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Summary

The thesis provides the discussion of three last passage percolation models. In particular,
we focus on three aspects of probability theory: the law of large numbers, the order of the
variance and large deviation estimates.

In Chapter 1, we give a brief introduction to the percolation models in general and
we present some important results for this topic which are heavily used in the following
proofs.

In Chapter 2, we prove a strong law of large numbers for directed last passage times in
an independent but inhomogeneous exponential environment. Rates for the exponential
random variables are obtained from a discretisation of a speed function that may be
discontinuous on a locally finite set of discontinuity curves. The limiting shape is cast as
a variational formula that maximises a certain functional over a set of weakly increasing
curves.

Using this result, we present two examples that allow for partial analytical tractability
and show that the shape function may not be strictly concave, and it may exhibit points of
non-differentiability, flat segments, and non-uniqueness of the optimisers of the variational
formula. Finally, in a specific example, we analyse further the macroscopic optimisers and
uncover a phase transition for their behaviour.

In Chapter 3, we discuss the order of the variance on a lattice analogue of the Ham-
mersley process with boundaries, for which the environment on each site has independent,
Bernoulli distributed values. The last passage time is the maximum number of Bernoulli
points that can be collected on a piecewise linear path, where each segment has strictly
positive but finite slope.

We show that along characteristic directions the order of the variance of the last
passage time is of order N2/3 in the model with boundary. These characteristic directions
are restricted in a cone starting at the origin, and along any direction outside the cone,
the order of the variance changes to O(N) in the boundary model and to O(1) for the
non-boundary model. This behavior is the result of the two flat edges of the shape function.

In Chapter 4, we prove a large deviation principle and give an expression for the rate
function, for the last passage time in a Bernoulli environment. The model is exactly
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solvable and its invariant version satisfies a Burke-type property. Finally, we compute
explicit limiting logarithmic moment generating functions for both the classical and the
invariant models. The shape function of this model exhibits a flat edge in certain directions,
and we also discuss the rate function and limiting log-moment generating functions in those
directions.
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Chapter 1

Introduction

This thesis is concerned with the study of three different last passage percolation models of

which we describe their main probabilistic features. Last passage percolation is a particular

area of percolation theory which in turn is a branch of probability theory.

The mathematical study of percolation theory has now been going on for some sixty

years. Its main sources of inspiration and motivation have been real world phenomena.

Most of this work is concentrated on the development of models whose aim is to represent

physical phenomena via simple random rules. Percolation theory tries to model micro-

scopic physical aspects by defining a few local rules and one of the objectives is to show

how a change in the microscopic environment may have a macroscopic impact. From this

point of view there is a natural connection between percolation and statistical mechanics.

In fact, there are several statistical mechanical models in which the phase transition can be

understood as the percolation transition of a suitable (dependent) percolation model. The

best known cases are that of the Ising and Potts models, in which the transition occurs at

the percolation transition of the associated FK percolation (random cluster) model (for a

survey see [36]).

Percolation models generally allow many natural and intuitive problems to be posed in

a natural way, whereas satisfactory solutions to them often turn out far from trivial. This

is of great appeal since it requires a creative development of new mathematical techniques

in order to gain deeper understanding of the problem.

Next we give a general presentation of the percolation model and some of the models

which are derived from it. In particular we will highlight how they are connected and

which are the main problems that arose from them.
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1.1 Percolation model

In the original formulation two different random mechanisms of percolation were con-

sidered: site percolation and bond percolation.

Bond and site percolation were motivated as models to describe the seemingly random

structure of a porous material [18]. They are discrete models, where the discrete structure

is provided by a suitably chosen graph. A graph consists of a set of vertices and a set

of bonds between pairs of vertices. Each bond, also referred to as an edge, symbolizes a

connection between the two vertices. The Zd lattice, or the Zd nearest neighbour graph,

for d ≥ 2, is the graph whose vertices are given by the points in Zd, and where two vertices

are connected by an edge if they are at Euclidean distance one from each other.

