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Summary 

 

CONTEXTUAL MODULATION OF VISUAL VARIABILITY: PERCEPTUAL BIASES 

OVER TIME AND ACROSS THE VISUAL FIELD 

 

The visual system extracts statistical information about the environment to manage 

noise, ensure perceptual stability and predict future events. These summary 

representations are able to inform sensory information received in subsequent times or 

in other regions of the visual field. This has been conceptualized in terms of Bayesian 

inference within the predictive coding framework. Nevertheless, contextual influence 

can also drive anti-Bayesian biases, as in sensory adaptation. 

 

Variance is a crucial statistical descriptor, yet relatively overlooked in ensemble vision 

research. We assessed the mechanisms whereby visual variability exerts and is subject 

to contextual modulation over time and across the visual field. 

 

Perceptual biases over time: serial dependence (SD) 

 

In a series of visual experiments, we examined SD on visual variance: the influence of 

the variance of previously presented ensembles in current variance judgments. We 

encountered two history-dependent biases: a positive bias exerted by recent 

presentations and a negative bias driven by less recent context. Contrary to claims that 

positive SD has low-level sensory origin, our experiments demonstrated a decisional bias 

requiring perceptual awareness and subject to time and capacity limitations. The 

negative bias was likely of sensory origin (adaptation). 

 

A two-layer model combining population codes and Bayesian Kalman filters replicated 

positive and negative effects in their approximate timescales. 
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Perceptual biases across the visual field: Uniformity Illusion (UI) 

 

In UI, presentation of a pattern with uniform foveal components and more variable 

peripheral elements results in the latter taking the appearance of the foveal input. We 

studied the mechanistic basis of UI on orientation and determined that it arose without 

changes in sensory encoding at the primary visual cortex. 

 

Conclusions 

 

We studied perceptual biases on visual variability across space and time and found a 

combination of sensory negative and positive decisional biases, likely to handle the 

balance between change sensitivity and perceptual stability. 
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PART I: General Introduction 
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Abstract 

 

The visual system capitalizes on environmental statistics to efficiently 

manage and interpret sensory information. This is achieved by compressing 

visual ensembles into statistical summary representations (ensemble 

processing) and by informing isolated sensory signals on the basis of the 

statistical context (contextual modulation of perception). The latter is a 

critical operation under the predictive coding framework, which regards 

perception as Bayesian inference. As a measure of the dispersion of visual 

ensembles over space and time, visual variability is a key descriptor of the 

environment and crucial to Bayesian computations, informing the precision 

and reliability of the incoming sensory signal as well as the range of expected 

options a priori. In this thesis we examine how the statistical context 

influences perceptual processing of visual variability. Specifically, we focus in 

two recently described instances of contextual modulation over time and 

across the visual field: serial dependence and the Uniformity Illusion, 

respectively. Both of them are extensively discussed in this General 

Introduction. 
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1. THE NEED FOR EFFICIENT CODING IN THE VISUAL SYSTEM: THE 

IMPORTANCE OF STATISTICS 

 

The human visual system has a difficult mission: interpreting the external world on the 

basis of electro-magnetic signals received in the retina and translating these signals into 

internal representations suitable to be stored, transferred and processed by different 

neural circuits. This represents managing an enormous amount of information, instantly 

characterising both familiar and unfamiliar objects in terms of multiple feature-

dimensions (spatial location, size, colour, etc) and of their significance for guiding future 

decisions. Yet this process takes place at almost every instant of our waking life, 

recreating the complex, ever-changing world in our minds in a seemingly effortless 

fashion.  

 

All of this is even more perplexing -especially considering how richly detailed our visual 

experience appears- when we take into account two notable shortcomings of the visual 

system: it is remarkably limited in informational capacity and generates a large amount 

of noise at every step of visual processing. 

 

Multiple studies on visual attention (Franconeri, Alvarez, & Enns, 2007; Howe, Cohen, 

Pinto, & Horowitz, 2010; Pylyshyn & Storm, 1988; Yantis, 1992) and working memory 

(G. A. Alvarez & Cavanagh, 2004; Cowan, 2001; Luck & Vogel, 2013), as well as 

phenomena such as change blindness and inattentional blindness (M. A. Cohen, 

Cavanagh, Chun, & Nakayama, 2012), have shown that only a few items can be attended 

or remembered at the same time, while most of the detail presented in the visual field 

goes unnoticed. The striking contrast between the severe capacity limitations 

demonstrated in controlled experiments and our subjective impression of a rich 

phenomenology has led some authors to declare that the visual world is nothing but a 

‘grand illusion’, barely sustained on perceptual content (Noë, 2002). While others argue 

that perception is indeed rich, as the described limitations pertain to high-level 
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processes enabling cognitive access and categorization, which may not capture the 

entirety of the perceptual content (Haun, Tononi, Koch, & Tsuchiya, 2017a), the fact 

remains that according to standard paradigms, the amount of visual information 

available for cognitive processing and decision-making seems severely limited.   

 

As any system of information processing, the visual system is faced with the problem of 

disambiguating signal from noise. The environment contains external noise due to the 

stochastic nature of photon emission, but also ‘higher-order’ noise, i.e. any visual 

stimulus that interferes with the relevant content in each case –for example, a foggy 

landscape or ripples on the surface of a pond. But more importantly, the eyes and the 

nervous system generate a large amount of internal noise. Noise in the visual system 

arises from multiple sources, including stochastic processes related to cellular activity of 

photoreceptors and neurons (protein metabolism, vesicle formation), to 

electrical/membrane activity (channel noise, inducing variations in resting membrane 

potential and action potential threshold), and to synaptic mechanisms 

(neurotransmitter diffusion). Furthermore, its effects are amplified by the non-linear 

and threshold-dependent nature of neural processing: for example, a small variation in 

the axonal voltage around the threshold for action potential generation can make a 

fundamental difference in the response of a neural circuit (Faisal, Selen, & Wolpert, 

2008). 

 

Given these constraints, it is evident that sensory circuits must be governed by the 

principle of efficient coding: the neural code (i.e. the transducing function(s) that relate 

input and response in a single neuron or a neural circuit) must maximize, at every 

moment, the amount of information about the received input, in face of metabolic 

demands and internal noise (Attneave, 1954; Barlow, 2012; Chalk, Marre, & Tkacik, 

2018). At first consideration, it would seem that the visual system is very poorly 

equipped to perform this task. How can it overcome such imposing limitations? The 

answer lies in the redundancy and predictability of the natural world. 

 



 

 

 

 

 

30 

The structure of the physical world is full of redundancy and autocorrelation: objects 

and traits often appear in clusters (such as leaves on a tree) or are aggregated in a 

predictable fashion - for example, we would not expect to find a wardrobe in the middle 

of a forest, or an impala grazing in an office room (Kersten, 1987). This autocorrelation 

occurs both in space and time: the environment is largely stable, with most of the 

information remaining the same from one instant to the next, and events develop in 

predictable sequences and frequencies. By exploiting such regularities, the visual system 

is able to efficiently compress and encode information and make predictions about 

future events (George A. Alvarez, 2011; Summerfield & Lange, 2014). Indeed, if the 

environment wasn’t predictable perception would be altogether futile, since knowledge 

of the present state of the environment is only useful to the extent to which it can guide 

action selection on the basis of predicted outcomes. 

 

In fact, many striking observations about the visual system can be explained in light of 

statistical optimization. While remarkably inept for detection of specific details, humans 

and other primates are able to rapidly acquire high-level information about natural 

images - for example, the presence of a navigable path (Greene & Oliva, 2009) or the 

emotions prevailing in a large crowd (Haberman & Whitney, 2007). Objects roughly 

appear the same for a very wide range of light intensities, and we experience the 

environment as largely stable despite continuous interferences due to blinks, eye 

movements, etc (Fischer & Whitney, 2014). 

 

Briefly, there are two main approaches whereby environmental regularities can be 

exploited to optimize efficient coding: 

 

1. By compressing redundant information into summary representations 

(ensemble processing), so that random uncorrelated noise can be averaged out 

from the signal (George A. Alvarez, 2011). 
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2. By informing signal transmission on the basis of the statistical context. For 

instance:  

a. De-correlating signals maximizes information transmission, according to 

Shannon’s theory of information (E., 1948).  

b. Normalization of the signals enables re-centring the neural code around 

the most frequent stimulus magnitudes, maximizing its sensitivity within 

the range of likely inputs (Carandini & Heeger, 2013; Fairhall, Lewen, 

Blalek, & Steveninck, 2001; Summerfield & Lange, 2014). 

c. Computing the prior probability of occurrence of subsequent stimuli, 

according to sensory history and context, enables Bayesian computations 

for interpretation of a noisy input (D. Kersten & A. Yuille, 2003). Some 

prevailing frameworks regard this as the central operation in perceptual 

processing: in particular, predictive coding (Clark, 2013) sees perception 

as Bayesian inference about the state of the world. 

 

In the following sections we will discuss some of the operations that implement the two 

mentioned approaches to statistics-driven sensory processing (albeit noting that the 

distinction is somewhat artificial): namely, information compression (ensemble 

processing) and contextual modulation of perception, which may occur across time (as 

in sensory adaptation, serial dependence, predictive processing operations, etc) and 

across the visual space (as in phenomena like perceptual filling-in). 

 

 

 

 

2. ENSEMBLE PROCESSING 

 

In contrast with its poor performance in the detailed representation of individual 

objects, the visual system is surprisingly good at rapid, accurate computation of 

summary statistics for visual ensembles, concerning both low and high-level feature-
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dimensions, such as size (Ariely, 2001; S. C. Chong & Treisman, 2003), orientation (S. C. 

Dakin & Watt, 1997), spatial location (George A. Alvarez & Oliva, 2008), brightness 

(Bauer, 2009), hue (J Maule, Witzel, & Franklin, 2014), motion speed (Watamaniuk & 

Duchon, 1992), motion direction (Watamaniuk, Sekuler, & Williams, 1989), facial 

identity (de Fockert & Wolfenstein, 2009), gender and emotional expression (Haberman 

& Whitney, 2007). These computations often take place in absence of attention and with 

absent or imprecise representation of the elements of the array (George A. Alvarez & 

Oliva, 2008, 2009; F. F. Li, VanRullen, Koch, & Perona, 2002). 

 

Extensive research has focused on central tendency statistics, such as the mean, while 

measures of dispersion, such as variance, have received less attention - see below for a 

detailed exposition of the research on the latter. In addition to these, other traits, like 

numerosity (David Burr & Ross, 2008; Steven C. Dakin, Tibber, Greenwood, Kingdom, & 

Morgan, 2011), or higher-order statistics like spatial patterns (M.J. Morgan, Mareschal, 

Chubb, & Solomon, 2012) or the global properties of a scene (Oliva & Torralba, 2006) 

are also extracted. Statistical pooling occurs both across space and time: for example, 

subjects can accurately compute the mean size of a dynamically changing target 

(Albretcht & Scholl, 2010).  

 

The broad range of dimensions for which summary statistics are computed, the rapidity 

of the process (as low as 50 ms (S. C. Chong & Treisman, 2003)) and its apparent 

independence of attention (George A. Alvarez & Oliva, 2008, 2009) and array size (Ariely, 

2001; S. C. Chong & Treisman, 2003) have promoted the view of ensemble processing 

as an automatic, pre-attentive mechanism that precedes the limited capacity bottleneck 

and plays a fundamental role in visual perception by reducing the computational 

demands posed by a complex environment. However, some studies paint a slightly more 

nuanced picture. Investigations based on the simultaneous-sequential method suggest 

that parallel computation of summary statistics across the same feature-dimension is 

indeed subject to capacity limitations, similar to parallel perceptual processing of 

individual items (Attarha & Moore, 2015a). When multiple computations across 
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different dimensions are performed simultaneously, a study reported that capacity was 

not compromised (Attarha & Moore, 2015b), while another one found the opposite 

(Emmanouil & Treisman, 2008). Moreover, sensory prediction error has been found to 

drive perceptual learning of certain types of summary statistics (such as average 

location), indicating an influence of top-down tuning signals (Fan, Turk-Browne, & 

Taylor, 2016). Therefore, it seems that ensemble processing is a highly efficient, but not 

capacity-free mechanism of information compression, subject to similar principles as 

other aspects of perceptual processing. Nevertheless, there is no doubt about the 

computational benefits that it conveys to visual cognition, as reviewed by Álvarez in 

(George A. Alvarez, 2011): 

 

1. Compressing redundant information of multiple individual items into a single 

summary representation, critically reducing the computational demands of a 

resource-limited system. 

 

2. Increasing the precision of the sensory signals (inverse variance of the 

probabilistic sensory response to a stimulus (Borst & Theunissen, 1999)) and 

eliminating sensory noise: the average of multiple noisy measures can be much 

more precise than the individual measures taken separately, as uncorrelated 

random errors cancel each other.  

 

3. Affording exploration of regions of interest and guiding the focus of attention: 

by combining individual measures it is possible to obtain spatial patterns of 

information outside the focus of attention. If visual attention had to be 

distributed among multiple individual measures, they would be too noisy to be 

of any use and would not reach awareness - in predictive-coding terms, their low 

precision would make them unable to update internal models about the world 

in high-level areas (Feldman & Friston, 2010). Without the ability to form 

ensemble representations, our visual experience would consist almost only on 

attended items, and attention would not have any external guide to shift its 
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focus to regions of interest. Unattended summary representations provide 

patterns that inform of the type of scene and guide visual search. This is 

particularly relevant to peripheral vision, which encompasses the great majority 

of the visual field and where statistics are computed automatically (Balas, 

Nakano, & Rosenholtz, 2010; L. Parkes, J. Lund, A. Angelucci, J. A. Solomon, & M. 

Morgan, 2001), informing of regions deserving closer examination by means of 

foveation (Rosenholtz, Huang, Raj, Balas, & Ilie, 2012).  

 

4. Providing the basis for statistical inference. Ensemble processing enables 

estimation of population parameters (mean, variance, range) with calculation of 

confidence intervals, thus enabling classification of objects into groups (set 

membership), perceptual grouping and detection of outliers.  

 

5. Building a hierarchical representation of the scene, with integration across 

multiple levels of abstraction. This is important, for instance, for perception of 

textures (S. C. Dakin & Watt, 1997; Michael J. Morgan, Chubb, & Solomon, 2014; 

M.J. Morgan et al., 2012) and identification of scene types (F. F. Li et al., 2002; 

Oliva & Torralba, 2006). It also enhances the capacity of visual working memory 

compared to retention of unrelated items (Timothy F. Brady & Alvarez, 2015). 

 

What are the mechanisms responsible for ensemble processing? A prevailing notion, 

especially in early research, points to the distribution of attention among all the objects 

of the array and computation of summary statistics from all individual representations, 

which are subsequently discarded (as proposed by Ariely in (Ariely, 2001) and further 

elaborated in (George A. Alvarez, 2011)). Although several studies appear to support 

this suggestion (Ariely, 2001, 2008; S. C. Chong & Treisman, 2003, 2005a, 2005b), it has 

also provoked scepticism, since such mechanism would require parallel processing of a 

number of items exceeding the capacity limits of visual attention, especially for 

elements involving high-level areas such as faces (Pylyshyn & Storm, 1988). 

Consequently, some models propose a strategic subsampling of a few items that could 
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account for the accuracy reached in several experiments (Myczek & Simons, 2008). For 

example, a study on variance computation reported a very inefficient mechanism, with 

only 5-6 items being used, of an array formed by more than 100 (M.J. Morgan et al., 

2012). However, this notion of a ‘strategic subsampling’ has also been contested by 

different studies, such as the ones performed with crowded ensembles -where 

individual items are not distinguishable- (L. Parkes, J. Lund, A. Angelucci, J. Solomon, & 

M. Morgan, 2001) or with different conditions that would demand different strategies, 

if strategic selection was the norm (S. Chong, Joo, Emmanouil, & Treisman, 2008). 

Finally, other authors consider that individual representations are not needed at all 

(Jennifer E. Corbett & Oriet, 2011), and ensembles are directly processed in a manner 

akin to textures: that is, performing overall feature processing (filled surface, spatial 

frequency, density), in absence of object segmentation (Balas et al., 2010; Im & 

Halberda, 2013; Tibber, Greenwood, & Dakin, 2012). 

 

Even the question of whether there is a single, domain-general system supporting 

ensemble processing or widespread domain-specific operations remains unanswered. 

As described above, there is conflicting evidence about whether (Emmanouil & 

Treisman, 2008) or not (Attarha & Moore, 2015b) simultaneous computation of 

summary statistics across different feature-dimensions is subject to interference -an 

issue that would help to resolve the question. In this regard, by using an individual 

differences approach, a study reported lack of correlation between subject´s 

performance in ensemble processing of high-level versus low-level feature domains, 

suggesting that they are supported by independent functional architectures (Haberman, 

Brady, & Alvarez, 2015). According to this, ensemble processing may be a ubiquitous, 

canonical neural computation performed independently on different feature-

dimensions. On the other hand, another study (Zhao, Ngo, McKendrick, & Turk-Browne, 

2011) found bidirectional interference between ensemble perception and statistical 

learning, suggesting a degree of commonality in the underlying mechanisms involved in 

computation of summary statistics for an ensemble and acquisition of statistical 
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regularities (co-occurrence of individual elements) across sequentially presented 

ensembles. 

 

Though little is known about the brain structures responsible for generating summary 

representations, a role has been proposed for the ventral stream, a sequence of cortical 

areas beginning at the primary visual cortex (V1) and extending to the inferotemporal 

cortex (IT), which compresses sensory information into patterns with progressive loss of 

local detail in favour of increasing complexity in downstream areas (Freeman & 

Simoncelli, 2011). 

 

Aiming to identify the specific area responsible for ensemble processing, a study 

(Freeman & Simoncelli, 2011) employed perceptual metamers: modified pictures that 

preserve the appearance of the original image by removing peripheral detail while 

maintaining the summary statistics within pooling regions, thus mimicking the loss of 

visual detail that happens along the ventral stream. Neural receptive fields (areas 

responsible for pooling of the information of a certain region in the visual field) increase 

in size across retinal eccentricity (Freeman & Simoncelli, 2011; Rosenholtz et al., 2012) 

and along the ventral stream. The rate of increase across eccentricity is larger for 

downstream areas, which provides a signature for identifying the area responsible for a 

specific process. By analysing the rate of compression suitable for maintaining identical 

appearance, this study identified V2 as the likeliest candidate for the generation of 

summary representations. 

 

Another fMRI investigation presented evidence of ensemble-related neural adaptation 

driven by different stimulus types in the anterior-medial ventral visual cortex, an area 

involved in texture and scene processing (Cant & Xu, 2012), also part of the ventral 

stream.  

 

In visual perception, the ventral stream operates independently of an alternative 

pathway devoted to detailed object processing, supported by lateral occipital and 
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parietal areas (Cant & Xu, 2012). The degree to which each region of the visual field 

partakes in these two processing systems in vastly inhomogeneous, with the central 2o 

(fovea) equipped with a powerful anatomical machinery for detailed resolution 

(photoreceptor density and type, ganglion cell density, receptive field size, etc) and the 

vast majority of the visual field (periphery) pooling low spatial frequency signals into 

summary statistics. Indeed it has been claimed that peripheral vision is entirely 

statistical, and mathematical models based on this assumption have been able to predict 

crowding effects (Balas et al., 2010), visual search and discrimination tasks (Rosenholtz 

et al., 2012) and to capture texture appearance (Freeman & Simoncelli, 2011) (but see 

(Alexander, Schmidt, & Zelinsky, 2014)). Interestingly, there seems to be a lot in 

common between ensemble processing and the characteristic peripheral phenomenon 

of crowding (wherein discrimination of the traits of a peripheral stimulus is impaired if 

there is another object nearby): both of them are based on pooling of visual information 

with loss of local particularities (Balas et al., 2010), both have been related to texture 

processing (L. Parkes et al., 2001) and seem to occur independently in different brain 

areas for different feature-dimensions (Whitney & Levi, 2011).  

 

Considering all the above, the resolution of the conflict between the poor capacity of 

the visual system and our subjective rich perceptual experience may not be a ‘grand 

illusion’, but rather the result of the integration of coarse peripheral summary statistics 

with the detail provided by foveal vision (Michael A. Cohen, Dennett, & Kanwisher, 

2016) (although some degree of inflation, not sustained of perceptual content, is likely 

to contribute to peripheral appearance (Odegaard, Chang, Lau, & Cheung, 2018; 

Solovey, Graney, & Lau, 2015)). How this foveal-peripheral integration occurs is as yet 

not clearly established, but likely relies on contextual modulation of imprecise sensory 

signals by visual information received in recent history or other regions of the visual 

field. In later sections we will review some of the mechanisms supporting this contextual 

modulation, which are the focus of our research. 
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2.1. VISUAL VARIANCE PROCESSING 

 

2.1.1. Early works on variance in Psychophysics 

 

Compared with central tendency measures (e.g. mean), less attention has been paid to 

how the brain processes dispersion statistics, particularly variance, even if visual 

variability is a fundamental descriptor of the environment (Michael, Gardelle, & 

Summerfield, 2014).  

 

Still, there are some interesting reports in early psychophysical research, as reviewed by 

Peterson in (Peterson & Beach, 1967). Several researchers (Lee Roy Beach & Swenson, 

1966; Spencer, 1961) examined how variance modulated judgments about means and 

found that the variance of estimates increased with the variance of the sample, though 

it didn't bias the average results. It was proposed that subjects were actually making 

inferences about the mean as a parameter, with sample variance influencing the 

standard error of the mean. As for explicit judgments of variability, the matter used to 

receive more attention decades ago than in the recent past. In 1939, Hofstatter 

(Hofstatter, 1939) observed a positive correlation between stimulus variance and 

subjects' variance estimates, but a negative one between stimulus mean and subjective 

variance, as if the participants were judging relative discrepancies in proportion to the 

mean, an interpretation related to the coefficient of variation and Weber’s law in 

psychophysics. Subsequent studies (Lathrop, 1967) replicated this finding. Also, rather 

than the mathematical variance (with square distances from the mean) or even the 

coefficient of variation, the power assigned to the distances from the mean to estimate 

global variability seemed to vary in relation to the context. When experimental 

conditions emphasized large deviations, large exponents fitted better the subjects' 

responses; when small deviations were emphasized, it was the opposite (Hofstatter, 

1939). Using normal distributions, Beach and Scopp (L.R. Beach & Scopp, 1967) found 

that a small power was a better fit for their data, which could be expected given the 
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clustering of normally distributed data around the mean. They hypothesized that this 

could be different for other types of probability distributions.  

 

 

2.1.2. Indirect approaches: modulation of perceptual processes by stimulus variance 

 

Modulation of accuracy and confidence in mean judgments 

 

The modulation of mean estimates by variance has returned to the spotlight in recent 

times. Several studies have reported longer reaction times and worse accuracy in 

averaging judgments in presence of a greater variability in decision-relevant evidence, 

concerning hue, shape (Gardelle & Summerfield, 2011), motion direction (Gardelle & 

Mammasian, 2015) and orientation (Zylberberg, Roelfsema, & Sigman, 2014). Likewise, 

it has been found that a higher variance, even for equal range, impaired hue averaging 

(John Maule & Franklin, 2015) and that subjects were less likely to find the mean hue 

familiar in a membership identification task when hue variance increased (J Maule et al., 

2014). By asking subjects to determine which of two groups of bars had a greater 

average length, another team found, again, that higher variance impaired performance, 

and that subjects behaved as if they were judging mean difference by the Student’s T 

test, assigning confidence limits close to those employed in formal statistics, with a one-

tailed significance of P=0.05 (Fouriezos, Rubenfeld, & Capstick, 2008). Evidence also 

suggests that there is a limit to the amount of variance that can be compressed in a 

summary representation (John Maule & Franklin, 2015) and that variance influences 

perceptual grouping and working memory capacity (Timothy F. Brady & Alvarez, 2015).  

 

Thus, mean judgements are subject to modulation by variance (external noise), as 

described by models of perception that represent encoding of ensembles and individual 

items in the form of a probabilistic distribution or a set of probability distributions, each 

subject to internal noise (George A. Alvarez, 2011; Ma, 2012). Greater variance between 

the individual items in the ensemble translates into greater variance in the internal 



 

 

 

 

 

40 

representation of the mean (and therefore larger errors and lesser consistency in 

subjects’ responses (Zylberberg et al., 2014). Models of mean size (Gardelle & 

Summerfield, 2011) and orientation (V. Li, Herce Castanon, Solomon, Vandormael, & 

Summerfield, 2017; Zylberberg et al., 2014) judgments achieve a better fit for describing 

subjects’ performance when taking both stimuli variance and other sources of noise into 

account.  

 

In light of all this, several authors regard variance as a measure of the reliability of 

sensory evidence for perceptual decisions (Gardelle & Mammasian, 2015; Gardelle & 

Summerfield, 2011; Spence, Dux, & Arnold, 2016; Zylberberg et al., 2014), which is 

related, in psychophysical terms, to the  signal-to-noise ratio and the slope of the 

psychometric curve (Gardelle & Mammasian, 2015), and in Bayesian terms to the width 

of the likelihood distribution. Whether and how it has an impact in subjects’ confidence 

in such decisions is still under discussion.   

 

In a study on average orientation judgments (Zylberberg et al., 2014), higher stimulus 

variability was systematically accompanied by lower accuracy but higher confidence. 

The authors explained this counter-intuitive result by subjects’ inability to properly 

adapt their decision and confidence criteria to the properties (variance) of the stimulus. 

Like similar observations regarding paradoxical effects of internal noise (D. A. Rahnev, 

Maniscalco, Luber, Lau, & Lisanby, 2012) and attention (D. Rahnev et al., 2011), this 

finding may be explained by a model (D. A. Rahnev et al., 2012) based on signal-

detection theory (Green & Sweets, 1966), with the critical constraint of a unique set of 

decision and confidence criteria used by the observer across all experimental conditions 

(Gorea & Sagi, 2000) -or, in a less strict formulation, an insufficiently adaptable set of 

criteria (Zylberberg et al., 2014). Due to the probabilistic nature of sensory processing, 

a noisier signal (for example, a high-variance ensemble) is more likely to generate a 

highly deviant internal response (very low or very high). If the observer fails to adapt 

their criteria to the amount of noise on a trial-by-trial basis, this would mean that noisier 

trials would produce more ratings (inaccurate yet) well above the high-confidence 
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criterion threshold. In this light, the inability to tune decision and confidence to the 

ensemble variance would stem from subjects’ underestimation of the variance of the 

sensory evidence or a suboptimal application of this variance to judgments of stimulus 

reliability (Zylberberg et al., 2014), an issue that has been previously reported in 

behavioral economics (Tversky & Kahneman, 1974).  

 

On the other hand, by requesting judgments about average motion direction, another 

study reported that variance undermines confidence even to a greater extent than 

accuracy/sensitivity (Spence et al., 2016). The authors discussed that confidence 

judgments were disproportionally affected by the variability of neural responses in 

perceptual areas, i.e. the width of the response function of the neural population, in 

accordance with Bayesian accounts of confidence as a measure of the precision of the 

perceptual-decision processes (Meyniel, Sigman, & Mainen, 2015).  

 

A third study on the relationship between ensemble variance and confidence in mean 

judgments might shed light on the discrepancy between the previous two. This research 

work (Gardelle & Mammasian, 2015) independently manipulated mean and variance of 

random dot kinematograms (RDKs) for a motion categorization task. After matching 

performance between conditions, confidence reports in low-mean (mean close to 

category boundary) and low-variance (high precision) RDKs were compared with high-

mean high-variance stimuli. Confidence reports, which positively correlated with 

performance, were influenced by stimulus variability in an idiosyncratic manner: some 

subjects placed more weight, in terms of confidence, in the distance to category 

boundary (mean), while others were more sensitive to stimulus variance; this 

preference remained stable for each individual in a second session one week later. 

Besides, those subjects whose confidence was more affected by variance were also 

those whose performance was particularly impaired by variance, and vice versa. The 

authors proposed that some participants may not need to maintain a unique set of 

criteria throughout the entire experiment; on the contrary, some may have a greater 

ability to adjust their decision and confidence criteria to each trial’s level of internal 
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noise, and therefore their confidence judgments may be affected by the individual´s 

ability of estimating current and prior noise variance or, in a more general perspective, 

by a misperception (under or overestimation) of statistical variability.  

 

In summary, the disparate evidence regarding variance and confidence appears to 

depend on the accuracy or weight of variance perception, an aspect of ensemble 

processing that demands closer examination -see below for an account of the studies 

on direct variance estimates (section 2.1.3. of the current chapter).  

 

 

Modulation of neural adaptation and priming 

 

The influence of variance has been studied for other processes dependent on statistical 

context, such as adaptation and priming. The variance of sensory input across time 

modulates neural adaptation: in low-variance environments, sensory signals attain 

higher resolution/sensitivity, both in the visual and auditory domains (Dahmen, Keating, 

Nodal, Schulz, & King, 2010; Fairhall et al., 2001). Exploring adaptation aftereffects in an 

ensemble-processing task, Whitney and colleagues found that adaptation to mean size 

was stronger for low-variance ensembles, i.e., when the precision of the mean estimate 

was higher (Jennifer E. Corbett, Wurnitsch, Schwartz, & Whitney, 2012). E. Michael and 

colleagues described an effect of priming by the variability of visual information 

(Michael et al., 2014), by which judgements about the mean of an array were faster and 

more accurate if preceded by another array with the same variance, independently of 

mean values and overlapping of individual elements. Results suggested that variance 

priming was independent of attention, but occurred through feature-dimension specific 

channels. The effect was visible with prime-target intervals as short as 100 ms, pointing 

to an automatic, pre-attentive mechanism. To summarize these results, the authors 

explained the effect of variance priming in terms of adjusting the gain of the sensory 

signals to fit the statistics of the environment.  
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In summary, contextual variance provides a measure of the expected range of stimuli in 

the environment (in Bayesian terms, the width of the prior distribution) (Michael et al., 

2014), and therefore it is a key factor to the tuning of perceptual prediction. 

 

 

2.1.3. Direct approaches: explicit variance estimation 

 

Compared to the effect of variance on ensemble perception, the direct examination of 

variance as a distinct perceptual feature has received less attention in recent research.   

 

One study (Kareev, Arnon, & Horwitz-Zeliger, 2002) set out to address the long-standing 

claim (made even by Francis Bacon in 1620 (Bacon, 1854)) stating that humans perceive 

the world as more regular, i.e. less variant than it actually is. The authors reasoned that 

such misperception, if real, could be due to the use of sample variance as an estimate 

of population variance without correction by sample size, and verified this hypothesis in 

a series of experiments requesting estimates of visual ensemble variance. 

 

In the context of research on texture discrimination, another team examined perception 

of pattern regularity as a summary statistic, given by the positional variances of each 

element of the pattern with respect to the ideal position for an absolute regular pattern 

(equal distance between homologous elements of the pattern) (Michael J. Morgan et 

al., 2014; M.J. Morgan et al., 2012). The authors reasoned that statistical computation 

would explain why regular patterns appear regular despite the expected distortions on 

the perceived position of individual elements produced by sensory noise. Pattern 

discrimination was more sensitive when neither of the two patterns was perfectly 

regular, explained by a pedestal effect caused by internal noise: a low non-zero variance 

would raise the response of the mechanism just below the threshold for discarding 

noise, so that an additional increment would be easily detected. As pedestal variance 

increased, the 'just noticeable difference' (JND) in positional variance first decreased 

and then raised again, forming a 'dipper function', resembling those observed in 
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contrast or blur discrimination (Michael J. Morgan et al., 2014): thus, except for very 

small non-zero amounts of variance, as this statistic increased, detecting further 

irregularities became increasingly harder. In this sense, the authors regarded 

camouflage effects as masking of (relevant) variance by (irrelevant) variance. Besides, 

results suggested a very inefficient mechanism of variance computation, with 

subsampling of only 5-6 elements out of over 120.  

 

While very different in their aims and methods, the two mentioned studies (on variance 

underestimation (Kareev et al., 2002) and pattern regularity) both suggest that the visual 

system conflates external visual variability and internal noise to some extent, smoothing 

away variance of the sensory signals unless there is strong evidence about it being a 

physical trait of the environment -for example, if it raises above a certain threshold. 

 

Another study employed judgements of colour diversity (or variability) in colour 

ensembles to investigate whether perceptual phenomenology was indeed richer that 

cognitive access to perceptual contents -in other words, to assess the relationship 

between phenomenological and access consciousness (Zohar Z. Bronfman, 2014). 

Colour diversity could be estimated without attention, and did not impair performance 

on a different, attended task. Irrelevant diversity affected judgments on relevant 

diversity. Masking impeded diversity estimations, implying that such judgement cannot 

be made without awareness. The authors concluded that colour diversity estimation 

was an automatic, pre-attentive mechanism which did not consume significant cognitive 

resources, yet it appeared to require a conscious representation (albeit transient) of the 

individual colours; thus, results cautiously supported that phenomenological 

consciousness is based on rich perceptual content even if only a small fraction can be 

accessed by visual attention and cognitive resources. 

 

In a similar vein, a research work asserted that variance judgments required processing 

of the individual elements of the ensemble, in this case concerning a high-level trait such 

as facial emotion (Haberman, Lee, & Whitney, 2015). Variance estimation was greatly 
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impaired in conditions that typically hindered high-level facial processing, like in upside-

down face ensembles. 

 

Another team (Payzan-LeNestour, Balleine, Berrada, & Pearson, 2016) reported 

negative adaptation after-effects on variance judgments of diverse types (motion 

variance, abstract visual calculations) which generalized across the different 

representations. This result suggests that variance adaptation is not of sensory origin 

but operates at a high (cognitive) level of processing, and, therefore, that variance 

constitutes an abstract property independent on the dimension about which it was 

initially computed. 

 

 

 

 

3. CONTEXTUAL MODULATION OF PERCEPTION 

 

Considerable evidence indicates that perception (and vision in particular) is affected by 

previous stimulus history, as well as by stimuli presented in other regions of the visual 

field or other sensory modalities. Henceforth we will refer to this influence as contextual 

modulation of perception, and will focus on some recently described instances 

regarding temporal and spatial visual context. 

 

As previously described, the visual system has evolved to cope with the vast complexity 

of the natural world and its own limitations by exploiting temporal and spatial 

autocorrelations in the environment. Given that the visual context is informative for the 

interpretation of a single, noisy sensory signal, one may surmise that the combination 

of both inputs may be a basic operation in perceptual processing. This intuition can be 

formalized in Bayesian terms, where the sensory input takes the form of a likelihood 

distribution (the stimulus is encoded as a probabilistic response by a neural population) 

and the prior distribution encodes the probability of encountering each possible 
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stimulus given the available (contextual) information. In other words, the brain exploits 

contextual information to build up expectations for incoming stimuli. Numerous studies 

have indeed encountered pre-stimulus changes in neural activity driven by such 

expectations, in sensory, decision and motor areas involved in perceptual decision-

making, as reviewed extensively by Summerfield and colleagues (Summerfield & Egner, 

2009; Summerfield & Lange, 2014). 

 

Predictive coding is a comprehensive framework that aims to capture this purported 

Bayesian basis of perception, along with some notable properties of the anatomical 

organization of the brain and some well-studied physiological and psychophysical 

phenomena. This framework proposes that perception arises as a result of hierarchical 

Bayesian inference, whereby information of increasing complexity and abstraction is 

processed by a multi-level hierarchy of brain areas. At each level, the noisy signal 

received through the senses or from lower layers of the hierarchy (likelihood) is 

combined with a prediction (prior) generated at higher levels that operate at a broader 

scope and thus provide informative context that feeds back to lower areas (Clark, 2013; 

K. Friston, 2005; Kersten, Mamassian, & Yuille, 2004; Rao & Ballard, 1999). Predictive 

coding offers a plausible interpretation for the increasing size and scope of the receptive 

fields in downstream cortical areas (a prominent example being the ventral stream) (K. 

Tanaka, 1996), and the structure of anatomical connections across different areas, 

where backward connections frequently outnumber forward connections (Angelucci et 

al., 2002). This framework is also able to explain phenomena such as repetition 

suppression (Grill-Spector, Henson, & Martin, 2006), and extra-classical effects 

modulated by information outside the neurons’ receptive field, which cannot always be 

accounted for by transmission through lateral connections (Rao & Ballard, 1999).  

 

Despite the merits of the Bayesian framework, it is evident than a model of perception 

based on strict Bayesian computations would be too simplistic and inaccurate. On the 

one hand, it would obviate the fact that some of the most widespread phenomena 

related to contextual modulation of perception, namely adaptation after-effects, are 
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seemingly anti-Bayesian, i.e. repulsive (or negative) biases away from previous history. 

On the other hand, a purely Bayesian model would need to account for all the 

possibilities a priori, which would be computationally intractable. As described above, 

perceptual processing must be constrained by the principle of efficient coding, to 

optimize resource allocation to the likeliest possibilities. Sensory adaptation plays a 

crucial role in achieving this goal, by normalization of neural activity with respect to a 

broader context (Carandini & Heeger, 2013), thus re-centring the neural code and 

maximizing sensitivity around the likeliest stimuli (Fairhall et al., 2001; May & Zhaoping, 

2016; Webster, 2011). In this regard, a Bayesian observer model of perception 

constrained by the principle of efficient coding (with the prior and likelihood 

distributions modulated by prevailing stimulus statistics) has been shown to reproduce 

seemingly anti-Bayesian (repulsive) effects (Wei & Stocker, 2015). Thus, environmental 

statistics are fundamental for an efficient application of Bayesian operations in 

perceptual processing: in particular, visual variability (or variance) sets the range of likely 

stimulus magnitudes, namely the width of the prior distribution, and tunes neural 

responses accordingly (Dahmen et al., 2010; Fairhall et al., 2001; Michael et al., 2014). 

 

Furthermore, not all signals are equally reliable. In Bayesian processing, input signals are 

weighted by their precision to minimize the effect of external and internal noise, and 

thus adjust the degree of reliance in prior history according to the quality of current 

input. Within the predictive coding framework, attention is deemed a mechanism for 

tuning the precision (inverse variance) of the sensory/prediction error signals (Feldman 

& Friston, 2010), and metacognitive confidence is thought to arise from an estimate of 

that precision (width of the distribution of neural activity elicited by a signal – the 

likelihood function) (Drugowitsch & Pouget, 2012; Meyniel et al., 2015).  As an estimate 

of dispersion, environmental variance provides a measure of the precision of the 

summary representations that form a large part of our perceptual experience (Jennifer 

E. Corbett et al., 2012). Thus, variance appears, in different ways, as a crucial statistic in 

the Bayesian-based interpretation of the natural world. 
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Our research examines two recently described examples of contextual modulation of 

perception that can be interpreted on the basis of Bayesian-like operations, with a prior 

constructed through time (serial dependence) or across the visual field (the Uniformity 

Illusion), and the way visual variability is processed through these two phenomena. We 

will now briefly describe the basic properties of these processes. 

 

 

 

3.1. CONTEXTUAL MODULATION OF PERCEPTION THROUGH TIME: SERIAL DEPENDENCE 

IN PERCEPTUAL DECISION-MAKING 

 

It has been known since Antiquity that perception is subject to history-dependent 

biases. Some of the most striking and widely studied are adaptation after-effects, 

whereby (relatively long) exposure to a certain stimulus magnitude will bias subsequent 

perception away from that magnitude (negative, repulsive effect) (Addams, 1834; 

Aristotle, 350 BCE; Gibson & Radner, 1937).  

 

Comparatively, positive (attractive) biases have received less attention. Yet it has also 

been known for long that perceptual decisions are attracted toward the mean of the 

distribution of past stimuli as well as toward the most recent presentations. These two 

effects, the first one termed regression effect or contraction bias (first described by 

Hollingworth in 1910 (Hollingworth, 1910; Stevens & Greenbaum, 1966; Teghtsoonian 

& Teghtsoonian, 1978)), and the second one termed sequential effect (Collier & 

Verplanck, 1958; DeCarlo, 2006; Mori, 1998; Senders & Sowards, 1952; Yu & Cohen, 

2008), serial dependence (Fischer & Whitney, 2014; Fründ, Wichmann, & Macke, 2014) 

or recency bias (Kalm & Norris, 2017), were traditionally studied as separate 

phenomena. Crucially, these attractive effects to previous history arise even when past 

stimuli are non-informative about the current state, such as in random sequences of 

stimuli, as seen in typical psychophysical experiments (Fründ et al., 2014; Yu & Cohen, 

2008). Indeed, part of the reason why the recency bias in perception has been largely 
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overlooked might be that it is usually more convenient to assume that responses to 

individual trials in a perceptual task are independent from each other (Fründ et al., 

2014). 

 

This situation of relative neglect has started to change in recent years. In 2014, Fischer 

and Whitney published an extensive quantitative analysis on serial dependence in visual 

perception (Fischer & Whitney, 2014). In a series of experiments requiring successive 

judgments on the orientation of supra-threshold Gabor patches, these authors 

described a strong and systematic bias of visual judgments toward recent stimuli, which 

was tuned by spatiotemporal proximity and stimulus similarity, gated by attention and 

observed even in absence of a motor response or explicit memory of the past stimulus. 

Subsequently, the same team reported serial dependence for spatial position (Manassi, 

Liberman, Kosovicheva, Zhang, & Whitney, 2018), complex objects (face identity, even 

across different viewpoints (Alina Liberman, Fischer, & Whitney, 2014)), abstract 

judgments (attractiveness (Xia, Liberman, Leib, & Whitney, 2015), emotional expression 

(A. Liberman, Manassi, & Whitney, 2018)) and statistical properties (ensemble mean 

(Manassi, Liberman, Chaney, & Whitney, 2017), numerosity (J. E. Corbett, Fischer, & 

Whitney, 2011)), showing that serial dependence is not restricted to low-level visual 

features. Other authors have expanded the knowledge about the phenomenon on a 

wide variety of visual dimensions, and provided insight on its properties, mechanistic 

basis and biological function (Alais, Lelung, & Burg, 2017; Bliss, Sun, & D'Esposito, 2017; 

Cicchini, Anobile, & Burr, 2014; Cicchini, Mikellidou, & Burr, 2017; Fritsche, Mostert, & 

Lange, 2017; John-Saaltink, Kok, Lau, & Lange, 2016; Kok, Taubert, Burg, Rhodes, & Alais, 

2016; Taubert, Alais, & Burr, 2016). Likewise, Lau and colleagues described a similar 

attractive bias involving metacognitive (instead of perceptual) representations, 

reporting an intertask ‘confidence leak’ that could not be explained by priming or 

fluctuations in attention (D. Rahnev, Koizumi, McCurdy, D'Esposito, & Lau, 2015).  

 

The wide range of dimensions that exhibit serial dependence suggest that this 

phenomenon has evolved as a critical trait to the optimization of perceptual 
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mechanisms. Strikingly, however, serial dependence may lead to suboptimal 

performance in perceptual decisions -that is, in standard laboratory tasks, when 

sequential presentations are statistically independent. Fischer and Whitney (Fischer & 

Whitney, 2014) reported a decreased sensitivity to slight changes in orientation, driven 

by the influence of a previous similar tilt, which could be measured by a less pronounced 

slope of the Psychometric function relating orientation and judgment. This sets serial 

dependence apart from a superficially similar phenomenon like priming, whereby 

perceptual judgments about a stimulus exhibit increased accuracy and sensitivity if 

preceded by the same stimulus or by another sharing similar properties (Maljkovic & 

Nakayama, 1994; Posner & Snyder, 1975). The apparent disadvantage conveyed by 

serial dependence prompts the question of its biological function. As with many visual 

illusions, this phenomenon may seem maladaptive in laboratory conditions, but it is 

actually revealing of how the evolution of the visual system has been guided by the 

peculiarities of the natural world. The environment is largely stable, and vision has 

evolved to perceive it as such, in spite of disruptive events such as blinks, eye 

movements or momentary occlusions of objects, and random fluctuations in sensory 

signals due to internal noise. As Fischer and Whitney proposed (Fischer & Whitney, 

2014), serial dependence would promote perceptual stability and smooth away noise in 

visual input, at the cost of reducing sensitivity to small, transient variations. These 

authors proposed the term ‘continuity field’ to describe the spatiotemporal operator 

over which perception is attracted to past input; they also proposed that, for high-level 

objects (such as faces), the continuity field might be object-centred, instead of defined 

by spatiotemporal coordinates, in order to facilitate object-invariance (Alina Liberman 

et al., 2014). Similarly, Lau and colleagues proposed a metacognitive continuity field that 

would explain ‘confidence leak’, justified by the stability of environmental noise 

affecting the quality of the perceptual signal, and supported by a common confidence 

‘currency’, independent of stimulus and task (D. Rahnev et al., 2015). 

 

In light of this proposed biological function, serial dependence and sensory adaptation 

would be complementary mechanisms, generating opposite biases in different 
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timescales in order to handle the necessary balance between perceptual stability and 

sensitivity to change: serial dependence would act on transient fluctuations, assumed 

to be based on internal changes, while sensory adaptation would prevail after more 

prolonged exposure, likely to represent an external change in environmental conditions 

(Fischer & Whitney, 2014; Manassi et al., 2017). In this vein, a study examined serial 

dependencies on two different traits of a single stimulus (faces), specifically one stable 

trait (gender) and another changeable (emotional expression), and reported positive 

serial dependence for the stable trait and negative effects for the changeable one, thus 

highlighting different coding strategies for various properties of the same object, in 

function of expectations about their stability (Taubert et al., 2016).  

 

The incorporation of prior knowledge to inform decisions in face of uncertainty (noise) 

strongly echoes the dynamics of Bayesian decision theory. This notion is consistent with 

the prevailing view of perception as Bayesian inference within the predictive coding 

framework (Daniel Kersten & Alan Yuille, 2003; Maloney & Mamassian, 2009; 

Petzschner, Glasauer, & Stephan, 2015; Yuille & Bülthoff, 1996), and indeed, Bayesian 

observer models have been used by several authors to represent perceptual biases 

(Jazayeri & Shadlen, 2010; Kording & Wolpert, 2004; Petzschner & Glasauer, 2011). 

Concerning prior knowledge, it is reasonable for a Bayesian observer to assign more 

weight to more recent inputs, which are usually better predictors of the current state of 

the environment (Anderson & Schooler, 1991; Kalm & Norris, 2017). This would require 

the Markovian implementation of a dynamically changing prior that continuously 

incorporates information about the most recent input, in a process akin to a Kalman 

filter (Petzschner & Glasauer, 2011). Such prior would contain information about the 

whole stimulus history and, as more stimuli are supplied to the observer, would tend to 

approximate to the statistical distribution of the stimuli in the environment, weighted 

by recency of presentation. In this regard, models based on an iteratively updating prior 

have proven superior to alternative models incorporating a fixed prior based on the 

stimulus statistics (Kalm & Norris, 2017; Petzschner & Glasauer, 2011). Importantly, such 

models are capable of reproduce not only recency biases (serial dependence), but also 



 

 

 

 

 

52 

regression effects (Petzschner & Glasauer, 2011; Raviv, Ahissar, & Loewenstein, 2012), 

given the attraction exerted by the prior toward the centre of the distribution of stimuli. 

A common process is thus able to explain two different history-dependent effects 

operating on different timescales.  

 

What are the specific processes and brain areas that give rise to serial dependence? In 

their influential 2014 study, Fischer and Whitney asserted the perceptual origin of the 

bias (as opposed to a decisional, or memory-based attraction), as serial dependence was 

observed in a two-alternative forced-choice (2AFC) task, a result hard to explain by a 

shift in a decision criterion (Fischer & Whitney, 2014) -note, however, that the sample 

size was only 3 subjects. These authors also proposed that a model based on activity-

dependent gain changes or tuning shifts in sensory neurons could explain their pattern 

of results. In a similar vein, St. John-Saaltink and colleagues reported that orientation-

selective fMRI activity signal in the primary visual cortex (V1) was biased to the 

orientation of the previous trial (John-Saaltink et al., 2016), suggesting a neural correlate 

of serial dependence in sensory areas. Importantly, these authors reported that the 

encountered bias in V1 activity correlated with the previous perceptual choice, and not 

the bottom-up sensory signal -in other words, it was related to the previous response, 

and not the previous stimulus. However, technical limitations in the temporal resolution 

of fMRI must be considered when assessing these results (as the reported bias could be 

residual BOLD activity from the previous trial), even though the authors made provisions 

about this issue. In other two behavioural studies on orientation (Cicchini et al., 2017) 

and position-related (Manassi et al., 2018) serial dependence, reported response 

patterns were, according to authors, consistent with a perceptual origin: specifically, 

Cicchini and colleagues found positive serial dependence in a 2AFC task, particularly 

when the perceptual distance between stimuli was small and sensory reliability was low 

(Cicchini et al., 2017), whereas Manassi et al. observed serial dependence effects at the 

time of perception (Manassi et al., 2018). Finally, another team (M. Fornaciai & Park, 

2018) reported neurophysiological signatures of serial dependence (along with 
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behavioural results) in absence of an explicit task, again supporting that serial 

dependence arises from perceptual processes. 

 

Other authors, however, have presented evidence supporting the opposite hypothesis, 

namely serial dependence being a bias on perceptual decisions exerted on (and by) 

working memory representations, in absence of alterations in perceptual content. Bliss 

and colleagues found that serial dependence in spatial position was absent at the time 

of perception but increased if a delay was enforced between stimulus offset and 

response, indicating that the bias arose from the maintenance of visual representations 

in working memory, where they were distorted by previous representations (Bliss et al., 

2017).  Fritsche and colleagues (Fritsche et al., 2017) found that positive serial 

dependence in orientation only occurred in tasks liable to decisional biases (adjustment 

task), while a negative tilt after-effect was observed in perceptual comparison (2AFC 

and equality) tasks, more suitable to the isolation of purely perceptual effects. Besides, 

they also observed an increase in serial dependence with delayed responses (in the 

adjustment task), in the same vein as Bliss’s findings. They concluded that sensory 

representations were subject to negative adaptation effects while decisions were biased 

toward recent information in working memory, as a joint system to balance sensitivity 

and stability. Alais et al. (Alais, Lelung, et al., 2017) reported convergent results, 

observing linear summation of concomitant negative and positive dependencies 

influencing motion perception (wherein motion judgments were subject to positive 

decision biases and orientation reports experienced negative effects). Nevertheless, 

these conclusions have been contested by similar studies from other teams (Cicchini et 

al., 2017; Manassi et al., 2018), as reported in the previous paragraph. 

 

Although both hypotheses about the basis of serial dependence (i.e., perceptual and 

post-perceptual) have several pieces of evidence in their favour, the decision-memory 

account is better linked to extant knowledge on adjacent fields, especially on the 

properties of visual short-term memory. A large bulk of scientific evidence shows that 

short-term memory representations are biased by previous history in the visual 
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(Ashourian & Loewenstein, 2011; Huang & Sekuler, 2014; Olkkonen, McCarthy, & Allred, 

2014; Papadimitriou, Ferdoash, & Snyder, 2015), auditory (Akrami, Kopec, Diamond, & 

Brody, 2018; Lockhead & King, 1983; Lu, Williamson, & Kaufman, 1992; Visscher, 

Kahana, & Sekuler, 2009) and tactile (Fassihi, Akrami, Esmaeili, & Diamond, 2014; 

Preuschhof, Schubert, Villringer, & Heekeren, 2010; Romo & Salinas, 2003) domains. 

This dovetails with an ongoing debate between two different models about the nature 

of working memory: one that sees it as a system capable of storing a discrete amount of 

independent representations in a limited number of fixed slots (slot-based model) and 

another that considers working memory as a ‘fluid’ resource that can be flexibly 

allocated to maintain different types of representations, including simple features, high-

level objects or hierarchical ensemble representations (resource-based model) 

(Suchow, Fougnie, Brady, & Alvarez, 2014). The resource-based model allows for a much 

more natural interpretation of the interaction of sequential (or even simultaneous 

(Huang & Sekuler, 2014)) memory representations, with newer representations partially 

overwriting previous ones in a kind of leaky-integration process (Kalm & Norris, 2017; 

Matthey, Bays, & Dayan, 2015), as well as the enhancement of the recency bias in 

presence of capacity-related constraints for the storage of new information (Huang & 

Sekuler, 2014). Such a process allows for accumulation of noisy evidence into complex, 

even multi-hierarchical representations (Timothy F. Brady & Alvarez, 2015), facilitating 

the sequential acquisition of information about complex or imprecise objects 

(Busemeyer & Myung, 1987). Ultimately, this continuous updating of flexible memory 

representations leads to the generation of an iterative prior that contains information 

about all past states, and represents a summary of the statistics of the presented stimuli, 

weighted by recency; thus, it is consistent with Bayesian dynamics and able to explain 

both regression effects and serial dependence (Kalm & Norris, 2017; Olkkonen et al., 

2014; Raviv et al., 2012). A recent study has provided a plausible neural basis for this 

process, reporting that the posterior parietal cortex (PPC) stores information about 

stimulus history and mediates attractive biases on perceptual decisions (Akrami et al., 

2018). 

 



 

 

 

 

 

55 

Still, the debate remains about whether serial dependence is entirely explained by a bias 

in working memory. Noting the similarities between serial dependence in perceptual 

tasks and some well-studied phenomena in working memory tasks (particularly 

proactive interference), Kiyonaga, Whitney and colleagues have made an attempt to 

bring together the available knowledge from both research fields (A. Kiyonaga, J. M. 

Scimeca, D. P. Bliss, & D. Whitney, 2017). They proposed that history-driven attraction 

may be a widespread process to promote stability and cohesion in different types of 

internal representations, not only perceptual, but also cognitive. Thus, serial 

dependence may arise at different levels of processing, including perception, attention 

and memory. In this regard, memory representations of low-level features have been 

described in early sensory areas, possibly even V1 (Baumann, Endestad, Magnussen, & 

Greenlee, 2008), prompting the suggestion that a memory-driven bias might arise at a 

very early stage of perceptual processing. In a similar vein, in higher-order visual areas, 

iconic representations are generated to promote object invariance (Podvalny et al., 

2017). Nevertheless, for the moment the degree of commonality of serial dependence 

and visual working memory, and in broader terms, the neural basis of serial 

dependence, remains an open question.    

 

 

 
3.2. CONTEXTUAL MODULATION OF PERCEPTION ACROSS THE VISUAL FIELD: THE 

UNIFORMITY ILLUSION 

 
Images in the visual system are not constructed like in a photographic camera, by an 

independent pointwise encoding of the input received in each receptive field. Rather, 

the presence of a stimulus in a region of the visual field can alter perception in a different 

location. For instance, in early visual areas, elements presented outside the classical 

receptive field of a neuron exert contextual modulatory effects on its neural responses 
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(Gheorghiu, Kingdom, & Petkov, 2014), by lateral connections and top-down feedback 

from downstream areas (Angelucci & Bressloff, 2006). Thus, response to an orientation 

signal by a sensitive neuron is suppressed by the presence of a contour with the same 

orientation (iso-orientation surround suppression) (Gheorghiu et al., 2014; H. Tanaka & 

Ohzawa, 2009). Peripheral crowding is another example of perceptual alteration 

induced by the concurrent presence of another stimulus: in the peripheral field, a form 

(for example, a letter) that would be easily identifiable in isolation becomes distorted if 

another form is presented in an adjacent location, while its apparent contrast and 

saliency remains the same (Petrov, Popple, & McKee, 2007; Whitney & Levi, 2011). In 

the phenomenon of perceptual filling-in, perception of a visual trait such as luminance, 

colour, motion or texture extends from a region of the visual field to a different region 

where it is not physically present (Komatsu, 2006). For example, maintaining stable 

fixation on an annulus surrounding a region of a different colour may result in the 

boundary between annulus and disc fading and the colour of the annulus spreading 

inwards and replacing the colour of the inner region. Filling-in is responsible for us not 

being aware of the existence of the blind spot, a region in the retina that lacks 

photoreceptors and therefore receives no visual input. It is also the cause of diverse 

illusions such as neon colour spreading (van Tuijl & Leeuwenberg, 1979), the Craik-

O’Brien-Cornsweet effect (Grossberg & Todorovic, 1988) or the phantom illusion (Tynan 

& Sekular, 1975). 

 

Many of these effects can be explained in terms of contour and surface processing 

(Gheorghiu et al., 2014). In real-life environments, scenes are composed of cluttered 

elements located at different depths, partially occluded by other objects. Consider, for 

example, a meadow showing behind a group of trees, with sunny areas alternating with 

shadows cast by the clouds above. Such a surface can appear discontinuous due to 

occlusions, and its low-level properties (luminance, colour) may vary greatly between 

regions: the darkest area of the meadow may have a level of brightness more similar to 

the trunks in the front than to the sunniest grassy area. And yet it is advantageous for 

survival that the brain is able to interpret the meadow as a unitary surface, even for 
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high-level operations, like predicting the trajectory of an animal running across. 

Progressive changes in luminance and colour must therefore be downplayed (if different 

regions are to be processed as a single surface). In relation to this, filling-in can occur in 

discontinuous patches of the same perceived surface, bridging over luminance gaps -

such as those caused by occluding trunks (R. Kanai, Wu, Verstraten, & Shimojo, 2006). 

Conversely, it is necessary that our visual system interprets sharp gradients in luminance 

as physical borders (contour processing), and downplays the saliency of repeated 

orientation signals indicating the presence of a texture (iso-orientation surround 

suppression): for example, the blades of grass, or the stripes in the bark of the trunks 

must be suppressed in contrast to the contour of the trees (Gheorghiu et al., 2014; H. 

Tanaka & Ohzawa, 2009). Although crowding is ultimately a limitation in acuity due to 

pooling of adjacent signals, it has also been related to texture processing (L. Parkes et 

al., 2001). 

 

Another imperative for contextual modulation (both in time and space) is related to 

feature binding: feature-dimensions such as colour, size, motion, etc, are processed 

separately in the early visual areas, yet they must be perceived together within an 

object. As Wu and colleagues have noted: the redness, roundness and motion of a rolling 

red ball are not perceived as separate entities (D. A. Wu, Kanai, & Shimojo, 2004). Aiming 

to investigate the mechanisms of feature-binding by exploring instances wherein it fails, 

these authors presented a striking example of steady-state misbinding of colour and 

motion across the visual field: a collection of red dots moving upwards in the central 

field and downwards in the periphery, together with green dots moving downwards in 

the centre and upwards in the periphery, was consistently seen as red-upwards and 

green-downwards across the whole visual scene. This illustrated that feature binding is 

influenced by contour and surface processing, so that binding takes place in a uniform 

way across regions assumed to be the same surface, even if this causes a non-veridical 

reassignment of features between objects. Furthermore, surface processing across the 

visual field is also affected by the different sensory precision in fovea and periphery: the 

illusion presented by Wu and colleagues suggests that recombination of features is 
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informed by the higher precision in the fovea  along with an assumption of uniformity 

across the visual field (D. A. Wu et al., 2004).   

 

This dovetails with another central aspect of our visual experience, whose basis is still 

poorly understood, namely fovea-periphery integration. Our subjective impression is 

that we see richness even in the most eccentric regions in the visual field, despite the 

fact that only the central 5 degrees (approximately) can perceive objects in detail. 

Although a partial explanation for the apparent richness of vision may be sequential 

acquisition of detail through exploratory saccades (O'Regan & Noe, 2001), an identical 

subjective experience can be obtained in absence of physical detail in the peripheral 

area of a scene: this is the case if an image is altered so that its peripheral traits are 

replaced by their summary statistics pooled over relatively large regions (Freeman & 

Simoncelli, 2011). Is the information in the peripheral regions of early sensory areas 

reconstructed based on the detail of the fovea, selectively applied according to the 

summary statistics of each region? This might entail a filling-in process in a 

discontinuous surface, as described in (R. Kanai, Wu, et al., 2006). Is this combination 

achieved in higher-level areas, where visual processing is non-local (or less local) 

(Ogmen & Herzog, 2010) and if so, is it fed back to early areas, or, rather, is it further 

processed without need for altering early sensory encoding? Or, alternatively, is our 

visual experience mostly a ‘grand illusion’ (Noë, 2002), wherein apparent richness is 

caused by decisional and metacognitive biases, not grounded on reconstruction of 

perceptual content but on perceptual inflation (Odegaard et al., 2018; Solovey et al., 

2015)? Available evidence suggests that all of these processes may occur to some 

extent, but their specific contribution is debated (Michael A. Cohen et al., 2016). 

 

A recently described visual illusion, named the Uniformity Illusion (UI), may help to shed 

light on this issue (Otten, Pinto, Paffen, Seth, & Kanai, 2016). When a presentation 

pattern has different but related properties in the fovea and periphery, after 

maintaining fixation for a time the appearance of the pattern changes so that the 

peripheral stimuli seem to take on the properties of the fovea. For example, a grid of 
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circles, with the peripheral circles being bigger than the central ones, will appear to 

change so that all circles are perceived as the same (smaller) size that is shown in the 

central area (see http://www.uniformillusion.com/ for other examples).  

 

Although the mechanism of UI is still unknown, a collection of experiments described by 

Otten and colleagues (Otten et al., 2016) have revealed several interesting properties. 

First, UI occurs for many visual features, processed at low and higher-level sensory 

areas, including luminance, colour, size, shape, orientation, motion, text, etc. This broad 

variety suggests three possible explanations for the basis of UI: (i) it is either a 

widespread mechanism that operates independently at different brain areas, or (ii) a 

mid to high-level process taking place in downstream areas (common to very different 

types of visual processing), or, finally, (iii) a heterogeneous collection of processes that 

give rise to a superficially similar phenomenology.  

 

Second, UI requires maintaining gaze fixation for a time, usually over 2 seconds, after 

onset of the presentation. This suggests that adaptation to peripheral input, with the 

consequent reduction of visibility of peripheral elements, may be a necessary step in the 

appearance of the illusion (Ditchburn & Ginsborg, 1952) -a process akin to Troxler fading 

(Balas & Sinha, 2007; Martinez-Conde & Macknik, 2017). Importantly, however, this 

does not lead to the disappearance of these peripheral elements, but to a change in 

their apparent properties, informed by the properties of foveal elements.  

 

Third, the area over which appearance is altered is larger than that involved in similar 

illusions, like most instances of filling-in in retinally stabilized images.  

 

Fourth, UI is enhanced (appears more frequently and with shorter delay) if the 

properties of central and peripheral patterns are more similar (for example, the size of 

the circles). Variance seems to play a role as well, especially variance of the foveal 

elements, so that low-variance presentation in the fovea (central elements of uniform 
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size, shape, orientation, etc) enhances UI. These properties suggest that visual 

variability, or precision, modulates perceptual uniformity.  

 

Finally, according to metacognitive reports, illusory uniformity appeared similar, but 

(likely) not identical, to physical uniformity.  

 

Otten and colleagues proposed a possible mechanism for UI, based on a predictive-

coding account of perception (Otten et al., 2016). They suggested that adaptation 

deteriorates peripheral information faster than foveal input (Schieting & Spillmann, 

1987), rendering the former weak and imprecise, so that bottom-up peripheral signals 

are overcome by a perceptual prediction based on the more reliable foveal elements 

(affected by less internal noise, and in most UI designs, also by less external noise, as 

the illusion is potentiated with a low-variance foveal pattern). This fovea-dominated 

prediction is extended to the periphery, likely in combination with a default prior for 

surface uniformity across the visual field.  

