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Abstract 

 

Bacillus thuringiensis (Bt) is a gram positive spore forming bacterium which produces 

intracellular protein crystals toxic to a wide variety of insect larvae and is the most 

commonly used biological pesticide worldwide. More recently, Bt crystal proteins 

known as parasporins have been discovered, that have no known insecticidal activity 

but target some human cancer cells exhibiting strong cytocidal activities with different 

toxicity spectra and varied activity levels. Amongst these parasporins, parasporin-3 most 

closely resembles the commercially used insecticidal toxins and presents the narrowest 

activity spectrum, showing moderate cytotoxicity against only two cancer cell lines, HL-

60 (Human promyelocytic leukemia cells) and HepG2 (Human liver cancer cells). 

Parasporin-3, also called Cry41Aa, has only been shown to exhibit cytocidal activity 

towards these two cell lines after being proteolytically cleaved. In order to understand 

this activation mechanism various mutations were made at the N- or C-terminal region 

of the protein and the toxicity against both HepG2 and HL-60 cell lines was evaluated. 

Our results indicate that only N-terminal cleavage is required for activation and that N-

terminally deleted mutants show some toxicity without the need for proteolytic 

activation. Furthermore we have shown that the level of toxicity towards the two cell 

lines depends on the protease used to activate the toxin. Proteinase K-activated toxin 

was significantly more toxic towards HepG2 and HL-60 than trypsin-activated toxin.  N-

terminal sequencing of activated toxins showed that this difference in toxicity is 

associated with a difference of just two amino acids (serine and alanine at positions 59 

and 60 respectively) which we hypothesize occlude a binding motif. Preliminary work 

carried out on binding showed a lack of correlation between binding and toxicity since 

toxin binds to both susceptible and non-susceptible cancer cell lines. In an attempt to 

better understand the mechanism of action of Cry41Aa against these cells, we evolved 

resistance in HepG2 through repeated exposure to increasing doses of the toxin. 

Morphological, physiological and genetic characteristics of the resistant cell line were 

compared with susceptible cells. Toxin was shown to bind to resistant HepG2 similarly 

to the susceptible line. RNA sequencing identified AQP9 as a potential mediator of 

resistance but extensive investigations failed to show a direct link. The involvement of 
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certain intracellular signalling pathways were also investigated in order to understand 

cell responses to the toxin and showed that in response to the toxin p38, but not ERK1/2, 

is activated and in a dose dependent manner. 
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Abbreviations 

 

aa: amino acids 

ABC: ATP-binding cassette 

BBMV: brush border membrane vesicle 

bp: base pairs 

BSA: bovine serum albumin 

Bt: Bacillus thuringiensis 

°C: degrees Celsius 

cAMP: 3', 5' - cyclic adenosine monophosphate 

CAPS: 3 - (cyclohexylamino) – 1 - propanesulfonic acid 

Chymo: chymotrypsin 

Cry: crystal 

Cyt: cytolytic 

DIC: differential interference contrast 

DMEM: Dulbecco's modified Eagle medium 

DMSO: dimethyl sulfoxide 

DNA: deoxyribonucleic acid 

DPBS: Dulbecco's phosphate-buffered saline 

DTT: dithiothreitol 

EC50: half maximal effective concentration 

ECL: enhanced chemiluminescence 

E. coli: Escherichia coli 

EDTA : 2, 2', 2'', 2''' - (Ethane - 1, 2 - diyldinitrilo) tetraacetic acid 

EGTA: ethylene glycol – bis (2 - aminoethylether) - N,N,N′,N′ - tetraacetic acid 

FCS: fetal calf serum 

FPLC: fast protein liquid chromatography 

g: gram 

HA: human influenza hemagglutinin 

HRP: horseradish peroxidase 

IC50: the half maximal inhibitory concentration 
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l: litre 

LB: Luria Bertani 

LD50: lethal dose that gives half maximal response 

M: molar concentration 

m: meter 

min: minute(s) 

MS-grade: mass spectrometry-grade 

MW: molecular weight 

NP-40: nonidet-P40 

OD600 :optical density measured at 600 nm 

ORF: open reading frame 

PAGE: polyacrylamide gel electrophoresis 

PBS: phosphate - buffered saline 

PBS-T: phosphate - buffered saline with Tween - 20 

PCR: polymerase chain reaction 

pI: isoelectric point 

PK: Proteinase K 

PKA: protein kinase A 

PLB: planar lipid bilayer 

Pres: PreScission 

PSG: penicillin, streptomycin, and glutamine 

RFU: relative fluorescence units 

RGB: resolving gel buffer 

RIPA: radio immune - precipitation assay 

RLU: relative luminescence units 

RPMI: Roswell Park Memorial Institute medium 

RT: room temperature 

SDS: sodium dodecyl sulphate 

SEM: standard error of the mean 

SGB: stacking gel buffer 
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Sol: solubilised 

TBE: tris - borate EDTA 

TEMED: N,N,N′,N′-tetramethylethylenediamine  

try: trypsin 

TX-100: triton X-100 
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1 Introduction 
 

 

1.1  Bacillus thuringiensis the bacterium 
 

Bacillus thuringiensis (Bt) is an aerobic gram-positive spore forming bacterium, 

belonging to the Bacillus cereus group. It was first isolated in Japan in 1901 from a 

diseased larvae of the silkworm, Bombyx mori. Bt synthesizes crystalline parasporal 

inclusions during sporulation (figure 1) and this salient feature makes it distinguishable 

from other Bacillus species (Ohba et al., 2008). The inclusion proteins have been proven 

to be highly toxic to insects making Bt an entomopathogenic organism that has been 

widely used as a biological pesticide in the form of sprays and more recently Bt proteins 

have been expressed in transgenic plants rendering them resistant to insect attack 

(Sanahuja et al., 2011). 

 

 

 

 

 

Figure 1:  A sporulated cell of Bacillus thuringiensis subsp. morrisoni strain C18. 
Strain C18 was isolated from a dead cotton bollworm larvae. The sporulated cell was visualised under electron 
microscopy  (Ibrahim et al., 2010). 

 

Bt strains show activity towards larvae of very diverse insect orders like Lepidoptera, 

Diptera, Coleoptera, Hymenoptera, Homoptera, Orthoptera and Mallophaga and in 

some cases against species from other phyla like nematodes, mites and protozoa 

(Schnepf et al., 1998). In addition some Bt strains were shown to exhibit activity against 

human cancer cells of various origins (Ohba et al., 2008). 

The crystal inclusions produced by Bt during the stationary growth phase comprise one 

or more Cry and/or Cyt proteins (also designated as δ-endotoxins) that have potent and 

specific insecticidal activity (Bravo et al., 2007). Additionally, during the vegetative 
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growth phase Bt isolates are also able to produce vegetative insecticidal proteins known 

as Vips (Palma et al., 2014). Figure 2 represents the list of different Bt toxins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: List of Bt toxins. 
Toxins listed are grouped according to their primary rank. The three domain Cry toxin family, coloured in blue, 
represents the majority of toxins. 13 toxins from the Binary like group are coloured in pink while 11 toxins from the 
ETX/MTX-like group are depicted in orange, those toxins named with red text indicate the parasporin class. Cry toxins 
highlighted with other colours represent toxins that are not classified into the existing Cry toxin families (Adang et al., 
2014). 

Cry1Aa Cry2Aa Cry8Aa Cry15Aa Cry31Aa Cry40Aa Cry58Aa Cyt1Aa
Cry1Ab Cry2Ab Cry8Ab Cry31Ab Cry40Ba Cyt1Ab
Cry1Ac Cry2Ac Cry8Ac Cry16Aa Cry31Ac Cry40Ca Cry59Aa Cyt1Ba
Cry1Ad Cry2Ad Cry8Ad Cry31Ad Cry40Da Cry59Ba Cyt1Ca
Cry1Ae Cry2Ae Cry8Ba Cry17Aa Cyt1Da
Cry1Af Cry2Af Cry8Bb Cry32Aa Cry41Aa Cry60Aa Cyt2Aa
Cry1Ag Cry2Ag Cry8Bc Cry18Aa Cry32Ab Cry41Ab Cry60Ba Cyt2Ba
Cry1Ah Cry2Ah Cry8Ca Cry18Ba Cry32Ba Cry41Ba Cyt2Bb
Cry1Ai Cry2Ai Cry8Da Cry18Ca Cry32Ca Cry41Ca Cry61Aa Cyt2Bc
Cry1Ba Cry2Aj Cry8Db Cry32Cb Cyt2Ca
Cry1Bb Cry2Ak Cry8Ea Cry19Aa Cry32Da Cry42Aa Cry62Aa Cyt3Aa
Cry1Bc Cry2Ba Cry8Fa Cry19Ba Cry32Ea
Cry1Bd Cry8Ga Cry19Ca Cry32Eb Cry43Aa Cry63Aa Vip1Aa
Cry1Be Cry3Aa Cry8Ha Cry32Fa Cry43Ba Vip1Ab
Cry1Bf Cry3Ba Cry8Ia Cry20Aa Cry32Ga Cry43Ca Cry64Aa Vip1Ac
Cry1Bg Cry3Bb Cry8Ib Cry20Ba Cry32Ha Cry43Cb Vip1Ad
Cry1Bh Cry3Ca Cry8Ja Cry32Hb Cry43Cc Cry65Aa Vip1Ba
Cry1Bi Cry8Ka Cry21Aa Cry32Ia Vip1Bb
Cry1Ca Cry4Aa Cry8Kb Cry21Ba Cry32Ja Cry44Aa Cry66Aa Vip1Bc
Cry1Cb Cry4Ba Cry8La Cry21Ca Cry32Ka Vip1Ca
Cry1Da Cry4Ca Cry8Ma Cry21Da Cry32La Cry45Aa Cry67Aa Vip1Da
Cry1Db Cry4Cb Cry8Na Cry21Ea Cry32Ma Cry45Ba
Cry1Dc Cry4Cc Cry8Pa Cry21Fa Cry32Mb Cry68Aa Vip2Aa
Cry1Ea Cry8Qa Cry21Ga Cry32Na Cry46Aa Vip2Ab
Cry1Eb Cry5Aa Cry8Ra Cry21Ha Cry32Oa Cry46Ab Cry69Aa Vip2Ac
Cry1Fa Cry5Ab Cry8Sa Cry32Pa Cry69Ab Vip2Ad
Cry1Fb Cry5Ac Cry8Ta Cry22Aa Cry32Qa Cry47Aa Vip2Ae
Cry1Ga Cry5Ad Cry22Ab Cry32Ra Cry70Aa Vip2Af
Cry1Gb Cry5Ba Cry9Aa Cry22Ba Cry32Sa Cry48Aa Cry70Ba Vip2Ag
Cry1Gc Cry5Ca Cry9Ba Cry22Bb Cry32Ta Cry48Ab Cry70Bb Vip2Ba
Cry1Ha Cry5Da Cry9Bb Cry32Ua Vip2Bb
Cry1Hb Cry5Ea Cry9Ca Cry23Aa Cry32Va Cry49Aa Cry71Aa
Cry1Ia Cry9Da Cry32Wa Cry49Ab Vip3Aa
Cry1Ib Cry6Aa Cry9Db Cry24Aa Cry72Aa Vip3Ab
Cry1Ic Cry6Ba Cry9Dc Cry24Ba Cry33Aa Cry50Aa Vip3Ac
Cry1Id Cry9Ea Cry24Ca Cry50Ba Cry73Aa Vip3Ad
Cry1Ie Cry7Aa Cry9Eb Cry34Aa Vip3Ae
Cry1If Cry7Ab Cry9Ec Cry25Aa Cry34Ab Cry51Aa Cry74Aa Vip3Af
Cry1Ig Cry7Ba Cry9Ed Cry34Ac Vip3Ag
Cry1Ja Cry7Bb Cry9Ee Cry26Aa Cry34Ba Cry52Aa Vip3Ah
Cry1Jb Cry7Ca Cry9Fa Cry52Ba Vip3Ai
Cry1Jc Cry7Cb Cry9Ga Cry27Aa Cry35Aa Vip3Ba
Cry1Jd Cry7Da Cry35Ab Cry53Aa Vip3Bb
Cry1Ka Cry7Ea Cry10Aa Cry28Aa Cry35Ac Cry53Ab Vip3Ca
Cry1La Cry7Fa Cry35Ba
Cry1Ma Cry7Fb Cry11Aa Cry29Aa Cry54Aa Vip4Aa
Cry1Na Cry7Ga Cry11Ba Cry29Ba Cry36Aa Cry54Ab
Cry1Nb Cry7Gb Cry11Bb Cry54Ba Sip1Aa

Cry7Gc Cry30Aa Cry37Aa
Cry7Gd Cry12Aa Cry30Ba Cry55Aa
Cry7Ha Cry30Ca Cry38Aa
Cry7Ia Cry13Aa Cry30Da Cry56Aa
Cry7Ja Cry30Db Cry39Aa
Cry7Ka Cry14Aa Cry30Ea Cry57Aa
Cry7Kb Cry14Ab Cry30Fa Cry57Ab
Cry7La Cry30Ga

Three-domain ETX-MTX Bin Parasporin
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1.2 Delta-endotoxins 
 

The δ-endotoxins are a superfamily of crystal proteins which can be divided into two 

main groups on the basis of their mechanism of action: the insect-specific Cry proteins 

and the generally cytolytic Cyt proteins (Butko, 2003). 

Hofte and Whiteley in 1989 introduced the first systematic nomenclature for crystal 

proteins which was based on the spectrum of activity of proteins as well as their amino 

acid sequence homology (Höfte and Whiteley, 1989).  The crystal toxins classification 

was later revised based only on amino acid sequence identity, where each protoxin 

acquired a name consisting of Cry (or Cyt) associated with four hierarchical ranks 

depending on its place in a phylogenetic tree. Proteins with a sequence identity of 

approximately <45%, 78%, 95% and ≤100% differ in primary, secondary, tertiary and 

quaternary rank respectively (Crickmore et al., 1998).  

 

1.2.1 Cry toxins 
 

Their name derives from the fact that these proteins form parasporal crystals. B. 

thuringiensis Cry toxins represent the largest group of insecticidal proteins. It includes 

around 300 different crystal proteins and to date these toxins have been classified into 

74 different types. The three-domain, binary (Bin) and ETX/MTX2 are the main families 

within this group (Crickmore, 2016).  

Most well-studied crystal proteins are produced as inactive protoxins that are later 

proteolytically cleaved to form a toxic core fragment with a molecular weight in the 

range of 55 - 65 KDa in the larva midgut. These toxins were shown to exhibit toxicity 

against Lepidopterans, Coleopterans, Hemipterans, Dipterans, Nematodes, snails and 

human-cancer cells (figure 3) (Palma et al., 2014). 
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Figure 3: Host spectrum of Bt δ-endotoxins. 
Bt δ-endotoxins (Cry and Cyt) grouped based on target specificity (Palma et al., 2014). 

 

The three domain toxins constitute the biggest family of insecticidal Bt proteins. These 

toxins display differences in their amino acid sequences but share a similar three domain 

structure and five conserved blocks of amino acids believed to reside in the active toxic 

core. Block 1 exists in domain I, block 4 and 5 are contained in domain III while block 2 

and 3 span the junction between domains I and II and domains II and III respectively  

(Höfte and Whiteley, 1989). These Cry proteins display toxic activity against insect 

species of the following orders: Lepidoptera, Diptera, Coleoptera, Hemiptera and 

nematodes yet, their mode of action has been studied mainly in lepidopteran insects 

(Palma et al., 2014). 

Protoxins belonging to this family exhibit two different lengths with the larger group 

approximately twice as long as the majority of the toxins. The carboxy-terminal 

extensions of the long protoxins are not involved in toxicity and are believed to mediate 

the formation of bipyramidal crystals within the bacterium (de Maagd et al., 2001). 

Whereas, shorter protoxins (e.g., Cry3 and Cry11 toxins) of approximately 70 kDa are 

synthesized lacking the C-terminal region (figure 4) (Palma et al., 2014). 
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Figure 4: Cry protoxins presenting different lengths with presence/absence of the five conserved blocks and the 
three domains.  
The three domain toxins are shown above the non-three domain ones and the coloured boxes represent the five 
conserved blocks (Fiuza et al., 2017). 
 

The N-terminal Domain I or perforating domain is constituted by seven α-helices and is 

subjected to proteolytic cleavage during toxin activation. As suggested by the umbrella 
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model, the hydrophobic helical hairpin α4 and α5 are believed to insert into the 

membrane initiating pore formation while the other α-helices lay flat on the membrane 

surface in an umbrella-like shape. This helical domain is therefore responsible for toxin 

membrane insertion and pore formation (Deist et al., 2014). 

Domain II, a β-prism, consists of three antiparallel β-sheets with exposed loop regions 

and is implicated in protein-receptor interactions. Due to their similarities to 

immunoglobulin antigen-binding sites, the loops of domain II were suggested to 

participate in receptor binding (Deist et al., 2014). 

Domain III consists of two antiparallel β-sheet sandwich. It is proteolytically cleaved in 

some three-domain Cry proteins and is also involved in receptor recognition and binding 

and possibly in pore formation. This domain has also been shown to play a role in 

maintaining structural integrity of the toxin by protecting it from proteolysis (Deist et 

al., 2014).  

The crystal structures of certain three domain toxins have been solved by X-ray 

crystallography. Amongst these toxins: Cry1Aa (Grochulski et al., 1995), Cry1Ac 

(Derbyshire et al., 2001) Cry2Aa (Morse et al., 2001), Cry3Aa (Li et al., 1991), Cry3Bb 

(Galitsky et al., 2001), Cry4Aa (Boonserm et al., 2006), Cry4Ba (Boonserm et al., 2005) 

and Cry8Ea1 (Guo et al., 2009). An example of three dimensional structure of the three 

domain toxin Cry8Ea1 is shown in figure 5.  

 

 

 

 

 

 

Figure 5: Three dimensional structure of Cry8Ea1 toxin. 
The tertiary structure of Cry8Ea1 was determined at 3.2 Å resolution by X-ray crystallography. Domain I, II and III are 
represented in blue, green and red respectively (Guo et al., 2009).  
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The ETX/MTX2 family consists of 11 members that were classified under distinct primary 

rankings in the nomenclature: Cry15, Cry23, Cry33, Cry38, (Coleoptera), Cry51 

(Coleoptera and Hemiptera), Cry60 (Diptera), Cry45 (Parasporin-4) and Cry64 

(Parasporin-5) (human cancer cells). They all show features of the ETX/MTX2 family that 

includes the Mtx2 protein from Lysinibacillus sphaericus and the Clostridium perfringens 

epsilon toxin (Adang et al., 2014). Although their structure is significantly different from 

the three domain toxins, these toxins are believed to act via forming pores in the 

membranes of the target cells (Bokori-Brown et al., 2011). In fact, the Cry-ETX/MTX 

toxins showed significant similarities at the structural level with proteins from the 

aerolysin-like β-PFT group particularly with the tail region that has been proposed to 

play a role in oligomerisation and pore formation. A similar mode of action was then 

proposed for these Cry toxins  (Liu et al., 2018). An example of the ETX/MTX structure is 

shown in figure 6. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Three dimensional structure of Cry51Aa1. 
The structure of Cry51Aa1 was solved at 1.65 Å resolution; PDB 4PKM. The secondary structure components include 
5 helices and 15 β-strands presented in yellow and cyan respectively. The amphipathic β-hairpin is shown in magenta 
(Xu et al., 2015a). 
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The Bin-like toxins are a class that is composed of 13 toxins. Their name is derived from 

the fact that they resemble the two homologous components (Bin A and Bin B) of the 

mosquitocidal binary toxin from L. sphaericus. Although their molecular structure as well 

as their mechanism of action is unclear, there is some evidence that they form pores 

and that one of the components acts intracellularly (Berry, 2012). Figure 7 represents 

the 3-D structure of Bin A and Bin B of L. sphaericus. 

 

 

 

 

 

 

 

 

Figure 7: Three dimensional structure of Bin A and Bin B of L. sphaericus.  
Structural similarity between Bin A and Bin B composed of trefoil and pore-forming domains. Each molecule is 
approximately 100 Å long and 25-30 Å in diameter. α and β represent carbohydrate-binding molecules where the 
structural differences are suggested to be located (Colletier et al., 2016). 
 
 

1.2.2  Cyt toxins 
 

Cytolytic toxins (Cyt) have been classified into four families (Crickmore, 2016). These 

toxins show mainly Dipteran specificity, some Cyt toxins, however, are able to kill 

coleopteran larvae such as Cyt1Aa that is toxic to Chrysomela scripta and Cyt2Ca which 

shows toxicity against Leptinotarsa decemlineata and Diabrotica spp (Soberon et al., 

2013). In addition, these toxins were shown in vitro to be cytolytic to a broad range of 

cells including red blood cells  (Promdonkoy and Ellar, 2003). They are synthesized as 

protoxins that are proteolytically cleaved to form the 25 kDa active toxic core (Thomas 

and Ellar, 1983b). The overall structure of Cyt toxins consists of a β-sheet surrounded by 

two α-helical layers (figure 8) (Cohen et al., 2011, Cohen et al., 2008, Li et al., 1996). The 
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mode of action of these toxins was suggested to involve either oligomerisation and pore 

formation or aggregation on the target cell surface leading to destruction of the lipid 

bilayer in a detergent-like manner (Butko, 2003, Rodriguez-Almazan et al., 2011). 

 

 

 

 

 

 

 

 

 

Figure 8: Three dimensional structure of Cyt1Aa toxin monomer. 
The represented tertiary structure of Cyt1Aa toxin is coloured in rainbow using PyMOL; PDB 3RON. It was determined 
at 2.2 Å resolution. Arrows indicate the proposed movement of the helical layers to allow the pore formation by β-
sheet (Cohen et al., 2011). 
 

 

1.3 VIP 
 

The vegetative insecticidal proteins (VIP) are classified into four families. They are 

secreted during the vegetative growth phase of B. thuringiensis and do not form 

parasporal crystal proteins. Vip1 and Vip2 constitute a binary toxin with high insecticidal 

activity reported against some members of Coleoptera. The Vip1 component is thought 

to bind to receptors in the membrane of the insect midgut while the Vip2 component 

enters the cell and prevents microfilament formation via ADP-ribosylation (Chakroun et 

al., 2016). The Vip3 toxins are active against a wide variety of lepidopteran insects, 

including Agrotis ipsilon, Spodoptera frugiperda, Spodoptera exigua, and Helicoverpa 

zea. When fed to susceptible insects, Vip3  acts in a similar way to that of Cry proteins 
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causing gut paralysis and lysis of midgut epithelial cells (Schnepf et al., 1998). On the 

other hand, the insecticidal properties of Vip4 toxins remain unknown.  

 

1.4 Anti-cancer toxins: Parasporins (PSs) 
 

The existence of Bt strains with no known insecticidal activity was first reported in 1986. 

From a total of 189 isolates of Bacillus thuringiensis producing parasporal inclusions 

(PIs), 36% were toxic to different orders of insects whereas the rest (64%) showed no 

insecticidal activity suggesting that in natural environments non-insecticidal PI-forming 

bacteria outnumber the insecticidal ones (Ohba and Aizawa, 1986). The fact that non-

insecticidal isolates often account for >90% of the natural populations from soils and 

phylloplanes raised the question of whether such proteins synthesized in non-

insecticidal inclusions have any undiscovered biological activity (Ohba et al., 2008). 

Therefore an extensive screening of B. thuringiensis Cry proteins with no known 

insecticidal activity was commenced and has led to the discovery of the proteins that 

target human cancer cells (Ohba et al., 2008). 

A large-scale screening of 1744 B. thuringiensis strains was first attempted by Mizuki et 

al where amongst the non-hemolytic parasporal proteins produced, 42 were shown to 

have in vitro cytocidal activity against MOLT-4 cells (human leukemic T-cells) retaining 

no significant insecticidal activities against 11 species of five orders: Lepidoptera, 

Diptera, Orthoptera, Dictyoptera and Isoptera.  For a characterization of the anticancer 

activity of these proteins, three strains were chosen and were further examined. The 

selected proteins showed strong cytocidal activities with different toxicity spectra and 

varied activity levels. The proteins of the two strains 84-HS-1-11 (A1190) and 89-T-26-

17 (A1462) were of particular interest because of their ability to discriminate between 

leukemic and normal T-cells with a preferential activity against the cancer line (Mizuki 

et al., 1999). In 2000, Mizuki et al. obtained another strain A1190 producing an 

anticancer Cry protein which led to the creation of a new category of proteins 

designated as parasporins that are able to produce parasporal proteins capable of 

discriminately killing cancer cells (Mizuki et al., 2000). 
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To date 19 parasporins have been discovered. Based on the primary amino acid 

sequence of protoxins, they were classified into 6 first-rank groups parasporin-1, -2, -3, 

-4, -5 and -6 by the Committee of Parasporin Classification and Nomenclature 

(http://parasporin.fitc.pref.fukuoka.jp/intro.html). In addition, based on the sequence 

similarity to existing insecticidal toxins from Bt they were also incorporated into the Cry 

gene nomenclature (Crickmore et al., 1998). 

Sequence analysis of parasporins revealed that they could also be categorized into two 

types: the three-domain type (PS-1, PS-3 and PS-6) and the ETX/MTX type of the β-pore-

forming-toxin (β-PFT) family (PS-2, PS-4 and PS-5) (Akiba and Okumura, 2017). 

 

1.4.1 Parasporin-1 (Cry31Aa1) 
 
PS-1 derives from the B. thuringiensis soil isolate 84-HS-1-11 (recently designated as 

A1190). This three domain toxin possesses the five conserved blocks that are 

characteristic of three domain Cry proteins yet it only shares very low homology (<25% 

identity) with the existing classes of Cry and Cyt protein (Mizuki et al., 2000). 

 

PS-1 is encoded by a gene of 2,169 bp long and is a polypeptide of 723 amino acid 

residues with a predicted molecular weight of 81,045 Da (Mizuki et al., 2000). Protease 

treatment by trypsin yields the active form of PS-1 which is a heterodimer protein 

consisting of 15 and 56 KDa polypeptides that are tightly associated (Katayama et al., 

2007). The digestion occurs at the N-terminal region of the precursor protein (Mizuki et 

al., 2000). PS-1 preferentially exerts its cytotoxic effects against several cancer cell lines 

especially HeLa and HL-60 cell lines (their LD50s are 0.12 and 0.32 μg/mL respectively). 

Its cytotoxic effect was considered as moderate against Sawano and HepG2 cells but 

absent against the normal cells, peripheral blood T cells and MRC-5 cell line (Katayama 

et al., 2007).  

 

Its crystal structure has been determined at 1.76 Å resolution (Akiba et al., 2005). It has 

a typical architecture characteristic of the three-domain insecticidal Cry toxins with an 
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additional N-terminal segment present in the active form of the protein (figure 9) (Akiba 

and Okumura, 2017). 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 9: Orthogonal view of the ribbon representation showing the 3D-structure of the activated form of PS-1.  
Domains 1, 2 and 3 are indicated in light blue, green, and orange, respectively. The N-terminal extension of the protein 
is shown in violet. The cleavage site is represented with a black arrow (Akiba and Okumura, 2017). 
 

 

Katayama et al in 2007 investigated the effect of the protein on membrane permeability, 

calcium homeostasis and the mode of cell death in sensitive cell lines. In their study they 

demonstrated that PS-1 induced an increase in Ca2+ influx with no observed alterations 

in membrane potential of intoxicated cells. This influx was considered as the first step in 

the pathway that underlies parasporin-1 toxicity. Heterotrimetric G-proteins or G-

protein coupled receptors were shown to be involved in the induction of Ca2+ influx. In 

addition, PS-1 was proposed not to be a pore forming toxin and the mode of cell death 

was suggested to be most likely apoptotic (Katayama et al., 2007). It has been reported 

that PS-1 binds to the receptor Beclin-1 (Katayama, 2011) however the interaction 

between the toxin and the receptor is still to be elucidated. In figure 10, the visualised 

effect (cell ballooning) of PS-1 on HeLa cells is shown. 
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Figure 10: Morphological changes of PS-1-treated HeLa cells. A: Cells treated with toxin. B: Mock control.  
HeLa cells were treated with (1μg/ml) or without trypsin activated PS-1 then morphological changes were visualised 
using a phase-contrast microscope. Bar, 10 μm. Figure was edited from Katayama et al. (Katayama et al., 2007). 
 
 

1.4.2 Parasporin-2 (Cry46Aa1) 
 

 
This toxin derives from the Bt strain 90-F-45-14 (recently designated as A1547). The gene 

encoding this protein is 1,014 bp long and the toxin is a polypeptide of 338 amino acid 

residues with a molecular weight of 37,446 Da. PS-2 is not a three domain Cry protein 

and thus lacks the block sequences conserved in these proteins. It does however, share 

a low sequence homology with Cry15Aa (an ETX/MTX toxin) among the established Cry 

and Cyt proteins  (Ohba et al., 2009). 

Proteolytic treatment of the 37 kDa protein with Proteinase K yields a cytotoxic 30 kDa 

fragment that exhibits notable cytotocixity to certain human cancer cell lines. The 

digestion occurs at both N and C termini of the protein and the active core is selectively 

cytotoxic to HepG2, HL-60, Sawano, Jurkat and MOLT-4 cell lines (figure 11) (Ito et al., 

2004, Ohba et al., 2009). 
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Figure 11: Cytocidal activity of PS-2 towards various human cells. 
Cytotoxicity of proteinase K activated PS-2 (final concentrations, 0.6 ng to 10 μg) was tested on several cell lines using 
MTT assay and LD50 was determined (Ito et al., 2004). 
 

The crystal structure of the active form of PS-2 has been determined at 2.38 Å resolution 

(figure 12). It is very similar to the crystal structures of the ETX/MTX group therefore a 

similar mechanism of action was proposed: the toxin molecules bind to specific 

receptors in lipid rafts, oligomerize then insert their β-hairpins to penetrate the 

membrane and form pores (Akiba and Okumura, 2017). 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Crystal structure of PS-2 in ribbon representation. 
Domain 1, 2 and 3 are indicated by vertical arrows on the left. The polypeptide chain of PS-2 is shown in a rainbow 
ramp: The N-terminus, C-terminus and amphipathic β-hairpin regions are coloured in blue and magenta respectively. 
Figure edited from Akiba and Okumura (Akiba and Okumura, 2017). 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/peptide
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This proposed model was later demonstrated where the initial step in the cytocidal 

action of PS-2 was shown to be the specific binding of the toxin to a putative receptor 

protein (GPI-anchored proteins) located in the lipid raft of plasma membrane of the 

susceptible cells which was followed by the formation of oligomers (>200 kDa) (Kitada 

et al., 2009). The 30 kDa protein was found to be a pore forming toxin which caused an 

increase in plasma membrane permeability. Following exposure to toxin, susceptible 

cells ballooned and started to detach, burst open and fragmented (figure 13). The study 

of DNA fragmentation and caspase activation showed that the mode of cell death was 

unlikely to be apoptotic in contrast to PS-1 (Ito et al., 2004, Kitada et al., 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Visual effect of PS-2 on HepG2 cells and HL-60 cell lines.  
Morphological changes of HepG2 and HL-60 cells treated with or without toxin were visualised under a phase-contrast 
microscopy. Figure is edited from Ito et al. (Ito et al., 2004).  

 

1.4.3 Parasporin-3 (Cry41Aa and Cry41Ab) 
 

Parasporin-3 was isolated from the B. thuringiensis strain 89-T-26-17 (recently 

designated as A1462) from soils of Tokyo in Japan.  The protein consists of 825 amino 

acid residues with a deduced molecular weight of 93,689 Da sharing low homology with 

insecticidal Cry proteins. PS-3 has a typical three-domain structure with five block 

sequences commonly conserved in these Cry proteins. The C-terminal sequence of this 
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protein contains a β-trefoil domain similar to that of Clostridium botulinum 

hemagglutinin HA-33 (Ohba et al., 2009). PS-3 exhibits cytotoxic effect against only two 

tested cancer cell lines, HL-60 (myeloid leukaemia cancer) and HepG2 (liver cancer) 

(figure 14) and has the narrowest activity spectrum among the PS 1-4 proteins. 

Proteolytic digestion is required for activation of the protein which is converted to a 64-

kDa toxic moiety by proteolytic processing of both N- and C-terminal regions (Ohba et 

al., 2009). 

 

 

 

 

 

 

 

 

Figure 14: Cytotoxicity spectra and levels of PS-3. 
The cytotoxic effect of proteinase K activated PS-3 was tested on several mammalian cell lines using MTT cell viability 
assay and EC50s were determined. P2 and P3 represent Cry41Aa1 and Cry41Ab1 respectively (Yamashita et al., 2005).  

 

Gene cloning experiments carried out by Yamashita et al in 2005 showed the existence 

of two genes encoding the 88-kDa Cry proteins representative of PS-3: Cry41Aa and 

Cry41Ab. Each gene is formed of three ORFs: ORF1, ORF2 and ORF3 that are orientated 

in the same direction and had putative ribosome binding sites in their upstream regions 

(Yamashita et al., 2005). ORF1 encodes a hypothetical protein of around 19 kDa, ORF3 

encodes a protein of around 82 kDa and is believed to be involved in crystallization and 

expression since it shares homology with the C-terminal domain of the larger 3-domain 

insecticidal Cry toxins while ORF2 encodes a protein of 93 kDa which possesses the 

cytocidal activity against human cancer cells and contains the aforementioned five 



31 
 

conserved blocks (Yamashita et al., 2005). Additionally ORF2 contains a conserved 

domain belonging to Ricin superfamily which is similar to HA-33 like domain present in 

Clostridium botulinum type C mammalian neurotoxin that causes botulism disease 

(Tsuzuki et al., 1990).  

The two encoded toxins, designated as Cry41Aa1 and Cry41Ab1 by the Bt Toxin 

Nomenclature Committee (Crickmore, 2016), show a high degree of homology: 87%, 

88% and 99% sequence identity between the proteins coded by ORF1, 2 and 3 

respectively. Proteinase K activated toxin but not the solubilised core exhibits a cytocidal 

action. Upon treatment with Proteinase K, the 88 kDa protoxin is converted to 64 kDa 

active core which was N-terminally sequenced and showed that N-terminal cleavage 

occurs at the 60th aa (Yamashita et al., 2005), while trypsin and chymotrypsin treatment 

result in two fragments of around 64 and 80 kDa (Yamashita et al., 2000). Cry41Aa and 

Cry41Ab exhibited strong cytocidal activity only against HL-60 and HepG2 cells yet 

viability and membrane damage experiments showed that Cry41Aa was more toxic than 

Cry41Ab. Morphological observations of HepG2 cells post-toxin administration showed 

swelling and a serious membrane damage (figure 15) however the swelling was also 

detected in non-susceptible cells like HeLa (Yamashita et al., 2005). 

 

 

 

 
 
 
 
 
Figure 15: Morphological changes of HepG2 cells upon treatment with Cry41Aa1 and Cry41Ab1. 
Cells were treated with activated proteins (10 mg/ml). Phase-contrast microscopic observation was done 1 h post-
administration. Arrowheads indicate swollen cells, Bar = 50 mm. Figure is edited from Yamashita et al. (Yamashita et 
al., 2005). 

 

Cry41Aa was expressed by Krishnan et al in 2017. The amino acid sequence of its ORF2 

is shown in figure 16. The predicted three dimensional structure of Cry41Aa protoxin 

was generated by Phyre2 and visualised using UCSF Chimera 1.10.1 (figure 16). 
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Figure 16: The amino acid sequence of Cry41Aa encoded by ORF2 and the correspondent predicted 3-D structure. 
The putative domains were identified based on sequence comparison with other three domain Cry toxins (Elhigazi et 
al. unpublished). N- and C-terminal regions as well as the ricin domain of the protoxin are also presented. 13 
templates were selected to model Cry41Aa protein based on heuristics to maximise confidence, percentage identity 
and alignment coverage: c1ciyA, d1i5pa3, c2c9kA, c3eb7B, c4moaA, d1qxma2, c1ybiA, c1dlcA, c2ihoA, c2vsaA, c2ehiB, 
d1qxma1 and c1ji6A presenting  % identity of 29, 22, 29, 33, 30, 29, 26, 32, 22, 30, 22, 30 and 35 respectively. 

Krishnan et al showed that the ricin domain was not involved in Cry41Aa toxicity. They 

also proposed that Cry41Aa is a pore-forming toxin and does not induce apoptosis. Upon 

treatment of HepG2 cells with activated Cry41Aa morphological changes (figure 17) as 

well as membrane damage were observed. Sequence comparison of Cry41Aa and 

insecticidal toxins identified loop 3 in domain II of Cry41Aa, which in insecticidal Cry 

toxins was previously shown to play a major role in receptor binding (Pacheco et al., 

2009). This exposed loop region, was shown to be important for the activity of Cry41Aa 

against HepG2 cells (Krishnan et al., 2017). 

 

 

 

 

 

 
 
 
Figure 17: Morphological changes of HepG2 cells following Cry41Aa treatment.  
HepG2 cells were treated with Cry41Aa (5.5 µg/ml) at different time points and then viewed by DIC (differential 
interference contrast) microscope. The scale bar represents 20 µm (Krishnan et al., 2017). 
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Further work on Cry41Aa was carried out by Domanska et al. (Domanska, 2016) who 

investigated the mechanism of action of this toxin and established the following : 

- Cell exposure to Cry41Aa resulted in membrane permeability allowing the 

detection of both small and large size cytotoxic markers.  

- Cry41Aa induced channel formation in planar lipid bilayers (PLBs) as well as in 

biological membrane patches of various origins. PLB experiments confirmed the 

pore forming nature of Cry41Aa. 

- Pre-treatment of HepG2 cells with EGTA inhibited Cry41Aa toxicity by means of 

metal ion chelation. EGTA acted by preventing stable interaction with the 

membrane and the subsequent steps of membrane damage. It was also shown 

to exert its protective effect by chelating cations (most likely candidates being: 

Ca2+, Mn2+ and Zn2+) bound to plasma membrane components.  

- Cry41Aa induced p38 MAPK activation in susceptible cells however inhibition of 

p38 activity did not rescue cell viability. 

 

1.4.4 Parasporin-4 (Cry45Aa1)  
 

PS-4 was isolated from Bt strain A1470 (previously designated as 89-T-34-22) (Okumura 

et al., 2005). It consists of 275 amino acid residues with a molecular weight of 30, 078 

Da and possesses only low homology (< 30%) in amino acid sequence with the existing 

Cry and Cyt proteins. The three-domain structure is not associated with this protein 

(Ohba et al., 2009).  Proteolytic processing is essential for activation of the cytotoxic 

protein. Proteinase K treatment of PS-4 leads to the production of a 28 kDa fragment 

that was shown to be toxic towards various mammalian cells yet preferentially killing 

colonic, uterine, and blood cancer cells (Okumura et al., 2005). The protein could also 

be activated using pepsin leading to the production of a 27 kDa fragment that was highly 

cytotoxic towards CACO-2, Sawano, MOLT-4, TCS, and HL-60 cells (Okumura et al., 

2011). 
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PS-4 treatment was shown to induce marked morphological changes in susceptible 

MOLT-4 and CACO-2 cells: In MOLT-4 treated cells, swelling and blebbing followed by 

nuclear shrinkage were observed (figure 18). PS-4 was also shown to induce the 

formation of large pores in the plasma membrane of target cells: It binds non-specifically 

(to susceptible and non-susceptible cells) to the plasma membrane and oligomerizes to 

form pores only in susceptible cells leading to cell death. PS-4 shares homology with 

ETX/MTX toxins therefore its mode of action was proved to be almost identical to that 

of ETX/MTX toxins however, PS-4 differs in its cholesterol independence (Okumura et 

al., 2011).  

 

 

 

 

 

 

 
 
 
Figure 18: Morphological changes of CACO-2 and MOL-4 cells following toxin treatment.  
CACO-2 and MOLT-4 cells were incubated with PS-4 at a final concentration of 4 μg/ml then were visualised under 
phase contrast microscopy. Figure is edited from Okumura et al. (Okumura et al., 2011).   
 
 
 

1.4.5 Parasporin-5 (Cry64Aa) 
 
PS-5 was isolated from Bt strain A1100. This protein shares some slight amino acid 

sequence homology with some B. thuringiensis Cry toxins and also with ETX/MTX toxins 

(Ekino et al., 2014). 

PS-5 was expressed as a 33.8 kDa inactive protoxin that exhibited cytocidal activity 

following proteolytic treatment with Proteinase K. The cleavage occurs at the C-terminal 

region of the protein to yield smaller active molecules of around 29.8 kDa.  
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The cytotoxic activities of the protein against various mammalian cell lines were 

evaluated showing that the toxin possesses strong cytocidal effect against seven (MOLT-

4, HepG2, TCS, HeLa, COS7, Vero, and Sawano cells) out of 18 mammalian cell lines, and 

low to no cytotoxicity to the others (figure 19) (Ekino et al., 2014).   

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 19: Cytotoxic activity of PS-5 protein against various mammalian cells. 
The cytotoxic effect of PS-5 was evaluated on several mammalian cell lines using MTT viability assay and EC50s were 
determined (Ekino et al., 2014). 
 
 

 

Microscopic observation of MOLT-4 cells treated with PS-5 revealed rapid cell swelling 

(figure 20) however the mode of action is still unknown but is predicted to be similar to 

that of the β-PFTs (Ekino et al., 2014). 



36 
 

 
 
 
 
 
 
 
 
 
 
Figure 20: Visualised cytopathic effect of PS-5 on MOLT-4 cells. 
The cells were treated with solubilised PS-5 for 1 hour then morphological changes were observed under a phase-
contrast microscope. Arrows show the ballooning cell shape of target cells. Figure edited from Ekino at al.  (Ekino et 
al., 2014). 
 
 

1.4.6 Parasporin-6 (Cry63Aa1) 
 
PS-6 was isolated from Bt strain M019. Proteolytic treatment of the 84 kDa three domain 

Cry protein with trypsin resulted in the cleavage at N-terminal region leading to its 

activation and the production of two fragments of around 14 and 59 kDa which were 

toxic to HepG2 and HeLa cells. Swelling and formation of vacuoles in the cytoplasm of 

HepG2 cells were observed with the vacuole-formation in the cytoplasm was speculated 

to be a secondary effect of pore-forming action (Nagamatsu et al., 2010). 

 

1.5 Different models proposed for Cry toxin mode of                   

                     action 

 
There are two main groups of pore-forming toxins (PFT): the α-helical group, in which 

the α-helix regions of the toxin form the trans-membrane pore and the β-barrel toxins 

that form a β-barrel which inserts into the membrane (Parker and Feil, 2005). The first 

class of PFT includes toxins such as the colicins, exotoxin A, diphtheria toxin and Cry 

three-domain toxins while the second class includes aerolysin, α-hemolysin, anthrax 
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protective antigen, cholesterol-dependent toxins as perfringolysin O and the ETX/MTX 

toxins. Generally bacteria secrete their toxins which interact with specific receptors 

located on the host cell surface. In most cases, the activation of these PFT occurs by host 

proteases followed by receptor binding resulting in the formation of an oligomeric 

structure that inserts into the membrane (Parker and Feil, 2005).  

The most accepted model of Cry toxin mode of action is based on Knowles and Ellar’s 

work in 1987 where the colloid-osmotic lysis model was proposed (Knowles and Ellar, 

1987). The model was postulated based on experiments carried out on the three domain 

δ-endotoxins on Lepidopteran larvae. Initially, the crystal inclusions are ingested by 

susceptible larvae, solubilised in the alkaline environment of the gut then activated by 

midgut proteases producing 60-70 kDa protease resistant proteins. The proteolytic 

activation of the toxin involves removal of an N-terminal peptide (25-30, 58 and 49 

amino acids for Cry1, Cry3A and Cry2Aa toxins respectively) and approximately half of 

the remaining protein from the C-terminus in the case of the long Cry protoxins resulting 

in the monomeric toxin. Toxin then binds to insect midgut epithelial receptors, inserts 

into the membrane and forms lytic pores in microvilli of apical membranes leading to 

cell lysis and death (Soberon et al., 2009).  

