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Summary

Decoherence and errors appear among the main challenges to implement success-
ful quantum technologies. In this thesis I discuss the application of some general
tools and principles that may be valuable resources to develop robust technologies,
with applications in quantum sensing and quantum simulation.

Firstly, we employ suitable periodically driving fields acting on the Ising model
in order to tailor spin-spin interactions depending on the spatial direction of the
bonds. In this way, we are able to simulate the quantum compass model on a square
lattice. This system exhibits topological order and a doubly degenerate ground state
protected against local noise. A possible implementation of this proposal is outlined
for atomic quantum simulators.

Secondly, we exploit two general working principles based on spontaneous sym-
metry breaking and criticality that may be beneficial to achieve robust quantum
sensors, particularly appropriate for quantum optical dissipative systems. A con-
crete application is given for a minimal model: a single qubit laser. It is shown how
the precision in parameter estimation is enhanced as the incoherent pumping acting
on the qubit increases, and also when the system is close to the lasing critical point.

Finally, classical long-range correlations in lattice systems are shown to provide
us with an additional resource to be used in robust sensing schemes. The previous
setup is extended to a lattice of single qubit lasers where interactions are incoherent.
Under the right conditions, we show that a Heisenberg scaling with the number of
probes can be accomplished.
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Part I

Introduction and research context
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Chapter 1

Quantum technologies

We live in fascinating and rapidly evolving times. For some decades now, we are

immersed in the so-called information age, in which information has become one of

our most valuable commodities, and the acute need for more powerful information

technologies increases every day. As a result, the supply and demand of data is

pushing the limits of our technological resources at a level that reach, or even surpass,

the capabilities offered by our most advanced classical devices. This is happening

in all aspects regarding information, whether acquisition, storage, processing or

communication.

In response to this increasing demand, huge investments and research have been

made to boost the potential of our classical technologies in order to manage large

amounts of information as well as to increase our computational power. Firstly,

our capacity to collect information has increased enormously, to the extent that we

sometimes struggle to process it in conventional ways. The different methods to deal

with this problem have even originated a discipline in itself, the recently popular

Big Data [1], and its applications probably go unnoticed for many. For example,

up to zettabytes of information concerning our likings and preferences is now com-

monly stored and evaluated by many companies like Amazon or Youtube to create

recommender systems that suggest similar products likely to appeal to us. In the

future, this tendency to acquire and use our personal information will probably be

manifested in our daily life by the so-called Internet of Things (IoT) [2], a network

of home appliances, vehicles and other items embedded with electronics that enable

them to connect and exchange data. For business purposes, tools like Google ana-
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lytics are already very popular to track and report website traffic, based on which

a company may act accordingly to improve its marketing strategy. Secondly, our

computational power has increased unceasingly thanks to the progress made in su-

percomputing and parallel computing, which for example has been used to unveil

the secrets of the human genome. Lastly, we are witnessing the far-reaching revolu-

tion in the way we process information, brought about by the so-called Artificial

Intelligence (A.I) [3], which makes use of cunning coding strategies like machine

learning, neural networks or deep learning, with multiple applications ranging from

image recognition to self-driving cars. All these new technologies lie at the forefront

of the upcoming social and economic revolution, whose exciting and fast advances

often pop up in the media.

In spite of all these advances, the computational power of classical computing

has also its own limits. Fulfilling Moore’s law prediction, we are now reaching a

point where it will be impossible to miniaturize further our transistors to produce

more powerful computer chips [4], as we will be reaching the scale of molecules and

atoms, where classical physics is not a valid description of matter and light and

quantum mechanics takes over. The ultimate frontier of computation will be given

by our ability to control a totally different type of information: quantum information

[5]. Single particles are not easily isolated from their surrounding environment and

they lose their quantum properties soon after they interact with the outside world.

Luckily, in the last decades a formidable progress has been carried out regarding the

control of quantum systems in all its aspects. Namely, tremendous advances have

been made in isolating, manipulating and detecting at the single quantum level.

More specifically, pioneering research was made by Serge Haroche (2012 Nobel

Prize) and his group in Paris concerning trapping and controlling the particle of

light: the photon [6–8]. They employed small cavities where photons could bounce

back and forth between superconducting mirrors. These mirrors are so reflective that

a single photon can be trapped inside for almost a tenth of a second before it is lost

or absorbed. During its lifetime, several quantum operations can be performed with

the trapped photon and test fundamental light matter interaction effects such as the

quantum Rabi oscillations [9]. Regarding the manipulation of atoms or ions, leading

groups like David Wineland’s group (2012 Nobel Prize) in Boulder (USA) [10–12]
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and R. Blatt’s (Innsbruck, Austria) [13] developed techniques to trap electrically

charged atoms or ions with electric fields. The particles are isolated from heat and

radiation by performing the experiments in vacuum at extremely low temperatures.

A laser beam can be used to suppress the ion’s thermal motion and prepare its

ground state (laser cooling), allowing the study of quantum phenomena. Addition-

ally, the use of optical lattices to create artificial crystals has been launched exper-

imentally from groups led by I. Bloch (Mainz, Germany) [14], T.Esslinger (Zurich,

Suiza) [15] or R. Grimm (Insbruck, Austria) [16].

Figure 1.1: An IBM cryostat wired for a 50-qubit processor. [Source IBM [17]]

Aside from the efforts to expand our technologies in the classical realm, a more

sophisticated line of research, less known to the general public, profits from the afore-

mentioned taming of quantum systems. The essential idea behind this approach is
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to use the exotic laws of quantum mechanics to our advantage, which could in prin-

ciple expand our capabilities in ways that classical technologies cannot. A new wave

of ideas, possible implementations, proof-of-principle experiments and prototypes

have flooded the research activity within the quantum realm during the last years.

In a few cases, these technologies have taken a leap to become commercial products,

such as various quantum random number generators [18], the IBM 20-qubit quantum

computer [19] (Fig. 1.1), or quantum cryptographic systems [20, 21]. Still, from an

industrial point of view, quantum technologies are still in their infancy, although re-

cent governmental initiatives, such as the Quantum Technology Flagship in the E.U.

[22] or the U.K. National Quantum Technologies Program [23], aim to push them

forward and take the lead in their future growth and economic impact. Quantum

technologies promise to significantly advance the previously mentioned aspects of

information: acquisition, storage, processing and communication. In the following

we shall give a big picture of the different quantum technologies along with a brief

description of their aims.

• Acquisition

– Quantum clocks : a precise measurement of time is vital in our society,

and it is the basis to sustain or improve many other technologies. Current

developments in this field have originated devices that are more precise

than previous atomic clocks used as international standard [24]. This

technology is regarded as a short term goal with potential applications

in defense, telecommunications and finance.

– Quantum random number generators : a source of random numbers

is a fundamental resource in science and engineering. Computer simula-

tion and cryptography are among its fields of applications. The intrinsic

randomness that is found in quantum mechanics may be used as a perfect

source of entropy to count with an unlimited random number generator

[18].

– Quantum sensing : quantum sensing employs quantum resources such

as entanglement or squeezing to achieve some enhancement in sensor

characteristics, like precision or efficiency [25–27]. This is another short-
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term technology with a wide variety of potential applications: gravity

mapping for creating three dimensional maps of the density of material

[28], measurement of electric signals from the brain [29], accelerometers

and gyroscopes [30, 31] for naval or underground navigation, or magnetic

sensors of high resolution [32].

– Quantum enhanced imaging : this technology exploits quantum cor-

relations and resources, typically quantum states of light, in order to

achieve image resolutions beyond what is possible with classical optics

[33, 34]. Possible applications range from improving microscopes and

telescopes to medical imaging.

• Storage

– Quantum memories: the need for storing classical bits has its quantum

counterpart in the pursuit of having systems able to store quantum in-

formation rather than classical information. Systems of atoms and trapped

ions are good candidates because they are able to preserve their quantum

state for long periods of time under correct isolating conditions. Quantum

memories are key elements for other more complex developments of quantum

technologies, such as quantum computation or quantum networks [35, 36].

• Processing

– Quantum computation : managing quantum information offers the

possibility of achieving a computational power that, in some cases, is

capable of surpassing the computational power of the most advanced

classical computers [5]. This is a sought-after technology that demands a

huge technical effort in order to keep the fragile quantum information pro-

tected from noise and decoherence, so it is still considered as a long-term

goal. Quantum computing would provide us with a universal simulator

of the physics of a wide class of quantum systems which are intractable

otherwise. Additionally, it would allow the implementation of quantum

algorithms that fundamentally surpass the capabilities of classical com-

puting, such as the Shor algorithm for integer factorization [37] or the

Grover algorithm for searching in an unordered database [38].
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– Quantum simulation : as resource-demanding as quantum computing

is, quantum simulation emerges as a short-term solution to simulate a

restricted class of quantum systems that are difficult or even impossible

to simulate in classical computers. The essential idea behind quantum

simulation is to use a fully controllable quantum system cleverly designed

to mimic other less controllable quantum system dynamics [39, 40].

– Quantum artificial intelligence : echoing modern approaches rooted

in the field of artificial intelligence, quantum artificial intelligence aims

to develop algorithms and technologies that accomplish some enhance-

ment with respect to their classical counterparts. This field includes last-

est efforts regarding quantum machine learning [41] and quantum neural

networks [42].

• Communication

– Quantum communication : in this field we encounter solutions to

the transmission of quantum information itself, for example, quantum

teleportation protocols, or efficient transmission of classical information,

like the superdense coding protocol that allows the transmission of two

bits by means of a qubit [4].

– Quantum cryptography : quantum cryptography promises secure meth-

ods to transmit information protected against a possible interceptor [21].

While some commercial applications have been tested [20], large scale

implementation of these technologies still faces significant challenges.

Naturally, all these exciting prospects come at a price. In many cases, the

potential benefits of quantum technologies are limited by the robustness against

errors and the survival of the fragile quantum states for a sufficiently long period

of time (coherence time). In the latter case, such loss of quantumness, known as

decoherence, transforms a useful quantum state into a classical state that frequently

(although not always) destroys the advantage with respect to purely classical devices.

For acquisition purposes, the enhancement that quantum states of light offer in

quantum sensing and imaging is normally lost as soon as decoherence comes into

play. A simple example is given by the incoherent loss of a photon in a NOON
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state, well-known in optical interferometry for leading to a Heisenberg scaling, which

rapidly becomes a worthless mixed state [43]. Similarly, for processing purposes,

these issues are currently the main enemy to combat in quantum computation so as

to achieve the so-called quantum supremacy, where a quantum computer may prove

to solve classically intractable problems. For this reason, different companies are

in the beginning of a race to accomplish longer coherence times and fault tolerant

quantum computation. A first approach to tackle this problem is given by quantum

error correction algorithms [44]. Current quantum computers, like the IBM 16-

qubit processor, are built in this way. An alternative direction is to take advantage of

certain exotic symmetry properties displayed by well-chosen models and interactions.

These systems open the door to construct topologically protected states that are

naturally robust against local errors. This last approach, although more difficult to

implement with the state-of-the-art technologies, is considered as the long term goal

pursued by companies like Google or Microsoft.

One of the main motivations of this thesis is to examine mechanisms that help

to surpass the limitations brought about by the presence of decoherence and errors.

Concretely, we focus our study within the fields of quantum simulation and quantum

sensing. To this end, we shall merge ideas and methods that normally show up within

the fields of many-body physics and condensed matter physics with well-established

results in the fields of quantum sensing and simulation. Namely, the concepts of

spontaneous symmetry breaking, long-range order, topological order or criticality

will be used as powerful conceptual tools to organize the analysis and interpretation

of our results. The ideas introduced in this work may contribute, for example, to

implement topologically protected quantum memories, as well as sensing schemes

robust against decoherence and errors in quantum optical dissipative systems.
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Part II

Background theory
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Chapter 2

Quantum systems

2.1 Quantum degrees of freedom

2.1.1 The superposition principle

What is so special about quantum mechanics? The fundamental distinction between

classical and quantum mechanics lies in the intrinsic probabilistic behaviour of the

degrees of freedom in a certain system. Our intuition, built on our everyday exper-

ience in the classical world, suggests that the outcome of any measurement of any

observable (i.e., a property of a system) is defined even before the measurement is

performed on the system. A deterministic theory, like Newtonian or Hamiltonian

mechanics, gives a perfectly well-defined value to any observable at any time. In

many cases, nevertheless, we do not have complete knowledge of the system degrees

of freedom so as to work with a deterministic and exhaustive description of its dy-

namics. This is the case, for instance, of a system consisting of many degrees of

freedom, like a fluid or a solid, or non-integrable systems exhibiting chaotic beha-

viour and extreme sensitivity to initial conditions. In those cases one has to rely on

statistical methods to be able to give significant and useful predictions. A simple

example would be the result of tossing a coin, which could come up a head or a tail,

or in the computational jargon, ‘1’ or ‘0’. However, one must notice that the use of

probabilistic methods in these cases is the result of our lack of knowledge over the

system, but not the lack of definition of their properties. In other words, by having

enough information when tossing a coin, one should be able to predict the outcome
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using Newtonian mechanics.

A totally different scenario appears in quantum mechanics, where it is found

that some properties are intrinsically ill-defined, at least until some measurement

is performed over the system. In contrast to a classical coin, the result, heads or

tails, is not defined until the measurement is performed. This fact has profound

consequences in the statistical results of experiments involving quantum degrees of

freedom. Because of this, we need to use a radically different mathematical approach

to correctly describe the intrinsic ill-definition of reality. Traditionally this is done

by the use of Hilbert spaces and the superposition principle [45]. While in classical

physics the space of states is represented by a manifold in some phase space, in

quantum physics we resort to a Hilbert space H. While a possible outcome of an

experiment is represented by a point in the phase space in classical mechanics, a

possible outcome will be represented by an additional dimension in the Hilbert space.

By doing so, an ill-defined state will be given by a vector (ket) |Ψ〉 expressed as a

certain linear combination of the possible outcomes. A quantum coin, a qubit in

the jargon of the quantum information theory, with equal probability for heads and

tails will be denoted by the following normalized state (|〈Ψ|Ψ〉|2 = 1),

|Ψ〉 =
1√
2

(|1〉+ |0〉). (2.1)

The probability distribution is then obtained from the rule p(r) = |〈r|Ψ〉|2, with r

being ‘1’ or ‘0’. While an observable in classical physics is represented by a function

in the system phase space, in quantum physics it is mathematically represented

by an appropriate operator Ô, whose eigenvalues Ô|Ψ〉 = o|Ψ〉 match the possible

values of that observable. The reason is twofold; first, the operator representation

is a compact tool to gather both the quantisation and the continuity regarding

the possible values of the observable. Both cases are contained in the spectrum

of the operator, which could be discrete and/or continuous. Second, the fact that

some operators, say Â and B̂, do not commute in the general case ([Â, B̂] 6= 0)

accounts for the observation that the result of an experiment depends on the order

followed when measuring those observables. The position and linear momentum of

a particle is a canonical example of such bizarre phenomenon. This is again an

indirect manifestation of the intrinsic ill-definition of some properties in a system.

Bearing in mind all these considerations, the system state |Ψ〉 is not limited to give
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the probability distribution of merely one observable, but it can also be used as a

generator of the probability distribution of any observable by squaring the projection

of each eigenvector |oj〉 onto the normalized system state |Ψ〉,

p(oj) = |〈oj|Ψ〉|2. (2.2)

Conversely, the set of eigenvectors {|oj〉} of an observable serves as a basis to express

the system state |Ψ〉 as a linear superposition of the possible outcomes. In any case,

the probability distributions obtained will exhibit statistical fluctuations that reflect

the intrinsic quantum uncertainty of reality.

In some cases, the independent nature of the observables at play allows us to

obtain the same result regardless of the order followed in the measurement, mathem-

atically expressed as commuting operators [Ôi, Ôj] = 0. This could be the case, for

example, of the different position components X̂i of a particle, where it is irrelevant

which one is measured first, so we have [X̂i, X̂j] = 0.

In full generality, a system will consist of different simpler subsystems, each

with its own Hilbert space Hj. The way to correctly add up degrees of freedom

in quantum mechanics is by using a tensor product of the Hilbert spaces of each

subsystem, such that the total Hilbert space H becomes,

H = ⊗jHj. (2.3)

Notice that the dimension of the total Hilbert space is the product of the dimensions

of each subsystem. For example, the Hilbert space of a collection of N qubits

will be of dimension dim(H) = 2N , where each qubit has dimension 2. This can

be understood simply as a manifestation of the fundamental counting principle of

probability theory, where we need to take into account all possible combinations

of outcomes. The result of this is an exponential explosion of the dimension of

our Hilbert space, with profound consequences as we shall discuss in chapter 5.

The superposition principle has further bizarre consequences with regards to these

composite systems, as nothing prevents us from having a superposition of outcomes

related to spatially distant observables. A canonical example is the Bell state of two

distant qubits located at positions A and B,

|Φ+〉 =
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B). (2.4)
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When a such a system is prepared in the state |Φ+〉, the result of local measurements

will be non-locally correlated, a phenomenon that has no classical counterpart. This

effect is popularly known as entanglement.

Finally, we require a rule to obtain the dynamical evolution of the properties of

a system. One can choose to put this evolution in the generator of the probability

distributions, i.e., the state |Ψ〉, or the observables themselves. The former is known

as the Schrödinger picture and the latter the Heisenberg picture. For a closed system

the evolution is given in terms of the Hamiltonian Ĥ, and follows the Schrödinger

equation [45],

i~
d

dt
|Ψ〉 = Ĥ|Ψ〉. (2.5)

The Hamiltonian is an operator that represents the system energy, and its ei-

genvalues are invariant under unitary transformations Û such that Ĥ ′ = Û †ĤÛ .

In some cases it will be useful to express our system in a rotating reference frame,

mathematically described by a time-dependent unitary operator Û(t). It is simple

to prove that the transformed state |Ψ′〉 = Û(t)|Ψ〉 evolves according to the new

Hamiltonian ĤU , such that

ĤU = Û †(t)ĤÛ(t) + i
dÛ †

dt
Û(t). (2.6)

The use of these rotating pictures will be omnipresent in this thesis, which are

used to simplify notably the description of the dynamics.

The Schrödinger equation can be extended to time-dependent Hamiltonians Ĥ =

Ĥ(t), which come out typically in cases where the system is subjected to time-

dependent external potentials. We shall make use of these potentials in chapter

8 in the form of periodic driving fields. The state evolution is obtained from the

Schrödinger equation by formally integrating equation (2.5). In the case that the

Hamiltonian commutes with itself at different times, i.e., [ ˆH(t), ˆH(t′)] = 0, this

integration can be formally expressed as [45],

|Ψ(t)〉 = exp

(
− i
~

∫ t

t0

Ĥ(t′)dt′
)
|Ψ(0)〉, (2.7)

with |Ψ(t)〉 and |Ψ(0)〉 being the state at times t and 0 respectively. Equation (2.7)

will come up in section 8.4 when integrating the effect of periodic driving fields

acting on the system.
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2.1.2 Density operator formalism

The previous formalism allows us to take into account the uncertainty derived from

the quantum statistical fluctuations of a system. However, in a general scenario,

we shall encounter two sources of statistical fluctuations within the same system:

quantum fluctuations arising from the intrinsic ill-definition of nature as well as

classical statistical fluctuations as a consequence of our lack of knowledge about

the system. Thus, we need to extend the previous formalism to incorporate both

sources of uncertainty at the same time. One way to do so is by means of the density

operator formalism [45]. Instead of a ket in a Hilbert space, the system state will

be mathematically represented by an operator defined as

ρ̂ =
∑
j

pj|Ψj〉〈Ψj|, (2.8)

where pj are probability weights to account for the fact that we do not know which

of the states |Ψj〉 the system is in.

The density operator must satisfy three essential conditions to be a valid de-

scription of a physical state. Namely, it must be self-adjoint, ρ̂† = ρ̂, positive

semi-definite, pj > 0 and with trace one, Tr{ρ̂} = 1. Quantum states that pos-

sess classical fluctuations are known as mixed states, in contrast to the pure states

represented by kets. For instance, our quantum coin will be represented with the

following density operator,

ρ̂ =
1

2
(|0〉〈0|+ |1〉〈1|+ |0〉〈1|+ |1〉〈0|), (2.9)

in contrast to the classical mixture

ρ̂ =
1

2
(|0〉〈0|+ |1〉〈1|). (2.10)

The diagonal elements, such as |0〉〈0| are known as populations while the nondiagonal

terms, like |0〉〈1| are known as coherences. Diagonal terms account for the classical

probability distributions while the coherences store the information concerning the

quantum superpositions. Finally, the Schrödinger equation is likewise updated into

the density operator formalism, adopting the form1

ρ̇ =
d

dt
ρ = − i

~
[H, ρ]. (2.11)

Equation (2.11) is known as the von-Neumann equation [45].

1From now on we shall drop the hat symbol when writing operators.
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2.1.3 Spin degrees of freedom

The simplest case of a quantum degree of freedom is given by a spin-1/2 degree of

freedom, which is formally equivalent to a qubit. The Hilbert space representing the

space of states of such a system is simply C2.

Originally, the concept of spin was introduced as an internal degree of freedom of

the electron, associated to its magnetic momentum and with two possible outcomes,

up |↑〉 and down |↓〉 . The Pauli matrices, defined as

σx =

 0 1

1 0

 , σy =

 0 −i

i 0

 , σz =

 1 0

0 −1

 , (2.12)

and which satisfy the algebra of an angular momentum,

[σx, σy] = 2iσz, [σy, σz] = 2iσx, [σz, σx] = 2iσy, (2.13)

were used to represent observables in this Hilbert space.

As any operator in C2 can be expressed as a linear combination of the Pauli

matrices, a spin is also used to describe other degrees of freedom with two possible

outcomes (pseudospin). This could be the case of an atom in which only two energy

levels are taken into account, or two relevant charge or flux levels in circuit quantum

electrodynamics (circuit QED) [46, 47]. These states will be referred in this thesis

as the ground |g〉 and excited |e〉 states. In this way, a spin will be widely used to

describe relevant degrees of freedom of matter, although it could very well describe

additional aspects of light like its polarization states.

A paradigmatic model with interacting spin degrees of freedom is the Ising model,

which is a spin Hamiltonian firstly introduced to describe quantum magnetic phe-

nomena like ferromagnetism and antiferromagnetism. The Hamiltonian of the Ising

model reads [48],

HIsing = −J
∑
<i,j>

σziσ
z
j − Γ

∑
j

σxj . (2.14)

The spins are assumed to lie on a lattice (normally a square lattice) of dimension

D, and the indices i, j label lattice sites. Furthermore, the interactions are only

for nearest-neighbour sites, denoted by 〈i, j〉. The term with Γ takes into account

a transverse external field, which will be set to zero in chapter 8 (Γ = 0). In

the case J > 0, the first term in the right-hand side of equation (2.14) favours
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𝜎𝜎𝑗𝑗𝑧𝑧 = 1 𝜎𝜎𝑗𝑗𝑧𝑧 = −1 𝑗𝑗

a) b)

Figure 2.1: a) Ferromagnetic order in the Ising model. b) Antiferromagnetic order

in the Ising model

ferromagnetic order in the z direction, as neighbouring sites tend to be aligned.

Antiferromagnetic order is favoured if J < 0, with alternating spin orientations (see

figure 2.1). Interactions are typically isotropic, like in the Ising model, where the

couplings are independent of the spatial direction of the bonds. Nonetheless, this is

not always the case. Generally speaking, ‘compass models’ refer to a broad type of

lattice Hamiltonians in which the couplings between sites depend on the orientation

of the bonds in the lattice [49]. This category includes famous instances such as the

Kitaev’s honeycomb model [50]. The simplest spin model of this kind was introduced

by Kugel and Khomskii [51] to study certain interactions between orbital degrees

of freedom in strongly correlated electron materials. The Hamiltonian is defined as

follows,

HCompass = −Jx
∑
j

σxjσ
x
j+ex − Jy

∑
j

σyjσ
y
j+ey

. (2.15)

In contrast to the Ising model, this model presents two competing tendencies: bonds

along the y axis induce spin alignment along y (〈σyj 〉 6= 0), while bonds along the x

axis induce spin alignment along x (〈σxj 〉 6= 0). We shall analyse this model in detail

in chapter 8

2.1.4 Bosonic degrees of freedom

The lack of complete definition of reality has further mesmerizing consequences

beyond what has been mentioned thus far. Specifically, unlike classical dynamics,

where one can always distinguish each individual particle, quantum particles must
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be treated as indistinguishable entities in many circumstances. We could say that

to label particles is not as meaningful as we are accustomed to based on our classical

intuition, and one must focus on the statistical consequences of those particles rather

than their individual identification. We typically distinguish between bosons and

fermions depending on how these indistinguishable particles behave with respect

to the exchange of labels. In this thesis we will encounter only bosonic degrees of

freedom, which are characterized by a state that is symmetric under permutation

of indices [52]. These type of degrees of freedom appear typically in the quantum

description of waves such as the electromagnetic fields or mechanical vibrations in

a crystal. The quantisation of these fields give rise to bosonic excitations, known as

phonons for mechanical waves and photons for the electromagnetic field.

The use of Slater determinants allows the symmetry properties of bosons and

fermions to be taken into account; an approach followed in atomic or molecular

physics where there are only a few particles. Nonetheless, a description where la-

bels are employed to characterise quantum particles turns out to be tedious and

impractical when the number of particles builds up. A more powerful mathematical

tool is available in this situation, in which the focus is on how many particles are in

a certain state rather than which particles occupy those states. This formalism is

known as second quantisation (or number occupation representation), even though

there is really nothing fundamentally new that is being quantised. The key element

is the introduction of certain creation (aj) and annihilation (a†j) operators, which

increase or decrease the number of particles in a certain state |j〉 labelled by the

index j. It is important to stress that the meaning of the labels j depends on the

particular context, and they could very well refer to different momentum states in

a Fourier space, wave vectors, or sites in a lattice. Likewise, the number operator

nj = a†jaj counts the number of particles in the state |j〉. These bosonic operators

are mathematically defined by their algebra, specifically

[ai, aj] = 0, (2.16)

[ai, a
†
j] = δi,j, (2.17)

[nj, aj] = −aj, (2.18)

[nj, a
†
j] = a†j. (2.19)
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The above commutation relations automatically guarantee that we respect the

symmetry properties of the system with respect to the permutation of indices. Fi-

nally, observables that were previously written in the first quantisation language

demand to be re-expressed in the language of the second quantisation. This can

be done again by using the creation and annihilation operators. Namely, one-body

operators, like the kinetic energy or the potential energy created by an external field,

will adopt the generic structure

T =
∑
i,j

Ti,ja
†
iaj, (2.20)

where the matrix Ti,j essentially represents the hopping for annihilating and creat-

ing a particle in the states |j〉 and |i〉 respectively. Likewise, two-body operators

accounting for interacting terms among bosons will be of the form,

V =
∑
i,j

Vi,ja
†
ia
†
kajal. (2.21)

2.2 Quantum optics

2.2.1 Light quantisation

In a classical description, the electromagnetic field can be expressed in terms of

orthogonal modes with their characteristic spatial, temporal and polarization prop-

erties. These modes form a collection of independent harmonic oscillators. Hence,

we shall associate separate Hilbert spaces for each of these modes in a quantum de-

scription of light, and one can prove that each mode will be quantised as a bosonic

degree of freedom [52]. The total Hilbert space is obtained when taking the tensor

product of these modes, the so-called Fock space. Hence, the most general M -mode

state of light is represented by a density operator ρ in the Fock space, which can be

written as

ρ =
∑
n,n

ρn,n|n〉〈n|, (2.22)

where n = {n1, n2, · · · , nM} and |n〉 = |n1〉⊗ |n2〉⊗ · · · |nM〉. Each |nj〉 represents a

Fock state with exactly nj photons. Fock states can in turn be expressed in terms

of the creation and annihilation operators acting on the vacuum state |0〉, i.e, the
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state with no photons, as follows,

|nj〉 =
a†j
n

√
n!
|0〉, aj|nj〉 =

√
nj|nj − 1〉, a†j|nj〉 =

√
nj + 1|nj + 1〉. (2.23)

Also, the electric and the magnetic fields can be obtained through the quadratures

of the field, defined as

X = a† + a, (2.24)

P = i(a† − a). (2.25)

In free space it is convenient to label the different modes with frequencies ω~k by

their corresponding wave vector ~k and polarization λ = 1, 2, so that the Hamiltonian

is given by2

HE =
∑
~k

∑
λ=1,2

ω~ka
†
λ(
~k)aλ(~k). (2.26)

In the context of optical interferometry, in contrast, modes are distinguishable by

their spatial separation, corresponding to different arms of an interferometer. In

modern experiments of cavity QED, modes correspond to the quantised electromag-

netic field within each cavity arranged in a lattice, in which case the label j denotes

the lattice site. When cavities are allowed to exchange photons between neighbour-

ing cavities, the evolution can be described by a tight-binding model in a Wannier

basis [47, 53], analogous to the tight-binding model appearing in solid state physics,

which reads as follows

H = −t
∑
〈i,j〉

(
aia
†
j + aja

†
i

)
. (2.27)

The constant t quantifies the hopping rate between sites. This Hamiltonian will

show up again in chapter 10.

2.2.2 Quantum states of light

The Fock states defined in equation (2.23) are the primary example of quantum

states of light, characterised by having a definite number of photons. These states

explicitly show a corpuscular nature in contrast to the wave theory of light from

classical electrodynamics. Beyond these states, we find others that reflect both the

classical and quantum aspects of light. If the Fock states are the most extreme

2The Planck’s constant is set to be ~ = 1 from now on.
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case of states with quantum features, the coherent states of light would be the most

similar to a classical description. In the mode representation, a single-mode coherent

state can be defined as an eigenstate of its respective annihilation operator,

a|α〉 = α|α〉, (2.28)

where α is a complex number with certain amplitude and phase. A multi-mode

coherent state is simply the tensorial product of each single-mode coherent state,

|α〉 = |α1〉 ⊗ |α2〉 ⊗ · · · |αM〉. In terms of the Fock states, a coherent state takes the

form

|α〉 = exp
(
−|α|2/2

) ∞∑
n=0

αn√
n!
|n〉. (2.29)

These are the states produced by any phase-stabilized laser, which have properties

that resemble features of classical light [27]. For instance, a coherent state evolves in

time identically to a classical wave amplitude. In particular, an optical phase delay

φ turns the state |α〉 into |αeiφ〉. Coherent states, unlike Fock states, do not have a

definite number of photons, but they follow a Poissonian distribution,

P (n) = e−|α|
2 |α|2n

n!
, (2.30)

with average 〈n〉 = |α|2 and standard deviation ∆n = |α|. The relative uncertainty

∆n/〈n〉 scales like 1/
√
〈n〉, this is, according to the shot noise limit (see section 6.2).

