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SUMMARY  

Impulsivity refers to both a stable personality trait and a set of behaviours which undergo 

momentary changes depending on the current circumstances. Impulsivity plays a vital role in 

daily life as well as clinical practice as it is associated with drug misuse and certain 

neuropsychiatric conditions. Because of its great health and well-being importance, it is crucial 

to understand factors which modulate impulsive behaviours. The current studies investigated the 

role of emotions and physiological arousal as modulators of impulsive actions and decisions in 

healthy individuals.  

A set of experiments was conducted using a variety of methods including behavioural 

testing, physiological recordings, psychopharmacology and neuroimaging. Studies 1 and 2 

clarified the influence of emotional states on distinct dimensions of impulsive behaviours. Study 

3 investigated the neural correlates behind the impact of emotions on impulsive actions. Finally, 

studies 4 and 5 focused on the relationship between physiological arousal and behavioural and 

trait impulsivity.  

Our findings demonstrate that a degree to which one’s internal (emotional or 

physiological) state changes, is associated with behavioural impulsivity level. Importantly, 

distinct dimensions of impulsivity are differentially sensitive to those changes. Namely, 

increased state level of physiological arousal is associated with decreased motor ‘stopping’ 

impulsivity, enhanced subjective ratings and objective measurements of arousal are also related 

to decreased temporal impulsivity. Increased ratings of stress and increased physiological 

arousal, however, are associated with higher reflection impulsivity. At the neural level, 

successful response inhibition requires enhanced activation of prefrontal and parietal areas in 

impulsive individuals, particularly in negative emotional context, suggesting that behavioural 

control might be more effortful for highly impulsive individuals.  

In conclusion, changes in internal bodily state are related to behavioural impulsivity level. 

Staying more attuned to those changes and finding adaptive ways to adjust behaviour according 

to bodily needs might be vital to reducing impulsivity levels. 
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 Chapter 1  

 Abstract  

Impulsivity received considerable attention in the context of drug misuse and certain 

neuropsychiatric conditions. Because of its great health and well-being importance, it is crucial 

to understand factors which modulate impulsive behaviour. As a growing body of literature 

indicates the role of emotional and physiological states in guiding our actions and decisions, we 

argue that current affective state and physiological arousal exert a significant influence on 

behavioural impulsivity. As ‘impulsivity' is a heterogeneous concept, in this paper, we review 

key theories of the topic and summarise information about distinct impulsivity subtypes and 

their methods of assessment, pointing out to the differences between the various components of 

the construct. Moreover, we review existing literature on the relationship between emotional 

states, arousal and impulsive behaviour and suggest directions for future research.  

________________________________________________________________________ 

Keywords: Impulsivity; Emotions; Mood; Physiological Arousal; Stress; Stop Signal 

Task; Delay Discounting; Risk-Taking  
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 Introduction 

The importance of impulsivity has long been recognised, both in everyday life, as it plays 

a vital role in the decision-making process, and in many neuropsychiatric conditions. Impulsive 

behaviour is a diagnostic criterion of several neuropsychiatric conditions including personality 

disorders (borderline and antisocial personality disorders), substance use disorders, or attention 

deficit and hyperactivity disorder (ADHD; American Psychiatric Association, 2013). High 

levels of trait impulsivity are also associated with risk-taking and increased alcohol use in social 

drinkers (Granö, Virtanen, Vahtera, Elovainio, & Kivimäki, 2004; Grau & Ortet, 1999), and 

predict increased food intake in normal-weight healthy women (Guerrieri, Nederkoorn, 

Stankiewicz, et al., 2007; Guerrieri, Nederkoorn, & Jansen, 2007).  

Therefore, impulsivity has a great clinical as well as general-health importance. A better 

understanding of modulators of impulsive behaviour could help identify risky states and support 

impulsive individuals in a clinical and general population. One of the factors which may exert 

an impact on our impulsive state is emotions. A growing body of evidence shows that emotions 

influence our cognition and behaviour, including memory and learning, attention, or perception 

(Asutay & Västfjäll, 2012; Dolan, 2002; Sharot, Delgado, & Phelps, 2004; Talarico & Rubin, 

2007; Zadra & Clore, 2011). It seems that impulsivity is not independent of emotional 

influences either. The tendency to act impulsively while experiencing distress (negative 

urgency, Whiteside & Lynam 2001) is a well-established personality trait. Cyders & Smith 

(2007; 2009) also proposed another facet of mood-based rash action, which is driven by strong 

positive emotions (positive urgency). Moreover, research suggests that engaging in impulsive 

actions, which may result in negative consequences in the future, such as emotional eating, 

heavy drinking or smoking, while experiencing negative affect might serve as a means of 

alleviating one’s mood state (Cooper et al., 1995; Bekker et al., 2004; Smyth et al., 2007; 

Abrantes et al., 2008; Magid et al., 2009). Indeed, impulsive behaviour, such as episodes of 

binge eating and purging in bulimia nervosa, are thought of as maladaptive attempts to alleviate 

one’s mood (Smyth et al., 2007). 

This review aims to indicate the role of emotional and physiological states as important 

modulators of impulsive actions and decisions. When a growing body of literature shows the 

detrimental effects of inability to regulate one’s emotions (Cisler, Olatunji, Feldner, & Forsyth, 

2010; Wilcox, Pommy, & Adinoff, 2016) and a high prevalence of mood disorders in society 

(Kessler, Chiu, Demler, & Walters, 2005), it seems particularly important to understand how 

affective states modulate behaviour and decision-making. While there are other relevant factors 

such as gender, age or genetic polymorphisms, these are beyond the scope of this review. A 

better understanding of the relationship between emotion, physiological states, and impulsivity, 

as well as the neural circuitry underlying these relationships, could facilitate treatment of 
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impulse-related disorders and promote methods to improve decision-making of those suffering 

from mood disorders. However, in this review, we focus on healthy volunteers as most of the 

work looking at the role of emotional and physiological states on impulsivity has been 

conducted in healthy individuals. Since the term ‘impulsivity’ incorporates a wide range of 

behaviours, it is important to describe the complex construct of impulsivity before discussing 

the role of emotional and physiological states in shaping impulsive action. Therefore, the first 

sections will deal with research trying to define and systematise the construct of impulsivity. 

 Defining Impulsivity 

Although impulsivity is considered a symptom of many psychiatric and neurological 

conditions (American Psychiatric Association, 2013), it is also an element of a personality of 

healthy individuals (Evenden, 1999a, 1999b). There are, however, many definitions of this 

construct (Evenden, 1999a, 1999b; Moeller, Barratt, Dougherty, Schmitz, & Swann, 2001). 

According to Daruna and Barnes (1993), impulsivity is reflected in a variety of 

maladaptive behaviours, unplanned or prematurely expressed, inappropriate to situations, risky 

or resulting in undesirable consequences. Other authors define impulsivity as an inability to 

delay gratification and as the opposite of self-control (J. Monterosso & Ainslie, 1999). 

American Psychiatric Association (2013) describe impulsivity as a failure to control impulses or 

temptations to perform actions which are detrimental to the individual or other people. 

According to Moeller (Moeller et al., 2001), impulsivity should be defined as a 

predisposition for rapid, unplanned actions in response to external and internal stimuli without 

considering potential negative consequences of these actions. Importantly, impulsivity, in this 

definition, is associated with automaticity: quick decision-making, lack of planning and 

foresight, which prevents an appropriate assessment of the consequences. Likewise, Eysenck (S. 

Eysenck & Eysenck, 1978) discriminates between impulsiveness and venturesomeness, the latter 

being related to conscious risk-taking.   

The above definitions consider impulsivity as a maladaptive and pathological feature; yet, 

it is widely accepted that impulsivity is a part of normal behaviour, and every person can be 

characterised by their impulsive tendencies. Therefore, impulsivity may be perceived as a 

personality trait. For instance, in his original theory, Hans Eysenck proposed that personality 

consists of two dimensions of higher-order traits, i.e. extraversion vs introversion and emotional 

stability vs neuroticism. In this primary construct, impulsivity was considered to be a part of 

extraversion; however, in the revised model, impulsivity is regarded as a part of the third 

dimension — psychoticism vs impulse control (H. J. Eysenck & Eysenck, 1985). In Eysenck’s 

notion, impulsivity is related to risk-taking, lack of planning, and making up one's mind quickly. 

A similar concept was proposed by Martin Zuckerman under the name “sensation seeking”. 
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According to Zuckerman, high sensation seekers are people who show a constant need for 

stimulation and novel experiences, despite the risks (Zuckerman, 1984).  

Gray (1972;1981), on the other hand, argued that impulsivity and anxiety are the major 

factors of personality with which other features should be described. In this model, extraversion 

is characterised by low anxiety and high impulsivity levels, while neuroticism is associated with 

high anxiety and high impulsivity levels. Grey proposed an existence of two behavioural 

systems which underlie these personality traits. The behavioural activation system is related to 

impulsivity and is associated with sensitivity to reward and approach behaviours, while the 

behavioural inhibition system underlies anxiety and is activated in response to punishment 

signals and novelty. Noteworthy, the Barratt Impulsiveness Scale (BIS; Barratt, 1959; Patton, 

Stanford, & Barratt, 1995), a questionnaire commonly used both in clinical setting and research 

to assess impulsivity levels, was primarily developed to separate the personality trait of 

impulsiveness from the personality trait of anxiety.  

 Subtypes of Impulsivity 

Difficulties in unequivocally defining impulsivity and placing it within personality 

models prove that impulsivity is a multidimensional construct, where components are 

independent of one another and reflect different aspects of behaviour (Congdon & Canli, 2008; 

Evenden, 1999a; Moeller et al., 2001). Various approaches to the complex construct of 

impulsivity led to distinguishing different subtypes of this feature.  

For instance, two commonly used impulsivity scales, identify various components of 

impulsivity construct. In BIS (version BIS-11) three dimensions of impulsivity are defined: 

inattention (a difficulty in focusing on the task at hand), motor (acting on the spur of the 

moment or inability to withhold the response), and non-planning (which refers to the lack of 

consideration or not planning tasks carefully) (Patton et al., 1995). Whiteside and Lynam 

(2001), on the other hand, performed a comprehensive factor analysis of various impulsivity 

scales to separate distinct subtypes of impulsivity which were previously grouped together. 

Their analysis led to distinguishing four personality facets related to impulsive behaviour: 

urgency (a tendency to act under the influence of strong impulses, often associated with 

negative affect), lack of premeditation (a tendency to take actions without careful planning or 

thinking of consequences), lack of perseverance (an inability to fulfil the task despite boredom 

or tiredness), and sensation seeking (a tendency to seek novelty and excitement). Measures of 

each personality dimension together form the UPPS (Urgency, Premeditation, Perseverance, 

Sensation seeking) Impulsive Behaviour scale. Subsequently, Cyders and Smith (2007, 2008), 

proposed an additional component called Positive Urgency, which refers to a tendency to act 

impulsively while experiencing strong positive emotions. 
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Opposite to the generally held view, Dickman (1990) argued that impulsivity is not solely 

a maladaptive feature. He pointed out that making snap decisions about matters of little 

importance (‘what am I having for dinner tonight?’) is beneficial. Moreover, spontaneous 

behaviours enable us to seize opportunities, gain new experiences, which enrich our lives. 

Additionally, impulsive individuals outperform less impulsive subjects in tasks in which a little 

time is available to reach a decision (Dickman & Meyer, 1988). Therefore, Dickman 

distinguished ‘functional impulsivity’, which reflects the advantageous aspects of spontaneous 

behaviour, from ‘dysfunctional impulsivity’, which is a maladaptive feature associated with 

negative consequences. Similarly, others argued that when it comes to everyday situations, fast 

and frugal decisions may be beneficial and better than in-depth considerations as they lead to 

optimising strategies in the face of limited time and resources (Gigerenzer, Todd, & ABC 

Research Group, 1999). One showed that the consequences of impulsive traits depend on the 

nature of the task: When delayed rewards are favoured over immediate rewards, low-impulsive 

individuals outperform highly impulsive ones; however, when immediate gratification is 

preferred, highly impulsive individuals perform better (Otto, Markman, & Love, 2012). Taken 

to extreme, the urge to override immediate gratification in favour of the long-term goals may be 

maladaptive and even life-threatening, which is best exemplified with patients suffering from 

anorexia nervosa, who suppress their urge to eat and show decreased preference towards 

immediate rewards compared to healthy controls, a feature reversed with treatment (Decker, 

Figner, & Steinglass, 2015).  

In behavioural approaches, the impulsivity construct is often divided into at least two 

major dimensions. The first reflects disinhibition, and is often referred to as motor impulsivity 

or impulsive action, while the second dimension reflects impulsive decision-making (also 

referred to as impulsive choice or cognitive impulsivity; Bechara, Damasio, & Damasio, 2000; 

Broos et al., 2012; Brunner & Hen, 1997; Reynolds, Ortengren, Richards, & de Wit, 2006). 

Impulsive action can be further divided into action cancellation and action restraint, while 

impulsive choice can be separated into risk or uncertainty-based choice and delay-based choice 

(Winstanley, Olausson, Taylor, & Jentsch, 2010). de Wit (2009) proposed a third dimension of 

impulsivity i.e. lapses of attention, arguing that sustained attention is necessary to suppress 

drug-seeking behaviours in addicts. 

Evenden (1999a), on the other hand, claimed that impulsivity can affect an action at 

different stages of the process: during the preparation stage, the action execution stage, and the 

outcome phase. Therefore, he proposed a model of impulsivity which reflects the role of 

impulsivity at each of those stages, i.e. (1) impulsive preparation, which involves responding 

before all necessary information is obtained, (2) impulsive execution, which is related to a 

failure in following instructions and difficulty awaiting turn, and (3) impulsivity at the outcome 

stage, which results in an inability to delay gratification. Evenden’s model is in agreement with 
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a recent factor analysis of behavioural impulsivity measurements (Caswell, Bond, Duka, & 

Morgan, 2015), which distinguished three independent subtypes. ‘Reflection’-impulsivity refers 

to the preparatory stage of an action and is defined as a tendency to make decisions in situations 

of uncertainty (Kagan, 1965a). ‘Motor’-impulsivity refers to the action execution stage and 

reflects an inability to inhibit a motor response when it is no longer suitable. Finally, ‘temporal’-

impulsivity, which is related to the outcome stage of the behaviour, reflects a difficulty in 

delaying gratification (Ainslie, 1975).  

In conclusion, impulsivity proves to be a concept difficult to define and no commonly 

agreed way of separating it into components exists. Selected views on impulsivity are 

summarised in Figures 1.1 and 1.2. It is worth noting, however, that many of the views share 

some similarities. The concept of motor impulsivity (or impulsive action) is well-established 

both in personality-based and behavioural approaches. Nevertheless, as discussed in more detail 

in the following section, motor impulsivity subtype is not uniform and can be further separated 

into components. In contrast, a tendency to take risk is usually included as a part of the 

definition of impulsivity, but not all behavioural models take account of this component.  

 Ways of assessing impulsivity in humans  

A variety of methods is being used to study impulsivity. There are two major approaches: 

behavioural one, which uses laboratory measurements, and self-assessment questionnaires. Low 

correlations between scores on those questionnaires and behavioural tasks suggest that they 

provide information about different aspects of impulsivity, i.e. trait and behavioural impulsivity, 

respectively (Broos et al., 2012; Clark, Robbins, Ersche, & Sahakian, 2006; Reynolds et al., 

2006; Wingrove & Bond, 1997). The abundance of methods used to assess impulsivity might be 

confusing; therefore, here we offer a summary of means of measuring impulsivity. Specifically, 

we focus on differentiating between distinct impulsivity subtypes.  

 Trait impulsivity  

Self-report questionnaires are a common method of assessing trait impulsivity in clinical 

practice and research setting. The popular questionnaires include aforementioned Barratt 

Impulsiveness Scale-11 (BIS-11; Patton et al., 1995) which consists of 30 items organised into 

three subscales (inattention, motor and non-planning) and the UPPS scale (Whiteside & Lynam, 

2001), which consists of 45 items organised into four subscales (Urgency, Premeditation, 

Perseverance, and Sensation-seeking). Zuckerman’s Sensation Seeking Scale (SSS, Zuckerman 

et al., 1978) is an older questionnaire but still used in research. It consists of four factors: thrill 

and adventure seeking (sensation seeking through engagement in exciting sports or risky 

activities involving speed and danger), disinhibition (a desire for social stimulation and  



 

 

Figure 1.1 Selected views on impulsivity as a personality trait proposed by several researchers. Similar concepts are depicted in the same colour. 



 

 

 

Figure 1.2 Selected views on behavioural impulsivity with examples of tasks used to assess particular impulsivity subtypes. Similar concepts are represented in the same 
colours. This figure was partly adapted from Winstanley et al., 2010. 
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disinhibited behaviour via alcohol, partying or sex), experience seeking (a desire for 

experience a non-conforming lifestyle through unplanned activities or drugs), and boredom 

susceptibility (an aversion to repetition and routine). 

 Behavioural impulsivity  

Questionnaires are a simple and easily applicable form of assessing general impulsivity 

levels; however, these are subjective measures limited by individual’s insight into their own 

behaviour and participants’ honesty in answering the questions (Evenden, 1999b; Moeller et al., 

2001). As they are designed to assess the tendency of a subject to act impulsively, i.e. stable 

over time personality trait, these measures are not appropriate to measure impulsive states, for 

example under acute drug administration or in a different context. The behavioural impulsivity 

tasks, on the other hand, provide an objective measure of impulsivity, suitable for repeated uses 

under various experimental paradigms.  

Motor impulsivity  

Impulsivity may derive from an inability to inhibit an inappropriate motor response. A 

variety of behavioural tasks has been developed to measure motor impulsivity. In both the Stop 

Signal Task (SST; Logan, 1994) and Go/No Go (GNG) task (Hogg, Evans, & Adrian, 1975) 

subjects respond to go-signals, and should inhibit their responses to stop-signals. Evidence 

suggests, however, that these tasks probe distinct processes i.e. ‘action cancellation’ (inhibition 

of an already initiated response) in the SST and ‘action selection and restraint’ (inhibition of a 

response before it has started) in the GNG (Dalley, Everitt, & Robbins, 2011; Eagle, Bari, & 

Robbins, 2008; Winstanley, 2011). Therefore, although both GNG and SST seem very similar at 

the behavioural level (“stopping impulsivity”, Robinson et al., 2009; Dalley et al., 2011), these 

tasks are not equivalent and reflect different aspects of motor impulsivity.  

The Continuous Performance Task (CPT) (Rosvold, Mirsky, Sarason, Bransome, & 

Beck, 1956) measures yet another feature of motor control; where subjects are required to scan 

through 5-digit sequences and respond when the number matches a target stimulus. Impulsive 

behaviour in the task is reflected in a high number of premature responses, which indicates that 

an individual has difficulty awaiting the correct signal; therefore, the term “waiting impulsivity” 

was coined (Robinson et al., 2009; Dalley et al., 2011). The Immediate and Delayed Memory 

Tasks (IMT, DMT) (Dougherty, Marsh, & Mathias, 2002) are also variants of the CPT used to 

study attention, memory, and impulsivity. Participants are presented sequentially with several-

digit stimuli on the computer screen. In the IMT subjects need to indicate when the currently 

displayed number is identical to the preceding one, while in the DMT subjects should respond 

to a target number and ignore distractor numbers appearing in-between. The 5-Choice Serial 
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Reaction Time Task (5-CSRTT, Carli et al., 1983) is a task primarily developed to study 

waiting impulsivity in rodents, but recently also adapted to be used in humans (Sanchez-Roige 

et al., 2014; Voon et al., 2014). In this task, subjects are required to react to a stimulus which 

can occur in one of five locations. Impulsive behaviour is reflected in premature responses (i.e. 

before the stimulus appears).  

Information regarding motor impulsivity is summarised in Figure 1.3. 

 

Figure 1.3 Motor impulsivity according to Robinson et al., 2009 and Dalley et al., 2011. 

 

Reflection impulsivity  

In everyday life, we encounter countless situations when we need to choose between 

several alternatives. In order to select the optimal one, we need to evaluate each of the options, 

as rash decisions may be maladaptive: impulsive individuals who make fast decisions also make 

more mistakes than reflective subjects who take longer to come to a conclusion (Clark et al., 

2006; Kagan, 1965a, 1965b; Kagan, Rosman, Day, Albert, & Phillips, 1964). The tendency to 

make snap choices without gathering and evaluating information first has been referred to as 

‘reflection impulsivity’ (Kagan, 1965a, 1965b; Kagan et al., 1964). Experimental measures of 

reflection impulsivity include the Information Sampling Task (IST) and Matching Familiar 

Figures Task (MFFT). The IST (Clark et al., 2006) assesses the uncertainty tolerance upon 

making decisions; in other words, it measures how much information an individual needs before 

making a decision. In the MFFT (Cairns & Cammock, 1978) participants compare several 

visual stimuli in order to decide which one is identical to the target image. The combination of 

fast and inaccurate responding is considered impulsive, whereas slower and accurate 

performance is regarded as reflective.  

Impulsive choice  

In daily life people face intertemporal choices of different outcomes at various time 

points: a slim figure in the future or enjoying a cake now, rewarding oneself with a night out 
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today or saving money to go for holidays in several months. Research indicates that sooner 

rewards are often preferred over delayed larger ones; however, impulsive individuals show a 

steeper discounting rate than those less impulsive (Ainslie, 1975; Kirby, Petry, & Bickel, 1999). 

Difficulty in delaying gratification, temporal impulsivity, can be assessed with pen-and-paper 

questionnaires or computerised tasks. The Monetary Choice Questionnaire (MCQ) and Delay 

Discounting Task (DD) (e.g. Kirby & MarakoviĆ 1996; Kirby et al., 1999) are both pen-and-

paper tasks in which participants choose between hypothetical smaller immediate rewards (e.g. 

£19 today) and larger but delayed ones (e.g. £25 in 53 days). The tasks provide a measure of the 

delay discounting rate – a degree of a devaluation of future outcomes relative to present 

outcomes. It is worth noting, though, that through such questionnaires subjects report their 

preferences towards hypothetical rewards and delays that they do not experience in the 

laboratory. This raises the question whether such hypothetical decisions actually reflect choices 

when real rewards are used. Overall, research indicates that hypothetical rewards are discounted 

in the similar way to real rewards (Baker, Johnson, & Bickel, 2003; Bickel, Pitcock, Yi, & 

Angtuaco, 2009; Johnson & Bickel, 2002; Lagorio & Madden, 2005; Lawyer, Schoepflin, 

Green, & Jenks, 2011). Some evidence, however, suggests that real rewards are related to 

decreased temporal impulsivity compared with hypothetical gratification (Hinvest & Anderson, 

2010). 

The Single Key Impulsivity Task (SKIP) or Two Choice Impulsivity Paradigm (TCIP; 

Dougherty, Mathias, Marsh, & Jagar, 2005) have been developed to account for these issues. 

Both tasks are behavioural measures of how long one is willing to wait to obtain a reward. In 

these tasks, participants experience the delay towards the delivery of a reward in the form of 

points. In the SKIP participants press the mouse-button to obtain a point reward. The magnitude 

of the reward is dependent on the delay between consecutive responses: the longer the period 

individual waits, the more points they receive. In the TCIP subjects choose between two visual 

stimuli representing a smaller-immediate reward and larger-delayed reward. Participants choose 

the stimuli and receive points after the delay period elapses. Finally, the “Marshmallow Test” 

(MT; Mischel, Ebbesen, & Zeiss, 1972; Mischel, Shoda, & Rodriguez, 1989) is a delay of 

gratification measure used to study children. The procedure is straightforward: a child is offered 

a choice between one small treat (for example a marshmallow) provided immediately or two 

treats if they resist the temptation of eating it for a short period. Interestingly, data from 

longitudinal studies indicate that the ability to delay gratification in childhood is associated with 

a number of positive outcomes later in life, including better academic performance, improved 

social and emotional coping, better ability to deal with stress and frustration, less drug use, as 

well as decreased probability of becoming overweight (Ayduk et al., 2000; Mischel, Shoda, & 

Peake, 1988; Schlam, Wilson, Shoda, Mischel, & Ayduk, 2013; Seeyave et al., 2009; Shoda, 

Mischel, & Peake, 1990). 
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The temporal delay may devalue the significance of the gratification, but so can the 

uncertainty about the reward being delivered (probability discounting, Winstanley et al., 2010). 

Therefore, disadvantageous or risky decision-making is sometimes considered to be a part of 

impulsivity construct (e.g. Mazur, 1993; Rachlin, 1990; Richards et al., 1999 but see Holt et al., 

2003; Shead and Hodgins, 2009). Whether temporal impulsivity and risk-taking/probability 

discounting are part of the same facet (choice impulsivity) or are distinct from each other is 

debatable (Broos et al., 2012; Fineberg et al., 2014; Fineberg et al., 2010; Holt, Green, & 

Myerson, 2003; Richards, Zhang, Mitchell, & de Wit, 1999; Shead & Hodgins, 2009; 

Winstanley et al., 2010).  

A popular measure of decision-making deficit is the Iowa Gambling Task (IGT) (Antoine 

Bechara, Damasio, Damasio, & Anderson, 1994). IGT simulates real-life decision-making by 

involving conditions of reward, punishment and uncertainty. In this task participants select 

cards from four card decks to win money. Each selected card is associated with a monetary 

reward, but on some trials, penalties are also imposed. Two card decks (A and B) are related to 

high rewards but also high losses; therefore, choosing from these decks is disadvantageous in 

the long run. In contrast, the two other decks (C and D) yield smaller immediate gains but also 

smaller penalties; thus, they bring profit if played continuously. Performance in the gambling 

tasks is thought to depend on insensitivity to future consequences and punishment, as well as 

increased sensitivity to reward (Antoine Bechara et al., 1994).  

A way of assessing risk-taking is the Balloon Analogue Risk Task (BART) (Lejuez et al., 

2002). BART is a computer-based task, in which participants must “pump” virtual balloons as 

much as possible without popping any of them. With each pump, subjects are awarded points, 

but if the balloon pops, all points from that trial are lost.  

The many ways of measuring impulsive behaviour summarised above indicate a variety 

of approaches to impulsivity research and show how complex a construct it is. The measures of 

‘trait impulsivity’ (self-reports) ask participants to assess how they behave in different 

situations. Although this form allows examining real-life scenarios, it is not ideal as it requires 

honesty and good self-insight from the individual. Behavioural measures overcome these 

limitations; however, their relevance to everyday behaviours may be debatable. Therefore, a 

combination of both self-report and objective measurements is often used in research to 

encompass the wide range of impulsivity construct. 

 Brain circuits of impulsivity 

The differences between distinct subtypes of impulsivity are further observed at the 

neuronal level: despite some overlap, different impulsivity subtypes show separate neuronal 
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correlates. This section provides a non-exhaustive overview of neuronal networks associated 

with different types of impulsivity. 

 Motor impulsivity 

Functional magnetic resonance imaging (fMRI) studies revealed common neural circuits 

for “stopping” impulsivity including inferior and right middle frontal gyri, anterior cingulate, 

pre-supplementary motor area, right inferior parietal lobe, and left middle temporal cortex 

(Rubia et al., 2001). However, the GNG task was associated with bilateral, but predominantly 

left-hemisphere activation, whereas the SST was primarily related to the activation in the right 

hemisphere (D’Alberto, Funnell, Potter, & Garavan, 2017; Nikolaou, Critchley, & Duka, 2013; 

Rubia et al., 2001). These findings are further confirmed by lesion studies, which revealed that 

patients with left frontal damage showed intact response inhibition, whereas patients with right 

frontal lesions had increased motor impulsivity in the SST (Aron, Fletcher, Bullmore, Sahakian, 

& Robbins, 2003).  

Evidence suggests that neural circuitry underlying the “waiting” impulsivity is distinct 

from the “stopping” impulsivity described above. The ability to wait depends on the top-down 

interactions of the prefrontal cortex (PFC, including anterior cingulate cortex) with limbic 

structures (including the hippocampus, amygdala, and ventral tegmental area as well as the 

nucleus accumbens; reviewed in Dalley et al., 2011). 

 Reflection impulsivity  

The underlying neural substrates of reflection impulsivity remain to be explored; 

however, an fMRI study found that increased uncertainty during gathering information before 

making a decision was associated with activity in the dorsal anterior cingulate cortex, whereas 

greater uncertainty while executing a decision was related to the lateral frontal and parietal 

activity (Stern, Gonzalez, Welsh, & Taylor, 2010). Moreover, greater reflection impulsivity, as 

indexed by lower information sampling in the IST, was associated with the bigger left dorsal 

cingulate cortex and right precuneus volumes (Banca et al., 2016).  

 Impulsive decision-making  

Three distinct brain networks were proposed to be involved in temporal discounting 

(Peters & Büchel, 2011): (1) the ventral striatum, ventromedial prefrontal cortex (vmPFC) and 

substantia nigra/ventral tegmental area are involved in determining individual incentive values 

of rewards, (2) the lateral prefrontal- and cingulate cortices are associated with cognitive 

control, while (3) the medial prefrontal lobe network, comprising hippocampus, amygdala, 
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vmPFC, and posterior cingulate cortex, is implicated in imagery and prospective evaluation of 

future outcomes. Moreover, recent evidence indicated the role of the insular cortex in temporal 

decision-making (Frost & McNaughton, 2017; Sellitto, Ciaramelli, Mattioli, & di Pellegrino, 

2016). Indeed, insular lesions have been related to decreased sensitivity to immediate rewards: 

Individuals with insular damage show less steep discounting rates than patients with lesions in 

other parts of the brain and healthy controls (Sellitto et al., 2016).  

These brain areas were also identified to be involved in risky decision-making. 

Neuroimaging, as well as lesion evidence, indicate that prefrontal regions including the 

orbitofrontal cortex (OFC), medial and vmPFC, take part in decision-making under uncertainty, 

and the performance on gambling tasks depends on them (Clark et al., 2008; Clark, Manes, 

Antoun, Sahakian, & Robbins, 2003; Fukui, Murai, Fukuyama, Hayashi, & Hanakawa, 2005; 

MacPherson, Phillips, Della Sala, & Cantagallo, 2009; Rao, Korczykowski, Pluta, Hoang, & 

Detre, 2008; Zeeb & Winstanley, 2011). Taking a voluntary risk on the BART is also associated 

with activation of mesolimbic areas (Rao et al., 2008). Moreover, the nucleus accumbens 

activation was found to precede risky choices, while the anterior insula activation preceded safe 

choices in a financial decision-making task, suggesting the existence of two distinct neural 

circuits driving risk-seeking and risk-aversion respectively (Kuhnen & Knutson, 2005). Indeed, 

patients with insular cortex lesions consistently showed an increased level of betting on a 

gambling task compared to healthy controls and frontal lesioned patients, even when the odds of 

winning decreased, suggesting the role of the insular cortex in signalling the probability of 

aversive outcomes (Clark et al., 2008). Furthermore, animal studies also indicate the role of the 

amygdala in the risky decision-making. Rats with lesions of the basolateral amygdala showed 

more risky choice in the rat gambling task (Zeeb & Winstanley, 2011). Therefore, temporal 

discounting and risk-taking share underlying neural circuitry, providing evidence that they may 

be grouped into a single impulsivity subtype.  

 Similarities and differences in brain circuitry of different 

impulsivity subtypes 

The brief summary of the brain circuitry involved in distinct impulsivity subtypes above 

suggests some level of specificity in brain areas underlying different constructs. For example, 

inferior frontal gyrus seems specifically vital for motor response inhibition. While an extensive 

network of brain areas is involved in impulsive decision-making, the activity of mesolimbic 

areas and insular cortex might be particularly vital for this impulsivity subtype. Nevertheless, 

there also seems to be some level of overlap between the circuits: the prefrontal regions and 

cingulate cortex may be common substrates across different types of impulsivity; however, 

future functional neuroimaging studies on reflection impulsivity are needed to confirm this. 
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Although this review focuses on healthy volunteers research, it is worth noting that bipolar 

disorder, which is associated with high levels of impulsivity and risk taking (American 

Psychiatric Association, 2013; Najt et al., 2007), is associated with altered functioning of 

prefrontal cortex, ventral striatum and amygdala (Mason, O’sullivan, Montaldi, Bentall, & El-

Deredy, 2014; Phillips & Swartz, 2014), regions implicated in impulsive actions and decision-

making.  

 Emotion and impulsivity in the brain 

The relationship between emotions and impulsivity is supported by functional anatomical 

evidence. The key brain regions involved in emotion regulation (Figure 1.4), i.e. PFC, anterior 

cingulate cortex (ACC), amygdala, and basal ganglia (BG), also are important in impulsive and 

risky behaviours, as well as decision-making processes (Hinvest, Elliott, McKie, & Anderson, 

2011; Murphy, Nimmo-Smith, & Lawrence, 2003; Phan, Wager, Taylor, & Liberzon, 2004, 

2002; Xie et al., 2011; Zeeb & Winstanley, 2011).  

The role of the amygdala in emotional processing is well recognised. Evidence from both 

animal and human studies supports the critical role of the amygdala in feeling fear and fearful 

stimuli processing (LeDoux, 2000; Murphy et al., 2003; Phan et al., 2004, 2002). Moreover, 

some findings suggest that amygdala responds to emotionally salient stimuli regardless of 

valence (reviewed in Phan et al., 2002; Phan et al., 2004). Literature suggests that the amygdala 

plays a vital role also in impulsive behaviour; for instance, increased functional connectivity 

between the amygdala and other brain regions (thalamus, insula) in abstinent heroin addicts is 

associated with high impulsivity (Xie et al., 2011). Moreover, lesions of the amygdala in rats 

increase risky decisions in rat gambling tasks (Zeeb and Winstanley, 2011).  

Various neuroimaging studies have demonstrated the importance of the fronto-basal-

ganglia network in response inhibition, particularly successful stopping of the prepotent motor 

response on the SST (for example Aron 2007; Aron et al., 2007; Boehler et al., 2010; Nikolaou 

et al., 2013; Kim & Lee 2011). BG seem to also play a vital role in experiencing both happiness 

and disgust (Murphy et al., 2003; Phan et al., 2002). This seemingly contradictory activity of 

BG may be associated with the role of these structures in motor control and, thus, guiding the 

organism towards pleasant (happy) stimuli and away from unpleasant (disgusting) stimuli 

(Panksepp, 1998). Moreover, Sprengelmeyer et al., (1998) proposed a specific role for the basal 

ganglia in processing disgust, as the putamen activates during viewing facial expressions of 

disgust in healthy individuals. Furthermore, patients suffering from Huntington's disease (HD) 

and OCD, conditions characterised by neuropathology in the basal ganglia, show problems with 

recognising facial expressions, particularly disgust (Sprengelmeyer et al., 1997; Sprengelmeyer 

et al., 1996). Interestingly, both HD and OCD are associated with increased levels of 
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impulsivity and disinhibition (Boisseau et al., 2012; Kalkhoven, Sennef, Peeters, & van den 

Bos, 2014). 

 

 

Figure 1.4 Brain regions implicated in both emotional experience and impulsive behaviour. Orbitofrontal cortex – red, 
amygdala – blue, anterior cingulate cortex – violet, caudate nucleus (basal ganglia) – yellow, putamen (basal ganglia) 
- green. 

Another brain region which links impulsivity and emotions is the PFC. Fronto-cortical 

dysfunction, such as seen in substance abusers, is related to impaired inhibitory control (Jentsch 

& Taylor, 1999; Rogers et al., 1999). In particular, the ventromedial PFC, including subcallosal 

cingulate (BA 25) is implicated in a diminished inhibitory control reflected in impulsive 

behaviours in cocaine addicts (Volkow et al., 2010). Moreover, when making inter-temporal 

decisions, the activity of the prefrontal areas (PFC, ACC) correlated positively with 

participants’ self-reported impulsivity and venturesomeness (Hinvest et al., 2011). Finally, 

lesions to the orbitofrontal sections of the PFC also result in decision-making deficits (Rogers et 

al., 1999). The PFC functioning is also strongly linked to emotional processing. Surgical lesions 

of the orbitofrontal cortex (OFC) and ACC are associated with deficits in emotion identification 

and changes in subjective emotional state (Hornak et al., 2003). While the lateral OFC seems to 

be more related to feelings of anger (Murphy et al., 2003), the medial PFC alongside with the 

ACC are often found to be activated across various emotions, without specificity towards any 

particular feeling, suggesting a general role in emotional processing (Phan et al., 2002; Phan et 

al., 2004). ACC, precisely the subcallosal cingulate cortex part, may be mainly involved in 

sadness and apathy (Murphy et al., 2003; Phan et al., 2002; Phan et al., 2004). 

The evidence summarised here indicates that brain networks involved in emotional 

experience and impulsive behaviour largely overlap. Those shared neuronal correlates also 

suggest a mechanism via which affective states exert influence on impulse control.  

 Impulsivity and emotion  

Having described the complex construct of impulsivity and the neural circuitry 

underlying both impulsive actions and emotional processing, in following sections, we now 
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discuss the research on the influence of mood states on different aspects of impulsive behaviour. 

Since in this review we are predominantly interested in the role of changeable states on 

impulsive behaviour and decision-making, we use terms ‘emotions’, ‘mood states’, and ‘affect’ 

interchangeably to refer to those transient emotional experiences. 

 Risk-taking  

The influence of the affective state on risk-taking and decision-making has received 

substantial attention. For instance, in one study participants who received an unexpected gift 

before gambling (positive mood state induction) betted their study credits more conservatively 

than those in the control condition (no gift received), suggesting that people in a positive mood 

state may be risk aversive (Isen & Geva, 1987). Moreover, Isen & Patrick (1983) demonstrated 

that positive affect increases the tendency to take the real risk (a loss of course credits), but only 

in the situations where risk is relatively small. In contrast, in the hypothetical dilemma task, 

positive mood state increased risk-taking tendencies regardless of the risk level (Yuen & Lee, 

2003). As an explanation for different results in the real risk versus hypothetical risk conditions 

Isen & Patrick (1983) suggested that individuals in a good mood state try to maintain their 

positive state and, therefore, do not engage in behaviours which carry a high risk of a loss (risk 

aversion). Accordingly, Nygren et al., (1996) observed that participants with induced positive 

mood state overestimated their probability of winning on a gambling task (optimism), but were 

less likely to gamble than controls when faced with the possibility of real losses (caution). 

These findings suggest that although people in a positive mood state view risky situations more 

optimistically, the decision-making process is more focused on avoiding potential losses, 

probably to maintain positive feelings (Isen & Geva, 1987; Isen & Patrick, 1983; Nygren et al., 

1996).   

Thus, it seems that while experiencing positive affect our tendency to take risk is 

decreased, at least in circumstances where high losses are probable. However, as decisions often 

need to be made in the stressful situations, it is important to understand how acute stress 

influences our choices. Increased negative affect and anxiety, related to anticipation of giving a 

public speech, was found to be associated with more risk-seeking tendencies in the task where 

participants are confronted with potential gains or losses (Pabst, Brand, & Wolf, 2013; Starcke, 

Wolf, Markowitsch, & Brand, 2008). However, the impact of stress on risky choice may depend 

on subjects’ gender (Lighthall, Mather, & Gorlick, 2009; van den Bos, Harteveld, & Stoop, 

2009). For male participants, acute cortisol administration and a stress challenge were found to 

increase risky behaviours but decreased it among females (Lighthall et al., 2009; Putman, 

Antypa, Crysovergi, & van der Does, 2010). Together, these results indicate that acute 
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differences in stress reactivity (changes in stress hormone levels over time) affect decision-

making process differently in men and women.  

 Temporal impulsivity  

In everyday life, many decisions require finding a balance between the immediate 

pleasures and longstanding aims. Work by Tice et al., (2001) offers evidence that emotional 

distress can increase the tendency to seek immediate gratification due to a shift in priorities: 

from focusing on the long-term goals (e.g. slim figure and physical fitness) to short-term 

pleasures (self-indulgence).  