Another model was proposed: the signal transduction model. This model has the same 

initial steps as the pore formation model up to the binding of the toxin to a cadherin 

receptor. In this model, toxin interaction with the receptor stimulates the activation of 

a Mg2+-dependent intracellular pathway resulting in cell death (Soberon et al., 2009). 

Figure 21 shows a diagram describing the mode of action of Cry toxins. 
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Figure 21: Diagram summarising models proposed for the mode of action of Cry toxins.   
Two models were proposed for the mode of action of Cry toxins: the pore formation model and the signal 
transduction model (Soberon et al., 2009). 
 

 

1.5.1 The pore formation models 

• The Bravo model 

 

The Bravo model was proposed based on experiments carried out on Cry1Ab toxin and 

its interactions with the brush border membrane vesicles (BBMV) of Manduca sexta. It 

suggests that Cry1Ab needs to bind to two receptor molecules (aminopeptidase N (APN) 

and a cadherin-like protein (Bt-R1)) to exert its effect on the target cell membrane. In 

fact, immunoprecipitation experiments demonstrated that initial binding of Cry1Ab 

toxin to cadherin is followed by binding to APN. Initially, the toxin monomer binds to 

cadherin which promotes cleavage of helix α-1 by a membrane-bound protease 

resulting in formation of oligomeric toxin which then binds to APN. This latter interaction 

facilitates the migration of the pre-pore complex towards the detergent-resistant 

membrane (DRM) where toxin insertion occurs leading to formation of pores and 

subsequent cell lysis and death (figure 22). The fact that APN was more efficiently 

detected in samples immunoprecipitated with the oligomeric structure of Cry1Ab while 
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cadherin was preferentially detected in samples immunoprecipitated with the 

monomeric Cry1Ab suggested that the two receptors interact sequentially with different 

structural state of the toxin to facilitate its efficient membrane insertion (Bravo et al., 

2004). 

This finding was supported by previous work where the Cry1Ab oligomer was shown to 

be toxic towards M. sexta (Gomez et al., 2002) and that it inserts more efficiently into 

membrane vesicles compared with the monomeric Cry1Ab suggesting that the 

oligomerization process is required for toxin insertion into target cell membranes 

(Rausell et al., 2004b). The important role of APN in toxin activity was also demonstrated 

in a previous study where silencing APN in S. litura resulted in insect resistance to Cry1C 

toxin (Rajagopal et al., 2002a).  

 

 
 

 

 

 

 

Figure 22: Sequential steps proposed in the mode action of Cry toxins.  
The different steps in the mode of action of Cry toxins are: 1: Solubilisation of crystal protein, 2: Proteolytic processing 
of the protoxin, 3: Binding of toxin monomer to Bt-R1 and cleavage of helix α-1, 4: Pre-pore oligomeric structure 
formation, 5: Binding of toxin oligomer to APN and mobilization to DRM, 6: Pore formation  (Bravo et al., 2004). 
 
 

• The Ping-Pong model 

 

This model was proposed by Pacheco et al where the Cry1Ab monomer was shown to 

bind initially with low affinity to the highly abundant APN through loop 3 of domain II 

before the high affinity interaction with the low-abundant cadherin occurs through 

other regions of domain II in addition to loop 3. The latter interaction with cadherin 

promotes cleavage of helix α-1 and formation of the pre-pore oligomer that binds to 

APN which facilitates its insertion into the membrane (figure 23) (Pacheco et al., 2009).  
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Pacheco et al showed that mutations located in loop3 of domain II affected binding of 

Cry1Ab to both receptors and insecticidal activity against Manduca sexta larvae and that 

the interaction with these receptors depends on the oligomeric state of the toxin. In 

fact, in the case of APN, binding of monomers of loop 3 mutants to this receptor was 

reduced, in contrast the oligomeric form of these mutants was not affected in binding 

to APN suggesting that loop 3 is involved in the binding with receptor molecules 

depending on the oligomeric state of the toxin (Pacheco et al., 2009). 

 

 
Figure 23: Schematic representation of the Ping pong binding model of Cry1Ab toxin.  
1: Binding of Cry1Ab monomer to APN through loop 3 of domain II, 2: The monomer binds to Bt-R1 through regions 
of domain II (loops α-8, 2, and 3), 3: Formation of an oligomeric form of the toxin that binds to Bt-R1 through loop 3 
and to APN through domain III, 4: Membrane insertion and pore formation (Pacheco et al., 2009). 
 

 

 

1.5.2 The signalling model 

• The Zhang model 

 

This model was proposed based on experiments performed using Cry1Ab and cells 

originating from ovarian cells of the cabbage looper, Trichoplusia ni. These cells (H5) 

which don’t express the cadherin receptor, were shown to become sensitive to Cry1Ab 

following transfection with the receptor molecule (transfected cells were named S5) 

(Zhang et al., 2005). It was suggested that monomeric but not the oligomeric form of 

Cry1Ab can specifically bind to cadherin receptor and induce toxicity. Toxin oligomer 
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was also shown to be unable to form lytic pores into target cell membrane. The cell 

death was rather correlated with an activation of Mg2+-dependent cellular signalling 

pathway following binding of the Cry1Ab toxin monomer to cadherin (Zhang et al., 

2005). 

These findings came from the fact that Cry1Ab toxin oligomer was shown to insert into 

membranes in cells stably expressing cadherin (susceptible) as well as in receptor-free 

(non-susceptible) cells while monomeric form of the toxin was incorporated only into 

the membranes of cells expressing cadherin. In addition, blocking the receptor active 

site of the toxin resulted in lack of interaction of toxin monomer with cadherin and 

prevented toxicity and cell death however incorporation of oligomeric toxin into the cell 

membrane was observed and was inconsequential. The toxin oligomers were also 

shown to be incorporated into the cell membrane of H5 cells and were maintained there 

through several generations without any toxic effect (Zhang et al., 2005). 

Zhang et al in 2005 also showed that in the presence of EDTA and EGTA chelators, the 

binding of the toxin (Cry1Ab) to the receptor (cadherin) still occurred however only EDTA 

prevented subsequent cell death. Addition of Mg2+ to susceptible cells pre-exposed to 

EDTA restored cytotoxicity of Cry1Ab and microscopic observations showed that 

removal of this cation prevented the susceptible cells from swelling. These findings 

proposed that Cry1Ab binding to Bt-R1 and subsequent cell death were linked to a Mg2+-

dependent signaling pathway (Zhang et al., 2005). 

The model proposed an intracellular cascade response involving protein G, adenylate 

cyclase (AC) and protein kinase A (PKA) following interaction with membrane receptor 

(figure 24). Specific binding of the Cry1Ab toxin to cadherin receptor (Bt-R1) was shown 

to stimulate G protein (Gαs) and adenylyl cyclase (AC) causing the accumulation of cAMP 

and activation of protein kinase A (PKA). These events were shown to disturb both 

structural and functional integrity of the host cell leading to its death (figure 24) (Zhang 

et al., 2006).   

Induction of the adenylyl cyclase/protein kinase K pathway was manifested by 

membrane blebbing, appearance of ghost nuclei, cell swelling and lysis (Zhang et al., 

2006). Pre-treatment of S5 cells with PKA inhibitors prevented these phenotypic 

changes of cells and protected them from Cry toxin action. In addition, inhibition of Gαs 



42 
 

(NF449) and AC (ddADP) resulted in lack of cAMP production and reduced the Cry1Ab 

cytotoxicity while the activator (FSK) and potentiator (pCPT-cAMP) of cAMP sensitized 

the cells and enhanced cytotoxicity (Zhang et al., 2006).  

 

 

 

 

 

 

 

 

 
 
Figure 24: The signalling pathway model proposed for the action of Cry toxin. 
Cry toxin binds to Bt-R1 and stimulates G protein and AC causing accumulation of intracellular cAMP and activation 
of PKA. PKA activation causes destabilisation of the structural and functional integrity of the cell leading to cell death 
(Zhang et al., 2006). 
 

 

• The Jurat-Fuentes Model: A combination of the pore   

                                       forming and the signalling models 

 

This model was proposed to explain the mode of action of Cry1Ac against H. virescens 

(Jurat-Fuentes and Adang, 2006). The model suggests that both osmotic lysis and cell 

signalling contribute to the cytotoxicity and thus elements of both the Bravo model and 

the Zhang model are combined in the toxin mode of action (Figure 25). Initially the 

monomeric form of Cry1Ac binds to the cadherin-like protein (HevCaLP) resulting in the 

activation of an intracellular signaling cascades regulated by phosphatases. Proteomic 

analysis of BBMVs of susceptible and resistant larvae indicated the involvement of 
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phosphatases. In fact, resistant strains were shown to have lower alkaline phosphatase 

activity when compared to susceptible larvae of H. virescens (Jurat-Fuentes and Adang, 

2006).  

A direct interaction between Cry1Ac and actin was suggested to have a possible effect 

on the signalling (Jurat-Fuentes and Adang, 2006, McNall and Adang, 2003). The 

interaction of this cytoskeletal protein (actin) with the cytosolic domain of cadherins 

through tyrosine phosphatases, catenin and actinin was previously observed (Lilien and 

Balsamo, 2005). After binding to HevCaLP, Cry1Ac toxin monomers oligomerize then 

bind to GPI anchored proteins HvALP and APN. The Cry1Ac oligomers are driven to DRMs 

where toxin insertion occurs inducing osmotic shock as well as activation of signaling 

pathways, which may activate apoptotic responses, leading to cell death (Jurat-Fuentes 

and Adang, 2004). 

 

 

 

 

 

 

 

 

 

Figure 25: Proposed model describing the mode of action of Cry1Ac toxin in H. virescens. 
Following proteolytic processing of the toxin in the insect midgut, activated Cry1Ac binds to HevCaLP. Oligomerization 
then occurs followed by binding to GPI-anchored HvALP receptor which leads to membrane insertion and pore 
formation. Binding to cadherin may also induce activation of signalling pathway after the interaction between 
cadherin intracellular domain and actin, which is regulated by phosphatases (P) (Jurat-Fuentes and Adang, 2006). 
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1.6 Cry toxin receptors 
 

Cry toxin binding to insect midgut epithelial receptors has been demonstrated to be a 

key determinant of specificity. Positive correlation between binding to the brush border 

membrane and toxicity has been confirmed in many cases. In fact, early studies showed 

that Cry1Ba toxin, lethal to Pieris brassicae, bound specifically to the insect's brush 

border membrane vesicles (BBMV) but not to BBMV prepared from rat intestine 

(Hofmann et al., 1988a). Moreover, it was shown that Cry1Ab and Cry1Ba which are 

toxic to P. brassicae bound specifically to the insect’s BBMV, yet only Cry1Ab bound to 

BBMV prepared from Manduca sexta since this toxin but not Cry1Ba is toxic to the insect 

(Hofmann et al., 1988b). However later studies presented data where no correlation 

between binding and toxicity was observed. Cry1Ac was shown to have a relatively 

stronger binding affinity to Lymantria dispar’s BBMV compared with Cry1Ab which is 

more toxic to the insect (Wolfersberger, 1990). Moreover, specific binding of Cry1Ac 

was found to be similar between BBMVs prepared from resistant and susceptible larvae 

of Pectinophora gossypiella (Ocelotl et al., 2015). It was then concluded that the binding 

is necessary but not sufficient for Cry toxicity (Fiuza et al., 2013). On the other hand 

previous work carried out on binding kinetics demonstrated that irreversible binding, 

identified as the toxin-membrane association step, correlates better with toxicity than 

the reversible binding which is defined as toxin-receptor interaction step (Liang et al., 

1995).  

Interactions between Bt Cry toxins and putative/functional receptors have been 

extensively investigated. The best characterized receptors are aminopeptidase N (APN) 

and cadherin-like receptors identified in lepidopteran insects. Glycolipids were 

identified as Cry toxin receptors in nematodes in addition to other putative receptors 

including alkaline phosphatases (ALPs) reviewed by Pigott and Ellar (Pigott and Ellar, 

2007). In case of Cry1A toxins, at least four different binding-proteins: a cadherin-like 

protein (CADR) (Gahan et al., 2001), a GPI-anchored aminopeptidase-N (APN) (Wei et 

al., 2016), a GPI-anchored alkaline phosphatase (ALP) (McNall and Adang, 2003) and a 

270 kDa glycoconjugate (Valaitis et al., 2001) have been described in different 
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lepidopteran insects (figure 26). Recent reports on resistance to Bt Cry toxins support 

the role of ABC transporters as putative Cry toxins receptors (Heckel, 2012). 

   

 

 

 

 

 

 

 
Figure 26: Representation of different receptor molecules of Cry1A toxins. 
Cadherin, aminopeptidase-N, alkaline phosphatase, and 270 kDa glyco-conjugate receptors are designated as CADR, 
APN, ALP and GCR respectively (Bravo et al., 2007). 
 
 
 
 
 

• The Aminopeptidases N (APNs) 

 

The Aminopeptidases N (APNs) are a class of metalloproteases that cleave amino acids 

at the N terminus of polypeptides in microorganisms, plants and animals (Sanz, 2007). 

In the Lepidopteran larval midgut it plays a role in the digest of proteins derived from 

the insect's diet  (Wang et al., 2005). The proteins are mainly bound to microvillar 

membranes of midgut cells via a C-terminal glycosylphosphatidylinositol (GPI) anchor. 

Glycosylation was shown to be important for some Cry toxin-APN interactions. 

Carbohydrate structures including GalNAc are believed to be particularly important for 

some interactions between Cry1Ac and APN (Knight et al., 1994) and RNAi knock down 

of APN1 was shown to protect midgut cells from the toxic effect of Cry1Ac (Wei et al., 

2016). Previous studies have reported binding of different Cry toxins to APNs of various 

insects. For example Cry1Aa, Cry1Ab, Cry1Ac were shown to bind to M. sexta and H. 

virescens APNs (Masson et al., 1995a, Luo et al., 1997), binding of Cry11Ba to A. gambiae 

APN was also observed (Zhang et al., 2008), Cry1Ba was shown to bind to E. postivittana 
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APN  (Simpson and Newcomb, 2000) while binding of Cry1Ca  to S. litura (Rajagopal et 

al., 2002b) and Cry1Fa binding to H. virescens APNs were reported (Banks et al., 2001).  

 

• Cadherins 

 

Cadherins belong to a family of calcium-dependent transmembrane glycoproteins 

playing a variety of functions including cell adhesion, migration, and morphogenesis 

(Angst et al., 2001). Midgut cadherins have been identified as receptors or putative 

receptors of Bacillus thuringiensis (Bt) Cry toxins in several orders of insects, including 

at least 7 Lepidoptera, 3 Coleoptera and 2 Diptera (Wu, 2014). The expression of 

cadherin has been shown to vary with larval developmental stage and its role was 

proposed to be to maintain midgut epithelial organization. Cadherins have been shown 

to be important receptors for Cry1A toxins, especially in some lepidopteran species 

where mutations in the cadherin gene have been linked to resistance to Cry1A toxins 

(Gahan et al., 2001). Different Cry toxins have been reported to bind to cadherins in 

various insects. For example Cry1Aa, Cry1Ab and Cry1Ac were shown to bind to M. sexta 

Bt-R1 cadherin (Hua et al., 2004), Cry11Aa bound to A. aegypti cadherin (Chen et al., 

2009), binding of Cry3Ba to T. castaneum cadherin was reported (Contreras et al., 2013) 

and Cry4Ba was shown to bind to A. gambiae cadherin (Hua et al., 2008). 

 

• Alkaline phosphatases (ALPs) 

 

Alkaline phosphatases (ALPs) are GPI-anchored membrane glycoproteins and undergo 

glycosylation similarly to APNs. Different Cry toxins have been reported to bind to ALPs 

of various insects. For example Cry1Ac was shown to bind to M. sexta ALP (McNall and 

Adang, 2003), binding of Cry11Aa and Cry4Ba to A. aegypti ALPs was observed 

(Fernandez et al., 2006, Buzdin et al., 2002) and Cry11Ba was shown to bind to A. 

gambiae ALP (Hua et al., 2009).  

 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/midgut
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/bacillus-thuringiensis
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• ATP-binding cassette (ABC) 

 

The ABC transporters belong to one of the largest superfamilies of membrane proteins. 

Their common architecture comprises two nucleotide-binding domains (NBDs) and two 

transmembrane domains (TMDs), often with additional domains. The intracellular 

domain binds and hydrolyses ATP to transport (import/export) molecules across lipid 

bilayer membrane. There are eight major families, denoted by the letters A–H, which 

are classified based on sequence similarity in the conserved ATP binding domains. 

Members of ABCB and ABCC families have been implicated in cancer chemotherapy 

resistance (Theodoulou and Kerr, 2015). The interaction of Cry toxins with particularly 

the subfamilies C2 and A of the members of the ATP binding cassette (ABC) protein 

family has been previously described (Jurat-Fuentes and Crickmore, 2017).  In fact, 

specific interaction between Cry1A toxin and ABCC2 was observed (Bretschneider et al., 

2016). Alterations in these ABC proteins are linked with resistance against Cry1 (Heckel, 

2012) and Cry2Ab toxins (Tay et al., 2015). For example ABCC2 transporter was linked 

to B. mori resistance to Cry1A toxins (Atsumi et al., 2012) . The exact role of these 

proteins is still unclear however it has been proposed that they may act as receptors. 

 

Besides these membrane proteins, other components that were shown to be able to 

interact with Cry toxins such as glycolipids (Griffitts et al., 2005) or intracellular proteins, 

such as V-ATPase subunit A and actin have been identified (McNall and Adang, 2003, 

Krishnamoorthy et al., 2007).  

The identification of Glycolipids as a class of putative Cry toxin receptor was 

demonstrated using the Caenorhabditis elegans strains resistant to Cry5Ba (Griffitts et 

al., 2005). Four genes named as bre 2, bre 3, bre 4 and bre 5 that could restore toxin 

susceptibility were identified. These resistance genes appeared to encode 

glycosyltransferases which synthesize a component that is important for the interaction 

between toxin and intestinal cells (Griffitts et al., 2003, Griffitts et al., 2001). 

Two additional types of receptors were also identified: a 270-kDa anionic brush border 

membrane glycoconjugate isolated from L. dispar called BTR-270 and a 252-kDa protein 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/binding-domain
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/atp-binding-cassette-transporter
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named as P252 which was isolated from B. mori brush border membranes. The first was 

shown to bind strongly to Cry1Aa, Cry1Ab, and Cry1Ba but displays a weaker affinity to 

Cry1Ac (Valaitis et al., 2001) while the second  bound to Cry1Aa, Cry1Ab, and Cry1Ac 

under non denaturing conditions (Hossain et al., 2004). 

In the case of parasporins, Beclin-1 a tumor suppressor protein was identified as a PS-1 

receptor in HeLa cells (Katayama, 2011). In addition, glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) was identified as a binding protein on the plasma membrane 

of CEM-SS cells for parasporin-like protein Bt18 (Krishnan et al., 2010).  

The following table presents different Cry toxins and their correspondent 

putative/functional receptors. 

 

Table 1: Different Cry toxins and their correspondent putative/functional receptors (see text for references) 

 

 Reported functional receptor where its presence was correlated with toxicity. 

 Reported putative receptor where binding was observed. 

 

1.7 Resistance mechanisms to Cry toxins 
 

Insect pests are one of the major problems in agriculture. This problem has become 

significantly worrying since a dramatic increase in the number of resistant insects to 

insecticides has been observed. In fact, over 500 species evolved resistance to different 
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kinds of insecticides (Denholm et al., 2002). Since 1996 transgenic crops producing Bt 

toxins, known as Bt crops, have been grown worldwide. The use of this transgenic 

technology has been proven to reduce crop damage efficiently and helped to decrease 

the use of chemical insecticides (Kleter et al., 2007). However, the long term future of 

Bt crops applications is threatened by the development of resistance in insects.  In order 

to counter this phenomenon, understanding how Bt toxins work, and how insects 

become resistant, are key factors for resistance management, therefore the resistance 

mechanisms have been studied.  In theory, alteration in any step in the mechanism of 

action of Cry toxins could result in resistance. In fact potential resistance mechanisms 

were proposed for Cry1A toxins based on their mode of action (figure 27). 
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Figure 27: Potential mechanisms of resistance of Cry1A toxins.  
Alterations in any step of the mechanism of action of Cry1A toxins was considered as a potential factor that could 
induce resistance (Peterson et al., 2017). 
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However, the most frequently proposed mechanisms of Cry toxin-resistance involve 

defects in receptor binding (Ferré and Van Rie, 2002), altered activation of Cry toxins by 

midgut proteases (Sayyed et al., 2001) or elevated immune response (figure 28) (Ma et 

al., 2005a). 

 

 

Figure 28: Schematic representation of the different mechanisms of resistance to Cry toxins described in 
lepidopteran insects (Pardo-Lopez et al., 2013). 

 

The most common type of resistance was reported to involve changes in the binding of 

toxin to a putative midgut receptor (Heckel et al., 2007). In some lepidopteran pests 

such as Plutella xylostella and Heliothis virescens these characteristics were regularly 

observed. Resistance of Plodia interpunctella to Cry1Ab was also correlated with 

reduced binding of the toxin to larval brush border membrane vesicles (Van Rie et al., 

1990). Moreover, reduced expression or mutation of Cry toxin receptors has been 

considered as a potential biomarker for resistance to diverse Cry proteins. Trichoplusia 

ni evolved resistance to Cry1Ac by differential alteration of two midgut aminopeptidases 

N (APN1 and APN6) (Tiewsiri and Wang, 2011). Additionally, alteration of the cadherin 

gene was correlated with resistance to Bt crops. For example, resistance of Manduca 
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sexta to Cry1Ab, Heliothis virescens to Cry1Ac and Spodoptera exigua to Cry1Ac and 

Cry2Aa were all associated with alterations in a cadherin gene (Soberon et al., 2007, 

Tabashnik, 2001, Qiu et al., 2015). In addition, mutations in the gene encoding ATP-

binding cassette transporter gene (ABCC2) was associated with resistance. For example, 

a single amino acid mutation in ABCC2 gene rendered Bombyx mori resistant to Cry1Ab 

(Atsumi et al., 2012). In H. armigera and H. punctigera, resistance to Cry2Ab was also 

conferred by mutations in ABC transporter gene (Coates and Siegfried, 2015, Tay et al., 

2015). 

Proteolytic activation of Cry toxins has been shown to be a crucial step in their 

mechanism of action. Impairment of this process was correlated with resistance. 

Resistance of H. armigera to Cry1Ac was associated with a mutation in the promoter 

region of one trypsin gene HaTryR. The insect adapted to Cry1Ac by decreasing the 

expression of this gene which, when  knocked down in susceptible larvae fed on diets 

containing Cry1Ac, resulted in an increase in their survival (Liu et al., 2014). In Plodia 

interpunctella, resistance to Cry1Ac was shown to be linked to defects in midgut 

protease activities manifested by lack of a major BApNA-hydrolyzing enzyme (T1) that 

affected the activation of Cry1A protoxins (Oppert et al., 1997). 

Since previous findings have shown the importance of carbohydrates in Bt toxicity, 

another resistance mechanism was proposed. This mechanism, manifested by the loss 

of a carbohydrate modifying enzyme (e.g. Bre 5), was considered dangerous and more 

serious than a mutation in a single receptor. In fact the loss of Bre 5 in Caenorhabditis 

elegans intestine resulted in resistance to Cry5B. Bre-5 mutants exhibited resistance to 

Cry14A which is lethal to nematodes and insects. Therefore the loss of such a particular 

modifier could affect the binding of various Bt toxins to several receptors which would 

result in a high level of resistance to a single toxin as well as cross-resistance to other Bt 

toxins (Griffitts et al., 2001).  

Esterase sequestration and elevated immune response are other causes for developing 

resistance to Bt toxins. An H. amigera Cry1Ac-resistant strain showed increased 

production of gut esterase which bound and sequestered Cry1Ac toxin preventing the 

progress of the intoxication process (Gunning et al., 2005, Ma et al., 2005a). In addition, 

feeding a sub-lethal dose of Cry1Ac toxin to Ephestia kuehniella led to tolerance to 
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Cry1Ac toxin that correlated with an elevated immune response associated with the 

production of pro-coagulants such as hexamerin for H. armigera or lipophorin for E. 

kuehniella. (Rahman et al., 2004, Rahman et al., 2007, Ma et al., 2005b). 

Transcriptomic analysis of resistant and susceptible larvae has served well in the 

characterisation of the resistance mechanism and this is why selection of resistant 

insects was considered as a tool to overcome this problem. For example, a resistant 

population of Asian corn borer to Cry1F was established through selection experiments 

under laboratory conditions. It was shown that the resistance trait to this toxin has 

autosomal inheritance which was due to more than one locus (Wang et al., 2016). In 

addition, a commercial formulation of Cry1Ac protoxin was incorporated in Helicoverpa 

armigera’s diet in order to establish a resistant strain that served well in  finding that 

resistance to Cry1Ac  was linked with a mutation in a gene encoding a transporter 

protein ABCC2 (Xiao et al., 2016). 

It is worthwhile mentioning that the cross resistance to other Bt Cry toxin(s) has been 

observed in several insects resistant to a single Cry toxin. For example, a cross resistance 

study performed on diamondback moth (Plutella xylostella) showed that a Cry1C-

resistant strain, obtained after selection with the toxin in the laboratory, had strong 

cross-resistance to Cry1Ab, Cry1Ac, and Cry1F but low to moderate cross-resistance to 

Cry1Aa and Cry9Ca (Liu et al., 2001). When selected with Cry1Ab, the insects showed 

marked (40-fold) cross-resistance to Cry1Ac, while selection with Cry1Ac resulted in little 

cross-resistance to Cry1Ab, Cry1Ca and Cry1Da (3-, 2- and 3-fold respectively compared 

with unselected population) (Sayyed Ali and Wright Denis, 2001).   

Assessment of cross-resistance risks associated with combination of Bt proteins would 

contribute in improving control strategies, based on Bt crop carrying pyramided Cry 

proteins, for pests in the field.     

 

1.8 Cellular response to PFT toxins 
 

In general, the mode of action of PFTs consists of receptor recognition, activation by 

proteases, and formation of oligomeric-structures that, following insertion into the 
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membrane, form ionic pores. Additionally, as in the case of anthrax or diphtheria toxins 

produced by Bacillus anthracis and Corynebacterium diphtheria respectively, PFTs may 

have other effects during their interaction with their target cells such as intra-cellular 

signaling or transport of other enzymatic components (Parker and Feil, 2005). 

Understanding the mechanism of action of PFTs as well as the host responses to toxin 

action is useful to counter existing/emerging pathogens and also to improve the action 

of toxins that may have biotechnological applications (Cancino-Rodezno et al., 2010b). 

Following exposure to various biotic and abiotic stresses, eukaryotic cells have 

developed defense responses. Two general defense responses: the innate and the 

adaptive immune responses have been previously outlined. The innate immune system 

allows cells to have a quick and broad spectrum of responses. Macrophages and 

dendritic cells are innate immune cells that are able to eliminate pathogenic 

microorganisms via phagocytosis or expression of specific proteins such as cytokines and 

chemokines that contribute to pathogen elimination (Akira et al., 2006). When the 

innate host defense is overwhelmed, the induction of an adaptive immune response is 

required. The adaptive system which consists of B- and T-cells is mediated by antigen 

receptors located on lymphocytes and is able to develop a more comprehensive 

response that is memorized  (Cancino-Rodezno et al., 2010b). 

In response to PFTs, the host may trigger sophisticated mechanisms including adaptive 

or innate immunity responses as well as cellular non-immune defenses (Aroian and van 

der Goot, 2007). PFTs perturb the plasma membrane integrity affecting cytoplasmic ion 

composition, such as Ca2+ or K+ ions and also induce changes in osmotic pressure. Toxin-

induced membrane permeabilization may activate pathways involved in either cell 

survival or cell death (Los et al., 2013).  

Apoptosis is a programmed cell death process that is regulated and controlled. The 

apoptosis pathway involves a metabolic cascade started by initiator caspases (caspase-

2, -8, -9 and -10) followed by activation of the effector caspases (caspase-3, -6 and -7) 

that will cleave a set of target proteins in order to produce the morphological (nuclear 

and cytoplasmic condensation and cellular fragmentation) and biochemical features 

associated with apoptosis (Fink and Cookson, 2005).  On the other hand, cell death by 
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oncosis is characterized by cellular and organelle swelling, blebbing and increase in 

membrane permeability. Oncotic cell death may result from toxic agents that cause 

alterations in ATP generation, in cellular energy consumption or in intracellular Ca2+ 

levels (Trump and Berezesky, 1994).  

Depending on the cell type and the dose of PFT used, cell death may be induced by either 

oncosis or apoptosis. In fact, when used at low concentrations some PFTs induce 

apoptosis, yet when high doses are used, cells die quickly by oncosis or necrosis. This is 

the case of Clostridium prefringens enterotoxin (CPE) which, when used at low 

concentrations, induces apoptotic cell death in mammalian Caco2 cells manifested by 

DNA fragmentation, chromatin condensation, mitochondrial membrane depolarization 

and activation of caspases-3 and -7. Yet, a high dose of CPE induces cell death by oncosis 

manifested by random DNA shearing (McClane and Chakrabarti, 2004). In addition, T-

lymphoma cells undergo apoptosis when treated with a sub-nM concentrations of 

aerolysin  however when high concentrations of the toxin are used, the cells die quickly 

and the apoptotic pathway was not triggered (Nelson et al., 1999).  

Pyroptosis is another form of cell death which is dependent on caspase-1 and involves 

the secretion of the pro-inflammatory-cytokines such as IL-1β and IL-18 (Fernandes-

Alnemri et al., 2007). It was shown that treatment of macrophages with pneumolysin 

(PLY) induces the production of IL-1α, IL-1β and IL-18 following the formation of 

inflammatosome complexes. This response was not produced following treatment with 

S. pneumoniae mutant that lacks the ply gene suggesting that PLY plays an important 

role in promoting cell death though pyroptosis (Shoma et al., 2008). 

In regards to defense mechanisms evolved by eukaryotic cells to PFTs, the following are 

some examples. Previous studies have shown that the two mitogen-activated protein 

kinase (MAPK) pathways: p38 and c-Jun N-terminal kinase (JNK)-like were up-regulated 

in Caenorhabditis elegans in response to Cry5B toxin. Both of these MAPK pathways 

provided a significant cellular defense against the toxin and this defense was shown to 

be conserved in mammalian cells attacked by PFTs (Huffman et al., 2004). It was 

demonstrated that epithelial cells start an early immune response, involving activation 

of MAPK p38 pathway following exposure to low concentrations of several PFTs that are 
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able to initiate a proinflammatory response involved in defense to PFT and cell survival 

(Ratner et al., 2006a). 

Phosphorylation of MAPK p38 protein was also shown to be correlated with the pore 

formation activity of these toxins. In fact, previous studies have shown that toxins where 

mutations are made in the regions essential for pore formation activity, were unable to 

induce the p38-response. In addition, the protective role of MAPK p38 pathway was 

previously observed in human epithelial cells (HaCaT). Following treatment of HaCaT 

cells with a low concentration (<10 ng/ml) of α-toxin, phosphorylation of MAPK p38 was 

activated. The pore formation activity of the toxin was correlated with activation of p38 

since a pore formation mutant was unable to induce this activation. Additionally, 

inhibition of MAPK p38 with the specific SB203580- inhibitor was shown to inhibit the 

recovery process of cells (Husmann et al., 2006). 

 

Moreover, the endoplasmic reticulum stress response to unfolded proteins (UPR) was 

shown to be induced in response to cellular stress stimulated by PFTs. This pathway 

increases phospholipid biogenesis to defend against the toxin and was previously shown 

to be implicated in the reestablishment of cellular homeostasis (Bravo et al., 2013). 

Activation of MAPK p38 in C. elegans treated with Cry5 or in HeLa cells treated with 

aerolysin was shown to induce the endoplasmic reticulum stress response to unfolded 

proteins. Loss of this pathway was demonstrated to cause hypersensitivity in C. elegans 

and HeLa cells to Cry5B and aerolysin respectively. It was then proposed that cells have 

adapted the UPR pathway to promote cellular defense to PFTs (Bischof et al., 2008). 

Ion movements have also been shown to contribute to cell survival. Potassium efflux, a 

consequence of the pore formation activity of PFT, was shown to induce caspase-1 

which activates sterol regulatory element-binding proteins (SREBPs) that are involved in 

membrane lipid biogenesis promoting cellular survival (Gurcel et al., 2006). Pore 

formation induced by PFTs also results in Ca2+ influx. GAS SLO-induced calcium influx 

was shown to trigger the exocytosis of lysosomes and extracellular release of the 

lysosomal enzyme acid sphingomyelinase. The latter was found to subsequently induce 

endocytosis, which contributed to membrane repair (Idone et al., 2008). 
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Other cell-survival responses to PFTs have been outlined. In fact, epithelial cells were 

shown to respond to PFT treatment by the activation of central regulators involved in 

membrane biogenesis (Gurcel et al., 2006). Endocytic mechanisms were also implicated 

in cell repair. In the case of PFTs that induce Ca2+ influx such as SLO, the lesion could be 

repaired in kidney and HeLa cells by a process that involves endocytosis to remove the 

SLO containing pores from the plasma membrane (Idone et al., 2008). Another survival 

mechanism, autophagy, was mentioned since it may restrict the infection by 

sequestering the pathogens and further degradation in lysosomes (Deretic, 2006). In 

fact, a PFT called Vibrio cholerae cytolysin (VCC) was shown to modulate autophagy in 

Caco2 cells and inhibition of this cellular defense pathway resulted in decreased survival 

of Caco2 cells upon treatment with the toxin (Gabriel Gutierrez et al., 2007). Figure 29 

summarizes the mentioned cell responses to PFTs which lead to either cell death or 

recovery.  

 

 

Figure 29: Examples of different cell responses/pathways leading to cell death or survival following PFT attack.  
Schematic representation of healthy and dead cells were taken from Fink and Cookson (Fink and Cookson, 2005). 
 

 

Additionally, a new family of proteins named REPAT (response to pathogen) was 

identified following intoxication of Spodoptera exigua with either Bt Cry1Ca toxin or 

baculovirus. The 18 kDa glycosylated proteins were shown to be specifically expressed 
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in the insect gut and were suggested to play a role in a defensive response to the 

infection of S. exigua. This was revealed by a delay in the progression of the infection in 

larvae intoxicated with a recombinant baculovirus expressing the REPAT1 protein 

(Herrero et al., 2007). Moreover, these proteins have been shown to be constitutively 

up-regulated in a Bt-resistant S. exigua (Hernández-Martínez et al., 2010). 

Arylphorin from the hexamerins gene family have also been associated with midgut 

response to Bt intoxication. Due to its mitogen activity as well as its role in cell 

proliferation and regeneration, these genes were suggested to be involved in the 

immune response (Hakim et al., 2009). Arylphorin was shown to be upregulated in S. 

exigua treated with Bt toxins as well as in the Bt-resistant strain (Hernández-Martínez 

et al., 2010). It has been proposed that REPAT genes, as transcriptional regulators, 

(Hernández-Rodríguez et al., 2008) may participate in arylphorin expression (Castagnola 

and Jurat-Fuentes, 2016). 

Another aspect in the defensive response produced by insects intoxicated with Bt Cry 

toxins was reported: the regeneration of the epithelium by replacing diseased with 

newly differentiated midgut cells. An enhanced gut regenerative response that is 

proposed to be controlled by increased production of mitogenic factors, was suggested 

to play an important role in the resistance of H. virescens to several Cry toxins 

(Castagnola and Jurat-Fuentes, 2016). 

 

1.8.1 Use of cell lines to study the mode of action of Bt:  

                                    examples of cell responses to Cry toxins 
 

 

Cell lines have been extensively used for the study of the mode of action of different 

pore forming toxins produced by different bacterial species. In case of Bt toxins, in order 

to understand the mechanism of action of 3-domain Cry toxins, experiments carried out 

with brush border membranes (BBM) isolated from midgut of various insects have been 

very useful (Pardo-Lopez et al., 2013). Several other studies performed in established 

insect cells as well as mammalian cell lines have helped to understand the mechanism 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/cell-culture
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/pore-forming-toxin
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/brush-border
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of action of different Bt toxins. The fact that these cells are simple, have a low 

cost/benefit ratio, reproducible and could be used for high throughput screening, they 

have proven to be reliable models (Smagghe, 2007). 

Functional studies have been performed on some insect cell lines that are naturally 

susceptible to certain 3d-Cry toxins (table 2). 

 

 

Table2: Different cell lines used to study the mode of action of Bt Cry toxins. 

 

 

Cell line 

 

Origin 

 

Susceptibility 

 

References 

 

 

Sf21 

 

primary explants of 

Spodoptera 

frugiperda pupal 

tissue 

 

 

Cry1Ab, Cry1C 

 

(Vaughn et al., 

1977, Johnson, 

1994, Teixeira 

Correa et al., 2012) 

 

Sf9 

 

derived from sf21 

cells 

 

Cry1C 

(Summers and 

Smith, 1987, Kwa 

et al., 1998) 

 

TnH5 

Ovarian cells of 

Trichoplusia ni 

 

Cry1Ac 

(Wickham et al., 

1992, Liu et al., 

2004) 

 

CF1 

Choristoneura 

fumiferana 

neonate larvae 

 

Cry1Ab, Cry1Ac and 

Cry1C 

(Gringorten et al., 

1999, Thomas and 

Ellar, 1983a) 

 

C6/36 

Aedes albopictus 

larvae 

 

Cry11 and Cry4Aa 

(Igarashi, 1978, 

Teixeira Correa et 

al., 2012) 

 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/high-throughput-screening
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/explant-culture
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/fall-armyworm
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/fall-armyworm
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/aedes-albopictus
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Amongst the cell lines mentioned above Sf9, Sf21, TnH5 and C6/36 as well as certain 

mammalian cell lines have been used as recipients for transformation with different Cry 

toxin-binding proteins to study their role as receptors in the mode of action of Cry toxins. 

Mammalian cell lines were also used to study the anticancer activity of parasporins 

(Soberón et al., 2018). 

Correlations between findings on the interaction of insect cell lines and Cry toxins and 

that of insects and Cry toxins have been observed. For example, Cry1C which was toxic 

towards sf9 cells (EC50 of 0.2 μg/ml) was shown to bind to a protein of 40kDa (Kwa et 

al., 1998, Sakai et al., 2007). The interaction between these cells and the toxin proved 

the importance of lipid rafts for Cry1C toxicity (Avisar et al., 2005), this is consistent with 

previous findings demonstrating binding of several 3-domain Cry toxins to receptors 

such as ALP and APN which are localized in lipid rafts of insects (Zhuang et al., 2002). In 

addition, previous study showed that the cytotoxic effects of different Cry1Ab mutants 

was similar in Manduca sexta and CF1 cells (Portugal et al., 2014). 

Morphological changes were observed upon treatment of susceptible cell lines to Cry 

toxins. For instance, upon treatment with Cry1Ab (0.6 μg/ml), transformed  COS-7 and 

HEK-293 cells with the cadherin protein from M. sexta (MsCAD) presented dramatic 

morphological changes followed by death (Dorsch et al., 2002). In addition, at a 

concentration of 187 nM, Cry4Ba induced membrane blebbing, cell swelling and lysis in 

the TnH5 cells transfected with cadherin gene from Anopheles gambiae (AgCAD) 

(Ibrahim et al., 2013). Sf21 transformed with APN1 from H. armigera (HaAPN) became 

susceptible to Cry1Ac showing aberrant morphology, swelling and lysis (Sivakumar et 

al., 2007). In the case of cancer cell lines, HepG2 cells showed morphological alterations 

including cell blebbing, alterations in the cytoskeleton and mitochondrial and 

endoplasmic reticulum fragmentation in response to PS-2 (0.1 μg/ml) (Kitada et al., 

2006). Intoxication of MOLT-4 cells with PS-4 (2 μg/ml) toxin resulted in blebbing, 

nuclear shrinkage and formation of ballooned shaped cells (Okumura et al., 2011). 

The pore forming activity of certain Cry toxins in several cell lines was observed through 

the study of ion movements. Cry1C was shown to induce efflux/influx of Na+, H+ and K+ 

and membrane depolarization in Sf9 cells (Guihard et al., 2000, Vachon et al., 1995) 

suggesting that Cry toxins open non-specific pores in the target membranes, 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/hek-293-cells
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/bleb-cell-biology
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cytoskeleton
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/mitochondrion
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/efflux-microbiology
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/depolarization
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alternatively this could also be explained by the fact that Cry toxins affect existing 

channels in the cells (Soberón et al., 2018). Moreover, Cry1Ac and Cry1Ab toxins 

increased CF1 membrane permeability to Ca2+ and K+ (Potvin et al., 1998, Portugal et al., 

2017). These findings suggest that different toxins could form similar pores in CF1 cells 

(Soberón et al., 2018). The swelling induced in transfected sf9 cells with cadherin from 

B. mori following Cry1Aa intoxication was correlated with disturbances in the 

osmoregulation of the cells manifested by opening of ion currents. On the other hand 

cells transfected with a BmCAD that has a mutation in the CR9-region did not bind 

Cry1Aa and did not show ion channel responses supporting the role of BmCAD and its 

CR9 region in the pore formation activity of Cry1Aa toxin (Yasunori et al., 1999). In 

addition, studying the interaction between PS-3 and HepG2 cells proposed that this 

toxin acts as pore forming toxin resulting in ATP depletion, cell swelling and membrane 

damage (Krishnan et al., 2017). The initial response of MOLT-4 to PS-2 is a fast 

depolarization of the membrane. Additionally, the efflux of cytoplasmic lactate 

dehydrogenase (LDH) and the influx of propidium iodide (PI) have supported the pore 

formation activity of the toxin (Kitada et al., 2006). PS-4 was proposed to form pores in 

the plasma membrane of susceptible cells since it induces the leakage of lactate 

dehydrogenase and influx of extracellular FITC-dextrans (Okumura et al., 2011). 

In relation to the intracellular responses, It was also reported that depending on the 

time of the exposure to the toxin from Bt AA1-9 strain, apoptosis or necrosis are induced 

in midgut cells isolated from H. virescens (Loeb et al., 2000). Previous studies have 

shown that following treatment with Cry1Ab and Cry1Ac, CF1 cells developed a defense 

response involving phosphorylation of MAPK p38 (Portugal et al., 2017). On the other 

hand studies performed on mosquitoes have shown that a programmed cell death 

associated with apoptosis was induced in the gastric caeca cells as well as in the midgut 

cells from Culex pipiens larvae upon intoxication with Cry toxins produced by Bt subsp. 

israelensis (Smouse and Nishiura, 1997).  Moreover, it was shown that upon treatment 

of CF1 with Cry1Ab and Cry1Ac, the intracellular signal transduction cascade of Protein 

kinase A/Adenylate cyclase (PKA/AC) was not activated. Yet, this pathway was proposed 

to trigger cell death in a TnH5 cell line transfected with CAD receptor from M. sexta 

(MsCAD) (Zhang et al., 2006). Zhang et al showed that binding of Cry1Ab to MsCAD 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/morus-plant
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/ion-current
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/transfection
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/ion-channel
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/pore-forming-toxin
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/adenosine-triphosphate
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/cell-damage
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/cell-damage
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/depolarization
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/efflux-microbiology
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/lactate-dehydrogenase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/lactate-dehydrogenase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/defense-response
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/defense-response
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/phosphorylation
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/mitogen-activated-protein-kinase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/signal-transduction
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/transfection
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stimulates a G-protein that activates adenylate cyclase activity resulting in increased 

levels of intracellular cAMP that in turn activates a PKA. Activation of PKA induces 

membrane blebbing, ghost nuclei, cell swelling and lysis (Zhang et al., 2006). In contrast 

to the Zhang et al findings in 2006, Cry1Ab and Cry1Ac toxins were shown to be unable 

to activate the intracellular signal transduction cascade of Protein kinase A/Adenylate 

cyclase (PKA/AC) in CF1 cells and that cell death was triggered through an apoptotic 

pathway. Inhibition of apoptosis resulted in lower mortality of these cells when 

intoxicated with the EC50 concentration of Cry1A toxins (Portugal et al., 2017). In the 

case of anticancer Cry toxins, the proposed mechanism of action of PS-1 includes 

apoptosis. Inhibitors of apoptosis was shown to block the cytotoxic activity of PS-1 

against HeLa cells (Katayama et al., 2007). In addition, it was also reported that the death 

response induced by PS-2 toxin involves activation of apoptosis in prostate cancer cells 

PC-3 (Brasseur et al., 2015a). Therefore apoptosis can be activated in both conditions 

(death and defense responses). 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/g-protein
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/adenylate-cyclase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/signal-transduction
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/apoptosis
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/inhibitor-of-apoptosis
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/pc3
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2 Aims and objectives 
 

This research study aims to better understand the mechanism of action of Cry41Aa. 

