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Abstract 

Capacitive division and other charge-sharing techniques have become ubiquitous 

within modern technology. Almost all touchscreen devices depend on some form of 

charge sharing mechanism. The Capacitive-Division Imaging Readout, C-DIR, 

scheme developed for space/astronomy applications, is a proven concept which has 

benefited from widespread publication and several iterations of prototyping. In this 

study, we borrowed this idea and assessed its application in the field of life sciences, 

specifically, fluorescence lifetime imaging microscopy (FLIM).  

Firstly, the composite C-DIR camera system was developed using a 

prototype anode developed by Lapington et al in combination with advanced 

photomultiplier tube technology developed by Photek Limited, and ultra-fast NINO 

ASIC and high performance time-to-digital converter, HPTDC, readout electronics 

developed by CERN.  Several issues like signal noise, timing jitter and image 

distortion required special attention to successfully tune the C-DIR system for 

obtaining FLIM measurements. The C-DIR was characterized in the context of 

current detector technologies used for time-resolved applications. The maximum 

achievable global event rate was determined to be a USB 2.0 hard limit of about 

1MHz. The spatial resolution and timing performance were identified as 0.5 line-

pairs/mm and 200ps FWHM, respectively, which was comparable to other wide-

field fluorescence lifetime cameras. These results provided the basis for using the 

system in a real situation. Before this was possible, however, it was necessary to 

engineer a bespoke software platform for data acquisition which could cope with the 

data rates and reduce raw data emerging from the C-DIR system, producing a format 

compatible with widely used fitting software. 
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The final stage of the project involved using the C-DIR for real science by 

reproducing real world experiments which allow for a fitness test of the system in 

the field. The first experiment involved a calcium calibration where the C-DIR 

system was calibrated using FLIM on a series of calcium buffers of known 

concentrations. This C-DIR was able accurately recover the lifetime values from the 

calcium buffers. The second shorter experiment involved using the calibrated system 

for the quantification of calcium within living tissue samples using fluorescence 

lifetime imaging. Results were consistent with those published in the literature 

which solidified the position of the C-DIR as a viable option for time-resolved 

fluorescence microscopy. 

Keywords: Fluorescence Lifetime Imaging Microscopy-FLIM, FRET, SPIM, time-

correlated single-photon counting, photo-multipliers, SiPM, SPAD, charge sharing, 

capactive division, C-DIR, NINO, HPTDC. 
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1 Background 

1.1 Basics of Fluorescence and Time-Resolved Fluorescence 

1.1.1 Overview 

This chapter provides an introduction into the field of time-resolved fluorescence 

microscopy. The proceeding section briefly describes the fluorescence phenomenon, 

why it is important and basic approaches to measuring fluorescence intensity and 

fluorescence lifetime, including techniques for fitting data. This is followed by 

focussing on the current trends in technology surrounding the acquisition of time-

domain fluorescence data taking an in-depth look at photon-counting detector 

technologies. This sets the scene for discussing the concept of capacitive division as 

a new approach to widefield photon-counting, the capacitive-division imaging 

readout, C-DIR, technology which has been developed by Lapington et al [1] and 

how this can be adapted to fit into a FLIM context. Finally, the conclusion 

summarises the aspects of the C-DIR technology which make it a good fit for time-

resolved fluorescence microscopy as a motivation for carrying out this study. 

1.1.2 Fluorescence  

Fluorescence is best described with the use of a Jablonski Diagram Figure 1.1-1. 

Fluorescence occurs when an electron, in its stable ground state, absorbs a photon of 

energy ℎ𝑣𝐴. The electron is then elevated from its ground state S0 to a more 

unstable, excited singlet state denoted by S2. In this state the electron may lose 

energy through some non-radiative pathways and fall into a lower, yet still unstable, 

state denoted by S1. Due to the unstable nature of the S1 state and the strong pairing 

with the ground state, the electron randomly returns to the ground state by emitting a 
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Figure 1.1-1 Jablonski Diagram which shows how fluorescence occurs. An electron in the 

ground state 𝑺𝟎, absorbs a photon of energy 𝒉𝒗𝑨 and ascends to a higher energy state 𝑺𝟐. 

Energy lost, in other non-radiative pathways, causes the fluorophore to descend to a lower 

energy state 𝑺𝟏. The electron then randomly returns to the ground state by emitting a photon 

of energy with a different wavelength from the absorbed energy 𝒉𝒗𝑭. 

photon of energy ℎ𝑣𝐹  [2]. This emitted photon of energy represents fluorescence and 

is of a different wavelength than the excitation energy. Energy differences make the 

excitation and emitted photons distinguishable for measurement purposes. This 

phenomenon typically occurs over very short time-scales and usually lasts on the 

order of nanoseconds between excitation and emission [2]. The typical set-up for 

observing fluorescence is shown in Figure 1.1-2. Typically, a microscope system  

 

Figure 1.1-2 Basic Fluorescence Microscope Setup. The excitation source emits photons at the 

absorption wavelength of the sample, shown in red, which is reflected by a dichroic and 

directed onto the sample by an objective lens. The green ray shows the emitted radiation which 

passes through the dichroic for detection. 

consists of an excitation source, usually a laser which emits at a wavelength 

matching the absorption profile of the sample, a dichroic mirror which separates the 
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excitation radiation from the emitted radiation for detection purposes, an objective 

for focusing radiation onto the sample, and some form of detection system for 

observing the fluorescence. In this set-up, the fluorescence intensity can be directly 

imaged using a conventional camera system where the signal is bright enough. This 

type of fluorescence is referred to as steady-state fluorescence imaging as there is no 

investigation of the time over which the fluorescence occurs [2]. 

1.1.3 Fluorescence Lifetime 

The intensity of a fluorescence signal, i.e. the number of emitted photon produces 

within a fixed period, is not the only interesting feature of fluorescence. Knowledge 

of the exact time over which a single electron is excited and returns to the ground 

state could also reveal some interesting characteristics about a sample. Fluorescence 

can be expressed mathematically as an exponential decay shown below: 

𝑰(𝒕) =  𝑰𝟎𝒆
−𝒕

𝝉⁄
                                                                 1.1-1 

where 𝐼(𝑡) is the fluorescence intensity as a function of time 𝑡, 𝐼0 is the initial 

intensity and 𝜏 is the fluorescence decay constant also known as the fluorescence 

lifetime. 

1.1.4 Fluorescence Intensity Imaging 

Fluorescence intensity imaging, also referred to as steady state fluorescence, 

involves the collection and display of two-dimensional histograms of the photons 

emitted when excited electrons return to the ground state within a sample. Each 

pixel value stores the number of photons collected in that area of a sample. Photon 

events are typically measured using photo-sensitive, charge accumulating devices 

like CCD, Charge Couple Device, or CMOS, Complementary Metal-Oxide 

Semiconductor cameras [3]. These sensors store these events as accumulated 
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charges/voltages where the magnitude of the charge is directly related to the 

intensity of the emitted radiation. These systems are suitable for bright field 

fluorescence, where fluorophores emit many photons in response to the excitation 

source but offer very poor signal to noise characteristics for low light level 

emissions, fewer than 100 photons per shortest integration period, as they are unable 

to distinguish individual photons from the noise floor of the sensor. Single-photon 

sensitive detectors like photomultiplier tubes, PMTs, or electron multiplying CCDs, 

EMCCDs, are sensitive to samples which emit very small amounts of photons, on 

the order of tens or hundreds of photons per excitation cycle and offer a good 

solution for imaging in these low light level conditions. Both regimes can produce 

image acquisition rates at or above video rate, 25Hz. Steady state fluorescence 

imaging techniques like FRAP [4] [5], Fluorescence Recovery After Photo-

bleaching, FRET [6], Förster Resonance Energy Transfer and pbFRET [7], photo-

bleaching FRET, have been useful for making intra-cellular proximity 

measurements, quantifying molecular interactions, tracking processes at the 

molecular level and even observing/examining cellular structure with molecular 

resolution. 

In the basic fluorescence setup displayed in Figure 1.1-2, the entire sample is 

illuminated with the excitation radiation and all the emitted light is then collected by 

the detector. In many cases, only a small section of the sample is interesting. One of 

the major drawbacks of wide-field fluorescence imaging is the stray light which 

arises from fluorescence of all areas of the sample and reduces the contrast of an 

image within the focal plane of interest. Optical sectioning techniques have been 

developed which allow focusing at a single point in the sample such as confocal 

microscopy [8] and multi-photon [9] [10] fluorescence microscopy,  or thin planes 
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of excitation light through the sample, light sheet microscopy [11]. These optical 

sectioning methods enhance image contrast by completely rejecting light outside of 

the focal plane under investigation. Experiments conducted as a part of this study 

made use of light sheet microscopy as an approach to optical sectioning. Light sheet 

microscopy, also known as selective-plane illumination microscopy, SPIM [12], is a 

wide-field optical sectioning technique achieved by illuminating a sample with a 

thin sheet of excitation light. Weber et al detail the procedure and various optical 

arrangements to produce thin light sheets [13]. Detection of fluorescence then occurs 

orthogonal to the excitation axis. This results in the excitation of only a thin section 

of the sample thus reducing the effects of scattering from other parts of the sample. 

This technique has also been shown to result in minimal phototoxicity and 

photobleaching since only narrow sections of the sample are illuminated at any one 

time [12] [13]. Either the sample or the sheet can be scanned to image different 

sections within the sample [13]. These sections can then be recombined using 

tomographic reconstruction to produce 3D visualizations of the sample. The 

principle of SPIM is illustrated in Figure 1.1-3. The Open-SPIM project [14] by 

Pitrone et al represents an open-source hardware and software standard for bringing 

SPIM to the masses. The standard describes a detailed template for building a SPIM 

microscope and was the basis for the microscopy used in this study. Light sheet 

microscopy has been demonstrated for the in-vivo imaging and 3D reconstruction of 

entire organisms and organ systems even at cellular resolution [15] [16]. 

Fluorescence imaging has benefited from several years of research and 

improvements to the techniques and technologies surrounding the field. The 

importance of fluorescence imaging can be seen in its wide range of applications 

including the diagnosis of skin conditions like common nevi [17] and malignant 
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Figure 1.1-3 Principle of selective plane illumination microscopy. A thin light sheet produced by 

the illumination objective, excites a thin section of the sample. Detection is orthogonal to the 

illumination axis. The sample can be rotated in the light sheet to obtain 3-D with tomographic 

reconstruction. 

melanoma [18], and investigation of topical drug delivery [19]. Cancer research has 

also benefited greatly from advances in fluorescence microscopy, particularly in 

tracking the behaviour and progression of cancer cells [20] [21]. 

1.1.5 Time-Resolved Fluorescence  

Time-resolved fluorescence microscopy is concerned with the characteristics of the 

decay between excitation and emission. The fluorescence lifetime, 𝜏, shown in 

equation 1.1-1 is now the interesting feature. Basic half-life mathematical analysis, 

𝜏 = −𝑡1

2

ln(2)⁄ , shows that the fluorescence lifetime is independent of the initial 

intensity and is therefore more robust in providing information about the 

fluorescence under investigation. Fluorescence lifetime measurements offer many 

distinct advantages over conventional intensity imaging. Lifetimes contain a wealth 
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of information about the environment, orientation, energy content and conformation 

of proteins and other macromolecules [2]. Lifetime decays are sensitive to the pH, 

oxygen concentration, polarity and cation concentration [22] within cells. Two 

fluorophores emitting photons with the same wavelength could potentially be 

indistinguishable in a steady state intensity measurement. However, the decay 

constants of the two species could be vastly dissimilar thus revealing more 

information about the biochemical environment under investigation [2]. Therefore 

an abundance of information stored within the temporal content of the fluorescence 

lifetime might be lost when making steady state measurements alone [2] [22]. 

Fluorescence lifetime measurements can be obtained in either the time domain or the 

frequency domain. This study utilizes a very common time-domain technique 

known as time-correlated single-photon counting, TCSPC [23] [24] [25]. Figure 

1.1-4 illustrates the basic idea behind this technique. In TCSPC, every photon 

emitted from the sample is counted and its arrival time recorded relative to some 

initial clock pulse, usually from a pulsed laser source [23] [25] [26]. The photon 

arrival times are added to time bins within a histogram which has a maximum time 

corresponding to the duration of the sample period. Over time, the histogram will 

represent the actual fluorescence decay of the sample, Figure 1.1-4.  
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Figure 1.1-4 An illustration of Time Correlated Single Photon Counting. The arrival time of 

each detected photon is recorded in a histogram of fixed time bins over the measurement 

period, t. This produces a histogram of the arrival time distribution which represents the 

fluorescence decay of the sample. 



9 

 

1.2 Measuring Fluorescence Lifetime 

1.2.1 Basics of Photon Detection 

The first stage in time-resolved fluorescence measurements is the ability to record 

the arrival time of a photon with high accuracy. PMTs are standard devices used for 

single-photon measurements due to their sensitivity, low noise, and high timing 

accuracy, particularly with microchannel plate, MCP, photomultipliers [2]. The 

structure of an MCP-PMT [27] is shown in Figure 1.2-1. A photon incident on  

 

Figure 1.2-1 Basic Structure of an MCP PMT used in this project. Photons enter the input 

window of and are converted into photoelectrons by the photocathode. A large potential 

difference across the photocathode and MCP stack accelerate the photons toward the stack 

which multiply, by 106 in many implementations, the photoelectron due to the secondary 

electron emissive nature of the stack. This produces a cloud of photoelectrons in this 

multiplicative (or gain) phase. These photoelectrons, accelerated towards the anode from the 

MCP stack, produce a detectable electric signal which either interacts with a phosphor to 

produce an image or sensed using analog-to-digital readout electronics.  

the photocathode results in the release of a photo-electron by the photoelectric 

effect. Large biased voltages between the photo-cathode and the MCP stack 

accelerate the electron towards the secondary-electron emissive MCPs which act as 

a gain stage for electron multiplication [28]. This generates an electron cloud 

emerging from the MCP stack which is accelerated towards the rear anode of the 

tube. The variation of MCP-PMT used as a part of this study is referred to as the 
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resistive sea PMT [29] which contains a rear anode composed of a di-electric 

substrate. This allows charge to be localised in the substrate. Capacitive coupling 

with an external read-out anode is possible therefore allowing the use of anodes 

which need not be manufactured into the vacuum.  

 Another approach to single-photon detection involves the use of solid-state 

technology known as single-photon avalanche diodes, SPADs, or silicon 

photomultipliers, SiPMs [30] [31]. These devices consist of reverse-biased, 

photosensitive p-n junction diodes operated above the breakdown voltage [32]. An 

avalanche current is triggered when a photon interacts with the diode producing a 

measurable current signal. 

1.2.2 TCSPC Architecture 

Figure 1.2-2 illustrates the basic setup for time-correlated single-photon counting. 

The pulsed laser source provides excitation for some fluorescent sample. A photon 

emitted by the sample is picked up by the PMT. In this setup, the pulsed laser

 

Figure 1.2-2 Basic set-up for TCSPC. The output signal of the pulsed source acts as the start 

time signal for a TAC. The PMT signal acts as the stop signal. The TAC produces a signal 

whose magnitude is proportional to the duration between the start and stop signals which is the 

time interval between excitation and emission. This signal is amplified, fed through an ADC 

and is ultimately stored in a time channel in FPGA/computer memory. Building up a histogram 

in these time channels reproduces the fluorescence decay. 
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output acts as the start signal for a time-to-amplitude converter, TAC, and the PMT 

signal, which corresponds to the detected photon, acts as the stop signal. The TAC 

works by charging a capacitor when the start signal is high and stopping when low, 

the stored charge is proportional to the time interval between the laser pulse and the 

detected photon arrival. Constant-fraction discriminators, CFDs, are used to reduce 

noise on the outputs of both the PMT and pulsed source [23].  The TAC output 

signal is amplified and then digitised by an analog-to-digital converter, ADC, whose 

output corresponds to the arrival time of the photon.  

TCSPC can also be achieved using the setup shown in Figure 1.2-3. 

 

Figure 1.2-3 TCSPC setup using a TDC which consolidates the functionality of the TAC and 

ADC shown in Figure 1.2-2. 

The action of the TAC and ADC combination is replaced with a time-to-digital 

converter, TDC. The TDC records the time interval between the excitation and 

emission with high precision, typically on the order of nanoseconds [33]. Instead of 

using the TAC mechanism of converting time to an amplitude signal, however, 

timings are measured with respect to the TDC clock as shown in Figure 1.2-4.  
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Figure 1.2-4 TDC timing is internally calculated with respect to the TDC clock as shown above. 

The TDC clock is continuously triggering the device, the excition pulse from the laser acts as 

the START of a timing measurement and the emission pulse from the PMT signals the end of a 

timing measurement. 

The continuously running TDC clock acts as a reference for all timing 

measurements. The arrival of an excitation pulse signals the start of a timing 

measurement by setting START high. The PMT emission pulse sets STOP high thus 

signalling the end of a measurement. The time interval between the rising edge of 

the excitation pulse and the following TDC clock rising edge is recorded as T2. 

Similarly, the interval between the rising edge of the PMT pulse and the TDC rising 

edge which follows is recorded as T3. Finally, the time difference between the two 

recorded TDC clock rising edges is recorded T1. The time, T, between excitation 

and emission is then calculated as 𝑇 = 𝑇1 + 𝑇2 − 𝑇3 [33]. The digitised arrival 

time is output to a memory register either on an FPGA or a computer and stored in a 

histogram of the arrival time of each emitting photon with respect to the laser pulse. 

The general rule of thumb for TCSPC is to attenuate the laser signal such that the 

probability of detecting a photon per excitation cycle is low. The idea is that the 

detection rate should be 1% the laser pulse rate. This ensures there are no ‘pile-up’ 

effects [23]. There are two main mechanisms for pile-up which distort TCSPC 

measurements. Classic pile-up occurs where several photons are detected per laser 
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signal period. Higher rep rate sources have reduced this problem since, at even 1% 

of the excitation frequency, the detection rates can be in the MHz region [2] [23]. 

Inter-pulse pile-up occurs where the probability of detection of a photon within a 

sync period is decreased due to the overlapping dead-time of electronics within this 

period [23]. Pile up will be discussed in more detail in 1.5.8. 

1.2.3 Extracting Fluorescence Lifetime 

The next logical stage after successfully collecting the fluorescence lifetime data 

using TCSPC is to use a model, like that presented in 1.1, which fits the data to 

recover the lifetime τ. In practice however, a model this simple is seldom used. 

Many samples exhibit two or more exponential components, for example, OGB-1 

produces a bi-exponential decay due to the presence of bound and free Ca2+ [2] [34]. 

Additionally, simply fitting exponential decays in many instances is not sufficient. 

