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Abstract

In this thesis we study the nonlinear elliptic system

ZLul=VZ inQ,
EL[u;Q, 0] :=< detVu =1 in €,
U= on 09,

for & = Z(x) a hydrostatic pressure (Lagrange multiplier) related to the in-

compressibility constraint det Vu = 1 and
L] = (Vu) {div[Fe (|l [ul?, [Vul*) V] = Fy(Jz], [ul?, [Vul*)u}.

Here F' = F(r,s,§) is a sufficiently regular and suitably convex function and we
take ¢ = x, hence EL[u; Q, ¢] is the Euler-Lagrange equation associated to the
energy functional

Flu; Q] == /QF(\:E|, lul?, |Vu|?) dz.

The goal throughout is to classify solutions of EL[u; Q, ¢] (that is, critical points
of the energy Fu; ]) for two classes of geometrically-motivated maps. The first
of which are generalised twists u(x) = Q(|z|)z for Q an SO(n)-valued curve
and the second are whirls u(z) = Q(o)x for ¢ = (p1,...,pn) a vector of 2-plane
radial variables where Q has a more complex structure.

By relaxing the variational context we also consider a more general system
where we set F¢ = A and F; = —B in Z[u] above, for suitable functions
A(r,s,§) and B(r, s, ) bearing no relationship to one-another (i.e. Ay # —Bg
necessarily). It is seen that many of the results derived in the variational setting
have analogies in this more general framework.

Along with the analysis of the structure and irrotationality of the vector field
Z[u] and ultimate solution of the PDEs in u above we also study a series of
isotropic ODEs for the SO(n)-valued curves Q(r) over this compact Lie group,
specifically considering geodesic-type solutions Q(r) = exp{¥(r)H} for some ¢
of class €2 and H € so(n), the Lie algebra of skew-symmetric matrices.

We establish the existence of a countably infinite scale of twist and whirl
solutions to EL[u; ), ] in even dimensions. By analysing the curl-free structure

of the vector field Z[u] we introduce a discriminant term

2[(n + 1) Fe + 2r2Fee|Q'QO|* + 2r2 Fie] [Fe + 12 Fee|Q'QO)?] + rFe Fre
r2(Fe + 2r2Fe| Q1 QH)2)

AF =
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upon the assumption that Q solves a given ODE. This discriminant is derived
formally in Chapter Remarkably, if Arp = 0 then we have a previously
unknown countably infinite scale of solutions to EL[u; (2, ¢] in odd dimensions
as well as even. This original result is made possible by the dependence of F'
on r and s; if F' = F(£) then Ap is nowhere zero and the only solution in odd
dimensions is the trivial map u = x.

One particular Lagrangian studied in detail is F(r,s,&) = h(r, s)€, which
corresponds to a weighted Dirichlet energy when substituted into Flu; 2]. Here
a necessary and sufficient condition for the above discriminant to vanish is 2(n+
)h(r,s) + rhy(r,s) + 4r2hs(r,s) = 0. The additional benefit of studying this
Lagrangian is that solutions of EL[u; Q, ¢] can be explicitly described and they
admit a geodesic-type twist path Q(r) = exp{¥(r)H}.
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Chapter 1

Introduction

The principal object of study in this thesis is the nonlinear elliptic system subject

to an incompressibility constraint on its solution, explicitly

ZLu|=VZ inQ,
EL[u;Q, 0] :=1 detVu=1 inQ, (1.0.1)
U= on 02

where ) C R" is a bounded domain with a sufficiently smooth boundary, v =
(u1,...,up) is a map on Q (and into R™), & = P(z) is an a priori unknown
hydrostatic pressure field (Lagrange multiplier) and Z[u] is the second-order

partial differential operator
L] = (Vu) {div[Fe (2|, [ul?, |[Vu|?)Vu] — Fs(|2|, [ul?, |[Vu|?)u}.  (1.0.2)

It can be seen (and is derived formally in Appendix that this system arises

as the Euler-Lagrange equation associated to the variational energy functional
Flu; Q] := /QF(|$\,\U|2,\VU|2) dz (1.0.3)

over the admissible space of incompressible p-Sobolev maps (with p > 1)
Ay = {ue WHP(QR") : det Vu = 1, ulpo = ¢}, (1.0.4)

where Vu = [Qu;/0z; : 1 <14,j < n]is an n X n matrix field. For notation and
background on the theory of Sobolev spaces see [2] [33], 44, 59, 81] and [90]. The



Introduction

Lagrangian F' = F(r,s,§) in is subject to suitable bounds and regular-
ity, coercivity and convexity constraints and, in , F. = F.(r,s,§), Fs =
Fy(r,s,§) and Fr = Fe(r, s,€) denote the derivatives of F' = F(r, s, &) with re-
spect to the first, second and third variables respectively. The divergence in
acts on the matrix field F¢(|z|, |u|?, |Vu|?)Vu row-wise and throughout
the text we take the boundary data ¢ = x in , which is interpreted in the
sense of traces.

Various classes of Lagrangians pertaining to this problem are well established
in the literature including, for example, F(r, s,£) = (£/s)™/? which corresponds
to an energy in the theory of maps with bounded distortion (c.f. [B] [62] [71])
or F(r,s,&) = h(r,s)¢ which corresponds to a weighted version of the classical
Dirichlet energy. The latter of these two examples is studied in great detail in
this thesis.

In terms of motivation, this system is in the canon of nonlinear elasticity.
The bounded domain £ C R"™ represents some hyperelastic body with the map
u representing a deformation of 2. Normally in the context of elasticity n = 2 or
3 but throughout the thesis we consider n > 2 to allow for more interesting and
general mathematical situations. The energy F[u; Q] is the total elastic energy
under consideration where the Lagrangian F = F(r, s, &) represents the stored
energy function for which we principally consider isotropic examples. We impose
the incompressibility constraint det Vu = 1 throughout which, together with
the boundary condition u = x and the appropriate regularity or integrability
of the deformation u, ensures that u preserves the volume of Q. The term &2
appearing on the right-hand side of the PDE governing enters in the
derivation of the system as a Lagrange multiplier [c.f. ] and is referred
to as the hydrostatic pressure field. For much more background on the theory
of nonlinear elasticity and its applications see [3| [0l 10} 14, 24] 25] 54, [64] and
the references therein.

Given this setup our goal is to find, among all volume-preserving deforma-
tions of € in the admissible space /%, those which arise as critical points of the
energy functional Flu; Q] and as such are equilibria of this total elastic energy.
We restrict our study to the case that 2 is a hyperelastic incompressible annu-
lus, that is @ = X" = X"[a,b] == {z € R" : a < |z| < b} with 0 < a < b < o0,
and u is one of two classes of geometrically-motivated maps bearing some inher-

ent symmetries. These are generalised twist and whirls, which both enjoy some



Introduction

natural rotational invariance as will be seen. All such geometric assumptions
are treated fully in the introductions to the respective chapters.

This thesis is comprised of five technical chapters each containing an intro-
duction of its own detailing the preliminaries needed. Given this, the discussion
here will be kept short; we will briefly outline the highlights and interconnectiv-
ity of the chapters in broad strokes, deferring the technical details to the main
body of the text.

Beginning with Chapter [2] in which the method and results are in line with
those from the work in progress [67], we study the system EL[u;Q, o] for a
generalised twist u(z) = Q(]z|)z under the assumption that Q = Q(r), an
SO(n)-valued curve called the twist path, solves a given ODE. Here we see that,
upon the additional assumption that ||Q¢9|| L'(a,p) is independent of 0, the sys-
tem admits an infinitude of solutions (indexed by the integers Z) in even
spatial dimensions, whereas, in great contrast, the only solution in odd dimen-
sions is the identity map u = z. These solutions in even dimensions necessarily
admit geodesic-type twist paths Q(r) = exp{¥(r)H} for H an appropriate
n X n skew-symmetric matrix and ¢ the solution of a given two-point boundary
value problem. We also consider the particular Lagrangian F'(r, s, &) = h(r, s)§
for some positive 62 function h = h(r,s). By analysing the curl of the re-
sulting vector field .Z[u] we extract a discriminant term and we see that the
non-vanishing of this discriminant is a necessary condition for the triviality of
solutions in odd dimensions. Here and for future reference, this discriminant is
given by

A, m 2(n + D)h(r,72) + rh,.(r,r?) + 4r2h4(r, 7"2)7 (10.5)

r2

where h,., hy denote the derivatives of h = h(r, s) in the first and second variables
respectively. Colloquially we will say throughout the thesis that if this particular
discriminant vanishes, that is A, = 0, a necessary and sufficient condition for
which is 2(n + 1)h(r,r%) + rh,(r,7%) + 4r2hs(r,r?) = 0, then the “h-condition”
holds. We note that there is an emerging literature devoted to the study of
generalised twists in the context of nonlinear elasticity; see, for example, [30]
311, 611, [63, [66), [74), [75] [8]].

Chapter [3| then constitutes a deeper study of the Lagrangian F(r,s,§) =
h(r, s)¢ first seen above, both for generalised twists as well as whirl maps u(x) =
Q(o)z, for ¢ a suitable vector of 2-plane radial variables. When substituting
such Lagrangians into the energy integral , this corresponds to a weighted

10



Introduction

version of the Dirichlet energy, with a positive weight function h = h(r, s).
Remarkably, it is seen that any whirl solution reduces to a generalised twist
- that is, with a slight abuse of notation, Q(¢) = Q(||le]]) = Q(r) - and all
such solutions are classified explicitly. In this chapter it is now verified that,
if the h-condition holds (i.e. the discriminant Aj; above vanishes) then there
is an additional infinite class of solutions to the system in odd spatial
dimensions as well as even.

In Chapter [d] we consider the same questions posed for generalised twists in
the first two chapters but now in a non-variational context. This is based on
the published work [65]. We take the system now governed by the PDE
ZLlu;A,B] = V&, where

Llu; A, B] = (Vu) {div[A(|z|, [u|?, [Vu*)Vu] + B(|z|, [ul?, [Vu[*)u}, (1.0.6)

for A = A(r,s,&), B = B(r,s,£) suitably regular real-valued functions. Clearly
if A= F¢ and B = —F}, we return to the variational setting where the system
EL[u; Q, o] arises as the Euler-Lagrange equation associated to F[u; ], but we
stress that no such assumptions are made here. This short chapter exclusively
considers geodesic-type twist loops and we observe the same phenomena as pre-
viously. That is, we have a countably infinite class of solutions to -
in even spatial dimensions yet no nontrivial solutions in odd dimensions. Upon
considering A(r,s,&) = h(r,s), B(r,s,§) = —hy(r,s)€ to mimic the weighted
Dirichlet scenario, we see the introduction of a discriminant term and an infi-
nite class of solutions in odd dimensions as well as even, given the vanishing
of this discriminant, in line with what we have already observed in the varia-
tional setting. Here a necessary and sufficient condition for the vanishing of the
discriminant is that 2(n + 1)h(r,72) + rh,.(r,7%) + 2r2[hs(r,72) — g(r,7?)] = 0,
which is directly comparable with the h-condition introduced previously.

We return to the variational context in Chapter [5| and, as in Chapter [2]
work under the assumption that the twist path Q solves a given ODE in 7,
this one being slightly relaxed. In fact we conduct a study of the relationship
between three ODEs for Q, one arising as an Euler-Lagrange equation related
to a restricted energy functional, before solving the system EL[u;,¢]. By
enforcing the assumption that Q solves a ‘weaker’ ODE than in Chapter [2] a
discriminant is considered for the full Lagrangian F = F(r,s,{) as opposed

to the (restricted) weighted Dirichlet case, where no dependence on the third

11
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argument is required. This, as before, permits an infinitude of solutions in odd
as well as even dimensions whenever this discriminant vanishes.

Finally in Chapter [6] we consider only whirl maps and return to the non-
variational context - that is we solve —. In analogy to the study
of various ODEs for Q the work here depends intimately on a divergence-free
system for a vector of 62 functions f = (f1,..., f4) apparent in the description
of the twist path Q, which here we assume takes values on the maximal torus
of block-diagonal matrices T C SO(n). For more on the theory of Lie groups
see [4, 27, 29] 35 45| [47, [73], BO] and further references therein. We conduct
a study of the PDE Z[u; A, B] = V. in three and four spatial dimensions by
hand upon introducing a polar coordinate system. The chapter closes with a
full n-dimensional analysis in the case where the function A(r,s, &) = h(r,s).
Results here are consistent with the rest of the text and it is the component-wise
analysis in low spatial dimensions which is novel.

Four appendices complement the main body of the text and gather together
many key results used repeatedly throughout. Appendix [A]is a collection of
key identities pertaining to generalised twists and whirls and their gradients. In
particular there are two results devoted to proving that both classes of maps,
that is twists and whirls, satisfy the incompressibility constraint det Vu = 1.
Appendix [B]is then a short yet formal derivation of the Euler-Lagrange equa-
tion — using the Lagrange multiplier method and considering an
unconstrained energy.

In Appendices [C] and [D] we give a series of results proving, respectively,
the existence and/or uniqueness of solutions to certain differential equations
considered throughout the thesis and some curl-free results for generic vector
fields, along with necessary and sufficient conditions under which these vector

fields constitute gradients, a stronger property than irrotationality.

12



Chapter 2

Generalised Twists as

Solutions to the Nonlinear

System Z|u] =V

In this chapter we address questions on the existence and multiplicity of a class of
geometrically-motivated mappings serving as solutions to the nonlinear system

in variation:

(Vu)! {div [FeVu] — Fsu} = V.2 in Q,
detVu =1 in Q,
U= on 0f.

Here © C R™ is a bounded domain, F' = F(r,s,§) is a sufficiently smooth
Lagrangian and Fy = Fy(|z|, [u|?, |Vu|?) and F¢ = Fe(|zl, [u|?, |Vul?) with Fj
and F¢ denoting the derivatives of I’ with respect to the second and third
variables respectively. Furthermore & = Z(z) is an a priori unknown hy-
drostatic pressure resulting from the incompressibility constraint det Vu = 1
and for convenience the boundary map ¢ is taken throughout as the iden-
tity. Of particular interest is when Q = X"[a,b] is a symmetric finite an-
nulus and v = rQ(r)f is an incompressible twist mapping with a twist path
Q € ¢([a,b],S0(n)) N €?(Ja,b[,SO(n)). Here we prove that when the spatial
dimension n is even the above system admits a countably infinite family of in-
compressible twisting solutions of different topological types whereas in sharp

contrast when n is odd we have only the trivial solution u = x.

13



Generalised Twists as Solutions to the Nonlinear System ZL[u] = VP

2.1 Statement of the Result

Let @ C R™ (with n > 2) be a bounded domain and consider the variational
integral
Flu; Q] :z/ F(|z|, [ul?, |Vul?) dz. (2.1.1)
Q

Here F' = F(r,s,§) is a twice continuously differentiable Lagrangian that is
assumed to be bounded from below, coercive and to have a polynomial growth
at infinity whilst being uniformly convex and monotone increasing in the third
variable (see below for a precise formulation of the assumptions on F'). The goal
is then to seek extremisers (equivalently critical points) of F over the space of

admissible weakly differentiable incompressible Sobolev mappings defined by

— 1, ny . — ; —
AP (Q) = {u e WP(Q,R") :det Vu =1 a.e. in Q, u= ¢ on 89}, (2.1.2)

where 1 < p < oo is fixed. Note that the boundary mapping ¢ € € (992, R") is
taken throughout to be ¢ = x whilst the last condition in asserts that
u = @ on 0f2 in the sense of traces. Furthermore Vu here denotes the gradient of
u, an n X n matrix-field in €, with det Vu denoting the Jacobian determinant of
u, also known as the deformation gradient. The Euler-Lagrange equation asso-
ciated with the energy functional over the space of admissible mappings
2 (Q) can be formulated asﬂ

Lu=VZ inQ,
EL[u;Q,¢] = detVu=1 inQ, (2.1.3)
U= on 01,

where the differential operator .Z = Z[u] here is given explicitly by
L] = (V) {div [Fe(|z|, |ul®, |Vul>)Va] — Fy(|z], |ul?, [Vul*)u}. (2.1.4)

Here Fs and F¢ denote the derivatives of the Lagrangian F' with respect to the
second and third variables respectively and & = £ (x) in is an a priori
unknown hydrostatic pressure resulting from the incompressibility constraint
det Vu = 1. Note firstly that by virtue of the incompressibility constraint we
have (cof Vu)™! = (Vu)! which will be used repeatedly below and secondly that

1See Appendix [B| for a derivation of this system. Note that the identity mapping u = =
is always a solution to this system in view of the vector field Z[u = z] = V[F¢] — Fsz with
Fe = Fe(r,v%,n), Fs = Fs(r,72,n) being a gradient field in Q.

14



Generalised Twists as Solutions to the Nonlinear System ZL[u] = VP

the divergence operator in Z[u] is understood to act row-wise on the matrix
field Fe (|, uf?, [Vul*)Vu.

We confine to the case where the domain is a bounded, rotationally-symmetric
annulus Q = X"[a,b] ;== {z € R" : a < |z| < b} with 0 < @ < b < o0 and
the extremiser u is a twist on X", that is, a continuous self-mapping of the
closed annulus onto itself agreeing with the identity on X" and admitting, in

spherical-polar coordinates, the representation

u:x=(r6)— (r,Q(r)), a<r<b, r=lz|, =2zt zeX
(2.1.5)
For obvious geometric reasons the mapping Q € % ([a, b}, SO(n)) is referred
to as the twist path (or in the event Q(a) = Q(b) the twist loop) associated
with the twist u. The main result of this chapter is a multiplicity result in even
dimensions for solutions of the nonlinear system - in the form of
twist mappings and is formulated in the following theorem. Note that here and
later we write J,, = diag(J, ..., J) for n even and J,, = diag(J, ...,J,0) for n odd
where J is the constant 2 x 2 skew-symmetric matrix of rotation by angle 7/2
[¢f. (2-3.4)]. We also denote by exp{-} the exponential map of the compact Lie
group SO(n) whose domain is the Lie algebra so(n) of skew-symmetric matrices.
For the sake of future reference and clarity we assume throughout that F' =
F(r,s,£) is a twice continuously differentiable Lagrangian, that is, F' € €2(U)
where U = U(X"[a,b]) = [a,b]x]0,00[x]0,00[C R3. We assume that there
exists some ¢y € R such that F(r,s,£) > ¢o for all (r,s,£) € U and that for
every compact set K C]0, 00| there are constants ¢; = ¢1(K),ca = c2(K) > 0

such that, for p > 1,

|Fe(r,s,C*)C| < eol¢P7Y, V(r,5,¢%) €U, with s € K,

co +c1|C]P < F(r,s,¢%) < e)?, Y(r,s,¢?) € U, with s € K.
In particular T is well-defined and bounded from below (yet not necessarily finite
everywhere) on /2 (X"). As for convexity all we assume is that F¢ > 0, Fge > 0

and that the twice continuously differentiable function ¢ ~— F(r,7%,n +r2(?) is

uniformly convex in ¢ for all a <r < b and ¢ € R.

Main Theorem. For n > 2 even, the nonlinear system (2.1.3) has an infinite

family of incompressible twisting solutions u = u(x;m) (with m € Z) of class
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Generalised Twists as Solutions to the Nonlinear System ZL[u] = VP

€? admitting the representation
u(xz;m) = rQ(r;m)f = rexp{¥(r;m)H}0 r=lz|, 6=axlz|!,
= rPdiag(R[¥](r;m), ..., R[¥Z](r;m))P0, r €Xn, (2.1.6)

with H = PJ,,Pt and arbitrary P € O(n)ﬂ Here the angle of rotation function

G =G (r;m) € €%[a,b] is the unique solution to the two point boundary value

problem
d o 2 2052\ | _
dr[r Fg(r,r,n—i—rg)g =0, a<r<hb,
9(a) =0, (2.1.7)
4(b) = 2m,

while the twist loop Q(r) = exp{¥(r)H} = Pdiag(R[¥|(r),...,R[¥4](r))P! and
each diagonal block R[¥] is an SO(2) rotation matriz by angle 4 [see (2.3.4))].

2.2 An Euler-Lagrange Equation for the Twist
Path Q(r)

Our goal is to seek and describe solutions to the nonlinear system that
take the specific geometric form u : (r,0) — (r,Q(r)#). First we direct the
reader to Appendix [A] where we gather numerous important identities relating
to generalised twists and their gradients. Given in particular those identities
gathered in Proposition we can proceed by restricting the energy func-
tional to the subclass of generalised twists u = 7Q(r)# hence obtaining

a formulation in terms of the associated twist loops Q = Q(r). Indeed referring

to (2.1.1) we can write

Flu; X"] = / F(la], luf?, |Vul?) do

b
:/ / T"ilF(r,rz,nJr7’2|Q0|2)d7-["71(9) dr
a Snfl

b
/ E(r,Q)r" tdr =: E[Q; (a, )], (2.2.1)

2Note that for even n any such H is a skew-symmetric square root of —I,. For odd n there

is no such root.
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where the reduced energy functional E has the Lagrangian F = E(r, A) given
by
E(r,A) ::/ F(r,r*,n+r?|A0%) dH"1(0) (2.2.2)
S§n—1

for a <r <band A in the tangent space of SO(n), i.e., the Lie algebra of n xn
skew-symmetric matrices. As a matter of fact a basic inspection shows that
definition lends itself to an immediate generalisation in that A can be
taken from the full space of n x n matrices. Thus when necessary we speak of F
in this extended sense. The above formulation now prompts us to introduce the
class of admissible twist loops, and subsequently search for extremising loops

for the energy E from within this class. Towards this end we set

By =% (a,b) = {Q € W'P(a,b;S0(n)) : Q(a) = Q(b) = In}. (2.2.3)

In search of extremising loops for this reduced energy we now proceed on to

formulating the associated Euler-Lagrange equation. This as will be seen is a

particular case of the following result.

Proposition 2.2.1. Let L = L(r,n, () be a sufficiently smooth Lagrangian and
Qe @fn (a,b) an extremal of class €' of the energy integral

b
LIQ; a, ) ::/ rra.Qa Q-2

Then Q satisfies &1,[Q; a,b] = 0 where &1, denotes the second-order differential

operator

(2.2.4)

d

500Q st = L [LQ! - QLY + 1,Q' - QY + Q- QIL (225)

Here L, = L,(r, Q,Q) and L¢ = L¢(r, Q, Q) with the subscripts denoting the

derivatives of L with respect to the second and third arguments respectively.

Proof. Let Q be as described and consider the one parameter family of variations
Q. with € € R defined by

Q. :=Q+¢(F -FHQ, (2.2.6)

where F € €5°(Ja, b[,M™*™). Then it can be seen that up to the first order in
g, the variations Q. are in SO(n): Q.Q! =1, + O(?) = Q. Q. and so for the

purpose of the first variation of energy extremality of Q gives

d

*L[Qs; a, b]

e = 0. (2.2.7)

d [ :
— = [ L.

e=0 =0
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Now by a basic and straightforward differentiation it is evident that
Q- = dQ./dr = Q+¢[(F ~ F)Q + (F — F)Q.

As such we are tasked with solving

d%JL[QE; a, b] :/ab { <L,7(r, Q,Q), (F — Ft)Q> (2.2.8)

e=0

+ <L<(r, Q.Q), [(F —FHQ + (F — Ft)QD }dr =0.

Suppressing the arguments in the Lagrangian and its derivatives for brevity, a

rearrangement of terms gives

b
/ <_CZ~ (LeQY) + LeQ' + L, Q1 F—Ft> dr =0 (2.2.9)

and so the conclusion follows by noting the arbitrariness of F € %§°(]a, b[, M"*"),
the skew-symmetry of the matrix field F — F? and the fundamental lemma of

the calculus of variations. O

We now consider the particular case of (2.2.1)) above where the Lagrangian
is given by L(r, Q, Q) = E(r, Q)r”fl, with E(r, Q) as defined by (2.2.2)). It is

clear that here L, = 0 and so in this case

sl =~ L [1Q - QL] + 1 - QL (2210

Moreover by a further reference to (2.2.2)) we see that
Le(r,Q) = 2/ e (r 2 + 72 QOP)QI @ 0 dH (),  (2.2.11)
S§n—1
and so in particular it follows that Lth — QLZ = 0. As such we have proved

the following statement.

Corollary 2.2.2. The FEuler-Lagrange equation associated with the energy in-
tegral E = E[Q;a,b] defined by (2.2.1) over the space of admissible twist loops
Py (a,b) has the formulation

/ CZ“{THJAF&(T’ /r'2’n + 7A2|C29|2) {Qg ® Q0 _ Q9 ® Q9:| }denl(a) -0,
sn—1

(2.2.12)
fora <r<b.
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2.3 The Totally Integrable Case F' = h(r, s)¢

Before proceeding onto the solution and implications of the Euler-Lagrange
equation , we pause briefly to discuss an important and illustrative case.
Indeed here we take the integrand F(r, s, &) = h(r, s)¢ for some strictly positive
h € €*(|a, b] x]0, oo) with then being a weighted form of the Dirichlet en-
ergy. For this choice of integrand the reduced Euler-Lagrange equation ,

noting F = 1, can be written as

(Zq{r"“h(n r?) /Smi1 [QG ®Qf— QI ® Q9} dH"_l(H)} =0. (231

Upon evaluating the spherical integral, e.g., by using the divergence theorem,
it is seen that the above leads to the second order ODE:

ddr{r"“h(r, TQ)QQt} =0, a<r<b (2.3.2)

Integrating once gives r"*1h(r, TQ)QQt = H where H is a constant n x n skew-
symmetric matrix. This by noting the boundary conditions on the twist path
as required by Q € %’%ﬂ (a,b) (see with p = 2) has the general solution
Q(r) = exp{s7(r)H}, with

" ds
%(T):H(b y H(T):L W’ aSTﬁb. (233)

We see from the above that 7 (a) = 0 and 2 (b) = 1 so the boundary
condition for the twist path Q(a) = I, is immediately satisfied. Depending
on whether the dimension n is even or odd, the skew-symmetric matrix H can
be orthogonally diagonalised and written as H = Pdiag(ciJ, ..., c,J)P? when
n = 2k, and H = Pdiag(c1J, ..., c,_1J,0)P* when n = 2k — 1. Here P € O(n)
and the scalars ¢y, ..., ¢ are all real — in fact, the eigenvalues of H are seen to
be +ic; with 1 < j < k when n = 2k, and 0,+ic; with 1 < j < k£ —1 when

n = 2k — 1. Furthermore the 2 x 2 matrices J and R are given respectively by

J= < 0 - ) . R[] = exp{td} = ( cost —sint ) (2.3.4)

1 0 sint cost

It is thus seen that

Q) =1, < exp{#(VH} =1, < exp{H} =1, (2.3.5)
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and plainly this last identity holds iff ¢; € 2Z for all 1 < j < k. This therefore
characterises all solutions to (2.3.2)) in %; (a,b) as Q(r) = exp{s(r)H} with
A as in (2.3.3) and H as just described.

Now moving forward onto evaluating the action of the differential operator
% on the twist map v with twist path Q = Q(r) we first note that here

L[] = (Vu)* {div [h(r, |u\2)Vu} — hs(r, |u|2)|Vu\2u}
= (Vu) {VuV[h(r, [u|?)] + h(r, |u|?)Au — hy(r, \u|2)|Vu|2u} (2.3.6)

2

and so upon differentiation, substitution for v and noting |u|? = r? we can write,

with reference to Proposition [A.0.3]
L) = (Vu)t{[hT(r, %) + 2rhs(r,7?)Vud + h(r,r?)Au — hy(r, r2)|Vu|2u}
=(Q'+r0® QO){[hr(r, ) + 2rhy(r,7))(Q + Q)
+(r,7%) [(n+ 1)Q + Q] = rhy(r,r)(n + r2|Q0|2)Q}9. (2:3.7)

Expanding by direct differentiation and using Q'[LHS (2.3.2)]Q = 0 the
above simplifies to
L] = [he(r,r?) + 2rhg(r,r%)]0
+ [r2hy(r,72) + 3 hg (r,72) + (n + 1)rh(r, r?)]| Q0?0
+ [r2h(r, 72 (Q0, Q) — nrhy(r, )]0 — rh(r,r*)Q'QQIQY.  (2.3.8)
Referring to the Euler-Lagrange equation we now need to verify
Llu] = V2. Clearly here the first two terms in form Vh(|z], |z|?)
whilst upon substituting Q(r) = exp{sZ(r)H} with Q = JFHQ and Q =
(A#H+2H?)Q it is plain to see that (Qf, QF) = #°.7#|HA|? and Q'QQ'Q =
— #?H?2. Therefore we have
ZLu=rexp{HA(r)H}0] = Vh(|z], |z[*)
+ [P2he (1, 72) + 3 hg (1, 72) + (n + 1)rh(r, %)% HO|?0
+ [r2h(r, 7?) 0 |HO|> — nrhg(r,12)]0
+ rh(r, 7). *H20. (2.3.9)

Note that the term —rnhs(r,r?)0 = Va(|z|) for an appropriate primitive term

a since it is a function of r alone. Then by a further application of the ODE
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(2.3.2)) for Q = exp{s#(r)H} this expression significantly reduces to

Lu=rexp{s(r)H}0] =Vh(|z|, |:z:|2) - T?’hs(r, 7’2)3{”2|H0|29
+ Va(|z|) 4 rh(r,r?) > H?0. (2.3.10)

Now by an application of Lemma (see Appendix@ to the vector field
Ul(z) := Lu]—-V[h(z|, |z|?)+a(|z])] = rh(r, r2) 2 H20—r3h(r, r2) 2| HO|20
with o7 (1) = —hg(r,72) 7%, B(r) = h(r,r?)#? we have

20 + Br = % {hr(r, r2) A% + 2h(r, r%%ﬂﬁﬂ . (2.3.11)

We can again apply the ODE to the above to lose the second derivative
in 7. After this rearrangement we see that 2.7 +2/r # 0 iff rh,(r,r2) +2(n+
)h(r,r?)+4r2hs(r,7?) # 0 on a, b] (c.f. Lemma for notation). Under this
assumption we have curlU(x) = 0 <= H? = —c?I,. This therefore leads to
the conclusion |c;|? = -+ = |cx|? = ¢ when n = 2k, and |c1| = -+ = |ex_1]| =0
when n = 2k — 1. Finally setting ¢ = 2msm with m € Z (m = 0 when n odd)
the boundary condition Q(b) = I, is also seen to be satisfied. In conclusion,
we see that here the reduced Euler-Lagrange equation (the ODE) versus the
full Euler-Lagrange equation (the PDE) associated with the energy integrand

F = h(r, s)¢ have the following contrasting consequences:

e (ODE I) From (2.3.1))-(2.3.2) we have:

2.32) < Q(r) =exp{s(r)H}, H'=-H, (2.3.12)

where S = € (r) is as in (2.3.3)).

e (PDE) From .Z[u] = V& we have:

curl {U(z) = Z[u = rexp{# (r)H}0] = V[h(|z|, |2|*) +a(|z[)]} = 0

2mnPJ, P! n even
— H= (2.3.13)

0 n odd

and so u = x (for n odd) and u = rPexp{2mns#(r)J, }P'0 (for n even).
Here J,, = diag(J,...,J) with J as in 1}

3Note that when n = 2k from H? = —c?L, it follows that ci,...c; € {#c}. By adjusting

P € O(n), however, we can arrange and assume without loss of generality that indeed ¢1 =

o=cp=c
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e (ODEII) As a further observation note that upon considering the strength-
ened form of the ODE ([2.3.1)) obtained by discarding the spherical inte-

gration and instead assuming

d{rnﬂh(r,?ﬂ) [Q9®Q9—Q9®Q6] } =0, a<r<b, VOesS'!

dr ’

(2.3.14)
it follows firstly from that any solution here has the form Q(r) =
exp{#(r)H} and subsequently upon noting QH = HQ and invoking
Lemma that

(2.3.14) — i{¢n+1h(r, ) (r)HQO ® QI — QI @ HQQ]} -0
= C;i{r”“h(r, 7"2)%”(74)}[HQ9 ® QO — QI ® HQY]

+ {,r,n+1h(r7 TQ)%(T)Q}[HzQa ®QI— QI ® HQQH} =0

— Q[H®0-02H*%| Q' =0 «— H*=-¢1,.
(2.3.15)

It is therefore seen that this strengthened version of the Fuler-Lagrange
equation imposes the same restriction on the twist paths Q =
Q(r) as does the curl-free condition in the PDE. This stronger form of the
ODE (2.2.12)) and its curious implications will be discussed further in the

next section.