Different aspects in the mode of action of the protein are going to be investigated:  

- The activation mechanism of the toxin is going to be studied through creation of 

various mutations at the N-terminal or C-terminal region of the protein as well 

as the use of N-terminal sequencing. 

 

- The effect of differential proteolysis of Cry41Aa on toxicity is going to be assessed 

in both HepG2 and HL-60 cell lines.  

 

- A resistance to the toxin is going to be evolved in susceptible HepG2; 

morphological, physiological and genetic characteristics of the established 

resistant cell line are going to be compared with the susceptible line. An 

understanding of which genes are involved in resistance may help us understand 

how this toxin targets human cancer cells.  

 

- Involvement of certain intracellular signalling pathways are going to be 

investigated in order to understand cell responses to the toxin.  
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3 Materials and methods 
 

3.1 Materials 
 

• Bacterial strains 

 

E. coli DH5α: was used for routine cloning applications. 

E. coli GM2163: this strain is deficient in both dam and dcm genes. It was used to obtain 

unmethylated DNA and therefore to facilitate the transformation of B. thuringiensis. 

Bt 4D7: a crystal minus derivative of Bacillus thuringiensis subspecies kurstaki. It was 

obtained from Bacillus Genetic Stock Center, Department of Biochemistry, Ohio State 

University. 

 

• Plasmids 

 
 

pSVP2741Aa (10392 bp): this is an E. coli - B. thuringiensis shuttle vector with the 

promoter from the cyt1A toxin gene of B. thuringiensis subsp. israelensis upstream of 

the cloned ORF2 and ORF3 of cry41Aa operon (Krishnan et al., 2017). This plasmid 

contains both E. coli and Bt origin of replication and ampicillin and chloramphenicol 

antibiotic resistance genes. 

 

pSVP2741Aa∆R (9984 bp): same characteristics as for SVP2741Aa except that cry41Aa 

gene is missing the region coding for the ricin domain. 

 

pSVP2741Aa∆R-HA (10011 bp): same characteristics as for pSVP2741Aa∆R but with a 

C-terminal HA tag sequence introduced (Etherington et al., unpublished). 
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• Buffers/solutions and their compositions 
 

Table 3: Different buffers/solutions used 

Name Composition 

TBE (5x) 108 g of tris, 55 g of boric acid, 40 ml of 0.5 M 

EDTA, 2 l of dH2O, pH 8.0. 

RGB 18.18 g tris, 0.4 g SDS, 100 ml of dH2O, pH 8.8. 

SGB 6.06 g tris, 0.4 g SDS, 100 ml of dH2O, pH 6.8 

Protein gel sample loading buffer 

(2x) 

2 g SDS, 6 mg EDTA, 20 mg Bromophenol Blue, 

5 ml of RGB, 50 ml glycerol, 100 ml of dH2O. 

SDS running buffer (10x) 7.6g tris-HCl, 36g glycine, 2.5g SDS, 250 ml of 

dH2O 

Coomassie Blue methanol, dH2O, acetic acid (10:9:1 v/v/v), 

Brilliant Blue R-250 (0.25%, w/v) 

Destain methanol, dH2O, acetic acid (10:9:1, v/v/v). 

 

PBS (10x) 

80 g of 1.37 M NaCl, 2 g of 27 mM KCl, 14.4 g 

of 100 mM Na2HPO4, 2.4 g of 18 mM KH2PO4, 1 

l of dH2O, pH 7.4 

CAPS (10mM) 

CAPS (10mM)+ NaCl (1M) 

2.21g CAPS, 1l dH2O pH10.5 

2.21g CAPS, 1M NaCl, 1l dH2O pH10.5 

NP-40 150 mM NaCl, 1.0% NP-40 or Triton X-100, 50 

mM tris, pH 8.0. 

 

RIPA 

150 mM NaCl, 1.0% NP-40 or Triton X-100, 

0.5% sodium deoxycholate, 0.1% SDS, 50 mM 

tris, pH 8.0. 

Dry blot 39 M glycine, 48 mM tris, 0.0375% SDS, 20% 

methanol. 

Tris-HCL 20 mM Tris HCl, dH2O  pH 7.5 

 

ECL solution 

10 ml of 100 mM tris pH 8.5, 3 µl of H2O2, 25 µl 

of 14.7 mg/ml p-coumaric acid, 50 µl of 88.6 

mg/ml luminol. 
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• Reagents, enzymes and DNA/RNA kits 

 

Reagents obtained from Sigma-Aldrich: β-mercaptoethanol, Bromophenol Blue, Brilliant 

Blue R-250, ammonium persulfate, TEMED, acrylamide/bis-acrylamide 30%, SDS, tris 

base, tris-HCl, CAPS, sodium carbonate, hydrogen peroxide, DMSO, chloramphenicol, 

etoposide, 5-Fluorouracil, S-methylmethanethiosulfonate (MMTS), EGTA, p-coumaric 

acid, luminol, sodium orthovanadate, sodium arsenite, proteinase K, lysozyme, 

formaldehyde solution, RNase ZAP, ethanol absolute for molecular biology.  

Reagents obtained from Biotum: GelRed nucleic acid gel stain. 

Reagents obtained from Fluka Analytical: EGTA. 

Reagents/kits obtained from QIAGEN: Gene solution siRNA, hyperfect, RNeasy Plus Mini 

kit, QIAshredder, QIA prep Spin Mini prep kit. 

Reagents obtained from Melford: trypsin, agarose low EEO, MOPS, ampicillin 

Reagents obtained from AnalaR BDH: glucose, NaCl, NaOH, Ponceau S, NP-40, TX-100, 

EDTA, ethanol, sodium hydrogen carbonate.  

Reagents obtained from Fisher Scientific: Acetic Acid Glacial  

Chemicals/kits obtained from Thermo Fisher Scientific: glycine, methanol, 1-butanol, 

phosphate, acetic acid, trypsin (MS-grade), HRV 3C Protease, RNase inhibitor, High 

Capacity cDNA Reverse Transcription kit, Power Syber Green PCR master Mix, glycerol, 

glycine.  

Chemicals obtained from New England Biolabs: Pre-stained Protein Ladder (7-175, 11-

245 and 10-230 kDa), 1 Kb DNA ladder, DpnI, T4 DNA ligase 

Chemicals obtained from Tocris: BSA, PKi (14-22 amide, myristoylated), 8-bromo-cAMP 

Chemicals obtained from Calbiochem: Microcystin  

Chemicals obtained from Promega: HaeIII, buffer C  
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• Antibodies 
 

- Rabbit polyclonal antibodies against phosphorylated and total ERK (Cell Signaling 

Technology (9215S, 9102 respectively)).  

- Rabbit polyclonal antibodies against total p38 (Cell Signaling Technology 

(9101S)). 

- Rabbit monoclonal antibody against phosphorylated p38 (Thr180+Tyr182) 

(Thermo Fisher Scientific (MA5 15182)).  

- Rabbit monoclonal against CD59 (abcam (ab126777)). 

- Chicken polyclonal anti-HA tag HRP (abcam (ab1190)).  

- Rabbit monoclonal anti-CREB phospho S133 (abcam (ab32096)). 

- Human polyclonal anti-AQP9 (Thermo Fisher scientific) (PA5-51285). 

- Secondary HRP conjugated goat anti-rabbit antibody (abcam (ab97051)). 

 

• Cell lines 

 

- HepG2: human hepatocyte carcinoma cell line was purchased from ECACC, 

Salisbury, UK. 

- HepG2R: a Cry41Aa resistant subline of HepG2 developed in the lab. 

- HepG2 Rev: a reverted line from HepG2R.  

- HeLa: cervical carcinoma cells that were a gift from Dr George Giamas (University 

of Sussex, UK).  

- HL-60: human promyelocytic leukemia cell line that was purchased from ECACC, 

Salisbury, UK. 

 

• Culture media, reagents and plasticware 

 

DMEM, RPMI 1640, OPT-MEM, PSG, DPBS, trypsin/EDTA (0.05% trypsin and 0.53 mM 

EDTA) and Trypan Blue (0.4%) were obtained from Gibco (Life Technologies). 
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FCS, 40 μm Nylon Mesh Cell Strainer and Nalgene 2.0 mL cryogenic vials were obtained 

from Fisher Scientific.  

25, 75 and 175 cm2 flasks; 60 mm dishes; 6, 12, 24 and 96-well clear and black-walled 

clear flat bottom plates were obtained from Nunc.  

 

• Cell assay kits 

 

- CellTiter-Blue Cell Viability Assay (Promega). 

- CellTiter-Glo Luminescent Cell Viability Assay (Promega). 

 

3.2 Methods 
 

• Polymerase chain reaction (PCR) 

 

PCR reactions were performed in order to create the desired mutations. The program of 

PCR was called PFU ULTRA 10 kb and was set as follows: 

Table 4: Different settings of PCR program. 

 

Type of reaction Number of cycles Temperature(°C) Duration 

Initial 

denaturation 

1 98 2 minutes 

Denaturation 30 92 40 seconds 

Primer annealing 30 55 8 minutes 

Extension 30 68 5.3 minutes 

Final extension 1 68 5 minutes 
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For the reaction the volumes used were: 1 µl of 100 pmol/µl of each primer (obtained 

from Eurofins Genomics), 25 µl of high fidelity PFU Ultra II Hotstart 2 x master mix 

(Agilent technologies), 1 µl of template DNA and 22 µl of sterile distilled water.  

The list of templates and primers used in the mutagenesis experiments is as follows:  

 

Table 5:  List of mutants created and their correspondent primers and template used.  

Mutant 

created 

Template Forward and reverse primers  

                         (5’               3’) 

FL∆23 SVP2741Aa FP: TATCCTTTTGCGCAGGCAC 

RP: CATTGACAATCCTCCATTCCA 

∆R∆23 SVP2741Aa∆R Same as for FL∆23 

FL∆40 SVP2741Aa FP:GAGTGGATGAATATGTGTACTAGTGG 

RP:CATTGACAATCCTCCATTCC 

∆R∆40 SVP2741Aa∆R Same as for FL∆40 

FL∆60 SVP2741Aa FP: GATGTAAGGGATGCCGTTATTAC 

RP: CATTGACAATCCTCCATTCCA 

 

FLP60 

 

SVP2741Aa 

FP:TTTCAGGGTCCAGTTATTACAAGTATAAAT

ATC 

RP: AAGTACTTCTAATCCCTCCCCCAGGAC 

 

FLP40 

 

SVP2741Aa 

FP:TTTCAAGGTCCTATGAATATGTGTACTAGT

GG 

RP:AAGTACTTCAAGTAGTTCAGAACCTGGTG

C 

∆RP40 SVP2741Aa∆R Same as for FLP40 
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∆R-HAP40 SVP2741Aa∆R-HA Same as for FLP40 

 

FL-HA 

 

SVP2741Aa 

FP:TTCCAGATTATGCTTAAAGGTGTGCAACTA

TCCCTG 

RP:CATCATATGGATAAGTGGTTAAGCCAATACC

CATAC 

AK SVP2741Aa FP: AAAGATGTAAGGGATGCCGTTATTAC 

RP: GCTGTATCCCTCCCCCAG 

 

RA, TD and TA 

 

∆R-HAP40 

FP:ASGGMTGCCGTTATTACAAGTATAAATATC

G 

RP:  TACATCTGCGCTGTATCCCTCC 

 

• Agarose Gel Electrophoresis 

 
In this study 1% agarose concentration was used: 0.3 g of Agarose Low EEO was added 

to 30 ml of 1x TBE (Tris-Borate-EDTA) and heated until completely dissolved. The mixture 

was allowed to cool then 1.5 µl of a 1 in 3 dilution of Gel Red was added before pouring 

the solution onto a gel casting tray. The gel was allowed to cast, then 5 µl of purified 

product was added to 1 µl of loading buffer and a total of 6µl of each sample was loaded 

onto gel. 

1 Kb ladder (New England Biolabs) was used as a marker depending on the desired 

fragment size. The gels were run at 120 Volt in 1x TBE buffer in electrophoresis chamber 

then the bands of amplified products were visualised under ultraviolet light and in some 

instances excised from the gel for further use and analysis. 
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• DpnI digestion 

 

DpnI enzyme was used in this study to digest methylated template DNA: 1 µl of DpnI was 

added to 45 µl of PCR product and the mixture was incubated for 1 hour at 37°C prior to 

purification. 

 

• Purification of PCR Products (column purification) 
 

 
QIAquick PCR Purification Kit (QIAGEN) was used in order to separate the PCR products 

from the other components present in the mixture. 

To 1x volume of PCR product, 5x volumes of chaotropic buffer PB were added and mixed. 

The sample was then added to a spin column, placed in 2 ml collection tube, and 

centrifuged for 1 minute at 13000 rpm. The flow through was discarded and 750 µl of 

PE buffer was then added to the column and spun for 1 minute at 13000 rpm. The flow 

through was again discarded and the spin column was further centrifuged for 1 minute 

in order to remove any traces of buffer. 

The column was placed in a new 1.5 ml eppendorf tube and 30 µl of EB buffer (10 mM 

Tris-Cl, pH 8.5) was added, allowed to stand for 1 minute, then the column was 

centrifuged for 1 minute for elution of the DNA. 

 

• Gel purification using Qiaprep kit 

 

The bands representing the amplicon(s) were excised from the gel and placed into 

separate tubes. To each tube, 600 µl of QG buffer was added and placed in 55°C water 

bath for approximately 10 minutes until the gel slices were completely dissolved. The 

contents were then transferred into spin columns placed in 2 ml collection tubes. The 

samples were centrifuged for 1 minute at 13000 rpm (all centrifugation of samples were 
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carried out at 13000 rpm) and the flow through was discarded. 600 µl of QG buffer was 

then added and spun for 1 minute. The flow through was discarded, 750 µl of PE buffer 

was added to each sample and columns were centrifuged for 1 minute. The flow through 

was again discarded and columns were spun for an additional 1 minute. 

The spin columns were then placed in clean 1.5 ml microcentrifuge tubes. To elute the 

DNA, 30 µl of EB buffer was added, allowed to stand for 1 minute then spun for 1 minute 

for the recovery of the product.  

 

• DNA ligation 

 

In order to self-ligate the purified PCR products, 0.5 µl of T4 DNA ligase and 1 µl of its 

corresponding buffer were added to 8.5 µl of the DNA of interest. The mixture was 

incubated over night at room temperature then stored at -20°C for future use. 

 

• Bacterial transformation by electroporation 

 

100 ml of broth solution containing a bacterial strain (GM2163, DH5α or 4D7), scraped 

from agar plate, was incubated in the shaker for approximately 2 hours until the optical 

density (OD600) of the cells reached 0.4-0.8. 

The mixture was then transferred into a sterile centrifuge bottle which was spun at 

10000 rpm for 10 min at 4°C. The broth was discarded, 100 ml of cold water was added 

to the resultant pellet and the tube was again centrifuged for additional 10 minutes at 

10000 rpm. The supernatant was discarded and the pellet was re-suspended in 1ml of 

cold distilled water. The cells were transferred into eppendorf tube and spun for 1 

minute at 13000 rpm. The water was again discarded and 200 µl of cold water was added 

and mixed with the pellet. 50 µl of competent cells were mixed with 1-2 µl of DNA, then 

transferred into cooled electroporation cuvette which were then placed in Gene Pulser 

II machine (Bio-Rad) set to 1.8 KV, 200 Ohms, 25 µF. Following transformation, a sterile 
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Pasteur pipette was used to wash out cuvette with 500 µl of LB broth then to transfer 

the mixture into a sterile bottle that was incubated for 1 hour at 37°C before being 

plated onto LB agar plates containing the appropriate antibiotic. The plates were finally 

incubated overnight at 37°C to obtain the colonies with the desired DNA. 

 

• Bacterial growth conditions 

 

E.coli DH5α and GM2163 transformants were grown at 37°C over night on LB (Luria-

Bertani)  agar plates containing ampicillin (100 µg/ml) whereas Bt transformants were 

grown on nutrient LB agar plates supplemented with chloramphenicol (5 μg/ml). For 

harvesting of the toxin proteins, Bt transformants were grown for 3-4 days at 30°C. 

 

• Extraction of DNA from E.coli transformants using  

                            QIAprep Spin Miniprep Kit 
 

Scraped from agar plates, the bacterial cells were re-suspended in 250 µl of P1 buffer 

and thoroughly mixed in a microcentrifuge tube. 250 µl of P2 buffer was then added to 

lyse the cells and the mixture was inverted 6 times for proper mixing. Next, 350 µl of 

neutralising buffer N3 was added and the mixture was again inverted 6 times before 

centrifugation for 10 minutes at 13000 rpm. The resultant supernatant was then 

transferred to a QIAprep spin column which was centrifuged for 30 seconds at 13000 

rpm. The flow through was discarded and 500 µl of PB buffer was added to the sample 

which was then spun for additional 60 seconds. The flow through was discarded and 750 

µl of PE buffer was added. The column was spun first for 30 seconds, the flow through 

was again discarded and the column was further re-spun for 1 minute in order to remove 

any traces of buffer. The column was later placed in a clean 1.5 ml microcentrifuge tube 

and 30-50 µl of Elution Buffer was added. The sample was allowed to rest for 1 minute 

then centrifuged for 1 minute at 13000 rpm and the eluted DNA was finally collected. 
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• Extraction of DNA from Bt transformants 

 

Transformed Bt cells were scraped off a chloramphenicol supplemented plate and 

resuspended in 250 μl of buffer P1 containing 10 mg/ml lysozyme. The mixture was then 

incubated at 37°C for 1 hour in order to enhance the lysis of the cell wall. The rest of the 

protocol was carried out using the same methodology as for the extraction of DNA from 

E.coli cells (described above). 

 

• Verification of inserts 

 

Initially, restriction digestion using HaeIII enzyme was performed on the plasmids thus 

extracted to verify the integration of the correct insert. 2 µl of plasmid DNA were 

digested by adding 0.5 µl of HaeIII, 1 µl of corresponding buffer and 6.5 µl of sterile 

distilled water to make up a total volume of 10 µl. The reaction mix was incubated at 

37°C for 30 min then run on a 1% agarose gel for comparison with the predicted banding 

profile produced by NEBcutter software.  

Final confirmation was carried out using DNA sequencing carried out by Eurofins 

Genomics. 

 

• Protein harvesting 
 

 
Bt transformants were grown in LB agar plates containing chloramphenicol (5 μg/ml) for 

3 days at 30°C. Sporulation and production of crystals were monitored using a phase 

contrast microscope. The sporulated cells were scrapped off the plate and added to 30 

ml of sterile cold water. The cells were then sonicated for 4 minutes (1minute on 1 

minute off) then centrifuged at 10000 rpm for 10 minutes at 4°C. The supernatant was 

discarded, 30 ml of fresh cold water was again added and the mixture was further 

sonicated then centrifuged for 10 minutes at 10000 rpm. The pellet obtained was re-

suspended in 1 ml of distilled water. The spore/crystal mixture was later stored at -20°C 

until use. 
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• Solubilisation and activation of crystal protein 

 

Crystal proteins were solubilised in 50mM sodium carbonate at pH 10.5 in the presence 

of 5 mM Dithiothreiotol (DTT) at 37°C for 1 hour. The mixture was then spun for 1-5 

minutes at 13000 rpm. The supernatant was collected and treated with the appropriate 

protease. Following addition of trypsin (1 mg/ml final concentration) or proteinase K 

(0.01 mg/ml final concentration) the mixture was incubated at 37°C for 1 hour while for 

activation with PreScission protease (130 µg/ml), the sample was incubated at 4°C for 

16 hours. Complete mini EDTA-free protease inhibitor was finally added to the activated 

samples to stop further proteolysis. 

 

• Protein dialysis 

 

Prior to the purification process, the samples were dialysed against 1 litre of 10 mM 

CAPS (pH 10.5) using 12 kDa MWCO Dialysis Tubing Cellulose Membrane (D9777-100FT 

Sigma). After purification of the proteins of interest, the pooled fractions were dialysed 

against 1 litre of PBS (pH 7.4). In both cases, the dialysis process occurred over night at 

4°C using a magnetic stirrer. 

 

• Protein purification 

 

In all the cytotoxicity assays carried out in this study, toxins used were ÄKTA purified 

except for ∆R-HAP40.  

Successful purification was achieved with a 1 ml Resource Q column (strong anion 

exchange, GE Healthcare Life Sciences) connected to an ÄKTA Purifier-FPLC System. All 

the buffers and toxin samples utilized in this procedure were filtered using 0.22 μm 

Millex-GP filters (Millipore) prior to use. Sample was injected in 10 mM CAPS (pH 10.5) 
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and linear increase in the gradient of NaCl (0 to 1 M) was applied at a flow rate of 1 

ml/min for 25 min. 0.8 fractions were collected then analysed by SDS-PAGE. 

A gel filtration method was also used in this study using Sephacryl S-200 High Resolution 

(Amersham) resin. Around 0.5 ml of the protease treated toxin was applied to a column 

filled with 15 ml of resin which was initially washed with ethanol and equilibrated with 

PBS buffer (pH 7.4). Collected fractions (50 µl) that were eluted with around 10 ml of 

buffer, were analysed using SDS-PAGE. 

 

• Protein analysis by SDS-PAGE 

 

Based on the size(s) of the protein(s) in question, 7.5% and 12% gels were used in this 

study. Initially samples were mixed 1:1 with sample loading buffer in the presence of β- 

mercaptoetanol (5%), boiled for 3-10 min then spun for 30 s. The supernatant of each 

sample was loaded on to a gel which is composed of two parts (stacking and resolving). 

Electrophoresis was carried out at 200 V for 35 min in MiniPROTEAN® II Electrophoresis 

Cell (Bio-Rad) using tris-glycine running buffer. Gels were later stained with Coomassie 

Blue for 20 min then de-stained until clear visualisation of the bands of interest. The 

fragment sizes were estimated using a protein ladder (New England BioLabs). 

 

• Protein concentration 

 

Following protein purification and SDS-PAGE analysis, the fractions containing the 

purified fragment(s) were pooled together and concentrated using Vivaspin500 or 

Vivaspin6 columns (GE Healthcare). 

The concentrations of Bt crystal proteins were determined by densitometry using 

different dilutions of bovine serum albumin (BSA) as protein standard which are run 

alongside the protein of interest on SDS-PAGE gel then examined using the Image J 

program.  
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However for determination of the concentration of the proteins present in cell extracts 

used in western blot and ligand blot experiments, Bradford method was applied using a 

Bio-Rad Protein Assay Kit (Bio-Rad) with BSA used as the standard. The concentration of 

each sample was determined by comparing its absorbance against a BSA standard curve.  

 

• Preparation of the protein for N-terminal sequencing 

 

                          Using gel slices 

 

All buffers, detergents and proteases were freshly made. Cry41Aa was initially 

solubilised then activated with trypsin (Promega) as described previously. The resultant 

protein was then concentrated by the use of Vivaspin 500, 10 KDa MWCO tube. The tube 

was first pre-rinsed by adding 500 µl of 50mM of Na2CO3 and spun for 10 minutes at 

15000 rpm in order to get rid of traces of glycerine and sodium azide present in the 

membrane. The concentrator was then filled with the sample and placed in the 

centrifuge to be spun for around 2 hours at 15000 rpm to obtain 100 µl of concentrated 

sample. 

The sample was next mixed with loading buffer and either incubated for 30 minutes at 

65°C or boiled for 3-5 minutes before loading on 7.5% protein gel which was later stained 

then destained until clear visualisation of the band of interest. 

The bands were then excised aseptically from the gel, placed in eppendorf tube and sent 

to Alta Bioscience company for sequencing. 

 

                        Using PVDF membrane 
 

The purified activated Cry41Aa with either proteinase K, trypsin (Promega) or trypsin 

(MS grade) was resolved in a 4-20% precast gel.  The gel was then soaked in dry blot 

buffer for 10 min with gentle rotation.  Using a Trans-Blot Semi-Dry transfer Cell (Bio-

Rad), the protein(s) was transferred onto a PVDF membrane (for 1 hour at 100 mA) 
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which was later stained with Ponceau S stain, destained with distilled water, left to dry 

for few minutes then sent to Alta Biosciences company for sequencing. 

 

• Cell culture conditions 
 

 

Adherent cell lines (HepG2, HeLa) were cultured in Dulbecco’s modifed Eagle’s medium 

(DMEM) provided with 1% penicillin-streptomycin-neomycin (PSN) antibiotic mixture 

and 10% fetal bovine serum (FBS) in a humidified atmosphere containing 5% CO2 at 37°C 

whereas suspension cells (HL-60) were cultured in Roswell Park Memorial Institute 

medium (RPMI) 1640 supplemented with 10% FCS and 1% PSG.  

When a confluency of around 70% was reached, the adherent cells were split. The 

splitting process begins with washing the cells twice with DPBS after removal of the 

medium. The cells were then detached by trypsinization (trypsin/EDTA containing 0.05% 

trypsin and 0.53 mM EDTA) at 37°C for 5 - 10 minutes. To neutralize the trypsin action, 

medium was added followed by spinning (150 x g for 5 min) and the resultant pellet 

corresponding to the cells was resuspended in fresh medium. After counting, the cells 

were seeded at a desired density in sterile polystyrene 75 cm2 flasks (Nunc). 

In the case of HL-60, the cells were passaged when they reach a density of 106 cells/ml.  

 

• Cell assays 

 

Assays were performed in 96-well plates (Nunc). Each well received 90 μl of cell 

suspension at a density of 22,500 cells per well and cultured overnight (at 37°C/5% CO2 

humidified air) before 10 μl of the test sample was added. The experiments were set up 

in triplicates.  

The mock control wells received 90 μl of cell suspension and 10 μl of the appropriate 

buffer (Na2CO3, PBS and DMSO). The wells that contained 100 µl of appropriate cell 

culture medium served as background fluorescent/luminescent controls. 
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The readings were carried out using GloMax-Multi Detection System (Promega) 

according to the assay(s) instructions.  The fluorescent or luminescent signal in the 

background control wells was subtracted from each experimental value. 

 

                      CellTiter-Blue cell viability assay 

 
The number of viable cells in culture was monitored using CellTiter Blue (Promega). This 

assay relies on the conversion of resazurin (a redox dye) into resorufin (fluorescent 

product) which could only be enabled by viable cells knowing that the non-viable ones 

are not able to generate the fluorescent signal due to the loss of their metabolic 

capacity. 20 μl of the reagent (resazurin) was added at the end of toxin exposure period 

and the reading was taken after an additional 2 hours of incubation. Using fluorescent 

plate reader, fluorescence was measured with a green filter with excitation wavelength 

at 560 nm and emission wavelength at 590 nm.  

 

                      CellTiter-Glo luminescence cell viability assay 

 

The number of viable cells in culture was determined based on quantitation of the ATP 

present knowing that post lysis the cells lose the ability to synthesize ATP which makes 

ATP a reliable viability marker. A direct correlation exists between luminescent output 

(corresponding to the ATP levels) and viable cells in this assay. 100 μl of the lyophilized 

CellTiter-Glo® substrate were added to each well in an opaque-walled 96 well plate at 

the end of toxin exposure period. The plate was placed in an orbital shaker for 5 min to 

induce cell lysis then equilibrated with its content at room temperature for 20 min to 

stabilize luminescent signal before the reading was taken.  
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• Statistical analysis 

 

EC50s of the proteins of interest were determined using SPSS software version 22.0 (IBM, 

2013), Probit Regression. 

 

• Preparation of cell extracts 

 

Initially the cells were seeded on plates (6-24 wells) or dishes (60 mm) then after 

reaching the desired confluency and performing the appropriate treatment (depending 

on the aim of the experiment), the medium was removed and the cells were washed 

twice with cold DPBS.  Next they were gently scraped, spun at low speed (2.5 rpm) and 

supernatant was discarded. Pellet containing intact cells was suspended in adequate 

volume of either lysis buffers RIPA or NP-40 or 20 mM of Tris-HCL sample buffer (the 

latter was used when dealing with whole cells). These buffers contained: protease 

inhibitors, phosphatase inhibitors (2 mM sodium orthovanadate + 1 µM microcystin), 1 

mM EGTA and 1 mM EDTA. In case of whole cells suspended in Tris-HCL, the samples 

were stored immediately at -20°C while to ensure cell lysis with RIPA or NP-40, the 

mixture was later incubated on ice for 30 min, spun for another 30 min at 13000 rpm 

and the supernatant containing the cell extracts was collected then stored at -20°C. 

For the preparation of HL-60 extracts, the same procedure was followed except that no 

scraping was used since these cells grow in suspension culture. 

 

• Western blot 

 

10-25 µg of proteins were loaded per well. The proteins were initially run on SDS-PAGE 

gels (7.5-12%). The gels as well as the nitrocellulose membranes were soaked in dryblot 

buffer for 10 min with rotation at room temperature. Using a Bio-Rad Trans-Blot Semi-

Dry Transfer Cell system (100 mA for 30-75 min), the proteins were transferred to a 
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nitrocellulose membrane (Bio-Rad, 0.45 µm). The membrane was washed with PBS then 

incubated with the blocking solution (PBS containing 0.02% Tween-20 (PBST) and 3% 

BSA or 5% non-fat dry milk). The membrane was washed with PBST 3 times for 15 min 

then incubated with the appropriate ligand at 4°C overnight in the shaker. 

o 3% BSA and primary antibody diluted in PBST (1:1000 v/v dilution for antibodies 

against total and phosphorylated ERK and p38; 1:50000 v/v dilution for anti-

CD59 antibody, 1:500 v/v dilution for anti-AQP9 antibody).  

o 5% non-fat dry milk and primary antibody diluted in PBST (1 µg/ml final for 

antibody against phosphorylated CREB)  

The next day, the membrane was washed 3 times with PBST for 15 min then incubated 

for 1 hour at room temperature with the secondary antibody diluted 1:2000 in PBST 

containing 5% non-fat dry skimmed milk. 

Another wash with PBST was carried out 3 times for 15 min then the membrane was 

incubated in the chemiluminescent detection solution and finally either exposed to X-

ray film (FUJI medical X-ray film) or placed in UVP ChemStudio imaging system 

(analytikjena). 

 

• Ligand blot 

 

Same procedure was followed as for the western blot experiment except that instead of 

the primary antibody, ∆R-HAP40 diluted in PBST was used. 

 

• Development of the resistant cell line 

 

HepG2 cells were cultured in step-wise increases of purified T/C activated Cry41Aa. 

Initially, the cells were seeded at around 20% confluency and the toxin treatment was 

carried out after 24 hours with a commencing dose of 0.1 μg/ml.  
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As the cells become confluent, they were sub-cultured in the usual manner and the 

increase of the toxin dose generally followed the pattern of doubling the concentration 

unless the cells appeared not to have tolerated the drug treatment, in which case, they 

were allowed to recover in drug-free medium and be exposed to a less concentrated 

dose. A range of different concentrations was used (0.1; 0.2; 0.3; 0.4; 0.8; 1.6; 2.6; 4; 8; 

10; 15; 20; 30; 50 μg/ml ) during a period of 8 months. 

Two flasks are set up for this experiment: one flask is used to grow treated cells and the 

other flask is used to grow each passage in drug-free medium which was used as a supply 

of “resistant cells”. Regular freezing of cells was carried out at each passage. 

 

• Microscopy 

 

- For monitoring the morphological features of cells during the culturing process and 

prior/post treatment with toxin or other compounds, Nikon Eclipse TS100 inverted 

microscope was used. 

 

- For observation of morphological changes between susceptible and resistant HepG2: 

HepG2 and HepG2R cells were seeded at the density of 4 x 104 cells/ml in a 

microscope chamber slide. The next day, pictures were taken using Zeiss Axiovert 

200M, 63x DIC objective. 

 

- For monitoring swelling/recovery of HepG2 and HepG2R over time following toxin 

exposure: HepG2 and HepG2R cells were seeded at the density of 25 x 104 cells/ml, 

in 6 well plates. The next day cells were dosed with purified T/C activated Cry41Aa 

(1.5 µg/ml and 110 µg/ml respectively) or buffer. Morphological changes were 

visualised using EVOS FL imaging system 10x objective. 
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• Determination of growth curves  

 

HepG2, HepG2R and HepG2 Rev cell lines were seeded at the same cell density (25 x 104 

cells/ml) in 6 well plates. The growth of cells was monitored by counting cells using 

Trypan blue reagent and haemocytometer chamber. Three replicates were used for 

each determination and four cell counts for each replicate from each cell line were made 

every 24 hours for 5 days. 

 

• RNA Extraction 
 

 

RNA extraction was performed using QIAGEN RNeasy Plus Mini Kit according to the 

manufacturer’s instruction. Initially the cells were grown in a monolayer then 

trypsinized and spun for 5 min at 300 x g. The supernatant was discarded and the pellet 

was suspended in RLT buffer containing β-ME to ensure lysis. The lysate was next placed 

into a QIAshredder spin column and spun for 2 min at maximum speed. For genomic 

DNA elimination, the homogenized lysate was then transferred to a gDNA Eliminator 

spin column and spun for 30 seconds at 9000 g.  The column was discarded and to the 

flow through 1 volume of 70% ethanol was added. Next, the mixture was transferred to 

RNeasy spin column and centrifuged for 15 seconds at 9000 g. The flow through was 

discarded and 700 μl of buffer RW1 was added to the RNeasy spin column which was 

spun for 15 seconds at 9000 g. The flow through was discarded and 500 μl of of RPE was 

added to the column and spun for 15 seconds at 9000 g. The flow through was again 

discarded and another 500 μl of RPE was added then the mixture was centrifuged for 2 

min at 9000 g. The RNeasy column was placed in a new 2 ml collection tube, centrifuged 

for additional 1 min and was finally placed in a new 1.5 ml collection tube. For RNA 

elution, 30-50 μl of RNase-free water was added directly to the spin column membrane 

which was spun for 1 min at 9000 g. The eluted RNA samples were stored at -80°C until 

use. 
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• RNA electrophoresis gel 
 

 

Electrophoretic separation of RNA samples was carried out on agarose-formaldehyde 

gel. 0.5 g of agarose was added to 36 ml of H2O and warmed up until it was dissolved. 

2.75 ml formaldehyde and 5 ml formamide were pre-warmed separately and added to 

the warm agarose solution in a fume hood where 2 µl of Gel Red (1 in 3 dilution) was 

added to the solution and the mixture was poured into a cast tray. After it was set, the 

tray was placed in an electrophoresis system where 1 x 3-(N-morpholino) 

propanesulfonic acid (MOPS) buffer was used as the running buffer. 

The RNA samples were then denatured: 2 µl of each RNA sample was added to 2 µl of 

formaldehyde, 4 µl of H2O, 2 µl of 10 x MOPS buffer and 9 µl of formamide. The mixture 

was then heated at 70°C for 10 minutes. Next the sample was cooled in ice for 1-3 min 

and 4 µl of RNA loading buffer was then added. Each RNA sample was then loaded into 

each well of the RNA gel which was finally run for up to 2 hours at 120 V. 

 

• Determination of RNA concentration and RNA  

                                       integrity 

 

                            NanoDrop spectrophotometer 

 

Using a NanoDrop ND-2000 spectrophotometer, the amount of RNA in ng/μl and the 

A260/A280 ratio were determined. Following the software’s instruction, 1 μl of elution 

water was loaded into the instrument and the machine was blanked. After wiping the 

Nanodrop sensor, 1 μl of the sample was next loaded and the measure button was then 

clicked. Concentration of the sample as well as A260/A280 ratio were finally displayed. 
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                                        Agilent Bioanalyser 2100 

 

The Agilent Bioanalyser 2100 was used as per manufacturer’s instructions using a RNA 

6000 Nano Kit. Briefly, before beginning the chip preparation protocol, the chip priming 

station and the bioanalyser were ensured to be set up and ready to use. The program on 

the computer was then started and the electrodes were decontaminated. Initially the 

gel was prepared, then to 65 μl of filtered gel, 1 μl of RNA 6000 Nano dye concentrate 

was added. 9 μl of this Gel-Dye Mix was loaded into each of the marked wells on an RNA 

Nanochip placed on the chip priming station. After loading 5 μl of the RNA 6000 Nano 

Marker in each of the appropriate wells, 1 μl of each of the ladder and the sample were 

then loaded into the Chip which was later inserted in the Agilent 2100 Bioanalyser. The 

Chip Run was finally started.  

 

• RNA-seq and analysis 

 

RNA-seq was performed by a third party. GATC Biotech who undertook the RNA-seq 

(INVIEWTM Transcriptome) of the purified RNA using Illumina sequencing. The first step 

in the technique involves isolation of subsets of RNA molecules using different protocols 

such as the poly-A selection or a ribo-depletion to enrich for polyadenylated transcripts 

or to remove ribosomal RNAs respectively. Next, the population of RNA to be sequenced 

is converted into cDNA fragments (a cDNA library) by reverse transcription and 

sequencing adaptors are ligated to the ends of the cDNA fragments. The cDNA library is 

then analyzed by NGS, producing short sequences which correspond to either one or 

both ends of the fragment. These reads, of which there will be many millions by the end 

of the workflow, can then be aligned to a genome of reference and assembled to 

produce an RNA sequence map that spans the transcriptome (Kukurba and 

Montgomery, 2015). 

The generated FASTQ files were next analysed using Galaxy software (usegalaxy.org). 
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• cDNA Synthesis 

 
Aliquots of 2 μg of total RNA were reverse transcribed to cDNA using High-Capacity 

cDNA Reverse Transcription Kit (Applied Biosciences) according to the manufacturer’s 

instruction. 20 μl reaction was placed in a thermo-cycler that was set up as follows: 25°C 

for 10 minutes followed by 37°C for 120 minutes, then 85°C for 5 minutes before finally 

held at 4°C indefinitely. 

 

 

 

• qPCR 

 
Syber Green-based qPCR was performed. A 96 well plate was set up with a final reaction 

volume of 20 µl containing the following: 10 µl of Syber Green master mix (Applied 

Biosystems), 1 µl of cDNA, 1 µl of forward primer (200 mM), 1 µl of reverse primer (200 

mM) and 7 µl of H2O. AQP9 was used as the target gene while GAPDH was used as the 

endogenous control, and all reactions were performed in triplicate. 

RNAs that were subjected to cDNA synthesis without the reverse transcriptase were 

used as non-genomic DNA controls, while wells lacking the cDNA served as negative 

controls. 

The qPCR was run on an Applied Biosystems StepOne™ Real-Time PCR System. Relative 

gene expression was calculated using the comparative cycle threshold (2−ΔΔCT) method.  

PCR cycling conditions are described in the following diagram:  
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Figure 30: Different settings used in the qPCR reaction. 

The primers used in this experiment for AQP9 and GAPDH were: 

AQP9 

- FP: CTGGTGGAAAACTGCTGATCG 

- RP: CTGCAAATGCGTTCGCCAGAG 

 

GAPDH 

- FP: ATCCCTGAGCTGAACGGGAA 

- RP: GGCAGGTTTTTCTAGACGGC 

 

 

• Transfection of resistant HepG2 using siRNA  

 

AQP9 knock down was achieved through the use of RNA interference (FlexiTube 

GeneSolution-QIAGEN). This kit consists of 4 alternative siRNA molecules targeted to 

AQP9.  

The experiment was optimised using different conditions: transfection reagents 

(Hyperfect, Lipofectamine, and Hyperfect), type of transfection (Fast-forward, reverse), 

concentration of siRNA, volume of the transfection reagent and incubation time (12, 24, 

48 hours). 

The protocol that led to successful AQP9 knock down was: 
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Initially, the transfection solution was prepared: 4 μl of Hyperfect, 1 μl of each siRNA 

(giving a total concentration of 20 nM) and 95 μl OPT-MEM. The mixture was then 

vortexed and incubated for 5-10 min at room temperature to allow the formation of the 

transfection complexes. Next, 1 x 105 cells per well were seeded in a 24 well plate to 

which the transfection solution was added. The plate was incubated in a humidified 

atmosphere containing 5% CO2 at 37°C and gene silencing was monitored after 12 hours 

using RT-qPCR and western blot. 
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4 Involvement of N and C-terminal cleavages in Cry41Aa 

toxicity 
 

4.1 Introduction 
 

Processing of the Cry protoxin into its active form is essential for toxin activity and this 

processing is mediated by proteases that cleave the protoxin polypeptide at specific 

points to produce the mature active toxin. Proteolytic processing was initially 

considered as a toxin activation step following a study where similar levels of mortality 

were observed after protoxin and activated toxin were fed to susceptible insects and 

the level of toxicity of the former was diminished in the presence of protease inhibitors 

reviewed by Deist et al in 2014 (Deist et al., 2014). In fact, a possible correlation between 

low susceptibility and lack of proper proteolytic activation or degradation of toxin to 

inactive peptides, by cleavage at inappropriate sites, was suggested.  

Proper proteolytic activation was shown to facilitate the recognition and binding of Bt 

toxins to insect gut receptors. These two steps are crucial in toxicity and modification of 

either or both of them can result in altered host range and/or altered toxicity reviewed 

by Jurat-Fuentes and Crickmore in 2017 (Jurat-Fuentes and Crickmore, 2017).  

In the case of anticancer Cry toxins, proteolytic cleavage was also shown to be 

indispensable for toxin activity.  N/C-terminal cleavage (s) of the proteins was shown to 

be important to convert them into potent toxins exhibiting high cytopathic effect against 

cancer cell lines (Ohba et al., 2008). Yamashita et al, in 2005, showed that alkali-

solubilised parasporin-3 had no cytotoxic activity against HepG2 cells whereas strong 

cytopathic effect was observed after activation of the toxin with proteases. A more 

recent study is in good agreement with this finding showing  that it is only upon 

proteolytic treatment with trypsin that parasporin-3 (Cry41Aa) induces a rapid and 

significant decrease in HepG2 metabolic activity (Krishnan et al., 2017).  

In order to understand the activation mechanism of Cry41Aa, various mutations were 

created in this protein as shown in figure 31 in order to answer two key questions:  
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• Can the toxin be pre-activated by N-terminal deletion?  

• Which of N or C-terminal cleavage is important in Cry41Aa toxicity? 

 

In order to understand the activation mechanism of Bt crystal proteins, various 

approaches have previously been implemented. Amongst these approaches the use of 

toxin truncation and modification of protease cleavage sites (Walters et al., 2008b, Zhou 

et al., 2014).  

Deletions (∆23, ∆40, ∆60) were then made at the N-terminal region of the protein based 

on possible trypsin cleavage sites. However another approach was followed in order to 

investigate the role of N and C-terminal cleavage(s) in toxicity and involved the insertion 

of PreScission protease cleavage sites to ensure cleavage of Cry41Aa solely at the N-

terminus (figure 31). 

