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SUMMARY 
 

Digital holograms has been developed and used in many applications.  They are a technique by 

which a wavefront can be recorded and then reconstructed, often even in the absence of the original 

object. In this project, we use digital holography methods in which the original object amplitude 

and phase are recorded numerically, which would allow these data be downloaded to a spatial light 

modulator (SLM). This provides digital holography with capabilities that are not available using 

optical holographic methods. The digital holographically reconstructed image can be refocused to 

different depths depending on the reconstruction distance. This remarkable aspect of digital 

holography as can be useful in many applications and one of the most beneficial applications is 

when it is used for the biological cell studies.  In this research, point source digital in-line and off-

axis digital holography with a numerical reconstruction has been studied. The point source 

hologram can be used in many biological applications. As the original object we use the binary 

amplitude Fresnel zone plate which is made by rings with an alternating opaque and transparent 

transmittance. The in-line hologram of a spherical wave of wavelength, 𝜆, emanating from the 

point source is initially employed in the project. Also, we subsequently employ an off-axis point 

source in which the original point-source object is translated away from original on-axis location. 

Firstly, we create the binary amplitude Fresnel zone plate (FZP) which is considered the hologram 

of the point source. We determine a phase-only digital hologram calculation technique for the 

single point source object. We have used a modified Gerchberg-Saxton algorithm (MGSA) instead 

of the non-iterative algorithm employed in classical analogue holography. The first complex 

amplitude distribution,𝑓𝑖(𝑥, 𝑦), is the result of the Fourier transform of the point source phase 

combined with a random phase. This complex filed distribution is the input of the iteration process. 

Secondly, we propagate this light field by using the Fourier transform method. Next we apply the 

first constraint by modifying the amplitude distribution, that is by replacing it with the measured 

modulus and keeping the phase distribution unchanged. We use the root mean square error 

(RMSE) criterion between the reconstructed field and the target field to control the iteration 

process. The RMSE decreases at each iteration, giving rise to an error-reduction in the 

reconstructed wavefront. We then extend this method to the reconstruction of multiple points 

sources. Thus the overall aim of this thesis has been to create an algorithm that is able to reconstruct 
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the multi-point source objects from only their modulus. The method could then be used for 

biological microscopy applications in which it is necessary to determine the position of a 

fluorescing source from within a volume of biological tissue. 
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1 CHAPTER 1 

1.1 Introduction 

Digital holograms have been developed and used in many applications since it is a technique that 

allows a wavefront to be recorded and then reconstructed even in the absence of the original object. 

Thus the digital holography shows capabilities are not available in the optical holography. In this 

project, we employ digital holography for this reason. The original object amplitude and phase are 

recorded numerically, therefore the resulting data can easily be sent to a spatial light modulator 

(SLM) [1]. Digital holographically reconstructed image can be refocused at different depths 

depending on the reconstruction distance. This is the remarkable aspect of digital holography that 

can be useful in many applications, one of the most beneficial being its use for the biological cell 

studies [2, 3].  In this research, point source digital in-line and off-axis holography with a numerical 

reconstruction has been studied. The point source hologram can be used in many biological 

applications [4, 5]. As the original object we use the binary amplitude Fresnel zone plate which is 

made by rings with an alternating opaque and transparent pattern [6-8]. For the in-line holography 

a spherical wave of wavelength (𝜆) emanating from the point source is used in the project. Also 

we use an off-axis point source in which the original object is located away from original. Firstly, 

we create a binary amplitude Fresnel zone plate (FZP) which is considered the hologram of the 

point source of the original object. 

We implement a phase-only Computer-Generated Hologram (CGH) calculation technique for the 

point source object. We use the modified Gerchberg Saxton algorithm (MGSA) instead of the non-

iterative recording methods used in classical holography. A schematic diagram of our proposed 

design technique is shown in Figure 1.1. 

Firstly, the complex amplitude distribution,𝑓𝑖(𝑥, 𝑦), which is the result of the Fourier transform of 

the point source phase is combined with a random phase and is the input of the iteration process. 

Second, this wavefront is transformed to the frequency plane by using a two dimensional fast 

Fourier transform (FFT). We apply the first constraint by removing the amplitude distribution 

directly calculated and replace it with the measured modulus but keep the phase distribution 

unchanged. We use the root mean square error (RMSE) measure to control the iteration process. 

The RMSE decreases at each iteration [9], giving rise to the name error-reduction approach. 
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1.2 Thesis Objectives 

The aim of this thesis is to create an algorithm that is able to reconstruct multi point source objects. 

The method could then be used for biological microscopy applications in which it is required to 

locate point scattering sources from within the volume of a cell cytoplasm. These practical 

applications are briefly discussed in Chapter 3. The major tasks to be solved in this thesis are: 

 Reconstruct a point source of light when the phase information is not known.. 

 The use of a random initial phase to control the quality of the final reconstructed image. 

 Modifying the Gerchberg-Saxton algorithm iteration and able to use it to solve the specific 

project problem. 

 

 

 

 

Hologram 

Plane 

Point 

Source 

Image 

f f 

Figure 1.1: Schematic diagram of the optical system 
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1.3 Methodology 

The method used in this project is to be applied in microscopy applications (for biological cells, 

for instance) [10-17]. The digital hologram can be recorded by more than one technique such as: 

a detour phase method; a kinoform; and an iterative Fourier transform. In this project we manage 

to create a good quality reconstructed hologram image using the kinoform technique. Our research 

started with creating a detour phase hologram and then the kinoform hologram. From the outcomes 

of both methods we analysed the quality of their reconstructed images and the kinoform image 

shows a better quality and high efficiency. We also applied a mask when we use the kinoform 

technique and studied the quality of the reconstructed image. 

Our project is to deal with the microscopy object and with only the intensity is known [18] and its 

phase needs to be reconstructed. The two techniques above (the detour phase and the kinoform) 

are not suitable to this task. We searched for other options to manipulate this project problem and 

the Iterative Fourier Transform Algorithm (IFTA) [19-21] is a highly efficient method to use. We 

modified this algorithm as we have only the intensity information of the original object (in 

combination with a random phase). The IFTA is based on using a Fourier transform between the 

hologram and the reconstruction plane for which constraints are imposed in each domain. Such 

iteration will continue to converge even if in some cases we find it is very slow [22, 23]. When the 

constraints are enforced strictly then we are able to generate a reconstructed image with low errors. 

In this project, we describe the iterative method and show results of computer experiments 

applying the technique to reconstruct the quadratic phase of a Fresnel Zone Plate (FZP). The 

iterative technique we use in Chapters 4 and 5 are very effective in solving the problem of 

reconstructing the quadratic phase of the FZP from only known modulus information of its Fourier 

transform.  

The results obtained by the iterative method could not have been achieved by any other practical 

technique. The results of the reconstruction of the point source object are particularly significant: 

they indicate the ability to obtain clear images of the original point source object and thus this 

technique should prove an important tool in a number of areas of optics and related fields.  
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1.4 Achievements 

The major contributions of this research are: 

 Using the modified Gerchberg-Saxton algorithm to reconstruct the binary amplitude 

Fresnel zone plate (FZP).  MATLABTM code was developed and used to calculate the 

optical fields for different distances between the point source and the hologram. The FZP 

thus has different features for each distance and the reconstructed images change 

accordingly. 

 Adding a random phase to the original object. As a first attempt, we add a random phase 

and we determine that the quality of the final hologram and reconstructed image depend 

on which initial phase we use. 

 We adapt the iterative Fourier transform algorithm (IFTA) and the error reduction 

algorithm to reconstruct the point source from only the known modulus. The original object 

is a grey-scale FZP which is assessed for many different propagation distances to show its 

effect on the final reconstructed image. 

 We use the root mean squared metric to measure the convergence of the algorithm to a 

solution which is the Fourier transform pair satisfying all the constraints in both domains. 

1.5 Related Research 

There are number of techniques have been used for digital holography and most of these techniques 

are based on a Fourier transform approach. Fourier holography is a good method to acquire an 

image reconstruction through Fourier transformation. The reconstructed images are not ideal due 

to noise and missing information.  

Since the invention of digital holography, many algorithms have been suggested to solve the 

problem of transforming a given light distribution into another desired light distribution. One of 

the best methods for this challenge is the iterative Fourier transform algorithm (IFTA). This 

algorithm is based on the process of iterating back and forth between two spatial planes related by 

a Fourier transform. The IFTA which is thus an error- reduction algorithm, was used by Gerchberg 

and Saxton for phase retrieval [24]. 

We modified the IFTA to solve the problem set for this project by containing only the intensity of 

the original point source object at the plane of the hologram. Also, there is another iterative 

algorithm which is due to Fienup [25-27]. This iterative algorithm, is mainly used to speed up the 
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convergence, so that the deviation between the obtained and desired amplitude can be made small 

enough. 

There is another technique to calculate a phase only hologram which is able to reconstruct a 3D 

object with higher image quality. This technique is based on IFTA which is employed between the 

hologram and a virtual intermediate plane [28-33]. The main advantage of using this technique is 

the computation time can be greatly decreased as compared to the conventional method. 

1.6 Thesis Outline 

The thesis is divided into six chapters. After the introduction and problem formulation, Chapter 2 

surveys major lines of research in the field of optical holography and different types of hologram 

recording techniques which includes in-line and off-axis holograms. Also, in this chapter we 

consider the Fourier plane hologram. Chapter 2 reviews the science of digital holography and 

covers in detail its practical implementation. We start by describing the first stage of any digital 

holographic process which is the recording stage. We study different recording techniques 

available and compare their strengths and weaknesses. We then examine the second stage of the 

digital holographic process, the different methods for identifying and removing of error terms 

inherent in digital holograms, which involve the in-line and off-axis digital holographic techniques 

used to record the holograms in this thesis. We then examine in this chapter the third stage of the 

digital holographic process, the reconstruction stage. There is more than one reconstruction 

algorithm available for digital holography and we review three of them. The last section of this 

chapter we review some applications of digital holography. 

In Chapter 3 we further reviews different types of the digital hologram. We review some of the 

classic techniques of generating Computer Generated Holograms i.e. the Detour-Phase hologram 

and the Kinoform techniques, and then study some more modern methods of generating CGHs 

such as the Iterative Fourier Transform Algorithm (IFTA). Also, we examine the coded mask 

technique for an example object (Lena image), considering different sizes of random masks that 

have been used. 

In Chapter 3 we detail the fundamental theory of digital holography and examine the first method 

of recording a computer-generated hologram (CGH) that was proposed by Lohmann and his 

collaborators that required only amplitude binary media. In this technique, an elementary cell of 

the medium is allocated for reproducing the amplitude and phase of each sample of a discretely 
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sampled hologram. The modulus of the complex number can be represented by the size of the 

opening in the aperture in the cell and the phase can be represented by the position of the opening 

within the cell (the so-called detour phase technique). 

The second technique we present in this chapter is the kinoform method which is a special 

hologram encoding technique where only phase information can be recorded. The kinoform is thus 

a CGH in which the phase data are recorded in a phase-only medium while the amplitude data are 

ignored. 

Although, we ignore the amplitude in the recording stage, this results in hologram reconstructions 

with substantial distortions such as the appearance of speckle noise in the reconstructed image. 

The main advantage of using the kinoform hologram is the saving of energy of the reconstruction 

wave light without it being absorbed in the hologram plate. 

Also in this chapter we detail the iterative Fourier transform algorithm (IFTA) which is the 

technique we use to implement the method described in this thesis which is the reconstruction of 

the phase of an original object from only the known modulus. 

The IFTA has been used in computer holography to smooth the power spectrum and to reduce the 

influence of speckle noise in the reconstructed holographic image. The main application of the 

IFTA is for its use for phase retrieval. For this, it has been applied in many fields such as astronomy 

and electron microscopy. We also describe digital hologram applications such as for three 

dimensional displays, spatial filters and optical testing. 

In Chapter 4 we develop the technique of reconstructing a point source object from only its 

modulus information by using the modified GS algorithm. We apply the modified GS algorithm 

for the case where there are two point sources to be reconstructed from knowledge only of their 

intensity at the output plane of the system.  

Chapter 4 then describes how the IFTA can be used to reconstruct the original phase of the point 

sources at the plane of the hologram from only modulus information available in the output plane 

of the system. In this chapter, we present the binary Fresnel zone plate (FZP) which are optical 

diffractive elements that focus a beam in a similar manner as in a conventional refractive lens. The 

FZP consists of several radially symmetric rings which called zones. Zones interchange between 

opaque and transparent. Also, we examine the use the sinusoidal zone plates. These FZPs differ 

from the traditional binary zone plates in that the transparency of the sinusoidal FZP varies 

sinusoidally from the center of the zone plate, unlike the binary FZP which are either fully 
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transparent or opaque. We examine use the sinusoidal FZP in Chapter 4 and 5 as test objects to 

determine how effectively the ITFA can reconstruct the unknown phase distribution. 

In Chapter 4we present the method of reconstruction of the quadratic phase FZP from only the 

known modulus of its Fourier transform. The problem is to find an object that is non-negative with 

the modulus of its Fourier transform equal to the measured modulus. 

We use the modified iterative Fourier transform to match this problem by setting a new set of 

object constraints, and designate this as the error-reduction approach. We summarise this approach 

in a diagram showing all separate stages comprising the algorithm. 

In Chapter 5 we introduce multiple point sources and apply a similar method to that described in 

Chapter 4 in to determine their locations. 

Chapter 6 concludes by summarising the results of the thesis and considering some directions for 

future work. 
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2 CHAPTER 2 

2.1  Background 

Introduction 

Holography is a technique that has been used in many fields in the world as it is able to generate a 

3D image of any object without requiring complex optical devices for the reconstruction to be 

generated. 

Holography was initiated in 1947 by the British/Hungarian scientist Dennis Gabor who developed 

the theory of holography while working to improve the resolution of an electron microscope. The 

term Hologram comes from the Greek words Holo, meaning “whole” and gramma meaning 

“message” [34].  

The art of holography has undergone many changes since its invention. The methods and principles 

of holography have been modified and improved through the years to realise better efficiency and 

quality. Everyone will encounter holography very soon as it will be applied in everyday life and 

in many fields. 

In general, holography consists of two stages. The first process is the recording stage, and Gabor 

proposed a method of recording both amplitude and phase information of light diffracted off an 

object by recording the intensity of the interference pattern between the light and a coherent 

reference beam. An image of the original object can be obtained from the recorded interference 

pattern. He called the recorded interference pattern a hologram, meaning total recording. 

In the recording stage, the hologram is encoded on a holographic recording medium by using two 

mutually coherent light beams. Before the invention of the laser (i.e. a powerful coherent light 

source), holograms were not easy to generate. The invention of the laser was the achievement that 

made creating and reconstructing holograms much more practically possible.  

There are many methods of generating an optical hologram and each one has its own merits and 

drawbacks. In this chapter the basic theory of optical holography, the techniques and methods 

available for constructing and reconstructing optical holograms and some holographic applications 

will be described. 
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2.2 Optical Holography 

Optical holography is the technique that employs laser light for recording and reconstructing 

information using a high resolution photographic plate. This was the first and the most popular 

technique for making holograms which requires the presence of a real object with a further 

restriction that the real object should be highly stable. The reconstruction stage can be done by 

using either laser light or white light depending on the exact nature of the recording. This technique 

can create a good quality hologram which reconstructs an image that is very close to the original 

object. There were no electronic devices that were employed in the construction and reconstruction 

using this technique and that is the reason this method is called the optical holography.  

2.2.1 Basic Principle of Holography 

Figure 2.1 shows a schematic of holographic recording. This process consists of the light source, 

original object, and the film (the recording device). The light source should be of sufficient 

coherence. Before the invention of the laser (i.e. a coherent light source), holograms were difficult 

to create. The invention of the laser was the event that made creating and observing holograms 

more easily achievable. Using a thermal light source, certain conditions are required to observe 

the hologram.  

 

Figure 2.1: Recording stage of the optical hologram [35] 

 

The lack of light with a good coherence (i.e. monochromatic , from a single spatial point) in the 

early years of holography was the most restricting factor in producing a hologram of any depth of 
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focus. The mercury lamp was the most coherent light source available for making holograms at 

that time in the 1950’s. Figure 2.1 illustrates that the light can be considered as splitting into two 

waves. The first wave is the object wave which is scattered from the object and propagates to the 

recording medium. The second wave is called the reference wave. This undiffracted wave 

illuminates the film (recording medium) directly. The two waves will interfere on the film to create 

the recorded interference pattern. The film (photographic plate) is then developed chemically to 

generate the recorded interference pattern. This interference pattern is now called the hologram. 

The hologram records all the information in the light field which was diffracted from the object, 

i.e. the phase and amplitude of the diffracted field is recorded. 

The second stage of the optical holography process is called the reconstruction. In this stage, the 

hologram is illuminated with only the reference beam. Figure 2.2 shows a schematic of the 

reconstruction of an optical hologram.  

 

 

Figure 2.2: Reconstruction stage of the optical hologram [35] 

 

The Figure 2.2 shows the hologram illuminated with only the reference beam. A viewer looking 

through the hologram observes two images. The first image is the virtual image of the object which 

looks like the original object. Another image is the real image of the object. The two images and 

the other wavefronts reconstructed by the hologram will be described further shortly. The 

reconstructed image shows all effects of variable view angle and depth of focus. Now, we can 

explain the recording and reconstruction stages mathematically, as follows. 
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The light passing through a semi-transparent object consists of the scattered wave𝑈𝑜(𝑥, 𝑦), which 

is the object wave and the unscattered reference wave with field 𝑈𝑟(𝑥, 𝑦) .  

The complex amplitude of the object is given by: 

                            𝑈𝑜(𝑥, 𝑦) = 𝐴𝑂(𝑥, 𝑦)𝑒𝑖𝜙(𝑥,𝑦)                                           (2.1) 

where 𝐴𝑂(𝑥, 𝑦) is the amplitude, and 𝑒𝑖𝜙(𝑥,𝑦) is the phase. 

The reference wave is given by: 

 

                             𝑈𝑟(𝑥, 𝑦) = 𝐴𝑟(𝑥, 𝑦)𝑒𝑖𝜓(𝑥,𝑦)                                          (2.2) 

 

where 𝐴𝑟(𝑥, 𝑦) is the amplitude, and 𝑒𝑖𝜓(𝑥,𝑦) is the phase. 

At a distance 𝑧 behind the object, the detector (a photographic film during Gabor’s time) records 

an intensity distribution generated by the interference of these two fields [36-37]: 

                          𝐼(𝑥, 𝑦) = |𝑈𝑜(𝑥, 𝑦) + 𝑈𝑟(𝑥, 𝑦)|2                                        (2.3) 

which, when expanded, becomes: 

   𝐼(𝑥, 𝑦) = |𝑈𝑜(𝑥, 𝑦)|2 + |𝑈𝑟(𝑥, 𝑦)|2 + 𝑈𝑜(𝑥, 𝑦). 𝑈𝑟
∗(𝑥, 𝑦) + 𝑈𝑜

∗(𝑥, 𝑦). 𝑈𝑟(𝑥, 𝑦)              (2.4) 

 

If we assume a linear response to intensity associated with the photographic film, then we will find 

that its transmission function has the form: 

                           𝑡(𝑥, 𝑦) = 𝑎 + 𝑏𝐼(𝑥, 𝑦)                                                   

(2.5)where 𝑎 and 𝑏 are constants. Thus all information about the object is in the transmission 

function𝑡(𝑥, 𝑦). 

Reconstructing the hologram requires illuminating the hologram with a wave similar to the 

reference beam. The field scattered from the hologram derives from the product between the 

illuminating plane wave 𝑈𝑟(𝑥, 𝑦) and the transmission function𝑡(𝑥, 𝑦). Thus we obtain: 
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                        𝑈(𝑥, 𝑦) = 𝑈𝑟(𝑥, 𝑦). 𝑡(𝑥, 𝑦)                                                  (2.6) 

= (𝑎 + 𝑏[|𝐴𝑜(𝑥, 𝑦)|2 + |𝐴𝑟(𝑥, 𝑦)|2 + 𝑈𝑟(𝑥, 𝑦)∗. 𝑈𝑜(𝑥, 𝑦) + 𝑈𝑟(𝑥, 𝑦). 𝑈𝑜
∗(𝑥, 𝑦)]). 𝑈𝑟(𝑥, 𝑦)          

                (2.7) 

The first term of Eq. 2.7 spatially constant. The second term can be neglected, since if we compare 

it with the third and fourth terms we can see that for the hologram (transparent object) the scattered 

field is much weaker than the unscattered field i.e. |𝑈𝑟(𝑥, 𝑦)| ≫ |𝑈o(𝑥, 𝑦)|. 

The third term in Eq. 2.7 represents the virtual image. The virtual image will appear at the same 

position of the original object. The fourth term represents the real image which appears at the 

opposite side of the hologram. Both images together are called the twin images. The virtual image 

is the most important part of Eq. 2.7 which is called virtual because the waves that create this 

image are divergent from the hologram. The virtual image appears to originate at a distance z in 

front of the film. The reconstructed image will move if we use a different wavelength in the 

reconstruction stage to the wavelength used in the recording stage. 

2.2.2 Methods in Optical Holography 

There are many techniques that are available to produce the holographic image. Each technique 

has its own advantages and disadvantages. This section will discuss ‘in-line’, and ‘off-axis’ 

techniques. 

2.2.2.1 The In-Line Hologram 

In 1948 Gabor developed the theory of holography while working to improve the resolution of 

electron microscopy. As stated above, the term holography indicates that we record the intensity 

and phase of the object, not only the intensity as in case of photography. The Gabor hologram has 

inherent distortion and creates twin images. Also, Gabor’s holography used a mercury arc lamp as 

the light source and so was limited to reconstructing transparencies.  

Figure 2.3 shows the original set up for the recording stage of Gabor’s in-line hologram. In this 

technique, the illumination beam doubles as the reference beam. The light passing through a 

partially transparent object consists of the scattered and unscattered field. At a distance 𝑧 behind 

the object, the detector (photographic film during Gabor’s time) records an intensity distribution 

generated by the interference of these two fields [38]. 
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The second process, known as the reconstructing stage is shown in Figure 2.4. After the recording 

medium has been developed, Gabor illuminated the hologram with the reference beam which is 

similar to that used in the recording stage. The field scattered from the hologram originates from 

the product between the illuminating plane wave and the transmission function (𝑡). Then we 

obtain: 

𝑈(𝑥, 𝑦) = 𝑈𝑟 . 𝑡(𝑥, 𝑦) 

𝑈(𝑥, 𝑦) = 𝑈𝑜(𝑎 + 𝑏|𝑈𝑜|2 + 𝑏𝑈𝑜 . |𝑈1(𝑥, 𝑦)|2 + 𝑏|𝑈𝑜|2. 𝑈1(𝑥, 𝑦) + 𝑏𝑈𝑜
2. 𝑈1

∗(𝑥, 𝑦)                  (2.8)                              
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Figure 2.3: In-Line holography: recording stage 
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If the original object is simply an axial point which emits a spherical wave, using a plane reference 

wave will result in a hologram which is a Fresnel zone lens. There are two images that will be 

generated in the reconstruction stage which are the virtual and real images. The virtual image will 

appear to be formed at the original object position and the real image will be formed at the opposite 

side of the hologram at the same distance.  

This technique has some disadvantages. The virtual and real images are located on the same axis 

and so interfere. Thus the blurred and twin image overlap in the reconstruction, all the light beams 

travelling together in the same direction since there is no angle between the object and the reference 

beams. The twin image problem cannot be solved using this technique. Thus the in-line technique 

cannot be applied to highly reflective objects. The problem can be solved by using an independent 

reference beam. Also, there is a safety issue in using the in-line technique as the observer during 

the reconstruction stage looks directly into the reconstruction light which can be harmful if too 

bright. 