The Zd lattice is an infinite graph, and is used as an approximation of a large region.

For the bond percolation to obtain a random structure from the Zd lattice, we proceed

as follows. Go through each edge one by one, flip a coin, and decide to keep the edge

if the coin turns up heads and remove the edge if the coin turns up tails. Thus, each

edge is removed independently of all other edges. For the site percolation the random

environment is obtained removing vertices and incident edges instead of only edges.

The resulting structure can be viewed as a representation of a porous material where

each vertex represents a cell in the material, and the edges symbolize neighboring cells

having a sufficiently large passage between them (as to allow a fluid to pass, say). With

this interpretation of the model, a fluid is able to flow from one cell to another if there is

a sequence of edges between neighboring cells, also called a path, that connect the cells.

Another way to describe a path between two points u and v of a graph is an alternating

sequence of vertices and edges u = v0, `1, v1, . . . , `n, vn = v, starting and ending with a

vertex, and such that the vertex vk is the endpoint of the edges `k and `k+1 preceding and

succeeding vk.

Studying the random structure obtained through coin tossing leads to questions con-

cerning the existence of paths in the random structure. In particular, one may ask if the

center of a large piece of porous material will be wet when immersed in the fluid? (This

was the original question in Broadbent and Hammersley’s work [18]) This corresponds to

the question of how far a fluid injected at the center of the material will reach. Since

the model is based on an infinite graph, is it possible for a fluid injected at the center

(the origin of the graph) to wet infinitely many cells? That the fluid will wet another

cell corresponds to the existence of a path from the origin to that cell. Cells that are

connected by paths form components of interconnected cells. What can be said about the
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size of these components?

In fact, the answers to these questions differ depending on the coin being fair or being

biased. Consider some fixed dimension d ≥ 2, and let p ∈ [0, 1] denote the probability

that the coin tossed turns up heads. We avoid the trivial case when d = 1 since if p < 1,

then only finite components remain after edges have been removed in accordance with the

result of the coin tosses. If p = 1, the graph remains intact.

A coin is considered fair if p = 1/2 , while if p 6= 1/2 the coin is biased. For values

of p close to 1, an infinite connected component of cells will exist, whereas for values of p

close to 0, all components will be finite. As p ranges from 0 to 1, the system undergoes

what is called a phase transition, that is, a sudden change in the qualitative behaviour of

the model. In the case of bond percolation, the phase transition occurs when the random

structure goes from having no infinite connected component of cells when p is close to 0

and to having one for p close to 1. In fact, there is a critical value pc(d) strictly between 0

and 1 such that for p < pc(d), there is no infinite connected component, but for p > pc(d)

an infinite connected component does exist. The existence and non-existence of infinite

components should be understood to hold with probability 1, or almost surely. When an

infinite component exists, there is also positive probability for a fluid injected at the origin

to reach infinitely far.

Harry Kesten was the first to give a rigorous proof of the critical value in two dimen-

sions in [68]. This work is considered a masterpiece for its probabilistic and geometrical

arguments and he proved that pc(2) = 1/2. To have results for higher dimension we have

to wait until the 90s when Hara and Slade [58, 59] found an approximate solution for pc(d)

as a function of the dimension d when d ≥ 19.

1.2 Growth and related models

The growth models similar to the percolation models are defined on an underlying

discrete structure. The typical image associated to growth models is the spread of an

infection along the edges of the graphs according to some random rules and each vertex of

the graph is eventually infected. In this framework the values assigned to edges could be

thought of as times associated with the crossing of edges. Therefore if we define Tv,w <∞

as the time that the infection takes to go from vertex v to vertex w, then if we fix a time

t ≥ 0 the set of infected vertices at t will be

Bt = {x ∈ V : Tv,x ≤ t}, (1.2.1)

where V is the set of all vertices in Zd.