 

Figure 31: Schematic presentation of various created mutants.  
The blue arrows indicate the regions where PreScission protease cleavage sites were inserted (40th and 60th aa). Only 
successfully expressed proteins are presented in this diagram. Mutations were created in Cry41Aa full length (FL) and 
Cry41Aa missing the ricin domain (∆R) in parallel.  

 

4.2 Can the toxin be pre-activated by N-terminal  

                    deletion? 
 

Sequencing of trypsin activated Cry41Aa was needed in order to create an N-terminally 

deleted variant that would resemble a product produced by cleavage by trypsin.  
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The protein of interest was concentrated to obtain the required intensity in order to 

facilitate the sequencing protocol. After being concentrated, the toxin sample was run 

in 3 lanes on 7.5% SDS-PAGE gel and the resultant bands of interest were then excised 

from the gel and sent for sequencing. However the outcome was failure of N-terminal 

sequencing of the protein (data not shown). Therefore based on the potential N-

terminal cleavage sites of trypsin (figure 32) (after arginine (R) or lysine (K)), deletions 

were created. These cleavage sites were predicted based on Yamashita et al findings in 

2005 where the N-terminal cleavage site of the major band produced (64 kDa) after 

proteolytic activation of Cry41Aa resides after the 60th aa. 

 

 

 

 

 

 

 
Figure 32: Illustration of Cry41Aa amino acid sequence.   
The sequence highlighted in red corresponds to the ricin domain and the letters written in bold present the potential 
N-terminal cleavage sites by trypsin. 
 

Inverse PCR was used to create the deletions. The templates used were pSVP2741Aa, a 

plasmid used to express Cry41Aa full length (FL) and pSVP2741Aa∆R, a plasmid used to 

express Cry41Aa missing the ricin domain (∆R) (figure 33). The mutations were created 

in both plasmids in parallel. 
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Figure 33: Plasmids used to create the desired mutations (constructed using Snapgene program).  
A:  a plasmid used for the expression of Cry41Aa gene using E. coli - Bt expression vector pSVP27A under the control 
of Cyt1A promoter (Krishnan et al., 2017). This plasmid has both chloramphenicol and ampicillin resistance genes. B: 
same plasmid as A except that cry41Aa gene is missing the region coding for the ricin domain. 
 

4.2.1 Deletion of 23 amino acids 

• Creation of FL∆23 

 

Based on the corresponding amino acid sequence (figure 32), primers were designed 

(figure 34) using PCR primer stats and PRIMER SELECT programs in order to generate an 

N-terminally deleted variant of Cry41Aa that would mimic a product produced by 

cleavage by trypsin at the 23rd aa (arginine).  

 

 

 
 
 
 
 
 
 
 
 

 
Figure 34: Schematic representation of forward and reverse primers used in the PCR reaction. 
Both primers were phosphorylated in order to ensure the ligation of the amplicon using T4 DNA ligase. The part 
highlighted in orange represents the translated amino acid sequence.  
  

  

A B 
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PCR (PFU ULTRA 10 kb) reaction was performed overnight on SVP2741Aa plasmid. The 

resultant PCR product was digested with DpnI (to remove methylated template DNA), 

purified using QIAquick kit then run on 1% agarose gel (figure 35). 

 

 

 

 

 

 

 

 

 
 

 
 
 
Figure 35: Confirmation of the presence of amplified PCR product.  
PCR product was digested with DpnI, purified using QIAquick kit then run on 1% agarose gel along with the template 
and 1 Kb ladder (Marker) for size comparison. 
 

 

According to figure 35, the size of the amplified product present in lane 3 was around 

10 kb which corresponded to the expected size of the product. 

 

The amplified construct was self-ligated prior to introduction into DH5α, E. coli 

competent cells used to maximize transformation efficiency. After being sequenced, the 

extracted DNA from these cells, was introduced into another E. coli strain called GM2163 

which does not methylate DNA and facilitates the transformation of B. thuringiensis. 

Following Bt transformation, the extracted DNA was again introduced into DH5α for final 

confirmation. The verification of the introduction of the right plasmid was initially 

carried out using restriction digestion with HaeIII enzyme. This is by comparing the size 

of fragments (expected bands) given by NEBcutter program (figure 36) with the size of 

the resultant bands after digestion with the enzyme which were run on 1% agarose gel 

(figure 37B).  
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Figure 36: A: Schematic representation of SV∆23 plasmid and localisation of different restriction sites of HaeIII, B 
and C: Sizes of different fragments yielded by digestion of SV2741Aa and SV∆23 with HaeIII enzyme respectively 
(NEB-Cutter program). The parts highlighted in pink are the predicted differences. 
 

According to figure 36, a difference in size between the fragments around 1007 bp and 

941 bp of digested SVP2741Aa and SV∆23 respectively is expected to be visible on the 

gel whereas the difference between the two other bands is too small to be visualised. 

This is also shown in figure 37A which represents the predicted banding pattern of 

digested DNAs (SVP2741Aa (lane 2) and SV∆23 (lane 3)) and confirmed by 1% agarose 

gel where digested DNAs were run (figure 37B)  showing that the bands around 1007 bp 

and 879 bp look distant whereas those around 941 bp and 879 bp look much closer.   

 

 

 

 

 

 

 

 

 

 

Figure 37: DNA banding pattern after HaeIII digestion.   
A: Predicted HaeIII digestion profile of SV2741Aa (lane 2) and SV∆23 (lane 3) (NEBcutter), B: DNAs were miniprepped 
after each transformation step using QIAprep kit, digested with HaeIII then run on 1% agarose gel along with the 
digested template (SVP2741Aa). 

B C A 

A B 
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The mutation created was finally confirmed by sequencing where the alignment of the 

sequenced DNA (Seq) with the expected sequence of the mutated DNA (SV∆23), using 

Clustal Omega software, showed perfect identity (figure 38). 

 

 

 

 

 

 

 

 

Figure 38: Alignment of the predicted sequence of SV∆23 (SV∆23) and the sequence produced by sequencing of the 
DNA extracted from GM2163 cells (Seq).  
The sequence of the DNA obtained from GM2163 transformation and the expected sequence of SV∆23 were aligned 
using Clustal Omega software. The deletion site is shown with a yellow arrow.  
 

 

4D7 (SV∆23) was then grown and the protein was harvested then run on 7.5% SDS-PAGE 

along with Cry41Aa (full length) for size comparison (figure 39). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 39: SDS-PAGE analysis of FL∆23 protein levels and sizes compared with Cry41Aa full length (FL).   
Crude FL∆23 and Cry41Aa (FL) were solubilised for 1 hour at 37°C in 50 mM sodium carbonate (pH 10.5) in the 
presence of 5 mM DTT and activated with trypsin (1 mg/ml) for 1 hour at 37°C. The samples (crude, solubilised and 
activated) were then run on 7.5% SDS-PAGE gel. 

 
 

SV∆23      -----------------GGATCCaaatggaatggaggattgtcaATGTATCCTTTTGCGC 
Seq        TTTAATGTTGAAAGGGGGGATCCAAATGGAATGGAGGATTGTCAATGTATCCTTTTGCGC 
                            ******************************************* 

 
SV∆23      AGGCACCAGGTTCTGAACTACAAAATATGGGTTACAAAGAGTGGATGAATATGTGTACTA 
Seq        AGGCACCAGGTTCTGAACTACAAAATATGGGTTACAAAGAGTGGATGAATATGTGTACTA 
           ************************************************************ 

 
SV∆23      GTGGGGACCCTACCGTCCTGGGGGAGGGATACAGCGCAGATGTAAGGGATGCCGTTATTA 
Seq        GTGGGGACCCTACCGTCCTGGGGGAGGGATACAGCGCAGATGTAAGGGATGCCGTTATTA 
           ************************************************************ 

 
SV∆23      CAAGTATAAATATCGCTTCCTATCTTCTTTCAGTCCCATTCCCTCCAGCTGGAGTAGCCG 
Seq        CAAGTATAAATATCGCTTCCTATCTTCTTTCAGTCCCATTCCCTCCAGCTGGAGTAGCCG 
           ************************************************************ 
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SDS-PAGE showed that the mutant FL∆23 was successfully expressed. However, by 

comparing the trypsin activated protein to the solubilised core we can see that there is 

only a small shift in size in case of FL∆23 suggesting that either the cleavage site is 

beyond 23 aa or there might be cleavage at the C-terminus of the protein. 

 

The level of toxicity of FL∆23 was then evaluated on HepG2 cell line. According to figure 

40, at a concentration of 100 μg/ml, the solubilised FL∆23 had no significant effect on 

the cell line similar to the protoxin (solubilised Cry41Aa), unlike the trypsin activated 

Cry41Aa which caused a considerable decrease in cell viability at a concentration of 12 

μg/ml. Therefore deletion of 23 aa at the N-terminus of Cry41Aa does not lead to the 

pre-activation of the toxin.  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 40: Evaluation of the level of toxicity of solubilised FL∆23.  
HepG2 cells were seeded at a density of 25 x 104 cells/ml. The next day the cells were treated with solubilised FL (100 
μg/ml), solubilised FL∆23 (100 μg/ml) and trypsin activated FL (12 μg/ml). 24 hours later, cell viability was measured 
using CellTiter-Blue. Ttest was used to calculate the p values: *p=0.08, **p=1.35E-06 and ***p=0.06 
 

 

• Creation of ∆R∆23 

 

In order to generate an N-terminally deleted variant of ∆R that would mimic a product 

produced by cleavage by trypsin at the 23rd aa (arginine), the primers used were the 

same as the ones utilized for the creation of SV∆23  (figure 34). 
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The PCR (PFU Ultra 10 Kb) was set up overnight on SVP2741Aa∆R plasmid, then the 

resulting PCR product was first digested with DpnI, purified and finally run on 1% agarose 

gel (figure 41). 

 

 

 

 

 

 

 

 
Figure 41: Confirmation of the presence of amplified PCR product.  
PCR product was digested with DpnI, purified using QIAquick kit then run on 1% agarose gel along with the template 
and 1 Kb ladder (Marker) for size confirmation. 
 

The amplified band of around 10 kb, present in lane 3, was identified as the desired band 

of interest. 

The product was later self-ligated, introduced into DH5α, then into GM2163 and finally 

into Bt and the introduction of the correct DNA, after each transformation step, was 

initially confirmed using HaeIII restriction enzyme then finally confirmed by sequencing 

(figures 42, 43 and 44). 

 

 

 

 

 

 

 

 

 

Figure 42: A: Schematic representation of SVP2741Aa∆R∆23 plasmid and localisation of different restriction sites 
of HaeIII, B and C: Sizes of different fragments yielded by digestion of SVP2741Aa∆R and SVP2741Aa∆R∆23 with 
HaeIII enzyme respectively (NEBcutter program). The parts highlighted in pink are the predicted differences. 

A B C 
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According to HaeIII restriction profile, the fragment around 980 bp of digested 

SVP2741Aa∆R becomes smaller to around 914 bp in case of SVP2741Aa∆R∆23. This 

difference in fragment sizes is shown in figure 43A which represents the predicted 

banding pattern of digested DNAs (SVP2741Aa∆R (lane 2) and SVP2741Aa∆R∆23 (lane 

3)) and confirmed by 1% agarose gel where digested DNAs were run (figure 43B) 

showing a bigger distance between 980 bp and 879 bp fragments compared with 914 

bp and 879 bp bands which look closer.   

 

 

 

 

 

 

 

 

 

Figure 43: DNA banding pattern after HaeIII digestion. 
 A: Predicted DNA banding pattern of SV2741Aa∆R (lane 3) and SVP2741Aa∆R∆23 (lane 2) after HaeIII digestion 
(NEBcutter), B: DNAs were miniprepped after each transformation step using QIAprep kit, digested with HaeIII then 
run on 1% agarose gel along with the digested template (SVP2741Aa∆R). 

 

Then the extracted DNA was sequenced and the sequencing result shown in figure 44 

confirmed the creation of the desired mutation. 

 

 

 

 

 

 

 

Figure 44: Alignment of predicted sequence of SVP2741Aa∆R∆23 (∆R∆23) and the sequence of the DNA extracted 
after GM2163 transformation (Seq).  
The sequence of the DNA obtained from GM2163 transformation and the expected sequence of SVP2741Aa∆R∆23 
were aligned using Clustal Omega software. The deletion site is shown with a yellow arrow.  

 
∆R∆23      ------------------------------------------------ATGTATCCTTTT 
Seq        ATAATTTAATGTTGAAAGGGGGGATCCAAATGGAATGGAGGATTGTCAATGTATCCTTTT 
                                                           ************ 
 
∆R∆23      GCGCAGGCACCAGGTTCTGAACTACAAAATATGGGTTACAAAGAGTGGATGAATATGTGT 
Seq        GCGCAGGCACCAGGTTCTGAACTACAAAATATGGGTTACAAAGAGTGGATGAATATGTGT 
           ************************************************************ 
 
∆R∆23      ACTAGTGGGGACCCTACCGTCCTGGGGGAGGGATACAGCGCAGATGTAAGGGATGCCGTT 
Seq        ACTAGTGGGGACCCTACCGTCCTGGGGGAGGGATACAGCGCAGATGTAAGGGATGCCGTT 
           ************************************************************ 

A B 
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4D7(∆R∆23) was then grown and the protein was harvested and run on 7.5% SDS-PAGE 

gel along with Cry41Aa full length (FL) and Cry41Aa missing the ricin domain (∆R) for 

comparison between protein levels and sizes (figure 45). 

 

 

 

 

 

 

 

 

 

 
 
Figure 45: SDS-PAGE analysis of ∆R∆23 protein levels and sizes compared with Cry41Aa full length (FL) and Cry41Aa 
missing the ricin domain (∆R). 
Crude ∆R∆23, ∆R and Cry41Aa (FL) were solubilised for 1 hour at 37°C in 50 mM sodium carbonate (pH 10.5) in the 
presence of 5 mM DTT and activated with trypsin (1 mg/ml) for 1 hour at 37°C. The samples were then run on 7.5% 
SDS-PAGE gel. 

 

 

According to figure 45, the mutated protein was successfully expressed. Trypsin 

activated ∆R∆23 looked much smaller than solubilised ∆R∆23 suggesting that trypsin 

cleavage is downstream of the 23rd aa or there might be cleavage occurring at the C-

terminal region of the protein. 

Trypsin activation of ∆R and ∆R∆23 yielded a single band of around 65 kDa whereas it 

produced two bands of around 76 and 65 kDa in case of full length protein. This result 

suggested that the upper band corresponds to a partial digestion while the lower band 

corresponds to a complete digestion and loss of the ricin domain.  

The toxicity of ∆R∆23 was then evaluated on HepG2 cell line and according to the result, 

it appeared that there is only a negligible difference in the level of toxicity between 

solubilised FL∆23 and solubilised ∆R∆23 suggesting no crucial role of C-terminal cleavage 
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at the ricin domain position in Cry41Aa toxicity (figure 46). This result confirmed 

Krishnan et al finding in 2017.  

 

 

 

 

 

 

 

 

 

Figure 46: Evaluation of the level of toxicity of ∆R∆23.  
HepG2 cells were seeded at a density of 25 x 104 cells/ml. The next day the cells were treated with solubilised FL (100 
μg/ml), solubilised FL∆23 (100 μg/ml) and solubilised ∆R∆23 (100 μg/ml). 24 hours later, readings were taken using 
CellTiter-Blue assay. Ttest was used to calculate the p values: *p=0.32 and **p=0.28 
 

 

Since deletion of the N-terminal 23 aa was not sufficient to produce an active form of 

the toxin, we moved on to the deletion of 40 aa at the N-terminus in order to see if this 

deletion would do so. 

4.2.2 Deletion of 40 amino acids 

• Creation of FL∆40 

 

The same procedure was followed as used to create the previous mutants in order to 

delete 40 aa at the N-terminus of Cry41Aa. The primers were designed as shown in figure 

47. 

 
Figure 47: Schematic representation of forward and reverse primers used in the PCR reaction. 
Both primers were phosphorylated in order to ensure the ligation with T4 DNA ligase. The part highlighted in orange 
represents the translated amino acid sequence. 
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The PCR (PFU ULTRA 10 kb) reaction was setup overnight on SVP2741Aa and the 

resultant amplicon was digested with DpnI, purified then run on 1% agarose gel (figure 

48).  

 

 

 

 

 

 

 

 

Figure 48: confirmation of the presence of amplified PCR product. 
PCR product was digested with DpnI, purified using QIAquick kit then run on 1% agarose gel along with the template 
and 1 Kb ladder (Marker) for size confirmation. 
 

According to figure 48, the amplified band shown in lane 3 appeared to have the right 

expected size of around 10 kb. 

The amplified product was self-ligated using T4 DNA ligase then introduced into DH5α. 

After confirmation of the mutation by the mean of restriction digestion and sequencing, 

the DNA was introduced into GM2163 and finally Bt for protein expression. The 

introduction of the right plasmid was initially confirmed by restriction analysis with 

HaeIII enzyme (figures 49 and 50).  

 

 

 

 

 

 

 

 

 

Figure 49: A: schematic representation of SV∆40 plasmid and localisation of different restriction sites of HaeIII, B 
and C: sizes of different fragments yielded by digestion of SV2741Aa and SV∆40 with HaeIII enzyme respectively 
(NEBcutter program). The parts highlighted in pink are the predicted differences. 

A B C 
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According to figure 49, we should expect to see a difference between the size of 

fragments at around 1007 bp and 890 bp of digested SVP2741Aa and SV∆40 

respectively. This is shown in figure 50A (NEBcutter) and confirmed by 1% agarose gel 

where digested DNAs were run showing  two distinguishable bands around 1007 bp and 

879 bp for SVP2741Aa whereas only a single band representing the 890 bp and 879 bp 

fragments for SV∆40 (figure 50B).   

 

 

 

 

 

 

 

 

 

Figure 50: DNA banding pattern after HaeIII digestion.  
A: Predicted DNA banding pattern of SV2741Aa (lane 3) and SV∆40 (lane 2) after HaeIII digestion (NEB Cutter), B: 
DNAs were miniprepped after each transformation step using QIAprep kit, digested with HaeIII then run on 1% 
agarose gel along with the template (SVP2741Aa). 
 

Then for final confirmation, the DNA was sequenced and as per figure 51 the result 

suggested that the desired mutation was made and this is by comparing the sequencing 

result (Seq) to the expected sequence of the mutant (SV∆40). 

 

 

 

 

 

 

 

Figure 51: Alignment of the predicted sequence of SV∆40 (SV∆40) and the sequence of the DNA extracted from 
transformed GM2163 (Seq).  
The sequence of the DNA obtained from GM2163 transformation and the expected sequence of SV∆40 were aligned 
using Clustal Omega software. The deletion site is shown with a yellow arrow.  

 
SV∆40             GGATCCaaatggaatggaggattgtcaATGGAGTGGATGAATATGTGTACTAG 
Seq               GGATCCAAATGGAATGGAGGATTGTCAATGGAGTGGATGAATATGTGTACTAG 
                  ***************************************************** 
 
SV∆40      TGGGGACCCTACCGTCCTGGGGGAGGGATACAGCGCAGATGTAAGGGATGCCGTTATTAC 
Seq        TGGGGACCCTACCGTCCTGGGGGAGGGATACAGCGCAGATGTAAGGGATGCCGTTATTAC 
           ************************************************************ 
 
SV∆40      AAGTATAAATATCGCTTCCTATCTTCTTTCAGTCCCATTCCCTCCAGCTGGAGTAGCCGC 
Seq        AAGTATAAATATCGCTTCCTATCTTCTTTCAGTCCCATTCCCTCCAGCTGGAGTAGCCGC 
           ************************************************************ 

 

A B 
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4D7(SV∆40) was grown and the protein was harvested and run on 7.5% SDS-PAGE along 

with Cry41Aa full length (FL) for size comparison and for checking the level of expression 

of the protein of interest (figure 52). 

 

 

 

 

 

 

 

 

 

 

 

Figure 52: SDS-PAGE analysis of FL∆40 protein levels and sizes compared with Cry41Aa full length (FL).  
Crude FL∆40 and Cry41Aa (FL) were solubilised for 1 hour at 37°C in 50 mM sodium carbonate (pH 10.5) in the 
presence of 5 mM DTT and activated with trypsin (1 mg/ml) for 1 hour at 37°C. The samples were then run on 7.5% 
SDS-PAGE gel. 
 

SDS-PAGE gel showed a weak expression of the mutated protein. In fact, the band 

representing the solubilised protein which should be around 88 kDa, presented in lane 

6, was faint and so the trypsin activated toxin shown in lane 7 was concentrated due to 

a very low intensity of the band produced post activation. This result is consistent with 

previous finding about the role of N-terminus of Cry toxins in expression/crystallisation 

(Oppert, 1999). Also, according to the gel, the size of trypsin activated FL∆40 was smaller 

compared with the solubilised protein suggesting a possibility of the cleavage site being 

downstream of the 40th aa, or at the C-terminus.  

The cytotoxicity of the created mutant was then tested on HepG2 and according to 

figure 53, at a concentration of 10 μg/ml, solubilised FL∆40 showed higher toxicity level 

towards this cell line compared with the solubilised FL or solubilised FL∆23 at a 

concentration of 100 μg/ml. Therefore N-terminal cleavage at amino acid 40 appears to 

be sufficient for Cry41Aa toxicity.  
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Figure 53: Evaluation of the level of toxicity of solubilised FL∆40. 
HepG2 cells were seeded at a density of 25 x 104 cells/ml. The next day the cells were treated with solubilised FL (100 
μg/ml), solubilised FL∆23 (100 μg/ml), solubilised FL∆40 (10 μg/ml) and trypsin activated FL (12 μg/ml). 24 hours later, 
cell viability was measured using CellTiter-Blue. Ttest was used to calculate the p values: *p=0.0002 and **p=0.006 
 

• Creation of ∆R∆40 
 

The procedure followed to create this mutant protein was the same as previously used 

for the creation of the other mutants however the expression of this protein was not 

successful. Therefore a deletion of 40 aa in ∆R causes alteration in the protein 

expression/stability.  

Since solubilised FL∆40 gave partial activity, we decided to make a further deletion to 

the 60th aa which corresponds to the site identified by Yamashita et al in 2005. 

 

4.2.3 Deletion of 60 amino acids 

• Creation of FL∆60 
 

The same technique as used for the creation of the previous mutants was performed for 

the creation of FL∆60. However, the created protein was not stable which could be 

explained by a possible important role of the deleted peptides in protein folding. 

Because solubilised FL∆40 only showed partial toxicity compared with the trypsin 

activated Cry41Aa towards HepG2 cell line therefore the question was whether C-
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terminal cleavage, or N-terminal cleavage beyond amino acid 40, may play a role in 

toxicity. 

4.3 Does C-terminal cleavage contribute to Cry41Aa                

                             toxicity? 
4.3.1 Creation of PreScission recognition site at the 40th  

                                            aa 

 

The reason behind using PreScission was based on the knowledge that this protease has 

a rare and specific recognition site where it solely cleaves between glutamine and 

glycine. After a thorough examination of Cry41Aa sequence, it appeared that there is no 

similarity with the PreScission recognition site suggesting that if this site is introduced 

into Cry41Aa sequence, the cleavage by PreScission would only occur at one position. 

 

• Creation of FLP40 
 

This was achieved by the substitution of 8 amino acids at the N-terminal region of the 

protein with the PreScission protease recognition site (LEVLFQGP). PreScission 

activation of the resulting protein will be similar to that of trypsin activation being at the 

40th amino acid (K) and this is based on the knowledge that PreScission protease cuts 

between glutamine (Q) and glycine (G) residues as explained in figure 54.  

 

 

Figure 54: Schematic explanation of insertion of PreScission cleavage site in order to ensure cleavage at the 40thaa 
in the N-terminal region of Cry41Aa. 
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The oligonucleotides carrying the desired mutation were designed in order to insert the 

PreScission protease recognition site at the right position (figure 55). 

 
Figure 55: Schematic representation of forward and reverse primers used in the PCR reaction. 
Both primers were phosphorylated in order to ensure the ligation with T4 DNA ligase and each of the staggered 
sequences presented in the schema corresponds to half of the PreScission recognition sequence. The corresponding 
amino acid sequence is highlighted in orange. 
 

Then, the PCR (PFU Ultra 10 Kb) was setup on SVP2741Aa overnight and the amplified 

DNA was purified and run on 1% agarose gel (figure 56). 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 56: Confirmation of the presence of amplified PCR product. 
PCR product was digested with DpnI, purified using QIAquick kit then run on 1% agarose gel along with the template 
and 1 Kb ladder (Marker) for size confirmation. 
 

According to the gel, an amplified band of around 10 kb was observed suggesting that it 

corresponds to the desired amplicon. 
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The amplified DNA was self-ligated, introduced into DH5α, GM2163 then into Bt for 

protein expression. HaeIII digestion was regularly performed in order to check the 

introduction of the right plasmid after each transformation step (Figures 57 and 58).  

 

 

 

 

 

 

 

 

 

Figure 57: A: Schematic representation of SVP40 plasmid and localisation of different restriction sites of HaeIII, B 
and C: Sizes of different fragments yielded by digestion of SV2741Aa and SVP40 with HaeIII enzyme respectively 
(NEBcutter program). 

 

According to figure 57, we should expect to see no difference between the fragments 

produced after digestion of SVP2741Aa and SVP40 with HaeIII enzyme. This was 

confirmed by 1% agarose gel where digested DNAs were run showing similar banding 

patterns (figure 58B). 

 

 

 

 

 

 

 

 

 

Figure 58: DNA banding pattern after HaeIII digestion. 
A: Predicted DNA banding pattern of SV2741Aa (lane 3) and SVP40 (lane 2) after HaeIII digestion (NEBcutter), B: DNAs 
were miniprepped after each transformation step using QIAprep kit, digested with HaeIII then run on 1% agarose gel 
along with the template (SVP2741Aa). 
 

A B C 

A B 
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For a definitive confirmation, the DNA was sequenced and the sequencing result showed 

that the desired mutation was successfully introduced. This is by comparing the 

predicted mutated sequence (SVP40) to the sequencing result (Seq), highlighted in 

yellow, which look identical (figure 59).   

 
Figure 59: Alignment of the predicted sequence of SVP40 (SVP40) and the sequence of the DNA extracted after 
GM2163 transformation (Seq).  
The sequence of the DNA obtained from GM2163 transformation and the expected sequence of SVP40 were aligned 
using Clustal Omega software. The mutated region is highlighted in yellow.  
 

Then the created mutant was grown and the protein was harvested and run on 7.5% 

SDS-PAGE along with Cry41Aa (FL) for protein levels and sizes comparison (figure 60).  

 

 

 

 

 

 

 

 

 

 

Figure 60: SDS-PAGE analysis of FLP40 protein levels and sizes compared with Cry41Aa full length (FL). 
Crude FLP40 and Cry41Aa (FL) were solubilised for 1 hour at 37°C in 50 mM sodium carbonate (pH 10.5) in the 
presence of 5 mM DTT and activated with trypsin (1 mg/ml) for 1 hour at 37°C or with PreScission (130 μg/ml) for 16 
hours at 4°C. The samples were then run on 7.5% SDS-PAGE gel. 
 

 
SVP40      GTACTGAATAGTGGTAAAGGGTATTGTCAGCCAAGGTATCCTTTTGCGCAGGCACCAGGT 
Seq        GTACTGAATAGTGGTAAAGGGTATTGTCAGCCAAGGTATCCTTTTGCGCAGGCACCAGGT 
           ************************************************************ 
 
SVP40      TCTGAACTACTTGAAGTACTTTTTCAAGGTCCTATGAATATGTGTACTAGTGGGGACCCT 
Seq        TCTGAACTACTTGAAGTACTTTTTCAAGGTCCTATGAATATGTGTACTAGTGGGGACCCT 
           ************************************************************ 
 
SVP40      ACCGTCCTGGGGGAGGGATACAGCGCAGATGTAAGGGATGCCGTTATTACAAGTATAAAT 
Seq        ACCGTCCTGGGGGAGGGATACAGCGCAGATGTAAGGGATGCCGTTATTACAAGTATAAAT 
           ************************************************************ 
 
SVP40      ATCGCTTCCTATCTTCTTTCAGTCCCATTCCCTCCAGCTGGAGTAGCCGCTGGAATCCTA 
Seq        ATCGCTTCCTATCTTCTTTCAGTCCCATTCCCTCCAGCTGGAGTAGCCGCTGGAATCCTA 
           ************************************************************ 

 

A B 
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SDS-PAGE gel showed a successful expression of the mutated protein. The molecular 

weight of PreScission activated toxin looked smaller to that of the solubilised core (figure 

60B) suggesting that the cleavage with PreScission protease was successful but similar 

to trypsin digestion. 

The level of toxicity of this mutant was then evaluated on HepG2 and the results showed 

that the PreScission activated toxin significantly decreased cell viability (figure 61). 

Therefore Cry41Aa toxin could be activated with PreScission protease and N-terminal 

activation alone is sufficient for toxicity.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 61: Evaluation of the level of toxicity of FLP40 
HepG2 cells were seeded at a density of 25 x 104 cells/ml. The next day the cells were treated with different 
concentrations of trypsin activated Cry41Aa (FL try) (15, 10, 5, 2 μg/ml) and PreScission activated FLP40 (FLP40 Pres) 
(15, 10, 5, 3, 2 μg/ml). 24 hours later, cell viability was measured using CellTiter-Blue. Ttest was used to calculate the 
p values: *p= 0.19 and **p=8.4E-05 
 

 

• Creation of ∆RP40 
 

The same primers as the ones utilized for the creation of FLP40 were used in order to 

ensure the substitution of the 8 aa (PreScission protease recognition site) at the N-

terminus of the protein and therefore to create a protein that could be cleaved with 

PreScission protease only at the 40th aa in the N-terminal region.  
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The PCR (PFU Ultra 10 Kb) was set up overnight on SVP2741Aa∆R plasmid and the 

resultant amplicon was then digested with DpnI, purified and run on 1% agarose gel 

(figure 62). 

 

 

 

 

 

 

 

 
 
Figure 62: Confirmation of the presence of amplified PCR product. 
PCR product was digested with DpnI, purified using QIAquick kit then run on 1% agarose gel along with the template 
and 1Kb ladder (Marker) for size confirmation. 
 

The amplified band shown in figure 62 lane 3 was considered as the DNA of interest 

since the size was around 10 kb similar to the size of the template used in the PCR 

reaction. 

The amplicon was later self-ligated, inserted into DH5α, GM2163 and finally into Bt. 

HaeIII digestion as well as sequencing were carried out after each transformation step 

to verify the presence of the correct construct (figures 63, 64 and 65). 

 

 

 

 

 

 

 

 

 

 

 

Figure 63: A: Schematic representation of SVP2741Aa∆RP40 plasmid and localisation of different restriction sites 
of HaeIII, B and C: Sizes of different fragments yielded by digestion of SV2741Aa∆R and SVP2741Aa∆RP40 with 
HaeIII enzyme respectively (NEBcutter program). 
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The comparison between the fragment sizes produced by digestion of SVP2741Aa∆RP40 

and SVP2741Aa∆R shows no differences (figures 63). This was confirmed by HaeIII 

digests run on 1% agarose gel (figure 64B). In fact, there is no differences between the 

bands generated after digestion of the DNAs thus extracted and the plasmid used as a 

PCR template. This result is consistent with them being the correct plasmids.  

 

 

 

 

 

 

 

 
Figure 64: DNA banding pattern after HaeIII digestion.  
A: predicted DNA banding pattern of SV2741Aa∆R (lane 3) and SVP2741Aa∆RP40 (lane 2) after HaeIII digestion 
(NEBcutter), B: DNAs were miniprepped after each transformation step using QIAprep kit, digested with HaeIII then 
run on 1% agarose gel along with the template (SVP2741Aa∆R). 
 

The DNA was then sequenced for final confirmation and according to figure 65 the right 

mutation was created. In fact based on the alignment of the sequencing result (Seq) and 

the expected DNA sequence of the mutated protein (∆RP40), we can see that the 

mutated region (highlighted in yellow) is identical. 

 

 

 

 

 

 

 

Figure 65: Alignment of predicted sequence of SVP2741Aa∆RP40 (∆RP40) and the sequence of the DNA extracted 
after GM2163 transformation (Seq).  
The sequence of the DNA obtained from GM2163 transformation and the expected sequence of SVP2741Aa∆RP40 
were aligned using Clustal Omega software. The mutated region is highlighted in yellow.  
 

 
∆RP40      AATGGATATGAAGTACTGAATAGTGGTAAAGGGTATTGTCAGCCAAGGTATCCTTTTGCG 
Seq        AATGGATATGAAGTACTGAATAGTGGTAAAGGGTATTGTCAGCCAAGGTATCCTTTTGCG 
           ************************************************************ 
 
∆RP40      CAGGCACCAGGTTCTGAACTACTTGAAGTACTTTTTCAAGGTCCTATGAATATGTGTACT 
Seq        CAGGCACCAGGTTCTGAACTACTTGAAGTACTTTTTCAAGGTCCTATGAATATGTGTACT 
           ************************************************************ 
 
∆RP40      AGTGGGGACCCTACCGTCCTGGGGGAGGGATACAGCGCAGATGTAAGGGATGCCGTTATT 
Seq        AGTGGGGACCCTACCGTCCTGGGGGAGGGATACAGCGCAGATGTAAGGGATGCCGTTATT 
           ************************************************************ 
 
∆RP40      ACAAGTATAAATATCGCTTCCTATCTTCTTTCAGTCCCATTCCCTCCAGCTGGAGTAGCC 
Seq        ACAAGTATAAATATCGCTTCCTATCTTCTTTCAGTCCCATTCCCTCCAGCTGGAGTAGCC 
           ************************************************************ 

 

A B 
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4D7 (∆RP40) was grown and the protein of interest was harvested then run on 7.5% SDS-

PAGE along with Cry41Aa full length for size comparison (figure 66). 

 

 

 

 

 

 

 

 

 

 

 

Figure 66: SDS-PAGE analysis of ∆RP40 protein levels and sizes compared with Cry41Aa full length (FL) and Cry41Aa 
missing the ricin domain (∆R). 
Crude ∆RP40, ∆R and Cry41Aa (FL) were solubilised for 1 hour at 37°C in 50 mM sodium carbonate (pH 10.5) in the 
presence of 5 mM DTT and activated with trypsin (1 mg/ml) for 1 hour at 37°C or with PreScission (130 µg/μl) for 16 
hours at 4°C. The samples were then run on 7.5% SDS-PAGE gel. 
 

 

According to figure 66, the protein was well expressed and could be cleaved with 

PreScission protease producing smaller protein compared with the solubilised core 

(figure 66B). SDS-PAGE gel also showed that ∆RP40 Pres looks slightly bigger than the 

trypsin activated ∆R suggesting that possibly, the cleavage site of trypsin is downstream 

of the 40th aa which is consistent with the previous finding and/or the existence of C-

terminal cleavage.   

∆RP40 toxicity level towards HepG2 was later evaluated and showed that it exhibits only 

slightly higher effect than FLP40 suggesting that C-terminal cleavage plays little or no 

role in toxicity unless cleavage occurs before the ricin domain junction (figure 67).  
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Figure 67: Evaluation of the level of toxicity of FLP40. 
HepG2 cells were seeded at a density of 25 x 104 cells/ml. The next day the cells were treated with different 
concentrations of PreScission activated FLP40 (FLP40 Pres) (10, 5, 3, 2 μg/ml) and PreScission activated ∆RP40 (∆RP40 
Pres) (10, 5, 3, 2 μg/ml). 24 hours later, cell viability was measured using CellTiter-Blue. Ttest was used to calculate 
the p value: *p=0.4 (p values for all other concentrations used were calculated and are >0.05) 
 

 

Because the level of toxicity of the P40 mutants was slightly lower than that of the 

trypsin activated Cry41Aa full length, the question was whether C-terminal cleavage 

could have affected the activity of the protein. 

To confirm the previous findings, the created mutants (activated/solubilised) as well as 

full length protein were purified using anion exchange FPLC. Their concentrations were 

determined by densitometry using different dilutions of bovine serum albumin (BSA) as 

protein standard and the Image J program. The level of toxicity of these mutants was 

evaluated on HepG2 cell line using CellTiter-Blue cell viability assay and their EC50s 

(Effective concentration of the drug that gives half-maximal response) were determined 

using SPSS software (Statistical Package for the Social Sciences), Probit Regression 

analysis (figures 68 and 69). This would enable us to investigate if the mutations created 

on Cry41Aa would have affected the structure of the protein leading to a possible 

change of cleavage site(s) and therefore possibility of affecting the protein functionality. 
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Figure 68: Diagram summarising different steps followed for EC50 determination of the proteins of interest.  
After harvest, solubilisation and activation with the appropriate protease, the proteins of interest were ÄKTA purified 
and run on SDS-PAGE gel for size comparison. After determination of their concentrations, their cytotoxic effect was 
assessed on HepG2 cells using CellTiter-Blue assay, then EC50s were determined using SPSS software, Probit 
Regression analysis. 
 

 

 

 

 

Figure 69: Evaluation of the level of toxicity of purified (solubilised/activated) mutants on HepG2 cell line.  
HepG2 cells were seeded at a density of 25 x 104 cells/ml. The next day the cells were treated with different 
concentrations of purified trypsin activated Cry41Aa and solubilised/activated mutants. 24 hours later, cell viability 
was measured using CellTiter-Blue. The EC50s were determined using SPSS software.  
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According to figure 69, substitutions but not deletions created at the N-terminus of 

Cry41Aa seem to have an effect on the activity of the protein. In fact, trypsin activated 

mutants which comprise the deletions presented similar EC50 as the trypsin activated 

full length unlike trypsin activated P40 mutants.  

PreScission activated P40 mutants were still less toxic than trypsin activated Cry41Aa 

suggesting that either the lysine (40th aa) is not the trypsin N-terminal cleavage site, C-

terminal cleavage is involved in toxicity or the insertion of the recognition site of 

PreScission protease may have affected the protein functionality.  

The hypothesis where the cleavage site might be different from the lysine (40th aa) was 

adopted. This is based on Yamashita et al finding in 2005 where they sequenced the N-

terminus of PK activated Cry41Aa showing that the cleavage occurs at the 60th aa. 

Moreover, the presence of an arginine (trypsin cleavage site) at the 63rd  amino acid 

position and because PK and trypsin activated Cry41Aa showed almost the same sizes 

of bands: upper band around 76 kDa and lower band around 65 kDa (figure 70), this led 

to the hypothesis that cleavage with trypsin might occur at this region. Based on this 

hypothesis, a mutation was created at this position where PreScission recognition site 

was introduced. 

 

 

 

 

 

 

 

 

 

 

Figure 70: SDS-PAGE gel showing similar protein banding profile between trypsin and PK activated Cry41Aa. 
Crude Cry41Aa full length was solubilised for 1 hour at 37°C in 50 mM sodium carbonate (pH 10.5) in the presence of 
5 mM DTT and activated with trypsin (1 mg/ml) or proteinase K (0.01 mg/ml) for 1 hour at 37°C. The samples were 
then run on 7.5% SDS-PAGE gel. 
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The engineered protein (FLP60) was successfully expressed however cleavage by 

PreScission was unsuccessful (data not shown).  

In order to reveal the N-terminal cleavage site of trypsin activated Cry41Aa, another 

attempt at N-terminal sequencing was carried out using another technique for sample 

preparation. As per manufacturer’s instructions, sample was activated with trypsin (MS-

grade), purified using anion exchange chromatography, desalted then blotted on 

Polyvinylidene difluoride (PVDF) membrane. The membrane was stained with Ponceau 

S, destained with distilled water then sent for sequencing (figure 71).  

 

 

 

 

 

 

 

 
Figure 71: PVDF membrane showing blotted Cry41Aa activated with MS-grade trypsin along with protein marker.  
Crude Cry41Aa full length was solubilised for 1 hour at 37°C in 50 mM sodium carbonate (pH 10.5) in the presence of 
5 mM DTT and activated with MS grade trypsin (1 mg/ml) for 1 hour at 37°C. The toxin was then purified using anion 
exchange chromatography, desalted, concentrated then run on precast 4-20% gel. The protein was blotted onto a 
PVDF membrane which was stained with Ponceau S, destained with distilled water then sent for sequencing. 
 

 

The sequencing was successful and showed that the N-terminal cleavage site occurs at 

the 23rd aa (figure 72). A surprising result especially because it is not consistent with the 

previous finding where deletion of the N-terminal 23 aa did not lead to the activation of 

the toxin in addition to no major role of C-terminal cleavage in toxicity.  
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Figure 72: A: Protein sequence report (Alta Bioscience). B: N-terminal region of Cry41Aa: with the letter written in 
bold corresponds to the 23rd aa (arginine) and the sequence highlighted in red is the sequence downstream the 
arginine residue.   

 

Therefore, the level of toxicity of the same sample, which was used for sequencing, 

towards HepG2 was evaluated. According to our results, it appeared that this toxin had 

no effect on HepG2 cell line (figure 73).  

 

 

 

 

 

 

 

 
 

Figure 73: Assessment of the level of toxicity of Cry41Aa activated with MS-grade trypsin. 
HepG2 cells were seeded at a density of 25 x 104 cells/ml. The next day the cells were treated with a concentration 
of 10 μg/ml of solubilised Cry41Aa, activated Cry41Aa with pure MS-grade trypsin and activated Cry41Aa with lab-
grade trypsin (Promega). 24 hours later, cell viability was measured using CellTiter-Blue. Ttest was used to calculate 
the p values: *p=0.34 and **p=1.51E-06 
 

According to figure 73, at a concentration of 10 µg/ml, Cry41Aa activated with MS-grade 

trypsin had no effect on HepG2 cell line similarly to the protoxin (FL sol). On the other 
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hand this protein, when activated with lab-grade trypsin, significantly decreased HepG2 

cell viability.  

Therefore we decided to sequence Cry41Aa activated with lab-grade trypsin (same 

sample that was used in the above cell assay). Same protocol was used for sample 

preparation (figure 74). 

 

 

 

 

 

 

 
 

Figure 74: PVDF membrane showing blotted Cry41Aa activated with non-pure trypsin along with protein marker.  
Crude Cry41Aa full length was solubilised for 1 hour at 37°C in 50 mM sodium carbonate (pH 10.5) in the presence of 
5 mM DTT and activated with lab-grade trypsin (1 mg/ml) for 1 hour at 37°C. The toxin was then purified using anion 
exchange chromatography, desalted, concentrated then run on precast 4-20% gel. Then the protein was blotted on 
PVDF membrane, stained with Ponceau S, destained then was sent for sequencing. 
 

The N-terminal sequencing of this protein was successful. Surprisingly the result showed 

that the cleavage site resides after the 58th aa which corresponds to a tyrosine (figure 

75). 

 

 

 
Figure 75: A: Protein sequence report (Alta Bioscience). B: N-terminal region of Cry41Aa: with the letter written in 
bold corresponds to the 58th aa (tyrosine) and the sequence highlighted in red is the sequence downstream the 
tyrosine residue.   
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According to figure 75, it appeared that cleavage occurs at the tyrosine residue which is 

not a trypsin cleavage site. Therefore the 99% pure trypsin from Melford is 

contaminated with an enzyme that can cleave here –most likely chymotrypsin and this 

cleaves the N-terminus of Cry41Aa at that position leading to protein activity. 

The importance of the residues downstream of this chymotrypsin cleavage site in 

toxicity was also observed with FLP60 mutant which lost its toxicity when activated with 

lab-grade trypsin (figure 76). This could be explained by the fact that the tyrosine residue 

was substituted with the PreScission protease recognition site.  

