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Abstract

In this thesis we study the nonlinear elliptic system

EL[u; Ω, ϕ] :=


L [u] = ∇P in Ω,

det∇u = 1 in Ω,

u = ϕ on ∂Ω,

for P = P(x) a hydrostatic pressure (Lagrange multiplier) related to the in-

compressibility constraint det∇u = 1 and

L [u] := (∇u)t{div[Fξ(|x|, |u|2, |∇u|2)∇u]− Fs(|x|, |u|2, |∇u|2)u}.

Here F = F (r, s, ξ) is a sufficiently regular and suitably convex function and we

take ϕ ≡ x, hence EL[u; Ω, ϕ] is the Euler-Lagrange equation associated to the

energy functional

F[u; Ω] :=

ˆ
Ω

F (|x|, |u|2, |∇u|2) dx.

The goal throughout is to classify solutions of EL[u; Ω, ϕ] (that is, critical points

of the energy F[u; Ω]) for two classes of geometrically-motivated maps. The first

of which are generalised twists u(x) = Q(|x|)x for Q an SO(n)-valued curve

and the second are whirls u(x) = Q(%)x for % = (ρ1, . . . , ρN ) a vector of 2-plane

radial variables where Q has a more complex structure.

By relaxing the variational context we also consider a more general system

where we set Fξ = A and Fs = −B in L [u] above, for suitable functions

A(r, s, ξ) and B(r, s, ξ) bearing no relationship to one-another (i.e. As 6= −Bξ
necessarily). It is seen that many of the results derived in the variational setting

have analogies in this more general framework.

Along with the analysis of the structure and irrotationality of the vector field

L [u] and ultimate solution of the PDEs in u above we also study a series of

isotropic ODEs for the SO(n)-valued curves Q(r) over this compact Lie group,

specifically considering geodesic-type solutions Q(r) = exp{G (r)H} for some G

of class C 2 and H ∈ so(n), the Lie algebra of skew-symmetric matrices.

We establish the existence of a countably infinite scale of twist and whirl

solutions to EL[u; Ω, ϕ] in even dimensions. By analysing the curl-free structure

of the vector field L [u] we introduce a discriminant term

∆F :=
2[(n+ 1)Fξ + 2r2Fξξ|QtQ̇θ|2 + 2r2Fsξ][Fξ + r2Fξξ|QtQ̇θ|2] + rFξFrξ

r2(Fξ + 2r2Fξξ|QtQ̇θ|2)
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upon the assumption that Q solves a given ODE. This discriminant is derived

formally in Chapter 5. Remarkably, if ∆F ≡ 0 then we have a previously

unknown countably infinite scale of solutions to EL[u; Ω, ϕ] in odd dimensions

as well as even. This original result is made possible by the dependence of F

on r and s; if F = F (ξ) then ∆F is nowhere zero and the only solution in odd

dimensions is the trivial map u ≡ x.

One particular Lagrangian studied in detail is F (r, s, ξ) = h(r, s)ξ, which

corresponds to a weighted Dirichlet energy when substituted into F[u; Ω]. Here

a necessary and sufficient condition for the above discriminant to vanish is 2(n+

1)h(r, s) + rhr(r, s) + 4r2hs(r, s) ≡ 0. The additional benefit of studying this

Lagrangian is that solutions of EL[u; Ω, ϕ] can be explicitly described and they

admit a geodesic-type twist path Q(r) = exp{G (r)H}.
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Chapter 1

Introduction

The principal object of study in this thesis is the nonlinear elliptic system subject

to an incompressibility constraint on its solution, explicitly

EL[u; Ω, ϕ] :=


L [u] = ∇P in Ω,

det∇u = 1 in Ω,

u = ϕ on ∂Ω

(1.0.1)

where Ω ⊂ Rn is a bounded domain with a sufficiently smooth boundary, u =

(u1, . . . , un) is a map on Ω (and into Rn), P = P(x) is an a priori unknown

hydrostatic pressure field (Lagrange multiplier) and L [u] is the second-order

partial differential operator

L [u] := (∇u)t{div[Fξ(|x|, |u|2, |∇u|2)∇u]− Fs(|x|, |u|2, |∇u|2)u}. (1.0.2)

It can be seen (and is derived formally in Appendix B) that this system arises

as the Euler-Lagrange equation associated to the variational energy functional

F[u; Ω] :=

ˆ
Ω

F (|x|, |u|2, |∇u|2) dx (1.0.3)

over the admissible space of incompressible p-Sobolev maps (with p ≥ 1)

A p
ϕ :=

{
u ∈W 1,p(Ω,Rn) : det∇u = 1, u|∂Ω = ϕ

}
, (1.0.4)

where ∇u = [∂ui/∂xj : 1 ≤ i, j ≤ n] is an n× n matrix field. For notation and

background on the theory of Sobolev spaces see [2, 33, 44, 59, 81] and [90]. The
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Introduction

Lagrangian F = F (r, s, ξ) in (1.0.3) is subject to suitable bounds and regular-

ity, coercivity and convexity constraints and, in (1.0.2), Fr = Fr(r, s, ξ), Fs =

Fs(r, s, ξ) and Fξ = Fξ(r, s, ξ) denote the derivatives of F = F (r, s, ξ) with re-

spect to the first, second and third variables respectively. The divergence in

(1.0.2) acts on the matrix field Fξ(|x|, |u|2, |∇u|2)∇u row-wise and throughout

the text we take the boundary data ϕ ≡ x in (1.0.1), which is interpreted in the

sense of traces.

Various classes of Lagrangians pertaining to this problem are well established

in the literature including, for example, F (r, s, ξ) = (ξ/s)n/2 which corresponds

to an energy in the theory of maps with bounded distortion (c.f. [5, 62, 71])

or F (r, s, ξ) = h(r, s)ξ which corresponds to a weighted version of the classical

Dirichlet energy. The latter of these two examples is studied in great detail in

this thesis.

In terms of motivation, this system is in the canon of nonlinear elasticity.

The bounded domain Ω ⊂ Rn represents some hyperelastic body with the map

u representing a deformation of Ω. Normally in the context of elasticity n = 2 or

3 but throughout the thesis we consider n ≥ 2 to allow for more interesting and

general mathematical situations. The energy F[u; Ω] is the total elastic energy

under consideration where the Lagrangian F = F (r, s, ξ) represents the stored

energy function for which we principally consider isotropic examples. We impose

the incompressibility constraint det∇u = 1 throughout which, together with

the boundary condition u ≡ x and the appropriate regularity or integrability

of the deformation u, ensures that u preserves the volume of Ω. The term P

appearing on the right-hand side of the PDE governing (1.0.1) enters in the

derivation of the system as a Lagrange multiplier [c.f. (B.0.4)] and is referred

to as the hydrostatic pressure field. For much more background on the theory

of nonlinear elasticity and its applications see [3, 9, 10, 14, 24, 25, 54, 64] and

the references therein.

Given this setup our goal is to find, among all volume-preserving deforma-

tions of Ω in the admissible space A p
ϕ , those which arise as critical points of the

energy functional F[u; Ω] and as such are equilibria of this total elastic energy.

We restrict our study to the case that Ω is a hyperelastic incompressible annu-

lus, that is Ω = Xn = Xn[a, b] := {x ∈ Rn : a < |x| < b} with 0 < a < b < ∞,

and u is one of two classes of geometrically-motivated maps bearing some inher-

ent symmetries. These are generalised twist and whirls, which both enjoy some

9



Introduction

natural rotational invariance as will be seen. All such geometric assumptions

are treated fully in the introductions to the respective chapters.

This thesis is comprised of five technical chapters each containing an intro-

duction of its own detailing the preliminaries needed. Given this, the discussion

here will be kept short; we will briefly outline the highlights and interconnectiv-

ity of the chapters in broad strokes, deferring the technical details to the main

body of the text.

Beginning with Chapter 2, in which the method and results are in line with

those from the work in progress [67], we study the system EL[u; Ω, ϕ] for a

generalised twist u(x) = Q(|x|)x under the assumption that Q = Q(r), an

SO(n)-valued curve called the twist path, solves a given ODE. Here we see that,

upon the additional assumption that ‖Q̇θ‖L1(a,b) is independent of θ, the sys-

tem (1.0.1) admits an infinitude of solutions (indexed by the integers Z) in even

spatial dimensions, whereas, in great contrast, the only solution in odd dimen-

sions is the identity map u ≡ x. These solutions in even dimensions necessarily

admit geodesic-type twist paths Q(r) = exp{G (r)H} for H an appropriate

n×n skew-symmetric matrix and G the solution of a given two-point boundary

value problem. We also consider the particular Lagrangian F (r, s, ξ) = h(r, s)ξ

for some positive C 2 function h = h(r, s). By analysing the curl of the re-

sulting vector field L [u] we extract a discriminant term and we see that the

non-vanishing of this discriminant is a necessary condition for the triviality of

solutions in odd dimensions. Here and for future reference, this discriminant is

given by

∆h :=
2(n+ 1)h(r, r2) + rhr(r, r

2) + 4r2hs(r, r
2)

r2
, (1.0.5)

where hr, hs denote the derivatives of h = h(r, s) in the first and second variables

respectively. Colloquially we will say throughout the thesis that if this particular

discriminant vanishes, that is ∆h ≡ 0, a necessary and sufficient condition for

which is 2(n+ 1)h(r, r2) + rhr(r, r
2) + 4r2hs(r, r

2) ≡ 0, then the “h-condition”

holds. We note that there is an emerging literature devoted to the study of

generalised twists in the context of nonlinear elasticity; see, for example, [30,

31, 61, 63, 66, 74, 75, 88].

Chapter 3 then constitutes a deeper study of the Lagrangian F (r, s, ξ) =

h(r, s)ξ first seen above, both for generalised twists as well as whirl maps u(x) =

Q(%)x, for % a suitable vector of 2-plane radial variables. When substituting

such Lagrangians into the energy integral (1.0.3), this corresponds to a weighted

10
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version of the Dirichlet energy, with a positive weight function h = h(r, s).

Remarkably, it is seen that any whirl solution reduces to a generalised twist

- that is, with a slight abuse of notation, Q(%) = Q(‖%‖) = Q(r) - and all

such solutions are classified explicitly. In this chapter it is now verified that,

if the h-condition holds (i.e. the discriminant ∆h above vanishes) then there

is an additional infinite class of solutions to the system (1.0.1) in odd spatial

dimensions as well as even.

In Chapter 4 we consider the same questions posed for generalised twists in

the first two chapters but now in a non-variational context. This is based on

the published work [65]. We take the system (1.0.1) now governed by the PDE

L [u;A,B] = ∇P, where

L [u;A,B] := (∇u)t{div[A(|x|, |u|2, |∇u|2)∇u] + B(|x|, |u|2, |∇u|2)u}, (1.0.6)

for A = A(r, s, ξ), B = B(r, s, ξ) suitably regular real-valued functions. Clearly

if A = Fξ and B = −Fs, we return to the variational setting where the system

EL[u; Ω, ϕ] arises as the Euler-Lagrange equation associated to F[u; Ω], but we

stress that no such assumptions are made here. This short chapter exclusively

considers geodesic-type twist loops and we observe the same phenomena as pre-

viously. That is, we have a countably infinite class of solutions to (1.0.1)-(1.0.6)

in even spatial dimensions yet no nontrivial solutions in odd dimensions. Upon

considering A(r, s, ξ) = h(r, s), B(r, s, ξ) = −hs(r, s)ξ to mimic the weighted

Dirichlet scenario, we see the introduction of a discriminant term and an infi-

nite class of solutions in odd dimensions as well as even, given the vanishing

of this discriminant, in line with what we have already observed in the varia-

tional setting. Here a necessary and sufficient condition for the vanishing of the

discriminant is that 2(n + 1)h(r, r2) + rhr(r, r
2) + 2r2[hs(r, r

2) − g(r, r2)] ≡ 0,

which is directly comparable with the h-condition introduced previously.

We return to the variational context in Chapter 5 and, as in Chapter 2,

work under the assumption that the twist path Q solves a given ODE in r,

this one being slightly relaxed. In fact we conduct a study of the relationship

between three ODEs for Q, one arising as an Euler-Lagrange equation related

to a restricted energy functional, before solving the system EL[u; Ω, ϕ]. By

enforcing the assumption that Q solves a ‘weaker’ ODE than in Chapter 2, a

discriminant is considered for the full Lagrangian F = F (r, s, ξ) as opposed

to the (restricted) weighted Dirichlet case, where no dependence on the third

11
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argument is required. This, as before, permits an infinitude of solutions in odd

as well as even dimensions whenever this discriminant vanishes.

Finally in Chapter 6 we consider only whirl maps and return to the non-

variational context - that is we solve (1.0.1)-(1.0.6). In analogy to the study

of various ODEs for Q the work here depends intimately on a divergence-free

system for a vector of C 2 functions f = (f1, . . . , fd) apparent in the description

of the twist path Q, which here we assume takes values on the maximal torus

of block-diagonal matrices T ⊂ SO(n). For more on the theory of Lie groups

see [4, 27, 29, 35, 45, 47, 73, 80] and further references therein. We conduct

a study of the PDE L [u;A,B] = ∇P in three and four spatial dimensions by

hand upon introducing a polar coordinate system. The chapter closes with a

full n-dimensional analysis in the case where the function A(r, s, ξ) = h(r, s).

Results here are consistent with the rest of the text and it is the component-wise

analysis in low spatial dimensions which is novel.

Four appendices complement the main body of the text and gather together

many key results used repeatedly throughout. Appendix A is a collection of

key identities pertaining to generalised twists and whirls and their gradients. In

particular there are two results devoted to proving that both classes of maps,

that is twists and whirls, satisfy the incompressibility constraint det∇u = 1.

Appendix B is then a short yet formal derivation of the Euler-Lagrange equa-

tion (1.0.1)-(1.0.2) using the Lagrange multiplier method and considering an

unconstrained energy.

In Appendices C and D we give a series of results proving, respectively,

the existence and/or uniqueness of solutions to certain differential equations

considered throughout the thesis and some curl-free results for generic vector

fields, along with necessary and sufficient conditions under which these vector

fields constitute gradients, a stronger property than irrotationality.

12



Chapter 2

Generalised Twists as

Solutions to the Nonlinear

System L [u] = ∇P

In this chapter we address questions on the existence and multiplicity of a class of

geometrically-motivated mappings serving as solutions to the nonlinear system

in variation: 
(∇u)t {div [Fξ∇u]− Fsu} = ∇P in Ω,

det∇u = 1 in Ω,

u = ϕ on ∂Ω.

Here Ω ⊂ Rn is a bounded domain, F = F (r, s, ξ) is a sufficiently smooth

Lagrangian and Fs = Fs(|x|, |u|2, |∇u|2) and Fξ = Fξ(|x|, |u|2, |∇u|2) with Fs

and Fξ denoting the derivatives of F with respect to the second and third

variables respectively. Furthermore P = P(x) is an a priori unknown hy-

drostatic pressure resulting from the incompressibility constraint det∇u = 1

and for convenience the boundary map ϕ is taken throughout as the iden-

tity. Of particular interest is when Ω = Xn[a, b] is a symmetric finite an-

nulus and u = rQ(r)θ is an incompressible twist mapping with a twist path

Q ∈ C ([a, b],SO(n)) ∩ C 2(]a, b[,SO(n)). Here we prove that when the spatial

dimension n is even the above system admits a countably infinite family of in-

compressible twisting solutions of different topological types whereas in sharp

contrast when n is odd we have only the trivial solution u ≡ x.

13



Generalised Twists as Solutions to the Nonlinear System L [u] = ∇P

2.1 Statement of the Result

Let Ω ⊂ Rn (with n ≥ 2) be a bounded domain and consider the variational

integral

F[u; Ω] :=

ˆ
Ω

F (|x|, |u|2, |∇u|2) dx. (2.1.1)

Here F = F (r, s, ξ) is a twice continuously differentiable Lagrangian that is

assumed to be bounded from below, coercive and to have a polynomial growth

at infinity whilst being uniformly convex and monotone increasing in the third

variable (see below for a precise formulation of the assumptions on F ). The goal

is then to seek extremisers (equivalently critical points) of F over the space of

admissible weakly differentiable incompressible Sobolev mappings defined by

A p
ϕ (Ω) :=

{
u ∈W 1,p(Ω,Rn) : det∇u = 1 a.e. in Ω, u = ϕ on ∂Ω

}
, (2.1.2)

where 1 ≤ p < ∞ is fixed. Note that the boundary mapping ϕ ∈ C (∂Ω,Rn) is

taken throughout to be ϕ ≡ x whilst the last condition in (2.1.2) asserts that

u ≡ ϕ on ∂Ω in the sense of traces. Furthermore ∇u here denotes the gradient of

u, an n×n matrix-field in Ω, with det∇u denoting the Jacobian determinant of

u, also known as the deformation gradient. The Euler-Lagrange equation asso-

ciated with the energy functional (2.1.1) over the space of admissible mappings

A p
ϕ (Ω) can be formulated as1

EL[u; Ω, ϕ] =


L [u] = ∇P in Ω,

det∇u = 1 in Ω,

u ≡ ϕ on ∂Ω,

(2.1.3)

where the differential operator L = L [u] here is given explicitly by

L [u] := (∇u)t
{

div
[
Fξ(|x|, |u|2, |∇u|2)∇u

]
− Fs(|x|, |u|2, |∇u|2)u

}
. (2.1.4)

Here Fs and Fξ denote the derivatives of the Lagrangian F with respect to the

second and third variables respectively and P = P(x) in (2.1.3) is an a priori

unknown hydrostatic pressure resulting from the incompressibility constraint

det∇u = 1. Note firstly that by virtue of the incompressibility constraint we

have (cof∇u)−1 = (∇u)t which will be used repeatedly below and secondly that

1See Appendix B for a derivation of this system. Note that the identity mapping u ≡ x

is always a solution to this system in view of the vector field L [u ≡ x] = ∇[Fξ] − Fsx with

Fξ = Fξ(r, r
2, n), Fs = Fs(r, r2, n) being a gradient field in Ω.

14
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the divergence operator in L [u] is understood to act row-wise on the matrix

field Fξ(|x|, |u|2, |∇u|2)∇u.

We confine to the case where the domain is a bounded, rotationally-symmetric

annulus Ω = Xn[a, b] := {x ∈ Rn : a < |x| < b} with 0 < a < b < ∞ and

the extremiser u is a twist on Xn, that is, a continuous self-mapping of the

closed annulus onto itself agreeing with the identity on ∂Xn and admitting, in

spherical-polar coordinates, the representation

u : x = (r, θ) 7→ (r,Q(r)θ), a ≤ r ≤ b, r = |x|, θ = x|x|−1, x ∈ Xn.
(2.1.5)

For obvious geometric reasons the mapping Q ∈ C ([a, b],SO(n)) is referred

to as the twist path (or in the event Q(a) = Q(b) the twist loop) associated

with the twist u. The main result of this chapter is a multiplicity result in even

dimensions for solutions of the nonlinear system (2.1.3)-(2.1.4) in the form of

twist mappings and is formulated in the following theorem. Note that here and

later we write Jn = diag(J, ...,J) for n even and Jn = diag(J, ...,J, 0) for n odd

where J is the constant 2 × 2 skew-symmetric matrix of rotation by angle π/2

[cf. (2.3.4)]. We also denote by exp{·} the exponential map of the compact Lie

group SO(n) whose domain is the Lie algebra so(n) of skew-symmetric matrices.

For the sake of future reference and clarity we assume throughout that F =

F (r, s, ξ) is a twice continuously differentiable Lagrangian, that is, F ∈ C 2(U)

where U = U(Xn[a, b]) = [a, b]×]0,∞[×]0,∞[⊂ R3. We assume that there

exists some c0 ∈ R such that F (r, s, ξ) ≥ c0 for all (r, s, ξ) ∈ U and that for

every compact set K ⊂]0,∞[ there are constants c1 = c1(K), c2 = c2(K) > 0

such that, for p > 1,

|Fξ(r, s, ζ2)ζ| ≤ c2|ζ|p−1, ∀(r, s, ζ2) ∈ U, with s ∈ K,

c0 + c1|ζ|p ≤ F (r, s, ζ2) ≤ c2|ζ|p, ∀(r, s, ζ2) ∈ U, with s ∈ K.

In particular F is well-defined and bounded from below (yet not necessarily finite

everywhere) on A p
ϕ (Xn). As for convexity all we assume is that Fξ > 0, Fξξ ≥ 0

and that the twice continuously differentiable function ζ 7→ F (r, r2, n+ r2ζ2) is

uniformly convex in ζ for all a ≤ r ≤ b and ζ ∈ R.

Main Theorem. For n ≥ 2 even, the nonlinear system (2.1.3) has an infinite

family of incompressible twisting solutions u = u(x;m) (with m ∈ Z) of class

15
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C 2 admitting the representation

u(x;m) = rQ(r;m)θ = rexp{G (r;m)H}θ r = |x|, θ = x|x|−1,

= rPdiag(R[G ](r;m), . . . ,R[G ](r;m))Ptθ, x ∈ Xn, (2.1.6)

with H = PJnP
t and arbitrary P ∈ O(n).2 Here the angle of rotation function

G = G (r;m) ∈ C 2[a, b] is the unique solution to the two point boundary value

problem 
d

dr

[
rn+1Fξ

(
r, r2, n+ r2Ġ 2

)
Ġ

]
= 0, a < r < b,

G (a) = 0,

G (b) = 2mπ,

(2.1.7)

while the twist loop Q(r) = exp{G (r)H} = Pdiag(R[G ](r), . . . ,R[G ](r))Pt and

each diagonal block R[G ] is an SO(2) rotation matrix by angle G [see (2.3.4)].

2.2 An Euler-Lagrange Equation for the Twist

Path Q(r)

Our goal is to seek and describe solutions to the nonlinear system (2.1.3) that

take the specific geometric form u : (r, θ) 7→ (r,Q(r)θ). First we direct the

reader to Appendix A where we gather numerous important identities relating

to generalised twists and their gradients. Given in particular those identities

gathered in Proposition A.0.3 we can proceed by restricting the energy func-

tional (2.1.1) to the subclass of generalised twists u = rQ(r)θ hence obtaining

a formulation in terms of the associated twist loops Q = Q(r). Indeed referring

to (2.1.1) we can write

F[u;Xn] =

ˆ
Xn

F (|x|, |u|2, |∇u|2) dx

=

ˆ b

a

ˆ
Sn−1

rn−1F (r, r2, n+ r2|Q̇θ|2) dHn−1(θ) dr

=

ˆ b

a

E(r, Q̇)rn−1dr =: E[Q; (a, b)], (2.2.1)

2Note that for even n any such H is a skew-symmetric square root of −In. For odd n there

is no such root.
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where the reduced energy functional E has the Lagrangian E = E(r,A) given

by

E(r,A) :=

ˆ
Sn−1

F (r, r2, n+ r2|Aθ|2) dHn−1(θ) (2.2.2)

for a ≤ r ≤ b and A in the tangent space of SO(n), i.e., the Lie algebra of n×n
skew-symmetric matrices. As a matter of fact a basic inspection shows that

definition (2.2.2) lends itself to an immediate generalisation in that A can be

taken from the full space of n×n matrices. Thus when necessary we speak of E

in this extended sense. The above formulation now prompts us to introduce the

class of admissible twist loops, and subsequently search for extremising loops

for the energy E from within this class. Towards this end we set

Bp
In

= Bp
In

(a, b) :=

{
Q ∈W 1,p(a, b;SO(n)) : Q(a) = Q(b) = In

}
. (2.2.3)

In search of extremising loops for this reduced energy we now proceed on to

formulating the associated Euler-Lagrange equation. This as will be seen is a

particular case of the following result.

Proposition 2.2.1. Let L = L(r, η, ζ) be a sufficiently smooth Lagrangian and

Q ∈ Bp
In

(a, b) an extremal of class C 1 of the energy integral

L[Q; a, b] :=

ˆ b

a

L(r,Q, Q̇) dr, Q̇ =
dQ

dr
. (2.2.4)

Then Q satisfies EL[Q; a, b] = 0 where EL denotes the second-order differential

operator

EL[Q; a, b] = − d

dr

[
LζQ

t −QLtζ
]

+ LηQ
t −QLtη + LζQ̇

t − Q̇Ltζ . (2.2.5)

Here Lη = Lη(r,Q, Q̇) and Lζ = Lζ(r,Q, Q̇) with the subscripts denoting the

derivatives of L with respect to the second and third arguments respectively.

Proof. Let Q be as described and consider the one parameter family of variations

Qε with ε ∈ R defined by

Qε := Q + ε(F− Ft)Q, (2.2.6)

where F ∈ C∞0 (]a, b[,Mn×n). Then it can be seen that up to the first order in

ε, the variations Qε are in SO(n): QεQ
t
ε = In + O(ε2) = Qt

εQε and so for the

purpose of the first variation of energy extremality of Q gives

d

dε
L[Qε; a, b]

∣∣∣∣
ε=0

=
d

dε

ˆ b

a

L(r,Qε, Q̇ε) dr

∣∣∣∣
ε=0

= 0. (2.2.7)
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Now by a basic and straightforward differentiation it is evident that

Q̇ε = dQε/dr = Q̇ + ε[(Ḟ− Ḟt)Q + (F− Ft)Q̇].

As such we are tasked with solving

d

dε
L[Qε; a, b]

∣∣∣∣
ε=0

=

ˆ b

a

{〈
Lη(r,Q, Q̇), (F− Ft)Q

〉
(2.2.8)

+
〈
Lζ(r,Q, Q̇),

[
(Ḟ− Ḟt)Q + (F− Ft)Q̇

]〉}
dr = 0.

Suppressing the arguments in the Lagrangian and its derivatives for brevity, a

rearrangement of terms gives

ˆ b

a

〈
− d

dr

(
LζQ

t
)

+ LζQ̇
t + LηQ

t, F− Ft
〉
dr = 0 (2.2.9)

and so the conclusion follows by noting the arbitrariness of F ∈ C∞0 (]a, b[,Mn×n),

the skew-symmetry of the matrix field F − Ft and the fundamental lemma of

the calculus of variations.

We now consider the particular case of (2.2.1) above where the Lagrangian

is given by L(r,Q, Q̇) = E(r, Q̇)rn−1, with E(r, Q̇) as defined by (2.2.2). It is

clear that here Lη ≡ 0 and so in this case

EL[Q; a, b] = − d

dr

[
LζQ

t −QtLtζ
]

+ LζQ̇
t − Q̇Ltζ . (2.2.10)

Moreover by a further reference to (2.2.2) we see that

Lζ(r, Q̇) = 2

ˆ
Sn−1

rn+1Fξ(r, r
2, n+ r2|Q̇θ|2)Q̇θ ⊗ θ dHn−1(θ), (2.2.11)

and so in particular it follows that LζQ̇
t − Q̇Ltζ = 0. As such we have proved

the following statement.

Corollary 2.2.2. The Euler-Lagrange equation associated with the energy in-

tegral E = E[Q; a, b] defined by (2.2.1) over the space of admissible twist loops

Bp
In

(a, b) has the formulation

ˆ
Sn−1

d

dr

{
rn+1Fξ(r, r

2, n+ r2|Q̇θ|2)
[
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]}
dHn−1(θ) = 0,

(2.2.12)

for a < r < b.
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2.3 The Totally Integrable Case F = h(r, s)ξ

Before proceeding onto the solution and implications of the Euler-Lagrange

equation (2.2.12), we pause briefly to discuss an important and illustrative case.

Indeed here we take the integrand F (r, s, ξ) = h(r, s)ξ for some strictly positive

h ∈ C 2([a, b]×]0,∞[) with (2.1.1) then being a weighted form of the Dirichlet en-

ergy. For this choice of integrand the reduced Euler-Lagrange equation (2.2.12),

noting Fξ ≡ 1, can be written as

d

dr

{
rn+1h(r, r2)

ˆ
Sn−1

[
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]
dHn−1(θ)

}
= 0. (2.3.1)

Upon evaluating the spherical integral, e.g., by using the divergence theorem,

it is seen that the above leads to the second order ODE:

d

dr

{
rn+1h(r, r2)Q̇Qt

}
= 0, a < r < b. (2.3.2)

Integrating once gives rn+1h(r, r2)Q̇Qt = H where H is a constant n×n skew-

symmetric matrix. This by noting the boundary conditions on the twist path

as required by Q ∈ B2
In

(a, b) (see (2.2.3) with p = 2) has the general solution

Q(r) = exp{H (r)H}, with

H (r) =
H(r)

H(b)
, H(r) =

ˆ r

a

ds

sn+1h(s, s2)
, a ≤ r ≤ b. (2.3.3)

We see from the above that H (a) = 0 and H (b) = 1 so the boundary

condition for the twist path Q(a) = In is immediately satisfied. Depending

on whether the dimension n is even or odd, the skew-symmetric matrix H can

be orthogonally diagonalised and written as H = Pdiag(c1J, . . . , ckJ)Pt when

n = 2k, and H = Pdiag(c1J, . . . , ck−1J, 0)Pt when n = 2k − 1. Here P ∈ O(n)

and the scalars c1, . . . , ck are all real – in fact, the eigenvalues of H are seen to

be ±icj with 1 ≤ j ≤ k when n = 2k, and 0,±icj with 1 ≤ j ≤ k − 1 when

n = 2k − 1. Furthermore the 2× 2 matrices J and R are given respectively by

J =

(
0 −1

1 0

)
, R[t] = exp{tJ} =

(
cos t − sin t

sin t cos t

)
. (2.3.4)

It is thus seen that

Q(b) = In ⇐⇒ exp{H (b)H} = In ⇐⇒ exp{H} = In (2.3.5)
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and plainly this last identity holds iff cj ∈ 2Zπ for all 1 ≤ j ≤ k. This therefore

characterises all solutions to (2.3.2) in B2
In

(a, b) as Q(r) = exp{H (r)H} with

H as in (2.3.3) and H as just described.

Now moving forward onto evaluating the action of the differential operator

L on the twist map u with twist path Q = Q(r) we first note that here

L [u] = (∇u)t
{

div
[
h(r, |u|2)∇u

]
− hs(r, |u|2)|∇u|2u

}
= (∇u)t

{
∇u∇[h(r, |u|2)] + h(r, |u|2)∆u− hs(r, |u|2)|∇u|2u

}
(2.3.6)

and so upon differentiation, substitution for u and noting |u|2 = r2 we can write,

with reference to Proposition A.0.3,

L [u] = (∇u)t
{

[hr(r, r
2) + 2rhs(r, r

2)]∇u θ + h(r, r2)∆u− hs(r, r2)|∇u|2u
}

= (Qt + rθ ⊗ Q̇θ)

{
[hr(r, r

2) + 2rhs(r, r
2)](Q + rQ̇)

+ h(r, r2)
[
(n+ 1)Q̇ + rQ̈

]
− rhs(r, r2)(n+ r2|Q̇θ|2)Q

}
θ. (2.3.7)

Expanding (2.3.2) by direct differentiation and using Qt[LHS (2.3.2)]Q = 0 the

above simplifies to

L [u] = [hr(r, r
2) + 2rhs(r, r

2)]θ

+ [r2hr(r, r
2) + r3hs(r, r

2) + (n+ 1)rh(r, r2)]|Q̇θ|2θ

+ [r2h(r, r2)〈Q̇θ, Q̈θ〉 − nrhs(r, r2)]θ − rh(r, r2)QtQ̇Q̇tQθ. (2.3.8)

Referring to the Euler-Lagrange equation (2.1.3) we now need to verify

L [u] = ∇P. Clearly here the first two terms in (2.3.8) form ∇h(|x|, |x|2)

whilst upon substituting Q(r) = exp{H (r)H} with Q̇ = ˙H HQ and Q̈ =

(Ḧ H+ ˙H 2H2)Q it is plain to see that 〈Q̇θ, Q̈θ〉 = ˙H Ḧ |Hθ|2 and QtQ̇Q̇tQ =

− ˙H 2H2. Therefore we have

L [u = r exp{H (r)H}θ] = ∇h(|x|, |x|2)

+ [r2hr(r, r
2) + r3hs(r, r

2) + (n+ 1)rh(r, r2)] ˙H 2|Hθ|2θ

+ [r2h(r, r2) ˙H Ḧ |Hθ|2 − nrhs(r, r2)]θ

+ rh(r, r2) ˙H 2H2θ. (2.3.9)

Note that the term −rnhs(r, r2)θ = ∇a(|x|) for an appropriate primitive term

a since it is a function of r alone. Then by a further application of the ODE

20



Generalised Twists as Solutions to the Nonlinear System L [u] = ∇P

(2.3.2) for Q = exp{H (r)H} this expression significantly reduces to

L [u = r exp{H (r)H}θ] =∇h(|x|, |x|2)− r3hs(r, r
2) ˙H 2|Hθ|2θ

+∇a(|x|) + rh(r, r2) ˙H 2H2θ. (2.3.10)

Now by an application of Lemma D.0.1 (see Appendix D) to the vector field

U(x) := L [u]−∇[h(|x|, |x|2)+a(|x|)] = rh(r, r2) ˙H 2H2θ−r3hs(r, r
2) ˙H 2|Hθ|2θ

with A (r) = −hs(r, r2) ˙H 2, B(r) = h(r, r2) ˙H 2 we have

2A + Ḃ/r =
1

r

[
hr(r, r

2) ˙H 2 + 2h(r, r2) ˙H Ḧ
]
. (2.3.11)

We can again apply the ODE (2.3.2) to the above to lose the second derivative

in H . After this rearrangement we see that 2A +Ḃ/r 6≡ 0 iff rhr(r, r
2)+2(n+

1)h(r, r2)+4r2hs(r, r
2) 6≡ 0 on ]a, b[ (c.f. Lemma D.0.1 for notation). Under this

assumption we have curlU(x) = 0 ⇐⇒ H2 = −c2 In. This therefore leads to

the conclusion |c1|2 = · · · = |ck|2 = c2 when n = 2k, and |c1| = · · · = |ck−1| = 0

when n = 2k − 1. Finally setting c = 2mπ with m ∈ Z (m = 0 when n odd)

the boundary condition Q(b) = In is also seen to be satisfied. In conclusion,

we see that here the reduced Euler-Lagrange equation (the ODE) versus the

full Euler-Lagrange equation (the PDE) associated with the energy integrand

F = h(r, s)ξ have the following contrasting consequences:

• (ODE I) From (2.3.1)-(2.3.2) we have:

(2.3.2) ⇐⇒ Q(r) = exp{H (r)H}, Ht = −H, (2.3.12)

where H = H (r) is as in (2.3.3).

• (PDE) From L [u] = ∇P we have:

curl {U(x) = L [u = rexp{H (r)H}θ]−∇[h(|x|, |x|2) + a(|x|)]} = 0

⇐⇒ H =

{
2mπPJnP

t n even

0 n odd
(2.3.13)

and so u ≡ x (for n odd) and u = rPexp{2mπH (r)Jn}Ptθ (for n even).

Here Jn = diag(J, ...,J) with J as in (2.3.4).3

3Note that when n = 2k from H2 = −c2In it follows that c1, . . . ck ∈ {±c}. By adjusting

P ∈ O(n), however, we can arrange and assume without loss of generality that indeed c1 =

· · · = ck = c.
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• (ODE II) As a further observation note that upon considering the strength-

ened form of the ODE (2.3.1) obtained by discarding the spherical inte-

gration and instead assuming

d

dr

{
rn+1h(r, r2)

[
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]}
= 0, a < r < b, ∀ θ ∈ Sn−1,

(2.3.14)

it follows firstly from (2.3.12) that any solution here has the form Q(r) =

exp{H (r)H} and subsequently upon noting QH = HQ and invoking

Lemma 5.2.2 that

(2.3.14) ⇐⇒ d

dr

{
rn+1h(r, r2) ˙H (r)[HQθ ⊗Qθ −Qθ ⊗HQθ]

}
= 0

⇐⇒ d

dr

{
rn+1h(r, r2) ˙H (r)

}
[HQθ ⊗Qθ −Qθ ⊗HQθ]

+

{
rn+1h(r, r2) ˙H (r)2

}
[H2Qθ ⊗Qθ −Qθ ⊗H2Qθ] = 0

⇐⇒ Q
[
H2θ ⊗ θ − θ ⊗H2θ

]
Qt = 0 ⇐⇒ H2 = −c2In.

(2.3.15)

It is therefore seen that this strengthened version of the Euler-Lagrange

equation (2.2.12) imposes the same restriction on the twist paths Q =

Q(r) as does the curl-free condition in the PDE. This stronger form of the

ODE (2.2.12) and its curious implications will be discussed further in the

next section.

2.4 Extremising Twist Paths as Scaled Geodesics

on the Lie Group SO(n)

One of the main features of the Euler-Lagrange equation (2.2.12) is the presence

of the spherical integral which, unlike the case with the weighted Dirichlet en-

ergy considered in the last section [see (2.3.2)], prevents one from reducing the

equation to a directly integrable ODE in the radial variable and thus obtain-

ing an explicit representation of the solutions as in (2.3.3). Motivated by the

discussion in the previous section we start here by first considering solutions to

(2.2.12) in the form Q(r) = exp{G (r)H} where G = G (r) is a suitable function

in C 2[a, b] and H is the constant n×n skew-symmetric matrix with H = PJnP
t.