3



We focus on two growth models: first and last passage percolation and we define

the general setting for them. One of the most general definition for the model set up

in literature [48] is the following. Fix the dimension d ∈ N and let p : Zd → [0, 1]

be a random walk probability kernel:
∑

z∈Zd p(z) = 1. Assume p has a finite support

R = {z ∈ Zd : p(z) > 0}. R must contain at least one nonzero point, and R may contain

0. R generates the additive subgroup G = {
∑

z∈R azz : az ∈ Z}. G is isomorphic to some

Zk. Now we are ready to give some definition:

• A path π0,n = (vk)
n
k=0 in Zd is admissible if its steps satisfy zk ≡ vk−vk−1 ∈ R. The

probability of an admissible path from a fixed initial point π0 is p(π0,n) = p(z1,n) =∏n
i=1 p(zi).

• An environment ω is a sample point from a Polish probability space (Ω,Σ,P) where

Σ is the Borel σ-algebra of Ω. Ω comes equipped with a group {Tx : x ∈ G} of

measurable commuting bijections that satisfy Tx+y = TxTy and T0 is the identity.

P is {Tx}x∈G-invariant probability measure on (Ω,Σ). This is summerized by the

statement that (Ω,Σ,P, {Tx}x∈G) is a measurable dynamical system. We assume P

ergodic. As usual this means that P{A} = 0 or 1 for all events A ∈ Σ that satisfy

T−1
z A = A for all z ∈ R. E denotes expectation under P if not differently specified.

• A potential is a measurable function V : Ω ×R` → R for some ` ∈ Z+, denoted by

V (ω, z1,`) for an environment ω and vector of admissible steps z1,` = (z1, . . . , z`) ∈

R`. The constant ` represents the number of steps before to reach a certain site

v that the potential has to take into account. The case ` = 0 corresponds to a

potential V : Ω→ R that is a function of ω alone. Typically ` = 1.

1.2.1 First-passage percolation

The first-passage percolation (FPP) was originally introduced by Hammersley and Welsh

in [57]. Typically in FPP ω is a non-negative random variable and R = {±e1,±e2}. The

infection spreads across edges according to explicit speeds. This means that for a fixed

k ∈ N the random variable τlk = V (Tvkω, vk − vk−1) is assigned to the edge lk which links

the vertex vk−1 with vk. Therefore a path π is a sequence of edges l1, . . . , ln such that each

pair li and li+1 shares an endpoint and the passage time along a path π is F (π) =
∑

l∈π τl.

In particular, the first-passage time Tx,y is the minimal amount of time that the infection,

following the so called minimal path, takes to go from x to y, where x,y ∈ Zd. Formally

Tx,y = inf{F (π) : π is a lattice path from x to y}.
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Figure 1.1: Left: A possible evolution of the corner growth model on the first quadrant of

the plane. The origin is represented by the red dot. To give the random infected set Bt in

(1.2.1) positive volume in R2 , replace it with the fattened set B̃ = Bt + [−1/2, 1/2]2. The

blue region is B̃. The bold dark gray edges are the paths of maximal passage time from

the origin which are forced to be directed. Right: Large scale (n large) corner growth

with exponentially distributed vertex weights with mean 1. The blue region represents

the simulation of the scaled growing set t−1(Bt + [−1/2, 1/2]2). Its boundary (the thick

blue line) approximates the red limit curve γ(x, y) with (x, y) ∈ R2,
√
x+
√
y = 1, as first

proved by Rost in 1981 [94].

If P{τl = 0} = 0 then T is almost surely a metric on Zd since it is non-negative and

Tx,y = 0 only when x = y. If the edge-weight is allowed to be zero, T is a pseudometric.

Moreover T satisfies the triangle inequality Tx,y ≤ Tx,z + Tz,y for every x,y, z ∈ Zd.