 

However, this compelling explanation remains to be tested, and more precisely, it 

remains to be seen whether UI requires a reconstruction of perceptual content (and if 

so, at what level(s) of perceptual processing does this happen), or rather, if it results, in 

part or entirely, from a post-perceptual (decisional or meta-cognitive) bias in favour of 

uniformity across the visual field (perceptual inflation) (Odegaard et al., 2018; Solovey 

et al., 2015), wherein local variability is dismissed, not recoded. All of these questions 

are relevant for the basis of foveal-peripheral integration that is at the core of 

naturalistic visual experience. 

 

 

 

 

 

 



 

 

 

 

 

61 

4. GENERAL AIMS AND STRUCTURE OF THIS THESIS 

 

As mentioned before, the general aim of this thesis is to explore contextual modulation 

of visual variability over time and across the visual field. Specifically, we focus on the 

two previously described instances of contextual modulation: serial dependence and UI. 

 

Part II presents a series of experiments examining serial dependence in the perception 

of visual variance: in other words, how perceptual decisions about visual ensemble 

variance are influenced by previous variance presentations. We hypothesize that a 

higher-order statistic such as variance may be subject to history-dependent biases 

similar to those observed for other visual dimensions, in order to construct a flexible yet 

largely stable experience of environmental variability out of sequential pieces of 

statistical evidence. Furthermore, we aim to examine the specific levels of perceptual 

processing that generate serial dependence in variance (and serial dependence in 

general) and the influence of both stimulus properties and high-level processes related 

to metacognition and perceptual awareness.  

 

Part III presents a study on the mechanistic basis of UI, whereby visual variability across 

the visual field is apparently overwritten by uniform, precise foveal information. We 

employ an adaptation paradigm in order to explore whether UI on orientation (a V1-

based feature-dimension) and texture-density (dimension processed beyond V1) is 

associated to local changes in sensory encoding in peripheral receptive fields. 

 

Although not part of the core of the thesis, we also conducted an additional research 

project exploring how visual variability (rate of perceptual change over time and across 

the visual field), drives, in turn, the emergence of a high-level trait, central to conscious 

experience, such as the subjective impression of passage of time (perceived duration). 

In this study, we contrast the influence of (external) visual variability with that of 

fluctuations in physiological and neural processes that previous studies have claimed to 

modulate perceived duration. This additional research is detailed in Part V.   
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PART II: Contextual Modulation Over 

Time: Serial Dependence in the 

Perceptual Processing of Visual 

Variance 
  



 

 

 

 

 

63 

Abstract 

 

In Part II we examine contextual modulation of visual variability over time: 

in other words, how variance perception is dependent on previous variance 

presentations (serial dependence). Several experiments reported here have 

been published in a Journal of Vision article (2018) with the title ‘Serial 

Dependence in Visual Variance' (Suárez-Pinilla, Seth, & Roseboom, 2018b). 

By requiring judgments about the motion variance of sequentially presented 

random dot kinematograms (RDKs), we found two different history-driven 

biases operating at different timescales: a positive (attractive, Bayesian-like) 

bias toward very recent variance presentations and a negative (repulsive) 

effect driven by the broader, less recent context. The positive bias 

(corresponding to the serial dependence effect reported for other visual 

dimensions) was independent of low-level stimulus properties, arose only in 

relation to high-confidence decision-making and seemed subject to time and 

capacity limitations, suggesting a high-level origin (likely decisional 

representations interacting in short-term memory). The negative bias may 

be consistent with sensory adaptation. In a continuous flash suppression 

study about serial dependence in orientation, we further confirmed that, 

unlike adaptation after-effects (which persist for masked stimuli), serial 

dependence did not appear in relation to unseen trials, indicating that it 

cannot arise merely as a result of local low-level sensory changes. We 

propose that the negative and positive serial dependencies arise at different 

levels of perceptual decision-making (sensory adaptation and Bayesian-like 

decision, respectively) to handle the necessary balance between sensitivity 

to change and perceptual stability. A two-layer model based on this 

assumption was able to reproduce the observed biases in their respective 

timescales, utilising population codes to produce a sensory response and 

iterative Bayesian operations for generating a decision based on such 

sensory information.  



 

 

 

 

 

64 

CHAPTER 1: SERIAL DEPENDENCIES IN THE 

PERCEPTUAL PROCESSING OF VISUAL VARIANCE  
 

 

Variance is a key statistic to the interpretation of sensory information, yet 

the mechanisms whereby the visual system processes this property are still 

poorly understood. We aimed to gain insight on variance perception as a 

distinct visual feature by studying how variance judgments are influenced by 

previous variance stimuli (serial dependence). In this chapter we report the 

first of a series of experiments (Experiment 1), wherein participants were 

asked to estimate the variance of motion trajectories of sequentially 

presented random dot kinematograms. Two opposite history-driven biases 

were observed. A positive (attractive) bias was exerted by very recent 

presentations, similar to other instances of serial dependence; this effect was 

apparently tuned by perceptual similarity within the same dimension (i.e. 

variance), but independent on low-level or associated stimulus properties 

(eccentricity, spatial location, similarity between means of consecutive 

stimuli). A negative (repulsive) bias was observed in relation to less recent 

presentations. A series of control analyses revealed that both the positive 

and negative dependencies arose only in the true trial history (and not in 

relation to future or shuffled trials) and were not dependent on stimuli being 

sampled from a closed set. The majority of the contents of this chapter have 

been published in the Journal of Vision as part of the article ‘Serial 

Dependence in the Perception of Visual Variance’ (Suárez-Pinilla et al., 

2018b).  
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1. INTRODUCTION 

 

Considerable evidence indicates that the human visual system is able to extract 

statistical information from sensory signals supporting the formation of summary or 

‘ensemble’ representations across a variety of dimensions, including low-level features 

such as orientation or size, as well as higher-level (complex or abstract) traits such as 

facial expressions in a crowd (George A. Alvarez, 2011; George A. Alvarez & Oliva, 2009; 

Ariely, 2001; S. C. Chong & Treisman, 2003; Geisler, 2008; Rosenholtz et al., 2012). Such 

information can be used to efficiently encode (Dahmen et al., 2010; Fairhall et al., 2001) 

and interpret subsequent sensory inputs, and to make predictions about future events 

(Summerfield & Egner, 2009; Summerfield & Lange, 2014).  

 

Many forms of visual input can be summarised in terms of statistical moments such as 

central tendency (e.g., mean) and variance or dispersion (consider, for example, a 

random dot kinematogram, which will have a mean and a variance in the distribution of 

dot motion). Most studies on ensemble processing have focused on central tendency 

statistics (Albretcht & Scholl, 2010; S. C. Chong & Treisman, 2005b; Jennifer E. Corbett 

& Oriet, 2011; Haberman & Whitney, 2009; Im & Chong, 2014; Sweeny & Whitney, 2014; 

Wolfe, Kosovicheva, Leib, Wood, & Whitney, 2015), while variance computations have 

received less attention. However, variance is known to play a crucial role in visual 

experience, modulating perceptual grouping, ensemble averaging  (Timothy F. Brady & 

Alvarez, 2015; Gardelle & Mammasian, 2015; Gardelle & Summerfield, 2011; John 

Maule & Franklin, 2015; J Maule et al., 2014; Zylberberg et al., 2014), texture processing 

(Michael J. Morgan et al., 2014; M.J. Morgan et al., 2012) and comparison between 

arrays (Fouriezos et al., 2008). Variance is also critical to perceptual prediction, since it 

provides a measure of the expected range of stimuli (Summerfield & Lange, 2014) as 

well as the precision (reliability) of the sensory input (Jennifer E. Corbett et al., 2012; 

Meyniel et al., 2015; Sato & Kording, 2014). As an indication of sensory reliability, 

variance also affects metacognitive judgments, although evidence is conflicting 
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regarding the extent and direction of this effect (Gardelle & Mammasian, 2015; Spence 

et al., 2016; Zylberberg et al., 2014).  

 

Notably, most studies involving variance manipulations have examined its impact on 

perceptual decisions about other features, rather than on the perception of variance 

itself. Comparatively few studies have investigated the mechanisms of variance 

processing directly. Those that do have addressed mainly three questions: what are the 

general properties of variance processing (speed, automaticity, attentional demands), 

to what extent does variance computation rely on the processing of the individual 

elements of the ensemble, and whether it operates as a specific trait of the ensemble 

or the feature-dimension over which it is computed, or rather as an abstract property. 

So far, these studies have employed heterogeneous designs and reached disparate 

conclusions. Concerning the general properties of variance processing, a study 

examining judgments of colour diversity (Bronfman, Brezis, Jacobson, & Usher, 2014) 

suggested a rapid, pre-attentive mechanism. This is in agreement with another study 

which reported priming by visual variance, an effect that seems to occur rapidly, 

automatically and without need of feature-based attention (Michael et al., 2014); 

however, this latter study did not examine variance perception directly, but only the 

priming effect of variance on mean judgments. Regarding the second question, namely 

the reliance of variance computation on the processing of individual elements, available 

evidence (based on highly heterogeneous studies) is conflicting: one study on pattern 

regularity (positional variance) suggested a very inefficient computation of variance, 

underwritten by subsampling of a small fraction of the elements of the array (M.J. 

Morgan et al., 2012). By contrast, and surprisingly given the finding of a rapid, pre-

attentive mechanism, the abovementioned study on colour diversity reported that 

variance processing required a conscious representation of the individual elements 

(Bronfman et al., 2014); in similar manner, a study on facial emotions in a crowd 

determined that variance judgments along this dimension relied on high-level 

processing of individual faces (Haberman, Lee, et al., 2015). Finally, regarding the 

question about whether variance, once computed over a certain feature-dimension of 
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a visual ensemble, retains its specificity or rather emerges as an abstract property, the 

previously reported study on priming suggested that the effect of (implicit) variance on 

mean perception was feature-specific (Michael et al., 2014). In contrast, a study on 

direct variance perception found negative adaptation after-effects which generalized 

across dimensions of visual variance, suggesting a high-level, rather than sensory origin 

for this effect, and therefore, that variance operates as an independent cognitive 

property (Payzan-LeNestour et al., 2016). In summary, available evidence shows some 

dissension, but a picture starts to emerge: variance computations would be relatively 

rapid, but appear to require high-level processing of the individual elements of the 

array; however, once computed, variance would become dissociated from the 

properties of the ensemble and of the perceptual dimension over which it was 

estimated, and operate as a high-level cognitive trait. 

 

To clarify some the above issues, here, we examine variance processing as a distinct 

perceptual feature, by investigating the influence of previous variance presentations on 

judgments about this dimension. It has long been known that perception is affected by 

previous input. Influences of past perceptual events on current perception fall generally 

into two different categories. Most well-known are adaptation after-effects - repulsive 

(negative) biases in perception exerted after prolonged exposure to a certain stimulus 

magnitude - that have been described for many low and high-level traits (including 

variance) (Campbell & Maffei, 1971; Mather, Verstraten, & Anstis, 1998; Payzan-

LeNestour et al., 2016; Roseboom, Linares, & Nishida, 2015) and which are classically 

employed as an experimental tool for investigating perceptual mechanisms (Kohn, 

2007). The second category is observed in relation to shorter presentations, generally 

consisting of an attractive (positive) perceptual bias toward recent sensory history. 

These ‘serial dependencies’ have been found for several low and high-level features 

(Cicchini et al., 2014; Fischer & Whitney, 2014; John-Saaltink et al., 2016; Alina Liberman 

et al., 2014; Xia et al., 2015). It has been proposed that these two different effects 

contribute in opposite ways to the ‘tuning’ of the balance between perceptual sensitivity 

and stability: while negative adaptation produces a normalization of neural 
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representations in order to maximize sensitivity to changes around the most frequent 

stimulus intensity, serial dependence contributes to perceptual stability by smoothing 

out discrete discontinuities as sensory noise (Fischer & Whitney, 2014). However, the 

specific level(s) of perceptual processing at which serial dependencies arise (low-level 

perception, attention, working memory, decision, response) are still unclear and a 

matter of intense debate (Bliss et al., 2017; Cicchini et al., 2017; Fischer & Whitney, 

2014; Fritsche et al., 2017; John-Saaltink et al., 2016; A. Kiyonaga et al., 2017; Manassi 

et al., 2018). 

 

Our study employs serial dependence in variance judgments as a way to track the 

dynamics and timescales of the processing of this statistic as a distinct perceptual 

feature. In the current chapter we report the results for Experiment 1, which 

investigated the existence, magnitude and direction of serial dependence in visual 

variance perception (operationalized as variance in RDK motion direction), as well as its 

relationship with associated stimulus features, such as ensemble mean and spatial 

location. For this experiment we separately explored fovea and periphery, as the 

compression of visual information into summary statistics is particularly relevant to the 

much larger, poorly spatially-resolved peripheral field (Balas et al., 2010; Freeman & 

Simoncelli, 2011; Rosenholtz et al., 2012; C. Ziemba & Simoncelli, 2015). In subsequent 

chapters (2-4) we describe further experiments aiming to elucidate the specific 

perceptual mechanisms that give rise to serial dependence and the variables that affect 

the maintenance of the effect in time. Finally, in Chapter 5 we present a model based 

on our premises about the origin of different history-dependent biases, which 

reasonably captures the magnitude and timescales of the previously described serial 

dependencies in variance. 
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2. EXPERIMENT 1: SERIAL DEPENDENCIES IN VARIANCE 

JUDGMENTS 

 

In this experiment we investigated the existence of serial dependence in variance 

judgments and its relationship to basic features of stimulus presentation, including 

eccentricity, spatial location, and ensemble mean. We operationalized visual variance 

as variance in the motion direction of a random dot kinematogram (RDK), by 

manipulating independently means and variances on a trial basis and asking participants 

to report the ‘randomness’ of the presented motion -see Figure 1 for an overview of the 

trial structure.  
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2.1. METHODS 

 

 

 
 

Figure 1. Experiment 1: Methods. Each trial presented an RDK of a certain mean and variance (standard deviation, 

StD) in the motion trajectories of its component dots. In the example, trial n-1 and n have low and high StD values, 

respectively. The stimulus was presented for 500 ms. In half of the blocks, the RDK was displayed in the fovea (0 

degrees of visual angle, dva) whereas in the other half it was displayed in the periphery (20 dva, equally frequent in 

the left and right hemifield). Experiment 1 required variance (StD) reports for each trial, using a visual analogue scale. 

Abbreviations: StD – standard deviation (of the RDK motion directions), RT: response time, ms: milliseconds. 

 

 

2.1.1. Stimuli 

 

The stimulus consisted of a cluster of random moving dots (RDK) displayed for 500 

milliseconds at a certain eccentricity (0o or 20o, see below) over a dark grey background 
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(3.92 cd/m2). The cluster spanned 5 degrees of visual angle (dva) along the horizontal 

and vertical dimensions and was comprised of 100 light grey dots (diameter of 0.11 dva, 

luminance 43.14 cd/m2) moving along a straight trajectory at a rate of 2 pixels by frame 

(8.45 dva/s). The initial position of each dot was uniformly randomized (excluding 

overlap with other dots) and its coordinates were updated per frame by a trigonometric 

calculation based on the individual dot's angular motion direction, re-entering the 

cluster from the opposite side if it reached a boundary. Each dot's motion direction was 

extracted from a circular Gaussian (von Mises) distribution that varied for each stimulus 

presentation: its mean could take any random integer value from 0o to 359o and its 

standard deviation was pseudorandomized among 6 possible values, namely 5o, 10o, 

20o, 30o, 40o and 60o. This parameter (henceforth StD) is the dimension of interest in 

this experiment.  

 

 

2.1.2. Procedure 

 

The experimental session comprised a practice block with 72 trials and eight 

experimental blocks with 60 trials each. The practice had a double purpose: (i) 

familiarizing participants with the scoring process and the scale used in the experiment, 

and (ii) training maintenance of centred gaze fixation. A broader range of StD values was 

presented during the practice block compared to the experimental blocks (1o, 10o, 20o, 

36o, 60o and 90o). In both practice and experimental blocks, participants had to score 

the ‘randomness’ (variance) of the motion of the RDK using a visual analogue scale (see 

Figure 1), by adjusting the position of a sliding bar with the mouse. During the practice 

block, feedback was provided by showing the correct response (score corresponding to 

the veridical variance) on an additional scale which appeared below the one employed 

by the participant, after they had produced a response. For simplicity, the scale was a 

linear translation of the StD numeric values ranging from 0o (left end) to 90o (right end 

of the scale). Within this block, the first 36 trials were ‘foveal’ (the stimulus was 

presented at 0 dva eccentricity) and the remaining 36 were ‘peripheral’ (20 dva).  
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Regarding the eight experimental blocks, they employed the narrower set of StD values 

detailed in the previous ‘Stimuli’ section (5o, 10o, 20o, 30o, 40o and 60o) and did not have 

feedback. Half of the eight blocks were ‘foveal’ (stimulus presentation at 0 dva 

eccentricity for all trials) and half ‘peripheral’, with presentation at 20 dva along the 

horizontal axis, equally frequent in the right and left hemifields. The sequence of foveal 

and peripheral blocks was pseudorandomized for each participant.  

 

Eye tracking was performed during the entire experimental session. Calibration of the 

eye-tracking system was performed at the beginning of each block (practice and 

experimental) using a standard 5-point grid, allowing for a maximal average error of 0.5 

dva.  

 

At the beginning of each trial a red fixation cross appeared on the centre of the screen, 

spanning 1.1 dva (horizontally and vertically). Participants were instructed to maintain 

their gaze on the fixation cross. The RDK stimulus appeared after 1000 ms, and both the 

stimulus and the fixation cross disappeared simultaneously at 1500 ms from trial onset. 

Immediately after, the response scale and sliding bar were displayed on the screen. The 

initial position of the bar was randomized for each trial along the whole length of the 

scale to exclude the possibility that participants simply repeated the same (response) 

action on each trial. If the participant failed to respond within 5 seconds, the next trial 

started automatically. The inter-trial interval was randomized between 250-1000ms.  

 

On each trial, participants were allowed to correct their gaze position during the first 

700 ms, if they noticed that their gaze had deviated from the central fixation cross. 

However, if a deviation (of more than 5 dva) occurred between 700 - 1000 ms, the trial 

was aborted and restarted. About a third of participants (9/30) were tested with a 

slightly different procedure, in which a trial abortion led directly to the start of the next 

trial (after the inter-trial interval). This procedure led to the exclusion of more trials from 

analysis, since poorly fixated trials were not restarted. Importantly, in both cases trials 
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retained for analysis were those in which fixation was maintained during stimulus 

presentation (1000 ms – 1500 ms), and no trial was aborted or restarted after stimulus 

onset at 1000 ms. 

 

 

2.1.3. Participants 

 

Participants were recruited through online advertisement and among members of the 

laboratory. All were over 18 years old and reported normal or corrected-to-normal 

vision. Every participant signed an informed consent form before taking part and was 

either awarded 10 course credits or paid £10 for their participation. The study was 

granted ethical approval by the Research Ethics Committee of the University of Sussex. 

 

 

2.1.4. Apparatus 

 

Experiments were programmed in MATLAB 2012b (MathWorks Inc., Natick, US-MA) 

with Psychtoolbox 3.0.10 and displayed on a LaCie Electron 22BLUE II 22’’ with screen 

resolution of 1024 x 768 pixels and refresh rate of 60 Hz. Eye tracking was performed 

with Eyelink 1000 Plus (SR Research, Mississauga, Ontario, Canada) at a sampling rate of 

1000 Hz, using a level desktop camera mount. Head position was stabilized at 43 cm 

from the screen with a chin and forehead rest.  

 

 

2.1.5. Statistical analysis 

 

Statistical analyses (detailed in the Results section) were performed on Matlab 2016a 

(MathWorks Inc., Natick, US-MA), R 3.4.2 (The R Foundation for Statistical Computing, 

http://www.R-project.org) and JASP (JASP Team (2017). JASP (Version 0.8.3.1, Mac OS 

X – El Capitan (10.11)). 



 

 

 

 

 

74 

2.2. RESULTS 

 

Thirty participants (25 female, mean age 19.0 y/o, standard deviation 1.35) participated 

in this experiment. Except for two members of the laboratory, the rest were first-year 

Psychology students who volunteered for course credits. 

 

To ensure the validity of foveal and peripheral conditions, trials without centred gaze 

fixation during stimulus presentation were removed from the analysis: a trial was 

deemed valid if the participant maintained fixation within 5 dva from the centre of the 

screen for over 80% of the stimulus presentation period (1000-1500 ms from trial onset). 

Invalid trials were removed, as well as all data regarding trial history that involved at 

least one of these trials: for instance, if trial n was valid but trial n-3 was not, trial n was 

not included in analyses regarding serial dependence associated to position n-3 or 

further backwards. A total of 12480 trials entered the analysis. 
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Figure 2. Experiment 1: Results. 2a. Distribution of responses by StDn and eccentricity. The height of the bars 

represents the mean and the error bars the between-subject standard error.  2b. Normalized relative error in current 

response (zREn) as a function of the StD presented in the previous trial (StDn-1). The relative error, defined as REn=(Rn-

StDn)/StDn, has been normalized by the distribution of errors provided by each subject for the current StDn; thus, a 

positive zREn means a larger report in that trial than the participant’s average for that stimulus level, and conversely 

a negative zREn indicates a lower-than-average score i.e., sign is not necessarily related to comparison with veridical 

StDn, if the participant exhibits a systematic bias for that StDn. Consequently, plotting zREn reports by StDn-1 allows 

examination of any possible bias in relation to previous trial StDn-1, beyond any unrelated source of bias. The error 
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bars represent the between-subject standard error. The ascending slope of the plots indicates a positive bias 

associated with StDn-1, for both foveal and peripheral presentations: relative overestimation occurs for larger StDn-1. 

2c. Normalized response error in the current trial (zREn), plotted as a function of the difference between previous and 

current StD: DStDn-1,n=StDn-1-StDn. Visual inspection of the data shows that, when the previous RDK had a larger 

variance, judgments about the current variance were overestimated, and vice versa. In other words, the sign of zREn 

follows that of DStDn-1,n, again confirming a positive bias driven by the previous trial. However, such effect is likely 

non-linear, as the peak amplitude of the bias occurs at intermediate values of DStDn-1,n, both positive and negative. 

Conversely, the bias is dampened (close to zero) when previous and current StD are highly dissimilar. In order to 

better characterize the shape of the serial dependence effect, the graph shows the best-fitting linear and derivative 

of Gaussian (DoG) functions for the data.  In terms of R2, the DoG equation shows a better fit, as reported in the main 

text: this suggests that serial dependence is non-linearly tuned by StD (dis)similarity. Nevertheless, these results must 

be taken with caution due to confounding by floor and ceiling effects in responses to extreme StD values (see main 

text for details). 2d. Response bias associated with StD presented in recent history. Each data point represents the 

fixed-effects coefficient estimate (B) in a Bayesian linear mixed-effects model (LMM) for the association between the 

StD presented in trials n-1 to n-10 (StDn-t, t=1…10) and the normalized response error in the current trial. The value 

of the B coefficient represents the linear slope between the past StD at certain trial position (StDn-t) and the 

normalized response error provided in the current trial: i.e., the variation (in z-scores) observed on the current 

response (regardless of the presented StD), when StDn-t was increased by 1o. A positive B represents an attractive bias 

(ascending slope), and a negative B a repulsive bias (descending slope). The error bars depict the 95% credible 

intervals for the value of the B coefficient. The inset graph (2e) presents the Bayesian LMM coefficients and 95% 

credible intervals for the association between StDn-t and current zREn, up to trial n-30, foveal and peripheral data 

pooled. 

 

 

2.2.1. Overview of responses 

 

Figure 2a shows the distribution of responses (Rn) for each StD value and visual 

eccentricity.  Showing that participants were able to perceive the different levels of 

variance presented in the experiment, reports were positively correlated and 

monotonically increased with stimulus StD for both foveal and peripheral presentations.  

 

To examine the general pattern of variance judgments, we conducted a repeated-

measures ANOVA on the influence of two within-subject factors, StD in the current trial 

(StDn) and eccentricity, on participant’s responses. Both main effects and their 

interaction were significant (sphericity correction was applied by the method of 
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Greenhouse-Geisser). For StDn, the main effect yielded F(1.825,45.621)=473.80, 

p<0.001, η2
p=0.950, in relation with higher reports for larger stimulus StD. For 

eccentricity the main effect was F(1,25)=33.32, p<0.001, η2
p=0.571: peripheral 

presentation was associated with lower variance reports, with a mean difference of 

6.798 (fovea - periphery), t(25)=8.237, p<0.001, Cohen’s d=1.615. The interaction effect 

StDn*eccentricity was also significant, F(2.715, 67.882)=20.06, p<0.001, η2
p=0.445, 

indicating that the difference between foveal and peripheral responses increased for 

large StDn values, as shown in figure 2a. These results were confirmed in a Bayesian RM 

ANOVA with the same variables: the full model (both main effects and interaction) was 

the most explanatory according to the Bayes factor, outperforming the second best 

(only the two main effects) by a factor of BFfull/main effects=1.075*106. These findings (lower 

responses in periphery than in fovea, especially for large StDn) seem to relate to a 

greater regression to the mean exhibited in responses about peripheral stimuli (likely 

due to worse discrimination between stimulus levels), combined with the fact that the 

range of the response scale allows for larger errors by overestimation than 

underestimation. 
 

To further characterize perception of variance throughout the different presented StD 

levels and confirm the apparently worse performance in the periphery, we examined 

the dispersion of the responses per StD (𝜎"), defined as the standard deviation of the 

distribution of responses per stimulus level. We conducted a repeated-measures 

ANOVA on the influence of StDn level and eccentricity on response dispersion. The main 

effect for StDn yielded a F(2.994,74.840)=58.426, p<0.001, η2
p=0.700, in relation with 

greater response dispersion for large StD levels, as is common in magnitude estimation 

tasks: 𝜎" was lowest at 9.87 for StD=5 and steadily increased with StD value until it 

peaked at 21.03 for StD=30, remained almost equal (𝜎"= 20.51) for StD=40 and 

decreased moderately for StD=60 (𝜎"= 15.98), probably due to a ceiling effect. As for 

the main effect of eccentricity on response dispersion, it was F(1,25)=4.165, p=0.052, 

η2
p=0.143, suggesting a trend towards greater response dispersion in peripheral 

presentations: mean difference -0.658 (fovea – periphery), t(25)=-1.738, p=0.086, 
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Cohen’s d=-0.339. Last, the effect of the interaction term StDn* eccentricity was F(3.530, 

88.244)=4.757, p=0.002, η2
p=0.160, due to the larger response dispersion in periphery 

occurring mainly for large StD values. In a Bayesian RM ANOVA with the same variables 

as in the frequentist counterpart, the best model was the full model (StDn, eccentricity 

and interaction), which outperformed the second best (with only StDn) by a factor of 

BFfull/StDn=8.747. In summary, response dispersion increased with stimulus (StD) level 

and there was a (nearly significant) trend towards greater response dispersion for 

peripheral presentations, especially at large StD, suggesting a slightly worse 

performance at 20 dva eccentricity compared to 0 dva, in agreement with the previous 

finding of a greater regression to the mean in peripheral responses.  

 

 

2.2.2. Variance reports are subject to a positive bias driven by very recent trial history 

 

To characterize the existence of serial dependences in variance reports, we tracked 

whether the response errors provided by each participant for each StD level were 

different as a function of the StD level presented in the previous trial (serial dependence 

in relation to trial n-1), or in positions further backwards in trial history (trial n-t). Unless 

stated otherwise, the response variable in our analyses of serial dependence is the 

normalized response error relative to the current stimulus (zREn). Response errors 

(defined as REn=(Rn-StDn)/StDn) are normalized by the distribution of reports provided 

by each individual for the level of StD presented in the current trial. Thus, zREn sums to 

zero across all trials for a given participant and StDn level: a negative zREn indicates that 

the participant provided a below-average response in that trial compared to their 

responses for other physically identical stimuli, while a positive zREn indicates an above 

average response. Therefore, normalization ensures that the value of the response 

variable, zREn, is independent of the current StDn level and of each participant’s global 

scoring biases. 
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Figure 2b presents the average zREn as a function of the previous stimulus (StDn-1), 

plotted separately by eccentricity. Regardless of generally lower reports at larger 

eccentricity, a trend towards larger zREn for higher StDn-1 values is evident for all trials 

pooled as well as for both foveal and peripheral presentations, as shown by the 

ascending slope of the three plots (Fovea, Periphery, All). In other words, there was a 

relative overestimation of the current stimulus when the previous stimulus had a large 

StD, and a relative underestimation when the previous StD was small, compared to 

other trials in identical conditions of eccentricity. This indicates a positive (attractive, 

Bayesian-like) bias driven by trial n-1: current responses resemble the previous stimulus 

– serial dependence for visual variance.  

 

To verify this observation, we ran a repeated-measures ANOVA on the effect of StDn-1 

level (as within-subject factor) on current variance reports (zREn). The effect of StDn-1 

was statistically significant (F(3.231,93.697)=7.221,  p<0.001, η2
p=0.199, Greenhouse-

Geisser correction applied). The Bayes factor for the inclusion of StDn-1 compared to the 

null model (both of them included participant as grouping variable) was 

BFinclusion=56187.91, indicating extreme (Wagenmakers et al., 2017) evidence for a 

superior explanatory ability of the model that included this term.  

 

 

Serial dependence in variance may be non-linearly tuned by stimulus (dis)similarity 

 

Our analyses so far have shown that variance judgments are attracted to stimuli 

presented in the previous (n-1) trial, demonstrating the existence of serial dependence 

in variance as has been found for several visual dimensions. Other studies have observed 

that this attractive effect is non-linearly tuned by the difference between previous and 

current stimuli, so that the size of the bias is maximal when both are relatively similar, 

and is reduced or even disappears if the difference between magnitudes is very large 

(Cicchini et al., 2014; Cicchini et al., 2017; Fischer & Whitney, 2014; Fritsche et al., 2017). 
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We enquired whether such dependency of stimulus (dis)similarity was also observed in 

our experiment by analysing normalized response errors in the current trial (zREn) as a 

function of the difference between previous and current stimuli: DStDn-1,n = StDn-1 – StDn. 

A Bayesian RM ANOVA on the effect of DStDn-1,n (as within-participant factor) on zREn 

showed extreme evidence compared to the null model (BF10=333.055), unsurprising 

since we had already found an effect of StDn-1, and zREn reports are normalized to be 

independent of StDn. This result by itself does not tell us anything about the shape of 

the relationship between both magnitudes. Figure 2c graphically depicts this shape, 

presenting the average zREn (and between-participant standard error) as a function of 

DStDn-1,n. A positive DStDn-1,n indicates that the previous trial RDK had a larger StD than 

the current one, and vice versa. Therefore, an attractive effect driven by the previous 

stimulus would produce zREn reports of the same sign as DStDn-1,n: i.e. relative 

overestimation of current variance when the previous variance was larger, and vice 

versa. However, if this attraction is non-linear, the effect may peak at non-extreme 

values of DStDn-1,n and return to baseline for larger differences. A visual inspection of our 

results certainly suggests this pattern.  

 

Previous studies have successfully modelled the non-linear relationship between 

stimulus dissimilarity and serial dependence by using a derivative of Gaussian (DoG) 

function (Fischer & Whitney, 2014; Fritsche et al., 2017). We contrasted the 

performance of a linear function, 

        (1)	

𝑦 = 𝑎𝑥 + 𝑏 

  

with a derivative of Gaussian function,  

        (2) 

𝑦 =
𝑎𝑥

√2𝜋𝜎-
𝑒
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by fitting both to our data. In both cases, x is the difference between previous and 

current StD (DStDn-1,n), and y is the current normalized response error (zREn). The 

coefficients to be fitted in the linear equation are the slope and intercept, a and b; in 

the DoG equation, a and s are the amplitude and the width (standard deviation) of the 

function, respectively. Fitting was achieved by non-linear least-squares method. 

 

Figure 2c shows the best-fitting linear (dark green) and DoG functions (light green), 

along with the 95% prediction intervals for the value of the function, computed non-

simultaneously at each DStDn-1,n. Concerning the linear function, its slope was a=0.0014, 

with 95% confidence interval  (0.0007, 0.0021), indicating a statistically significant 

attractive effect, represented by a linear increase of 0.0014 z-scores for each 1o of 

stimulus difference between previous and current StD. As for the DoG function, its 

coefficient estimates and 95% confidence intervals were a=141.5 (75.19, 207.8), 

s=17.61 (13.43, 21.8). In other words, according to the derivative of Gaussian fit the 

maximum effect is exerted when the stimulus difference is 17.61o, entailing a peak 

attraction of 0.1104 (z-scores) -the direction of the bias is given by the positive sign of 

a. Comparing the adjusted R2 of both models, the DoG model showed a better fit: 

R2
adjusted=0.0054, versus R2

adjusted=0.0014 for the linear equation. Thus, our results show 

a non-linear dependence of stimulus dissimilarity, similar to that observed in previous 

studies of serial dependence in other visual dimensions. 

 

However, this result must be taken with caution, as reports in our task are subject to 

noticeable floor and ceiling effects. Since the most extreme values of DStDn-1,n can only 

occur if the current StDn is either very low or very high, the fact that such extreme values 

are associated to almost no response bias (as seen in Figure 2c) may be simply due to 

artificial constraints by the limits of the response scale. In fact, visual inspection of the 

data in Figure 2c shows that, whenever StDn took the lowest value 5o (corresponding to 

DStDn-1,n values of 5o, 15o, 25o, 35o and 55o), the response bias was close to zero. Thus, 

it is unclear to what extent the observed non-linearity may be explained simply by 

constraints in the response scale. 
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In conclusion, it is likely that serial dependence in variance is non-linearly tuned by 

stimulus dissimilarity, as observed for other visual dimensions; however, this result must 

be taken with caution. Henceforth we will continue to base our serial dependence 

analyses on the effect of StDn-1, rather than DStDn-1,n, as we consider the first approach 

more parsimonious given the particularities of our task. 

 

 

Serial dependence in variance does not depend on other stimulus properties (visual 

eccentricity, spatial location or ensemble mean) 

 

Having established the existence of a positive serial dependence exerted by the previous 

trial, we sought to ascertain which properties of the stimulus presentation might 

modulate such bias. Previous studies on serial dependence have observed that it 

appears in the fovea as well as the periphery, and its strength is tuned by spatiotemporal 

proximity (Fischer & Whitney, 2014). Moreover, if the function of (positive) serial 

dependence is to promote perceptual continuity (Fischer & Whitney, 2014), it seems 

reasonable to expect that similarity of other attributes of consecutive stimuli would lead 

to a stronger influence of the studied feature-dimension, especially for two attributes 

as closely related as ensemble mean and variance. 

 

To test the influence of these properties, we conducted a repeated-measures ANOVA 

on zREn (as dependent variable) with two within-subject factors: StDn-1 and each of the 

features of interest, separately: eccentricity, retinal location and similarity of means.  

 

For eccentricity, both main effects were statistically significant (Feccentricity(1,25)=31.004, 

p<0.001, η2
p eccentricity =0.554; FStDn-1(2.662, 66.556)=7.029, p<0.001, η2

p StDn-1 =0.219; 

sphericity, correction by Greenhouse-Geisser), while the interaction was not (F(3.789, 

94.722)=1.710, p=0.157, η2
p =0.064). This result, as indicated by the roughly parallel 

plots for fovea and periphery in figure 2b, suggests that while eccentricity influences the 
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absolute value of the current StD response, it does not modulate the serial dependence 

exerted by StDn-1. To formally test this hypothesis, we turned to Bayesian repeated-

measures ANOVA. Table 1a summarizes the comparison between all competing models. 

The largest Bayes factor corresponds to the model including both main effects but not 

the interaction (BF10=3.432*1029), which outperforms the model that also includes the 

interaction term StDn-1*eccentricity by a factor of BFmain effects/full =17.645 – strong 

(Wagenmakers et al., 2017) evidence against its inclusion and supporting the conclusion 

that while there is an overall difference in reports, there is no difference in serial 

dependence across eccentricity.  

 

Regarding the influence of spatial location, we analysed only peripheral presentation 

blocks, classifying trials according to whether the previous stimulus had been presented 

on the same or the opposite hemifield as the current one: i.e. same presentation 

location versus a separation of 40 dva between consecutive presentations. Results for 

the model comparison given by a Bayesian repeated-measures ANOVA are presented in 

Table 1b: the best model in terms of evidence includes only StDn-1 (BF10=2.073), while 

the worst model also includes the hemifield and the interaction term StDn-1* hemifield 

(BF10=0.120). This indicates moderate evidence against the full model (including 

interaction) compared to the null, and strong evidence against it when compared to the 

most explanatory model, i.e. the one with StDn-1 only (BFfull/StDn-1=0.058). These results 

support the hypothesis of serial dependence being unaffected by the spatial location of 

consecutive stimuli.  

 

Last, we examined the influence of mean RDK direction on serial dependence of 

variance; specifically, whether the magnitude of the serial dependence effect (in 

variance) depended on the successive presentations containing a similar mean 

direction. With this aim, we binned the absolute difference between the mean RDK 

directions in the previous and current trial into 5 categories: ≤36o, 37o-72o, 73o-108o, 

109o-144o, 145o-180o. As before, we conducted a Bayesian repeated-measures ANOVA 

with two within-subject factors (StDn-1 and mean difference). As shown in Table 1c, the 
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best model included only StDn-1 (BF10= 3.210*105), whereas the model including both 

main effects and its interaction was the second worst after the one with mean difference 

only, with a BF10=0.281. The Bayes factor for inclusion of the interaction term indicated 

extreme evidence against it (BFinclusion=3.491*10-6); this was also the case if the 

comparison was made between the full model and the model lacking only the 

interaction (BFmain effects/full = 1789.55). This lack of association of mean similarity and 

serial dependence in variance was further confirmed in a supplementary experiment 

(named Experiment 1B and detailed in section 3.3 of the current chapter -see below) 

that used a limited range of mean trajectories, allowing for only four between-trial 

differences (0o, 35o, 55o and 90o). 

 

In summary, serial dependence in variance reports is not modulated by low-level 

properties of the stimulus including visual eccentricity or spatial location, or associated 

features such as mean, suggesting that visual variance (operationalized as variance of 

motion direction) is processed as a feature dimension independent from these 

properties, at least at the level of perceptual decision-making that gives rise to serial 

dependence. 

 

 

TABLE 1. Serial dependence and stimulus properties - Model comparison  

 

1a. Eccentricity  

Models  P(M)  P(M|data)  BF M  BF 10  error %  

Null model (incl. subject)   0.200   2.747e -30   1.099e -29   1.000     

StDn-1   0.200   1.229e -29   4.918e -29   4.476   0.626   

Eccentricity   0.200   0.004   0.015   1.385e +27   1.303   

StDn-1 + Eccentricity  0.200   0.943   65.900   3.432e +29   3.951   

StDn-1 + Eccentricity + StDn-1  ✻  Eccentricity    0.200   0.053   0.226   1.945e +28   2.392   
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1b. Spatial location (hemifield) 

Models  P(M)  P(M|data)  BF M  BF 10  error %  

Null model (incl. subject)   0.200   0.232   1.208   1.000     

StDn-1  0.200   0.481   3.702   2.073   0.464   

Hemifield  0.200   0.079   0.343   0.340   1.690   

StDn-1 + Hemifield  0.200   0.181   0.883   0.780   3.545   

StDn-1 + Hemifield + StDn-1  ✻  Hemifield   0.200   0.028   0.114   0.120   1.387   

 

 

1c. Mean difference (n-1, n) 

Models  P(M)  P(M|data)  BF M  BF 10  error %  

Null model (incl. subject)   0.200   3.111e -6   1.244e -5  1.000    

StDn-1  0.200   0.998  2550.135   320978.693  0.570  

Mean difference  0.200   4.784e -9  1.914e -8  0.002  0.726   

StDn-1 + Mean difference  0.200   0.002  0.006  502.187  0.815  

StDn-1 + Mean difference + StDn-1  ✻  Mean 

difference  
 0.200   8.729e -7  3.491e -6  0.281    1.091   

 

Note.  All models include subject.  

 

Table 1.  Experiment 1. Serial dependence (associated with trial n-1) and stimulus properties. Each table presents the 

results of a Bayesian repeated-measures ANOVA on zREn, with two within-subject factors: StDn-1 and one property 

of interest:  eccentricity, spatial location (peripheral blocks only: same or opposite hemifield than previous stimulus) 

and difference in the mean trajectories of the RDKs presented in consecutive trials. P(M): prior probability of each 

model, assumed to be equal for all. P(M/data): posterior probability of the model (given the data). BFM: Bayes factor 

for the model. BF10: Bayes factor for the alternative hypothesis relative to a null model (expressed by each model). 

 

 

Positive serial dependence in variance extends up to the latest 2 trials 

 

Investigations of serial dependence have typically focussed on the influence of very 

recent trial history, examining only the effect of the immediately previous and 

penultimate trials on reports. We examined serial dependence through trial history by 
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modelling the fixed-effects size of serial dependence while allowing for between-subject 

variability, building ten varying intercept, varying slope Bayesian linear mixed-effects 

models (LMM) with zREn as dependent variable, and StDn-t (t=1…10, respectively) as 

independent predictor, with random-effects grouped by participant. We chose a 

uniform prior distribution over the real numbers for the fixed-effects coefficient and for 

the standard deviation of the by-subject varying intercepts and slopes, and a LKJ prior 

with shape parameter η= 2.0 for the random-effect correlation matrices. Unless stated 

otherwise, analogous priors were established for other Bayesian LMMs reported in this 

paper. Fixed-effects coefficient estimates were largely insensitive to prior selection, as 

can be seen in the example presented in the section 3.1 of the current chapter. 

 

We applied these models to foveal and peripheral blocks separately as well as the overall 

dataset. Figure 2d presents the fixed-effect coefficients and 95% credible intervals for 

the association between past StD (up to trial n-10) and current report for all trials, as 

well as per eccentricity.  The value of the LMM fixed-effects coefficient estimate for the 

effect of StDn-t on zREn represents the linear slope for the relationship between the StD 

presented in trial n-t and the normalized response error provided in the current trial: in 

other words, the variation (in z-scores) in zREn when StDn-t increases by 1o. Therefore, a 

positive B coefficient represents an attractive bias: a larger StD in a past trial drives a 

larger response in the present one, regardless of the current stimulus. Conversely, a 

negative B coefficient represents a repulsive bias. 

 

The fixed-effects B coefficient estimates for the effect of StDn-1 and StDn-2 on zREn are 

positive, indicating an attractive bias. For StDn-1 (all trials pooled), B=0.0034 (0.0017, 

0.0051) suggesting that, regardless of the value of StDn, participants’ judgments of visual 

variance increased by a magnitude of 0.0034 (z-score) per 1o increase in previous trial 

StD (StDn-1). The effect of StDn-2 is weaker but still present: B=0.0014, (0.0003, 0.0026). 

To make clear the size of these effects, we can consider absolute responses as outcome 

variable (adding the current StDn and the interaction with StDn-1 to the models). Here, 

the increase is of 0.0586 (0.0272, 0.0892) units per unit of StDn-1, or an attractive effect 
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of 5.9% towards the previous stimulus, whereas for StDn-2 the effect size is 0.0242 

(0.0006, 0.0483) (2.4%).  

 

Thus, variance judgments at one specific trial (n) are attracted a small but meaningful 

amount towards the variance presented in the previous trial (n-1) and to a lesser extent 

the trial before (n-2). Note that, since the initial position of the response bar is 

randomized for each trial, simple motor routines involved in response execution cannot 

explain this serial dependence.  

 

 

2.2.3. Variance reports are subject to a negative bias driven by less recent trial history 

 

Looking past the previous 2 trials, as shown in figure 2d, a reversal from positive (trial n-

1 and n-2) to negative B coefficient values is observed for less recent presentations, 

indicative of a negative (i.e. repulsive, anti-Bayesian) bias: current responses were less 

similar to the StD presented in those trials, in a manner akin to sensory adaptation after-

effects (Kohn, 2007; Payzan-LeNestour et al., 2016). This effect started at trial n-4 and 

peaked at trials n-7 to n-9 (StDn-8: B=-0.0021 (-0.0032, -0.0010)). Similar effect sizes and 

timescales are observed for foveal and peripheral presentations. 

 

In Figure 2e (inset in 2d) we present a further exploration of the evolution of the 

negative effect in relation to more remote positions in trial history, up to trial n-30. 

Evidence for the negative effect shows a slow decline after trial n-9 but persists to some 

extent until trial n-20, disappearing for more remote trial positions. 

 

To confirm that the observed serial effects were truly dependent on trial history, we 

conducted extensive control analyses exploring potential ‘serial dependencies’ in 

relation to random subsets of the data, future presentations (StDn+1) and to shuffled 

data – see below, section 3.2 of the current chapter, ‘Control Analyses’. These analyses 
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confirm that only in the true past trial history is there evidence for these serial 

dependencies, supporting that they are not simply due to statistical artifacts.  

 

 

 

 

3. EXPERIMENT 1: SUPPLEMENTARY ANALYSES 

 

3.1. BAYESIAN STATISTICS: FIXED-EFFECTS PRIOR AND PARAMETER ESTIMATION IN 

BAYESIAN LMM 

 

In all the Bayesian varying-intercepts, varying-slopes linear mixed-effects models (LMM) 

reported in the previous section (and elsewhere in this thesis) we employ the same set 

of priors: a uniform prior distribution over the real numbers for the fixed-effects 

coefficients and for the standard deviation of the by-subject varying intercepts and 

slopes, and a LKJ prior with shape parameter η= 2.0 for the random-effect correlation 

matrices. However, first we tested several priors in order to assess the robustness of 

parameter estimation regarding prior selection. This section presents a single example, 

regarding a Bayesian by-subject varying-intercepts, varying slopes LMM for zREn as 

dependent variable, with StDn-1 as independent. Figure 3 presents the value of the fixed-

effects B coefficient estimate for StDn-1 and its 95% credible intervals as a function of 

several manipulations on the width (main figure) or the mean (inset figure) of its prior. 

The priors for the standard-deviation of the by-subject varying intercepts and slopes and 

for the random-effect correlation matrices are kept constant in all cases, with the shapes 

specified above.  

 

As for the fixed-effects prior, considering the effect of its width, σprior, on parameter 

estimation for the fixed-effects BStDn-1 coefficient, we employed a flat prior over the real 

numbers and five different Gaussian priors with mean μprior=0 and σprior that took the 

following values: 1, 0.1, 0.05, 0.01, 0.001. In other words, we tested six priors centred 
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around zero (indicative of absence of effect), each one more narrow than the previous, 

starting with a uniform prior, which could be approximated with a Gaussian prior with 

the general shape N(0, σprior), where σprior is infinite. The corresponding parameter 

estimates, depicted in the larger graph, show that parameter estimation is highly robust 

to manipulations of the width of the prior, unless the latter is forced into a very narrow 

shape, in which case the parameter estimate is strongly biased toward the peak of the 

distribution (toward zero). 

 

Considering the effect of the mean of the prior (μprior) on parameter estimation, we 

tested three cases of the general shape N(μprior,1), with μprior taking the values -1,0,1. 

Shifting the prior mean (which in the case of Gaussian shape coincides with its peak) 

toward negative and positive, respectively, implies biasing the evidence in favour of (a 

priori) negative and positive serial dependence, respectively. However, as shown in the 

inset of figure 3, these shifts (of 1 unit toward negative or positive) had very little effect 

on parameter estimation with a prior width equal to the amount of shift: σprior=1. 
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Figure 3. Bayesian statistics. Influence of prior selection on fixed-effects parameter estimation in a Bayesian LMM. 

The main figure shows the effect of manipulations of the width of the prior, which has a general shape of N(0,  σprior 

), i.e. it’s centred around zero in all cases, with σprior ranging from ‘infinite’ (actually a flat prior over the real numbers) 

to 0.001. The distances in the horizontal axis are on a logarithmic scale (the value corresponding to the flat prior is at 

the distance for σprior=106. The plot shows that parameter estimation is highly robust to changes in the width of the 

prior up to σprior=0.1, becoming strongly attracted to the prior mean when narrower priors are established. The figure 

inset shows the effect of manipulations on the mean of the prior on parameter estimation. In all three cases, priors 

take the general shape of N(μprior, 1), with μprior taking the values -1/0/1 (i.e. a shift of 1 unit toward both directions 

around zero, equal in magnitude to the width of the prior,1). Results show that parameter estimation is virtually 

insensitive to such shifts in the prior mean.  

 

 

 

3.2. EXPERIMENT 1: CONTROL ANALYSES 

 

In order to demonstrate that the observed serial effects are truly dependent on trial 

history and not due to statistical artifacts in the experimental design, we performed 
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three control analyses on Experiment 1 data: future-related serial dependence, serial 

dependence with shuffled responses and serial dependence within random subsets of 

the data. 

 

 

3.2.1. Serial dependence in relation to future (n+1) trials 

 

Regarding the first approach, we assessed whether there was any association between 

the StD presented in trial n+1 and the current response zREn. Naturally, future 

presentations should not be able to affect current perceptual judgments, so any 

supposed 'effect' found for StDn+1 should signal the presence of statistical artifacts in our 

data. We analysed StDn+1-related 'serial dependence' by two methods: (i) by running a 

Bayesian repeated-measures (RM) ANOVA on the influence of StDn+1 level (as within-

subject factor) on zREn (equivalent to the analyses conducted in the main text for StDn-

1) and (ii) by running a Bayesian linear mixed-effects model (LMM) for zREn (dependent 

variable), with StDn+1 as independent variable (random-effects grouped by participant's 

ID). Additionally, we repeated both analyses in relation to StDn+2.  

 

Figure 4a and 4b present the average zREn as a function of StDn+1 and StDn+2, 

respectively, for all trials pooled, as well as for foveal and peripheral trials separately. 

The flat plots strongly suggest that there is no effect of StDn+1/ StDn+2 on zREn, as 

expected. In a Bayesian RM ANOVA for zREn with StDn+1 as within-subject factor, the best 

model according to the analysis was the null (containing ID only: it is the reference 

model with BF10 null=1.000). The Bayes factor for the model containing StDn+1 (and ID) 

was BF10 StDn+1=0.042; therefore, there was strong evidence against any explanatory 

effect of StDn+1 compared to the null model (BFnull/StDn+1=1/0.042=23.810). Likewise, for 

the RM ANOVA with StDn+2 as within-subject factor, evidence in favour of the null was 

very strong: BFnull/StDn+2=1/0.031=32.258. In other words, neither StDn+1 nor StDn+2 had 

any effect on zREn. Figure 4c plots zREn as a function of StDn-8, StDn-1 and StDn+1, showing 

the difference between the slopes of each plot: the descending and ascending plots for 



 

 

 

 

 

92 

StDn-8 and StDn-1 indicate a negative (repulsive) and a positive (attractive) effect, 

respectively, whereas the flat line for StDn+1 indicates no effect. 

 

Figure 4d presents the B coefficients and 95% credible intervals for the effect of StDn+1 

and StDn+2 on zREn, according to two Bayesian LMMs. They have virtually zero values: 

B=2*10-5 (-0.0009, 0.0010) for StDn+1 and B=-0.0001 (-0.0011, 0.0009) for StDn+2, again 

confirming the absence of 'serial dependence' by trials n+1 and n+2. 

 

 

3.2.2. Serial dependence in relation to shuffled datasets 

 

As another 'sanity check' for confirming that the observed effects are truly dependent 

on trial history, we generated shuffled datasets from each participant's data, by 

permuting the responses provided by each participant within each StD level. In other 

words, each simulated dataset had exactly the same trial sequence as the real one, and 

the responses given for each StD level were identical as the participant's responses, but 

they were randomly assigned to any trial for the same participant and StD level. This 

means that everything was kept the same as in the experimental data, except for the 

relation between each response zREn and its trial history. Therefore, if we failed to find 

serial dependence in these simulated datasets, we would need to conclude that the 

observations in our data cannot arise from anything else than the specific trial history 

leading to each zREn.  

 

We generated 10 shuffled datasets (each encompassing the shuffled data from all 30 

participants in Experiment 1) and ran 10 Bayesian LMMs for each of them, assessing the 

influence of StDn-t (t=1...10) on the shuffled zREn. The average and standard errors of the 

obtained coefficients are presented in figure 4d together with the coefficients found for 

the real data. It can be observed that there is no serial dependence for the shuffled 

datasets.  

 



 

 

 

 

 

93 

 

3.2.3. Serial dependence in random data subsets 

 

Finally, we examined serial dependencies in the real, past trial history, but within a 

random subsample of trials instead of the entire dataset. By this control analysis we 

aimed to rule out any artifact due to the trial sequence being a closed set with a fixed 

number of pseudorandomized, equally frequent StD presentations. Nevertheless, such 

an artifact would have appeared equally for future and past trials, an issue that has 

already been discarded; this third control serves as a mere confirmation. Note that, 

while for future trials and shuffled datasets we would expect true serial dependencies 

to disappear, in the current control the ‘sanity check’ requires the positive and negative 

effects to persist in the subset of trials.  

 

We obtained twenty subsets of the Experiment 1 dataset by randomly selecting half of 

the trials of each experimental block (30/60). Note that this subsampling pertains to the 

‘current trials’, for which the effect of their true trial history was analysed; in other 

words, the trial history of the selected items was not altered by the subsampling. 

 

Figure 4e summarizes the result of analysing serial dependences, up to trial n-10, in 

these twenty subsets. Each data point of the plot presents the average of the LMM B 

coefficient estimates of 20 Bayesian linear-mixed effects models for the influence of 

StDn-t (t=1 … 10) on the current normalized response error, zREn, with each of the 20 

models ran on a different subset. The error bars represent the standard error. The ten 

data points correspond to the ten points of trial history (n-t, with t=1 … 10) at which 

serial dependencies are analysed for all 20 subsets. Figure 4e show that both the positive 

and negative after-effects persist in similar magnitude and timescale than for the entire 

dataset.  
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Figure 4. Experiment 1: Control analyses. 4a-4b. Normalized relative error in current response (zREn) as a function 

of the StD presented in the following trial (StDn+1) (4a) and in trial n+2 (4b), plotted by eccentricity: all trials pooled, 

foveal and peripheral trials separately. In all cases, the approximately flat plots indicate that future trials StD have no 

effect on current response (as expected). The error bars represent the between-subject standard error. 4c. 

Normalized relative error in current response (zREn) as a function of the StD presented in trial n-8, n-1 and n+1. The 

slopes of past trial plots indicate a negative and positive bias in relation to n-8 and n-1, respectively, whereas the flat 

slope for n+1 once more indicates lack of effect. The error bars represent the between-subject standard error. 4d. 

Serial dependence in real and shuffled data. The purple plot presents the fixed-effects coefficient estimates and 95% 

credible intervals in 12 Bayesian linear mixed-effects models (LMM) with zREn as dependent variable and the StD 

presented in trials n+1, n+2, and n-1 ... n-10 as independent variable, respectively for each model. The red plot 

represents shuffled data: simulated datasets where everything has been kept the same as in the real experiment 

except for the specific association between each zREn and its corresponding trial history, which has been shuffled. 

We generated 20 shuffled datasets and ran the 12 LMMs on each of them. Thus, each datapoint represents the 

average of the fixed-effects coefficients obtained for the 20 datasets at each trial position, and the error bars indicate 

the standard error for the results obtained in the 20 datasets. The plots show that, unlike in the real data, removing 

the true association between each response and its trial history eliminates the observed serial dependence in relation 

to past trials, whereas there is no serial dependence in relation to future trials, neither in the real nor in the shuffled 

data. 4e. Serial dependence in twenty random subsamples of the real data. The plot summarizes the result of 20 

iterations consisting on randomly subsampling half of the trials of each participant’s data and running 10 Bayesian 

LMMs for the influence of StDn-t (t=1 … 10) on zREn, applied to the selected subset. Each datapoint represents the 
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average and standard error of 20 LMM B coefficient estimates for the effect of StDn-t on zREn, observed at different 

points in trial history (n-t, t=1 … 10), separately for the 20 random subsets. The pattern of serial dependencies is 

almost identical to the one observed for the entire dataset, further confirming that serial dependencies do not arise 

only as a result of statistics being performed on a closed set of StD presentations. 

 

 

 

3.3. EXPERIMENT 1B: ENSEMBLE MEAN AND SERIAL DEPENDENCE IN VARIANCE 

 

In Experiment 1, the similarity of the mean trajectories of consecutive RDKs did not 

affect the size or sign of the serial dependence in variance reports (see section 2.2.2 of 

the current chapter). This result is in line with other findings in our study that suggest a 

high-level source of such serial bias (such as independence of eccentricity and spatial 

location). However, it may seem counter-intuitive given the close relationship between 

both statistics in ensemble vision, as well as the purported function of serial 

dependence, namely promoting perceptual continuity: it seems reasonable to expect 

that the bias on a certain dimension should be stronger if consecutive stimuli share 

similar attributes.  

 

As in Experiment 1 mean trajectories could take any integer value from 0o to 359o, we 

decided to run an additional experiment (1B) with a limited number of possible means, 

to rule out that our failure to find any effect of mean similarity on serial dependence in 

variance was related to the employment of such wide range of trajectories. It could be 

the case that the attractive bias was much stronger when mean directions were almost 

identical but became mean-invariant over a certain amount of divergence. Alternatively, 

the great number of possible mean trajectories could render it futile to rely on trial-by-

trial mean estimation to compute variances.  

 

In addition to serial dependence, we wanted to assess the interaction between mean 

similarity and other aspects of the task, such as accuracy and precision in variance 
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estimations. 

 

 

3.3.1. Methods 

 

The methodology was similar to Experiment 1, although in Experiment 1B stimulus 

presentation was always foveal. Regarding the mean direction of the RDKs, instead of 

being randomized among all integers from 0o to 359o, only three values were allowed, 

presented with equal frequency: 10o, 45o and 100o (0o corresponds to the rightward 

horizontal axis and the increase proceeds clockwise). Thus, the difference between the 

mean trajectories of two trials could take four values: 0o, 35o, 55o and 90o. Each 

experimental session was formed of 240 trials. 

 

 

3.3.2. Results 

 

Twenty-one participants (11 female, mean age 20.5 y/o, standard deviation 2.13) took 

part in the study, three being members of the laboratory and the rest paid volunteers 

recruited through the SONA system and by online advertisement in the University 

website. The overall number of trials was 5040.  

 

 

Mean similarity does not affect performance on variance judgments 

 

The central variable in this experiment was the absolute inter-trial mean difference, 

specifically the difference between RDK mean in the current and previous (n-1) trials: 

Δμn,n-1 =|μn-1 - μn|, as we considered that, if the similarity of RDK means had any effect 

on sequential variance judgments, this effect would be particularly meaningful 

regarding consecutive RDK presentations. 
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To ascertain whether Δμn,n-1 affected performance on iterative variance estimation (in 

other words, whether mean similarity exerted priming effects on variance judgments), 

we analysed its influence in response time (RT), accuracy and precision. For both 

accuracy and precision we employed inverse measures: inaccuracy or error size and 

imprecision or response dispersion. Response (in)accuracy, or ‘error size’, was defined 

as the absolute value of the difference between response and veridical StD: En = | StDn  

- Rn |. Response (im)precision or dispersion was computed as the standard deviation of 

the responses provided by each participant for a certain combination of StDn and inter-

trial mean difference (σR). For all three measures (RT, error size and response 

dispersion), smaller values indicate better performance. A Bayesian repeated-measures 

ANOVA was conducted on the effect of current StD (StDn) and inter-trial mean difference 

(Δμn,n-1) –as within-subject factors- on each of these three measures of performance (RT, 

error size and dispersion). Thus, we conducted three RM ANOVAs with the same two 

within-subject factors, but with a different dependent variable for each. In each case, a 

model comparison was performed based on the results of the Bayesian RM ANOVA, 

assessing the evidence in favour of each possible combination of independent variables 

in terms of explaining the variability of the performance measure. The five competing 

models, in each case, were the null model, a model with StDn as the sole independent 

variable, a model with only Δμn,n-1, a model with both main effects (StDn and Δμn,n-1) and 

the full model with both main effects and the interaction term StDn * Δμn,n-1. If intertrial 

mean difference had any role in performance in the current trial (measured by RT, error 

size or response dispersion), a model containing Δμn,n-1 would be more explanatory than 

a model without this variable. 

 

In all three ANOVAs, the best model was the one containing StDn only, with a Bayes 

factor of BF10=2.352*106 (RT); 4.658*1067 (error size); 2.276*1020 (dispersion). This 

model outperformed the second best (the model with both main effects, StDn and Δμn,n-

1, in all three cases) by a factor of BFStDn/main effects=55.79 (RT); 3.402 (error size); 34.344 

(dispersion). The Bayes factor for inclusion of the variable of interest, Δμn,n-1, was 

BFinclusion=0.012 (RT); 0.294 (error size); 0.019 (dispersion), indicating moderate evidence 
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against any explanatory role of mean difference with regards of error size, and strong 

evidence against it with regards of RT and response dispersion. In summary, evidence 

indicated that inter-trial difference in RDK mean does not have any effect on 

performance in variance judgments, measured in terms of response time, accuracy or 

precision. 

 

 

Mean similarity does not affect serial dependence by previous StD on variance 

judgments 

 

In order to analyse the influence of mean similarity between consecutive trials on serial 

dependence in variance, first we conducted a Bayesian RM ANOVA on the effect of 

previous trial StD (StDn-1) and inter-trial mean difference (Δμn,n-1) –as within-subject 

factors- on current normalized response (zREn: normalized response error in variance 

judgments, as dependent variable). A model comparison was performed between all 

combinations of tested factors, based on the evidence given by the RM ANOVA: the five 

competing models were the null model, two models with a single main effect each (StDn-

1 only, Δμn,n-1 only), a model with both main effects (StDn-1 and Δμn,n-1) and the full model 

with both main effects and the interaction term (StDn-1, Δμn,n-1 and StDn-1 * Δμn,n-1). If 

mean similarity had any influence of serial dependence, it must be able to modulate the 

effect of StDn-1 on zREn: consequently, the model including the interaction term StDn-1 * 

Δμn,n-1 should be more explanatory than any other model.  

 

According to the results of the Bayesian RM ANOVA, the best model contained both 

main effects, StDn-1 and Δμn,n-1, but not the interaction; this model outperformed the full 

model (including the interaction term, key to our hypothesis) by a factor of BFmain 

effects/full=69.325, indicating strong evidence in favour of the main effects compared to 

the full model. Overall, the evidence for inclusion of the interaction term was 

BFinclusion=0.050, indicating strong evidence against this term. In conclusion, while inter-

trial mean difference apparently drives a systematic response bias on variance 
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judgments (as shown by the fact that the best model includes the main effect of Δμn,n-1 

), there is strong evidence in support of the absence of effect of inter-trial mean 

difference on StDn-1-related serial dependence in variance.  
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CHAPTER 2: EXPERIMENT 2: PROCESSING STAGES 

INVOLVED IN SERIAL DEPENDENCE IN VARIANCE 

REPORTS 
 

 

This chapter presents the results for a series of experiments (collectively 

referred to as Experiment 2) wherein different manipulations to the stimulus 

and task of Experiment 1 were applied in order to investigate which levels of 

perceptual processing give rise to the serial dependencies described in the 

previous chapter, in particular to the positive effect driven by very recent 

history. According to our results, positive serial dependence by a past recent 

trial was unaffected by whether or not a response had been performed in 

that trial (Experiment 2A), but disappeared entirely if participants had been 

required to produce a decision about a different feature-dimension of the 

stimulus (mean instead of variance), regardless of whether the required 

decision had been pre-cued (Experiments 2B-2C) or post-cued (Experiment 

2D). This showed that serial dependence in variance arose as a result of past, 

dimension-specific perceptual decisions, and not merely attentive 

perception. Results of these experiments as well as Experiment 2E (which 

applied modifications to different time intervals within the trial structure) 

suggested that serial dependence was subject to time and (dimension-

specific) capacity manipulations, similar to those observed in working 

memory operations. Experiments 2A and 2B have been published in the 

Journal of Vision as part of the article ‘Serial Dependence in the Perception 

of Visual Variance’ (Suárez-Pinilla et al., 2018b).  
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In the previous chapter we reported evidence for serial dependence in judgments about 

the variance of RDK stimuli. Specifically, we found two opposite types of bias at different 

timescales: an attractive, Bayesian-like bias related to the StD of the very recent (n-1 

and n-2) trials and a repulsive, negative bias which operates on a longer timescale.  