It is a common jargon to call coherent states the classical states of light, however,

their quantum character emerges when taking into account their instrinsic quantum

fluctuations and non-orthogonality, which make them hard to distinguish for small

amplitudes [54],

|〈α|β〉|2 = exp (−|α− β|2). (2.31)

There exists a very useful tool to work with quantum states of light that, in

many cases, facilitates enormously its description and enables its graphical repres-

entation. This tool is the representation in phase space, which allows us to work

with functions rather than kets or operators. Such conversion arises as a result of

the correspondence between the field quadratures X and P with the position and

momentum, according to the quantisation of the electromagnetic field as a set of

harmonic oscillators [52]. In this way we may compare quantum mechanics in phase

space and classical statistical mechanics, where classical ensembles are represented
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by probability distributions in phase space and the evolution is given by the Liouville

equation [55].

Unlike statistical mechanics, the representation in phase space does not really

lead to a probability distribution, as it may take negative values, even though it

integrates to one over the whole phase space as a real distribution. This is the

reason why these functions are referred as quasi-probability distributions, the non-

positivity being a striking feature of their quantum nature. In this thesis we shall

make use of the P -representation, introduced by Glauber and Surdashan [54, 56].

This representation utilizes a basis of coherent states, which are related to position

and momentum via the relation,

α =
1

2
(〈X〉+ i〈P 〉). (2.32)

The P -representation is then defined in terms of the M -mode coherent state as,

ρ(t) =

∫
d2MαP (α,α∗, t)|α〉〈α|. (2.33)

Having defined this representation, it is convenient to introduce some useful termin-

ology that will appear in chapters 9 and 10. In general, we shall admit that a state

ρ is a classical state of light if it admits a positive P -representation (equivalently, a

mixture of coherent states), this is, P > 0. However, let us recall that, because of

the non-orthogonality condition, a basis of coherent states is not a true basis, and it

is said to be an over-complete basis. This means that even if a P -function behaved

like a true probability distribution, it would not describe probabilities of mutually

exclusive states [54]. Additionally, the P -representation may turn out to be more

singular than a Dirac delta (which selects an element of the basis). Bearing in mind

all these precautions, it is accepted to call classical states those that are positive

and not more singular than a Dirac delta distribution. Fock states, with definite

number of photons, are examples of highly non-classical states. In quantum optics,

the so-called Gaussian state are also useful, which are by definition those represented

by a Gaussian probability distribution in phase space. In our case, Gaussian states

are those represented by Gaussian P -functions. Notice that, in the general case,

Gaussian states are not classical states. This is for example the case of squeezed

states, with many applications in quantum metrology [27]. Coherent states are spe-

cial cases of Gaussian states, in which there are no correlations between the modes
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and the relation ∆2X∆2P = 1 is held.

2.2.3 Atom-light interactions

Atom-light interactions in quantum optics can be obtained by quantising the clas-

sical dipolar interaction HI = −~d · ~E(t), where ~d is the dipole moment ~d = −e~r and

~E(t) and oscillating electric field. The quantization comes after replacing the electric

and position observables by their corresponding operators. When the atomic wave

function is of the form Ψ(~r) = agΨg(~r) + aeΨe(~r), the interaction can be written as

[57],

H = ω(a†a) +
ω0

2
σz + g(~rm)(a+ a†)σx (2.34)

where g(~rm) incorporates the mode profile. If we move to a frame rotating at the

atom and field frequencies we have a → a†eiωt and σ+ → σ+eiω0t, so the previous

Hamiltonian becomes,

H = g(aσ−e−i(ω+ω0)t + a†σ+ei(ω+ω0)t + aσ+e−i(ω−ω0)t + a†σ−ei(ω−ω0)t). (2.35)

In the proximity of the resonance condition, |ω−ω0| � ω+ω0, the quickly rotating

terms can be neglected, an approximation known as the Rotating Wave Approxima-

tion (RWA), resulting in the famous Jaynes-Cummings model [57] after transforming

back into the static picture,

H = ω(a†a) +
ω0

2
σz + g(aσ+ + a†σ−). (2.36)

In this thesis the Hamiltonian (2.36) will account for all the atom-light interactions

considered, and we shall also assume perfect resonance ω = ω0.

2.3 Symmetries in quantum systems

In 1956, Paul Dirac wrote a famous quote on a blackboard of the University of

Moscow (an honour reserved for only the greatest visitors): ‘A physical law must

possess mathematical beauty ’ [58]. It is probably in the connection between sym-

metry principles and its physical consequences, like the existence of conservation

laws, where this beauty shines with special intensity.
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Invariances and symmetry in Physics appeared firstly as a result of examining

the relation between different coordinate systems or reference frames. For example,

it was already well known in classical physics that certain local operations imply

conservation laws, along with continuity equations when the symmetry group is

continuous. Namely, invariance under spatial translations, temporal translations,

and rotations result in the conservation of linear momentum, energy, and angular

momentum respectively. In the context of classical electrodynamics, the invariance

under certain local transformations (gauge transformations) were known to give

rise to different but equivalent representations, and also the conservation of electric

charge.

The role of symmetry in quantum physics becomes even more apparent because

of the linear character of Hilbert space, which allows us to construct superpositions

of states transforming as irreducible representations of symmetry groups. Generally

speaking, a symmetry operation T transforms a state |Ψ〉 into another state |Ψ′〉 =

T |Ψ〉 in such a way that transition probabilities are conserved [59],

|〈Ψ′2|Ψ′1〉|2 = |〈Ψ2|Ψ1〉|2 = |〈Ψ2|T †T |Ψ1〉|2. (2.37)

It follows from the previous equation that the operator must be unitary or antiunit-

ary, T †T = 1. Unitary operators include well-known transformations as translations

or rotations, while antiunitary operators can be used to represent time-reversal sym-

metry [45]. In some cases the dynamical equations, which are given the Hamiltonian

H, will be invariant under the transformation T , hence T †HT = H, and thus,

HT = TH ⇒ [H,T ] = 0. (2.38)

Conversely, if equation (2.38) holds, energy eigenstates |En〉 connected though T

will have the same energy since

H(T |En〉) = TH|En〉 = En(T |En〉), (2.39)

and the operators H and T will share a common basis of eigenstates.

When the symmetry operator actually connects different states, i.e., |E ′n〉 =

T |En〉 6= |En〉, the states |En〉 and |E ′n〉 are said to be degenerate. Let us then

notice that a symmetry does not necessarily yields the existence of degeneracies at
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all energies, but the presence of a degeneracy generally implies that there is a sym-

metry transformation acting at least on the subspace spanned by the corresponding

degenerate states.

A first important classification of symmetries distinguishes between discrete and

continuous symmetries. Continuous symmetries are those that differ infinitesimally

from the identity transformation so we can write T = 1− εG, where G is known as

the generator of the transformation [45]. The symmetry under label permutation for

bosonic degrees of freedom discussed in section 2.1.4, or the aforementioned time-

reversal symmetry are examples of discrete symmetries. The parity operator P will

be frequently employed in chapter 8 (which will acquire different specific forms),

and physically corresponds to an inversion operation such that, for example,

P †σzP = −σz. (2.40)

In relatively recent years, new invariance principles with remarkable physical

consequences have been found as a result of using nonlocal probes, which will come

in handy when we discuss the notion of topological order in section 4.5. To take

into account all scenarios, we shall introduce another classification of symmetries

according to the spatial dimension d of the region where a minimal set of elements

in the system is transformed under the symmetry group. Such region will be a subset

Cα of the complete D-dimensional lattice, so trivially we have d ≤ D. Namely, we

may distinguish between local gauge symmetries, gauge-like symmetries and global

symmetries.

• Local gauge symmetries : the symmetry operators act locally so we have d = 0.

These symmetries play a fundamental role in high-energy physics, and they

can also be simulated in quantum simulators like trapped ions [60].

• Gauge-like symmetries : d > 0 and d ≤ D. A simple example is given by

the quantum compass model defined in section 2.1.3, where it is possible to

find symmetries acting only on individual rows or columns of the lattice (see

section 8.3).

• Global symmetries : the symmetry operators act globally so we have d = D,

and the region Cα becomes the full volume of the system. A canonical example
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is the quantum Ising model, where the Hamiltonian is invariant under a global

inversion (see section 4.4).

The physical consequences of having a system with global and Gauge-like symmetries

will be explored in more detail in chapter 4.
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Chapter 3

Dissipative quantum systems

3.1 Open quantum systems

Any introductory textbook on quantum mechanics mainly deals with isolated sys-

tems, i.e., systems for which the interaction with the rest of the universe (usually

referred as the environment) can be neglected. This could be the case, for example,

of an electron in free space or an isolated atom. A step forward consists of consider-

ing systems in thermal equilibrium with some bath, which can be used to study, for

instance, properties from the bulk of a solid, such as heat capacity or conductivity.

The mathematical tools from statistical mechanics tackle these situations. While

in many cases the assumption of an isolated system constitutes a valid empirical

approximation, it is generally impossible to isolate completely a system from its

surroundings. Likewise, we would also like to explore phenomena beyond thermal

equilibrium. Moreover, a complete description of reality needs to systematically

encompass non-negligibly influences of the environment over a quantum system

dynamics and vice versa. In this way, we can explore richer phenomena like the

dynamics towards equilibrium, far-from equilibrium phenomena, or memory effects.

Theoretically one could think of dealing with the system S and the environment

E as a whole isolated system, whose unitary dynamics would be then given by the

Schrödinger equation [61]. The Hilbert space of the total system is mathematically

represented by the tensor product space H = HS⊗HE. Typically, this Hamiltonian

can be expressed in the form

H = HS +HE +HI , (3.1)
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where HS and HE are the free Hamiltonians corresponding to the system and envir-

onment respectively, and HI is the Hamiltonian describing the interaction between

them. In practice, nonetheless, a detailed microscopic description of the dynamical

evolution of the whole system (3.1) is not always available. Even so, this would

provide us with a large irrelevant amount of information since we are really inter-

ested in the degrees of freedom of the system S. To this purpose, the theory of open

quantum systems supplies the mathematical tools to take into account the influence

of the environment on a particular system dynamics, which will in general result in

having a non-unitary dynamics of the open system S.

Although the concept of environment is applicable to any dimension of a Hil-

bert space, we are frequently interested in an environment consisting of an infinite

number of degrees of freedom (and being mathematically rigorous, a continuum of

them). This property leads to an irreversible flux of matter or energy from the

system into the environment as some information of the system dynamics gets lost

in the infinite dimensional state space of the environment which never returns into

the system. For this reason, this represents a suitable mathematical description of

dissipative dynamics. The term reservoir refers to this type of environment, whereas

the concepts of bath (or heat bath) are normally reserved for a reservoir which is in

a thermal equilibrium state [61], i.e., ρE = 1/ZE exp (−βHE).

The essential mathematical tools employed to represent an open quantum system

are given by the density operator formalism and the use of the so-called partial trace.

Indeed, all the accessible information about the open quantum system is encoded in

the reduced density operator (or reduced density matrix), which is defined as follows,

ρS = trEρ. (3.2)

The operator ρ is the density matrix of the full system-plus-environment, and trE is

a notation indicating a trace taken over the Hilbert space of the environment HE.

Trivially, all the observables referring to the system S will be of the form A ⊗ IE,

where A is an operator acting on the Hilbert space HS. Hence, it turns out that any

expectation value can be calculated through a partial trace of the reduced density

matrix,

〈A〉 = trE{AρS}. (3.3)

Finally, the equation of motion for the reduced density matrix ρS is obtained simply
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by taking the partial trace over the Liouville-von Neumann equation (2.11) of the

whole system S + E,

d

dt
ρS = −itrE[H, ρ(t)]. (3.4)

Notice that after taking the partial trace in equation (3.4), the dynamics will be

no longer unitary in the most general case. Consequently, the density operator

formalism introduced in section 2.1.2 is essential to correctly capture the dynamics

of an open quantum system, as the evolution of the system state has to encompass

both pure and mixed states.

3.2 Quantum master equations

The exact dynamics of an open system given by equation (3.4) is ordinarily rather

complicated to be solved analytically. We shall distinguish between two broad types

of evolution: Markovian and non-Markovian [61]. The Markovian dynamics is such

that the change of the system at a particular time is given as a function of the state of

the system at that time. The Schrödinger equation and the von Neumann equation

are important examples of this sort of dynamics. In contrast, the non-Markovian

evolution involves dynamical equations in which the change of the system at a given

time is calculated taking into account not only the present system state, but also

past states of the system S. In other words, the system exhibits memory effects.

Needless to say, the non-Markovian dynamics is much more complicated to treat

mathematically than the Markovian counterpart. As a result, it is extremely helpful

to approximate certain system dynamics by means of Markovian-type equations

whenever possible. This can be justified in the case that the characteristic timescale

over which the reservoir correlation functions decay τE is much smaller than the

characteristic relaxation time scale of the open system τR [61],

τR � τE. (3.5)

Upon condition (3.5), we may neglect memory effects and approximate the exact

equation (3.4) by a Markovian-type equation of the form,

d

dt
ρS = Lρ(t). (3.6)
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The generator L (usually called Liouvillian), is a superoperator, i.e., an operator

acting on the operator space over the Hilbert space HS. If the system dimension is

dim(HS) = N , the corresponding Lioville space on which L acts is a complex space

of dimension N2. It can be shown that the most general form of L is given by the

so-called Lindblad master equation [61],

d

dt
ρS = −i[H, ρ(t)] +

∑
k

[2LkρL
†
k − L

†
kLkρ− ρL

†
kLk], (3.7)

where Lk are known as Lindblad operators. The first term on the right-hand side

describes a unitary evolution while the second term, also called dissipator, accounts

for the non-unitary effect of having an environment. In this way, equation (3.7)

becomes a convenient description of several quantum dynamics out of equilibrium.

In particular, the Markovian approximation is appropriate to study many quantum

optical systems in the usual regime of parameters, where the infinite Hilbert space

of electromagnetic modes often plays the role of the reservoir.

3.3 Steady states

An important property of any dynamics describing non-equilibrium processes, like

the quantum master equation (3.7), is the possibility of finding an steady state. The

steady state ρss refers to the long-term behaviour of the solution of an equation such

as (3.7), which is mathematically defined with full generality as,

ρss = lim
t→∞

ρ(t). (3.8)

In many cases, the observables measured in the state ρss become time independent,

which is mathematically expressed as

d

dt
ρss = 0. (3.9)

This occurs as a result of the stabilisation of different competing tendencies given

by dissipative fluxes of matter and energy between the system and the environ-

ment together with the internal dynamics of the open system, which may reach a

compromise equilibrium as time goes by. This eventually leads the system into a

steady state far from equilibrium in contrast to a thermal equilibrium reached by

an isolated system (known as thermalization).
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In particular, when the system dynamics is given by a quantum master equation,

such as equation (3.6), the steady state ρss may be characterised by the eigenoperator

of the Liouvillian with zero eigenvalue, i.e.,

Lρss = 0, (3.10)

as a trivial consequence of equation (3.9). The solution to equation (3.10) is not

unique in the most general case, giving rise to multi-stable solutions. In some cir-

cumstances, there might exist other solutions that approximately satisfy equation

(3.10), like in the case of magnetic frustration, which indicates the existence of quasi-

degenerate steady states. In the context of magnetism, frustration arises if spins are

coupled through competing interactions that cannot be simultaneously satisfied [62].

3.4 A simple example: the damped harmonic os-

cillator

To understand better the abstract concepts introduced so far, let us consider a

specific integrable example by using the well-known harmonic oscillator. As we

know, the free evolution is generated by the Hamiltonian

HS = ω0a
†a, (3.11)

with ω0 being the frequency of the oscillator. This could for example represent the

electromagnetic field mode inside a cavity, in which case the operators a†and a are

the creation and annihilation operators of the mode respectively. The environment

of such a cavity can be modeled by infinite modes outside the cavity, with a free

Hamiltonian

HE =
∑
~k

∑
λ=1,2

ω~kb
†
λ(
~k)bλ(~k). (3.12)

The wave vector ~k in (3.12) labels the different modes and λ refers to the two

possible polarizations. Let us consider the reservoir of radiation modes to be in an

equilibrium state at temperature T , so the environment state is,

ρE =
1

ZE
exp (−βHE) =

∏
~κ,λ

(1− exp (−βωk)) exp
[
−βω~kb

†
λ(
~k)bλ(~k)

]
. (3.13)
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The quantum master equation will adopt the following structure [61],

d

dt
ρS = −iω[a†a, ρS]

+ κ(N + 1)

(
aρa† − 1

2
a†aρS −

1

2
ρSa

†aρS

)
+ κ(N)

(
a†ρSa−

1

2
aa†ρS −

1

2
ρSaa

†
)
. (3.14)

We have defined the quantity

N =
1

exp(βω0)− 1
, (3.15)

that stands for the average number of quanta in a mode with frequency ω0 of the

thermal bath. The second term in equation (3.14) describes spontaneous emission

(at rate κ) as well as thermally induced emission (at rate κN), while the third term

accounts for the thermally induced absorption of the cavity (at rate κN). One may

obtain a closed equation for P (n) = 〈n|ρS|n〉 when representing equation (3.14) in

the basis of the number states |n〉, which acquires the structure of a classical master

equation,

d

dt
P (n, t) = κ(N + 1) [(n+ 1)P (n+ 1, t)− nP (n, t)]

κN [nP (n− 1, t)− (n− 1)P (n, t)] . (3.16)

The steady state solution of this equation can be calculated by, for example, a

discrete Fourier transform (P (k) =
∑

n P (n)e(ikn)), which gives,

Pss(n) =
1

N + 1

(
N

N + 1

)n
. (3.17)

This solution is more recognizable if we re-express it as a thermal state by using

equation (3.15) so that,

Pss(n) = [1− exp(−βω0)] exp [−nβω0] . (3.18)

Additionally, we may also calculate dynamical properties such as the evolution of

the average number of photons
〈
a†a(t)

〉
through the relation,

d

dt

〈
a†a(t)

〉
= tr{a†a d

dt
ρ}, (3.19)

which by using equation (3.14) becomes a closed equation for
〈
a†a
〉

with solution,〈
a†a(t)

〉
=
〈
a†a(0)

〉
e−κt +N(1− e−κt). (3.20)

Physically, this process is then correctly describing the relaxation to a thermal equi-

librium with the external bath at temperature T .
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3.5 Fokker-Planck equations

Phase space representations, introduced briefly in section 2.2.2, turn out to be a

helpful tool to study quantum optical master equations. In this thesis we shall focus

on the coherent state or P -representation, defined by equation (2.33). In a nutshell,

this representation will allow us to transform operator equations such as (3.7) into

partial differential equations. To derive an equation of motion for P (α, α∗, t), one

has to substitute equation (2.33) into the quantum master equation and use the

following equivalences for coherent states,

a|α〉〈α| = α|α〉〈α| (3.21)

|α〉〈α|a† = α∗|α〉〈α| (3.22)

a†|α〉〈α| =
(
∂

∂α
+ α∗

)
|α〉〈α| (3.23)

|α〉〈α|a =

(
∂

∂α∗
+ α

)
|α〉〈α|. (3.24)

After an integration by parts with the assumption of zero boundary conditions

at infinity, the operator equation is transformed into a product of |α〉〈α| and a

complex function of α, α∗, yielding a differential equation for P (α, α∗, t). Note that

this change introduces an extra minus sign for each differential operator ∂α.

Let us illustrate this procedure with the previous example. The equation (3.14)

in the coherent state representation adopts the following form,

∂

∂t
P (α, α∗, t) = κN

∂2

∂α∂α∗
P (α, α∗, t)

−
[(
−iω0 −

κ

2

) ∂

∂α
α +

(
iω0 −

κ

2

) ∂

∂α∗
α∗
]
P (α, α∗, t). (3.25)

Equation (3.25) has the structure of a Fokker-Planck equation [54], which is indeed

a convection-diffusion equation for a probability density p(~x, t),

∂p(~x, t)

∂t
= −

∑
i

∂

∂xi
[Ai(~x, t)p(~x, t)] +

1

2

∑
i,j

∂2

∂xi∂xj
[gi,j(~x, t)p(~x, t)]. (3.26)

The vector field Ai(~x, t) is known as the drift vector, whereas the gi,j(~x, t) contains

the information about the diffusion coefficients. In comparing the general structure

(3.26) with equation (3.25), we readily notice that first term on the right hand

side accounts for a diffusion process with a coefficient κN , while the second term
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represents the drift contribution. Interestingly, the Fokker-Planck equation can be

re-expressed as a conservation probability law,

∂p(~x, t)

∂t
+
∑
j

∂Ji(~x, t)

∂xi
= 0, (3.27)

for the probability current density

Ji(~x, t) ≡ Ai(~x, t)p(~x, t)−
1

2

∑
k

∂

∂xk
[gi,k(~x, t)p(~x, t)]. (3.28)

It follows from (3.27) that the steady state has a vanishing divergence of ~J . It

is less obvious to state that, in several dimensions, the steady state fulfills

~Jss = ~0. (3.29)

The above condition is correct only for a certain sub-class of Fokker-Planck equa-

tions. Let us assume that gi,k(~x, t) is diagonal gi,k(~x, t) = δi,jD(~x), then the steady

state ps(~x) satisfies

~Aps −
1

2
∇(Dps) = 0, (3.30)

hence
1

ps
∇ps = ∇(ln ps) =

2 ~A

D
− 1

D
∇D. (3.31)

As the vector field on the right hand side is the gradient of a scalar field, it must be

irrotational so
∂

∂xi

(
2Aj
D

)
=

∂

∂xj

(
2Ai
D

)
. (3.32)

The vector field 2 ~A/D may thus be expressed as the gradient of a potential field

U(~x), such that 2 ~A/D = −∇U(~x) and

U(~x) = −
∫

2 ~A

D
· d~x+ constant. (3.33)

Upon the set of equations 3.32, the expression (3.29) is valid and it can finally be

integrated to give

ps(~x) =
1

Z
e(−U(~x)), (3.34)

with Z being a normalization constant. This proof will be crucial to derive the

analytical steady state solutions in chapters 9 and 10. In our example of the damped

harmonic oscillator, the steady state solution can be calculated in this way to obtain,

Pss =
1

Z
exp

[
−|α|
N

]
, (3.35)

which is the P -representation of a thermal state.
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Chapter 4

Quantum phase transitions

4.1 Quantum many-body systems and phases

Many interesting systems consist of a collection of quantum degrees of freedom.

These could be for example the electrons in the bulk of a solid, the matter in the core

of a neutron star or the magnetic moments inside a magnet. Complex phenomena

emerge when a number of quantum systems interact with each other, which may

give rise to a collective statistical behavior that is fundamentally different from the

properties of each single particle alone. The field of quantum many-body physics

deals with this problem [52], in which we attempt to describe collective phenomena

in terms of the constituting particles of a system along with their interactions. In

particular, we are often interested in calculating the ground state or a thermal state

of a certain Hamiltonian, or certain properties associated to them. Likewise, one

may extend many of the ideas and approaches to the study of dissipative systems

described by a Liouvillian.

In this context, it is not alien to find that the same Hamiltonian originates

qualitatively distinct collective states depending on certain parameters such as the

temperature or the strength of the interactions. These collective states will exhibit

fundamentally different properties or phases. We encounter these situations in our

everyday life, like the solid or liquid phases arising from different organisations

of identical molecules of water. Different phases are often associated to different

organisations of matter, and the word order becomes a synonym of phase.

The mathematical description of phases of matter is highly non-trivial in almost
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any case, as the motions of single particles become correlated. The prospects are

even worse for indistinguishable degrees of freedom, which are non-locally correlated

by principle. Even if a microscopic model is available, an exact analytical solution

for the complete model is rarely available. For that reason, one frequently has

to resort to several approximations or numerical methods to tackle the problem.

Mean-field theory, which will be extensively employed in chapters 9 and 10, is one

of the easiest and most common strategies to provide us at least with a qualitative

general picture. The essence of this approach is to include correlations only on

the average, whereby the effect of the other particles is included only as a mean-

field interaction [52]. This transforms the problem into an effective single particle

problem. Mathematically, if we have an interaction term HI involving two operators

A and B such that HI = AB, the mean-field approximation is given by coupling A

to the mean field of B and vice-versa, concretely

HMF
I = A〈B〉+ 〈A〉B − 〈A〉〈B〉. (4.1)

Another useful approximation is the adiabatic elimination of certain degrees of

freedom. The essence of this approximation relies on the effective separation between

fast and slow degrees of freedom in a system. For instance, in atomic and solid state

physics this approximation is known as the Born-Oppenheimer approximation [63],

which allows us to separate the dynamics of the fast electrons and the slow nuclei. In

dissipative systems, this approximation is normally executed by substituting the fast

variables by their steady states in the dynamics of the slow degrees of freedom. The

adiabatic approximation will be crucial in obtaining analytical results in chapters 9

and 10.

4.2 Quantum phase transitions

Typical examples of a classical phase transition would be given by the transition

between solid and liquid states of matter, or the ferromagnetic-paramagnetic trans-

ition in a magnet, in which different phases are triggered by thermal fluctuations.

In contrast, a quantum phase transition (QPT) [64] is a phase transition between

quantum phases of matter that is driven by the quantum fluctuations arising from

the intrinsic statistical nature of quantum degrees of freedom. Any thermal fluctu-
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ation vanishes at T = 0, but not the quantum fluctuations in the ground state. Thus,

QPT are often studied at zero temperature, where the transition is mathematically

represented as a ground state energy that is no longer an analytic function of the

Hamiltonian parameters. A famous example is the quantum phase transition from

a superfluid to a Mott insulator in a gas of ultracold atoms [65]. Strictly speaking,

such non-analytical behavior is accomplished in the so-called thermodynamic limit,

in which the system size (typically the number of particles) is brought to infinity.

Let us assume a Hamiltonian of the form,

H = H0 + gH1. (4.2)

The Hamiltonians H0 and H1 are competing terms which favour different quantum

ground states. When g � 1 the ground state is dominated by H0, slightly perturbed

by H1. Similarly, when g � 1 the ground state is essentially that of H1. As g is

tuned between these two extreme limits, the competition between H0 and H1 will

determine a critical point gc at which the QPT occurs [64]. A classic nomenclature

distinguishes between first and second order (or continuous) quantum phase trans-

itions, that traditionally stemmed from the order of the first derivative of the energy

being discontinuous at the critical point. In a first-order phase transition there exists

a discontinuity in some observable at the transition, like the discontinuous change

in density of various solid/liquid/gas transitions. The correlations around the crit-

ical point do not exhibit a qualitative change, showing an exponential decay with

distance over the entire phase diagram. Second-order phase transitions, on the con-

trary, are characterised by a qualitative change in the two-point correlation function

G(|i− j|) = 〈OiOj〉 − 〈Oi〉〈Oj〉, which decays as a power law near the critical point

(long-range order). This behavior is the result of a divergence in the correlation

length of the system, or equivalently, a divergent susceptibility at the critical point

[66].

4.3 Spontaneous symmetry breaking

The study of symmetry in a dynamical system is not limited to being a purely static

property as it might seem from our discussion in section 2.3. Concretely, unlike

energy in a closed system, symmetry is not necessarily conserved: symmetries can
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be broken. Spontaneous Symmetry Breaking (SSB) refers to the fact that the actual

solution to a certain dynamical system has lower symmetry than the dynamical

equations governing the evolution [55, 58, 64, 66, 67]. The keys to understanding this

phenomenon are found in noticing the multiplicity of solutions to certain dynamical

equations as well as their stability. The stability of different solutions are also

different in the general case, and it may occur that a solution with greater symmetry

becomes less stable than another solution with less symmetry. The system itself then

‘picks’ a solution that is more stable, and in doing so, the solution breaks a symmetry

group of the equations.

The solution after a SSB frequently appears as one among other equally possible

solutions, which are related through the symmetry group that has been broken [58].

But how is the choice of the solution made? Indeed, the actual solution is conditioned

by some random perturbations not included in the ideal dynamical equations, such

as small imperfections or weak external fields. So while the SSB can be associated

to a purely mathematical property with regards to the stability of solutions, the

specific choice of the actual solution is dictated by the physical system.

SSB may occur in space, time, or both space and time. An example of time

symmetry breaking would be given by a certain steady state that becomes periodic

for a certain regime of parameters. This is mathematically represented by a Hopf

bifurcation [67] (an example is discussed in section 4.6), and it assumes a breaking

of the translation group in time.

The phenomenon of SSB, as we have discussed, takes place regardless of the

classical or quantum nature of the dynamical equations. To name a few examples in

classical physics, we find the splash of a drop of milk (Fig. 4.1), the spiral structure

of disk galaxies [68], the Bénard convenction cells [69] or the Couette-Taylor flow

experiment in fluid dynamics [70].

Strictly speaking, the SSB will occur only for certain regions of the complete

parameter space characterising the dynamical equations. One can therefore identify

different symmetry sectors (or phases) in a parameter space and construct the phase

diagram of the system. In the field of equilibrium statistical mechanics, Landau’s

phenomenological theory first employed the concept of SSB to understand the emer-

gence of various thermodynamic phases. In this Landau type transitions there exists
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Figure 4.1: The symmetry of a splash. A drop of milk impacts the surface of the

same liquid, creating a circular ring that rises and breaks up into 24 peaks, thereby

breaking the original U(1) symmetry of the system. [Image reproduced from [71]]

a local order parameter that is zero in a disordered phase and becomes different from

zero in an ordered phase, indicating a SSB. A canonical example is the Ising model

in a tunable external field (analysed in section 4.4), being the magnetization along

the field direction a suitable order parameter.

Finally, there is an important theorem to bear in mind relating the dimensionality

D of a system and the possible presence of SSB, which will be used in chapter 10.

• Mermin-Wagner theorem [72]. There is no spontaneous symmetry break-

ing in D = 2 systems for continuous symmetries. (Discrete D = 2 symmetries

may be broken (e.g. the finite-T transition of the D = 2 classical Ising model)).

Intuitively, the physical mechanism behind this theorem is that thermal fluctuations
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become much more important in low dimensions and often prevent ordering even at

zero temperature.

4.4 A canonical example: the quantum Ising chain

The quantum Ising chain in a transverse field is one of the few examples of an

exactly solvable model undergoing a second-order quantum phase transition [64].

Therefore, we shall use it to illustrate some of the concepts introduced before. The

model consists of a set interacting spin-1/2 particles, each of them located at one of

the N sites of a one-dimensional chain. The Hamiltonian may be parametrised as

follows,

HI = −λ
N−1∑
j=1

σzjσ
z
j+1 −

N∑
j=1

σxj . (4.3)

where σx and σz are the Pauli matrices defined in equation (2.12). The first term in

equation (4.3) accounts for the interaction between neighbouring sites, and it tends

to align the spins in the z direction as this configuration posses lower energy. This

interaction competes against the presence of a transverse field in the x direction,

which induces the flipping of states |↑〉j and |↓〉j through the σx operator.