2.4 Extremising Twist Paths as Scaled Geodesics
on the Lie Group SO(n)

One of the main features of the Euler-Lagrange equation is the presence
of the spherical integral which, unlike the case with the weighted Dirichlet en-
ergy considered in the last section [see ], prevents one from reducing the
equation to a directly integrable ODE in the radial variable and thus obtain-
ing an explicit representation of the solutions as in . Motivated by the
discussion in the previous section we start here by first considering solutions to
in the form Q(r) = exp{¥(r)H} where ¥ = ¥(r) is a suitable function
in 6%[a, b] and H is the constant n x n skew-symmetric matrix with H = PJ,, P*.
Here and below J,, = diag(J,...,J) when n is even and J,, = diag(J,...,J,0)
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when n is odd, where J = R[n/2] as in (2.3.4]). Starting with the n even case
where |Qf|? = ¢92/HA|?> = 42 and writing Fy = F¢(r,72,n + r24?) for short it

is readily seen that

LHS - dii /Sn_l {T"HFg[QG ©QI— QI Qe}} dH"1(6)

_ di {Tw F9 [ [HQI® QI — Qo HQY) d“rt"‘l(9)}
r §n—1
— dii {MHFS%N [HQQ' - Q(HQ)t]}

As such in even dimensions a twist path Q(r) = exp{¥(r)H} is a solution to the
Euler-Lagrange equation ([2.2.12)) provided that the angle of rotation function
¥ satisfies the second-order ODE

% [T"HFE (r, P20+ r2£¢'2) g} -0, a<r<b (2.4.2)

Now rather than following the route leading to based on an analysis
and verification of the PDE — and the curl-free condition on the
vector field Z[u = rQ(r)f], in what follows we focus instead on the the ODE
and show that by a natural strengthening of and invoking an
interesting observation regarding geodesics on SO(n), the twist paths Q = Q(r)
serving as solutions here must have exactly the form and structure alluded to

above. Towards this end it is readily seen that a stronger condition implying

(2.2.12) is the strengthened ODE:

jﬂ{w“g (.72 0+ 21Q012) (@0 Q0 - Qo @ Q9] } =0, a<r<b,

(2.4.3)
for all & € S"~!. That Q = exp{¥H} with ¢ satisfying is still a
solution to this stronger form of follows by noting that here Q8 ® Qf =
YHQI © Qf and QI ® QI = YHQI © QI — 9>Qf @ QF. Hence for n even
by substitution and a straightforward differentiation starting from we
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have
LHS - i{rn+1Ff (7’, r2n+ TZ\QH\Z) [Qo 2QI— Qi Qe} }
- {j (1B (124 r22) | 6 4 R (0 m 4 122) gf‘}x

x (HQO ® Q0 — QY © HQY)

{CZ« [ F (2 n + 129 9| }(HQ@ ® QY — QY © HQY)

(2.4.4)

as claimed. Now moving forward note that for a twist path Q € €*([a, b], SO(n))
the integral

b
1Q.0) = [ 1Q9lar (2.45)

represents the length of the curve v € €*([a,b],S"™!) given by ~(r) = Q(r)6.
Evidently for n even if Q = exp{¢¥H} with H = PJ,, P’ then this integral is

independent of 8. We are now in a position to prove the following result.

Theorem 2.4.1. Assume Q € €1 ([a,b],SO(n))NE?(Ja,b],SO(n)) with Q(a) =
I, and Q(b) =1, satisfies (2.4.3). Assume additionally that the integral 1(Q, 6)
given by (2.4.5)) is independent of 8. Then depending on the dimension n being

even or odd we have the following description of Q:
e n even: There exists m € Z and P € O(n) such that
Q(r) = exp{¥9(r;m)PJ, P'}
= Pdiag(R[¥4](r;m), ..., R[¥](r;m))P, a<r<b, (24.6)

where J, = diag(J,...,J), J and R are as in (2.3.4) and 4 =Y (r;m) €

€?[a,b] is the unique solution to the two point boundary value problem

;{T”HFf (r,rQ,nJrTz%.z) %] =0, a<r<hb,

r

%(a) = 0, (2.4.7)
4(b) = 2m.

e nodd: Q=1,.
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Proof. Since 1(Q, 6) = 0 implies |Q0| = 0 and hence Q =1,,, in the rest of the
proof we assume I(Q, 6) > 0. Now we start by observing that if Q is a solution
to (2.4.3)) for every 6, then it also satisfies the equation

d {T"HFg(r, r? n+ 7“2|Q0|2)Q9] + 7"”+1F5(T, r?n+ r2|Q9|2)\Q9\2Q9 =0.

dr
(2.4.8)
Indeed starting from the left and writing Fe = Fe(r,72,n + 7"2|Q0|2) we have

dii {r o} :dii {1 el 2 Q0 - Qo & QUQo}

:di'i {r”“ﬂ5 Q@ QI — QI ® Qe]} Qb (2.4.9)

+{rF(Q0 2 Q0 - QO © QO] } Q =~ F|QU1PQY,

where in deducing the last equality we have used ([2.4.3]). Let us now introduce
the integral

F(r,0) := / |Q(s)9|ds, a<r<b, 6feS" L (2.4.10)

Then testing (2.4.7)) against % and using (2.4.8)) by way of differentiating and
then taking the inner product with QG we can write with Fr = F¢(r, r2.n +
72|Q0|?) as above and upon noting .#2 = |Q6|?,
d - d : (Q9, Q)
A RIQOl Y = (R Q0] 4 R
g T RIQOl ) = o TR Q8 R
= —r"T1F(Q0, Q0)|Q0)| = 0, (2.4.11)

where the last identity uses the skew-symmetry of QtQ. Note that this argument
shows that, as a function of r, T"“FdQG\ is a positive constant on any interval
on which |Q9| is non-zero and so a basic continuity argument implies that either
|Q6| = 0 on [a,b] or |QF| > 0 on [a,b]. Furthermore it also shows that .Z (r, 0)
is a (non-zero) solution to the ODE in for every fixed 6 € S*~ 1.

Now this solution satisfies the end-point conditions .#(a) = 0 and .Z (b) =
1(Q,0) > 0 where the latter by assumption is independent of §. We next aim
to show that these together imply that .%(r,0) is independent of 8. To this
end we first note that solutions to are extremisers over 2P (a,b) = {94 €
WP (a,b) : 9(a) = 0,%(b) = 2rm} of the energy

b
G — / F (r, 3 n + 7“2542) "t dr. (2.4.12)
a
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It is straightforward to verify that this functional is strictly convex (due to the
assumptions on F': F¢ > 0 and F being uniformly convex in &). Therefore, using
standard results, solutions to are the unique minimisers of this energy
functional with respect to their own boundary conditions. This implies that
as .Z(r,0) solves the ODE in for all § and the end-point conditions on
ZF, i.e., at r = a and r = b are independent of 8, by the stated uniqueness of
minimisers, the function .% (r, ) must also be independent of §. Now returning
to the ODE in it follows after integrating once that any solution ¢4 = ¥(r)
satisfies

Tn+1F5(T, r?,n+ 7“2?2)? =c, a<r<hb, (2.4.13)

for a suitable constant ¢ € R. Thus as F¢ > 0, all non-zero solutions to (2.4.7),
in particular .Z, are strictly monotone and hence invertible. Let .# ~1(s) = r(s)
and Q(r(s)) = K(s) for K € ¢2(]0,1[,SO(n))NE€([0,1],SO(n)) where | = .Z (b).
Then writing Q(r) = K(.Z (r)) we have Q = K'.% (where prime denotes d/ds).
Hence starting from we can write, with Fg = Fe(r,r% n + 7‘2?2) for
short,

d . .
= [r”“que] QO QO = 0. (2.4.14)
,
This upon substitution and a change of variables with d/dr = .#d/ds gives
d . .
— TnJrnggzK/@} + 7" F.Z|K'0PKO = ¢ [K" + [ K'0°K| 0 =0, (2.4.15)
s

that is the geodesic equation on the unit sphere for v(s) = K(s)§. We need to
solve this for K = K(s) subject to |[K'6]> = |Q0|?/.%2 = 1.

Indeed by taking the ansatz K(s) = exp{sA} for a constant n x n skew-
symmetric matrix A we have [A? + I,]K = 0. For n odd this has no solution
(with I(Q, 6) > 0) whilst for n even it gives A = PJ,P'. It now follows at once
that Q has the form described in the theorem, that is, for n odd Q(r) = I,, and

for n even firstly

K(s) = Pdiag(R[s], ..., R[s])P?, 0<s<l, (2.4.16)

with [ = 2mm so that K(0) = K(I) = I, and then

Q(r) = K(Z(r)) = Pdiag(R[.Z](r), ..., R[Z]|(r))P?, (2.4.17)
where .Z is a solution to with % (a) =0, Z(b) = 2mmr. O
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2.5 Return to the Nonlinear System ([2.1.3])-(2.1.4))

We next move on to contemplating the task of obtaining and characterising the

twisting solutions w to the resulting nonlinear system

L] =VZ inQ,
detVu=1 in Q, (2.5.1)

U=z on 0},

where this system is derived in Appendix and the differential operator Z[u] is
ultimately described by (B.0.6). Since the primary task here is to seek twisting
solutions to the system we proceed by first referring to Corollary
which lists some key identities related to generalised twists for the specific choice
of twist paths Q(r) = exp{¥4(r)A} with 4(r) (a < r <) a sufficiently regular
angle of rotation function and A a fixed n x n skew-symmetric matrix. We need
to discern which corresponding generalised twists u = rQ(r)6 serve as solutions
to the Euler-Lagrange equation and this is resolved in even dimensions
in the following result. We note that since the only twist loop Q = Q(r) which,
in odd dimensions, satisfies the assumptions laid out in Theorem is the
constant matrix Q = I,, it is necessary that the only generalised twist solution
to in odd dimensions is the identity map u = z.

Theorem 2.5.1. Let n > 2 be even and suppose G € €?[a,b] is a solution to
the boundary value problem (2.4.7). Let H = PJ, P for some P € O(n) and
put

Q(r) = exp{¥9(r)H} = Pdiag(R[¥4](r), ..., R[¥](r))P", a<r<b (2.5.2)

where J, R € SO(2) are given by (2.3.4). Then u solves (2.5.1); that is L [u =
rQ(r)0] is a gradient field in X"[a,b]. Specifically, L|u] = VS where

P = Fe(r,r*,n +1°9%) — G(r) (2.5.3)

up to an additive constant where VG = r[G>Fe(r,r2,n + r24%) + Fy(r,r?,n +
r242)]6.

Proof. We use the description of the vector field .Z[u = rexp{¥4(r)H}0] as in

(A.0.8) in Corollary along with the substitution A = H = PJ,,P*. In
this case, basic calculations give Q = YHQ, Q = (gH - gQIn)Q, by virtue of
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H? = -1, and |0*|> = 1 where 6* = Hf and (0*,0) = 0. This gives us
L] = Lrexp{¥(r)H}0) = Fee(r,r*,n +r°9%)x
X (2r9% 4+ 2r°994) (0 + r9HO + 12420)
+ 2rFoe(r, 72, n 4 1292) (0 + r9HO + r29420)
+ Fre(r,r2,n 4+ r292)(0 + r4HO + r2920)
+ Ft { {(n +1)¥ + 1"{4 Ho + [T(n +1)92% —rg? + rzfﬁg} 0}
— rFy(r,r?,n + r24%)6. (2.5.4)
Observe that here we can write ZLu] = & (r)8 + A (r)HO, where the factors &
and £ are respectively given by
A (r) == Fee(r, 72, n + 292 (1 4 72G?) (2rG? + 2r*99) (2.5.5)
+ 27 Foe(r, 7%, n + r24%)(1 + r*9?) + Fre(r,r?n+ 29 (1 + r*9?)
+ Fe(r,r2,n +124?) [r(n +1)9? —1r9% + 129G | — rFy(r,r? 0+ r’@?),

and

B(r) =rFee(r,72, 0+ 129G (2r9? + 2r°GY)
+ 202 Foe (1,72 n 4+ 729G + rFpe(r, 12, n + 2929
+ Fe(r,r2,n+124%)[(n + 1)9 + 19). (2.5.6)
Since ¢(r) by assumption is a solution to the ODE in (2.4.7) it can be seen that
P(r) =0, and & (r) can be reduced to
A (r) = Fee(r, r2,n+ 7‘2%.2)(2Tfé2 + 27’2{?5?)
+ 2 Fye (1,72, n 4 1292%) 4 Froe(r,r2,n 4 r29?)
— G Fe(r,r2 n + 1°G%) — rFy(r,r2,n + 124?) (2.5.7)
and subsequently this gives

o (10 =V Fe(r,r2,n 4 r?9?)—
PG Fe(r, 1%, n + r292) + Fy(r, 7%, n + r292))0. (2.5.8)
It is evident that r[F2Fe(r, 7%, n + r292) + Fy(r,r2,n + r2%?)]0 is a gradient;
indeed here Lu] = V& with & as in (2.5.3)). It is easily seen that the bound-
ary condition v = z in (2.5.1) follows from ¥(a) = 0, 4(b) = 2mn and the

fact that u satisfies the incompressibility constraint det Vu = 1 is proved in

Proposition O
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Generalised Twists as Solutions to the Nonlinear System ZL[u] = VP

It remains to prove the Main Theorem as stated earlier in the chapter.

Proof. (Main Theorem) With the above propositions and lemmas at our disposal
we can now move on to completing the proof of the main theorem as presented
in the first section of this chapter. Indeed all that remains is to prove that for

each m € Z the boundary value problem

d | i1 2 2052\ | _
dr[r Fg(r,r,n—i—r%)% =0, a<r<hb,

BVP[Y; F¢| == G(a) =0, (2.5.9)
4 (b) = 2mm,

has a unique solution ¢ = %(r;m) in ¢?[a,b]. For this we refer to Proposi-

tion with the specific choice of A(r, s,&) = Fe(r, s, §). O
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Chapter 3

The h-Condition and
Consideration of Weighted
Dirichlet Type Lagrangians

In this chapter we address questions on the existence and multiplicity of solu-

tions to the nonlinear elliptic system in divergence form

div [h(|z], [u[*)Vu] = k(|| |ul?)|[Vu[*u = [cof Vu]VZ  in Q,
det Vu =1 in Q,
U= on 01},

where h = h(r,s) > 0, &2 = Z(x) is an a priori unknown hydrostatic pressure
field and ¢ is a suitable boundary map. Most notably, for a finite symmetric
annulus we prove the existence of an infinite scale of topologically distinct twist-
ing solutions to the system by way of analysing an associated reduced energy,
the resulting Euler-Lagrange equation and a structure theorem for curl-free vec-
tor fields generated by skew-symmetric matrices. An “h-condition” capturing a
contrasting and surprising behaviour in the nature and multiplicity of twisting
solutions is introduced and exploited. Other classes of solutions with 2-plane
symmetries are examined and relations to closed geodesics on the Lie group
SO(n) in the form Q(r) = exp{f(r)H} are explored and discussed.
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3.1 Preliminaries

Let @ C R™ (n > 2) be a bounded domain and consider the variational energy

integral

Flu; Q] := QF(x,u,Vu) dz, (3.1.1)

where the Lagrangian is of weighted Dirichlet type F(z,u, Vu) = h(|z|, |u|?)|Vu|?
with A = h(r,s) > 0 of class 42 and u in the space of incompressible Sobolev
maps ,(Q) = {u € WH2(Q,R") : det Vu =1 a.e. in Q, u = ¢ on 9Q}. Here
Vu denotes the gradient of u, an n X n matrix field in € required to satisfy
the pointwise incompressibility constraint det Vu = 1 in Q (hence the algebraic
identity cof Vu = (Vu)~*). To avoid unnecessary technicalities and to fix ideas
 is taken as the identity map ¢ = x and boundary values are interpreted in the
sense of traces. Now extremisers (or equivalently critical points) of this energy
over the admissible space 27, (£2) can be seen, e.g., using the Lagrange multiplier

method (c.f. Appendix , to satisfy the nonlinear system

fh [u] =V in Q,

detVu =1 in €, (3.1.2)

U= on 01},
where &2 = & (x) is an a priori unknown hydrostatic pressure corresponding to
the incompressibility constraint — the Lagrange multiplier — and the action of
the differential operator %, is given by

Zlu] = (cof Vu)"Hdiv [A(r, [u]®)Vu] — he(r, [ul*)|Vul?u}
= (Vu) L, (r, [u|*)Vub + hy(r, |ul?) VuV|ul?}
+ h(r, [u)?)(Vu)t Au — hy(r, [u)®)|Vul* (V) u. (3.1.3)

Here r = |z|, § = z|z|~! and h, = h,(r,s) and hs = hs(r, s) are the derivatives
of the weight function h in the first and second arguments respectively. As a

result of this formulation, it is evident that if u is a solution to this system, then

necessarily curl £ [u] = curl V.22 = 0 in Q, that is,
curl £, [u] = curl {(Vu)t[hr(r, [u|?)Vub + hg(r, [ul*) VuV|ul?] (3.1.4)

+ h(r, |u?) (Vu)t Au — hy(r, |u2)|Vu|2(Vu)tu} = 0.
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However note that this condition, unless 2 C R"™ has a particular homology,
would not on its own imply that the vector field %3 [u] is a gradient field, here,
V.

Throughout this chapter we specialise to the geometric set up where Q2 =
X" =X"[a,b] :={z € R" : a < |z| < b} is a finite symmetric annulus with b >
a > 0, ¢ = x, namely, the identity map and h € €*([a, b] x]0, 0o]) satisfies h > 0.
In this context by a generalised twist we understand a map u € %(X",X"),

which, in spherical coordinates, admits the representation
w: (r,8) — (r,Q(|z))o), r=|z|, 0 =zz|"" (3.1.5)

The curve Q € % ([a,b]; SO(n)) is referred to as the twist path associated with
u. In order to ensure u = x on I = IX" we set Q(a) = Q(b) = I, where
I, is the n x n identity matrix. In this event the twist path is a closed curve
in SO(n) and as such we refer to it as the twist loop associated with w. Our
aim is to establish the existence of an infinitude of twisting solutions to the
nonlinear system - by appropriately formulating the action of %},
on sufficiently regular twists v and solving the resulting PDE. Over the course
of the chapter it will become apparent that certain closed (scaled) geodesics of
the compact Lie group SO(n) in the form Q(r) = exp{¥(r)H} (a < r < b)
will play a prominent role by serving as the twist loops for the sought twisting
solutions u to (3.1.2)-(3.1.3). Here & € €?[a,b] is in turn a solution to a two
point boundary value problem and H is a suitable skew-symmetric matrix in
the Lie algebra so(n).

We remark here that a solution to this system is v = x. Indeed, upon substi-
tution, reduces to %, [u = z] = [h,(r,72) + 2rhs(r,72) — rnhg(r,r?)]0 =
V. The left-hand side here can be written as s(r)f and as such is the gra-
dient of some appropriate primitive function s(r)f = V.S(Jz|) that depends on
the radial variable alone.

The second class of symmetric maps we consider as solutions to (3.1.2)-
(3.1.3) and extremisers of are the so-called whirl maps (or whirls for
simplicity). These are maps u € ¢ (X", X") of the form

w: (r,0) = rQ(p1,...,pn)0, r= \m|,9::c\x|71. (3.1.6)

Here 2 € X" and we denote by o = o(x) the 2-plane radial variables (p1, ..., pn),

defined, depending on the dimension n being even or odd, as follows:
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(1) If n =2d set N =d and

Pi =1 /xgj_l +az;, 1<j<d (3.1.7)

(i4) Tn=2d+1set N=d+1 and

:L,2.7 +'I2'7 1S]§d7
p;j = V7RSI (3.1.8)

T, j=d+1.

It is seen that for z € X" the vector ¢ = p(x) lies in the semi-annular domain
A, where A, := {0 € R? :a < ||g| < b} when n =2d and A, := {p € R? xR:
a < |lo|| < b} when n = 2d + 1 with |o|| = \/p? + ... + p% for the norm of p.
Using this notation, we require in (3.1.6) that Q € € (A,,SO(n)). For future

reference, we will denote the three boundary segments of A,, as

(0An)a = {p € OAN : |0 = a},
(0A,)p = {p € OAN : ||o| = b}, (3.1.9)
Ty = A, \ {(OAn)a U (9A,)5 ).

We impose that the matrix-valued map Q must take values on the maximal
torus T of SO(n) consisting of 2 x 2 block-diagonal rotation matrices and for

definiteness we specifically consider Q = Q(p) in the form

diag(RIf1],... RIfd)  n=2d,

. (3.1.10)
diag(R[f1],...,R[fa],1) n=2d+1.

Q(p1, - pn) = {
Here R is a 2x2 rotation matrix defined via and the functions f; € ¢ (A,,)
for all 1 < j < d satisfy f; = 0 on (0A,), and f; = 2m 7w on (0A,),. Note
that € 0X)} = {|z| = a} <= o(z) € (0A,), and z € X} = {|z| = b} =
o(z) € (0A,)p. The functions f; = f;(0) and hence the map Q = Q(p) are left
free on the flat part of the boundary I',.

3.2 Identities Related to the Action .Z}[u]

In this section the action .Z[u = rQ(r)d] is formally derived and its conse-
quences on, in particular, the twist path Q(r), is analysed. We first refer to
Proposition where many properties pertaining to the kinematics of gen-

eralised twists are derived, which are used in this section and throughout the
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chapter. With these identities at hand we can obtain an explicit representa-
tion for the action Z[u] as given by (3.1.3) for a sufficiently regular twist
u=rQ(r)f. That is,

Zhlu] =(Q" + 70 @ QO){[h,(r,7?) + 2rhy(r,r?)]|(Q + Q)
+ h(r, rz)[(n + 1)Q + TQ] — rhg(r, rz)(n + TQ\QQ\Q)Q}Q. (3.2.1)

Expanding this further and introducing the skew-symmetric matrix field A =

Q!Q we can write, for a < r < b,

Llu) = [hy(r,72) + 2rhg(r,r9))(0 4 r A0 + 72| A|0)
+ h(r,r?)[(n+1)A0 4+ r(A + A2)0
+7(n+1)|A0%0 +r2 (A6, A6)0)]
—rhy(r,r?)(n+7%|A9[*)0. (3.2.2)

The above description follows upon noting |Q6> = |A6]2, Q'Q = A + A2
and (Q9,Q0) = (Q'QH, Q'QY) = (A0, (A + A?)0) = (A, A0) + (A9, A%0) =
(A0, A9> in view of A being skew-symmetric. Now a straightforward inspection

shows that we can write %, [u] in the alternative and more suggestive form

v = Llu] = A (r,0)0 + rh(r,r*)A%0 + Ld

o [T h(r,r*)A] 0,  (3.2.3)

where &7 (r, ) denotes the scalar-valued function
A (r,0) = [h(r,r?) + 2rhs(r,73)] (1 + r%|AG]?) (3.2.4)
+ rh(r,r)[(n + 1)|A0]> 4+ r(A0, AD)] — rhy(r,7?)(n + r2|AG]?).

Similarly upon introducing the skew-symmetric matrix B = QQ' we can write

Znlu] = Q'w(z)Q with

w = B(r,0)0 + rh(r,r*)B?0 + indi [t h(r,r*)B] 0, (3.2.5)
™ dr
where Z(r, 0) is the scalar-valued function
B(r,0) := [hy(r,7%) 4+ 2rhs(r,7?)](1 + r2|BOJ?) (3.2.6)

+ rh(r,r)[(n + 1)|BO? + (B, BO)] — rhy(r,r?)(n + r2|B6?).

We proceed with (3.2.3)-(3.2.4) and note that in order for v = rQ(r)f to
furnish a solution to (3.1.2)-(3.1.3)) it is required that £ [u] = V2. Thus by
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enforcing (3.2.2) to be a gradient it must necessarily be that

| @ty @nd= [ wtron @y = [ Lo6m)d=o

(3.2.7)
(with prime denoting d/dt) where v = v(t) € €*([0,2n],S"" 1) is closed and
x = rv(t) with a < r < b fixed. Henceforth we assume this to be true and look

to recover information on A. Indeed specialising to 8 = (t) as above and using
(13.2.3) we can expand the integrand in the left-hand side of (3.2.7)) as

(Bl (0).7 1) = @) A W) = A OGW.A W) (328)
+rhlr ) AR 0,7 0) + (5 AT 0,7/ 0)).

Since v is a curve on the unit sphere we have (v,7) = 0 and subsequently

(13-2.7)-(3.2.8) under the assumption v = % [u] = V& simplifies to

|t @y = [ . w)
0 0
1 27 , 27 d
to [ ooy = [ Goema=o 629
where E = rh(r,7?)A? and F = d/dr[r"*'h(r,7?)A] are symmetric and skew-

symmetric matrix fields on |a, b| respectively.

Lemma 3.2.1. Let E be a symmetric nxn matriz andy = v(t) € €*([0,2x],S"~1)

be a closed curve. Then
2 d
| @0y od=o. =50 (3:2.10)
0
Proof. As ~y is closed and E is symmetric this follows by integrating the identity

d/dt(Ey, ) = (Ey,7) + (Ev,7') = 2(Ev,7) noting (Ev,7)|i=2r = (Ev,7)|t=0-
O

Utilising this lemma the integral involving the symmetric matrix field E =
rh(r,r?)A? in (3.2.9) vanishes and so, summarising, assuming v = %,[u] =
V&, we have

27 27
1 d
| ey o) a= 5 [T el 000 ) a0
(3.2.11)
for every closed curve v € €1([0, 27],S"~!). Now we turn into dealing with the

skew-symmetric matrix field F.
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Lemma 3.2.2. Let F be an n x n skew-symmetric matriz and let v = PRp
with P, R € O(n) and o € €>([0,27],S" 1) the closed curved given by

p1 = sint sin ¢g sin¢s . ..sin ¢, 1,
p2 = cost sin ¢o sin s .. .sin ¢, _1,

p3 = COS 2 sin¢gs . ..sin @, _1,
oty =4 | (3.2.12)

Pn—1 = COS Py SIN Py _1,

Pr = COS Pt

Here ¢y € [0,7] for all2 < £ < n —1 and denoting by (e : 1 < k < n) the
standard basis of R™, R = R(4, j) is the orthogonal transformation swapping the
pair of basis vectors (e, e2) with (e;,e;) (1 < i < j < n) and leaving the rest
fixed. Then

/QW(Fv(t)ﬁ'(t» dt =0 < F=0. (3.2.13)

Proof. First note that any skew-symmetric matrix F can be orthogonally diago-
nalised, that is, F = PDP?, where P € O(n) and D = diag(diJ, .. .,d;J) if the
dimension n = 2k is even or D = diag(d1J,...,dr-1J,0) if n = 2k — 1 is odd.
Here J is the 2 x 2 rotation matrix by angle /2 [c.f. (3.3.2)]. Now upon setting
v = PRy as per the statement of the lemma the integral in becomes

27 27
/ (Fy(t),~'(t)) dt = / (Dw(t),w' (t))dt =0 (3.2.14)
0 0

where w := Rp and so to prove Lemma [3.2.2] it is sufficient only to show that
the above integral equality implies D = 0. We proceed in a component-wise

fashion and substituting this w into (3.2.14) we have that w'(t) = Rg/(t) =
R(p2, —p1,0,...,0), and so it can be verified that

27
/0 (Dw,w') dt = 27(p} + p3)Dy; (3.2.15)

with D;; € R. As such, if the identity on the left-hand side of the equation
above is zero, it follows that D = 0 and the identity (3.2.13|) is verified. O

Recalling ([3.2.11)), the quantity F = d/dr[r"*'h(r,r?)A] is a skew-symmetric
matrix field and so we can use this most recent lemma to confirm that if the
equality holds, it must be that F as prescribed here is identically zero.
To summarise, if we assume %, [u] is a gradient, that is, u solves —,
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then setting % [u] = v(z) in with the parametrisation = r6 = rv(t)
for some closed curve v = Pp € €°°([0,2n],S""1), then the integral equality
holds. However, we have seen that this immediately reduces to ,
which then holds iff d/dr[r" ™ h(r,r*)A] = 0 on Ja,b[. As such we have proved

the following result.

Theorem 3.2.3. Let u = rQ(r)0 be a generalised twist on X"[a,b] with twist
path Q € €([a,b],SO(n)) N €?(Ja,b[,SO(n)). Then if u satisfies Ly[u] = VP
for some hydrostatic pressure field &, then Q satisfies the ODE

d

dQ
n+1 2 t —_
dr{r h(r,r*)Q o } 0, a<r<b. (3.2.16)

Remark 3.2.4. The above ODE can itself be interpreted as an Fuler-Lagrange
equation. Indeed restricting the Flu; X™] energy to the class of generalised twists
and substituting for |[Vu|? from (iii) in Proposition we can write

b
F[rQ(r)6; X"] :/Sn_I/ h(r,r?)(n+ % |QOI)r" ! drd "~ (6)

b b
=wn [n2/ h(r,rQ)rnflerr/ h(r,r?)|Q|?r" 1 dr]
= 0w |[B(r, 7)™ | L1 (ap) + wnE[Q; a, b]. (3.2.17)

It can then be seen that the Euler-Lagrange equation associated to the re-
stricted energy E[Q;a, b] over the space of admissible loops %, (a,b) := {Q €
Wh2(Ja,b[;SO(n)) : Q(a) = Q(b) = I,} is precisely the second order ODE in
the twist loop Q = Q(r)ﬂ
d aQ

d
| n+1 2\ Z*0t| — O
ar | Ar,7) dr Q ] er

See also Corollary and the surrounding discussion.

{T”Jrlh(r, r2)Qt‘;ﬂ Q' =0. (3.2.18)

3.3 Geodesic Solutions of the ODE (3.2.16) and
the Energy-Length Identity

In this section we resolve the boundary value problem associated with the ODE
(3-2.16) over the space of admissible loops %r, (a,b) introduced above. A first
4Note that for any a = a(r) of class ¥ we have d/dra(r)QQ?t] = d/drla(r)QQ!QQ!] =

Qd/drla(r)Q!QIQt + a(r)[QQIQQ! + QQ!'QQ!] = Qd/drla(r)Q!Q]Q! by virtue of the
orthogonality of Q and the skew-symmetry of QtQ.
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integration yields r"*1h(r, r2)QtQ = H for a constant skew-symmetric matrix
H. When combined with the left boundary condition Q(a) = I,, this first order
ODE is seen to have the general solution Q(r) = exp{s(r)H} where the profile
H € €?a,b] is given by

H(r r ds
A0 =gt M= [ (3.3

Indeed it is evident from the above that 7 (a) = 0, 7(b) = 1, and so Q(a) =1,
is immediately satisfied. Anticipating on the right boundary condition Q(b) =
I,, we can first proceed by orthogonally diagonalising H by writing H =
Pdiag(c1J,...,c;J)P! when n = 2k and H = Pdiag(c1J, ..., cx_1J,0)P! when
n = 2k — 1. Note that here the string of scalars ci,...,c; with ¢ = 0 in odd
dimensions are all real — in fact, the eigenvalues of H are £ic; when n is even,
and +ic;,0 when n is odd. Furthermore P € O(n), and the 2 x 2 matrices J
and R are given by

J= ( (1) ! ) R[t] = exp{t]} = ( cost —sint ) (3.3.2)

0 sint cost

We will now verify the boundary condition at Q(b) = I,, in even and odd

dimensions independently.
e (n = 2k) Here we write

Q(b) = exp{H#(b)H} = exp{Pdiag(c1J,...,cxJ)P"'}
= Pdiag(R[c1], ..., Rlcx])P*

:In<:>cj:2mj7r, ijZ Vlg]gk

e (n =2k — 1) Here we write

Q(b) = exp{H# (b)H} = exp{Pdiag(c1J, ... ,cp_1J,0)P'}
= Pdiag(Rlc1], .- ., R[ck_1],1)P*

=1, < c¢; =2mym, m; € Z, Vi<j<k-1.
With this boundary condition being satisfied the solutions Q = Q(r;m) to

(3.2.16) in %, (a,b) with m € ZF are given by Q(r;m) = exp{s(r)H(m)},
where 52 (r) is given by (3.3.1)) and for the skew-symmetric matrix H = H(m)

38



The h-Condition and Consideration of Weighted Dirichlet Type Lagrangians

we have

Pdiag(2mynd,. .., 2m7J)P? =2k,
H(m) { iag(2mym mymJ) n (3.3.3)

- Pdiag(2mind,...,2mg_17J,0)Pt n =2k —1.