The main advantage of this technique is that the setup needed is very simple and the light required 

to achieve the holographic image can be low in coherence. Also, we can use only a single beam 

for the recording and reconstruction stages. 

Zo 

Hologram 
Virtual Image Real Image 

Zo 

Figure 2.4: In-Line holography: reconstruction stage 
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2.2.2.2  The off-Axis Hologram 

The setup of the recording and reconstruction for off-axis holography is shown in the Figure 2.5 

and Figure 2.6, respectively. 
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Figure 2.5: Off-axis holography: recording stage 
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Gabor was tied to the use of the in-line technique due to the lack of coherence of the light sources 

at that time.  There was no significant development of holography in the next decade (i.e. the 

1950s) because the light sources available at that time were of very limited temporal coherence. 

However, this problem was overcome in 1960 with the invention of the laser which soon provided 

a fully coherent light source which it was possible to concentrate into a narrow beam of intense 

light which was ideal for recording holograms. 

Real Image (Conjugate) 

Hologram 

Reference Wave 

Z 

X 

Figure 2.6: Off-axis holography: reconstruction stage 
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In 1962, Emmett Leith and Juris Upatnieks recognised that the holographic method could be used 

to create a three dimensional visual medium. They duplicated Gabor’s technique using a laser 

source and an “off-axis” technique which resulted in the production of images with clarity and 

realistic depth [39]. 

The main difference between the in-line and off-axis methods of producing the holographic image 

is that a reference beam is split from the laser source and arranged at an angle to the recording 

medium rather than along the direction of the object beam as in the in-line technique. The benefit 

of having the angle between the two light beams is that it provides a carrier frequency to the signal 

and this leads to resolving the twin image overlap problem that occurs with the in-line technique: 

𝐼(𝑥, 𝑦) = |𝑈𝑜|2 + |𝑈𝑟|2 + 𝑈𝑜
∗𝑈𝑟 + 𝑈𝑜𝑈𝑟

∗                                                                      (2.9) 

 

𝐼(𝑥, 𝑦) = |𝑈𝑜|2 + |𝑈𝑟|2 + exp (
𝑖𝜋

2
) 𝑈𝑜

∗𝑈𝑟 + exp (−
𝑖𝜋

2
)𝑈𝑜𝑈𝑟

∗                            (2.10) 

 

where, 𝑈𝑜(𝑥, 𝑦)and 𝑈𝑟(𝑥, 𝑦)=𝐴𝑟 exp (𝑖2𝜋𝑞𝑥) represent the object and reference beam complex 

amplitudes respectively. 𝑞 denotes the spatial carrier frequency introduced by the angle between 

the object and the reference waves.  

The only disadvantage of this technique is that it is difficult to use it directly in digital holography 

as the density of fringes increases with the angle between the object and reference beams which in 

turn leads to the requirement to increase the sampling rate in the digital hologram resulting in time 

consuming calculation of the diffraction pattern. Digital holograms, particularly early realisations, 

thus generally used the in-line holographic arrangement. 

Figure 2.5 and Figure 2.6 illustrate the off-axis arrangement. In the construction stage, as shown 

in the Figure 2.5, the incident beam is diffracted from the object and interferes with the reference 

beam in the recording medium. The incident beam is split into two beams before reaching to the 

object, one of which illuminates the object and the other forms the reference beam. The reference 

beam is directed at an angle with the object beam as discussed earlier. In the reconstruction process, 

as shown in Figure 2.6, the hologram is illuminated by a reconstruction beam which is arranged to 

be in the same direction of the reference beam in the recording stage.  
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2.2.2.3 The Fourier hologram 

Figure 2.7 and Figure 2.8 show the recording and reconstruction configurations of the Fourier 

holographic arrangement. In the recording stage, the object wave is positioned in the first focal 

plane of the converging lens, and the reference wave is emitted from a point light source which is 

in the same plane. The recording medium (photographic plate) is placed at the other side of the 

lens in its back focal plane. When the recording of the hologram is completed, the reconstruction 

is implemented using the setup in Figure 2.8, in which the hologram is illuminated with a plane 

wave which results in the generation of two images in the back focal plane of the lens. Also, an 

undiffracted portion of the reference wave produces a zeroth diffraction order on-axis. 
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Figure 2.7: Optical system to implement Fourier holography: recording 
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The main advantage of using the Fourier hologram is that the reconstructed image does not 

translate when the hologram is translated in its own plane.  

2.3  Optical Holography Applications  

The technological applications of optical holography since its invention include:  

(1) The Holographic approach improves heads-up displays for aircraft and cars. Head-up 

displays are transparent devices that can be used to provide information e.g. flight data and driving 

directions. The data and directions display on the windshield. The optical hologram approach make 

heads-up displays easier to use and increase the range of the view [40]. 

(2) Holography and credit card security. This technique is implemented by printing a plastic 

card which has multi-layer images that are arranged to be alternately visible at different viewing 

angles [41]. 

Hologram 

Conjugate Image 

On-axis component- 

Component 

Image 

Figure 2.8: Optical system to implement Fourier holography: reconstruction 
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(3) High resolution imaging based on X-ray holography. The basic principle is that of in-line 

holography in combination with X-rays which produce a clear image at an atomic scale for the 

imaging of structures in the micrometre range. X-ray holography used at the atomic scale was 

proven by research by producing a hologram of atoms in the bulk of crystals [42, 43]. 

2.4 Conclusion 

This chapter has briefly described the major types of optically recorded hologram i.e. in-line and 

off-axis, their mathematical description and some of the applications to which the technique can 

be applied. Chapter 3 will discuss the computer generated holography (CGH). We will present the 

detour phase and the kinoform techniques of generating the hologram digitally. Also, will study 

the Gerchberg- Saxton algorithm and some of the CGH applications. The last part of the chapter 

will illustrate the iterative Fourier transform hologram and we able to run the MATLABTM code 

reconstruct the origin image and controlling its quality by applying different number of iterations.    
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3 CHAPTER 3 

3.1 Computer Generated Holography 

Introduction 

In 1965, Lohmann and Brown coded a hologram by using the computer [44], which they later 

called a Computer Generated Hologram (CGH). The first application was in applying the CGH as 

spatial filter. There is great motivation for producing a CGH. For instance, the CGH technique can 

be applied as the interferometric prototype for testing a complex optical surface during its 

manufacture. The recording process is made by computer and this will resolve any problem in the 

optical recording process such as: illumination coherence; vibration; or air turbulence. However, 

the main advantage for synthesising holograms is the fact that the object no longer needs to be 

physically present. As already mentioned, computer generated holograms have been used in spatial 

filtering experiments. Optically, there is always a problem to produce a reliable spatial filter with 

a high function efficiency. The CGH solved most of these difficulties which arise from complex 

division and other mathematical operations difficult to perform by optical and photographic 

methods. A binary transmittance pattern has been used instead of the sinusoidal fringe pattern of 

a classical hologram (i.e. an optically recorded hologram).  

For producing the CGH, we need four steps. First, we calculate the complex amplitude that results 

from the wavefront propagation from the object to the hologram plane. We have to consider the 

computer limitations and thus the calculated amplitude should be computed at a finite number of 

sampling points. Secondly, we encode the interference pattern as a simulation of the interference 

pattern made by interaction of the reference and object beams, as in the case of the conventional 

holograms.  

The last two steps are just to make the artwork and to change the hologram to the right size and 

lastly to just printing or displaying the hologram image. The CGH created from the sampled 

computed data would then allow reconstruction of the optical wavefront. 

Computer Generated Holography (CGH) deals with the technique that we use for producing the 

hologram digitally. In the holographic reconstruction, the recording hologram can be printed on a 

film or loaded onto a Spatial Light Modulator (SLM) [45]. 
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The CGH is a very flexible technique. First, a physical object is not needed. Thus the three-

dimensional objects do not have to exist in the real world. In other words, for encoding we can use 

just the mathematical description of the object. Second, there are different encoding techniques 

that have been developed for fitting various display devices and reconstruction methods. In this 

chapter, we first discuss some of the classic techniques of generating a CGH (the Detour-Phase 

hologram and Kinoform techniques) and then we review some modern methods of generating 

CGHs such as: the Iterative Fourier Transform Algorithm (IFTA) and the Phase Conjugation 

technique. These have very fast calculation times and a better quality of reconstructed image. Also, 

we describe the coded mask technique for an object (Lena image), considering different sizes and 

associated random masks. 

3.2 The Detour - Phase  

It is possible to use a gray scale output device to produce this type of hologram. However, it is 

easier to produce the hologram if we change the amplitude transmittance of the hologram to have 

two levels only i.e. zero or one and the hologram produced is then called a binary hologram. The 

first hologram created using this technique was called the detour phase hologram (DPH) and 

constructed without using a reference beam. To construct the detour - phase hologram, we have to 

apply first the discrete Fourier transform of the complex amplitude in the object plane. The 

complex amplitude of the object has to be divided in to NN  cells. These cells correspond to the 

𝑁 × 𝑁 coefficients of the discrete Fourier transform of the complex amplitude in the object plane. 

There is a single transparent area within the corresponding cell that represents each complex 

Fourier coefficient. The size of this transparent area is calculated according to the modulus of the 

corresponding Fourier coefficient. The position of the area within the cell represents the phase of 

the Fourier coefficient. Thus the detour - phase technique derives its name from the idea that the 

transparent area shifts in each cell to record the phase information at that sampled location in the 

plane of the hologram [46, 47]. 

The detour - phase method is the simplest technique that we can use to produce a computed 

hologram. It is based on making the transmittance of the hologram to have only two levels either 

zero or one. The hologram that is made by this technique known as a binary detour - phase 

hologram. 
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We calculate the phase to find the position of the cell, and in each cell we make an aperture with 

an area proportional to 𝑎𝑚𝑛 . The principle of the detour-phase hologram is that we can control the 

phase of the light by slightly shifting the centre of the aperture. Figure 3.1(a) shows the detour - 

phase binary hologram and Figure 3.1(b) shows the cell description. The open aperture size is 

mnmn qp   and is shifted by mna  along the x-direction, as shown in the Figure 3.1 (b). The binary 

hologram can thus be expressed by: 

                 𝐻𝑏(𝑥, 𝑦) = ∑ 𝑟𝑒𝑐𝑡(
𝑥−𝑥𝑚−𝑎𝑚𝑛

𝑝𝑚𝑛
,

𝑦−𝑦𝑛

𝑞𝑚𝑛
)𝑚,𝑛                                              (3.1)                                

MATLABTM code was written to generate a detour - phase binary hologram. We use 1616 pixels 

to construct each cell and each hologram has 6464 cells. There are 10241024 pixels in this 

hologram [48].  We have the ability to control the structure of the hologram by using a different 

number of pixels and a different number of cells. Most of the energy will concentrate on the zeroth-

order and that will produce a very poor quality hologram. To avoid this problem, we use a random 

- phase mask together with the object to flatten the object spectrum. 

  

                       (a)                                                                      (b) 

Figure 3.1: (a) the detour-phase binary hologram; (b) the cell description 
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We generate a detour phase CGH. In this hologram, we construct a cell by employing 16 pixels 

and each hologram consists of 64 cells. The total pixels in each hologram can thus be found by 

multiplying the number of the pixels by the number of the cells i.e. the total number of pixels in 

the hologram generated is 10241024 .  

3.2.1 The Detour - Phase Hologram with Random Mask 

The Figures 3.2, 3.3, and 3.4 illustrate our first attempt at making a detour - phase CGH. In this 

case we use a random phase mask. To make the image spectrum almost uniform, a solution is to 

allocate to images an artificial random phase component. In the binary hologram, as previously 

shown, we have to encode the object wavefront amplitude and phase. Displaying the image will 

represent only the amplitude of the image, however.  

Thus we cannot use visual observation to determine the object wavefront phase component. 

However, the object wavefront phase affects the object spectrum. There is always distortion of the 

object’s hologram in the recording stage because of the limitation of the hologram dynamic range 

and the quantisation. Using a random phase mask is the simplest way to distribute the object 

wavefront phase. This process makes the Fourier spectrum of the object more uniform over all of 

spatial frequencies. We use MATLABTM code to show how the random phase distribution 

enhances the reconstructed holographic image. Figures 3.2, 3.3, and 3.4 showing the detour phase 

CGH with a random phase mask. 

In our MATLABTM code, we quantized the modulus of the object wavefront to 16 levels. The 

phase of the object wavefront was quantized first to8 levels, shown in Figure 3.4. 

The size of each cell is 𝑝𝑚𝑛 = 9 pixels. To represent the modulus levels we choose the dimension 

of each aperture as 𝑞𝑚𝑛 = 1~16 pixels. The 8 levels of the phase in this case is represented by 

𝑎𝑚𝑛 = −4~3 pixels.  

Figures 3.2, 3.3, and 3.4 showing the detour phase hologram produced by the MATLABTM code 

developed. Figure 3.3 shows the hologram and Figure 3.4 illustrates the reconstructed image. The 

cell grids produce many diffracted orders of light. However, we use only specific diffracted orders 

of light to match with our calculations. The quality of the reconstructed image is not very high 

with the basic method. To improve the holographic reconstructed image, improving the diffraction 

efficiency by using a coding pattern device will be effective in this case.  
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The main disadvantage of the binary detour phase CGH is that to represent one Fourier coefficient 

requires a display device with many resolution elements. Even more demanding, three times the 

display resolution would be required when we record a three-colour separation binary detour phase 

CGH. 

                           

 

 

 

                                      (a) 

 

 

 

 

(a) 

 

 

(b) 

Figure 3.2: The Detour-Phase hologram with random phase: (a) the original 

object; (b) the object spectrum 
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Figure 3.3: The Detour-Phase hologram with random phase: the detour phase 

CGH 
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Figure 3.4: The Detour-Phase hologram with random phase: the 

reconstructed image. 
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3.2.2 The Detour - Phase Hologram without a Random Phase Mask 

Secondly, we attempt to generate the detour phase CGH for the object, i.e. the logo, without a 

random phase and we have written MATLABTM code to generate the recording process. Also code 

is used to reconstruct the holographic image. It is easy to notice that the reconstructed image is 

unclear and distorted because most of the energy is concentrated only in the zeroth - order and the 

effective dynamic range of the hologram so produced is reduced. 

There is not any reconstructed image when we perform the Detour - Phase hologram without using 

a random phase mask, as most of the energy concentrates into the zeroth-order. We can easily 

notice that the quality of the reconstructed image shown in Figure 3.4, although not good, is an 

improvement in comparison with the reconstructed image without a random phase shown in Figure 

3.6 (b) which is too weak to be observable.  

 

 

Figure 3.5: The Detour - Phase hologram without random phase: the original 

object 
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(a) 

 

 

 (b) 

 

Figure 3.6: The Detour - Phase hologram without random phase: (a); the 

object spectrum; and (b) the reconstructed image. 
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3.3 The Kinoform 

As we have seen in the previous section, the detour phase binary hologram technique records a 

sampled complex hologram and represents the modulus as well as the phase of the original object 

wavefront which we require to generate a computer generated hologram. The diffraction efficiency 

is the ratio of the intensities of the desired (usually the plus-first order) diffracted beam and the 

illuminating beam, measured when both beams are large enough to overfill the area of the detector 

being used. 

The diffraction efficiency of the detour phase technique is relatively low and the quality of the 

reconstructed image is poor and with a relatively unclear reconstructed image. Thus a new 

computer generated hologram method is needed to produce a reconstructed image with better 

quality. The kinoform was next computer generated hologram technique proposed. The kinoform 

is a computer generated hologram technique in which all the cells are completely transparent. The 

detour phase hologram technique as well as the kinoform technique are usually based on Fourier 

transform holography.  

The kinoform is a special hologram encoding technique to record a phase-only hologram. It is a 

computer-generated hologram in which we only record the phase of the object wavefront (the 

incident wave). The kinoform is computationally faster than the detour-phase and it is unnecessary 

to introduce the reference beam and consider the image separation calculations when we use the 

kinoform [49]. The kinoform hologram is classified as a Fourier hologram which we can represent 

by: 

)],(exp[),(),( yxiyxayxH                                                                         (3.2) 

where a(x, y) is the amplitude (i.e. the modulus) of the original object. The modulus should be 

uniform and so can be ignored in the kinoform technique. The magnitude of the Fourier 

coefficients are relatively unimportant when the object is diffusely illuminated, and so the object 

can be reconstructed by using only the values of the phases of the Fourier coefficients. 

A random phase mask should be attached to the object pattern to spread the energy across a wide 

spectrum and thus the modulus of the object wavefront will be uniform and unimportant in making 

the kinoform CGH. ),( yx is the object wavefront phase, and is what is used in the kinoform 
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technique. The phase ),( yx is thus the only term in Equation (3.2) we need to employ. To display 

the hologram we generate a gray level representation of the pattern which is proportional directly 

to the phase function ),( yx . To actually generate the hologram, however, we either employ a 

phase-only Spatial Light Modulator (SLM) [50, 51] or print the pattern on a photographic film. In 

the case of the gray-tone which is generated on photographic film, firstly, the pattern should be 

plotted correctly. 

Secondly, the film should be processed by bleaching which is a chemical process that converts an 

amplitude hologram into a phase hologram. Finally, the phase should be tailored to be 

between 0~2𝜋. If we fail to keep the phase in this range, the diffraction efficiency will be reduced 

and the zeroth order light will appear and this will affect the quality of the reconstructed 

holographic image. 

When not using the random phase mask in kinoform calculation, the reconstructed images from 

the kinoform are heavily degraded and appear like edge-only preserved images [52]. In addition, 

the kinoform cannot record a large object that exceeds the kinoform size because the object light 

does not spread widely. In order to avoid this degradation and to spread the object light more, the 

random phase mask is applied the kinoform calculation. 

In the kinoform hologram, we make a basic assumption by forcing the modulus a(x, y)to a 

constant value. We can then re-write Equation (3.2) as: 

    )],(exp[),( yxiyxH p                                                                            (3.3) 

The diffraction efficiency of the kinoform hologram can be very close to 100 0
0  because there is 

only one diffraction order from the kinoform hologram (i.e. it diffracts all the illumination it 

receives into a single diffraction order). In this technique, we do have to however keep phase 

retardation between 0 and 2p radians, as mentioned above.  

A MATLABTM code was written to generate a kinoform hologram. To do this, first we have to 

calculate the complex field of the object, then we extract the phase from the complex field so we 

can display only the phase. Figures 3.7 and 3.8 showing a kinoform with a random phase mask 
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and Figures 3.9 and 3.10 showing a kinoform without the random phase mask. In this case, even 

without random phase mask, we still obtain a reconstructed image. 

The main advantage of the kinoform computer generated hologram over the detour phase computer 

generated hologram is its ability to diffract all the incident light into the final image. However, we 

have to accurately keep the phase-matching condition. 

If we fail to satisfy the phase-matching condition we will end up with light that is diffracted into 

the zero order which can distort the reconstructed image. 

 

 
 

 

 

 

 

 

 

                               (a)   (b) 

  

Figure 3.7: The kinoform hologram with a random phase mask (a) the 

original object; and (b) the spectrum modulus 
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                (a)                                                                                     (b) 

  

Figure 3.8: The kinoform hologram with a random phase mask: (a) the 

spectrum phase; and (b) the reconstructed image. 
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         (a)                                                                                     (b) 

 

Figure 3.9: The kinoform hologram without a random phase mask: (a) the 

original object; (b) the spectrum modulus 
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(a)                                                                                 (b)                         

 

Figure 3.10: The kinoform hologram without a random phase mask: (a) the 

spectrum phase; and (b) the reconstructed image. 

 

3.4 The Gerchberg-Saxton Algorithm 

It is very noticeable that the kinoform reconstructed image has some noise corruption [53]. To 

optimize the computer-generated phase only Fourier hologram we have to use an iterative Fourier 

Transform Algorithm (IFTA) and so we use the Gerchberg - Saxton algorithm (GS) to implement 

the IFTA technique. 

The GS algorithm is an iterative algorithm to solve the problem of phase retrieval at two different 

planes, when at those planes only the field amplitudes are known and given that the fields are 

related by a Fourier transform [54]. We need to know only the phase distribution from one of the 

planes, and the phase distribution on the other plane can be found by performing the Fourier 

transform on the plane at which the phase is known. Figure 3.11 shows the Gerchberg-Saxton 

algorithm (GS) in diagrammatic form. The GS algorithm is an iterative algorithm [55] and in each 

iteration cycle the following steps are performed: 
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Figure 3.11: The Gerchberg-Saxton Algorithm [56] 

 

0. At the beginning, a field with an amplitude given by the square root of the expected irradiance 

and a constant phase is taken.  

1. The field is propagated from the image-plane to the object-plane. 

 2. The amplitude information is discarded, leaving only the phase information (for the phase      

mask). 

 3. The amplitude and phase of the illumination field are added to the phase information to obtain 

the resulting object field. 

 4. The field is propagated from the object plane to the image plane. 

 5. The resulting reconstructed image (square of the field amplitude) is compared with the expected 

one. By using the correlation between both images as a criterion, a decision is taken to finish the 

process or continue iterating. 

 6. The phase from the reconstructed image is combined with the field amplitude obtained from 

the expected irradiance, and the process is repeated from step 1 

The principle of making a phase-only hologram is that the amplitude of the reconstructed image 

must be proportional to the desired amplitude distribution which when it produces a small error  
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represents the condition to stop the iterative process. We use the root mean square error (RMSE) 

criterion between the reconstructed field and the desired field to control the iteration process. The 

RMSE decreases at each iteration and will be minimum when both amplitudes are equal. 

Figures 3.12 and 3.13 showing the result produced from application of the GS algorithm to the 

kinoform design. 

                                                           

                   (a)                                                      (b) 

 

Figure 3.12: The Gerchberg-Saxton algorithm result: (a) the original object; 

(b) the spectrum phase 
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Figure 3.13: The Gerchberg-Saxton algorithm result: the reconstructed 

image. 

 

3.5 Applications of Computer-Generated Holograms  

Holography is a method that is based on interference and diffraction phenomena of visible light. 

Holography is used to record the 3D information of the object into a hologram and reconstruct the 

3D image of the original object. Holographic optical elements (HOEs) are one of a number of very 

important applications of holography. 

The HOE is a holographic mirror which was developed by Denisyuk in 1962. After this Schwar et 

al. in 1967 used the hologram as a lens. The HOE is thus mainly is used to replace heavy and 

complicated optical elements which can be a mirror, lens or directional diffuser. One of the best 
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advantages of the HOE is that it can perform many functions with a single material. Thus HOEs 

are used in many fields like holographic projects, holographic memory and holographic printing. 

3.5.1 Basic Concept of the HOE 

The HOE can be a lens, mirror or filter and is made by using the holographic process. The concept 

of the HOE is that there are two beams, i.e. the object and reference beams which make an 

interference pattern in the recording material. The interference pattern of the two beams (object 

beam and the reference beam) records the information of the original object. In case of the original 

object as a lens, the interference pattern of the two beams will reconstruct the optical element that 

has a function of a lens. 

HOEs can be classified into two main types: thin and volume HOEs. The efficiency of a thin HOE 

is very low because the incident light beams are diffracted in different directions. Also, the incident 

angle affects the diffraction efficiency thus a small change of angle will change the diffraction 

efficiency. On the other hand, the volume HOEs have a high diffraction efficiency. Also, HOEs 

can be classified into transmission and reflection types depending on the geometry of the 

recording.  

HOEs have many advantages for use in current real life applications. The main application of 

HOEs is in constructing an optical system that is more efficient and lighter than a conventional 

optical system. This feature is making diffractive optics to be commonly used in many industrial 

fields. The large improvements in computing power in recent years is making computer generated 

holograms and the binary optics very interesting subjects for further research. 

