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Summary

Despite the success of general relativity in explaining classical gravitational phe-
nomena, several problems at the interface between gravitation and high energy
physics remain open to date. The purpose of this thesis is to explore classical
and quantum gravity in order to improve our understanding of different aspects of
gravity, such as dark matter, gravitational waves and inflation. We focus on the class
of higher derivative gravity theories as they naturally arise after the quantization of
general relativity in the framework of effective field theory.

The inclusion of higher order curvature invariants to the action always come in
the form of new degrees of freedom. From this perspective, we introduce a new
formalism to classify gravitational theories based on their degrees of freedom and,
in light of this classification, we argue that dark matter is no different from modified
gravity.

Additional degrees of freedom appearing in the quantum gravitational action
also affect the behaviour of gravitational waves. We show that gravitational waves
are damped due to quantum degrees of freedom and we investigate the backreaction
of these modes. The implications for gravitational wave events, such as the ones
recently observed by the Advanced LIGO collaboration, are also discussed.

The early universe can also be studied in this framework. We show how infla-
tion can be accommodated in this formalism via the generation of the Ricci scalar
squared, which is triggered by quantum effects due to the non-minimal coupling of
the Higgs boson to gravity, avoiding instability issues associated with Higgs infla-
tion. We argue that the non-minimal coupling of the Higgs to the curvature could
also solve the vacuum instability issue by producing a large effective mass for the
Higgs, which quickly drives the Higgs field back to the electroweak vacuum during
inflation.
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Chapter 1

Introduction

1.1 Prelude

Over the course of the past hundred years, general relativity has survived every

single experimental test. It was able to explain with high accuracy the anomalous

precession of the perihelion of Mercury, which had previously disagreed with the

predictions from Newton’s gravity. It also correctly predicted the value for the light

bending, which was twice the value predicted by the Newtonian theory. Other ob-

servations, spanning both classical [Einstein, 1916] and modern [Dicke, 1959,Schiff,

1960] tests, such as the gravitational redshift, post-Newtonian tests, gravitational

lensing, Shapiro time delay, tests of the equivalence principle, strong field tests, cos-

mological tests, have all favoured general relativity (see [Will, 2014] for a review).

This list goes on and on and, by the time of the writing of this thesis, no experiment

has ever measured any deviation from general relativity. In fact, recent observa-

tions of gravitational waves by the LIGO collaboration have only reinforced how

successful general relativity turns out to be [Abbott et al., 2016].

Given the triumph of general relativity, why should we look into modifying it

then? Because, as in any other scientific theory, general relativity has its limitations

and it is supposed to be taken seriously only within its domain of validity. As

Newtonian physics once faced its own limitations, proving itself useless in relativistic

and quantum scales for example, general relativity fails tremendously in certain

scales. Of course, given the substantial number of evidence, no one questions the

validity of general relativity within its scope, in the same way that no one doubts
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that Newtonian mechanics can be used to study ballistics. It is thanks to this

decoupling of scales that we are able to do physics. This is, in fact, the core of

effective field theory and the very reason why we can make progress in science.

Although it is not yet clear at what scale general relativity breaks down, there

are possible indications that ask for new physics. The discrepancy between the ob-

served and the theoretical galaxy rotation curves (see Figure 1.1) [Rubin and Ford,

1970,Rubin et al., 1980], for example, cannot be accounted for by either general rela-

tivity or the standard model of particle physics, indicating that one of these theories

must be incomplete. Dark matter has been postulated as a new type of particle that

could account for such discrepancy. Current data from the CMB, interpreted in the

ΛCDM (Lambda Cold Dark Matter) framework, shows that our universe is made

up of approximately 95.1% of an unknown type of energy, where dark matter con-

stitutes 26.8%, dark energy 68.3% and ordinary matter only 4.9% [Ade et al., 2016].

However, the same observations can be interpreted in a context where general rela-

tivity is modified, without the need of postulating new particles. Examples include

the tensor-vector-scalar gravity (TeVeS) [Bekenstein, 2004], the scalar-tensor-vector

gravity (STVG) [Moffat, 2006,Brownstein and Moffat, 2006b,Brownstein and Mof-

fat, 2006a] and f(R) theories [Buchdahl, 1970,Capozziello et al., 2004,Katsuragawa

and Matsuzaki, 2017]. TeVeS is a modification of general relativity obtained by the

inclusion of new fields to the gravitational sector. It has become popular because

it reproduces MOND — a classical modification of Newton’s law — in the non-

relativistic regime [Milgrom, 1983a, Milgrom, 1983b, Milgrom, 1983c]. STVG (also

known as MOG) was developed via the inclusion of new fields and by promoting

some constants of the theory, including the Newton’s constant, to scalar fields. As

pointed out in [Capozziello and De Laurentis, 2012], the class of theories f(R) where

the Einstein-Hilbert action is replaced by a generic function of the Ricci scalar R

can also shed new light into the dark matter problem.

Other indications for new physics beyond general relativity also come from late-

time cosmology. Dark energy has been hypothesized in order to account for the

current acceleration of the universe [Peebles and Ratra, 2003, Carroll, 2001]. The

simple addition of a cosmological constant, which is the most economical explana-

tion, leads to other problems, mainly because most quantum field theories predict
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Figure 1.1: Discrepancy between predicted (A) and observed galaxy rotation curves

(B). c©PhilHibbs/Wikimedia Commons/CC-BY-SA-2.0-UK.

a cosmological constant that is more than 100 orders of magnitude larger than the

measured value [Adler et al., 1995]. Alternative explanations, such as the inclusion

of scalar fields (known as quintessence) [Ratra and Peebles, 1988, Caldwell et al.,

1998], are still very popular, but no evidence in its favour has been found so far.

Another option would be to modify the gravitational sector in order to explain the

accelerated expansion of today’s universe.

The inflationary paradigm, initially developed to solve some inconsistencies of

the Big Bang cosmology, might also necessitate physics beyond general relativity. In

the simplest scenario, a new scalar field dubbed the inflaton is required to produce an

exponential expansion of the early universe, resulting in the isotropic, homogeneous

and flat universe that we observe today [Linde, 1982,Albrecht and Steinhardt, 1982].

Successful models include the Higgs inflation [Bezrukov and Shaposhnikov, 2008],

where the scalar field is described by the Higgs boson, and Starobinsky inflation

[Starobinsky, 1980], whose inflaton is hidden in the modification f(R) = R + R2 of

general relativity. See Section 1.3.1 for a brief review of inflation.

Lastly, there is the problem of quantum gravity, which is perhaps the most

challenging problem in theoretical physics. Even though gravity is the oldest of

the forces and the only one that is part of everyone’s daily lives, it is still the only

one lacking a full quantum treatment. Attempts to quantize gravity have led to

numerous difficulties over the years, with partial success obtained only in the low-

energy regime. While we are still far away from finding the right theory that could
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describe quantum gravity at, in principle, any energy scale, theoretical advances

in the low-energy regime suggests that general relativity must be modified even

below the Planck scale [’t Hooft and Veltman, 1974,Stelle, 1977, Stelle, 1978]. The

renormalization procedure needed to make quantum general relativity finite at every

loop order forces higher-derivative curvature invariants to appear in the action. We

will discuss the quantization of general relativity in more detail in Section 1.3.2.

In the following sections, we will review basic concepts of general relativity,

modified gravity and quantum gravity that will be important in the next chapters.

The original contributions start at Chapter 2.

1.2 General relativity

In this section, we review the geometrical formulation of the general theory of rel-

ativity. One postulates that the spacetime is a four-dimensional Pseudo-Riemannian

manifold (M, gµν) composed of a differentiable manifoldM and a metric gµν . Points

p ∈M are dubbed events. Test particles, being free from external forces, “free fall”

along the spacetime. In a curved manifold, the trajectory of such particles are given

by geodesics:
d2xµ

ds2
+ Γµνρ

dxν

ds

dxρ

ds
= 0, (1.1)

where

Γρµν =
gρσ

2

(
∂gνσ
∂xµ

+
∂gσµ
∂xν

− ∂gµν
∂xσ

)
(1.2)

are the Christoffel symbols of the Levi-Civita connection and xµ are local coordi-

nates. Geodesics followed by massive particles are assumed to be time-like, whereas

massless particles, e.g. photons, move along null-like geodesics. Particles that move

along space-like geodesics are unphysical as they propagate at superluminal speeds.

Such particles are named tachyons. Note that the geodesic equation (1.1) is inde-

pendent of the particle’s mass. This is exactly the equivalence principle: all particles

undergo the same acceleration in the presence of a gravitational field, independently

of their masses.

The Riemann tensor contains information about the curvature of the spacetime.

In coordinates, it is given by

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ. (1.3)
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Contracting the first and third indices of the Riemann tensor, one finds the Ricci

tensor Rσν = gρµRρσµν . Contracting the remaining indices of the Ricci tensor, leads

to the Ricci scalar R = gµνRµν .

The dynamics of the gravitational field is described by the Einstein’s field equa-

tion, which reads

Rµν −
1

2
Rgµν = 8πGTµν , (1.4)

where Tµν is the stress-energy tensor of the matter fields. We are using units such

that the speed of light is c = 1. Equation (1.4) describes the dynamical evolution of

the metric gµν , warping and bending spacetime according to the dynamical changes

of the matter fields represented by Tµν . It is precisely the solutions of (1.4) that

have led to the plethora of interesting and successful predictions of general relativity.

Observe that Equation (1.4) cannot be proven from first principles. It was initially

obtained by trial and error in an attempt to find a relation between curvature

(geometry) and energy (physics).

However, one can adopt a variational approach whose field equations (1.4) could

be deduced from. The Einstein-Hilbert action

S =

∫
d4x
√
−g 1

16πG
R + Sm (1.5)

is the most general action containing up to two derivatives of the metric, guar-

anteeing that the field equation contains up to second orders of the metric. The

variation of this action with respect to the metric field leads to (1.4). Needless to

say, Equations (1.4) and (1.5) are equivalent and have the same physical information.

Whether we start from the field equation or from the Lagrangian is just a matter of

choice. They offer complementary advantages that can be used accordingly to the

problem at hand.

Both the field equation (1.4) and the action (1.5) have an interesting feature.

If φ : M → M is a diffeomorphism of the spacetime M and gµν is a solution of

(1.4) in the presence of a matter field ψ, then φ∗gµν is also a solution of (1.4) in the

presence of the matter field φ∗ψ, where φ∗ denotes the pushforward by φ. That is

to say that the group of diffeomorphisms is a symmetry group of general relativity

in the very same way that U(1) is the symmetry group of electrodynamics. Note

that, analogously to gauge theories, the invariance under diffeomorphisms is not a
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symmetry of the real world as it does not connect two different physical realities

to the same description. It is rather a mathematical redundancy that connects

two different descriptions to the same physical reality. Therefore, one cannot use

such transformations to generate new solutions, but one can exploit this freedom

to ease calculations. As we will see in Section 1.3.2, however, the importance of

the diffeomorphism group is not restricted to easing calculations. It is rather a

fundamental principle that guides us on how to look for new physics.

1.2.1 Cosmology

Cosmology is the study of the universe on very large scales. In these scales, one

can employ the Copernican principle, which states that the universe is homogeneous

(the metric is the same for all points in spacetime) and isotropic (every direction

looks the same) on cosmological scales. This is, in fact, what has been observed

in the CMB despite very small fluctuations (see Figure 1.2). The description of a

Figure 1.2: All-sky mollweide map of CMB obtained by the WMAP experiment.

This image shows a temperature range of ±200 microKelvin [Bennett et al., 2003].

homogeneous and isotropic manifold is given by the Friedmann-Lemâıtre-Robertson-

Walker (FLRW) metric:

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

)
, (1.6)

where a(t) is the scale factor that characterizes the relative size of spacelike hyper-

surfaces Σ at different times. The curvature parameter k is +1 for closed universes,

0 for flat universes and −1 for open universes. In this subsection we will adopt units

such that 8πG = 1.
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For the ansatz (1.6), the dynamical evolution of the universe is dictated by the

scale factor a(t). Its functional form can be found by solving Einstein’s equations

(1.4) with the input (1.6). Let us assume that the universe is dominated by a perfect

fluid with an energy-momentum tensor given by

Tµν = (p+ ρ)uµuν + pgµν , (1.7)

where uµ = dxµ

dτ
is the 4-velocity vector field of the fluid, p is the fluid’s pressure and

ρ is its energy density. Then Einstein’s equation for an FLRW metric becomes

H2 ≡
(
ȧ

a

)2

=
1

3
ρ− k

a2
, (1.8)

Ḣ +H2 =
ä

a
= −1

6
(ρ+ 3p), (1.9)

where overdots stand for derivative with respect to time t and H is the Hubble

parameter. Equations (1.8) and (1.9) are known as Friedmann equations and they

describe together the entire structure and evolution of an isotropic and homogeneous

universe.

Friedmann equations (1.8) and (1.9) can be combined into the continuity equa-

tion
dρ

dt
+ 3H(ρ+ p) = 0, (1.10)

which may also be written as

d ln ρ

d ln a
= −3H(1 + ω) (1.11)

for the equation of state

ω =
p

ρ
. (1.12)

Integrating Equation (1.11) and using Equation (1.8) leads to the solution for the

scale factor:

a(t) ∝

t
2

3(1+ω) , ω 6= −1,

eHt, ω = −1.

(1.13)

This shows that the qualitative behavior of the cosmological evolution depends cru-

cially on the equation of state ω. This fact will be further explored when studying

inflation in Section 1.3.1, where we will be looking for fluids that violate the strong

energy condition 1 + 3ω > 0.
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1.2.2 Gravitational waves

Gravitational waves are one of the main predictions of general relativity (see e.g.

[Maggiore, 2007] for an extensive review on the subject). They are tiny perturbations

of the metric that propagate in spacetime, stretching it and causing observable

effects on test particles. The first direct observation was made only in September

2015 by the LIGO collaboration [Abbott et al., 2016] and is considered by many the

beginning of a new era in astronomy.

To study gravitational waves, one has to split the metric into a background metric

and fluctuations that will be interpreted as the gravitational waves themselves. As

a first approximation, we consider gravitational waves propagating in a Minkowski

spacetime and we write

gµν = ηµν + hµν . (1.14)

Plugging (1.14) into (1.4) leads to

�h̄µν + ηµν∂
ρ∂σh̄ρσ − ∂ρ∂ν h̄µρ − ∂ρ∂µh̄νρ = 16πGTµν , (1.15)

where we have made the field redefinition h̄µν = hµν − 1
2
ηµνh. We can now use the

invariance under diffeomorphisms discussed above to simplify Equation (1.15). In

the linear regime (1.14), a diffeomorphism locally becomes

xµ → x′µ = xµ + ξµ(x). (1.16)

Consequently, under (1.16) the field hµν transforms as

hµν(x)→ h′µν(x
′) = hµν(x)− (∂µξν + ∂νξµ). (1.17)

We can now take advantage of the freedom to choose ξµ to simplify (1.15). In fact,

one can choose the harmonic gauge

∂ν h̄µν = 0. (1.18)

With this choice of gauge, (1.15) becomes

�h̄µν = 16πGTµν , (1.19)

which is the classical equation of a wave. We conclude that the perturbation of

the metric h̄µν behaves as a wave. Note that, from (1.18) and (1.19), one finds the



9

conservation of the energy-momentum tensor

∂νTµν = 0. (1.20)

Equation (1.20) might seem contradictory as if the energy-momentum conservation

holds, then there is no gravitational wave being emitted. This happens because in

the linear regime around Minkowski the coupling between gravitational wave and

matter is of higher order. It also illustrates that linear gravitational waves cannot

carry their own sources, a fact that is also known in electrodynamics where linear

eletromagnetic waves are not able to carry electric charges.

To find the energy and momentum carried away by gravitational waves, we

must go beyond the linear order in hµν and figure out the contribution of gravita-

tional waves to the curvature of spacetime. We can no longer use the Minkowski

background for this because, otherwise, we would exclude from the beginning the

possibility that gravitational waves curve the background. Thus, now we write

gµν = ḡµν + hµν , (1.21)

where ḡµν is a dynamical background metric. However, a problem immediately arises

as there is no canonical way of defining what part of gµν is the background and what

is the fluctuation. One could, in principle, shift x-dependent terms from ḡµν to hµν

and vice-versa.

A natural separation between background and fluctuations occurs when there is

a clear distinction between their typical scales. Suppose the typical length scale of

ḡµν is its curvature radius L and the length scale of hµν is its reduced wavelength.

If we assume that
λ

L
� 1, (1.22)

then hµν has the physical meaning of ripples in the background described by ḡµν .

Note that now there are two small parameters: h = O(|hµν |) and ε = λ/L. We first

expand the equations of motion up to second order in h and then we project out

the modes with a short wavelength, i.e. ε � 1. The simplest way to perform this

projection is by averaging over spacetime volume of size d such that λ� d� L. In

this way, modes with a long wavelength of order L remain unaffected, because they

are roughly constant over the volume used for averaging, while modes with a short

wavelength of order λ average out because they oscillate very fast.
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The separation of gravity into background and fluctuations allows one to expand

metric-dependent quantities as

Rµν = R̄µν +R(1)
µν +R(2)

µν +O(h3), (1.23)

where the bar quantities are calculated with respect to the background and the rest

depends only on the fluctuation. The superscript (n) is used to indicate the order in

h of the underlying term. The resulting Einstein’s field equations, after expanding

in h and averaging out rapid-oscillating modes, then become

R̄µν −
1

2
ḡµνR̄ = 8πG(T̄µν + tµν), (1.24)

where

tµν =
−1

8πG

〈
R(2)
µν −

1

2
ḡµνR

(2)

〉
(1.25)

is the energy-momentum contribution from gravitational waves. The brackets in

(1.25) denote an average over spacetime, which is responsible for taking only the

long-wavelength modes. As it can be seen, the energy and momentum of gravi-

tational waves result from the second order fluctuations of the metric as we had

pointed out previously. When the gravitational waves are far away from the source

(e.g. at the detector’s vicinity), one can further simplify (1.25) by employing the

limit of a flat background, imposing the TT gauge

h = 0, h0µ = 0 (1.26)

together with the equation of motion �hµν = 0. Note that even after choosing the

harmonic gauge (1.18), there is still a residual invariance left, which allows us to

choose the TT gauge (1.26). In this situation, we find

tµν =
1

32πG

〈
∂µhαβ∂νh

αβ
〉
. (1.27)

Observe that, from the covariant conservation of the Einstein tensor

Ḡµν = R̄µν − 1
2
ḡµνR̄ (1.28)

with respect to the background connection ∇, one finds from Equation (1.24) that

∇µ(T̄µν + tµν) = 0, (1.29)

which shows that there is an exchange of energy and momentum between matter

sources and the gravitational waves.
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1.3 Modified gravity

In this section, we review some models of modified gravity that are relevant for

this thesis. We start by discussing Lovelock’s theorem, which limits the theories

one can construct from the metric tensor alone. We then introduce modifications

of general relativity in light of Lovelock’s result. For a complete review of modified

gravity, see [Clifton et al., 2012].