Here we remark that the resulting twist loops Q = Q(r; m) = exp{.sZ(r)H(m)}
are closed scaled geodesics based at I,, on the compact Lie group SO(n) with
the skew-symmetric matrix H in the Lie algebra so(n) presenting the tangent
at the origin to the geodesic and the matrix exponential being the canonical
exponential map from the Lie algebra so(n) to the Lie group SO(n). Let us finish
off by computing explicitly the E-energy as in for solutions Q(r;m) =
exp{A(r)H(m)} to as described above and compare it to the length
L[Q] where, as standard,

L[Q] = /:|Q(7“)|d7“:/ab\/tr[QtQ} dr. (3.3.4)

Proposition 3.3.1. Let Q = Q(r) be an extremising twist path for the restricted

energy E as in (3.2.17)), that is, a solution to the ODFE (3.2.16|) in the admissible
loop space P, (a,b). Then we have the energy-length identity:

- L*[Q]
EQ] = ||Si(n+1)/h(8’sz)HLl(a,b)’ (3.3.5)

where h(s,s?) is the weight function in the Lagrangian and L|Q) is defined via
(13.3.4).

Proof. Given that Q = Q(r; m) is a solution to (3.2.16) in i, (a, b) we have seen
that Q = Q(r; m) = exp{J(r)H(m)} with J#(r) given explicitly by (3.3.1]) and
the skew-symmetric matrix H as in (3.3.3). We begin by computing the energy

and see that
b
E[Q;a,b] = Elexp{#(r)H(m)}; a,b] = / h(r,r?) % H>" dr.  (3.3.6)

Now 2 (r) = [H(b)r" T h(r,72)] " and |H|? = &72||m||2 with ||m]|> = Zle m?
(recall my = 0 when the dimension n is odd). Substituting . and |H|? into

(3-3.6) gives

2 b = (n+1) 2
B exp /(B 0] = sl [ 5 = 5

Im|2. (3.3.7)
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Next turning to the length, noting that weight function h > 0 on [a, ] and so

A >0 on [a,b], we can write

L[Q] = Llexp{#(r)H(m)}] = 2\@WIImII/ | (r)| dr
= 2V2r||m||[2£(b) — #(a)] = 2v2x|m|. (3.3.8)

The result now follows by comparing the two and squaring the length. O

3.4 Generalised Twists as Solutions to .Z,[u] =
V& and the h-Condition

Let us now turn to the differential operator .2, given by and seek so-
lutions to the system — in the form of incompressible twists u =
rQ(r)0. As here necessarily the twist loop Q solves the second-order ODE
d/dr[r" h(r,r?)Q!Q] = 0, for a < r < b, by virtue of what was discussed
in the previous section, we have Q(r;m) = exp{.#(r)H(m)} and thus with
A= QtQ, A? = J#/?H2. As such, the aforementioned ODE in this context is
given by

d%“ [r”“h(r, rz)j{”} =0, a<r<b. (3.4.1)
The action of %}, as on u then reduces t(ﬂ

Ll = rexp{ A (r)H}0] = Vh(|z|,|2[*) — nrhs(r,7?)0 (3.4.2)
— 3 hg(r, r2) S [HO|20 + rh(r, %) A H?0.
The first two terms in the above expression are clearly gradients and so we can

apply Proposition to the remainder with .« (r, |Hx|?) = —h(r, TQ)%Q |Hx|?
and B(r, [Hz|?) = h(r,r?)5#2. Then with z = [Hz|?

240, + B, |r = % {hr(r, 122 + 2h(r, rz)e%ﬂl%ﬂ}
=_ {2n7j_21h(r, r?) + %hr(r, 72) 4 4hg(r, 7“2)} A (3.4.3)

the second equality following by an application of (3.4.1). For the sake of future
reference it is convenient to introduce the notation 7 (r) = rh,(r,r?) + 2(n +
Dh(r,r?) + 4r2hgs(r,7?) with a < 7 < b (colloquially we will say if Z(r) = 0

5See the discussion leading up to the identity (2.3.10)) for further details.
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then the “h-condition” holds). Then if .Z(r) # 0 on ]a, b[ by invoking the first
part of Proposition with o, + %, /r Z 0 we have, with U(z) := Z[u =
rexp{J# (r)H}0] — Vh(|z|, |x|*) + nrhs(r,7?)0,

curlU(z) =0 <= H? = -1, <= Z[u] is a gradient.

This, given the orthogonal diagonalisation of the skew-symmetric matrix H as
in (D.0.6), leads us to conclude |c1]? = -+ = |¢x|? =: ¢* when n = 2k is even
and |c1]?2 = -+ = |ck-1]? = |ck|? = 0 when n = 2k — 1 is odd. Now regarding
the boundary conditions, evidently Q(a) = I,, as a result of #(a) = 0 and
so in order to satisfy Q(b) = I,, we first note that Q(b) = exp{.##’(b)H} and
so when n is odd Q = I,, and when n is even necessarily Q = Q(r;m) =
exp{2mn . (r)PJ,P'}, where m € Z and J,, = diag(J,...,J) with J as in
(13-3.2).

Next when .#(r) = 0 on a, b] the corresponding vector field £ [u] is still a
gradient by the second part of Proposition but now with no further re-
strictions on the skew-symmetric matrix H. Indeed referring to consider

U(z) = Zulu] — Vh(|z|, |z|) + nrhg(r,72)0
= — r3hy(r, r2)<%.”2|H0\20 + rh(r, rz)%QHQH. (3.4.4)

To show that U is a gradient and hence u = rexp{J#(r)H}6 is a solution to
Zhu] = VZ it suffices to show that there exists f = f(r, z) such that

Vi(|z|, Hz|?) = fo(r,[Hz[*)0 = 2f.(r,[Hz[)H?x = U(z),  zeX"
Upon referring to (3.4.4)) this in particular means that we must have
. 1 .
fr(r,2) = —20%rhg(r,7%), fo(r,2z) = —gh(r, r2) A2,

Naturally for this to be so it is necessary to have 0, f, — 0, f, = 0 which is seen
to hold (suppressing the arguments for brevity) by virtue of

. .2 . ..
0ot = 0p - = —rha(r, 1) 4 g 1%) 4 20h ()] 22 4 1) A
1 o o o 2
= §hr(7",7" VH= + h(r,ro) A = —2—9(7‘), (3.4.5)
T

where the last identity follows by invoking the ODE (3.4.1) for 7#. Now referring

to the above it is enough to set

1 .
f(r z) = —ih(n r2) A%z + g(r), a<r<b z>0, (3.4.6)
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with g € €*[a, b] to be determined. From this we can directly compute

1 . ..
fr(r,2) = —2{[hr(r, r2) + 2rhg(r, r)] A% + 2h(r, 1"2)%%},2 +g(r) (3.4.7)
and so §(r) = 2[1/2h, 7 + h#) = 0 by arguing as in ([3.4.5). Thus g = ¢ in
(3.4.6) for some ¢ € R and therefore U = V f(|z]|, |[Hz|?).
We summarise that, in comparing the full Euler-Lagrange equation with the

version restricted to the space of twist paths, we have the following implications:

e (ODE) The twist path Q = Q(r) with Q(a) = I,, solves (3.2.16) if and
only iffora<r <b

Q(r) =exp{#'(r)H}, H'=-H, (3.4.8)
where the profile J# = J(r) is as given explicitly by (3.3.1).

e (PDEI) If #(r) = rh,(r,7?) + 2(n + 1)h(r,72) + 4r2hg(r,r2) #£ 0 on |a, b]
then for u = rQ(r)f with u = ¢ on IX? = {|x| = a} we have

Lhu] =V < Qs asin (3.4.8) with
{ cPJ, P! n even,
H =

(3.4.9)
0 n odd,

for some real constant ¢ where referring to the diagonalisation of H: |¢;| =

w.=lex| =|c|, P € O(n) and J,, = (J,...,T) with J as in (3.3.2)).

e (PDE II) If Z(r) = rh,(r,7?) +2(n+1)h(r,r?) +4r2hs(r,7?) = 0 on |a, b]
then for u = rQ(r)f with u = ¢ on IX? = {|x| = a} we have

Lu] =V < Qis asin (3.4.8) with H' = —H. (3.4.10)

Thus, unlike the case in (3.4.9)), no further restriction on the skew-symmetric
matrix H is needed if the h-condition holds, that is 7h,.(r,72) +2(n+1)h(r, r?) +
4r2hg(r,r?) = 0. Now by taking into account both the boundary conditions

Q(a) = Q(b) = I, and the subsequent necessary adjustments on H we arrive

at the following statement on twist solutions to (3.1.2)-(3.1.3).

Theorem 3.4.1. Let u = rQ(r)0 be a generalised twist on X"[a,b] with twist
loop Q € ([a, 1], SO(n)) N #2(a, b, SO(n)) satisfying Q(a) = Q(b) = I

Then u is a solution to the monlinear Euler-Lagrange system (3.1.2)-(3.1.3) iff
Q is as described below.
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L. (Z = rhe(r,r?) + 2(n + 1)h(r,r?) + 4r%hg(r,r?) # 0 on a,b]) Here de-

pending on the dimension n being even or odd we have

(1) n even: Q = Q(r;m) = exp{HZ(r)H(m)} (a < r < b) with H(m) =
2mnPJ, P! where P € O(n), m € Z and J,, = diag(J,...,J) with J
as in (3.3.2)).

(1) n odd: H = 0 leading to Q = 1,,. Hence the identity map u = x is

the only twisting solution of (3.1.2])-(3.1.3]).

2. (Z =rhe(r,r?) +2(n + D)h(r,r?) + 472hs(r,r7?) = 0 on |a,b]) Here Q =
Q(r;m) = exp{Z(r)H(m)} (a <r <b) with H(m) = Pdiag(2my7J, ...,
2mpmJ)Pt when n = 2k and H(m) = Pdiag(2mi7J, ..., 2my_17J,0)P?
when n = 2k — 1. Moreover P € O(n) and m € Z*.

The energy of an extremising twist can now be explicitly calculated by taking
advantage of the above characterisation of its twist path, specifically, Q(r; m) =
exp{.#(r)H(m)} with H(m) as in Theorem [3.4.1] part 2 (note that part 1 of the
theorem is essentially a special case of this). We first observe that for u = z,

b
Flu = ;X" = /xn h(|z|, |ul?)|Vul? de = nzwn/ h(r,r?)r"~tdr.  (3.4.11)

a

Next upon noting |Vu|? = n 4 r2|Q6|> = n + 72| (r)HE|* and with H and

m = (mq,...,mg) as above
b .
Flu; X"] = / / h(r,r?)(n + r222(r)[HO?)r" L drdH™ 1 (0)
a JSn—1

b b
= w, [/ n?h(r,r?)r"tdr —|—/ h(r, )2 (r)|H|?r ! dr}

b
=Flu=z;X"] + 8772wn||m||2/ h(r,r?) % (r)r"dr.  (3.4.12)
a

Recalling (3.3.6)-(3.3.7) (and noting that in the above we have used |H|? =
8m2||m||?), we see that the value of the integral above is 1/H(b) and so

83w,
H(b)

Flu = rexp{(r)H}0; X"] — Flz; X"] = [[ml[*. (3.4.13)

In particular it is seen that the energy diverges quadratically in m as ||m|| * cc.
Now taking the length of the twist loop Q given by L[Q] = 2v/27||m|| (¢f. (3.3.8)
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for details), upon comparing this length with the energy we have the
energy-length identity
Wn
H(b)
for extremising twists u = rQ(r; m)0 where Q(r; m) = exp{.sZ(r)H(m)}. Here
E is the twist path energy as in .

We close the section by returning to the context of Theorem[3.4.1]and giving,

Flu; X"] — Flz; X"] = L2[Q] = w.E[Q], (3.4.14)

for the sake of illustration, a class of energy integrals that satisfy the h-condition
rh.(r,7?)+2(n+1)h(r,72)+4r2hs(r,r?) = 0 and for which the associated Euler-
Lagrange system admits an infinitude of nontrivial twisting solutions regardless

of n being even or odd.

Example 3.4.2. Consider h(r,s) = a(r)b(s) = r%s” for real a, 8, a < r < b
and s > 0. Then rh,.(r,7?) + 2(n + 1)h(r,r?) + 4r2h(r,7?) = 0 <= rab +
2(n+ 1)ab + 4r2ab = 0, that is, a + 2(n+ 1)+ 48 = 0 and the energy
can be rewritten as

[ul*?|Vul?

Gg [u; Xn} = /
Note that by linearity any finite sum h(r,s) = >, c;r®s sPi with ¢; > 0 and
aj+2(n+1)+48; = 0 still verifies rh,.(r,7?)+2(n+1)h(r,7?) +4r?hg(r,r?) = 0.

Of course these are by no means the only functions h > 0 satisfying the latter.

By Theorem for each m = (my, ..., my,) € ZF there exists a generalised
twist u(z; m) = rexp{s2(r)H(m)}0 with profile 5 = 5 (r) as in (3.3.1]) and
H a suitable skew-symmetric matrix as described such that u is a solution to

the resulting system (3.1.2)-(3.1.3]). Thus, so long as .# =0, as, e.g. is the case

for the above energies, then regardless of n being even or odd the system has
an infinite scale of topologically distinct twisting solutions, in total contrast to
when % # 0 where by Theorem there are no nontrivial solutions for n
odd.

3.5 Whirl Maps u = Q(¢)r and the Restricted
H;, Energies

We now aim to seek solutions to the system (3.1.2)-(3.1.3]) from amongst whirl

maps. Recall from the Introduction and opening section of this chapter that
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these are continuous self-maps of the closed symmetric annulus X™ onto itself
in the form u : (r,0) = rQ(p1, ..., pn)0, where r = |z|, § = z|x|~! and = € X,
The vector of 2-plane radial variables ¢ = (p1, ..., pn) is defined, depending on
n being even or odd, as:

(i) n even: N =d =mn/2 and p; = (23;_, +x§j)1/2V1 <j <N,
(14) nodd: N =d+1 = (n+1)/2and p; = (z§j71+m§j)1/2V1 <j<d, pNy = xy.

Here z € X" <= p € A, where A,, = {p € RY : a < [|g|| < b} for n = 2N and
Av={0eRY " xR:a<|po|| <b}forn=2N—1.

)
A,:n=3 N=2 P2
d=1 )
) o, A, n:4,]\;::22
AR

Figure 1: The contrasting symmetries in the semi-annular region A,, associated

with X" for n odd versus n even.

We now refer the reader to Proposition [A:0.6]in Appendix [A] which gathers
numerous key calculus identities for whirl maps as described here. Along with
the following Lemma there we also prove that all such whirl maps satisfy
the incompressibility constraint det Vu = 1. With these identities at hand the
proof of the following result is immediate. Before proceeding we remark that,
given the definition of a twist loop Q related to a whirl map u = Q(p)z as in
(3.1.10) we have the alternative definition Q(p) = exp{H(g)} where H : A,, —
so(n) is given by

H(g)—{ diag(f1J,..., faJ) n=2d,

(3.5.1)
diag(f1Jd,..., faJ,0) n=2d+1

for J as defined in (3.3.2) and f; € €(A,) for all 1 < j < d such f; = 0 on
(aAn)a and fj = 2mj7T on (aAn)b
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Proposition 3.5.1. Let u = rQ(0)0 with Q € €*(A,,SO(n)) NE(A,,SO(n))
given by Q = exp{H(o)} for H defined by (3.5.1). Then the action L[u] for
% as in (3.1.3) can be formulated as

N N
Llu] = <In +> Vo ® H,ﬂ> {[hr + 2rhy) (In +Y Huao Vpg) )

/=1 =1

N N
h Z |:H’¢e$ + ApeH 2 + 2H’¢V,0¢:| —rhg (n + Z |H’e$|2) 9}.
/=1

=1
(3.5.2)

Here, h = h(r,r?), hy = h.(r,7%) and hs = hs(r,r?) and H 4, H 4 denote the

first and second derivatives of H with respect to py.

Given the description of |[Vu|? in Proposition [A.0.6] [c.f. (A.0.15)], we now

proceed by restricting the energy functional F[u; X"] to the class of whirls u =
rQ(0)0 with the map Q = Q(p) as in - thus writing

Flu = rQ(o)6: X" = / (el o)Vl Q(o)6] da

_ /X h(ja), 2?) (n + ZN: |H,e:c|2> da. (3.5.3)

(=1

By changing the variables of integration (3.5.3)) can be reformulated as

b
Flu = rQe)6: X) — o [ hir )" dr = (3.5.4)

= [

where we have used the identity (A.0.16)). Regarding the Jacobian of this trans-

formation, note that we hereafter set

d d d
(lell, 1el*) > P71V afel® T ps do =: (2m) > Hal f; Anl,
=1 j=1 =1

n

d
H w(pr,- - pard) = w(g:d). (3:5:5)
Therefore when n = 2d, N = d the above product features all p1,...,pn,

whereas when n = 2d + 1, N = d + 1 the product features p1,...,pn_1. As
such, the restricted energy H, (with 1 < ¢ < d) can be expressed as

N
He[f; An) ¢=/A h(llell i)V afPoiw(o;d) do, — llel*=>_p;. (3.5.6)
n j=1
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3.6 The Euler-Lagrange Equation Associated to
Hé[f; An]

When considering the restricted energy functional Hy[f; A,] (1 < £ < d) given
by (3.5.6)), we have the functions f = f(p1, ..., pv) in the admissible space

meZ

where, for each integer m € Z we have set
Din(Bn) = {f € W'2(A,) 1 f=00n (0A,)q, f =2mm on (9A,)s}. (3.6.2)

Intending to solve the system (3.1.2)-(3.1.3)) we proceed onto extremising the
restricted energy Hy[f; A, ] over the space @, (A,). Now recalling the three-part

decomposition of JA,, given by (3.1.9), the Euler-Lagrange equation associated
with H, over Z(A,,) is seen to be (with 1 < ¢ < d, m € Z)

diva [A([lell, [el*)pfw(e;d)Vaf] =0 in A,

=0 on (0An)a,
BVP[f;m] = (3.6.3)

f=2mn on (0A ),

h(lloll, lell*)piw(e; d)dy, f =0 onT,.

Here 0, f = Vaf - v with v being the unit outward normal field on I';, and py is
the ¢*" component of the vector . See Theorem for an analogous result
in a more general context.

We now aim to show that this system has a unique solution in the form
f = floym) =%9(|lo|;m) for a suitable ¥ = ¥ (r;m) € €?[a,b], as a matter of

fact,
floym) := 2m7rHI_|(|(|5)H), H(t) ::/ #((9552) (3.6.4)

Towards this end, it is first easy to verify that the boundary conditions hold
by virtue of H(a) = 0 and the scaling at ||g|| = b. Furthermore by direct

differentiation we have
H(r) pi _ 2mym Di

-9 o 1 <¢<N. .6.
opi mﬂH(b) r H(b) rt2h(r,r2)’ St (3.6.5)
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Now, specialising first to even dimensions n = 2d, N = d, we see that

N

. 0 2myu;m i 2

diva [hir )kl ) Vaf] = 3 5 H (h(r, )@ d))
i=1 ' ’

d
2mim Pl pin:

. — 2 .
H(b) Z <Tn+2w(g7d) (n+ )Tn+4w(97d)

i=1

pipedic | pip; w(o;d)
+2 rn+2 (ga d) + rn+2 Pi

1 2mum

2 H(D) P [dpé (2d +2)pe +2p0 + dﬂé]w(@; d) = 0. (3.6.6)

Next for n = 2d 4+ 1, N = d + 1 we proceed similarly but recall that py = x,.
For the first p1,..., pq terms in the divergence we use (3.6.6) above which gives

d
2ml o [ pip?
§ 3/}1( s d)>_ (3.6.7)

i=1

1 2myw { (2d+3)
= Pt — —5

= 2 d o d).
Tn+2 H(b) 0 Pl P(’ZPZ + Pe + pg] ( )

=1

To this we add the N*! term in the divergence sum, which is seen to be

2m;m 0 [ pnp; 1 2mum (2d+3)
id) | = —— - ;d).
H(b) 8)0N (Tn_l'_z (.U( ) rn+2 H(b) Pe 4 ppr ( )
(3.6.8)
Coupling this with (3.6.7) therefore gives
2T e O pip?
. 2\ 2 . _ i iy .
divy [h(r,r Ypzw(o; d)VAf] = o) ;:1 o, (rn+2w(g,d)> (3.6.9)

1 2mym
= d d 2 d+1 ;d) = 0.
72 H(D) Pe[ pe— (2d +3)pe + 2p¢ + (d + )pg}w(g, ) =0

Theorem 3.6.1. Let f(o,m) = 2mnH(||o||)/H() with H as in (3.6.4) and
m € Z. Then f in €%(A,) is the unique solution to the system (3.6.3) and the

unique minimiser of the restricted energy Hy[f; An] over D (Ay).

Proof. The proof is immediate upon the above calculations and Proposition
adapted to the special case of A(r, s,£) = h(r, s)¢. O
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3.7 Whirls as Solutions to the System .%,[u] =
\Z

Recall the assumption that for a whirl map v = rQ()0 the twist path Q =
Q(o) € €(A,,SO(n)) must take values on the maximal torus T C SO(n) of
block diagonal 2 x 2 planar rotations: T = {diag(R[d1], ..., R[pd]) : ¢1, ..., da €
R} when n = 2d and T = {diag(R[¢1], ..., R[ba],1) : ¢1,...,0a € R} when
n = 2d+ 1. This means that with f, = f(0,m¢) € €(A,,) (1 < ¢ < d) satisfying
fe = 0 on (0A,), and f; = 2mem on (0A,), we can write [cf. and
B51)]

Qo) =

Qo:m) = { exp{diag(f1J,..., faJ)} n = 2d, (3.7.1)

exp{diag(f1J,..., faJ,0)} n=2d+1,
where m = (myq,...,mq) € Z%. In seeking solutions to (3.1.2)-(3.1.3) in the

form of whirls, using results in the previous section, specifically Theorem [3.6.1],

we must further specialise to fo(0;me) = 2mend?(||o|]) for 1 < £ < d, with

H(r) as in (3.3.1) and J being the 2x2 matrix R[r/2] given by (3.3.2). Our
goal here is to show, by analysing the PDE %,[u] = V&2, that a necessary

and sufficient condition for these whirls to be solutions to (3.1.2)-(3.1.3)) is f; €
{£2mn(||o||)} for 1 <€ <d, i.e., my € {+m} with m € Z when rh,.(r,r?) +
2(n + 1)h(r,r?) + 4r2hg(r,r?) # 0. This means that for a whirl to furnish a

solution to the system (3.1.2))-(3.1.3]), here, up to a sign, the functions fy, or
equivalently, the integers m, must all be equal. In contrast when rh,(r,r%) +

2(n+1)h(r,r?)+4r2hs(r,r?) = 0 (i.e. the h-condition holds) no such restriction
on fy or my is needed. A more precise formulation of this is given below.
Theorem 3.7.1. Suppose u = rQ(0)0 is a whirl map with Q € €>(A,,,SO(n))
satisfying Qo) = L, for o € (0A,)q U (OA,)s. Then w is a solution to the
nonlinear system (3.1.2)-(3.1.3) if and only if Q = Q(o;m) is as described
below.

L. (rhy(r,7%) +2(n + 1)h(r,r?) + 472hs(r,7?) £ 0 on |a,b]) Here, depending

on the dimension n being even or odd, we have
(i) n even: |mq| =--- = |my| and subsequently

Q(o; m) = exp{diag(2mmw.(||o][)T, ..., 2man A (||0l)T)}, o€ A,
= diag(R[2mym (||el])], - . ., R[2man A (||0l])]),  (3.7.2)
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with R and J defined by (3.3.2).

(i1) n odd: my = ---=mg =0 and therefore Q = 1,,.

2. (rhe(r,r?) + 2(n + 1)h(r,r?) + 4r2hs(r,r?) = 0 on ]a,b]) Here Q(o0) =
exp{(||o|\H} for all o € A,, where H = diag(2mm,J, ..., 27maJ) when
n = 2d and H = diag(2mm4J, ..., 2rmyJ,0) when n = 2d+ 1. In this case

there is no restriction on m.

Before proceeding with the proof we pause briefly to take a closer look at the
identities in Proposition when, with a slight abuse of notation, Q(g) =

Q(r) where 7 = ||o|| = \/p? + ... + p% (see also Proposition |A.0.3). Beginning

with the gradient we note that

N
Q=M gy S pvp = Vilel2=0  373)
’ Ope r P
by virtue of r = ||g|| and therefore
N
Vu=Q+Q0®> pVp=Q+QIoz=Q+rQix0. (3.7.4)
=1
In particular it follows from this that |Vu|? = n + r2|Q6|? as in Proposi-

tion Finally for the Laplacian Au we first note that Ap, = 1/ps except
for n odd and ¢ = N where Apy = 0 and

7“2

2
— Py o~
HQ, (3.7.5)

2
. 1
Qe = %Q+*
T T T

therefore giving, using (#i¢) in Proposition

N

Au = ; K’;z@ + T:ﬁ@) T+ %Angx + Q%vag
rQ0 + (N —1)Q0 + NQO + 2Q0, n even,
TG0+ (N —1)Q0+ (N —1)Q0+ 200, 7 odd
=rQ0+ (n+1)Q0 (3.7.6)

in view of N = n/2 when n is even and N = (n + 1)/2 when n is odd. With
these identities at hand we present the proof of Theorem [3.7.1

Proof. Let u = rQ(p)f be a whirl map as described. Then by the existence

and uniqueness result in the previous section on the extremisers fi, ..., fq to the
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restricted energies Hy it is plain that these functions and hence Q depend only
on r = ||g||. In fact from the explicit description of f1,..., f4 in Theorem
we have Q(o) = exp{(||o||)H} with H = diag(2my7J, ...,2manJ) for n = 2d
even and H = diag(2mnJ,...,2mynJ,0) for n = 2d + 1 odd and moreover
that the profile # = #(r) solves the ODE (3.4.1). Thus starting from the
formulation of the action % [u = rQ(p)f] as in we have

Znlu=Q(0)x] = [hr(r,r?) + 2rhy(r,17)] x

N N
x (In +> V@ H,zx> (In +> Hao Vpe) 0

/=1 =1

N N
+ h(r,?) (In + Z Ve ® H,eﬂf) Z H gz + ApeH oz + 2H (Vpy]
=1 =1

N N
— rhy(r,r?) <n + Z H,gx|2> (In + Z Ve ® Hygl’) 0 (3.7.7)
=1 =1

and so substituting for Q by invoking the discussion prior to the proof and the

formulation above leads to
Llu=rQ(0)0] =(Q" +r0 @ QG){ (B (r,72) + 2rhg (r, 7)) (QO + TQG)

+ h(r,r?) [rQ +(n+ 1)Q} 0 — rhy(r,r2)(n + r2|Q0|2)Q9}

=Vh(|z|,|2*) — nrhs(r,r?)0
+ [P (r, %) + 72y (r,7®) 4 (0 + Dh(r,r?)] 272 [HO*
+ r2h(r, 72 A HO20 + rh(r, r?) A H?0. (3.7.8)

By an application of the ODE ([3.4.1)) for 5% we see a significant simplification,
that is

Z[u=1rQ(0)0] = Vh(|z|, |x|?) — nrhs(r,r2)0 — r2hg(r, 7). HO|*0
+ rh(r,r?)*H20. (3.7.9)

Note that this is precisely the same formulation as in the case of generalised

twists - see (3.4.2]) and Theorem
Finally returning to % [u = rQ(0)d] = V.22, Proposition leads to the

conclusion that if 7h,.(r,r2) + 2(n + 1)h(r,72) + 4r2hs(r,r?) £ 0 then curlU =
Lplu) = Vh+rnhs =0 < |fi]* = --- = |fa|*> when n = 2d is even and
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|f1]> = -+ = |f4|*> = 0 when n = 2d + 1 is odd. As such this gives m, = 0 for
all1 <¢<dwhenn=2d+1isodd and |m1| =--- = |my| := |m| when n = 2d
and so fy € {£2mnH(||o||)} for all 1 < € < d. If rh,.(r,r?) +2(n + 1)h(r,r?) +
4r%hg(r,7?) = 0 we have, again by Proposition that Z,[u = rQ(0)0] is

curl-free as well as a gradient with no restriction on my. O

52



Chapter 4

The Non-Variational
System Z|u;A B] = V& and
the Discriminant A(h, g)

In this chapter we consider the second order nonlinear elliptic PDE in divergence

form given by
div[A(|z], [ul?, [Vul*)Vu] + B(|z, [ul?, [Vul*)u = [cof VU]V 2,

where the unknown vector field u satisfies the pointwise incompressibility con-
straint det Vu = 1 along with suitable boundary conditions and & = £ (x)
is an a priori unknown hydrostatic pressure field. Here, A = A(r,s,§¢) and
B = B(r, s,&) are sufficiently regular scalar functions satisfying natural struc-
tural properties. Most notably, in the case of a finite symmetric annulus, we
prove the existence of a countably infinite scale of topologically distinct twist-
ing solutions to the system in all even dimensions. In sharp contrast in odd
dimensions the only twisting solution is the map v = . We study a related
class of systems by introducing the novel notion of a discriminant. Using this,
a complete and explicit characterisation of all twisting solutions for n > 2 is
given and a curious dichotomy in the behaviour of the system and its solutions

is captured and analysed.
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4.1 Statement of the Result

We consider a second order nonlinear system in divergence form in a bounded

domain 2 C R™ subject to a pointwise incompressibility constraint:

div[A(|z], |ul?, |Vul|?)Vu] + B(|z], [ul?, |Vu|*)u = [cof Vu]VZ  in Q,
det Vu =1 in Q,
U= on 0f).

Here & is an a priori unknown hydrostatic pressure field corresponding to
the pointwise constraint det Vu = 1 and to avoid unnecessary technicalities and
fix ideas ¢ is taken throughout as the identity map, that is, ¢ = x. Moreover,
A = A(r,s,£) and B = B(r, 5,£) are real-valued functions of classes ! and €
respectively with A being positive, monotone in the third variable and having
a suitable growth (see below for a formulation of the assumptions on A and B).
The divergence operator acts row-wise on the matrix field A(|z|, [u|?, |Vu|?)Vu.
By taking advantage of the incompressibility constraint det Vu = 1 and thus
the algebraic identity cof Vu = (Vu)~* the above system can be reformulated
as

Llu;A,B] :=VZ in Q,
detVu =1 in €, (4.1.1)

U= on 0,
where the second order differential operator £ = Z[u; A, B] here is given by
ZLu; A, B] = (Vu)ldiv[A(Jz|, |ul?, |Vu?)Vu] + B(|z|, [ul?, |Vul*) (Vi) u

— A(le, lul?, [Val?) (V)" A + (V) Vu VA(Je], [ul, [Vaf?)
+B(jal, [u%,|Vul?)(Vu)'u. (4.1.2)

As a result of this formulation, it is evident that if u is a solution to this

system, then necessarily curl Z[u; A,B] = curl V.2 = 0 in , that is,
curl [(Vu)'div[A(|z|, [ul?, |Vul*)Vu] 4+ B(|z|, [u?, |[Vul*)(Vu)'u] = 0. (4.1.3)

However note that this condition, unless 0 C R”™ has a particular homology,
would not on its own imply that the vector field Z[u; A, B] is a gradient field,
here, VZ. Note also that if A(r,s,&) = Fe(r,s,&) and B(r,s,§) = —Fs(r, s,€)
for some class ¢ Lagrangian F' = F(r, s, ) (hence in particular A; + B¢ = 0)
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then the system (4.1.1)-(4.1.2) is precisely the Euler-Lagrange equation associ-
ated with the variational energy integral (p > 1)

F[U;Q]:/F(|x|,|u|2,|Vu|2)dx, u € F(Q), (4.1.4)
Q

where &/2(Q) = {u € W'"P(;R") : det Vu =1 a.e. in Q and u = ¢ on 90},
Although the existence of an energy integral can largely facilitate the analysis,
we emphasise that the assumptions put in place on A and B here are more
general and do not assume or associate an energy or a variational structure to
the systemﬁ For more on the background formulation and applications of the
system — in particular to geometry, function theory, mechanics and
nonlinear elasticity see [5] 6], 10, 3] 24} [48] and the references therein.
Throughout this chapter we specialise to the geometric set up where Q =
X" = X"[a,b] :== {x € R” : a < |z| < b} is a finite symmetric annulus with
b >a >0 and ¢ = z, the identity map. In this context, by a generalised
twist (or simply twist) we understand a map u € € (X", X") which in spherical

coordinates admits the representation
w: (r,0)— (r,Q(r)d), r=|z,0 =xlz|™t, zeXn (4.1.5)

Here Q = Q(r) € %([a,b],SO(n)) is called the twist path associated with wu.
Now, in order to ensure u = ¢ on 9 = X" we set Q(a) = Q(b) =I,,. In this
event, the twist path forms a closed curve in SO(n) based at I,, called the twist
loop that in turn represents an element of the fundamental group 71 (SO(n)) &
Zy (n > 3) and Z (n = 2). Our aim here is to prove the existence of multiple
twisting solutions to - by carefully formulating the action of £ on
sufficiently regular twists and then specialising to those having a geodesic twist
loop Q(r) = exp{f(r)H} for suitable choices of f = f(r) and H € so(n). It is
quite remarkable that here, despite the form of £[u; A, B], in the construction of
multiple twist solutions we can take advantage of an arising variational structure
on A whilst separating the roles of A, B and only reuniting them again at the
last stage of the argument when enforcing the curl-free condition on Z[u; A, BJ.