3.6 The Iterative Fourier Transform Hologram 

When we reconstructed the image of the kinoform hologram there was still some noise even though 

the kinoform hologram image is better than the detour-phase hologram [57]. We used the 

Gerchberg-Saxton algorithm to improve the image reconstructed by the kinoform hologram. First 

we load an object (e.g. a camera acquired image), which has an amplitude distribution A(x, y). The 

amplitude of the reconstructed image must be proportional to the desired amplitude distribution 

A(x, y) which we can summarise by [58-60]: 
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                         F H p(x, y){ } = F e- jf (x,y){ } = A(x, y)e- jq (x,y)                                   (3.4) 

where f(x, y)is the phase of the hologram, and q(x, y) is the phase of the reconstructed light which 

expresses the hologram as a phase-only hologram. To improve the quality of the reconstructed 

image we apply a phase mask to the input pattern to widen the spectrum of the object. We thus 

apply the Fourier transform to the initial field (input pattern) which will be transformed to the 

spectral domain.  

In this hologram technique we have two constraints. The first one is that the spectrum modulus 

after Fourier transform should be uniform. We make the spectrum modulus unity without affecting 

its phase. After this we apply the inverse Fourier transform to the modified spectrum to take it 

back to the space domain. Then we apply the second constraint in the spatial (space) domain by 

making the modulus of the field equal to A(x, y) without altering its phase. The next iteration will 

take this field A(x, y) as the initial field. After we take the FFT and we will get a new modulus 

and we apply the constraints. The iteration process will stop when we achieve the goal of making 

the amplitude A(x, y) the modulus of the field without changing its phase. 

A MATLABTM code was written to enhance the kinoform hologram, Appendix C. Figure 3.14 as 

the initial field, the Lena image, and Figure 3.15 shows using the root-mean square error (RMSE) 

to show the relation between the RMSE and the number of iterations. In this code, we use a total 

number iterations of 100. From the Figure 3.15 we can see that the RMSE becomes very small 

with an increasing number of iterations. 

Figure 3.16 shows the reconstructed image when the number of iterations is equal to 100. Figure 

3.17 and Figure 3.18 showing same procedure when the number of iterations is only 10. We can 

easily see the difference between Figure 3.14 and Figure 3.18 (b). The image reconstructed by 

using 100 iterations appears clearer and has less noise. 
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Figure 3.14: Iterative Fourier transform hologram (number of iterations = 

100): the original object 
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Figure 3.15: Iterative Fourier transform hologram (number of iterations = 

100): the RMSE with number of iterations 
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Figure 3.16: Iterative Fourier transform hologram (number of iterations = 

100): the reconstructed image. 

 

 

Figure 3.17: Iterative Fourier transform hologram (number of iterations = 

10): the original object 
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(a) 

 

 (b) 

Figure 3.18: Iterative Fourier transform hologram (number of iterations = 

10): (a) the RMSE with number of iterations; and (b) the reconstructed 

image. 
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3.7 Conclusion 

CGHs are used in optics and can be applied in many fields such as: 3D television; diffractive 

optical elements; projection and encryption. The CGH can be classified into three types: complex 

amplitude CGHs; amplitude CGHs; and kinoforms. The kinoform CGH also called a phase-only 

CGH. The complex amplitude CGH reconstructs a high quality image but always needs an extra 

device which is enable to display the real and imaginary parts of the object beam. In the case of 

the amplitude CGH and kinoform CGH we take only either the real part or the argument part of 

the object light and so therefore there is no need for a special display device (SLM phase only) 

capable of full complex modulation of the wavefront. 

The light efficiency of the kinoform CGH is as high as 100% and always better than the light 

efficiency of the amplitude CGH. This explains why the image reconstructed by the kinoform 

CGH is a brighter image as compared to the amplitude CGH. Furthermore, the kinoform 

reconstructed image has no conjugate reconstructed wavefront, which can cause a problem in the  

amplitude CGH reconstruction.  

The kinoform CGH usually has a random phase applied to the original objected random phase 

diffuses the object light widely and this is very important in the recording stage of  the kinoform 

CGH. The reconstructed image will be very degraded if we ignore using the random phase. The 

main disadvantage of using the kinoform technique is the size of the original object should not 

exceed the kinoform size. If the object is larger than the kinoform it will not be fully recorded as 

some its beam will spread outside of the recording area.  

Despite using the random phase to solve the two problems, i.e. the edge enhancement of the 

reconstructed image and the narrow spreading of light, the reconstructed image will still suffer 

from speckle noise. There are many iterative techniques to improve the speckle noise of the 

reconstructed image such as the Gerchberg-Saxton (GS) algorithm, multi-random phase technique, 

one step phase retrieval technique and the pixel separation technique. The main disadvantage of 

using these techniques is their time-consuming nature because they involve many diffraction 

calculations. The random phase mask is a very useful technique to enable the reconstruction of a 

clear image. However, this technique cannot be used for a large object and three dimensional 

display as the reconstructed image should not exceed the kinoform size.
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4 CHAPTER 4 

4.1 Reconstruction the Quadratic Phase from the Modulus of its Fourier Transform  

 Introduction 

We can reconstruct the original object, including the Fourier phase when only the Fourier modulus 

is given, provided we have known constraints on the area of support in the reciprocal domain. In 

a Computer Generated Hologram (CGH) we can record almost any wanted phase distribution, 

contrary to optical holographic recording. We can use the iterative Gershberg-Saxton (GS) 

technique to recover unknown phase distributions and the iterative Fourier transform algorithm 

(IFTA) is also used to reduce the noise in the reconstructed image.  

One of the most important applications in digital holography is the synthesis of diffractive optical 

elements which are used to transform a given distribution of the light from one field distribution 

into another with the desired features. In the case where both the amplitude and the phase of the 

output distribution are of interest, the diffractive optical elements (DOE) must be capable of full 

amplitude and phase control. However, in the case where only the intensity of the output is 

required, the DOE can be constructed as a pure phase structure of the kinoform type. 

The iterative FT algorithm (IFTA) is a technique which is used to improve the reconstructed 

holographic image. Recently, double constraint IFTA has been developed [61, 62]. In this 

algorithm, the desired phase and amplitude distribution are constrained in the image field in each 

iteration [63-67]. The main benefit of using the IFTA is to eliminate speckle noise. The 

reconstructed image will be affected by a speckle noise [68-71] because of the phase fluctuation 

between adjacent sampling points [72]. 

The process of the IFTA involves light distribution being propagated between two planes. For a 

3D object reconstruction, this must thus be sliced first into many layers. The IFTA is thus applied 

between the hologram plane and each layer of the object. This will be time consuming and the 

iterations may not converge to reconstruct the original object.  

In this chapter, we apply an iterative Fourier transform algorithm (IFTA) to generate digital 

holograms from an initial digital image using intensity information only. The algorithm is 

implemented with our own MATLABTM code. We discuss an iterative computer method that can 
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be used to solve many problems in optics. This technique we use can be applied to two types of 

problems: (1) we use the Fourier transform pair having desirable properties in both domains, and 

(2) reconstruction of a point source object when there is only partial information available in any 

one domain. The benefit of the first method is to reduce the quantisation noise in the reconstructed 

image. A reconstruction problem appears when only partial information is measured or certain 

constraints are known a priori. The information available in any one domain is insufficient to 

reconstruct the object or its complex Fourier transform. Both the synthesis and the reconstruction 

problem can be expressed as follows when there is a set of constraints placed on an object and 

another set of constraints placed on its Fourier transform. We can then find the Fourier transform 

pair that satisfies both sets of constraints.  

4.2  Light Point Source 

The setup of recording a point source [73-77] hologram is shown in Figure 4.1 and Figure 4.2 from 

which we can observe that the holographic recording can be extended for an object by recording 

multiple point objects since any object can be considered as a collection of points.  
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Figure 4.1: Recording stage of off-axis hologram 
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To generate the Fresnel zone plate (FZP) [78], the point source hologram, the distance between 

each pixel of the FZP and the point source need to be considered. We calculate the phase of the 

wavefront according to the distance between the point source (the original object) and the 

hologram.  

The phase on the hologram is the combination of both phases; the object origin phase and the 

reference plane wave phase. The phase of the object wave varies periodically within a range 

between 0 − 2𝜋 with the distance between the point source and the hologram. In the reconstruction 

stage, the object wave interferes with the reference plane wave. The plane wave is a normal wave 

which is constant across the plane of the hologram, therefore we only consider the phase of the 

object’s wave. 

4.2.1 In-Line Hologram 

We start development of our code by constructing the Fresnel Zone plate (FZP) as shown in Figure 

4.3. We construct many examples of the FZP by choosing different distances 𝑧𝑜between our object 

(the point source) and the hologram (the photographic plate). In these figures a 0 to 2π phase shift 

is represented as a grey-level value, zero to black. 

 

Z 

Film 

Point Object 

Zo 

Reference wave - plane Object wave – spherical 

Figure 4.2: Recording stage of in-line hologram 
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                                                            (a)                         (b) 

     

                                                           (c)                          (d)    

Figure 4.3: On-axis Fresnel zone plate as a function of point source distance, 

𝒛𝒐: a) 𝒛𝒐 = 𝟐𝒎𝒎, b) 𝒛𝒐 = 𝟓𝒎𝒎, c) 𝒛𝒐 = 𝟖𝒎𝒎, and d) 𝒛𝒐 = 𝟏𝟎𝒎𝒎 
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4.2.2 Off-Axis Hologram 

Now the point source moves to a new place which is shifted from the (𝑥𝑜 , 𝑦𝑜) location and the 

centre of the zone plate translates accordingly. Therefore the FZP contains the complete 3D 

information of the point source. Figure 4.4 shows the off-axis FZP which represents the hologram 

of the point source.  

 

      

(a) (b) 

 

                                      (c)                                                    (d) 

    

                                                                              

Figure 4.4: Off-axis Fresnel zone plate as a function of point source 

location, 𝒛𝒐: a) 𝒛𝒐 = 𝟐𝒎𝒎, b) 𝒛𝒐 = 𝟓𝒎𝒎, c) 𝒛𝒐 = 𝟖𝒎𝒎, and d) 

𝒛𝒐 = 𝟏𝟎𝒎𝒎 
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4.3 The MGSA algorithm and the random phase effect 

Thus far we have covered the process of transformation of the point source object into a zone plate 

and this step is identified with the recording stage of the hologram. 

We then take the Fourier transform of the diffraction pattern recorded on the hologram to produce 

a complex spectrum. 

We sample the input image, as part of the sampling Fourier transform procedure. The number of 

frequencies in the Fourier domain corresponds to the number of pixels in the image domain, i.e. 

the array in both domains has the same size. We thus sampled the image in two dimensions as, 

M=256, and N=256 pixels. 

As the image is relatively large we use the fast Fourier transform (FFT) [79-81] to compute the 

spectrum efficiently. The spectrum is a complex array. It can be displayed as real and imaginary 

arrays, or as magnitude and phase. We are only interested in the phase information i.e.: 

𝑝ℎ𝑎𝑠𝑒 = 𝑎𝑛𝑔𝑙𝑒(𝐼(𝑥, 𝑦))                                                                           (4.1) 

where 𝐼(𝑥, 𝑦) represents the FZP (point source hologram) array, and angle is the phase of the array 

elements. We use a random phase [82-86] to reduce the dynamic range in the image intensity. We 

use different random phases which are listed in Table 4.1 and we show the results of using only 

the first two.  
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Table 4.1: Random Phase 

Type Expression 

Random phase 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝ℎ𝑎𝑠𝑒exp (−𝑗𝜋 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚( )) 

Random phase 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝ℎ𝑎𝑠𝑒 = exp (−𝑗𝜋 ∗
𝑟𝑎𝑛𝑑𝑜𝑚( )

256
) 

Random phase 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝ℎ𝑎𝑠𝑒 = exp (−𝑗𝜋 ∗
𝑟𝑎𝑛𝑑𝑜𝑚( )

2512
) 

Random phase 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝ℎ𝑎𝑠𝑒 = exp (−𝑗𝜋 ∗
10∗𝑟𝑎𝑛𝑑𝑜𝑚( )

512
) 

Random phase 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝ℎ𝑎𝑠𝑒 = exp (−𝑗𝜋 ∗
50∗𝑟𝑎𝑛𝑑𝑜𝑚( )

512
) 

Random phase 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝ℎ𝑎𝑠𝑒 = exp (−𝑗𝜋 ∗
1000∗𝑟𝑎𝑛𝑑𝑜𝑚( )

512
) 

 

The first random phase we use is:  

𝑟𝑎𝑛𝑑𝑜𝑚 𝑝ℎ𝑎𝑠𝑒 = exp (−𝑗𝜋 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚( )) and the reconstructed intensity distribution is shown 

in the Figure 4.5. Figures 4.5 and 4.6 show the intensity of the original point source. The difference 

between the two figures is because we use initially different random phases and even if we subtract 

the random phases they still have an effect on the reconstructed intensity of the original point 

source. 
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Figure 4.5: Intensity at zo for the random phase: 𝒓𝒂𝒏𝒅𝒐𝒎 𝒑𝒉𝒂𝒔𝒆 =

𝐞𝐱𝐩 (−𝒋𝝅 ∗ 𝒓𝒂𝒏𝒅𝒐𝒎( )) 

 

Where we use the second uniform random phase with uniform distribution which is 

𝑟𝑎𝑛𝑑𝑜𝑚 𝑝ℎ𝑎𝑠𝑒 = exp (−𝑗𝜋 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚( )/256), the reconstructed image intensity is altered as 

shown in Figure 4.6. 
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Figure 4.6: Intensity at zo for the random phase: 𝒓𝒂𝒏𝒅𝒐𝒎 𝒑𝒉𝒂𝒔𝒆 =

𝐞𝐱𝐩 (−𝒋𝝅 ∗ 𝒓𝒂𝒏𝒅𝒐𝒎( )/𝟐𝟓𝟔) 

  

In the next step we add the initial phase to the original image phase i. e.: (𝑝ℎ𝑎𝑠𝑒 +

𝑟𝑎𝑛𝑑𝑜𝑚 𝑝ℎ𝑎𝑠𝑒). During our simulations with the MATLABTM code, we determined that the 

quality of the final hologram and the reconstructed image depend on which the initial phase we 

use.  

A random phase is added to the binary object before calculating its 2D FFT, in order to achieve 

uniform amplitude in the Fourier plane. This random phase has no impact on the reconstructed 

image, as the human eye and a camera (along with any other optical detector) are sensitive to the 

squared modulus of the wave, not its phase. The idea for this particular method, like others, comes 

from what we normally think of as holograms, and it does not work for objects with low light 

scattering. The wave from the object has to be spread across a large area of the hologram, so 
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experimentally we would place a finely ground glass plate in its trajectory, just in front of the 

object plane. 

We then apply the Fourier transform (FFT) for the sum of the two phases i.e:                                       

 𝑆𝐸𝐹 = ℱ(𝑝ℎ𝑎𝑠𝑒 + 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝ℎ𝑎𝑠𝑒). 

The propagation algorithm we used in this project is a fast Fourier transform (FFT) propagation. 

It is based on the Gerchberg-Saxton iterative phase retrieval algorithm [87-95] and the Figure 4.7 

showing the modified Gerchberg-Saxton algorithm (MGSA). We will consider the steps of Figure 

4.7 in the next section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

We initially consider only the modulus of the field since the phase can be ignored in this step: 

 

                                𝑓𝑖(𝑥, 𝑦) = 𝑎𝑏𝑠(𝑆𝐸𝐹)                                                                            (4.2) 

 

This modulus forms the input to our error reduction iterative transform algorithm. 

 

𝑓𝑖
′(𝑥, 𝑦)

= |𝑓𝑖
′(𝑥, 𝑦)|𝑒𝑖Φ1 

FFT 

IFFT 

Φ1 
Φ2 

|𝑓𝑖(𝑥, 𝑦)|𝑒𝑖Φ1 |𝑔𝑖(𝑢, 𝑣)|𝑒𝑖Φ2 

 

|𝑓𝑖(𝑥, 𝑦)|𝑒𝑖Φ2 

 

𝑓𝑖(𝑥, 𝑦)  

Figure 4.7: General calculation algorithm of a MGSA in the Fourier 

domain 
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4.4 Error – Reduction Algorithm 

First, we modified the Gerchberg Saxton algorithm (MGSA) to solve our specific problem. We 

use our reduction algorithm which is shown in Figure 4.7. The object which is the point source is 

a real and nonnegative function. We set up constraints in both the spatial domain field and the 

frequency domain field. At the ith iteration, an estimate of the object 𝑓𝑖(𝑥, 𝑦) is obtained which is 

an estimate of the original object. We set up the iterative algorithm by marking the iteration 

number. The phase retrieval problem consists of estimating the phase of the complex-valued 

function from measurements of its modulus and additional a priori information.  

The first successful reconstruction method for phase retrieval using the GS iterative algorithm was 

for a different problem, i.e. reconstructing signals from intensity information only. We consider 

the situation where we have only the intensity of our object (the point source). The magnitude 

function is going to be the constraint function of our iteration algorithm. We thus modified the GS 

algorithm to solve the current problem. 

Firstly, we decided to reconstruct the binary amplitude FZP which is an array of zeros, the black 

areas, and ones which are the white areas. The reconstruction of the binary amplitude FZP is 

studied in detail in the next section. 

4.5 The Iterative Method 

There are many iterative methods, with a number of useful variations existing. We use the MGSA 

algorithm which was originally used to solve reconstruction problems in electron microscopy [96, 

97]. The MGSA we use is a succession of Fourier transforms which is made between the hologram 

and the reconstruction spaces while the required constraints in each domain are imposed. The 

constraint in the object plane implies that the transmission function is real and positive. We 

modified the GS algorithm so it can be applied to the current problem. 

We use the error-reduction approach to reconstruct the phase of the FZP. Each iteration of the 

algorithm we use consists of the following four steps as shown in Figure 4.7:  

Step 1: Fourier transform (FFT) the first estimated modulus of the object:   

     ℱ[𝑓𝑖(𝑥, 𝑦)] = 𝑔𝑖(𝑢, 𝑣). We are already introduced 𝑓𝑖(𝑥, 𝑦)in the Eq.4.2   
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Step 2: apply the known constraint in the Fourier plane; replace the magnitude of the resulting 

computed Fourier transform |𝑔𝑖(𝑢, 𝑣)| with the measured magnitude |𝑓𝑖(𝑥, 𝑦)| to form a new 

estimate of the Fourier transform. 

Step 3: Inverse Fourier transform (IFFT) the estimate of the Fourier transform. 

Step 4: Replace the magnitude of the computed signal |𝑓𝑖
′(𝑥, 𝑦)| with the measured signal modulus 

|𝑓𝑖(𝑥, 𝑦)|  to form a new estimate of the signal.  

We calculate the root mean square error (RMSE) to assess the quality of the resulting reconstructed 

image of the hologram. We need to calculate the RMSE in the Fourier (frequency) domain. The 

RMSE is the cumulative squared error between the iterated and original image. The formula for 

the RMSE is thus: 

             𝑅𝑀𝑆𝐸 =
1

𝑀𝑁
∑ ∑ [|𝑔𝑖(𝑢, 𝑣)| − |𝑓𝑖(𝑥, 𝑦)|]2𝑁

𝑥=1
𝑀
𝑦=1                                        (4.3) 

where |𝑓𝑖(𝑥, 𝑦)|is the modulus of the original image, |𝑔𝑖(𝑢, 𝑣)|is the modulus of the 

approximated version after the ith iteration, and 𝑀, 𝑁 are the dimensions of the images. A lower 

value for RMSE means less error and hence a more accurate reconstruction. 

In Figure 4.6 it can be seen that the input is 𝑓𝑖(𝑥, 𝑦) and the output is 𝑓𝑖
′(𝑥, 𝑦) .The iteration process 

should stop when |𝑓𝑖(𝑥, 𝑦)| ≈ |𝑓𝑖
′(𝑥, 𝑦)| i.e. with the measured modulus approximately equal to 

the computed modulus. 

We calculate the RMSE equal to only 0.5759  for the case where the random phase is  

𝑟𝑎𝑛𝑑𝑜𝑚 𝑝ℎ𝑎𝑠𝑒 = exp (−𝑗𝜋 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚( )) but it is equal to 0.6389 when we apply the random 

phase (     𝑟𝑎𝑛𝑑𝑜𝑚 𝑝ℎ𝑎𝑠𝑒 = exp (−𝑗𝜋 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚( )/256). Clearly, the uniform distribution for 

the random phase is preferable. 
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4.6 Results of Applying the Iterative Reconstruction 

Firstly, we try to reconstruct the binary FZP examples which are strictly transparent or opaque (1 

or 0). Figure 4.7 shows our first binary FZP where 𝑧𝑜 = 0.5 𝑚𝑚 is the distance from the point 

source to the film.  

        

Figure 4.8: Binary FZP, 𝒛 = 𝟎. 𝟓 𝒎𝒎 

 

The binary FZP, as shown in the Figure 4.8, is a series of concentric ring-shaped zones of radii 

𝑟𝑛 = 𝑟1√𝑛, 𝑛 = 1,2,3 which alternately absorb or transmit radiation.  

In the next step, we Fourier transform the diffraction pattern. This models the propagation through 

space where the light carries with it information on the amplitude and phase structure of the source. 

The amplitude and phase information can then be examined in the Fourier plane. We are only 

interested about the phase of the original object and Figure 4.9 illustrates the original phase after 

Fourier transformation.  

    

Figure 4.9: The original object Fourier plane phase 
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In the next step we add the random phase to our computed phase. Addition of random phase to the 

object wavefront is required in computer-generated holograms (CGHs) to widely diffuse the object 

light and to avoid its concentration on the CGH. Figure 4.10 shows an example of the random 

phase we employed which is a uniform distribution from 0 to 2𝜋 

      

Figure 4.10: Example random phase function 

 

This is now the addition of the two phases which is then Fourier transformed and results in the 

distribution shown in Figure 4.11. the intensity distribution is shown in Figure 4.12. 

 

Figure 4.11: Phase distribution (represented as a grey-level) of the Fourier 

transform of the Fresnel pattern plus random phase distribution 
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Figure 4.12: The intensity distribution of Figure 4.11 

 

4.7 The Iterative Method 

The GS iterative algorithm that we use is an example of a general class of iterative algorithm, and 

is described in terms of alternating projections onto convex sets. 

We are using the iterative method to help us to solve our problem by reconstructing the original 

object from only the intensity information. The iterative technique uses a succession of Fourier 

transforms between the object and reconstruction spaces while the required constraints in each 

domain are imposed. This iterative process can converged to a stable solution, although slowly in 

our case.  

The main principles of using the error reduction approach is to reconstruct the quadratic phase 

when only both moduli  are known (i.e. the modulus of the complex valued image and the modulus 

of its Fourier transform) and the phase is unknown. This is the process for the phase hologram that 

we mentioned earlier for which we use MGSA (the modified GS algorithm) to reconstruct the 

phase by using the iterative process. For a reconstruction problem, only partial information is 

available and we have only the modulus of the combination.  
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Thus 𝑓𝑖
′(𝑥, 𝑦) is the complex function in the object domain. A measure of the progress of the 

iterations, and a criterion by which the reconstruction error can be quantified, is defined already in 

Eq. 4.3. When the RMSE is near zero, then the object and its Fourier transform satisfy all the 

constraints, and a solution has been found.  

We use MATLABTM code to calculate the relation between the RMSE and the iteration number, 

Appendix D. Figures 4.13, 4.14, and 4.15 show the results for 10, 50, and 100 iterations, 

respectively. 

 

 

 

Figure 4.13: RMSE as a function of the number of iterations: 10 iterations 
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Figure 4.14: RMSE as a function of the number of iterations: 50 iterations 
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Figure 4.15: RMSE as a function of the number of iterations: 100 iterations 

 

Figures 4.14 and 4.15 are clearly shown that the error is reduced very rapidly for the first few 

iterations but more slowly for later iterations. 