 

At what level of processing do these serial dependencies exert their influence? The non-

local nature and independence from inter-trial similarity in RDK direction mean suggest 

that attractive serial dependence may not be driven by low-level, sensory processes. 

However, the specific stages of variance processing at which it arises are yet to be 

determined (Cicchini et al., 2017; Fischer & Whitney, 2014; Fritsche et al., 2017; John-

Saaltink et al., 2016; A. Kiyonaga et al., 2017). To address this issue, we designed a new 

series of experiments (collectively referred to as Experiment 2) where we applied 

several manipulations to the task to disambiguate the contributions of low-level sensory 

processes, perceptual decisions and responses to serial dependence of variance 

judgements.  

 

Experiment 2A aimed to isolate the contribution of response to the serial dependence 

effect by introducing ‘no-response’ trials, to exclude the influence of physically making 

a response. However, in order to prevent attention detachment in no-response trials, 

such trials were not pre-cued, meaning that potential contribution of decision-making 

and response preparation during stimulus presentation could not be ruled out.  

 

For this reason, in Experiment 2B we employed a (pre-cued) task-switching design to 

disentangle the contribution of perception and decision processes. In this experiment, 

participants had to report either the mean or the variance of the RDK motion direction, 

in order to disambiguate the effect of past perceptual history (as all presented RDKs 

have a certain variance) and past decisions about variance (made only in certain trials). 

The required decision in each trial (mean or variance) was pre-cued to discourage 

participants from starting to decide about both feature-dimensions before the response 

phase of the trial, which might have rendered the experiment futile. However, pre-cuing 
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likely caused a difference in feature-based attention during stimulus presentation. Since 

serial dependence is enhanced by perceptual attention (Fischer & Whitney, 2014), a 

potential difference between conditions, suggestive of an effect of decision processes 

on serial dependence, may rather be explained by low-level, attention-modulated 

perceptual processes.  

 

To rule out a confounding effect of feature-based attention, we performed another task-

switching experiment wherein the required decision was post-cued (after stimulus 

offset). In this scenario, any difference in serial dependence in function of the decision 

required in trial history must be of post-perceptual origin. In order to ameliorate the 

problem of participants preparing both decisions at the same time during stimulus 

presentation, we shortened the duration of the RDK to 250 ms (it was 500 ms in previous 

experiments). Consequently, for a strict comparison of the pre-cued and post-cued 

paradigms, we repeated the pre-cued design with shorter RDKs (250 ms); this design is 

referred to as Experiment 2C. The post-cued task-switching (with 250-ms RDK) is 

reported as Experiment 2D.  

 

As detailed in the corresponding sections below, results from Experiments 2A-2D 

suggest that (positive) serial dependence in variance judgments is driven by dimension-

specific decision-making, rather than by response, low-level sensory processes or 

perceptual attention. We therefore enquired how decisional representations may be 

stored and implemented to affect future judgments. If the process involved some kind 

of ‘memory’ (such as, for example, working memory representations implemented for 

decision-making (Bliss et al., 2017; A. Kiyonaga et al., 2017)), we may observe an effect 

of time and capacity limitations on serial dependence. We therefore devised a final 

experiment (Experiment 2E), where we combined the task-switching design of 

Experiments 2B-2D with manipulation of different time intervals at several points of the 

trial structure. 
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1. EXPERIMENTS 2A-2B: EFFECTS OF RESPONSE AND DECISION ON 

SERIAL DEPENDENCE 

 

1.1. METHODS 

 

 

  
 

Figure 5. Experiments 2A-2B: Methods. Each trial presented an RDK of a certain mean and variance (standard 

deviation, StD) in the motion trajectories of its component dots. In the example, trial n-1 and n have low and high StD 

values, respectively. The stimulus was presented for 500 ms and always in the fovea (0 dva). Both experiments 

interleaved 2/3 of trials in which variance reports were required, and 1/3 in which either no response (2A) or mean 

trajectory estimation (2B) was required. In 2B the trial type was pre-cued, so that the word DIR and RAN at the 

beginning of each trial indicated whether a mean or variance judgment was required for that trial. Abbreviations: StD 

– standard deviation (of the RDK motion directions), RT: response time, ms: milliseconds.  

 

 

Figure 5 presents an overview of the experimental structure of Experiments 2A and 2B. 

The methods of these experiments were similar to those of Experiment 1 with the 

following exceptions: 
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1.1.1. Stimuli 

 

All stimuli were presented on the centre of the screen (where a fixation cross was 

displayed) and eye-tracking was not performed, as visual eccentricity was not under 

examination.  

 

  

1.1.2. Procedure 

 

Experiment 2A had a practice block with 72 trials and ten experimental blocks with 60 

trials each; same for 2B except that the practice block was longer (90 trials), due to the 

additional demands of its task-switching design (see below). In Experiment 2B 6 

participants (out of 15) performed a session half as long (5 blocks), due to different 

availability of diverse participants. For both experiments, in each block, 2/3 of the trials 

required ‘randomness’ scores as described for Experiment 1. In Experiment 2A, the 

remaining 1/3 were no-response trials: after stimulus presentation, instead of the 

response bar only a blank screen appeared for a randomized interval between 1000-

3000 ms, after which the next trial started. Participants were told in advance that they 

should expect a certain number of no-response trials, but they did not know the 

proportion and these trials were not pre-cued in any way. In Experiment 2B, 1/3 of trials 

required participants to report the ‘mean’ direction of the motion of the RDK, by 

adjusting a rotating arrow with the mouse (see Figure 5). The required task was pre-

cued at the beginning of the trial: one three-letter word, either ‘RAN’ (‘randomness’ 

report required) or ‘DIR’ (mean direction report required) was displayed for one second 

before the appearance of the fixation cross. The rest of the trial structure was the same 

as in Experiment 1 (only the response scale differed in RAN and DIR-trials).  
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1.2. RESULTS 

 

 

 

 
 

Figure 6. Experiments 2A-2B: Results. 6a - 6b. Normalized relative error in current response (zREn) as a function of 

the StD presented in the previous trial (StDn-1), plotted separately by trial n-1 type: response versus no-response in 

6a (experiment 2A), RAN versus DIR in 6b (experiment 2B). The error bars represent the between-subject standard 

error. Both response and no-response trials are associated with a positive bias by trial n-1 (as suggested by the 

ascending plot lines in 6a), whereas in figure 6b, only RAN trials elicit such positive serial dependence. 6c – 6d. Fixed-

effects coefficient estimates in 20 Bayesian LMMs with StDn-t (t=1…10) as predictor of current response (zREn), 

modelled separately by trial n-t type: in 6c, response versus no-response trials (experiment 2A); in 6d, RAN versus DIR 

trials (experiment 2B). Since the dependent variable is the current variance (‘randomness’) judgment, trial n is always 

a response (6c) or a RAN (6d) trial. The error bars represent the 95% credible intervals for the true value of the 

coefficient. 

 



 

 

 

 

 

106 

 

1.2.1. Experiment 2A: effect of response execution on serial dependence in variance 

reports 

 

Fifteen Psychology students (13 female, mean age 20.4 y/o, standard deviation 5.3) 

volunteered in exchange for course credits, under the conditions described previously. 

The total number of trials collected across all participants was 9000, out of which 3000 

were no-response trials.  

 

 

Serial dependence of previous StD is not affected by response processes 

 

Figure 6a shows the distribution of normalized variance reports (zREn) as a function of 

the previous trial StD (StDn-1) and type, i.e. whether n-1 had been a response or a no-

response trial. The ascending and roughly parallel plots for each trial (n-1) type suggest 

that serial dependence in relation to StDn-1 was similar in magnitude and sign (i.e. 

attractive effect) regardless of whether trial n-1 was a response or a no-response trial. 

To formally test this observation, we conducted a Bayesian repeated-measures ANOVA 

on the effect of StDn-1 and trial n-1 type (as within-subject factors) on zREn. A comparison 

of all possible models based on the results of this analysis is shown in Table 2a. The best 

model includes only StDn-1 (BF10=2.386*106). There was strong evidence against the 

inclusion of the interaction term StDn-1*trial n-1 type: BFinclusion=0.051. In a direct 

comparison between the main-effects model and the full model the ratio was given by 

BFmain effects/full=10.75. This lack of interaction confirmed that StDn-1 effect on current 

report was independent of response execution. 

 

Figure 6c shows the fixed-effects coefficient estimates and 95% credible intervals for 20 

Bayesian LMMs for zREn, with StDn-t (t=1…10) as putative predictor, split by trial n-t type 

and modelled separately. A similar pattern in terms of effect size and direction can be 

seen regardless of whether previous trials required response or not: an attractive bias 
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in relation to the latest two trials (weaker for n-2), a roughly zero effect of trial n-3 and 

a reversal toward a negative effect peaking around trials n-5 to n-9, with a similar 

magnitude and timescale than for Experiment 1. In conclusion, our results indicate that 

serial dependence does not arise from past responses.  

 

 

1.2.2. Experiment 2B: effect of decision on serial dependence in variance reports 

 

Experiment 2A demonstrated that serial dependence in visual variance is not due to 

response execution; however, as trials were not pre-cued as to whether a response 

would be required, these results do not disambiguate between perception and decision-

making (response preparation). Therefore, in Experiment 2B we deployed a pre-cued 

task-switching design in which participants needed to prepare and respond to two 

different perceptual tasks in different trials: reporting the variance (RAN trials) or the 

mean (DIR trials) of the motion of the RDK. 

 

Fifteen first-year Psychology students (13 female, mean age 21.4 y/o, standard deviation 

8.8) participated in this experiment in exchange for course credits, under the conditions 

described above. In total they performed 7200 trials, out of which 2400 were DIR-trials 

(alternative task). 

 

 

Serial dependence is related to dimension-specific decision-making 

 

We analysed the data in similar manner to Experiment 2A, ascertaining the influence of 

trial type in the observed serial dependence on variance judgments. Figure 6b presents 

the distribution of variance reports (zREn) as a function of StDn-1 and trial n-1 type -i.e. 

whether it required a decision about variance (RAN) or mean (DIR). Only when 

successive decisions were both regarding variance do we see an ascending slope in 
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relation to increasing StDn-1, suggesting that the attractive bias associated with StDn-1 

was only exerted if a decision on that dimension had been made.   

 

Table 2b presents a Bayesian repeated-measures ANOVA with StDn-1 and trial n-1 type 

(RAN/DIR) as within-subject factors. The most explanatory was the full model including 

both main effects and their interaction (BF10=48.459), although the evidence in its 

favour compared to the model with only the main effects was anecdotal (BFfull/main effects 

=2.026). However, evidence in favour of the interaction term was larger when taking in 

consideration all possible models: BFinclusion=5.371 –moderate evidence for inclusion.  

Thus, results point to serial dependence by StDn-1 being dependent on which dimension 

participants had to judge in the previous trial. 

 

As in previous experiments, we also examined serial dependence within a broader span 

of trial history. Figure 6d presents the fixed-effects coefficient estimates and 95% 

credible intervals for the association between StDn-t (t=1…10) and zREn, after splitting 

the dataset according to the trial type at each position: thus, the influence of RAN and 

DIR trials is modelled separately by 20 Bayesian LMMs. As expected from the previous 

analysis, the positive effect related to StDn-1 is only present when those trials required 

participants to report variance; this is also the case for StDn-2. As for the negative effect 

appearing at longer timescales, it is clearly present in RAN trials, while for DIR trials, 

although the credible intervals for the coefficient contain zero at all trial positions (likely 

due to the smaller number of DIR trials), the negative effect seems to appear as early as 

trial n-1 (B=-0.0021 (-0.0051, 0.0009)), peak at trial n-5 (B=-0.0023 (-0.0052, 0.0007) and 

decrease afterward. The appearance of a negative serial dependence regardless of the 

task suggests that it may be sensory in origin - an adaptation after-effect. 
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TABLE 2. Serial dependence and task requirements - Model comparison  

 

2a. Response (Experiment 2A) 

Models  P(M)  P(M|data)  BF M  BF 10  error %  

Null model (incl. subject)   0.200   3.575e -7   1.430e -6   1.000     

StDn-1   0.200   0.853   23.192   2.386e +6   0.393   

Trial n-1 type (response vs. no-response)  0.200   5.551e -8   2.220e -7   0.155   0.772   

StDn-1 + Trial n-1 type  0.200   0.135   0.622   376281.756   1.178   

StDn-1 + Trial n-1 type + StDn-1  ✻   Trial n-1 type  0.200   0.013   0.051   35151.882   2.835   
 

 

 

2b. Dimension-specific judgment (Experiment 2B) 

Models  P(M)  P(M|data)  BF M  BF 10  error %  

Null model (incl. subject)   0.200   0.012   0.048   1.000     

StDn-1  0.200   0.023   0.095   1.964   0.360   

Trial n-1 type (variance vs. mean estimation)  0.200   0.109   0.489   9.202   1.348   

StDn-1 + Trial n-1 type  0.200   0.283   1.578   23.921   2.994   

StDn-1 + Trial n-1 type + StDn-1  ✻   Trial n-1 type  0.200   0.573   5.371   48.459   2.705   

 

Note. All models include subject. 

 

Table 2.  Experiment 2: 2A-2B. Serial dependence (associated with trial n-1) and trial n-1 type (task requirements in 

that trial). Each table section presents the model performance on Experiment 2A and 2B datasets, respectively, 

according to the results of a Bayesian repeated-measures ANOVA on zREn, with two within-subject factors: StDn-1 and 

trial n-1 type: response/no-response in Experiment 2A, RAN/DIR in Experiment 2B. P(M): prior probability of each 

model, assumed to be equal for all. P(M/data): posterior probability of the model (given the data). BFM: Bayes factor 

for the model. BF10: Bayes factor for the alternative hypothesis relative to a null model (expressed by each model). 
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2. EXPERIMENTS 2C-2D: DISAMBIGUATION BETWEEN DECISION 

AND PERCEPTUAL ATTENTION: SERIAL DEPENDENCE IN PRE-CUED 

AND POST-CUED TASK-SWITCHING 

 

In Experiment 2B, positive serial dependence in variance judgments only arose when 

the previous trial required a decision about variance. This result suggests that serial 

dependence in variance depends on dimension-specific decision-making, but a low-level 

origin modulated by attention cannot be entirely ruled out since the task was pre-cued 

before stimulus presentation, likely affecting deployment of perceptual attention to the 

cued feature-dimension.  

 

For this reason, we conducted two more experiments to explicitly compare pre-cued 

(2C) and post-cued (2D) decisions. Naturally, if the task was post-cued, attention to 

mean and variance during RDK presentation couldn’t depend on the current trial type. 

Experiment 2C (pre-cued task-switching) was at its core the same as 2B, but with some 

methodological differences (detailed below) to facilitate a direct comparison with 2D. 

 

 

 

2.1. METHODS 

 

The methodology of experiments 2C and 2D (summarized in Figure 7) was similar to 

Experiment 2B but departed in several ways as specified below. 
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Figure 7. Experiments 2C-2D: Methods. Each trial presented an RDK of a certain mean and variance (standard 

deviation, StD) in the motion trajectories of its component dots. In the example, trial n-1 and n have low and high StD 

values, respectively. The stimulus was presented for 250 ms and always in the fovea (0 dva). In each trial, a three-

letter cue (DIR or RAN) indicated whether a mean or a variance judgment was required; RAN and DIR trials were 

interleaved, with a frequency ratio 1:1. In Experiment 2C, the cue was displayed before (and after) stimulus 

presentation, while in experiment 2D it was only displayed after stimulus offset. The inter-trial time (interval between 

response offset and next trial onset, called T2) was adjusted in function of the response time, so that the inter-

stimulus time (ISI: interval between consecutive RDKs onset) was kept constant at 3500 ms. Abbreviations: StD – 

standard deviation (of the RDK motion directions), RT: response time, ms: milliseconds.  

 

 

2.1.1. Stimuli 

 

For Experiments 2C and 2D the duration of the RDK was shortened to 250 ms (while 

Experiment 2B had used 500 ms). This was in order to prevent participants from starting 

a decision about both dimensions during stimulus presentation in the post-cued 

experiment. 
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2.1.2. Procedure 

 

Both experiments 2C and 2D had a practice block of 80 trials and ten experimental blocks 

with 60 trials each. 

 

In Experiment 2C, immediately at trial onset, a pre-cue was presented for 150 ms, 

indicating the task that the participant had to perform in that trial: either variance 

estimation (cued by word ‘RAN’) or mean estimation (‘DIR’). After the cue disappeared, 

a blank screen with a central fixation cross was presented for 50 ms, and subsequently 

the RDK was displayed on the screen centre for 250 ms.  

 

After another 50-ms interval (henceforth named T1), the response scale was presented 

along with the same cue as before: both items were displayed on the screen until the 

participant had made a response or the maximum time allowed (3000 ms) had passed. 

The response scale consisted on an analogous response scale for variance estimation or 

a rotating bar for mean estimation. 

 

The inter-stimulus interval (time between onset of consecutive RDK stimuli, named ISI) 

was kept constant at 3500 ms regardless of the participant’s response time, by adjusting 

the interval (henceforth T2) between response offset and next trial onset. 

 

The trial structure for Experiment 2D was identical except that the stimulus was 

presented immediately at trial onset, without pre-cue. As in Experiment 2D, the post-

cue was presented 50 ms after stimulus offset, together with the response scale. The 

maximum time allowed for response (3000 ms) and the constant inter-stimulus interval 

(3500 ms) were also the same as in experiment 2D. Due to the absence of pre-cue, even 

when the maximum time for responding was exhausted, there was at least a 200-ms 

interval before next trial onset. 
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Unlike Experiment 2B, where only 1/3 were DIR trials to maximize statistical power, in 

these experiments the frequency ratio of RAN and DIR trials was 1:1; both trial types 

were randomly interleaved within each block. By making both tasks equally frequent, 

we aimed to prevent any bias in dimension-specific attention due to different 

expectations for the frequency of each task in the post-cued experiment -although even 

if such bias had existed, it would affect equally both trial types.  

 

 

 

2.2. RESULTS 

 

2.2.1. Serial dependence is related to dimension-specific decision-making, also after 

excluding differences in dimension-specific perceptual attention by post-cued task-

switching 

 

Fourteen Psychology Students and members of the laboratory volunteered to each 

experiment, 2C and 2D (2C: all female, mean age 20.2 y/o; 2D: 9 female, mean age 21.2); 

one participant participated twice in both experiments. The dataset for each experiment 

had 9000 trials in total, of which half (4500) were of either type (RAN/DIR). 
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Figure 8. Experiments 2C-2D: Results. Comparison of serial dependence in a pre-cued versus post-cued task-

switching paradigm: similar results in both experiments indicate that the differences between tasks are not attention-

related. 8a - 8b. Normalized relative error in current response (zREn) as a function of the StD presented in the previous 

trial (StDn-1), plotted separately by trial n-1 type: RAN (variance report required) and DIR (mean report required). In 

8a, the trial type (i.e. the required decision) is pre-cued, while in 8b it is post-cued. The error bars represent the 

between-participant standard error. In both cases we observe positive serial dependence only for RAN n-1 trials, as 

suggested by the ascending slope of the RAN plot. No trace of positive serial dependence is observed in relation to 

post-cued n-1 DIR trials, indicating that the process that gives rise to serial dependence in variance is necessarily post-

perceptual. 8c-8d.  Fixed-effects coefficient estimates in 20 Bayesian LMMs with StDn-t (t=1…10) as predictor of 

current response (zREn), modeled separately by trial n-t type (RAN/DIR). Trial type is pre-cued in 8c and post-cued in 
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8d. Since the dependent variable is the current variance (‘randomness’) judgment, trial n is always a RAN trial. The 

error bars represent the 95% credible intervals for the true value of the coefficient. Analyses further confirm that 

positive serial dependence only arises in relation to dimension-specific decision-making, even if such decision was 

post-cued. 8e-8f. Normalized relative error in current response (zREn) as a function of the StD presented in trial n-2 

(StDn-2), plotted separately by trial n-1 type: RAN (variance report required) and DIR (mean report required). Both trial 

n-2 and trial n are RAN trials. The required decision is pre-cued in 8e and post-cued in 8f. In both cases, we observe a 

neat ascending slope for n-1 DIR trials. By contrast, when the intermediate trial (n-1) was a RAN trial, the effect of 

StDn-2 is less clear. In other words, positive serial dependence driven by a decision about variance made 2 trials before 

is eroded if another decision about the same feature-dimension (variance) is interposed (RAN n-1 trial), compared to 

cases where the intermediate decision was about a different dimension (DIR n-1 trial). This suggests an iterative 

modification of decisional representations as a new decision about the same feature-dimension is made, consistent 

with the hypothesis that sees serial dependence as result of the interaction of past and present decisional 

representations in visual working memory. 

 

 

TABLE 3. Serial dependence and cued decision - Model comparison  

 

3a. Pre-cued dimension-specific judgment (Experiment 2C) 

Models  P(M)  P(M|data)  BF M  BF 10  error %  

Null model (incl. subject)   0.200   1.070e -4   4.281e -4   1.000     

StDn-1   0.200   0.029   0.121   273.553   0.364   

Trial n-1 type (variance vs. mean estimation)  0.200   1.428e -4   5.711e -4   1.334   1.234   

StDn-1 + Trial n-1 type  0.200   0.052   0.221   488.333   1.719   

StDn-1 + Trial n-1 type + StDn-1  ✻   Trial n-1 type  0.200   0.918   44.913   8580.923   10.424   
 

 

 

3b. Post-cued dimension-specific judgment (Experiment 2D) 

Models  P(M)  P(M|data)  BF M  BF 10  error %  

Null model (incl. subject)   0.200   0.286   1.601   1.000     

StDn-1  0.200   0.014   0.058   0.050   0.490   

Trial n-1 type (variance vs. mean estimation)  0.200   0.088   0.387   0.308   1.677   

StDn-1 + Trial n-1 type  0.200   0.004   0.018   0.016   3.618   

StDn-1 + Trial n-1 type + StDn-1  ✻   Trial n-1 type  0.200   0.607   6.186   2.125   1.526   
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Note. All models include subject. 

 

Table 3.  Experiment 2: 2C-2D. Serial dependence (associated with trial n-1) and cued decision in trial n-1. Each table 

section presents the model performance on Experiment 2C and 2D datasets, respectively, according to the results of 

a Bayesian repeated-measures ANOVA on zREn, with two within-subject factors: StDn-1 and trial n-1 type (pre-cued 

RAN/DIR trial in Experiment 2C, post-cued RAN/DIR trial in Experiment 2D). P(M): prior probability of each model, 

assumed to be equal for all. P(M/data): posterior probability of the model (given the data). BFM: Bayes factor for the 

model. BF10: Bayes factor for the alternative hypothesis relative to a null model (expressed by each model). 

 

 

Figures 8a and 8b present the distribution of normalized variance reports (zREn) as a 

function of StDn-1 and trial n-1 type, for experiment 2C (pre-cue) and 2D (post-cue), 

respectively. On visual inspection we observe a similar pattern in both experiments, and 

similar as well to Experiment 2B (pre-cued task-switching with minor methodological 

differences compared to 2C). A roughly ascending plot is observed for current reports in 

relation to StDn-1 presentation, only when trial n-1 required a judgment about variance 

(RAN n-1 trial). On the contrary, we do not observe any trace of positive serial 

dependence in relation to StDn-1, if the required decision in trial n-1 was about the mean 

of the RDK motion. Rather, there seems to be a negative effect associated to StDn-1 for 

post-cued n-1 DIR trials. Results in the post-cued design appear to confirm the post-

perceptual origin of serial dependence, in relation to dimension-specific decision-

making. 

 

Table 3 presents the results of a Bayesian RM ANOVA on current variance report (zREn) 

with two within-participant factors: StDn-1 and trial n-1 type (RAN/DIR), computed on 

the data of Experiments 2C (pre-cued task-switching) and 2D (post-cued task-switching, 

respectively). In both cases, the model with more explanatory power is the one with all 

terms: both main factors and the interaction term StDn-1*trial n-1 type, although for 

Experiment 2D the advantage over the null model is anecdotal (BF10=2.125). 

Nevertheless, in Experiment 2D there is moderate evidence for inclusion of the 

interaction term StDn-1*trial n-1 type, the one that determines whether the influence of 

StDn-1 (serial dependence) is different for each trial type: BFInclusion=6.135. Furthermore, 
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if the comparison is made between two identical models except for the inclusion of the 

term of interest (interaction term), namely between the model with both main factors 

and the one that also contains the interaction term, evidence in favour of the latter is 

extreme: BFfull/main effects=139.563.  

 

Figures 8c and 8d depict serial dependence in relation to trials up to n-10: each data 

point represents the fixed-effects B coefficient for the relationship between StDn-t 

(t=1…10) and current normalized variance judgment (zREn) according to a Bayesian 

LMM. Data are split by trial n-t type (RAN/DIR), while the current trial (n) is necessarily 

a RAN trial. Figure 8c corresponds to the pre-cued (2C) and 8d to the post-cued (2D) 

experiment. Once more we observe that the positive bias exerted by recent trial history 

is only driven by trials wherein a decision about variance was required, even if the cue 

for the required decision was presented after stimulus offset. Interestingly, this positive 

bias seems to last longer than in previous experiments: it appears still present in relation 

to trials n-3 or n-4, while in previous cases it had entirely disappeared by n-3. We 

propose two non-exclusive explanations for this: the interposing DIR trials (which are 

half of the total trials in the current experiments) might reduce the number of 

interposing decisions about variance, thus enhancing the carry-over effect of more 

remote decisions that are not disrupted by subsequent operations about the same 

feature-dimension (see below, section 2.2.2). In addition, the shorter duration of the 

RDK presentations (250 ms instead of the previous 500 ms) might render the competing 

negative effect weaker (particularly if it is related to adaptation processes). 

 

In summary, our results show that positive serial dependence depends on dimension-

specific decisions made in recent trials, ruling out alternative explanations such as the 

influence of response (2A) or differences in perceptual attention (2D). For equal stimuli, 

task requirements and attentional deployment during perception, as guaranteed by the 

post-cued design, we fail to encounter any trace of attractive serial dependence in 

relation to the variance of past trials that did not require a (post-perceptual) decision 

about variance. 
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2.2.2. Serial dependence by distant trials is disrupted by subsequent dimension-

specific decision-making 

 

Since we have established that serial dependence is an attractive effect exerted by past 

decisions, and the examination of distant trials shows a progressive decline and eventual 

disappearance of such effect, we enquired about the conditions affecting the storage, 

maintenance and fading of the decisional representations involved in serial 

dependence. In experiments 2C and 2D, inter-stimulus intervals (ISI) are kept constant 

to investigate the effect of sequential decisions on isolation of any other aspect of the 

experiment. Thus, we could explore whether the maintenance of the serial dependence 

effect exerted by distant trials is disrupted by subsequent decisions along the same or a 

different feature-dimension, above and beyond any possible effect of time.  

 

Figures 8e and 8f show the distribution of current variance reports (zREn) as a function 

of the variance in trial n-2 (only RAN trials in n-2 and n positions), split in terms of 

whether the intermediate trial (n-1) required a decision about variance (RAN) or mean 

(DIR). Trial type is pre-cued in 8e and post-cued in 8f. On visual inspection, it can be 

appreciated that the DIR plot presents a neat ascending slope, while this is noticeably 

less clear for the RAN plot. Thus, decisions about variance made two trials before are 

able to influence current judgments if the interposing trial required a decision about a 

different feature-dimension (mean), but their influence is partly disrupted if a 

subsequent decision about variance is interposed. Same as with the generation of serial 

dependence, the maintenance of its effect is not related to perceptual attention but to 

post-perceptual (decisional) events, since the difference persists when the required 

decision is post-cued.  

 

To formally ascertain this, we selected the data where both trial n and n-2 were of RAN 

type and ran a Bayesian LMM on current variance report (zREn), with StDn-2, trial n-1 

type and their interaction StDn-2*trial n-1 type as independent variables. The coefficient 

for the interaction term informed us of the effect of intermediate (n-1) trial type on 
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serial dependence by n-2: a positive value would indicate an increase in positive serial 

dependence if trial n-1 was of DIR type, compared to the reference type RAN. In 

Experiment 2C, this coefficient was positive, although the 95% credible intervals 

contained zero: B=0.0029 (-0.0017, 0.0076); likewise for Experiment 2D: B=0.0039 (-

0.0008, 0.0085). 

 

This result (albeit not statistically significant) suggests the existence of some sort of 

dimension-specific decisional capacity bottleneck, where only a limited number of 

decisional representations can be stored independently, and subsequent decisions 

overwrite and distort previous ones made about the same feature-dimension. This 

intuition could be modelled in Bayesian terms as an iteratively updated prior that is 

combined with new incoming information, to produce both a contextually informed 

judgment and the basis for the prior of the next trial – a process akin to a Kalman filter 

(Cicchini et al., 2014; Luca & Rhodes, 2016; Petzschner & Glasauer, 2011; Roach, 

McGraw, Whitaker, & Heron, 2017). 

 

 

 

 

3. EXPERIMENT 2E: INFLUENCE OF TIME IN THE MAINTENANCE OF 

SERIAL DEPENDENCE 

 

As stated above, evidence so far indicates that serial dependence in variance is driven 

by dimension-specific decision-making and apparently subject to dimension-specific 

capacity limitations affecting the decline of its effect. This echoes some sort of memory 

representation that is able to bias subsequent representations, as discussed by Bliss et 

al (Bliss et al., 2017). These authors reported that serial dependence was absent at the 

time of perception but increased when response was delayed, and hypothesized that 

judgments made about working memory representations of a percept, rather than the 
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percept itself, were corrupted by previous memory information. Their findings were 

corroborated by another team (Fritsche et al., 2017). Other authors have discussed the 

similarities between serial dependence and well-studied processes involving working 

memory limitation such as proactive interference (A. Kiyonaga et al., 2017). However 

this issue is far from resolved, and some authors have reported serial dependence (in 

position) at the time of perception (Manassi et al., 2018).  

 

We therefore decided to examine the influence of time in serial dependence in variance, 

by a modification of the post-cued task-switching experiment reported above 

(Experiment 2D). Nevertheless, note that despite remarking the superficial similarities 

between serial dependence and mnemonic processes, we are still utilising a serial 

dependence paradigm and not an experimental design for systematic investigations on 

working memory.  

 

We considered two steps at which time might have different effects: 

 

1. ‘Active’ interval, i.e. time during which the current representation is actively 

maintained in working memory before a response is allowed (similar to Bliss’ 

experiment (Bliss et al., 2017)). In Bayesian terms, we could see this as if the 

likelihood (representing probabilistic sensory information) is corrupted by noise 

and becomes less precise with time, so that the prior will have comparatively 

more weight in an optimal Bayesian combination, increasing the size of serial 

dependence effect (Petzschner & Glasauer, 2011). In our experiment, this active 

maintenance would correspond to the previously defined T1 interval between 

stimulus offset and post-cue onset, a time during which participants still don’t 

know which dimension they will have to report and are supposedly maintaining 

a representation about both mean and variance in working memory.  

 

2. ‘Passive’ interval, i.e. time between the end of a trial and the start of the next 

one, during which participants have no need for maintaining any information in 
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working memory (since each trial’s stimulus and task is independent from the 

rest) and are (supposedly) passively waiting for the next RDK presentation. In 

Bayesian terms, this would correspond to a corruption of the prior by memory 

noise, and therefore a decrease of its influence when it is combined with the 

next incoming sensory information (likelihood), decreasing the size of serial 

dependence effect. In our experiment, this would correspond to the previously 

named T2 interval between response offset and next trial onset.  

 

Therefore, in our experiment we independently manipulated T1 and T2 while keeping 

everything constant, and hypothesized opposite effects on serial dependence: it would 

increase with T1 and decrease with T2.  

 

 

 

3.1. METHODS 

 

 

 
 

Figure 9. Experiment 2E: Methods. The experiment used a post-cued task-switch paradigm where participants had 

to report either the mean or the variance of an RDK. It was divided in ten blocks, of two different block types, 

randomly interleaved. In type 1 blocks, the interval between stimulus offset and post-cue (T1) was manipulated while 

keeping constant the overall interval between consecutive stimuli (ISI): half of the trials had a short (50 ms) and half 
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a long (2500 ms) T1. In type 2 blocks, the interval between trials (T2) -and therefore the total ISI was manipulated, 

while keeping T1 constant: half of the trials had a short (250 ms) and half a long (2500 ms) T2. Given previous evidence 

and predictions according to a Bayesian formulation for serial dependence effects, we hypothesized that a longer T1 

would increase serial dependence and a longer T2 would decrease it. Abbreviations: StD – standard deviation (of the 

RDK motion directions), RT: response time, ms: milliseconds. 

 

 

Figure 9 presents an overview of the design for experiment 2E, which was identical to 

the previous experiment of the series (2D: post-cued task-switching) except for the time 

between events. There were 10 experimental blocks (besides the practice block at the 

beginning) with 60 trials each; blocks were of two types, equally frequent and randomly 

interleaved. 

 

In type 1 blocks we manipulated T1 interval, the ‘active’ interval between stimulus offset 

and post-cue onset. Half of the trials had ‘short T1’ (50 ms) and the other half had ‘long 

T1’ (2500 ms); the order of trials was pseudorandomized. The total time between stimuli 

(ISI) was kept constant at 6000 ms by adjusting T2 in function of T1 and the response 

time.               

 

In type 2 blocks we manipulated T2 interval, i.e. the ‘passive’ inter-trial interval. Half of 

the trials had ‘short T2’ (250 ms) and the other half had ‘long T2’ (2500 ms), in a 

pseudorandomized order. T1 interval was always ‘short’ (50 ms) and the total ISI varied 

in function of the response time and T2. 

 

 

 

3.2. RESULTS 

 

Thirty-four participants (22 female, mean age 21.6 y/o) took part in the experiment, 

including Psychology students, members of the laboratory and payed volunteers. Two 

participants were excluded due to apparent erratic responses. In total, 32 participants 
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and 19200 trials entered the analysis. Half of them corresponded to Type 1 blocks and 

the other half to Type 2 blocks; in both cases, half were RAN and half DIR trials. 

 

 

 
 

Figure 10. Experiment 2E: Results. All graphs present the fixed-effects coefficients for the influence of StDn-t (t=1 … 

10) on current normalized response error (zREn), modelled by Bayesian LMMs. The error bars represent the 95% 

credible intervals for the value of the coefficient. In each figure and plot, the models are applied to a specific subset 

of the data, in order to ascertain the influence of past decisions and time intervals in serial dependence.  10a. Serial 

dependence on variance judgments (zREn) by StDn-t and post-cued decision (RAN/DIR) presented in trial n-t (t=1 … 

10). These models correspond to all the data of Experiment 2E, split by trial type (RAN/DIR), but pooling all blocks and 

time intervals. As in previous task-switching experiments (pre or post-cued), we observe that positive serial 

dependence appears only when a decision about variance was made in the considered past trial. In addition, we 

observe that the negative effect driven by less recent history that was found in Experiment 1 is highly reduced or 

even absent (for RAN trials) in this dataset, probably in relation with distinct properties of the stimulus (shorter 

duration) and trial structure (fewer RAN trials, longer time intervals). 10b. Type 2 blocks: serial dependence in relation 

to T2 interval (time between response offset and next trial onset, when participants are passively waiting for the next 

trial). On visual inspection, there appears to be a trend for a weaker effect of positive serial dependence in relation 

with longer inter-trial intervals (T2), concerning the most recent RAN trials where positive serial dependence is 

observed. This may point to a decline of the effect with (passive) time; however, results are not statistically significant. 
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10c – 10d. Type 1 blocks: serial dependence in relation to T1 interval (time between stimulus offset and response 

post-cue, when participants are actively maintaining a memory representation of the mean and variance of the 

current trial). 10c examines serial dependence in function of the T1 interval in the current trial (n), whereas 10d 

presents the influence of manipulating T1 interval in trial n-t. 10c. Regarding the current trial, we don’t observe an 

increase in serial dependence by the previous (n-1) presentation in relation to longer T1n, contrary to reports by other 

authors. However, there seems to be an enhancement of positive serial dependence by n-2 trial, although results are 

not statistically significant. 10d. Regarding the previous (n-t) trial, the graphs suggest an increase of the bias exerted 

by n-1 StD if a longer T1 was allowed before cueing the response in that trial. However, this result is again not 

significant. Interestingly, positive serial dependence is observed in this case in relation to DIR n-1 trials if a long T1 

interval was allowed before the cue, contrary to the absence of effect in any other task-switching dataset. This is 

likely explained because during the 2.5 seconds preceding the cue, participants have presumably prepared both 

decisions (mean and variance) about the presented RDK; thus, even if the variance decision was eventually not 

reported, it is still able to exert serial dependence effects on subsequent trials -similar to no-response trials in 

Experiment 2A. 

 

 

Figure 10a presents serial dependence in variance judgments as a function of the trial 

type (RAN/DIR), for all block types and time intervals pooled. Each data point represents 

the B coefficient estimate for the effect of StDn-t in zREn, in a Bayesian LMM. As in 

previous instances, we observe that positive serial dependence arises only when a 

decision about variance was made. The negative effect in relation to less recent history, 

that was clearly seen in Experiment 1, 2A and 2B, is not observed for RAN trials in the 

current experiment (2E) and is reduced also for DIR trials. This effect was also noticeably 

diminished in relation to RAN trials in Experiments 2C and 2D. As mentioned above, this 

may be possibly explained by the shorter duration of the RDK presentations (hence 

shorter exposure to the adapting stimulus), along with fewer number of interposing 

decisions about variance (which disrupt the competing positive serial dependence), and, 

additionally in the current experiment, by the enhancement of the positive effect by 

time manipulations, as detailed below. 
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3.2.1. Type 1 blocks: 

 

Figures 10c-10d present serial dependence on variance judgments (up to trial n-10) in 

Type 1 blocks, as a function of the past trial type (RAN/DIR) and the T1 interval (stimulus 

offset – post-cue) presented in the current (10c) and the past (10d) trials.  

 

Concerning the effect of T1 interval  in the current trial (T1n) we hypothesized that we 

would observe an increase in positive serial dependence for longer T1n, similar to the 

reported results in Bliss et al (Bliss et al., 2017), as the current memory representation 

is maintained in working memory and distorted by previous information. However, we 

did not find such effect in relation to n-1-driven serial dependence. There seems to be 

an enhancement of serial dependence by n-2 trial in relation to longer T1n, which would 

also fit our hypothesis. However, this result is not statistically significant: in a Bayesian 

LMM on the effect of StDn-2 (RAN n-2 trials only) in zREn, with T1n and the interaction 

term StDn-2*T1n also included in the model, the coefficient estimate for the interaction 

term is B=0.0028 suggesting an increased serial dependence effect for long T1n, but non-

significant according to 95% credible intervals (-0.0022, 0.0077). 

 

As for the effect of past (n-t) T1 interval in serial dependence, our predictions were less 

clear. Still, we deemed it would have a similar enhancing effect, since actively 

maintaining the n-t representation in working memory would facilitate learning and 

generate a more precise prior for the successive trials. Again, results were not 

statistically significant. There seems to be a larger effect for longer T1n-t when 

considering n-1 trial, in agreement with our hypothesis: in a Bayesian LMM for zREn with 

StDn-1, T1n-1 and the interaction StDn-1*T1n-1, the coefficient for the interaction is B= 

0.0030 (-0.0014, 0.0074): positive, but not significant. 

 

Interestingly, unlike in all other instances in our task-switching experiments, there is a 

clear positive serial dependence on current variance judgments by the variance of n-1 

RDK (StDn-1), even when this trial required a decision about mean (DIR), but only in those 
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trials wherein a long time elapsed between stimulus and response cue. For n-1 long-T1 

DIR trials, the LMM coefficient for serial dependence by StDn-1 was B=0.0044 (0.0012,  

0.0076), comparable to the effect size of serial dependence exerted by n-1 RAN trials in 

this and other experiments (in the current one, similar to the effect of short T1n-1 RAN 

trials). In long-T1 trials, during the 2.5 seconds before the required task is cued, 

participants are likely preparing their decision about both possible tasks, mean and 

variance estimation, even if eventually only one of them will be reported. Thus, this 

result further supports our conclusion whereby it is the decision, and not the percept or 

the motor response, what is transferred forward to influence subsequent trials.  

 

 

3.2.2. Type 2 blocks: 

 

Figure 10b summarizes serial dependence in Type 2 blocks, split by past (n-t) trial type 

(RAN/DIR) and by the past T2 interval, i.e. the time between response offset in trial n-t 

and the onset of trial n-t+1. Our hypothesis was that a longer inter-trial interval would 

reduce the effect of serial dependence, by eroding the memory representation about 

previous decisions. Results seem to indicate a trend in this direction, with larger effect 

of serial dependence for shorter T2n-t intervals, but it was not statistically significant. In 

a Bayesian LMM for zREn with StDn-1 (n-1 RAN trials only), T2n-1 and interaction StDn-

1*T2n-1, the coefficient for the interaction term was B=-0.0020 (-0.0068, 0.0029). The 

negative term suggests that long T2 interval is associated to less serial dependence (as 

short T2 is the reference level) -however, 95% credible intervals contain zero. 

 
In conclusion, exploration of the effect of time in serial dependence showed suggestive 

trends in the directions hypothesized according to a Bayesian-like, decision and 

memory-based conception of serial dependence: (i) an enhancement of the effect in 

conditions that facilitated the influence of previous memory representations on current 

decisions, and (ii) a decline with time in relation to a presumed fading of those memory 
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representations. However, these results were statistically non-significant and thus 

inconclusive.  
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CHAPTER 3: EXPERIMENT 3: INFLUENCE OF 

CONFIDENCE IN SERIAL DEPENDENCE IN VARIANCE 
 

 

In the previous chapter we reported that positive serial dependence in our 

paradigm arises in relation to a dimension-specific decision made in a past 

trial. In light of this finding, we set out to study how confidence in such 

decisions modulates serial dependence in variance. Results for this 

experiment (Experiment 3) are reported in this chapter. We observed that 

confidence in the current trial decision had no influence in serial dependence, 

while confidence in a past trial affected the magnitude and even the sign 

(positive/negative) of the bias exerted by that trial’s decision. We found a 

direct association between confidence reported in the past trial and effect 

size of the positive serial dependence: in other words, the attractive bias 

exerted by a past decision was larger the more confident had been such 

decision. In fact, only decisions above a certain level of confidence drove 

positive serial dependence effects, while negative serial dependence 

appeared below that level. This result was consistent with Bayesian accounts 

of perceptual decision-making and the interpretation of confidence as 

related to sensory precision (the lack of association to current confidence, 

however, did not fit a purely Bayesian framework). Besides, a comparison of 

serial dependencies in Experiments 1 and 3 provided further support to the 

suggestion (reported in Chapter 2) that time and capacity limitations affect 

positive serial dependence. The contents of this chapter have been published 

in the Journal of Vision, as part of the article ‘Serial Dependence in the 

Perception of Visual Variance’ (Suárez-Pinilla et al., 2018b).  
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In previous chapters we have examined serial dependence in visual variance, and the 

specific processes involved in perceptual decision-making that are responsible for its 

appearance. As detailed in the corresponding chapters, results of Experiments 1 and 2 

indicate that positive serial dependence in variance involves mid to high-level processes, 

specifically decision-making about the same feature-dimension. Considering this, we 

questioned how confidence in those decisions modulates serial dependence. We were 

especially interested in the modulation of the positive (Bayesian-like) bias exerted by 

very recent trials, in light of Bayesian accounts of confidence as a measure of the 

precision of neural representations (Meyniel et al., 2015). 

 

 

 

 

1. METHODS 

 

An overview of the Experiment structure is presented in Figure 11. 
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Figure 11. Experiment 3: Methods. The structure of Experiment 3 was very similar to Experiment 1, but required an 

additional confidence report after the variance judgment in each trial. Confidence was reported with a visual analogue 

scale presented below de scale for variance. Maximum response time was 6000 ms. Abbreviations: StD – standard 

deviation (of the RDK motion directions), RT: response time, ms: milliseconds. 

 

 

 

1.1. STIMULI 

 

Stimulus presentation was identical to Experiment 1; as in this case, we employed again 

foveal and peripheral (20o) presentations, as we considered that the interplay between 

decision-making, confidence and serial dependence might vary at different degrees of 

sensory precision.  
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1.2. PROCEDURE 

 

Experiment 3, like Experiment 1, had a 72-trial practice block and eight 60-trial 

experimental blocks, half of which were ‘foveal’ and half ‘peripheral’. Eye-tracking was 

performed in the same manner as in Experiment 1.    

 

During the response phase of each trial, two identical visual analogue scales were 

displayed on the screen: the upper one for scoring ‘randomness’ (variance) and the 

lower one for confidence (see Figure 10). The initial position of each sliding bar was 

randomized separately, and the time allowed for responding to both items was 6 

seconds. For data analysis, we obtained the numerical scores as a linear translation from 

the selected positions: for confidence, the score was expressed as a 0 to 1 proportion of 

the overall length of the line. 

 

 

 

 

2. RESULTS 

 

Twenty-two participants (17 female, mean age 19.6 y/o, standard deviation 2.42) 

volunteered for this experiment: all except for three members of the laboratory were 

first-year Psychology students. As in Experiment 1, trials without valid fixation during 

stimulus presentation were removed from the analysis, as well as data about trial history 

of valid trials involving any invalid trial. In total, 8880 trials were included in the analyses. 
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Figure 12. Experiment 3: Results. 12a. Confidence scores (Cn) by StDn plotted separately by eccentricity. 12b – 12c. 

Normalized relative error in current response (zREn) as a function of the StD presented in the previous trial (StDn-1), 

plotted separately by confidence reported in the current (12b) or previous (12c) trial. Confidence scores have been 

binned into tertiles according to each participant’s distribution of reports. The error bars represent the between-

subject standard error. The plots in 12b are all ascending and roughly parallel, indicating that current confidence does 

not modulate serial dependence by previous trial StD. Conversely, when considering confidence reported in the 

previous (n-1) trial (12c), we observe drastically different slopes: while the high-confidence plot (upper tertile) has a 

clear ascending slope indicative of a positive bias, the middle-tertile plot is only mildly positive and for the lower-

tertile is slightly descending, suggesting a negative bias away from low-confidence n-1 trials. 12d. Fixed-effects 

coefficient estimates in 30 Bayesian LMMs with StDn-t (t=1…10) as predictor of current response (zREn), modelled 

separately by confidence reported in trial n-t (Cn-t), binned into tertiles. The error bars represent the 95% credible 

intervals for the true value of the coefficient. As suggested for trial n-1 in figure 12c, the size and direction of the bias 

associated with each trial position depends on the confidence reported in that position, so that the bias will be more 
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negative (or less positive), the lower the reported confidence, within the general trend of an increasingly 

negative/less positive bias as we move backwards in history. 

 

 

 

2.1. CONFIDENCE REPORTS CORRELATE WITH THE ACCURACY AND PRECISION OF 

VARIANCE JUDGMENTS 

 

Figure 12a presents the distribution of confidence scores (Cn) plotted by current 

stimulus StD (StDn) and eccentricity. For both foveal and peripheral trials, a trend 

towards decreasing Cn for larger StDn is observed, except for the maximal StD (60o). For 

each StD value, confidence scores are lower in the periphery. To test these observations, 

we conducted a Bayesian repeated-measures ANOVA on the effect of StDn and 

eccentricity (as within-subject factors) on Cn. The best model was the one including both 

main effects only (BF10=6.657*1026), outperforming the full model with the interaction 

term StDn*eccentricity by a factor of BFmain effects/full =9.615. This indicates that, despite 

the overall lower confidence scores in peripheral blocks, the relationship between 

different stimulus levels and confidence is the same regardless of eccentricity. 

 

Subsequently we explored whether confidence reports were differentially shaped by 

response accuracy or precision – and considered also the role of eccentricity. Regarding 

accuracy, we defined ‘error size’ as the absolute value of the difference between real 

and reported StD: En = | StDn  - Rn |. In a Bayesian LMM with Cn as dependent variable and 

En, StDn and their interaction as independent variables, Cn reports are inversely 

associated with error size (B=-0.0083 (95% credible interval -0.0103, -0.0062)) and StDn 

(B= -0.0056 (-0.0071, -0.0040) and positively associated with the interaction between 

both (B=0.0003 (0.0002, 0.0003)). The inverse association between error size and Cn 

suggests that participants’ reports of confidence are, at least in part, grounded in task 

accuracy.  Furthermore, the positive sign of the coefficient estimate for the interaction 

term En *StDn suggests that confidence tracks relative, rather than absolute error: the 
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inverse association between error size (defined as an absolute value) and confidence is 

weighted down for large StD values. When considering both error size and eccentricity, 

the negative association with error size remains (Berror=-0.0078 (-0.0102, -0.0055)), 

whereas foveal presentations are associated with higher confidence reports 

independently of task accuracy (Beccentricity=0.0510 (0.0080, 0.0908)). However, the 

interaction term does not show evidence of a different evaluation of increases in error 

size in low compared to high eccentricities (Berror*eccentricity=-0.0013 (-0.0040, 0.0016)). 

 

As for precision, we calculated the standard deviation of each participant’s responses 

per StD value (𝜎") as a measure of response dispersion. Subsequently we modelled 

confidence by 𝜎", StD and their interaction. As expected, response dispersion shows a 

negative correlation with confidence: B=-0.0101 (95% credible interval -0.0160, -

0.0045). When adding eccentricity to this model, the main effect for 𝜎" is close in value 

(B=-0.0105 (-0.0162, -0.0050)), whereas the interaction term 𝜎" *eccentricity (B=-

0.0003 (-0.0067, 0.0062)) suggests that the interaction between response dispersion 

and confidence is similar in fovea and periphery. In summary, our results indicate that 

confidence ‘is’ a measure of response precision, and, to the extent to which the latter 

can be considered a proxy for perceptual precision, they are in agreement with Bayesian 

interpretations of metacognition (Meyniel et al., 2015). 

 

Interestingly, we observed a very strong serial dependence for confidence reports.  

Modelling reported confidence (by a Bayesian LMM) as a function of the report provided 

in the previous trial (Cn-1), the coefficient for the latter is B= 0.1874 (95% credible interval   

0.1445, 0.2307), with an R2=0.3188. Importantly, if we add the error size of the previous 

trial (En-1) to the model, as well as the interaction En-1* Cn-1, the coefficient estimate for 

Cn-1 has a similar (even larger) value: B=0.2197 (0.1698, 0.2720). This is also the case 

when StDn-1 is included in the model, suggesting that the serial dependence in 

confidence scores is not only due to accuracy/attention fluctuating at timescales of 

several trials, nor to the direct influence of the StD in the previous stimulus, but rather 
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may be an expression of response inertia and/or ‘confidence leak’ as described in (D. 

Rahnev et al., 2015). 

 

 

 

2.2. CONFIDENCE IN A PAST TRIAL DETERMINES THE DIRECTION OF SERIAL DEPENDENCE 

IN VARIANCE REPORTS 

 

According to Bayesian accounts of perceptual decision-making, reliance on prior 

information is greater when the current sensory input is noisy or imprecise, or when the 

prior itself is highly precise (Cicchini et al., 2014; Petzschner & Glasauer, 2011; 

Summerfield & Lange, 2014). Within this framework, confidence is often regarded as a 

measure of the precision of the sensory signal (Meyniel et al., 2015), a consideration 

that is in agreement with our data. Thus, we hypothesized that high reported confidence 

in the current trial (Cn) would decrease any attractive pull toward previous history (with 

respect to variance judgments), whereas confidence in past trials (Cn-t) would have the 

opposite effect. We further reasoned that such effect of confidence in the past trials 

would apply mostly to very recent trials, whose information represents a more 

important contribution when priors are iteratively updated. Indeed, this second 

hypothesis is in agreement with our observation of a positive bias in variance judgments 

exerted only by the most recent trials (see Figure 2d as example). 

 

Figures 12b and 12c depict zREn as a function of StDn-1, plotted separately by current 

(12b) and previous (12c) trial confidence. Confidence scores have been binned into 

tertiles on a per-participant basis. In 12b, all three plots present an ascending, roughly 

parallel slope: it appears that serial dependence exerted by trial n-1 takes place 

independently of the confidence placed in the current judgment, contrary to our initial 

hypothesis. However, when we consider the influence of confidence in the previous 

response, we do see a striking interaction, in line with what would be expected within a 

Bayesian framework: low-confidence n-1 judgments do not exert any positive serial 
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dependence – quite the opposite, the plot has a slightly descending slope, pointing 

toward a negative bias in relation to StDn-1. This slope is mildly ascending for medium 

confidence and neatly positive only for high-confidence past decisions.  

 

In order to validate these observations, first we performed a Bayesian repeated-

measures ANOVA on the effect of StDn-1 and Cn (confidence score in the current trial, 

binned into tertiles) on zREn. Results of a Bayesian repeated measures ANOVA are 

presented in Table 4a. The best model contains both main effects (StDn-1 and Cn) but not 

the interaction (BF10=349.668), outperforming the model with the interaction term by a 

factor of BFmain effects/full=93.544. This provides ‘very strong’ evidence against the inclusion 

of the interaction term and indicates that confidence in the current judgment does not 

modulate serial dependence from the previous trial.  

 

Subsequently we performed an analogous analysis, but with StDn-1 and Cn-1 (confidence 

score in the previous trial, by tertiles) as within-subject factors. Table 4b presents the 

results of this analysis. Evidence is in favour of the null model by a large margin (31.25 

times more explanatory than the second best, which includes only Cn-1). Nevertheless, 

when considering the term of interest for our hypothesis, namely the interaction StDn-

1*Cn-1, there is a strong evidence in favour of its inclusion compared to the model 

stripped of that effect (including only the two main factors): BFfull/main effects=26.989. Still, 

because none of both competing models were superior to the null model, this result 

must be taken with caution. 
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TABLE 4. Serial dependence and reported confidence - Model comparison  

 

4a. Current trial confidence 

Models  P(M)  P(M|data)  BF M  BF 10  error %  

Null model (incl. subject)   0.200   0.002   0.010   1.000     

StDn-1   0.200   0.011   0.043   4.437   0.393   

Cn  0.200   0.137   0.637   57.150   0.642   

StDn-1 + Cn  0.200   0.841   21.088   349.668   1.213   

StDn-1 + Cn + StDn-1  ✻   Cn  0.200   0.009   0.036   3.738   5.208   
 

 

 

4b. Previous trial (n-1) confidence 

Models  P(M)  P(M|data)  BF M  BF 10  error %  

Null model (incl. subject)   0.200   0.923   47.768   1.000     

StDn-1  0.200   0.025   0.102   0.027   0.535   

Cn-1  0.200   0.030   0.123   0.032   1.097   

StDn-1 + Cn-1  0.200   8.080e-4   0.003   8.757e-4   1.439   

StDn-1 + Cn-1 + StDn-1  ✻   Cn-1  0.200   0.022   0.089   0.024   1.099   

 

Note. All models include subject. 

 

Table 4.  Experiment 3. Serial dependence (associated with trial n-1) and confidence reported in current and previous 

trial. Bayesian repeated-measures ANOVA on zREn, with two within-subject factors: StDn-1 and current (4a) or previous 

(4b) trial confidence. P(M): prior probability of each model, assumed to be equal for all. P(M/data): posterior 

probability of the model (given the data). BFM: Bayes factor for the model. BF10: Bayes factor for the alternative 

hypothesis (expressed by each model). 

 

 

We next asked the degree to which confidence in trials located further back in history, 

up to n-10, influenced serial dependence of variance judgements. We split the dataset 

according to the confidence scores reported in each past position (Cn-t, discretized into 

tertiles within each participant’s scores), and ran three Bayesian LMMs per position (30 

models in total) for the association between StDn-t and zREn at each level of past 
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confidence. Figure 12d presents the B coefficient estimates and 95% credible intervals 

for each trial position n-t (t=1…10). A marked influence of past confidence on the size 

and direction of serial dependence is observed, such that, when high confidence was 

reported in very recent trials (n-1, n-2), an attractive pull toward recent StD values is 

manifest, although this bias fades rapidly, being absent by trial n-3 and thereafter. Note 

that trials with highest confidence (upper tertile) do not exert a clear, unambiguous 

negative bias at any point of trial history, although some traces seem to be present from 

trial n-4 onwards. The largest negative bias is driven by low-confidence trials, for which 

it seems to appear as recently as in trial n-1 (although the credible intervals contain 

zero), becomes unambiguous at n-2 and peaks at trial n-4, decreasing afterwards, in 

contrast with the slower build-up of the negative bias seen for past trials with 

intermediate confidence. Thus, the reversal from positive to negative bias seen in this 

and previous experiments seems related to the rapid decay of the positive bias of high-

confidence trials.  As for the negative effect, it seems to appear as early as whenever 

such competing (positive) bias is not manifest, but fades more slowly than the former. 

Results were similar when considering foveal and peripheral blocks separately.  

 

At first glance, the early appearance of the negative effect (after exposure to a single 

sub-second presentation) and its association with low confidence could suggest that it 

is at least in part of decisional origin, rather than exclusively a product of sensory 

adaptation. However, some amount of negative bias was observed in relation with past 

DIR trials in Experiments 2B-2D (trials in which participants were not making a decision 

on variance). Thus, it seems more likely that the apparent relationship between the 

negative effect and confidence is due to concealment of the effect in presence of the 

positive bias, the latter being associated with high-confidence decision-making.   

 

On average, response times for variance reports in low, medium and high confidence 

trials were 1.59, 1.46 and 1.30 seconds, respectively (Bayesian RM ANOVA: BF10=22288, 

extreme evidence for the alternative hypothesis), presumably related to subjective trial 

difficulty. Therefore, we sought to rule out the possibility that the effect of past 
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confidence on serial dependence was only related to the difference in response times, 

and consequently in inter-stimulus times. For each trial position up to n-10, we 

performed a three-way Bayesian repeated-measures ANOVA for zREn (as dependent 

variable) with three within-subject factors: StDn-t, Cn-t (in tertiles) and timen,n-t (time 

between stimulus onset of trials n-t and n, binned in two levels with respect to the 

median). In all cases, the evidence for inclusion of the interaction term StDn-t*timen, n-t 

was ‘extremely’ low, i.e. the Bayes factor for this specific effect was always below 1/100. 

This suggested that time was not confounding the reported interaction between 

confidence and serial dependence. 

 

 

 

2.3. TIME AND THE ADDITIONAL CONFIDENCE REPORT MIGHT PROMOTE AN EARLIER 

REVERSAL TOWARD NEGATIVE SERIAL DEPENDENCE IN VARIANCE JUDGMENTS 

 

Experiment 3 had an identical design to Experiment 1 except for the requirement of an 

additional report (about confidence) per trial. Consequently, an additional difference 

was introduced: the inter-trial time was longer in Experiment 3 that in Experiment 1 

(5.06 versus 3.69 seconds, Bayesian independent samples t-test: BF10>6.690*107).  

 

Experiment 2 demonstrated that serial dependence in variance arises in relation to 

dimension-specific decision-making -specifically high-confidence past decisions, as 

shown in the current experiment. Furthermore, Experiment 2C and 2D showed that the 

maintenance of the serial dependence effect is disrupted by subsequent decisions along 

the same dimension (variance) -see Figures 8e and 8f-, and Experiment 2E suggested 

that time affected the size of the effect in different ways (specifically, active 

maintenance in working memory increased serial dependence, while passive waiting 

time decreased it), although results were not statistically significant. Previous work by 

other authors has also implicated time between successive stimuli or stimuli and 

response as critical contributors to serial dependence (Bliss et al., 2017; Fritsche et al., 
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2017; Ryotal Kanai & Verstraten, 2005). Overall, evidence suggests that time and 

capacity limitations influence the effect of past on current perceptual decisions.  

 

Considering all this, we sought to examine (post-hoc) the extent to which time and 

interposing decisions influenced differences in serial dependence between Experiment 

1 and 3 -specifically, how they affected the decrease and eventual shift towards negative 

of the serial dependence effect as we move backwards in trial history.   

 

 

 
 

Figure 13. Comparison between Experiments 1 and 3. Both experiments have the same design except for the 

requirement of a confidence report (in addition to a variance report) per trial in Experiment 3. This also makes the 

inter-stimulus time longer, on average, for Experiment 3 compared to Experiment 1. 13a. Fixed-effects coefficient 

estimates in 20 Bayesian LMMs with StDn-t (t=1…10) as predictor of current response (zREn), with the data of 

Experiment 1 and 3 modelled separately. The error bars represent the 95% credible intervals for the true value of the 

coefficient. The shift toward negative coefficient estimates takes place at earlier trial positions in Experiment 3. The 

inset graph presents an extension of the analyses up to trial n-30, showing that the negative effect also fades at earlier 

positions in Experiment 3. 13b. Fixed-effects coefficient estimates for the interaction terms StDn-t*timen,n-t and StDn-

t*C-reportn-t in 10 Bayesian LMMs for prediction of zREn, with StDn-t, timen,n-t, C-reportn-t and all interactions as 

putative predictors. The variable timen,n-t reflects the time between onsets of the stimuli in trials n-t (t=1…10) and n. 