For the sake of future reference let us proceed by describing the assumptions.

Indeed we assume throughout that A = A(r,s,&), B = B(r,s,£) are of classes

6Despite this, our results even in the variational context are new and of interest. Among the
many important examples here one can refer to the cases F(r, s, &) = h(r, s)§ with h > 0 and
of class €2 where the resulting F is a weighted Dirichlet type energy and F(r, s, &) = (£/s)™/?
(n > 2) where the resulting F is the classical distortion energy (see, e.g., [Bl [6l [46] [61], 62]).
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EH(U), €(U) respectively where U = U(X"[a,b]) = [a, b]x]0, 00[x]0, 0o[C R3
and that A is strictly positive, i.e., A(r,s,&) > 0, monotone in the ¢ variable,
i.e. Ag(r,s,€) > 0 for all (r,s,§) € U and finally that for every compact set
K C]0, oo there are constants ¢; = ¢1(K), ca = c2(K) > 0 such that

al(P™ <Al s, G S el V(s () eUse Kop> 1 (4.1.6)

Naturally the (untwisting) identity map u = x — corresponding to the con-
stant twist loop Q = I,, — is always a solution to the system (4.1.1)) for a suitable
hydrostatic pressure field &2 as is seen by substitution:

ZLlu=z;A,B] = (Vu) div[A(|z], [ul?, [Vul*) V] + B(|z], |[uf?, [Vul*) (Vu)'u
= div[A(|z], |2]*, n)La] + B(J2], |2[*, n)a
= VA(|z|,|z*,n) + B(|z|, |z|*,n)z = V2. (4.1.7)
In this chapter we show that, interestingly and somewhat unexpectedly, in

all even dimensions n > 2 there is a further infinite family of topologically

distinct twisting solutions to this system as formulated below.

Main Theorem. Let n > 2 be even and A, B as above. Then for each m € Z

there exists a generalised twist u = u(x;m) of class €* serving as a solution to

the nonlinear system (4.1.1)-(4.1.2)). More specifically u(x;m) = rQ(r;m)0 is a
generalised twist with twist path Q = Q(r;m) given explicitly by

Q(r;m) = exp{¥(r;m)H}, a<r<b, meZ
= Pdiag(R[¥4](r;m), ..., R[¥](r;m))P, (4.1.8)

where 4 = 9 (r;m) is the unique solution to the boundary value problem

7 A (e 12 n 4 r292)G | =0, a<r<hb,
"
4(b) = 2m.

Moreover H is the n x n skew-symmetric matriv H = PJ, P! with P € O(n)
arbitrary, J, = diag(J,....;J) and J as in (4.2.2)). Furthermore, & represents a

hydrostatic pressure associated with u and is given by
P (z;m) = A(r,12,n + r292) + S(r), r=lz|, zeXn~ (4.1.10)
where VS = r[B(r, 72, n + r24?) — G2A(r, 72, n + r242)]6.
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4.2 Construction of Countably Infinitely Many
Solutions to the Nonlinear System (4.1.1))-
(4.1.2)

First we refer the reader to Proposition in Appendix [A] to recall some
of the key identities pertaining to a generalised twist u(z) = Q(|z|)z and its
gradient Vu. We state here (and for reference throughout this chapter) that the

action of the partial differential operator Z[u; A, B] on a generalised twist is
ZL[u; A, B] = (Q + 16 ® Qf) (4.2.1)
< Aelrar?n 1 71QUI7) (@ + Q0 0 )21 Q070 + 1791 Q0P
+2rAy(r,r2 n + 172 QO11)(QO + rQO) + A, (r,r, n + 7% |QO*)(QO + rQo)

+ A% +7%|Q0) |(n+ 1)Q +rQ| 6 + rB(r, r27n+r2|Q9|2)Q9},

which follows by direct substitution. In this section we specialise to generalised
twists u whose loops Q = Q(r) (e < r < b) are suitably scaled geodesics
on the compact Lie group SO(n) based at I,, with n even. For this we take
Q = exp{¥(r)H} for a suitable ¥ € ¢?[a,b] [c¢f. [£.2.9)] and H the n x n skew-
symmetric matrix H = PJ, P!, with P € O(n) arbitrary and J,, = diag(J, ...,J)

where

J— ( 0 - ) Rt] = exp{tT} = ( cost —sint ) (4.2.2)

1 0 sint cost

It is seen that here Q = YHQ, Q = (%H — %.QIn)Q and since the dimension
n is taken even, |Q0|? = 92|HA|2 = ¥2. Moreover, as Q is based at I,, this
forces the angle of rotation function ¢ to take (without loss of generality) the
boundary values ¥(a) = 0 and ¢(b) = 2mn for some m € Z. Under this set

of assumptions it is seen that the action of the differential operator .Z on the
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twist map u can be formulated as
Z[u = rexp{%(r)H}0; A, B] = (I, + r40 @ Hf) x
X {Ag(r, 2 n 4 24?1, + r9HO @ 0)(2r9%0 + 2r°990) (4.2.3)
+ 2rAy (1, 7%, n 4 r2G?) (L, + r9H)0 + A, (r,r%, n + r?@G?) (I, + r4H)0

+ A(r, 7%, n + r29?) [(n +1)%H + r(9H — 54.21”)} 0+ rB(r, %, n + 7"2?2)9}.

Upon taking into account the necessary cancellations and after rearranging

terms this action can be written in the form
Lu=rexp{¥9(r)H}0; A,B] = &7 (r)0 + B(r)HO, (4.2.4)
where the scalar functions & = &/ (r) and & = (r) here are given by
(1) :=Ag(r, 12, n + 172G (1 + 1292)(2rG? + 2129 G (4.2.5)
+ 2rA (r, 72, 0 4 292 (1 4 r29?) + A (r, 72 0+ r2G?) (1 + r24?)
+ A(r, 72,04 r29?) [r(n + 1)9? —r9? + 129G | + rB(r,r?, n + 1r29?),
and
B(r) :=rAc(r,72, 0 + GG (2rG? + 2°G 9
+ 2% A, (r, 72, n 4 729G + rA,(r, 72 n 4 299G
+A(r, 72,0+ 129 [(n + 1)9 + r9). (4.2.6)

Focusing on these coeflicients of Z[u = rexp{¥(r)H}0;A,B] it can be seen
further that

_ ¢ d n+1 2 2062\t d 2 2042
%(r)_rni—la |:7“ A(T‘J‘,n-f—?”g)g}—i-%A(r,r’n{-rg)
+r [B(ﬁ 2 n+1G%) — G2 A(r, v n + rzéﬁ)} 7 (4.2.7)
and similarly
_ L dan 2 2052\ p
B(r) = g [r A(r,re,n+r°¢ )g} ) (4.2.8)

As suggested by the above formulation, we now proceed by choosing the angle
of rotation function ¢ € %?[a,b] to be a solution to the second order ODE
associated with A = A(r, s, §):

d . o
— [Tn—s-lA(r7 P2 n+ TZgQ)g} =0, a<r<b, (4.2.9)
.
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supplemented by the boundary conditions 4(a) = 0 and ¥4(b) = 2mm (the
existence of solutions ¢ with the required degree of regularity is established
in Proposition [C.0.1)). Referring to the description of the action .Z[u; A, B] in
together with the above formulations of 7 (r), Z(r), in light of the ODE

(4.2.9) it is now seen that,

ZLNu; A, B] = Llrexp{¥4(r;m)H}0;A,B] = o7 (r)0 + #(r)HO

[ Y dan 2 2062\ d 2 2052
{r"—ldr{r A(r,r,n+r§¢)§4+%A(r,r,n+r€€)

+r [B(r, 2 n+ 7"254.2) — 54.2/-\(7‘, 2 n+ 7"25?2)} }9

1d +1 2 252\

—— |r"T A H 4.2.1

e [T (r,r,n—|—r§4)§4 0 ( 0)
= [;A(r, 2, n 4 r2@?) + rB(r,r?, n + 129%) — rG>A(r, 1%, n + r?9?)| 0.

r

We are now in a position to prove the Main Theorem of this chapter.

Proof. (Main Theorem) Recalling the description of Z[u; A, B] from (4.2.10))

and with & = ¢(r;m) as above all that remains is to show that the vector field
vi=ZLu; A B = (V) div[A(|z], [ul?, [Vul*)Vu] + B(|z], [uf?, [Vul*)(Vu)'u

d . .
= d—A(r, r2,n+1r2G?) + rB(r, %, n 4 r?94?)
r

— 192N (r, 2, n + 129?) |6, (4.2.11)
is a gradient field in X", that is, v = V.&. Towards this end it is firstly seen that
d/drA(r,r%,n + 1292)0 = VA(|z|,|z|?,n + |2|?%?) and secondly upon writing
the remainder as #[B(r,72,n + r292) — G2A(r,r2, n + 1292)]0 = 5(r)0 for some
s € €la,b] we have r[B(r,r2,n + 1r292) — G2A(r, 72, n 4+ r292)0 = VS(|z|) for a
suitable primitive S of s. This therefore shows that the two segments of v are

both gradients and hence completes the proof. O

4.3 The Case A = h(r,s), B = g(r,s)¢ and the
Discriminant A(h, g)

In this section we consider a particular case of the system (4.1.1))-(4.1.2)) where,

quite remarkably, all the twist solutions with twist loops of class €2 can be
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explicitly computed and described. Here we take the differential operator . =
Z[u; A, B] with A = h(r, s), B = g(r, s)&, that is[]

ZL[u;A,B] = (Vu)* {div[h(r, |u|?)Vu] + g(r, |u|2)|Vu|2u} , (4.3.1)

where h = h(r,s) > 0 and g = g(r, s) are of classes ¢’? and ¥ respectively. Tak-
ing a twist u = rQ(r)f with twist loop Q € €¢*(Ja,b[,SO(n)) N ¢ ([a, b],SO(n))

we can then write
ZL[u; A, B] = (Vu)* {VuV[h(r, [u|?)] 4 h(r, |u|®)Au + g(r, |u|2)|Vu|2u}
=(Q'+r0® Qﬁ){[hr(r, r2) + 2rhy(r,7*)(Q + T‘Q)
(%) [0+ Q4 1]+ rglrr?)n+ 2O, (132
or equivalently and upon rearranging terms
L[w; A, B] = [hy(r,r%) + 2rhy(r,r%) 4+ nrg(r, r%))0
+ [P (7, 72) + 203 hg (r, 72) + (n 4+ D)rh(r,r2) + 3 g(r, )] | Q0?0
+ [(n+ Dh(r,r)Q'Q + rh(r,r*)Q'Q + 2h(r,7%)(Q0, QO)1,
+ rlhe(r,7%) 4 2rhs(r,72)] QI Q6. (4.3.3)

Tt is seen without difficulty that the action Z[u; A, B] above can be given an

alternative and more suggestive reformulation

Z|u;A,B] = F(r,0)0 + Ld
/]ATL

o ’l"nJrlh(T’, Tz)QtQ 0 — rh(T’, TQ)QtQ97 (434)

where F = F(r, ) is the scalar-valued function defined by

F(r,0) = h(r,7%) + 2rhg(r,r2) 4+ nrg(r, r2) + r2h(r,r2)(Q0, Q) (4.3.5)
+ [r?hy(r,7?) + 273y (r,7?) + (n+ V)rh(r,r?) + rPg(r,r?)] Q0%

Now starting from Z[u; A, B] = V& upon tensorisation and integration over
the sphere we obtain for a < r < b (c.f. Proposition [5.2.3)

ZLuw;ABl®0—0® ZLu;AB] = VZ®0-02VP =0. (4.3.6)
§n—1 §n—1
"Note that g(r,s) = —hs(r, s) corresponds to the variational case F(r, s, &) = h(r, s)¢ where
A = F¢ = h(r,s) and B = —Fs = g(r, s)§. However we do not make such assumption here.
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Now upon substituting from (4.3.4), noting F6 ® 6 — 6 @ F§ = 0 [¢f. (4.3.5)]
together with the fact that Q'QI 20 -0 QQH integrates to zero over the

sphere because of the symmetry of the matrix Q!Q, it follows at once that for
a<r<hb,

d n t ¢~ t ¢ n— _
/S {r i) QA8 0 -6 QQ] }d?—[ 1e)=0.  (4.3.7)

n—1 dr

Therefore by virtue of the skew-symmetry of QtQ, after evaluating the above

integral, we arrive at

LA B @6 — 0@ LluA B = 22n L
§n—1 r™dr

[T"Hh(r, TQ)QtQ} =0.
(4.3.8)
Thus, summarising, we have shown that if Zu = rQ(r)0; A, B] = V& then
the twist path Q = Q(r) must satisfy the ODE on the right in (4.3.8]), which
is the counterpart of (4.2.9) in this context. By an easy inspection this ODE is

now seen to be completely integrable and with the choice of boundary conditions
Q(a) = Q(b) =1, to have the explicit solutions

Q(r) = exp{H(r)H}, a<r<hb, (4.3.9)

where the profile function 42 is given by

" ds
H(r) = (D)’ H(r)=/a T Th(s ) (4.3.10)

Moreover the skew-symmetric matrix H is given in block diagonalised form as

_ { Pdiag(2mind, ..., 2mwJ)Pt, n =2k, (4.3.11)

Pdiag(2mind, ..., 2me_17J, mp)Pt, n=2k—1.

Here my,...,my € Z with my, = 0 when n = 2k — 1, P € O(n) and J is as
in (4:2.2). Now taking Q(r) = exp{#(r)H} with Q = #HQ, Q = #HQ +
A?H2Q and (Q0, Q) = A A HQO]> + 3 (HQH, H2QH) = # ' |HI|?
where the last equality uses the skew-symmetry of H and the fact that H and

Q commute the formulation of the action of . on u reduces to

Llu; A, B] = [h,(r, T2) + 2rhg(r, 1"2) + nrg(r, 7*2)]6
+73g(r, r2)%2|H0|29+rh(r, rz)ijHzH, (4.3.12)

61



The Non-Variational System L[u; A, B] = VY and the Discriminant A(h, g)

where in the above we have reduced terms based on the assumption that Q =
exp{ A (r)H} solves the ODE ({4.3.8). We are now in a position to apply Propo-
sition [see Appendix [D] to the vector field

U(z) = ZLu; A, B] = V[h(|z|, |2]*) + ng(|z])] = o (r)|Ha|*z + B(r)H’x,
(4.3.13)

where g = g(r) is a primitive of rg(r,7?) and
A (r) = g(r,r®) A%, B(r) = h(r,r*) A (4.3.14)

Indeed by writing A(h, g) = —(2 + B/r) /2 we have that if A = 0 then U

is a gradient field and if A # 0 then U is a gradient field if and only if, referring

to (4.3.11)), |m1| = - -+ = |mg|. Note that by a basic calculation and making use

of the ODE (4.3.8) the discriminant A here can be more explicitly described aﬂ
2(n + 1)h + rh,. + 2r%(hs — g)

A(h, g) = . . (4.3.15)

We have therefore proved the following theorem that captures a contrast in

the behaviour of the system and its twisting solutions.

Theorem 4.3.1. Let Q € €?(Ja,b[,SO(n)) N € ([a,b],SO(n)) be a twist loop
based at I,, and consider the differential operator £ = ZL[u; A, B] with A;B as
above and A(h, g) as in (£.3.15). Then ZL[u = rQ(r)6;A,B] = V2 if and only
if Q is as described below.

1. A(h,g) £ 0: Here depending on n being even or odd we have
(i) n even. Q(r) = exp{A(r)H} (a < r < b) with H = 2mnPJ, P’
where P € O(n), m € Z and J,, = diag(J,...,J).
(#) n odd. H=0 and thus Q = 1,,. Hence the identity map u = x is the

only twisting solution to (4.1.1)).
2. A(h,g) =0: Here Q(r) = exp{(r)H} (a <r <b) with H as in (4.3.11)

and with no further restrictions on mq, ..., myg.

8Compare this with the similar and illustrative examples (5.5.5) and (6.4.14)).
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Chapter 5

A Lagrangian Discriminant
on Critical Loops
Associated with

curl Z|u| =0

The aim of this chapter is to comprehensively solve the nonlinear elliptic system
in variation

div[F¢Vu] — Fou = [cof VU]V in Q,

detVu =1 in Q,

U= on 092,

where Fe = Fe(lel, [uf?, [Vul2), F, = Fy(|al,Jul%, |Vul?) and F = F(r,s,€) is a
twice continuously differentiable Lagrangian. Here & = & (x) is a hydrostatic
pressure field associated with the incompressibility constraint det Vu = 1 and
o is a prescribed boundary map. In the geometric setting where the domain
is a bounded symmetric annulus, we connect the system to a class of isotropic
ODEs on the Lie group SO(n) and establish the existence of an infinite scale of
topologically distinct geodesic type solutions to these ODEs in the form Q(r) =
exp{¥(r)H}, with suitable profile ¥ = ¢4(r) and H € so(n). Passing to the
full system next, a Lagrangian discriminant capturing the irrotationality of the
vector field Z[u] = (Vu)*{div[F¢Vu] — Fyu} is introduced and exploited. A set
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of contrasting behaviours of the system and its solutions are then singled out

and discussed by a detailed analysis of the associated discriminants.

5.1 Preliminaries and Outline

For @ C R™ (n > 2) a bounded domain with a sufficiently smooth boundary

consider the variational energy functional
Flu; Q] = / W (x,u, Vu) dz (5.1.1)
Q

where # = # (x,u,F) is a twice continuously differentiable Lagrangian and u
is taken in the admissible space of incompressible Sobolev maps (with suitable
p>1)

AL () = {ue WHP(Q,R") : detVu = 1, u = ¢ on 90} . (5.1.2)

In the above formulation ¢ € €*(09,R") is a fixed boundary map and the
incompressibility constraint in is assumed to hold pointwise, that is,
a.e. in Q. The Euler-Lagrange equation associated with — can
be obtained formally by using the so-called Lagrange multiplier method and is
given by the nonlinear system (see, e.g., [3, 14} 241 [65] for more)

div[#x (z,u, Vu)| — #o(z,u, Vu) = [cof Vu|VZ  in Q,
detVu =1 in 0, (5.1.3)
U= on 0f).

Here & = & (x) is an a priori unknown Lagrange multiplier, often called the
hydrostatic pressure field, associated with the incompressibility constraint on u
and the divergence operator acts on the matrix field #& row-wise. Moreover
cof denotes the usual cofactor matrix that, thanks to the incompressibility con-
straint, we have [cof Vu]™1 = (Vu)! while the boundary condition u = ¢ on 99
in is understood in the sense of traces.

Motivated by consideration of rotational symmetry in solutions to the system
(5.1.3)), in this paper we specialise entirely to isotropic Lagrangians of the form
W (z,u,F) = F(r,s,£)/2 with (r,5,&) = (|z|, |ul?, |F|?) and subject to suitable
convexity and monotonicity assumptions on F' in the & variable. Here
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can be written as

Lu=VZ inQ,
detVu=1 in Q, (5.1.4)
U= @ on 0,

with £ denoting the second-order differential operator given explicitly by

L] = (V) {div[Fe(|a], [uf*, [Vul*)Vu] = Fy(Jz], [uf*, [Vul*)u}
=V Fe(lz], [uf?, |Vul)(Va)' Vu + Fe(|z], [ul*, [Vul*) (Vu)* Au
— Fy(|z], [ul?, [Vul*)(Vu) . (5.1.5)

For the sake of clarity note that by a (classical) solution we hereafter mean a
pair (u, &) with u of class €2(Q, R")N%(Q,R") and £ of class €*(Q) N € (Q)
such that holds in a pointwise sense in Qﬂ Now proceeding forward
and arguing either formally and in a distributional sense, or classically, upon
assuming further differentiability on %, it is seen from — that
curl Z[u] = curl VL = 0 in Q, that is

Curl{VFg(Jﬂ7 [ul?, |Vul|?) (V) ' Vu + Fe (|2, [u?, [Vul?) (Vu) Au
— Fy(|z|, |ul?, |Vu|2)(Vu)tu} =0. (5.1.6)

However, unless 2 has a particular homology, this is clearly not a sufficient
condition for Z[u] to be a gradient field, here specifically V.Z.

Throughout the chapter we specialise to the geometric set up where Q =
X" =X"[a,b] := {z € R" : a < |z| < b} is a bounded symmetric annulus with
b>a>0,and ¢ = z, i.e., the identity map. In this context by a generalised
twist (or twist for brevity) we understand a map u € ¢ (X", X") that admits the

representation
w: (r,0) — (r,Q(r)d), r=|z|,0 =zxlz|™', zeXn (5.1.7)

The curve Q € % ([a,b],SO(n)) here is called the twist path associated with

u. Moreover in order to ensure u = x on 90 = X" we set Qa) = Q(b) =

9 The pair (u*, 2*) with u* = z the identity map and 92* as below is a solution to .
As a matter of fact from Vu* = I, we have Z[u*] = div[F¢ (|2, |z|2, n)In] — Fs(|z|, |2|?, n)z =
VEe(|z|,|z|?,n) — Fs(|z|, |z|?,n)z and so Z[u*] = VP* with 2* = Fe(|z|,|z|?,n) — G(|z])
where G = G(r) is a primitive of g(r) = rFs(r,72,n).
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I,. In this event the twist path forms a closed curve in SO(n), based at I,
called the twist loop, that in turn represents an element of the fundamental
group 1 (SO(n)) & Zs (n > 3) and Z (n = 2). Our aim is to establish the
existence of an infinitude of twisting solutions to the nonlinear system
by appropriately formulating the action of . on sufficiently regular twists u
and solving the resulting PDE.

The first major thread of this chapter comprising Sections focuses on
a study of three interrelated ODEs considered over the Lie group SO(n) and
formulated for twist loops Q = Q(r) in the space

A (a,b) :={Q € W"P(a,b;SO(n)) : Q(a) = Q(b) = I,.} . (5.1.8)

The first ODE in the list can be seen to arise as the Euler-Lagrange equation
associated to a restricted energy functional (c.f. Remark [5.2.6]) and is given on
the interval a < r < b by

/SH (Zn{r"HFg(r, rn+r2|Q0P) [Q 2 Q0 - Qf @ QY } " (0) = 0.
(5.1.9)

This ODE can also be extracted directly from the PDE .Z[u] = V.2 as shown
in Proposition and as such serves as a necessary condition on the twist
path for any twist solution to the system . By discarding the spherical

integral we will also consider the strengthened, pointwise, equation

d{r”+1F§(r, 2,0+ r2|QO)?) [Qe ©QI— QI Qa} } —0, a<r<bh

dr
(5.1.10)

Naturally any solution to is by default a solution to but not wvice
versa due to the strengthening of the integral constraint in to a pointwise
one in (see, e.g., Theorem. The third and final equation of interest
(for which we observe close links to the previous two and the system )

comprises

z{rn+lFa(r, % n+ TQIQQIQ)QtQ} =0, a<r<b (5.1.11)

This ODE and its solutions will play a central role in constructing twist solutions
to the system as well as the analysis of irrotationality of the vector
field Z[u]. Indeed for any twist u whose twist path Q is a solution to the
ODE (5.1.11)) we have curl Z[u] = Ap[Q'QI @ 0 — 0 ® Q'QH], where Ap —
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hereafter called the Lagrangian discriminant associated with the Lagrangian F'
(c.f. Theorem [5.4.2)) — is given explicitly by

2[(n + 1) Fe + 2(€ — n) Fee + 2r°Fyg][Fe + (€ — n) Fee] + rFeFre

A= 72y + 2Fee(€ — 1)

(5.1.12)
Our analysis shows that the vanishing vs. non-vanishing of this discriminant
along a solution Q = Q(r) to has interesting and grave implications on
the structure and form of the resulting twist u = rQ(r)f being a solution to
. In Section we take up this specific task and look at how the explicit
structure of the Lagrangian F' can affect the vanishing or non-vanishing of Ap.
A remarkable feature here is that if F' has no joint (r,s) and & dependence
then, subject to the mere monotonicity and convexity assumptions on F, the
discriminant is always strictly positive and hence nowhere vanishing. In contrast,
in the simplest case of joint (r,s) and £ dependence examples will be given to
show that the discriminant can completely vanish and hence a totally new set of
geodesic type solutions to will emerge as twist solutions to the system
(15.1.4)).
For the sake of future reference we assume that F € ¢2(U) where U =
[a, b]x]0, 00[x]0, 0o[C R? and that F¢ > 0, Fge > 0. Moreover we assume that
the twice continuously differentiable function ¢ = F(r, 7%, n+72(?) is uniformly
convex in ( for all a < r < b and ¢ € R. Regarding bounds and coercivity we
assume that F' is bounded from below: F(r,s,£) > ¢ for some ¢y € R and that
for all (r,s,£) € U and every compact K CJ0, oo there exist constants c1, co > 0

depending on K such that for some p > 1:

|Fe(r,s, )¢ < eoC)P™ Y(r,s,(?)eU: seK, (5.1.13)
co+cl¢]P < F(r,s,¢%) < ealC|P V(r,s,(*)elU:scK. (5.1.14)

Let us finish off this introduction with a brief description of the plan of
the chapter. In Section [5.2] we focus on the three ODEs listed above and in-
vestigate their relationship to one another and to the PDE Zu] = VZ. In
Section we take a closer look at Lagrangians of the weighted Dirichlet type
F(r,s,&) = h(r,s)¢ and readdress the inter-relationship between these three
ODE:s in that context. Interestingly, a complete and explicit representation of
all solutions as well as an exact relationship between the ODEs can be given
here (c.f. Theorem . The highlight of Section is the computation of
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the curl of the vector field £ [u] which then leads to the formulation
of the Lagrangian discriminant Ap. This notion and its applications are then
exploited further in Section [5.5]in the context of Lagrangian form and structure.
The chapter ends by a return to the system and a complete classification

of its multiple twisting solutions.

5.2 The Action Z[u| on Generalised Twists and

Interrelation of Differential Operators

This section is principally concerned with a study of the differential operator

Z[u] defined by (5.1.5) and its relation to the ODEs (5.1.9)-(5.1.11). The

first result here gives an explicit representation of the action £[u] when w is a

sufficiently regular generalised twist.

Proposition 5.2.1. Let u = rQ(r)6 with Q € €*(Ja, b[,SO(n))NE ([a,b], SO(n)).
Then the action of the differential operator £ on u can be described as

L) = VEe(fal, |afn +|Qaf?) + &

= AR I ™ dr

— rFe(r, 2 n +12QO1>)QIQH + < (r, )0, (5.2.1)

P Ee(r,r?,n +r71Q017)Q'QH

where o/ = o/ (r,0) is the scalar-valued function given by

o (r,0) =1 Fee(r,r*, 0+ r°|Q0*)|QO° (2r|QO[*0 + r*V|Q6|*)
+ 27"3F35(r, 2 n+ TZ\Q9\2)|Q0|2 + 7‘2FT5(T, 2 n+ r2|Q9|2)|Q0|2
+rFe[(n+ 1)\Q9\2 + r(QH, QH)] —rFy(r,r%n+ r2|Q9|2) (5.2.2)
and Q = dQ(r)/dr, Q = d*Q(r)/dr2.

Proof. First, the identity (A.0.7) describes precisely the action % on a gener-

alised twist as in the statement of the theorem as
L) =(Q" +rf Qe){ng(n r?,n+r?|QO*)(Q + rQY ® 0)

x (2r|QO1*0 + r*V[|Q6)%))
+ [2rFye(r, 2 n+ r2|Q9|2) + Fre(r, r?n+ 7“2|Q9|2)](Q + TQQ ® 0)0

+ Fe(r, 2 n+ r2|Q9|2)[(n + 1)Q + rQ]G — rFy(r, r?n+ r2|Q9|2)Q9}.
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Upon multiplying through (Vu)! = Qf + 70 ® Q0 and making the appropriate
rearrangements the identity (5.2.1)) follows at once. O

We remark that the fact that a generalised twist u = rQ(r)f as in the state-
ment of the theorem above satisfies the incompressibility constraint det Vu =1
is established in Proposition Before proceeding further, we briefly digress
to give a result which will be used in various forms in the chapter. Towards this

end let us introduce the notation Sg[f] for the tensor product

Srlf] =F0®6 -0 F0, (5.2.3)
where F is a fixed n x n matrix and 6 € S"~1.
Lemma 5.2.2. Sg[f] =0 for all § € S*~! iff F = f1,, for some f € R.

Thus the tensor FO®  is skew-symmetric for all unit vectors 0 iff the matrix
F is a multiple of the identity matrix. Now before giving the proof of the lemma,

it is instructive to note that upon integrating Sg[f] over the sphere, we have
/ Sg[0]dH"1(0) = w, (F — FY), (5.2.4)
Sn—l

where w,, is the volume of the unit n-ball. Thus in contrast to the more stringent

conclusion in Lemma the spherical integral of Sg[f] in (5.2.4]) only sees
the skew-symmetric part of F, and in particular vanishes iff F is symmetric.

Proof. From Sg[f] =0 for § € {ey, ..., e,} — the standard basis of R™ — it follows
that F is diagonal, that is, F = diag(f1,...,f,) for (f;)?, C R. Hence the
condition Sg[f] = 0 reduces to 6;0;(f; —f;) = 0 for all 1 < 4,5 < n. As such
fi =.-- =f, =: f for some f € R. Conversely and trivially if F = fI,, then
Splf] =fl0®0—-0x®0 =0 for all § € S~ 1. O

If we introduce the notation A = Q'Q, then we can write the action Zu]
for a twist u, as
2 2 Ld 2 2 2
L1 =VFe((al, 2, n+|AzP) + — S [, + 2 AOP)A] 0
+1rEe(r,r?,n + 12| A01*)A%0 + o/ (r,0)0. (5.2.5)
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In this case & = &/(r,0) in turn can be reformulated as

A (r,0) =12 Fee(r,r?,n + r2|A01?)|A0PV (2| AG))
+ 23 Foe (r, 1%, n 4 12| A0)?)|AG|? + 12 Fre(r, v, n + 72| A1) |AG?
+ 7 Fe(r, 72, + 172 A0} [(n + 1)|AG]* + (A6, Ab)]
—rFy(r,r%,n + 12| A0?). (5.2.6)
This follows by noting the identities A% = Q'QQ'Q = —Q'Q and (QF, QF) =
(AG, (A + A?)0) = (A, Af). Moving forward we now wish to emphasise and
further study the resulting commutator-like relation (henceforth abbreviating
the arguments of F' and any of its derivatives)
Ll @0 -0 Lu =VF: 20— 02 VE: +rF:(A%0 20 — 02 A%9)

1 d
+ o TR {Ad® 0 - 0@ AGY], (5.2.7)
which holds thanks to the pointwise identity <7 (r,0)0 @ § — 0 ® <7 (r,6)6 = 0.