The iterations thus make small changes by enforcing the intensity constraint. The phase will be the 

phase produced by the Fourier transform in the previous iteration step which is then the input of 

the next step in the iteration algorithm. 

After the iteration has finished, we need to subtract the random phase from the phase combination. 

We have to subtract the random phase, which is not needed anymore, as we need to reconstruct 

the phase of the original object.   

 Figures 4.16 and 4.17 illustrate the resulting phase obtained. We run the program for a different 

number of iterations as shown below. 
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                                                (a)  (b) 

Figure 4.16: Phase produced after a number of iterations: (a) 3, (b) 10 

iterations 

 

 

 

 

 

 

  

(a)                                                   (b) 

Figure 4.17: Phase produced after a number of iterations: (a) 50, (b) 100 

iterations 

 

As shown in Figures 4.16 and 4.17 we reconstruct the combination of the phases (the original 

phase and the random phase).In the next section we try to enhance these images by using averaging 

and median filters. 
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4.8 Image Enhancement 

The main purpose of the image enhancement we conducted is to improve the visible appearance 

of an image for human perception or further computational analysis. One of the techniques used 

for image enhancement is filtering. In this project, to enhance the phase produced after the 

iterations, we use two filters (mean and median filters) to try and filter out the noise. 

4.8.1  Mean Filter 

We apply the mean filter [98] which is a simple and easy approach that smooth the reconstructed 

images. The purpose of using this filter is to reduce the amount of intensity variation between one 

pixel and the next and we thus use it in our project to reduce the noise in the reconstructed images. 

The mean filter replaces each pixel value in the reconstructed image with the mean (average) value 

of its neighbours, including itself. We use a mean filter and Figure 4.18 the reconstructed phase 

after iteration completion and Figure 4.19 which show the resulting enhanced reconstructed images 

by using a 3 × 3 mean filter. 

 

   

Figure 4.18: reconstructed phase 
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 (b) 

Figure 4.19: enhanced image by applying mean 𝟑 × 𝟑 filter 

 

4.8.2 Median Filter 

We use the median filter [99] to reduce the noise in the reconstructed images. This works to 

preserve the main details of the image. In this filter each pixel in the image is considered in turn 

and its nearby neighbours decide whether or not it is representative of its surroundings. The median 

filter thus replaces the pixel with the median of the surrounding pixel values. Figure 4.20 shows 

the phase produced after the iteration result is enhanced by using the median filter with size256 ×

256. 

 

Figure 4.20: enhanced image by applying a median filter of size 𝟐𝟓𝟔 × 𝟐𝟓𝟔 
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4.9 Propagation of a Point Source 

As we discussed earlier, holography is a technique that can be used to record the amplitude and 

the phase of a light wave and once we know how a single point is recorded, the recording of a 

complicated object can be regarded as the collection of displaced points. The transformation of a 

point object to a zone plate on the hologram corresponds to a recording or coding process. 

In order to retrieve the point object from the hologram, we need a reconstruction process. We 

reconstruct our point source by illuminating the hologram with a reconstruction wave. In this work, 

we used a good learning about rapidly perform phase recovery and reconstruct the complex valued 

image of the point source. This process is very fast, requiring approximately 10 𝑠 in case of 100 

iterations. We validate this approach by reconstructing the quadratic phase for different distances. 

These results are in general applicable to phase recovery problem. The iterative technique is shown 

that is a very effective technique in solving these problems. The results are attained in the iterative 

technique could not have been achieved by other method. 

As outlined above, holography is a two-stage process. First a hologram is taken and stored 

digitally. Second, the role of reconstruction in holography is to obtain the 3-D structure of the 

object from the 2-D hologram on the screen, or, in technical terms, to reconstruct the wave front 

at the object. The outcome of this step is an image of the original object (the intensity of the 

wavefront at the object). 

In the case of digital in-line holographic microscopy (DIHM) and (also for off-axis holography), 

we can numerically reconstruct the holograms.  We use the numerical reconstruction of holograms 

in this project, which is based on reconstructing the samples of the object wavefront by using the 

discrete diffraction transforms.  The process of sampling the object wavefront is accomplished by 

the hologram sampling device and a computer, in which the object wavefront samples are 

numerically reconstructed from the hologram.  Briefly we can state that the reconstruction process 

is the stage where we compute the wave distribution over a surface as result of a diffraction 

process. The diffraction is a result of the interaction between the recorded hologram and the 

reconstruction wave. 
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4.10 Grey-Level Fresnel Zone Plate (FZP) 

The FZP is the hologram of a point source object, leading, as already described above, to the 

concept that the hologram of an arbitrary 3-D object can be considered as a collection of FZPs.  

We first consider the off-axis point source hologram which is the recording the point object at a 

distance 𝑧𝑜 from the recording film. The pinhole aperture is then considered as located at: (𝑥 −

𝑥𝑜 , 𝑦 − 𝑦𝑜) . The object wave is a spherical wave and interacts with the reference wave which is a 

plane wave. The interference pattern is recorded on the film and the intensity distribution on the 

film, the off-axis hologram, can be described by the relation: 

𝑡(𝑥, 𝑦) = A + B sin {
𝑘𝑜

2𝑧𝑜
[(𝑥 − 𝑥𝑜)2 + (𝑦 − 𝑦𝑜)2]}                                                               (4.4) 

where 𝑡(𝑥, 𝑦) is the intensity distribution that is recorded on the hologram, 𝐴 = 𝑎2 + (
𝑘𝑜

2𝜋𝑧𝑜
)2, 𝐵 =

𝑘𝑜

𝜋𝑧𝑜
, and 𝑘𝑜 = 2𝜋

𝜆𝑜
⁄ . Here 𝑎 is the amplitude of the plane wave (the reference wave). For 

simplicity, Eq. 4.4 can be written as 𝑡(𝑥, 𝑦) = 𝐹𝑍𝑃(𝑥 − 𝑥𝑜 , 𝑦 − 𝑦𝑜; 𝑧𝑜) which represents the 

sinusoidal Fresnel zone plate (FZP), a hologram of a point source object, for the off-axis situation. 

For an on-axis point source, 𝑥𝑜 = 𝑦𝑜 = 0, which is located at a distance 𝑧𝑜 away from the film. 

The on-axis (in-line) hologram (FZP) is then described by the relation:  

 

𝑡(𝑥, 𝑦) = A + B sin {
𝑘𝑜

2𝑧𝑜
[(𝑥2 + 𝑦2]}                                                                                     (4.5) 

𝑡(𝑥, 𝑦) = 𝐹𝑍𝑃(𝑥, 𝑦; 𝑧𝑜)                                                                                                          (4.6) 

 Thus a point source located on-axis relative to the centre of the zone plate is specified by the 

location, 𝑥𝑜 and 𝑦𝑜, of the point object. When the point source moves off-axis a sinusoidal spatial 

variation of the zone plate quadratic phase function is introduced. The first case we consider is an 

on-axis point source located at𝑥𝑜 = 𝑦𝑜 = 0.More generally a hologram can be formed of the point 

source object, located a distance of 𝑧𝑜 away from the film.  

For the method we are developing, we take the phase of the original object and add a random 

phase. We then take the Fourier transform of this phase distribution.  We decompose the result 

into the phase and modulus in the Fourier plane. We use the intensity as a constraint and through 
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application of the iterative algorithm estimate the modulus of the combination of the known 

random phase and the quadratic phase. The modulus of the phase combination, 𝑓𝑖(𝑥, 𝑦) , is Fourier 

transformed, yielding: 

                               𝑔𝑖(𝑢, 𝑣) = |𝑔𝑖(𝑢, 𝑣)|exp [𝑖𝜙2]                                                                   (4.7) 

We flow the general flow chart to reconstruct the quadratic phase as shown in Figure 4.21 
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Figure 4.21: Flowchart of the general MGSA 
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We consider only the phase. We have to make sure that |𝑔𝑖(𝑢, 𝑣)| satisfies the Fourier domain 

constraints. The new Fourier domain function is 𝑔𝑖(𝑢, 𝑣)which is formed from |𝑔𝑖(𝑢, 𝑣)| by 

making the smallest possible changes in |𝑔𝑖(𝑢, 𝑣)| that allow it to satisfy the constraints. For 

example, if the Fourier domain constraint is such that the Fourier transform has a modulus equal 

to|𝑓𝑖(𝑥, 𝑦)|, then:  

                                    𝑔𝑖(𝑢, 𝑣) = |𝑓𝑖(𝑥, 𝑦)|exp [𝑖Φ2]                                                                 (4.8)  

That is, the given (or measured) modulus |𝑓𝑖(𝑥, 𝑦)| is substituted for the modulus of |𝑔𝑖(𝑢, 𝑣)|and 

the phase of 𝑔𝑖(𝑢, 𝑣)is left unchanged. The resulting |𝑓𝑖(𝑥, 𝑦)|which satisfies the Fourier domain 

constraints is inverse Fourier transformed yielding the object domain function, 𝑓𝑖
′(𝑥, 𝑦). Then the 

iteration is completed by forming a new function 𝑓𝑖(𝑥, 𝑦) = |𝑓𝑖(𝑥, 𝑦)|exp [𝑖Φ1] by making 

𝑓𝑖(𝑥, 𝑦)satisfy the object domain constraints. The iterations continue until a Fourier transform pair 

is found that satisfies all the constraints in both domains. 

After all the iterations have finished, the reconstruction yields a phase that contains both phases 

(original object phase and the added random phase). We subtract the (known) random phase and 

we retain the original phase due to the field in the plane of the FZP originating from the point 

source. 

The next stage is to propagate the phase by a distance 𝑧𝑜 away from the hologram to determine the 

location of the point source in the object plane. 

We choose 𝑧𝑜 as 0.05, 0.1𝑚𝑚. The final stage is to calculate and display the reconstructed image 

of the original object i.e. the point source. This is calculated by Fourier transforming the field 

distribution at the plane of the FZP. The calculated intensity distribution, i.e. an estimate of the 

point source at 𝑧𝑜 distance away from the hologram, for a wide range of distances, is shown in 

Figures 4.22 and Figure 4.23, as grey-level plots, in isometric form in Figures 4.24, 4.25, 4.26,and 

4.27 and in cross-section in Figures 4.28, 4.29, 4.30,4.31,and 4.32 which is in the object plane. 
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(a) 

 

(b) 

Figure 4.22: Reconstructed point sources for different distances: (a) 0.05mm, 

(b) 0.1 mm 
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(a) 

 

(b) 

Figure 4.23: Reconstructed point source intensity for different distances: (a) 

20mm, (b) 100 mm. 
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Figure 4.24: Reconstructed point source intensity for distance 0.05mm 
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Figure 4.25: Reconstructed point source intensity for different distance: 0.1 

mm 
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Figure 4.26: Reconstructed point source intensity for different distance: 

20mm 
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(d) 

Figure 4.27: Reconstructed point source intensity for different distance: 

𝟏𝟎𝟎𝒎𝒎 
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Figure 4.28: Reconstructed point source intensity for different distance: 

0.05mm 
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Figure 4.29: Reconstructed point source intensity for different distance: 

0.1mm 
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Figure 4.30: Reconstructed point source intensity for different distance: 

20mm 
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Figure 4.31: Reconstructed point source intensity for different distance: 

100mm 
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Figure 4.32: Reconstructed point source intensity for different distance: 

𝟓𝟎𝟎𝟎𝒎𝒎 

 

As can be seen from Figure 4.32, at the very large distance of 5000 mm the reconstruction fails as 

this is too large a distance. There will be very little phase variation over the plane of the FZP for a 

location of the point source this far from the FZP, resulting in a very inaccurate estimate of the 

point source. As the distance between the reconstructed image and the hologram is close (i.e. 

0.05mm, and 0.1mm), the hologram can be regarded as an image hologram and we can thus see 

the reconstructed image. 
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4.11 Conclusion 

In this chapter, we have presented an iterative method for reconstructing the quadratic phase from 

the modulus of the Fourier transform. The process starts with making a FZP which represents the 

hologram of a point source (the original object). We take the Fourier transform and keep only the 

phase and add a random phase with uniform distribution. The Fourier transform decomposes the 

combination and we take only the modulus to be the input of the modified Fourier transform 

algorithm. We successfully run the modified Fourier transform algorithm (MGSA) which is an 

iterative algorithm transforming backward and forward for a certain number of iterations. 

The iterations were controlled by the root mean square error (RMSE) and we are able to track 

graphically the change in RMSE with the iteration number. The graphs show that the error reduces 

very rapidly for the first few iterations but more slowly for the later iterations. When the RMSE is 

zero, then the object and its Fourier transform satisfy all the constraints and a full solution has been 

reached. 

The known random phase is then subtracted from the phase produced as a result of the MGSA. 

We thus reconstruct the unknown quadratic phase which we are able to show it in more than one 

example. We demonstrate that the random phase used affects the quality of the reconstructed 

image. To validate our code, we back propagate the quadratic phase to reconstruct the point source 

giving rise to it at the plane of the hologram. We present the effect of the propagation distance on 

the quality of the reconstructed point source image with several examples. 
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5 CHAPTER 5 

5.1 Multiple-Point Source Locations 

Introduction 

The hologram one of the best optical elements [100] when high resolution and large object field 

area are both required as in holographic microscopy. The quality of the digital hologram depends 

on the finite wavelength and the aperture. To compute a hologram of a 3D point source object, we 

set up many holograms whose image is a single point. In this project the 3D object is represented 

by two point sources and the holograms corresponding to each point are computed and 

superimposed to construct a whole hologram of 3D point sources. 

In the last decade, three dimensional optical imaging has become a very important tool in many 

fields, including material science and biology. Constructing 3D images using optical microscopy 

requires a scan of the field of view mechanically and for a thin sample. These techniques have a 

limitation which is that the time scale of changes in the sample should be slower than the 

acquisition time. Also, the cost of the confocal microscope can reach hundreds of thousands of 

dollars.  

This chapter describes a digital holographic microscopy (DHM) (point source objects) [101-102] 

method that could be used to overcome the limitations of the current optical microscopy 

techniques. 

In the next section, we describe the 3D reconstruction image for the case when there is a coherent 

plane wave illuminating off-axis point sources or point scattering particles, and these points can 

represent any object that scatters light in the microscope sample.  

As we have already seen, the 3D scene can be represented by a number of point sources, and we 

use an algorithm which divides the 3D object into multiple point sources. The light field that is 

emitted by each point source is collected to form the whole light field of the 3D object.  We use 

the MGSA algorithm, the same algorithm we used in chapter four, to reconstruct two point sources. 

The algorithm we use can compute a phase only hologram with high precision and this means this 

algorithm can alleviate the problems of computing speed and can directly record the light field 

details of the whole 3D object. 
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5.2 Digital Holographic Microscopy for 3D Imaging 

In this case we place a screen in front of the particle, and this will produce an interference pattern 

between the original plane wave (unscattered wave) and the scattered wave. This pattern of 

interference is represented by concentric circular fringes with different intensity. The number and 

the diameter of fringes depend on the distance between the screen and the point source (the 

particle), hence the interference pattern can tell us about the location of the origin of the particle 

in 3D. 

In this project, the DHM is done digitally. The hologram is a set of point sources and this is 

mathematically equivalent to the Fourier convolution of the FZP. For the reconstruction we use a 

modified iterative Fourier transform. Thus, the DHM can enable us to obtain a 3D object from 

only a single 2D image and this technique is thus potentially better than the other 3D acquisition 

techniques. The main drawback is associated with the unwanted twin image which obscures the 

reconstructed image. 

5.3 Resolution and Depth of Field in Digital In-Line Holographic Microscopy 

The resolution of the digital in-line holographic microscopy (DIHM) method depends on many 

factors which include: (1) pinhole size, which controls the illumination cone; and (2) the 

wavelength used in recording. We study the pinhole size in detail and conduct an analytical 

analysis coupled with numerical simulations of holograms and their reconstructed images. The 

results of this analysis are then used to enhance the reconstructed images.  

5.4 Pinhole Size 

The pinhole acts as a point source for a coherent spherical wave, and its size is very important in 

the diffraction phenomena. A large pinhole has two effects: (1) it reduces the spatial coherence; 

and (2) it narrows the zero-order emission cone which is used to create the holographic interference 

pattern of the emitted light. We use a circular aperture of radius (𝑎), then most of the energy passing 

through the aperture is diffracted through an angle (𝜃) which is equal to ( 𝜆 𝑎⁄ ), where 𝜆 is the light 

wavelength employed, from its original propagation direction.  
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We notice that when the light beams emitted from a point source pass through the circular apertures 

as we have used in this project, they do not produce bright dots as images, but rather a diffuse 

circular disc surrounded by much fainter concentric circular rings. 

To show the effect of the pinhole size on the reconstructed images of the hologram, we run the 

MATLABTM code we have developed with different sizes of the pinhole. Figure 5.1 and Figure 

5.2 showing the FZPs for different resolved point sources. It is noticed that the FZP constructed 

with the smallest pinhole is the largest in diameter. 

 

.  

Figure 5.1: FZP for different pinhole size: for d=180nm 
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Figure 5.2: FZP for different pinhole size for 𝟐𝟐𝟎𝒏𝒎 

 

5.5 Distance between the Point Source and the Hologram 

We study the effect of the distance between the original object (the point source) and the hologram 

to construct the FZP. We validate this process by taking different distances and using the 

MATLABTM code we developed to construct the FZP hologram. The FZP is constructed for 

different distances, the distance between the point source and the hologram, and the fringe 

frequency which changes with the distance. Figures 5.3, 5.4, and 5.5 are showing the FZP for 

different distances. 
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Figure 5.3: Off axis Fresnel zone plate (a hologram of two point sources, two 

point sources located side by side and separated by a distance z): for 

z=3mm, 
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Figure 5.4: Off axis Fresnel zone plate (a hologram of two point sources, two 

point sources located side by side and separated by a distance z): (a) for 

z=5mm, 
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(c) 

Figure 5.5: Off axis Fresnel zone plate (a hologram of two point sources, two 

point sources located side by side and separated by a distance 𝒛): for 𝒛 =

𝟏𝟎𝒎 

 

Also, we show the FZP in the case of the on-axis hologram. Figures 5.6, 5.7, and 5.8 show the on-

axis hologram for different distances (two point sources located at the same coordinates), we 

construct this hologram to validate our code and seems working fine as the result only one FZP 

for two point sources are located at the same coordinates. 
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Figure 5.6: On-axis Fresnel zone plate (a hologram of two point sources are 

located at same coordinates): for z=3mm, 
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Figure 5.7: On-axis Fresnel zone plate (a hologram of two point sources are 

located at same coordinates): for z=5mm, 
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Figure 5.8: On-axis Fresnel zone plate (a hologram of two point sources are 

located at same coordinates): for 𝒛 = 𝟏𝟎𝒎𝒎 

 

5.6 Hologram as a Collection of Fresnel Zone Plates 

Any object can be considered as a collection of points, therefore recording a point object represents 

the basic principle of the holographic method. We can examine the holographic recording stage of 

a point source object and show the equations that represent the point source object. 

Firstly, we consider a point source object at a distance 𝑧𝑜 away from the holographic plate. Figure 

5.9 shows the recording and reconstruction stages of a point source object. The pinhole aperture is 

represented by a delta function 𝛿(𝑥, 𝑦). The point source object is given by: 

                𝜑𝑜(𝑥, 𝑦; 𝑧𝑜) = exp(−𝑗𝑘𝑜𝑧𝑜)
𝑗𝑘𝑜

2𝜋𝑧𝑜
exp (

−𝑗𝑘𝑜

2𝑧𝑜
(𝑥2 + 𝑦2))                                           (5.1) 

Eq. 5.1 represents the object wave, the wave scattered from the pinhole, which is a paraxial 

spherical wave. The total recorded intensity distribution on the hologram is then given by: 
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                             𝑡(𝑥, 𝑦) = 𝐴 + 𝐵𝑠𝑖𝑛 [
𝑘𝑜

2𝑧𝑜
(𝑥2 + 𝑦2)]                                                           (5.2) 

where 𝐴 and 𝐵 are constants related to the wave number and 𝑧𝑜 is the point source object distance 

from the hologram. The Eq. 5.2 represents the hologram of the point source object and is called 

the FZP. In case of two point source objects at locations given by: 𝜑(𝑥, 𝑦) + 𝜑(𝑥 − 𝑥1, 𝑦 − 𝑦1) 

and both of them (the objects) are located at 𝑧𝑜 distance away from the hologram, the recorded 

hologram is represented by the equation:                                                                              

𝜏(𝑥, 𝑦) = 𝑐 +
𝑎𝑏0𝑘0

𝜋𝑧𝑜
𝑠𝑖𝑛 [

𝑘0

2𝑧𝑜
(𝑥2 + 𝑦2)] +

𝑎𝑏1𝑘0

𝜋𝑧𝑜
𝑠𝑖𝑛 {

𝑘0

2𝑧𝑜
[(𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2}              (5.3)      

            

where 𝑐 is a constant and the second and third terms represent the FZPs which we can recognise 

are the two FZPs associated to each point source. 

Figure 5.9 illustrates the holographic recording and reconstruction of a 3 point object. From Figure 

5.9, the virtual image appears at the correct 3D location of the original object. The real image is a 

mirror image of the original object with the axis of reflection on the plane of the hologram. 
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Figure 5.9: Holographic recording and reconstruction of a three-point object 

 

5.7 Two-Source Interference  

In the two dimensional case and if we have a stationary source that generates a wave at constant 

frequency, the pattern of the wave will be represented by a set of concentric circles. If we assume 

the two point objects are close together, than the spherical waves will arrive and intersect on the 

hologram at small angles. Interference pattern consists of two areas: the white (bright) and the 

black (dark) areas. The bright areas are the regions of the constructive interference. The 

constructive interference is made by coincidence of the crest from both point sources as well as 

the troughs. These will cause the wave to go up and down with twice the amplitude of each wave 

alone. The dark areas represent the destructive interference and this occurs when the crest of one 

wave encounters the trough of the other wave, producing a cancellation of wave amplitude at that 

point. 
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5.8  Reconstruction of Two Point Source Objects 

We start by creating two grey-level FZPs plates which represent two point source objects. The 

zone plate pattern as shown in Figure 5.10 consists of alternating opaque and transparent rings, the 

point source of light illuminating a large Fresnel zone plate. 

Rogers [103] was the first scientist who noticed the similarity between the FZP and the hologram 

of a point source, the hologram being considered as a zone plate with a complex pattern. Mertz 

and Young in 1961 developed the first zone plate hologram [104]. 

If we consider the light source to consist of many point sources, then the pattern that is recorded 

on the photographic plate represents the linear superposition of the wavefronts from each of these 

sources. Therefore this photographic plate acts as a hologram. To reconstruct this zone plate 

hologram, we proceed in the same way as a Gabor hologram which is by illumination of the 

hologram with a coherent light. The advantage of this technique over the other methods is that the 

hologram is independent of the coherence length of the illumination source. 

To fully understand the Mertz and Young technique, we consider a point source of radiation which 

is used to illuminate a large Fresnel zone plate. To simulate the hologram of a point source, we 

only need to record the binary pattern of the zone plate on a photographic plate or transparency. 

5.9 Thesis Project 

We create two sinusoidal FZPs as our point source objects. We use the MATLABTM code 

developed to make both FZPs and for different distances, Appendix E. Figure 5.10 shows the 

superposition of both FZPs. 
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Figure 5.10: Zone plate with two point sources 

 

In Figure 5.10 the interference of one light wave with another is clearly shown. The wave 

propagates outward from the point sources, which creates a series of concentric circles about the 

source. In Figure 5.10, we can easily notice the crests and troughs from the two sources interfering 

with each other at a regular rate and making nodes and antinodes.  