Suppose that the gravitational action contains only the metric field gµν and its

derivatives up to second order. Then, varying the action

S =

∫
d4xL(gµν) (1.30)

leads to the Euler-Lagrange expression

Eµν =
d

dxρ

[
∂L
∂gµν,ρ

− d

dxλ

(
∂L

∂gµν,ρλ

)]
− ∂L
∂gµν

(1.31)

and the Euler-Lagrange equation Eµν = 0. Lovelock’s theorem [Lovelock, 1971,

Lovelock, 1972] states that the only possible second-order Euler-Lagrange expression

obtainable in a four-dimensional space from the action (1.30) is

Eµν = α
√
−g
[
Rµν − 1

2
gµνR

]
+ λ
√
−ggµν , (1.32)

where α and λ are constants. Therefore, any four-dimensional gravitational action

involving only the metric and its derivatives of up to second order leads inevitably

to Einstein’s equations with or without a cosmological constant.

As a corollary, modifying general relativity requires evading one of the hypotheses

of Lovelock’s theorem, which includes:

• Considering fields other than the metric;

• Allowing for higher derivatives of the metric;

• Giving up locality;

• Increasing the number of spacetime dimensions;

• Considering other mathematical structures rather than Riemannian manifolds.
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In this thesis, we consider the first three of these, focusing mainly on higher deriva-

tives of the metric. As we will see, these three types of modifications are related to

each other and they all show up as part of the same formalism.

Let us consider some examples of models that differ from general relativity. The

scalar-tensor theories of gravity, whose typical example is Brans-Dicke theory [Brans

and Dicke, 1961], is a modification of general relativity that contains an additional

scalar field φ coupled to the Ricci scalar:

S =
1

16π

∫
d4x
√
−g
(
φR− ω(φ)

φ
∂µφ∂

µφ− 2Λ(φ)

)
, (1.33)

where ω is an arbitrary function and Λ is a φ-dependent generalization of the cos-

mological constant. An important feature of this theory is that under a conformal

transformation

g̃µν = e−2Ω(x)gµν , (1.34)

where Ω(x) = −1
2

lnφ, (1.33) can be transformed into general relativity minimally

coupled to a scalar field. Performing the transformation (1.34) in the action (1.33)

leads to

SE =

∫
d4x
√
−g̃
(

1

16π
R̃− 1

2
∂µψ∂

µψ − V (ψ)

)
, (1.35)

where ψ is defined by
∂Ω

∂ψ
=

√
4π

3 + 2ω

and

V (ψ) =
1

8π
e4ΩΛ

is the potential of ψ. Here the objects with the tilde are calculated with the trans-

formed metric g̃µν . The subscript in SE stands for Einstein frame, a typical nomen-

clature used in the literature to refer to the action with the transformed metric

g̃µν , as opposed to the Jordan frame, which refers to the action with the original

metric gµν . Therefore, Equation (1.35) shows that in the Einstein frame the theory

becomes the same as general relativity in the presence of the scalar field ψ, which is

minimally coupled to gravity through the Jacobian
√
−g̃. This hidden scalar field

is sometimes called scalaron.

There are also theories whose gravitational sector includes other types of fields

other than scalars, such as the bimetric theories, tensor-vector-scalar theories (also
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known as TeVeS) and scalar-tensor-vector theories (not to be confused with TeVeS)

[Clifton et al., 2012].

But instead of considering new explicit fields, we can simply consider higher order

derivatives in the field equations as opposed to the second order differential equation

of general relativity. For example, the class of models described by f(R) [Sotiriou

and Faraoni, 2010,De Felice and Tsujikawa, 2010], i.e.

S =

∫
d4x
√
−gf(R), (1.36)

allows for arbitrary powers of the Ricci scalar and, consequentely, it produces terms

with higher derivatives in the equations of motion. It is important to stress, however,

that these theories are equivalent to Brans-Dicke theory (1.33). In fact, let V (φ) be

the Legendre transform of f(R) such that φ = f ′(R) and R = V ′(φ). Then, under

a Legendre transformation of (1.36), one obtains the action

S =

∫
d4x
√
−g (φR− V (φ)) , (1.37)

which looks exactly like Equation (1.33) with a potential V (φ) and ω = 0. By

extension, according to (1.35), f(R) is also equivalent to general relativity with a

scalar field. This is the nature of the aforementioned relation between additional

fields and higher derivative terms. We will see in Chapter 2 that this idea, in fact,

extends to more general theories.

An important example of this kind of theory is

f(R) = R + b̄1R
2, (1.38)

known as Starobinsky gravity [Starobinsky, 1980]. This theory successfully explains

cosmological inflation by assuming that the inflaton is the scalaron itself. We will

see more details of this particular modification in the next subsection.

When considering higher derivatives of the metric, the Ricci scalar is not the

only curvature invariant available. Inspired by the renormalization procedure after

the quantization of general relativity, other curvatures invariants, such as RµνR
µν

and RµνρσR
µνρσ, have become equally important [’t Hooft and Veltman, 1974,Stelle,

1977]. In fact, they are all invariant under the diffeomorphism group and, therefore,

should be all considered together. Equation (1.38) then becomes

L =
1

16πG
R + b̄1R

2 + b̄2RµνR
µν + b̄3RµνρσR

µνρσ. (1.39)
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Classically, these terms lead to modifications of the Newton’s potential that give rise

to Yukawa interactions as shown by Stelle [Stelle, 1978]. More importantly, these

terms are counterterms that renormalize the quantum gravitational interaction at

one-loop order. We will see more on the quantization of the gravitational field in

Section 1.3.2.

1.3.1 Inflation

Inflation is a period of exponential expansion of the early universe that is believed

to have taken place just 10−34 seconds after the Big Bang. First put forward to

explain the absence of magnetic monopoles in the universe, inflation later turned out

to resolve many other long-standing problems in Big Bang cosmology (see [Baumann,

2011] for a review).

The conventional Big Bang theory requires very finely-tuned initial conditions to

allow the universe to evolve to its current state. Inflation serves as a bridge between

the today’s universe and the Big Bang without the need of fine-tuning. Particularly,

it explains why the universe we observe is so homogeneous, isotropic and flat.

The comoving particle horizon, i.e. the maximum distance that a light ray can

travel between the instants 0 and t, for a universe dominated by a fluid with equation

of state ω = p
ρ

is

τ ∝ a(t)
1
2

(1+3ω), (1.40)

where a(t) is the scale factor of the FLRW universe (1.6). Note that the qualitative

behaviour of the comoving horizon τ depends on the sign of 1+3ω. Fluids satisfying

the strong energy condition

1 + 3ω > 0, (1.41)

such as matter and radiation dominated universes, would produce a comoving hori-

zon that increases monotonically with time, implying that the regions of the universe

entering the horizon today had been far outside the horizon during the CMB de-

coupling. This leads to the conclusion that causally disjoint patches of the universe

yielded a very homogeneous pattern at the CMB, a clear contradiction known as

the horizon problem.

Combining Friedmann equation (1.8) with the continuity equation (1.10), one
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finds

dΩ

d log a
= (1 + 3ω)Ω(Ω− 1), (1.42)

where

Ω =
ρ

ρc
. (1.43)

The critical energy density ρc = 3H2, H being the Hubble constant, is the energy

density required for a flat universe. The differential equation (1.42) makes clear that

Ω = 1 is an unstable fixed point if the strong energy condition (1.41) is satisfied,

thus requiring a finely-tuning initial condition in order to produce a flat universe.

The origin of both the horizon and the flatness problems seem to be related

to the strong energy condition. This suggests that a simple solution can be found

by violating the relation (1.41), which necessarily requires the fluid pressure to be

negative

p < −1

3
ρ. (1.44)

From Friedmann equation (1.9), one can also see that (1.44) is equivalent to an

accelerated expansion

d2a

dt2
> 0. (1.45)

Equation (1.44) can be satisfied by a nearly constant energy density ρ. The

simplest way to do this is by adopting a scalar field — the inflaton — whose potential

is sufficiently flat so that the field can slowly roll down the hill (see Figure 1.3),

producing a roughly constant energy density. For this reason, this type of model is

known as slow-roll inflation.

To see how this process occurs, let us consider a generic scalar field φ minimally

coupled to gravity:

S =

∫
d4x
√
−g
(

1

16πG
R− 1

2
∂µφ∂

µφ− V (φ)

)
, (1.46)

where V (φ) denotes the potential of the field φ. The energy-momentum tensor for

the scalar field is given by

Tµν ≡
−2√
−g

δSφ
δgµν

= ∂µφ∂νφ− gµν
(

1

2
∂σφ∂σφ+ V (φ)

)
, (1.47)

where Sφ the scalar field action. It follows from (1.47) that the energy density and
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Figure 1.3: Illustration of slow-roll inflation. The inflaton starts out at the top of

the hill and slowly rolls down to smaller values during inflation. The vertical dashed

line represents the end of inflation.

the pressure of φ are given by

ρφ =
1

2
φ̇2 + V (φ), (1.48)

pφ =
1

2
φ̇2 − V (φ), (1.49)

respectively. The resulting equation of state is

ωφ =
1
2
φ̇2 − V (φ)

1
2
φ̇+ V (φ)

. (1.50)

Therefore, a scalar field φ is able to produce inflation if the potential energy V (φ)

dominates over the kinetic energy 1
2
φ̇2. In this case, the equation of state becomes

ωφ ≈ −1, which satisfies the condition (1.44).

Now we only need to find a specific description for the scalar field whose potential

has the required form described above. Among the sea of models that one can find in

the literature, Higgs and Starobinsky inflation stand out as they are both favoured

by the CMB constraints [Akrami et al., 2018]. In the former, the inflaton is given

by the Higgs field, which is coupled non-minimally to the Ricci scalar [Bezrukov and

Shaposhnikov, 2008]:

S =

∫
d4x
√
−g
(
M2

2
R + ξH†HR

)
, (1.51)
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where M is a mass parameter that contributes to the Planck mass Mp = (8πG)−1/2,

H is the SU(2) scalar doublet which reads

H =
1√
2

 0

v + h

 (1.52)

in the unitary gauge, where v is the vacuum expectation value and h denotes the

Higgs boson. It is possible to get rid of the non-minimal coupling to gravity by

transforming the theory (1.51) to the Einstein frame via the transformation

g̃µν = Ω2gµν , Ω = 1 +
ξh2

M2
p

. (1.53)

This leads to a non-canonical kinetic term for the Higgs field that can be canonically

normalized by a field redefinition of the form

dχ

dh
=

√
Ω2 + 6ξ2h2/M2

p

Ω4
. (1.54)

Then, the action in the Einstein frame reads

SHiggs
E =

∫
d4x
√
−g̃
(
M2

p

2
R̃− 1

2
∂µχ∂

µχ− U(χ)

)
, (1.55)

where

U(χ) =
1

Ω(χ)4

λ

4

(
h(χ)2 − v2

)2
. (1.56)

For small field values h ≈ χ and Ω2 ≈ 1, thus the potential has the well-known

Mexican hat shape of the initial Higgs field h. On the other hand, for large field

values of χ�
√

6Mp, one finds [Bezrukov and Shaposhnikov, 2008]

h ≈ Mp

ξ
exp

χ√
6Mp

(1.57)

and

U(χ) =
λM4

p

4ξ2

(
1 + exp

−2χ√
6Mp

)−2

. (1.58)

Hence, the potential U(χ) is exponentially flat and has the plateau similar to Figure

1.3, making slow-roll inflation possible.

Starobinsky inflation, on the other hand, is described by the scalaron of Starobin-

sky gravity (1.38). In the Einstein frame, the theory takes the form [Starobinsky,

1980]

SStarobinsky
E =

∫
d4x
√
−g̃
(

1

16πG
R̃− 1

2
∂µφ∂

µφ− V (φ)

)
, (1.59)
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where

V (φ) =
M4

p

α

(
1− exp

(
−
√

2

3

φ

Mp

))2

. (1.60)

Thus, it also produces the flatness in the potential for high values of the field φ.

1.3.2 Quantum gravity

Although little is known about quantum gravity in the ultraviolet regime, many

advances have been achieved in recent years using effective field theory techniques to

study low energy quantum gravitational effects [Buchbinder et al., 1992,Vilkovisky,

1992]. The popular belief that general relativity cannot be quantized is, at best,

incomplete and precedes all modern knowledge of quantum field theories. This mis-

conception is commonly associated with the fact that the renormalization procedure

generates an infinite number of counterterms in the gravitational action. The coeffi-

cient of each counterterm is free and must be fixed by observations, thus indicating

that the theory loses its predictive power and becomes unfalsifiable. However, just

a small set of free parameters shows up at low energies since high order terms are

suppressed by inverse powers of the Planck mass Mp ∼ 1019GeV. The high value of

Mp is what makes classical general relativity so successful and quantum effects so

difficult to probe experimentally.

Divergences appearing at one-loop order, for example, are proportional to R2,

RµνR
µν , RµνρσR

µνρσ, and can be renormalized by the inclusion of counterterms to

the Lagrangian [’t Hooft and Veltman, 1974]:

S =

∫
d4x
√
−g
[

1

16πG
R− Λ + b̄1R

2 + b̄2RµνR
µν + b̄3RµνρσR

µνρσ

]
. (1.61)

The coefficients b̄i are bare constants and not observables. They are chosen so

that divergences at one-loop order turn out to be finite. The curvature squared

terms are not all independent due to a topological restriction that occurs only in

four dimensions. This relation goes by the name of Gauss-Bonnet theorem and

states that the integral of G = RµνρσR
µνρσ− 4RµνR

µν +R2 over a compact oriented

manifoldM is related to the Euler characteristic χ(M), thus the integral itself is a

topological invariant and its variation results in:

δ

∫
d4x
√
−g
(
RµνρσR

µνρσ − 4RµνR
µν +R2

)
= 0. (1.62)
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One can then eliminate one of the invariants in terms of the others. We choose to

eliminate RµνρσR
µνρσ and, therefore, we can simply ignore the last term in (1.61).

This theory can be quantized using the background field method [Barvinsky and

Vilkovisky, 1985]. We perturb the metric gµν → gµν + hµν and integrate out the

fluctuations hµν using the Feynman path integral formalism:

e−Γ =

∫
DhµνDΦ e−(S[g+h]+Sm[Φ]), (1.63)

where Sm is the action of matter sector and Φ represents a set of arbitrary matter

fields (not necessarily scalar fields). The quantum effective action Γ describes quan-

tum gravitational phenomena and can be used to investigate the phenomenology of

quantum gravity at low energies (below the Planck scale). As expected, the general

result is quite cumbersome even at the leading order, containing several terms that

contribute equally [Codello and Jain, 2016]. However, if one considers only the limit

of massless or very light fields, the outcome turn out to be very neat. In this limit,

non-localities are expected to show up as massless fields mediate long-range interac-

tions. In fact, the quantum action in this case is given by [Barvinsky and Vilkovisky,

1987,Barvinsky and Vilkovisky, 1985,Barvinsky and Vilkovisky, 1990,Donoghue and

El-Menoufi, 2014]

Γ = ΓL + ΓNL, (1.64)

where the local part reads

ΓL =

∫
d4x
√
−g
(

R

16πG
− Λ + b1(µ)R2 + b2(µ)RµνR

µν

)
, (1.65)

and the non-local one reads

−ΓNL =

∫
d4x
√
−g
[
c1R ln

(
−�
µ2

)
R + c2Rµν ln

(
−�
µ2

)
Rµν (1.66)

+ c3Rµνρσ ln

(
−�
µ2

)
Rµνρσ

]
. (1.67)

The log operator is defined as

ln
−�
µ2

=

∫ ∞
0

ds

(
1

µ2 + s
−G(x, x′,

√
s)

)
, (1.68)

where G(x, x′;
√
s) is the Green’s function of

(−� + k2)G(x, x′; k) = δ4(x− x′) (1.69)
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with proper boundary conditions. The non-local piece represents the infrared por-

tion of quantum gravity and, as such, it is completely independent of the UV com-

pletion. In fact, the coefficients ci are genuine predictions of the quantum theory

of gravity. They are determined once the matter fields Φ that are integrated out

in Equation (1.63) and their respective spins are specified; see Table 1.1. The total

contribution to each coefficient is given by simply summing the contribution from

each matter species. For example, for Ns minimally coupled scalars (ξ = 0) and Nf

fermions, we have

c1 =
5

11520π2
Ns −

5

11520π2
Nf . (1.70)

The local action, on the other hand, represents the high energy portion of quantum

c1 c2 c3

real scalar 5(6ξ − 1)2/(11520π2) −2/(11520π2) 2/(11520π2)

Dirac spinor −5/(11520π2) 8/(11520π2) 7/(11520π2)

vector −50/(11520π2) 176/(11520π2) −26/(11520π2)

graviton 430/(11520π2) −1444/(11520π2) 424/(11520π2)

Table 1.1: Values of the coefficients ci for each spin (ξ is the non-minimal coupling

coefficient of scalars to gravity) [Donoghue and El-Menoufi, 2014]. Each value must

be multiplied by the number of fields of its category. The total value of each coeffi-

cient is given by adding up all contributions. See Equation (1.70) for an example.

gravity. As a result, the coefficients bi cannot be determined from first principles.

They are renormalized parameters which must be fixed by observations (as opposed

to b̄i that are not observables). They depend on the renormalization scale µ in such

a way that they cancel the µ-dependence of the non-local logarithm operator. Thus,

the total effective action Γ is independent of µ. The renormalization group equation

is

µ∂µbi = βi, (1.71)

where βi = −2ci are the beta functions, thus the running of bi can also be obtained

straightforwardly from Table 1.1. The relation between the beta functions of bi and

the coefficients ci is expected because the resultant action Γ must be independent

of µ as explained above.
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While we are yet far away from being able to probe quantum gravity experi-

mentally, the above shows that we can use standard techniques from quantum field

theory to quantize general relativity. Needless to say, this is the most conservative

approach of all. If we insist that general relativity and quantum field theory are cor-

rect descriptions of our world below the Planck scale — and as far as observations

go, this is indeed true —, we can then quantize general relativity in the very same

way that the other interactions are quantized. As a result, we can make genuine

and model-independent predictions of quantum gravity without appealing to ad hoc

hypotheses.