Preschool children in whom a sad mood state was induced showed more delay 

discounting on the MT (i.e. chose the immediate reward significantly more often) than children 

in a happy or neutral mood state (Moore, Clyburn, & Underwood, 1976). These findings were 

also replicated in adult populations. Several studies showed that negative emotions, either 

naturally occurring (Koff & Lucas, 2011) or experimentally induced in participants by a 

presentation of aversive images (Augustine & Larsen, 2011), are related to higher discounting 

rates, suggesting that negative affect is associated with increased temporal impulsivity. 

Similarly, sadness, but not disgust, has been associated with more myopic financial decisions 

(Lerner, Li, & Weber, 2013). Also priming choices in the DD paradigm with fearful images 

resulted in much higher percentages of smaller-but-sooner choices compared with positive and 

neutral priming, again, indicating an increase in impulsive choice (Guan et al., 2015). Even 

imagining future events was shown to modulate delay discounting. Participants were more 

inclined to choose the delayed but larger rewards when they imagined positive future events 

than when they did not imagine anything; while participants were more inclined to choose the 

immediate but smaller rewards when they imagined negative future events than when they did 

not imagine events at all (Liu et al., 2013). Likewise, daily variabilities in self-reported mood 

state and arousal affect discounting rates: positive mood state and arousal were associated with a 

less impulsive choice on the DD task (Weafer, Baggott, & de Wit, 2013). Therefore, positive 

affect is associated with increased patience (lower levels of temporal impulsivity); whereas 

negative affect is related to near-sighted behaviours.  

Considering such consistent findings from studies of the effects of mood state on delay 

discounting, it is quite surprising that research on the relationship between acute stress 

associated with decreased mood state and delay discounting reported mixed observations. 

Several studies failed to find any effects of stress on inter-temporal choice (Haushofer et al., 

2013; Robinson, Bond, & Roiser, 2015). For example, in one study male subjects underwent a 

stress procedure in which participants are required to deliver a speech and perform mental 

arithmetic in front of an audience. Following the stress challenge procedure, participants were 
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asked to make intertemporal choices. Even though stress induction depleted mood state, no 

influence on discounting rate was found (Haushofer et al., 2013). Lempert et al., (2012), on the 

other hand, tested a large group of male participants who either experienced acute stress by 

anticipating giving a videotaped speech or underwent a control procedure. Following induction, 

subjects completed a DD task. Taking all subjects together, individuals who experienced an 

increase in salivary cortisol levels, regardless of the assigned condition, were more likely to 

select smaller, sooner rewards (a tendency towards impulsive choice). Yet, the relationship did 

not hold when only the stress induction group was considered. Instead, individual variation in 

the level of perceived stress was related to the performance in the task (Lempert et al., 2012). 

Similarly, in another study, following the same stress induction procedure, participants were 

divided into two groups depending on their cortisol secretion change in response to stress 

manipulation (Kimura et al., 2013). Stress manipulation was related to an increase in the 

tendency to discount future rewards but only in cortisol responders, indicating that temporal 

discounting can be affected by an acute increase in cortisol levels. It is worth noting, however, 

that high cortisol responders tended to have higher cortisol levels at baseline. Taken together 

this evidence suggests that individuals more sensitive to stress may be differentially affected in 

temporal discounting tasks than subjects with low reactivity to stress. 

 Motor impulsivity  

The role of emotional states in impulsive choice received substantial attention, but little is 

known about the effects of mood state on impulsive actions. Some evidence suggests that 

negative emotions might be related to decreased impulse-control in everyday life, which is 

reflected in impulsive behaviours such as compulsive eating or procrastination (Tice et al., 

2001). A large body of research consistently shows that emotionally loaded stimuli, particularly 

threatening ones, diminish response inhibition on the GNG and SST (De Houwer & Tibboel, 

2010; Kalanthroff, Cohen, & Henik, 2013; Lindström & Bohlin, 2012; Pessoa, Padmala, 

Kenzer, & Bauer, 2013; Rebetez, Rochat, Billieux, Gay, & Van der Linden, 2015; Verbruggen 

& De Houwer, 2007; Wilson et al., 2016). In these studies, however, the mood state was not 

manipulated, but emotional images were presented while participants were performing the 

response inhibition task; therefore, the results may be explained via attentional capture. 

Incidental mood state changes may impact inhibitory control via a different mechanism. 

Research of the effects of mood state on motor impulsivity does not report consistent results. 

For instance, in one study no effects of daily variability in mood state were found on any of the 

motor impulsivity measures tested (SST, GNG, CPT) (Weafer et al., 2013). Likewise, sadness 

induction did not affect response inhibition on the GNG task (Chepenik, Cornew, & Farah, 

2007; Smallwood, Fitzgerald, Miles, & Phillips, 2009). Similarly, a study performed on 30 
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female participants did not show any effects of stress on response inhibition in the go/stop task 

(Cackowski et al., 2014). Scholz et al. (2009), on the other hand, tested male participants on the 

GNG task and found the effect of stress on reaction time (slower responses following the stress 

manipulation), but no effect on the number of false alarms was observed. Schwabe et al. (2013) 

reported enhanced response inhibition in the SST following the stress induction, while Patterson 

et al. (2016) observed contradictory results.  

Those opposing results might be explained by differences in methodology. In the study 

by Weafer et al. (2013), the affect was not manipulated; instead, daily variability in mood state 

was assessed. Possibly the changes in self-reported affect were not significant enough to have 

an impact on motor impulsivity in the laboratory setting. Cackowski et al. (2014) induced stress 

via simultaneous exposure of participants to various stressors, and used a go/stop procedure, a 

modification of CPT, in which participants not only respond to a target sequence of digits and 

ignore non-target sequences (waiting for the signal to occur), but also should refrain from 

responding if the colour of the target sequence changes (response inhibition; Dougherty et al., 

2005). Schwabe et al. (2013) and Patterson et al. (2016) both used the SST, however, both 

studies used different mood state manipulation methods (socially evaluated cold pressor test and 

affective images presentation, respectively). Importantly, Schwabe et al. (2013) introduced a 

delay between stress-induction and behavioural testing so testing would take place during 

cortisol peak level after stressor occurrence, which might have an impact on the results. As 

discussed in the previous section subtypes of motor impulsivity are distinct from each other not 

only in the behavioural terms but also regarding underlying circuitry. Thus, mood state and 

stress might differentially affect subtypes of motor impulsivity.  

In conclusion, data regarding the effects of incidental emotional states on motor 

impulsivity are limited and yield inconsistent results. To clarify the issue, future studies should 

compare the effects of mood state on different subtypes of motor impulsivity. 

 Reflection impulsivity  

Little is known about the influence of mood state on reflection impulsivity. Messer 

(1970) found that children who experienced a success on a task showed a decrease in response 

time on the MFFT task in relation to children who experienced a failure on the task or did not 

undergo any manipulation. However, no differences between groups in task accuracy were 

found. These results indicate that good mood state associated with experiencing a success might 

affect efficiency in the decision-making process by decreasing deliberation time. Indeed, Isen 

and others found that subjects in whom positive mood state was induced, reached the decisions 

quicker than controls in the tasks which involved choosing one option from several alternatives 

(Isen & Means, 1983) or solving a clinical problem (Isen, Rosenzweig, & Young, 1991). 
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Participants in the positive mood state were less likely to review information they once analysed 

or considered unimportant for the task, which allowed them to be as accurate as the control 

group but reach the conclusion faster.  

Taken together, these results indirectly suggest that positive and negative mood state 

might have opposite effects on reflection impulsivity by increasing and decreasing efficiency in 

the task, respectively. However, more research is needed to confirm this hypothesis directly 

using appropriate measures. 

 Inattention  

Other studies revealed that participants in whom negative mood state was induced 

showed an increase in attention lapses (reflected in more incorrect responses in the sustained 

attention task) and reported a greater frequency of task-irrelevant thoughts (Smallwood et al., 

2009). Therefore, it seems that while experiencing negative affect, individuals focus less on the 

task at hand and, thus, the time needed to complete the task increases, even if performance is not 

compromised. 

Overall, results summarised here indicate that distinct subtypes of impulsivity are 

differentially influenced by emotional states. It seems though that some differences may be 

related to gender and individual differences in traits (e.g. stress sensitivity). These factors 

should be further investigated in future research. Moreover, most research looked at the role of 

affective states in decision-making; therefore, how exactly emotions shape other impulsivity 

subtypes (motor and reflection) yet need to be confirmed.  

 Physiological arousal and impulsivity 

Emotional states are inextricably linked to physiological arousal. Certain emotional 

states, such as anxiety, anger or happiness, are related to an increased autonomic response, 

while others, such as sadness or contentment, with decreased response (Kreibig, 2010), but there 

is no unique physiological characteristic of discrete emotional state (Kreibig, 2010; Mauss & 

Robinson, 2009). Therefore, the level of physiological arousal may independently modulate 

impulsive behaviour. Indeed, early on it was argued that level of physiological arousal is related 

to impulsive behaviour. Several theories of personality claim that impulsivity is associated with 

under-arousal at rest and that impulsive individuals seek stimulation to obtain an optimal level 

of arousal (Barratt, 1985; H. J. Eysenck & Eysenck, 1985; Zuckerman, 1969). The optimal level 

of arousal is Hebb's concept whereby under-arousal produces an unpleasant state; therefore, 

people are motivated to maintain a certain level of arousal to feel comfortable (Hebb, 1955).  

Data from both clinical and healthy populations seem to confirm the theories of under-

arousal at rest in impulsive individuals. Under-arousal is at the core of Satterfield's & Dawson's 
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(1971) model of ADHD. According to this concept, symptoms of this disorder (i.e. inattention, 

hyperactivity, and impulsivity), arise from the under-aroused nervous system. Several studies 

found that highly impulsive but healthy individuals also show lower sympathetic arousal at rest 

(Fowles, 2000; Mathias & Stanford, 2003; Puttonen et al., 2008; Schmidt, Mussel, & Hewig, 

2013). Similar results were also observed in children; those who showed high behavioural 

impulsivity had lower resting-state heart rate than less impulsive children (Bennett, Blissett, 

Carroll, & Ginty, 2014; Muñoz & Anastassiou-Hadjicharalambous, 2011). However, it is worth 

noting that some research focused on male participants only (Mathias & Stanford, 2003), or 

found that when male and female subjects were considered separately, the relationship between 

trait impulsivity and resting state arousal was significant for males only (Allen, Hogan, & Laird, 

2009; Allen, Matthews, & Kenyon, 2000).   

High impulsivity levels were also found to be related to blunted reactivity to stress. The 

relationship between poor response inhibition and diminished cardiac responses to acute 

psychological stress have been shown both in children (aged 7 – 11) and young adults (Bennett 

et al., 2014; Bibbey, Ginty, Brindle, Phillips, & Carroll, 2016). Blunted autonomic reactivity to 

stress has also been reported in impulsive adolescents and adults (Allen et al., 2009; Stankovic, 

Fairchild, Aitken, & Clark, 2014). However, Allen et al., (2009) reported that when male and 

female subjects were studied separately, the relationship was true for males only. Finally, 

Mathias & Stanford (2003) found that highly impulsive men showed greater initial autonomic 

reactivity under a challenge condition, but declining arousal following sustained stimulation. 

Since, low cardiovascular and catecholamine reactivity to stress has been related to many health 

conditions, for instance obesity, bulimia nervosa, gambling, drug abuse or ADHD (Carroll, 

Phillips, & Der, 2008; Ginty, Phillips, Higgs, Heaney, & Carroll, 2012; Koo-Loeb, Pedersen, & 

Girdler, 1998; Lovallo, Dickensheets, Myers, Thomas, & Nixon, 2000; Paris, Franco, Sodano, 

Frye, & Wulfert, 2010; Pesonen et al., 2011), these lowered physiological responses in 

impulsive subjects may reflect blunted autonomic reactivity to challenge which may be 

maladaptive and result in health problems.  

Neuroimaging studies start to unveil the neural mechanisms linking arousal regulation 

and impulse control. Brown and colleges (Brown, Manuck, Flory, & Hariri, 2006), studied the 

relationship between individual differences in trait impulsivity and neural correlates of both 

behavioural arousal and inhibitory control, assessed via amygdala reactivity paradigm and GNG 

task. Impulsivity, as indexed by the BIS-11, was positively correlated with activity in the ventral 

amygdala, anterior cingulate cortex, and caudate, whereas it was negatively correlated with 

activity in the dorsal amygdala and ventral PFC. The activity of the amygdala and ACC is 

related to autonomic arousal (Critchley et al., 2003; Napadow et al., 2008), while the 

ventromedial PFC (vmPFC) plays a causal role in the regulation of physiological arousal (S. 

Zhang et al., 2014). The PFC is also known to be critical for successful response inhibition 
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(Horn, Dolan, Elliott, Deakin, & Woodruff, 2003). Therefore, these results suggest that 

impulsivity is affected by the functional interplay between the arousal and inhibitory control 

systems (Brown et al., 2006). Moreover, a recent study (S. Zhang et al., 2015) showed a positive 

association between trait impulsivity (measured with BIS-11) and skin conductance response to 

stop trials in the SST. Furthermore, high trait impulsivity was associated with decreased vmPFC 

regulation of physiological arousal in female but not male participants, suggesting altered 

arousal regulation in impulsive females. These gender differences may reflect the fact that some 

other dimension of trait impulsivity, which is not captured with the BIS, is related to arousal 

regulation in men (S. Zhang et al., 2015).  

Some evidence also suggests that regulation of the state arousal may influence impulsive 

behaviour. Findings by Smith et al., (1991), for example, indicate that trait as well as the state of 

physiological arousal, may differently affect high and low impulsive individuals. While highly 

impulsive individuals showed a large increase in systolic blood pressure following caffeine 

administration, low impulsive subjects exhibited a drop in systolic blood pressure. The same 

study also found that impulsive individuals performed worse than low-impulsive subjects in the 

sustained attention task in the control (baseline) condition, but they obtained a greater benefit 

from caffeine than non-impulsive subjects; although their performance remained lower than 

less-impulsive individuals. As inattention is related to impulsive behaviours (de Wit, 2009), 

these findings suggest that manipulation of the physiological state may influence state 

impulsivity, especially in highly impulsive subjects. This is supported by clinical findings in 

ADHD patients, whereby treatment with stimulant drugs, which are known to increase arousal, 

leads to decreases in impulsive behaviour (Swanson, Baler, & Volkow, 2011). Similar 

observations were made in healthy populations. Schmidt et al., (2013) found that the lower the 

participants’ physiological arousal at rest, reflected in decreased heart rate, the faster the 

responses and the riskier the behaviour in a gambling game, indicating diminished impulse 

control. Participants with low resting heart rate also perceived the risk options in the gambling 

task as less arousing and less risky compared to participants with higher resting heart rate. 

However, subjects tended to behave less risky in the gamble following physical exercise, 

compared to a resting condition.  

Taken together, these findings provide support for the under-arousal theory of 

impulsivity. Moreover, summarised results indicate that increased state arousal may affect 

impulse control (decreased in impulsivity) offering support for the optimal level of arousal 

hypothesis (Schmidt et al., 2013). 
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 Concluding remarks 

The term ‘impulsivity’ refers to both a stable personality trait and a range of behaviours 

that are susceptible to modulation. Trait impulsivity is typically assessed using self-report 

questionnaires, while behavioural impulsivity is measured using laboratory tasks and 

paradigms. Both approaches view impulsivity as a complex construct consisting of several 

subtypes. Within the behavioural scope, three major subtypes can be differentiated, according to 

the stage at which they are expressed in the control of action (Caswell et al., 2015; Evenden, 

1999a): reflection impulsivity occurs at the action preparation stage, motor impulsivity at the 

action execution stage, and temporal impulsivity at the action outcome stage. Additionally, 

decision-making under conditions of risk or uncertainty is also encompassed within 

conceptualisations of impulsivity, sometimes grouped with temporal impulsivity in a single 

construct of impulsive-choice (Fineberg et al., 2010, 2014; Winstanley et al., 2010). 

Impulsivity is a familiar part of everyday life, yet it is also of central importance to many 

neuropsychiatric conditions, including addictions, personality disorders or attention deficit 

hyperactivity disorder (ADHD) (American Psychiatric Association, 2013). Recognition of the 

broad consequences of impulsive behaviour to society and the health of individuals has 

motivated a growing interest in impulsivity research, crucially directed at determining factors 

that might modulate behavioural impulsivity. 

In this review, we discuss one potential regulator of impulsive behaviour: the affective 

state. We make the case that mood state exerts differential effects on impulsivity, depending on 

the subtype in question (summarised in Figure 1.5). The relationship between mood state and 

impulsive choice has received particular attention in the literature. People in a good mood state 

hold a more optimistic outlook on risky situations, but at the behavioural level show risk-

avoidance, probably as a protective mechanism against losing positive feelings. Moreover, 

positive emotions increase our ability to wait for gratification, making us more patient. This role 

of mood state in behavioural inhibition remains ambiguous and, similarly, there is little research 

on the role of emotions on reflection impulsivity. However, available data suggest that negative 

affect is associated with increases in reflection impulsivity via decreases in the efficiency of task 

performance. Importantly, initial research on the neuronal circuits underlying emotional states 

and impulsive behaviours has indicated an overlap supporting further the relationship between 

emotions and impulsivity. 

A further modulator of impulsive behaviour is physiological arousal. Indeed, several 

theories of personality argue that impulsivity is associated with under-arousal at rest, a greater 

increase in arousal following stimulation, and that impulsive individuals seek stimulation to 

obtain an optimal level of arousal (E. S. Barratt, 1985; H. J. Eysenck & Eysenck, 1985; 

Zuckerman, 1969). Thus, based on research summarised in this review, we propose a model to 
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account for how impulsive actions and decisions are affected by our current affective and 

physiological state. Moreover, we argue that internal states impact on behaviour through 

dependence on a particular set of factors: (1) the subtype of impulsivity in question, (2) 

individual differences (gender, trait anxiety, trait stress sensitivity), (3) the baseline (resting 

state) level of arousal.  

 

Figure 1.5 The effects of emotions on different subtypes of impulsivity. 

 

Advances in understanding such modulators can potentially inform the development of 

fresh therapeutic approaches (reducing impulsivity levels) for impulsive people. To achieve 

translational impact, future studies should (1) clarify how different emotional states modulate 

distinct subtypes of impulsivity at both behavioural and neural levels; and (2) establish the 

relationship between the level of physiological arousal and impulsivity, perceived both as a 

stable trait and variable state. For example, it is important to characterise first, whether acute 

changes in physiological arousal modulate impulsive behaviour and second, whether highly 

impulsive individuals are more affected by changes in the bodily state than less impulsive 

individuals. Finally, (3) deeper insights will be gained from research defining the neuronal 

mechanisms underlying the interaction between affective and physiological states with 

impulsive action and decision-making. 
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 Aims 

From the evidence presented thus far, it is evident that there is a need for research 

examining the role of emotional and physiological states in modulating distinct impulsivity 

dimensions. In this way, we can identify which subsets of impulsivity are more prone to be 

influenced by bodily states. This information can further inform researchers and clinicians in 

developing better coping strategies for impulsive individuals and help impulse-control-related 

problems prevention efforts. Therefore, investigations in this thesis attempt to better 

characterise distinct impulsivity dimensions, focusing on their modulators. Specific aims of the 

current thesis are threefold: 

1.    To clarify the role emotions play in different dimensions of impulsive behaviours 

also considering the role of individual differences in this relationship.  

2.    To examine neural correlates underlying the impact of emotions on distinct subtypes 

of impulsivity.  

3.    To establish the relationship between impulsivity, both behavioural and trait, and 

physiological arousal.  

To address these objectives, we conducted a set of experiments using a variety of 

methods including behavioural testing, physiological recordings, psychopharmacology and 

neuroimaging. This variety of methods employed allowed for a comprehensive understanding of 

the issues in question. To fulfil the first aim, we conducted two studies. Study 1 investigated 

how mood-induction affects impulsive performance in standard measures of impulsivity, 

including motor, temporal and reflection impulsivities. Study 2 built on findings from study 1, 

examining whether naturally occurring mood states and personality traits predict impulsive 

decisions. To address the second aim, study 3 used functional magnetic resonance imaging 

(fMRI) techniques, to identify neural substrates underpinning the emotional influences on the 

motor and temporal impulsivities. Specifically, the role of task-independent emotional context 

on tasks performance was investigated also considering individual differences in trait 

impulsivity. Finally, the subsequent two studies addressed the third aim. In study 4 we 

investigated the influence of increased physiological arousal, via pharmacological manipulation, 

on dimensions of impulsivity. In study 5 we further explored the relationship between resting-

level of arousal and trait impulsivity as well as the link between sensitivity to one’s bodily state 

(interoception) and trait impulsivity. Through these investigations this thesis attempts to 

characterise distinct impulsivity dimensions better, focusing on their modulators.  

In the final chapter, Chapter 6, I summarise the main outcomes of this thesis and place 

our findings in a broader context. Chapter 6 will also include a consideration of the limitations; 

and future directions for studying the modulatory effects of internal bodily states on impulsivity. 
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 Abstract 

This study investigated how different mood states affect distinct subtypes of impulsivity: 

motor impulsivity [measured with the Stop Signal (SST) and the 5-Choice Serial Reaction Time 

Task (5-CSRTT)], reflection impulsivity [assessed with the Information Sampling Task (IST)], 

and temporal impulsivity (the Delay Discounting Questionnaire). Eighty healthy volunteers 

completed two experimental sessions. During session 1, which served as a baseline measure, 

participants underwent a neutral mood induction procedure. In Session 2, they were randomly 

allocated to one of the mood-induction groups (Neutral, Positive, Sad, and Anxiety). Mood state 

ratings included bipolar visual analogue scales on mood (positive/negative), tension/relaxation 

and arousal (tired/active). No group effect was found on any of the impulsivity measures. 

Correlational analyses between mood changes (following the mood manipulation procedures) 

and behaviour in the tasks revealed that increased relaxation was related to increased 

information sampling in the IST (decreased reflection impulsivity). In addition, the more active 

subjects reported to be, the more likely they were to choose a delayed reward over the 

immediate one (decreased temporal impulsivity). These results indicate that subjective changes 

in mood state are associated with behavioural impulsivity levels. Importantly, distinct facets of 

impulsivity (reflection, motor and temporal) are differently affected by changes in mood state. 

__________________________________________________________________ 

Keywords: Stop Signal Task, Delay Discounting, Information Sampling Task, 5-Choice 

Serial Reaction Time Task, Emotions 
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 Introduction 

Impulsivity is often described as a tendency to act rapidly without taking into account 

consequences of one’s actions (Dalley et al., 2011). It is generally considered to be maladaptive 

as impulsivity is associated with risky sexual activities (Winters, Botzet, Fahnhorst, Baumel, & 

Lee, 2009), gambling (Hodgins & Holub, 2015; Lai, Ip, & Lee, 2011; Lawrence, Luty, Bogdan, 

Sahakian, & Clark, 2009), smoking (Mitchell, 1999) and binge drinking (Bø, Billieux, & 

Landrø, 2016; Sanchez-Roige et al., 2014). Furthermore, deficits in impulse control, both 

behavioural and trait characteristic, are related to several disorders such as attention deficit and 

hyperactivity disorder (ADHD), manic episodes of bipolar disorder, borderline personality 

disorder, Parkinson’s disease, schizophrenia, eating disorders or substance abuse (American 

Psychiatric Association, 2013).  

Given the importance of impulsivity both in everyday life and in clinical practice, it is 

vital to understand the modulators of impulsive behaviour. Numerous studies show that negative 

emotions exert a great impact not only on our actions but also on decision-making processes. 

Tice and colleagues (Tice et al., 2001) demonstrated that experiencing negative emotions leads 

to limited self-control, which in turn results in impulsive behaviours such as compulsive eating, 

reduced delayed gratification or procrastination. Experience of stress or anxiety has also been 

shown to lead to maladaptive behaviours including smoking, comfort-eating or drinking alcohol 

(Abrantes et al., 2008; Bekker et al., 2004; Cooper et al., 1995; Swendsen et al., 2000). Such 

activities are believed to serve as a coping mechanism. Episodes of binge eating and vomiting in 

patients with bulimia nervosa are related to prior states of increased self-reported negative 

mood, stress or feelings of anger (Engel et al., 2007; Smyth et al., 2007) and engagement in 

purging behaviours leads to decrease in negative emotions (Smyth et al., 2007). 

On the other hand, the beneficial impact of positive affect in everyday life has been 

reported in several studies. For instance, people in a good mood state perform better at creative 

problem-solving tasks (Subramaniam, Kounios, Parrish, & Jung-Beeman, 2009) and show 

increased cognitive flexibility (Nadler, Rabi, & Minda, 2010). However, high levels of positive 

affect may also be associated with undertaking risky and impulsive behaviours such as heavy-

drinking as part of celebrations (Del Boca, Darkes, Greenbaum, & Goldman, 2004; Peacock, 

Cash, Bruno, & Ferguson, 2015) or gambling (Cyders & Smith, 2008a).  

The evidence summarised above provides support for the link between emotional states 

and impulsivity, as well as an interaction between the two in forming our actions and 

motivations contributing to addictive behaviours. However, little is known about how exactly 

emotional states impact the different facets of behavioural impulsivity. Therefore, the current 

experiment aimed to examine how incidental changes in mood state influence the distinct 

impulsivity subtypes using common laboratory tests.  
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Due to the multifaceted nature of impulsivity (Caswell et al., 2015; Evenden, 1999b; 

Sharma, Markon, & Clark, 2014; Whiteside & Lynam, 2001), several independent measures 

were used to capture a wider range of impulsivity dimensions: impulsive tendencies (personality 

traits), reflection, temporal, motor ‘stopping’ and ‘waiting’ impulsivity, and inattention. We 

hypothesised that negative emotional state might reduce inhibitory control, as worry and 

rumination are costly in terms of cognitive resources (Hirsch & Mathews, 2012). Since negative 

affect has been related to an increase in task-unrelated thoughts (Smallwood et al., 2009), we 

also hypothesised that sadness and anxiety might be related to increased impulsivity on the tasks 

which require attention. On the other hand, positive affect might decrease reflection impulsivity 

by improving efficiency (Isen & Means, 1983; Isen et al., 1991). Positive affect could also 

improve self-regulation (Tice, Baumeister, Shmueli, & Muraven, 2007) and, therefore, make 

individuals more likely to wait for their incentive (decrease temporal impulsivity).  

 Methods 

 Participants 

Eighty-three volunteers (50 females) were recruited from the University of Sussex 

community, providing consent to participate in the study. Sample size was motivated by 

previous studies using similar methodologies (Smallwood et al., 2009; Tice et al., 2007, 2001; 

Yuen & Lee, 2003). Participants were informed that the study investigated the effects of 

experience on cognitive tasks performance. The inclusion criteria were following: age 18-35 

years old, fluency in English, no current diagnosis of any mental or neurological disorders, and 

no current pharmacological treatment (except birth control). During the experiment participants’ 

olfactory abilities were tested; therefore, additional exclusion criteria was anosmia, hay fever or 

cold. Data from this part of the procedure will be reported elsewhere. Participants were 

instructed not to consume any caffeine-containing products or any other substances which may 

affect their activity level on the days of testing. The study was approved by the local Ethics 

Committee. All participants were compensated for their time. 

 Materials 

Nuffield Hospitals Medical History Questionnaire assessed demographic details, past and 

present health status (to confirm meeting study inclusion criteria), use of medications and 

recreational drugs, and an estimate of a number of cigarettes smoked per day.  
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 Subjective ratings:  

KUSTA Mood scale (Wendt, Binz, & Miuller, 1985) was used to asses mood state. To 

capture the crucial changes in affective state, only Kusta bipolar scales of Mood (a measure of 

valence, positive vs negative), Activity (a self-report measure of arousal) and 

Tension/Relaxation (a measure of stress, Ilona Papousek et al., 2010; Ilona Papousek, Schulter, 

& Premsberger, 2002; Iona Papousek & Schulter, 2001) were employed. 

Alcohol Use Questionnaire (AUQ, Mehrabian & Russell, 1978): AUQ gives a measure of 

total units of alcohol consumed per week, binge score and alcohol use score. 

Barratt Impulsiveness Scale (BIS-11; Patton, Stanford, & Barratt, 1995) consists of 30 

items which assess a tendency for impulsive actions in everyday life. BIS is organised into three 

subscales: attentional, motor and non-planning impulsivity.  

UPPS Impulsivity Scale (Whiteside & Lynam, 2001) consists of four subscales: Urgency 

(a tendency to act impulsively while experiencing strong negative emotions), Premeditation, 

Perseverance and Sensation Seeking. 

Both scales are commonly used measures of trait impulsivity and were introduced to 

assess distinct aspects of impulsivity characteristics.  

 Tasks 

The 5-Choice Serial Reaction Time Task (5-CSRTT; Sanchez-Roige et al., 2014) assesses 

motor impulsivity, particularly the ability to wait for a signal to respond (i.e. ‘waiting’ 

impulsivity). Participants were required to hold their index finger of the dominant hand on the 

"home button" at the bottom of the iPad (iOS 6 operating system; Apple Inc) screen until one of 

five blue circles moving on the screen in a "circular" fashion illuminated briefly (0.5s). Subjects 

respond to it by tapping the appropriate circle as fast as possible and return to the home button. 

Premature responses, occurring before stimulus onset, were considered a measure of poor 

inhibitory control and punished by a 5s time-out period. Following practice trials in which the 

stimuli were presented at fixed inter-trial intervals of 5s, in experimental trials targets were 

presented at variable inter-trial intervals (vITI) lasting for 2, 5, 10, or 15 seconds. The task 

lasted until 50 correct trials were completed or 10 minutes had elapsed, whichever came first. 

The variables of interest of this task were the number of premature responses made (No 

Premature) - high scores indicate high impulsivity and number of omissions (No Omissions) - 

high values indicate inattention. 

The Monetary Choice Questionnaire (MCQ; Kirby, Petry, & Bickel, 1999) is a measure 

of temporal impulsivity. Volunteers are presented with 27 hypothetical choices between small, 

immediate rewards (SIR) and larger delayed rewards (LDR), for example, “would you prefer 

£54 today or £55 in 117 days?”. For each participant the discounting parameter (k) is calculated 
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using the formula: k = ((LDR-SIR)-1)/delay. High k values indicate high impulsivity (values 

were log transformed to improve distribution). 

The Stop Signal Task (SST, Logan, 1994) assessed an ability to inhibit a pre-potent motor 

response. Participants respond with button presses to the direction of a green arrow (Go signal) 

displayed on a computer screen but are required to withhold this response whenever the arrow 

changes colour to red (a Stop Signal, occurring on 25% of trials). The difficulty of inhibition of 

pre-potent responses is reflected in heightened Stop Signal Reaction Time (SSRT; high scores 

indicate high impulsivity).  

The Information Sampling Task (IST; Clark, Robbins, Ersche, & Sahakian, 2006) is a 

measure of reflection impulsivity. On each trial, a matrix of 5x5 grey squares is presented on a 

computer screen. Participants select a square by clicking with the mouse over the square, to 

reveal one of two colours until they are confident enough to decide which of the two colours is 

most frequent in the array. There are two conditions of the task: 

(i) Fixed win condition (FW): participants win 100 points if they make the right decision 

(regardless of how many boxes they have opened); otherwise, they lose 100 points. Participants 

complete ten experimental trials. 

(ii) IST reward conflict (RC): for every box opened, participants lose 10 points from a 

bank of 250. If a participant chooses correctly they win the remaining points from the bank; 

otherwise, they lose 100 points. Participants complete ten experimental trials. 

The dependent variable for each condition (FW and RC) is the mean number of boxes 

opened (high values indicate low impulsivity). 

 Mood induction 

Details on mood induction procedures can be found in Appendix 1. Briefly, the neutral, 

positive and sad mood was induced by presentation of emotional images (neutral, positive, or 

sad respectively) together with congruent emotional music to strengthen the effect. Participants 

in the anxiety group were simultaneously exposed to different types of stressors: emotional 

(pictures depicting anxiety-provoking images, e.g. snakes), acoustic (white noise), and cognitive 

(mental calculations under the pressure of time).  

 Procedure 

Participants attended two experimental sessions 3-9 days apart (M = 6.09, SD = 1.80). 

Sessions took place between 9 am and 6 pm. 
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Session 1:  

Participants were informed about the procedures of the experiment and before signing the 

consent to participate in the study, they were shown an example of a negatively valenced image 

used in the study to ensure they would not find it too distressing. 

The aim of the first session was to ensure the mood-induction groups were well-matched 

and did not differ on any of the trait, mood or behavioural measures. Therefore, all participants 

completed the trait and AUQ questionnaires and underwent a neutral mood induction procedure 

(viewing neutral images while listening to music), to assess performance on the task under 

neutral conditions. Immediately before and after the mood induction, participants completed the 

VAS scales.  

Next, participants completed a battery of cognitive tasks (SST, MCQ, 5-CSRTT and 

IST). Tasks were completed in a randomised order with short pauses in-between. During the 

breaks, a shortened mood induction procedure (1 minute only) was introduced to maintain the 

stable mood throughout the session.  

Session 2:  

Participants were semi-randomly (to ensure equal proportions of males and females in 

each group) assigned to one of the four conditions: neutral (control), positive, sad, or anxious 

mood. Their mood was assessed with VAS before and immediately after the procedure. As in 

the first session, participants completed the five cognitive tasks in a randomised order with 1 

minute-mood induction periods in-between.  

At the end, participants were debriefed and signed a form confirming their willingness for 

the data being used in the analyses.  

 Statistical analyses 

To test whether the four groups were well-matched, baseline group demographics (age, 

smoking habit, alcohol use, and trait impulsivity measurements) as well as performance on the 

tasks during session 1, were compared using one-way ANOVA in SPSS, v22. Furthermore, to 

asses that groups did not differ in the way their mood ratings changed following the neutral 

mood manipulation at Session 1, a mixed ANOVA with time (pre- and post-manipulation) 

applied as a within-subject factor, and experimental condition (Control, Anxiety, Sad, Positive) 

as a between-subject factor was performed. Same mixed ANOVA was performed for session 2 

to assess whether mood induction was successful. To examine the influence of mood state on 

impulsive behaviour during session 2 a series of ANOVAs were performed. As the perception 

of mood induction may differ across individuals, in addition, correlational analyses were 
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performed between changes in mood state ratings (post-induction score – pre-induction score) 

and performance indices in the tasks, at session 2. 

 Results 

 Exclusions  

Two participants (one male) did not return for the second session. Moreover, one male 

volunteer was very inattentive throughout the first session of the study and failed to comply 

with the experimenter's instructions on three of the tasks; therefore, he was compensated for 

attending the first session and not invited to return for the second session and was excluded 

from the analyses completely. Thus, the final number of participants who completed both 

sessions of the study is 80 (49 females).  

Nine participants (3 from the Control group, 3 Sad, 3 Anxiety) were excluded from the 

SST analyses for the first session and 9 (4 Control, 2 Positive, 2 Sad, 1 Anxiety) for the second 

session as they failed to follow task instructions (i.e. they were slowing down responses waiting 

for the stop signal to occur, which resulted in go accuracy below 90% and stop correct rate 

above 60%).  

One participant (Anxiety group) was excluded from the IST FW analyses and another two 

individuals (Anxiety group) from the Reward Conflict condition for session 1 only, as they 

misunderstood the instructions (guessing rather than sampling information before making a 

choice or ignored changed instructions for the reward conflict condition). One participant was 

excluded from the IST FW condition and further three participants (Positive group) were 

excluded from the analyses of session 2, Reward conflict condition, due to continuous guessing 

on the task, rather than sampling information. 

Two participants (1 Anxiety, 1 Control) were excluded from the MCQ analyses for the 

first session and 1 (Control) for the second session, because of highly inconsistent responses 

given (less than 75% consistency).  

Due to technical problems, the 5-CSRTT was completed only by 56 participants during 

session 1 and 57 during session 2.  

 Session 1 (Control session) 

Groups were well matched for their demographics, personality trait measurements and 

performance on the tasks (see Table 2.1 for details).  

Repeated measures ANOVA with time (baseline vs post-mood induction 1) as a within-

subject factor and group (Control, Anxiety, Sad, Positive) as a between-subject factor showed a 
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main effect of time, F(1, 76) = 4,77, p = .032, ηp² = 0.059, on activity self-rating score, 

indicating a decrease in activity following the induction. No other main effects were observed 

(time effect: F(3, 76) ≤ 2.63, p > .05, ηp² ≤ .10, group effect : F(3, 76) ≤ 0.81, p > .05, ηp² ≤ .03). 

Data related to mood state ratings are presented in Table 2.2 and Appendix 2. There were also 

no group differences regarding performance on any of the task measurements (p’s > 0.5; see 

Table 2.3), suggesting that groups performed equally well on the tasks.  



 

 

 

Table 2.1 Sample demographics and trait measurements for each of the mood manipulation groups. 

Variable All Control Anxiety Sad Positive One-way ANOVA 

N (Female) 80(49) 20(12) 20(13) 21(13) 19(11) 
   

No of Smokers 13 2 3 4 4 1.041 0.7922 
 

 
Mean SD Mean SD Mean SD Mean SD Mean SD F p η² 

Age 22.15 3.69 22.05 3.75 22.75 4.32 22.57 4.09 21.16 2.52 0.71 0.55 0.027 

Alcohol Units per week 12.52 12.08 14.41 16.72 9.75 9.06 10.5 11.03 15.66 10.15 1.13 0.34 0.043 

No of Cigarettes a day 0.60 1.68 0.45 1.61 0.45 1.28 0.86 2.35 0.63 1.42 0.35 0.79 0.014 

BIS Total 64.07 9.00 63.75 8.61 63.75 11.22 65.00 9.29 63.58 7.35 0.10 0.96 0.004 

Premeditation 21.34 4.63 21.3 4.26 20.3 4.45 21.91 4.21 21.53 5.78 0.43 0.73 0.017 

Negative Urgency 28.73 5.61 27.45 4.82 28.15 6.04 30.38 6.23 28.68 5.39 1.01 0.39 0.038 

Sensation Seeking 36.23 6.79 36.35 7.69 37.50 6.08 34.71 5.54 36.47 8.20 0.57 0.64 0.022 

Perseverance 19.96 4.91 19.25 4.52 19.95 5.17 21.10 5.71 19.00 4.00 0.74 0.53 0.028 

1Χ² test, 2p-value 
       

        

 

  



 

 

 

Table 2.2 Mood state ratings for each group for Session 1 and 2 for each of the mood manipulation groups. 

Ratings   Control Anxiety Sad Positive 

Session 1   Mean SD Mean  SD Mean  SD Mean  SD 

Mood  
Baseline 72.10 18.84 63.50 20.80 66.29 17.20 62.95 25.92 

Post-induction 66.25 19.22 60.20 19.89 63.76 18.71 62.89 23.14 

Activity* 
Baseline 60.70 26.09 56.50 24.54 59.43 21.94 51.16 21.25 

Post-induction 54.30 22.21 49.70 22.89 54.90 23.19 52.89 23.11 

Relaxation 
Baseline 75.45 19.36 67.50 22.15 73.33 18.34 68.84 25.92 

Post-induction 68.85 19.82 62.15 23.60 72.00 15.48 69.53 24.73 

Session 2  
        

Mood& 
Post-induction 74.85 17.19 73.60 18.64 69.29 15.30 69.21 22.30 

Baseline 70.95 16.75 46.00 24.62 43.81 14.61 77.58 13.16 

Activity 
Post-induction 69.55 21.02 67.05 21.66 59.81 20.11 56.74 22.20 

Baseline 64.60 23.39 55.15 26.45 51.81 20.02 62.05 21.73 

Relaxation& 
Post-induction 76.30 19.70 67.33 22.68 62.14 21.93 64.37 19.73 

Baseline 71.90 20.12 40.35 24.81 49.71 16.76 72.37 12.13 

* a main time effect; &a group by time interaction indicating differential manipulation changes (relevant means in bold) 

  



 

 

 

Table 2.3 Tasks performance during session 1 and session 2 for each of the mood manipulation groups.  