The fluorescence signal is usually a convolution of the impulse response of the 

measurement system and the fluorescence decay from the sample. Therefore, our 

simple model in equation 1.1-1 becomes far more complex as shown below: 

𝑰 = 𝑰𝑹𝑭 ∗  (𝒁 + ∑ 𝑰𝒊𝒆
−𝒕

𝝉𝒊⁄𝒏
𝒊=𝟎 )     1.2-1 

where 𝐼𝑅𝐹 is the instrument response function or impulse response, 𝑍 is a function 

or constant which represents the background, 𝑛 is the number of exponentials 

required for the fit, 𝐼𝑖 represents the initial fluorescence amplitude for each decay 

component and 𝜏𝑖 is the fluorescence lifetime component. This is a far more all-

encompassing model. Section 2.6.1 provides more detail on how this model could be 

applied on a dataset. 

 TCSPC data is collected by building up histograms of binned photon counts, 

as such, these experiments typically make use of Poisson, or counting, statistics [2]. 
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This allows for a simple approximation of the error in the data as the square root of 

the photon counts for each time bin, i.e. 𝜎𝑚 =  √𝑁𝑚 where 𝜎𝑚 is the standard 

deviation, error, of the measured time and 𝑁𝑚is the number of counts collected in 

that time bin. This relationship therefore shows that as the number of photons 

increases, the relative uncertainty in the data decreases [2]. However, the main 

assumption here is that there are no sources of systematic error in the data. 

 Once an appropriate model for the data has been selected and systematic 

errors have been reduced or eliminated, it is time to use some type of fitting software 

to recover the fluorescence lifetime(s) from the data. For TCSPC data, it is typical to 

make use of the Levenberg-Marquardt algorithm [2]. The reduced chi-square, 𝛸𝑣
2, is 

used as a measure of the goodness-of-fit. 𝛸𝑣
2 is described as:  

𝛘
𝒗
𝟐 =  ∑

(𝒚
𝒊
−𝒇(𝒙𝒊))

𝟐

𝝈𝒊
𝟐

𝑵
𝒊=𝟎         1.2-2 

where N is the number of observations, 𝑦𝑖 is the observation, 𝑓(𝑥𝑖) is the expected 

value which is represented by our model in equation 1.2-1 and 𝜎𝑖 is the variance, or 

error, in our measurement. The general rule of thumb is that 𝜒𝑣
2 ≃ 1 means there is 

good agreement between the data and the selected model. 𝜒𝑣
2 > 1 suggests that the 

error has been under-estimated. Most fitting software display both the resulting 𝜒𝑣
2 

along with a plot of the residuals  𝑦𝑖 − 𝑓(𝑥𝑖) which assist in the determination of 

whether the model should be accepted. Analyses of this kind require high statistics 

on the order of 1K photons for a single exponential and >>1K photons for multiple 

exponential components [23] [35] [26]. 
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1.3 Time-Resolved Fluorescence in 2-Dimensions 

1.3.1 Fluorescence Lifetime Imaging Microscopy 

So far, the idea of measuring fluorescence lifetime in a single dimension has been 

discussed. The use of standard photomultiplier tubes, or SPAD detectors allows 

quantitative detection of fluorescence but loses the spatial information allowed by 

intensity measurements using CCD/CMOS camera systems. Extending the 

measurement of fluorescence lifetime in 2D using TCSPC has been demonstrated 

using a range of techniques including laser scanning [36] [37], single-photon 

CMOS/SPAD arrays [38] [39] and position sensitive read-out anodes for 

photomultipliers [40] [41] [42] [35]. These approaches have led to high contrast 

images based on fluorescence lifetime an example of which is shown in 

 

Figure 1.3-1 Becker and Hickl SPCImage image collected from convallaria sample showing A) 

Intensity and B) High contrast fluorescence lifetime images [23] 

Figure 1.3-1. It is easy to see there is more contrast information provided in image 

B), due to the variation in fluorescence lifetime, than the intensity measurement 

alone in A). This additional contrast can provide information on the biochemical 
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environment of a sample in addition to structural information. Fluorescence lifetime 

imaging microscopy, FLIM, has been beneficial in providing further insights into 

cell metabolism [43] and biochemistry [44], protein/DNA kinetics [45] and a host of 

other fields within and outside of the life sciences.     

1.3.2 Important Considerations 

Section 1.1 briefly alluded to count rates as an important characteristic for time-

resolved fluorescence. 1.2 described the basic idea behind taking time-resolved 

measurements and some of the requirements for fitting. Any system used for FLIM 

must satisfy a few basic requirements to provide useful, accurate results. In the 

context of TCSPC, systems must provide large enough counts, per area of interest, 

to allow accurate fitting and recovery of the fluorescence lifetime mentioned at the 

end of 1.2.3. Acquisition times for these photons can be limited by the dead-time of 

read-out electronics, quantum efficiency of the detection system and the emission 

signal intensity from the sample. In the scanning case, dwell times can be 

exceedingly long, in some cases on the order of minutes, for weakly emitting 

samples. This raises issues of photo-bleaching and photo-toxicity for live samples 

since they are subjected to high levels of radiation over long periods. Specific 

techniques like two-photon microscopy [46] in combination with improvements in 

microscope technology [47] have realised video rate fluorescence lifetime imaging 

whilst reducing photodamage and photobleaching. However, these scanning systems 

tend to be highly complex and expensive. Wide-field approaches typically use a 

time-gated mechanism [48], with an intensified camera, for measuring the decay 

with respect to the excitation pulse. Solid-state approaches like that presented by Li 

et al [49] allow video-rate FLIM however do not provide resolutions above 32x32 

pixels. 
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The ideal FLIM system would maximise both position resolution and timing 

performance. The H33D detector developed by Michalet et al [35] manages to 

deliver a fast, high spatial resolution system for FLIM. This makes use of a 

photomultiplier based architecture with a cross-delay line, XDL [42] [50], position 

sensitive anode and fast timing electronics. The data acquisition employs position 

sensitive TCSPC to build up a 2-D histogram of photon arrival times without the 

need for scanning. This device will be discussed in more detail in section 1.5.  

Frequency domain measurements are obtained using a phase-modulation method 

[22] [51]. A sinusoidally modulated light source is used to excite the sample; due to 

the lifetime of the sample excitation, the emitted energy, although modulated at the 

same frequency as the source, is delayed (phase shifted) and demodulated with 

respect to the excitation energy [51] [26]. The phase shift and demodulation encodes 

the lifetime of the sample [22] [26]. These measurements do not require the use of 

photon counting equipment since data is not collected on an event by event basis. 

Although frequency domain FLIM can result in frame acquisition rates of around 

29Hz [51], frequency-domain FLIM is less intuitive and therefore less widely used 

than time-domain FLIM. 

1.3.3 Quantitatively Describing FLIM Systems 

In the previous section it was mentioned that spatial resolution and timing 

performance are two major considerations in the design of microscope and detector 

systems for FLIM. The question which may be lurking in the reader’s mind is, how 

is this all quantified?  

The spatial resolution of a detector in this context refers to a measure of the 

sharpness of the image produced by the device which goes beyond just the sensor 
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pixel count, which on its own is a potentially meaningless value [3]. Basic spatial 

resolution measurements are taken using a standardized resolution mask, for 

example the US Air Force Resolution Chart shown in Figure 1.3-2. The spatial 

resolution is then given in line pairs per millimetre, lppm, which describes the  

 

Figure 1.3-2 USAF Resolution Chart. This chart produces a “by-eye” estimate of the resolving 

power of an imaging system. The chart is usually read groups at a time, for example, group -2 

has elements 1-6. The smallest resolvable group determines the limiting resolution of the system 

in line-pairs-per-millimetre.  

number of resolvable line pairs in one millimetre of an image [52]. One line pair 

comprises one solid black line and one solid white line of the same width. A second 

simple measurement is the point spread function of the detector, i.e. how the 

detector responds to a point source [35]. Figure 1.3-3 graphically illustrates the point 

spread function (PSF) in the centre of the image. This resolution is stated in µm full 

width at half maximum (FWHM) of the PSF [35] [41] [42] [53]. The true physical 

measure of sensor resolution is the Modulation Transfer Function, MTF [3] [54]. 

This can be obtained by taking the magnitude of the Fourier transform of the PSF in 

two dimensions. [54]. 

 The temporal resolution of a detector system is determined by the transit 

time spread (TTS) and/or the instrument response function (IRF) [23]. The TTS 
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Figure 1.3-3 A) Image of sensor illuminated with point source of infinitesimally small width.  B) 

Corresponding point spread function in x direction of intensity against position based on the 

line profile in A which is located at y=256. The full width at half maximum of this PSF is a 

measure of the resolving power of the imaging system. 

describes the variation in the timing between absorption of a photon at the 

photocathode and the measured output pulse [2] [23]. This property is the limiting 

timing resolution of the detector for TCSPC [23]. The IRF can be described as the 

pulse shape measured by a FLIM system for an infinitely short lifetime [23]. In 

practical situations, the width of the IRF (FWHM) gives you the limitation on the 

timing performance of the entire system, microscope optics included, as opposed to 

the TTS which describes the detector alone. In a FLIM setup, the IRF can be 

measured using a dye sample with a very short lifetime which are shorter than or 

comparable to the TTS of the system [35].  

 An ideal FLIM system would combine high spatial and temporal resolution, 

high photon efficiency, and would support large count rates [23] [55]. Essentially, a 

wide-field, imaging, photon-counting detector is required [55]. From the material 

presented in the preceding paragraphs, this detector would have both a narrow PSF 
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and TTS. The remainder of this section will present the advances in micro-channel 

plate imaging anode technology and the resolution achieved by these detectors. 

1.4 Current Position-Sensitive Anode Readout Schemes 

The focus of this study was on the development of a photomultiplier-based 

technology for the FLIM which made use of a position-sensitive readout anode. 

Therefore, it is important to understand the current approaches to position-sensitive 

anodes in this context. Their strengths and limitations and how they compare to the 

proposed system under consideration. 

1.4.1 Resistive Anode 

The resistive anode [56] has been commercialized as part of the IPD (Imaging 

Photon Detector) Camera manufactured by Photek Ltd [57] [58] [59].  The anode 

consists of a shaped resistive sheet with four corner electrodes which collect charge 

incident on the anode Figure 1.4-1 [58]. The anode signals are pre-amplified to 

improve SNR and are then passed on to a pulse-shaping filter before digitization in 

an analog-to-digital converter (ADC) [59]. The position encoding is achieved by 

using a simple position centroiding algorithm based on the magnitudes of the charge 

collected at each anode as shown in below: 

𝒙 =  
(𝑸𝑨+𝑸𝑩)−(𝑸𝑪−𝑸𝑫)

𝑸𝑨+𝑸𝑩+𝑸𝑪+𝑸𝑫
                                                 1.4-1 

𝒚 =  
(𝑸𝑨+𝑸𝑫)−(𝑸𝑩−𝑸𝑪)

𝑸𝑨+𝑸𝑩+𝑸𝑪+𝑸𝑫
                                                 1.4-2 
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Figure 1.4-1 Shaped resistive sheet anode with 4 read-out nodes labelled A-D with an incident 

charge. 

where 𝑄𝑖 refers to the magnitude of the charge at each of the read-out anodes and 

(𝑥, 𝑦) is the calculated charge centroid. Milnes et al. [59] have reported the resistive 

anode with its associated read-out electronics can achieve a position resolution 

better than 30µm FWHM and timing resolution of ~4ns FWHM.  

1.4.2 Wedge and Strip Anode 

The wedge-and-strip anode (WSA) [60] is an alternative charge dividing imaging 

anode; unlike the resistive anode which is simply comprised of a resistive sheet, the 

WSA consists of three or four electrodes arranged as wedges and strips as illustrated 

in Figure 1.4-2 [60] [61] [62]. Early studies have demonstrated the position 

resolution of the WSA to be ~50µm FWHM [60]. Lapington et al. have improved on 

the design of the WSA in the form of the Tetra Wedge Anode (TWA) and have 

achieved a position resolution of ~15µm FWHM [29]. 
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Figure 1.4-2 Operation of the Wedge and Strip Anode [61] 

1.4.3 Cross Delay Line Anode 

The cross-delay line anode was originally developed for space applications as a part 

of 12 experiments conducted aboard the SOHO mission platform [50]. The structure 

and operation of the cross-delay line anode in combination with a photomultiplier is 

shown in Figure 1.4-3. The anode itself is composed of two overlapping electrical 

transmission lines which are mounted behind the MCP in the path of an inbound 

electron cloud inside the sealed PMT [35] [50] [42]. Other designs have been 

reported with the anode mounted outside of the sealed vacuum tube [41] [63]. These 

wires are used to determine the X, and Y coordinates of an incoming electron cloud. 

The absolute photon arrival time relative to the laser pulse is taken from the pulse 

arrival time at the back MCP plate [35] [41]. The timing of each incoming electrical 

signal which has been induced in both wires is measured at both ends of each wire. 

The time taken for the pulse to arrive at the terminals determines its point of origin 

along the transmission line. This time difference is then used to calculate the X and 
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Figure 1.4-3 Cross delay line anode coupled with a PMT for position sensitive read-out. 

Y positions of the incident photon [35]. The read out electronics for the delay line 

consist of fast amplifiers and constant-fraction discriminators (CFDs) coupled to 

Time-to-digital Converters (TDCs) for fast sub nanosecond read-out [41] [50] [42]. 

Benchmark tests conducted by Michalet et al. rate the detector with timing 

resolution of 100ps FWHM TTS and spatial resolution of 100µm FWHM with a 

detector gain of 9x106 supporting local count rates 2-10KHz [35]. Jagutzki et al. 

reported position resolution of ~87µm FWHM with the external XDL anode coupled 

to a resistive screen PMT [41]. 

 The XDL anode has been demonstrated as a useful device for fast acquisition 

of multi-dimensional FLIM data [55]. Colyer et al. employed the XDL anode in 

their H33D Gen I prototype and using phasor analysis with phasor ratio imaging as 

described above, were able to obtain FLIM map images with integration times as 

short as 10ms [55] [35]. 
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1.4.4 Cross Strip Anode 

The cross strip (XS) anode is similar in design to the XDL anode discussed above 

[53] [64]. The electrode is made up of orthogonally placed electrode strips as 

illustrated in Figure 1.4-4. The electrode pitch is coarse (~0.5mm) and charge is 

directly sensed and read out from each individual electrode [53] [65] [64]. Figure 

1.4-5 demonstrates the operation and structure of the XS anode. The electronic read-

out configuration for the XS anode is far more complex than the XDL anode 

described in the previous section. Each electrode contains local  

 

 

Figure 1.4-4  Structure of the CS anode [66] 

preamplifiers at either terminal, these act to increase the SNR before the signal is 

amplified [53] [64] [65]. The amplified signals are then digitized in parallel using 

ADCs and are fed into an FPGA which processes position centroiding and timing 

[64]. Coarse position encoding for X and Y coordinates is achieved by locating the 

strips with peak charge output [53]. The centroid of the four highest neighbouring 

strip signals is then used to locate the electron cloud centre (fine position) [53]. 
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Figure 1.4-5 CS anode operation [65] 

Siegmund et al. and Tremsin et al. have demonstrated that the XS anode can achieve 

ultra-high spatial resolution (<10 microns) even at very low gain [53] [64] [67]. The 

timing accuracy of the XS anode is similar to that of the XDL anode at ~100ps 

FWHM [68]. 

1.4.5 Alternative Read-out Schemes 

All of the anodes described thus far employed charge-sharing techniques 

where event positioning was determined using the ratio of charges collected at 

several read-out nodes [56] [60] [69] [50] [53]. Another approach to obtaining 

charge position information would be to pixelate the anode surface itself into 

discrete read-out pads much like the pixelated sensors of CCDs and CMOS chips. 

Lapington et al. have demonstrated this with the HiContent [70]  and IRPICS [71] 

detectors which contain an 8x8 and 32x32 array, respectively, of discrete anodes for 

high-speed, parallelized charge read-out where imaging is a consequence of the 

pixelated anode design.  
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Another approach to the segmented anode design is the quadrant anode [72]. 

This anode is disc-shaped and comprises four electrodes, arranged like equally sized 

slices of a pie chart, which are electrically insulated from one another [72]. The 

amount of charge collected at each electrode depends on the position of the 

incoming charge cloud and can thus be used to generate a charge centroid. This 

anode represents one of the simplest implementations of multi-anode architectures 

which have been demonstrated for wide-field TCSPC fluorescence lifetime imaging 

applications [73] [74] [75]. 

1.5 Motivation: Capacitive Division Imaging Read-out 

1.5.1 Aim 

The aim of this research study is to apply the capacitive division technique to time-

resolved fluorescence microscopy. The capacitive division anode for photon-

counting applications has already been demonstrated by Lapington et al [1]. The 

detector used in this project comprises three major components: the segmented, 

charge sharing anode, fast NINO ASIC read-out amplifiers, and 25ps resolution 

HPTDC. The motivation for using the C-DIR is the promise of high spatial 

resolution, MCP-limited timing resolution and high global and local count rates [1]. 

In the class of photomultiplier-based fluorescence cameras, the C-DIR has the 

potential to outperform the XDL anode and establish itself as a leading system and 

technique for FLIM. Table 1.5-1 shows how the C-DIR compares with other 

systems used for time-resolved single-photon applications. The C-DIR promises 

higher global count-rates than any other photomultiplier-based system. The timing 

resolution will be MCP-limited and comparable if not better than the cross-delay 

line based H33D system. 
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Table 1.5-1 Comparison of the C-DIR with other techniques used for time-resolved photon 

counting applications. 

Technique Advantages Clear Disadvantages 

Resistive Anode • High spatial resolution 

30µm FWHM.  

• Low timing resolution of 

4ns FWHM. 

Wedge and Strip • High spatial resolution 

~15µm with tetra-wedge. 

• No examples in time-

resolved experiments. 

Cross-Delay Line  • Good spatial resolution 

~87µm FWHM.  

• High timing resolution 

~100ps FMHM. 

• High local and global count-

rates 2-10KHz and 500KHz 

respectively. 

• No clear disadvantages 

beyond the system bulk due 

to CFD electronics and 

XDL anode which is 

complex to manufacture 

and expensive [41] [42] 

[35]. 

CMOS (SPAD) • Video rate (25fps) FLIM in 

a 32x16 array achievable 

[49]. 

• Low spatial resolution 

32x32 physical pixels [49]. 

• Lower quantum efficiency 

due to lower active area due 

to timing electronics 

combined in pixel active 

area [49]. 

• Low global count-rate 

100KHz [49]. 

C-DIR • High global count-rate 

1MHz. 

• Reasonable spatial 

resolution ~150 µm FWHM 

based on prototype results. 

[1] 

• MCP-limited timing 

resolution [1] of ~100ps 

FWHM [80] 

• Compact due to the simple 

NINO interface to C-DIR 

anode and HPTDC 

electronics compared to 

other systems [1]. 

• Possible susceptibility to 

noise due to TOT 

discriminator electronics. 

 

This section will examine the features of the C-DIR technology and concept which 

justify its use in fluorescence lifetime imaging microscopy. 