The Hamiltonian (4.3) may be diagonalized by mapping the spin operators onto

fermions through the Jordan-Wigner transformation, followed by a canonical trans-

formation (namely a Bogoliouvov transformation) to obtain a diagonal fermionic

representation (see [48] for details), yielding

HI = 2
∑
q

ωqη
†
qηq + E0, E0 = −

∑
q

ωq. (4.4)

where ωq =
√

1 + 2λ cos q + λ2 and η, η† are fermionic operators.

The diagonalized Hamiltonian (4.4) allows us to compute all the observables of

the model. For instance, the energy associated with a single excitation from the

ground state is given by the dispersion relation ωq, which indicates the presence of

a finite energy gap excluding the case λ ≡ λc = 1 for a wave vector q = π. In that

case the dispersion relation comes down to,

ωq→π = |1− λ|. (4.5)

This point at which the energy gap closes locates the critical point of a quantum

phase transition. The order parameter in this model is given by the magnetization
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perpendicular to the external field, which can be computed from the Hamiltonian

(4.4) as [48]

〈σzj 〉 = (1− λ−2)1/8, λ > 1; 〈σzj 〉 = 0, λ < 1. (4.6)

The order parameter takes a non-zero value in an ordered phase for λ > 1, and
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Figure 4.2: Local magnetization 〈σzj 〉 in the ground state of the quantum Ising chain.

follows a power-law around the critical point with critical exponent β = 1/8. Let

us stress that the non-analytic features of the observables arise only in the ther-

modynamic limit. For example, the ground state energy E0 is a sum of continuous

functions, implying it is analytic in the parameter λ. However, by taking the limit

N →∞ the sum is not mathematically guaranteed to satisfy this condition. In our

case, the energy can be written in terms of the elliptic integral of the second kind.

E(φ, θ) ≡
∫ φ

0

dk
√

1− θ2 sin2 k, (4.7)

so the energy E0 can be expressed as,

− E0

N
=

2

π
(1 + λ)E

(π
2
, θ
)

; θ2 =
4λ

(1 + λ)2
. (4.8)

The function (4.8) is no longer an analytic function of λ for λ = 1 as the second

derivative is discontinuous at that point. We therefore conclude that the thermody-

namic limit is needed to obtain a mathematical description of the phase transition.
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Finally, the Ising model allows us to illustrate the concept of SSB regarding

quantum phase transitions. According to what we saw in section 2.3, if a Hamilto-

nian H is invariant under a transformation P , the ground state must be simultan-

eously an eigenstate of H and P . However, this is strictly true for finite systems. In

the case of the Ising model, the Hamiltonian is invariant under the transformation

σzj → −σzj , which can be generated by the parity operator P ⊗Nj σxj . It is not dif-

ficult to check that [HIsing, P ], so the ground state |g〉 satisfies P |g〉 ∝ |g〉. As P is

indeed a parity operator (i.e., P 2 = 1 and P † = P ), the ground state must fulfill the

condition P |g〉 = ±|g〉. As a result, the magnetization must be zero for any value

of the parameters, as we have

〈g|σzj |g〉 = 〈g|P 2σzjP
2|g〉 = 〈g|P † PσzjP †︸ ︷︷ ︸

−σzj

P |g〉 = −〈g|σzj |g〉 ⇒ 〈g|σzj |g〉 = 0. (4.9)

The previous argument is necessarily valid unless we take the thermodynamic limit

(N → ∞), where there may be states that do not respect the symmetry P , but

still minimize the energy. Indeed, it is possible to prove by perturbation theory

[48] that the two ground states with no magnetic field, corresponding to the two

possible ferromagnetic orientations of the ground state (all spin pointing upwards

or downwards),

|↑〉 ≡
N⊗
j=1

|↑〉j , |↓〉 ≡
N⊗
j=1

|↓〉j , (4.10)

become degenerate in the thermodynamic limit. Consequently, a small perturbation

causes the ground state to select one the two. Notice that the previous states break

the symmetry P .

4.5 Topological phases and transitions

Although conceptually powerful, the Landau’s paradigm of order parameters (local

observables) and SSB does not encompass the complete phenomenology concerning

quantum phases and transitions. Certain quantum phases are organized in strongly

correlated phases in such a way that they are macroscopically different even though

they look identical to local observers. In other words, there is no local observable that

is capable of distinguishing between a set of ground states, and the underlying order

is only revealed when probing nonlocal observables. This phenomenon is known as
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topological quantum order (TQO) [73]. This is an obvious contrast with the Ising

model previously studied, where the magnetization (a local probe) is enough to

distinguish between the two degenerate ground states. Examples of topological order

include the quantum compass model defined in section 2.1.3, fractional quantum Hall

systems [74], or the toric code model [50].

To formally define TQO we require a set of N orthonormal ground states |gα〉,

α = 1, · · · , N , with a gap to the excited states. TQO exists if and only if for any

local operator L we have,

〈gα|L|gβ〉 = lδα,β + c (4.11)

where l is a constant and c is a correction that it is either zero or vanishes in the

thermodynamic limit [73].

The understanding of these phases is accomplished again by the use of symmetry

principles. In particular, a sufficient condition for TQO in connection with the

system symmetries is established by the following theorem [73].

• Theorem. Let us consider a system satisfying condition (4.11). If all ground

states may be linked by discrete d ≤ 1 or by continuous d ≤ 2-dimensional

Gauge-like symmetries U ∈ Gd, then the system exhibits finite T-TQO

The symmetry operators U are generically of the form Uα =
∏

j∈Cα g
α
j , where Cα

denotes the spatial subregion in which the Gauge-like symmetry is defined. For

example, in the compass model we have two sets of symmetries Oα =
∏

j∈Cα σ
α,

with α = x, y and Cα being any line orthogonal to the ẽα axis. Hence, for periodic

boundary conditions these symmetries are defined along toric cycles, and d = 1.

This new order exhibits nonlocal correlations that lead to novel physical con-

sequences, specially fruitful so as to build robust quantum technologies. Namely,

there is no SSB of local observables, unlike what happens in the Ising model. In

particular, the symmetries of the compass model cannot be spontaneously broken at

finite T . For this reason, TQO displays a natural robustness against local perturb-

ations, as they are unable to distinguish between the ground states. Alternatively,

we may say that a local noise operator δHj does not lift the ground-state degener-

acy. This property is useful to construct robust quantum memories or to achieve

fault tolerant quantum computations. The quantum information is inaccessible (and



44

hence protected) from any local perturbation, as it is instead spread throughout the

whole system.

Another way to understand the absence of SSB in d-dimensional Gauge-like

symmetries is through the concept of topological defect. These defects could be,

for example, solitons or domain walls in systems with d = 1 discrete symmetries,

or vortices in systems with d = 2 and U(1) symmetries. The existence of Gauge-

Like symmetries enables free propagation of decoupled topological defects, thereby

destroying local order [73].

In spite of the absence of SSB, the presence of topological defects conceals new

surprises. In 1972 J. Michael Kosterlitz and David J. Thouless identified a com-

pletely new type of phase transition where topological defects play a crucial role

[75]. In particular, they studied the classical XY model, defined by the Hamilto-

nian

HXY = −J
∑
〈i,j〉

cos(θi − θj). (4.12)

This model is simply the classical Heisenberg model in 2D, expressed in polar co-

ordinates, and so it can be used to describe certain magnets where there exists an

easy-plane of magnetization. Furthermore, it gives a valid description of supercon-

ducting or superfluid films, where the important thermal fluctuations are only in

the phase of the complex order parameter.

(a) (b)

Figure 4.3: a) Vortex configuration. b) Anti-vortex configuration

As we know, the ground state of the Hamiltonian (4.12) is the ferromagnetic

order. More interestingly, there are also spin configurations aligned locally (like
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in the ground state) but which cannot be transformed into the ground state by a

continuous rotations of the spins. There happens to be two types of these configura-

tions, known as vortex and anti-vortex (see figure 4.3), which are indeed topological

defects. In contrast, a combination of a vortex/anti-vortex configuration can be

smoothly transformed into the ground state: vortex and anti-vortex defects cancel

each other. In order to classify configurations we need a topological invariant, which

in our case is given by the vorticity, defined as

v =
1

2π

∮
C

d~r · ~∇θ(~r). (4.13)

The previous quantity measures the total rotation of the spin vector along the curve,

and after dividing with 2π, v becomes the number of turns the spin makes when

circling the vortex (winding number). A vortex/anti-vortex is thus characterised by

a non-zero value of v (1 and −1 respectively).

A first approximation of the model (4.12) is given after taken the continuum

limit, this is, we expand the cosine around zero and extend the range of the angular

value to −∞ to ∞,

HXY ≈
J

2

∫ ∞
−∞

d2r(~∇θ(~r))2. (4.14)

One can readily calculate the correlation function in this simplified model to obtain,

〈exp
{
i(θ(~r)− θ(~0))

}
〉 ∝

(a
r

) kBT
2πJ

. (4.15)

This shows a power law even at high temperatures, where an exponential decay

would be expected, indicating a possible phase transition. Nonetheless, we know

that a Landau-type phase transition is forbidden by the Mermin-Wagner theorem

(see section 4.3). Kosterlitz and Thouless identified a new type of phase transition in

which topological defects play a crucial role [75]. The problem with the model (4.14)

is that it ignores the periodic nature of θ, and ultimately the vortex configurations.

One can easily calculate the energy cost of creating a topological defect, assuming

a rotationally symmetrical vortex with v = 1 we have,

Ev =
1

2

∫
d2r

(
1

r

)2

= Jπ ln
L

a
. (4.16)

In equation (4.16) L is the system size, and for a large system the energy cost

for a single vortex diverges. Even though this result seems to rule out the cre-

ation of topological defects by thermal fluctuations, the energy required to create a
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vortex/anti-vortex pair (which has zero total vorticity) is only J2π ln(r/a), where r

is the separation between the vortices.

One can then understand the topological phase transition as follows. At low

temperatures vortex/anti-vortex pairs are thermally excited, and one finds a power

law decay for the correlation function (4.15). Then, at certain critical temperature

Tc, this gas of pairs will split into individual vortices that will take the system into

a new phase with exponentially decaying correlations. The free energy for a single

vortex may be approximated as,

F = E − TS = Jπ ln

(
L

a

)
− TkB ln

(
L2

a2

)
(4.17)

where the entropy is calculated presuming that there are L2 = a2 possible posi-

tions for a vortex with area a2. Equation (4.17) implies that there exists a critical

temperature

Tc =
Jπ

2kB
, (4.18)

where energy balances the entropic contribution. We shall make use of this expres-

sion in section 10.6.

4.6 Dissipative quantum phase transitions

The notion of phase transition is not exclusive of closed systems in thermal equilib-

rium with an environment at a certain temperature T , or quantum systems under-

going a quantum phase transitions at T = 0. New interesting phases and transitions

arise when we study steady states of open quantum systems. A general feature

that distinguishes a non-equilibrium steady state from an equilibrium one is the

presence of certain fluxes of energy and excitations between the environment and

the system. The competing tendencies between these dissipative fluxes and the in-

ternal dynamics of the open system may lead the system to a stationary state far

from equilibrium, and moreover, phase transitions between them. This phenomena

is already known from classical physics. Some very well-known examples are the

transition from laminar to turbulent flow and the Rayleigh-Bénard convection in

fluid dynamics [69] .

Let us recall that, in the context of Markovian dissipative dynamics, a steady

state ρss is characterised by the eigenoperator of the Liouvillian with zero eigenvalue
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(3.10). Such steady steady will in general depend on the parameters of the quantum

master equation describing the dynamics. As any other many-body problem, qualit-

atively different steady states may appear in different regions of the parameter space,

playing the role of phases of matter as introduced previously. This will happen as

a result of the aforementions balances of energy and matter between the system

the environment. When there exists a notion of system size in the system (like the

number of particles N or the average number of excitations), a phase transition

in the steady state may arise when moving throughout the parameter space in the

thermodynamic limit. Such type of transition is called dissipative quantum phase

transition [61].

4.6.1 A simple example: the single qubit laser

A laser is a canonical example of a dissipative quantum phase transition, in which

there appears a transition between a thermal state and a lasing phase of coherent

photons. It will also serve us to see the mean-field approach in action. In the

essential literature concerning the quantum theory of lasers [54, 61, 76–78], it is

customary to consider a set of N atoms coupled to a single cavity mode. Here we

shall describe a very minimalist model that requires only a single qubit coupled, and

it will be the basis for subsequent studies in chapters (9) and (10). Let us consider a

two-level system with transition frequency ω. The qubit is coupled to a cavity mode

in resonance with the transition frequency. The Jaynes-Cummings model becomes a

valid description for the atom-light interaction, and so the Hamiltonian in a picture

rotating with ω is

HAL = g(a†σ− + aσ+). (4.19)

We shall consider losses of radiation at rate κ and incoherent pumping of the two-

level atom at rate γ (see diagram 4.4). These dissipative process arise from the

coupling to two different reservoirs that, within the Markovian approximation, result

in the following quantum master equation for the total density operator ρ,

d

dt
ρ = −ig[a†σ− + aσ+, ρ]

+ κ
(
2aρa† − a†aρ− ρa†a

)
+ γ

(
2σ+ρσ− − σ−σ+ρ− ρσ−σ+

)
. (4.20)
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Despite the simplicity of the model, equation (4.20) is not integrable. In particular,

Figure 4.4: A diagram of the single qubit laser: a cavity with radiation losses at

rate κ and qubit pumping at rate γ

if we wished to derive the equations of motion for the expected values of the field

quadratures or the number of photons, that would result in an infinite hierarchy

of differential equations. At this point is where the mean-field theory comes in

handy by assuming that the system density operator ρ is separable in the qubit-

field subspaces, i.e., ρ ≈ ρfield⊗ρqubit. In using this ansatz, we can write expectation

values in such a way that 〈σa〉 ≈ 〈σ〉〈a〉, thereby avoiding the infinite hierarchy

of equations. Concretely, we can write the following closed system of equations in

terms of the variables A ≡ 〈a〉, S ≡ −i〈σ−〉 and D ≡ 〈σz〉,

Ȧj = −gS − CA, (4.21)

Ṡj = gDA− γS,

Ḋj = −2g(S∗A+ SA∗)− 2γ(D − 1).

The result (4.21) is derived from the Heisenberg equations for such observ-

ables as well as using the commutation relations [a, a†] = 1, {σ+, σ−} = 1 and

[σz, σ±] = ±2σ±. The set of nonlinear equations (4.21) are known as the Maxwell-

Bloch equations [76]. They can be shown to be equivalent to the famous Lorentz

equations of fluid dynamics [54], which implies the existence of multiple and chaotic

solutions depending on the regime of the parameters. It is customary to assume a

regime of strong pumping γ � κ, g, t such that the γ−1 is the smallest timescale in

the problem. This restriction allows us to employ another useful technique to treat



49

many-body problems: the adiabatic elimination of the fast variables (as mentioned

earlier in section 4.1). This is done simply by taking Ṡ = 0 and Ḋ = 0 and substi-

tuting their steady state solutions to obtain a close equation for A. In doing so, we

obtain
dA

dt
=

(
Cp

1 + |A|2
nmf

− Cp

)
A, (4.22)

with Cp ≡ g2/κγ being the so-called pumping parameter [61] and nmf = 2γ2/g2.
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Figure 4.5: The coherent component |A| as a function of the pumping parameter

Cp. There exits two branches of solutions. For Cp > 1 the upper branch becomes

stable and the trivial solution is unstable.

Equation (10.35) exhibits a Hopf bifurcation (see figure 4.5) when

Cp =
g

γκ
= 1. (4.23)

In the case Cp < 1, there is no solution apart from trivial one, defined by A = 0.

However, if we tune the laser parameters so that Cp > 1, there appears another

branch of solutions (the upper branch in figure 4.5) fulfilling the following equation,

|A|2 = nmf(Cp − 1). (4.24)

It turns out that the trivial solution now becomes unstable, while the new branch of

solutions becomes a stable attractor. Therefore, the point Cp = 1 is a critical point

that separates a vacuum state of coherent photons from a bright lasing state. One

can easily establish a formal analogy between this dissipative phase transition and
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Figure 4.6: The P -representation of a generic lasing steady state of the single qubit

laser above threshold Cp > 1. The solutions shows a U(1) symmetry.

a thermal phase transition [79]. In looking at the graph 4.5, we clearly realise that

the coherent component 〈a〉 (or any field quadrature) is thus an order parameter

characterising this transition. What is the broken symmetry in this example? Notice

that the master equation is invariant under the global U(1) transformation

a→ aeiθ σ− → σ−eiθ, (4.25)

so we expect the steady state to possess the same symmetry (there is no thermody-

namic limit at this point). In a phase representation of the field mode, the steady

state must be symmetrical around the vertical axis, as sketched in figure 4.6. This

corresponds to a mixed state of coherent states of phase θ. So why is the mean-field

solution breaking the symmetry? The mean-field approximation has artificially se-

lected a particular value (randomly) of θ after introducing the variable A ≡ 〈a〉. As

a result, its predictions become more accurate as we approach the thermodynamic

limit. In a typical laser, the limit consists of taking the number of atoms to infinity.

For a single qubit laser that is obviously not possible, yet one can define a thermo-

dynamic limit by taking the limit nss = 〈a†a〉ss →∞. Essentially, this is translated

into rescaling the results with a factor κ/γ.
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Chapter 5

Quantum simulation

5.1 Difficulties in classical computation

Exact analytical solutions like the one shown for the quantum Ising chain (section

4.4) are often the rare exception rather than the rule. Furthermore, the analytical

tools that we have available are in many cases insufficient to tackle many-body

problems, especially those displaying strongly correlated phases, like the quantum

compass model (equation (2.15)). Despite the fact that we count with a detailed

microscopic description of these models, the diagonalisation of their Hamiltonians

turns out to be a highly non-trivial task. Ultimately, one has to rely on numerical

simulations to make accurate quantitative predictions, but even in this case there

appear new problems for the simulation of a quantum system in a classical computer.

The fundamental problem regarding the simulation of quantum models with

classical computers lies in the exponential increase of resources with the system

size. Thus, in a general scenario, the simulation of a large number of degrees of

freedom becomes intractable. Let us for example assume that we wish to study

the ground state of a certain Hamiltonian H of a many-body system arranged on

a lattice of dimension D. Let us also assume that the dimension of the Hilbert

space in each site is dim(Hj) = N . For a bosonic system, with an infinite Hilbert

space this typically demands a proper truncation of the Hilbert space. All in all, the

total Hilbert space will be given by the tensor product H = ⊗jHj, with dimension

dim(H) = ND. This implies that we need to store ND numbers to describe the

ground state as well as N2D for the Hamiltonian, thereby requiring exponential
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memory resources. In practical terms, a system of 50 spins or more goes beyond the

capabilities of any classical computer [40].

Some numerical methods were devised to cleverly overcome this challenge, but

still they have to face their own limitations. For example, Monte Carlo methods

allow the evaluation of integrals for many-body systems in a time that scales poly-

nomially with the number of particles. These stochastic methods are suitable when

the functions being integrated vary smoothly and do not change sign so that a re-

latively small number of points assure a good sampling. Unfortunately for some

quantum systems, like fermionic or frustrated systems, the numerical evaluation of

the integrals requires the sampling with nonpositive-semidefinite weight functions,

which results in an exponential growth of the statistical error with the number of

particles. To compensate this effect, the simulation time must also increase exponen-

tially, and hence the advantage of the Monte Carlo method is cancelled, originating

the so-called sign problem [80]. The density matrix renormalization group (DMRG)

is another technique that offers spectacular results, but it is limited to one dimen-

sional systems.

5.2 Quantum simulators

A conceptually trivial solution to the problem of the exponential increase in the

resources was envisaged by Richard Feynman in his seminal lecture ‘Simulating

Physics with computers’ in 1981 [81]. Feynman suggested the possibility of using a

controllable quantum system to simulate a less accessible quantum model of interest.

In doing so, the problem of the exponential increase in the resources is directly

overcome, as the quantum simulator naturally incorporates the resources that we

need.

Such a quantum simulator would be restricted to emulate only a limited amount

of quantum models, which is to say that they are purpose-oriented quantum com-

puters. In this sense, a quantum computer can be thought of as a universal quantum

simulator, capable of emulating any quantum system. Nevertheless, the actual dif-

ficulty to achieve a quantum computer that surpasses the computational power of

a classical supercomputer forces us to find a compromise solution between compu-
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tational power and quantum resources. A quantum simulator, after all, benefits

from managing quantum information rather than classical information so that large

amounts of information may be handled by using relatively few number of degrees

of freedom.

Generically speaking, we may differentiate between digital and analog simulation

[40]. In this thesis we shall be solely concerned with the latter. Analog quantum

simulators are conceived to mimic the dynamics of a certain model, or at least one

may find clever mappings between the simulator and the system. This frequently

involves additional external fields or ancillary systems. In particular, periodically

driven systems have proved to be a extremely useful tool to simulate a rich variety

of phenomena, whether in closed or open systems [82–86]. In chapter 8, periodic

driving fields will become an essential tool for quantum simulation purposes.

The result of the simulation is then obtained after measuring proper observ-

ables of the system. Whatever the case, there are some generic conditions that any

quantum simulator must fulfill [39],

• Quantum system: the simulator counts with a system of bosons and/or fermi-

ons with or without integral degrees of freedom (spin), which are confined in

some region of space.

• Initialisation: the simulator can be prepared into a given state, whether pure

or mixed, within a certain fidelity.

• Hamiltonian engineering : the interactions between the particles of the simu-

lator and the external fields or the environment can be properly adjusted.

• Detection: the result of the simulation is obtained through adequate measure-

ments on the simulator, which may be local or collective.

Quantum simulators have already a large number of useful applications [40].

One may study the ground state properties of a certain Hamiltonain, including the

experimental observation of quantum phase transitions [65]. Additionally, one may

explore the dynamics of excitations or even open system dynamics [47]. An im-

portant nest of applications resides in condensed matter physics, where one may

explore the physics of Bose-Hubbard models [14, 87]. It is also possible to study
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non-equilibrium phenomena like the process towards thermalization or quench dy-

namics [88]. Quantum simulators have also been used to explore the physics of

lattice Gauge theories [84], with applications in high-energy physics. Even classical

problems may benefit from the use of quantum simulators [89]. There are already

several platforms to implement a quantum simulator, such as atomic quantum gases,

ensembles of trapped ions, photonic systems, superconducting circuits, nuclear spins

addressed using NMR methodology, or electron spins in quantum dots [90]. Each

platform has its own advantages and limitations, and different approaches often

tackle complementary aspects of quantum simulation.

Figure 5.1: Examples of quantum simulators include atoms in optical lattices or

arrays of cavities (A,B,C), ions arranged in chains (D), 2D traps or Coulomb crystals

(E,F), and electrons in quantum dots (G) or superconducting circuits (H) (Image

reproduced from [90]).

For the purposes of this thesis, we shall require the implementation of quantum

Ising Hamiltonians (see equation(2.14)). Setups of trapped ions [82, 91] or ultracold

atoms in optical lattices [92] are suitable platforms to this end. The dynamics of an

interacting gas of bosons loaded in a lattice is well-captured by the Bose-Hubbard

Hamiltonian,

HBH = −J
∑
〉j,l〈

aj†al +
∑
j

εjnj +
U

2

∑
j

nj(nj − 1), (5.1)

where U measures the on-site repulsion, εj is an offset due to the harmonic trapping
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potential and J accounts for the hopping between neighbouring sites. If U/J � 1,

the bosons are delocalized in a superfluid phase; if U/J � 1, they are localized in

a Mott-insulating phase and the hopping terms constitutes a small perturbation.

This is the starting point used in section 8.6.1 to implement spin Hamiltonians after

mapping internal atomic states onto pesudo-spin degrees of freedom.

Trapped-ion quantum simulators benefit from the natural Coulomb repulsion

between ions. The typical distance between them is of the order of microns, which

facilitates the manipulation and measurement of each ion state individually. Simil-

arly to the previous atomic setup, internal levels can play the role of pseudospins,

although here the interaction is normally long-range. This range can be adjusted

through the trapping potential so one may work with effective short-range inter-

actions. The motion of the ions gives rise to collective phononic states, which are

not coupled to the internal degrees of freedom. Such coupling is implemented by

means of additional laser forces [82, 93], by which we can implement the atom-light

interactions considered in this thesis (naturally appearing in lattices of cavity QED

[53] and circuit QED systems [47]).

Concerning the readout in trapped-ion setups, state-dependent fluorescence reads

the qubit states. This is achieved through a closed cycle of a dipole allowed transition

from the ground to the excited state and a forbidden spontaneous decay into the

excited state. When the laser –whose frequency is off-resonant for this transition–

acts on the ion, the ion will show up bright when it is in the ground state, and dark

when it is in the excited state. Additionally, the states of motion can be mapped

onto the internal states thanks to the blue and red sideband transitions, and later

on read through fluorescence measurements.
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Chapter 6

Quantum sensing

6.1 Estimation theory

The central goal of the classical estimation theory is, in a nutshell, to determine the

most accurate estimation of a certain parameter ϕ encoded in a given probability

distribution pϕ(x). More specifically, we look for an optimal estimator ϕ̃N(x) that

outputs the best estimation of ϕ for a given N-point data set x = {x1, x2, · · · , xN}.

Hence, the estimator is in turn a random variable itself, whose fluctuations are aimed

to be minimised.

In this thesis we shall adopt the so-called frequentist approach, where ϕ is pre-

sumed to be a deterministic parameter with a value that could in principle be given

to any precision. The performance of the estimator can be then assessed through

the Mean Square Error (MSE) deviation from the true value ϕ,

∆2ϕ̃N(x) = 〈(ϕ̃N(x)− ϕ)2〉 =

∫
dNx(ϕ̃N(x)− ϕ)2. (6.1)

Additionally, we ideally demand the estimator to be unbiased, such that its average

yields the true parameter value,

〈ϕ̃N(x)〉 =

∫
dNxpϕ(x)ϕ̃N(x) = ϕ. (6.2)

The optimal unbiased estimator is achieved after minimising the MSE for all ϕ. Such

optimal estimator will be generally difficult to find, and it may not even be unique

for any ϕ. Yet, the Cramer-Rao bound lower bounds the MSE for any unbiased

estimator,

∆2ϕ̃N(x) ≥ 1

νF [pϕ]
, (6.3)
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where ν is the number of independent experiment repetitions and F [pϕ] is the well-

known Fisher information, defined as

F [pϕ] =

∫
dNx

1

pϕ

[
∂pϕ(x)

∂ϕ

]2

. (6.4)

The Fisher information is a non-negative function that generically depends on ϕ,

and it is additive for uncorrelated events, i.e., F [pNϕ ] = NF [pϕ]. In essence, the

greater the Fisher information is, the higher precision will be accomplished in the

parameter estimation. Furthermore, the Fisher information is related to the infin-

itesimal statistical distance ds2 between the distributions p(x|ϕ) and p(x|ϕ)+dp(x),(
ds

dϕ

)2

= F (ϕ). (6.5)

In the realm of quantum mechanics, the parameter estimation problem translates

into the estimation of a parameter ϕ encoded in a certain quantum state ρϕ. In

contrast to its classical counterpart, here we rely on a specific measurement scheme

Mx that yields the probability distribution,

pϕ(x) = Tr {ρϕMx} . (6.6)

In full generality, the measurement scheme is a generalised measurement over the

class of Positive Operator Valued Measure (POVM). Once the measurement scheme

is determined, we obtain a probability distribution whose quantum mechanical origin

no longer plays a significant role. Therefore, the optimal estimation strategy involves

a non-trivial search over all POVMs that maximises the Fisher information,

∆2ϕ̃N(x) ≥ 1

ν maxMx F [pϕ]
≥ 1

νFQ[ρϕ]
. (6.7)

The last bound in (6.7) defines the Quantum Cramér-Rao bound (QCRB), in which

we have defined the Quantum Fisher Information FQ[ρφ] (QFI). The QFI can be ob-

tained through the Symmetric Logarithmic Derivative (SLD) Lϕ[ρϕ], which satisfies

the following operator equation

∂ϕρϕ =
1

2
(ρϕLϕ + Lϕρϕ). (6.8)

Once the SLD is found, the QFI is given by

FQ[ρϕ] = Tr
{
ρϕL

2
ϕ

}
. (6.9)
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The solution to the operator equation (6.8) will normally imply the diagonalisation

of the density operator ρϕ =
∑

i λi(ϕ)|ei(ϕ)〉〈ei(ϕ)|, in terms of which we may write,

Lϕ[ρϕ] =
∑
i,j

λi+λj 6=0

2〈ei(ϕ)|ρ̇ϕ|ej(ϕ)〉
λi(ϕ) + λj(ϕ)

|ei(ϕ)〉〈ej(ϕ)|. (6.10)

Similarly to the Fisher information, the QFI is additive over (uncorrelated) product

states, FQ[ρ⊗Nϕ ] = NFQ[ρϕ]. This property allows us to interpret the ν factor in the

QCRB as the number of independent realizations of an experiment described by the

same state ρφ, or a single experiment with ν uncorrelated copies of the same system

ρϕ = ⊗νjρjϕ. In this work we shall consider single-shot experiments, so ν = 1, which

is to say that the total time does not count as a resource in our analysis.

6.2 Quantum metrology

The field of quantum metrology investigates abstract procedures to accomplish some

enhancement (e.g., precision or efficiency) by means of quantum resources [43]. The

different implementations of these schemes in physical systems lay the foundation for

quantum sensing technologies [94]. In any measurement process one may distinguish

between three different processes, (which do not necessarily occur sequentially as we

shall see in chapter 10)

• Preparation of the probes: the probes are prepared in a certain initial

state, which could be uncorrelated ρ0 = ⊗Nj ρj or entangled ρ0 6= ⊗Nj ρj.

• Interaction with the system to be measured: the probes gain informa-

tion of the parameter ϕ to be estimated so ρ0 → ρϕ

• Probe readout: The probes are measured with a certain scheme Mx in order

to estimate the parameter ϕ from the probability distribution pϕ(x).

Regardless of the specific system, any experiment deals with different sources

of errors. In particular, there are statistical errors arising from the natural fluc-

tuations occurring in any real experiment. These are accidental (e.g., insufficient

control of the probes, random external influences) or fundamental (quantum un-

certainty). We may reduce statistical errors by repeating the same experiment
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(sequential strategies), or by disposing a certain number of copies of the system

(parallel strategies). In this thesis we shall be concerned with the latter approach,

which include popular examples like Ramsey interferometers [43] or Mach-Zehnder

interferometers [27]. Let us assume that we have a collection of N probes. For a set

of N independent random variables, the central limit theorem then states that the

precision scales with the inverse square root of N . This is the so-called shot noise

limit. Nevertheless, additional correlations may enhance this scaling. Quantum cor-

relations between the probes are known to improve the shot noise limit up to the

so-called Heisenberg scaling, in which the quantum Fisher information scales quad-

ratically with N , leading to a precision that scales with the inverse of N . In figure

6.1 both scenarios are schematically compared.