Variables Control Anxiety Sad Positive One-way ANOVA 
 

N Mean SD N Mean SD N Mean SD N Mean SD F 
 

p η² 

Session 1 
                

SSRT 17 246.01 34.17 17 244.6 30.79 18 249.68 33.86 19 262.89 21.17 1.40 
 

0.252 0.06 

5-CSRRT No Omissions 15 1.60 1.92 10 0.60 0.84 17 1.00 1.54 14 0.79 1.42 1.07 
 

0.369 0.06 

5-CSRRT No Premature 15 3.40 2.90 10 2.50 2.42 17 3.00 2.60 14 1.71 0.91 1.37 
 

0.261 0.07 

IST FW No boxes opened 20 15.21 6.22 19 14.32 5.44 21 14.89 6.91 19 14.89 6.91 0.37 
 

0.775 0.02 

IST RC No boxes opened 20 9.54 3.24 18 9.73 4.19 21 9.72 4.84 19 9.72 4.84 0.17 
 

0.915 0.01 

Mean k-value (log transformed)  19 -4.83 1.55 19 -5.33 1.63 21 -5.00 1.53 19 -4.98 1.16 0.38 
 

0.767 0.02 

Session 2              
 

  

SSRT 16 246.25 29.19 19 248.78 39.28 19 242.76 26.93 17 240.15 46.71 0.16 ¹ 0.920 0.01 

5-CSRRT No Omissions 16 1.69 2.41 14 0.50 0.76 17 2.18 2.72 10 0.50 0.71 2.96 ¹ 0.049 0.12 

5-CSRRT No Premature 16 2.06 2.64 14 1.64 2.65 17 2.29 2.59 10 1.30 1.95 0.40 
 

0.756 0.02 

IST FW No boxes opened 20 12.70 6.40 20 10.70 3.35 21 13.42 6.47 18 12.46 5.97 1.33 ¹ 0.279 0.03 

IST RC No boxes opened 20 8.36 3.34 20 8.01 2.45 21 8.77 4.13 16 10.09 3.39 1.24 
 

0.300 0.03 

Mean k-value (log transformed)  19 -4.62 1.04 20 -4.92 1.29 21 -4.81 1.61 19 -5.11 1.64 0.40   0.754 0.02 

¹Welsh statistics
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 Session 2 (Mood Manipulation) 

Mood  

Repeated-measures ANOVA with time (baseline vs post 1) as a within-subject factor and 

mood induction group as a between-subject factor was conducted to assess the successfulness of 

mood manipulation (see Table 2.2 for descriptive statistics). The Anxiety and Sad groups 

showed significant decrease in mood ratings (increase in negative mood) following the 

induction, the Positive group showed an increase in mood ratings (increase in positive mood), 

while the Control group presented no significant change (time vs group interaction: F(3, 76) = 

15.26, p < .001, ηp²  = .38). Regarding the tension-relaxation scale, Anxiety and Sad groups 

showed a decrease in relaxation, Positive group showed an increase in relaxation, while the 

Control group did not change (interaction: F(3, 76) = 9.09, p < .001, ηp²  = .26). There was also 

a marginal interaction effect in activity ratings (F(3, 76) = 2.71, p = .051, ηp²  = .097): the 

Positive group showed an increase in activity, while the remaining groups did not present any 

significant changes. The brief mood inductions in-between the tasks were also successful at 

maintaining the desirable mood states throughout the duration of the session (see Appendix 2 

for details). 

Task performance 

The assumption of homogeneity of variances (Levene’s test p’s < .05) was violated for 

several measures: SSRT, NoOmiss and IST FW; therefore, Welsh test was computed to 

compare the performance between groups on these measures. A main group effect was found 

only for the number of omissions in the 5-CSRTT, Welsh (F(3, 28,51) = 2.96, p = .049),  

reflecting a higher number of omissions in the Sad group (see Table 2.3). However, Games-

Howell post-hoc test showed no significant differences between any of the groups’ pairs (p’s > 

.05). No other group effects were found. 

Correlations  

Subsequent correlational analyses were performed to explore the relationship between 

mood changes and performance on the tasks (see Table 2.4). There was a negative correlation 

between the tension-relaxation score change and SSRT, indicating that the more tense 

participants were, the more impulsively they behaved in the task. There were positive 

correlations between the tension-relaxation score change and the performance on the IST in 

both conditions, indicating that the more relaxed participants were, the more information they 

sampled (decreased reflection impulsivity).  
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Table 2.4 Correlation matrix between performance on the tasks during session 2 and changes in mood state ratings 
(Post-induction - Pre-induction). Correlations which survived the Bonferroni correction for multiple comparison (p < 
.004) are depicted in bold. 

 
 

The change in the activity score was negatively correlated with the discounting rate (log 

k), suggesting that an increase in activity was related to a decrease in temporal impulsivity. 

Change in the activity score was also negatively correlated with the number of premature 

responses, indicating that increased activity was related to lower level of premature responses; 

therefore, decreased 'waiting' impulsivity.  

With correction for multiple comparisons set at p < .004 only the relationships between 

activity score change and discounting rate, and the relationship between tension-relaxation score 

change and the performance in RC on the IST survived (see Figure 2.1).  

Variable Mood Activity Relaxation

Pearson's r -.050 -.140 -.270

p-value .664 .233 .023

Upper 95% CI .180 .090 -.040

Lower 95% CI -.280 -.370 -.470

Spearman's rho .150 .030 -.050

p-value .270 .822 .711

Upper 95% CI .390 .290 .210

Lower 95% CI -.120 -.230 -.310

Spearman's rho -.250 -.270 -.060

p-value .061 .047 .685

Upper 95% CI .010 -.040 .210

Lower 95% CI -.480 -.490 -.310

Pearson's r .010 -.070 .230

p-value .968 .564 .039

Upper 95% CI .220 .160 .430

Lower 95% CI -.220 -.280 .010

Pearson's r .100 -.140 .400

p-value .399 .217 < .001

Upper 95% CI .310 .080 .570

Lower 95% CI -.130 -.350 .190

Pearson's r -.060 -.330 -.090

p-value .574 .003 .452

Upper 95% CI .160 -.120 .140

Lower 95% CI -.280 -.510 -.300

IST: FW No 

boxes

IST: RC No 

boxes

MCQ: log k

SST: SSRT

5-CSRTT: No 

Omissions

5-CSRTT: No 

Premature 

Responses
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Figure 2.1 Plots showing significant association between post-induction changes in mood state and performance in 
the tasks during session 2. The top panel presents the relationship between the change in activity score (Post Activity 
– Pre Activity) and the discounting parameter (k value). The bottom panel presents the relationship between the 
change in Tension/Relaxation score (Post Relaxation – Pre Relaxation) and the performance on the information 
sampling task (IST), reward conflict condition (RC) 

 Discussion 

The current study investigated the role of emotional state as a modulator of impulsive 

behaviour. Although no group differences in performance on the tasks were found, based on 

correlational analyses, we report relationships between behavioural impulsivity and subjective 

changes in mood state, irrespective of the group allocation. Specifically, increased relaxation (vs 

tension) was related to increased information gathering on the IST (decreased reflection 
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impulsivity), while increased activity (vs tiredness) was associated with lower levels of delay 

discounting (decreased temporal impulsivity). Together, our results suggest that distinct facets 

of impulsive behaviours are differentially affected by individual changes in mood state.  

We predicted that increased positive affect might be related to decreased reflection 

impulsivity via enhanced task efficiency (Isen & Means, 1983; Isen et al., 1991). We found no 

relationship between either mood state (valence) or arousal (activity) measures, instead, 

increased relaxation state following the mood manipulation procedure was related to higher 

information sampling before deciding in the IST. This relationship was stronger for the reward 

conflict condition, in which participants sample information at a certain cost – the more boxes 

they open, the smaller the potential reward. This may indicate that changes across the tension-

relaxation domain may be related to motivational changes. The “tension-relaxation” scale had 

proved to be a sensitive measure of subjectively experienced stress state in previous 

investigations (Ilona Papousek et al., 2010; Ilona Papousek, Schulter, & Premsberger, 2002; 

Iona Papousek & Schulter, 2001). Therefore, our results might be interpreted as the more 

stressed participants felt, the more impulsively they behaved on the IST RC.  

We suspected that increased positive affective state might be associated with improved 

self-regulation, and therefore, decreased temporal impulsivity. We found no associations 

between temporal impulsivity and measures of either mood or tension/relaxation scales. The 

lack of findings linking mood scale (valence) contradicts previous research. For example, a 

study with preschool children also showed that pupils in whom a happy mood state was induced 

chose the larger delayed rewards significantly more often than those in a sad mood state (Moore 

et al., 1976). In contrast, participants who report high levels of negative affective state, show 

higher discounting rates (higher temporal impulsivity) than those low in a negative affective 

state (Koff & Lucas, 2011). Instead, our results indicate a specific relationship between 

temporal impulsivity and self-reported activity: Increased activity following the mood induction 

procedure was associated with low temporal impulsivity. Mental fatigue following completion 

of a cognitive task was associated with a diminished emotion regulation (Grillon, Quispe-

Escudero, Mathur, & Ernst, 2015). Possibly the same mechanism applies to self-control on 

inter-temporal decisions in fatigued (decreased in activity) individuals resulting in short-sighted 

choices as shown in the present study. 

Regarding motor impulsivity, there were significant group differences in the number of 

omissions on the 5-CSRTT. Post-hoc tests were insignificant, but judging by the mean values 

only, it appears that the Sad group was the most inattentive. This lends some support to our 

hypotheses that negative affective state might be related to attentional lapses. This conclusion 

also agrees with reports by Smallwood and colleagues (Smallwood et al., 2009): Relative to 

positive, negative mood state was associated with more attentional lapses, increased frequency 

of reports of task-irrelevant thoughts, and more difficulty to adjust behaviour following a lapse.  
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Moreover, there was a negative association between change in activity ratings and the 

number of premature responses, suggesting that individuals who felt more active following the 

mood induction, showed lower 'waiting' impulsivity. However, this correlation did not survive 

the correction for multiple companions; therefore, providing only tentative evidence for the 

relationship between mood state and ‘waiting’ impulsivity. 

Similarly, our results lend some tentative evidence for the relationship between increased 

reports of tension (stress state) and impaired response inhibition. Noteworthy, past research on 

the role of emotional states on response inhibition yielded inconsistent results, with some 

studies reporting no effects of mood state (Cackowski et al., 2014; Weafer et al., 2013), some 

increased prepotent response inhibition following stress induction (Schwabe et al., 2013), yet 

another study found diminished inhibitory control following distress induction (Patterson et al., 

2016). Possibly, some of these differences may be accounted for by different measures of 

‘stopping’ impulsivity employed. Our findings agree with results by Patterson et al. (2016), who 

used a standard version of the SST, suggesting that acute stress state is associated with 

diminished motor response inhibition. Overall, the role of current emotional states on aspects of 

motor impulsivity remains unclear, and further research is necessary to resolve this issue. 

Considering all findings together, we suggest that individual differences in perceived 

mood state or susceptibility to mood changes may play an essential role in situational 

impulsivity. In other words, individuals who are more prone to mood swings may also 

experience more mood-dependent changes in impulsive behaviour. Indeed, deficits in emotion 

regulation, which can lead to mood swings, have been linked to many impulse-related 

behaviours such as excessive food intake or substance and non-substance-related addictive 

behaviours (including alcohol, drug abuse, gambling disorder, video game addiction, and 

problematic Internet use) (de Campora & Giromini, 2015; Estévez, Jáuregui, Sánchez-Marcos, 

López-González, & Griffiths, 2017; Kelly et al., 2016; Williams, Grisham Jessica R, Erskine, & 

Cassedy, 2011). Moreover, in a study by Tice and colleagues, distress induction led to 

impulsive behaviours. However, ‘mood-freezing’ manipulation (i.e. leading people to believe 

that their mood state will not be affected) diminished the effect of distress on behaviour (Tice et 

al., 2001), suggesting that being in control (or a sense of control) over emotional reactions, 

simultaneously aids impulse control. Together, these findings imply that improved emotional 

regulation strategies may help reduce impulsive behaviours. Additionally, current results also 

pose some implications for research: current mood state should be considered when assessing 

behavioural impulsivity.  

There were some limitations to the current study that should be considered. Our sample 

consisted of a narrow age range of individuals, the typical undergraduate sample of students, 

which restricts the generalisation of the findings. Mood inductions were successful, but as in 

previous studies (e.g. X. Zhang, Yu, & Barrett, 2014), it was easier to modulate negative 
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emotions (Sad and Anxiety groups) than positive emotions (Positive group). In fact, the Control 

and Positive groups showed similar mood ratings.  
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 Appendix 1: Mood induction – details 

Neutral, positive and sad mood was induced by presentation of emotional images 

(neutral, positive, or sad respectively) taken from the International Affective Picture System 

(IAPS, Lang et al., 2005) combined with congruent emotional musical excerpts which proved to 

enhance emotional experience in the past research (Baumgartner, Lutz, Schmidt, & Jäncke, 

2006; O. J. Robinson & Sahakian, 2009). Image selection was based on emotional ratings from 

previous studies (Lang, Bradley, & Cuthbert, 2008; Mikels et al., 2005b, 2005a, 2005c; J. C. 

Smith, Bradley, & Lang, 2005). Each image was displayed on the screen for 5 s. During the 

neutral induction, picture presentation was accompanied by the excerpt from The Planets, Op. 

32: VII. Neptune, the Mystic by Gustav Holst. In the positive version, Serenade No. 13 KV 525 

G Major: I. Serenade. Allegro by Wolfgang Amadeus Mozart was played, while in the sad 

mood induction, Adagio in G Minor by Tomaso Albinoni was played. The whole procedure 

lasted 5 minutes.  

The anxiety induction procedure was based on the Mannheim Multicomponent Stress 

Test (Kolotylova et al., 2010; Reinhardt, Schmahl, Wüst, & Bohus, 2012). Participants were 

simultaneously exposed to different types of stressors (emotional, acoustic, and cognitive). In 

the first part of the induction (lasting 1 minute) participants viewed unpleasant emotional 

pictures while listening to white noise of increasing intensity (78 to 93 dB) to avoid habituation 

effect. Affective pictures were selected from the IAPS database (IAPS, Lang et al., 2005), based 

on their ratings of arousal and valence, as well as an ability to evoke feelings of anxiety and fear 

(Mikels et al., 2005b; J. C. Smith et al., 2005). Each picture was presented on the full screen for 

5 seconds. 

As a cognitive stressor a computerized version of the Paced Auditory Serial Addition 

Task (PASAT-C, Lejuez, Kahler, & Brown, 2003) was used. Numbers were sequentially 

presented in the middle of the screen, while affective images were displayed in the background. 

Participants were required to sum the number currently presented on the screen with the 

previous one and type the answer using a keyboard. Next, subjects had to ignore the sum and 

add the following number to the one presented before, etc. Each incorrect or too slow response 

was punished by an acoustic error signal. The mental calculation task consisted of two parts, 

lasting 2 min each. The time latency between the numbers in part 1 was 3 s and for the part 2 it 

was 2 s. The whole anxiety-induction procedure lasted 5 minutes.  

Before the induction, participants completed a 10-trial practice run to familiarise 

themselves with the PASAT.  

 Table S2.1 presents selected images for each mood-induction condition. One-way 

analysis of variance (ANOVA) showed that there were significant differences between the 

categories of images on the valence (F(3,396) = 2077.89, p < .001) and arousal (F(3,396) = 
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171.28, p < .001) ratings. Bonferroni post-hoc test confirmed that Sad and Anxious categories 

were well matched regarding valence ratings (p = 1), but Anxious images were rated as more 

arousing (p = .002). In contrast, Positive and Sad categories were well matched on arousal 

ratings (p = .251), but Sad category has significantly lower valence ratings than Positive one (p 

< .001). There were significant differences between in all other comparisons (p’s < .05). For 

details see Table S2.2 and Figure S2.1, which depict valence and arousal ratings for each group 

of images. 
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Table S2.1 IAPS images selected for each mood induction condition. 

Sad: 

2053 2800 3150 6200 6530 9000 9140 9331 9440 9600 

2205 2900 3160 6210 6561 9001 9160 9400 9470 9611 

2590 3051 3180 6212 6570 9006 9180 9405 9490 9620 

2691 3061 3220 6242 6571 9007 9181 9415 9500 9622 

2700 3062 3230 6243 6821 9040 9182 9417 9520 9630 

2710 3063 3261 6244 6830 9041 9220 9420 9530 9800 

2722 3064 3300 6250 6831 9042 9250 9421 9560 9830 

2750 3100 3350 6312 6940 9045 9253 9430 9561 9910 

2751 3102 4621 6360 7361 9050 9265 9432 9570 9911 

2753 3140 6010 6370 8230 9120 9280 9433 9571 9920 

Positive: 

1440 1721 2091 2530 4660 5629 7260 7570 8190 8470 

1460 1750 2150 2550 5260 5660 7270 7580 8200 8490 

1463 1811 2160 2650 5270 5700 7280 8030 8210 8496 

1500 1920 2165 2660 5450 5820 7330 8034 8300 8497 

1510 1999 2170 4599 5460 5830 7350 8080 8350 8501 

1540 2040 2260 4607 5470 5831 7400 8090 8370 8502 

1590 2050 2311 4608 5480 5910 7430 8120 8380 8503 

1600 2057 2340 4610 5600 5982 7470 8162 8400 8510 

1610 2070 2341 4614 5621 7200 7480 8170 8420 8531 

1710 2080 2391 4650 5623 7230 7502 8180 8461 8540 

Neutral: 

1560 2570 2880 5532 7000 7034 7140 7205 7490 7820 

1670 2580 2890 5533 7002 7035 7150 7207 7491 7830 

2020 2620 4000 5534 7004 7040 7160 7217 7500 7950 

2190 2702 4571 5731 7006 7050 7170 7224 7550 8010 

2200 2752 5120 5900 7009 7060 7175 7233 7560 8160 

2210 2810 5500 5920 7010 7080 7180 7234 7590 8311 

2220 2830 5510 5940 7020 7090 7182 7235 7620 9070 

2351 2840 5520 5950 7025 7100 7183 7237 7640 9210 

2381 2850 5530 6150 7030 7110 7185 7283 7700 9360 

2440 2870 5531 6900 7031 7130 7187 7351 7710 9402 

Anxious: 

1050 2692 3102 3550 6244 6550 8230 9180 9430 9620 

1120 2710 3140 6020 6250 6560 8480 9181 9433 9621 

1201 2722 3150 6190 6260 6561 9001 9182 9440 9622 

1300 2800 3160 6200 6312 6570 9040 9250 9470 9630 

1301 3051 3180 6210 6313 6571 9041 9253 9490 9800 

1302 3061 3261 6212 6350 6821 9042 9265 9500 9910 

1930 3062 3280 6230 6360 6830 9050 9400 9570 9911 

1931 3063 3350 6241 6370 6831 9120 9405 9571 9912 

2120 3064 3500 6242 6510 6940 9140 9420 9600 9920 

2691 3100 3530 6243 6530 7361 9160 9421 9611 9921 
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Table S2.2 Descriptive statistics for valence and arousal ratings for groups of images selected for each condition. 

 

 

Figure S2.1 Ratings of each group of images on valence (upper panel) and arousal (bottom panel). Error bars represent 
standard error of the mean. 

 

Ratings
Group of 

images
N Mean SD SE Min Max

Lower Upper 

Bound Bound

Sad 100 2.57 0.54 0.05 2.46 2.67 1.40 3.75

Positive 100 7.47 0.36 0.04 7.40 7.54 6.96 8.34

Neutral 100 5.04 0.44 0.04 4.96 5.13 4.03 5.99

Anxious 100 2.66 0.66 0.07 2.53 2.79 1.40 4.21

Sad 100 5.46 0.75 0.08 5.31 5.61 3.52 6.60

Positive 100 5.22 0.81 0.08 5.06 5.38 3.98 7.35

Neutral 100 3.38 1.07 0.11 3.17 3.59 1.72 6.97

Anxious 100 5.89 0.71 0.07 5.75 6.03 3.52 7.35
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 Appendix 2: Supplementary figure 

 

Figure S 2.2 Kusta mood state ratings for sessions 1 and 2 for each group. Error bars represent standard error of the 
mean. 
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 Abstract 

Objectives: The consequences of impulsive decisions and actions represent a major source of 

concern to the health and well-being of individuals and society. It is, therefore, crucial to understand 

the factors which contribute to impulsive behaviours. Here, we examined how personality traits of 

behavioural tendencies, interoceptive sensibility as well as transient mood states predict behavioural 

performance on impulsivity and risk-taking tasks. 

Method: 574 (121 males; age 18-45) individuals completed self-report personality measures 

of impulsivity, reward sensitivity, punishment avoidance as well as interoceptive sensibility, 

undertook a mood assessment and performed a set of cognitive tasks: delay discounting (temporal 

impulsivity), probability discounting (risk-taking), and reflection impulsivity task. Data were 

interrogated using principal component analysis, correlations and regression analyses to test mutual 

relationships between personality traits, interoceptive sensibility, mood state and impulsive 

behaviours.  

Results: We observed a clear separation of measures used, both trait and behavioural. 

Namely, sensation-seeking, reward sensitivity and probability discounting reflected risk-taking. 

These were separate from measures associated with impulsivity, both trait (negative and positive 

urgency, premeditation, perseverance) and behavioural (delayed discounting and reflection 

impulsivity). This separation was further highlighted by their relationship with the current 

emotional state: positive affect was associated with increased risk-taking tendencies and risky 

decision-making, while negative emotions were related to heightened impulsivity measures. 

Interoceptive sensibility was only associated with negative emotions component.  

Conclusions: Our findings support the proposal that risk-taking and impulsivity represent 

distinct constructs that are differentially affected by current mood states. This novel insight 

enhances our understanding of impulsive behaviours. 

___________________________________________________________________________

Keywords: UPPS-P, Sensation Seeking, Delay Discounting, Probability Discounting, Reflection 

Impulsivity, Interoceptive Sensibility, Emotional State. 
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 Introduction 

Impulsivity describes a set of behaviours characterized by relative dominance of spontaneity 

over consideration. Examples include a preference towards obtaining immediate gratification over a 

delayed (yet ultimately more profitable) outcome, making ‘snap decisions’ before evaluating 

available information, or having difficulty waiting one’s turn, withholding a reaction, or aborting an 

initiated motor response (Daruna & Barnes, 1993; Moeller et al., 2001). Although spontaneous 

actions may be adaptive, for example when the matter is of little importance or when there is little 

time to make a decision (Dickman, 1990), high levels of impulsivity often result in negative 

consequences. Correspondingly, impulsivity is associated with poor academic achievement and 

impaired psychometric performance on reasoning tasks (Schweizer, 2002; Lozano et al., 2014). A 

high degree of impulsivity is also related to risky driving (Pearson et al., 2013), violent behaviour 

when under the influence of alcohol (Klimkiewicz et al., 2014), diminished self-control and an 

increased food intake (Guerrieri, Nederkoorn, & Jansen, 2007; Guerrieri, Nederkoorn, Stankiewicz, 

et al., 2007; Meule & Kübler, 2014), especially while experiencing negative emotions (Van 

Blyderveen et al., 2016). The importance of impulsivity is increasingly recognized in a clinical 

setting: Many neuropsychiatric conditions, including addiction, bipolar disorder, and Attention-

Deficit Hyperactivity Disorder are characterized by elevated impulsivity (American Psychiatric 

Association, 2013). Risk-taking is also closely related to impulsivity and predicts the initiation of 

drug and alcohol use and the pursuit of other hazardous behaviours (e.g. unprotected sex) 

(Donohew et al., 2000; Ríos-Bedoya et al., 2008). 

Impulsivity may determine the integrity of our health and how everyday life flows or falters. 

It is, therefore, crucial to understand the factors that underlie impulsive behaviour and its 

expression. Moreover, impulsivity is a multidimensional construct (Whiteside & Lynam, 2001; 

Caswell et al., 2015; Herman et al., 2018), so it is also vital to investigate what factors might 

differentially influence distinct impulsivity subtypes. Ultimately, improved understanding of 

modulators of impulsive behaviour can enable us to develop better-coping strategies to help 

impulsive individuals and promote more advantageous decision-making in everyday life. Finally, 

impulsivity research to date focuses either on university students or certain target populations, e.g. 

substance abusers or binge drinkers. Hence broad information about the general population is 

lacking, yet much needed.  

One likely modulator of impulsive behaviour is affective state (for discussion see Herman et 

al., 2018). Indeed, people show diminished impulse control (i.e. behave more impulsively) when 

experiencing negative affect (Tice et al., 2001). However, it is unknown if subtypes of impulsivity 

are equally affected by emotional states or whether impulsive behaviour is particularly sensitive to 
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specific emotions. Moreover, the role of characterological features contributing to ‘behavioural 

style’, for example, personality traits or sensitivity to internal bodily signals (interoception), is not 

to be underestimated, as these may shape how impulsively individuals respond while experiencing 

various mood states. 

Implicitly one would assume that a measure of trait impulsivity would reflect the degree to 

which an individual behaves impulsively. However, typically very weak relationships are observed 

between various trait impulsivity (questionnaire) measures and objective performance on 

impulsivity tasks (Caswell et al., 2015; Cyders & Coskunpinar, 2011; Franken, van Strien, Nijs, & 

Muris, 2008; Shen, Lee, & Chen, 2014). Possibly, interoceptive ability, enabling more accurate 

detection of internal bodily sensations, e.g. heart rate (Craig, 2009), may determine why and when 

we behave impulsively. Physiological cues may guide behaviour particularly when a potential risk 

is involved (Damasio, 1996; Bechara et al., 1997; Katkin et al., 2001). For example, in a classic 

study by Bechara et al., (1997), healthy individuals playing a gambling task generated anticipatory 

skin conductance responses whenever they considered a choice that turned out to be risky, before 

they developed an explicit knowledge that the choice was risky. In addition, more recently, good 

interoceptive ability was found to be associated with more advantageous choices in the Iowa 

Gambling Task (Werner et al., 2009) and predicted profitable decisions in London financial traders 

(Kandasamy et al., 2016). Since disadvantageous decision-making is considered a part of 

impulsivity construct (Winstanley, 2011; Herman et al., 2018), this evidence could suggest that 

more impulsive individuals may lack interoceptive sensitivity. Alternatively, since  highly 

impulsive individuals appear also to have lower resting levels of arousal compared to peers 

(Fowles, 2000; Mathias & Stanford, 2003; Puttonen et al., 2008; Schmidt et al., 2013), and 

engagement in impulsive or risky actions may be a maladaptive way of reaching an ‘optimal’ level 

of arousal (Zuckerman, 1969; Barratt, 1985; Eysenck & Eysenck, 1985), impulsive individuals may 

have normal interoceptive sensitivity to changes in their internal state, yet engage in impulsive 

actions as a means of regulating their arousal level.  

Within the current study, we sought to examine the relationship between personality traits of 

impulsive tendencies, reward sensitivity and punishment avoidance, subjective interoceptive traits 

(interoceptive sensibility; Garfinkel et al., 2015), current emotional states with behavioural 

impulsivity. In particular, we were interested which of these variables would be the best predictor of 

task performance. The UPPS-P impulsive behaviour scale (Cyders & Smith, 2007; Whiteside & 

Lynam, 2001) was used to assess aspects of impulsive tendencies. This scale was selected as it 

incorporates several dimensions of impulsivity based on personality measures with addition of 

tendencies for impulsive behaviours while experiencing strong emotions (urgency subscales). 
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Additionally, the Behavioural Inhibition System/Behavioural Activation System Questionnaire 

(Carver & White, 1994) was employed as a measure of reward sensitivity and punishment 

avoidance. The Body Perception Questionnaire (Porges, 1993) was used to score general subjective 

sensitivity to bodily processes (interoceptive sensibility; Garfinkel et al., 2015). The Positive 

Affect/Negative Affect Scale (Watson et al., 1988) and the Depression, Anxiety, Stress Scale 

(Henry & Crawford, 2005) were used to assess self-reported emotional state. Risk-taking behaviour 

was assessed from performance on a probability discounting task (Madden et al., 2009). Distinct 

facets of impulsive behaviour were measured with the Monetary Choice Questionnaire (Kirby et al., 

1999), which assesses the ability to delay gratification (temporal impulsivity), and performance of 

the Matching Familiar Figures Task (Cairns & Cammock, 1978), which measures the degree of 

information seeking before making a decision (reflection impulsivity).  

Since impulsivity is a term which encompasses a wide range of behaviours (Herman et al., 

2018), we hypothesized that distinct behavioural dimensions would be predicted by distinct factors. 

First, as interoception is linked to risk-taking and advantageous decision-making (Werner et al., 

2009; Kandasamy et al., 2016), we predicted that individual differences in interoceptive sensibility 

would predict risk-taking. Second, extending earlier observations (Tice et al., 2001), we predicted 

that negative emotional states compromise self-control, and thus increase behavioural impulsivity. 

Third, we predicted that components of the UPPS-P scale, which include emotion-based impulsivity 

components, would predict objective aspects of behavioural impulsivity.  

To test our hypotheses, we conducted an online survey study of participants extending into 

the general population, providing a more demographically representative sample of the UK 

population than earlier studies. Participants completed self-report personality questionnaires, state-

mood assessment and interoceptive sensibility questionnaires, and performed specific behavioural 

tasks to obtain an objective measure of impulsivity and risk-taking. 

 Material and methods 

The study was approved by the University of Sussex Ethical board. Volunteers had to be at 

least 18 years old to participate. The study was conducted online via Qualtrics platform 

(https://www.qualtrics.com/) between May and October 2016. To make the results generalizable to 

a broad population, we wanted to obtain information from people with different backgrounds, 

educational levels, age, and not just university students. Therefore, participants were recruited via 

social media, websites (www.reddit.com, www.craiglist.org, and www.callforpartcipants.com), 

mailing lists, as well as posters advertising the study on Campus, cafes and community centres 
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around Brighton. Inclusion in a £25 prize draw or a possibility to earn two study credits for 

Psychology undergraduate students were offered as an incentive for participation.  

 Procedures 

After reading study information, volunteers confirmed that they understood all information 

and then consented to their willingness to take part in the study. After completing the survey, 

participants were debriefed. The completion of the study took approximately 20 minutes (based on 

a pilot study during which participants completed the study uninterrupted).  

 Questionnaires 

Basic demographics questionnaire was used to determine age, sex, education, smoking habits 

and recreational drug use. 

Alcohol Use Questionnaire (AUQ) (Townshend & Duka, 2002) provided an estimate of a 

number of alcohol units consumed a week. 

UPPS-P Impulsive Behaviour Scale (Whiteside & Lynam, 2001; Cyders & Smith, 2007) is a 

59-item self-report measure of five dimensions of impulsivity: negative urgency (NU) – a tendency 

to act on impulse while experiencing strong negative emotions, (lack of) premeditation (LPrem)– a 

tendency to act without taking into account the consequences, (lack of) perseverance (LPe) – 

difficulty completing tasks which may be tedious or difficult, sensation seeking (SS) – a pursue of 

excitement and novelty, and positive urgency (PU) – a tendency to act on impulse while 

experiencing strong positive emotions.  

Behavioural Inhibition System/Behavioural Activation System (BIS/BAS) Questionnaire 

(Carver & White, 1994) consists of 20 items organized into two main scales: BIS, which evaluates 

punishment sensitivity, and BAS which assesses reward sensitivity. BAS is further divided into 

three subscales: BAS Reward (anticipation or the occurrence of the reward), BAS Drive (the pursuit 

of desired goals), and BAS Fun Seeking (desire for new rewards and willingness to approach them).  

Body Perception Questionnaire (BPQ) Very Short Form (Porges, 1993) consists of 12 items 

rated on a five-point scale and provides a measure of general awareness of bodily processes (high 

values indicate high awareness of bodily sensations). 

Depression, Anxiety, Stress Scale (DASS) (Henry & Crawford, 2005) consists of three 7-item 

self-report scales that measure the extent of depression, anxiety, and stress experienced over the last 

week. 
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Positive Affect/Negative Affect Scale (PANAS) (Watson et al., 1988) is a 20-item measure of 

self-reported positive (PA), and negative affect (NA) experienced at the present moment.  

 Tasks 

Matching Familiar Figures Task (MFFT) (Kagan et al., 1964; Cairns & Cammock, 1978) is a 

measure of reflection impulsivity. Participants need to identify an image identical to a target one, 

out of six possible options. The dependent variable is an Impulsivity Score (IS), which reflects 

quick responses and a high number of errors (high values indicate high reflection impulsivity).  

Monetary Choice Questionnaire (MCQ) (Kirby et al., 1999) is a measure of temporal 

impulsivity. It consists of a list of 27 choices between pairs of smaller immediate rewards (SIR) and 

larger but delayed rewards (LDR). The dependent variable is the discounting parameter (k) 

calculated for each participant using the formula: k = ((LDR-SIR)-1)/delay (log-transformed to 

reduce skewness). Large k values indicate high temporal impulsivity.  

Probability Discounting task (PD) (Madden et al., 2009) is a measure of risk-taking. It 

consists of a list of 30 choices between smaller certain rewards and uncertain larger gains. The 

dependent variable is h parameter, which reflects a degree of probability discounting at the 

indifference between two outcomes (a point at which the certain and probabilistic rewards are of 

equivalent subjective value). The h-parameter was calculated for each participant using the formula: 

h = (ProbabilisticReward/CertainReward -1)/OddsAgainsWinning) (ln-transformed to reduce 

skewness). Large h values indicate discounting of probabilistic rewards (risk aversion). 

 Data analysis 

Data analysis was conducted using Statistical Package for Social Sciences (SPSS) version 22. 

First, principal component analysis (PCA) with pairwise deletion was conducted to reduce the 

number of variables for further analysis. PCA was carried out with Varimax rotation with Kaiser 

Normalization. Next, exploratory correlations between identified components were computed to 

better characterize their mutual relationship. Finally, multiple regression models were constructed 

to investigate which components best predict each subtype of impulsive behaviour.  
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 Results 

 Participants 

603 individuals completed the online questionnaire (132 males; age 18-74 24.39 ± 9.26), of 

whom 183 were 1st or 2nd-year psychology students who took part in the study in exchange for 

course credits. Due to such variability in age and a small fraction of older volunteers, we decided to 

focus on a subset of younger participants (≤ 45 years old). Therefore, the final sample size was 

constrained to 574 (121 males; age 18-45, 22.83 ± 6.06). 474 participants were non-smokers. 

 Exclusions 

The following exclusion criteria were employed: for the MCQ and PD, participants with low 

response consistency (<75%) were excluded from the analysis (23 and 6 excluded, respectively), as 

low consistency makes it difficult to establish the discounting parameters reliably. Due to the 

specific character of the study and limited control over circumstances participants were completing 

the tasks, for the MFFT, for which response time is important for calculating the dependent variable 

IS, we excluded participants whose reaction times were outside the range observed in the previous 

study performed in our lab with a large sample size (N = 160) (Caswell et al., 2015) (46 excluded).  

 Principle Component Analysis 

Eighteen variables were included in the PCA: mean k value (log10-transformed to correct 

issue of non-normality), mean h value (ln-transformed), MFFT IS, NU, PU, LPrem, LPe, SS, BIS, 

BAS Fun, BAS Reward, BAS Drive, BPQ, Depression, Anxiety, Stress, PA, NA. 

The total sample size of 574 participants for the 18 items exceeds the suggested minimum 

ration of 5 participants per item (Gorsuch, 1983). Chi-square was used to evaluate the fit between 

the model and the data. Components with eigenvalues >1 were retained, yielding six components, 

with the total of 67% of variance explained, which seemed to fit the data well. The Kaiser-Meyer-

Olkin measure of sampling adequacy was .757, above the commonly recommended value of .6, and 

Bartlett’s Test of Sphericity was significant (χ2 (153) = 3107.60, p < .001), indicating that the null 

hypothesis that the correlation matrix is an identity matrix can be rejected. Finally, the 

communalities were all above .4, further confirming that each item shared some common variance 

with other items. Three items (PA BAS reward, and BPQ) cross-loaded on two factors above .4. 

Overall, PCA was deemed to be suitable for all 18 items. For details see Table 3.1. 
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The first component represented items related to the negative emotional state including 

Depression, Anxiety, Stress and NA. Component 2 included items related to how behaviours are 

motivated by the pursuit of rewards and excitement as well as positive feelings (namely all three 

BAS subscales, SS and PA). Component 3 contained items related to trait impulsivity (PU, NU, 

LPe, LPrem; all subscales of UPPS-P impulsivity scale but SS), and PA. Component 4 included 

punishment avoidance trait (BIS) and BAS reward, and factor 5 contained discounting parameters 

(k and h) and BPQ. Finally, factor 6 contained BPQ and MFFT IS.  

Removal of PA and SS from component 2, resulted in more reliable BAS factor (α = .721), 

therefore, for the further analysis, we chose to use BAS separately from SS and PA. Likewise, 

deletion of PA from component 3 resulted in higher reliability score (α = .751); therefore, the new 

Impulsive Personality Trait (IPT) component was computed. The components 4, 5 and 6, had low-

reliability scores; thus, these items were kept separately.  

The complete list of variables used in subsequent analyses together with descriptive statistics 

is presented in Table 3.2.  

Table 3.1 Component loading and reliability scores for components identified with the PCA. 

   RC 1  RC 2  RC 3  RC 4  RC 5  RC 6  

Anxiety  0.85 -0.03 0.07 0.06 0.12 -0.07 

BAS Drive  0.10 0.77 -0.04 -0.04 -0.06 0.08 

BAS Fun  -0.04 0.81 0.29 -0.01 0.03 0.00 

BAS Reward  -0.07 0.67 -0.24 0.49 0.03 0.01 

BIS  0.17 -0.13 -0.05 0.87 -0.03 0.01 

BPQ  0.20 0.10 -0.12 0.14 0.57 -0.50 

Depression  0.80 -0.10 0.20 0.08 -0.09 0.03 

MCQ log k  0.06 0.09 0.17 -0.06 0.61 0.05 

MFFT IS  0.09 0.07 0.05 0.05 0.17 0.86 

NA 0.80 0.07 0.02 -0.08 0.03 0.05 

Negative Urgency  0.36 0.32 0.59 0.32 0.11 0.07 

Positive Affect  0.09 0.45 -0.50 -0.36 0.17 0.06 

LPer 0.14 -0.22 0.78 -0.03 0.03 0.01 

Positive Urgency  0.28 0.40 0.62 -0.09 0.11 0.03 

LPrem  0.02 0.18 0.77 -0.19 0.04 0.08 

PD ln h  -0.08 -0.25 -0.05 -0.01 0.57 0.18 

SS  -0.13 0.67 0.14 -0.36 -0.09 -0.09 

Stress  0.86 0.04 0.10 0.17 0.02 0.01 

Cronbach’s Alpha 0.86 0.55 0.67 0.34 0.14 0.10 

Variance Explained [%] 17.30 15.60 13.65 8.13 6.35 5.87 



 

 

    

Table 3.2 Final variables identified based on PCA, descriptive statistics and gender scores comparisons. 

