase the probability 

of those actions occurring again. Reward, therefore, can take the form of “natural” 

reinforcers such as food and sex, or can be more abstract – as an extreme example, 

recently, it was shown that social interaction and aggression can be reinforcing in the 

mouse (Golden et al., 2017). Rewarding effects can also be implicit or explicit, in the 

sense that learning, positive affect and motivation can occur outside of conscious 

awareness. A good example of such a case is self-administration of morphine by humans 

at doses which do not differ from placebo in their subjective effects (Lamb et al., 1991). 

Thus, reward has motivational, cognitive and hedonic components, which are separable 

not only conceptually, but also in terms of the neurobiological mechanisms underlying 

them (Berridge & Robinson, 2003). 

There are numerous animal models capturing different aspects of drug reward, and 

some are specifically designed to measure these aspects separately. However, by and 

large, animal models of drug reward are variations of the operant self-administration 

and conditioned place preference (CPP) procedures. 
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The self-administration model is based on operant conditioning where an animal 

(usually a rat) is given the opportunity to interact with a manipulandum in order to 

receive an intravenous infusion of a drug. This is achieved through the implantation of 

an intrajugular catheter connected to an in infusion pump that is activated by pressing 

a lever or by a nose-poke. In this case drugs such as heroin and cocaine act as positive 

reinforcers, because the frequency of lever-presses or nose-pokes increases as the 

animal learns the contingency between the action and the outcome (Gardner, 2000). 

Often there is a control lever or a control hole present to show that the action is 

specifically oriented to the drug-paired manipulandum and is not just the result of 

general activity of the animal.  

In the CPP procedure, a compartment within a chamber is paired with the administration 

of a drug by the experimenter, while a different compartment is paired with the 

administration of a vehicle (e.g. saline). In this case, following repeated parings, the 

animal develops a preference for the drug-paired compartment when given the option 

to choose in drug-free conditions. The logic behind this paradigm is that if a drug such 

as cocaine or heroin induces a pleasant experience (i.e. acts as an unconditioned 

reward/reinforcer), this pleasantness will be associated with the environment through 

classical conditioning. Then, the environment will act as a conditioned stimulus which 

elicits approach (Tzschentke, 1998). Indeed, it is well-established that pairing of both 

heroin and cocaine effects with an environment make it preferable over a vehicle-paired 

environment (Brenhouse & Andersen, 2008; Schlussman et al., 2008). 

The self-administration paradigm has the advantage of modelling self-initiated drug-

taking, which arguably makes it a more ecologically valid model. However, the CPP 

procedure is also relevant since it suggests that even experimenter-administered drugs 

can have rewarding properties.  

The associative processes seen in CPP are also relevant in the sense that they relate to 

a key aspect of the relapse mechanism. Not only the environment, but also discrete cues 

can be associated with drug administration so that they themselves acquire rewarding 

properties. For example, laboratory animals that have learned to associate a light cue 

with the delivery of a drug infusion will later lever press for the presentation of the light 

(Di Ciano & Everitt, 2004a). This conditioned reinforcement is at the basis of modelling 



7 
 

drug seeking in general and plays a key role in models of relapse. In such models, rats 

learn to lever press for a drug after which the behaviour is extinguished through 

presentation of the lever, but no contingent drug delivery. With time, the animal 

decreases responding on the lever in the absence of the reinforcer. However, if a light is 

presented contingently on pressing of the lever during training, when the drug was 

available, and then this light was presented contingently again in a test session (in the 

absence of the drug), animals would reinstate lever pressing for the presentation of the 

light, even though the drug is not present (Grimm, Shaham, & Hope, 2002). Thus, 

presentation of a drug-associated stimulus can provoke a behaviour oriented towards 

drug-taking through a motivational process engaged thanks to classical conditioning. In 

addition, lever pressing can be reinstated through exposure to stress or administration 

of a small dose of the drug (de Wit & Stewart, 1981; Shaham & Stewart, 1995). The logic 

behind this model is that a similar process occurs in human substance abusers whereby 

drug-associated stimuli such as drug-taking paraphernalia, or seeing other people take 

the drug, can promote craving – a desire to take the drug (Epstein, Preston, Stewart, & 

Shaham, 2006).  

Similarly, CPP can be used to model reactivation of the memory of rewarding drug 

effects. In this paradigm, CPP is first established and then extinguished by pairing the 

drug-context with the delivery of a vehicle or simply exposing the animal to the drug-

paired context repeatedly without the drug. Then, once preference for the drug-paired 

environment has disappeared, this preference can be reinstated by exposing the animal 

to a small dose of the drug (Mueller, Perdikaris, & Stewart, 2002; Mueller & Stewart, 

2000). 

To summarise, both the rewarding properties of drugs and the propensity to relapse can 

be understood at least in part in terms of classical and operant conditioning. Therefore, 

any understanding of the mechanisms underlying drug reward driving recreational use, 

transition to pathological use, and relapse would require an understanding of the 

neurochemistry and neuroanatomy of brain circuits involved in these forms of learning. 
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Neuroanatomical substrates of reward and motivation 

Previous sections introduced major current theories of drug abuse and mentioned some 

key brain areas and neurotransmitter systems involved in the development of the 

disorder. This section will describe the connectivity and neurochemistry of brain areas 

mentioned throughout this thesis as targets of heroin and cocaine action in the brain, 

and as areas of interest in experimental chapters. These brain areas include the striatum 

and several of its input structures (PFC, amygdala, hippocampus, thalamus, ventral 

tegmental area (VTA) and substantia nigra), as well as some output structures. 

The striatum receives glutamatergic inputs from the thalamus, basolateral amygdala, 

hippocampus and prefrontal/sensorimotor cortices (Voorn, Vanderschuren, 

Groenewegen, Robbins, & Pennartz, 2004). These inputs can be divided in a dorsolateral 

to ventromedial direction, such that the ventromedial striatum receives input 

predominantly from limbic structures, while the dorsolateral striatum receives input 

mostly from the thalamus and sensorimotor cortices (fig. 1.1, p.10). Note, however, that 

only cortical inputs to the ventral striatum (Nacc) distinguish between core and shell – 

basolateral amygdalar and thalamic inputs have a complex organisation and project to 

both core and shell (Wright, Beijer, & Groenewegen, 1996).  More specifically, the Nacc 

shell receives input from the infralimbic cortex, ventral portions of prelimbic area, and 

ventral agranular insular cortex (lateral shell). The Nacc core receives some input from 

the ventral prelimbic area as well, but is mostly targeted by the dorsal PL, and (the lateral 

core) from dorsal agranular insula (Groenewegen, Wright, Beijer, & Voorn, 1999). The 

dorsomedial striatum receives input from the dorsal prelimbic and ventral orbital 

cortices, while the dorsolateral striatum receives input mostly from the anterior 

cingulate dorsal cortex and sensorimotor cortices (Berendse, Galis-de Graaf, & 

Groenewegen, 1992; Voorn et al., 2004). The striatum also receives dense dopaminergic 

innervation from the VTA and substantia nigra pars compacta (SNc). The former targets 

primarily the ventral striatum, while the latter provides dopaminergic input mostly to 

the dorsal striatum. However, there are some sparse reciprocal projections between SNc 

and core (Beckstead, Domesick, & Nauta, 1979). Finally, there are some GABAergic 

inputs to the ventral striatum, for example from the ventral pallidum (VP) forming 
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reciprocal connections with the Nacc. The ventromedial VP projects to the shell, while 

the dorsolateral VP – to the Nacc core (Brog, Salyapongse, Deutch, & Zahm, 1993). 

The main targets of striatal efferent projections are other regions of the basal ganglia: 

ventral pallidum, globus pallidus, substantia nigra pars compacta/reticulata, and the 

VTA. As already mentioned, the Nacc core projects to the dorsolateral VP, and the shell 

– to the ventromedial VP (Zahm & Heimer, 1990).  From the VP, projections continue to 

the thalamus, either directly (for the circuit passing through the Nacc shell) or via the 

substantia nigra pars reticulata, SNr (for the circuit passing through the Nacc core). The 

thalamus then sends projections back to the cortex to form the so-called cortico-basal 

ganglia-thalamocortical loops (Groenewegen, Galis-de Graaf, & Smeets, 1999). The 

dorsal striatum projects to the dorsal rather than ventral pallidum, and either directly to 

the GP internal/SNr, or indirectly through the GP external and STN. The direct and 

indirect pathways are characterised by predominantly dopamine D1 or D2-receptor-

expressing MSNs, respectively (Groenewegen, 2003; Maurin, Banrezes, Menetrey, 

Mailly, & Deniau, 1999; Nagy, Carter, & Fibiger, 1978). 

To summarise, the striatum receives glutamatergic input from several brain areas 

including the amygdala and PFC, and dopaminergic input from the SNc and VTA. The 

afferent projections to the striatum are not uniformly distributed, but are organised in 

a ventromedial to dorsolateral fashion: ventral and medial striatal regions receive dense 

innervation from limbic structures and the VTA, while dorsolateral regions receive 

somatosensory inputs and projections from the SNc. The striatum itself sends mainly 

GABAergic projections to its output targets. 

The striatum is comprised predominantly (95%) of GABAergic medium spiny neurons 

(MSNs), plus some GABAergic and cholinergic interneurons (Lobo, 2009). The GABAergic 

interneurons can be further subdivided in calbindin-, parvalbumin-, or neuropeptide-Y-

expressing ones (Tepper & Bolam, 2004). Contrary to the segregated topography of 

striatal glutamatergic inputs, these cell type distributions are generally uniform across 

the striatum. The MSNs can be further subdivided in dopamine D1- or D2-receptor 

expressing neurons (direct/indirect pathway MSNs), co-expressing either substance P or 

preproenkephalin A, respectively (Le Moine & Bloch, 1995). The dorsal striatum exhibits 

a prominent separation between D1-expressing and D2-expressing MSNs, while the 



10 
 

ventral striatum (especially Nacc shell) contains a relatively greater proportion of MSNs 

expressing both types of receptor (Bertran-Gonzalez et al., 2008). 

 

Fig. 1.1. Schematic representation of the major afferent glutamatergic projections of the 
striatum originating from the prefrontal cortex, thalamus, amygdala and hippocampus. 
Subdivisions of these four areas and their corresponding projections areas in the 
striatum are coloured the same. This is a simplified schematic representing the densest 
projections. Adapted from Voorn et al. (2004). Note the dorsolateral-ventromedial 
distribution of somatosensory vs. limbic inputs, with the prefrontal cortex inputs being 
the leading organisational principle. Cortical subdivisions as follows - SMC: 
somatosensory; ACd: anterior cingulate dorsal; PLd and PLv: prelimbic dorsal and ventral, 
respectively; IL: infralimbic; AId and AIv: agranular insular dorsal and ventral, 
respectively. Thalamic subdivisions – PV: paravetricular; IMD: intermediodorsal; CeM: 
central medial; MD: mediodorsal; PC: paracentral; CL: central lateral. 
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Neural circuits engaged by heroin vs. cocaine reward and relapse 

So far, it was suggested that heroin and cocaine are two drugs with well-established 

addictive properties, and that according to current psychobiological theories drug abuse 

arises from the interaction of drugs with an interconnected system of brain areas with 

a key role for the striatum, amygdala, PFC and dopamine. This section will elaborate on 

the historical origins of current theories of drug abuse and discuss some key differences 

between heroin and cocaine suggesting that a unified view of addiction should be called 

into question. 

Historically, studies of reward circuits of the brain were influenced by research going 

back as far as the 1950s. At that time, intracranial electric stimulation was used to 

identify the role of different brain areas in particular behaviours. The discovery of the so 

called “pleasure centre” through this method can be attributed to James Olds and 

colleagues. 

In a somewhat serendipitous manner, Olds and Milner found that electrical stimulation 

of the medial forebrain bundle produced what is now referred to as CPP (Olds, 1956). 

That is, rats would develop a preference towards a particular place where that brain 

area was stimulated. Olds and Peters also demonstrated an operant reinforcement 

effect of this stimulation (Olds & Milner, 1954). The obvious question then was why 

stimulation of particularly that area produces rewarding effects. It was suggested that 

the result comes from the involvement of dopamine release produced by the 

stimulation, and the effect that dopamine has on target areas such as the Nacc. This was 

in part because the Nacc receives input from projections from the VTA, and these 

projections are embedded in the median forebrain bundle. In support of this claim, firing 

of VTA neurons was found to be necessary for maintenance of intracranial self-

stimulation (ICSS) (You, Chen, & Wise, 2001). 

Thus, the euphorigenic effects of drugs, which were believed to be the driving force 

behind drug-taking at least initially, were hypothesised to be mediated by the 

dopaminergic system. Indeed, drugs of abuse, including heroin and cocaine, were found 

to interact with the ICSS and the dopamine system (Bozarth, Gerber, & Wise, 1980; Fish 

et al., 2010; Wauquier & Niemegeers, 1974). However, their effects on dopaminergic 
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transmission and associated long-term changes can differ between drug classes, 

specifically opiates and psychostimulants. It is also the case that both increases and 

decreases in dopaminergic transmission may be associated with vulnerability to 

addiction, and ratings of drug-induced high are independent of dopamine release (for a 

review see D. J. Nutt, Lingford-Hughes, Erritzoe, and Stokes (2015)). For the sake of this 

introduction, only several key studies will be summarised suggesting that opiates and 

psychostimulants are processed differently by the brain and produce different 

behavioural effects. 

For example, it has been shown that heroin and cocaine self-administration are 

mediated by separate neurotransmitter systems. Rats treated with opioid receptor 

antagonists tend to compensate for reduced opioid neurotransmission by increasing 

their operant responding for heroin. In contrast, such manipulation has no effect on 

cocaine self-administration. The opposite is true for the effect of pre-treatment with 

dopamine antagonists which leads to a compensatory increase in operant responses for 

cocaine but not heroin (Ettenberg, Pettit, Bloom, & Koob, 1982). These findings clearly 

show that cocaine exerts its reinforcing effects through direct interaction with the 

dopamine system, while heroin might have either indirect effect on dopaminergic 

release or operate through an entirely separate mechanism. It has been shown that it is 

the latter case, rather than the former, at least as far as DA transmission in the Nacc is 

concerned. Destruction of dopaminergic terminals within that brain area reduces 

cocaine self-administration by 70% within 5 trials post-lesion. In contrast, the same 

manipulation has little effect on heroin self-administration which recovers to more than 

70% of its pre-lesion levels within the same amount of time (Pettit, Ettenberg, Bloom, & 

Koob, 1984). If heroin was producing its reinforcing effects through disinhibition of VTA 

dopamine neurons projecting to the Nacc, as some suggest (Devine & Wise, 1994), this 

would not have been the case. Accordingly, reducing DA D1-receptor function in the 

Nacc shell through RNA interference has been shown to impair acquisition of cocaine, 

but not heroin self-administration in rats (Pisanu et al., 2015). 

It must be noted, however, that there is some evidence for opioid receptor activation in 

the VTA being rewarding (Devine & Wise, 1994). In addition, intracranial injections of 

morphine into the VTA lead to release of DA in the NAcc (Leone, Pocock, & Wise, 1991). 
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One possibility is that the projections from VTA have diverse targets, and DA release in 

the Nacc, although a consequence of VTA neuron firing, is not what drives opiate 

reinforcement. One way to examine this hypothesis through existing research (albeit 

indirectly) is to look for patterns of neuronal activity and morphological changes 

following drug administration. That is, if the rewarding effects of both opiates and 

psychostimulants are encoded in the same way, then neural activity in the reward 

circuitry should be similar. Empirical evidence suggests this is not the case either. In vivo 

multichannel singe-unit recordings during cocaine and heroin self-administration has 

revealed that the majority of neurons respond differently to the two drugs in the Nacc 

and the medial prefrontal cortex. That is, out of all neurons that showed an inhibitory 

or excitatory response to at least one of the drugs, only 25% or less showed the same 

response for the other drug as well. This was true for both brain areas and regardless of 

the order in which the drugs were self-administered (Chang, Janak, & Woodward, 1998).  

Even long-term effects of opiates and psychostimulants differ. Repeated exposure to 

psychoactive substances including but not limited to heroin and cocaine can lead to 

structural changes in neurons. These changes are likely to be related to synaptic 

reorganization that serves as the biological basis for learning and memory, and are likely 

to underlie maladaptive behaviour such as drug abuse. It has been found that while 

cocaine increases dendritic branching and spine density in the Nacc core and shell and 

medial PFC, morphine has the opposite effects in these brain areas except Nacc core 

where such data is not available (Robinson & Kolb, 2004). It has been shown that DA is 

involved in this type of plasticity in the PFC (Reynolds et al., 2018), so these findings add 

further evidence against common DA mechanisms for opiates and psychostimulants. 

Also relevant is the finding that prolonged abstinence from cocaine fails to produce 

many of the behavioural changes associated with withdrawal from morphine, nicotine, 

alcohol and THC in mice. Cocaine withdrawal does not produce the impairments in direct 

social interaction, the increase in motor stereotypy, and the exacerbated conflict anxiety 

produced by withdrawal from the rest of the drugs mentioned. These differences in 

behavioural changes are also accompanied by a decrease in markers of neuronal activity 

in the VTA for all other drugs except cocaine. Finally, morphine and cocaine abstinence 
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produced opposite transcriptional changes in the extended amygdala for a set of HTT-

related genes involved in striatal neurotransmission (Becker, Kieffer, & Le Merrer, 2017).  

The differences between heroin and cocaine extend beyond their direct 

pharmacological actions on cell function. The environmental context can modulate the 

reinforcing and subjective effects of opiates and psychostimulants in opposite directions 

(Caprioli, Celentano, Paolone, & Badiani, 2007). For example, the novelty of the 

environment in which the two drugs are administered can be manipulated by either 

keeping rats in the drug-administration chambers at all times (resident rats) or moving 

rats to a physically identical chamber only during testing (non-resident rats). Studies 

using this paradigm have shown that residents will press more for heroin over a range 

of doses, while non-residents will press more for cocaine and amphetamine (Caprioli et 

al., 2008; Caprioli, Paolone, et al., 2007). The same studies show that, as measured by a 

progressive-ratio schedule, residents are more motivated for heroin than non-residents, 

while the opposite is true for cocaine and amphetamine (at least at certain doses). Non-

residents also reinstate cocaine-seeking after a cocaine priming, while residents do not, 

and the opposite is true for heroin-seeking after a heroin priming (Montanari et al., 

2015). Therefore, the environment can modulate the reinforcing properties of opiates 

and psychostimulants in opposite ways, as well as the propensity to relapse to drug 

seeking. There is also some evidence that these environmental effects may extend to 

the subjective/pleasurable effects of the heroin and cocaine. For example, residents are 

better at discriminating morphine from saline than non-residents, while the latter are 

better at discriminating amphetamine from saline than residents (Caprioli, Celentano, 

et al., 2007; Paolone, Palopoli, Marrone, Nencini, & Badiani, 2004), suggesting that the 

salience of the interoceptive effects of the two drugs are modulated in opposite ways 

by the environmental context. Non-residents also emit more 50 kHz ultra-sonic 

vocalisations than residents in response to cocaine, while the opposite is true for heroin. 

Rats emit this type of vocalisations when exposed to rewarding stimuli, suggesting they 

reflect positive affective states (Avvisati et al., 2016).  

Human studies have provided further support for the findings from rodent studies. Both 

rats and humans prefer taking heroin in familiar/home environments, while cocaine is 

taken outside the home (Caprioli et al., 2009). That is, given the choice, resident rats 



15 
 

prefer to self-administer heroin, while non-residents prefer cocaine, and experienced 

human addicts report taking each drug predominantly in different environments. Finally, 

humans also report a pleasant experience of the cocaine high in a novel environment, 

but an unpleasant one at home, while the opposite is true for heroin. These self-reports 

are accompanied by opposite changes in activity of the left middle frontal gyrus, left 

dorsal caudate and cerebellum during cocaine vs. heroin imagery at home and outside 

(De Pirro, Galati, Pizzamiglio, & Badiani, 2018). 

It has been suggested that the opposite modulatory effects of novelty on all these 

effects of opiates and psychostimulants results in part from an interaction between the 

interoceptive stimuli produced by heroin and cocaine (e.g. changes in blood pressure, 

heart rate) and the sensory input from the environment (e.g. visual/auditory stimuli) 

which modulate the acute effects of the two drugs (Badiani, 2013). 

In summary, there is ample evidence that the acute reinforcing effects of opiates and 

psychostimulants are processed very differently within the putative reward circuitry. 

Long-term drug-induced neurobiological and behavioural changes also differ between 

drug classes, and the setting of drug-taking can modulate the subjective and rewarding 

effects of heroin and cocaine in opposite directions.  

Finally, there are known differences between circuits engaged in rodent models of 

heroin and cocaine relapse which shouldn’t be overlooked. Drug seeking can be 

reinstated through exposure to drug-associated context and stimuli or the drug itself 

(Crombag, Bossert, Koya, & Shaham, 2008; Stewart, 2000). The circuitry involved in this 

process involves projections from the medial PFC to the Nacc shell and core for both 

heroin and cocaine. However, while activating the projection from ventromedial PFC to 

Nacc shell promotes context-induced relapse to heroin-seeking (Bossert et al., 2012), 

activating this projection seems to inhibit drug-primed relapse to cocaine-seeking 

(Peters, LaLumiere, & Kalivas, 2008). 

To summarise, a vast amount of empirical evidence points towards a separation of the 

neuronal circuits governing heroin vs. cocaine reward and the propensity to relapse. 

Importantly, the separation between these circuits is not absolute in the sense that, 

indeed, heroin and cocaine do engage the same neuromodulators and brain areas to a 
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significant extent. However, there is also significant variation within these brain areas 

and neuromodulator systems in terms of the information being encoded. It is necessary 

to emphasise this point for the sake of improving both the theory and clinical practice 

within the field of substance abuse. For this reason, the project described within this 

thesis aimed to add further evidence for the different ways in which the brain responds 

to heroin and cocaine. 

2. Pharmacology of heroin and cocaine 

Although heroin and cocaine can both lead to the development of pathological drug-

seeking and drug-taking behaviour, their pharmacological properties are very different. 

To some extent, many differences in the acute behavioural and physiological effects of 

the two drugs can be attributed to their interaction with distinct neurotransmitter 

systems. In addition, heroin and cocaine differ greatly in terms of their metabolism and 

pharmacokinetics. 

Chemical structure and metabolism of heroin and cocaine 

Heroin is synthesised through the addition of two acetyl groups to the molecule of 

morphine (fig. 1.2, p. 17). This change in structure brings about significant changes to 

the pharmacokinetics of the drug, making heroin much more lipid soluble and therefore 

able to cross the blood-brain barrier (BBB) more efficiently (Pardridge, 2012). However, 

apart from this improved ability to enter the central nervous system, heroin is not much 

different from morphine in its pharmacological actions. In fact, heroin is rapidly 

metabolised to morphine after crossing the BBB. Of course, the change in 

pharmacokinetics is not irrelevant, because it means that equal doses of the two drugs 

would have very different efficacy, with heroin being much more potent in producing 

analgesia and euphoria when injected. It should be noted that, once heroin enters the 

brain, it is first metabolised into 6-monoacetylmorphine (6-MAM) before it is 

metabolised to morphine. Morphine itself is further broken down to morphine-3- and 

morphine-6-glucuronide. All these metabolites possess their own pharmacological 

effects. The peak concentration of 6-MAM in the blood and brain following a heroin 

injection is much higher than that of morphine, suggesting that many of the immediate 

effects of heroin might in fact be due to the pharmacology of 6-MAM rather than 
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morphine (Gottas et al., 2013). Thus, the physiological and psychological effects of 

heroin are anything but straightforward, and are heavily dependent on route of 

administration and individual differences in metabolism. 

 

Fig. 1.2. Chemical structures of morphine and heroin. 

Cocaine, on the other hand, is most commonly found with its natural chemical structure 

present in the coca leaf. The cocaine molecule is comprised of a six-carbon phenyl ring 

and a nitrogen-containing ring, both necessary for its biological activity (fig. 1.3, below). 

 

Fig. 1.3. Chemical structure of cocaine. 

Cocaine is lipid-soluble and can get into the bloodstream and pass the BBB easily. For 

this reason, it is a very potent drug especially when injected or snorted. There are several 

known cocaine metabolites amongst which are norcocaine, benzoylecgonine and 

benzoylnorecgonine. It is suggested that individual differences in cocaine metabolism is 

an important factor for both the acute and long-term effects of the drug, since it 

determines the duration of cocaine action in the brain (Schindler & Goldberg, 2012; 

Schuelke, Konkol, Terry, & Madden, 1996). Thus, similarly to heroin, the effects of 

cocaine depend on metabolism just as much as they do on the chemical properties of 

the substance. 

Even a brief glance at their chemical and metabolic properties, reveals some important 

differences between heroin and cocaine. The ability of the two drugs to reach the brain, 

together with their metabolism and rate of elimination, point to potential important 
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differences in their psychobiological effects. The speed at which they reach the brain, 

the amount of time they spend there and exert their effects, and the targets upon which 

they act all combine to produce their effects in the short and long term.  

Heroin and its metabolites interact with the opioid receptors  

Due to its metabolism (as described above), the effects of heroin are in great part the 

result of its metabolites 6-MAM and morphine binding to opioid receptors in the brain 

(Inturrisi et al., 1983). There are four known types of opioid receptor found through the 

mammalian nervous system – mu (µ), delta (δ), kappa (κ) and NOP-R. Out of these, the 

µ- and δ-receptors are perhaps most relevant to the analgesic, euphorigenic and 

addictive properties of heroin for two reasons: they are found in brain areas involved in 

pain processing, motivation, reward and learning (Mansour, Khachaturian, Lewis, Akil, 

& Watson, 1988), and they are readily bound by 6-MAM and morphine (Mignat, Wille, 

& Ziegler, 1995). It has been suggested that the primary effects of heroin are the result 

of 6-MAM and morphine binding to µ-receptors, and 6-MAM having higher efficacy at 

that receptor than morphine (Selley et al., 2001).  

Opioid receptors are metabotropic, coupled to inhibitory G-proteins (Gi), so that activity 

at these receptors usually leads to decreased excitability and neurotransmitter release 

in the neurons carrying them. This is achieved through several mechanisms. The first 

one is opening of potassium channels which promotes depolarization of the cell 

membrane and thus decreases the probability of action potentials occurring (Torrecilla 

et al., 2002). Activity at kappa opioid receptors can also lead to closing of voltage-gated 

calcium channels which reduces pre-synaptic release of neurotransmitter triggered by 

action potentials (Rusin, Giovannucci, Stuenkel, & Moises, 1997). Finally, Gi proteins 

coupled to the receptors inhibit adenylyl cyclase and reduce the synthesis of cyclic 

adenosine monophosphate – cAMP (Minneman & Iversen, 1976). The consequences of 

this reduced synthesis are complex and beyond the scope of this section, but they have 

to do with chronic effects of heroin use such as tolerance and withdrawal. It happens 

when cAMP levels in the locus coeruleus (LC) become elevated after morphine/heroin 

administration has ceased as a compensatory response to cAMP reduction by those 

drugs. This renders the neurons more excitable, leading to more noradrenaline release 

and, presumably, a heightened state of arousal and negative affect (Nestler, 1996). This 
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process is a good example of how the location of µ-opioid receptors can determine the 

action of heroin – discussed in more detail in the following section. 

Opioid receptors are located in circuits which process autonomic functions, pain, and 

reward 

The various opioid receptor types are distributed inhomogeneously across the central 

nervous system (Mansour et al., 1988). The particular region of the CNS where opiates 

(including heroin and its metabolites) will act on the receptors can define particular 

behavioural and physiological effects of this class of drugs. 

To begin with, heroin has profound depressant effects on the respiratory and 

cardiovascular systems, causing decreased respiration rate (Pattinson, 2008), decrease 

in blood pressure and heart rate (Thornhill, Townsend, & Gregor, 1989) and changes in 

body temperature (Chen, Geller, DeRiel, Liu-Chen, & Adler, 1996). Opiate administration 

also causes constriction of the pupils (Larson, 2008). Activation of µ-opioid receptors 

located in the respiratory centres of the brainstem can suppress breathing, which 

represents one of the primary causes of deaths from illicit drug overdose (Eigner et al., 

2017). Heart rate and blood pressure are also regulated by µ- and δ-receptors in the 

brainstem (Sun, Liu, Li, & Ingenito, 1996). Due to its effects on the respiratory and 

cardiovascular systems, heroin can produce parasympathomimetic-like effects (that is, 

effects mimicking the activation of the parasympathetic nervous system). 

It is worth mentioning that a major effect of heroin is pain relief which involves inhibitory 

action mostly through µ-opioid receptors both at the spinal and the supraspinal levels. 

In the spinal cord, µ-opioid receptors are present at projection neurons which transmit 

pain signals from nociceptors to higher brain centres. Supraspinally, periaqueductal grey 

(PAG) neurons synapse onto inhibitory interneurons in the Raphe nuclei and the LC. 

These synapses are rich in opioid receptors too, since the PAG contains endogenous 

opioid-releasing neurons, and disinhibition of the Raphe and the LC leads to release of 

serotonin and noradrenaline that can modulate pain signals. Finally, opioid receptors in 

the thalamus can prevent pain signals from reaching limbic regions such as the anterior 

limbic cortex, which is involved in the affective aspect of pain (Yaksh, 1997). The ability 

of opiate drugs such as heroin to engage pain-controlling systems is remarkable mainly 
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because it is unmatched by other known substances. The “Holy Grail” of opioid research 

has been the search for analgesics with comparable strength, but lower abuse potential, 

tolerance effects and withdrawal symptoms (Kieffer & Evans, 2002). 

The mechanisms underlying both the abuse potential and the tolerance effects of 

opioids are still disputed amongst scientists (Badiani et al., 2011; Bailey & Connor, 2005), 

and a full review on that topic is beyond the scope of this section. However, within this 

context, it is worth mentioning that µ-opioid receptors are also located within the 

ventral tegmental area (VTA) and the nucleus accumbens (Nacc). The former contains a 

significant proportion of all dopamine-releasing neurons in the brain, and the latter is 

believed to be a point of convergence for circuitry involved in the processing of learning, 

motivation and pleasure (i.e. reward). The action of heroin and morphine on receptors 

in these areas has been shown to be necessary for certain types of behaviour in animal 

models of reward (e.g. drug self-administration). A more detailed explanation of these 

actions of opiates and animal models of reward are provided in following sections. At 

this point, it suffices to mention two receptors within this circuit. First, activity at µ-

opioid receptors located on GABAergic inhibitory interneurons within the VTA results in 

disinhibition of dopamine-releasing neurons (Jalabert et al., 2011). Second, κ-receptors 

can inhibit dopamine release at terminals in the Nacc (Britt & McGehee, 2008). 

Supposedly, the first effect has rewarding properties (Devine & Wise, 1994), while the 

latter leads to negative affect (S. R. Ebner, Roitman, Potter, Rachlin, & Chartoff, 2010). 

Note, however, that rats may self-administer κ-opioid receptor agonists (Marinelli et al., 

1998). 

Cocaine blocks monoamine re-uptake transporters 

Cocaine acts by blocking the re-uptake transporters of dopamine (DA), noradrenaline 

(NA) and serotonin (5-HT). It has the highest affinity for the 5-HT transporter, followed 

by the DA and then the NA transporters (Ritz, Cone, & Kuhar, 1990). Contrary to heroin, 

cocaine achieves its effects mainly through its primary structure rather than through its 

metabolites. By blocking the monoamine transporters, cocaine prolongs the presence 

of already released neurotransmitter in the synaptic cleft and thus prolongs its binding 

to receptors. One additional effect of cocaine, in large doses, is the inhibition of voltage-

gated sodium channels which prevents the propagation of action potentials along axons 
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(Matthews & Collins, 1983). This effect is at the base of cocaine’s local anaesthetic 

properties, as it prevents pain-receptor cells from transmitting signals to the brain. 

Considering that cocaine interacts with not one but three neurotransmitter systems, and 

that those neurotransmitter systems involve several types of receptors each, it is safe 

to say that the effects of cocaine are just as multifaceted as those of heroin. Similarly to 

opioids, DA, 5-HT and NA act on metabotropic receptors. However, these receptors are 

organized in groups with often opposing actions in terms of cellular activity. To begin 

with, DA receptors can be subdivided to D1- and D2-like types. The D1-type are coupled 

to Gs proteins which stimulate cAMP and can be said to increase excitability of the cell 

containing them, while D2 inhibit cAMP and decrease excitability through Gi proteins 

similarly to opioid receptors (Vallone, Picetti, & Borrelli, 2000). Receptors for NA are also 

subdivided in two main groups, alpha (α) and beta (β), each of which have several 

members. Generally, however, postsynaptic receptors are involved in signalling 

cascades that stimulate cAMP formation and calcium build-up inside the postsynaptic 

cell (Strosberg, 1993). Finally, 5-HT receptors are the most diverse with at least 15 

different members across 7 main groups. All of these are metabotropic except the 5-

HT3 which is an ionotropic receptor (Kroeze, Kristiansen, & Roth, 2002). Among all 5-HT 

metabotropic receptors exist both inhibitory receptors which function similarly to opioid 

and D2 receptors (e.g. the 5HT1a receptor) but also receptors that engage the 

phosphoinositide second messenger system like adrenergic receptors (e.g. 5HT2a 

receptors). As already shown for the opioid receptor system, the location of all these 

receptors within the central nervous system defines the psychoactive properties of 

cocaine.  