1.5.2 Principle of Capacitive Division 

The capacitive division concept is like the charge sharing techniques described in 

the previous section. However, instead of actively collecting charge using electrodes 

and measuring the analogue signal, capacitive division utilizes a planar resistive 
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anode to passively collect and localize the charge event as illustrated in Figure 1.5-1. 

A simple schematic of the anode structure is shown in  

 

Figure 1.5-1 Operational principle of the capacitive division anode coupled with the a resistive-

sea MCP-PMT [1]. 

Figure 1.5-2. Charge propagates through the anode capacitively towards the corner  

  

Figure 1.5-2 Schematic of C-DIR anode showing discrete, electrically isolated electrodes (black 

circles) which are capacitively coupled to their neighbours. The nearest neighbour capacitances 

on the perimeter (red) are 10-100 times greater than the internal nearest neighbour 

capacitances [1]. 
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electrodes where the charge is read out. This scheme utilizes a simple algorithm for 

the calculation of the charge cloud centroid, which is expressed as [1]: 

𝒙 =  
𝑸𝒂+𝑸𝒃

𝑸𝒂+𝑸𝒃+𝑸𝒄+𝑸𝒅
                                                         1.5-1 

𝒚 =  
𝑸𝒂+𝑸𝒅

𝑸𝒂+𝑸𝒃+𝑸𝒄+𝑸𝒅
                                                         1.5-2 

where 𝑄𝑖 is the magnitude of the charge at each anode and (𝑥, 𝑦) is the position of 

the charge centroid. This algorithm bears a striking resemblance to that utilized for 

the resistive anode. The sections to follow will detail the respective components 

which constitute the C-DIR detector; the Resistive-Sea MCP PMT [29], the ultra-

fast NINO ASIC [76] and the High Performance TDC [77]. 

1.5.3 Resistive sea MCP PMT 

The front-end sealed photomultiplier tube used in conjunction with the C-DIR 

detector is the resistive sea MCP PMT which is manufactured commercially by 

Photek Ltd [29] [1], previously described in 1.2.1. This device utilizes a standard 

MCP PMT design with a photocathode proximity focused to a pair of chevron 

stacked MCPs [29]. A charge cloud emerging from the MCP is localized on a planar 

resistive sheet which induces a signal through a dielectric substrate onto which the 

sheet is deposited [29]. This localization occurs on the timescale of electronic 

measurement of the signal [29]. The C-DIR detector employs this technique to 

capacitively induce a localized signal on the anode surface, which is then spread to 

the 4 read-out anodes via capacitive charge sharing [1]. 

1.5.4 NINO ASIC 

The NINO ASIC, developed at CERN, is an 8-channel, high speed, front-end 

amplification/discrimination analogue device which is used as the first stage of 
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output electronics for directly sensing charge emerging from the C-DIR anode [76] 

[1] [40].The NINO comprises a preamplifier, pulse shaper and time-over-threshold, 

ToT, discriminator, with a timing resolution of 10-20ps depending on the input 

charge and subject to time walk correction [40] [76]. The broad dynamic range of 

the NINO ASIC (1.25x105 – 1.25x107electrons) makes it suitable for sensing the 

output range (Pulse Height Distribution – PHD) of photomultiplier tubes [40]. The 

charge is measured by exploiting the time walk characteristics of the ToT 

discriminator, illustrated in Figure 1.5-3, producing an LVDS, Low-Voltage 

Differential Signalling, signal whose leading and trailing edges correspond to the 

shaped analogue pulse [40]. These leading and trailing times are then digitized using 

a HPTDC. 

 

Figure 1.5-3 Time over threshold measurement. As the amplitude of the pulse increases so does 

the NINO output pulse width. The measured leading-edge of the pulse, and pulse width, vary 

with input charge amplitude in a phenomenon known as time walk. This is exploited to recover 

the magnitude of the incident charge. 

1.5.5 HPTDC 

The high performance general purpose TDC (HPTDC) [77] ASIC is a 32 channel 

TDC which can be used in a very high resolution mode offering eight channels with 

25ps timing precision [77] [40]. The TDC input matches the NINO LVDS output 

and offers the option of measuring both leading and trailing edge times emerging 
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from the ToT charge measurement [40]. These time stamps can ultimately be used to 

recover the magnitude of the detector charge. The TDC is used in triggered mode 

[77] where the device employs a “trigger window matching” approach which 

accepts events that have occurred within a predefined offset relative to the trigger 

input [40]. The timing data is then stored in an FPGA memory buffer as a series of 

unsigned 32-bit integers with the format outlined in Figure 1.5-4. 

 

Figure 1.5-4 Structure of 32-bit TDC data packet. The 19 most significant bits store the timing 

data. The TDC channel is stored in the next 5 bits (19-23). For applications where multiple 

TDCs are daisy-chained together, bits 24-27 store the unique TDC identifier. Finally, the last 4 

bits store the packet identifier. 

The TDC buffer can be queried using a software API developed at Photek Ltd to 

obtain a user defined block, usually a multiple of 512 bytes, of TDC packets via a 

USB 2.0 interface. 

1.5.6 C-DIR Charge Measurement Operation 

The charge cloud emerging from the rear MCP plate within the resistive sea PMT 

capacitively induces a charge on the C-DIR surface via the dielectric substrate. The 

charge then spreads to neighbouring capacitors until it reaches the four read out 

anodes. The analogue charge is read by the NINO using the ToT technique which 

produces a leading edge and trailing edge pulse. These leading and trailing edge 

pulses are time stamped and digitized by the HPTDC ASIC. Digitized timing values 

are then read into computer memory via USB, where timing is extracted from the 

TDC packets. The pulse width is calculated, and charge obtained using a pulse width 

to charge look up table to obtain the charge incident on each imaging channel. The 

charge centroid is then calculated using the equations in section 1.5.2. 
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1.5.7 Calibration and Distortion Correction 

The previous section describes a lookup table which must be accessed to recover the 

charge incident on an imaging channel given the pulse width. This lookup table is 

generated by calibrating the NINO’s response to an input charge. Injecting a known 

charge into the NINO channels and measuring the resulting pulse width using the 

HPTDC electronics produces a calibration curve as shown in Figure 1.5-5.  

 

Figure 1.5-5 Example of NINO non-linear response to input charge recorded by Anghinolfi et 

al. [76]. 

Interpolation of data points can be used to generate a lookup table to determine 

charge and hence calculate the centroid of the charge incident on the detector 

surface.  

 One of the major sources of noise, or distortion to timing data, when 

measuring photon arrival times using the ToT technique, is time walk [40]. This 

phenomenon is illustrated in Figure 1.5-3 where variations in the magnitude of the 

analog charge pulse results in a shift in the measurement of the arrival time due to 

the fixed threshold [40]. This variation clearly affects the accuracy of the timing 

measurement. Time walk correction must be employed to fully exploit the benefits 

of very high timing resolution with the NINO/HPTDC combination. 
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 The C-DIR anode may produce spatial distortions because of the non-linear 

response of the anode to incident charge footprints at different locations on the 

anode surface [78]. This non-linearity could result in barrel and/or pin cushion 

image distortion as demonstrated by Conneely [78] in simulations of the anode 

surface response. These distortions must be corrected for the C-DIR detector to be 

viable as part of an imaging system for use in fluorescence applications. 

1.5.8 Theoretical Count Rate Maximum 

A good estimate of the final local count rates for the C-DIR device can be found by 

searching for the limiting count rate, or the dead times, within individual 

components of the system. The first critical stage of the C-DIR, in terms of timing, 

involves the electron multiplication within the MCP of the photomultiplier. The 

dead time of individual pores has been determined to be around 10-2s [79]. However, 

individual microchannel pores essentially act independently of each other. If the 

likelihood of a photo-electron exciting a pore within its dead time can be reduced, 

MCPs can realise much reduced dead times of ~10-6s which translates to a 1MHz 

count rate [79]. The C-DIR anode itself was designed to have very low impact on 

the detector bandwidth and should not be a limiting factor on rates [1]. The NINO 

ASIC in combination with the HPTDC were designed to be ultra-fast. Each NINO 

channel can operate at a sustained rate of 10MHz [76]. The HPTDC has a 

programmable dead-time as low as 5ns and can be operated at a maximum rate of 

16MHz [77]. Avoiding pile-up effects requires detection rate which is 10% the rep-

rate of the excitation source as an upper bound, usually 1% is preferred [2] [23]. For 

fluorescence lifetimes which last 25ns this translates to a 40MHz laser rep-rate and 

4MHz global count rate. In principle, the faster the lifetime under investigation, the 
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higher the allowed rep-rate. However, inter-pulse pile-up effects must be accounted 

for to find the true count-rate limitations. Figure 1.5-6 illustrates the conditions for 

 

 

Figure 1.5-6 Full dead-time for the detection of a single is limited by the TDC dead-time. Inter-

pulse pile-up occurs where the probability of detection of a photon is reduced within a laser 

period due to the over-lapping dead-time for recording the photon event. Over time, this 

distorts the lifetime signal. At least 75ns must elapse after the stop signal is received before a 

new event can be measured to avoid this pile-up. This translates to a theoretical 13MHz 

detection rate. 

inter-pulse pile-up with the HPTDC read-out electronics assuming a 40MHz 

excitation source. Inter-pulse pile-up is a counting loss effect which occurs in high 

rep-rate experiments [23]. This occurs when the dead-time of the read-out 

electronics overlaps with a laser clock period during which a photon event could 

legitimately be detected. The probability of detection is reduced within the period 

since the electronics are blind for a part of it. This has the effect of distorting the 

fluorescence. The diagram shows that at least 75ns after the stop signal must elapse 

before the next photon can be measured. This limiting period represents a global 

maximum count rate of 13MHz which is 32.5% the 25ns rep-rate. Therefore, the 

system is MCP-limited for global count rates. It should therefore be possible to 

achieve a global count-rate of at least 1MHz which is twice that stated for the H33D 

XDL detector of ~500KHz [35] [55].  
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1.6 Conclusion 

The C-DIR anode has the potential to be a high throughput, high time resolution, 

spatially resolved detector for fluorescence lifetime applications. Conneely et al. 

[40] have already demonstrated timing resolution <100ps using the NINO/TDC 

combination as read-out electronics for an MCP-PMT based multi-anode 

architecture. These high-speed electronics could theoretically produce global MCP-

limited count-rates of ~1MHz outperforming other measurement systems in its class. 

The basis of this research project is to apply the capacitive division technique, by 

way of the C-DIR anode, to time-resolved fluorescence microscopy. The first major 

step is the characterization of the whole system (including NINO and HPTDC); 

determining the position resolution and timing resolution and finding necessary 

methods to improve the current design to maximize performance. The next stage 

involves careful identification and correction/elimination of sources of image non-

linearity. The final stage of the project will be incorporating the system into a series 

of real experiments for data acquisition and fitting of time-resolved fluorescence 

data in 2D. This will prove the C-DIR system as a suitable system architecture for 

FLIM applications. 
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2 Simulation 

2.1 Introduction 

In preparation for receiving the hardware components which make up the C-

DIR, a simulated version of the C-DIR detector was produced to facilitate 

development and testing of the final control software. This was a three-step process 

which firstly involved creating a large data set in the format expected from the TDC 

device. Secondly, a software interface between the data and the control software was 

developed which replicated the real hardware API. Finally, the development of a 

software framework which could manage the data acquisition, reduction and 

visualisation of this unique data format. High level software requirements included 

robustness, high acquisition speed and ability to cope with data streams on the order 

of 40MB/s. This chapter describes the development of the hardware simulation and 

the associated control software development. 

2.2 HPTDC Output Data Format 

Before attempting to create the "fake" data stream it was necessary to understand the 

NINO/HPTDC output in more detail. Figure 2.2-1 shows two defining 

characteristics of the NINO as a time-over-threshold (ToT) discriminator. The width 

of the digitized NINO pulse, or ToT, is sensitive to the magnitude of the input 

charge, especially for smaller charges. This relationship allows for imaging since the 

magnitude of the charge will vary at each read-out anode thus allowing a centroid to 

be determined. The sensitivity to the magnitude of the input pulse also affects the 

time resolution of the NINO. The leading-edge measurement shifts producing time 

walk, or amplitude walk, which must be corrected in order to realise the full timing 
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Figure 2.2-1 Principle of operation of the NINO as a TOT discriminator. Two characteristics of 

this type of detector are highlighted: 1) Increasing signal amplitude introduces a time walk 

effect despite constant rise time irrespective of amplitude. 2) The NINO pulse width (time over 

threshold) increases with increasing signal amplitude.  

precision of the device. This implementation of the NINO ASIC digitizes charge on 

each of four input channels which are directly interfaced to the 4 corner readout 

anodes on the C-DIR. The charge is converted to a logic pulse whose width 

indicates the magnitude of the input charge. These four charges correspond to the 

four corner read-out nodes of the C-DIR anode. The leading and trailing edges of the 

logic pulse are time-stamped by the TDC separately. The resulting TDC output is a 

32-bit (word) encoding of this timing information. Each of the four channels 

generate two words for leading and trailing time data for a single event. These eight 

packets are then enclosed by two additional header and trailer words. These 

represent events within a single TDC trigger window and indicates a group of words 

which belong to a single photon event. The data structure is as shown in Figure 

2.2-2. The TDC event packet would have a total of 10 words, or 40 bytes, per event. 
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The theoretical throughput of the TDC is 40MB/s over USB 2.0 which corresponds 

to just over a 1 MHz event rate. 

TDC Event Header 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 TDC Event ID Bunch ID 

 

Digitised Leading Edge of NINO Pulse 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 TDC Channel Inter. Leading Edge Time 

 

Digitised Trailing Edge of NINO Pulse 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 1 TDC Channel Inter. Trailing Edge Time 

 

TDC Event Trailer 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0  1 TDC Event ID Word Count 

 
 

Figure 2.2-2 TDC 32 Bit Packet Formats for the event header/trailer and the leading/trailing 

edge measurements when using the TDC in very high resolution (25ps) resolution mode. The 

four most significant bits represent the packet type, the next four bits are a TDC identifier for 

situations where multiple TDCs are coupled together. For the timing packets, the 21 least 

significant bits represent the timing data.  

Once TDC data is successfully generated by the photon counting electronics, the 

data must be decoded to determine the incident charge on the C-DIR anode. Probing 

the NINO response to an input charge and characterizing the relationship between 

charge and ToT, or pulse width, gives rise to two approaches which could be used to 

determine the incident charge from the calculated NINO pulse width. Figure 2.2-3 

provides an example of this relationship for each of the four NINO channels.  
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Figure 2.2-3 Sample ToT response to input charge measured using the 4-channel NINO ASIC 

used in this study. 

The first approach involves generating a mathematical expression by performing a 

fit on the data for each channel. Although this could, in principle, yield a very 

accurate representation of the behaviour, performing a complex calculation on an 

event-by-event basis would be computationally expensive. The second, more 

attractive approach would be to interpolate the collected data and generate look up 

tables of ToT vs input charge. Storing this lookup table in memory would allow for 

very fast C-array type access which would free up processing time for other areas of 

the software. For the purposes of the TDC hardware simulation, a simple 

mathematical expression was used to describe the ToT charge relationship. In the 

final software implementation, lookup tables were employed since they were 

mapped to a more realistic charge space which comfortably fit within memory. The 

remainder of this chapter focuses on generating a realistic dataset which simulates 
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the TDC output, developing a hardware simulator which acts as an interface 

between this data and the control software, and the development of the control 

software.  

2.3 Detector Modelling and Simulated Data 

There were two choices for the programming language to use for the 

generation of this data-set namely python and C++. The C++ programming language 

was ultimately chosen due to the speed in generating large datasets using complex 

mathematical expressions.  

2.3.1 Pulse Width (TOT) vs Charge Relationship 

For this exercise, an arbitrary pulse width to charge relationship was defined 

using the following polynomial: 

𝒑𝒊 = √𝑸𝒊       𝒊 ∈ {𝟏, 𝟐, 𝟑, 𝟒}                    2.3-1 

Where 𝑝𝑖 is the pulse width and 𝑄𝑖 is the incident charge at each of the corner 

anodes.  

2.3.2 Fluorescence Decay 

The leading time portion of the timing data was generated using an 

exponential distribution which mimics a fluorescent species with a single decay 

component taking the form shown in equation 1.1-1. Time is assumed to be in units 

of nanoseconds with 𝜏 taken to be 2.6ns. A delay of 5 ns was added to this 

exponential distribution in the form of a normal distribution with a 𝜎 25ps which 

corresponds to the leading-edge jitter on the NINO ASIC. The C++ STL random 

library was used for the generation of this distribution which produced pseudo-

random lead time information as shown in Figure 2.3-1 
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Figure 2.3-1 Randomly generated lifetime decay using the C++ STL random library. The 

lifetime τ was set to 2.5ns with an error σ of 0.03ns. This represents the leading/trailing edge 

data for the sample dataset. 

2.3.3 Photomultiplier response 

The pulse height distribution of the photomultiplier was generated using a 

normal distribution. Although the actual charge response of a PMT is not perfectly 

Gaussian this distribution sufficed as a reasonable substitute for the purposes of this 

simulation. The charge distribution was centred on 10e6 arbitrary units reflecting the 

10e6 gain characteristics of the MCP PMT with dual microchannel plates. A dark 
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noise offset of 5000 was also defined. The result is shown in Figure 2.3-2

 

Figure 2.3-2 Randomly generated PHD which represents the total incident charge on the C-

DIR detector. This was used in the generation of the fake dataset. 

2.3.4 Pixel Coordinates (Charge position) 

Position coordinates were calculated using digital bitmap images. 8-bit 

grayscale bitmap files were a convenient choice because each pixel value 

corresponds to a luminance value. Figure 2.3-3 shows the image used for the  

 

Figure 2.3-3 8-bit grayscale bitmap image used for the generation of the fake detector data. 
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generation of the test dataset. 

The monochrome luminance values were used to create a 2-dimensional 

probability distribution which was randomly sampled to produce image coordinates. 

This was achieved by loading the bitmap data and summing all the pixel values. The 

image was then normalised with respect to intensity thus producing a 2-dimensional 

probability distribution. This was then randomly sampled to produce a user-defined 

number of (𝑥, 𝑦) coordinates used to spawn the dataset. This was achieved by 

randomly selecting a location (𝑥, 𝑦) and a random value 𝑝 which represented the 

probability of a photon count at that location. If the probability at that location from 

or normalised 2-D vector was greater than or equal to 𝑝, an event was generated for 

that location. This is illustrated in the code snippet Figure 2.3-4. 

 
  for (int i = 0; i < numEvents;) { 
    x = (int)(width * randValue()); 
    y = (int)(height * randValue()); 
    p = max * randValue(); 
 
    if (norm[(y * width) + x] >= p) { 
      r = getBrownConradyR(x, width / 2, y, height / 2); 
      distx = distortX(x, y, r); 
      disty = distortY(y, x, r); 
      outputEvents(distx, disty); 
      i++; 
    } 
    count++; 
  } 

 

Figure 2.3-4 Code snippet which demonstrates the random sampling of position coordinates 

when generating the test data-set. A grayscale bitmap image is normalised and represents the 

probability distribution of photon counts at each pixel location. (𝒙, 𝒚) and 𝒑 are randomly 

selected. If the probability at (𝒙, 𝒚) is greater than or equal to 𝒑 a photon event at this location 

is generated. 