N M SD N M SD N M SD F p t df p

BPQ 574 2.91 0.93 453 2.92 0.91 121 2.89 1.00 3.90 0.05 0.30 177.44 0.761

SS 574 31.99 7.42 453 31.44 7.46 121 34.07 6.94 1.44 0.23 3.50 572.00 < .001

BIS 574 22.27 3.75 453 22.83 3.55 121 20.20 3.75 0.31 0.58 7.14 572.00 < .001

BAS 574 38.58 5.66 453 38.56 5.78 121 38.68 5.19 4.03 0.05 0.22 206.60 0.827

PA 574 26.67 9.00 453 26.30 8.87 121 28.06 9.36 0.68 0.41 1.91 572.00 0.056

Negative Emotions 574 17.36 7.59 453 58.49 32.08 121 54.99 29.10 0.65 0.42 1.09 572.00 0.278

MCQ log k 551 -2.05 0.76 432 -2.11 0.74 119 -1.80 0.77 0.79 0.37 4.00 549.00 < .001

PD ln h 568 0.69 0.99 448 0.71 0.98 120 0.60 1.01 0.00 0.97 1.13 566.00 0.260

MFFT IS 533 -0.02 1.36 419 0.01 1.34 114 -0.15 1.43 0.15 0.70 1.15 531.00 0.251

IPT 574 99.72 20.53 453 99.23 20.91 121 101.59 19.04 0.78 0.38 1.12 572.00 0.262

Female Male Levene's Test t-testAll
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 Correlations 

The correlational analysis was conducted to explore further and better characterize the 

relationship between items identified via PCA. Since impulsivity-related traits decrease with age 

(Steinberg et al., 2008) and our sample had a large age-range (18-45), correlations between all the 

variables and age were computed. PD h parameter was positively correlated with age, indicating 

increased discounting of probabilistic rewards with age (risk-avoidance), r(566) = .118, p = .005. 

Similarly, SS was negatively correlated with age, r(572) = -.142, p = .001, indicate a decrease in SS 

with age. MFFT IS score slightly decreased with age, also indicating a decrease in reflection 

impulsivity with age, r(531) = -.09, p = .032. IPT was also negatively correlated with age, r(572) = 

-.113, p = .007, suggesting a decrease in trait impulsivity with age. Lastly, positive affect was 

positively correlated with age, r(572) = .119, p = .004. 

We also wanted to account for possible sex differences in the identified components. 

Significant differences were found in SS, BIS scores, and temporal impulsivity (Table 3.2); namely, 

females reported higher punishment avoidance (higher BIS score), but lower SS, than males. 

Females also discounted delayed rewards less steeply than males (i.e. showed lower temporal 

impulsivity). 

Therefore, partial correlations were computed between all variables used in the further 

analysis controlling for age and gender (see Table 3.3 for details). Bonferroni correction for 

multiple comparisons was set at p ≤ .001. 

 Mood and impulsivity 

IPT, as well as BIS, were significantly correlated with PA and the Negative Emotional state 

indicating that individuals higher on self-reported impulsivity and punishment aversion also 

reported lower levels of positive affect and higher levels of negative mood state. The reverse was 

true for SS – increased sensation seeking, which was related to higher positive affect and lower 

negative emotions. Similarly, BAS was positively correlated with PA, suggesting that individuals



    

 

 

Table 3.3 Pearson partial correlations, controlling for age and gender, between identified variables. 

BPQ r -0.007 0.055 0.070 0.058 0.179 *** 0.013 0.094 * 0.047 -0.050

p 0.877 0.193 0.094 0.168 < .001 0.750 0.027 0.260 0.251

df 570 570 570 570 570 570 547 564 529

SS r -0.302*** 0.494 *** 0.250 *** -0.119 ** 0.167 *** -0.007 -0.109 ** -0.012

p < .001 < .001 < .001 0.004 < .001 0.865 0.009 0.781

df 570 570 570 570 570 547 564 529

BIS r -0.028 -0.190 *** 0.209 *** -0.003 0.022 0.008 -0.020

p 0.506 < .001 < .001 0.952 0.614 0.856 0.638

df 570 570 570 570 547 564 529

BAS r 0.300 *** 0.018 0.230 *** 0.079 -0.140 *** 0.060

p < .001 0.669 < .001 0.064 0.001 0.169

df 570 570 570 547 564 529

Positive Affect r -0.030 -0.166 *** 0.035 -0.018 0.009

p 0.479 < .001 0.411 0.663 0.840

df 570 570 547 564 529

r 0.359 *** 0.104 * -0.027 0.086 *

p < .001 0.015 0.525 0.047

df 570 547 564 529

IPT r 0.183 *** -0.035 0.134 **

p < .001 0.401 0.002

df 547 564 529

MCQ log k r 0.005 0.091 *

p 0.916 0.041

df 545 508

PD ln h r 0.045

p 0.307

df 524

Neg Emotions

* p <  .05, ** p <  .01, *** p  ≤ .001, in bold are presented correlations that survived the correction for multiple comparison (p ≤ .001). 

BPQ – Body perception questionnaire score, SS – Sensation Seeking, BIS – Behavioral Inhibition Scale score, BAS – Behavioral Approach 

Scale score, Neg Emotions – Negative Emotional State (DASS and NA), IPT – Impulsive Personality Trait, MCQ log k – Monetary Choice 

Questionnaire log transformed k parameter, PD ln h – Probability Discounting ln transformed parameter h, MFFT IS – Matching Familiar 

Figures Task Impulsivity Score.

Positive 

Affect

Neg 

Emotions
IPT MCQ log k PD ln h MFFT ISSS BIS BAS
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high in reward sensitivity experience more positive affect. Temporal discounting and MFFT IS 

were correlated with the Negative Emotional state indicating that increased negative state was 

related to an increased temporal and reflection impulsivity. However, these correlations did not 

survive Bonferroni correction for multiple comparisons. 

 The relationship between behavioural and trait measures: 

MCQ and MFFT only correlated with IPT, indicating increased temporal and reflection 

impulsivity in high-trait impulsivity individuals. PD, on the other hand, correlated with SS and 

BAS, suggesting that high SS (did not survive the Bonferroni correction) and BAS was related with 

impulsive decisions in the PD task (choosing the riskier option).  

 The relationship between personality traits: 

SS was negatively associated with BIS, indicating that individuals who were high in 

sensation seeking report low punishment avoidance. Instead, SS, BAS and impulsive personality 

were all positively inter-correlated.  

 Interoceptive sensibility and impulsivity: 

BPQ was positively correlated with Negative Emotions component indicating that self-

reported bodily awareness is related to increased negative mood. Moreover, BPQ was also weakly 

positively correlated with MCQ, meaning that individuals high on impulsive personality also 

reported high self-perceived bodily awareness, however, this correlation did not survive Bonferroni 

correction.  

 Regressions 

Multiple linear regressions were conducted with performance on the three behavioural tasks 

as dependent variables. Sex, mean-centred age and items identified with the factor analysis served 

as independent variables.  

ANOVA indicated that all three regression models provided a good fit for the data (MCQ log 

k: F(9, 541) = 5.10, p < .001; PD ln h: F(9, 558) = 2.91, p =.002; MFFT IS: F(9, 523) = 2.41, p = 

.011). Tests to see if the data met the assumption of collinearity indicated that multicollinearity was 

not a concern (for all the dependent variables: Tolerance > .06, 1 < VIF <1.7).  
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It was found that trait impulsivity and sex were both significant predictors of the MCQ k 

parameter. Increased delay discounting (higher temporal impulsivity) was predicted by male sex 

and higher impulsive personality trait. None of the measures of mood were predictors; however, 

BPQ approached significance. Age and BAS were significant predictors of h parameter, indicating 

that younger age and higher reward sensitivity were predictive of more risky behaviour on the 

probability discounting task. Trait impulsivity turned out to be the only significant predictor of the 

MFFT IS, suggesting that high trait of impulsive personality is predictive of reflection impulsivity. 

Details are presented in Table 3.4. 

 Discussion 

The current study investigated the role of personality traits (impulsive tendencies, reward 

sensitivity, punishment avoidance, and interoceptive sensibility) and emotional states as potential 

modulators of distinct subtypes of impulsive and risky behaviours. In accordance with our 

hypotheses, we first confirmed that trait impulsivity (IPT; positive and negative urgency and lack of 

premeditation and perseverance components of the UPPS-P scale) predicted temporal and reflection 

impulsivity. Moreover, reward sensitivity (BAS) best predicted risk-taking in a probability 

discounting task. However, contrary to our initial predictions, affective state did not predict any 

behavioural dimensions and no link was found between subjective interoception (interoceptive 

sensibility) and risk-taking. 

We hypothesised that negative emotional state would relate to decreased self-control and 

therefore more impulsive behaviour. Although mood state was not a predictor of any of the 

behavioural tasks, we found correlational evidence providing tentative support for our hypothesis. 

Specifically, negative emotional state was related to both more short-sighted monetary decisions 

(increased temporal impulsivity) and more rushed decisions in the MFFT (increased reflection 

impulsivity). Although these relationships were weak, they nevertheless added to evidence form 

earlier studies which suggested that the experience of emotional distress, drives people to treat 

themselves to immediate pleasures, such as indulgent foods over healthy options, as a means of 

regulating one’s mood (Moore et al., 1976; Tice et al., 2001; Lerner et al., 2013; Gardner et al., 

2014). Experience of emotional distress is also considered a major trigger in substance use relapse. 

For example, stressful events increase the urge to drink alcohol and chances of relapse in treated 

alcoholics (Sinha et al., 2009; Sinha, 2012). Increasingly, research also suggests that people drink 

alcohol to enhance positive or manage negative emotional state, and reduce tension (Conger, 1956; 

Cooper et al., 1995; Zack et al., 2002). Together, these findings support the importance of 

emotional state in impulsive choice and suggest that negative emotions bias behaviour toward 
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rushed and more near-sighted decisions, which can further lead to detrimental consequences both 

regarding finance (e.g. self-indulgence to improve one’s mood instead of saving) and health 

(obesity, the risk of cardiovascular disorders, substance misuse).  

 

Table 3.4 Results of the multiple regression. 

Dependent variable Predictors B SE Beta t Sig.  R R Square 

MCQ log k (Constant) -2.11 0.04 
 

-58.96 < .001 0.279 0.078 
 

IPT 0.01 0 0.19 3.92 < .001 
  

 
Gender 0.3 0.08 0.17 3.76 < .001 

  

 
BPQ 0.06 0.03 0.08 1.85 0.065 

  

 
Positive Affect 0.01 0 0.07 1.46 0.144 

  

 
BAS 0.01 0.01 0.04 0.84 0.402 

  

 
Age 0 0.01 0.03 0.69 0.492 

  

 
Neg Emotions 0 0 0.01 0.27 0.784 

  

 
BIS 0 0.01 0.01 0.17 0.869 

  

  SS -0.01 0.01 -0.07 -1.38 0.167     

PD ln h (Constant) 0.31 0.02 
 

15.37 < .001 0.212 0.045 
 

BAS -0.01 0 -0.12 -2.39 0.017 
  

 
Age 0.01 0 0.1 2.37 0.018 

  

 
BPQ 0.03 0.02 0.06 1.46 0.144 

  

 
Gender -0.06 0.05 -0.06 -1.35 0.179 

  

 
SS 0 0 -0.07 -1.31 0.19 

  

 
Neg Emotions 0 0 -0.05 -1.07 0.284 

  

 
Positive Affect 0 0 0.03 0.75 0.454 

  

 
IPT 0 0 0.03 0.58 0.565 

  

  BIS 0 0.01 0 -0.07 0.944     

MFFT IS (Constant) 0.01 0.07 
 

0.15 0.88 0.198 0.039 
 

IPT 0.01 0 0.12 2.37 0.018 
  

 
Age -0.02 0.01 -0.08 -1.79 0.074 

  

 
BPQ -0.1 0.06 -0.07 -1.53 0.127 

  

 
SS -0.01 0.01 -0.08 -1.49 0.138 

  

 
BAS 0.02 0.01 0.06 1.21 0.228 

  

 
Neg Emotions 0 0 0.05 1.08 0.281 

  

 
BIS -0.02 0.02 -0.05 -0.94 0.348 

  

 
Gender -0.13 0.15 -0.04 -0.86 0.391 

  

 
Positive Affect 0 0.01 0.03 0.53 0.594 

  

BPQ – Body perception questionnaire score, SS – Sensation Seeking, BIS – Behavioral Inhibition Scale score, BAS – 
Behavioral Approach Scale score, Neg Emotions – Negative Emotional State (DASS and NA), IPT – Impulsive Personality 
Trait, MCQ log k – Monetary Choice Questionnaire log transformed k parameter, PD ln h – Probability Discounting ln 
transformed parameter h, MFFT IS – Matching Familiar Figures Task Impulsivity Score. 

A relationship was also observed between emotional state and trait measures: High levels of 

positive affect were associated with high levels of sensation seeking and reward impulsivity (SS and 

BAS) and low levels of both BIS and impulsive traits (IPT). The reverse was true for high levels of 

negative emotions. The fact that self-reported trait measures were related to state mood-measures 

merits comment since they are usually considered to be stable personality traits, unaffected by 
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changes in mood (Weafer et al., 2013). The positive association between self-reported impulsivity 

and negative emotions corroborates with findings from clinical populations indicating increased 

impulsive tendencies in depressed individuals (Peluso et al., 2007; Tomko et al., 2015). Moreover, 

similarly to previous research (Sperry et al., 2016), higher sensation seeking (SS) ratings were 

associated with higher positive affect.  

However, since these are correlational measures, causality cannot be assumed. Nevertheless, 

it is plausible that while experiencing negative emotions, individuals may recall events when they 

behaved impulsively (memory bias) and be primed to behave the same way. Alternatively, engaging 

in impulsive actions may serve as a way of regulating one’s mood (Tice et al., 2001). Thus, it seems 

that emotional state is a consideration when assessing trait impulsivity. 

It is noteworthy that the impulsive personality trait (IPT; as identified here) was related to 

negative emotions, whereas levels of sensation seeking (SS) were associated with positive affect. 

This dissociation between impulsive and risk-taking traits was further supported by component 

loadings within the principal component analysis, which separated SS from the remaining UPPS-P 

subscales. Indeed, although sensation seeking is encompassed within some constructs of impulsivity 

(Zuckerman, 1984; Whiteside & Lynam, 2001), other research suggests a differentiation between 

these two concepts (Magid et al., 2007). Our findings also show that sensation seeking is distinct 

from trait impulsivity.  

Delay discounting and reflection impulsivity were both predicted by the self-reported 

impulsivity (IPT), while risk-taking (probability discounting) was explained solely by BAS. Indeed, 

although early research suggests that delay and probability discounting are both facets of impulsive 

choice, sharing underlying processes (e.g. Mazur, 1993; Rachlin, 1990; Richards et al., 1999), more 

recent work argues that these two concepts are distinct from each other (Holt et al., 2003; Madden 

et al., 2009; Shead & Hodgins, 2009). Our findings agree with the latter, suggesting that delay and 

probability discounting reflect distinct aspects of decision-making, indexing delayed gratification 

and risk-taking/reward sensitivity respectively.  

In agreement with an earlier report (Silverman, 2003), we observed that males showed 

significantly more delay discounting than females. The reason why gender may play such a role, 

what the mechanisms and potential consequences are, should be a subject of the future research.  

 Impulsive personality traits, which include facets of emotional impulsivity, predicted 

performance on the delay discounting task, supporting our hypothesis. It is worth noting that in both 

delay and probability discounting, our models explained only a small fraction of the variance, which 

suggests that other factors are contributing to discounting which are yet to be identified.  
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The MFFT task has been widely used to study reflection impulsivity in children and other 

target populations (Kagan, 1965; Verdejo-García et al., 2008; Carretero-Dios et al., 2009). 

However, it has been heavily criticised as a measure of behavioural impulsivity (e.g. Block et al., 

1974) and suggested to be more related to cognitive performance more generally rather than 

behavioural impulsivity (Block et al., 1986; Perales et al., 2009). Our results indicate that impulsive 

personality trait is the best predictor of performance on the MFFT task, also supporting the 

classification of MFFT performance as a measure of reflection impulsivity (Caswell et al., 2015).  

In contrast to our expectations, no relationship was found between subjective interoceptive 

sensibility (BPQ) and probability discounting. This is distinct from previous 

research which reported the relationship between risk-taking or disadvantageous decision-making 

and individual differences in interoception (Werner et al., 2009; Kandasamy et al., 2016). These 

discrepancies may be due to methodological aspects of the measures employed. In the current study, 

we used a probability discounting task, which is an explicit measure of risk-taking. Using a more 

implicit measure of risk-taking, e.g. a gambling task, alongside a dimensional approach to 

quantifying (subjective objective and metacognitive) interoceptive abilities (Garfinkel et al., 2015) 

could provide much finer grained insight into how interception relates to impulsivity, extending 

previous findings. Instead, we found a trend for bodily awareness to predict temporal discounting, 

indicating that heightened subjective sensitivity to bodily sensations (i.e. higher interoceptive 

sensibility, often characteristic of more anxious individuals) may result in increased temporal 

impulsivity. Similarly, the observed relationship between BPQ and negative emotions is also 

consistent with the association between interoception and anxiety (e.g. Pollatos et al., 2009; Dunn et 

al., 2010; Stevens et al., 2011; Garfinkel et al., 2015).  

 Limitations 

Some study limitations merit comment. Firstly, this study relied on survey data obtained via 

an online questionnaire. There was consequently little experimental control over the circumstances 

in which participants completed the study, which should be considered. Future research may benefit 

from more controlled environments, e.g. as a typical lab-based study, to validate these findings. 

Secondly, despite recruiting participants online, our sample consisted mainly of female participants 

and a very small proportion of older adults. In the future, a more gender-balanced sample also 

including elderly should be studied to confirm these findings.  
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 Conclusions 

Our results indicate that impulsive personality traits predict temporal and reflection 

impulsivity, while reward sensitivity predicts risk-taking behaviour (probability discounting). This 

separation between measures of impulsivity and risk-taking suggests that the two concepts are 

distinct. The dissociation between measures of impulsivity and risk-taking was further highlighted 

by their relationship to the current emotional state: While increased negative emotions were 

predictably associated with increased impulsivity, increased positive affect was associated with 

increased measures of risk-taking. This interesting finding has important consequences for research 

since it suggests that the same person may show different levels of trait impulsivity in a positive 

(less impulsive) than a negative (more impulsive) mood state. Thus, future research into trait 

impulsivity should attend to concurrent mood states of participants. Marginal findings of the present 

study also motivate areas of further research: The fact that negative emotions were related to 

increased temporal impulsivity may indicate at least partly why people in a positive mood are likely 

to make commitments, such as keeping to a diet or exercising regularly – that is when they can 

oversee long-term goals over immediate goals. Consequently, in a negative emotional state, 

perception shifts towards immediate gratification (e.g. comfort food, watching television series 

instead of going to the gym). Moreover, our findings with the BPQ link subjective body awareness 

to temporal impulsivity suggesting the need for in-depth understanding of the relationship 

between interoceptive ability and decision-making. 
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 Abstract 

The capacity for self-control is highly adaptive and fundamental to completing many 

daily tasks. However, negative emotions may deplete self-control resources, leading to an 

increase in impulsive actions and decisions. However, the neural mechanisms through which 

negative emotions alter self-control are not fully understood. The current study quantified the 

effect of negative (fearful) emotional context on prepotent response inhibition and delay 

discounting in a group of university students (N = 30) and used functional neuroimaging to 

identify neural correlates. We further tested how trait impulsivity related to functional 

connectivity within resting-state networks. During successful response inhibition, activation of 

prefrontal and parietal cortices was amplified in individuals with higher trait impulsivity. 

Fearful, compared to neutral, affective context further enhanced this effect, consistent with the 

need of impulsive individuals to engage more neural resources for successful inhibitory control 

in a negative emotional context. Temporal discounting was unaffected by emotional context and 

trait impulsivity. Resting-state functional connectivity analysis revealed that trait impulsivity 

was related to weaker coupling between lateral occipital cortex and the Somatomotor Network. 

This suggests that the coordination between sensory (visual, somatosensory) representation and 

behavioural output (motor actions) may be disrupted in highly impulsive individuals, resulting 

in maladaptive behaviours and suboptimal decisions. Together, our findings provide fresh 

insight into the neural mechanisms of successful response inhibition, highlighting a need for 

impulsive individuals to recruit greater neural resources, particularly in negative emotional 

context, potentially to compensate for decreased functional connectivity of the Somatomotor 

Network. 

________________________________________________________________________

Keywords: Trait impulsivity, Stop Signal Task, Delay Discounting, Emotions, fMRI, Resting-

State Functional Connectivity 

  



119 

 

 Chapter 4  

 Introduction  

Self-control allows people to make plans for the future, choose the best option out of 

several alternatives, control impulses, inhibit unwanted thoughts, and regulate behaviours and 

emotions (Kelley et al., 2015). However, emotional distress and negative affective states deplete 

limited self-control resources and lead to impulsive actions and decisions (Muraven & 

Baumeister, 2000; Heatherton & Wagner, 2011; Kelley et al., 2015). Indeed, the tendency for 

people to engage in impulsive actions while experiencing emotional distress may reflect an 

attempt to regulate present mood state at the cost of suboptimal future consequences (Tice et al., 

2001).  

Behavioural self-control is not only altered by the profound experience of distress, but 

also by task-unrelated emotional context. For example, being surrounded by anxious individuals 

may be sufficient to affect the way we make decisions: a negative context is associated with 

steeper temporal discounting of delayed rewards (i.e. more impulsive decisions with increasing 

impatience; Augustine & Larsen, 2011; Guan et al., 2015).  

Research on emotional effects on behavioural response inhibition (i.e. motor impulsivity) 

does not always yield consistent results. Some studies suggest that neither task-independent 

emotional context nor emotional primes affect response inhibition in modified versions of 

commonly used motor impulsivity tasks (Sagaspe et al., 2011; Brown et al., 2012; Guan et al., 

2015; Chester et al., 2016; Littman & Takács, 2017). Other research, however, observes 

impaired inhibitory control in the fearful compared to neutral contexts (Verbruggen & De 

Houwer, 2007; Kalanthroff et al., 2013; Patterson et al., 2016). Moreover, the context of anger 

seems to improve response inhibition in male participants (Pawliczek et al., 2013).  

Neuroimaging has contributed towards understanding the relationship between emotions 

and self-control. Failures in self-regulation appear to be the result of diminished ‘top-down’ 

prefrontal control over subcortical centres for reward and emotion (e.g. nucleus accumbens and 

amygdala; Heatherton & Wagner, 2011). Correspondingly, lesions to the medial orbitofrontal 

cortex lead to diminished self-control with an increased preference for immediate gratification 

despite its being more advantageous to wait for a larger reward (temporal impulsivity; Peters & 

D’Esposito, 2016; Sellitto et al., 2010). However, the hypothesis that the functional integrity of 

prefrontal cortices also underpins the impact of negative emotional contexts on impulsive 

behaviours, including difficulty in delaying gratification, remains untested.  

In motor impulsivity, successful deployment of behavioural inhibitory control also 

requires recruitment of more lateral orbitofrontal and prefrontal regions (Fassbender et al., 

2006; Aron, 2007; Aron et al., 2007; Deng et al., 2017). However, the effects of negative 

emotion on motor inhibition are inconsistent, both for behavioural and neuroimaging findings. 

On the Go/No Go (GNG) task, a measure of action selection and restraint, with task-irrelevant 
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threatening or neutral images, response restraint in the emotional relative to neutral context was 

related to an increased recruitment of areas associated with visual attention and conflict 

resolution with no differences on behavioural performance (Brown et al., 2012). In the Stop 

Signal Task (SST), inhibitory control is enhanced in the context of anger primes, linked to 

enhanced recruitment of right pre-supplementary motor area (pre-SMA), right middle frontal 

cortex and left inferior parietal cortex (Pawliczek et al., 2013). However, in the same (SST) 

task, equivalent inhibitory control in a fearful, compared to a neutral, context is associated with 

reduced activation of the right inferior frontal gyrus (IFG) (using region of interest approach; 

Sagaspe et al., 2011). Reduced activity in prefrontal cortex (PFC) and lateral parietal cortex is 

also reported during successful response inhibition in the SST following presentation of fearful 

emotional primes (Patterson et al., 2016).  

Possibly, small samples sizes and individual differences may account for some of these 

inconsistencies in the literature. For example, certain individuals (e.g. those showing high trait 

impulsivity) may be more strongly affected by emotional contextual information at both 

behavioural and neural levels. Indeed, negative urgency describes the propensity to act 

impulsively while experiencing strong negative emotions. Participants who score high for 

negative urgency show greater recruitment of inhibitory brain regions when exposed to a 

negative context during response restraint on the GNG task compared to individuals who score 

low for negative urgency (Chester et al., 2016). On the other hand, Pawliczek et al., (2013) 

observed that individuals displaying high trait anger are more impaired on the SST than those 

showing lower trait anger which was accompanied by attenuated activation in brain regions 

involved in response inhibition, including the pre-supplementary motor area and motor cortex. 

However, they found no interactions between trait aggression and emotional context (angry 

faces) on either behavioural or neural level. 

 Resting State Functional Connectivity 

Past studies usually employed task-related functional magnetic resonance imaging (fMRI) 

to understand transient fluctuations in self-control in different emotional contexts. Although it is 

well suited to capture momentary brain activity changes in response to various conditions, this 

traditional approach may be insufficient to capture more tonic aspects of self-control (Kelley et 

al., 2015). A global whole-brain network approach provides a means to understand how 

individuals execute self-control over longer timescales. Moreover, measurement of functional 

connectivity (FC) across ‘resting-state’ (RS) networks provides a valuable tool to address the 

mechanisms underlying neurocognitive processes and neuropsychiatric disorders which goes 

beyond activation–dependent modular inferences from task-related changes in regional brain 

activity (for example Cole et al., 2014; De Luca et al., 2006; Dipasquale et al., 2015; van den 
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Heuvel & Hulshoff Pol, 2010). Indeed, studies using FC to investigate the interactions between 

distinct brain regions at rest have been used to study impulsivity and executive functioning in 

children (Inuggi et al., 2014) and young adults (Davis et al., 2013; Reineberg et al., 2015; 

Weafer et al., 2015). However, a study looking at associations between trait impulsivity and 

within- and between-network FC is missing.  

 Aims 

An understanding of the brain mechanisms underlying self-regulation can provide 

valuable insights into how people regulate and control their thoughts, behaviours, and emotional 

states and what happens on those occasions when this regulation fails (Kelley et al., 2015). The 

current study built on previous findings to investigate how emotion-laden conditions (negative 

affective context) affect response inhibition and temporal decision-making in healthy 

individuals who differ in their levels of trait impulsivity. We predicted that fearful context might 

disrupt self-control mechanisms at the behavioural level resulting in more impulsive behaviours, 

especially in individuals who show increased levels of trait impulsivity. At the neural level, we 

hypothesised that successful response inhibition in a fearful context would be supported by 

increased activity in the prefrontal cortex (Sagaspe et al., 2011). Moreover, based on previous 

findings, we suspected that internal architecture of the default mode (Inuggi et al., 2014), 

frontoparietal and attentional networks (Reineberg et al., 2015) might be affected by trait 

impulsivity. 

 Materials and Methods 

 Participants  

Thirty volunteers (9 men) were recruited from staff and students of the University of 

Sussex. Participants were required to be between 18 and 40 years old and right-handed. 

Exclusion criteria included history of any mental or neurological disorders, head injury, current 

treatment for any psychological or physical condition (including use of inhalers; excluding the 

contraceptive pill), pregnancy or breastfeeding, clinically significant impairment of vision, 

taking any psychoactive substances 48 hours before testing, and any MRI contradictions 

(claustrophobia, having any metal implants, teeth braces or bridges, or cardiac pacemakers). 

All participants provided written informed consent. The study was approved by the 

Brighton and Sussex Medical School Research Governance and Ethics Committee. 
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 Questionnaires 

Participants completed the Barratt Impulsiveness Scale (BIS; Patton et al., 1995) and 

UPPS-P Impulsive Behaviour Scale (Whiteside & Lynam, 2001; Cyders & Smith, 2007), which 

are established self-report measures of trait impulsivity levels. Both questionnaires were used as 

UPPS-P contains measures of emotion-based impulsivity (i.e. positive and negative urgency), 

which assess the tendency to act impulsively while experiencing strong emotional states. For 

this study, our variables of interest were BIS Total score and UPPS Negative Urgency subscale.  

 Tasks  

For the task-based fMRI investigation, we used an event-related fMRI paradigm. Before 

the fMRI session, all volunteers also underwent training outside the scanner to familiarise them 

with the tasks and to ensure they follow the instructions correctly.  

During scanning, stimuli were back-projected onto a mirror mounted on the head coil and 

presented centrally against a homogeneous grey background. We used Cogent 2000 (Wellcome 

Dept., London, UK) in MATLAB (Mathworks Inc.) for stimulus presentation, the timing of 

stimuli and response events, and synchronisation with fMRI image acquisition. In both tasks, 

the emotional context was task-irrelevant. 

Affective Stop Signal Task (ASST) 

The ASST was based on a modified version of the SST based on previous work (Sagaspe 

et al., 2011; Pawliczek et al., 2013) with timings taken from the standard version of the task 

used in the laboratory, as described previously (Nikolaou et al., 2013). Instead of arrows, 

participants were presented with facial expressions from the FACES database (Ebner et al., 

2010) of males and females (50% each) displaying either fear or neutral expression (50% each).  

Each trial started with a central fixation cross for 1200-1500ms (jittered). Presentation of 

the Go-stimulus (a facial expression surrounded by a white frame) followed, which on the Go-

trials remained on the screen for the total stimulus display duration of 800ms. On the Stop-trials, 

the Go-stimulus was replaced by the Stop Stimulus (the same picture surrounded by a yellow 

frame) after a variable stimulus onset asynchrony (SOA) period (see Figure 4.1). Initial SOA 

was 200ms and was adjusted according to a staircase procedure depending on individual 

performance separately for each emotional condition, to obtain a probability of stopping 0.5 for 

each condition. SOA increased 50ms every time the participant inhibited their response (Stop 

Success, SS) or decreased by 50ms every time the participant was unable to withhold their 

response (Stop Fail, SF). The Stop-Signal Reaction Time (SSRT) was calculated separately for 

neutral (NeuSSRT) and fearful (FeaSSRT) trials by subtracting the mean SOA from the average 
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reaction time (RT) to correct Go-trials (GoC; neutral or fearful, respectively). Further, 

dependent variables included Go RT and Go Accuracy. 

 

Figure 4.1 The Affective Stop Signal Task. The panel on the left shows an example of a Go trial (neutral condition), 
during which participants had to indicate with the appropriate button-press the gender of the face presented in the 
picture, irrespective of emotional expression. Participants had up to 1000ms to respond. The panel on the right shows 
an example of the Stop trial (fearful condition). The sudden change in the colour of the frame surrounding the picture 
(the Stop signal) meant that participants had to withhold (inhibit) their response (indicating perceived gender) and 
not press any buttons. The timing of the change in the frame’s colour during Stop-trials (stop-signal delay) was 
adjusted online in accordance with the participants’ performance: after a successful response inhibition, on the next 
Stop trial of the same emotional condition, the delay period was increased, making it more difficult to stop, while 
following an unsuccessful Stop trial, the delay was decreased, making it easier to withhold a response. 

On the Go-trials, participants were instructed to respond with an appropriate button-press 

to indicate whether the face displayed on the screen was male or female (implicit emotional 

context) as quickly as possible and to try and withhold their responses when the frame 

surrounding the picture changed colour (Stop-trials). Participants were informed that speed and 

accuracy on task are equally important and that they should not be delaying their responses to 

see whether the frame would turn yellow.  

Participants completed two runs of 160 trials each separated by a 1-minute break to allow 

them to relax. In total there were 120 Go Neutral, 120 Go Fearful, 40 Stop Neutral, and 40 Stop 

Fearful trials. 

Affective Delay Discounting Task (ADD) 

The second task was a modified delay discounting task, which measures the ability to 

delay gratification. Participants were presented with black and white facial expressions of (50% 

male, 50% female, 50% neutral, 50% fearful) from the NimStim (Tottenham et al., 2009) and 

Radbound Faces (Langner et al., 2010) Databases. Each trial started with a 1200-1500ms 

(jittered) central fixation cross. Then, a facial expression was presented in the centre of the 

screen for 2 seconds, followed by a different face of a congruent emotional expression (fearful 

or neutral) accompanied beneath by a question with two possible answers, displayed below the 

image, for example, “Would you prefer: £10 now, or £25 next week?” (Figure 4.2). The order of 

the immediate and the delayed options display was randomised. Participants were required to 
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respond by pressing an appropriate button. The trial was terminated after a response button was 

pressed or 7s has elapsed, whichever came first. Moreover, the participants were instructed to 

pay attention to each facial expression presented on the screen and imagine that the person in 

the image asks the question displayed below. Participants completed one run of 54 trials (27 

neutral, 27 fearful trials in a randomised order) each. 27 items were taken from the Monetary 

Choice Questionnaire (Kirby et al., 1999) and another 27 questions were adapted version 

matched for k values was developed (see Appendix). For each emotional condition, a k value 

(log transformed) and average decision RT for each condition were computed.  

 

Figure 4.2 The Affective Delay Discounting Task. Each trial began with the presentation of a fixation cross (jittered 
between 1.2-1.5s). Next, a facial expression was presented on a screen for 2s, followed by a presentation of a different 
face depicting the same emotion (fearful or neutral) accompanied by a question; asking the participants to choose 
between a smaller monetary reward available immediately and a larger reward available after a delay. Participants 
were required to make a choice by pressing an appropriate button. They had up to 7s to decide. 

 MRI experiment design 

In the MRI scanner, first, a structural scan was obtained followed by a 7-minute resting-

state scan (165 volumes) during which participants were instructed to rest with their eyes open 

focusing on a fixation cross in the centre of the screen without thinking of anything and not 

falling asleep. Subsequently, ASST and ADD were completed. The total time spent in the 
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scanner by each participant did not exceed 50 minutes. All participants were tested between 2 

pm and 6 pm to control for possible time of day effects on an attentional level. 

MRI Acquisition  

MRI was performed on a 1.5-Tesla MAGNETOM Avanto scanner (Siemens AG, 

Munich, Germany). Structural volumes were obtained using the high-resolution three-

dimensional magnetisation prepared rapid acquisition gradient echo sequence. Functional data 

sets used T2*-weighted echo planar imaging sensitive to blood oxygenation–level-dependent 

signal (repetition time = 2.52 seconds, echo time = 43 ms, flip angle = 90°, 34 slices, 3-mm 

slice thickness, field of view = 192 mm, voxel size = 3 × 3 × 3 mm). Slices were angled -30° in 

the anteroposterior axis to reduce the signal loss in orbitofrontal regions (Deichmann et al., 

2003; Weiskopf et al., 2006). 

 Statistical Analysis 

Behavioural and trait measures 

The differences in performance between the fearful and neutral conditions were 

investigated using paired-samples t-tests. Additionally, the potential differences in decision RTs 

on the ADD were analysed with repeated measures analysis of variance (ANOVA). To test the 

interaction between trait impulsivity and the difference in performance between the emotional 

conditions, we calculated subtraction scores (FeaSSRT-NeuSSRT, Fealogk-Neulogk) and 

computed correlation scores with trait impulsivity (BIS total and negative urgency). The 

analysis was conducted in SPSS v22. 

fMRI Data Preprocessing 

Imaging analysis was performed using FEAT (FMRI Expert Analysis Tool) version 6.00, 

a part of FMRIB Software Library (FSLv6.0, Jenkinson, Beckmann, Behrens, Woolrich, & 

Smith, 2012). Pre-processing steps included (1) skull stripping of structural images with Brain 

Extraction Tool (BET), (2) removal of the first four functional volumes to allow for signal 

equilibration, (3) head movement correction by volume-realignment to the middle volume using 

MCFLIRT, (4) global 4D mean intensity normalization, (5) spatial smoothing (6mm full-width 

half-maximum), and (6) noise signals removal, (7) temporal high-pass filtering (90s cut-off for 

task-related data, and 100s for resting-state data).  

FMRI datasets were co-registered to the participant's structural image using affine 

boundary-based registration as implemented in FSL FLIRT (Jenkinson & Smith, 2001; 

Jenkinson et al., 2002) and subsequently transformed them to MNI152 standard space with 

2mm isotropic resolution using non-linear registration through FSL FNIRT (Andersson et al., 
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2010). Noise signals were identified individually and removed using ICA-AROMA toolbox 

(Pruim et al., 2015). ICA-AROMA incorporates probabilistic Independent Component Analysis 

(ICA) on the partly pre-processed single-subject fMRI data (following spatial smoothing and 

normalisation but before high-pass filtering), identifies independent components (ICs) 

representing motion artefacts and removes them from the fMRI time-series using linear 

regression.  

Task-related fMRI analysis methods 

Statistical analyses were performed using the general linear model as implemented in 

FEAT. Customized square waveforms representing each event type and the duration of stimulus 

presentation were convolved with a double-gamma hemodynamic response function, and a high 

pass filter (90 s) was applied to remove low-frequency artefacts. For the ASST, events were 

modelled at the onset of the Go-stimuli. Several types of events were distinguished for the 

ASST for each condition (Neutral and Fearful): go correct (NeuGoC and FeaGoC), go incorrect 

(NeuGoI and Fea GoI), stop success (NeuSS and FeaSS), stop fail (NeuSF and FeaSF). For the 

ADD, three event types were identified for each emotional condition: face presentation (Neutral 

or Fearful), immediate (NeuImm and FeaImm) and delayed option selected (NeuDel and 

FeaDel). 

Functional MRI data were subsequently analysed using voxel-wise time series analysis 

within the framework of the General Linear Model. Mixed-effects analysis of group effects was 

carried out using the FMRIB Local Analysis of Mixed Effects (FLAME). Final Z statistical 

images were thresholded using Gaussian random field–based clusters determined by Z > 2.3 

(family-wise error corrected) and a cluster significance threshold of p < 0.05 across the entire 

brain (Worsley, 2001; Heller et al., 2006). 

Since there was a broad age range within our population (18-37yrs) and more females 

participated in the study, in all reported analyses gender and mean-centred age were added as 

covariates of no interest at the second level group analysis. Subsequently, we repeated all the 

analysis with the BIS total score and, separately, Negative Urgency as a covariate of interest to 

investigate whether more impulsive individuals showed changes in brain activity in the tasks.  

Several contrasts of interest were computed. Specifically, for the ASST the main contrast 

of interest regarded the emotional context vs successful response interaction term ([FeaSS-

FeaGoC]-[NeuSS-NeuGoC]). For completeness, we also computed the successful response 

inhibition regardless of the emotional context (SS>GoC) contrast; however, since our main 

focus was on the role of the emotional context, these results are reported in the Appendix. The 

main contrast for the ADD was the interaction term of brain activity related to choosing a 

delayed and immediate reward in fearful vs neutral context ([FeaDel-FeaImm]-[NeuDel-

NeuImm]). Additional contrasts [i.e. making a decision relative to just passive facial expression 
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viewing regardless of the emotional context (Choosing-Face) and choosing larger delayed 

versus smaller immediate rewards irrespective of the emotional context (Del-Imm)] are 

described in the Appendix.  

 Resting state-data  

Independent components analysis   

The RS data preprocessing and analysis pipeline is summarised in Figure 4.3. To 

decompose the RS data into various independent spatiotemporal components, Probabilistic 

Independent Components Analysis (PICA) was performed on the preprocessed functional scans 

using Melodic version 3.14 (Beckmann & Smith, 2004). A dimensionality estimation using the 

Laplace approximation to the Bayesian evidence of the model order (Beckmann & Smith, 2004) 

produced 11 spatiotemporal components. Following an approach described in Reineberg et al. 

(2015), we statistically compared the spatial map of each independent component (IC) to a set 

of 7 reference RS networks from a previous large-scale RS analysis (Yeo et al., 2011). We used 

FLS's “fslcc” tool to calculate Pearson's r for each pairwise relationship and kept only those ICs 

that yielded a significant spatial correlation (Pearson's r > .3) with one of the reference 

networks. This procedure identified and helped label ten target ICs (see Table 4.1 for details). 

Upon visual inspection, the remaining 1 IC was considered noise and was not subjected to 

further analysis.   