Since sources located at different distances from the zone plate will cast different size shadows 

and the images will be reconstructed at different distances from the hologram, thus giving rise to 

a 3D image. The magnitude and frequency of the FZP compared to the magnitudes of the Fresnel 

functions from the individual points will depend upon the separation of the points, as well as the 

frequency of light used, and the distance of the transparency from the hologram. 

5.10 In-Line Digital Hologram Microscopy 

The point source digital in-line holography with numerical reconstruction has been developed into 

a new microscopy, specifically for microfluidic and biological applications [105].  

The in-line hologram is a spherical wave with a wavelength 𝜆 which emanates from a point source. 

The digital in-line hologram with numerical reconstruction has been developed into a new tool, 

especially for biological applications. Figure 5.11 shows the dependence of the FZP characteristic 

as a function of the depth parameter 𝑧𝑜 for (𝑧𝑜 = 2𝑚𝑚, 5𝑚𝑚, 8𝑚𝑚, 𝑎𝑛𝑑 𝑧 = 10𝑚𝑚).  As the 

point source becomes further away from the recording film, the recorded FZP has a lower local 

fringe frequency. 
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                                                    (a)                                         (b) 

 

 

 

                                                 (c)                                            (d) 

 

Figure 5.11: On-axis Fresnel zone plate as a function of depth, 𝒛𝒐: a) 𝒛𝒐 =

𝟐𝒎𝒎, b) 𝒛𝒐 = 𝟓𝒎𝒎, c) 𝒛𝒐 = 𝟖𝒎𝒎, and d) 𝒛𝒐 = 𝟏𝟎𝒎𝒎 

 



98 

 

In the last twenty years, the digital in-line hologram (DIH) has been preferred for use in the 

biological applications. The advantages of using DIH are listed below: 

I. The in-line hologram is a form of microscopy that does not need any lenses. 

II. Maximum information: where a single hologram can contain all the details about the 

original 3D object. 

III. The reconstructed images can have a maximum resolution which is similar to the single 

point source object which we covered in Chapter 4. 

Firstly, we use the MATLABTM code developed to create the in-line two point sources for different 

separation distances between them and the hologram. Figure 5.11 illustrates the in-line FZPs. 

 

5.11 Off-Axis Hologram   

Digital off-axis hologram microscopy (DOHM) is a technique which can provide quantitative 

information about samples in three dimensions. DOHM can be used for the analyses after 

processing the reconstructed image of living cells in their growth medium without any type of 

additional marker which can affect the values of many physiological parameters. 

The DOHM has many biological applications. Such as analysis of blood cells, yeast cells, neurons 

and cancer cells. The DOHM is considered as an optoelectronic technique and can be used to make 

real-time measurements of the phase and amplitude information at the level of single living cell, 

and the ability to gain 3D morphological dimensions (length, width, and height). 

In DOHM, using a single hologram, does not need any lenses in the recording process. The DOHM 

can become more effective when modern sensors such as CCD detectors became available for use 

in the industry. The off-axis configuration allows one to obtain separately the +1, 0, and -1 orders 

of the reconstructed angular spectrum whereas in in-line hologram microscopy, all these are 

overlapped. In this case, we can remove the twin image and the reconstructed image is thus more 

accurate. Figure 5.12 illustrating the off-axis Fresnel zone plate as a function of depth. 
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(a)                                          (b) 

 

 

                                                 (c)                                             (d) 

 

Figure 5.12: Off-axis Fresnel zone plate as a function of depth, 𝒛𝒐: a) 𝒛𝒐 =

𝟐𝒎𝒎, b) 𝒛𝒐 = 𝟓𝒎𝒎, c) 𝒛𝒐 = 𝟖𝒎𝒎, and d) 𝒛𝒐 = 𝟏𝟎𝒎𝒎 

 

We created the two point source object for two different cases which are the in-line and off-axis 

hologram. The next step required is to take the Fourier transform of the recorded diffraction pattern 

of the hologram which will allow the phase and intensity of the image to be separately recorded. 

This represent the recording stage of the CGH.  The output will be in the frequency domain and 

should be sampled in a rate which is enough to represent the original image.  
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We take samples in 2D and place in an array of size M=256, and N=256. We are dealing with large 

images and so we use the FFT for the calculation in two dimensions.  We create the phase and 

intensity images as a product of the complex FFT but we are only interested in the phase image, 

i.e.: 

                                           𝑝ℎ𝑎𝑠𝑒 = 𝑎𝑛𝑔𝑙𝑒(𝐼(𝑥, 𝑦))                                                               (5.4) 

where 𝐼(𝑥, 𝑦) is our multi-FZP and we are taking only the phase of their images. We should include 

a random phase mask with the original object phase in order to broaden its spectrum. If the the 

random phase mask is not employed, most of the energy will concentrate in the zeroth-order beam 

and the effective dynamic range of the recorded hologram will be reduced.  

 

The first random phase we use is  𝑟𝑎𝑛𝑑𝑜𝑚 𝑝ℎ𝑎𝑠𝑒 = exp (−𝑗𝜋 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚( )) and the 

reconstructed intensity variance is shown in the Figure 5.13. When we use a different random 

phase (the second one), which is 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝ℎ𝑎𝑠𝑒 = exp (−𝑗𝜋 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚( )/256)), the 

reconstructed image intensity is different as shown in Figure 5.14. Also, we use three more random 

phases are listed in Table 4.1 but we only showing the results of using the first two with 

corresponding results  shown in Figures 5.13 and 5.14. 
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Figure 5.13: Intensity at 𝒛𝒐 for the random phase: phase=exp (-jπ*random ( )) 
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(b) 

Figure 5.14: Intensity at 𝒛𝒐 for the random phase: 𝒓𝒂𝒏𝒅𝒐𝒎 𝒑𝒉𝒂𝒔𝒆 =

𝐞𝐱𝐩 (−𝒋𝝅 ∗ 𝒓𝒂𝒏𝒅𝒐𝒎( )/𝟐𝟓𝟔) 

During our simulation work, the random phase we use in the beginning of the procedure is an 

important factor in the quality of the reconstructed images. 

We apply the Fourier transform for the combination of the two phases, (𝑝ℎ𝑎𝑠𝑒 +

𝑟𝑎𝑛𝑑𝑜𝑚 𝑝ℎ𝑎𝑠𝑒). The Fourier transform is used to study the geometric characteristics of the 

original object (i.e. the spatial domain image). The Fourier transform produces a complex number 

valued image which can be displayed with two images, the magnitude and phase. We describe here 

our reconstruction method that works for our point source object. We take the FFT to the phase 

combination as shown in Eq. 5.5: 

                                        𝑆𝐸𝐹 = ℱ(𝑝ℎ𝑎𝑠𝑒 + 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝ℎ𝑎𝑠𝑒)                                              (5.5) 

We are considering only the intensity and the phase can be ignored in this step, thus: 

                                                   𝑓𝑖(𝑥, 𝑦) = 𝑎𝑏𝑠(𝑆𝐸𝐹)                                                                   (5.6) 
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This modulus only is input of our error reduction iterative transform algorithm. In this work the 

point sources are real and nonnegative functions. We thus set our constraints in both domains 

(spatial and frequency fields) according to these constraints. 

5.12 Modified Error-Reduction Algorithm 

 We use a similar algorithm to that described in in Chapter 4 which is the MGSA. The algorithm 

starts with only the modulus of the phase combination and each ith iteration, which is a forward 

and backward Fourier transform process, starts with this modulus, 𝑓𝑖(𝑥, 𝑦), and we choose 100 as 

the total number of the iterations. Our aim is to reconstruct the phase of the complex object from 

only the modulus. In each iteration we have a fixed procedure which is explained in the next section  

First, the complex distribution of the holographic plane is obtained by calculating the FFT of the 

input modulus and this produces the complex distribution 𝑔𝑖(𝑢, 𝑣). Then an amplitude constraint 

is applied on the holographic plane; namely, the amplitude factor is forced to unit value, and the 

phase factor remains unchanged and thus the new complex distribution can be given by  

|𝑓𝑖(𝑥, 𝑦)|𝑒𝑖Φ2. Second, the complex distribution of the imaging plane is obtained by calculating 

the inverse FFT (IFFT) of the updated complex distribution of the holographic plane. This step 

produces a new complex distribution 𝑓𝑖
′(𝑥, 𝑦). We apply the constraints again and this time apply 

in the image plane in which the amplitude is replaced by the measured signal modulus. These steps 

are repeated until we have reached a limit in the number of iterations or the iteration is repeated 

until the phases Φ1 and Φ2 converge. Here Φ1is the phase as the result of applying the IFFT in the 

first iteration as explained in the Figure 4.7. The phase produced by this process is considered as 

an overall phase only.  

5.13 Simulation Results 

We subtract the known random phase and keep only the original phase which has come from FZP’s 

field and represents the hologram of the original point sources. The next step is to propagate the 

phase resulted from the calculation to produce the point sources as the original objects.  We 

validate the MATLABTM code by taking different values for the propagation distance 𝑧𝑜. The last 

stage of this project is to reconstruct the original point sources. To illustrate this, we show two 

point sources for different geometries: off-axis, and propagated at different distances away from 

the hologram by −𝑧𝑜. Figures 5.15,5 .16, 5.17, 5.18, and 5.19 showing the two point sources at the 
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off-axis location and propagated at −𝑧𝑜 = 0.05𝑚𝑚, 5𝑚𝑚, 10𝑚𝑚, 50𝑚𝑚 and 150𝑚𝑚. We take 

different distances to validate that our code is working well. Figures 5.15, 5.16, 5.17, 5.18, and 

5.19 clearly shows the twin reconstructed images of the original point sources. Note that the virtual 

image appears at the correct 3D location as the original object, while the real image (the twin 

image) is the mirror-image of the original object, with the axis of reflection on the plane of the 

hologram. We use 100 iterations which takes only 9.3𝑠 each run on a Pentium processor 

(Intel Pentium-N3710). However, the original object cannot be fully reconstructed even when we 

try to run the code for many more than 100 iterations due to the approximations inherent in the 

calculation. Figures 5.15, 5.16, 5.17, 5.18, and 5.19 show the actual reconstructed point source in 

3D but Figures 5.35, 5.36, 5.37, and 5.38 illustrate the intensity of the reconstructed point source 

in 3D. 
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Figure 5.15: Reconstructed original point sources for different propagation 

distance: for -zo=0.05mm 
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Figure 5.16: Reconstructed original point sources for different propagation 

distance: for -zo=5mm 
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Figure 5.17: Reconstructed original point sources for different propagation 

distance: for -zo=10mm 
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Figure 5.18: Reconstructed original point sources for different propagation 

distance: for -zo=50mm 
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Figure 5.19: Reconstructed original point sources for different propagation 

distance: for −𝒛𝒐 = 𝟏𝟓𝟎𝒎𝒎 

 

To validate our MATLABTM, code we ran the code for different cases such as the in-line hologram, 

and further holograms due to different propagation distances and different pinhole sizes. Below, 

we show the intensity diagram for each reconstructed point source according to the propagation 

distance. 
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Figure 5.20: In- line FZPs for a 2mm propagation distance (distance between 

the point sources and the hologram) 
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Figure 5.21: Reconstructed point sources for different propagation distance:  

z=50mm 
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Figure 5.22: Reconstructed point sources for different propagation distance:  

z=75mm 
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Figure 5.23: Reconstructed point sources for different propagation distance:  

z=100mm 
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Figure 5.24: Reconstructed point sources for different propagation distance:  

z=110mm 
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Figure 5.25: Reconstructed point sources for different propagation distances: 

𝒛 = 𝟏𝟓𝟎𝒎𝒎 

 

To achieve the validity condition, the correct calculation of the reconstructed image from the 

achieved pattern may be performed if the propagation distance is longer than the critical distance. 

Reconstruction the point source (original object) fails in the Figure 5.21 as the distance is less than 

the critical propagation distance. 
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Figure 5.26: Reconstructed point sources intensity for different propagation 

distances (distance between the point sources and the FZPs): (a) z=50mm 

 

 

 

 



117 

 

 

Figure 5.27: Reconstructed point sources intensity for different propagation 

distances (distance between the point sources and the FZPs): z=75mm 
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Figure 5.28: Reconstructed point sources intensity for different propagation 

distances (distance between the point sources and the FZPs): z=100mm 
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Figure 5.29: Reconstructed point sources intensity for different propagation 

distances (distance between the point sources and the FZPs): z=110mm 
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Figure 5.30: Reconstructed point sources intensity for different propagation 

distances (distance between the point sources and the FZPs): 𝒛 = 𝟏𝟓𝟎𝒎𝒎 

 

We validate our simulation results against the propagation distance between the hologram and the 

screen and we find that the reconstructed point sources change accordingly. Figures 5.26, 5.27, 

5.28, 5.29, and 5.30 showing the results for different propagation distances between the FZPs and 

the screen. 

We use the MATLABTM to reconstruct the original point sources and the Figures 5.31, 5.32, 

5.33, and 5.34 showing the point sources in the object domain. 
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Figure 5.31: Reconstructed point sources intensity for different propagation 

distances (distance between the hologram and the screen): -z=0.05mm 
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Figure 5.32: Reconstructed point sources intensity for different propagation 

distances (distance between the hologram and the screen): -z=5mm 
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Figure 5.33: Reconstructed point sources intensity for different propagation 

distances (distance between the hologram and the screen): -z=50mm 
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Figure 5.34: Reconstructed point sources intensity for different propagation 

distances (distance between the hologram and the screen):−𝒛 = 𝟏𝟎𝟎𝒎𝒎 
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We validate our simulations by taking different distances between the FZPs. Figures 5.35, 5.36, 

5.37, and 5.38 illustrate the reconstructed intensity points for 𝑥 =

1𝑚𝑚, 5𝑚𝑚, 50𝑚𝑚, and 150𝑚𝑚 where 𝑥 is the distance between the centres of the FZPs. 

 

 

 

Figure 5.35: Isometric views of the reconstructed two point sources intensity 

for different distances between the FZP centres: x=1mm 
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Figure 5.36: Isometric views of the reconstructed two point sources intensity 

for different distances between the FZP centres: x=5mm 
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Figure 5.37: Isometric views of the reconstructed two point sources intensity 

for different distances between the FZP centres: x=50mm 
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(d) 

Figure 5.38: Isometric views of the reconstructed two point sources intensity 

for different distances between the FZP centres: 𝒙 = 𝟏𝟓𝟎𝒎𝒎 
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5.14 Conclusion 

 In this chapter, we consider two point objects which each emit spherical waves. Both spherical 

waves interfere on the recording medium to produce a hologram. This recording stage yields real 

and an imaginary images that reconstruct only real images, where the hologram is illuminated with 

a reconstruction wave that is spherical wave, originating from a point source. We have to constrain 

that the wavelength used in the reconstruction stage is the same as the wavelength that is used to 

construct the hologram. We calculate the total complex field away from the hologram plane and 

this will produce two reconstructed point sources.  

Holographic imaging produces a reliable and quick technique to store complete 3D information of 

a scene in a 2D format. 

The type of the hologram we consider in this chapter is the iterative digital Fresnel hologram. In 

this means a hologram of a single point has the form of a FZP. The axial position of the point 

source is encoded by the Fresnel number of the FZP, that is the ring density in the FZP. Thus the 

Fresnel holographic system can be represented by a set of rings which project the FZP onto the 

image plane for each of the original object points. Encoding the depth of the points is created by 

the density of the rings; denser rings when the point object is closer to the hologram plane while 

less dense rings for point sources farther away from the plane of the hologram. This encoding 

technique indicates that the 3D information of the original object is recorded into the hologram.  

In the reconstruction stage, each plane in the image space which is reconstructed from the Fresnel 

hologram will in focus at different axial distances. The technique of creating Fresnel holograms 

vary from each other in the way that the FZP and the 3D object are spatially correlated. This 

correlation should be done in such a way that the FZP is sensitive to the axial locations of the 

object point. Without this, these locations cannot be encoded into the hologram. This means that 

the points that are further away from the system will project on to the FZP with fewer cycles per 

radial length than nearby points. This is then the condition for creating the 3D reconstructed 

holographic image.  

In summary, an object is assumed to be composed of self-illuminated points which each will create 

an individual FZP. To create a hologram for the 3D object we take the summation of the FZP 

corresponding to each individual object point. This is the technique of generating the Fresnel 

hologram, where the object is considered as a set of 3D object points of different intensity and 

axial distance from the plane of the hologram. 
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We have presented an overview on the topic of the phase retrieval problem. We have presented 

some interesting perspectives with three different approaches: digital holography, iterative phase 

retrieval and multiple measurement methods. The phase retrieval methods, mentioned in this 

chapter, are commonly used in different three dimensional applications. Space telescopes, such as 

the James Webb space telescope [106], use the multiple measurement iterative approach. Electron 

microscopy uses the multiple measurement method as well. Iterative phase retrieval algorithms are 

also used for planning diffractive optical elements (DOE) used as phase only filters for beam 

shaping [107]. Digital holography microscopes (DHM) also use different interferometer based 

setups [108]. 

In this chapter we presented a new reconstruction method using two intensities measured in the 

Fourier plane. One is the magnitude of the sought after signal’s Fourier transform, and the other is 

the intensity resulting from the superimposition of the original image and an approximately known 

reference beam. While the method was originally developed for the phase retrieval problem, it can 

be useful in digital holography, because it poses less stringent requirements on the reference beam. 

The method is designed specifically to allow severe errors in the reference beam without 

compromising the quality of reconstruction. Numerical simulations justify our approach, 

exhibiting a good reconstruction quality for a wide range of depths from the hologram.  

We have also presented the constraints in CGH design and shown that it is possible to record any 

required phase using CGH techniques. The IFTA is the technique we used in this project which is 

a technique that optimises CGH phase only Fourier holograms. Our work has shown that using 

IFTA improves the reconstructed holographic image and use this to show that the use of the 

computational method in digital holography is preferable over conventional holography in terms 

of dealing with spurious noise, fringes, optical system aberrations, etc. We have described how the 

IFTA algorithm involves forward and backward iteration between two planes. The phase retrieval 

technique, namely, the recovery of a function given the magnitude of its Fourier transform, is 

employed  in many fields of science and engineering, including electron microscopy, astronomy, 

and optical imaging. However,, we showed that the IFTA procedure is time consuming and 

iteration may not fully coverage the original point sources. 
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6       CHAPTER 6 

6.1 Conclusion and Future Work 

Conclusion 

Chapter 2 gives an overview of the techniques employed in optical holography. In this chapter we 

noted that optical holography consists of the acquisition of images from diffracted optical field 

measurements. Our review dated back to the initial holographic imaging which was proposed by 

Gabor for electron microscopy. Also, we noted that optical holograms were recorded on high 

resolution photographic plates, originally with an in-line configuration. The advantage of using 

the in-line technique is that the setup of the recording the hologram and reconstruction of the object 

are very simple. However, the hologram reconstructions were disrupted with a twin image and 

zero order contributions, which overlapped with the signal image. Thus the in-line hologram 

cannot be used in many applications as the amplitude variation should be very small. The in-line 

problem was resolved in 1962 by Leith and Upatnieks who proposed to introduce an off-axis 

reference beam to separate, in the spatial frequency domain, the real image from the twin image 

and zero order diffraction terms. The off-axis hologram is based on separating the reference beam 

from the object beam and thus separate the real image from the twin image. There should be a few 

degrees between the reference and object wave and only one acquisition required to reconstruct 

the information of the original object. 

In chapter 3, we presented digital holography and we discussed the detour phase hologram which 

is the oldest holographic technique for encoding the complex wavefront. To construct the detour 

phase hologram we should divide the area of the hologram into an array of unit cells. In each cell 

we make an aperture and control the phase by shifting the centre of the aperture. In this technique 

most of the energy is concentrated in the zeroth-order and it therefore yields a blurred reconstructed 

image. We can improve the quality of the image by applying a random phase mask to the original 

object to widen the object spectrum. We show the benefit of using a random phase mask on the 

original object by illustrating clear reconstructed images and comparing these with holographic 

images that are reconstructed without a random phase mask. 

We present the kinoform which is another technique of generating a computer hologram. The main 

difference between the kinoform and the detour phase hologram is that the kinoform has a high 
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light efficiency. Also, in using the kinoform method, there is not any conjugate wavefront in the 

reconstructed stage which is unlike the wavefront reconstructed using the detour phase hologram. 

As for the detour phase hologram, in the kinoform hologram we are also able to use a random 

phase mask with the original object to diffuse the object light which is necessary to record the 

whole object dynamic range on the kinoform. In the case of not using the random phase mask, we 

show that the reconstructed image is blurred with most of the energy concentrating in the zeroth-

order.  

Also, we conclude that the intensity efficiency increases by adding a random phase mask with the 

main object, the clarity of the reconstructed image increasing by using a random phase mask, and 

the intensity of the central bright spot reducing to zero. 

Also, in this chapter, we present the Gerchberg-Saxton (GS) algorithm which is normally used to 

solve the problem of phase retrieval of a field at two different planes, when at those planes only 

the field moduli are known and given that the fields are related by a Fourier transform. We include 

a block diagram of the GS algorithm.  In Chapter 3 the steps can be summarised by the following 

steps. 

At the beginning there is a field with an amplitude which is given by the square root of the expected 

intensity and the phase is constant. We propagate the field from the image plane to the object plane, 

neglect the amplitude information and keep only the phase information. In the next step the 

amplitude and phase of the illumination field are added to the phase information to obtain the 

resulting object field we then propagate the field to the image plane and the resulting reconstructed 

image is compared with the expected one. We use the root mean square error to control the iteration 

processes. We take a different number of iterations and we notice that increasing the iteration 

number produces a better image quality. 

In Chapter 4 we reconstruct a phase quadratic function from intensity only. First, we present the 

light point source, from which emanating radiation originates at the same point in space. The point 

source emanates a diverging spherical wave toward the recording medium. The intensity 

distribution is recorded as the hologram which is the Fresnel Zone Plate (FZP) and represents the 

hologram of the point source object. Also, we represent the local fringe frequency that increases 

linearly with the spatial coordinates, with higher local spatial frequency when the point source 
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object is further away from the centre of the FZP. We take the FFT to the FZP plane and the Fourier 

transform decomposes the image into frequency domain phase and magnitude terms. We are only 

interested in the phase and add a random phase to it and then take the FFT of the combination. 

The amplitude is the only information we need as the input of the modified iterative Fourier 

transform. We have proposed this iterative FT algorithm to reconstruct the quadratic phase. The 

algorithm is based on error reduction iterative method to solve the phase retrieval problem. 

The algorithm consists of four simple steps which start with the Fourier transform of an estimate 

of the original object which is the point source in this project. We then replace the modulus of the 

resulting computed Fourier transform with the measured Fourier modulus to form an estimate of 

the Fourier transform. We then take the inverse Fourier transform and in the last step replace the 

modulus of the resulting computed image with the measured object modulus to form a new 

estimate of the object. 

To monitor the quality of the resulting reconstructed image of the hologram, we apply the root 

mean square error (RMSE) between the target and evaluated images. We used a different number 

of iterations to validate our algorithm. We find that the error-reduction algorithm decreases the 

error rapidly for the first few iterations but much more slowly for later iterations. We then subtract 

the known random phase and the quadratic phase is then the phase recovered by the algorithm. 

We reconstruct the original point source when we propagate the quadratic phase for a distance 

away from the hologram. We validate this process by taking different propagation distances and 

we show the results of this in the final part of Chapter 4. 