Figure 6.1: Comparison between classical and quantum parallel strategies. In a)

the probes are uncorrelated and the shot-noise limit reins. The use of quantum

correlations in b) may improve the scaling up to the Heisenberg scaling.

The above definition of Heisenberg scaling must be treated carefully, though.

More precisely, the proper scaling will be determined by the query complexity of

the network of probes [95, 96]. A physical query simply consists of a probe-system

interaction, represented by an interaction term HI =
∑N

k=1

∑N
j=1Hj ⊗ Hk. For

instance, the query complexity of a chain with long-range two-body interactions

is of order O(N2), while a chain with nearest-neighbour two-body interactions is

O(N). The maximal query complexity is obtained in a network of long-range N-body

interactions, that gives rise to a query complexity of order O(2N). To understand

the relevance of the query complexity, let us examine a general bound that is indeed
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a consequence of the Margolus-Levitin bound on the speed of quantum dynamical

evolution [95, 96]. One may define the following distance between pure states,

s(ψ, ϕ) = arccos(|〈ψ|ϕ〉), (6.11)

known as the Wooter’s distance. The transformation of a state |ψ〉 is assumed to

be generated by the operator H with a target parameter ϕ, such that

|ψ(ϕ)〉 = exp(−iϕH)|ψ(0)〉. (6.12)

If we now evaluate the derivative of the Wooter’s distance with respect to ϕ, we

may write the following upper bound by making use of the previous Schrödinger-

like equation,
ds

dϕ
≤ |〈H〉|. (6.13)

Hence, by combining the above inequality with equation (6.5) we obtain the following

general expression for the Cramér-Rao bound,

∆ϕ ≥ 1

|〈H〉|
. (6.14)

In conclusion, it is obvious from the above expression that the query complexity

of the generator of translations of the parameter to estimate ϕ is what really de-

termines the actual form of the Heisenberg scaling. This resource counting has the

advantage of unifying both interacting and non-interacting (non-linear) systems,

and is consistent with those results claiming scalings beyond the Heisenberg scaling

[97].
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Part III

Research outline
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Chapter 7

Overview of the papers

So far I have introduced the context, motivations and background theory necessary

to understand the results of this thesis, which will be presented in the form of three

papers. This work is a cross-disciplinary effort that applies concepts and methods

that arose originally in condensed matter physics, such us spontaneous symmetry

breaking or photon-assisted tunneling, into the fields of quantum simulation and

quantum sensing. The results may contribute to implement topologically protec-

ted quantum qubits and dissipative quantum optical sensing devices robust against

decoherence.

In chapter 8 we shall be concerned with the quantum simulation of a spin model

that shows topological quantum order, namely the quantum compass model briefly

introduced in section 2.1.3. The twofold degenerate topological ground state can

be understood in terms of elegant symmetry principles. The type of interactions

that naturally appear in quantum simulation setups are isotropic, like in the Ising

or Heisenberg model. In this work I show how the implementation of models where

the orientation of the spin-spin interactions depend on the spatial orientation of

the bonds can be successfully tackled by means of photon-assisted tunneling effects.

This tool has been previously exploited in seminal papers to implement synthetic

gauge fields [84]. Here I extend this technique and show its potentiality to simulate

highly non-trivial models with topological features. To that end, we shall combine

two ingredients that are already within the reach of state-of-the-art technologies,

concretely the simulation of Ising models along with site-dependent periodically

driving fields.
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The necessity of addressing single particles make ultracold atoms or trapped ions

suitable platforms to test this proposal. In particular, the paper outlines a possible

implementation with ultracold atoms in optical lattices and Rydberg atoms, written

by Juan José Garćıa-Ripoll and Diego Porras respectively. I propose an adiabatic

passage as a procedure to prepare one of the twofold degenerate ground states. The

use of symmetry principles will be crucial regarding the characterisation of such

passage. Concretely, I characterise the final state in terms of an operator named

Z, for which I show it is a conserved quantity during the adiabatic evolution in

appendix 8.9.

In chapter 9 we move on to the study of quantum optical systems for sensing

purposes where dissipative interactions, far from being an obstacle, become a key

ingredient to increase the precision in measurements. I introduce two general prin-

ciples that are illustrated with a minimal probe: a single qubit laser (introduced in

section 4.6).

The first working principle relies on the breaking of the underlying U(1) sym-

metry of the lasing steady state when an external field is applied, being its amplitude

and phase the parameters to be estimated. The potential benefit for sensing can

be well understood in terms of the spontaneous symmetry breaking occurring in

the thermodynamic limit of the system. Suitable order parameters (light quadrat-

ures) exhibit a sensitivity that improves with the system size, which in this case

corresponds to the number of photons in the steady state. I apply the theory of

quantum Fisher information to prove the optimality of this measurement scheme

concerning the saturation of the quantum Cramér-Rao bound. In this way, I use

symmetry principles as powerful conceptual tools to understand the enhancement in

the precision from an abstract point of view. At a physical level, the understanding

is rooted in the amplification effect caused by an active medium, the qubit laser,

in which nonlinear interactions magnifies the influence of a target external field.

The precision in the estimation of amplitude and phase of the field is shown to be

enhanced when one increases the incoherent pumping acting on the qubit.

The second working principle is to take advantage of dissipative phase trans-

itions, and more specifically, the special sensitivity of the system at the critical

point. Analytical and numerical studies show that the critical point is optimal to
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make parameter estimation, which is valid for both optimal and non-optimal meas-

urement schemes. This fact may be exploited when certain measurement schemes,

without being optimal, may be more accessible from an experimental point of view.

Specifically, I present analytical and numerical results for the number of photons,

which is non-optimal in our set-up. Throughout this work we restrict ourselves to

parameter regimes close to the critical point, which luckily allows us to give accurate

analytical results in terms of integrable Fokker-Planck equations. An implementa-

tion with trapped ions by D. Porras is sketched at the end.

In chapter 10 I build on the previous ideas and extend the setup to networks of

single qubit lasers close to the lasing critical point. From the experience gathered

in chapter 9, strong pumping regimes and proximity to the critical point are again

the starting point for a sensing scheme. In contrast to the previous paper, where we

only counted with a single probe, here I explore how the correlations between the

probes may enhance the overall sensitivity of the network.

In the context of quantum metrology or quantum interferometry, it is accep-

ted that quantum correlations between the probes may lead a Heisenberg scaling

with the number of probes. In this final paper I investigate the effect of classical

correlations between the probes, which are later shown to provide us with analyt-

ical expressions for the steady state. To introduce such classical correlations, the

interaction between the probes will be mediated solely by dissipation, which will

require some reservoir engineering. In particular, I use a coherent hopping with

intermediate lossy cavities that can be adiabatically eliminated, resulting in an ef-

fective incoherent coupling between the probes. Remarkably, the systems allows

an analytical treatment thanks to a phase space representation that gives rise to

an integrable Fokker-Planck equation. The steady state of the system turns out to

be formally equivalent to a thermal state of the classical compass model described

in section 4.5. This will allow us to derive analytical expressions for the quantum

Fisher information in the steady state. Finally, I show how the presence of long-

range correlations turns out to be crucial to accomplish a Heisenberg scaling with

the number of probes. Such correlations may occur naturally in systems where

there exists spontaneous symmetry breaking, or may be induced in finite systems

with strong pumping regimes.
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Part IV

Results
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Chapter 8

Topological phases of shaken

quantum Ising lattices

8.1 Abstract

The quantum compass model consists of a two-dimensional square spin lattice where

the orientation of the spin-spin interactions depends on the spatial direction of

the bonds. It has remarkable symmetry properties and the ground state shows

topological degeneracy. The implementation of the quantum compass model in

quantum simulation setups like ultracold atoms and trapped ions is far from trivial,

since spin interactions in those systems typically are independent of the spatial

direction. Ising spin interactions, on the contrary, can be induced and controlled in

atomic setups with state-of-the art experimental techniques. In this work, we show

how the quantum compass model on a rectangular lattice can be simulated by the

use of the photon-assisted tunneling induced by periodic drivings on a quantum Ising

spin model. We describe a procedure to adiabatically prepare one of the doubly-

degenerate ground states of this model by adiabatically ramping down a transverse

magnetic field, with surprising differences depending on the parity of the lattice

size. Exact diagonalizations confirm the validity of this approach for small lattices.

Specific implementations of this scheme are presented with ultracold atoms in optical

lattices in the Mott insulator regime, as well as with Rydberg atoms.
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8.2 Introduction

In the pursuit of the quantum computer, the problem of decoherence arises as the

main obstacle to preserve coherent linear superpositions as to take advantage of

the computational power they can provide us with. In principle, quantum error

correction codes offer a solution to achieve a fault-tolerant quantum computation

[98]. An alternative route consists of using topologically protected Hilbert spaces

[99, 100]. In this context, a two dimensional quantum compass model on a square

lattice was proposed by Douçot et al. [101] as a simple model to implement a

protected qubit. Generally speaking, ‘compass models’ refer to a broad type of

lattice Hamiltonians in which the couplings between sites depend on the orientation

of the bonds in the lattice. A thorough review of these Hamiltonians and their

properties can be found in Ref. [49].

The quantum compass model was originally introduced in 1982 as a toy model

to gain insight in the context of Mott insulating transition metal compounds, for

which one finds anisotropy of the exchange for different pairs of ions. The name

‘compass model’ arises by analogy with the dipolar coupling in a classical model of

magnetic needles arranged in a lattice [51]. The 2D-version of this model on a n×m

lattice is defined by the following spin Hamiltonian (S = 1/2),

HC = −Jx
∑
j

σxjσ
x
j+ex − Jy

∑
j

σyjσ
y
j+ey

, (8.1)

where σx,yj are the usual Pauli matrices and j = (jx, jy) is a vector that runs over

the lattice sites. We shall assume free boundary conditions in the following. We

can choose ferromagnetic couplings (Jx, Jy > 0) without loss of generality, since fer-

romagnetic and antiferromagnetic quantum compass models are related by unitary

transformations. One observes in Hamiltonian (8.1) that there are two competing

tendencies owing to two types of Ising-like interactions: bonds along the y axis in-

duce spin alignment along y (〈σyj 〉 6= 0), while bonds along the x axis induce spin

alignment along x (〈σxj 〉 6= 0); the resulting ground state is therefore a highly en-

tangled state without an obvious order parameter. Many recent numerical studies

have examined the quantum phase transition of the anisotropic model on a square

lattice through the isotropic point (Jx = Jy), pointing to the existence of a first
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order quantum phase transition [102–104]. It has been theoretically shown that

this model arises as an effective description of the low-energy physics in systems of

magnetically frustrated Josephson junction arrays [100, 101], and experiments have

shown signatures of the physics of this model in few qubit setups [105].

The physical implementation of the quantum compass model (8.1) in atomic

systems would represent a significant breakthrough in research on topologically pro-

tected qubits. However, experimental techniques for analogue quantum simulation

[39] typically provide us with effective spin-spin interactions that are independent of

the spatial direction of the bonds. For instance, Ising interactions, with couplings of

the form σxi σ
x
j along every spatial direction, can be readily induced and controlled

in systems like trapped ions [82, 87, 91], ultracold atoms in optical lattices [92, 106–

108] and Rydberg atoms [109–111]. Two notable exceptions are polar molecules and

Rydberg atoms in p- or d-states, where for example a variety of compass models can

be realized using Rydberg p-states [112]. In this work, we surpass this limitation

by showing that the quantum compass interactions can be implemented by dressing

Ising spin-spin interactions with periodic driving fields.

The basic idea of our work is the dressing of Ising interactions by the photon-

assisted tunneling induced by periodic drivings with a site-dependent phase over a

square spin lattice . A judicious choice of the site-dependence of the driving phase

leads to the spatial dependence of interactions in the quantum compass model. (see

Fig. 8.1). The necessary periodic drivings can be implemented with running spin-

dependent optical potentials such as those demonstrated in [113]. Our ideas have a

direct application in the implementation of topological models with ultracold atoms

and Rydberg atoms with realistic techniques, since basically we only request an

additional spin-dependent moving lattice to the trapping optical lattice potential.

Indeed, periodically driven atomic lattices with site dependent phases have brought

a lot of attention in recent years, as they can be used in the simulation of synthetic

gauge fields [84, 85, 114–120]. The dressing of one-dimensional quantum Ising sys-

tems by periodic drivings with a gradient in intensity has been considered recently

in [121]. Even though there are problems that may hinder the simulation of the

ground state physics as proposed in our implementation, such as heating problems

in state-dependent optical lattices, or short lifetimes in Rydberg atoms, we expect
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our proposal to be achievable in the long run.

Figure 8.1: General scheme: Our model assumes an initial quantum Ising lattice

as a starting point. Periodic drivings with a site-dependent phase allow us to dress

the original Ising interaction to obtain the quantum compass model, in which sites

interact through spin-components depending on the orientation of the bond.

This article is organized as follows. In section 8.3 we review some general sym-

metry properties of the quantum compass model that will be necessary to under-

stand the adiabatic preparation of the ground state. In Sec. 8.4 the photon-assisted

tunneling scheme is applied to engineer the quantum compass model using a 2D

Ising model together with a convenient periodic driving. In Sec. 8.5 we discuss

an adiabatic preparation of the ground state of this model; the corresponding im-

plementation of this procedure using ultracold atoms or Rydberg atoms in optical

lattices is presented in Sec. 8.6. Finally, Sec. 8.7 summarizes the main results

obtained in this work.

8.3 Symmetry properties of the compass model

Let us now look over the main symmetry properties of the quantum compass model

that we shall use throughout this work [101]. Generally speaking, a symmetry

operation represented by certain operator P commuting with the Hamiltonian H

may lead to the presence of degenerate states. This means that P acting on a state

|ψ〉 results in another state |ϕ〉 with the same energy, although this argument fails in

the case we get the same state, |ψ〉 = |ϕ〉. Nonetheless, if we find another symmetry

operation Q such that [P,Q] 6= 0 for any state |ψ〉, one can be sure that all states

are at least doubly degenerate. To see how this works, let us suppose that acting
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on the state |ψ〉 with P and Q we obtain the same state |ψ〉. This implies that

PQ|ψ〉 = QP |ψ〉 = |ψ〉, hence [P,Q] = 0, which is contrary to our initial statement.

We have therefore proved that the resulting states are necessarily different. Leaving

aside accidental degeneracy, another condition must be imposed if we wish to get

doubly degenerate states avoiding further degeneracy. This condition turns out to

be [P 2, Q] = [P,Q2] = 0 [101]. The reason for this is that if one starts with an

eigenstate of Q(P ) and then acting on it with P (Q), the resulting state has to be

different from the original one as we just proved, but acting again on this state with

P (Q), one should come back to the initial state. Having two sets of non-commuting

operators {Pi} and {Qj}, the previous conditions are generalized as [Pi, Qj] 6= 0

∀i, j and [PiPj, Qk] = [Pi, QjQk] = 0 ∀i, j, k [101].

The Hamiltonian (8.1) has two sets of discrete symmetries satisfying the above

conditions, namely

Pjy =
n∏
jx

σy(jx,jy) jy = 1, 2, . . . ,m (8.2)

Qjx =
m∏
jy

σx(jx,jy) jx = 1, 2, . . . , n (8.3)

i.e, each Pjy is the row product of σy in that row while Qjx is the column product of

σx in the column. Physically, Qjx corresponds to a rotation by an angle π around

the x axis of all the spins of the column labeled by jx, while Pjy corresponds to a

rotation by an angle π around the y axis of all the spins of the row labeled by jy.

In particular, they satisfy {Pjy , Qjx} = 0 ∀jx, jy and [PiPj, Qk] = [Pi, QjQk] = 0

∀i, j, k. Thus, aside from accidental degeneracies, one expects every state to be

doubly and only doubly degenerate. We shall then assume that the ground state of

the quantum compass model is effectively a two level system satisfying the conditions

of a protected qubit. Local noise acting on a single lattice site may not commute

with the symmetry operators Pjy and Qjx corresponding to the row and column

of such site, but the remaining symmetries ensures the system to remain doubly

degenerate. This is the case unless at least min(m,n) of these perturbations act

simultaneously over the whole lattice. While the presence of degeneracy is not a sign

of topological order, the robustness against local perturbations is a clear signature

of the topological nature of the compass model.

The set of integrals of motion Pjy (or alternatively Qjx) can be used to distin-
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guish between the two degenerate states of the ground state since they have dif-

ferent quantum numbers, namely either (p1, . . . , pm) = (1, . . . , 1) or (p1, . . . , pm) =

(−1, . . . ,−1). This result was proved in Ref. [122] for a square lattice, and it can

be straightforwardly generalized for a rectangular lattice. Heuristically, one may

expect this result by exploring the trivial case for which Jx = 0. In such a case

the model is simplified to a set of Ising columns with ferromagnetic coupling. For

simplicity, taking the square lattice lxl, the ground state consists of 2l states defined

by mjy ,1 = . . . = mjy ,l = ±1 with jy = 1, . . . , l, where mj is the eigenvalue of σyj . As

all the rows are identical, all the p′jys are equal as well for all jy, thus we conclude

the value of pjy is either +1 or −1 for every row.

The non-local operators Pjy and Qjx represent a sufficient condition for topolo-

gical quantum order in this model [73]. Effectively, unlike Landau type systems, no

local operator can be found to distinguish between the ground states in the quantum

compass model. In comparison, in a Landau type system like the Ising model (8.4),

the local spin operator σzj may distinguish between the two possible Ising ground

states. Physically this corresponds to the fact that there is no way to differentiate

the states by means of local measurements, and the nontrivial information of the

state is revealed when performing an adequate non-local measurement. In our case,

notice that such non-local measurement can be performed after measuring each σyj

(or σxj ) sequentially, and then compose the information obtained to calculate the

observable Pjy (or Qjx).

Mathematically this is represented by a d-dimensional Gauge-like symmetry op-

eration localized on a d-dimensional region of the complete D-dimensional lattice

(d ≤ D). A local Gauge symmetry corresponds to d = 0 whereas a global symmetry

operation is given when d = D. A group symmetry operator U can be expressed

in terms of unitary operators in the way of an Aharonov-Bohm phase or a Wilson

loop. In the case of the quantum compass model (D = 2), U can be written as

U =
∏

j∈lα σ
α
j for α = x, y, where lα denotes any line orthogonal to the eα axis.

Notice that our previous definitions of Pjy and Qjx are recovered when substi-

tuting α = y and x respectively. Thus, these operators are defined along cycles on a

torus when we assume periodic boundary conditions, constituting d = 1 symmetries.

No change in the degeneracy of the ground state is expected when changing between
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open and periodic boundary conditions as the construction of these symmetry op-

erators is identical in both cases. Therefore, we suggest that the target observables

to demonstrate the topological order in this system may be the operators Pjy and

Qjx and their resilience.

8.4 Photon-assisted tunneling

In this section we shall use the photon-assisted tunneling toolbox [85] to implement

the quantum compass model. To understand how to achieve this goal, let us first

have a look at the quantum Ising model,

H0 = −Jx
∑
j

σxjσ
x
j+ex − Jy

∑
j

σxjσ
x
j+ey . (8.4)

Expressing the spin operators in terms of the raising and lowering operators, i.e.

σx = (σ+ + σ−) and σy = −i(σ+ − σ−), equation (8.4) turns out to be,

H0 = −Jx
∑
j

(
σ+
j σ

+
j+ex

+ σ+
j σ
−
j+ex

)
− Jy

∑
j

(
σ+
j σ

+
j+ey

+ σ+
j σ
−
j+ey

)
+ H.c. (8.5)

In contrast, rewriting the quantum compass model (8.1) in a similar way, we obtain

a slightly different expression

HC = −
∑
j

(
J++
x σ+

j σ
+
j+ex

+ J+−
x σ+

j σ
−
j+ex

)
−
∑
j

(
−J++

y σ+
j σ

+
j+ey

+ J+−
y σ+

j σ
−
j+ey

)
+H.c.,

(8.6)

where we have defined J++
x,y = J+−

x,y = Jx,y. By the use of the photon assisted

tunneling in the original Hamiltonian (8.4), we aim for finding a set of effective

coupling constants such that equation (8.5) equals equation (8.6), which in turn

implies

(J++
x )eff = (J+−

x )eff , (8.7)

(J++
y )eff = −(J+−

y )eff .

Now that our goal is clear, let us use the ingredients of the photon-assisted tunneling

toolbox to find how to satisfy the conditions (8.7). In doing so, the Hamiltonian of

the system can be written as,

H = H0 +Hd(τ), (8.8)



73

where we define,

Hd(τ) =
∑
j

Ωj

2
σzj +

∑
j

η

2
ωd cos(ωdτ + φj)σ

z
j . (8.9)

The second term in (8.9) represents a periodic energy driving of the qubit, while Ωj

is typically chosen such that the first term in equation (8.9) represents a gradient of

the individual frequencies [84], i.e., Ωj = Ω0 + ∆Ω · j, although it will be taken as a

constant for the purpose of this work, Ωj = Ω. These two elements are all that we

need to take advantage of the photon-assisted tunneling toolbox [85]. Notice that

there is a freedom in choosing the spatial dependence in φj , and we shall assume a

linear dependence in both x and y axis,

φj = ∆φxjx + ∆φyjy, (8.10)

where ∆φx,y are given constants, and jx,y are positions in the lattice.

Let us now express the Hamiltonian H0 in the interaction picture with respect

to Hd, namely H0(t) = U(t)†H0U(t) where U(t) = e−i
∫ t
0 dτHd(τ). In this picture, the

raising and lowering operators evolve like,

σ±j (t) = e±iΩte±iη sin (ωdt+φj)e∓iη sinφjσ±j . (8.11)

Notice that the last term in equation (8.11) can be gauged away using the unitary

transformation σ±j → e±iη sinφjσ±j . Hence one obtains a Hamiltonian having the

same structure as equation (8.6), in which we replace the bare couplings by their

corresponding time-dependent dressed couplings

(J++
x,y )eff = Jx,ye

i2Ωτeiη sin (ωdτ+φj)eiη sin (ωdτ+φj+ex,y ), (8.12)

(J+−
x,y )eff = Jx,ye

iη sin (ωdτ+φj)e−iη sin (ωdτ+φj+ex,y ). (8.13)

To help in the analytical treatment, we make use of the trigonometric relation

sin(A) + sin(B) = 2 sin(A+B
2

) cos(A−B
2

) and the Jacobi-Anger expansion,

e(iz sinφ) =
∞∑

n=−∞

Jn(z)e(inφ), (8.14)

where Jn are Bessel functions of the first kind, yielding

(J++
x,y )eff = Jx,ye

i2Ωτ
∑
s

Js
(

2η cos
∆φx,y

2

)
eis(ωdτ+

φj+φj+ex,y
2

), (8.15)

(J+−
x,y )eff = Jx,y

∑
s

isJs
(

2η sin
∆φx,y

2

)
eis(ωdτ+

φj+φj+ex,y
2

). (8.16)
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Assuming Jx,y � Ω and tuning the driving frequency to ωd = 2Ω, the rotating-wave

approximation (RWA) allows us to neglect the fast-oscillating terms and to keep

those terms fulfilling the resonance condition s = −1 in equation (8.15) and s = 0

in equation (8.16). Having done this, we obtain the following dressed couplings,

(J++
x,y )eff = Jx,yF++

x,y (η,∆φx,y)e
−i
(
φj+φj+ex,y

2

)
(8.17)

(J+−
x,y )eff = Jx,yF+−

x,y (η,∆φx,y), (8.18)

where we define a set of complex amplitudes,

F++
x,y (η,∆φx,y) = J−1

(
2η cos

∆φx,y
2

)
(8.19)

F+−
x,y (η,∆φx,y) = J0

(
2η sin

∆φx,y
2

)
. (8.20)

Finally, rewriting the term
φj+φj+ex,y

2
= φj + ∆φx,y

2
we may use the following unitary

transformation: σ+
j 7−→ σ+

j e
iφj/2 , resulting in the effective Hamiltonian we were

looking for,

Heff = −Jx
∑
j

(
F++
x σ+

j σ
+
j+ex

+ F+−
x σ+

j σ
−
j+ex

)
− Jy

∑
j

(
F++
y σ+

j σ
+
j+ey

+ F+−
y σ+

j σ
−
j+ey

)
+ H.c. (8.21)

Following the idea given in equation (8.7), we notice that the quantum compass

model can be implemented if we manage to find a set of parameters, (η,∆φx,∆φy),

such that

F++
x (η,∆φx) = F+−

x (η,∆φx, ), (8.22)

F++
y (η,∆φy) = −F+−

y (η,∆φy).

Is there any solution to the system of equations (8.22)? We will show numerically

that there are actually an infinite number of solutions. First, note that equation

(8.22) can be expressed as,

∣∣F++
x,y (η,∆φx,y)

∣∣ =
∣∣F+−

x,y (η,∆φx,y)
∣∣ , (8.23)

arg(F++
x (η,∆φx)) = arg(F+−

x (η,∆φx)) + 2kπ, (8.24)

arg(F++
y (η,∆φy)) = arg(F+−

y (η,∆φy)) + kπ, (8.25)
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where k is an integer. To solve this system of equations, let us define the

functions f(η,∆φx,y) =
∣∣F++

x,y (η,∆φx)
∣∣ / ∣∣F+−

x,y (η,∆φx,y)
∣∣ − 1 and g(η,∆φx,y) =

arg(F++
x,y (η,∆φy)) − arg(F+−

x,y (η,∆φy)). Trivially, we see that equation (8.23) is

equivalent to find the zeros of the function f , while the solutions to equation (8.24)

and equation (8.25) are equivalent to the function g taking the values 2kπ and kπ

respectively. The jellyfish-like pattern showed in figure 8.2(a) represents the func-

tion f , for which we have limited the range of the function to the interval [−0.1, 0.1]

so that the graph clearly shows the region in which the function becomes zero. On

the other hand, the function g is shown in Fig. 8.2(b), limited to the range [0, 2π].

In looking at the graphs, it is straightforward to confirm that there are an infinite

number of solutions. The isotropic point, (Jx = Jy) is reached when the solutions

are taken symmetrically with respect to the symmetry axis of the jellyfish-like pat-

tern; an example could be {η = 1,∆φx = 4.6539,∆φy = 1.6293}, which gives the

value F++
x = F+−

y = 0.5368.

In the following, we discuss the effect of possible fluctuations/inaccuracies in

(η,∆φx,y). In looking at Fig. 8.2, it is clear that the condition over the phase,

given by the function g(η,∆φx,y), remains generally stable when considering small

deviations with respect to the exact solutions. In contrast, the main source of error

would be caused by the condition over the amplitude (8.23), especially in the case

f(η,∆φx,y) could vary rapidly close to the compass solutions. One can estimate this

error by assuming a linear approximation around the optimal solutions, (η∗,∆φ∗x,y),

as

∆f(η,∆φx,y) = η∗(∆η/η∗)∂ηf + ∆φ∗x,y(∆(∆φx,y)/∆φ
∗
x,y)∂∆φf. (8.26)

The previous derivatives can be computed and expressed in terms of Bessel func-

tions. For example, using the above values and nearby solutions, we find that the

order of magnitude of the error in ∆f is 10−2 or even 10−3 when 1% of relative error

is assumed for both η and ∆φx,y. This represents a small perturbation to the com-

pass model that in principle should not spoil the quantum simulation. Nonetheless,

there are some regions which are more sensitive to small perturbations, namely those

close to the singular points observed in the jellyfish pattern 8.2(a). Those points

correspond to singular solutions where the function f goes to infinity (which is the

reason why the function is shown in a limited range). Although theoretically pos-
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sible, these regions would not be appropriate for a realistic experiment. Depending

of the main source of error in an experimental setup, one could choose a particular

solution that minimizes the error in ∆f . Typically, it is more difficult to control the

∆φx,y parameter, in which case solutions with, for instance η ≈ 0.95, would improve

the error in ∆φx,y as there exist solutions in the ∆φ direction as shown Fig. 8.2(a).

8.5 Adiabatic passage

Now that we have shown how the quantum compass model can be implemented

using periodic drivings, we aim for preparing the ground state of this model. One

way to do so is by finding an adequate adiabatic passage starting from the ground

state of certain initial Hamiltonian for which the ground state is known and can be

prepared, and then slowly changing this Hamiltonian until the quantum compass

model is eventually reached. One possible option using a transverse magnetic field

will be discussed in this section.

Let us then consider an additional transverse magnetic field along z in our ori-

ginal Hamiltonian (8.8) as follows,

H = H0 +Hd(τ) +
∑
j

δ(t)

2
σzj , (8.27)

where δ is a time-dependent parameter that measures the strength of the field.

Notice that we had already introduced a transverse field along z in equation (8.8),

so the overall transverse field depends on the sum of both terms, ε/2 = (Ω + δ)/2.

One may also express H0 +
∑

j δσ
z
j in the interaction picture with respect Hd; it

is then straightforward to check that, following the same procedure used in Sec.

8.4 and setting the same resonance condition ωd = 2Ω, we arrive at the following

effective Hamiltonian,

H ′eff(t) = Heff +
∑
j

δ(t)

2
σzj , (8.28)

where Heff was given in equation (8.21). Therefore, ensuring the magnetic field is

strong enough so that δ � Ω, η � Jx, Jy, one can safely assume that the magnetic

field is the dominant term in (8.28), being the ground state |0〉 =
∏

j |↑〉j in terms of

eigenstates of σzj . Finally, a feasible adiabatic passage to reach the compass model

consists of decreasing ε from ε � Ω, η slowly enough until reaching the compass
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(a)

(b)

Figure 8.2: In this figure we plot the functions that govern the spin-spin interac-

tions as a function of the periodic driving parameters. (a) Function f(η,∆φx,y) =∣∣F++
x,y (η,∆φx)

∣∣ / ∣∣F+−
x,y (η,∆φx,y)

∣∣ − 1. The values f(η,∆φx,y) = 0 represents the

solutions to equation (8.23). The range of the function is limited to the interval

[−0.1, 0.1] to show clearly the points at which the function is zero. (b) Function

g(η,∆φx,y) = arg(F++
x,y (η,∆φy)) − arg(F+−

x,y (η,∆φy)), limited to the range [0, 2π].

The regions with g(η,∆φx,y) = 0 and π correspond to the solutions to equation

(8.24) and equation (8.25) respectively.
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condition ε = Ω = ωd/2 (δ = 0). One expects this system to undergo a quantum

phase transition as the magnetic order of the transverse magnetic field and the

quantum compass model are different.