Proposition 5.2.3. Let & € € (U) with U C R™ an open neighbourhood of
the unit sphere S*~1. Then

/ VZ®0—02VPdH" 1 (0) =0. (5.2.8)
Snfl

Proof. Firstly by restricting to the unit surface of the sphere and splitting the

gradient into a normal and tangential part in the usual way, we can write
VZ=(1,-000)VP+ (VP00 =NV +VnZP. (5.2.9)

It is seen that VyZ ® § — 0 @ V&2 = 0 and so to establish (5.2.8) it suffices
to justify the integral identity

/ VrZ 20 -0 Vr2dH" () = 0. (5.2.10)
§n—1

Now by a direct differentiation it is evident that Vr(20) = 0V P+ PV b,
and so referring to ([5.2.10)) we can write

VP @60 —00 VP = [Vp(20) — PVr0)t — [V (P0) — PV 16
= [V (20)]" — [V (20)]. (5.2.11)

Here in deducing the second identity we have taken into account the symmetry
Vrl = [Vl =1, — 0 ®6. The conclusion now follows by integrating (5.2.11))
and invoking the divergence theorem on the sphere with 9S"~! = {()}. O
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Proposition 5.2.4. If Z[u] = V& holds for a generalised twist u = rQ(r)0
with Q € ¢*(]a, b, SO(n)) N € ([a,b], SO(n)) then the twist path Q satisfies the
ODE

d

ar {/Sn_l r" P Ee(r,r? n+ r?|Q0)%) [Q@ ®QI—-QI® Qg} d'Hnl(a)} —o.

(5.2.12)

Proof. Using the integral identity in the previous proposition and assuming that
u satisfies Z[u] = V.2 we have, upon referring to (5.2.7) with A = Q'Q,

0= /Sn_l (VZ®0-02VP}dH"(0)
_ /S (Ll © 0 — 02 L]} dH"1(0)
_ /Si {rpf [A20 00— 0 A%]
+ Tindilr {r" T F: [A0® 0 — 0 ® A6} }d%”‘l(e), (5.2.13)

where we have written Fz = F¢(r,72,n + r2|Q0|?) for brevity. Now considering
the second term in the last integral in (5.2.13]) we can write

d . .
S = dr{r"“Ff [Qth 000 tho} }

d . .
= dr{r"HFth [QG ®Ql— QI ® QG} Q}

=Qt${r”+1Fg[Q9 2QI-QI® Qe}}c.z
+ QI R(QI© Q8 - Q99 QAIQ + Q' [Q0© Q- Q@ Q9] Q
=9 + Sy + 3. (5214)

Now the sum of the two terms % and .#3 in the last line in (5.2.14]) is seen to
simplify to:

Iy + Iy = Qlr" [Qe ©Q0— QI Qa} Q
+QUT R |G Qo - Q0w Q0] Q (5.2.15)
—r R {Q'QU 0 0 - Q'QI 2 Q'QY+ Q'QN Q'QY - 10 Q'Q0}
where we have used the orthogonality of Q. Now in view of QtQ being skew-

symmetric, the middle two terms in (|5.2.15]) cancel and so returning to (|5.2.14])
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we have
d . .
I = It I+ Ty = {rm1F [QQreo-02Q'a}
- Qt;i{r”“Fg[Qa ® QI — QI ® Q) }Q
LR, [QtQ0®0fG®QtQ9}. (5.2.16)

Now since by a direct calculation A% = —QtQ upon referring to and substituting

into we have
RHS(5.2.13) = / {—rpg QY0020 Qe}
Qt{r"“Fs[@ ®QI—Qh® QG}}Q
rn " dr
+rF [Qth ©0—0® Qth} } dH" ()

—{ [ Srr@rsar- are anlae o)} Q=0
gn—1

which is the required conclusion. O

Remark 5.2.5. Consider the second order tensor quantity Z[u] ® 60 —0 @ Lu]

associated with an arbitrary u € €?(X",R"). Then referring to the formulation

(5.2.7) and the calculations (5.2.14)-(5.2.16)) in the proof of Proposition

it is seen that for a twist u = rQ(r)f with a twice continuously differentiable

twist path Q we have
f[u]®9—9®.§f[u]:VFE®9—9®VF5 (5.2.17)
Qt { o, [QG@QH—QH@QG} }Q.

Remark 5.2.6. Interestingly, the ODE (5.2.12) has a variational character

resulting from restricting the energy functional F to the class of admissible

twists. Indeed recalling (|5 and the description of |[Vu|? in Proposmon
we can write

b
Flu = rQ(r)f; X"] = / / F(r,r2,n+ 12| QO2)rm =L drdH™=(9)
§n—1 a

b
:/ E(r,Q)r" tdr =: E[Q; a, ], (5.2.18)

72



A Lagrangian Discriminant on Critical Loops Associated with curl £[u] = 0

where the Lagrangian F = E(r,X) with a <r < b and X is a skew-symmetric
n X n matrix is the spherical integral of F(r,r* n + r?|X6|?). The Euler-
Lagrange equation associated with the restricted energy E over the space of

SO(n)-valued fixed end-point twist paths Q = Q(r) is then easily seen to coin-

cide with ([5.2.12)). This is also formally recovered in Corollary [2.2.12

Proposition 5.2.7. Assume Lu] =V for a generalised twist u = rQ(r)0
with Q € €%(]a,b[,SO(n)) NE€([a,b),SO(n)). If the quantity |Q6| depends only
on the radial variable r, that is, is independent of the spherical variable 6, then
Q satisfies (5.1.11)). Indeed, under the latter condition, (5.1.9) and (5.1.11) are

equivalent.

Proof. First if Z[u] = V& then by Proposition the twist path Q satisfies
(5.1.9). Now if \Q9| is additionally independent of 6 (i.e., is a function of r alone)
then starting with the integral on the left of ((5.1.9)) followed by an application

of the divergence theorem we can write
L Ly (02, 4 121Q07) [0 © QO — QO © QO] L ar—(9) =
[ U R 1Q0P) [0 Q0 - Q0w Qo (0) =
:di‘i {7‘"+1F5(r,r2,n—|—7“2Q92)/ (@02 Q0—Qoe QY| dH"—l(e)}
S§n—1

= andir {Tn+1F§(T, r?,n + r2|Q9|2)QQt} = 2w, QLHS(5.1.11)Q°,

(5.2.19)
where we have used the fact that
% {7‘”+1F§(7‘, r?,n+ TQ\QG\Q)QQt} =
= Qdii" {T"HFg(n r2,n + TZ\Q9|2)Q’5Q} Q' (5.2.20)

asin (3.2.18)). Assuch it is immediately seen that under the stated independence
condition the twist path Q = Q(r) solves (5.1.9)) iff it solves ([5.1.11]). O

An instructive example is the geodesic twist path Q(r) = exp{¥(r)H} where
4 =94(r) € ¢?a,b] and H is a suitable n x n skew-symmetric matrix. Indeed
here a basic calculation gives |Qf| = |4H6| and therefore when 7 is even, upon
taking H = Pdiag(J,...,J)P! with P € O(n) and

(0 -1 B [ cos¢ —sing
J= < Lo ), RI[¢] = exp{¢I} = < sine  cosc >7 (5.2.21)
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we have H? = —I,, and so as a result |Qf| = |¢| is independent of §. When n
is odd by contrast there is no skew-symmetric matrix H satisfying H? = —1I,,
(due to the presence of at least one zero eigenvalue for H) and as such here |H|
is independent of 8 iff H=0 and so Q =1,.

Discussing further the relationship between the ODEs (5.1.9) and (5.1.11)),
for a general Lagrangian F' and for a twice continuously differentiable twist

path Q = Q(r) (with no assumption on |Q9|), it can be seen that (5.1.11) —
(5.1.9) as follows. Indeed upon writing .# for the operator

Q) = dii [ (%, n 4 121 Q012)Q1Q) (5.2.22)

it follows from (5.1.11) that Z[Q0 ® 8 — 0 @ #Z[Q]6 =0 forall a < r < b
and |6] = 1. Noting that the tensor quantity on the left here is exactly the
expression on the right of the first line in (5.2.16|), by integrating over the unit

sphere we can write,
0 :/ (A(Ql0® 0 — 0@ .4[Q)0) dH™ 1 (0)
Sn—l
d . .
Y [/ £ {MHF5 [QH ©Qf— Qi Qe} } de"—l(e)] Q
sn—1 dr
4t / F [Qth 90—0® Qth} dH"1(0). (5.2.23)
S§n—1
Now as Q'Q is a symmetric matrix field on (a,b) the second integral on the
right here vanishes by (5.2.4) and so Q satisfies (5.1.9) (see also Section [5.3|and
Theorem for related results on a particular class of Lagrangians).
Moving forward and in line with Proposition [5.2.7] we next give a result on

the equivalence of the ODEs (5.1.10)) and (5.1.11)) by introducing the L-norm
associated with a differentiable twist path Q = Q(r) (with a < r < b) by setting

b
L(Q,0) = QO] 1 ) = / (9, Q) dr. (5.2.24)

Theorem 5.2.8. Let Q € €2(Ja,b[,SO(n)) N€*([a,b],SO(n)) satisfy the end-

point conditions Q(a) = Q(b) = I,, and suppose that the L-norm (5.2.24]) is
independent of 8. The following are equivalent:

(i) Q solves (5-L.10),
(i) Q solves (FL.1T),
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(it7) (Dimensional dichotomy) Depending on n being even or odd Q admits the

factorisation:

e (n=2k) FormeZ and P € O(n)

Q = Q(r;m) = exp{¥(r;m)PJ;P'} (5.2.25)
= Pdiag(R[4](r;m),. .., R[¥4](r;m))P’,

where J = diag(J,...,J) with J and R as in (5.2.21) and 4 €

€?[a,b] the unique solution of the boundary value problem

o [t ig) 9] <o
% (a)

_o, (5.2.26)
4 (b) = 2mm.

e (n=2k-1)Q=1,.

Proof. Throughout the proof we will assume that L(Q, 8) > 0 as by assumption
L(Q,0) = 0 iff Q = I,, in which case the above equivalences are trivially true.

We first justify the implication (i4) == (¢i7). To this end we introduce the

function .

G(r.0,Q) = / Q)0 ds,  a<r<b, (5.2.27)
with &(r) = d/dr[#(r,0,Q)] = |Q(r)8|. Given that (5.1.11)) holds we can write
d% [ Fe o+ 72| QOP) QO | — 1 Fe(rr?n 4+ r21Q012)(Q0, Q6) = 0

(5.2.28)
and therefore by a straightforward differentiation
0= 2 Lo B 21 Q0P) Q01 } 10
dr R
+ 7“”+1F§(’I“, 7“2, n4+ 7‘2|Q9‘2)|Q9| <Q9, Q9>
Q|
= " e (r, % n 4 1%1QO1*)(QY, Q0)
d . . .
= R n 4 1% Qo) Q0 } 1QO). (5.2.29)

The above calculation shows that for a fixed 6, as a function of 7, 7'"“F§|Q9\ =c

on any interval on which |Qf)| is non-zero and so a basic continuity argument
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implies that either |Qf| = 0 on [a,b] or |Q0] > 0 on [a,b]. Since we are avoiding
the former case then ¥(r,0,Q) solves (5.2.26)) on the whole interval [a,b] for
every fixed 6 € S"~!. Now we see that ¥(a,0,Q) = 0 and 4(b,0,Q) = L(Q, 0)
which is independent of 6 by assumption. Solutions of are plainly
extremisers over 2P (a,b) = {4 € W1P(a,b) : 9(a) = 0,4(b) = 2mm} of the

energy
b .
I:9— / F(r,r*,n+r?9?) r"tdr, G < 9P (a,b). (5.2.30)

As the functional I in is strictly convex (note that Fr > 0 and Fge > 0)
using a standard convexity argument it follows that solutions to are the
unique minimisers of this energy functional with respect to their own boundary
conditions. Since ¢4 has been shown to be independent of # at its end-points it
follows that 4(r, 6, Q) = 4(r, Q) is independent of 6 for all a < r < b.

Next as F¢y > 0 it is evident that all (non-zero) solutions of are
strictly monotone and hence invertible on [a, b]. Now put 7(s) = 4 ~1(s) for the
inverse and write Q(r(s)) = K(s) for K € €2(]0,1[,SO(n)) N €([0,],SO(n))
where [ = 4(b). Then Q(r) = K(¥(r)) so that Q = K'¥ (with prime denoting
d/ds). Returning to we have after a change of variables

d o d
n+1 2 2cg2 13 P - ! —
= {7‘ Fe(r,r?,n+ r’@*) 9K K} 0 = e K'K'=0. (5231)

Here we have written 7"+ Fy (1,72, n 4+ r29%)% = ¢ (with ¢ # 0) as a result of
¢ being a solution to (5.2.26). Now taking K(s) = exp{sH} with H a constant
skew-symmetric matrix to be specified we have KK’ = H and so K solves
(5-2:31). As s(r) = 4(r) this translates to Q(r;m) = exp{¥(r;m)H} with ¥
solving . Calculating the L-norm it is seen that

b b
L[Qzexp{g(r;m)ﬂ},e]z/ |g(r;m>He|dr=\H9|/ G (rim)| dr
(5.2.32)

and so by inspection L[Q, 6] is independent of 8 iff |[H6)| is independent of §. Now
consider orthogonally diagonalising H, i.e., writing H = Pdiag(c1J, ..., ciJ)P?
for n = 2k and H = Pdiag(c1J, ..., c,_1J, ;) Pt for n = 2k — 1 with P € O(n),
J as in and ci,...c, suitable real constants, in fact, here +ic; (1 <
Jj < k) being the eigenvalues of H (note that ¢, = 0 for n odd). By a direct

calculation it is then seen that |HO| is independent of 6 iff c1,. .., ¢ are equal
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modulo sign, that is, |c1| = -+ = |ep] =: |¢|]. When n is odd this gives ¢ = 0
and hence Q = I, and when n is even by adjusting P € O(n) if necessary this
gives, without loss of generality, ¢c; = --- = ¢ = c.

Now moving on to the endpoint conditions on Q (and only in the n even case
as for n odd Q =1,,) it is firstly seen from ¢ (a; m) = 0 that Q(a) = exp{0} =1,
and from ¢(b;m) = 2mn that Q(b) = exp{c2mnPdiag(J,...,J)P'}. Thus to
satisfy Q(b) = L, it suffices to take ¢ = 1 and then follows.

The implication (i) == (4i%) is precisely the content of Theorem and
as such here we provide just a sketch of a proof and refer to the aforementioned
theorem for further details. First assume that Q solves the ODE (|5.1.10)).
Multiplying this equation by Qf and using the observation [Qf ® QO]QQ =
—|Q012Q0 it follows that Q satisfies

d . . . .
[ Fe 121 QOP) QO] + T Fe(ry o+ 72| QO) | QOPQ0 = 0.

dr
(5.2.33)
Thus upon writing Fy = F¢(r, 72, n+r2|Q0)|?) for short it follows from a straight-

forward calculation that

Y
= " F(Q0,Q0)|QY| = 0, (5.2.34)

d : d : Qf, 6
% {T"+1F§|Q9|} _ % {TnJrng} |Q0| Jrrn+1F <Q >

where the final inequality holds true by virtue of QtQ being skew-symmetric.
Now recalling ¢ as defined in the above shows that ¢ solves the ODE in
. Thus a similar convexity argument as in the previous part shows that
¥ is independent of 6 for a < r < b. With K as before, the equation

after a change of variables becomes
d . .
- [T"HFggK'e + T RGIKOPKO = c [K” + [K'0]°K] 0 =0, (5.2.35)

which is precisely the geodesic equation on the sphere for (s) = K(s)8. Writing
K(s) = exp{sH} as before this gives [H? + I,,JK = 0 which has no solutions in
odd dimensions if L(Q, 8) > 0 whilst for n even we recover H = PJ,P? and the
concluding description of Q follows.

We have shown that either of (i) or (i¢) implies (¢ii) and therefore all that
remains is to show the converse, namely, that (ii¢) implies (¢) and (ii). Towards
this end. first observe that if the dimension n is odd, then Q = I,, and both
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(5.1.10) or (5.1.11) trivially hold. For n even and with Q as in ([5.2.25) we have
Q = gHQ and so starting with (5.1.11)) we can write

d o
LHS(5.1.11) = dr{r"'HFg(r, 2 n + 7"2642)%}H =0 (5.2.36)

which holds since ¢ is taken as a solution of (5.2.26f). Likewise regarding (|5.1.10))

we can write

LHS(5.1.10) jr{r”HFg(r, r?n+1*9%)9 [HQI © Q — Qf @ HQY)] }

:;i{r”“Fg(r, r?n+ r@'?)g} [HQI ® QI — QI © HQY)
+ " e (r,r? n + 12997 [H2Q0 © Q — QO @ H?QO] = 0,
(5.2.37)

with the final equality in (5.2.37)) holding as a consequence of ¢ being a solution
to (5.2.26)) and the identity H? = —I,,. As such we have shown that (iii) implies
both (i) and (i4) and so the proof is complete. O

Remark 5.2.9. Consider the quantity Sey.q[0] = QQI 20— 02 Q'QH as in
(5.2.3)) and appearing in the proof of Proposition [5.2.4] [c.f. (5.2.16])]. Then by
Lemma [5.2.2] we have

Sorqlfl =0 <= Q'Q=0(r, (5.2.38)

for some non-negative o = o(r) with a < r < b. This being so |Q0|? = o(r) and
hence the L-norm is independent of 6. As such if Q'QA®0—02QIQH =
0 for a Q of class €2 that solves either of the ODEs (5.1.10) or (5.1.11]) then Q
is as described in part (iii) of Theorem [5.2.8]

5.3 The Lagrangian F(r,s,&) = h(r,s){: The ODEs
(5.1.9) and (5.1.10) vs. (5.1.11) on SO(n)

In this section we take a closer look at the ODEs (5.1.10) and (5.1.11]) with the
aim of discussing the possible relationship between the two. Here we specialise to
Lagrangians F of the type F(r,s, &) = h(r, s)¢ with h > 0 of class ¢ where the

resulting ODEs are completely integrable and one can obtain explicit solutions

for the twist path Q = Q(r). Note that upon substituting this Lagrangian into
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the energy integral (5.1.1]) the resulting functional takes the form of a weighted

Dirichlet energy integral whose restriction to twists u takes the form

Flu =rQ(r)0; X"] = /xn h(r, |u|2)\Vu|2 dz

b
:/ / h(r, ) [n+ r2|QO)2r"~t drdH"™1(0). (5.3.1)
a JSn—1
Starting from the ODE ([5.1.11) it is seen that in this case with F¢ = h we have

d R
— {T"Jrlh(r, r2)QtQ} =0, a<r<b. (5.3.2)
This ODE subject to the endpoint condition Q(a) = I,, as required by (5.1.8)
(with p = 2) admits the specific solutions Q(r) = exp{J(r)H} with H € so(n)

arbitrary and J# € ¢2[a, b] given explicitly by

H(r " ds
%(7‘) = HEb;’ H(T) = /a W, a<r<hb. (5.3.3)

By virtue of ##(a) = 0 the endpoint condition Q(a) = I, is trivially satisfied.
Anticipating on the other endpoint condition, we again proceed by orthogonally
diagonalising H, that is, writing H = Pdiag(c1J,...,cJ)P! for n = 2k and
H = Pdiag(c1J, ..., c_1J, c;)P? for n = 2k — 1 (with ¢, = 0 in the odd case).
In order to satisfy Q(b) = I,, we observe that ¢; € 2Zx for all 1 < j < k and so
for Q = exp{#(r)H} in to solve H must have the form

Pdiag(2mind, ..., 2mnJ)P! n = 2k,
H = (5.3.4)
Pdiag(2mind,...,2my_17J,00P" n=2k—1,
with J as in (5.2.21)) and mq,...,mg € Z. Now the ODE ([5.1.10)) for the choice

of Lagrangian F' = h(r, s)§ is seen to be
d

dr{T"Hh(r’ r2) {QH 2Qf—QI® Q@} } =0, a<r<hb (5.3.5)

Integrating over the sphere and using the divergence theorem gives
. It thus follows that any solution Q = Q(r) here must also solve (5.3.5))
and so by the above discussion must have the form Q(r) = exp{.#(r)H}. Now
with this at hand it is seen upon substitution in that

0= {0 Qw0 Q9 - Qo e Q] |

- jr{?""“h(r, Tz)%z} HQY © QY — QY © HQY]

+ 7" h(r,r?) 2 [H2QO @ QF — QO @ H?QY)] . (5.3.6)
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This clearly holds if d/dr[r"t h(r,72).#] = 0 (corresponding to with
Q = exp{s7(r)H}) and H’Qf ® Qf — Qf ® H2QH = 0. Regarding this second
condition a rearrangement yields QH?0 ® 6 — 6 ® H?0]Q' = 0 (note that H
and Q commute), so by Lemma it is necessary and sufficient here to
have H? = cI, for ¢ € R or translating into the scalars ci,...,c; to have
my = --- = my =: m (by a suitable adjustment of P € O(n) if needed as seen
before). Consideration of n even and odd separately by noting that m = 0 for
n odd, hence H = 0, and ¢ = 2ms with m € Z arbitrary for n even leads to the

following statement.

Theorem 5.3.1. Consider the Lagrangian F(r,s,&) = h(r,s) with h > 0 and

of class €1 ([a,b]x]0,00]) along with the ODEs (5.1.9)-(5.1.11)) on the compact
Lie group SO(n) together with the endpoint conditions Q(a) = Q(b) = I,.
Then:

(1) The ODEs (5.1.9) and (5.1.11) are equivalent.
(i1) BEvery solution to (5.1.9) and (5.1.11)) in %5 (a,b) has the form
Q(r) = exp{H(r)H}, a<r<b, (5.3.7)

with A = A (r) as in (5.3.3) and H as in (5.3.4) with mq,...my € Z.

(i4i) Bvery solution to (5.1.10)) in %} (a,b) is as in (ii) above subject to addi-
tionally having m; € {£m} for 1 < j < k with m € Z when n = 2k and
H =0, that is, m = 0 when n = 2k — 1.

Thus in particular it follows from this theorem that these two sets of ODEs
are not equivalent; in fact, the ODEs (5.1.9) and (5.1.11) have a much wider
solution set due to there being no constraint on the choice of integer my, ..., my
contrary to where apart from a sign the latter integers all have to

coincide, that is, |m]| = - -+ = |myg|. In particular for n odd this has the severe

consequence that H = 0 and hence Q = 1,,.

5.4 Irrotationality of the Vector Field .Z[u] and

the Lagrangian Discriminant Ap

The starting aim of this section is the pivotal step of computing the curl of the
vector field Z[u] as a key ingredient in solving the system (5.1.4]), specifically,

80



A Lagrangian Discriminant on Critical Loops Associated with curl £[u] = 0

the PDE Z[u] = V. Evaluating the action .Z[u] for u = rQ(r)f, upon taking
Z[u] as in the proof of Proposition and multiplying through the term
[cof Vu] ™! = [Vu]t and abbreviating the arguments of F' = F(r, 72, n+12|Qf|?)

and any of its derivatives for the sake of brevity, we obtain

L] = Fee[L, + 71(Q'Q0 @ 0 + 0 ® Q' QH) + r|QI1*0 ® O]V (r?|QF)?)
+ [2rFu + Fe] (0 +7Q Q0O + 72| Q6)%6) (5.4.1)
+ Fe[(n+1)Q'Q+rQ'Q + r(n + 1)|Q0’L, + r*(Q0, QO)L, )0 — rF.0.

Now using A = Q!Q as before for convenience we can rewrite the above as

Lu] = Fee[L, + (A0 @ 0 + 0 @ A9) + 7| A0|*0 @ 0]V (r?|A0]?)
+ [2rFse + Fr¢](0 + 7A0 + r?|A0)%0)
+ Fe[(n+ 1A +7r(A + A?) +r(n +1)|A9%L,
+72(A0, AO)T, )0 — rF.0. (5.4.2)

Next a straightforward differentiation and recalling the skew-symmetry of A

gives the identity
d
V|Az|* = V(r?|A0)?) = d—(r2|A9|2)9 —2rA%0 — 2r|A0%0, (5.4.3)
r

which then results in VF; = FeeV(r?|A6|?) + 2rFgef + F.¢0. As a consequence
we can write the differential operator action .Z[u] in (5.4.2) as

1 d

" d
L] =VF + g [r" T FeA] 6+

T [t Fe|A6|?] 60

+7F:A%0 — 12 (A0, AQ)Fe0 — rF.0. (5.4.4)

Now the main advantage of the above formulation lies in the fact that it contains
representations of the ODEs encountered earlier in Section and so further
links the system and the PDE Zr[u] = V£ to the three classes of ODEs
studied earlier. In fact from this point on we shall assume that the twist path
Q = Q(r) associated with the twist u is a solution to the ODE (5.1.11)), that

is, (5.4.5) below, and aim to reformulate the action .Z[u] under the assumption
d .
dr{r"HFg(r, r?n+ r2|A9|2)A} =0, A =Q'Q, a<r<b. (54.5)

Note that this ODE is formally stronger than (5.1.9)) (which arises as a necessary
condition for twist solutions to Z[u] = V&) but it has the advantage of being
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more natural, pointwise and directly embedded in the operator action Z[u].
Furthermore, it is equivalent to in many cases of interest or subject to
additional conditions as discussed before. See Proposition Proposition
(.27 the accompanying discussion and Theorem [5.2.8] See also Theorem [5.3.1]

Proposition 5.4.1. Let Q € ¢?(]a,b[,SO(n))N% ([a,b], SO(n))assume that Q
satisfies the ODE (5.4.5). Then with uw = rQ(r)8, the action L[u] reduces to

L) = VFe +rF:A%*) — rF,0, (5.4.6)

where Fy, = Fy(r,r?,n + r2|QO|?) and Fy = Fe(r,r?,n + r2|Q0|?) denote the
derivatives of the function F = F(r,s,£) in the second and third variables re-

spectively.

Proof. Given ([5.4.5) it is seen upon taking the inner product (LHS(5.4.5)0, A#) =
0 that

1
0=-— <i [t FeA] 9,A9> = {(n +1)F¢|A0] + rFr¢| A6
+2r2 Foe|AG]* + rF&di(rﬂAeF)\AaF +1rFe (A0, A9>}

T

1d .
= [T Fe | AG)?] — rFe (A0, A0) (5.4.7)
™ dr
and so upon rearranging we get 7~ "d/dr[r"*1F¢|A0>] = rF:(Af, A9). This

being so and referring to (2.1.4) we have the result. O

We now come to the main aim of this section, namely, given the formulation
of Zu] for a twist u with a twist path Q satisfying the ODE (5.4.5)), to compute

its curl, and discuss the irrotationality of the action £ul, i.e., it being curl-free.

Theorem 5.4.2. Let u = rQ(r)0 with Q € €*(Ja,b[,SO(n))N€([a,b],SO(n))
and assume that Q is a solution to the ODE (5.4.5). Then

curl (Zu] — VFe) = —Ap [A’z @2 — 2 ® A’z], (5.4.8)

where the Lagrangian discriminant Ap is given by

2[(TL + I)Fg + 2T2F55|A9|2 + 2T2st][F§ + T2F§§|A9|2] + ’I"F{Frg

A =
F 12(Fy + 2r2Fee|AG]?)

(5.4.9)
Thus if the discriminant Ap is nowhere zero in X" then curl (L[u] — VFe) =0
in X" iff =A% = a(r)1,, for some non-negative a € €*]a, b|N€[a,b)].
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Proof. Referring to the formulation (5.4.6]), we proceed by calculating the curl
of the ¢! vector field v := Z[u] — VFy, specifically,

v = Fe(|z|,|z|?, n+|Az|?) A%z — Fs(||, |z|?, n+ |Ax|*)z, x € X", (5.4.10)

Setting F = A% and noting [curlv];; = v; ; — vj; for 1 <4, < n we have from
(5.4.10)

Vi5 = erFg[FQ]Z + ng[FH]ZQJ + FgF” - ’I"Vstei - stsij (5411)
where V; = 0/0x;, Fs = Fy(r,r*,n—r*(F0,0)) and F¢ = F¢(r,r?,n—r2(F0,0))
since |Af|? = —(F0,0) and in a similar way

Vji = ’I"VZFE[FQ]] + TF&[FHL@Z + FgFJZ - ’I"VZ'FSGJ' - Fs(ssz (5412)

Now recalling that F = A2 = —Q'Q is a symmetric matrix field (A = Q'Q is
skew-symmetric) it follows from (5.4.11))-(5.4.12)) after taking into account the

appropriate cancellations and changing to tensor notation that
Fe /. .
curlv =Fzx ® VI — VF @ Fo + = (Fm@x—x@Fx)
r
+VF,®z—x®VF;. (5.4.13)

By using it is seen that the gradient terms above are given respectively
by
VF =VFe(r,r*,n —1*(F0,0)) = F¢(r,r*,n — r*(F0,0))0
+ 2rFye(r, 7%, n — r*(F0,0))0
— Fee(r, 72, n — r2(F6, 0))[2rF + 72(F0, 0)1,,]0

and similarly

VFE, =VF(r,r*,n—r*F0,0)) = F.s(r,r*,n —r*(F0,0))0
+ 2rFys(r, 7%, n — r2(F0,0))0
— Fye(r,7*,n — r*(F0,0))[2rF + r2(F0,0)1,,)0.
Therefore the contribution of these two gradients in (5.4.13)) is respectively given
by

Fr @ VF; —VF @Fx =[r 'Fy¢ +2Fy — rFee(F0,0)|(Fr @ x — 2 ® Fa)
— 2F¢[Fz @ Fr — Fz ® Fz (5.4.14)
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and likewise

VF,x —x Q@ VF, = [rilFm + 2Fgs — TFS§<F9, NHrzzr—2z )
—2F(Fr®z — 2z ®Fzx), (5.4.15)

by virtue of the trivial calculations. Therefore by substituting the simplified

expressions ((5.4.14) and (5.4.15)) back into (5.4.13) this gives

curlv = (r'Fe — rFee(FO,0)[Fr @ x — 2 @ Fa] + r ' Fe[Fr @z — 2 © Fa).
(5.4.16)

Now since the ODE ([5.4.5|) is assumed to hold, upon noting that F=AA+AA
a rearrangement of the equation A [LHS(5.4.5)]+ [LHS(5.4.5)]A = 0 for F yields
the identity

. n+1 8T(F5)
F=-2 F 4.1
{ . + Fe , (5.4.17)
where we have written
d
O0p(F¢) = Frg + 2rFye — F&%(vﬂ(FG, 0)). (5.4.18)

Substituting F into (5.4.16) gives us curlv = —Ap [Fz ® 2 — # ® Fz] where

2 1 O.(F,
[Wr N (Fe)

Ap:=—
F T r F§

} (Fe — r*Fee(F0,0)) — % e (5.4.19)

We now aim at simplifying A by expanding the expression 0, (F¢) in (5.4.18]).
Towards this end we first note that d/dr(r2(F0, 8)) = 2r(F0,0)+r(¥6, ). Thus
substituting in F as per (5.4.17)) gives

&2 (w0,0) =2 [r(F@, o) 2 ("j Ly ag@) <F9,0>}
— [n + r&‘}(ff)} (F0,0). (5.4.20)
3

Now recalling that —(F6,6) = |A6|2, upon substituting the above into (5.4.18)),

we have
- (F,
ar(Fg) = Frg + QTFsg — QTF& [n + 7’61(_75)] ‘A9|2, (5.4.21)
3

or upon rearranging

Fg[Frg + 27’FS§ - 2rnF§§|A9\2]

- (Fe) =
O (Fe) Fe + 2r2Fe¢|A6]?

(5.4.22)
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Substituting this into followed by some basic manipulations yields
. For the final remark, note that if Ag is nowhere zero in X" then
curlv = 0 iff A2z ®@  — 2 ® A%z = 0 and an application of Lemma m gives
A? = —al,, for some non-negative o as in the statement of the theorem upon

observing that A2 is nonpositive-definite. O

5.5 Examples of Vanishing vs. Non-Vanishing

Discriminants Apg

The purpose of this short section is to study the Lagrangian discriminant A g as
given by in some enlightening cases, for different families of Lagrangians
F', and to verify the remarkable fact that in many cases of interest the vanishing
or non-vanishing of this discriminant is more a structural property associated
with the Lagrangian than the assumed twist path solution to along which
Ap is being considered. This considerably simplifies the verification of the
assumption in Theorem [5.4.2) regarding the behaviour of A and facilitates the
discussion of solvability of the PDE Z[u] = V& and the system for
twists.