In the above snippet, 𝑛𝑢𝑚𝐸𝑣𝑒𝑛𝑡𝑠 is a user-defined variable which represents the 

total number of photons to be written to the data file. It is important to note here that 

for each coordinate pair a new charge and lead time are randomly generated for each 

of the four channels. This will be expanded on later. 
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2.3.5 Distortion 

After each coordinate was generated, distortion was applied to the 

coordinate. Distortion of some form, whether radial or tangential, is a feature of 

most imaging systems which needs to be accounted for. The Brown-Conrady 

distortion model was chosen due to its simple formulation and the presence of both 

radial and tangential coefficients. Limiting the infinite series to two terms for each 

distortion type produced: 

𝒓 =  √(𝒙𝒅 − 𝒙𝒄)𝟐 + (𝒚𝒅 − 𝒚𝒄)𝟐                                             2.3-2 

𝒙𝒖 =  𝒙𝒅 + (𝒙𝒅 − 𝒙𝒄)(𝑲𝟏𝒓𝟐 + 𝑲𝟐𝒓𝟒 + ⋯ ) + (𝑷𝟏(𝒓𝟐 + 𝟐(𝒙𝒅 − 𝒙𝒄)𝟐)  +
𝟐𝑷𝟐(𝒙𝒅 − 𝒙𝒄)(𝒚𝒅 − 𝒚𝒄))(𝟏 + 𝑷𝟑𝒓𝟐 + ⋯ )                                                               2.3-3 

𝒚𝒖 =  𝒚𝒅 + (𝐲𝒅 − 𝐲𝒄)(𝑲𝟏𝒓𝟐 +  𝑲𝟐𝒓𝟒 + ⋯ ) + (𝟐𝑷𝟏(𝒙𝒅 − 𝒙𝒄)(𝒚𝒅 − 𝒚𝒄) 𝑷𝟐(𝒓𝟐 +
𝟐(𝒚𝒅 − 𝒚𝒄)𝟐))(𝟏 + 𝐏𝟑𝐫𝟐 + ⋯ )                                                                                2.3-4 

Where (𝑥𝑢, 𝑦𝑢) are the undistorted centroid position coordinates, (𝑥𝑐, 𝑦𝑐) are the 

distortion centre, here assumed to be the geometric centre of the anode, (𝑥𝑑, 𝑦𝑑) are 

the resulting distorted coordinates, 𝑟 is the distance between the distortion centre 

and the charge position, and 𝐾𝑖 and 𝑃𝑖 are the radial and tangential distortion 

coefficients respectively.  

2.3.6 Generating the Dataset 

 Once the charge, position and lead time were determined, the TDC packet 

data could be constructed. The anode geometry, Figure 1.5-2, and position centroid 

calculations, 1.5.1 – 1.5.2, were defined in the previous chapter. By randomly 

selecting the total charge 𝑄 and the charge on one anode 𝑄𝐴, for example, we get 

𝑸 = 𝑸𝑨 + 𝑸𝑩 + 𝑸𝑪 + 𝑸𝑫                2.3-5 

Where Q is the total incident charge. This gives: 
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𝑸𝑪 = 𝑸 − 𝑸𝑨 − 𝑸𝑩 − 𝑸𝑫                   2.3-6 

So that the other charges can be determined using: 

𝑸𝑩 = 𝒙𝑸 −  𝑸𝑨     2.3-7 

𝑸𝑫 = 𝒚𝑸 −  𝑸𝑨    2.3-8 

where 𝑥 and 𝑦 are taken from equations 1.5-1 and 1.5-2 respectively. Substituting 

each charge in equation 2.3-1 gives rise to pulse width values for each anode which 

can then be used to calculate the fake TDC data packets. A test data file was created 

which contained ~1.5x108 events. The resulting file was 5.46 gigabytes in size 

which provided a suitable dataset for the design of a dummy HPTDC device. This 

corresponded to approximately 2.5 minutes of data at the maximum theoretical 

throughput. 

2.3.7 Qualitative Verification 

A python script was developed to provide a quick method for qualitatively 

verifying the dataset. The script loaded a user-defined limited subset of the data file 

and produced a 2D histogram of the events in addition to histograms of the timing 

and pulse height distribution. The decoder operates under the assumption that the 

first 32-bit word in the file is a packet header based on the format described in 

Figure 2.2-2. Data is consumed from file ten 32-bit words at a time and unpacked 

used the python struct library. 

The position, time and charge were extracted on an event-by-event basis and used to 

construct three histograms.  Figure 2.3-5 shows the original image compared to the 

reconstructed image with 1000, 10,000 and 10,000,000 counts. 
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Figure 2.3-5 a) Original image b) Reconstructed image with 1000 counts. c) Reconstructed 

image with 10000 counts d) Reconstructed image with 10,000,000 counts. Notice noise and 

distortion present compared to the original image due to the noise added to the charge and 

timing, as well as the Brown-Conrady distortion model. 

construct three histograms.  Figure 2.3-5 shows the original image compared to the 

reconstructed image with 1000, 10,000 and 10,000,000 counts. Figure 2.3-6 shows 

the reconstructed time-of-flight and pulse height distribution of the simulated events.  

 

 

Figure 2.3-6 a) Time-of-flight b) Pulse height distribution 
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The dataset contained sensible data which could then be used for the development 

and testing of a data reduction platform for handling the processing of this data 

format. 

2.4 Hardware Interface Simulation 

A dummy HPTDC device layer called HPTDCSim was created. This served as 

an interface to the large dataset produced in the previous section. This facilitated 

further development of the final graphical user interface without the need for the 

actual hardware to be present. The major benefit being reduced dependency on 

delicate photon counting equipment. This library interface was written to 

deliberately mimic the real hardware interface of the HPTDC API developed by 

Thomas Conneely as a basis for the development of the control software. The 

hardware simulation interface for the HPTDC is shown in Figure 2.4-1. The fake 

device provided a configurable data rate between 5 and 40 MB/s in steps of 
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class DLL HPTDCSim { 
public: 
  enum DataRate { 
    DataRate_40 = 25, 
    DataRate_35 = 25, 
    DataRate_30 = 25, 
    DataRate_25 = 25, 
    DataRate_20 = 20, 
    DataRate_15 = 15, 
    DataRate_10 = 10, 
    DateRate_5 = 5 
  }; 
 
  explicit HPTDCSim(const std::string &filename); 
  ~HPTDCSim(); 
 
  void connect(); 
  void disconnect(); 
  bool isConnected(); 
  void getData(char *userData, size_t size); 
  void setDataRate(DataRate dataRate); 
 
protected: 
  HPTDCSim(const HPTDCSim &) = delete; 
 
private: 
  void kill(); 
  void _execThread(); 
 
private: 
  bool run; 
  bool connected; 
  std::queue<char> buffer; 
  const unsigned int bufferSize; 
  DataRate m_rate; 
  std::thread m_thread; 
  const std::string m_filename; 
  std::mutex dataLock; 
  bool eof; 
}; 

 

Figure 2.4-1 The class design/interface for the HPTDC hardware simulation. This was designed 

to mimic the C++ interface for the actual HPTDC device with a few additions for controlling 

data-rates. The hardware simulation allowed for throttling the input data rate from 5MB/s up 

to the theoretical maximum of 40MB/s. 

5MB/s consistent with the maximum theoretical USB 2.0 data rate. Data acquisition 

from file was controlled using a single read thread which also owned a handle to the 

data. The action of this thread is shown in Figure 2.4-2. Data was loaded into a 

variable size FIFO memory buffer with maximum size around 1GB. Mutually  
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while (run && !eof) { 
    if (buffer.size() < bufferSize) { 
      dataLock.lock(); 
      // Copy 1MB and pause to satisfy data rate 
      for (int i = 0; !dataFile.eof() && (i < 1048576) && 
                      (buffer.size() < bufferSize); 
           i++) { 
        dataFile.read(&byte, 1); 
        buffer.push(byte); 
      } 
      dataLock.unlock(); 
      std::this_thread::sleep_for( 
          std::chrono::milliseconds(1000 / static_cast<int>(m_rate))); 
      eof = dataFile.eof(); 
    } else { 
      // Sleep for 50ms 
      setBufferOverflowSignal(); 
      std::this_thread::sleep_for(std::chrono::milliseconds(50)); 
    } 
  } 

 

Figure 2.4-2 The read thread source snippet which shows the copying and buffering of data in 

1MB chunks for each loop iteration. The thread was throttled used a simple sleeping 

mechanism to produce the desired data rate.  

exclusive (mutex) locks were used to synchronize memory access in this multi-

threaded environment and prevent data races when accessing the memory buffer 

which stored the TDC Data. Client software could then remove data from the buffer 

for further processing using the HPTDCSim::getData method. Monitoring the FIFO 

buffer provided information on whether data was being loaded at the correct rate. 

The buffer limit of 1GB was never reached, and there were never any buffer 

overflow signals when used in conjunction with the client code processing which 

shows that the data rate was not exceeded for the test system.   

2.5 Control Software 

2.5.1 Requirements 

  The high-level performance requirements for the control software were 

mentioned in the beginning of this chapter. There were also other commercially-

driven requirements which fed into the overall software design process. The 
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software requirements for this project can be split into three categories; 

performance, graphical user interface (GUI) and functional requirements. Table 

2.5-1 provides an overview of the software requirements for this project.  

Table 2.5-1 Overview of C-DIR Software Requirements 

Category Requirement 

User Interface The user must be able to easily connect/disconnect to 

HPTDC hardware. 

The user must have the option to configure the TDC 

device. 

The user must be able to toggle a live histogram of 

intensity (total counts). 

The user must be able to set an integration period for 

photon events. 

The update rate of the GUI should be configurable. 

The user must be able to toggle a live histogram of 

timing data for each channel. 

The user must be able to toggle a live pulse height 

distribution for each channel. 

The user must be presented with full system 

diagnostics for each channel (count rate, buffer 

levels, etc.) 

The user must have a mechanism for saving 

experiment data. 

Performance The software must be able to cope with a USB 2.0 

40MB/s maximum theoretical data rate. 

The software must maintain data integrity. No data 

should be lost. 

The software must prioritise the saving of 

experimental data over visualization. 

The software should be robust and reliable. 

The software should employ a variable size buffer to 

cope with hitches in system performance. 

Functional The software should log all activities with varying 

levels of detail (notice, information, debug, error). 

The software should alert the user of any hardware 

failure (TDC drop-out, PMT overbright, dead 

channels on the NINO).  

The software should gracefully shutdown when fail 

conditions arise. 
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2.5.2 Data Storage Format 

The output data format was chosen to be in event mode. This sparse format 

consisted of recording the position (x, y) and time, t of an event sequentially as they 

were processed from the raw TDC packets. This approach was chosen since it 

allows for a more compact and storage-efficient representation of the data compared 

to storing large numbers of sparsely populated images which would have resulted in 

rapidly exhausting storage media with very little benefit. Immediate histogramming 

of timing and intensity data was also an option. Although this could further reduce 

storage, it meant sacrificing individual photon event information before any kind of 

analysis could be performed. Histogramming would also require complex data 

structures and additional computing power which would be better invested in 

maintaining high data consumption rates. Histogramming was therefore left as a 

post-processing step for visualization and exporting to other analysis packages 

which required this format. The sparse format offered the best trade-off for storage 

and speed.  

2.5.3 Language, Libraries and Platform 

C++ was chosen as the language for the entire implementation of the control 

software. This language allowed for the development of very fast, multi-threaded 

design. Low level data handling code was abstracted away from GUI presentation 

logic, however, the open source Qt C++ API was used as the basis for GUI 

presentation. The first attempt at GUI implementation was performed using high 

level APIs in Java which were interfaced with low level C++ data structures using 

the Java Native Interface (JNI). This proved to be extremely cumbersome to use and 

even more difficult to maintain from a commercial standpoint. Qt provided a much 

simpler and more straightforward alternative. Histogramming was achieved using 
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the GNU Scientific Library (GSL) while the QCustomPlot Qt based plotting library 

was used to for displaying data. The pantheios logging library was used within the 

low level bus component. Pantheios employs an asynchronous file writing 

mechanism which results in very little overhead for logging output. However, 

verbose logging levels can result in a slow down in the system so this functionality 

was rarely used unless running tests or debugging issues. The target platform 

selected for the final software was windows since the HPTDC device only had 

windows drivers available at the time of the development. The relationship between 

these interfaces is further explained in the following section. 

2.5.4 Design and Implementation 

The architecture of the low-level data handling portion of the control software took a 

simple linear bus structure. Figure 2.5-1 shows the data flow and interdependencies 

 

Figure 2.5-1 Basic structure of control software. Arrows indicate the movement of data. The 

bus acts as a listener to the HPTDC data stream and conveys data to each bus component. The 

source component reduces data to the final sparse position and time format, the filter removes 

unwanted events, the splitter conveys data to the sink which asynchronously writes data to disk 

in chunks. The GUI thread samples the splitter at regular intervals and displays a live update 

of photon events and detector diagnostics.  
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between all the parts which make up the software processing. This architecture 

allowed for the abstraction of GUI presentation logic out of low level data handling 

which improved debugging and maintainability. Changes could be made to the data-

handling with minimal to no impact on GUI code. The simplicity of the bus 

architecture also facilitated speed optimisations without worrying about unnecessary 

code complexity. Bus architectures are also widely used for data streaming 

technologies and therefore allowed the use of existing ideas without re-inventing the 

wheel producing new code. The data is made up of four main portions: source, filter, 

splitter and sink. Each component implements a BusComponent, Figure 2.5-2,  

whose interface allows for the conveying data from one component to the next as 

well as some thread synchronisation handles. The over-arching Bus owns all bus  

 

class BusComponent { 

public: 

 BusComponent() 

 virtual ~BusComponent() 

 virtual void receiveData(void *data)=0; 

 virtual void *getProcessedData()=0; 

 HANDLE GetEndEventHandle(); 

 HANDLE GetThreadHandle(); 

 HANDLE GetParentSignal(); 

 uint64_t getNumProcessed(); 

 void Terminate(bool input); 

} 
  

Figure 2.5-2 Interface for the BusComponent base class which implements common 

functionality for all data bus components in the software.   

components and is responsible for conveying data to the source and setting up thread 

queuing between components. The bus also owns a handle to and manages the  
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class Bus{ 

public: 

 Bus(); 

 virtual ~Bus(); 

 SourceComponent *source;/**< Source bus component*/ 

 Filter *filter;/**< Filter bus component*/ 

 Sink *sink;/**< Sink bus component*/ 

 Splitter *splitter;/**< Splitter bus component*/ 

 GUIAnalysisModule *imageAnalysis;/**< Image Analysis 

Module*/ 

 

 /*Debugging/Diagnostic Methods*/ 

 HANDLE getBusThreadHandle(); 

 uint64_t debugGetBytesProcessed(); 

 bool debugIsIOTerminated(); 

 bool debugIsProcessingComplete(); 

 uint32_t debugGetPacketsIn(); 

 uint32_t debugGetPacketsOut(); 

 _declspec(dllexport) uint64_t getEventsProcessed(); 

 _declspec(dllexport) virtual void Start()=0; 

 _declspec(dllexport) virtual void Stop()=0; 

 _declspec(dllexport) void Pause(); 

 _declspec(dllexport) void Resume(); 

 _declspec(dllexport) virtual int32_t HPTDCConnect()=0; 

 _declspec(dllexport) virtual int32_t HPTDCDisconnect()=0; 

 _declspec(dllexport) virtual void ConfigureHPTDC(uint32_t 

trigOffset, uint32_t matchWind)=0; 

 _declspec(dllexport) virtual int32_t HPTDCInit(char *)=0; 

 _declspec(dllexport) virtual string 

printStatusRegister()=0; 

 _declspec(dllexport) virtual void setDemoFilename(char 

*filename)=0; 

 _declspec(dllexport) bool isThisDemo(); 

 _declspec(dllexport) HANDLE getCompleteSignal(); 

 _declspec(dllexport) void setBufferSize(uint32_t size); 

protected: 

 virtual void BusController(void) = 0; 

 static void busThread(Bus *_this); 

 void resumeThreadSecure(HANDLE thread); 

}; 

  

Figure 2.5-3 The Bus interface which controls the synchronization of data through each 

component as well as conveying data to the GUI. The bus also maintains a connection to the 

HPTDC device. 

connection between the client code and the HPTDC device. The bus acts as a 

listener to the incoming TDC data stream and appends data to a dynamically 

resizing FIFO buffer. This buffer compensates for instances where processors may 

be overloaded and temporarily unable to cope with high data rates. In order to 

maintain high speed processing and make use of the multiprocessor architecture in 
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most computers, the data listener and all components each run in their own separate 

thread.   

 The source component has dual functionality. It optionally spools incoming 

raw data to disk asynchronously and converts incoming raw HPTDC packets to 

processed event data. The input raw data takes the form of a C-array and uses the 

structure shown in Figure 2.5-4. Raw data is processed in a similar way to that 

 

typedef struct Raw{ 

 char *data; /**<Buffer which stores the raw data from the 

HPTDC*/ 

 uint32_t size;/**<Size of data field*/ 

} RawData; 

  

Figure 2.5-4 Structure of the raw data packets which are accepted by the source component for 

spooling to disk and reduction to position and timing data. 

mentioned in 2.3.7 without the assumptions on the beginning of the data stream. The 

final solution makes use of a lookup table for fast pulse width to charge 

determination. The processed data packets which are passed downstream to other 

components of the data bus takes the form presented in Figure 2.5-5. 
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/** \struct CoordTime 

\brief Stores the position and arrival time of a single photon 

event 

*/ 

typedef struct{ 

 uint16_t x;/**<Stores the calculated x coordinate for a 

photon event.*/ 

 uint16_t y;/**<Stores the calculated y coordinate for a 

photon event.*/ 

 uint32_t t;/**<Sores the calculated arrival time for a 

photon event.*/ 

} CoordTime; 

 

/** \struct XYTData 

\brief Stores position and arrival times for all events within 

the data packet received by a bus component 

*/ 

typedef struct XYT{ 

 CoordTime *data;/**<Stores the position and arrival time 

for all events within data packet accepted by bus component*/ 

 uint32_t size;/**<Number of events within data packet 

accepted by bus component*/ 

 uint32_t triggers;/**<Number of elapsed tdc triggers 

between the first and last set of events in this packet. Used 

for exposure time calculations*/ 

} XYTData; 
 

Figure 2.5-5 Reduced data format which stores position and time. This is calculated in the 

source component and passed along the bus for filtering, spooling to disk and display in the 

GUI. 

Data passed on to the filter undergoes very minimal noise filtering within the 

filter component. Filtering for the most part deals with vetoing invalid events for 

position, for example a position outside the physical detector region. The filter also 

performs basic Brown-Conrady inverse distortion correction. The source component 

itself performs preliminary filtering removing incomplete events where all NINO 

channels do not produce timing information. 