The adiabatic approximation describes, upon certain conditions, how slowly we

need to vary δ(t) to ensure the system remains in the ground state through the

evolution. According to this approximation, the instantaneous eigenstates of the

time-dependent Hamiltonian H(t) at a given time evolve continuously to the corres-

ponding eigenstates at later times, provided that the eigenenergies do not cross and

the evolution is slow enough. The intrinsic time scale used to determine what slow

and fast mean is usually provided by the gaps in the spectrum. This also provides a

general validity condition for adiabatic behavior that corresponds to the probability

that the final state of the system is different from the initial state [123],

max
0≤t≤T

∣∣∣∣∣〈k|Ḣ(t)|n〉
∆nk

∣∣∣∣∣ << min
0≤t≤T

|∆nk| (8.29)

where T is the total evolution time, and ∆nk the energy gap between level n and k.

Note that the ground state of the transverse field Hamiltonian is unique, while the

compass ground state is doubly-degenerate, thus we expect crossing of levels at the

end of the adiabatic preparation; moreover, the natural question arises about what

state is eventually reached.

A simple possible way to overcome the issues above is by finding an integral of

motion conserved through the evolution that we may use to tell the twofold ground

state apart. Under this assumption, the adiabatic approximation would still be valid

if there is no crossing of levels with the same conserved quantum number. As it was

shown above, the set of integrals of motion Pjy(Qjx) can be used to distinguish

between the two degenerate states, since they have different quantum numbers,

namely either (p1, . . . , pM) = (1, . . . , 1) or (p1, . . . , pM) = (−1, . . . ,−1) (similarly for

the quantum numbers (q1, . . . , qN)) ; however these are not good quantum numbers

when the magnetic field term is included in the Hamiltonian. The operator Z ≡∏
j σ

z
j is fortunately an integral of motion of the whole Hamiltonian (8.28) as it is

straightforward to check, and so it can be used in principle to determine the actual

ground state reached at the end of the adiabatic passage. Surprisingly, the parity

operator Z can distinguish between the twofold ground state only in those cases such

that we have an odd-odd or odd-even lattice size. In Appendix I, it is proved that for



79

both odd-odd and odd-even cases the eigenvalues of Z are either z = +1 or z = −1,

while in the even-even case the eigenvalue is always z = +1. This is another sign of

the topological order appearing in the compass model. Hence we expect two different

kinds of behaviour in the adiabatic passage depending on the parity of the lattice

size. In the first case, the two ground states of the compass model are not connected,

thereby the only relevant gap to be considered is between the ground and first even

excited state. Recall that the ground state of the transverse field Hamiltonian has

eigenvalue z = +1, so we expect to prepare the ground state of the compass model

corresponding to this eigenvalue; however we would be unable to prepare the ground

state corresponding to the eigenvalue z = −1 using this approach. In the second

case, with an even-even lattice size, any superposition of the ground states are

eigenstates of the operator Z with eigenvalue z = +1, and for that reason, in this

case we could only assume that the final state is a superposition state given by the

specific adiabatic evolution performed on the system. The adiabaticity of this case

would be given by the gap between the first and and second even excited states.

Exact diagonalizations for small systems (up to a 5×4 lattice) were performed to

observe the evolution of the relevant gaps involved in the quantum phase transition

so as to examine the validity of the adiabatic approximation. Additionally, the

magnetization along z was found to be an order parameter of the quantum phase

transition, where the ground state of the transverse magnetic field is magnetically

ordered, Mz 6= 0, and the compass ground state is disordered, Mz = 0. In order to

simplify the analysis, the following parametrization was introduced,

H = (1− λ)HC + λHm (8.30)

HC = −
∑
j

σxjσ
x
j+ex −

∑
j

σyjσ
y
j+ey

Hm =
∑
j

σzj ,

therefore λ = 1 corresponds to the initial transverse field and λ = 0 represents the

isotropic quantum compass model. Recall that no periodic boundary conditions are

assumed here so as to better describe a realistic experimental setup.

Keeping in mind the results for the integral of motion Z, the relevant gap in an

odd-odd and odd-even lattice is the one given by the first even excited state of the

system, ∆. In contrast, this gap goes to zero in an even-even lattice, so the relevant
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Figure 8.3: Quantum phase transition from transverse field to compass model for

an even-even lattice size. We show the gaps together with the absolute value of

the normalized magnetization along z of the model (8.30) for different values of the

lattice size. The solid and dashed lines corresponds, respectively, to the gap between

the first and second even excited states with respect to the ground state. The value

λ = 1 corresponds to the initial transverse field Hamiltonian and λ = 0 represents

the isotropic quantum compass model.

gap in this case, ∆′, is given by the energy difference with the second even excited

state. Note that those levels with odd parity (z = −1) do not play any role in any

case as the Hamiltonian does not connect states with different parities. Fig. 8.3

shows the evolution of these gaps for different sizes together with the magnetization

|Mz| as the parameter λ changes from λ = 1 to λ = 0. For the odd-odd and odd-even

cases we confirm that there exists a finite gap along the adiabatic passage between

the ground state and the first even excited state that narrows as the lattice size

becomes larger. As expected, this gap goes to zero in the even-even case when the

two degenerate even ground states collide in the compass model as shown in Fig.

8.4. Therefore, the relevant gap when we approach λ = 0 is given by the energy

difference between the first and second even excited states ∆′. In conclusion, these

results show that the even ground state of the compass model can be prepared using

this adiabatic passage in the odd-odd and odd-even cases , whereas for the even-even

case we expect the system to be in a superposition of the ground states given by the
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Figure 8.4: Quantum phase transition from transverse field to compass model for an

odd-even/odd-odd lattice size. We show the gaps together with the absolute value

of the normalized magnetization along z of the model (8.30) for different values of

the lattice size. The gaps are represented in a semi-log plot. The value λ = 1

corresponds to the initial transverse field Hamiltonian and λ = 0 represents the

isotropic quantum compass model.

specific evolution of δ(t).

Lastly, given the energy gaps shown in figures (8.3, 8.4), one may estimate the

condition under which the adiabaticity is fulfilled using equation (8.29). For sim-

plicity, we shall assume a linear evolution in time, δ(t) = δ0(1− t/τev), where τev is

the total evolution time. In such a case, the matrix elements we need to calculate
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are of the form 〈k|
∑
σzj |n〉. As a crude estimation, these matrix elements are of the

order of the number of sites N at worst. Furthermore, to maximize the first term in

(8.29), we could use the gap at λ = 0 as this is a good estimation of the minimum

gap. Thus, a rough condition for adiabaticity would be given by,

Nδ0

∆λ=0

� τev∆λ=0. (8.31)

8.6 Physical implementations

In this section we show how our ideas can be implemented using specific atomic

experimental setups. One possible implementation of the quantum compass model

using Josephson junctions arrays was proposed by Douçot.et.al [101]. A close related

model was actually implemented in a proof-of-principle experiment using supercon-

ducting nanocircuits.

A scalable and efficient implementation of the quantum compass model in atomic

experimental setups would be very useful as atomic systems present many advant-

ages for quantum state preparation and measurement. Furthermore, implementing

a controllable longitudinal magnetic field like in equation (8.29) may allow experi-

mentalist to adiabatically create the topologically degenerate ground state. Periodic

drivings like those required for our proposal can be implemented in atomic systems

by means of lasers, with a site dependent phase that corresponds to the laser optical

phase. Ions trapped in two-dimensional arrays of microtraps or Coulomb crystals

could be considered here, because optical forces can be used to induce Ising inter-

actions [82, 87]. However, the dipolar decay of trapped ion spin-spin interactions

would lead to long-range quantum compass models, with properties that may depart

from the original Hamiltonian (8.1).

In the following we focus on proposals for atomic setups that may provide us

with short-range Ising interactions, namely, neutral bosonic ultracold atoms and

Rydberg atoms in optical lattices.

8.6.1 Ultracold bosons in optical lattices

We need first to understand how the following effective quantum Ising Hamiltonian

can be implemented with ultracold bosons. For this we rely on a quantum simulation
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proposal which relies on the internal state of atoms that are frozen in a Mott insulator

state in an optical lattice [92, 106]. Under appropriate circumstances, hopping can

only be a virtual process that enables superexchange interactions, as explained in

[92] through perturbative calculations. These interactions have been demonstrated

experimentally, both in superlattices [124, 125], as well as in longer tubes with a few

quasiparticle excitations [126].

We consider an optical lattice in the Mott-insulator regime with one atom per

site (unity filling) and each atom having two accessible internal states, playing the

role of a pseudo-spin S = 1/2. The atoms may be formally identified with two

types of bosons, ‘↑’, and ‘↓’, and one may denote the bosonic operators ai and bi as

the destruction operators of each internal state at the site i. Such a system is well

described with the Bose-Hubbard Hamiltonian when the energies involved are small

enough so that the second Bloch band never gets populated,

H =
∑
〈i,j〉

Hhop
i,j +

∑
j

H int
j (8.32)

Hhop
i,j = −Ja(a†iaj + h.c.) + Jb(b

†
ibj + h.c.)

H int
j =

1

2
Uaaa

†
ja
†
jajaj +

1

2
Ubbb

†
jb
†
jbjbj + Uaba

†
jb
†
jbjaj ,

The Hamiltonians Hhop and H int represent, respectively, the probability of atoms

hopping to neighbouring sites and their effective on-site interaction. Assuming we

are in the Mott-insulator regime, J � U , the hopping Hamiltonian can be considered

as a small perturbation with respect to all other terms. We project our problem

into the subspace of single atomic occupation and use quasi-degenerate second-order

perturbation theory to obtain an effective spin Hamiltonian. The corresponding

operators of the effective spin system are σ+
j = a†jbj , σ

−
j = ajb

†
j and σzj = a†jaj−b

†
jbj .

The effective spin Hamiltonian reads

HS =
∑
〈i,j〉

(
λzσziσ

z
j + λ⊥(σxi σ

x
j + σyiσ

y
j )
)

+
∑
i

hzσzj (8.33)

with constants given by [92]

λz =
J2
a + J2

b

2Uab
− J2

a

Uaa
− J2

b

Ubb
, λ⊥ = −2

JaJb
Uab

,

hz =
J2
a

Uaa
− J2

b

Ubb
. (8.34)
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For details on the range of validity and the derivation of those equations we refer the

reader to Ref. [92]. We notice that if the term λ⊥ = 0, then we can use the remaining

Ising interaction as a starting point to derive the quantum compass model. To be

in a regime such λ⊥ = 0, one could suppress the tunneling of b-atoms by choosing a

spin-dependent lattice with Jb � Ja. If we neglect Jb we get

HS = −J
∑
〈i,j〉

σziσ
z
j +

∑
i

hzσzj , (8.35)

with J = J2
a (1/Uaa − 1/(2Uab)), and hz = −J2

a/Uaa.

To implement periodic drivings, we consider additional lasers inducing Raman

transitions between levels ↑ and ↓. Here, the spatial dependence of the phase will

appear naturally, since the optical phase of the lasers vary linearly from site to site.

We need to implement the driving and longitudinal field in equation (8.9). Note

that, since we obtained an Ising interaction in the z-basis, the longitudinal fields

required in equation (8.9) must be expressed in terms of σx operators. A constant

field is implemented by a two-photon Raman transition or microwave field inducing

transitions between the two atomic levels,

Hmw =
Ω

2

∑
i

σxi . (8.36)

The periodic driving fields are then implemented by a running-wave potential in-

duced by pairs of lasers with effective wavevector ∆k, and relative detuning within

each pair ωd,

Hlas(t) =
Ωlas

2

∑
i

cos(∆k · ri − ωdt)σ
x
i . (8.37)

Note that time-dependent optical lattice potentials have been implemented for spin-

dependent transport of ultracold bosons in optical lattices (see for example [113]).

We notice that the laser optical phase is translated into a site-dependent optical

phase with a linear dependence on the site position [84, 85],

φi = d0(∆k · i), (8.38)

where we have used that ri = d0i, with d0 the distance between sites in the lattice.

After implementing a rotation of the spin basis (σ̄z = σx, σ̄x = −σz ) in Hamiltonians

(8.35, 8.36, 8.37), we obtain the driving term in equation (8.9), with ηωd = Ωlas,
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and the phase gradient ∆φx,y = (∆k)x,yd0. Our final Hamiltonian is

H = HS +Hmw +Hlas(t) =

− J
∑
〈i,j〉

σ̄xi σ̄
x
j +

∑
i

hxσ̄xj +
Ω

2

∑
i

σ̄zi +

ηωd

2

∑
i

cos(∆k · ri − ωdt)σ̄
z
i . (8.39)

We get our target Hamiltonian plus an additional magnetic field term, hx
∑

i σ̄
x
i =

hx
∑

i(σ̄
+
i + σ̄−i ). Under the resonance condition ωd = 2Ω raising and lowering

operators rotate with frequency Ω (see equation (8.11)). Thus, the hx term can be

neglected in a rotating wave approximation in the limit Ω� J, hx.

8.6.2 Rydberg atoms in optical lattices

Rydberg atoms offer us another physical setup with Ising interactions that can be

controlled by periodic driving fields. We consider a square lattice with one single

Rydberg atom per site. An effective spin is formed with the states |−〉j = |g〉j, and

|+〉j = |r〉j, corresponding to the ground and excited Rydberg state, respectively.

The Hamiltonian describing this system is given by [109]

HRy =
U

2

∑
<i,j>

σzi + 1

2

σzj + 1

2
+

∆

2

∑
j

σzj . (8.40)

We have assumed fast decaying interactions between Rydberg states, such that the

effective spin-spin interaction runs over first neighbours only. To obtain the compass

model we need a periodic driving in the x-basis, since Ising interactions appear in

the z-basis. Furthermore, we need to counteract the local longitudinal field given by

hz = ∆+U/2. For this, we consider two counter-propagating driving fields inducing

a Raman transition with wavevectors k and −k, and detunings ω0 +ωd and ω0−ωd,

respectively.

Hlas(t) =
∑
i

Ωlas

2

(
eik·ri−i(ω0+ωd)tσ+ + H.c.

)
+

∑
i

Ωlas

2

(
e−ik·ri−i(ω0−ωd)tσ+ + H.c.

)
. (8.41)

We choose ω0 = ∆ + U/2 to counteract the effect of the longitudinal field. An

additional coupling with vanishing effective wavevector is required to implement
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the term proportional to Ω in equation (8.9). Note that transitions between atomic

ground and Rydberg states usually required two-photon Raman processes, such that

the effective wavevector can vanish with a suitable orientation of the individual laser

beams. We choose a term of the form,

HΩ(t) =
Ω

2

∑
i

(
e−iω0tσ+ + H.c.

)
. (8.42)

If we express the sum of contributions (8.40,8.41,8.42) in a frame rotating with the

frequency ω), we get

HRy +Hlas +HΩ →
U

8

∑
<i,j>

σziσ
z
j +

Ω

2

∑
i

σxi +
Ωlas

2

∑
i

cos(k · ri − ωdt)σ
x
i . (8.43)

After a rotation of the spin basis we obtain our targeted driven Ising model, with

J = −U/4, and the phase gradient given by the laser optical phases, φi = d0(k i).

8.7 Conclusions

We have shown that Ising interactions in a square lattice can be dressed by a periodic

driving field and transformed into a quantum compass model. The key idea is to use

site-dependent driving phases such that the dressed spin-spin interactions depend

on the orientation of the bonds connecting lattice sites. We have also show that

the ground state of the quantum compass model can be reached by adiabatically

ramping down a field in the spin z-direction. By using symmetry arguments, we have

found conditions under which one of the degenerate ground states can be reached,

depending on the initial quantum state, and the number of sites in the lattice.

We have discussed two possible implementations with ultracold bosonic atoms

and Rydberg atoms in optical lattices. However, our ideas can be used in other ex-

perimental setups, for example in two-dimensional arrays of trapped ions. The latter

system requires further investigation, since Ising interactions in trapped ion setups

are long-ranged [82], something that would lead to the implementation of long-range

quantum compass models. Implementations in atomic setups constitute appropriate

candidates to build robust quantum memories, where the naturally longer coherence

time is more relevant than the operation time and the possibility of addressing indi-

vidual sites facilitates the measurement of Pjy or Qjy ; yet, a realistic implementation
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still faces technical challenges like the heating problem in state-dependent optical

lattices.

Any experimental setup with spin interactions where couplings can be dressed by

periodic fields is also amenable for the implementations of our ideas, like for example,

arrays of superconducting qubits interacting with classical fields in transmission lines

[127, 128].
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8.9 Appendix A: Eigenvalues and eigenstates of

the operator Z

In this section we find the eigenvalues and eigenstates of the operator Z ≡
∏

j σ
z
j

corresponding to the Hilbert subspace spanned by the doubly-degenerate ground

state of the quantum compass model. First, recall that the set of integrals of motion

{Pjy} defined in equation (8.2) can be used to characterize the twofold ground state

since they have different quantum numbers, namely either (p1, . . . , pjy , . . . , pm) =

(1, . . . , 1, . . . , 1) or (p1, . . . , pjy , . . . , pm) = (−1, . . . ,−1, . . . ,−1). If we define the

states corresponding to the previous eigenvalues as |±〉p, this result can be written

as Pjy |±〉p = ±|±〉p ∀jy. Alternatively, the set {Qjx} can also be used for this

purpose, giving the quantum numbers qjx . The corresponding eigenstates satisfy

Qjx|±〉q = ±|±〉q ∀jx, where the states |±〉q are in general different from |±〉p. This

result was proved in Ref.[122] for a square lattice l×l, and it can be straightforwardly

generalized for a n×m lattice.

Let us define the operators X ≡
∏

j σ
x
j and Y ≡

∏
j σ

y
j . We can express X and Y

in terms of the sets of operators {Pjy} and {Qjx} as X =
∏n

jx
Qjx and Y =

∏m
jy
Pjy .
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Thus the states |±〉q and |±〉p are also eigenstates of X and Y respectively, leading

to the eigenequations

X|±〉q = (±1)n|±〉q, (8.44)

Y |±〉p = (±)m|±〉p. (8.45)

Notice, though, that the action of X on the basis |±〉p is unknown, and similarly

for Y on the basis |±〉q . Bearing in mind the relation σaσb = 1δab + i
∑
εabcσc

(a = 1, 2, 3) for the Pauli matrices, we find a useful equation to relate the previous

operators, XY = (i)m×nZ. This allows us to calculate the commutators and anti-

commutators for these operators, namely

{X, Y } = 2Re(im×n)Z, (8.46)

[X, Y ] = 2Im(im×n)Z. (8.47)

We will show in the following how the above equations enable us to determine

the eigenstates and eigenvalues of the operator Z in three different cases, depending

on the parity of the lattice size, i.e., the parity of n and m. Before doing so, let us

prove a result that we shall require later. We would like to relate the basis |±〉p and

|±〉q, and this can be done by the fact that {Pjy , Qjx} = 0 ∀jx, jy. Effectively, as

Pjy |±〉p = ±|±〉p ∀jy, this implies Pjy(Qjx|±〉p) = ∓(Qjx|±〉p). Hence we infer that

the state Qjx|±〉p has to be proportional to one of the eigenstates of Pjy . The only

possible solution in this particular case is Qjx|±〉p ∝ |∓〉p, since the choice Qjx|±〉p ∝

|±〉p leads to contradiction Pjy |±〉p = ∓|±〉p. Using an analogous argument for Pjy ,

one can show that Pjy |±〉q ∝ |∓〉q.

8.9.1 Case 1: even n-even m

In this case the previous relations take the following form,

{X, Y } = 2Z, (8.48)

[X,Z] = [Y, Z] = 0, (8.49)

X|±〉q = |±〉q, (8.50)

Y |±〉p = |±〉p. (8.51)
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equation (8.49) and equation (8.51) imply Y (Z|±〉p) = Z|±〉p. Hence the states

Z|±〉p have to be proportional to the eigenstates of Y , either Z|±〉p ∝ |±〉p or

Z|±〉p ∝ |∓〉p. The proper option can be inferred from the anti-commutator relation

(8.48), which states that Z = XY . Effectively, introducing the state |±〉p to both

sides of Z = XY , we find that Z|±〉p = X|±〉p. For even n, the operator X can be

expressed as an even product of Q′jys since X =
∏n

jx
Qjx , each of these terms acting

in a way that Qjx|±〉p ∝ |∓〉p as proved before. Therefore, the only possibility is

that Z|±〉p ∝ |±〉p. The eigenvalues z± can also be calculated using equation (8.48),

since we have p〈±|Z|±〉p =q 〈±|XY |±〉p, which leads to q〈±|±〉pz± =q 〈±|±〉p.

Finally, we conclude that the states |±〉p are degenerate eigenstates of the operator

Z with eigenvalues z± = 1. Similarly, the same result holds for the states |±〉q, i.e.,

Z|±〉p = |±〉p .

8.9.2 Case 2: even n-odd m

The basic equations for this case can be written as follows,

{X, Y } = 2Z(−1)(n/2×m), (8.52)

[X,Z] = [Y, Z] = 0, (8.53)

X|±〉q = |±〉q, (8.54)

Y |±〉p = ±|±〉p. (8.55)

Equivalently to the previous case, as we have an even product of Q′jys we infer

that Z|±〉p ∝ |±〉p. Now using equation (8.52) the eigenvalues z± can be computed

as q〈±|±〉p(−1)(n/2×m)z± = (±1)q〈±|±〉p. Therefore, the operator Z satisfies the

relation Z|±〉p = ±(−1)(n/2×m)|±〉p. This case is trivially equivalent to the odd-even

case by a proper rotation, and in such a case the operator Z fulfills an analogous

relation for the states |±〉q.
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8.9.3 Case 3: odd n-odd m

Finally, in this case our initial relations lead to a familiar set of equations,

{X, Y } = {Y, Z} = {Z,X} = 0, (8.56)

[X, Y ] = 2im×nZ, (8.57)

[Y, Z] = 2im×nX, (8.58)

[Z,X] = 2im×nY, (8.59)

X|±〉q = ±|±〉q, (8.60)

Y |±〉p = ±|±〉p. (8.61)

Notice that these are essentially the same commutation and anti-commutation

relations as the ones for the Pauli matrices, so we can use the well-known results of

this representation to assure that the eigenvalues Z in this subspace are z± = ±1.

One can also take advantange of the results for the Pauli matrices to express the

eigenvectors of Z, |±〉z in terms of the eigenvectors of X or Y . In particular, in

term of the basis |±〉q we have |±〉z = 1/
√

2(|+〉q + |−〉q).
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Chapter 9

Quantum sensing close to a

dissipative phase transition:

Symmetry breaking and criticality

as metrological resources

9.1 Abstract

We study the performance of a single qubit laser as a quantum sensor to measure

the amplitude and phase of a driving field. By using parameter estimation theory

we show that certain suitable field quadratures are optimal observables in the lasing

phase. The quantum Fisher information scales linearly with the number of bosons

and thus the precision can be enhanced by increasing the incoherent pumping act-

ing on the qubit. If we restrict ourselves to measurements of the boson number

observable, then the optimal operating point is the critical point of the lasing phase

transition. Our results point to an intimate connection between symmetry breaking,

dissipative phase transitions and efficient parameter estimation.

9.2 Introduction

Quantum sensing and metrology is likely to be a key practical application of quantum

technologies. It has been established both by theory and experiments that quantum
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effects can be exploited to increase the accuracy of measurement devices [43, 129–

132]. Practical applications, however, face significant challenges. In an ideal scenario

quantum metrology requires the preparation of many-particle entangled states by

quantum operations that so far are only possible with a few degrees of freedom.

Dissipation and noise pose severe limitations which often hinder the metrological

advantages of entangled states [133–137]. Quantum setups such as superconducting

circuits [47, 138, 139] and trapped ions [13, 87] offer us the opportunity to engineer

quantum states of matter with a high degree of control over interactions and dissip-

ation. It has been shown that dissipation may be actually exploited as an effective

tool in quantum state engineering [140, 141]. The question naturally arises, whether

we can use dissipation to design metrological protocols and sensors [142, 143]. We

propose two working principles for such quantum sensors. First, one could exploit

the sensitivity of a dissipative steady state to an external field which explicitly breaks

some suitable underlying symmetry. The second route could take advantage of the

sensitivity at the critical point of a dissipative phase transition [144–147]. Such a

sensor would have the advantage that state preparation is not required and, fur-

thermore, dissipation is a control parameter of the sensor dynamics, rather than an

error source.

In this chapter, we show that a single qubit laser is a minimalist model where

both ideas can be tested. A macroscopic laser with n photons can be described by

a coherent state of the light field with a mean value 〈a〉 =
√
neiθ, which assumes

the spontaneous breaking of the underlying lasing phase symmetry by choosing an

arbitrary value of θ [148]. This approach can be justified by assuming an infinitesimal

field (e.g., an environmental fluctuation) that fixes the laser phase [149]. However, in

a finite-size system (e.g., a single qubit laser) an external field with finite amplitude,

ε, is required to explicitly break the phase symmetry (see Fig. 9.1). Here the

thermodynamic limit is found when n → ∞ [150], at which the system undergoes

a spontaneous symmetry breaking (SSB), i.e., limε→0 limn→∞〈a〉 6= 0. This relation

implies that the order parameter 〈a〉 must increase with the system size n with an

scaling yet to be determined, leading to a high sensitivity to ε.

The chapter is structured as follows. Firstly, we present a semiclassical descrip-

tion in phase space of a single qubit laser in the presence of a weak symmetry
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breaking driving field. This allows us to estimate analytically the quantum Fisher

information (QFI) related to the amplitude |ε| and phase φ of the driving, which

further shows the connection between symmetry breaking and efficient parameter

estimation. We identify the optimal observables that fully exploit the system’s met-

rological capacity. Non-equilibrium criticality is then examined as an alternative

metrological resource with nonoptimal protocols using the average number of bo-

sons. We conclude with a discussion of possible error sources as well as applications.

Figure 9.1: Sketch of a explicit symmetry breaking in the Glauber-Sudarshan P

representation of the lasing steady state (9.9) when an external periodic driving

field ε 6= 0 is introduced.

9.3 Single qubit laser

In this section we consider a bosonic mode coupled by a Jaynes-Cummings interac-

tion to a two-level system (qubit) with levels |g〉 and |e〉. Additionally, we introduce

a periodic driving which becomes the target weak field. Both the qubit and driving

frequencies are assumed to be resonant with the bosonic mode. In an interaction

picture rotating at the mode frequency, the coherent dynamics is described by the
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Hamiltonian

H = HJC +Hd,

HJC = g(σ+a+ a†σ−), Hd = ε∗a+ εa†, (9.1)

where ε = |ε|eiφ, with |ε| and φ being the driving amplitude and phase, respectively.

σ± are the ladder operators of the two-level system, σ+ = |e〉〈g| and σ− = |g〉〈e|. In

addition to this coherent dynamics, the system is subjected to incoherent pumping

of the qubit and losses of the bosonic mode with rates γ and κ, respectively (see

diagram 9.2. The resulting dissipative process is well captured by the following

Figure 9.2: A diagram of a single qubit laser used as a probe for the weak field ε.

master equation for the system density matrix ρ,

ρ̇ = −i[H, ρ] + L{σ+,γ}(ρ) + L{a,κ}(ρ), (9.2)

where Lindblad super-operators are defined as L{O,Γ}(ρ) = Γ(2OρO† − O†Oρ −

ρO†O). In a mean field approximation to the case without driving (ε = 0) the steady-

state is determined by the pump parameter, Cp ≡ g2/γκ. This sets a dissipative

phase transition into a lasing phase when Cp > 1 [61], 〈a〉 being the order parameter.

To evaluate the response of the single qubit laser to an external driving, we need to

go beyond mean-field theory. Since we are only interested in the output laser field,

we start by finding an effective Liouvillian able to describe the reduced dynamics of

the bosonic mode. This can be accomplished in a strong pumping regime [54, 76],

i.e., γ � κ, g, |ε|, in which the qubit can be adiabatically eliminated, leading to
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an effective quartic master equation for the bosonic mode (see Appendix 9.10 for a

detailed derivation),

ρ̇f = −i[ε∗a+ εa†, ρf ] +L{a†,A}(ρf ) +L{a,C}(ρf ) +L{aa†,B}(ρf )−L{a†2,B}(ρf ). (9.3)

We have defined the coefficients A = g2/γ, B = 2g4/γ3, C = κ, and ρf =

Trquibt{L(ρ)} is the reduced density matrix of the bosonic field. Our expression

is valid in a regime of strong incoherent pumping, such that the probability of occu-

pation of the ground state can be neglected. This condition is justified both below

the lasing phase transition, Cp < 1, and slightly above the threshold, Cp & 1 (see

Appendix 9.10).

9.4 Semi-classical limit

The master equation obtained in equation (9.3) is still challenging to tackle ana-

lytically. By using phase space methods we shall obtain a Fokker-Planck equation

valid in a regime with high number of bosons [151, 152]. This will allow us to

get analytical results that will be assessed below by comparing to exact numerical

calculations. We start by introducing the coherent state or Glauber-Sudarshan P

representation of the effective master equation [54, 56], defined as

ρ(t) =

∫
d2αP (α, α∗, t)|α〉〈α|, (9.4)

where |α〉 is the coherent state |α〉 = exp (αa† − α∗a)|0〉. The function P (α, α∗)

plays a role analogous to that of a classical probability distribution over |α〉〈α|,

with the normalization condition
∫
d2αP (α, α∗, t) = 1, and expectation values of

normal ordered operators, 〈(a†)paq〉 =
∫
d2α(α∗)pαqP (α, α∗). Note that P is actually

a quasi-probability distribution, since it is in general not a positive distribution

function.

By substituting the representation (9.4) of ρ into equation (9.3), one may convert

the operator master equation into an equation of motion for P (α, α∗, t). This can

be accomplished by using the equivalences 3.23,3.24. An integration by parts with

the assumption of zero boundary conditions at infinity, which introduces an extra

minus sign for each differential operator, converts the integrand of equation (9.4)

into a product of |α〉〈α| and a c-number function of α, α∗. This leads to a differential



96

equation for P (α, α∗, t). When the laser is operating near the steady state and above

threshold, |α|2 is a large number of the order of the average number of photons.

Notice also that B is a very small coefficient compared to A, such that B/A ∝

(g/γ)2 � 1. Consequently, we shall retain only the most important terms in B.

This corresponds to dropping any contribution smaller than B|α|2α. In doing so,

we end up with the following Fokker-Planck equation for P ,

∂P

∂t
= − ∂

∂α
[(A− C −B|α|2)α− ε′]P + c.c.+ 2A

∂2P

∂α∂α∗
(9.5)

where ε′ ≡ iε. Let us write this equation in Cartesian coordinates, with α = x1 + ix2

and ∂/∂α = 1/2(∂/∂x1 − i∂/∂x2), then

∂P

∂t
= −

2∑
i=1

∂

∂xi
[(A− C −B~x2)xi − ε′i]P +

A

2

2∑
i=1

∂2P

∂x2
i

, (9.6)

where we introduce the two-dimensional vectors ~x = (x1, x2) and ~ε′ = (<(ε′),=(ε′)).