In Chapter 5 present multiple point sources as the original objects, which create multiple FZPs. In 

the first example, we use only the diffraction pattern of two point sources. We proposed a new fast 

algorithm for producing Computer Generated Holograms of 3D objects using the superposition of 

FZPs. We been able to show how the distance between the FZPs create a different pattern and 

reconstruct a different quadratic phase after the iterations have finished. Also, we discussed off-

axis holography and using this how we are able to separate the twin image and the zero order beam 

from the desired image and produce very clear reconstructed images of the point sources. 
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6.2 Future work 

The hologram created in this work is a phase only hologram as this allows us to reconstruct the 

quadratic phase of the FZP. We find that the quadratic phase is critical to reconstructing a high-

quality image. Therefore, in the future, a Spatial Light Modulator (SLM) which is capable of 

displaying the phase image with high fidelity could be employed. The phase hologram has 

theoretically a 100% diffraction efficiency and no conjugate image, as we have seen in Chapters 

4 and 5 although, in practice, the pixellation of the device will cause diffraction into multiple 

orders. In future, we are planning to use such an SLM for experimentally reconstructing the point 

source object and assessing its quality. 

In an experimental set-up, the light from a coherent point source (or multiple mutually coherent 

point sources) propagates to a plane in which we place an SLM displaying a known but random 

phase mask. The coherent field is scattered by this mask and Fourier transformed by a lens to an 

output plane. A detector in this plane records the two dimensional intensity pattern. This 

distribution is then used as the starting point for the iterative recovery algorithm described in the 

thesis. Upon convergence, the known random phase distribution is removed and the remaining 

quadratic phase distribution (for a single point source) is numerically back propagated to determine 

the point source location and thus satisfy the objective of the procedure developed in this thesis. 



135 

 

List of Published Papers 
 

M. Al-Shamery, R.C.D Young, C.R. Chatwin, “Kinoform Optimisation Using Gerchberg-Saxton 

Iterative Algorithm,” ICDHTDI 2015: 17th International Conference on Digital Holography and 

Three-Dimensional imaging (WASET), Dubai, UAE, November 24-25th, 2015. 

 

 

. 



136 

 

REFERENCES 

 

[1] R. Kelner, J. Rosen and G. Brooker, “Enhanced resolution in Fourier incoherent single 

channel holography (FISCH) with reduced optical path difference,” Opt. Express 21(17), 20131–

20144 (2013). 

 

[2] J. Swoger, M. Martinez-Corral, J. Huisken, and E. Stelzer, “Optical scanning holography as 

a technique for highresolution three-dimensional biological microscopy,” J. Opt. Soc. Am. A 19, 

1910 –1918 (2002). 

 

[3] W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of 

microspheres,” Appl. Opt. 41, 5367–5375 (2002). 

 

[4] M. H. Jericho and H. J. Kreuzer, “Point source digital in-line holographic microscopy,” in 

Coherent Light Microscopy, Vol. 46 of Springer Series in Surface Sciences, P. Ferraro, A. Wax, 

and Z. Zalevsky, eds. (Springer-Verlag, 2011), pp. 3–30. 

 

[5] S. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible 

digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006). 

 

[6] Barrett, H. H., and F. A. Horrigan. "Fresnel zone plate imaging of gamma rays; 

theory." Applied optics 12.11 (1973), 2686-2702. 

 



137 

 

[7]  Sun, Ping, & Xie, Jing-hui. “Method for reduction of background artifacts of images in 

scanning holography with a Fresnel-zone-plate coded aperture.(Author Abstract),” Applied 

Optics,43(21) (2004), 4214-4218. 

[8] T. D. Beynon, & A. G. Pink. “Neutron holography using Fresnel zone plate encoding,” 

Nature, 283(5749), (1980), 749-751. 

 

[9] J. D. Stack and M. R. Feldman, "Recursive mean-squarederror algorithm for iterative discrete 

on-axis encoded holograms," Appl. Opt. 31, 4839-4846 (1992). 

 

[10] Jericho, M., Kreuzer, H., Kanka, M., & Riesenberg, R. “Quantitative phase and refractive 

index measurements with point-source digital in-line holographic microscopy,” Applied Optics, 

51(10), (2012), 1503-15. 

 

[11] M.H. Jericho and H.J. Kreuzer, in ‘Coherent Light Microscopy, Chapter 1 Point Source 

Digital In-Line Holographic Microscopy’, (Springer, NY, 2011), pp. 3–30. 

 

[12] S. Schedin, G. Pedrini, H.J. Tiziani, "Pulsed digital holography for deformation 

measurements on biological tissues," Appl. Opt. 39, (2000), 2853-2857. 

 

[13] M.K. Kim, "Tomographic three-dimensional imaging of a biological specimen using 

wavelength-scanning digital interference holography," Opt. Express, 7, 305-310 (2000). 

 

[14] F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T.J. Heger, E.A.D. Mitchell, P. 

Marquet, B. Rappaz, "Living specimen tomography by digital holographic microscopy: 

morphometry of testate amoeba," Opt. Express 14, (2006): 7005-7013. 

 



138 

 

[15] W. Xu, M. H. Jericho, I. A. Meinertzhagen, H. J. Kreuzer, "Digital in-line holography for 

biological applications," PNAS 98, (2001):11301-11305. 

[16] Kemper, Bjorn, & Von Bally, Gert. “Digital holographic microscopy for live cell 

applications and technical inspection.”(Author abstract)(Report). Applied Optics, 47(4), (2008), 

A52-A61. 

 

[17] M. Simonutti, M. Paques, J. A. Sahel, M. Gross, B. Samson, C. Magnain, and M. Atlan, 

"Holographic laser Doppler ophthalmoscopy," Opt. Lett. 35, 1941-1943 (2010). 

 

[18] Fienup, James R. "Reconstruction of an object from the modulus of its Fourier 

transform." Optics letters 3.1 (1978): 27-29. 

 

[19] Fienup, James R. "Phase retrieval algorithms: a comparison." Applied optics 21.15 (1982): 

2758-2769. 

 

[20] Gerchberg, R.W. and Saxton W. O., A. “A practical algorithm for the determination of phase 

from image and diffraction plane pictures”. Optik 35, (1972):237-46. 

 

[21] Saxton, W., & Cowley. “Computer Techniques for Image Processing in Electron 

Microscopy,” Physics Today, 32(3), (1979): 74-76.  

 

[22] Fienup, J. R. "Iterative method applied to image reconstruction and to computer-generated 

holograms." Optical Engineering 19.3 (1980): 193297. 

 



139 

 

[23] Liu, B. and N. C. Gallagher, “Convergence of a Spectrum Shaping Algorithm,” Appl. Opt. 

13, (1974) 2470-71.  

[24] P. M. Hirsch, J. J. A. Jordan, and L. B. Lesem, “Method of making an object-dependent 

diffuser,” U. S. patent 3,619, 022 (1971). 

 

[25] Fineup, J. R., “Reduction of Quantization Noise in Kinoforms and Computer-Generated 

Holograms,” J. Opt. Soc. Am. 64, 1395 (1974) (Abstract). 

 

[26] Fineup, J. R., “Improved Synthesis and Computational Methods for Computer-Generated 

Holograms,” Ph.D. thesis, Stanford University, May 1975 (University Microfilms No. 75-

25523), Chapter 5. 

 

[27] Fienup, J. “Reconstruction of a complex-valued object from the modulus of its Fourier 

transform using a support constraint,” Journal of the Optical Society of America A, 4(1), (1987): 

118-123. 

 

[28] F. Wyrowski, ‘‘Diffractive optical elements: iterative calculation of quantized blazed phase 

structure,’’ J. Opt. Soc. Am. A 7, (1990): 961–969. 

 

[29] J. R. Fienup, ‘‘Phase-retrieval algorithms: a comparison,’’ Appl. Opt. 21, (1982): 2758–

2769.  

 

[30] J. R. Fienup, ‘‘Phase-retrieval algorithms for a complicated optical system,’’ Appl. Opt. 32, 

(1993):1737–1746. 

 



140 

 

[31] S. Buhling and F. Wyrowski, ‘‘Improved transmission design algorithms by utilizing 

variable-strength projections,’’ J. Mod. Opt. 49, (2002): 1871–1892. 

[32] V. V. Kotlyar, P. G. Seraphimovich, and V. A. Soifer, ‘‘An iterative algorithm for designing 

diffractive optical elements with regularization,’’ Opt. Lasers Eng. 29, (1998): 261–268. 

 

[33] H. Kim and B. Lee, ‘‘Iterative Fourier transform algorithm with adaptive regularization 

parameter distribution for the optimal design of diffractive optical elements,’’ Jpn. J. Appl. Phys., 

Part 1 43, (2004): L702–L705.  

 

[34] D. Gabor, “A new microscopic principle,” Nature, 161, (1948): 777. 

 

[35] J. W. Goodman, Introduction to Fourier Optics. (McGraw-Hill, New York, 1988). 

 

[36] Collier, R., Burckhardt, C., & Lin, L. (1971). Optical Holography. Academic P. 

 

[37] Hariharan, P. (1996). Optical Holography: Principles, Techniques, and Applications. 

 

[38] Gao, J., Lyon, J., Szeto, D., & Chen, J. “In vivo imaging and quantitative analysis of 

zebrafish embryos by digital holographic microscopy,” Biomedical Optics Express, 3(10), 

(2012): 2623-2635. 

 

[39] E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. 

Opt. Soc. Am. 52, 1123–1130 (1962). 

 



141 

 

[40] ECN, p. ECN “Holography Approach Improves Heads Up Displays For Planes And Cars,” 

(2018, March 12). 

 

[41] Breitkopf, David. “Holograms Have a Back Problem.(use of holograms on payment cards).” 

American Banker, 171(51), 1. (2006). 

 

[42] Mityureva, A., & Smirnov, V. “X-ray holography with an atomic 

scatterer.”,Ultramicroscopy, 167, 1-4. (2016). 

 

[43] Gauthier, D., Ge, X., Boutu, W., & Carre, B. (2010). “Single-shot Femtosecond X-Ray 

Holography Using Extended References.” Physical Review Letters, 105(9), 2010. 

 

[44] A. W. Lohmann and D. P. Paris, “Binary Fraunhofer holo- grams, generated by        

computer,” Appl. Opt. 6, (1967): 1739–1749.  

 

[45] Reichelt, S., Häussler, R., Fütterer, G., Leister, N., Kato, H., Usukura, N., & Kanbayashi, Y. 

“Full-range, complex spatial light modulator for real-time holography,” Optics Letters, 37(11), 

(2012): 1955-7. 

 

[46] W. H. Lee, “Sampled Fourier transform holograms generated by computer,” Appl. Opt. 9, 

(1970): 639–643. 

 

 

 

[47] B. R. Brown, and A. W. Lohmann, “Complex spatial filtering with binary masks,” Applied  

Optics 5, 967-969 (1966). 

 

 

[48] C. B. Burkhardt, “A simplification of Lee’s method of generating holograms by   computer,” 

Appl. Opt. 9, (1970): 1949. 



142 

 

 

[49] L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: a new wavefront reconstruction 

device,” IBM Journal of Research and Development 13, (1969): 150–155. 

 

 

[50] Harm, W., Jesacher, A., Thalhammer, G., Bernet, S., & Ritsch-Marte, M. “How to use a 

phase-only spatial light modulator as a color display,” Optics Letters, 40(4), (2015): 581-4. 

 

 

[51] Hilario, P., Villangca, M., & Tapang, G. “Independent light fields generated using a phase-

only spatial light modulator,” Optics Letters, 39(7), (2014): 2036-9. 

 

 

[52] N. C. Gallagher, and B. Liu, “Method for computing kinoforms that reduces image 

reconstruction error,” Applied Optics 12, (1973): 2328–2335.  

 

 

[53] Takaki, Y., & Taira, K. “Speckle regularization and miniaturization of computer-generated 

holographic stereograms,” Optics Express, 24(6), (2016): 6328-40. 

 

 

[54] Fienup, J. “Lensless coherent imaging by phase retrieval with an illumination pattern 

constraint,” Optics Express, 14(2), (2006): 498-508. 

 

 

[55] J. R. Fienup, “Phase retrieval algorithms: a personal tour [Invited],” Applied Optics 52, 

(2013):45–56.  

 

 

[56] R. A. Orozco, Y. M. Barbosa, “Gerchberg-Saxton algorithm applied to a translational-

variant optical setup,” Optics Express Vol. 21,Issue 16, (2013) 

: pp. 19128-19134,  

 

 

[57] Dholakia, K. “Iterative Methods for Diffractive Optical Elements Computation,” 

Contemporary Physics, 40(6), (1999):447. 

 

 

 

[58] J. R. Fienup and C. C. Wackerman, ‘‘Phase-retrieval stagnation problems and solutions,’’ J. 

Opt. Soc. Am. A 3(11), (1986):1897–1907. 

  

 

[59] F. Wyrowski and O. Bryndahl, ‘‘Iterative Fourier transform algorithm applied to computer 

holography,’’ J. Opt. Soc. Am. A 5(7), 1058 – 1065 (1988).  

https://www.osapublishing.org/oe/issue.cfm?volume=21&issue=16


143 

 

 

[60] F. Wyrowski, ‘‘Iterative quantization of amplitude holograms,’’ Appl. Opt. 28(18), 3864–

3870 (1989). 

 

 

 

[61] Neto, Yunlong Sheng, & Galmiche. (1997). “Speckle-free non-periodic Fresnel phase plates 

for beam shaping and optical interconnects,” Microwave and Optoelectronics Conference, 1997. 

Linking to the Next Century. Proceedings. 1997 SBMO/IEEE MTT-S International, 1, 82-86. 

 

 

[62] Cong, W., Momose, A., & Wang, G. “Fourier transform-based iterative method for 

differential phase-contrast computed tomography. Optics Letters, 37(11), (2012): 1784-6. 

 

 

 

[63] Pang, H., Wang, J., Cao, A., & Deng, Q. “High-accuracy method for holographic image 

projection with suppressed speckle noise,” Optics Express, 24(20), (2016): 22766-22776. 

 

 

[64] Z. Z. Yuan and S. H. Tao, “Generation of phase-gradient optical beams with an iterative 

algorithm,” J. Opt. 16(10), (2014): 105701. 

 

 

[65] S. Tao and W. Yu, “Beam shaping of complex amplitude with separate constraints on the 

output beam,” Opt. Express 23(2), (2015): 1052–1062.  

 

 

[66] L. Wu, S. Cheng, and S. Tao, “Simultaneous shaping of amplitude and phase of light in the 

entire output plane with a phase-only hologram,” Sci. Rep. 5, (2015): 15426.  

 

 

 

 



144 

 

[67] C. Chang, J. Xia, L. Yang, W. Lei, Z. Yang, and J. Chen, “Speckle-suppressed phase-only 

holographic three dimensional display based on double-constraint Gerchberg-Saxton algorithm,” 

Appl. Opt. 54(23), (2015): 6994–7001.  

 

 

 

[68] H. Aagedal, M. Schmid, T. Beth, S. Teiwes, and F. Wyrowski, "Theory of speckles in 

diffractive optics and its application to beam shaping," J. Mod. Opt. 43, (1996):1409 – 1421. 

 

 

[69] J. Amako, H. Miura, and T. Sonehara, "Speckle-noise reduction on kinoform reconstruction 

using a phaseonly spatial light modulator," Appl. Opt. 34, (1995): 3165-3171.  

 

 

[70] J. W. Goodman, “Some fundamental properties of speckle,”J. Opt. Soc. Am. 66, (1976): 1145-

1150. 

  

 

[71] J. I. Trisnadi, “Hadamard speckle contrast reduction,”Opt. Lett. 29, (2004):11-13.  

 

 

 

[72] Pang, H., Wang, J., Cao, A., Zhang, M., Shi, L., & Deng, Q. “Accurate hologram generation 

using layer-based method and iterative Fourier transform algorithm,” IEEE Photonics Journal, 

9(1), (2016).  1. 

 

 

 

[73] Banyasz, I., Kiss, G., & Varga, P. “Holographic image of a point source in the presence of 

misalignment,” Applied Optics, 27(7), (1988): 1293-1297. 

 

 

[74] Sherman, George C. “Holographic real image of a point source,” JOSA 68.3 (1978): 423-

424. 

 



145 

 

 

[75] Adeyemi, A., & Darcie, T. “Programmable Point-Source Digital In-Line Holographic 

Microscope with Enhanced Field of View,” Image and Signal Processing, 2009. CISP '09. 2nd 

International Congress on, 1-4. (2009). 

 

[76] J.P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett. 

9 (1966) 405–407. 

 

 

[77] Liu, Danjun, Yang, Zheng, Zheng, Qianying, Xia, Liangping, Yang, Ruofu, Du, Chunlei, & 

Yin, Shaoyun. “Calculation of surface plasmon holographic interferometry based on point light 

source,” Optik, 127(10), (2016): 4498-4501. 

 

 

[78] Fuster, J., Candelas, P., Rubio, C., Castiñeira-Ibáñez, S., & Tarrazó-Serrano, D. “Frequency 

dependence of Fresnel zone plates focus,” The Journal of the Acoustical Society of America, 

141(5), (2017).  3959. 

 

 

[79] Brigham, E. The Fast Fourier Transform. Prentice-Hall. (1974). 

 

 

[80] Bracewell, R. (2000). Fourier transform and its applications (3rd ed.). Boston, Mass.: 

McGraw. 

 

 

[81] Davis, S., Abrams, M., & Brault, J. (2001). Fourier Transform Spectrometry. 

 

 

[82]  Bernet, S., Harm, W., Jesacher, A., & Ritsch-Marte, M. “Lensless digital holography with 

diffuse illumination through a pseudo-random phase mask,” Optics Express, 19(25), (2011): 

25113-24. 

 

[83] Poon, T., & Liu, J. Introduction to Modern Digital Holography: With MATLAB. (2014). 



146 

 

[84] X.F. Meng, L.Z. Cai, Y.R.Wang, X.L. Yang, X.F. Xu, G.Y. Dong, X.X. Shen, and X.C. 

Cheng, “Wavefront reconstruction by two-step generalized phase-shifting interferometry,” 

Opt. Commun. 281, (2008): 5701–5705  

 

[85] Z.Y.Wang and B.T.Han, “Advanced iterative algorithm for phase extraction of randomly 

phase-shifted interferograms,” Opt. Lett. 29, (2004): 1671–1673.  

 

[86] Pavillon, N., Arfire, C., Bergoënd, I., & Depeursinge, C. “Iterative method for zero-order 

suppression in off-axis digital holography,” Optics Express, 18(15), (2010): 15318-31. 

 

[87] Fiddy, M., & Shahid, U. “Legacies of the Gerchberg-Saxton algorithm,”Ultramicroscopy, 

134, (2013): 48-54. 

[88] Xia, Xinyi, Xia, Jun, & Zhang, Yuning. “19‐4: Stereoscopic Hologram Calculation based on 

Gerchberg‐Saxton (GS) Algorithm,” SID Symposium Digest of Technical Papers, 47(1), (2016): 

231-234. 

 

[89] Guo, C., Liu, S., & Sheridan, J. “Iterative phase retrieval algorithms. I: Optimization,” 

Applied Optics, 54(15), (2015): 4698-70. 

 

[90] Moore, D., McGrane, S., Greenfield, M., Scharff, T., & Chalmers, R “Use of the Gerchberg–

Saxton algorithm in optimal coherent anti-Stokes Raman spectroscopy,” Analytical and 

Bioanalytical Chemistry, 402(1), (2012): 423-428. 

 

[91] Mukherjee, S., & Seelamantula, C. “An iterative algorithm for phase retrieval with sparsity 

constraints: Application to frequency domain optical coherence tomography,” Acoustics, Speech 

and Signal Processing (ICASSP), 2012 IEEE International Conference on, (2012): 553-556. 



147 

 

 

[92] Meng, F., Zhang, D., Wu, X., & Liu, H. “A comparison of iterative algorithms and a mixed 

approach for in-line x-ray phase retrieval,” Optics Communications, 282(16), (2009):3392-3396. 

 

[93] Avidor, G., & Gur, E. “An adaptive algorithm for phase retrieval from high intensity images,” 

Image Processing Theory Tools and Applications (IPTA), 2010 2nd International Conference on, 

(2010).  225-228. 

 

[94] Zhang, Y., Pedrini, G., Osten, W., & Tiziani, H. “Whole optical wave field reconstruction 

from double or multi in-line holograms by phase retrieval algorithm,” Optics Express, 11(24), 

(2003): 3234-3241. 

 

[95] Hwang, H., Chang, H., & Lie, W. “Multiple-image encryption and multiplexing using a 

modified Gerchberg-Saxton algorithm and phase modulation in Fresnel-transform domain,” 

Optics Letters, 34(24), (2009): 3917-9. 

 

[96] Sorzano, Vargas, Otón, De la Rosa-Trevín, Vilas, Kazemi, . Carazo. “A Survey of the Use of 

Iterative Reconstruction Algorithms in Electron Microscopy,” BioMed Research International, 

2017, 17. 

 

[97] Chen, Chien-Yu, Li, Wu-Chun, Chang, Hsuan-Ting, Chuang, Chih-Hao, & Chang, Tsung-

Jan. “3-D modified Gerchberg–Saxton algorithm developed for panoramic computer-generated 

phase-only holographic display,” Journal of the Optical Society of America B, 34(5), (2017): B42-

B48. 

 



148 

 

[98] Zhang, C., & Wang, K. “A switching median–mean filter for removal of high-density impulse 

noise from digital images,” Optik - International Journal for Light and Electron Optics, 126(9-

10), (2015): 956-961. 

 

[99] Shrestha, S. Image Denoising using New Adaptive Based Median Filters. (2014). 

 

[100] Kim, Jong Man, Choi, Byung So, Kim, Sun II, Kim, Jong Min, Bjelkhagen, Hans I., & 

Phillips, Nicholas J. “Holographic optical elements recorded in silver halide sensitized gelatin 

emulsions, Part I. Transmission holographic optical elements,” Applied Optics, 40(5), (2001): 

622-32. 

 

[101] Wu, X., & GAO, W. “A general model for resolution of digital holographic microscopy,” 

Journal of Microscopy, 260(2), (2015):152-162. 

 

[102] Abbasian, V., Akhlaghi, E., Charsooghi, M., Bazzar, M., & Moradi, A. “Digital holographic 

microscopy for 3D surface characterization of polymeric nanocomposites,” Ultramicroscopy, 

185, (2017): 72-80. 

[103] ROGERSGL: “Gabor diffraction microscopy: the holo gram as a generalized zone plate,” 

Nature (London) 166: 237, 1950 

 

[104]  N. O. Young, Sky Telesc. 25, 8 (1963). L. Mertz and N. O. Young in Proc. Internat. Conf. 

on Optical Instruments (Chapman and Hall, London, 1961), p. 305. 

 

[105] J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, H. J. Kreuzer, “Digital in-line 

holography applied to microfluidic studies,” Proc. SPIE 6112, pp. 175-184, 2006. 



149 

 

[106] Gardner, J.P., Mather, J.C., Clampin, M. et al. Space Sci Rev (2006) 123: 485. 

https://doi.org/10.1007/s11214-006-8315-7 , [accessed Feb 01 2018]. 

 

[107] G. Zhou, Y. Chen, Z. Wang, and H. Song, “Genetic local search algorithm for optimization 

design of diffractive optical elements,” Appl. Opt. 38(20), 4281–4290 (1999). 

 

[108] Charriere, F.; Marian, A.; Montfort, F.; Kuehn, J. and Colomb, T. (2006). “Cell refractive 

index tomography by digital holographic microscopy,” Opt. Lett., Vol. 31, No. 2, (Jan. 2006) pp. 

178-180.

https://doi.org/10.1007/s11214-006-8315-7


150 

 

APPENDICES 

APPENDIX A 

 

A.1 Fresnel Diffraction for a Circule Aperture 

A.1.1 Diffraction 

Diffraction refers to the behaviour of the optical wave when its lateral extent is confined by an 

aperture. This comes from the fact that the light rays not follow strictly rectilinear paths when the 

wave is disturbed on its boundaries. 