Cocaine enhances monoamine action both in the peripheral and central nervous 

systems 

The acute effects of cocaine include increased blood pressure and heart rate (Foltin, 

Fischman, & Levin, 1995), increased respiration rate (Trippenbach & Kelly, 1994), 

hyperthermia (Crandall, Vongpatanasin, & Victor, 2002) and dilation of the pupil (Pitts 

& Marwah, 1988). Note that the effects on the cardiovascular and respiratory systems 

are in most part opposite to those of heroin, and resemble activation of the sympathetic 

nervous system (i.e. cocaine can be defined as a sympathomimetic drug). The somatic 
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effects of cocaine are likely to be linked to its effects on the noradrenergic and 

serotonergic systems, which are involved in regulation of the cardiovascular system. For 

example, vasodilation is in part regulated through adrenergic receptors on blood vessels, 

and that serves as a primary mechanism for temperature regulation. There is also 

evidence for dopaminergic and serotonergic mechanisms as well, since mice lacking the 

dopamine and serotonin transporters show lower hyperthermia in response to 

methamphetamine (Numachi et al., 2007). 

Sympathetic effects of cocaine and other stimulants notwithstanding, by far the most 

researched effects of cocaine result from its interaction with the dopaminergic system. 

Primary recipients of dopaminergic inputs are the basal ganglia, including the Nacc and 

dorsal striatum, the prefrontal cortex (PFC) and the amygdala (Arias-Carrion, Stamelou, 

Murillo-Rodriguez, Menendez-Gonzalez, & Poppel, 2010). Cocaine increases dopamine 

levels at synapses in all these areas (Hurd, McGregor, & Ponten, 1997; Sorg & Kalivas, 

1993; Stuber, Roitman, Phillips, Carelli, & Wightman, 2005). Dopaminergic activity in the 

amygdala and the Nacc regulates the motivating properties of cocaine; i.e. seeking and 

taking of cocaine are mediated by dopamine D1 receptors in these areas (Hurd et al., 

1997; Maldonado, Robledo, Chover, Caine, & Koob, 1993). It is noteworthy that cocaine 

also has euphorigenic properties, but these are not mediated by dopamine (Leyton, 

Casey, Delaney, Kolivakis, & Benkelfat, 2005). On the other hand, dopaminergic activity 

in the prefrontal cortex has diverse functions depending on the particular circuitry in 

which DA receptors are embedded and the type of receptor in question. A full review of 

PFC dopaminergic function is beyond the scope of this section, but in general, cognitive 

deficits associated with ADHD and schizophrenia both involve PFC dopamine (Arnsten & 

Li, 2005; Knable & Weinberger, 1997). 

Last but not least, cocaine’s action on the dopaminergic system stimulates locomotor 

behaviour, and is central to the attribution of incentive salience to stimuli by which they 

acquire attention-grabbing and motivational properties (Berridge, 2007). 
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3. Arc and homer 1a – two genes related to neuronal activity and drug 

effects in the brain 

The literature reviewed so far describes heroin and cocaine as two substances that differ 

greatly in their chemical properties, as well as physiological and psychoactive effects. 

Both drugs engage highly distributed neurotransmitter systems, and thus modulate 

fundamental functions of the nervous system (pain, motivation, executive function, etc.). 

Therefore, the study of heroin and cocaine has implications for understanding both 

normal and pathological function of the brain, as well as the use of opioids for analgesia. 

In addition to all that stands a number of drug-use-related disorders, amongst which is 

that of drug addiction – a concept with which heroin and cocaine are often associated. 

One approach to understanding how drug use leads to the development of addiction is 

the study of the neuronal circuitry involved in the transition from recreational to 

pathological drug use. Some of the most useful scientific tools in this area of research 

take advantage of immediate-early genes and their connection to neuronal activity and 

plastic changes in the brain. 

Immediate-early genes 

Immediate-early genes (IEGs) are genes that are transcribed in response to particular 

intra- or extracellular events, but otherwise have low expression levels. These properties 

distinguish them from constitutively expressed genes which are transcribed at constant 

levels and maintain basic cellular function. In addition, translational inhibitors do not 

prevent the expression of IEGs; i.e. they are transcribed without the need for new 

protein synthesis, and are therefore the first response of the genetic machinery of the 

cell to external stimuli. IEGs often encode for transcription factors and can regulate a 

great deal of transcriptional events with long-term consequences. The types of external 

stimuli that can trigger IEG expression include stress and UV light, as well as hormonal, 

growth factor and some neurotransmitter signalling. As their name suggests, IEGs are 

transcribed quickly after the triggering event and their expression is elevated only for a 

relatively short period of time. This is in part due to their shorter length and fewer exons 

relative to other types of genes (Healy, Khan, & Davie, 2013). 
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In the brain, IEG expression often begins after a ligand binds to a receptor in the cell 

membrane and leads to the activation of an intracellular signalling cascade (fig. 1.4, next 

page). One such cascade is the MAPK/ERK pathway, which is involved in the expression 

of some of the most well-known IEGs: c-fos, egr1/zif268, and arc as well as homer 1a. 

The MAPK/ERK pathway is activated by mitogens and growth factors and leads to 

activation of CREB, a transcription factor that promotes IEG transcription (Davis, 

Vanhoutte, Pages, Caboche, & Laroche, 2000). CREB can also be activated following 

calcium release within (Hardingham, Arnold, & Bading, 2001) or influx to the cell, which 

links expression of the IEGs mentioned to excitatory neuronal signalling through 

glutamatergic NMDA receptors (Riccio & Ginty, 2002; Xia, Dudek, Miranti, & Greenberg, 

1996). For example, it has been shown that both normal and seizure-induced activity 

can lead to expression of IEGs in the brain (Link et al., 1995; Lyford et al., 1995). Other 

means by which CREB can be activated is the cAMP/PKA pathway which is linked to 

activity at G-protein coupled receptors such as dopaminergic receptors (Dudman et al., 

2003).  

Since IEGs are transcribed in response to neuronal activity, and often encode for 

transcription factors or effector proteins which can have long-term consequences for 

cellular functioning, they have been implicated in molecular events associated with 

experience-dependent plasticity and learning. Indeed, electrophysiological studies have 

shown that IEGs are expressed following stimulation of neurons which strengthens 

synaptic connections – e.g. long-term potentiation (LTP) (Link et al., 1995). Further 

support for the role of IEGs in learning comes from studies where interference with IEG 

transcription has been shown to affect performance on long-term memory tests and 

maintenance of LTP (Guzowski et al., 2000), as well as Pavlovian fear conditioning 

(Mahan et al., 2012).  

In summary, IEGs are a major player in the functioning of the nervous system thanks to 

their link with excitatory neurotransmission, experience-dependent plasticity and 

learning. IEGs represent one mechanism by which neuronal cell functioning responds to 

changes in the environment, and IEGs are therefore major players in adaptive behaviour. 

They are also an important tool for many molecular biology techniques used to study 

the functioning of the nervous system. For example, they have been used as markers of 



25 
 

activity, and, more recently, as drivers of expression for artificially introduced 

fluorescent-protein-encoding genes (transgenes) that allow tagging of neuronal 

populations involved in specific functions – i.e. neuronal ensembles (Cruz et al., 2013; 

Kawashima, Okuno, & Bito, 2014). 

 

Fig. 1.4. A simplified representation of some receptors and intracellular signalling 
cascades involved in IEG transcription. Blue arrows represent direction of molecule 
interactions. Please note that some of the molecules in the signalling cascades are 
omitted for the sake of clarity. Following binding of ligands to receptors, second 
messengers (e.g. calcium, Ca, or cyclic adenosine monophosphate, cAMP) initiate 
signalling cascades which lead to phosphorylation of kinases (e.g. calcium-calmodulin 
kinase II, CaMKII, protein kinase A, PKA, extracellular-signal regulated kinase, ERK). 
These kinases in turn phosphorylate transcription factors such as cAMP-response 
element binding protein (CREB), serum response factor (SRF) or Elk-1. Transcription 
factors then bind to promoter regions of genes (e.g. cAMP response element, CRE, 
serum response element, SRE) to initiate transcription. The red line from the AMPA 
receptor (AMPAR) to arc signifies inhibition of transcription. Activation of µ-opioid 
receptors (R) on the other hand may activate the ERK pathway. This is to show that the 
relationship between excitatory neurotransmission and IEG transcription is not straight 
forward. DA D1: dopamine D1 receptor; VGCC – voltage-gated calcium channel; TRKB: 
growth factor receptor. 

Neuronal ensembles and the c-fos IEG 

The idea of neuronal ensembles can be traced back to the work of Charles Sherrington, 

who proposed that the central nervous system is composed of a number of so-called 
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“reflex arcs” that can influence each other and thus integrate information from the 

environment to produce movement (Sherrington, 1906). These arcs, he proposed, 

consisted of three key prototypical components – neurons which receive information 

from the environment, neurons which control muscles to produce movement and 

neurons connecting the two. Thus, Sherrington was one of the first proponents of the 

idea of specialised groups of neurons carrying information-integrating and sensorimotor 

functions: the basic principle of neuronal ensembles. Later on, a similar idea was put 

forward by Donald Hebb, who proposed that repeated stimulation of the nervous 

system gives rise to the so-called “cell assemblies”: diffuse groups of neuronal cells 

capable of acting in a coordinated, independent manner, and capable of facilitating the 

activity of other such groups of cells. A chain of such “cell assemblies” bridging the gap 

between sensory input and motor output Hebb referred to as a “phase sequence” and 

it was suggested to underlie all thought processes (Hebb, 1949).  

Nowadays, the term “neuronal ensembles” is being used widely, and generally refers to 

a population of neurons specialised in the processing of a given brain function. More 

specifically, a neuronal ensemble can be defined as a group of neurons with similar 

afferent and efferent connections, involved in the computation of similar behavioural 

functions, neuroendocrine regulation or sensorimotor gating (Pennartz, Groenewegen, 

& Lopes da Silva, 1994). Note that such a definition focuses on the neuroanatomical 

connections and functional properties of neuronal cells. 

Electrophysiological research defines neuronal ensembles as groups of neurons that fire 

action potentials with the presentation of a given stimulus or during a particular 

behaviour. It is usually required that neurons pertaining to neuronal ensembles in this 

sense exhibit a synchronised (i.e. correlated) change in overall firing rate time-locked to 

the presentation of a stimulus, the execution of a behavioural response, or a change in 

a behavioural task parameter (Cohen & Kohn, 2011; Nicolelis, Baccala, Lin, & Chapin, 

1995).  For example, Hubel and Wiesel found that individual neurons in the cat visual 

cortex respond preferentially to lines of light presented in a particular orientation (Hubel 

& Wiesel, 1959). Their study was one of the first to provide direct evidence for 

preferential responding of neurons time-locked to the presentation of a particular 

stimulus. Such specialised neurons were found in other brain areas and it was believed 
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that they represent specialised “modules” for a given kind of information (Erickson, 

2001). With time, it was accepted that a more accurate representation of the way 

specific functions in the brain are carried out is by population coding - orchestrated firing 

of motor neurons in the monkey cortex could be used to predict the direction of limb 

movements (Georgopoulos, Schwartz, & Kettner, 1986). These were seminal studies 

showing that neuronal activity can reflect (i.e. encode for) specific nervous system 

functions, not only in terms of sensation and perception, but also movement. Two 

features of neuronal ensembles (form an electrophysiological point of view) can be 

deducted from these two and other similar studies. First, the neurons forming a 

neuronal ensemble are expected to change their activity in a synchronised manner 

which is time-locked to the presentation of a stimulus or the expression of a particular 

behaviour; second, it should be possible to predict the behaviour of an animal from the 

activity of the neuronal ensemble encoding for said behaviour (T. J. Ebner, Hendrix, & 

Pasalar, 2009; Laubach, Wessberg, & Nicolelis, 2000).  

Although electrophysiological approaches are indispensable for understanding the 

relationship between neuronal activity and behaviour, there is a limit to the number of 

neurons that can be recorded from simultaneously, especially in deep brain structures. 

Even with recent advances in large-scale recording using silicon electrode arrays 

(Buzsaki, 2004), recording from sparsely distributed neurons across multiple deep brain 

structures is still problematic. For this reason, the relationship between IEG expression 

and neuronal activity has been used to identify and manipulate neuronal ensembles 

across large deep brain areas through histochemical, and optogenetic techniques. A lot 

of focus in this area has been given to the IEG c-fos.  

The insertion of transgenes downstream of the c-fos promoter has made possible 

tagging of strongly activated neurons with fluorescent markers such as GFP in living cells. 

This has allowed for electrophysiological measurements to be taken from neurons 

known to have been active during a specific event. For example, it has been recently 

shown that c-fos-expressing neurons in the nucleus accumbens activated by the 

presentation of sucrose-associated cue are more excitable relative to non-activated c-

fos-negative neurons (Ziminski et al., 2017). Changes in excitability are a particular kind 

of neuronal plasticity which involves changes in receptor functioning (Zhang & Linden, 
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2003). This indicates that c-fos does not simply reflect any kind of activity, but activity in 

neurons that undergo plasticity. 

Transgenes can also be used to express proteins that allow for manipulation and 

targeted inactivation of neurons active during a specific event in time. Such techniques 

have been indispensable in providing evidence for the causal role of neuronal ensemble 

activity in behaviour. For example, the Daun 02 technique uses a transgenic line of rats 

or mice where the c-fos-promoter is upstream of a lacZ promoter. In these rodents, the 

strongly activated neurons expressing c-fos also express the protein β-galactosidase. 

When the Daun02 drug is injected in a brain area of interest, the β-galactosidase 

produced by c-fos expressing neurons in the area interacts with Daun02 to produce 

daunorubicin and cause apoptosis in these cells. Using this method, it was shown for the 

first time that sparsely distributed neurons in nucleus accumbens (Nacc) are necessary 

for expression of context-specific sensitisation (Koya et al., 2009), and neuronal 

populations in the ventromedial prefrontal cortex (vmPFC) are necessary for context-

induced relapse to heroin-seeking (Bossert et al., 2011). Thus, c-fos is expressed not only 

in neurons that undergo plasticity, but also in neurons that have a causal role in 

expression of behaviour. This causal role in behaviour is another defining feature of 

neuronal ensembles which is relevant to IEG expression as a marker of neuronal activity 

(Cruz et al., 2013; Koya, Margetts-Smith, & Hope, 2016). 

To summarise, neuronal ensemble research has shown that there are distributed 

populations of neurons across the brain that act in concert to encode functions such as 

perception, movement and conditioned behaviour. A lot of neuronal ensemble research 

has been carried out within the field of electrophysiology, but the use of the c-fos IEG as 

a marker of activity has revealed a relationship of IEG expression with functional 

importance: c-fos is expressed not just in neurons that have been active, but also 

neurons that are crucial for expression of the behaviour for which they encode. In 

addition, they are often neurons that undergo certain types of plasticity. More recently, 

other IEGs have begun to gain popularity in ensemble research such as arc and homer 

1a.  
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The arc gene 

Characteristically of IEGs, arc is normally expressed at low levels, but is elevated 

following administration of electrical stimulation sufficient to produce convulsive 

seizures, and stimulation of the type that produces LTP. In addition, arc is expressed in 

response to natural neuronal activity: a monocular injection of tetrodotoxin (a sodium 

channel blocker) leads to reduced arc expression in the contralateral, but not ipsilateral, 

visual cortex (Link et al., 1995; Lyford et al., 1995).  

The arc gene was first described as an IEG with a protein product that accumulates in 

the soma and dendrites of expressing cells. Thus, arc is different from c-fos in that it 

does not encode for a transcription factor, but an effector protein that directly affects 

the functioning of the cell. 

The property of arc to be highly expressed under conditions of glutamatergic 

transmission makes it a useful marker of cellular activity as in the case of other IEGs. 

What makes arc different, however, is that once it is transcribed in response to cell-

stimulating events, both its mRNA and protein products relocate to the dendrites which 

have received the stimulation (Moga et al., 2004). Although LTP-inducing type of 

stimulation leads to expression of arc, its protein is known to be involved in endocytosis 

of AMPA receptors (Chowdhury et al., 2006), and to be necessary for metabotropic 

glutamate receptor-dependent long-term depression (LTD) of synapses (Park et al., 

2008). Arc transcription is also involved in long-term memory formation, but not short-

term memory or learning (Plath et al., 2006). So, it seems that arc mRNA and protein are 

produced in response to events that reflect cellular activity and increased connectivity, 

while at the same time are involved in molecular processes which weaken synapses. To 

resolve this paradox, it has been suggested that arc is most likely involved in 

homeostatic plasticity whereby it weakens relatively inactive synapses onto dendrites 

that are receiving various inputs with different intensity (Minatohara, Akiyoshi, & Okuno, 

2016).  

Although arc mRNA levels are elevated similarly to c-fos and zif268 following learning 

tasks such as the Morris water maze, the levels of arc and c-fos do not always correlate 

within relevant brain areas such as the hippocampus. In addition, arc levels are more 
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strongly correlated with task performance than c-fos (Guzowski, Setlow, Wagner, & 

McGaugh, 2001).  

In summary, arc is similar to other well-known IEGs such as c-fos in that it is expressed 

under conditions of strong neuronal activation, and is involved in synaptic plasticity. 

However, arc seems to be involved in plasticity more directly by restructuring synapses 

through AMPA receptor trafficking. Finally, although correlated, c-fos and arc patterns 

of expression are not identical following learning tasks. 

The homer 1a gene 

The mRNA of the whole homer 1 gene has four splice variants in total, two of which are 

constitutive (homer 1b and 1c) and two are IEGs (homer 1a and ania 3). The homer 1 

gene spans ~100 kbp, and its constitutive forms are longer, encoded by exons 1-10, while 

the IEG forms are shorter spanning about half that length: exons 1-5 and parts of intron 

5. The unique sequence that distinguishes the two IEG forms is found in the 3’ UTR. The 

homer 1 gene is constitutively expressed in its 1b/c forms, but under conditions of 

neuronal activity transcription is terminated early and intronic sequence is converted to 

exonic, which is a unique way of adapting constitutive form of a gene to an IEG (Bottai 

et al., 2002). 

Similar to arc and other IEGs, the transcription of homer 1a is rapidly induced in response 

to neuronal activation, is dependent on calcium influx through NMDA receptors, and the 

MAPK/ERK pathway is responsible for its transcriptional up-regulation (Sato, Suzuki, & 

Nakanishi, 2001).  

Similarly to arc, the protein product of homer 1a has effects on receptor function and 

synaptic transmission. For example, homer 1a modulates endocannabinoid-mediated 

retrograde synaptic inhibition. It potentiates depolarization-induced suppression of 

excitation, and inhibits metabotropic suppression of excitation (Roloff, Anderson, 

Martemyanov, & Thayer, 2010). In addition, the Homer 1a protein reduces the coupling 

of the metabotropic glutamate receptor mGluR5 to postsynaptic effectors, reducing the 

inhibitory effects of the receptor (Kammermeier & Worley, 2007). 

Homer 1a is also involved in some forms of learning. Homer 1a mRNA is expressed in the 

striatum and prefrontal cortex (PFC) during early instrumental training with food, with 
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patterns of expression changing over time: striatum levels are maintained, while PFC 

and cingulate cortex expression is reduced (Hernandez, Schiltz, & Kelley, 2006). Other 

effects on learning are possible through effects on glutamatergic neurotransmission, 

especially effects on the NMDA and metabotropic glutamate receptors: the Homer 1a 

protein disrupts the physical link between group 1 mGluRs and NMDA receptors by 

disrupting the Homer-Shank protein scaffold that links the two receptors. This results in 

inhibition of NMDA current by group 1 mGluR agonists (Bertaso et al., 2010). 

Thus, homer 1a shares the characteristics of arc and c-fos in that it can be used as a 

marker of neuronal activity, because its expression is under the control of the MAPK/ERK 

pathway and the transcriptional factor CREB. It is also involved in learning, at least as far 

as classical conditioning goes, and has an effect on synaptic transmission by interacting 

with metabotropic glutamatergic receptors, the NMDA receptor and cannabinoid 

neurotransmission. However, the mechanisms of homer 1a transcription is unique and 

differs from those of other IEGs, and so do its interactions with receptor and 

neurotransmitter systems.  

Psychoactive drugs induce IEG expression in the brain 

One of many stimuli that lead to IEG expression in the central nervous system are 

psychoactive drugs. This expression is observed in several brain areas following drug 

administration, and the exact pattern and the magnitude of expression can vary 

depending on many factors including dose, type of drug, route of administration, 

environmental factors and behavioural tasks associated with drug administration. In 

addition, different IEGs can exhibit different patterns of expression under the same 

circumstances (Harlan & Garcia, 1998). 

The definition of psychoactive drugs covers a vast amount of substances. The focus of 

this thesis is on heroin and cocaine for reasons elaborated in previous sections. For the 

sake of conciseness, this section will provide examples for these two drugs and their 

effects on c-fos, arc and homer 1a expression. 

Acute intraperitoneal administration of cocaine induces significant increase of c-fos 

mRNA in the Nacc, but the this effect disappears after chronic treatment with the drug 

(Hope, Kosofsky, Hyman, & Nestler, 1992). Cocaine also increases c-fos mRNA in the 
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dorsal striatum and medial PFC. There the amount of expression varies from rostral to 

caudal areas, and across all areas the magnitude of the effect varies as a function of 

environmental context: novel environments increase IEG expression in response to 

cocaine and amphetamine (Uslaner et al., 2001).  

Subcutaneous administration of heroin leads to elevation of c-fos protein levels in the 

shell of the Nacc, and this effect disappears with chronic treatment. Conversely, the 

opposite is seen in the dorsal striatum where elevated c-fos protein levels are seen only 

after chronic treatment (D'Este, Scontrini, Casini, Pontieri, & Renda, 2002). 

Intraperitoneal injections of cocaine elevate arc mRNA in the PFC, striatum, 

hypothalamus and hippocampus of rats, and, importantly, this effect differs in 

magnitude from that of zif268 expression as a function of brain area (Caffino, Racagni, 

& Fumagalli, 2011). While cocaine induces arc mRNA in the PFC and the magnitude of 

the effect depends on interactions with restraint stress, there was no elevation of zif268 

mRNA levels in this brain area regardless of stress treatment. In the striatum, expression 

of both IEGs was induced by cocaine, but the magnitude of the effect was higher for arc. 

There are no studies looking at the acute effects of heroin on arc mRNA expression, at 

least according to this author’s knowledge.  

Studies on the effect of cocaine on homer 1a expression are scarcer, but there is 

evidence that an intraperitoneal injection of cocaine elevates expression of the gene in 

the dorsal striatum, and the effect differs in magnitude from that seen with zif268 (Unal, 

Beverley, Willuhn, & Steiner, 2009). Studies looking at the effect of heroin 

administration on homer 1a expression are also not known to this author. 

In summary, it is evident that heroin and cocaine administration can induce the 

expression of IEGs in the brain, and the effect differs in magnitude depending on the 

brain area, IEG, and drug administered. There also appears to be a lack of studies on the 

effect of acute heroin administration on arc and homer 1a expression. Given that IEGs 

can serve as markers of activity to identify neuronal ensembles, and that they are 

involved in long-term effects of stimuli on cell functioning, it follows that IEG expression 

triggered by heroin and cocaine administration can be an informative area of research. 
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The relationship between these drugs and IEG expression is closely related to their 

pharmacology and their effects on neuronal systems and behaviour. 

4. Using IEGs to identify neuronal ensembles activated by heroin and 

cocaine. 

So far it was argued that heroin and cocaine act on brain areas including the striatum, 

amygdala, prefrontal cortex, where they interfere with activity of motivational systems 

and affect learning processes. Evidence was also presented that these two drugs induce 

IEG expression in these brain areas (among others) and these IEGs can be used as 

markers of neuronal activity and to identify specialised neuronal ensembles. There is 

also a substantial number of studies suggesting separate mechanisms of action of heroin 

and cocaine on the same neuronal circuits. One step closer towards clarifying the 

commonalities and differences between heroin and cocaine action in the brain would 

be identifying the neuronal ensembles responding to each drug in key brain areas where 

they act to produce their behavioural effects. One way to achieve this would be to take 

advantage of IEG expression and molecular techniques used to detect them in brain 

tissue at the cellular and subcellular resolution. 

In situ hybridisation (ISH) 

In situ hybridisation is a technique which allows for the detection and quantification of 

nucleic acids in intact tissues and cells. The techniques takes advantage of the natural 

property of DNA and RNA strands to bind to strands with complementary nucleotide 

bases (i.e. annealing or hybridisation). When a nucleotide sequence of interest has to be 

detected, and the code of this sequence is known, a “probe” can be synthesised using 

in vitro transcription of such that the probe is complementary to the RNA or DNA strand 

of interest (the “target”). Probes can be synthesised using nucleotides conjugated to 

fluorescent molecules which are then detectable using fluorescence microscopy 

(fluorescence ISH or FISH). More than one probe can be used simultaneously targeting 

several different sequences of interest within the same tissue. 

Introducing the probes to the tissue where they bind their target happens after the 

tissue in question has been extracted from the organism that is subject of study. In the 

case of brain tissue the technique is therefore carried out post-mortem, as the sample 
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needs to be preserved and pre-treated chemically to provide optimal conditions for 

hybridisation. 

CatFISH 

Since FISH is a post-mortem analysis of gene expression, it usually allows for the 

quantification of gene expression resulting from a single event in time (usually up to a 

few hours before tissue extraction). This presents a limitation when the objective is the 

identification of gene expression within the same specimen resulting from two separate 

events. To overcome this limitation, Guzowski, McNaughton, Barnes, and Worley (1999) 

devised a variation of the standard FISH technique which takes advantage of the changes 

in mRNA location within cells as a function of time. This variation of the technique was 

named cellular compartment analysis of temporal activity by fluorescent ISH (catFISH). 

Immediately following gene expression, mRNA is mostly concentrated around the site 

of transcription within the cell nucleus, but then gradually diffuses to the cytoplasm 

where it takes part in other processes (e.g. translation). Since FISH can provide enough 

resolution to distinguish the two types of signal (i.e. nuclear vs. cytoplasmic), if the 

precise timing of the relocation of a given mRNA was determined empirically, it becomes 

possible to determine how long ago a cell has expressed a given gene. When this logic is 

applied to an IEG such as arc, which is expressed in response to cellular activation, 

conclusions can be made about whether a given neuron was activated by two separate 

events. Arc mRNA appears in the cell nucleus within 5 min following neuronal activation 

and relocates to the cytoplasm within ~30 min. Thus, if two discrete events are 

administered 30 and 5 min before brain tissue is collected for FISH, cells which are found 

to contain only nuclear arc mRNA would have been activated by the more recent event, 

while cells containing only cytoplasmic mRNA would have been activated by the more 

distant event, and cells expressing both nuclear and cytoplasmic signal would have been 

activated during both events. On theory, similar logic can be applied to any IEG. For 

example, homer 1a appears in the cell nucleus ~30 min following cell activation and 

moves to the cytoplasm within ~60 min. Therefore, using double-staining FISH for both 

arc and homer 1a, cells containing nuclear arc would represent activity 5 min before 

brain tissue has been collected, while cells containing nuclear homer 1a would represent 

activity 30 min before tissue collection, and the presence of both types of mRNA within 
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the nucleus would signify a cell was active during both events (Vazdarjanova, 

McNaughton, Barnes, Worley, & Guzowski, 2002). This double-staining variation of the 

catFISH technique makes it easier to detect cells activated twice on two separate 

occasions, as sometimes it might be difficult to distinguish between nuclear and 

cytoplasmic arc signal within the same cell. Nuclear signal appears as one or two bright 

dots at 20x to 60x magnification, while cytoplasmic signal is usually more diffuse and 

can occlude intranuclear signal especially given that the colour of the signal is the same. 

With two different types of mRNA being detected in two separate colour channels, such 

problems in detection are avoided. 

Combining detection of arc and homer 1a with the logic behind catFISH allows to not 

only quantify the amount of activity associated with two separate events, but also to 

determine the overlap between the neuronal populations engaged by each event (as 

measured by amount of co-expressing cells). For example, when animals are exposed to 

the same novel environment twice, the two IEGs are expressed coincidentally in the 

same hippocampal neuronal population (Vazdarjanova et al., 2002), while exposing 

them to two distinct novel environments results in much less co-expression in 

hippocampal neurons (Vazdarjanova & Guzowski, 2004). 

5. The aims of this thesis 

A great deal of research on c-fos has shown that IEG expression is an important part of 

drug effects in the brain. Less attention has been paid to more recently discovered IEGs 

such as arc and homer 1a. Given that arc and, to some extent, homer 1a have proven to 

be involved in experience-dependent plasticity, it is worthwhile to characterise their 

expression in the brain following administration of heavily abused drugs such as heroin 

and cocaine. Some studies on the topic have already been undertaken, but most of them 

have studied heroin and cocaine separately, have used molecular techniques that have 

less than cellular resolution, and have mostly used the intraperitoneal route of 

administration. 

The aims of this thesis were to expand on previous findings in three ways. First, we used 

fluorescent in situ hybridisation technique to quantify the expression of arc and homer 

1a mRNA with a cellular (and even subcellular) resolution following non-contingent 
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intravenous injections of heroin and cocaine at doses self-administered by laboratory 

animals. Second, this allowed us to apply the logic of the catFISH technique to look for 

neuronal ensembles encoding for heroin and cocaine effects in the basolateral amygdala, 

striatum, or prefrontal cortex. Third, we applied this paradigm to a drug self-

administration setup. Thus, there were three empirical questions to be answered. 

First, can standard self-administration doses of heroin and cocaine elicit arc and homer 

1a expression in the striatum and BLA if administered non-contingently? This empirical 

question is addressed in chapter 3. Cocaine self-administration doses have been shown 

to induce expression of arc following operant training with cocaine (Fumagalli et al., 

2009). However, these findings cannot automatically be generalised to homer 1a and 

heroin, and it is not clear whether the effect is the result of a single dose within the self-

administration session, or whether it is a cumulative effect. In addition, experimenter 

vs. self-administered morphine can cause different magnitude of plastic changes in the 

accumbens (Robinson, Gorny, Savage, & Kolb, 2002), and if IEG expression is linked to 

plastic changes, it is not unreasonable to expect differences there too. 

Second, are there neuronal ensembles in the striatum encoding for non-contingently 

administered heroin and cocaine, can they be identified using arc and homer 1a as 

markers of activity, and are they overlapping or distinct? One Daun 02 study has shown 

that cocaine administration leads to IEG expression in specific accumbens neurons that 

encode for drug-context associations rather than random neuronal populations (Koya 

et al., 2009). Thus, it is reasonable to expect that there are neurons that will respond 

repeatedly to cocaine when the context is held constant, at least in the accumbens. 

Whether this is the case for heroin remains an open empirical question, and it is 

addressed in the study described in chapter 4.  

Finally, can findings from non-contingent drug administration experiments be 

generalised to the case of self-administration. This question was addressed in the study 

described in chapter 5.  



37 
 

Chapter 2 – General methods 

 

To avoid repetition, identical aspects of the methodology used for all experiments 

reported further on are presented here. Additional materials and procedures and/or 

alterations to procedures are described in the corresponding chapters wherever 

necessary. 

Subjects 

Male Sprague-Dawley rats were used in all of the reported experiments. The animals 

were supplied by ENVIGO (Harlan) breeding facilities in Italy and the Netherlands. 

Animals weighed 250-275g upon arrival and were tested at a weight of 300-375 g. The 

rats were housed and tested in a temperature- and humidity-controlled room (21±1°C, 

50%) with a reversed 12 h light cycle (lights on at 7:00 pm). Food and water were 

provided ad libitum except during testing sessions and self-administration training. 

Initially, they were housed three per cage, then, after the implantation of intravenous 

catheters, the animals were housed individually. All regulated procedures were carried 

out in accordance with the A(SP)A 2013.  

Materials 

Housing cages. Following i.v. catheter surgery, rats were housed in cages measuring 40 

x 22 x 22 cm in length, width and height, respectively. The cages had opaque plastic 

bottom and a removable metal cage top with slots for water and food. Sawdust bedding 

and shredded paper nesting were provided at all times.  

Operant chambers. Most of the testing sessions were carried out in operant chambers 

(PRS Italia). These chambers measured 30 x 30 x 30 cm, had a wire mesh floor, two metal 

walls and a transparent Plexiglas front and back walls. Each chamber was placed in a 

sound-insulating wooden cabinet and was equipped with two retractable levers with 

white LED lights placed on the moving part of the levers. These were used only in self-

administration sessions. A counterbalanced metal arm was attached to each chamber 
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which supported the spring and infusion line attached to the animals’ catheter for drug 

delivery. The infusion line was connected to a remotely controlled infusion pump.  

RNAscope®. All in situ hybridisation and catFISH procedures were carried out using 

commercially available kits from RNAscope (Advanced Cell Diagnostics, ACDbio). 

Currently, many probes targeting well-studied genes and mRNA sequences are 

commercially available, and the RNAscope brand has provided a significant 

improvement to the quality of the signal coming from fluorescent probes. A common 

issue with FISH is that probes are never 100% specific in binding to their target and can 

often produce background signal. This is most often the result of binding to partially 

complementary sequences. RNAscope overcomes this issue by using several separate 

stages of target detection and signal amplification (fig. 2.1., p. 39).  