Towards this end, recall that F = F(r, s, £) is a Lagrangian of class ¢’ that
is convex and monotone increasing in the third variable, specifically, Fr > 0 and
Fee > 0.

o F(r,s,&) = F(§): In this case the mixed partial derivatives Fy.¢, Fg¢ vanish
completely and therefore

n 4 1)Fe 4 2r° Fee|[AG|?][Fe + 1° Fee| A6
7”2(F§ +2T2F§§|A9‘2) ’

Ap = 2[( (5.5.1)

It is clear, thanks to the assumptions F; > 0, F¢e > 0 on the Lagrangian F
that the above discriminant is always strictly positive, that is, Arp > 0 in
X" and so without any further assumption we have curl (Z[u] —VF¢) =0
in X" iff A20®6 — 0 ® A%0 = 0 or iff —A? = al,, (see also the comments
following Theorem [5.6.2)).

o F(r,s,&) = G(&) + H(r,s): Here, despite the explicit (r, s) dependence in

the Lagrangian, the mixed derivatives Fj.¢, Fg¢ vanish completely again
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and a straightforward calculation gives

2[(71 + 1)G§ + 27‘2G§§‘A9|2][G5 + T’2G§§|A9|2]
Ap = 3 5 3 . (5.5.2)
r (Gg—l—??“ G§§|A9‘ )

The Lagrangian discriminant here is exactly the same as (5.5.1)) and so
the implication of the irrotationality of .Z[u] — VF¢ on the twist path
Q is the same. Thus the overall conclusion is unchanged by this type of

dependence on (r, s).

o F(r,s,&) = F(r,§) vs. F(r,s,§) = F(s,£): Let us now consider cases
where the Lagrangian F has a “joint” (r,s) and £ dependence. Assuming
first that F' = F(r,§), i.e., no s-dependence, then (5.4.9) becomes

2[(TL + 1)F§ + 2T2F§§|A9|2HFE + T‘2FE£|A9|2] + TFgFTg

A =
F 12(F + 2r2Fec| AG]?)

(5.5.3)

Likewise assuming F(r,s,&) = F(s,&), i.e., no r-dependence, then Ap

becomes

A — 2[(Tl + 1)F§ + 27"2F£§|A9‘2 + 27’2FS£] [Fg + 7‘2F5§|A9‘2] (5 5 4)
B 12(F + 2r2Fee|AG]?) B

In both these cases it is seen that, despite the presence of positive terms,
the effect of the mixed derivative terms Fj.¢ or Fi¢ can — and in general will
— result in the discriminant changing sign or even vanishing completely.
Thus unlike the first two set of examples, in neither of the cases above, can
it be deduced that the Lagrangian discriminant Ay is nowhere zero. As a
matter of fact, to complement the previous examples, here, one can give

examples of Lagrangians F, where Ap = 0 in X" (see below in particular

(5.5.5))-(5.5.6) and the comments following Theorem [5.6.2)).

o F(r,s,&) = h(r,s)¢ with h > OE In this case we have F¢ = h(r,s) with
Fr¢ = hy(r,s), Fse = hs(r,s) and Fee = 0. As a result here Ap becomes

_2(n+ D)h2(r,r2) + 472h(r,72)hs(r, %) + rh(r,7?)h,.(r,7?)
h r2h(r,r?)
2(n + 1)h(r,72) + rh.(r,r?) + 4r2hg(r,72)

= 5 . (5.5.5)

Arp

In particular if h is such that rh,.(r, %) +4r2hg(r,72) +2(n+1)h(r,7?) = 0,

then Arp =0 in X". This has the interesting consequence that for such h

10See Section for more on these weighted Dirichlet type Lagrangians.
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we can have curl (Zp[u]—VF¢) = 0in X" along a twist u = rQ(r)0 with Q
a solution to without Q necessarily having to satisfy QtQ = a(r)I,
(compare with Theorem [5.3.1)). Thus unlike the case where F' = F(£) [c.f.
(5.5.1))] if the Lagrangian F" has a “joint” (r,s) and £ dependence then Ap

need not be everywhere nonzero in X".

To elaborate further on this last point and example consider specifically the
choice h(r,s) = r~*s=# for a, B real constants (note that with 0 < a <7 <b
and s > 0 this function h is of class 42 and strictly positive over [a, b]x]0, 0o]).
Then rh,(r,r?) + 4r2hg(r,7?) + 2(n + 1)h(r,7?) = 0 iff f(a, 8) = 0 where

fla,B):==a+4B-2(n+1), (a,B)cR> (5.5.6)
% B
2n—i—2I -

Figure 2: The line f(a, 8) = 0 in the («, 8)-plane with f defined by (5.5.6).

By linearity of the condition on h above, if we take any finite sequence of
constants cq,...,cy > 0 as well as ay,...,an,B1,..., 08y in R then h = h(r, s)

obtained as the finite sum

N
h(r,s) = Z cjr s (5.5.7)

j=1
still satisfies the condition rh,.(r,72)+4r2hs(r,r?)+2(n+1)h(r,r?) = 0 on [a, b]
provided that f(o;,5;) = a; +45; —2(n+1) =0 for each 1 < j < N. Of course
the class of h > 0 satisfying rh,.(r,7%) + 4r2hs(r,r?) + 2(n + 1)h(r,r?) = 0 is

much broader.

Motivated by Theorem if we take the twist path Q(r) = exp{¥(r)H}

with & € ¢?[a, b] and H a constant n x n skew-symmetric matrix then, assuming
that the ODE

d . .
o [7’”+1Ff(r, 2 n+ r2g2|H9\2)§4 =0 (5.5.8)

87



A Lagrangian Discriminant on Critical Loops Associated with curl £[u] = 0

holds, by Theorem [5.4.2| we recover the discriminant
2[(n + 1) Fe + 27292 Fee|[HO|? + 212 Foe|[Fe + 1292 Fee|[HO)?) + rFe Fre

Ap = .
r2(Fy + 2292 Fee|HO|?)

(5.5.9)
It is possible to simplify the expression of Ap significantly, but first it is con-

venient to note that, with A = ¢H, the curl of the corresponding vector field
g[u]_VFf iS, by 7
curl (Lfu = rexp{4(r)H}0] — VF;) = -4*Ap[H?z @ © — 2 @ H2z]. (5.5.10)

We proceed with calculating 42Ap and towards this end we first observe that
by multiplying (5.5.8)) by a factor of r’"gFg we have the identity

19 FeFye = —{(n + )G F2 + 2r°G* Fe Fye + 2r°G°G Fe Fee|[HO)?
+ 212G Fe Fee|[HO)? + rzés/”"Fg}. (5.5.11)
Now considering the numerator .# of 92Ar with Ap as in (5.5.9), upon
using (5.5.11]), we can write
g = 2?2 [(n + 1)F§ + 2T2g2F§§|H9‘2 + 2T‘2FS§:|
X |:F§ + ngngg‘H9|2:| + TféZF&FTE
=(n+ 1D)G’F2 +2r*(n+ 1)9* Fe Fee[HO® + 2r°G* Fe Fee |[HO|?
+ 4r*GOFZHO|* + 2r°G? Fe Fy¢ + 4r*G* Foe Fee[HO|?
— 2r%G3G Fe Fee|[HO|? — r99G F?
= [0+ DS Fe + 229 Fo + 2r°9 Fee|HOP — 199 F |
x [Fé + 2292 Fee[HO2| . (5.5.12)
Hence returning to the discriminant Ag as expressed by (5.5.9) and with the
numerator . of ¥2A r as calculated above we have
G Ap = = [(n + )G Fe + 2r°G*Foe + 2r°9 " Fee[HO? — rggFg] . (5.5.13)
A further application of the ODE ([5.5.8)) now leads to the following statement.
Proposition 5.5.1. Assume the twist path Q(r) = exp{¥(r)H} with ¥ €
€?[a,b] and H skew-symmetric satisfies (5.5.8). Then the Lagrangian discrim-

mant Agp along Q admits the formulation

1 .. .
Ap=— [2(71 +1)F + 1 Fpe + 4r2Fye + 279 (29 + rg)F55IH9|2] - (5.5.14)

r2
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As a direct application of the above consider again F(r, s,£) = h(r, s)¢. Then
substitution in (5.5.14) gives Ar = [2(n+1)h(r,r?)+7rh,.(r,r?)+4r2hg(r,72)] /12
in full agreement with (5.5.5)).

5.6 The Nonlinear System (5.1.4) and the Infi-
nite Twist Solutions to the PDE Z[u] = V&

Having discussed the three families of ODEs (5.1.9)-(5.1.11)), their solvability
for twist paths Q = Q(r) and their relationships to one-another, in this final

section of the chapter we return to the nonlinear system

L) =VZ inX",
detVu=1 in X", (5.6.1)

U=z on 0X",
with
Lu] = (V) {div[Fe(|z], [ul?, [Vu|*)Vu] = Fo(|z], [u?, [Vu[*)u}  (5.6.2)

and address questions of existence and multiplicity of twist solutions u = rQ(r)8
to the system. Recall that here the starting assumption is that the twist path
Q = Q(r) is asolution to (5.1.11]). Asaresult the differential action .#[u] admits
the formulation in Proposition and the curl of the vector field Z[u] — VF¢
factorises into a product entailing the Lagrangian discriminant Ag as in
and the tensor field [Q'Qz ® 2 — 2 ® Q'Qx] for z € X" (¢.f. Theorem for
details). The next theorem describes the implications of the PDE on the twist

path disregarding any boundary conditions.

Theorem 5.6.1. Let u = rQ(r)6 with Q € €*(Ja,b[,SO(n))NE ([a,b],SO(n)).
Assume that Q satisfies the ODE (5.1.11)) and that the Lagrangian discriminant

Ap is nowhere zero in X"™. Then the following are equivalent:
(1) Lu=VZ inX",
(1) curl (L[u] — VFe) =0 in X7,

(#i7) QiQ = a(r)I, for some non-negative o € €*)a, b[N€a,b],
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Furthermore under any of these assumptions V2 in (i) takes the specific form
VP =VFe(|zl, [o]?,n + [a]*a(|2])) = Fe(la], |2, n + |2 2a(|z])o(|2])z
= Fy([al, |22, n + |2 *a(|z])) (5.6.3)
Proof. If Q satisfies (5.1.11)) and Ap is nowhere zero in X" then the implication
(it) = (4i7) follows from Theorem Substituting (#¢¢) into the vector field
v as given by (5.4.10) yields (recall that Q'Q = —A? for A = Q'Q):

v(z) = =Fe(Ja], |2, nt|zPa(lz))al|a))a—F(|o], 2], nt|zfa(|z])z. (5.6.4)
Now let ® = ®(r) be a primitive for f(r) := —r[Fea + F], that is, &’ = f.
Then v = V®(|z|) and so Z[u] = VF:+v = V& with V& as per (5.6.3). This
justifies (i49) = (¢). Next assume (¢). Then referring to (5.4.6)), v = Z[u] -V F¢

is a ¢! gradient field in X" and so as a result its curl vanishes. This gives (i1). O

Theorem 5.6.2. Let u = rQ(r)0 where Q € €*(Ja,b[,SO(n))N%E " ([a,b], SO(n))
and Q(a) = Q(b) =1,,. Assume that Q satisfies the ODE (5.1.11) and that Ap

is nowhere zero in X". Then the following are equivalent:
(1) u is a solution to the system (5.6.1)-(5.6.2).
(i1) Depending on n being even or odd Q has the representation:

o n even: There exists P € O(n) and m € Z such that
Q = Q(r;m) = Pdiag(R[¥)(r;m), ..., R[¥4](r;m))P?,

where 4 = 94 (r;m) € 62[a,b] is the unique solution to the two point
boundary value problem (5.2.26)) and R is as defined by (|5.2.21]).

e nodd: Q=1, on [a,b] and hence u = x.

Proof. In view of the twist path Q = Q(r) being a solution to the ODE (/5.1.11])
and Ap being nowhere zero in X" from Theorem we have:

L =VZ = curl(ZLu] —VF:) =0
= Q'QIeI-02Q'QI=0
— Q'Q = a(r)I,.

The equivalence (i) <= (i¢) now follows from Theorem upon noting that
by the last identity |Q€|2 is independent of 8. The proof is thus complete. [
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Let us finish the chapter by presenting two examples depicting contrasting
behaviour of the discriminant and the implication it bears on the associated
twist solutions to the system .

Firstly, assume F(r,s,£) = F(§). Then by , Ar is strictly positive and
hence nowhere zero in X". If Q € €?(]a,b[, SO(n))N%€"([a,b], SO(n)) satisfying
Q(a) = Q(b) =1, is a solution to the ODE then the associated twist
u = rQ(r)f is a solution to the system iff Q is as described in part (%)
of Theorem [5.6.2] that is, Q = I, for n odd or Q is a geodesic loop of the
form Q(r) = Pexp{¥(r)diag(J,...,J)}P! with ¢ a solution to and
P € O(n) for n even. By the same conclusion holds for Lagrangians of
the form F(r,s,§) = F(§) + G(r, s).

In sharp contrast consider next F(r, s,£) = h(r, s)§ as in Section Then as
seen r2Ap = 2(n+1)h(r,r?)+4r2hy(r,r?)+rh.(r,r?) fora < r <b[cf. (5.5.5)].
By Theoremany solution to the ODE (5.1.11]) satisfying Q(a) = Q(b) =1,
has the form Q(r) = exp{s(r)H} with J as in and H as in (5.3.4)). For
the system with Zp[u] = (Vu){div[h(|z], |u]?)Vu]—hs(|2|, |u]?) | Vu|?u},

however, we have the followingﬂ

o If 2(n + 1)h(r,r?) + 4r2hg(r,r?) + rh.(r,7?) % 0 over [a,b]: Every twist
solution to (5.1.4)) of class €2 has the form u = rexp{s#(r)H}0 with H
given by

2mrPdiag(J,...,J)P" n =2k,

H= (5.6.5)
0 n =2k — 1.

o If 2(n + 1)h(r,r?) + 4r2hy(r,r?) + rh.(r,7?) = 0 over [a,b]: Every twist
solution to (5.1.4) of class 42 has the form u = rexp{#(r)H}0 with
Pdiag(2m,nJ, ..., 2mnJ)P* n = 2k,
H= (5.6.6)
Pdiag(2mind, ..., 2my_17d, 2mpm)Pt  n =2k — 1.
Here P € O(n), J is as in (5.2.21)) and mq,...,my € Z are arbitrary with

only my = 0 in odd dimensions.

HFor details and more see Chapter
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Chapter 6

Whirl Maps as Solutions to
ZLu;ABl =VZ in Low

Dimensions

In this chapter we study a non-variational, nonlinear and in divergence form
PDE

divA(la], [ul%, [Vul*)Va] + B(jal, [uf?, [Vul?)u = [cof Vu]V.2

where the solution u : £ — R" is subject to suitable boundary conditions as well
as the incompressibility constraint det Vu = 1 almost everywhere in Q@ C R™.
Here 2 C R™ is a bounded domain and A = A(r,s,€£) and B = B(r,s,&) are
continuous scalar-valued functions satisfying suitable growth at infinity. We
solve this specifically for whirl maps u(x) = Q(0)z where Q is an SO(n)-valued
map taking values in the maximal torus of block-diagonal rotation matrices and
0 = (p1,...,pN) a suitable vector of two-plane radial variables. We focus on
low spatial dimensions n = 2,3,4 by implementing a polar coordinate system
to re-frame the analysis in a novel way. We study in particular the case when
the function A(r, s,£) = h(r, s) shows no dependence on the third variable and
throughout the text consider the notion of a discriminant A(A, B) which has a

significant influence on the solution set of the PDE above.
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6.1 Preliminaries and Motivation

This chapter is concerned with the solvability of the nonlinear and non-variational

elliptic system

div[A(|z], |ul?, |Vu|?)Vu] + B(|z], |[ul?, |Vu|?)u = [cof VU]V in Q,

detVu =1 in Q,
U= on 01,
(6.1.1)

where Q C R” is a bounded domain with a sufficiently smooth boundary 92 and
P = H(x) is a priori unknown. The real-valued functions A = A(r, s,£) and
B = B(r, s,£) are, respectively, of class €1 and €° with A being strictly positive
and monotone increasing in the third variable. We consider the admissible class

of solutions

AP Q) = {ue WhP(Q,R™) : det Vu = 1,ulpq = ¢}, p>1. (6.1.2)

These therefore are the incompressible p-Sobolev maps and A(|z|, |u|?, [Vu|?)Vu
defines a matrix field upon which the divergence in the first line of
acts row-wise. The boundary data is interpreted in the sense of traces and for
simplicity we take throughout the chapter ¢ = = to be the identity. We impose
the pointwise incompressibility constraint detVu = 1 a.e. in £ which leads to
the algebraic identity [cof Vu]~! = (Vu)!. This being so the PDE governing
(6.1.1) will be written as Z[u; A, B] = V@H where

Llu; A, B] := (V) {div[A(|z], [ul?, |Vul|*)Vu] + B(|z|, [ul?, |[Vu[*)u} . (6.1.3)

We can pose the system in a variational setting where A(r, s,&) = Fe(r, s,§),
B(r,s,&) = —Fy(r,s,€) for F = F(r,s,£) a Lagrangian of class ¢ where Fy, F¢
denote its derivatives in the second and third arguments respectively. This being
so the system arises as the Euler-Lagrange equation associated with the
energy functional

Flu; Q] = / Flal, [ul, | Vul?) d (6.1.4)
Q

over the admissible space of incompressible p-Sobolev maps Jz{f (Q). In this case
the unknown & appearing in (6.1.1)) enters the system as a Lagrange multiplier.

120ne can immediately see that the identity map u = z is a solution of the above, indeed
by substitution we see that Z[u = x;A,B] = VA(|z|, |z|?,n) + B(r,r%,n)x = V& for & =
A(|zl|, |z|?,n) + G(|z|) such that VG (|z|) = B(r,r2,n)x.
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Such an exposition has its roots in the theory of nonlinear elasticity, wherein the
map u plays the role of a volume-preserving deformation of a bounded domain
Q C R™ In this setting the Lagrange multiplier &2 describes a hydrostatic
pressure field. Despite this construction we emphasise that in this chapter we
do not assume that the system arises from the variational energy
and that the assumptions to be imposed on the functions A(r, s, &) and B(r, s, &)
will be enough to facilitate a detailed analysis in a more general setting.

Let us now describe the geometric setup in this chapter. We will seek solu-
tions of exhibiting certain symmetries and as such we first restrict the
spatial variable z to the n-dimensional generalised annulus X" = X"[a,b] C R"™
defined by X" := {z € R" : a < z < b} with 0 < a < b < co. Regarding the
assumptions on the functions A and B we have A = A(r,s,&) € €1 (U), B =
B(r,s,&) € €(U) where U = U(X"[a, b]) =]a, b[x]0, 0o[x]0, 0o[C R3. For every
compact set K CJ0, 00 there exist positive constants ¢; = ¢1(K), ca = c2(K)

such that
alClPt <Al s, )¢ < el¢PTH V(rs 6 eUise K, p> 1.

We assume that the function A is strictly positive and monotone increasing in
the third variable, that is A¢(r,s,§) > 0 for all (r,s,&) € U.

In terms of admissible solutions to the system we consider exclusively
whirl maps u € €%(X",X"). These are continuous self-maps over the closure of
X" given by

u(z) = Qlp1,...,pN)2. (6.1.5)

Here the vector of 2-planar radial variables o = (p1,...,pn) is described, de-

pending on whether the underlying spatial dimension n is even or odd, as follows.

e If the dimension n = 2d is even then we set N = d and for each 1 < j < d
we define Cj = (QSQj_l,J?Q]’). Then pj = HCJ” and z € X" <= 0 € An
where

A, ={0€eR% :a < o] <b}. (6.1.6)

o If n =2d+1is odd then set N = d+ 1. The variables pq, ..., pg are given
by p; = ||(]| and we set pg1 := z,. Then z € X" <= p € A, where,

similarly to the above,
A, ={0€R% xR:a< || <b}. (6.1.7)
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For illustrative purposes we describe the setting in dimensions n = 3 and
n = 4 here; in the former case the vector g is described by ¢ = (p,z) with
p = (23 +23)"/2, 2z = 3. Similarly When n = 4 we have o = (p1, p2) with
p1 = (&3 + 23)Y2, py = (23 + x3)"/2. The semi-annular region A,, defined in

odd and even dimensions above admits the boundary
0A, := (0A,)q U (0A,)p UT,, (6.1.8)

where (0A,,), = {0 € A, : |lg|| = a} and similarly (0A,,), = {0 € 0A,, : ||o|]| =
b}. Ty, is a disconnected set simply defined as I',, = 0A, \ {(0A,)q U (OA,)p}.

The map Q takes values in the compact Lie group of rotation matrices SO(n)
and given the assumed boundary data uw = z we will impose the condition
Qo) =1, for p € (0A))q U (0A,)p and where I,, is the n x n identity matrix.
As such Q manifests a closed loop in SO(n) with initial and terminal point
at I,,. By considering symmetries it is necessary to assume that the matrix
map Q takes values in the maximal torus T of SO(n) consisting of 2 x 2 block-
diagonal rotation matrices and we specifically consider loops of the form Q(g) =

exp{H(o)}, where H : A,, — s0(n) is given by

i )_{ diag(f13,..., f23) n=2d,

= (6.1.9)
diag(f1J,..., faJ,0) n=2d+ 1.

Here the matrix J describes a counterclockwise rotation by an angle of 7/2 as
per and the functions f, € €(A,) for all 1 < ¢ < d satisfy f = 0 on
(0A)q and fy = 2mym on (OA,,), for my € Z. We see that the matrix H takes
values in so(n), which is the space of n x n skew-symmetric matrices and the Lie
algebra associated to the Lie group SO(n). As such, in the definition Q(p) =
exp{H(o)}, exp denotes the matrix exponential which serves as the canonical
exponential map from so(n) to SO(n). Any necessary preliminaries on the
theory of Lie groups and associated matters can be found in [27] [35] [45] [47), [73]
and references therein.

To avoid confusion throughout this chapter we will denote any calculus oper-
ations undertaken with respect to the o variables with a subscript A, for example
divy = Zjvzl 0y, If subscripts are ever omitted it should be clear from context
that we are working with respect to the x variables, as for example in the state-
ment of the main Euler-Lagrange system in . At times, however we will
employ the subscript X when operating with respect to the variables x1,..., 2,

to avoid ambiguity.
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Part of our strategy will be to consider the following boundary value problem
associated to the angle of rotation functions f = (fi,..., f4) where, for each
1 < /¢ <d, we have

diva [A (lloll llol,n + iy p2IVafel?) phwlosd)Vafe] =0 in An,

f=0 on (0A,)a,

f=2mn on (0A,),

A(llell llol2,n + Sy o319 fel? ) pieo(es ), fo = 0 on T,
(6.1.10)

Here m = (my,...,mq) € Z%, w(o;d) = p1 ... pq as defined in and 0, is
the outward-pointing unit normal on the flat part of the boundary, I';,. This
restricted system arises naturally in a variational context as an Euler-Lagrange
equation of its own and is derived in the following section. We consider this
system to be of independent interest but the role it plays in the chapter will
be crucial. Its unique solution f = (f1,...,fs) will be substituted into the
description of a whirl map as in and it is for such whirls that we aim to
solve the full system .

In Section [6.3] we conduct a full analysis of this and the resulting system
when n = 3,4. Here N = 2, so by introducing polar coordinates (r,6)
where a < r < b and the range of 6 depends on the underlying dimension n we
solve the Euler-Lagrange equation above as well as the full system in a

novel way. Solutions here depend acutely on a discriminant term A(A, B) [see

the explicit examples ((6.3.18]) and (6.3.40)] extracted upon studying the irrota-
tionality of the vector field Z[u; A, B| E By way of motivating the introduction
of this discriminant we see in Theorem that when A(A,B) # 0 over A,
the only solution of Z[u; A, B] = V. when the dimension n = 3 is the identity
map u = x, whereas if A(A,B) = 0 there is, in great contrast, an infinitude of
admissible solutions to this PDE.

Section [6.4] then considers a particular variant of the system where

13Recall that all gradient fields are necessarily curl-free, so if a whirl map u should act as a
solution to the PDE (6.1.3)) we see that curl Z[u; A, B] = curlVZ = 0.
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A(r,s,€) = h(r,s) for some 0 < h € €?([a,b] x R). That is we consider

(V) {div[h(|z], [u|*)Va] + B(|z], [uf*,|[Vu*)u} = VP inQ,
detVu =1 in Q, (6.1.11)
U= on 01,

In this particular setting it can be seen that the picture simplifies and we are
able to classify explicitly all solutions u to the PDE Z[u; A,B] = V& in all
spatial dimensions n > 2. Here too, when searching for solutions of the full PDE
we work with a discriminant term A(A, B) depending on the functions A and
B and their derivatives as well as the underlying spatial dimension n. In this

n-dimensional context and with A(r, s,£) = h(r, s) this admits the description

e T

A(h, B) i 201

r2

h(r,r?) + %hr(r, 1) 4 2[hy (1, 12) = Be(r, 1%, n + A2 [Ha ).

(6.1.12)
This system is a generalisation of that considered in Section for generalised
twist maps u(z) = Q(|z|)z where B(r,s,£) = g(r,s)§ and also acts as a non-
variational analogy to the weighted Dirichlet setting considered widely through-
out the text and principally in Chapter [3]

6.2 The Variational System BVP|[f; % m]

This section is devoted to the derivation of the system given in by
variational methods and a brief study of its solution and impact on the PDE
Zlu;A,B] = V& when the spatial dimension n = 2. We begin by introduc-
ing some notational conventions used here and throughout the chapter. We
consider the vector of functions f = (fi,...,fq) appearing in taken
from the admissible space %2 (A,,) := {f = (f1,..., fa) € WHP(A,,R?) : f =
0 on (0A,)a, f = 2mm on (9A,)p, p > 1} for m € Z¢. Moreover we will employ

the abbreviated notation w(g;d) to symbolise

d
w(o;d) =w(p1,...,pa;d) = I_ij7 (6.2.1)
Jj=1
with w(e;d) > 0 in A, [7]
14Note that the dimension n = 2d is even w(g; d) features all components p1, ..., pn of the
vector o, whereas when n = 2d + 1 is odd, w(g;d) only accounts for p1,...,pN_1.
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To motivate ideas here we may think of the scalar-valued function A(r, s, &)
appearing in (6.1.1) as a derivative of some Lagrangian E = E(r,s,{) in the

third variable, in the sense that
€
E(r,s,ﬁ):/ A(r,s,¢) d¢, a<r<b, s>0, >0, (6.2.2)
0

so that E¢(r,s,&) = A(r,s,§). If E is the Lagrangian of some energy functional

as in

d
E[f; An] == / E <||g||7||@|27n+2p?|vml2> w(o; d) do, (6.2.3)
=1

n

then the following result holds.

Theorem 6.2.1. Consider the variational energy functional E[f;A,] where
Fe(r,s,6) = A(r,s,8) as in (6.2.2). Then the Euler-Lagrange equation asso-
ciated to E[f; A,] over the admissible space

B(hn;m) = | ] BL(An), (6.2.4)

mezad

is the system

divaZ (0,Vaf) =0 in A,
f=0 on (0A)a,
f=2mn on (0A)p,
U (0, Vaf)r=0 onT,,

BVP[f; % ,m] = (6.2.5)

where % is the d x N-dimensional matrixz field with row components %y given
by
d
Ue(0,Vuf) :=A (IIQII, llol?, 7 + Zﬂ?VAfAQ) piw(e;d)Vafe.  (6.2.6)

=1

Here the divergence in the first line acts row-wise whilst in the Neumann
boundary condition v is the outward-pointing unit normal vector to I',,. Re-
garding the arguments of A(r,s, &) = A(|z|,|ul?,|Vul?) in we see that
|z| = |lo|| and |u| = |Qxz| = |z| = ||o||. For the third argument we use the de-
scription of [Vu|? for u = Q(p)z as appearing in Proposition We remark
that the uniqueness of any solution f € €2(A,,,R?) to the system BVP[f; %, m]
is established in Proposition
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We can now explicitly describe solutions to the system (6.2.5))-(6.2.6) when
the spatial dimension n is even and the vector m admits equal entries, that is,

my = -+ = mg =: m for m € Z. In this case we see that for each 1 < ¢ < d
the angle of rotation function f, satisfies fy(a) = 0, fo(b) = 2mm, thus we have
equality of boundary conditions for the functions fi,... f4 which is not a priori

assumed in general.

Theorem 6.2.2. For n = 2d even consider the system ([6.2.5)-(6.2.6) with
my =---=mgqg=:m € Z. This admits the solution f(o;m) = (f1,..., fa) where
for each 1 < £ < d we have fo = fi(0;me) = 9(||o|l;m) such that 4 € €?|a,b]

solves the two-point boundary value problem

4 [r”‘HA(n r2n+ r2€4.2)gq =0, a<r<hb,
.
Y(a) =

0 (6.2.7)
4(b) = 2mm.

We note that the existence and uniqueness of solutions to (6.2.7) with the
required %2-regularity is established in Proposition

Proof. We begin by verifying the divergence-free statement in the first line of

(6.2.5) and, taking fo(0;ma) = 4(||0]l;m) = 4 (r;m) for any 1 < a,i < d we
have

0 e 5 Pi d d N >
a];» =G = SRV = Y = 2 (6.2.8)
v /=1 =1

This being so we must compute the divergence (for all 1 < a < d)

d
divy % (0, Vaf) = divy lA (T, %+ ZP?VAfeF) prw(o; d)vAfa]

£=1

d
_ 9 2 22\ PP .
= ; o, {A(r,r ,n+r9)Y . w(o;d)] . (6.2.9)

Upon abbreviating the arguments of A = A(r,r%,n + r2§?2) and an application

99



Whirl Maps as Solutions to £[u; A,B] = V& in Low Dimensions

of the product rule (6.2.9) becomes

O [aipilt 1 K [aglit 503 Do
Zap {Afﬁrw(g,d) =Y |AY rwled) +AYS

=1 i=1

w(o;d)

. 02 p? . 0?2
— A%%w(g; d) + Ag%‘w(g; d)

o d
5 PiPa 5 PiPo
oAG LY 5. w(o:d) + AGLLTT p,
+ = diaw(o;d) + AY = ]Hlpg}

N

2 . . .. .
- %w(g; d){rA% +rAG + (2d + 1)Ag}

p2 d o
= aw(ed) o [T"“A(r, r2,n+r2%2)%} : (6.2.10)

This being so, under the assumption that ¢ solves the ODE governing (6.2.7)

we see that

divy

d

A(r’ rfon+ ZK’?WAJ%Q) paw(o; d)vAfa:| =0,
=1

verifying the divergence-free statement. Regarding the boundary conditions, if

9 is a solution of (6.2.7)) as claimed then ¢ (a;m) =0, 4(b;m) =2mm so f =0

on (0A,), and f = 2mmx on (9A,), as required. O

We close the section with an explicit solution of the system BVP|[f; %, m]
when n = 2. In this case there is a single angle of rotation function f which

1/2 _

depends on ¢ = (2% + z3) r. As such the PDE governing the system

becomes an ODE in r, which leads to the boundary value problem

% [r?’A(r, 2,2+ 7“2f2)f'} =0, a<r<b,
A (6.2.11)

f(b) = 2mm.
We know from the previous theorem that this admits a unique solution f €

©*[a,b]. In this context we illustrate how the PDE Z[u; A, B] = V& simplifies
upon the assumption that f solves (6.2.11]). First, given (6.1.9), we have the

description of a whirl map v = Quz as u(x) = (x1cos f — zgsin f,zysin f +

zycos f). Tt is computed that Vu = Q + f/r[—(z1 sin f + x5 cos f), x1 cos f —
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Ty sin f] ® o, from which we have, writing A = A(r, 72,2 + 7”2]52)7

x1cos f — xosin f 1

div[AVu] = [1A - f2A]
r x1sin f + x5 cos f

- . . x1sin f + xo cos f
- [fA + (f + S/Tf) A} [ —xq1cos f + xosin f ] ’ (6.212)
where
A= d%A(r, 2,2 412 f2) = A, + 2rA + 2(r 2 + 12 f A, (6.2.13)

with A,, As, A¢ denoting the derivatives of A = A(r,s,&) in the first, second
and third variables respectively. From this it follows that
ZL[u; A, B] = (V) {div[A(r, 72,2 + r2 f2)Vu] 4+ B(r, 72,2 + 12 f2)u}
=VA(|z|, |z%,2 + |22 f?) + B(r, 72,2 + 2 f*)x
+ [TAF FAGFT+ 2f2)} ot [Af+ A(f'+3/7~f)} vt (6.2.14)
Here we use the notation z = (71,22) and - = (—zg,7;) for the vector or-

thogonal to z. We can now introduce the ODE in (6.2.11) and hence rewrite

the above as

Z[u; A,B] = VA(lzl, 2>, 2 + [«|*f*) + B(r, 1%, 2 + 12 f*)z

fdrs 2 2 42\ £l . f2 2 2 42
+72${7'A(r7r72+rf)f}x FEA(r re 24 7 f2)x
ii 3 2 2 42\ 4| L
T a3 [7“ A(W’v?ﬂf)f}x . (6.2.15)

As such, if we assume that the function f is a solution of ((6.2.11]) then the above
reduces to
ZLu; A, B] =VA(|z|, |z|, 2 + |22 f?)
+ B, 242 e — [PA(r 12,24+ 12 %) (6.216)
and as such is a gradient field. That is Z[u;A,B] = V& with & = A+ G
such that VG = r[B — f2A]f. We conclude that for any solution f to (6.2.11)
the PDE Zfu;A,B] = V& holds, and in particular we have infinitely many

solutions indexed by the integers of the form

u(z;m) = [ cosf —sinf 1 l o ] (6.2.17)

sin f cosf T

where, for each m € Z, f = f(r;m) is a solution of the system (6.2.11]).
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6.3 Derivation of the Vector Field Z[u; A, B| in

Three and Four Dimensions

Following on from the discussion for n = 2, here we formulate explicitly the
vector field Z[u; A, B] and classify all whirl solutions to when the spatial
dimension n = 3,4 in a component-wise fashion and with a consideration of
the restricted Euler-Lagrange system BVP[f; %, m]. We initially work with
respect to the g variables before switching to a polar coordinate system which

will facilitate a deeper analysis.