The splitter component provides an interface to the GUI where filtered data 

can be sampled at regular intervals. The splitter also conveys all data to the sink 

which is responsible for asynchronously writing data to disk. The default behaviour 

of the sink is to write all received data to disk. This component makes use of the 
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Microsoft asynchronous file writing library which maintains its own memory buffer 

for maintaining data integrity. 

The basic structure of the GUI and the interplay with external libraries and 

low-level data handling is shown in Figure 2.5-6. This modular approach to design  

 

Figure 2.5-6 Basic GUI Structure. Arrows indicate dependencies between items. The 

diagnostics is optional and can be switched off. This module refers to detailed output of each 

channel in terms of charge and timing information which is only important for commissioning 

and testing. These should not be of interest to end users. 

facilitated easier testing, design and maintainability as dependencies were not 

heavily coupled to the GUI or any other parts of the software.  Figure 2.5-7 

demonstrates our test data set loaded into the control software using our simulated 

HPTDC device. The image and timing data are both accurately reproduced. 
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Figure 2.5-7 The final GUI using the HPTDCSim data. 

2.5.5 Target Platform and Hardware Requirements 

The computer hardware used for the development and testing of the HPTDC 

hardware simulation and the final control software was a Dell Latitude 8GB RAM, 

2.4GHz core i5 with a 7200rpm 500GB HDD (SATA). Later tests made use of a 

Dell XPS 16GB RAM, 2.5GHz core i7 with a 256GB SSD (SATA). The target 

platform was Windows 7. The Dell Latitude configuration was initially considered 

the minimal hardware configuration since the software was guaranteed to process 

data at the USB limited rate in this situation. The laboratory system which was used 

to drive the experiments was a Windows XP 64-bit platform with a Pentium Core 2 

Quad processor and 5400rpm HDD. Even with this significantly dated hardware 

configuration data acquisition at the maximum rate was achievable. This 

demonstrates the robustness of the software design. The effects of using spinning 

disk drives or slower CPU configurations were not investigated beyond this. 
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2.6 Third-party Fitting Software 

Fitting libraries were time-consuming to embed into the existing data-

reduction framework, therefore the option to use open-source, well tested and 

maintained third-party software seemed more attractive. The Mantidplot and TRI2 

software packages were used for fitting exponentials to the timing data in one and 

two dimensions respectively. Mantidplot, developed at the ISIS spallation source, is 

data reduction software primarily designed for the reduction of neutronic data. 

However, it contains a general purpose fitting tool and a mechanism for loading 

ASCII files with no assumptions on the input units. The TRI2 software package, 

developed at Oxford University, is specifically for time-resolved fluorescence data 

analysis. The input data type (*.tri) is a volume where the first two dimensions 

represent image position and the third timing data.  Making use of these packages 

required the development of external scripts which could be used to export the 

sparse XYT event format to the desired formats for analysis.  

Figure 2.6-1 shows MantidPlot used to produce an exponential fit of our 

timing data from 2.3. The fluorescence lifetime of 2.6 is accurately recovered by 

fitting the data to the fluorescence model presented in equation 1.1-1.  
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Figure 2.6-1 Exponential fit of timing data revealing accurate recovery of the lifetime 2.6ns. 

2.6.1 A More Realistic Fitting model 

The previous section describes using a tail fit of the fluorescence lifetime data. This 

essentially involves disregarding any contribution of the excitation pulse and 

analysing the trailing decay in isolation (see 2.3.2). For the purposes of simulated 

data this is sufficient since a noisy exponential decay pulse was used, however when 

fitting to an actual dataset this may yield incorrect results. Examining the physical 

setup of a fluorescence system might provide some insight as to why a tail fit may 

only be telling part of the story of the decay profile observed from a sample. 

 Fluorescence decays observed in nature are a result of a response to 

excitation. The excitation energy stimulates the fluorescent molecule which then 

non-deterministically returns to its ground state by emitting some of the excitation 

energy. In practice, lasers are used to stimulate a sample within a microscope 

system. The previous section indirectly assumed that the excitation energy was in 
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the form of a delta function, or in other words, the excitation pulse has zero width 

Figure 2.6-2. This ideal situation is useful for understanding the actual mechanism 

 

Figure 2.6-2 An idealised delta (δ) function excitation pulse which determines the initial 

amplitude of the fluorescence decay.  

by which fluorescence decays occur. Figure 2.6-3 shows a more realistic scenario 

 

Figure 2.6-3 A more realistic example of fluorescence decay. The IRF is measured in the 

absence of a sample. The measured fluorescence decay is treated as the convolution between the 

IRF and the exponential decay of the fluorophore. Hence a more realistic model would take the 

IRF into account. 

for the excitation of a fluorophore. Here, the instrument response function (IRF) 

replaces our idealised δ-function. The IRF represents the limiting resolution of our 

imaging system and is usually measured by replacing the sample with some sort of 

control (which could be an empty sample holder). In other words, it is a measure of 
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how our system responds to an impulse. In practice, laser pulses are sufficiently 

narrow in time to be treated as a delta function impulse for the system. The laser 

pulse width is usually on the order of tens of picoseconds. The impulse response or 

IRF is usually between hundreds of picoseconds to a few nanoseconds.  

For time-domain analysis, the final measured fluorescence decay in TCSPC is 

treated as the convolution between this response and the exponential decay 

associated with the fluorophore  

𝑰(𝒕) = 𝑳(𝒕𝟐) ⊗ 𝑭(𝒕)                                                            2.6-1 

where 𝐿(𝑡) is the IRF and 𝐹(𝑡) =  𝑒
−(𝑡−𝑡2)

𝜏⁄
 which is our familiar fluorescence 

decay [2]. These equations represent the basis of physical models used by software 

packages developed for analysing FLIM data. 

2.7 Conclusions 

Early software development in parallel with hardware testing allowed the 

removal of several bugs and continuous improvements to the final control software 

before any real data was collected. This inspired confidence in the stability and 

correctness of the data acquisition and early treatment of the data before analysis. 

The simulated data and HPTDC device also provided a platform to rigorously test 

performance requirements against the implementation. The results clearly 

demonstrate that the design is robust since the application is capable of storing and 

reducing data at the specified data rates as well as driving the graphical user 

interface without compromising the base level performance requirements. 
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2.7.1 C-DIR Software Product 

The software managed to maintain stability and data integrity even at the 

maximum theoretical rate of 40MB/s. This was tested using a python script to 

generate a large fake data file which was then fed to the software at this rate using 

the hardware simulation in 2.4. Raw data outputs were compared with the original 

file. The software has since been adapted for commercial use with both the C-DIR 

system and a proprietary version of the XDL system at King’s College University. 

2.7.2 Improvements 

The C-DIR control software was developed before the release of the C++11 

standard. There are several additions to the standard which would greatly reduce 

complexity, readability and maintainability of the source code. Future improvements 

to the software could include the use of smart pointers to create clear data ownership 

schema as well as reducing error prone raw pointer handling, and more extensive 

use of STL containers and algorithms to aid compactness to name a few. There were 

also areas in the code where strict adherence to coding standards could have been 

improved. 
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3 Characterising the C-DIR Device 

3.1 Introduction 

  This chapter outlines the development of a testing framework used to 

calibrate individual components of the C-DIR device and ultimately characterise the 

performance of the C-DIR anode with respect to other imaging, photon-counting 

devices. The criteria against which performance was measured included, timing 

resolution, spatial resolution and data acquisition rates. Each section seeks to explain 

and justify the experimental setups and tools required to measure each performance 

metric and how the C-DIR compares with, or stands on each count with respect to, 

other approaches to position-sensitive photon detection.  

3.1.1 C-DIR Hardware 

The final product, which will be hereafter referred to as the C-DIR Camera, consists 

of a Photek PMT225 25mm photomultiplier tube with 2 chevron-stacked 

microchannel plates and a resistive sea rear coupling anode, C-DIR anode with 

NINO ASIC which represents the position-sensitive charge readout, and finally the 

HPTDC which acts as the read-out electronics for the camera. The HPTDC is 

interfaced to a PC via USB 2.0 where the control software, developed in the 

previous chapter, reconstructs two-dimensional images from the four NINO output 

channels timing data. The C-DIR Camera is described in 1.5. 

3.2 Time-Over-Threshold vs Charge Calibration 

The ToT versus charge calibration described in Chapter 2 is the mechanism 

used for measuring anode charge and thus charge centroids. This section addresses 

how this information is obtained by describing the experimental setups which were 
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used to probe the NINO response to input charge and discussing the limitations of 

the approaches used.  

3.2.1 Delay Generator Automation 

A Stanford Research Systems DG645 delay generator was used as the charge 

and clock source for all attempts to obtain a pulse width vs charge calibration. 

Automatic synchronization of the charge selection and data collection presented a 

useful feature to reduce the amount of tediousness associated with collecting fine-

grained response to charge for the NINO ASIC. Therefore, a calibration routine was 

added to the data acquisition software. 

The DG645 device is shipped with a light-weight C interface which can be used to 

communicate with the device over TCP/IP protocol. This required a physical 

Ethernet connection between the DG645 and the controlling PC. Figure 3.2-1 shows  

 

 class DG645{ 

 public: 

 _declspec(dllexport)DG645(char *ip); 

 _declspec(dllexport)~DG645(); 

 

 _declspec(dllexport) void sendCommand(char *command); 

 _declspec(dllexport) void readCommand(char *buffer, unsigned num); 

 _declspec(dllexport) void disconnect(); 

 }; 
 

Figure 3.2-1 DG645 C++ Device public interface. The constructor initialises a connection to the 

supplied IP address after which public methods are used to send/receive commands or 

disconnect from the device. 

the custom-made C++ around the DG645 interface. The device was connected to IP 

address 169.254.31.31 and controlled using the lamp n, v command. This command 

is responsible for adjusting the output voltage on each of the signal channels, n is the 

channel ID and v is a floating point (real) number corresponding to the voltage. The 

DG645 allowed a range of 0.5 to 5V in 0.01V increments.  
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 The calibration routine code was embedded in the source component and 

enabled/disabled using a compile time switch. When enabled, this allowed 

acquisition of timing data to be synchronized with changes in the charge supplied by 

the delay generator. A small delay was introduced between each voltage change to 

allow the timing data to stabilize before it was collected and saved to disk.  

3.2.2 ToT vs Voltage Data  

Before discussing the actual mechanisms by which the calibration data was 

collected. It is useful to describe the data formats used for storing the data as well as 

how the actual look-up table was constructed. The calibration routine, described in 

the previous section, produced binary files which contained high stats for NINO lead 

time and pulse width at each voltage set point. The file naming convention was 

simply the voltage step where the times were recorded. If the calibration was 

configured to measure the pulse width response from 0.5-5V in steps of 0.02V, this 

produced 225 files for each of the NINO Channels. The number of data points 

collected was configurable, however the default was 4x105 points. CPU intensive 

processing was abstracted away from the DG645 calibration routine to maximise 

data acquisition performance. The files were processed using a python routine 

making use of a host of mathematical and scientific tools. The mean of the pulse 

width values at each voltage point were recorded along with the voltage stored as 1-

D arrays for processing by the SciPy fitting tools. The 

𝑠𝑐𝑖𝑝𝑦. 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒. 𝑖𝑛𝑡𝑒𝑟𝑝1𝑑 module for generation of the full look-up table. The 

𝑖𝑛𝑡𝑒𝑟𝑝1𝑑 method produces an interpolation function from a set of fixed input data 

points and provides options for the order of the spline interpolation to be used. The 

third order (cubic) spline interpolation provided the best result for the pulse width vs 

charge data. Splines were chosen as opposed to polynomial fits since polynomials 
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tend to behave unpredictably outside of the fitting region, the idea was to extrapolate 

the spline beyond the measured data in addition to interpolating between data points. 

The look-up table was written out as a binary file for reading into the data reduction 

application. 

Figure 3.2-2 provides an example of how closely the generated function can match 

    

Figure 3.2-2 An example of using cubic spline interpolation on a set of sample data taken from 

the charge response of a single NINO channel. The cubic spline interpolation matches the data 

perfectly. 

the real data. The code used to generate this plot is shown in Figure 3.2-3. 
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## importing necessary libraries  
 
reader = csv.reader(open("C:/Users/Lamar/Desktop/pulseWidthCalib0.csv", "rb"), 
delimiter=",") 
x = list(reader) 
result = numpy.array(x).astype("float") 
 
chg = result[:,0] 
pw = result[:,1] 
 
pw = pw * (25.0/1024.0) 
 
f = interp.interp1d(chg, pw, kind="cubic") 
 
## plotting 

 

Figure 3.2-3 Simple coding example for generating spline interpolation using SciPy. 

The look-up table generated used voltage instead of charge. Since there is a linear 

relationship between voltage and charge shown in equation 3.2-1 knowledge of the 

exact charge was not critical for imaging. This can be proven by revisiting the C-

DIR imaging equations1.5-1, 1.5-2 and 2.2-5 and substituting the charge law: 

𝑸𝒊 =  𝑪𝒊𝑽𝒊         3.2-1 

The assumption made here is that the capacitance on the NINO channels vary 

negligibly so that any differences can be ignored. If each capacitance is treated as 

the same, then: 

𝑪 =  𝑪𝑨 = 𝑪𝑩 = 𝑪𝑪 =  𝑪𝑫    3.2-2 

so that:  

𝑸

𝑪
=  𝑽𝑨+ 𝑽𝑩 + 𝑽𝑪 + 𝑽𝑫       3.2-3 

𝐱 =  𝐕𝐀 +  𝐕𝐁 𝐕⁄      3.2-4 

𝒚 =  𝑽𝑨 +  𝑽𝑫 𝑽⁄      3.2-5 

Therefore, we can ignore the actual charge and instead use the input voltage directly 

for imaging. This approximation seemed to work well for the generated images. 
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3.2.3 MCP Charge Injection 

The first approach to creating the pulse width against charge calibration for 

the NINO involved the direct injection of a known charge into the PMT 

microchannel plate. The idea here was to test the full camera system in place to 

produce a calibration which would be as close to reality as possible. Figure 3.2-4 

shows the initial setup for these measurements. The camera system was mounted in  

 

Figure 3.2-4 Initial setup for pulse width vs charge calibration using a DG645 delay generator 

to supply a known charge directly to the PMT. 

a Photek DB2 Dark Box which contained SMA, SMB, USB 2.0 and mains power 

feed-throughs. This precaution was necessary since the PMT needed to be run at 

high voltage and thus high gain to create a measurable charge on the C-DIR anode. 

20dB attenuators were used to limit the output of the delay generator as an extra 

precaution as well to reduce the point at which the NINO channels became saturated 

with charge during measurements. This attenuation also serves to maximise 

resolution within the linear region of the NINO response to input charge. Chapter 1 
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described this linear relationship for small input charge which is also shown in 

Figure 3.2-2.  

3.2.4 Principle of Operation 

A single channel on the delay generator was used to produce a stimulation pulse for 

the MCP. The DG645 output 40MHz clock was used as the input clock signal for 

 

Figure 3.2-5 The timing mechanism of the TDC when triggered by the laser. The time interval 

between the NINO rising edge and the clock rising edge to follow, Δt, is subtracted from the 

trigger period 𝟏 𝒇⁄  to give the arrival time. 

the HPTDC. The HPTDC timing mechanism is shown in Figure 3.2-5. Each edge 

signal arising from the NINO, leading or trailing, is measured with respect to the 

TDC clock in a similar scheme to that used in Figure 1.2-4. Since the TDC itself is 

triggered by the excitation source, the timing calculation is simplified. The time 

interval between the NINO pulse leading edge and the clock leading edge is 

subtracted from the trigger period to provide the pulse arrival time. This is 

performed for both leading and trailing edge outputs of the TOT discriminator for 

each NINO channel. The leading edge provides the TCSPC time histogram and the 

interval between leading and trailing gives pulse width which can be used to recover 

charge. The charge injection channel on the DG645 was set to 100KHz which was 

safely within the maximum theoretical count rate. With the tube high voltage power 
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supply set to an operating voltage of 1.98KV, corresponding to a gain of ~106, the 

control software was used to acquire the pulse width vs charge data as described 

above in the previous section. 

3.2.5 Results 

Due to the photomultiplier tube construction, direct charge injection into the MCP 

was the wrong method for generating the charge calibrations. This effect was due to 

a large, 1 kΩ resistance between the MCP input and ground which produced 

spurious charge events within the system in the form of ringing. The noise had a 

period of about 20KHz. This ultimately led to a heavily distorted, unexpected 

calibration. The effect became more noticeable as the voltage was increased as.   

 

Figure 3.2-6 Effect of MCP charge injection on NINO response. As the voltage/charge 

increases, the effect of the ringing becomes more pronounced until the calibration is overcome 

by noise. 
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shown in Figure 3.2-6. The method used to stimulate the NINO was re-designed to 

avoid the effects of this feedback loop. 

3.3 Issues with the ToT Calibration 

3.3.1 Threshold Configuration and Drift 

One of the unfortunate features of the NINO discriminator is the turn-pot 

mechanism for setting the threshold level. The threshold level was configurable to 

be between ~69mV-270mV and the availability of read-out pins on the ASIC 

facilitated using a standard digital multi-meter for measuring the set threshold level. 

However, this threshold was subject to drift by about 5mV over a 24-hour period. 

Configuring the threshold was somewhat of a black art because there is a trade-off 

between sensitivity and noise which required careful and thoughtful exploitation. 

Lower threshold values increased sensitivity, therefore the photomultiplier could be 

operated at lower gain. However, this increased overall noise sensitivity, particularly 

the PMT dark noise. Increasing the threshold meant the PMT could be operated at 

higher gain and whilst reducing susceptibility to noise, but this resulted in the loss of 

valid lower energy photon events. These considerations coupled with a drifting 

threshold meant that every experimental phase required a re-calibration of the 

charge response since changing the threshold effectively invalidated the pulse-width 

vs charge measurement (Figure 3.3-1). 
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Figure 3.3-1 The effect of modifying the NINO threshold on pulse-width measurement. 

Increasing or decreasing threshold will require a new calibration for ToT vs Charge. 

3.3.2 DG645 Dynamic Range 

While collecting the ToT vs Charge calibration data, it was noted that different 

levels of attenuation shifted areas of the NINO response being sampled. This is 

illustrated in Figure 3.3-2. This pointed to a limitation in the DG645, specifically, 
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Figure 3.3-2 Shows the different areas of the NINO response sampled at A) 20db and B) 65db 

input signal attenuation. 

the charge supplied by the DG645 was not broad enough to cover the full dynamic 

range of the NINO response. In addition to this, the voltage steps were not fine-

grained enough to fully exploit the linear portion of the response. Efforts to combine 

various attenuated datasets resulted in rubbish calibrations as shown in Figure 3.3-3

 

Figure 3.3-3 Attempt to combine various attenuated datasets result in warped impracticable 

calibrations. 