First of all, each RNAscope probes consist of 20 separate Z-shaped nucleic acid 

sequences. The lower part of those Z-shaped elements is complementary to a part of 

the target sequence such that there will always be two Z-probes that can bind next to 

each other (a Z-pair). The intermediate part is a spacer sequence and the top part of the 

Z-probe serves as one half of a binding site which will be bound by a pre-amplifier 

molecule via a hybridization process. The pre-amplifier molecule can only bind a site 

formed by a complete Z-pair. If only one Z-probe has bound non-specifically, 

amplification will not occur. Pre-amplifier molecules bound to a Z-pair are then bound 

by an amplifier molecule which in turn is bound by a fluorescent label. The Z-pair binding 

required for amplification provides very high specificity, while the amplification steps 

provide signal strength such that a single mRNA molecule can be visualised using 

standard fluorescence microscopy.  
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Fig. 2.1. RNAscope probe binding and signal amplification. Black lines on schematic 
represent target mRNA. 

 

Arc and h1a hybridization probes (ACDbio, cat. No. 317071-C2 & 433261, respectively) 

were hybridized to fresh frozen brain coronal sections sliced on a Leica CM1900 cryostat. 

The signal was amplified with an RNAscope® Multiplex Fluorescent Reagent Kit (ACDbio, 

cat. No. 320850). Fluorescent signal was detected using a Zeiss Axioskop 2 plus 

epifluorescent microscope, and images were acquired using an Axiovision software 

(Zeiss). 

The arc probe targeted the region spanning 1519-2621 base pairs of the arc gene mRNA, 

accession No. NM_019361.1.  

The h1a probe targeted the 3’ untranslated region of the homer 1a (h1a) gene mRNA, 

spanning 5001-5625 base pairs, accession No. U92079.1. 

Procedures 

Intravenous catheter surgery. All rats were acclimatized to the housing facilities for a 

period of 1 week, during which they were handled gently every other day. Following 

Probe hybridisation Amplification Fluorescent labelling 

Z-probe Pre-amplifier Amplifier Fluorescent label 
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acclimatization, all rats underwent intravenous catheter surgery. They were 

anesthetised with 110 mg/kg ketamine (Anesketin) and 12 mg/kg xylazine (Rompun). A 

small incision was made on the top of the head, the skull exposed, and four surgical 

screws were positioned around bregma. Another small incision was made just above the 

right clavicle to expose the jugular vein. The vein was separated from surrounding tissue 

and a small incision was made into it to allow for insertion of the catheter. Catheters 

consisted of a 10.5 cm piece of silastic tubing with a silicon bead at 3.2 cm from the end 

entering the right jugular vein. The catheter was secured to the vein with surgical thread 

on both sides of the bead. Then, the free end of the catheter was passed subcutaneously, 

exiting through the skin at the nape of the neck, and was attached to an L-shaped 

cannula, and secured to the animals’ head via the surgical screws and dental cement. 

Following surgery, animals were left to recover for 7 days. Analgesic in the form of 

Metacam oral suspension (2 mg/kg) was given immediately after, and on the day after 

the surgery. Catheters were flushed daily with saline. 

In situ hybridization. Coronal sections of brain tissue were mounted on Superfrost Plus 

slides, the coordinates and thickness of the slices is reported separately for each 

experiment in the corresponding chapters. On the first day of staining, the slides with 

sections were incubated in 10% neutral buffered formalin (Sigma, cat. No. HT501128-4L) 

for 20 min at 4°C, followed by 2x1 min washes in 1xPBS, and then serial dehydration in 

ascending concentrations of ethanol – 50%, 70%, and 2x 100%, 5 min incubation in each. 

Following this, tissue was stored in 100% ethanol overnight. On day 2, the tissue was air 

dried, and then incubated with protease for 20 minutes, followed by 2x1 min washes in 

dH20. Protease, probe and amplifier solutions were supplied by ACDbio as part of a 

commercially available RNAscope assay kit. The arc and h1a probes were then applied 

(50 µl per section), and the sections were incubated for 2h at 40°C in a humidity-

controlled oven. After incubation with the probes, the signal was amplified at 4 separate 

stages with 15 min, 30 min, 15 min and 30 min of incubation in between (respectively) 

at 40°C in the hybridization oven. The probe and amplifier solutions were applied to the 

sections with the help of a hydrophobic pen barrier. There were 2x2 min washes in wash 

buffer after each incubation (including after probe hybridization). Finally, sections were 
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coverslipped and counterstained with DAPI mounting medium (Vector Laboratories, cat. 

No. H-1500) and left at 4°C overnight.  

Image acquisition and analysis. Regardless of brain area studied, greyscale images were 

taken from both hemispheres of 2 adjacent sections for each animal at 20x 

magnification. This yielded 4 images per animal per brain area. Final counts of DAPI-, 

arc-, and h1a-positive nuclei were averaged from these 4 images for each animal and 

each brain area. 

The resulting eight-bit images measured 1300 x 1030 pixels and represented a region of 

interest (ROI) of 700 x 550 µm. These images were analysed using the RIO Montpelier 

extension of the ImageJ software (Baecker & Travo, 2006). Greyscale images were 

analysed separately for each channel: DAPI, Alexa 488 (H1a) and Cy3 (Arc).  

First, each DAPI image was analysed by applying a Gaussian blur filter (sigma = 2), then 

a “rolling ball” background subtraction algorithm (ball radius = 20), followed by the 

application of the default automatic global thresholding algorithm. This yielded a binary 

image which was then used to count objects selected on the basis of their size and 

circularity using the “analyse particles” function of ImageJ. The size criterion was set to 

0.0045-0.045 square inches, and the circularity - to 0.7-1.00. This analysis resulted in a 

mask image containing only object fulfilling the aforementioned criteria. This image was 

used to estimate the total number of DAPI-positive nuclei, and was merged with the 

Alexa 488 and Cy3 images for counting of nuclear mRNA signal. 

The images from the Alexa 488 and Cy3 channels were first adjusted for brightness so 

that the most visible signal was that coming from nuclear staining for arc and h1a. This 

was defined as any signal representing one or two bright dots close to each other, as 

opposed to cytoplasmic signal which is less bright and more diffused (Guzowski et al., 

1999). A global threshold was then applied to the images (default algorithm), and the 

“analyse particles” function was used again to select only objects of 4-90 square pixels, 

and to create a mask of the images showing only the defined particles. These masks of 

the h1a and arc images were then merged with the DAPI mask image, and only those 

particles which coincided with DAPI-stained nuclei were counted. 
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Blinding procedures. All rats were assigned a number upon arrival to the animal 

housing/testing facilities. Following intravenous catheter surgery, rats were assigned to 

experimental treatment groups randomly, and the treatment they received was 

associated to their number by recording it on an Excel spreadsheet. This sheet was 

stored separately from spreadsheets containing behavioural and in situ data associated 

with the number of each rat. Thus, the video recordings of behaviour and microscopy 

image data analysis was carried out by experimenters blind to the experimental 

treatment of the animals, and the group membership of each animal was revealed only 

for the sake of statistical analyses.  

Statistical analyses. All statistical analyses were carried out using the SPSS software. In 

all cases where between-group comparisons were made, the following procedure was 

used. First, a Shapiro-Wilk test was used to assess normal distribution of scores within 

each group. If the assumption for normal distribution of scores was met, a Levene’s test 

was run to check for homogeneity of variance across groups. If this assumption was met 

as well, a one-way ANOVA was run to test for a significant main effect of treatment. 

Where there was more than one dependent variable (e.g. arc- and h1a-positive nuclei, 

single labelling analyses, chapters 3, 4 and 5), multiple one-way ANOVAs were run rather 

than factorial ANOVAs. This was done because the comparisons of interest in those 

cases were between treatment groups for each IEG in isolation, rather than main effects 

of treatment on average IEG expression levels (averaging arc and h1a), which a factorial 

ANOVA provides. Although in theory it is possible to obtain the former kind of 

information from a factorial ANOVA, the SPSS set-up does not allow it without the use 

of syntax. It was decided that such analysis does not provide a substantial advantage 

over a one-way ANOVA.  

Provided that a one-way ANOVA revealed a significant difference between treatment 

groups, either Gabriel post-hoc tests, or Dunnett’s tests were run to look for specific 

between-group differences. Gabriel’s test is adequate when the assumption for 

homogeneity of variance is met, but group sizes differ (Field, 2017). However, the SPSS 

module for this test does not allow specific comparisons, but rather all possible group 

comparisons are made which results in loss of power. Thus, the test was used when all 

comparisons were of interest (e.g. in ch. 3, when the timing profile of IEG expression 
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was being established, and it was necessary to compare all time groups; also ch. 4, 

comparison of overlap measures across treatment groups). When only specific 

comparison was necessary, Dunnett’s tests were chosen because SPSS allows for 

comparisons to be made only relative to a single reference group which serves as a 

control. This was suitable for single-labelling analyses in chapter 4, where it was 

sufficient to show that arc and homer 1a expression increase following drug treatment 

relative to saline.  

For between-group comparisons where scores were not normally distributed in at least 

one group, Kruskal-Wallis tests were run instead of one-way ANOVAs. This was done 

because ANOVA is particularly sensitive to normality violations (Field, 2017). Provided 

that the Kruskal-Wallis test yielded a significant result, differences between particular 

groups were assessed using the Dunn-Bonferroni tests or Mann-Whitney tests, applying 

a Bonferroni correction. Similarly to the case of ANOVA, the Dunn-Bonferroni tests are 

included in the SPSS Kruskal-Wallis module, and are run for all possible comparisons. 

When only specific comparisons were necessary, the Mann-Whitney tests were used to 

avoid loss of statistical power. 

If the normality assumption was met, but homogeneity of variance was violated, a Welch 

test was carried out in conjunction with a one-way ANOVA. If the Welch tests yielded 

significant result, it was followed up by Games-Howell post-hoc tests, if all between-

group comparisons were of interest, or by Mann-Whitney tests (Bonferroni correction), 

if only some comparisons were made (following the logic explained above). The Games-

Howell post-hoc tests are appropriate in cases where heterogeneity of variance across 

conditions is present (Field, 2017). 

For within-group comparisons (e.g. self-administration data, ch. 5), the same logic was 

followed, using Friedman’s ANOVA as the equivalent of the Kruskal-Wallis tests for 

within-group comparisons. Specific group comparisons were done using Wilcoxon’s 

tests. None of the data for within-subject comparisons met the assumptions for a 

parametric ANOVA. 

Where only two groups were compared (e.g. latency to lever press, ch.5), a t-test was 

used provided that the normality assumption was met, and the value of the t-test was 
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reported taking into account the result from Levene’s test (SPSS includes it in the t-test 

analysis automatically and provides a p-value for each possible outcome). 

Finally, categorical data was assessed using Fisher’s exact tests due to small group sizes 

which make the use of chi-square tests problematic (Field, 2017). A Bonferroni 

correction was applied to correct for multiple comparisons. 
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Chapter 3 – Temporal profile of homer 1a and arc 

expression following a single intravenous injection of 

heroin or cocaine 

 

Introduction 

The aim of the experiment described in this chapter was to address several 

methodological issues surrounding the use of catFISH to study acute effects of heroin 

and cocaine. Previous studies have used the technique to identify ensembles activated 

after exposure to an environment or a discrete cue, where stimulus presentation is 

easily controlled by the experimenter (Grosso et al., 2015; Vazdarjanova & Guzowski, 

2004). Drug effects are not so easily controlled in terms of either duration or magnitude. 

Thus, the main issue arising from using catFISH with drug stimuli is the issue of stimulus 

onset and offset. Additionally, drug-induced IEG expression patterns may differ between 

IEGs: for example, cocaine increases zif268 but not homer 1a expression in the cortex 

(Unal et al., 2009). Such differences would inevitably affect measures of overlap with 

catFISH. These issues were addressed by choosing an appropriate dose, route of drug 

administration, and by measuring IEG expression over time and in several brain areas.  

To reiterate briefly, catFISH is used to assess whether the same population of neurons 

respond to two separate stimuli using IEGs as markers of activity. The logic behind the 

technique requires that, timewise, the peak of nuclear expression of the IEGs used 

coincides with the exposure to the two stimuli of interest. Considering that arc and 

homer 1a were used as markers of activity, and arc peaks at 5 min following cell 

activation, while homer 1a peaks 30 min after activation, the stimuli of interest must be 

presented around 30 and 5 min before brain tissue collection, respectively. Then, cells 

activated only by the first stimulus would express homer 1a, but not arc. On the other 

hand, cells activated by both stimuli would express both arc and homer 1a.  

However, if the first stimulus were to influence cell activity for too long (e.g. >20 min), 

then there is a chance that arc would be expressed in cells activated by that stimulus as 
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well. In that case, it would be impossible to distinguish cells activated by the first 

stimulus only, or by both stimuli. This constitutes the importance of properly controlled 

stimulus offset. 

Alternatively, the first stimulus may have its effect on cellular activity with a delay. Then, 

there will not be enough time for homer 1a to be expressed before tissue is collected 

for analysis. In that case, cells activated by the first stimulus will not be detectable. This 

constitutes the importance of properly controlled stimulus onset.  

When the stimuli of interest are exposure to a particular context or a discrete cue, the 

definitions of stimulus on- and offset is arguably straightforward, and control over them 

is easier. The experimenter can place an animal in a novel environment and remove it 

at a precise moment in time. Light cues and tones can be switched on and off at a precise 

time. However, when the stimuli of interest are systemic administrations of a drug, the 

issues of on- and offset become more apparent. The onset of the acute drug effect in 

this study was defined as the moment when the drug is binding to its target in the brain 

and causing changes in neuronal activity. Thus, the onset is not necessarily the moment 

in which the drug is injected (which is what the experimenter has direct control over), 

but when it reaches the brain. Even more so, the time it takes for the drug to stop acting 

at its target in the brain, the offset, is also out of the direct control of the experimenter. 

For example, there is always the possibility that if heroin was injected first, and cocaine 

was injected 25 min later, then cells responding to heroin might still be doing so at the 

time of the cocaine injection. 

Finally, there is the issue of whether both heroin and cocaine can trigger the expression 

of both IEGs, arc and homer 1a, within the same brain area. Although many IEGs are 

expressed in response to cellular activity, they do not necessarily overlap completely in 

their pattern of expression between brain areas, or between tasks and stimuli that 

trigger their expression (Guzowski et al., 2001). If heroin or cocaine injections trigger the 

expression of only arc or homer 1a but not both, then it would be impossible to measure 

the degree of overlap between neuronal populations engaged by the two drugs: one of 

the populations will be technically undetectable. 
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There is some empirical evidence to suggest that cocaine administration can induce arc 

and homer 1a expression across the striatum. Fosnaugh et al. have shown that a single 

cocaine i.p. injection induces arc expression in the striatum, an effect mediated through 

dopaminergic receptors (Fosnaugh, Bhat, Yamagata, Worley, & Baraban, 1995). A brief 

history of i.v. self-administration (a single 2h session) can also elevate arc levels in the 

striatum (Fumagalli et al., 2009). Finally, it has been shown that cocaine-induced arc 

expression is dose-dependent, with higher doses leading to higher expression in the 

striatum, PFC and hippocampus, but the effect is dependent on drug-treatment history 

(Fumagalli et al., 2006). Single and repeated i.p. injections of cocaine are also capable of 

inducing homer 1a expression in the striatum, and the magnitude of the effect decreases 

with repeated treatment (Unal et al., 2009).  

In contrast to cocaine, the literature on the acute effects of heroin administration on arc 

and homer 1a is scarce. In fact, there are no known studies to date that directly address 

the topic. The only studies pointing towards the possibility of opiate effects on arc and 

homer 1a expression have used morphine. One of them has shown elevated arc mRNA 

and protein levels in the rat striatum after repeated exposure to relatively high 

morphine doses (Marie-Claire, Courtin, Roques, & Noble, 2004). Another study has 

shown arc expression in mouse striatum following single morphine injections, an effect 

dependent on direct action on the µ-receptor (Ziolkowska, Urbanski, Wawrzczak-

Bargiela, Bilecki, & Przewlocki, 2005). These findings suggest that arc expression in 

response to morphine action on the µ-receptor might reflect cellular processes that are 

not a direct consequence of cellular activity. However, it must be noted that the effect 

was evident 3 hours after morphine treatment, so any immediate arc response is still 

likely to be indicative of cellular activity. Such immediate response to opiates has not 

yet been demonstrated. Whether this is because of a lack of such a response or because 

studies up to date were not designed to look for it, remains an open empirical question. 

In summary, existing literature suggests that cocaine treatment induces arc and homer 

1a expression in the striatum, and an opiate drug (morphine) acting through the µ-

receptor can also induce arc expression. However, one common feature between all 

studies cited is that they used almost exclusively the intraperitoneal route of 

administration, and molecular techniques that do not allow for high temporal and 
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spatial resolution of mRNA expression such as real-time PCR. Thus, although these 

studies suggests that homer 1a and arc can be used to identify neurons activated by 

cocaine and morphine, they do not resolve all the methodological issues associated with 

catFISH. 

To address the issues of stimulus onset, offset and drug-class differences in IEG 

expression, the study presented in this chapter exposed rats to a single intravenous 

injection of either heroin or cocaine. Then, the amount of arc- and homer 1a-positive 

nuclei in the striatum and basolateral amygdala of these animal was quantified at 

several different time points following injection via standard fluorescence in situ 

hybridisation.  

The intravenous route of administration was chosen because it allows for a very quick 

entry of the drug into the brain. As a consequence, the onset of the drug effect becomes 

almost synonymous with the onset of the drug injection. The clearance rate is also 

relatively quick. For cocaine, the peak levels of drug concertation in the brain are 

reached within 2.5 min after injection and decrease steadily afterwards. Even after a 

dose of 7.5 mg/kg i.v. cocaine is cleared out of the brain within 1 hour. The alternative, 

intraperitoneal injections, have a slower onset, reach a lower and delayed peak 

concentration in the brain (about 30 min after injection), and have a slower rate of 

clearance (Pan, Menacherry, & Justice, 1991). Thus, i.p. injections would have presented 

with both stimulus onset and offset issues. The picture gets more complicated with 

heroin due to it having several metabolites active at the µ-receptor. Nevertheless, it is 

known that even at i.v. doses as high as 1.28 mg/kg, heroin and 6-MAM are cleared form 

the brain within 1 hour (Gottas et al., 2013). In addition, it was intended to eventually 

incorporate a catFISH protocol into the rat self-administration paradigm, which also uses 

the i.v. route, so using the same route in this preliminary study was preferable for that 

reason as well. The intention to use catFISH with self-administration was also how the 

testing doses were chosen. Previous studies by Badiani et al. have shown that doses of 

400 µg/kg/infusion cocaine and 50 µg/kg/infusion heroin maintain self-administration 

and have behavioural effects that differ between residents and non-residents (Avvisati 

et al., 2016; Caprioli et al., 2009; Caprioli et al., 2008; Caprioli, Paolone, et al., 2007; 

Montanari et al., 2015). It was of interest whether a single treatment with these doses 
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would be able to induce IEG expression acutely, and, if so, whether the neuronal 

populations expressing IEGs would differ between heroin and cocaine (a question to be 

directly addressed in follow-up experiments). It was expected that these doses would 

be low enough so that the drugs would be cleared quickly, but high enough to induce 

IEG expression. 

The Nacc core and dorsomedial striatum (DMS) were chosen as two parts of the striatum 

known to be involved in reward and learning processes relevant to drugs of abuse (Di 

Ciano & Everitt, 2004b; Eagle et al., 2011). It is also known that opiates and cocaine elicit 

IEG expression in these areas (Harlan & Garcia, 1998). The BLA was studied since it is a 

key structure in the processing of associative learning, but has different roles in heroin 

and cocaine second-order reinforcement (Alderson, Robbins, & Everitt, 2000), and it is 

anatomically connected to the Nacc core and DMS (as discussed in ch.1, see fig. 1.1, p. 

10). In addition, preliminary analysis of imaging data revealed that the central amygdala 

and Nacc shell did not exhibit levels of IEG expression sufficiently high to be analysed 

quantitatively. 

By measuring both arc and homer 1a nuclear expression at different time points after 

an i.v. injection, it was possible to empirically determine their temporal profile of 

expression following drug administration. Based on previous findings on heroin and 

cocaine pharmacokinetics, and their ability to induce IEG expression in the brain, it was 

expected that heroin and cocaine administration under these conditions will produce a 

brief, temporary increase in IEG expression. This brief increase was expected to peak 

around 8 min following drug administration for arc, while for homer 1a (h1a) the peak 

was expected 25-35 min following injection. These predictions were based on previous 

observations with novel environment and cue-induced IEG expression in catFISH studies. 

Methods 

Animals 

The rats used in this experiment, n = 40, were tested at a weight of 350-375g. Supplier, 

weight upon arrival, and housing conditions were as described in general methods. 
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Test chambers and drugs 

The test chambers were the same as the housing cages described in general methods 

(i.e. the animals were housed and tested in the same cages).  

Cocaine and heroin HCL were dissolved in sterile saline at a concentration of 800 µg/ml 

and 100 µg/ml, respectively. Injections (i.v.) were made at doses of 400 µg/kg for 

cocaine and 50 µg/kg for heroin, so that 0.5 ml of drug solution corresponded to the 

dose for 1kg. Thus, the volume of each injection was between 0.15 and 0.19 ml. Saline 

treated animals received the same volume of saline without any heroin or cocaine 

dissolved in it. Drug infusions were delivered by hand using a 0.5 ml syringe attached to 

the catheter cannulas via a piece of silicone tubing. Note that due to this method of drug 

delivery, the speed of drug infusions was not strictly controlled in this experiment. 

However, it is unlikely that the duration of each infusion exceeded 3 sec, because the 

total volume infused was not larger than 0.2 ml. 

Design  

The design was mixed, with drug treatment (heroin vs. cocaine) and time of sacrifice (0, 

8, 16, 25, and 35 min after injection) as between-subject independent variables (IVs). 

Staining was a within-subject IV, so that each rat was used to measure both h1a and arc 

signal at the time point at which it was sacrificed. The DV was the percentage of DAPI-

stained nuclei co-expressing arc or h1a intranuclear signal.  

For the comparison of drug effects with saline, the within-subject IV was brain area, the 

between-subject IV was drug treatment (heroin, cocaine and saline), and the DV was 

only the percentage of DAPI-positive nuclei co-expressing arc. 

Procedure 

Intravenous catheter surgery and drug treatment. All rats underwent intravenous 

catheter surgery as described in general methods. Following the recovery period, each 

rat was assigned to one of 11 experimental conditions. Some rats received an i.v 

injection of 400 µg/kg cocaine (n = 18) and some of them were euthanised a few seconds 

later (0 min, n = 3), 8 min (n = 3), 16 min (n = 4), 25 min (n = 4) or 35 min later (n = 4). 

Another group of rats received a 50 µg/kg injection of heroin (n = 19), and different 
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number of them were euthanised at equivalent time points (n = 3 for the 0 and 8 min 

groups, n = 4 for the 16 and 25 min groups, and n = 5 for the 35 min group). A final group 

was treated with saline and euthanised 8 min later (n = 3). Animals were euthanised 

using a 0.15 ml i.v. injection of pentobarbital. Immediately after the pentobarbital 

injection, rats were decapitated, their brains extracted, and fresh brain tissue was snap-

frozen in a 400 ml of isopentane cooled to -50°C. The tissue was stored at -80°C for later 

processing. 

RNAscope FISH. The RNAscope probes and reagents, the in situ hybridisation and image 

acquisition and analysis protocols were as described in general methods. Whole brains 

were sectioned at 16 or 20 µm thickness, with tissue collected from two main brain areas 

– striatum (+2.10 to +1.90 mm from bregma) and amygdala (-1.80 mm to -2.00 mm from 

bregma, Paxinos & Watson, 1984). These sections contained the Nacc core and DMS, 

and the basolateral amygdalar nucleus, respectively, where images were taken for 

analysis (see Appendix 1). To ensure consistency, tissue sampling was always conducted 

as follows. Sectioning started from the tip of the olfactory bulbs and brain sections were 

removed until their ventral part (the olfactory bulbs and the basal forebrain region) 

became attached to their dorsal part. At this point, the anterior forceps of the corpus 

callosum (fmi) was visible, and the lateral fissure reached halfway to the midline. This 

was defined as the +3.70 mm from bregma rostrocaudal level (fig. 3.1, next page). At 

this point, either a 100 or 80 sections were removed (when sectioning at 16 µm and 20 

µm, respectively) to reach approx. +2.10 mm from bregma. Then a few sections were 

removed if necessary (no more than 5) to reach the rostrocaudal level where the rostral 

end of the lateral ventricles, the anterior commissure, the fmi and the striatum were all 

visible in the same coronal plane. The fmi formed an inverted C-shape. This was defined 

as +2.00 mm from bregma (fig. 3.2, next page). Here, images of the accumbens core 

were taken by positioning the microscope field of view (MFV) so that its centre was at 

equal distances from the ventral end of the lateral ventricle, and from the anterior 

commissure. If any sections were damaged during collection, the first two intact sections 

were collected. Images of the DMS were taken by positioning the MFV so that its left 

margin coincided with the dorsal part of the lateral ventricle and the medial side of the 

corpus callosum. Then, brain sections were removed until the anterior commissure 
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crossed the midline of the brain, and was seen as a continuous bundle of white fibres as 

opposed to two separate white matter fibre tracts in each hemisphere. This was defined 

as 0.00 mm from bregma. From there, a 110 or 85 sections were removed to reach 

approx. -1.76 from bregma. Then, a few sections were removed if necessary to reach 

the rostrocaudal level where the rostral tip of the hippocampal formation was visible, 

but the CA1-3 regions had just begun to become distinguishable. This was defined as -

1.80 mm from bregma (fig. 3.3, next page). There, the white matter tract of the posterior 

corpus callosum was followed in ventrolateral direction to reach its tip. The centre of 

the MFV was positioned slightly below that tip, where images of BLA were taken. 

 

Fig. 3.1. Schematic representation of the rostrocaudal level defined as +3.70 mm from 
bregma during sectioning. The anterior forceps of the corpus callosum (fmi) is just 

visible, and the lateral fissure extends only halfway to the midline. The olfactory bulbs 
are attached to the ventral prefrontal cortex. This schematic is an approximation. 

 

Fig. 3.2. Schematic representation of the rostrocaudal level defined as +2.00 mm from 
bregma. The Lateral ventricles, anterior commissure (AC), fmi and striatum are visible 

on one section. Green circles represent ROI where images of the Nacc core (1) and 
DMS (2) were taken. This schematic is an approximation.  
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Fig. 3.3. Schematic representation of the rostrocaudal level defined as -1.80 mm from 
bregma during sectioning. The anterior tip of the hippocampus is visible, and the 

posterior corpus callosum is visible as an arc that extends ventrally towards the BLA 
(green circle), where images were taken, from both hemispheres. 

Results 

Nacc core – cocaine 

Figure 3.4 (next page) shows the amount of arc- and h1a-positive nuclei in the Nacc core 

as a function of time following an i.v. injection of cocaine. The highest amount of arc-

positive nuclei was found in the 8 min group (M = 3.55%, SE = 0.51), followed by the 0 

min, 16 min, 35 min and the 25 min groups (M = 2.41%, SE = 0.13; M = 2.35%, SE = 0.34; 

M = 1.66%, SE = 0.23 and M = 1.45%, SE = 0.33, respectively). For h1a, the highest 

amount was found in the 35 min group (M = 3.98%, SE = 0.78), followed by the 25 min, 

16 min, 0 min and 8 min groups (M = 2.75%, SE = 0.35; M = 2.20%, SE = 0.14; M = 1.50%, 

SE = 0.47 and M = 1.38%, SE = 0.27, respectively). 

Shapiro-Wilk tests revealed normal distributions of the scores for arc-positive nuclei 

following a cocaine injection in all 5 time groups. Levene’s statistic was also non-

significant showing homogeneity of variance across groups, F(4,13) = 1.02, p = .433. A 

one-way ANOVA showed a significant effect of time, F(4,13) = 6.09, p = .005. Gabriel’s 

post hoc tests revealed that the 8 min group had significantly higher amount of arc-

positive nuclei relative to the 25 and 35 min groups.  

hippocampus 
posterior 

corpus callosum 
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Shapiro-Wilk tests for the scores of h1a-positive nuclei also revealed normal 

distributions in all conditions, and Levene’s test showed homogeneity of variance, F(4,13) 

= 2.27, p = .117. A one-way ANOVA indicated a significant main effect of time, F(4,13) = 

4.87, p = .013. According to Gabriel’s post-hoc tests the 35 min group had significantly 

more h1a-positve nuclei than the 0 and 8 min groups. 

 

Nacc core – heroin 

The IEG expression in the Nacc core following an i.v. injection of heroin (fig. 3.5, next 

page) was similar to that following cocaine. On average, the highest amount of arc-

positive nuclei was again found in the 8 min group (M = 3.56%, SE = 1.45). This was 

followed by the 0 min, 25 min, 16 min and 35 min groups (M = 2.55%, SE = 0.72; M = 

2.50%, SE = 0.49; M = 2.18%, SE = 0.58 and M = 1.22%, SE = 0.34, respectively). In the 

case of h1a, the 25 min group had the highest amount of mRNA-positive nuclei (M = 
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2.62%, SE = 0.64), followed by the 35 min, 0 min, 16 min and 8 min groups (M = 2.19%, 

SE = 0.58; M = 1.67%, SE = 0.33; M = 1.39%, SE = 0.5; and M = 1.25%, SE = 0.37, 

respectively). 

Shapiro-Wilk tests revealed normal distributions of scores for arc-positive nuclei in all 

conditions except the 16 min group. A Kruskal-Wallis test revealed non-significant 

differences between time groups, H(4) = 5.25, p = .262.  

The Shapiro-Wilk tests for h1a-positive nuclei scores revealed a non-normal distribution 

in the 35 min group. A Kruskal-Wallis test revealed no significant differences between 

groups H(4) = 3.97, p = .41.  

 

DMS – cocaine 

The expression profile of arc an h1a in the DMS following an injection of cocaine was 

similar to that in the Nacc core, but the total amount of mRNA-positive nuclei was about 

twice as high (fig. 3.6, p. 57, note the range of values on the Y axis). Again, the highest 
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number of arc-positive nuclei was found in the 8 min group (M = 7.17%, SE = 0.97) 

followed by the 0, 16, 25 and 35 min groups (M = 4.26%, SE = 0.35; M = 3.52%, SE = 0.36; 

M = 2.39%, SE = 0.56 and M = 1.81%, SE = 0.25, respectively). On average, h1a levels 

were highest in the 35 min group (M = 9.39%, SE = 0.39), followed by the 25, 16, 0, and 

8 min groups (M = 7.83%, SE = 0.61; M = 5.21%, SE = 0.4; M = 2.35%, SE = 0.86, and M = 

1.9%, SE = 0.32). 

Shapiro-Wilk tests revealed a non-normal distribution of the scores for arc-positive 

nuclei in the 25 min group. A Kruskal-Wallis test revealed a significant difference 

between time groups, H(4) = 13.08, p = .011. Dunn-Bonferroni tests revealed that the 8 

min group had significantly more arc-positive nuclei than the 35 min group. 

All distributions of scores for h1a-positive nuclei across the time groups were normal, as 

assessed by Shapiro-Wilk tests. Levene’s statistic revealed homogenous variance across 

time groups F(4,13) = 0.47, p = .76. A one-way ANOVA indicated a significant effect of 

time, F(4,13) = 35.97, p < .001. Gabriel’s post-hoc tests revealed that the 25 and 35 min 

groups had significantly more h1a-positive nuclei than all other groups, but did not differ 

significantly between each other. The 16 min group was significantly different from the 

rest of the time groups, and the 0 and 8 min groups did not differ from each other. 
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DMS – heroin 

An injection of heroin seemed to produce much lower levels of IEG expression relative 

to cocaine (although no inferential statistics were carried out to compare the two). 

There was still a trend of higher amounts of arc-positive nuclei in the early time groups 

and higher amounts of h1a-positive nuclei in the later time groups (fig. 3.7, next page). 

On average, the highest amount of arc-positive nuclei was found in the 8 min group (M 

= 3.99%, SE = 0.89), followed by the 0, 25, 16, and 35 min groups (M = 3.39%, SE = 0.77; 

M = 2.37%, SE = 0.58; M = 2.10%, SE = 0.55, and M = 1.26%, SE = 0.42). The highest 

amount of h1a-positive nuclei was found in the 35 min group (M = 4.6%, SE = 0.63), 

followed by the 25, 16, 0 and 8 min groups (M = 4.46%, SE = 0.96; M = 3.65%, SE = 1.1; 

M = 2.47%, SE = 0.11, and M = 2.34%, SE = 0.88). 

3 3 4 4 4
0

2

4

6

8

10

12

0 mins 8 mins 16 mins 25 mins 35 mins

m
R

N
A

+
 n

u
cl

ei
 a

s 
a 

%
 o

f 
al

l 
D

A
P

I+
 n

u
cl

ei

Time since injection

Homer 1a Arc

*

#

#

&

Fig. 3.6. mRNA expression in the DMS following an i.v. injection of 
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Shapiro-Wilk tests revealed a non-normal distribution of scores for arc-positive nuclei in 

the 16 min group. There was also one case of extreme score on this variable in the 35 

min group as assessed by a box-plot. This case was excluded from the Kruskal-Wallis test 

analysis, which revealed a significant difference between groups, H(4) = 11.17, p = .025. 

Dunn-Bonferroni tests revealed that the 8 min group had significantly more arc-positive 

nuclei than the 35 min group. 

Scores for h1a-positive nuclei were not normally distributed in the 25 min group. A 

Kruskal-Wallis test revealed no significant differences between groups for this variable, 

H(4) = 4.49, p = .343. 