Here and below Jn = diag(J, ...,J) when n is even and Jn = diag(J, ...,J, 0)
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when n is odd, where J = R[π/2] as in (2.3.4). Starting with the n even case

where |Q̇θ|2 = Ġ 2|Hθ|2 = Ġ 2 and writing Fξ = Fξ(r, r
2, n + r2Ġ 2) for short it

is readily seen that

LHS (2.2.12) =
d

dr

ˆ
Sn−1

{
rn+1Fξ[Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ]

}
dHn−1(θ)

=
d

dr

{
rn+1FξĠ

ˆ
Sn−1

[HQθ ⊗Qθ −Qθ ⊗HQθ] dHn−1(θ)

}
=

d

dr

{
rn+1FξĠωn[HQQt −Q(HQ)t]

}
=

d

dr

{
rn+1FξĠ

}
(2ωnH). (2.4.1)

As such in even dimensions a twist path Q(r) = exp{G (r)H} is a solution to the

Euler-Lagrange equation (2.2.12) provided that the angle of rotation function

G satisfies the second-order ODE

d

dr

[
rn+1Fξ

(
r, r2, n+ r2Ġ 2

)
Ġ
]

= 0, a < r < b. (2.4.2)

Now rather than following the route leading to (2.3.13) based on an analysis

and verification of the PDE (2.1.3)-(2.1.4) and the curl-free condition on the

vector field L [u = rQ(r)θ], in what follows we focus instead on the the ODE

(2.2.12) and show that by a natural strengthening of (2.2.12) and invoking an

interesting observation regarding geodesics on SO(n), the twist paths Q = Q(r)

serving as solutions here must have exactly the form and structure alluded to

above. Towards this end it is readily seen that a stronger condition implying

(2.2.12) is the strengthened ODE:

d

dr

{
rn+1Fξ

(
r, r2, n+ r2|Q̇θ|2

) [
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]}
= 0, a < r < b,

(2.4.3)

for all θ ∈ Sn−1. That Q = exp{GH} with G satisfying (2.4.2) is still a

solution to this stronger form of (2.2.12) follows by noting that here Q̇θ⊗Qθ =

ĠHQθ ⊗ Qθ and Q̈θ ⊗ Qθ = G̈HQθ ⊗ Qθ − Ġ 2Qθ ⊗ Qθ. Hence for n even

by substitution and a straightforward differentiation starting from (2.2.12) we
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have

LHS (2.4.3) =
d

dr

{
rn+1Fξ

(
r, r2, n+ r2|Q̇θ|2

) [
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]}
=

{
d

dr

[
rn+1Fξ

(
r, r2, n+ r2Ġ 2

)]
Ġ + rn+1Fξ

(
r, r2, n+ r2Ġ 2

)
G̈

}
×

× (HQθ ⊗Qθ −Qθ ⊗HQθ)

=

{
d

dr

[
rn+1Fξ

(
r, r2, n+ r2Ġ 2

)
Ġ
]}

(HQθ ⊗Qθ −Qθ ⊗HQθ)

= 0, (2.4.4)

as claimed. Now moving forward note that for a twist path Q ∈ C 1([a, b],SO(n))

the integral

I(Q, θ) =

ˆ b

a

|Q̇θ| dr (2.4.5)

represents the length of the curve γ ∈ C 1([a, b],Sn−1) given by γ(r) = Q(r)θ.

Evidently for n even if Q = exp{GH} with H = PJnP
t then this integral is

independent of θ. We are now in a position to prove the following result.

Theorem 2.4.1. Assume Q ∈ C 1([a, b],SO(n))∩C 2(]a, b[,SO(n)) with Q(a) =

In and Q(b) = In satisfies (2.4.3). Assume additionally that the integral I(Q, θ)

given by (2.4.5) is independent of θ. Then depending on the dimension n being

even or odd we have the following description of Q:

• n even: There exists m ∈ Z and P ∈ O(n) such that

Q(r) = exp{G (r;m)PJnP
t}

= Pdiag(R[G ](r;m), . . . ,R[G ](r;m))Pt, a ≤ r ≤ b, (2.4.6)

where Jn = diag(J, . . . ,J), J and R are as in (2.3.4) and G = G (r;m) ∈
C 2[a, b] is the unique solution to the two point boundary value problem

d

dr

[
rn+1Fξ

(
r, r2, n+ r2Ġ 2

)
Ġ

]
= 0, a < r < b,

G (a) = 0,

G (b) = 2mπ.

(2.4.7)

• n odd: Q ≡ In.
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Proof. Since I(Q, θ) = 0 implies |Q̇θ| = 0 and hence Q ≡ In, in the rest of the

proof we assume I(Q, θ) > 0. Now we start by observing that if Q is a solution

to (2.4.3) for every θ, then it also satisfies the equation

d

dr

[
rn+1Fξ(r, r

2, n+ r2|Q̇θ|2)Q̇θ
]

+ rn+1Fξ(r, r
2, n+ r2|Q̇θ|2)|Q̇θ|2Qθ = 0.

(2.4.8)

Indeed starting from the left and writing Fξ = Fξ(r, r
2, n+ r2|Q̇θ|2) we have

d

dr

{
rn+1FξQ̇θ

}
=
d

dr

{
rn+1Fξ[Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ]Qθ

}
=
d

dr

{
rn+1Fξ[Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ]

}
Qθ (2.4.9)

+
{
rn+1Fξ[Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ]

}
Q̇θ = −rn+1Fξ|Q̇θ|2Qθ,

where in deducing the last equality we have used (2.4.3). Let us now introduce

the integral

F (r, θ) :=

ˆ r

a

|Q̇(s)θ|ds, a ≤ r ≤ b, θ ∈ Sn−1. (2.4.10)

Then testing (2.4.7) against F and using (2.4.8) by way of differentiating and

then taking the inner product with Q̇θ we can write with Fξ = Fξ(r, r
2, n +

r2|Q̇θ|2) as above and upon noting Ḟ 2 = |Q̇θ|2,

d

dr

{
rn+1Fξ|Q̇θ|

}
=

d

dr

{
rn+1Fξ

}
|Q̇θ|+ rn+1Fξ

〈Q̈θ, Q̇θ〉
|Q̇θ|

= −rn+1Fξ〈Q̇θ,Qθ〉|Q̇θ| = 0, (2.4.11)

where the last identity uses the skew-symmetry of QtQ̇. Note that this argument

shows that, as a function of r, rn+1Fξ|Q̇θ| is a positive constant on any interval

on which |Q̇θ| is non-zero and so a basic continuity argument implies that either

|Q̇θ| ≡ 0 on [a, b] or |Q̇θ| > 0 on [a, b]. Furthermore it also shows that F (r, θ)

is a (non-zero) solution to the ODE in (2.4.7) for every fixed θ ∈ Sn−1.

Now this solution satisfies the end-point conditions F (a) = 0 and F (b) =

I(Q, θ) > 0 where the latter by assumption is independent of θ. We next aim

to show that these together imply that F (r, θ) is independent of θ. To this

end we first note that solutions to (2.4.7) are extremisers over Dp
m(a, b) = {G ∈

W 1,p(a, b) : G (a) = 0,G (b) = 2πm} of the energy

G 7→
ˆ b

a

F
(
r, r2, n+ r2Ġ 2

)
rn−1 dr. (2.4.12)
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It is straightforward to verify that this functional is strictly convex (due to the

assumptions on F : Fξ > 0 and F being uniformly convex in ξ). Therefore, using

standard results, solutions to (2.4.7) are the unique minimisers of this energy

functional with respect to their own boundary conditions. This implies that

as F (r, θ) solves the ODE in (2.4.7) for all θ and the end-point conditions on

F , i.e., at r = a and r = b are independent of θ, by the stated uniqueness of

minimisers, the function F (r, θ) must also be independent of θ. Now returning

to the ODE in (2.4.7) it follows after integrating once that any solution G = G (r)

satisfies

rn+1Fξ(r, r
2, n+ r2Ġ 2)Ġ ≡ c, a < r < b, (2.4.13)

for a suitable constant c ∈ R. Thus as Fξ > 0, all non-zero solutions to (2.4.7),

in particular F , are strictly monotone and hence invertible. Let F−1(s) = r(s)

and Q(r(s)) = K(s) for K ∈ C 2(]0, l[,SO(n))∩C ([0, l],SO(n)) where l = F (b).

Then writing Q(r) = K(F (r)) we have Q̇ = K′Ḟ (where prime denotes d/ds).

Hence starting from (2.4.8) we can write, with Fξ = Fξ(r, r
2, n + r2Ḟ 2) for

short,

d

dr

[
rn+1FξQ̇θ

]
+ rn+1Fξ|Q̇θ|2Qθ = 0. (2.4.14)

This upon substitution and a change of variables with d/dr = Ḟd/ds gives

d

ds

[
rn+1FξḞK′θ

]
+ rn+1FξḞ |K′θ|2Kθ = c

[
K′′ + |K′θ|2K

]
θ = 0, (2.4.15)

that is the geodesic equation on the unit sphere for γ(s) = K(s)θ. We need to

solve this for K = K(s) subject to |K′θ|2 = |Q̇θ|2/Ḟ 2 = 1.

Indeed by taking the ansatz K(s) = exp{sA} for a constant n × n skew-

symmetric matrix A we have [A2 + In]K = 0. For n odd this has no solution

(with I(Q, θ) > 0) whilst for n even it gives A = PJnP
t. It now follows at once

that Q has the form described in the theorem, that is, for n odd Q(r) ≡ In and

for n even firstly

K(s) = Pdiag(R[s], . . . ,R[s])Pt, 0 ≤ s ≤ l, (2.4.16)

with l = 2mπ so that K(0) = K(l) = In and then

Q(r) = K(F (r)) = Pdiag(R[F ](r), . . . ,R[F ](r))Pt, (2.4.17)

where F is a solution to (2.4.7) with F (a) = 0, F (b) = 2mπ.
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2.5 Return to the Nonlinear System (2.1.3)-(2.1.4)

We next move on to contemplating the task of obtaining and characterising the

twisting solutions u to the resulting nonlinear system
L [u] = ∇P in Ω,

det∇u = 1 in Ω,

u ≡ x on ∂Ω,

(2.5.1)

where this system is derived in Appendix B and the differential operator L [u] is

ultimately described by (B.0.6). Since the primary task here is to seek twisting

solutions to the system (2.5.1) we proceed by first referring to Corollary A.0.5

which lists some key identities related to generalised twists for the specific choice

of twist paths Q(r) = exp{G (r)A} with G (r) (a ≤ r ≤ b) a sufficiently regular

angle of rotation function and A a fixed n×n skew-symmetric matrix. We need

to discern which corresponding generalised twists u = rQ(r)θ serve as solutions

to the Euler-Lagrange equation (2.5.1) and this is resolved in even dimensions

in the following result. We note that since the only twist loop Q = Q(r) which,

in odd dimensions, satisfies the assumptions laid out in Theorem 2.4.1 is the

constant matrix Q ≡ In it is necessary that the only generalised twist solution

to (2.5.1) in odd dimensions is the identity map u ≡ x.

Theorem 2.5.1. Let n ≥ 2 be even and suppose G ∈ C 2[a, b] is a solution to

the boundary value problem (2.4.7). Let H = PJnP
t for some P ∈ O(n) and

put

Q(r) = exp{G (r)H} = Pdiag(R[G ](r), ...,R[G ](r))Pt, a ≤ r ≤ b (2.5.2)

where J, R ∈ SO(2) are given by (2.3.4). Then u solves (2.5.1); that is L [u =

rQ(r)θ] is a gradient field in Xn[a, b]. Specifically, L [u] = ∇P where

P = Fξ(r, r
2, n+ r2Ġ 2)−G(r) (2.5.3)

up to an additive constant where ∇G = r[Ġ 2Fξ(r, r
2, n + r2Ġ 2) + Fs(r, r

2, n +

r2Ġ 2)]θ.

Proof. We use the description of the vector field L [u = rexp{G (r)H}θ] as in

(A.0.8) in Corollary A.0.5 along with the substitution A = H = PJnP
t. In

this case, basic calculations give Q̇ = ĠHQ, Q̈ = (G̈H− Ġ 2In)Q, by virtue of
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H2 = −In and |θ?|2 = 1 where θ? = Hθ and 〈θ?, θ〉 = 0. This gives us

L [u] = L [r exp{G (r)H}θ] = Fξξ(r, r
2, n+ r2Ġ 2)×

× (2rĠ 2 + 2r2Ġ G̈ )(θ + rĠHθ + r2Ġ 2θ)

+ 2rFsξ(r, r
2, n+ r2Ġ 2)(θ + rĠHθ + r2Ġ 2θ)

+ Frξ(r, r
2, n+ r2Ġ 2)(θ + rĠHθ + r2Ġ 2θ)

+ Fξ

{[
(n+ 1)Ġ + rG̈

]
Hθ +

[
r(n+ 1)Ġ 2 − rĠ 2 + r2Ġ G̈

]
θ
}

− rFs(r, r2, n+ r2Ġ 2)θ. (2.5.4)

Observe that here we can write L [u] = A (r)θ+ B(r)Hθ, where the factors A

and B are respectively given by

A (r) :=Fξξ(r, r
2, n+ r2Ġ 2)(1 + r2Ġ 2)(2rĠ 2 + 2r2Ġ G̈ ) (2.5.5)

+ 2rFsξ(r, r
2, n+ r2Ġ 2)(1 + r2Ġ 2) + Frξ(r, r

2, n+ r2Ġ 2)(1 + r2Ġ 2)

+ Fξ(r, r
2, n+ r2Ġ 2)

[
r(n+ 1)Ġ 2 − rĠ 2 + r2Ġ G̈

]
− rFs(r, r2, n+ r2Ġ 2),

and
B(r) := rFξξ(r, r

2, n+ r2Ġ 2)Ġ (2rĠ 2 + 2r2Ġ G̈ )

+ 2r2Fsξ(r, r
2, n+ r2Ġ 2)Ġ + rFrξ(r, r

2, n+ r2Ġ 2)Ġ

+ Fξ(r, r
2, n+ r2Ġ 2)[(n+ 1)Ġ + rG̈ ]. (2.5.6)

Since G (r) by assumption is a solution to the ODE in (2.4.7) it can be seen that

B(r) = 0, and A (r) can be reduced to

A (r) =Fξξ(r, r
2, n+ r2Ġ 2)(2rĠ 2 + 2r2Ġ G̈ )

+ 2rFsξ(r, r
2, n+ r2Ġ 2) + Frξ(r, r

2, n+ r2Ġ 2)

− rĠ 2Fξ(r, r
2, n+ r2Ġ 2)− rFs(r, r2, n+ r2Ġ 2) (2.5.7)

and subsequently this gives

A (r)θ =∇Fξ(r, r2, n+ r2Ġ 2)−

r[Ġ 2Fξ(r, r
2, n+ r2Ġ 2) + Fs(r, r

2, n+ r2Ġ 2)]θ. (2.5.8)

It is evident that r[Ġ 2Fξ(r, r
2, n + r2Ġ 2) + Fs(r, r

2, n + r2Ġ 2)]θ is a gradient;

indeed here L [u] = ∇P with P as in (2.5.3). It is easily seen that the bound-

ary condition u ≡ x in (2.5.1) follows from G (a) = 0, G (b) = 2mπ and the

fact that u satisfies the incompressibility constraint det∇u = 1 is proved in

Proposition A.0.4.
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It remains to prove the Main Theorem as stated earlier in the chapter.

Proof. (Main Theorem) With the above propositions and lemmas at our disposal

we can now move on to completing the proof of the main theorem as presented

in the first section of this chapter. Indeed all that remains is to prove that for

each m ∈ Z the boundary value problem

BVP[G ;Fξ] :=


d

dr

[
rn+1Fξ

(
r, r2, n+ r2Ġ 2

)
Ġ

]
= 0, a < r < b,

G (a) = 0,

G (b) = 2mπ,

(2.5.9)

has a unique solution G = G (r;m) in C 2[a, b]. For this we refer to Proposi-

tion C.0.1 with the specific choice of A(r, s, ξ) = Fξ(r, s, ξ). �
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Chapter 3

The h-Condition and

Consideration of Weighted

Dirichlet Type Lagrangians

In this chapter we address questions on the existence and multiplicity of solu-

tions to the nonlinear elliptic system in divergence form
div
[
h(|x|, |u|2)∇u

]
− hs(|x|, |u|2)|∇u|2u = [cof∇u]∇P in Ω,

det∇u = 1 in Ω,

u = ϕ on ∂Ω,

where h = h(r, s) > 0, P = P(x) is an a priori unknown hydrostatic pressure

field and ϕ is a suitable boundary map. Most notably, for a finite symmetric

annulus we prove the existence of an infinite scale of topologically distinct twist-

ing solutions to the system by way of analysing an associated reduced energy,

the resulting Euler-Lagrange equation and a structure theorem for curl-free vec-

tor fields generated by skew-symmetric matrices. An “h-condition” capturing a

contrasting and surprising behaviour in the nature and multiplicity of twisting

solutions is introduced and exploited. Other classes of solutions with 2-plane

symmetries are examined and relations to closed geodesics on the Lie group

SO(n) in the form Q(r) = exp{f(r)H} are explored and discussed.
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3.1 Preliminaries

Let Ω ⊂ Rn (n ≥ 2) be a bounded domain and consider the variational energy

integral

F[u; Ω] :=

ˆ
Ω

F (x, u,∇u) dx, (3.1.1)

where the Lagrangian is of weighted Dirichlet type F (x, u,∇u) = h(|x|, |u|2)|∇u|2

with h = h(r, s) > 0 of class C 2 and u in the space of incompressible Sobolev

maps Aϕ(Ω) := {u ∈ W 1,2(Ω,Rn) : det∇u = 1 a.e. in Ω, u ≡ ϕ on ∂Ω}. Here

∇u denotes the gradient of u, an n × n matrix field in Ω required to satisfy

the pointwise incompressibility constraint det∇u = 1 in Ω (hence the algebraic

identity cof∇u = (∇u)−t). To avoid unnecessary technicalities and to fix ideas

ϕ is taken as the identity map ϕ ≡ x and boundary values are interpreted in the

sense of traces. Now extremisers (or equivalently critical points) of this energy

over the admissible space Aϕ(Ω) can be seen, e.g., using the Lagrange multiplier

method (c.f. Appendix B), to satisfy the nonlinear system
Lh[u] = ∇P in Ω,

det∇u = 1 in Ω,

u = ϕ on ∂Ω,

(3.1.2)

where P = P(x) is an a priori unknown hydrostatic pressure corresponding to

the incompressibility constraint – the Lagrange multiplier – and the action of

the differential operator Lh is given by

Lh[u] = (cof∇u)−1{div
[
h(r, |u|2)∇u

]
− hs(r, |u|2)|∇u|2u}

= (∇u)t{hr(r, |u|2)∇uθ + hs(r, |u|2)∇u∇|u|2}

+ h(r, |u|2)(∇u)t∆u− hs(r, |u|2)|∇u|2(∇u)tu. (3.1.3)

Here r = |x|, θ = x|x|−1 and hr = hr(r, s) and hs = hs(r, s) are the derivatives

of the weight function h in the first and second arguments respectively. As a

result of this formulation, it is evident that if u is a solution to this system, then

necessarily curl Lh[u] = curl∇P ≡ 0 in Ω, that is,

curl Lh[u] = curl

{
(∇u)t[hr(r, |u|2)∇uθ + hs(r, |u|2)∇u∇|u|2] (3.1.4)

+ h(r, |u|2)(∇u)t∆u− hs(r, |u|2)|∇u|2(∇u)tu

}
≡ 0.
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However note that this condition, unless Ω ⊂ Rn has a particular homology,

would not on its own imply that the vector field Lh[u] is a gradient field, here,

∇P.

Throughout this chapter we specialise to the geometric set up where Ω =

Xn = Xn[a, b] := {x ∈ Rn : a < |x| < b} is a finite symmetric annulus with b >

a > 0, ϕ ≡ x, namely, the identity map and h ∈ C 2([a, b]×]0,∞[) satisfies h > 0.

In this context by a generalised twist we understand a map u ∈ C (Xn,Xn),

which, in spherical coordinates, admits the representation

u : (r, θ) 7→ (r,Q(|x|)θ), r = |x|, θ = x|x|−1. (3.1.5)

The curve Q ∈ C ([a, b];SO(n)) is referred to as the twist path associated with

u. In order to ensure u ≡ x on ∂Ω = ∂Xn we set Q(a) = Q(b) = In where

In is the n × n identity matrix. In this event the twist path is a closed curve

in SO(n) and as such we refer to it as the twist loop associated with u. Our

aim is to establish the existence of an infinitude of twisting solutions to the

nonlinear system (3.1.2)-(3.1.3) by appropriately formulating the action of Lh

on sufficiently regular twists u and solving the resulting PDE. Over the course

of the chapter it will become apparent that certain closed (scaled) geodesics of

the compact Lie group SO(n) in the form Q(r) = exp{G (r)H} (a ≤ r ≤ b)

will play a prominent role by serving as the twist loops for the sought twisting

solutions u to (3.1.2)-(3.1.3). Here G ∈ C 2[a, b] is in turn a solution to a two

point boundary value problem and H is a suitable skew-symmetric matrix in

the Lie algebra so(n).

We remark here that a solution to this system is u ≡ x. Indeed, upon substi-

tution, (3.1.3) reduces to Lh[u ≡ x] = [hr(r, r
2) + 2rhs(r, r

2)− rnhs(r, r2)]θ =

∇P. The left-hand side here can be written as s(r)θ and as such is the gra-

dient of some appropriate primitive function s(r)θ = ∇S(|x|) that depends on

the radial variable alone.

The second class of symmetric maps we consider as solutions to (3.1.2)-

(3.1.3) and extremisers of (3.1.1) are the so-called whirl maps (or whirls for

simplicity). These are maps u ∈ C (Xn,Xn) of the form

u : (r, θ) 7→ rQ(ρ1, . . . , ρN )θ, r = |x|, θ = x|x|−1. (3.1.6)

Here x ∈ Xn and we denote by % = %(x) the 2-plane radial variables (ρ1, . . . , ρN ),

defined, depending on the dimension n being even or odd, as follows:
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(i) If n = 2d set N = d and

ρj =
√
x2

2j−1 + x2
2j , 1 ≤ j ≤ d. (3.1.7)

(ii) If n = 2d+ 1 set N = d+ 1 and

ρj =


√
x2

2j−1 + x2
2j , 1 ≤ j ≤ d,

xn, j = d+ 1.
(3.1.8)

It is seen that for x ∈ Xn the vector % = %(x) lies in the semi-annular domain

An where An := {% ∈ Rd+ : a < ‖%‖ < b} when n = 2d and An := {% ∈ Rd+ ×R :

a < ‖%‖ < b} when n = 2d + 1 with ‖%‖ =
√
ρ2

1 + ...+ ρ2
N for the norm of %.

Using this notation, we require in (3.1.6) that Q ∈ C (An,SO(n)). For future

reference, we will denote the three boundary segments of An as

(∂An)a = {ρ ∈ ∂AN : ‖%‖ = a},

(∂An)b = {ρ ∈ ∂AN : ‖%‖ = b}, (3.1.9)

Γn = ∂An \ {(∂An)a ∪ (∂An)b}.

We impose that the matrix-valued map Q must take values on the maximal

torus T of SO(n) consisting of 2 × 2 block-diagonal rotation matrices and for

definiteness we specifically consider Q = Q(%) in the form

Q(ρ1, ..., ρN ) =

{
diag(R[f1], . . . ,R[fd]) n = 2d,

diag(R[f1], . . . ,R[fd], 1) n = 2d+ 1.
(3.1.10)

HereR is a 2×2 rotation matrix defined via (3.3.2) and the functions fj ∈ C (An)

for all 1 ≤ j ≤ d satisfy fj ≡ 0 on (∂An)a and fj ≡ 2mjπ on (∂An)b. Note

that x ∈ ∂Xna = {|x| = a} ⇐⇒ %(x) ∈ (∂An)a and x ∈ ∂Xnb = {|x| = b} ⇐⇒
%(x) ∈ (∂An)b. The functions fj = fj(%) and hence the map Q = Q(%) are left

free on the flat part of the boundary Γn.

3.2 Identities Related to the Action Lh[u]

In this section the action Lh[u = rQ(r)θ] is formally derived and its conse-

quences on, in particular, the twist path Q(r), is analysed. We first refer to

Proposition A.0.3 where many properties pertaining to the kinematics of gen-

eralised twists are derived, which are used in this section and throughout the
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chapter. With these identities at hand we can obtain an explicit representa-

tion for the action Lh[u] as given by (3.1.3) for a sufficiently regular twist

u = rQ(r)θ. That is,

Lh[u] = (Qt + rθ ⊗ Q̇θ){[hr(r, r2) + 2rhs(r, r
2)](Q + rQ̇)

+ h(r, r2)[(n+ 1)Q̇ + rQ̈]− rhs(r, r2)(n+ r2|Q̇θ|2)Q}θ. (3.2.1)

Expanding this further and introducing the skew-symmetric matrix field A =

QtQ̇ we can write, for a < r < b,

Lh[u] = [hr(r, r
2) + 2rhs(r, r

2)](θ + rAθ + r2|Aθ|2θ)

+ h(r, r2)[(n+ 1)Aθ + r(Ȧ + A2)θ

+ r(n+ 1)|Aθ|2θ + r2〈Aθ, Ȧθ〉θ]

− rhs(r, r2)(n+ r2|Aθ|2)θ. (3.2.2)

The above description follows upon noting |Q̇θ|2 = |Aθ|2, QtQ̈ = Ȧ + A2

and 〈Q̇θ, Q̈θ〉 = 〈QtQ̇θ,QtQ̈θ〉 = 〈Aθ, (Ȧ + A2)θ〉 = 〈Aθ, Ȧθ〉 + 〈Aθ,A2θ〉 =

〈Aθ, Ȧθ〉 in view of A being skew-symmetric. Now a straightforward inspection

shows that we can write Lh[u] in the alternative and more suggestive form

v := Lh[u] = A (r, θ)θ + rh(r, r2)A2θ +
1

rn
d

dr

[
rn+1h(r, r2)A

]
θ, (3.2.3)

where A (r, θ) denotes the scalar-valued function

A (r, θ) := [hr(r, r
2) + 2rhs(r, r

2)](1 + r2|Aθ|2) (3.2.4)

+ rh(r, r2)[(n+ 1)|Aθ|2 + r〈Aθ, Ȧθ〉]− rhs(r, r2)(n+ r2|Aθ|2).

Similarly upon introducing the skew-symmetric matrix B = Q̇Qt we can write

Lh[u] = Qtw(x)Q with

w := B(r, θ)θ + rh(r, r2)B2θ +
1

rn
d

dr

[
rn+1h(r, r2)B

]
θ, (3.2.5)

where B(r, θ) is the scalar-valued function

B(r, θ) := [hr(r, r
2) + 2rhs(r, r

2)](1 + r2|Bθ|2) (3.2.6)

+ rh(r, r2)[(n+ 1)|Bθ|2 + r〈Bθ, Ḃθ〉]− rhs(r, r2)(n+ r2|Bθ|2).

We proceed with (3.2.3)-(3.2.4) and note that in order for u = rQ(r)θ to

furnish a solution to (3.1.2)-(3.1.3) it is required that Lh[u] = ∇P. Thus by
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enforcing (3.2.2) to be a gradient it must necessarily be that

ˆ 2π

0

〈Lh[u](rγ(t)), γ′(t)〉 dt =

ˆ 2π

0

〈v(rγ(t)), γ′(t)〉 dt =

ˆ 2π

0

d

dt
P(γ(t)) dt = 0

(3.2.7)

(with prime denoting d/dt) where γ = γ(t) ∈ C 1([0, 2π],Sn−1) is closed and

x = rγ(t) with a < r < b fixed. Henceforth we assume this to be true and look

to recover information on A. Indeed specialising to θ = γ(t) as above and using

(3.2.3) we can expand the integrand in the left-hand side of (3.2.7) as

〈Lh[u](rγ(t)), γ′(t)〉 = 〈v(rγ(t)), γ′(t)〉 = A (r, θ)〈γ(t), γ′(t)〉 (3.2.8)

+ rh(r, r2)〈A2γ(t), γ′(t)〉+
1

rn

〈
d

dr

[
rn+1h(r, r2)A

]
γ(t), γ′(t)

〉
.

Since γ is a curve on the unit sphere we have 〈γ, γ′〉 = 0 and subsequently

(3.2.7)-(3.2.8) under the assumption v = Lh[u] = ∇P simplifies to

ˆ 2π

0

〈Lh[u](rγ(t)), γ′(t)〉 dt =

ˆ 2π

0

〈E(r)γ(t), γ′(t)〉 dt

+
1

rn

ˆ 2π

0

〈F(r)γ(t), γ′(t)〉 dt =

ˆ 2π

0

d

dt
P(γ(t)) dt = 0, (3.2.9)

where E = rh(r, r2)A2 and F = d/dr[rn+1h(r, r2)A] are symmetric and skew-

symmetric matrix fields on ]a, b[ respectively.

Lemma 3.2.1. Let E be a symmetric n×n matrix and γ = γ(t) ∈ C 1([0, 2π],Sn−1)

be a closed curve. Thenˆ 2π

0

〈Eγ(t), γ′(t)〉 dt = 0, γ′ =
d

dt
γ(t). (3.2.10)

Proof. As γ is closed and E is symmetric this follows by integrating the identity

d/dt〈Eγ, γ〉 = 〈Eγ′, γ〉+ 〈Eγ, γ′〉 = 2〈Eγ, γ′〉 noting 〈Eγ, γ〉|t=2π = 〈Eγ, γ〉|t=0.

Utilising this lemma the integral involving the symmetric matrix field E =

rh(r, r2)A2 in (3.2.9) vanishes and so, summarising, assuming v = Lh[u] =

∇P, we have

ˆ 2π

0

〈Lh[u](rγ(t)), γ′(t)〉 dt =
1

rn

ˆ 2π

0

〈
d

dr

[
rn+1h(r, r2)A

]
γ(t), γ′(t)

〉
dt = 0

(3.2.11)

for every closed curve γ ∈ C 1([0, 2π],Sn−1). Now we turn into dealing with the

skew-symmetric matrix field F.
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Lemma 3.2.2. Let F be an n × n skew-symmetric matrix and let γ = PR%

with P,R ∈ O(n) and % ∈ C∞([0, 2π],Sn−1) the closed curved given by

%(t) =



ρ1 = sin t sinφ2 sinφ3 . . . sinφn−1,

ρ2 = cos t sinφ2 sinφ3 . . . sinφn−1,

ρ3 = cosφ2 sinφ3 . . . sinφn−1,
...

ρn−1 = cosφn−2 sinφn−1,

ρn = cosφn−1.

(3.2.12)

Here φ` ∈ [0, π] for all 2 ≤ ` ≤ n − 1 and denoting by (ek : 1 ≤ k ≤ n) the

standard basis of Rn, R = R(i, j) is the orthogonal transformation swapping the

pair of basis vectors (e1, e2) with (ei, ej) (1 ≤ i < j ≤ n) and leaving the rest

fixed. Then ˆ 2π

0

〈Fγ(t), γ′(t)〉 dt = 0 ⇐⇒ F = 0. (3.2.13)

Proof. First note that any skew-symmetric matrix F can be orthogonally diago-

nalised, that is, F = PDPt, where P ∈ O(n) and D = diag(d1J, . . . , dkJ) if the

dimension n = 2k is even or D = diag(d1J, . . . , dk−1J, 0) if n = 2k − 1 is odd.

Here J is the 2×2 rotation matrix by angle π/2 [c.f. (3.3.2)]. Now upon setting

γ = PR% as per the statement of the lemma the integral in (3.2.13) becomes

ˆ 2π

0

〈Fγ(t), γ′(t)〉 dt =

ˆ 2π

0

〈Dω(t), ω′(t)〉dt = 0 (3.2.14)

where ω := R% and so to prove Lemma 3.2.2 it is sufficient only to show that

the above integral equality implies D = 0. We proceed in a component-wise

fashion and substituting this ω into (3.2.14) we have that ω′(t) = R%′(t) =

R(ρ2,−ρ1, 0, . . . , 0), and so it can be verified that

ˆ 2π

0

〈Dω, ω′〉 dt = 2π(ρ2
1 + ρ2

2)Dij (3.2.15)

with Dij ∈ R. As such, if the identity on the left-hand side of the equation

above is zero, it follows that D = 0 and the identity (3.2.13) is verified.

Recalling (3.2.11), the quantity F = d/dr[rn+1h(r, r2)A] is a skew-symmetric

matrix field and so we can use this most recent lemma to confirm that if the

equality (3.2.11) holds, it must be that F as prescribed here is identically zero.

To summarise, if we assume Lh[u] is a gradient, that is, u solves (3.1.2)-(3.1.3),
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then setting Lh[u] = v(x) in (3.2.2) with the parametrisation x = rθ = rγ(t)

for some closed curve γ = P% ∈ C∞([0, 2π],Sn−1), then the integral equality

(3.2.7) holds. However, we have seen that this immediately reduces to (3.2.11),

which then holds iff d/dr[rn+1h(r, r2)A] = 0 on ]a, b[. As such we have proved

the following result.

Theorem 3.2.3. Let u = rQ(r)θ be a generalised twist on Xn[a, b] with twist

path Q ∈ C ([a, b],SO(n)) ∩ C 2(]a, b[,SO(n)). Then if u satisfies Lh[u] = ∇P

for some hydrostatic pressure field P, then Q satisfies the ODE

d

dr

{
rn+1h(r, r2)Qt dQ

dr

}
= 0, a < r < b. (3.2.16)

Remark 3.2.4. The above ODE can itself be interpreted as an Euler-Lagrange

equation. Indeed restricting the F[u;Xn] energy to the class of generalised twists

and substituting for |∇u|2 from (iii) in Proposition A.0.3 we can write

F[rQ(r)θ;Xn] =

ˆ
Sn−1

ˆ b

a

h(r, r2)(n+ r2|Q̇θ|2)rn−1 drdHn−1(θ)

= ωn

[
n2

ˆ b

a

h(r, r2)rn−1dr +

ˆ b

a

h(r, r2)|Q̇|2rn+1 dr

]
= n2ωn||h(r, r2)rn−1||L1(a,b) + ωnE[Q; a, b]. (3.2.17)

It can then be seen that the Euler-Lagrange equation associated to the re-

stricted energy E[Q; a, b] over the space of admissible loops BIn(a, b) := {Q ∈
W 1,2(]a, b[;SO(n)) : Q(a) = Q(b) = In} is precisely the second order ODE in

the twist loop Q = Q(r):4

d

dr

[
rn+1h(r, r2)

dQ

dr
Qt

]
= Q

d

dr

[
rn+1h(r, r2)Qt dQ

dr

]
Qt = 0. (3.2.18)

See also Corollary 2.2.2 and the surrounding discussion.

3.3 Geodesic Solutions of the ODE (3.2.16) and

the Energy-Length Identity

In this section we resolve the boundary value problem associated with the ODE

(3.2.16) over the space of admissible loops BIn(a, b) introduced above. A first

4Note that for any a = a(r) of class C 1 we have d/dr[a(r)Q̇Qt] = d/dr[a(r)QQtQ̇Qt] =

Qd/dr[a(r)QtQ̇]Qt + a(r)[Q̇QtQ̇Qt + QQtQ̇Q̇t] = Qd/dr[a(r)QtQ̇]Qt by virtue of the

orthogonality of Q and the skew-symmetry of QtQ̇.

37



The h-Condition and Consideration of Weighted Dirichlet Type Lagrangians

integration yields rn+1h(r, r2)QtQ̇ = H for a constant skew-symmetric matrix

H. When combined with the left boundary condition Q(a) = In this first order

ODE is seen to have the general solution Q(r) = exp{H (r)H} where the profile

H ∈ C 2[a, b] is given by

H (r) =
H(r)

H(b)
, H(r) =

ˆ r

a

ds

sn+1h(s, s2)
. (3.3.1)

Indeed it is evident from the above that H (a) = 0, H (b) = 1, and so Q(a) = In

is immediately satisfied. Anticipating on the right boundary condition Q(b) =

In, we can first proceed by orthogonally diagonalising H by writing H =

Pdiag(c1J, . . . , ckJ)Pt when n = 2k and H = Pdiag(c1J, . . . , ck−1J, 0)Pt when

n = 2k − 1. Note that here the string of scalars c1, . . . , ck with ck = 0 in odd

dimensions are all real – in fact, the eigenvalues of H are ±icj when n is even,

and ±icj , 0 when n is odd. Furthermore P ∈ O(n), and the 2 × 2 matrices J

and R are given by

J =

(
0 −1

1 0

)
, R[t] = exp{tJ} =

(
cos t − sin t

sin t cos t

)
. (3.3.2)

We will now verify the boundary condition at Q(b) = In in even and odd

dimensions independently.

• (n = 2k) Here we write

Q(b) = exp{H (b)H} = exp{Pdiag(c1J, . . . , ckJ)Pt}

= Pdiag(R[c1], . . . ,R[ck])Pt

= In ⇐⇒ cj = 2mjπ, mj ∈ Z ∀ 1 ≤ j ≤ k.

• (n = 2k − 1) Here we write

Q(b) = exp{H (b)H} = exp{Pdiag(c1J, . . . , ck−1J, 0)Pt}

= Pdiag(R[c1], . . . ,R[ck−1], 1)Pt

= In ⇐⇒ cj = 2mjπ, mj ∈ Z, ∀ 1 ≤ j ≤ k − 1.

With this boundary condition being satisfied the solutions Q = Q(r;m) to

(3.2.16) in BIn(a, b) with m ∈ Zk are given by Q(r;m) = exp{H (r)H(m)},
where H (r) is given by (3.3.1) and for the skew-symmetric matrix H = H(m)
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we have

H(m) =

{
Pdiag(2m1πJ, . . . , 2mkπJ)Pt n = 2k,

Pdiag(2m1πJ, . . . , 2mk−1πJ, 0)Pt n = 2k − 1.
(3.3.3)

Here we remark that the resulting twist loops Q = Q(r;m) = exp{H (r)H(m)}
are closed scaled geodesics based at In on the compact Lie group SO(n) with

the skew-symmetric matrix H in the Lie algebra so(n) presenting the tangent

at the origin to the geodesic and the matrix exponential being the canonical

exponential map from the Lie algebra so(n) to the Lie group SO(n). Let us finish

off by computing explicitly the E-energy as in (3.2.17) for solutions Q(r;m) =

exp{H (r)H(m)} to (3.2.16) as described above and compare it to the length

L[Q] where, as standard,

L[Q] :=

ˆ b

a

|Q̇(r)| dr =

ˆ b

a

√
tr[Q̇tQ̇] dr. (3.3.4)

Proposition 3.3.1. Let Q = Q(r) be an extremising twist path for the restricted

energy E as in (3.2.17), that is, a solution to the ODE (3.2.16) in the admissible

loop space BIn(a, b). Then we have the energy-length identity:

E[Q] =
L2[Q]

‖s−(n+1)/h(s, s2)‖L1(a,b)

, (3.3.5)

where h(s, s2) is the weight function in the Lagrangian and L[Q] is defined via

(3.3.4).