In FPP, there is a shape theorem, but the limiting shape depends on the distribution

of the {τl}s. For a general distribution with a positive support very little is known apart

from them being convex, compact, and having the symmetries of Zd. It is expected that

for most distributions, the limit shape is strictly convex, and certainly not a polygon, but

strict convexity is not proved for any distribution, and there are only some two-dimensional

examples of limit shapes that are not polygons. For a recent survey on FPP see [5].

1.2.2 Last passage percolation

The last-passage percolation is a modification of FPP, introduced because of its relation-

ship with the totally asymmetric simple exclusion process (TASEP) particle system. In

general the n-step point to point last passage time is defined as

GV0,(n),x = max
π0,n+`−1:v0=0,vn=x

n−1∑
k=0

V (Tvkω, zk+1,k+`),

5



where the function V (Tvkω, zk+1,k+`) defines if an admissible path can collect the weight

at site vk according to the ` previous steps that it made to reach that site.

Once V is specified or it is not necessary to highlight it, we omit it from the notation.

Typically a path π0,n is a sequence of vertices v0, . . . , vn such that ||vi+1− vi||1 = 1 for all

i, we define the random variable at vertex vk as τvk = V (Tvkω, vk+1 − vk) and one assigns

the passage time L(π) =
∑n−1

k=0 τvk , as in FPP.

So far the difference between the LPP and the FPP is that the random weights are

assigned to the vertices instead of the edges. But there are two main difference between

them, in the LPP the passage time between two vertices is the maximal passage time of

any path between them. This will generally be infinity unless a restriction to a finite set

of paths is added, so that it is possible to consider only oriented paths; that is, paths such

that all the coordinates of the vis are nondecreasing (vi ≤ vi+1). Therefore for any u ≤ w,

the last passage time Gu,w is the longest amount of time that the infection takes from u

to w following the maximal oriented path, where u,w ∈ Zd. Formally

Gu,w = sup{L(π) : π is a directed path from u to w with u ≤ w}. (1.2.2)

Due to directedness of the model and the fact that we are taking a maximum, G has

somewhat different properties than T in FPP. One still has for u ≤ w, Gu,w ≥ 0 and if

τv > 0 for all v, then Gu,w > 0 when u 6= w. Excluding the initial point from all our

paths, we have a super-additivity property of G that corresponds to the triangle inequality

in FPP:

Gu,z ≥ Gu,w +Gw,z for u ≤ w ≤ z,with u,w, z ∈ Zd.

By this super-additivity, the limiting shape in LPP is not convex, since the corresponding

shape function gpp will be super-additive. For its definition, it is necessary to use the

sub-additive ergodic theorem, noting that G is super-additive. The only difficulty is to

come up with conditions under which the limit is finite.

In two dimensions, it is believed that the boundary of the limit shape is the graph of

a strictly concave function. In LPP, however, it is known that the limit shape is not a

polygon. For a survey of LPP, see [79, 86, 103].

1.2.3 Totally asymmetric simple exclusion process (TASEP)

The most famous case of LPP is when the distribution F of the site-weights is exponential

in two dimensions. In this case, there is a direct mapping from the growth of Bt in (1.2.1)

to a particle system called the Totally Asymmetric Simple Exclusion Process (TASEP).

TASEP is defined as follows. We imagine that at each site z of Z with z ≤ 0, there sits a
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particle at time 0. Associated to each particle is a Poisson process, and when this process

jumps, the particle attempts to move to the site directly to the right. If there is already a

particle there, the move is suppressed, and the particle stays in its current location. The

particle that is initially at site 0 is not restricted by particles to the right, but the other

particles may sometimes be blocked by particles to their right.