 

BLA – cocaine 

The IEG expression profile in the BLA following an injection of cocaine was somewhat 

different from the other two brain areas, mostly because of the high amount of h1a-

positive nuclei in the 16 min group (fig. 3.8, next page). The highest amount of arc-

positive nuclei was still found in the 8 min group (M = 2.49%, SE = 0.93), followed by the 
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16, 0, 25 and 35 min groups (M = 2.14%, SE = 0.35; M = 1.75%, SE = 0.72; M = 1.64%, SE 

= 0.39, and M = 1.57%, SE = 0.53). For h1a, the highest amount of mRNA-expressing 

nuclei was found in the 16 min group (M = 4.21%, SE = 1.11), followed by the 35, 25, 8 

and 0 min groups (M = 4.12%, SE = 1.45; M = 3.52%, SE = 0.32; M = 2.74%, SE = 0.97, and 

M = 2.45%, SE = 0.99). 

Shapiro-Wilk tests revealed a normal distribution of scores for amount of arc-positive 

nuclei across time groups. Levene’s statistic was also non-significant, F(4,13) = 1.28, p 

= .327, suggesting homogeneity of variance. A one-way ANOVA revealed no significant 

differences between groups, F(4,13) = 0.45, p = .774. 

The distribution of scores for the amount of h1a-positve nuclei was also normal as 

assessed by Shapiro-Wilk tests. Variance was homogenous across groups, F(4,13) = 1.19, 

p = .362. A one-way ANOVA revealed no significant main effect of time, F(4,13) = 0.53, 

p = .714. 
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BLA – heroin 

Finally, following an i.v. injection of heroin, the IEG expression in the BLA was as follows 

(fig. 3.9, next page): the highest amount of arc-positive nuclei was found in the 25 min 

group (M = 1.76%, SE = 0.49), followed by the 16, 0, 35 and 8 min groups (M = 1.74%, SE 

= 0.44; M = 1.47%, SE = 0.21; M = 1.26%, SE = 0.41, and M = 1.16%, SE = 0.48). The highest 

amount of h1a-positive nuclei 16 min group (M = 4.05%, SE = 1.09), followed by the 35, 

0, 25 and 8 min groups (M = 3.44%, SE = 0.46; M = 2.78%, SE = 0.28; M = 2.54%, SE = 

0.26, and M = 2.47%, SE = 0.97). 

Shapiro-Wilk tests revealed a normal distribution of scores for amount of arc-positive 

nuclei across time groups. Levene’s statistic was also non-significant, F(4,13) = 1.13, p 

= .381, suggesting homogeneity of variance. A one-way ANOVA revealed no significant 

differences between groups, F(4,13) = 0.38, p = .814. 

The distribution of scores for the amount of h1a-positve nuclei was also normal as 

assessed by Shapiro-Wilk tests. Variance was homogenous across groups, F(4,13) = 1.44, 

p = .273. A one-way ANOVA revealed no significant main effect of time, F(4,13) = 0.96, 

p = .459. 
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Arc expression relative to saline 

Figure 3.10 (next page) shows the increase of arc expression 8 min following a drug 

injection relative to saline as a function of brain area. The percent of cells expressing arc 

following saline was highest in the DMS (M = 2.38%, SE = 0.18), followed by the Nacc 

core (M = 1.25%, SE = 0.11) and the BLA (M = 1.25%, SE = 0.19). Arc expression following 

heroin and cocaine is represented by the same data which were reported above.  

Shapiro-Wilk tests revealed normal distribution of scores for arc expression in all 

conditions. Levene’s statistics revealed homogenous variance in the DMS, F(2,6) = 2.28, 

p = .184, and a one-way ANOVA revealed significant differences between groups in this 

brain area, F(2,6) = 10.07, p = .012. Gabriel’s post-hoc tests revealed that there was a 

difference between the cocaine and saline groups, p = .012. Levene’s test was significant 

for the Nacc core, F(2,6) = 7.42, p = .024, indicating lack of homogeneity of variance. The 

one-way ANOVA was non-significant (F(2,6) = 2.29, p = .187), but the Welch tests 

approached significance, F(2,2.78) = 8.98, p = .061. Finally, Levene’s test approached 
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significance in the BLA, F(2,6) = 5.11, p = .051, and the one-way ANOVA revealed no 

significant differences between groups for this brain area, F(2,6) = 1.45, p = .307. 

 

Discussion 

The present study revealed that single intravenous injections of heroin or cocaine are 

followed by a quick and transient expression of arc and h1a in the striatum. This 

expression had a different temporal profile depending on the IEG in question, as well as 

a different magnitude depending on the drug administered and the brain area of interest. 

Cocaine – Nacc core and DMS 

The nuclear arc expression in the Nacc core and DMS following cocaine reached its 

highest levels 8 min after injection, and was lowest ~30 min after the injection. This 

temporal profile of expression mimics closely that of arc expression in response to 

conditioned cues or a novel environment (Grosso et al., 2015; Vazdarjanova et al., 2002). 

Similarly, h1a nuclear expression followed its predicted temporal profile – its levels were 

low soon after an injection of cocaine (0-16 min), but increased sharply after ~30 min. 
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However, there appeared to be subtle differences between the magnitudes of IEG 

expression between areas (i.e. the Nacc vs. the DMS), but these differences were not 

assessed using inferential statistics. However, it is notable that almost twice as large a 

proportion of observed neurons in the DMS were IEG positive compared to the Nacc 

core. This difference cannot stem from differences in total number of neurons observed, 

since IEG-positive nuclei were quantified as a percentage of all DAPI-positive nuclei. 

Similar findings have been reported before for c-fos (Steiner & Gerfen, 1993). In addition, 

h1a levels in the DMS were significantly elevated 16 min after cocaine, which is quicker 

from its previously reported speed of expression in the hippocampus (Vazdarjanova et 

al., 2002). In summary, the response to cocaine in the striatum met the expectations 

based on previous research with arc and h1a, and there was a slight tendency for a more 

pronounced response in the dorsal vs. ventral parts of this brain area. The magnitude 

and regional differences of mRNA expression reported here was similar to studies with 

c-fos. For example, it has previously been shown that only 2-3% within the NAcc express 

c-fos in response to cocaine (Koya et al., 2009).  

Heroin – Nacc core and DMS 

On average, the highest levels of arc nuclear expression in response to heroin occurred 

at about the same time as in the case for cocaine (8 min), although there was no 

statistically significant effect of heroin on arc expression in the Nacc core. Similarly, on 

average, h1a peaks of nuclear expression occurred at a delayed time after a heroin 

injection (~30 min), but no statistically significant main effect of time was found. There 

seemed to be a difference between heroin and cocaine in the magnitude of these 

expression levels in the DMS, where heroin seemed to have a weaker effect (however, 

this difference was not assessed using inferential statistics). Although heroin and 

cocaine have not been compared directly before, there is some evidence for lower c-fos 

levels in dorsal striatum following morphine vs cocaine (Harlan & Garcia, 1998). In 

addition, there was much higher variability in the levels of arc and h1a in the Nacc core 

and DMS after heroin, to the extent that a main effect of time was observed only in the 

DMS, and only for arc expression.  

In summary, there was a trend for heroin to produce the expected temporal pattern of 

arc and h1a expression in the striatum, but the effect was much less evident in 
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comparison to cocaine. In fact, for heroin the only statistically significant change in 

expression over time was found in the DMS. Clearly, a direct comparison between the 

two drugs is impossible without a full dose-response analysis due to their differences in 

terms of pharmacology. Nevertheless, it is not unreasonable to aim for a similar effects 

on the temporal profile of IEG expression between the two drugs. One likely way of 

achieving that would be increasing the dose of heroin. Further arguments for this are 

presented in following sections with discussion of saline control results.  

Cocaine and heroin - BLA 

The expression of arc and h1a in the BLA following either heroin or cocaine did not 

produce similar temporal profile to the one seen in the striatum. Overall, there was a 

large amount of variability in the average levels of arc and h1a expression in this area 

for both drugs. Thus, any conclusions and generalisations about the results must be 

made with caution. Interestingly, h1a reached its peak levels 16 min following an 

injection of either heroin or cocaine, which was earlier than expected. This increase was 

maintained, on average up to 35 min following drug injections. Conversely, peak levels 

of arc were almost indistinguishable in the BLA for both drugs: arc expression was low 

across all time points with very little change between. Such inconclusive results are 

somewhat surprising given the previous findings of drug-induced c-fos expression in this 

brain area (Day et al., 2001), and the shared MAPK/ERK pathway of arc, h1a and c-fos. 

One possible explanation would be that arc, h1a and c-fos expression in this brain area 

arise after different type of electrophysiological activity. Only strongly activated neurons 

express c-fos, but no electrophysiological profile has been defined for arc and h1a. 

Saline controls 

A comparison was made between arc expression following drug and vehicle 

administration to examine the possibility that temporal changes in the level of IEG 

expression are the result of handling animals rather than a consequence of drug actions 

on neuronal activity. There was a clear effect of cocaine on arc expression in the DMS 

relative to saline. However, the effect of cocaine in the Nacc core and the effect of heroin 

across both areas of the striatum was more subtle and did not reach statistical 

significance. Given the small sample size, it is possible that the effect is genuine, but 
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small, or that the differences found are random variation. Although the latter possibility 

is less likely given that the effect was visible across several brain areas (suggesting it is 

in some way reliable), it is admittedly the case that higher doses should be used in the 

future to reach a more robust effect.  

Implications for catFISH 

The main goal of the present study was to examine the possibility of applying the catFISH 

method to the study of heroin and cocaine’s acute effects. The main obstacles in such a 

task were the issues surrounding stimulus on- and off-set. The data presented here show 

that the use of the i.v. route of administration resolves these issues to a great extent. 

That is, the highest levels of arc expression were seen soon after drug injection, while 

the highest levels of h1a expression were seen about 25 min later. However, it must be 

noted that this was not true for all brain areas or both heroin and cocaine. There were 

no statistically significant effects of heroin on h1a expression in this study, which 

warrants the use of higher doses in following experiments. In addition, there was no 

statistically significant change in IEG expression in the BLA following any drug treatment.  

When present, the IEG response was transient, so that if two injections were 

administered in succession, there wouldn’t be substantial carry-over effects from the 

first to the second. Indeed, there are some notable differences in the magnitude of IEG 

expression between drugs and brain areas, and these can affect estimates of overlap 

measured by catFISH. Nevertheless, these differences can be controlled for statistically. 

Overall, given the data shown here, it should be possible to use catFISH to measure the 

overlap between neuronal populations activated by heroin and cocaine. 

One obvious caveat is the small difference between drug-induced IEG expression and 

IEG expression in the saline-treated animals. These small differences raise the possibility 

that some of the IEG expression seen here is an artefact of the drug administration 

procedure, at least in the case of heroin. It is not possible to conclude whether the cells 

expressing IEG following heroin and saline are the same or different, so the possibility 

of a genuine heroin effect still remains. This issue will be addressed by increasing the 

doses of heroin and cocaine in following experiments. Regardless of this limitation, the 
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present study clearly showed that the IEG response to drug injections under these 

conditions is quick and transient, which was the main goal of this particular study. 

In summary, intravenous injections of heroin and cocaine trigger transient expression of 

the arc and h1a in the striatum. The temporal profile of this expression is similar to the 

one seen in studies using conditioned stimuli and exposure to a novel environment. 

Although there are regional and drug-specific differences in the magnitude of this effect, 

it is an indication that it would be possible to incorporate the catFISH technique into the 

study of heroin and cocaine’s acute effects in parts of the striatum. At the same time, 

the BLA is not a suitable target for such an investigation, because IEG expression there 

was markedly different from that of the striatum in terms of both temporal profile and 

magnitude.  
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Chapter 4 – Distinct neuronal populations respond to 

heroin and cocaine across the striatum 

 

Introduction 

In the previous chapter it was established that i.v. injections of heroin and cocaine at 

doses known to be self-administered by animals lead to a quick and transient IEG 

response in the Nacc core and DMS, albeit with some caveats regarding the effects of 

heroin (see discussion in previous chapter). It was concluded that the catFISH technique 

can be applied to the study of pharmacological stimuli. This chapter describes a follow-

up experiment where catFISH was used to measure the overlap between neuronal 

populations active after two consecutive injections of either saline, cocaine or heroin (in 

different combinations). Here it was possible to find out if these neuronal populations 

are overlapping or distinct, and if there are neurons that reliably respond to heroin and 

cocaine on two separate occasions across the striatum (defined as neuronal ensembles). 

Note that, in view of the various theoretical definitions of a neuronal ensemble reviewed 

in ch. 1, a distinction was made between activated neuronal populations and neuronal 

ensembles. The former was defined as a group of any neurons active at the time of a 

particular drug or saline injection, while the latter was defined as a group of neurons 

activated by the same type of injection on two consecutive occasions. This latter 

definition for a neuronal ensemble has previously been used by Xiu et al. (2014), and it 

implies that since neuronal ensembles are activated by a particular stimulus, then the 

presentation of that stimulus on two separate occasions should activate more or less 

the same neurons.  

Using this definition, Xiu et al. have previously found neuronal ensembles activated by 

morphine in the NAcc shell (Xiu et al., 2014). The technique used in that study took 

advantage of the temporal difference between c-fos mRNA transcription and protein 

translation (TAI-FISH). Effectively, the logic behind the TAI-FISH technique is identical to 

catFISH: two stimuli are administered in succession, and the neuronal population 
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activated by the first one is labelled by the FOS protein, while for the second stimulus it 

is labelled by c-fos mRNA. The study found that two consecutive i.p. injections of 

morphine or two separate application of a foot shock activate almost exclusively the 

same populations of neurons in the Nacc shell and paraventricular nucleus of the 

thalamus, respectively. In addition, injections of morphine and then cocaine activated 

almost the same populations of neurons in the shell: there were significantly less 

neurons activated by only one stimulus or the other relative to neurons activated by 

both. Finally, neuronal populations in the shell activated by morphine and foot-shock 

were almost completely separated. Thus, there is evidence that pharmacological stimuli 

such as morphine injections reliably recruit more or less the same neurons in the shell, 

at least as long as c-fos-expressing neurons are concerned. The present study expands 

on these findings in several ways. 

First, the present study used i.v. injections of heroin and cocaine instead of i.p. injections. 

The pharmacokinetic differences resulting from the two routes of administration and 

their methodological implications for catFISH were discussed in the previous chapter. In 

addition to those considerations, using one route vs. the other also has implications for 

drug effects on IEG expression. For example, a dose of cocaine administered over 5 or 

25 sec elicits higher arc and c-fos mRNA expression in the Nacc core and shell compared 

to the same dose administered over 100 sec (Samaha, Mallet, Ferguson, Gonon, & 

Robinson, 2004). This indicates that the rate at which cocaine reaches the brain 

determines its effects on IEG expression. Potential reasons for it are that higher rate of 

administration leads to increased ability of cocaine to block dopamine (DA) re-uptake, 

and quicker rise in extracellular dopamine (Ferrario et al., 2008), because both c-fos and 

arc expression are to some extent dependent on DA transmission (Fosnaugh et al., 1995; 

Graybiel, Moratalla, & Robertson, 1990). Thus, it is reasonable to expect that using an 

i.v. route with a quicker rate of drug entry to the brain would result in more robust IEG 

response relative to an i.p. injection. That in turn means a different set of neurons being 

active, and, potentially, a different neuronal ensemble. Whether that would also mean 

a different degree of overlap between neuronal populations is a question addressed 

empirically in the present study. 
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A second difference from the Xiu et al. study is the use of heroin instead of morphine. 

As already mentioned, arc expression is dependent on DA, and so is in fact homer 1a 

(Yamada et al., 2007). There are big differences in DA release following heroin vs. 

morphine injections, heroin producing much higher levels of DA release, most likely 

because of the actions of 6-MAM (Gottas, Boix, Oiestad, Vindenes, & Morland, 2014). 

Thus, heroin is likely to recruit additional if not entirely different neurons across the 

striatum. Again, whether this would affect estimates of overlap between drug-activated 

neuronal populations is an open question.  

Finally, the present study looked at several different parts of the striatum in addition to 

the Nacc shell, and identified the neuronal populations activated following different 

order and combinations of drug administration. More specifically, this study looked at 

the Nacc core, dorsomedial and dorsolateral striatum (DMS and DLS) in addition to the 

shell. All these areas are targets of dopaminergic innervation and are believed to 

undergo functional changes following drug administration (Belin & Everitt, 2008; Volkow 

et al., 2006). Also, each of these four subdivisions of the striatum receive different 

glutamatergic and dopaminergic projections, as discussed in ch.1 (e.g. see fig. 1.1, p.10). 

Additional combinations of drugs administered included consecutive injections of heroin 

as well as consecutive injections of cocaine. In this way it was possible to address the 

question of whether there are neurons that are reliably activated, and across different 

areas, following consecutive administrations of each drug. The order of drug 

administration (heroin-cocaine and cocaine-heroin) was also studied as a possible factor 

in IEG expression and neuronal population overlap measures. Due to the design implied 

by the catFISH technique, injections were administered with a relatively short amount 

of time in between. Thus, it was possible that some changes in the intrinsic properties 

of the cell following the first drug injection could have affected the effect of the second 

one. 

The doses used for this study were increased to 800 µg/kg of cocaine and 100 or 200 

µg/kg for heroin. This is a two-fold increase relative to the doses used in the study 

reported in chapter 3, where the temporal profile of mRNA expression was examined. 

The reason for this change was aiming at a more pronounced IEG response, especially 

in the case of heroin. In the previous chapter it was shown that, although heroin 
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injections produced the same quick and transient IEG response as cocaine, the response 

was much more variable and of a lower magnitude. In addition, elevation of IEG 

expression after cocaine vs. after saline treatment was somewhat subtle at lower doses. 

Making inferences about overlap between neuronal populations activated by heroin and 

cocaine could have been problematic if the number of active cells after each injection 

was too low. To make sure there was to be a reliable increase of IEG expression from 

baseline following heroin, the dose was increased two- and four-fold. Having two 

different doses also helped reveal any expression pattern differences for lower and 

higher doses of heroin. Saline control groups were also added to account for any 

changes in temporal profile of IEG expression due to the increased doses.  

It was expected that the neuronal populations activated by two consecutive injections 

of cocaine would exhibit a high degree of overlap due to having the same stimulus 

administered twice. Considering the evidence that self-administration behaviour is 

mediated by different type of signalling in the NAcc, it was also predicted that an 

injection of cocaine and an injection of heroin would activate populations that overlap 

to a significantly lesser extent. 

Methods 

Animals, housing and testing cages 

The rats used in this experiment (n = 50) were tested at a weight of 300-310g. Supplier, 

weight upon arrival, and housing conditions were as described in general methods. 

Following acclimatization and catheter surgery, until the day before testing, rats were 

placed in the housing cages and were moved to the operant chambers for the night 

before and during the day of testing (details in procedure section). 

Drugs 

Heroin HCL was dissolved in sterile saline at concentrations of either 825 µg/ml or 1.65 

mg/ml. Cocaine HCL was dissolved at a concentration of 6.6 mg/ml. All drug infusions 

had a volume of 40 µl, which corresponded to doses of either 100 µg/kg or 200 µg/kg 

for heroin, and a dose of 800 µg/kg for cocaine. As discussed above, the doses used in 

this study were increased in order to achieve a more robust IEG response. Note that in 
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this case drug infusions were delivered remotely, using a computer-controlled infusion 

pump (more details in procedure section).  

Design  

The study had a between-subject design. The independent variable was the combination 

of drugs administered. For the first two waves of rats (n = 35) these were: saline - saline, 

saline – cocaine, cocaine – saline, cocaine – cocaine, cocaine-heroin 100 µg/kg, cocaine 

– heroin 200 µg/kg. For a separate wave (n = 15) the groups were: heroin – heroin, 

heroin – cocaine, and heroin – saline (heroin given at 200 µg/kg in each case). 

Dependent variables were number of DAPI-positive cellular nuclei, cell nuclei positive 

for h1a mRNA, cell nuclei positive for arc mRNA, and nuclei positive for both types of 

mRNA.  

Procedure 

Acclimatization and catheter surgery were carried out as described in general methods. 

Testing. All rats were moved to the testing chambers 18 hours before the testing session 

in order to habituate them to the novelty of the testing environment. This was done to 

avoid interaction effects between drugs and novelty, which could have influenced the 

final measures of IEG expression (Paolone et al., 2007; Uslaner et al., 2001). Following 

this habitation period animals were tethered to the infusion lines. All stimuli in the 

operant chamber such as levers and lights were inactive. The infusion pumps were 

programmed to begin the testing session automatically, one hour after the tethering. 

This was done to ensure minimum effect of the handling of animals on mRNA expression. 

Thus, in the absence of the experimenter, each animal received one of the following 

combinations of drug infusions, separated by 25 minutes: saline – saline (n = 4), saline – 

cocaine (n = 6), cocaine – saline (n = 6), cocaine – cocaine (n = 6), cocaine – heroin 100 

µg/kg (n = 6), cocaine – heroin (n = 7), and heroin – cocaine (n = 6), heroin – heroin (n = 

6), heroin - saline (n = 3). For the last 4 experimental groups heroin was given at a dose 

of 200 µg/kg. Five minutes after the second injection, rats were given an overdose of 

pentobarbital i.v., decapitated, brains were snap-frozen in isopentane at -80°C, and 

stored for cryosectioning.  
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To achieve the administration of two separate injections through the same catheter, the 

infusion lines were back-filled with the appropriate drug solutions for each condition, 

just before tethering of the animals. The volume of drug solutions in each line was 40 µl 

for both heroin and cocaine, with the corresponding drug concentration. The rest of the 

lines were filled with saline. Each drug solution was separated from the rest of the saline 

in the infusion line by a small air bubble. The infusion pumps operated at a default 

infusion rate of 10 µl/sec (±1.5 µl/sec). Thus, each drug infusion was delivered over 4 

sec. The two drug solutions were separated by 90 µl of saline, and the pumps were 

switched on for 10 sec during each of the two infusions. This way two potential issues 

were avoided: first, the possible mixing of the first and second drug infusions due to 

slight infusion rate variability between infusions and between pumps. Second, the issue 

of a small amount of drug solution remaining in the catheter itself. For the saline-saline 

group, the whole set-up was kept the same except no drugs were dissolved in the saline. 

Thus, in this experiment the infusion rate was controlled more strictly than in the study 

described in chapter 3, where duration of infusions might have varied by up to 2 sec. It 

was not suggested that this might have had a substantial effect on overall levels of IEG 

expression in response to heroin and cocaine. Effects of infusion rate on IEG expression 

have been shown for much greater differences between infusion rates such as 5 vs. 100 

sec, but not 5 vs 25 sec (Samaha et al., 2004). In addition, there is no reason to expect 

systematic variability between groups as a result of the drug administration procedure. 

Nevertheless, it was expected that better control over infusion rates might reduce 

within-group variability of IEG expression scores.  

CatFISH, image acquisition and analysis. Whole brains were sectioned at 16 µm 

thickness, at the level of the anterior striatum containing the Nacc core and shell, DMS, 

and DLS, where images were taken for analysis (+1.70 mm from bregma (Paxinos & 

Watson, 1986), fig. 4.1 on next page, see also Appendix 2). As described in chapter 3, 

sectioning started from the tip of the olfactory bulbs and brain sections were removed 

until their ventral and dorsal parts became attached (defined as +3.70 mm from bregma). 

From this point, 120 sections (16 µm thick) were removed to reach approx. + 1.70 from 

bregma. If necessary, a few (no more than 5) additional sections were removed to reach 

the point where the dorsal tip of the corpus callosum formed a pointed angle. Then, 
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images of the accumbens core were taken by positioning the microscope field of view 

(MFV) so that its centre was at equal distances from the ventral end of the lateral 

ventricle, and from the anterior commissure. Images of the DMS were taken by 

positioning the MFV so that its left margin coincided with the dorsal part of the lateral 

ventricle and the medial side of the corpus callosum. Then, images of the DSL were taken 

by moving the MFV laterally so that its right margin coincided with the lateral part of the 

corpus callosum. For the Nacc shell, the centre of the MFV was positioned over the 

anterior commissure and moved in a medial direction until the left margin of the MFV 

reached the medial border of the Nacc shell, recognised as a less dense staining for cell 

nuclei by DAPI. The RNAscope probes and reagents, the in situ hybridisation and image 

acquisition and analysis protocols were as described in general methods. 

 

Fig. 4.1. Schematic representation of regions of interest (ROI) where microscopic 
images were taken: Nacc shell (1), Nacc core (2), DMS (3) and DLS (4). 

Results 

Homer 1a and arc expression – saline controls 

The total amount of h1a expression in each condition was measured by adding up the 

number of nuclei expressing only h1a and the number of nuclei expressing both arc and 

h1a mRNA. Similarly, the total amount of arc expression was measured by adding up 

only arc-expressing nuclei and co-expressing nuclei. For simplicity, mRNA expression in 
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the cocaine-saline, saline-cocaine and heroin-saline control conditions is presented 

separately, before all other conditions. 

Nacc core and shell  

Figure 4.2 (next page) shows the average number of h1a- or arc-positive nuclei in the 

Nacc core and shell as a function of drug treatment. The punctuated lines represent 

mRNA levels in the saline-saline group for each brain area. 

In the Nacc core, h1a expression was high in the cocaine-saline (M = 22.92, SE = 4.59) 

and heroin-saline (M = 20.67, SE = 2.48) groups, and much lower in the saline-cocaine 

group (M = 4.54, SE = 0.81). In the shell, on the other hand, h1a expression remained 

somewhat low in the cocaine-saline condition (M = 10.33, SE = 2.59), but was higher in 

the heroin-saline condition (M = 26, SE = 2.04). The saline-cocaine condition had low 

levels of h1a in the shell as well (M = 7.75, SE = 1.37). 

Arc expression was relatively high only in the saline-cocaine conditions in both the core 

and shell (M = 37.17, SE = 9.21, and M = 21.88, SE = 3.49, respectively). The cocaine-

saline and heroin-saline conditions had low levels of arc both in the core (M = 5.71, SE = 

0.75, and M = 3.92, SE = 0.85, respectively) and shell (M = 4.79, SE = 0.92, and M = 4.58, 

SE = 1.08, respectively). 
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Shapiro-Wilk tests revealed normal distributions of h1a and arc expression scores in the 

core. H1a score distribution was normal in the shell as well, but there was deviation 

from normality of the arc scores in the cocaine-saline condition. Levene’s tests revealed 

heterogeneity of variance across groups for both h1a and arc scores in the core, F(3,15) 

= 4.57, p =.018, and F(3,15) = 19.93, p < .001, respectively. In the shell, the variance of 

h1a scores was homogenous F(3,15) = 2.56, p = .094, but the variance of arc scores was 

not F(3,15) = 10.04, p = .001.  

A Welch test revealed significant differences between groups for h1a expression in the 

core, F(3,6.29) = 14.68, p =.003, as well as for arc expression, F(3,7.36) = 5.59, p =.026. 

Mann-Whitney tests with a Bonferroni correction (α = .017) showed that the cocaine-

saline and heroin-saline groups had significantly higher levels of h1a expression than the 

saline-saline group. Also, the saline-cocaine group had significantly higher levels of arc 

expression than the saline-saline group.  
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Fig. 4.2. Average number of h1a- or arc-positive nuclei in the Nacc core and 
shell as a function of drug treatment. s - saline, c - cocaine, h - heroin. Error 

bars: ±1 SE. *significantly different from saline-saline. N for each group: s/s = 
4, c/s = 6, s/c = 6, h/s = 3.
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A one-way ANOVA revealed significant differences in h1a levels in the shell, F(3,15) = 

14.07, p < .001. Dunnett’s t tests revealed that there was significantly more h1a-positive 

nuclei in the heroin-saline condition relative to saline-saline. A Kruskal-Wallis test 

revealed significant differences in arc scores, H(3) = 12.9, p = .005, where the saline-

cocaine condition was significantly different from saline-saline, U = 24, p = .01. 

Dorsal striatum  

Figure 4.3 (next page) shows the average number of h1a- or arc-positive nuclei in the 

DMS and DLS as a function of drug treatment. The punctuated lines represent mRNA 

levels in the saline-saline group for each brain area. 

In the DMS, h1a expression was highest in the cocaine-saline group (M = 54.71, SE = 

8.31), followed by heroin-saline (M = 29.50, SE = 4.78), and lowest in the saline-cocaine 

group (M = 16.92, SE = 2.57). In the DLS, h1a expression remained high in the cocaine-

saline condition (M = 69.54, SE = 8.59), but was relatively low in the heroin-saline (M = 

21.42, SE = 2.04) and the saline-cocaine conditions (M = 11.54, SE = 2.58). 

Arc expression was relatively high only in the saline-cocaine conditions in both the DMS 

and DLS (M = 76.33, SE = 15.56, and M = 85.38, SE = 12.58, respectively). The cocaine-

saline and heroin-saline conditions had low levels of arc both in the DMS (M = 9.21, SE 

= 1.88, and M = 3.17, SE = 0.36, respectively) and DLS (M = 8.79, SE = 2.13, and M = 2.83, 

SE = 1.45, respectively). 
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Shapiro-Wilk tests revealed normal distributions of h1a scores in the DMS, but not arc 

expression scores, where the deviation form normality was found in the cocaine-saline 

condition. Both h1a and arc score distribution was normal in the DLS. Levene’s tests 

revealed homogeneity of variance across groups for h1a scores in the DMS, F(3,15) = 

1.18, p = .349, while the tests was significant for arc scores F(3,15) = 19.93, p < .001. In 

the DLS, the variance of both h1a and arc scores was heterogeneous F(3,15) = 23.09, p 

< .001, and F(3,15) = 5.77, p = .008, respectively. 

A one-way ANOVA revealed significant differences between groups for h1a expression 

in the DMS, F(3,15) = 14.09, p < .001. Dunnett’s post hoc tests revealed that only the 

cocaine-saline condition differed significantly from the saline-saline condition. In 

addition, a Kruskal-Wallis test revealed significant differences in arc scores between 

groups in this brain area, where the saline-cocaine condition differed significantly from 

saline-saline, U = 24, p = .01. 
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Fig. 4.3. Average number of h1a- or arc-positive nuclei in the DMS and DLS as 
a function of drug treatment. s - saline, c - cocaine, h - heroin. Error bars: ±1 
SE. *significantly different from saline-saline. N for each group: s/s = 4, c/s = 

6, s/c = 6, h/s = 3.
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Welch tests revealed significant differences in h1a and arc scores between groups in the 

DLS, F(3,7.88) = 16.05, p = .001, and F(3,8.05) = 13.35, p = .002, respectively. Mann-

Whitney tests (α = .017) revealed that the cocaine-saline and the heroin-saline 

conditions differed significantly from saline-saline in h1a levels, and the saline-cocaine 

condition differed significantly from saline-saline in arc levels. 

Table 4.1. Summary of homer 1a and arc expression in drug-saline conditions. The 
effect of heroin and cocaine on IEG expression is shown relative to saline in each 

brain area: (↑) significant increase over saline, (−) no sig. difference form saline, (×) 
no data. 

 Core Shell DMS DLS 

 h1a arc h1a arc h1a arc h1a arc 

cocaine ↑ ↑ − ↑ ↑ ↑ ↑ ↑ 

heroin ↑ × ↑ × − × ↑ × 

 

Homer 1a and arc expression – experimental conditions 

Nacc core 

Figure 4.4 (next page) shows the amount of h1a and arc expression as a function of 

experimental condition in the Nacc core.  

Animals in the saline-saline condition had the lowest amount of h1a-positive nuclei, M 

= 5.06, SE = 0.73. In all other conditions, the amount of h1a-positive nuclei was much 

higher: cocaine-cocaine M = 26, SE = 6.15, cocaine-heroin (100 µg/kg) M = 25.33, SE = 

5.21, cocaine-heroin (200 µg/kg) M = 22.11, SE = 4.7, heroin-cocaine M = 21.08, SE = 

3.75, and heroin-heroin M = 16.17, SE = 2.59. In the last two conditions heroin is at a 

dose of 200 µg/kg. 

Shapiro-Wilk tests revealed a non-normal distribution of h1a scores in the cocaine-

heroin (200 µg/kg) group, where W(7) = 0.78, p = .027. A Kruskal-Wallis tests was used 

to examine differences in number of h1a-positive nuclei between experimental 

conditions, and it yielded significant results, H(5) = 11.11, p = .049.  

Multiple comparisons for h1a scores were made using Mann-Whitney tests and a 

Bonferroni correction was applied, so all effects are reported at .01 level of significance. 
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There was a significant difference between the saline-saline group and cocaine-cocaine 

(U = 24, p = .01), cocaine-heroin (100 µg/kg; U = 24, p = .01), cocaine-heroin (200 µg/kg; 

U = 28, p = .006), and heroin-cocaine (U = 24, p = .01). The difference from the heroin-

heroin group was not significant at the .01 level, U = 22, p = .038. 

 

The saline-saline group also had the lowest levels of arc expression: M = 2.5, SE = 0.97. 

Next lowest was the heroin-heroin group, M = 4.46, SE = 0.79. In the rest of the 

conditions, arc expression was relatively higher: cocaine-heroin (100 µg/kg), M = 28.29, 

SE = 10.66, cocaine-heroin (200 µg/kg), M = 15.25, SE = 2.02, cocaine-cocaine M = 13.54, 

SE = 1.3, and heroin-cocaine, M = 17.21, SE = 2.04. Shapiro-Wilk tests revealed normal 

distributions of arc scores in all conditions, but Levene’s statistic was highly significant, 

F(5,29) = 22.56, p < .001. 