In the stationary state ∂P/∂t = 0, equation (9.6) may be rewritten as
∑

i ∂Ji/∂xi =

0, where the current ~J is defined by

Ji = [(A− C −B~x2)xi − ε′i]−
A

2

∂P

∂xi
. (9.7)

When the drift vector Ai ≡ [(A− C − B~x2)xi − ε′i] satisfies the potential condition

∂Ai/∂xj = ∂Aj/∂xi, as it does in our case, the solution to the Fokker-Planck equa-

tion is derived by imposing ~J = 0 [54]. This leads to a differential equation for P

that can be directly integrated to give

P (~x) =
1

N
exp

{
1

A

[(
A− C − B

2
~x2

)
~x2 − 2~ε′ · ~x

]}
, (9.8)

where N is a normalization constant. The steady-state solution (9.8) can be con-

veniently expressed in polar coordinates α = reiθ as follows,

P (r, θ) =
1

N
exp (−λr4 + µr2 − 2νr sin (θ − φ)), (9.9)

where we have introduced the parameters λ = B/2A, µ = (A−C)/A, and ν = |ε|/A.

Note that the probability distribution (9.9) is positive, which indicates that the

steady-state admits a classical description. Equation (9.9) can be used to calculate

expectation values in the steady state through parametric derivatives of the nor-

malization constant, N . In the appendix 9.11, it is detailed how to approximately
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calculate N using Laplace’s method together with explicit expressions of useful ob-

servables. In the absence of driving (ε = 0), the laser phase is uniformly distributed

in [0, 2π], implying that any average field quadrature vanishes. In contrast, when

ε 6= 0, the driving field explicitly breaks the phase symmetry and the state adopts

a preferred phase with exponential sensitivity as illustrated in Fig. 9.1. According

to equation (9.9) we expect the output laser field to have a phase delay of π/2 with

respect to the input driving.

Not any explicit symmetry breaking may lead to an advantageous sensing scheme.

However, when this is associated to a SSB in the thermodynamic limit, the corres-

ponding order parameter is expected to be very sensitive to such symmetry breaking

field. Such subclass of nontrivial explicit symmetry breaking process is henceforth

referred to induced symmetry breaking. In our case, this general symmetry argu-

ment is translated as a high sensitivity of the coherent component 〈a〉 to ε, which

implies that the single qubit laser may be used as a probe to estimate the amplitude

of extremely weak forces. The average field quadrature 〈P̂φ〉 = 〈i(ae−iφ − a†eiφ)〉

will be shown to be particularly sensitive to the external driving, and it follows the

following analytical expression,

〈P̂φ〉 = 2r0
I1(2νr0)

I0(2νr0)
≈

νr0�1

2r2
0

A
|ε|, (9.10)

where In(z) are the modified Bessel functions of the first kind, and r2
0 stands for

steady average number of bosons with no driving (see appendix 9.11 for detailed

derivation),

〈n〉ε≈0 = r2
0 = (A− C)/B. (9.11)

The SSB of the lasing phase transition here implies limε→0 limr2
0→∞〈P̂φ〉 6= 0. This

entails a certain scaling of 〈P̂φ〉 with the system size, here r2
0, now explicitly given

by equation (9.10). Figure 9.3 shows the comparison of these results with numerical

calculations of the exact and the adiabatic equation, Eqs. (9.2) and (9.3) respect-

ively. From Fig. 9.3 we differentiate two distinct regimes. First, we have a linear

regime 〈P̂φ〉 ∝ |ε| if |ε| is small enough, where 〈P̂φ〉 scales linearly with the number

of bosons. Essentially, the more pronounced the slope is, the higher the sensor sens-

itivity will be. Second, we have a saturation regime where 〈P̂φ〉2 ≈ 〈a†a〉 and the

laser admits a fully classical description [54].
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Figure 9.3: Plot of the averaged field quadrature 〈P̂φ〉 as a function of the amplitude

|ε|, showing the comparison of exact calculations of equation (9.2) (solid line), the

adiabatic equation (9.3) (dashed line) and analytical result by the Fokker-Planck

equation (dotted line). Parameters: g = 58, γ = 3000, κ = 1.

9.5 Quantum Fisher information and optimal meas-

urements

Equation (9.10) suggests that the induced symmetry breaking allows us to measure

weak field amplitudes |ε| � 1. The capability of this sensing scheme will be mainly

determined by its resolution. The theory of quantum Fisher information [27, 153]

provides us with an ultimate lower bound on the precision of parameter estimation

that is possible in a quantum model, which will be used the single qubit laser as a

probe.

Assume that a target parameter ϕ is encoded in a certain density matrix ρϕ. The

quantum Cramer-Rao bound establishes a lower bound to the error in the estimation

of ϕ,

∆2ϕ ≥ 1

NexpFQ[ρϕ]
(9.12)

where FQ[ρϕ] is the QFI and Nexp is the number of experiment repetitions. The

QFI can be viewed as a quantitative measure of distinguishability of a state ρϕ

from its neighbours ρϕ+δϕ. Thus it can be used as a quantitative characterization

of the maximal sensor resolution. A measurement scheme that saturates the bound

equation (9.12) is called optimal. The symmetric logarithmic derivative operation

(SLD) is known to be optimal for all quantum states [154]. It is defined by the
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Hermitian operator Lϕ satisfying the relation

∂ϕρϕ =
1

2
(ρϕLϕ + Lϕρϕ). (9.13)

The QFI is then given by FQ[ρϕ] = Tr
{
ρϕL

2
ϕ

}
. In the eigenbasis of ρϕ, i.e., ρϕ =∑

i λi(ϕ)|ei(ϕ)〉〈ei(ϕ)|, the SLD is written as

Lϕ[ρϕ] =
∑
i,j

λi+λj 6=0

2〈ei(ϕ)|ρ̇ϕ|ej(ϕ)〉
λi(ϕ) + λj(ϕ)

|ei(ϕ)〉〈ej(ϕ)|, (9.14)

First we shall focus on the estimation of the field amplitude |ε| for a given known

phase φ. By using the analytical result for the steady state equation (9.9), we aim for

deriving theoretical results for the SLD as well as the QFI. To do so, it is necessary

to solve the operator equation (9.13) for L|ε|. In this context, a comprehensive

solution of equation (9.13) is already known for Gaussian states in phase space, i.e.,

quadratic in α, α∗ [155]. Assuming the adiabatic elimination regime, i.e, γ � κ, g, |ε|,

the coefficients A,B satisfy A/B ∝ (γ/g)2 � 1. Hence the P function (9.9) can be

well approximated by the following Gaussian-like approximation,

P (r, θ) = N−1 exp (−(r − r0)2

2σ2
− νr sin (θ − φ)) (9.15)

where r2
0 = µ/(2λ) and σ2 = 1/(4µ). Even though this represents a simplification

with respect to the original P function (9.9), the state is still not Gaussian in the

variables α, α∗, for which exact solutions are known for the SLD and QFI [155].

Even so, let us try to solve equation (9.13) in the coherent-state representation.

Using equation (9.15), the left-hand side of equation (9.13) gives

∂|ε|P (r, θ) =

(
−N−1∂|ε|N +

i

A
(αe−iφ − α∗eiφ)

)
P. (9.16)

It turns out that N−1∂|ε|N is equivalent to the average of the field quadrature 〈P̂φ〉 =

〈i(ae−iφ−a†eiφ)〉. This result induces us to introduce the ansatz L|ε| = S0+Sa+S∗a†,

with S0, S proper coefficients, which corresponds essentially to the measurement of

a suitable field quadrature. Inserting this ansatz in the right-hand side of equation

(9.13) and bearing in mind the equivalences (3.23) and (3.24), we have

L|ε|ρ =

∫ ∞
0

∫ 2π

0

rdθdr(S0 + Sα + S∗(α∗ − ∂α))P, (9.17)
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with analogous result for ρL|ε|. In a deep lasing regime (well above threshold but

still within the validity regime of equation (9.3)) where r0 � σ, the derivative ∂α in

equation (9.17) can be simplified assuming that α = reiθ ≈ r0e
iθ, yielding

∂αP =
e−iθ

2
(
∂

∂r
− i

r

∂

∂θ
)P = (− α∗

2σ2
+

r0

2σ2
e−iθ +

i|ε|
A
e−iφ)P ≈ i|ε|

A
e−iφP. (9.18)

Identifying now terms from both sides of equation (9.13), the SLD reads

Lε[ρ|ε|] =
1

A

(
−〈P̂φ〉+

|ε|
A

+ P̂φ

)
. (9.19)

The contribution |ε|/A2 can be neglected in comparison with the contribution given

by P̂φ, leading to the SLD Lε[ρ|ε|] =
(
−〈P̂φ〉+ P̂φ

)
/A. Happily, this in turn implies

that 〈L|ε|〉 = 0, a property that any SLD must fulfill according to its own definition

(9.13). The QFI may now be calculated as FQ[ρϕ] = Tr
{
ρϕL

2
ϕ

}
in terms of a

parametric derivative of the normalization constant N introduced in equation (9.9),

specifically as the fluctuations of P̂φ (see Appendix 9.11),

FQ[ρ|ε|] =
2r2

0

A2

(
1 +

I2(2νr0)

I0(2νr0)
− 2

(
I1(2νr0)

I0(2νr0)

)2
)
≈

νr0�1

2r2
0

A2
. (9.20)

In Fig. 9.4 we show a comparison between the analytical result (9.20) and

an exact numerical calculation of equation (9.2) by using equation (9.14). There

are two important conclusions that are drawn from equation (9.20). Firstly, it

shows that the metrological capacity for estimating |ε| is maximal when the induced

symmetry breaking occurs, and decreases as the symmetry is already broken. This is

intuitively natural since the parameter |ε| is directly associated with the symmetry

breaking, and the gain of information is maximal at that point. This feature can

be reasonably expected in any sensing scheme relying on spontaneous symmetry

breaking as this one. Consequently, this type of sensing is advantageous when

measuring extremely weak fields as the precision naturally increases in such domain.

The parameters of the laser can be adjusted so that the amplitude remains in the

first-order approximation, where the precision remains constant for a fixed amplitude

as equation (9.20) indicates. Secondly, the QFI scales linearly with the steady

average number of bosons n as |ε| → 0. In the macroscopic limit, defined here

as r2
0 → ∞, FQ diverges as a result of the sensitivity of the steady state to an

infinitesimal perturbation, giving rise to a spontaneous symmetry breaking. These
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results show a useful connection between symmetry breaking and efficient parameter

estimation. The prior knowledge of φ in estimating |ε| may be eluded by performing

an average of different quadratures over the range [0, 2π], decreasing the QFI by a

1/2 factor but still conserving the same scaling.
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Figure 9.4: Plot of the quantum Fisher information F|ε| as a function of the amp-

litude |ε| that shows the comparison between an exact calculation given by equation

(9.2) and the analytical result (9.20). Parameters: g = 58, γ = 3000, κ = 1.

In the light of these results, we examine whether a similar approach can be used

for measuring the phase φ for a given amplitude. A completely analogous procedure

can now be used to solve again the operator equation (9.13). Now the left-hand side

of equation (9.13) gives

∂φP (r, θ) =
(
−N−1∂φN + 2ν(αe−iφ + α∗eiφ)

)
P. (9.21)

The term N−1∂φN = 〈2νr cos(θ−φ)〉 is easily shown to be zero. Using then a linear

ansatz Lφ = S0 + Sa + S∗a†, the right-hand side of equation (9.13) is analogous to

equation (9.17). The comparison between both sides of the equation yields the SLD,

Lφ[ρφ] = ν
(
X̂φ

)
. (9.22)

where X̂φ is the field quadrature X̂φ = (ae−iφ + a†eiφ). The operator Lφ[ρφ] also

satisfies 〈Lφ〉 = 0 as required by the definition (9.13) . The QFI is then FQ[ρφ] =

Tr
{
ρφL

2
φ

}
= ν2〈X̂2

φ〉, which turns out to be equivalent to

FQ[ρφ] = ν〈P̂φ〉 ≈
νr0�1

2r2
0|ε|2

A2
, (9.23)
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where we have used equation (9.10). This result predicts that the QFI scales linearly

with n and quadratically with the field amplitude as |ε| → 0. Graphically, the

behavior of the QFI in this case is indirectly given in Fig. 9.3. In contrast to

equation (9.20) for estimating the amplitude, here the QFI increases with |ε| since

naturally a nonzero signal is required to have a localized phase. Note that the

optimal observable X̂φ depends itself on the target parameter, φ. To operate in the

optimal measurement regime we need a first estimation of the observable, φ0. If

such estimation satisfies the condition δφ = (φ−φ0)� 1, the quadrature X̂φ0 leads

to an optimal protocol for estimating φ, with a precision determined by equation

(9.23). This requirement is analogous to the optimal free precession time in Ramsey

spectroscopy [156].

In summary, our optimal scheme makes use of the coherent component 〈a〉 to

estimate |ε| within the linear regime of induced symmetry breaking, P̂φ and X̂φ being

the optimal observables for estimating the amplitude |ε| and phase φ respectively.

We stress the fact that the quantity r2
0 appearing in Eqs. (9.20) and (9.23) refers to

the number of bosons in the steady state, the main contribution of which comes from

the incoherent pumping but not the target field, concretely r2
0 ≈ γ/κ in the lowest

order. This implies that one can increase the precision in parameter estimation for a

fixed driving intensity ε solely by increasing the laser pumping γ. Additionally, recall

that none of the results presented in this chapter depend on the initial quantum state

of the bosonic field, as the system steady state is unique for all of them.

9.6 Criticality as a metrological resource

The results obtained in Eqs. (9.20) and (9.23) constitute the maximal metrological

capacity of the single qubit laser for estimating |ε| and φ respectively, as they saturate

the Cramer-Rao bound (9.12). However, estimation by nonoptimal observables may

be experimentally more accessible depending on the particular platform used. Here

we shall study number of bosons in the steady state n, which is nonoptimal for this

model. Using the analytical results for n and ∆n (see Appendix 9.11), the expected

relative error above threshold for estimating |ε| by means of n is

∆|ε|
|ε|

=
1

|ε|
∆n
∂n
∂|ε|

=
Cpκ

gν2
+

g

2γ

(
Cp − 1

Cp

)
+O(|ν|2). (9.24)
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equation (9.24) indicates that the precision increases as we approach the critical

point Cp = 1, at which the precision scales as ∆|ε|/|ε| ∝ κ5/2/(|ε|2γ1/2)1. The ratio

between the optimal and nonoptimal protocols, (∆|ε|)non/(∆|ε|)op ∝ κ/|ε| suggests

that both methods give comparable resolutions when ε ≈ κ. Figure 9.5 depicts exact

numerical results for ∆|ε|/|ε|, confirming maximal precision around the critical point

as the thermodynamic limit is approached. Such limit is reached when n→∞ [150],

or equivalently γ/κ→∞.

The maximal precision given by the critical point manifests a connection between

nonequilibrium criticality in dissipative systems and efficient parameter estimation.

An analogous result has been already explored for closed systems [144]. Physically,

it is intuitive to think that the system at the critical point becomes more sensitive to

any perturbation, leading to a greater sensor resolution. The potential of criticality

for sensing can be exploited in setups where the qubit-boson coupling, g, can be

controlled with the necessary accuracy to ensure that the system stays at the critical

point. This is actually the case in, e.g., single trapped ion phonon lasers [157], where

this coupling is implemented by a laser and its strength modulated by its intensity.

Also, in superconducting qubits, qubit-photon coupling terms can be induced and

controlled with periodic driving fields [86].

A phase estimation by measuring the number of bosons is also possible if we ex-

tend the previous setup to arrange an adequate interferometric scheme (see diagram

9.6). Concretely, we add a new reference field term Href = |ε0|(ae−iφ0 + a†eiφ0) to

equation (9.1), where we assume that |ε0|, φ0 are known parameters. Both the probe

field and the reference field must be comparable to observe interference effects, so

we shall assume for simplicity that they both have the same amplitude, |ε0| = |ε|.

One may treat this new input field as we did in the previous sections, in which case

the P function for the steady state will be

P (r, θ) =
1

N
exp (−λr4 + µr2 − 2ν ′r sin (θ − φ′)) (9.25)

with ν ′ = 2ν cos[(φ − φ0)/2] and φ′ = (φ + φ0)/2. Comparing equation (9.25) with

equation (9.9), we note that the addition of the reference field to the probe field

leads to a total driving field with phase φ′ and amplitude |ε′| = 2|ε| cos((φ− φ0)/2).

1An exact calculation at the critical point shows that the precise scaling is ∆|ε|/|ε| = (π/(−4 +

2π))1/2κ5/2/(|ε|2γ1/2)
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Figure 9.5: Plot of the relative error ∆|ε|/|ε| by using the average number of bosons

as a function of the pump parameter Cp = g2/γκ as the thermodynamic limit is

approached, γ/κ→∞ (|ε| = 0.1); ranging consecutively from γ/κ = 5, 0 · 102 at the

top line up to γ/κ = 3, 0 · 103 at the bottom line.

Interference has thus translated the information of φ into a new phase-dependent

amplitude ε′, which can be now estimated through measurements of the average

boson number with the precision shown in equation (9.24). In the lowest order this

leads to a precision ∆φ ≈ Cpκ/(gν
2 sin(φ−φ0)), showing that the optimal operating

condition is φ− φ0 = π/2.

9.7 Possible sources of errors

One may wonder whether potential sources of error in real experiments could jeop-

ardize our previous results. In the appendix 9.12 we consider three possible sources

of error: dephasing of the qubit, heating of the bosonic mode, and detuning ∆

between the qubit and the mode. Our calculations show that the detuning is expec-

ted to be negligible as long as γ � ∆, while the dephasing and heating result in a

renormalization of the constants A and B.

Additionaly, in the case that we are dealing with cavity modes, we must note

that the observables calculated throughout this work refer to measurements of the

field inside the cavity. It would be possible to use the same observables for the

field outside the cavity, resulting in a renormalization of the parameters. Such

renormalization would not alter the fundamental scalings found in our study, as
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Figure 9.6: A diagram of the interferometer: a new reference field ε0 = |ε|eφ0 with

known phase φ0 is applied into the cavity.

they rely on general symmetry properties of the model. In essence, we conclude

that our results are robust to any perturbation that respects the symmetry of the

model and the universal scalings of the lasing phase transition.

9.8 Physical Implementations

Single qubit photon lasers can be implemented with single atoms [158] or super-

conducting qubits [86, 159, 160]. Furthermore, our ideas can be also applied to

single qubit phonon lasers [157, 161]. Here, the quantized excitations (phonons)

of a trapped ion play the role of the photons in an optical laser, whereas internal

electronic levels provide us with a qubit. Our scheme would lead to a precise meas-

urement of internal ultra-weak forces of the form Hf = Fx0(a+a†) resonant with the

trapping frequency [162–165]. Phonon lasing has actually been already observed in a

single trapped ion experiment [157]. All the interactions and techniques required to

implement this idea are routinely used in trapped ion experiments, see, for example,

[11] for an excellent review on the topic.

To have full control of the parameters involved in our model we will consider a

two-ion crystal in which one of the ions acts as a single-atom phonon laser, whereas

a second auxiliary ion is used to provide us with a sympathetic cooling mechanism
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[166]. To avoid the requirement of individual addressing of each of the two ions,

different species could be used. We assume that ions are weakly coupled by the

Coulomb interaction. We introduce phonon annihilation operators a1 and a2 as-

sociated to quantized vibrations of ions 1 and 2, respectively. The coupling term

between the ions takes the form [167, 168],

Hc = tC

(
a†1a2 + a1a

†
2

)
. (9.26)

If we consider radial vibrations, then tC = 2e2/(md3ω2
T), where d0 is the distance

between ions, m refers to the ion’s mass and ωT is the trapping frequency.

Let us consider now the first ion’s quantum dynamics. To make the connection

with trapped ion physics clearer, we will work in a spin basis where the role of states

|e〉 and |g〉 is interchanged with respect to the discussion in the main text. In our

trapped-ion scheme, spin pumping will be induced by the radiative decay from an

excited state |e〉 to the ground state |g〉, whereas a spin-phonon coupling of the form

(σ+a† + σ−a) will be induced. This is described by the following Liouvillian,

L1(ρ) = −i[H1, ρ] + L{σ−1 ,γ}(ρ). (9.27)

The Hamiltonian acting on ion 1 includes a blue-sideband coupling between the

internal state of the ion and the local vibrational mode as well as the coupling to

the external force that we aim to measure,

H1 = g(σ+
1 a
†
1 + σ−1 a1) + ε(a†1 + a1). (9.28)

We have introduced ladder operators, σ+
1 , σ−1 , associated to the internal state of ion

1. The blue side-band term can be induced by lasers with frequency ωL = ω0 + ωT,

where ω0 is the frequency of the internal state transition [11]. Finally, the last term

of Eq (9.27) is simply the radiative decay of the excited state [11]. To ensure that

the dynamics of the ion is constrained to only two levels, one could simply choose

|g〉 and |e〉 as the two levels of a cycling transition.

The only missing element is a cooling mechanism acting on ion 1. For this we will

use ion 2 to provide us with a cooling medium by an effect known as sympathetic

cooling. For this we assume that ion 2 is being continuously laser cooled with a rate

κ2,

L2 = L{a2,κ}(ρ). (9.29)
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If the Coulomb coupling is small relative to the cooling rate (tC � κ2), we can

adiabatically eliminate ion 2 and obtain an effective cooling term for ion 1, with

cooling rate κeff = t2C/κ2. The reduced density matrix for ion 1, ρ1, is thus subjected

to the following quantum dynamics,

ρ̇1 = L1(ρ1) + L{κeff ,a1}(ρ1). (9.30)

Our scheme is a phononic version of the single qubit laser described in the main

text. To assess the sensitivity of such a device in the measurement of external forces,

we consider now some typical values for cooling rates and vibrational couplings.

We focus on the optimal measurement protocol, which would imply measuring the

quadrature, P̂φ, defined in the main text. Quadratures of vibrational operators

can be efficiently measured by coupling phonon observables to the ion’s internal

state and detecting the emitted fluorescence (see for example [11]). By using our

calculation of the error as estimated from the QFI we get

∆ε =
1√

FQ[ρ|ε|]
=

A√
2r0

. (9.31)

To estimate A, we express it like A = g2/γ = Cpκeff ≈ κeff , where we have assumed

that we work in a regime with cooperativity parameter Cp ≈ 1.

Our scheme can be applied to measure ultra-weak forces. The relation between

the driving strength |ε| and the applied external force, F , is |ε| = Fx0, where

x0 =
1√

2mωT

, (9.32)

is the size of the vibrational ground state. Our final expression for the force sensit-

ivity reads (in standard units including ~),

∆F ≈ ~κeff√
2nphx0

, (9.33)

where we have used the fact that the number of phonons, nph ≈ r2
0. To get an

estimate of the precision with which an ultra-weak force could be measured, we

consider that ion 1 is 40Ca+ and ωT/(2π) = 10 MHz, which yields x0 = 3.5 nm.

Other typical values are tC/(2π) = 4 kHz [168] and k2/(2π) = 40 kHz, leading to

κeff/(2π) = 0.4 kHz. With those values we get

∆F ≈ 53 yN/
√
nph. (9.34)
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By increasing the number of phonons in the lasing regime to values such as nph = 2× 103,

one could obtain precisions ∆F ≈ 1.2 yN, well within the yocto-Newton regime and

beyond the precision of results reported in experiments [162].

Large phonon numbers are in principle not difficult to get in a trapped-ion

phonon laser. For example, taking into account typical values of γ/(2π) = 20

MHz our equation (9.11) yields the value nph = 2× 103 with a side-band coupling

g/(2π) = 66.5 kHz, well within the state of the art [11].

A limiting factor could be the presence of motional heating, κh. However, heating

rates in linear Paul traps can be as low as 0.1 vibrational quanta per ms, which

translates into κh/(2π) = 0.008 kHz [169]. Under those conditions, κeff � κh and

the effect of heating could be neglected or incorporated into minor corrections to

the trapped-ion sensor (see Sec. 9.7).
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9.10 Appendix A: Adiabatic elimination

Here we shall derive the effective quartic master equation claimed in equation (9.3),

as a result of the adiabatic elimination of the fast spin variable. Firstly, we shall

trace over the spin degree of freedom from the master equation for the single qubit

laser,

ρ̇ = −i[H, ρ] + L{σ+,γ}(ρ) + L{a,κ}(ρ), (9.35)

thereby obtaining an equation for the reduced density matrix of the bosonic field

ρ̇f = Trqubit{L(ρ)}. Namely, this equation reads

ρ̇f = −ig(aρge + a†ρeg − ρgea− ρega†)−

− i(εa†ρf + ε∗aρf − ερfa† − ε∗ρfa†)+

+ κ(2aρfa
† − a†aρf − ρfa†a), (9.36)
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where we introduced the notation ρge = 〈g|ρ|e〉 = ρ†eg and ε = |ε|eiφ. To obtain a

closed equation for the reduced density matrix ρf , we have to eliminate the operators

ρge, ρeg from equation (9.36). We obtain the corresponding equations of motion for

these operators using the original master equation,

ρ̇ge = −ig(a†ρee − ρgga†)− γρge, (9.37)

where we have neglected the contributions from κ and ε in comparison with γ. In

the limit γ � κ, g, |ε|, we can adiabatically eliminate the operators ρge and ρeg

from equation (9.36) by taking ρ̇ge ≈ 0 in equation (9.37) and substituting their

steady-state solutions,

ρge = −i g
γ

(a†ρee − ρgga†). (9.38)

As the resulting equation still depends on the operators ρgg and ρee, we make use

of the single qubit master equation to obtain the equations of motions of these

operators,

ρ̇ee = −ig(aρge − ρega†) + 2γρgg (9.39)

ρ̇gg = −ig(a†ρeg − ρgea)− 2γρgg (9.40)

where we again neglect terms with κ and ε. One may now obtain a perturbative

solution to the steady states of Eqs. (9.39) and (9.40) in terms of the field density

matrix ρf . To do so, let us adiabatically eliminate ρgg by taking ρ̇gg ≈ 0 in equation

(9.40), yielding

ρgg = − ig
2γ

(a†ρeg − ρgea) =
g2

2γ2
(2a†ρeea− a†aρgg − ρgga†a). (9.41)

In a first-order approximation, the ground-state population is negligible due to the

fast pumping of the atoms (γ � 1). Therefore, we expect to find ρgg ≈ 0 and

ρee = ρ− ρgg ≈ ρf in first order. A second-order correction is achieved by inserting

this first-order approximation into equation(9.41), hence

ρgg =
g2

γ2
a†ρfa (9.42)

ρee = ρf − ρgg = ρf −
g2

γ2
a†ρfa. (9.43)
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One can finally insert Eqs. (9.42) and (9.43) into equation (9.36) to arrive at the

desired closed equation for ρf ,

ρ̇f = −i(εa†ρf + ε∗aρf − ερfa† − ε∗ρfa)+

+
g2

γ
(2a†ρfa− aa†ρf − ρfaa†)+

+
2g4

γ3
(aa†ρfaa

† − a†2ρfa2)+

+ κ(2aρfa
† − a†aρf − ρfa†a). (9.44)

The second term in the right-hand side of equation (9.44) accounts for the single

photon emission by the excited qubit (linear gain), while the third represents the

contribution of two cycles of emission and re-excitation (gain saturation). equation

(9.44) can be cast in Lindblad form as presented in equation (9.3). A few brief

remarks are worth mentioning about the single qubit laser physics. Using equation

(9.44) and setting ε = 0, we can easily derive an equation for the diagonal elements

ρnn, namely

ρ̇nn = −(2A−B(n+ 1))(n+ 1)ρnn

+ 2Anρn−1,n−1 −Bn(n− 1)ρn−2,n−2

− 2Cnρnn + 2C(n+ 1)ρn+1,n+1, (9.45)

where we defined the coefficients A = g2/γ, B = 2g4/γ3 and C = κ. In contrast

to the classic Scully-Lamb treatment of the four-level laser [76], no detailed balance

solution can be found to equation (9.45). The rate equation for the average photon

number 〈n〉 =
∑
nρnn can be also derived from (9.45),

〈ṅ〉 = 2(A− C)〈n〉+ 2A−B(2〈n2〉+ 5〈n〉+ 5). (9.46)

According to equation (9.46), there will be an initial exponential increase in the

mean photon number if A > C, hence A = C is the threshold condition for the laser

phase. This agrees with the prediction of a mean field treatment to this problem,

in which the lasing phase is found when the pump parameter Cp ≡ g2/γκ satisfies

Cp > 1 [61].

We now address the conditions of validity of the adiabatic elimination. Using equa-

tion (9.42), the condition ρgg ≈ 0 is translated into

〈σ+σ−〉 = Tr{ρgg} =

(
g

γ

)2

(1 + n)� 1. (9.47)
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Below threshold (Cp < 1), this is satisfied as long as g/γ � 1. Above threshold

(Cp > 1), we can estimate n = (A− C)/B (see App. 9.11), which leads to

〈σ+σ−〉 ≈ 1

2

Cp − 1

Cp

� 1. (9.48)

Consequently, for the adiabatic elimination to be self-consistent above threshold we

must require Cp & 1.

9.11 Appendix B: Laplace’s method

We shall calculate different observables associated to the P (α, α∗) function obtained

in equation (9.9), corresponding to the steady-state solution of the Fokker-Planck

equation (9.5). To do so, it is first necessary to compute the normalization constant

N given in (9.9). This can be approximately integrated using Laplace’s method,

which is helpful for integrals of the form

I(s) =

∫ ∞
−∞

f(x)esg(x)dx ≈

√
2π

sg′′(x0)
f(x0)esg(x0), (9.49)

in which x0 stands for the global maximum of g(x), g′′(x0) represents its second

derivative evaluated at x0, and f(x) varies slowly around x0 and is independent of

the parameter s. In our case, N has the form

N =

∫ ∞
0

∫ 2π

0

rdθdre(−λr4+µr2−2νr sin (θ−φ)). (9.50)

Integrating over θ gives

N = 2π

∫ ∞
0

rdrI0(2νr)e(−λr4+µr2), (9.51)

where In are the modified Bessel functions of the first kind. Above threshold, where

µ� λ, the normalization constant N is approximated by equation (9.49) as

N ≈
√
π3

λ
I0(2νr0) exp

(
µ2

4λ

)
, (9.52)

where r0 =
√
µ/2λ. The laser field quadrature 〈P̂φ〉 = 〈i(ae−iφ − a†eiφ)〉 may now

be computed by taking the parametric derivative 〈P̂φ〉 = N−1(∂N/∂ν), which gives

〈P̂φ〉 = 2r0
I1(2νr0)

I0(2νr0)
. (9.53)
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Assuming that |ε| � 1, one may expand equation (9.53) in a Taylor series as

〈P̂φ〉 ≈ 2νr2
0 − ν3r4

0 +O(ν4), (9.54)

which in first order indicates a linear dependence in |ε| as claimed in equation (9.10).