Proof. Given that Q = Q(r;m) is a solution to (3.2.16) in BIn(a, b) we have seen

that Q = Q(r;m) = exp{H (r)H(m)} with H (r) given explicitly by (3.3.1) and

the skew-symmetric matrix H as in (3.3.3). We begin by computing the energy

and see that

E[Q; a, b] = E[exp{H (r)H(m)}; a, b] =

ˆ b

a

h(r, r2) ˙H 2|H|2rn+1dr. (3.3.6)

Now ˙H (r) = [H(b)rn+1h(r, r2)]−1 and |H|2 = 8π2‖m‖2 with ‖m‖2 =
∑k
i=1m

2
i

(recall mk = 0 when the dimension n is odd). Substituting ˙H and |H|2 into

(3.3.6) gives

E [exp{H (r)H(m)}; a, b] =
8π2

H2(b)
‖m‖2

ˆ b

a

r−(n+1)

h(r, r2)
dr =

8π2

H(b)
‖m‖2. (3.3.7)
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Next turning to the length, noting that weight function h > 0 on [a, b] and so

˙H > 0 on [a, b], we can write

L[Q] = L[exp{H (r)H(m)}] = 2
√

2π‖m‖
ˆ b

a

| ˙H (r)| dr

= 2
√

2π‖m‖[H (b)−H (a)] = 2
√

2π‖m‖. (3.3.8)

The result now follows by comparing the two and squaring the length.

3.4 Generalised Twists as Solutions to Lh[u] =

∇P and the h-Condition

Let us now turn to the differential operator Lh given by (3.1.3) and seek so-

lutions to the system (3.1.2)-(3.1.3) in the form of incompressible twists u =

rQ(r)θ. As here necessarily the twist loop Q solves the second-order ODE

d/dr[rn+1h(r, r2)QtQ̇] = 0, for a < r < b, by virtue of what was discussed

in the previous section, we have Q(r;m) = exp{H (r)H(m)} and thus with

A = QtQ̇, A2 = ˙H 2H2. As such, the aforementioned ODE in this context is

given by
d

dr

[
rn+1h(r, r2) ˙H

]
= 0, a < r < b. (3.4.1)

The action of Lh as (3.1.3) on u then reduces to5

Lh[u = rexp{H (r)H}θ] =∇h(|x|, |x|2)− nrhs(r, r2)θ (3.4.2)

− r3hs(r, r
2) ˙H 2|Hθ|2θ + rh(r, r2) ˙H 2H2θ.

The first two terms in the above expression are clearly gradients and so we can

apply Proposition D.0.2 to the remainder with A (r, |Hx|2) = −hs(r, r2) ˙H 2|Hx|2

and B(r, |Hx|2) = h(r, r2) ˙H 2. Then with z = |Hx|2

2Az + Br/r =
1

r

[
hr(r, r

2) ˙H 2 + 2h(r, r2) ˙H Ḧ
]

= −
{

2
n+ 1

r2
h(r, r2) +

1

r
hr(r, r

2) + 4hs(r, r
2)

}
˙H 2, (3.4.3)

the second equality following by an application of (3.4.1). For the sake of future

reference it is convenient to introduce the notation F (r) = rhr(r, r
2) + 2(n +

1)h(r, r2) + 4r2hs(r, r
2) with a ≤ r ≤ b (colloquially we will say if F (r) ≡ 0

5See the discussion leading up to the identity (2.3.10) for further details.
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then the “h-condition” holds). Then if F (r) 6≡ 0 on ]a, b[ by invoking the first

part of Proposition D.0.2 with Az + Br/r 6≡ 0 we have, with U(x) := Lh[u =

rexp{H (r)H}θ]−∇h(|x|, |x|2) + nrhs(r, r
2)θ,

curlU(x) = 0 ⇐⇒ H2 = −c2In ⇐⇒ Lh[u] is a gradient.

This, given the orthogonal diagonalisation of the skew-symmetric matrix H as

in (D.0.6), leads us to conclude |c1|2 = · · · = |ck|2 =: c2 when n = 2k is even

and |c1|2 = · · · = |ck−1|2 = |ck|2 = 0 when n = 2k − 1 is odd. Now regarding

the boundary conditions, evidently Q(a) = In as a result of H (a) = 0 and

so in order to satisfy Q(b) = In we first note that Q(b) = exp{H (b)H} and

so when n is odd Q ≡ In and when n is even necessarily Q = Q(r;m) =

exp{2mπH (r)PJnP
t}, where m ∈ Z and Jn = diag(J, . . . ,J) with J as in

(3.3.2).

Next when F (r) ≡ 0 on ]a, b[ the corresponding vector field Lh[u] is still a

gradient by the second part of Proposition D.0.2 but now with no further re-

strictions on the skew-symmetric matrix H. Indeed referring to (3.4.2) consider

U(x) = Lh[u]−∇h(|x|, |x|2) + nrhs(r, r
2)θ

= − r3hs(r, r
2) ˙H 2|Hθ|2θ + rh(r, r2) ˙H 2H2θ. (3.4.4)

To show that U is a gradient and hence u = rexp{H (r)H}θ is a solution to

Lh[u] = ∇P it suffices to show that there exists f = f(r, z) such that

∇f(|x|, |Hx|2) = fr(r, |Hx|2)θ − 2fz(r, |Hx|2)H2x = U(x), x ∈ Xn.

Upon referring to (3.4.4) this in particular means that we must have

fr(r, z) = −z ˙H 2rhs(r, r
2), fz(r, z) = −1

2
h(r, r2) ˙H 2.

Naturally for this to be so it is necessary to have ∂zfr − ∂rfz ≡ 0 which is seen

to hold (suppressing the arguments for brevity) by virtue of

∂zfr − ∂rfz = −rhs(r, r2) ˙H 2 + [hr(r, r
2) + 2rhs(r, r

2)]
˙H 2

2
+ h(r, r2) ˙H Ḧ

=
1

2
hr(r, r

2) ˙H 2 + h(r, r2) ˙H Ḧ = −
˙H 2

2r
F (r), (3.4.5)

where the last identity follows by invoking the ODE (3.4.1) for H . Now referring

to the above it is enough to set

f(r, z) := −1

2
h(r, r2) ˙H 2z + g(r), a ≤ r ≤ b, z ≥ 0, (3.4.6)
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with g ∈ C 1[a, b] to be determined. From this we can directly compute

fr(r, z) = −1

2

{
[hr(r, r

2) + 2rhs(r, r
2)] ˙H 2 + 2h(r, r2) ˙H Ḧ

}
z + ġ(r) (3.4.7)

and so ġ(r) = z ˙H [1/2hr ˙H + hḦ ] = 0 by arguing as in (3.4.5). Thus g ≡ c in

(3.4.6) for some c ∈ R and therefore U = ∇f(|x|, |Hx|2).

We summarise that, in comparing the full Euler-Lagrange equation with the

version restricted to the space of twist paths, we have the following implications:

• (ODE) The twist path Q = Q(r) with Q(a) = In solves (3.2.16) if and

only if for a ≤ r ≤ b

Q(r) = exp{H (r)H}, Ht = −H, (3.4.8)

where the profile H = H (r) is as given explicitly by (3.3.1).

• (PDE I) If F (r) = rhr(r, r
2) + 2(n+ 1)h(r, r2) + 4r2hs(r, r

2) 6≡ 0 on ]a, b[

then for u = rQ(r)θ with u ≡ ϕ on ∂Xna = {|x| = a} we have

Lh[u] = ∇P ⇐⇒ Q is as in (3.4.8) with

H =

{
cPJnP

t n even,

0 n odd,
(3.4.9)

for some real constant c where referring to the diagonalisation of H: |c1| =
... = |ck| = |c|, P ∈ O(n) and Jn = (J, ...,J) with J as in (3.3.2).

• (PDE II) If F (r) = rhr(r, r
2)+2(n+1)h(r, r2)+4r2hs(r, r

2) ≡ 0 on ]a, b[

then for u = rQ(r)θ with u ≡ ϕ on ∂Xna = {|x| = a} we have

Lh[u] = ∇P ⇐⇒ Q is as in (3.4.8) with Ht = −H. (3.4.10)

Thus, unlike the case in (3.4.9), no further restriction on the skew-symmetric

matrix H is needed if the h-condition holds, that is rhr(r, r
2)+2(n+1)h(r, r2)+

4r2hs(r, r
2) ≡ 0. Now by taking into account both the boundary conditions

Q(a) = Q(b) = In and the subsequent necessary adjustments on H we arrive

at the following statement on twist solutions to (3.1.2)-(3.1.3).

Theorem 3.4.1. Let u = rQ(r)θ be a generalised twist on Xn[a, b] with twist

loop Q ∈ C ([a, b],SO(n)) ∩ C 2(]a, b[,SO(n)) satisfying Q(a) = Q(b) = In.

Then u is a solution to the nonlinear Euler-Lagrange system (3.1.2)-(3.1.3) iff

Q is as described below.
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1. (F = rhr(r, r
2) + 2(n + 1)h(r, r2) + 4r2hs(r, r

2) 6≡ 0 on ]a, b[) Here de-

pending on the dimension n being even or odd we have

(i) n even: Q = Q(r;m) = exp{H (r)H(m)} (a ≤ r ≤ b) with H(m) =

2mπPJnP
t where P ∈ O(n), m ∈ Z and Jn = diag(J, . . . ,J) with J

as in (3.3.2).

(ii) n odd: H ≡ 0 leading to Q ≡ In. Hence the identity map u ≡ x is

the only twisting solution of (3.1.2)-(3.1.3).

2. (F = rhr(r, r
2) + 2(n + 1)h(r, r2) + 4r2hs(r, r

2) ≡ 0 on ]a, b[) Here Q =

Q(r;m) = exp{H (r)H(m)} (a ≤ r ≤ b) with H(m) = Pdiag(2m1πJ, ...,

2mkπJ)Pt when n = 2k and H(m) = Pdiag(2m1πJ, ..., 2mk−1πJ, 0)Pt

when n = 2k − 1. Moreover P ∈ O(n) and m ∈ Zk.

The energy of an extremising twist can now be explicitly calculated by taking

advantage of the above characterisation of its twist path, specifically, Q(r;m) =

exp{H (r)H(m)} with H(m) as in Theorem 3.4.1 part 2 (note that part 1 of the

theorem is essentially a special case of this). We first observe that for u ≡ x,

F[u ≡ x;Xn] =

ˆ
Xn

h(|x|, |u|2)|∇u|2 dx = n2ωn

ˆ b

a

h(r, r2)rn−1 dr. (3.4.11)

Next upon noting |∇u|2 = n + r2|Q̇θ|2 = n + r2| ˙H (r)Hθ|2 and with H and

m = (m1, . . . ,mk) as above

F[u;Xn] =

ˆ b

a

ˆ
Sn−1

h(r, r2)(n+ r2 ˙H 2(r)|Hθ|2)rn−1 drdHn−1(θ)

= ωn

[ˆ b

a

n2h(r, r2)rn−1dr +

ˆ b

a

h(r, r2) ˙H 2(r)|H|2rn+1 dr

]

= F[u ≡ x;Xn] + 8π2ωn||m||2
ˆ b

a

h(r, r2) ˙H 2(r)rn+1 dr. (3.4.12)

Recalling (3.3.6)-(3.3.7) (and noting that in the above we have used |H|2 =

8π2||m||2), we see that the value of the integral above is 1/H(b) and so

F[u = rexp{H (r)H}θ;Xn]− F[x;Xn] =
8π2ωn
H(b)

||m||2. (3.4.13)

In particular it is seen that the energy diverges quadratically in m as ||m|| ↗ ∞.

Now taking the length of the twist loop Q given by L[Q] = 2
√

2π||m|| (cf. (3.3.8)
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for details), upon comparing this length with the energy (3.4.13) we have the

energy-length identity

F[u;Xn]− F[x;Xn] =
ωn
H(b)

L2[Q] = ωnE[Q], (3.4.14)

for extremising twists u = rQ(r;m)θ where Q(r;m) = exp{H (r)H(m)}. Here

E is the twist path energy as in (3.3.6).

We close the section by returning to the context of Theorem 3.4.1 and giving,

for the sake of illustration, a class of energy integrals that satisfy the h-condition

rhr(r, r
2)+2(n+1)h(r, r2)+4r2hs(r, r

2) ≡ 0 and for which the associated Euler-

Lagrange system admits an infinitude of nontrivial twisting solutions regardless

of n being even or odd.

Example 3.4.2. Consider h(r, s) = a(r)b(s) = rαsβ for real α, β, a ≤ r ≤ b

and s > 0. Then rhr(r, r
2) + 2(n + 1)h(r, r2) + 4r2hs(r, r

2) ≡ 0 ⇐⇒ rȧb +

2(n + 1)ab + 4r2aḃ ≡ 0, that is, α + 2(n + 1) + 4β = 0 and the energy (3.1.1)

can be rewritten as

Gβ [u;Xn] =

ˆ
Xn

|u|2β |∇u|2

|x|2(n+1)+4β
dx. (3.4.15)

Note that by linearity any finite sum h(r, s) =
∑
j cjr

αjsβj with cj > 0 and

αj+2(n+1)+4βj = 0 still verifies rhr(r, r
2)+2(n+1)h(r, r2)+4r2hs(r, r

2) ≡ 0.

Of course these are by no means the only functions h > 0 satisfying the latter.

By Theorem 3.4.1 for each m = (m1, ...,mk) ∈ Zk there exists a generalised

twist u(x;m) = rexp{H (r)H(m)}θ with profile H = H (r) as in (3.3.1) and

H a suitable skew-symmetric matrix as described such that u is a solution to

the resulting system (3.1.2)-(3.1.3). Thus, so long as F ≡ 0, as, e.g. is the case

for the above energies, then regardless of n being even or odd the system has

an infinite scale of topologically distinct twisting solutions, in total contrast to

when F 6≡ 0 where by Theorem 3.4.1 there are no nontrivial solutions for n

odd.

3.5 Whirl Maps u = Q(%)x and the Restricted

H` Energies

We now aim to seek solutions to the system (3.1.2)-(3.1.3) from amongst whirl

maps. Recall from the Introduction and opening section of this chapter that
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these are continuous self-maps of the closed symmetric annulus Xn onto itself

in the form u : (r, θ) 7→ rQ(ρ1, . . . , ρN )θ, where r = |x|, θ = x|x|−1 and x ∈ Xn.

The vector of 2-plane radial variables % = (ρ1, ..., ρN ) is defined, depending on

n being even or odd, as:

(i) n even: N = d = n/2 and ρj = (x2
2j−1 + x2

2j)
1/2 ∀ 1 ≤ j ≤ N ,

(ii) n odd: N = d+1 = (n+1)/2 and ρj = (x2
2j−1+x2

2j)
1/2 ∀ 1 ≤ j ≤ d, ρN = xn.

Here x ∈ Xn ⇐⇒ % ∈ An where An = {% ∈ RN+ : a < ‖%‖ < b} for n = 2N and

AN = {% ∈ RN−1
+ × R : a < ‖%‖ < b} for n = 2N − 1.

ρ1

ρ2

	
An : n = 3, N = 2

d = 1

ρ1

	

ρ2	
An : n = 4, N = 2

d = 2

Figure 1: The contrasting symmetries in the semi-annular region An associated

with Xn for n odd versus n even.

We now refer the reader to Proposition A.0.6 in Appendix A, which gathers

numerous key calculus identities for whirl maps as described here. Along with

the following Lemma A.0.7 there we also prove that all such whirl maps satisfy

the incompressibility constraint det∇u = 1. With these identities at hand the

proof of the following result is immediate. Before proceeding we remark that,

given the definition of a twist loop Q related to a whirl map u = Q(%)x as in

(3.1.10) we have the alternative definition Q(%) = exp{H(%)} where H : An →
so(n) is given by

H(%) =

{
diag(f1J, . . . , fdJ) n = 2d,

diag(f1J, . . . , fdJ, 0) n = 2d+ 1
(3.5.1)

for J as defined in (3.3.2) and fj ∈ C (An) for all 1 ≤ j ≤ d such fj ≡ 0 on

(∂An)a and fj ≡ 2mjπ on (∂An)b.
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Proposition 3.5.1. Let u = rQ(%)θ with Q ∈ C 2(An,SO(n))∩C (An,SO(n))

given by Q = exp{H(%)} for H defined by (3.5.1). Then the action Lh[u] for

Lh as in (3.1.3) can be formulated as

Lh[u] =

(
In +

N∑
`=1

∇ρ` ⊗H,`x

){
[hr + 2rhs]

(
In +

N∑
`=1

H,`x⊗∇ρ`
)
θ

+ h

N∑
`=1

[
H,``x+ ∆ρ`H,`x+ 2H,`∇ρ`

]
− rhs

(
n+

N∑
`=1

|H,`x|2
)
θ

}
.

(3.5.2)

Here, h = h(r, r2), hr = hr(r, r
2) and hs = hs(r, r

2) and H,`, H,`` denote the

first and second derivatives of H with respect to ρ`.

Given the description of |∇u|2 in Proposition A.0.6 [c.f. (A.0.15)], we now

proceed by restricting the energy functional F[u;Xn] to the class of whirls u =

rQ(%)θ with the map Q = Q(%) as in (3.5.1) thus writing

F[u = rQ(%)θ;Xn] =

ˆ
Xn

h(|x|, |x|2)|∇[rQ(%)θ]|2 dx

=

ˆ
Xn

h(|x|, |x|2)

(
n+

N∑
`=1

|H,`x|2
)
dx. (3.5.3)

By changing the variables of integration (3.5.3) can be reformulated as

F[u = rQ(%)θ;Xn]− n2ωn

ˆ b

a

h(r, r2)rn−1 dr = (3.5.4)

= (2π)d
ˆ
An

h(‖%‖, ‖%‖2)

d∑
`=1

ρ2
` |∇Af`|2

d∏
j=1

ρj d% =: (2π)d
d∑
`=1

H`[f`;An],

where we have used the identity (A.0.16). Regarding the Jacobian of this trans-

formation, note that we hereafter set

d∏
j=1

ρj = ω(ρ1, . . . , ρd; d) =: ω(%; d). (3.5.5)

Therefore when n = 2d, N = d the above product features all ρ1, . . . , ρN ,

whereas when n = 2d + 1, N = d + 1 the product features ρ1, . . . , ρN−1. As

such, the restricted energy H` (with 1 ≤ ` ≤ d) can be expressed as

H`[f ;An] :=

ˆ
An

h(‖%‖, ‖%‖2)|∇Af |2ρ2
`ω(%; d) d%, ‖%‖2 =

N∑
j=1

ρ2
j . (3.5.6)
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3.6 The Euler-Lagrange Equation Associated to

H`[f ;An]

When considering the restricted energy functional H`[f ;An] (1 ≤ ` ≤ d) given

by (3.5.6), we have the functions f = f(ρ1, ..., ρN ) in the admissible space

D(An) =
⋃
m∈Z

Dm(An), (3.6.1)

where, for each integer m ∈ Z we have set

Dm(An) :=
{
f ∈W 1,2(An) : f = 0 on (∂An)a, f = 2mπ on (∂An)b

}
. (3.6.2)

Intending to solve the system (3.1.2)-(3.1.3) we proceed onto extremising the

restricted energy H`[f ;An] over the space Dm(An). Now recalling the three-part

decomposition of ∂An given by (3.1.9), the Euler-Lagrange equation associated

with H` over D(An) is seen to be (with 1 ≤ ` ≤ d, m ∈ Z)

BVP[f ;m] =



divA
[
h(‖%‖, ‖%‖2)ρ2

`ω(%; d)∇Af
]

= 0 in An,

f = 0 on (∂An)a,

f = 2mπ on (∂An)b,

h(‖%‖, ‖%‖2)ρ2
`ω(%; d)∂νf = 0 on Γn.

(3.6.3)

Here ∂νf = ∇Af · ν with ν being the unit outward normal field on Γn and ρ` is

the `th component of the vector %. See Theorem 6.2.1 for an analogous result

in a more general context.

We now aim to show that this system has a unique solution in the form

f = f(%;m) = G (‖%‖;m) for a suitable G = G (r;m) ∈ C 2[a, b], as a matter of

fact,

f(%;m) := 2mπ
H (‖%‖)
H(b)

, H(t) :=

ˆ t

a

ds

sn+1h(s, s2)
. (3.6.4)

Towards this end, it is first easy to verify that the boundary conditions hold

by virtue of H(a) = 0 and the scaling at ||%|| = b. Furthermore by direct

differentiation we have

∂f

∂ρi
= 2mπ

Ḣ(r)

H(b)

ρi
r

=
2miπ

H(b)

ρi
rn+2h(r, r2)

, 1 ≤ i ≤ N. (3.6.5)
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Now, specialising first to even dimensions n = 2d, N = d, we see that

divA
[
h(r, r2)ρ2

`ω(%; d)∇Af
]

=

N∑
i=1

∂

∂ρi

2miπ

H(b)

(
h(r, r2)

ρiρ
2
`

rn+2h(r, r2)
ω(%; d)

)

=
2miπ

H(b)

d∑
i=1

(
ρ2
`

rn+2
ω(%; d)− (n+ 2)

ρ2
i ρ

2
`

rn+4
ω(%; d)

+ 2
ρiρ`δi`
rn+2

ω(%; d) +
ρiρ

2
`

rn+2

ω(%; d)

ρi

)
=

1

rn+2

2miπ

H(b)
ρ`

[
dρ` − (2d+ 2)ρ` + 2ρ` + dρ`

]
ω(%; d) = 0. (3.6.6)

Next for n = 2d + 1, N = d + 1 we proceed similarly but recall that ρN = xn.

For the first ρ1, . . . , ρd terms in the divergence we use (3.6.6) above which gives

2miπ

H(b)

d∑
i=1

∂

∂ρi

(
ρiρ

2
`

rn+2
ω(%; d)

)
= (3.6.7)

=
1

rn+2

2miπ

H(b)
ρ`

[
dρ` −

(2d+ 3)

r2
ρ`

d∑
i=1

ρ2
i + 2ρ` + dρ`

]
ω(%; d).

To this we add the N th term in the divergence sum, which is seen to be

2miπ

H(b)

∂

∂ρN

(
ρNρ

2
`

rn+2
ω(%; d)

)
=

1

rn+2

2miπ

H(b)
ρ`

(
ρ` −

(2d+ 3)

r2
ρ`ρ

2
N

)
ω(%; d).

(3.6.8)

Coupling this with (3.6.7) therefore gives

divA

[
h(r, r2)ρ2

`ω(%; d)∇Af

]
=

2miπ

H(b)

N∑
i=1

∂

∂ρi

(
ρiρ

2
`

rn+2
ω(%; d)

)
(3.6.9)

=
1

rn+2

2miπ

H(b)
ρ`

[
dρ` − (2d+ 3)ρ` + 2ρ` + (d+ 1)ρ`

]
ω(%; d) = 0.

Theorem 3.6.1. Let f(%,m) = 2mπH(||%||)/H(b) with H as in (3.6.4) and

m ∈ Z. Then f in C 2(An) is the unique solution to the system (3.6.3) and the

unique minimiser of the restricted energy H`[f ;An] over Dm(An).

Proof. The proof is immediate upon the above calculations and Proposition C.0.2

adapted to the special case of A(r, s, ξ) = h(r, s)ξ.
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3.7 Whirls as Solutions to the System Lh[u] =

∇P

Recall the assumption that for a whirl map u = rQ(%)θ the twist path Q =

Q(%) ∈ C (An,SO(n)) must take values on the maximal torus T ⊂ SO(n) of

block diagonal 2× 2 planar rotations: T = {diag(R[φ1], ...,R[φd]) : φ1, ..., φd ∈
R} when n = 2d and T = {diag(R[φ1], ...,R[φd], 1) : φ1, ..., φd ∈ R} when

n = 2d+1. This means that with f` = f`(%,m`) ∈ C (An) (1 ≤ ` ≤ d) satisfying

f` ≡ 0 on (∂An)a and f` ≡ 2m`π on (∂An)b we can write [cf. (3.1.10) and

(3.5.1)]

Q(%) = Q(%;m) =

{
exp{diag(f1J, . . . , fdJ)} n = 2d,

exp{diag(f1J, . . . , fdJ, 0)} n = 2d+ 1,
(3.7.1)

where m = (m1, . . . ,md) ∈ Zd. In seeking solutions to (3.1.2)-(3.1.3) in the

form of whirls, using results in the previous section, specifically Theorem 3.6.1,

we must further specialise to f`(%;m`) = 2m`πH (||%||) for 1 ≤ ` ≤ d, with

H (r) as in (3.3.1) and J being the 2×2 matrix R[π/2] given by (3.3.2). Our

goal here is to show, by analysing the PDE Lh[u] = ∇P, that a necessary

and sufficient condition for these whirls to be solutions to (3.1.2)-(3.1.3) is f` ∈
{±2mπH (||%||)} for 1 ≤ ` ≤ d, i.e., m` ∈ {±m} with m ∈ Z when rhr(r, r

2) +

2(n + 1)h(r, r2) + 4r2hs(r, r
2) 6≡ 0. This means that for a whirl to furnish a

solution to the system (3.1.2)-(3.1.3), here, up to a sign, the functions f`, or

equivalently, the integers m` must all be equal. In contrast when rhr(r, r
2) +

2(n+1)h(r, r2)+4r2hs(r, r
2) ≡ 0 (i.e. the h-condition holds) no such restriction

on f` or m` is needed. A more precise formulation of this is given below.

Theorem 3.7.1. Suppose u = rQ(%)θ is a whirl map with Q ∈ C 2(An,SO(n))

satisfying Q(%) = In for % ∈ (∂An)a ∪ (∂An)b. Then u is a solution to the

nonlinear system (3.1.2)-(3.1.3) if and only if Q = Q(%;m) is as described

below.

1. (rhr(r, r
2) + 2(n+ 1)h(r, r2) + 4r2hs(r, r

2) 6≡ 0 on ]a, b[) Here, depending

on the dimension n being even or odd, we have

(i) n even: |m1| = · · · = |md| and subsequently

Q(%;m) = exp{diag(2m1πH (||%||)J, . . . , 2mdπH (||%||)J)}, % ∈ An

= diag(R[2m1πH (||%||)], . . . ,R[2mdπH (||%||)]), (3.7.2)
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with R and J defined by (3.3.2).

(ii) n odd: m1 = · · · = md = 0 and therefore Q ≡ In.

2. (rhr(r, r
2) + 2(n + 1)h(r, r2) + 4r2hs(r, r

2) ≡ 0 on ]a, b[) Here Q(%) =

exp{H (||%||)H} for all % ∈ An where H = diag(2πm1J, ..., 2πmdJ) when

n = 2d and H = diag(2πm1J, ..., 2πmdJ, 0) when n = 2d+ 1. In this case

there is no restriction on m.

Before proceeding with the proof we pause briefly to take a closer look at the

identities in Proposition A.0.6 when, with a slight abuse of notation, Q(%) =

Q(r) where r = ‖%‖ =
√
ρ2

1 + ...+ ρ2
N (see also Proposition A.0.3). Beginning

with the gradient we note that

Q,` =
∂Q(‖%‖)
∂ρ`

=
ρ`
r
Q̇(r),

N∑
`=1

ρ`∇ρ` = ∇||%||2/2 = x, (3.7.3)

by virtue of r = ||%|| and therefore

∇u = Q + Q̇θ ⊗
N∑
`=1

ρ`∇ρ` = Q + Q̇θ ⊗ x = Q + rQ̇θ ⊗ θ. (3.7.4)

In particular it follows from this that |∇u|2 = n + r2|Q̇θ|2 as in Proposi-

tion A.0.3. Finally for the Laplacian ∆u we first note that ∆ρ` = 1/ρ` except

for n odd and ` = N where ∆ρN = 0 and

Q,`` =
ρ2
`

r2
Q̈ +

1

r

r2 − ρ2
`

r2
Q̇, (3.7.5)

therefore giving, using (iii) in Proposition A.0.6,

∆u =

N∑
`=1

[(
ρ2
`

r2
Q̈ +

r2 − ρ2
`

r3
Q̇

)
x+

ρ`
r

∆ρ`Q̇x+ 2
ρ`
r
Q̇∇ρ`

]

=

rQ̈θ + (N − 1)Q̇θ +NQ̇θ + 2Q̇θ, n even,

rQ̈θ + (N − 1)Q̇θ + (N − 1)Q̇θ + 2Q̇θ, n odd

= rQ̈θ + (n+ 1)Q̇θ (3.7.6)

in view of N = n/2 when n is even and N = (n + 1)/2 when n is odd. With

these identities at hand we present the proof of Theorem 3.7.1.

Proof. Let u = rQ(%)θ be a whirl map as described. Then by the existence

and uniqueness result in the previous section on the extremisers f1, ..., fd to the
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restricted energies H` it is plain that these functions and hence Q depend only

on r = ||%||. In fact from the explicit description of f1, ..., fd in Theorem 3.6.1

we have Q(%) = exp{H (||%||)H} with H = diag(2m1πJ, ..., 2mdπJ) for n = 2d

even and H = diag(2m1πJ, ..., 2mdπJ, 0) for n = 2d + 1 odd and moreover

that the profile H = H (r) solves the ODE (3.4.1). Thus starting from the

formulation of the action Lh[u = rQ(%)θ] as in (3.5.2) we have

Lh[u =Q(%)x] = [hr(r, r
2) + 2rhs(r, r

2)] ×

×
(
In +

N∑
`=1

∇ρ` ⊗H,`x

)(
In +

N∑
`=1

H,`x⊗∇ρ`
)
θ

+ h(r, r2)

(
In +

N∑
`=1

∇ρ` ⊗H,`x

) N∑
`=1

[H,``x+ ∆ρ`H,`x+ 2H,`∇ρ`]

− rhs(r, r2)

(
n+

N∑
`=1

|H,`x|2
)(

In +

N∑
`=1

∇ρ` ⊗H,`x

)
θ (3.7.7)

and so substituting for Q by invoking the discussion prior to the proof and the

formulation above leads to

Lh[u = rQ(%)θ] = (Qt + rθ ⊗ Q̇θ)

{
[hr(r, r

2) + 2rhs(r, r
2)](Qθ + rQ̇θ)

+ h(r, r2)
[
rQ̈ + (n+ 1)Q̇

]
θ − rhs(r, r2)(n+ r2|Q̇θ|2)Qθ

}
=∇h(|x|, |x|2)− nrhs(r, r2)θ

+
[
r2hr(r, r

2) + r3hs(r, r
2) + r(n+ 1)h(r, r2)

]
˙H 2|Hθ|2θ

+ r2h(r, r2) ˙H Ḧ |Hθ|2θ + rh(r, r2) ˙H 2H2θ. (3.7.8)

By an application of the ODE (3.4.1) for H we see a significant simplification,

that is

Lh[u = rQ(%)θ] =∇h(|x|, |x|2)− nrhs(r, r2)θ − r3hs(r, r
2) ˙H 2|Hθ|2θ

+ rh(r, r2) ˙H 2H2θ. (3.7.9)

Note that this is precisely the same formulation as in the case of generalised

twists - see (3.4.2) and Theorem 3.4.1.

Finally returning to Lh[u = rQ(%)θ] = ∇P, Proposition D.0.2 leads to the

conclusion that if rhr(r, r
2) + 2(n+ 1)h(r, r2) + 4r2hs(r, r

2) 6≡ 0 then curlU =

Lh[u] − ∇h + rnhs = 0 ⇐⇒ |f1|2 = · · · = |fd|2 when n = 2d is even and

51



The h-Condition and Consideration of Weighted Dirichlet Type Lagrangians

|f1|2 = · · · = |fd|2 = 0 when n = 2d + 1 is odd. As such this gives m` = 0 for

all 1 ≤ ` ≤ d when n = 2d+ 1 is odd and |m1| = · · · = |md| := |m| when n = 2d

and so f` ∈ {±2mπH (||%||)} for all 1 ≤ ` ≤ d. If rhr(r, r
2) + 2(n+ 1)h(r, r2) +

4r2hs(r, r
2) ≡ 0 we have, again by Proposition D.0.2, that Lh[u = rQ(%)θ] is

curl-free as well as a gradient with no restriction on m`.
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Chapter 4

The Non-Variational

System L [u;A,B] = ∇P and

the Discriminant ∆(h, g)

In this chapter we consider the second order nonlinear elliptic PDE in divergence

form given by

div[A(|x|, |u|2, |∇u|2)∇u] + B(|x|, |u|2, |∇u|2)u = [cof∇u]∇P,

where the unknown vector field u satisfies the pointwise incompressibility con-

straint det∇u = 1 along with suitable boundary conditions and P = P(x)

is an a priori unknown hydrostatic pressure field. Here, A = A(r, s, ξ) and

B = B(r, s, ξ) are sufficiently regular scalar functions satisfying natural struc-

tural properties. Most notably, in the case of a finite symmetric annulus, we

prove the existence of a countably infinite scale of topologically distinct twist-

ing solutions to the system in all even dimensions. In sharp contrast in odd

dimensions the only twisting solution is the map u ≡ x. We study a related

class of systems by introducing the novel notion of a discriminant. Using this,

a complete and explicit characterisation of all twisting solutions for n ≥ 2 is

given and a curious dichotomy in the behaviour of the system and its solutions

is captured and analysed.
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4.1 Statement of the Result

We consider a second order nonlinear system in divergence form in a bounded

domain Ω ⊂ Rn subject to a pointwise incompressibility constraint:
div[A(|x|, |u|2, |∇u|2)∇u] + B(|x|, |u|2, |∇u|2)u = [cof∇u]∇P in Ω,

det∇u = 1 in Ω,

u = ϕ on ∂Ω.

Here P is an a priori unknown hydrostatic pressure field corresponding to

the pointwise constraint det∇u = 1 and to avoid unnecessary technicalities and

fix ideas ϕ is taken throughout as the identity map, that is, ϕ ≡ x. Moreover,

A = A(r, s, ξ) and B = B(r, s, ξ) are real-valued functions of classes C 1 and C

respectively with A being positive, monotone in the third variable and having

a suitable growth (see below for a formulation of the assumptions on A and B).

The divergence operator acts row-wise on the matrix field A(|x|, |u|2, |∇u|2)∇u.

By taking advantage of the incompressibility constraint det∇u = 1 and thus

the algebraic identity cof∇u = (∇u)−t the above system can be reformulated

as 
L [u;A,B] := ∇P in Ω,

det∇u = 1 in Ω,

u = ϕ on ∂Ω,

(4.1.1)

where the second order differential operator L = L [u;A,B] here is given by

L [u;A,B] = (∇u)tdiv[A(|x|, |u|2, |∇u|2)∇u] + B(|x|, |u|2, |∇u|2)(∇u)tu

=A(|x|, |u|2, |∇u|2)(∇u)t∆u+ (∇u)t∇u∇A(|x|, |u|2, |∇u|2)

+ B(|x|, |u|2, |∇u|2)(∇u)tu. (4.1.2)

As a result of this formulation, it is evident that if u is a solution to this

system, then necessarily curl L [u;A,B] = curl∇P ≡ 0 in Ω, that is,

curl
[
(∇u)tdiv[A(|x|, |u|2, |∇u|2)∇u] + B(|x|, |u|2, |∇u|2)(∇u)tu

]
≡ 0. (4.1.3)

However note that this condition, unless Ω ⊂ Rn has a particular homology,

would not on its own imply that the vector field L [u;A,B] is a gradient field,

here, ∇P. Note also that if A(r, s, ξ) = Fξ(r, s, ξ) and B(r, s, ξ) = −Fs(r, s, ξ)
for some class C 2 Lagrangian F = F (r, s, ξ) (hence in particular As + Bξ ≡ 0)
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then the system (4.1.1)-(4.1.2) is precisely the Euler-Lagrange equation associ-

ated with the variational energy integral (p ≥ 1)

F[u; Ω] =

ˆ
Ω

F (|x|, |u|2, |∇u|2) dx, u ∈ A p
ϕ (Ω), (4.1.4)

where A p
ϕ (Ω) = {u ∈ W 1,p(Ω;Rn) : det∇u = 1 a.e. in Ω and u = ϕ on ∂Ω}.

Although the existence of an energy integral can largely facilitate the analysis,

we emphasise that the assumptions put in place on A and B here are more

general and do not assume or associate an energy or a variational structure to

the system.6 For more on the background formulation and applications of the

system (4.1.1)-(4.1.2) in particular to geometry, function theory, mechanics and

nonlinear elasticity see [5, 6, 10, 13, 24, 48] and the references therein.

Throughout this chapter we specialise to the geometric set up where Ω =

Xn = Xn[a, b] := {x ∈ Rn : a < |x| < b} is a finite symmetric annulus with

b > a > 0 and ϕ ≡ x, the identity map. In this context, by a generalised

twist (or simply twist) we understand a map u ∈ C (Xn,Xn) which in spherical

coordinates admits the representation

u : (r, θ) 7→ (r,Q(r)θ), r = |x|, θ = x|x|−1, x ∈ Xn. (4.1.5)

Here Q = Q(r) ∈ C ([a, b],SO(n)) is called the twist path associated with u.

Now, in order to ensure u = ϕ on ∂Ω = ∂Xn we set Q(a) = Q(b) = In. In this

event, the twist path forms a closed curve in SO(n) based at In called the twist

loop that in turn represents an element of the fundamental group π1(SO(n)) ∼=
Z2 (n ≥ 3) and Z (n = 2). Our aim here is to prove the existence of multiple

twisting solutions to (4.1.1)-(4.1.2) by carefully formulating the action of L on

sufficiently regular twists and then specialising to those having a geodesic twist

loop Q(r) = exp{f(r)H} for suitable choices of f = f(r) and H ∈ so(n). It is

quite remarkable that here, despite the form of L [u;A,B], in the construction of

multiple twist solutions we can take advantage of an arising variational structure

on A whilst separating the roles of A, B and only reuniting them again at the

last stage of the argument when enforcing the curl-free condition on L [u;A,B].

For the sake of future reference let us proceed by describing the assumptions.