 

 

 

 

 

 

 

 

 

 

 
Figure 76: Evaluation of the level of toxicity of activated FLP60 with lab-grade trypsin. 
HepG2 cells were seeded at a density of 25 x 104 cells/ml. The next day the cells were treated with different 
concentrations of trypsin activated FLP60 (FLP60 try) (100, 80, 60, 40, 20, 15, 10, 5, 3, 2 μg/ml. 24 hours later, cell 
viability was measured using CellTiter-Blue. Ttest was used to calculate the p value: *p=0.02 
 

In fact, a significant effect of the toxin on HepG2 cell line could be seen starting from a 

concentration of 20 μg/ml. The EC50 of this mutant is greater than 100 μg/ml which is 

more than 50 fold compared with the EC50 of trypsin activated Cry41Aa (2.76 μg/ml) 

(figure 69).  
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4.4 Discussion 
 
The processing of Cry protoxins which belong to the 3-domain group has been well 

described. Cleavage of these toxins usually results in the removal of N-terminal peptides, 

and occasionally C-terminal peptides in larger protoxins. It has previously been shown 

that the N-terminal cleavage is essential for toxin action. This is the case for insecticidal 

and anti-cancer Cry toxins. In fact, according to our results N-terminal cleavage alone 

was sufficient to activate Cry41Aa. This was shown by the deletion of 40 aa at the N-

terminus (FL∆40) which caused a significant decrease in HepG2 cell viability, also P40 

showed a high cytotoxic effect on this cell line when cleaved at the 40th aa at the N-

terminus with PreScission protease. Previous studies have shown that cleavage of the 

N-terminus of parasporin-2 toxin was essential for its cytocidal activity against MOLT-4 

cell line, whereas C-terminal digestion was required for rapid cell injury (Kitada et al., 

2006). In addition, protease processing of Parasposin-1 (81 kDa) occurs on the N-

terminal region and produces an active form consisting of 15 and 56 kDa polypeptides 

toxic to cancer cells (Ohba et al., 2009). In case of insecticidal toxins, lack of cleavage at 

the N-terminus of a variant of Bt Cry1Ac by trypsin was unable to form pores in vitro in 

Manduca sexta brush border membrane vesicles and had reduced insecticidal activity in 

vivo (Bravo et al., 2002). Besides, the full-length (72 kDa) form of Cry11A was highly toxic 

to mosquito larvae whereas the truncated form of the protein with a 9.6 kDa deletion 

at the N-terminus was non-toxic. Based on this result, Pang et al suggested that most of 

the N-terminal region either directly or indirectly is required for toxicity (Pang et al., 

1992). 

Although PreScission activated FLP40 caused a significant decrease in HepG2 cell 

viability, its toxic effect was still lower than that of trypsin activated full length. This 

could be due to a possible role of C-terminal cleavage in toxicity, N-terminal cleavage 

not occurring at the 40th aa or the mutations made causing miss-folding of the protein. 

This difference in toxicity between full length and truncated toxins was previously 

observed in the Cry1Ac crystal protein from B. thuringiensis subsp kurstaki strain HD-73 

where the 68 kDa N-terminal peptide was shown to be sufficient to kill Manduca sexta 

insects but at a lower level than the full length gene product. Based on this result Adang 
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et al suggested that this may be due to the loss of an active region located in the C-

terminus of the protein (Adang et al., 1985). Various other studies showed that C-

terminal cleavage plays an important role in Cry toxicity. In fact, Parasporin-5, expressed 

as a 33.8 kDa inactive protein, exhibited cytocidal activity towards human leukemic T 

cells (MOLT-4) only when degraded by protease at the C-terminus to produce an active 

protein consisting of 29.8 kDa (Ekino et al., 2014). On the other hand, it has been 

demonstrated that the carboxy-terminal extensions of many Cry toxins mediate the 

formation of bipyramidal crystals and have no major role in some Cry toxins activity. In 

fact, deletion of the C-terminal sequence of Cry15Aa showed that this sequence is not 

required for activity against the codling moth (Cydia pomonella) (Naimov et al., 2011). 

In addition, approximately 400 aa can be removed from the C-terminus of crystal 

proteins from the Cry1Ab gene from Bt Berliner 1715 and Bt kurstaki HD-1-Dipel and 

Cry1Ac of Bt kurstaki HD-73  without significant loss of larvicidal activity (Deist et al., 

2014). 

The insertion of PreScission protease recognition site at the N-terminal region of 

Cry41Aa may have caused conformational changes that affected the protein 

functionality. In fact this could be justified by trypsin activated P40 mutants that were 

still less toxic than the trypsin activated full length. This is also the case of FLP60 that 

exhibited a significant effect on HepG2 cells only at high concentrations starting from 20 

µg/ml. Previous work suggested that some alterations made at the 5' and 3' end to Cry 

toxin (the Cry1Ab gene from crystals of B. thuringiensis subsp. kurstaki HD-1-Dipel)  could 

lead to conformational changes and cause modifications in the proteolytic cleavage 

patterns of the protein (Schnepf and Whiteley, 1985). 

According to our results, the position of N-terminal cleavage was important in Cry41Aa 

toxicity. In fact, deletion of 40 but not 23 aa at the N-terminus produced an active toxin 

that was capable of killing HepG2 cells. This could be explained by the fact that It has 

been previously suggested that the presence of the N-terminal peptide might prevent 

binding to insect gut membranes which does only occur after proteolytic removal of this 

peptide.  

For instance, proteolytic activation of the Cry2A protoxin with the trypsin results in the 

removal of 42 aa. It has been proposed that the deletion of this fragment serves to 
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expose the binding region of the Cry2 toxin suggesting that “this amino terminal 

cleavage is a rate-limiting step in the toxin binding of Cry2A” which resulted in a 3 fold 

increase in Cry2A toxicity against Spodoptera littoralis and Agrotis ipsilon (Mandal et al., 

2007). In addition, the structures for the Cry3Aa and Cry1Aa toxins revealed that the N-

terminal region masks a region of the toxin believed to be involved in the interaction 

between the toxin and the brush border membrane of the target insect (Bravo et al., 

2002). Therefore the hypothesis is that as for the other 3 domain toxins mentioned 

above, the N-terminal region of Cry41Aa may be interfering with binding and deletion 

of the first 23 aa was not sufficient to expose the binding site of Cry41Aa whereas 

deletion of 40 aa led to the exposure of this region. In order to confirm this finding 

structural and binding analysis of both mutants needed to be carried out. 

We have also shown that the N-terminus of the protein plays an important role in 

protein expression/crystallization. In fact deletion of 40aa at the N-terminus led to a 

weak expression of the protein. Deletion of 60 aa led to major conformational changes 

resulting in failure of the protein expression. Research with mutant toxins indicated that 

toxin stability and or/expression levels are affected by N-terminal amino-acid sequence. 

In fact, expression of Cry1C toxins with truncated N-termini was not successful 

suggesting that the requirement of the N-terminus is important to cell viability and toxin 

stability and/or expression (Oppert, 1999). It has previously been observed that the lack 

of N-terminal peptide of engineered Cry1Ab toxin expressed in Escherichia coli severely 

affected the growth of these cells. The expression level of N-terminally truncated Cry1Ca 

toxin expressed in Bt was much lower than the full-length toxin and the formation of 

crystals was repressed (Martens et al., 1995). 

Prediction of the N-terminal cleavage site was not possible from the created mutations 

and their effect on the level of toxicity of Cry41Aa neither from the approximate size(s) 

of fragment(s) yielded after proteolytic activation due to a possible combination of C- 

and N-terminal cleavages. Mass spectrometry technique was attempted to identify the 

N-terminal peptide of trypsin activated Cry41Aa. However the results were inconclusive 

due to the presence of numerous false positives (data not shown). N-terminal 

sequencing was then the alternative. The method used for the preparation of the sample 

played an important role in producing comprehensive results. In fact, sequencing failed 
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when samples (bands) that were sent for sequencing were excised from SDS-PAGE gel 

however sequencing of the samples that were electroblotted onto a PVDF membrane 

was successful. This could be explained by the fact that the preferred final purification 

method mostly used to analyse N-terminal sequence of intact proteins is the use of one-

dimensional or two-dimensional gels followed by electroblotting to a high-retention 

PVDF membrane. Things that could have altered the sequencer performance with the 

first method maybe presence of high levels of salt, purity or concentration of the sample 

which according to Speicher et al in 2009, are critical parameters that have to be taken 

into consideration (Speicher et al., 2009). 

N-terminal sequencing of the activated protein revealed that the N-terminal cleavage 

site occurs at a tyrosine (58th aa) which is a chymotrypsin cleavage site. Chymotrypsin 

was not able to activate parasporin-1 (Mizuki et al., 2000), however this serine protease 

was shown to be one of the proteases that has been used to activate Cry toxins that 

exhibit insecticidal activity. In fact chymotrypsin processing of Cry3A was essential to 

obtain a toxic product that binds to  L- decemlineata gut membranes causing the death 

of these insects (Oppert, 1999).  In addition, Cry1A protoxins corresponding to around 

130-135 kDa have shown to be able to produce an active 65 kDa toxin core after 

proteolytic cleavage with chymotrypsin and trypsin-like proteases (Bah et al., 2004). 

It is worthwhile mentioning that we concluded that our lab stock of trypsin must have 

been contaminated with Chymotrypsin. 

 

Conclusions 

 

1- N-terminal cleavage alone can partially activate Cry41Aa toxin 

2- Either C-terminal cleavage or the precise position of N-terminal cleavage may 

affect toxin activity. 

3- Cry41Aa cannot be activated by trypsin but presumably by contaminating 

chymotrypsin in some stocks.  
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5 Differential proteolysis of Cry41Aa can affect toxicity 
 

5.1   Introduction  
 

 

Noticeable differences in anticancer cytotoxicity spectra and activity levels were 

observed between PS-1, PS-2, PS-3 and PS-4 with PS-2 and PS-4 presenting the widest 

cytotoxicity spectra where both induced cell death in six out of nine human cancer cell 

lines while PS-3, a typical three domain-type Cry protein, presented the narrowest 

activity spectrum, showing moderate cytotoxic effect against only two cancer cell lines, 

HL-60 (Human promyelocytic leukemia cells) and HepG2 (Human liver cancer cells) 

reviewed by Okassov et al in 2015 (Okassov et al., 2015).  

Since activation is a crucial step to achieve toxicity, it has been suggested that the type 

and/or abundance of proteases is important in contributing to toxin specificity.  

According to Yamashita et al in 2005, upon treatment with Proteinase K, PS-3 (Cry41Aa) 

exhibits cytocidal activity against HepG2 and HL-60 cell lines. It has also been shown that 

proteolytic activation with proteinase K leads to the production of a major band of 64 

kDa that was identified as the toxic moiety. In the previous chapter we have shown that 

trypsin/chymotrypsin (T/C) activated Cry41Aa is highly toxic to HepG2 and that T/C and 

PK (Proteinase K) activation produce similar protein banding profiles. In addition 

Domanska et al  in 2016 observed differences in the cytotoxic effect between the two 

activated forms of the protein on HepG2 cells (Domanska, 2016), therefore it was 

worthwhile to compare the cytotoxic effect of both activated forms of toxin towards the 

two cell lines. 

In addition, the protein profile of activated Cry41Aa with either T/C or PK led to the 

production of differential intensity of the upper and lower bands with the upper band 

in most cases being the major one in contrast to Yamashita et al finding in 2005 (figure 

77).  
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Figure 77: Different intensities of upper and lower bands produced after proteolytic activation of Cry41Aa with PK. 
Different crude samples of Cry41Aa full length were solubilised for 1 hour at 37°C in 50 mM sodium carbonate (pH 
10.5) in the presence of 5 mM DTT and activated with Proteinase K (0.01 mg/ml) for 1 hour at 37°C. The samples were 
then run on 7.5% SDS-PAGE gel and compared to the PK activated Cry41Aa shown by Yamashita et al in 2005. 

 

Therefore, it was also interesting to figure out which of the two band represents the 

toxic moiety and whether this is similar for both cell lines. 

Based on the multi-step mode of action of Cry toxins where receptor binding is 

considered one of the critical steps that may have a significant effect on toxin 

activity/specificity (Jurat-Fuentes and Crickmore, 2017), a preliminary binding study was 

also carried out in this work in order to investigate the interactions between Cry41Aa 

and human cancer cells.  

 

5.2 Effect on toxicity of activating with different  

                     proteases 
 

PK and T/C activated toxins were purified using anion exchange chromatography. The 

fractions were desalted, concentrated and the buffer was exchanged. Their 

concentrations were determined by densitometry using different dilutions of bovine 

serum albumin (BSA) as protein standard and the Image J program. To assess their toxic 

effect, CellTiter-Blue cell viability assay was used and their EC50s were determined using 

SPSS software (figure 78). 
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Figure 78: Comparison between the level of toxicity of T/C and PK activated Cry41Aa full length and ∆R on HepG2 
and HL-60 cell lines.  
HepG2 and HL-60 cells were seeded at a density of 25 x 104 cells/ml. The next day the cells were treated with different 
concentrations of purified trypsin/chymotrypsin and PK activated Cry41Aa full length and ∆R. 24 hours later, cell 
viability was measured using CellTiter-Blue assay. The EC50s were determined using SPSS software. *p=0.001, 
**p=0.0009, *p=0.04 and **p=0.02 
 

 

According to figure 78, proteinase K (PK) activated full length (FL) and ricin deleted 

Cry41Aa (∆R) are significantly more toxic to HL-60 and HepG2 than when they are 

activated with trypsin/chymotrypsin (T/C) although the effect is most dramatic with HL-

60. 

Therefore the toxicity towards the two cell lines (HepG2 and HL-60) depends on the 

protease used to activate the toxin. 

 

In recent study (Domanska, 2016), it has been shown that Cry41Aa activates P38 MAPK 

in HepG2 cells. In order to figure out if this response to the toxin is similar in HL-60 cells 

and whether the difference in toxicity between the two activated forms of Cry41Aa is 

reflected in p38 phosphorylation, western blot technique was performed using extracts 

from both cell lines that were exposed to PK or T/C activated Cry41Aa full length or ∆R, 

T/C activated Cry1Ca, sodium arsenite (AS) or buffer (figures 79 and 80).  

Sodium arsenite (a potent p38 inducer) was used as a positive control while T/C 

activated Cry1Ca was tested as a negative control in this experiment. The reason behind 
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choosing this insecticidal toxin is that it is expressed in the same acrystalliferous Bt strain 

as recombinant Cry41Aa, and that it shares a similar three domain Cry toxin fold with 

Cry41Aa in addition to exhibiting activity against lepidopteran insects and having no 

known cytotoxic effect on human cells.  

 

 

 

 

 

 

 

 

 

 

 
Figure 79: Assessment of p38 activation in toxin treated HL-60 cells. 
HL-60 cells were treated with purified T/C, PK activated Cry41Aa or ∆R (12 μg/ml), buffer, sodium arsenite (0.5 mM), 
or T/C activated Cry1Ca (12 μg/ml) for 30 minutes. Next, cells were lysed in RIPA buffer. 15 µg of protein from each 
sample were loaded in each lane and analysed by western blot for the presence of total (t p38) or phosphorylated (p 
p38) p38. CD59 was used as the loading control. 
 
 
 

 

 

 

 

 

 

 

 

 
 
Figure 80: Assessment of p38 activation in toxin treated HepG2 cells. 
HepG2 cells were treated with purified T/C activated Cry41Aa (12 μg/ml), buffer, sodium arsenite (0.5 mM), or Cry1Ca 
(12 μg/ml) for 10 minutes. Next, cells were lysed in RIPA buffer. 15 µg of protein from each sample were loaded in 
each lane and analysed by western blot for the presence of phosphorylated p38. CD59 was used as the loading 
control. 
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Our results showed that p38 phosphorylation was elevated in sodium arsenite treated 

HepG2 and HL-60 cells yet no signal was produced from the extracts of cells that were 

exposed to Cry1Ca or buffer. 

Regardless of the protease used to activate the toxin, a high signal was produced from 

the extracts of cells that were exposed to Cry41Aa FL and ∆R in both cell lines. A higher 

signal was detected in extracts from cells that were treated with PK activated toxin 

compared with the T/C treated ones particularly in the case of HL-60. 

These results indicated that the higher toxic effect of PK activated toxin compared with 

the T/C treated one towards HepG2 and HL-60 cell lines is reflected in p38 activation. 

 

5.2.1 Involvement of upper and/or lower band(s) in  

                                   Cry41Aa toxicity 
 

 
As previously mentioned, the activation of Cry41Aa with either T/C or PK leads to the 

production of two bands which are around 76 and 65 kDa (figure 70). 

In order to investigate the importance of each of the two proteins for toxicity, many 

attempts were carried out to separate them and assess their individual cytotoxic effect. 

Initially, purification with gel filtration resin Sephacryl S-200 was used, however the 

separation was unsuccessful since the two fragments of interest co-eluted (data not 

shown). Anion exchange chromatography was then used where we were successfully 

able to separate the upper band from the mixture (figures 81 and 82).  
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Figure 81: SDS-PAGE representing different fractions (A1 to A18) eluted from FL T/C purification using anion 
exchange chromatography FPLC. 
Fragments produced by T/C activation of Cry41Aa were ÄKTA purified using 10 mM CAPS at a pH of 10.5 and a linear 
increase of gradient of salt from 0 to 1 M. 0.8 ml fractions were collected and run on 7.5% gel. 
 

 

According to the gels, the fractions from A3 to A9 except for A6 and A7 (which include a 

lower molecular weight protein) represent the purified 76 kDa protein. While from 

fraction A10, the 64 kDa protein started to appear and was co-eluted with the upper 

one in the rest of the fractions collected. 

 

 

 
Figure 82: SDS-PAGE representing different fractions (B1 to B18) eluted from FL PK purification using anion 
exchange chromatography FPLC. 
Fragments produced by PK activation of Cry41Aa were ÄKTA purified using 10 mM CAPS at a pH of 10.5 and an 
increasing gradient of salt from 0 to 1 M. 0.8 ml fractions were collected and run on 7.5% gel 
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According to figure 82, it appears that B8 and B9 fractions represent the purified upper 

band whereas from fraction B10 onwards the two bands were co-eluted. 

 

The selected fractions, comprising the upper band, of both activated forms of toxin were 

desalted, concentrated then run on a 7.5% gel along with purified toxins that include the 

two fragments in order to check for the presence/absence of the lower band (figure 83).  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 83: SDS-PAGE showing successful separation of the upper band from the mixture yielded after Cry41Aa 
activation. 
Selected fractions comprising only the upper band of T/C and PK activated Cry41Aa were desalted, concentrated then 
run on 7.5% gel along with ÄKTA purified toxins which contain the two fragments. 
 

 

Despite the difference in concentration, our results indicate a successful separation of 

the 76 kDa protein for both activated forms of Cry41Aa.  

 

The comparison between the cytotoxicity of the upper band and the two bands together 

would then answer the question of whether the upper band is sufficient for toxicity. 

Cytopathic effects of the fragments of interest were assessed on both HepG2 and HL-60 

cell lines (figures 84 and 85). 
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Figure 84: Evaluation of the level of toxicity of T/C and PK activated Cry41Aa and the upper bands yielded post 
activation on HepG2 cell line. 
HepG2 cells were seeded at a density of 25 x 104 cells/ml. The next day the cells were treated with different 
concentrations of purified T/C and PK activated Cry41Aa and the upper bands produced after activation. 24 hours 
later, cell viability was measured using CellTiter-Blue.  Ttest was used to calculate the p values: *p= 0.15 and **p=0.35 
(p values for all other concentrations used were calculated and are >0.05)  

 

  

Figure 85: Evaluation of the level of toxicity of T/C and PK activated Cry41Aa and the upper bands yielded post 
activation on HL-60 cell line. 
HL-60 cells were seeded at a density of 25 x 104 cells/ml. The next day the cells were treated with different 
concentrations of purified T/C and PK activated Cry41Aa and the upper bands produced after activation. 24 hours 
later, cell viability was measured using CellTiter-Blue. Ttest was used to calculate the p values: *p= 0.11 and **p=0.26 
(p values for all other concentrations used were calculated and are >0.05) 
 

 

According to our results, it appears that there was no major difference in the level of 

toxicity between the upper protein and the two proteins together towards HepG2 and 
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HL-60 cell lines. Therefore the upper band is sufficient for toxicity and no further 

activation (leading to the production of the lower band) is then needed. 

Based on these results and knowing that there is a similar protein banding pattern 

produced by activation with both trypsin/chymotrypsin and PK, two possibilities were 

considered: either difference in N-terminal cleavages or C-terminal ones are behind this 

difference in toxicity. 

Knowing the N-terminal cleavage of T/C activated Cry41Aa, sequencing the N-terminus 

of FL PK was worthwhile to see whether there was a difference in the cleavage site(s). 

The same technique, as explained previously (chapter 4 page 113), was used for sample 

preparation. The protein of interest was blotted onto a PVDF membrane which was then 

sent for sequencing. 

 

Sequencing the N-terminus of the protein of interest was successful and showed that 

the N-terminal cleavage of proteinase K occurred after the 60th aa (alanine) (figure 86) 

which is in agreement with N-terminal sequencing of the lower band protein by 

Yamashita et al in 2005. Therefore the difference between the upper and lower bands 

must be the C-terminal cleavage. 

 

 

 

 

 
 
 
 
 
 

Figure 86: A: Protein sequence report (Alta Bioscience). B: N-terminal region of Cry41Aa: with the letter written in 
bold corresponds to the 60th aa (alanine) and the sequence highlighted in red is the sequence downstream the alanine 
residue.   

 

 

The possibility that there might be some cleavage occurring at the C-terminus of the 

upper band protein which might influence in Cry41Aa higher toxicity, was investigated. 
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A construct was created where human influenza hemagglutinin (HA) tag was attached 

to the end of the ricin domain sequence. Following proteolytic activation of the resultant 

protein, loss or presence of the tag would indicate if cleavage at the C-terminal region 

of the protein had occurred. The protein designated as FL-HA was created using the 

same technique that was utilised to create previous variants (see chapter 4 section 4-2-

1). The primers used were: forward Primer: 

TTCCAGATTATGCTTAAAGGTGTGCAACTATCCCTG and reverse primer: 

CATCATATGGATAAGTGGTTAAGCCAATACCCATAC. FL-HA was successfully created and 

expressed (figure 87). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 87: SDS-PAGE showing the expression levels of FL-HA before and after proteolytic activation. 
Crude FL-HA protein was solubilised for 1 hour at 37°C in 50 mM sodium carbonate (pH 10.5) in the presence of 5 mM 
DTT and activated with trypsin (MS-grade), chymotrypsin or trypsin (Lab-grade) (1 mg/ml) for 1 hour at 37°C. The 
samples were then run on 7.5% SDS-PAGE gel along with protein ladder. B: Same samples except for the crude one 
were diluted and the gel was run for longer time. 
 

 

According to figure 87A, FL-HA was successfully expressed. The two bands produced by 

trypsin (MS-grade) activation look slightly bigger than those produced after proteolytic 

activation with either trypsin (Lab-grade) or chymotrypsin which appeared to have 

similar banding profile. The difference between the size of the upper bands produced 

and that of the solubilised core was not clearly visualised. Therefore in order to confirm 

that these proteins were cleaved, the gel was run for longer time to ensure efficient 
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separation (figure 87B). The upper bands produced appeared to have smaller size 

compared with solubilised FL-HA suggesting that cleavage occurred. The protein when 

cleaved with trypsin (MS-grade) was shown to have a bigger size compared to when it 

was cleaved with trypsin (Lab-grade) or chymotrypsin. This was consistent with the N-

terminal sequencing of the upper bands which showed that trypsin (MS-grade) cleaves 

at the 23rd aa (figure 72) while trypsin (Lab-grade) which appeared to be contaminated 

with chymotrypsin, cleaves at the 58th aa (figure 75).   

A western blot was later carried out to detect the presence of HA tag in FL-HA before 

and after proteolytic activation, ∆R-HA (previously created by Etherington et al., 

unpublished) was used as a positive control and untagged solubilised FL which was used 

as a negative control (figure 88). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 88: Western blot analysis of HA-tag attachments to FL-HA before and after proteolytic digestion. 
Solubilised full length (untagged), tagged ∆R and crude, solubilised and activated (trypsin (MS-grade), trypsin (Lab-
grade) and chymotrypsin) FL-HA were run on 7.5% SDS-PAGE gel. 5 μg of proteins were loaded in each lane. After 
transfer, the membrane was blocked with 5% milk then incubated with the HRP conjugated anti-HA antibody followed 
by ECL detection. 
 
 
 

According to our results, HA tag was detected in solubilised ∆R-HA but not in solubilised 

FL which were used as positive and negative controls respectively. The tag was detected 

in crude, solubilised and activated FL-HA proteins. Regarding the activated samples, HA 
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was only detected in the upper bands suggesting that no cleavage occurs at the C-

terminal region of the protein while it does occur in the lower band which was indicated 

by the loss of the tag. 

 

These results in addition to previous finding about the upper band being sufficient for 

Cry41Aa toxicity suggest that C-terminal cleavage does not influence toxicity. 

 

Therefore, we tried to test if only the precise position of N-terminal cleavage might 

influence Cry41Aa toxicity towards HL-60 cells. For confirmation, the levels of cytopathic 

effect of the mutants previously created (see chapter 4) were evaluated on HL-60 (figure 

89). 

 

 

Figure 89: Evaluation of the level of toxicity of purified (solubilised/activated) mutants, Cry41Aa full length and ∆R 
on HL-60 cell line.  
HL-60 was seeded at a density of 25 x 104 cells/ml. The next day the cells were treated with a concentration of 15 
µg/ml of purified solubilised/activated mutants, T/C activated Cry41Aa and T/C activated ∆R. 24 hours later, cell 
viability was measured using CellTiter-Blue. Ttest was used to calculate the p values: *p=0.19, **p=0.23, ***p=0.08 
and ****p=0.06 
 

According to our results the created mutants had a negligible cytotoxic effect towards 

HL-60. In fact, PreScission activated P40 mutants and solubilised FL∆40 which were toxic 

to HepG2 cells had no major effect on this cell line. Therefore N-terminal cleavage at the 

40th aa does not activate the toxin against HL-60. 

0

20

40

60

80

100

120

15μg/ml 15μg/ml 15μg/ml 15μg/ml 15μg/ml 15μg/ml 15μg/ml 15μg/ml 15μg/ml 15μg/ml

FL T/C ∆R T/C FL∆40 
T/C

FLP40
T/C

FL∆40 sol FL∆23 
T/C

FLP40
Pres

∆RP40 
Pres

∆R∆23 
T/C

∆RP40 
T/C

%
 o

f H
L-

60
 v

ia
bi

lit
y 

re
la

tiv
e 

to
 

bu
ffe

r t
re

at
ed

 c
el

ls

* 
** 

*** **** 



136 
 

Additionally the same cytotoxic effect was observed for PreScission activated FLP40 and 

∆RP40, also for FL∆23 T/C and ∆R∆23 T/C confirming that there is no major role of C-

terminal cleavage in toxicity. 

Based on these findings: 

1. No role of C-terminus in Cry41Aa toxicity. 

2. FLP60 (where YSADVRDA residues were substituted with the PreScission 

protease recognition site) had lost its activity against both HepG2 and HL-60 cell 

lines when cleaved with either PK or trypsin/chymotrypsin (data not shown). 

3. PK activated Cry41Aa is more toxic towards the two cell lines than when 

activated with trypsin/chymotrypsin. 

4. PK cuts two aa beyond T/C. 

We formed a hypothesis that DVRDA might be a possible binding site and that the Ser 

and Ala amino acids are interfering with this binding/toxicity particularly against HL-60. 

 

 

Figure 90: Diagrams showing the surface view of the structure of Cry41Aa modelled by Phyre2 and visualised by 

Chimera software 
The red part represents DVRDA hypothesized to correspond to the binding epitopes, the yellow part represent Ser 
and Ala aa thought to be interfering with binding and the grey part represents the N-terminal region containing the 
tyrosine (Y), T/C cleavage site. The figure on the right is the zoomed in form. 
 
 

C 
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According to the predicted 3-D structure of Cry41Aa (figure 90), it is possible that the N-

terminal region of the protein is partially obscuring the DVRDA motif. If the 58 amino 

acids are removed, DVRDA would be partially revealed, however, removal of the Ser and 

Ala aa as well would result in great exposure of the motif.  

To confirm that cleavage after amino acid 60 was responsible for the increased toxicity, 

we substituted the alanine (60th aa) to a lysine (trypsin cleavage site) in order to ensure 

cleavage of this protein with trypsin (MS grade) at the same site where PK cleaves. This 

activated protein should then have the same cytotoxic effect as Cry41Aa when activated 

with PK.  

 

The engineered protein (AK) was successfully created (forward primer: 

AAAGATGTAAGGGATGCCGTTATTAC and reverse primer: GCTGTATCCCTCCCCCAG) and 

expressed. SDS-PAGE analysis suggested that cleavage with MS-grade trypsin was more 

likely to have occurred at the 23rd aa as previously observed with Cry41Aa full length 

due to the lack of size difference following cleavage (figure 91). 

 

 

 

 

 
 
 
 
 
  
 
 
 
 
Figure 91: SDS-PAGE showing unsuccessful N-terminal cleavage of AK at the 60th aa. 
Crude AK was solubilised for 1 hour at 37°C in 50 mM sodium carbonate (pH 10.5) in the presence of 5 mM DTT and 
activated with MS-grade trypsin (1 mg/ml) for 1 hour at 37°C. The samples were then run on 7.5% SDS-PAGE gel along 
with protein ladder. 

 

According to the gel, the MW of both solubilised and trypsin activated AK look similar 

suggesting that the cleavage at the 60th aa was unsuccessful and it is more likely that, as 
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in the case of FL, the trypsin did cut at the 23rd aa, a difference in size that has proved 

difficult to visualise on this gel system. 

Bioassays were then performed on HepG2 using this AK mutant treated with different 

proteases (figure 92).   

 
 
Figure 92: Assessment of the level of toxicity of AK mutant.   
HepG2 was seeded at a density of 25 x 104 cells/ml. The next day the cells were treated with different concentrations 
of trypsin/chymotrypsin, PK and trypsin (MS-grade) activated AK and Cry41Aa full length. 24 hours later, cell viability 
was measured using CellTiter-Blue. Ttest was used to calculate the p values: *p=0.2, **p=0.0005, ***p=0.11 and 
****p=0.41 
 

When activated with MS-grade trypsin, negligible toxic effect was observed for the 

mutant AK and FL similar to the solubilised proteins. Similar cytopathic effects were 

observed for trypsin/chymotrypsin activated FL and AK which could be explained by the 

fact that T/C cleavage site was not changed. However, when activated with PK, AK 

showed a reduced cytotoxic effect compared with FL which could be due to the 

substitution of the PK cleavage site that might have led to PK cleaving elsewhere. 

An examination of the predicted structure of Cry41Aa in particular the section 

representing DVRDA, shows that the side chain of the second aspartic acid is protruding 

from the structure which would provide an easily accessible binding site (figure 93). The 

positively charged arginine in that sequence might also be important especially that 

previous study showed that a positively charged aa (lysine) also exists at that position in 

Cry41Ab (Yamashita et al., 2005), in addition, the importance of positively charged 
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amino acids in Cry toxin activity was previously observed (explained in the discussion 

part). Therefore, in order to investigate the possible important role of these amino acids 

in toxicity, mutations were created at those sites where single substitutions were made 

to change Arg to Thr (R to T) and Asp to Ala (D to A) in addition to double substitution 

where RD was changed to TA. This was to figure out whether both Arg and Asp are 

important or just one of them is crucial for activity.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 93: Diagram showing the schematic view of the structure of Cry41Aa modelled by Phyre2 and visualised by 
Chimera 
The green arrow shows the side chain of the aspartic acid that is sticking out of the structure. The red part represents 
DVRDA, the yellow section corresponds to Ser and Ala residues and the grey part represents the tyrosine (T/C cleavage 
site). 
 

The mutations were created on a tagged construct (∆R-HAP40) which will be explained 

in detail in the next section. The mutants were successfully created and expressed and 

their cytotoxicity levels were assessed on HepG2 (figure 94) and HL-60 (figure 95) cell 

lines in order to investigate the effect of the mutations created on the protein activity. 

Recent study has shown that Cry41Aa is a pore forming toxin (Krishnan et al., 2017) and 

previous work has shown that the effect of pore forming Cry toxins is initiated with 

binding and that lack of binding correlates with loss of toxicity. Therefore, if those two 

amino acids that were substituted are important in binding, the mutants created should 

be non-toxic. 
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Figure 94: Effect of the mutations created on Cry41Aa protein activity against HepG2. 
HepG2 was seeded at a density of 25 x 104 cells/ml. The next day the cells were treated with different concentrations 
of trypsin/chymotrypsin and PK activated ∆R-HAP40, TD, RA and TA. 24 hours later, cell viability was measured using 
CellTiter-Blue. Ttest was used to calculate the p values: *p=0.02, *p=4.3E-05, **p=1.53E-04, **p=0.0001, ***p=1.4E-
04 and ***p=4.4E-05 
 

According to our results, the two activated forms (T/C and PK) of all of the created 

mutants (RA, TA and TD) presented a reduced toxicity towards HepG2 compared with 

∆R-HAP40 protein. Both single and double mutations have affected the protein function. 

The same result was observed towards HL-60 cell line (figure 95). 

 

  
Figure 95: Effect of the mutations created on Cry41Aa protein activity against HL-60.  
HL-60 cells were seeded at a density of 25 x 104 cells/ml. The next day the cells were treated with different 
concentrations of trypsin/chymotrypsin and PK activated ∆R-HAP40, TD, RA and TA. 24 hours later, cell viability was 
measured using CellTiter-Blue. Ttest was used to calculate the p values with *p=0.2, *p=3.01E-05, **p=0.14, 
**p=3.5E-05, ***p=0.04 and ***p=8.24E-05 
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This reduced toxicity might be due to the binding possibly being affected. Therefore we 

set about devising a binding assay. 

 

 
5.2.2 Cry41Aa labelling 

 
• Previous problems with HA tag 

 

Epitope tagging is a technique where a short immunoreactive epitope is fused to a 

recombinant protein to facilitate its detection. Amongst the epitope tags that are 

commonly used, HA which is derived from the human influenza hemagglutinin. It has 

been widely used as a general epitope tag in expression vectors (Zhao and Meresse, 

2015). 

Knowing that its amino acid sequence (YPYDVPDYA) does not contain an arginine or 

lysine which would prevent enzymatic processing during activation and because it is 

easily accessible for detection with antibodies, HA tag was chosen for Cry41Aa labelling.     

 

Based on the knowledge that the ricin domain had no role in Cry41Aa toxicity (Krishnan 

et al., 2017), which was also confirmed with our results explained in chapter 4, HA tag 

was attached to ∆R (Etherington et al., unpublished). However, a problem was 

encountered in tag detection suggesting that the loss of the tag was due to its instability 

during proteolytic processing or a possible cleavage at the C-terminus of the protein. 

 

To overcome this problem, the lysine which is at the 668th position at the C-terminus, 

where the T/C cleavage site was suspected to be, was substituted to an alanine. The 

mutant protein ∆RK-HA was successfully created and expressed. 

The proteins of interest were then run on 7.5% gel for checking their sizes and their 

expression levels (Figure 96). 
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Figure 96: SDS-PAGE showing the expression levels of HA tagged proteins and untagged full length protein. 
Crude HA tagged proteins and untagged full length protein were solubilised for 1 hour at 37°C in 50 mM sodium 
carbonate (pH 10.5) in the presence of 5 mM DTT and activated with trypsin/chymotrypsin (1 mg/ml) or Proteinase K 
(0.01 mg/ml) for 1 hour at 37°C. The samples were then run on 7.5% SDS-PAGE gel along with protein ladder. 
 

According to the gel, HA tagged proteins were successfully expressed. Solubilised, 

trypsinised and PK activated ∆R-HA and ∆RK-HA showed the same MWs. PK and T/C 

digestion led to the production of a single band unlike the full length where proteolytic 

digestion with PK and T/C yielded two bands which could be explained by the fact that 

the mutations were created on ∆R. The lack of difference in size between the T/C 

digested ∆R-HA and ∆RK-HA suggests that C-terminal cleavage might not occur at the 

lysine substituted. This is based on the knowledge that if it is the case then 46 aa would 

be lost, a difference in size that should be visualised on a gel. 

A western blot was then carried out to detect the presence of HA tag attached to ∆R and 

∆RK before and after proteolytic processing using anti-HA antibody (figure 97). 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 97: Western blot analysis of HA-tag attachments to proteins before and after proteolytic digestion. 
Solubilised, T/C and PK activated full length (untagged) and tagged ∆R were run on 7.5% SDS-PAGE gel. 3 μg of proteins 
were loaded in each lane. After transfer, the membrane was blocked with 5% milk then incubated with the HRP 
conjugated anti-HA antibody followed by ECL detection. 
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Our results suggested that both proteases (proteinase K and trypsin/chymotrypsin) 

cleave at the C-terminus of the ∆R proteins as the HA tag was only detected in solubilised 

∆R-HA and ∆RK-HA.  It also suggests that T/C does not cleave at the lysine which was 

suspected to be the C-terminal cleavage site because if this was the case we should 

expect to detect HA in T/C activated ∆RK-HA, however another possibility is that 

cleavage could occur at this position and somewhere else as well. HA-tag was not 

detected in solubilised and activated untagged full length which was used as negative 

control.  

The fact that the tag was detected after proteolytic activation of FL-HA but not in the 

case of ∆R-HA suggest that the C-terminal cleavage site is difficult to be accessed by 

proteases in the full length form of the protein but becomes more exposed after 

deletion of the ricin domain. 

Knowing that PreScission activation leads to just N-terminal cleavage and because the 

ricin domain has no role in toxicity, we decided to create ∆R-HAP40 mutant where we 

could study the binding of this protein without loss of the tag. 

 

 
• Creation of ∆R-HAP40 

 

The primers utilized were the same as used for the creation of P40 mutants (figure 55) 

in order to ensure the substitution of 8 aa of the protein with the PreScission protease 

recognition site and therefore to create a protein that could be cleaved with PreScission 

protease only at the 40th aa in the N-terminal region. The template used in this case was 

SVP2741Aa∆RHA plasmid. Same procedure was followed as to create the previous 

mutants which was explained in detail in chapter 4 (Figure 98). 
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Figure 98: Diagram summarising different steps followed for the creation of ∆R-HAP40. 

 

According to our results, ∆R-HAP40 was successfully expressed. The molecular weight of 

the PreScission activated toxin was smaller than that of the solubilised core suggesting 

that the protein was cleaved with the protease. In order to check whether the HA-tag 

interferes with toxin activity, the level of toxicity of the created mutant on both HepG2 

and HL-60 cell lines was assessed (figure 99 and 100). 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 99: The effect of HA tag on protein activity towards HepG2 cell line. 
HepG2 was seeded at a density of 25x104 cells/ml. The next day the cells were treated with different concentrations 
of PreScission activated ∆R-HAP40 and ∆RP40. 24 hours later, cell viability was measured using CellTiter-Blue. Ttest 
was used to calculate the p value: *p=0.3 (p values for all other concentrations used were calculated and are >0.05). 
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According to our results, HA tag seemed to have no effect on protein activity. In fact 

same level of toxicity was observed in case of ∆RP40 and ∆R-HAP40 towards HepG2 cell 

line.  

 
Figure 100: The effect of HA tag on protein activity towards HL-60 cell line.  
HL-60 was seeded at a density of 25 x 104 cells/ml. The next day the cells were treated with different concentrations 
of PreScission activated ∆R-HAP40 and ∆RP40. 24 hours later, cell viability was measured using CellTiter-Blue. Ttest 
was used to calculate the p value: *p=0.23 (p values for all other concentrations used were calculated and are >0.05) 
 

As for HepG2, the HA tag seemed to have no effect on the protein activity against HL-60 

cell line. 

Western blot was later carried out to detect the presence of HA tag in ∆R-HAP40 after 

proteolytic activation with PreScission protease (figure 101). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 101: Western blot analysis of HA tag attachments to proteins before and after proteolytic digestion. 
Solubilised full length (untagged), solubilised ∆R-HA and crude, solubilised and PreScission activated ∆R-HAP40 were 
run on 7.5% SDS-PAGE gel. 3 μg of proteins were loaded in each lane. After transfer, the membrane was blocked with 
5% milk then incubated with the HRP conjugated anti-HA antibody followed by ECL detection. 
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Our results showed that there was no tag detection in solubilised FL (negative control), 

tag was detected in solubilised ∆R-HA (positive control) and in crude, solubilised and 

PreScission activated ∆R-HAP40. Therefore, the problem of HA-tag retention after 

proteolytic processing was resolved. 

 
 

5.2.3 Binding analysis 
 
 
Binding assays were carried out initially on susceptible HepG2 cell line where western 

blot and ligand blot techniques were used in order to investigate whether we could 

detect the binding of the toxin onto these cells (figures 102 and 103). 

Cell extracts were initially prepared using two lysis buffers: non-ionic mild NP-40 and 

harsh denaturing ionic RIPA. 

Whole cell samples were also used in this study in order to minimize proteolysis, 

dephosphorylation and denaturation since all begin to occur once the cells are 

disrupted. Tris-HCl, a detergent-free sample buffer was utilized in this case. 

 
HepG2 cells were treated with ∆R-HAP40 at a concentration of 15 μg/ml (a dose that 

induced a significant decrease in cell viability). The incubation time (30 min) was 

determined based on microscopic observations where as soon as toxin effect on cells 

started to be visualized (beginning of swelling in around 10% of cells), the extracts were 

prepared. Protein concentrations were measured using Bradford protein assay where 

BSA was utilized as a protein standard. 

 

Because of the denaturing conditions of SDS-PAGE, which would cause the dissociation 

of the toxin from the receptor, a band of similar molecular weight to the toxin is 

expected to be detected in a western blot of the extracts where cells were pre-incubated 

with toxin before lysis. 
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Figure 102: Western blot analysis of extracts from HepG2 cells that were treated with ∆R-HAP40 or buffer. 
HepG2 cells were treated with ∆R-HAP40 (15 μg/ml) or PBS for 30 min before either being lysed with NP-40 and RIPA 
or extracted and suspended in 20 mM Tris-HCL. Samples were run on 12% SDS-PAGE. 20 μg of proteins were loaded 
per well and 3 μg of ∆R-HAP40 was loaded as positive control. After transfer the membrane was incubated with anti-
HA antibody followed by ECL detection. 
 

However, no signal was produced in all the lanes containing the extracts of cells 

incubated with or without toxin and prepared with different lysis buffers. In order to 

check whether the incubation time was too short for the toxin to start binding to cell 

membrane and it remained in the medium (DMEM), the medium removed during the 

preparation of cell extracts was kept, vivaspun for toxin concentration (in case the 

concentration of the toxin in the sample loaded was too low for detection) then loaded 

on SDS-PAGE along with the cell extracts. Yet, no bands were detected suggesting that 

toxin at this stage was bound to the cell membrane. Thus, it is more likely that the tag 

might get cleaved after binding occurs. High signal was produced from PreScission 

activated ∆R-HAP40 with cross-reactive binding was not observed on other polypeptides 

of parasporal proteins, indicating the specificity of the antibody towards the protein of 

interest. 
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As an alternative approach, ligand blot technique was used where extracts that contain 

cells incubated for 30 min with buffer only, which were used in the western blot 

experiment, were loaded onto 12% SDS-PAGE gels. After transfer, the nitrocellulose 

membranes were incubated with or without toxin (figure 103). 

 

 

 
Figure 103: Ligand blot analysis of extracts from HepG2 cells. 
20 μg of extracts from HepG2 cells were loaded into 12% SDS-PAGE. 3 μg of ∆R-HAP40 was loaded as a control. After 
transfer, the membrane was blocked and was either incubated with ∆R-HAP40 in PBS (10 μg/ml) or PBS only over 
night at 4°C. The next day membranes were washed, incubated with anti-HA antibody and signal was detected with 
ECL. Red arrows indicate the bands detected. 
 