A Welch test revealed significant differences between groups, F(5,12.98) = 17.02, p 

< .001. Mann-Whitney tests were used for multiple comparisons and a Bonferroni 
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function of experimental condition. Error bars represent +1 SEM. 
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correction was applied, so all comparisons are reported at α = .01. There were 

significantly less arc-positive nuclei in the saline-saline condition relative to all other 

conditions except the cocaine-heroin (100 µg/kg) and heroin-heroin conditions, where 

U = 22, p = .038, and U = 20, p = .114, respectively. The statistics for the other 

comparisons were as follows: cocaine-cocaine, U = 24, p = .01, cocaine-heroin (200 

µg/kg), U = 28, p = .006, and heroin-cocaine U = 24, p = .01. 

Nacc shell  

Figure 4.5 (next page) shows the amount of h1a and arc expression in the Nacc shell as 

a function of drug treatment. 

Overall, there was noticeably less h1a expression in this brain area relative to the rest 

of the striatum. The average number of h1a+ nuclei in each condition were as follows: 

saline-saline, M = 4.81, SE = 1.68, cocaine-heroin (200 µg/kg), M = 9.32, SE = 2.1, cocaine-

heroin (100 µg/kg), M = 10.5, SE = 2.97, cocaine-cocaine, M = 14.33, SE = 3.28, heroin-

heroin, M = 19.17, SE = 2.22, and heroin-cocaine, M = 20.88, SE = 4.27. Shapiro-Wilk 

tests of normality revealed normal distributions in all conditions. 

Levene’s test revealed homogenous variance across all groups F(5,29) = 0.91, p = .488. 

A one-way ANOVA revealed significant differences between conditions, F(5,29) = 3.86, 

p  = .008. Dunnett’s two-sided tests revealed that the heroin-cocaine and heroin-heroin 

groups had significantly higher amounts of h1a-positive nuclei than the saline-saline 

group. The rest of the groups did not differ significantly from saline-saline. 



81 
 

 

The average number of arc-positive nuclei in the Nacc shell was as follows: cocaine-

heroin (100 µg/kg), M = 21.38, SE = 9.52, cocaine-heroin (200 µg/kg), M = 14.36, SE = 

3.09, saline-saline, M = 2.81, SE = 0.86, cocaine-cocaine, M = 8.45, SE = 1.06, heroin-

cocaine, M = 11, SE = 1.32, and heroin-heroin, M = 6.67, SE = 0.97. Shapiro-Wilk tests 

revealed normal distributions in all conditions. 

Levene’s test revealed a lack of homogeneity of variance, F(5,29) = 8.76, p < .001. A 

Welch test revealed significant differences between groups, F(5,13.29) = 7.03, p = .002. 

Multiple comparisons were carried out using Mann-Whitney tests at α = .01. The 

cocaine-heroin (100 µg/kg) group did not differ significantly from saline-saline (U = 21, 

p = .067), but all other groups did: cocaine-cocaine, U = 24, p = .01, cocaine-heroin (200 

µg/kg), U = 28, p = .006, heroin-cocaine, U = 24, p = .01, and heroin-heroin, U = 24, p 

= .01. 
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Fig. 4.5. Average number of h1a- or arc-positive nuclei in the Nacc shell as a 
function of experimental condition. Error bars represent +1 SEM. */# - significantly 
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DMS 

Figure 4.6 (next page) shows the amount of h1a and arc expression in the DMS as a 

function of drug treatment. 

The lowest h1a expression was found in the saline-saline group, M = 6.06, SE = 2.19. The 

average amount of h1a-positive nuclei in the rest of the conditions were as follows: 

cocaine-heroin (200 µg/kg), M = 53.79, SE = 7.69, cocaine-cocaine, M = 56.33, SE = 11.39, 

cocaine-heroin (100 µg/kg), M = 62.83, SE = 17.5, heroin-cocaine, M = 21.25, SE = 3.69, 

and heroin-heroin, M = 27.75, SE = 6.43. Shapiro-Wilk tests revealed normal 

distributions in all conditions. 

There was a violation of the homogeneity of variance assumption as indicated by 

Levene’s test, F(5,29) = 3.14, p = .022. A Welch test revealed significant differences 

between conditions, F(5,13.29) = 11.58, p < .001. 

Again, Mann-Whitney tests were used for multiple comparisons and are reported at a 

significance level of .01 following a Bonferroni correction. In all other conditions, there 

were significantly more h1a-positive nuclei than in the saline-saline condition: cocaine-

heroin (200 µg/kg) U = 28, p = .006, cocaine-heroin (100 µg/kg), U = 24, p = .01, cocaine-

cocaine, U = 24, p = .01, heroin-cocaine, U = 24, p = .01, and heroin-heroin, U = 24, p 

= .01. 

The most arc expression was found in the heroin-cocaine group, M = 27.95, SE = 5.26, 

followed by cocaine-cocaine, M = 26.71, SE = 2.96. All other groups had relatively low 

levels of nuclear arc: saline-saline, M = 2.06, SE = 1, cocaine-heroin (100 µg/kg), M = 7.79, 

SE = 1.11, cocaine-heroin (200 µg/kg), M = 8.29, SE = 0.72, and heroin-heroin, M = 3.54, 

SE = 0.68. Shapiro-Wilk tests revealed normal distributions in all conditions. 

Levene’s statistic indicated heterogeneous variance across groups, F(5,29) = 8.17, p 

< .001. A Welch test indicated significant differences between conditions, F(5,12.51) = 

17.73, p < .001. Multiple comparisons were carried out using Mann-Whitney tests at α 

= .01. The saline-saline condition differed significantly from the cocaine-cocaine, U = 24, 

p = .01, cocaine-heroin (200 µg/kg), U = 28, p = .006, and the heroin-cocaine (U = 24, p 

= .01) conditions, but not from the cocaine-heroin (100 µg/kg), U = 23, p = .019, and the 

heroin-heroin (U = 20, p = .114) conditions. 
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DLS 

Figure 4.7 (next page) shows the amount of h1a and arc expression in the DLS as a 

function of drug treatment. 

The lowest h1a expression was found in the saline-saline group, M = 8.63, SE = 2.66. The 

average number of h1a+ nuclei in the rest of the groups was: cocaine-cocaine, M = 71.04, 

SE = 7.66, cocaine-heroin (100 µg/kg), M = 69.67, SE = 11.61, cocaine-heroin (200 µg/kg), 

M = 60.39, SE = 8.13, heroin-cocaine, M = 12.67, SE = 2.86, heroin-heroin, M = 17.5, SE 

= 3.01. Shapiro-Wilk tests revealed normal distribution of scores in all conditions. 

Levene’s tests indicated homogenous variance across conditions, F(5,29) = 1.78, p = .148. 

A one-way ANOVA revealed significant difference between groups, F(5,29) = 15.94, p 

< .001. Dunnett’s post hoc 2-sided tests revealed that all conditions where the first 

injection was cocaine had significantly higher levels of h1a expression relative to saline 

0

10

20

30

40

50

60

70

80

90

100

sal-sal coc-coc coc-her1 coc-her2 her2-coc her2-her2

A
ve

ra
ge

 n
u

m
b

er
 o

f 
m

R
N

A
+ 

n
u

cl
ei

/R
O

I

Experimental condition

homer 1a arc

*

#

Fig. 4.6. Average number of h1a- or arc-positive nuclei in the DMS as a function 
of experimental condition. Error bars represent +1 SEM. */# - significantly 
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(p < .001). The saline-saline, heroin-cocaine and heroin-heroin groups did not differ 

significantly from each other in terms of h1a expression. 

 

The average amount of arc+ nuclei in the DLS depended on drug treatment as follows: 

cocaine-cocaine, M = 36.67, SE = 8.65, saline-saline, M = 3.88, SE = 1.71, cocaine-heroin 

(100 µg/kg), M = 6.67, SE = 1.88, cocaine-heroin (200 µg/kg) M = 8.25, SE = 2.08, heroin-

cocaine M = 59.13, SE = 7.49, heroin-heroin M = 1.92, SE = 0.49. Shapiro-Wilk tests 

revealed normal distributions in all conditions. 

Levene’s statistic indicated heterogeneity of variance, F(5,29) = 5.99, p = .001. A Welch 

test revealed significant differences between conditions, F(5,11.39) = 14.03, p < .001, 

and was followed by multiple comparisons using Mann-Whitney tests at α = .01 

(Bonferroni correction). There were significantly less arc+ nuclei in the saline-saline 

condition relative to the cocaine-cocaine, U = 24, p = .01, and heroin-cocaine, U = 24, p 

= .01, groups. The saline-saline group did not differ significantly from the cocaine-heroin 
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Fig. 4.7. Average number of h1a- or arc-positive nuclei in the DLS as a 
function of experimental condition. Error bars represent +1 SEM. 
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(100 µg/kg), U = 18, p = .257, cocaine-heroin (200 µg/kg), U = 21, p = .230, and the heroin-

heroin groups, U = 28, p = .476. 

Table 4.2. Summary of homer 1a and arc expression after administration of two drug 
injections. The effect of each drug combination on IEG expression is shown relative 

to saline-saline in each brain area: (↑) significant increase over saline, (−) no sig. 
difference form saline. 

 Core Shell DMS DLS 

 h1a arc h1a arc h1a arc h1a arc 

c/c ↑ ↑ − ↑ ↑ ↑ ↑ ↑ 

c/h1 ↑ − − − ↑ − ↑ − 

c/h2 ↑ ↑ − ↑ ↑ ↑ ↑ − 

h2/c ↑ ↑ ↑ ↑ ↑ ↑ − ↑ 

h2/h2 − − ↑ ↑ ↑ − − − 

 

Co-expression (overlap) - saline controls 

Figure 4.8 (next page) shows the average percent co-expressing nuclei (overlap) as a 

function of drug treatment and striatal area. The punctuated line represents the amount 

of co-expressing nuclei in the saline-saline group for each group and area. 

The average percent co-expressing nuclei in each striatal area were as follows: Nacc core, 

cocaine-saline (M = 5.58, SE = 0.75), heroin-saline (M = 4.57, SE = 1.18), and saline-

cocaine (M = 1.79, SE = 0.42). Nacc shell, cocaine-saline (M = 13.29, SE = 2.03), heroin-

saline (M = 5.84, SE = 1.25), and saline-cocaine (M = 4.14, SE = 0.99). DMS, saline-cocaine 

(M = 7.62, SE = 1.02), cocaine-saline (M = 6.06, SE = 0.39), and heroin-saline (M = 1.82, 

SE = 0.06). Finally, DLS, saline-cocaine (M = 5.96, SE = 0.92), cocaine-saline (M = 5.76, SE 

= 1.38) and heroin-saline (M = 3.32, SE = 1.68). 

Shapiro-Wilk tests revealed normal distributions of scores in all conditions across all 

areas. Levene’s tests revealed homogenous variance across groups for all striatal areas: 

Nacc core, F(3,15) = 2.76, p = .079, shell, F(3,15) = 1.41, p = .278, DMS, F(3,15) = 2.42, p 

=106, and DLS F(3,15) = 1.97, p = .162. 
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One-way ANOVAs revealed significant differences between drug treatment groups in 

terms of amount of co-expressing nuclei: Nacc core, F(3,15) = 8.18, p = .002, Nacc shell, 

F(3,15) = 7.32, p = .003, DMS, F(3,15) = 11.02, p < .001, and DLS, F(3,15) = 4.36, p = .021. 

Gabriel’s post hoc tests revealed that the cocaine-saline condition differed significantly 

from the saline-saline and saline-cocaine conditions in the core and shell. In the DMS, 

the saline-cocaine and cocaine saline conditions differed significantly from the saline-

saline and heroin-saline conditions. Finally, in the DLS, saline-cocaine and cocaine-saline 

differed significantly only from the saline-saline condition. 

 

The co-expression of arc and h1a was calculated by dividing the number of nuclei 

positive for both Arc and H1a in each condition by the sum of arc-positive, h1a-positive 

and arc-and-h1a-positive nuclei in each condition. This ratio was then converted to 

percentage. Due to this choice of data representation, the number of h1a- and arc-

positive nuclei in each brain area shown so far was represented in absolute numbers 

0

5

10

15

20

25

c/s s/c h/s c/s s/c h/s c/s s/c h/s c/s s/c h/s

Nacc core Nacc shell DMS DLS

A
ve

ra
ge

 p
er

ce
n

t 
o

f 
co

-e
xp

re
ss

in
g 

n
u

cl
ei

/R
O

I

Fig. 4.8. Average percent of co-expressing nuclei as a function of 
drug treatment and striatal area. s - saline, c - cocaine, h - heroin. 
Error bars: ±1 SE. *significantly different from saline-saline. N for 

each group: s/s = 4, c/s = 6, s/c = 6, h/s = 3.

Overlap s/s overlap

*

*

*

*

* *



87 
 

rather than percentage of DAPI-positive nuclei. This way, it was avoided that the overlap 

was represented as percentage of a percentage which makes data interpretation 

somewhat convoluted. 

Co-expression (overlap) - experimental conditions 

Nacc core 

Figure 4.9 (next page) shows the percentage of all mRNA-positive nuclei in each 

condition which were positive for both arc and h1a. The highest percentage of co-

expressing nuclei were found in the cocaine-cocaine group, M = 16.44, SE = 1.98, 

followed by cocaine-heroin (200 µg/kg) M = 9.02, SE = 1.13, and cocaine-heroin (100 

µg/kg) M = 8.27, SE = 2.53, heroin-cocaine, M = 12.71, SE = 0.79, heroin-heroin, M = 6.93, 

SE = 1.98, saline-saline, M = 1.42, SE = 0.86. Shapiro-Wilk tests revealed normal 

distributions of scores in all conditions. 

Levene’s tests revealed that the variance across groups was homogenous, F(5,29) = 1.33, 

p = .278. A one-way ANOVA revealed significant differences between conditions, F(5,29) 

= 7.56, p < .001. Gabriel’s post hoc tests revealed that there was significantly higher 

percentage co-expressing nuclei in the cocaine-cocaine condition relative to all other 

conditions except heroin-cocaine. Only the cocaine-cocaine and heroin-cocaine groups 

were significantly different from saline-saline. All other comparisons were non-

significant. 
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Nacc shell 

Overall, the pattern of co-expression in the shell was somewhat similar to that of the 

core (Fig. 4.10, next page). The highest levels of co-expression were found in the heroin-

heroin, M = 17.92, SE = 3.69, heroin-cocaine, M = 17.79, SE = 2.69, and cocaine-cocaine 

conditions, M = 17.01, SE = 2.75. Co-expression was much lower in the rest of the 

conditions: saline-saline, M = 4.33, SE = 2.14, cocaine-heroin (100 µg/kg), M = 7.53, SE = 

2.54, and cocaine-heroin (200 µg/kg), M = 7.64, SE = 1.3. Shapiro-Wilk tests revealed 

normal distributions in all conditions. 

Levene’s tests was non-significant, F(5,29) = 1.38, p = .261. A one-way ANOVA revealed 

significant differences between groups, F(5,29) = 5.17, p = .002. Gabriel’s post-hoc tests 

revealed that there was significantly more co-expression in the heroin-cocaine and 

heroin-heroin groups relative to saline-saline. The difference between cocaine-cocaine 

and saline-saline only approached significance, p = .059. 
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Fig. 4.9. Co-expressing nuclei as % of all mRNA+ nuclei in the Nacc 
core. Error bars represent +1 SEM. *significantly different from 

saline-saline. #significantly different from all other groups except 
heroin-cocaine. N for each group: sal-sal (4), coc=coc (6), coc-her1 (6), 
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DMS 

In this brain area, only the cocaine-cocaine condition had a noticeable amount of co-

expressing nuclei relative to the overall level of mRNA expression, M = 19.43, SE = 2.57 

(Fig. 4.11, next page). In all other conditions, the percentage of co-expressing nuclei was 

low: saline-saline (M = 1.76, SE = 1.24), heroin-cocaine (M = 7.69, SE = 1.44), heroin-

heroin (M = 3.53, SE = 0.72), cocaine-heroin 100 µg/kg (M = 5.64, SE = 1.28) and cocaine-

heroin 200 µg/kg (M = 5.31, SE = 0.48). Shapiro-Wilk tests revealed normal distributions 

in all conditions except heroin-heroin. 

Levene’s test did not reach significance, F(5,29) = 2.05, p = .101. A Kruskal-Wallis tests 

revealed significant differences between groups, H(5) = 21.3, p = .001, and was followed 

by multiple comparisons using Dunn-Bonferroni. The only significant differences found 

were between cocaine-cocaine and saline-saline, and cocaine-cocaine and heroin-

heroin. 
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DLS 

The co-expression profile in this brain area was similar to that of the DMS (Fig. 4.12, next 

page). Again, the highest measure of co-expression was found in the cocaine-cocaine 

condition, M = 23.81, SE = 4.88. The percent co-expressing nuclei in the rest of the 

conditions was as follows: saline-saline (M = 0.52, SE = 0.52), heroin-cocaine (M = 6.97, 

SE = 1.26), heroin-heroin (M = 1.46, SE = 1.05), cocaine-heroin 100 µg/kg (M = 5.17, SE 

= 1.08) and cocaine-heroin 200 µg/kg (M = 5.87, SE = 1.07). Shapiro-Wilk tests revealed 

non-normal distributions in several conditions. 

Levene’s tests revealed lack of homogeneity of variance, F(5,29) = 17.17, p < .001. A 

Kruskal-Wallis test indicated a significant difference between groups, H(5) = 24.82, p 

< .001. Multiple comparisons were carried out using Dunn-Bonferroni. The only 

significant differences found were between cocaine-cocaine and saline-saline, and 

cocaine-cocaine and heroin-heroin. 
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Fig. 4.11. Co-expressing nuclei as % of all mRNA+ nuclei in the DMS. 
Error bars represent +1 SEM. *significantly different from saline-

saline and heroin-heroin. N for each group: sal-sal (4), coc-coc (6), 
coc-her1 (6), coc-her2 (7), her2-coc (6), her2-her2 (6).



91 
 

 

Table 4.3. Summary of homer 1a and arc co-expression after administration of two 
drug injections. The effect of each drug combination on co-expression is shown 
relative to saline-saline and cocaine-cocaine in each brain area: (↑) significant 

increase, (−) no sig. difference, (↓) significant decrease. 

 Core Shell DMS DLS 

 s/s c/c s/s c/c s/s c/c s/s c/c 

c/c ↑  −  ↑  ↑  

c/h1 − ↓ − − − − − − 

c/h2 − ↓ − − − − − − 

h2/c ↑ − ↑ − − − − − 

h2/h2 − ↓ ↑ − − ↓ − ↓ 
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Fig. 4.12. Co-expressing nuclei as a % of all mRNA+ nuclei in the DLS. Error 
bars represent +1 SEM. *significantly different from saline-saline and 

heroin-heroin. N for each group: sal-sal (4), coc=coc (6), coc-her1 (6), coc-
her2 (7), her2-coc (6), her2-her2 (6).
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Homer 1a and arc co-expression following two consecutive injection of the same drug 

In all brain areas except the Nacc shell, two consecutive injections of cocaine elevated 

the proportion of co-expressing nuclei significantly above chance (i.e. relative to co-

expression in the saline-saline condition). Conversely, two consecutive injections of 

heroin elevated co-expression levels only in the Nacc shell. As an additional measure of 

co-expression above chance, comparisons were made between heroin-heroin and 

heroin-saline in the shell, and cocaine-cocaine and cocaine-saline conditions in all other 

brain areas (fig. 4.13, next page). Where cocaine-cocaine and heroin-heroin did not 

differ from saline-saline, these comparisons were not made (see table 4.3 above). 

Shapiro-Wilk tests revealed normal distributions in all conditions. One-tailed t-tests with 

a Bonferroni correction (α = .013) revealed significant differences between cocaine-

cocaine groups and cocaine-saline in the Nacc core: t(6.41) = 5.13, p = .001, DMS: t(10) 

= 5.15, p < .001, and DLS: t(5.79) = 5.13, p = .007. The comparison between heroin groups 

in the Nacc shell was also significant, t(6.02) = 3.09, p = .011. Note that one-sided tests 

were used because these groups already showed increase above one measure of co-

expression due to chance. 
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Discussion 

Main findings 

The data presented here suggest that, when administered intravenously to the rat, both 

heroin and cocaine elevate levels of h1a and arc mRNA across the striatum. The 

magnitude of this effect varies depending on the particular gene and striatal area in 

question. Since both arc and h1a are markers of neuronal activity, it can be said that 

both heroin and cocaine activate neuronal populations across the striatum. By using the 

catFISH technique it was possible to determine if these neuronal populations represent 

neuronal ensembles, and whether these neuronal ensembles overlap between drugs. 

Indeed, across all examined areas of the striatum, there seems to be a group of neurons 

that are reliably activated by cocaine. Therefore, they likely represent a neuronal 

ensemble encoding for cocaine’s effects. For heroin, this seems to be the case only in 

the Nacc shell, but not other areas.  
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Fig. 4.13. Co-expressing nuclei as % of all mRNA+ cells following two 
consecutive injections of the same drug relative to one injection followed 
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When cocaine and heroin are administered to the same animal, the neuronal 

populations activated by each drug are more or less distinct, but this depends largely on 

the striatal area and the order in which the drugs were administered. In the dorsal 

striatum, the populations are largely distinct, regardless of order of administration. In 

the Nacc, heroin engages a different population of neurons than cocaine when cocaine 

is administered first. However, when cocaine is administered second, it engages many 

of the same neurons that were activated by heroin.  

Cocaine effects on IEG expression 

H1a expression was significantly elevated following cocaine administration in the Nacc 

core, DMS and DLS. On average, there was also more h1a-positive nuclei in the Nacc 

shell after cocaine relative to a saline injection, but this effect did not reach statistical 

significance. The magnitude of the effect was much more pronounced in the dorsal 

relative to ventral part of the striatum. 

Cocaine also elevated arc expression, and this effect was statistically significant across 

all areas of the striatum, including the NAcc shell. Similarly to h1a, the effect was most 

pronounced in the dorsal relative to the ventral striatum. Note that arc expression 

reflects activity in response to the second injection, and the magnitude of the cocaine 

effect on arc expression depended on whether another drug was administered 

beforehand, and what drug that was. First and second injection interactions are 

discussed further on. 

In summary, cocaine increased activity in all areas of the striatum that were studied, and 

this activity was reflected in elevated h1a and arc expression. Cocaine’s effect was more 

pronounced in terms of arc expression relative to h1a expression, especially in the Nacc 

shell, where h1a mRNA was low after cocaine (figs. 4.2 and 4.3). The most activity (i.e. 

IEG mRNA) following cocaine was observed in dorsal parts of the striatum. 

Heroin effects on IEG expression 

Heroin injections increased h1a expression relative to saline injections in the Nacc core 

and shell. There was also an increase of h1a expression after heroin in the dorsal 

striatum, but it was of comparable magnitude to the accumbens, rather than more 

pronounced as was the case for cocaine. 
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The effect of heroin on arc expression was not assessed on its own, as there was no 

group of rats which received an injection of saline followed by and injection of heroin. 

However, the cocaine-heroin (200 µg/kg) group differed from saline-saline in levels of 

arc in the Nacc core, shell and DMS, while cocaine-saline did not differ from control in 

any of these areas. Thus, there was a difference between administering heroin vs. saline 

following an injection of cocaine. However, there remains the possibility that this 

increase in arc expression is (at least to some extent) the result of an interaction 

between heroin and cocaine. There was no effect of cocaine on arc expression at the 

time when heroin was administered (i.e. cocaine-saline and saline-saline groups did not 

differ in arc levels), so any such interaction would have resulted from an effect of 

cocaine which is not reflected in IEG expression per se.  

The effect of heroin on arc varied not only as a function of brain area, but also depending 

on dose and the preceding drug infusion. Relative to the higher dose, the lower dose of 

heroin (100 µg/kg) produced higher arc expression in the Nacc core and shell, but not in 

the dorsal striatum. However, these effects were much more variable and did not reach 

statistical significance. There are no other studies that have studied the acute effects of 

heroin on arc expression, especially soon after drug administration. There are studies 

using other opiates. For example, it has previously been shown that arc protein levels 

are elevated in the core but not shell of the NAcc following 10 mg/kg i.p. injections of 

morphine in mice (Lv, Xu, Han, & Cui, 2011), and that arc protein levels are elevated in 

the DMS 1 day after a single i.v. injection of heroin (Li, Liu, Lu, Wang, & Liu, 2013). Taking 

into account both of these findings and the results presented here, it seems that opiates 

can have both short and long-term effects on arc expression in the striatum. 

To summarise, heroin (200 µg/kg) produced a reliable increase in h1a and arc expression 

across the striatum, but, due to the lack of a saline-heroin group, it remains unclear 

whether the effect on arc is unique to heroin, or the result of a cocaine-heroin 

interaction. In contrast to cocaine, there were no stark differences in IEG expression 

(number of activated cells) between dorsal and ventral parts of the striatum. In fact, for 

the lower dose of heroin (100 µg/kg), the difference went in the opposite direction, with 

more active cells on average in the Nacc. There was also a lot of variability in the 

magnitude of arc expression depending on preceding drug or saline injections. 
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Interactions between first and second drug injections 

When heroin (200 µg/kg) was preceded by cocaine, arc levels increased relative to 

saline-saline in the Nacc and DMS. However, this was not the case if two 200 µg/kg doses 

of heroin were administered in succession, suggesting a habituation to the IEG-inducing 

effects of heroin. Arc levels in the cocaine-cocaine group remained elevated above 

saline-saline controls. However, a post-hoc analysis revealed that they were lower 

relative to arc levels in the saline-cocaine group across all areas except the Nacc core (t-

tests with a Bonferroni correction, all p’s < .025, except Nacc core – p = .05). Habituation 

effects to repeated injections of cocaine have been reported previously for the protein 

product of c-fos (Hope et al., 1992).  

There are three possible explanations for the reduced IEG expression following repeated 

drug injections. First, there could have been an adaptive change in the receptors 

involved in arc transcription. One candidate for such change could be the AMPA 

glutamate receptor, activity at which is known to inhibit arc transcription (Rao et al., 

2006), because levels of the receptor are up-regulated in the accumbens following a 

single injection of cocaine. However, AMPA receptor up-regulation is not evident before 

24h following a single cocaine injection, so it is unlikely to have had an effect when the 

two injections were separated by 25 min (Ferrario, Li, & Wolf, 2011). Also, it is not known 

if heroin affects AMPA receptor trafficking in a similar way. Second, there could have 

been negative feedback within the signalling cascade leading to IEG transcription. Both 

arc and h1a transcription are initiated through the MAPK/ERK pathway (Sato et al., 2001; 

Waltereit et al., 2001) which is inhibited by the MKP-1 phosphatase, a product of the 

IEG mkp-1, also transcribed as a result of neuronal activity through ERK, as shown on fig. 

4.14 (Sgambato, Pages, Rogard, Besson, & Caboche, 1998). Thus, a negative-feedback 

loop within intracellular cascades could have resulted in the suppression of arc 

transcription in recently activated neurons. Finally, it should be considered that all 

animals in the present study were drug naïve. The higher levels of IEG expression in the 

case of the first drug injection might simply reflect arousal produced by the novelty of 

the stimulus. For example, the novelty aspect of an environment (i.e. even when 

physical characteristics are controlled for) increases c-fos expression in the striatum 

(Badiani et al., 1998). It is possible that a similar effect occurs with drug stimuli as well. 
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Fig 4.14. A schematic representing a possible negative feedback loop in the ERK 
intracellular signalling cascade. Following glutamatergic action at the NMDA receptor (1) 
calcium enters the postsynaptic cell (2) and activates the ERK pathway which ultimately 
promotes transcription of the gene mkp-1 via CREB (9). This gene’s protein product in 
turn deactivates ERK. Since the ERK pathway is one way in which arc transcription can 
be initiated, this negative feedback loop provides one explanation as to why arc 
expression is reduced with consecutive drug injections. Adapted from Sgambato et al. 
(1998).  

Overlap between neuronal populations engaged by heroin and cocaine 

Methodological considerations 

Before discussing the overlap results reported here, it is necessary to take into account 

several methodological considerations. First, the measure of overlap employed here was 

somewhat different from those employed by other studies using catFISH or similar 

methods. For example, some studies report the amount of cells activated only by one 

stimulus (first or second), and then the amount of cells activated by both stimuli. In such 

cases, if the former type of cells are many and the latter few, it is concluded that the 

two stimuli activate different neuronal populations. Conversely, if there are many cells 

activated by both stimuli, but only a few activated by one stimulus only, then the stimuli 

activate the same neuronal population. This method is perhaps the most straight-

forward, but the least flexible. It assumes that the first and second stimuli always 

activate roughly the same number of cells. It has been used in studies of the 
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hippocampus and exposure to a novel environment (Vazdarjanova & Guzowski, 2004; 

Vazdarjanova et al., 2002), and of the amygdala and fear conditioning (Zelikowsky, 

Hersman, Chawla, Barnes, & Fanselow, 2014). 

Other studies report the amount of all cells active during the presentation of the first 

stimulus and then calculate the percentage of those cells that were also activated by the 

second stimulus – a “re-activation” measure in a sense. This method is useful in cases 

where activated neurons form a more variable pattern, and has been used for studies 

of the cortex (Grosso et al., 2015). Xiu et al. (2014) used a similar approach in their study, 

but instead calculated the percentage of cells activated by second stimulus that were 

also activated by the first. However, this method does not allow for a comparison 

between the degrees of overlap between two pairs of stimuli except under very specific 

circumstances. Namely, it is required that that there are no differences between the 

activity induced by each stimulus in each pair, or at least that the difference between 

the activity induced by each stimulus in each pair is the same. 

In the study presented here there was a difference between the amount of cells 

activated by the first and second stimuli: cocaine-cocaine or cocaine-heroin. In addition, 

there were differences between the amounts of cells activated by each stimulus in 

different pairs of stimuli. Thus, neither of the methods described above was applicable. 

The solution was to calculate the overlap by representing the amount of cells activated 

by both stimuli as a percentage of all active cells (regardless if activated by first, second 

or both stimuli). In this way, any differences in magnitude of IEG response to each 

stimulus was controlled for. In addition, saline groups were added to measure overlap 

by chance. Thus all overlap measures must be considered in relation to saline-saline and 

drug-saline controls. 

A second consideration should be that the reduced response to a second injection of 

cocaine might have led us to underestimate the amount of overlap in the cocaine-

cocaine condition. Perhaps of this reason, the co-expressing cells in that condition did 

not exceed 25% of all mRNA+ cells. Since this experimental condition was used as point 

of comparison when it comes to estimating overlap between cocaine- and heroin-

activated neuronal populations, it is likely that the reduction of overlap between heroin 

and cocaine populations is more substantial than it seems at first glance. 
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Finally, the arc response to a cocaine injection was consistently higher than the h1a 

response across all areas of the striatum. This means that the reduction in the response 

to a second injection of cocaine is quite substantial: arc expression in the saline-cocaine 

condition was almost three-fold higher than that in the cocaine-cocaine condition (e.g. 

figs. 4.3, p.77 and 4.6, p.83). In itself, this is an interesting finding suggesting that arc 

expression is switched on in an additional set of cells to those expressing h1a. Although 

the way overlap was calculated should have controlled for this difference, it is 

nevertheless relevant in interpreting high overlap in some cases where the response to 

the first injection of cocaine was low, such as in the Nacc shell. 

In summary, the overlap measured by catFISH in this study was influenced by interaction 

between the first and second injections, differences between the amounts of cells 

activated by heroin and cocaine, and differences between the amounts of cells 

expressing h1a and arc in response to cocaine. To correct for these factors, overlap was 

calculated by controlling for overall amount of mRNA expression, and saline conditions 

controlled for overlap by chance. 

Evidence for a neuronal ensemble encoding cocaine effects 

Across all striatal areas except the Nacc shell, each of two consecutive injections of 

cocaine elevated mRNA expression levels more than vehicle. Thus, there was 

significantly more activity following a cocaine injection relative to a saline injection. Out 

of all these activated neurons, between 16 and 23% on average were activated by both 

cocaine injections, suggesting they were responding reliably to the drug. The saline-

saline conditions revealed low levels of overlap by chance in these areas (Nacc core, 

DMS and DLS). Cocaine-saline conditions revealed low levels of overlap between drug-

activated neurons and baseline activity (fig. 4.8, p.86 and fig. 4.13, p. 93). Therefore, the 

neurons activated by each of two consecutive injections of cocaine are likely to 

represent a part of a neuronal ensemble encoding for cocaine effects in the striatum. 