1.4 Outline of this thesis

This thesis contains a collection of published work that was completed as part

of my doctoral degree, which concerns modifications of gravity and its implications

to gravitational waves, inflation and dark matter. It is organized as follows:

• In Chapter 2, based on [Calmet and Kuntz, 2017], we set up a new formalism

to classify gravitational theories based on their degrees of freedom and how

they interact with the matter sector. We argue that every modification of the

action performed by the inclusion of additional curvature invariants inevitably

leads to new degrees of freedom. This can be seen by diagonalizing the action,

either via field redefinitions or through the linearization process around a given

background, and further canonically normalizing it. A particular example of

this is the well-known equivalence of f(R) and general relativity minimally

coupled to a scalar field. We also give less obvious examples where invariants

such as RµνR
µν and RµνρσR

µνρσ are also present. As an application, we con-

sider the dark matter problem and we show that particle dark matter models

and modified gravity models are actually equivalent as they are both based on

new degrees of freedom.

• Chapter 3 is based on [Calmet et al., 2016] and we study gravitational waves

from the effective field theory perspective. We show that one-loop quantum

corrections lead to modifications of the analytic structure of the graviton prop-

agator, yielding the so-called dressed propagator for the graviton. The dressed
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propagator contains additional complex poles, thus effectively leading to new

propagating degrees of freedom. The real part is interpreted as the mass of

the modes and the imaginary part is interpreted as their width. We study the

consequences of these additional degrees of freedom for gravitational waves.

Particularly, we show that gravitational waves become damped when quantum

gravitational effects are taken into account. The consequences for gravitational

wave events, such as GW 150914, recently observed by the Advanced LIGO

collaboration, are discussed.

• The effect on the energy of gravitational waves due to one-loop corrections

are studied in Chapter 4, which contains [Kuntz, 2018]. By performing the

short-wave formalism, we separate the modes with a long wavelength from

the ones with a short wavelength. The former contains information about

the contribution of gravitational waves to the spacetime curvature, while the

latter affects the propagation of gravitational waves in curved spacetimes. The

energy-momentum tensor tµν of gravitational waves is then calculated, thus

showing how quantum effects contribute to the backreaction of gravitational

waves. The trace of the effective energy-momentum tensor is shown to be

non-vanishing and, hence, it contributes to the cosmological constant. The

first bound on the amplitude of the massive mode is found by comparing the

gravitational wave energy density ρ = t00 with LIGO’s data. In addition,

we show that the propagation of gravitational waves in curved spacetimes

can be obtained by covariantization of the gravitational wave equation in flat

spacetime, i.e. by simply replacing ηµν and ∂µ by ḡµν and ∇µ, respectively.

• Chapter 5, which is composed by [Calmet and Kuntz, 2016], is designated to in-

vestigate an interesting interplay between Higgs and Starobinsky inflation. We

show that Starobinsky inflation, based on the modification f(R) = R+αR2 of

general relativity, can be generated by quantum effects due to the non-minimal

coupling of the Higgs to gravity. After quantization of the gravitational action,

the coefficient α acquires a dependence on the coefficient ξ of the coupling be-

tween the Higgs and the Ricci scalar. For large values of ξ, one obtains the

required value for α so that Starobinsky inflation can take place. This for-

malism avoids instability issues caused by large values of the Higgs boson as
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the scalaron in the Starobinsky model is the only field required to take large

values in the early universe.

• In Chapter 6 [Calmet et al., 2018], we study the instability problem in a more

general setting, i.e. when the inflaton is not restricted to be the Higgs field.

In these cases, even though inflation is not driven by the Higgs, the direct

coupling between the Higgs and the curvature could still cause problems during

and after inflation as claimed in [Herranen et al., 2014,Herranen et al., 2015].

We argue that, after canonically normalizing the Higgs field, an interaction

between the inflationary potential and the Higgs is induced. This interaction

produces a large effective mass for the Higgs, which quickly drives the Higgs

boson back to the electroweak vacuum during inflation, thus stabilizing the

false vacuum.

• Lastly, we draw the conclusions and discuss future directions in Chapter 7.
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Chapter 2

What is modified gravity and how

can we differentiate it from

particle dark matter?

Xavier Calmet and Iberê Kuntz

Physics & Astronomy, University of Sussex, Falmer, Brighton, BN1 9QH, United

Kingdom

An obvious criterion to classify theories of modified gravity is to identify their grav-

itational degrees of freedom and their coupling to the metric and the matter sector.

Using this simple idea, we show that any theory which depends on the curvature

invariants is equivalent to general relativity in the presence of new fields that are

gravitationally coupled to the energy-momentum tensor. We show that they can be

shifted into a new energy-momentum tensor. There is no a priori reason to identify

these new fields as gravitational degrees of freedom or matter fields. This leads to an

equivalence between dark matter particles gravitationally coupled to the standard

model fields and modified gravity theories designed to account for the dark matter

phenomenon. Due to this ambiguity, it is impossible to differentiate experimentally

between these theories and any attempt to do so should be classified as a mere

interpretation of the same phenomenon.
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2.1 Introduction

General relativity and the standard model of particle physics have both been

extremely successful in describing our universe both on cosmological scales as well

as on microscopic scales. Despite this amazing success, some observations cannot be

explained by these otherwise extremely successful models. For example, the cosmic

microwave background, the rotation curves of galaxies or the bullet cluster to quote

a few [Hooper, 2010], suggest that there is a new form of matter that does not shine

in the electromagnetic spectrum. Dark matter is not accounted for by either general

relativity or the standard model of particle physics 1. While a large fraction of the

high energy community is convinced that dark matter should be described by yet

undiscovered new particles, it remains an open question whether this phenomenon

requires a modification of the standard model or of general relativity. Here we want

to raise a slightly different question namely whether the distinction between modified

gravity or new particles is always clear. We will show that this is not always the

case.

Models of modified gravity are attractive given the frustrating success of the

standard model at surviving its confrontation with the data of the Large Hadron

Collider. Modified theories of gravity have been developed in the hope of finding

solutions to the dark matter or dark energy questions. All sorts of theories have

been proposed in order to address these problems. Among them, we can find higher

derivative gravity theories (e.g. f(R)), the scalar-tensor theories (e.g. Brans-Dicke),

the non-metric theories (e.g. Einstein-Cartan theory), just to cite a few, see [Clifton

et al., 2012] for a substantial review.

In the context of quantum field theories, fields are just dummy variables as the

action is formulated as a path integral over all field configurations. This implies

a reparametrization invariance of field theories. In gravitational theories (see e.g.

[Calmet and Yang, 2013]), this corresponds simply to the freedom to pick a specific

frame to define one’s model. The reparametrization invariance makes it difficult to

differentiate between the plethora of models as depending on which field variables

1One should note though that the possibility of Planck mass quantum black holes remnants

[Chen et al., 2015, Calmet, 2015] is not excluded, but it is difficult to find an inflationary model

that produces them at the end of inflation
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are picked, the very same model could appear to be very different in two different

frames. One of the aims of this article is to apply a very simple and obvious criterion

to classify gravitational theories. The idea is to identify their gravitational degrees

of freedom by looking at the poles in the field equations and carefully identifying

the coupling of these poles to the metric and the energy-momentum tensor (matter

sector). This enables one to unambiguously compare two gravitational models.

Some work in this direction was done in the past [Magnano, 1995], but the focus

was given to the different action principles, namely the metric, metric-affine and

affine formalisms. Here we present a broader approach which can be applied to any

kind of theory independently of its action principle.

In this paper, we aim to propose a general framework where gravitational theories

can be compared to each other so that we are able to classify them into different

classes of physically equivalent theories. The classification method will be presented

in Section 2.2 together with some examples. In Section 2.3 we apply these ideas to

the dark matter problem and show that the distinction between modified gravity

or dark matter as a new particle is not always so clear. In particular, we show

that any theory which depends on the curvature invariants is equivalent to general

relativity in the presence of new fields that are gravitationally coupled to the energy-

momentum tensor. We show that they can be shifted into a new energy-momentum

tensor. Modified dark matter is thus equivalent to new degrees of freedom (i.e.

particles) that are coupled gravitationally to regular matter. We then make the

conclusions in Section 2.4.

2.2 Classification of extended theories of gravity

Fields in a quantum field theory are dummy variables. The same applies to the

metric in a gravitational theory. Therefore two apparently very different gravita-

tional theories can actually turn out to be mathematically equivalent when expressed

in the correct variables. A famous example is the f(R) theory:

S =

∫
d4x
√
−g
(

1

16πG
f(R) + LM

)
(2.1)

where f(R) is a polynomial of the Ricci scalar. When mapping the theory from

the Jordan to the Einstein frame it becomes obvious that f(R) is equivalent to
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usual general relativity with a scalar field that is gravitationally coupled to matter.

Indeed, it is well known that after a Legendre transformation followed by a confor-

mal rescaling g̃µν = f ′(R)gµν , f(R) theory can be put in the form [De Felice and

Tsujikawa, 2010]

S =

∫
d4x
√
−g̃
(

1

16πG
R̃− 1

2
g̃µν∂µφ∂νφ− V (φ)

)
+

∫
d4x
√
−g̃F−2(φ)LM(F−1(φ)g̃µν , ψM), (2.2)

where

φ ≡
√

3

16πG
logF, (2.3)

F (φ) ≡ f ′(R(φ)). (2.4)

Hence all the matter fields acquire a universal coupling to a new scalar field φ through

the factor F−1(φ). Massless gauge bosons are exceptions since their Lagrangians

are invariant under the metric rescaling. This simple example demonstrates that,

despite the apparent simplicity of f(R) which naively seems to only depend on the

metric gµν , the theory also contains an extra scalar degree of freedom.

This well-known example can be generalized to any gravitational theory. A

general gravitational theory, assuming that it is a metric theory, will have at least

one metric tensor (if it is to have general relativity in some limit) and fields of

different spins. We will assume that this theory can be described by an action S =

S[φ1
α1
, . . . , φnαn ], where φiαi are the fields and αi represents generically the number

of indices, i.e. the type of the field (e.g. scalar, tensor, etc). The coupling of the

gravitational degrees of freedom to matter LM needs to be specified. An algorithm to

classify gravitational theories, in the sense of comparing two gravitational theories,

can be designed as follows.

1) The first step then is to find all of the gravitational degrees of freedom of each

theory.

2) Verify how these degrees of freedom couple to the metric tensor, to the matter

degrees of freedom as well as to themselves.

The first step might sound obvious if what we have in mind are theories with

a canonical Lagrangian. However, this is not the case for gravitational theories
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where degrees of freedom are hidden in terms in the action with a higher number of

derivatives (higher than two) acting on the metric as we have seen in the previous

example. The identification of the degrees of freedom can be done as usual by

linearizing the equations of motion around a fixed background gµν = g
(0)
µν + hµν ,

identifying the full propagator Pαβµν :

Dαβµνhµν = Tαβ =⇒ Pαβµν = D−1
αβµν , (2.5)

where Dαβµν is the modified wave operator. The position of the poles will reveal

the different degrees of freedom hidden in a potentially clumsy choice of variables.

These degrees of freedom can be made explicit in the action, in some cases after the

kinetic terms have been canonically normalized.

Having identified the degrees of freedom of the theories, we are left with the

task of classifying their dynamics. For this purpose, there are two different ap-

proaches: one can either apply suitable transformations on the fields on the level

of the Lagrangian in order to try to map one theory to another or one can pro-

ceed by calculating straightforwardly the equations of motion of each of them and

then checking if they match in the end. It has to be stressed that both approaches

lead to the same outcome and therefore we can conveniently choose how to proceed

accordingly to the theory at hand.

In our previous example, we have shown that equation (2.2) implies that f(R)

theories can be described by a scalar field minimally coupled to general relativity.

This means that f(R) is formally equivalent to general relativity in the presence

of a scalar field. Indeed, both theories have the same degrees of freedom and their

actions can be mapped into each other by field redefinitions. As can be seen from

(2.2), it is just a matter of choice whether the new scalar field φ belongs to the

gravity sector or to the matter sector.

The same reasoning can be used for more general theories where it is also

possible to identify new degrees of freedom besides the metric and the scalar of

Equation (2.2). In fact, an additional massive spin-2 is present in the generic the-

ory f(R,RµνR
µν , RµνρσR

µνρσ) [Magnano and Sokolowski, 2003,Nunez and Solganik,

2005, Chiba, 2005]. As this is an important example for our considerations, we

will now reproduce this well known fact using the results of [Hindawi et al., 1996].
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Consider the theory

S =
1

2κ2

∫
d4x
√
−g
[
R + αR2 + βRµνR

µν + γRλµνρR
λµνρ

+ LM(gµν , φα)
]
, (2.6)

=
1

2κ2

∫
d4x
√
−g
[
R +

1

6m0
2
R2 − 1

2m2
2
C2 + LM(gµν , φα)

]
,

where Cµνρσ is the Weyl tensor, m−2
0 = 6α+2β+2γ and m−2

2 = −β−4γ. The matter

sector is represented by LM(gµν , φα), where φα denotes a set of arbitrary fields of

any spin, but for the sake of the argument we will ignore the matter Lagrangian for

a while. Now we introduce an auxiliary scalar field λ:

S =
1

2κ2

∫
d4x
√
−g
[
R +

1

6m0
2
R2 − 1

6m0
2
(R− 3m2

0λ)2 − 1

2m2
2
C2

]
(2.7)

=
1

2κ2

∫
d4x
√
−g
[
(1 + λ)R− 3

2
m2

0λ
2 − 1

2m2
2
C2

]
=

1

2κ2

∫
d4x
√
−g
[
eχR− 3

2
m2

0(eχ − 1)2 − 1

2m2
2
C2

]
.

In the last line, we made the redefinition χ = log(1 + λ). The equation of motion

for λ is algebraic and given by R = 3m2
0λ. Substituting this back into the action

gives the original theory back. Therefore, both theories are equivalent. Now we can

perform a conformal transformation g̃µν = eχgµν

S =
1

2κ2

∫
d4x
√
−g̃
[
R̃− 3

2

(
∇̃χ
)2

− 3
2
m0

2
(
1− e−χ

)2 − 1

2m2
2
C̃2

]
, (2.8)

where we have used the fact that C2 is invariant under conformal transformations.

Now we can rewrite the above action as

S =
1

2κ2

∫
d4x
√
−g̃
[
R̃− 3

2

(
∇̃χ
)2

− 3
2
m0

2
(
1− e−χ

)2

− 1

2m2
2

(
R̃λµνρR̃

λµνρ − 2R̃µνR̃
µν + 1

3
R̃2
) ]

(2.9)

=
1

2κ2

∫
d4x
√
−g̃
[
R̃− 3

2

(
∇̃χ
)2

− 3
2
m0

2
(
1− e−χ

)2 − 1

m2
2

(
R̃µνR̃

µν − 1
3
R̃2
)

− 1

2m2
2

(
R̃λµνρR̃

λµνρ − 4R̃µνR̃
µν + R̃2

)]
. (2.10)

Due to the Gauss-Bonnet theorem, the last term of the last line vanishes and we

end up with

S =
1

2κ2

∫
d4x
√
−g̃
[
R̃− 3

2

(
∇̃χ
)2

− 3
2
m0

2
(
1− e−χ

)2

− 1

m2
2

(
R̃µνR̃

µν − 1
3
R̃2
) ]
. (2.11)
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We then add a auxiliary symmetric tensor field π̃µν :

S =
1

2κ2

∫
d4x
√
−g̃
[
R̃− 3

2

(
∇̃χ
)2

− 3
2
m0

2
(
1− e−χ

)2 − G̃µν π̃
µν

+ 1
4
m2

2
(
π̃µν π̃

µν − π̃2
) ]
. (2.12)

where π̃ = π̃µνG̃
µν and G̃µν is the Einstein tensor in the Einstein frame. The π̃µν

equation of motion is

G̃µν = 1
2
m2

2 (π̃µν − g̃µν π̃) , (2.13)

which can be written in the form

π̃µν = 2m2
−2

(
R̃µν −

1

6
g̃µνR̃

)
. (2.14)

Substituting this equation of motion back into the action (2.12) leads to the action

(2.11), thus they are equivalent. Therefore, we have proven the equivalence between

the actions (2.6) and (2.12). From action (2.12), we can see that our original theory

is equivalent to general relativity in the presence of a canonical scalar field and a

non-canonical symmetric rank-2 tensor field. It is tempting to say that π̃µν is a

spin-2 field, but this is not obvious at this stage. So far, π̃µν describes 10 degrees

of freedom, while a massive spin-2 describes only 5. In the simplest case of a free

spin-2 field φµν on a flat spacetime, such field is described by the Pauli-Fierz action.

The divergence and the trace of its equation of motion imply the conditions:

∂µφµν = 0, φ = 0, (2.15)

which constrains the number of degrees of freedom to 5. For a general spin-2 field

though, the above conditions are no longer satisfied, but we can still find generalized

conditions in order to reduce the number of degrees of freedom to 5. From the trace

of the g̃µν equation of motion and from the divergence of the π̃µν equation of motion

we find:

∇̃µ (π̃µν − g̃µν π̃) = 0, (2.16)

π̃ −m2
−2

[(
∇̃χ
)2

+ 2m0
2 (1− e−χ)

2

]
= 0. (2.17)

The above conditions give 5 constraints, thus reducing the number of degrees of

freedom described by π̃µν to 5. Now π̃µν is a pure spin-2 field. Furthermore, if
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we linearize our theory, the above conditions give Pauli-Fierz conditions back and,

therefore, π̃µν would produce a canonical spin-2 field. Thus, we managed to find a

spin-2 field, even though it does not appear canonically in the Lagrangian.