The diffraction plays a role of most importance in branches of physics and engineering that deal 

with wave propagation. 

A.1.2 Fresnel Diffraction 

 In this section we model diffraction due to a circular aperture. The phenomenon of diffraction 

usually can be classified into the two categories of Fraunhofer and Fresnel diffraction. Fraunhofer 

diffraction is an approximation where only plane waves which is valid in the limit of small Fresnel 

number 𝐹 ≪ 1. 

Diffraction occurs if three factors are involved: a source; a diffracting element; and a screen. The 

diffracting element can be an aperture, a straight edge, an obstacle, a lens, a wire or any other 

object which comes in between the source and the screen. We can observe the intensity pattern on 

the screen due to the diffracting element. We keep the source and the diffracting element fixed and 

we move only the screen towards or away from the diffracting element (or we move the source 

keeping the screen fixed) and notice the change in the intensity pattern on the screen. If there is no 

qualitative change in the pattern apart from a slight scaling, the pattern is identified as Fraunhofer. 

On the other hand, the Fresnel diffraction occurs when there is a qualitative change in the pattern 

that is observed, such as the bright parts of the screen become dark and vice versa or even the 

shape of the pattern changes; then we call this a Fresnel diffraction. 

 So in the Fraunhofer limit when the screen and source both are effectively at a very large (infinite) 

distance from the diffracting element, the resultant wave is measured very far away from the place 
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where the wave-front was distorted. Whereas in the Fresnel case either or both (the source and the 

screen) are at finite distances from the diffracting element. Due to diffraction the image of a point 

source becomes fuzzy on the screen. Two nearby points on the object plane (source) may get 

merged in the image plane (screen) due to the finite size of the diffracting elements (such as lenses 

etc.) and hence we talk of spatial resolution. We are familiar with resolutions of microscopes and 

telescopes. When we view objects through microscopes and telescopes and see their images and 

each point of the object acts as a point source but we see its image as a little blurred. Thus due to 

diffraction we may not be able to distinguish or resolve two very close points on the object when 

we view it through an instrument like microscope or telescope. 

The amplitude distribution for diffraction due to a circular aperture forms an intensity pattern with 

a bright central band surrounded by concentric circular bands of rapidly decreasing intensity (an 

Airy pattern). 

A.1.3 Fresnel Zones 

If we consider 𝑝𝑜 as a point source of light which produces monochromatic spherical waves. The 

spherical wave is given by: 

𝑨
𝒓𝒐

⁄ 𝐞𝐱𝐩 [−𝒊(𝒘𝒕 − 𝒌𝒓𝒐)]                                                                                                   (A.1) 

where 𝐴 is the amplitude of the wave at unit distance from the point source 𝑝𝑜, 𝑟𝑜 is the radius, and 

𝑡 is time. Figure A.1 illustrates a point source 𝑝𝑜 emitting spherical waves. After a while, the wave 

will pass through the observation point 𝑝. To understand the Fresnel zones, from the point of 

observation𝑝, we draw spheres of radii 𝑏, 𝑏 + 𝜆
2⁄ , 𝑏 + 2𝜆

2⁄ , 𝑏 + 3𝜆
2⁄ , … 𝑏 +

𝑗𝜆
2⁄ ,where 𝑏 is 

the distance between the observation point 𝑝 and the point 𝐶, and 𝜆 is the light wavelength. The 

term 𝑏 +
𝑗𝜆

2
⁄  is used to mark the Fresnel zones and they are labelled as 𝑧1, 𝑧2, 𝑧3 as shown in the 

Figure A.1. The term 𝑏 +
𝑗𝜆

2⁄  shows that the zone boundaries are successively half a wavelength 

away from the point of the observation𝑝. We already know that each secondary source produces 

wavelets and are propagated to the point 𝑝. The resulting amplitude at the observation point 𝑝 is 

the linear superposition of the contribution of all the wavelets. From Figure A.1, 
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Figure A.1: Fresnel zone construction Po : point source.   : Wavefront.  ro: radius of the 

wavefront. b: distance CP. s: distance QP 

 

 the wavelet at point 𝐶 is in line with the point source 𝑝𝑜 and the point of observation 𝑝.However, 

we can also consider the case the point 𝑄 where the observation point 𝑝 which makes an angle 𝜒 

with respect to the radius vector from the point source 𝑝𝑜.This variation between the point source 

𝑝𝑜 and the observation point 𝑝 can be calculated by a term called the obliquity factor 𝑘(𝜒). The 

obliquity factor takes a unity value at point 𝐶 where the angle 𝜒 = 0. The 𝑘(𝜒) is very small and 

can be neglected for any two adjacent zones. Also the obliquity factor becomes very small and 

negligible for zones with high enough index 𝑗. 

As we already discussed, that the distance of the successive zones from the observation point 𝑝 

differ by only 𝜆 2⁄ , therefore the zones can be called half-period zones. 
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A.2 Rayleigh-Sommerfeld Solution 

In studying monochromatic light propagation, consideration is given to two points, the first point 

at the source plane U1(ξ, η) and a point at a distant observation plane U2(x, y). By using the 

Rayleigh – Sommerfeld diffraction solution we can obtain U2(x, y) as the following: 

 𝑈2(𝑥, 𝑦) = ∬ 𝑈1(𝜉, 𝜂)h(x − 𝜉, y − 𝜂)𝑑𝜉𝑑𝜂                                                                               (A.2) 

where  h(x − ξ, y − η) is the Rayleigh – Sommerfeld impulse response and the general form is: 

       h(x, y) =
𝑧

𝑗𝜆

exp (𝑗𝑘𝑟)

𝑟2 -                                                                                                                 (A.3) 

Where k is the wave number (k =
2π

λ
), z is the distance between the centers of the source and the 

observation coordinate system, r is the distance between a position on the source plane and a 

position in the observation plane and: 

             r = √z2 + x2 + y2                                                                                                   (A.4) 

We need to apply the Fourier convolution for the Eq. A.2 and re-label the source and observation 

plane variables as x and y. The Fourier convolution will be as follows: 

         U2(x, y) = F−1{F{U1(x, y)}H(fX, fY)}                                                                           (A.5)  

where H is the Rayleigh – Sommerfeld transfer function and given by:  

  

H(fX, fY) = exp (jkz√1 − (λfX)2 − (λfY)2)                                                                                   (A.6)  

 

From Eq. A.6 the Rayleigh–Sommerfeld condition requires thatr ≫ λ, i.e. the distance between 

the source and the observation position should be much greater than the wavelength. 

 

 

 

 

 



154 

 

A.3 Fresnel Approximation 

The idea of the Fresnel approximation is to introduce approximations for the square root in the 

distance terms in Eq. A.4. The distance term will take the following form: 

       r12 ≈ z [1 +
1

2
(

x−ξ

z
)2 +

1

2
(

y−η

z
)2]                                                                                             (A.7) 

 

Also we have to consider r = z to arrive at the Fresnel diffraction expression as the following: 

U2(x, y) =
ejkz

jλz
∬ U1(ξ, η)exp {j

k

2z
[(x − ξ)2 + (y − η)2]} dξdη                                               (A.8)  

 

To compare the Fresnel approximation with the Rayleigh-Sommerfeld, the impulse response now 

takes the following form: 

 

                   h(x, y) =
ejkz

jλz
exp [

jk

2z
(x2 + y2)]                                                                                     (A.9)  

 

and the transfer function takes the following form: 

 

H(fX, fY) = ejkzexp[jπλz(fX
2 + fY

2)]                                                                                               (A.10) 

 

The Fresnel number is the number we can use to make sure that the observation plane is in the 

Fresnel region. The Fresnel number is given by: 

                                                NF =
w2

λz
-                                                                                           (A.11)  

 

Firstly, a square aperture was used with w is the half width of the aperture, λ is the wavelength and 

z is the distance to the observation plane. The observation plane is in the Fresnel region if N is less 

than one. 
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A.4 Fraunhofer Approximation 

Fraunhofer diffraction refers to the diffraction patterns that are generated in the far field. The 

condition that needed for a far field propagation is given by: 

                              z ≫ (
k(ξ2+η2)

2
)max                                                                                                   (A.12)    

From the Eq. A.12, we can see that this condition requires very long propagation distances relative 

to the source support size. Regarding the Fresnel number, the commonly accepted requirement for 

Fraunhofer diffraction is N<<1. 

 

A.4.1 Fraunhofer Diffraction Example 

MATLABTM code was employed to calculate the Fraunhofer diffraction (far–field diffraction) for 

a circular and rectangular aperture. The irradiance for each aperture is shown with the figures 

below, the Fraunhofer diffraction pattern for a circular aperture is shown in Figure A.2  

The propagation distance:  𝑧1  

The side length: 𝐿 
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(b) 

Figure A.2: Fraunhofer irradiance for a circular aperture:  (a) image pattern and (b) x-axis 

profile. 

 

The Fraunhofer pattern for a rectangular aperture with a (source) half width 𝑤 and a propagation 

a distance 𝑧2 is shown in Figure A.3. 
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(b) 

Figure A.3: Fraunhofer irradiance for a rectangular aperture: (a) image pattern and (b) x-

axis profile 

 

A.5 Propagation Simulation 

A.5.1 Fresnel Transfer Function Propagator 

MATLABTM code was written to evaluate Eq. A.5 using the transfer function given in Eq. A.6 

which represents the Fourier convolution interpretation for the source and observation planes. The 

benefit to using the Fresnel diffraction expression is that it applies to a wide range of propagation 

scenarios and is relatively straightforward to compute. 

The MATLABTM code developed is based on the propagation Eq. A.8 and the transfer Eq. A.10, 

the M-file being given in Appendix B. 

  

 



159 

 

 

A.5.2 Circle Beam Example 

Our work was to create a MATLABTM code for the calculation of the Fresnel field (near-field) 

diffraction from a circular aperture.  

The circle function is a symmetric 2D function, the circle function is scaled and is be given by the 

expression in Eq. A.13: 

                                                          𝑐𝑖𝑟𝑐 (
√𝑥2+𝑦2

𝑎
)                                                                            (A.13) 

 

Where a is the circle radius. The Fourier transform is this is taken: 

         𝐺(𝑓𝑋 , 𝑓𝑌) = ∬ 𝑔(𝑥, 𝑦)𝑒𝑥𝑝[−𝑗2𝜋(𝑓𝑋𝑥, 𝑓𝑌𝑦)]𝑑𝑥𝑑𝑦
∞

−∞
                                                         (A.14) 

 

Where g is a function of two variables x and y, in this case given by Eq. A.14. 

The Fourier transform for the circle function is given by:  

 

         𝐹𝑇 {𝑐𝑖𝑟𝑐 (
√𝑥2+𝑦2

𝑎
)} = 𝑎2

𝐽1(2𝜋𝑎√𝑓𝑋
2+𝑓𝑌

2)

𝑎√𝑓𝑋
2+𝑓𝑌

2
                                                                                  (A.15) 

 

Where fX and fY are independent frequency variables associated with x and y, respectively, and 

F(fx, fy) is a Bessel function of the first kind, order 1. 

The Bessel function, cylinder function or cylindrical harmonics, of the first kind, are defined as 

the solutions to the Bessel differential equation. 
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A.5.3 Sample Interval   

The function 𝑔 (𝑥, 𝑦) is sampled as: 

                                   𝑔(𝑚∆𝑥, 𝑛∆𝑦)                                                                                        (A.16) 

Where the sample interval is ∆x in the x direction and ∆y in the y direction, m and n are integers 

i.e. valued indices of the samples. 

The sample rate is calculated in the 𝑥 and 𝑦 direction by 1 ∆𝑥⁄  and  1 ∆𝑦⁄  respectively. 512 samples 

in the x and y directions are used and m and n are given by: 

                𝑚 = −
𝑀

2
, … … ,

𝑀

2
− 1                                                                                            (A.17)  

                𝑛 = −
𝑁

2
, … … ,

𝑁

2
− 1                                                                                              (A.18)  

Where 𝑀 = 𝑁 = 512 the sampling number in the 𝑥 and y directions. 

The side lengths (12.8 mm) are taken as  𝐿𝑥 and 𝐿𝑦 , where  𝐿𝑥  is the length along x side of the 

sampled space and  𝐿𝑦 is the length along the 𝑦 side. The side lengths are related to the sampling 

parameters by: 

𝐿𝑥 = 𝑀∆𝑥, 𝐿𝑦 = 𝑁∆𝑦 

The Shannon – Nyquist theorem is used to calculate the sample intervals   ∆𝑥and  ∆𝑦 that are 

given by: 

                                         ∆𝑥 <
1

2𝐵𝑥
                                                                                                     (A.19)  

                                        ∆𝑦 <
1

2𝐵𝑦
-                                                                                                    (A.20)         

 

Where  𝐵𝑥 is the bandwidth of the spectrum of the continuous function along the 𝑥 direction and 

𝐵𝑦  is the bandwidth along the y direction. 
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The effective bandwidth is given by: 

                             𝐵 ≈
5

𝑤
                                                                                                      (A.21)  

 

Where 𝑤 is the radius of the circle and which in this case is taken as 0.9 𝑚𝑚. Substituting Eq. 

A.21 into Eq. A.19 the sample interval is then given by: 

                            𝛥𝑥 ≤
𝑤

10
-                                                                                                   (A.22)  

From A. 22 it can be seen that at least 10 samples across the radius of the circle function (20 across 

the full width) are needed to retain the effective bandwidth, which is indicated in Eq. A.21. 

 Δ𝑥 =
𝐿𝑥

𝑀
, Δ𝑦 =

𝐿𝑦

𝑀
 is used for the sample interval with   𝛥𝑥 = 𝛥𝑦. In the code developed the sample 

interval is0.025 𝑚𝑚 

A.5.4 Coordinates 

As mentioned previously Δ𝑥 = Δ𝑦, 𝑁 = 𝑀, 𝐿𝑥 = 𝐿𝑦 = 𝐿 

Which simplifies the analysis and calculation. The coordinate range used is from  −𝐿/2   to   𝐿/2   

in steps of   Δ𝑥   and MATLABTM code is used to describe the coordinates of the samples along 

the 𝑥 dimension by: 

                         −
𝐿

2
: Δ𝑥:

𝐿

2
− Δ𝑥                                                                                             (A.23)  

The same technique is used to calculate the samples along the 𝑦 direction. 

The Fourier transform shows the relationship between the spatial and spectral domain. The 

independent spatial frequency variables in the x and 𝑦 directions, can be derived as: 

                                   −
1

2Δ𝑥
:

1

𝐿
:

1

2Δ𝑥
−

1

𝐿
                                                                                  (A.24) 

Which means that the spatial frequency coordinates range from −
1

2Δ𝑥
 to 

1

2Δ𝑥
−

1

𝐿
 

In steps of 
1

𝐿
. 
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A.5.5 Indexing, Centering and Shifting  

The indices of the samples in the x and y directions are represented by Eq. A.23 and can be seen 

to take positive and negative values. However in the software application we use the positive 

integer values for vector or array indexing. In the MATLABTM code the indexing starts at 1. 

For display purposes the circ function is centered by making the zero coordinate correspond to the 

first index position. 

The centered vector values must also be shifted before applying the Fourier transform. 

Next we present the MATLABTM simulation results for circular aperture propagation of a plane 

wave front using the Fourier transform and Bessel function. 

The figures show the irradiance distributions and the field magnitude cross-sections for the circular 

aperture. 

The propagation distance: 𝑧1 

The wavelength:  𝜆 = 0.633 ∗ 10−3mm; 

 

The radius of the circle: 𝑟1 
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(b) 
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(c) 

Figure A.4 : Fresnel diffraction. (a) circle aperture irradiance, (b) The Fresnel plane 

irradiance, (c) Fresnel plane magnitude cross-section 

The propagation distance: 𝑧2  

The wavelength:  𝜆 = 0.633 ∗ 10−3mm; 

 

The radius of the circle: 𝑟1 
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(c) 

Figure A.5: Fresnel diffraction (a) the circle aperture, (b) the irradiance, (c ) the magnitude 

cross-section 

 

 

The propagation distance:𝑧3  

The wavelength: 𝜆 = 0.633 ∗ 10−3𝑚𝑚; 

 

The radius of the circle: 𝑟1 
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(b) 
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(c) 

Figure A.6: Fresnel diffraction (a) the circle aperture, (b) the irradiance, (c) the magnitude 

cross-section 

 

The propagation distance: 𝑧3 

The wavelength: 𝜆 = 0.633 ∗ 10−3𝑚𝑚; 

 

The radius of the circle: 𝑟1 
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(c) 

Figure A.7: Fresnel diffraction (a) the circle aperture, (b) the irradiance, (c) the magnitude 

 

The radius of the circle is changed to a bigger diameter and the field is calculated for the 

𝑧3propagation distance to generate the result shown in Figure A.8. 
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(c) 

Figure A.8: Fresnel diffraction (a) the circle aperture, (b) the irradiance, (c) the magnitude 
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APPENDIX B 
 

Matlab Code Developed to Model Beam Propagation 

%%%%%% this is a MATLAB code to study the light propagation through a circle 

%%%%%% aperture. We set-up the spatial axis and the frequency axis. We choose 

%%%%%% the propagation distance and slit dimensions. The next step is to set 

%%%%%% the transfer function and in this project we set the transfer function 

%%%%%% to the size 512X512. The step after is making the circle aperture. To 

%%%%%% make the circle aperture we need the centre and the radius of the 

%%%%%% circle. We have tried different codes to construct the circle aperture 

%%%%%% but this one is the as we validate it for different distances and size 

%%%%%% of the aperture.  

 

  

%%%%%% fft2 on Fourier transform of an impulse plane wave illuminating a 

%%%%%% circular aperture with diameter d (a) circular input excitation  

%%%%%% field, shft-input, (b) after applying a fftshift on shft-input to 

%%%%%% produce input, ( c) after applying fft2 on input to produce F-input 

%%%%%% and ( d) after applying a fftshift on F-input to produce the two-

%%%%%% dimensional spatial. 

%%%%%% Appendix A showing the results of this code for different propagation 

%%%%%% distances and different diameter.  

 

 
ii=sqrt(-1);  
lambda= 0.633*10^-3;   % wavelenght [mm] 
%z=3;    % distance [mm] 
w=3;    % width of slit is 2*w [mm] 
z=2; 
%z=w.^2/0.00005*lambda; 
x=-6.375:0.025:6.4;    % setup spatial axis [mm] 
y=x; 
freqx=-20:40/512:20-1/512;    % setup frequency axis [1/mm] 
freqy=freqx; 
q=100; 
%A=zeros(512); 

  
fft_val=zeros(512); 
fft_v=zeros(512); 

  

  
u0=zeros(512);    % field at z=0 
a0=zeros(512);    % angular spectrum at z=0 
H=zeros(512);    % transfer function 
az=zeros(512);    % angular spectrum at z=z 
uz=zeros(512);    % field at z=z 

  
for nx=1:512    % setup transfer function 
   for ny=1:512 
    H(nx,ny)=exp(ii*2*pi*(z/(lambda*q))*... 
     sqrt(1-((lambda*q)*freqx(nx))^2-((lambda*q)*freqy(ny))^2)); 
   end 
end 
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%for nx=1:512    % setup transfer function 
 %  for ny=1:512 
  %  H(nx,ny)=exp(ii*2*pi*(z/(lambda*q))*... 
   %  sqrt(1-((lambda*q)*freqx(nx))^2-((lambda*q)*freqy(ny))^2)); 
   %end 
%end 

  

  

  
[nx,ny]=meshgrid(x,y); 

  

  

  
A=y.'*x; 
i_index=0; 
for i=-12.75:0.05:12.8; 
j_index=0; 
i_index=i_index+1; 
for j=-12.75:0.05:12.8; 
j_index=j_index+1; 
r=sqrt(i^2+j^2); 
if r <=3% maybe r=5 better 
A(i_index,j_index)=1; 
else A(i_index,j_index)=0; 
end 
end 
end 

  

  
%radius=50; 
%CenterX=257; 
%CenterY=257; 
%u0=rectangle('position',[CenterX-radius,CenterY-

radius,radius*2,radius*2],'Curvature',[1,1],'FaceColor','r'); 
%axis square 
%plot(x,u0); 

  
%u0(257-w*20:256+w*20,257-w*20:256+w*20)=1;    % setup aperture 
%figure(1) 
%imagesc(x,x,u0);colormap(gray); 

  

  
%u0(57-w*20:256+w*20,100-w*20:256+w*20,w,w)=1;    % setup aperture 
%fft_v=abs(fft2(A)); 
%a0=fftshift(fft_v); 

  

  
a0=(fftshift(fft2(A)));    % fourier transform 
az=a0.*H;    % multiply with transfer function 
uz=ifft2(fftshift(az));    % inverse fourier transform 
p=uz.*conj(uz); 
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%p= abs(uz.^2); %obs irrad 

  
figure(1) 
plot(x, p(:,256));    % plot of cross-section of intensity at z 
xlabel('x'); ylabel('I'); 

  
figure(2) 
imagesc(x, x, p);    %diffraction pattern at z 
xlabel('x'); ylabel('y'); colormap(gray); 
colorbar; 

  

  

  
figure(3)   %diffraction pattern at z=0 
imagesc(x,x,A);colormap(gray); 

  
figure(4) 
plot(x,unwrap(angle(uz(512/2+1,:)))); 
title('phase'); 

  
figure(5) 
plot(x,abs(uz(512/2+1,:))); 
title('magnitude') 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



181 

 

APPENDIX C 
 

Matlab Code Developed to Implement a Kinoform 

 
%%%%%%%%%% A MATLAB code to record a kinoform hologram . 

%%%%%%%%%% we use the Gerchberg Saxton algorithm to enhance the reconstructed 

%%%%%%%%%% image. Firstly, we have the original image as the input of this 

%%%%%%%%%% code. We use a logo image which its size is 256X256. In this code 

%%%%%%%%%% we do not use a random phase. Number of iterations has a big 

%%%%%%%%%% impact on the reconstructed image as we run the code with 

%%%%%%%%%% different number of iterations and the quality of the  

%%%%%%%%%% reconstructed image has changed. We use only 10 iterations first 

%%%%%%%%%% and the reconstructed image suffers of with a big noise. The 

%%%%%%%%%%second attempt was to increase the number of iterations and was a 

%%%%%%%%%% 100 iterations, and the reconstructed image more clear and better 

%%%%%%%%%% quality. Also, we include the code to construct the hologram and 

%%%%%%%%%%to reconstruct the origin image either digitally ,as we done in 

%%%%%%%%%% this project, or optically by printing the hologram using the 

%%%%%%%%%% photographic process and illuminate the hologram by a coherent 

%%%%%%%%%%light such as a laser light to reconstruct the origin image.  