 Since there was no other hardware available for generating charges, this was a 

limitation which was accepted. All calibrations were taken with a single attenuation 

value of 30db with respect to the DG645 output signal. 

3.3.3 Noise 

Section 3.2.3 briefly discussed the effect of noise on the NINO calibration. The 

section to follow will discuss how noise on the NINO channels affects image 
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distortion. The effect of high-voltage noise on the system, however, was discovered 

before any attempt at imaging using the C-DIR. The initial experimental set-up for 

the C-DIR did not contain any high-voltage shielding between the PMT, PMT 

power-supply, the supply cables and the NINO which resulted in noisy data. 

   

Figure 3.3-4 Effect of high-voltage noise on timing data for a single NINO Channel. Data was 

collected using a laser pulse generator (LPG) with 40ps width at 650nm. Notice the breadth of 

the timing response ~30ns. (Arbitrary 𝒕𝟎) 

Figure 3.3-4 shows the effect of high-voltage noise on the timing data for a single 

NINO channel. This data was collected without the presence of high-voltage 

shielding and shows a very broad timing response, on the order of tens of 

nanoseconds, for an input laser pulse with a width of 40ps. This represents an 

extremely poor timing resolution. The high-voltage noise being responsible for the 

broadening of the time response.  



76 

 

 The simplest approach to reducing high voltage noise was to isolate the high-

voltage power supply from the C-DIR camera using shield enclosures. Off-the-shelf 

aluminium alloy enclosures (RS IP5 Diecast) were chosen due to their rated 

resistance to electro-magnetic/radio-frequency (EMI/RFI) interference. The 

enclosures were provided in varying sizes which allowed matching of sizes of the 

system components without large amounts of dead-space. In addition to using 

EMI/RFI resistant shielding, high-voltage interfaces were machined through the 

housing to make use of shielded cabling for conveying the power supply charge. 

Figure 3.3-5 shows the basic design of the C-DIR camera and power supply  

 

Figure 3.3-5 Basic design of the C-DIR and corresponding power supply shielding boxes. Input 

low voltage mains charge is conveyed using BNC connectors while high voltage charge is 

conveyed using SHV.  
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Enclosures. SHV (safe high voltage) connecters and cabling are used to transport the 

large cathode and MCP voltages (you may need to describe operating voltages). 

SHV was chosen since they were designed for use in high voltage application up to 

5Kv and 5amps which exceeds the MCP and cathode potential required to operate 

the PMT at high gain. The SMB (SubMiniature version B) connectors are used for 

conveying smaller input voltage from the 12V mains power supply. The SMA 

connector is used to transmit the MCP trigger signal to the TDC device for TCSPC 

as described in 3.2.4. Introducing this simple design for shielding the camera from 

the effects of high- 

 

Figure 3.3-6 After noise correction the laser pulse shape becomes more prominent. The FWHM 

of the peak is ~180ps which is better than an order of magnitude improvement. 

voltage noise yielded dramatic improvements in timing performance as shown in 

Figure 3.3-6. Features in the input laser pulse became more apparent as timing 

performance increased by approximately an order of magnitude. 
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3.3.4 NINO Direct Charge Injection 

This section described work carried out with the help of Thomas Conneely 

aided in the development of a series of prototype PCBs which were interfaced with 

the NINO for direct charge injection in an attempt to address the shortcomings 

identified in the previous section. This was necessary since specialist 

knowledge/training on the use of PCB design tools, CNC machines and chemicals 

involved in PCB development was required. Figure 3.3-7 shows the design of the 

charge injection board. There are 8 conductive pads, 4 on each side, while the  

 

Figure 3.3-7 Either side of the charge injection board. Most of the board is bare except for the 8 

conducting interface pads which allow charge to be transferred capacitively through the PCB. 

The top side contains 4 SMA female pins which interface with the DG645 to accept the charge 

signal. The underside contains four female connectors which match the NINO acceptance male 

pins. 

remainder of the board surface is non-conducting. Charge is transferred from one 

side of the board to the next capacitively. The top side of the board contains 4 SMA 

connectors which interface with the DG645 to deliver charge to the board. The 

underside contains 4 special female connectors which interface to the NINO board. 

Therefore, the PMT and capacitive division anode were completely bypassed. 

Several iterations of the board were developed varying the pad sizes on the side 

which interfaces with the DG645 to obtain an optimal capacitive coupling between 

the input charge from the DG645 and the NINO. This was more convenient than 
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attempting to solder several surface mount capacitors which would be prone to error 

and potential damage to the PCB. Figure 3.3-8 shows the modified setup which no   

 

Figure 3.3-8 Experimental setup using the direct injection board (DIB in the diagram). Since 

the PMT/Anode combination were no longer in use, the setup was removed from the dark box. 

longer required a dark box. This new setup also allowed each channel of the NINO 

to be controlled independently reducing cross-talk between channels when 

measuring the charge response. The result of this is shown in Figure 3.3-9. 
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Figure 3.3-9 Resulting calibration when each NINO channel is probed separately. This 

calibration was not used since it did not represent real operating conditions. 

However, it was felt that this was unrealistic since the C-DIR anode would be 

outputting charge on all four anodes simultaneously so any calibrations should be as 

close to reality as possible. The NINO response observed was more consistent with 

what was expected based on the literature. Figure 3.3-10 below shows the  
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Figure 3.3-10 Initial Tot calibration with charge injection board shows marked improvement in 

noise compared to the MCP injection approach. 

improvement in NINO response. This calibration was the first of many taken using 

this approach. 
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3.4 Imaging and Distortion Correction 

3.4.1 Preliminary Imaging 

The basic set-up for imaging is as shown in Figure 3.4-1. This initial set-up was  

 

Figure 3.4-1 Setup for basic imaging using masks. A laser pulse generator is used as the 

collimated light source controlled by a DG645 delay generator. The mask is directly coupled to 

the input window of the PMT using an optical mount to hold it in place. ND filters are used to 

attenuate laser power and act as a precaution to protect the highly sensitive PMT. 

used to provide a qualitative view of the images produced by various ToT/Charge 

calibrations. Figure 3.4-2 shows the initial pinhole mask used to investigate potential 

imaging non-linearity in the C-DIR camera. At this stage, there was clearly a large 

amount of distortion present in the system which appeared to be a mixture of pin-

cushion and barrel distortion. Several theories   
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Figure 3.4-2 A) Illustration of pinhole mask used to determine the imaging non-linearity of the 

CDIR. The mask contained 5µm pinholes on a 25mm diameter grid. The centre pinhole is 10µm 

in diameter. of  B) Resulting image produced imaging system showing pin-cushion distortion. 

were proposed to describe the origin of this distortion. The first hypothesis was 

noise on the NINO channels. However, after developing the shielding enclosures, 

described in 3.3.3,  calibrations stabilized at fixed thresholds. The only other 

sensible explanation to explain the distortion was irregularities in the physical anode 

capacitive pads. There was no scope, or budget, for optimising the anode geometry 

therefore multiple solutions were developed to correct the distortion in software.  

3.4.2 Distortion Correction using Geometric Transformations 

The basic idea of this approach was to scan a point source over the surface of the 

detector sweeping in X for fixed positions of Y and then sweeping in Y for fixed 

positions in X. Known positions in space would be compared to those measured by 

the C-DIR anode and a 2-D geometric transformation would be created which 

transforms from measured positions to the expected scan position. To achieve this, 

the C-DIR camera was mounted on an XY motorised translation stage with the point 

source aligned to the centre of the photomultiplier input window Figure 3.4-3. This  
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Figure 3.4-3 X-Y translation stage set-up for 2-D distortion correction. The laser point source is 

fixed and the C-DIR is scanned using the stage. Measured positions are compared to stage 

positions with (0,0) being the centre of the laser scan. 

centre position is treated as the origin (0, 0) and is the frame of reference for all 

subsequent measurements. A C++ library was written to automate the process of the 

scan and synchronise this with the C-DIR data collection for each point in the 

sweep. The program output the positions of the translation stage into a csv file while 

each point measured by the C-DIR was saved as a separate image. This was the 

preferred method since it facilitated calculation of the centre of mass of the spot 

more easily if all spots are separated. Figure 3.4-4 shows an example of a 



85 

 

 

Figure 3.4-4 Stage scan of the detector with 28 discrete points. The green cross overlay 

represents the centre of mass calculation for each point which the red circle overlays show the 

actual stage positions. These were used as the basis for the 2d distortion correction.  

composite of the surface scan of the C-DIR. The red dots overlaid onto the 

composite show the positions recorded by the translation stage. The green cross 

overlays show the centre of mass of each of the scanned points.  A python script was 

developed in order to analyse the data scans and generate the 2D transformation. 

The high-level action of the script can be broken down into the following steps: 

1. Load and store stage positions in a list. 

2. Load each C-DIR position measurement and calculate the centre of mass of 

the spots. Using the scipy library. 

3. Store the positions of the centre of mass in a list. 

4. For the X sweeps. Generate a fit of (interpolate) X measurements 𝑥𝑚 against 

stage positions (expected positions) 𝑥𝑒 for each Y step and store coefficients. 
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5. Generate a fit for each coefficient with respect to Y steps so to have a 

continuous range of coefficients through Y and store these new coefficients. 

6. Repeat steps 4 and 5 for Y sweeps. 

7.  Use the coefficients generated in 5 and 6 to correct a distorted image. 

There were two approached to interpolating the relationship between measured and 

expected positions. The first attempt involved using a polynomial fit where: 

𝑥𝑒 = 𝑐0 + 𝑐1𝑥𝑚 + 𝑐2𝑥𝑚
2 … + 𝑐𝑛𝑥𝑚

𝑛 

where 𝑥𝑒 is our expected or corrected position, 𝑥𝑚 is our measured position, 𝑐𝑖 are 

our coefficients and 𝑛 is the degree of our polynomial. The 𝑛𝑢𝑚𝑝𝑦 library in python 

provided a convenient method, via the 𝑛𝑢𝑚𝑝𝑦. 𝑝𝑜𝑙𝑦𝑓𝑖𝑡 module, of performing a 

least-squares polynomial fit. Figure 3.4-5 shows the result of the polynomial fit  

 

Figure 3.4-5 The image on the left shows the original scan of the detector surface. The image on 

the right shows the correction using a polynomial fit. Since the degree of the polynomial used 

for the correction 𝒏 = 𝟏, this was essentially a linear fit. Higher degrees resulted in large 

amounts of artefacts. 

correction. The degree of the polynomial was chosen as 𝑛 = 1 which obtained the 

best result. This degree was also used for interpolating the coefficients as well. 

Using higher values of 𝑛 resulted in worsening of the distortion. This occurred since 
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the polynomial fit only works well within the fitting region. Outside this region the 

polynomials tend to behave unpredictably.  

The limitations of the polynomial approach to fitting led to the use b-spline 

interpolation. This was available in the python 𝑠𝑐𝑖𝑝𝑦 module. The 𝑠𝑐𝑖𝑝𝑦. 𝑠𝑝𝑙𝑟𝑒𝑝 

function finds a b-spline approximation of a 1-D curve, 𝑥𝑚 𝑣𝑠 𝑥𝑒, and returns a tuple 

representing the b-spline. This can be used in the 𝑠𝑐𝑖𝑝𝑦. 𝑠𝑝𝑙𝑒𝑣 function to evaluate 

the spline for a given input, which in our case was our X measurements. These 

methods were convenient because they allowed the use of the same steps for 

interpolating the spline coefficients in the same was as the polynomial coefficients. 

The resulting correction is shown in Figure 3.4-6. Once again, the degree of the  

 

Figure 3.4-6 The image on the left shows the original scan of the detector surface. The image on 

the right shows the correction using a spline fit. The degree of the spline 𝒏 = 𝟏 for this 

correction. The horizontal correction shows some artefacts while the vertical correction 

appeared to be better than the polynomial correction. 

spline was chosen to be 𝑛 = 1 which seemed to produce the best fit, especially 

horizontally, with the least number of artefacts. One may notice that the correction 

was performed on the original scan as opposed to a distorted image collected using 

the C-DIR. This is done for two reasons. Firstly, it is easy to see how the spots 

measured by the C-DIR are warped into a reasonably straight configuration as would 
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be suggested by the translation stage scan positions as seen in Figure 3.4-4. 

Secondly, this approach was abandoned shortly after developing this correction 

mechanism in favour of the Brown-Conrady approach which is described in the 

proceeding section. This was due, at the time, to drifting ToT vs charge calibrations 

which resulted in unpredictable image distortion. Therefore, this method would have 

to be employed before every experiment to correctly remove image distortion. This 

did not seem like a workable solution. Also, the evaluation of the b-spline and 

correction of the measured position was on the order of 10s of seconds and minutes 

in some cases. This was not suitable for live data collection which made this method 

impracticable. A compromise between speed and distortion reduction was required 

and this was met using the Brown-Conrady approach. 

3.4.3 Brown-Conrady Distortion Correction 

After several attempts to stabilise the ToT vs charge calibration as well as intrinsic 

image distortion, we were able to achieve imaging which appeared to suffer mostly 

from pin-cushion distortion as outlined in 3.3. This meant the C-DIR was now a 

good candidate for a simpler means of distortion correction, namely, the Brown-

Conrady approach which was described in 2.3.5.  A distortion mask for the C-DIR 

was created by engineering a 2-D pinhole mask on PCB with a CNC machine. 

Figure 3.4-7 shows how the original pinhole arrangement is altered by distortion 
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Figure 3.4-7 A) Pinhole cross-hair mask engineered using PCB in a CNC Machine. B) Resulting 

distortion image produced by the C-DIR. 

in the C-DIR. Once, this distortion image was obtained, the software correction 

which was previously described in equations 2.3-2 to 2.3-4 was applied.  Reducing 

these polynomials to two terms, i.e. 𝐾𝑖 where 𝑖 ∈ (1,2), ignoring any tangential 

distortion contribution (𝑃𝑖) and setting 𝐾1 = −1−5, 𝐾2 = 3−11 yields the correction 

shown in Figure 3.4-8. Even with a very crude estimate for these components, 

 

Figure 3.4-8 Example of moderate software correction using the Brown-Conrady distortion 

model. Here the radial distortion coefficients were adjusted to produce the best result with 

𝑲𝟏 = −𝟏−𝟓, 𝑲𝟐 = 𝟑−𝟏𝟏 . Tangential distortion contributions were ignored. 
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virtually all of the pin cushion distortion was removed. This distortion correction 

was on the order of tens of milliseconds which made it an attractive option for 

introducing as part of the live data collection process. 

3.4.4 Resolution 

The resolving capacity of the C-DIR camera was measured using a standard USAF 

resolution chart measurement in line-pairs per millimetre. The mask was projected 

onto the PMT input window using our laser source. Figure 3.4-9 shows the test 

 

Figure 3.4-9 A) USAF Resolution test chart. Explanation of measurement in Table 3.4-1. B) 

Test chart image produced by the C-DIR. Here mostly larger groups are visible therefore 

resolution performance is poor. 

chart image produced by the C-DIR vs a representation of the mask used to produce 

the image. This method of resolution measurement employs a simple reference table 

which can be used to determine the resolution of the imaging system, Table 3.4-1. 
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Table 3.4-1 USAF Resolution test chart measurement table. The element which is visible within 

a particular group has an associated resolution in line pairs per millimetre which is read 

directly from the table.  

 

The largest bar which cannot be differentiated by the C-DIR, group -1 element 1, 

determines the limiting resolution of 0.5 line pairs per millimetre (LP/mm).  

3.4.5 NINO Input Impedance 

The NINO ASIC contained a second turn-pot which allowed for tuning the input 

impedance. There were no read-out pins which facilitated an impedance 

measurement, however, the effect on imaging was qualified nonetheless.  

 

Figure 3.4-10 Shows the effects of increasing impedance on the output image. Since this 

attribute was not measurable, the midpoint of the impedance was set and remained unaltered 

for the remaining experiments. 

Group Number 

Element -2 -1 0 1 2 3 4 5 6 7 8 9 

1 0.250 0.500 1.00 2.00 4.00 8.00 16.0 32.0 64.0 128.0 256.0 512.0 

2 0.281 0.561 1.12 2.24 4.49 8.98 17.96 35.9 71.8 143.7 287.4 574.7 

3 0.315 0.630 1.26 2.52 5.04 10.08 20.16 40.3 80.6 161.3 322.5 645.1 

4 0.354 0.707 1.41 2.83 5.66 11.31 22.63 45.3 90.5 181.0 362.0 724.1 

5 0.397 0.794 1.69 3.17 6.35 12.70 25.40 50.8 101.6 203.2 406.4 812.7 

6 0.445 0.891 1.78 3.56 7.13 14.25 28.51 57.0 114.0 228.1 456.1 912.3 
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3.5 Time-walk Correction and Timing Resolution 

Although the ToT is useful in the context of imaging, this phenomenon has an 

adverse effect on timing accuracy. This is obvious since, the measured arrival time 

of a photon event is sensitive to the position of the threshold and the magnitude of 

the charge, even though the rise time of the detector pulses remain constant as 

shown in the previous chapter Figure 2.1-1. The time walk correction was designed 

to establish a linear relationship between the leading edge measurement and the 

corresponding ToT as seen in the literature [80]. This would allow for a convenient 

correction method of the form 

 𝒕𝒄𝒐𝒓𝒓 = 𝒕𝒎𝒆𝒂𝒔 − 𝒇(𝑻𝒐𝑻)                                                       3.5-1 

where 𝑡𝑐𝑜𝑟𝑟 is the corrected time, 𝑡𝑚𝑒𝑎𝑠 is the original leading edge measurment  and  

𝒇(𝑻𝒐𝑻) = 𝒎 × 𝑻𝒐𝑻 + 𝒄                                                        3.5-2 

where 𝑇𝑜𝑇 is the NINO pulse width which corresponds to the time measurement, 

and 𝑚 and 𝑐 represent linear correction factors which are obtained by creating a 

linear fit between the leading edge vs TOT relationship. Figure 3.5-1 A and B shows 

a sample dataset used to demonstrate how the time walk correction was obtained. 
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Figure 3.5-1 Timing data for a single NINO channel containing approximately 100K counts. A) 

2D histogram of leading edge vs ToT. The ToT values are obtained by subtracting the leading-

edge data from the trailing-edge data. B) Leading and trailing edge measurements which 

produce the relationship in A.  

The above data was was collected using a drosophila (fruit fly) sample stained with 

green fluorescent protein (GFP). This dataset was chosen since it produced a wide 

distribution of leading-edge time versus ToT and contains ~100K counts. 

Principal component analysis (PCA) was the approach used to establish a 

linear relationship between the leading edge measurement and ToT. This was chosen 

since it is a simple, yet powerful, method for finding linear relationships within data. 

This technique is normally used to reduce datasets with high dimensionality into 

much lower dimensions while preserving information [81]. In two dimensions, the 

technique can be used to find the axis along which there is most variation between 

our two variables pulse width and ToT. The NumPy and SciPy libraries once again 

provided useful tools for automating the treatment of collected timing data. Without 

going into the full mathematical basis of PCA, the following steps outline how the 

process of PCA can be broken down:  

1. Standardisation of the data. 

2. Calculation of the covariance matrix. 
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3. Calculation of the eigenvalues/eigenvectors from the covariance 

matrix. 