Indeed we assume throughout that A = A(r, s, ξ), B = B(r, s, ξ) are of classes

6Despite this, our results even in the variational context are new and of interest. Among the

many important examples here one can refer to the cases F (r, s, ξ) = h(r, s)ξ with h > 0 and

of class C 2 where the resulting F is a weighted Dirichlet type energy and F (r, s, ξ) = (ξ/s)n/2

(n ≥ 2) where the resulting F is the classical distortion energy (see, e.g., [5, 6, 46, 61, 62]).
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C 1(U), C (U) respectively where U = U(Xn[a, b]) = [a, b]×]0,∞[×]0,∞[⊂ R3

and that A is strictly positive, i.e., A(r, s, ξ) > 0, monotone in the ξ variable,

i.e. Aξ(r, s, ξ) ≥ 0 for all (r, s, ξ) ∈ U and finally that for every compact set

K ⊂]0,∞[ there are constants c1 = c1(K), c2 = c2(K) > 0 such that

c1|ζ|p−1 ≤ A(r, s, ζ2)|ζ| ≤ c2|ζ|p−1, ∀(r, s, ζ2) ∈ U, s ∈ K, p > 1. (4.1.6)

Naturally the (untwisting) identity map u ≡ x – corresponding to the con-

stant twist loop Q ≡ In – is always a solution to the system (4.1.1) for a suitable

hydrostatic pressure field P as is seen by substitution:

L [u ≡ x;A,B] = (∇u)tdiv[A(|x|, |u|2, |∇u|2)∇u] + B(|x|, |u|2, |∇u|2)(∇u)tu

= div[A(|x|, |x|2, n)In] + B(|x|, |x|2, n)x

= ∇A(|x|, |x|2, n) + B(|x|, |x|2, n)x = ∇P. (4.1.7)

In this chapter we show that, interestingly and somewhat unexpectedly, in

all even dimensions n ≥ 2 there is a further infinite family of topologically

distinct twisting solutions to this system as formulated below.

Main Theorem. Let n ≥ 2 be even and A, B as above. Then for each m ∈ Z
there exists a generalised twist u = u(x;m) of class C 2 serving as a solution to

the nonlinear system (4.1.1)-(4.1.2). More specifically u(x;m) = rQ(r;m)θ is a

generalised twist with twist path Q = Q(r;m) given explicitly by

Q(r;m) = exp{G (r;m)H}, a ≤ r ≤ b, m ∈ Z

= Pdiag(R[G ](r;m), . . . ,R[G ](r;m))Pt, (4.1.8)

where G = G (r;m) is the unique solution to the boundary value problem

BVP[G ;A] =


d

dr

[
rn+1A(r, r2, n+ r2Ġ 2)Ġ

]
= 0, a < r < b,

G (a) = 0,

G (b) = 2mπ.

(4.1.9)

Moreover H is the n × n skew-symmetric matrix H = PJnP
t with P ∈ O(n)

arbitrary, Jn = diag(J, ...,J) and J as in (4.2.2). Furthermore, P represents a

hydrostatic pressure associated with u and is given by

P(x;m) = A(r, r2, n+ r2Ġ 2) + S(r), r = |x|, x ∈ Xn, (4.1.10)

where ∇S = r[B(r, r2, n+ r2Ġ 2)− Ġ 2A(r, r2, n+ r2Ġ 2)]θ.
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4.2 Construction of Countably Infinitely Many

Solutions to the Nonlinear System (4.1.1)-

(4.1.2)

First we refer the reader to Proposition A.0.3 in Appendix A to recall some

of the key identities pertaining to a generalised twist u(x) = Q(|x|)x and its

gradient ∇u. We state here (and for reference throughout this chapter) that the

action of the partial differential operator L [u;A,B] on a generalised twist is

L [u;A,B] = (Qt + rθ ⊗ Q̇θ)× (4.2.1)

×
{
Aξ(r, r

2, n+ r2|Q̇θ|2)(Q + rQ̇θ ⊗ θ)(2r|Q̇θ|2θ + r2∇|Q̇θ|2)

+ 2rAs(r, r
2, n+ r2|Q̇θ|2)(Qθ + rQ̇θ) + Ar(r, r

2, n+ r2|Q̇θ|2)(Qθ + rQ̇θ)

+ A(r, r2, n+ r2|Q̇θ|2)
[
(n+ 1)Q̇ + rQ̈

]
θ + rB(r, r2, n+ r2|Q̇θ|2)Qθ

}
,

which follows by direct substitution. In this section we specialise to generalised

twists u whose loops Q = Q(r) (a ≤ r ≤ b) are suitably scaled geodesics

on the compact Lie group SO(n) based at In with n even. For this we take

Q = exp{G (r)H} for a suitable G ∈ C 2[a, b] [cf. (4.2.9)] and H the n×n skew-

symmetric matrix H = PJnP
t, with P ∈ O(n) arbitrary and Jn = diag(J, ...,J)

where

J =

(
0 −1

1 0

)
, R[t] = exp{tJ} =

(
cos t − sin t

sin t cos t

)
. (4.2.2)

It is seen that here Q̇ = ĠHQ, Q̈ = (G̈H − Ġ 2In)Q and since the dimension

n is taken even, |Q̇θ|2 = Ġ 2|Hθ|2 = Ġ 2. Moreover, as Q is based at In, this

forces the angle of rotation function G to take (without loss of generality) the

boundary values G (a) = 0 and G (b) = 2mπ for some m ∈ Z. Under this set

of assumptions it is seen that the action of the differential operator L on the

57



The Non-Variational System L [u;A,B] = ∇P and the Discriminant ∆(h, g)

twist map u can be formulated as

L [u = rexp{G (r)H}θ;A,B] = (In + rĠ θ ⊗Hθ)×

×
{
Aξ(r, r

2, n+ r2Ġ 2)(In + rĠHθ ⊗ θ)(2rĠ 2θ + 2r2Ġ G̈ θ) (4.2.3)

+ 2rAs(r, r
2, n+ r2Ġ 2)(In + rĠH)θ + Ar(r, r

2, n+ r2Ġ 2)(In + rĠH)θ

+ A(r, r2, n+ r2Ġ 2)
[
(n+ 1)ĠH + r(G̈H− Ġ 2In)

]
θ + rB(r, r2, n+ r2Ġ 2)θ

}
.

Upon taking into account the necessary cancellations and after rearranging

terms this action can be written in the form

L [u = rexp{G (r)H}θ;A,B] = A (r)θ + B(r)Hθ, (4.2.4)

where the scalar functions A = A (r) and B = B(r) here are given by

A (r) :=Aξ(r, r
2, n+ r2Ġ 2)(1 + r2Ġ 2)(2rĠ 2 + 2r2Ġ G̈ ) (4.2.5)

+ 2rAs(r, r
2, n+ r2Ġ 2)(1 + r2Ġ 2) + Ar(r, r

2, n+ r2Ġ 2)(1 + r2Ġ 2)

+ A(r, r2, n+ r2Ġ 2)
[
r(n+ 1)Ġ 2 − rĠ 2 + r2Ġ G̈

]
+ rB(r, r2, n+ r2Ġ 2),

and

B(r) := rAξ(r, r
2, n+ r2Ġ 2)Ġ (2rĠ 2 + 2r2Ġ G̈ )

+ 2r2As(r, r
2, n+ r2Ġ 2)Ġ + rAr(r, r

2, n+ r2Ġ 2)Ġ

+ A(r, r2, n+ r2Ġ 2)[(n+ 1)Ġ + rG̈ ]. (4.2.6)

Focusing on these coefficients of L [u = rexp{G (r)H}θ;A,B] it can be seen

further that

A (r) =
Ġ

rn−1

d

dr

[
rn+1A(r, r2, n+ r2Ġ 2)Ġ

]
+

d

dr
A(r, r2, n+ r2Ġ 2)

+ r
[
B(r, r2, n+ r2Ġ 2)− Ġ 2A(r, r2, n+ r2Ġ 2)

]
, (4.2.7)

and similarly

B(r) =
1

rn
d

dr

[
rn+1A(r, r2, n+ r2Ġ 2)Ġ

]
. (4.2.8)

As suggested by the above formulation, we now proceed by choosing the angle

of rotation function G ∈ C 2[a, b] to be a solution to the second order ODE

associated with A = A(r, s, ξ):

d

dr

[
rn+1A(r, r2, n+ r2Ġ 2)Ġ

]
= 0, a < r < b, (4.2.9)
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supplemented by the boundary conditions G (a) = 0 and G (b) = 2mπ (the

existence of solutions G with the required degree of regularity is established

in Proposition C.0.1). Referring to the description of the action L [u;A,B] in

(4.2.4) together with the above formulations of A (r), B(r), in light of the ODE

(4.2.9) it is now seen that,

L [u;A,B] = L [rexp{G (r;m)H}θ;A,B] = A (r)θ + B(r)Hθ

=

{
Ġ

rn−1

d

dr

[
rn+1A(r, r2, n+ r2Ġ 2)Ġ

]
+

d

dr
A(r, r2, n+ r2Ġ 2)

+ r
[
B(r, r2, n+ r2Ġ 2)− Ġ 2A(r, r2, n+ r2Ġ 2)

]}
θ

+
1

rn
d

dr

[
rn+1A(r, r2, n+ r2Ġ 2)Ġ

]
Hθ (4.2.10)

=

[
d

dr
A(r, r2, n+ r2Ġ 2) + rB(r, r2, n+ r2Ġ 2)− rĠ 2A(r, r2, n+ r2Ġ 2)

]
θ.

We are now in a position to prove the Main Theorem of this chapter.

Proof. (Main Theorem) Recalling the description of L [u;A,B] from (4.2.10)

and with G = G (r;m) as above all that remains is to show that the vector field

v := L [u;A,B] = (∇u)tdiv[A(|x|, |u|2, |∇u|2)∇u] + B(|x|, |u|2, |∇u|2)(∇u)tu

=

[
d

dr
A(r, r2, n+ r2Ġ 2) + rB(r, r2, n+ r2Ġ 2)

− rĠ 2A(r, r2, n+ r2Ġ 2)

]
θ, (4.2.11)

is a gradient field in Xn, that is, v = ∇P. Towards this end it is firstly seen that

d/drA(r, r2, n + r2Ġ 2)θ = ∇A(|x|, |x|2, n + |x|2Ġ 2) and secondly upon writing

the remainder as r[B(r, r2, n+ r2Ġ 2)− Ġ 2A(r, r2, n+ r2Ġ 2)]θ = s(r)θ for some

s ∈ C [a, b] we have r[B(r, r2, n+ r2Ġ 2)− Ġ 2A(r, r2, n+ r2Ġ 2)θ = ∇S(|x|) for a

suitable primitive S of s. This therefore shows that the two segments of v are

both gradients and hence completes the proof.

4.3 The Case A = h(r, s), B = g(r, s)ξ and the

Discriminant ∆(h, g)

In this section we consider a particular case of the system (4.1.1)-(4.1.2) where,

quite remarkably, all the twist solutions with twist loops of class C 2 can be
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explicitly computed and described. Here we take the differential operator L =

L [u;A,B] with A = h(r, s), B = g(r, s)ξ, that is,7

L [u;A,B] = (∇u)t
{

div[h(r, |u|2)∇u] + g(r, |u|2)|∇u|2u
}
, (4.3.1)

where h = h(r, s) > 0 and g = g(r, s) are of classes C 2 and C respectively. Tak-

ing a twist u = rQ(r)θ with twist loop Q ∈ C 2(]a, b[,SO(n))∩C ([a, b],SO(n))

we can then write

L [u;A,B] = (∇u)t
{
∇u∇[h(r, |u|2)] + h(r, |u|2)∆u+ g(r, |u|2)|∇u|2u

}
= (Qt + rθ ⊗ Q̇θ)

{
[hr(r, r

2) + 2rhs(r, r
2)](Q + rQ̇)

+ h(r, r2)
[
(n+ 1)Q̇ + rQ̈

]
+ rg(r, r2)(n+ r2|Q̇θ|2)Q

}
θ, (4.3.2)

or equivalently and upon rearranging terms

L [u;A,B] = [hr(r, r
2) + 2rhs(r, r

2) + nrg(r, r2)]θ

+ [r2hr(r, r
2) + 2r3hs(r, r

2) + (n+ 1)rh(r, r2) + r3g(r, r2)]|Q̇θ|2θ

+ [(n+ 1)h(r, r2)QtQ̇ + rh(r, r2)QtQ̈ + r2h(r, r2)〈Q̇θ, Q̈θ〉In

+ r[hr(r, r
2) + 2rhs(r, r

2)]QtQ̇]θ. (4.3.3)

It is seen without difficulty that the action L [u;A,B] above can be given an

alternative and more suggestive reformulation

L [u;A,B] = F(r, θ)θ +
1

rn
d

dr

[
rn+1h(r, r2)QtQ̇

]
θ − rh(r, r2)Q̇tQ̇θ, (4.3.4)

where F = F(r, θ) is the scalar-valued function defined by

F(r, θ) =hr(r, r
2) + 2rhs(r, r

2) + nrg(r, r2) + r2h(r, r2)〈Q̇θ, Q̈θ〉 (4.3.5)

+
[
r2hr(r, r

2) + 2r3hs(r, r
2) + (n+ 1)rh(r, r2) + r3g(r, r2)

]
|Q̇θ|2.

Now starting from L [u;A,B] = ∇P upon tensorisation and integration over

the sphere we obtain for a < r < b (c.f. Proposition 5.2.3)

ˆ
Sn−1

L [u;A,B]⊗ θ − θ ⊗L [u;A,B] =

ˆ
Sn−1

∇P ⊗ θ − θ ⊗∇P = 0. (4.3.6)

7Note that g(r, s) = −hs(r, s) corresponds to the variational case F (r, s, ξ) = h(r, s)ξ where

A = Fξ = h(r, s) and B = −Fs = g(r, s)ξ. However we do not make such assumption here.
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Now upon substituting from (4.3.4), noting Fθ ⊗ θ − θ ⊗ Fθ ≡ 0 [cf. (4.3.5)]

together with the fact that Q̇tQ̇θ ⊗ θ − θ ⊗ Q̇tQ̇θ integrates to zero over the

sphere because of the symmetry of the matrix Q̇tQ̇, it follows at once that for

a < r < b,

ˆ
Sn−1

d

dr

{
rn+1h(r, r2)

[
QtQ̇θ ⊗ θ − θ ⊗QtQ̇θ

]}
dHn−1(θ) = 0. (4.3.7)

Therefore by virtue of the skew-symmetry of QtQ̇, after evaluating the above

integral, we arrive at

ˆ
Sn−1

L [u;A,B]⊗ θ − θ ⊗L [u;A,B] = 2
ωn
rn

d

dr

[
rn+1h(r, r2)QtQ̇

]
= 0.

(4.3.8)

Thus, summarising, we have shown that if L [u = rQ(r)θ;A,B] = ∇P then

the twist path Q = Q(r) must satisfy the ODE on the right in (4.3.8), which

is the counterpart of (4.2.9) in this context. By an easy inspection this ODE is

now seen to be completely integrable and with the choice of boundary conditions

Q(a) = Q(b) = In to have the explicit solutions

Q(r) = exp{H (r)H}, a ≤ r ≤ b, (4.3.9)

where the profile function H is given by

H (r) =
H(r)

H(b)
, H(r) =

ˆ r

a

ds

sn+1h(s, s2)
. (4.3.10)

Moreover the skew-symmetric matrix H is given in block diagonalised form as

H =

{
Pdiag(2m1πJ, . . . , 2mkπJ)Pt, n = 2k,

Pdiag(2m1πJ, . . . , 2mk−1πJ,mk)Pt, n = 2k − 1.
(4.3.11)

Here m1, . . . ,mk ∈ Z with mk = 0 when n = 2k − 1, P ∈ O(n) and J is as

in (4.2.2). Now taking Q(r) = exp{H (r)H} with Q̇ = ˙H HQ, Q̈ = Ḧ HQ +

˙H 2H2Q and 〈Q̇θ, Q̈θ〉 = ˙H Ḧ |HQθ|2 + ˙H 3〈HQθ,H2Qθ〉 = ˙H Ḧ |Hθ|2

where the last equality uses the skew-symmetry of H and the fact that H and

Q commute the formulation of the action of L on u reduces to

L [u;A,B] = [hr(r, r
2) + 2rhs(r, r

2) + nrg(r, r2)]θ

+ r3g(r, r2) ˙H 2|Hθ|2θ + rh(r, r2) ˙H 2H2θ, (4.3.12)
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where in the above we have reduced terms based on the assumption that Q =

exp{H (r)H} solves the ODE (4.3.8). We are now in a position to apply Propo-

sition D.0.1 [see Appendix D] to the vector field

U(x) = L [u;A,B]−∇[h(|x|, |x|2) + ng(|x|)] = A (r)|Hx|2x+ B(r)H2x,

(4.3.13)

where g = g(r) is a primitive of rg(r, r2) and

A (r) = g(r, r2) ˙H 2, B(r) = h(r, r2) ˙H 2. (4.3.14)

Indeed by writing ∆(h, g) = −(2A + Ḃ/r)/ ˙H 2 we have that if ∆ ≡ 0 then U

is a gradient field and if ∆ 6≡ 0 then U is a gradient field if and only if, referring

to (4.3.11), |m1| = · · · = |mk|. Note that by a basic calculation and making use

of the ODE (4.3.8) the discriminant ∆ here can be more explicitly described as8

∆(h, g) =
2(n+ 1)h+ rhr + 2r2(hs − g)

r2
. (4.3.15)

We have therefore proved the following theorem that captures a contrast in

the behaviour of the system and its twisting solutions.

Theorem 4.3.1. Let Q ∈ C 2(]a, b[,SO(n)) ∩ C ([a, b],SO(n)) be a twist loop

based at In and consider the differential operator L = L [u;A,B] with A,B as

above and ∆(h, g) as in (4.3.15). Then L [u = rQ(r)θ;A,B] = ∇P if and only

if Q is as described below.

1. ∆(h, g) 6≡ 0: Here depending on n being even or odd we have

(i) n even. Q(r) = exp{H (r)H} (a ≤ r ≤ b) with H = 2mπPJnP
t

where P ∈ O(n), m ∈ Z and Jn = diag(J, . . . ,J).

(ii) n odd. H ≡ 0 and thus Q ≡ In. Hence the identity map u ≡ x is the

only twisting solution to (4.1.1).

2. ∆(h, g) ≡ 0: Here Q(r) = exp{H (r)H} (a ≤ r ≤ b) with H as in (4.3.11)

and with no further restrictions on m1, . . . ,mk.

8Compare this with the similar and illustrative examples (5.5.5) and (6.4.14).

62



Chapter 5

A Lagrangian Discriminant

on Critical Loops

Associated with

curl L [u] = 0

The aim of this chapter is to comprehensively solve the nonlinear elliptic system

in variation 
div[Fξ∇u]− Fsu = [cof∇u]∇P in Ω,

det∇u = 1 in Ω,

u ≡ ϕ on ∂Ω,

where Fξ = Fξ(|x|, |u|2, |∇u|2), Fs = Fs(|x|, |u|2, |∇u|2) and F = F (r, s, ξ) is a

twice continuously differentiable Lagrangian. Here P = P(x) is a hydrostatic

pressure field associated with the incompressibility constraint det∇u = 1 and

ϕ is a prescribed boundary map. In the geometric setting where the domain

is a bounded symmetric annulus, we connect the system to a class of isotropic

ODEs on the Lie group SO(n) and establish the existence of an infinite scale of

topologically distinct geodesic type solutions to these ODEs in the form Q(r) =

exp{G (r)H}, with suitable profile G = G (r) and H ∈ so(n). Passing to the

full system next, a Lagrangian discriminant capturing the irrotationality of the

vector field L [u] = (∇u)t{div[Fξ∇u]−Fsu} is introduced and exploited. A set
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of contrasting behaviours of the system and its solutions are then singled out

and discussed by a detailed analysis of the associated discriminants.

5.1 Preliminaries and Outline

For Ω ⊂ Rn (n ≥ 2) a bounded domain with a sufficiently smooth boundary

consider the variational energy functional

F[u; Ω] =

ˆ
Ω

W (x, u,∇u) dx (5.1.1)

where W = W (x, u,F) is a twice continuously differentiable Lagrangian and u

is taken in the admissible space of incompressible Sobolev maps (with suitable

p ≥ 1)

A p
ϕ (Ω) :=

{
u ∈W 1,p(Ω,Rn) : det∇u = 1, u ≡ ϕ on ∂Ω

}
. (5.1.2)

In the above formulation ϕ ∈ C 1(∂Ω,Rn) is a fixed boundary map and the

incompressibility constraint in (5.1.2) is assumed to hold pointwise, that is,

a.e. in Ω. The Euler-Lagrange equation associated with (5.1.1)-(5.1.2) can

be obtained formally by using the so-called Lagrange multiplier method and is

given by the nonlinear system (see, e.g., [3, 14, 24, 65] for more)
div[WF(x, u,∇u)]−Wu(x, u,∇u) = [cof∇u]∇P in Ω,

det∇u = 1 in Ω,

u ≡ ϕ on ∂Ω.

(5.1.3)

Here P = P(x) is an a priori unknown Lagrange multiplier, often called the

hydrostatic pressure field, associated with the incompressibility constraint on u

and the divergence operator acts on the matrix field WF row-wise. Moreover

cof denotes the usual cofactor matrix that, thanks to the incompressibility con-

straint, we have [cof∇u]−1 = (∇u)t while the boundary condition u ≡ ϕ on ∂Ω

in (5.1.3) is understood in the sense of traces.

Motivated by consideration of rotational symmetry in solutions to the system

(5.1.3), in this paper we specialise entirely to isotropic Lagrangians of the form

W (x, u,F) = F (r, s, ξ)/2 with (r, s, ξ) = (|x|, |u|2, |F|2) and subject to suitable

convexity and monotonicity assumptions on F in the ξ variable. Here (5.1.3)
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can be written as 
L [u] = ∇P in Ω,

det∇u = 1 in Ω,

u ≡ ϕ on ∂Ω,

(5.1.4)

with L denoting the second-order differential operator given explicitly by

L [u] := (∇u)t{div[Fξ(|x|, |u|2, |∇u|2)∇u]− Fs(|x|, |u|2, |∇u|2)u}

=∇Fξ(|x|, |u|2, |∇u|2)(∇u)t∇u+ Fξ(|x|, |u|2, |∇u|2)(∇u)t∆u

− Fs(|x|, |u|2, |∇u|2)(∇u)tu. (5.1.5)

For the sake of clarity note that by a (classical) solution we hereafter mean a

pair (u,P) with u of class C 2(Ω,Rn)∩C (Ω,Rn) and P of class C 1(Ω)∩C (Ω)

such that (5.1.4) holds in a pointwise sense in Ω.9 Now proceeding forward

and arguing either formally and in a distributional sense, or classically, upon

assuming further differentiability on L , it is seen from (5.1.4)-(5.1.5) that

curl L [u] = curl∇P ≡ 0 in Ω, that is

curl

{
∇Fξ(|x|, |u|2, |∇u|2)(∇u)t∇u+ Fξ(|x|, |u|2, |∇u|2)(∇u)t∆u

− Fs(|x|, |u|2, |∇u|2)(∇u)tu

}
≡ 0. (5.1.6)

However, unless Ω has a particular homology, this is clearly not a sufficient

condition for L [u] to be a gradient field, here specifically ∇P.

Throughout the chapter we specialise to the geometric set up where Ω =

Xn = Xn[a, b] := {x ∈ Rn : a < |x| < b} is a bounded symmetric annulus with

b > a > 0, and ϕ ≡ x, i.e., the identity map. In this context by a generalised

twist (or twist for brevity) we understand a map u ∈ C (Xn,Xn) that admits the

representation

u : (r, θ) 7→ (r,Q(r)θ), r = |x|, θ = x|x|−1, x ∈ Xn. (5.1.7)

The curve Q ∈ C ([a, b],SO(n)) here is called the twist path associated with

u. Moreover in order to ensure u ≡ x on ∂Ω = ∂Xn we set Q(a) = Q(b) =

9 The pair (u?,P?) with u? ≡ x the identity map and P? as below is a solution to (5.1.4).

As a matter of fact from ∇u? = In we have L [u?] = div[Fξ(|x|, |x|2, n)In]−Fs(|x|, |x|2, n)x =

∇Fξ(|x|, |x|2, n)− Fs(|x|, |x|2, n)x and so L [u?] = ∇P? with P? = Fξ(|x|, |x|2, n)−G(|x|)
where G = G(r) is a primitive of g(r) = rFs(r, r2, n).
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In. In this event the twist path forms a closed curve in SO(n), based at In,

called the twist loop, that in turn represents an element of the fundamental

group π1(SO(n)) ∼= Z2 (n ≥ 3) and Z (n = 2). Our aim is to establish the

existence of an infinitude of twisting solutions to the nonlinear system (5.1.4)

by appropriately formulating the action of L on sufficiently regular twists u

and solving the resulting PDE.

The first major thread of this chapter comprising Sections 5.2-5.3 focuses on

a study of three interrelated ODEs considered over the Lie group SO(n) and

formulated for twist loops Q = Q(r) in the space

Bp
In

(a, b) :=
{
Q ∈W 1,p(a, b;SO(n)) : Q(a) = Q(b) = In

}
. (5.1.8)

The first ODE in the list can be seen to arise as the Euler-Lagrange equation

associated to a restricted energy functional (c.f. Remark 5.2.6) and is given on

the interval a < r < b by

ˆ
Sn−1

d

dr

{
rn+1Fξ(r, r

2, n+ r2|Q̇θ|2)
[
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]}
dHn−1(θ) = 0.

(5.1.9)

This ODE can also be extracted directly from the PDE L [u] = ∇P as shown

in Proposition 5.2.4 and as such serves as a necessary condition on the twist

path for any twist solution to the system (5.1.4). By discarding the spherical

integral we will also consider the strengthened, pointwise, equation

d

dr

{
rn+1Fξ(r, r

2, n+ r2|Q̇θ|2)
[
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]}
= 0, a < r < b.

(5.1.10)

Naturally any solution to (5.1.10) is by default a solution to (5.1.9) but not vice

versa due to the strengthening of the integral constraint in (5.1.9) to a pointwise

one in (5.1.10) (see, e.g., Theorem 5.3.1). The third and final equation of interest

(for which we observe close links to the previous two and the system (5.1.4))

comprises

d

dr

{
rn+1Fξ(r, r

2, n+ r2|Q̇θ|2)QtQ̇

}
= 0, a < r < b. (5.1.11)

This ODE and its solutions will play a central role in constructing twist solutions

to the system (5.1.4) as well as the analysis of irrotationality of the vector

field L [u]. Indeed for any twist u whose twist path Q is a solution to the

ODE (5.1.11) we have curl L [u] = ∆F [Q̇tQ̇θ ⊗ θ − θ ⊗ Q̇tQ̇θ], where ∆F –
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hereafter called the Lagrangian discriminant associated with the Lagrangian F

(c.f. Theorem 5.4.2) – is given explicitly by

∆F =
2[(n+ 1)Fξ + 2(ξ − n)Fξξ + 2r2Fsξ][Fξ + (ξ − n)Fξξ] + rFξFrξ

r2[Fξ + 2Fξξ(ξ − n)]
.

(5.1.12)

Our analysis shows that the vanishing vs. non-vanishing of this discriminant

along a solution Q = Q(r) to (5.1.11) has interesting and grave implications on

the structure and form of the resulting twist u = rQ(r)θ being a solution to

(5.1.4). In Section 5.5 we take up this specific task and look at how the explicit

structure of the Lagrangian F can affect the vanishing or non-vanishing of ∆F .

A remarkable feature here is that if F has no joint (r, s) and ξ dependence

then, subject to the mere monotonicity and convexity assumptions on F , the

discriminant is always strictly positive and hence nowhere vanishing. In contrast,

in the simplest case of joint (r, s) and ξ dependence examples will be given to

show that the discriminant can completely vanish and hence a totally new set of

geodesic type solutions to (5.1.11) will emerge as twist solutions to the system

(5.1.4).

For the sake of future reference we assume that F ∈ C 2(U) where U =

[a, b]×]0,∞[×]0,∞[⊂ R3 and that Fξ > 0, Fξξ ≥ 0. Moreover we assume that

the twice continuously differentiable function ζ 7→ F (r, r2, n+r2ζ2) is uniformly

convex in ζ for all a ≤ r ≤ b and ζ ∈ R. Regarding bounds and coercivity we

assume that F is bounded from below: F (r, s, ξ) ≥ c0 for some c0 ∈ R and that

for all (r, s, ξ) ∈ U and every compact K ⊂]0,∞[ there exist constants c1, c2 > 0

depending on K such that for some p > 1:

|Fξ(r, s, ζ2)ζ| ≤ c2|ζ|p−1 ∀ (r, s, ζ2) ∈ U : s ∈ K, (5.1.13)

c0 + c1|ζ|p ≤ F (r, s, ζ2) ≤ c2|ζ|p ∀ (r, s, ζ2) ∈ U : s ∈ K. (5.1.14)

Let us finish off this introduction with a brief description of the plan of

the chapter. In Section 5.2 we focus on the three ODEs listed above and in-

vestigate their relationship to one another and to the PDE L [u] = ∇P. In

Section 5.3 we take a closer look at Lagrangians of the weighted Dirichlet type

F (r, s, ξ) = h(r, s)ξ and readdress the inter-relationship between these three

ODEs in that context. Interestingly, a complete and explicit representation of

all solutions as well as an exact relationship between the ODEs can be given

here (c.f. Theorem 5.3.1). The highlight of Section 5.4 is the computation of
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the curl of the vector field L [u] which then leads to the formulation (5.1.12)

of the Lagrangian discriminant ∆F . This notion and its applications are then

exploited further in Section 5.5 in the context of Lagrangian form and structure.

The chapter ends by a return to the system (5.1.4) and a complete classification

of its multiple twisting solutions.

5.2 The Action L [u] on Generalised Twists and

Interrelation of Differential Operators

This section is principally concerned with a study of the differential operator

L [u] defined by (5.1.5) and its relation to the ODEs (5.1.9)-(5.1.11). The

first result here gives an explicit representation of the action L [u] when u is a

sufficiently regular generalised twist.

Proposition 5.2.1. Let u = rQ(r)θ with Q ∈ C 2(]a, b[,SO(n))∩C ([a, b],SO(n)).

Then the action of the differential operator L on u can be described as

L [u] =∇Fξ(|x|, |x|2, n+ |Q̇x|2) +
1

rn
d

dr

[
rn+1Fξ(r, r

2, n+ r2|Q̇θ|2)QtQ̇θ
]

− rFξ(r, r2, n+ r2|Q̇θ|2)Q̇tQ̇θ + A (r, θ)θ, (5.2.1)

where A = A (r, θ) is the scalar-valued function given by

A (r, θ) = r2Fξξ(r, r
2, n+ r2|Q̇θ|2)|Q̇θ|2(2r|Q̇θ|2θ + r2∇|Q̇θ|2)

+ 2r3Fsξ(r, r
2, n+ r2|Q̇θ|2)|Q̇θ|2 + r2Frξ(r, r

2, n+ r2|Q̇θ|2)|Q̇θ|2

+ rFξ[(n+ 1)|Q̇θ|2 + r〈Q̇θ, Q̈θ〉]− rFs(r, r2, n+ r2|Q̇θ|2) (5.2.2)

and Q̇ = dQ(r)/dr, Q̈ = d2Q(r)/dr2.

Proof. First, the identity (A.0.7) describes precisely the action L on a gener-

alised twist as in the statement of the theorem as

L [u] = (Qt + rθ ⊗ Q̇θ)

{
Fξξ(r, r

2, n+ r2|Q̇θ|2)(Q + rQ̇θ ⊗ θ)×

× (2r|Q̇θ|2θ + r2∇[|Q̇θ|2])

+ [2rFsξ(r, r
2, n+ r2|Q̇θ|2) + Frξ(r, r

2, n+ r2|Q̇θ|2)](Q + rQ̇θ ⊗ θ)θ

+ Fξ(r, r
2, n+ r2|Q̇θ|2)[(n+ 1)Q̇ + rQ̈]θ − rFs(r, r2, n+ r2|Q̇θ|2)Qθ

}
.
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Upon multiplying through (∇u)t = Qt + rθ ⊗ Q̇θ and making the appropriate

rearrangements the identity (5.2.1) follows at once.

We remark that the fact that a generalised twist u = rQ(r)θ as in the state-

ment of the theorem above satisfies the incompressibility constraint det∇u = 1

is established in Proposition A.0.4. Before proceeding further, we briefly digress

to give a result which will be used in various forms in the chapter. Towards this

end let us introduce the notation SF[θ] for the tensor product

SF[θ] := Fθ ⊗ θ − θ ⊗ Fθ, (5.2.3)

where F is a fixed n× n matrix and θ ∈ Sn−1.

Lemma 5.2.2. SF[θ] ≡ 0 for all θ ∈ Sn−1 iff F = fIn for some f ∈ R.

Thus the tensor Fθ⊗θ is skew-symmetric for all unit vectors θ iff the matrix

F is a multiple of the identity matrix. Now before giving the proof of the lemma,

it is instructive to note that upon integrating SF[θ] over the sphere, we have

ˆ
Sn−1

SF[θ] dHn−1(θ) = ωn(F− Ft), (5.2.4)

where ωn is the volume of the unit n-ball. Thus in contrast to the more stringent

conclusion in Lemma 5.2.2, the spherical integral of SF[θ] in (5.2.4) only sees

the skew-symmetric part of F, and in particular vanishes iff F is symmetric.

Proof. From SF[θ] ≡ 0 for θ ∈ {e1, ..., en} – the standard basis of Rn – it follows

that F is diagonal, that is, F = diag(f1, . . . , fn) for (fi)
n
i=1 ⊂ R. Hence the

condition SF[θ] ≡ 0 reduces to θiθj(fi − fj) ≡ 0 for all 1 ≤ i, j ≤ n. As such

f1 = · · · = fn =: f for some f ∈ R. Conversely and trivially if F = fIn then

SF[θ] = f[θ ⊗ θ − θ ⊗ θ] ≡ 0 for all θ ∈ Sn−1.

If we introduce the notation A = QtQ̇, then we can write the action L [u]

for a twist u, as

L [u] =∇Fξ(|x|, |x|2, n+ |Ax|2) +
1

rn
d

dr

[
rn+1Fξ(r, r

2, n+ r2|Aθ|2)A
]
θ

+ rFξ(r, r
2, n+ r2|Aθ|2)A2θ + A (r, θ)θ. (5.2.5)
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In this case A = A (r, θ) in turn can be reformulated as

A (r, θ) = r2Fξξ(r, r
2, n+ r2|Aθ|2)|Aθ|2∇(r2|Aθ|2)

+ 2r3Fsξ(r, r
2, n+ r2|Aθ|2)|Aθ|2 + r2Frξ(r, r

2, n+ r2|Aθ|2)|Aθ|2

+ rFξ(r, r
2, n+ r2|Aθ|2)[(n+ 1)|Aθ|2 + r〈Aθ, Ȧθ〉]

− rFs(r, r2, n+ r2|Aθ|2). (5.2.6)

This follows by noting the identities A2 = QtQ̇QtQ̇ = −Q̇tQ̇ and 〈Q̇θ, Q̈θ〉 =

〈Aθ, (Ȧ + A2)θ〉 = 〈Aθ, Ȧθ〉. Moving forward we now wish to emphasise and

further study the resulting commutator-like relation (henceforth abbreviating

the arguments of F and any of its derivatives)

L [u]⊗ θ − θ ⊗L [u] =∇Fξ ⊗ θ − θ ⊗∇Fξ + rFξ(A
2θ ⊗ θ − θ ⊗A2θ)

+
1

rn
d

dr

[
rn+1Fξ{Aθ ⊗ θ − θ ⊗Aθ}

]
, (5.2.7)

which holds thanks to the pointwise identity A (r, θ)θ ⊗ θ − θ ⊗A (r, θ)θ = 0.

Proposition 5.2.3. Let P ∈ C 1(U) with U ⊂ Rn an open neighbourhood of

the unit sphere Sn−1. Thenˆ
Sn−1

[∇P ⊗ θ − θ ⊗∇P] dHn−1(θ) = 0. (5.2.8)

Proof. Firstly by restricting to the unit surface of the sphere and splitting the

gradient into a normal and tangential part in the usual way, we can write

∇P = (In − θ ⊗ θ)∇P + 〈∇P, θ〉θ = ∇TP +∇NP. (5.2.9)

It is seen that ∇NP ⊗ θ − θ ⊗∇NP = 0 and so to establish (5.2.8) it suffices

to justify the integral identityˆ
Sn−1

[∇TP ⊗ θ − θ ⊗∇TP] dHn−1(θ) = 0. (5.2.10)

Now by a direct differentiation it is evident that ∇T (Pθ) = θ⊗∇TP +P∇T θ,
and so referring to (5.2.10) we can write

∇TP ⊗ θ − θ ⊗∇TP = [∇T (Pθ)−P∇T θ]t − [∇T (Pθ)−P∇T θ]

= [∇T (Pθ)]t − [∇T (Pθ)]. (5.2.11)

Here in deducing the second identity we have taken into account the symmetry

∇T θ = [∇T θ]t = In − θ⊗ θ. The conclusion now follows by integrating (5.2.11)

and invoking the divergence theorem on the sphere with ∂Sn−1 = {∅}.
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Proposition 5.2.4. If L [u] = ∇P holds for a generalised twist u = rQ(r)θ

with Q ∈ C 2(]a, b[,SO(n))∩C ([a, b],SO(n)) then the twist path Q satisfies the

ODE

d

dr

{ˆ
Sn−1

rn+1Fξ(r, r
2, n+ r2|Q̇θ|2)

[
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]
dHn−1(θ)

}
= 0.