To canonically normalize the field π̃µν , we need to perform another transforma-

tion on the metric. We start by writing the Lagrangian (2.12) in the form

S =
1

2κ2

∫
d4x
√
−g̃
{[(

1 + 1
2
π̃
)
g̃µν − π̃µν

]
R̃µν + 1

4
m2

2

(
π̃µν π̃

µν − π̃2

)
−3

2

(
∇̃χ
)2

− 3
2
m0

2

(
1− e−χ

)2]}
. (2.18)

To get a canonical Einstein-Hilbert term, we need to redefine the metric as

√
−ḡḡµν =

√
−g̃
[(

1 + 1
2
π̃
)
g̃µν − π̃µν

]
, (2.19)

which leads to the transformations

ḡµν = (detA)−1/2g̃µλAνλ (2.20)

Aνλ = (1 + 1
2
φ)δνλ − φνλ. (2.21)

We have introduced the new notation φνµ = π̃νµ to emphasize that the indices of φµν

are raised and lowered using ḡµν , while the indices of π̃µν were raised and lowered

using g̃µν . Therefore, in the new variables the Lagrangian reads

S =
1

2κ2

∫
d4x
√
−ḡ
[
R̄− 3

2

(
A−1(φστ )

) ν

µ
∇̄µχ∇̄νχ− 3

2
(detA(φστ ))

−1/2 (1− e−χ)2

− ḡµν
(
Cλ

µρ(φστ )C
ρ
νλ(φστ )− C

λ
µν(φστ )C

ρ
ρλ(φστ )

)
(2.22)

+ 1
4
m2

2 (detA(φστ ))
−1/2 (φµνφµν − φ2

) ]
,

where

Cλ
µν = 1

2
(g̃−1)λρ(∇̄µg̃νρ + ∇̄ν g̃µρ − ∇̄ρg̃µν). (2.23)

Due to the transformation (2.20), the metric g̃ = g̃(φµν) now depends on the spin-2

field. Thus the spin-2 kinetic term appears explicitly in the action through Cλ
µν .

In the presence of external matter the argument goes in the same way, ex-

cept that after performing the transformations the matter Lagrangian becomes
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LM(e−χg̃µν(φστ ), φα) and the action reads

S =
1

2κ2

∫
d4x
√
−ḡ
[
R̄− 3

2

(
A−1(φστ )

) ν

µ
∇̄µχ∇̄νχ− 3

2
(detA(φστ ))

−1/2 (1− e−χ)2

− ḡµν
(
Cλ

µρ(φστ )C
ρ
νλ(φστ )− C

λ
µν(φστ )C

ρ
ρλ(φστ )

)
(2.24)

+ 1
4
m2

2 (detA(φστ ))
−1/2 (φµνφµν − φ2

)
+ L̄M(e−χg̃µν(φστ ), φα)

]
.

where

L̄M = e−2χ(detA(φµν))
−1/2LM . (2.25)

We see that, in general, external matter couples minimally to the usual graviton

through the Jacobian
√
−ḡ and non-minimally to the fields χ and φµν .

In the following, we will calculate explicitly the coupling between external matter

and the additional degrees of freedom χ and φµν . Consider a matter Lagrangian

being composed of a scalar, a vector and a spinor field:

LM = L0 + L1 + L1/2, (2.26)

where

L0 = 1
2
∇µσ∇µσ (2.27)

L1 = −1
4
FµνF

µν (2.28)

L1/2 = iψ̄ /∂ψ. (2.29)

After transforming the metric to ḡµν (i.e., gµν → g̃µν → ḡµν), we get

L̄0 = 1
2
e−χ(A−1) ν

α ḡαµ∇µσ∇νσ, (2.30)

L̄1 = −1
4
(detA)1/2(A−1) µ

ρ (A−1) ν
λ ḡραḡλβFµνFαβ, (2.31)

L̄1/2 = e−χ(A−1) ν
α iψ̄ḡαµγµ∂νψ, (2.32)

and L̄M = L̄0 + L̄1 + L̄1/2. One can also consider interaction terms, namely the

Yukawa interaction and the gauge interactions for spinor-vector fields and scalar-

vector fields and study how the are affected by the metric redefinition:

LYukawa = −gψ̄φψ, (2.33)

L0 = 1
2
(Dµσ)†(Dµσ) =

1

2
∇µσ∇µσ + e2AµA

µσ2, (2.34)

L1/2 = iψ̄ /Dψ = iψ̄γµ∇µψ − eAµψ̄γµψ, (2.35)
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where Dµ = ∇µ+ieAµ. After transforming the metric to ḡµν (i.e., gµν → g̃µν → ḡµν),

one finds

L̄Yukawa = −e−2χ(detA)−1/2gψ̄φψ, (2.36)

L̄0 = 1
2
e−χ(A−1) ν

α ḡαµ(∇µσ∇νσ + e2AµAνσ
2), (2.37)

L̄1/2 = e−χ(A−1) ν
α ḡαµ(iψ̄γµ∂νψ − eAµψ̄γνψ), (2.38)

and L̄M = L̄0 + L̄1 + L̄1/2 + L̄Yukawa. We note that the massive spin-2 field couples

to all matter fields of spin 0, 1/2 and 2 because of the matrix A. On the other hand,

the scalar field χ does not couple to photons. The masses of the spin 0 and massive

spin 2 gravitational fields can be tuned by adjusting the coefficients of the action.

On the other hand, their interactions with matter fields, while not always universal,

are fixed by the gravitational coupling constant. As usual, the massless graviton

couples universally and gravitationally to matter fields.

2.3 Application to dark matter

As already emphasized, astrophysical and cosmological evidence for dark mat-

ter is overwhelming. Several explanations have been proposed to explain the dark

matter phenomenon. These models are usually classified into two categories: mod-

ifications of Einstein’s general relativity or modifications of the standard model in

the form of new particles. The aim of this section is to point out that these two

categories are not so different after all. In fact, every modified gravity model has

new degrees of freedom besides the usual massless graviton.

The first attempt to explain galaxy rotation curves by a modification of New-

tonian dynamics is due to Milgrom [Milgrom, 1983a]. While Milgrom’s original

proposal was non-relativistic and very phenomenological, more refined theories have

been proposed later on, including Bekenstein’s TeVeS theory [Bekenstein, 2004],

Moffat’s modified gravity (MOG) [Moffat, 2006] and Mannheim’s conformal grav-

ity [Mannheim, 2012], which are relativistic. While these theories seem to be able to

explain the rotation curves of the galaxies (see e.g. [Famaey and McGaugh, 2012] for

a recent MOND review where the observational successes are discussed in details),

it is more difficult to imagine how they would explain the bullet cluster observations
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or the agreement of the CMB observation with the standard cosmological model

ΛCMB which posits the existence of cold dark matter. We shall not dwell on the

question of the viability of modified gravity as we may simply not yet have found

the correct model. However, we merely point out that if such a theory exists, it will

not be necessarily very different from a model involving particles as dark matter.

Indeed, whatever this realistic theory might be, it can be parameterized by a

function f(R,Rµν , Rµνρσ, φα) modelled using effective theory techniques. Here R is

the Ricci scalar, Rµν is the Ricci tensor and φα denotes collectively any type of field

that is also responsible for the gravitational interaction. In terms of effective field

theory, any theory of modified gravity can be described by

S =
1

16πG

∫
d4x
√
−gf(R,Rµν , Rµνρσ, φα) +

∫
d4x
√
−gLM (2.39)

where G is Newton’s constant. We are only assuming diffeomorphism invariance

and the usual space-time and gauge symmetries for the matter content described by

the Lagrangian LM . A successful model should lead to a modification of Newton’s

potential that fits, e.g., the galaxy rotation curves. It is not difficult to imagine

that the standard Newtonian term 1/r would come from the usual massless spin-2

graviton exchange while the non-Newtonian terms would have to be generated by

the new degrees of freedom. Clearly, it is not straightforward to come up with such

a model, however, as mentioned before, there are a few known examples.

While it is obvious that new degrees of freedom are included when φα is added to

the function f as in [Moffat, 2006], it is much less clear how they are identified when

the theory is a function of the curvature invariants only as we stressed before. Hence

we will restrict ourselves to the theory f(R,Rµν , Rµνρσ). From the arguments made

at the end of Section 2.2, we know that this theory is equivalent to general relativity

in the presence of a scalar field and of a massive spin-2 field. Therefore, there is no

difference between introducing new particles and introducing modifications of grav-

ity, which raises the question of whether it is possible to differentiate experimentally

between models of modified gravity and particle dark matter. Nonetheless, since the

massive spin-2 particle is a ghost, this result also suggests that a good dark matter

model is very likely to be described either by an f(R) theory and hence a scalar

field.

Any modification of gravity that has general coordinate invariance as a sym-
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metry can be reformulated, using appropriate variables, as usual general relativity

accompanied by new degrees of freedom. We have seen that these new degrees of

freedom may not couple universally to matter. Modified gravity can thus be seen

as a model with new dark matter particles that are very weakly coupled to the

standard model. These apparently very different models describe the same physics

as their actions are related by simple variable transformations. This may provide a

simple way for modified gravity proponents to explain bullet cluster experiments or

the cosmic microwave background.

2.4 Conclusions

In this paper, we proposed a classification scheme for gravitational theories. In

particular, we showed the equivalence between the broad class of theories f(R,Rµν , Rµνρσ)

and general relativity in the presence of additional matter fields, namely a scalar

and a massive spin-2 field. We have shown that these new degrees of freedom can be

shifted into a redefined stress-energy tensor and that they will couple gravitation-

ally to the matter fields introduced in the model. We conclude that any attempt

to modify the Einstein-Hilbert action, preserving the underlying symmetry, leads to

new degrees of freedom, i.e., new particles. In that sense, this is not different from

including new matter fields by hand in the matter sector that are coupled gravi-

tationally to the standard model matter fields. Assuming that models of modified

gravity preserve diffeomorphism invariance, we have shown that they are equivalent

to general relativity with new degrees of freedom coupled gravitationally to the fields

of the standard model. From that point of view, there is a duality between models

of modified gravity and particle physics models with new fields that are coupled

gravitationally to the standard model.

These results may make it easier to analyse the physics of models of dark matter

involving a modification of gravity and, in particular, the fact that they are dual

to some very weakly coupled dark matter model could help to resolve the apparent

conflict with bullet cluster observations.

While we focussed on dark matter in this paper as an application for the clas-

sification of extended theories of gravity we proposed, another obvious applica-
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tion would be to the physics of gravitational waves for which extended theories

of gravity are also important, see e.g. [Capozziello et al., 2011, De Laurentis et al.,

2016,Capozziello and Stabile, 2015,Calmet et al., 2016].

Acknowledgments: This work is supported in part by the Science and Technology

Facilities Council (grant number ST/L000504/1) and by the National Council for

Scientific and Technological Development (CNPq - Brazil).



37

Chapter 3

Gravitational Waves in Effective

Quantum Gravity

Xavier Calmet, Iberê Kuntz and Sonali Mohapatra

Physics & Astronomy, University of Sussex, Falmer, Brighton, BN1 9QH, United

Kingdom

In this short paper, we investigate quantum gravitational effects on Einstein’s equa-

tions using effective field theory techniques. We consider the leading order quantum

gravitational correction to the wave equation. Besides the usual massless mode, we

find a pair of modes with complex masses. These massive particles have a width and

could thus lead to a damping of gravitational waves if excited in violent astrophys-

ical processes producing gravitational waves such as e.g. black hole mergers. We

discuss the consequences for gravitational wave events such as GW 150914 recently

observed by the Advanced LIGO collaboration.
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The recent discovery of gravitational waves by the Advanced LIGO collabora-

tion [Abbott et al., 2016] marks the beginning of a new era in astronomy which

could shed some new light on our universe revealing its darkest elements that do

not interact with electromagnetic radiations. This discovery could also lead to some

new insights in theoretical physics. In this short paper, we study the leading effect

of quantum gravity on gravitational waves using effective field theory techniques.

While the discovery of a theory of quantum gravity might still be far away, it is pos-

sible to use effective field theory techniques to make actual predictions in quantum

gravity. Assuming that diffeomorphism invariance is the correct symmetry of quan-

tum gravity at the Planck scale and assuming that we know the field content below

the Planck scale, we can write down an effective action for any theory of quantum

gravity. This effective theory, dubbed Effective Quantum Gravity, is valid up to

energies close to the Planck mass. It is obtained by linearizing general relativity

around a chosen background. The massless graviton is described by a massless spin

2 tensor which is quantized using the standard quantum field theoretical procedure.

It is well known that this theory is non-renormalizable, but divergences can be ab-

sorbed into the Wilson coefficients of higher dimensional operators compatible with

diffeomorphism invariance. The difference with a standard renormalizable theory

resides in the fact that an infinite number of measurements are necessary to de-

termine the action to all orders. Nevertheless, Effective Quantum Gravity enables

some predictions which are model independent and which therefore represent true

tests of quantum gravity, whatever the underlying theory might be.

We will first investigate quantum gravitational corrections to the linearized Ein-

stein’s equations. Solving these equations, we show that besides the usual solution

that corresponds to the propagation of the massless graviton, there are solutions

corresponding to massive degrees of freedom. If these massive degrees of freedom

are excited during violent astrophysical processes a sizable fraction of the energy

released by such processes could be emitted into these modes. We shall show that

the corresponding gravitational wave is damped and that the energy of the wave

could thus dissipate. We then study whether the recent discovery of gravitational

waves by the Advanced LIGO collaboration [Abbott et al., 2016] could lead to a

test of quantum gravity.
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Given a matter Lagrangian coupled to general relativity with Ns scalar degrees

of freedom, Nf fermions and NV vectors one can calculate the graviton vacuum

polarization in the large N = Ns + 3Nf + 12NV limit with keeping NGN , where

GN is Newton’s constant, small. Since we are interested in energies below M? which

is the energy scale at which the effective theory breaks down, we do not need to

consider the graviton self-interactions which are suppressed by powers of 1/N in

comparison to the matter loops. Note that M? is a dynamical quantity and does not

necessarily correspond to the usual reduced Planck mass of order 1018 GeV (see e.g.

[Calmet, 2013]). The divergence in this diagram can be isolated using dimensional

regularization and absorbed in the coefficient of R2 and RµνR
µν . An infinite series

of vacuum polarization diagrams contributing to the graviton propagator can be

resummed in the large N limit. This procedure leads to a resummed graviton

propagator given by [Aydemir et al., 2012]

iDαβ,µν(q2) =
i
(
LαµLβν + LανLβµ − LαβLµν

)
2q2
(

1− NGN q2

120π
log
(
− q2

µ2

)) (3.1)

where Lµν(q) = ηµν − qµqν/q2, qµ is the 4-momentum, µ is the renormalization

scale and the iε prescription is implicit. This resummed propagator is the source of

interesting acausal and non-local effects which have just started to be investigated

[Aydemir et al., 2012, Donoghue and El-Menoufi, 2014, Calmet and Casadio, 2014,

Calmet et al., 2015, Calmet, 2014, Calmet and Casadio, 2015]. Here we shall focus

on how these quantum gravity effects affect gravitational waves.

From the resummed graviton propagator in momentum space, we can directly

read off the classical field equation for the spin 2 gravitational wave in momentum

space

2q2

(
1− NGNq

2

120π
log

(
− q

2

µ2

))
= 0. (3.2)

This equation has three solutions [Calmet, 2014]:

q2
1 = 0, (3.3)

q2
2 =

1

GNN

120π

W
(
−120π
µ2NGN

) ,
q2

3 = (q2
2)∗,

where W is the Lambert function. The complex pole corresponds to a new massive

degree of freedom with a complex mass (i.e. they have a width [Calmet, 2014]). The
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general wave solution is thus of the form

hµν(x) = aµν1 exp(−iq1αx
α) + aµν2 exp(−iq2αx

α) + aµν3 exp(−iq?2αxα), (3.4)

where aµνi are polarization tensors. We therefore have three degrees of freedom which

can be excited in gravitational processes leading to the emission of gravitational

waves. Note that our solution is linear, non-linearities in gravitational waves (see

e.g. [Aldrovandi et al., 2010]) have been investigated and are as expected very small.

The position of the complex pole depends on the number of fields in the model.

In the standard model of particle physics, one has Ns = 4, Nf = 45, and NV = 12.

We thus find N = 283 and the pair of complex poles at (7 − 3i) × 1018 GeV and

(7 + 3i) × 1018 GeV. Note that the pole q2
3 corresponds to a particle which has

an incorrect sign between the squared mass and the width term. We shall not

investigate this Lee-Wick pole further and assume that this potential problem is

cured by strong gravitational interactions. The renormalization scale needs to be

adjusted to match the number of particles included in the model. Indeed, to a good

approximation the real part of the complex pole is of the order of

|Re q2| ∼
√

120π

NGN

(3.5)

which corresponds to the energy scale M? at which the effective theory breaks down.

Indeed, the complex pole will lead to acausal effects and it is thus a signal of strong

quantum gravitational effects which cannot be described within the realm of the

effective theory. We should thus pick our renormalization scale µ of the order of

M? ∼ |Re q2|. We have

q2
2 ≈ ±

1

GNN

120π

W (−1)
≈ ∓(0.17 + 0.71 i)

120π

GNN
, (3.6)

and we thus find the mass of the complex pole:

m2 = (0.53− 0.67 i)

√
120π

GNN
. (3.7)

As emphasized before, the mass of this object depends on the number of fields in
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the theory. The corresponding wave has a frequency:

w2 = q0
2 = ±

√
~q2.~q2 + (0.17 + 0.71 i)

120π

GNN
(3.8)

= ±

 1√
2

√√√√√(
~q2.~q2 + 0.17

120π

GNN

)2

+

(
0.71

120π

GNN

)2

+ ~q2.~q2 + 0.17
120π

GNN

+i
1√
2

√√√√√(
~q2.~q2 + 0.17

120π

GNN

)2

+

(
0.71

120π

GNN

)2

− ~q2.~q2 − 0.17
120π

GNN

 .

The imaginary part of the complex pole will lead to a damping of the compo-

nent of the gravitational wave corresponding to that mode. The complex poles are

gravitationally coupled to matter, we must thus assume that the massive modes

are produced at the same rate as the usual massless graviton mode if this is allowed

kinematically. During an astrophysical event leading to gravitational waves, some of

the energy will be emitted into these massive modes which will decay rather quickly

because of their large decay width. The possible damping of the gravitational wave

implies that care should be taken when relating the energy of the gravitational wave

observed on earth to that of the astrophysical event as some of this energy could

have been dissipated away as the wave travels towards earth.

The idea that gravitational waves could experience some damping has been con-

sidered before [Jones and Singleton, 2015], however it is well known that the graviton

cannot split into many gravitons, even at the quantum level [Fiore and Modanese,

1996], if there was such an effect it would have to be at the non-perturbative

level [Efroimsky, 1994]. In our case, the massless mode is not damped, there is thus

no contradiction with the work of [Fiore and Modanese, 1996]. Also, as emphasized

before the dispersion relation of the massless mode of the gravitational wave is not

affected, we do not violate any essential symmetry such as Lorentz invariance. This

is in contrast to the model presented in [Arzano and Calcagni, 2016].