TASEP is one of the most studied non-equilibrium particle systems. Its main applic-

ations include protein synthesis [75, 108] and traffic modeling [60]

The relation between TASEP and LPP with exponential weights is as follow. The

procession of the first particle in TASEP is the same as the infection in LPP along the

positive x-axis from 0 [65]. Indeed, the infection appears at 0 after an exponential time,

just as the first particle in TASEP moves to the right. It then infects the site (1, 0)

after an independent exponential time, just as the same particle in TASEP moves again

to the right. Generally, the infection time from (0, 0) to (n, 0) is achieved through the

path that proceeds directly down the positive x-axis, and occurs when the first particle

in TASEP reaches site n + 1. At the second level, the infection of site (0, 1) occurs an

independent exponential time after the infection appears at (0, 0). This corresponds to

the second particle in TASEP moving into the space left open after the first particle

moves. Generally, the n-th step of the k-th particle in TASEP corresponds to the site

(n − 1, k) being infected from (0, 0). To see this, we can derive the following relation in

LPP: according to the previous notation we identify u = (0, 0) and w = (x1, x2) with

x1, x2 > 0, one has

G(0,0),(x1,x2) = τx1,x2 + max{G(0,0),(x1−1,x2), G(0,0),(x1,x2−1)}.

This is because the infection from (0, 0) reaches (x1, x2) through either (x1 − 1, x2) or

(x1, x2 − 1) (whichever is infected last), and after the one of these sites with maximal

passage time from (0, 0) is infected, (x1, x2) must wait τx1,x2 additional time. Similarly, in

TASEP, for the k-th particle to make its n-th step, it must wait an independent exponential

time after both of the following events occur:

(a) the k − 1-st particle makes its n-th step and

(b) the k-th particle makes its n− 1-st step.

Another way to visualize this coupling is rotating the corner growth model by π/4 anti-

clockwise and the resulting shape is the so called wedge. Particles occupy sites of Z, subject

to the exclusion rule that does not allow for two particles to occupy the same site.
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Figure 1.2: Graphical representation of the coupling between the corner growth model

and TASEP. The height function ht is represented by the red line in the plot.

In this case the connection between the corner growth and TASEP comes via the

height function ht that evolves with the particle system as time t progresses. It is a

piecewise linear curve, differentiable in intervals (x − 1/2, x + 1/2), x ∈ Z. For each such

interval the derivative of ht exists and it is constant 1 or −1. If the height function has a

positive slope on (x−1/2, x+1/2), it means that the corresponding site x on the line is not

occupied by a particle at time t. Otherwise if the edge of the height function has a negative

slope in (x − 1/2, x + 1/2) it means that the corresponding site on the line is occupied.

Particles jump to the right at random exponential times subject to the exclusion rule.

With each step, the height function updates. In particular, note that the height function

ht corresponds to the level curves of the last passage time. (see Figure 1.2).

1.3 General contribution

So far we have introduced a general overview of the percolation process and its macro-

scopic area of study. During the thesis, as already mentioned, we will treat three different

models for the last passage percolation in Z2
+. They differ in the distribution of the weights

in each site, the admissible steps and the rule of how the maximal path collects the weights.

In one of the three models the weight distribution is exponential so its connection with

TASEP is straightforward as previously explained. For each model we will always derive

the law of large numbers for the last passage time Gx,y in (1.2.2) in the homogeneous

settings which means that {τi,j}(i,j)∈Z+
2

are i.i.d. under P. Moreover, we will address three

different fundamental questions (one for each model) about the last passage time:
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• In Chapter 2, Last passage percolation in an exponential environment with discon-

tinuous rates, the weights are exponentially distributed, R = {e1, e2} and we wonder

what is the law of large numbers when the rates are not homogeneous but depend

on the site position (i, j) ∈ Z2
+.

• In Chapter 3, Order of the variance in the discrete Hammersley process with bound-

aries, the weights are Bernoulli p distributed, R = {e1, e2, e1 + e2} and we add some

proper boundary distributions in order to create an invariant model. As the title

suggests we want to find the order of the last passage time fluctuations for this new

model.