 

Figure 4.3 Resting-state functional fMRI data preprocessing and analysis pipeline. RS – Resting state, ICA - 
Independent Component Analysis, ICs – Independent Components, RSNs – Resting State Networks. 
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Table 4.1 Identified Independent Components (IC Number) and their characteristics. DMN – Default Mode Network. 

IC 

Number 

Matching 

Template 

Network 

Correlation 

with the 

Template 

(Pearson’s r) 

Regions Lateralisation Number 

of Voxels 

1 Visual 0.745 Cuneal Cortex, Intracalcarine 

Cortex, Occipital pole 

bilateral 1138587 

2 DMN 0.746 Precuneus, Lateral Occipital 

Cortex, Middle Frontal 

Gyrus 

bilateral 761539 

3 Dorsal 

Attention/ 

Visual 

0.579/0.359 Lateral Occipital Cortex, 

Occipital Pole, Middle 

Frontal Gyrus, Middle 

Temporal Gyrus, Precentral 

Gyrus, Precuneus 

bilateral 1003173 

4 DMN 0.469 Frontal Pole, Precuneus, 

Middle Temporal Gyrus, 

Subcallosal Cortex, Superior 

Frontal Gyrus 

bilateral 266631 

5 DMN 0.548 Frontal Pole, Angular Gyrus, 

Supramarginal Gyrus, 

Frontal Orbital Cortex, 

Inferior Frontal Gyrus, 

Middle Frontal Gyrus, 

Cerebellum 

bilateral 670689 

6 Ventral 

Attention 

0.454 Supramarginal Gyrus, 

Inferior Frontal Gyrus, 

Frontal Pole, Latreal 

Occipital Cortex, Precentral 

Gyrus, Frontal Operculular 

Cortex, Insula, Cingulate 

Gyrus 

bilateral 181331 

7 Somatomotor 0.746 Postcentral Gyrus, Precentral 

Gyrus, Insula, Lateral 

Occipital Cortex, Cingulate 

Gyrus 

bilateral 898845 

8 Frontoparietal 0.329 Middle Frontal Gyrus, 

Lateral Occipital Cortex, 

Occipital Fusiform Gyrus, 

Middle Temporal Gyrus, 

Frontal Pole 

left 944938 

9 Frontoparietal 0.513 Middle Frontal Gyrus, 

Lateral Occipital Cortex, 

Middle Temporal Gyrus, 

Cerebellum, Paracingulate 

Gyrus, Cingulate, Frontal 

Pole, Insular Cortex 

right 689400 

10 Ventral 

Attention 

0.301 Frontal Pole, Paracingulate 

Gyrus, Cerebellum, Superior 

Frontal Gyrus, Frontal 

Opercular Cortex, 

Juxtapositional Lobule, 

Insular Cortex, Occipital 

Fusiform Gyrus 

bilateral 211073 

Dual regression   

Next, we performed dual regression to generate subject-specific spatial maps and time 

courses from un-thresholded group-level ICs maps (Beckmann et al., 2009; Filippini et al., 

2009). The dual regression consists of (1) a spatial regression of the group-average set of ICs, 

which produces a set of subject-specific time series, one per group-level component, and (2) a 
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temporal regression of those subject-specific time series, resulting in a set of subject-specific 

spatial maps, one per group-level component.   

We quantified the within-network variation in functional connectivity (FC), depending on 

BIS total score and subject-specific ICs, using Randomise, FSL's nonparametric permutation 

testing tool (Winkler et al., 2014), with 5000 permutations and threshold-free cluster 

enhancement (TFCE) with an alpha level of 0.05 to correct for multiple comparisons. The 

permutation testing procedure was run for each set of subject-specific ICs (one for each group-

level ICs of interest); thus, the resulting statistical images reveal how variation in RS FC predict 

differences in trait impulsivity. Following studies using similar procedures (Uddin et al., 2013; 

Nomi & Uddin, 2015; Reineberg et al., 2015; de Bézenac et al., 2017), further correction for 

multiple component testing was not applied.  

Between-network connectivity: FSL Nets  

To examine the relationship between trait impulsivity and between-network FC, we 

employed the FSL Nets package implemented in Matlab 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets). This analysis involved correlation of the 

participants’ time courses from the dual regression analysis and subjects them to between-

network comparisons to determine how they are correlated with each other (Smith et al., 2013). 

BIS total score was then used to predict full and partial correlation values using FSL randomise 

with 5000 permutations.  

 Results 

 Exclusions 

No participant was removed due to extensive motion in the scanner. Two participants 

showed no discounting (consistently chose the delayed reward), i.e. they lacked events for 

delayed trials.  Therefore, these datasets were excluded from the fMRI and behavioural analysis 

for the ADD task entirely. As such, the sample for the ADD task consisted of 28 participants (9 

males). No one was excluded from the ASST. 

 Behaviour: 

ASST 

There were no differences in the SSRTs or Go RTs between the fearful and neural 

conditions (see Tables 4.2 and 4.3 for details). However, paired-samples t-test indicated that 

participants were significantly less accurate (e.g. committed more errors) on the Fearful Go 

trials than Neutral Go trials, t(29) = 3.30, p = .003, indicating that participants were less 
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accurate at identifying the gender of fearful faces compared to neutral faces. Accordingly, 

participants showed higher stop accuracy on the fearful vs neutral trials, indicating it was easier 

to withhold response in the fearful context, t(29) = 2.57, p = .016 (see Tables 4.2 and 4.3 for 

details). Next, subtraction scores between the conditions (FeaSSRT - NeuSSRT) were correlated 

with trait measures. There were no significant correlations (BIS: r(30) = -.209, p = .269; 

Negative Urgency: r(30) = -.326, p = .079); therefore, we conclude that performance on the task 

was not dependent on trait features.  

Table 4.2 Performance on the ASST and ADD tasks. 

Task Variable   Fearful     Neutral   

    N Mean SD 
 

Mean SD 

ASST SSRT [ms] 30 299.67 44.72  305.77 35.08 

 Go RT [ms] 30 573.61 60.81  570.06 57.01 

 Go Correct [% ] 30 90.06 5.28  92.11 5.21 

  Stop Correct [%] 30 52.08 2.87   50.75 4.11 

ADD log k 28 -2 0.98  -1.77 0.83 

 Choice Del RT [ms] 28 1547.08 384.5  1620.05 455.58 

 Choice Imm RT [ms] 28 1536.92 447.19  1547.51 456.7 

                

 

Table 4.3 Comparison of performance in the Fearful and Neutral Conditions in ASST and ADD tasks. 

     95% Confidence interval 

 Variable t df p Cohen's d Lower Upper 

SSRT [ms] -0.65 29 0.522 0.12 -0.24 0.48 

Go RT [ms] 1.39 29 0.176 0.25 -1.68 8.77 

Go Correct [%] -3.3 29 0.003 -0.6 -3.33 -0.78 

Stop Correct [%] 2.57 29 0.016 0.47 0.27 2.39 

log k -1.22 27 0.232 -0.23 -0.6 0.15 

              

ADD 

There were no differences between conditions in discounting parameters (see Tables 4.2 

and 4.3 for details). There was also no main effect of decision type (Imm vs Del; F(1, 27) = 

3.06, p = .092, ηp
2 = .10) or emotion-decision type interaction (F(1, 27) = 1.07, p = .310, ηp

2 = 

.04). However, repeated measures ANOVA revealed a marginally significant effect of emotion 

on RT (F(1, 27) = 3.99, p = .056, ηp
2 = .13), with shorter responses in the fearful context. There 

were no correlations between the difference in performance on the tasks (Feak - Neuk) and trait 

measures (BIS: r(28) = -.19, p = .339; Negative Urgency: r(28) = .005, p = .981).  
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 fMRI 

ASST 

There was no emotion vs successful inhibition interaction ([FeaSS-FeaGoC]>[NeuSS-

NeuGoC]; no suprathreshold voxels), mirroring behavioural results.  

Next, we went on to explore the role of personality traits in the neural correlates of 

successful inhibitory control. Regression analysis revealed a response type versus emotional 

context interaction ([FeaSS>FeaGoC]>[NeuSS>NeuGoC]) indicating higher BIS score was 

associated with increased activity in the right superior parietal lobule, postcentral gyrus and 

lateral occipital cortex (see Table 4.4 and Figure 4.4). This suggests that more impulsive 

individuals need to engage greater neural resources to inhibit prepotent motor responses in the 

fearful environment successfully. 

In contrast, regression analysis with Negative Urgency showed no voxels that met 

threshold criteria for interaction between emotional contexts versus response type interaction. 

Table 4.4 Local maxima details and coordinated in MNI space for each cluster of regions identified for the ASST 
interaction contrast [(FeaSS-GoC) > (NeuSS-GoC)] regressions with BIS Total score. Cluster index refers to a group of 
voxels encompassing multiple brain areas. ‘Voxels’ refer to the number of voxels within each cluster. The Harvard-
Oxford cortical and subcortical probabilistic atlases were used to identify each region. 

Cluster 

Index 

Voxels P Z-MAX Z-MAX 

X (mm) 

Z-MAX 

Y (mm) 

Z-MAX 

Z (mm) 

Region Side 

1 514 0.004 3.85 20 -38 56 Postcentral 

Gyrus 

R 

1     3.76 28 -48 70 Superior 

Parietal 

Lobule 

R 

1     3.46 30 -62 62 Lateral 

Occipital 

Cortex 

R 

1     3.38 24 -56 58 Superior 

Parietal 

Lobule 

R 

1     3.29 18 -40 62 Postcentral 

Gyrus 

R 

1     3.23 34 -48 70 Superior 

Parietal 

Lobule 

R 
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Figure 4.4 Brain regions which showed a significant positive association between BIS Total score and successful 
response inhibition in the Fearful vs Neutral context (FeaSS-GoC) > (NeuSS-GoC) on the ASST. In the bottom right 
corner, the illustration of the correlation between the BIS score and the percentage signal change extracted from the 
region surrounded by the circle. Images are presented in the radiological convention. The colour bar represents Z 
scores ranging from 2.3 to 8. X = 20 Y = -38 Z = 56 

ADD 

We observed no suprathreshold neural effects reflecting decision vs emotion interaction 

([FeaDel-FeaImm]-[NeuDel-NeuImm]) neither with nor without including trait impulsivity 

measures into the model. 

 Resting State Functional Connectivity 

Within-network connectivity 

Greater self-reported impulsivity (BIS score) was associated with lower coupling of the 

right lateral occipital cortex with IC7, a network that correlated significantly with Somatomotor 

template network (peak mm 46/-70/16, FWE 1-p = 0.981) (Figure 4.5).  
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Figure 4.5 Differences in resting-state functional connectivity within IC 7 (Somatomotor Network) associated with 
individual differences in trait impulsivity (BIS Total Score). The IC overlay derived at the group level is depicted in 
warm colours, and the region of decreased coupling with the network associated with increased BIS total score is 
depicted in blue. In the bottom right corner, the illustration of the correlation between the BIS score and the 
parameter estimates extracted from the lateral occipital cortex region. X = 46 Y = -70 Z = 16. Images are presented in 
the radiological convention. A-anterior, I-inferior, L-left, P-posterior, R-right, S-superior. IC – Independent 
Component. 

Between-network connectivity 

Using BIS or Negative Urgency score as predictors, no significant between-network 

differences in connectivity were found (Figure 4.6).  
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Figure 4.6 FSL Nets between network correlations at the group level (N = 30). Full correlations are shown below the 
diagonal line (in grey) with partial correlations shown above the diagonal line. Numbers indicate specific independent 
components as described in Table 4.1. 

 Discussion 

This study tested the impact of task-irrelevant emotional context (fearful and neutral 

facial expressions) on behavioural control during performance of motor and temporal 

impulsivity tasks. We predicted that the context of fear would result in increased impulsive 

behaviour in both tasks, and correspondingly evoke increased activation of the prefrontal brain 

regions in support of top-down cognitive control. We also hypothesised that these effects would 

be enhanced for more impulsive individuals. In fact, our results showed no differences at the 

behavioural level in either motor response inhibition or temporal discounting between neutral 

and fearful contexts, contradicting our primary hypothesis. However, brain imaging provided 

evidence for the role of individual differences in trait impulsivity with regard to the magnitude 

of recruitment needed to implement response-inhibition successfully. Importantly this effect 

was enhanced in the presence of the negative emotional context: More impulsive individuals 

had to engage more neural resources, indicative of a compensatory mechanism. 

 ASST-behaviour 

In agreement with many previous reports, we did not find a direct effect of emotional 

context on response inhibition measure (i.e. SSRT) (Sagaspe et al., 2011; Brown et al., 2012; 



135 

 

 Chapter 4  

Guan et al., 2015; Chester et al., 2016; Littman & Takács, 2017). Our behavioural data, 

however, revealed that participants were less accurate at gender discrimination when fearful 

faces were presented (an implicit emotion processing task). This is in line with previous 

findings reporting decreased gender discrimination accuracy of fearful vs happy faces 

(Stockdale et al., 2015) and reduced accuracy on trials preceded by negative in contrast to 

neutral images (Littman & Takács, 2017). Threat-related stimuli capture attention more than 

neutral or nonthreat-related stimuli (Pourtois et al., 2004). Even though we did not find 

significant differences in reaction times between neutral and fearful trials, we did observe that 

participants showed higher stop accuracy on the fearful compared to neutral stop trials, 

supporting the attention-capture effect. 

 ASST-fMRI 

We also did not find evidence for a direct effect of emotion on the prepotent response 

inhibition at the neural level. This may be because we employed an ASST paradigm in which 

gender categorisation was implicit. Indeed, previous event-related potential findings using an 

emotional GNG paradigm indicated that the action inhibition stage is modulated by emotional 

facial information, but only when facial expressions are processed explicitly not implicitly (Yu 

et al., 2014). 

However, we found evidence for excessive neural recruitment during successful 

inhibitory control in more impulsive individuals, as characterised by their BIS Total score and 

Negative Urgency score (see the Appendix for details). Importantly, the effect of neural hyper-

activation with increased BIS score was stronger in the fearful relative to neutral context, but no 

such effect was found regarding negative urgency. A stronger activation was observed in the 

right postcentral gyrus, superior parietal lobule (SPL) and lateral occipital cortex, areas involved 

in somatosensory processing, visual attention, working memory (Corbetta & Shulman, 2002; 

Yantis et al., 2002) and object recognition (Grill-Spector et al., 2001). The postcentral gyrus is a 

primary somatosensory cortex. Previously, an increased postcentral gyrus, parahippocampal and 

visual cortical activity in post-traumatic stress disorder (PTSD) patients during response 

inhibition tasks has been interpreted as a state of hyperactive sensory processing during 

inhibitory control (Falconer et al., 2008). Similarly, enhanced somatosensory and lateral 

occipital areas activation during successful response inhibition in the fearful versus neutral 

context in more impulsive individuals in the current study may also reflect increased sensory 

vigilance in response to fear cues in more impulsive individuals. Given previous reports of 

‘compensatory’ prefrontal recruitment during response restraint in individuals scoring high for 

Negative Urgency in the emotional GNG task (Chester et al., 2016), the fact that we did not 

observe a similar association between Negative Urgency and inhibitory control in the emotional 
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context was unexpected. Arguably, this discrepancy may be a result of different tasks employed 

– a GNG task (Chester et al., 2016), which assesses response selection and restraint, and a 

version of the SST, a measure of prepotent response inhibition, in the current study. The 

commonalities and differences between these two measures of motor impulsivity and their 

relationship to BIS and Negative Urgency should be explored in future research.  

 ADD 

We found no differences in temporal discounting at the behavioural level between 

emotional and neutral conditions. We offer two explanations of these findings. First, the 

negative emotional context may not affect temporal impulsivity, which would be in contrasts 

with previous reports (Augustine & Larsen, 2011; Guan et al., 2015). Alternatively, the fearful 

facial expression may have been insufficiently threatening or arousing to evoke changes at the 

behavioural level. However, we did observe marginally faster decisions in the fearful relative to 

neutral context, suggesting that emotional condition did affect the decision-making process at 

the level of information processing. Possibly if real financial decisions were at stake, the 

decision-outcomes (delayed and immediate options) would also be affected.  

Contrary to expectations, there was also no effect of emotional context on temporal 

discounting. This matched our behavioural results, where we found no differences in the 

discounting rate between the conditions. The lack of impact of emotional context on temporal 

discounting may again be due to the type of stimuli employed (facial expressions), which 

arguably were not strong enough to impact temporal discounting. Future studies are needed to 

investigate this matter further. 

 Functional connectivity 

We showed that individual differences in trait impulsivity, assessed with BIS Total Score, 

are associated with altered aspects of the functional architecture of the Somatomotor RS 

network. Specifically, higher trait impulsivity was linked to decreased coupling between the 

lateral occipital cortex and the Somatomotor Network. Surprisingly, we did not find any 

significant differences in the network functional architecture of default mode or frontoparietal 

networks associated with impulsivity as has been reported previously (Inuggi et al., 2014; 

Reineberg et al., 2015). However, it is important to note that previous research used different 

measures of impulsivity. Therefore, those inconsistent findings might merely reflect a 

heterogeneous nature of impulsivity and underlying neural mechanisms (Caswell et al., 2015; 

Herman et al., 2018). 

The finding of disrupted FC within Somatomotor RS network in relation to trait 

impulsivity level corroborates previous studies. Using graph theory approach, Davis et al., 
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(2013) studied the relationship between impulsivity, reflected in BIS score, and the functional 

segregation (“modularity”) of whole-brain resting state architecture. The analysis revealed shifts 

in the functional connectivity between visual, sensorimotor, cortical, and subcortical structures 

across the impulsivity range.  

The lateral occipital cortex is involved in visual perception and multisensory integration 

(Grill-Spector et al., 2001; Beauchamp, 2005). However, the visual cortices may contribute to 

impulsivity (Davis et al., 2013) and disorders commonly associated with impulsivity, such as 

ADHD (Castellanos & Proal, 2013). The sensorimotor network consists of both motor cortices, 

known to play a critical role in response inhibition (Li et al., 2006; Duque et al., 2012; Rae et 

al., 2014), and somatosensory areas, which are vital for sensory integration and show altered 

activity in inhibitory control in diseased states (Falconer et al., 2008; van Rooij et al., 2014) or 

under pharmacological interventions (Schmidt et al., 2017). Therefore, this ‘decoupling’ of 

Somatomotor and visual areas may reflect itself in a less effective integration of perceptual 

information, visual and somatosensory, in behavioural control manifesting itself in impulsive 

behaviours.   

Finally, we did not find any differences in between-network connectivity that could be 

related to elevated impulsivity levels. Possibly, this is because our sample consisted of highly 

functioning young adults, all university students, and significant differences in between-network 

connectivity may only reveal themselves in more disinhibited individuals. Nevertheless, 

somatosensory cortex and lateral occipital cortex showed increased activation during response 

inhibition in the fearful context and showed disrupted RS FC in more impulsive individuals. 

Therefore, these areas revealed by the analysis of a normative population might be crucial to the 

definition of predictive biomarkers for impulse-control disorders.  

 Limitations 

In the current study, we did not find a robust direct effect of fearful context on either 

response inhibition or temporal discounting behaviour. Possibly no impact on behaviour is due 

to the specific stimuli we employed – facial expressions of fear. Heightened emotional arousal 

can influence response inhibition (Verbruggen & De Houwer, 2007); however, images depicting 

fearful facial expressions may be insufficiently potent to evoke the requisite level of emotional 

arousal. Indeed, this may also account for null findings in previous studies of this sort (Sagaspe 

et al., 2011). Habituation and affective adaptation may also play a role since regions that 

respond preferentially to emotionally valenced faces, including the amygdala, also rapidly 

habituate to these stimuli (Breiter et al., 1996). Thus, the length of the study may have 

attenuated the impact of emotional effects here.  
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 Conclusions 

Our results show that impulsive individuals engaged more neural resources in order to 

implement inhibitory control successfully than less impulsive people. Impulsive individuals also 

seemed to be more affected by the emotional context, showing raised prefrontal and parietal 

activation during successful response inhibition in the fearful settings. Interestingly, we 

observed a dissociation between measures of Negative Urgency and BIS score – the latter 

proved to be more sensitive to differences between emotional contexts. Therefore, 

implementing motor self-control in the negative emotional context may be more difficult for 

persons showing elevated levels of BIS impulsiveness. Nevertheless, emotional facial 

expressions did not seem to affect measures of temporal impulsivity, regardless of the trait 

impulsivity levels. In the brain, higher BIS Total was also associated with altered RS FC within 

the Somatomotor Network. Specifically, impulsive individuals showed greater ‘decoupling’ 

between the lateral occipital cortex and the Somatomotor Network. Importantly, both RC FC 

analysis as well as task-based analysis (ASST) indicated associations between trait impulsivity 

and activation within the lateral visual and somatosensory cortices. This strengthens the 

evidence to support the use of these regions as biomarkers for impulse-control problems.  
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 Appendix: Supplementary Results and Discussion 

 Supplementary Results 

ASST 

We first identified the brain regions engaged in successful response inhibition regardless 

of the emotional context (SS > GoC). This contrast evoked an expected pattern of activation 

including superior, middle and inferior frontal gyrus, insular cortex, frontal operculum and 

dorsal striatum, predominantly in the right hemisphere (see Table S4.1, Figure S4.1).  

Next, we went on to explore the role of personality traits in the neural correlates of 

successful inhibitory control. Regression analysis revealed that individuals with higher BIS 

Total scores exhibited increased activity within the paracingulate gyrus and supramarginal 

gyrus, anterior cingulate, middle and inferior frontal gyrus, during successful inhibitory control 

(SS > GoC). These findings indicate that more impulsive individuals need to engage more 

neural resources to inhibit motor responses successfully (see Table S4.1, Figure S4.2). 

Similarly to the analysis using BIS Total score, regression analysis with Negative 

Urgency, also revealed that more impulsive individuals show elevated activity in the superior 

frontal/paracingulate gyrus, superior parietal lobule and frontal pole on the right side, during 

successful inhibitory control (SS > GoC; Table S4.2, Figure S4.3). 

ADD 

Choosing an option when passively viewing a facial expression (Choosing-Face viewing), 

irrespective of the portrayed emotion, activated prefrontal regions (bilateral inferior frontal 

gyrus, right frontal orbital cortex and frontal pole) and adjacent left insula and frontal opercular 

cortex (See Table S4.3, Figure S4.4). There were no suprathreshold voxels for main decision 

type contrast (Del vs Imm).  

Regarding the role of impulsive traits, there were no suprathreshold changes in any of the 

contrasts that correlated with BIS Total score. However, we did observe a main effect of 

decision type (Del > Imm) with relation to Negative Urgency, suggesting that individuals 

reporting higher Negative Urgency presented elevated activation in the occipital pole while 

making delayed responses relative to immediate ones (Table S4.4, Figure S4.5). There were no 

other significant results.  
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Table S 4.1 Local maxima for each cluster of regions identified in the ASST successful response inhibition contrast 
(SS>GoC), controlling for Age and Sex. Cluster index refers to a group of voxels encompassing multiple brain areas. 
‘Voxels’ states the number of voxels within each cluster. The Harvard-Oxford cortical and subcortical probabilistic 
atlases were used to identify each region. 

Contrast: SS > GoC 

Cluster 

Index 

Voxels P Z-

MAX 

Z-MAX 

X (mm) 

Z-MAX 

Y (mm) 

Z-MAX 

Z (mm) 

Region Side 

6 30272 < .001 5.48 60 -38 0 Middle Temporal Gyrus R 

6     5.46 18 -72 58 Lateral Occipital Cortex R 

6     5.33 44 -46 52 Supramargnal Gyrus R 

6     5.26 26 -72 58 Lateral Occipital Cortex R 

6     5.17 -14 -70 56 Lateral Occipital Cortex L 

6     5.1 50 -44 44 Supramargnal Gyrus R 

5 15111 < .001 5.76 38 48 30 Frontal Pole R 

5     5.46 36 52 30 Frontal Pole R 

5     5.22 34 60 -12 Frontal Pole R 

5     5.02 40 58 -10 Frontal Pole R 

5     4.98 58 18 16 Inferior Frontal Gyrus R 

5     4.84 36 40 40 Frontal Pole R 

4 2683 < .001 4.41 -36 36 28 Middle Frontal gyrus L 

4     4.37 -30 60 -8 Frontal Pole L 

4     4.26 -32 40 40 Frontal Pole L 

4     4.03 -22 56 -12 Frontal Pole L 

4     3.97 -20 50 -14 Frontal Pole L 

4     3.91 -28 64 16 Frontal Pole L 

3 1546 < .001 4.22 -18 10 -6 Putamen L 

3     4.09 -44 18 -8 Frontal Orbital Cortex L 

3     3.94 -8 8 4 Caudate L 

3     3.92 -50 6 34 Precentral Gyrus L 

3     3.83 -32 26 0 Frontal Orbital Cortex L 

3     3.82 -34 20 14 Frontal Operculum Cortex L 

2 614 0.001 4.04 -28 0 58 Middle Frontal gyrus L 

2     3.82 -32 -4 58 Middle Frontal gyrus L 

2     3.79 -18 6 70 Superior Frontal Gyrus L 

2     3.69 -16 2 72 Superior Frontal Gyrus L 

2     3.27 -14 -4 74 Superior Frontal Gyrus L 

2     3.24 -12 -8 70 Superior Frontal Gyrus L 

1 396 0.019 3.99 10 4 4 Caudate R 

1     3.94 6 -2 12 Thalamus R 

1     3.85 18 8 14 Caudate R 
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Table S 4.2 Continued.  

Contrast: SS > GoC Regression with BIS  

Cluster 

Index 

Voxels P Z-MAX Z-MAX 

X (mm) 

Z-MAX 

Y (mm) 

Z-MAX 

Z (mm) 

Region Side 

5 31497 < .001 5.78 42 -46 52 Superior Parietal Lobule  R 

5     5.7 62 -38 2 Middle Temporal Gyrus R 

5     5.59 16 -72 56 Lateral Occipital Cortex R 

5     5.57 50 -30 -2 Superior Temporal Gyrus R 

5     5.56 26 -72 56 Lateral Occipital Cortex R 

5     5.53 54 -22 -6 Middle Temporal Gyrus R 

4 16763 < .001 5.74 38 48 30 Frontal Pole R 

4     5.39 30 60 -12 Frontal Pole R 

4     5.36 52 22 4 Inferior Frontal Gyrus R 

4     5.33 58 18 16 Inferior Frontal Gyrus R 

4     5.31 34 58 -12 Frontal Pole R 

4     5.24 20 16 64 Superior Frontal Gyrus R 

3 4730 < .001 4.59 -30 60 -8 Frontal Pole L 

3     4.51 -34 58 -8 Frontal Pole L 

3     4.47 -34 36 28 Middle Frontal Gyrus L 

3     4.46 -32 40 40 Frontal Pole L 

3     4.33 -44 18 -8 Frontal Orbital Cortex L 

3     4.23 -20 10 -4 Putamen L 

2 748 < .001 4.13 -28 0 58 Middle Frontal Gyrus L 

2     3.95 -18 6 70 Superior Frontal Gyrus L 

2     3.86 -18 4 76 Superior Frontal Gyrus L 

2     3.44 -14 -4 74 Superior Frontal Gyrus L 

2     3.22 -36 0 68 Middle Frontal Gyrus L 

2     2.79 -6 -8 68 Juxtapositional Lobule 

Cortex 

L 

1 470 0.006 4.02 6 -2 12 Thalamus  R 

1     3.99 10 0 14 Caudate  R 

1     3.97 10 4 4 Caudate  R 

1     3.87 18 8 14 Caudate  R 

1     2.85 22 8 4 Putamen R 

1     2.69 18 12 -4 Putamen R 
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Figure S 4.1 Brain activations evoked by the SS > GoC contrast in the ASST. Images are presented in the radiological 
convention. The colour bar represents Z scores ranging from 2.3 to 8.  X = 36 Y = 49 Z = 16 
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Figure S 4.2 Brain regions which showed significant association between BIS Total score and successful response 
inhibition (SS > GoC) in the ASST. In the bottom right corner, the illustration of the correlation between the BIS score 
and the percentage signal change extracted from the region surrounded by the circle. Images are presented in the 
radiological convention. The colour bar represents Z scores ranging from 2.3 to 8.  X = -1 Y = 18 Z = 36 
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Table S 4.3 Local maxima for each cluster of regions identified for the ASST successful response inhibition contrast 
(SS>GoC) regressions with Negative Urgency Score. Cluster index refers to a group of voxels encompassing multiple 
brain areas. ‘Voxels’ refer to the number of voxels within each cluster. The Harvard-Oxford cortical and subcortical 
probabilistic atlases were used to identify each region. 

Cluster 

Index 

Voxels P Z-

MAX 

MNI coordinates (mm) Region Side 

    
Z-

MAX X 

Z-

MAX Y 

Z-

MAX Z 

  

4 697 < .001 4.05 6 36 42 Superior Frontal gyrus R 

4 
  

3.97 6 40 40 Superior Frontal gyrus R 

4 
  

3.84 12 40 28 Paracingulate Gyrus R 

4 
  

3.37 4 38 32 Paracingulate Gyrus R 

4 
  

3.09 8 30 30 Paracingulate Gyrus R 

3 551 .002 3.85 40 -48 62 Superior Parietal 

Lobule 

R 

3 
  

3.38 42 -48 54 Superior Parietal 

Lobule 

R 

3 
  

3.16 62 -52 50 Angular Gyrus R 

3 
  

3.15 50 -58 56 Lateral Occipital 

Cortex 

R 

3 
  

3.15 44 -56 66 Lateral Occipital 

Cortex 

R 

2 520 .003 4.44 18 72 18 Frontal Pole R 

2 
  

3.79 20 66 16 Frontal Pole R 

2 
  

3.43 26 72 6 Frontal Pole R 

2 
  

3.29 28 68 6 Frontal Pole R 

2 
  

2.83 26 72 14 Frontal Pole R 

2 
  

2.75 28 64 12 Frontal Pole R 

1 341 .040 3.77 24 18 66 Superior Frontal gyrus R 

1 
  

3.52 24 18 70 Superior Frontal gyrus R 

1 
  

3.41 36 14 64 Middle Temporal 

Gyrus 

R 

1 
  

3.34 22 32 50 Superior Frontal gyrus R 

1 
  

2.71 22 6 64 Superior Frontal gyrus R 
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Figure S 4.3 Brain regions which showed significant association between Negative Urgency and successful response 
inhibition (SS > GoC) on the ASST. In the bottom right corner, the illustration of the correlation between the Negative 
Urgency score and the percentage signal change extracted from the region surrounded by the circle. Images are 
presented in the radiological convention. The colour bar represents Z scores ranging from 2.3 to 8.  X = 6 Y = -48 Z = 
62 
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Table S 4.4 Local maxima for each cluster of regions identified for the ADD task evoked by Choice (Choosing-Face 
viewing) contrast, controlling for age and sex. Cluster index refers to a group of voxels encompassing multiple brain 
areas. ‘Voxels’ refer to the number of voxels within each cluster. The Harvard-Oxford cortical and subcortical 
probabilistic atlases were used to identify each region. 

Cluster 

Index 

Voxels P Z-MAX Z-MAX 

X (mm) 

Z-MAX 

Y (mm) 

Z-MAX 

Z (mm) 

Region Side 

1 540 .001 4.63 -52 18 -6 Inferior Frontal Gyrus L 

1 
  

3.33 -44 18 6 Frontal Operculum Cortex L 

1 
  

3.19 -42 30 0 Inferior Frontal Gyrus L 

1 
  

3.17 -60 16 -2 Inferior Frontal Gyrus L 

1 
  

2.82 -44 6 -6 Insular Cortex L 

1 
  

2.68 -58 16 6 Inferior Frontal Gyrus L 

2 629 < .001 4.59 50 20 -6 Inferior Frontal Gyrus R 

2 
  

3.62 46 22 -14 Frontal Orbital Cortex R 

2 
  

3.40 50 40 0 Frontal Pole R 

2 
  

3.02 62 14 0 Precentral Gyrus R 

2 
  

3.01 42 48 2 Frontal Pole R 

2 
  

2.79 54 30 12 Inferior Frontal Gyrus R 

 

 

Figure S 4.4 Activations evoked by deciding on the ADD task, regardless of the emotional context (Choosing > Viewing 
Faces). Images are presented in the radiological convention. The colour bar represents Z scores ranging from 2.3 to 
8. X = 50 Y = 20 Z = -6 
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Table S 4.5 Local maxima details and coordinates in MNI space for the cluster of voxels identified by the ADD Del>Imm 
regression with Negative Urgency. ‘Voxels’ refer to the number of voxels within each cluster. The Harvard-Oxford 
cortical and subcortical probabilistic atlases were used to identify each region. 

Voxels P Z-MAX MNI coordinates (mm) Region Side 
  

Z-MAX Z-MAX X  Z-MAX Y  Z-MAX Z  
  

297 .038 3.38 16 -92 -4 Occipital Pole R 
  

3.16 6 -92 16 Occipital Pole R 
  

3.12 10 -94 20 Occipital Pole R 
  

3.04 10 -84 -8 Lingual Gyrus R 
  

3.04 22 -92 8 Occipital Pole R 
  

3.01 20 -88 4 Occipital Pole R 

 

 

Figure S 4.5 Activations evoked by choosing a delayed vs immediate option on the ADD task, regardless of the 
emotional context (Del > Imm) associated with Negative Urgency. In the bottom right corner, the illustration of the 
correlation between the Negative Urgency score and the percentage signal change extracted from the region 
surrounded by the circle. Images are presented in the radiological convention. The colour bar represents Z scores 
ranging from 2.3 to 8. X = 16 Y = -92 Z = -4 
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 Supplementary Discussion 

ASST 

We found evidence for excessive neural recruitment during successful inhibitory control 

in more impulsive individuals, as characterised by their BIS Total score and Negative Urgency 

score. Previously such increased activation has been interpreted as a compensatory mechanism 

(Chester et al., 2016; Ding et al., 2014). Specifically, in our study increased BIS Total score 

was associated with increased activity in the regions encompassing the right supramarginal 

gyrus, right superior, middle and inferior frontal gyri and paracingulate cortex during successful 

response inhibition. While the right middle frontal gyrus is implicated in general reorientation 

of attention (Japee et al., 2015), the inferior frontal gyrus supports prioritised selection of salient 

actions. Correspondingly, this region is particularly recognised as key to successful response 

inhibition (Aron & Poldrack, 2006; Aron et al., 2003; Deng et al., 2017; Rubia et al., 2001). 

The supramarginal areas are considered a part of the ventral attention network (Vossel et al., 

2014) vital for motor attention (Rushworth et al., 1997). Similarly, enhanced activation during 

successful response inhibition was also observed in superior frontal/paracingulate gyrus, 

superior parietal lobule and frontal pole on the right side in individuals who reported higher 

Negative Urgency. Together, these results indicate altered functioning of the brain network 

supporting both inhibitory control and allocation of attentional resources in more impulsive 

individuals. 

ADD 

At the neural level, contemplating before making a decision (Choosing – passive face 

viewing contrast) evoked activation of the brain areas previously implicated in temporal 

decision-making, namely inferior frontal gyri, frontal orbital cortex, frontal pole, insular cortex 

and frontal opercular cortex (Claus et al., 2011; Frost & McNaughton, 2017; Lim et al., 2017; 

Luo et al., 2009; Massar et al., 2015; Sellitto et al., 2016, 2010; Wang et al., 2016). However, 

there was no main effect of decision type (delayed/immediate), contradicting previous findings 

(Claus et al., 2011; Lim et al., 2017; Luo et al., 2009). Those discrepancies may be due to 

differences in sample characteristics between the past and present studies.  

Regarding the relationship between personality traits and neural responses during 

intertemporal decisions, only association with Negative Urgency, and not BIS Total Score, was 

significant. Negative Urgency was associated with enhanced occipital pole activation during 

choosing a delayed versus immediate reward. This over-activation might reflect the fact that 

selecting a delayed reward may be more effortful for individuals showing elevated Negative 

Urgency levels. The involvement of occipital lobe in intertemporal decision-making is 

consistent with previous findings (Claus et al., 2011; Lim et al., 2017; Luo et al., 2009) and 
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may be related to visually-directed attention. However, we believe that this is the first 

demonstration of enhanced occipital activation while choosing between delayed and immediate 

options with relation to Negative Urgency levels.   
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 Abstract 

State-dependent changes in physiological arousal may be related to impulsive 

behaviours. To examine the relationship between arousal and impulsivity, we assessed the 

effects of yohimbine (an α2 adrenergic receptor antagonist, which increases physiological 

arousal via noradrenaline release) on performance on standard laboratory-based impulsivity 

measures in healthy volunteers. Forty-three participants received a single dose of either 

yohimbine hydrochloride or placebo before completing a battery of impulsivity measures. 

Blood pressure and heart rate were monitored throughout the study. Yohimbine group 

showed higher blood pressure as well as better response inhibition in the Stop Signal Task 

relative to the placebo group. Additionally, individual changes in blood pressure were 

associated with performance on the Delay Discounting and Information Sampling tasks. 

Increased blood pressure following drug ingestion was associated with more far-sighted 

decisions in the Delay Discounting Task (lower temporal impulsivity) but decreased 

information gathering in the Information Sampling Task (increased reflection impulsivity). 

These results support the notion that impulsive behaviour depends on state physiological 

arousal; however, distinct facets of impulsivity are differentially affected by these changes.  

_____________________________________________________________________

Keywords: Yohimbine, Arousal, Noradrenaline, Blood Pressure, Stop Signal Task  
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 Introduction  

Impulsivity is often described as a tendency to act rapidly without considering the 

consequences of one's actions (Daruna & Barnes, 1993; Moeller, Barratt, Dougherty, 

Schmitz, & Swann, 2001). The importance of this phenomenon has long been recognised, 

both in everyday life, as it plays a vital role in the decision-making process, and in many 

neuropsychiatric conditions such as attention deficit and hyperactivity disorder (ADHD), 

manic episodes of bipolar disorder, Parkinson's disease, eating disorders, or substance abuse 

(American Psychiatric Association, 2013). 

Impulsivity is a multidimensional construct that can be considered as a stable 

personality characteristic (trait) as well as a behaviour which varies depending on a situation 

(state impulsivity) (Herman, Critchley, & Duka, 2018a). The state-dependent changes in 

impulsivity may be related to current mood and/or arousal state (Herman et al., 2018a). 

Indeed, previous research has indicated that modulating one’s state of physiological arousal 

causes changes in performance on impulsivity tasks. For example, acute moderate physical 

exercise decreases motor impulsivity (Chu, Alderman, Wei, & Chang, 2015). Furthermore, 

past studies suggested the role of individual differences in the relationship between state 

arousal and impulsivity. Some observed that individuals high in trait impulsivity have a low 

resting state of arousal (Fowles, 2000; Mathias & Stanford, 2003; Puttonen et al., 2008; 

Schmidt, Mussel, & Hewig, 2013). As every organism aims to reach an optimal internal 

state (i.e. one that feels best; Hebb, 1955), some hypothesise that these individuals behave 

impulsively in order to increase their arousal to the optimal level (Barratt, 1985; H. J. 