C-reportn-t is a binary factor indicating whether confidence reports were made in all trials between n-t and n, or in 

none, regardless of the content of the reports (i.e. the amount of confidence). A negative interaction term with StDn-

t indicates a less positive/more negative serial dependence effect in relation with longer time or the requirement of 

an additional confidence report per trial. While credible intervals contain zero in most instances, there is a 

predominance of negative estimates up to n-5, which could suggest a causal role for both time and the additional 

confidence report in terms of promoting an earlier reversal of the bias in Experiment 3 compared to 1. 
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Figure 13a presents the Bayesian LMM coefficients and 95% credible intervals for the 

effect of StDn-t (t=1…10) in current variance report as found for Experiments 1 and 3. An 

extension of this comparison for more distant trial positions (up to n-30) is presented in 

the inset graph. While the positive bias exerted by StDn-1 is similar in magnitude in both 

experiments (B=0.0034 (0.0017, 0.0051) in Experiment 1, B=0.0030 (0.0018, 0.0042) in 

Experiment 3), such attraction is still present at StDn-2 in Experiment 1 (B=0.0014, 

(0.0003, 0.0026)), but has virtually disappeared for Experiment 3 (B=0.0003 (-0.0009, 

0.0015). Thus, in Experiment 3 the reversal to negative bias occurs as early as in trial n-

3 and peaks at n-5 (B= -0.0023 (-0.0036, -0.0010)), with a similar effect size as the 

maximum negative bias in Experiment 1, which is seen at n-8 (B=-0.0021 (-0.0032, -

0.0010)). As shown for trial positions further than n-10, negative serial dependencies 

also decline and disappear earlier than in Experiment 1. This earlier build-up and decline 

of the negative bias could be related to the longer inter-stimulus intervals in the present 

experiment: time might drive, hypothetically, the reversal to repulsive serial effects and 

its posterior fading. Results of Experiment 2B and 2D (concerning the effect of DIR trials) 

and low-confidence trials in Experiment 3 seem to suggest that the negative bias 

appears as early as whenever the conditions for the arising of a positive bias are not 

met. If, hypothetically, positive serial dependence declines with time, the negative 

effect could become evident in an earlier trial in relation to the longer inter-stimulus 

times observed in the present experiment. Another explanation for the earlier shift 

towards negative in Experiment 3 would be a disruption of the positive bias caused by 

the additional confidence report – especially if such Bayesian-like pull is caused by 

decision processes or depends upon memory to some extent. Results for Experiments 

2C and 2D, concerning the effect of trial n-2 variance in relation with the decision 

required in trial n-1, suggested that decisions about the same feature-dimension are 

especially disruptive for the serial dependence effect. The extent of commonality 

between a primary perceptual decision and a decision about confidence is however 

unclear (Adler & Ma, 2016; Kepecs, Uchida, Zariwala, & Mainen, 2008; Meyniel et al., 

2015; D. Rahnev et al., 2015). 
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To further examine the effect of time and additional decisions, we pooled all valid trials 

from experiments 1 and 3. To ascertain the influence of an additional decision made per 

trial beside the variance judgment, we defined a binary variable, named C-report,n-t, 

indicating whether or not all intermediate trials, between n and n-t, had a confidence 

report in addition to a variance report. Note that the content of the reports (i.e. the 

amount of confidence) did not affect this definition. When participants had missed at 

least one confidence report in the considered historical span of a certain trial, that trial 

was excluded from the model, in order to make the comparison unambiguous. 

Subsequently we built ten Bayesian LMM for zREn (as dependent variable) in relation 

with three variables defined at each considered point of trial history, namely StDn-t, 

timen, n-t and C-report,n-t, and all interactions. The fixed-effects B coefficients of the 

interaction terms StDn-t * timen,n-t  and StDn-t * C-report,n-t are plotted in figure 11b, for 

trials n-1 to n-10 as predictors of current variance judgment. A negative interaction 

coefficient would indicate a comparatively less positive/more negative serial 

dependence effect at that position in relation to longer time or the extra report, 

respectively. At all positions, credible intervals for both interaction terms contain zero 

(except for StDn-t * C-report,n-t at n-5). However, there is a predominance of negative 

values for both interaction terms within the recent half of the considered span of trial 

history, up to trial n-5. Thus, although results are inconclusive regarding the causes for 

the different patterns of serial dependence in Experiments 1 and 3, the ‘mostly-

negative’ interaction terms StDn-t * timen,n-t   and StDn-t * C-report,n-t suggest that both 

time and the additional confidence report might promote a less positive / more negative 

serial dependence in variance and thus contribute to the observed earlier reversal in the 

direction of the bias. Although these results are non-significant and based on post-doc 

analyses, they are in line with results of Experiment 2, also suggesting a decision capacity 

bottleneck as well as a memory decay.  
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CHAPTER 4: EXPERIMENT 4: SERIAL DEPENDENCE 

AND PERCEPTUAL AWARENESS 
 

 

In previous chapters we have described evidence for serial dependence in 

variance as a process arising from confident decision-making, rather than 

low-level perception. Here we present a modification of the well-studied 

paradigm of serial dependence in orientation which further confirms that, 

even for a perceptual dimension mainly processed in the primary visual 

cortex (V1), serial dependence cannot arise only by local activity changes in 

sensory areas, unlike negative adaptation. We blocked perceptual 

awareness in half of the trials by continuous flash suppression (CFS), a 

method that is known to preserve low-level sensory after-effects in relation 

to unseen stimuli. However, positive serial dependence did disappear under 

these conditions, showing that it depends on processes beyond early visual 

areas, different from those responsible for the encoding of sensory 

information about the stimulus. 

 

 

Our experiments so far indicate that serial dependence in variance is independent of 

low-level properties of the stimulus (such as spatial location) and driven by high-

confidence, dimension-specific decisions that exert a Bayesian-like influence on 

subsequent judgments. This seems at odds with some studies on serial dependence that 

propose that it is at least partially driven by sensory processes (Cicchini et al., 2017; 

Fischer & Whitney, 2014; John-Saaltink et al., 2016; Manassi et al., 2018). These studies 

have typically examined serial dependence in low-level feature-dimensions (orientation, 

spatial position) that are processed by early cortical areas of the visual hierarchy. 

Although the locus of variance processing is not completely defined, it is likely that the 
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line between perceptual and post-perceptual processes is more blurred for statistical 

properties (Payzan-LeNestour et al., 2016; Storrs, 2015).  

 

Considering all this, we decided to dissociate low-level sensory processing from higher-

level mechanisms in a well-studied dimension such as orientation, by employing a 

continuous flash suppression (CFS) paradigm. CFS is a method that exploits binocular 

rivalry by presenting a flashing high-contrast mask in the dominant eye in order to 

effectively and continuously block awareness of an alternative image presented in the 

non-dominant eye, even for long periods of time (Tsuchiya & Koch, 2005). CFS has been 

employed to explore the differences between unconscious and conscious processing, 

and thus to gain insight on the involvement of the different levels of the visual system 

in the construction of visual awareness. Several studies have established that adaptation 

to low-level sensory information is attenuated, but not suppressed, under CFS and other 

instances of interocular suppression (Blake, Tadin, Sobel, Raissian, & Chong, 2006; Lin & 

He, 2009; Maruya, Watanabe, & Watanabe, 2008), indicating that sensory processing in 

early visual areas is preserved (albeit not unaltered) in absence of awareness. 

Interestingly, numerosity adaptation (Liu, Zhang, Zhao, Liu, & Li, 2013) and processing 

along the dorsal stream of the visual system (Almeida, Mahon, Nakayama, & Caramazza, 

2008) also seem to be preserved, while high-level adaptation after-effects involving the 

ventral stream are absent in CFS (Stein & Sterzer, 2011).  

 

We reasoned that, if serial dependence arises in relation to sensory processes, for 

example as a result of exposure-dependent changes in the gain or tuning of sensory 

neurons (as proposed in (Fischer & Whitney, 2014)), it may exhibit a similar relationship 

with CFS than other exposure-dependent sensory processes such as negative 

adaptation. Concerning serial dependence in a low-level dimension such as orientation 

(for which the locus of adaptation after-effects is in the primary visual cortex, V1 (Hubel 

& Wiesel, 1977)), if serial dependence is sensory-driven it may be preserved, though 

attenuated, in a CFS experiment. Thus, for this experiment we used serial dependence 



 

 

 

 

 

145 

in orientation, and not variance, because predictions for the locus of sensory processing 

and the effect of interocular suppression were more straightforward. 

 

In the present experiment (named Experiment 4), participants looked at a dichoptic 

presentation while using a stereoscope. A sequence of Gabor patches was presented to 

their non-dominant eye while a mask suitable for CFS was displayed to their dominant 

eye in only half of the cases, rendering half of the Gabors (theoretically) invisible. A 

report about the Gabor orientation was required in each trial. We examined serial 

dependence in relation to the orientation of visible (unmasked) compared to invisible 

(masked) Gabors in trial history, aiming to shed light on the potential involvement of 

low-level sensory processes in serial dependence. 

 

As a secondary question, we considered the possible relationship between regression 

effects (i.e. contextual modulation by global statistics) and serial dependence 

(contextual modulation by recent stimuli). As mentioned in the General Introduction 

(Part I, section 3.1), Bayesian models wherein the prior is built up as successive trials are 

supplied to the observer are able to explain global and recency biases as two aspects of 

the same phenomenon (Kalm & Norris, 2017; Petzschner & Glasauer, 2011). In light of 

this, we dissociated the global statistics of masked and unmasked Gabors in order to 

explore whether or not CFS masking influenced regression effects in the same manner 

as serial dependence. 

 

 

 

 

1. METHODS 

 

Figure 14 presents an overview of the experimental structure. 
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Figure 14. Experiment 4: Methods. 14a. Experiment structure.  There were two calibration blocks at the beginning 

and end of the experiment, where Gabor contrast suitable for effective CFS masking was determined through a 2IFC 

detection task. After the first calibration block, there was a practice block and 6 experimental blocks which required 

reporting the orientation of a Gabor patch. Half of the trials were masked and half were not: data analysis ascertained 

serial dependence in orientation in relation to unmasked compared to masked Gabors. 14b. Trial structure in an 

experimental block. A dichoptic setting displayed a Gabor patch in the non-dominant eye (except in catch trials, see 

main text); in the dominant eye, a CFS mask was presented in half of the trials (masked trials) and an empty 
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background in the other half (unmasked trials). Binocular backward masking was presented for 1000 ms in all trials. 

Participants had to score Gabor visibility by the perceptual awareness scale (PAS) and report the orientation of the 

Gabor with a visual analogue scale. 

 

 

 

1.1. APPARATUS 

 

The experiment was programmed in MATLAB 2017b (MathWorks Inc., Natick, US-MA) 

with Psychtoolbox 3.0.14 and displayed on a LaCie Electron 22BLUE II 22’’ with screen 

resolution of 1024 x 768 pixels and refresh rate of 100 Hz. A custom-made stereoscope 

was deployed for enabling a dichoptic presentation; participants’ head position was 

stabilized with a chin and forehead rest, with their eyes aligned at the height of the 

screen centre at 50 cm distance. 

 

 

 

1.2. DICHOPTIC PRESENTATION 

 

As shown in Figure 14b, a dichoptic presentation was displayed on the screen, with the 

two fields contained on two square red frames of 9.1 dva side length. A fusion contour 

of 0.8 dva width was contained within each frame, formed by randomly distributed black 

and white pixels to promote stable binocular alignment. This contour left an inner grey 

square area of 7.5 dva side (9.1 – 2*0.8) within each frame, where the stimulus or the 

mask was contained. In the centre of this area, a white fixation cross was displayed, 

spanning 0.8 dva horizontally and vertically, with a line thickness of 0.04 dva. Initially, 

both frames were horizontally aligned on the screen, at a horizontal distance of 18 dva 

between frame centres, or 9 dva to the left and right of the screen centre. However, the 

participant could adjust the position of the left frame, horizontally and vertically, using 

the mouse at the beginning of each experimental block, to achieve a perfect binocular 

overlap between displays.  
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1.2.1. Stimuli 

 

The stimulus was a Gabor patch presented in the centre of the display frame for the 

non-dominant eye (therefore at 0 dva with respect to participant’s gaze position), at a 

peak contrast that was determined for each participant at the beginning of the 

experiment, and adapted on a trial-by-trial basis to ensure that the Gabor remained 

invisible under the CFS mask throughout the experiment – see ‘Procedure’ section below 

for further detail. The spatial frequency of the Gabor was 0.5 cycles/dva and the width 

(standard deviation) of the Gaussian envelope was 1.5 dva. The Gabor was contained 

within an invisible square window (concentric with the frame of the display for the non-

dominant eye) of 3.75 dva side -i.e. half the length of the inner area of the display frame, 

after discounting the fusion contour. This limitation to the extension of the Gabor was 

set to further ensure that the CFS mask continuously overlapped the stimulus, even in 

presence of a small transient binocular misalignment. The Gabor was presented for 500 

ms. 

 

The Gabor patch would present one of the following orientations: -60o, -48o, -36o, -24o, 

-12o, 0o, 12o, 24o, 36o, 48o, 60o, representing angular distance to vertical (negative sign 

for clockwise tilt, positive for counter-clockwise). See ‘Procedure’ below, regarding the 

presentation of the different orientations throughout the trial sequence. 

 

 

1.2.2. Mask 

 

The CFS mask was displayed within the frame corresponding to the dominant eye, and 

consisted on a 9x9 checkerboard pattern spanning 7.5 dva horizontally and vertically, 

formed by squares that took shades of grey extracted from a Gaussian distribution with 

mean 128 (0-255) and standard deviation 255 (bounded at 0 and 255). The shades of 

each component square flashed at 10 Hz. The mask was presented for the duration of 

the Gabor patch (500 ms).  
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Backward masking of the same properties was presented binocularly for 1000 ms after 

stimulus and CFS mask offset, or after stimulus offset in unmasked trials (see ‘Procedure’ 

below). In this case, the greyscale intensity of the component squares was the same for 

the display presented in both eyes, also flashing at 10 Hz. 

 

 

 

1.3. PROCEDURE 

 

The experiment lasted for about 90 minutes and was formed by a calibration block at 

the beginning, a training block, six experimental blocks and another calibration block at 

the end.  

 

 

1.3.1. Calibration blocks 

 

At the beginning of the experimental session, eye dominance was determined by the 

Porta test (Wade, 1998). After this, a calibration block was run to determine the initial 

contrast of the Gabor, ensuring the effectivity of the CFS mask. The calibration block was 

a two-interval forced-choice (2IFC) task wherein two CFS masks were presented in the 

dominant eye for 500 ms each, separated by a 1500 ms interval. A Gabor patch was 

presented in the non-dominant eye at the same time as one of the masks - 50% of the 

times under each. Participants had to report whether the Gabor had been presented 

under the first or the second mask. The calibration block had 96 trials and used 8 

different peak Michelson contrast levels for the Gabors, each repeated 12 times 

throughout the block: 0.01, 0.05, 0.075, 0.1, 0.15, 0.25, 0.50, 1. A cumulative Gaussian 

Psychometric curve was fitted on participants’ responses and the contrast level 

corresponding to 55% correct responses (guessing rate: 50%) was set as the initial 

contrast of the Gabors presented later on in the practice and experimental blocks. If 
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curve fitting was unsuccessful or if the output contrast value was too low or high (below 

0.05 or above 0.75), the initial contrast was set at 0.35. 
 

At the end of the experiment (after the six experimental blocks) a second calibration 

block was run, to rule out that adaptation to the CFS mask throughout the experiment 

had rendered the employed contrast value(s) visible. 

 

 

1.3.2. Experimental blocks 

 

After the first calibration block there was a practice and six experimental blocks. Unlike 

the calibration block, which was a 2IFC detection task, the main experimental blocks 

required reporting the Gabor’s orientation in each trial. In the practice block feedback 

was provided at the end of each trial, by showing the participant’s response along with 

the veridical Gabor orientation in two separate response scales -see below for the 

response procedure.  

 

Each block had 90 trials, of which, in 84 trials, a Gabor was presented in the non-

dominant eye: half of them (42 trials) were ‘unmasked trials’, where no mask but only 

the grey background was presented in the dominant eye, whereas the other half, 

randomly interleaved with the rest, were ‘masked trials’, where a CFS mask was 

displayed. The remaining six, also interleaved, were ‘catch trials’, where the CFS mask 

was presented in the dominant eye but there was no Gabor in the other display frame. 

 

As described in the ‘Stimuli’ section, the Gabors could take 12 possible orientations: -

60o, -48o, -36o, -24o, -12o, 0o, 12o, 24o, 36o, 48o, 60o (negative sign indicates clockwise 

with respect to vertical, and positive sign counter-clockwise). These values were 

organized into two distributions: D1, ranging from -60o to 12o, and D2, from -12o to 60o. 

In half of the blocks, unmasked Gabors would take orientations from D1 (each value 

would be repeated 6 times through the block), and masked Gabors from D2; in the other 
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three blocks, randomly interleaved, it would be the opposite way. This meant that the 

three values present in both distributions (-12o, 0o, 12o) were twice as frequent (6x2=12 

repetitions each) compared to the others. Thus, the global mean orientation of all 

Gabors of the block was 0o, while the mean orientation of D1 and D2 was -24o and 24o, 

respectively. In other words, in half of the blocks the mean orientation of the unmasked 

Gabors was -24o (and 24o for the masked trials); while in the other half the unmasked 

Gabors would have a mean orientation of 24o. We applied this design to explore 

whether regression-to-the-mean effects, i.e. the influence of global statistics  

(Hollingworth, 1910), was exerted by all orientations or only the ones that reached 

awareness -in parallel with the exploration of the relationship of visual awareness and 

the effect of recent history (serial dependence), which was the key question in our study. 

 

 

Experimental blocks: trial structure 
 

As depicted in Figure 14b, the structure of a trial in experimental blocks was as follows: 

a test Gabor patch was displayed immediately after trial onset during 500 ms, in the 

non-dominant eye, whereas either an empty background or a CFS mask were presented 

for the same time in the dominant eye, depending on whether the trial was ‘unmasked’ 

or ‘masked’. The exception were the catch trials, where an empty background and a CFS 

mask were presented for the same time in the non-dominant and dominant field, 

respectively. Immediately after this, a binocular backward mask was presented for 1000 

ms in all trials.  

 

Subsequently, the participant had to report the visibility of the Gabor patch according 

to the perceptual awareness scale (PAS) (Ramsøy & Overgaard, 2004). To the question 

(displayed on the screen) ‘Did you see the Gabor?’, they had to select the appropriate 

score with the mouse: 1- Not at all, 2- A glimpse, 3- Almost sure, 4- Clearly saw it. The 

desirable and usual outcome for our experiment was that participants scored 1 for 

masked trials and 2 or more (usually 4) for unmasked trials. As described above, the 
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initial contrast of the Gabors was determined during the first calibration block. However, 

if the participant scored anything other than 1 in a masked trial, the Gabor contrast was 

lowered by 0.05 for all the following trials. At the beginning of a new experimental block, 

the initial contrast was the final value employed at the end of the previous block. This 

was done to ensure that calibration had effectively rendered the masked Gabors 

invisible and that they remained invisible during the entire experiment despite any 

adaptation to the mask.  

 

After responding to the PAS, participants had to report the orientation of the trial Gabor 

by adjusting the position of a sliding bar along a horizontal line which ranged between 

90o and -90o. We chose not to use a rotating bar in order to preclude tilt after-effects 

(or positive serial dependences) driven by the response scale itself. Instead, participants 

were trained throughout the practice block to translate angular orientation into a linear 

scale. The initial position of the slider was randomized for each trial. The maximum 

response time for both PAS and orientation report was 3500 ms, and the time between 

consecutive trial onsets (inter-stimulus interval, ISI, or inter-mask interval if a catch trial 

is involved) was kept constant at 5000 ms by adjusting the interval after response offset 

in function of the response time. 
 

 

 

1.4. STATISTICAL ANALYSIS 

 

Statistical analyses (detailed in the Results section) were performed on Matlab 2016a 

(MathWorks Inc., Natick, US-MA), R 3.4.2 (The R Foundation for Statistical Computing, 

http://www.R-project.org) and JASP (JASP Team (2017). JASP (Version 0.8.3.1, Mac OS 

X – El Capitan (10.11)). 
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2. RESULTS 

 

2.1.  PARTICIPANTS AND DATA SELECTION 

 

Eighteen participants volunteered to the experiment (12 female, mean age 26.2 y/o) in 

exchange for £10 payment; two participants did the experiment twice. The entire 

sample comprised 10800 experimental trials. 

 

In order to make Gabor visibility unambiguous according to self-report, we removed all 

unmasked trials in which participants had reported a PAS score of 1 (15.96% of 

unmasked trials) and all masked trials that had been scored 2 or higher according to PAS 

(10.59%, with 8.88% scored as 2 and 0.80% as 4). We also removed all information 

corresponding to the excluded trials out of the history of other trials: for example, if a 

trial n had in position n-1 another trial that had not been scored according to its category 

(an unmasked trial scored with a PAS of 1 or a masked trial scored higher than 1), this 

trial n was considered to have no valid data for analyses regarding n-1 history. 

Concerning catch trials, they were scored 2 or higher 8.12% of times (7.28% scored as 2 

and 0.28% as 4). 
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Figure 15. Experiment 4: Results. 15a. Response by current Gabor visibility (unmasked/masked). 15b. Response by 

global statistics. In Condition 1 blocks, the mean orientation of the visible (unmasked) Gabors was 24o, and the mean 

orientation of the invisible (masked) Gabors was -24o. In Condition 2 blocks it was the opposite way. If there were 

regression to the mean effects exerted by visible Gabors only, we should observe comparatively more positive (more 

counter-clockwise) reports in Condition 1, especially for the three orientations that are presented with equal 

frequency in unmasked and masked Gabors across both conditions: -12o, 0o, 12o. However, we do not find any trace 

of effect in that direction. 15c – 15d. Serial dependence by previous (n-1) Gabor orientation. Both figures show the 

distribution of response errors (absolute in 15c, normalized within participant and Gabor orientation in 15d) as a 

function of the difference between previous and current Gabor orientation, DORn-1,n. A positive DORn-1,n indicates that 

the previous Gabor was tilted more XCW (counter-clockwise) than the current one, and vice versa. Likewise, a positive 

response error indicates that the report was more XCW than the current veridical orientation (15c), or than the 

average report provided by that participant for that orientation (15d). Responses correspond to unmasked (current, 

n) Gabors, while the previous (n-1) stimulus could be either unmasked or masked. The error bars represent the 

average reports and between-participant standard errors. The continuous line represents the best-fitting derivative 

of Gaussian function to reflect the non-linearity of the serial dependence effect; the dotted lines present the 95% 
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prediction intervals for the true value of the function, computed non-simultaneously per DORn-1,n value. A neatly 

positive serial dependence effect is observed in relation to n-1 Gabor orientation, of similar tuning width and effect 

size to those reported in previous experiments. 15e – 15f. Serial dependence by previous (n-1) Gabor orientation, 

plotted separately by previous (n-1) Gabor visibility: unmasked-visible (green plots), masked-invisible (red plots). 15e 

presents the absolute deviation from veridical, while 15f presents response errors in normalized form. Apart from 

the classification by n-1 visibility, data and fitted curves presentation is identical to that described for 15c- 15d. We 

observe that serial dependence only arises in presence of visual awareness of the previous Gabor. Thus, low-level 

sensory processing of orientation is insufficient to cause a serial dependence effect on subsequent presentations. 

15g-15h present the same results that 15e and 15f, respectively, but removing those blocks wherein there existed 

any evidence for a positive correlation between masked, reportedly unseen Gabors and orientation reports, as well 

as those blocks where there was no significant evidence for a positive correlation between unmasked, reportedly 

seen Gabors and orientation reports. In other words, we applied a (highly strict) objective criterion for data selection 

based on performance; note, however, that, while it is possible that above-chance performance for ‘unseen’ trials in 

some sessions may indicate that the participant’ report of invisibility was not entirely accurate, it may as well indicate 

that above-chance performance is still possible for unseen orientation stimuli -an question that is outside the scope 

of this thesis. Therefore we are not claiming that this strict data selection is a better reflection of serial dependence 

by Gabor visibility than figures 15e and 15f. Nevertheless, the distinction becomes even more clear here: there is no 

serial dependence in relation to n-1 masked Gabors (for which orientation reports were at chance). 

 

 

 

2.2. OVERALL RESULTS BY VISIBILITY 

 

Figure 15a presents the distribution of responses by orientation in visible and invisible 

trials. We performed a Bayesian RM ANOVA on orientation response with two within-

participant factors: Gabor orientation and masking. According to evidence from this 

analysis, the most explanatory model contained both main effects (Gabor orientation, 

masking) and their interaction, indicating that, as is evident on visual inspection, the 

condition of masking affected the relationship between stimuli and responses 

(BF10=1.659*10144).  

 

We also examined this stimulus-response relationship separately for masked, reportedly 

unseen Gabors (with a PAS score of 1), by means of a Bayesian RM ANOVA on response, 

with Gabor orientation as within-participant factor. Strikingly, we did find a statistical 

association between stimulus and response within this subset of Gabors: Bayesian RM 
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ANOVA on response by orientation in masked trials: BF10=68.376, indicating very strong 

evidence in its favour compared to the null model. Indeed, a very mild ascending slope 

can be discerned on visual inspection of the plot (Figure 15a). This finding prompted 

detailed analysis on individual datasets. Examining the trial-by-trial correlation between 

Gabor orientation and response, in masked trials wherein the participant reported not 

to see the Gabor at all (PAS=1), we found that for most participants, evidence opposed 

any trace of correlation (BF+0<1/3, analysing all experimental blocks either pooled or 

separately). However, there were two participants with at least moderate evidence in 

favour of a positive correlation (BF+0>3), and other three with anecdotal evidence 

(BF+0>1). When considering the six experimental blocks separately, we found that a 

statistical association between masked stimulus and response was encountered in some 

specific blocks: in total there were seven blocks wherein evidence for a positive 

correlation was at least moderate (BF+0>3), and other seven with anecdotal evidence 

(BF+0>1), out of the 120 blocks of the entire sample. These findings might have two 

alternative explanations: either some participants exhibit above-chance performance in 

an orientation estimation task in absence of awareness (i.e. some sort of blindsight 

(Weiskrantz, Warrington, Sanders, & Marshall, 1974)), or their reported lack of 

awareness of the masked Gabor (PAS=1) was not as complete as claimed. The fact that 

the stimulus-response correlation is found for only a minority of participants makes us 

consider the second option as the most likely. Furthermore, the finding of such 

correlation in some blocks and not others from the same participant might be explained 

by some misalignment in the dichoptic presentations that the participant adjusted at 

the beginning of each block, so that the overlap between mask and Gabor might have 

not been perfect. However, in absence of proof for these conjectures, we cannot dismiss 

the PAS report, according to which all masked Gabors that entered our analyses were 

unseen.  

 

To further examine the pattern of responses to masked trials, we compared the shift in 

the position of the slider along the response scale in unmasked compared to masked 

trials (the absolute distance between initial position and actual response). In a Bayesian 
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t-test, evidence was neither for nor against the existence of a difference between both 

trial types: mean shift 51.00o (SE 0.887), 41.77o (SE 4.7722) for unmasked and masked 

Gabors, respectively, Bayesian paired-samples t-test: BF10=0.973. This indicated that 

most participants were not merely reporting the ‘default’, randomized initial position of 

the slider in masked trials (which would have rendered a shift of 0o), although there 

were important differences between participants, as suggested by the large standard 

error for the shift of the slider in masked trials. 

 

 

 

2.3. OVERALL RESULTS BY GLOBAL STATISTICS: NO OBSERVED INFLUENCE OF VISUAL 

AWARENESS IN REGRESSION EFFECTS 

 

Figure 15b shows the distribution of responses by orientation and condition: in 

condition 1, the mean orientation of unmasked and masked Gabors is -24o and 24o, 

respectively; in condition 2 it is the opposite. As suggested by visual inspection of the 

plots, we found no evidence for an effect of the global statistics of visible Gabors on 

responses. To formally ascertain this, we selected the orientations common to both 

distributions, D1 and D2 (see ‘Methods: Experimental blocks’ section), i.e., -12o, 0o and 

12o, and ran a Bayesian ANCOVA with response as dependent variable, orientation as 

covariate, condition as fixed factor and participant’s ID as random factor. There was 

strong evidence against any effect on ‘condition’ on responses by orientation, in all trials 

pooled as well as when analysing responses to unmasked trials separately (BF10<0.100 

in both cases); when selecting masked trials only, evidence was neither for nor against 

an effect of ‘condition’ (BF10=0.946).  

 

In summary, according to our analyses, influence of global statistics on responses 

(regression effect) was not mediated by Gabor visibility. This may suggest that high level 

processing is not necessary to generate a global prior. Nevertheless, it is also possible 

that the absence of observable effect was due to our experimental design. It is very likely 
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that the length of the blocks (84 Gabors, 42 visible) was insufficient to ‘learn’ a prior for 

the global statistics (at least until very late in the trial sequence) -in fact, it may even be 

the case that during the first part of the block participants exhibited regression effects 

toward the condition learnt in the previous block. Another possible issue is that the 

linear response scale, centred on the global mean (0o), might have produced a strong 

regression effect toward 0o that prevailed over other global effects.  

 

 

 

 2.4. SERIAL DEPENDENCE IN ORIENTATION: REPORTS ARE ATTRACTED TO N-1 GABOR 

ORIENTATION 

 

For ascertaining serial dependence, we selected current trials with unmasked (visible) 

Gabors and analysed whether the reported orientation of the stimulus was influenced 

by previous history. Previous studies on serial dependence in orientation have described 

an attractive bias exerted by previous stimuli, whose effect size depends on the 

similarity between previous and current stimulus magnitudes (Cicchini et al., 2017; 

Fischer & Whitney, 2014; Fritsche et al., 2017). This relationship is similar, but of 

opposite sign, to a well-known property of negative adaptation (for example, the tilt 

after-effect, TAE (Gibson & Radner, 1937; Magnussen & Kurtenbach, 1980)). In both 

cases, the size of the effect is maximal when the difference between previous and 

current stimulus is relatively small, and declines or disappears for larger differences (or 

even reverts for very large differences (Fritsche et al., 2017; Gibson & Radner, 1937; 

Wenderoth & Johnstone, 1988)). In our experiments on variance, we also found such 

relationship with stimulus similarity, although results were compromised due to floor 

and ceiling effects given the particularities of the experimental design (see Chapter 1, 

section 2.2.2).  

 

Considering all this, we explored serial dependence in our data by analysing response 

errors in function of stimulus dissimilarity. Response errors were calculated as REn=Rn-
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ORn, where Rn is the current response and ORn is the orientation of the Gabor in the 

current trial. In our experiment, convention has it that clockwise (CW) orientations have 

negative sign and counter-clockwise (XCW) orientations have a positive sign. Therefore, 

a positive REn indicates that the reported orientation was more XCW than veridical, and 

a negative REn indicates the that the report was more CW.  

 

Figure 15c presents the average REn (and between-participants standard error) plotted 

by orientation difference between previous and current Gabor: DORn-1,n=ORn-1-ORn. The 

current Gabor is always unmasked, but the previous trial could be unmasked or masked 

-all cases are pooled together in Figure 15c. A positive DORn-1,n indicates that the 

previous Gabor orientation was more XCW compared to the current one, while a 

negative DORn-1,n indicates that the previous one was tilted more CW. Therefore, an 

attractive bias (a pull exerted on the current response by the previous trial Gabor) would 

be represented by REn reports, on average, of the same sign as DORn-1,n: a more XCW 

Gabor in recent history would determine a XCW bias on orientation estimation, and vice 

versa. A repulsive bias (such as negative adaptation effects) would translate into REn of 

opposite sign as DORn-1,n. 

 

As mentioned before (Chapter 1, section 2.2.2), the non-linear relationship between 

stimulus (dis)similarity and effect size of the induced bias has been characterized by a 

derivative of Gaussian function (DoG), both for negative adaptation (Heron et al., 2012) 

and  (positive) serial dependence (Fischer & Whitney, 2014; Fritsche et al., 2017). We 

therefore followed previous studies and fitted our data to a DoG function of the shape:  

(1) 

𝑦 =
𝑎𝑥

√2𝜋𝜎-
𝑒
/01
231  

        

where x is the difference between previous and current stimulus (DORn-1,n), y is the 

current normalized response error (zREn), and a and s are the coefficients to be fitted, 
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representing the amplitude and the width (standard deviation) of the function, 

respectively. Fitting was achieved by non-linear least-squares method.  

 

The best-fitting function is shown in Figure 15c along with the experimental data and 

the 95% prediction intervals for the value of the function computed non-simultaneously 

at each  DORn-1,n. The coefficient estimates and 95% confidence intervals for the function 

are: a=6477 (1586 – 11370), s=29.48o (18.28 – 40.67). In other words, the amplitude of 

the serial dependence effect exerted by trial n-1 was maximal when the difference 

between the orientation of the previous and current trial was 29.48o. For that value of 

DORn-1,n, the bias on the current response was 1.80o toward the previous trial 

orientation -an attractive bias, as indicated by the positive sign of the amplitude a 

coefficient. The fact that the 95% confidence intervals for a did not contain zero 

indicates that the effect was statistically significant. This is also illustrated on Figure 15c 

by the 95% prediction intervals for the value of the function, which show a clear 

attractive effect even at the prediction boundary that is closest to the horizontal axis.  

The width of the function (s) is of similar magnitude as that reported by Fischer and 

Whitney (27.78o) (Fischer & Whitney, 2014); however the amplitude of the effect is 

much lower in our case (1.80o versus 8.19o). This could be related to our employment of 

monocular stimuli, half of them masked by CFS; nevertheless, effect sizes reported by 

Fritsche and colleagues are similar to our own -in fact slightly lower (1.15o), but more 

narrowly tuned (s=17o) (Fritsche et al., 2017). 

 

In order to remove the influence of systematic individual biases, we repeated the 

analysis with response errors normalized within each participant and current 

orientation (zREn). A positive zREn indicates that the report was more XCW, 

comparatively, than other reports given by the same participant for the same 

(unmasked) Gabor orientation; a negative zREn indicates a comparatively more CW 

estimate, compared with others given by the same participant for the same stimulus. 

Thus, normalization explores response biases by attending only to trial-by-trial 

variability within participant and stimulus. As with absolute response errors, an 
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attractive bias by previous orientation would be reflected by DORn-1,n and zREn of the 

same sign: a more CW Gabor in trial n-1 would produce a more CW report for trial n 

Gabor, compared with other reports provided by the same individual and for the same 

veridical orientation, and vice versa. 

 

Figure 15d shows the distribution of average zREn (and between-participant standard 

errors) as a function of DORn-1,n. The best-fitting DoG function and 95% prediction 

intervals are also depicted. Its coefficient estimates and 95% confidence intervals are: 

a=218 (75.15 – 360.8), s=19.78o (13.29 – 26.27), representing a peak attractive effect of 

0.1348 z-scores toward the n-1 Gabor orientation, when the difference between this 

and the current Gabor orientation was 19.78o. Again, the positive sign of a coefficient 

and its confidence intervals demonstrate a significant attractive bias. The width of the 

function is narrower than for unnormalized reports.  

 

For trial n-2 position, there was no longer evidence for an attractive bias: the amplitude 

of the effect of the best-fitting derivative of Gaussian function (fitted on all current 

unmasked trials, with both unmasked and masked trials at n-2 position, and by using 

normalized response errors, zREn as dependent variable) was a =5668 (-7.069*105 – 

7.182*105), with a width of s = 196.7o (0 – 8741o). The confidence intervals for a 

indicated that even at its peak, the effect was non-significantly different than zero. 

 

 

 

2.5. SERIAL DEPENDENCE BY PREVIOUS GABOR VISIBILITY: ONLY UNMASKED (VISIBLE) 

GABORS EXERT SERIAL DEPENDENCE EFFECTS 

 

We have established that serial dependence exists for orientation reports on unmasked, 

monocularly presented Gabors, in relation to the previous (n-1) presentation. The 

analysis, pooling all n-1 Gabor patches (unmasked and masked), obtained a serial 

dependence pattern similar to what has been reported in previous studies.  
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We then split the dataset according to the visibility of the Gabor patch presented in trial 

n-1, divided into unmasked (visible) and masked (invisible) past Gabors. As mentioned 

before, trial n was always a visible Gabor -this restriction was applied to ameliorate the 

noise of the analyses, for better uncovering small effects. Ambiguity regarding visibility 

of the past Gabors in the unmasked and masked conditions was prevented by removing 

data of unmasked Gabors with a PAS of 1, or masked trials with a PAS higher than 1. 

Note that this measure removes ambiguity only as far as self-report by the Perceptual 

Awareness Scale (PAS) is deemed reliable for evaluating visual awareness.  

 

Figure 15e shows the distribution of unnormalized reports (REn) by DORn-1,n, for the 

entire sample, split by n-1 Gabor visibility, along with the best-fitting derivative of 

Gaussian function and 95% prediction intervals for each condition (n-1 unmasked/n-1 

masked). On visual inspection, a neat derivative of Gaussian shape characteristic of 

positive serial dependence effects can be observed in relation to n-1 unmasked Gabors. 

The coefficient values for this function are: a=11900 (3383 – 20420), s=31.25o (20.38 – 

42.12). The positive value of a and its 95% confidence interval indicates that serial 

dependence by n-1 unmasked Gabors is attractive and statistically significant: the peak 

amplitude of the effect, at 31.25o stimulus difference, was 2.95o -larger than when 

considering the entire sample (n-1 unmasked and masked Gabors, 1.80o). The width of 

the function is similar to that reported by Fischer and Whitney (Fischer & Whitney, 

2014), while the size of the peak effect is intermediate between the different studies 

(Fischer & Whitney, 2014; Fritsche et al., 2017). 

 

Concerning masked, reportedly unseen stimuli, the best-fitting function indicated a 

complete absence of attractive serial dependence, as shown by the negative value and 

broad confidence intervals of the amplitude a coefficient: a=-8.474*105 (-3.999*108 – 

3.982*108), s=376.7o (0 - 6.018*104). This is also shown graphically in Figure 15e, as the 

function (the red line) follows closely the zero line along the horizontal axis (null bias as 

a function of DORn-1,n). 
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Similar results were obtained when reanalysing the data based on normalized repots 

(zREn), in order to remove unrelated sources of bias -as shown in Figure 15f. For n-1 

unmasked Gabors, significant positive serial dependence is observed: the best-fitting 

DoG function (plotted in green) has a positive, statistically significant amplitude - 

a=217.9 (79.95 – 355.8), s=16.42o (11.24 – 12.61), corresponding to a peak effect of 

0.1956 z-scores for an angular difference of 16.42o with the previous Gabor.  

 

Conversely, for n-1 masked, reportedly unseen Gabors, the best-fitting function was 

wider and has much lower amplitude (as seen in Figure 15e); prediction intervals show 

that not even at the optimal DORn-1,n for peak effect is the function value significantly 

different than zero. The coefficients of the function confirm this: a=210.9 (-162.9 – 

584.6), s=29.68 o (1.998o – 57.36o). In terms of z-scores of normalized response error, 

the amplitude of the peak effect is 0.0579, but it is not statistically significant.  

 

For Gabors located further backwards in trial history, no significant serial dependence 

effect was seen, neither for unmasked nor for masked Gabors at n-2 or further positions. 

 

In summary, there is a statistically significant attractive effect of n-1 orientation on 

current response (serial dependence), only when the Gabor patch in trial n-1 was 

unmasked (visible). In this condition, the tuning width and peak amplitude of the effect 

is similar to that seen in previous studies, particularly if the function is fitted on absolute 

response errors as in analyses by other authors. By contrast, when the n-1 Gabor patch 

was masked by continuous flash suppression (CFS), and did not reach awareness 

according to self-report, there is no evidence for any attractive serial dependence. The 

best-fitting DoG for unseen Gabors has a positive but non-significant amplitude when 

fitted on normalized response errors, and a non-significant negative (virtually flat) 

amplitude when using absolute response errors as in previous studies on serial 

dependence. 

 



 

 

 

 

 

164 

As a further check, we considered the case of the non-significant positive DoG that 

appears for n-1 masked Gabors and normalized reports (zREn) – see red plot in Figure 

15f. It is very likely that it represents a noisy pattern without serial dependence and not 

a very weak serial dependence effect in relation to masked Gabors -especially since 

results for unnormalized reports, in the format utilised by other authors, are completely 

unambiguous on this regard (see red plot in Figure 15e). Nevertheless, we also recalled 

that we had obtained a weak correlation between current orientation and report for 

masked, reportedly unseen Gabor (as reported in section 2.2) -which would suggest an 

above-chance performance even when Gabors are supposedly invisible. As mentioned 

above, this correlation was driven by a few participants and only some specific blocks of 

the session. We conjectured that those participants may have actually seen some of the 

masked Gabors (even if they did not report it so), due to adaptation to the mask, 

misalignment of the dichoptic presentations, the Gabor contrast not being low enough, 

etc. If that was the case, this may have generated a very weak serial dependence pattern 

for supposedly unseen Gabors. Thus, we decided to apply a strict classification of n-1 

Gabor ‘visibility’ based on objective performance. We removed all blocks with masked 

Gabors (and PAS=1) where there was any evidence for a positive correlation between 

orientation and response, even anecdotal evidence (BF+0>1) – in total 7 blocks out of 

120. Likewise, we also removed all blocks with unmasked Gabors (and PAS>1) with less 

than moderate evidence for a positive correlation (BF+0<3) – 5 more blocks in addition 

to the previous 7. Furthermore, we also excluded the datasets of other two participants 

-12 blocks- who chose not to produce orientation reports when the Gabor was masked 

(and therefore performance for ‘unseen’ stimuli could not be assessed). Figures 15g and 

15h present serial dependence analyses in relation to n-1 unmasked and masked 

Gabors, after excluding data on the basis of objective performance. 15g considers 

absolute errors, while 15h employs normalized z-scores. In both cases, as is clear on 

visual inspection of the plots, there is attractive serial dependence for n-1 unmasked 

Gabors, and complete absence of any bias for n-1 masked Gabors. This may be seen to 

provide further support to our conclusions. Nevertheless, we cannot objectively access 

Gabor visibility, and we cannot rule out that truly invisible Gabors were associated with 



 

 

 

 

 

165 

above-chance performance in orientation estimation. Thus, the data selection made for 

these analyses, based on objective performance, should be consider merely exploratory. 

Self-report (PAS score) remains the criterion for visibility and the key analyses are those 

depicted in Figures 15e – 15f and detailed in previous paragraphs. 

 

In conclusion, our results show that serial dependence only arises if the inducing 

previous stimulus was processed at higher-levels of the visual hierarchy, giving rise to 

perceptual awareness; conversely, the effect is absent if only early sensory processing 

was involved. This is the case even for a low-level feature-dimension such as orientation, 

which is processed to a great extent at the primary visual cortex V1 (Hubel & Wiesel, 

1977), and contrary to the preservation of low-level negative after-effects in similar CFS 

paradigms and in absence of perceptual awareness (Blake et al., 2006; He & MacLeod, 

2001; Lin & He, 2009; Maruya et al., 2008). Interestingly, we did not observe a similar 

dissociation of regression effects by visibility (i.e. we did not observe a regression to the 

visible mean), as would have been expected if both effects were aspects of the same 

process; however, the negative findings may likely be explained by experimental 

constraints (particularly related to the learning process of the block statistics). At any 

rate, these results are consistent with our findings on serial dependence on a higher-

order statistical property such as variance, where positive serial dependence was 

exclusively seen in presence of high-confidence decision-making about the studied 

dimension. 
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CHAPTER 5: MODELLING SERIAL DEPENDENCIES IN 

VISUAL VARIANCE 
 

 

In our experiments on serial dependence in variance we have found evidence 

for two opposite history-dependent biases operating at different timescales, 

and likely arising at different levels of perceptual decision-making: a positive 

effect toward recent presentations, driven by decision processes, and a 

negative, longer-lasting effect, compatible with sensory adaptation. 

Previous studies have separately modelled these two effects: (i) attractive 

recency bias by iterative Bayesian operations (a process akin to a Kalman 

filter) and (ii) sensory adaptation by population codes subject to exposure-

dependent gain changes. We built a two-layer model wherein a stimulus is 

encoded into a probabilistic sensory response in the lower layer (sensory 

layer), which is formed by population code that give rise to the negative bias. 

The sensory response (or likelihood probability) is then transferred to a 

decision layer where it is combined with a prior probability distribution 

containing information of all previous iterations, which is updated on a trial-

by-trial basis. The model’s judgment about the stimulus results from this 

Bayesian combination -thus explaining the positive bias to prior history. This 

two-layer model, based on our conclusions about the mechanisms of 

negative and positive perceptual biases, was able to replicate the actual 

serial dependences encountered in our experiments at their approximate 

timescales. 

 

 

Our studies on serial dependence in the processing of visual variance exemplify a case 

of contextual modulation of perceptual decisions by previous experience. Our results as 

well as research works by other authors have identified two different history-dependent 
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biases operating at different timescales: a positive (attractive) serial dependence 

whereby reports about current perceptual decisions are attracted toward recent 

perceptual history (Bliss et al., 2017; Cicchini et al., 2014; Fischer & Whitney, 2014; 

Fritsche et al., 2017; Ryotal Kanai & Verstraten, 2005; Alina Liberman et al., 2014), and 

a negative (repulsive) after-effect driven by more prolonged exposure, or else further 

removed in history (adaptation after-effects) (Campbell & Maffei, 1971; Fritsche et al., 

2017; Ryotal Kanai & Verstraten, 2005; Kohn, 2007; Roseboom et al., 2015).   

  

It has been proposed that these two opposite effects have different biological roles: 

positive serial dependence would help to smooth away sensory noise and promote 

perceptual stability, whereas negative after-effects would adapt the perceptual 

transducer to the statistics of the current environment to maximize sensitivity around 

the most likely stimulus intensities (Fischer & Whitney, 2014; Fritsche et al., 2017). 

 

Furthermore, our own findings suggest that these effects may arise at different levels of 

perceptual processing: apart from their different timescales, in our data the positive bias 

appears only in relation to high-confidence, dimension-specific decisions. Conversely, 

the negative bias is unrelated to decision-making and, although often becomes evident 

for less recent history, may even be observed for very recent presentations if the 

conditions for appearance of the competing positive bias are not met, such as when low 

confidence was reported at that point. This suggests that both effects are independent, 

and not an early and late stage of a single process. Classically, negative after-effects have 

been regarded as the product of sensory adaptation (Kohn, 2007) - although their 

sensory origin is in question concerning high-level dimensions (Storrs, 2015). On the 

other hand, our findings about serial dependence are in line with other studies 

proposing that it arises as decisional representations interact in working memory, and 

not as a bias on perception (Bliss et al., 2017; Fritsche et al., 2017; Suárez-Pinilla et al., 

2018b) – but see the opposite claim in (Cicchini et al., 2017; Fischer & Whitney, 2014; 

John-Saaltink et al., 2016) and the possibility, raised by Kiyonaga et al. (A. Kiyonaga et 
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al., 2017), that serial dependence is a widespread effect arising at multiple levels of 

processing. 

 

We sought to build a model capable of reproducing these two observed effects at their 

corresponding timescales. Based on the abovementioned insights on their likely origin, 

we implemented a two-layer model, formed by a sensory layer and a decision layer, that 

give rise to the negative and positive bias, respectively. We based the structure of the 

sensory layer on previous works that model sensory operations as a result of population 

codes subject to exposure-dependent gain changes (Heron et al., 2012; Jazayeri & 

Movshon, 2006; Roach, Heron, Whitaker, & McGraw, 2011). As for the decision layer, 

we implemented a trial-by-trial Bayesian computation with an iteratively updated prior, 

as has been previously employed for describing both regression effects (attraction to 

global history) and recency biases (attraction to recent presentations) in perceptual 

decision-making (Kalm & Norris, 2017; Petzschner & Glasauer, 2011).  

 

Briefly, in each iteration, a certain stimulus magnitude is received on the sensory layer 

and transduced into a noisy sensory response subject to negative adaptation after-

effects. This sensory response is not a single value; rather, it takes the form of a 

probability density function (PDF) characterizing the likelihood that the actual neural 

response had been produced by each possible stimulus magnitude.  

 

This likelihood distribution is then forwarded to the decision layer. In order to translate 

a noisy probability function into a single perceptual judgment, decision-making is 

optimized by taking advantage of the information about previous perceptual history: 

how frequent, and therefore how likely to occur, are the different stimulus magnitudes 

a priori, i.e. before receiving any information about the current sensory input. This is 

also characterized by a probability function summarizing the statistics of previous 

iterations of the model, termed prior distribution. The combination of the prior and 

likelihood distributions in a way akin to Bayesian decision theory results in a posterior 

probability function, expressing how likely is each possible stimulus magnitude to have 
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actually started the current iteration, given the previous history and the current sensory 

response. The output of the model, i.e. its judgment1 about the received stimulus 

magnitude, is the magnitude at which the posterior function reaches its maximum. This 

posterior distribution, summarizing the entire sensory history up to the current 

iteration, becomes the basis of the new updated prior to be combined with a new 

sensory response in the next iteration. Such dependence of previous history explains 

the decision-based positive serial dependence. 

 

 

 

 

1. MODEL SUMMARY 

 

Figure 16 presents a graphic summary of the model structure. 

 

 

                                                        

 

 
1 Henceforth we will refer to subject’s or model’s responses as judgments (of the presented stimulus 

magnitude in each trial), to disambiguate from population responses of individual neural populations of 

the sensory layer, and from sensory response (which is the pooled response of all the neural populations 

of the sensory layer, i.e. the likelihood distribution in one trial). However, we retain the term ‘response 

noise’ for the noise corrupting the posterior distribution (and thus forming the response distribution) 

before judgment selection, as it is more standard than ‘judgment noise’. We also employ other 

established terms like response preparation, response execution, etc, in relation to downstream 

processes responsible for managing the posterior distribution and producing a judgment. 
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Figure 16. Model: Basic structure. The model performs perceptual decision-making across two layers: a sensory layer 

which processes the information from the current stimulus by neural population codes and is subject to exposure-

dependent gain reduction, and a decision layer which makes an optimal judgment by a Bayesian combination of the 

sensory response from the lower layer and the information from the previous stimulus history, which is updated on 

a trial basis. Thus, negative and positive biases with respect to previous history are generated at different levels of 

perceptual processing and have different properties and timescales. The position of the free parameters within the 

model structure is detailed on the figure (see section 2.2 for further information). 

 

 

 

1.1. SENSORY LAYER: POPULATION CODES 

 

Negative after-effects have been successfully modelled with population codes (Heron et 

al., 2012; Jazayeri & Movshon, 2006; Roach et al., 2011). Population codes are a 

representation of the neural code (that transduces stimulus magnitudes into sensory 
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responses) in form of a series of neural populations, each sensitive to some preferred 

stimulus magnitudes. This preference can be modelled by associating each neural 

population to a tuning function: a probability function expressing how likely is each 

neuron to produce a response as a function of the stimulus magnitude it is exposed to.   

 

Thus, the response of a neuron part of a given population (which may be expressed in 

terms of firing rate) will depend on the received stimulus and the corresponding value 

of that neural population’s tuning function, but also on two other factors. The first is the 

internal noise of the system, which explains its probabilistic nature. The second, and key 

to the working of our model, is the neural gain, i.e. the scaling factor relating stimulus 

and intensity of neural response.  

 

The actual sensory response will result of the combination of the responses from all 

neural populations. Because there is not an unambiguous relationship between stimulus 

magnitude and neural activity, this sensory response, as its components, is also 

probabilistic: it may be characterized by a probability function expressing the likelihood 

of each stimulus magnitude to have generated the actual response. In our model, this is 

the output of the sensory layer and is called the likelihood distribution, a Bayesian term 

justified by its role in the Bayesian-like computations that will take place in the decision 

layer. 

 

By having neural gain subject to exposure-dependent changes, we can use population 

codes to model history-dependent modulation of current perception. Plus, both the 

selectivity of neural populations to certain stimulus magnitudes and the gain changes 

are biologically plausible and have been demonstrated for several perceptual 

dimensions (Carandini & Heeger, 2013; Dragoi, Sharma, & Sur, 2000; He, Cohen, & Hu, 

1998; Kohn, 2007). Specifically, population-code models with exposure-dependent 

‘fatigue’ (gain reduction) have been successfully employed to reproduce adaptation 

processes responsible for negative after-effects (Heron et al., 2012; Jazayeri & Movshon, 

2006; Roach et al., 2011).  
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In order to model a reversal from positive to negative after-effects, a parsimonious 

approach might establish an exposure-dependent modulation of neural gain that caused 

first a short enhancement and a subsequent, more prolonged reduction. In this regard, 

Whitney and colleagues have modelled their serial dependence data on the basis of 

changes in gain or tuning of neural population codes (Fischer & Whitney, 2014). 

However, as stated above, our research suggests that both effects have different 

properties and purported origins: the positive bias likely arises from decisional rather 

than sensory processes, and the negative bias seems to appear almost as early as the 

positive effect but last for much longer, only becoming evident when the competing 

effect declines. For these reasons, in our model the sensory layer generates only 

negative after-effects, while the positive serial dependence arises from the decision 

layer. 

 

 

 

1.2. DECISION LAYER: BAYESIAN-LIKE KALMAN FILTER 

 

In our model, positive serial dependence arises from a Bayesian-like combination of the 

current noisy sensory response (the likelihood distribution, output of the sensory layer) 

and a prior probability of encountering certain stimulus magnitudes, given by trial 

history. 

 

Thus, the prior distribution acts as a sort of summary memory representation, 

responsible for the attractive bias toward previous sensory history. As new information 

is received in each model iteration (i.e. each trial), this memory needs to be updated. 

Besides, it seems reasonable that recent sensory input should be given more weight in 

constructing the prior for a certain trial, due to memory limitations and the need for a 

balance between perceptual stability and adaptation to environmental changes. This is 

consistent with the attractive bias exerted by the recent trials in our data. 
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In order to achieve an optimal integration of information, Kalman filters provide an 

algorithm for recursive, Markovian update of the prior probability when both this and 

the likelihood are Gaussian functions, and have been used efficiently for decoding neural 

activity in the motor cortex (W. Wu, Gao, Bienenstock, Donoghue, & Black, 2006) or 

explaining other biases in perception, such as iterative estimations of displacement 

(Petzschner & Glasauer, 2011) and temporal regularities (Luca & Rhodes, 2016).   

 

In the first iteration of the model, this prior is a uniform probability distribution, as the 

absence of previous sensory inputs, and therefore of previous knowledge about the 

statistics of the environment, renders all magnitudes equally likely a priori. In following 

iterations, the posterior distribution generated in the previous trial (by combination of 

that trial’s prior and likelihood distributions) becomes the prior for the current trial after 

corruption by memory noise.  

 

The likelihood distribution produced in the sensory layer is forwarded to the decision 

layer and combined with the prior in order to form the posterior distribution. The 

simplest case would be to assume an optimal, purely Bayesian combination, i.e. the 

product of both Gaussians: 

        (1) 

 𝑃6𝑆 𝑅9 : = ;6" <9 :∗;(<)
;(")

                                                                                                           

 

-where R is the sensory response generated by the stimulus S; assuming all neural 

responses are equally likely a priori and therefore discarding P(R).  

 

The resulting posterior distribution, evaluated at each stimulus magnitude within the 

perceptual space, represents the likelihood of each stimulus magnitude to have started 

the current iteration of the model, according to a Bayesian framework that takes into 

account previous knowledge of the environment. We assume that the model behaves 
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optimally, so that the selected judgment is the peak (i.e. the mean) of the posterior of 

the trial. However, the judgment is not selected directly from the posterior, but from 

the response distribution, which results from the posterior being transferred to areas 

responsible for response execution and corrupted by response noise. The response 

distribution, evaluated at each magnitude of the perceptual space, represents the 

likelihood of reporting that magnitude as judgment in response to the received stimulus. 

Response noise does not cause any bias in the response distribution, which has the same 

mean/peak as the posterior distribution but a larger variance -see below for detail. 

 

As stated before, this posterior becomes the prior for next trial after corruption by 

memory noise. 

 

 

 

 

2. DETAILED DESCRIPTION 

 

This section is presented for completeness, as the basic structure of the model has been 

described above (section 1). The reader may choose to skip this part and continue in the 

Results section (section 3). 

 

2.1. STIMULI 

 

We applied the model to motion variance, a statistical feature-dimension that may be 

translated to a linear scale -in other words, there are lower and higher values, and two 

distinct ends along the perceptual space, unlike circular magnitudes like orientation or 

RDK motion direction. Following Petzschner et al. (Petzschner & Glasauer, 2011), 

stimulus magnitudes are log-transformed before entering the model: 
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         (2)	

𝑆@AB = log(
𝑆@FG
𝑠A
) 

                

where so=0.01 is a small normalization constant. This log-transformation represents 

compressive non-linear mapping of stimulus magnitudes along the perceptual scale and 

the power law for the relationship between stimulus magnitude and response precision. 

 

The range of considered stimulus magnitudes (or perceptual space) largely corresponds 

to the range of allowed responses. Arbitrarily, the logarithmic perceptual space is 

formed by 90 evenly spaced values between the log-transformed values for 5o 

(log(5/0.01) =  6.2146) and 90o (log(90/0.01)= 9.1050). The model judgments can only 

take values that form part of the perceptual space. 

 

The model represents information related to perceptual processing in probabilistic 

terms – thus, sensory response, prior information, etc, are defined as Gaussian 

probability density functions (PDF) computed over the perceptual space. 

 

 

 

2.2. PARAMETERS 

  

The model has 6 free parameters, as listed below: 

 

1. Layer 1: sensory layer (population codes subject to gain changes that transduce 

a stimulus into a likelihood distribution): 

 

a. Parameters for gain change: 
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i. ampgain: modulates the amplitude of the gain field of each neural 

population, i.e. the maximal gain reduction exerted by the activity 

of a neural population. 

ii. σgain : modulates the breadth of the gain field of each neural 

population.  

iii. σrecovery : modulates the rate of recovery of the gain reduction, in 

seconds. 

 

b. Parameters for precision of the likelihood (sensory precision):  

i. σtuning : the standard deviation of the tuning function of each 

neural population – i.e. the selectivity of each neural population 

to its preferred stimuli. 

 

2. Layer 2: decision layer (combination of likelihood and prior distribution for 

Bayesian-like decision-making): 

 

a. Parameters for precision of the prior (memory noise):  

i. σmemory : memory noise added to the previous trial posterior 

distribution to form the current trial’s prior. 

 

b. Parameters for response precision: 

i. σresponse : response noise added to the current trial’s posterior 

distribution to form the response distribution. It represents all 

sources of response noise occurring after the generation of a 

perceptual decision. 
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2.3. MODEL COMPUTATIONS 

 

This section details the computations performed on a single trial (n), since the stimulus 

Sn is received until a judgment about its magnitude is output by the model (Jn).  

 

 

2.3.1.  Sensory layer 

 

Neural populations 

 

The sensory layer is formed by a series of np neural populations NP1, NP2 … NPnp, each 

of them with a preferred sensitivity to a certain stimulus magnitude.  

 

Arbitrarily, we have established that the sensory layer for the variance experiment has 

np = 18 neural populations, each with a maximum sensitivity (Smax1, Smax2, Smax3, … Smaxnp) 

to 18 stimulus magnitudes evenly distributed along the (logarithmic) perceptual space: 

thus, preferred stimulus magnitudes are (in log space): 6.21 – 6.38 – 6.55 … 9.11.  

 

 

Tuning functions  

 

Each neural population has a tuning curve F characterizing its specific (yet probabilistic) 

sensitivity to certain stimuli. Following Jazayeri et al. (Jazayeri & Movshon, 2006), this 

tuning function is defined per trial as the product of the baseline tuning function, Fo(NP) 

by a gain factor gainn(NP)  – see below for details. 
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Baseline tuning function 

 

The baseline tuning function (of a neural population NP) is defined as a probability 

density function characterizing how likely is a neuron of that population to generate a 

signal in response to each stimulus of the perceptual space. Conversely, this tuning 

function also represents, in presence of a response from that neuron (a firing signal), 

the likelihood that such response has been produced by each of the possible stimuli of 

the perceptual space – by Bayes’ rule and disregarding constant terms (the PDF is 

normalized so that it sums to 1).  

 

Specifically, the baseline tuning function of NP is a Gaussian PDF defined over the whole 

perceptual space (see ‘Stimuli’ section above), with mean at the stimulus with maximum 

sensitivity (Smaxnp) and standard deviation σtuning , wherein the latter is a free parameter 

of the model representing sensory precision, which takes the same value for all neural 

populations:                                          

        (3) 

𝐹A(𝑁𝑃) = 𝑁6𝑆KL0GM, 𝜎NOGFGB: = 	
1

√2𝜋 ∗ 𝜎NOGFGB
∗ 𝑒

/
60/<QRSTU:

1

2∗3VWTXTY
1

 

 

for x ∈ perceptual space. 

 

Gain 

 

As previously stated, the tuning function of each NP is the product of this baseline tuning 

function by a gain factor that changes on a trial-wise basis: 

        (4) 

𝐹G(𝑁𝑃) = 𝑔𝑎𝑖𝑛G(𝑁𝑃) ∗ 𝐹A	(𝑁𝑃) 

 

where the subscript n refers to the considered trial. 
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For the first trial of the experimental session, gain1(NP)=1 for all neural populations; this 

value is established arbitrarily, and indicates that at the onset of the experiment we 

assume that the sensory layer is unbiased along the entire perceptual space.  

 

The gain of each NP is subject to a decrease driven by the neural activity of the sensory 

layer, i.e., by the neural response of all NPs in response to stimuli. This gain decrease is 

the result of the addition of the decrease due to the activity of all (np) neural populations 

in response to all stimuli up to the previous trial, with each fractional effect scaled by 

perceptual and temporal distance.  

 

Let us consider the gain factor of NP at trial n (gainn (NP)). It will be the sum of (n-1)*p 

fractional effects, where n-1 is the number of trials prior to the current one and p is the 

number of neural populations of the sensory layer. In each trial, a stimulus Sn’ has been 

received and each neural population has generated a population response R(NP’, Sn’), 

which will have its effect on the current trial gain. Note that we are using Sn’  for the 

stimulus received in trial n’ (n’< n) which elicits a certain response in the neural 

population NP’. In turn, this response will have an effect on the gain of the neural 

population NP at trial n and thus will modulate the response of NP to stimulus Sn, R(NP, 

Sn). Later on we will see how neural responses are computed. We assume that the 

response of the current trial does not have an instant effect on sensory gain; rather, the 

gain effect exerted by R(NP’, Sn’) on NP is maximal after stimulus Sn’ offset and decreases 

afterwards. It is also maximal when NP=NP’ and decreases with perceptual distance. 

Unlike with trials, in which we assume the current response does not instantly change 

the gain in the current trial, all neural populations exert an effect on NP, including NP 

itself –but not instantly. 

 

Before applying temporal discount, the maximal fractional effect on gainn(NP) exerted 

by the neural response of NP’, R(NP’, Sn’), is defined as (‘gred’ stands for ‘gain reduction): 
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        (5) 

	𝑔^_`_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑚𝑎𝑥(𝑁𝑃, 𝑁𝑃h, 𝑛h) 	= 𝑎𝑚𝑝BLFG ∗ 𝑆𝑑𝑢𝑟Gl ∗ 𝑅(𝑁𝑃h, 𝑆Gl) ∗
m

√2n∗3YRXT
∗

𝑒
o(pQRSTUopQRSTUl)1

1∗qrstu1                                                                                                           

 

where 

 

1. ampgain is a free parameter which scales the maximal gain reduction (before 

applying temporal discount, and with zero perceptual distance) and is constant 

for all NPs and trials. 

 

2. Sdurn’ is the duration of the stimulus of trial n’. Thus, we assume that the sensory 

response is produced in the sensory layer for the duration of the stimulus, or at 

least it is proportional to such duration, and the gain decrease is also 

proportional to the duration of the neural response that produces such effect. 

 

3. R(NP’, Sn’) is the neural response of population NP’ when receiving stimulus Sn’. 

See below for details. 

 

4. Smaxnp and Smaxnp’ are the preferred stimuli for which populations NP and NP’, 

respectively, have maximum sensitivity; in other words, they are the stimuli at 

which the tuning function of the populations NP and NP’ peak. 

 

5. σgain is the standard deviation of the gain field: a free parameter that modulates 

the breadth of the effect of each neural response on the gain reduction of other 

populations. 