 

   
clear all; 
close all; 
I=imread('C:\Users\A\Documents\MATLAB\logo256.bmp'); 
%I = rgb2gray(I); 
    I=double(I); 
I=I./max(max(I)); 
avg1=mean(mean(I)); 
figure;imshow(mat2gray(I)); 
title('Original Object'); 
figure; 
axis([0,101,0,1]); 
xlabel('Number of iterations') 
ylabel('RMSE') 
hold on 
I1=I; 
for n=1:100; 
    H=fftshift(fft2(fftshift(I1))); 
    I2=fftshift(ifft2(fftshift(exp(1j.*angle(H))))); 

     

     
    avg2=mean(mean(abs(I2))); 

     
    I2=(I2./avg2).*avg1; 
    rmse=(mean(mean((abs(I2)-I).^2)))^0.5; 
    plot(n,rmse,'o'); 
    pause(0.3); 
    I1=I.*exp(1j*angle(I2)); 
end 
hold off 
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I2=I2./max(max(abs(I2))); 
figure; 
imshow(abs(I2)); 
title('Reconstructed image') 

  

  
A=abs(I2); 
    A=A./max(max(A))*15; 
    A=round(A); 
    B=angle(conj(I2)); 
    B=B-min(min(B)); 
    B=B./max(max(B))*7; 
    B=round(B); 

    
K=zeros(1024); 
for m=1:64; 
    for n=1:64; 
        P=zeros(16); 
        a=A(m,n); 
        b=B(m,n); 
        c=fix(a/2); 
        d=rem(a,2); 
        P(9-c:8+c+d,(1+b):(9+b))=1; 
        L(16*(m-1)+1:16*(m-1)+16,16*(n-1)+1:16*(n-1)+16)=P; 
    end 
end 
figure;imshow(L); 
title('THE HOLOGRAM');
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APPENDIX D 
 

Matlab Code Developed for Iterative Phase Recovery 

% MATLAB code to reconstruct a quadratic phase from modulus of the Fourier 
% transform and is used to reconstruct a single point source. 

  
clear; 
ROWS=256; 
COLS=256; 
colormap(gray(255)) 
z=2; 
sigm = 1/z; 
y=-12.8; 
for r=1 :COLS, 
x=-12.8; 
for c = 1 :ROWS, %compute Fresnel zone plate 
FZP (r, c)=exp(j * sigm* (x- 0.0 )* (x- 0.0 )+j * sigm* (y+ 0.0)* (y+ 0.0 )); 
x=x+0.1; 
end 
y=y+0.1; 
end 
%normalization 
max1=max(FZP); 
max2=max(max1); 
scale=1/max2; 
FZP=FZP.*scale; 

  
figure(1); 
h=figure(1); 
saveas(h,'C:\Users\A\Documents\MATLAB\FZP.png') 
image( 127*( 1 +imag(FZP))); 
title('Fresnel Zone Plate'); 
axis square on 
axis off 

   
% 
%figure(2) 
%imshow(g) 

  
%imwrite(FZP,'C:\Users\A\Documents\MATLAB\PT2.bmp'); 

  

  

  
%I = imread('C:\Users\A\Desktop\USB\USB ALL\MyImage-8.png'); 
 %imwrite(I,'C:\Users\A\Desktop\USB\USB ALL\MyImage-6.bmp'); 

  

  
 %I = imread('C:\Users\A\Documents\MATLAB\PT2.bmp'); 

  
%a = imread('circlesBrightDark.png'); 



184 

 

% CONVERT IMAGE TO BINARY 
%bw = I < 20; 
%imshow(bw) 
%title('Image with Circles') 

  
%title('Fresnel Zone Plate'); 
%I2= double(bw); 
I=FZP; 
I = imtranslate(I,[0,0]); 
 figure(100); 
 imshow(I); 

  

  
figure(2); 

  

  

  
imshow((mat2gray(abs(I)))); 

  
%imwrite(I2,'C:\Users\A\Desktop\USB\USB ALL\MyImage-12.bmp'); 

  

  
%clear 
%close all 

  
%I=imread('C:\Users\A\Desktop\USB\USB ALL\MyImage-12.bmp'); 
%I=double(I); 
I=imresize(I,[256 256]); 
figure(3); 
imshow((mat2gray(abs(I)))); 
 title('Fresnel Zone Plate'); 
I=fftshift(fft2(I)); 
sEF=angle(I); 
%f=abs(I); 
M0=256; 
N=256; %matrix size 
%T=512; 

  
%generate some target points: 
target=ones(N); 
target(N/2-15,N/2-10:2:N/2+10)=1; 
target(N/2+15,N/2-10:2:N/2+10)=1; 

  

  

  

  

  
phaseF=rand(M0)*2*pi-pi; %initial random phase at target plane 

  
sEF1=(exp(-1i.*phaseF)); %complex field of target points with random phase 
figure(4); 
 sEF1=(mat2gray(abs(sEF1+pi))); 
 imshow(sEF1); 
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 title('Random Phase'); 

   
 %Example 
%sEF1=rand(256,1);  
%sEF=rand(256,1); 
%----The code-------- 
%n=256; 
%out=sEF1; 
%out(1:n)=sEF1.*sEF(1:n); 

  
sEF=sEF.*(sEF1); 

   

  
A0=(nnz(target)/(N*N))*ones(N);   %initial constanst amplitude distribution 
Ad=target; %desired intensity distribution 

  

  
%sEF=(exp(1i.*phaseF)); %complex field of target points with random phase 

  

  
%fourier transform the field back to get a starting phase: 
sEF=ifftshift(sEF); 
sEinF=ifft2(sEF); 

  
f=abs(sEinF); 
phase1=angle(sEinF); 

  
phase1=phase1./max(max(phase1)); 
avg1=mean(mean(abs(phase1))); 

  
figure(5); 
 phase1=(mat2gray((phase1+pi))); 
    %plot the phase as a grayscale image, [0,2pi] 

    
    imshow(phase1) 
    title('Phase Image of the Combination'); 

     

     
phaseF1=(N)*2*pi*0; 

  
figure(6); 
axis([-1,100,0,1]); 
box on 
xlabel('Number of iterations','FontSize',16,'Color','k'); 
title('Modified Gerchberg-Saxton Iterations','FontSize',16,'Color','k'); 
ylabel('RMSE','FontSize',16,'Color','k') 

  
set(gca,'YTick',[0.0:0.2:1])% TO CHANGE THE Y-AXIS INCREMENT  
set(gca,'XTick',[0.0:10:100]) 
flip(y); 
hold on 
f1=f; 
T=(exp(1i.*phaseF1)); 
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 for i=0:10 

  
    %complex field with the uniform amplitude distribution and starting 
    %phase: 
    I1=f1.*(exp(1i.*phaseF1)); 
    H=fftshift(fft2(fftshift(I1))); 
    I2=fftshift(ifft2(fftshift(exp(1j.*angle(H))))); 

     

     
    avg2=mean(mean(abs(I2))); 
    %phase=(phase./avg2).*avg1; 
    I2=(I2./avg2).*avg1; 
    %rmse=((mean((conj(phase1)-(I2))).^2)).^0.5; 
     rmse=abs(mean(mean((abs(I2)-f).^2))).^0.5; 

    
    plot(i,rmse,'o'); 
    axis('ij'); 
    pause(0.5); 
    f1=f.*exp(1j*angle(I2)); 

    
end 

  
hold off 
figure(7); 
imshow(I2) 
I2=I2-sEF1; 
   I2=(mat2gray(abs(I2+pi))); 
   figure(10000); 
    %plot the phase as a grayscale image, [0,2pi] 
    imshow(I2); 
    title('Phase Image after Iterations'); 

    
   imwrite(I2,'C:\Users\A\Desktop\New folder (2)\USB\USB ALL\MyImage-

13.bmp'); 
   figure(10000); 
    %plot the phase as a grayscale image, [0,2pi] 
    imshow(I2); 
    title('Phase Image after Iterations'); 
   % rmse=((mean((abs(phase)-(abs(phase1))).^2))).^0.5; 

     
    ii=sqrt(-1);  
lambda= 0.633*10^-3;   % wavelenght [mm] 
%z=3;    % distance [mm] 
w=3;    % width of slit is 2*w [mm] 
z=5; 
%z=w.^2/0.00005*lambda; 
x=-6.375:0.025:6.4;    % setup spatial axis [mm] 
y=x; 
freqx=-20:40/512:20-1/512;    % setup frequency axis [1/mm] 
freqy=freqx; 
q=0.9; 
%A=zeros(512); 

  
fft_val=zeros(512); 
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fft_v=zeros(512); 

  

  
u0=zeros(512);    % field at z=0 
a0=zeros(512);    % angular spectrum at z=0 
H=zeros(512);    % transfer function 
az=zeros(512);    % angular spectrum at z=z 
uz=zeros(512);    % field at z=z 

  
for nx=1:256    % setup transfer function 
   for ny=1:256 
    H(nx,ny)=exp(ii*2*pi*(z/(lambda*q))*... 
     sqrt(1-((lambda*q)*freqx(nx))^2-((lambda*q)*freqy(ny))^2)); 
   end 
end 

  

  
%for nx=1:512    % setup transfer function 
 %  for ny=1:512 
  %  H(nx,ny)=exp(ii*2*pi*(z/(lambda*q))*... 
   %  sqrt(1-((lambda*q)*freqx(nx))^2-((lambda*q)*freqy(ny))^2)); 
   %end 
%end 

  

  
[nx,ny]=meshgrid(x,y); 

  
 I=imread('C:\Users\A\Desktop\New folder (2)\USB\USB ALL\MyImage-13.bmp'); 
I=double(I); 
I=imresize(I,[512 512]); 
figure(8); 
imshow((mat2gray(abs(I)))); 
 title('Phase Image after Iterations'); 

  

   
%radius=50; 
%CenterX=257; 
%CenterY=257; 
%u0=rectangle('position',[CenterX-radius,CenterY-

radius,radius*2,radius*2],'Curvature',[1,1],'FaceColor','r'); 
%axis square 
%plot(x,u0); 

  
%u0(257-w*20:256+w*20,257-w*20:256+w*20)=1;    % setup aperture 
%figure(1) 
%imagesc(x,x,u0);colormap(gray); 

  

  
%u0(57-w*20:256+w*20,100-w*20:256+w*20,w,w)=1;    % setup aperture 
%fft_v=abs(fft2(A)); 
%a0=fftshift(fft_v); 

  

  
a0=(fftshift(fft2(I)));    % fourier transform 
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az=a0.*H;    % multiply with transfer function 
uz=ifft2(fftshift(az));    % inverse fourier transform 
p=uz.*conj(uz); 

  
%p= abs(uz.^2); %obs irrad 

  
figure(9) 
plot(x, p(:,256));    % plot of cross-section of intensity at z 
xlabel('x'); ylabel('p'); 
title('Intensity at z'); 

  
figure(10) 
imagesc(x, x, p);    %diffraction pattern at z 
xlabel('x'); ylabel('y'); colormap(gray); 
colorbar; 
 title('Diffraction Pattern at z'); 
 clim=get(gca,'clim'); 

  
 levels=255; 
 target=grayslice(p,linspace(clim(1),clim(2),levels)); 
 map=jet(levels); 
 imwrite(target,map,'C:\Users\A\Documents\MATLAB\I5.bmp'); 
 I5 = imread('C:\Users\A\Documents\MATLAB\I5.bmp'); 
 I5=fftshift((fftshift(fftshift(I5)))); 
 figure(111); 
 imshow(I5) 

  
 imresize(I5,[256 256]); 
 imwrite(I5,'C:\Users\A\Documents\MATLAB\Im.bmp'); 
 figure(112); 
 surf(p) 
colormap(jet); 

  

  
 %figure(222) 
plot(x, I5(:,256));    % plot of cross-section of intensity at z 
xlabel('x'); ylabel('p'); 
title('Intensity at z'); 

  
%figure(333); 
%mesh(I5) 
%colormap(jet); 

  

  
I5 = imtranslate(I5,[0, 0]); 
 figure(333); 
 plot(I5); 

  
 figure(444) 
plot(x, I5(:,256));    % plot of cross-section of intensity at z 
xlabel('x'); ylabel('p'); 
title('Intensity at z'); 
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APPENDIX E 
 

Matlab Code Developed for Quadratic Phase Recovery 

 

%%%%%%%%%% MATLAB  code to reconstruct the quadratic phase from the modulus 
%%%%%%%%%% of the Fourier transform for two Fresnel zone plates (FZPs). We 

%%%%%%%%%% first set a propagation distance 
%%%%%%%%%% and construct a Fresnel Zone plate which represent the hologram 
%%%%%%%%%% of a point source. Taking the Fourier transform to the FZP, the 

%%%%%%%%%% Fourier transform decomposes the signal into a phase and intensity 

%%%%%%%%%% and we are only interested on the phase. We need to use a known 

%%%%%%%%%% random phase to add it to the original phase, and we have to 

%%%%%%%%%% choose the best one from many of them we create them. We take the 

%%%%%%%%%% combination of the two phases   

 

 

 

 

 

 

%%%%%%%%%%%%USING DIFFERENT CONSTRAINTS .. CHECK IN THE ITERATIONS LOOP 
%%%%%%%%%%%%%%%% 
%%%%%%%%% 
clear; 
ROWS=256; 
COLS=256; 
colormap(gray(255)) 
z=5; 
sigm = 1/z; 
y=-12.8; 

   

  
for r=1 :COLS, 
x=-12.8; 
for c = 1 :ROWS, %compute Fresnel zone plate 
FZP1(r, c)=exp(j * sigm* (x- 0.0 )* (x- 0.0)+j * sigm* (y+ 50.0)* (y+ 50.0)); 
x=x+0.1; 
end 
y=y+0.1; 
end 

  

  

  
%normalization 

  

  

  
max11=max(FZP1); 
max22=max(max11); 
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scale=1/max22; 
FZP1=FZP1.*scale; 
figure(1); 
colormap(gray(255)); 
image( 127*( 1 +imag(FZP1))); 
axis square on 
axis off 

  

  
ROWS1=256; 
COLS1=256; 
colormap(gray(255)) 
z1=5; 
sigm1 = 1/z1; 
y1=-12.8; 

  

  

  
for r1=1 :COLS1, 
x1=-12.8; 
for c1 = 1 :ROWS, %compute Fresnel zone plate 
FZP (r1, c1)=exp(j * sigm1* (x1- 0.0 )* (x1- 0.0)+j * sigm1* (y1+ 10.0)* (y1+ 

10.0)); 
x1=x1+0.1; 
end 
y1=y1+0.1; 
end 

  

  
max1=max(FZP); 
max2=max(max1); 
scale=1/max2; 
FZP=FZP.*scale; 

  
figure(2); 
colormap(gray(255)); 
image( 127*( 1 +imag(FZP))); 
axis square on 
axis off 

  

  
ROWS3=256; 
COLS3=256; 
colormap(gray(255)) 
z3=5; 
sigm3 = 1/z3; 
y=-12.8; 

  

  

  
for r=1 :COLS, 
x=-12.8; 
for c = 1 :ROWS, %compute Fresnel zone plate 
FZP3(r, c)=exp(j * sigm3* (x- 0.0 )* (x- 0.0)+j * sigm3* (y+ 0.0)* (y+ 0.0)); 



191 

 

x=x+0.1; 
end 
y=y+0.1; 
end 

  

   
%normalization 

  

   
max111=max(FZP3); 
max222=max(max111); 
scale=1/max222; 
FZP3=FZP3.*scale; 
figure(33); 
colormap(gray(255)); 
image( 127*( 1 +imag(FZP3))); 
axis square on 
axis off 

  

  
%FZP2=FZP+FZP1+FZP3; 
FZP2=FZP+FZP1; 
%FZP2=FZP; 
figure(3); 
colormap(gray(255)); 
image(127*(1+imag(FZP2))); 

  

  
%normalization 
%max1=max(FZP2); 
%max2=max(max1); 
%scale=1/max2; 
%FZP2=FZP2.*scale; 
%image( 127*( 1 +imag(FZP2))); 
%axis square on 
%axis off 

  
% 
%figure(2) 
%imshow(g) 

  
%imwrite(FZP,'C:\Users\A\Documents\MATLAB\PT2.bmp'); 

  

  
%I = imread('C:\Users\A\Desktop\USB\USB ALL\MyImage-8.png'); 
 %imwrite(I,'C:\Users\A\Desktop\USB\USB ALL\MyImage-6.bmp'); 

   
 %I = imread('C:\Users\A\Documents\MATLAB\PT2.bmp'); 

  
%a = imread('circlesBrightDark.png'); 
% CONVERT IMAGE TO BINARY 
%bw = I < 20; 
%imshow(bw) 
%title('Image with Circles') 
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%title('Fresnel Zone Plate'); 
%I2= double(bw); 
I=FZP; 
I = imtranslate(I,[0,0]); 
 figure(4); 
 colormap(gray(255)); 
image(127*(1+imag(I))); 
 %imshow(I); 

  

  
figure(2); 

  

  
imshow((mat2gray(abs(I)))); 

  
%imwrite(I2,'C:\Users\A\Desktop\USB\USB ALL\MyImage-12.bmp'); 

  

  

  
%clear 
%close all 

  
%I=imread('C:\Users\A\Desktop\USB\USB ALL\MyImage-12.bmp'); 
%I=double(I); 
I=imresize(I,[256 256]); 
figure(5); 
imshow((mat2gray(abs(I)))); 
 title('Fresnel Zone Plate'); 
I=fftshift(fft2(I)); 
sEF=angle(I); 
%f=abs(I); 
M0=256; 
N=256; %matrix size 
%T=512; 

  
%generate some target points: 
target=ones(N); 
target(N/2-15,N/2-10:2:N/2+10)=1; 
target(N/2+15,N/2-10:2:N/2+10)=1; 

  
phaseF=rand(M0)*2*pi-pi; %initial random phase at target plane 

  
sEF1=(exp(-1i.*phaseF)); %complex field of target points with random phase 
figure(6); 
 sEF1=(mat2gray(abs(sEF1+pi))); 
 imshow(sEF1); 
 title('Random Phase'); 

   
 %Example 
%sEF1=rand(256,1);  
%sEF=rand(256,1); 
%----The code-------- 
%n=256; 
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%out=sEF1; 
%out(1:n)=sEF1.*sEF(1:n); 

  
sEF=sEF.*(sEF1); 

  

  
A0=(nnz(target)/(N*N))*ones(N);   %initial constanst amplitude distribution 
Ad=target; %desired intensity distribution 

  

  
%sEF=(exp(1i.*phaseF)); %complex field of target points with random phase 

  

  
%fourier transform the field back to get a starting phase: 
sEF=ifftshift(sEF); 
sEinF=ifft2(sEF); 

  
f=abs(sEinF); 
phase1=angle(sEinF); 

  
phase1=phase1./max(max(phase1)); 
avg1=mean(mean(abs(phase1))); 

  
figure(7); 
 phase1=(mat2gray((phase1+pi))); 
    %plot the phase as a grayscale image, [0,2pi] 

    
    imshow(phase1) 
    title('Phase Image of the Combination'); 

     

     
phaseF1=(N)*2*pi*0; 

  
%sEF1=(exp(1i.*phaseF1)); 
figure(6); 
axis([-1,100,0,1]); 
box on 
xlabel('Number of iterations','FontSize',16,'Color','k'); 
title('Modified Gerchberg-Saxton Iterations','FontSize',16,'Color','k'); 
ylabel('RMSE','FontSize',16,'Color','k') 

  
set(gca,'YTick',[0.0:0.2:1])% TO CHANGE THE Y-AXIS INCREMENT  
set(gca,'XTick',[0.0:10:100]) 
flip(y); 
hold on 
f1=f; 
T=(exp(1i.*phaseF1)); 

    
for i=0:10 

  
    %complex field with the uniform amplitude distribution and starting 
    %phase: 
    I1=f1.*(exp(1i.*phaseF1)); 
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    H=fftshift(fft2(fftshift(I1))); 

     
   % rmse=abs(mean(mean((abs(I1)-(f)).^2))).^0.5; 

   
    %k=(abs(mean((f).^2))).^0.5; 
     % rmse=rmse./k; 

     
    I2=fftshift(ifft2(fftshift(exp(1j.*angle(H))))); 

     

     
    avg2=mean(mean(abs(I2))); 
    %phase=(phase./avg2).*avg1; 
   I2=(I2./avg2).*avg1; 
    %rmse=((mean((conj(phase1)-(I2))).^2)).^0.5; 
     %rmse=abs(mean(mean((abs(I2)-(f)).^2))).^0.5; 
     rmse=abs(mean(mean((abs(I2)-f).^2))).^0.5; 

    
    plot(i,rmse,'o'); 
    axis('ij'); 
    pause(0.5); 
    f1=f.*exp(1j*angle(I2)); 

    
end 

  
hold off 
figure(9); 
imshow(I2) 
I2=I2-sEF1; 
   I2=(mat2gray(abs(I2+pi))); 
   figure(10); 
    %plot the phase as a grayscale image, [0,2pi] 
    imshow(I2); 
    title('Phase Image after Iterations'); 

    
   imwrite(I2,'C:\Users\A\Desktop\MyImage-13.bmp'); 
   figure(11); 
    %plot the phase as a grayscale image, [0,2pi] 
    imshow(I2); 
    title('Phase Image after Iterations'); 
   % rmse=((mean((abs(phase)-(abs(phase1))).^2))).^0.5; 

     

     

     
    ii=sqrt(-1);  
lambda= 0.633*10^-3;   % wavelenght [mm] 
%z=3;    % distance [mm] 
w=3;    % width of slit is 2*w [mm] 
z=0.5; 
%z=w.^2/0.00005*lambda; 
x=-6.375:0.025:6.4;    % setup spatial axis [mm] 
y=x; 
freqx=-20:40/512:20-1/512;    % setup frequency axis [1/mm] 
freqy=freqx; 
q=0.9; 
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%A=zeros(512); 

  
fft_val=zeros(512); 
fft_v=zeros(512); 

  

   
u0=zeros(512);    % field at z=0 
a0=zeros(512);    % angular spectrum at z=0 
H=zeros(512);    % transfer function 
az=zeros(512);    % angular spectrum at z=z 
uz=zeros(512);    % field at z=z 

  
for nx=1:256    % setup transfer function 
   for ny=1:256 
    H(nx,ny)=exp(ii*2*pi*(z/(lambda*q))*... 
     sqrt(1-((lambda*q)*freqx(nx))^2-((lambda*q)*freqy(ny))^2)); 
   end 
end 

  

  
%for nx=1:512    % setup transfer function 
 %  for ny=1:512 
  %  H(nx,ny)=exp(ii*2*pi*(z/(lambda*q))*... 
   %  sqrt(1-((lambda*q)*freqx(nx))^2-((lambda*q)*freqy(ny))^2)); 
   %end 
%end 

  

  
[nx,ny]=meshgrid(x,y); 

  
 I=imread('C:\Users\A\Desktop\MyImage-13.bmp'); 
I=double(I); 
I=imresize(I,[512 512]); 
figure(12); 
imshow((mat2gray(abs(I)))); 
 title('Phase Image after Iterations'); 

  

  

  
%radius=50; 
%CenterX=257; 
%CenterY=257; 
%u0=rectangle('position',[CenterX-radius,CenterY-

radius,radius*2,radius*2],'Curvature',[1,1],'FaceColor','r'); 
%axis square 
%plot(x,u0); 

  
%u0(257-w*20:256+w*20,257-w*20:256+w*20)=1;    % setup aperture 
%figure(1) 
%imagesc(x,x,u0);colormap(gray); 

  

  
%u0(57-w*20:256+w*20,100-w*20:256+w*20,w,w)=1;    % setup aperture 
%fft_v=abs(fft2(A)); 
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%a0=fftshift(fft_v); 

  

  
a0=(fftshift(fft2(I)));    % fourier transform 
az=a0.*H;    % multiply with transfer function 
uz=ifft2(fftshift(az));    % inverse fourier transform 
p=uz.*conj(uz); 

  
%p= abs(uz.^2); %obs irrad 

  
figure(13) 
plot(x, p(:,256));    % plot of cross-section of intensity at z 
xlabel('x'); ylabel('p'); 
title('Intensity at z'); 

  
figure(14) 
imagesc(x, x, p);    %diffraction pattern at z 
xlabel('x'); ylabel('y'); colormap(gray); 
colorbar; 
 title('Diffraction Pattern at z'); 
 clim=get(gca,'clim'); 

  
 levels=255; 
 target=grayslice(p,linspace(clim(1),clim(2),levels)); 
 map=jet(levels); 
 imwrite(target,map,'C:\Users\A\Documents\MATLAB\I5.bmp'); 
 I5 = imread('C:\Users\A\Documents\MATLAB\I5.bmp'); 
 I5=fftshift((fftshift(fftshift(I5)))); 
 figure(15); 
 imshow(I5) 
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