Since the complex poles couple with the same coupling to matter as the usual

massless graviton, we can think of them as a massive graviton although strictly

speaking these objects have two polarizations only in contrast to massive gravitons

that have five. This idea has been applied in the context of F (R) gravity [Vainio

and Vilja, 2017] (see also [Bogdanos et al., 2010, Capozziello and Stabile, 2015] for

earlier works on gravitational waves in F (R) gravity). We shall assume that these
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massive modes can be excited during the merger of two black holes. As a rough

approximation, we shall assume that all the energy released during the merger is

emitted into these modes. Given this assumption, we can use the limit derived

by the LIGO collaboration on a graviton mass. We know that mg < 1.2 × 10−22

eV [Abbott et al., 2016] and we can thus get a limit:√√√√√Re

 1

GNN

120π

W
(
−120πM2

P

µ2N

)
 < 1.2× 10−22 eV (3.9)

we thus obtain a lower bound on N : N > 4 × 10102 if all the energy of the merger

was carried away by massive modes. Clearly, this is not realistic as the massless

mode will be excited. However, it implies that if the massive modes are produced,

they will only arrive on earth if their masses are smaller than 1.2×10−22 eV. Waves

corresponding to more massive poles will be damped before reaching earth. We shall

see that there are tighter bounds on the mass of these objects coming from Eötvös

type pendulum experiments.

At this stage, we need to discuss which modes can be produced during the two

black holes merger that led to the gravitational wave observed by the LIGO collab-

oration. The LIGO collaboration estimates that the gravitational wave GW150914

is produced by the coalescence of two black holes: the black holes follow an inspiral

orbit before merging and subsequently going through a final black hole ringdown.

Over 0.2 s, the signal increases in frequency and amplitude in about 8 cycles from

35 to 150 Hz, where the amplitude reaches a maximum [Abbott et al., 2016]. The

typical energy of the gravitational wave is of the order of 150 Hz or 6× 10−13 eV. In

other words, if the gravitational wave had been emitted in the massive mode, they

could not have been heavier than 6× 10−22 GeV. However, this shows that it is per-

fectly conceivable that a sizable number of massive gravitons with mg < 1.2× 10−22

eV could have been produced.

Let us now revisit the bound on the number of fields N and thus the new com-

plex pole using Eötvös type pendulum experiments looking for deviations of the

Newtonian 1/r potential. The resummed graviton propagator discussed above can

be represented by the effective operator

N

2304π2
R log

(
�
µ2

)
R (3.10)
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where R is the Ricci scalar. As explained above the log term will be a contribution

of order 1, this operator is thus very similar to the more familiar cR2 term studied by

Stelle long ago. The current bound on the Wilson coefficient of c is c < 1061 [Hoyle

et al., 2004, Stelle, 1978, Calmet et al., 2008]. We can translate this bound into a

bound on N : N < 2 × 1065. This implies that the mass of the complex pole must

be larger than 5× 10−13GeV. This bound, although very weak, is more constraining

than the one we have obtained from the graviton mass by 37 orders of magnitude.

In this short paper we have investigated quantum gravitational effects in gravita-

tional waves using conservative effective theory methods which are model indepen-

dent. We found that quantum gravity leads to new poles in the propagator of the

graviton besides the usual massless pole. These new states are massive and couple

gravitationally to matter. If kinematically allowed, they would thus be produced

in roughly the same amount as the usual massless mode in energetic astrophysical

events. A sizable amount of the energy produced in astrophysical events could thus

be carried away by massive modes which would decay and lead to a damping of

this component of the gravitational wave. While our back-of-the-envelope calcula-

tion indicates that the energy released in the merger recently observed by LIGO

was unlikely to be high enough to produce such modes, one should be careful in

extrapolating the amount of energy of astrophysical events from the energy of the

gravitational wave observed on earth. This effect could be particularly important

for primordial gravitational waves if the scale of inflation is in the region of 1016

GeV, i.e. within a few orders of magnitude of the Planck scale.
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Chapter 4

Quantum Corrections to the

Gravitational Backreaction

Iberê Kuntz

Physics & Astronomy, University of Sussex, Falmer, Brighton, BN1 9QH, United

Kingdom

Effective Field Theory techniques are used to study the leading order quantum

corrections to the gravitational wave backreaction. The effective stress-energy tensor

is calculated and it is shown that it has a non-vanishing trace that contributes to

the cosmological constant. By comparing the result obtained with LIGO’s data, the

first bound on the amplitude of the massive mode is found: ε < 1.4× 10−33.
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4.1 Introduction

The recent experimental discovery of gravitational waves (GWs) [Abbott et al.,

2016] has marked a new era for both observational and theoretical physics. With the

new coming data from LIGO and from future experiments like LISA, it will become

possible to test modified gravity theories, establishing for which range of parameters

these theories agree with observations. Particularly, it may be even possible to test

Quantum Gravity in its low energy limit, even though a complete quantum theory

for gravity remains one of the greatest problems in modern physics.

A natural observable to consider is the GW energy. As a non-linear phenomenon,

gravity couples to itself and thus gravitates, which means that GWs — being a

manifestation of gravity — produce a backreaction onto the spacetime. Hence, one

should be able to find a stress-energy tensor for the GWs that accounts for this

phenomenon. In the case of classical General Relativity (GR), such a stress-energy

tensor is known:

tGR
µν =

1

32πG

〈
∂µhαβ∂νh

αβ
〉
, (4.1)

where hµν are metric perturbations and the brackets denote an average over space-

time, which is responsible for taking only the long-wavelength modes; its precise

definition will be explained later on. The GW stress-energy tensor has also been cal-

culated for some other theories, including f(R), Chern-Simons and higher-derivative

gravity [Stein and Yunes, 2011, Preston, 2016, Preston and Morris, 2014, Saito and

Ishibashi, 2013]. In [Berry and Gair, 2011], it was indicated how the parameters of

an analytic f(R) theory could be constrained by the measurement of the energy or

momentum carried away by the GWs.

The phenomenology, however, is not the only motivation. An alternative for dark

energy has been proposed based on the effective stress-energy tensor [Preston and

Morris, 2014,Rasanen, 2010,Rasanen, 2004,Buchert and Rasanen, 2012]. Although

this is not possible in GR because of the vanishing trace of tGR
µν , it was pointed out

it could be possible in modified gravity theories. However, it was also found that

in some models such as Starobinsky gravity, the effective stress-energy tensor could

not be the only factor as it does not produce the right value for the cosmological

constant [Preston and Morris, 2014]. We will show that the large contributions

from the Standard Model cannot be canceled by the quantum gravitational effects,
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thus requiring the existence of another mechanism able to reconcile the discrepancy

between theory and observation.

The purpose of this paper is, then, two-fold: we will establish new phenomeno-

logical bounds and discuss the possibility of generating a contribution to the cosmo-

logical constant in this framework. Effective Field Theory techniques will be used to

calculate quantum contributions to the GW backreaction and to the wave equation

in an arbitrary background. The short-wave formalism will be employed, consist-

ing of an averaging procedure that separates the low-frequency modes from the

high-frequency ones, in order to calculate the GW stress-energy tensor in quantum

GR. These theoretical findings will be useful to constrain some of the parameters

of Effective Quantum Gravity by the direct comparison with LIGO’s observations.

Furthermore, on the theoretical side, they give us new insights into gravity at the

quantum level since this approach is model independent and, as such, leads to gen-

uine predictions of Quantum Gravity.

This paper is organized as follows. In Section 4.2, we will review the main results

of the Effective Field Theory approach applied to gravity. In Section 4.3, we use

the short-wave formalism to calculate the leading order quantum corrections to the

GW stress-energy tensor. The result allows us to constrain the amplitude of the

massive mode present in Effective Quantum Gravity. In Section 4.4, we discuss the

quantum corrections to the propagation of GWs and we show that the equation

describing the propagation in curved spacetime can be obtained by performing a

minimal coupling prescription to the equation in Minkowski space. We draw the

conclusions in Section 4.5.

4.2 Effective quantum gravity

The quantum effective action of gravity up to quadratic order in curvature is

given by [Donoghue and El-Menoufi, 2014]

Γ =

∫
d4x
√
−g
(
M2

p

2
R + b1R

2 + b2RµνR
µν + c1R log

−�
µ2

R + c2Rµν log
−�
µ2

Rµν

+ c3Rµνρσ log
−�
µ2

Rµνρσ

)
, (4.2)
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where Mp = (8πG)−1/2 is the reduced Planck mass, G is the Newton’s constant, µ

is the renormalization scale and the kernel R denotes the Riemann tensor and its

contractions (Ricci tensor and Ricci scalar) depending on the number of indices it

carries. The signature (− + ++) will be adopted. We set the bare cosmological

constant to zero as it is not important to our considerations. The coefficients bi are

free parameters and must be fixed by observations, while the coefficients ci are pre-

dictions of the infra-red theory and depend on the field content under consideration

(see Table 1 in [Donoghue and El-Menoufi, 2014] for their precise values). The log

operators are known to lead to acausal effects that need to be removed by resolving

the non-local operator as

log
−�
µ2

=

∫ ∞
0

ds

(
1

µ2 + s
−G(x, x′,

√
s)

)
, (4.3)

where G(x, x′;
√
s) is a Green’s function for

(−� + k2)G(x, x′; k) = δ4(x− x′), (4.4)

and imposing proper boundary conditions on G(x, x′; k) so that the result respects

causality. Moreover, in the weak field limit, the log terms are not independent due

to the following relation (see [Preston, 2016]):

δ

∫
d4x
√
−g
(
Rµνρσ log

−�
µ2

Rµνρσ − 4Rµν log
−�
µ2

Rµν +R log
−�
µ2

R

)
weak
= 0. (4.5)

This can also be seen by linearizing the field equations [Calmet et al., 2017a]. The

log operators in the above expression certainly break the topological invariance given

by the Gauss-Bonnet theorem. Nonetheless, such expression still provides a useful

relation that can be used to simplify calculations in the weak field limit. Therefore,

since we will be interested only in the weak field scenario, the last term in (4.2) will

be eliminated in favour of the other two log terms, which translates into a shift of

their coefficients:

c1 → α ≡ c1 − c3, (4.6)

c2 → β ≡ c2 + 4c3. (4.7)

Hence, from now on, α will denote the coefficient of R log −�
µ2
R and β the coefficient

of Rµν log −�
µ2
Rµν . Note, however, that the last term in (4.2) will give independent
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contributions in the non-linear regime and, in particular, the background equations

of motion (left-hand side of (4.20) below) will be changed, but none of this affects

the right-hand side of (4.20).

The quantum action (4.2) yields the equations of motion (EOM)

Gµν + ∆GL
µν + ∆GNL

µν = 8πGTµν , (4.8)

where ∆GL
µν denotes the local contribution to the modification of Einstein’s tensor

and ∆GNL
µν = ∆Gα

µν + ∆Gβ
µν is the non-local one (due to the log operator), coming

from the terms proportional to α and β, denoted by ∆Gα
µν and ∆Gβ

µν , respectively.

Here we will show only the calculation of the non-local part ∆GNL
µν as the local

contribution can be straightforwardly obtained from it. However, our final results

will be completely general, including both local and non-local physics. The ∆Gα
µν

has been calculated in the literature [Codello and Jain, 2017]:

−ξ∆Gα
µν = 2

(
Rµν −

1

4
gµνR

)(
log
−�
µ2

R

)
−2 (∇µ∇ν − gµν�)

(
log
−�
µ2

R

)
, (4.9)

where ξ = 1
16πGα

. Note that the integral term appearing in [Codello and Jain, 2017],

which comes from the variation of the D’Alembert operator, is not present here. This

is because in the weak field limit the variation of the D’Alembert operator leads to

negligible contributions [Donoghue and El-Menoufi, 2015]. The other contribution

to ∆Gµν is given by

ζ∆Gβ
µν = −1

2
gµνRρσ log

(
−�
µ2

)
Rρσ + � log

(
−�
µ2

)
Rµν + gµν∇ρ∇σ log

(
−�
µ2

)
Rρσ

+Rσ
µ log

(
−�
µ2

)
Rνσ +Rσ

ν log

(
−�
µ2

)
Rµσ (4.10)

−∇ρ∇µ log

(
−�
µ2

)
Rρ
ν −∇ρ∇ν log

(
−�
µ2

)
Rρ
µ

where ζ = 1
16πGβ

.

4.3 Gravitational wave backreaction

The first step is to separate the fluctuations hµν (GWs) from the background

geometry ḡµν , via gµν = ḡµν + hµν . This separation is only meaningful in the limit

where the GW wavelength λ is much smaller than the background radius L, i.e.

λ � L, so that a clear distinction between background and GW can be made. As
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a first approximation, the background metric ḡµν will be used to raise/lower indices

as well as to build all the operators, e.g. � = ḡµν∇µ∇ν . The connection is also

assumed to be compatible with ḡµν instead of gµν .

The separation of gravity into background and fluctuations allows one to expand

the Ricci tensor as

Rµν = R̄µν +R(1)
µν +R(2)

µν +O(h3), (4.11)

where the bar quantities are calculated with respect to the background and the rest

depends only on the fluctuation. The superscript (n) is used to indicate the order in

h of the underlying term. Naively, one could think that the EOM could be calculated

order by order in h, giving no backreaction into the background. The problem is

that there are two small parameters in the game, namely the fluctuation amplitude

h and ε ≡ λ
L

, so that one can compensate the other. Their relation is fixed by the

EOM1 and in the presence of external matter

h� ε� 1, (4.12)

as can be seen from Equation (4.8).

To obtain the GW backreaction, one then needs to calculate the average of

tensor fields over a region of length scale d, where λ � d � L. This makes the

high-frequency modes go away due to their rapid oscillation, but leave the low

modes intact. The subtle point is that there is no canonical way of summing tensors

based on different points of a manifold. Here Isaacson’s definition [Isaacson, 1968,

Isaacson, 1967] of the average of a tensor will be used, which is based on the idea of

parallel transporting the tensor field along geodesics from each spacetime position

to a common point where its different values can be compared:

〈Aµν(x)〉 =

∫
jα

′

µ (x, x′)jβ
′

ν (x, x′)Aα′β′(x′)f(x, x′)
√
−ḡ(x′)d4x′, (4.13)

where jα
′

µ is the bivector of geodesic parallel displacement and f(x, x′) is a weight

function that falls quickly and smoothly to zero when |x− x′| > d, such that∫
all space

f(x, x′)
√
−ḡ(x′)d4x′ = 1. (4.14)

From this definition, the following rules can be proven [Stein and Yunes, 2011]:

1Note that R̄µν ∼ 1
L2 , R

(n)
µν ∼ hn

λ2 and the contribution of GWs to the curvature is negligible

compared to the contribution of matter sources.
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• The average of an odd product of short-wavelength quantities vanishes.

• The derivative of a short-wavelength tensor averages to zero, e.g.,
〈
∇µT

µ
αβ

〉
=

0.

• As a corollary, integration by parts can be performed and one can flip deriva-

tives, e.g., 〈Rµ
α∇µSβ〉 = −〈Sβ∇µR

µ
α〉.

Therefore, to obtain the backreaction one has to calculate

〈Gµν〉+
〈
∆GNL

µν

〉
= 8πG 〈Tµν〉 (4.15)

up to second order in h (higher orders are extremely small)2. Taking the average of

Equation (4.9), gives

−ξ
〈
∆Gα

µν

〉
= 2

(〈
Rµν log

(
−�
µ2

)
R

〉
− 1

4
ḡµν

〈
R log

(
−�
µ2

)
R

〉)
− 2

〈
(∇µ∇ν − gµν�) log

(
−�
µ2

)
R

〉
. (4.16)

It follows from the rules that〈
Rµν log

(
−�
µ2

)
Rµν

〉
= R̄µν log

(
−�
µ2

)
R̄µν +

〈
R(1)
µν log

(
−�
µ2

)
R(1)µν

〉
, (4.17)

since the average of linear terms in h vanishes. Cross terms (e.g. R̄R(2)) are absent as

they are negligible due to the condition (4.12). In addition, the last line of Equation

(4.16) has a global derivative so that the high-frequency contribution averages to

zero.

The combination of Equations (4.16) and (4.17) results in

−ξ
〈
∆Gα

µν

〉
= 2

(
R̄µν −

1

4
ḡµνR̄

)
log

(
−�
µ2

)
R̄ + 2

(〈
R(1)
µν log

(
−�
µ2

)
R(1)

〉
− 1

4
ḡµν

〈
R(1) log

(
−�
µ2

)
R(1)

〉)
(4.18)

− 2(∇µ∇ν − ḡµν�) log

(
−�
µ2

)
R̄.

2When performing the scalar-vector-tensor decomposition to second order in perturbation the-

ory, one has to take into account the contributions from the coupling between scalar and tensor

perturbations [Marozzi and Vacca, 2014]. These contributions are automatically being taken into

account here as we are not decomposing the metric perturbation and everything is given in terms

of the entire perturbation hµν .
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Similarly, taking the average of Equation (4.10) gives

ζ
〈
∆Gβ

µν

〉
= −1

2
ḡµν

(
R̄ρσ log

(
−�
µ2

)
R̄ρσ +

〈
R(1)
ρσ log

(
−�
µ2

)
R(1)ρσ

〉)
+ � log

(
−�
µ2

)
R̄µν + ḡµν∇ρ∇σ log

(
−�
µ2

)
R̄ρσ

+ R̄σ
µ log

(
−�
µ2

)
R̄νσ + R̄σ

ν log

(
−�
µ2

)
R̄µσ + 2

〈
R(1)σ
µ log

(
−�
µ2

)
R(1)
νσ

〉
−∇ρ∇µ log

(
−�
µ2

)
R̄ρ
ν −∇ρ∇ν log

(
−�
µ2

)
R̄ρ
µ. (4.19)

Combining Equations (4.15), (4.18) and (4.19) leads to the background EOM

R̄µν −
1

2
ḡµνR̄−

2

ξ

[(
R̄µν −

1

4
ḡµνR̄

)
log

(
−�
µ2

)
R̄− (∇µ∇ν − ḡµν�) log

(
−�
µ2

)
R̄

]
− 1

2ζ
ḡµνR̄ρσ log

(
−�
µ2

)
R̄ρσ +

1

ζ
R̄σ
µ log

(
−�
µ2

)
R̄νσ +

1

ζ
R̄σ
ν log

(
−�
µ2

)
R̄µσ

+
1

ζ
� log

(
−�
µ2

)
R̄µν +

1

ζ
ḡµν∇ρ∇σ log

(
−�
µ2

)
R̄ρσ − 1

ζ
∇ρ∇µ log

(
−�
µ2

)
R̄ρ
ν

− 1

ζ
∇ρ∇ν log

(
−�
µ2

)
R̄ρ
µ

= 8πG(〈Tµν〉+ tGRµν + tNLµν ), (4.20)

where tGRµν is the classical contribution to the GW stress-energy tensor:

tGRµν = − 1

8πG

(〈
R(2)
µν

〉
− 1

2
ḡµν
〈
R(2)

〉)
(4.21)

and tNLµν is the non-local one:

tNLµν = − 1

8πG

[
− 2

ξ

(〈
R(1)
µν log

(
−�
µ2

)
R(1)

〉
− 1

4
ḡµν

〈
R(1) log

(
−�
µ2

)
R(1)

〉)

+
2

ζ

〈
R(1)σ
µ log

(
−�
µ2

)
R(1)
νσ

〉
− 1

2ζ
ḡµν

〈
R(1)
ρσ log

(
−�
µ2

)
R(1)ρσ

〉]
. (4.22)

Similarly, the local contribution is given by

tLµν = − 1

8πG

[
− 32πGb1

(〈
R(1)
µνR

(1)
〉
− 1

4
ḡµν
〈
R(1)R(1)

〉)

+ 32πGb2

〈
R(1)σ
µ R(1)

νσ

〉
− 8πGb2ḡµν

〈
R(1)
ρσR

(1)ρσ
〉 ]
. (4.23)

Therefore, the total GW stress-energy tensor is tµν = tGRµν + tLµν + tNLµν .