 

In summary, the activity (neural response) elicited on a population NP’ by the stimulus 

Sn’ presented in trial n’ will produce a reduction on the gain of a neural population NP – 

we term this effect fractional as we are considering only the gain reduction driven by a 
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single neural population, NP’. This fractional gain-reduction is maximal right after offset 

of the stimulus Sn’ that elicited the activity, and experience time-discount afterward. The 

maximal fractional gain-reduction effect is positively associated with the population 

response triggered on NP’ by Sn’ and on the duration of stimulus Sn’, and shows a 

Gaussian decrease with perceptual distance between the preferred stimuli of NP’ and 

NP, scaled by the free parameters ampgain and σgain (amplitude and standard deviation 

of the Gaussian gain function).  

 

However, the stimulus presented in trial n’ elicits a neural response not only in one 

neural population, but in all p populations. All of them exert an effect on NP (including 

NP itself). We consider that the maximal gain effect produced by the entire sensory layer 

on NP, as a result of the activity elicited by Sn’ is the sum of all fractional effects:  

        (6) 

𝑔^_`_𝑚𝑎𝑥(𝑁𝑃, 𝑛h) = v𝑔𝑟𝑒𝑑_𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑚𝑎𝑥(𝑁𝑃, 𝑁𝑃hF, 𝑛h)
M

Fwm

	 

                            

This effect is maximal right after Sn’ and presents a Gaussian-shaped decrease with time. 

Thus, it will affect the population response to a later stimulus Sn (n>n’) in an amount 

dependent of the elapsed time between trial n’ and n. Specifically, the gain-reduction 

effect of Sn’ on NP at the moment in which stimulus Sn is received is in function of the 

maximal gain effect, the time between Sn’ offset and Sn onset and the free parameter 

σrecovery, which modulates the decline of the gain effect with time.  As the other free 

parameters, σrecovery takes a single value for each participant and experiment. We will 

explain later why this parameter is termed ‘recovery’.  

 

Formally: 

        (7) 

𝑔^_`(𝑁𝑃, 𝑛, 𝑛h) 	= 𝑔^_`	_𝑚𝑎𝑥(𝑁𝑃, 𝑛h) ∗
1

√2𝜋 ∗ 𝜎^_xAy_^z
∗ 𝑒

/(NFK_(Gh,			G))1
2∗{|}~��}|�1  
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However, the gain of NP (in trial n) is not only affected by a single trial, but by all trials 

up to n. We consider that the total gain-reduction effect on NP in trial n is the sum of all 

gain-reduction effects due to all trials up to n (all n’	∈ 1…n − 1 ), each one scaled by 

the temporal distance between that trial and n. 

 

Formally: 

        (8) 

𝑔^_`_𝑎𝑙𝑙(𝑁𝑃, 𝑛) 	= v 𝑔^_`(𝑁𝑃, 𝑛, 𝑛h)
G/m

Ghwm

 

                                                                 

where gred_all designs the gain-reduction effect exerted on a single neural population, 

NP, by the neural activity of all neural populations due to all the stimuli received 

previous to trial n. This reduction is scaled by perceptual-space distance (to the 

preferred stimulus of NP) and by temporal distance (of the effect of each trial in 

experimental history). 

 

Because we have established before that the initial gain of each neural population is 

Go=1, the gain of NP in trial n will be:  

         (9) 

𝑔𝑎𝑖𝑛G(𝑁𝑃) = 1 − 𝑔^_`_𝑎𝑙𝑙(𝑁𝑃, 𝑛) 

                                                                                

with a caveat: gain can take any value between 0 and 1 (both included), but cannot be 

negative. The model doesn’t admit negative (inhibitory) neural responses in the sensory 

layer.  

                        (10) 

𝑖𝑓	𝑔𝑎𝑖𝑛G(𝑁𝑃) < 0		 → 		 𝑔𝑎𝑖𝑛G(𝑁𝑃) = 0 

                                                                   

Because the effect of each trial in experiment history (n’	∈ 1…n − 1) declines with 

time, when examining the effect that one individual trial has on subsequent iterations, 
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we observe a recovery of the gain-reduction caused by that specific trial. This is why 

σrecovery is considered to measure the rate of gain recovery. 

 

Tuning function 

 

As a recap, the tuning function of a neural population NP in trial n is the product of its 

baseline tuning function by the gain factor of NP (which changes on a trial-wise basis, as 

we have seen): 

        (4) 

𝐹G(𝑁𝑃) = 	𝑔𝑎𝑖𝑛G(𝑁𝑃) ∗ 𝐹A(𝑁𝑃) 

                                                                                    

where 𝐹A(𝑁𝑃) = 𝑁(𝑆KL0GM, 𝜎NOGFGB), a Gaussian PDF defined over the perceptual 

space.  

 

Thus, the value of the tuning function of NP at one specific stimulus magnitude 

presented on trial n (Sn) will depend on three factors:  

 

1. The distance between the maximum sensitivity stimulus of NP (Smaxnp) and the 

presented stimulus Sn. 

 

2. The value of σtuning, which is a free parameter for adjusting sensory precision, i.e. 

internal sensory noise. This value is assumed to be equal for all neural 

populations.  

 

3. The gain of that NP at trial n. 
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Neural response 

 

Neural response of a single neural population (population response) 

 

The neural response elicited on a neural population NP by a stimulus Sn presented in 

trial n, termed R(NP, Sn), is given by the value of the tuning function of NP at Sn:  

      (11) 

𝑅(𝑁𝑃, 𝑆G) = 	𝐹G(𝑁𝑃, 𝑆G) 

                                                                                  

As stated before, the value of the tuning function depends of the distance between 

Smaxnp and Sn, σtuning and gainn(NP).  

 

This is why σtuning is a measure of sensory precision, or internal noise: if σtuning is very 

small, the value of the tuning function of any neural population whose maximum 

sensitivity is not very close to Sn will be very low, and only the neural population that is 

highly tuned to that stimulus will contribute significantly to the overall response of the 

sensory layer: thus, the overall sensory response will be very ‘crisp’ and neatly tuned to 

the veridical stimulus. Conversely, if σtuning is large, the value of the tuning function of 

most neural populations will be large enough to contribute significantly to the overall 

response, even if their peak sensitivity is far from the current stimulus level. In this case, 

the overall sensory signal will be less precise – less informative regarding the stimulus 

that originated it. 

 

For simplicity, our model does not consider external noise: each RDK provides one 

unambiguous variance stimulus, given by the dispersion of the direction of its 

components –even if variance itself is a statistical property related to the precision of 

an ensemble.  
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Overall sensory response – likelihood distribution 

 

Following Jazayeri et al. (Jazayeri & Movshon, 2006), the logarithm of the probability 

distribution representing the neural response elicited by the entire sensory layer (when 

receiving Sn) is given by the weighted average of the logarithms of the tuning functions 

of all neural populations, each one weighted by its neural response. 

 

Formally: 

       (12) 

log6𝑅(𝑆G): =v𝑅(𝑁𝑃F, 𝑆G) ∗ log6𝐹G(𝑁𝑃F):
M

Fwm

 

                                                                                                   

This probability distribution is a function defined along each considered value of the 

perceptual space. We now normalize it by the sum of all its values along the perceptual 

space so that it sums to one: 

 

Let ps be the number of considered values in the perceptual space (90 in our 

experiment), xi each of those values and SumR(Sn)  the sum of all values of R(Sn) for all xi 

in the perceptual space: 

                   (13) 

SumR(Sn) = 	v𝑅(𝑆G)(𝑥F

M�

Fwm

) 

     

However, previously we have calculated log(R(Sn)) instead of R(Sn) directly.  

      (14) 

SumR(𝑆G) = 	v𝑅(𝑆G)(𝑥F

M�

Fwm

) =v𝑒���	("(<T)(0F))
M�

Fwm

			 

 

Therefore:  
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       (15) 

log	(𝑅GA^K(𝑆G)) = log� "(<T)
<OK"(<T)

� = 	log(𝑅(𝑆G)) − log6𝑆𝑢𝑚𝑅(𝑆G): = log	(𝑅(𝑆G)) −

	log	(∑ 𝑒���	("(<T)(0F)))M�
Fwm                                                                          

 

The normalized response of the entire sensory layer after reception of a stimulus Sn is 

what we call the likelihood distribution: Lkn = Rnorm(Sn), representing the probabilistic 

sensory response to stimulus Sn, defined at each value of the perceptual space.  

      (16) 

𝐿𝑘G = 𝑅GA^K(𝑆G) 	= 	 𝑒���	("T��Q(<T)	) 

 

The mean and standard deviation of the likelihood distribution are calculated weighting 

values by their respective probability: 

       (17) 

𝜇��G 	= 	v𝐿𝑘G(𝑥F)
M�

Fwm

∗ 𝑥F 

                                                                                               

      (18) 

𝜎��G 	= 	�v	𝐿𝑘G(𝑥F) ∗ 				(𝑥F −	𝜇��G)2	
M�

Fwm

 

                                                                

In normal conditions (i.e. unless gain-related parameters take highly deviant values), the 

likelihood distribution can be approximated to a Gaussian shape: 

       (19) 

𝐿𝑘G 	≈ 𝑁(𝜇��G, 𝜎��G) 

                                                                                                     

For simplicity, in the next steps we will treat the likelihood as a Gaussian probability 

density function computed over the perceptual space. 
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This likelihood distribution is the neural response generated in the sensory layer by the 

stimulus Sn: in other words, the output of the sensory layer as produced by the model, 

which is then transferred forward to the decision layer.  

 

 

2.3.2.  Decision layer 

 

Computation of the posterior distribution 

 

The stimulus presented in a given trial n (Sn) is not directly accessible by the visual 

system: only the noisy sensory response that such stimulus has produced in the sensory 

layer is accessible –i.e. the likelihood probability distribution. As previously stated, this 

probability represents how likely is the actual neural response to have been produced 

by each possible stimulus magnitude of the perceptual space.  

 

Within a Bayesian framework, the optimal decision about the stimulus magnitude must 

combine the noisy sensory information of the current trial with the knowledge of which 

stimuli were presented in previous iterations. The latter is conveyed by the prior 

distribution, which represents the probability of encountering different stimuli given the 

experimental history. This prior distribution is stored in the decision layer and 

continuously updated with the information provided by each new trial.   

 

The posterior distribution is the probability function resulting of the combination of the 

likelihood and prior distributions. It represents the probability of each value of the 

perceptual space to have been the presented stimulus magnitude, given the sensory 

information and the previous history. 

 

At the beginning of the experiment (trial n=1), in absence of previous information, all 

stimuli are deemed equally likely a priori; therefore, trial 1 has a flat (uniform) prior 

defined over the perceptual space. Since the relative probabilities of each perceptual 
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magnitude are unaffected by the flat prior, the posterior of the first trial is equal to the 

likelihood:  

       (20) 

𝑃𝑜𝑠𝑡m 	≈ 𝑁(𝜇��m, 𝜎��m) 

                                                                                                  

All probabilities are normalized so that their sum is always 1, so the combination with a 

flat prior does not change the value of the function at each value of the perceptual 

space. 

 

In subsequent trials, however, the prior can be approximated to a Gaussian probability 

density function computed over the perceptual space:  

       (21) 

Prior	 ≈ N(𝜇;^FA^, 𝜎;^FA^) 

 

We will later see how the prior is computed.  

 

The posterior distribution is obtained from an optimal Bayesian combination of 

likelihood and prior. The result of this computation is a Gaussian probability density 

function whose mean is a weighted average of the mean of the likelihood and prior 

(Petzschner & Glasauer, 2011): 

      (22) 

𝜇;A�N = 	𝑊;^FA^ ∗ 	𝜇;^FA^ + (1 −𝑊;^FA^) ∗ 𝜇��  

                                            

where 

       (23) 

𝑊;^FA^ = 	
𝜎��2

𝜎;^FA^2 +	𝜎��2
 

                                                                                           

and 
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(24) 

𝑊�� = 1 −	𝑊;^FA^ = 		
𝜎;^FA^2

𝜎;^FA^2 +	𝜎��2
 

                                                                     

Thus, the mean of the posterior distribution is a weighted average of the mean of prior 

and likelihood, wherein each one is weighted by the variance of the other distribution. 

This means two things:  

 

1. The bias exerted by previous history at the decision layer is always attractive, 

since the mean of the posterior will be an intermediate value between 𝜇��  and 

𝜇;^FA^. In our model, repulsive effects are generated at an earlier stage of 

processing, by exposure-dependent gain-decrease in the sensory layer. 

 

2. Reliance on previous history depends on the precision of the current sensory 

signal (a more precise sensory signal implies lower 𝜎��2  and 𝑊;^FA^  ) and of the 

previous history (which might be considered memory precision: the more 

precise, the lower 𝜎;^FA^2  and the larger 𝑊;^FA^). In other words, reliance on 

previous history will be stronger when the current sensory signal is highly 

imprecise, or when the memory representation of previous history is highly 

precise.  

 

The variance of the posterior is also dependent on the variance of prior and likelihood: 

       (25) 

𝜎;A�N2 = 	
𝜎;^FA^2 ∗ 𝜎��2

𝜎;^FA^2 +	𝜎��2
 

                                                                                        

The posterior distribution has two roles in the model: providing the basis for response 

selection and the basis for the new, most updated prior for the next trial. In order to 

fulfill these two roles, we assume the posterior is, on the one hand, transferred to 

downstream areas responsible for response preparation and execution, and on the 
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other hand, stored within the ‘memory’ of the decision layer. However, the posterior 

does not come out of these processes intact: it is corrupted by two separate sources of 

Gaussian noise: response noise and memory noise, respectively.   

 

 

Judgment 

 

The posterior distribution provides the basis for response selection. However, the 

response (judgment) is not extracted directly from the posterior distribution. As stated 

in the previous section, the posterior is transferred to downstream areas responsible for 

response preparation and execution, where it suffers corruption by Gaussian response 

noise with properties 𝑁(0, 𝜎"). This ‘corruption’ is mathematically expressed by 

convolution of two Gaussians: the posterior distribution and the Gaussian response 

noise. The resulting distribution (henceforth called the response distribution) is a 

Gaussian probability density function with properties:  

       (26) 

𝑅𝑒𝑠𝑝G = 𝑁(𝜇;A�NG, ¡𝜎;A�NG2 +	𝜎^_�MAG�_2 	) 

                                                                 

The measure of response noise sresponse is a free parameter in our model.  

 

The model’s judgment about stimulus Sn is obtained from this response distribution: 

specifically, it corresponds to µresponse = µPostn, i.e. to the value were the response 

distribution peaks. Thus, our model always selects the optimal response, the most likely 

value to correspond to the presented stimulus, after combining the current sensory 

information and the previous history.  Note that the response noise does not produce 

any bias, since the peak/mean of the response distribution is the same as the peak of 

the posterior. However, it increases the width of the distribution, with respect to the 

posterior, and therefore, reduces the difference between the most likely and less likely 

values, so that non-optimal responses (i.e. different from the peak of the distribution, 



 

 

 

 

 

191 

such as those that are performed by real subjects) will be more likely under the present 

conditions than if the response was based directly on the posterior. Thus, response noise 

does not affect model judgments, but it is relevant for parameter selection through 

maximum likelihood estimation (see below). 

 

 

Prior update 

 

As stated before, the posterior distribution is also stored in the decision layer, where it 

will become the basis of the prior for the next trial, representing the most updated 

knowledge of the environment given by the summary of all previous stimuli, with 

greater weight for the most recent ones. However, between the current trial and the 

next one, this posterior is corrupted by Gaussian memory noise, with the shape 

𝑁(0, 𝜎K_KA^z), so that the prior of the next trial will be a Gaussian distribution resulting 

of convolution of posterior and memory noise: 

       (27) 

𝑃𝑟𝑖𝑜𝑟G¢m = 𝑁 £𝜇;A�NG, ¡𝜎;A�NG2 +	𝜎K_KA^z2 ¤ 

                                                               

smemory is the sixth free parameter in our model. Similar to the case of response noise, 

the prior is unbiased with respect to the posterior of the previous trial (𝜇;^FA^G¢m =

𝜇;A�NG), but because of memory corruption it is less sharp than the posterior.  

 

 

 

2.4. PARAMETER SELECTION 

 

The values for the six free parameters (ampgain, σgain, σrecovery, σtuning, σmemory, σresponse) are 

selected based on which combination of values has maximum likelihood given the model 

and the actual data. 
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As previously indicated, the likelihood of a judgment Jn produced by a participant in a 

given trial, given the model and a specific set of parameter values, corresponds to the 

value that the response probability density function (defined along the perceptual 

space) takes at Jn. In turn, the likelihood of the whole sequence of judgments provided 

in the experiment (i.e. the likelihood of the entire dataset) will be the product of the 

likelihoods of the individual trials: 

       (28) 

 𝑃(𝑑𝑎𝑡𝑎/𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) = 	𝑃(𝐽m ⋂ 𝐽2 	…⋂ 𝐽G) = 	𝑃(𝐽m) ∗ 𝑃	(𝐽2/𝐽m)	… ∗ 	𝑃(𝐽G/

𝐽m ⋂ 𝐽2 …⋂ 𝐽G/m) 	= 𝑅𝑒𝑠𝑝m(𝐽m) ∗ 𝑅𝑒𝑠𝑝2(𝐽2)… ∗	𝑅𝑒𝑠𝑝G(𝐽G)                                    

 

where Jn represents the participant’s judgment in trial n, Respn is the response PDF 

produced by the model for trial n, and Respn(Jn) is the value of that PDF at Jn. We can 

treat the conditioned probability as a product of these functions’ values, since the 

response function for each trial, as defined before, is conditioned to all previous trials 

(represented by that trial’s prior).  

 

By Bayes’rule we can obtain the likelihood of a specific set of parameter values: 

       (29) 

𝑃(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠/𝑑𝑎𝑡𝑎) = 	𝑃(𝑑𝑎𝑡𝑎/𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) ∗ 𝑃(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)/𝑃(𝑑𝑎𝑡𝑎) 

 

Since all possible parameter values are considered equally likely a priori, and the data 

(the actual responses) is the same for all tested sets of parameters values, we can 

dismiss P(parameters) and P(data) and conclude that P(data/parameters) will be 

maximal for the same values than P(parameters/data). 

 

The parameter values that are tested in each case are: 

 

1. ampgain: [0, ∞), the sensory layer is only allowed for negative (repulsive) effects 

(ampgain>0, or else for absence of effect ampgain=0). 
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2. σgain, σtuning, σresponse: from 0 to the higher end of the perceptual space (90o). 

 

3. σmemory: from 0 to infinite, since we allow the possibility of complete lack of 

memory, equivalent to a flat prior. 

 

4. σrecovery: from 0 to 60 (seconds). 

 

For each considered dataset, the parameters with maximum likelihood are determined 

by using the Matlab function fminsearchbnd. 

 

Before parameter selection, our experimental data was rescaled to remove systematic 

biases. The rationale of this provision was as follows. For translating the position of the 

response bar along a visual analogue scale into variance reports, in our data analysis we 

employed a linear translation, so that both ends of the response scale corresponded to 

the lowest and highest RDK standard deviation presented during the training (0o and 

90o), and the selected position was assigned a numeric value given the linear distance 

between both ends (for example, the middle point corresponded to 45o). These values 

pertained to an unfamiliar dimension, namely the standard deviation of the von Mises 

distribution for the direction of the individual dots in the RDK. Given the abstract and 

unfamiliar nature of the judged dimension, the use of a visual analogue scale and the 

conventional linear translation, it is not surprising that participants’ average judgments, 

once translated into a number, deviated from the veridical standard deviation, with a 

marked trend to ‘overestimate’ large StD values - especially since the maximum StD 

employed in experimental blocks was 60o, leaving one third of the response scale toward 

the right end free for such apparent overestimation (see Figure 2a). While this 

conventional linear translation was valid for analysing trial-by-trial biases in participants’ 

normalized judgments, our model was not designed to account for systematic biases. As 

a result, using the unmodified reports would have rendered many judgments highly 

unlikely under most combinations of parameter values -since most combinations would 
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produce judgments centred around the veridical value. For this reason, we removed 

these apparent systematic biases (given by our numerical translation of participant’s 

judgments) by subtracting the difference between each participant’s mean response for 

each StD and the veridical StD value. Parameter selection was based on these re-centred 

judgments. 
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3. RESULTS 

 

 

 
 

Figure 17. Model: Results. A pattern of recent positive and less recent negative serial dependencies is observed for 

the model outputs as well as for participants’ responses. 17a - c present data corresponding to half the participants 

that took part in Experiment 1 (subset 1, formed by 15 participants, randomly selected out of 30). Model judgments 
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are based on parameter values fitted for the data of subset 1. 17a. Average relative errors made in the current trial 

(n) as a function of the variance presented in trial n-1 (StDn-1). Relative errors are defined as REn=(Rn-StDn)/StDn, where 

Rn is the reported variance judgment. The blue plot represents participant’s, while the red plot represents model 

judgments. In both cases, error bars indicate the between-participant standard error. An ascending slope is observed 

for both plots, indicative of an attractive bias related to StDn-1. 17b. Average relative errors, normalized within 

participant and current stimulus (StDn), as a function of StDn-1. Again, the ascending slope of both plots (responses, 

outputs) indicates positive serial dependence, although, due to the smaller variability in model outputs compared to 

real responses, the magnitude of the bias appears much larger for the former. 17c. Fixed-effects coefficients for 

Bayesian LMMs for the association between StDn-t (t = 1 … 10) and normalized response or model output in the current 

trial. Positive and negative serial dependencies are seen at similar timescales for participants’ and model judgments. 

The inset shows detail for the positions n-2 to n-10. 17d. Analogous analyses as presented in 17c, but applied to the 

other 15 participants of Experiment 1 dataset (subset 2). Model judgments are obtained by using the parameter 

values fitted for subset 1. 

 

For parameter fitting, we randomly selected a subset of half (N=15) the participants that 

took part in Experiment 1 (serial dependence in variance judgments, reported in Chapter 

1). In the manner described in section 2.4 of the current chapter, ‘Parameter selection’, 

we obtained the parameter values that led to the maximum likelihood given the actual 

data of this subset (henceforth termed subset 1) and the structure of the model. We 

then ran the model with the fitted parameters on the same trial sequences (the 

experimental session of the 15 participants in subset 1) and obtained the corresponding 

model judgments. Finally, we analysed both the participants’ and the model judgments 

for serial dependencies driven by the stimuli presented in past trials, up to n-10. The 

methodology of these analyses is the same that we followed for experimental data 

(Chapter 1). 

 

Figures 17a-c summarize serial dependence analyses on subset 1. The blue plots 

correspond to participants’ actual judgments (after subtraction of systematic, average 

bias, see section 2.4), and the red plots to the model’s predicted judgments. Figure 17a 

presents the average relative response error (defined as REn=(Rn-StDn)/StDn) as a 

function of the StD presented in the previous (n-1) trial, StDn-1. Both plots, corresponding 

to participants and model judgments, exhibit an ascending slope, indicating an attractive 

effect on current judgment in relation with the previous stimulus. In Figure 17a 
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participants and model judgments and unnormalized; on visual inspection, the size of 

the attractive bias (represented by the slope of the plot) seems similar for actual 

responses and model outputs. By contrast, when judgments are normalized within 

participant and current StDn, as presented in Figure 17b, the effect size appears to be 

much larger for the model. This apparent discrepancy is explained by the much lower 

variability in model judgments compared to participants’ real data - since the model 

always selects the optimal judgment, i.e. the peak of the posterior probability 

distribution. Thus, z-scores in normalized model outputs represent a smaller increase in 

terms of unnormalized values, compared to participants’ responses. 

 

In a similar manner than for experimental data (see Figure 2d for example), we analysed 

serial dependence on model outputs by Bayesian LMMs with normalized judgment as 

dependent variable, and StD in a past trial position as independent variable. Figure 17c 

presents the fixed-effects coefficient estimates of 20 (10x2) Bayesian LMMs for 

participants’ normalized response (zREn) -blue plot- or normalized model judgment -red 

plot- as dependent variable, evaluating the effect of StDn-t (t = 1...10, each position 

assessed in a separate model), with random effects grouped by participant’s ID. The 

coefficient estimates represent the increase (in z-scores) observed in normalized 

responses or model judgments for each 1o of increase in previous (n-t) StD. A positive 

bias driven by previous StD is observed in relation to positions n-1 and n-2, while a 

negative effect arises for more remote positions, mainly n-7 and n-8. The timescale of 

both types of history-dependent bias is similar for real participants’ and model 

judgments. Although the positive effect driven by n-1 trial appears much larger for 

model outputs (B= 0.0489, 95% credible intervals (0.0484 - 0.0494)) compared to 

participants’ data (B= 0.0029 (0.0008-0.0049)), this is explained to a great extent by the 

differences in normalized scores, as shown in Figures 17a and 17b. On the contrary, the 

negative effect by less recent history seems of a similar magnitude for normalized 

responses and model outputs, but is weaker for the latter if unnormalized outputs are 

considered. This negative effect is statistically significant at positions n-3, n-7 and n-8, 

peaking for StDn-7: B=-0.0018 (-0.0032 - -0.0003). The inset graph in Figure 17c presents 
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the same results as the main plot, leaving aside position n-1 to better appreciate the 

effect size of serial dependence from n-2 to n-10. The progression of the positive and 

negative serial dependencies (considering normalized reports) is similar for real data 

and model outputs. 

 

We then enquired whether the same parameter values (fitted for subset 1 data) could 

produce similar serial dependencies on a different trial sequence. Thus, we ran the 

model on the remaining 15 participants of Experiment 1 dataset (subset 2), and analysed 

serial dependence in relation to the obtained model judgments. This analysis is depicted 

in Figure 17d, analogous to Figure 17c but concerning subset 2 data. A similar pattern of 

positive and negative serial dependencies is observed in this case.  

 

In conclusion, we built a model on the basis of our conclusions about the origin of the  

two opposite history-dependent biases in perceptual judgments that were observed in 

our experimental data: negative biases of likely sensory origin and positive serial 

dependencies of presumed decisional basis. Operationalized in a similar manner as 

previous models of sensory adaptation and Bayesian decision theory, respectively, these 

biases are obtained for the model outputs in a similar magnitude and timescale as 

encountered for human participants. 
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CHAPTER 6: DISCUSSION 
 

 

In this chapter we discuss the research findings reported in previous chapters 

of Part II of this thesis. Our experiments on serial dependence in visual 

variance have revealed the existence of two different history-dependent 

biases that may be observed in the same experimental paradigm: a positive 

bias in relation to very recent presentations, and a negative effect toward a 

broader, less recent context. Results indicate that the positive serial 

dependence is driven by high-confidence dimension-specific decisions (and 

not by perception per se) and likely subject to time and capacity limitations 

that may suggest the involvement of memory processes. A continuous flash 

suppression experiment about serial dependence in orientation further 

demonstrates that, even for low-level feature-dimensions, serial dependence 

cannot arise from local changes in sensory areas -contrary to negative 

adaptation. Finally, a model based on our conclusions about the basis of the 

two opposite history-dependent biases replicated the observed serial 

dependencies in their approximate timescales. In summary, we argue that 

perceptual decision-making about visual variability (and likely many other 

visual dimensions) is subject to a combination of negative sensory and 

positive decisional biases in order to optimally tune the visual system to 

balance the need for change sensitivity and perceptual continuity in a largely 

stable environment. This chapter draws extensively from the discussion in 

the Journal of Vision article ‘Serial Dependence in the Perception of Visual 

Variance’ (Suárez-Pinilla et al., 2018b). 

 

 

The examination of serial dependence provides a valuable window on perceptual 

processing. In a series of studies, we applied this approach to visual statistics rather than 
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to individual perceptual features: specifically, to variance, a basic trait in the 

interpretation of noisy information about complex visual scenes. We found evidence for 

two opposite serial dependence effects operating on different timescales: an attractive 

(positive) bias associated with very recent variance presentations, which is exerted only 

when a judgment about that dimension was made in the most recent 1-2 trials and high 

confidence was placed in that decision, and a repulsive (negative) bias which appears 

even for the most recent trial history for low-confidence variance presentations, but 

which generally becomes manifest several trials into history and persists for at least ten 

trials.  

 

Several studies on serial dependence have found a positive (attractive) bias towards 

recent perceptual history, which is modulated by attention, enhanced by spatial 

proximity yet not specific to retinal location, takes place in the fovea as well as the 

periphery, and fades after 5-15 seconds but does not require explicit memory (Fischer 

& Whitney, 2014). While control experiments support that this effect does not require 

a motor response, there is an ongoing debate about whether its basis is perceptual or 

post-perceptual: the results of a two-alternative forced-choice discrimination task 

(Fischer & Whitney, 2014) (with a sample size of three participants), a recent 

behavioural study (Cicchini et al., 2017) and a V1-based fMRI study (John-Saaltink et al., 

2016) have been used in support of a perceptual origin, while another study employing 

a combination of appearance and performance tasks has made the case for a post-

perceptual (decisional) source (Fritsche et al., 2017). All four studies examining the 

mechanistic basis of serial dependence have used a low-level feature like orientation; 

nevertheless, serial dependence has also been described for high-level features, 

including facial appearance (Alina Liberman et al., 2014; Xia et al., 2015), relative timing 

(Roseboom, 2017) and statistical properties such as numerosity (Cicchini et al., 2014) 

and ensemble mean (Manassi et al., 2017).  

 

In our experiments on visual variance (a high-order visual statistic), we found a positive 

bias that shares many of the characteristics listed above, but differs in others. In terms 
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of similarities, it operates on a similar timescale (temporal tuning seems to be slightly 

shorter for high-level domains, as shown in a study with face perception (Alina Liberman 

et al., 2014) and also in our data), occurs similarly across presentation eccentricities, and 

is not related to response execution. In addition, it seems to be non-linearly tuned by 

the (di)similarity between previous and current stimulus, although results may be 

confounded by the particularities of our task. On the other hand, it exhibits other 

characteristics that suggest that, for visual variance, the bias depends on decisional 

rather than perceptual processes. First, it is entirely independent of retinal location, 

appearing with similar magnitude for successive stimuli displayed at the same position 

or at an angular distance of 40o – as shown in the peripheral trials in Experiment 1.  

Second, it is independent of a closely related statistical property - the mean direction 

(previous studies have highlighted a strong relationship between mean and variance, 

showing that variance plays an important role in the accuracy and confidence of mean 

judgments) (Fouriezos et al., 2008; John Maule & Franklin, 2015). Together, these 

properties make a low-level, perceptual origin very unlikely. Note that priming of mean 

judgments by visual variance, as described in (Michael et al., 2014), is also independent 

of the similarity of means and retinal location. 

 

The most compelling argument in favour of a decisional origin for the positive serial 

dependence in our results is that, in a task-switching design, the bias disappears entirely 

when, for the past stimulus (i.e. the inducer), participants were engaged in a decision 

about a different feature-dimension than variance. This is repeatedly shown in 

Experiments 2B-2E, where participants make decisions about either the variance or the 

mean direction of the RDK stimuli. It is particularly notable, since mean judgments are 

strongly dependent on ensemble variance (Fouriezos et al., 2008; John Maule & 

Franklin, 2015), and the stimulus is identical for both tasks. Furthermore, this 

dissociation persists even when the required task was post-cued (as in Experiments 2D 

and 2E), ruling out an alternative explanation involving differences in feature-specific 

attention. According to previous studies, serial dependence is enhanced by attention 

(Fischer & Whitney, 2014), and a pre-cued task-switching experiment may have caused 
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differences in perceptual attention to mean and variance in function of the cued task. 

However, when the cue only shows after stimulus removal, any difference involving 

both tasks must be of post-perceptual origin. In fact, in our entire series of task-

switching experiments, only in one instance there was serial dependence in variance in 

relation to past trials where a decision about mean was cued: this occurred when a long 

interval (2.5 seconds) elapsed between stimulus offset and task cue, and presumably 

participants had time to prepare both possible decisions (mean and variance) although 

only a mean report was eventually required. In summary, results of our task-switching 

experiments show that serial dependence is generated by past, dimension-specific 

perceptual decisions.  

 

Experiment 3 places a further constraint on what is transferred in serial dependence: 

not any dimension-specific decision, but specifically those that attain a certain level of 

confidence. From a predictive perception perspective, the fact that only high-confidence 

trials drive the positive serial dependence may be considered supportive of both 

perceptual and decisional origin, as a more precise prior would give rise to a stronger 

reliance on sensory/decisional history (Meyniel et al., 2015). However, an interpretation 

based on sensory precision might also predict two associations that are not found in our 

data: (i) an inverse association of positive serial dependence with current-trial 

confidence, and (ii) an inverse association with eccentricity, given lower sensory 

precision in the peripheral field. Rather, our experiments strongly support a lack of 

association of serial dependence with these two factors. In broader terms, serial 

dependence in variance judgments could be regarded as part of a generic strategy of 

mirroring or transferring trusted decisions -indeed a recent study has found that 

confidence boosts serial dependence even when dissociated from task performance 

(Samaha, Switzky, & Postle, 2018). This explanation could also encompass the negative 

serial dependence associated with low confidence (as a repulsion away from judgments 

deemed unreliable); however, the different timescales over which the positive and 

negative biases operate suggest that they are independent mechanisms rather than two 

aspects of a confidence-based strategy (Alais, Ho, & Han, 2017). 
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In summary, it is likely that positive serial dependence in variance is driven by high-level 

decision-making processes. In this respect, our findings agree with Fritsche et al. 

(Fritsche et al., 2017), who assert the same for orientation judgments. These authors 

propose that working memory representations are biased toward previous (dimension-

specific and task-specific) decisions, a hypothesis that is supported by the potentiation 

of the bias when several seconds are allowed between stimulus offset and response. 

Bliss and colleagues (Bliss et al., 2017) provide converging evidence, reporting that serial 

dependence is absent at the moment of perception but increases in visual working 

memory, reaching a maximum when a 6-second delay between stimulus offset and 

response is placed (a similar study, however, has reported evidence for serial 

dependence at the time of perception (Manassi et al., 2018)). Interestingly, in 2005 

Kanai and colleagues also found a positive bias on the reported direction of ambiguous 

motion, appearing in relation to a past reported percept (and not to the low-level 

sensory signal) only when the stimulus was presented several seconds after the adaptor; 

they called this effect ‘perceptual sensitization’ (Ryotal Kanai & Verstraten, 2005).  

 

In our data we also found evidence suggesting that serial dependence is subject to time 

effects and capacity limitations, superficially akin to those observed for working memory 

representations (G. A. Alvarez & Cavanagh, 2004; T. F. Brady, Konkle, & Alvarez, 2011; 

Huang & Sekuler, 2014). Regarding potential time effects, similar to reported findings 

by Bliss (Bliss et al., 2017) and Fritsche (Fritsche et al., 2017), we observed a trend 

toward increased serial dependence effects when a longer time interval is interposed 

between stimulus and response, possibly in relation to a greater influence of past 

representations on current decisional information as this is kept for longer time in 

working memory. In addition, we also found a trend toward weaker serial dependence 

for longer inter-trial intervals (time during which participants are passively waiting for 

the next trial), which might suggest a wearing-down effect of a past decisional 

representation stored in memory. These two distinct effects of time on the magnitude 

of serial dependence are consistent with a description of memory-driven biases in terms 
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of Bayesian operations (Kalm & Norris, 2017; Olkkonen et al., 2014; Raviv et al., 2012), 

since, due to memory noise, a longer interval before response would render the current 

information (likelihood) less precise, whereas a longer time between trials would lower 

the precision of the prior, tuning the relative weight of prior information (serial 

dependence) in the directions that were actually observed in each case. 

 

We also encountered evidence suggesting that serial dependence is affected by capacity 

limitations, again showing similarities with mnemonic processes. Specifically, we found 

that positive serial dependence is disrupted by additional decision-making along the 

same feature-dimension. In other words, the effect of remote (n-2) variance decisions 

on current (n) judgments is disrupted by interposing (n-1) decisions about variance, 

whereas it is noticeably larger if the n-1 decision was about a different feature-

dimension (e.g. mean). Such difference appears while keeping time constant and for 

both pre-cued and post-cued tasks. Albeit not statistically significant, this result suggests 

the existence of a dimension-specific capacity-bottleneck, where decisional 

representations about a certain feature-dimension merge and overwrite previous, 

similar representations (Matthey et al., 2015). The different effects of both decision 

types (which arguably demand a similar amount of resources) in function of the 

similarity with other decisions would be easy to interpret in light of a resource-based 

model of working memory, where the latter is not represented by a fixed number of 

independent slots, but as a fluid resource that can be flexibly allocated to construct 

hierarchical memory representations over time (Suchow et al., 2014). Furthermore, we 

uncovered converging evidence (yet also non-significant) in post-hoc analysis of the 

differences in the pattern of serial dependencies in Experiments 1 and 3. These 

experiments were identical in design except for an additional requirement of a 

confidence report in the latter, which also produced longer times between consecutive 

stimuli. Both factors (time and the additional decision) showed a negative interaction 

with serial dependence - even though the degree of similarity between a decision about 

variance and an additional decision about confidence in variance estimation is open to 

debate (Adler & Ma, 2016; Kepecs et al., 2008; Meyniel et al., 2015; D. Rahnev et al., 
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2015). Nevertheless, since our results on time and capacity constraints were not 

statistically significant, the factors contributing to the disruption or fading of positive 

serial dependence in relation with more remote presentations are deserving of further 

research. 

 

All in all, our results suggest that the mechanisms responsible for the generation of serial 

dependence would also be the cause of its fading: both would be two aspects of a 

merging process due to interaction of successive memory representations about 

perceptual decisions, driven by time and capacity limitations. While the specific 

mnemonic processes involved are unclear - our methodology was not designed to 

operationalize specific instances of memory (such as working memory) -, in line with our 

observations, Kiyonaga and colleagues have noted the similarities between serial 

dependence effects and well-studied disruptions related to working memory limitations 

(such as proactive interference) (Anastasia Kiyonaga, Jason M. Scimeca, Daniel P. Bliss, 

& David Whitney, 2017); these authors suggest that the latter might be a maladaptive 

aspect of a generally beneficial and widespread brain mechanism for stabilizing internal 

representations at different levels of processing, including perception, attention and 

memory.  

 

While our results clearly demonstrate that a past decisional representation (and not 

merely attentive perception) is necessary to induce serial dependence in subsequent 

variance judgments, one could argue that still the induced bias could be partly exerted 

at a perceptual level. In this respect, as also pointed by Kiyonaga et al. (A. Kiyonaga et 

al., 2017), working memory encodes information by attentional recruitment of internal 

representations stored in the same areas responsible for non-mnemonic processing 

(D'Esposito & Postle, 2015): for instance, sensory areas are engaged by visual working 

memory tasks (Baumann et al., 2008). Thus, it might be hypothesized that serial 

dependence represents an effect of working memory representations on the activity in 

visual areas, capable of altering subsequent perception. In line with this, the finding of 

fMRI activity signal in the primary visual cortex (V1) in relation to the previous trial 
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choice (not the previous stimulus) in an orientation task (John-Saaltink et al., 2016) may 

be supportive of serial dependence as a top-down bias by previous history which feeds 

back to early sensory areas. On the other hand, Fritsche and colleagues found that tasks 

depending strictly on perception (scarcely subject to decisional or mnemonic biases), 

like a perceptual comparison (2AFC) or an equality task, were not subject to serial 

dependence by previous decisions, demonstrating, according to these authors, that 

serial dependence does not affect perception per se (Fritsche et al., 2017) (but see 

opposite claim in (Cicchini et al., 2017)). Fritsche et al. cite supporting evidence by a fMRI 

study showing that perceptual hysteresis (stabilization toward previous perceptual 

reports) maps into higher-order visual and fronto-pariental areas, contrary to 

adaptation processes involving early visual areas (Schwiedrzik et al., 2014). In our own 

study, we did not deem suitable to employ a perceptual comparison or equality task to 

ascertain the existence of perceptual biases in variance, since serial dependence effects 

were independent on location and other low-level stimulus properties: thus, any 

potential bias on current perception would have equally affected both items to be 

compared. Nevertheless, the fact that serial dependence in our experiment is driven by 

a past decision (never only by perception or memory of perception) points toward a 

direct interaction between past and current decisional representations, likely recruited 

by working memory in high-level decision-related areas, without any explanatory power 

left for induced changes in perception. 

 

It may be proposed that our results, indicating that serial dependence is driven by past 

decisions and not low-level perception, may be restricted to abstract, high-order 

properties such as visual statistics. Indeed, our findings are suggestive of a high-level 

mechanism of variance processing, not only concerning serial dependence (as discussed 

extensively above), but also other aspects of variance estimation. For example, in 

Supplementary Experiment 1B (see Chapter 1, section 3.3), performance in variance 

estimation (measured by response times, accuracy or response dispersion) was 

independent of ensemble mean. A putative high-level locus for variance is also in 

agreement with the conclusions of Payzan-Le Nestour et al. regarding variance-driven 
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adaptation after-effects, which suggest that variance is an abstract property that works 

independently from its sensory origin and generalizes across domains (Payzan-

LeNestour et al., 2016). Michael and colleagues (Michael et al., 2014) also propose 

variance as an independent property from ensemble average, but suggest that, 

regarding priming, it operates through feature-specific channels. In our experiments we 

used a single formalization of variance – dispersion of a dot-motion cloud - so the degree 

to which our results will generalise to other variance-related serial dependencies 

requires further investigation. At any rate, it is possible that serial dependence arises at 

different levels of the hierarchy for diverse feature-dimensions, depending on the areas 

responsible for the processing of each dimension.  

 

Considering this, we decided to explore the influence of high-level processing on serial 

dependence in a well-studied low-level feature such as orientation, which is mainly 

processed at the primary visual cortex (V1) and has been used extensively in serial 

dependence studies. With this aim we set up a serial dependence experiment wherein 

half of the trials were masked by continuous flash suppression (CFS). CFS masking of a 

monocular stimulus is able to completely block visual awareness while preserving V1-

based sensory processing, as demonstrated by the persistence of neural adaptation 

(albeit weakened) in relation to masked, unseen stimuli (Blake et al., 2006; Lin & He, 

2009). Our results in Experiment 4 show that serial dependence in relation to the 

orientation of n-1 unmasked, monocular Gabors exhibits a similar pattern (in terms of 

tuning width and amplitude of the effect) to that described in previous studies (Fischer 

& Whitney, 2014; Fritsche et al., 2017). On the contrary, when the previous (n-1) Gabor 

patch was masked by continuous flash suppression and reportedly unseen by 

participants (score 1 in the Perceptual Awareness Scale), serial dependence was not 

detected. Superficially, this result may seem similar to the evidence for a role of 

attention in gating serial dependence (Fischer & Whitney, 2014). However, it has been 

shown that spatial attention is able to modulate another history-dependent bias such 

as adaptation to oriented patterns (a V1-based sensory bias), even in absence of 

awareness (Bahrami, Carmel, Walsh, Rees, & Lavie, 2008). Furthermore, tilt adaptation 
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is attenuated, but still present, for unattended and/or invisible stimuli (He & MacLeod, 

2001; Spivey & Spirn, 2000). By contrast, our findings indicate that, unlike adaptation, 

serial dependence cannot arise simply by lingering local changes in sensory areas, but 

requires higher-level visual processing of the past stimulus (i.e. the inducer).  

 

What are the perceptual/neural mechanisms underlying the observed positive serial 

dependence? Although this is still uncertain, previous works have proposed exposure-

related gain changes or shifts in the neural tuning (Fischer & Whitney, 2014)). 

Furthermore, its behaviour resembles that implied by Bayesian frameworks of 

information processing, in which judgments about a certain dimension are attracted 

towards prior information. Several studies have recognised that the observed 

systematic errors in magnitude estimation tasks, across diverse dimensions can be well 

accounted for by assuming an iteratively updated prior, in which recent information is 

given more weight compared to the overall statistical properties of the environment 

(Cicchini et al., 2014; Luca & Rhodes, 2016; Petzschner & Glasauer, 2011; Roach et al., 

2017). As previously mentioned, the dimension-specific time and capacity limitations 

encountered in our experiments suggest memory-based operations wherein current 

decisional representations are merged with previous representations to produce both a 

contextually-informed decision and the basis for a new prior to inform subsequent trials, 

in a process akin to a Kalman filter. Variance-related positive serial dependence indeed 

shares many characteristics with recursive Bayesian dynamics, including the greater 

weight of more recent information and the association with high confidence in past 

trials. Positive serial dependence is probably Bayesian-like in many aspects, but there 

are some nuances to perceptual decision-making that demand further investigation. 

 

Besides the positive serial dependence by recent decisions, in our experiments we also 

found a longer-lasting negative bias in relation to less recent variance presentations. The 

basis of this bias is less conclusive, but may be related to adaptation after-effects, like 

the variance adaptation described in (Payzan-LeNestour et al., 2016). The fact that the 

negative effect is observed in relation with individual presentations lasting only 500 ms, 



 

 

 

 

 

209 

appears as early as for the following trial, and remains even for trial n-9 could seem 

unusual for a ‘sensory’ after-effect. However, negative after-effects in response to sub-

second stimuli have been described previously ((Ryotal Kanai & Verstraten, 2005), 

(Fritsche et al., 2017)), and in (Fritsche et al., 2017) it also lasts for several seconds. In 

(Fritsche et al., 2017), the authors propose that it is not the stimulus itself, but a memory 

trace that causes the negative after-effect on orientation. It is likely that the observed 

relationship between the current trial and a specific trial in history (e.g. n-5) is actually 

driven by a broader, averaged contextual representation and not by the individual 

stimuli several trials removed from the present. 

 

Although our experiments were not designed to ascertain the characteristics of this 

negative effect, some of its properties could be pinpointed. Our control analyses ruled 

out that it was a statistical artefact intrinsic to the trial structure of our experiments, 

since it does not appear in relation to future presentations or shuffled responses, while 

it persists in random subsets (that are no longer closed sets as the experimental blocks 

as a whole). The scope of its influence seems to be dependent on time-discount, as it 

peaks and declines at more recent trial positions (compared to the current trial) in 

Experiment 3 compared to Experiment 1, likely related to the longer inter-trial intervals 

in Experiment 3. The amplitude of its effect may also depend on the duration of the RDK 

stimulus (as would be natural in exposure-dependent adaptation effects), since the 

negative effect seems weaker in those Experiments where we used 250-ms RDKs instead 

of 500 ms - however, other changes in the experimental structure might have 

contributed to this weakening. Intriguingly, some aspects of this negative bias could 

point to a decisional component, including its independence of retinal location and 

predominance in low-confidence trials. In any case, the line between perceptual and 

post-perceptual after-effects may be blurred concerning high-level dimensions such as 

statistical properties (Payzan-LeNestour et al., 2016; Storrs, 2015). 

 

Some previous studies on different features, both low-level (namely motion (Ryotal 

Kanai & Verstraten, 2005) and orientation (Fritsche et al., 2017)) as well as high-level 
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(such as face attributes (Taubert et al., 2016)) have reported concomitant positive and 

negative biases exerted by the same stimulus, similar to our own results. In Kanai et al. 

(Ryotal Kanai & Verstraten, 2005), a negative rapid motion after-effect of sensory origin 

(rMAE) was elicited by a short, sub-second sine-wave luminance grating presented 

immediately before. However, when the inter-stimulus interval (ISI) was long enough 

(>3 seconds), a positive bias was elicited instead, in response to the percept and not the 

low-level sensory signal (as proven by the use of ambiguous motion adaptors). In 

Fritsche et al. (45), opposite effects of recent history on orientation judgments were 

exerted by perception (negative bias) and decision (positive serial dependence), very 

much in line with our findings. The authors proposed that each of these effects has a 

different biological function, namely increasing sensitivity to changes within the current 

sensory context and promoting perceptual stability by smoothing away transient 

variations and noise. Taubert et al. suggest the same duality in their study of serial 

dependences in face attributes (Taubert et al., 2016), although in their case positive and 

negative biases are exerted concomitantly by different high-level features of the same 

visual stimulus (faces): stable traits such as gender would be subject to positive biases 

in order to smooth away noise, whereas negative after-effects maximizing sensitivity 

would predominate in changeable attributes such as facial expression. 

 

Given the properties of the positive and negative serial dependencies encountered in 

our data, and our conclusions about their likely mechanisms,  we built a two-layer model 

for perceptual decision-making, where the two history-dependent biases were 

produced at different levels of processing, operationalized by a similar approach as 

previous studies had taken to model each bias separately: (negative) sensory adaptation 

by population codes and recency bias (or regression effects) by Bayesian Kalman filters. 

In each iteration of the model, a stimulus (RDK variance) was transduced into a 

probabilistic sensory response by neural population codes subject to exposure-

dependent gain changes -responsible for negative adaptation-, while a decision layer 

combined the sensory response with prior information to produce a Bayesian judgment 

about the stimulus -thus producing attractive serial dependence. Such a model was able 
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to reproduce the observed reversal from positive and negative history-dependent 

biases in their approximate timescales. 

 

In summary, our study on visual variance reveals two opposite inter-trial dependences 

that operate at different timescales and likely arise at different levels of perceptual 

decision-making: a positive serial dependence in relation to high-confidence, 

dimension-specific decisions and subject to capacity limitations, and a longer lasting 

negative bias of likely sensory origin. Further investigations are needed to elucidate the 

precise mechanistic basis of variance-related serial dependence, whether it generalizes 

to other instances of variance and its relationship to other instances of serial 

dependence, as well as to explore a possible role of serial dependence in variance in 

tuning the processing of other visual features to the current levels of external and 

internal noise, to handle the reliability of sensory information for the construction of a 

precise yet stable visual experience.  
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PART III: Contextual Modulation Across 

the Visual Field: Sensory Processing 

Under the Uniformity Illusion 
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Abstract 

 

Part III presents a series of studies concerning contextual modulation of 

visual variability across the visual field. Specifically, we examine the 

mechanisms of fovea-periphery integration and the construction of a 

uniform perceptual experience across various eccentricities by studying the 

recently described Uniformity Illusion (UI), wherein a pattern with different 

characteristics in fovea and periphery takes the uniform appearance of the 

foveal region - dismissing visual variability presented in the peripheral field. 

By generating adaptation to a pattern suitable for producing UI, we 

ascertained whether the illusion worked by changing sensory encoding in 

peripheral receptive fields -in which case we should observe adaptation by 

the illusory, not the physical properties. In Experiment 5 we applied this 

paradigm to orientation, and found that the tilt after-effect only ever 

followed the physical, not the illusory orientation, even for long times of 

reported illusory experience. This indicated that UI on orientation did not 

depend on V1 activity patterns. We then tested UI on texture-density, a 

dimension that is processed beyond V1 (Experiment 6): while potential UI-

driven adaptation was not necessary to explain the response bias driven by 

different adapting patterns, we could not completely rule out such effect due 

to lack of spatial and temporal specificity of density adaptation, even by the 

physical patterns. In conclusion, the mechanisms of foveal-peripheral 

integration and management of visual variability across the visual field, as 

exemplified by UI, do not require reconstruction of sensory information in the 

primary visual cortex; it is possible that UI arises as a result of a combination 

of texture processing and perceptual inflation in the periphery. The contents 

of Chapter 7 have been published in i-Perception journal under the title ‘The 

Illusion of Uniformity Does Not Depend on the Primary Visual Cortex: 

Evidence from Sensory Adaptation’ (Suárez-Pinilla, Seth, & Roseboom, 

2018a) .  
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CHAPTER 7: EXPERIMENT 5: INSIGHTS ON THE 

MECHANISTIC BASIS OF THE UNIFORMITY ILLUSION 

IN ORIENTATION. EVIDENCE FROM SENSORY 

ADAPTATION 
 

 

Visual experience appears richly detailed despite the poor resolution of the 

majority of the visual field, thanks to foveal-peripheral integration. The 

recently described Uniformity Illusion (UI), wherein peripheral elements of a 

pattern take on the appearance of foveal elements, may shed light on this 

integration. We examined the basis of UI by generating adaptation to a 

pattern of Gabors suitable for producing UI on orientation. After removing 

the pattern, participants reported the tilt of a single peripheral Gabor. The 

tilt after-effect followed the physical adapting orientation rather than the 

global orientation perceived under UI, even when the illusion had been 

reported for a long time. Conversely, a control experiment replacing illusory 

uniformity with a physically uniform Gabor pattern for the same durations 

did produce an after-effect to the global orientation. Results indicate that UI 

is not associated with changes in sensory encoding at V1, but likely depends 

on higher-level processes. The contents of this chapter have been published 

in i-Perception journal under the title ‘The Illusion of Uniformity Does Not 

Depend on the Primary Visual Cortex: Evidence from Sensory Adaptation’ 

(Suárez-Pinilla et al., 2018a) .  
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1. INTRODUCTION 

 

Visual experience appears richly detailed despite the poor sensory precision of the vast 

majority of the visual field - the visual periphery, extending from roughly 2o to nearly 

180o of eccentricity in the horizontal diameter (Strasburger, Rentschler, & Jüttner, 

2011). This topic has received considerable recent attention (Michael A. Cohen et al., 

2016; Haun, Tononi, Koch, & Tsuchiya, 2017b), with debate about the degree to which 

visual experience is in fact rich, or rather an inflated illusion not sustained on actual 

content, as well as about the potential perceptual processes that may contribute to 

apparent richness. One recent study demonstrated a compelling example of how the 

rich detail within the high-precision central visual field alters peripheral perception - the 

Uniformity Illusion (UI) (Otten et al., 2016). UI describes a phenomenon wherein 

apparent perceptual uniformity occurs when variable sensory stimulation is presented 

in the peripheral vision, while the central visual field is presented with uniform (or low-

variance) stimuli. UI occurs for a wide variety of perceptual dimensions, including 

relatively low-level sensory features like orientation or colour, and higher-level features 

such as density (see www.uniformillusion.com for examples). This prompts the intuition 

that UI may describe a widespread phenomenon that promotes a uniform and detailed 

visual experience across the entirety of the visual field. But the specific mechanisms and 

brain regions that give rise to this illusion are still unknown. 

 

We sought to examine the mechanisms underlying UI using perceptual adaptation. It is 

well established that exposure to a specific stimulus magnitude (like an oriented grating) 

causes perceptual after-effects (e.g. tilt after-effect; TAE) (Gibson & Radner, 1937). For 

visual orientation, perceptual after-effects have been associated with specific changes 

in neural coding at the primary visual cortex (V1) and are localised in a retinotopic 

reference frame (Knapen, Rolfs, Wexler, & Cavanagh, 2010). In this experiment, we 
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utilised the spatial specificity of TAE to examine whether the apparent perceptual 

uniformity in UI can be attributed to changes in V1-based neural coding for visual 

orientation. Specifically, we presented participants with Gabor grids wherein the 

orientation of central elements was uniform, but the orientation of peripheral elements 

was variable - producing UI. At fixed test locations in the periphery of the grid, we 

presented a physical orientation that differed from the global illusory percept, thus 

putting local and global orientation in opposition. Following prolonged exposure to 

global illusory uniformity (UI), we contrasted whether the resultant TAE was consistent 

with the local, physical orientation or the illusory global orientation.  

 

 

 

 

2. METHODS 

 

2.1. PROCEDURE 

 

The experiment had two parts: Illusion session and Control session. Each session 

contained six blocks, and each block had an adaptation phase and a test phase (Figure 

18). A practice block was run before the Illusion session to familiarise participants with 

UI. 

 

 



 

 

 

 

 

217 

 
 

Figure 18. Experiment 5: Methods. During the adaptation phase, participants were presented with a Gabor grid 

wherein the central Gabors had a uniform orientation, while peripheral orientations were heterogeneous. Under UI, 

perceptual experience was that of a uniform pattern with all Gabors tilted like the central ones. This illusory percept 

alternated with a non-illusory, non-uniform percept at different times during adaptation. For a specific peripheral 

Gabor (adapting Gabor), physical and illusory orientation were always in opposition. The Control session replicated 

the phenomenology of the Illusion session, replacing perceived with physical uniformity at times in which the 

participant reported UI in the Illusion session. The test phase had 24 trials, wherein participants reported the tilt of a 

single peripheral Gabor whose location coincided with the adapting Gabor.  
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2.1.1. Illusion session 

 

Each block began with an adaptation phase, in which participants were presented with 

a grid of Gabor patches suitable for producing the UI, affecting the apparent orientation 

of peripheral elements: all Gabors in the central area had a uniform orientation, 

whereas orientation of the peripheral Gabors was heterogeneous. Gaze-contingent 

stimulus presentation ensured that each Gabor was presented to a specific retinal 

location, as the entire pattern was removed if the participant’s gaze deviated from 

central fixation by more than 1.5 degrees of visual angle (dva) –a tolerance threshold 

equivalent to half the size of each cell of the grid. Adaptation lasted 180 seconds but, 

because the stimulus was removed when fixation lapsed, actual exposure time could be 

shorter. 

 

Participants reported the experience of illusory uniformity by pressing a key when all 

Gabors appeared to take a uniform orientation. 

  

The test phase had 24 trials, separated by a pseudo-random interval of 1000-1500 ms. 

In each trial, a single Gabor (test Gabor) was presented for 500 ms at a specific 

peripheral location, coinciding with the position of a specific Gabor during adaptation 

(adapting Gabor). Participants reported if the test Gabor was tilted clockwise (CW) or 

counter-clockwise (XCW) from vertical.  

 

 

2.1.2. Control session 

 

The Control session also had six blocks, each built to replicate the phenomenology of a 

homologous block of the Illusion session but replacing illusory for physical uniformity 

during the adaptation phase. 
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During the adaptation phase in the Illusion session, an empty background was presented 

whenever the gaze-contingent mechanism removed the adapting pattern. The same 

pattern of stimulus presentation and removal was replicated in the Control session. The 

stimulus was additionally removed whenever fixation lapsed in the Control session. At 

any other time, the presentation displayed one of two patterns, differing only in the 

orientation of peripheral Gabors. The first was identical to the pattern presented in the 

Illusion session and was displayed at times in which the participant had not reported UI 

during adaptation in the Illusion session. At times during which the participant had 

reported UI, the presented pattern was one in which all Gabors had the same physical 

orientation, consistent with the desired illusory orientation during the Illusion session. 

Thus, physical uniformity was inserted at the times in which illusory uniformity had been 

reported in the Illusion session. Participants were not informed that this would occur. 

 

The test phase was identical to that in the Illusion session: the location and orientation 

of the test Gabor in each trial was identical, as well as its test latency (time between the 

end of the adaptation phase and stimulus onset). 

 

 

 

2.2. STIMULI 

 

Stimuli were displayed on dark grey background (1.96 cd/m2). A red fixation dot (8.34 

cd/m2, 0.42 dva diameter) showed constantly on the screen centre.  

 

 

2.2.1. Gabor patches 

 

Each Gabor consisted of a sine-wave luminance grating with Michelson contrast of 1, 0º 

phase and spatial frequency of 1.66 cycles per dva (cpd), and a 2-D Gaussian envelope 

with a sigma of 0.43  dva.   
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2.2.2. Adapting pattern 

 

The adapting pattern spanned the entire screen and consisted of a 13x17 grid formed 

by invisible square cells measuring 3 dva per side (Figure 18). Each Gabor was presented 

in the centre of each cell. The central area spanned 15 dva horizontally and vertically, 

encompassing all cells belonging to rows 5-9 and columns 7-11. All central Gabors had 

the same orientation, which could be one of two values, each for half the blocks of one 

session: -15o (global clockwise tilt, GCW) or 15o (global counter-clockwise tilt, GXCW). 

The orientations of peripheral Gabors were sampled from a discrete uniform 

distribution centred on the global orientation and ranging 70o (35o to each side). Thus, 

mean orientation was the same for central and peripheral Gabors and matched the 

global orientation perceived under UI. 

 

Two peripheral Gabors of the pattern (adapting Gabors) corresponded to the positions 

in which the test Gabors would be displayed during the test phase: they were located 

along the middle (7th) row, at 12.02 dva left and right of the screen centre (columns 5 

and 13). Both had the same non-randomized local orientation, which was the opposite 

of the global orientation of the block: either 15o (local counter-clockwise tilt, LXCW) or -

15o (local clock-wise, LCW). 

 

Henceforth we give the label adapting condition CX to the presentation pattern wherein 

the local orientation of the adapting Gabor is clockwise and the global orientation of the 

pattern is counter-clockwise (LCW, GXCW). Conversely, we will refer to the pattern with 

LXCW and GCW orientations as adapting condition XC. Both conditions occurred equally 

frequently during the experiment. 

  

As described above, during the Control session, the adapting pattern was replaced by a 

physically uniform pattern at those times during which participants had reported UI in 

the Illusion session. In these instances, every Gabor in the pattern (including the 

adapting Gabors) took the global orientation. 



 

 

 

 

 

221 

2.2.3. Test Gabors 

 

A single test Gabor was presented per trial, matching the position of one of the two 

adapting Gabors. Test Gabors were displayed in the left and right hemifield with equal 

frequency per block and could take one of eight equally frequent orientations: -12o, -5o, 

-2o, -1o, 1o, 2o, 5o and 12o (negative values indicate clockwise tilt). Thus, test orientations 

were always intermediate between global and local orientations (-15o, 15o). 

 

 

 

2.4. PARTICIPANTS 

 

Participants were recruited through online advertisement, over 18 and reported normal 

or corrected-to-normal vision. This study received ethical approval by the Research 

Ethics Committee of the University of Sussex. 

 

 

 

2.5. APPARATUS 

 

Experiments were programmed in MATLAB 2016a (MathWorks Inc., Natick, US-MA) and 

displayed on a LaCie Electron 22BLUE II 22’’ with screen resolution of 1024x768 pixels 

and refresh rate of 100 Hz. Eye-tracking was performed with Eyelink 1000 Plus (SR 

Research, Mississauga, Ontario, Canada) at sampling rate of 1000 Hz, with level desktop 

camera mount. Head position was stabilized 43 cm from the screen using chin and 

forehead rest. Calibration of the eye-tracker was performed at the beginning of each 

block with a standard five-point grid and a maximal average error of 0.5 dva. 

 

 

 



 

 

 

 

 

222 

2.6. STATISTICAL ANALYSIS 

 

Psychometric curve fitting was performed in MATLAB 2017b, using Palamedes toolbox, 

version 1.8.1 (Prins & Kingdom, 2009).  A cumulative Gaussian curve was fitted by the 

method of maximum likelihood to the proportion of ‘counter-clockwise’ (XCW) 

responses per test Gabor orientation, separately for each participant and 

session/condition (depending on the specific analysis). The threshold (α) for 0.5 

proportion of XCW responses and the slope of the curve (β) were free parameters 

(starting values: α=0o, β=0.04), while guessing (γ) and lapse rate (λ) were fixed at zero. 

 

Bayesian statistics were conducted on JASP (JASP Team (2017), version 0.8.3.1). For 

Bayesian t-tests we employed as prior distribution Cauchy(0, 	m
2 √2) for two-sided 

predictions, or a folded distribution for one-sided predictions: Cauchy+(0, 	m
2 √2) for 

predictions of the form measure 1>measure 2;  Cauchy-(0, 	m
2 √2) for the reverse. 

Likewise, for Bayesian Pearson correlations we employed a uniform prior U(-1,1) for 

two-sided predictions, or U(-1,0)/U(0,1) for one-sided (negative/positive) predictions, 

respectively. For each contrast result, the prior utilised is indicated by the formulated 

prediction and the subscripts in BF10 (two-sided) or BF-0 /BF+0 (one-sided). 

 

 

 

 

3. RESULTS 

 

Thirty participants volunteered for the experiment: 23 female, mean age 21.6. 