• In Chapter 4, A Large deviation principle for last passage times in an asymmetric

Bernoulli potential, as in the previous chapter the weights are Bernoulli p distributed

butR = {e1, e2} and they are collected asymmetrically in the sense that the maximal

path cannot collect whenever it makes an e2-step. Also for this model we add suitable

boundary distribution for the corresponding invariant model which are different from

the one in the previous model. Moreover we find an explicit formula for the right tail

large deviations rate function for the model without boundaries and for the right

tail large deviations logarithmic moment generating function for the model with

boundaries.

We will now give an introduction to the three models under consideration in the corres-

ponding chapters and their connections with other models. All three chapters are extracted

from three different papers which are joint works with my supervisor Nicos Georgiou. The

models will be formally introduced and analyzed in the following chapters.

For the three models we will treat three different topics of probability theory: the law

of large numbers, fluctuations and large deviations for the last passage time. We now give

a general introduction to them and how our results fit into the related literature.

1.3.1 Law of large numbers

In general finding a law of large numbers means finding a connection between a macroscopic

and microscopic environment. In particular, the law of large number of the last passage

time G(0,0),(x,y) along any direction (x, y) ∈ R2
+ in a homogeneous environment is given by

lim
n→∞

G(0,0),(bnxc,bnyc)

n
= gpp(x, y) a.s with x, y ∈ R2

+ are fixed.

gpp(x, y) is called the point-to-point shape function and its existence will be proven by

Theorem 1.5.2. If the starting point is (0, 0) and no confusion arises, we simply denote

G(0,0),(u,v) with Gu,v.
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Generic properties of gpp(x, y) have been obtained in [78], that are universal under

some mild conditions on the distribution of τi,j . In [15], a distributional limit to a Tracy-

Widom law was proven for passage times ‘near the edge’, i.e. for passage times in thin

rectangles of order n×na with a ∈ (0, 1). It is expected that several properties of the last

passage models hold irrespective of the distribution of τi,j ; these include the fluctuation

exponent of Gbnxc,bnyc, limiting laws and fluctuations of the maximal path around its

macroscopic direction. As far as the law of large numbers goes, a universal approach,

under only some moment assumptions on the distribution of τi,j , has been developed

in [48, 87, 89, 90], where the limiting shape is given in terms of variational formulas.

A variational formula for the time constant in first passage percolation was proven in

[73]. For two-dimensional last passage models with e1, e2 admissible steps the analysis

and results can be sharpened; early universal results on the shape near the edge were

obtained in [15, 78]. A general approach and a range of results including solutions to the

variational formulas and existence of directional geodesics using invariant boundary models

were developed via the use of cocycles in [49] and [50]. Similar techniques are utilized in

Chapter 3 and Chapter 4, since we prove the existence of an invariant boundary model

for the two models.

When the environment τi,j ∼ Exp(1), the last passage model is one of the exactly

solvable models of the Kardar-Parisi-Zhang (KPZ) class (see [30] for a survey). The

strong law of large numbers in the exponential model is explicitly computed in [94]

lim
n→∞

Gbnxc,bnyc

n
= γ(x, y) = (

√
x+
√
y)2, P-a.s. (1.3.1)

The core of Chapter 2 is article [28], which is now submitted. It is concerned with

directed last passage percolation on the lattice in a discontinuous environment; weights

τi,j at each site (i, j) are exponentially distributed but with different rates that depend

on their position. Similar arguments can be repeated when the environment comes from

geometrically distributed weights, and in this case the inhomogeneity will be captured by

changing the values of p, the probability of success of the geometric weight. Such models

do not have the super-additivity properties that guarantee the existence of a macroscopic

shape, so other techniques must be utilised to first show existence of macroscopic limits

and then compute a formula for them.

Several inhomogeneous models of last passage percolation exist, each one with different

ways of assigning rates (or weights in general). One way is to fix two positive sequences

{ai}i∈N and {bj}j∈N to assign to site (i, j) an exponential weight τi,j with rate ai+bj . Laws

of large numbers for the last passage time for these models were obtained in [104] when

10



ai where i.i.d. and bj constant, and then generalised in [41]. The model enjoys several

aspects of integrability, and large deviations from the shape were obtained in [42]. When

admissible steps are not restricted to just e1, e2, [52] studies an inhomogeneous model

which generalises the one introduced in [99] and obtain explicit distributional limits for

fluctuations of the passage time.