(5.2.12)

Proof. Using the integral identity in the previous proposition and assuming that

u satisfies L [u] = ∇P we have, upon referring to (5.2.7) with A = QtQ̇,

0 =

ˆ
Sn−1

{∇P ⊗ θ − θ ⊗∇P} dHn−1(θ)

=

ˆ
Sn−1

{L [u]⊗ θ − θ ⊗L [u]} dHn−1(θ)

=

ˆ
Sn−1

{
rFξ

[
A2θ ⊗ θ − θ ⊗A2θ

]
+

1

rn
d

dr

{
rn+1Fξ [Aθ ⊗ θ − θ ⊗Aθ]

}}
dHn−1(θ), (5.2.13)

where we have written Fξ = Fξ(r, r
2, n+ r2|Q̇θ|2) for brevity. Now considering

the second term in the last integral in (5.2.13) we can write

I =
d

dr

{
rn+1Fξ

[
QtQ̇θ ⊗ θ − θ ⊗QtQ̇θ

]}
=

d

dr

{
rn+1FξQ

t
[
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]
Q

}
=Qt d

dr

{
rn+1Fξ[Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ]

}
Q

+ Q̇trn+1Fξ[Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ]Q + Qtrn+1Fξ

[
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]
Q̇

= I1 + I2 + I3. (5.2.14)

Now the sum of the two terms I2 and I3 in the last line in (5.2.14) is seen to

simplify to:

I2 + I3 = Q̇trn+1Fξ

[
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]
Q

+ Qtrn+1Fξ

[
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]
Q̇ (5.2.15)

= rn+1Fξ

{
Q̇tQ̇θ ⊗ θ − Q̇tQθ ⊗QtQ̇θ + QtQ̇θ ⊗ Q̇tQθ − θ ⊗ Q̇tQ̇θ

}
where we have used the orthogonality of Q. Now in view of Q̇tQ being skew-

symmetric, the middle two terms in (5.2.15) cancel and so returning to (5.2.14)
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we have

I = I1 + I2 + I3 =
d

dr

{
rn+1Fξ

[
QtQ̇θ ⊗ θ − θ ⊗QtQ̇θ

]}
=Qt d

dr

{
rn+1Fξ[Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ]

}
Q

+ rn+1Fξ

[
Q̇tQ̇θ ⊗ θ − θ ⊗ Q̇tQ̇θ

]
. (5.2.16)

Now since by a direct calculation A2 = −Q̇tQ̇ upon referring to and substituting

into (5.2.13) we have

RHS(5.2.13) =

ˆ
Sn−1

{
− rFξ

[
Q̇tQ̇θ ⊗ θ − θ ⊗ Q̇tQ̇θ

]
+

1

rn
Qt d

dr

{
rn+1Fξ[Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ]

}
Q

+ rFξ

[
Q̇tQ̇θ ⊗ θ − θ ⊗ Q̇tQ̇θ

]}
dHn−1(θ)

=
1

rn
Qt

{ˆ
Sn−1

d

dr
[rn+1Fξ{Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ}]dHn−1(θ)

}
Q = 0

which is the required conclusion.

Remark 5.2.5. Consider the second order tensor quantity L [u]⊗θ−θ⊗L [u]

associated with an arbitrary u ∈ C 2(Xn,Rn). Then referring to the formulation

(5.2.7) and the calculations (5.2.14)-(5.2.16) in the proof of Proposition 5.2.4

it is seen that for a twist u = rQ(r)θ with a twice continuously differentiable

twist path Q we have

L [u]⊗ θ − θ ⊗L [u] =∇Fξ ⊗ θ − θ ⊗∇Fξ (5.2.17)

+ Qt 1

rn
d

dr

{
rn+1Fξ

[
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]}
Q.

Remark 5.2.6. Interestingly, the ODE (5.2.12) has a variational character

resulting from restricting the energy functional F to the class of admissible

twists. Indeed recalling (5.1.1) and the description of |∇u|2 in Proposition A.0.3

we can write

F[u = rQ(r)θ;Xn] =

ˆ
Sn−1

ˆ b

a

F (r, r2, n+ r2|Q̇θ|2)rn−1 drdHn−1(θ)

=

ˆ b

a

E(r, Q̇)rn−1 dr =: E[Q; a, b], (5.2.18)
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where the Lagrangian E = E(r,X) with a ≤ r ≤ b and X is a skew-symmetric

n × n matrix is the spherical integral of F (r, r2, n + r2|Xθ|2). The Euler-

Lagrange equation associated with the restricted energy E over the space of

SO(n)-valued fixed end-point twist paths Q = Q(r) is then easily seen to coin-

cide with (5.2.12). This is also formally recovered in Corollary 2.2.12.

Proposition 5.2.7. Assume L [u] = ∇P for a generalised twist u = rQ(r)θ

with Q ∈ C 2(]a, b[,SO(n))∩C ([a, b],SO(n)). If the quantity |Q̇θ| depends only

on the radial variable r, that is, is independent of the spherical variable θ, then

Q satisfies (5.1.11). Indeed, under the latter condition, (5.1.9) and (5.1.11) are

equivalent.

Proof. First if L [u] = ∇P then by Proposition 5.2.4 the twist path Q satisfies

(5.1.9). Now if |Q̇θ| is additionally independent of θ (i.e., is a function of r alone)

then starting with the integral on the left of (5.1.9) followed by an application

of the divergence theorem we can write

ˆ
Sn−1

d

dr

{
rn+1Fξ(r, r

2, n+ r2|Q̇θ|2)
[
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]}
dHn−1(θ) =

=
d

dr

{
rn+1Fξ(r, r

2, n+ r2|Q̇θ|2)

ˆ
Sn−1

[
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]
dHn−1(θ)

}
= 2ωn

d

dr

{
rn+1Fξ(r, r

2, n+ r2|Q̇θ|2)Q̇Qt
}

= 2ωnQLHS(5.1.11)Qt,

(5.2.19)

where we have used the fact that

d

dr

{
rn+1Fξ(r, r

2, n+ r2|Q̇θ|2)Q̇Qt
}

=

= Q
d

dr

{
rn+1Fξ(r, r

2, n+ r2|Q̇θ|2)QtQ̇
}
Qt (5.2.20)

as in (3.2.18). As such it is immediately seen that under the stated independence

condition the twist path Q = Q(r) solves (5.1.9) iff it solves (5.1.11).

An instructive example is the geodesic twist path Q(r) = exp{G (r)H} where

G = G (r) ∈ C 2[a, b] and H is a suitable n× n skew-symmetric matrix. Indeed

here a basic calculation gives |Q̇θ| = |ĠHθ| and therefore when n is even, upon

taking H = Pdiag(J, . . . ,J)Pt with P ∈ O(n) and

J =

(
0 −1

1 0

)
, R[ζ] = exp{ζJ} =

(
cos ζ − sin ζ

sin ζ cos ζ

)
, (5.2.21)
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we have H2 = −In and so as a result |Q̇θ| = |Ġ | is independent of θ. When n

is odd by contrast there is no skew-symmetric matrix H satisfying H2 = −In
(due to the presence of at least one zero eigenvalue for H) and as such here |Hθ|
is independent of θ iff H = 0 and so Q ≡ In.

Discussing further the relationship between the ODEs (5.1.9) and (5.1.11),

for a general Lagrangian F and for a twice continuously differentiable twist

path Q = Q(r) (with no assumption on |Q̇θ|), it can be seen that (5.1.11) =⇒
(5.1.9) as follows. Indeed upon writing M for the operator

M [Q] :=
d

dr

[
rn+1Fξ(r, r

2, n+ r2|Q̇θ|2)QtQ̇
]

(5.2.22)

it follows from (5.1.11) that M [Q]θ ⊗ θ − θ ⊗M [Q]θ = 0 for all a < r < b

and |θ| = 1. Noting that the tensor quantity on the left here is exactly the

expression on the right of the first line in (5.2.16), by integrating over the unit

sphere we can write,

0 =

ˆ
Sn−1

(M [Q]θ ⊗ θ − θ ⊗M [Q]θ) dHn−1(θ)

=Qt

[ ˆ
Sn−1

d

dr

{
rn+1Fξ

[
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]}
dHn−1(θ)

]
Q

+ rn+1

ˆ
Sn−1

Fξ

[
Q̇tQ̇θ ⊗ θ − θ ⊗ Q̇tQ̇θ

]
dHn−1(θ). (5.2.23)

Now as Q̇tQ̇ is a symmetric matrix field on (a, b) the second integral on the

right here vanishes by (5.2.4) and so Q satisfies (5.1.9) (see also Section 5.3 and

Theorem 5.3.1 for related results on a particular class of Lagrangians).

Moving forward and in line with Proposition 5.2.7 we next give a result on

the equivalence of the ODEs (5.1.10) and (5.1.11) by introducing the L-norm

associated with a differentiable twist path Q = Q(r) (with a ≤ r ≤ b) by setting

L(Q, θ) = ‖Q̇θ‖L1(a,b) =

ˆ b

a

√
〈Q̇θ, Q̇θ〉 dr. (5.2.24)

Theorem 5.2.8. Let Q ∈ C 2(]a, b[,SO(n))∩C 1([a, b],SO(n)) satisfy the end-

point conditions Q(a) = Q(b) = In and suppose that the L-norm (5.2.24) is

independent of θ. The following are equivalent:

(i) Q solves (5.1.10),

(ii) Q solves (5.1.11),
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(iii) (Dimensional dichotomy) Depending on n being even or odd Q admits the

factorisation:

• (n = 2k) For m ∈ Z and P ∈ O(n)

Q = Q(r;m) = exp{G (r;m)PJkP
t} (5.2.25)

= Pdiag(R[G ](r;m), . . . ,R[G ](r;m))Pt,

where Jk = diag(J, . . . ,J) with J and R as in (5.2.21) and G ∈
C 2[a, b] the unique solution of the boundary value problem


d

dr

[
rn+1Fξ

(
r, r2, n+ r2Ġ 2

)
Ġ
]

= 0,

G (a) = 0,

G (b) = 2mπ.

(5.2.26)

• (n = 2k − 1) Q ≡ In.

Proof. Throughout the proof we will assume that L(Q, θ) > 0 as by assumption

L(Q, θ) = 0 iff Q ≡ In in which case the above equivalences are trivially true.

We first justify the implication (ii) =⇒ (iii). To this end we introduce the

function

G (r, θ,Q) :=

ˆ r

a

|Q̇(s)θ| ds, a ≤ r ≤ b, (5.2.27)

with Ġ (r) = d/dr[G (r, θ,Q)] = |Q̇(r)θ|. Given that (5.1.11) holds we can write

d

dr

[
rn+1Fξ(r, r

2, n+ r2|Q̇θ|2)|Q̇θ|2
]
− rn+1Fξ(r, r

2, n+ r2|Q̇θ|2)〈Q̇θ, Q̈θ〉 = 0

(5.2.28)

and therefore by a straightforward differentiation

0 =
d

dr

{
rn+1Fξ(r, r

2, n+ r2|Q̇θ|2)|Q̇θ|
}
|Q̇θ|

+ rn+1Fξ(r, r
2, n+ r2|Q̇θ|2)|Q̇θ| 〈Q̇θ, Q̈θ〉

|Q̇θ|

− rn+1Fξ(r, r
2, n+ r2|Q̇θ|2)〈Q̇θ, Q̈θ〉

=
d

dr

{
rn+1Fξ(r, r

2, n+ r2|Q̇θ|2)|Q̇θ|
}
|Q̇θ|. (5.2.29)

The above calculation shows that for a fixed θ, as a function of r, rn+1Fξ|Q̇θ| = c

on any interval on which |Q̇θ| is non-zero and so a basic continuity argument
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implies that either |Q̇θ| ≡ 0 on [a, b] or |Q̇θ| > 0 on [a, b]. Since we are avoiding

the former case then G (r, θ,Q) solves (5.2.26) on the whole interval [a, b] for

every fixed θ ∈ Sn−1. Now we see that G (a, θ,Q) = 0 and G (b, θ,Q) = L(Q, θ)

which is independent of θ by assumption. Solutions of (5.2.26) are plainly

extremisers over Dp
m(a, b) = {G ∈ W 1,p(a, b) : G (a) = 0,G (b) = 2mπ} of the

energy

I : G 7→
ˆ b

a

F (r, r2, n+ r2Ġ 2) rn−1 dr, G ∈ Dp
m(a, b). (5.2.30)

As the functional I in (5.2.30) is strictly convex (note that Fξ > 0 and Fξξ ≥ 0)

using a standard convexity argument it follows that solutions to (5.2.26) are the

unique minimisers of this energy functional with respect to their own boundary

conditions. Since G has been shown to be independent of θ at its end-points it

follows that G (r, θ,Q) = G (r,Q) is independent of θ for all a ≤ r ≤ b.
Next as Fξ > 0 it is evident that all (non-zero) solutions of (5.2.26) are

strictly monotone and hence invertible on [a, b]. Now put r(s) = G−1(s) for the

inverse and write Q(r(s)) = K(s) for K ∈ C 2(]0, l[,SO(n)) ∩ C ([0, l],SO(n))

where l = G (b). Then Q(r) = K(G (r)) so that Q̇ = K′Ġ (with prime denoting

d/ds). Returning to (5.1.11) we have after a change of variables

d

ds

{
rn+1Fξ(r, r

2, n+ r2Ġ 2)ĠKtK′
}

= 0 ⇐⇒ c
d

ds
KtK′ = 0. (5.2.31)

Here we have written rn+1Fξ(r, r
2, n + r2Ġ 2)Ġ = c (with c 6= 0) as a result of

G being a solution to (5.2.26). Now taking K(s) = exp{sH} with H a constant

skew-symmetric matrix to be specified we have KtK′ = H and so K solves

(5.2.31). As s(r) = G (r) this translates to Q(r;m) = exp{G (r;m)H} with G

solving (5.2.26). Calculating the L-norm it is seen that

L[Q = exp{G (r;m)H}, θ] =

ˆ b

a

|Ġ (r;m)Hθ| dr = |Hθ|
ˆ b

a

|Ġ (r;m)| dr

(5.2.32)

and so by inspection L[Q, θ] is independent of θ iff |Hθ| is independent of θ. Now

consider orthogonally diagonalising H, i.e., writing H = Pdiag(c1J, . . . , ckJ)Pt

for n = 2k and H = Pdiag(c1J, . . . , ck−1J, ck)Pt for n = 2k−1 with P ∈ O(n),

J as in (5.2.21) and c1, . . . ck suitable real constants, in fact, here ±icj (1 ≤
j ≤ k) being the eigenvalues of H (note that ck = 0 for n odd). By a direct

calculation it is then seen that |Hθ| is independent of θ iff c1, . . . , ck are equal
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modulo sign, that is, |c1| = · · · = |cn| =: |c|. When n is odd this gives c = 0

and hence Q ≡ In and when n is even by adjusting P ∈ O(n) if necessary this

gives, without loss of generality, c1 = · · · = ck = c.

Now moving on to the endpoint conditions on Q (and only in the n even case

as for n odd Q ≡ In) it is firstly seen from G (a;m) = 0 that Q(a) = exp{0} = In

and from G (b;m) = 2mπ that Q(b) = exp{c2mπPdiag(J, . . . ,J)Pt}. Thus to

satisfy Q(b) = In it suffices to take c = 1 and then (5.2.25) follows.

The implication (i) =⇒ (iii) is precisely the content of Theorem 2.4.1 and

as such here we provide just a sketch of a proof and refer to the aforementioned

theorem for further details. First assume that Q solves the ODE (5.1.10).

Multiplying this equation by Qθ and using the observation [Qθ ⊗ Q̈θ]Qθ =

−|Q̇θ|2Qθ it follows that Q satisfies

d

dr

[
rn+1Fξ(r, r

2, n+ r2|Q̇θ|2)Q̇θ
]

+ rn+1Fξ(r, r
2, n+ r2|Q̇θ|2)|Q̇θ|2Qθ = 0.

(5.2.33)

Thus upon writing Fξ = Fξ(r, r
2, n+r2|Q̇θ|2) for short it follows from a straight-

forward calculation that

d

dr

{
rn+1Fξ|Q̇θ|

}
=

d

dr

{
rn+1Fξ

}
|Q̇θ|+ rn+1Fξ

〈Q̈θ, θ〉
|Q̇θ|

= −rn+1Fξ〈Q̇θ,Qθ〉|Q̇θ| = 0, (5.2.34)

where the final inequality holds true by virtue of QtQ̇ being skew-symmetric.

Now recalling G as defined in (5.2.27) the above shows that G solves the ODE in

(5.2.26). Thus a similar convexity argument as in the previous part shows that

G is independent of θ for a ≤ r ≤ b. With K as before, the equation (5.2.33)

after a change of variables becomes

d

ds

[
rn+1FξĠK′θ

]
+ rn+1FξĠ |K′θ|2Kθ = c

[
K′′ + |K′θ|2K

]
θ = 0, (5.2.35)

which is precisely the geodesic equation on the sphere for γ(s) = K(s)θ. Writing

K(s) = exp{sH} as before this gives [H2 + In]K = 0 which has no solutions in

odd dimensions if L(Q, θ) > 0 whilst for n even we recover H = PJkP
t and the

concluding description of Q follows.

We have shown that either of (i) or (ii) implies (iii) and therefore all that

remains is to show the converse, namely, that (iii) implies (i) and (ii). Towards

this end. first observe that if the dimension n is odd, then Q ≡ In and both
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(5.1.10) or (5.1.11) trivially hold. For n even and with Q as in (5.2.25) we have

Q̇ = ĠHQ and so starting with (5.1.11) we can write

LHS(5.1.11) =
d

dr

{
rn+1Fξ(r, r

2, n+ r2Ġ 2)Ġ

}
H = 0 (5.2.36)

which holds since G is taken as a solution of (5.2.26). Likewise regarding (5.1.10)

we can write

LHS(5.1.10) =
d

dr

{
rn+1Fξ(r, r

2, n+ r2Ġ 2)Ġ [HQθ ⊗Qθ −Qθ ⊗HQθ]

}
=
d

dr

{
rn+1Fξ(r, r

2, n+ r2Ġ 2)Ġ

}
[HQθ ⊗Qθ −Qθ ⊗HQθ]

+ rn+1Fξ(r, r
2, n+ r2Ġ 2)Ġ 2

[
H2Qθ ⊗Qθ −Qθ ⊗H2Qθ

]
= 0,

(5.2.37)

with the final equality in (5.2.37) holding as a consequence of G being a solution

to (5.2.26) and the identity H2 = −In. As such we have shown that (iii) implies

both (i) and (ii) and so the proof is complete.

Remark 5.2.9. Consider the quantity SQ̇tQ̇[θ] = Q̇tQ̇θ ⊗ θ − θ ⊗ Q̇tQ̇θ as in

(5.2.3) and appearing in the proof of Proposition 5.2.4 [c.f. (5.2.16)]. Then by

Lemma 5.2.2 we have

SQ̇tQ̇[θ] ≡ 0 ⇐⇒ Q̇tQ̇ = σ(r)In (5.2.38)

for some non-negative σ = σ(r) with a ≤ r ≤ b. This being so |Q̇θ|2 = σ(r) and

hence the L-norm (5.2.24) is independent of θ. As such if Q̇tQ̇θ⊗θ−θ⊗Q̇tQ̇θ =

0 for a Q of class C 2 that solves either of the ODEs (5.1.10) or (5.1.11) then Q

is as described in part (iii) of Theorem 5.2.8.

5.3 The Lagrangian F (r, s, ξ) = h(r, s)ξ: The ODEs

(5.1.9) and (5.1.10) vs. (5.1.11) on SO(n)

In this section we take a closer look at the ODEs (5.1.10) and (5.1.11) with the

aim of discussing the possible relationship between the two. Here we specialise to

Lagrangians F of the type F (r, s, ξ) = h(r, s)ξ with h > 0 of class C 2 where the

resulting ODEs are completely integrable and one can obtain explicit solutions

for the twist path Q = Q(r). Note that upon substituting this Lagrangian into
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the energy integral (5.1.1) the resulting functional takes the form of a weighted

Dirichlet energy integral whose restriction to twists u takes the form

F[u = rQ(r)θ;Xn] =

ˆ
Xn

h(r, |u|2)|∇u|2 dx

=

ˆ b

a

ˆ
Sn−1

h(r, r2)[n+ r2|Q̇θ|2]rn−1 drdHn−1(θ). (5.3.1)

Starting from the ODE (5.1.11) it is seen that in this case with Fξ = h we have

d

dr

[
rn+1h(r, r2)QtQ̇

]
= 0, a < r < b. (5.3.2)

This ODE subject to the endpoint condition Q(a) = In as required by (5.1.8)

(with p = 2) admits the specific solutions Q(r) = exp{H (r)H} with H ∈ so(n)

arbitrary and H ∈ C 2[a, b] given explicitly by

H (r) =
H(r)

H(b)
, H(r) =

ˆ r

a

ds

sn+1h(s, s2)
, a < r < b. (5.3.3)

By virtue of H (a) = 0 the endpoint condition Q(a) = In is trivially satisfied.

Anticipating on the other endpoint condition, we again proceed by orthogonally

diagonalising H, that is, writing H = Pdiag(c1J, . . . , ckJ)Pt for n = 2k and

H = Pdiag(c1J, . . . , ck−1J, ck)Pt for n = 2k − 1 (with ck = 0 in the odd case).

In order to satisfy Q(b) = In we observe that cj ∈ 2Zπ for all 1 ≤ j ≤ k and so

for Q = exp{H (r)H} in (5.1.8) to solve (5.3.2) H must have the form

H =

Pdiag(2m1πJ, . . . , 2mkπJ)Pt n = 2k,

Pdiag(2m1πJ, . . . , 2mk−1πJ, 0)Pt n = 2k − 1,
(5.3.4)

with J as in (5.2.21) and m1, . . . ,mk ∈ Z. Now the ODE (5.1.10) for the choice

of Lagrangian F = h(r, s)ξ is seen to be

d

dr

{
rn+1h(r, r2)

[
Q̇θ ⊗Qθ −Qθ ⊗ Q̇θ

]}
= 0, a < r < b. (5.3.5)

Integrating (5.3.5) over the sphere and using the divergence theorem gives

(5.3.2). It thus follows that any solution Q = Q(r) here must also solve (5.3.5)

and so by the above discussion must have the form Q(r) = exp{H (r)H}. Now

with this at hand it is seen upon substitution in (5.3.5) that

0 =
d

dr

{
rn+1h(r, r2) ˙H (r) [HQθ ⊗Qθ −Qθ ⊗HQθ]

}
=

d

dr

{
rn+1h(r, r2) ˙H

}
[HQθ ⊗Qθ −Qθ ⊗HQθ]

+ rn+1h(r, r2) ˙H 2
[
H2Qθ ⊗Qθ −Qθ ⊗H2Qθ

]
. (5.3.6)
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This clearly holds if d/dr[rn+1h(r, r2) ˙H ] = 0 (corresponding to (5.3.2) with

Q = exp{H (r)H}) and H2Qθ⊗Qθ−Qθ⊗H2Qθ ≡ 0. Regarding this second

condition a rearrangement yields Q[H2θ ⊗ θ − θ ⊗H2θ]Qt ≡ 0 (note that H

and Q commute), so by Lemma 5.2.2 it is necessary and sufficient here to

have H2 = cIn for c ∈ R or translating into the scalars c1, . . . , ck to have

m1 = · · · = mk =: m (by a suitable adjustment of P ∈ O(n) if needed as seen

before). Consideration of n even and odd separately by noting that m = 0 for

n odd, hence H ≡ 0, and c = 2mπ with m ∈ Z arbitrary for n even leads to the

following statement.

Theorem 5.3.1. Consider the Lagrangian F (r, s, ξ) = h(r, s)ξ with h > 0 and

of class C 1([a, b]×]0,∞[) along with the ODEs (5.1.9)-(5.1.11) on the compact

Lie group SO(n) together with the endpoint conditions Q(a) = Q(b) = In.

Then:

(i) The ODEs (5.1.9) and (5.1.11) are equivalent.

(ii) Every solution to (5.1.9) and (5.1.11) in B2
In

(a, b) has the form

Q(r) = exp{H (r)H}, a ≤ r ≤ b, (5.3.7)

with H = H (r) as in (5.3.3) and H as in (5.3.4) with m1, . . .mk ∈ Z.

(iii) Every solution to (5.1.10) in B2
In

(a, b) is as in (ii) above subject to addi-

tionally having mj ∈ {±m} for 1 ≤ j ≤ k with m ∈ Z when n = 2k and

H ≡ 0, that is, m = 0 when n = 2k − 1.

Thus in particular it follows from this theorem that these two sets of ODEs

are not equivalent; in fact, the ODEs (5.1.9) and (5.1.11) have a much wider

solution set due to there being no constraint on the choice of integer m1, . . . ,mk

contrary to (5.1.10) where apart from a sign the latter integers all have to

coincide, that is, |m1| = · · · = |mk|. In particular for n odd this has the severe

consequence that H = 0 and hence Q ≡ In.

5.4 Irrotationality of the Vector Field L [u] and

the Lagrangian Discriminant ∆F

The starting aim of this section is the pivotal step of computing the curl of the

vector field L [u] as a key ingredient in solving the system (5.1.4), specifically,
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the PDE L [u] = ∇P. Evaluating the action L [u] for u = rQ(r)θ, upon taking

L [u] as in the proof of Proposition 5.2.1 and multiplying through the term

[cof∇u]−1 = [∇u]t and abbreviating the arguments of F = F (r, r2, n+r2|Q̇θ|2)

and any of its derivatives for the sake of brevity, we obtain

L [u] =Fξξ[In + r(QtQ̇θ ⊗ θ + θ ⊗QtQ̇θ) + r2|Q̇θ|2θ ⊗ θ]∇(r2|Q̇θ|2)

+ [2rFsξ + Frξ](θ + rQtQ̇θ + r2|Q̇θ|2θ) (5.4.1)

+ Fξ[(n+ 1)QtQ̇ + rQtQ̈ + r(n+ 1)|Q̇θ|2In + r2〈Q̇θ, Q̈θ〉In]θ − rFsθ.

Now using A = QtQ̇ as before for convenience we can rewrite the above as

L [u] =Fξξ[In + r(Aθ ⊗ θ + θ ⊗Aθ) + r2|Aθ|2θ ⊗ θ]∇(r2|Aθ|2)

+ [2rFsξ + Frξ](θ + rAθ + r2|Aθ|2θ)

+ Fξ[(n+ 1)A + r(Ȧ + A2) + r(n+ 1)|Aθ|2In

+ r2〈Aθ, Ȧθ〉In]θ − rFsθ. (5.4.2)

Next a straightforward differentiation and recalling the skew-symmetry of A

gives the identity

∇|Ax|2 = ∇(r2|Aθ|2) =
d

dr
(r2|Aθ|2)θ − 2rA2θ − 2r|Aθ|2θ, (5.4.3)

which then results in ∇Fξ = Fξξ∇(r2|Aθ|2) + 2rFsξθ+Frξθ. As a consequence

we can write the differential operator action L [u] in (5.4.2) as

L [u] =∇Fξ +
1

rn
d

dr

[
rn+1FξA

]
θ +

1

rn−1

d

dr

[
rn+1Fξ|Aθ|2

]
θ

+ rFξA
2θ − r2〈Aθ, Ȧθ〉Fξθ − rFsθ. (5.4.4)

Now the main advantage of the above formulation lies in the fact that it contains

representations of the ODEs encountered earlier in Section 5.2 and so further

links the system (5.1.4) and the PDE LF [u] = ∇P to the three classes of ODEs

studied earlier. In fact from this point on we shall assume that the twist path

Q = Q(r) associated with the twist u is a solution to the ODE (5.1.11), that

is, (5.4.5) below, and aim to reformulate the action L [u] under the assumption

d

dr

{
rn+1Fξ(r, r

2, n+ r2|Aθ|2)A

}
= 0, A = QtQ̇, a < r < b. (5.4.5)

Note that this ODE is formally stronger than (5.1.9) (which arises as a necessary

condition for twist solutions to L [u] = ∇P) but it has the advantage of being
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more natural, pointwise and directly embedded in the operator action L [u].

Furthermore, it is equivalent to (5.1.9) in many cases of interest or subject to

additional conditions as discussed before. See Proposition 5.2.4, Proposition

5.2.7, the accompanying discussion and Theorem 5.2.8. See also Theorem 5.3.1.

Proposition 5.4.1. Let Q ∈ C 2(]a, b[,SO(n))∩C ([a, b],SO(n))assume that Q

satisfies the ODE (5.4.5). Then with u = rQ(r)θ, the action L [u] reduces to

L [u] = ∇Fξ + rFξA
2θ − rFsθ, (5.4.6)

where Fs = Fs(r, r
2, n + r2|Q̇θ|2) and Fξ = Fξ(r, r

2, n + r2|Q̇θ|2) denote the

derivatives of the function F = F (r, s, ξ) in the second and third variables re-

spectively.

Proof. Given (5.4.5) it is seen upon taking the inner product 〈LHS(5.4.5)θ,Aθ〉 =

0 that

0 =
1

rn

〈
d

dr

[
rn+1FξA

]
θ,Aθ

〉
=

{
(n+ 1)Fξ|Aθ|2 + rFrξ|Aθ|2

+2r2Fsξ|Aθ|2 + rFξξ
d

dr
(r2|Aθ|2)|Aθ|2 + rFξ〈Aθ, Ȧθ〉

}
=

1

rn
d

dr

[
rn+1Fξ|Aθ|2

]
− rFξ〈Aθ, Ȧθ〉 (5.4.7)

and so upon rearranging we get r−nd/dr[rn+1Fξ|Aθ|2] = rFξ〈Aθ, Ȧθ〉. This

being so and referring to (2.1.4) we have the result.

We now come to the main aim of this section, namely, given the formulation

of L [u] for a twist u with a twist path Q satisfying the ODE (5.4.5), to compute

its curl, and discuss the irrotationality of the action L [u], i.e., it being curl-free.

Theorem 5.4.2. Let u = rQ(r)θ with Q ∈ C 2(]a, b[,SO(n))∩C ([a, b],SO(n))

and assume that Q is a solution to the ODE (5.4.5). Then

curl (L [u]−∇Fξ) = −∆F

[
A2x⊗ x− x⊗A2x

]
, (5.4.8)

where the Lagrangian discriminant ∆F is given by

∆F =
2[(n+ 1)Fξ + 2r2Fξξ|Aθ|2 + 2r2Fsξ][Fξ + r2Fξξ|Aθ|2] + rFξFrξ

r2(Fξ + 2r2Fξξ|Aθ|2)
.

(5.4.9)

Thus if the discriminant ∆F is nowhere zero in Xn then curl (L [u]−∇Fξ) ≡ 0

in Xn iff −A2 = α(r)In for some non-negative α ∈ C 1]a, b[∩C [a, b].
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Proof. Referring to the formulation (5.4.6), we proceed by calculating the curl

of the C 1 vector field v := L [u]−∇Fξ, specifically,

v = Fξ(|x|, |x|2, n+ |Ax|2)A2x−Fs(|x|, |x|2, n+ |Ax|2)x, x ∈ Xn. (5.4.10)

Setting F = A2 and noting [curl v]ij = vi,j − vj,i for 1 ≤ i, j ≤ n we have from

(5.4.10)

vi,j = r∇jFξ[Fθ]i + rFξ[Ḟθ]iθj + FξFij − r∇jFsθi − Fsδij (5.4.11)

where∇j = ∂/∂xj , Fs = Fs(r, r
2, n−r2〈Fθ, θ〉) and Fξ = Fξ(r, r

2, n−r2〈Fθ, θ〉)
since |Aθ|2 = −〈Fθ, θ〉 and in a similar way

vj,i = r∇iFξ[Fθ]j + rFξ[Ḟθ]jθi + FξFji − r∇iFsθj − Fsδji. (5.4.12)

Now recalling that F = A2 = −Q̇tQ̇ is a symmetric matrix field (A = QtQ̇ is

skew-symmetric) it follows from (5.4.11)-(5.4.12) after taking into account the

appropriate cancellations and changing to tensor notation that

curl v =Fx⊗∇Fξ −∇Fξ ⊗ Fx+
Fξ
r

(
Ḟx⊗ x− x⊗ Ḟx

)
+∇Fs ⊗ x− x⊗∇Fs. (5.4.13)

By using (5.4.3) it is seen that the gradient terms above are given respectively

by

∇Fξ =∇Fξ(r, r2, n− r2〈Fθ, θ〉) = Frξ(r, r
2, n− r2〈Fθ, θ〉)θ

+ 2rFsξ(r, r
2, n− r2〈Fθ, θ〉)θ

− Fξξ(r, r2, n− r2〈Fθ, θ〉)[2rF + r2〈Ḟθ, θ〉In]θ

and similarly

∇Fs =∇Fs(r, r2, n− r2〈Fθ, θ〉) = Frs(r, r
2, n− r2〈Fθ, θ〉)θ

+ 2rFss(r, r
2, n− r2〈Fθ, θ〉)θ

− Fsξ(r, r2, n− r2〈Fθ, θ〉)[2rF + r2〈Ḟθ, θ〉In]θ.

Therefore the contribution of these two gradients in (5.4.13) is respectively given

by

Fx⊗∇Fξ −∇Fξ ⊗ Fx = [r−1Frξ + 2Fsξ − rFξξ〈Ḟθ, θ〉](Fx⊗ x− x⊗ Fx)

− 2Fξξ[Fx⊗ Fx− Fx⊗ Fx] (5.4.14)
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and likewise

∇Fs ⊗ x− x⊗∇Fs = [r−1Frs + 2Fss − rFsξ〈Ḟθ, θ〉](x⊗ x− x⊗ x)

− 2Fsξ(Fx⊗ x− x⊗ Fx), (5.4.15)

by virtue of the trivial calculations. Therefore by substituting the simplified

expressions (5.4.14) and (5.4.15) back into (5.4.13) this gives

curl v = (r−1Frξ − rFξξ〈Ḟθ, θ〉)[Fx⊗ x− x⊗ Fx] + r−1Fξ[Ḟx⊗ x− x⊗ Ḟx].

(5.4.16)

Now since the ODE (5.4.5) is assumed to hold, upon noting that Ḟ = AȦ+ȦA

a rearrangement of the equation A[LHS(5.4.5)]+[LHS(5.4.5)]A = 0 for Ḟ yields

the identity

Ḟ = −2

[
n+ 1

r
+
∂r(Fξ)

Fξ

]
F, (5.4.17)

where we have written

∂r(Fξ) = Frξ + 2rFsξ − Fξξ
d

dr
(r2〈Fθ, θ〉). (5.4.18)

Substituting Ḟ into (5.4.16) gives us curl v = −∆F [Fx⊗ x− x⊗ Fx] where

∆F :=
2

r

[
n+ 1

r
+
∂r(Fξ)

Fξ

] (
Fξ − r2Fξξ〈Fθ, θ〉

)
− 1

r
Frξ. (5.4.19)

We now aim at simplifying ∆F by expanding the expression ∂r(Fξ) in (5.4.18).

Towards this end we first note that d/dr(r2〈Fθ, θ〉) = 2r〈Fθ, θ〉+r2〈Ḟθ, θ〉. Thus

substituting in Ḟ as per (5.4.17) gives

d

dr
(r2〈Fθ, θ〉) = 2

[
r〈Fθ, θ〉 − r2

(
n+ 1

r
+
∂r(Fξ)

Fξ

)
〈Fθ, θ〉

]
= −2r

[
n+ r

∂r(Fξ)

Fξ

]
〈Fθ, θ〉. (5.4.20)

Now recalling that −〈Fθ, θ〉 = |Aθ|2, upon substituting the above into (5.4.18),

we have

∂r(Fξ) = Frξ + 2rFsξ − 2rFξξ

[
n+ r

∂r(Fξ)

Fξ

]
|Aθ|2, (5.4.21)

or upon rearranging

∂r(Fξ) =
Fξ[Frξ + 2rFsξ − 2rnFξξ|Aθ|2]

Fξ + 2r2Fξξ|Aθ|2
. (5.4.22)
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Substituting this into (5.4.19) followed by some basic manipulations yields

(5.4.9). For the final remark, note that if ∆F is nowhere zero in Xn then

curlv ≡ 0 iff A2x ⊗ x − x ⊗A2x ≡ 0 and an application of Lemma 5.2.2 gives

A2 = −αIn for some non-negative α as in the statement of the theorem upon

observing that A2 is nonpositive-definite.

5.5 Examples of Vanishing vs. Non-Vanishing

Discriminants ∆F

The purpose of this short section is to study the Lagrangian discriminant ∆F as

given by (5.4.9) in some enlightening cases, for different families of Lagrangians

F , and to verify the remarkable fact that in many cases of interest the vanishing

or non-vanishing of this discriminant is more a structural property associated

with the Lagrangian than the assumed twist path solution to (5.4.5) along which

∆F is being considered. This considerably simplifies the verification of the

assumption in Theorem 5.4.2 regarding the behaviour of ∆F and facilitates the

discussion of solvability of the PDE L [u] = ∇P and the system (5.1.4) for

twists.

Towards this end, recall that F = F (r, s, ξ) is a Lagrangian of class C 2 that

is convex and monotone increasing in the third variable, specifically, Fξ > 0 and

Fξξ ≥ 0.

• F (r, s, ξ) = F (ξ): In this case the mixed partial derivatives Frξ, Fsξ vanish

completely and therefore

∆F =
2[(n+ 1)Fξ + 2r2Fξξ|Aθ|2][Fξ + r2Fξξ|Aθ|2]

r2(Fξ + 2r2Fξξ|Aθ|2)
. (5.5.1)

It is clear, thanks to the assumptions Fξ > 0, Fξξ ≥ 0 on the Lagrangian F

that the above discriminant is always strictly positive, that is, ∆F > 0 in

Xn and so without any further assumption we have curl (L [u]−∇Fξ) ≡ 0

in Xn iff A2θ⊗ θ− θ⊗A2θ ≡ 0 or iff −A2 = αIn (see also the comments

following Theorem 5.6.2).

• F (r, s, ξ) = G(ξ) +H(r, s): Here, despite the explicit (r, s) dependence in

the Lagrangian, the mixed derivatives Frξ, Fsξ vanish completely again
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and a straightforward calculation gives

∆F =
2[(n+ 1)Gξ + 2r2Gξξ|Aθ|2][Gξ + r2Gξξ|Aθ|2]

r2(Gξ + 2r2Gξξ|Aθ|2)
. (5.5.2)

The Lagrangian discriminant here is exactly the same as (5.5.1) and so

the implication of the irrotationality of L [u] − ∇Fξ on the twist path

Q is the same. Thus the overall conclusion is unchanged by this type of

dependence on (r, s).

• F (r, s, ξ) = F (r, ξ) vs. F (r, s, ξ) = F (s, ξ): Let us now consider cases

where the Lagrangian F has a “joint” (r, s) and ξ dependence. Assuming

first that F = F (r, ξ), i.e., no s-dependence, then (5.4.9) becomes

∆F =
2[(n+ 1)Fξ + 2r2Fξξ|Aθ|2][Fξ + r2Fξξ|Aθ|2] + rFξFrξ

r2(Fξ + 2r2Fξξ|Aθ|2)
. (5.5.3)

Likewise assuming F (r, s, ξ) = F (s, ξ), i.e., no r-dependence, then ∆F

becomes

∆F =
2[(n+ 1)Fξ + 2r2Fξξ|Aθ|2 + 2r2Fsξ][Fξ + r2Fξξ|Aθ|2]

r2(Fξ + 2r2Fξξ|Aθ|2)
. (5.5.4)

In both these cases it is seen that, despite the presence of positive terms,

the effect of the mixed derivative terms Frξ or Fsξ can – and in general will

– result in the discriminant changing sign or even vanishing completely.