 

To ensure sufficient exposure to the adapting pattern, we excluded blocks wherein the 

pattern had been displayed for less than 2/3 of the adaptation phase (<120 seconds), 

due to gaze-contingent stimulus removal. In such cases, the corresponding blocks from 
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both Control and Illusion sessions were removed, to maintain balance. This caused 

exclusion of 32.78% blocks (118/360), including the entire datasets from five 

participants. Results presented here correspond to the blocks of the remaining twenty-

five participants. Furthermore, since our analyses compared responses across adapting 

conditions (CX/XC), two additional participants were excluded as all their valid blocks 

were of only one condition. Results presented here correspond to the remaining 23 

participants. Overall results for all 25 participants with valid blocks were very similar to 

this counterbalanced sample (see section 4 of the current chapter, ‘Supplementary 

Analyses’). 

 

 

 

3.1. ADAPTATION PHASE 

 

Average exposure time to the adapting pattern per block was 164.13 and 149.47 

seconds for the Illusion and Control sessions: 91.18% and 83.04% of the adaptation 

phase, respectively.  The lower proportion in the Control session was expected as 

pattern removal occurred whenever it had in the Illusion session, in addition to times of 

improper fixation in the Control block.  

 

Perceived uniformity was reported, on average, for 43.48 seconds in the Illusion session, 

26.77% of the time of pattern presentation (minimum 0.55%, maximum 72.23%). The 

proportion of time of perceived uniformity during the Control session was similar to that 

for the Illusion session: 28.41% (minimum 0.59%, maximum 78.42%, Bayesian paired-

samples t-test: BF01=2.733 - anecdotal evidence for the null hypothesis). Physical 

uniformity in the Control session was reported as perceptually uniform 68.13% of the 

time; by contrast, the non-uniform pattern was reported as uniform only 9.24% of the 

time. It is likely that presentation of a truly uniform pattern at times shifted a subjective 

criterion for uniformity by comparison, leading to more conservative reports in the 

Control sessions.  
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3.2. HYPOTHESES AND MEASUREMENTS 

 

The experiment placed adaptation to illusory and physical orientation in opposition to 

disambiguate between two competing hypotheses: 

 

1. The perceived orientation under UI has no effect on tilt adaptation; the TAE is 

driven solely by the physical orientation of the adapting Gabor.  

 

2. The global orientation perceived for the entire pattern (including the adapting 

Gabor) under UI can produce a TAE.  

 

To decide between hypotheses, data was analysed to ascertain the direction of the 

adaptation-induced bias. During the Illusion session, a TAE driven by (i.e. away from) the 

local orientation of the adapting Gabor would imply physical adaptation, while a global-

driven TAE would indicate adaptation to illusory orientation. During the Control session, 

both local and global-driven TAE are compatible with physical adaptation, since the 

adapting Gabor physically takes the global orientation at times of reported illusory 

uniformity in the Illusion session.  

 

For each session, we calculated the proportion of XCW reports per test Gabor 

orientation and obtained two types of summary measures for the direction of the bias 

observed in each given condition: response-based measures (directly based on the 

proportion of reports) and Psychometric function-based measures (based on 

Psychometric curve fitting, as the name indicates).  Subsequently we ascertained 

whether these measures were dependent on the conditions of the adaptation phase, 

and if so, which hypothesis was consistent with such dependency. 
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3.2.1. Response-based measures 

 

We defined the variable %XCW as the proportion of ‘XCW’ reports per participant, 

session and adapting condition (CX/XC). A participant may report either ‘CW’ (clockwise) 

or ‘XCW’ (counter-clockwise) for every presented test Gabor. Note that test Gabor CW 

and XCW orientations are equally frequent per block, with an average orientation of 0o 

for all sessions and adapting conditions. Therefore, in absence of any response bias we 

should expect %XCW=50%. A lower proportion (%XCW<50%) would indicate a CW bias; 

conversely, %XCW>50% would reflect a XCW bias. 

 

Therefore, %XCW indicates whether responses are biased to the CW or XCW orientation. 

However, for summarising responses across different conditions (CX, XC), we needed to 

define more abstract measures that expressed whether the TAE was driven by (i.e. away 

from) the local or the global orientation of the adapting pattern. Thus, we defined 

%Local as the proportion of responses in the same direction as the ‘local’ orientation of 

the block: i.e., the proportion of CW reports in CX adapting condition (100-%XCW), and 

the proportion of XCW reports (%XCW) in XC condition. A %Local<50% would indicate a 

local-driven TAE (responses are biased away from the local orientation), and 

%Local>50% would reflect a global-driven TAE. 

 

 

3.2.2. Psychometric function-based measures 

 

As described in the ‘Methods’ section (section 2 of the current chapter), we obtained 

the best-fitting cumulative Gaussian psychometric curve on the proportion of responses 

per participant, session and condition, and defined the point of subjective equality (PSE) 

as the test orientation at which 50% reports are XCW. Since CW orientations have 

(conventionally) negative sign in our experiment and vice versa, negative PSE indicates 

a XCW bias and positive PSE a CW bias. An unbiased response pattern would correspond 

to PSE=0o. Similar to response-based approach, we obtained two measures: 
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1. PSECX and PSEXC, i.e. the PSE corresponding to adapting condition CX and XC, 

respectively. These measures present a negative correlation with their 

equivalent response-based measures: %XCW<50% and PSE>0o both indicate a 

CW bias, while %XCW>50% and PSE<0o reflect a XCW bias.  

 

2. dPSE=PSECX–PSEXC. As with %Local, we employ dPSE as a summary measure 

indicating the overall direction of the bias. A dPSE<0 would indicate a local-

driven TAE (PSECX<PSEXC) and a dPSE>0 a global-driven TAE (PSECX>PSEXC). 

Therefore, %Local and dPSE measures are positively correlated within 

participant, session and condition. 

 

In summary, for a local-driven TAE, responses for adapting condition CX should exhibit 

a XCW bias compared to condition XC:  %XCWCX>%XCWXC, %Local<50%, PSECX<PSEXC, 

dPSE<0, consistent with physical adaptation to the local orientation. The reverse should 

happen for a global-driven TAE: %XCWCX<%XCWXC, %Local>50%, PSECX>PSEXC, dPSE>0 

are consistent with adaptation to the illusion (or to the physical replication of the illusion 

during the Control session).  
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3.3.TAE IS DRIVEN BY PHYSICAL, NOT ILLUSORY ORIENTATION 

 

3.3.1. Overall effect 

 

 

 
 

Figure 19. Experiment 5: Overall results. Response patterns by adapting condition. Illusion (19a-19c) and Control 

(19d-19f) session. Figures 19a and 19d present the sample’s proportion of counter-clockwise (XCW) reports per test 

Gabor orientation, separated by adapting condition, during the Illusion (19a) and Control (19d) sessions. The dotted 

lines show the best cumulative Gaussian fit for the psychometric curve of each condition, fitted on the sample’s 

pooled data (N=23). These figures are included for illustrative purposes only, as the PSEs obtained for analysis were 

computed separately for each participant’s data -as presented in 19c and 19f, see below for details. 19b and 19e 

present the average %XCW computed separately by participant, adapting condition and session. 19c and 19f depict 

the average point of subjective equality (PSE) computed separately per participant and condition. In all bar graphs, 

the bar heights represent the sample’s average and the error bars the between-participant standard error. 19b-c. 

Illusion session. The %XCW and PSEs for both adapting conditions reflect a bias away from local orientation (local-

driven TAE). 19e-f. Control session. On average, responses show a global-driven TAE in CX condition and are unbiased 

in XC. These results show that perceived (illusion) and physical (control) uniformity behave differently, suggesting 

that the TAE is always driven by the physical orientation, even when that orientation is unseen under UI. 
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Illusion session 

 

Figure 19a presents the sample’s average proportion of XCW reports per test Gabor 

orientation during the Illusion session, separated by adapting condition (CX or XC). For 

illustration purposes, it shows cumulative Gaussian curves fitted for the sample’s pooled 

data (N=23). However, for data analysis (PSE) we fitted a Psychometric function on each 

participant’s responses separately: individual fits are detailed in the section 4 of the 

current chapter, ‘Supplementary Analyses’. Individual PSEs for each adapting condition 

are summarized in figure 19c. Likewise, participants’ proportion of XCW reports (%XCW) 

per adapting condition are summarized in figure 19b. 

On average, %XCWCX=54.533% and %XCWXC=46.818% reflected a XCW and CW bias, 

respectively (%XCWCX>%XCWXC Bayesian paired-samples t-test: BF0+=7.244). In other 

words, reports were biased away from the local orientation in both conditions (%Local 

=46.245%). 

Psychometric curve analysis showed converging results: PSECX=-0.502o, PSEXC=0.687o, 

again indicating a XCW and CW bias, respectively: dPSE=-1.197o (PSECX<PSEXC Bayesian 

paired-samples t-test: BF-0=3.057). 

In summary, the response pattern during the Illusion session indicated a local, physical-

driven adaptation. 

 

Control session 

 

In the Control session, the adapting Gabor physically takes the global orientation of the 

pattern during times of reported uniformity in the Illusion session. If adaptation is 

produced by physical orientation, we should observe a more global-driven TAE 

compared to the Illusion session: %LocalIL<%LocalCO, dPSEIL<dPSECO. Conversely, if 

perceived orientation under UI causes adaptation, we should not see a difference 

between perceived and physical uniformity: %LocalIL=%LocalCO, dPSEIL=dPSECO.  
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As shown in figures 19e-19f, results indicate predominance of global-driven TAE during 

the Control session: specifically, a CW bias for condition CX (%XCWCX CO=48.297%, PSECX 

CO=-0.083o), indicative of a global TAE, and lack of any clear bias for condition XC 

(%XCWXC CO=50.362%, PSEXC CO=0.433o) – the latter likely reflecting a mixture of local and 

global-driven TAE in relation with the alternation of two physical adapting orientations.    

The proportion of reports in the direction of each block’s local orientation (%LocalCO) 

was 51.007%, compared with 46.245% during the Illusion session. Bayesian t-test 

showed strong evidence for %LocalIL<%LocalCO: BF-0=12.862. Psychometric function 

fitting provided converging results: PSECX-CO=0.433o, PSEXC-CO=-0.083o, dPSECO=0.516o. A 

Bayesian paired-samples t-test comparing dPSE in both sessions was consistent with 

physical-driven adaptation: dPSEIL<dPSECO, BF-0=7.476. Therefore, the absence of a 

global-driven TAE in the Illusion session was not simply because the global pattern of 

orientation was insufficient to induce TAE – rather, the illusory (but not the physical) 

global pattern was insufficient to induce TAE. 

  

The overall predominance of global-driven TAE in the Control session, despite 

presentation of the uniform pattern for only ~27% of time, may be related to a 

putatively stronger adaptation during this time due to the adjacent Gabors, which then 

take the global orientation, contributing to the receptive field(s) where the test Gabor 

will be later presented. Note, however, that the size of each grid cell (3 dva) is larger 

than the diameter of most receptive fields at V1 (around 1 dva) (Bentley & Salinas, 

2009), and the relationship between stimulus size and TAE strength is not 

straightforward (Harris & Calvert, 1985; Parker, 1972). Another possibility involves 

extra-classical receptive field effects exerted by the global surround on the adapting 

Gabor when the latter takes the global orientation (iso-orientation surround 

suppression) (Chen, Chen, Gao, Yang, & Yan, 2015). Whatever the contribution of these 

effects, they act differently on physical compared to illusory iso-orientation, in the 

manner expected for low-level processing of the former, but not the latter.   
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3.3.2. Time-dependent effect 

 

Overall, responses in the Illusion and Control session fit the hypothesis that TAE under 

UI is only driven by physical, and not illusory orientation. However, in the Illusion session 

UI is perceived during only ~27% of pattern exposure, on average. Thus, it could be 

argued that a global, illusion-driven TAE might have been present, but undetected in the 

overall results -overshadowed by the local-driven TAE at times when UI is not perceived. 

This possibility seems unlikely, because responses in the Control session (with 

uniformity also presented ~27% of time) do show an influence of the global-driven TAE. 

Thus, such a possibility could only hold if the TAE driven by illusory orientation was 

weaker than that caused by physical orientation.  To rule out this possibility, we 

examined the data from the Illusion sessions for evidence of exposure time-dependency 

of the TAE magnitude. Since the TAE is time-dependent (Patterson, Wissig, & Kohn, 

2013), if illusion-driven adaptation was in fact present, we should find evidence for a 

shift toward more global/less local TAE with longer times of perceived uniformity. 
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Figure 20. Experiment 5: Time-dependent results. TAE by time of uniformity: physical, but not perceived uniformity, 

causes a shift toward global-driven TAE in a time-dependent manner. 20a-b classify participants into two groups 

according to whether their average time of uniformity is below (lower half) or above (upper half) the sample’s median 

and depict each group’s average responses by adapting condition in the Illusion (20a) and Control (20b) session. For 

illustration purposes, a Psychometric function fitted to the pooled data is shown in the main figures; however, all 

analyses are based on Psychometric functions fitted to each participant’s data -the group average PSEs of these 

functions are shown in the insets. In the Illusion session, PSEs indicate local-driven TAE regardless of time of perceived 

uniformity (except for condition CX in the lower-half group, which shows no noticeable TAE overall). In the Control 

session the TAE shifts to global-driven for longer presented physical uniformity. 20c-20d present the correlation 

between time (%) of perceived uniformity and overall direction of the TAE (local/global driven) during the Illusion 

session, expressed in terms of %Local (20c) and dPSE (20d). Each data point represents a participant’s average data 

during the session. Pearson’s correlation coefficient and 95% credible intervals are in each panel, showing that there 

is no significant time-dependency for perceived uniformity. 20e-20f: Correlation between time (%) of physical 

uniformity and overall direction of the TAE (local/global driven) during the Control session, expressed in terms of 

%Local (20e) and dPSE (20f). Each data point represents a participant’s average data during the session. Pearson’s 
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correlation coefficient and 95% credible intervals are in each panel, showing a positive time-dependency of physical 

uniformity in the expected direction: presentation of the global panel for a longer time leads to more global-driven 

TAE, unlike the lack of effect of illusory uniformity during the Illusion session. 20g-20h. TAE change by time of 

uniformity. The horizontal axis represents each participant’s time (%) of Uniformity. For illustrative purposes, it has 

been rounded to the nearest 10%, so that the horizontal axis is applicable to both sessions of each participant (since 

physical uniformity is presented for the same time than the duration of the illusion reported in the previous session, 

but in practice the gaze-contingent stimulus removal during the Control session generates a slight jitter). The vertical 

axis represents the change in the summary measure of the direction of the TAE (%Local in 20g, dPSE in 20h) in the 

Control session with respect to the Illusion session: i.e., in 20g, the vertical axis represents %LocalControl - %LocalIllusion 

and in 20h it represents dPSEControl - dPSEIllusion. A positive difference indicates that a participant’s responses during 

the Control session are subject to a global-driven bias (higher %Local/dPSE) compared to the Illusion session. Both 

sessions are identical for each participant, except that uniformity is illusory during the Illusion session, and physical 

during the Control session. We observe that, for short times of uniformity, a participant’s response pattern is almost 

identical in both sessions (roughly ‘zero’ difference). However, as time of uniformity increases, the patterns become 

more different, with the Control session showing a more global-driven bias. Pearson’s correlation coefficient confirms 

this positive correlation, with a BF+0=7.458 for time - %Local change and a BF+0=15.997 for time – dPSE change. 

 

Illusion session 

 

If the TAE is driven only by physical orientation, in the Illusion session we should expect 

independence from time of perceived uniformity. Conversely, if the perceived 

orientation under UI causes adaptation, the response pattern should shift from 

predominantly local-driven towards more global-driven for longer time of perceived 

uniformity. We can assess this potential shift by examining %Local and dPSE. As stated 

above, %Local<50% and negative dPSE indicate predominance of local-driven TAE, 

whereas %Local>50% and positive dPSE reflect global-driven TAE. Thus, in the presence 

of illusion-driven adaptation, %Local and dPSE should correlate positively with time of 

perceived uniformity.  

 

As time measure, we employed the proportion of perceived uniformity (over time of 

pattern presentation), for conveying the balance between local and (putative) global 

effects.  
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We ran a Bayesian bivariate correlation between each participant’s average time of 

perceived uniformity and %Local, showing a Pearson’s r=-0.176 (95% credible intervals 

-0.509, 0.223), with moderate evidence against a positive correlation: BF+0=0.145. See 

figure 18c. 

 

Likewise, we analysed the bivariate correlation between time of perceived uniformity 

and dPSE (Figure 18d). Pearson’s correlation coefficient and 95% credible intervals were 

r=-0.199 (-0.537, 0.219), again showing moderate evidence against a positive 

correlation: BF+0=0.146. 

 

In summary, evidence opposed any positive association between time of perceived 

uniformity and a trend toward more global-driven TAE, thus opposing predictions 

formulated for illusion-based adaptation.  

 

 

Control session 

 

For the Control session we performed analogous analyses as for the Illusion session, but 

with time of physical instead of perceived uniformity. 

 

Since global uniformity is a physical stimulus in this session, a time-dependent shift from 

local to global-driven TAE should be expected regardless of the capacity of illusory 

orientation to induce a TAE. Thus, this Control session acts as a sanity check to rule out 

that the failure to find time-dependency in the Illusion session was simply due to 

insufficient exposure to the global pattern - even in the cases of longest time of 

uniformity. 

 

We performed a Bayesian bivariate correlation between individual average time of 

physical uniformity and %Local (Figure 18e). Pearson’s coefficient was r=0.414, 95% 
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credible intervals (0.015, 0.672), showing moderate evidence for a positive correlation: 

BF+0=3.581.  

 

Computing the correlation between time of physical uniformity and dPSE (figure 3D) 

rendered r=0.468, 95% credible intervals (0.056 – 0.714), with moderate evidence for a 

positive correlation: BF+0=5.546. 

 

In summary, physical uniformity presented for durations equivalent to the reported 

illusory uniformity was sufficient to observe a shift towards a global-driven TAE. 

 

 

 

3.4. CONCLUSIONS 

 

We aimed to explore the underlying basis of perceptual uniformity in the Uniformity 

Illusion by using a version of UI with oriented Gabor patches, and found that UI does not 

produce an orientation adaptation after-effect consistent with the illusory percept. 

Instead, orientation after-effects only ever followed the (local) physically presented 

orientation - even in cases where the illusion had been reported for very long times. This 

was not due to insufficient exposure to the illusory percept, as a physically uniform 

control pattern presented for the same time did produce an after-effect to the global 

orientation. Thus, our results suggest that the UI on orientation is not associated to 

changes in V1 sensory encoding, but arises from higher-level (higher than primary visual 

cortex) perceptual processes. 
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4. SUPPLEMENTARY ANALYSES 

 

4.1. PSYCHOMETRIC CURVE FITTING 

 

4.1.1. Individual Psychometric curves 

 

Figure 21 shows the individual responses (proportion of XCW reports by test Gabor 

orientation) and best-fitting cumulative Gaussian functions obtained for each 

participant, with their data split by adapting condition (CX and XC) and session (Illusion 

and Control). Only the 23 participants with valid data on both adapting conditions are 

presented. The methodology for cumulative Gaussian fitting is detailed in the Methods 

section of the current chapter (section 2.6 ‘Statistical analysis’). 

 

 

 
 

Figure 21. Experiment 5: Individual results. Response pattern and best-fitting Psychometric function for each 

participant’s data, split by adapting condition and session. As indicated in the figure, the upper plot for each 

participant corresponds to the Illusion session and the lower one to the Control session. In all plots (except for the 

summary graph at the bottom right), the X axis represents the test Gabor orientation, ranging from -12o to 12o, with 
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negative and positive sign conventionally indicating CW (clockwise) and XCW (counter-clockwise) tilt, respectively. 

The Y axis represents the proportion of ‘XCW’ reports per test Gabor orientation. Blue and purple dots pertain to 

adapting conditions CX (local orientation CW, global XCW) and XC (local XCW, global CW), respectively. The dotted 

lines present the best-fitting cumulative Gaussian curve for the participant’s data, split by session and adapting 

condition. A rightward shift of one curve with respect to the other condition (or session) indicates a comparatively 

more CW bias, and vice versa. In other words, a positive PSE indicates a CW bias and a negative PSE a XCW bias. The 

summary graph at the bottom right indicates the average of the individual PSEs of all the Psychometric curves shown 

in the previous plots, separated by session (Illusion session in the left plot and Control session in the right plot) and 

adapting condition (as labelled in the horizontal axis: CX/XC). The error bars indicate the standard error. For the 

Illusion session, the negative and positive PSE in conditions CX and XC, respectively, indicate that the tilt after-effect 

(TAE) is driven by (i.e. away from) the local, physical orientation. For the Control session, we observe, on average, a 

global-driven TAE for condition CX (PSE>0) and absence of a clear bias in condition XC. These results likely show a 

‘mixture’ of local and global-driven TAE. In the Control session, the adapting Gabor takes the global orientation during 

the times of presentation of a physically uniform pattern. Thus, results in this session are also compatible with 

physical-driven adaptation. 

 

 

4.1.2. Goodness-of-Fit 

 

We assessed the goodness-of-fit separately for each participant and session, by using 

the function provided to such effect in the Palamedes toolbox (goodness-of-fit test 

across several conditions, specifically CX and XC conditions). The target model assumed 

a cumulative Gaussian curve for the relationship between test Gabor orientation and 

proportion of XCW reports, with varying thresholds (α) and slopes (β) across adapting 

conditions, and a guess rate (γ) and lapse rate (λ) fixed to zero in both conditions. Table 

5 shows the pDev values, indicative of the goodness-of-fit of the target model to the 

participant’s data. The fit was reasonable (pDev³ 0.05) for most datasets (37/46), and 

poor only for 9/46. On average, pDevIllusion= 0.282 (SE 0.055) and pDevControl= 0.213 (SE 

0.031) were well above the 0.05 cut-off point; according to a Bayesian paired-samples 

t-test, there was no evidence for a difference between the goodness-of-fit of the Illusion 

compared to the Control session (BF10=0.365), with an anecdotal, but tending toward 

moderate (BF10<=1/3) support for the null hypothesis (i.e. equal goodness-of-fit across 

sessions). 

 



 

 

 

 

 

237 

 

TABLE 5. Experiment 5: Goodness-of-fit per participant and session 

 

ID pDevIllusion pDevControl 

1 0.307 0.328 

2 0.515 0.000 

3 0.035 0.014 

4 0.416 0.320 

5 0.372 0.401 

6 0.242 0.180 

7 0.071 0.247 

9 0.007 0.397 

10 0.099 0.016 

11 0.714 0.337 

14 0.866 0.300 

16 0.331 0.310 

17 0.000 0.182 

19 0.079 0.115 

20 0.037 0.096 

21 0.654 0.037 

22 0.172 0.302 

24 0.086 0.227 

25 0.650 0.092 

26 0.565 0.006 

28 0.075 0.250 

29 0.125 0.539 

30 0.071 0.194 

 

Table 5. Experiment 5. Goodness-of-fit for each participant’s and session’s data. pDev value ranges between 0 and 1: 

the larger this value, the better the fit.  

 

 

Thus, the Psychometric function goodness-of-fit to the data is acceptable on average, 

with only a few individuals who exhibit a poor fit. As detailed below, there is an almost 

perfectly linear correlation between measures directly based on participants’ responses 
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and measures based on fitted Psychometric functions (PSE), further confirming that the 

latter measures are accurately tracking each participant’s response patterns.  

 

 

4.1.3. Correlation between individual response-based measurements and 

Psychometric function-based measurements 

 

As mentioned in section 3.2 of the current chapter (‘Hypotheses and measurements’), 

if the PSE of the fitted Psychometric function is a meaningful measure of each 

participant’s response bias, we should observe a negative correlation between %XCW 

and PSE: the larger the first, the more responses are biased toward XCW reports, which 

would be expressed by a lower PSE, and vice versa. Conversely, for the more abstract 

measures %Local and dPSE, we should observe a positive correlation: the larger these 

measures, the more responses are biased away from the global orientation (global-

driven TAE). Thus, the correlation of response-based and Psychometric function-based 

measures serves as an indication of the validity of the latter ones. Table 6 and Figure 22 

show that this is the case, demonstrating almost perfect negative correlations between 

%XCW and PSE for all conditions and sessions (r<-0.95), as well as almost perfect positive 

correlations between %Local and dPSE. 
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TABLE 6. Experiment 5: Correlation between measurement types  

 

6a. %XCW and PSE 
Measurements Pearson’s r 95% Credible Interval BF-0 

%XCWIllusion CX,  PSEIllusion CX -0.962 -0.983 -0.896 1.135*1011 

%XCWIllusion XC,  PSEIllusion XC -0.961 -0.982 -0.892 7.929*1010 

%XCWControl CX,  PSEControl CX -0.955 -0.980 -0.879 2.372*1010 

%XCWControl XC,  PSEControl XC -0.973 -0.988 -0.925 3.349*1012 

 

6b. %Local and dPSE 
Measurements Pearson’s r 95% Credible Interval BF+0 

%LocalIllusion,  dPSEIllusion 0.955 0.875 0.981 7.334*109 

%LocalControl,  dPSEControl 0.946 0.851 0.976 1.208*109 

 

Table 6. Experiment 5. Bivariate correlations between individual response-based and Psychometric function-based 

measurements. 6a presents the correlations between %XCW and PSE, computed separately for each session 

(Illusion/Control) and adapting condition (CX/XC). 6b presents %Local and dPSE, separately for each session. An 

almost perfect negative correlation is observed in all cases, indicating that Psychometric function-based 

measurements are accurately tracking the participant’s response bias. BF+0 and BF-0 refer to the Bayes factor for the 

existence of a positive or a negative correlation, respectively (extreme evidence in favour of the alternative 

hypothesis in all cases). 
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Figure 22. Experiment 5: Measurements. Correlations between individual %Local and dPSE, computed separately for 

each session (Illusion/Control). An almost perfectly linear positive correlation is observed for both sessions.  

 

 

 

4.2. COMPARISON OF RESULTS FOR THE ENTIRE SAMPLE (N=25) AND FOR THE SAMPLE 

WITH COUNTERBALANCED ADAPTING CONDITIONS (N=23) 

 

Because our analyses involved comparison of response patterns across adapting 

conditions (CX/XC), we excluded data from two participants who had valid blocks of a 

single condition. Here we show that the summary results between the entire sample 

(N=25) and the counterbalanced sample (N=23) are comparable. Table 7a summarizes 

%XCW and Table 7b the PSE per condition and session. 
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TABLE 7. Experiment 5: Comparison with the entire valid sample 

 

7a. Response-based measurements 
Sample %XCWCX Illusion %XCWXC Illusion %XCWCX Control %XCWXC Control 

N=25 54.257 (SE 2.266)  47.298 (SE 2.313) 48.297 (SE 2.087) 50.362 (SE 2.106) 

N=23 54.533 (SE 2.397) 46.818 (SE 2.414) 48.495 (SE 2.214) 50.377 (SE 2.243) 

 

7b. Psychometric function-based measurements 

Sample PSECX Illusion PSEXC Illusion PSECX Control PSEXC Control 

N=25 -0.473 (SE 0.405)  0.607 (SE 0.507) 0.471 (SE 0.422) -0.086 (SE 0.383) 

N=23 -0.502 (SE 0.430) 0.687 (SE 0.534) 0.433 (SE 0.448) -0.083 (SE 0.408) 

 

Table 7. Descriptive statistics (sample mean and standard error SE) for response-based and Psychometric function-

based measurements per adapting condition and session, when considering the entire sample (N=25) or only those 

23 participants with valid blocks from both adapting conditions. Note than, since a participant (ID18) lacks blocks of 

condition CX and another (ID12) lacks data of condition XC, the number of data points contributing to the descriptive 

results for the entire sample (N=25) is only 24 for each case, but the extra participant is different for each condition. 

7a summarizes response-based measurements (%XCW) and 7b Psychometric-function based measurements. 
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CHAPTER 8: EXPERIMENT 6: INSIGHTS ON THE 

MECHANISTIC BASIS OF THE UNIFORMITY ILLUSION 

IN DENSITY. EVIDENCE FROM SENSORY ADAPTATION 
 

 

In the previous chapter we explored the mechanistic basis of the Uniformity 

Illusion (UI) by using adaptation to a V1-based dimension, such as 

orientation, and ruled out that UI was associated to sensory changes in the 

primary visual cortex. In the current chapter we apply the same experimental 

paradigm to texture-density, a dimension that is processed beyond V1 

monocular cells and is closely related to one of the hypothetical mechanisms 

of UI, namely texture processing. We generated adaptation to a pattern 

suitable for producing UI on density (whereby physically low peripheral 

density would be experienced as uniform with the high-density central area) 

and compared its effects with a physically uniform low-density pattern, as 

well as to uniform high density. In Experiment 6A, an appearance task was 

employed, analogous to the orientation task in Experiment 5. The response 

pattern showed an effect of the central high-density area in reports about 

peripheral density, but further examination revealed the existence of a non-

local, time-invariant effect of physical density, which could explain this result 

without need for any contribution of UI phenomenology. Experiment 6B 

utilised a perceptual comparison (2AFC) task to reduce the effect of criterion 

shifts, but results (albeit underpowered due to small sample size) again 

suggested a non-local adapting effect of the central area that did not 

correlate with UI phenomenology. In conclusion, a potential effect of UI on 

density adaptation was not necessary to explain our results, but its existence 

could not be entirely discarded either. As the effect of density lacked 
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spatiotemporal specificity, the adaptation-based paradigm was not suitable 

for studying the basis of UI on this dimension.2 

 

 

1. INTRODUCTION 

 

In the previous chapter we described an experiment on sensory adaptation under the 

Uniformity Illusion (UI) on orientation. Results from that experiment showed that the 

tilt after-effect (TAE) was only ever driven by the physical orientation of the adapting 

peripheral Gabors, even if such orientation was unseen under UI - and replaced by a 

different illusory orientation in the global percept. In light of these results, we can 

conclude that the mechanisms that generate the Uniformity Illusion on orientation do 

not cause alterations in sensory encoding in the primary visual cortex (V1). In other 

words, UI on orientation does not operate by direct reconstruction of visual information 

in low-level sensory areas. 

 

What mechanism, then, is responsible for the Uniformity Illusion? The non-local, non-

object-based processing of feature information that characterizes the illusion greatly 

resembles texture perception (S. C. Dakin & Watt, 1997; Julesz, 1981; Thielscher, Kolle, 

Neumann, Spitzer, & Gron, 2008), a key mechanism for processing of natural scenes, 

surface discrimination and figure/background segmentation (Zavitz & Baker, 2014). For 

instance, a study reported that discrimination of textures defined by orientation signals 

depended on their summary statistics (mean and variability) (S. C. Dakin & Watt, 1997). 

Thus, it is possible that, in our experiment on oriented Gabor patterns, perceived 

                                                        

 

 
2 Given that this chapter delves into much detail to finally conclude that little can be concluded about UI 

on density with an adaptation paradigm, the reader may choose to skim it and move forward to the 

Discussion in Chapter 9. 
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uniformity was a result of the inability to resolve the summary statistics between central 

and peripheral areas.  Indeed, texture perception has been related to the phenomenon 

of peripheral crowding (L Parkes et al., 2001): in crowded ensembles, orientation signals 

would not be lost to the visual system, but rather pooled by compulsory averaging (L 

Parkes et al., 2001), while, despite being unresolvable by conscious perception, they 

would remain able to cause tilt adaptation after-effects, proving that orientation 

crowding occurs in areas beyond the primary visual cortex (V1) (He, Cavanagh, & 

Intriligator, 1996). All of this echoes our findings about UI on orientation. In this regard, 

texture processing has been linked to V2 and V3 areas (El-Shamayleh & Movshon, 2011; 

Okazawa, Tajima, & Komatsu, 2017; C. M. Ziemba, Freeman, Movshon, & Simoncelli, 

2016), by combination of V1-like filter responses (Okazawa et al., 2017). Further 

evidence for this can be found in a perceptual phenomenon which shares some 

properties with the Uniformity Illusion, namely perceptual filling-in, whereby a visual 

trait is perceived in an area despite existing physically only in an adjacent region 

(Komatsu, 2006). While many examples of filling-in (for instance, involving colour 

spread) are associated with changes in V1 encoding, texture filling-in has been found to 

alter encoding only in higher areas, V2 and V3 (De Weerd, Gattass, Desimone, & 

Ungerleider, 1995; Komatsu, 2006).  

 

Considering all this, we decided to explore the Uniformity Illusion on a visual dimension 

that is closely linked with texture processing and segmentation of surfaces and objects, 

namely texture-density (Durgin & Proffitt, 1996; Zavitz & Baker, 2013) - roughly defined 

as the approximate number of elements per surface area (or spacing between items)  

Despite its relevance, this visual property is still poorly understood. Adaptation after-

effects to texture-density have been consistently reported, suggesting that there may 

exist neurons responsible for its encoding (Durgin, 1995; Durgin, 1996; Durgin & 

Hammer, 2001; Hisakata, Nishida, & Johnston, 2016; Sun, Kingdom, & Curtis L. Baker, 

2017). Studies on these after-effects have demonstrated that density is a separate 

property from contrast or spatial frequency (Durgin, 2001; Durgin & Hammer, 2001; 

Durgin & Huk, 1997) - although it could depend on the combination of outputs from 
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neurons tuned to high and low spatial frequencies (Steven C. Dakin et al., 2011). On the 

other hand, there is controversy regarding whether (Steven C. Dakin et al., 2011; Durgin, 

2008; M. J. Morgan, Raphael, Tibber, & Dakin, 2014; Raphael & Morgan, 2016; Sun et 

al., 2017; Tibber et al., 2012) or not (Anobile, Castaldi, Turi, Tinelli, & Burr, 2016; Anobile, 

Cicchini, & Burr, 2013; Anobile, Cicchini, & Burr, 2016; Anobile, Turi, Cicchini, & Burr, 

2015; Arrighi, Togoli, & Burr, 2014; David Burr & Ross, 2008) density and numerosity are 

based on a common visual metric, with some authors proposing that a change from a 

numerosity to a texture-density regime depends on the ability to resolve individual 

elements, which is in turn limited by crowing-like effects and scales with visual 

eccentricity (Anobile et al., 2015). Furthermore, while early studies on density-related 

adaptation reported that after-effects only ever decreased perceived density (Durgin, 

1995; Durgin & Huk, 1997), suggesting that texture-density was processed as a scalar 

magnitude -similar to contrast or luminance- (Durgin & Huk, 1997), recent studies on 

contextual surround effects (simultaneous density contrast) (Sun, Jr., & Kingdom, 2016) 

and on density after-effects (with test and match presented sequentially) (Sun et al., 

2017) have found bidirectional adaptation effects, consistent with a framework of 

density perception based on channels with sensitivities selective to different values of 

density. A study has proposed that adaptation to texture-density (spacing between 

elements of an array) may tune an adaptable metric of the visual space to the properties 

of the environment, thus affecting subsequent perception of sizes and distances 

(Hisakata et al., 2016). 

 

As for the brain area(s) responsible for density processing, after-effects show complete 

interocular transfer, indicating that density coding takes place beyond V1 monocular 

cells (Durgin, 2001). Although the extent of commonality between density and 

numerosity is not clear, the loci of numerosity processing might provide some insight: 

several studies have pointed to a major role for the parietal cortex, specially the 

intraparietal sulcus (Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004; Zorzi, Di Bono, & 

Fias, 2011), with an early processing stage possibly in areas V2-V3 (Michele Fornaciai, 

Brannon, Woldorff, & Park, 2017).  
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At any rate, the purpose of this experiment is not to solve the questions concerning the 

properties of density processing, but to explore whether the phenomenological 

experience of UI on density correlates with density adaptation, in a manner suggestive 

of texture-density recoding in peripheral fields of visual areas beyond V1. 

 

 

 

 

2. METHODS 

 

Experiment 6 comprised two versions: 6A and 6B. Both of them explored adaptation-

induced differences in reports about density patches and whether these differences 

correlated with experience of UI during adaptation. The main difference between 6A 

and 6B was the required report: an appearance task in 6A and a perceptual comparison 

task (2AFC) in 6B. Similar to Experiment 5 (UI on orientation), where participants had to 

compare the perceived appearance of a Gabor tilt to an internal reference (verticality), 

in Experiment 6A they had to compare the perceived density of the patch to an 

internalized reference density that had been previously learnt through training. Because 

this reference density was arguably more prone to memory distortion than verticality, 

Experiment 6B supplied an external reference, by asking participants to compare 

between two simultaneously presented patches -one of them the reference density, the 

other the test density to be judged.  

 

Henceforth we will describe the methodology of Experiment 6 as a whole, specifying the 

particularities of 6A and 6B when pertinent.  

 

The structure of Experiment 6 shared multiple similarities with Experiment 5 as 

described in the previous chapter, including the division into an Illusion session and a 

Control session, and the division of each experimental block into an adaptation phase 
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and a test phase - see Figure 23. There were however several differences. In Experiment 

6A, before the eight experimental blocks of each session, a training block was run to 

enable learning and internalization of the reference density (see below). After this 

training, a practice block helped participants to familiarise themselves with the main 

task - both in 6A and 6B. 

 

The basic structure of each experimental block was as follows: during the adaptation 

phase, a dotted pattern was presented on the screen for 120 seconds. The central and 

peripheral area of the pattern had each a certain density of dots. Participants had to 

report whenever they perceived the density of the entire pattern as uniform. During the 

test phase, a perceptual task required comparing the density of a small dotted patch 

presented in a specific peripheral position with a reference density that was the same 

for the entire experiment. As mentioned above, in 6A, the reference was internalized by 

training before the experimental blocks, and a single peripheral patch was presented 

per trial, requiring participants to report whether its density was lower or higher than 

the reference. In 6B, two peripheral patches were presented per trial, at the same 

eccentricity in the left and right hemifield, one of them containing the reference density 

and the other the trial’s test density: participants had to report which of them was 

higher. Reports were analysed to ascertain adaptation-induced biases in relation with 

physical and perceived densities. 

 

The eight experimental blocks were of three types, randomly interleaved, differing in 

terms of the pattern presented during the adaptation phase: Dd, dd and DD - see below 

for their description. Six blocks were of Dd type (the only type able to cause UI), while 

one single block was dd and another DD type, serving as a control. 

 

Unless specified otherwise, participant recruitment, apparatus and statistical analyses 

were the same as in Experiment 5. 

 

 



 

 

 

 

 

248 

 
 



 

 

 

 

 

249 

Figure 23. Experiment 6: Methods. During the adaptation phase, a dotted pattern with certain densities in the central 

and peripheral regions was presented for 120 seconds. The experiment had three block types, depending on the 

presented pattern: Dd (high central density, low peripheral density), dd (uniformly low) and DD (uniformly high). Dd 

pattern was suitable for producing the uniformity illusion (UI), whereby participants saw a homogenous high-density 

pattern across the entire screen, although physical density in the periphery remained low. This illusory percept 

alternated with a non-illusory, non-uniform percept at different times during adaptation. The Control session 

replicated the phenomenology of the Illusion session, replacing perceived with physical uniformity at times in which 

the participant reported UI in the Illusion session. Furthermore, dd and DD blocks were interleaved with Dd type, to 

ascertain the effect of adaptation to constant, physically low (d) or high (D) density. The test phase had 24 trials, and 

required a comparison between a reference density (the same for the entire experiment) and a test density, different 

for each trial. Both test and reference density were intermediate between the low (d) and high (D) densities employed 

in the adaptation phase. In Experiment 6A the reference density was internalized by training at the beginning of the 

experiment, and a single small peripheral patch was presented per trial, containing the test density; participants had 

to report if it was higher or lower than the reference density. In Experiment 6B the reference and test density were 

presented simultaneously in two peripheral patches, and participants had to report which was higher.  

 

 

 

2.1. PROCEDURE 

 

2.1.1. Training block (Experiment 6A only) 

 

In Experiment 6A, the training block was designed so that participants could internalize 

a specific density value (reference density), to be used as an internal criterion during the 

experimental blocks. The training took place at the beginning of each session (Illusion 

and Control), although participants could repeat it anytime between the experimental 

blocks, at their own discretion.  

 

At the beginning of the training block, a dotted pattern with the reference density was 

displayed on the whole screen for 10 seconds. The reference density was defined as 8.66 

dots/dva2, corresponding to a 0.3 proportion (30%) of the surface area covered by dots. 

After the 10-second exposure, the pattern was removed and two small dotted patches 

were presented, each on one side of the screen: one of them had the reference density 

and the other had one of the following values, in terms of proportion of dotted area: 
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0.225, 0.25, 0.275, 0.325, 0.35 and 0.375 (between 6.50 and 10.83 dots/dva2). 

Participants had to report which of the two patches contained the previously displayed 

reference density. There were 24 trials (4 repetitions of each test density), and the 

reference was placed 50% of times on each side of the screen. Participants had to repeat 

the training block if they made more than 10 wrong answers.  

 

 

2.1.2. Experimental blocks 

 

Illusion session 

 

At the beginning of each block, a pattern formed by black and white dots on a grey 

background was displayed on the screen. Participants were instructed to report 

whenever they perceived the density of the dotted pattern as homogeneous by holding 

down a key, and releasing when the pattern appeared non-uniform. They had to 

maintain gaze fixation on a red dot located on the screen centre while using an eye-

tracking device with their head position stabilized by a chin and forehead rest. If their 

gaze deviated from fixation by over 1 degree of visual angle (dva), the pattern was 

removed from the screen and only a grey background showed. The adaptation phase 

lasted 120 seconds, but actual pattern exposure could be shorter due to gaze-contingent 

pattern removal. This duration was shorter than for Experiment 5 (UI on orientation - 

180 seconds) because during the pilot phase of the current experiment the illusion 

(described as the experience of a uniform high-density pattern) was reportedly easier 

to see.  

 

As mentioned above, there were three types of adapting patterns, and thus three types 

of blocks: Dd pattern had high density in the central area (11.55 dots/dva2, proportion 

of covered surface: 0.4) and low density in the periphery (5.77 dots/dva2, 0.2 proportion 

of dotted area), and was the only physically non-uniform pattern, suitable for producing 

UI. Six of the eight blocks in each session were Dd blocks. The other two were each of 
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one of the remaining types, with uniform density across the entire pattern: dd 

(uniformly low-density pattern, i.e. 0.2 of dotted area) and DD (uniformly high density, 

0.4). These were included as control, to measure the bias exerted by constant exposure 

to physically high and low density, in contrast with the physically mixed-density Dd 

pattern (but locally low in the periphery) and the illusory high-density DD pattern seen 

under UI in Dd blocks. 

 

The test phase had 24 trials, separated by a pseudo-random interval between 750 – 

1250 milliseconds. Each trial required a comparison between the reference density, 

constant for the whole experiment (0.3) and a test density which varied on a trial-by-

trial basis. In Experiment 6A, test density could take one of six equally frequent values: 

0.225, 0.25, 0.275, 0.325, 0.35 and 0.375 proportion of surface covered by dots 

(between 6.50 and 10.83 dots/dva2). In Experiment 6B, the possible values were: 0.215, 

0.225, 0.25, 0.35, 0.375, 0.385. Therefore, all values were intermediate between the low 

(d=0.2) and high (D=0.4) adapting densities, and 50% of them were lower/higher than 

the reference density (0.3). In Experiment 6A, a small peripheral patch containing the 

test density was presented for 500 ms on an otherwise empty grey background (except 

for a red fixation dot on the screen centre). In Experiment 6B, in addition to the test 

density, an additional peripheral patch containing the reference density was presented 

for the same time in the opposite hemifield, at the same eccentricity. The test density 

was presented 50% of trials on each side of the screen. 

 

 

Control session 

 

Each block of the Control session was designed to be have identical to a homologous 

block of the Illusion session in terms of phenomenology. During the adaptation phase, 

the presentation pattern was shown at exactly the same times as in the homologous 

block: that, is, if the pattern had been removed in the Illusion session due to incorrect 

gaze fixation, it was removed for the same times in the Control session; besides, it was 
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also removed if fixation lapsed at other times during the Control session. In dd and DD 

blocks, the presented pattern was identical at all times; in Dd blocks, whenever 

participants had reported UI during the Illusion session, the Dd pattern was replaced by 

a physically uniform, high-density DD pattern at those specific times.  

 

The test phase was identical to the homologous block in the Illusion session. The inter-

trial interval was adjusted in function of the response time in order to make the intervals 

between successive presentations equal in the Illusion and Control sessions.  

 

 

 

2.2. STIMULI 

 

Stimuli were displayed on a grey background. A red fixation dot (0.42 dva diameter) 

showed constantly on the screen centre. 

 

The visual dimension of density was built by assembling a collection of black and white 

dots - 50% of each, to ensure isoluminance between areas, patterns, density values and 

with the grey background (~34.8 cd/m2). Each individual dot had a diameter of 0.21 dva 

and occupied a square cell (0.21 dva side length) on an invisible grid spanning the entire 

screen. This prevented overlapping between dots. The number of occupied cells would 

depend on the desired density value, which was defined, as previously mentioned, as 

the proportion of surface area covered by dots (a 0-1 ranging value), which scaled 

linearly with to the number of dots by unit of surface, since all the dots had the same 

size. Once the desired number of dots within a certain area was set (for example, the 

central area, the test patch, etc), the actual position of the dots was randomized among 

all the cells in the area. 
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2.2.1 Adapting pattern 

 

The Dd adapting pattern had a central area, spanning 16 dva horizontally (8 to each side) 

and 12 dva vertically, wherein dot density was 0.4 (11.55 dots/dva2) - high density, D. 

The rest of the screen comprised the peripheral area, with 0.2 dot density (5.77 

dots/dva2) -low density, d. In the dd pattern, density in both central and peripheral areas 

was 0.2; in DD pattern it was uniformly high, 0.4. 

 

The position and colour of the individual dots did not rest fixed throughout the entire 

adaptation period, but were reshuffled at periods randomized between 180 – 300 ms 

(18 – 30 frames). Only the overall number of dots in the area (which determined the dot 

density) remained the same. 

 

As described above, in Dd blocks of the Control session, the Dd pattern was replaced by 

a uniformly high DD pattern at the times wherein UI was reported in the homologous 

Illusion block. 

 

 

2.2.2. Test patches 

 

During the trial phase, a circular patch of 3 dva diameter was presented at 13.5 dva from 

the screen centre, either on the left or the right hemifield along the horizontal axis -

therefore, the minimum distance between the inner region of the patch and the external 

border of the central area was 4 dva (=13.5-1.5-8). This circular area was covered by 

black and white dots up to a given test density, always intermediate between 0.2 and 

0.4: specifically, 0.225, 0.25, 0.275, 0.325, 0.35 and 0.375 in Experiment 6A, or 0.215, 

0.225, 0.25, 0.35, 0.375, 0.385 in Experiment 6B. In Experiment 6B, a second circular 

patch was presented in the opposite hemifield, also at 13.5 dva eccentricity, with the 

reference density (0.3). 
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2.3. STATISTICAL ANALYSIS 

 

Methods for statistical analysis were identical to Experiment 5 (UI on orientation) except 

for the specific details of Psychometric curve fitting: in Experiment 6A, a cumulative 

Gaussian curve was fitted by the method of maximum likelihood to the proportion of 

‘higher’ reports (higher than reference density) per value of test density, separately for 

each participant, session and adapting condition (dd, Dd, DD). The threshold (α) for 0.5 

proportion of ‘higher’ responses and the slope of the curve (β) were free parameters 

(starting values: α=0.3 (30% density), β=0.5), while guessing (γ) and lapse rate (λ) were 

fixed at zero. In Experiment 6B, the stimulus intensities for the Psychometric curve were 

the absolute difference between test and reference density, and the corresponding 

value of the function was the proportion of correct reports (when choosing the higher 

density between test and reference). The threshold and slope were free parameters 

(starting values: α=0.075, β=1), while guessing (γ) and lapse rate (λ) were fixed at 0.5 

and 0, respectively. Nevertheless, Psychometric curves were not key to our analyses 

(especially in Experiment 6B) as the data was difficult to fit due to the narrow range of 

test densities imposed by experimental constraints.  

 

 

 

 

3. RESULTS 

 

3.1. EXPERIMENT 6A: APPEARANCE TASK 

 

Twenty participants volunteered to the experiment (14 female, mean age 24.6 y/o).  

 

As in Experiment 5, we sought to ensure sufficient exposure to the adapting pattern by 

excluding blocks where it had been presented for less than 2/3 of the adaptation phase 

(<80 seconds), as well as the homologous blocks to those excluded for the reason above. 
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This led to exclusion of 70 blocks out of 360 (21.88%), including the entire datasets from 

3 participants; results presented here correspond to the included blocks of the 

remaining 17 participants. 

 

 

3.1.1.  Adaptation phase 

 

Data reported here refer to Dd blocks only, with an adapting pattern suitable for 

producing UI.   

 

On average, time of effective exposure to the adapting pattern per block was 109.08 

and 97.77 seconds during the Illusion and Control session, respectively, making 90.90% 

and 81.47% of the total time of the adaptation phase (120 seconds). 

 

Perceived uniformity was reported, on average, for 59.11 seconds during the Illusion 

session and 50.74 seconds during the Control session, making 53.84% (minimum 

16.38%, maximum 90.92%) and 51.54% (minimum 17.75%, maximum 89.48%), 

respectively, of the total time of pattern exposure. These were far greater proportions 

than those for UI on orientation in Experiment 5 (~27% on average, with one participant 

as low as ~0.55%). The average proportion of reported uniformity was not significantly 

different across sessions, with anecdotal evidence in favour of equality of proportions: 

paired-samples t-test, BF01=2.122. Physical uniformity during the Control session was 

reported as perceptually uniform 72.42% of the time, while physical non-uniformity was 

identified as uniform only 17.28% of the time, compared to 53.84% during the Illusion 

session, when the presented pattern was also physically non-uniform. As in Experiment 

5 with orientation patterns, it is likely that presentation of a truly uniform pattern at 

times during the Control session produced a conservative shift in participants’ criterion 

for reporting uniformity. This highly suggests that decisional biases play a role in the 

phenomenology of UI.  
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3.1.2. Hypotheses and measurements 

 

As described in the Introduction to the current chapter, the mechanisms involved in 

processing of texture-density are less well characterized than orientation processing. 

For this motive we defined three competing hypotheses a priori:  

 

1. Physical and local adaptation. Adaptation to the density of the dotted pattern is 

driven solely by physical density and is local (retinotopic) in scope. Under this 

scenario, adaptation-induced response bias caused by exposure to Dd pattern 

would be the same as for dd pattern, since both patterns have low density in 

the peripheral area where test patches are later presented. In both cases, there 

would be a relative overestimation of test densities compared to DD blocks. This 

would be the case even when uniform high density (‘illusory DD’) is perceived 

for very long times under UI, in Dd blocks.  

 

2. Physical, non-local adaptation. Adaptation to the density of the dotted pattern 

is driven solely by physical density, but is non-local in scope, either because it 

has very large receptive fields or it is processed as an abstract dimension. Under 

this scenario, the high-density central area would exert some bias on reports 

about the density of the peripheral patches presented later on during the test 

phase, but this effect would be due to the physical presence of this central area 

and unrelated to perception of UI. Under this hypothesis, response patterns for 

dd and Dd blocks should be different, with dd showing overestimation 

compared to Dd. The most likely prediction is that both central and peripheral 

areas would have a measurable effect, and therefore the response pattern in Dd 

blocks would be intermediate between dd (overestimation) and DD 

(underestimation of test density). At any rate, since the perceived density under 

UI has no effect, we would expect independence of time of perceived 

uniformity. 
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3. Illusion-driven adaptation. The perceived uniform high density for the Dd 

pattern under UI (‘Illusory DD’) is able to cause adaptation effects by 

recodification of density information in peripheral receptive fields. Thus, we 

should expect a similar response pattern than for the previous hypothesis (non-

local physical adaptation) when considering overall results, but in addition there 

should time-dependency of the duration of UI. The most likely prediction for Dd 

blocks would be an intermediate response pattern between dd (overestimation) 

and DD (underestimation), with a trend toward greater underestimation for 

longer times of UI. 

 

As in the orientation experiment, we based our analyses on direct responses as well as 

fitted curves:  

 

1. The proportion of ‘higher’ reports (test density is deemed higher than the 

reference density) was termed %Higher. Since 50% of presented test densities 

are below and above the reference density, an unbiased observer would report 

‘higher’ 50% of times. Thus, %Higher>50% indicates response overestimation 

and vice versa. 

 

2. The point of subjective equality, PSE, was defined as the test density that elicited 

50% ‘higher’ (than reference density) reports, and as many ‘lower’ reports. Since 

the reference density is 0.3 (proportion of surface covered by dots), a PSE<0.3 

indicates overestimation and vice versa.  

 

As described above, we may make different predictions under the three different 

hypotheses: 

 

1. Physical and local adaptation: %Higherdd=%HigherDd>%HigherDD, 

PSEdd=PSEDd<PSEDD. Results are independent of time of perceived uniformity. 
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2. Physical, non-local adaptation: %Higherdd>%HigherDd>%HigherDD, 

PSEdd<PSEDd<PSEDD. Results are independent of time of perceived uniformity. 

 

3. Illusion-driven adaptation: if UI is perceived for less than 100% of the time we 

should expect %Higherdd>%HigherDd>%HigherDD, PSEdd<PSEDd<PSEDD. Results 

are dependent of time of perceived uniformity. 

 

In the following sections we will present both response-based and Psychometric 

function-based results but our analyses will focus on the first to avoid redundancy, as 

the same pattern of results is observed for both approaches. 
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3.1.3. Responses show an effect of the central high-density pattern, but are 

independent of the reported time of UI 

 

 

 
 

Figure 24. Experiment 6A: Results. Reports about density are influenced by both the local low density and the central 

high density present in Dd pattern during the adaptation phase. However, time-invariance from both perceived and 

physical uniformity prevents resolving whether this result is a non-local effect of the central pattern or an effect of 

the illusory high density perceived during UI.  24a – c: Overall results. Reports about density in Dd blocks are virtually 

unbiased, while dd and DD blocks show a noticeable over and underestimation, respectively, consistent with 

adaptation effects - or a criterion shift as a result of exposure to the pattern. This result rules out that the effect of 

exposure to density is both physical and local-driven, since in that case we would expect identical response patterns 

in Dd and dd blocks (low density in the peripheral area). Thus, two possibilities remain: physical, non-local effect or 

illusion-driven effect. Results in the Control session seem to support the latter, since they show almost identical 



 

 

 

 

 

260 

response pattern to the Illusion session despite presentation of physical uniformity at times. But, if a potential non-

local effect of density was also largely time-invariant, the similar results in Illusion Dd and Control Dd blocks would 

be explained without need for a specific effect of UI. In this regard, the analysis of time-dependency is crucial. 24d – 

24e: Time-dependent results during the Illusion session. The two graphs present bivariate correlations between each 

participant’s time of perceived uniformity (as a percent of the total time of pattern exposure) and their response bias 

in Illusion Dd blocks, expressed in terms of proportion of ‘higher’ reports (24d) and PSE (24e). Thus, each data point 

represents a single participant. If UI had an effect on responses and this effect was time-dependent, we should 

observe a trend to greater underestimation for longer times of perceived uniformity, i.e. a negative correlation with 

%Higher and a positive correlation with PSE. Analyses entirely discard this, rather showing a non-significant trend in 

the opposite direction. 24f - 24g: Time-dependent results during the Control session: bivariate correlations between 

individual time (%) of physical uniformity and response bias in Control Dd blocks. As for the Illusion session, time-

dependency would produce a negative correlation between time of uniformity and %Higher, and a positive 

correlation with PSE. Again, results show time-invariance of response pattern in Dd blocks, even in relation to physical 

replacement at times by a uniform high-density (DD) pattern. 24h-24i: Time-dependent results, analysed within-

participant: each participant’s dataset has been divided in terms of whether each Dd block was below or above the 

participant’s median time of (perceived/physical) uniformity. The graphs show that the participant’s response pattern 

(expressed in terms of % ‘Higher’ reports or of PSE) is not different in blocks with short compared to long time of 

uniformity, neither for perceived nor for physical uniformity. Crucially, the fact that the effect of exposure to physical 

density is also time-invariant (or not sensitive enough for our analyses), as shown in the Control session, means that 

our experiment cannot disambiguate between the possibilities of non-local, physical (and time-invariant) adaptation 

and UI-driven (time-invariant) adaptation. 

 

 

Overall results 

 

Figure 24a presents the sample’s average proportion of ‘higher’ (than reference density) 

reports for each test density value, plotted separately by adapting condition: dd, Dd 

(Illusion session), Dd (Control session) and DD. Block types dd and DD are pooled across 

sessions, since there are no differences between Illusion and Control. In Dd blocks during 

the Control session, the Dd pattern is replaced by a physical DD pattern during the times 

of reported UI in the Illusion session.  

 

For illustration-of-method purposes, Figure 24a presents cumulative Gaussian curves 

fitted for the sample’s pooled data (N=17). However, data analyses are based on 
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measures obtained individually on each participant: %Higher and PSE, summarized in 

Figures 24b-c. 

 

Illusion session 

 

We will begin by comparing the adapting conditions dd, Dd (Illusion) and DD, setting 

momentarily aside Dd blocks during the Control session, which presented a mixture of 

Dd and DD patterns at different times. 

 

Figures 24a-c show that responses were influenced by the pattern presented during the 

adaptation phase: there was a noticeable overestimation of test densities in dd blocks 

(%Higher=58.60%), virtually no bias in Dd blocks (%Higher=48.23%) and 

underestimation in DD blocks (%Higher=40.74%).  A Bayesian RM ANOVA on %Higher 

with adapting pattern (dd, Dd Illusion, DD) as within-participant factor showed extreme 

evidence in favour of the explanatory role of the adapting pattern (BF10=118.298). PSEs 

show an analogous pattern of response bias (Figure 24c): PSEdd=27.65, PSEDd=31.22, 

PSEDD=31.89. 

 

If density adaptation was physical and local-driven, the high-density central area in Dd 

pattern should not have any effect on responses, since the test patches are presented 

in the periphery. Conversely, if the central high-density area has some kind of effect 

(regardless of whether it is physical or illusion-driven), we should expect a relative 

underestimation of test densities in Dd pattern, compared to dd: %Higherdd>%HigherDd. 

A Bayesian paired samples t-test rendered moderate evidence in favour of this 

prediction: BF+0=3.388. In short, evidence indicates that the effect of pattern exposure 

is not simultaneously physical-driven and local in scope: rather, the high-density central 

pattern in Dd has an influence on partipants’ responses. Whether it is a physical-driven, 

but non-local effect, or an illusion-driven bias, is still unclear. 
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Control session 

 

During the adaptation phase, Dd blocks in the Control session present an alternation of 

Dd and DD patterns, depending on the phenomenology reported during the Illusion 

session.  

 

The proportion of ‘higher’ reports in Control Dd blocks is 47.84%; statistically, it is no 

different than for Illusion Dd blocks (48.23%): Bayesian paired-samples t-test BF01=3.997 

(moderate evidence for the null hypothesis). PSE-based analyses display the same 

pattern: PSEDd Illusion=31.22, PSEDd Control=29.74, Bayesian paired-samples t-test with 

moderate evidence in favour of equality (BF01=3.108). 

 

Thus, contrary to the Experiment 5 (UI on orientation), here results suggest that the 

physical replacement of illusory by physical uniformity (illusory DD by physical DD 

pattern) accurately replicates the adaptation-driven response bias observed for a 

pattern suitable for producing UI on density. This may be deemed supportive of an effect 

of UI on adaptation to density, but, alternatively, if the non-local effect of density was 

also time-insensitive, this pattern of results would not need to assume any effect of UI, 

as both Illusion and Control Dd blocks present a mixture of low and high densities, 

differing only in time and physical location of each. 

 

 

Time dependent results 

 

Results so far clearly rule out that the response bias driven by exposure to Dd pattern is 

solely based on the local effect of the low density physically presented in the periphery. 

However, two possible interpretations of our data remain: (i) either the high-density 

central area exerts some non-local, but physical-driven effect (i.e. the physical presence 

of a high-density pattern biases participants’ responses for a patch in a different retinal 

location, due to very large receptive fields, non-local adaptation effects or shifts in 



 

 

 

 

 

263 

decision criteria), or else (ii) the perceived high density in the periphery under UI (illusory 

DD pattern) causes a bias in responses.  

 

Results from the Control session point to the latter possibility, since replacement of 

illusory DD percept by physical DD pattern in function of participants’ illusory experience 

renders similar results to the Illusion session. However, finding time-dependency during 

the Control session should be a critical requirement for determining our ability to 

disambiguate between both hypotheses (non-local physical versus UI-driven effect) with 

the current experimental design. If there is such time-dependency in the Control 

session, then whether or not there is time-dependency also in the Illusion session would 

resolve the alternative between the remaining hypotheses: in this scenario, finding 

time-dependency would indicate a UI-driven effect; conversely, time-independence of 

illusory uniformity (in presence of time-dependency of physical uniformity) would mean 

that the Dd-driven response bias is due to a non-local effect of the physical high-density 

area.  

 

However, if we failed to find time-dependency of physical uniformity, it would mean 

that perceptual decision-making on density is affected by contextual density in a manner 

that lacks the needed spatiotemporal sensitivity to provide informative answers about 

the basis of UI. Indeed, UI needs the physical presence of both high and low-density 

areas, and it is not perceived 100% of the time; therefore, non-local, time-invariant (or 

time-insensitive) effects of the physical pattern would resemble a hypothetical UI-driven 

effect in a way that could not be easily disambiguated in our data - both cases would 

entail an intermediate response bias between low and high-density effect. In that case, 

the overall results of the Control session (which seemed to favour a UI-driven effect on 

responses) could be explained just in light of such invariance. 

 

We therefore proceeded to analyse time-dependency in a similar way than for 

Experiment 5, i.e. by examining the bivariate correlation between each participant’s 

time of perceived/physical uniformity and their individual response bias. This analysis 
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focused on Dd blocks only, as they were the only ones wherein UI could be perceived. 

The existence of time-dependency in relation to perceived and/or physical uniformity 

(illusory or physical DD pattern) would predict a trend toward increased 

underestimation of test density for a longer time of uniformity: in other words, a 

negative correlation with %Higher and a positive correlation with PSEDd. Conversely, 

time-invariance would be expressed by a lack of any statistical association whatsoever. 

 

Results for the Illusion session show a trend toward a positive correlation between time 

of perceived uniformity and proportion of ‘Higher’ reports, contrary to what would be 

predicted by an adaptation-like effect of the illusory percept; however, evidence for the 

existence of this correlation was only anecdotal: r=0.427, 95% credible intervals: (-0.071, 

0.719), BF10=1.157. If we used a one-sided negative prior according to our prediction of 

a negative correlation, we observed moderate evidence against such prediction: BF-

0=0.123. Converging results were obtained when using PSEDd as a measure of response 

bias. In short, we observed no trace of time-dependency of illusory uniformity in the 

manner predicted by UI-driven adaptation effect. See Figures 24d and 24e. 

 

Concerning the Control session, a Bayesian Pearson’s correlation between time and 

%Higher provided moderate evidence against the existence of any statistical 

association: r=0.066 (-0.394, 0.491), BF10=0.309 - see Figure 24f. Evidence against a 

negative correlation (what would be predicted by time-dependent adaptation to 

physical high density) was also moderate: BF-0=0.250. PSE-based correlation again 

showed converging results (Figure 24g). Thus, the effect of exposure to different 

physical densities was time-invariant, or at least not time-sensitive enough in the 

conditions of our experiment. 