The Nacc shell is an exception to this observation. The effect of cocaine on h1a 

expression was small, and did not reach significance. Conversely, there was an effect of 

cocaine on arc expression which was significantly increased (see fig. 4.2, p.75, saline-

cocaine). Thus, cocaine does activate neurons in this area, but this activity is not 
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detected as an increase of h1a expression. This leaves two possibilities: (i) cocaine 

activates cells in the shell, but the activated cells do not express h1a; (ii) cocaine does 

not lead to a change in the amount of h1a-expressing cells relative to saline, but 

determines which cells will be expressing it. In the second case, the pattern of IEG 

expression produced by cocaine as a first injection is specific to the drug, but is 

undetectable as an increase relative to saline. This is possible considering the lower h1a 

response to cocaine relative to arc which is observed across all four areas of the striatum 

(figs. 4.2, p. 75 and 4.3, p. 77, saline-cocaine and cocaine-saline conditions). There is 

further support for this interpretation. Note that there was little activity and overlap in 

the saline-saline condition in the shell, suggesting that baseline activity and random 

overlap in this area are low. However, while there was no more overlap in the saline-

cocaine condition relative to saline-saline, there was much higher degree of overlap in 

the cocaine-saline condition (fig. 4.8, p. 86). Thus, cocaine activates a particular set of 

neurons which do not overlap with baseline activity – hence no overlap in the saline-

cocaine condition. A second injection of cocaine does very little in terms of IEG 

expression in the shell (fig. 4.5, p. 81), and the overlap in the cocaine-cocaine condition 

is not much higher than in the cocaine-saline condition. Therefore, the simplest 

explanation is that when cocaine is administered first, it produces activity that is 

sustained until the time of the second injection (i.e. 25 min later) – hence the overlap in 

the cocaine-saline condition. A more speculative explanation would be that the overlap 

in the cocaine-cocaine condition has been underestimated, while the overlap in the 

cocaine-saline condition has been overestimated due to the way overlap was measured 

(amount of co-expressing cells as a percentage of all mRNA+ cells). However, this is 

unlikely given the big difference between overlap in the cocaine-saline and saline-saline 

conditions in the shell (fig. 4.8, p. 86) which indicates that the overlap in the former 

condition was significantly above chance. In addition, the overall activation in the 

cocaine-cocaine and cocaine-saline conditions was similar (figs. 4.5. p. 81 and 4.2, p.75). 

Thus, the high overlap score in the cocaine-saline conditions is not simply the result of a 

small number of co-expressing cells forming a large percentage of all mRNA-expressing 

cells. 
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In summary, there is a population of neurons in the Nacc core, DMS, and DLS that 

respond reliably to consecutive injections of cocaine and are likely to represent a 

neuronal ensemble. In the Nacc shell, the existence of such a population of cells cannot 

be ascertained based on the data presented here, but it is safe to say that cocaine 

activates neurons in this striatal area as well. Some of these neurons remain active for 

at least 25 minutes. 

Evidence for a neuronal ensemble encoding heroin effects 

A dose of 200 µg/kg of heroin reliably elevated IEG expression in the Nacc core and shell. 

Heroin also reliably elevated h1a expression in the dorsal striatum, but arc expression 

in response to heroin was significantly elevated only in the DMS, but not DLS. In contrast 

to cocaine, two consecutive injections of heroin did not result in a large proportion of 

neurons activated by both injections in the core, DMS and DLS. The degree of overlap in 

these areas did not differ much from the overlap between neuronal populations active 

after heroin-saline injections or saline-saline injections. Thus, any overlap in these areas 

cannot be attributed to a group of cells that were reliably activated by heroin. However, 

there was relatively high level of overlap after consecutive injections of heroin in the 

Nacc shell. This was the case even though the overlap in the heroin-saline condition was 

low, and very similar to overlap in the saline-saline condition (figs. 4.10, p.89 and 4.8, 

p.86; see also fig. 4.13, p. 93). Thus, it seems there is a neuronal ensemble encoding the 

effects of heroin in the Nacc shell, but not the other areas of the striatum that were 

studied. 

As already mentioned, arc expression was reduced following a second injection of 

heroin relative to an injection of heroin following cocaine. Thus, it is not possible to 

exclude the possibility that the low degree of overlap in the heroin-heroin condition is 

in part due to undetected active neurons. However, the arc expression in the shell 

following a second heroin injection was low as well, and the overlap score was high in 

this area. Thus, it is likely that if arc expression in the other areas was specific to heroin, 

it would have reflected in the overlap score there as well. 

In summary, a 200 µg/kg dose of heroin activated more neurons across the striatum 

relative to saline, but only in the Nacc shell the same neurons responded reliably to the 
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drug. In contrast to the case of cocaine, the methods used here suggest that there are 

no neuronal ensembles encoding for heroin effects in other parts of the striatum. 

Overlap between neuronal populations activated by heroin and cocaine  

When an injection of cocaine was followed by an injection of heroin, the amount of 

neurons expressing both arc and h1a formed a small proportion of all mRNA-positive 

neurons. In fact, the cocaine-heroin conditions and the cocaine-saline conditions did not 

differ significantly in terms of the proportion of co-expressing neurons. Therefore, any 

overlap in the cocaine-heroin conditions can be attributed to the effect of cocaine alone. 

This was true regardless of heroin dose or striatal area. Thus, the neuronal ensembles 

responding to cocaine do so not just reliably, but also preferentially, at least under 

certain conditions. One of these conditions is the order in which heroin and cocaine 

were administered. When heroin is administered 25 min after cocaine, the populations 

of neurons activated by each drug are largely distinct. However, when heroin is 

administered first and cocaine second, there is an increase in the degree of overlap. 

Although this increase was not necessarily statistically significant, it was reliably 

observed across all striatal areas. The increase is most notable in the Nacc shell, where 

the overlap is similar to the overlap following two consecutive injections of heroin.  

In summary, the overlap between the neuronal populations activated by heroin and 

cocaine in the striatum varies as a function of brain area and the order of drug 

administration. It can be said that the overlap is predominantly lower than the overlap 

between neuronal populations activated by consecutive injections of the same drug. The 

only exception is the Nacc shell, where heroin and cocaine activate largely the same 

neurons when cocaine is administered second. 

Summary and conclusions 

The study presented here was first of all an attempt at applying the catFISH technique 

to the study of pharmacological stimuli, and second – a characterisation of the neuronal 

populations activated by heroin and cocaine in different parts of the striatum. The 

results reported suggest that catFISH can indeed be used to study acute drug effects, 

but only with a number of methodological considerations in mind. Even with these 

considerations in mind, the results also point to the existence of a neuronal ensemble 
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encoding cocaine effects in both dorsal and ventral parts of the striatum. Heroin, on the 

other hand, activates a particular subset of neurons only in the Nacc shell, but not other 

part of the striatum. 

There is also a significant separation between the neuronal populations activated by 

heroin and cocaine. These findings could explain why both heroin and cocaine produce 

activity in these areas as measured by IEG expression, while electrophysiological 

recordings from the Nacc core reveal different responses of the same neurons after 

administration of the two drugs (Chang et al., 1998). The order of drug administration 

matters for the amount of overlap between neuronal populations activated in the Nacc 

shell. As discussed earlier, previous studies have found high degree of overlap between 

neuronal populations activated by an injection of morphine and a following injection of 

cocaine in the Nacc shell of mice. Here, the same was found for heroin followed by 

cocaine, but not when cocaine was administered before heroin. Thus, future studies 

comparing the effects of heroin and cocaine in the same animal should take into account 

the order in which drugs are administered. 

It is likely that neuronal activation and the corresponding IEG transcription that 

accompanies it are mostly the result of excitatory glutamatergic transmission. Cocaine-

induced dopamine release potentiates the effects of glutamate on IEG expression, but 

is not sufficient for IEG expression in itself: chloral hydrate abolishes cocaine-induced c-

fos expression by reducing glutamate but not dopamine release in the striatum (Kreuter, 

Mattson, Wang, You, & Hope, 2004). Thus, the separation of the neuronal populations 

found in this study could be the result of distinct glutamatergic afferent inputs to the 

Nacc being activated following cocaine and heroin injections. The three major sources 

of glutamatergic input to the Nacc shell are the hippocampus, BLA and PFC, with the 

hippocampus being the major one of the three. Optogenetic activation of all three inputs 

can sustain operant behaviour suggesting activity of neurons in the shell is sufficient for 

reinforcement (Britt et al., 2012). Both heroin and cocaine seem to engage a specific 

neuronal population in the shell. Thus, the activity elicited by heroin and cocaine in this 

brain area may reflect their reinforcing properties, regardless of whether this activity 

occurs in distinct neuronal populations.  
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In contrast, the separation of neuronal populations encoding for heroin and cocaine in 

the Nacc core could mean that these populations have non-equivalent functions. 

Transmission through the NMDA receptor in the Nacc core is necessary for food (Kelley, 

Smith-Roe, & Holahan, 1997) and cocaine self-administration, but not heroin self-

administration (Pulvirenti, Maldonado-Lopez, & Koob, 1992). In addition, DA 

transmission in the accumbens plays a lesser role in heroin self-administration than in 

cocaine self-administration. The question remains open as to whether the neuronal 

activity in the Nacc core observed here is encoding the reinforcing properties of cocaine 

but not heroin. One way to test this hypothesis would be to selectively disrupt the 

cocaine-activated neuronal ensembles - e.g. using Daun02 (Koya et al., 2016) - and see 

if they would affect the reinforcing properties of heroin.  
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Chapter 5 – Applying catFISH to the context of drug self-

administration 

 

Introduction 

The catFISH technique revealed that non-contingent administration of heroin and 

cocaine leads to the activation of neuronal ensembles that respond to cocaine across 

the whole striatum, while an ensemble for heroin is found only in the Nacc shell. 

Additionally, there was a significant separation of the neuronal populations responding 

to heroin and cocaine, at least under certain conditions. Thus, the striatum is encoding 

the effects of heroin and cocaine differently, at least in terms of neuronal activity 

marked by IEG expression. However, it remains unclear what is the functional 

significance of this activity. This chapter presents an attempt to apply the catFISH 

technique to a self-administration paradigm where rats get the opportunity to press a 

lever to obtain heroin and cocaine. In this way activity reflected in IEG expression could 

potentially be related to behaviours caused and driven by the two drugs. 

Indeed, operant reinforcement has been shown to depend on neuronal activity in the 

striatum. For example, excitotoxic lesions of the Nacc can disrupt both heroin and 

cocaine self-administration (Zito, Vickers, & Roberts, 1985). In addition, optogenetic 

stimulation of dopamine D1 but not D2 receptor expressing medium spiny neurons 

(MSNs) of the dorsal striatum maintains operant responding in mice (Kravitz, Tye, & 

Kreitzer, 2012). Thus, activity across the striatum can be both necessary and sufficient 

to maintain operant conditioning, and this activity occurs in specific neurons. For this 

reason it is of special interest that heroin and cocaine activate largely distinct neuronal 

populations across the striatum: it is possible that dissociated circuitries underlie the 

operant reinforcing properties of the two drugs. However, it is also possible that the 

early encoding of heroin and cocaine effects does not reflect encoding following 

prolonged exposure to the two drugs. This is especially the case when activity is 

measured by IEG expression. The expression levels of c-fos, for example, can increase or 
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decrease (depending on brain area) from day 1 to day 6 of cocaine self-administration 

(Zahm et al., 2010). Thus, it is an empirical question whether arc and homer 1a will also 

change their patterns of expression following prolonged drug self-administration.  

There are some studies that can inform a plausible hypothesis regarding the question. 

Fumagalli et al. have shown that a single 2h cocaine self-administration session has been 

found to elevate arc but not zif268 mRNA levels in the mPFC of rats. In addition, the 

effect is not found in yoked controls receiving the same amount of drug. In the dorsal 

striatum, arc expression is significantly increased in both yoked and self-administering 

animals, while a non-significant increase is found only for the self-administering rats in 

the Nacc. For zif268, the increase in expression is found in both Nacc and dorsal striatum, 

regardless of whether cocaine is self-administered or received passively (Fumagalli et al., 

2009). Following long-term cocaine self-administration (10 or 60 days), arc expression is 

slightly but significantly elevated in both the dorsal and ventral striatum. Increase in 

expression in these areas is also found for c-fos, with an even greater magnitude of the 

increase. However, homer 1a is not expressed above control levels in the striatum under 

the same conditions. In the mPFC, c-fos expression is also increased after long-term self-

administration, while homer 1a and arc are only elevated following 60 but not 10 day 

self-administration (Gao, Limpens, Spijker, Vanderschuren, & Voorn, 2017). Thus, IEG 

expression following cocaine self-administration depends on many factors including 

length of self-administration training, type of IEG, and brain area of interest. It also 

noteworthy that passively received cocaine and self-administered cocaine can have 

different effects on IEG expression. 

To date, there are no known studies that have examined the effects of heroin self-

administration on homer 1a expression in the brain. Only one study has investigated the 

effect of heroin self-administration on arc protein expression, where rats were trained 

to self-administer heroin in a runway self-administration model (Li et al., 2013). After 1, 

7, and 15 runway trials (1 trial per day), arc protein levels were significantly elevated in 

the mPFC, Nacc and DMS. Arc protein expression and run time were reduced to control 

levels after administration of NMDA and D1 receptor antagonists, suggesting that 

glutamatergic and dopaminergic neurotransmission are necessary for the behaviour and 



107 
 

protein expression. Passively received heroin also increased arc protein levels in all three 

brain areas. 

In summary, there are only a few studies that have studied the effects of heroin and 

cocaine self-administration on arc and homer 1a expression, but they all point to 

increased expression of both genes in the mPFC.  It also seems that, at least under 

certain conditions, homer 1a expression in the striatum is not increased above baseline 

after several days of cocaine self-administration. While arc is, there are regional 

differences between ventral and dorsal striatum, and the length of self-administration 

also matters, with longer training having a more pronounced affect. 

The self-administration paradigm constitutes a model of motivated drug-taking 

behaviour where drugs act as reinforcers (Panlilio & Goldberg, 2007). Considering that 

drug self-administration can also induce IEG expression in some brain areas and under 

certain conditions, the model provides a good opportunity to study active neuronal 

populations using catFISH. It was already shown that non-contingent administration of 

heroin and cocaine activate largely different neuronal populations across the striatum. 

Applying the catFISH technique to a self-administration paradigm would provide an 

opportunity to associate the activity of these neuronal populations with the reinforcing 

properties of the two drugs. Provided that dissociation is found again, it would be direct 

evidence for distinct circuitry underlying heroin- and cocaine-taking.  

The self-administration procedure also provides an opportunity to record and 

characterise other drug-induced behaviour such as locomotion and stereotypy. These 

behaviours are thought to be mediated in large part by dopaminergic neurotransmission 

and activity within the ventral and dorsal striatum. For example, microinjections of 

cocaine in the Nacc elicit locomotor behaviour in rats, and the effect is blocked by the 

DA receptor antagonist cis-flupenthixol (Delfs, Schreiber, & Kelley, 1990). Amphetamine 

(an indirect DA agonist) injected into the ventral lateral striatum elicits robust oral 

stereotypies such as gnawing, biting and licking (Kelley, Lang, & Gauthier, 1988). Thus, 

it can be expected that increases in IEG expression in the striatum will be correlated to 

locomotor behaviour and stereotypy, because IEG expression also reflects neuronal 

activity and DA neurotransmission to a great extent. In addition, drug-induced 

locomotor behaviour does not predict how well rats learn cocaine self-administration, 
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so it is likely that the two types of behaviour are mediated by separate neuronal systems 

within the striatum (Mandt, Johnston, Zahniser, & Allen, 2012; Mandt, Schenk, Zahniser, 

& Allen, 2008; Mantsch, Ho, Schlussman, & Kreek, 2001). Finally, operational definitions 

of locomotor behaviour can influence outcome measures of the behaviour, and 

stereotyped behaviour can be misrepresented as lack of drug effects on behaviour. For 

this reason several approaches to measuring drug-induced behaviour are preferred. 

The study presented here describes a pilot experiment where the catFISH technique was 

applied to a self-administration paradigm. Rats were trained to self-administer heroin 

and cocaine at doses of 100 µg/kg and 800 µg/kg, respectively. These doses were chosen 

to correspond to the doses used in the experiment reported in chapter 4. The higher 

dose of heroin (200 µg/kg) was not used, because preliminary observations revealed 

that some rats became sedated and did not respond on the second lever during test 

sessions (test session described in procedure).  After training, each rat was allowed to 

self-administer a combination of two drug injections 25 min apart, or was simply 

exposed to the self-administration environment. The aim of the study was to explore 

the possibility of measuring overlap between neuronal populations active during 

operant responding for drugs as opposed to passively received heroin and cocaine. Since 

arc and homer 1a differ in their expression patterns following drug self-administration, 

and their expression is not always elevated in the striatum, the PFC was also examined 

for changes in IEG expression. Finally, several measures of behaviour were taken 

immediately after self-administered heroin and cocaine infusions in order to find 

potential correlations between IEG expression and different aspects of behaviour. 

Methods 

Animals, housing and testing cages 

The rats in this experiment (n = 20) weighed 300-340g at the time of testing. Two of 

them were supplied by Charles-River, UK. Otherwise, supplier, weight upon arrival, and 

housing conditions were as described in general methods. 

The animals were kept in the housing cages described in general methods except during 

self-administration training and testing sessions, when they were moved to the operant 

chambers. These had two operating retractable levers positioned on opposite walls of 
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the chamber, with white LED lights positioned on the protruding part of each lever. 

Cameras were placed on top of each operant chamber to allow for recording of 

behaviour during testing sessions (details in procedure section). 

Drugs 

Heroin HCL was dissolved in sterile saline at a concentration of 0.6-0.68 mg/ml 

(depending on the weight of individual rats). Cocaine HCL was dissolved at a 

concentration of 4.8-5.5 mg/ml. All drug infusions had a volume of 50 µl, which 

corresponded to doses of 100 µg/kg for heroin, and a dose of 800 µg/kg for cocaine. The 

infusions were delivered over 5 sec using the same pumps as described in chapter 4, 

(infusion rate 10 µl/sec), but here these were activated contingently on the rats pressing 

a lever.  

Procedure 

Acclimatization and catheter surgery were done as described in general methods.  

Self-administration training. After a recovery period of 7 days, rats were habituated to 

the self-administration chambers during two 2h periods on two separate days. During 

habituation, the rats were connected to the infusion lines via their implanted cannulas 

and the springs suspended on the counterbalanced arms of the self-administration 

chambers. The animals were left to explore freely and no drugs were available for self-

administration.  

Following habituation, each rat underwent several stages of self-administration training 

where intravenous infusions of heroin or cocaine (on alternate days) were contingent 

upon the pressing of a lever (FR1 schedule). Each drug was paired with a different lever. 

There was one self-administration session a day, and each session lasted for a total of 

6h, and there were no more than 50 infusions available. In cases where rats reached the 

maximum number of infusions early, they were left in the chamber for the whole 

duration of the session. The sessions began with the insertion of the lever with the LED 

lights on. It remained extracted until the rat pressed it which led to the lever being 

retracted, lights going off, and the delivery of a 50 µl infusion over 5 sec. This was 

followed by a timeout period (TO). The duration of the TO between infusions progressed 
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from one session to another in the following way: 1 min, 5 min, 10 min, 15 min and 25 

min. This was done so that the rats got accustomed to the conditions of the final test 

session, described further on. The progression from one TO to the next for each rat was 

dependent on it reaching one of two criteria: self-administering 30% of the infusions 

available for the previous session or pressing the lever within 2 min after its first 

presentation for 4 consecutive sessions. Note that the total number of available 

infusions differed depending on the TO for the session (e.g. for 10 min TO, there were 

36 infusions available, for a 15 min TO, there were a total of 24 infusions available). 

Self-administration test session. After each rat had undergone at least two self-

administration sessions with each of the 5 TOs, it was subjected to a test session on a 

separate day which lasted ~30 min. The session began with the insertion of one of the 

levers which remained extracted for a maximum of 2.5 min or until the rat pressed it, 

whichever came first. If the rat failed to press, the session ended, and testing was 

restarted. If the rat did press within the designated time, it received an infusion of the 

drug associated with the lever. Then, a 25 min TO period followed after which a lever 

was presented for a second time, again for a maximum of 2.5 min or until the rat pressed 

it. If the rat did not press, the session ended and the rat was tested again on the 

following day. If it did press, a second infusion was delivered, followed by a period of ~5 

min. At the end of this period, the rat was euthanised with an intravenous injection of 

pentobarbital delivered manually through its catheter via a syringe. Then, the rat was 

decapitated, brain tissue was extracted, snap-frozen in isopentane and stored for 

catFISH analysis. There were 4 different drug combinations that the rats were allowed 

to self-administer: heroin-heroin, cocaine-cocaine, heroin-cocaine and cocaine-heroin. 

A final group of rats was exposed to the self-administration environment for the 

duration of the tests session, but no levers were presented and no drug infusions were 

available (exposure only, control group).  

The reason for choosing this type of control was that some animals in the control group 

had blocked catheters at the time of the test session, so having animals press for saline 

infusions was not possible. Additional animals could not be tested due to time 

constraints. It was possible to expose animals in the control group to the drug-associated 

levers without any infusions available. However, preliminary observations revealed that 
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rats would rarely press a second time if pressing the first lever had no consequences. So, 

exposing control animals to the drug-associated levers would have resulted in 

differences between experimental and control conditions in terms of lever-pressing 

behaviour. Thus, choosing only exposure to the drug-associated environment as a 

control condition was the best compromise in light of practical issues (catheter patency 

issues and time constraints) rather than a choice made on theoretical grounds. It is 

noted that, as a result, some of the behavioural changes in the experimental groups can 

be attributed to the conditioned effects of a discrete cue - presentation of the drug-

associated lever.   

Precise administration of two separate doses of the same or different drugs was 

achieved through back-filling of the infusion line similarly to the experiment described 

in the previous chapter. Behaviour was recorded for the whole duration of the test 

session, but different behavioural measures were taken at different time points 

(detailed description available in continuation).  

CatFISH. Whole brains were sectioned at 16 µm thickness, and coronal slices were taken 

at the level of the mPFC and the anterior striatum, (+3.70 mm, and +1.70 mm from 

bregma, respectively (Paxinos & Watson, 1986)). As in the procedures described in 

chapters 3 and 4, sections were removed starting from the tip of the olfactory bulbs until 

the ventral part of the brain sections (most caudal part of the olfactory bulbs) became 

attached to the dorsal part of the sections. At this point, the anterior forceps of the 

corpus callosum (fmi) was visible, and the lateral fissure reached halfway to the midline 

(+3.70 mm from bregma, fig. 5.1, next page). At this point, images of the PFC were taken 

from three locations. First, an imaginary line was followed from the tip of the lateral 

fissure to the midline. Where the two met was the point where the bottom left margin 

of the microscope field of view (MFV) was positioned. This was defined as the infralimbic 

cortex (IL). The MFV was then moved in a dorsal direction, until it was positioned 

between the midline and the medial side of the fmi. This was defined as the prelimbic 

cortex (PL). Finally, the MFV was moved further in the dorsal direction, along the midline, 

until the top margin of the MFV reached the angle between the midline and the most 

dorsal end of the section. This was defined as the anterior cingulate dorsal cortex (ACd). 

The sections of the striatum were delineated as described in chapter 4 (fig 5.2, next 
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page). The RNAscope probes and reagents, the in situ hybridisation, and the image 

acquisition and analysis protocols were as described in general methods. 

 

Fig. 5.1. Schematic representation of the rostrocaudal level defined as +3.70 mm from 
bregma during sectioning. Reference structures were as described in ch. 3. Green 
circles represent ROIs where images of the IL (1), PL (2), and ACd (3) were taken.  

 

Fig. 5.2. Schematic representation of regions of interest (ROI) where microscopic 
images were taken across the striatum: Nacc shell (1), Nacc core (2), DMS (3) and DLS 

(4). Reference structures were the same as described in ch.4. 

Design and behavioural measures 

This study had a mixed design. The between-subject independent variable was the 

combination of drugs that each rat was allowed to self-administer during the final 

testing session (heroin-heroin, cocaine-cocaine, heroin-cocaine, cocaine-heroin or no 

drug, n = 4 in each group). For some of the statistical analyses rats were grouped based 

1 

2 

3 
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on the first or second drug they self-administered. Within-subject independent variables 

were the different time periods during which behaviour was recorded within the testing 

session. Each rat was observed at several time points after the administration of the first 

drug and immediately after the administration of the second drug. The dependent 

variables were several behavioural measures. For the sake of analysis, the testing 

session was divided in 2 main periods – first 25 minutes reflecting the behavioural 

effects of the first drug, and last 5 min reflecting the effect of the second drug together 

with any potential carry-over effects of the first infusion. The first 25 min period was 

further divided in 5 min bins (labelled a-e, fig. 5.3, below). 

 

 

 

 

 

Fig. 5.3. Schematic representation of the final tests session timeline. Sections “a – e” 

represent 5 min bins of period 1. 

First, locomotion was measured by dividing the bottom of the self-administration 

chamber in four quadrants of equal size and counting the number of crosses each rat 

made over the borders of these quadrants. A crossover was defined as when the 

shoulder blades of the animal cross from one quadrant to another. Crossovers were 

counted during the whole periods 1a, 1c, 1e and the whole duration of period 2, and 

scores were converted in crosses/min. 

Second, the activity scale proposed by Ellinwood and Balster (1974) was used to provide 

an additional measure of drug-induced motor activity and stereotypy. Originally, the 

scale consists of 9 points corresponding to progressing levels of normal to drug-induced 

motor activity starting from none (0) and ending in stereotypical movements and 

dyskinesia (8, 9). A slight modification was made to the original order of the 5th and 6th 

points of the scale (the two were switched), because it was concluded that such order 

better reflects the progression from normal to drug-induced activity (table 5.1, next 

a b c d e 

Infusion 1 Infusion 2 

Period 1 Period 2 
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page). Scoring using this scale was done by observing animals for the last 20 sec of 

periods 1a-e and the last 20 sec of the 5th min of period 2 and assigning the appropriate 

score.  

Table 5.1. Scores, corresponding activity levels and operational definitions as 
adapted from the scale proposed by Ellinwood and Balster. 

Score Activity level Definition 

1 asleep lying down, eyes closed 

2 inactive lying down, eyes open 

3 in place activity 
(grooming) 

normal grooming (scratching, licking self, rubbing face with 
paws) 

4 normal/alert/active moving about cage, sniffing, rearing 

5 slow-patterned repetitive exploration of the cage at normal level of activity 

6 hyperactive running movement, rapid changes in position (jerky) 

7 fast patterned repetitive exploration of the cage with hyperactivity 

8 restricted remaining in the same place in cage with fast repetitive 
head/foreleg movement (licking, chewing, gnawing 

stereotypies) 

9 dyskinetic-reactive backing-up, jumping, seizures, abnormally maintained 
postures, dyskinetic movements 

 

Third, the latency to press the lever after each of the two lever presentations during the 

test session was recorded in seconds. This was defined as the amount of time between 

the moment the lever was extracted and the moment the rat pressed it. 

Finally, the occurrence of pre-defined categories of behaviour were counted according 

to methodology adopted from Fray, Sahakian, Robbins, Koob, and Iversen (1980). There 

were 10 behavioural categories in total (table 5.2, next page). Animals were observed 

during the last 10 sec of periods 1a-e as well as during the last 10 sec of the first 5 min 

of period 2 and the presence of any of the aforementioned behaviours was noted down. 
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Table 5.2. Categories and operational definitions for counting the occurrence of 
particular behaviours (adopted from Fray et al.). 

Category Definition 

still Asleep or not moving, with an occasional sniff 

locomotion All four legs moving 

rearing Both front feet off the cage floor 

sniffing Sniffing for more than 3 s 

licking Licking for more than 3 s 

gnawing Gnawing for more than 3 s 

head down Animal standing, walking or running with its nose below horizontal for 
more than 5 s 

swaying Rhythmic swaying movements of the animal's head or body for more 
than 3 s 

grooming Grooming for more than 3 s 

miscellaneous Any category of behaviour not already listed that occurs for more than 3 
s 

 

Results 

Self-administration training 

A number of caveats must be taken into account when interpreting the self-

administration data presented. These caveats arise from the differences in the speed of 

learning of individual rats. Every rat had to reach a criterion to progress from one stage 

of training to another, and different stages had different number of available infusions 

(due to different TO periods). In addition, the dose of cocaine was varied for some rats 

during the initial stages of training (to facilitate drug-taking in case the final testing dose 

is too high for acquisition). Finally, some rats required less training sessions than others 

overall. For all these reasons, the self-administration data are presented in several 

different ways, as seen in continuation. 

Figure 5.4 (p. 117) shows the average number of infusions self-administered as a 

function of session and drug. Since individual rats were trained for varying number of 

sessions depending on how quickly they acquired the behaviour (min 5, max 10 sessions), 

the data in fig. 5.4 represents self-administration for the last 7 sessions of training only. 
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Where rats learned quicker than that (4 out of 20 cases in total), their score was not 

included in the calculation of the mean for sessions they did not participate in. 

Rats pressed more (and more consistently) for heroin than for cocaine across all of the 

last 7 sessions of training. There was an increase in number of lever presses for heroin 

from the first to the last session (M = 11.75, SE = 1.38, and M = 15.63, SE = 0.93, 

respectively), while this was not the case for cocaine (first session: M = 8.4, SE = 3.19; 

last session: M = 4.25, SE = 1.3).  

Shapiro-Wilk tests revealed non-normal distributions of the scores for several of the 

sessions. Friedman’s ANOVAs revealed a significant difference between levels of heroin 

self-administration across sessions (χ2(6) = 32.49, p < .001), but there was no such 

difference in the case of cocaine (χ2(6) = 4.02, p = .674). Follow-up Wilcoxon’s tests were 

run with a Bonferroni correction (α = .025) to compare the amount of lever presses 

between the first and last sessions for both heroin and cocaine. Both tests were non-

significant: z = -2.15, p = .031 (heroin) and z = -0.41, p = .682 (cocaine). 

It must be noted here that the apparent decrease in self-administration over the last 

three sessions for both heroin and cocaine arises from the transition to sessions with 

longer TO periods and fewer available infusions.  
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To account for the change in TO and number of available infusions, the same data was 

also presented as percent of total available infusions self-administered for each session 

(fig. 5.5, next page). On average, rats increased heroin intake from the first session (M = 

23.5%, SE = 2.76), approaching the maximum amount of available heroin infusions by 

the last session (M = 87.45%, SE = 4.51). In contrast, they were much less inclined to self-

administer cocaine, seen as a lower amount of infusions self-administered on session 1 

(M = 16.6%, SE = 6.4) and as reaching less than a third of the available infusions by the 

last session (M = 27.86%, SE = 8.71). Note that the variability in cocaine self-

administration is also higher. 

Shapiro-Wilk tests revealed a non-normal distribution of scores across sessions for both 

heroin and cocaine. Friedman’s ANOVA tests were run and revealed significant changes 

between sessions for both heroin (χ2(6) = 68.46, p < .001) and cocaine (χ2(6) = 15.54, p 

= .016). Post-hoc Wilcoxon tests were run to compare self-administration scores 

between the first and last sessions for each drug. A Bonferroni correction was applied 

to correct for multiple comparisons, so α = .025. Rats self-administered significantly 
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higher percentage of available infusions on the last session relative to the first session 

for both heroin (z = -3.52, p < .001) and cocaine (z = -2.27, p = .023).  

 

Figure 5.6 (next page) shows the cumulative amount of heroin and cocaine self-

administered for each of the last 7 sessions in µg/kg. These data were presented to 

account for changes in the dose of cocaine across early training sessions for some rats 

that did not acquire the self-administration behaviour at the testing dose (800 µg/kg). 

For heroin, the amount of drug self-administered follows the lever-press data exactly, 

as the dose of 100 µg/kg did not change across sessions. On average, the highest amount 

of heroin and cocaine self-administered was found in session 5 (M = 1975, SE = 161.55 

and M = 8400, SE = 2439.33, respectively). 

Shapiro-Wilk tests revealed non-normal distributions of scores across several sessions. 

Friedman’s ANOVAs revealed a significant change across sessions in the case of heroin 

(χ2(6) = 32.49, p < .001), but not cocaine (χ2(6) = 9.99, p = .125). A post-hoc Wilcoxon test 

revealed a significant difference between amounts of heroin taken in the first and last 

sessions (z = -2.15, p = .031). 
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Finally, figure 5.7 (next page) shows the amount of heroin and cocaine taken during 

training by rats in each of the 4 experimental groups and the control group (testing day 

grouping). There was negligible difference in the amount of heroin taken by rats in all 5 

groups (coc-coc: M = 12650, SE = 1657.56; coc-her: M = 10350, SE = 870.34; her-coc: M 

= 11650, SE = 629.15; her-her: M = 10900, SE = 1368.70; and control: M = 10125, SE = 

2392.48). However, there was a more noticeable difference in the amount of cocaine 

taken by rats in each of the test day groups (coc-coc: M = 84050, SE = 43192.00; coc-her: 

M = 69200, SE = 24227.39; her-coc: M = 51750, SE = 13866.84; her-her: M = 6350, SE = 

1206.58; and control: M = 3500, SE = 1173.31).  

Shapiro-Wilk tests revealed normal distributions of the scores for amount of heroin 

taken across groups. The scores for amount of cocaine taken in the cocaine-cocaine 

group were not normally distributed. A one-way ANOVAs revealed that there was no 

significant difference between groups for amount of heroin taken (F(4,15) = 0.46, p 

= .762), while a Friedman’s ANOVA revealed a significant difference in the case of 

amount of cocaine taken (χ2(4) = 12.71, p = .013).  
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Post-hoc Mann-Whitney tests were run to follow up on the Friedman’s ANOVA, with a 

Bonferroni correction (α = .01). None of the comparisons were significant: heroin-heroin 

vs. control (U = 4, p = .343), heroin-heroin vs heroin-cocaine (U = 0, p = .029), heroin-

heroin vs cocaine-heroin (U = 2, p = .114), heroin-heroin vs. cocaine-cocaine (U = 0, p 

= .029), and cocaine-cocaine vs. heroin-cocaine (U = 8, p = 1). 