Thus unlike the first two set of examples, in neither of the cases above, can

it be deduced that the Lagrangian discriminant ∆F is nowhere zero. As a

matter of fact, to complement the previous examples, here, one can give

examples of Lagrangians F , where ∆F ≡ 0 in Xn (see below in particular

(5.5.5)-(5.5.6) and the comments following Theorem 5.6.2).

• F (r, s, ξ) = h(r, s)ξ with h > 0:10 In this case we have Fξ = h(r, s) with

Frξ = hr(r, s), Fsξ = hs(r, s) and Fξξ ≡ 0. As a result here ∆F becomes

∆F =
2(n+ 1)h2(r, r2) + 4r2h(r, r2)hs(r, r

2) + rh(r, r2)hr(r, r
2)

r2h(r, r2)

=
2(n+ 1)h(r, r2) + rhr(r, r

2) + 4r2hs(r, r
2)

r2
. (5.5.5)

In particular if h is such that rhr(r, r
2)+4r2hs(r, r

2)+2(n+1)h(r, r2) ≡ 0,

then ∆F ≡ 0 in Xn. This has the interesting consequence that for such h

10See Section 5.3 for more on these weighted Dirichlet type Lagrangians.
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we can have curl (LF [u]−∇Fξ) ≡ 0 in Xn along a twist u = rQ(r)θ with Q

a solution to (5.4.5) without Q necessarily having to satisfy Q̇tQ̇ ≡ α(r)In

(compare with Theorem 5.3.1). Thus unlike the case where F = F (ξ) [c.f.

(5.5.1)] if the Lagrangian F has a “joint” (r, s) and ξ dependence then ∆F

need not be everywhere nonzero in Xn.

To elaborate further on this last point and example consider specifically the

choice h(r, s) = r−αs−β for α, β real constants (note that with 0 < a ≤ r ≤ b

and s > 0 this function h is of class C 2 and strictly positive over [a, b]×]0,∞[).

Then rhr(r, r
2) + 4r2hs(r, r

2) + 2(n+ 1)h(r, r2) ≡ 0 iff f(α, β) = 0 where

f(α, β) := α+ 4β − 2(n+ 1), (α, β) ∈ R2. (5.5.6)

α

2n+ 2
|

β

—
n+1
2

f(α, β) = 0

Figure 2: The line f(α, β) = 0 in the (α, β)-plane with f defined by (5.5.6).

By linearity of the condition on h above, if we take any finite sequence of

constants c1, . . . , cN > 0 as well as α1, . . . , αN , β1, . . . , βN in R then h = h(r, s)

obtained as the finite sum

h(r, s) =

N∑
j=1

cjr
−αjs−βj (5.5.7)

still satisfies the condition rhr(r, r
2)+4r2hs(r, r

2)+2(n+1)h(r, r2) ≡ 0 on [a, b]

provided that f(αj , βj) = αj +4βj−2(n+1) = 0 for each 1 ≤ j ≤ N . Of course

the class of h > 0 satisfying rhr(r, r
2) + 4r2hs(r, r

2) + 2(n + 1)h(r, r2) ≡ 0 is

much broader.

Motivated by Theorem 5.2.8 if we take the twist path Q(r) = exp{G (r)H}
with G ∈ C 2[a, b] and H a constant n×n skew-symmetric matrix then, assuming

that the ODE
d

dr

[
rn+1Fξ(r, r

2, n+ r2Ġ 2|Hθ|2)Ġ
]

= 0 (5.5.8)
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holds, by Theorem 5.4.2 we recover the discriminant

∆F =
2[(n+ 1)Fξ + 2r2Ġ 2Fξξ|Hθ|2 + 2r2Fsξ][Fξ + r2Ġ 2Fξξ|Hθ|2] + rFξFrξ

r2(Fξ + 2r2Ġ 2Fξξ|Hθ|2)
.

(5.5.9)

It is possible to simplify the expression of ∆F significantly, but first it is con-

venient to note that, with A = ĠH, the curl of the corresponding vector field

L [u]−∇Fξ is, by (5.4.8),

curl (L [u = rexp{G (r)H}θ]−∇Fξ) = −Ġ 2∆F [H2x⊗ x− x⊗H2x]. (5.5.10)

We proceed with calculating Ġ 2∆F and towards this end we first observe that

by multiplying (5.5.8) by a factor of r−nĠFξ we have the identity

rĠ 2FξFrξ = −
{

(n+ 1)Ġ 2F 2
ξ + 2r2Ġ 2FξFsξ + 2r3Ġ 3G̈FξFξξ|Hθ|2

+ 2r2Ġ 4FξFξξ|Hθ|2 + rĠ G̈F 2
ξ

}
. (5.5.11)

Now considering the numerator I of Ġ 2∆F with ∆F as in (5.5.9), upon

using (5.5.11), we can write

I = 2Ġ 2
[
(n+ 1)Fξ + 2r2Ġ 2Fξξ|Hθ|2 + 2r2Fsξ

]
×
[
Fξ + r2Ġ 2Fξξ|Hθ|2

]
+ rĠ 2FξFrξ

= (n+ 1)Ġ 2F 2
ξ + 2r2(n+ 1)Ġ 4FξFξξ|Hθ|2 + 2r2Ġ 4FξFξξ|Hθ|2

+ 4r4Ġ 6F 2
ξξ|Hθ|4 + 2r2Ġ 2FξFsξ + 4r4Ġ 4FsξFξξ|Hθ|2

− 2r3Ġ 3G̈FξFξξ|Hθ|2 − rĠ G̈F 2
ξ

=
[
(n+ 1)Ġ 2Fξ + 2r2Ġ 2Fsξ + 2r2Ġ 4Fξξ|Hθ|2 − rĠ G̈Fξ

]
×
[
Fξ + 2r2Ġ 2Fξξ|Hθ|2

]
. (5.5.12)

Hence returning to the discriminant ∆F as expressed by (5.5.9) and with the

numerator I of Ġ 2∆F as calculated above we have

Ġ 2∆F =
1

r2

[
(n+ 1)Ġ 2Fξ + 2r2Ġ 2Fsξ + 2r2Ġ 4Fξξ|Hθ|2 − rĠ G̈Fξ

]
. (5.5.13)

A further application of the ODE (5.5.8) now leads to the following statement.

Proposition 5.5.1. Assume the twist path Q(r) = exp{G (r)H} with G ∈
C 2[a, b] and H skew-symmetric satisfies (5.5.8). Then the Lagrangian discrim-

inant ∆F along Q admits the formulation

∆F =
1

r2

[
2(n+ 1)Fξ + rFrξ + 4r2Fsξ + 2r2Ġ (2Ġ + rG̈ )Fξξ|Hθ|2

]
. (5.5.14)
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As a direct application of the above consider again F (r, s, ξ) = h(r, s)ξ. Then

substitution in (5.5.14) gives ∆F = [2(n+1)h(r, r2)+rhr(r, r
2)+4r2hs(r, r

2)]/r2

in full agreement with (5.5.5).

5.6 The Nonlinear System (5.1.4) and the Infi-

nite Twist Solutions to the PDE L [u] = ∇P

Having discussed the three families of ODEs (5.1.9)-(5.1.11), their solvability

for twist paths Q = Q(r) and their relationships to one-another, in this final

section of the chapter we return to the nonlinear system
L [u] = ∇P in Xn,
det∇u = 1 in Xn,
u ≡ x on ∂Xn,

(5.6.1)

with

L [u] = (∇u)t
{

div[Fξ(|x|, |u|2, |∇u|2)∇u]− Fs(|x|, |u|2, |∇u|2)u
}

(5.6.2)

and address questions of existence and multiplicity of twist solutions u = rQ(r)θ

to the system. Recall that here the starting assumption is that the twist path

Q = Q(r) is a solution to (5.1.11). As a result the differential action L [u] admits

the formulation in Proposition 5.4.1 and the curl of the vector field L [u]−∇Fξ
factorises into a product entailing the Lagrangian discriminant ∆F as in (5.4.9)

and the tensor field [Q̇tQ̇x⊗ x− x⊗ Q̇tQ̇x] for x ∈ Xn (c.f. Theorem 5.4.2 for

details). The next theorem describes the implications of the PDE on the twist

path disregarding any boundary conditions.

Theorem 5.6.1. Let u = rQ(r)θ with Q ∈ C 2(]a, b[,SO(n))∩C ([a, b],SO(n)).

Assume that Q satisfies the ODE (5.1.11) and that the Lagrangian discriminant

∆F is nowhere zero in Xn. Then the following are equivalent:

(i) L [u] = ∇P in Xn,

(ii) curl (L [u]−∇Fξ) = 0 in Xn,

(iii) Q̇tQ̇ = α(r)In for some non-negative α ∈ C 1]a, b[∩C [a, b],
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Furthermore under any of these assumptions ∇P in (i) takes the specific form

∇P =∇Fξ(|x|, |x|2, n+ |x|2α(|x|))− Fξ(|x|, |x|2, n+ |x|2α(|x|))α(|x|)x

− Fs(|x|, |x|2, n+ |x|2α(|x|))x. (5.6.3)

Proof. If Q satisfies (5.1.11) and ∆F is nowhere zero in Xn then the implication

(ii) =⇒ (iii) follows from Theorem 5.4.2. Substituting (iii) into the vector field

v as given by (5.4.10) yields (recall that Q̇tQ̇ = −A2 for A = QtQ̇):

v(x) = −Fξ(|x|, |x|2, n+|x|2α(|x|))α(|x|)x−Fs(|x|, |x|2, n+|x|2α(|x|))x. (5.6.4)

Now let Φ = Φ(r) be a primitive for f(r) := −r[Fξα + Fs], that is, Φ′ = f .

Then v = ∇Φ(|x|) and so L [u] = ∇Fξ+v = ∇P with ∇P as per (5.6.3). This

justifies (iii) =⇒ (i). Next assume (i). Then referring to (5.4.6), v = L [u]−∇Fξ
is a C 1 gradient field in Xn and so as a result its curl vanishes. This gives (ii).

Theorem 5.6.2. Let u = rQ(r)θ where Q ∈ C 2(]a, b[,SO(n))∩C 1([a, b],SO(n))

and Q(a) = Q(b) = In. Assume that Q satisfies the ODE (5.1.11) and that ∆F

is nowhere zero in Xn. Then the following are equivalent:

(i) u is a solution to the system (5.6.1)-(5.6.2).

(ii) Depending on n being even or odd Q has the representation:

• n even: There exists P ∈ O(n) and m ∈ Z such that

Q = Q(r;m) = Pdiag(R[G ](r;m), . . . ,R[G ](r;m))Pt,

where G = G (r;m) ∈ C 2[a, b] is the unique solution to the two point

boundary value problem (5.2.26) and R is as defined by (5.2.21).

• n odd: Q ≡ In on [a, b] and hence u ≡ x.

Proof. In view of the twist path Q = Q(r) being a solution to the ODE (5.1.11)

and ∆F being nowhere zero in Xn from Theorem 5.6.1 we have:

L [u] = ∇P ⇐⇒ curl (L [u]−∇Fξ) = 0

⇐⇒ Q̇tQ̇θ ⊗ θ − θ ⊗ Q̇tQ̇θ = 0

⇐⇒ Q̇tQ̇ = α(r)In.

The equivalence (i)⇐⇒ (ii) now follows from Theorem 5.2.8 upon noting that

by the last identity |Q̇θ|2 is independent of θ. The proof is thus complete.
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Let us finish the chapter by presenting two examples depicting contrasting

behaviour of the discriminant and the implication it bears on the associated

twist solutions to the system (5.1.4).

Firstly, assume F (r, s, ξ) = F (ξ). Then by (5.5.1), ∆F is strictly positive and

hence nowhere zero in Xn. If Q ∈ C 2(]a, b[,SO(n))∩C 1([a, b],SO(n)) satisfying

Q(a) = Q(b) = In is a solution to the ODE (5.1.11) then the associated twist

u = rQ(r)θ is a solution to the system (5.1.4) iff Q is as described in part (ii)

of Theorem 5.6.2, that is, Q ≡ In for n odd or Q is a geodesic loop of the

form Q(r) = Pexp{G (r)diag(J, . . . ,J)}Pt with G a solution to (5.2.26) and

P ∈ O(n) for n even. By (5.5.2) the same conclusion holds for Lagrangians of

the form F (r, s, ξ) = F (ξ) +G(r, s).

In sharp contrast consider next F (r, s, ξ) = h(r, s)ξ as in Section 5.3. Then as

seen r2∆F = 2(n+1)h(r, r2)+4r2hs(r, r
2)+rhr(r, r

2) for a ≤ r ≤ b [cf. (5.5.5)].

By Theorem 5.3.1 any solution to the ODE (5.1.11) satisfying Q(a) = Q(b) = In

has the form Q(r) = exp{H (r)H} with H as in (5.3.3) and H as in (5.3.4). For

the system (5.1.4) with LF [u] = (∇u)t{div[h(|x|, |u|2)∇u]−hs(|x|, |u|2)|∇u|2u},
however, we have the following:11

• If 2(n + 1)h(r, r2) + 4r2hs(r, r
2) + rhr(r, r

2) 6≡ 0 over [a, b]: Every twist

solution to (5.1.4) of class C 2 has the form u = rexp{H (r)H}θ with H

given by

H =

2mπPdiag(J, . . . ,J)Pt n = 2k,

0 n = 2k − 1.
(5.6.5)

• If 2(n + 1)h(r, r2) + 4r2hs(r, r
2) + rhr(r, r

2) ≡ 0 over [a, b]: Every twist

solution to (5.1.4) of class C 2 has the form u = rexp{H (r)H}θ with

H =

Pdiag(2m1πJ, . . . , 2mkπJ)Pt n = 2k,

Pdiag(2m1πJ, . . . , 2mk−1πJ, 2mkπ)Pt n = 2k − 1.
(5.6.6)

Here P ∈ O(n), J is as in (5.2.21) and m1, . . . ,mk ∈ Z are arbitrary with

only mk = 0 in odd dimensions.

11For details and more see Chapter 3.
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Chapter 6

Whirl Maps as Solutions to

L [u;A,B] = ∇P in Low

Dimensions

In this chapter we study a non-variational, nonlinear and in divergence form

PDE

div[A(|x|, |u|2, |∇u|2)∇u] + B(|x|, |u|2, |∇u|2)u = [cof∇u]∇P

where the solution u : Ω→ Rn is subject to suitable boundary conditions as well

as the incompressibility constraint det∇u = 1 almost everywhere in Ω ⊂ Rn.

Here Ω ⊂ Rn is a bounded domain and A = A(r, s, ξ) and B = B(r, s, ξ) are

continuous scalar-valued functions satisfying suitable growth at infinity. We

solve this specifically for whirl maps u(x) = Q(%)x where Q is an SO(n)-valued

map taking values in the maximal torus of block-diagonal rotation matrices and

% = (ρ1, . . . , ρN ) a suitable vector of two-plane radial variables. We focus on

low spatial dimensions n = 2, 3, 4 by implementing a polar coordinate system

to re-frame the analysis in a novel way. We study in particular the case when

the function A(r, s, ξ) = h(r, s) shows no dependence on the third variable and

throughout the text consider the notion of a discriminant ∆(A,B) which has a

significant influence on the solution set of the PDE above.
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6.1 Preliminaries and Motivation

This chapter is concerned with the solvability of the nonlinear and non-variational

elliptic system
div[A(|x|, |u|2, |∇u|2)∇u] + B(|x|, |u|2, |∇u|2)u = [cof∇u]∇P in Ω,

det∇u = 1 in Ω,

u = ϕ on ∂Ω,

(6.1.1)

where Ω ⊂ Rn is a bounded domain with a sufficiently smooth boundary ∂Ω and

P = P(x) is a priori unknown. The real-valued functions A = A(r, s, ξ) and

B = B(r, s, ξ) are, respectively, of class C 1 and C 0 with A being strictly positive

and monotone increasing in the third variable. We consider the admissible class

of solutions

A p
ϕ (Ω) := {u ∈W 1,p(Ω,Rn) : det∇u = 1, u|∂Ω = ϕ}, p ≥ 1. (6.1.2)

These therefore are the incompressible p-Sobolev maps and A(|x|, |u|2, |∇u|2)∇u
defines a matrix field upon which the divergence in the first line of (6.1.1)

acts row-wise. The boundary data is interpreted in the sense of traces and for

simplicity we take throughout the chapter ϕ ≡ x to be the identity. We impose

the pointwise incompressibility constraint det∇u = 1 a.e. in Ω which leads to

the algebraic identity [cof∇u]−1 = (∇u)t. This being so the PDE governing

(6.1.1) will be written as L [u;A,B] = ∇P,12 where

L [u;A,B] := (∇u)t
{

div[A(|x|, |u|2, |∇u|2)∇u] + B(|x|, |u|2, |∇u|2)u
}
. (6.1.3)

We can pose the system in a variational setting where A(r, s, ξ) = Fξ(r, s, ξ),

B(r, s, ξ) = −Fs(r, s, ξ) for F = F (r, s, ξ) a Lagrangian of class C 2 where Fs, Fξ

denote its derivatives in the second and third arguments respectively. This being

so the system (6.1.1) arises as the Euler-Lagrange equation associated with the

energy functional

F[u; Ω] :=

ˆ
Ω

F (|x|, |u|2, |∇u|2) dx (6.1.4)

over the admissible space of incompressible p-Sobolev maps A p
ϕ (Ω). In this case

the unknown P appearing in (6.1.1) enters the system as a Lagrange multiplier.

12One can immediately see that the identity map u ≡ x is a solution of the above, indeed

by substitution we see that L [u ≡ x;A,B] = ∇A(|x|, |x|2, n) + B(r, r2, n)x = ∇P for P =

A(|x|, |x|2, n) +G(|x|) such that ∇G(|x|) = B(r, r2, n)x.

93



Whirl Maps as Solutions to L [u;A,B] = ∇P in Low Dimensions

Such an exposition has its roots in the theory of nonlinear elasticity, wherein the

map u plays the role of a volume-preserving deformation of a bounded domain

Ω ⊂ Rn. In this setting the Lagrange multiplier P describes a hydrostatic

pressure field. Despite this construction we emphasise that in this chapter we

do not assume that the system (6.1.1) arises from the variational energy (6.1.4)

and that the assumptions to be imposed on the functions A(r, s, ξ) and B(r, s, ξ)

will be enough to facilitate a detailed analysis in a more general setting.

Let us now describe the geometric setup in this chapter. We will seek solu-

tions of (6.1.1) exhibiting certain symmetries and as such we first restrict the

spatial variable x to the n-dimensional generalised annulus Xn = Xn[a, b] ⊂ Rn

defined by Xn := {x ∈ Rn : a < x < b} with 0 < a < b < ∞. Regarding the

assumptions on the functions A and B we have A = A(r, s, ξ) ∈ C 1(U), B =

B(r, s, ξ) ∈ C (U) where U = U(Xn[a, b]) =]a, b[×]0,∞[×]0,∞[⊂ R3. For every

compact set K ⊂]0,∞[ there exist positive constants c1 = c1(K), c2 = c2(K)

such that

c1|ζ|p−1 ≤ A(r, s, ζ2)|ζ| ≤ c2|ζ|p−1 ∀ (r, s, ξ) ∈ U : s ∈ K, p > 1.

We assume that the function A is strictly positive and monotone increasing in

the third variable, that is Aξ(r, s, ξ) ≥ 0 for all (r, s, ξ) ∈ U .

In terms of admissible solutions to the system (6.1.1) we consider exclusively

whirl maps u ∈ C 2(Xn,Xn). These are continuous self-maps over the closure of

Xn given by

u(x) = Q(ρ1, . . . , ρN )x. (6.1.5)

Here the vector of 2-planar radial variables % = (ρ1, . . . , ρN ) is described, de-

pending on whether the underlying spatial dimension n is even or odd, as follows.

• If the dimension n = 2d is even then we set N = d and for each 1 ≤ j ≤ d
we define ζj := (x2j−1, x2j). Then ρj = ‖ζj‖ and x ∈ Xn ⇐⇒ % ∈ An
where

An := {% ∈ Rd+ : a < ‖%‖ < b}. (6.1.6)

• If n = 2d+ 1 is odd then set N = d+ 1. The variables ρ1, . . . , ρd are given

by ρj = ‖ζj‖ and we set ρd+1 := xn. Then x ∈ Xn ⇐⇒ % ∈ An where,

similarly to the above,

An := {% ∈ Rd+ × R : a < ‖%‖ < b}. (6.1.7)
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For illustrative purposes we describe the setting in dimensions n = 3 and

n = 4 here; in the former case the vector % is described by % = (ρ, z) with

ρ = (x2
1 + x2

2)1/2, z = x3. Similarly When n = 4 we have % = (ρ1, ρ2) with

ρ1 = (x2
1 + x2

2)1/2, ρ2 = (x2
3 + x2

4)1/2. The semi-annular region An defined in

odd and even dimensions above admits the boundary

∂An := (∂An)a ∪ (∂An)b ∪ Γn, (6.1.8)

where (∂An)a = {% ∈ ∂An : ‖%‖ = a} and similarly (∂An)b = {% ∈ ∂An : ‖%‖ =

b}. Γn is a disconnected set simply defined as Γn = ∂An \ {(∂An)a ∪ (∂An)b}.
The map Q takes values in the compact Lie group of rotation matrices SO(n)

and given the assumed boundary data u ≡ x we will impose the condition

Q(%) = In for % ∈ (∂An)a ∪ (∂An)b and where In is the n× n identity matrix.

As such Q manifests a closed loop in SO(n) with initial and terminal point

at In. By considering symmetries it is necessary to assume that the matrix

map Q takes values in the maximal torus T of SO(n) consisting of 2× 2 block-

diagonal rotation matrices and we specifically consider loops of the form Q(%) =

exp{H(%)}, where H : An → so(n) is given by

H(%) =

{
diag(f1J, . . . , fdJ) n = 2d,

diag(f1J, . . . , fdJ, 0) n = 2d+ 1.
(6.1.9)

Here the matrix J describes a counterclockwise rotation by an angle of π/2 as

per (6.3.2) and the functions f` ∈ C (An) for all 1 ≤ ` ≤ d satisfy f` ≡ 0 on

(∂An)a and f` ≡ 2m`π on (∂An)b for m` ∈ Z. We see that the matrix H takes

values in so(n), which is the space of n×n skew-symmetric matrices and the Lie

algebra associated to the Lie group SO(n). As such, in the definition Q(%) =

exp{H(%)}, exp denotes the matrix exponential which serves as the canonical

exponential map from so(n) to SO(n). Any necessary preliminaries on the

theory of Lie groups and associated matters can be found in [27, 35, 45, 47, 73]

and references therein.

To avoid confusion throughout this chapter we will denote any calculus oper-

ations undertaken with respect to the % variables with a subscript A, for example

divA =
∑N
j=1 ∂ρj . If subscripts are ever omitted it should be clear from context

that we are working with respect to the x variables, as for example in the state-

ment of the main Euler-Lagrange system in (6.1.1). At times, however we will

employ the subscript X when operating with respect to the variables x1, . . . , xn

to avoid ambiguity.
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Part of our strategy will be to consider the following boundary value problem

associated to the angle of rotation functions f = (f1, . . . , fd) where, for each

1 ≤ ` ≤ d, we have
divA

[
A
(
‖%‖, ‖%‖2, n+

∑d
`=1 ρ

2
` |∇Af`|2

)
ρ2
l ω(%; d)∇Af`

]
= 0 in An,

f ≡ 0 on (∂An)a,

f ≡ 2mπ on (∂An)b,

A
(
‖%‖, ‖%‖2, n+

∑d
`=1 ρ

2
` |∇Af`|2

)
ρ2
l ω(%; d)∂νf` = 0 on Γn.

(6.1.10)

Here m = (m1, . . . ,md) ∈ Zd, ω(%; d) = ρ1 . . . ρd as defined in (6.2.1) and ∂ν is

the outward-pointing unit normal on the flat part of the boundary, Γn. This

restricted system arises naturally in a variational context as an Euler-Lagrange

equation of its own and is derived in the following section. We consider this

system to be of independent interest but the role it plays in the chapter will

be crucial. Its unique solution f = (f1, . . . , fd) will be substituted into the

description of a whirl map as in (6.1.9) and it is for such whirls that we aim to

solve the full system (6.1.1).

In Section 6.3 we conduct a full analysis of this and the resulting system

(6.1.1) when n = 3, 4. Here N = 2, so by introducing polar coordinates (r, θ)

where a ≤ r ≤ b and the range of θ depends on the underlying dimension n we

solve the Euler-Lagrange equation above as well as the full system (6.1.1) in a

novel way. Solutions here depend acutely on a discriminant term ∆(A,B) [see

the explicit examples (6.3.18) and (6.3.40)] extracted upon studying the irrota-

tionality of the vector field L [u;A,B].13 By way of motivating the introduction

of this discriminant we see in Theorem 6.3.1 that when ∆(A,B) 6≡ 0 over An
the only solution of L [u;A,B] = ∇P when the dimension n = 3 is the identity

map u ≡ x, whereas if ∆(A,B) ≡ 0 there is, in great contrast, an infinitude of

admissible solutions to this PDE.

Section 6.4 then considers a particular variant of the system (6.1.1) where

13Recall that all gradient fields are necessarily curl-free, so if a whirl map u should act as a

solution to the PDE (6.1.3) we see that curl L [u;A,B] = curl∇P ≡ 0.
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A(r, s, ξ) = h(r, s) for some 0 < h ∈ C 2([a, b]× R). That is we consider
(∇u)t{div[h(|x|, |u|2)∇u] + B(|x|, |u|2, |∇u|2)u} = ∇P in Ω,

det∇u = 1 in Ω,

u = ϕ on ∂Ω,

(6.1.11)

In this particular setting it can be seen that the picture simplifies and we are

able to classify explicitly all solutions u to the PDE L [u;A,B] = ∇P in all

spatial dimensions n ≥ 2. Here too, when searching for solutions of the full PDE

we work with a discriminant term ∆(A,B) depending on the functions A and

B and their derivatives as well as the underlying spatial dimension n. In this

n-dimensional context and with A(r, s, ξ) = h(r, s) this admits the description

[c.f. (6.4.14)]

∆(h,B) := 2
(n+ 1)

r2
h(r, r2) +

1

r
hr(r, r

2) + 2[hs(r, r
2)−Bξ(r, r2, n+ ˙H 2|Hx|2)].

(6.1.12)

This system is a generalisation of that considered in Section 4.3 for generalised

twist maps u(x) = Q(|x|)x where B(r, s, ξ) = g(r, s)ξ and also acts as a non-

variational analogy to the weighted Dirichlet setting considered widely through-

out the text and principally in Chapter 3.

6.2 The Variational System BVP[f ; U ,m]

This section is devoted to the derivation of the system given in (6.1.10) by

variational methods and a brief study of its solution and impact on the PDE

L [u;A,B] = ∇P when the spatial dimension n = 2. We begin by introduc-

ing some notational conventions used here and throughout the chapter. We

consider the vector of functions f = (f1, . . . , fd) appearing in (6.1.9) taken

from the admissible space Bp
m(An) := {f = (f1, . . . , fd) ∈ W 1,p(An,Rd) : f ≡

0 on (∂An)a, f ≡ 2mπ on (∂An)b, p ≥ 1} for m ∈ Zd. Moreover we will employ

the abbreviated notation ω(%; d) to symbolise

ω(%; d) = ω(ρ1, . . . , ρd; d) :=

d∏
j=1

ρj , (6.2.1)

with ω(%; d) > 0 in An.14

14Note that the dimension n = 2d is even ω(%; d) features all components ρ1, . . . , ρN of the

vector %, whereas when n = 2d+ 1 is odd, ω(%; d) only accounts for ρ1, . . . , ρN−1.

97



Whirl Maps as Solutions to L [u;A,B] = ∇P in Low Dimensions

To motivate ideas here we may think of the scalar-valued function A(r, s, ξ)

appearing in (6.1.1) as a derivative of some Lagrangian E = E(r, s, ξ) in the

third variable, in the sense that

E(r, s, ξ) =

ˆ ξ

0

A(r, s, ζ) dζ, a ≤ r ≤ b, s > 0, ξ > 0, (6.2.2)

so that Eξ(r, s, ξ) = A(r, s, ξ). If E is the Lagrangian of some energy functional

as in

E[f ;An] :=

ˆ
An

E

(
‖%‖, ‖%‖2, n+

d∑
`=1

ρ2
` |∇Af`|2

)
ω(%; d) d%, (6.2.3)

then the following result holds.

Theorem 6.2.1. Consider the variational energy functional E[f ;An] where

Fξ(r, s, ξ) = A(r, s, ξ) as in (6.2.2). Then the Euler-Lagrange equation asso-

ciated to E[f ;An] over the admissible space

B(An;m) =
⋃

m∈Zd

Bp
m(An), (6.2.4)

is the system

BVP[f ; U ,m] =


divAU (%,∇Af) = 0 in An,
f ≡ 0 on (∂An)a,

f ≡ 2mπ on (∂An)b,

U (%,∇Af)ν = 0 on Γn,

(6.2.5)

where U is the d × N -dimensional matrix field with row components U` given

by

U`(%,∇Af) := A

(
‖%‖, ‖%‖2, n+

d∑
`=1

ρ2
` |∇Af`|2

)
ρ2
`ω(%; d)∇Af`. (6.2.6)

Here the divergence in the first line acts row-wise whilst in the Neumann

boundary condition ν is the outward-pointing unit normal vector to Γn. Re-

garding the arguments of A(r, s, ξ) = A(|x|, |u|2, |∇u|2) in (6.2.6) we see that

|x| = ‖%‖ and |u| = |Qx| = |x| = ‖%‖. For the third argument we use the de-

scription of |∇u|2 for u = Q(%)x as appearing in Proposition A.0.6. We remark

that the uniqueness of any solution f ∈ C 2(An,Rd) to the system BVP[f ; U ,m]

is established in Proposition C.0.2.
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We can now explicitly describe solutions to the system (6.2.5)-(6.2.6) when

the spatial dimension n is even and the vector m admits equal entries, that is,

m1 = · · · = md =: m for m ∈ Z. In this case we see that for each 1 ≤ ` ≤ d

the angle of rotation function f` satisfies f`(a) = 0, f`(b) = 2mπ, thus we have

equality of boundary conditions for the functions f1, . . . fd which is not a priori

assumed in general.

Theorem 6.2.2. For n = 2d even consider the system (6.2.5)-(6.2.6) with

m1 = · · · = md =: m ∈ Z. This admits the solution f(%;m) = (f1, . . . , fd) where

for each 1 ≤ ` ≤ d we have f` = f`(%;m`) = G (‖%‖;m) such that G ∈ C 2[a, b]

solves the two-point boundary value problem
d

dr

[
rn+1A(r, r2, n+ r2Ġ 2)Ġ

]
= 0, a < r < b,

G (a) = 0,

G (b) = 2mπ.

(6.2.7)

We note that the existence and uniqueness of solutions to (6.2.7) with the

required C 2-regularity is established in Proposition C.0.1.

Proof. We begin by verifying the divergence-free statement in the first line of

(6.2.5) and, taking fα(%;mα) = G (‖%‖;m) = G (r;m) for any 1 ≤ α, i ≤ d we

have

∂fα
∂ρi

= Ġ
ρi
r

=⇒
d∑
`=1

ρ2
` |∇Afα|2 =

d∑
`=1

ρ2
` Ġ

2 ρ
2
`

r2
= r2Ġ 2. (6.2.8)

This being so we must compute the divergence (for all 1 ≤ α ≤ d)

divA Uα(%,∇Af) = divA

[
A

(
r, r2, n+

d∑
`=1

ρ2
` |∇Af`|2

)
ρ2
αω(%; d)∇Afα

]

=

d∑
i=1

∂

∂ρi

[
A(r, r2, n+ r2Ġ 2)Ġ

ρiρ
2
α

r
ω(%; d)

]
. (6.2.9)

Upon abbreviating the arguments of A = A(r, r2, n+ r2Ġ 2) and an application
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of the product rule (6.2.9) becomes

d∑
i=1

∂

∂ρi

[
AĠ

ρiρ
2
α

r
ω(%; d)

]
=

d∑
i=1

[
ȦĠ

ρ2
i ρ

2
α

r2
ω(%; d) + AG̈

ρ2
i ρ

2
α

r2
ω(%; d)

− AĠ
ρ2
i ρ

2
α

r2
ω(%; d) + AĠ

ρ2
α

r
ω(%; d)

+ 2AĠ
ρiρα
r

δiαω(%; d) + AĠ
ρiρ

2
α

r

d∏
j=1
j 6=i

ρj

]

=
ρ2
α

r
ω(%; d)

{
rȦĠ + rAG̈ + (2d+ 1)AĠ

}
=

ρ2
α

rn+1
ω(%; d)

d

dr

[
rn+1A(r, r2, n+ r2Ġ 2)Ġ

]
. (6.2.10)

This being so, under the assumption that G solves the ODE governing (6.2.7)

we see that

divA

[
A

(
r, r2, n+

d∑
`=1

ρ2
` |∇Af`|2

)
ρ2
αω(%; d)∇Afα

]
= 0,

verifying the divergence-free statement. Regarding the boundary conditions, if

G is a solution of (6.2.7) as claimed then G (a;m) = 0, G (b;m) = 2mπ so f ≡ 0

on (∂An)a and f ≡ 2mπ on (∂An)b as required.

We close the section with an explicit solution of the system BVP[f ; U ,m]

when n = 2. In this case there is a single angle of rotation function f which

depends on % = (x2
1 + x2

2)1/2 = r. As such the PDE governing the system

becomes an ODE in r, which leads to the boundary value problem


d

dr

[
r3A(r, r2, 2 + r2ḟ2)ḟ

]
= 0, a < r < b,

f(a) = 0,

f(b) = 2mπ.

(6.2.11)

We know from the previous theorem that this admits a unique solution f ∈
C 2[a, b]. In this context we illustrate how the PDE L [u;A,B] = ∇P simplifies

upon the assumption that f solves (6.2.11). First, given (6.1.9), we have the

description of a whirl map u = Qx as u(x) = (x1 cos f − x2 sin f, x1 sin f +

x2 cos f). It is computed that ∇u = Q + ḟ/r[−(x1 sin f + x2 cos f), x1 cos f −
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x2 sin f ]⊗ x, from which we have, writing A = A(r, r2, 2 + r2ḟ2),

div[A∇u] =

[
1

r
Ȧ− ḟ2A

][
x1 cos f − x2 sin f

x1 sin f + x2 cos f

]

−
[
ḟ Ȧ +

(
f̈ + 3/rḟ

)
A
] [ x1 sin f + x2 cos f

−x1 cos f + x2 sin f

]
, (6.2.12)

where

Ȧ =
d

dr
A(r, r2, 2 + r2ḟ2) = Ar + 2rAs + 2(rḟ2 + r2ḟ f̈)Aξ, (6.2.13)

with Ar, As, Aξ denoting the derivatives of A = A(r, s, ξ) in the first, second

and third variables respectively. From this it follows that

L [u;A,B] = (∇u)t{div[A(r, r2, 2 + r2ḟ2)∇u] + B(r, r2, 2 + r2ḟ2)u}

=∇A(|x|, |x|2, 2 + |x|2ḟ2) + B(r, r2, 2 + r2ḟ2)x

+
[
rȦḟ2 + A(rḟ f̈ + 2ḟ2)

]
x+

[
Ȧḟ + A(f̈ + 3/rḟ)

]
x⊥. (6.2.14)

Here we use the notation x = (x1, x2) and x⊥ = (−x2, x1) for the vector or-

thogonal to x. We can now introduce the ODE in (6.2.11) and hence rewrite

the above as

L [u;A,B] =∇A(|x|, |x|2, 2 + |x|2ḟ2) + B(r, r2, 2 + r2ḟ2)x

+
ḟ

r2

d

dr

[
r3A(r, r2, 2 + r2ḟ2)ḟ

]
x− ḟ2A(r, r2, 2 + r2ḟ2)x

+
1

r3

d

dr

[
r3A(r, r2, 2 + r2ḟ2)ḟ

]
x⊥. (6.2.15)

As such, if we assume that the function f is a solution of (6.2.11) then the above

reduces to

L [u;A,B] =∇A(|x|, |x|2, 2 + |x|2ḟ2)

+ B(r, r2, 2 + r2ḟ2)x− ḟ2A(r, r2, 2 + r2ḟ2)x (6.2.16)

and as such is a gradient field. That is L [u;A,B] = ∇P with P = A + G

such that ∇G = r[B − ḟ2A]θ. We conclude that for any solution f to (6.2.11)

the PDE L [u;A,B] = ∇P holds, and in particular we have infinitely many

solutions indexed by the integers of the form

u(x;m) =

[
cos f − sin f

sin f cos f

][
x1

x2

]
(6.2.17)

where, for each m ∈ Z, f = f(r;m) is a solution of the system (6.2.11).
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6.3 Derivation of the Vector Field L [u;A,B] in

Three and Four Dimensions

Following on from the discussion for n = 2, here we formulate explicitly the

vector field L [u;A,B] and classify all whirl solutions to (6.1.1) when the spatial

dimension n = 3, 4 in a component-wise fashion and with a consideration of

the restricted Euler-Lagrange system BVP[f ; U ,m]. We initially work with

respect to the % variables before switching to a polar coordinate system which

will facilitate a deeper analysis.

6.3.1 The System BVP[f ; U ,m] with d = 1 and L [u;A,B]

for n = 3

Beginning in three spatial dimensions we first explore the restricted Euler-

Lagrange system BVP[f ; U ,m]. We have the indices d = 1 and N = 2, so

consider a single angle of rotation function f(%) with % = (ρ, z), ρ = (x2
1 +

x2
2)1/2, z = x3. The system reduces to a single PDE, denoted Λ = 0, where we

introduce

Λ := divA
[
A(‖%‖, ‖%‖2, 3 + ρ2|∇Af |2)ρ3∇Af

]
= ∂ρ

[
Aρ3∂ρf

]
+ ∂z

[
Aρ3∂zf

]
.