 

We sought to further confirm this lack of association by analysing within-participant 

differences between experimental blocks of the same session. With this we aimed to 

remove the noise caused by participants’ idiosyncratic biases present in the between-

participant correlations. We divided the Dd blocks of each participant and session into 
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two parts, according to whether time of (perceived/physical) uniformity had been below 

or above the participant’s own median time, and ran a Bayesian paired-samples t-test 

for the difference in the proportion of ‘higher’ reports in below-median compared to 

above-median time blocks. Results are shown in Figures 24h-24i: again, evidence 

supports equality of response proportions in both cases, for both the Illusion 

(BF10=0.321) and the Control session (BF10=0.261).  

 

In conclusion, density reports in our experiment are independent from the time of 

perceived and physical uniformity. Time-invariance from exposure to both illusory and 

physical density (as seen in the Control session) means that density processing in our 

experimental design lacks the necessary retinal specificity and temporal sensitivity to be 

employed as a tool for exploring the basis of UI through adaptation effects.  

 

 

3.1.4. Presentation of a density pattern only in the central area demonstrates non-

local effects on density reports 

 

Results so far are consistent with two hypotheses: physical, but non-local and time-

invariant effect of exposure to density, or UI-driven effect (also time-invariant). The lack 

of time dependency prevents deciding between both possibilities. However, it is 

possible to ascertain the existence of non-local effects in a pattern unsuitable for 

producing UI. If we found a similar response bias is such conditions, we would have to 

conclude that non-locality is sufficient to explain our results. 
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Figure 25. Experiment 6A, Central session: Methods. During the adaptation phase, a dotted pattern is presented on 

the central area of the screen; according to its density, the block would be termed dd (low), DD (high) or Dd (split into 

two halves by a vertical axis, with low or high density in each). The peripheral region was always an empty isoluminant 

grey background. The test phase was identical to the Illusion and Control sessions in Experiment 6A, requiring a 

comparison of a presented peripheral density with a reference density previously internalized. 

 

 

We therefore designed an additional experimental session, termed ‘Central’ session, 

wherein the adapting pattern was circumscribed to the central area (a 16x12-dva 

rectangle centred on the screen). The peripheral area only displayed a grey, isoluminant 

background. In Central Dd blocks, the left and right half of the central area presented 

different dot densities: low (0.2, 20% of dotted area) and high (0.4) density. Which 

density was presented in each side was randomized per block. In Central dd blocks, a 

uniform low density was displayed in the central area; in Central DD blocks, it was a high-

density pattern. Thus, this design presented uniformly low, uniformly high and a mixture 

of low and high densities, same as the corresponding blocks in the Illusion session, but 
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presentation here was always non-local, since the peripheral area, where the test 

patches would be displayed during the test phase, was empty. The Central Dd pattern 

was also unsuitable for producing UI, although other similar processes (such as 

perceptual filling-in, etc) might potentially take place. Other than the adapting pattern, 

the experimental design of the Central session was identical to the Illusion session 

(reported above). Participants were given identical instructions in both parts, albeit 

specifying that uniformity in the Central session only needed to occur within the central 

area. 

 

Nine participants volunteered to this experiment (seven female, mean age 23.2); five of 

them were participants who had done the Illusion and Control sessions of the main 

experiment and volunteered to an extra Central session. The other four did a two-

session experiment, with an Illusion and a Central session instead of a Control session.  

 

In Central Dd blocks, participants reported perceptual uniformity across the central area 

during 14.52% of the time (13.55 s), compared to 56.48% for Illusion Dd blocks.  
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Figure 26. Experiment 6A, Central session: Results. Response bias in function of adapting pattern (dd, Dd, DD) and 

scope of the display (whole screen, central). Figure 26a presents response-based measures of bias, whereas 26b 

shows PSEs. By both approaches we observe a non-local effect of the densities presented in the central area, similar 

to that observed for the whole-screen presentation. 

 

 

Figure 26 shows the pattern of responses in function of the densities presented during 

the adaptation phase (only low, both low and high, only high density) and the scope of 

the presentation (the whole screen in the Illusion session, the central area in the Central 

session). Figure 26a presents results in terms of the proportion of ‘higher’ reports 

(%Higher) and Figure 26b in terms of PSEs. Visual inspection of the plots shows that the 

pattern observed in the Illusion session also appears in the Central session: 

overestimation in dd blocks, underestimation in DD blocks and an intermediate pattern 

in Dd blocks - even if it seems slightly less marked in the Central session.  

 

To further confirm this, we ran a Bayesian RM measures ANOVA on proportion of 

‘higher’ reports (%Higher), with two within-participant factors: adapting pattern (dd, Dd, 

DD) and display scope (whole screen, central). Based on the evidence of the Bayesian 

ANOVA, a comparison between five possible models was performed: the null model 

(only containing participant information), two models containing a single main effect 

(either pattern or scope), a model containing both main effects and the full model with 

two main effects and the interaction pattern*scope. The key term for our analysis is the 

interaction term, which determines whether responses are modulated differently by the 

adapting pattern in function of its presentation in the whole screen or only in the central 

area. If evidence opposes inclusion of the interaction term in the model, it would 

indicate that the bias exerted by adapting densities is non-local. 

 

The best model according to evidence of the Bayesian RM ANOVA contained only 

‘adapting pattern’ as predictor (BF10=3.706: moderate advantage over the null). 

Conversely, the full model containing both main effects and the critical interaction term 

had a BF10=0.519. Evidence was moderately against inclusion of the interaction term in 
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the model: BFInclusion=0.289. Thus, the adapting pattern had an explanatory role on 

participants’ response bias regardless of whether this pattern was presented in the 

whole screen or only the central area. Similar results were obtained when analysing 

response bias by PSE instead of %Higher. 

 

In conclusion, we have shown that non-local presentation of the adapting densities in a 

pattern unsuitable for producing UI was sufficient to explain the pattern of density-

driven biases observed in Experiment 6A. While results of the Central session do not 

categorically exclude any possible UI-driven effect during the Illusion session, they make 

it unlikely as every aspect of our data is well accounted by a non-local, time-insensitive 

processing of density. They also suggest that adaptation-based experiments on visual 

dimensions that are not strictly low-level are unsuitable for studying the basis of UI. 

 

 

 

3.2. EXPERIMENT 6B (PERCEPTUAL COMPARISON TASK) 

 

Results from Experiment 6A indicate that the different densities presented during the 

adaptation phase exert a non-local, time-invariant repulsive effect on appearance 

judgments about density during the test phase. This is consistent with an effect of 

adaptation by a mid to high-level feature-dimension - i.e. a repulsion of the test density 

away from the adapting pattern. However, a second possibility is that this effect is 

caused by a shift in a binary decision criterion for low/high report, due to corruption of 

the memory representation of the reference density by the density or densities 

presented during the adaptation phase - an attraction of the reference density toward 

the adapting pattern. To disambiguate between these possibilities, in Experiment 6B we 

implemented a perceptual comparison (2AFC) task, presenting test and reference 

density simultaneously and at the same peripheral eccentricity. Such task would be 

more robust to criterion shifts and would ensure that the effect of the adapting pattern 

(if any) acted on the same direction upon test and reference densities. 
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Nine participants were recruited for this experiment (five females, mean age 25.33 y/o), 

in similar conditions as for Experiment 6A. Results presented here correspond to 101 

blocks of 8 participants, after exclusion of all blocks where effective pattern 

presentation had lasted for less than 2/3 of the adaptation phase (<80 seconds), as well 

as their homologous Dd blocks in the other session.  

 

A critical caveat: results for this experiment are greatly underpowered due to the small 

sample size. Recruitment was stopped (due to change in priorities and time constraints), 

as preliminary results appeared to confirm that the employment of density was 

unsuitable for investigating the basis of UI, due to its (apparent) non-local and time-

invariant effect, also in a perceptual comparison task. For this reason, results remain 

entirely preliminary. 

 

 

3.2.1.  Adaptation phase 

 

Results pertaining the adaptation phase were very similar to Experiment 6A. Average 

time of exposure to the adapting pattern in Dd blocks was 109.77 and 97.55 seconds, or 

91.48% and 81.30% of the duration of the adaptation phase, respectively for the Illusion 

and Control session. 

 

Perceived uniformity was reported during 64.71 and 47.99 seconds during the Illusion 

and Control session, respectively, i.e. 58.78% (27.57% - 97.19%) and 48.59% (12.60% - 

95.67%) of the total time of pattern presentation. These proportions were similar to 

Experiment 6A. On average they were lower for the Control session (although evidence 

was neither for nor against a difference across sessions: Bayesian paired-samples t-test, 

BF10=0.929), which, as in previous experiments, may point to a conservative shift in 

decision criterion for perceptual uniformity motivated by the exposure to true physical 

uniformity. Physical uniformity during the Control session was reported as uniform 
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57.53% of the time, while non-uniformity during the same session was for only 16.31%, 

despite being physically identical to non-uniformity during the Illusion session (reported 

as uniform 58.78% of time). 

 

 

3.2.2. Hypotheses and measurements 

 

As mentioned above, the purpose of this experiment was to disambiguate whether 

results in Experiment 6A were due to adaptation or solely to decision – memory effects. 

 

If the effect found in Experiment 6A was entirely due to a criterion shift for binary 

labelling we should not see any difference between adapting patterns in the current 

2AFC task. Conversely, if there is an effect of adaptation, predictions are less 

straightforward as many properties of density adaptation are still disputed: whether it 

is uni or bidirectional, its reference frame, etc. We could make the general prediction 

that, if there is a non-local effect of the central density beyond criterion shifts, response 

patterns should be different for dd and Dd blocks; furthermore, if such non-local effect 

was due to UI, the analysis of time-dependency in the Illusion and Control session should 

proceed similarly to Experiment 6A. 

 

For our data analysis, we calculated the proportion of correct responses (correctly 

identifying the patch with the higher density) as a function of the difference between 

test and reference density. The difference in absolute value (regardless of which is 

higher) could take three values: 0.05 (5%), 0.075 and 0.085, given the employed test 

densities (0.215, 0.225, 0.25, 0.35, 0.375, 0.385). Datasets were split according to 

whether the test density was higher or lower than the reference, as the effect of the 

different adapting densities was likely not symmetrical. Thus, ‘lower than reference’ 

comprises test values 0,215, 0.225 and 0.25, and ‘higher than reference’ corresponds to 

the other three. 
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3.2.3. Response patterns suggest a non-local adaptation effect by the high-density 

central area, without evidence for time-dependency of perceived or physical 

uniformity 
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Figure 27. Experiment 6B: Results. Figures 27a and 27b present the proportion of correct reports (%) as a function of 

the stimulus difference between the elements of comparison in the 2AFC task, i.e. test and reference density. Results 

are split by adapting pattern (dd, Dd - Illusion session, Dd – Control session, DD) and by lower and higher (than 

reference) test densities. The inset graphs show the total proportion of correct responses per adapting pattern. 

Results are greatly underpowered, but appear to suggest a non-local, unidirectional adaptation effect of the high-

density pattern, as performance is worsened after exposure to any adapting pattern containing high density (even 

Dd pattern, wherein local adapting density is low in the periphery). This suggests a compression of the distance 

between test and reference densities toward the lower region of the perceptual space - reducing discrimination and 

thus performance. Such compression would be exerted by repulsion away from the high density presented during 

the adaptation phase in Dd and DD blocks – although it is unclear whether the effect of Dd pattern is driven by non-

local physical adaptation or by changes induced by UI in the periphery. Conversely, low adapting density (d) would 

not have such compressive effect as it is itself lower than any of the test or reference densities. Furthermore, the 

finding of a similar pattern of results for test densities lower and higher than reference suggests that density 

adaptation is unidirectional. If the adaptation effect was bidirectional (repulsion away from the adaptor, toward lower 

and higher regions in the perceptual space) we should see a symmetrical effect so that the dd pattern would act on 

lower test densities in a similar manner as the DD pattern for higher test densities (as our design is symmetrical). 

Rather, we see the same difference between dd and rest of adapting patterns for lower and higher test densities. 27c 

– 27f. Time-dependency analyses: bivariate correlations between time of perceived or physical uniformity and 

proportion of correct reports in Dd blocks in the Illusion (27c, 27e) and Control (27d, 27f) session, respectively, split 

by test density values: lower (27c, 27d) and higher (27e, 27f) than the reference density. A non-significant negative 

correlation appears to confirm the existence of time-dependency for both the Illusion and Control session, which 

would indicate that the different effect of Dd and dd patterns in the overall results was driven by sensory changes 

induced in peripheral receptive fields by UI, and not just by non-local effect of the physical high density presented in 

the central area. However, on closer inspection, time-dependency disappears entirely if we remove a single outlier 

who consistently performed below chance. Rather, we seem to have (possible, but very underpowered) time-

invariance in both the Illusion and Control sessions. As in Experiment 6A, the latter prevents using time-dependency 

analysis in the Illusion session for investigating the effect of UI. 

 

 

Figures 27a and 27b show the proportion of correct reports as a function of the 

difference between the elements of comparison, namely test and reference density, 

plotted separately by adapting pattern and split according to whether the test density 

was lower (27a) or higher (27b) than the reference density. The inset graphs present the 

proportion of correct reports (across all test-reference differences) by adapting pattern, 

for test densities lower (27a) and higher (27b) than reference density. On visual 

inspection, in both 27a and 27b, there seems to be a slight benefit of adaptation to dd 

pattern, entailing a higher proportion of correct reports than any other adapting 
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pattern, especially for small differences between test and reference density (0.05 and 

0.075), i.e. for those cases where the effects of an increased sensitivity would be more 

noticeable. However, this supposed difference is entirely non-significant. 

 

If adaptation to dd pattern is associated to a better discrimination ability compared to 

other patterns, this would have several implications. First, this would indicate that the 

different effect of dd and Dd patterns is indeed due (at least in part) to non-local 

adaptation, and not just to a criterion shift, as the effect persists in a perceptual 

comparison (2AFC) task. Since the local, peripheral density is identical in both dd and 

Dd, the difference must be related to the central high density, either through non-local 

physical effects (as seen in the Central session of Experiment 6A) or through the 

influence of UI-driven changes. 

 

A second implication may be drawn from our results, albeit concerning only the 

mechanisms of density processing and unrelated to our question about the neural basis 

of UI. The fact that the direction of the supposed effect is the same in 27a and 27b (i.e. 

for lower and higher test densities) strongly suggests that, in the conditions of our 

experiment, density adaptation is unidirectional, i.e. it can only decrease perceived 

density. Bidirectional adaptation, as observed for channel-based dimensions such as 

orientation, produces a repulsion in both directions of the perceptual space. Thus, if 

adaptation to density was bidirectional, we should expect a symmetrical effect, 

depending on the perceptual distance between adaptor and test: in other words, the 

effect of dd pattern on the discrimination of lower test densities should be similar to the 

effect of DD pattern on higher test densities. Rather, it seems that the high adapting 

density (D, 0.4), either presented on the whole screen (DD) or only in the central area 

(Dd), affects the perceived density on all test and reference density values (all of them 

lower than 0.4), in a manner that suggests a perceptual compression of test and 

reference densities as they are both repelled toward the lower end of the perceptual 

space. This would account for the decreased discrimination ability after adaptation to a 

pattern containing high density. On the other hand, the low density (d, 0.2) would not 
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have any effect whatsoever in case of unidirectional adaptation, because test and 

reference densities are higher than d. This would explain the greater discrimination, and 

better performance, in dd blocks compared to any pattern containing high density. 

Indeed, most studies on density adaptation have reported unidirectional effect (Durgin, 

1995; Durgin & Huk, 1997), and those who have found bidirectionality achieved it by 

implementing specific designs (like sequential 2IFC presentation instead of 

simultaneous 2AFC task) (Sun et al., 2017).  

 

Thus, our results (even if underpowered and non-significant) suggest that the high-

density central area in the pattern suitable for producing UI (Dd pattern) has an effect 

on density discrimination in the periphery, which is consistent with non-local 

adaptation, and not merely a criterion shift. However, it is still not clear if this effect is 

explained by non-local effect of the physical density in the central area or rather due to 

a local recodification of density information in the peripheral receptive fields, driven by 

the Uniformity Illusion. This distinction, key to our investigation on the basis of UI, may 

be addressed by examining time dependency of illusory and physical uniformity in Dd 

blocks of the Illusion and Control session. Like for Experiment 2A, we can only draw a 

valid conclusion if we find time dependency in the Control session: in that case, finding 

it also in the Illusion session would mean that UI causes a recodification of peripheral 

information similar to the physical control, while failing to find it would suggest that the 

effect seen for the Illusion Dd blocks is due to non-local adaptation by the physical high-

density centre. On the other hand, if there was no time-dependency in the Control 

session, we would not be able to disambiguate between both possibilities. 

 

We therefore computed bivariate correlations between each participant’s proportion 

(%) of time of perceived or physical uniformity (in Dd blocks) and their proportion of 

correct responses. These analyses were split by session and by test density values lower 

and higher than density. Time dependency should see results for longer times of 

uniformity approximate to results observed for DD blocks: i.e., a negative correlation 

between time of uniformity and proportion of correct reports. Although entirely non-
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significant, at first sight there seems to be a negative correlation for both Illusion and 

Control session; if real, this would indicate an effect of UI on density adaptation. 

However, on closer inspection, this purported negative correlation appears entirely 

driven by a single participant who consistently performed at or below chance (<50%). 

Dismissing this data point, it would seem that response patterns in Dd blocks are time-

invariant for the Illusion and Control session, meaning that, as for Experiment 6A, 

density adaptation is not an adequate paradigm for exploring UI. 
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CHAPTER 9: DISCUSSION 
 

 

In this chapter we discuss the results of Experiments 5 and 6 and the possible 

basis of the Uniformity Illusion (UI). Our findings indicate that perceptual 

uniformity under UI (on orientation) does not require changes in encoding of 

peripheral information in the primary visual cortex (V1), while the 

involvement of other areas and mechanisms is less clear. It is possible that 

UI represents a heterogeneous collection of phenomena arising at different 

brain areas for different visual dimensions. The non-local processing of 

feature information in UI suggests the involvement of texture processing - in 

line with this, previous studies have not encountered changes in V1 activity 

in texture filling-in. Furthermore, UI shares some properties (but also large 

differences) with peripheral crowding, a process that has also been linked to 

texture processing and does not affect V1-based tilt adaptation. In addition, 

it is very likely that perceptual inflation (a decisional or metacognitive bias 

for uniformity) is at least partly responsible for the phenomenology, as 

suggested by the pattern of UI reports in our experiments. The contents of 

this chapter have been published in i-Perception journal as part of the article 

‘The Illusion of Uniformity Does Not Depend on the Primary Visual Cortex: 

Evidence from Sensory Adaptation’ (Suárez-Pinilla et al., 2018a) . 

 

 

The Uniformity Illusion (UI) is a striking phenomenon whereby experience across the 

whole visual field is modified by higher-precision foveal information, so that the 

peripheral elements of a display appear to uniformly take the properties of the fovea. 

Intuitively, this illusion seems to bring forth a promising approach to the study of 

naturalistic visual experience, in particular about surface processing across large visual 
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angle distances, affected by varying degrees of sensory precision. However, the 

underlying mechanisms of UI remain unknown. 

 

Using a version of UI with oriented Gabor patches, we found that UI does not produce 

an orientation adaptation after-effect consistent with the illusory percept. Instead, 

orientation after-effects only ever followed the (local) physically presented orientation. 

This suggests that the UI, at least on orientation, arises from higher-level (higher than 

primary visual cortex) perceptual processes, without recoding of peripheral signals in V1 

neurons.  

 

We then employed a similar paradigm applied to a visual property that is processed 

beyond V1, specifically texture-density. However, physical presentation of different 

densities (as required for producing UI) drove non-local and time-invariant effects on 

responses about density. Whether this was due to non-local adaptation to texture-

density or to a shift in internal decision criterion, this rendered the experimental 

paradigm unsuitable for assessing a potential UI-driven effect. We thus designed a 

modified experiment employing a perceptual comparison (instead of appearance) task, 

which was more robust to criterion shifts; nevertheless, results were convergent (albeit 

underpowered), suggesting non-local and time-invariant density adaptation, which 

prevented disambiguating between adaptation directly driven by the central area and a 

UI-driven effect due to sensory recodification in peripheral receptive fields. Still, 

although the absence of such effect couldn’t be demonstrated, it is worth noting that 

every aspect of our results could be explained in light of other demonstrated properties, 

without need for a hypothetical UI-driven adaptation. 

 

It has been suggested that UI may result from predictive processing operations in the 

visual hierarchy (Otten et al., 2016). In a hierarchical predictive coding scheme, 

perception arises from the interaction of bottom-up sensory signals with top-down 

expectations generated in higher cortical areas (K. Friston, 2005; Rao & Ballard, 1999). 

Prediction error is determined by the discrepancy between both and propagates 
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through the sensory hierarchy to update the internal world model. Although the 

interplay between neural signatures of sensory adaptation and predictive coding is not 

fully understood (Symonds et al., 2017), evidence indicates that top-down expectations 

produce activity changes in the visual cortex  - also specifically for orientation-selective 

neurons in V1 (Schummers, Sharma, & Sur, 2005), with adaptation adjusting the relative 

weight of bottom-up and top-down signals in relation to their precision (Malmierca, 

Anderson, & Antunes, 2015). Under this framework, UI may be conceptualized as the 

result of high-precision foveal signals which attain more weight than the periphery in 

forming perceptual predictions for the presented pattern – possibly in combination with 

a prior for perceptual uniformity for the entirety of the visual field. After a period of 

exposure, adaptation renders low-precision peripheral signals still weaker (in a manner 

resembling Troxler fading (Balas & Sinha, 2007; Martinez-Conde & Macknik, 2017)), until 

eventually they become unable to overcome the central-based prediction (Otten et al., 

2016).  

 

Our results suggest that if UI does result from such predictive operations, the locus of 

influence of the feedback does not reach primary visual cortex, as illusory uniformity on 

orientation produced no measurable adaptation effect.  

 

What, then, is the neural basis of UI? UI might be an instance of perceptual filling-in, a 

phenomenon whereby, a visual attribute like colour, luminance, or texture is perceived 

in a region of the visual field where it does not physically exist, by virtue of its presence 

in an adjacent area (Komatsu, 2006). However, unlike typical instances of uniform 

spread of colour or luminance, in our examples (UI on orientation and texture-density), 

the distinction between background and grid elements persists and the illusion 

selectively informs the appearance of the individual Gabors, or the ‘clutteredness’ of the 

dots. The process may be similar to texture filling-in or involve texture processing in a 

broader sense. Notably, several neurophysiological and neuroimaging experiments have 

reported changes in neural activation in early visual areas that correlate with perceptual 

filling-in: however, while for colour or luminance this correlate has been seen at V1 
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(Hsieh & Tse, 2010), for texture filling-in it has only been observed at V2 and above (De 

Weerd et al., 1995; Komatsu, 2006) - in agreement with our results.  

 

As previously mentioned, some properties of UI greatly echo the mechanism of texture 

perception, mainly regarding the non-local, statistics-based processing of feature 

information (S. C. Dakin & Watt, 1997; Julesz, 1981; Thielscher, Kolle, Neumann, Spitzer, 

& Gron, 2008). It is possible that UI arises when summary statistics in fovea and 

periphery are similar enough to prevent discrimination into different textures (S. C. 

Dakin & Watt, 1997). Texture perception appears to depend on areas beyond the 

primary visual cortex, specifically V2 and V3 (El-Shamayleh & Movshon, 2011; Okazawa, 

Tajima, & Komatsu, 2017; C. M. Ziemba, Freeman, Movshon, & Simoncelli, 2016).  

 

UI also exhibits similarities with crowding, as a context-dependent alteration of 

peripheral perception. Like UI, crowding arises for different low and high-level 

dimensions and at several stages of the visual system, involving V2 and above (Whitney 

& Levi, 2011) - for instance, tilt adaptation to the veridical orientation is present for 

crowded, indistinguishable stimuli (He et al., 1996). Crowding has been likened to 

texture perception (L. Parkes et al., 2001), and it has been reported that texture-density 

perception depends on crowding-like processes (Anobile et al., 2015). However, as a 

fundamental difference with crowding, in UI peripheral phenomenology is not a mixture 

of adjacent stimuli, but the replacement of peripheral appearance by the traits of 

sometimes distant foveal elements.   

 

Finally, UI may be due to perceptual inflation, whereby apparent detail in the periphery 

is not sustained on perceptual content, but due to decisional or metacognitive biases 

(Odegaard et al., 2018). In both of our experiments (orientation and density), during the 

Control session, where a physically uniform pattern was presented at times, participants 

were less prone to report UI during presentation of the non-uniform pattern compared 

to the Illusion session: this suggests a shift in decision criterion for uniformity that 

determines the experience of UI. Importantly, these processes are not exclusive: 
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possibly both texture processing and perceptual inflation contribute to UI. Further 

studies may elucidate the precise contribution of the different perceptual mechanisms 

that underlie foveal-peripheral integration, as demonstrated by UI, and that are central 

to naturalistic visual experience. However, our results clearly demonstrate that, at least 

for orientation, these mechanisms do not alter neural coding at the primary visual 

cortex.  
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PART IV: Conclusions 
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Visual perception relies on contextual information for the processing of sensory signals, 

as a way to disambiguate signal and noise and to optimize the neural code to the 

statistics of the environment. A well-known example of this is sensory adaptation, 

whereby perception is shifted away from previous information -or adjacent information, 

in surround suppression and other extra-classical effects. Beside this negative bias, 

positive biases toward the spatiotemporal context have been recognized for long, and 

in recent years have been increasingly studied in terms of Bayesian operations, 

particularly within the predictive coding framework, which regards perception as 

Bayesian inference. A fundamental trait to gauge the properties of the environment, 

tune noise management and metacognition, and optimize Bayesian computations is 

visual variability, which provides a measure of the reliability of the sensory signal (or 

width of the likelihood distribution) as well as the range of expected stimuli (or width of 

the prior). In turn, perception of visual variability is also subject to tuning by contextual 

cues over time and across the visual field, as we have studied in a series of experiments 

reported in this thesis.  

 

Firstly we studied serial dependence in visual variance, i.e., how judgments about 

motion variance are influenced by previous variance presentations. We identified two 

history-dependent biases: a positive, Bayesian-like bias exerted by recent history and of 

likely decisional origin, and a negative effect compatible with sensory adaptation. The 

origin of positive serial dependence in perception is a matter of intense debate, with 

several studies presenting evidence for (Cicchini et al., 2017; Fischer & Whitney, 2014; 

M. Fornaciai & Park, 2018; John-Saaltink et al., 2016) and against (Alais, Lelung, et al., 

2017; Bliss et al., 2017; Fritsche et al., 2017; Suárez-Pinilla et al., 2018b) a perceptual 

nature. There is, besides, a large body of knowledge about recency biases in working 

memory that may shed some light on the issue (Akrami et al., 2018; Ashourian & 

Loewenstein, 2011; Fassihi et al., 2014; Huang & Sekuler, 2014; Lockhead & King, 1983; 

Lu et al., 1992; Olkkonen et al., 2014; Papadimitriou et al., 2015; Preuschhof et al., 2010; 

Romo & Salinas, 2003; Visscher et al., 2009). In our experiments, serial dependence in 

variance was necessarily driven by a past, confident decision about variance and 
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exhibited superficially similar characteristics to the interaction of successive working 

memory representations (Huang & Sekuler, 2014; Kalm & Norris, 2017). No positive 

serial dependence was observed if there had not been a decision about variance (for the 

same amount of attention during perception, as ensured by post-cued task-switching), 

or when confidence about such decision had been low. In a continuous flash suppression 

experiment about serial dependence in orientation, we further confirmed that, for a 

visual dimension that is mainly processed in the primary visual cortex, serial dependence 

could not arise just as a result of local changes in V1 neural activity if higher-level 

processing had been blocked by masking in the past trial. While this last result does not 

rule out that a change in sensory areas may still happen due to top-down effects, it 

points to a fundamental difference with another well-known history-dependent sensory 

bias such as (negative) adaptation to orientation, which persists for unseen or crowded 

signals. In summary, we propose that perceptual decision-making, and particularly the 

processing of visual variability, relies on two opposite effects of stimulus history, 

originating at different levels of processing: a negative sensory effect and a positive 

decisional bias. Our conclusions agree with those by Fritsche and colleagues about the 

opposite effects of perception and decision in serial dependence (Fritsche et al., 2017), 

and with fMRI evidence of different areas involved in perceptual hysteresis (higher-

order visual and fronto-parietal areas) and adaptation (early visual areas) (Schwiedrzik 

et al., 2014). This multi-level combination of contextual effects would help to manage 

the balance between the needed sensitivity to environmental changes and the 

maintenance of a stable and smooth experience of the natural world, where changes 

are relatively discrete and infrequent.  

 

Furthermore, we built a two-layer model based on the premise of the existence of two 

competing biases occurring at different levels of perceptual decision-making, by utilising 

standard modelling approaches for attractive, recency-driven biases or regression 

effects (iterative Bayesian operations) and sensory adaptation effects (population 

codes). This model was able to replicate our own findings in their approximate 

timescales, showing a reversal from decisional positive bias with respect to recent 
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presentations toward a sensory negative effect by the broader context. These two 

effects may be assimilated to changes in criterion (decisional bias) and signal precision 

(sensory bias) as defined in models of signal detection theory (Stanislaw & Todorov, 

1999).  

 

In a second series of experiments we examined the management of variable information 

presented across different eccentricities, and how peripheral variability is ‘replaced’ by 

a uniform appearance informed by foveal input in the Uniformity Illusion (UI). In a 

somehow similar manner to our serial dependence results, regarding UI on orientation, 

we observed a dissociation between low-level negative adaptation and a higher-level 

bias toward uniformity that did not depend on sensory changes. Specifically, we 

observed that sensory adaptation (revealed by the V1-based tilt after-effect) and the 

attractive bias toward contextual (foveal) information that constitutes UI 

phenomenology were independent effects that may take place simultaneously and did 

not interact with each other, as the latter depended on higher-level processes. Our 

findings about UI on density were less conclusive due to the less local character of 

density adaptation, but, while a sensory effect of UI on density could not be completely 

ruled out, it proved unnecessary for describing our results. Furthermore, the pattern of 

UI reports, for both orientation and density, was highly suggestive of a decisional bias 

as a cause (or large contributor) for UI experience. Thus, participants reported illusory 

uniformity far less frequently, for an identical non-uniform pattern, when a physically 

uniform pattern was presented at times, suggesting a conservative criterion shift for UI.  

 

Although the processes underlying perceptual stability over time and across the visual 

field, as illustrated by serial dependence and UI, are very different in properties, 

timescales, and probably in their underlying mechanisms, both operate without 

apparent changes in low-level sensory information, and likely mainly at a decisional 

level. It is probable that decisional and metacognitive biases have a much greater role 

than usually recognized in the construction of visual awareness, and particularly in our 

illusion of living in a fundamentally homogeneous and stable world.   
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PART V: Additional Research: 

Modulation of Subjective Time 

Perception by Perceptual and 

Physiological Variability  
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Abstract 

 

The main research topic of this thesis dealt with the modulation of visual 

variability by the spatiotemporal context, as detailed in Parts I-IV. In addition 

to this, we also investigated how visual variability (the amount of change in 

perceptual content over time and across the visual field) determines a high-

level property at the core of our conscious experience: namely, the subjective 

perception of passage of time. A model of time perception based on an 

artificial perceptual classification network recently demonstrated biases in 

duration estimates driven by visual content, similar to those of human 

participants when fed with naturalistic video scenes (Roseboom et al., 2017). 

This finding supported that variability of perceptual content is the basis of 

subjective duration. Here we analysed the human participants data 

employed in the aforementioned study, to contrast the influence of external 

variability (change in visual content) with variability of internal processes, in 

terms of determining trial-by-trial differences in duration estimation. 

Specifically, we aimed to assess the potential effect of autonomic processes 

(signalled by heart rate and pupil size) and dopaminergic activity (using 

spontaneous blinking as proxy marker), as both have been deemed central 

to duration perception according to previous studies. In our data we unveiled 

an influence of visual content in duration estimates which could not be 

trivially explained by the correlation of visual scenes with a self-generated 

signal such as eye movements. However, and contrary to previous claims, 

neither heart rate, pupil size nor spontaneous blinking showed statistical 

association with trial-by-trial duration estimates. We propose that, as 

demonstrated by the model performance in  (Roseboom et al., 2017), change 

in perceptual content underpins human duration perception. In presence of 

naturalistic visual stimulation (unlike simple laboratory tasks or 

interoception paradigms), visual variability forms a major part of the 

multimodal perceptual content, with visceral or neural states showing a 
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negligible influence in time perception. As mentioned before, Part V is based 

on the same dataset as (Roseboom et al., 2017), but all the analyses reported 

here are my own. 
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CHAPTER 10: INTRODUCTION 
 

 

The mechanistic basis of subjective duration perception is much debated. 

Many studies postulate the existence of a neural clock driven by rhythmic or 

oscillating neural activity, with dopaminergic oscillators featuring 

prominently in these theories. Other authors propose that the accumulation 

of visceral states in specific brain areas gives rise to the sense of duration, 

relating embodied time perception with a pacemaker-accumulator 

framework. In support of these theories, several studies have sought for an 

association between accessible body signals reflecting neural or visceral 

processes and duration estimates, with variable success. Conversely, 

alternative accounts propose that, rather than internal processes, the basis 

of duration perception is the change in perceptual content, mainly driven by 

external stimuli. A recent study has provided support to this theory by 

modelling human-like biases in duration perception in terms of changes in 

visual content quantified by an artificial perceptual classification network. 

We analysed the human data obtained for that study by contrasting the 

influence of external content and measured body signals in trial-by-trial 

differences in duration estimates. 

 

 

Duration perception in the range of seconds to minutes is an essential feature of brain 

function, critical to the interpretation of environmental events, as well as to learning, 

strategical planning and decision-making processes (Gallistel & Gibbon, 2000; Meck, 

2003). However, the neural mechanisms that give rise to duration perception are still 

unclear.  
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Most accounts of how a phenomenological experience of duration arises rely on the 

assumption that there is a mechanism mapping physical into perceived time, i.e. a 

neural clock (Matell & Meck, 2004; Treisman, Faulkner, Naish, & Brogan, 1990). Among 

these, the influential pacemaker-accumulator model proposes that the experience of 

duration arises from a neural clock wherein a pacemaker generates sequential neural 

pulses that are stored in an accumulator: according to this, the number of pulses over a 

certain interval constitutes the brain’s estimation of the duration of such interval 

(Treisman et al., 1990). A variation of this model sees time as a metric arising from the 

dynamics of multiple neural oscillators with their phasic activity operating on different 

timescales (Church, 1984; Matell & Meck, 2004; Mauk & Buonomano, 2004).  

 

Evidence presented in favour of the putative role of neural clocks has linked striatal 

dopamine to duration perception (Melissa J. Allman & Warren H. Meck, 2012; Jennifer 

T Coull, Cheng, & Meck, 2011; Jennifer T. Coull, Hwang, Leyton, & Dagher, 2012; Matell 

& Meck, 2004; Meck, 2006). Specifically, increased dopaminergic activity has been 

related to overestimation of duration, and vice versa, in the milliseconds to seconds 

range (Jennifer T Coull et al., 2011; Terhune, Sullivan, & Simola, 2016). This has led 

several researchers to propose a fundamental role for neural oscillators forming part of 

the ascending nigrostriatal dopamine pathway of the dorsal striatum (Jennifer T Coull et 

al., 2011; Matell & Meck, 2004; Meck, 2006). Taking advantage of the link between 

increased striatal dopamine and spontaneous blinking (Karson, 1988), Terhune and 

colleagues reported transient variations in duration estimation in the sub-second and 

supra-second range, with human participants systematically biased towards reporting 

durations as longer immediately after spontaneous blinking than in the absence of a 

prior blink (Terhune et al., 2016). 

 

By contrast with neural clocks, a basis for human duration perception in physiological, 

rather than neural processes has long been suggested (Bell & Provins, 1963; 

Münsterberg, 1899; Osato, Ogawa, & Takaoka, 1995; Pollack, Ochberg, & Meyer, 1965; 

Schaefer & Gilliland, 1938; Schwarz, Winkler, & Sedlmeier, 2013) and in recent years has 
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again become popular (A.D. Craig, 2009; Lernia et al., 2018; Meissner & Wittman, 2011; 

Wittmann, Simmons, Aron, & Paulus, 2010). Such a proposal may be linked with the 

pacemaker-accumulator model, by making physiological processes the source of the 

rhythmic pacemaker pulses (Lernia et al., 2018). Along these lines, suggestions focus on 

the role of rhythmic interoceptive signals - the heartbeat specifically. Although 

researchers have long attempted to uncover a relationship between cardiac activity and 

duration perception, most of the attempts have been unsuccessful, or results have been 

partial or non-straightforward (Bell & Provins, 1963; Osato et al., 1995; Schaefer & 

Gilliland, 1938; Schwarz et al., 2013). Only few studies have found suggestive changes in 

cardiac activity during the encoding of time intervals (Meissner & Wittman, 2011; 

Pollatos, Yeldesbay, Pikovsky, & Rosenblum, 2014), though a major confounding factor 

to some of these studies is the association of autonomic activity to variations in arousal 

or attention that may have unspecific effects on time perception (as well as other 

cognitive) tasks (Schwarz et al., 2013).  

 

Alternative accounts for duration perception suggest that, rather than being (primarily) 

internally-driven by neural or physiological clocks, the basis for duration perception lies 

in changes in perceptual content (Herbst, Javadi, Meer, & Busch, 2013; Ryota Kanai, 

Paffen, Hogendoorn, & Verstraten, 2011; Linares & Gorea, 2015), i.e., in the amount of 

visual variability across the visual field and throughout time. Under these accounts, 

measurable stimulus attributes, rather than body signals, would be expected to best 

correlate with duration estimates. This simple approach has often been dismissed on 

the basis that changes in internal states, such as arousal or attention, can lead to the 

exact same perceptual content (stimulus) being reported as different in duration 

depending on the context in which it is viewed. However, a recent development 

(Roseboom et al., 2017) of this simple idea suggests that it is not how much the 

perceptual stimulation changes that is key, but rather how much change occurs in neural 

activity in perceptual classification networks (in response to changes in perceptual 

stimulation) what determines duration perception. This distinction allows for the 

possibility that changes in stimulation can drive changes in neural activity related to 
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changes in perceptual content, but further, that the interpretation of this neural activity 

is constrained by the state of the system during estimation, allowing for fluctuations in, 

for example, attention to time (or other task-dependent features).  

 

To support the idea that changes in activity within perceptual classification networks 

could underlie human duration estimation, a model of time perception based on an 

artificial perceptual classification network was recently demonstrated (Roseboom et al., 

2017). The model was built to produce duration estimates from the input of videos of 

natural scenes between 1 and 64 seconds. Model-produced duration estimates were 

found to be well matched to human-produced estimates made regarding the exact same 

scenes - including matching the pattern of biases in human reports by content of the 

scene, with busy scenes filmed while walking around a city judged as longer in duration 

than those in less busy contexts, such as walking around the countryside, or sitting in an 

office or café. Accompanying the behavioural reports of apparent duration, this study 

also recorded where in the scene the human participants were looking (using eye-

tracking) and monitored the participants’ heartbeat (using blood-volume pulse 

measurements) throughout the experiment. The results reported in the following 

chapters come from further analyses conducted on this combination of behavioural 

reports, eye-movements (including saccades, blinks, and pupil size), and heart rate data.  

 

Unlike most studies on duration perception, which typically use simple stimuli (circles 

on a screen (Terhune et al., 2016), auditory tones (Meissner & Wittman, 2011), etc), or 

in some cases specifically interoceptive stimuli (Lernia et al., 2018), our study used 

complex, naturalistic visual scenes, closer to what constitutes everyday 

phenomenological experience, of which visual information forms a major part. In 

combination with the eye-tracking and heartbeat data, this dataset allows an explicit 

contrast of the potential relative roles of the different proposed contributors to human 

duration estimation – external (stimulus variability) and internal (potentially striatal 

dopaminergic activity and fluctuations in heart rate) components. To assess the relative 
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contributions of these factors, we analysed the participants' data to look for associations 

between external and internal events, and duration estimates: 

 

1. First, we looked at the relationship between visual content and duration 

estimation. An association between visual content (scene type: city, countryside, 

and office or café) and duration estimate has previously been reported for this 

data (Roseboom et al., 2017); Here, we additionally considered the relationship 

between visual content and saccadic eye movements, and also, regarding 

saccades as a content-driven behaviour, between saccades and duration 

estimates. 

 

2. Second, based on the popular idea and previous results suggesting that 

autonomic activity is a key contributor to duration estimation (A.D. Craig, 2009; 

Lernia et al., 2018; Meissner & Wittman, 2011; Wittmann et al., 2010), we 

examined the relationship of cardiac activity and pupil size with duration 

estimation.  

 

3. Finally, following the findings of Terhune and colleagues (Terhune et al., 2016) 

in taking spontaneous blinking as an indicator of fluctuations in striatal dopamine 

activity, we examined the relationship between pre-trial blinking and duration 

estimates, particularly in the shorter videos (1 - 2 seconds). 
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CHAPTER 11: METHODS 
 

 

In this chapter we present the methodology for our experiment, common to 

that reported in (Roseboom et al., 2017). Human participants watched 

several silent videos of naturalistic scenes with different amounts of 

complexity and ‘liveliness.’ Their task was to report the estimated duration 

of each. Eye-tracking and blood-volume pulse recordings were conducted 

during the experimental session. The available data comprised information 

on gaze position, pupil size, saccades and blinks, as well as cardiac activity, 

all of them continuously measured during video presentation, together with 

behavioural reports (duration estimates) provided at the end of each video. 

 

 

1. PARTICIPANTS 

 

Participants were recruited from the University of Sussex. All of them were over 18 and 

reported normal or corrected-to-normal vision. They were awarded with course credits 

or, alternatively, £5 per hour for their participation. The study was granted ethical 

approval by the Research Ethics Committee of the University of Sussex.  

 

Fifty-five human participants (40 female, average age 21.4) took part in the experiment. 

Three were excluded from the analysis because a technical issue prevented successful 

eye tracking recording. After exclusion of those subjects, the entire dataset totaled 4060 

trials.  
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2. STIMULI 

 

Experimental stimuli were based on videos recorded in the city of Brighton (United 

Kingdom), the University of Sussex campus, and the surrounding countryside. These 

videos were recorded with a GoPro Hero 4 at 60 Hz and 1920 x 1080 pixels, and further 

processed at 30 Hz and 1280 x 720 pixels. The video employed in each experimental trial 

was extracted from a pseudo-random list of 4290 video fragments, comprising 330 

repetitions of each of 13 durations ranging from 1 to 64 seconds (1, 1.5, 2, 3, 4, 6, 8, 12, 

16, 24, 32, 48, 64 s). There was no attempt to restrict overlap of frames between 

different video fragments.   

 

The videos could be classified on three video types in terms of content: 1- outdoors-

urban-walking, 2- outdoors-other-walking and 3- indoors-sitting. Video type 1 comprises 

videos recorded while walking around the city, type 2 includes scenes recorded while 

walking around the countryside or a leafy campus, and type 3 includes quiet scenes on 

a café or office. Each video type has a higher (density of) perceptual content than the 

next. As mentioned in the previous paper, we define perceptual content as the amount 

of visual variability across the visual scene (or within each video frame) and through time 

(across frames). More complex and livelier videos will have a higher perceptual content 

(or higher perceptual variability) than static scenes involving inanimate objects. 

Although this term is used loosely throughout the paper, and not as a hard numeric 

measure, its validity was confirmed in (Roseboom et al., 2017) by feeding the videos into 

an image classification algorithm that quantified frame-by-frame rate of change at 

different hierarchical levels of visual information: from pixel wise to object-based 

changes.  
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3. APPARATUS 

 

Experiments were programmed in MATLAB 2012b (MathWorks Inc., Natick, US-MA)  

using Psychtoolbox 3 and the Eyelink Toolbox, and displayed on a LaCie Electron 22 BLUE 

II 22” with screen resolution of 1280 x 1024 pixels and refresh rate of 60 Hz. Eye tracking 

was performed with Eyelink 1000 Plus (SR Research, Mississauga, Ontario, Canada) at a 

sampling rate of 1000 Hz, using a desktop camera mount. Head position was stabilized 

at 57 cm from the screen with a chin and forehead rest. Calibration of the eye-tracking 

system was performed at the beginning of each 20-trial block, using a standard 5-point 

grid and allowing for a maximal average error of 0.5 degrees of visual angle (dva). We 

used a velocity threshold of 22 dva/s2, an acceleration threshold of 4000 dva/s2 and a 

motion threshold of 0.15 dva for saccade detection.  

 

 

 

 

4. PROCEDURE 

  

Participants typically completed 80 trials in the 1-hour experimental session, organized 

in 4 blocks with 20 trials each, though due to time or other constraints some participants 

completed fewer trials. Immediately after the end of a video, they reported its 

estimated duration in seconds using a visual analogue scale. The videos assigned to each 

participant were randomized, and neither their content nor their duration was balanced 

or kept the same across participants. However, all subjects watched at least one video 

of each of the 13 video durations -except one who, for logistical reasons, lacked trials 

with three movie durations. 
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5. STATISTICAL ANALYSIS 

 

Statistical analysis was conducted on Matlab 2016a (MathWorks Inc., Natick, US-MA), R 

3.4.4 (The R Foundation for Statistical Computing, http://www.R-project.org) and JASP 

0.8.5.1 (JASP Team 2017).  

 

For Bayesian statistical analyses we employed the default JASP priors: for t-tests, a prior 

distribution Cauchy(0, Ö1/2); for Pearson correlations, a uniform distribution U(-1,1); for 

ANCOVAs and repeated-measures ANOVAs, r scale prior width of 0.5 for fixed effects, 1 

for random effects and 0.354 for covariates. For Bayesian varying-intercepts, varying-

slopes linear mixed-effects models (LMMs, conducted in R with the brms statistical 

package), we chose a uniform prior distribution over the real numbers for the fixed-

effects coefficient and for the standard deviation of the by-participant varying intercepts 

and slopes, and a LKJ prior with shape parameter η= 2.0 for the random-effect 

correlation matrices.  

 

The wording employed for describing the amount of evidence indicated by the Bayes 

factor corresponds to that suggested by Lee and Wagenmakers (Lee & Wagenmakers, 

2013). We consider that evidence in favour of the alternative hypothesis is more than 

anecdotal when BF10>3; conversely, there is more than anecdotal evidence in favour of 

the null when BF10<1/3 (equivalently BF01>3). 

 

Further, specific details of each analysis are detailed along with their results in the 

following chapters. 
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CHAPTER 12: PERCEPTUAL CONTENT AND DURATION 

ESTIMATION  
 

 

In this chapter we analyse the statistical association between video content 

(as a proxy for perceptual content) and duration estimates, as well as the 

relationship of both variables with saccadic activity. ‘Livelier’ video types (i.e. 

urban compared to rural sceneries, and the latter compared to indoor 

recordings) yielded longer duration estimates for the same veridical 

intervals, consistent with perceptual change being the basis of duration 

perception. There was also a relationship between video type and saccade 

density (saccades per second), but it was non-monotonical (rural scenes had 

the lowest saccade density), indicating that the aforementioned correlation 

between video types and duration estimates was not a trivial effect of 

duration perception being based directly on tracking one’s own saccades. In 

regard to this, there was not a linear relationship between saccade density 

and duration estimates; conversely, we did find an association between 

saccade density and accuracy, probably reflecting saccades as an indication 

of task engagement.  

 

 

1. RELATIONSHIP OF SCENE TYPE AND DURATION ESTIMATION 

 

Figure 28a depicts participants’ responses per video duration. As expected, veridical 

duration is directly associated with subjective duration estimates. However, an effect of 

regression to the mean in responses is suggested by a slope of less than one between 

veridical and estimated durations: in a varying-intercepts, varying-slopes linear mixed-

effects model (random effects grouped by subject) with response as dependent variable 



 

 

 

 

 

299 

and video duration as predictor, the fixed-effect coefficient for video duration is B=0.679 

(95% credible intervals 0.621 - 0.738). In other words, for an increase of 1 second in 

veridical duration, estimated duration increases only 0.679 seconds. 

 

As mentioned in the Introduction (Part V, Chapter 10), it is known that the amount of 

change in perceptual content influences duration estimation (Roseboom et al., 2017). 

Considering this, we hypothesized that videos with greater perceptual content, such as 

those recorded in urban sceneries, would be perceived as longer than videos of the same 

duration taking place in the countryside or in a quiet office. Figure 28c presents 

responses per video duration, split by video type: 1- outdoors-urban-walking, 2- 

outdoors-country-walking and 3- indoors-sitting. On visual inspection, data seems in line 

with our hypothesis. The following is an extension on that reported previously 

(Roseboom et al., 2017). 
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Figure 28. Duration estimation: Behavioural results. 28a. Average response (in seconds) per video duration. The 

error bars represent between-participant standard error. The slope of less than 1 indicates an effect of regression to 

the mean: an increase of 1 second in veridical duration produces an increase of less than 1 second in perceived 

duration. Response dispersion is larger for longer durations, roughly following a power law. 28b. Normalized response 

per video type. Type 1: outdoors-city-walking, type 2: outdoors-other-walking, type 3: indoors-sitting. Responses have 

been normalized according to the distribution of responses provided for each participant per video duration; thus, Z-

scores are independent on individual variability and of video duration. Error bars represent 95% credible intervals 

according to a Bayesian ANCOVA on the effect of video type on normalized responses. The graph shows that 

subjective duration is positively associated to perceptual content. 28c. Average response (in seconds) per video 

duration, divided by video type. The error bars represent between-participant standard error.  
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To formally test the suggestion that greater perceptual content increases estimated 

duration in natural scenes, we ran a Bayesian ANCOVA with within-participant 

normalised response as dependent variable, video type as fixed factor, video duration 

as covariate and participant’s ID as random factor. The best model included video type 

only (BF10=1.068*107). The Bayes Factor for inclusion of video type in the model 

indicated extreme evidence in its favour (BFinclusion=7.136*106). Figure 28b depicts the 

average and 95% credible intervals of the normalized responses per video type: a clear 

effect is observed, by which video types with greater perceptual content drive longer 

duration estimates. To ascertain whether this effect happens across all pairwise 

comparisons between video types, we performed post-hoc analyses and found that 

evidence for a difference in responses was only anecdotal between types 1 and 2 (both 

outdoor, walking videos in city and countryside: BF10=1.378), but at least very strong for 

any of those types compared with type 3 (outdoor versus indoor scenes: BF10=3.621*107 

for city versus office/café, BF10=34.789 for countryside versus office/café). In summary, 

our data indicate that videos with greater perceptual content elicit longer duration 

estimates, supporting the suggestion that subjective perception on the passage of time 

is (at least partially) driven by perceptual change. 

 

 

 

 

2. RELATIONSHIP OF EYE-MOVEMENTS WITH PERCEPTUAL 

CONTENT AND DURATION ESTIMATION 

 

2.1. SACCADE DENSITY 

 

The relationship between video type and duration estimates is in agreement with the 

idea that duration perception is fundamentally related to perceptual change.  
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The influence of perceptual content on eye-movements is a well-studied area of 

perceptual science. Both stimulus-driven (especially motion (Itti, 2005; Mital, Smith, Hill, 

& Henderson, 2011)) and task/context (Henderson, Brockmole, Castelhano, & Mack, 

2007; Rothkopf, Ballard, & Hayhoe, 2016; Smith & Mital, 2013) driven factors have been 

shown to influence eye-movements, with results consistent with minimising prediction 

error (K. J. Friston, Adams, Perrinet, & Breakspear, 2012; Gottlieb, Oudeyer, Lopes, & 

Baranes, 2013; Itti & Baldi, 2009; Tatler, Hayhoe, Land, & Ballard, 2011) according to a 

predictive processing account of perception as Bayesian inference. 

 

Participants in our experiment were not given a specific task in relation to the visual 

stimuli. It is unclear what influence the more general ‘estimate time’ task might have on 

eye-movements. Taking the most naïve position on the possible interaction of eye-

movements with our stimuli, city and countryside scenes in our experiment have much 

more visual motion than the café or office scenes. The city scene might also be expected 

to have the greatest perceptual novelty as there are many more people and objects 

continually appearing and disappearing from view as the scene changes. These factors 

might produce an expected ordering of saccade density (defined as the number of 

saccades per second) by scene that follows the order for duration estimation reported 

above: city > countryside > café/office. This pattern of results could imply that an 

account of subjective time perception based on changes in perceptual content could 

instead be based on something much more trivial - simply tracking eye-movements - 

rather than changes in perceptual content itself. Conversely, one might anticipate that 

for café and office scenes, though the perceptual changes are the most infrequent 

changes and the scene contains the least amount of motion may contain strong novelty 

because infrequent changes may be much more salient in their novelty. Below, we 

investigate the relationship between saccade density and scene type as well as the 

relationship between saccade density and duration estimation directly. 
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Figure 29. Duration estimation: Saccades and behavioural results. Relationship between video duration, perceptual 

content, saccades and duration estimates. 29a. Saccade density by video duration, split by video type. Error bars 

represent the between-participant standard error. Average saccade density is consistently higher for urban sceneries 

(for durations over 2 seconds) and decreases with video durations for all video types, but specially for type 3 (static 

indoor scenes). 29b. Saccade density (normalized by participant and video duration) by video type: 1: outdoors-urban-

walking, 2: outdoors-other-walking, 3: indoors-sitting. Error bars represent 95% credible intervals according to a 

Bayesian ANCOVA on the effect of video type on saccade density. As expected, saccade density is maximal in urban 

videos, but its association to perceptual content is not straightforward for the other two video types. 29c-29d. 

Relationship between average saccade density and behavioural results. 29c. Relationship between saccade density 

and duration estimation. Error bars represent the average response (normalized by participant and video duration) 

and between-participant standard error, according to video duration (horizontal axis). Each participant's trials 

corresponding to each video duration are split into two categories, according to whether saccade density was below 

or above its average for that participant and video duration. Thus, the plot is split according to within-participant (and 

duration) statistics. For example, regarding 4-second videos, participants on average underestimated video durations 

in those trials where their saccade density was below their own average for 4-second videos; this underestimation is 

relative to each participant's own average response for 4-second videos.  However, note that each participant 

watched about 6 videos of each duration: thus, each bar contains information about 3 trials from each of the 53 

participants. No clear dependency is seen for most video durations between saccade density and response, making 

it likely that the mentioned example is a product of multiple comparisons. 29d. Relationship between saccade density 

and error size. Error size is calculated as the absolute value of the relative error (error size=|response-

duration|/duration), i.e. it represents the amount of deviation from veridical duration, relative to the magnitude of 

the latter, regardless of the direction of such deviation. Although an overall pattern is not clear, it appears as if 

participants were more accurate when they performed more saccades in several video durations (particularly clear 

for 12 and 16-second videos).  
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2.1.1.  Saccade density and perceptual content 

 

Figure 29a depicts the average saccade density per video duration and type. Three 

interesting trends may be observed in relation to the effect of video duration, video 

type, and their interaction with saccade density. First, consistent with previous results 

(T. Buswell, 1935; Unema, Pannasch, Joos, & Velichkovsky, 2005), a trend toward lower 

saccade density for longer video durations can be seen, possibly reflecting a relationship 

between saccade density and novelty, which would be maximal at video onset and 

decline in longer videos. Second, for durations over 2 seconds, saccade density is higher 

in videos walking around city scenes than in the other two, 'less lively' (less variable) 

types. Third, the aforementioned decrease of average saccade density for longer 

durations is particularly pronounced for static indoors scenes: this again supports a 

relationship between saccade density and novelty, since the continuous appearance of 

new events and objects in the other two video types (recorded while walking around) 

would ensure a certain amount of novelty throughout the entire duration of the video, 

unlike in more stationary scenes. In summary, visual inspection of the average saccade 

density per video duration and type appears to confirm a relationship between saccade 

density and perceptual content in our data. 

 

To formally test this, we built a Bayesian ANCOVA with saccade density as dependent 

variable, with video type as fixed factor, video duration as covariate and participant’s ID 

as random factor. A comparison between all possible models was performed: the null 

model, two models with a single main effect (video duration and video type, 

respectively), a model with both main effects and the full model with both main effects 

and their interaction. Participant's ID was part of all competing models, including the 

null. The most explanatory model for saccade density was the full model with both main 

effects (video duration and type) and the interaction (duration*type), with a Bayes 

factor BF10=1.015*1070. There was extreme evidence (BF10>100) in favour of this model 

compared to any other competing model, as well as extreme evidence for the inclusion 

of any of the main effects and the interaction term in the model. This confirmed that 
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the three aforementioned trends identified by visual inspection of the plots (influence 

of video duration, video type and interaction) were statistically significant. We 

performed post-hoc pairwise comparisons between the individual video types: evidence 

for a difference in saccade density between all possible pairs was also extreme. 

However, the association was not straightforward as average saccade density was 

highest for city scenes (type 1), smallest in countryside scenes, and intermediate for 

office/café scenes -as seen in figure 29b. 

 

To simplify the analysis and isolate the influence of video type (the relevant factor to us 

at the moment, related to perceptual content of the scenes) we repeated the ANCOVA 

analysis with saccade density normalized per participant and video duration. The model 

with the most evidence contained only video type (BF10=8.149*1022), indicating extreme 

evidence for an effect of video type on saccade density. We performed post-hoc 

pairwise comparisons between the individual video types: evidence for a difference in 

saccade density between all possible pairs was also extreme (BF10>100). However, the 

relationship between saccade density and duration estimation was not straightforward, 

as average saccade density was highest for city scenes, (Figure 2b).  

 

These results rule out trivial interpretations of the association of change in perceptual 

content (indicated by video type) and duration estimation, as reported above and 

supported by modelling work in (Roseboom et al., 2017): duration estimation based on 

tracking eye-movements alone would not produce the observed pattern of biases in 

duration estimation as the saccade density is non-monotonically related to duration 

estimation (compare Figures 28b and 29b). 

 

 

2.1.2. Saccade density and duration estimates 

 

Having established a relationship between video type and duration estimates (Figure 

28b), and now also between video type and saccade density (Figure 29b), we next 
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enquired whether there would be a direct association between saccade density and 

duration estimates. Eye-movements have a potentially complicated relationship with 

time perception. Temporal distortions on short time scales have been reported around 

the time of saccades in several contexts (D. Burr & Morrone, 2006; Yarrow, Haggard, 

Heal, Brown, & Rothwell, 2001), although these can sometimes be reduced to changes 

in apparent content/intensity (Terao, Watanabe, Yagi, & Nishida, 2008). As in eye-

movements, both visual motion (Au, Ono, & Watanabe, 2012; brown, 1995; R. Kanai, 

Paffen, Hogendoorn, & Verstraten, 2006) and novelty have been demonstrated to have 

a strong influence on duration estimation; the latter on shorter timescales through 

regularity/oddity effects (Chang, Schwartzman, VanRullen, Kanai, & Seth, 2017; Di Luca 

& Rhodes, 2016; Eagleman & Pariyadath, 2009; Horr & Di Luca, 2015; Tse, Intriligator, 

Rivest, & Cavanagh, 2004) and on longer timescales through stimulus/sequence 

complexity and contextual change (Block, 1982; Block & Reed, 1978; Ornstein, 1969; 

Poynter, 1983; Poynter & Homa, 1983; Zakay, Tsal, Moses, & Shahar, 1994). Here we 

examine the association between density of saccadic eye-movements and duration 

estimation across our measured intervals of 1-64 seconds.  

 

Figure 29c presents participants' average normalized response per video duration, split 

into trials with below and above-average saccade density, compared with other trials 

from the same participant and with the same duration. Overall, there is no clear pattern 

revealing a trend for under or overestimation of duration as a function of saccade 

density, not for all video durations or for a narrower range of intervals.  

 

To formally test this, we ran a Bayesian ANCOVA with normalized response as 

dependent variable, normalized saccade density and video duration as covariates, and 

participant's ID as random factor. Normalization was performed for participant and 

video duration. The best model included only normalized saccade density, but, with a 

BF10=1.091, it was barely more likely than the null model (the reference model 

containing only ID: BF10=1.000). Thus, there was virtually no evidence in favour of (or 

against) an effect of saccade density on duration estimates, when considering the entire 
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sample – a result consistent with the non-monotonic relationship between saccade 

density and video type reported above.  

 

We further assessed whether an association between saccade density and responses 

could be present only for certain video durations and split the dataset according to the 

latter variable. We ran a Bayesian ANCOVA for each of the 13 resulting datasets, with 

normalized response as dependent variable, ID as random factor and saccade density as 

covariate. Only for the longest duration (64 seconds) did we find evidence for an effect 

of saccade density on response (BF10=23.827) -a positive correlation-, although the 

significance of this isolated finding is unclear. 

 

In summary, our data suggests a relationship between changes in perceptual content 

and duration estimates, as well as (albeit less straightforward) between perceptual 

content and saccade density. However, there is not a clear global effect of saccade 

density on duration estimates.  

 

 

2.1.3. Saccade density and accuracy 

 

We then enquired whether saccade density might not be associated with the magnitude 

of duration estimates, but to their accuracy. In other words, it might drive no systematic 

bias toward under or overestimation of time intervals, but affect the response precision, 

or the amount of deviation from veridical magnitude regardless of direction. Saccade 

density might correlate with a greater attention and engagement with the presented 

video and consequently with a greater accuracy (or smaller error size).  

 

For quantifying error size we calculated the absolute value of the relative error with 

respect to veridical magnitude: error size=|response-duration|/duration. Figure 29d 

presents normalized error size for each video duration, split into trials with below or 

above-average saccade density. Although an overall effect is not clear on visual 
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inspection, for several video durations there appears to be a trend toward lower error 

sizes (greater accuracy) in trials where saccade density was above average. 

 

We formally tested the effect of saccade density on accuracy by running a Bayesian 

ANCOVA on normalized error size, with normalized saccade density and video duration 

as covariates and participant's ID as random factor. The best of all possible models 

according to this analysis contained saccade density as predictor of error size 

(BF10=49.784); overall, evidence for inclusion of saccade density in the model was very 

strong (BFinclusion=34.247). To ascertain the direction of the effect, we ran a varying-

intercepts, varying slopes Bayesian linear mixed-effects model on the effect of 

normalized saccade density, duration and their interaction on normalized error sizes, 

with random effects grouped by participant. The fixed-effects coefficient for saccade 

density was B=-0.040 (95% credible intervals: -0.085 - 0.005); its negative sign indicates 

an inverse association with error size, as would be expected if greater saccade density 

was a sign of a greater engagement during those trials. According to our proposed 

explanation, such effect on accuracy does not necessarily imply a link between saccades 

and the mechanistic basis of time perception, since it could be an unspecific effect on 

task performance. 
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CHAPTER 13: AUTONOMIC SIGNALS AND DURATION 

ESTIMATION  
 

 

A long-standing claim about duration perception postulates that it is based 

on the accumulation of rhythmic physiological signals such as heartbeats; 

however, evidence for a statistical association has been elusive. A recent 

study (Meissner & Wittman, 2011) reported slowing-down of heartbeats 

during encoding of time intervals, suggesting, according to their authors, an 

accumulating pattern of parasympathetic activity that may act as a clock-

type mechanism. We therefore sought for statistical associations between 

trial-by-trial variability in body signals revealing autonomic tone (specifically 

heart rate and pupil size) and duration estimates in our data. Neither 

average heart rate nor pupil size were associated to duration estimation. We 

did find a progressive slowing-down of heartbeats during the first 5-10 

seconds of video presentation, which correlated with the intensity of rapid 

pupil contraction that was observed at video onset (1-2 seconds), but none 

of them were in turn associated to duration estimation. We propose that, in 

our data, these phenomena reflect parasympathetic activation in relation 

with novel content (Bradley, 2009), but are not directly related to the 

mechanism of time tracking. 