Eysenck & Eysenck, 1985; Zuckerman, 1969). Thus, trait impulsivity, associated with low 

resting state of arousal, might be an additional factor mediating the effects of arousal on 

behaviour. For example, impulsive individuals perform worse than low-impulsive subjects 

in the sustained attention task in the control (baseline) condition, but they obtain a greater 

benefit from caffeine than non-impulsive subjects (Smith, Rusted, Savory, Eaton-Williams, 

& Hall, 1991). As inattention is related to impulsive behaviours (de Wit, 2009), these results 

suggest that manipulation of the physiological state may influence state impulsivity, 

especially in highly impulsive individuals. This is further supported by clinical findings in 

ADHD patients, whereby treatment with stimulant drugs, which are known to increase 

arousal levels, leads to decreases in impulsive behaviour (Swanson, Baler, & Volkow, 

2011). Similar observations were made in healthy populations. Schmidt et al., (2013) 

reported that the lower the participants’ physiological arousal at rest, reflected in decreased 

heart rate, the faster the responses and the riskier the behaviour in a gambling game, 

indicating diminished impulse control. Interestingly, subjects tended to behave less risky in 

the gamble following physical exercise, compared to a resting condition.  
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State arousal can also be modulated pharmacologically with substances that act on the 

noradrenergic system. Past studies successfully used yohimbine hydrochloride, the α2 

receptor antagonist, which increases blood norepinephrine levels (Hedner et al., 1992) and 

causes an increase in physiological arousal (Goldberg, Hollister, & Robertson, 1983; Krystal 

et al., 1992; Swann et al., 2013). At higher doses, yohimbine can induce hypertension and 

changes in mood state, such as anxiety and nervousness (Cimolai & Cimolai, 2011); 

therefore, in many studies yohimbine is used as a pharmacological stressor (e.g. Mahoney, 

Barnes, Wiercigroch, & Olmstead, 2016; Moran-Santa Maria, McRae-Clark, Baker, 

Ramakrishnan, & Brady, 2014). Yohimbine is a fat-burning compound (Ostojic, 2006), 

sometimes used in body-building. It is also an aphrodisiac, which can aid erectile 

dysfunction (Guay, Spark, Jacobson, Murray, & Geisser, 2002). 

Current research, mainly in rodents, indicates that yohimbine administration can 

induce acute changes in behavioural impulsivity. For example, a recent study showed that 

yohimbine acutely increased the preference for the large and delayed reinforcer over a 

smaller immediate one (decreased temporal impulsivity) (Schippers, Schetters, De Vries, & 

Pattij, 2016). On the other hand, some studies suggested that yohimbine might induce 

inflexibility in adjusting to changes in the relative value of different options (Montes, 

Stopper, & Floresco, 2015; Schwager, Haack, & Taha, 2014). It seems that the effects of 

yohimbine on behaviour might depend to some extent on individual differences. Schippers et 

al. (2016) reported that yohimbine affected motor response inhibition differently depending 

on the baseline performance: yohimbine improved response inhibition in highly impulsive 

rats but attenuated it in low-impulsive rats. Yohimbine has also been shown to induce dose-

dependent increases in premature responding on the 5-Choice Serial Reaction Time Task 

(‘waiting’ motor impulsivity) in rats (Mahoney et al., 2016; Sun et al., 2010) and decreased 

attention; however, the effects did not depend on baseline impulsivity levels (Barlow, 

Dalley, & Pekcec, 2018). Similar findings have been reported in human participants, 

showing that yohimbine caused a dose-related increase in impulsive behaviour on the 

Immediate and Delayed Memory Task (IMT/DMT), which was correlated with the change 

in blood pressure (Swann et al., 2013; Swann, Birnbaum, Jagar, Dougherty, & Moeller, 

2005). While understanding the relationship between bodily arousal and impulsive 

behaviours might yield valuable insights for clinical practice, a comprehensive study looking 

at how physiological arousal affects distinct measures of impulsivity is missing.  

The aims of the current study were twofold; firstly, to determine whether a 

yohimbine-induced acute increase in arousal would be related to differences in behavioural 

impulsivity levels. We hypothesised that yohimbine administration would be associated with 

diminished behavioural impulsivity, particularly in more impulsive individuals (Barratt, 

1985; H. J. Eysenck & Eysenck, 1985; Zuckerman, 1969). Alternatively, since noradrenergic 
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activation is vital for attention (Robbins, 1997), increasing noradrenergic activity may 

increase impulsive behaviour via its deleterious effects on the scope of attention. Secondly, 

we examined the alleged relationship between resting state arousal, expressed as heart rate 

and blood pressure, and trait impulsivity. In line with previous research (Fowles, 2000; 

Mathias & Stanford, 2003; Puttonen et al., 2008; Schmidt et al., 2013), we predicted that 

more impulsive individuals would show lower resting levels of arousal. We used two trait 

impulsivity measures to capture the wide range of impulsivity characteristics, including 

emotional impulsivity (positive and negative urgency).  

Participants’ physiological arousal was modulated via oral administration of a single 

dose of yohimbine hydrochloride (α2 receptor blocker). Participants (healthy volunteers) 

were randomly assigned to a control (placebo) or experimental (yohimbine) group and 

completed a battery of behavioural impulsivity tasks. Performance of these two groups was 

compared to see how an increase in arousal via noradrenergic mechanism influenced 

impulsive behaviour.  

 Materials and methods  

 Participants  

The study design was approved by the BSMS Research Governance & Ethics 

Committee. 43 healthy volunteers (19 males) were randomly assigned to one of two 

experimental groups: placebo or yohimbine. Only volunteers who met strict inclusion 

criteria were recruited. These criteria involved: age between 18 and 40 years old, normal or 

corrected-to-normal vision, no lifetime history of any neurological or mental disorders, no 

current pharmacological treatment or psychological counselling, no drug use within five 

days prior the testing session or alcohol use 24h before testing session, weight above 55kg, 

systolic blood pressure (SYS BP) below 135mmHg and diastolic blood pressure (DIA BP) 

below 90 mmHg. Strict exclusion criteria involved a history of anxiety or panic attacks. 

Women who were not using a recommended means of birth control underwent a pregnancy 

test before participation in the study. All volunteers gave written informed consent to 

participate and received compensation for their time.  
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 Materials 

Questionnaires 

Each participant completed a battery of questionnaires to assess current mood state, 

alcohol use, and impulsivity. The Nuffield Hospitals Medical History Questionnaire was 

used to record demographic details, past and present health status, use of medications and 

recreational drugs, and a number of cigarettes smoked per day.  

The Barratt Impulsiveness Scale (BIS-11) (Patton, Stanford, & Barratt, 1995) and the 

UPPS-P Questionnaire (Cyders & Smith, 2007; Whiteside & Lynam, 2001), widely used 

questionnaires in impulsivity research, measured trait impulsivity. BIS provides an index of 

three impulsivity dimensions: motor, non-planning and in-attention. UPPS-P gives a 

measure of premeditation, perseverance, sensation seeking as well as tendencies to act 

impulsively while experiencing positive and negative emotions, positive and negative 

urgency, respectively.  

Participants completed the Rey Auditory Verbal Learning Test (RAVLT, Rey, 1964), 

a measure of working memory capacity, to ensure that both experimental groups were 

matched on the basis of their cognitive abilities. Participants heard a list of 15 unrelated 

nouns with a presentation rate of one word per two seconds. Following a period of 2-min, 

while asked to count from 100 backwards out-loud to minimise mental repetition, 

participants were asked to recall as many words as they could remember. The number of 

correct recalls was the dependent variable.  

Alcohol Use Questionnaire (AUQ, Mehrabian & Russell, 1978) provided an estimate 

of a number of alcohol units (1 unit = 8g of alcohol) consumed a week over the past six 

months. 

Depression, Anxiety, Stress Scale (DASS; Henry & Crawford, 2005) consists of three 

7-item self-report scales that measure the extent of depression, anxiety, and stress 

experienced over the past week. This scale was introduced to ensure group matching on 

negative mood ratings. 

Drug Effects Questionnaire (DEQ; Morean et al., 2013) assesses two key aspects of 

subjective experience: the strength of substance effects and desirability of substance effects. 

It consists of five items, “Do you feel a drug effect right now?” (Feel); “Are you high right 

now?” (High); “Do you like any of the effects you are feeling right now?” (Like); “Do you 

dislike any of the effects you are feeling right now?” (Dislike); and “Would you like more of 

the drug you took, right now?” (More), rated on a 100-point visual analogue scale ranging 

from “not at all” to “extremely”. 
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Perceived Arousal Scale (Anderson, Deuser, & DeNeve, 1995) provides ratings of 

subjective arousal state. It consists of 24 adjectives indicating arousal (e.g. energetic) or a 

lack of arousal (e.g. sleepy) rated on a five-point scale from 1, “very slightly or not at all”, to 

5, “extremely”. The scale has a high internal consistency (Cronbach α = .93).  

Positive Affect/Negative Affect Scale (PANAS) (Watson, Clark, & Tellegen, 1988) is a 

20-item measure of self-reported positive (PA), and negative affect (NA) experienced at the 

present moment.  

The State-Trait Anxiety Inventory (STAI; Spielberger, Gorsuch, Lushene, Vagg, & 

Jacobs, 1983) was used to assess anxiety levels. It consists of two 20-item scales rated on a 

four-point scale. 

Tasks 

Affective Stop Signal Task (ASST) measured motor response inhibition in task-

irrelevant emotional context. This modified version of the commonly used task was 

introduced as previous reports suggested that yohimbine might affect amygdala responses to 

fearful faces and change the perception of emotional faces (Schwabe, Höffken, Tegenthoff, 

& Wolf, 2013). Therefore, we used a paradigm with task-irrelevant emotional context 

(fearful faces). 

The details on the ASST were published previously (Herman, Critchley, & Duka, 

2018b; see Chapter 4). Briefly, instead of arrows, participants were presented with facial 

expressions from the FACES database (Ebner, Riediger, & Lindenberger, 2010) of males 

and females (50% each) displaying either fear or neutral expression (50% each). On the Go-

trials (a facial expression surrounded by a white frame), participants were instructed to 

respond with an appropriate button-press to indicate whether the face displayed on the 

screen was male or female (implicit emotional context) as quickly as possible and to try and 

withhold their responses when the frame surrounding the picture changed colour (Stop-

trials). The onset of the Stop Stimulus (the same picture surrounded by a yellow frame) was 

adjusted according to a staircase procedure depending on individual performance separately 

for each emotional condition, to obtain a probability of stopping 0.5 for each condition. 

Participants were informed that speed and accuracy on task are equally important and that 

they should not be delaying their responses to see whether the frame would turn yellow. The 

Stop-Signal Reaction Time (SSRT) was calculated separately for neutral (SSRT Neutral) 

and fearful (SSRT Fearful) trials. 

Participants completed two runs of 160 trials with a rest break in-between. In total 

there were 120 Go Neutral, 120 Go Fearful, 40 Stop Neutral, and 40 Stop Fearful trials. 

Probability Discounting task (PD; Madden, Petry, & Johnson, 2009) is a measure of 

risk-taking. It consists of a list of 30 choices between smaller certain rewards and uncertain 
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larger gains. The dependent variable is h parameter (ln-transformed to reduce skewness). 

Large h values indicate discounting of probabilistic rewards (risk aversion). 

The Information Sampling Task (IST; Clark, Robbins, Ersche, & Sahakian, 2006) is a 

measure of reflection impulsivity. On each trial, a matrix of 5x5 grey squares was presented 

on a computer screen. The participant selected a square by clicking with the mouse over the 

square, to reveal one of two colours (e.g. red and blue) until they were confident which of 

the two colours was in the majority of the squares. There were two conditions of the task: 

(i) IST fixed win condition (FW): the participant won 100 points if they made the 

right decision (regardless of how many boxes they have opened); otherwise, they lost 100 

points. The participant completed 10 experimental trials. 

(ii) IST reward conflict (RC): for every box opened, the participant lost 10 points from 

a bank of 250. If the participant chose correctly they won the remaining points from the 

bank; otherwise, they lost 100 points. Each participant completed 10 experimental trials. 

The dependent variable for both conditions is P(correct) which reflects the certainty of 

being correct that a participant tolerates when they make a decision. P(correct) values of 1 

indicate that the participant acquired full information before deciding, 0.5 indicates that the 

participant had only enough information to choose at chance. 

The Monetary Choice Questionnaire (MCQ; Kirby, Petry, & Bickel, 1999) is a 

measure of temporal impulsivity. The participant was presented with 27 hypothetical choices 

between small, immediate rewards (SIR) and larger delayed rewards (LDR), for example, 

“would you prefer £54 today or £55 in 117 days?”. The dependent variable was the 

proportion of LDR choices made.  

 Procedures 

Before testing, all volunteers attended a standardised interview with a medical doctor 

(TD). The screening checked for exclusion criteria, history of medication and recreational 

drug use, contraceptive use, any current or chronic medical condition, current or lifetime 

history of any psychiatric or neurological disorder. 74 volunteers (48 females) entered initial 

screening, but 27 (36%) were excluded as they met one or more exclusion criteria and 

further four individuals (5%) withdrew from the study, yielding 43 individuals who 

participated.  

Participants were instructed to refrain from caffeine-containing products on a day of 

testing and have a light breakfast in the morning before participating in the study. Following 

completion of RAVLT, alcohol use, personality and mood state (PANAS) questionnaires 

and BP measurement, participants were administered 20 mg Yohimbine (Yohimbine 

chlorhydrate, Arzneimittel GmbH) or placebo orally 45 min before the behavioural testing 
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began. Both the experimenters and the participants were blinded (double-blind experiment). 

Dosage and timing of drug administration were chosen according to previous studies using 

yohimbine, as this dosage was shown to evoke mild effects on the physiological arousal 

without causing mood-related side effects (anxiety and nervousness) (Plewnia, Bartels, 

Cohen, & Gerloff, 2001; Schwabe et al., 2013; Schwabe, Tegenthoff, Hoffken, & Wolf, 

2010, 2012; Swann et al., 2013). 

Within the first 45 minutes following tablets administration participants had time to 

relax and their heart rate (HR) and BP was monitored every 15 minutes. Subsequently, 

physiological measurements were taken every 30 minutes. All physiological measures were 

recorded while participants were sitting still. Approximately 20 min following the tablets 

administration, a light snack was served. Following 45 min rest period, testing commenced, 

during which participants completed behavioural impulsivity measures (ASST, IST, PD, and 

MCQ, in a randomised order) and further state-measure questionnaires (PANAS, Perceived 

Arousal Scale, and DEQ). Procedures are illustrated in Figure 5.1. After behavioural testing 

was completed, participants remained in the lab until their BP was <10 mmHg above 

baseline. 

 

 

Figure 5.1 Procedures and timeline during the testing session. 

 

 Statistical analysis 

An exploratory correlational analysis was undertaken to assess the relationship 

between the resting level of physiological arousal (HR, BP) and trait impulsivity measures. 

Differences between groups on demographic information and task performance (apart from 

the ASST) were compared using a series of independent samples t-tests or chi-square tests as 

appropriate. Response inhibition on the ASST was analysed with mixed-ANOVA with 

emotion condition (fearful and neutral) as a within-subject factor, and group (yohimbine or 

placebo) as a between-subject factor. Physiological measures were also analysed using 
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mixed-ANOVAs with time of measurement as a within-subject factor, and group 

(yohimbine or placebo) as a between-subject factor. Significant main or interaction effects 

were pursued with appropriate follow-up tests, including repeated-measures ANOVA. In 

case of violation of sphericity, multivariate ANOVAs were used (Maxwell & Delaney, 

2004). 

 Results 

 Exclusions and missing data 

One participant did not complete the study due to strong nausea and cardiovascular 

reaction to yohimbine. Therefore, the final sample consisted of 42 participants (23 females); 

21 (12 females) received placebo and 21 (11 females) yohimbine. There were equal numbers 

of cigarettes smokers in each group (3 and 4 respectively, X2(1) = 0.17, p = .679). Five 

participants did not complete RAVLT, data from MCQ were missing for two individuals, 

due to technical failure, all data from questionnaires administered after tablets ingestion 

(PANAS, Perceived Arousal Scale, and DEQ) were missing for one participant. Four 

participants were excluded from the ASST for failing to follow instructions not to wait for 

the stop signal, evidenced by long Go reaction times, and/or high Stop Accuracy values (> 

2.5 standard deviations from the group mean).  

The groups were well matched on demographics, mood state and personality 

variables; however, there were some group differences in sensation seeking (not significant 

after the Bonferroni correction for multiple comparisons, p > .003) (see Table 5.1). 

Therefore, to investigate the potential role of sensation seeking, each comparison was 

computed with and without including sensation seeking as a covariate.  

 

 Blinding 

To establish whether the blinding procedure was successful, we compared the 

numbers of participants who correctly and incorrectly guessed their group allocation. Chi-

square test was insignificant (X2(1) = 1.62, p = .204), indicating that individuals in both the 

Placebo and Yohimbine groups were blind to the group allocation. Notably, 11 out of 21 

participants in Yohimbine group thought they received placebo, while 15 out of 21 

participants from the Placebo group thought they received placebo; therefore, the blinding 

procedure seemed to work better for the Yohimbine group (see Figure 5.2 for details). 

 
 



 

 

  

Table 5.1 Group demographics, personality and mood state measures as well as group statistics. 

 

Variable N Mean SD N Mean SD t df p Lower Upper

Age 21 21.29 3.27 21 23.19 5.41 -1.38 40 .175 -0.43 -4.69 0.88

21 70.99 10.72 21 68.96 8.15 0.69 40 .493 0.21 -3.90 7.97

21 1.76 0.10 21 1.73 0.09 0.84 40 .406 0.26 -0.04 0.08

21 22.96 2.68 21 22.97 2.37 -0.02 40 .988 -0.01 -1.59 1.57

21 12.91 10.50 21 11.40 11.55 0.45 40 .659 0.14 -5.37 8.40

RAVLT 18 6.56 2.12 19 5.90 1.45 1.11 35 .274 0.37 -0.55 1.87

21 66.95 10.52 21 62.76 9.93 1.33 40 .192 0.41 -2.19 10.57

Negative Urgency 21 28.91 6.58 21 25.19 5.40 2.00 40 .052 0.62 -0.04 7.47

Premeditation 21 22.38 4.57 21 19.95 5.20 1.61 40 .116 0.50 -0.62 5.48

Perseverance 21 21.05 4.93 21 18.81 5.22 1.43 40 .161 0.44 -0.93 5.41

Sensation Seeking 21 40.24 5.21 21 34.57 7.53 2.83 40 .007 0.88 1.63 9.71

Positive Urgency 21 30.43 10.19 21 26.52 7.31 1.43 40 .161 0.44 -1.63 9.44

Mood measures

NA Pre 21 11.71 2.43 21 12.86 2.46 -1.52 40 .138 -0.47 -2.67 0.38

PA Pre 21 28.33 5.80 21 30.38 7.48 -0.99 40 .327 -0.31 -6.22 2.13

Trait Anxiety 21 39.10 7.08 21 39.71 7.46 -0.28 40 .784 -0.09 -5.15 3.92

State Anxiety 21 34.91 7.88 21 32.71 7.81 0.91 40 .371 0.28 -2.70 7.08

Trait impulsivity

BIS Total

U
P

P
S

-P

PANAS

STAI

Placebo Yohimbine

Cohen's d

95% Confidence 

Interval

Demographic information

Weight [kg]

Height [m]

BMI [kg/m²]

Alcohol Units per week
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Figure 5.2 Deception - individuals’ insights into group allocation.  

 Resting state arousal and trait impulsivity 

Correlational analysis to examine the relationship between resting state measures of 

arousal (HR, DIA BP, SYS BP) and trait impulsivity measures (BIS and UPPS-P), showed 

no significant correlations (Table 5.2), indicating that trait impulsivity is not related to 

unusually low levels of arousal at rest. 

Table 5.2 Person’s correlations between trait impulsivity dimensions and measures of physiological arousal at 
baseline. 

 

 Yohimbine effects on affective state 

Following drug ingestion, Yohimbine group reported increased levels of NA but did 

not differ from placebo in PA (Table 5.3). No group differences in self-perceived arousal or 

drug effects were found. The results did not change after including sensation seeking as a 

covariate. 
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Table 5.3 Descriptive statistics of the mood state measures and well as tasks performance group comparison following drug/placebo ingestion. 

N Mean SD N Mean SD t df p Cohen's d Lower Upper

Feel 20 27.90 26.49 21 28.19 28.79 -0.03 39 .973 -0.01 -17.79 17.21

High 20 20.15 22.76 21 15.43 24.30 0.64 39 .525 0.20 -10.17 19.61

Dislike 20 21.85 27.46 21 22.29 24.01 -0.05 39 .957 -0.02 -16.71 15.84

Like 20 34.60 21.23 21 39.52 27.37 -0.64 39 .525 -0.20 -20.45 10.60

Want More 20 27.85 22.10 21 21.81 24.69 0.82 39 .415 0.26 -8.79 20.87

20 69.65 21.19 21 79.62 17.88 -1.63 39 .111 -0.51 -22.33 2.39

PA Post 20 21.30 8.42 21 26.29 9.72 -1.75 39 .088 -0.55 -10.74 0.77

NA Post 20 10.85 1.27 21 13.48 4.14 -2.72 39 .010 -0.85 -4.58 -0.67

FW P(correct) 21 0.80 0.09 21 0.81 0.12 -0.29 40 .773 -0.09 -0.07 0.05

RC P(correct) 21 0.73 0.06 21 0.72 0.10 0.60 40 .552 0.19 -0.04 0.07

MCQ Proportion LDR  19 0.43 0.16 21 0.49 0.22 -1.02 38 .315 -0.32 -0.19 0.06

PD ln h 21 2.83 3.79 21 2.21 1.64 0.68 40 .499 0.21 -1.21 2.44

SSRT Neutral 19 293.47 58.79 19 280.34 41.52

SSRT Fearful 19 313.94 67.96 19 279.90 38.15
ASST

Perceived arousal

PANAS

Tasks performance

IST

Variable Placebo Yohimbine 95% Confidence Interval

State questionnaires

DEQ
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 Yohimbine effects on physiological recordings 

Systolic Blood Pressure 

Mixed ANOVA revealed a trend for a time by group interaction (F(5, 200) = 1.90, p = 

.096, η²p = .045) and a significant main effect of time (F(5, 200) = 4.81, p < .001, η²p = .107), 

and no main effect of drug (F(1, 40) = 1.19, p = .28, η²p = .029). The SYS BP reached its peak 

45 min following drug administration (see Fig 5.3A). Including SS as a covariate strengthened 

the interaction effect (F(5, 195) = 2.62, p = .026, η²p = .063), and the main effect of time was no 

longer significant F(5, 195) = 0.712, p = .615, η²p = .018). Post-hoc repeated measures ANOVA 

revealed that while the placebo group did not show significant changes in SYS BP over time, 

F(5, 100) = 1.18, p = .326, the yohimbine group did show changes over time, F(5, 100) = 4.10, 

p = .002. 

Diastolic Blood Pressure 

The Mauchy’s Test of Sphericity was significant (X(14) = 39.41, p < .001); therefore, 

multivariate test was used. Wilks’ Lambda test revealed time-group interaction (F(5, 36) = 2.63, 

p = .040, η²p = .267) and a main effect of time (F(5, 36) = 7.77, p < .001, η²p = .519). Post-hoc 

tests revealed that both groups showed DIA BP changes over time (placebo F(5, 100) = 4.49, p 

= .001; yohimbine F(5, 100) = 4.66, p = .001). The SYS BP reached its peak 30 min following 

drug administration (see Fig 5.3B). There was a trend for a main drug effect (F(1, 40) = 3.04, p 

= .086, η²p = .071), suggesting an overall higher DIA BP in the Yohimbine group regardless of 

the time of measurement.  

After controlling for SS the interaction effect remained marginally significant (F(5, 35) = 

2.47, p = .051, η²p = .261), the main effect of time was no longer significant (F(5, 35) = 0.893, p 

= .496, η²p = .113), and the main effect of drug remained unchanged (F(1, 40) = 3.22, p = .080, 

η²p = .076).  

Heart Rate 

There was a trend for a time by condition interaction (F(5, 200) = 1.95, p = .088, η²p = 

.05) and a main effect of time (F(5, 195) = 5.24, p < .001, η²p = .12), but not a main effect of 

drug (F(1, 40) = 0.001, p = .975, η²p = .00) (see Fig 5.3C).  

After controlling for SS, there were no significant results (interaction term: F(5, 195) = 

1.43, p = .216, η²p = .04; time: F(5, 195) = 0.62, p = .687, η²p = .02; drug: F(1, 39) = 0.26, p = 

.611, η²p = .01). Therefore, yohimbine did not affect the HR.  
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Figure 5.3 Measurements of (A) systolic blood pressure, (B) diastolic blood pressure and (C) heart rate of Yohimbine 
and Placebo groups across the session. Error bars represent standard error. Significant difference from baseline: *p < 
.05, **p < .01, ***p < .001 (yohimbine group); ##p < .01 (placebo group); &p < .05, &&p < .01, &&&p < .001 (main effect 
of time). 
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 Performance on the tasks 

ASST 

A main effect of drug, F(1, 35) = 4.30, p = .045, η²p = .11), but not main effect of emotion 

or drug by emotion interaction effect (p’s > .05) was found in the SSRT, indicating that under 

yohimbine participants had lower SSRT (i.e. they were better able to inhibit prepotent motor 

responses successfully). This effect, however, was only significant when controlling for 

individual differences in SS (Figure 5.4).  

 

Figure 5.4 Group performance on the ASST. Results presented after controlling for Sensation Seeking. 

MCQ, PD and IST 

Independent samples t-test revealed that there were no group differences in performance 

on either MCQ, PD or IST, and controlling for SS had no effects on the results (Table 5.3). 

Therefore, yohimbine ingestion did not affect temporal impulsivity, or risk-taking, or reflection 

impulsivity. 

Correlations 

To further explore the relationship between individual changes in arousal and 

performance on the tasks, bivariate correlations coefficients were computed between post-drug 

ingestion changes in physiological parameters (BP and HR) and tasks dependent variables. For 

this analysis, for each participant we subtracted the baseline measurement from the average of 

post-tablets administration arousal measurements; therefore, change in arousal reflects increased 

state arousal following tablets ingestion relative to baseline level. Bonferroni correction for 

multiple comparisons was set to p < .006. The results indicated that increased DIA BP was 

associated with higher proportion of delayed versus immediate rewards selected in the MCQ 
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(Table 5.4, Figure 5.5A). Elevated DIA and SYS BP was also associated with less impulsive 

responding in the fearful context in the ASST, but this correlation did not survive the correction 

for multiple comparisons. In contrast, elevated DIA BP was associated with less information 

sampling in the IST RC condition (increased reflection impulsivity; Figure 5.5B). There were 

no other significant correlations (Table 5.4). 

Table 5.4 Person correlations between changes in physiological parameters (delta = average post-drug measurement 
– pre-drug measurement) and performance on the impulsivity tasks.  

 

DIA BP 

Delta

SYS BP 

Delta
HR Delta

Pearson's r 0.182 -0.177 0.039

p-value 0.275 0.288 0.818

N 38 38 38

Pearson's r -0.371 * -0.335 * 0.021

p-value 0.022 0.040 0.899

N 38 38 38

Pearson's r -0.091 0.065 0.174

p-value 0.564 0.682 0.271

N 42 42 42

Pearson's r -0.444 ** -0.214 -0.141

p-value 0.003 0.173 0.372

N 42 42 42

Pearson's r 0.496 ** -0.036 0.006

p-value 0.001 0.826 0.969

N 40 40 40

Pearson's r -0.098 0.056 0.112

p-value 0.536 0.724 0.480

N 42 42 42

SSRT Neutral

SSRT Fearful

PD ln h

* p  < .05 (uncorrected), ** p  < .01 (uncorrected), in bold are depicted correlations that survived the 

Bonferroni correction for multiple comparisons (p  < .006)

IST FW 

P(correct)

IST RC 

P(correct)

MCQ Proportion 

LDR
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Figure 5.5 Scatterplots showing the relationship between the change in diastolic blood pressure and the proportion 
of larger delayed rewards (LDR) selected in the MCQ task (A) and the level of information gathering in the IST Reward 
Conflict condition (B). Different shades of grey depict the yohimbine and placebo groups. 
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 Discussion  

The current study examined the role of state arousal induced by administration of α2-

noradrenergic blocker, yohimbine, on distinct subtypes of behavioural impulsivity. We 

hypothesised that yohimbine-induced arousal would result in decreased impulsive behaviour.  

In agreement with previous reports, yohimbine did not affect HR but caused an increase 

in BP, notably DIA BP (Krystal et al., 1992; Schwabe et al., 2010; Swann et al., 2013, 2005), 

proving to be a successful method of arousal induction.  

The yohimbine group outperformed the placebo group at response inhibition in the ASST, 

as predicted. However, there were no group differences in performance in either risk-taking, or 

reflection, or temporal impulsivity tasks. Moreover, increased arousal, indexed by heightened 

DIA BP following drug administration, was associated with less impulsive behaviour in the 

ASST (motor impulsivity), albeit regardless of the emotional context, and MCQ (temporal 

impulsivity) tasks, but more impulsive behaviour on the IST RC task (increased reflection 

impulsivity). However, no association between trait impulsivity and resting state arousal was 

found; thus, the findings provide only partial support for our hypotheses.  

 Motor impulsivity 

The yohimbine group showed lower motor impulsivity than placebo in the ASST, 

regardless of emotional context. This relationship, however, was only present when we 

controlled for individual differences in sensation seeking, indicating that personality 

characteristics might be a vital factor contributing to the role of arousal in inhibitory control. It 

seems relevant to note that in one study, sensation seeking correlated with performance on the 

Stop Signal Task (Muhlert, Boy, & Lawrence, 2015), suggesting that sensation seeking might 

play an important role in motor inhibition. 

Overall, the findings of decreased motor impulsivity in the yohimbine group, which 

showed an increased level of arousal, and the correlational results of a trend for increased DIA 

and SYS BP following the drug administration vs baseline linked to better response inhibition, 

in the fearful context, support our hypothesis of reduced motor impulsivity in a state of 

heightened physiological arousal. These results also corroborate previous findings. For example, 

abrupt alerting cues (i.e., an irrelevant external signal that appears briefly), which temporarily 

increase arousal (i.e., phasic alertness), were found to improve the ability to stop an already 

initiated response (Weinbach, Kalanthroff, Avnit, & Henik, 2015). Similarly, response 

inhibition capacity seems to be affected by acute changes in cardiovascular arousal state within 

the cardiac cycle, such that participants are more likely to successfully inhibit motor responses 

during cardiac systole (increased state of physiological arousal) than diastole (lower state of 

cardiac arousal) (Rae et al., 2018). SSRT, an index of difficulty in motor response inhibition, 
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also decreases after acute exercise (Chu et al., 2015; Joyce, Graydon, McMorris, & Davranche, 

2009). Moreover, atipamezole, another antagonist of ɑ2-adrenergic receptors, was also shown to 

decrease the SSRT in a rodent version of the SST (Bari & Robbins, 2013). Taking the 

previously reported data and our findings together, we conclude that a moderate increase in the 

level of arousal is related to a decrease in motor 'stopping' impulsivity.  

However, there were no group differences in motor impulsivity in the neutral and fearful 

conditions in the ASST. This may suggest that putative yohimbine-induced changes in the 

processing of emotional faces (Schwabe et al., 2013), may not be interfering with response 

inhibition capacities. However, the previous report by Schwabe and colleagues (2013) 

suggested that there may be sex differences associated with the yohimbine-induced effect on 

emotional processing. Due to the small sample size in our study, we were unable to disentangle 

these effects reliably. Future studies should address this issue. 

 Temporal impulsivity 

Although we did not observe any group differences in performance in any other tasks 

apart from ASST, we found associations between post-drug administration arousal change and 

impulsive decisions. Specifically, increased DIA BP following drug administration was 

associated with less impulsive choices in the MCQ task, suggesting that increased arousal at 

subject-level was associated with lower temporal impulsivity. Previous studies looking at the 

relationship between physiological arousal and delay discounting studied mainly stress 

reactivity with mixed findings. For example, Diller and colleagues (Diller, Patros, & Prentice, 

2011) found that female participants with higher HR reactivity to acute stressor showed larger 

delay discounting (more temporal impulsivity), but this trend did not hold in males. Their 

results indicated that the stress reactivity of the autonomic nervous system might be related to 

impulsivity. Kimura et al., (2013), on the other hand, did not find any significant association 

between HR or HR reactivity with delay discounting rates. Instead, stress increased the delay 

discounting only in a group of individuals who showed a cortisol increase, a marker of stress. A 

recent study (Lempert, Speer, Delgado, & Phelps, 2017) using within-subject design, reported 

that blunting arousal levels by propranolol administration, a β-adrenergic receptor antagonist, 

also did not affect temporal discounting rates. Together, these results indicate that the effects of 

arousal on delay discounting might not be straightforward and may mainly depend on individual 

changes in arousal level, which may affect biological changes in different ways. 

 Probability discounting 

In contrast to temporal discounting, we found no association between the change in 

arousal and probability discounting. Indeed, a previous study looking at the role of 
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noradrenergic transmission in risky decisions in rodent models (Montes et al., 2015) found that 

yohimbine does not affect probabilistic discounting per se, but rather impairs the flexibility of 

response adjustments; when reward probabilities were initially large and then decreased 

(descending condition), yohimbine increased the number of risky choices in later blocks. The 

reverse was true for ascending condition (when the reward probabilities were initially small and 

then increased) - yohimbine resulted in reduced preference towards risky options. Since in our 

study the trials of different probabilities were intermixed (there was no ascending/descending 

condition), the ‘pure’ risk-taking was more likely to be tested. Lack of an effect of yohimbine in 

our task confirms the notion that noradrenergic activation may not be affecting risky decisions. 

Our data are in contrast to those by Schmidt et al., (2013), who reported that increased 

physiological arousal following physical exercise was associated with less risky behaviour in a 

gambling task compared to the resting condition. However, unlike in the current study, which 

asked hypothetical questions explicitly, Schmidt et al., (2013) employed a gambling game 

paradigm, in which the probabilities were not explicit, and participants were perceiving the 

probabilities from the outcomes of the gambles. Therefore, the type of risk task (implicit or 

explicit) could be differentially affected by arousal level. 

 Reflection impulsivity 

To our knowledge, this is the first investigation of the role of physiological arousal 

mediated by noradrenergic mechanisms in reflection impulsivity. Our results suggest that the 

DIA BP reactivity was negatively correlated with the degree of information sampling in the IST 

reward conflict condition. The results provide an indication that individuals showing a greater 

increase in DIA BP also gathered less information before deciding in the task. Importantly, this 

relationship was only present in reward conflict condition, in which the potential gains decrease 

as participants sample more data (information sampling/reward trade-off), and not in the fixed 

win condition, in which gathering as much information as possible is the most advantageous. 

Therefore, state arousal may affect reflection impulsivity in more challenging, more ambiguous 

circumstances. 

 Conclusions 

In conclusion, our findings indicate that yohimbine-induced arousal is associated with 

decreased motor impulsivity, suggesting that yohimbine treatment might prove to be a means of 

reducing ‘stopping’ impulsivity. Moreover, increased arousal, at the individuals’ level, is 

associated with decreased temporal but increased reflection impulsivity. Probability 

discounting, a measure of risk-taking, was not related to arousal level. These results further 

support the notion that distinct subtypes of impulsivity are differentially affected by modulators. 



179 

 

Chapter 5 

Additionally, we did not find any support for the under-arousal hypothesis of impulsivity 

(Barratt, 1985; H. J. Eysenck & Eysenck, 1985; Zuckerman, 1969), as we did not observe any 

relationship between resting measures of arousal and trait impulsivity. 

These data highlight the importance of state of physiological arousal in behavioural 

impulsivity. 
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 Abstract 

Influential theories concerning personality argue that many impulsive individuals 

show physiological under-arousal at rest. This interoceptive state is proposed to be 

egodystonic, motivating impulsive maladaptive actions to enhance arousal. However, there 

is little empirical research on this matter. The current study tested the relationship between 

physiological markers of arousal, measures of interoceptive (in)sensitivity and trait 

impulsivity. Experiment 1 investigated whether individuals with high trait impulsivity show 

decreased resting measures of arousal (indexed from heart rate, heart rate variability, and 

sympathetic electrodermal activity). Experiment 2 assessed whether trait impulsivity is 

linked to interoceptive abilities. Overall, our results do not provide any compelling support 

for the under-arousal theory of impulsivity. However, impaired interoceptive (cardiac 

discrimination) accuracy predicted the degree of Barratt Non-Planning impulsivity; such that 

individuals with a better ability to distinguish between internal (bodily) and external signals 

manifest lower levels of Non-Planning trait impulsivity. These findings open an avenue for 

potential novel interventions aimed at improving planning abilities via better interoceptive 

discrimination. 

_____________________________________________________________________

Keywords: Interoception, Barratt Impulsiveness Scale, Heart Rate Variability, Skin 

Conductance, Heart Rate. 
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 Introduction  

The concept of an optimal level of arousal was first proposed by Hebb (1955), who 

suggested that each individual has an optimal level of arousal which ‘feels best’ and is 

linked to their capacity for highest level of performance. The theory also poses that 

individuals engage in activities that aim to maintain that optimal arousal state. By extension, 

individuals with a chronically low resting level of arousal will experience dysphoria unless 

they engage in behaviours to increase stimulation and evoke greater arousal towards their 

optimal level. The optimal level of arousal theory led to the development of personality 

theories based on this concept. According to these theories, impulsive individuals are under-

stimulated at rest, have high sensitivity to signals of reward, and seek external means to 

evoke behavioural activation in order to raise arousal to the optimal level and mitigate the 

unpleasant psychological experience of an under-aroused state (Barratt, 1985; Eysenck & 

Eysenck, 1978; Zuckerman, 1969). 

In support, some studies report diminished resting physiological arousal in individuals 

displaying impulsive behaviours. Heuristically, physiological arousal is associated with 

action-ready states, facilitated by sympathetic activation. Sympathetic activation is apparent 

as increased heart rate and blood pressure (through baroreflex suppression, and associated 

withdrawal of parasympathetic cardiovascular tone). Other autonomic measures, such as 

electrodermal activity also index centrally-driven peripheral arousal states. Thus, there is 

evidence linking lower resting heart rate with behavioural (delay discounting) and trait 

impulsivity (Fung, Crone, Bode, & Murawski, 2017; Mathias & Stanford, 2003), aggression 

(Mawson, 2009), and criminal behaviour (Choy, Raine, Venables, & Farrington, 2017; 

Latvala, Kuja-Halkola, Almqvist, Larsson, & Lichtenstein, 2015). Additionally, indices of 

sympathetic arousal are elevated during risk-taking behaviours such as gambling (Diskin & 

Hodgins, 2003; Meyer et al., 2000; Schmidt, Mussel, & Hewig, 2013). These findings 

support the assumption that participants with low physiological arousal may seek stimulation 

to approach their optimal arousal level. 

One physiological marker, more related to self-control, is heart-rate variability (HRV) 

(Segerstrom & Nes, 2007; Thayer, Hansen, Saus-Rose, & Johnsen, 2009; Zahn et al., 2016). 

HRV refers to the beat-to-beat variation in heart rate and is dominated by parasympathetic 

(cardiorespiratory vagal) influences on the heart (Appelhans & Luecken, 2006). HRV is 

considered to be an indicator of resting state and of psychophysiological flexibility, enabling 

the autonomous nervous system to adjust cardiac activity according to situational demands 

(Appelhans & Luecken, 2006; McCraty & Shaffer, 2015). Indeed, research has linked 

heightened HRV with behavioural, emotional and cognitive self-control capacities. HRV is 

therefore sometimes regarded as a biomarker for self-regulation (Holzman & Bridgett, 2017; 
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Reynard, Gevirtz, Berlow, Brown, & Boutelle, 2011; Segerstrom & Nes, 2007; Thayer et al., 

2009; Zahn et al., 2016).  

Interoceptive ability is another factor associated with adaptive behaviour: 

Interoception refers to the communication and central processing of internal bodily signals, 

including the ability to perceive accurately changes in bodily arousal, which can guide 

actions and decisions (Craig, 2009; Damasio, 1996; Paulus, Stewart, & Haase, 2013). 

Therefore, if the arousal theories of impulsivity are correct, impulsive individuals might be 

more sensitive to low states of, or subtle reductions in, bodily arousal state (i.e. reflected in 

increased interoceptive abilities) and engage in impulsive or risky actions as a maladaptive 

way of regulating their arousal levels. Alternatively good interoceptive abilities may be 

advantageous, particularly when potential risk is involved (Kandasamy et al., 2016; Werner, 

Jung, Duschek, & Schandry, 2009), while insensitivity to arousal signals may be present in 

highly impulsive individuals, who consequently may pursue excessive ill-considered 

behaviours to engender normative experiences of physiological arousal in compensation for 

blunted perception of bodily signals.  