At this point some comments are necessary. First of all, observe that the left-

hand side of Equation (4.20) corresponds solely to the background effect, which we
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interpret as pure gravity. In fact, the left-hand side is exactly the same as in Equa-

tion (4.8) when gµν is replaced by ḡµν . The right-hand side represents the matter

sector, as usual, but with the inclusion of the GW contribution. Such a contribu-

tion represents the most general stress-energy tensor to leading order, accounting for

both classical and quantum effects. Note that, due to the diffeomorphism invariance

of the theory, the total energy-momentum tensor is covariantly conserved

∇µ(Tµν + tµν) = 0, (4.24)

which shows that energy and momentum are exchanged between matter sources

and GWs. Far away from the source, this gives the conservation of the GW energy-

momentum tensor

∂µtµν = 0. (4.25)

Up to this point, no gauge conditions have been applied and tµν also accounts

for spurious degrees of freedom. To eliminate them, we shall take the limit where

the GW is far away from the source, so that the background is nearly flat and the

linear EOM becomes [Calmet et al., 2017a]

�ηhµν + 16πG

[
b2 + β log

(
−�η

µ2

)]
�2
ηhµν = 0, (4.26)

where �η = ηµν∂µ∂ν is the flat D’Alembert operator. Note the absence of the

parameter α in Equation (4.26). This happens because α is proportional to terms

depending on the trace h, which can be taken to be zero far away from the source.

Using the gauge conditions ∂νhµν = 0 and h = 0 (only valid outside the source)

together with Equation (4.26) in the definition of tµν gives

tµν =
1

8πG

[
1

4

〈
∂µhαβ∂νh

αβ
〉

+
1

2

〈
hσµ�ηhνσ

〉
− 1

8
ηµν 〈hρσ�ηh

ρσ〉
]
, (4.27)

Comparing this to Equation (4.1), it is clearly seen that the first term in tµν corre-

sponds to GR, while the other two come from quantum corrections. Observe that

the log operators do not appear explicitly in Equation (4.27) as the gravitational

field is on shell. This means that their contribution will only show up in the field

solutions. For the same reason, the procedure (4.3) of imposing causality need not

be pursued at this stage as the non-local effects are only reflected in the solutions

for hµν . The parameters b2 and β now only appear in the mass m of hµν .
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The GW energy density is then

ρ ≡ t00 =
1

8πG

[
1

4

〈
ḣαβḣ

αβ
〉

+
1

2
〈hα0�ηh0α〉+

1

8
〈hρσ�ηh

ρσ〉
]
. (4.28)

As a concrete example, take a plane wave solution propagating in the z direction

hµν = εµν cos(ωt− kz). (4.29)

Plugging this into Equation (4.28) gives

ρ =
1

16πG

[
ε2ω2

4
+

1

2

(
εα0 ε0α +

ε2

4

)
(ω2 − k2)

]
, (4.30)

where ε2 = εµνε
µν . Therefore, modifications in the dispersion relations lead to mea-

surable differences into the GW energy. In the case of the classical wave, i.e. ω2 = k2,

the second term vanishes identically, resulting in the classical energy as expected. In

the most general case, there could be complex frequencies leading to damping as was

shown in [Calmet et al., 2016,Calmet, 2014,Calmet and Kuntz, 2016,Calmet et al.,

2017b]. In such case, Equation (4.30) can be straightforwardly generalized. Note

that the second term in (4.30) is proportional to the particle’s mass m and, therefore,

is constant as any change in the frequency would be compensated by a change in

the momentum. Dividing the constant term by the critical density ρc =
3H2

0

8πG
, where

H0 is the today’s Hubble constant, leads to the frequency-independent gravitational

wave density parameter Ω0 which was constrained to be smaller than 1.7× 10−7 by

LIGO [Abbott et al., 2017]:

Ω0 =
1

12

(
εα0 ε0α +

ε2

4

)
m2

H2
0

< 1.7× 10−7. (4.31)

We remind the reader that the initial parameters b2 and β appear only in terms of

the mass m as the field hµν is on shell. Figure 4.1 shows the allowed region of the

parameter space (m, ε). Using the lower bound on the mass of the complex pole3

found in [Calmet et al., 2016], i.e. m > 5 × 10−13GeV, we can translate the above

constraint to

ε < 1.4× 10−33. (4.32)

3This conservative bound, and consequently the bound on ε, was obtained assuming all the

energy of a merger goes into the complex mode. Naturally, this does not represent the real situation

as the classical mode should also be produced. In a more careful analysis, we expect to get a better

bound.
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Figure 4.1: The blue area in the graph represents the allowed region of the parameter

space (m, ε).

To the best of our knowledge, this is the first bound ever found on the amplitude of

the massive mode. It is 12 orders of magnitude smaller than the strain sensibility

of LIGO’s interferometer, which can probe amplitudes up to ∼ 10−22 in the fre-

quency range from 10 Hz to 10 kHz. Although it seems hopeless to reach such small

distances, the Chongqing University detector (currently under development) will be

able to probe amplitudes as small as 10−32 [Baker, 2009] in the high-frequency range

0.1–10 GHz, which is not far from the bound just found. Observe, however, that

we have found an upper bound on ε and not a lower one, thus ε could be arbitrar-

ily small and not be detectable by the Chongqing detector. Should the existence

of these extra modes be confirmed in future experiments, this would be the first

evidence for a massive mode.

As it was stressed before, the effective energy-momentum tensor may lead to a

contribution to the accelerated expansion of today’s universe if its trace is different

from zero. The trace of the GW energy-momentum tensor (4.27) is non-vanishing:

t = − 1

32πG

〈
hαβ�ηh

αβ
〉
6= 0, (4.33)

as the gravitational field now satisfies the modified EOM (4.26). Therefore, the
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energy-momentum tensor tµν can be split into a traceful and a traceless component

tµν = tµν −
1

4
ηµνt+

1

4
ηµνt (4.34)

and the cosmological constant can be identified as

Λ ≡ 1

16

〈
hαβ�ηh

αβ
〉

=
1

16
ε2m2, (4.35)

where in the second equality the plane wave solution (4.29) was used. After taking

the average, Λ depends very mildly on space and time. In fact, it is precisely

constant across any region of length d and its variation only becomes appreciable

in a region containing several lengths of size d. Therefore, for our purposes, we

can safely neglect the spacetime dependence of the emergent cosmological constant

Λ and consider it a constant indeed. Remember that, initially, the cosmological

constant was set to zero. A non-zero initial or bare cosmological constant Λb would

just be shifted by the Λ found above and the physical cosmological constant would be

Λeff ≡ Λb+Λ. The important proposition here is that quantum gravitational waves

give a non-zero contribution to the cosmological constant Λeff . In this scenario, the

new gravitational interactions and degrees of freedom appearing in high energies are

represented by non-local effects in the low-energy limit. The latter, combined with

the local interactions, yields a gravitational energy-momentum tensor whose trace

is non-vanishing and which contributes to the total cosmological constant.

4.4 Gravitational wave propagation

Up to now, only the physics of the low-frequency waves has been considered.

For completeness, we shall turn our attention to the high-frequency ones, which will

lead to the equation describing the GW propagation in curved spacetime. This is

easily achieved by subtracting the background equation (4.20) from the total EOM

(4.8)

Gµν + ∆Gµν − 〈Gµν + ∆Gµν〉 = 8πG(Tµν − 〈Tµν〉), (4.36)
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where ∆Gµν = ∆GL
µν + ∆GNL

µν . Ignoring the local part for a moment and keeping

only the terms up to linear order in h and λ/L gives

R(1)
µν −

1

2
ḡµνR

(1) +
2

ξ
(∇µ∇ν − ḡµν�) log

(
−�
µ2

)
R(1) +

1

ζ

[
� log

(
−�
µ2

)
R(1)
µν

+ ḡµν∇ρ∇σ log

(
−�
µ2

)
R(1)ρσ −∇ρ∇µ log

(
−�
µ2

)
R(1)ρ
ν −∇ρ∇ν log

(
−�
µ2

)
R(1)ρ
µ

]
= 0

(4.37)

Outside the matter source, we can use the gauge ∇νhµν = 0 together with h = 0,

leading to

�hµν + 16πGβ log

(
−�
µ2

)
�2hµν = 0. (4.38)

Analogously, including the local terms gives

�hµν + 16πG

[
b2 + β log

(
−�
µ2

)]
�2hµν = 0. (4.39)

When deriving Equation (4.39), we made use of the commutation relation of covari-

ant derivatives and we discarded terms proportional to the background curvature as

they only contribute to higher orders in λ/L. Equation (4.39) describes the propa-

gation of GWs in an arbitrary curved background in the absence of external matter,

when the only source for a non-vanishing Ricci tensor is the GW energy-momentum

tensor. The curvature terms do not appear as they provide no contribution to leading

order. Therefore, the case where curvature is present can be obtained by applying a

simple “minimal coupling” prescription to Equation (4.26) where spacetime is flat,

that is, by performing the following substitution

ηµν → ḡµν , (4.40)

∂µ → ∇µ. (4.41)

Equations (4.20) and (4.39) together describe the entire classical and quantum pro-

cess (to leading order) of the GW self-gravitation: small perturbations around space-

time change the curvature, which in turn modify the GW’s trajectory and vice-versa.

4.5 Conclusions

We showed in this paper how to calculate the quantum corrections to the GW

stress-energy tensor. The result shows that quantum effects promote the trace-

less tensor tGR
µν to a traceful quantity that contributes to the current accelerated
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expansion of the universe. In addition, the energy density component acquires a

dependence on modifications to the dispersion relation, indicating a useful observ-

able to probe when looking for quantum gravitational effects. In fact, by using the

latest LIGO’s data, it was obtained a new upper bound on the amplitude of the

massive mode. We also showed that the high-frequency mode equation led to a gen-

eralization of the wave equation (4.26) to arbitrary curved spacetimes (4.39). Such

a generalization is important to the study of quantum GW solutions in cosmology

and in the early universe where the spacetime was highly curved. Lastly, it must be

stressed once again that these quantum contributions are model independent (since

they are derived from an Effective Field Theory) and constitute actual predictions

of Quantum Gravity, shedding new light on Quantum Gravity as a whole and giving

us some hints of how a complete theory, if such a theory exists, should behave below

the Planck scale.

Acknowledgments: This work is supported by the National Council for Scientific and

Technological Development (CNPq - Brazil).



58

Chapter 5

Higgs Starobinsky Inflation

Xavier Calmet and Iberê Kuntz

Physics & Astronomy, University of Sussex, Falmer, Brighton, BN1 9QH, United

Kingdom

In this paper we point out that Starobinky inflation could be induced by quantum

effects due to a large non-minimal coupling of the Higgs boson to the Ricci scalar.

The Higgs Starobinsky mechanism provides a solution to issues attached to large

Higgs field values in the early universe which in a metastable universe would not be

a viable option. We verify explicitly that these large quantum corrections do not

destabilize Starobinsky’s potential.
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The idea that inflation may be due to degrees of freedom already present in the

standard model of particle physics or quantum general relativity is extremely attrac-

tive and has received much attention in the recent years. In particular two models

stand out for their simplicity and elegance. Higgs inflation [Bezrukov and Shaposh-

nikov, 2008,Barvinsky et al., 2008,Barvinsky et al., 2009] with a large non-minimal

coupling of the Higgs boson H to the Ricci scalar (ξH†HR) and Starobinsky’s in-

flation model [Starobinsky, 1980] based on R2 gravity are both minimalistic and

perfectly compatible with the latest Planck data [Akrami et al., 2018].

These two models should not be considered as physics beyond the standard model

but rather both operators ξH†HR and R2 are expected to be generated when general

relativity is coupled to the standard model of particle physics. We will come back

to that point shortly. The aim of this paper is to point out an intriguing distinct

possibility, namely that Starobinsky inflation is generated by quantum effects due

to a large non-minimal coupling of the Higgs boson to the Ricci scalar. In that

framework, we do not need to posit that the Higgs boson starts at a high field value

in the early universe which would alleviate constraints coming from the requirement

of having a stable Higgs potential even for large Higgs field values [Kobakhidze and

Spencer-Smith, 2014,Degrassi et al., 2012,Bezrukov et al., 2012].

We shall now argue that both terms necessary for Higgs inflation or Starobinsky’s

model are naturally present when the standard model of particle physics is coupled

to general relativity. While the quantization of general relativity remains one of

the outstanding challenges of theoretical physics, it is possible to use effective field

theory methods below the energy scaleM? at which quantum gravitational effects are

expected to become large. The energy scale M? is usually assumed to be of the order

of the Planck scale MP =
√

8πGN
−1

= 2.4335× 1018 GeV, however recent work has

shown that even in four space-time dimensions this energy scale is model dependent.

At energies below M?, we can describe all of particle physics and cosmology with

the following effective field theory (see e.g. [Codello and Jain, 2016, Donoghue and

El-Menoufi, 2014,Birrell and Davies, 1984])

S =

∫
d4x
√
−g
((

1

2
M2 + ξH†H

)
R− Λ4

C + c1R
2 + c2C

2 + c3E + c4�R

− LSM − LDM +O(M−2
? )

)
(5.1)
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where we have restricted our considerations to dimension four operators which are

expected to dominate at least at low energies. Note that we are using the Weyl basis

and the following notations: R stands for the Ricci scalar, Rµν for the Ricci tensor,

E = RµνρσR
µνρσ−4RµνR

µν +R2, C2 = E+2RµνR
µν−2/3R2, the dimensionless ξ is

the non-minimal coupling of the Higgs boson H to the Ricci scalar, the coefficients

ci are dimensionless free parameters, the cosmological constant ΛC is of order of

10−3 eV, the Higgs boson vacuum expectation value, v = 246 GeV contributes to

the value of the Planck scale

(M2 + ξv2) = M2
P , (5.2)

LSM contains all the usual standard model interactions (including mass terms for

neutrinos) and finally LDM describes the dark matter sector (this is the only part of

the model which has not yet been tested experimentally). Submillimeter pendulum

tests of Newton’s law [Hoyle et al., 2004] lead to extremely weak limits on the

parameters ci. In the absence of accidental cancellations between these coefficients,

they are constrained to be less than 1061 [Calmet et al., 2008]. The discovery of the

Higgs boson and precision measurements of its couplings to fermions and bosons at

the LHC can be used to set a limit on ξ. One finds that |ξ| < 2.6× 1015 [Atkins and

Calmet, 2013]. Clearly very little is known about the values of ci and ξ.

Besides describing all of particle physics and late time cosmology, the action

given in Eq. (5.1) can also describe inflation if some of its parameters take specific

values and if some of its fields fulfil specific initial conditions in the early universe.

This action, depending on the initial conditions, can describe either Higgs inflation

if ξ ∼ 104 and the Higgs field is chosen to take large values in the early universe

or Starobinsky inflation if c1 ∼ 109 and the corresponding scalar extra degree of

freedom (which can be made more visible by going to the Einstein frame) takes

large values in the early universe.

If we assume that the Higgs field take small values in the early universe, Eq.

(5.1) reduces to

SJStarobinsky =

∫
d4x
√
g

1

2

(
M2

PR + cSR
2
)

(5.3)



61

during inflation which in the Einstein frame gives

SEStarobinsky =

∫
d4x
√
g

M2
P

2
R− 1

2
∂µσ∂

µσ − M4
P

cS

(
1− exp

(
−
√

2

3

σ

MP

))2
 .(5.4)

We have assumed that the scalar degree of freedom σ hidden in R2 takes large field

values in the early universe. A successful prediction of the density perturbation δρ/ρ

requires cS = 0.97× 109 [Netto et al., 2016,Starobinsky, 1983]. On the other hand,

if we assume that only the Higgs field takes large values in the early universe,the

action (5.1) reduces to

SJHiggs =

∫
d4x
√
−g
(
M2

2
R + ξHH

†HR− LSM
)

(5.5)

=

∫
d4x
√
−g
(
M2 + ξHh

2

2
R− 1

2
∂µh∂

µh+
λ

4
(h2 − v2)2

)
+ · · · .

In the Einstein frame, one obtains

SEHiggs =

∫
d4x
√
ĝ

(
M2

P

2
R̂− 1

2
∂µχ∂

µχ+ U(χ) + · · ·
)

(5.6)

with

dχ

dh
=

√
Ω2 + 6ξ2

Hh
2/M2

P

Ω4
(5.7)

where Ω2 = 1 + ξ2
Hh

2/M2
P and

U(χ) =
1

Ω(χ)4

λ

4
(h(χ)2 − v2)2. (5.8)

A successful prediction of the density perturbation δρ/ρ requires ξH = 1.8× 104.

These two models are very attractive because they do not necessitate physics

beyond the standard model. Furthermore, they are compatible with current cos-

mological observations which favour small tensor perturbations that so far have not

been observed. It has actually been pointed out that both models are phenomeno-

logically very similar [Bezrukov and Gorbunov, 2012, Salvio and Mazumdar, 2015].