6.3.1 The System BVP[f; %, m] with d = 1 and Z[u; A, B|
for n =3

Beginning in three spatial dimensions we first explore the restricted Euler-

Lagrange system BVP[f; %, m]. We have the indices d = 1 and N = 2, so

consider a single angle of rotation function f(p) with o = (p,2), p = (23 +

x%)l/Q, z = x3. The system reduces to a single PDE, denoted A = 0, where we

introduce

A = divy, [A(lel. o], 3+ 0|V fP)o*Vaf] = 8, [Ap*0,f] + 0: [As0.1] .
(6.3.1)

Here we have Q = diag(R[f],1) for R, J € SO(2) defined by

Rlo] = ( cosa —sina ) J=R[r/2) = ( 0 _01 ) (6.3.2)

sinoe  cos« 1

Hence u is the 3-vector u = [x1 cos f — zasin f, ;1 sin f +zo cos f, 23] and for the

gradient Vu = 0u;/0x; : 1 <i,j <3 we compute

x1
—0
RIf 0 —(z1 sin f + x5 cos f) p o
Vu = l - + zicosf—xosinf | ® Bapf (6.3.3)
p
0
o.f
and we note that we have used the chain rule identities
0 0 z; 0 0
7:772:{' :12 _— ..4
Ox; Opp orr= s Oxrz Oz (6:34)

102



Whirl Maps as Solutions to £[u; A,B] = V& in Low Dimensions

From this it follows that

) x1cos f — xosin f
div[A([lelllell*, 3 + p*|Vaf[*) V] ={p3pA - AIVAf|2} zysin f + @ cos f
0

5 1 sin f + x5 cos f
— {8pf8pA +0.f0.A+ A[3;f + AAf} } —x1cos f + xosin f
0

+ 0.Aes. (6.3.5)

By definition we then have, for Z[u;A,B] = (Vu)t x {div[A(|all, ||lel|?,3 +
PPIVaf?)Vul +B([lell, llol?, 3 + p*[Vafl?)ut,

Zlu; A, B] diag< [a[;fA + %f)pA — |VAf|2A] I, {a;f/\ + 5ZA} ):c
+%ﬂuﬁ+8x (6.3.6)

where, recall, A is the differential operator defined in (6.3.1). In the above
Iz = (x1,22,0) denotes the projection of z in the (z1,z3) hyperplane with
[[z]" = (=24, 21,0). From this we see that if A = 0 holds then our vector field

under consideration reduces to
1
ZLu; A, B] = diag( La,,A - |VAf|2A] I, 3ZA>33 + Buz. (6.3.7)

We remark that, by the chain rule, VxA(||o|, [|ol|?, 34+ p?|Va f|?) = 1/p0,Allz+
0, Aes, hence it is possible to rewrite the above as
Zu; A, Bl = VxA(lel, lol*,3+ p*|Vafl?)
— [VafPAlell, lel®,3 + p*| Vaf[*) Iz
+B(llell, ll?,3 + p*IVafl*)z. (6.3.8)
In order for the main PDE Z[u;A,B] = V& to be solved it is necessary that

the vector field Z[u; A, B] be irrotational. We compute the curl of the vector
field U(z) := ZL[u; A, B] — VxA = Bz — |V, f|?Allz in dimension n = 3 aﬂ
T
curlU = Vx x U = {82 B — |VAf|2A] — ;5,,8} —z9 | . (6.3.9)
0

150bserve that curl VxA = 0 which is why we subtract it from the vector field Z[u; A, B]
and study the curl of the reduced vector field U.
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We now introduce a polar coordinate system in order to go deeper into

the analysis and with p = (27 + 22)'/2 and z = 23 we set p = rcosf, z =
rsinf. Then we have transformed the analysis to the rectangular domain %3 :=
{(r,0) e R? :a < r < b, —7/2 < § < 7/2}, the subscript 3 referring to the

underlying spatial dimension n = 3 (see Figure 3).

0

K3

[x
V)
[NIE

ISIE]
h
t

Figure 3: The 2-dimensional domains Az and %3 defined in the (p, z) and (r, 6)

planes respectively.

By the chain rule we have the following:

a po z 0 g =z0 p 0

dp ror 12000 9z ror 1200
With this we first re-express the divergence-free PDE A = 0 with A defined by
(631) as

cos 00, {7’3 cos® HA (cos 00, f — e 939f)}

(6.3.10)

r

sin 0

9 [7«3 cos? OA <Cos 0o, f — 1%, fﬂ

r

+ sin 00, [7“3 cos® OA (sin 00, f + cos (%f)]

T
FLLPY [7“3 cos® OA <sin 00, f + Coseagf)] —0, (6.3.11)
T T
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where A = A(r, 72,3 + 12 cos? 0|V f|?) and f = f(r,0). By coupling this with
the boundary conditions present in ((6.2.5)) and a simplification of the PDE above

the full system under consideration becomes

Oy [r4 cos® 9A8Tf] + Oy [7‘2 cos® 0A89f] =0 (r,0) € %s,
f=0 r=a,
(6.3.12)
f=2mnr r=>
72 cos® OA[r cos 00, f — sin 00y f] = 0 0 =+m/2.

Furthermore, upon re-evaluating the arguments of A and B we can rewrite the

reduced vector field Z[u; A, B] as in (6.3.8) as
ZLlu; A, B] = VxA(r, 72,3 + 12 cos? 0|V f|?)
— |[VafPA(r,r?,3 + 1% cos® 0|V 4 f|*) [z
+ B(r,7%,3 + 12 cos? 0|V 4 f|?)z. (6.3.13)
We now return to the curl of the vector field U(z) = ZL[u;A,B] — VxA =

Bz — |Vaf|?Allz, computed in the (p, z)-coordinate system in (6.3.9). By using
the chain rule as in (6.3.10)) we see that

T

curlU =Vx x U = {8Z (B —|Vaf|*A] — Z@,,B} —I9 (6.3.14)
0
0B 0 i
- {‘Sm@@r (IVASIPA) + = = =0, <|vAf|2A)} —a3
rcosf
0

We simplify the picture and analyse this curl further by assuming that the
function f, which acts a solution to the divergence-free equation (6.3.11f), de-
pends on the radial variable r alone, in which case dyf = 0 and, by (6.3.12)),
f = f(r) satisfies the equation

d o
. [7"4A(7°, 2,34+ r2cos?0f%) f| =0, (6.3.15)
-

since |V f|?> = f2 in this case. Furthermore the curl of the vector field U as
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calculated in (6.3.14)) becomes
Tl
curlU = — f sin 6 {Qf./—\ + f [A, +2rAg] + 2r2 f2 f cos® 0A: + 27’]’:85} —z5 |,
0
(6.3.16)
where A, = A.(r,s,£) denotes the derivative of A in the first variable with
similar definitions holding for A,, A¢ and B¢. If we apply the ODE (6.3.15)) to

the coefficient of the curl above we have, after a rearrangement,

Ty

curlU = fQSinG{iA—&—AT + 2r [A; — B¢] —|—2rfcoth9A£ [Qf—i-rf}} —9
0

(6.3.17)

‘We now introduce the notation
8 1 . . .
A3(A,B) = A+ A, +2(A, — Be] +2f cos® OA [2f + rf} (6.3.18)

which we refer to as a discriminant term, extracted from a study of the irrota-
tionality of the vector field U(z) = Z[u; A, B] — VxA. This captures a startling
distinction in the cardinality of solution sets to the PDE .£[u;A,B] = V. de-
pending on whether or not this discriminant vanishes, as is highlighted in the
following result. Recall the description of the twist loop Q = exp{H(p)} with
H asin .

Theorem 6.3.1. Let n = 3 and for all m € Z take f = f(r;m) € €?[a,b] a
solution of satisfying f(a) =0, f(b) = 2mm. Consider the vector field
Zu; A, B] be defined by and the quantity As(A,B) given by .
Then a whirl map v = diag(R[f],1)x solves the PDE L[u; A,B] = V.2 in one

of the following cases.

o If A3(A,B) # 0 over %5 then for any m € Z f(r;m) = 0 leading to u = x
and 2 = A+ G(|z|) such that VG = rB(r,r?,3)6.

o If A3(A,B) = 0 over Zs then there is no restriction on f = f(r;m)
and for each m € Z there exists a corresponding whirl map u(x;m) =
diag(R[f(r;m)], 1) which solves L[u; A, B] = VL, with

P = A(|z], |z, 3 + |z|? cos? 0.£2) +/ sB(r, 12,3 + 1% cos® 0f2) ds.
0
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Proof. Tf As(A,B) # 0 then, supposing curlU = 0 with U = Z[u; A, B] — VA,
which holds whenever .Z[u; A, B] = V.2, it follows from (6.3.17) that f(R) =0
for some fixed a < R < b. Upon evaluating (6.3.15) we see that

f= ‘ —, ceRa<r<b (6.3.19)
r4A(r, 72,3 4+ r2 cos2 6f2)

and since A > 0 by assumption we conclude that f does not change sign. There-
fore if f(R) = 0 it follows that ¢ = 0 and hence f = 0 over a < r < b by virtue
of the boundary condition f(a) = 0. Consequently, with R defined by ,
we have R[0] = I, and for u as in the statement of the theorem it is easily seen
that v = z is the only solution to the PDE Z[u; A,B] = V4. The explicit
description of the pressure field &2 follows by a direct substitution.
Alternatively if A3(A,B) = 0 then curlU = 0 and it is possible that f
is nowhere zero over a < r < b. For the corresponding whirl map u =
diag(R[f], 1)z, it follows by Proposition that the corresponding vector
field Z[u; A, B] still constitutes a gradient and thus in turn we have a solu-
tion of the PDE Z[u;A,B] = V&. Indeed, first set H = diag(J,0) where
R[r/2]. Then, adopting the notation used in Proposition [D.0.2] m we have
( ) = A (r,2)x + B(r, z)H?z where 2 = |[Hz|? and the scalar-valued func-
tions & = A (r,z) and & = HB(r,z) are given respectively by «(r,z) =
B(r, 72,3+ f22), B(r,z) = f2A(r,72,3 + f2z). Then we have

(7, . A, . . 2 - 2 ...
2.7, (1, 2) + w =2B¢f% + 7f2 +2A, % + ;Agf?’fz + ;ffA, (6.3.20)

or by an application of the ODE ([6.3.15) it follows that 2«7, + %, /r = 0 given
that Az = 0. Next define

U(r,z) = / sB(s, 52,3 + s cos? 0f?) ds. (6.3.21)

0

From this we see that

V(|z], [Hz|?) = ¢, (r, 2)z/r — 2¢.(r, 2)H?2
=B(r,7%, 3+ f22)z + fPA(r,r?, 3 + f22)H%z = U(x), (6.3.22)

since —2¢, H%x = 72[f0T szBg(s, 52,3+ fQZ) ds|H?z = fsz(r, r2, 3+ fQZ)Hx
by virtue of the identity 2.7, + %,./r = 0. It follows that Z[u; A, B] = V& with
P =A+1). O
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6.3.2 The Divergence-Free System A; = Ay = 0 and .Z[u; A, B]
for n =14
Next we go through the same procedure when the spatial dimension n = 4

with d = N = 2. First the system BVP[f; %, m] leads to the pair of PDEs
A1 =0, As =0, where

A =0, [Alllell ol 4 + gV a fil* + p3IVafal*)pip20,, fi1]
+ 0, [Alllell el 4+ pE IV fi? + P3| Vafal*)pTp20,, f1] . (6.3.23)

Ay =0y, [Alllell; llell*, 4+ pIIVafil® + p3IVafal®) p1930,, fo]
+ 00y [Allell, ol 4 + 3 IV af1]? + 03IV af2l?) p1p50p, f2] - (6.3.24)

Here each f;, i = 1,2 depends on 0 = (p1, p2) = (|[(x1,22) ||, ||(z3,24)|]). In this
setting Q = Q(p) is the block-diagonal matrix Q = diag(R[f1], R[f2]) for R as
in (6.3.2]), hence our whirl map w is given in components by

21 cos f1 — xosin fi
1 sin f1 + x5 cos

wz)=Qu=|"" firapcosfi | (6.3.25)
T3 cos fo — x4 sin fo

T3 sin fg + x4 COS fg

We compute the gradient of u as the 4 x 4 matrix

—6p1 fl (371 sin f1 -+ I9 CoSs fl) ZEl/,Ol
Vi — R[fi] 0 n O, f1(z1 COISfl — z25in f1) ® z2/p1
0 R[] —0p, fo(z3sin fo + x4 cos fo) 0
Op, f2(w3 cos fo — z48in fr) 0
—0p, f1(z18in f1 + wosin f1) 0
N 0p, f1(x1 co's fi—xasin fy) - 0 . (6.3.26)
—0p, fa(x3sin fo + x4 cos fa) x3/p2
Op, f2(x3 cos fo — xysin fo) T4/ p2
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By the chain rule it is then computed that

div[AVu] = div[A([|o], o], 4+ P3|V afil® + p3|Vafal?) V]
1 1
= diag( La,,lA - A|VAf1|2} I, L}apzA - A|VAf2|2} 12> X
1 2

1 COS fl — X2 sin f1
x1sin f1 + x5 cos fi
T3 oS fo — x4 sin fo
T3 sin fo + x4 cos fo
0 0
— diag ({aplflamA + 0py [10,,A + A {3plfl + Opa 1

+ AAf1:| }127
P1 P2

{8P1f2aP1A+aﬁ2f28P2A+A|:38pp2f2 af;)lf2 +AAf2]} )X
2
1 sin f1 -+ I9 COSs f1

—x1 cos f1 + xo sin fi

(6.3.27)
3 sin fo + x4 cos fo
—x3cos fo + z48in fo
With Z[u; A, B] = (Vu)t{div[AVu] + Bu} we then have
PLlu: I X 8p1 fl 2
[U7A7 B} _dla’g 8P1A+ p - |vAf1| A 127
1
19)
[ 9, A + ”2f2A - |VAf22A} 12>
P2 p1p
+ diag ( AT, 3/\212) xt + Bz, (6328)
P2 P1P2
where = (—z9, 71, —24,73). In particular if the divergence-free system aris-

ing from BVP[f;%,m] holds (i.e. A; = Ay = 0) then the above simplifies
to
ZLu; A B] = diag( Llla,,lA - |VAf1|2A] I, LZ&MA - |VAf2|2A] 12>x + Bz,
(6.3.29)
where the arguments of A (and, by analogy, B) are A = A(||o|, | ol|?,4 +
piIVafil® + p3IVafzl?). Upon noticing that VxA(|loll, [[ol? 4 + p3|Vafil* +
P31V af2|?) = diag(1/p10,,Ala, 1/p20,,Alz)z we can write
ZLlu; A Bl = VxAllell, loll*, 4+ pEIVafil® + o3| Vafal?)
= Allell llol*, 4+ a3 IVafil® + p3|Vafol?) diag (|VafilLe, [Va fo T2)
+B(llell, llol*, 4+ pIIVafil* + p3|Va fol*)a. (6.3.30)
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Similarly to when n = 3 we will be interested in computing the curl of the
vector field U(z) := ZL[u;A,B] — VxA = Bz — diag(|Vafi|*1a, |Va fo|*12)Ax.
For each 1 <4, j,< 4 we have

curlU := 0,,U; — 0,,U; (6.3.31)

| 1
:{paﬂsu) (B~ IVafnl*A] - 7Oy B~ IVafs*A] }fﬂ%

s(5) 5(4)
where s(k) = |[(k+1)/2] for 1 < k < 4. As with n = 3 we introduce a
polar coordinate system here and set p; = rcos#, ps = rsinf and consider the
rectangular domain %4 := {(r,0) € R? :a <17 < b,0 < 0 < 7/2} (see Figure
4).

(x
U

o[y
X
:

A4 %4

A " ,.

a Y a b

Figure 4: The 2-dimensional domains A4 and %, defined in the (p1, p2) and

(r,0) planes respectively.

For the divergence-free system A; = Ay = 0 the differential operators are

defined in polar coordinates by

Ay = cos 00, |:T4 sin 6 cos® A <cos 00, f1 — S oagfl)]

r

sin 6

T T

Op [7‘4 sin @ cos® HA <COS 00, f1 — st 989]"1)}

+ sin 60, {7"4 sin 6 cos® HA (sin 00, f1 + cos 0 89]“1)}

r
+ COSQGQ {7’4 sin 0 cos® AA (sin 00, f1 + Cosaagfl)] , (6.3.32)
r r
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Ay = cos 00, {r‘l sin® 6 cos HA (cos 00, fo — S 989]‘2)]

r
sin 0 4.3 sin 6
— Op |r” sin” O cos OA [ cos 00, fo — Oy fa
T r
+ sin 60, {r‘l sin® 6 cos HA (sin 00, f> + cos 0 O f2>:|
r
cosf 4 . 3 . cos 6
+ Oy |7 sin® O cos OA | sin 00, f2 + " Oofa ]| - (6.3.33)

In the above we have A = A(r, 72, 4+12[cos? 0|V f1|>+sin? 0|V 4 f2|?]). Upon
an expansion and subsequent simplification of the equations A; = 0, Ay = 0 with
A1, Ay as above and referring to the system (6.2.5) we introduce the relevant

boundary conditions and are thus required to simultaneously solve the systems

Oy [7"5 sin 0 cos® 9A8rf1] + Op [’1“3 sin 0 cos® 0A8gf1] =0 (r,0) € %y,
fi=0 r=a,
fi=2mm r=>b,

73 sin 0 cos® OA[r cos 00, f1 — sin 09 f1] = 0 0=m/2

73 sin 0 cos® OA[sin 00, f1 + 7 cos 09 f1] = 0, =0

(6.3.34)
and

O, [7“5 sin® 6 cos HAarfg] + Oy [r3 sin® 6 cos 9A89f2] =0 (r,0) € %y,
f2=0 r=a,

Ja = 2mam r="b,
r3sin® 6 cos OA[r cos 00, fo — sin 00y fa] = 0 0=m/2

73 sin® 0 cos OA[r sin 00, fo + cos 09 fo] = 0 0 =0.

(6.3.35)

Regarding the curl of the vector field U(x) as in (6.3.31) we have, for 1 <
i’ j7 S 47

0 0 T1T3 T1T4
—_ 0 0 ToX3 T2X4
curlU = —A (6.3.36)
—X1Tr3 —T2T3 0 0
—XT1T4 —Xoxy O O
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where

— 1 1
A== [0, (|Vafol?A) = 0r (IVafil’A)] + T—zagB [cot 6 + tan 6]

<

1
= [cot 00y (|Vafi?A) + tan00p (|Va f2|?A)] . (6.3.37)

If we denote the constant matrix in ((6.3.36)) as C then in the instance that
f1=fi(r), fa = fa(r) we have

cwrlU = — {iA [ﬁf; - f'lf'l} (6.3.38)
+ % (Ar +2r[A, + Be] + 2r*Aglcos® 0 f1 fi + sin® 9f2f2}> [sz - fﬂ }C-

By an application of the ODEs in r governing (6.3.41]) below to this coefficient

we have the rearrangement

. . 10 1
curl U = [fg - jﬂ {TZA + A, +2[A, — B (6.3.39)

+2A¢ [cos? 01 (2f1 + /i) +sin0fs (202 + 712 )| }c,
which leads us to introduce the notation

1
A4(A,B) := TQ{lOA + 1A, +2r? [As — B¢] (6.3.40)

+ 27"2A§ {0052 61 <2f1 + rfl) + sin? 0 f> (ng + ng)] }
This is the requisite discriminant term when the dimension n = 4, analogous to

the identity (6.3.18)), which again has a significant effect on the solution sets of
the PDE Z[u;A,B] = V. Before presenting this result we remark that the

divergence-free systems ([6.3.34))-(6.3.35)) in the case that the functions fi, fo

have no #-dependence become, for i = 1,2,

d . N

- [r"’A(r, 12 4+ r2[cos? 02 + sin? fg])fi] —0 a<r<b,

f;=0 r=a, (6.3.41)
fi = Qmm T = b,

where m; € Z for i = 1, 2.

Theorem 6.3.2. Forn =4 let u = diag(R[f1], R[f2])x for R defined by
and fi = fi(r;my), fo = fa(r;ms) € €?[a,b] serving as solutions of the systems
fori=1,2. Assume that Ay(A,B) £ 0 over %y for Ay(A,B) defined
by . Then the following are equivalent.
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e u solves the PDE Z[u;A,B] = VZ.

o We have fi(r;m1) = fa(r;ma) =: F(r;m) such that, for each m € Z,

F € €?[a,b] is the unique solution of the two-point boundary value problem

% A2 4+ FHF| =0
F(a) =0, (6.3.42)
F(b) = 2mm.

Furthermore in this case we have the explicit description of the pressure field
P = Alzl, |z* 4+ r°F?) + G(|z)) (6.3.43)
and G satisfies VG (|z|) = B(r,r2,4 + r2F?)x — F2A(r, 72,4 + r2F?)z.

As such we see that when A4 (A, B) Z 0 we are forced into equality of bound-
ary conditions for the angle of rotation functions f;, fo which leads to their
being equal too, thus we are in the setting of Theorem Note also that the

two-point boundary value problem ((6.3.42)) is precisely the analogy of (6.2.7)).

Proof. In the first instance it can be seen from that if Ay(A,B) £
0 then curl Z[u;A,B] = 0 if and only if f2 = f2 = fi = f, up to a
constant. By evaluating the boundary condition imposed at r = a it is clear
that fi(a) — fa(a) = 0 and so by continuity and the fact that f; and f do not
change sign, since, for i = 1,2 and with A > 0,

f; = < SRy ceR,a<r<b, (6.3.44)
roA(r, 72,4 4 1r2[cos? 0 f + sin” 6f3])

we have f; = fo and in particular m; = mo =: m € Z. Call this common
function F' = F(r;m) and by adding the equations in the system , we
have that F' solves . The existence and uniqueness of a solution to this
system follows from Lemma (see also Theorem . Clearly if the above
holds then we see by substitution u(z) = diag(R[F], R[F])x and

ZLu; A, Bl =VA(r, 72,4 +r2F?) — F2A(r,r?, 4 + r2F?)z
+B(r, 7%, 4 4 r?F?)z, (6.3.45)

thus the result is proved. O
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6.4 A Particular System with A = h(r,s) and the
Influence of the Discriminant A(h,B)

In this final section we return to a general n-dimensional setting and fix A(r, s,£) =

h(r, s)lE as a radial function (with s = 72) and explicitly solve the system

(V) {div[h(|z|,|2[*)Vu] + B(|z|, |z, |Vu*)u} = VL  in X",
detVu =1 in X", (6.4.1)

U=z on OX",

Here h(r,s) > 0 and we begin this section with a study of the system analogous
to (6.2.5))-(6.2.6)) in this setting. Specifically for each 1 < ¢ < d we aim to solve

diva [h(llel, llel*)pfw(e; d)Vafe] =0 in A,

BVP[: foome = 4 150 on (9hn)a,
fo=2mym on (0A,)s,
h(llell, lell*)piw(e; d)dy fo = 0 on Ty,

(6.4.2)

over the admissible space (6.2.4) with p = 2. Here m; € Z and w(g;d) =
P1---Pd-

As a first remark observe that, unlike the system , the above depends
on only the /-th component of both the vectors f and ¢ and as such the system
decouples and we can solve it for each fixed 1 < ¢ < d individually. This system
is in fact precisely previously studied in Chapter [3|in the context of the
weighted Dirichlet energy. We repeat the result establishing its unique solution

but defer the proof to Theorem [3.6.1] and the calculations preceding it.

Theorem 6.4.1. For alln > 2 and each 1 < { < d the system (6.4.2) admits
the unique solution fo(0;me) = 9 (r,my) 1= 2mn 3 (r), where 7 (r) € €*[a, b]
1s defined by

Ay =10 ) = / s (6.4.3)

o S"TIh(s,s?)

16Note that if, additionally, B(r,s, &) = —hs(r, s)¢ this corresponds to the variational case
F(r,s,&) = h(r, s)&, which, if substituted into the energy functional (6.1.4]), corresponds to a
weighted form of the classical Dirichlet energy. This system has been considered many times

throughout the thesis and we refer to Chapter EI for a thorough analysis.
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It is easily verified that for all 1 < ¢ < d the function f;, = ¢ defined above

is the unique solution to the boundary value problem

4 [r”“h(r, rz)%} =0, a<r<hb,
%Qa) =0, (6.4.4)
4(b) = 2mym,
which is the counterpart of for the choice of A(r, s,£) = h(r, s).

As a consequence of the above result we henceforth only consider twist loops
Q which depend on ||g|| = r and take the precise form Q(r; m) = exp{5(r)H(m)}
with 2 as defined in and H the constant n x n skew-symmetric matrix
given by

H(m) — diag(2mqind, ..., 2mgnd), n = 2d, (6.45)
diag(2mqimd, ..., 2mgnJ,0), n=2d+1,

with J as defined in (6.3.2). We now wish to formulate an appropriate de-
scription of the vector field Z[u; A, B] given that the system BVP[h; fy, my] is
satisfied for all 1 < ¢ < d and that Q(r;m) = exp{s(r)H(m)} is as described
above. Recall the definition

ZLu; h, B] = (Vu) {div[h(|z|, |z|*)Vu] + B(r, |u|?, [Vu|?)u} (6.4.6)
= (Vu) {[h,(r,72) + 2rhg(r,7?)|Vub + h(r,r*)Au + B(r,r%, |Vu|*)u}.

In the instance that Q(g) = Q(]|o||) we haveizl

N

Vu=Q+Q0®> pVp=Q+QIozr=Q+rQix0. (6.4.7)
=1

In particular it follows from this that |Vu|?> = n + r2|Q6? = n + r2%|Ho)|?
with H defined by (6.4.5)). For the Laplacian Au we first note that Apy = 1/py
except for n odd and £ = N where Apy = 0 and

P

P Lo, (6.4.8)

2
. 1

Q. = %QJF*
r ror

17Recall the identities (3.7.4)-(3.7.6)) and the collection in Proposition

115



Whirl Maps as Solutions to £[u; A,B] = V& in Low Dimensions

It follows that

N
Z Q.eex + ApeQew +2Q (V]

N
Z[(P4Q+ peQ)x—kpeAngx—&—Z vag

/=1
=rQ0 + (n+1)Q0. (6.4.9)

With these identities at hand we recover

ZLlu;h,B] = (QF + 0 @ Q) { [he (7, 72) + 2rhg(r, 7)) (QO + 7Q0)

+ h(r, 7“2) [TQ + (n+ 1)Q] 6+ rB(r, %, n + r2|Q9|2)Q9}

=Vh(|z|,|z?) + [r2he(r,r?) + 2r3hs(r,r?) + 7(n + 1)h(r, r?)] 2% HO|*6
+ 72h(r, 12 A\HO0 4 rh(r,r?) 2 H20 + rB(r, v, n + r> 2 |HA|?)6.
(6.4.10)

By an application of the ODE governing (6.4.4) (note that, as a scalar multiple
of ¢, the function J# also solves this ODE) the above simplifies to

Z[u; h, B] = Vh(|z|, |z|?) + h(r,r?) #*Az + B(r, 5, €)z. (6.4.11)

Anticipating on solving the PDE Zu;h,B] = V& we next compute the

curl of the vector field

U(z) = ZL[u = rexp{s(r)H}0; h, B] — Vh(|z|,|z|?)
=B(r,r%,n + % Hz|?)x + h(r,r?) #*H%z. (6.4.12)
We now apply Proposition [D.0.2] to this vector field where, given the de-
scription of H as in , we set ¢g = 2mym, 1 < £ < d and the scalar-
valued functions & (r, z) and %(r,z), 2 = |[Hz|? therein are given by < (r,2) =
B(r, 2, n—i—%ﬂz), B(r,z) = h(r, r2)%2. Then, after an application of the ODE
(6.4.4), we have

Br(r,z) 2 2(n + 1)h + rhy + 2r2[hs — Bg]

2.7, (r, 4.1
(r,z) + . 2 (6.4.13)
and, with
1 1 .
A(h,B) := 2(71—1; )h(r, r2) 4+ =hp(r,72) 4 2[hs(r, 7?) — Be(r, 2, n 4 2% Hz|?)]
T r

(6.4.14)
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we have the explicit description
[curl Ul;; = 4n? % A(h, B) (mi(i) - mz(j)) %y, (6.4.15)

where s(k) = |(k 4+ 1)/2] for all 1 < k < n. This leads us to the following
result concerning solutions of the PDE Z[u; h,B] = V&2. Compare this with
Theorem which is a special case of the below.

Theorem 6.4.2. Let Q € ¢*(Ja,b[,SO(n)) N € ([a,b],SO(n)) satisfy Q(a) =
Q(b) = I, and be given by Q(||ollim) = exp{H(|[o])H(m)} for # € €*[a,b]
defined by and H = H(m) as given by . Moreover consider the
vector field Lu; h,B] as in and A(h,B) as in (6.4.14). Then the whirl
map u = Q(||o||)x solves the system iff one of the following hold.

1. If A(h,B) £ 0 over A,, then, depending on the dimension n being even or

odd, we have

(i) n even: Here H = H(m) = diag(2mqnd,...,2mgwJ) with |mq| =

e e = |mk"

(i) n odd: Here H = 0 necessarily leading to Q =1,, and u = x the only

solution of (6.4.1)).

2. If A(h,B) = 0 over A, then Q(|loll) = exp{ZZ(||lol)H(m)} as in the

statement of the theorem with no restriction on the integers m;, 1 <1i < k.

Proof. First suppose Z[u;A,B] = V£ holds. Then curl Z[u;A,B] =0 =
curlU(z) = 0 for U as defined by (6.4.12). If A(h,B) # 0 over A, then,
by , we see that mg(i) = mi(j) for all 1 < 4,5 < k, in which case
|mi| = .-+ = |mg| =: m. Since my = 0 when the dimension n is odd we
conclude m = 0 in this case and 1 follows. If, however, A(h,B) = 0 over
A, then curlU(z) = 0 with no further assumptions required on the integers
mq,...,mi and we conclude as in part 2.