(6.3.1)

Here we have Q = diag(R[f ], 1) for R, J ∈ SO(2) defined by

R[α] =

(
cosα −sinα

sinα cosα

)
, J = R[π/2] =

(
0 −1

1 0

)
. (6.3.2)

Hence u is the 3-vector u = [x1 cos f−x2 sin f, x1 sin f +x2 cos f, x3] and for the

gradient ∇u = ∂ui/∂xj : 1 ≤ i, j ≤ 3 we compute

∇u =

[
R[f ] 0

0 1

]
+


−(x1 sin f + x2 cos f)

x1 cos f − x2 sin f

0

⊗

x1

ρ
∂ρf

x2

ρ
∂ρf

∂zf

 (6.3.3)

and we note that we have used the chain rule identities

∂

∂xi
=

∂

∂ρ

xi
ρ

for i = 1, 2,
∂

∂x3
=

∂

∂z
. (6.3.4)
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From this it follows that

div[A(‖%‖,‖%‖2, 3 + ρ2|∇Af |2)∇u] =

{
1

ρ
∂ρA− A|∇Af |2

}
x1 cos f − x2 sin f

x1 sin f + x2 cos f

0



−
{
∂ρf∂ρA + ∂zf∂zA + A

[
3
∂ρf

ρ
+ ∆Af

]}
x1 sin f + x2 cos f

−x1 cos f + x2 sin f

0


+ ∂zA e3. (6.3.5)

By definition we then have, for L [u;A,B] = (∇u)t × {div[A(‖%‖, ‖%‖2, 3 +

ρ2|∇Af |2)∇u] + B(‖%‖, ‖%‖2, 3 + ρ2|∇Af |2)u},

L [u;A,B] = diag

([
∂ρf

ρ2
Λ +

1

ρ
∂ρA− |∇Af |2A

]
I2,

[
∂zf

ρ
Λ + ∂zA

])
x

+
Λ

ρ3
[Πx]

⊥
+ Bx (6.3.6)

where, recall, Λ is the differential operator defined in (6.3.1). In the above

Πx = (x1, x2, 0) denotes the projection of x in the (x1, x2) hyperplane with

[Πx]
⊥

= (−xx, x1, 0). From this we see that if Λ = 0 holds then our vector field

under consideration reduces to

L [u;A,B] = diag

([
1

ρ
∂ρA− |∇Af |2A

]
I2, ∂zA

)
x+ Bx. (6.3.7)

We remark that, by the chain rule, ∇XA(‖%‖, ‖%‖2, 3+ρ2|∇Af |2) = 1/ρ∂ρAΠx+

∂zAe3, hence it is possible to rewrite the above as

L [u;A,B] = ∇XA(‖%‖, ‖%‖2, 3 + ρ2|∇Af |2)

− |∇Af |2A(‖%‖, ‖%‖2, 3 + ρ2|∇Af |2)Πx

+ B(‖%‖, ‖%‖2, 3 + ρ2|∇Af |2)x. (6.3.8)

In order for the main PDE L [u;A,B] = ∇P to be solved it is necessary that

the vector field L [u;A,B] be irrotational. We compute the curl of the vector

field U(x) := L [u;A,B]−∇XA = Bx− |∇Af |2AΠx in dimension n = 3 as15

curlU = ∇X × U =

{
∂z
[
B− |∇Af |2A

]
− z

ρ
∂ρB

}
x1

−x2

0

 . (6.3.9)

15Observe that curl∇XA ≡ 0 which is why we subtract it from the vector field L [u;A,B]

and study the curl of the reduced vector field U .
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We now introduce a polar coordinate system in order to go deeper into

the analysis and with ρ = (x2
1 + x2

2)1/2 and z = x3 we set ρ = r cos θ, z =

r sin θ. Then we have transformed the analysis to the rectangular domain R3 :=

{(r, θ) ∈ R2 : a ≤ r ≤ b, −π/2 ≤ θ ≤ π/2}, the subscript 3 referring to the

underlying spatial dimension n = 3 (see Figure 3).

ρ

z

	
A3

a b

r

θ

−

−

R3

π
2

−π2

a b

Figure 3: The 2-dimensional domains A3 and R3 defined in the (ρ, z) and (r, θ)

planes respectively.

By the chain rule we have the following:

∂

∂ρ
=
ρ

r

∂

∂r
− z

r2

∂

∂θ
,

∂

∂z
=
z

r

∂

∂r
+

ρ

r2

∂

∂θ
. (6.3.10)

With this we first re-express the divergence-free PDE Λ = 0 with Λ defined by

(6.3.1) as

cos θ∂r

[
r3 cos3 θA

(
cos θ∂rf −

sin θ

r
∂θf

)]
− sin θ

r
∂θ

[
r3 cos3 θA

(
cos θ∂rf −

sin θ

r
∂θf

)]
+ sin θ∂r

[
r3 cos3 θA

(
sin θ∂rf +

cos θ

r
∂θf

)]
+

cos θ

r
∂θ

[
r3 cos3 θA

(
sin θ∂rf +

cos θ

r
∂θf

)]
= 0, (6.3.11)
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where A = A(r, r2, 3 + r2 cos2 θ|∇Af |2) and f = f(r, θ). By coupling this with

the boundary conditions present in (6.2.5) and a simplification of the PDE above

the full system under consideration becomes

∂r
[
r4 cos3 θA∂rf

]
+ ∂θ

[
r2 cos3 θA∂θf

]
= 0 (r, θ) ∈ R3,

f = 0 r = a,

f = 2mπ r = b

r2 cos3 θA[r cos θ∂rf − sin θ∂θf ] = 0 θ = ±π/2.

(6.3.12)

Furthermore, upon re-evaluating the arguments of A and B we can rewrite the

reduced vector field L [u;A,B] as in (6.3.8) as

L [u;A,B] =∇XA(r, r2, 3 + r2 cos2 θ|∇Af |2)

− |∇Af |2A(r, r2, 3 + r2 cos2 θ|∇Af |2)Πx

+ B(r, r2, 3 + r2 cos2 θ|∇Af |2)x. (6.3.13)

We now return to the curl of the vector field U(x) = L [u;A,B] − ∇XA =

Bx−|∇Af |2AΠx, computed in the (ρ, z)-coordinate system in (6.3.9). By using

the chain rule as in (6.3.10) we see that

curlU = ∇X × U =

{
∂z
[
B− |∇Af |2A

]
− z

ρ
∂ρB

}
x1

−x2

0

 (6.3.14)

=

{
− sin θ∂r

(
|∇Af |2A

)
+

∂θB

r cos θ
− cos θ

r
∂θ
(
|∇Af |2A

)}
x1

−x2

0

 .
We simplify the picture and analyse this curl further by assuming that the

function f , which acts a solution to the divergence-free equation (6.3.11), de-

pends on the radial variable r alone, in which case ∂θf ≡ 0 and, by (6.3.12),

f = f(r) satisfies the equation

d

dr

[
r4A(r, r2, 3 + r2 cos2 θḟ2)ḟ

]
= 0, (6.3.15)

since |∇Af |2 = ḟ2 in this case. Furthermore the curl of the vector field U as
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calculated in (6.3.14) becomes

curlU = −ḟ sin θ
{

2f̈A + ḟ [Ar + 2rAs] + 2r2ḟ2f̈ cos2 θAξ + 2rḟBξ
}

x1

−x2

0

 ,
(6.3.16)

where Ar = Ar(r, s, ξ) denotes the derivative of A in the first variable with

similar definitions holding for As, Aξ and Bξ. If we apply the ODE (6.3.15) to

the coefficient of the curl above we have, after a rearrangement,

curlU = ḟ2 sin θ

{
8

r
A + Ar + 2r [As − Bξ] + 2rḟ cos2 θAξ

[
2ḟ + rf̈

]}
x1

−x2

0

 .
(6.3.17)

We now introduce the notation

∆3(A,B) :=
8

r2
A +

1

r
Ar + 2[As − Bξ] + 2ḟ cos2 θAξ

[
2ḟ + rf̈

]
(6.3.18)

which we refer to as a discriminant term, extracted from a study of the irrota-

tionality of the vector field U(x) = L [u;A,B]−∇XA. This captures a startling

distinction in the cardinality of solution sets to the PDE L [u;A,B] = ∇P de-

pending on whether or not this discriminant vanishes, as is highlighted in the

following result. Recall the description of the twist loop Q = exp{H(%)} with

H as in (6.1.9).

Theorem 6.3.1. Let n = 3 and for all m ∈ Z take f = f(r;m) ∈ C 2[a, b] a

solution of (6.3.15) satisfying f(a) = 0, f(b) = 2mπ. Consider the vector field

L [u;A,B] be defined by (6.3.13) and the quantity ∆3(A,B) given by (6.3.18).

Then a whirl map u = diag(R[f ], 1)x solves the PDE L [u;A,B] = ∇P in one

of the following cases.

• If ∆3(A,B) 6≡ 0 over R3 then for any m ∈ Z f(r;m) ≡ 0 leading to u ≡ x
and P = A +G(|x|) such that ∇G = rB(r, r2, 3)θ.

• If ∆3(A,B) ≡ 0 over R3 then there is no restriction on f = f(r;m)

and for each m ∈ Z there exists a corresponding whirl map u(x;m) =

diag(R[f(r;m)], 1)x which solves L [u;A,B] = ∇P, with

P = A(|x|, |x|2, 3 + |x|2 cos2 θḟ2) +

ˆ r

0

sB(r, r2, 3 + r2 cos2 θḟ2) ds.
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Proof. If ∆3(A,B) 6≡ 0 then, supposing curlU ≡ 0 with U = L [u;A,B]−∇XA,

which holds whenever L [u;A,B] = ∇P, it follows from (6.3.17) that ḟ(R) = 0

for some fixed a < R < b. Upon evaluating (6.3.15) we see that

ḟ =
c

r4A(r, r2, 3 + r2 cos2 θḟ2)
, c ∈ R, a < r < b (6.3.19)

and since A > 0 by assumption we conclude that ḟ does not change sign. There-

fore if f(R) = 0 it follows that c = 0 and hence f ≡ 0 over a ≤ r ≤ b by virtue

of the boundary condition f(a) = 0. Consequently, with R defined by (6.3.2),

we have R[0] = I2 and for u as in the statement of the theorem it is easily seen

that u ≡ x is the only solution to the PDE L [u;A,B] = ∇P. The explicit

description of the pressure field P follows by a direct substitution.

Alternatively if ∆3(A,B) ≡ 0 then curlU ≡ 0 and it is possible that ḟ

is nowhere zero over a < r < b. For the corresponding whirl map u =

diag(R[f ], 1)x, it follows by Proposition D.0.2 that the corresponding vector

field L [u;A,B] still constitutes a gradient and thus in turn we have a solu-

tion of the PDE L [u;A,B] = ∇P. Indeed, first set H = diag(J, 0) where

J = R[π/2]. Then, adopting the notation used in Proposition D.0.2 we have

U(x) = A (r, z)x + B(r, z)H2x where z = |Hx|2 and the scalar-valued func-

tions A = A (r, z) and B = B(r, z) are given respectively by A (r, z) =

B(r, r2, 3 + ḟ2z), B(r, z) = ḟ2A(r, r2, 3 + ḟ2z). Then we have

2Az(r, z) +
Br(r, z)

r
= 2Bξ ḟ

2 +
Ar
r
ḟ2 + 2Asḟ

2 +
2

r
Aξ ḟ

3f̈ z +
2

r
ḟ f̈A, (6.3.20)

or by an application of the ODE (6.3.15) it follows that 2Az + Br/r ≡ 0 given

that ∆3 ≡ 0. Next define

ψ(r, z) :=

ˆ r

0

sB(s, s2, 3 + s2 cos2 θḟ2) ds. (6.3.21)

From this we see that

∇ψ(|x|, |Hx|2) = ψr(r, z)x/r − 2ψz(r, z)H
2x

= B(r, r2, 3 + ḟ2z)x+ ḟ2A(r, r2, 3 + ḟ2z)H2x = U(x), (6.3.22)

since −2ψzH
2x = −2[

´ r
0
sḟ2Bξ(s, s

2, 3 + ḟ2z) ds]H2x = −ḟ2A(r, r2, 3 + ḟ2z)Πx

by virtue of the identity 2Az+Br/r ≡ 0. It follows that L [u;A,B] = ∇P with

P = A + ψ.
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6.3.2 The Divergence-Free System Λ1 = Λ2 = 0 and L [u;A,B]

for n = 4

Next we go through the same procedure when the spatial dimension n = 4

with d = N = 2. First the system BVP[f ; U ,m] leads to the pair of PDEs

Λ1 = 0, Λ2 = 0, where

Λ1 := ∂ρ1
[
A(‖%‖, ‖%‖2, 4 + ρ2

1|∇Af1|2 + ρ2
2|∇Af2|2)ρ3

1ρ2∂ρ1f1

]
+ ∂ρ2

[
A(‖%‖, ‖%‖2, 4 + ρ2

1|∇Af1|2 + ρ2
2|∇Af2|2)ρ3

1ρ2∂ρ2f1

]
, (6.3.23)

Λ2 := ∂ρ1
[
A(‖%‖, ‖%‖2, 4 + ρ2

1|∇Af1|2 + ρ2
2|∇Af2|2)ρ1ρ

3
2∂ρ1f2

]
+ ∂ρ2

[
A(‖%‖, ‖%‖2, 4 + ρ2

1|∇Af1|2 + ρ2
2|∇Af2|2)ρ1ρ

3
2∂ρ2f2

]
. (6.3.24)

Here each fi, i = 1, 2 depends on % = (ρ1, ρ2) = (‖(x1, x2)‖, ‖(x3, x4)‖). In this

setting Q = Q(%) is the block-diagonal matrix Q = diag(R[f1],R[f2]) for R as

in (6.3.2), hence our whirl map u is given in components by

u(x) = Qx =


x1 cos f1 − x2 sin f1

x1 sin f1 + x2 cos f1

x3 cos f2 − x4 sin f2

x3 sin f2 + x4 cos f2

 . (6.3.25)

We compute the gradient of u as the 4× 4 matrix

∇u =

[
R[f1] 0

0 R[f2]

]
+


−∂ρ1f1(x1 sin f1 + x2 cos f1)

∂ρ1f1(x1 cos f1 − x2 sin f1)

−∂ρ1f2(x3 sin f2 + x4 cos f2)

∂ρ1f2(x3 cos f2 − x4 sin f2)

⊗

x1/ρ1

x2/ρ1

0

0



+


−∂ρ2f1(x1 sin f1 + x2 sin f1)

∂ρ2f1(x1 cos f1 − x2 sin f1)

−∂ρ2f2(x3 sin f2 + x4 cos f2)

∂ρ2f2(x3 cos f2 − x4 sin f2)

⊗


0

0

x3/ρ2

x4/ρ2

 . (6.3.26)
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By the chain rule it is then computed that

div[A∇u] = div[A(‖%‖, ‖%‖2, 4 + ρ2
1|∇Af1|2 + ρ2

2|∇Af2|2)∇u]

= diag

([
1

ρ1
∂ρ1A− A|∇Af1|2

]
I2,

[
1

ρ2
∂ρ2A− A|∇Af2|2

]
I2

)
×

×


x1 cos f1 − x2 sin f1

x1 sin f1 + x2 cos f1

x3 cos f2 − x4 sin f2

x3 sin f2 + x4 cos f2


− diag

({
∂ρ1f1∂ρ1A + ∂ρ2f1∂ρ2A + A

[
3
∂ρ1f1

ρ1
+
∂ρ2f1

ρ2
+ ∆Af1

]}
I2,{

∂ρ1f2∂ρ1A + ∂ρ2f2∂ρ2A + A

[
3
∂ρ2f2

ρ2
+
∂ρ1f2

ρ1
+ ∆Af2

]}
I2

)
×

×


x1 sin f1 + x2 cos f1

−x1 cos f1 + x2 sin f1

x3 sin f2 + x4 cos f2

−x3 cos f2 + x4 sin f2

 . (6.3.27)

With L [u;A,B] = (∇u)t{div[A∇u] + Bu} we then have

L [u;A,B] = diag

([
1

ρ1
∂ρ1A +

∂ρ1f1

ρ2
1ρ2

Λ1 − |∇Af1|2A
]
I2,[

1

ρ2
∂ρ2A +

∂ρ2f2

ρ1ρ2
2

Λ2 − |∇Af2|2A
]
I2

)
x

+ diag

(
1

ρ3
1ρ2

Λ1I2,
1

ρ1ρ3
2

Λ2I2

)
x⊥ + Bx, (6.3.28)

where x⊥ = (−x2, x1,−x4, x3). In particular if the divergence-free system aris-

ing from BVP[f ; U ,m] holds (i.e. Λ1 = Λ2 = 0) then the above simplifies

to

L [u;A,B] = diag

([
1

ρ1
∂ρ1A− |∇Af1|2A

]
I2,

[
1

ρ2
∂ρ2A− |∇Af2|2A

]
I2

)
x+ Bx,

(6.3.29)

where the arguments of A (and, by analogy, B) are A = A(‖%‖, ‖%‖2, 4 +

ρ2
1|∇Af1|2 + ρ2

2|∇Af2|2). Upon noticing that ∇XA(‖%‖, ‖%‖2, 4 + ρ2
1|∇Af1|2 +

ρ2
2|∇Af2|2) = diag(1/ρ1∂ρ1AI2, 1/ρ2∂ρ2AI2)x we can write

L [u ;A,B] = ∇XA(‖%‖, ‖%‖2, 4 + ρ2
1|∇Af1|2 + ρ2

2|∇Af2|2)

− A(‖%‖, ‖%‖2, 4 + ρ2
1|∇Af1|2 + ρ2

2|∇Af2|2) diag
(
|∇Af1|2I2, |∇Af2|2I2

)
x

+ B(‖%‖, ‖%‖2, 4 + ρ2
1|∇Af1|2 + ρ2

2|∇Af2|2)x. (6.3.30)
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Similarly to when n = 3 we will be interested in computing the curl of the

vector field U(x) := L [u;A,B] − ∇XA = Bx − diag(|∇Af1|2I2, |∇Af2|2I2)Ax.

For each 1 ≤ i, j,≤ 4 we have

curlU := ∂xj
Ui − ∂xi

Uj (6.3.31)

=

{
1

ρs(j)
∂ρs(j)

[
B− |∇Afs(i)|2A

]
− 1

ρs(i)
∂ρs(i)

[
B− |∇Afs(j)|2A

]}
xixj ,

where s(k) = b(k + 1)/2c for 1 ≤ k ≤ 4. As with n = 3 we introduce a

polar coordinate system here and set ρ1 = r cos θ, ρ2 = r sin θ and consider the

rectangular domain R4 := {(r, θ) ∈ R2 : a ≤ r ≤ b, 0 ≤ θ ≤ π/2} (see Figure

4).

ρ1

	

ρ2

	
A4

a b
r

θ

−
R4

π
2

a b

Figure 4: The 2-dimensional domains A4 and R4 defined in the (ρ1, ρ2) and

(r, θ) planes respectively.

For the divergence-free system Λ1 = Λ2 = 0 the differential operators are

defined in polar coordinates by

Λ1 = cos θ∂r

[
r4 sin θ cos3 θA

(
cos θ∂rf1 −

sin θ

r
∂θf1

)]
− sin θ

r
∂θ

[
r4 sin θ cos3 θA

(
cos θ∂rf1 −

sin θ

r
∂θf1

)]
+ sin θ∂r

[
r4 sin θ cos3 θA

(
sin θ∂rf1 +

cos θ

r
∂θf1

)]
+

cos θ

r
∂θ

[
r4 sin θ cos3 θA

(
sin θ∂rf1 +

cos θ

r
∂θf1

)]
, (6.3.32)

110



Whirl Maps as Solutions to L [u;A,B] = ∇P in Low Dimensions

Λ2 = cos θ∂r

[
r4 sin3 θ cos θA

(
cos θ∂rf2 −

sin θ

r
∂θf2

)]
− sin θ

r
∂θ

[
r4 sin3 θ cos θA

(
cos θ∂rf2 −

sin θ

r
∂θf2

)]
+ sin θ∂r

[
r4 sin3 θ cos θA

(
sin θ∂rf2 +

cos θ

r
∂θf2

)]
+

cos θ

r
∂θ

[
r4 sin3 θ cos θA

(
sin θ∂rf2 +

cos θ

r
∂θf2

)]
. (6.3.33)

In the above we have A = A(r, r2, 4+r2[cos2 θ|∇Af1|2+sin2 θ|∇Af2|2]). Upon

an expansion and subsequent simplification of the equations Λ1 = 0, Λ2 = 0 with

Λ1, Λ2 as above and referring to the system (6.2.5) we introduce the relevant

boundary conditions and are thus required to simultaneously solve the systems

∂r
[
r5 sin θ cos3 θA∂rf1

]
+ ∂θ

[
r3 sin θ cos3 θA∂θf1

]
= 0 (r, θ) ∈ R4,

f1 = 0 r = a,

f1 = 2m1π r = b,

r3 sin θ cos3 θA[r cos θ∂rf1 − sin θ∂θf1] = 0 θ = π/2

r3 sin θ cos3 θA[sin θ∂rf1 + r cos θ∂θf1] = 0, θ = 0

(6.3.34)

and

∂r
[
r5 sin3 θ cos θA∂rf2

]
+ ∂θ

[
r3 sin3 θ cos θA∂θf2

]
= 0 (r, θ) ∈ R4,

f2 = 0 r = a,

f2 = 2m2π r = b,

r3 sin3 θ cos θA[r cos θ∂rf2 − sin θ∂θf2] = 0 θ = π/2

r3 sin3 θ cos θA[r sin θ∂rf2 + cos θ∂θf2] = 0 θ = 0.

(6.3.35)

Regarding the curl of the vector field U(x) as in (6.3.31) we have, for 1 ≤
i, j,≤ 4,

curlU = −∆


0 0 x1x3 x1x4

0 0 x2x3 x2x4

−x1x3 −x2x3 0 0

−x1x4 −x2x4 0 0

 (6.3.36)
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where

∆ :=
1

r

[
∂r
(
|∇Af2|2A

)
− ∂r

(
|∇Af1|2A

)]
+

1

r2
∂θB [cot θ + tan θ]

− 1

r2

[
cot θ∂θ

(
|∇Af1|2A

)
+ tan θ∂θ

(
|∇Af2|2A

)]
. (6.3.37)

If we denote the constant matrix in (6.3.36) as C then in the instance that

f1 = f1(r), f2 = f2(r) we have

curlU = −
{

2

r
A
[
ḟ2f̈2 − ḟ1f̈1

]
(6.3.38)

+
1

r

(
Ar + 2r[As + Bξ] + 2r2Aξ[cos2 θḟ1f̈1 + sin2 θḟ2f̈2]

) [
ḟ2

2 − ḟ2
1

]}
C.

By an application of the ODEs in r governing (6.3.41) below to this coefficient

we have the rearrangement

curlU =
[
ḟ2

2 − ḟ2
1

]{10

r2
A +

1

r
Ar + 2 [As − Bξ] (6.3.39)

+ 2Aξ
[
cos2 θḟ1

(
2ḟ1 + rf̈1

)
+ sin2 θḟ2

(
2ḟ2 + rf̈2

)]}
C,

which leads us to introduce the notation

∆4(A,B) :=
1

r2

{
10A + rAr + 2r2 [As − Bξ] (6.3.40)

+ 2r2Aξ
[
cos2 θḟ1

(
2ḟ1 + rf̈1

)
+ sin2 θḟ2

(
2ḟ2 + rf̈2

)]}
.

This is the requisite discriminant term when the dimension n = 4, analogous to

the identity (6.3.18), which again has a significant effect on the solution sets of

the PDE L [u;A,B] = ∇P. Before presenting this result we remark that the

divergence-free systems (6.3.34)-(6.3.35) in the case that the functions f1, f2

have no θ-dependence become, for i = 1, 2,
d

dr

[
r5A(r, r2, 4 + r2[cos2 θḟ2

1 + sin2 ḟ2
2 ])ḟi

]
= 0 a < r < b,

fi = 0 r = a,

fi = 2miπ r = b,

(6.3.41)

where mi ∈ Z for i = 1, 2.

Theorem 6.3.2. For n = 4 let u = diag(R[f1],R[f2])x for R defined by (6.3.2)

and f1 = f1(r;m1), f2 = f2(r;m2) ∈ C 2[a, b] serving as solutions of the systems

(6.3.41) for i = 1, 2. Assume that ∆4(A,B) 6≡ 0 over R4 for ∆4(A,B) defined

by (6.3.40). Then the following are equivalent.
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• u solves the PDE L [u;A,B] = ∇P.

• We have f1(r;m1) = f2(r;m2) =: F (r;m) such that, for each m ∈ Z,

F ∈ C 2[a, b] is the unique solution of the two-point boundary value problem
d

dr

[
r5A(r, r2, 4 + r2Ḟ 2)Ḟ

]
= 0

F (a) = 0,

F (b) = 2mπ.

(6.3.42)

Furthermore in this case we have the explicit description of the pressure field

P = A(|x|, |x|2, 4 + r2Ḟ 2) +G(|x|) (6.3.43)

and G satisfies ∇G(|x|) = B(r, r2, 4 + r2Ḟ 2)x− Ḟ 2A(r, r2, 4 + r2Ḟ 2)x.

As such we see that when ∆4(A,B) 6≡ 0 we are forced into equality of bound-

ary conditions for the angle of rotation functions f1, f2 which leads to their

being equal too, thus we are in the setting of Theorem 6.2.2. Note also that the

two-point boundary value problem (6.3.42) is precisely the analogy of (6.2.7).

Proof. In the first instance it can be seen from (6.3.39) that if ∆4(A,B) 6≡
0 then curl L [u;A,B] ≡ 0 if and only if ḟ2

1 = ḟ2
2 =⇒ f1 = f2 up to a

constant. By evaluating the boundary condition imposed at r = a it is clear

that f1(a)− f2(a) = 0 and so by continuity and the fact that f1 and f2 do not

change sign, since, for i = 1, 2 and with A > 0,

ḟi =
c

r5A(r, r2, 4 + r2[cos2 θḟ2
1 + sin2 θḟ2

2 ])
, c ∈ R, a < r < b, (6.3.44)

we have f1 ≡ f2 and in particular m1 = m2 =: m ∈ Z. Call this common

function F = F (r;m) and by adding the equations in the system (6.3.41), we

have that F solves (6.3.42). The existence and uniqueness of a solution to this

system follows from Lemma C.0.1 (see also Theorem 6.2.2). Clearly if the above

holds then we see by substitution u(x) = diag(R[F ],R[F ])x and

L [u;A,B] =∇A(r, r2, 4 + r2Ḟ 2)− Ḟ 2A(r, r2, 4 + r2Ḟ 2)x

+ B(r, r2, 4 + r2Ḟ 2)x, (6.3.45)

thus the result is proved.
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6.4 A Particular System with A = h(r, s) and the

Influence of the Discriminant ∆(h,B)

In this final section we return to a general n-dimensional setting and fix A(r, s, ξ) =

h(r, s)16 as a radial function (with s = r2) and explicitly solve the system
(∇u)t{div[h(|x|, |x|2)∇u] + B(|x|, |x|2, |∇u|2)u} = ∇P in Xn,

det∇u = 1 in Xn,

u ≡ x on ∂Xn,

(6.4.1)

Here h(r, s) > 0 and we begin this section with a study of the system analogous

to (6.2.5)-(6.2.6) in this setting. Specifically for each 1 ≤ ` ≤ d we aim to solve

BVP[h; f`,m`] =


divA

[
h(‖%‖, ‖%‖2)ρ2

`ω(%; d)∇Af`
]

= 0 in An,
f` ≡ 0 on (∂An)a,

f` ≡ 2m`π on (∂An)b,

h(‖%‖, ‖%‖2)ρ2
l ω(%; d)∂νf` = 0 on Γn,

(6.4.2)

over the admissible space (6.2.4) with p = 2. Here m` ∈ Z and ω(%; d) =

ρ1 . . . ρd.

As a first remark observe that, unlike the system (6.2.5), the above depends

on only the `-th component of both the vectors f and % and as such the system

decouples and we can solve it for each fixed 1 ≤ ` ≤ d individually. This system

is in fact precisely (3.6.3) previously studied in Chapter 3 in the context of the

weighted Dirichlet energy. We repeat the result establishing its unique solution

but defer the proof to Theorem 3.6.1 and the calculations preceding it.

Theorem 6.4.1. For all n ≥ 2 and each 1 ≤ ` ≤ d the system (6.4.2) admits

the unique solution f`(%;m`) = G (r,m`) := 2m`πH (r), where H (r) ∈ C 2[a, b]

is defined by

H (r) =
H(r)

H(b)
, H(r) :=

ˆ r

a

ds

sn+1h(s, s2)
. (6.4.3)

16Note that if, additionally, B(r, s, ξ) = −hs(r, s)ξ this corresponds to the variational case

F (r, s, ξ) = h(r, s)ξ, which, if substituted into the energy functional (6.1.4), corresponds to a

weighted form of the classical Dirichlet energy. This system has been considered many times

throughout the thesis and we refer to Chapter 3 for a thorough analysis.
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It is easily verified that for all 1 ≤ ` ≤ d the function f` = G defined above

is the unique solution to the boundary value problem


d

dr

[
rn+1h(r, r2)Ġ

]
= 0, a < r < b,

G (a) = 0,

G (b) = 2m`π,

(6.4.4)

which is the counterpart of (6.2.7) for the choice of A(r, s, ξ) = h(r, s).

As a consequence of the above result we henceforth only consider twist loops

Q which depend on ‖%‖ = r and take the precise form Q(r;m) = exp{H (r)H(m)}
with H as defined in (6.4.3) and H the constant n× n skew-symmetric matrix

given by

H(m) =

diag(2m1πJ, . . . , 2mdπJ), n = 2d,

diag(2m1πJ, . . . , 2mdπJ, 0), n = 2d+ 1,
(6.4.5)

with J as defined in (6.3.2). We now wish to formulate an appropriate de-

scription of the vector field L [u;A,B] given that the system BVP[h; f`,m`] is

satisfied for all 1 ≤ ` ≤ d and that Q(r;m) = exp{H (r)H(m)} is as described

above. Recall the definition

L [u;h,B] = (∇u)t{div[h(|x|, |x|2)∇u] + B(r, |u|2, |∇u|2)u} (6.4.6)

= (∇u)t{[hr(r, r2) + 2rhs(r, r
2)]∇uθ + h(r, r2)∆u+ B(r, r2, |∇u|2)u}.

In the instance that Q(%) = Q(‖%‖) we have17

∇u = Q + Q̇θ ⊗
N∑
`=1

ρ`∇ρ` = Q + Q̇θ ⊗ x = Q + rQ̇θ ⊗ θ. (6.4.7)

In particular it follows from this that |∇u|2 = n + r2|Q̇θ|2 = n + r2 ˙H 2|Hθ|2

with H defined by (6.4.5). For the Laplacian ∆u we first note that ∆ρ` = 1/ρ`

except for n odd and ` = N where ∆ρN = 0 and

Q,`` =
ρ2
`

r2
Q̈ +

1

r

r2 − ρ2
`

r2
Q̇. (6.4.8)

17Recall the identities (3.7.4)-(3.7.6) and the collection in Proposition A.0.3.
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It follows that

∆u =

N∑
`=1

[Q,``x+ ∆ρ`Q,`x+ 2Q,`∇ρ`]

=

N∑
`=1

[(
ρ2
`

r2
Q̈ +

r2 − ρ2
`

r3
Q̇

)
x+

ρ`
r

∆ρ`Q̇x+ 2
ρ`
r
Q̇∇ρ`

]
= rQ̈θ + (n+ 1)Q̇θ. (6.4.9)

With these identities at hand we recover

L [u;h,B] = (Qt + rθ ⊗ Q̇θ)

{
[hr(r, r

2) + 2rhs(r, r
2)](Qθ + rQ̇θ)

+ h(r, r2)
[
rQ̈ + (n+ 1)Q̇

]
θ + rB(r, r2, n+ r2|Q̇θ|2)Qθ

}
=∇h(|x|, |x|2) +

[
r2hr(r, r

2) + 2r3hs(r, r
2) + r(n+ 1)h(r, r2)

]
˙H 2|Hθ|2θ

+ r2h(r, r2) ˙H Ḧ |Hθ|2θ + rh(r, r2) ˙H 2H2θ + rB(r, r2, n+ r2 ˙H 2|Hθ|2)θ.

(6.4.10)

By an application of the ODE governing (6.4.4) (note that, as a scalar multiple

of G , the function H also solves this ODE) the above simplifies to

L [u;h,B] =∇h(|x|, |x|2) + h(r, r2) ˙H 2H2x+ B(r, s, ξ)x. (6.4.11)

Anticipating on solving the PDE L [u;h,B] = ∇P we next compute the

curl of the vector field

U(x) = L [u = rexp{H (r)H}θ;h,B]−∇h(|x|, |x|2)

=B(r, r2, n+ ˙H 2|Hx|2)x+ h(r, r2) ˙H 2H2x. (6.4.12)

We now apply Proposition D.0.2 to this vector field where, given the de-

scription of H as in (6.4.5), we set c` = 2m`π, 1 ≤ ` ≤ d and the scalar-

valued functions A (r, z) and B(r, z), z = |Hx|2 therein are given by A (r, z) =

B(r, r2, n+ ˙H 2z), B(r, z) = h(r, r2) ˙H 2. Then, after an application of the ODE

(6.4.4), we have

2Az(r, z) +
Br(r, z)

r
= − ˙H 2

[
2(n+ 1)h+ rhr + 2r2[hs − Bξ]

r2

]
(6.4.13)

and, with

∆(h,B) := 2
(n+ 1)

r2
h(r, r2) +

1

r
hr(r, r

2) + 2[hs(r, r
2)− Bξ(r, r

2, n+ ˙H 2|Hx|2)]

(6.4.14)
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we have the explicit description

[curlU ]ij = 4π2 ˙H 2∆(h,B)
(
m2
s(i) −m

2
s(j)

)
xixj , (6.4.15)

where s(k) = b(k + 1)/2c for all 1 ≤ k ≤ n. This leads us to the following

result concerning solutions of the PDE L [u;h,B] = ∇P. Compare this with

Theorem 3.7.1, which is a special case of the below.

Theorem 6.4.2. Let Q ∈ C 2(]a, b[,SO(n)) ∩ C ([a, b],SO(n)) satisfy Q(a) =

Q(b) = In and be given by Q(‖%‖;m) = exp{H (‖%‖)H(m)} for H ∈ C 2[a, b]

defined by (6.4.3) and H = H(m) as given by (6.4.5). Moreover consider the

vector field L [u;h,B] as in (6.4.11) and ∆(h,B) as in (6.4.14). Then the whirl

map u = Q(‖%‖)x solves the system (6.4.1) iff one of the following hold.

1. If ∆(h,B) 6≡ 0 over An then, depending on the dimension n being even or

odd, we have

(i) n even: Here H = H(m) = diag(2m1πJ, . . . , 2mkπJ) with |m1| =

· · · = |mk|.

(ii) n odd: Here H ≡ 0 necessarily leading to Q ≡ In and u ≡ x the only

solution of (6.4.1).

2. If ∆(h,B) ≡ 0 over An then Q(‖%‖) = exp{H (‖%‖)H(m)} as in the

statement of the theorem with no restriction on the integers mi, 1 ≤ i ≤ k.

Proof. First suppose L [u;A,B] = ∇P holds. Then curl L [u;A,B] ≡ 0 =⇒
curlU(x) ≡ 0 for U as defined by (6.4.12). If ∆(h,B) 6≡ 0 over An then,

by (D.0.10), we see that m2
s(i) = m2

s(j) for all 1 ≤ i, j ≤ k, in which case

|m1| = · · · = |mk| =: m. Since mk = 0 when the dimension n is odd we

conclude m = 0 in this case and 1 follows. If, however, ∆(h,B) ≡ 0 over

An then curlU(x) ≡ 0 with no further assumptions required on the integers

m1, . . . ,mk and we conclude as in part 2.

Conversely, it follows from Proposition D.0.2 that in either of the cases

1 and 2 above the resulting vector field L [u = Q(‖%‖;m)x;h,B] constitutes

a gradient and hence the PDE governing (6.4.1) is satisfied. Moreover the

incompressibility constraint det∇u = 1 is a result obtained in Lemma A.0.7

and the discussion preceding it (see also Proposition A.0.3). It remains to verify

the boundary conditions and first we remark that, with H given by (6.4.3) we
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have H (a) = 0 =⇒ Q(a) = In and u|‖%‖=a = x. Finally with H (b) = 1 we

see that, in any case above, Q(b) = exp{H(m)} = In =⇒ u|‖%‖=a = x. This

completes the proof.

It is easily seen that ∆(h,B) ≡ 0 if, given any 0 < h : [a, b]×]0,∞[→ R, the

corresponding function B = B(r, s, ξ) satisfies

Bξ(r, r
2, n+ ˙H 2|Hx|2) = 2(n+ 1)h(r, r2) + rhr(r, r

2) + 2r2hs(r, r
2). (6.4.16)

If we are in the variational context with B(r, s, ξ) = −hs(r, s)ξ then ∆(h,B) ≡ 0

if and only if the “h-condition” holds, that is

2(n+ 1)h(r, r2) + rhr(r, r
2) + 4r2hs(r, r

2) ≡ 0, a < r < b. (6.4.17)

One such function h = h(r, s) which satisfies the above is h(r, s) = r−αs−β for

α, β ∈ R (see Figure 2). Then the h-condition holds if and only if α + 4β −
2(n+1) = 0. Of course the class of functions h for which ∆(h,−hs) ≡ 0 is much

larger still.
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Appendix A

Key Identities

This first appendix gathers all the necessary key calculus identities pertaining

to generalised twists u(x) = Q(|x|)x and whirls u(x) = Q(%)x which are used

liberally throughout the main body of the text. The first result is relevant to

twists inasmuch as Q = Q(r), but in fact applies to a wider class of maps,

as is seen below. Indeed they adapt to the generalised twist case as a simple

corollary.