4. Select the eigenvector corresponding to greater variance. 

5. Transform the eigenvector by re-centering within the data. 

The python script used to accomplished the linearisation is shown in Figure 3.5-2. 

 
def PCA_linearise(x, y): 
    x_std = standardise(x) 
    y_std = standardise(y) 
    data = numpy.array([x_std, y_std]) 
    cov = numpy.cov(data, rowvar=True) 
    eigval, eigvec = eigh(cov) 
 
    #select eigenvector which represents greatest variation along axis 
    voi = eigvec[eigval.argmax()] 
    voi[0] = (voi[0] * numpy.std(x)) + numpy.mean(x) 
    voi[1] = (voi[1] * numpy.std(y)) + numpy.mean(y) 
    gradient = (voi[1] - numpy.mean(y)) / (voi[0] - numpy.mean(x)) 
    y_intercept = voi[1] - (gradient * voi[0]) 
    return gradient, y_intercept 

 

Figure 3.5-2 Python script which linearizes 2D data using PCA and returns a linear 

relationship based on the calculated eigenvectors. 

The standardise() method subtracts the mean from the dataset and divides by the 

standard deviation thus producing data with zero mean and unity variance. The 

python NumPy module is then used to calculate the covariance matrix, while the 

SciPy linear algebra module is used to calculate the eigenvalues and eigenvectors. 

For a 2D dataset, two eigen values and eigen vectors are produced. The eigenvector, 

or principal component, which corresponds to the larger eigenvalue has more 

information about the distribution of the data and is therefore selected as the 

principal component to represent the linear relationship between the leading-edge 

measurement and the ToT. It is useful to note that the origin of the eigenvectors will 

be at (0,0) after standardization, therefore we can use the mean of the datasets as 

(𝑥2, 𝑦2) in the standard equation 𝑚 =  𝑦2 − 𝑦1 𝑥2 − 𝑥1⁄ . The selected eigenvector is 
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re-centered to the data using the initial mean and standard deviation. The gradient 

and y-intercept of this line are used as constants for correcting the data set as shown 

in equation 3.5-2. The resulting correction applied to the sample data is shown in 

 

Figure 3.5-3 A) The data with the principal component (red line) which linearizes the 

relationship between the leading-edge measurement and ToT. The gradient and y-intercept of 

this line are used to correct the data. B) Time walk correction applied to the leading edge of our 

sample dataset from Figure 3.5-1. We see an improvement of ~30% in the timing resolution. 

Figure 3.5-3 A and B. The time-walk correction has reduced the FWHM of the lead 

time measurement by 30% from 15.8ns to 10.8ns which represents a significant 

improvement to the timing resolution of the system. In practice, this technique is 

used to improve the timing resolution of the C-DIR by correcting the TTS and IRF 

which improved the perceived timing resolution limits of the system. 

3.6 C-DIR Performance Evaluation 

3.6.1 Timing Resolution 

The C-DIR timing resolution is stated in terms of its impulse response or transit time 

spread (TTS). The transit time of a photo-electron is the time taken between 

conversion of the photon at the photocathode and its detection at the rear anode of a 

PMT. This timing is dependent on the trajectory taken through the PMT. A photo-

electron which originates in one region of the photocathode may have several 
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trajectories through the PMT which will result in an uncertainty, or spread, around 

its arrival time. The TTS therefore represents the error in our measurement of the 

arrival time of photoelectrons and is the limiting factor on the timing resolution of 

the system.  

The C-DIR detector makes use of a PMT with two chevron-stacked, microchannel 

plates which reduces the variation in this transit time based on its geometric 

configuration. Therefore, the C-DIR natively has a very low transit time spread and 

thus good timing resolution.  

 

Figure 3.6-1 C-DIR Transit Time Spread for MCP PMT. This peak is 209 ps FWHM. 

Figure 3.6-1 shows the TTS measurement taken for the system. This measurement 

was obtained using a Photek Laser Pulse Generator (LPG) which produces a pulse 

with wavelength 650nm (red) at a pulse width of 40ps. These lasers are developed to 

test the timing response of Photek photomultiplier tubes. Figure 3.6-2 shows the 
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Figure 3.6-2 Experimental setup for transit time spread measurement of C-DIR. The Laser 

Pulse Generator was triggered with a DG645 delay generator. The pulse was attenuated using 

an ND filter rack down to 𝟏 𝟑𝟖𝟒⁄ 𝒕𝒉 the incident signal intensity to protect the PMT from over-

exposure and ensure photon counting conditions. 

experimental setup for obtaining the TTS measurement. The LPG was heavily 

attenuated using a series of neutral density filters (ND8, ND6, ND4, ND2) to reduce 

the laser signal intensity to 1 385⁄ 𝑡ℎ its initial intensity. This ensured the PMT was 

protected from over-exposure to light and also acted to ensure photon counting 

levels, less than one detected photon per laser pulse. The TTS measured was 209 ps 

FWHM using this approach. This is about 50% worse timing performance than the 

cross-delay line H33D detector [35]. However, these two systems utilise differing 

PMT technology and the 209ps timing performance is consistent with the datasheet 

of the PMT 225 (2 microchannel plates at a 25mm diameter) supplied by Photek 

Limited. 
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3.6.2 Count Rate Limitations 

Section 1.5.8 provided a very optimistic estimate for global count rate for the C-DIR 

of about 1MHz by factoring the dead-time of the constituent detector components. 

However, the main limiting factor which was discovered during testing was the data 

transfer rates between the HPTDC and the computer. The current implementation of 

the HPTDC electronics makes use of USB 2.0 technology. USB 2.0 has an absolute 

maximum theoretical bandwidth of 40MB/s when ignoring controller bandwidths. 

Encoding a single event with the C-DIR requires ten words or 40 bytes of data. A 

simple calculation shows that this corresponds to about 1MHz. Therefore, this limits 

the maximum global count rate for the system to be < 1MHz if no counts are going 

to be lost in buffer overflows in the HPTDC memory. This could obviously be 

improved by extending the hardware implementation to use the USB 3.0 standard 

which would allow data transfer rates exceeding 500MB/s this allowing at least an 

order of magnitude greater event counts i.e. 12.5MHz which is closer to our 

theoretical maximum calculated in 1.5.8. 

3.6.3 Spatial Resolution 

The spatial resolution of the device was taken using the USAF resolution chart 

approach in 3.4.4. The spatial resolution of the C-DIR was measured at 0.5 line pairs 

per millimetre.  

3.7 Conclusions 

This chapter sought to characterize the C-DIR in the context of a photon-counting 

system for FLIM applications. Important metrics under investigation included 

timing resolution, spatial resolution and global count rates. These investigations 

revealed even more of the properties of the C-DIR including noise, stability and 
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distortion. We were able to successfully measure and control several characteristics 

of the system. Hardware tweaks lead to the isolation and elimination of high voltage 

cross-talk. While software modifications to the base implementation outlined in 

Chapter 2 significantly reduced spatial distortion. The overview of the system 

performance metrics gathered as the major part of this work provided confidence for 

moving on to the next stage of real world testing of the device. 

The amount of distortion present in the C-DIR camera leaves a lot of room for 

improvement in the anode design. Perhaps investigations into how anode 

geometries, capacitance between nodes, edge capacitance and overall uniformity of 

the capacitances influence image linearity require deeper investigation and are 

outside of the scope of this research project. Optimising the anode board design 

could not only assist in solving problems related to distortion but also image 

resolution. It may also be worthwhile testing the existing anode geometry with more 

stable readout electronics, for example, constant fraction discriminators which do 

not suffer from the drawbacks of time over threshold discriminators, however this 

would require a new technique for determining the charge centroid since the ToT vs 

charge calibration would be absent. These types of electronics were not available 

during this project and therefore this route could not be further explored and remains 

conjecture. The current prototype C-DIR board suffers from low spatial resolution 

compared to devices like the cross-delay line and cross-strip based detectors. 

However, these anodes are typically used in conjunction with CFDs so a direct 

comparison is not really possible or fair. However, in its current state, this low 

spatial resolution reduces its reach as far as applications for biological fluorescence, 

particularly super-resolution microscopy where the resolving power of the camera 

system is at the heart of the matter. Despite these shortcomings one cannot 
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completely rule out this device. The C-DIR could be useful in situations where high 

spatial resolution is not required. 

 The timing resolution of the C-DIR is such that it can measure relatively fast 

fluorescence lifetimes. The impulse response (or TTS) of 221ps will allow for 

measurements of many fluorescent probes with lifetime values >> 1.0ns [2] with 

reasonable accuracy. Although systems like the H33D report 2x more timing 

resolution, the limiting factor of the measurements come when coupled to 

microscope systems. It is reasonable to expect an IRF > 200ps when coupled with a 

microscope system [35] therefore this result is far from discouraging. 

 Characterising and documenting the C-DIR performance provided 

confidence for moving onto the next stage of conducting field trials. The chapter to 

follow further describes the C-DIR performance in real experimental conditions 

where results can be compared to those within the literature.    
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4 Field Trial: Calcium Imaging in Live Tissues 

using Capacitive Division FLIM 

4.1 Introduction 

This chapter describes two field tests designed to exercise the C-DIR as a 

fluorescence lifetime imager. The first test investigates the timing accuracy of the C-

DIR device and assesses its ability to recover fluorescence lifetimes for well 

documented samples. The C-DIR was used in a single pixel mode as a fluorescence 

lifetime spectrogram as opposed to an imager to focus on the timing. The second test 

records 2-D fluorescence lifetime data in a live sample to observe expected 

fluctuations in lifetime based on biochemical processes which are occurring in the 

sample. The device was coupled to a single plane illumination microscope (SPIM) 

developed by Dr Phil Birch and Dr Roger Phillips of the University of Sussex [82].   

4.2 Global Experimental Setup 

4.2.1 Microscope and Imaging Setup 

The C-DIR camera was coupled to a detection arm of a novel single plane 

illumination microscope (SPIM), alternatively termed light sheet microscope, 

developed at the University of Sussex Figure 4.2-1 called FLI-SPIM. Figure 4.2-2 

shows the physical lab setup of the FLI-SPIM system. The FLI-SPIM  
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Figure 4.2-1 FLI-SPIM System developed by Dr Phil Birch at the University of Sussex. This is a 

single plane illumination microscope (SPIM) which contains two detection arms one for a 

conventional CCD camera and the other for the C-DIR device. 

microscope consists of a commercial 470nm pulsed laser diode head driven by a 

PicoQuant PDL 800-D with a repetition rate of 40MHz and pulse width of 55ps  

 

Figure 4.2-2 FLI-SPIM laboratory set-up. 

FWHM. The light sheet is achieved by using two cylindrical lenses which expand 

the bream horizontally while maintaining the vertical width. The third and final 
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cylindrical lens focuses the vertical axis of the beam while the horizontal axis filled 

the back focal plane of a 10x infinitely-corrected objective thus forming a thin 

vertical light sheet at the objective focus. The detection arm was orthogonal to the 

illumination axis as shown in the diagram. A 20x water immersion objective NA o.8 

lens collected and focused the signal towards a beam splitter which channels 10% of 

the signal to the C-DIR and 90% to an EMCCD Camera. The EMCCD camera was 

used to locate areas of the sample for investigation. It was also used to verify the 

image produced by the C-DIR. The FLI-SPIM microscope was selected for the field 

trials since it allowed testing of C-DIR as a wide-field fluorescence lifetime camera. 

The bonus of the optical sectioning inherent in the light sheet generation meant that 

there would be less measurement noise coming from parts of the sample which were 

not under investigation. Figure 4.2-3 shows an image of the empty sample holder 

and capilliary tube, used for inserting samples into the holder, taken by the EMCCD  

 

Figure 4.2-3 A) Image taken with the EMCCD of the inside of the empty sample holder with 

capilliary tube. B) The same image as detected by the C-DIR. The inversion is easily corrected 

in software but the low resolution is caused not only by the inherently low resolution of the 

image but also due to an issue with the coupling of the detection arm to the C-DIR. The image 

is produced outside of the focal plane of the C-DIR which was not trivial to correct.  
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and the C-DIR (B). The most two obvious issues with B is the poor resolution 

compared to the EMCCD and the difference in size and orientation. The EMCCD 

contains a 2/3 inch (~17mm) sensor versus the 25mm active diameter of the 

photomultiplier tube. The initial design for the C-DIR arm was based on the C-

mount specification where the flange focal distance is 17.526mm. However, the C-

DIR camera prototype focal distance was slightly further due to some physical 

offsets between the camera shielding described in 3.3.3 and the PMT photocathode. 

This resulted in very defocussed images as shown in Figure 4.2-4. Focusing and 

magnification were subsequently achieved by inserting a camera lens into the 

focusing arm. The field of view of the EMCCD was consequently ~4 times that 

 

Figure 4.2-4 Attempt to measure resolution of C-DIR in initial coupling to the FLI-SPIM 

system. Spatial resolution degraded significantly due to errors in the coupling between the C-

DIR system and the microscope arm. 

of the C-DIR with minor improvements to the image sharpness (focussing) due to 

the inroduction of lens in the detection arm. This 4x field of view wa by design, the 

EMCCD camera was used to locate interesting features, the C-DIR was then used 

for the fluorescence lifetime measurements as the C-DIR did not have a “live view” 

mode. The difference in fields of view is demonstrated in Figure 4.2-5. 
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Figure 4.2-5 Image of haemocytes in Drosophila prepupae.  The left was taken with the 

EMCCD. Circled is the corresponding field of view of the C-DIR which shows the image taken 

on the right. This was taken after improvements to the coupling with the C-DIR. The C-DIR 

magnification was roughly 4x that of the EMCCD and spatial resolution was improved to the 

original 0.5lppm with the focusing of the camera lens. 

4.2.2 Instrument Response Function 

The IRF of the system was measured with the experimental setup shown in Figure 

4.2-1. The sample holder was left in place with no sample and reflections were 

imaged from the inside edge of the sample holder onto the C-DIR. This was done to 

match the conditions for acquiring the TTS in 3.6.  Figure 4.2-6 shows the measured 

 

Figure 4.2-6 Instrument response of C-DIR when coupled with FLI-SPIM. This width of the 

pulse was measured at ~334 picoseconds FWHM. 
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impulse response which was 333.64 picoseconds FWHM for the FLI-SPIM system. 

4.3 Calcium Calibration of the C-DIR System 

4.3.1 Oregon Green Bapta-1 

Studies have shown the calcium sensitivity of Oregon green dyes [83] [84] which 

makes them a useful marker for observing chemical processes within living cells. 

Fluorescence imaging of calcium sensitive dyes can provide insight into the electro-

chemical states within living cells as calcium is a ubiquitous, crucial component of 

many functions within live organisms [34] [84]. Oregon Green Bapta-1, OGB-1, is 

known to have two exponential components [2] [34] [84]. The long component, 

𝜏𝑙𝑜𝑛𝑔 ≃ 4𝑛𝑠, represents bound Ca2+ while the short component, 𝜏𝑠ℎ𝑜𝑟𝑡 ≃ 0.5𝑛𝑠 

represents free Ca2+ ions. Agronskaia et al have designed an experiment which 

allows the quantification of calcium concentrations within a sample using 

fluorescence lifetime. Here the average fluorescence lifetime of the bi-exponential 

OGB-1 fluorescence provides a direct measure of the ion concentration within a 

sample. Instead of using live cells, the quantification was achieved using a series of 

calcium buffers with known free Ca2+ ion concentrations. These buffers are used as 

a calibration of the measurement system. The average lifetime information obtained 

from the buffers could then be used in a live situation for quantitative calcium 

imaging within cells.  

 OGB-1 has an absorption maximum at 494nm and emission around 520nm 

[84] [2] [85]. The FLI-SPIM system produces excitation at 470nm which falls 

within the excitation range for OGB-1. The PMT component of the C-DIR makes 

use of an S20 photocathode which has peak efficiency in the visible spectrum, 

including 520nm, and a fused silica input window which has above 90% 
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transmission in the visible spectrum [86]. The literate shows a biexponential 

property associated with a fast decaying lifetime component between 0.25-0.53ns 

and a longer decay component of ~4ns.   

4.3.2 Objectives 

This experiment provided a good basis for testing the C-DIR device. Firstly, the 

lifetimes recovered by the C-DIR for OGB-1 can be compared with the literature to 

validate the accuracy of the measurement system. Furthermore, calcium buffer 

measurements could provide some insight into the uniformity of the fluorescence 

lifetime measurement over the full active area of the detector. Finally, calibrating the 

C-DIR using the calcium buffer series tests the capability to measure and 

discriminate expected fluorescence lifetimes at varying calcium concentrations. 

4.3.3 Sample Preparation 

The samples used in this experiment were prepared and stored by Roger Phillips and 

Xaiofei Li of the School of Life Sciences, University of Sussex. There were ten 

samples prepared with varying concentrations of Ca2+ ranging from 0-38.9µM. 

Samples were injected using a syringe into the capillary sample holder. 

4.3.4  Results and Discussion 

Figure 4.3-1 shows the combined instrument response and calcium buffer data decay  
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Figure 4.3-1 Decay curves of OGB-1 calcium buffer series measured by the C-DIR. 

curves. This data was captured using the C++ based analysis software developed in 

2.5. A small script was developed to convert the C-DIR data to a format readable by 

the TRI2 software which was used for 2-D fluorescence lifetime fitting. The data 

was binned to satisfy width and height of 256x256 pixels where each pixel 

contained 256 time-channels. This helped to increase the statistics for the fit. The 

IRF, previously obtained and in 4.2.2, was used as the excitation or prompt for the 

fitting software.  

 Figure 4.3-2 shows a resulting exponential fit using our 10µM Ca2+ OGB-1 

sample. Even a preliminary estimate shows good agreement with what is expected 
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Figure 4.3-2 Setting up the exponential fit for an OGB-1 sample 10 with 0.602µM of free Ca2+. 

This initial set-up and location of initial parameters is required before doing an entire fit in 2D. 

Even with the basic setup we have good agreement with the literature. 

from the literature. After setting up the initial fit, a 2D fit was performed over the 

entire surface of the C-DIR production the outputs in Figure 4.3-3 Fit result for the 

0.603µM sample over the surface of the C-DIR. From left to right we have the 

intensity image, long lifetime component, short lifetime component, relative 

intensity of the short component and finally the relative intensity of the short 

component.. The fitting model selected yielded good results for the long and short 

component lifetimes of OGB-1 where were 𝜏𝑙𝑜𝑛𝑔 ≃ 4 ± 0.113𝑛𝑠 and 𝜏𝑠ℎ𝑜𝑟𝑡 ≃

0.54 ± 0.17𝑛𝑠 for the 38.9µM sample which is supported by the literature. At this 

concentration, the long component dominates the fluorescence signal. The second 
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image from the right in Figure 4.3-3 Fit result for the 0.603µM sample over the 

surface of the C-DIR. From left to right we have the intensity image, long lifetime 

component, short lifetime component, relative intensity of the short component and 

finally the relative intensity of the short component. demonstrates the uniformity of 

the long component measurement over the surface of the C-DIR Detector. The fit 

was obtained for good values of χ𝜈
2 ranging between 0.98 and 2.40. 