 

 

As mentioned in the Introduction to this study (Part V Chapter 10), it has long been 

suggested that accumulation of repetitive physiological signals may form the basis of 

human time perception. Craig (A.D. Craig, 2009) postulated that the sequential 

accumulation of interoceptive afferent information about visceral states in the anterior 

insula gives rise to the subjective experience of time. The insular cortex has been related 

to reception and integration of autonomic signals and to interoceptive awareness (A. D. 
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Craig, 2009; Nguyen, Breakspear, Hu, & Guo, 2016). Following this lead, in a fMRI study, 

Wittman and colleagues (Wittmann et al., 2010) identified a pattern of accumulating 

neural activity in the bilateral posterior insula during the encoding of time intervals in 

the range of seconds. It was suggested that this accumulation corresponded to a clock-

type pattern, recording sequential physiological states during the attended interval 

(Wittmann et al., 2010). This proposal connected the pacemaker-accumulator 

framework to an embodied model of time perception (Lernia et al., 2018), giving support 

to the intuition that our brain tracks the passage of time on the basis of our own body's 

signals. However, such intuition greatly predates this theoretical framework.  

 

For many decades, researchers have searched for a link between internal body signals, 

especially heartbeats, and duration perception. This has been investigated mainly by 

two approaches: by examining the correlation between heart rate and duration 

estimates or by inducing experimental manipulations on cardiac activity and assessing 

duration perception under such conditions. Most studies following the first approach 

have encountered no correlation between average heart rate and duration estimation 

(Bell & Provins, 1963; Schaefer & Gilliland, 1938), or obtained weak and partial results 

(Lediett & Tong, 1972; Osato et al., 1995).  As for the second approach, some studies 

reported distortions in duration perception after inducing the desired physiological 

conditions by apnoea (Thibaud Jamin et al., 2004), physical activity (Lambourne, 2011; 

Vercruyssen, Hancock, & Mihaly, 1989) or drugs (G.R. Hawkes, Joy, & Evans, 1962; Jared 

R. Tinklenberg, Walton T. Roth, & Bert S. Kopell, 1976). A major obstacle to 

interpretation of results in these studies is that average heart rate also correlates with 

other factors that could influence task performance in a dimension and task non-specific 

manner, such as attention or arousal. Studies independently manipulating heart rate 

and arousal have reported no specific effect of the former on duration estimates 

(Dormal, Heeren, Pesenti, & Maurage, 2017; Schwarz et al., 2013).  

 

Recently, several authors have proposed that the relationship between cardiac activity 

and duration perception may be less linear than initially thought. An investigation on 
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heartbeat synchronization at the onset and ending point of presented time intervals 

reported marginally significant synchronizations for durations within the range of 

seconds (3-25 s), but found no association with duration estimates or accuracy (Pollatos 

et al., 2014). Another study (Meissner & Wittman, 2011) specifically examined the 

evolution of cardiac activity throughout the encoding of time intervals and found a 

progressive increase in cardiac periods up to the end of the interval. Furthermore, 

individuals’ duration reproduction accuracy correlated positively both with the slope of 

cardiac slowing down during the encoding of time intervals and with interoceptive 

accuracy measured in terms of heart perception scores. The authors reasoned that such 

slowing down of heart rate would correspond to an accumulation of parasympathetic 

activity in brain areas responsible for the reception of autonomic input (particularly the 

posterior insula) that would act as a clock-type mechanism for encoding durations 

within the range of seconds.  

 

In light of these claims, we looked for similar associations between cardiac activity and 

duration estimation or accuracy in our own study. We assessed the relationship with 

both average heart rate and progression of heart rate during the presentation of the 

videos. In addition, we also examined pupil size as another marker of autonomic activity. 

Information on interoceptive accuracy or awareness was not available in our 

experiment. 
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1. RELATIONSHIP BETWEEN CARDIAC ACTIVITY AND DURATION 

ESTIMATION 

 

In our study, we obtained blood-volume pulse measurements from participants during 

video presentation. Heart rate was estimated by using a peak-detection function on 

blood venous pressure data.  

 

 

 

1.1. MEAN HEART RATE 

 

We calculated the mean heart rate per trial (during video presentation) as the ratio of 

the number of peaks and the video duration, converted to beats per minute. 

 

 

 
 

Figure 30. Duration estimation: Mean heart rate and behavioural results. Relationship between mean heart rate 

(computed trial-wise) and duration estimates. 30a - 30b. Normalized response (30a) or error size (30b) by video 

duration, split into trials with below or above-average heart rate compared to other trials of the same participant and 

duration.  
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1.1.1. Mean heart rate and duration estimates 

 

Figure 30a presents the average normalized response by video duration, split into trials 

with below or above-average heart rate compared to other trials of the same participant 

and duration. No clear pattern is evident.  

 

The trial-wise relationship between mean heart rate and response was formally 

assessed by a Bayesian ANCOVA with normalized response as dependent variable, 

normalized mean heart rate and video duration as covariates, and participant’s ID as 

random factor. As previously, normalization was performed by participant and video 

duration. According to this analysis, the best model for prediction of (normalized) 

response was the null model (containing only participant's ID); the Bayes factor for 

inclusion of mean heart rate indicated very strong evidence against it (BFinclusion=0.029), 

and extreme evidence against the interaction video duration*mean heart rate 

(BFinclusion=8.136*10-4). 

 

 

1.1.2. Mean heart rate and accuracy 

 

Finally, we enquired whether heart rate may produce not a bias in duration estimates, 

but an effect on its accuracy. We defined error size as the absolute value of the relative 

error (|response - duration|/duration) and normalized it per participant and video 

duration: these Z-scores therefore indicate how inaccurate (regardless of the direction 

of the error) was a participant in a certain trial, compared with their performance in 

other trials of the same duration.  

 

Figure 30b presents the normalized error size by video duration, split by trials with 

below and above-average heart rate, respectively. We ran a Bayesian ANCOVA with 

normalized error size as dependent variable, normalized heart rate and video duration 

as covariates and participant's ID as random factor. The null model (containing ID) had 
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the most evidence of all possible models, and the Bayes factor for inclusion of mean 

heart rate or its interaction with video duration indicated strong (BF10=0.035) and 

extreme (BF10=0.002) evidence against them, respectively. 

 

In summary, in our data neither duration estimates nor its accuracy were associated 

with trial-by-trial mean heart rate. 

	

 

 

1.2. HEART RATE PROGRESSION 

 

We calculated cardiac period progression through video presentation as described by 

Meissner and Wittman in (Meissner & Wittman, 2011): cardiac (inter-peak) periods 

were resampled at 5 Hz using cubic interpolation, averaged on a second-by-second basis 

and normalized per participant. The slope (linear regression coefficient) of the time 

series of cardiac period progression indicated the progression of heart rate throughout 

each trial's video presentation: a positive slope implied that heart rate progressively 

slowed down (inter-peak periods increased with seconds since video onset) and vice 

versa. 
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1.2.1. Heart rate progression throughout video presentation 

 

 

 
 

Figure 31. Duration estimation: Cardiac period progression. Average second-by-second cardiac periods for six video 

durations: 4, 8, 12, 24, 48 and 64 seconds. The error bars represent the 95% credible intervals according to a Bayesian 

RM ANOVA on the effect of time since onset in cardiac periods. An ascending slope can be observed during the first 

5-10 seconds in all cases, indicative of a slowing down of heart rate at the beginning of video presentation, although 

for long durations a plateau is reached later in the trial. 

 

 

After obtaining normalized second-by-second cardiac periods for each trial, as described 

above, we split the dataset into 11 video durations - only considering durations over 2 

seconds since second-by-second progression was under examination (see Figure 31). 

We tested whether there was any effect of time since video onset on cardiac periods by 

two methods: linear regression and Bayesian repeated-measures ANOVA.  
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First, we performed a linear regression on the time series of normalized cardiac periods, 

averaging the time series of each participant and video duration (³ 2 s). On average, 

participants' regression slopes (B coefficients) for each video duration were positive in 

all cases (except for duration of 3 seconds), indicating a slowing-down of heart rate 

throughout video presentation. To test whether these slopes were truly different than 

zero, we performed a Bayesian one-sample T-test on participants' mean slopes for each 

video duration. There was at least moderate evidence in favour of the alternative 

hypothesis (i.e. BF10 > 3 for non-zero slopes) for 8 s (BF10=237.363), 12 s (BF10=5.412), 24 

s (BF10=8.483), and close to moderate evidence for 4 s (BF10=2.788). Conversely, there 

was at least moderate evidence in favour of the null (BF10<1/3) for 2 s, 3 s, 6 s and 64 s. 

However, regarding long durations, evidence for an overall slope may be reduced due 

to the slowing down of heartbeats reaching a plateau after the first 5-10 seconds (see 

lower panels in Figure 31). 

 

This suggestion of a slowing-down of heart rate throughout the reproduction of the 

video is consistent with the results reported by Meissner and Wittman during the 

encoding phase of time intervals of 8, 14 and 20 seconds (Meissner & Wittman, 2011). 

Considering similar durations in our own data, on average, cardiac periods increased in 

0.05, 0.03, 0.01 and 0.01 z-scores per second for 8, 12, 16 and 24 seconds, respectively.  

 

We additionally approached the evolution of cardiac periods throughout time by 

computing a Bayesian repeated-measures ANOVA on the effect of time since video 

onset on second-by-second cardiac periods. We ran a separate analysis for each video 

duration. The dependent variable was the average normalized cardiac period measured 

at each second since video onset. The only within-subject factor was time (in seconds) 

since video onset. Thus, the ANOVA had as many levels as seconds of video duration. 

Figure 4 presents the average cardiac periods and 95% credible intervals at each time 

point (seconds since onset) for six different video durations. Similar to the previous 

analysis, evidence for an effect of time since video onset on second-by-second cardiac 
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periods was at least moderate (BF10>3) for 4 s, 8 s, 12 s and 48 s, with BF10=23.204, 

95589.424, 229.741 and 10.545, respectively. On the other hand, there was at least 

moderate evidence for the null (no different cardiac periods at different time points, 

with BF10<1/3) for 2 s, 3 s, 6 s, 16 s, 32 s and 64 s. For the intervals similar to those 

considered by Meissner and Wittman (8, 12, 16 and 24 s), the F values for repeated 

measures ANOVA were, respectively and corrected by Greenhouse-Geisser method: for 

8 s, F= 6.843 (df=3.299, p<0.001, η2
p=0.118); for 12 s, F=3.715 (df=3.174, p=0.011, 

η2
p=0.068); for 16 s, F=1.529 (df = 5.724, p=0.172, η2

p=0.029); for 24 s, F=1.994 

(df=10.49, p=0.029, η2
p=0.038).  

 

As stated above, for long video durations, the slowing down of cardiac periods reaches 

a plateau after the first 5-10 seconds, possibly related to a greater attention and arousal 

at the start of the video, which stabilizes afterward. This stabilization might be the 

reason why weak or no evidence in favour of the alternative hypothesis is found for the 

longest durations. 

 

 

1.2.2. Heart rate progression and duration estimates 

 

In the previous section we reported a reduction in heart rate throughout video 

presentation. This finding is in agreement with the result reported by Meissner and 

Wittman (Meissner & Wittman, 2011). These authors also found a positive correlation 

between heart rate reduction and accuracy in reproduction of the presented interval. 

They hypothesized that the observed reduction in heart rate up to the end of the interval 

was consistent with a clock-type accumulating mechanism related to an increase in 

parasympathetic activity that would track duration perception. 

 

While there were differences between studies concerning the stimulus (an auditory 

tone versus a naturalistic video) and the task (reproduction versus magnitude 

estimation), we sought to ascertain whether the observation of a slowing heart rate 
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during video presentation in our experiment was also associated with duration 

estimation.  

 

 

 
 

Figure 32. Duration estimation: Cardiac period progression and behavioural results. Figures 32a and 32b assess the 

relationship on a trial-by-trial basis, whereas 32c-32f compare between participants. 32a-32b: Normalized response 

(32a) or error size (32b) by video duration, split into trials with below or above-average cardiac period slope compared 

to other trials of the same participant and duration. An above-average slope indicates a more pronounced slowing-

down of heart rate throughout video presentation, and vice versa. No clear pattern is seen regarding responses; as 

for error sizes, on visual inspection there might be an indication of greater accuracy in relation to more pronounced 

slowing down of heart rate, only for short durations (up to 6 seconds): in other words, for those durations during 

which the slowing down takes place before reaching a plateau. This might be an indication of greater engagement 

with the video in the trials where the slowing down is more pronounced, although the supposed association is not 

clear enough and requires further analysis. 32c-32f: Second-by-second cardiac periods and 95% credible intervals as 

a function of time since video onset, for durations of 8, 12, 16 and 24 seconds, split by good and poor performers. 

Performance classification was made by calculating the average error size (regardless of direction) of each participant 

and dividing participants according to whether their average error size was above or below the sample median. Thus, 

in this case the division is made across participants instead of across trials of the same participant. No clear difference 

in cardiac period progression is seen for good and poor performers (and indeed the results of the RM ANOVA rule out 

such effect), although, on visual inspection, there might be a hint of a more pronounced ascending slope in good 
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performers, only during the first 3-5 seconds of the video, for 8, 16 and 24-second videos. If this is the case, it might 

be indicating a greater engagement at video onset which is related to a better performance, but the fact that the 

difference (if any) only affects the very first seconds and does not extend up to the end of the video seems in 

opposition to any purported accumulating clock-type pattern, pointing toward unspecific attention effects. 

 

 

Figure 32a presents the average normalized response for each video duration, split 

between trials with below or above-average cardiac period slope compared to other 

trials by the same participant and duration. As with mean heart rate, no clear pattern is 

observed that might suggest an effect of heart rate progression on duration estimates. 

 

We ran a Bayesian ANCOVA with normalized response as dependent variable, 

normalized cardiac period slope and video duration as covariates and participant's ID as 

random factor. According to this analysis, the model with the most evidence was the 

null model. The Bayes factor for inclusion of cardiac period slope as predictor of 

response indicated moderate evidence against it (BFinclusion=0.113), and extreme 

evidence against inclusion of the interaction term cardiac period slope*video duration 

(BFinclusion=0.003).  

 

In summary, heart rate progression throughout video presentation was not related to 

duration estimation in our study. 

 

 

Heart rate progression and accuracy 

 

Subsequently we questioned whether, as reported in Meissner's study (Meissner & 

Wittman, 2011), there was a relationship between heart rate progression and accuracy. 

We performed analogous analyses as for duration estimation reported above, but 

employed the error size as dependent variable, defined as in previous sections. The 

hypothesis in this case was for an inverse association between cardiac period slope and 

error size.  
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We approached the relationship between heart rate progression and accuracy in two 

ways: First, by analysing trial-wise associations within each participant, and second, by 

examining a possible difference in participant's average cardiac period slope between 

good and poor duration estimators.  

 

Trial-by-trial association between cardiac period slope and accuracy 

 

Figure 32b shows the normalized error size by video duration, split into trials with below 

and above-average cardiac period slope. At glance, there appears to be a trend to lower 

error sizes (greater accuracy) in those trials with above-average cardiac period slope (i.e. 

steeper slowing down of heart rate), only for short durations (2-6 seconds). Intriguingly, 

intervals from 2-6 seconds correspond almost entirely with the ascending slope in 

cardiac period progression, which appears to flatten after 5-10 seconds (see Figure 31). 

Possibly, the observed heart rate reduction during the first seconds of video 

presentation might be a sign of arousal and engagement with a new video/task - a 

phenomenon described before in relation to novel, arousing visual stimuli (Bradley, 

2009).  

 

To formally test the existence of any effect of cardiac period progression on trial-by-trial 

accuracy we ran a Bayesian ANCOVA with normalized error size as dependent variable, 

normalized cardiac period slope and video duration as covariates and participant's ID as 

random factor. According to this analysis, the null model outperformed all others, and 

the Bayes factor for inclusion of cardiac period slope or the interaction term 

(slope*duration) showed very strong (BFinclusion=0.030) or extreme (BFinclusion=0.005) 

evidence against them, respectively. Thus, these results ruled out any effect of cardiac 

period slope on accuracy on the overall dataset. 

 

We additionally split the dataset by video duration (11 levels) in order to ascertain 

whether such an effect on performance was only present for certain durations. 
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However, again we found no support for the inclusion of cardiac period slope as a 

predictor of performance, even for the short 2-6 second intervals: e.g. BFInclusion = 0.336, 

0.436, 0.347, 0.180 for 2-6 seconds, respectively. 

 

Comparison of average cardiac period slopes in good versus poor performers 

 

Although we failed to find an association between heart rate progression and accuracy 

in duration estimation on a trial-by-trial basis, we enquired whether this association 

could be present at the participant, rather than the trial level. In other words, whether 

there could be individual differences in terms of heart rate progression throughout the 

encoding of a time interval, which would help to predict a participant's accuracy in time 

estimation. Specifically, the hypothesis was that good performers (individuals who were 

more accurate in estimating duration) would present, on average, a more positive slope 

in cardiac periods (i.e. a more pronounced slowing down of heart rate). 

  

Thus, we followed Meissner (Meissner & Wittman, 2011) and classified participants into 

good or poor performers, depending on whether their average error size was below or 

above the sample median. We performed this classification over all video durations 

pooled, as well as to each video duration separately (according to the latter, one 

participant could be above the sample's median performance for estimating intervals of 

2 seconds, and below the median for 64 seconds). 

 

In a similar manner as when examining the existence of a progression in cardiac periods 

throughout video presentation, here we ascertained the difference in such progression 

between good and poor performers, by two methods: analysing cardiac period slopes 

and by a Bayesian repeated-measures ANOVA. 

 

First, we performed a Bayesian independent samples t-test on the individual average 

cardiac period slopes per video duration, with performance as grouping variable. Thus, 
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we performed two independent samples t-tests per video duration, using either the 

overall or the duration-specific binary performance classification as grouping variable. 

 

In none of the analyses did we find evidence for the alternative hypothesis (difference 

in slopes between good and poor performers), and in most cases t-tests supported the 

null with at least moderate evidence (BF10<1/3 or equivalently BF01>3). Specifically, 

considering similar durations as those employed in (Meissner & Wittman, 2011), i.e. for 

video durations of 8, 12, 16 and 24 seconds, the evidence in favour of the null 

(BF01=1/BF10) was as follows: For 8 seconds, BF01= 2.575 for classification based on 

overall performance, BF01= 2.178 based on duration-specific performance. For 12 

seconds, BF01=3.246 with overall classification, BF01=2.501 with duration-specific 

classification. For 16 seconds, BF01= 3.324 with overall classification, BF01=3.563 with 

duration-based classification. For 24 seconds, BF01= 3.490 with overall classification, 

BF01=3.555 with duration-based classification. 

 

Subsequently we analysed the effect of time since video onset on second-by-second 

cardiac period progression in good and poor performers, by considering each 

participant's time series of average second-by-second cardiac periods for video 

durations 8, 12, 16 and 24 seconds. We performed two Bayesian repeated-measures 

ANOVA for each duration, using either overall or duration-specific performance 

classification as between-subjects factor. The dependent variable was the average 

cardiac period at each time point (seconds since video onset). We employed time since 

onset as the only within-subject factor (with as many levels as seconds of video duration) 

and the binary classification on performance as between-subject factor. If there was any 

difference in cardiac period progression between good and poor performers, we should 

find evidence for the inclusion of the interaction term (time since onset*performance) 

in the model.  

 

In all of the analyses, the best model was either the one containing only time from onset 

or the null model. This indicated that in some cases (specifically for 8 and 12 seconds) 



 

 

 

 

 

323 

there was an effect of time since video onset on second-by-second cardiac periods, 

while in other cases (16 and 24 seconds) there was no evidence for a time-related 

difference. In any case, neither the cardiac periods at each time point (main effect) nor 

their progression throughout the trial (interaction with time) were different between 

good and poor performers. The Bayes factor for inclusion of the interaction term (the 

one relevant to our question) was always at least moderately against its inclusion 

(BFinclusion<1/3), and extremely against it (BFinclusion<1/100) in all cases except for 8 

seconds.  

 

Figures 32c-32f present the progression of cardiac periods throughout video 

presentation for of 8, 12, 16 and 24 second-videos, split by overall performance. The 

similar progressions observed in good and poor performers confirm that heart rate 

progression and accuracy in duration perception are not associated in our study. On 

visual inspection, there might be a more pronounced ascending slope in good 

performers, only during the first 3-5 seconds of the video, for 8, 16 and 24-second 

videos. This might indicate a greater engagement at the beginning of the video in good 

performers, but the fact that the difference (if any) only affects the very first seconds, 

and does not extend up to the end of the video, opposes the proposal of an 

accumulating clock-type role involving cardiac period. Rather, these results suggest an 

unspecific attentional effect on performance, without any specific relation with time 

estimation. 
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2. RELATIONSHIP BETWEEN PUPIL SIZE AND DURATION 

ESTIMATION 

 

In the previous section we reported a progressive slowing down of heart rate that takes 

place during the first 5-10 seconds of video presentation. We surmise that this is an 

indication of changes in autonomic activity, probably in relation with an increase in 

arousal due to engagement with a new video and task (Bradley, 2009), with no evidence 

of any specific relation to duration estimation. In relation to this, we decided to examine 

another physiological measurement in our data which is also related to autonomic 

activity as well as to arousal and visual attention, namely pupil size. Similarly to heart 

rate, we examined both the mean pupil size during a given trial as well as pupil size 

progression throughout video presentations.  
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Figure 33. Duration estimation: Pupil size and behavioural results. 33a-33b. Normalized responses (33a) and error 

sizes (33b) by video duration, split into trials with below and above-average pupil size compared to other trials by the 

same participant and duration. At glance, larger pupil size appears to be associated to larger error sizes for several 

video durations, and possibly also to a relative underestimation of long durations -which might be an indication of 

regression to the mean effects in trials with lower accuracy. The significance of this supposed relationship with 

average pupil size is not clear. At any rate, analyses are not statistically significant.  33c-33f. Normalized second-by-

second pupil size as a function of time since video onset, for 4,8,12 and 16-second videos. There appears to be a great 

variation between participants concerning the average pupil size at video onset, with respect to each participant's 

average pupil size at all times. This is shown by the large error bars for normalized pupil size at 1 second since video 

onset, and is probably indicating a large difference in terms of initial pupil response between participants. Despite 

the large variability, on average there is a trend for a rapid pupil contraction between 1 and 2 seconds since onset, 

which stabilizes later on. 33g. Within-participant trial-wise association between cardiac period slope and pupil size 

slope. The graph presents the normalized pupil size slope by video duration, split into trials with below and above-

average cardiac period slope compared to other trials by the same participant and duration. For short video durations 

(those in which the initial response makes a meaningful contribution to the overall slope), there appears to be an 

association between larger cardiac period slopes (i.e. steeper slowing down of heart rate) and more negative pupil 

size slopes (i.e. more pronounced pupil contraction). These two processes probably reflect a parasympathetic 

activation at video onset, in relation to arousal. Visual inspection of the data (on pupil and cardiac activity) appears 

to suggest that this initial response is associated with better performance, although statistical analyses do not confirm 

such trend. 
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2.1. MEAN PUPIL SIZE 

 

Pupil size was obtained from eye-tracking data. Pupil size of all recorded samples during 

every video presentation were averaged to generate trial-wise mean pupil size. 

 

 

2.1.1. Mean pupil size and duration estimates 

 

Figures 33a and 33b present normalized responses (33a) and error sizes (33b) by video 

duration, split into trials with below and above-average pupil size compared to other 

trials by the same participant and duration. On visual inspection, there appears to be a 

positive association between pupil size and error size, as well as a trend toward relative 

underestimation of long durations in relation to larger pupil size.  

 

To assess whether there was indeed any relationship between pupil size and duration 

estimates, we ran a Bayesian ANCOVA with normalized response as dependent variable, 

normalized pupil size and video duration as covariates, and participant's ID as random 

factor. According to the analysis, the null model was the best predictor of response, and 

there was strong evidence against the inclusion of pupil size (BFinclusion=0.067) and 

extreme evidence against the interaction video duration*pupil size (BFinclusion=0.009).  

 

 

2.1.2. Mean pupil size and accuracy 

 

Subsequently we tested whether average pupil size may be related to accuracy by 

running a Bayesian ANCOVA with normalized error size as dependent variable, 

normalized average pupil size and video duration as covariates and participant's ID as 
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random factor. The best model was the null (including ID as random factor), and the 

Bayes factor for inclusion of the average pupil size or its interaction with video duration 

provided very strong (BFinclusion=0.029) or extreme (BFinclusion=0.005) evidence against it, 

respectively. 

 

 

 

2.2. PUPIL SIZE PROGRESSION THROUGHOUT VIDEO PRESENTATION 

 

Pupil size progression throughout the trial was assessed by two methods, analogous to 

those employed with heart rate progression: linear regression slope of the time series 

of second-by-second pupil size for each participant and video duration, and Bayesian 

RM ANOVA on the effect of time since video onset on second-by-second pupil size. Our 

hypothesis was that the participant's pupil would be dilated at video onset and slowly 

contract afterward. We also hypothesized that this contraction would be correlated with 

slowing down of heart rate, both of them representing a parasympathetic response 

during the first seconds of video presentation: thus, there should be an inverse 

correlation between the linear regression slope for second-by-second cardiac periods (a 

positive sign would indicate slowing down) and pupil size (a negative sign would indicate 

contraction). 

 

Figures 33c-33f present the second-by-second normalized pupil size along several video 

durations. On visual inspection, there appears to be a large between-participant 

variability in the initial pupil size (1 second since video onset), compared to the same 

participant's average pupil size. At any rate, the initial response (contraction) is very 

rapid, as pupil size has stabilized at 2 seconds following video onset. 

 

On average, linear regression slope was negative for all durations up to 16 seconds 

(suggestive of pupil contraction) and positive for longer durations, but in all cases, 

Bayesian one-sample t-test was supportive of the null hypothesis (mean slope being no 
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different than zero, BF10<1/3), except for durations of 2 seconds (where Bayes factor 

indicated anecdotal evidence for the null, but borderline on the cut-off point of <1/3: 

BF10=0.355) and 32 seconds (where the Bayes factor indicated strong evidence for a 

positive slope, BF10=16.452). Repeated-measures ANOVA results consistently indicated 

evidence for the null hypothesis: no effect of time since video onset on second-by-

second pupil size. This evidence for the null was only anecdotal for 2-second videos, and 

at least moderate for the rest.  As indicated before, visual inspection on the evolution 

of pupil size (figures 32c-32f) hints that the pupil is comparatively dilated at video onset 

(1 second since) compared with later time points, but its size has rapidly reduced at 2 

seconds since onset and does not contract further.  

 

Thus, we did not find evidence for significant pupil size change throughout video 

presentation for the overall sample: however, we still wondered whether this could 

happen in a subset of trials, and whether there could be a potential association between 

heart rate and pupil size progression, specifically in relation to arousal-driven autonomic 

changes indicted in the heartbeat progression data above. To investigate this potential 

association, we calculated the slope for pupil size progression throughout each 

individual trial, as we had before for cardiac period progression, and normalized both 

within participant and video duration. Subsequently we ran a Bayesian ANCOVA on 

normalized pupil size slope, with normalized cardiac period slope and video duration as 

covariates and participant's ID as random factor. The likeliest model for prediction of 

pupil size slope included only cardiac period slope (besides ID), although its advantage 

over the second best model (the null model with only ID) was still anecdotal:  BF10=2.770.  

A Bayesian linear mixed-effects model on the effect of video duration and cardiac period 

slope (with ID as random-effect grouping variable) on pupil size slope rendered a B 

coefficient of -0.065 (95% credible intervals -0.121 - -0.009); the negative sign indicates 

that the association is in the direction predicted by our hypothesis: trials with a steeper 

slowing down of heart rate also have a more pronounced pupil contraction (figure 33g). 
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CHAPTER 14: DOPAMINERGIC ACTIVITY INDEXED BY 

SPONTANEOUS BLINKING AND DURATION 

ESTIMATION 
 

 

Converging evidence points to a role of dopaminergic oscillators in time 

perception in intervals shorter and around 1 second duration. A study 

(Terhune et al., 2016) took advantage of the interaction between dopamine 

activity and spontaneous blinking to test whether the latter could predict 

transient distortions in duration perception, and reported a lengthening of 

the perceived duration of short intervals if preceded by a blink within the last 

~1 second. We investigated the same potential association in our data, but 

failed to find any relationship. We propose that, in the naturalistic conditions 

of our experimental set up (complex video scenes), the influence of 

dopaminergic fluctuations may be negligible in comparison with perceptual 

change driven by video content.  

 

 

As outlined in the Introduction to this study (Part V, Chapter 10), there is converging 

evidence to suggest that the ascending dopaminergic nigrostriatal pathway plays a 

critical role in both sub-second and supra-second time perception (Jennifer T Coull et 

al., 2011; Matell & Meck, 2004; Mauk & Buonomano, 2004). This has been indicated by 

selective lesion studies in animals (Dallal & Meck, 1993), pharmacological studies (T.H. 

Rammsayer, 1999), genetic (Wiener, Lee, Lohoff, & Costlett, 2014), neuroimaging 

(Melissa J. Allman & Warren H. Meck, 2012) and neuropsychological studies on both 

healthy volunteers and patients with neuropsychiatric disorders such as Parkinson's 

disease and schizophrenia (Melissa J. Allman & Warren H. Meck, 2012). Specifically, 

increased dopaminergic activity has been related to a lengthening of subjective time, 
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whereas dopamine depletion causes underestimation of durations (Jennifer T Coull et 

al., 2011). This has been explained by modulation by dopamine-based cortico-striatal 

circuits of the frequency and phase of cortical neural oscillators that are employed to 

track interval duration (Jennifer T Coull et al., 2011; Matell & Meck, 2004).  

 

In light of these findings, Terhune and colleagues (Terhune et al., 2016) enquired 

whether transient fluctuations in dopaminergic activity could drive changes in duration 

judgments in healthy individuals. They employed spontaneous blinking as a proxy 

marker for dopaminergic activity, and found a bias in human responses towards 

reporting stimulus intervals (both sub-second auditory and visual; 300 - 700 milliseconds 

and supra-second visual stimuli; 1400 - 2600 milliseconds) as longer when the 

participant had blinked in the previous trial.  In their experiment they employed simple 

auditory (white noise bursts) and visual stimuli (circles on a screen). Given that we have 

information about blinking thanks to eye-tracking recording, we decided to investigate 

whether the same association between blinking and duration estimation was present in 

our own data.  

 

To do so, we categorized trials in function of whether there had been a blink within the 

500 ms, as well as within the 2000 ms immediately leading to the onset of a given trial: 

thus we defined two binary variables based on those two time ranges, which were 

similar to those employed by Terhune and colleagues (they ascertained the presence of 

a blink in the previous trial, which had a sub-second or supra-second duration around 

the above mentioned values). Blinks were identified in the eye-tracking recording and it 

was the ‘onset’ of a blink within the two pre-trial time ranges that determined the binary 

classification. For brevity we will refer to these binary variables as B500 and B2000, 

respectively. In our experiment, trials started immediately following completion of the 

behavioural report for the previous trial. Consequently, the 500/2000 ms pre-onset 

periods correspond to the response phase of the previous trial: since it was not during 

video presentation, it is likely that these blinks were truly ‘spontaneous’, although we 
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cannot discard the possible influence of other effects, such as eye-fatigue from the 

previous trial, on these results. 

 

 

 
 

Figure 34. Duration estimation: Pre-trial blinking and behavioural results. Average response (seconds) by video 

duration according to presence or absence of a pre-trial blink, in the 500 ms (34a) or 2000 ms (34b) leading to video 

onset. The error bars represent between-participant standard error. 

 

 

We ran a Bayesian ANCOVA on the whole dataset, with normalized response as 

dependent variable, B500 as fixed factor, video duration as covariate and participant’s 

ID as random factor. We repeated the same analysis but using B2000 as fixed factor 

instead. In both cases, the null model was the most explanatory, followed by the model 

containing B500 or B2000 only: the null model outperformed these two by a factor of 

12.82 and 24.39, respectively, indicating strong evidence in favour of the null compared 

to the second-best model in each case. Considering all possible models, there was strong 

(BFinclusion=0.052) and very strong (BFinclusion=0.028) evidence against inclusion of B500 

and B2000 as predictor of response, respectively.  

 

However, the presence of a blink during the 500 or 2000 ms leading to video onset 

would have little relationship with transient dopamine activity at the end of long video 

presentations - up to 64 seconds after the considered period. The modulatory activity 
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of dopaminergic pulses in terms of synchronizing cortical oscillators may be highly 

variable during the course of long videos, and exploration of transient fluctuations 

would be meaningless in those conditions. 

 

Therefore, we restricted the analysis to durations up to 3 seconds - comprising 1248 

trials. This range of durations also more closely corresponds to the supra-second range 

of values examined in (Terhune et al., 2016). Responses for those durations according 

to presence or absence of a pre-trial blink are presented in Figure 34. Nevertheless, after 

repeating the Bayesian RM ANOVAs in those conditions, results were very similar to 

those for the entire sample: the null model had the most evidence in both cases, 

outperforming the second-best model (which included only B500 or B2000, in each case) 

by a factor of 11.63 and 13.69, respectively. Overall, evidence for B500 or B2000 as 

predictor of normalized response was strongly against both (BFinclusion=0.058 and 0.049, 

respectively). Likewise, repeating the analyses for each duration separately rendered 

moderate support for the null hypothesis (lack of effect of pre-trial blink on duration 

estimate, with BF10<1/3 and >1/10) in all cases, except for B500 in 1-second videos, 

where the support for the null was anecdotal (BF10=0.435). 

 

In summary, in our own data we did not find any association between pre-trial blinking 

and subjective duration estimation, contrary to what would be expected given the 

proposed relationship between spontaneous blinking, dopamine activity and duration 

perception, and previous results (Terhune et al., 2016).  
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CHAPTER 15: DISCUSSION 
 

 

Our analyses about trial-by-trial variation in duration estimates for 

naturalistic visual scenes support change in perceptual content (mainly visual 

variability over time and across the visual field) as a basis for human duration 

perception, while, in the conditions of our experiment, autonomic and 

dopaminergic activity indexed by heart rate, pupil size and blinking played 

no detectable part. We did observe an apparent parasympathetic response 

at the beginning of a new video, but the lack of association with duration 

estimates suggested an unspecific reaction to a novel stimulus. We surmise 

that, while in simplified lab conditions the influence of interoceptive content 

and neural oscillators may be greater, it is not the case in waking everyday 

conditions that constitute a major part of our conscious experience. 

 

 

The mechanisms that give rise to our subjective perception of time are remain unclear.  

A fundamental role of autonomic processes (embodied time perception, usually 

conceptualized within the pacemaker-accumulator framework) (Treisman et al., 1990; 

Wittmann et al., 2010) or of dopamine-based neural oscillators operating at different 

timescales have often been proposed previously (Jennifer T Coull et al., 2011; Matell & 

Meck, 2004). However, contrary to such positions, most studies on the effect of 

autonomic processes have reported negative results (Bell & Provins, 1963; Schaefer & 

Gilliland, 1938), or else findings of doubtful interpretation (G. R. Hawkes, Joy, & Evans, 

1961; T. Jamin et al., 2004; Lambourne, 2011; J. R. Tinklenberg, W. T. Roth, & B. S. Kopell, 

1976; Vercruyssen et al., 1989) - given the relationship between autonomic processes, 

arousal and generic task performance (Dormal et al., 2017; Schwarz et al., 2013). On the 

other hand, studies on the role of neural oscillators suggest a role in the timing of short 

intervals (less or around 1 second) involved in motor activities (Merchant et al., 2014; 
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Merchant, Perez, Zarco, & Gamez, 2013), but its relevance for other instances of 

duration perception is less clear.  

 

Importantly, most studies on duration perception employ simple, unchanging visual or 

auditory stimuli. This experimental setting obviates a long-standing intuition about 

subjective duration: that it is strongly affected by changes in perceptual content. A 

recent study (Roseboom et al., 2017) presented a model that produced duration 

estimates for natural video scenes (1-64 seconds long) on the basis of the amount of 

change in perceptual content, estimated through stimulus-driven changes in activation 

of an artificial perceptual classification network. Duration estimates produced by the 

model were able to reproduce estimates provided by human participants for the exact 

same videos, including being strongly affected by where in the scene content was 

coming from (based on human gaze) and being biased by the content of the scene, as 

also reported in the present study (Part V Chapter 12). To achieve this outcome, the 

model made no use of autonomic or oscillatory neural processes. The results reported 

in the present study further support the idea that repetitive autonomic or oscillatory 

neural pacemakers are not necessary to produce human subject duration estimation by 

suggesting that, at least when dynamic perceptual input is available (as in naturalistic 

scenes), humans do not make relevant use of such information in generating duration 

estimates. Specifically, we detected no effect of accumulated autonomic signals (cardiac 

activity and pupil size) nor blinks (indirectly indicating fluctuations in dopaminergic 

activity) on duration estimates in our data.  

 

We did find evidence for an initial autonomic response at the beginning of a new video 

presentation, consisting of a rapid pupil contraction (occurring during the first 2 seconds 

since video onset) and a progressive cardiac deceleration during the first 5-10 seconds 

of video presentation. These two phenomena exhibited a highly variable intensity 

between trials and participants, but correlated with each other, suggesting a common 

underlying process, compatible with parasympathetic activation. Regarding cardiac 

deceleration, a similar phenomenon (albeit reportedly extending up to the end of the 
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presented intervals, lasting from 8 to 20 seconds) has been described as an indication 

of an accumulating pattern of autonomic activity working as a clock-type system, in line 

with an interoception-based pacemaker-accumulator model (Meissner & Wittman, 

2011); in that study, cardiac deceleration was more pronounced in good performers. In 

our case, heart rate reduction and pupil contraction happen only at the beginning of 

video presentation, although for short videos this can comprise most or all of their 

duration: we therefore suppose that they reflect an initial arousal response in relation 

with a new video/task (Bradley, 2009), rather than processes specifically related to time 

perception. In relation to this point, visual inspection of our data seems to suggest a 

better accuracy in duration estimates for those trials or participants wherein such 

arousing response is more pronounced, but only for short videos -i.e. those where the 

initial response may contribute significantly to the amount of attention and engagement 

throughout the course of the entire video. Statistical analysis, however, did not reveal 

any association with accuracy. In fact, the vast majority of our analyses regarding the 

potential interaction of heart rate and both absolute duration estimation and duration 

estimation accuracy revealed evidence in favour of the null hypothesis that heart rate 

did not relate to duration estimation in our data. Even if such a potential association was 

present in our data, the simplest explanation would imply a generic association between 

arousal or attention and performance in a cognitive task. Our data does not support any 

association specifically related to the mechanism of time perception. 

 

Regarding the lack of any relationship between blinking and duration perception, it is 

possible that the recorded blinks were not all truly spontaneous – our experiment was 

not explicitly designed to capture this. Blinks in our task may sometimes have been due 

to eye fatigue, or other similar factors, due to the long durations of trials and dynamic 

visual nature of the trials. Consequently, the association between blinks and with striatal 

dopaminergic activity would be less direct (though a similar criticism is also largely 

available for the original study) (Terhune et al., 2016). However, the complete lack of 

any statistical association between pre-trial blink and duration estimation suggests that 
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any such modulation had very little effect in the naturalistic conditions of our 

experiment.  

 

Other than the difference between stimuli (our experiment used videos of natural 

scenes over a broader range of durations while the experiment by Terhune and 

colleagues (Terhune et al., 2016) used only basic auditory noise bursts or visual flashes), 

another difference between experiments was the task. In our experiment we required 

participants to directly estimate the observed duration in seconds. Terhune and 

colleagues (2016) used a temporal bisection task wherein participants reported whether 

the observed duration was closer to long or short anchor durations on which they were 

previously trained. While a large literature has linked striatal dopamine to duration 

estimation and time perception generally (M. J. Allman & W. H. Meck, 2012; Jennifer T 

Coull et al., 2011; Jones, Malone, Dirnberger, Edwards, & Jahanshahi, 2008; Matell & 

Meck, 2004; Mauk & Buonomano, 2004; T. H. Rammsayer, 1999; Wiener, Lee, Lohoff, & 

Coslett, 2014) , it is also well known that striatal dopamine is critically involved in the 

biasing of decisions in many other dimensions, especially for goal-directed or reward-

driven decisions (K. Friston et al., 2014; Lepora & Gurney, 2012; Lo & Wang, 2006; 

Nagano-Saito et al., 2012). The absence of evidence for an effect of pre-trial blinks in 

our data may not reflect a failure to replicate the previously reported influence of 

spontaneous blinks on time perception, but instead that our direct estimation task is not 

susceptible to the kind of bias in report that is related to dopaminergic activity. 

 

In summary, our results (together with results reported in (Roseboom et al., 2017) for 

the same dataset) strongly support the hypothesis that human subjective time 

perception (on the scale of seconds) is mainly driven by perceptual change, of which 

visual phenomenology represents a major part in naturalistic conditions -in other words, 

our results support a key role of visual variability throughout time and across the visual 

field in determining a high-level trait of conscious experience such as perception of the 

passage of time. It is likely than in other conditions than naturalistic wakeful experience 

(such as simplified laboratory conditions, resting state with closed eyes, etc) 
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interoceptive information plays a larger part in multi-modal perceptual content. 

Nevertheless, under the circumstances of our experiment, there is no evidence for a 

meaningful contribution of underlying autonomic or neural processes to duration 

estimation. 
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PUBLISHED OR ACCEPTED ARTICLES 
 

Homocysteine and cognition: A systematic review of 111 studies 

 

I contributed to this article as a side project during my PhD, by performing a meta-

analysis for the available evidence about the relationship between homocysteine levels 

and cognition in general population and patients with neuropsychiatric disorders. 
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Serial dependence in the perception of visual variance 

 

The contents of this paper form a large part of Part II of this thesis. 
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The illusion of uniformity does not depend on the primary visual 

cortex: evidence from sensory adaptation 

 

The contents of this paper form a large part of Part III of this thesis.  
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CONTRIBUTION TO GRANT REPORT 
 

 

Here we present a section of a grant report for the EU project TIMESTORM 

(Action full title: ‘Mind and Time: Investigation of the Temporal Traits of 

Human-Machine Convergence’), forming part of the EU Framework 

Programme for Research and Innovation HORIZON 2020). Specifically, the 

presented section corresponds to the Deliverable D4.5: ‘Integrated 

explanation on timely action planning human brain mechanisms’, dealing, as 

the title indicates, with how the human brain performs timing of actions 

within a complex, sequential and/or multi-agent plan. I was responsible for 

one of the experiments investigating behavioural aspects of multi-agent 

collaborative tasks. In particular, this experiment examined the 

synchronization of physiological measures (heart rate, breathing) between 

two agents engaged in a joint motor task with a shared goal. However, for 

logistical reasons, this experiment only reached the preliminary results phase 

-in particular, the complexity of the design allowed for too many degrees of 

freedom that could confound our conclusions.  

 

The general experimental aims and structure were designed by Dr. Warrick 

Roseboom, while the specific details were devised by Dr. Warrick Roseboom, 

Dr. Darren Rhodes and myself. The programming, data collection, data 

analysis and writing up of the Results section was done by me. The section of 

the Deliverable D4.5 that is presented below was largely based on my 

preliminary results summary, with minor modifications of the text, a new 

format for the graphs and an introductory paragraph written by Dr. Warrick 

Roseboom. 
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Turn-taking task and synchronization of physiological measures 

 

When coordinating with another agent, knowing when to take your turn is paramount 

to have an efficient interaction. Work in conversational turn-taking shows interpersonal 

synchrony: respiratory kinematics adjust to the flow and rhythm of a conversation 

(McFarland, 2001; Warner, Waggener, & Kronauer, 1983). In this study, we use such 

findings to ask new questions about timely turn-taking. Specifically, we ask whether 

interoceptive signals such as heart and respiration rate act as markers for interpersonal 

synchrony in a motor task. We asked pairs of subjects to engage in a task where the aim 

was to move a cursor to a waypoint (with obstacles). One subject controlled the cursor 

in the horizontal plane, and the other controlled the vertical plane. As such, to 

successfully complete the task, the dyads needed to synergistically take turns. 

 

Methods 

 

Six couples of volunteers took part in the experiment, doing as many blocks (of 20 trials 

each) as they could in 60 minutes. All our results correspond only to blocks with valid 

physiology recordings. The two participants of each couple switched between mouse 

and joystick after each block. In all cases the mouse produced horizontal motion and the 

joystick vertical motion.  
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Figure 33. Turn-taking and physiology: Methods.  Representation of a screenshot of the collaborative game-like task. 

The goal of the two-participant team is to take the cursor (represented as a green square) to the white circle, which 

signals one of the ten waypoints of each trial. Each participant is charged with the control of either a mouse and a 

joystick, and can only perform movements either in the horizontal (mouse) or the vertical (joystick) direction. After 

reaching a waypoint, the next one appears on a random location of the screen. To ‘win’ the trial, participants need to 

reach ten successive waypoints within a time limit. The trial is ‘lost’ if the time employed to reach the next waypoint 

exceeds a certain limit (over 6 seconds) or if the cursor touches the orange barriers (whose position changes each 

trial).  

 

 

Overall performance 

 

On average, the rate of successful trials was 60%. Regarding failed trials, the most 

frequent occurrence (28.95% of fails) was touching one of the obsticles  before reaching 

even the first waypoint. Successful trials are those in which the 10 out of 10 waypoints 

were reached.  
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Behavioural measures and performance 

 

Comparing several behavioural measures between successful and failed trials we can 

report some interesting differences.  

 

Spatial efficiency (the ratio between the distance in straight line from a waypoint to the 

next, and the actual length of the trajectory followed by the cursor) was not greater in 

successful trials: rather, it was non-significantly lower in those (mixed-effects B 

coefficient (reference: failed trials): B=-0.064, P=0.069). This was even more marked 

when considering the joystick (vertical movement) only. However, temporal ‘efficiency’ 

(the ratio between the time in which at least one of the devices is producing some 

movement and the overall time of the trial) was significantly larger in successful trials: 

B=0.088, P= <.0001. Once more, this difference is larger for the joystick.  

 

When considering movement characteristics, surprisingly, speed (length of the actual 

trajectory divided by time spent) was much faster in failed trials (B=-134.13, P= 0.0001), 

once again especially for the vertical movement handled by the joystick. The difference 

was still more pronounced if we consider only the joystick speed while it is moving 

without coordination with the other participant (i.e. when the mouse is not moving). 

Coordination (the fraction of time in which both horizontal and vertical movement is 

produced simultaneously) was much larger in successful trials: B =0.026, P= <.0001). This 

was also true (B= 0.036, P=<.0001) when considering the fraction of time in coordinated 

motion divided by the fraction of time engaged in any motion, to avoid confounding by 

the larger overall temporal ‘efficiency’ (time engaged in any motion) in successful trials.  

 

Physiology measures and performance 

 

We considered the following physiological measures: heart rate and respiratory rate in 

each participant of the pair; and the absolute and relative (i.e. divided by the lowest rate 
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of the two) difference between the heart rates of both participants, as a coarse measure 

of synchronization. The same analysis was used regarding respiratory rates. Note that 

the difference is always in absolute values, i.e. we are not concerned with who of the 

two participants has the highest rate.  We also calculated the cross-correlation of the 

cardiac/respiratory signals of the two participants of the pair, as a measure of 

synchronization. We consider the maximum (normalized) r coefficient and the lag (shift 

of a signal along the other) at which this correlation is maximal. We focus especially on 

the lag: if it is close to zero it implies a good overlap of both signals, and therefore high 

interpersonal synchronization.  

 

Comparing successful and failed trials, we found that the difference between heart rates 

of the two participants, as well as respiratory rates, was higher in failed trials. Mixed-

effects coefficients for the outcome of the trial in relation to the relative heart and 

respiratory rate difference are B=-0.071, P = 0.003 (heart) and –B=0.076, P=0.056 

(respiration). This result applies to most (but not all) pairs of participants, suggesting a 

higher synchronization in successful trials.  

 

The lags with maximal cross-correlation between cardiac, and especially respiratory 

signals are often zero or very close to zero, suggesting a high degree of synchronization, 

especially concerning breathing. See figure 36, showing the lag values normalized by the 

cardiac/heart period, i.e., the fraction of the period in which we need to shift the signal 

of one subject along the other to attain a maximal cross-correlation. Positive lag values 

indicate subject B’s peaks (of blood pressure or respiration) are ‘leading’: we need to 

shift B’s signal forward to attain maximal overlap with A, and vice versa. However, when 

assessing the relationship of lag values with performance, we did not find any statistical 

association. Likewise, we didn’t find any association between the maximal r coefficient 

value and trial performance. 
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Figure 34. Turn-taking and physiology: Results. Mean lag values normalized by cardiac/breathing period for heart 

rate (left) and breathing rate (right). Each bar represents a dyad of participants. Values close to 0 suggest a high level 

of synchronization in the dyad. 

 

 

Physiology measures and behavioural measures 

 

In the previous section, we found conflicting indications of a greater cardiac and 

respiratory synchronization in successful compared to failed trials: the rates where more 

similar in successful trials, while the cross-correlation was not different. Thus, we set out 

to ascertain if any of the behavioural differences associated to performance showed in 

turn a correlation with measures of physiological synchronization, with special attention 

to coordination of movements. We found that the (relative) difference between the two 

subjects’ respiratory rates was inversely associated with temporal efficiency, speed and 

proportion of coordinated movement. Thus, more similar respiratory rates were 

associated with two measures of better coordination (temporal ‘efficiency’ reflects 

coordination as it implies less time wasted without any movement, which may reflect 

indecision about the best strategy or a ‘clash of wills’ between both subjects). The 

relationship with speed is less clear. There were no statistical associations with other 

measures of respiratory synchronization apart from rate difference. 
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CONFERENCE POSTERS 
 

Serial dependence for perception of visual variance (ECVP 2016) 

 

Presented in the 39th European Conference of Visual Perception (Barcelona, 2016). 

 

 

 

 

 

 

 

 

 

 

 

Background	and	aims:	Despite	being	a	crucial	descriptor	of	the	environment,	variance	percep7on	has	been	largely	overlooked	in	
ensemble	 vision	 research	 [1,2].	 Here	 we	 studied	 serial	 dependence	 in	 variance	 reports	 as	 a	 way	 to	 track	 the	 dynamics	 and	
7mescales	of	the	processing	of	this	summary	sta7s7c	[3].			
	
Methods:	 In	 Experiment	 1A,	 par7cipants	 had	 to	 score	 the	 ‘randomness’	 of	 the	mo7on	 of	 a	 cluster	 of	 dots	 with	 trajectories	
extracted	from	a	circular	Gaussian	distribu7on	with	random	mean	(0-359o)	and	6	possible	standard	devia7ons	(StD,	5o	to	60o).		In	
Experiment	1B,	confidence	reports	were	addi7onally	required.	In	Experiment	2A,	1/3	of	(uncued)	trials	did	not	allow	the	subject	
to	respond.	In	Experiment	2B,	1/3	of	(pre-cued)	trials	demanded	a	different	task	(es7ma7ng	the	average	direc7on).	Half	of	the	
blocks	presented	the	s7muli	at	0o	eccentricity	(foveal	blocks),	half	at	20o	(peripheral	blocks).	Responses	were	analyzed	for	serial	
dependence	in	two	ways,	namely	examining	the	point	of	subjec7ve	equality	(PSE)	and	building	linear	mixed-effects	(LME)	models.		

_	VARIANCE	REPORTS	ARE	SUBJECT	TO	A	POSITIVE	(BAYESIAN-LIKE)	BIAS	EXERTED	BY	TRIAL	N-1	AND	AN	INCREASINGLY	NEGATIVE	BIAS	EXERTED	BY	TRIALS	N-5	TO	N-10	
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A.	PSEs	for	trial	n	response,	as	func7on	of	the	StD	presented	at	several	points	in	trial	history.	B,	C.	Coefficients	in	LME	models	for	trial	n	response,	 	with	the	StD	in	trial	n-1	to	n-10	(B)	or	the	average	StD	within	the	previous	1	to	10	trials	(categorized	into	sex7les)	(C)	as	
predictor.	*P<0.1	**	P<0.05	***P<0.01	****P<0.001	

Effect	of	variance	of	trial	n-1	to	n-10	on	trial	n	response	
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Context	size	(latest	trials	averaged)	

Effect	of	average	variance	in	recent	history	on	trial	n	response	

C.	

THE	 POSITIVE	 BIAS	 EXERTED	 BY	 TRIAL	 N-1	 VARIANCE	 REMAINS	 IN	 ABSENCE	OF	 RESPONSE	 BUT	WEAKENS	
WHEN	SUBJECTS	ARE	ENGAGED	IN	A	DIFFERENT	PERCEPTUAL	TASK				

Discussion:	Variance	judgments	about	mo7on	direc7on	are	affected	by	previous	variance:		
•  A	posi7ve	(Bayesian-like)	bias	is	exerted	by	n-1	trial	variance,	stronger	in	foveal	blocks	and	

when	 greater	 confidence	was	 reported	 in	 that	 (n-1)	 trial.	 It	 is	 not	 affected	 by	 response	
processes	but	weakens	when	subjects	were	engaged	in	a	different	task	(different	feature	
dimension).	 Thus,	 it	 appears	 to	 be	 precision-based	 and	 dependent	 on	 higher-order	
decision	processes	rather	than	low-level	percep7on.	

•  An	 increasingly	nega7ve	bias	 is	 exerted	by	 trials	n-5	 to	n-10	 (star7ng	 to	 trail	 off	at	 that	
point),	equally	strong	in	fovea	and	periphery,	earlier	and	stronger	when	lower	confidence	
was	reported	in	the	same	trial,	with	possible	contribu7on	of	adapta7on	ader-effects	[4,5].	

References:	[1]	Alvarez	GA,	Trends	Cogn	Sci,	2010.	[2]	Michelle	E,	Summerfield	C	et	al,	PNAS	
2014.	 [3]	 Fischer	 J,	Whitney	D,	Nat	Neurosci	 2014.	 [4]	 Payzan	 Le-Nestour	 E	 et	 al,	 Curr	 Biol	
2016.	[5]	Storrs	KR,	Front	Psychol	2015.	
This	work	was	supported	by	the	Dr	Mor7mer	and	Theresa	Sackler	Founda7on.	

≤	THE	BIAS	EXERTED	BY	THE	VARIANCE	OF	A	CERTAIN	TRIAL	IN	RECENT	HISTORY	 IS	 MORE	 POSITIVE	 (OR	 LESS	 NEGATIVE)	 WHEN	 GREATER	
CONFIDENCE	WAS	REPORTED	IN	THAT	RECENT	TRIAL	

A.	
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A.	PSEs	 for	 trial	 n	 response,	 as	 func7on	of	 trial	 n-1	 StD,	 plohed	 separately	by	 trial	 n-1	 confidence	 scores	quin7les.	B.	Coefficients	of	 LME	
models	 for	 trial	n	 response,	with	 the	StD	 in	 trial	n-1	 to	n-10	as	predictor,	modeled	separately	according	 to	 the	confidence	reported	 in	 the	
same	trial	(categorized	into	quin7les).	*P<0.1	**P<0.05	**P<0.01	****P<0.001	
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SERIAL	DEPENDENCE	FOR	PERCEPTION	OF	VISUAL	VARIANCE		
Marta	Suárez-Pinilla1,	Warrick	Roseboom1,	Anil	K.	Seth1	

1Sackler	Centre	for	Consciousness	Science,	University	of	Sussex,	United	Kingdom		
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Sensory	mechanisms	of	perceptual	uniformity	
Marta	Suárez-Pinilla1,	Anil	K.	Seth1,	Warrick	Roseboom1	

1Sackler	Centre	for	Consciousness	Science,	University	of	Sussex,	United	Kingdom		

BACKGROUND:	Visual	experience	appears	 rich	 in	detail	despite	 the	poor	performance	of	 the	vast	majority	of	 the	visual	field,	as	a	 result	of	 the	 integraJon	of	coarse	peripheral	signals	with	the	 informaJon	of	 the	
comparaJvely	Jny	fovea.	We	examined	the	mechanisms	of	this	integraJon	by	employing	the	uniformity	illusion,	in	which	a	paLern	with	different	properJes	in	fovea	and	periphery	uniformly	takes	the	appearance	of	
the	fovea[1].	We	employed	two	different	perceptual	dimensions	(orientaJon	and	spaJal	density)	to	invesJgate	the	extent	to	which	the	uniformity	illusion	is	associated	with	changes	in	sensory	encoding.	

1.   UNIFORMITY	ILLUSION	ON	ORIENTATION	

During	 the	 adaptaHon	 phase,	 parJcipants	 are	
presented	 with	 a	 Gabor	 grid	 able	 to	 produce	
the	uniformity	illusion	affecJng	the	orientaJon	
of	 the	 peripheral	 elements.	 Eye-tracking	
ensures	that	each	Gabor	patch	is	received	on	a	
specific	 reJnal	 locaJon,	 as	 the	 paLern	 is	
removed	if	the	parJcipant’s	gaze	deviates	from	
the	fixaJon	point.	

Under	the	uniformity	illusion,	all	Gabors	appear	
to	 take	 the	 orientaJon	 of	 the	 central	 area.	
ParJcipants	report	the	illusion	by	holding	down	
a	 key,	 allowing	 us	 to	 measure	 the	 Hme	 of	
perceived	uniformity.	
	
In	 the	 control	 session	 (physical	 uniformity	
session),	 the	 paLern	 is	 replaced	 by	 a	 truly	
uniform	Gabor	grid	at	the	exact	Jmes	in	which	
parJcipants	 reported	 (illusory)	 uniformity	 in	
the	 previous	 session,	 allowing	 us	 to	 directly	
compare	illusory	and	physical-driven	effects.	

TEST	PHASE	(0.5	SECONDS	PER	STIMULUS)		

During	 the	 test	phase,	 a	 single	Gabor	patch	 is	
briefly	 presented	 on	 a	 specific	 peripheral	
locaJon.	ParJcipants	report	whether	it	is	Jlted	
clockwise	 or	 counter-clockwise.	 	 We	 examine	
which	 of	 the	 two	 compeJng	 orientaJons	
causes	 a	 Jlt	 aXer-effect:	 the	 local	 (physical)	
and	global	(illusory).	 The	 Hlt	 aRer-effect	 follows	 the	 local,	 physically	 presented	 orientaHon	 rather	 than	 the	 global	

orientaHon	perceived	under	the	illusion	of	uniformity.	This	was	not	due	to	insufficient	exposure	to	
the	 global	 paYern	 to	 produce	 an	 aRer-effect	 as	 presentaHon	 of	 physical	 uniformity	 for	 the	 same	
duraHons	as	parHcipant	reports	of	the	illusion	did	produce	an	aRer-effect	to	the	global	orientaHon.	

2.			UNIFORMITY	ILLUSION	ON	SPATIAL	DENSITY	

1.1.	METHODS	 1.2.	RESULTS		

2.1.	METHODS	
ADAPTATION	PHASE	(120	SECONDS)	

TEST	PHASE	(0.5	SECONDS	PER	STIMULUS)	

During	 the	 adaptaHon	 phase,	 parJcipants	 are	
presented	 with	 a	 paLern	 with	 higher	 spaJal	
density	 in	 the	 center	 than	 the	 periphery	 (Dd).	
Some	 control	 blocks	 have	 uniformly	 high	 (DD)	
or	 low	 (dd)	 density.	 In	 Dd	 blocks,	 under	 the	
uniformity	 illusion,	 phenomenology	 should	 be	
equivalent	to	paLern	DD.		
	
In	 the	 control	 session,	 Dd	 paLern	 is	 replaced	
by	 DD	 at	 the	 Jmes	 in	 which	 parJcipants	
reported	the	illusion	in	the	previous	session.	

Experiment	 2A:	 Internal	 reference.	Appearance	
test.	 ParJcipants	 report	 if	 the	 density	 of	 a	
peripheral	 circle	 is	 lower	 or	 higher	 than	 a	
reference	 previously	 learnt.	 If	 the	 uniformity	
illusion	has	any	effect,	 responses	aXer	exposure	
to	Dd	 should	be	more	 similar	 to	 those	aXer	DD	
the	longer	the	illusion	has	been	reported.	

Experiment	 2B:	 External	 reference	 –	 2AFC.	
Performance	 (discriminaJon)	 test.	 ParJcipants	
select,	 between	 two	 peripheral	 circles,	 the	 one	
with	 higher	 density.	 If	 the	 illusion	 has	 any	
sensory	 effect,	 responses	 aXer	 Dd	 should	 be	
more	 similar	 to	 those	 aXer	 DD	 in	 relaJon	with	
the	Jme	of	uniformity.	

2.2.	RESULTS	

ADAPTATION	PHASE	(180	SECONDS)	 ILLUSION	SESSION:	ILLUSORY	UNIFORMITY		

CONTROL	SESSION:	PHYSICAL	UNIFORMITY		

EXPERIMENT	2B	:	EXTERNAL	REFERENCE	DENSITY	(2AFC	TASK)	

EXPERIMENT	2A	:	INTERNAL	REFERENCE	DENSITY	

The	 intermediate	 level	 of	 responses	 following	 exposure	 to	 illusory	 uniformity	 are	 consistent	with	
percepHon	having	been	adapted	to	the	 illusory	percept.	However,	as	magnitude	of	effect	does	not	
vary	with	reported	Hme	of	illusion	exposure,	this	seems	unlikely.	Rather,	the	data	is	consistent	with		
a	non-local	effect	of	the	high	density	central	display.	

DISCUSSION:	Experiments	performed	on	two	visual	domains	indicate	that	the	uniformity	illusion	is	not	associated	with	a	change	in	the	sensory	encoding	on	a	local	basis.	While	it	might	directly	
modify	more	abstract	dimensions	(such	as	numerosity,	akin	to	our	formalizaJon	of	spaJal	density),	the	Jme	invariance	of	the	effect	makes	alternaJve	explanaJons	more	likely	and	therefore,	
suggests	that	the	uniformity	illusion	arises	from	high-level	perceptual	processes.			[1]	O"en	M,	Psychological	Science	2016.	

REPORTS	BY	ADAPTING	ORIENTATIONS	
AND	TIME	OF	PERCEIVED	UNIFORMITY	

REPORTS	BY	TIME	OF	UNIFORMITY		
(Dd	PATTERN)	

REPORTS	BY	ADAPTING	ORIENTATIONS	

REPORTS	BY	ADAPTING	ORIENTATIONS	

DISCRIMINATION	BY	ADAPTING	DENSITIES	
AND		TIME	OF	UNIFORMITY	

REPORTS	BY	ADAPTING	DENSITIES		
(ILLUSION	SESSION)	

REPORTS	BY	ADAPTING	ORIENTATIONS	
AND	TIME	OF	PHYSICAL	UNIFORMITY	

DISCRIMINATION	BY	ADAPTING	DENSITIES	
(ILLUSION	SESSION)	
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