 

Measures of drug-induced behaviour 

Measures of locomotion, activity as defined be the Ellinwood et al. (1984) scale, and 

categorical classification of behaviour are presented for the two periods following drug 

infusions on test day. The first period (period 1) spans 25 min following the first infusion, 

while the second period (period 2) consists of the 5 min following the second infusion.  

Locomotion 

Figure 5.8 (next page) shows the level of locomotor behaviour during the tests session 

as a function of first drug received and time. The control group was only exposed to the 
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self-administration environment. In the first 5 min following the drug infusion, rats that 

received heroin and cocaine moved the most (M = 8.3, SE = 3.5 and M = 8.85, SE = 1.1, 

respectively), relative to rats that did not receive a drug (M = 3.65, SE = 1.55). Ten 

minutes later, activity remained high in the heroin group (M = 7.44, SE = 1.61), while for 

cocaine and the control group locomotion diminished (M = 3.81, SE = 0.52 and M = 1.43, 

SE = 0.69, respectively). In the 20-25 min period post injection, locomotion in the heroin 

group was still relatively high (M = 6.36, SE = 1.69), while in the cocaine group it was 

closer to controls (M = 2.84, SE = 0.57 and M = 1.25, SE = 0.85, respectively). 

 

Shapiro-Wilk tests revealed non-normal distributions of scores across some conditions. 

Therefore, drug groups in each 5 min bin were analysed separately using Kruskal-Wallis 

tests.  

The differences between groups in the first 5 min post-injection only approached 

significance, H(2) = 4.96, p = .084.  

In the 10-15 min period post-injection, there was a significant difference between drug 

treatments, H(2) = 9.28, p = .01. Mann-Whitney post-hoc tests (at α = .017) revealed that 

there was significantly more locomotion elicited by heroin relative to control, U = 1, p 
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= .008, but not relative to cocaine, U = 14.5, p = .065. Cocaine and control conditions 

were also not significantly different from each other, U = 13.5, p = .028. 

Finally, in the 20-25 min period post-injection, there was a significant difference 

between levels of locomotion across drug conditions, H(2) = 8.1, p = .018. Again, this 

difference stemmed from significantly higher locomotion levels in the heroin condition 

relative to control, U = 2, p = .016 (at α = .017).  

Figures 5.9 (next page) and 5.10 (p. 124) show the levels of locomotion in the first 5 min 

following the second drug infusion of the tests session. Figure 5.7 shows locomotion as 

a function of the second drug infusion only, while figure 5.8 shows locomotion as a 

function of the combination of drugs infused during the tests session (first and second). 

Considering the second infusion only (fig. 5.9), on average, the highest level of 

locomotion was elicited by cocaine (M = 9.31, SE = 1.83), followed by heroin (M = 3.03, 

SE = 0.85) and then the control condition (M = 0.66, SE = 0.49). Shapiro-Wilk tests 

revealed lack of normality in the cocaine and control conditions. 

A Kruskal-Wallis tests revealed a significant difference between conditions, H(2) = 12.6, 

p = .002. Post-hoc Mann-Whitney tests (at α = .017) revealed that there was significantly 

more locomotion in the cocaine relative to both the heroin and the control conditions 

(U = 6, p = .005 and U = 0, p = .004, respectively). Heroin and control conditions were 

not significantly different from each other, U = 4, p = .048. 
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When considering the combination of drugs received during the test session (fig. 5.10), 

the highest levels of locomotion were found in the heroin-cocaine group (M = 9.31, SE = 

1.83), followed by the cocaine-cocaine (M = 9.31, SE = 1.83), heroin-heroin (M = 9.31, SE 

= 1.83), cocaine-heroin (M = 9.31, SE = 1.83) and control/exposure-only groups (M = 9.31, 

SE = 1.83). Shapiro-Wilk tests revealed that there was a non-normal distribution of 

scores in the control group. 

A Kruskal-Wallis test revealed a significant difference between groups, H(4) = 13.3, p 

= .01, and post-hoc Mann-Whitney tests revealed that differences between the cocaine-

cocaine group and control, and heroin-cocaine and control only approached significance 

after a Bonferroni correction (U = 0, p = .029 and U = 0, p = .029, respectively, if α = .025). 
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Latency to press 

Figure 5.11 (next page) shows the latency to press a lever depending on the drug 

associated with it. On average, rats took longer to press a lever associated with cocaine 

(M = 52.46, SE = 11.39) than to press a lever associated with heroin (M = 31.10, SE = 

7.13). Where rats had to press twice for the same drug (cocaine-cocaine and heroin-

heroin groups), data were averaged from the two presses. Rats in the control condition 

were excluded from this analysis, as they were not given the opportunity to press. 

Shapiro-Wilk tests revealed normal distributions of the latency scores for both the 

heroin and cocaine levers. A paired-samples t-test revealed a significant difference 

between conditions, t(11) = 2.21, p = .049. 
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Activity scale (Ellinwood et al. 1984) 

Figure 5.12 (next page) shows the average level of activity as measured by the 9-point 

scale as a function of first drug infusion and time. For both heroin and cocaine, and the 

control group, the highest average level of activity was found in the first 5 min of period 

1 (M = 7.69, SE = 0.25; M = 5.44, SE = 0.44 and M = 4.5, SE = 0.61, respectively). Then, 

activity gradually diminished over time for both drugs and the control group, but in all 

cases remained higher in the heroin group relative to the others: at 10 min, heroin M = 

7.44, SE = 0.26, cocaine M = 4.5, SE = 0.6 and control M = 3.5, SE = 0.54; at 15 min, heroin 

M = 5.81, SE = 0.62, cocaine M = 4.44, SE = 0.84, and control M = 2.5, SE = 0.2; at 20 min, 

heroin M = 6.25, SE = 0.71, cocaine M = 3.88, SE = 0.97, and control M = 2.75, SE = 0.6; 

and, finally, at 25 min, heroin M = 6.38, SE = 0.73, cocaine M = 4.31, SE = 0.88, and control 

M = 3, SE = 0.84. 

Shapiro-Wilk tests revealed lack of normality in several groups. Kruskal-Wallis tests were 

run to compare activity levels between drug groups and the control for each time bin, 

applying a Bonferroni correction (α = .01). 
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Fig. 5.11. Latency to press a lever as a function of the 

drug associated with it. Error bars represent ± 1 SE. 
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There was a significant difference between drug groups and control after the first 5 min 

of period 1, H(2) = 11.71, p = .003. This was also the case at the end of the 10 min bin, 

H(2) = 11.65, p = .003. There were no significant difference between drug groups and 

control for the rest of the time bins: 15 min, H(2) = 6.81, p = .033; 20 min, H(2) = 4.92, p 

= .085; and 25 min, H(2) = 5.92, p = .052. 

 

Post-hoc Mann-Whitney tests were run at α = .017. The difference in the 5 and 10 min 

bins arose from the heroin group having significantly higher activity levels relative to 

both cocaine and control: for the 5 min bin, U = 6, p = .005, and U = 0.5, p = .004, 

respectively; for the 10 min bin, U = 6, p = .005 and U = 0, p = .004, respectively. The 

cocaine group was not significantly different from control in either case: 5 min bin, U = 

9, p = .283; 10 min bin U = 9.5, p = .283. 

Figures 5.13 (next page) and 5.14 (p. 128) show the activity levels in period 2 as a 

function of either second drug self-administered during the session or the combination 

of drugs received during the session, respectively.  
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Fig. 5.12. Activity following the first drug infusion of the test session 

(period 1) as a function of drug and time. Error bars represent ± 1 SE. 
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Considering the second drug infusion only (fig. 5.13), the highest level of activity on 

average was found in the heroin group, M = 6.63, SE = 0.75, followed by cocaine, M = 

5.06, SE = 0.45, and control, M = 2.75, SE = 0.25. Shapiro-Wilk tests revealed non-normal 

distributions across conditions.  

A Kruskal-Wallis test indicated a significant difference between groups, H(2) = 9.03, p 

= .011, and Mann-Whitney tests (at α = .017) revealed that there was a significant 

difference between cocaine and control, U = 1.5, p = .008. The other two comparisons 

were not significant after the correction: U = 3.5, p = .028 for heroin vs control, and U = 

0, p = .05 for heroin vs. cocaine. 

 

Considering the combination of drugs self-administered (fig. 5.14), the highest level of 

activity was found in the cocaine-heroin group (M = 7, SE = 0.71), followed by the heroin-

heroin group (M = 6.25, SE = 1.44), cocaine-cocaine (M = 5.13, SE = 0.66), heroin-cocaine 

(M = 5, SE = 0.71), and control (M = 2.75, SE = 0.25). Shapiro-Wilk tests revealed lack of 

normality in the heroin-heroin and control groups. A Kruskal-Wallis test indicated that 

there were no significant differences between groups, H(2) = 9.29, p = .054. 
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Fig. 5.13. Activity 5 min after the second drug infusion of the 

tests session (period 2) as a function of drug. Error bars 
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Table 5.3. Summary of locomotion and stereotypy data as measured by crossovers 
and the Ellinwood et al. scale, respectively. Data is presented as the effect of first or 

second drug injection (h – heroin, c – cocaine): (↑) significant increase relative to 
controls following Bonferroni correction, (−) no sig. difference from control, (↑) a 

significant increase from control which did not survive Bonferroni correction. 

  Period 1 (1st inj.) Period 2 (2nd inj.) 

  5’ 10’ 15’ 20’ 25’ overall after h after c 

Lo
co

m
o

ti
o

n
 

(c
ro

ss
o

ve
rs

) 

h −  ↑  ↑ ↑ − − 

c −  ↑  − ↑ ↑ ↑ 

El
lin

w
o

o
d

 

h ↑ ↑ − − − ↑ − − 

c − − − − − ↑ − − 

 

Categorical measures of behaviour 

As in the previous section, categorisation of behaviour was done separately for the two 

periods after each drug infusion of the test session. 

All comparisons between drug groups and controls were done using Fischer’s Exact Test 

(FET), since group sizes were too small to run chi-square tests. For comparisons between 
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Fig. 5.14. Activity 5 min after the second drug infusion of the 

tests session (period 2) as a function of combination of drugs 

received. Error bars represent ± 1 SE. N = 4 for each group.
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drug groups within each 5 min bin of period 1 it was necessary to apply a Bonferroni 

correction for multiple testing (α = .01). Only one of the comparisons in period 1 survived 

this correction. Regardless, comparisons where p-values were significant at the .05 level 

are reported. 

Figure 5.15 (below) shows the proportion of that exhibited locomotor behaviour as a 

function of time and first drug self-administered. Note the difference from the 

locomotor activity analysis as measured by number of crossovers. Differences between 

drug groups and control were significant at the .05 but not the .01 level only for the 5 

min bin, p = .035. That is, 75% of the rats in the cocaine and control conditions exhibited 

locomotor behaviour at the 5th min of period 1, while only 12.5% of rats in the heroin 

condition did so. 

 

Figure 5.16 (next page) shows the proportion of rats that exhibited gnawing behaviour 

as a function of first drug and time. At the end of the 5-10 min of period 1, 62.5% of rats 

in the heroin group exhibited gnawing behaviour, compared to 25% in the control group 

and none in the cocaine group, p = .028. 
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Fig. 5.15. Proportion of rats in each drug group showing locomotor 

behaviour in period 1 as a function of time. N = 4 for control, 8 for 

drug groups, at each time bin.
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Figure 5.17 (next page) shows the proportion of rats exhibiting sniffing behaviour as a 

function of time and first drug. In the first 5 min, 75% of rats in the cocaine and control 

conditions exhibited sniffing behaviour, while none of the rats in the heroin group did, 

p = .003. In the 5-10 min of period 1, 62.5% of rats in the cocaine group and 50% of rats 

in the control group exhibited the behaviour, while none in the heroin group did, p = .032.  

Figure 5.18 (next page) shows the proportion of rats exhibiting rearing behaviour. At the 

end of 10-15 min of period 1, 75% of rats showed rearing behaviour, while only 25% in 

the cocaine group and none in the control group did so, p = .035. At the end of 15-20 

min of period 1, 50% of rats in the heroin group were rearing, while none in the cocaine 

and control groups were doing so, p = .042. 

Figure 5.19 (p. 132) shows the proportion of rats exhibiting licking behaviour. At the end 

of 5-10 min of period 1, 50% of rats in the heroin group were exhibiting the behaviour, 

while none of the rats in the control and cocaine groups were doing so (p = .042). 

Figures 5.20-5.24 (pp. 132-134) show the proportion of rats in each drug group and the 

control that were exhibiting head down, sway, groom, still and miscellaneous 

behaviours, respectively. For these behaviours, none of the comparisons between 

groups at any time bin were significant either before or after a Bonferroni correction. 
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Fig. 5.16. Proportion of rats in each drug group showing gnawing 

behaviour in period 1 as a function of time. N = 4 for control, 8 for 

drug groups, at each time bin.
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Fig. 5.17. Proportion of rats in each drug group showing sniffing 

behaviour in period 1 as a function of time. N = 4 for control, 8 for drug 

groups, at each time bin.
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Fig. 5.18. Proportion of rats in each drug group showing rearing 

behaviour in period 1 as a function of time. N = 4 for control, 8 for 

drug groups, at each time bin.

Cocaine Heroin Control



132 
 

 

0

25

50

75

100

0-5min 5-10min 10-15min 15-20min 20-25min

P
er

ce
n
t 

o
f 

ra
ts

 s
h
o
w

in
g
 b

eh
av

io
u
r

Time since first infusion of the test session

Fig. 5.19. Proportion of rats in each drug group showing licking 

behaviour in period 1 as a function of time. N = 4 for control, 8 for 

drug groups, at each time bin.
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Fig. 5.20. Proportion of rats in each drug group showing head down 

behaviour in period 1 as a function of time. N = 4 for control, 8 for 

drug groups, at each time bin.
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Fig. 5.21. Proportion of rats in each drug group showing sway 

behaviour in period 1 as a function of time. N = 4 for control, 8 for drug 

groups, at each time bin.
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Fig. 5.22. Proportion of rats in each drug group showing grooming 

behaviour in period 1 as a function of time. N = 4 for control, 8 for drug 

groups, at each time bin.
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Fig. 5.23. Proportion of rats in each drug group staying still in period 1

as a function of time. N = 4 for control, 8 for drug groups, at each time 

bin.
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Fig. 5.24. Proportion of rats in each drug group showing miscellaneous 

behaviour in period 1 as a function of time. N = 4 for control, 8 for 

drug groups, at each time bin.
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Figure 5.25 (above) shows the proportion of rats showing each of the categorised 

behaviours 5 min after the second drug infusion (period 2) as a function of drug. A 

Bonferroni correction for multiple comparisons was applied, α = .005. Only the group 

comparisons for sniffing behaviour survived this correction, as 100% of rats in the 

cocaine group exhibited this behaviour, while none in the heroin and control groups did, 

p < .001. For locomotion, 75% of rats in the cocaine group exhibited the behaviour, 

compared to 12.5% and 0% in the heroin and control groups, respectively, p = .016. 

Finally, for the gnawing behaviour, 62.5% of rats in the heroin group exhibited the 

behaviour, compared to none in the cocaine and control groups, p = .008. None of the 

comparisons for the other behaviours were significant at either the .05 or .005 levels. 
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Fig. 5.25. Proportion of rats showing each of the listed behaviours 

following the second drug infusion during the test session (period 2). N = 
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Table 5.4. Summary of categorical measures of behaviour. Data is presented as the 
effect of first or second drug injection (h – heroin, c – cocaine): (↑/↓) significant 

increase/decrease from control following Bonferroni correction, (−) no sig. 
difference, (↑/↓) a significant increase/decrease from control which did not survive 

Bonferroni correction. Behaviours for which no significant differences were found 
are not included. 

  Period 1  

(1st inj.) 

Period 2 

(2nd inj.) 

  5’ 10’ 15’ 20’ 25’ overall 

locomotion 
h ↓ − − − −  −  

c − − − − − ↑ 

gnawing 
h − ↑ − − − ↑ 

c − − − − − − 

sniffing 
h ↓ ↓ − − − − 

c − − − − − ↑ 

rearing 
h − − ↑ ↑ − − 

c − − − − − − 

licking 
h − ↑ − − − − 

c − − − − − − 

 

CatFISH 

Please note that due to exceptionally low levels of IEG expression across the striatum 

following self-administration (see Appendix 3), quantitative analysis of the IEG data was 

carried out only for the PFC. 

Infralimbic cortex (IL) 

Figure 5.26 (next page) shows the number of h1a- and arc-positive nuclei in the 

infralimbic cortex as a function of drugs self-administered during the test session. On 

average, the highest number of h1a-positive nuclei was found in the heroin-heroin 

group (M = 48.13, SE = 11.47), followed by the control group (M = 48, SE = 5.01), then 

the cocaine-cocaine group (M = 45.81, SE = 5.32), the heroin-cocaine (M = 38.69, SE = 

6.8) and the cocaine-heroin (M = 30.94, SE = 2.24) groups. On average, the highest level 

of arc expression was found in the control group (M = 32.44, SE = 12.54), followed by 
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heroin-cocaine (M = 24.06, SE = 3.87), then heroin-heroin (M = 23.81, SE = 6.9), cocaine-

cocaine (M = 22.69, SE = 4.42) and, finally, the cocaine-heroin (M = 13.06, SE = 1.85) 

group.  

Shapiro-Wilk tests revealed normal distributions of scores across groups for both h1a- 

and arc-positive nuclei. Levene’s tests revealed homogenous variance across groups for 

h1a, F(4,15) = 2.03, p = .141, but not arc, F(4,15) = 8.28, p = .001. One-way ANOVAs 

revealed no significant difference between groups for either h1a, F(4,15) = 1.17, p = .364, 

or arc, F(4,15) = 0.98, p = .450. Welch and Brown-Forsythe tests were also non-significant. 

 

Figure 5.27 (next page) shows the amount of nuclei in the infralimbic cortex co-

expressing h1a and arc calculated as a percentage of all mRNA-positive nuclei in that 

region of interest (ROI). The amount of co-expressing nuclei across conditions, in 

descending order, was as follows: heroin-heroin (M = 22.22, SE = 2.41), cocaine-cocaine 

(M = 21.77, SE = 2.33), control (M = 21.45, SE = 3.88), heroin-cocaine (M = 20.55, SE = 

2.25) and cocaine-heroin (M = 17.84, SE = 1.49). 

Shapiro-Wilk tests revealed a non-normal distribution only in the heroin-heroin 

condition, p = .022. Levene’s statistic was non-significant, F(4,15) = 0.96, p = .459. A one-

way ANOVA revealed no significant differences between groups, F(4,15) = 0.45, p = .769.  
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Fig. 5.26. Amount of h1a- and arc-positive nuclei in the 

infralimbic cortex (IL) as a function of drug group. Error bars 

represent ± 1 SE. N = 4 for each group.
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Prelimbic cortex (PL) 

Figure 5.28 (p. 140) shows the number of h1a- and arc-positive nuclei in the prelimbic 

cortex as a function of drug treatment. On average, the highest number of h1a-positive 

nuclei was found in the cocaine-cocaine group (M = 65.63, SE = 12.42), followed by the 

heroin-heroin group (M = 52.75, SE = 8.64), then the heroin-cocaine group (M = 48.94, 

SE = 7.01), the control (M = 45, SE = 4.4) and the cocaine-heroin (M = 36.69, SE = 5.04) 

groups. On average, the highest level of arc expression was found in the cocaine-cocaine 

group (M = 37.69, SE = 11.82), followed by control (M = 35.75, SE = 15.07), then heroin-

cocaine (M = 34, SE = 5.64), heroin-heroin (M = 29.94, SE = 7.15) and, finally, the cocaine-

heroin (M = 15.50, SE = 5.31) groups.  

Shapiro-Wilk tests revealed predominantly normal distributions except in the control 

condition for arc-positive nuclei, p = .033. Levene’s statistics revealed homogenous 

variance across groups for arc but not h1a, F(4,15) = 1.69, p = .204 and F(4,15) = 4.15, p 

= .018, respectively. One-way ANOVAs revealed no significant differences between 

groups for either h1a, F(4,15) = 1.17, p = .364, or arc, F(4,15) = 1.76, p = .189. Welch and 

Brown-Forsythe tests were also non-significant. 
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Fig. 5.27. Co-expressing nuclei as a percentage of all mRNA-

positive nuclei in the infralimbic cortex (IL). Error bars 

represent ± 1 SE. N = 4 for each group.
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Figure 5.29 (next page) shows the amount of nuclei in the prelimbic cortex co-expressing 

h1a and arc calculated as a percentage of all mRNA-positive nuclei (per ROI). The 

amount of co-expressing nuclei across conditions, in descending order, was as follows: 

cocaine-cocaine (M = 26.99, SE = 2.8), control (M = 22.87, SE = 2.58), heroin-heroin (M 

= 22.10, SE = 3.44), heroin-cocaine (M = 20.38, SE = 2.49) and cocaine-heroin (M = 17.31, 

SE = 2.91). 

Shapiro-Wilk tests revealed normal distribution of scores within conditions. Levene’s 

statistic was non-significant, F(4,15) = 0.07, p = .991. A one-way ANOVA revealed no 

significant differences between groups, F(4,15) = 1.54, p = .242.  

Anterior cingulate dorsal cortex (ACd) 

Figure 5.30 (p. 141) shows h1a- and arc-positive nuclei in the ACd as a function of drug 

treatment. On average, the highest number of h1a-positive nuclei was in the cocaine-

cocaine group (M = 67.81, SE = 8), followed by the heroin-cocaine group (M = 62.19, SE 

= 15.53), then the heroin-heroin group (M = 55.69, SE = 5.47), the control (M = 39.94, SE 

= 4.02) and the cocaine-heroin (M = 37.25, SE = 4.3) groups. On average, the highest 

level of arc expression was found in the cocaine-cocaine group (M = 34.94, SE = 8.02), 

followed by heroin-cocaine (M = 33.88, SE = 6.57), then heroin-heroin (M = 28.06, SE = 

8.08), control (M = 26.63, SE = 10.77) and, finally, the cocaine-heroin (M = 17, SE = 4.49) 

groups.  

Shapiro-Wilk tests revealed normal distributions within all drug groups. Levene’s 

statistics revealed homogenous variance across groups for both arc and h1a, F(4,15) = 

0.72, p = .592 and F(4,15) = 2.41, p = .095, respectively. One-way ANOVAs revealed no 

significant differences between groups for either h1a, F(4,15) = 2.46, p = .090, or arc, 

F(4,15) = 0.83, p = .526.  
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Figure 5.31 (p.142) shows the amount of nuclei in the ACd co-expressing h1a and arc 

calculated as a percentage of all mRNA-positive nuclei (per ROI). The amount of co-

expressing nuclei across conditions, in descending order, was as follows: cocaine-

cocaine (M = 24.88, SE = 4.04), heroin-cocaine (M = 22.36, SE = 3.54), heroin-heroin (M 
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Fig. 5.28. Amount of h1a- and arc-positive nuclei in the 

prelimbic cortex (PL) as a function of drug group. Error bars 

represent ± 1 SE. N = 4 for each group.
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Fig. 5.29. Co-expressing nuclei as a percentage of all mRNA-

positive nuclei in the prelimbic cortex (PL). Error bars represent 
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= 21.81, SE = 4.92), cocaine-heroin (M = 18.66, SE = 2.49) and control (M = 18.38, SE = 

3.71). 

Shapiro-Wilk tests revealed normal distribution of scores within conditions. Levene’s 

statistic was non-significant, F(4,15) = 0.57, p = .688. A one-way ANOVA revealed no 

significant differences between groups, F(4,15) = 0.51, p = .731.  
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Fig. 5.30. Amount of h1a- and arc-positive nuclei in the anterior 
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Discussion 

The study reported here was a pilot study with a relatively small sample size and low 

statistical power. For this reason, parts of the following discussion revolve around the 

qualitative analysis of data, rather than statistically significant differences between 

treatment groups. This is particularly true for the categorical measures of behaviour (figs. 

5.13-5.23) where statistical differences between drug groups were not found after 

corrections for multiple testing.  

Self-administration and latency to approach drug-associated levers 

All rats learned to self-administer heroin quickly, and escalated intake over time. 

Conversely, although all rats included in the analysis also lever-pressed for cocaine, lever 

press frequencies were much lower and with high variability between individual animals. 

Rats were also quicker to approach the heroin-associated lever during the final test 

session. When heroin and cocaine self-administration levels were presented as a 

percentage of available infusions that were self-administered, on average, rats self-

administered a high proportion of the available heroin infusions, and a much lower 

proportion of available cocaine infusions. In fact, some rats had such low levels of 

cocaine self-administration that they could not be included in the final test session 
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Fig. 5.31. Co-expressing nuclei as a percentage of all mRNA-

positive nuclei in the anterior cingulate dorsal cortex (ACd). 

Error bars represent ± 1 SE. N = 4 for each group.
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groups where they had to press for cocaine. This resulted in the obvious methodological 

issue of having uneven levels of cocaine self-administration between groups in the final 

tests session. Taken together the data suggest that, under the conditions of this 

experiment, heroin was more effective reinforcer than cocaine, and rats were more 

motivated to obtain it. 

The preference for heroin over cocaine found in this sample of rats was unexpected. 

One possible explanation for the poor reinforcing properties of cocaine could be a high 

dose leading to anxiogenic effects. Chronic or acute treatment with 20 mg/kg i.p. 

cocaine increases plasma corticosterone, and decreases time spent in an open field and 

locomotion relative to saline treatment (Yang, Gorman, Dunn, & Goeders, 1992). 

However, other studies have successfully trained rats to self-administer cocaine at a 

dose of 800 µg/kg and even higher. Rats self-administer cocaine doses of the range 0.5-

2 mg/kg under both long and short access conditions (Mandt et al., 2012; Mantsch et al., 

2001; Pettit & Justice, 1991; Roberts, Loh, & Vickers, 1989; Wee, Specio, & Koob, 2007). 

An alternative explanation could be a particularly stress-prone strain or batch of animals 

used in this study. Rats from the same supplier and strain can differ in behavioural traits 

(e.g. sign-tracking vs. goal-tracking Fitzpatrick et al. (2013)) depending on the barrier 

they are raised in. Thus, although Sprague-Dawley rats are widely used in cocaine self-

administration studies, the rats in this study may represent a particularly stress-sensitive 

sample for which the 800 µg/kg dose of cocaine was anxiogenic and aversive. Issues with 

the training schedule itself or the drug-administration apparatus are unlikely, because 

these should have affected heroin similarly, but all animals learned to self-administer 

heroin easily. There is also the possibility that certain parameters of the training 

schedule and experimental setup might have been specifically necessary to facilitate 

cocaine but not heroin self-administration.  

Locomotion and stereotypy 

Following the first drug infusion of the test session, rats displayed a markedly different 

locomotor response depending on whether they received heroin or cocaine. Within the 

first 5 min following the first drug infusion, cocaine and heroin did not produce 

statistically significant increases in locomotion relative to saline, suggesting that activity 

during this time period cannot be distinguished from a conditioned effect of the self-
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administration environment. However, over the following 20 min post-infusion, 

locomotor activity in rats receiving heroin remained high, while activity in the cocaine 

and control groups diminished substantially. Immediately after the infusion locomotor 

activity in the heroin group was also quite variable, although high on average. This 

change in locomotor activity following heroin was accompanied by an increase in the 

average score on the scale adapted from Ellinwood and Balster, suggesting an increase 

in stereotyped behaviour relative to cocaine and controls which occurred in many rats 

instead of locomotion. With time, this kind of behaviour decreased and was replaced by 

locomotor behaviour. Note that the high score on the stereotypy scale following the 1st 

injection of the tests session was mostly the result of heroin-induced gnawing behaviour, 

which is assigned a score of 8 on the Ellinwood scale (see table 5.1, p.113; definitions in 

this table are copied from the original paper). Categorical measures of behaviour 

confirmed this observation (discussed further on). 

Cocaine- and heroin-induced locomotor behaviour are well-established phenomena, 

but are usually studied under conditions of intermittent non-contingent drug 

administration via the i.p. route. Under such conditions, both drugs elicit robust increase 

in locomotor activity, and this effect sensitizes with repeated drug administration, 

depending on environmental context and individual differences (Crombag, Jedynak, 

Redmond, Robinson, & Hope, 2002; Flagel, Watson, Akil, & Robinson, 2008; Paolone et 

al., 2007). The development of sensitisation (in the broader sense) following history of 

self-administration also depends heavily on circumstances such as the pattern of self-

administration as well as the presence or absence of an abstinence period. In a study 

using very similar self-administration parameters to the ones presented here (6h 

sessions, 40 available infusions, 1.5 mg/kg/inf), cocaine self-administration led to 

reduced locomotor and stereotypy response to a cocaine challenge, reduced DA release 

in the accumbens core, reduced ability of cocaine to block the DA transporter, and 

reduced DA release and uptake after artificial stimulation, relative to saline self-

administering animals, 24 hours after the final self-administration session (Calipari, 

Ferris, & Jones, 2014). Other studies have shown tolerance or lack of sensitisation effects 

within this time frame following self-administration (24h), which is in contrast to 

evidence for sensitisation following intermittent access self-administration paradigms 
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or after a period of abstinence (Hooks, Duffy, Striplin, & Kalivas, 1994; Kawa, Bentzley, 

& Robinson, 2016). It would have been of interest to examine the effects of the training 

schedule on tolerance and sensitisation in the present study given the lack of detectable 

IEG expression in the striatum, since the two phenomena are related (Chandra & Lobo, 

2017). However, the design of the present study did not allow for the assessment of 

tolerance or sensitisation, because all rats had undergone drug self-administration – a 

limitation that could be addressed in the future. 

Following the second drug injection, locomotor behaviour was highest in rats receiving 

cocaine, comparable to the levels following the first injection. Control levels of 

locomotion had subsided towards the end of the session, suggesting that the 

conditioned effect of the environment was transient. Locomotor activity after a second 

injection of heroin was not very different from that of controls. A breakdown of the 

effect into drug-combination groups revealed a trend towards increased locomotion 

following a second injection of cocaine, where the effect was more pronounced if the 

preceding injection was heroin.  The diminished locomotion in the case of a second 

injection of heroin could reflect a sedative effect or an increase in stereotypy. Thus, 

there was a trend suggesting an interaction between the effects of the first and second 

injections on locomotor behaviour. Indeed, animals pre-treated with heroin show an 

increase in locomotion after a cocaine challenge, and the effect is dose-dependent and 

additive (Leri, Flores, Rajabi, & Stewart, 2003). 

Stereotypy did not vary much between heroin- and cocaine-treated animals after the 

second injection of the test session, regardless of the first drug administered. Control 

animals scored low on the stereotypy scale, and heroin-treated animals tended to score 

higher than both cocaine-treated and controls. However, most differences did not reach 

statistical significance so definitive conclusions cannot be made.  

Categorical measures of behaviour 

Soon after the first drug injection of the test session (5-10 min), locomotor behaviour 

was present in the majority of animals receiving cocaine and those in the control group. 

By 15 min, a small proportion of these animals were showing this behaviour. For heroin, 

the pattern was the opposite – a small proportion of animals were exhibiting locomotor 
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behaviour early compared to later on following a heroin injection. Thus, categorical 

classification of behaviour confirmed the continuous measure of locomotion: cocaine-

induced and conditioned locomotion were present in the beginning of the test session, 

while heroin-induced locomotion was mostly seen later on. Heroin-treated animals also 

exhibited a lot of rearing behaviour towards the end of the first period in the test session. 

A notable difference was also seen in the proportion of animals exhibiting gnawing and 

sniffing behaviours. The majority of animals exhibiting the former behaviour were those 

who self-administered heroin, while the latter behaviour was more characteristic of 

animals receiving cocaine. This is not surprising, since oral stereotypy is a known 

consequence of repeated opiate treatment at high doses (Pollock & Kornetsky, 1996). 

There were no notable differences between drug groups and controls for other types of 

behaviour, except miscellaneous behaviours exhibited only by a few animals, but all of 

them receiving heroin. These behaviours included jumping, holding on to the wall of the 

cage or displaying catatonia. 

Following the second drug injection (or the last 5 min of the test session for control 

animals) the most prevalent types of behaviours were locomotion and sniffing 

(exploring) in cocaine-treated rats and gnawing stereotypy in the heroin-treated rats. 

The control group were mostly still, grooming or showing some other form of low 

activity. Thus, by the end of the test session, conditioned effects on behaviour had 

mostly disappeared, while heroin was still inducing stereotypy, and cocaine – increased 

locomotor activity and exploration. 

Summary of behaviour 

Heroin at a dose of 100 µg/kg was an effective reinforcer, maintaining escalating drug 

intake. Rats receiving heroin during the test session were the most active, expressing a 

mixture of locomotor and stereotyped behaviour in response to the drug. Stereotyped 

behaviour often took the form of gnawing, and occurred immediately (up to 5 min) after 

the heroin injection. After about 10 min had passed since the injection, these rats 

switched to locomotor and rearing behaviour. 

Rats were less motivated for cocaine than heroin – they self-administered relatively few 

of the available infusions every session, and took longer to approach the lever than they 
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did with heroin. Cocaine-receiving animals were active only immediately after the 

cocaine injection, and this effect was not easily discernible from potential conditioned 

effects of the drug-associated context. In contrast to the case of heroin, animals did not 

exhibit stereotyped behaviour following cocaine, but instead showed increased 

exploratory behaviour (locomotion and sniffing).  