 

Our results showed a signal produced at around 46 kDa which was present in all extracts 

however a lower molecular weight band of around 30 kDa was only detected in the 

whole cells sample. A high signal was produced from ∆R-HAP40 sample which was used 

as positive control while no bands were detected in the extracts blotted onto the second 

membrane that served as a negative control as there was no toxin incubated with the 

membrane. 

Therefore, it seems that there might be binding of the toxin to proteins of 46 and 30 kDa 

present in the extracts. In order to confirm binding of the toxin to these proteins, the 

membrane was washed thoroughly and the bands detected were excised, boiled with 

SDS loading buffer then run on SDS-PAGE gel which was stained with Coomassie blue 
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then destained and analysed. Some other parts of the membranes, where no proteins 

were blotted, were also excised in order to check that the membrane was properly 

washed and no unbound toxin remained (figures 104 and 105). 

 

 

 

 

 

 

 

 

 

 

 
Figure 104: SDS-PAGE showing composition of excised 46 kDa band. 
The upper band detected was excised from the membrane, boiled with SDS-loading buffer and loaded on SDS-PAGE 
gel. The red arrows corresponds to an upper band and the yellow arrows show a lower molecular weight protein 
 

The upper band was suspected to be the PreScission activated protein as of similar 

molecular weight while the lower one is expected to be the protein(s) that the toxin was 

bound to. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 105: SDS-PAGE showing composition of the excised 30 kDa band. 
The lower band detected and other parts of the membrane, where no proteins were blotted, were excised from the 
membrane, boiled with SDS-loading buffer and loaded on SDS-PAGE gel. The red arrows corresponds to an upper 
band and the yellow arrows represents a lower molecular weight protein. 
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The upper band in this case is suspected to be the toxin showing similar MW to that of 

the PreScission activated ∆R-HAP40 whereas the lower molecular weight band 

represents the proteins where the toxin was bound.  

The parts of the membrane where no proteins were blotted showed no band indicating 

that no unbound toxin remained. 

These results indicate that the signal detected from the ligand blot experiment was 

produced from the toxin. 

 

We then wanted to analyse the binding of the created mutants (TD, RA, and TA) which 

presented a reduced toxicity compared with the non-mutated toxin. This was in order 

to investigate the correlation between reduced toxicity and binding (figure 106). 

 
 

 
 
Figure 106: Ligand blot analysis of extracts from HepG2 cells. 
20 μg of extracts from HepG2 cells were loaded into 12% SDS-PAGE. 3 μg of PreScission activated HAP40-TD, HAP40-
TA and HAP40-RA were loaded as controls. After transfer the membranes were blocked and were incubated with 
either HAP40-TD, HAP40-TA or HAP40-RA (10 μg/ml each) over night at 4°C. The next day membranes were washed, 
incubated with anti-HA antibody and signal was detected with ECL. 
 
 

According to our results, despite the reduced toxicity of the created mutants, the band 

around 46 kDa was still detected, yet, it is only with TD incubation that the signal around 

30 kDa was produced.  
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To investigate the possibility of this process measuring non-specific or non-productive 

binding, a binding study of the toxin ∆R-HAP40 to less susceptible (HL-60) and non-

susceptible (HeLa) cell lines was performed. 

 

Western blot technique was initially carried out on HL-60 cell line where the cells were 

pre-incubated with the toxin at a concentration of 15 μg/ml for 1 hour. The incubation 

time was determined the same way as for HepG2, where, as soon as the swelling started 

to be microscopically visualised in around 10% of the total cells, the extracts were 

prepared. Then the extracts were run on 12% gel along with controls and medium in 

order to eliminate the possibility of the toxin still remaining in the medium in case of 

lack of signal (figure 107). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 107: Western blot analysis of extracts from HL-60 cells that were treated with ∆R-HAP40 or buffer. 
HL-60 cells were treated with ∆R-HAP40 (15 μg/ml) or PBS for 60 min before either being lysed with NP-40 and RIPA 
or extracted and suspended in 20 mM Tris-HCL. Samples were run on 12% SDS-PAGE. 20 μg of proteins were loaded 
per well and 3 μg of ∆R-HAP40 was loaded as a positive control. After transfer the membrane was incubated with 
anti-HA antibody followed by ECL detection. 
 

 

No bands were detected in the lanes where the extracts of cells, incubated with or 

without toxin and prepared with different lysis buffers, were loaded. No signal was also 

produced in the RPMI medium sample showing that no unbound toxin still remained in 
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the medium at that stage. This is because we eliminated the possibility that the toxin 

continued to exist in the medium at extraction time but the tag was cleaved due its 

instability in those conditions. This was by running the same sample on SDS-PAGE gel 

which was later stained with Coomassie blue to check the presence of the toxin however 

no bands were visualised confirming that the binding occurred during 1 hour of 

incubation with the cells (data not shown). 

 
The same extracts containing cells with buffer that were used in the western blot 

experiment were run again on 12% SDS-PAGE gel which was used in the ligand blot 

experiment where, after transfer, the nitrocellulose membrane was blocked with 5% 

milk then incubated with  PreScission activated ∆R-HAP40 at a concentration of 10 μg/ml 

over night at 4°C. The membrane was later washed, incubated with anti-HA antibody 

and signal was detected with ECL (figure 108). 

 

 
 
Figure 108: ligand blot analysis of extracts from HL-60 cells. 
20 μg of extracts from HL-60 cells were loaded into 12% SDS-PAGE. 3 μg of ∆R-HAP40 was loaded as a control. After 
transfer the membrane was blocked with 5% milk and was either incubated with ∆R-HAP40 in PBS (10 μg/ml) or PBS 
only over night at 4°C. The next day membranes were washed, incubated with anti-HA antibody and signal was 
detected with ECL. 
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Two bands of around 46 kDa and 30 kDa were only detected in the whole cell lysate 

sample (Tris-HCl buffer). A high signal was produced from ∆R-HAP40 samples which 

served as positive control while no signal was detected in the extracts blotted onto the 

second membrane which, incubated without toxin, was used as a negative control. 

The lack of signal produced in extracts prepared with NP-40 and RIPA could be due to 

sample preparation. 

Although less susceptible cells were used, binding is still detected which could suggest 

that there is no correlation between binding and susceptibility. 

 
 
In order to confirm this hypothesis, a non-susceptible cell line (HeLa) was later used 

where western blot (figure 109) and ligand blot (figure 110) techniques were applied 

following the same principle as utilized for HepG2 and HL-60 cell lines. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 109: Western blot analysis of extracts from HeLa cells that were treated with ∆R-HAP40 or buffer. 
HeLa cells were treated with ∆R-HAP40 (15 μg/ml) or PBS for 1 hour before either being lysed with NP-40 and RIPA 
or extracted and suspended in 20 mM Tris-HCL. Samples were run on 12% SDS-PAGE. 20 μg of proteins were loaded 
per well and 3 μg of ∆R-HAP40 was loaded as positive control. After transfer the membrane was blocked, incubated 
with anti-HA antibody followed by ECL detection. 
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Same as for HepG2 and HL-60 cell lines, western blot analysis showed no bands detected 

in the cell extracts prepared with different lysis buffers. Knowing that HeLa cells are non-

susceptible to the toxin, therefore this result could suggest that probably the toxin is not 

binding however, because using the same technique, there was no bands detected in 

case of susceptible HepG2 cells, this result can’t be reliable.  

 
Therefore ligand blot technique was used next (figure 110). 
 
 

 
 
Figure 110: Ligand blot analysis of extracts from HeLa cells. 
20 μg of extracts from HeLa cells were loaded into 12% SDS-PAGE. 4 μg of ∆R-HAP40 was loaded as a control. After 
transfer the membrane was blocked and was either incubated with ∆R-HAP40 in PBS (30 μg/ml) or PBS only over 
night at 4°C. The next day membranes were washed, incubated with anti-HA antibody and signal was detected with 
ECL. 
 

 

Same as for HepG2, a band of around 46 kDa was detected in all extracts while it is only 

in the whole cell lysate sample that the 30 kDa band was detected. An expected high 

signal was produced from ∆R-HAP40 sample while no signal was produced from the 

extracts blotted onto the second membrane that was used as a negative control. 

 
Although HeLa cells are non-susceptible to the toxin, binding still occurs. These results 

are consistent with the fact that there is lack of correlation between binding and 

susceptibility. 
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5.3 Discussion 
 

 

Our results showed that the toxic effect of Cry41Aa towards HepG2 and HL-60 cell lines 

depends on the protease used to activate the toxin. This result agrees with previous 

studies where the type of protease used was important in Cry toxicity/specificity. In fact, 

it has been shown that it is only upon treatment with Proteinase K or trypsin is 

parasporin-1 toxic to MOLT-4 cells while no cytocidal activity was produced with 

chymotrypsin treatment. This result was explained by the fact that same proteolysis 

profile was produced by treatment with trypsin and PK while chymotrypsin activation 

gave a different protein banding pattern where a band of 56 kDa was not produced 

(Mizuki et al., 2000). 

In the case of parasporin-2, no cytocidal activity was observed after trypsin treatment 

of solubilised crystal proteins whereas proteinase K activated proteins were highly 

cytotoxic to HepG2, MCF-7, KLE, Hec-1A, MDA-MB231 and PC-3 cells (Brasseur et al., 

2015b). 

In insect models, specific proteolytic activation was proved to be essential and could 

determine the toxin specificity. In fact, the main digestive proteases of Coleoptera are 

cysteine and aspartic proteases, whereas those of Lepidoptera and Diptera are serine 

proteases. The insecticidal specificity of Cry toxin from B. thuringiensis var. colmeri was 

influenced by the source of enzymes which come from different insect guts. The 

activation of the toxin with these enzymes produce different sizes of toxins that 

depending on their aa compositions show different specificity (Haider et al., 1986). 

In addition, activation of Cry3 protoxin with different proteases was shown to affect 

toxin activity since chymotrypsin but not trypsin activated Cry3Ba was able to bind to 

BBMV of Colorado potato beetle Leptinotarsa decemlineata. The loss of binding of 

trypsin activated Cry3Ba toxin was suggested to be due to structural changes related to 

proteolysis or to processing of important binding epitopes in the toxin (Rausell et al., 

2004a).  

 



156 
 

It has been previously shown that following exposure of different organisms to PFT, the 

mitogen-activated protein kinase p38 pathway (MAPK p38) is activated in order to 

stimulate a defense response. This aspect has been observed in M. sexta and A. aegypti 

where Cry1Ab and Cry11Aa respectively caused phosphorylation of p38 in a dose 

dependent manner. The important role of MAPK p38 in defense mechanism was 

confirmed by gene silencing resulting in hypersensitivity of these insect species to Cry 

toxin intoxication (Cancino-Rodezno et al., 2010a). In addition, Domanska et al. in 2016 

showed that Cry41Aa activates p38 and this phosphorylation appeared to be dose 

dependent (Domanska, 2016). Therefore knowing that PK activated Cry41Aa is more 

toxic than the T/C activated toxin, we wanted to see if this difference in toxicity is 

reflected in p38 phosphorylation. Our results indicated that higher activation of p38 

MAPK was observed in cells treated with PK activated toxin. 

The separation of the two fragments produced by activation of Cry41Aa with either 

trypsin/chymotrypsin or PK was unsuccessful using gel filtration resin Sephacryl S-200 

method (where the two fragments were co-eluted) but was partially successful when 

anion exchange chromatography FPLC was used leading to the purification of the upper 

band of around 76 kDa. The co-elution of Cry fragments produced after activation was 

previously seen in the case of Cry1A: when digested with M. sexta midgut juice, the 

protoxin produces two fragments of around 30 and 58 kDa. Using different purification 

methods, the two monomers were co-eluted and were both detected using anti-Cry1A 

anti body suggesting that the treatment with midgut proteases does not unfold the 

structure of the protein but only makes some peptide bond cleavages (Miranda et al., 

2001). 

 

The co-elution of the two bands of activated Cry41Aa could be explained by the fact that 

looking at the elution profile (chapter 4 figure 39), the peaks of the two fragments 

seemed to be merged together. The first peak corresponds to the upper band that gets 

eluted first. While it is still eluting the second peak appears corresponding to the elution 

of the lower band. Because of their different amino acid composition, the two bands 

acquires different ionic properties explaining why they get detached from the column 

at different time. In the future, because linear gradient of salt was used, the next step is 
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to try to use step-wise increase of salt gradient where we will increase the time (to 3 to 

5 column volume for example) when the upper band started to get eluted. This 

prolonged step will ensure enough time for the elution of the upper protein on its own 

then the lower one will be eluted individually. 

 

According to our N-terminal sequencing of the upper band and the N-terminal 

sequencing of the lower band of Cry41Aa carried out by Yamashita et al in 2005, it 

appears that both proteins have the same N-terminal cleavage site and the difference 

actually resides in the C-terminal cleavage. Similar result was previously observed where 

the B. thuringiensis strain M15 crystal produces two major bands of approximately 86 

and 79 kDa. N-terminal sequencing was carried out for both proteins showing that they 

shared identical 20-amino acid residues. One of the possibilities that was suggested to 

explain this result is that the 86-kDa protein might have been processed at the C-

terminus to yield the 79 kDa protein (Jung et al., 2007). 

Because the level of cytocidal activity of the upper band of activated Cry41Aa was similar 

to that of both bands together and knowing that cleavage solely occurs at the N-

terminus of the protein therefore C-terminal cleavage does not seem to play a role in 

HepG2 and HL-60 toxicity. This agrees with previous studies, as discussed in chapter 1, 

which showed that C-terminal cleavage in most Cry toxins is not involved in toxicity. 

 

N-terminal sequencing was one of the molecular approaches that was extensively used 

in order to understand the difference in toxicity of Cry toxins activated with different 

proteases. In fact, in the case of anti-cancer Cry toxins, in order to understand the 

difference in toxicity between chymotrypsin, PK and trypsin activated Cry31Aa2 which 

could correlate with difference in activation, N-terminal sequences were determined for 

all fragments to identify the proteases cleavage sites (Jung et al., 2007).  

The 76 kDa proteins produced by PK and T/C activation of Cry41Aa toxins showed 

different N-terminal cleavage site where T/C cuts after tyrosine (58th aa) and PK cleaves 

after alanine (60th aa). Only two aa difference (Ser and Ala) that seem to be important 

in Cry41Aa toxicity. Based on the predicted 3-D structure of Cry41Aa these two aa seem 

to be partially covering the N-terminal sequence of PK activated toxin. Therefore based 

on previous work which showed that cleavage affects binding and assuming that the 
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DVRDA motif is important in binding, the hypothesis adopted was that the Ser and Ala 

residues are interfering with binding.  

A similar concept was observed In case of parasporin-2 where it has been suggested that 

the difference in toxicity between the trypsin and PK activated toxins could be due to 

the trypsin and proteinase K cleavage sites being different. Brasseur et al in 2015 

hypothesized that without proper protease activation, the PS2Aa1 protoxin could not 

be recognized by cell receptors. It was assumed that when cleaved with proteinase K, 

specific regions of the activated PS2Aa1 can bind to receptor while, when cleaved with 

trypsin the binding is prevented because these binding epitopes can only be partially 

exposed or not at all. 

Various other studies showed that position of N-terminal cleavage of insecticidal Cry 

toxins is important in binding. Amongst them Cry2Aa where based on structural 

predictions, the first 49 aa fragment, which gets cleaved during protease activation, was 

shown to occlude a domain II hydrophobic patch proposed to be involved in receptor 

interaction and deletion of 42 amino acid residues from the N-terminus resulted in a 4 

to 6 fold increase in toxicity against Spodoptera littoralis, Helicoverpa armigera and 

Agrotis ipsilon (Morse et al., 2001). 

 

The introduction of trypsin cleavage site in AK mutant was designed to improve the toxin 

activity since PK activated toxin is more toxic than T/C activated one therefore moving 

the trypsin cleavage site to that of PK would result in enhancement of toxin activity. 

However, unfortunately cleavage of the created protein at that position was 

unsuccessful. This method was previously used where introduction of protease cleavage 

site enhanced a toxins’ activity (Walters et al., 2008a). In case of our Cry toxin, this was 

confirmed when a PreScission protease cleavage site was introduced at the N-terminal 

40th aa which led to a great increase in Cry41Aa activity compared to the protoxin. In 

insect models, the introduction of a chymotrypsin/cathepsin G site in the loop between 

helix α-3 and helix α-4 of Cry3A toxin has increased its toxicity to 3 fold against neonate 

D. virgifera larvae. It has been proposed that cleavage of this toxin at this proteolytic 

site permitted the subsequent binding of the activated toxin to the receptors present in 

the midgut cells (Walters et al., 2008b). 
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The receptor-binding step has been studied extensively, as it was shown to be a key 

factor for insect specificity, toxicity and resistance where the loss of toxicity was 

correlated with reduced binding affinity to brush border membrane vesicles (BBMV).  

Because the DVRDA motif was speculated to be involved in binding, two residues R and 

D, hypothesized to be important in binding, were substituted. Therefore the mutants 

created should show reduced or loss of binding. The choice of the residues to be 

substituted were based on the 3-D predicted structure of Cry41Aa where the side chain 

of the Aspartic acid (64th aa) was sticking out making it possible to be involved in binding. 

Being positively charged, the Arginine at that position seemed to be important especially 

that according to previous work positively charged aa were shown to play an important 

role in binding. In fact, the functional role of the positive charges in specific region of the 

domain II loop 2 in Cry1Ab and Cry1Ac was examined by introducing mutations at the 

arginine residues that were replaced with alanine, glutamic acid and lysine. Toxicity and 

binding assays of the created mutants showed that removal of the charge or 

introduction of negative charges affected toxicity as well as binding supporting the view 

that arginine residues in the loop 2 region are important for initial binding to receptor 

sites (Lee et al., 2000). 

However, despite these mutants showing reduced activity, binding of Cry41Aa mutants 

to HepG2 cell extracts was detected suggesting that either this binding is non-specific, 

the mutations created might have affected post-binding processes or the binding affinity 

of these mutants was reduced but was not lost completely therefore a quantitative 

binding study has to be performed. 

The latter approach was previously used to examine the effect of the mutations on 

receptor binding. In fact, in case of Cry1Ab toxin, in order to provide quantitative data 

on the effects of Trp mutations on receptor binding, heterologous binding competition 

of Cry1Ab wild type and mutated toxins to brush border membrane vesicles (BBMV) was 

performed. The results suggested that the mutants bind BBMV with lower affinity than 

wild type Cry1Ab toxin (Padilla et al., 2006). 

The effect of mutations on post-binding processes was also observed in previous studies. 

In fact, mutations in some residues of domain I in 3-domain Cry toxins resulted in 

complete loss of toxicity to M. sexta larvae. The nontoxic mutants showed altered 

oligomerization or membrane insertion which was shown to be seriously affecting pore 
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formation. However, these mutants presented similar binding affinity with the cadherin 

receptor to the wild-type toxin. This binding was therefore proved to be not sufficient 

for toxicity and that oligomerization and pore formation are the crucial steps for killing 

insect larvae (Jimenez-Juarez et al., 2007). 

Previous studies showed a strong correlation between toxicity and binding which was 

also validated by the fact that resistance correlated with loss of binding. In fact, this was 

confirmed by absence of binding of Cry1Ab and Cry1Ac toxins to the midgut brush 

border membranes in the resistant Trichoplusia ni larvae (Wang et al., 2007). In addition 

to the loss of binding of Cry2Ab to BBMV prepared from H. armigera and H. punctigera 

resistant insect larvae (Caccia et al., 2010). 

According to our results, Cry41Aa binding was detected in susceptible HepG2, in less 

susceptible HL-60 and in non-susceptible HeLa indicating that regardless of 

susceptibility, binding of Cry41Aa to these cancer cell lines occurs. Therefore, there 

might be no correlation between binding and susceptibility where the difference might 

reside in post binding procedures or the binding detected being non-productive. The 

lack of correlation between binding and toxicity was previously observed in insecticidal 

Cry toxins where although Cry1Ca and Cry1Bb showed different toxicity against S. exigua 

and S. frugiperda insects, they bound similarly to the BBMVs of the two species. On the 

other hand, Cry1Ac, which is not toxic to S. exigua and S. frugiperda, bound strongly to 

their BBMVs. It was then concluded that Cry1 toxin binding is necessary but not 

sufficient for toxicity (Luo et al., 1999).  

Specific binding of Cry1Ac was also found to be similar between BBMVs prepared from 

resistant and susceptible larvae of Pectinophora gossypiella. It was then speculated that 

this binding is not sufficient to confer susceptibility to Cry1Ac (Ocelotl et al., 2015). The 

binding kinetics for Cry1Ac did not differ significantly between susceptible and resistant 

P. xylostella larvae. Regardless of susceptibility, Cry1Ac was able to specifically bind to 

their BBMVs. These results suggest that factors other than binding may be altered in the 

resistant insects and that binding is not sufficient for toxicity (Masson et al., 1995b). 

 

Knowing that the binding assays presented in this chapter were only preliminary data, 

in the future binding should be confirmed using competition studies in order to 
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investigate the binding of mutated toxins compared with the full length protein. Besides, 

the candidate binding proteins where the toxin bound to should be identified using mass 

spectrometry. Identification of the cell receptor(s) is expected to provide some insight 

into the mechanism of target specificity and cytotoxicity. Once identified, receptor 

knock down in susceptible or overexpression in non-susceptible cell lines should be 

considered. In addition, the hypothesis suggesting that there is no correlation between 

binding and toxicity should be confirmed where post binding processes should be 

studied like toxin oligomerization, pore forming activity as well as the stability of pores 

and cellular recovery pathways. Previous work has shown, in insect models, the 

importance of post-binding processes in Cry toxicity. For instance, in case of Cry1Ab, 

helix α3 in domain I was shown to contain sequences important for oligomerization. 

Mutations created in this helix did not affect interactions with membrane proteins 

where the mutants bound receptors with similar affinity as the wild-type toxin, yet, 

oligomerization, pore formation and toxicity against Manduca sexta larvae were 

severely damaged. These results indicated that the pre-pore oligomer and toxin pore 

formation play a major role in the toxic effect of Cry1Ab on insect larvae (Jimenez-Juarez 

et al., 2013). The control of intracellular death pathways as well as differential defensive 

responses to Cry intoxication were also shown to be important events that may 

contribute to determine Cry specificity. In fact, a previous study has confirmed that 

resistance of Heliothis virescens to Cry1Ac was correlated with repair of damaged gut 

epithelium (Forcada et al., 1999). 

It is therefore interesting to develop resistance in susceptible HepG2 as comparison 

between responses of the two cell lines to Cry41Aa intoxication would help more in the 

understanding of the mechanism of action of the toxin. 

 

Conclusions 

 

1- The toxicity towards HepG2 and HL-60 cell lines depends on the protease used 

to activate the toxin. 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/heliothis
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2- The higher toxic effect of PK activated toxin compared with the T/C treated one 

towards HepG2 and HL-60 cell lines is reflected in p38 activation. 

3- The N-terminal cleavage is sufficient for Cry41Aa toxicity and serine (59th) and 

alanine (60th) residues are behind the difference in toxicity between PK and T/C 

activated forms of the protein.  

4- Cry41Aa binds to proteins of around 46 and 30 kDa in susceptible and non-

susceptible cell lines suggesting no correlation between binding and 

susceptibility. 
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6 Probing the mechanism of action of Cry41Aa on HepG2 

through the establishment of a resistant subline  
 

6.1 Introduction 
 

The development of resistance to treatments used to counter diseases is a major 

obstacle. This phenomenon was observed in insect models that developed resistance to 

Bt-based biopesticides as well as in cancer patients who developed resistance to 

chemotherapeutic agents. Understanding the basis of the resistance mechanisms was 

then important for developing management strategies. 

In insect models, the proposed mechanisms of resistance were associated with 

alteration in any step in the mechanism of action of Bt Cry toxins. The most frequently 

observed mechanisms of Cry toxin-resistance involve defects in receptor binding (Ferré 

and Van Rie, 2002), altered activation of Cry toxins by midgut proteases (Sayyed et al., 

2001), elevated immune response (Ma et al., 2005a) or enhanced esterase production 

(Gunning et al., 2005). 

On the other hand the principal mechanisms that were associated with resistance of 

cancer cells to chemotherapy treatment include altered membrane transport involving 

the P-glycoprotein product of the multidrug resistance (MDR) gene as well as other 

associated proteins, altered target enzyme (e.g. mutated topoisomerase II), decreased 

drug activation, increased drug degradation due to altered expression of drug-

metabolizing enzymes, drug inactivation due to conjugation with increased glutathione, 

subcellular redistribution, drug interaction, enhanced DNA repair and failure to 

apoptose as a result of mutated cell cycle proteins such as p53 (Luqmani, 2005).  

One of the main approaches that has been utilized to study the resistance mechanisms 

in insects and cancer cell lines was to evolve a resistant population/subline to the toxic 

agent. The molecular alterations associated with resistance can then help in the 

clarification of the mechanisms of this change in phenotype.  
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In this study, HepG2 resistant to Cry41Aa was generated. Cellular and molecular changes 

were investigated in order to help unravel the mechanism of action of this toxin. 

 

6.2 Generation of resistant HepG2 cell line to T/C     

                     activated Cry41Aa 
 

Several methods were previously proposed that could be used to establish a cancer 

resistant cell line to an anti-cancer drug. These included pulse treatment method where 

cells are repeatedly exposed to a high concentration (generally the IC50 dose) of the 

drug in question followed by a recovery period. Another strategy which corresponds to 

growing in step-wise increases in the toxic agent was the most commonly used method. 

Due to its sensitivity, several parameters are crucial to consider to ensure its success 

such as good record keeping, regular freezing down of the evolving resistant variant, 

monitoring the progress of the development of the resistance phenotype, allowing the 

cells to recover in drug-free medium when needed etc. 

 

In this study, HepG2 cells were cultured in step-wise increases of purified T/C activated 

Cry41Aa. The cells were seeded at around 20% confluency and the drug treatment was 

carried out after 24 hours with a commencing dose of 0.1 μg/ml.  

As the cells become confluent, they were sub-cultured in the usual manner and the 

increase of the toxin dose generally followed the pattern of doubling the concentration 

unless the cells appeared not to have tolerated the drug treatment, in which case, they 

were allowed to recover in drug-free medium and be exposed to a less concentrated 

dose. As shown in figure 111, a range of different concentrations was used (0.1; 0.2; 0.3; 

0.4; 0.8; 1.6; 2.6; 4; 8; 10; 15; 20; 30; 50 μg/ml ) during a period of 8 months.  
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Figure 111: Diagram showing the establishment of resistant HepG2 cell line to T/C activated Cry41Aa over time. 
HepG2 cells were treated with step wise increasing doses of ÄKTA purified T/C activated Cry41Aa ranging from 0.1 to 
50 µg/ml over a period of 8 months. Sensitivity of cells to the toxin was monitored during the selection using cell 
viability assays. 
 

According to figure 111, the establishment of resistance profile in HepG2 cell line was 

successful showing that after 8 months of selection, HepG2 cells became resistant to T/C 

activated toxin tolerating a dose of 50 µg/ml and presenting an EC50 that was greater 

than 100 µg/ml. 

 

6.3 Confirmation of the resistance to the toxin 
 

During the selection, monitoring the progress of the development of the toxin-resistant 

line was carried out. This was achieved by using two types of cell viability assays: 

CellTiter-Blue and CellTiter-Glo which measure metabolic capacity and ATP levels 

respectively.  

 Confirmation using CellTiter-Blue cell viability assay 

At the stage when the cells were tolerating a dose of 8 µg/ml which corresponds to 

around 3 fold the EC50 of the susceptible cell line, comparison between the sensitivity 

of the selected and parental HepG2 cell lines to T/C activated Cry41Aa was performed 

(figure 112). 
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Figure 112: Assessment of the level of toxicity of T/C activated Cry41Aa on susceptible and HepG2 tolerating 8 
µg/ml. 
Susceptible and HepG2 tolerating 8 µg/ml were seeded at the density of 25 x 104 cells/ml. The next day the cells were 
treated with different concentrations (15, 10, 5, 2, 1 μg/ml) of ÄKTA purified T/C activated Cry41Aa. 24 hours later, 
cell viability was measured using CellTiter-Blue assay. Ttest was used to calculate the p value: *p=1.46E-06 
 

 

According to our results, a difference in sensitivity to the toxin was observed which 

became significant at high doses of T/C activated Cry41Aa. In fact a concentration of 15 

µg/ml resulted in a sharp and moderate decrease in viability of susceptible and resistant 

HepG2 respectively. TX-100 (0.01%) treatment, which was used as a positive control, 

caused a sharp decrease in viability for both cell lines. 

 

When the cells were tolerating the toxin at a concentration of 30 μg/ml, the level of 

resistance was again assessed (Figure 113). 
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Figure 113: Assessment of the level of toxicity of T/C activated Cry41Aa on susceptible and HepG2 tolerating 30 
µg/ml. 
Susceptible and HepG2 tolerating 30 µg/ml were seeded at the density of 25 x 104 cells/ml. The next day the cells 
were treated with different doses (42, 30, 20, 10, 5, 2, 1, 0.5 μg/ml) of AKTA purified T/C activated Cry41Aa. 24 hours 
later, cell viability was measured using CellTiter-Blue assay. Ttest was used to calculate the p value:*p=2.06E-06, 
*p=7.47E-08 and **p=6.41 E-08 
 

 

Our results showed that there was a considerable difference in the level of toxicity of 

T/C activated Cry41Aa between susceptible HepG2 (EC50 around 3 μg/ml) and resistant 

HepG2 (EC50 > 42 μg/ml). A significant viability decease was again shown for both cell 

lines upon treatment with TX-100 (0.01%). 

 

At the stage when the cells were tolerating a dose of 50 µg/ml, the resistance phenotype 

was again checked (figure 114). 
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Figure 114: Assessment of the level of toxicity of T/C activated Cry41Aa on HepG2 tolerating 50 µg/ml.  
HepG2 cells that were tolerating 50 μg/ml were seeded at the density of 25 x 104 cells/ml. The next day the cells were 
treated with different concentrations (136, 120, 100, 80, 60, 40, 20 μg/ml) of T/C activated Cry41Aa. 24 hours later, 
cell viability was measured using CellTiter-Blue. 
 
 
 
According to our results, the resistance to the toxin reached a very high level. In fact, 

around 50% of cells were still viable upon treatment with the toxin at a concentration 

of 136 µg/ml which corresponds to around 50 fold more the EC50 of the parental cell 

line.  

 

 
 Confirmation using CellTiter-Glo Luminescence cell viability assay 

 
 
Total ATP levels, another indicator for cell viability, were measured in both susceptible 

and resistant HepG2 (tolerating 50 μg/ml) cell lines (Figures 115 and 116). 
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Figure 115: Assessment of ATP levels in susceptible HepG2 cells after exposure to T/C activated Cry41Aa. 
HepG2 cells were seeded at the density of 25 x 104 cells/ml, in a white wall 96-well plate. The next day cells were 
dosed with different concentrations of purified T/C activated Cry41Aa (20, 15, 10, 5, 2, 1, 0.5 µg/ml), Triton X-100 
(0.01%) or buffer. 24 hours later, cell viability was measured using CellTiter-Glo assay. Ttest was used to calculate the 
p value: *p=2.15 E-05 
 
 

 

Figure 116: Assessment of ATP levels in resistant HepG2 cells after exposure to T/C activated Cry41Aa.  
HepG2R cells were seeded at the density of 25x104 cells/ml, in a white wall 96-well plate. The next day cells were 
dosed with different concentrations of T/C activated Cry41Aa (85, 60, 40, 20 µg/ml) or buffer. 24 hours later, cell 
viability was measured using CellTiter-Glo assay. Ttest was used to calculate the p value: *p=0.34 
 
 
Our results indicated that ATP levels were significantly reduced in susceptible HepG2 

but not in resistant HepG2 exposed to higher concentrations of toxin. 

Both types of cell viability assays showed that the selected cells presented a high level 

of resistance to the toxin. At this stage, the selection process was stopped and the 

resistant HepG2 cell line, grown in the EC50 dose of toxin (see next section), was used 

for further analyses. 
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6.4 Estimation of half maximal effective  

                             concentration (EC50) 
 

The level of toxicity of T/C activated Cry41Aa was evaluated on the susceptible and the 

established resistant HepG2 (HepG2R) cell lines using CellTiter-blue cell viability assay 

and the EC50 values (effective concentration of the drug that gives half-maximal 

response) were determined using SPSS software (Statistical Package for the Social 

Sciences), Probit Regression analysis (Figures 117 and 118). 

 
Figure 117: Evaluation of the level of resistance to the toxin in resistant HepG2 (HepG2R). 
HepG2R cells were seeded at the density of 25 x 104 cells/ml. The next day cells were incubated with different doses 
of ÄKTA purified T/C activated Cry41Aa (30 - 200μg/ml). Cell viability was measured after 24 hours using CellTiter-
Blue. 
 

 
Figure 118: Assessment of the sensitivity of susceptible HepG2 to the toxin. 
HepG2 cells were seeded at the density of 25 x 104 cells/ml. The next day cells were incubated with different doses of 
ÄKTA purified T/C activated Cry41Aa (0.1 - 10 μg/ml). Cell viability was measured after 24 hours using CellTiter-Blue. 
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According to our results the EC50s of the resistant and susceptible HepG2 were 113.3 

μg/ml and 2.76 μg/ml respectively therefore the resistance index was equal to 41, a 

value that is considered high compared with previous work where resistant cells to 

chemotherapeutic agents were studied.  

 
6.5 Morphological changes 

 
 

During the development of the resistance process, cell morphology was visualized at 

different stages. The most obvious aspect was the morphological difference between 

the cells cultured in toxin-free medium and when they were cultured in the presence of 

the toxic agent. In fact, when the cells were cultured in the presence of toxin, they 

showed an extended pseudopodia-like phenotype, however, this morphological aspect 

disappeared when the toxic agent was removed from the medium (figure 119). 

 

 
Figure 119: Microscopic observation of resistant HepG2 cultured in medium -/+toxin. 
HepG2R were seeded at the density of 4 x 104 cells/ml in 2 wells of 6 well plate. The next day, the toxin (80 µg/ml) 
was added to one of the wells. After 4 days, the pictures were taken using Nikon Eclipse TS100 inverted microscope 
10X objective. The picture of cells with toxin was zoomed in for clarification of the phenotype. 
 

 

Morphological changes between the susceptible and resistant (cultured in toxin-free 

medium) cell lines were also examined using Differential Interference Contrast 

microscopy (DIC) which ensures good visualization of morphological features for 

unstained specimens (Figure 120).  
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Figure 120: Morphological changes analysis between susceptible and resistant HepG2 cell lines. 
HepG2 and HepG2R cells were seeded at the density of 4 x 104 cells/ml in a microscope chamber slide. The next day, 
pictures were taken using Zeiss Axiovert 200M, 63x DIC objective. 
 

 

According to our results, no obvious morphological alterations between susceptible 

HepG2 (A) and resistant HepG2 (B) were observed in the absence of toxin. 

 

6.6 Cross resistance study 
 

 
The acquisition of resistance to multiple anticancer drugs by human cells results in a 

serious problem in chemotherapy and it is also one of the reasons for tumour relapse 

and metastasis. 

 

Previous attempts to generate resistant cancer cell line(s) to a particular 

chemotherapeutic drug(s), showed that most cells appeared to acquire a cross-

resistance profile. In order to investigate if it is the case for resistant HepG2, two 

chemotherapeutic drugs were used (figure 121): 

 Etoposide: works by blocking an enzyme (Topoisomerase 2) which is 

necessary for cancer cells to divide. 

 5-Fluorouracil: works by stopping the cells making and repairing DNA. 

 

These two chemotherapeutic drugs were chosen based on the knowledge about the 

chemo-sensitivity of HepG2 towards them (Okamura et al., 2008, Xie et al., 2011). 
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Figure 121: Assessment of the level of toxicity of Etoposide and 5-Fluorouracil (5-FU) against susceptible and 
resistant HepG2 cell lines. 
HepG2 and HepG2R were seeded at the density of 5 x 104 cells/ml. The next day they were treated with different 
doses (0.5-80 μM) of Etoposide and 5-FU. 24 hours later, cell viability was measured using CellTiter-Blue assay. Ttest 
was used to calculate the p values:  *p= 0.18 and **p= 0.25 
 
 
 
No significant difference of the cytotoxic effect of both drugs was observed between the 

two cell lines indicating that the resistant HepG2 was not cross resistant to these two 

chemotherapeutic drugs.  

 

Other drugs that were synthesized in the chemistry department of Sussex University by 

a PhD student (Fatai Afolabi) were also tested on both cell lines (figure 123). These drugs 

consists of acridine gold derivatives (figure 122). 

 

 

 

Figure 122: Different compounds that were used to assess the cross resistance phenotype in resistant HepG2 cell 

line 
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Figure 123: Assessment of the sensitivity of susceptible and resistant HepG2 cell lines to acridine gold drivatives. 
HepG2 and HepG2R were seeded at the density of 25 x 104 cells/ml. The next day they were treated of different 
concentrations of V03AF59D, V04AF09D, V04AF13D and V04AF25D. 24 hours later, cell viability was measured using 
CellTiter-Blue assay. Ttest: p values calculated for the 4 acridine compounds were 0.11<p<0.32 
 

According to our results, similar level of sensitivity of the susceptible and resistant 

HepG2 cell lines to these drugs was observed indicating that the generated resistant 

HepG2 was also not cross resistant to the acridine gold derivatives described above. 

 

6.7 Assessment of membrane damage: Patch clamp  

                             analysis 
 
Patch clamp is the most widely used experimental method allowing the measurement 

of ionic currents in excised patches as well as in intact membranes. Whole-cell 

recordings are used to assess ion channel activity of the entire cell membrane.  

Whole cell patch clamping was then used to observe macroscopic current activity in 

HepG2 and HepG2R cells during exposure to PS-3. The cells were given to Barbara 

Domanska who carried out the electrophysiology experiments in collaboration with Prof 

Jean-Louis Schwartz in Montreal in 2016. 

The recordings were obtained before toxin addition and every 5 minutes for 20 minutes 

after toxin treatment. A set of current /voltage relationships (I/V curve) of HepG2 and 

HepG2R cells exposed to T/C activated Cry41Aa was carried out in a time course 

experiments (Figures 124 and 125). Digitonin treated HepG2R cells served as a positive 

* * * * 
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control (Figure 127) while HepG2R cells exposed to Cry1Ca were tested as a negative 

control (Figure 126).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 124: Whole cell patch clamp recordings from a time course experiment of HepG2 cells exposed to T/C 
activated Cry41Aa. 
HepG2 cells were seeded at the density of 5 x 104 cells/ml on a glass coverslip inside a 35 mm petri dish. The 
next day whole cell patch clamp recordings from a single cell were reported at 0, 5, 10, 15, 20 minutes after Cry41Aa 
(12µg/ml) addition to the bath containing NaCl solution. Currents were induced by a 1 second set of depolarizing 
potentials from -20 to 140 mV from a holding potential of -20 mV. Error bars indicate the standard error of the 
mean. The lines show the mean currents from three representative experiments from three different cells patched. 
 

 

Figure 125: Whole cell patch clamp recordings from a time course experiment of HepG2R cells exposed to Cry41Aa. 
HepG2R cells were seeded at the density of 5 x 104 cells/ml on a glass coverslip inside a 35 mm petri dish. The 
next day whole cell patch clamp recordings from a single cell were reported at 0, 5, 10, 15, 20 minutes after Cry41Aa 
(20µg/ml) addition to the bath containing NaCl solution. Currents were induced by a 1 second set of depolarizing 
potentials from -20 to 140 mV from a holding potential of -20 mV. Error bars indicate the standard error of the 
mean. The lines show the mean currents from three representative experiments from three different cells patched. 
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Figure 126: Whole cell patch clamp recordings from a time course experiment of HepG2R cells exposed to Cry1Ca. 
HepG2R cells were seeded at the density of 5 x 104 cells/ml on a glass coverslip inside a 35 mm petri dish. The 
next day whole cell patch clamp recordings from a single cell were reported at 0, 5, 10, 15, 20 minutes after Cry1Ca 
(12µg/ml) addition to the bath containing NaCl solution. Currents were induced by a 1 second set of depolarizing 
potentials from -20 to 140 mV from a holding potential of -20 mV. Error bars indicate the standard error of the 
mean. The lines show the mean currents from three representative experiments from three different cells patched. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 127: Whole cell patch clamp recordings from a time course experiment of HepG2R cells exposed to digitonin. 
HepG2R cells were seeded at the density of 5 x 104 cells/ml on a glass coverslip inside a 35 mm petri dish. The 
next day whole cell patch clamp recordings from a single cell were reported at 0, 5, 10, 15, 20 minutes after 
digitonin (13 µg/ml) addition to the bath containing NaCl solution. Currents were induced by a 1 second set of 
depolarizing potentials from -20 to 140 mV from a holding potential of -20 mV. Data came from a single patch 
clamp experiment. 
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Whole cell patch clamp recordings showed that at a concentration of 12 µg/ml, T/C 

activated Cry41Aa induced large currents (which increased proportionally with increased 

voltage applied) in susceptible unlike in resistant HepG2 that were exposed to a higher 

dose of toxin (20 µg/ml).  

Cry1Ca that was used as a negative control did not induce large currents while in 

digitonin treated cells at 20 minute time point currents increased proportionally with 

increased voltage applied.  

 

6.8 Characterisation of HepG2R cell response to the  

                     toxin compared with the parental cell line 
 

• Activation of p38 MAP kinase pathway 

 

Knowing that Cry41Aa caused p38 phosphorylation in susceptible HepG2 (see chapter 5 

section 5-2), it was interesting to investigate if this response was similar in the resistant 

line. Western blot technique was used to analyse the extracts of both cell lines that were 

exposed to toxin, sodium arsenite (potent p38 inducer), Cry1Ca and buffer (used as 

negative controls) (Figure 128). 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 128: Assessment of p38 activation in toxin treated HepG2 and HepG2R cells. 
HepG2 and HepG2R cells were treated with purified T/C activated Cry41Aa (12 μg/ml), buffer, sodium arsenite (0.5 
mM), or Cry1Ca (12 μg/ml) for 30 minutes. Next, cells were lysed in RIPA buffer. 15 µg of protein from each sample 
were loaded in each lane and analysed by western blot for the presence of phosphorylated p38 (pp38). CD59 was 
used as the loading control. 
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p38 phosphorylation was elevated in sodium arsenite treated HepG2 and HepG2R. 

However T/C activated Cry41Aa at a concentration of 12 µg/ml caused p38 

phosphorylation in susceptible but not in resistant HepG2 cells and no signal was 

produced from the extracts of cells that were exposed to Cry1Ca. 

In order to figure out if a higher dose of toxin would induce p38 phosphorylation in the 

resistant cell line, the cells were dosed with 120 µg/ml of toxin and the extracts were 

analysed (Figure 129). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 129: Assessment of p38 activation in toxin treated HepG2R cells. 
HepG2R cells were treated with purified T/C activated Cry41Aa (120 μg/ml), buffer, sodium arsenite (0.5mM), or 
Cry1Ca (12 μg/ml) for 30 minutes. Next, cells were lysed in RIPA buffer. 20 µg of protein from each sample were 
loaded in each lane and analysed by western blot for the presence of phosphorylated p38. CD59 was used as the 
loading control. 
 
 
Signal was produced from the extracts of cells exposed to sodium arsenite and T/C 

activated Cry41Aa at a concentration of 120 μg/ml indicating that as with susceptible 

HepG2 (Domanska, 2016), toxin concentrations around the EC50 levels induced p38 

phosphorylation in the resistant subline. 