Proposition A.0.1. Let v ∈ C 2(Xn,Xn) and u = Q(|x|)v(x) for some twist

path Q ∈ C ([a, b],SO(n))∩C 2(]a, b[,SO(n)). Then the following identities hold.

(i) ∇u = Q∇v + Q̇v ⊗ θ,

(ii) |∇u|2 = |∇v|2 + |Q̇v|2 + 2 〈QtQ̇v,∇v θ〉,

(iii) ∆u = 2Q̇∇v θ + Q∆v + Q̈v +
n− 1

r
Q̇v,

(iv) det∇u = det∇v + 〈QtQ̇v, [cof∇v]θ〉, whenever det∇v(x) 6= 0.

In the above r = |x| with a ≤ r ≤ b and θ = x|x|−1. Furthermore with La-
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grangian F = F (r, s, ξ) we have

div[Fξ(r, |u|2,|∇u|2)∇u] = Fξξ(r, |u|2, |∇u|2)(Q∇v + Q̇v ⊗ θ)×

× [∇(|∇v|2) +∇(|Q̇v|2) + 2∇〈QtQ̇v,∇v θ〉]

+ Fsξ(r, |u|2, |∇u|2)(Q∇v + Q̇v ⊗ θ)∇(|v|2)

+ Frξ(r, |u|2, |∇u|2)(Q∇v + Q̇v ⊗ θ)θ

+ Fξ(r, |u|2, |∇u|2)

[
2Q̇∇v θ + Q∆v + Q̈v +

n− 1

r
Q̇v

]
.

Proof. The first identity follows by a straightforward differentiation. Indeed

proceeding directly we can write

∇u = Q∇v +∇Q(|x|)v = Q∇v + Q̇v ⊗ θ = Q(∇v + QtQ̇v ⊗ θ). (A.0.1)

Proceeding immediately from this on to (iv), using the description of∇u as given

in (i) above, the assumed invertibility of ∇v and the fact that determinant is

a quasiaffine function on the space of n× n matrices (c.f. [60]) – as a result of

which det(In + ζ ⊗ ξ) = 1 + 〈ζ, ξ〉 for any ζ, ξ ∈ Rn – it follows at once that

det∇u = detQ× det(∇v + QtQ̇v ⊗ θ)

= det∇v
[
1 + 〈(∇v)−1QtQ̇v, θ〉

]
= det∇v + 〈QtQ̇v, [cof∇v]θ〉. (A.0.2)

Next for (ii) using the description of the Hilbert-Schmidt norm of the matrix

field ∇u we can write

|∇u|2 = tr{[∇u]t[∇u]}

= tr
{

([∇v]tQt + θ ⊗ Q̇v)(Q[∇v] + Q̇v ⊗ θ)
}

= tr
{

[∇v]t[∇v] + [∇v]tQtQ̇v ⊗ θ + θ ⊗ [∇v]tQtQ̇v + (θ ⊗ Q̇v)(Q̇v ⊗ θ)
}

= |∇v|2 + 2〈QtQ̇v,∇v θ〉+ |Q̇v|2. (A.0.3)

Likewise for (iii) by taking the divergence of ∇u as given by (i), we compute

the Laplacian ∆u to be

∆u = div(Q∇v + Q̇v ⊗ θ) = 2Q̇∇vθ + Q∆v + Q̈v +
n− 1

r
Q̇v. (A.0.4)

The final identity then follows by direct differentiation and use of the chain

rule:
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div[Fξ(r, |u|2, |∇u|2)∇u] =Fξξ(r, |u|2, |∇u|2)∇u∇(|∇u|2)

+ Fsξ(r, |u|2, |∇u|2)∇u∇(|u|2) (A.0.5)

+ Frξ(r, |u|2, |∇u|2)∇uθ + Fξ(r, |u|2, |∇u|2)∆u.

Noting that |v|2 = |u|2 we now have all the identities to complete the expression

above and the result follows.

Proposition A.0.2. Let v ∈ C 2(Xn,Xn) and u = Q(|x|)v(x) for some twist

path Q ∈ C ([a, b],SO(n)) ∩ C 2(]a, b[,SO(n)). Then the vector field L [u] =

(∇u)t{div[Fξ(|x|, |u|2, |∇u|2)∇u]− Fs(|x|, |u|2, |∇u|2)u} is described by

L [u] =
[
(∇v)tQt + θ ⊗ Q̇v

]{
Fξξ(r, |u|2, |∇u|2)(Q∇v + Q̇v ⊗ θ)

[
∇(|∇v|2)

+∇(|Q̇v|2) + 2∇〈QtQ̇v,∇v θ〉
]

+ Fsξ(r, |u|2, |∇u|2)×

× (Q∇v + Q̇v ⊗ θ)∇(|v|2) + Frξ(r, |u|2, |∇u|2)(Q∇v + Q̇v ⊗ θ)θ

+ Fξ(r, |u|2, |∇u|2)

[
2Q̇∇v θ + Q∆v + Q̈v +

n− 1

r
Q̇v

]
− Fs(r, |u|2, |∇u|2)Q(r)v

}
. (A.0.6)

Proof. The result is a direct consequence of the definition of L [u] as in the

statement of the result and the relevant identities in Proposition A.0.1.

Proposition A.0.3. Let u = rQ(r)θ be a generalised twist with a twice continu-

ously differentiable twist path Q, that is, Q ∈ C ([a, b],SO(n))∩C 2(]a, b[,SO(n)).

Then, with r = |x|, θ = x|x|−1, the following identities hold:

(i) ∇u = Q + rQ̇θ ⊗ θ,

(ii) |∇u|2 = n+ r2|Q̇θ|2,

(iii) ∆u = [(n+ 1)Q̇ + rQ̈]θ.

Consequently, the action of the operator L = L [u] can be written as

L [u] = (∇u)t
{

div
[
Fξ(|x|, |u|2, |∇u|2)∇u

]
− Fs(|x|, |u|2, |∇u|2)u

}
= (Qt + rθ ⊗ Q̇θ)

[
Fξξ(r, r

2, |∇u|2)(Q + rQ̇θ ⊗ θ)(2r|Q̇θ|2θ + r2∇|Q̇θ|2)

+ 2rFsξ(r, r
2, |∇u|2)(Qθ + rQ̇θ) + Frξ(r, r

2, |∇u|2)(Qθ + rQ̇θ)

+ Fξ(r, r
2, |∇u|2)[(n+ 1)Q̇ + rQ̈]θ − rFs(r, r2, |∇u|2)Qθ

]
. (A.0.7)
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Proof. The proof is a direct consequence of Proposition A.0.1 and Proposi-

tion A.0.2 upon setting v ≡ x and noting that for a generalised twist u as above

we have |u|2 = |rQ(r)θ|2 = r2.

We proceed to show that any generalised twist u(x) = Q(|x|)x satisfies the

incompressibility constraint det∇u = 1.

Proposition A.0.4. Let u = rQ(r)θ with Q ∈ C 1(]a, b[,SO(n))∩C ([a, b],SO(n)).

Then u is incompressibile.

Proof. From Proposition A.0.3 above we have ∇u = Q + rQ̇θ ⊗ θ. Hence

det∇u = det[Q + rQ̇θ⊗ θ] = det[In + rQtQ̇θ⊗ θ] = 1 where in concluding the

second equality we have used det[In + ζ ⊗ ξ] = 1 + 〈ζ, ξ〉 for ζ, ξ ∈ Rn resulting

from the rank-one affine property of the determinant function and 〈QtQ̇θ, θ〉 = 0

resulting from QtQ̇ being skew-symmetric.

The next corollary lists the analogous results in the instance when the twist

path Q = Q(r) manifests a geodesic in the compact Lie group SO(n). That

is Q(r) = exp{G (r)A} for a twice continuously-differentiable function G (this

regularity is not in general a requirement but will be seen to be necessary for

the purposes of the following result) and A is a constant n×n skew-symmetric

matrix.

Corollary A.0.5. Let u = rQ(r)θ be a generalised twist with the twist path

Q(r) = exp{G (r)A} for some G ∈ C 2([a, b]) and n× n skew-symmetric matrix

A. Then with r = |x|, θ = x|x|−1 and θ? = Aθ the following identities hold:

(i) ∇u = Q(In + rĠ θ? ⊗ θ),

(ii) |∇u|2 = n+ r2Ġ 2|θ?|2,

(iii) ∆u = Q
[
(n+ 1)Ġ θ? + rG̈ θ? + Ġ 2Aθ?

]
,

(iv) det∇u = det[Q(In + rĠ θ? ⊗ θ)] = 1.
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In particular for the Lagrangian F = F (|x|, |u|2, |∇u|2) we have

L [u] = L [r exp{G (r)A}θ] = Fξξ(r, r
2, n+ r2Ġ 2|θ?|2)×

×
[(

In + rĠ (θ? ⊗ θ + θ ⊗ θ?) + r2Ġ 2|θ?|2θ ⊗ θ
)(

2rĠ 2|θ?|2θ + r2∇[Ġ 2|θ?|2]
)]

+

[
2rFsξ(r, r

2, n+ r2Ġ 2|θ?|2) + Frξ(r, r
2, n+ r2Ġ 2|θ?|2)

]
×

× (θ + rĠ θ? + r2Ġ 2|θ?|2θ)

+ Fξ(r, r
2, n+ r2Ġ 2|θ?|2)

[
(n+ 1)Ġ θ? + r(G̈ θ? + Ġ 2Aθ?)

+ r(n+ 1)Ġ 2|θ?|2θ + r2Ġ G̈ |θ?|2θ
]
− rFs(r, r2, n+ r2Ġ 2|θ?|2)θ. (A.0.8)

Proof. The first four identities follow immediately from Proposition A.0.3 upon

noting Q̇ = ĠAQ, Q̈ = (G̈A + Ġ 2A2)Q and |Q̇θ|2 = Ġ 2〈Aθ,Aθ〉 = Ġ 2|θ?|2.

We also have that Q and A commute and 〈θ, θ?〉 = 0 since A is a skew-

symmetric matrix. Now to finish off the proof a further reference to Propo-

sition A.0.3 gives

L [u] = (In + rĠ θ ⊗ θ?)Qt×

×
{
QFξξ(r, r

2, n+ r2Ġ 2|θ?|2)(In + rĠ θ? ⊗ θ)(2rĠ 2|θ?|2θ + r2∇[Ġ 2|θ?|2])

+ 2rQFsξ(r, r
2, n+ r2Ġ 2|θ?|2)(θ + rĠ θ?)

+ QFrξ(r, r
2, n+ r2Ġ 2|θ?|2)(θ + rĠ θ?)

+ QFξ(r, r
2, n+ r2Ġ 2|θ?|2)

[
(n+ 1)Ġ θ? + rG̈ θ? + rĠ 2Aθ?

]
− rQFs(r, r2, n+ r2Ġ 2|θ?|2)θ

}
. (A.0.9)

Multiplying the factor of (In + rĠ θ ⊗ θ?) through and using the orthogonality

of the matrix function Q yields the desired result.

We now present a result similar in nature to those above but now pertaining

to whirl maps u(x) = Q(%)x with twist path Q restricted to the maximal torus

T ⊂ SO(n) and given explicitly by Q(%) = exp{H(%)}, where H : An → so(n)

is given by

H(%) =

{
diag(f1J, . . . , fdJ) n = 2d,

diag(f1J, . . . , fdJ, 0) n = 2d+ 1.
(A.0.10)
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Here J = R[π/2] defines a rotation by angle π/2 as in, for example, (2.3.4)

and the functions f` ∈ C (An) for all 1 ≤ ` ≤ d satisfy f` ≡ 0 on (∂An)a

and f` ≡ 2m`π on (∂An)b for m` ∈ Z. Recall moreover that An is the semi-

annular domain defined independently depending on whether the underlying

spatial dimension n is odd or even [see, for example, (6.1.6)-(6.1.7)].

Proposition A.0.6. Let u(x) = Q(%)x with Q ∈ C (An,SO(n))∩C 2(An,SO(n))

given by (A.0.10). Then the following identities hold.

(i) ∇u = Q

(
In +

N∑
`=1

H,`x⊗∇ρ`
)
,

(ii) |∇u|2 = n+

d∑
`=1

ρ2
` |∇Af`|2,

(iii) det∇u = 1,

(iv) ∆u = Q

N∑
`=1

[H,``x+ ∆ρ`H,`x+ 2H,`∇ρ`] .

Here H,` and H,`` denote the first and second derivatives of the skew-symmetric

matrix H as defined by (A.0.10) with respect to ρ` and throughout the statement

and proof ∇A denotes the gradient taken with respect to the variables ρ1, . . . , ρN .

Proof. We begin by noting that, with Q = exp{H(%)} we have Q` = H,`Q and

Q,`` = (H,`` + H2
,`)Q. Moreover since Q takes values on the maximal torus T

os SO(n) it follows that Q and H (along with any of its derivatives) commute.

The first identity is the consequence of a straightforward differentiation via the

product rule. Indeed

∇u = Q +

N∑
`=1

Q,`x⊗∇ρ` = Q

(
In +

N∑
`=1

H,`x⊗∇ρ`
)
. (A.0.11)

Jumping to identity (iii) we have

det∇u = det

(
In +

N∑
`=1

H,`x⊗∇ρ`
)
, (A.0.12)

since detQ = 1. To verify the incompressibility constraint det∇u = 1 we will

require, for any 1 ≤ i, j ≤ N , the identity 〈H,ix,∇ρj〉 = 0. To justify this first

observe that

H,` =

diag(∂`f1J, . . . , ∂`fdJ) n = 2d,

diag(∂`f1J, . . . , ∂`fdJ, 0) n = 2d+ 1,
(A.0.13)

124



Key Identities

where ∂`fk = ∂ρ`fk and J = R[π/2]. Furthermore for any 1 ≤ k ≤ d let

ζk = (x2k−1, x2k) in any dimension and ζd+1 = xn if the dimension n = 2d+ 1

is odd. Then it is seen that ∇ρk = (0, 0, . . . , ζk/ρk, 0, . . . , 0), so in particular

〈∇ρj ,∇ρk〉 = δjk. We also see that

H,`x =

diag(∂`f1Jζ1, . . . , ∂`fdJζd) n = 2d,

diag(∂`f1Jζ1, . . . , ∂`fdJζd, 0) n = 2d+ 1,
(A.0.14)

upon which 〈H,`x,∇ρk〉 = 〈∂`fkJζk, ζk/ρk〉 = 0 since J is skew-symmetric. Now

returning to (A.0.12) we see that an application of Lemma A.0.7 below to the

strings of vectors ai = H,ix and bi = ∇ρi (1 ≤ i ≤ N) we conclude det∇u = 1.

For identity (ii) we employ the Hilbert-Schmidt description of the norm

which gives

|∇u|2 = tr{∇u(∇u)t}

= tr

{(
Q +

N∑
`=1

Q,`x⊗∇ρ`
)(

Qt +

N∑
`=1

∇ρ` ⊗Q,`x

)}

= tr

{
In +

N∑
`=1

Q∇ρ` ⊗Q,`x+

N∑
`=1

Q,`x⊗Q∇ρ` +

N∑
`=1

Q,`x⊗Q,`x

}

= n+

N∑
`=1

|Q,`x|2 = n+

N∑
`=1

|H,`Qx|2 = n+

N∑
`=1

|H,`x|2, (A.0.15)

as |Q| = 1. It is then easily seen that

N∑
`=1

|H,`x|2 =

d∑
`=1

ρ2
` |∇Af`|2 (A.0.16)

and identity (ii) follows. Finally for the Laplacian we have that ∆ρ` = 1/ρ`

(except when n is odd and ` = N , in which case ∆ρn = 0), then taking the

divergence of identity (i) yields the result.

We state a lemma which was used in the course of Proposition A.0.6 to verify

the incompressibility constraint det∇u = 1, here presented in a general context.

Lemma A.0.7. Let (ai)
k
i=1 and (bi)

k
i=1 be strings of mutually orthogonal vectors

in Rn satisfying 〈aj , bl〉 = 0 for all 1 ≤ j, l ≤ k. Then

det

(
In +

k∑
i=1

ai ⊗ bi
)

= 1. (A.0.17)
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Proof. We prove the result by induction on i. For i = 1 it is immediate that

det(In + a1 ⊗ b1) = 1 + 〈a1, b1〉 = 1 by the rank-one affine property of the

determinant function and since a1 and b1 are orthogonal by assumption. Now

assume (A.0.17) holds for a fixed j ∈ N, that is detAj = 1 where we have

defined

Aj := In +

j∑
i=1

ai ⊗ bi. (A.0.18)

Then A−1
j = In −

∑j
i=1 ai ⊗ bi and observe that

det

(
In +

j+1∑
i=1

ai ⊗ bi
)

=
(
1 + 〈bj+1, A

−1
j aj+1〉

)
detAj . (A.0.19)

Since detAj = 1 and 〈ai, bi〉 = 0 we see that det(In +
∑j+1
i=1 ai ⊗ bi) = 1 +

〈bj+1, aj+1〉 = 1 which is the required conclusion for i = j + 1.
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Derivation of the

Euler-Lagrange Equation

L [u] = ∇P

In this short appendix we briefly outline the derivation of the Euler-Lagrange

system 
(∇u)t {div [Fξ∇u]− Fsu} = ∇P in Ω,

det∇u = 1 in Ω,

u = ϕ on ∂Ω.

(B.0.1)

associated to the variational integral

F[u; Ω] :=

ˆ
Ω

F (|x|, |u|2, |∇u|2) dx (B.0.2)

over the space of incompressible p-Sobolev mappings (with p > 1)

A p
ϕ (Ω) :=

{
u ∈W 1,p(Ω,Rn) : det∇u = 1, u|∂Ω = ϕ

}
. (B.0.3)

Using the method of Lagrange multipliers we take the unconstrained energy

functional

E[u; Ω] :=

ˆ
Ω

{
F (|x|, |u|2, |∇u|2)− 2P(x)[det∇u− 1]

}
dx, (B.0.4)

where P = P(x) is a suitable and a priori unknown Lagrange multiplier. Note

in particular that E[u; Ω] = F[u; Ω] whenever u ∈ A p
ϕ (Ω). Now fix u ∈ A p

ϕ (Ω)
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of class C 2 satisfying (|x|, |u|2, |∇u|2) ∈ U = ([a, b],×]0,∞[×]0,∞[) ⊂ R3 for

all x ∈ Ω and for φ ∈ C∞c (Ω,Rn) and ε ∈ R put uε = u+ εφ. Then by a basic

compactness argument for ε sufficiently small (|x|, |uε|2, |∇uε|2) ∈ U for all x ∈
Ω and therefore by examining the first-order condition d/dε(E[uε,Ω])|ε=0 = 0

we can write

1

2

d

dε
E[uε; Ω]

∣∣∣∣
ε=0

=
d

dε

ˆ
Ω

{
1

2
F (|x|, |uε|2, |∇uε|2)−P(x) [det∇uε − 1]

}
dx

∣∣∣∣
ε=0

=

ˆ
Ω

{
Fs〈u, φ〉+ Fξ〈∇u,∇φ〉 −P(x)〈cof∇u,∇φ〉

}
dx

=

ˆ
Ω

〈Fsu− div(Fξ∇u) + [cof∇u]∇P + Pdiv [cof∇u], φ〉 dx

=

ˆ
Ω

〈Fsu− div(Fξ∇u) + [cof∇u]∇P, φ〉 dx = 0. (B.0.5)

Here Fs = Fs(|x|, |u|2, |∇u|2), Fξ = Fξ(|x|, |u|2, |∇u|2) where Fs, Fξ denote the

derivatives of F with respect to the second and third arguments respectively.

The last line uses the Piola identity which gives div cof∇u = 0, whilst the

divergence operator is understood to act on the matrix field Fξ(|x|, |u|2, |∇|2)∇u
row-wise. Now the arbitrariness of φ ∈ C∞c (Ω,Rn) gives the Euler-Lagrange

equation

L [u] = (∇u)t
{

div
[
Fξ(|x|, |u|2, |∇u|2)∇u

]
− Fs(|x|, |u|2, |∇u|2)u

}
= (∇u)t

{
Fξ(|x|, |u|2, |∇u|2)∆u+∇u∇Fξ(|x|, |u|2, |∇u|2)

− Fs(|x|, |u|2, |∇u|2)u

}
= ∇P. (B.0.6)

Here we have used the identity (cof∇u)−1 = (∇u)t which holds by virtue of

the fact that det∇u = 1. The term P, which entered the system as a Lagrange

multiplier associated to the unconstrained energy functional (B.0.4), is, in the

context of nonlinear elasticity, referred to as the hydrostatic pressure term as-

sociated to u which itself is interpreted as a volume-preserving deformation of

the body Ω ⊂ Rn.
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Appendix C

Some Existence and

Uniqueness Results

We now gather two important results regarding the existence and/or uniqueness

of solutions to differential equations used throughout the main body of the

thesis. The first deals with the uniqueness of a boundary value problem whose

solution features prominently throughout the text as the profile of a geodesic

twist path Q(r) = exp{G (r)H}. This appears both in the variational (Chapters

2, 3 and 5) and non-variational (Chapters 4 and 6) context and we give the result

here in the more general non-variational context despite it being motivated,

naturally, by variational methods.

Proposition C.0.1. For each m ∈ Z there exists a unique solution G =

G (r;m) ∈ C 2[a, b] to the two point boundary value problem

BVP[G ;A] =


d

dr

[
rn+1A(r, r2, n+ r2Ġ 2)Ġ

]
= 0, a < r < b,

G (a) = 0,

G (b) = 2mπ.

(C.0.1)

Proof. It is not difficult to see that the system BVP[G ;A] above is the Euler-

Lagrange equation associated with the energy functional

G 7→
ˆ b

a

F (r, r2, n+ r2Ġ 2)rn−1 dr, (C.0.2)

when the Lagrangian F = F (r, s, ξ) of class C 2 is chosen as a derivative of

A(r, s, ξ), specifically, in the sense that Fξ(r, s, ξ) = A(r, s, ξ). Thus hereafter
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we set

F (r, s, ξ) =

ˆ ξ

0

A(r, s, ζ) dζ, a ≤ r ≤ b, s > 0, ξ > 0. (C.0.3)

Now the assumptions on A result in F being uniformly convex and monotone

increasing in ξ. Thus in particular the twice continuously differentiable function

ζ 7→ F (r, r2, n+ r2ζ2) here is uniformly convex in ζ for all a ≤ r ≤ b and ζ ∈ R.

Furthermore the growth and coercivity of F follows from the similar assumptions

set earlier on A and so we have Fξ(r, s, ξ) > 0, Fξξ(r, s, ξ) = Aξ(r, s, ξ) ≥ 0 and

c0 + c1|ξ|p/2 ≤ F (r, s, ξ) ≤ c2|ξ|p/2 with p > 1.

Minimising (C.0.2) over

Bp
m(a, b) = {G ∈W 1,p(a, b) : G (a) = 0,G (b) = 2mπ} (C.0.4)

and applying the direct methods of the calculus of variations now results in the

existence of a minimiser G ?. The C 2 regularity of G ? follows by invoking the

Tonelli-Hilbert-Weierstrass differentiability theorem (cf., e.g., [21] pp. 57-62)

and the uniqueness of minimiser follows from the uniform convexity of F in the

ξ-variable and a basic convexity argument.

We now present an existence result used in Chapters 3 and 6 for the Euler-

Lagrange system

BVP[f ; U ,m] =


divAU (%,∇Af) = 0 in An,
f ≡ 0 on (∂An)a,

f ≡ 2mπ on (∂An)b,

U (%,∇Af)ν = 0 on Γn.

(C.0.5)

For definiteness the semi-annular domain An and its boundary segments is de-

scribed formally in (6.1.6), (6.1.7) and (6.1.8). Moreover % = (ρ1, . . . , ρN ) is the

vector of 2-plane radial variables as used frequently throughout Chapters 3 and

6. In the above U is the d×N -dimensional matrix field with row components

U` given by

U`(%,∇Af) := A

(
‖%‖, ‖%‖2, n+

d∑
`=1

ρ2
` |∇Af`|2

)
ρ2
`ω(%; d)∇Af`, (C.0.6)

where ‖%‖ = (ρ2
1 + · · ·+ ρ2

N )1/2 = |x| = r. Also note that the third argument in

A above is precisely the quantity |∇u|2 for a whirl map u = Q(%)x, as derived

in Proposition A.0.6. We thus think of the function A = A(r, s, ξ) above as

A = A(r, r2, |∇u|2).
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Proposition C.0.2. Consider the matrix field U (%,∇Af) defined row-wise by

(C.0.6). Assume that the function A is strictly positive and is monotone increas-

ing in the third variable. Then for each m = (m1, . . . ,md) ∈ Zd the solution

f ∈ C 2(An,Rd) of the system BVP[f ; U ,m] is unique.

Proof. As with the previous result in this appendix it is necessary to motivate

ideas by taking the scalar-valued function A(r, s, ξ) as a derivative of some La-

grangian F = F (r, s, ξ) in the third variable as in (C.0.3). If F is the Lagrangian

of some energy functional as in

F[f ;An] :=

ˆ
An

F

(
‖%‖, ‖%‖2, n+

d∑
`=1

ρ2
` |∇Af`|2

)
ω(%; d) d%, (C.0.7)

then the system (C.0.5) is precisely the Euler-Lagrange equation associated to

this functional above. The assumptions on A imply that F is convex, strictly

increasing in ξ for ξ > 0 while Fξ is increasing for ξ > 0.

To prove uniqueness, this uniform convexity first tells us that solutions of

(C.0.5) are the minimisers of the energy F with respect to their own boundary

conditions and conversely minimisers of F are solutions of the Euler-Lagrange

system (C.0.5). Fix an assumed solution f of (C.0.5) and set g = f + ϕ for

g ∈ Bp[An;m] := {f = (f1, . . . , fd) ∈ W 1,p(An,Rd) : f ≡ 0 on (∂An)a, f ≡
2mπ on (∂An)b, p > 1, m ∈ Zd} and ϕ ∈ W 1,p

0 (An,Rd). We use the convexity

inequality

F (‖%‖, ‖%‖2, ζ2)− F (‖%‖, ‖%‖2, ζ1) ≥ Fξ(‖%‖, ‖%‖2, ζ1)(ζ2 − ζ1), ζ1, ζ2 ∈ R,

specifically with the choices of ζ1 := n +
∑
ρ2
` |∇Af`|2, ζ2 := n +

∑
ρ2
` |∇Ag`|2

for 1 ≤ ` ≤ d. By the divergence theorem and the convexity inequality above
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we have

DF[f, g] :=F[g;An]− F[f,An]

≥
ˆ
An

Fξ
(
‖%‖, ‖%‖2, ζ1

) d∑
`=1

ρ2
`(|∇Ag`|2 − |∇Af`|2)ω(%; d) d%

≥ −2

d∑
`=1

ˆ
An

divA
[
Fξ
(
‖%‖, ‖%‖2, ζ1

)
ρ2
`∇Af`ω(%; d)

]
ϕ` d%

+ 2

d∑
`=1

ˆ
Γn

[
Fξ
(
‖%‖, ‖%‖2, ζ1

)
ρ2
`ω(%; d)∂νf`

]
ϕ` d%

+

ˆ
An

Fξ
(
‖%‖, ‖%‖2, ζ1

) d∑
`=1

ρ2
` |∇Aϕ`|2ω(%; d)d%. (C.0.8)

Since Fξ > 0 by assumption we have DF ≥ 0, with equality if and only if ϕ ≡ 0,

in which case f ≡ g. Thus any solution of BVP[f ; U ,m] is unique.
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Appendix D

A Collection of Curl-Free

Results

In this final appendix we present two results on the curl-free and gradient struc-

ture of certain vector fields used throughout the main body of the thesis. They

are both similar in nature but carry somewhat different assumptions which

makes their application throughout the text distinct.

Proposition D.0.1. Let A = A (r),B = B(r) ∈ C 1(]a, b[) and suppose that

H is the constant n×n skew-symmetric matrix given by H = diag(α1J, ..., αkJ)

when n = 2k and H = diag(α1J, ..., αk−1J, αk) when n = 2k−1 where α1, ..., αk

are real constants and J is as in, for example, (2.3.4). Consider the vector field

U(x) = A (|x|)|Hx|2x+ B(|x|)H2x, x ∈ Xn[a, b]. (D.0.1)

Then the following hold.

• If 2A + Ḃ/r ≡ 0 in Xn then U = −∇[B(r)|Hx|2/2].

• If 2A + Ḃ/r 6≡ 0 in Xn then curlU ≡ 0 in Xn iff |α1| = ... = |αk| =: |α|,
that is, H2 = −α2In. In this case U is again a gradient field in Xn.

Proof. For 1 ≤ j ≤ n set s(j) = b(j + 1)/2c. Then 1 ≤ s(j) ≤ k and s(n) = k.
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Put V (x) = A (|x|)|Hx|2x and W (x) = B(|x|)H2x. Then

V (x) = A (r)

[α2
1(x2

1 + x2
2) + ...+ α2

k(x2
n−1 + x2

n)]x n = 2k

[α2
1(x2

1 + x2
2) + ...+ α2

k−1(x2
n−2 + x2

n−1) + α2
kx

2
n]x n = 2k − 1

= A (r)

[
n∑
l=1

α2
s(l)x

2
l

]
x,

and likewise

W (x) = −B(r)

[α2
1x1, α

2
1x2, ..., α

2
kxn−1, α

2
kxn]t n = 2k

[α2
1x1, α

2
1x2, ..., α

2
k−1xn−2, α

2
k−1xn−1, α

2
kxn]t n = 2k − 1.

Now computing the curl of the vector fields V,W directly a straightforward

differentiation gives

[curlV ]ij =[A (|x|)|Hx|2x]i,j − [A (|x|)|Hx|2x]j,i

=
(

˙A (r)
xjxi
r

+ A (r)δij

)[ n∑
l=1

α2
s(l)x

2
l

]
+ 2A (r)α2

s(j)xjxi

−

{(
˙A (r)

xixj
r

+ A (r)δji

)[ n∑
l=1

α2
s(l)x

2
l

]
+ 2A (r)α2

s(i)xixj

}
=− 2A (r)

(
α2
s(i) − α

2
s(j)

)
xixj , (D.0.2)

and in a similar way

[curlW ]ij = [B(|x|)H2x]i,j − [B(|x|)H2x]j,i

= −Ḃ(r)
xjxi
r

α2
s(i) −B(r)α2

s(i)δij + Ḃ(r)
xixj
r

α2
s(j) + B(r)α2

s(j)δij

= −Ḃ(r)
xixj
r

(
α2
s(i) − α

2
s(j)

)
. (D.0.3)

By combining the two we now obtain

[curlU ]ij = −
(

2A (r) + Ḃ(r)/r
)(

α2
s(i) − α

2
s(j)

)
xixj , (D.0.4)

and so subject to 2A + Ḃ/r 6≡ 0 we have that curlU ≡ 0 =⇒ α2
1 = ... = α2

k.

Conversely if α2
1 = ... = α2

k =: α2 then U = α2(r2A (r) −B(r))x is a gradient

field in Xn[a, b] and thus curl-free. If 2A + Ḃ/r ≡ 0 observe that

∇[B(r)|Hx|2] = Ḃ(r)|Hx|2x/r + 2B(r)HtHx

= −2
[
A (r)|Hx|2 + B(r)H2x

]
, (D.0.5)

so U = −∇[B(r)|Hx|2/2] as required.
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The next result is similar in nature but more general in its scope and used

directly in Chapters 3 and 6.

Proposition D.0.2. Let A = A (r, z), B = B(r, z) ∈ C 1(]a, b[×R,R) and let

H be the constant n× n skew-symmetric matrix given by

H =

(c1J, . . . , ckJ) when n = 2k,

(c1J, . . . , ck−1J, ck) when n = 2k − 1.
(D.0.6)

Here (cj : 1 ≤ j ≤ k) ⊂ R and J is given by, for example, (2.3.4). Consider the

vector field U defined by

U(x) = A (|x|, |Hx|2)x+ B(|x|, |Hx|2)H2x, x ∈ Xn, (D.0.7)

and let F (r, z) := 2Az + Br/r with z = |Hx|2 where Az denotes the derivative

of A = A (r, z) in the second variable and Br denotes the derivative of B =

B(r, z) in the first variable. Then the following hold:

• If F 6≡ 0 in Xn, then

curlU ≡ 0 in Xn ⇐⇒ |c1| = · · · = |ck| := c ⇐⇒ H2 = −c2In. (D.0.8)

• If F ≡ 0 in Xn then curlU ≡ 0 in Xn with no further restriction on H.

In either case the vector field U is a gradient field in Xn.

Proof. First we calculate curlU where for the sake of convenience we split the

vector field U as V +W with V = A (|x|, |Hx|2)x, W = B(|x|, |Hx|2)H2x. We

also write

|Hx|2 =

n∑
l=1

c2s(l)x
2
l ,

where, as in the previous result, s(l) = b(l + 1)/2c for all 1 ≤ l ≤ n. This

being so, |Hx|2 = c21(x2
1 + x2

2) + · · · + c2k(x2
n−1 + x2

n) when n = 2k is even, and

|Hx|2 = c21(x2
1 + x2

2) + · · ·+ c2k−1(x2
n−2 + x2

n−1) + c2kx
2
n when n = 2k − 1 is odd.

As a result W can be written as

W (x) = B(|x|, |Hx|2)H2x (D.0.9)

= −B(|x|, |Hx|2)

[c21x1, c
2
1x2, . . . c

2
kxn−1, c

2
kxn]t n = 2k

[c21x1, c
2
1x2, . . . , c

2
k−1xn−2, c

2
k−1xn−1, c

2
kxn]t n = 2k − 1.
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We now proceed on to computing the curls of the vector fields V and W

respectively. Denoting by Ar, Az the derivatives in the first and second variables

of A = A (r, z) a straightforward differentiation gives

[curlV ]ij =Vi,j − Vj,i = [A (|x|, |Hx|2)x]i,j − [A (|x|, |Hx|2)x]j,i

=Ar(r, |Hx|2)
xjxi
r

+ 2Az(r, |Hx|2)c2s(j)xjxi + A (r, |Hx|2)δij

−
[
Ar(r, |Hx|2)

xixj
r

+ 2Az(r, |Hx|2)c2s(i)xixj + A (r, |Hx|2)δij

]
=− 2Az(r, |Hx|2)

(
c2s(i) − c

2
s(j)

)
xixj . (D.0.10)

Similarly for W with Br, Bz denoting the derivatives of B = B(r, z) with

respect to the first and second variables respectively we have

[curlW ]ij = Wi,j −Wj,i = [B(|x|, |Hx|2)H2x]i,j − [B(|x|, |Hx|2)H2x]j,i

= −
[
Br(r, |Hx|2)

xjxi
r

c2s(i) + 2Bz(r, |Hx|2)c2s(j)c
2
s(i)xjxi + B(r, |Hx|2)c2s(i)δij

]
+
[
Br(r, |Hx|2)

xixj
r

c2s(j) + 2Bz(r, |Hx|2)c2s(i)c
2
s(j)xixj + B(r, |Hx|2)c2s(j)δij

]
= −Br(r, |Hx|2)

xixj
r

(
c2s(i) − c

2
s(j)

)
. (D.0.11)

By combining (D.0.10) and (D.0.11) we thus obtain

[curlU ]ij = −
(

2Az(|x|, |Hx|2) +
Br(|x|, |Hx|2)

r

)(
c2s(i) − c

2
s(j)

)
xixj .

(D.0.12)

From this it follows that if F 6≡ 0 in Xn then curlU ≡ 0 in Xn if and only if

c21 = · · · = c2k. (Note that firstly F is a continuous function of x and so if it does

not vanish at a point then it does not vanishes in a neighbourhood of the point

and secondly that the factors xixj vanish only on the coordinate hyperplanes.)

Likewise if F ≡ 0 in Xn then curlU ≡ 0 in Xn with no impositions to be made

on c1, . . . , ck. This proves the first part of the result.

We need to prove that U is a gradient in either case. First suppose that F 6≡
0 and c21 = · · · = c2k. In this case U(x) = [A (r, c2r2) − c2B(r, c2r2)]x = s(r)x

and this is clearly a gradient in Xn. Next suppose that F ≡ 0. We claim that

U(x) = ∇f(|x|, |Hx|2) for a suitable choice of f = f(r, z). Indeed assuming this

to be the case, by direct differentiation we have,

∇f(|x|, |Hx|2) = fr(r, |Hx|2)θ − 2rfz(r, |Hx|2)H2θ

= A (r, |Hx|2)x+ B(r, |Hx|2)H2x = U(x) (D.0.13)
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provided that we set fr(r, z) = rA (r, z) and fz(r, z) = −B(r, z)/2. Now let

R = {(r, z) : r = |x|, z = |Hx|2 with x ∈ Xn}. Then R ⊂ [a, b] × R is seen to

be simply-connected; in fact, denoting by c, c ≥ 0 the minimum and maximum

eigenvalues c21, . . . , c
2
k of the diagonal matrix HtH [see (D.0.6)] we have that

R = {(r, z) : a < r < b, cr2 ≤ z ≤ cr2}. Next since F ≡ 0 in R we have

∂rfz(r, z)− ∂zfr(r, z) = −
(
rAz(r, z) +

1

2
Br(r, z)

)
= 0, (r, z) ∈ R,

(D.0.14)

and this therefore justifies the existence of a primitive f ∈ C 2(R) as required.

Indeed to describe f more explicitly consider setting

f(r, z) =

ˆ r

a

sA (s, z) ds+ g(z), (r, z) ∈ R, (D.0.15)

with g = g(z) to be determined below. Then fr(r, z) = rA (r, z) and to fix g it

suffices to set

fz(r, s) =

ˆ r

a

sAz(s, z) ds+g
′(z) = −1

2
B(r, z) = −1

2

{ ˆ r

a

Br(s, z) ds+B(a, z)

}
,

(D.0.16)

that is,

g′(z) =

ˆ r

a

−
{
sAz(s, z) +

1

2
Br(s, z)

}
ds− 1

2
B(a, z) = −1

2
B(a, z). (D.0.17)

Thus upon choosing f as in (D.0.15) with g a primitive of −B(a, z)/2 as above

we have (D.0.13) and so U is a gradient in Xn as claimed.
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