There was evidence for interaction between the first and second injections of the test 

session in terms of drug-induced locomotor behaviour, but not other measures of 

behaviour. That is, locomotion was reduced with repeated cocaine or heroin 

administration. When a combination of the two drugs was self-administered, cocaine-

induced locomotion was not reduced by preceding heroin (was even slightly enhanced), 

while heroin-induced locomotion was reduced by cocaine. 

CatFISH 

There was very low expression of homer 1a in the striatum (see Appendix 3), so catFISH 

was used only to analyse IEG expression in the PFC. Arc expression in the striatum was 

more prevalent, but no quantitative analysis was done to determine whether drug 

treatments elevated expression over baseline. In the PFC, both h1a and arc expression 

was easily detectable, but was not affected by drug treatment during the test session. 

As already mentioned in the introduction, Fumagalli et al. have shown that a single 

cocaine self-administration session can result in increased arc expression in the PFC. 

However, their control groups consisted of yoked animals receiving cocaine and saline, 

and these two groups had comparable, lower levels of arc expression. Thus, it is possible 

that the increase in arc expression reflected a learning process rather than a drug effect. 

Indeed, Gao et al. (2017) did not find increased levels of arc expression following 10 days 

of cocaine self-administration (although there was an increase after 60 days). The saline 

controls in their study were exposed to the same self-administration environment, but 

did not receive any cocaine. Finally, Li et al. (2013) found elevated levels of arc protein 

product following runway training for heroin, but both the task and the schedule of 

reward delivery was very different from the self-administration procedure used here. 

They had only a single trial (drug treatment) per day. Thus, the reasons why no reliable 

increase of IEG expression was found in any experimental groups could be either that (i) 

such increase accompanies early learning but is absent following extended training; (ii) 
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that the training schedule and the task were not adequate to elicit IEG expression; or (iii) 

the duration of self-administration training was not long enough to cause changes 

relative to drug-naïve animals. This experiment was not designed to address the final 

possibility directly, but future studies must take it into account.  

Overlap was also not found to vary significantly between treatment groups, eliminating 

the possibility that some drug-specific activity pattern might be masked over by the high 

baseline activity.  

Conclusions and future suggestions 

Rats responded very differently to heroin and cocaine under the conditions of the 

present study, both in terms of self-administration behaviour and drug-induced 

behaviour such as locomotion and stereotypy. Low levels of homer 1a expression in the 

striatum and no change from baseline expression in the PFC prevented the use of 

catFISH to examine patterns of neuronal activity associated with any behaviour. The 

data presented here is not sufficient to exclude a possibility of using catFISH in this 

context. However, if findings reported in preceding chapters are to be related to drug 

self-administration behaviour, the parameters of the training schedule must be changed. 

One necessary change would be to test for an effect of duration of the training schedule. 

IEG expression seems to be evident only during very short or very long periods of drug 

self-administration (Fumagalli et al., 2009; Gao et al., 2017; Li et al., 2013). Alternatively, 

other IEGs can be used for catFISH. One possible alternative would be using c-fos instead 

of homer 1a to identify active neurons in the striatum, since c-fos and homer 1a mRNA 

have similar temporal profiles of expression (peak ~30 min following activity). Previous 

studies have shown that c-fos expression in striatum and PFC is still elevated by drugs 

even after many days of self-administration training. Finally, catFISH can be used to mark 

the neuronal populations activated by two drug stimuli administered 1h apart rather 

than 25 min apart, in order to avoid interactions between them. This can be achieved 

by using nuclear arc signal to tag one neuronal population and cytoplasmic h1a signal to 

mark the other, since h1a diffuses to the cytoplasm ~1h following cellular activity. 

The preference for heroin over cocaine shown by rats in this study is also intriguing. 

Future studies could address the question of whether this preference is the result of 
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availability of both drugs. That is, would the rats self-administer cocaine at higher rates 

if heroin was not available at all?  

The interaction between heroin and cocaine in terms of their effect primarily on 

locomotion but not stereotypy is to be noted as well. Stereotypy was much more 

prevalent in animals receiving heroin. It is possible that activity produced by heroin in 

the dorsal striatum is increased following prolonged exposure to heroin, producing a 

different pattern of activity than that seen after non-contingent drug administration in 

naïve animals. The interaction effects of heroin and cocaine self-administration on 

locomotor behaviour may in turn reflect the interaction seen in terms of overlap in the 

Nacc following non-contingent drug administration. Future studies could answer these 

questions if the right training schedule and IEGs are used to apply the catFISH technique 

to the self-administration paradigm. 
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Chapter 6 – Discussion 

 

1. Summary of findings and methodological considerations 

Summary of findings 

Non-contingent administration of heroin and cocaine at doses self-administered by rats 

elevated expression of the immediate-early genes homer 1a and arc in several parts of 

the striatum – a brain area involved in processing of reward and goal-directed behaviour. 

The temporal pattern of expression of the two genes was similar to the one found in the 

hippocampus following exploration of a novel environment. Levels of homer 1a 

expression were elevated within ~30 min following drug administration, while 

expression of arc was elevated as soon as 5 min after drug treatment. Thus, it was 

possible to take advantage of this difference and use the catFISH technique to search 

for neuronal populations activated by heroin and cocaine in the striatum, and to 

determine to what extent these populations are overlapping or distinct. This analysis 

revealed that cocaine activates the same population of neurons repeatedly in the Nacc 

core and the dorsal striatum (but not in the shell), which suggested the existence of a 

neuronal ensemble in those brain areas encoding for some of the effects of the drug. 

Conversely, the same was found for heroin only in the Nacc shell.  

Although evidence for neuronal ensembles responding to heroin and cocaine was found 

only in certain striatal areas, IEG expression was affected by both drugs across the whole 

striatum. That is, cocaine treatment did have an effect on homer 1a and arc expression 

in the Nacc shell. However, it was not possible to determine whether there were 

neurons responding reliably to the drug in this brain area. Heroin did increase homer 1a 

and arc expression in other parts of the striatum than the Nacc shell. Yet, the effect 

varied depending on what drug was administered beforehand, whether expression was 

measured in the dorsal striatum or the Nacc, and there was no evidence for a neuronal 

ensemble responding to heroin in other striatal areas than the shell. Regardless of 

whether they represented neuronal ensembles or not, the neuronal populations 
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responding to heroin and cocaine overlapped significantly only in the Nacc shell. In all 

other areas of the striatum, the overlap did not exceed chance levels. 

Finally, a self-administration experiment revealed that the dose of cocaine used for the 

non-contingent drug administration study did not maintain self-administration in a 

substantial proportion of animals. It was also evident that drug-induced behaviour such 

as locomotion and stereotypy persisted for at least 25 min following a self-administered 

drug injection; i.e. these behaviours were still evident by the time a second injection was 

administered for catFISH. This persistence of behaviour was more pronounced following 

100 µg/kg heroin than 800 µg/kg cocaine. Following 14 days of heroin and cocaine self-

administration IEG expression did not change in response to an injection of either drug 

in the PFC, and homer 1a expression was almost undetectable in the striatum.  

Thus, catFISH revealed that heroin and cocaine engage different neuronal populations 

in most parts of the striatum except the Nacc shell, at least as far as homer 1a and arc 

expression are concerned. However, this observation must be considered taking into 

account factors such as drug dose, possible interactions between heroin and cocaine 

administered in succession, and previous experience with each of the two drugs. 

Methodological considerations 

It is important to keep in mind that the relationship between neuronal activity from an 

electrophysiological point of view (i.e. firing of action potentials) and IEG expression is 

not straightforward. Although there are a lot of commonalities between different IEGs 

in terms of the molecular mechanisms which trigger IEG expression, there are cell-type 

and regional differences in levels of IEG expression, as well as differences in the 

preferred transcription factors involved in IEG transcription. Generally, IEGs are 

transcribed after a strong depolarisation of a neuron leads to calcium influx through 

NMDA receptors and calcium voltage-gated channels. Calcium then interacts with 

protein kinases (e.g. CaMK and MAPK) which in turn activate transcription factors (e.g. 

CREB, SRF) to promote IEG transcription (Kawashima et al., 2014). Thus, the first point 

to consider is what constitutes strong activation sufficient to trigger calcium influx. It 

seems the rate of action potential firing is the most defining factor in this case. For 

example, Sgambato et al. have shown that cortical stimulation elicits the highest rate of 
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c-fos protein expression when a high number of shocks are applied over a given 

stimulation period, regardless of the temporal pattern of stimulation (i.e. single shock 

vs. trains, or high vs. low frequency) (Sgambato, Abo, Rogard, Besson, & Deniau, 1997). 

In addition, elevated levels of phosphorylated (i.e. activated) CREB is seen following both 

high- and low-frequency stimulation, but only prolonged stimulation at low frequencies 

can lead to transcription of c-fos (Bito, Deisseroth, & Tsien, 1996). CREB activity is tied 

to both LTP and LTD-inducing kinds of stimulation (Deisseroth, Bito, & Tsien, 1996). 

Second, if voltage-gated calcium channels are involved in IEG transcription, then IEG 

transcription induced by acute heroin administration may be both positively and 

negatively affected. Interestingly, activation of the µ-opioid receptor can both activate 

the MAPK pathway (Macey, Lowe, & Chavkin, 2006), and suppress activity of voltage-

gated calcium channels. This presents a case of two competing mechanisms, one 

promoting and one supressing IEG expression in response to heroin. This could be one 

explanation for the substantially diminished expression of arc following repeated 

administration of heroin. Finally, expression of different IEGs may be more or less driven 

by one transcription factor or another, despite the fact that multiple converging 

intracellular cascades can promote transcription of the same IEG. This could explain, for 

example, why very low homer 1a transcription was found in the Nacc shell in response 

to cocaine, while arc transcription was high. The fact that heroin increased homer 1a in 

the shell further supports this point. Finally, several response elements may need to act 

in concert to allow c-fos expression (Robertson et al., 1995), and it is not unlikely that 

this is the case for other IEGs such as arc and homer 1a. 

In summary, although IEGs are widely recognised as markers of neuronal activity, drug-

induced IEG expression should be interpreted with caution. More precisely, this type of 

IEG expression is likely to reflect long-lasting neurobiological changes that occur as a 

result of early drug effects, and these changes occur under very specific circumstances 

that do not reflect all types of neuronal activity. The fact that changes in IEG expression 

were not found following a period of drug self-administration training further supports 

this claim. 

Another consideration to be taken into account is what was considered a neuronal 

ensemble throughout the studies presented in this thesis. Some discussion of the 
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different definitions of a neuronal ensemble was provided in ch.1. Additionally, some 

authors distinguish between neuronal assemblies, neuronal ensembles, and the 

memory engram. This is particularly the case in the context of memory research, 

amygdalar and hippocampal function. A neuronal assembly is defined as a group of 

neurons which are activated in concert due to established connections between them. 

Neuronal ensembles, on the other hand, refers to groups of neurons involved in a 

particular computation. In electrophysiological research, the term also refers to 

populations of neurons which present correlated activity during a specific task, 

regardless of their causal role in behaviour or perception (Deadwyler & Hampson, 1997). 

Importantly, individual neurons within neuronal ensembles tend to be noisy, but 

together they produce a coherent output. Finally, the engram is a term particularly 

relevant to memory research, and refers to the physical representation of memory in 

the brain – the sum of the biochemical and biophysical changes induced upon learning 

(Holtmaat & Caroni, 2016; Tonegawa, Pignatelli, Roy, & Ryan, 2015). Regardless of the 

particular terms used, it is generally accepted that the coordinated function of 

distributed neuronal populations is what constitutes the coding language of the brain.  

Calcium imaging has also proved a very useful tool for characterisation of neuronal 

ensembles, since it allows for the simultaneous recording of the activity of spatially 

distributed neurons of the cortex. Work in this field has corroborated findings using IEG-

driven neuronal tagging. For example, calcium imaging has revealed that the visual 

cortex is comprised of groups of coactive neurons (assemblies) which exhibit 

synchronised spontaneous activity. During perception, these assemblies become active 

in a similar fashion, but time-locked to the stimulus in question (ensembles). In addition, 

the firing of neurons in these ensembles is a probabilistic phenomenon, and only a 

proportion of neurons exhibit the highest probability of firing (“core ensembles”) (J. E. 

Miller, Ayzenshtat, Carrillo-Reid, & Yuste, 2014).  

Corroborating evidence for the function of the visual cortex has also been demonstrated 

in the field of IEG-tagged neuronal ensembles. In the primary visual cortex, upon initial 

experience with a light stimulus of a particular orientation, a large number of neurons 

express arc. Only a small subset of these neurons are recruited one day after. Thus, 

previously activated neurons are likely to be recruited again when the same stimulus is 



154 
 

presented a second time, thus forming a neuronal ensemble. Importantly, with repeated 

presentation of the stimulus, the ensemble becomes smaller and more reliably activated 

by the stimulus. Expression of arc is not necessary for this phenomenon, although it does 

improve the specificity of the resulting ensemble (Wang et al., 2006). 

Obviously, whether the organisation of neuronal networks and encoding of stimuli and 

memories is the same between cortical and subcortical structures is a separate question. 

However, there is convincing evidence that this might be the case, at least in terms of 

contextual fear conditioning and motivated behaviour. More importantly, manipulating 

neuronal ensembles in subcortical structures through IEG tagging and optogenetics has 

revealed the causal role of neuronal ensembles in these forms of behaviour. For example, 

activity of neurons in the lateral amygdala during cocaine CPP is determined by the 

activity of CREB, such that neurons with higher levels of CREB are more likely to be 

recruited during learning. In addition, ablation of these neurons abolishes the 

expression of the CPP memory (Hsiang et al., 2014). Similarly, the expression of 

contextual fear memories can be elicited by the optogenetic stimulation of neuronal 

ensembles in the hippocampus (Liu et al., 2012). 

One remaining question is whether there is evidence that memories of a drug effect are 

encoded similarly and independently of context. When cocaine is administered non-

contingently (following a sensitising protocol), a large proportion of the Nacc neurons 

recruited following the drug administration are those that have been activated during 

previous injections (Mattson et al., 2008). Thus, the drug itself seems to influence 

neuronal activity the same way as a visual stimulus does in the cortex – by activating 

neurons that are intrinsically more excitable. However, this effect is not completely 

independent of context, since there is a much larger number of neurons active in a 

context previously paired with drug delivery (in the same study). To some extent, the 

circumstances of drug administration define which and how many neurons will be 

activated. 

In summary, the concept of neuronal ensembles has a somewhat loose definition that 

varies depending on the specific field of research where it is used, and on the techniques 

used to define it. Nevertheless, there is general consensus that a population of neurons 

has to exhibit simultaneous activity time-locked to a given stimulus or behaviour in order 
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to be defined as an ensemble. In some cases, it is also required that the ensemble of 

neurons are causally involved in the expression of a behaviour, or are at least reliably 

activated by the repeated presentation of the same stimulus. In studies presented in 

this thesis, there were no available tools to infer causal role of the neuronal populations 

in behaviour. For this reason, a neuronal ensemble was defined as a population of 

neurons which is reliably active during the repeated presentation of the same drug 

stimulus. 

Finally, on several occasions it was implied that the distinct neuronal populations 

activated by heroin and cocaine across the striatum are indicative of dissociated circuitry 

processing the acute effects of the two drugs. This claim warrants a clarification of what 

is meant by a “circuitry”, and why distinct neuronal populations within the same brain 

area may be indicative of dissociated circuitries. The definition of circuitry used 

presently can be related (but not equated) to the Hebbian concept of “phase sequence”: 

the serial activation of cell assemblies bridging the gap between sensory input and 

motor output (Hebb, 1949). More specifically, a circuitry here is defined as all neurons 

activated in response to heroin or cocaine administration, the activity of which encodes 

for any of their subjective or overt behavioural effects. Dissociation of circuitries in this 

case implies that such neurons are characterised by one or more of the following: they 

comprise distinct neuronal populations within the same brain areas, they are embedded 

in different brain areas, they receive excitatory input from different up-stream sources 

(or combinations of sources), and/or send afferent projections to different down-stream 

targets (or combinations of targets), and/or exhibit distinct genetic/neurochemical 

profiles (e.g. express different receptors, release different neurotransmitters, etc.). The 

data presented in this thesis provides direct evidence for the first prerequisite for 

dissociated circuitries processing heroin and cocaine, but there is already existing 

evidence that the striatum is functionally and structurally organised to accommodate 

for the rest of the prerequisites as well, as described in continuation. 

First of all, MSNs and cortical pyramidal neurons are characterised by up- and down-

states meaning they alternate between highly polarised (-80 mV) vs. depolarised (-55 

mV) sub-threshold resting membrane potentials (J. A. Wolf, Schroeder, & Finkel, 2001). 

Action potential firing is rare during down-states and transition to up-states and spiking 
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activity is only possible with synchronised excitatory input coming from multiple sources 

converging onto single MSNs. Dopamine signalling through D1 receptors may further 

facilitate the transition to and the maintenance of up-states (O'Donnell, 2003). Thus, in 

order for MSNs to be excited (and to express IEGs), they must receive input from several 

sources which may include different combinations of amygdala, hippocampus, thalamus, 

PFC and VTA/SNc afferent inputs (Pennartz et al., 1994). Each of the brain areas sending 

these afferent projections i) may be affected differently by heroin, cocaine, and natural 

rewards (Chang et al., 1998; Mukherjee et al., 2018); ii) may contain neuronal ensembles 

involved in distinct functions (Warren et al., 2016; Zelikowsky et al., 2014), and iii) may 

be comprised of genetically distinct projection neurons. Thus, taking into account the 

integrative function of the striatum (i.e. the combined glutamatergic input it receives 

from multiple brain regions), the diverse connectivity and specialised functions of its 

input regions, and the necessity for synchronised excitatory input to elicit action 

potentials from MSNs, it is quite possible that distinct neuronal populations activated in 

the striatum represent activity within dissociated circuitries. Here it must be noted that, 

although the afferent inputs of the striatum from limbic and cortical areas are 

topographically organised in a ventromedial-dorsolateral fashion (see fig 1.1, p. 10), they 

are not constrained to perfectly defined striatal subregions, but are overlapping, with 

higher concentrations of certain afferents in e.g. shell vs core (Voorn et al., 2004). 

Further support for the possibility that distinct neuronal populations in the striatum 

pertain to distinct circuitries comes from the diverse output targets of the striatum, 

some discussion of which was presented in ch.1. More specifically, the cortico-striatal-

thalamocortical loops characteristic of the striatum are a good example of how parallel 

but distinct circuitries can pass through this brain area (Alexander, Crutcher, & DeLong, 

1990; Pennartz et al., 1994). 

It should also be taken into account that MSNs send collateral GABAergic projections to 

neighbouring MSNs. This mutual inhibition between MSNs is another functional-

anatomical feature predisposing the accumbens and rest of striatum to accommodate 

neuronal ensembles embedded in distinct circuitries – whilst one particular ensemble is 

active, it can decrease the activity in other ensembles so that only a particular 

computation is taking place over others. Lateral inhibition can also help in the formation 
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of well-defined activity patterns within ensembles; i.e. reduce the number of neurons 

active within a given ensemble, leaving more available neurons for encoding of other 

functions (Pennartz et al., 1994). 

Of course, all these characteristics of the striatum are only suggestive of the possibility 

that distinct circuitries process heroin and cocaine, in view of the data shown in this 

thesis. Further research is necessary to empirically ascertain the presence of such 

dissociated circuitries by incorporating i) viral tracing techniques to identify afferent and 

efferent input of heroin- and cocaine-activated neurons; ii) histochemistry – to assess 

for genetic differences between these neurons; and iii) opto- or chemogenetic 

techniques to look for functional differences of said neurons. 

2. Implications of main findings for addiction theory and treatment practice 

Theoretical implications  

Current theories of addiction have shifted their focus away from the acute effects of 

drugs in order to explain addictive behaviour through aberrant learning processes and 

long-term plastic changes in the brain. For example, incentive-sensitisation theory 

proposes that the crucial factor in drug addiction is the interplay between sensitised 

brain systems controlling motivation, and drug-associated stimuli to which these 

systems become hyper-reactive. Sensitisation can take many forms, and includes, but is 

not limited to, changes in dopamine transmission from the VTA, and glutamatergic 

transmission from the prefrontal cortex to the Nacc (Berridge & Robinson, 2016; M. E. 

Wolf, 2010). Frontal-striatal dysfunction theory further expands this view by proposing 

that dopamine signalling in the amygdala might be involved in the strengthening of 

associations between drug effects and stimuli from the environment. In addition, it 

suggests that hypofunction of the prefrontal cortex may result in diminished ability to 

control impulses arising from a hyper-reactive motivational system (Jentsch & Taylor, 

1999). Habit formation theory takes a somewhat different approach by suggesting that 

outcomes of behaviour in drug addiction become less and less able to control the 

behaviour, which becomes primarily dependent on stimulus-response associations 

(Everitt & Robbins, 2005). Regardless of the specific approach taken, there is an implied 

consensus between theories that the neurobiological and behavioural changes involving 
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the striatum and learning become relevant only following prolonged exposure to drugs. 

This framework has undoubtedly led to important insights into the psychobiological 

processes that underlie the maintenance of compulsive drug-seeking once it’s 

established. However, it still remains unclear which psychobiological processes give rise 

to addiction in the first place (Wise & Koob, 2014). Arguably, the early acute effects of 

drugs are important in this regard, because drug-induced behavioural and 

neurobiological changes have to begin somewhere. Knowing where in the brain drugs 

exert their effects initially and how (or if) these effects lead to pathological drug-taking 

is an equally important theoretical question to that of how addiction is maintained once 

it’s established. The studies presented here are a step towards answering these 

questions, especially considering the functional importance of IEG-expressing neurons. 

As discussed previously, neurons which express IEGs undergo changes in excitability, and 

are more likely to be incorporated in neuronal ensembles with a causal role in behaviour 

and perception. In addition, these neurons are more likely to undergo morphological 

changes. For example, silent synapses form preferentially in c-fos-positive neurons of 

the Nacc shell following repeated treatment with cocaine (Koya et al., 2012). Morphine 

treatment also results in the formation of silent synapses, albeit through different 

mechanisms (formation of new synapses vs. endocytosis of AMPA receptors at existing 

synapses, respectively (Graziane et al., 2016)). The findings presented here suggest that, 

at least initially, such changes may occur in an ensemble shared by heroin and cocaine 

in the Nacc shell. Conversely, different ensembles may undergo changes induced by 

each drug in the rest of the striatum.  

The functional significance of these convergent and divergent neurobiological changes 

following heroin and cocaine remain an open empirical question. That is, it remains to 

be determined if separation of neuronal ensembles within the same brain area leads to 

distinct behavioural effects of heroin and cocaine. Recently, it was shown that distinct, 

intermingled neuronal ensembles within the vmPFC can drive both reward and 

extinction memories for food (Warren et al., 2016). Thus, a separation of neuronal 

ensembles may indeed signify functional differences. 
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Possible implications for treatment and prevention of drug abuse disorders 

Treatments for addiction can be broadly classified in two main categories – behavioural 

psychotherapy and pharmacotherapy. Some types of behavioural therapies involve 

taking advantage of basic learning principles such as operant conditioning. For example, 

community-based approaches aim to encourage sobriety through positive social 

reinforcement (W. R. Miller, Meyers, & Hiller-Sturmhofel, 1999). Contingency 

management therapies reinforce abstinence through monetary or voucher prizes in 

exchange for drug-free samples (Petry, Martin, & Simcic, 2005). Cognitive-behavioural 

therapies usually involve training drug abusers to recognise and control triggers of drug 

craving, and craving itself (Carroll & Onken, 2005). Such approaches to addiction therapy 

do not have a direct connection to the neurobiology of the disorder. Yet, findings 

indicating dissociated neural substrates for different addictions may serve as proof of 

concept that heroin and cocaine addictions need to be conceptualised differently. For 

example, it has been shown that the environment can modulate the reinforcing (Caprioli 

et al., 2008; Caprioli, Paolone, et al., 2007) and subjective effects (Avvisati et al., 2016; 

Caprioli, Celentano, et al., 2007) of heroin and cocaine in opposite ways, as well as the 

propensity to relapse (Montanari et al., 2015). If behavioural therapies take into account 

high-risk factors for relapse and their management, there is good chance that these 

factors will be defined by drug-specific action in the brain at least to some extent. 

Pharmacotherapy for addiction involves the controlled administration of substances 

that either mimic the pharmacological effects of the abused drug, or reduce its 

reinforcing properties through blockade of its target receptors. The best known example 

is methadone substitution therapy for opiate addiction (Joseph, Stancliff, & Langrod, 

2000), but there are similar approaches for alcohol abuse (e.g. benzodiazepine 

treatment (Gatch & Lal, 1998)), as well as for nicotine addiction. More recently, research 

has focused on drugs that induce aversion to alcohol (e.g. ALDH inhibitors (Yao et al., 

2010)) or suppress the reinforcing properties of drugs through blockade of NMDA 

receptors (Bisaga & Popik, 2000). NMDA antagonists are also used for disruption of 

memories which underlie the conditioned effects of reward-associated cues in 

laboratory animals (Exton-McGuinness & Lee, 2015). With this new interest in NMDA- 

targeting drugs, a good understanding of the precise way the brain is encoding the 
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specific effects of drugs has a lot of relevance to pharmacotherapy. Given that drug-

induced brain changes and drug-related memories are a main driving force of drug 

addiction, and are dependent on the NMDA receptor, the ability to identify and target 

them with high specificity would be useful. In this context the separation of the neuronal 

populations encoding for heroin and cocaine effects is particularly relevant, as it implies 

that novel approaches may be more successful if they target drug-specific neural 

substrates instead of looking for a common substrate as a target. 

3. Future suggestions 

As already implied, the functional significance of the separation between neuronal 

populations responding to cocaine and heroin in the striatum remains to be determined. 

The Daun02 method and optogenetic manipulation of neurons activated during a 

specific event are useful tools in this regard. One suggestion for future research would 

be to test whether inactivation of neurons responding to cocaine can disrupt self-

administration and reinstatement of drug-seeking behaviour for heroin (or vice versa).  

In addition, it remains to be determined if there are any differences in terms of the 

genetic profile of neurons responding to the two drugs. A study using the fluorescence-

activated cell-sorting technique (FACS) has shown that striatal neurons expressing c-fos 

in response to a single injection of cocaine also express arc, and include mostly 

dopamine D1 receptor containing neurons. These strongly activated neurons also have 

increased levels of the phosphatase Mkp1, and reduced levels of the kinase Map2k6, 

meaning that p38 MAPK signalling might be attenuated in cocaine-activated striatal 

neurons (Guez-Barber et al., 2011). The selective expression of IEGs such as c-fos and 

arc in D1-expressing MSNs is not surprising considering that IEGs are expressed as a 

result of neuronal activity which involves depolarisation of the cell membrane and 

calcium influx. Calcium-initiated IEG transcription is moderated by D1 and D2 

dopaminergic receptors which stimulate and inhibit PKA, respectively (Tritsch & Sabatini, 

2012), and PKA is necessary for the phosphorylation of CREB which controls arc, homer 

1a and c-fos expression (Impey et al., 1998). In addition, activity at D1 receptors 

facilitates excitatory glutamatergic transmission in the striatum by increasing AMPA and 

NMDA receptor surface expression, enhancing currents through these receptors and 

inducing up-states in MSNs (Surmeier, Ding, Day, Wang, & Shen, 2007). Thus, it is likely 
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that activity at D1 receptors would have a facilitating effect on IEG transcription, and 

cells expressing D1 receptors would be more likely to express IEG compared to D2-

expressing MSNs. Cocaine has a direct effect on DA transmission through inhibition of 

DA re-uptake, while heroin’s effect is indirect and less pronounced (already discussed in 

chapter 1). Considering the separation of neuronal ensembles responding to cocaine 

and heroin as well, it is possible that the genetic profile of heroin-activated neurons will 

be different, and may include D2-receptor-expressing neurons. Future studies should 

address this question, because that would be the first step towards being able to identify 

and selectively target neurons that encode drug-specific information. 

Another possible line of investigation would be to examine the afferent and efferent 

projections of neurons responding to heroin and cocaine administration. Retro- and 

anterograde labelling techniques can reveal whether the two drugs preferentially 

engage neurons receiving information from different brain areas. Finally, the 

electrophysiological profile of neurons responding to cocaine and heroin can be 

determined using transgenic animals that express GFP under the promoter of IEGs such 

as c-fos and arc. 

Finally, it must be noted that, in the studies described so far in this thesis, no attempt 

was made to control for social factors on drug-induced IEG expression or reinforcement. 

The importance of social factors has recently begun to gain popularity in animal research 

of drug addiction (Heilig, Epstein, Nader, & Shaham, 2016), and studies modelling the 

effect of social factors on the reinforcing and motivating properties of heroin and 

cocaine have been taking place for a while. For example, a low dose of cocaine is more 

reinforcing, while a higher dose is less reinforcing in rats reared in isolation early in life 

(from postnatal day 21) relative to group housed rats, and isolated rats show higher 

levels of zif268 protein product in the Nacc shell and core, DMS and DLS following i.p. 

cocaine (Howes, Dalley, Morrison, Robbins, & Everitt, 2000). Accordingly, adult (42 days 

old) female rats who are housed individually have a higher break point on a progressive-

ratio schedule of cocaine reinforcement relative to pair-housed females (Westenbroek, 

Perry, & Becker, 2013). Heroin self-administration rates are also higher in adult isolated 

rats relative to pair-housed ones (Bozarth, Murray, & Wise, 1989). Finally, social 
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isolation facilitates the reinstatement if heroin-induced CPP (Turner, Sunohara-Neilson, 

Ovari, Healy, & Leri, 2014).  

While social isolation can promote the reinforcing and motivating properties of drugs of 

abuse, social interaction can serve as an alternative reinforcer acting in opposition to 

drug reinforcement. For example, social interaction can serve as a reinforcer in the CPP 

procedure, where one compartment can be paired with the presentation of a 

conspecific, while the other compartment is paired with drug administration. In such 

cases social interaction serves as a more potent reinforcer than cocaine, so that rats will 

choose the social-interaction-paired compartment over the cocaine-paired one. This 

effect is accompanied by reversal of cocaine-CPP-induced expression of the zif268 

protein in the Nacc, amygdala and VTA (Fritz et al., 2011). Finally, cocaine self-

administration is potentiated by the presence of a conspecific with access to cocaine 

during self-administration sessions, while decreased by the presence of an abstaining 

conspecific (Peitz et al., 2013; Smith, 2012). Thus, social factors can influence both the 

reinforcing properties of drugs and their ability to induce IEG expression.  

In the studies presented in this thesis, all rats were tested following individual housing, 

which may have facilitated IEG expression in response to cocaine, but also reduced their 

propensity to self-administer a high dose of cocaine (Howes et al., 2000). One possible 

suggestion for future research would be to examine if such an effect is present for 

heroin-induced IEG expression, in particular arc and homer 1a, which have not been 

examined so far. Social effects on heroin self-administration as a function of dose has 

also not been studied, and it would be of particular interest since it may explain why rats 

in the self-administration study (chapter 5) showed better performance on acquisition 

of heroin vs. cocaine self-administration at the doses used. 

4. Conclusion 

The common goal of the series of experiments presented in this thesis was to compare 

the acute effects of heroin and cocaine – namely, the pattern of neuronal activity elicited 

by the two drugs in brain areas believed to be central to the neurological basis of drug 

addiction. The catFISH technique was the most appropriate method for this purpose. It 

is one of few currently available techniques which allows for direct comparisons of 
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neuronal activity elicited by two separate stimuli, within the same experimental animal, 

and in deep subcortical brain areas. Despite some caveats, such as the interaction 

between drug injections administered 25 min apart, and the different levels of IEG 

expression between brain areas, the results suggests a significant separation between 

the neuronal populations responding to heroin and cocaine in the striatum. Although 

the functional significance of this separation could not be determined, it is safe to 

suggest that it exists and it should be taken into account by future studies. Overall, this 

thesis provides a proof of concept that heroin and cocaine are processed differently by 

the brain, even within a brain area considered to be the common substrate for the 

addictive properties of the two drugs. Future research should focus on characterising 

the neuronal populations engaged by heroin and cocaine in terms of their genetic profile, 

connectivity, electrophysiological properties, and the kind of behaviours for which they 

encode. 
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Representative images of cell nuclei (blue) expressing homer 1a (green) and arc (red) following cocaine administration. Scale bar = 100 µm 
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Heroin
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8 min 35 min
Nacc core DMS

8 min 35 min

Representative images of cell nuclei (blue) expressing homer 1a (green) and arc (red) following heroin administration. Scale bar = 100 µm 



Saline-Saline

Saline-Cocaine

Cocaine-Saline

H1a Arc H1a + Arc

Representative 
images of cell nuclei  
(blue) expressing 
homer 1a (green)
and arc (red) and 
merged images. 
Nacc core – saline 
control conditions. 
Scale bar = 100 µm.
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Cocaine-cocaine

Cocaine-heroin 100 µg/kg

Cocaine-heroin 200 µg/kg

H1a Arc H1a + Arc

Representative 
images of cell nuclei 
(blue) expressing 
homer 1a (green) 
and arc (red) and 
merged images. 
Nacc core –
experimental 
conditions. 
Scale bar = 100 µm



Nacc core coc-coc 5Z1

Image 1 (↑)
A representative image of the DMS of an 
animal that received two consecutive 
injections of cocaine after heroin and cocaine 
self-administration training. Note the lack of 
homer-1a-positive nuclei, and the low level of 
arc expression.

Image 2 (↓)
A representative image of the DLS of the same animal.

Image 3 (↑)
A representative image of the Nacc core of the same animal.
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