 
• Assessment of EGTA effect on toxin action 

 
A detailed study on the effect of different metal ion chelators on Cry41Aa activity was 

carried out by Domanska in 2016 who had shown that EGTA inhibited the effect of 
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Cry41Aa on susceptible HepG2. We confirmed this finding (figure 130). The effect of this 

chelator on toxin activity in resistant HepG2 was then investigated (figure 131). 

 
 
 

 
Figure 130: The effect of chelating agent (EGTA) on the viability of toxin treated HepG2 cells. 
HepG2 cells were seeded at the density of 25 x 104 cells/ml. The next day cells were pre-incubated with 5 mM of 
EGTA or water (mock) for 30 min followed by the addition of toxin (12 μg/ml). The readings were taken 6 hours after 
toxin addition using CellTiter-Blue assay. Ttest was used to calculate the p value: *p= 0.0005 
 
 
 

 
Figure 131: The effect of chelating agent (EGTA) on the viability of toxin treated HepG2R cells. 
HepG2 cells were seeded at the density of 25 x 104 cells/ml. The next day cells were pre-incubated with 5 mM of 
EGTA or water (mock) for 30 min followed by the addition of toxin (120 μg/ml). The readings were taken 6 hours after 
toxin addition using CellTiter-Blue assay. Ttest was used to calculate the p value: *p= 0.0001 
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According to our results EGTA significantly reduced the cytotoxicity of T/C activated 

Cry41Aa at a concentration of 12 and 120 µg/ml in susceptible and resistant HepG2 cells 

respectively. 

 
6.9 Stability of the resistance phenotype 

 
 
In order to figure out the stability of the toxin-resistance phenotype in HepG2R cultured 

in the absence of the toxin, the selected cell line was cultured in DMEM only and the 

sensitivity to the toxin was monitored over time (Figure 132). 

 

 

 

 

 

 

 

 

 

 
Figure 132: Assessment of the cytotoxic effect of T/C activated Cry41Aa on HepG2R cultured in medium free of 
toxin over time. 
HepG2R at different time points during a period of 10 months were seeded at a density of 25 x 104 cells/ml. The next 
day the cells were treated with purified T/C activated Cry41Aa at a concentration of 20 μg/ml. 24 hours later, cell 
viability was measured using CellTiter-Blue assay. 
 

 

According to figure 132, after 5 months of culturing the resistant HepG2 in medium free 

of T/C activated Cry41Aa, the level of toxin resistance started to decrease gradually over 

time. In fact, the treatment of cells with the toxin at a concentration of 20 μg/ml had no 

cytotoxic effect at the beginning of the procedure. 5 months later, cell viability started 

to decrease gradually to reach 10% after 10 months. 

 

The cytotoxicity level of T/C activated Cry41Aa was then assessed on both the reverted 

and the susceptible HepG2 cell lines (Figure 133).  
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Figure 133: Comparison between the cytotoxic effect of the toxin on reverted and susceptible HepG2 cell lines. 
Susceptible and reverted HepG2 cells were seeded at a density of 25 x 104 cells/ml. The next day they were treated 
with different concentrations of purified T/C activated Cry41Aa (20, 15, 10, 5, 2, 1 μg/ml). 24 hours later the cell 
viability was measured using CellTiter-Blue assay. Ttest was used to calculate the p value: *p=0.52 (p values for all 
other concentrations used were >0.05) 
 

Our results indicated that the toxin exhibited the same level of cytotoxic effect on both 

cell lines suggesting that culturing resistant HepG2 in medium free of toxin during a 

period of around 10 months resulted in them reverting to a susceptible cell line. 

In order to figure out if selective pressure was driving the reversion, the growth of HepG2 

cell lines were monitored over time (Figure 134). 

 

 

 

 

 

 

 

 

 

 

 
Figure 134: Growth curve comparison between susceptible, resistant and reverted HepG2 cell lines. 
HepG2 cell lines were seeded at the same cell density (25 x 104 cells/ml). The growth of cells was monitored by 
counting cells using Trypan blue reagent and haemocytometer chamber. Three replicates were used for each 
determination and four cell counts for each replicate from each cell line were made every 24 hours for 5 days.  
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According to our results there was no selective pressure to drive HepG2R reversion as 

similar growth curves were observed in susceptible, reverted and resistant HepG2 cell 

lines. No selective pressure suggests no need to reverse a mutation. Therefore, perhaps 

an epigenetic effect might have influenced gene expression. RNA sequencing was a good 

approach to test this possibility. 

Thus, transcriptome sequencing was used to unravel molecular processes potentially 

responsible for the resistance mechanism. 

 

6.10 RNA isolation and sequencing 
 

 
Total RNA was extracted from both susceptible and resistant HepG2 cell lines using 

RNeasy Kit (Qiagen) according to the manufacturer’s instructions. The RNAs were eluted 

in 40 µL of RNase/DNase-free water and stored at −80°C until analysis. Initially, 

concentration and purity of the RNA samples were measured using a NanoDrop ND-2000 

spectrophotometer where A260/A280 ratios were in the range of 1.8 to 2.0 indicating 

the purity of the samples of interest. After being denatured, the RNAs were then run on 

agarose gel in order to check the presence of the desired bands (Figure 135). 

 

 

 

 

 

 
 
Figure 135: Agarose gel of total RNAs extracted from susceptible and resistant HepG2. 
Total RNAs were extracted from HepG2 and HepG2R using RNeasy kit as per manufacturer’s instructions. Three 
biological replicates for each cell line were then denatured using formaldehyde and heating then run on 1% agarose 
gel. 
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According to figure 135, the 28S and the 18S ribosomal RNAs were clearly visible. The 

absence of a smeary profile in the lanes suggested that the RNA samples were intact 

with no degradation observed. 

The integrity of RNA samples was later assessed by microfluidic capillary electrophoresis 

using an Agilent 2100 Bioanalyzer and the RNA 6000 Nano Chip kit. Using electrophoretic 

separation on microfabricated chips, RNA samples were separated and subsequently 

detected via laser induced fluorescence detection. The Bioanalyzer software generated 

a gel-like image (figure 136) and electropherograms (figure 137) providing a detailed 

assessment of the quality of the RNA samples. In principle, by the mean of an Agilent 

Bioanalyser, the quality of RNA is determined based on an RNA Integrity Number (RIN) 

which varies between 1 and 10 with 10 being the highest quality samples showing the 

least degradation. Values of RIN that are greater than 8 were considered acceptable. In 

humans, 28S rRNA has around 5070 nucleotides, and 18S has 1869 nucleotides, which 

gives a 28S/18S ratio of around 2.7. A high 28S/18S ratio (usually greater than 2) is an 

indication that the purified RNA is intact and hasn't degraded.  

 

 

 

 
 
 
 
 

 

 

 

 
 

Figure 136: The computerised RNA gel generated by the BioAnalyser instrument. 
Lane 1: ladder, 2-4 lanes:  the three technical repeats of HepG2 and 5-7 lanes: the three technical repeats of HepG2R. 
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According to the banding profile, the presence of three distinct bands indicated high 

quality of RNA samples (Aranda et al., 2012). The top band represents 28S ribosomal 

RNA (rRNA) of around 4 kb, the middle band represents 18S rRNA of 1.9 kb and the third 

band represents 5.8S (154 nt) and 5S (117 nt) RNA. Transfer RNAs (73-93 nt) were not 

visible.  

 

 

Figure 137: Electropherograms of extracted RNAs from susceptible and resistant HepG2 cell lines. 
Electropherogram traces for approximately 400 ng of RNA target applied to an RNA Nano Chip were generated on 
the 2100 Bioanalyzer 
 

According to the electropherograms, the RNA integrity number of resistant and 

susceptible HepG2 were 9.2 and 9.4 respectively, values that were considered within the 

range indicating high purity of the samples. 28S/18S ratio was 1.8 for both cell lines 

which was acceptable. The concentrations of RNA samples of susceptible and resistant 

HepG2 cell lines were 391 ng/μl and 427 ng/µl respectively which were satisfactory 

knowing that the concentration required for RNA sequencing technique was 1 µg per 

sample. 

Thus, spectrophotometric measurements and molecular sizing with the 2100 

Bioanalyzer have proven that the RNA samples were of a high quality. 
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Knowing that RNA sequencing analysis provides a comprehensive understanding of  the 

complexity of eukaryotic transcriptome and in an attempt to better understand the 

mechanism of action of Cry41Aa against HepG2 cells, total RNAs of both susceptible and 

resistant HepG2 cell lines were sequenced by a third party-GATC biotech company. 

The generated FASTQ files were analysed using bioinformatic tools (usegalaxy.org).  The 

reads were aligned onto the UCSC reference genome (hg38) using TopHat. The aligned 

reads were assembled into transcripts using the Cufflinks software which computes 

normalized values termed FPKM (fragments per kilobase of exon per million fragments 

mapped), that reflect the mRNA expression levels. Statistical analysis of differentially 

expressed genes was performed using Cuffdiff, which is integrated into Cufflinks (figure 

138).  

 

Figure 138: Steps followed in order to analyse the RNA-seq data. 

 

 

Although around 22,000 protein-coding genes are present in the human genome, our 

data revealed 35123 differentially expressed transcripts between HepG2 and HepG2R. 

This could be explained by the fact that these would include a myriad of non-protein 

coding sequences. 

Out of the 35123 differentially expressed transcripts, 56 were significantly dissimilar 

(table 6). Some of these transcripts were upregulated or downregulated, others were 

expressed in one cell line but not the other (table 7). Using the locus of each transcript, 

the gene name was determined using UCSC genome browser (genome.ucsc.edu/), 

although there were a few that could not be identified. 
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Table 6: List of differentially expressed genes between HepG2 and HepG2R (Data was altered from the differential 
gene expression file provide by ‘Cuffdiff’). 
The test stat represents the value of the test statistic that is used to determine the significance of the observed 
expression levels. The p value shows the uncorrected probability value of the test statistic while the q value represents 
the false discovery rate corrected p-value. The significance level is determined by whether the p-value if greater than 
the false discovery rate after a number of computational corrections. 
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Table 7: Classification of differentially expressed genes between susceptible and resistant HepG2 cell lines. 

 

The functions (table 8) as well as the pathway analysis (figure 139) of the differentially 

expressed genes were also determined using SPRING software. 

 

 

Table 8: Functions of differentially expressed genes between susceptible and resistant HepG2 cell lines. 

 

Gene Gene function 
 

AQP9 
Forms a channel with a broad specificity. It allows passage of a broad 
range of non-charged solutes and also stimulates urea transport and 
osmotic water permeability. This protein may also facilitate the uptake 
of glycerol in hepatic tissue. 

 
 
 
 

KITLG 

KIT ligand: Ligand for the receptor-type protein-tyrosine kinase KIT. It 
plays an essential role in the regulation of cell survival and proliferation, 
hematopoiesis, stem cell maintenance, gametogenesis, mast cell 
development, migration and function, and in melanogenesis. KITLG/SCF 
binding can activate several signaling pathways. It promotes 
phosphorylation of PIK3R1 (the regulatory subunit of 
phosphatidylinositol 3-kinase) and subsequent activation of the kinase 
AKT1. KITLG/SCF and KIT also transmit signals via GRB2 and activation of 
RAS, RAF1 and the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK. 

MEP1A Meprin A, alpha (PABA peptide hydrolase).  
 

SPARC 
cysteine-rich acidic matrix-associated protein. It appears to regulate cell 
growth through interactions with the extracellular matrix and cytokines. 
It binds calcium and copper, several types of collagen, albumin, 
thrombospondin, PDGF and cell membranes. It has been associated with 
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tumor suppression but has also been correlated with metastasis based 
on changes to cell shape which can promote tumor cell invasion. 

GDA Guanine deaminase: Catalyzes the hydrolytic deamination of guanine, 
producing xanthine and ammonia. 

 
 

E2F8 

E2F transcription factor 8: participates in various processes such as 
angiogenesis and polyploidization of specialized cells. Mainly acts as a 
transcription repressor:  it directly represses transcription of classical E2F 
transcription factors such as E2F1- component of a feedback loop in S 
phase by repressing the expression of E2F1, thereby preventing 
p53/TP53-dependent apoptosis.  

 
 

G6PC 

Glucose-6-phosphatase: catalytic subunit. It hydrolyzes glucose-6-
phosphate to glucose in the endoplasmic reticulum and forms with the 
glucose-6-phosphate transporter (SLC37A4/G6PT) the complex 
responsible for glucose production through glycogenolysis and 
gluconeogenesis. It is then the key enzyme in homeostatic regulation of 
blood glucose levels. 

 
IL1RN 

Interleukin 1 receptor antagonist: It inhibits the activity of interleukin-1 
by binding to receptor IL1R1 and preventing its association with the 
coreceptor IL1RAP for signaling.  

 
 
 

ENPP2 

Ectonucleotide pyrophosphatase/phosphodiesterase 2. The protein 
encoded by this gene functions as both a phosphodiesterase, which 
cleaves phosphodiester bonds at the 5' end of oligonucleotides, and a 
phospholipase, which catalyzes production of lysophosphatidic acid (LPA) 
in extracellular fluids. LPA evokes growth factor-like responses including 
stimulation of cell proliferation and chemotaxis.  
This gene product also stimulates the motility of tumor cells and has 
angiogenic properties and its expression is upregulated in several kinds 
of carcinomas.  

 
HAL 

Histidine ammonia-lyase. It is a cytosolic enzyme catalyzing the first 
reaction in histidine catabolism, the nonoxidative deamination of L-
histidine to trans-urocanic acid.  

 
 

DPEP1 

The protein encoded by this gene is a kidney membrane enzyme involved 
in the metabolism of glutathione and other similar proteins by dipeptide 
hydrolysis. It is known to regulate leukotriene activity by catalyzing the 
conversion of leukotriene D4 to leukotriene E4. This protein uses zinc as 
a cofactor and acts as a disulfide-linked homodimer.  

 
COTL1 

Coactosin-like 1 (Dictyostelium): It binds to F-actin in a calcium-
independent manner and acts as a chaperone for ALOX5 (5LO), 
influencing both its stability and activity in leukotrienes synthesis. 

 
A1BG 

alpha-1-B glycoprotein. The protein encoded by this gene is a plasma 
glycoprotein of unknown function. The protein shows sequence similarity 
to the variable regions of some immunoglobulin supergene family 
member proteins. 

 
 

AKR1C4 

Aldo-keto reductase family 1, member C4. It catalyzes the transformation 
of the potent androgen dihydrotestosterone (DHT) into the less active 
form, 5-alpha- androstan-3-alpha,17-beta-diol (3-alpha-diol). Also has 
some 20- alpha-hydroxysteroid dehydrogenase activity.  
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FAM13A Family with sequence similarity 13, member A.  
 

VCAN 
This gene is a member of the aggrecan/versican proteoglycan family. It 
may play a role in intercellular signaling and in connecting cells with the 
extracellular matrix. It may also take part in the regulation of cell motility, 
growth and differentiation.  

 
TMEFF2 

Transmembrane protein with EGF-like and two follistatin-like domains 2. 
It may be a survival factor for hippocampal and mesencephalic neurons. 
The shedded form up-regulates cancer cell proliferation, probably by 
promoting ERK1/2 phosphorylation. 

AGTR1 Angiotensin II receptor, type 1. Mediates its action by association with G 
proteins that activate a phosphatidylinositol- calcium second messenger 
system. 

XIRP2 Xin actin-binding repeat containing 2. It acts by protecting actin filaments 
from depolymerisation. 

 
HEPACAM 

Hepatic and glial cell adhesion molecule. Involved in regulating cell 
motility and cell-matrix interactions. It may also inhibit cell growth 
through suppression of cell proliferation. 

 
 

UGT2B4 

UDP glucuronosyltransferase 2 family, polypeptide B4. UDPGTs are of 
major importance in the conjugation and subsequent elimination of 
potentially toxic xenobiotics and endogenous compounds. This isozyme 
is active on polyhydroxylated estrogens (such as estriol, 4-
hydroxyestrone and 2-hydroxyestriol) and xenobiotics (such as 4-
methylumbelliferone, 1-naphthol, 4- nitrophenol, 2-aminophenol, 4-
hydroxybiphenyl and menthol). 

SLC22A25 Solute carrier family 22, member 25. 
 

PCK1 
Phosphoenolpyruvate carboxykinase 1.  It catalyzes the conversion of 
oxaloacetate (OAA) to phosphoenolpyruvate (PEP), the rate-limiting step 
in the metabolic pathway that produces glucose from lactate and other 
precursors derived from the citric acid cycle. 

 
 

OSBPL1A 

Oxysterol binding protein-like 1A. Binds phospholipids, 25-
hydroxycholesterol and cholesterol, exhibits strong binding to 
phosphatidic acid and weak binding to phosphatidylinositol 3- 
phosphate. It stabilizes GTP-bound RAB7A on late endosomes/lysosomes 
and alters functional properties of late endocytic compartments via its 
interaction with RAB7A.  

 
EHD3 

EH-domain containing 3. It is an ATP- and membrane-binding protein that 
controls membrane reorganization/tubulation upon ATP hydrolysis. It 
plays a role in endocytic transport and in the formation of the ciliary 
vesicle, an early step in cilium biogenesis. 

 
 
 

LEPR 

Leptin receptor. On ligand binding, it mediates LEP central and peripheral 
effects through the activation of different signaling pathways such as 
JAK2/STAT3 and MAPK cascade/FOS. In the hypothalamus, LEP acts as an 
appetite-regulating factor that induces a decrease in food intake and an 
increase in energy consumption by inducing anorexinogenic factors and 
suppressing orexigenic neuropeptides, also regulates bone mass and 
secretion of hypothalamo-pituitary-adrenal hormones (By similarity).  
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ARSI Arylsulfatase family, member I. Displays arylsulfatase activity at neutral 
pH, when co- expressed with SUMF1.  

RTN4RL2 Reticulon 4 receptor-like 2. It may play a role in regulating axonal 
regeneration and plasticity in the adult central nervous system. 

PLEKHB1 Pleckstrin homology domain containing, family B (evectins) member 1. It 
is Required for proper localization of retinogeniculate projections but not 
for eye-specific segregation. 

 
 
 

FYN 

FYN oncogene related to SRC, FGR, YES. Non-receptor tyrosine-protein 
kinase that plays a role in many biological processes including regulation 
of cell growth and survival, cell adhesion, integrin-mediated signaling, 
cytoskeletal remodeling, cell motility, immune response and axon 
guidance. Inactive FYN is phosphorylated on its C-terminal tail within the 
catalytic domain. Following activation by PKA, the protein subsequently 
associates with PTK2/FAK1, allowing PTK2/FAK1 phosphorylation, 
activation and targeting to focal adhesions.  

 
PLAGL1 

Pleiomorphic adenoma gene-like 1. It exhibits weak transcriptional 
activatory activity. It is a transcriptional regulator of the type 1 receptor 
for pituitary adenylate cyclase-activating polypeptide. 

PLEKHG1 Pleckstrin homology domain containing, family G (with RhoGef domain) 
member 1. 

 
 

CPLX2 

Complexin 2. It negatively regulates the formation of synaptic vesicle 
clustering at active zone to the presynaptic membrane in postmitotic 
neurons and it positively regulates a late step in exocytosis of various 
cytoplasmic vesicles, such as synaptic vesicles and other secretory 
vesicles. It is also involved in mast cell exocytosis (By similarity). 

SLC25A47 Solute carrier family 25, member 47. This uncoupling protein may 
catalyze the physiological ’proton leak’ in liver. Its overexpression induces 
the dissipation of mitochondrial membrane potential. 

OGFRL1 Opioid growth factor receptor-like 1. 
 
 
 

 
PGC 

Progastricsin (pepsinogen C). It hydrolyzes a variety of proteins. The 
encoded protein is a digestive enzyme that is produced in the stomach 
and constitutes a major component of the gastric mucosa. It is secreted 
into the serum and synthesized as an inactive zymogen that includes a 
highly basic prosegment. This enzyme is converted into its active mature 
form at low pH by sequential cleavage of the prosegment that is carried 
out by the enzyme itself. Polymorphisms in this gene are associated with 
susceptibility to gastric cancers. Serum levels of this enzyme are used as 
a biomarker for certain gastric diseases including Helicobacter pylori 
related gastritis.  

SERINC2 Serine incorporator 2. 
FHAD1 Forkhead-associated (FHA) phosphopeptide binding domain 1. 

 
TNFRSF19 

Tumor necrosis factor receptor superfamily, member 19. It can mediate 
activation of JNK and NF-kappa-B and may promote caspase-
independent cell death. 

 
GPX2 

Glutathione peroxidase 2 (gastrointestinal). Could play a major role in 
protecting mammals from the toxicity of ingested organic 
hydroperoxides.  
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SPP1 Secreted phosphoprotein 1. It binds tightly to hydroxyapatite and 
appears to form an integral part of the mineralized matrix. It may also be 
important to cell-matrix interaction. 

 
SLC16A9 

Solute carrier family 16, member 9 (monocarboxylic acid transporter 9). 
It is a proton-linked monocarboxylate transporter that catalyzes the rapid 
transport across the plasma membrane of many monocarboxylates (By 
similarity). 

UGT2B11 UDP glucuronosyltransferase 2 family, polypeptide B11. UDPGT is of 
major importance in the conjugation and subsequent elimination of 
potentially toxic xenobiotics and endogenous compounds. 

FAM54A Family with sequence similarity 54, member A. It may play a role in 
mitochondrial aerobic respiration essentially in the testis and can also 
promote mitochondrial fission (By similarity). 

 

 

 

Amongst the genes that were expressed in resistant but not in susceptible HepG2 cell 

line, aqp9 was of interest. This gene belongs to the family of aquaporins that are water-

selective membrane channels and shown biophysically to conduct water, glycerol, and a 

broad range of non-charged solutes.  

 

The reason behind choosing aqp9 was that aquaporins have been implicated in the 

mechanism of action of Cry1Aa against Sf9 cells expressing a Bt receptor (Endo et al., 

2017).    
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Figure 139: Pathway analysis/protein interaction network of differentially expressed genes between susceptible 
and resistant HepG2 cell lines. 
 

According to figure 139, it appears that AQP9 does not have any interaction network 

with the other proteins therefore analysis were performed solely on AQP9.  
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6.10.1 Validation of aqp9 expression level by RT-qPCR 
 

 
Following the identification of AQP9 as this study’s initial gene of interest, it became 

important to validate the gene expression levels obtained by the RNA-seq data. Total 

RNA from susceptible and resistant HepG2 cell lines was subjected to cDNA synthesis in 

a 10 µL reaction using the high capacity cDNA reverse transcription kit (Applied 

Biosystems) according to the manufacturer's instructions. qPCR was performed on a 

Real-Time PCR System in a standard 96-well format in a 20 µL reaction mixture using 

Power Syber Green PCR Master Mix (Applied Biosystems). 

Forward and reverse Primers used for aqp9 (figure 140) and for the housekeeping gene 

GAPDH (figure 141) were designed using NCBI/ Primer-BLAST program. 

 

 

Figure 140: Schematic illustration of forward and reverse primers for Aqp9. 

 

Figure 141: Schematic illustration of forward and reverse primers for GAPDH. 

 

Three biological samples were used to investigate the level of expression of AQP9 in 

HepG2 and HepG2R cells. Genomic DNA and primer contamination assessments were 

carried out in all the RT-qPCR experiments showing no detection (data not shown). 

HepG2 (1) sample was used as the reference in this experiment (figure 142). 
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Figure 142: Graph showing RT- qPCR data for the level of AQP9 expression in three repeats of each HepG2R and 
HepG2. 
Gene expression was analysed using the relative quantification (RQ) method. RQ estimates the difference at the level 
of gene expression against a calibrator (HepG2 drug sensitive line) (RQ of the calibrator = 1). The analysis was 
conducted employing the standard formula: RQ = 2−ΔΔCt (where ΔΔCt = ΔCt for the sample (exp: HepG2 (2)) −ΔCt for 
the calibrator (HepG2)). GAPDH was used as housekeeping gene. Error bars RQ min/max. Ttest: *p=1.71E-06 
 

The mRNA level of aqp9 was higher in resistant than in susceptible HepG2 cell line 

(around 100-fold difference) which confirmed the RNA-seq results. Quantities of RNA in 

each lane were normalized by GAPDH expression. 

It was then worthwhile figuring out aqp9 expression level in reverted HepG2. Therefore 

another RT-qPCR experiment was performed using susceptible (used as control), 

resistant and reverted cells (figure 143). 

 
 
 
 
 
 

 

 

 

 

Figure 143: RT-qPCR analysis of AQP9 mRNA expression in HepG2 and HepG2R and HepG2 Rev cells.  
Gene expression was analysed using the relative quantification (RQ) method. RQ estimates the difference at the level 
of gene expression against a calibrator (HepG2 drug sensitive line) (RQ of the calibrator = 1). The analysis was 
conducted employing the standard formula: RQ = 2−ΔΔCt (where ΔΔCt = ΔCt for the sample (drug-resistant or reverted 
line) −ΔCt for the calibrator (drug sensitive line)). GAPDH was used as housekeeping gene. Error bars RQ min/max. 
Ttest: *p=1.22E-05 

* 

* 
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The level of mRNA of aqp9 dropped considerably in reverted HepG2 compared with the 

resistant cell line even reaching a lower value than that of the susceptible HepG2. This 

result suggested that upregulation of AQP9 may play a crucial role in the resistance 

mechanism. 

The hypothesis adopted was that Cry41Aa induces AQP9 expression. This upregulation 

may have a role in maintaining homeostasis and in the resistant cell line it is 

constitutively upregulated. Therefore, we studied the expression level of AQP9 of 

susceptible HepG2 prior and post- treatment with the toxin (figure 144).  

 

 

 

 

 

 

 

 

 
 
Figure 144: RT-qPCR analysis of AQP9 mRNA expression in HepG2 before and after toxin treatment. 
Gene expression was analysed using the relative quantification (RQ) method. RQ estimates the difference at the level 
of gene expression against a calibrator (HepG2 drug sensitive line) (RQ of the calibrator = 1). The analysis was 
conducted employing the standard formula: RQ = 2−ΔΔCt (where ΔΔCt = ΔCt for the sample (HepG2+toxin) −ΔCt for the 
calibrator (drug sensitive line)). The qPCR data are presented as relative values normalized to those of the internal 
control (GAPDH). Error bars RQ min/max. Ttest: *p=3.85E-05 
 

 

The level of mRNA of aqp9 increased considerably (around 400-fold increase) in HepG2 

cells upon treatment with the toxin. This result indicated that T/C activated Cry41Aa 

induced AQP9 expression. As a result of this finding we proposed a model of the role of 

AQP9 in the mechanism of action of Cry41Aa on HepG2. 

 

The model suggests that when susceptible HepG2 are exposed to the toxin there will be 

creation of pores in the cell membrane through which water and other solutes will enter 

causing osmotic imbalance. AQP9, induced by this action, will try to retain the osmotic 

balance, however, if there is insufficient AQP9, the effect of toxin is too great causing 

* 
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cell swelling leading to cell lysis and death. In HepG2R, pores are formed following 

exposure to the toxin which initiates swelling of the cell. This process activates the 

membrane protein AQP9 which begins to transport water, along with a number of other 

solutes out of the cell. The high expression of AQP9 in these cells plays a role in reducing 

the osmotic gradient and quickly restoring the cell to a healthy state, preventing lysis 

(figure 145).  

 

 

Figure 145: Proposed mode of action of Cry41Aa involving AQP9 protein. 

 

 
 

6.10.2 Validation of AQP9 protein expression by western  

                                   blot 
Western blot experiment was carried out in order to figure out AQP9 protein expression levels 

in susceptible, resistant and reverted HepG2 cells -/+ toxin. As sodium arsenite was shown to 

induce AQP9 expression (Torres-Avila et al., 2010), it was used as a positive control (figure 146). 
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Figure 146:  Western blot analysis of AQP9 expression in HepG2, HepG2R and HepG2 Rev extracts. 
HepG2, HepG2R and HepG2 Rev cells were treated with toxin at a concentration of 5, 5 and 100 μg/ml respectively, 
sodium arsenite (5 mM) or PBS for 30 min before being lysed with RIPA. 25 μg of proteins were loaded per well and 
run on 12% SDS-PAGE gel. After transfer the membrane was incubated with anti-AQP9 overnight then secondary 
antibody followed by ECL detection. CD59 was used as the loading control. 
 
 

 

Our results showed that the level of AQP9 was higher in resistant than in susceptible 

HepG2 which correlated well with the mRNA levels previously assessed (see figure 142). 

On the other hand, AQP9 level in reverted HepG2 treated with buffer only, was higher 

than that of susceptible cell line in which case no correlation was observed between 

protein and mRNA level. At a protein level, Cry41Aa T/C (FL T/C) did not induce AQP9 

expression in any of these cell lines following 30 min exposure. Perhaps 30 min exposure 

to the toxin might not have been enough to induce AQP9 expression or other 

biological/technical factors might have affected mRNA-protein correlation (see 

discussion).  

 

 

In order to test the hypothesis that exposure time was not enough to induce AQP9 

expression, susceptible HepG2 was exposed to a sub-lethal dose of toxin (1.5 µg/ml) and 

mRNA and protein levels were assessed at different time points (figure 147 and 148). 
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Figure 147: RT-qPCR data showing the mRNA level of aqp9 in susceptible HepG2 -/+ toxin 
Gene expression was analysed using the relative quantification (RQ) method. RQ estimates the difference at the level 
of gene expression against a calibrator (HepG2-toxin) (RQ of the calibrator = 1). The analysis was conducted employing 
the standard formula: RQ = 2−ΔΔCt (where ΔΔCt = ΔCt for the sample (HepG2+toxin) −ΔCt for the calibrator (HepG2-
toxin)). GAPDH used as housekeeping gene. Error bars RQ min/max. 

 

After 2 hours of exposure to the toxin, AQP9 mRNA reached its maximal level. Western 

blot technique was next carried out to study any correlation of this result with AQP9 

protein levels (figure 148). 

 

 
 

 

 

 

 

 

 

 
Figure 148:  Western blot analysis of extracts from HepG2 cells that were treated with or without toxin at different 
time points. 
HepG2 cells were treated with buffer or with toxin (1.5 μg/ml) at different time points (1, 2, 3, 4, 5, 24 hours) before 
being lysed with RIPA. 20 μg of proteins were loaded per well and run on 12% SDS-PAGE gel. After transfer the 
membrane was incubated with anti-AQP9 overnight then secondary antibody followed by ECL detection. CD59 was 
used as the loading control. 
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According to figure 148, the highest signal was produced after 2 hours of exposure to 

the toxin then dropped gradually to reach a similar level to the cells treated with buffer 

only after 24 hours. AQP9 protein levels correlated perfectly with the mRNA levels.  

We then investigated the cytotoxic effect of the toxin at these different time points in 

order to figure out any correlation between AQP9 level and cell viability. For this purpose 

CellTiter-Glo assay was carried out (figure 149).  

 
 
 
 
 
 
 
 
 

 

 

 

 
Figure 149: Assessment of ATP levels in susceptible HepG2 cells after exposure to T/C activated Cry41Aa at different 
time points. 
HepG2 cells were seeded at the density of 25 x 104 cells/ml, in a white wall 96-well plate. The next day cells were 
dosed with of T/C activated Cry41Aa (1.5 µg/ml) or buffer. Luminescence was measured at different time points (1, 
2, 3, 4, 5, 24 hours) using CellTiter-Glo. Ttest: *p= 0.12 (p values for all other concentrations used were >0.05) 
 
 

According to our results, no significant difference in ATP levels was observed at different 

time points of exposure to the toxin. Therefore the transient increase in AQP9 seemed 

to have no effect on Cry41Aa susceptibility.  

 

Because incubation with the toxin for two hours increased AQP9 expression, based on 

our hypothesis that AQP9 has a role in cell defence, HepG2 cells were incubated with 

toxin (1.5 µg/ml) for 2 hours, the medium was then removed, the cells were washed 

with PBS and more toxin was added. Cell viability was later evaluated in order to see 

whether the cells had acquired immunity to the toxin, due to AQP9 expression, which 

would result in a decrease of the susceptibility level (figure 150).  
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Figure 150: Assessment of the level of toxicity of T/C activated Cry41Aa on susceptible HepG2 pre-exposed to toxin. 
HepG2 cells were seeded at the density of 25 x 104 cells/ml. The next day a set of cells was treated with a dose of 1.5 
μg/ml of T/C activated Cry41Aa. After 2 hours of incubation with the toxin, the cells were washed with PBS, fresh 
medium was added then both sets of cells were dosed with different concentrations of toxin (10, 5, 2.5, 1.5, 1 μg/ml). 
24 hours later, cell viability was measured. Ttest:*p= 0.49 (p values for all other concentrations used were >0.05) 
 
 

According to the cell viability assay, the sensitivity to the toxin was similar between the 

cells pre-exposed to a sub-lethal dose of toxin and the cells that were not pre-exposed 

to the toxin. This result indicated that after two hours of incubation, HepG2 cells have 

not acquired immunity to the toxin. Therefore, AQP9 levels don’t correlate with Cry41Aa 

susceptibility. 

The same process was followed for the resistant HepG2 cell line in order to establish any 

relationship between AQP9 and resistance to the toxin. Initially the cells were exposed 

to a sub-lethal dose of toxin. Although we tried to use an equivalent dose to that of the 

susceptible cell line, it was difficult to figure out the exact dose.  The mRNA (figure 151) 

as well as the protein levels (figure 152) of AQP9 were assessed at different time points. 
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Figure 151: RT-qPCR data showing the mRNA level of aqp9 in resistant HepG2 -/+ toxin at different time points 
Gene expression was analysed using the relative quantification (RQ) method. RQ estimates the difference at the level 
of gene expression against a calibrator (HepG2R-toxin) (RQ of the calibrator = 1). The analysis was conducted 
employing the standard formula: RQ = 2−ΔΔCt (where ΔΔCt = ΔCt for the sample (drug-resistant line+toxin) −ΔCt for 
the calibrator (HepG2R-toxin)). GAPDH used as housekeeping gene. Error bars RQ min/max. 

 

According to our results, the mRNA level of AQP9 increased gradually over time following 

the exposure of cells to the toxin (110 µg/ml). This level reached its maximum after 4 

hours then decreased to reach approximately the same level as that of the cells treated 

with buffer only after 24 hours.  

 

 

 

 

 

 

 

Figure 152:  Western blot analysis of extracts from HepG2R cells that were treated with or without toxin at different 
time points. 
HepG2R cells were treated with buffer or with toxin (110 μg/ml) at different time points (1, 2, 3, 4, 5, 24 hours) before 
being lysed with RIPA. 20 μg of proteins were loaded per well and run on 12% SDS-PAGE gel. After transfer the 
membrane was incubated with anti-AQP9 overnight then secondary antibody followed by ECL detection.CD59 was 
used as the loading control. 
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Our results showed that AQP9 protein level increased gradually in cells that were 

exposed to the toxin over time to reach its maximum after 4 hours, however, this level 

remained high after 24 hours. 

As with the susceptible cell line, we investigated the cytotoxic effect of the toxin at these 

different time points in order to figure out any correlation between AQP9 level and cell 

viability. For this purpose CellTiter-Glo assay was carried out (figure 153). 

 

 

 

 

 

 

 

 

 

 

 

Figure 153: Assessment of ATP levels in resistant HepG2 cells after exposure to T/C activated Cry41Aa over time. 
HepG2R cells were seeded at the density of 25 x 104 cells/ml, in a white wall 96-well plate. The next day cells were 
dosed with of purified T/C activated Cry41Aa (110 µg/ml) or buffer. Luminescence was measured at different time 
points (1, 2, 3, 4, 5, 24 hours) using CellTiter-Glo. Ttest: *p= 0.12 

 

According to our results, upon 4 hours of treatment with the toxin which corresponded 

to the maximum level of AQP9, there was a slight increase in HepG2R viability (around 

10%) suggesting that at that time point a small percentage of cells may have undergone 

a recovery process. 

Microscopic observations were also carried out at different time points (1, 2, 3, 4, 5, 24 

hours) following exposure of susceptible (figure 154) and resistant (figure 155) HepG2 

cell lines to a concentration of 1.5 and 110 µg/ml of toxin respectively. This was in order 

to assess any morphological response (+/- swelling) of the cells to the toxin over time. 
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Figure 154: Microscopic observation of morphological changes in HepG2 exposed to the toxin over time. 
HepG2 cells were seeded at the density of 25 x 104 cells/ml, in 6 well plates. The next day cells were dosed with T/C 
activated Cry41Aa (1.5 µg/ml) or buffer. Morphological changes were visualised using EVOS FL imaging system 10X 
objective over time. 
 

 

 

Figure 155: Microscopic observation of morphological changes in resistant HepG2 exposed to the toxin over time 
HepG2R cells were seeded at the density of 25 x 104 cells/ml, in 6 well plates. The next day cells were dosed with of 
T/C activated Cry41Aa (110 µg/ml) or buffer. Morphological changes were visualised using EVOS FL imaging system 
10x objective over time. 
 

By comparing the morphology of the two cell lines following treatment with the toxin 

over time, it was obvious that the toxin induced swelling in both cell lines during the first 

5 hours. However, after 24 hours, in case of susceptible HepG2 the swollen cells lysed 
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and died while they recovered and survived in case of resistant HepG2. These 

morphological facts observed in the two cell lines were consistent with the proposed 

model of action of Cry41Aa that was previously described. These findings also suggested 

that the toxin binds to the susceptible as well as the resistant HepG2 cell lines. For 

confirmation a ligand blot technique was used to study the binding of ∆R-HAP40 (figure 

156) that, as with the non-tagged toxin, was shown to have a slight effect at high doses 

on HepG2R (data not shown). Same procedure as carried out for HepG2, HL-60 and HeLa 

in the previous chapter was performed. 

 

 

 

 

 

 

 

 

 

Figure 156: Ligand blot analysis of extracts from HepG2R cells. 
20 μg of extracts from HepG2R cells were loaded into 12% SDS-PAGE. 4 μg of ∆R-HAP40 was loaded as a control. After 
transfer the membrane was blocked with 5% milk and was incubated with ∆R-HAP40 in PBS (20 μg/ml) over night at 
4°C. The next day the membrane was washed, incubated with anti-HA antibody and signal was detected with ECL. 
 

As for HepG2, HL-60 and HeLa cell lines, our results indicated that toxin bound to the 

resistant HepG2 cell line. The two bands of around 46 and 30 kDa were again detected 

in this case. This result reinforced the hypothesis of the binding being not correlated to 

the susceptibility and also was with a good agreement with the model proposed that 

stressed the importance of a recovery phase.   

To further investigate the possible involvement of AQP9 in this process, inhibition of 

AQP9 in the resistant HepG2 cell line was considered.  



205 
 

6.10.3 Inhibition of AQP9 using MMTS inhibitor 
 

 

S-methylmethanethiosulfonate (MMTS) which is a relatively highly specific inhibitor of 

the water transport activity of aquaporins (Endo et al., 2017), was used to inhibit AQP9. 

Initially, two sets of cells were incubated with the inhibitor for 30 or 60 min.  Then one 

set of cells was washed with PBS, resuspended in fresh medium and was exposed to 

different concentrations of toxin, while in the other set, no wash was carried out and 

the toxin was added immediately after incubation with MMTS (figure 157). Microscopic 

observations were carried out before and after treatment with the inhibitor and the 

toxin and the time point of measurement of cell viability was determined based on 

morphological changes of the cells (the initiation of swelling). 

Incubation with MMTS for 60 min resulted in a significant decrease in cell viability (data 

not shown), therefore 30 min incubation time was considered (figure 157). If AQP9 

exhibits a crucial role in resistance mechanism, an increase of susceptibility to the toxin 

in HepG2R cells should be observed.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 157: Role of AQP9 inhibition in Cry41Aa susceptibility in resistant HepG2. 
HepG2R were seeded at the density of 25 x 104 cell/ml. The next day the cells were treated without or with different 
concentrations of MMTS (30, 50, 100 µM). 30 min later, the toxin (100 µg/ml) was added. 1h later, cell viability was 
measured using CellTiter-blue assay. Ttest: *p=0.08, **p=0.06 and ***p=0.15   
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According to our results, the increase of the sensitivity to the toxin was due to the 

inhibitor being toxic to the cells rather than the effect of the inhibition of AQP9. This was 

indicated by the decrease in viability of cells exposed to the inhibitor in the absence of 

toxin. This decrease was shown to be a dose dependent. 

Same results were shown for the cells that were washed after treatment with MMTS 

and for the cells that were treated with the inhibitor and the toxin at the same time 

(data not shown). 

Since MMTS was toxic to the cells and because using CellTiter-blue assay, the cells need 

to be incubated with the dye for another two hours prior to the measurement of 

viability, CellTiter-Glo Luminescence was considered since only 10 min incubation is 

required prior the reading (figure 158). This was in order to reduce the exposure time to 

the inhibitor.  

 

Figure 158: Role of AQP9 inhibition in Cry41Aa susceptibility in resistant HepG2. 
HepG2R cells were seeded at the density of 25 x 104 cells/ml, in a white wall 96-well plate. The next day cells were 
dosed without or with different concentrations of MMTS (30, 50, 100, 300 µM) for 30min.  T/C activated Cry41Aa 
(133, 80 µg/ml) or buffer were then added to the cells. 1 hour later, ATP levels were measured using CellTiter-Glo 
assay. Ttest: *p=0.18, **p=0.44 and ***p=0.14 

 

Despite the decrease in exposure time to MMTS, the inhibitor still exhibited a toxic effect 

towards the resistant HepG2 cells. Therefore AQP9 knockdown was considered as an 

alternative approach. 

 

* ** *** 

+ + + 
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6.10.4  AQP9 knock down using small interfering RNA 
 
 

In order to investigate the role of AQP9 in the resistance mechanism, RNA interference 

was utilized for knock down expression in HepG2R. 

Many attempts were carried out in order to optimise different parameters for successful 

AQP9 silencing including the type of transfection (forward, reverse), the type and 

concentration of transfection reagent (hyperfect, lipofectamine, FuGene), incubation 

time, cell density and concentration of siRNA. 

Following successful optimisation of the procedure, the cells were transfected with 

GeneSolution aqp9 siRNA according to the manufacturer’s instructions for a different 

periods of time (12, 24, 48 hours) then the knock down efficiency was assessed using RT-

qPCR (figure 159) and western blot analysis (figure 160).  

 

 
 
 

 

 

 

 

 

 

 

 

Figure 159: Assessment of AQP9 mRNA levels prior and post knock down in HepG2R. 
Gene expression was analysed using the relative quantification (RQ) method. RQ estimates the difference at the level 
of gene expression against a calibrator (HepG2) (RQ of the calibrator = 1). The analysis was conducted employing the 
standard formula: RQ = 2−ΔΔCt (where ΔΔCt = ΔCt for the sample (HepG2R)−ΔCt for the calibrator (HepG2)). GAPDH 
used as housekeeping gene. Error bars RQ min/max. Ttest: p=2.08E-08 
 

According to our results, the mRNA level of AQP9 in resistant HepG2 transfected with 

siRNA for a period of 12, 24 and 48 hours showed a considerable decrease of up to 600-

fold, 110-fold and 111-fold respectively compared with the mock (HepG2R). These 

* 
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results indicated that AQP9 knockdown was optimal when cells were transfected with 

siRNA for 12h.  

Next, the expression of AQP9 at the protein level was investigated using a western blot 

(figure 160).  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 160: Western blot analysis of extracts from HepG2R +/- siRNA. 
HepG2R cells were transfected with siRNA for different time points (12, 24, 48 hours) before being lysed with RIPA. 
20 μg of proteins were loaded per well and run on 4-20% precast gel (Bio-Rad). After transfer the membrane was 
incubated with anti-AQP9 overnight then secondary antibody followed by ECL detection. Non transfected HepG2 cell 
line was used as the positive control. 
 

 

According to our results, a high signal was detected in non-transfected resistant HepG2 

cell line while only negligible signal was detected in the extracts of transfected cells. 

These results indicated that the expression of AQP9 was successfully silenced.   