However, while Starobinky’s inflation model does not suffer from any obvious prob-

lem, it has recently been pointed out that in the case of Higgs inflation, which

necessitates the Higgs field to take very large field values, our universe will not end

up in the standard model Higgs vacuum if it is metastable as suggested by the latest

measurement of the top quark mass, but rather in the real vacuum of the theory
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which does not correspond to the world we observe. In this paper, we point out that

there is an alternative possibility. Namely when quantum corrections are taken into

account, a large non-minimal coupling of the Higgs boson can generate Starobinsky

inflation by generating a large coefficient for the coefficient of R2 in the early uni-

verse. While the model corresponds to Starobinsky’s model, the Higgs boson plays

a fundamental role as it triggers inflation by generating a large coefficient for R2.

The action given in Eq. (5.1) needs to be renormalized. We will work in dimen-

sional regularization to avoid having to discuss the dependence of observables on the

cutoff (this problem is due to the non-renormalizability of quantum gravity). We

shall neglect the cosmological constant which is not important for inflation purposes.

In that case, Newton’s constant does not receive any correction to leading order.

On the other hand, the coefficient c1 of R2 gets renormalized and one can define a

renormalization group equation for this coupling constant. Ns scalar fields with a

non-minimal coupling to the Ricci scalar ξ will lead to the following renormalization

group equation [Codello and Jain, 2016,Donoghue and El-Menoufi, 2014,Birrell and

Davies, 1984]

µ∂µc1(µ) =
(1− 12ξ)2

1152π2
Ns (5.9)

to leading order (i.e. neglecting the graviton contribution which is suppressed by

1/ξ), note that fermions and vector fields do not contribute to the renormalization

of c1 in the Weyl basis. The renormalization group equation can be easily inte-

grated, one finds [Codello and Jain, 2016, Donoghue and El-Menoufi, 2014, Birrell

and Davies, 1984]:

c1(µ2) = c1(µ1) +
(1− 12ξ)2Ns

1152π2
log

µ2

µ1

. (5.10)

The bounds on c1 in today’s universe are very weak as mentioned before. Even if

c1(today) is of order unity, it would have been large in the early universe if the Higgs

non-minimal coupling ξ is large. Indeed, we assume that inflation took place at some

high energy scale e.g. µ ∼ 1015 GeV, the log term is a factor of order 60 if we take

the scale µ1 of the order of the cosmological constant. A Higgs non-minimal coupling

to the Ricci scalar of ξ = 1.8×104 would lead to a coefficient c1 = 0.97×109 for R2.

Assuming that the scalar extra degree contained in R2 took large field values in the

early universe, a large non-minimal coupling of the Higgs boson to the Ricci scalar
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can trigger Starobinsky inflation even if the standard model vacuum is metastable

as the Higgs boson itself does not roll down its potential during inflation. Inflation

is due entirely to the R2 but is triggered by the Higgs large non-minimal coupling.

Let us emphasize two important points. The first one is that c1 ∼ 0.97× 109 is

fixed by the CMB constraint [Netto et al., 2016]. This parameter only takes such a

large value at inflationary energy scales due to its renormalization group evolution.

The second one is that we are neglecting the running of the Higgs boson non-

minimal coupling to the Ricci scalar. However, this is a very good approximation.

The leading contributions of the standard model to the beta-function of the non-

minimal coupling are known [Buchbinder et al., 1992] :

βξ =
6ξ + 1

(4π)2

[
2λ+ y2

t −
3

2
g2 − 1

4
g′2
]

(5.11)

where λ is the self-interaction coupling of the Higgs boson, yt is the top quark Yukawa

coupling, g the SU(2) gauge coupling and g′ the U(1) gauge coupling. Quantum

gravitational corrections will be suppressed by powers of the Planck mass and can

thus be safely ignored as long as we are at energies below the Planck mass.

One might worry that if the large non-minimal coupling of the Higgs boson

triggers a large coefficient for the operator R2, it might also generate new terms

in the effective action which could destabilize the potential. The leading order

effective action to the second order in the curvature expansion induced by scalar

fields non-minimally coupled to gravity is known [Codello and Jain, 2016,Donoghue

and El-Menoufi, 2014]:

SEFT =
1

16πG

∫
d4x
√
−g
(
R + αR2 + βR log

−�
µ2

R + γC2 + · · ·
)
. (5.12)

Note that here we are neglecting the cosmological constant, α = c1× 16πG and γ =

c2×16πG are renormalized coupling constants and we shall assume that c2 is small at

the scale of inflation, it is not sensitive to the Higgs boson’s non-minimal coupling,

while we have fixed the Higgs non-minimal coupling such that c1 = 0.97 × 109.

The coefficient β is a prediction of the effective action and is given by Ns(1 −

12ξ)2/(2304π2) × 16πG [Donoghue and El-Menoufi, 2014] where Ns is the number

of scalar field degrees of freedom in the model, in our case 4. The coefficient Ns(1−

12ξ)2/(2304π2) is indeed large and of the order of 7.8 × 106 and we have to check

that the log-term does not lead to sizable contributions to the effective potential
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of the Starobinsky’s field. Before verifying this explicitly, let us mention that the

large non-minimal coupling between the Higgs boson and the Ricci scalar which is

necessary to induce Starobinsky inflation does not lead to perturbative unitarity

problems [Calmet and Casadio, 2014] (see Appendix A).

Note that the coefficients of E and of C2 do not depend on the non-minimal

coupling of the Higgs boson to the Ricci scalar. Furthermore in 4 dimensions, E

does not contribute to the equations of motion. The coefficient of the term C2 is

assumed before renormalization to be of the same order as that of R2, i.e. of order

1. However, after renormalization, the coefficient of R2 is tuned to be very large

and of the order of 109 while the coefficient of C2 remains small compared to the

renormalized coefficient of R2. C2 is thus negligible.

We shall treat the effective action (5.12) as a F (R) gravity with F (R) = R +

αR2 + βR log −�
µ2
R. There is a well established procedure to map such models from

the Jordan frame to the Einstein frame, see e.g. [Sebastiani and Myrzakulov, 2015].

The potential for the inflaton in the Einstein frame is given by

V (φ) =
1

2κ2

(
e
√

2
3
κφR(φ)− e2

√
2
3
κφF (R(φ))

)
(5.13)

where κ2 = 8πG and R(φ) is a solution to the equation

φ = −
√

3

2

1

κ
log

dF (R)

dR
. (5.14)

We can find a formal solution to this equation

R(φ) =
1

2α

 1

1 + β
2α

log
(
−�
µ2

)
(e−√ 2

3
κφ − 1

)
. (5.15)

This expression for R(φ) can be understood as a series in β
2α

which is a small pa-

rameter:

R(φ) =
1

2α

(
1−

∞∑
n=1

(−1)n+1

(
β

2α
log

(
−�
µ2

))n)(
e−
√

2
3
κφ − 1

)
. (5.16)

where the log-term can be expressed using

log

(
−�
µ2

)
=

∫ ∞
0

ds

(
1

µ2 + s
− 1

−� + s

)
. (5.17)

The zeroth order term in β
2α
∼ 4 × 10−3 corresponds to the usual Starobinsky

solution:

R(φ)(0) = R(φ)Starobinsky =
1

2α

(
e−
√

2
3
κφ − 1

)
. (5.18)
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The series expansion will generate higher order terms corresponding to operators of

the type exp(−
√

2
3
κφ)(2/3κ2∂µφ∂

µφ −
√

2/3κ�φ) and higher derivatives thereof.

These new terms are however suppressed by powers of β
2α

and can be safely ignored.

It is easy to check that the log-term appearing in the F (R) term of the potential

(5.13) is also suppressed by β
2α

compared to the usual Starobinsky’s potential.

We conclude that the large quantum corrections induced by the large Higgs bo-

son non-minimal coupling do not affect the flatness of Starobinsky’s potential. Let

us add a few remarks. The model discussed above is not a new model. Physics

(including reheating or preheating and all of particle physics) is identical to that

predicted in Starobinsky’s model. We merely identify a new connection between

the Higgs boson and inflation. As in the case of the standard Starobinsky model, a

coupling φ2h2 will be generated. It is however suppressed by factors of m2
Higgs/M

2
P

which is a small number, particle physics will thus not be affected and the Higgs

boson behaves as the standard model Higgs boson. Furthermore, the Higgs field

does not take large values in the early universe, we can thus safely ignore the term

H†HR when studying the inflationary potential. Note that there are subtleties

when considering the equivalence of quantum corrections in different parameteriza-

tions/representations of the theory (i.e. when going from the Jordan frame to the

Einstein frame). Here we are avoiding this problem: we renormalized the theory in

the Jordan frame where the model is defined and then map the effective action to

the Einstein frame. When proceeding this way, there are no ambiguities or risk to

mix up the orders in perturbation theory and the expansion in the conformal factor

(see e.g. [Calmet and Yang, 2013, Kamenshchik and Steinwachs, 2015, Vilkovisky,

1984]).

In this paper, we have identified a new connection between the Higgs boson and

inflation. In the model envisaged here, the Higgs boson is not the inflaton but it

generates inflation by creating a large Wilson coefficient for the R2 operator and

it is thus at the origin of Starobinsky’s inflation. This mechanism is interesting as

it does not require physics beyond the standard model. The Higgs boson does not

need to take large field values in the early universe and we could thus be living in a

metastable potential.
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In the absence of new physics around 1010 GeV, the electroweak vacuum is at best

metastable. This represents a major challenge for high scale inflationary models as,

during the early rapid expansion of the universe, it seems difficult to understand

how the Higgs vacuum would not decay to the true lower vacuum of the theory

with catastrophic consequences if inflation took place at a scale above 1010 GeV. In

this paper, we show that the non-minimal coupling of the Higgs boson to curvature

could solve this problem by generating a direct coupling of the Higgs boson to

the inflationary potential thereby stabilizing the electroweak vacuum. For specific

values of the Higgs field initial condition and of its non-minimal coupling, inflation

can drive the Higgs field to the electroweak vacuum quickly during inflation.
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The non-minimal coupling ξφ2R of scalars (φ) to curvature R has attracted

much attention in the recent years. Indeed, in four space-time dimensions, ξ is a

dimensionless coupling constant and as such is likely to be a fundamental constant of

nature. With the discovery of the Higgs boson, the only known fundamental scalar

field so far observed, it became clear that this parameter is relevant and should be

considered when coupling the standard model of particle physics to general relativity.

The value of the non-minimal coupling of the Higgs boson to curvature is a

free parameter of the standard model of particle physics. There has been no direct

measurement so far of this fundamental constant of nature. The discovery of the

Higgs boson at the Large Hadron Collider at CERN and the fact that the Higgs boson

behaves as expected in the standard model implies that the non-minimal coupling

is smaller than 2.6 × 1015 [Atkins and Calmet, 2013]. This bound comes from the

fact that for a large non-minimal coupling the Higgs boson would decouple from the

standard model particles. We have little theoretical prejudice on the magnitude of

this constant. Conformal invariance would require ξ = 1/6, but this symmetry is

certainly not an exact symmetry of nature.

Assuming that the standard model is valid up to the Planck scale or some 1018

GeV, the early universe cosmology of the Higgs boson represents an interesting

challenge. Given the mass of the Higgs boson which has been measured at 125

GeV and the current measurement of the top quark mass, the electroweak vacuum

is at best metastable [Degrassi et al., 2012]. The implication of this metastability

of the electroweak vacuum for the standard model coupled to an inflation sector

has recently been discussed [Lebedev and Westphal, 2013]. Indeed, one finds that

the Higgs quartic coupling which governs the shape of the Higgs potential for large

field value turns negative at an energy scale Λ ∼ 1010 − 1014 GeV. The electroweak

vacuum with the minimum at 246 GeV is not the ground state of the standard

model, but rather there is a lower minimum to the left and our vacuum is only

metastable. This is a problem in an inflationary universe.

In an expanding universe with Hubble scale H, the evolution of the Higgs boson

h is given by

ḧ+ 3Hḣ+
∂V (h)

∂h
= 0 (6.1)

where V (h) is the potential of the scalar field. Even if one imposes as an initial
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condition at the start of our universe that the Higgs field starts at the origin, it

will most likely be excited to higher field values during inflation. Indeed, because

the mass of the Higgs boson is very small compared to the scale of inflation, it is

essentially massless. Quantum fluctuations of the Higgs field will drive it away from

the minimum of the potential. Its quantum fluctuations are of order the Hubble scale

H. Thus, for H > Λ, it is likely that the Higgs will overshoot the barrier between

the false vacuum in which our universe lives and the lower state true vacuum of the

theory.

In [Lebedev and Westphal, 2013,Lebedev, 2012], it is shown that a direct coupling

of the Higgs boson to the inflaton field can significantly affect this picture if this

coupling makes the Higgs potential convex. This interaction between the inflaton

and the Higgs boson drives the Higgs field to small values during inflation. This is

closely related to an earlier claim [Espinosa et al., 2008] that the curvature coupling

of the Higgs boson resembles an additional mass term −ξR in the Higgs potential

and could stabilise the Higgs boson. We shall argue below this interpretation of the

curvature term is not entirely correct, and in fact, the two mechanisms are closely

related when carried out correctly. Assuming that there is no new physics between

the weak scale and the scale of inflation, we shall derive a new prediction for the

value of the non-minimal coupling of the Higgs boson to the Ricci scalar.

Before the discovery of the Higgs boson, cosmologists had already been investi-

gating the non-minimal coupling of scalars to curvature. In inflationary cosmology

one often deals with actions of the type

Sscalar =

∫
d4x
√
−g

(
1

2
∂µφ∂

µφ− 1

2
m2φ2 +

1

2
ξφ2R

)
, (6.2)

where m is the mass of the scalar field φ. This coupling has been extensively

studied, see e.g. [Chernikov and Tagirov, 1968,Callan et al., 1970,Frommert et al.,

1999, Cervantes-Cota and Dehnen, 1995, Bezrukov and Shaposhnikov, 2008]. With

the discovery of the Higgs boson, it became clear that this coupling was not only an

exotic term that could be implemented in curved space-time but that this coupling

is phenomenologically relevant.

Before deriving our prediction for the value of the non-minimal coupling of the

Higgs boson to curvature, we need to address a common misconception which can be

very important when discussing Higgs physics within the context of cosmology and
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very early universe physics. It is often argued that the non-minimal coupling which

appears in Eq.(6.2) of a scalar field to curvature is identical to a contribution to the

mass of the scalar field that is curvature dependent. We will prove that this is not

strictly correct. We will then show that the non-minimal coupling of the Higgs boson

to curvature does actually help to stabilize the Higgs potential, and furthermore, it

can even drive the Higgs field towards the false vacuum from a Planck-scale initial

value.

We shall first address the issue of the Higgs mass. If one naively varies the action

for a scalar field φ containing the non-minimal coupling (6.2), one obtains the field

equation

(� +m2 − ξR)φ = 0, (6.3)

and it is often argued that this term ξR is a curvature dependent mass term for

the scalar field φ. In an FLRW background, the curvature drops from R = 12H2

during inflation, with constant expansion rate H, to R ≈ 0 in a radiation dominated

era after inflation, which could lead to an overproduction of the Higgs boson after

inflation [Herranen et al., 2015]. This argument is however incomplete. The prob-

lem is that the non-minimal coupling induces a mixing between the kinetic term

of the scalar field and of the metric field. We will illustrate this point with the

standard model of particle physics since this is the only model so far that contains

a fundamental scalar field which has actually been discovered experimentally, how-

ever the same line of reasoning applies to any scalar field non-minimally coupled to

curvature.

Starting with the standard model Lagrangian LSM , we have

S =

∫
d4x
√
−g
[(

1

2
M2 + ξH†H

)
R− (DµH)†(DµH)− LSM

]
(6.4)

where H is the SU(2) scalar doublet, we shall see that this is not actually the Higgs

boson of the standard model. After electroweak symmetry breaking, the scalar

boson gains a non-zero vacuum expectation value, v = 246 GeV, M and ξ are then

fixed by the relation

(M2 + ξv2) = M2
P . (6.5)

The easiest way to see that H is not actually the Higgs boson is by doing a

transformation to the Einstein frame [van der Bij, 1994,Zee, 1979,Minkowski, 1977]
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g̃µν = Ω2gµν , where Ω2 = (M2 + 2ξH†H)/M2
P . The action in the Einstein frame

then reads

S =

∫
d4x

√
−g̃
[

1

2
M2

P R̃ −
3ξ2

M2
PΩ4

∂µ(H†H)∂µ(H†H)

− 1

Ω2
(DµH)†(DµH)− LSM

Ω4

]
. (6.6)

Expanding around the Higgs boson’s vacuum expectation value and specializing

to unitary gauge, H = 1√
2
(0, φ + v)>, we see that in order to have a canonically

normalized kinetic term for the physical Higgs boson we need to transform to a new

field χ where

dχ

dφ
=

√
1

Ω2
+

6ξ2v2

M2
PΩ4

. (6.7)

Expanding 1/Ω, we see at leading order the field redefinition simply has the effect

of a wave function renormalization of φ = χ/
√

1 + β where β = 6ξ2v2/M2
P . Thus

the canonically normalized scalar field, i.e., the true Higgs boson, does not have any

special coupling to gravity and it couples like any other field to gravity in accordance

with the equivalence principle.

This effect can also be seen in the Jordan frame action (6.4) as arising from

a mixing between the kinetic terms of the Higgs and gravity sectors. After fully

expanding the Higgs boson around its vacuum expectation value and also the metric

around a fixed background, gµν = γ̄µν +hµν , we find a term proportional to ξvφ�hµµ:

L(2) = −M
2 + ξv2

8
(hµν�hµν + 2∂νh

µν∂ρh
µρ − 2∂νh

µν∂µh
ρ
ρ − hµµ�hνν (6.8)

+
1

2
(∂µφ)2 + ξv(�hµµ − ∂µ∂νhµν)φ

After correctly diagonalizing the kinetic terms and canonically normalizing the Higgs

field and graviton using

φ = χ/
√

1 + β (6.9)

hµν =
1

MP

h̃µν −
2ξv

M2
P

√
1 + β

γ̄µνχ. (6.10)

We again find the physical Higgs boson gets renormalized by a factor 1/
√

1 + β.

These results demonstrate that the non-minimal coupling does not introduce

stronger gravitational interactions for the Higgs boson once its field has been cor-

rectly canonically normalized. We stress that the underlying reason is that there
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is no violation of the equivalence principle. Our findings are in sharp contrast to

the claims made in [Herranen et al., 2014]. The only valid bound to date on the

non-minimal coupling of the Higgs boson to curvature is that obtained in [Atkins

and Calmet, 2013], namely that its non-minimal coupling is smaller than 2.6× 1015.