To compute the uncertainty of 〈P̂φ〉 a second derivative is required, specifically

∆2P̂φ = 〈P̂ 2
φ〉 − (〈P̂φ〉)2 = (∂2N/∂ν2)/N − ((∂N/∂ν)/N)2, the result of which reads

∆2P̂φ = 2r2
0

(
1 +

I2(2νr0)

I0(2νr0)
− 2

(
I1(2νr0)

I0(2νr0)

)2
)
. (9.55)

When |ε| � 1, a Taylor expansion of (9.55) gives

∆2P̂φ = 2r2
0

(
1− 3ν2r2

0

2
+O(ν4)

)
. (9.56)

On the other hand, the parametric derivatives with respect to µ can be related to

the average number of bosons and its uncertainty. First, the average number of

bosons 〈n〉 = 〈r2〉 is given by 〈n〉 = N−1(∂N/∂µ), yielding

〈n〉 = r2
0 +

νr0

µ

I1(2νr0)

I0(2νr0)
= r2

0 +
ν

2µ
〈P̂φ〉. (9.57)

If |ε| � 1, equation (9.57) is approximated by

〈n〉 = r2
0 +

r2
0ν

2

µ
−O(ν4). (9.58)

See Fig. 9.7. The corresponding uncertainty can be computed as ∆2n = 〈n2〉 −

(〈n〉)2 = (∂2N/∂µ2)/N − ((∂N/∂µ)/N)2. The final result of such calculation gives

∆2n =
2µ+ ν2

4λµ
− ν2

2λµ

(
I1(2νr0)

I0(2νr0)

)2

− r0ν

2µ2

I1(2νr0)

I0(2νr0)
+

ν2

4λµ

I2(2νr0)

I0(2νr0)
. (9.59)

If |ε| � 1, ∆2n is approximated by

∆2n =
1

2λ
− ν4

8λ2
+O(ν8). (9.60)

Finally, the averaged field quadrature 〈X̂φ〉 = 〈(ae−iφ+a†eiφ)〉 and its uncertainty

are needed to compute the quantum Fisher information. The former is directly given

by the parametric derivative 〈X̂φ〉 = (∂N/∂φ)/N = 0. From equation (9.9) one can

show that the relation (∂2N/∂φ2)/N = −ν〈P̂φ〉 + ν2〈X̂2
φ〉 holds, allowing us to

compute the field uncertainty ∆2X̂φ analytically as

∆2X̂φ = 〈X̂2
φ〉 = ν−1〈P̂φ〉, (9.61)

since ∂N/∂φ = 0.
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Figure 9.7: Plot of the averaged number of bosons as a function of the amplitude

|ε|, showing the comparison of exact calculations (solid line), the adiabatic equa-

tion (9.44) (dashed line) and analytical results by Laplace’s method (dotted line).

Parameters: g = 58, γ = 3000, κ = 1

9.12 Appendix C: Sources of error

In this section we discuss in more detail how possible sources of error could affect

the ideal dynamics as presented in equation (9.35). On the one hand, we consider

two possible noise terms for the dissipation: a nonradiative dephasing process of the

qubit at rate γdep plus heating of the bosonic mode at rate κh. These terms can be

modeled as

(ρ̇)err = −γdep

2
(σzρσz − ρ) + κh(2a†ρfa− aa†ρf − ρfaa†), (9.62)

which have to be added to the general master equation (9.35). The dephasing

term changes equation (9.37) for ρeg just by a renormalization of the pumping γ′ =

γ+γdep/2 whereas leaving the equations (9.40) and (9.39) intact. Hence, Eqs. (9.38)

and (9.42) are modified as

ρge = −i g
γ′

(a†ρee − ρgga†) (9.63)

ρgg =
g2

γγ′
a†ρfa. (9.64)

The heating term has the same form as the second term in equation (9.36). As a

result, the effect of this process turns out to be a renormalization of the coefficients
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A,B, such that

A′ =
g2

γ′
+ κh, B′ =

g4

(γ′)2γ
≈ g4

γ3 + γ2γdep

. (9.65)

On the other hand, we also consider a possible detuning between the mode fre-

quency ω and the qubit frequency δ. In an interaction picture rotation at the mode

frequency, this effect is included as a new term in the Hamiltonian as follows

H = HJC +Hd +
∆

2
σz, (9.66)

where ∆ = δ − ω is the detuning. This term alters equations (9.38) and (9.42) as

follows

ρge = −i g

γ − i∆
(a†ρee − ρgga†) (9.67)

ρgg =
g2

γ2 + ∆2
a†ρfa. (9.68)

Consequently, equation (9.44) is modified by adding a new term with a prefactor

g2∆/(γ2 + ∆) that can be safely neglected, and a renormalization of the coefficients

A,B, such that

A′ =
g2

γ(1 + (∆
γ

)2)
, B′ =

g4

γ3(1 + (∆
γ

)2)
. (9.69)

As we are in the strong pumping regime γ � ∆, the effect of a possible small detun-

ing is expected to be negligible. In conclusion, we observe that the possible sources

of error considered, i.e., dephasing, heating and detuning, result in a renormalization

of the constants defined in the ideal case, but they are not expected to jeopardize

the sensing process or the performance in a significant way.
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Chapter 10

Heisenberg scaling with classical

long-range correlations

10.1 Abstract

The Heisenberg scaling is typically associated with nonclassicality and entanglement.

In this work, however, we discuss how classical long-range correlations between

lattice sites in many-body systems may lead to a 1/N scaling in precision with the

number of probes. In particular, we show that networks of coupled single qubit

lasers can be mapped onto a classical XY model, and a Heisenberg scaling with

the number of sites appears when estimating the amplitude and phase of a weak

periodic driving field.

10.2 Introduction

Quantum sensing is expected to become one of the key quantum technologies in

the short/mid-term, with a wide variety of applications ranging from gravity map-

ping [28] to magnetic detection of single-neuron activity [29]. In this landscape,

quantum resources such as entanglement or nonclassical states of light have been

extensively studied as a way to outperform classical resources [25, 26]. In general

terms, quantum metrology investigates procedures that accomplish some enhance-

ment in precision, efficiency or simplicity of implementation by means of quantum

effects [43]. For instance, it is now well established that quantum correlations among
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the initial state of the probes in Ramsey interferometry may surpass the so-called

standard quantum limit or shot-noise limit [25]. In this limit, the precision in para-

meter estimation scales as 1/
√
N , where N is the resource count (number of probes

in our case). Quantum effects may give rise to an increase in precision to reach the

so-called Heisenberg limit, which scales as 1/N . Frequently, however, these potential

benefits are hindered by the effect of noise and decoherence over delicate quantum

states [135, 170]. For example, the incoherent loss of a photon in a NOON state,

well-known in optical interferometry for leading to a Heisenberg scaling, turns it

into a useless mixed state [43].

In the last years, different protocols were conceived to produce robust sens-

ing schemes, such as quantum illumination [171–174] or quantum error correction

[175, 176]. Ideally, one would like to combine the enhancement given by the Heis-

enberg scaling with the robustness of classical states. On the one hand, although

dissipation is typically considered as an obstacle, it may be turned into an asset

to engineer advantageous states for quantum metrology. Useful symmetry proper-

ties and criticality exhibited by dissipative phase transitions have been proposed as

useful resources for sensing purposes [177, 178]. This approach has the advantage

that no initial state preparation is required and furthermore, the steady state may

be naturally robust against noise, which is normally the key limiting factor in other

schemes. On the other hand, one could exploit the correlations naturally developed

in many-body systems as an alternative to the initial preparation of quantum correl-

ations in Ramsey interferometry. In particular, lattice systems with local (nearest-

neighbours) interactions are now within the state-of-the-art techniques, which en-

ables the study of a rich variety of dissipative phase states and transitions [53, 179].

The potential benefits of local interactions and quantum phase transitions in closed

systems have been already considered [144, 180]. In Fig. 10.1, all these ideas are

schematically compared with the canonical Ramsey interferometer. Additionally,

there have been proposals of nonlinear estimation strategies going beyond the 1/N

Heisenberg-like scaling that rely on long-range many-body interactions as the gener-

ator of translations of the parameter to estimate [181–184]. A proper resource count

showed that this was compatible with a Heisenberg limit based on the Margolus-

Levitin bound [95, 96]. In this work the target parameter is incorporated in a linear
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Hamiltonian and it is based on nearest-neighbour interactions between sites so that

the resources scale with N .

Figure 10.1: Comparison with Ramsey interferometry [43]. ρ0 represents the initial

state of N probes and local detections are performed at the end (orange semicircles).

a) Entanglement among the probes (green box) is generated before they are fed into a

unitary channel Uϕ that leads to a joint state ρNϕ . b) Initial probe states evolve under

a Markovian channel Lϕ with first-neighbour interactions among them (blue lines).

The state preparation and the interaction with the probes occur simultaneously.

This work presents the following results. (i) We introduce a specific dissipative

model of N single qubit lasers with an effective dissipative-mediated coupling in first-

neighbours. (ii) The steady state of this model is shown to be formally equivalent to a

thermal state of the classical XY model subjected to an external field. (iii) Analytical

expressions of optimal observables for estimating the amplitude and phase of a

weak periodic driving as well as the corresponding Fisher information are presented.

A Heisenberg scaling with the number of lattice sites is manifested as a result of

classical long-range correlations in the lattice. These long-range correlations are

naturally developed by the system dynamics with short-range interactions, typically

present in networks of quantum optical systems such as superconducting circuits,

cavity QED and trapped ions, on which our work is focused. As a result, even though

the resources scale with N , one yet may achieve a quantum Fisher information

scaling as N2.
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10.3 Lattice of single-qubit lasers

We shall study a chain of N identical coupled single-qubit lasers. This system is

a generalization of our previous scheme in [177]. Every single-qubit laser consists

of a bosonic mode aj coupled by a Jaynes-Cummings interaction to a two-level

system (qubit), with levels |g〉 and |e〉, subjected to incoherent pumping of the qubit

and losses of the bosonic mode with rates γ and κ, respectively. These dissipative

processes are well-described though appropriate master equations [61], for which the

following notation for Lindbald super-operators (dissipators) will be employed,

L{O,Γ}(ρ) = Γ(2OρO† −O†Oρ− ρO†O). (10.1)

Each mode is additionally fed with a weak coherent periodic driving field whose

amplitude |ε| and phase φ are aimed to be estimated. The qubit and the driving

frequencies are in resonance with the bosonic modes.

We are interested in implementing an incoherent coupling of each qubit laser

with its neighbours, which will induce classical correlations among them. Dissip-

ative couplings appear naturally through evanescent modes in arrays of coupled

macroscopic lasers [185–187]. However in microscopic systems of single-mode cavity

arrays [53] or superconducting circuits [47], bosonic modes are coupled by coherent

photon tunneling terms. To get a dissipative coupling from these coherent terms,

we assume that the cavities are coupled by intermediate auxiliary modes bk with

a fast photon decay rate, κ̃ (see Fig. 10.2). The coherent hopping is given by the

Hamiltonian term,

Hhop = −t
∑
〈k,j〉

(a†jbk + b†kaj+1 + h.c.), (10.2)

with t being the photon tunneling amplitude. The adiabatic elimination of these

auxiliary modes results in an effective dissipative interaction. This can be shown by

calculating the Heisenberg equations for bk, yielding

ḃk = −it(aj + aj+1)− κ̃bk, (10.3)

where aj and aj+1 are the neighbouring modes. In the case that bk is a fast decaying

mode, i.e., κ̃� 1, one may adiabatically eliminate it by taking ḃk ≈ 0 and using its

steady-state solution,

bk = −it
κ̃

(aj + aj+1). (10.4)
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The substitution of equation (10.4) in the complete dynamics will result in the

effective elimination of the direct hopping (10.2), whereas the dissipator of the in-

termediate mode originates an effective dissipative-mediated coupling given by,

L{bk,κ̃} → L{aj+aj+1,
t2

κ̃
}. (10.5)

In an interaction picture rotating at the mode frequency and performing such adia-

batic elimination, the whole dynamics is described by the following master equation

for the system density matrix ρ,

ρ̇ = −i[H, ρ] +
N∑
j

(
L{σ+

j ,γ}
+ L{aj ,κ} + L{aj+aj+1,

t2

κ̃
}

)
(ρ) (10.6)

where the Hamiltonian is given by,

H =
N∑
j

HJC
j +

N∑
j

Hd
j ,

HJC
j = g(σ+

j aj + a†jσ
−
j ), Hd

j = ε∗aj + εa†j, (10.7)

and ε = |ε|eiφ. Note that the last dissipator in equation (10.6) represents the ef-

fective dissipative-mediated coupling in first-neighbours. A mean field calculation of

(10.6) predicts a dissipative phase transition to a lasing phase when the renormalized

pumping parameter

C̃p =
Cp

(1 + 3(t/κ)2)
(10.8)

satisfies C̃p > 1 (Cp ≡ g2/(κγ)) (see appendix 10.9).

For sensing purposes, the single qubit laser will be prepared to work in a regime of

large number of bosons [177]. This can be accomplished in a strong pumping regime

of the two-level systems, i.e., γ � g, κ, |ε|, in which the qubits can be adiabatically

eliminated [54]. This leads to the following effective quartic master equation for the

bosonic mode (see appendix 10.10 for details),

ρ̇f = −i
N∑
j

[ε∗aj + εa†j, ρf ] +
N∑
j

L{aj+aj+1,D}(ρf ) (10.9)

+
N∑
j

(
L{a†j ,A} + L{aja†j ,B} − L{(a†j)2,B} + L{aj ,C− t2κ }

)
(ρf ).

We have introduced the coefficients A = g2/γ, B = 2g4/γ3, C = κ + D, D = t2/κ̃,

and ρf = Trqubit{L(ρ)} is the reduced density matrix of the bosonic field. Equation

(10.9) is valid below the critical point, C̃p < 1, and slightly above it, Cp & 1.
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Figure 10.2: General scheme of the dissipative-mediated coupling. Neighbouring

single qubit lasers are coupled through a coherent hopping term to a fast decaying

mode at rate κ̃, which is adiabatically eliminated. Each single qubit laser is subjected

to incoherent qubit pumping at rate γ, mode losses at rate κ and a periodic driving

field ε.

10.4 Semi-classical limit

Equation (10.9) can be more conveniently expressed as an equation in phase space.

Concretely, we shall use the Glauber-Sudarshan P representation [54] of the effective

master equation, defined as

ρ(t) =

∫
d2αP (α, α∗, t)|α〉〈α| (10.10)

where |α〉 is the coherent state |α〉 = exp (αa† − α∗a)|0〉. The function P (α, α∗)

is a quasi-probability distribution over |α〉〈α|, with the normalization condition∫
d2αP (α, α∗, t) = 1 and expectation values given by 〈(a†)paq〉 =

∫
d2α(α∗)pαqP (α, α∗).

The conversion between the operator master equation (10.9) and its representation

in phase space can be carried out thanks to the following equivalences 3.23 and

3.24. In a regime of large number of bosons |α|2 � 1, the substitution of this rep-

resentation leads to an equation of motion for P (α, α∗, t) (see Appendix 10.11 for

derivation) with the form of the well-known Fokker-Planck equation [188],

∂P

∂t
= +2A

∑
j

∂2P

∂αj∂α∗j
(10.11)

−
∑
〈j,k〉

∂

∂αj
[(A− C −B|αj|2)αj −Dαk − ε′]P + c.c.,

where ε′ ≡ iε and 〈j, k〉 stands for first neighbours. Equation (10.11) presents the

adequate structure so that the steady state may be analytically integrated using

a certain detailed balance condition (see appendix 10.11). In polar coordinates
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αj = rje
iθj , the steady state reads as follows,

P (~r, ~θ) =
1

Z
exp

∑
j

(µr2
j − λr4

j − 2νrj sin (θj − φ))−
∑
〈j,k〉

2ςrjrk cos (θj − θk)

 ,

(10.12)

where we use the notation ~r = (r1, r2, · · · , rN) and ~θ = (θ1, θ2, · · · , θN). We have

also introduced the parameters λ = B/2A, µ = (A−C)/A, ν = |ε|/A and ς = D/A,

and Z is a normalization constant.

The radial components rj are essentially associated to the number of bosons in

each cavity r2
j ≈ nj. As the input signals εj are assumed to be weak, their major

influence will be on the angular dynamics, while the radial components rj will be

settled on their steady-state values rj ≈ r0. In this case, the dynamics of equation

(10.11) will be dominated by the angular components for laser operation sufficiently

far above threshold, and one can derive an effective equation for the angular variables

~θ. This can be done by assuming a P function of the form

P (r, θ) = R(r1)R(r2) · · ·R(rN)P ′(θ), (10.13)

where each R(rj) is a Gaussian distribution properly normalized around r0. The

resulting equation reads (see appendix (10.11)),

∂P ′

∂t
= +

A

2n0

∑
j

∂2P ′

∂θ2
j

(10.14)

+
∑
〈j,k〉

∂

∂θj

(
(D sin(θk − θj) +

|ε|
√
n0

cos(θj − φ))P ′
)
,

in which n0 = r2
0 stands for the steady average number of bosons per site. Equa-

tion (10.14) can be related to the first-neighbours stochastic Kuramoto model of N

identical oscillators [189, 190]. The Kuramoto model is paradigmatic in the study

of synchronization, and it has gained renewed attention in the context of complex

[190–192] and neural networks [193]. The steady state solution to equation (10.14)

can be obtained by imposing rj = r0 in equation (10.12) and tracing over the radial

part,

P ′(~θ) =
1

Z
exp

−∑
〈j,k〉

2ςn0 cos (θj − θk)−
∑
j

2ν
√
n0 sin (θj − φ)

 . (10.15)

We identify the steady state (10.15) as formally equivalent to a thermal state of

an antiferromagnetic classical XY model in the presence of an external field, with
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an effective temperature

βeff =
n0

(Cpκ)
. (10.16)

Our setup given by equation (10.6) is thus revealed as an alternative to simulate

the XY model, which has been recently implemented in various platforms [194–198].

This has been proved to be particularly fruitful in the study of geometric frustration

[194, 196]. In the context of machine learning, the XY model has also been sugges-

ted as an alternative to Markov chain Monte Carlo methods in order to speed up

the computationally time-consuming Boltzmann sampling [197–201].

10.5 Quantum Fisher information and Heisenberg

scaling

The maximal resolution that can be achieved by means of the lattice qubit laser for

estimating the amplitude |ε| and phase φ can be systematically assessed in terms of

the quantum Fisher information (QFI), FQ [27]. This theory sets an ultimate lower

bound on the resolution attainable when estimating certain parameter ϕ encoded

in a density matrix ρϕ through the well-known quantum Cramer-Rao bound,

∆2ϕ ≥ 1

FQ[ρϕ]
. (10.17)

An observable that saturates this bound is said to be optimal. The so-called sym-

metric logarithmic derivative (SLD), Lϕ, defined through the operator equation

∂ϕρϕ =
1

2
(ρϕLϕ + Lϕρϕ), (10.18)

gives us such optimal observable [154]. The QFI can then be obtained as FQ[ρϕ] =

Tr
{
ρϕL

2
ϕ

}
. For the single-qubit laser, the optimal observables for estimating |ε|

and φ in the steady state are the field quadratures

P̂φ = i(ae−iφ − a†eiφ) (10.19)

X̂φ = (ae−iφ + a†eiφ) (10.20)

respectively ([X̂φ, P̂φ] = 2i) [177].
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We shall first focus on the amplitude estimation for a given phase. It is natural

to suggest that the linear combination

P̂ φ
sum =

∑
j

P̂ φ
j (10.21)

may be the optimal observable for the lattice qubit laser, at least for weak couplings

t between sites. By using such linear ansatz for the SLD, it can be shown (see

appendix 10.13) that this assumption is correct as long as ς � 1, a condition easily

satisfied in our setup. The analytical expression of 〈P̂ φ
sum〉 can be calculated by using

the distribution (10.15). A perturbative calculation in first order in |ε| is enough

as we are assuming weak external forces. In that case, the average field quadrature

〈P̂ φ
sum〉 can be expressed in terms of the correlation function of the XY model with

no external field (ν = 0) (see appendix 10.12), namely

〈P̂ φ
sum〉 ≈

2n0|ε|
Cpκ

N
N∑
j

〈cos(θi − θj)〉ε=0. (10.22)

The factor N in equation (10.22) is a trivial contribution from the fact that P̂ φ
sum is

a sum of N copies. The correlation function

G(|i− j|) = 〈cos(θi − θj)〉, (10.23)

on the contrary, represents a potentially non-trivial enhancement that arises from

the correlations between sites.

The importance of the correlation function in the realm of parameter estima-

tion lies in the possible long-range order, which in the thermodynamic limit (here

N →∞) is defined as non-negligible correlations between infinitely distant sites, i.e.

〈cos(θi − θj)〉 6= 0 for |i− j| → ∞. If this relation held, it would imply a scaling of∑
j G(|i−j|) with the system size N , which in turn could result in a quadratic scaling

N2 of 〈P̂ φ
sum〉. This is eventually the mechanism behind the spontaneous symmetry

breaking with order parameter given by 〈P̂ φ
sum〉, mathematically expressed as

lim
ε→0

lim
N→∞

〈P̂ φ
sum〉/N 6= 0. (10.24)

Nevertheless, the Mermin-Wagner theorem rules out such phase transition for a

lattice dimension D such that D ≤ 2 [72, 202], where thermal fluctuations prevent
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ordering even at zero temperature. Particularly for a 1D chain, the correlation

function always adopts a generic exponential decay

G(|i− j|) ∝ exp (−|i− j|/ξ), (10.25)

where ξ is the so-called correlation length [66]. Even so, we propose that finite-size

long-range correlations can yet be implemented in a finite chain of size N . This

can be done by properly tuning the parameters of the lattice qubit lasers such that

the correlation length becomes greater than the system size, i.e., N/ξ � 1, so that

the correlation function gives us then an extra N factor,
∑

j G(|i − j|) ∼ N . To

this purpose, the naturally antiferromagnetic sign obtained in equation (10.15) does

not favour this positive correlation as the ferromagnetic case does. There are two

alternatives to implement an effective ferromagnetic interaction in our model; first

by alternating the coupling signs ±t with the intermediate adiabatically eliminated

mode so that the effective dissipative coupling becomes

L{aj+aj+1,
t2

κ̃
} → L{aj−aj+1,

t2

κ̃
}. (10.26)

Second, by alternating the phase of periodic drivings such that φj = φ + πj to

achieve the same effect expressed in equation (10.26). An explicit calculation of the

correlation length can be derived as the correlation functions of the classical 1D-XY

chain are well-known [203]. Hence, one obtains a condition for finite-size long-range

correlations in the chain,

N ln

(
I0(4ςn0)

I1(4ςn0)

)
� 1 (10.27)

where In(z) are the modified Bessel functions of the first kind. Crucially, equation

(10.27) can be satisfied even for a weak coupling t by increasing the steady number

of bosons n0. Notice that an increment of n0 can be achieved simply by increasing

the incoherent qubit pumping γ (for a single qubit laser n0 ≈ γ/κ). Upon condition

(10.27), the quantum Fisher information for |ε| becomes (see appendix 10.13),

FQ[ρ|ε|] =
2n0N

2

Cpκ
, (10.28)

which indicates an enhancement of N2 with respect to the single qubit laser [177].

An analogous procedure may be employed for estimating the phase φ for a given

amplitude. Note that in this case the optimal observable for the single qubit laser,
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X̂φ depends itself on the target parameter φ. A first estimation φ̄, such that δφ =

(φ̄−φ)� 1, is thus required to work in the optimal operating regime. This condition

is analogous to the optimal free precession time in Ramsey spectroscopy [156]. In

this case the linear combination X̂ φ̄
sum =

∑
j X̂

φ̄
j becomes the optimal observable for

the lattice qubit laser. Upon condition (10.27), the QFI becomes,

FQ[ρφ] =
2n0N

2|ε|2

Cpκ
, (10.29)

showing again an enhancement of N2.

The results (10.28) and (10.29) both show a Heisenberg scaling N2 with the

number of sites, not limited by the dissipation κ. This sort of scaling is typically

associated with entanglement or nonclassicality in quantum metrology [43]. In con-

trast, here it arises solely as a result of the long-range correlations enabled by our

many-body system. It is important to notice that here the resources scale with

N even though we make use of many-body interactions. Yet we may achieve a

quantum Fisher information scaling as N2 thanks to the long-range correlations de-

veloped by the system dynamics, rather than the long-range correlations induced by

a long-range interaction. This resource count is important in order to make proper

comparisons between different schemes as noted in [95, 96]. Let us recall that the

P function exhibits nonclassical behavior when it takes negative values or becomes

more singular than the delta function [54]. Here notice that the distribution (10.15)

is a regular and positive function. This result thus indicates that it is possible to

attain a Heisenberg scaling with classically correlated systems exhibiting long-range

correlations. The natural robustness of a classical steady state renders an advant-

ageous implementation over schemes relying on quantum states highly sensitive to

decoherence. Finally, as the steady state is similar to a Gaussian state, we can safely

presume that the regime in which the Cramer-Rao bound becomes valid is rapidly

reached.

Let us also discriminate the roles of the key aspects involved in the results (10.28)

and (10.29). In our scheme the non-unitary evolution is responsible for reaching a

steady state but it is not enough to induce long-range correlations. The latter actu-

ally arise from the interplay between nearest-neighbour couplings and local many-

body interactions, which are also known to lead to a Heisenberg scaling in closed

systems [180].
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10.6 2D & 3D systems

Our setup benefits from having a higher dimensional lattice. In 2D lattices, the XY

model is well-known to develop quasi-long range order for low temperatures through

the Kosterlitz-Thouless transition [75, 204, 205] (2016 Nobel prize). This transition

is driven by the energy cost to thermally break up pairs of vortex-antivortex con-

figurations. The critical temperature is approximately located at βcς = 2/π. The

effective temperature βeff = n0/(Cpκ) implies that low temperatures are achieved

close the the critical point (Cp ≈ 1) and large average number of bosons n0. Hence,

our regime of parameters readily guarantees that we work in an effective low tem-

perature regime n0ς > 2/π. In this regime, the correlation function in equation

(10.22) decays algebraically, i.e,

G(|i− j|) ∝ |i− j|−η, (10.30)

which softens the condition imposed for achieving finite-size long-range correlations.

Specifically, by using the spin wave approximation for the value of η [205], we have

N
1

2πn0ς ≈ 1. (10.31)

In 3D lattices the XY model undergoes Spontaneous Symmetry Breaking and it

naturally shows long-range order. Consequently conditions (10.27) and (10.31) are

not necessary to achieve the enhancing N2.

10.7 Conclusions

The model introduced in (10.6) may be implemented with single qubit photon laser

using single atoms [158] or superconducting qubits [86, 159, 160]. The phononic

excitations in ion traps can also play the role of the bosonic field [157, 161], in which

case this systems allows the precise measurement of ultra-weak forces resonant with

the trapping frequency [162, 163, 177, 206, 207]. A possible implementation of

our model with trapped ions may be carried out by extending the implementation

sketched in [177], in which it was shown that local sources of error such as heating

or dephasing only result in a renormalization of the parameters.

The ideas exposed do not fundamentally rely on the XY model. They can be

readily generalized to other setups that give rise to a dissipative dynamics in which
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the steady state can be formally identified in terms of another classical Hamiltonian

Hc of the form

Hc = ϕ

N∑
j

Hj + t
∑
〈j,k〉

Hi,j, (10.32)

like equation (10.12). It is important to notice that in these models the resources

still scale with N , as we assume short-range interactions implied by the notation

〈j, k〉. If the target parameter ϕ is small enough, the Fisher information of the

steady state will generically be expressed as

FQ[ρϕ] ∝ N
∑
j

G(|i− j|), (10.33)

with G being the corresponding correlation function of the equivalent classical model

Hi,j. Bearing in mind the fluctuation-dissipation theorem [66], this establishes a gen-

eral link between a susceptibility χ ∝
∑

j G(|i−j|) and the Fisher information in the

steady state, thereby showing the possibility of a metrological enhancement though

long-range correlations in dissipative systems. An analogous result was recently

exposed in [208], and it strengthens a connection between the fields of quantum

metrology and condensed-matter Physics.
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10.9 Appendix A: Mean field theory

Here we shall perform a mean-field analysis of equation (10.6), in the spirit of the

well-known Maxwell-Bloch equations of a laser [61]. The mean-field ansatz assumes

that the system density matrix ρ is separable in the qubit-field subspaces, i.e., ρ ≈

ρfield ⊗ ρqubit. In practical terms, this allows us to approximate expectation values

in such a way that 〈σa〉 ≈ 〈σ〉〈a〉. Furthermore, this avoids the infinite hierarchy of

equations for the expectation values of moments of such observables. Namely, we can
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write the following closed system of equations in terms of the variables Aj ≡ 〈aj〉,

Sj ≡ −i〈σ−j 〉 and Dj ≡ 〈σzj 〉,

Ȧj = −gSj − CAj −
t2

k̃
(Aj−1 + Aj+1) (10.34)

Ṡj = gDjAj − γSj

Ḋj = −2g(S∗jAj + SjA
∗
j)− 2γ(Dj − 1),

where periodic boundary conditions are assumed. The result (10.34) is achieved by

means of the Heisenberg equations for such observables and using the commutation

relations [a†, a] = 1, {σ+, σ−} = 1 and [σz, σ±] = ±2σ±. The set of nonlinear

equations (10.34) represents an extension of the Maxwell-Bloch equations with an

extra term describing the hoping of bosons between sites. This system of equations

exhibits multiple and frequently complicated possible steady states depending on

the regime of parameters studied. It is noticeable also that one can find chaotic

behavior in some regions of the parametric space given by κ, g, t, γ. This should not

be surprising as the Maxwell-Block equations can be shown to be equivalent to the

well-known Lorentz equations [54]. Therefore, appropriate ansatzs for the steady

state must be assumed for a certain regime of parameters.

We shall consider in the following that the laser operates in a regime such that the

pumping of the qubits represents the smallest timescale in the problem, i.e., γ >>

κ, g, t, which is consistent with the adiabatic elimination of the qubits. In this case,

the fast variables Sj and Dj may be adiabatically eliminated to obtain an equation

for Aj. Additionally, we shall assume that the system does not break the translation

symmetry, hence Aj = A. In writing equation (10.34) in a basis of the chain normal

modes with Aq =
∑

j Aje
iqj, the only surviving mode is the fundamental mode

q0 = 0, hence Aq0 =
∑

j Aj. After using the adiabatic elimination, the equation for

this mode adopts the form,

dA

dt
=

(
NCp

1 + |A|2
nmf

− (C + t̃)

)
A, (10.35)

with Cp = g2/κγ and nmf = 2γ2/g2. Equation (10.35) exhibits a Hopf bifurcation

indicating a dissipative phase transition to a lasing phase for

C̃p =
Cp(

1 + 3
(
t
k

)2
) > 1, (10.36)
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which has the stable solution |Aq0 |2 = Nnmf(C̃p−1). This result simply represents a

renormalization of the pumping parameter C̃p with respect to the single qubit laser

(t = 0), in which the critical point is given by Cp = 1 [61, 177].