The assessment of susceptibility of the transfected resistant cells to the toxin was then 

needed in order to confirm the role, if any, of AQP9 in resistance mechanism. 

The cells were initially transfected with siRNA for 12h, then toxin was added at different 

concentrations and cell viability was measured using CellTiter-blue assay (figure 161). 

Assuming that AQP9 is important in the resistance mechanism, an increase in 

susceptibility to the toxin should be observed. 



 

 

 

Figure 161: Role of AQP9 in resistance mechanism of HepG2 cells.  
HepG2R cells were seeded at the density of 8x104 cells/ml and the transfection solution was added. 12 hours later, non-transfected and transfected HepG2R were treated with different 
concentrations of toxin (133, 100, 80, 60 µg/ml). 6 hours later, cell viability was measured using CellTiter-blue assay. The controls used were OPT-MEM+hyperfect, OPT-MEM+hyperfect+siRNA 
and siRNA+toxin. Ttest: *p=0.08, **p=0.46 and ***p=0.19

* 
** *** 



According to our results, the same level of the toxic effect of T/C activated Cry41Aa 

against transfected and non-transfected cells was observed indicating that the knock 

down of AQP9 in resistant HepG2 cell line did not affect the resistance to the toxin. The 

controls used proved that there was no effect of transfection solution on cells and siRNA 

did not interfere with toxin activity. 

 

In parallel to the cell assay the level of expression of AQP9 was monitored at each step 

for consistency. Two biological replicates were used for this purpose (figure 162). 

 

 

 
 
 
 

 

 

 
 

 

Figure 162: Confirmation of AQP9 knock down by RT-qPCR. 
Gene expression was analysed using the relative quantification (RQ) method. RQ estimates the difference at the level 
of gene expression against a calibrator (HepG2R (1)) (RQ of the calibrator = 1). The analysis was conducted employing 
the standard formula: RQ = 2−ΔΔCt (where ΔΔCt = ΔCt for the sample (HepG2R+siRNA 12h)−ΔCt for the calibrator 
(HepG2R (1))). GAPDH used as housekeeping gene. Error bars RQ min/max. 
 

 

According to figure 162, the mRNA level of AQP9 was not detected in transfected cells 

indicating that AQP9 knock down was successful. AQP9 protein levels were also assessed 

at different stages of the cell assay experiment (figure 163). 
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Figure 163: Western blot analysis of the level of expression of AQP9 over time  
HepG2R cells were seeded at the density of 8x104 cells/ml and the transfection solution was added. 12hours later, 
non-transfected and transfected HepG2R were treated with the toxin at a concentration of 133 µg/ml for 6 hours. At 
different time points, the cells were lysed using RIPA and the proteins were extracted. 20 μg of proteins were loaded 
per well and run on 4-20% precast gel. After transfer the membrane was incubated with anti-AQP9 overnight then 
secondary antibody followed by ECL detection. Non transfected HepG2R cell line was used as the negative control. 
 

According to our results, a significant decrease in the level of AQP9 expression was 

observed over time. In fact, at 12 hours post transfection a negligible signal was detected 

indicating successful AQP9 knockdown. This signal slightly increased after incubation of 

the cells with toxin for a further 6 hours (HepG2R+siRNA 18h) and at the time point when 

cell viability was measured (HepG2R+siRNA 20h). 

Although the increase in AQP9 expression was not significant upon treatment with the 

toxin, this increase could play a role in the defence/recovery process. In order to 

eliminate or confirm this possibility, AQP9 knock out should be considered in future 

work. 

 

6.11 Discussion 
 

 

The development of drug resistance during chemotherapy treatment is one of the major 

clinical obstacles. In order to clarify this phenomenon, drug-resistant cell line models 

were considered. In our study the method utilized to generate resistant HepG2 cell line 

to T/C activated Cry41Aa was continuous exposure of cells to increased doses of toxin 

over time. This method as well as the pulse treatment strategy were previously 
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approached leading to successful establishment of resistant HepG2 cell line to particular 

drug(s): 

• Pulse treatment: where parental HepG2 were treated in pulse at the IC50 of the 

drugs in question (Cisplatin (CDDP) or 5-Fluorouracil (5-FU)) for 4 hours. After 6 

complete cycles of induction and after reaching certain confluency (70-80%), the 

survived cells were selected and used for further analysis (Odii and Coussons, 

2012).  

• Treatment of cells with step wise increases in the toxic agent: Where the 

development of resistant HepG2 to doxorubicin was successful through 

continuous exposure of the parental cell line to increasing concentrations 

(0.1mM to 100mM) of doxorubicin (Chan et al., 2000). Zhai et al in 2006 

generated Adriamycin resistant HepG2 using the same technique by adding the 

drug to cells in stepwise increasing concentrations (0.001 mg/L to 1.0 mg/L). The 

remaining viable cells were identified as the resistant cell subline (HepG2/ADM) 

(Zhai et al., 2006). 

In insect models, selection of resistant strain of H. amigera to Cry1Ac was conducted by 

incorporation of the protoxin in the diet with progressively increasing concentrations 

(from 1 to 60μg of protoxin per g of diet) over time (Xiao et al., 2016).  

The length of the period of selection can vary from few weeks to several months. In our 

case, the successful establishment of resistant HepG2 to Cry41Aa took around 8 months. 

It appeared that using the second method mostly takes several months. In fact, 

adriamycin (ADM)-resistant variants of the human lung cancer cell lines were produced 

in a period of 7-9 months that included a period of drug-free growth (Twentyman et al., 

1986). In addition, Oxaliplatin and SN-38 resistant colorectal carcinoma line variants 

were generated by continuous exposure to increasing concentrations of the toxic agents 

over a period of 8-10 and 6-9 months respectively (Jensen et al., 2015, Petitprez et al., 

2013). 

The success of the procedure sometimes depends on the method used. In fact, the pulse 

treatment method failed in making two human ovarian tumour cells resistant to CDDP. 

While culturing these cells in the continuous presence of stepwise increasing CDDP 
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concentrations led to the generation of resistant subline to the drug in question after 

about 7 months. (Kuppen et al., 1988). 

Our results showed that the resistance profile reached a very high level. In fact the 

resistance index ((EC50 of resistant cell line)/(EC50 of the parental cell line)) was equal to 

41. This value appeared to be reasonably high compared with other generated drug 

resistant cell lines. The resistant HepG2 to CDDP presented a resistance index which was 

around 13.76 (Zhou et al., 2010) while it was around 42 for those resistant to 

doxorubicin (Chan et al., 2000). The resistance index value was around 7.9 for the 

resistant ovarian cell line to CDDP drug (Kuppen et al., 1988). In case of insects, the 

laboratory selected strain of Helicoverpa armigera showed  >1000-fold resistance to Bt 

toxin Cry1Ac (Xiao et al., 2016). 

Morphological changes were visualised during the selection process. The cells appeared 

to acquire an elongated phenotype when cultured in toxin. These elongations were 

suggested to be filopodia since they were previously shown to be induced by AQP9 

(Loitto et al., 2007) which was shown, in our study, to be induced by the toxin itself. 

Similar observation was shown in previous work where two established resistant 

sublines of a human ovarian cancer cell line (SKOV3) presented significant morphological 

changes showing a neuron-like shape, with some pseudopodia (Yan et al., 2007). 

However, when the cells are cultured in medium free of toxin, there was no obvious 

morphological changes between the parental and resistant HepG2 cell lines. 

According to previous studies, alterations in morphological features of the malignant 

cells during the development of the drug resistance phenotype could be present or 

absent. In fact, when compared to the parental line, the doxorubicin resistant breast 

cancer cells were larger with less defined irregular rounded shape and contained 

multiple nuclei in the cytoplasm (AbuHammad and Zihlif, 2013). Hudson et al in 2014 

spotted tumour morphology changes in mesothelioma cell line with the acquisition of 

chemoresistance (Hudson et al., 2014). In contrast, microscopic observations of 

resistant human hepatoma cell line to CDDP revealed that the generated cell line 

adopted a shape that is similar to that of the parent cells (Zhou et al., 2010). 
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The acquisition of resistance to multiple anticancer drugs by human cells results in a 

serious problem in chemotherapy. Our results showed that the Cry41Aa resistant HepG2 

was not cross resistant to other drugs such as Etoposide, 5-FU and acridine gold 

derivatives although most drug-resistant cell lines that were generated in previous work 

have developed multidrug resistant phenotype. In fact, Chan et al in 2000, who 

developed a resistant HepG2 line to doxorubicin, found that these cells were not only 

resistant to doxorubicin but also to multiple anticancer drugs among them Vincristine 

and methotrexate. In addition, the established chemo-resistant mesothelioma cell lines 

showed cross-resistance to other classes of anti-cancer agents (Hudson et al., 2014). In 

insect models, the laboratory selected resistant strains of pink bollworm (Pectinophora 

gossypiella) to Cry2Ab also developed cross-resistance to Cry1Ac and Cry2Aa (Tabashnik 

et al., 2009). Cross-resistance to Cry2Ab was observed in selected strain of H. armigera 

resistant to Cry1Ac (Wei et al., 2015). But most Cry1 resistant insects are not cross-

resistant to Cry2Ab. 

The stability of the resistance phenotype was monitored over time showing that it was 

stable after 5 months of growth in medium free of toxin however it became unstable 

after that time point with the resistance decreasing gradually to be completely lost after 

10 months.  

The stability of the resistance phenotype was previously examined in resistant cell line 

models and showed that it could be stable in some resistant sublines and completely 

lost in others. Jensen et al in 2015 showed that the evolved resistant colorectal cancer 

cell line to oxaliplatin and SN-38 drugs presented a stable phenotype when cultured in 

drug-free medium for up to five weeks (Jensen et al., 2015). Coussons et al in 2000 have 

found that the resistant HepG2 to CDDP and 5-FU presented a constant IC50 after 

months of maintenance in drug-free medium indicating a very stable resistance 

phenotype. On the other hand, some reports showed that drug-resistant cell lines 

needed to grow in drug-containing medium in order to retain the stability of drug 

resistance. In fact, Kuppen et al in 1988 showed that to maintain resistance, the ovarian 

tumour cells were grown at a CDDP concentration of 3.3 mM. In addition, Zhai et al in 

2006 who generated Adriamycin resistant HepG2, maintained them in a culture medium 
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containing 1000 μg/L ADM. Chan et al in 2000 maintained multidrug resistance by 

culturing HepG2 in 1.2mM of doxorubicin. 

The instability of the resistance to Bt toxin in Plutella xyostella was previously studied 

showing that during selection with toxin, the LC50 of NO-Q larvae was 2800 times 

greater than the LC50 of the susceptible strain while after 13 generations without 

selection, the LC50 of both strains were similar. In this report, the rapid reversal of 

resistance in the absence of Bt was shown to be associated with a difference in biotic 

fitness (Tabashnik et al., 1994). 

Previous work had studied closely the instability of drug resistance in cancer 

chemotherapy where it showed that the drug resistance clones from neuroblastoma 

cells upon extended growth in drug-free medium showed very unstable resistance 

phenotype that varies from completely stable clones to losing completely the resistance 

phenotype in a short period of time (8 weeks). They correlated the unstable resistant 

phase to the presence of amplified DHFR genes which are associated with small paired 

chromosomal elements called “double minute chromosomes” that are acentrometric 

and do not participate in equal segregation at mitosis. They concluded that in unstable 

cell variants a good percentage of these  genes are extrachromosomal resulting in 

unequal distribution at mitosis leading to possible complete loss in subsequent 

generation (Baskin et al., 1981).  

Previous studies have shown that acquired drug resistance, particularly in the case of 

prolonged drug exposure, can be due to prolonged generation doubling time, which in 

turn could have a profound impact on cancer cell sensitivity to antitumor agents such as 

5-fluorouracil since it is an S-phase selective agent (Petitprez et al., 2013). We compared 

the growth rates of our parental and drug resistant cell line variants in drug-free growth 

medium. However, in our case the growth rate between susceptible, resistant and 

reverted HepG2 was similar. 

Another important approach that was extensively used in previous work following the 

development of resistant cell line models was RNA sequencing in order to understand 

the molecular mechanisms associated with the resistance to the drugs. To elucidate the 

altered molecular processes responsible for emergence of doxorubicin resistance by 
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U87 glioblastoma cells, transcriptome sequencing was carried out (Han et al., 2016). 

This technique was also used by Fang et al in 2017 which helped in revealing key 

pathways and identifying genes associated with Cisplatin resistance in lung 

adenocarcinoma A549 cells (Fang et al., 2017). The use of RNA-seq and the identification 

of differentially expressed genes indicated the importance of actin cytoskeletal proteins 

in erythroleukemia cells (Fernandez-Calleja et al., 2017). Identification of resistance-

related genes in insects was also carried out by the mean of RNA-seq technology. For 

example, transcriptome-seq analysis revealed candidate genes involved in Asian corn 

borer Bt resistance (Xu et al., 2015b). 

In our study, we used this approach where the RNAs were initially extracted from 

susceptible and resistant HepG2 cell lines. The determination of the concentrations as 

well as the confirmation of the quality of the samples were carried out by the mean of 

Agilent Bioanalyser 2100 which is considered as a robust and reliable system that 

provides a high performance in analysis of RNA integrity compared with other standard 

techniques like agarose gel electrophoresis (Masotti and Preckel, 2006). Our results 

showed a high quality of the RNA samples presenting RIN values of 9.4.   

Using bioinformatics tools we managed to extract the desired information from the raw 

data produced by the transcriptome sequencing. In fact it was possible to identify the 

differentially expressed genes where only the 56 significantly different ones were found. 

AQP9 that was only expressed in resistant HepG2 cell line, was one such gene that was 

flagged up knowing that it has been implicated in the mechanism of action of Cry1Aa 

against Sf9 cells expressing a Bt receptor (Endo et al., 2017).  

Our RT-qPCR results were consistent with the RNA-seq data where the AQP9 mRNA level 

was shown to be significantly higher in the resistant compared with the susceptible cell 

line. In addition, the significant drop of this expression in reverted HepG2 reinforced the 

idea that this gene may play an important role in the resistance mechanism. Together 

with the fact that the toxin was shown to induce AQP9 expression made us produce a 

model of action of Cry41Aa where AQP9 was suggested to be involved in the recovery 

process of intoxicated cells through regulation of the osmotic imbalance and 

maintaining their homeostasis. 
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This model was produced based on the knowledge that 3-domain Cry toxins were shown 

to form nonselective channels where the influx of water resulted in cell swelling 

followed by lysis and death (Knowles and Ellar, 1987). In addition aquaporins were 

shown to be involved in cellular volume regulation following cell swelling or shrinkage. 

AQP9 being a water membrane channel was suggested to play a role in maintaining 

water balance via transcellular water flow in the glia limitans and into the antrum of the 

ovarian follicle which  is a key aspect of folliculogenesis (Day et al., 2014). Moreover, the 

possible implication of AQP9 in the immune response of neutrophils to chemokines via 

water transport where it was shown that impaired migration and water transport were 

induced by chemokines in AQP9−/− neutrophils reinforced the idea (Moniaga et al., 

2015). 

Our results showed that as well as the mRNA, the protein level of AQP9 was higher in 

resistant than in susceptible cell line. In addition, we demonstrated that toxin induced 

AQP9 expression in both parental and resistant cell lines. However, a pre-treatment of 

susceptible HepG2 cell line with a sub-lethal dose of toxin (1.5 µg/ml) that was shown 

to induce AQP9 expression after 2 hours of incubation, did not induce immunity to the 

toxin in these cells.  

The absence of correlation between mRNA and protein abundances in the case of toxin 

inducing AQP9 expression, could be due to several biological parameters. These involve 

cis-acting and trans-acting mechanisms that generate systems able to enhance or 

repress the synthesis of proteins from a certain copy number of mRNA molecules. 

Amongst these parameters, ribosomal density and occupancy, RNA secondary structure, 

regulatory proteins acting as translational modulators and half-life of proteins which is 

considered as the major post-translational factor influencing this correlation (Maier et 

al., 2009).  

Microscopic observation of both HepG2 cell lines exposed to sub-lethal doses of toxin 

showed swelling in both cell lines that continued in case of susceptible HepG2 leading 

to their lysis and death while disappeared in resistant cells that recovered and survived 

after 24 hours of exposure. These results were consistent with the model proposed and 

were fortified by the fact that binding of the toxin to the selected and parental HepG2 

cell lines was observed.  
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The recovery process of epithelial cells in response to pore forming toxins was observed 

in previous work.  It was also demonstrated that the osmotic stress produced after 

formation of pores by different PFTs in the target cells, induce a MAPK p38-

phosphorylation-response that is crucial to prevent bacterial infection (Ratner et al., 

2006b). This fact might explain the absence of pore formation in whole cell patch clamp 

experiment that was carried out on resistant HepG2 exposed to 20µg/ml of toxin which 

is consistent with absence of p38 activation using a low dose of toxin (12µg/ml) yet his 

activation was observed using a high dose of toxin that presumably led to formation of 

pores in cell membrane. However, although we showed that Cry41Aa caused p38 

phosphorylation in both susceptible and resistant cell line, inhibition of p38 pathway did 

not result in the recovery of susceptible HepG2 cell line (Barbara Domanska, 2016).  

All the data gathered to this point were heading towards the importance of AQP9 in the 

recovery process in response to the toxin action. Therefore in order to verify this 

hypothesis, MMTS which is an aquaporin inhibitor, shown by H. Endo et al in 2017 to 

efficiently inhibit AQP9 expression, was used. However, this compound appeared to 

have no effect at low doses while being highly toxic to cells at high doses. As an 

alternative, AQP9 knock down using siRNA was used. Using this technique, AQP9 knock 

down in HepG2 cells was shown to be successful as in previous work (Huang et al., 2016). 

After 12 hours of cell transfection with siRNA, the AQP9 knock down was optimal at both 

mRNA and protein levels. However, the effect of toxin was similar between transfected 

and non-transfected HepG2R suggesting that there was no correlation between AQP9 

expression and susceptibility to the toxin. 

Looking at the western blot experiment where the expression of AQP9 was monitored 

over time during the cytotoxicity assay, it appeared that after AQP9 knock down, the 

expression was again induced after toxin exposure. Therefore, to eliminate the possible 

role of this protein, knock out of AQP9 in addition to the use of electrophysiology to 

study the channel activity should be considered in future work to help in identifying the 

role, if any, of AQP9. 
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Conclusions 

 

1- Culturing HepG2 cells in step wise increases in the concentration of T/C activated 

Cry41Aa during a period of 8 months makes them resistant to the toxin with a 

resistance index equal to 41. The resistance levels is lost after 10 months of 

culture in the absence of the toxic agent. 

2- Cross resistant study showed that the established resistant cell line is not cross 

resistant to other chemotherapeutic drugs such as etoposide and 5-Fluorouracil 

neither to some acriditine gold derivatives. 

3- EGTA inhibits the toxin action in susceptible as well as in resistant HepG2. 

4- P38 was shown to be activated in HepG2 and HepG2R cells following exposure to 

the toxin.  

5- Transcriptome analysis revealed that 56 genes were differentially expressed 

between susceptible and resistant cell lines.  aqp9 that has been implicated in 

the mechanism of action of Cry1Aa against Sf9 cells expressing a Bt receptor is 

upregulated in the resistant cell line but has no obvious role in Cry41Aa 

mechanism of action. 

6- Cry41Aa appeared to bind to resistant HepG2 similarly to the susceptible line. 

This binding appeared to initiate swelling followed by a recovery phase solely 

observed in the resistant cells. 
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7 The role of signal transduction in the mode of action 

of Cry41Aa 

 

7.1 Introduction 
 

 
The general mode of action of pore forming toxins (PFTs) consists of an initial interaction 

with the target membrane through receptor recognition, activation with proteases and 

conformational changes leading to membrane insertion and subsequent perforation. 

PFTs could have additional effects during their interaction with their host cells including 

intra-cellular signaling or transport of other enzymatic components reviewed by 

Cancino-Rodezno et al in 2010 (Cancino-Rodezno et al., 2010b). 

 

Different models explaining the mode of action of Bt toxins have been proposed (see 

chapter 1). These included the pore formation as well as the Zhang model which showed 

an intracellular cascade response involving protein G, adenylate cyclase (AC) and protein 

kinase A (PKA) following interaction with the membrane receptor. Zhang et al showed 

that specific binding of the Cry1Ab toxin to cadherin receptor (BT-R1) stimulated G 

protein and adenylate cyclase causing the accumulation of cAMP and activation of PKA. 

These events were shown to disturb both structural and functional integrity of the host 

cell leading to its death (Zhang et al., 2006). These findings were demonstrated following 

an initial examination of the effect of divalent cations EGTA and EDTA on Cry1Ab toxicity 

which led to the assumption that this toxicity may be associated with a Mg2+-dependent 

signaling pathway resulting in cell death. 

 

Previous work which studied in detail the effect of EGTA on Cry41Aa activity showed 

that this metalloprotease inhibitor inhibited the effect of toxin by means of metal ion 

chelation. It was demonstrated that EGTA acted by preventing stable interaction with 

the membrane and subsequent steps of membrane damage and P38 phosphorylation. 

The protective effect was shown to be established through chelating cations such as 
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Ca2+, Mn2+ and Zn2+ which were bound to membrane components. It is worthwhile 

mentioning that Ca2+ and Zn2+ were shown to have an important role in the structural 

integrity of Bt receptors (Pigott and Ellar, 2007). These findings were also in a good 

agreement with previous work showing a similar effect of EDTA and EGTA that were able 

to chelate divalent cations which could exhibit a critical role in the stability of the toxin's 

receptors or in the pore formation activity (Kirouac et al., 2006). 

 

In this study we tried to test the connection between the Zhang model and Cry41Aa 

mode of action through investigating the effect of the toxin on several of the 

proteins/pathways mentioned in the model. 

 

7.2 Investigating the connection between Zhang  

                     model and Cry41Aa mode of action 
 

• EGTA effect on toxin action on HepG2 and HL-60 

 
The effect of EGTA on toxin action against HepG2 and HL-60 was investigated (figures 

164 and 165). PK and T/C activated Cry41Aa were used in this experiment. 
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Figure 164: The effect of chelating agent (EGTA) on viability of HepG2 cells exposed to toxin.  
HepG2 cells were seeded at the density of 25 x 104 cells/ml. The next day they were pre-incubated with 5 mM of EGTA 
or water (mock) for 30 min followed by the addition of T/C or PK activated Cry41Aa (12 μg/ml). Cell viability assessed 
6 hours later using CellTiter-Blue assay. Ttest:*p=0.0008 and **p=6.16E-05 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 165: The effect of chelating agent (EGTA) on viability of HL-60 cells exposed to toxin. 
 

HL-60 cells were seeded at the density of 25 x 104 cells/ml. The next day cells were pre-incubated with 5 mM of EGTA 
or water (mock) for 30 min followed by the addition of T/C or PK activated Cry41Aa (12 μg/ml). Cell viability assessed 
6 hours later using CellTiter-Blue assay. Ttest: *p=0.001 and **p=0.0008 
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According to our results, at a concentration of 5 mM EGTA considerably reduced the 

cytotoxic effect of both PK and T/C activated Cry41Aa on both HepG2 and HL-60 cell 

lines. 

Therefore, regardless of the cell type and the protease used to activate the toxin, EGTA 

exhibited the same inhibitory effect. 

 

 
• Assessment of PKA activation following toxin  

                                      treatment 

 
The cyclic adenosine monophosphate cAMP-related signal transduction pathways can 

either promote cell death or protect cells from death, depending on the cell type and 

the triggering stimulus (TaskÉN and Aandahl, 2004). The most common downstream 

effector of cAMP is PKA (Skalhegg and Tasken, 1997). PKA was considered as the key 

element in the cell death pathway proposed by Zhang et al in 2006 who showed that 

pre-treatment of S5 cells with inhibitors of PKA protected the cells from Cry1Ab toxin 

action (Zhang et al., 2006). 

 

Assessment of the involvement of PKA in the mode of action of Cry41Aa was carried out 

through investigating the effect of PKA inhibitors (PKI 14-22 amide (PKI) and H-89) on 

the toxic effect of different activated forms of Cry41Aa on HepG2 as well as on HL-60 

cell lines (Figures 166 and 167). 
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Figure 166: The effect of PKA inhibitors on Cry41Aa cytotoxicity against HepG2 cell line. 
 

HepG2 cells were seeded at the density of 25 x 104 cells/ml. The next day cells were pre-treated with H-89 (10 or 50 
µM) or PKI (10 or 50 µM) for 30 minutes. Next, PK or T/C activated toxin was added (12 µg/ml) and cell viability was 
measured 6 hours later using CellTiter-Blue. Ttest: *p=0.09 and **p=0.06 
 

 

Figure 167: The effect of PKA inhibitors on Cry41Aa cytotoxicity against HL-60 cell line. 
 

HL-60 cells were seeded at the density of 25 x 104 cells/ml. The next day cells were pre-treated with H-89 (10 or 50 
µM) or PKi (10 or 50 µM) for 30 minutes. Next, PK or T/C activated toxin was added (12 µg/ml) and cell viability was 
measured 6 hours later using CellTiter-Blue. Ttest: *p=0.21 and **p=0.43 
 

 

Our results indicated that PKA inhibitors did not prevent toxin activity. In fact, viability 

was decreased even in cells pre-exposed to PKI and H-89 before toxin addition. The 

latter inhibitor caused a significant decrease in both cell lines’ viability at a concentration 

of 50 µM in the absence of toxin revealing its toxicity towards these two cell lines. 
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In order to support these findings, the involvement of PKA in toxin activity was again 

investigated through CREB phosphorylation analysis. This was based on the knowledge 

that when activated, PKA phosphorylates this cAMP-response element binding protein 

(Rosenberg et al., 2002). Western blot technique was then performed on both HepG2 

and HL-60 cell lines in order to detect phosphorylated CREB where 8-bromo-cAMP (8-

br-cAMP), a cAMP analogue and as activator of PKA, was used as a positive control and 

the functionality of the previously used PKA inhibitors was also assessed (figures 168 

and 169). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 168: Analysis of CREB activation in toxin treated HepG2 cells. 
HepG2 cells were treated with either PKi (50 µM), H-89 (100 µM) or water for 30 minutes. Next, 8-br-cAMP (0.5 mM) 
was added and cells were incubated for another 30 minutes, before cell lysis in RIPA. Another set of cells were treated 
with either PS-3 (12 µg/ml), Cry1Ca (12 µg/ml) or buffer for 15 minutes, before cell lysis in RIPA. 25 µg of protein from 
each sample were loaded in each lane and analysed by western blot for the presence of phosphorylated CREB (p 
CREB). CD59 was used as the loading control. 
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Figure 169: Analysis of CREB activation in toxin treated HL-60 cells.  
HL-60 cells were treated with either PKi (50 µM), H-89 (100 µM) or water for 30 minutes. Next, 8-br-cAMP (0.5 mM) 
was added and cells were incubated for another 30 minutes, before cell lysis in RIPA. Another set of cells were treated 
with either PS-3 (12 µg/ml), Cry1Ca (12 µg/ml) or buffer for 15 minutes, before cell lysis in RIPA. 25 µg of protein from 
each sample were loaded in each lane and analysed by western blot for the presence of phosphorylated CREB (p 
CREB) or CD59 (loading control). 

 
 
Our results showed a high level of phosphorylated CREB in both HepG2 and HL-60 cell 

lines treated with buffer only.  No significant increase, however, was observed in cells 

exposed to toxin. 8-br-cAMP, which was used as a positive control, significantly induced 

CREB phosphorylation in both cell lines.  H-89 inhibited the effect of 8-br-cAMP resulting 

in a significant decrease in CREB phosphorylation, yet, PKi had no obvious effect. 

 

Knowing that PKA was considered as the key component of the cell death pathway 

proposed by Zhang et al in 2006, and based on our results showing that this protein 

kinase is not activated following toxin treatment, therefore suggested that the mode of 

action of Cry41Aa does not correlate with the Zhang model. 

 

7.3 Involvement of mitogen-activated protein 

kinases: assessment of activation of ERK1/2 pathway  
 
The classic MAP kinase family consists of three subfamilies: extracellular signal-

regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38-MAP kinase (Lu and Xu, 
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2006). Previous studies have shown that the two mitogen-activated protein kinase 

(MAPK) pathways: p38 and c-Jun N-terminal kinase (JNK)-like were up-regulated in 

Caenorhabditis elegans in response to Cry5B toxin. Both of these MAPK pathways 

provided a significant cellular defense against the toxin and this defense was shown to 

be conserved in mammalian cells attacked by a PFT (Huffman et al., 2004). We have 

provided data showing that p38 is activated in HepG2, HepG2R and in HL-60 cell lines 

(see chapters 5 and 6) however according to Domanska et al.  inhibition of this MAPK 

protein did not lead to cell survival (Domanska, 2016). 

 
ERK1/2, another important subfamily of mitogen-activated protein kinases, controls a 

broad range of cellular activities and physiological processes. Activation of ERK1/2 

generally promotes cell survival but can have pro-apoptotic functions in response to a 

large number of extracellular stimuli (Lu and Xu, 2006). 

Assessment of ERK 1/2 activation was also carried out in this study on both HepG2 and 

HL-60 cell lines upon treatment with PK and T/C activated Cry41Aa by western blotting 

using antibodies detecting individually-, dually- or non-phosphorylated forms of ERK 1 

and ERK 2 (figures 170 and 171). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 170: Assessment of ERK 1/2 phosphorylation in HepG2 cells exposed to toxin. 
HepG2 cells were treated with T/C or PK activated Cry41Aa (12 μg/ml), buffer, sodium arsenite (0.5 mM), or Cry1Ca 
(12 μg/ml) for 15 minutes. Next, cells were lysed in RIPA. 10 µg of proteins from each sample were loaded in each 
lane and analysed by western blot for the presence of total (t ERK) or phosphorylated (p ERK) ERK 1/2. CD59 was used 
as the loading control. 
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Figure 171: Analysis of ERK 1/2 phosphorylation in toxin treated HL-60 cells. 
HL-60 cells were treated with PS-3 (12 μg/ml), buffer, sodium arsenite (0.5 mM), or Cry1Ca (12 μg/ml) for 15 
minutes. Next, cells were lysed in RIPA. 15 µg of proteins from each sample were loaded in each lane and analysed 
by western blot for the presence of total (t ERK) or phosphorylated (p ERK) ERK 1/2. 
 

 

According to our results, in toxin treated cells there was no activation of ERK1/2 

regardless of the protease used for activation. Only a slight activation of ERK1/2 was 

observed in HL-60 cells treated with sodium arsenite while a high signal was produced 

from sodium arsenite treated HepG2. 

 

7.4 Discussion 
 
 
According to our study, regardless of the cell type (HepG2 vs HL-60), the level of 

susceptibility (HepG2 vs HepG2R), and the protease (T/C or PK) used to activate the 

toxin, it appeared that EGTA abolished the cytotoxic effect of Cry41Aa.  Domanska in 

2006 showed that addition of Ca2+, Mn2+ or Zn2+ could restore toxin activity. This 

inhibitory effect was previously observed in insect models where Zhang et al in 2005 

showed that in the presence of EDTA and EGTA chelators, the binding of the toxin 

(Cry1Ab) to the receptor (BT-R1) still occurred however only EDTA prevented 

subsequent cell death. Addition of Mg2+ to susceptible cells pre-exposed to EDTA 

restored cytotoxicity of Cry1Ab and microscopic observations showed that removal of 

this cation prevented the susceptible cells from swelling. These findings proposed that 
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Cry1Ab binding to BT-R1 and subsequent cell death  were linked to an Mg2+-dependent 

signaling pathway (Zhang et al., 2005). 

 
The phosphorylation cascade of ERK1/2 has been extensively studied in human cells and 

its role was analysed through its involvement in phosphorylation of various substrates 

in different cellular compartments. The accumulation of stimulated ERK1/2 in the 

nucleus was suggested to play a role in cell proliferation (Porta et al., 2011). 

Phosphorylation of ERK1/2 was also shown to induce apoptosis in cancer cells following 

treatment with apoptotic stimuli. This was demonstrated in case of PS2Aa1 which 

induced an increase of ERK1/2 phosphorylation in prostate cancer cells (PC3). This 

activation was suggested to be required for the induction of apoptosis (Brasseur et al., 

2015a). Although no evidence of toxicity has been shown for Cry1Ac proteins in 

mammalian cells, Rubio-Infante et al in 2018 showed that Cry1Ac protoxin was able to 

activate MAPKs including ERK1/2 in macrophages. The possibility that this effect could 

be seen in other mammalian cell types was then postulated (Rubio-Infante et al., 2018). 

According to our results, Cry41Aa did not induce ERK1/2 phosphorylation although it 

should be noted that only one time point was used. For validation, signalling events 

which are linked to the activation of this pathway and experiments with ERK inhibitors 

should be investigated.  

 
PKA, the cAMP dependent protein kinase, was proposed to play a key role in the mode 

of action of Cry1Ab. Its involvement in the mechanism of action of Cry41Aa was initially 

investigated through the use of inhibitors (PKi and H-89). Protein kinase inhibitor 

peptide (PKi) specifically prevents the phosphorylation of PKA and was previously used 

to examine the role of PKA in various cellular processes however, despite the inhibitory 

effect of H-89 on PKA, this compound was also shown to have non-specific effects on 

other protein kinases, signaling molecules and basic cellular functions reviewed by 

Murray in 2008 (Murray, 2008).  

Our results indicated that neither PKi nor H-89 prevented Cry41Aa toxicity. 

Knowing that PKA has been previously implicated in various cellular processes including 

the regulation of transcription and that phosphorylation of CREB is one of the 

transcriptional responses induced upon activation of various kinases including PKA (Wu 
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et al., 2005), the involvement of PKA in Cry41Aa mode of action was also examined 

through the analysis of CREB phosphorylation. Western blot results showed no obvious 

effect of Cry41Aa on CREB phosphorylation. The endogenous levels of pCREB was high 

in both HepG2 and HL-60 treated with buffer only. This signal was not affected by PKi 

inhibitor yet it was significantly decreased by H-89. Due to the non-specific effect of this 

compound, we can conclude that the pCREB endogenous level was the result of kinase(s) 

activity other than PKA. These results all indicate that PKA does not play a role in 

Cry41Aa mode of action. 

In insect models, Zhang et al in 2006 hypothesized that PKA plays an important role in 

Cry1Ab-induced signalling in S5 cells (originated from ovarian cells of the cabbage looper 

that express BT-R1 receptor) through the use of H-89 and myristoylated amide 14-22 

(PKAI 14-22-amide) inhibitors that were shown to prevent membrane damage and 

cytotoxicity. On the other hand, previous work showed that signal transduction 

involving PKA, AC and cAMP was not activated upon Cry1Ab or Cry1Ac treatment, which 

induced apoptosis in CF1 cells. It was suggested that cell death response in these cells 

was stimulated by pore formation activity of the toxins  (Portugal et al., 2017). 

 

Conclusions 

 

1- Despite the fact that EGTA inhibits Cry41Aa action and its protective effect was 

previously shown to be established through chelating cations, a fact that was 

observed by Zhang et al when studying the mode of action of Cry1Ab, it seemed 

that Cry41Aa does not act through a Mg2+-dependent signaling pathway, a model 

that was proposed by Zhang et al in 2006. 

 

2- Amongst the MAP kinase subfamilies, P38 but not ERK1/2 is activated following 

exposure of cancer cells (susceptible/non susceptible HepG2 and HL-60) to 

Cry41Aa. 
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8 General discussion 
 
Safety concerns relating to the use of Bt based pesticides, that have been successfully 

used for more than 60 years have recently been raised. These are based on findings that 

some Cry toxins like Cry1Ab were shown to have an impact on mammals (Gab-Alla et al., 

2012). On the other hand, parasporins, a group of Bt toxins, were shown to 

preferentially kill human cancer cells making PS proteins possible candidates for 

anticancer agents of medical use. Understanding the mechanism of action as well as the 

nature of specificity of Cry toxins against human/mammalian cells was then needed. 

Parasporin-3 (Cry41Aa) which most closely resembles the commercially used insecticidal 

toxins exhibits the narrowest activity spectrum against human cancer cells. In this 

research study the mode of action of this toxin was further investigated. 

It has been previously shown that N-terminal cleavage is essential for Bt toxin action. 

The results of the experiments performed in this study showed that Cry41Aa could not 

be pre-activated by deletion of 23 aa at the N-terminal region however the deletion of 

the N-terminal 40 aa led to the production of a toxic core. Yet, this deletion was shown 

to affect the expression of the protein which was weak and was lost completely when 

60 aa were deleted. This result was consistent with previous findings where the N-

terminus was shown to play an important role in expression/crystallization of Bt Cry 

toxins (Oppert, 1999, Martens et al., 1995). 

Although N-terminal cleavage was shown to be essential in Bt toxin action, certain Cry 

toxins needed a cleavage at the C-terminus to be activated therefore we investigated 

whether N or C-terminal cleavage(s) are important in Cry41Aa toxicity. Our results 

indicated that N-terminal cleavage alone can activate Cry41Aa toxin but that either C-

terminal cleavage or the precise position of N-terminal cleavage may affect toxin 

activity. 

Comparison between the N-terminal sequences of trypsin lab-grade vs trypsin MS-grade 

activated Cry41Aa as well as their toxic effect on HepG2 cell line revealed that the 

protein cannot be activated by MS-grade trypsin but can be presumably by 

contaminating chymotrypsin in some stocks.  
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Our results also showed that differential proteolysis of Cry41Aa can affect its toxicity. In 

fact, by comparing the cytopathic effect of proteinase K activated Cry41Aa to that of the 

trypsin/chymotrypsin activated protein against HepG2 and HL-60 cell lines, we showed 

that the effect of PK activated toxin is significantly higher to that of the T/C activated 

protein. 

In addition, by comparing the protein banding profiles of both activated forms of the 

toxin, our results showed similarities revealing the production of two bands of around 

75 and 65 kDa. Using anion exchange chromatography, the purification of the upper 

band (75 kDa) was successful and the assessment of its cytotoxic level towards HepG2 

and HL-60 indicated that this protein is sufficient for toxicity. N-terminal sequencing of 

this protein, after proteolytic activation with PK, revealed that cleavage occurs at the 

60th aa and that the N-terminal sequence of the toxic moiety is: DVRDA. This result in 

addition to Yamashita et al finding in 2005 indicated that the difference between the 

two fragments yielded after proteolytic digestion of Cry41Aa with PK resides in the C-

terminal cleavage. On the other hand N-terminal sequencing of the T/C activated 

protein revealed that cleavage occurs at the 58th aa and the N-terminal sequence of the 

toxic moiety is: SADVRDA.    

Examination of the predicted 3-D structure of Cry41Aa gave us a hint that possibly the 

N-terminal region of the protein is partially obscuring the DVRDA motif and that the 

removal of Ser and Ala residues would result in a great exposure of this motif speculated 

to be important in binding and therefore explaining the higher toxic effect of PK 

compared with T/C activated Cry41Aa. Creation of substitutions at this position and 

assessment of the toxic effect of the mutants created were not very helpful which made 

us move on to study the binding of the mutants as well as the wild type on susceptible 

and non-susceptible cell lines. 

Many attempts have been previously carried out to study the binding of Cry41Aa on 

HepG2 cells, however they were unsuccessful due to many problems encountered, one 

of them being instability of a C-terminal tag (Domanska, 2016). In this study we managed 

to resolve this problem by the creation of a mutant ∆R-HAP40 that exhibits cytotoxic 

effect (after being activated with PreScission protease) against HepG2 cells and whose 

C-terminal HA tag was stable even after proteolytic activation. 
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Preliminary work carried out on binding of Cry41Aa to susceptible HepG2, less 

susceptible HL-60 and non-susceptible HeLa cell lines showed that there was lack of 

correlation between susceptibility and binding. This has been observed in previous work 

carried out on insecticidal Cry toxins showing that non-toxic Cry toxins can still bind to 

insect BBMVs (Luo et al., 1999) and this phenomenon was also shown in resistant 

populations where post binding processes rather than binding were shown to play 

crucial role in toxicity (Masson et al., 1995b).  

The development of resistant HepG2 to trypsin/chymotrypsin activated Cry41Aa was 

one of the approaches followed in this study to better understand the mechanism of 

action of the toxin. The generation of the resistant subline was successful using the 

stepwise increase of toxic agent method and this was achieved after a period of 8 

months. The resistance index was equal to 41, this resistance phenotype, however, was 

shown to be unstable after 10 months of culture in medium free of toxin. A cross 

resistance study showed that this cell line was not cross resistant to other 

chemotherapeutic drugs like 5-Fluorouracil and etoposide. Microscopic observation 

(DIC) showed that there was no obvious changes in the morphological features between 

susceptible and resistant HepG2 cells. 

Comparative transcriptome analysis on both susceptible and resistant HepG2 showed 

that there was around 56 genes that were differentially expressed between the two cell 

lines. AQP9 that was previously implicated in the mechanism of action of Cry1Aa against 

sf9 cell (Endo et al., 2017) was present in resistant but not in susceptible HepG2. Based 

on the known function of aquaporins as water-selective membrane channels, a mode of 

action model of Cry41Aa involving this protein was then proposed where it was 

suggested that the high expression of AQP9 in resistant HepG2 cells plays an important 

role in reducing the osmotic gradient and restoring the cell to a healthy state following 

exposure to the toxin. However, knock down of this protein by the mean of siRNA did 

not reduce the resistance level suggesting no crucial role of AQP9 in the resistance 

mechanism. 

Microscopic observation of resistant HepG2 exposed to toxin showed initial swelling 

followed by recovery and survival, an aspect that was also observed in non-susceptible 

HeLa cells. This finding in addition to the binding results, where binding of Cry41Aa was 
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detected in resistant and non-susceptible HeLa cells, were consistent with the 

hypothesis that recovery determines specificity. This result has also been observed in an 

insect system where resistance of Heliothis virescens to Cry1Ac intoxication was 

correlated with enhanced repair of damaged gut epithelium (Forcada et al., 1999). 

Knowing that p38 MAPK was previously shown to play an important role in the recovery 

mechanism by activating a cellular defense response following exposure to PFTs, 

assessment of the activation of this pathway was carried out. Our results indicated that 

Cry41Aa activates p38 in susceptible and resistant HepG2 as well as in HL-60 cells. 

However in a recent study, it was shown that inhibition of P38 did not rescue cell viability 

(Domanska, 2016) which may indicate that p38 pathway is not involved in the recovery 

of cells exposed to Cry41Aa.  

In this study we also showed that the inhibitory effect of EGTA on Cry41Aa was observed 

in susceptible and resistant HepG2 as well as in HL-60 cells. In a recent study this 

inhibition was shown to be due to metal ion chelation which prevented stable 

interaction of the toxin with the cell membrane (Domanska, 2016). These findings in 

addition to the Zhang model which showed involvement of Mg2+ cell signaling pathway 

in the mechanism of action of Cry1Ab against M. sexta led us to test the involvement of 

a few of the signaling pathways reported  to be involved in the mode of action of PFT. 

Our results showed that neither PKA nor ERK 1/2 play role in Cry41Aa mode of action.  

Future work should involve: 

• Investigation of the hypothesis that the toxin forms transient channels in 

other/all human cells using electrophysiology. This technique would also allow 

us to perform a comparison study of channel activity in susceptible and non-

susceptible cell lines following toxin exposure in addition to confirm the role of 

channels (in particular AQP9) in the susceptibility of target cells to Cry41Aa. 

 

• Further investigate binding and ideally identify cell binding protein(s) to test 

whether or not they are functional receptors. The use of a Green Fluorescent 

Protein (GFP) coupling technique could be considered in order to visualise the 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/heliothis
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localization of the toxin on the target cell membrane using different conditions 

eg. in presence/absence of the chelating agent EGTA. 

  

• Investigate pathway(s) responsible for cell recovery that may be missing in 

susceptible cells. 
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