 

Figure 4.3-3 Fit result for the 0.603µM sample over the surface of the C-DIR. From left to right 

we have the intensity image, long lifetime component, short lifetime component, relative 

intensity of the short component and finally the relative intensity of the short component. 

Table 4.3-1 shows the fitting result for each of the ten calcium buffers. The expected 

trend of increasing relative intensity of the long component with increasing 

concentration is observed by comparing the first and last columns. This table 

represents the calibration of the C-DIR for quantitative Ca2+ measurements and will 

be used in a further experiment for calcium imaging in live tissue.  
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Table 4.3-1 C-DIR fluorescence lifetime for the long and short components of OGB-1 at varying 

concentrations of Ca2+. Notice the increase in relative intensity of the long component as the 

free Ca2+ concentration increases. The percentage amplitude of the short component is 𝟏𝟎𝟎 −
 𝑨𝒍𝒐𝒏𝒈. 

Concentration of free Ca2+ (µM) 𝝉𝒍𝒐𝒏𝒈 (ns) 𝝉𝒔𝒉𝒐𝒓𝒕 (ns) 𝑨𝒍𝒐𝒏𝒈(%) 

0 2.5 0.59 11 

0.017 3.4 0.47 22 

0.038 3.3 0.28 24 

0.065 3.3 0.27 38 

0.1 3.5 0.30 45 

0.15 4.0 0.35 48 

0.225 3.9 0.45 56 

0.351 3.9 0.41 63 

0.602 3.8 0.40 70 

1.35 3.9 0.29 100 

38.9 3.7 0.29 100 

 

𝑹 =  
𝑨𝒔𝒉𝒐𝒓𝒕

𝑨𝒍𝒐𝒏𝒈+𝑨𝒔𝒉𝒐𝒓𝒕
                                            4.3-1 

The ratio 𝑅 of fluorescence lifetime is given by the relationship between the free 

calcium concentration and R, along with the how the contribution of the long 

component varies with concentration is shown in Figure 4.3-4. This relationship can 

be used directly to quantify the concentration 
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Figure 4.3-4 Relationship between the concentration of free Ca2+ and fractional amplitude 

(intensity) of the long and short lifetime contributions which correspond to the bound and free 

states of OGB-1 respectively. 

of free Ca2+ in tissue samples.  

4.4 Quantitative Calcium Imaging using C-DIR 

4.4.1 Calcium Imaging using OGB-1 in Living Tissue 

The experiment presented in 4.3 provides a basis for the quantification of calcium 

concentrations within living tissue. Here we will use the calibrated C-DIR system to 

test the relative concentration of free and bound Ca2+ in live tissue. Figure 4.4-1  
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Figure 4.4-1 Composite epifluorescence (green) and brightfield (white) image of Drosophila 

larval tissue, incubated with OGB-1, imaged using the CCD arm of the FLI-SPIM system. Blue 

arrows indicate giant polytene salivary gland cells which show lower fluorescence intensity than 

adherent fat body cells (red arrows). 

shows a tissue sample which was dissected from Drosophila larvae. The sample 

preparation was once again performed by members of the school of Life Sciences at 

the University of Sussex. The larva was incubated with OGB-1 Acetoxymethyl 

(AM). Epifluorescence images show higher intensity in adherent fat body regions 

than in the actual salivary duct. The fluorescence calibration of the C-DIR will allow 

for a quantitative measure of Ca2+ bound and unbound in the drosophila salivary 

glands and fat body to perform a ratio-metric comparison and determine which area 

of the tissue has the higher calcium concentration. 

4.4.2 Results and Discussion 

The results of the calcium imaging in the fat body and salivary gland comparisons  
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Figure 4.4-2 The top series of images a) show the result of the 2D bi-exponential fit for the fat 

body cells and the bottom series b) the result for the salivary glands. Fitting parameters varied 

within the confines of those lifetime values recorded in 4.3.4. Visually, we see comparable 

intensities between A1 and A2 in both series which indicates similar concentrations of free and 

bound calcium in both cases. The A1 (long lifetime component) was ~58% contribution in both 

the salivary gland and the fat body. 

  are shown in Figure 4.4-2. Without the need to determine the actual value of the 

concentrations of calcium within the samples we can clearly see that there is a 

slightly higher percentage of bound Ca2+ in each sample given the higher 

contribution of the long lifetime component in both cases. This result shows that 

despite the almost 3x average brighter intensity signal in the adherent fat body, there 

is a very similar concentration ratio between Ca2+ in the bound and free states.  

4.5 Conclusions 

The preceding experiments demonstrated the accuracy of the C-DIR for recording 

fluorescence lifetimes by reproducing lifetime values for OGB-1 consistent with 

published results [2] [34] [84]. The χ𝑣
2 variation for the model employed was in an 
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acceptable region very close to 1 (0.8-2.5) for all fits as is consistent with the 

tolerance for reduced chi-squared used by Agronskaia et al[34]. Higher chi-squared 

values could be resulting from systematic errors in the fit for lower concentrations of 

Ca2+. The lifetime of ~0.5ns is very short compared to the ~334ps FWHM IRF 

therefore we were very close to our limiting time resolution for the fitting. Despite 

this, the C-DIR was still able to successfully record the full calcium calibration over 

the range of buffers provided. The trend of fractional contributions of free and 

bound Ca2+ were also consistent with the literature as was demonstrated in Figure 

4.3-4. The calibration was then used to discriminate calcium levels between the 

salivary duct cells and adherent fat body of a Drosophila sample. The C-DIR was 

able to show that, despite much higher fluorescence intensities in the fat body, the 

fractional fluorescence amplitudes were very similar in both the fat body and the 

salivary duct. Therefore, although dye uptake in the fat cells are higher, calcium 

levels were the same.  
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5 Discussion and Conclusion 

5.1 Summary and Final Conclusions 

The objective of this research was to present a solution for wide-field time-resolved 

fluorescence imaging using the capacitive division technique. The C-DIR promised 

MCP-limited photon-counting rates exceeding those of other detector systems in its 

class. This promise created the first challenge of developing a software system 

which could cope with these rates. Chapter 2 addressed this issue by using 

knowledge of the HPTDC raw output data format, the maximum theoretical USB 

2.0 data rates, and predicted system behaviours to come up with a simulated data set 

which could then be tested using an incrementally developed data reduction 

platform. The data reduction software was mostly developed before the final 

manufacture of the C-DIR components thanks to the generation of a large simulated 

dataset. Further optimizations which made use of current threading technologies on 

modern CPUs enabled the development of a commercially viable, high speed 

software package which adequately handled full USB data rates reliably. This 

required the use of strict software engineering principles for design and quality 

assurance. 

In Chapter 3, we attempted to characterize the C-DIR in the context of a FLIM 

measurement system. During this process, several short-comings of the C-DIR and 

associated electronics were identified which affected the maximum realisable spatial 

and temporal resolution and therefore required modifications to the system design to 

reduce noise, correct distortion and improve timing response. The performance of 

the C-DIR was also evaluated in these respects. The reduction in noise was a 

challenging process. Settling on the decision to use aluminium housings and cabling 
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with high levels of shielding resulted from several investigations into possible 

sources of noise. Once the major contributor, high voltage noise, was isolated a 

marked improvement in performance was observed throughout the entire system. 

Since the NINO ASIC was responsible for charge sensing, and therefore imaging, as 

well as timing performance, isolating and reducing noise at this interface was critical 

for maximizing the performance of the entire system. After isolating noise 

contributions, the mathematical approach of PCA to reduce the effects of 

discriminator time walk was highly beneficial in achieving optimal timing 

resolution. Distortion in the system was mostly predictable within the centre region 

of the detector and easily corrected in software. Attempts to use a physical 2-D 

distortion correction was an overkill, in hindsight, since the correction was not 

significantly better than the Brown-Conrady distortion. Fortunately, the decision 

was made to investigate the Brown-Conrady distortion algorithm as an alternative to 

the far more complex 2D physical correction.  

Best efforts to control noise and distortion yielded a device with timing resolution of 

209ps FWHM and spatial resolution of 0.5lppm. Despite using a different metric 

from other devices in measuring spatial resolution, it was clear from qualitative 

observations that the non-linear ToT vs charge calibration was not the best solution 

for imaging, especially considering the volatility of the threshold. In terms of count 

rates, the C-DIR was limited by the USB 2.0 data bandwidth which corresponded to 

a global count rate of ~1MHz. In practice, the C-DIR was not pushed beyond a 

global detection count rate of just above 800KHz. This was better than the H33D 

system but could be pushed even further by supporting USB 3.0. 

Chapter 4 concluded the C-DIR evaluation with an acid test in real-world 

experimental conditions. The challenge was not only to accurately reproduce the 
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fluorescence lifetime of OGB-1, but if successful, fully calibrate the C-DIR for 

quantitative calcium imaging. The C-DIR met expectations by being able to recover 

the fluorescence lifetime of OGB-1 as well as demonstrate the calcium dependence 

of the fluorescence lifetime of OGB-1 bound and free states as a function of calcium 

concentration. With absolute confidence in the C-DIR based on this successful 

calcium calibration, supported by previous findings in the literature, a real 

quantification of calcium in the fat body cells and the salivary duct of a Drosophila 

sample was performed. The C-DIR was able to successfully reveal that levels of free 

OGB-1 were similar in fat body cells and salivary glands despite vast differences in 

fluorescence intensity. 

To date, the C-DIR is the most performant photomultiplier-based detector system in 

terms of global count-rates as compared to other similar devices in its class, see 

Table 1.5-1. The closest rival, H33D detector system, has a read-out electronics 

limited count rate of 500KHz which is below the C-DIR theoretical maximum and 

below the current realisable maximum of 1MHz due to USB 2.0 limitations. Solid-

state techniques like that described by Li et al. offer faster lifetime determination 

due to pixel-level timing electronics for lifetime calculation [49]. In this approach, 

the local detection rate of each SPAD pixel is independent or neighbouring SPADs 

and not limited by MCP dead-time or saturation effects [49]. Despite these clear 

advantages, the system still suffers low quantum efficiency due to the smaller active 

pixel area, which is taken up by timing electronics and a small pixel count which 

limits its ability for imaging [49]. The moderate spatial resolution provided by the 

C-DIR exceeds the 32x32 and 32x16 resolution offered by the solid-state alternative 

with higher global count-rates.  Improvements in anode architecture and interfaces 

between anode, NINO and TDC could improve noise performance and significantly 
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improve timing resolution beyond the ~200ps FWHM obtained. In terms of image 

distortion and resolution, the C-DIR is slightly behind other imaging photon 

detectors at present. However, improvements to the design of the prototype board 

possibly optimizing surface capacitance using anode geometry, as was already 

demonstrated by Lapington et. al for space applications [1], could result in 

improvements to image distortion. Decoupling timing read-out from position 

centroiding and avoiding the non-linear ToT mechanism for charge centroid 

calculation may improve the spatial resolution. General suggestions for improving 

the system are presented in 5.2. 

5.2 Future System Development 

The characterization of the C-DIR in Chapter 3 highlighted issues which ultimately 

affect the temporal and spatial resolution of the detector. Moving forward, this 

situation could possibly see marked improvement by either reducing the noise on the 

charge sensing from the anode or utilizing a mechanism for decoupling the timing 

and position centroiding. 

5.2.1 Conceptual System Improvement 

The current C-DIR system makes use of the NINO ASIC for fast sensing of input 

charge. The speed benefit of using a ToT discriminator compared to perhaps CFDs 

did not seem worthwhile. The susceptibility of ToT discriminators to noise and 

threshold drift meant that it was difficult to reduce noise levels and distortion in the 

final image without resorting to software corrections, the effect of noise may have 

also adversely affected image resolution. Avoiding the ToT mechanism for imaging 

may be implemented by recording the MCP-out timing and comparing this with 

arrival times at each of the corner anodes. Although the version of the MCP-PMT 
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used in this study provided a compatible interface for the MCP out signal, the NINO 

chip itself only contained 4 input channels. There are however 8-channel versions of  

 

 

Figure 5.2-1 Proposed improvement to C-DIR system architecture which makes use of an 8-

channel NINO. The MCP out signal could be used in conjunction with the anode arrival times 

to centroid the position of the incident charge in a similar manner to the XDL anode. This 

would completely bypass the non-linear ToT mechanism as it is currently used for position 

centroiding. 

the NINO like the one used for the ALICE time-of-flight instrument at CERN [76]. 

The system would then take on the design shown in Figure 5.2-1. Since the ToT 

mechanism is no longer needed for imaging, it may be more useful to employ fast 

discrete CFDs or some fast multi-channel CFD implementation like those produced 

by CAEN as they are less prone to amplitude walk effects. An outline of the 
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proposed system changes is shown in Figure 5.2-2. 

 

Figure 5.2-2 TCSPC set-up for the conceptual improvements to the C-DIR measuring system. 

The CFD array replaces the NINO and changes the way charge centroiding is achieved. 

If the time difference between the MCP arrival time and the time at a channel is 

given by 𝑡𝑖𝑑𝑖𝑓𝑓
= 𝑡𝑖 − 𝑡𝑚𝑐𝑝    𝑖 ∈ {𝐴, 𝐵, 𝐶, 𝐷} then the charge centroid can be 

calculated using: 

𝑥 =
𝑡𝐴𝑑𝑖𝑓𝑓

+ 𝑡𝐵𝑑𝑖𝑓𝑓

𝑡𝐴𝑑𝑖𝑓𝑓
+ 𝑡𝐵𝑑𝑖𝑓𝑓

+ 𝑡𝐶𝑑𝑖𝑓𝑓
+ 𝑡𝐷𝑑𝑖𝑓𝑓

  and 𝑦 =
𝑡𝐶𝑑𝑖𝑓𝑓

+ 𝑡𝐷𝑑𝑖𝑓𝑓

𝑡𝐴𝑑𝑖𝑓𝑓
+ 𝑡𝐵𝑑𝑖𝑓𝑓

+ 𝑡𝐶𝑑𝑖𝑓𝑓
+ 𝑡𝐷𝑑𝑖𝑓𝑓

  

This is a similar centroiding algorithm to the one currently used by the C-DIR, 

however knowledge of the incident charge magnitude is no longer necessary, thus 

becoming similar conceptually to the delay line time difference in the H33D XDL 

system. This measurement is of course limited by the timing resolution of the CFDs. 

In order to maintain our theoretical rates, one would need CFDs able to operate at 

rates approaching those of the NINO channels. 

The modifications to the C-DIR system mentioned in the previous section would not 

come without drawbacks. The first issue which could be encountered is system bulk. 

The current format of the C-DIR is compact with the PMT, anode and NINO 

existing in a single housing which were about 100x100x50mm. The associated 
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power supply unit which powered the entire camera was placed in a housing with 

identical dimensions. CFDs typically have volumes exceeding those of the C-DIR 

camera housing. Associated power supplies may also be complex to use and 

likewise bulky. Although the C-DIR was never designed for portability, its 

compactness and ease of use were beneficial. There is now an increased cognitive 

burden on users to properly configure power for the C-DIR and the CFDs separately 

compared to the CDIR which uses a single power supply for all components. 

Additionally, the CFDs need to be situated on the outside of the enclosed PMT 

housing which requires design of a new interface between the main camera and the 

CFDs to minimize light leaks.  

5.2.2 Future Software Improvements 

The software developed as part of this project was mainly focused on the 

acquisition, reduction, visualisation and fast streaming to disk of the fluorescence 

signal from the C-DIR. There is a lot of scope for further developing this software to 

allow fast FLIM at video rates either by using very fast time-domain fitting 

techniques [87] or by using the phasor approach which transforms the time-of-flight 

data into frequency space using Fourier techniques [55] [88]. This could provide 

direct, real-time FLIM imaging. If used in conjunction with a USB 3.0 

implementation of the TDC or some higher bandwidth interface, further 

optimizations or high-performance computing techniques like the message passing 

interface, MPI, would be required to cope with these higher data rates. 
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5.3 Further Experiments 

5.3.1 Biosensors for FLIM-FRET 

In chapter 4, we examined the action of a single fluorescence molecule, OGB-1, as a 

biosensor for the calcium concentration Drosophila larval cells. Other biosensors 

like blue fluorescent protein, BFP, and yellow fluorescent protein, YFP are known 

to interact as a FRET pairs [89]. FRET pairs are used to measure distances between 

molecules as well as bound/un-bound states of interacting molecules [89] [90]. YFP 

quenches the fluorescence of BFP by absorbing energy through non-radiative 

pathways. This shortens the lifetime of BFP. As binding between BFP and YFP 

molecules increase, the fluorescence lifetime of the BFP will show a measurable 

decrease. The C-DIR could be used in an experiment of this type to determine 

intermolecular distances within biological samples or interactions between 

molecules at the sub-cellular level. 

5.3.2 3-D FLIM 

So far, we have used the FLI-SPIM microscope to image static optical sections 

through our samples. The FLI-SPIM does not yet have the capabilities to 

synchronise the scanning of samples through the light-sheet with data acquisition. 

Further developments of the FLI-SPIM system in conjunction with resolution 

improvements for the C-DIR would facilitate time-resolved 3-D reconstructions of 

structures with fluorescence lifetime information. The result would be 5-Dimensions 

of data, 3-D structure, fluorescence lifetime and experiment time (duration).   

5.4 Potential Applications 

The resolution of the C-DIR in its current state would not allow for highly spatially 

resolved fluorescence imaging. However, this system could be used in a crude 
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scanning microscope set-up to scan restricted 2-D sections in a wide-field mode. 

This would allow maximising the area of the C-DIR with the least distortion to build 

up a larger 2-D FLIM image. This has the advantage of immediately providing more 

information that a point-scanning confocal system for example. Combining 2-D 

images would require sophisticated software stitching techniques but could, in 

principle, result in faster data acquisition that point-scanning. 

 If the proposed system improvements mentioned in 5.2 were to be realised, 

this would make the C-DIR a good candidate for wide-field high-resolution FLIM. 

The C-DIR could either be used in its current set-up with the SPIM microscope to 

image highly spatially resolved thin sections through large biological samples, or in 

conjunction with fast laser scanning, confocal, techniques to produce super-

resolution FLIM images of cells or even single-molecules. 

5.5 Closing Remarks 

Investing in improving the C-DIR could result in an extremely competitive system 

for time-resolved fluorescence microscopy. We are yet to see its full potential in 

terms of count rates and imaging resolution. Improvements in HPTDC design, using 

new techniques for charge centroiding, or investigating different read-out electronics 

combinations could form the basis of new research projects which could push the 

future of this technology and potentially the field of fluorescence lifetime imaging.  
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