While the fact that we may be living in a metastable vacuum is problematic for

the Higgs boson in an inflationary context, the non-minimal coupling of the Higgs

boson to curvature does not create a new problem. On the contrary, we shall now

show that this non-minimal coupling could solve the stability issue.

Let us now study the coupling of the Higgs boson to an inflationary potential

VI(σ) that is induced by the mapping from the Jordan frame to the Einstein frame.

Indeed, even if no direct coupling between the Higgs boson is assumed in the Jordan

frame, it will be induced in the Einstein frame:

VI(σ)→ VI(σΩ)

Ω4
=

VI(σΩ)(
1 + 2ξvφ(χ)+ξφ(χ)2

M2
P

)2 , (6.11)

but bear in mind that the inflaton field σ does not have a canonically normalized

kinetic term.

Let us first consider Higgs field values v � φ�MP |ξ|−1/2. In that case, we see

immediately that
VI(σΩ)

Ω4
≈ VI(σ)

(
1− 2ξφ2/M2

p

)
. (6.12)

A coupling between the inflaton and the Higgs field is induced by the transformation

to the Einstein frame. Note that there is a priori no reason to exclude a coupling of

the type VIH†H in the Jordan frame where the theory is defined. There could be

cancelations between this coupling and that generated by the map to the Einstein

frame. The magnitude of the coupling between the Higgs boson and the inflaton

appearing in the mapped inflationary potential thus cannot be regarded as a pre-

diction of the model. Let us ignore a potential direct inflaton-Higgs coupling for

the time being and continue our investigation of the induced coupling. We will now

show that a non-minimal coupling of the Higgs boson to curvature can solve some of

the problems associated with Higgs cosmology within the standard model of particle

physics.

In the early universe we need to consider large Higgs field values (φ � v). As

explained previously, even if one is willing to fine-tune the initial condition for the
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value of the Higgs field, it will experience quantum fluctuations of the order of the

Hubble scale H. Unless the Hubble scale is much smaller than the energy scale at

which the electroweak vacuum becomes unstable, the Higgs field is likely to swing

into the lower true vacuum of the theory. A Higgs non-minimal coupling to the

Ricci scalar could actually solve this problem since, as we will show, it will generate

a direct coupling between the Higgs boson and the inflaton if the Jordan frame

action contains an inflationary potential VI .

It has been shown that a direct coupling between the Higgs boson and the inflaton

can drive the Higgs field [Lebedev and Westphal, 2013] to the false electroweak

vacuum quickly during inflation even if the Higgs field initial value is chosen to be

large. There are basically three scenarios for the onset of inflation: the thermal initial

state [Guth, 1981], ab initio creation [Vilenkin, 1983,Hawking and Moss, 1982] and

the chaotic initial state [Linde, 1983,Linde, 1986]. The thermal initial state starting

from a temperature just below the Planck scale would introduce thermal corrections

to the Higgs potential preventing vacuum decay until the temperature fell to the

inflationary de Sitter temperature, at which point it becomes a question of vacuum

fluctuation as to whether the Higgs survives in the false vacuum. However, the

consistency of the thermal equilibrium of the standard model fields when the Higgs

takes a large value has not yet been verified. The ab initio creation is an attractive

possibility, where the Higgs would nucleate at the top of the potential barrier. In

this case also, stability depends on the size of vacuum fluctuations during inflation.

The final possibility, the chaotic initial state, would have the Higgs field start out

at arbitrarily large values. The most likely initial values would be larger than the

instability scale Λ, preventing the Higgs field from entering the false vacuum. An

anthropic argument could be applied to rule out these initial conditions, but we

shall see that the non-minimal curvature coupling of the Higgs boson can force the

Higgs into the false vacuum without anthropic considerations.

As we have seen, the Einstein frame potential is given by

VE =
VI(σ) + Vφ(φ)

(1 + ξκ2φ2)2
(6.13)

where κ2 = 8πG. Note that VE is the total potential in the Einstein frame and

it accounts for both the inflaton potential in (6.11) and the Higgs potential. The
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inflationary expansion rate HI is the expansion rate of the false vacuum,

H2
I =

VI(σ)

3M2
p

. (6.14)

The most extreme chaotic initial condition, and the one relevant to eternal chaotic

inflation, is one where VE is close to the Planck scale. For an unstable Higgs potential

Vφ, VE ∼M4
p is only possible when ξ < 0, as shown in Fig. 6.1.

Figure 6.1: The Einstein frame Higgs potential VE(φ) for different values of the

false-vacuum inflation rate HI for ξ = −2. The potential vanishes at φ = φm, and

there is an asymptote at φ = φc. Consistency of the model (no ghosts) requires

φ < φc. An initial condition VE ∼M4
p can be achieved with the initial φ close to φc.

Let us denote by φm the value of the field at which the potential vanishes,

VI(σ) + Vφ(φm) = 0. (6.15)

Note that φm depends on HI . The asymptote in the potential is at φc,

1 + ξφ2
c/M

2
p = 0. (6.16)

Provided that φc < φm, then there is an initial value of φ close to φm at which

VE ∼ M4
p (note that it has been shown in [Calmet and Casadio, 2014] that even

with a large non-minimal coupling of the Higgs boson to curvature, the cutoff of

the effective field theory can be as large as the Planck scale), since φ = φc is an

asymptote. If φc > φm, then there is no such value.
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Starting from the initial value, the Higgs field evolves to small field values on a

timescale comparable to the Hubble expansion rate. Unfortunately, we cannot sim-

ply expand the conformal factor in the denominator of the Einstein frame potential

for all values of ξ. However, it is straightforward to see this effect from kinetic terms

of the Higgs boson and of the inflaton. The kinetic terms for the Higgs and inflaton

are multiplied by gφ and gσ respectively, where

gφ =
1 + ξκ2φ2 + 6ξ2κ2φ2

(1 + ξκ2φ2)2
, gσ =

1

(1 + ξκ2φ2)2
(6.17)

Note that is it possible to use a canonically normalised Higgs field χ as we had done

previously, but not both the Higgs and inflaton fields at the same time because the

field space metric is curved.

The early evolution of the Higgs field is described by the equation

χ̈+ 3Hχ̇+
dVE
dχ

= 0. (6.18)

For the inflaton, one has

(gσσ̇)̇ + 3Hgσσ̇ +
dVE
dσ

= 0, (6.19)

while the expansion rate is given by

3H2 = κ2

(
1

2
gσσ̇

2 +
1

2
χ̇2 + VE

)
. (6.20)

The inflaton equation can also be written as

σ̈ +

(
1

gσ

dgσ
dχ

)
χ̇σ̇ + 3Hσ̇ +

1

gσ

dVE
dσ

= 0. (6.21)

Note that the second term in this equation is not considered in [Lebedev and West-

phal, 2013]. For χ > Mp, we have

VE ≈ (VI + Vφ)e
√

8/3κ(χ−χ0), gσ ≈ e
√

8/3κ(χ−χ0). (6.22)

There is thus rapid evolution of χ and slow evolution of σ (assuming slow-roll con-

ditions on VI). Indeed, the inflaton evolves on a longer timescale than the Higgs

field, leaving a gradual reduction in HI , and also φm. Eventually, the potential

evolves to φc > φm, but at all stages the Higgs field lies on the false vacuum side

of the potential barrier. As long as the vacuum fluctuations do not cause quantum

tunnelling, the Higgs field will enter the false vacuum.
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The condition that φc < φm implies limits on the curvature coupling ξ. In order

to determine these limits we need to calculate φm from (6.15), and this requires an

expression for the Higgs potential. For a standard model Higgs field, the large field

Higgs potential in flat space is given by

Vφ =
1

4
λ(φ)φ4 (6.23)

In curved space, the Higgs develops a mass of order H multiplied by Higgs couplings,

but we can think of this as a radiative correction to ξ and regard ξ as the effective

curvature coupling at the inflationary scale. Other curvature corrections to the

Higgs potential may well be important, but for now these will be neglected.

The effective Higgs coupling λ(φ) vanishes at some large value of φ which we

identify as the instability scale Λ. The value of Λ is very strongly dependent on the

top quark mass, and currently all we can say is that it lies in the range 109 − 1018

GeV. Furthermore, adding additional particles to the standard model changes the

instability scale (or removes the instability altogether). It is therefore convenient to

give results treating Λ as a free parameter. In the range of Higgs field values where

the potential barrier lies, we use an approximation to the running coupling given by

λ(φ) ≈ b

{(
ln

φ

Mp

)4

−
(

ln
Λ

Mp

)4
}
, (6.24)

with b ≈ 0.75× 10−7. This fits quite well to the renormalisation group calculations

[Degrassi et al., 2012].

The plots in Fig. (2) show numerical results for the values of −ξ which are

lower bounds of the range which is consistent with chaotic initial conditions. Also

shown by the dashed lines are the quantum bounds from the vacuum tunnelling

rate exp(−8π2∆VE/3H
2
I ) ∼ O(1), where ∆VE is the height of the potential barrier

[Hawking and Moss, 1982]. (The quantum bound on −ξ is lower than the one quoted

in [Herranen et al., 2014], which we believe is due to our inclusion of the 8π2/3

factor.) The results show curves for different values of the false vacuum Hubble

parameter, essentially corresponding to different initial values of the inflaton field

through (6.14). We ought to expect that this initial Hubble parameter is close to

the Planck scale. As advertised, a non-minimal coupling of the Higgs boson can

drive the Higgs boson into the false vacuum of the standard model early on during
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Figure 6.2: The lower bound on−ξ, where ξ is the curvature coupling, for consistent

chaotic initial conditions on the Higgs field which will lead the Higgs into the false

vacuum. The horizontal axis is the Higgs stability scale. The different curves from

bottom to top are for the false vacuum Hubble parameter 0.1Mp to 10−4Mp. The

dashed lines show the lower bound for quantum stability of the false vacuum.

inflation. Instead of being a source of problems, it can solve some of the issues

associated with the cosmological evolution of the Higgs boson.

It is worth mentioning as well that our results also imply that the non-minimal

coupling of the Higgs boson will not influence reheating as long as the Higgs field

value is small during inflation. Reheating could be generated by a direct coupling

of the Higgs boson to the inflaton via either couplings of the type σ2H†H or σH†H.

As usual right-handed neutrinos N could also play a role in reheating via a coupling

N̄Nσ. However, none of these couplings will be significantly influenced by the

conformal factor or the rescaling of the Higgs boson as long as one is considering

small Higgs field values.

We have seen that a non-minimal coupling of the Higgs boson to the Ricci scalar

does not generate new issues for Higgs boson physics in the early universe and that,

on the contrary, there is a range of values for ξ for which the Higgs potential is

stabilized thanks to the coupling of the Higgs boson to the inflaton generated by the

non-minimal coupling of the Higgs boson to curvature. This becomes obvious when
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mapping the Jordan frame action to the Einstein frame. Finally, it has been shown

in [Calmet and Casadio, 2014] that the non-minimal coupling ξ does not introduce

a new scale below the Planck mass which finishes establishing our point that the

standard model, if we add a non-minimal coupling to the Ricci scalar, could be valid

up the Planck scale in an inflationary universe.
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Chapter 7

Conclusions

In this thesis, we have studied classical and quantum extensions of general rela-

tivity and their applications to gravitational waves, inflation and dark matter. We

focused on effective field theories as they arise in the low energy limit of any UV

completion, thus allowing one to investigate gravitational phenomena in a model-

independent way.

In Chapter 2, which is [Calmet and Kuntz, 2017], we have shown that modifying

the gravitational sector is not really different from modifying the matter sector.

One unavoidably includes new degrees of freedom when the Einstein-Hilbert action

is complemented with higher curvature invariants. Whether these new degrees of

freedom belong to the matter or gravitational sector is just a matter of interpretation,

thus not affecting the observables. We then used this equivalence to argue that dark

matter could equally be described by a modified gravity model. It is important

to stress that, by the time of writing, there is no generally accepted theory that

explains the anomalous rotation galaxy curves. Nonetheless, whatever the theory

for dark matter that turns out to be right, there will always exist a modified gravity

equivalent version of it.

Then in Chapter 3, composed by [Calmet et al., 2016], we studied gravitational

waves using the effective field theory approach to quantum gravity. As argued in

Chapter 2, modifications of general relativity inevitably leads to new degrees of

freedom. In quantum gravity, this is no different. We showed that new degrees

of freedom appear in the form of complex poles in the dressed propagator of the

graviton, i.e. the propagator containing one-loop quantum corrections. These new
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poles contribute to new modes of oscillation of gravitational waves and, because they

are complex, they lead to a damping in gravitational waves. The damping forces the

wave to lose energy to the environment, so it becomes crucial to take this effect into

account when inferring the energy released during the merger of black holes. From

the bound on the graviton mass found by LIGO, we could constrain the number of

fields present in a fundamental theory of gravity.

In Chapter 4, which contains [Kuntz, 2018], we extended the study of gravita-

tional waves and calculate the energy carried away by the complex modes. By em-

ploying the short-wave formalism, we were able to calculate the energy-momentum

tensor of gravitational waves in quantum gravity. The energy density then follows

directly from the energy-momentum tensor as usual. In addition to the term due to

classical general relativity, another term that depends on modifications of the dis-

persion relation shows up. A direct comparison with the expression for the energy

density with LIGO’s data permits us to find the first constraint on the amplitude

of the complex mode. We also showed how the gravitational wave equation in a flat

spacetime can be generalized in a curved spacetime by a simple “minimal coupling”

prescription.

In Chapter 5 we started the study of inflation via a new model proposed in [Cal-

met and Kuntz, 2016] which combines ideas from Higgs and Starobinsky inflation.

We showed that Starobinsky gravity can naturally show up in the formalism of effec-

tive field theory. In fact, the square of the Ricci scalar is required for renormalization

purposes. In addition, we showed that the coefficient of R2 flows to the required

value in the Starobinsky model when the coefficient of the non-minimal coupling

between the Higgs boson and gravity is large. Hence, the Higgs boson is able to

trigger Starobinsky inflation via its coupling to gravity. This avoids instability issues

caused by large values of the Higgs boson as the scalaron in the Starobinsky model

is the only field required to take large values in the early universe.

We continued the study of inflation in Chapter 6 through the non-minimal cou-

pling of the Higgs boson to gravity [Calmet et al., 2018]. We showed that, after

diagonalizing and canonically normalizing the action, the induced coupling between

the inflationary potential and the Higgs is able to rapidly bring the Higgs field back

to the false vacuum even when the scale of its fluctuation is higher than the potential
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barrier. Thus, the induced coupling between the Higgs and the inflaton’s potential

is able to stabilize the electroweak vacuum. We also considered the problem of quan-

tum tunnelling that can happen between the false and true vacuum of the theory

and we established bounds on the coefficient of the coupling between the Higgs and

the curvature so that the Higgs boson remains in the electroweak vacuum.

Although this thesis has presented an important step forward in the field of

modified gravity, many problems remain unaddressed. Particularly, there is still a

plethora of models seeking elucidation of the dark sector, of inflation and of quantum

gravity. In order to rule out some of them, more accurate data are necessary. Up-

coming data from LIGO, LISA, Planck and other collaborations should help us on

this matter. But in the meantime, while we wait for higher precision experiments,

we should concentrate our efforts in theoretical and phenomenological aspects of

the effective field theory of gravity as they are model-independent and, in principle,

should correctly describe gravity all the way up to the Planck scale. Clearly, at

the Planck scale the effective field theory breaks down and one must start worrying

about possible UV completions. This is the greatest limitation of the formalism

presented in this thesis as we cannot use it to study super-Planckian phenomena.

In addition, the effective field theory approach does not address certain conceptual

problems in quantum gravity, such as the problem of time. Nonetheless, it provides

a systematic way of calculating observables and making falsifiable predictions.

We finish this thesis by indicating potential research directions:

• Can the effective field theory of gravity solve the problem of singularities? It

is generally accepted that a quantum theory of gravity should be able to get

rid of the singularities of general relativity. While we are still far from finding

the UV completed theory for quantum gravity, quantum gravitational effects

in the infrared could shed some new light on the problem.

• Black holes are known to cast shadows in their surroundings that are formed

due to an extreme type of light bending, forcing photons to get in orbit around

them. These shadows carry important information about the spacetime and

have distinct phenomenological signatures that can be used to probe the differ-

ences among modified gravity theories and further constrain effective theories

of gravity.
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• General relativity is known to be plagued with pathologies such as traversable

wormholes and closed timelike curves. If these solutions were real, they would

allow for time travel backwards in time, which would violate causality. Can

quantum gravity in the infrared rule out these possibilities?

• A natural extension of the formalism used to calculate the one-loop effective

action of quantum gravity would be to consider the Palatini procedure, where

the metric and the connection are seen as independent variables. In classi-

cal general relativity, varying with respect to the metric and to the connection

separately still produces Einstein’s equations. However, when quantum correc-

tions are taken into account, this equivalence between the metric and Palatini

formalisms no longer holds. The latter could lead to new insights on quantum

gravity.
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Appendix A

Perturbative unitarity

It has been shown in [Calmet and Casadio, 2014] that a large non-minimal cou-

pling of the Higgs to the Ricci scalar does not lead to a new physical scale. While

perturbative unitarity appears to be naively violated at an energy scale of MP/ξ,

it can be shown by resumming an infinite series of one-loop diagrams in the large ξ

and large N limits but keeping ξGNN small that perturbative unitarity is restored

(this phenomenon has been called self-healing by Donoghue). In this limit one finds

iDαβµν
dressed = − i

2s

LαβLµν(
1− sF1(s)

2

) . (A.1)

where Lαβ = ηαβ − qαqβ/q2, s = q2 and

F1(q2) = − 1

30π
NsGN(h̄)(1 + 10ξ + 30ξ2) log

(
−q2

µ2

)
. (A.2)

The background dependent Newton’s constant is given by

GN(h̄) =
1

8π(M2 + ξh̄2)
. (A.3)

In the model described in this paper, one has h̄ = v. Note that F1(s) is negative,

there is thus no physical pole in the propagator. The dressed amplitude in the large

ξ and large N limits is given by

Adressed =
48πGN(h̄)sξ2

1 + 2
π
GN(h̄)sξ2 log(−s/µ2)

(A.4)

One easily verifies that the dressed amplitude of the partial-wave with angular mo-

mentum J = 0 fulfils

|a0|2 = Im (a0) , (A.5)
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where a0 is the amplitude of the J = 0 partial wave. In other words, unitarity is

restored within general relativity without any new physics or strong dynamics (we

are keeping ξGN small) and there is no new scale associated with the non-minimal

coupling despite naive expectations. The cut-off of the effective theory is thus the

usual Planck scale.
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