10.10 Appendix B: Adiabatic elimination

In this section we shall derive the effective master equation claimed in equation

(10.9). We shall use a straightforward generalization of the procedure employed

for the single-qubit laser [177]. Firstly, we trace over the qubits from the master

equation (10.6),

ρ̇f = −ig
N∑
j

(ajρ
ge
j + a†jρ

eg
j − ρ

ge
j aj − ρ

eg
j a
†
j)−

− i
N∑
j

(εa†jρf + ε∗ajρf − ερfa†j − ε∗ρfa
†
j)+

+ (κ+
t2

κ̃
)

N∑
j

(2ajρfa
†
j − a

†
jajρf − ρfa

†
jaj)+

+
t2

κ̃

∑
j

(2ajρfa
†
j+1 − a

†
j+1ajρf − ρfa

†
j+1aj + c.c), (10.37)

where we introduced the notation ρgej = 〈gj|ρ|ej〉 and ε = |ε|eiφ. In order to obtain a

closed equation for the reduced density matrix ρf , we have to eliminate the operators

ρgej , ρ
eg
j from equation (10.37). By writing their corresponding equations of motion

using equation (10.6),

ρ̇gej = −ig(a†jρ
ee
j − ρ

gg
j a
†
j)− γρ

ge
j , (10.38)

(where we have neglected the contributions from κ,ε and t2/κ̃ in comparison with γ)

the operators ρge and ρeg can be adiabatically eliminated (in the limit γ � κ, g, |ε|)

from (10.37) by taking ρ̇ge ≈ 0 in equation (10.38) and substituting in equation

(10.37) their steady-state solutions,

ρgej = −i g
γ

(a†jρ
ee
j − ρ

gg
j a
†
j). (10.39)

Likewise, the equations of motion of the operators ρgg and ρee are required as the

resulting equation still depends on them. These can be derived again from equation
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(10.6), namely

ρ̇eej = −ig(ajρ
ge
j − ρ

eg
j a
†
j) + 2γρggj (10.40)

ρ̇ggj = −ig(a†jρ
eg
j − ρ

ge
j aj)− 2γρggj (10.41)

where we again neglect terms with κ, ε and t2/κ̃. A perturbative solution to the

steady-states of Eqs. (10.40) and (10.41) may now be expressed in terms of the field

density matrix ρf . To do so, let us adiabatically eliminate ρggj by taking ρ̇ggj ≈ 0 in

equation(10.41), which gives

ρggj = − ig
2γ

(a†jρ
eg
j − ρ

ge
j aj) =

g2

2γ2
(2a†jρ

ee
j aj − a†ajρ

gg
j − ρ

gg
j a
†
jaj). (10.42)

The ground state population of each qubit is expected to be negligible as a result of

the fast pumping of the qubits (γ � 1). Thus, in first order we can assume ρggj ≈ 0

and ρeej = ρj − ρggj ≈ ρj. A second order correction is achieved by inserting this first

order approximation into equation (10.42), hence

ρggj =
g2

γ2
a†ρja (10.43)

ρeej = ρj − ρggj = ρj −
g2

γ2
a†ρjaj. (10.44)

A closed equation for ρf is finally accomplished by inserting Eqs. (10.43) and (10.44)

into equation (10.37), and bearing in mind that
∑

j ajρj =
∑

j ajρf

ρ̇f = −i
∑
j

(εa†jρf + ε∗ajρf − ερfa†j − ε∗ρfaj)+

+
g2

γ

∑
j

(2a†jρfaj − aja
†
jρf − ρfaja

†
j)+

+
2g4

γ3

∑
j

(aja
†
jρfaja

†
j − a

†
j

2
ρfa

2
j)+

+ (κ+
t2

κ̃
)

N∑
j

(2ajρfa
†
j − a

†
jajρf − ρfa

†
jaj)+

+
t2

κ̃

∑
j

(2ajρfa
†
j+1 − a

†
j+1ajρf − ρfa

†
j+1aj + c.c). (10.45)

which, written in compact notation, is the result presented in equation (10.9).

10.11 Appendix C: Fokker-Planck equation

Let us summarize the derivation of the Fokker-Planck equation (10.11), the angu-

lar Fokker-Planck equation (10.14) and their corresponding steady-state solutions
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(10.12,10.15). Bearing in mind the coherent representation of a density matrix ρ,

ρ(t) =

∫
d2αP (α, α∗, t)|α〉〈α|, (10.46)

the master equation can be expressed as an equation of motion for P (α, α∗, t) after

an integration by parts with the assumption of zero boundary conditions at infinity.

Note that this change introduces an extra minus sign for each differential operator

∂α. The integrand of equation (10.46) is hence expressed as a product of |α〉〈α| and

a c-number function of α, α∗, yielding a differential equation for P (α, α∗, t). We

shall focus in a regime in which the average number of bosons is large, which implies

|α|2 � 1. As B is a very small coefficient compared to A, B/A ∝ (g/γ)2 � 1, we

shall retain only the most important terms in B and drop any contribution smaller

than B|α|2α. By doing so, we arrive at the Fokker-Planck equation claimed in

equation (10.11),

∂P

∂t
= +2A

∑
j

∂2P

∂αj∂α∗j
(10.47)

−
∑
〈j,k〉

∂

∂αj
[(A− C −B|αj|2)αj −Dαk − ε′]P + c.c.,

where ε′ ≡ iε. Let us rewrite equation (10.47) in Cartesian coordinates, with αj =

x1
j + ix2

j and ∂/∂α = 1/2(∂/∂x1 − i∂/∂x2),

∂P

∂t
=
A

2

N∑
j

2∑
i=1

∂2P

∂x2
i

(10.48)

−
N∑
j

2∑
i=1

∂

∂xij
[(A− C −B ~xj2)xij −D(xij−1 + xij+1)− ε′i]P

where we introduced the two-dimensional vectors ~x = (x1
j , x

2
j) and ~ε′ = (<(ε′),=(ε′)).

The steady-state satisfies ∂P/∂t = 0 and equation (10.48) can be written as
∑

i ∂Ji/∂xi =

0, with the current ~Jj defined as

J ij = [(A− C −B ~xj2)xij −D(xij−1 + xij+1)− ε′i]−
A

2

∂P

∂xij
. (10.49)

Fortunately, the drift vector Aij ≡ [(A−C −B~x2)xij −D(xij−1 + xij+1)− ε′i] satisfies

a detailed balance condition given by ∂Ai/∂xj = ∂Aj/∂xi, and the steady-state

solution can be hence found by the condition ~J = 0 [54]. This gives rise to a first
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order differential equation for P that can be trivially integrated to give,

P (~x) =
1

Z
exp

 1

A

[(
A− C − B

2
~xj

2

)
~xj

2

]
− 2

A

D∑
〈j,k〉

~xj · ~xk − ~ε′ · ~xj

 ,

(10.50)

where Z is a normalization constant. This can be then expressed in polar coordinates

αj = rje
iθj as follows,

P (~r, ~θ) =
1

Z
exp

(∑
j

(µr2
j − λr4

j − 2νrj sin (θj − φ))−

−
∑
〈j,k〉

2ςrjrk cos (θj − θk)

 ,

(10.51)

where we introduced the notation ~r = (r1, r2, · · · , rN) and ~θ = (θ1, θ2, · · · , θN), and

defined the parameters λ = B/2A, µ = (A− C)/A, ν = |ε|/A and ς = D/A.

One can derive from an equation solely for the angular variables ~θ from equation

(10.47). To do so, on has to admit the radial variables are settled around their

steady-state values rj ≈ r0, while the dynamics of equation (10.47) is hence domin-

ated by the angular components. In that case, the P function may be assumed to

take the form P (r, θ) = R(r1)R(r2) · · ·R(rN)P ′(θ) where each R(rj) is a properly

normalized Gaussian function around r0,

R(rj) =
1

N
exp

(
−(rj − r0)2

2σ2

)
(10.52)

Above threshold in a regime of large number of bosons, the normalization constant

in (10.52) is given by

N =

∫ ∞
0

rdr exp

(
−(rj − r0)2

2σ2

)
= (10.53)

r0

∫ ∞
−r0≈−∞

dr′ exp

(
− r′2

2σ2

)
+

������������∫ ∞
−r0

rdr exp

(
− r′2

2σ2

)
= (10.54)

= r0

√
2πσ2. (10.55)

Our equations can be written in polar coordinates with the aid of the equivalences,

∂

∂α
=

1

2
e(−iθ)

(
∂

∂r
− i

r

∂

∂

)
∂

∂α∗
=

1

2
e(iθ)

(
∂

∂r
+
i

r

∂

∂

)
. (10.56)
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Equation (10.47) then reads as follows,

∂P

∂t
=

∏
j ∂Rj

∂t
P ′ +

∂P ′

∂t

∏
j

Rj = +
A

2

∑
j

∂2

∂θ2
j

P−

−
∑
j

{
1

rj

∂

∂rj

[
r2
j (A− C −Br2

j )P
]

+
A

2

[
∂2

∂r2
j

+
1

r2
j

∂

∂rj

]
P

}
+

+ |ε|
∑
j

sin(θj − φ)
∂P

∂rj
+
∑
j

|ε|
rj

cos(θj − φ)
∂P

∂θj
+

+D
∑
〈j,k〉

rk cos(θk − θj)
∂P

∂rj
+D

∑
〈j,k〉

rk
rj

sin(θk − θj)
∂P

∂θj
. (10.57)

One can obtain a purely angular equation by integrating both sides of equation

(10.57) in the radial variables
∫∞

0
~rd~r. On the one hand, the second line in (10.57)

can be simplified (for |ε| ≈ 0) as R(rj) satisfies

∂Rj

∂t
= −

{
1

rj

∂

∂rj

[
r2
j (A− C −Br2

j )Rj

]
+
A

2

[
∂2

∂r2
j

+
1

r2
j

∂

∂rj

]
Rj

}
(10.58)

On the other hand, the integration of the first derivative ∂rR is eliminated through

the relation, ∫ ∞
0

rdr∂rR = − 1

N

∫ ∞
0

rdr
(r − r0)

σ2
exp

(
−(r − r0)2

2σ2

)
=

= − 1

N

∫ ∞
−r0

(r′ + r0)dr′
(r′)

σ2
exp

(
−(r′)2

2σ2

)
≈

≈ − 1

N

∫ ∞
−∞

dr′
(r′2)

σ2
exp

(
−(r′)2

2σ2

)
=

= − 1

N

√
2πσ = − 1

r0

. (10.59)

After grouping terms, the resulting equation adopts the form claimed in equation

(10.14),

∂P ′

∂t
= +

A

2n0

∑
j

∂2P ′

∂θ2
j

(10.60)

+
∑
〈j,k〉

∂

∂θj

(
(D sin(θk − θj) +

|ε|
√
n0

cos(θj − φ))P ′
)
,

The steady state state of (10.60) can be obtained by imposing a detail balance

condition such that the current ~Jθ = 0 or simply by taking rj = r0 in (10.50) and

grouping the radial part into the normalization constant Z, which gives

P ′(~θ) =
1

Z
exp

−∑
〈j,k〉

2ςn0 cos (θj − θk)−
∑
j

2ν
√
n0 sin (θj − φ)

 . (10.61)
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10.12 Appendix D: Correlation function in the

XY chain

In this section we aim to show rigorously the expression of 〈P̂ φ
sum〉 = 〈

∑
j P̂

φ
j 〉 in

first order in ε as claimed in equation (10.22) as well as the expresion for 〈X̂ φ̄
sum〉 =

〈
∑

j X̂
φ
j 〉. Concretely, we will show how it can be written in terms of the correlation

function of the classical XY model with no external field. The correlation functions

of the XY chain are already well-known [203]. In particular, the only two-point

non-zero correlation function of the Boltzmann distribution (10.51) with ν = 0 is

precisely 〈cos(θi−θj)〉 which can expressed in terms of the modified Bessel functions

of the first kind In(z), namely

〈cos(θ1 − θj+1〉 =
1

Z0

∞∑
n=−∞

Ijn−1(4r2
0ς)I

N−j
n (4r2

0ς). (10.62)

In equation (10.62) we have assumed ferromagnetic sign. For distant sites, the

correlation function in 1D systems is known to decay exponentially with a certain

correlation length ξ (the typical scale of the correlations) [66], i.e.,

〈cos(θ1 − θ1+j〉 ≈
(
I1(4r2

0ς)

I0(4r2
0ς)

)j
≈ e−j/ξ, (10.63)

from which the correlation length is given by

ξ−1 = ln

(
I1(4r2

0ς)

I0(4r2
0ς)

)
. (10.64)

A perturbative expression in first order of ε for P̂ φ
sum =

∑
j P̂

φ
j can be derived by

using the Boltzmann factor given by the angular P function calculated in equation

(10.51). If we expand the exponential up to first order in ν, the average quadrature

〈P̂ φ
sum〉 is given by two contributions 〈P̂ φ

sum〉 ≈ 〈P̂ φ
sum〉0 + δ〈P̂ φ

sum〉 in terms of the

Boltzmann factor of the XY with no external field, i.e.,

P0(~θ) =
1

Z1

exp

(
4ς
∑
j

rjrj+1 cos(θj − θj+1)

)
(10.65)

with Z1 being the partition function up to first order, Z1 = Z0 + δZ. It is straight-

forward to check that the first order contribution δZ is zero so Z0 = Z1. The zero

order contribution is then,

〈P̂ φ
sum〉0 =

1

Z0

∮
d~θ(−2

∑
j

r0 sin(θj − φ))P0(~θ) (10.66)
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while the first order contribution can be expressed as,

δ〈P̂ φ
sum〉 = (10.67)

1

Z0

∮
d~θ(−2

∑
j

r0 sin(θj − φ))(−2ν
∑
k

r0 sin(θk − φ))P0(~θ).

The average quadrature is thus given by

〈P̂ φ
sum〉 ≈ 4r2

0ν
∑
i,j

〈sin(θj − φ) sin(θi − φ)〉ε=0. (10.68)

By using the trigonometric relation,

sin(θj − φ) sin(θi − θj) =
1

2
(cos(θi − θj)− cos(θi + θj + 2φ)), (10.69)

we note that only the first term in equation (10.69) gives rise to a non-zero correlation

contribution, thus the quadrature takes the form claimed in equation (10.22),

〈P̂ φ
sum〉 ≈

2n0|ε|
Cpκ

N
N∑
j

〈cos(θi − θj)〉ε=0. (10.70)

The field quadrature X̂ φ̄
sum =

∑
j X̂

φ
j in first order, on the other hand, will be

given by

〈X̂ φ̄
sum〉 ≈ 4r2

0ν
∑
i,j

〈cos(θj − φ̄) sin(θi − φ)〉ε=0. (10.71)

As we assume δφ = (φ̄−φ)� 1, equation (10.71) can be further simplified by means

of the trigonometric relation

sin(θ − φ̄) = cos(θ − φ) cos δφ+ sin(θ − φ) sin δφ ≈

≈ cos(θ − φ) + sin(θ − φ)δφ. (10.72)

Only the second term in (10.72) leads to a non-zero correlation function, so we

finally arrive to

〈X̂ φ̄
sum〉 ≈ δφ4r2

0ν
∑
i,j

〈sin(θi − φ) sin(θj − φ)〉ε=0 =

= δφ4r2
0ν
∑
i,j

〈cos(θi − θj)〉ε=0. (10.73)

By imposing the condition N/ξ � 1, i.e.

N ln

(
I0(4ςn0)

I1(4ςn0)

)
� 1, (10.74)
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relations (10.68,10.73) are further reduced,yielding

〈P̂ φ
sum〉 ≈ 4n0νN

2 (10.75)

〈X̂ φ̄
sum〉 ≈ δφ4n0νN

2, (10.76)

where n0 = r2
0 symbolizes the steady average of bosons of each cavity.

10.13 Appendix E: Symmetric logarithmic deriv-

ative & quantum Fisher information

In this section we will obtain the optimal observables for the lattice-qubit laser, as

well as the quantum Fisher information for them. To do that, we have to solve the

operator equation for the symmetric logarithmic derivative, this is,

∂ϕρϕ =
1

2
(ρϕLϕ + Lϕρϕ). (10.77)

The P function (10.51) can be well approximated by the following Gaussian-like

approximation (we treat directly the ferromagnetic case),

P (~r, ~θ) =
1

Z
exp

(
−
∑
j

(rj − r0)2

2σ2
− ν

∑
j

rj sin (θj − φ)+

+ 4ς
∑
j

rjrj+1 cos(θj − θj+1)

)
,

(10.78)

where the radial components are assumed to be settled around their steady-state

values r2
0 with width σ2. Using (10.78), the l.h.s of equation(10.77) reads,

∂|ε|P (r, θ) =

(
∂|ε| lnZ +

i

A

∑
j

(αje
−iφ − α∗jeiφ)

)
P. (10.79)

It is straightforward to check that ∂|ε| lnZ is equivalent to the average of the sum of

the field quadratures 〈P̂φ〉 = 〈i
∑

j(aje
−iφ−a†jeiφ)〉. This result suggests we introduce

the ansatz L|ε| = S0 +
∑

j(Saj +S∗a†j), with S0, S proper coefficients. Inserting this

ansatz into the r.h.s of equation (10.77) and using the relations (3.23) and (3.24),

we obtain

L|ε|ρ =

∫ ∞
0

∫ 2π

0

d~θd~rr1 . . . rN(S0 +
∑
j

(Sαj + S∗(α∗j − ∂αj)))P (10.80)
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with analogous expression for ρL|ε|. Well above threshold where r0 � σ, we may

further simplify the exact derivative ∂α in equation (10.80) if we assume the radial

component to be approximately constant and homogeneous so that αj = rje
iθj ≈

r0e
iθj (after taking the derivative). We may distinguish two contributions to the

derivative. First, an on-site contribution given by the first two terms of the r.h.s in

equation (10.78)

∂αjPon =
e−iθj

2
(
∂

∂rj
− i

rj

∂

∂θj
)Pon =

= (−
α∗j
2σ2

+
r0

2σ2
e−iθj +

i|ε|
A
e−iφ)P ≈ i|ε|

A
e−iφPon. (10.81)

Second, a contribution given by the neighbouring interaction,

∂αjPint ≈ 2ςr0(e−iθj−1 + e−iθj+1)Pint. (10.82)

Using the results (10.80), (10.81) and (10.82), we can identify terms from both sides

of equation (10.77), leading to the following SLD,

Lε[ρ|ε|] =
1

A

(
Nν

1− 2ς
−
∑
j

〈P̂ φ
j 〉+

∑
j P̂

φ
j

1− 2ς

)
(10.83)

The contribution of the first term of the r.h.s can be neglected in comparison with

the contribution given by
∑

j P̂φ. On the other hand, the SLD must fulfill the

relation 〈L|ε|〉 = 0 according to the definition (10.77). In our case, this implies that

the result (10.83) is correct as long as ς � 1, which is consistent with our scheme.

In that case, the observable P̂ φ
sum =

∑
j P̂

φ
j turns out to be the optimal observable

for estimating |ε|. A totally analogous procedure may be employed to prove that

X̂φ
sum =

∑
j X̂

φ
j is the optimal observable for estimation |φ|.

As the quantum Fisher information is obtained through the SLD, we may recover

the results claimed in Eqs. (10.28) and (10.29) simply through the error propagation

formula, for which the fluctuations ∆2〈P̂ φ
sum〉, ∆2〈X̂ φ̄

sum〉 are additionally needed.

These fluctuations can be written as,

∆2〈P̂ φ
sum〉 =

∑
i,j

〈P̂ φ
i P̂

φ
j 〉 − 〈

∑
j

P̂ φ
j 〉2 (10.84)

and analogously for ∆2〈X̂ φ̄
sum〉. Notice that the thermal averages in (10.84) are not

at zero external field (ν 6= 0). The second term in equation (10.84) is directly given
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by equation (10.75), which can be neglected as it leads to a second order contribution

in |ε|. The first term in turn may be straightforwardly derived with the aid of the

following relation held by the partition function Z,

1

Z

∂2Z

∂φ2
= −ν

∑
j

〈P̂ φ
j 〉+ ν2

∑
i,j

〈X̂φ
i X̂

φ
j 〉. (10.85)

The partition function Z is not expected to explicitly depend on the phase φ, hence

we infer the following useful relation∑
i,j

〈P̂ φ
i P̂

φ
j 〉 =

∑
i,j

〈X̂φ
i X̂

φ
j 〉 = ν−1〈

∑
j

P̂ φ
j 〉. (10.86)

On the other hand, the result (10.72) leads to∑
i,j

〈X̂ φ̄
i X̂

φ̄
j 〉 ≈

∑
i,j

〈P̂ φ
i P̂

φ
j 〉. (10.87)

Consequently, by putting together the relations (10.86), (10.75), (10.76) and (10.87),

we readily find the QFI.

FQ[ρ|ε|] =

(
∂〈P̂φsum〉
∂|ε|

)2

∆2〈P̂ φ
sum〉

≈ 2n0N
2

Cpκ
, (10.88)

FQ[ρφ] =

(
∂〈X̂φ̄

sum〉
∂δφ

)2

∆2〈X̂ φ̄
sum〉

≈ 2n0N
2|ε|2

Cpκ
. (10.89)
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Part V

Discussion of results



140

Chapter 11

Conclusions and outlook

11.1 Conclusions

In this thesis I have applied theoretical tools inspired in the field of condensed mat-

ter physics that have potential applications in the quantum simulation of models

hosting topological order, and also the design of robust sensing schemes in quantum

optical dissipative systems. Loosely speaking, we have seen that the use of symmetry

principles in many-body systems helps us to understand and interpret topological

effects in quantum simulation, and also diverse enhancements in precision for dis-

sipative quantum sensing. Furthermore, criticality has been revealed as an ally for

improving sensing schemes in dissipative environments. To be more specific, the

main conclusions that can be drawn from the results presented are:

1. Periodically driven systems may generate topological order: It has

been shown that proper arrangements of periodic driving fields acting on the

Ising model produce effective spin-spin interactions that are directionally de-

pendent. In this way we managed to effectively reproduce the quantum com-

pass model on a square lattice, in which the interactions depend on the ori-

entation of the bonds and the twofold ground state hosts topological order.

2. Adiabatic preparation of topological phases may depend non-trivially

on the system size: for the quantum compass model, an analytical study

concerning the adiabatic preparation of the ground state based on the system

symmetries reveals that the adiabatic passage crucially depends on the parity
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of the lattice size.

3. Critical points of dissipative phase transitions are optimal points for

sensing: criticality has been established as a resource for sensing in dissipative

systems . For the single qubit laser, the optimality of the lasing critical point

is evidenced by the analytical and numerical results for both optimal and non-

optimal measurement schemes. Specifically we analyzed the field quadratures

and the number of bosons in the steady state, both showing higher quantum

Fisher information as the critical point is approached (Cp → 1). In networks

of qubit lasers, only the optimal scheme (quadratures) was analyzed with the

same result, and the extension for using the number of photons as observable

would be almost straightforward.

4. Active mediums and strong incoherent pumping may be used to en-

hance the precision in parameter estimation: we may take advantage of

an active medium (networks of qubit lasers) in two different ways with poten-

tial benefits for sensing. First, the precision in parameter estimation increases

with the incoherent pumping γ acting on the qubit, with a quantum Fisher

information that scales linearly FQ ∝ γ. Secondly, the range of correlations in

N coupled qubit lasers can be extended in finite size systems so as to achieve

long-range correlations that ultimately leads to a quantum Fisher information

scaling quadratically with the number of probes FQ ∝ N2.

5. Networks of single qubit lasers can be mapped onto the classical

XY model: the steady state of a system consisting of a lattice of single qubit

lasers that exchange photons through incoherent hopping can be mapped onto

the classical XY model. The effective temperature is essentially regulated

by the incoherent pumping γ and the proximity to the lasing critical point

Cp = 1, which allows the observation of the Kosterlitz-Thouless transition.

This is valid in a regime of strong incoherent pumping γ � 1 where only

the laser phases are relevant degrees of freedom. The dissipative exchange of

photons between neighbouring qubit lasers can be implemented by means of

an intermediate lossy cavity that is adiabatically eliminated.

6. Spontaneous symmetry breaking as a resource for sensing: the pres-
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ence of spontaneous symmetry breaking (SSB) in a system can be understood

as an advantage to increase the precision in parameter estimation when the

measurement scheme coincides with the order parameter describing the sym-

metry breaking. In this thesis we have seen this idea in two different scenarios.

First, for a single qubit laser the SSB of the lasing steady state occurs in the

limit of large number of photons n → ∞, which leads to a quantum Fisher

information that scales with the system size FQ ∝ n. Second, for networks

of N single qubit lasers in three dimensions, the steady state also experience

SSB as we take the system size N into the thermodynamic limit N → ∞,

giving rise to a quantum Fisher information scaling quadratically with the

system size FQ ∝ N2. In both cases the optimal measurement schemes (field

quadratures) coincide with the order parameter that characterize the SSB (the

coherent component 〈a〉).

7. Long-range correlations as a resource for sensing in dissipative sys-

tems: I have shown that classical long-range correlations in quantum optical

dissipative lattice systems produce an enhancement on the precision in para-

meter estimation. The capacity of a many-body system for hosting long-range

order is limited by the Mermin-Wagner theorem, yet one may induce long-

range correlations in finite systems by proper tuning of the parameters. In 2D

lattices this tuning may be facilitated by the existence of topological defects

and quasi-long range order, while in 3D one may naturally expect long-range

order and SSB.

8. A Heisenberg scaling with the number of probes may be achieved in

models with nearest-neighbour interactions: a main consequence of the

previous point show that a Heisenberg scaling with the number of probes can

be achieved in dissipative systems when there exists long-range correlations

in finite systems, or long-range order in systems with SSB. These correlations

are dynamically induced and they only assumed nearest-neighbour interactions

between the probes, which is the normal scenario in quantum optical systems.

In contrast to previous results [181–184] where the resources scale with N2,

here the resources scale with N . While previously long-range correlations

have been introduced a priori by long-range interactions in closed systems,
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here they are naturally developed by the system dynamics with short-range

interactions.

11.2 Outlook

The results presented in this thesis pose interesting questions and invite to further re-

search and applications of the results. Firstly, the use of periodically driven systems

can be extended to the quantum simulation of additional models with intriguing to-

pological properties, like topological insulators in trapped ions as proposed in [209].

Moreover, it is feasible to apply the same tools in the context of quantum optical

dissipative systems to simulate possible dissipative topological quantum models.

Some proposals of periodically driven dissipative systems have already indicated its

potential benefits in this direction [86, 143].

Secondly, there is no reason to think that the general ideas of using criticality

and symmetry breaking as a resource for sensing are exclusive of the system ana-

lyzed in this work. One could think of other systems in which the same working

principles are displayed in the form of alternative dissipative phase transitions and

order parameters. Conversely, one might use general symmetry principles as a guide

to design a model where experimentally convenient observables coincide with the

order parameter describing the symmetry breaking. Our experience now suggests

that this sort of scheme is likely to become the optimal measurement scheme for

estimating a certain system parameter. For example, while our results exploit the

symmetry breaking of the underlying U(1) global symmetry of the steady stete, one

could think of other symmetry groups that could lead to advantageous schemes. A

possibility is the symmetry breaking of certain spatio-temporal or time reversal sym-

metries that end in spatial patterns containing the information for the parameter

estimation. Additionally, it might be interesting to extend criticality for dynamical

quantum phase transitions [210, 211].

In this work we have explored the consequences of a dissipative-mediated inter-

action in a square lattice of single qubit lasers. However, alternative arrangements

or interactions in the lattice system may also lead to new interesting models and

phenomena for quantum sensing and quantum simulation. For example, if instead of
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a dissipative (incoherent) coupling of the lasers the exchange of photons is given dir-

ectly by a coherent hopping, we expect to find a net photonic current associated to

a Josephson effect that can be used for estimating a phase difference between sites.

Also, the combination of both incoherent and coherent hopping terms is expected

to conceal interesting results for the study of quantum synchronization, as there

could be a dissipative phase transition between a synchronized and desynchronized

phase. It seems feasible to extend our results to the estimation of gradients of phases

along the lattice, with potential applications in quantum imaging. Moreover, the

formalism in phase space established to describe the dynamics invites to consider

time-dependent Fokker-Planck equations, which could extend our ideas to estima-

tion of static fields or frequencies. This might be a fertile land to exploit classical

effects from statistical mechanics, such as stochastic resonance [212] or ratchet effects

[213], in the light of quantum interactions and quantum noise.

Last, but not least, it is important to clarify how the use of interacting systems

and non-linear strategies may lead or not to an overall advantage over previous

schemes relying on quantum correlations, like in the Ramsey interferometer. It

seems clear nowadays that in the case of a collection of non-interacting probes,

quantum resources like entanglement (if used appropriately) lead to an enhancement

in precision (Heisenberg scaling). In order to make meaningful comparisons in the

most general case, this is, considering both interacting and non-interacting as well

as quantum and classical correlations, one needs to take into account two factors

at the same time: spatial resources, like the number of probes, and time resources,

particularly the time it takes the system to acquire the information of the parameter

to estimate. In our scheme, that would involve the need to consider the transient

times before reaching the steady state.
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and Immanuel Bloch. Coherent Transport of Neutral Atoms in Spin-

Dependent Optical Lattice Potentials. Phys. Rev. Lett., 91(1):010407, 2003.

[114] Philipp Hauke, Olivier Tieleman, Alessio Celi, Christoph Ölschläger, Juli-

ette Simonet, Julian Struck, Malte Weinberg, Patrick Windpassinger, Klaus

Sengstock, Maciej Lewenstein, and André Eckardt. Non-Abelian gauge
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[115] J. Struck, C. Olschläger, M. Weinberg, P. Hauke, J. Simonet, A. Eckardt,

M. Lewenstein, K. Sengstock, and P. Windpassinger. Tunable gauge potential

for neutral and spinless particles in driven optical lattices. Phys. Rev. Lett.,

108(22):225304, 2012.

[116] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch.

Realization of the hofstadter hamiltonian with ultracold atoms in optical lat-

tices. Phys. Rev. Lett., 111(18):185301, 2013.

[117] Hirokazu Miyake, Georgios A. Siviloglou, Colin J. Kennedy, William Cody

Burton, and Wolfgang Ketterle. Realizing the harper hamiltonian with laser-

assisted tunneling in optical lattices. Phys. Rev. Lett., 111(18):185302, 2013.
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Heisenberg limit in quantum-enhanced metrology. Nat. Commun., 3(1):1063,

2012.

[136] Alex W. Chin, Susana F. Huelga, and Martin B. Plenio. Quantum metrology

in non-markovian environments. Phys. Rev. Lett., 109(23):233601, 2012.
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