Conversely, it follows from Proposition that in either of the cases
1 and 2 above the resulting vector field Zu = Q(||o||; m)z; h, B] constitutes
a gradient and hence the PDE governing (6.4.1]) is satisfied. Moreover the
incompressibility constraint det Vu = 1 is a result obtained in Lemma
and the discussion preceding it (see also Proposition . It remains to verify
the boundary conditions and first we remark that, with 7 given by we
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have 7 (a) =0 = Q(a) = I, and u||p|= = x. Finally with JZ(b) =1 we
see that, in any case above, Q(b) = exp{H(m)} =1, = ul|y|=q = . This
completes the proof. O

It is easily seen that A(h,B) =0 if, given any 0 < h : [a, b] x]0, co[— R, the

corresponding function B = B(r, s, ) satisfies
Be(r,r2,n 4+ A2 Hz|?) = 2(n + 1)h(r, 72) + rh,(r,72) 4+ 2r2hy(r,72). (6.4.16)

If we are in the variational context with B(r, s,£) = —hs(r, s)§ then A(h,B) =0
if and only if the “h-condition” holds, that is

2(n + Dh(r,r?) + rhe(r,7?) + 4r2hg(r,r?) = 0, a<r<b. (6.4.17)

One such function h = h(r, s) which satisfies the above is h(r,s) = r=*s~? for
a, B € R (see Figure 2). Then the h-condition holds if and only if o + 48 —
2(n+1) = 0. Of course the class of functions h for which A(h, —hs) = 0 is much
larger still.
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Appendix A

Key Identities

This first appendix gathers all the necessary key calculus identities pertaining
to generalised twists u(z) = Q(|z|)z and whirls u(z) = Q(e)z which are used
liberally throughout the main body of the text. The first result is relevant to
twists inasmuch as Q = Q(r), but in fact applies to a wider class of maps,
as is seen below. Indeed they adapt to the generalised twist case as a simple

corollary.

Proposition A.0.1. Let v € €*(X",X") and u = Q(|z|)v(x) for some twist
path Q € €([a,b],SO(n))NE*(Ja,b[, SO(n)). Then the following identities hold.

(i) Vu=QVv+ Qu®#,
(i) [Vul? = [Vo> + |Qu? +2(Q'Qu, Vv ),
(iii) Au=2QVv0+ QAv + Qu + ”T_le,
(iv) det Vu = det Vv + (Q'Qu, [cof Vv]h), whenever det Vu(x) # 0.

In the above r = |x| with a < r < b and 0 = z|z|~'. Furthermore with La-
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grangian F' = F(r,s,£) we have
div[Fe(r, [ul?,|Vul?)Vu] = Fee(r,[ul?, [Vul)(QVo + Qu @ 0)
X [V(IVol?) + V(1Qul) +2V(Q'Qu, Vv o))
+ Foe(r, [ul*, [Vu*)(QVv + Qu @ )V ([v])
+ Fre(r, [ul?, [Vul*)(QVv + Qu @ 0)0
. . —1.
+ Fe(r, [ul?, |Vul*) |2QVv 6 + QAv + Qu + nTQv .

Proof. The first identity follows by a straightforward differentiation. Indeed

proceeding directly we can write
Vu=QVv+VQ(z))v =QVv+ Que s = Q(Vu+ Q'Que ). (A.0.1)

Proceeding immediately from this on to (iv), using the description of Vu as given
in (i) above, the assumed invertibility of Vv and the fact that determinant is
a quasiaffine function on the space of n x n matrices (c.f. [60]) — as a result of
which det(L, + (® &) = 14 ((, &) for any (,£ € R™ — it follows at once that

det Vu = det Q x det(Vv + Q'Qu® 0)
= det Vv [1 + <(vu)*1Qth,9>}
= det Vv + (Q'Qu, [cof Vv]6). (A.0.2)

Next for (i) using the description of the Hilbert-Schmidt norm of the matrix

field Vu we can write

\Vul? = tr{[Vu]'[Vu]}
= tr {([Vu]'Q" + 0 © Qu)(QIVv] + Que 0) }
=tr {[Vv]t[Vv] + [V'Q'Qu® 0 + 0 @ [Vu]'Q'Qu + (0 ® Qu)(Qu ® 9)}
= |Vv|? + 2(Q'Qu, Vv o) + |Qu|?. (A.0.3)

Likewise for (iii) by taking the divergence of Vu as given by (i), we compute

the Laplacian Au to be
Au = div(QVv + Qu® 0) = 2QV + QAv + Qu + nTile (A.0.4)

The final identity then follows by direct differentiation and use of the chain

rule:
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div[Fe(r, [ul?, [Vu|?)Vu] = Fee(r, [ul?, [Vu|?) VuV (| Vul?)
+ Foe(r, [ul, [Vul*) VuV ([ul®) (A.0.5)
+ Fre(r, |u\2, |Vu|2)Vu9 + Fe(r, |u|2, |Vu|2)Au.

Noting that |v|? = |u|? we now have all the identities to complete the expression

above and the result follows. O

Proposition A.0.2. Let v € €%(X",X") and u = Q(|z|)v(x) for some twist
path Q € €([a,b],SO(n)) N €*(Ja,b[,SO(n)). Then the vector field L[u] =
(Vu){div[Fe (||, [ul?, |[Vul?)Vu] — Fs(|z|, |ul?, |Vu|*)u} is described by

2] = [(V0' Q' 65 Q) {Fge(n a2, [Vul2)(QVo + Qu & 6) [vuw?)
L V(QuP) +29(Q1Qu, Vo 9>} T Fue(r, |uf?, [Vul?) x
X (QVv + Qu @ 0)V([v]?) + Fre(r, |ul?, |[Vul>)(QVv + Qu @ )0

. . —-1.
+ Fe(r, [ul?, | Vul?) [zQwe +QAv + Qu+ nrQU}

— Fy(r, |ul?, |Vu|2)Q(r)v}. (A.0.6)

Proof. The result is a direct consequence of the definition of .Z[u] as in the

statement of the result and the relevant identities in Proposition O

Proposition A.0.3. Letu = rQ(r)8 be a generalised twist with a twice continu-
ously differentiable twist path Q, that is, Q € €([a,b],SO(n))NE?(]a, b, SO(n)).
Then, with r = |z|, @ = x|z|~t, the following identities hold:

(i) Vu=Q+rQf® 9,
(i1) |Vul? =n+72Qb%,
(#11) Au=[(n+1)Q +rQJ6.
Consequently, the action of the operator £ = ZL[u] can be written as
L] = (V) {div [Fe(|al, [u?, [Vu*)Vu] = F(|2], [ul*, [Vul*)u}
=(Q'+70 @ QO) | Fee(r, 72, |Vu*)(Q + Q0 ® 0)(2r|QO[*0 + r*V|QO|?)
+ 27 Fae (r, 72, |Vl ?) (QO + 7QO) + Fre(r, 72, [Vul?)(QO + rQH)

+ Fe(r, 7%, [Vu?)[(n + 1)Q + Q)0 — rFy(r, 7%, |[Vu|*)QE | . (A.0.7)
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Proof. The proof is a direct consequence of Proposition and Proposi-
tion [A20.2] upon setting v = z and noting that for a generalised twist u as above

we have |ul? = [rQ(r)0]? = r2. O

We proceed to show that any generalised twist u(x) = Q(|z|)x satisfies the

incompressibility constraint det Vu = 1.

Proposition A.0.4. Letu = rQ(r)8 with Q € €*(Ja,b[,SO(n))NE ([a, b], SO(n)).

Then u is incompressibile.

Proof. From Proposition above we have Vu = Q 4 rQf ® 6. Hence
det Vu = det[Q + rQ0 @ 0] = det[L, + rQ'Qf ® 0] = 1 where in concluding the
second equality we have used det[I,, + ( ® §] =1+ (¢, &) for (, & € R™ resulting
from the rank-one affine property of the determinant function and <QtQ9, 0) =0

resulting from QtQ being skew-symmetric. O

The next corollary lists the analogous results in the instance when the twist
path Q = Q(r) manifests a geodesic in the compact Lie group SO(n). That
is Q(r) = exp{¥(r)A} for a twice continuously-differentiable function ¢ (this
regularity is not in general a requirement but will be seen to be necessary for
the purposes of the following result) and A is a constant n x n skew-symmetric

matrix.

Corollary A.0.5. Let u = rQ(r)8 be a generalised twist with the twist path
Q(r) = exp{¥9(r)A} for some 4 € €*([a,b]) and n x n skew-symmetric matriz
A. Then with r = |z|,0 = x|x|~! and 6* = A0 the following identities hold:

(i) Vu=Q(, +r96* ®6),
(ii) |Vul> =n+1r2920* 2,
(i) Au=Q [(n +1)90* + 190" + sé?Ao*],

(iv) det Vu = det[Q(I,, + r46* @ )] = 1.

122



Key Identities

In particular for the Lagrangian F = F(|z|,|u|?, |Vu|?) we have
Llu] = Lrexp{¥(r)A}0] = Fee(r,r?,n + r29%0*?)x
X

(In FrG0* ®0+0®0%) + 92020 ® 9) (27@2\9*?9 + TQV[g'Qw*H) ]

+

o

2rFye(r, r?n+ 7“254.2|9*|2) + Fre(r, 2 n+ r2g2|9*2)] X

x (0 + 196" + 246" °0)

—~

+ Fe(r, %, n+1°92(0% %) [(n +1)90* + (90" +G>A6*)
+r(n+1)9%0" %0 + r2??|9*|29] — rFy(r, 2, n 4+ r24%6*2)6. (A.0.8)

Proof. The first four identities follow immediately from Proposition [A.0.3] upon
noting Q = YAQ, Q = (YA + 92A%)Q and |QF|? = 92(A6, Ab) = F?|6*|2.
We also have that Q and A commute and (¢,0*) = 0 since A is a skew-

symmetric matrix. Now to finish off the proof a further reference to Propo-
sition [AZ0.3] gives
L] = (I, + 190 @ 0*)Q' x
X {QF&(T, 2 n +12G2|0% 12 (L, + r90* @ 0)(2r9>(0*|20 + r2V (9?6 %))
+ 2rQF.e(r, 72, n + r29%0%%) (0 4 r46*)
+ QF¢(r,r?n + 7“254.2|9*|2)(9 + r?@*)
+ QFg(r,r?,n + r* 92|07 %) [(n + 190" + 90" + r{éQAG*}

— rQF,(r, r2,n+r2g¢'29*|2)9}. (A.0.9)

Multiplying the factor of (I,, + 90 @ 0*) through and using the orthogonality
of the matrix function Q yields the desired result. O

We now present a result similar in nature to those above but now pertaining
to whirl maps u(x) = Q(e)x with twist path Q restricted to the maximal torus
T C SO(n) and given explicitly by Q(p) = exp{H(p)}, where H : A,, — so(n)
is given by

H( ):{ diag(f1J,..., faJ) n=2d, (A.0.10)
diag(f1J,..., faJ,0) n=2d+ 1.
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Here J = R[r/2] defines a rotation by angle 7/2 as in, for example, (2.3.4)
and the functions f; € €(A,) for all 1 < ¢ < d satisfy f; = 0 on (0A,),
and fy = 2mym on (OA,,), for my € Z. Recall moreover that A,, is the semi-

annular domain defined independently depending on whether the underlying
spatial dimension n is odd or even [see, for example, (6.1.6)-(6.1.7))].
Proposition A.0.6. Letu(x) = Q(0)x with Q € €(A,,,SO(n))NE?(A,,SO(n))
given by (A.0.10). Then the following identities hold.

N
(i) Vu=Q (In +> H@ao Vpe> :

=1
d
(i) [Vul* =n+ > pf|Vafil?,
=1
(7i1) detVu =1,
N
(iv) Au=Q Z H oz + ApcH yz 4+ 2H V] .
=1

Here H y and H 4, denote the first and second derivatives of the skew-symmetric
matriz H as defined by (A.0.10) with respect to ps and throughout the statement

and proof V5 denotes the gradient taken with respect to the variables p1,...,pN.

Proof. We begin by noting that, with Q = exp{H(p)} we have Q, = H ,Q and
Q= MHy+ H?Z)Q. Moreover since Q takes values on the maximal torus T
os SO(n) it follows that Q and H (along with any of its derivatives) commute.
The first identity is the consequence of a straightforward differentiation via the

product rule. Indeed

N N
Vu=Q+) Quu@Vp = Q(IﬁZHﬂ@vpz). (A.0.11)
=1 =1
Jumping to identity (iii) we have
N
detVu = det (In +> Huo vpf>, (A.0.12)
/=1

since det Q = 1. To verify the incompressibility constraint det Vu = 1 we will
require, for any 1 <4,j < N, the identity (H ;z, Vp;) = 0. To justify this first

observe that

diag(D 13, ..., 00 fsd n = 2d,
_ ] diag@cfy fad) (A.0.13)
diag(aeflJ,...,agfdJ,O) n=2d+1,
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where Oufy = 0,,fr and J = R[n/2]. Furthermore for any 1 < k < d let

Cr = (wag—1,x2r) in any dimension and (441 = x,, if the dimension n = 2d + 1

is odd. Then it is seen that Vpr = (0,0,...,{x/pk,0,...,0), so in particular
(Vp;, Vi) = 6. We also see that

Hlx _ dzag(agfl.](l, ey agfd‘](d) n = Qd, (AO]_4)

diag(0e 131, - ., 00 faJCy, 0) n=2+1,

upon which (H ez, Vpg) = (O fI (i, Ck/pr) = 0 since J is skew-symmetric. Now

returning to we see that an application of Lemma below to the

strings of vectors a; = H ;z and b; = Vp; (1 <i < N) we conclude detVu = 1.

For identity (i) we employ the Hilbert-Schmidt description of the norm

which gives

|Vu|2 = tr{Vu(Vu)'}

N N
= tr{ (Q +) Qe sz) (Qt +Y Vo Qﬂ) }

=1 =1

N N N
= tr{In +) QVpeQur+» QueQVp+» Qu® Q,ex}
=1 (=1 =1

N N N
=n+ Y [Qef=n+) [HQu>=n+) [Huml (A.0.15)
/=1 /=1 /=1

as |Q| = 1. It is then easily seen that

N d
Do Heal> =) pi|Vafel® (A.0.16)
=1 =1

and identity (i7) follows. Finally for the Laplacian we have that Ap, = 1/py
(except when n is odd and ¢ = N, in which case Ap,, = 0), then taking the
divergence of identity (7) yields the result. O

We state a lemma which was used in the course of Proposition[A.0.6to verify

the incompressibility constraint det Vu = 1, here presented in a general context.

Lemma A.0.7. Let (a;)%_, and (b;)%_, be strings of mutually orthogonal vectors

in R™ satisfying (a;,b;) =0 for all1 < 5,1 < k. Then

k
det <In +Y ae bi) =1 (A.0.17)
=1
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Proof. We prove the result by induction on i. For i = 1 it is immediate that
det(I, + a1 ® b1) = 1 + {(a1,b1) = 1 by the rank-one affine property of the
determinant function and since a; and b; are orthogonal by assumption. Now
assume holds for a fixed j € N, that is det A; = 1 where we have
defined

J
Aj=T,+> a;®b;. (A.0.18)

i=1

Then A;l =1, — Zzzl a; ® b; and observe that
Jj+1
det (In + Z a; & bi) = (1 + <bj+1, A;laj+1>) detAj. (A.O.19)
i=1

Since det A; = 1 and (a;,b;) = 0 we see that det(I, + ZZ;l a; ®b;)) =1+

(bj+1,aj+1) = 1 which is the required conclusion for i = j + 1. O
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Derivation of the

Euler-Lagrange Equation

LNu| =V

In this short appendix we briefly outline the derivation of the Euler-Lagrange

system

(Vu)' {div [FeVu] — Fou} =V in €,
det Vu =1 in Q, (B.0.1)
u=¢ on 0N.

associated to the variational integral
Flu; Q] = /QF(m, ul2, |Vul?) da (B.0.2)
over the space of incompressible p-Sobolev mappings (with p > 1)
d(Q) = {ue W"P(Q,R") : det Vu = 1, ulog = ¢} . (B.0.3)

Using the method of Lagrange multipliers we take the unconstrained energy

functional
Efu; Q) ;:/ [F(|2), [ul?, | Vul?) — 22(2)[detVu — 1]} d, (B.0.4)
Q

where & = P (z) is a suitable and a priori unknown Lagrange multiplier. Note
in particular that E[u; Q] = Flu; Q] whenever u € 72(2). Now fix u € &/2(Q)
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of class 42 satisfying (|z|,|ul?, |Vu|?) € U = ([a,b], x]0, 00[x]0, 00[) C R? for
all z € @ and for ¢ € €°(Q,R") and € € R put u. = u + €¢. Then by a basic
compactness argument for ¢ sufficiently small (|z|, |uc|?, |Vuc|?) € U for all = €
Q and therefore by examining the first-order condition d/de(E[uc,2])|c=0 = 0

we can write

1d
5@]}3['“57 Q]

- {1F<|x|, e, [Vuel?) — 2(2) [detVu, — 1] }dx
dE Q 2

e=0 e=0

_ / {Fs<u, ) + Fe(Vu, Vo) — P(z)(cof Vu, v¢>} da
Q

:/ (Fsu — div(F:Vu) + [cof Vu|VZ + Pdiv [cof Vu], ¢) dz
Q

:/ (Fou — div(FeVu) + [cof VulVZ, ¢) dx = 0. (B.0.5)
Q

Here F; = Fy(|z|,|ul?, |Vu|?), F¢ = Fe(|z|, |ul?, |Vu|?) where Fy, F¢ denote the
derivatives of F' with respect to the second and third arguments respectively.
The last line uses the Piola identity which gives divcof Vu = 0, whilst the
divergence operator is understood to act on the matrix field Fg(|z|, |ul?, |V|?)Vu
row-wise. Now the arbitrariness of ¢ € €>°(2,R™) gives the Euler-Lagrange

equation
L) = (Vu)' {div [Fe(Jz], [ul*, [Vul*)Vu] = Fy(lz], [uf?, [Vu|*)u}

= (VU)t{Fs(|x|a [ul?, [Vul?) Au + VuV Fe (|, [ul?, [Vul?)
— Fy(|zl, ul?, |Vu|2)u} =VZ. (B.0.6)

Here we have used the identity (cof Vu)~! = (Vu)! which holds by virtue of
the fact that detVu = 1. The term &2, which entered the system as a Lagrange
multiplier associated to the unconstrained energy functional , is, in the
context of nonlinear elasticity, referred to as the hydrostatic pressure term as-

sociated to w which itself is interpreted as a volume-preserving deformation of
the body 2 C R™.
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Appendix C

Some Existence and

Uniqueness Results

We now gather two important results regarding the existence and/or uniqueness
of solutions to differential equations used throughout the main body of the
thesis. The first deals with the uniqueness of a boundary value problem whose
solution features prominently throughout the text as the profile of a geodesic
twist path Q(r) = exp{¥(r)H}. This appears both in the variational (Chapters
and and non-variational (Chaptersand@ context and we give the result
here in the more general non-variational context despite it being motivated,

naturally, by variational methods.

Proposition C.0.1. For each m € 7 there exists a unique solution ¢ =

4 (r;m) € €?[a,b] to the two point boundary value problem

di |:7“n+1A(T, r2n+r29)9| =0, a<r<b,
r
4(b) = 2m.

Proof. Tt is not difficult to see that the system BVP[¥; A] above is the Euler-

Lagrange equation associated with the energy functional
b .
Y — / F(r,r%,n+r?%@%)r"dr, (C.0.2)
a

when the Lagrangian F = F(r,s,£) of class 42 is chosen as a derivative of
A(r,s,§), specifically, in the sense that Fe(r,s,&) = A(r,s,£). Thus hereafter
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we set
3
F(r,s,f):/o A(r, s,¢) d¢, a<r<b, s>0&6>0. (C.0.3)

Now the assumptions on A result in F' being uniformly convex and monotone
increasing in €. Thus in particular the twice continuously differentiable function
¢+ F(r,r%, n+7r2(?) here is uniformly convex in ¢ for alla < r < band ¢ € R.
Furthermore the growth and coercivity of F' follows from the similar assumptions
set earlier on A and so we have F¢(r,s,§) > 0, Fee(r,5,&) = Ae(r,5,§) > 0 and
co+c1|€P/? < F(r,s,€) < cl€[P/? with p > 1.

Minimising (C.0.2)) over

B (a,b) = {4 € W'P(a,b) : 9(a) = 0,9(b) = 2mr} (C.0.4)

and applying the direct methods of the calculus of variations now results in the
existence of a minimiser ¥*. The %2 regularity of ¢* follows by invoking the
Tonelli-Hilbert-Weierstrass differentiability theorem (cf., e.g., [21I] pp. 57-62)
and the uniqueness of minimiser follows from the uniform convexity of F in the

&-variable and a basic convexity argument. O

We now present an existence result used in Chapters 3 and 6 for the Euler-
Lagrange system
diva% (0,Vaf) =0 in A,,
f= on (A )a,
f=2mn on (0A,)p,
U0, Vaflr=0 on I'y.

BVP|[f; %, m] = (C.0.5)

For definiteness the semi-annular domain A,, and its boundary segments is de-
scribed formally in (6.1.6]), (6.1.7) and (6.1.8]). Moreover o = (p1,...,pn) is the
vector of 2-plane radial variables as used frequently throughout Chapters |3 and

[l In the above % is the d x N-dimensional matrix field with row components
U, given by

d
U0, Vaf) :=A <||Q|, loll*,n + ZP?IVAfzzIZ) pew(e;d)Vafe,  (C.0.6)

=1

where [|o|| = (p? 4 - + pX)"/? = |x| = r. Also note that the third argument in
A above is precisely the quantity |Vu|? for a whirl map u = Q(o)z, as derived
in Proposition We thus think of the function A = A(r, s, ) above as
A= A(r,r?, |[Vul?).
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Proposition C.0.2. Consider the matriz field % (0,Vaf) defined row-wise by
. Assume that the function A is strictly positive and is monotone increas-
ing in the third variable. Then for each m = (my,...,mq) € Z% the solution
f € €%(An,RY) of the system BVP|f; % ,m] is unique.

Proof. As with the previous result in this appendix it is necessary to motivate
ideas by taking the scalar-valued function A(r,s,§) as a derivative of some La-
grangian F' = F(r, s,£) in the third variable as in (C.0.3)). If F is the Lagrangian

of some energy functional as in

d
Blfidn) = | F<||@||7||g||27n+2p5|we|2>w(g;dmg, (C.07)

=1

n

then the system is precisely the Euler-Lagrange equation associated to
this functional above. The assumptions on A imply that F' is convex, strictly
increasing in & for £ > 0 while F¢ is increasing for £ > 0.

To prove uniqueness, this uniform convexity first tells us that solutions of
are the minimisers of the energy F with respect to their own boundary
conditions and conversely minimisers of F are solutions of the Euler-Lagrange
system . Fix an assumed solution f of and set g = f + ¢ for
9 € Bylnim] = {f = (1, fa) € WA, RY) ¢ £ = 0on (9A)a, f =
2m7 on (9A,)p, p > 1, m € Z9} and ¢ € W, P(A,,,R%). We use the convexity

inequality

F(llell, lel?,¢2) = F(llell, lell*, 1) = Fellell, lell*, ¢ (G2 = ¢1), - €1, 2 €R,

specifically with the choices of (1 := n + . pZ|Vafel?, (2 :==n+ > p2|Vagel?
for 1 < ¢ < d. By the divergence theorem and the convexity inequality above
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we have

DIF[f? ] *]F[ga ] [fa }

d
> [ Felell el 6) 3 o Vaa? - 9P )oeid) de
n =1
> [ v Fe lell e, &) VSl )] o de
=1 n

d
+23 [ [Fe (ol ol 1) ol i) oede
t=17Tn

o),

Since F¢ > 0 by assumption we have Dy > 0, with equality if and only if ¢ =0,

d
Fe (llells lall*, 1) Y oI Vaee/*w(o; d)do- (C.0.8)
=1

n

in which case f = g. Thus any solution of BVP[f; %, m] is unique. O
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A Collection of Curl-Free
Results

In this final appendix we present two results on the curl-free and gradient struc-
ture of certain vector fields used throughout the main body of the thesis. They
are both similar in nature but carry somewhat different assumptions which

makes their application throughout the text distinct.

Proposition D.0.1. Let o = o/ (r), B = B(r) € €' (Ja,b]) and suppose that
H is the constant n x n skew-symmetric matriz given by H = diag(aqJ, ..., agJ)
when n = 2k and H = diag(anJ, ..., ax_1J, ag) when n = 2k—1 where aq, ..., oy
are real constants and J is as in, for example, . Consider the vector field

U(r) = o (|z]) | Hz|*z + B(|z|)Hz, z € X"[a, b]. (D.0.1)
Then the following hold.
o If2e/ + B/r =0 in X" then U = —V[A(r)|[Hz|*/2].

o If 24/ + B/r 0 in X" then curlU = 0 in X" iff |ay| = ... = |ax| =t |a],
that is, H2 = —a?I,,. In this case U is again a gradient field in X™.

Proof. For 1 < j <mnset s(j)=|(j+1)/2]. Then 1 < s(j) <k and s(n) = k.
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Put V(z) = & (|z|)|Hz|?z and W (z) = 2(|z|)H%z. Then

(23 4+ 2d) + ...+ ai (a2, +22))x n =2k

2 2 2 2, 1t
(@1, QT T, ..., G Tr—1, AR n =2k

2 2 2 2 2. 1t _
[QfT1, Q7 Ta, .0, G T2, Qf_Tp_1,05Zn])" n =2k —1.

Now computing the curl of the vector fields V, W directly a straightforward

differentiation gives

el V]i; =[ (o)) Hz[*a]; j — [ (|2]) [ Ha|*x];;

- (%( )xgrmz + . (r ) [Z aZgy}

=1

+ 24 (r)al iz

n
- {(M(T)gcfj + 427(7‘)6]-1-) [; azpt | + 2M(r)a§(i)xixj}
= —24(r) (ai(i) - ai(j)) T, (D.0.2)
and in a similar way
[carl Wy; = [B(|lz)H?a);,; — [# (| Ha];,
= —B(r )mﬂla?(i) — B(r)a 31)61] + B(r) lxj S(J )+ B(r )a ()03
= —H(r )xzx] ( ) j>) (D.0.3)
By combining the two we now obtain
[curlU];; = — (242{(7“) + %’(r)/r) (ai(i) - ai(j)) T, (D.0.4)
and so subject to 2.7 + %/r # 0 we have that curlU =0 = o} = .. = ai.
Conversely if af = ... = aj =: a? then U = o?(r?«/(r) — B(r))z is a gradient

field in X"[a, ] and thus curl-free. If 247 4+ %/r = 0 observe that

V[2(r)|Hz|*] = B(r)|[Hz|>x/r + 22(r)H Hz
= =2 [ (r)Ha|* + B(r)H?z] , (D.0.5)

so U = —V[%(r)|Hz|?/2] as required. O
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The next result is similar in nature but more general in its scope and used

directly in Chapters 3 and 6.

Proposition D.0.2. Let o = o/ (r,2), B = B(r,z) € € (Ja,b[xR,R) and let

H be the constant n X n skew-symmetric matriz given by

(ard,...,c.d) when n = 2k,
H-= (D.0.6)
(and,...,ck-1d,cx)  whenn=2k—1.

Here (¢; : 1< j <Ek)CR and J is given by, for example, (2.3.4). Consider the
vector field U defined by

U(z) = o (|z|, [Hz|*)x + B(|z|, [Hz|*) Hz, z e X", (D.0.7)

and let F(r,2) = 24, + B, /r with z = |Hx|? where <7, denotes the derivative
of o = o (r,z) in the second variable and 9B, denotes the derivative of B =
B(r, z) in the first variable. Then the following hold:

o [f. F #£0 in X", then

curlU =0 in X" <= |c1| = = |eg| :i= ¢ &= H? = —*1,,. (D.0.8)

e If # =0 inX" then curlU = 0 in X" with no further restriction on H.
In either case the vector field U is a gradient field in X™.

Proof. First we calculate curl U where for the sake of convenience we split the
vector field U as V + W with V = &/ (|z|, [ Hz|?)z, W = %(|z|,|Hz|*)H?z. We

also write n
2 _ 2 2
Hz|” = Z HNOLIE

=1

where, as in the previous result, s(I) = [(I +1)/2] for all 1 <[ < n. This
being so, [Hz|? = ¢}(23 +23) + - -+ + 2 (22_; + 22) when n = 2k is even, and
Hz|?> = c3(@? +23) + - +ci_(@2_5 +22_) + cia? when n = 2k — 1 is odd.

As a result W can be written as

W(z) = %(|z|, | Hz|*)H?2 (D.0.9)
[cf:z:l, C%x27 .. cizn_l, cixn]t n =2k
_ 2
= -l ) ¢ o
121, 01T, oy Ch 12, Ch_1Tn—1,CTn] N = .
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A Collection of Curl-Free Results

We now proceed on to computing the curls of the vector fields V' and W
respectively. Denoting by 7., 7, the derivatives in the first and second variables

of o = o/ (r,z) a straightforward differentiation gives

lcwrlV];; =Vi; — Vi = [ (|o], [Ha)z]; j — [« (|2, [Hz|*)a];,
T;x;
=ty (r, Ha|) == 4 247 (r, [Ha|*) 3 jywjai + o (r, [Ha]*) ;5

T

f[mmmxn 207, (r, [H ) mia + o (r, [Haf2)6,

s(z

= — 24, (r, Hz|?) ( Co(i) — cs(j)) i), (D.0.10)

Similarly for W with %,, %, denoting the derivatives of Z = A(r,z) with

respect to the first and second variables respectively we have

feurl Wiy = Wiy — Wi, = [2(Je], [Hal?)H2a], ; — [#(e], [Ha?) B2,

T
= — [#(r M2 5 ) 1 2. (r, [Ha )2 g + A, [Ha )6,
+[ (r, [Haf?) P52 )+ 28, (r, [Ha ) e S<J)x%+%(r [ ?)e2 )0
JI.’I?

By combining (|D.O.10|) and (D.0.11]) we thus obtain

By (x|, Hz|?
et = — (20t ol e + 2L (22,

(D.0.12)

From this it follows that if .# # 0 in X" then curlU = 0 in X" if and only if
¢} =---=c?. (Note that firstly .Z is a continuous function of z and so if it does
not vanish at a point then it does not vanishes in a neighbourhood of the point
and secondly that the factors z;x; vanish only on the coordinate hyperplanes.)
Likewise if .# = 0 in X" then curlU = 0 in X" with no impositions to be made
on ¢y, ...,ck. This proves the first part of the result.

We need to prove that U is a gradient in either case. First suppose that . #
0 and ¢ = --- = ¢i. In this case U(z) = [ (r,?r?) — 2 B(r,*r?)]x = s(r)x
and this is clearly a gradient in X". Next suppose that # = 0. We claim that
U(x) = Vf(|x|, [Hz|?) for a suitable choice of f = f(r, z). Indeed assuming this

to be the case, by direct differentiation we have,

V||, [Hz*) = f.(r, [Hz|*)0 — 2 f. (r, [Hz|*)H?0
= of (r,|Hz|?)z + B(r, Hz|>)H?z = U(x) (D.0.13)
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provided that we set f.(r,z) = r&/(r,z) and f,(r,z) = —%(r,z)/2. Now let
% = {(r,z) : r = ||, z = |Hz|* with z € X"}. Then Z C [a,b] x R is seen to
be simply-connected; in fact, denoting by ¢,¢ > 0 the minimum and maximum
eigenvalues cf,...,c? of the diagonal matrix H'H [see (D.0.6)] we have that
R ={(r,2) :a<r<bcr?<z<er?}. Next since # =0 in Z we have

arfz(ra Z) - azfr(rv Z) = - <Tf5jz(7'a Z) + %'@T‘(T? Z)) =0, (Ta Z) € '%a
(D.0.14)

and this therefore justifies the existence of a primitive f € €2(%) as required.

Indeed to describe f more explicitly consider setting
f(r,z) = / s (s,2)ds + g(z), (r,2) € Z, (D.0.15)

with g = g(z) to be determined below. Then f,(r,2) = ro/(r,z) and to fix g it

suffices to set

) = [ sit(s,2) sy o) = —38(0.) = —;{ jes ds%(a,z)},
’ ’ (D.0.16)
that is,

J(z) = /T _{34272(3’2) + ;@r(s,z)} ds — %%(a,z) = —%%’(a, z). (D.0.17)

Thus upon choosing f as in (D.0.15)) with ¢ a primitive of —%(a, z)/2 as above
we have (D.0.13]) and so U is a gradient in X" as claimed. O
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