Therefore, the current experiments aimed to clarify the relationship between 

physiological markers of arousal, interoceptive abilities, and trait impulsivity. Experiment 1 

tested the hypothesis that trait impulsivity is associated with decreased measures of resting 

arousal, including heart rate and sympathetic electrodermal activity as well as decreased 

HRV, indexing arousal related shifts in the balance between sympathetic and 

parasympathetic influences on the heart. Experiment 2 assessed whether trait impulsivity is 

linked to altered interoceptive abilities. 

 Experiment 1 

Experiment 1 tested whether impulsive individuals are characterised by a low resting 

state level of physiological arousal, employing complementary measures of autonomic 

arousal, namely heart rate (HR), tonic electrodermal activity (i.e. skin conductance level; 

SCL) and HRV. We also used two distinct self-report scales to assess trait impulsivity, 

quantifying distinct aspects of impulsive personality.  

 Methods 1 

Participants 

31 participants (14 males) from the University of Sussex and Brighton & Sussex 

Medical School community were recruited to take part in the study. All participants were 

right-handed, free from psychiatric or neurological disorders and had normal or corrected to 
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normal hearing and vision. Participants gave written informed consent. The study was 

approved by the Brighton & Sussex Medical School Research Governance & Ethics 

Committee.  

Questionnaires  

Self-reported trait impulsivity was measured using the Barratt Impulsivity Scale 

(Patton, Stanford, & Barratt, 1995), which consists of a 30-item checklist. The 30 items can 

be subdivided into scales measuring attention, motor and non-planning impulsivity. Another 

self-report measure of impulsivity, the UPPS-P Impulsive Behavior Scale (Cyders et al., 

2007; Whiteside & Lynam, 2001) is a 59-item checklist measuring five different facets of 

impulsivity, including emotional impulsivity: negative urgency, (lack of) perseverance, (lack 

of) premeditation, sensation seeking and positive urgency.  

Physiological recording 

Cardiac measures were obtained using electrocardiography (ECG). Three Ag/AgCl 

monitoring electrodes were attached with foam tape (3M Healthcare, Neuss, Germany), two 

on the participant’s left and right upper chest. A ground electrode was also located above the 

left hipbone at the superior ilium. Electrodes were connected to an ECG Electrode Adapter 

(1902-11, Cambridge Electronic Design). The signal was amplified (1902 Quad System, 

Cambridge Electronic Design) and relayed to Spike2 recording software via an analogue-to-

digital recorder (1401, Cambridge Electronic Design). The ECG signal was sampled at 

1000Hz and heart rate and heartrate variability measures were computed from these time-

series data. 

For sympathetic skin conductance level (SCL) recordings, two Ag/AgCl electrodes 

were filled with an isotonic recording electrode gel and attached with 2.5cm wide Transpore 

Surgical Tape to the palmer surface of the middle phalanx of the index and middle fingers of 

the participants’ left hand. Electrodes were connected to a proprietary skin conductance 

module (2502, Cambridge Electronic Design). The signal was relayed to the Spike2 

recording software via an analogue-to-digital recorder (1401, Cambridge Electronic Design). 

To minimize movement and increase comfort, the participant’s left arm was rested on a 

pillow.  

Procedures 

Each participant was asked to rest quietly with eyes open for at least 5 minutes before 

physiological recording commenced. This established a resting arousal level. Next, the 

participant continued to rest, with gaze fixated on a cross that was displayed on the screen in 

front of them for 2.5 minutes while ECG and SCL were recorded. Resting HR, HRV and 
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tonic SCL measures were derived from the recordings taken during this 2.5 minute period, in 

order to characterise the overall degree of arousal, which decreases with physiological 

relaxation states such as rest and sleep (Malmo, 1959).  

Data analyses 

Each participant’s ECG waveform was thresholded to isolate each R-wave peak, and 

the inter-beat intervals were calculated using in-house scripts written with Spike2 (CED). 

Inter-beat intervals were entered to the HRVAS toolbox (Ramshur, 2010) in Matlab 

(R2012a, Mathworks). Heart rate variability was indexed as the root mean square of the 

successive differences (RMSSD). The HRVAS output also gave each participant’s heart rate 

in beats per minute (bpm). The skin conductance data were analysed with a Matlab toolbox: 

Ledalab Version 3.4.3 (http://www.ledalab.de/), using continuous decomposition analysis 

(CDA) (Benedek & Kaernbach, 2010), to quantify tonic (CDA.tonic) skin conductance 

activity (SCL). 

Pearson’s correlations, r, two-tailed, were used to confirm the relationship between 

trait impulsivity and arousal level. Bonferroni correction for multiple comparisons, set to p ≤ 

.002, was introduced for key correlations of interest, between nine measures of trait 

impulsivity (BIS and UPPS-P scores) and three autonomic measures of arousal (HR, HRV, 

SCL). For completeness, the full correlation matrix is included in Table 6.1.  

We also undertook a median split of participants, to investigate whether individuals 

distinguished by high and low trait impulsivity (reflected in BIS Total score) differed in 

resting arousal measures. Highly impulsive individuals were those with the BIS score of 67 

and above (N = 16, mean = 75.5, SD = 5.63), while low impulsive individuals scored 66 or 

below (N = 15, mean = 57.73, SD = 7.94). Independent t-tests compared arousal measures 

between the two groups. The statistical analysis was conducted in JASP version 0.8.6.0 

(JASP Team, 2018). 

 Results 1 

Group demographics and descriptive statistics are presented in Table 6.2. The 

correlational analysis showed that resting-state level of arousal indexed by HR or SCL was 

not related to any of the trait impulsivity measures (Table 6.1). HRV, indexed by the 

RMSSD, was positively correlated with Positive Urgency. The effect size was moderately 

strong; however, this effect did not survive the correction for multiple comparisons (p > 

.002). Subscales of BIS strongly correlated with each other as well as measures of UPPS-P 

scale. An exception was Sensation Seeking which, on the other hand, did not correlate 

significantly with other impulsivity measures.  
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Moreover, we found no significant differences in any of the arousal measures between 

high and low impulsive individuals (see Table 6.3 for details). The difference in SCL 

approached significance; however, the relationship tended in the direction opposite to 

expected under the optimal arousal level theory, that is impulsive group showed higher 

resting skin conductance level (tonic sympathetic state) than less impulsive group.  

 



 

 

  

Table 6.1 Bivariate correlation coefficients. Relationships of interest are surrounded by a frame. 

 

 

r —

p —

r -.626 *** —

p < .001 —

r -.297 .255 —

p .105 .166 —

r .124 .021 .106 —

p .506 .910 .569 —

r .171 .010 -.100 .870 *** —

p .357 .957 .593 < .001 —

r .104 -.074 .159 .888 *** .687 *** —

p .579 .692 .392 < .001 < .001 —

r .048 .125 .212 .836 *** .576 *** .601 *** —

p .800 .503 .253 < .001 < .001 < .001 —

r .149 -.072 -.060 .601 *** .549 ** .568 *** .438 * —

p .424 .701 .748 < .001 .001 < .001 .014 —

r -.079 .049 -.035 .132 .131 .331 -.133 -.154 —

p .673 .793 .850 .477 .481 .069 .476 .409 —

r .409 * -.140 -.065 .683 *** .636 *** .731 *** .396 * .713 *** .284 —

p .022 .454 .727 < .001 < .001 < .001 .027 < .001 .122 —

r .166 .080 .071 .651 *** .555 ** .432 * .712 *** .354 .006 .324 —

p .372 .669 .705 < .001 .001 .015 < .001 .051 .975 .076 —

r .020 .038 .129 .644 *** .451 * .616 *** .601 *** .338 .273 .470 ** .567 *** —

p .916 .837 .489 < .001 .011 < .001 < .001 .063 .138 .008 < .001 —

r .132 -.268 -.108 -.184 -.305 -.118 -.056 .008 -.251 -.155 -.173 -.131 —

p .480 .144 .565 .322 .095 .526 .763 .968 .173 .405 .352 .483 —

r .023 .139 -.091 .138 .127 .207 .018 .076 .276 .230 -.150 .154 -.275

p .902 .456 .627 .460 .497 .265 .922 .686 .132 .214 .420 .408 .135

* p < .05, ** p < .01, *** p < .001

13. Age

14. Sex (1=male, 

2=female)

1. RMSSD

10. Positive Urgency

11. Perseverance

12. Premeditation

7. BIS Planning

8. Negative Urgency

9. Sensation Seeking

4. BIS Total

5. BIS Attention

6. BIS Motor

11 12 13

2. HR (bpm)

3. SCL (μS)

5 6 7 8 9 101 2 3 4
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Table 6.2 Descriptive statistics. 

Variable Mean SD Minimum Maximum 

Age 22.45 2.80 18 29 

BIS 

BIS Attention 17.87 4.26 11 28 

BIS Motor 24.16 4.55 17 36 

BIS Planning 24.87 4.26 17 31 

BIS Total 66.90 11.30 48 95 

BPQ Body awareness 67.52 22.18 32 109 

UPPS-P 

Negative Urgency 28.74 7.31 14 41 

Perseverance 19.39 4.64 11 27 

Positive Urgency 28.32 9.62 14 48 

Premeditation 22.19 5.43 12 38 

Sensation Seeking 34.81 6.51 19 48 

Resting arousal 

HR (bmp) 74.99 10.40 55.20 101.80 

HRV 44.56 24.69 7.30 103.90 

SCL (μS)  3.50 0.26 3.15 4.14 

 

Table 6.3 Comparison between High impulsive and Low impulsive individuals (group allocation based on Barratt 
Impulsiveness Scale sample median split). 

Independent Samples t-Test                 

  Low impulsive High impulsive 
   Cohen's 

d 

95% CI  

  Mean SD Mean SD t df p Lower Upper 

RMSSD 42.21 24.84 46.76 25.16 0.51 29 0.617 0.18 -22.92 13.84 

HR (bpm) 74.03 9.62 75.89 11.31 0.49 29 0.627 0.18 -9.6 5.88 

SCL (μS) 3.41 0.23 3.59 0.27 1.95 29 0.061 0.7 -0.36 0.01 

                      

 

 Discussion 1 

Experiment 1 did not confirm the relationship between high trait impulsivity and 

diminished resting state of arousal, indexed by either cardiac or skin conductance measures. 

This contradicts previous findings on delay discounting task and BIS questionnaire (e.g. 

Fung, Crone, Bode, & Murawski, 2017; Mathias & Stanford, 2003). However, most past 

studies investigated male participants only (e.g. Mathias & Stanford, 2003), highlighting the 

possibility that sex differences may be an important factor to test for in further research. 

Moreover, high trait impulsivity in our experiment was not associated with diminished 

HRV, considered by some to be a physiological biomarker of self-regulation capacities 

(Holzman & Bridgett, 2017; Reynard et al., 2011; Segerstrom & Nes, 2007; Thayer et al., 

2009; Zahn et al., 2016). On the contrary, elevated positive urgency, i.e. a tendency to act 
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impulsively while experiencing strong positive emotions (Cyders & Smith, 2007), was 

linked to higher HRV, indicating a better cardiac adjustment to circumstances in more 

impulsive individuals (although this relationship did not survive the correction for multiple 

comparisons). Therefore, our results do not provide evidence for the link between HRV and 

of trait impulsivity.  

As expected, subscales of BIS strongly correlated with each other, and measures of 

UPPS-P scale (apart from Sensation Seeking). Thus, all of these dimensions of trait 

impulsivity strongly relate and are likely elements of an overall construct. These results also 

indicate that despite emotional impulsivity components (i.e. negative and positive urgency) 

present in the UPPS-P scale, both scales, BIS and UPPS-P, are similar to each other with 

regards to the strong degree of inter-relation amongst their subscale dimensions. However, 

as an outlier to this general rule, Sensation Seeking did not correlate significantly with other 

impulsivity measures, suggesting that this element reflects a separate construct of 

impulsivity, probably related to a greater extent to risk-taking rather than impulsive 

tendencies per se. Importantly, despite reported links between cardiac arousal and risk-

taking in the literature (e.g. Schmidt et al., 2013), we failed to confirm any relationship 

between Sensation Seeking and any of the physiological measures of arousal. 

 Experiment 2 

Experiment 2 tested the hypothesis that trait impulsivity is associated with altered 

interoception. According to arousal theories of personality, some individuals may act 

impulsively to increase arousal to an optimal level. Therefore, we hypothesised that 

impulsive individuals may be more sensitive to subtle changes in their (low) arousal level 

and correspondingly show intact or even heightened interoceptive abilities. However, since 

in Experiment 1 we did not find any evidence of any association between trait impulsivity 

and resting arousal levels, we hypothesised that the alternative may be more plausible: Since 

physiological cues can guide our actions and decisions, impulsive individuals could exhibit 

impulsive behaviours as a result of blunted sensory or psychological sensitivity to changes 

within their bodies, evidenced by diminished interoceptive performance.  

In Experiment 1, we found a strong association between measures of impulsivity 

assessed with BIS and UPPS-P subscales.  Therefore, for efficiency, we employed only the 

BIS scale in Experiment 2.    
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 Methods 2 

Participants  

Sixty volunteers (16 males) were recruited from staff and students of the University of 

Sussex to take part in the study. Each participant provided written informed consent, with all 

procedures approved by the local Cross-School Research Ethics Committee. 

Tasks and Questionnaires 

BIS as described above was used to assess trait impulsivity. Subjectively perceived 

sensitivity to bodily sensations was measured using the Awareness subscale of the Body 

Perception Questionnaire (Cabrera et al., 2017), consisting of 45 questions on awareness of 

bodily feelings, such as respiratory sensation or stomach and gut pains in daily life. 

Interoceptive performance was assessed using both the heartbeat (HB) tracking and 

discrimination tasks. These tasks have distinct psychophysiological properties; hence their 

combination enhances inferential power. 

In HB tracking task (Garfinkel, Seth, Barrett, Suzuki, & Critchley, 2015; Schandry, 

1981) participants were instructed to count silently, without manually checking, heartbeats 

they feel in the body during variable time periods. These ratings were compared against the 

actual number of heartbeats, as recorded objectively and non-invasively by a clinical-grade 

pulse oximeter (Nonin Inc.) fitted with a soft (i.e. not spring-loaded) cuff, placed over the 

participant’s index or middle finger of their non-dominant hand. There were six trials with a 

variable time-windows of 25, 30, 35, 40, 45 and 50 s, presented in a randomised order. For 

each trial, an accuracy score equalled [1 − (|nBeatsReal− nBeatsReported|)/((nBeatsReal + 

nBeatsReported)/2)] x 100. Resulting values were averaged over the 6 trials, yielding an 

overall accuracy score for each participant (Hart, McGowan, Minati, & Critchley, 2013).  

In HB discrimination task (Garfinkel et al., 2015), participants judged whether trials, 

consisting of a series of ten auditory tones (presented at 440 Hz and lasting 100 ms) were 

synchronous with their heartbeat (binary yes/no answers). On synchronous trials, the ten 

notes occurred at the rising edge of finger pulse pressure wave; on asynchronous trials, they 

followed 300 ms later. Approximately half the tones were thus presented ‘on the heartbeat’ 

and half were delayed (Wiens & Palmer, 2001). The order of these synchronous and delayed 

trials was fully randomised for each participant. In both conditions, the tones were presented 

at the same rate. Participants could therefore not use the tempo of tones or other knowledge 

about their heart rate to guide responses: phase synchrony of tones and heartbeats served as 

the only informative cue. Since the discrimination task delivered external feedback that 

could be used to infer heart rate, these tasks were performed after the heartbeat counting 
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task. There were 20 trials in total. The HB discrimination accuracy reflected the percentage 

of correct answers. 

Confidence ratings 

At the end of each trial, in both the tracking and discrimination tasks, participants 

immediately rated their confidence in their answer using a continuous visual analogue scale 

ranging from “Total guess” (i.e. 0) to “Complete confidence” (i.e. 100). The mean 

confidence ratings reflected the interoceptive sensibility of self-reported heartbeat perception 

(Garfinkel et al., 2015). 

Interoceptive insight refers to the metacognitive measure of one’s performance, that 

is the extent to which confidence predicts task accuracy (Garfinkel et al., 2015; Khalsa et al., 

2018). Insight score for the HB tracking task was assessed by calculating the within-

participant Pearson correlation, r, between confidence and accuracy scores. Due to binary 

(yes/no) responses on the HB discrimination task, interoceptive insight for this measure was 

quantified using receiver operating characteristic (ROC) curve analysis (Green & Swets, 

1966).  

Statistical analysis 

The relationship between self-reported impulsivity and the measures of interoception 

were first explored with correlational analyses (a series of Pearson’s two-tailed correlations). 

Next, we investigated whether interoception predicted trait impulsivity using multiple 

regressions. A series of three linear regressions applied the three subscales of trait 

impulsivity (attention, motor, non-planning) as dependent variables, and the demographic 

variables (age and sex), baseline HR and dimensions of interoception as independent 

variables. The statistical analysis was conducted in JASP version 0.8.6.0 (JASP Team, 

2018). 

 Results 2 

Due to equipment failure, digitized Body Perception Questionnaire data were missing 

for one participant, and one other participant did not complete the heartbeat discrimination 

task. Descriptive statistics are presented in Table 6.4. 

Correlational analysis (Table 6.5) revealed that heart rate was negatively correlated 

with both heartbeat tracking and heartbeat discrimination accuracy, indicating that 

individuals with lower heart rate performed with greater accuracy on these interoceptive 

tasks. However, similarly to results from Experiment 1, no significant correlations between 

HR and measures of BIS were found. There were also no significant associations between 

measures of impulsivity and interoception (see Table 6.5 for details). 
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Multiple regressions analysis indicated that the regression model for the prediction of 

BIS Planning score was significant (F(10, 47) = 2.55, p = .015, R = .593, R2 = .352). 

Specifically, heartbeat discrimination accuracy, heart rate and age added statistically 

significantly to the prediction (see Table 6.6 for details). In contrast, neither BIS Attention 

(F(10, 47) = 0.39, p = .946; no significant coefficients), nor BIS Motor (F(10, 47) = 0.85, p 

= .588; no significant coefficients) were related to any dimensions of interoception.  

 

Table 6.4 Sample demographics and descriptive statistics. Bpm – beats per minute 

Variable N Minimum Maximum Mean SD 

Age 60 18 37 22.33 3.75 

BIS Attention 60 10 25 17.73 3.42 

BIS Motor 60 16 36 24.23 4.28 

BIS Planning 60 12 38 29.1 5.83 

BIS Total 60 43 90 71.07 10.98 

BPQ Body Awareness Score  59 36 100 65.98 15.46 

HB Tracking Accuracy 60 -8 98 58.63 26.11 

HB Tracking Insight 60 -0.9 0.95 0.22 0.49 

HB Tracking Confidence 60 4 90 39.68 21.13 

HB Discrimination Accuracy 59 10 95 49.11 14.92 

HB Discrimination Insight 59 0.12 0.95 0.53 0.15 

HB Discrimination Confidence 59 4 88 49.2 18.32 

HR (bpm) 60 51.3 100 75.34 10.15 



 

 

 

Table 6.5 Bivariate correlations 

 
 

1 6 7 10 12

R —

p —

R 0.176 —

p 0.180 —

R -0.001 -0.014 —

p 0.995 0.915 —

R 0.029 -0.082 0.508 *** —

p 0.827 0.532 < .001 —

R -0.298 * 0.076 0.460 *** 0.469 *** —

p 0.021 0.566 < .001 < .001 —

R -0.147 0.004 0.754 *** 0.797 *** 0.857 *** —

p 0.263 0.978 < .001 < .001 < .001 —

R -0.083 0.285 * 0.113 0.141 0.060 0.122 —

p 0.533 0.029 0.393 0.288 0.649 0.357 —

R 0.118 -0.137 0.106 -0.077 0.115 0.064 0.024 —

p 0.370 0.298 0.421 0.560 0.382 0.626 0.857 —

R -0.081 -0.149 -0.010 -0.114 -0.100 -0.100 -0.055 0.266 * —

p 0.537 0.255 0.942 0.387 0.446 0.445 0.677 0.040 —

R -0.126 -0.202 0.060 0.043 0.139 0.109 0.015 0.132 0.177 —

p 0.336 0.121 0.649 0.747 0.290 0.407 0.913 0.314 0.177 —

R -0.161 0.029 0.006 -0.218 -0.225 -0.201 -0.080 0.098 0.002 -0.011 —

p 0.224 0.825 0.964 0.097 0.086 0.127 0.549 0.462 0.989 0.936 —

R -0.148 -0.172 -0.051 -0.048 -0.101 -0.087 -0.018 0.118 0.652 *** 0.224 -0.138 —

p 0.262 0.194 0.703 0.719 0.448 0.511 0.891 0.374 < .001 0.089 0.296 —

R -0.054 -0.050 -0.029 0.003 -0.098 -0.060 0.115 0.118 0.184 0.144 0.428 *** -0.060 —

p 0.684 0.705 0.828 0.984 0.459 0.654 0.390 0.374 0.163 0.276 < .001 0.653 —

R -0.119 0.199 -0.158 -0.049 -0.101 -0.122 0.198 -0.257 * 0.067 -0.018 -0.381 ** 0.198 -0.362 **

p 0.364 0.127 0.229 0.711 0.441 0.353 0.133 0.048 0.609 0.890 0.003 0.132 0.005

1. Age

11 13

* p < .05, ** p < .01, *** p < .001

14. HR (bpm)

13. HB Discrimination Insight

12. HB Discrimination Confidence

11. HB Discrimination Accuracy

10. HB Tracking Insight

9. HB Tracking Confidence

8. HB Tracking Accuracy

7. Body awareness

6. BIS Total

5. BIS Planning

4. BIS Motor

3. BIS Attention

2. Sex (1=male, 2=female)

8 92 3 4 5
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Table 6.6 Predictors of BIS Non-Planning impulsivity. Significant variables are depicted in bold.  

  
Unstandardized 

Standard 

Error 
Standardized t p 

95% CI 

Predictors  Lower  Upper 

(Intercept) 64.28 10.13 

 

6.35 < .001 43.92 84.68 

Age -0.75 0.2 -0.48 -3.7 < .001 -1.15 -0.34 

Sex 3.33 1.72 0.26 1.93 0.059 -0.14 6.8 

Body awareness -0.01 0.05 -0.03 -0.2 0.821 -0.11 0.09 

HB tracking 0.04 0.03 0.2 1.47 0.147 -0.02 0.1 

HB tracking 

Confidence 
-0.02 0.05 -0.06 -0.4 0.717 -0.11 0.08 

HB Tracking Insight 1.9 1.52 0.15 1.25 0.219 -1.16 4.97 

HB discrimination -0.17 0.06 -0.44 -3.1 0.003 -0.28 -0.06 

HB Discrimination 

Confidence 
-0.05 0.05 -0.14 -0.9 0.396 -0.15 0.06 

HB Discrimination 

Insight 
-3.18 5.74 -0.08 -0.6 0.582 -14.76 8.3 

HR (bpm) -0.18 0.08 -0.32 -2.2 0.035 -0.35 -0.01 

 

 Discussion 2 

Overall, the results support – to a degree - the hypothesis that trait impulsivity is 

associated with impaired interoceptive processing. Specifically, we observed that greater BIS 

Non-Planning impulsivity is predicted by lower HB discrimination ability, while there was no 

evidence that other impulsivity subscales (i.e. Motor and Attentional impulsivity) were related 

to interoception.  

BIS Non-planning impulsivity reflects a lack of future orientation (Patton et al., 1995). In 

the realm of heartbeat detection performance, both tasks seek to quantify individual differences 

in the strength of one cardioceptive channel of interoception from the degree to which it can be 

differentially and declaratively sensed (Khalsa et al., 2018). Interoceptive abilities positively 

correlate with both insula grey matter volume and with insula activity during the heartbeat 

discrimination task (e.g. Critchley, Wiens, Rotshtein, Ohman, & Dolan, 2004). The right 

anterior insular cortex may, therefore, integrate internal and external information (Critchley et 

al., 2004; Hassanpour et al., 2016). The insula may be specifically involved in conscious 

awareness of body states that constitute the necessary substrate for the emotional-self though 

time (Craig, 2009; Hassanpour et al., 2016).  

Insula function is also associated with self-reported impulsivity. For example, relative to 

low impulsive individuals, those with high impulsivity show increased activity across several 

structures, including the insula, when performing a risky decisions task (Lee et al., 2008). 

Moreover, activation of the right anterior insula and middle frontal cortex during Stop as 

compared to Go trials of the Stop Signal Task, an index of pre-potent response inhibition, 
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negatively correlates with motor and non-planning impulsivity scores (Farr, Hu, Zhang, & Li, 

2012). Furthermore, response inhibition on the stop signal task is improved during momentary 

states of cardiovascular arousal when the heart contracts (Rae et al., 2018), suggesting a critical 

role for insula function in impulsivity. 

It is plausible that the relationship between enhanced interoceptive discrimination 

abilities and non-planning impulsivity reflect interactions amongst critical neural substrates 

broadly underpinning motivational behaviour, and embodied prediction. Future studies should 

address this hypothesis using neuroimaging techniques.  

 General discussion 

The theory suggests that impulsive individuals may engage in rash actions as a 

maladaptive means of regulating their arousal level (Barratt, 1985; Eysenck & Eysenck, 1978; 

Zuckerman, 1969), but empirical evidence is limited. The current study investigated the 

relationship between trait impulsivity, resting-state arousal level and interoceptive dimensions. 

Contrary to the optimal arousal level theory, we did not find evidence in more impulsive 

individuals for decreased resting-state arousal, expressed by lower skin conductance level and 

heart rate, or heart rate variability. We did, however, observe a relationship between self-

reported impulsivity and interoception: increased accuracy on the heartbeat discrimination task, 

alongside age, heart rate, and, marginally, sex, was predictive of BIS Non-planning impulsivity 

subscale. These results add to the growing body of evidence suggesting that enhanced 

interoceptive abilities guide adaptive behaviour and better decision-making (Craig, 2009; 

Damasio, Tranel, & Damasio, 1991; Dunn et al., 2010; Kandasamy et al., 2016; Werner et al., 

2009). However, equally importantly, the other two subscales of impulsivity, i.e. inattention or 

motor impulsivity, were not predicted by any of the impulsivity dimensions, suggesting 

specificity of the observed effect to the Non-Planning dimension.  

Neither Experiment 1 nor 2 revealed a relationship between physiological markers and 

impulsivity, in contrast to previous reports (Allen, Hogan, & Laird, 2009; Allen, Matthews, & 

Kenyon, 2000; Fung et al., 2017; Mathias & Stanford, 2003). However, previous research has 

often found a relationship between physiological arousal and impulsivity in males only (Allen et 

al., 2009, 2000; Mathias & Stanford, 2003). It is plausible that sex differences might be a 

contributing factor: indeed, in our data, sex reached trend as a predictor of Non-Planning 

impulsivity. Another possibility is that the relationship between resting state arousal and 

impulsivity only occurs at the very high (maladaptive) impulsivity levels, which could not be 

captured with our sample of highly functioning individuals (university students).  

Instead, our results indicate that increased interoceptive accuracy is predictive of 

decreased BIS Non-Planning impulsivity, but not significantly of other subtypes of trait 
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impulsivity subtypes. Importantly, in the current study, we were able to differentiate between 

distinct dimensions of interoception (Garfinkel et al., 2015; Khalsa et al., 2017) and their 

contribution to impulsive tendencies. Better performance on the heartbeat discrimination task 

requires correct differentiation between internal bodily signals (heartbeats) and external cues 

(tones). Therefore, the ability to correctly differentiate between internal and external signals 

predicts better planning tendencies (lower Non-Planning impulsivity score). Unsurprisingly, age 

was also a predictor of Non-Planning impulsivity. This finding agrees with the past literature 

indicating that self-reported impulsivity decreases with age (Churchwell & Yurgelun-Todd, 

2013; Steinberg et al., 2008).  

These results provide some initial evidence for a future avenue of research, which may 

include interoceptive training (e.g. biofeedback techniques) as a means of improving self-

control capacities and enhanced decision-making in everyday situations. Specifically, since 

Non-Planning impulsivity is known to play a vital role in binge drinking and alcohol use and 

abuse (Caswell, Celio, Morgan, & Duka, 2015; Hamilton, Sinha, & Potenza, 2012; Jakubczyk et 

al., 2013), if replicated, these finding bear a great potential for novel therapeutic interventions, 

which could aid alcohol abuse prevention and treatment.  

Importantly, none of the other dimensions of interoception (sensibility, accuracy on the 

heartbeat tracking task, subjective confidence ratings, nor metacognitive insight) were 

predictive of trait impulsivity. These findings signify the distinction between interoceptive 

dimensions. Similarly, the fact that better interoceptive abilities predicted only Non-Planning 

impulsivity, indicated that subtypes of trait impulsivity are not equivalent.  

In conclusion, our data do not support the hypothesis that impulsivity is associated with 

under-arousal at rest in a normative sample of males and females. Instead, we report that 

improved ability to discriminate between internal bodily sensations and external cues might be a 

mitigating factor for Non-planning impulsivity. These findings also open a new avenue for 

potential novel interventions which could improve planning abilities by enhancing interoceptive 

accuracy.  
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GENERAL DISCUSSION  

 
Fragments of the discussion come from the manuscript submitted to the Neuroscience and 

Biobehavoural Reviews: 

Herman, A. M. & Duka, T. Facets of impulsivity and alcohol use: What role do emotions 

play? Neuroscience and Biobehavioural Reviews (in press). 
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 Review of general aims and summary of findings 

 Aims 

The studies described in this thesis stemmed from the idea that behavioural impulsivity is 

not as stable as trait impulsivity but instead undergoes momentary changes depending on the 

circumstances (de Wit, 2009) and, therefore, can be modulated. Those state-depended changes 

could ‘tip-over’ self-control resources leading to impulsive actions and, further, to negative 

consequences, ranging from having one pint too many in a pub to a potentially life-devastating 

decision to take a dose of heroin. A better understanding of how and to what extent changes in 

emotional and physiological states may affect impulsivity aspects, might help identify risky 

states as well as develop coping strategies for susceptible individuals.  

The aim of this thesis was threefold. The first aim was to clarify the influence of 

emotions on different dimensions of impulsive behaviours (study 1 and 3), also considering the 

role individual differences may play in this relationship (study 2 and 3). The distinct dimensions 

of impulsive behaviours studied were: (1) motor impulsivity, subdivided into  motor ‘stopping 

impulsivity’- an inability to inhibit an inappropriate motor response and motor ‘waiting 

impulsivity’ - difficulty awaiting correct signal to respond, (2) reflection impulsivity (fast 

decisions without sufficient information gathering and evaluation) and (3) choice impulsivity, 

further divided into temporal impulsivity (difficulty in delaying gratification) and risk-taking. 

The second aim was to look at neural correlates underpinning the impact of emotions on distinct 

subtypes of impulsivity (study 3). Finally, the third aim was to establish the relationship 

between impulsivity (behavioural and trait) and physiological arousal (studies 4 and 5). To 

address these aims, we conducted a set of experiments using a variety of methods including 

behavioural testing, physiological recordings, psychopharmacology and neuroimaging. Such a 

variety of approaches used allowed for a comprehensive understanding of the issues in question. 

 Summary of findings 

The study 1 used mood manipulations in a laboratory setting to establish how emotional 

states (specifically self-reported emotional valence, activity, and stress) affect distinct subtypes 

of impulsivity dimensions. The results indicated that induced affective states across the different 

mood induction groups did not affect behavioural impulsivity level; instead, subjective changes 

in mood state were associated with performance on impulsivity tasks. In particular, elevated 

state of tension (increased subjective stress ratings) was associated with more impulsive 

performance in the reflection impulsivity task. Increased activity (subjective ratings of arousal 

level) was associated with lower level of delay discounting (decreased temporal impulsivity). 
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The results regarding motor impulsivity, both ‘stopping’ and ‘waiting’ subtypes, were less 

conclusive but implied that increased subjective stress ratings might lead to more difficulty in 

response inhibition, while higher self-perceived activity (vs tiredness) might lead to decreased 

waiting impulsivity. These results not only show an important role of the perceived emotional 

state in impulsive behaviours but also highlight the increasingly recognised distinction between 

impulsivity dimensions by revealing that the dimensions of behavioural impulsivity are 

differentially affected by subjective mood state. Furthermore, these findings suggest that an 

ability to successfully regulate one’s emotions might be an important mechanism for 

behavioural self-control.  

Study 2 followed upon results from study 1 but instead looked at naturally occurring 

mood states in a large group of individuals sampled from the general population using an online 

study approach. The results indicated that impulsive personality trait was the best predictor of 

both reflection and temporal impulsivities, while probability discounting was best predicted by 

reward sensitivity, suggesting a separation between measures of impulsivity and risk-taking. 

Although mood state was not a predictor of any facets of impulsivity studied, correlations were 

found between affective state ratings and both trait and behavioural measures. Specifically, 

increased negative emotion ratings were associated with elevated impulsivity (trait, temporal 

and reflection), while higher ratings of positive emotions were associated with higher levels of 

sensation seeking, further supporting the differentiation between measures of impulsivity and 

risk-taking.  

In study 3 we investigated the role of emotional context in impulsive behaviours. 

Specifically, we examined whether task-irrelevant emotional context affected impulsive actions 

and decisions and investigated neural mechanisms underpinning these processes with functional 

magnetic resonance imaging (fMRI). Following on our results from study 2, the role of trait 

impulsivity as a potential modulator of this relationship was evaluated. The emotional context 

did not affect impulsive performance at the behavioural level. However, individuals with higher 

trait impulsivity presented compensatory neural activations in brain regions associated with 

working memory, attention and somatomotor processing while executing motor inhibition 

successfully. This compensatory effect was further potentiated under fearful compared to 

neutral contexts. These findings suggest that in emotional circumstances, compensatory neural 

resources need to be recruited more in impulsive individuals to achieve the same level of motor 

inhibitory control. Presumably, depending on the intensity of the emotional circumstances such 

a compensatory mechanism may fail, leading to impulsive behaviours. In contrast, temporal 

discounting was not affected by emotional context at the behavioural or neural level; however, 

increased emotional impulsivity trait (Negative Urgency) was associated with enhanced 

activation in visual attention areas when choosing delayed options over immediate ones.  
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The subsequent experiments examined the relationship between physiological arousal and 

behavioural as well as trait impulsivity. In study 4 increased state of physiological arousal was 

induced via oral administration of pharmacological stressor, yohimbine hydrochloride, which 

induces noradrenergic activation. Participants under yohimbine showed lower ‘stopping’ 

impulsivity than those under placebo, indicating that increased level of physiological arousal 

improved an ability to inhibit pre-potent responses. Yohimbine did not affect other facets (either 

risk-taking or temporal, or reflection impulsivity); however, subject-specific changes in arousal 

level were associated with behavioural impulsivity. Specifically, the more the increase in 

diastolic blood pressure post-administration, the lower the temporal and ‘stopping’ impulsivity 

scores. On the contrary, higher diastolic blood pressure (an index of enhanced arousal) was 

associated with higher reflection impulsivity. Together, these findings point to the role of 

individual changes in state arousal in modulating behavioural impulsivity.  

We did not find any support in our data for the under-arousal theory of impulsivity 

(Barratt, 1985; H. J. Eysenck & Eysenck, 1985; Zuckerman, 1969) stating that highly impulsive 

individuals would show low resting state level of arousal, for whom impulsive actions serve as 

maladaptive ways of elevating arousal level to the optimal one.  

Finally, in study 5 we challenged again the putative under-arousal hypothesis of 

impulsivity using cardiovascular indexes of arousal as well as skin conductance level. Once 

more, we did not find any relationship between trait impulsivity and resting arousal level. 

Therefore, in a subsequent experiment we set out to investigate whether instead of the 

maladaptively low resting level of arousal, more impulsive individuals would show an altered 

perception of internal bodily signals (i.e. interoception). The results indicated that poor 

interoceptive accuracy, specifically difficulty in discriminating between internal and external 

cues, was a predictor of non-planning impulsivity. Therefore, impulsive individuals, particularly 

those showing lack of planning-tendencies, present impaired sensitivity to bodily cues. Since an 

ability to correctly read bodily sensations is vital for maintaining homeostasis, poor 

interoceptive discrimination may result in maladaptive decisions and, further, impulsivity.  

 Discussion of each addressed aim 

 Clarification of the role of emotional states in different 

dimensions of impulsive behaviours 

The role of emotional states in impulsive behaviours was long suspected. Some previous 

studies were devoted to understanding how affective states might impact impulsive performance 

(reviewed in Chapter 1). However, those previous experiments predominantly focused on 

choice impulsivity (temporal impulsivity and risk-taking). Moreover, various measures of both 
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temporal impulsivity and risk-taking have been adopted (for example, some studies used 

hypothetical risk-taking, others - real potential risk), hindering a broad comparison across 

studies. With an increased understanding that impulsivity is a heterogeneous construct with 

distinct underlying neural mechanisms, a comprehensive approach comparing the role of 

emotional states across a variety of impulsivity dimensions was lacking. Therefore, the current 

research not only allows us to establish the role of emotional states in impulsive 

behaviours and decisions but also shows the extent to which distinct impulsivity facets are 

differentially affected by emotional states (for a summary see Table 7.1), further supporting 

the notion of impulsivity as a multidimensional concept with distinct modulators.  

Table 7.1 Summary of findings regarding the role of emotional and physiological states in impulsive behaviour. 

 
Previously, researchers reported that inducing negative affective state (but not stress 

state) results in enhanced temporal impulsivity (more short-sighted decisions) (e.g. Guan, 

Cheng, Fan, & Li, 2015; Lerner, Li, & Weber, 2013), while the opposite was true for positive 

affective state (e.g. Liu, Feng, Chen, & Li, 2013; Weafer, Baggott, & de Wit, 2013). Results 

regarding the role of stress state on temporal discounting are mixed, but some suggestions on 

the role of individual sensitivity to stress and cortisol responses have been made (e.g. Kimura et 

al., 2013; Lempert, Porcelli, Delgado, & Tricomi, 2012).  

In study 1 we did not confirm the role of emotional experience valence (positive/negative 

mood state) or stress state on temporal discounting; instead, we observed a role of self-

perceived activity level. In study 2, however, we found correlational evidence for increased 

delay discounting tendencies with elevated negative emotion reports. Moreover, a task-

irrelevant fearful context in study 3 did not affect performance on the delay discounting task. 

We also found evidence that trait impulsivity is a predictor of delay discounting tendencies. 

Therefore, our findings only partly corroborate previous reports regarding the influence of 

negative emotional state on temporal discounting and instead indicate the role of self-perceived 

differences in activity (which are more linked to arousal level).  

Possibly, our findings do not fully replicate previous results because past studies mainly 

focused on the valence of emotional experience (i.e. positive vs negative, happy vs sad), while 

in our first study we used a measure of mood-state rating which differentiates the emotional 

Subjective emotional state (study 1) Physiological arousal (study 4)

Temporal ↓ with ↑ activity ratings ↓ with ↑ arousal

Reflection ↓ with ↑ relaxation ratings ↑ with ↑ arousal

Motor ‘stopping’ ↑ with ↑ tension (stress) ratings ↓ with ↑ arousal

Motor ‘waiting’ ↓ with ↑ activity ratings ------- 

In-attention ↑ with sadness ratings -------

Impulsivity 

dimension

Change in internal bodily state

↑ - an increase; ↓ - a decrease; --- - relationship not tested, in grey – tentative relationships
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valence from arousal (tired vs active) and stress state (tension vs relaxation). Indeed, in a 

previous study when self-reported arousal was also assessed, higher ratings of arousal were 

associated with decreased temporal impulsivity (Weafer et al., 2013). Together, these results 

highlight the role of different aspects of emotional experience in temporal impulsivity. 

Moreover, our findings raise a possibility that the distinction between subjective measures of 

emotional valence and arousal could additionally explain the variability of the results 

concerning the role of stress on delay discounting. 

To our knowledge, there is very little information about the role of affective states in 

reflection impulsivity. Initial investigations have suggested that positive emotional states might 

increase reflection impulsivity via enhanced efficiency of the decision-making process (Isen & 

Means, 1983; Isen, Rosenzweig, & Young, 1991; Messer, 1970). Our results from study 1 

indicate that increased reports of tension (subjective stress ratings), were associated with less 

information gathering in the Information Sampling Task (higher reflection impulsivity). 

Interestingly, this relationship was mainly present in the more challenging version of the task, 

reward conflict condition, which involves a trade-off between information gathering and 

possible reward. In study 2, we found a very weak relationship in the same direction between 

negative emotional state and reflection impulsivity, which did not survive the correction for 

multiple comparisons. Taking these results together, it seems that some aspects of reflection 

impulsivity might be dependent on subjective stress ratings, but the valence of the experience or 

the perceived activity (self-reported arousal state) might not play such a significant role.  

Past studies looking at the role of emotional states on motor ‘stopping’ impulsivity 

yielded highly inconsistent results with some studies reporting no effect of mood state on 

response inhibition, some reporting enhanced or diminished response inhibition following a 

stress induction (Chepenik, Cornew, & Farah, 2007; Patterson et al., 2016; Scholz et al., 2009; 

Smallwood, Fitzgerald, Miles, & Phillips, 2009; Weafer et al., 2013). The lack of agreement in 

previous literature might derive from distinct measures of ‘stopping’ impulsivity employed. To 

overcome this problem, in our studies, we only used a Stop Signal Task (or an emotional 

version), which is a well-validated measure of cancellation of action that has already been 

initiated. In study 1 we found tentative evidence for a positive relationship between response 

inhibition failure and the changes in subjective stress ratings, but no relationship between either 

activity or valence of emotional experience and “stopping impulsivity” was found. Accordingly, 

in study 3, task-irrelevant fearful context did not affect response inhibition, and the behavioural 

performance was not related to trait impulsivity level. Therefore, contributing to the past 

research, our results indicate that emotional experiences may modulate pre-potent response 

inhibition measured with the Stop Signal Task to a little extent.  

‘Waiting’ impulsivity is another sub-dimension of motor impulsivity. It reflects the 

difficulty in waiting for an appropriate signal to occur to initiate an action. It can be measured 
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with the 5-CSRTT, which only relatively recently has been translated from rodent to human 

versions. We believe that we were the first to investigate whether emotional states modulate 

‘waiting’ impulsivity. Our initial results from study 1 give some tentative evidence for the role 

of self-perceived activity (vs tiredness) in decreasing waiting impulsivity. These initial results 

need further replication but may provide a new avenue of research, since waiting impulsivity is 

implicated to play a substantial role as a vulnerability factor for developing alcohol misuse 

(Sanchez-Roige, Stephens, & Duka, 2016).  

Inattention is also considered a part of impulsivity construct. Previous research on the 

role of mood state on attention indicates that positive emotional states broaden the scope of 

attention, while negative states – narrow it (Fredrickson & Branigan, 2005; Gasper & Clore, 

2002; Rowe, Hirsh, & Anderson, 2007). In agreement, high happiness state compared to low 

happiness state is associated with lower search times on the visual search task when the number 

of distractors is high (Maekawa, Anderson, De Brecht, & Yamagishi, 2018). Moreover, it has 

been suggested increased negative mood state might lead to attentional lapses (Smallwood et al., 

2009). Our data lend some tentative support to that claim, as in our study sadness induction was 

related to the highest number of errors of omission on the 5-CSRTT. Additionally, in agreement 

with previous reports (Littman & Takács, 2017; Stockdale, Morrison, Kmiecik, Garbarino, & 

Silton, 2015), in study 3, we did find that response accuracy on the ASST was affected by task-

irrelevant emotional context. Specifically, in the context of fear, accuracy was diminished, 

further suggesting that emotional processes might disrupt attention to some extent. It is 

important to point out in the context of this task, however, that the underlying processes might 

not reflect inattention, but rather selection of the most crucial environmental stimuli.  When 

subjects are presented with the threat cues, it is highly adaptive, and more important, to 

correctly identify and interpret those cues, rather than who is showing them (male or female).  

Overall, our findings corroborate the literature in that negative emotional states, in this 

case sadness, might lead to increased inattention. Moreover, in agreement with previous reports, 

we demonstrated that task-irrelevant emotional cues might be related to distractibility. The 

significance of these findings for daily life is probably best exemplified by the potentially 

deleterious effects of mood state (or emotional cues) on driving behaviour (Chan & Singhal, 

2015; Hu, Xie, & Li, 2013). 

Findings in study 1 depended on experimental manipulations of individuals’ mood state 

in the laboratory. This process poses many challenges as the setting is quite artificial. Another 

factor to consider is that individuals may respond differently to various stimuli (differences in 

sensitivity to mood induction) (e.g. Bibbey, Carroll, Roseboom, Phillips, & de Rooij, 2013; 

Lynar, Cvejic, Schubert, & Vollmer-Conna, 2017; Mardaga, Laloyaux, & Hansenne, 2006). 

Additionally, lab-based studies depend on university populations, mainly psychology students, 

who may be more aware of manipulations (demand characteristics). Drawing conclusions based 
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solely on a university population also raises questions regarding the generalisability of the 

findings. Therefore, to overcome these limitations, we also conducted a large-scale online study 

(study 2) which assessed impulsive decision-making in a more representative sample with 

participants in their naturally occurring mood state. The results revealed a separation of 

temporal and reflection impulsivities, which mapped onto the domain of impulsivity trait 

(including emotional impulsivities – positive and negative urgency), from probability 

discounting, which seemed to be more aligned with risk-taking and sensation seeking aspects of 

personality. The separation between these two dimensions was further enhanced by the fact that 

impulsivity measures increased with enhanced self-reports of negative emotions, while 

measures of risk-taking were more related to the positive affective state. Therefore, when 

naturally occurring mood states are considered, enhanced negative states may be associated with 

people behaving impulsively (seeking immediate gratifications, making rushed decisions), while 

when experiencing positive states, people may show increased risky actions (gambling, extreme 

sports). Indeed, our findings corroborate the literature showing increased trait impulsivity in 

patients suffering from mood disorders including depression (Ngo, Street, & Hulse, 2011; 

Swann, Steinberg, Lijffijt, & Moeller, 2008), and enhanced sensation seeking associated with 

higher positive affect (Sperry, Lynam, Walsh, Horton, & Kwapil, 2016).  

Overall, our results regarding the role of emotional state on impulsive actions and 

decisions, further support the notion that impulsivity is a highly heterogeneous concept 

(Caswell, Bond, Duka, & Morgan, 2015; Evenden, 1999; Whiteside & Lynam, 2001), and that 

distinct subtypes of impulsivity are sensitive to different aspects of emotional experience 

(valence, activity, or stress). Specifically, we demonstrate here that some subtypes of 

impulsivity are more affected by emotional states than others. Importantly, the data from study 

1 indicate that not the mood state, induced (sad or anxious or positive) by certain manipulations, 

is related to impulsive behaviours, but rather the relative changes in affective state at the 

individual level. Specifically, motor impulsivity, both ‘stopping’ and ‘waiting’ subtypes, seem 

not to be highly modulated by the changes in affective state, while reflection and temporal 

impulsivities are. We had very little evidence to make strong claims about the role of emotional 

processes in inattention; however, our studies give tentative support to the notion that negative 

emotions might result in higher inattention. These findings bear important implications for 

future researchers in impulsivity area. Subjective state of the participants is often disregarded in 

research while our results show that this may influence the results, particularly in studies using 

within-subject designs, in which participants’ mood state is likely to shift between testing. 

Importantly, since the results indicated the relationship between impulsive actions and decisions 

and changes in affective state at an individual level, we would like to suggest that promoting 

emotional regulation strategies might be an effective way of managing impulsive behaviours.  
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 The neural correlates behind the impact of emotions on 

distinct subtypes of impulsive behaviours  

In study 3 we investigated the neural correlates behind the impact of emotions on action 

inhibition (‘stopping’ impulsivity) and inter-temporal decision-making (temporal impulsivity). 

Examining neural mechanisms underlying emotion-impulsivity interaction is crucial for 

improving our understanding of those suffering from high impulsivity levels as well as 

mood/anxiety disorders, which may lead to improvement in the therapeutic options. For this 

study, instead of looking at the effects of mood state, we investigated the role of task-irrelevant 

emotional context. Several factors motivated the use of emotional context: mood induction in 

the experimental setting is challenging enough and conducting it in the fMRI scanner is related 

to additional confounding factors, such as participants’ anxiety (or excitement) related to the 

scanning procedures, scanner noise and environment. Moreover, since not mood state per se, but 

rather individual changes in mood state reports were associated with behavioural impulsivity in 

study 1, individual differences in how those mood states are encoded in the neural activity 

might have been too big to decipher group-level differences in the fMRI analysis. Therefore, we 

developed tasks which measure self-control abilities in task-irrelevant emotional context. These 

tasks simulate real-life situations when decisions/actions need to be taken in emotional 

situations, for example, when we witness someone in distress.  

We recognise the fact that individuals differ dramatically in how they respond to different 

situations; however, the role of individual differences in the context of self-control in emotional 

situations received little attention. Therefore, we also investigated the role of differences in trait 

impulsivity levels, predicting that more impulsive individuals would be affected by emotional 

context to a greater extent.  

Similar studies, investigating the role of task-irrelevant emotional context on motor 

impulsivity yielded inconsistent results both at the behavioural and neural levels (Brown et al., 

2012; Chester et al., 2016; Patterson et al., 2016; Sagaspe, Schwartz, & Vuilleumier, 2011). The 

reproducibility of the findings is partly hindered by a variety of methodologies employed. 

Therefore, in the current study, we used a paradigm resembling the one used previously 

(Nikolaou, Critchley, & Duka, 2013; Sagaspe et al., 2011). Although no effects of fearful 

context on response inhibition was found at the behavioural level (as reported by others e.g. 

Brown et al., 2012; Sagaspe et al., 2011), at the neural level we observed that individuals 

showing high levels of trait impulsivity, indexed by high BIS score (but not Negative Urgency), 

presented compensatory activation in several brain regions while executing response inhibition 

successfully in the fearful vs neutral context. This enhanced activation in more impulsive 

individuals agrees with previous reports (Chester et al., 2016) and was present in the superior 

parietal lobule, lateral occipital cortex and postcentral gyrus, regions involved in working 
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memory, somatosensory and visual-attentional processes. The compensatory activation 

indicates that in emotional (fearful) circumstances more impulsive individuals need to engage 

extra neural resources in order to achieve the same level of inhibitory control as less impulsive 

individuals. These results also imply that in a highly emotional context (more than fearful facial 

expressions), more impulsive individuals may not be able to compensate sufficiently, which 

could result in impulsive actions.  

Importantly, a group of regions within the Somatomotor resting-state network showed 

decreased functional connectivity patterns in more impulsive individual, suggesting that this 

network might generally be altered in highly impulsive subjects predisposing them for acting on 

impulse. Specifically, higher trait impulsivity was associated with the decreased coupling of the 

lateral occipital cortex and the Somatomotor Network. Indeed, the inter-subject variability in 

response inhibition efficiency has been associated with the Somatomotor network activity 

(Zhang, Tsai, et al., 2015). The lateral occipital cortex is usually associated with visual 

perception and multisensory integration (Beauchamp, 2005; Grill-Spector, Kourtzi, & 

Kanwisher, 2001); however, it has also been implicated in impulsivity (Davis et al., 2013) and 

disorders commonly associated with impulsivity, such as ADHD (Castellanos & Proal, 2013). 

Therefore, this ‘decoupling’ of somatomotor and visual areas may reflect itself in a less 

effective integration of perceptual information, visual and somatosensory, in behavioural control 

manifesting itself in impulsive behaviours.   

Our finding from the Affective Stop Signal Task (ASST) and resting state analysis bear 

vital implications for future research: Since the ASST taxes overlapping brain networks which 

show decreased functional integration at rest, training individuals on the ASST may results in 

better functional integration of sensory and motor regions, resulting in improved inhibitory-

control capacities in vulnerable individuals. 

To our knowledge, this was the first study looking at the neural levels of temporal 

impulsivity in task-independent emotional context. Behaviourally, past research reported 

negative emotional context is associated with increased temporal impulsivity (Augustine & 

Larsen, 2011; Guan et al., 2015). In our study fearful context did not affect the temporal 

impulsivity at the behavioural or neural levels, and trait impulsivity did not play a role here 

either. These inconsistencies with the past research might derive from differences in stimuli 

used as emotional context: Past studies employed images of anxiety-provoking scenes, while 

our study used fearful faces only. Possibly these images were not sufficiently threatening to 

affect delay discounting; therefore, future studies should use more negative or arousing images 

to assess the neural correlates of emotionally-induced temporal impulsivity.  
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 Establishing the relationship between impulsivity and 

physiological arousal 

Moving away from the role of emotions, the final two studies investigated the 

relationship between physiological arousal and impulsivity dimensions. The reasons for that 

were two-fold. Firstly, changes in physiological arousal are a vital component of emotional 

experience; however, there is very little research trying to decipher whether the component of 

arousal or emotional experience valence are equally important as modulators/drivers of 

impulsive actions and decisions. Secondly, in early days of impulsivity research, it was 

suspected that impulsivity might be an effect of maladaptive coping strategy to regulate one’s 

arousal level (Barratt, 1985; H. J. Eysenck & Eysenck, 1985; Zuckerman, 1969). These 

suggestions derived from the optimal arousal hypothesis, which posits that for every individual 

there is an optimal level of arousal which not only feels best, but is also associated with the 

highest level of performance (Hebb, 1955). Thus, individuals should repeatedly engage in 

activities which can bring them closer to the optimal arousal level. Theories of impulsivity 

suspected that impulsive individuals are characterised by a too low resting level of arousal and 

engaging in impulsive behaviours may serve as a maladaptive way of optimising their activity 

level. Some experimental and cross-sectional studies provided support for this hypothesis 

linking lower resting heart rate with elevated behavioural (delay discounting) and 

trait impulsivity  (Fung, Crone, Bode, & Murawski, 2017; Mathias & Stanford, 2003), although 

the evidence is not substantial. Therefore, we aimed to examine the relationship between resting 

state physiological arousal and impulsivity in a normative sample. In addition, we wanted to see 

whether pharmacologically modulating physiological arousal would result in changes in 

behavioural impulsivity level. We suspected that impulsive individuals might benefit from the 

initial increase in arousal which would result in less impulsive performance on behavioural 

tasks (as impulsive subjects would not have to additionally ‘activate’ themselves by acting 

impulsively).  

Firstly, our results from studies 4 and 5, did not provide any evidence for the under-

arousal hypothesis of impulsivity although we employed various measures to assess arousal 

level including heart rate, skin conductance and blood pressure. Therefore, we conclude that 

within a healthy population of young adults, trait impulsivity is not associated with low 

resting-state arousal level. Of course, it is possible that low resting level of arousal is 

associated with impulsive behaviours only in individuals at a pathological end of the impulsivity 

spectrum, and that our samples, which consisted of relatively highly functioning young adults 

(university students), did not include these individuals. Indeed, past research reported that low 

resting arousal is associated, or even predicts, impulse-related behaviours, such as criminal 

offences, later in life. For example, previous large scales studies found that low resting HR in 
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young men was associated with increased likelihood of antisocial behaviour later in life (Choy, 

Raine, Venables, & Farrington, 2017; Latvala, Kuja-Halkola, Almqvist, Larsson, & 

Lichtenstein, 2015). Moreover, some experimental studies found an association between resting 

state arousal and impulsivity, but in males only (Allen, Matthews, & Kenyon, 2000; Mathias & 

Stanford, 2003). Due to small sample sizes, and low proportions of male subjects recruited, we 

were unable to investigate potential sex differences in that matter. Therefore, there might be 

certain sex differences which may determine the associations between resting arousal level and 

impulsivity which need to be explored in the future.  

Secondly, we wanted to examine whether increasing one’s level of arousal via 

pharmacological manipulations, will be reflected in diminished impulsive performance. We 

chose α2 noradrenergic blocker, yohimbine hydrochloride, which is known to increase arousal 

level and has little effect on mood state at low doses (Plewnia, Bartels, Cohen, & Gerloff, 2001; 

Schwabe, Höffken, Tegenthoff, & Wolf, 2013; Schwabe, Tegenthoff, Hoffken, & Wolf, 2010, 

2012; Swann et al., 2013). Our results demonstrate that yohimbine-induced arousal mainly 

affects motor ‘stopping’ impulsivity, improving an ability to inhibit pre-potent responses. 

This is consistent with a growing body of evidence showing that increasing physiological 

arousal via physical exercise, cues, cardiac timing results in better response inhibition (Chu, 

Alderman, Wei, & Chang, 2015; Joyce, Graydon, McMorris, & Davranche, 2009; Rae et al., 

2018; Weinbach, Kalanthroff, Avnit, & Henik, 2015). Noteworthy, in our study, the effect of 

yohimbine-induced arousal on response inhibition was only present when correcting for 

between-group differences in sensation seeking, indicating that potentially personality aspects 

could have a role. Additionally, a correlational analysis showed that individuals who had a 

greater increase in diastolic BP following drug-ingestion, showed lower motor impulsivity, 

confirming that this effect on impulsivity is related specifically to changes in arousal and not to 

other mechanisms. The summary of the influence of physiological arousal on dimensions of 

impulsivity is presented in Table 7.1.  

Similarly, individuals who presented a larger increase in blood pressure, also showed a 

decreased level of temporal impulsivity. These findings are consistent with our observations 

from study 1 of increased subjective change in activity being associated with less steep 

discounting of delayed rewards. Together, these results highlight the importance of relative 

change in subjective as well as objective measures of arousal for temporal impulsivity.  

Interestingly, the opposite pattern was visible for reflection impulsivity, whereby 

increased arousal was associated with more impulsive performance (although the correlation did 

not survive correction for multiple comparisons). Specifically, this pattern was only observed 

for a more challenging condition of the task (reward conflict), which involves a conflict 

between information gathering and potential reward. The simple condition (fixed-win), in which 

the reward depended solely on accuracy, was not associated with changes in arousal level. 
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Interestingly, in study 1 we also observed an association between change in (subjective) tension 

state and reflection impulsivity in the reward conflict condition. Thus, increased activation 

might hinder reflective performance in circumstances where a trade-off between information 

gathering and rewards occurs. Additionally, the simple version of the task (fixed-win condition) 

might not be challenging enough to show changes in different circumstances. We believe this is 

the first demonstration of the role of arousal in reflection impulsivity.  

Together, these results indicate that impulsivity level might be more associated with state 

arousal and not with the resting level of arousal. Since the changes in the state arousal level 

seem to play a role in behavioural impulsivity, it is reasonable to assume that also an ability to 

perceive those changes correctly might be important. Therefore, the last experiment examined 

whether an ability to accurately perceive subtle bodily sensations (interoception; Craig, 2009; 

Khalsa et al., 2017) is relevant to impulsivity. It has long been recognised that bodily cues guide 

our actions to help maintain homeostasis (Berntson, Cacioppo, & Quigley, 1993) and that lack 

of those signals, or the inability to perceive them, may lead to many negative consequences 

(Bechara, Damasio, Tranel, & Damasio, 1997; Damasio, Tranel, & Damasio, 1991). However, 

the relevance to impulsive actions has been unexplored. Due to the multifaceted nature of 

impulsivity, we decided to investigate the relationship between different dimensions of 

interoceptive abilities and trait impulsivity indexed by BIS total score.  

Our results indeed indicated that interoceptive abilities, specifically an ability to 

accurately distinguish bodily signals from external cues (interoceptive discrimination), were 

predictive of BIS Non-planning subscale but not of either motor or attention subscale. This 

finding indicates that 1) even distinct subtypes of trait impulsivity have distinct predictors, 2) 

interoceptive abilities may indeed prevent maladaptive behaviours. Heartbeat discrimination 

belongs to an interoceptive accuracy subgroup of interoception, and refers to an ability to 

accurately sense one’s own internal state (Garfinkel, Seth, Barrett, Suzuki, & Critchley, 2015; 

Khalsa et al., 2018). Interoceptive accuracy is different from other forms of interoception, such 

as interoceptive sensibility, which reflects subjective perception of being attuned to bodily 

sensations (assessed via self-report questionnaires), and metacognitive interoception (insight), 

which reflects conscious awareness of bodily signals (alignment of accuracy and subjective 

axis) (Garfinkel et al., 2015; Khalsa et al., 2018). Moreover, heartbeat discrimination depends 

on perceptual discrimination between internal bodily cues and external stimuli, a process that is 

far more difficult than an ability to simply provide an estimate of one’s heart rate without any 

external distractions (i.e. heartbeat counting).  Additionally, heartbeat tracking task is 

increasingly criticised for potentially confounding factors of time estimation instead of heartbeat 

counting, knowledge of one’s heart rate and underreporting of heartbeats (Ring & Brener, 1996, 

2018; Zamariola, Maurage, Luminet, & Corneille, 2018). Noteworthy, out of all interoceptive 
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dimensions which were considered in our study, only heartbeat discrimination showed 

predictive value for impulsivity.  

The fact that interoceptive accuracy is related to non-planning impulsivity is a novel 

finding. Previous studies looking at interoceptive abilities and behaviour mainly focused on 

risk-taking (Kandasamy et al., 2016; Werner, Jung, Duschek, & Schandry, 2009), concluding 

that better interoceptive accuracy might guide advantageous (less risky) decision-making. Our 

own findings from study 2 suggested that higher temporal discounting (increased temporal 

impulsivity) might be related to enhanced interoceptive sensibility, indicating that better 

interoceptive abilities might be associated with poorer self-control and less advantageous 

behaviour. However, it is important to note that this study considered self-reported interoception 

only and no objective measures of interoception were collected. Similarly to impulsivity, 

people’s subjective ratings (interoceptive sensibility) are rarely aligned with objective 

performance (interoceptive accuracy) (Garfinkel et al., 2015). Accordingly, heightened 

interoceptive sensibility was recently linked to poorer response inhibition, but no relationship 

with accuracy measures was found (Rae et al., 2018). Instead, these results might indicate that 

misinterpretation of bodily signals may lead to incorrect adaptation to current bodily needs (c.f. 

subsection “Significance and Future Directions”). 

 Refining and clarifying the model of factors determining the role of 

internal states in behavioural impulsivity 

In Chapter 1, based on the past research reviewed, we proposed a model to account for 

how impulsive actions and decisions are affected by our current affective and physiological 

state. Through this model we suggested that internal states impact on behaviour through 

dependence on a set of factors (summarised in Figure 7.1): 

(1) the subtype of impulsivity in question,  

(2) individual differences,  

(3) the baseline (resting state) level of arousal.  
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Figure 7.1 Dimensions of impulsivity and their modulators – the initial model based on the literature review (Chapter 
1). 

In this thesis, we conducted a set of experiments which verified but also refined this 

model. Below, I am going to address how our findings relate to each factor in this model, 

providing evidence to confirm or update it. 

Regarding the impact of internal states on distinct subtypes of impulsivity in question (1), 

our results from studies 1 and 4, confirm that distinct facets of impulsivity are differentially 

affected by internal bodily state, specifically the individual’s change in that state. Furthermore, 

we have established that specific subtypes of impulsivity are more affected by the changes in 

subjective affective state (for example reflection impulsivity), while others are more dependent 

on the changes in physiological arousal (motor ‘stopping’ impulsivity). This clarification should 

not be underestimated as it highlights the importance of individual experience and suggests that 

various individuals may be affected to a different degree by situational circumstances. It also 

justifies the use of individual treatment approaches which address personal needs.  

Our initial model also predicted that individual differences such as gender, trait anxiety 

or stress sensitivity might mediate the influence of the internal bodily state on behavioural 

impulsivity (2). In this thesis we investigated the role of trait impulsivity, using a standard 

questionnaire approach, in behavioural impulsivity in different states/contexts. In study 2 we 

observed that trait impulsivity is one of the predictors of temporal and reflection impulsivity, 

while reward sensitivity predicts probability discounting. We also found that these traits were 

associated with mood state measures. In study 3, we further observed that higher trait 

impulsivity was associated with more effortful (compensatory brain activation) response 

inhibition in the fearful vs neutral contexts; however, no relationship between personality traits 

and performance on the task was found at the behavioural level. Therefore, we suggest that 
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individuals presenting high trait impulsivity levels might show self-control deficits in states of 

intense emotional experience/arousal when they are no longer able to engage compensatory 

mechanisms successfully.  

In contrast, we found no evidence for the role of trait impulsivity in impulsive choice 

(temporal impulsivity), at either behavioural or neural level, in emotional context. However, the 

resting-state functional analysis revealed that trait impulsivity is associated with a functional 

decoupling within the Somatomotor network encompassing regions implicated by the task-

related analysis, providing stronger evidence for a neural mechanism underlying self-control 

deficits. Together, these findings suggest that (a) trait impulsivity might reflect a baseline level 

of behavioural self-control and not behavioural control under response demanding conditions; 

(b) the relationship between trait impulsivity and behavioural impulsivity in emotional 

circumstances may be different for motor and temporal impulsivity. Specifically, more 

impulsive individuals (trait) need to exert more neural resources to inhibit pre-potent motor 

responses successfully, particularly in the context of fear, while such a relationship may not 

exist for temporal impulsivity. Thus, we propose that individual differences in trait impulsivity 

should be added as a factor in our revised model.  

The last feature in our initial model of factors through which internal states might affect 

impulsive behaviours is the resting state arousal level (3). Namely, according to the under-

arousal hypothesis of impulsivity, disadvantageously low resting level of arousal could 

predispose individuals to display impulsive actions as a means of regulating unpleasant internal 

state (Barratt, 1985; H. J. Eysenck & Eysenck, 1985; Zuckerman, 1969). Despite using various 

measures of baseline arousal level in studies 4 and 5, we were unable to find any evidence for 

under-arousal at rest of individuals showing high impulsivity level. Instead, our results suggest 

that an ability to accurately discriminate between internal and external cues (a dimension of 

interoception) is predictive of lower non-planning impulsivity. Given the role of interoception in 

emotional awareness, decision-making and cognition (Dunn et al., 2010; Garfinkel & Critchley, 

2013; Seth, 2013), we suggest that interoceptive abilities might be another factor which 

determines how internal states affect impulsivity. This should be further confirmed in future 

research using different behavioural paradigms, but our initial results are promising and fit well 

into a growing body of existing literature showing that bodily cues guide our behaviours and 

that inability to perceive those cues may lead to negative consequences (Bechara et al., 1997; 

Damasio, 1996; Kandasamy et al., 2016; Katkin, Wiens, & Ohman, 2001; Werner et al., 2009). 

A revised model of factors which affect the influence of bodily states on impulsive 

behaviours is illustrated in Figure 7.2.  
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Figure 7.2 Dimensions of impulsivity and their modulators – model revised. 

 Limitations 

There were some methodological limitations to these studies which should be briefly 

discussed. In all experiments, apart from study 2, only volunteers from the University 

community were tested. Therefore, all individuals represented certain educational level and 

cognitive abilities, as well as a shared environment. These factors reduce the generalisability of 

the findings. Study 2 was designed to account from some of those problem by recruiting 

individuals via various means to acquire a more representative sample.  

One potential limitation regards mood induction procedure in study 1, which included 

simultaneous presentation of affective pictures and congruent musical excerpts and an 

additional cognitive stressor for anxiety induction. It is vital to note that individual sensitivity to 

those images and interpretation of these scenes might differ significantly (Lynar et al., 2017; 

Mardaga et al., 2006; Park et al., 2013; Vuoskoski & Eerola, 2011). Those individual 

differences may have accounted to some extent for the fact that we did not see significant group 

differences in impulsive performance, although mood manipulation evoked expected effects on 

the mood state ratings. Therefore, using another induction technique, possibly tailored for an 

individual, may have yielded different results. 

In study 3, the emotional context was evoked via presentation of facial expressions 

depicting fear or neutral appearance only. No other emotional context (anger, sadness, disgust, 

content) were examined, therefore, it is difficult to establish whether the findings are specific for 

the context of fear only, or whether they are more generalizable across negative valence 

dimension or maybe the effect is due to heightened arousal only. Future studies should elaborate 

on that also using different stimuli to evoke specific contexts.  
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The relationship between resting state arousal and impulsivity was examined in relatively 

small groups of males and females, which did not allow a reliable comparison between sexes. 

This aspect appeared several times in the literature (e.g. Allen, Hogan, & Laird, 2009; Zhang et 

al., 2015) and might be an important avenue for future exploration. Indeed, the role of sex 

differences in impulsivity and their manifestation gains increasing attention (Mansouri, Fehring, 

Gaillard, Jaberzadeh, & Parkington, 2016; Silverman, 2003; Weafer & de Wit, 2014). 

Examining sex differences in the context of impulsivity might be of value in clinical practice 

and prevention efforts since males tend to engage more in certain impulsivity-related 

behaviours, which has been linked to the resting arousal levels (Choy et al., 2017).  

Finally, the findings are based on studies which use laboratory-based tasks or 

questionnaires to assess impulsivity level. These very useful forms of testing provide much-

needed models of behaviour, show good consistency and validity, and are related (predictive) to 

many real-life behaviours associated with negative consequences. However, more ecologically 

valid approaches should also be used to translate mood-based impulsivity into real-life 

scenarios.  

 Significance and Future Directions 

The current studies make an appealing argument that individual differences matter when 

it comes to impulsive behaviours. This was demonstrated at many different levels including 

individual differences in mood state change, trait impulsivity level, individual differences in 

arousal change following pharmacological challenge as well as individual ability to accurately 

sense internal bodily state (interoception).  

Impulsive behaviour is a core of many pathologies, including drug addiction (American 

Psychiatric Association, 2013). By providing evidence for the role of internal bodily states in 

momentary impulsivity levels, our research also offers a platform for further research into how 

state-dependent changes in distinct domains of impulsivity contribute to drug use initiation and 

relapse 

Here I am going to demonstrate how our finding may contribute to the understanding of 

the role of internal bodily states and behavioural impulsivity in addictive behaviours, using 

alcohol use and misuse as an example.  

Alcohol dependency is a chronic relapsing disorder characterised by compulsive drinking, 

which denotes harmful use of alcohol despite its negative consequences. Recently published 

statistics on alcohol use in the United Kingdom (National Statistics, 2017) states that 57% of 

those aged 16 or above drink alcohol; 15% of responders report heavy drinking (i.e. 

consumption of over eight units of alcohol for men and over six units for women at one 

occasion) in the previous week. Adolescents are also using alcohol – 38% of those aged 11-15 
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had already drunk alcohol. Moreover, 4% of adolescents report regular drinking (at least once a 

week). Alarmingly, nearly half (49%) of pupils who had drunk alcohol in the last month had 

been drunk; 63% of whom did it deliberately. Shockingly, there has been a 10% increase in 

alcohol-related deaths in the UK between 2005 and 2015. In the United States, alcohol is the 

third leading preventable cause of death, after tobacco and poor diet and physical activity 

(Mokdad, Marks, Stroup, & Gerberding, 2004). Alcohol use, therefore, is a major public 

concern.  

The importance of impulsivity in development of alcohol use, continuation and escalation 

of drinking leading to alcohol dependency has long been acknowledged (Dick et al., 2010; 

Lejuez et al., 2010; Potenza and de Wit, 2010). Moreover, the role of momentary ‘state’ 

increases in impulsive behaviour which may drive drinking episodes (de Wit, 2009) is 

increasingly recognised. Theory and evidence suggest that people drink alcohol to enhance 

positive or manage negative emotional states, and reduce tension (Conger, 1956; Cooper, Frone, 

Russell, & Mudar, 1995; Dvorak, Pearson, Sargent, Stevenson, & Mfon, 2016; Peacock, Cash, 

Bruno, & Ferguson, 2015; Simons, Dvorak, Batien, & Wray, 2010; Simons, Gaher, Oliver, 

Bush, & Palmer, 2005; Swendsen et al., 2000; Zack, Toneatto, & MacLeod, 2002). For 

example, recent findings indicate that a faster escalation in the volume of use among 

adolescence was predicted by lower levels of positive affect, suggesting that youth may escalate 

their drinking to boost positive affect (Lopez-Vergara, Spillane, Merrill, & Jackson, 2016). 

Moreover, experience of stress, which is associated with increased physiological arousal and 

negative affect, is considered a major trigger in alcohol relapse. Indeed, stressful events increase 

the urge to drink and chances of relapse in treated alcoholics (Sinha, 2012; Sinha et al., 2009). 

Alcohol consumption is then used as a means of managing physiological and emotional states, 

in accordance with the negative reinforcement theory of addiction. Indeed, data from social 

drinkers suggests that alcohol consumption reduces the effects of stressful emotional stimuli on 

mood (Van Tilburg & Vingerhoets, 2002) and that alcohol drinking is related to a subsequent 

decrease in nervousness (Swendsen et al., 2000) supporting the self-medication hypothesis of 

alcohol use. Importantly, repeated alcohol exposure leads to a negative emotional state 

enhancing the stress response, resulting in a vicious cycle of alcohol abuse (Garland, Boettiger, 

& Howard, 2011; Koob & Le Moal, 2008). 

Research suggests that indulging in impulsive drinking to regulate one’s mood state may 

be a strategy used particularly often by individuals presenting high trait or behavioural 

impulsivity levels (Anthenien, Lembo, & Neighbors, 2017; Cyders et al., 2010; Dinc & Cooper, 

2015; Fox, Bergquist, Gu, & Sinha, 2010; Simons et al., 2010). For example, in a recent study, 

negative mood state predicted drinks on drinking nights, but only for those with poor response 

inhibition (Dvorak et al., 2016).  



226 

 

 Chapter 7  

Together, the results summarised above suggest that individuals may engage in drinking 

alcohol to manage emotional states, particularly if they are associated with high arousal. 

Moreover, it seems that using alcohol as a coping strategy is most frequent in highly impulsive 

individuals. 

Findings presented in this thesis suggest that behavioural impulsivity level is associated 

with changes in one’s emotional (study 1) and physiological states (study 4). We propose that 

better emotion regulation capacities alongside with more accurate detection and interpretation of 

internal bodily states could be helpful in preventing unwanted consequences of fluctuations in 

emotional states. Moreover, an exciting new finding regards the association between accurate 

discrimination of internal from external signals (interoceptive sensitivity, study 5) and opens a 

novel avenue of interesting research which may lead to fresh therapeutic opportunities. Together 

with findings from study 4, in which we demonstrated an association between state-related 

changes in arousal at the individual level and behavioural impulsivity, our findings suggest that 

accurate perception of internal bodily state might be an adaptive mechanism guiding our 

actions. When this mechanism does not work correctly, negative consequences might occur. 

Indeed, in a broader sense, non-planning impulsivity is widely recognised to be associated with 

binge drinking, alcohol use and abuse (Caswell, Celio, Morgan, & Duka, 2015; Hamilton, 

Sinha, & Potenza, 2012; Jakubczyk et al., 2013).  

Poor ability to correctly identify bodily state may result in a confusion of bodily 

sensations such as signals of hunger, arousal, proprioception, tiredness or temperature with 

affective states (i.e. misinterpret anger as heat, pain or hunger etc.; R. Brewer, Cook, & Bird, 

2016). This, of course, may lead to various negative consequences such as inappropriate actions 

due to misperceived sensations and ineffective management of arousal due to an inability to 

interpret it. Indeed, it has been suggested that interoceptive ability is vital for higher-order-

cognition, and that atypical interoception may predispose to psychopathology, risky behaviour, 

as well as poor emotional functioning or resilience to stressful situations (Haase et al., 2016; 

Murphy, Brewer, Catmur, & Bird, 2017).  

Allostasis refers to the process of maintaining homeostasis through an adaptive change of 

the organism’s internal environment to meet perceived and anticipated demands (Sterling & 

Eyer, 1988). In other words, allostasis is a prediction of the body's energy needs and preparation 

to satisfy those requirements before they arise (Sterling, 2012). Importantly, interoception is 

thought to be a key element of allostasis (Barrett, Quigley, & Hamilton, 2016; Gu & FitzGerald, 

2014): Only when we are able to detect our current bodily needs, we can adjust our behaviour 

accordingly (Gu & FitzGerald, 2014). Further, it is possible that enhancing one’s ability to 

recognise bodily states at an early stage accurately may serve to maintain energy-balance via 

better planning abilities. For example, training individuals on heartbeat discrimination task 

might lead to better accuracy on the task which potentially could extend into a better general 
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perception of bodily cues in daily life. This improved interoceptive accuracy could also lead to 

more adaptive behavioural strategies for dealing with those sensations and decreased 

impulsivity.  

Since alcohol is sometimes used to manage unwanted bodily sensations, better 

interoceptive interferences may allow earlier sensation of heightened arousal or unpleasant 

states. Earlier detection of those cues could lead to adaptive behaviour adjustments (allostasis) 

according to the circumstances, for example via relaxation techniques, instead of alcohol use. 

Similarly, thanks to improved emotion regulation and interoceptive abilities individuals may not 

need to use maladaptive coping strategies, such as alcohol use, to manage unwanted emotions 

and enhanced arousal.  

Moreover, our findings also offer an explanation of why impulsive individuals may be 

more prone to impulsive behaviours, such as alcohol drinking, in emotional circumstances. In 

study 3 we have demonstrated that higher trait impulsivity is associated with enhanced 

activation in several brain regions including the right supramarginal gyrus, right superior, 

middle and inferior frontal gyri and paracingulate cortex during successful inhibitory control. 

Furthermore, these effects were increased in the fearful vs neutral context, suggesting that 

impulsive individuals need to engage more neural resources to implement inhibitory control 

successfully in the emotional context, relative to neutral one. Thus, when an impulsive person is 

experiencing an intense emotional state, they may not be able to engage compensatory 

mechanisms in place to a satisfactory degree and indulge in impulsive action, such as alcohol 

use. Further, we observed overlap in networks involved in successful inhibitory control in the 

emotional context and showing decreased functional connectivity at rest in more impulsive 

individuals (within the Somatomotor network). Therefore, since the Affective Stop Signal Task 

seems to target just the right neural substrates, training individuals on the task may strengthen 

the connectivity between affected brain regions and result in better inhibitory capacities. Future 

studies should assess the validity of this approach.  

 Concluding remarks 

Collectively, the findings presented in this thesis demonstrate the significance of bodily 

states (the relative changes in emotional and physiological states) in impulsive behaviours and 

provided some initial evidence for the importance of individual sensitivity to those bodily states 

in the context of trait impulsivity, especially non-planning component. Importantly, these 

observations were made across distinct impulsivity dimensions, showing that various states 

affect separate 'impulsivities' to a different degree, providing further evidence for a 

heterogeneous nature of impulsivity concept. Using neuroimaging techniques, we identified 

neural correlates which may be responsible for decreased self-control capacities in the 
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emotional context in impulsive individuals. These neural substrates, in turn, may be used as 

targets in future research and therapeutic practice. Since in our experiments we studied 'healthy 

volunteers' (not any specific clinical population), our findings are relevant to impulse-related 

problems prevention. Firstly, increasing awareness of these processes may encourage people to 

stay more attuned to changes in their bodily state and effectively regulate their emotion. This, in 

turn, may inspire adaptive ways to adjust behaviour according to current bodily needs, which 

may help reduce impulsivity levels and minimise the associated negative consequences. 

Secondly, our findings may lead to development of novel training or therapeutic opportunities 

which may involve interoceptive training to develop a better sensitivity to internal bodily 

changes or training impulsive individuals on affective impulsivity tasks (e.g. ASST), which 

engage the Somatomotor neural network.   
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