Macroscopic inhomogeneities defined via the speed function ( which is the inverse of

the rate ) have been already considered in the literature. When the speed function is

continuous, [93] showed the law of large numbers for the passage times and convergence

of the microscopic maximal paths to a continuous curve conditioned on uniqueness of the

macroscopic maximiser.

On each site the rate of the exponentially distributed weight is completely determined

by the speed function c(·, ·). When c(x, y) = r1{x = y} + 1{x 6= y} the law of large

numbers was studied in [14, 101] and it was shown that for small values of r the LLN

disagrees with that of the 1-homogeneous model. When the discontinuity curves of c(x, y)

was a locally finite set of lines of the form {y = x+ bi}i∈N, the law of large numbers limit

was obtained in [46] and an explicit limit for the shape function was obtained in the case

of the two-phase model with c(x, y) = r11{x ≤ y} + r21{x > y}. In this case a flat edge

was observed for the limiting shape function. A first passage (unoriented) percolation

two-phase model was studied in [1], where the edge-weight distribution was different to

the left and right half-planes and in certain cases proved the creation of a ‘pyramid’ in the

limiting shape, i.e. a polygonal segment with a point of non-differentiability at the peak.

In [20] the law of large numbers for directed last passage percolation was extended

when the set of discontinuity curves for c(x, y) was a locally finite set of piecewise Lipschitz

strictly increasing curves. A PDE approach was used, bypassing the usual techniques of

TASEP particle systems, used in the earlier articles.

As previously shown there is a connection between the corner growth and TASEP

which comes via the height function ht that evolves with the particle system as time t

progresses. Therefore understanding the height function in the wedge which is the level

curve of the last passage time, is equivalent to studying the exclusion process for the

particle system. This coupling was utilised for example in [46, 93, 101] to obtain results

about hydrodynamic limits of the particle current and density, together with results for

the last passage times.

Hydrodynamic limits for spatially inhomogeneous conservative systems for different

versions of inhomogeneities have been extensively studied [6, 7, 23, 34, 46, 91]. An ex-
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ample where the discontinuity is microscopic in nature is the slow bond problem. This

TASEP model was introduced in [62] and [63], in which particles jump at the same rate

1 everywhere on Z except at site zero where the jump happens at a slower rate than the

other sites. Results regarding the hydrodynamic limits (and by extension the last passage

times) were obtained in [101] and finally in [14] the full conjecture was proven that a slow

bond will always affect the hydrodynamics. Recently, in [17] a totally asymmetric particle

with blockage with spatial inhomogeneities was studied and limiting Tracy-Widom laws

were obtained. A further improvement of the previous result has been done in [72] where

they apply a different approach which allows them to extend their results to a discrete in-

homogeneous space. Moreover, thanks to that approach they are able to study multitime

asymptotics in the inhomogeneous exponential jump and look at a fine scaling fluctuations

around a large number of particles in a small interval.

1.3.2 Fluctuations

Identifying the explicit shape function is the first step in computing fluctuations and scaling

limits for last passage time quantities. When precise calculations can be performed and

explicit scaling laws can be computed the model is classified as an explicitly solvable model

of last passage percolation. There are only a handful of these models, and each one requires

an individual treatment.

The order of the fluctuations nχ is computed as that exponent χ (also called the

fluctuation exponent) such that (see Figure 1.1 in the special case with exponential 1

weights) for all n large enough

C1n
2χ ≤ Var(Gbnxc,bnyc) ≤ C2n

2χ. (1.3.2)

In [8] it is proven that the fluctuations around the mean of the longest increasing sub-

sequence (LIS) of n numbers are of order n1/6 and the scaling limit is a Tracy-Widom

distribution using a determinantal approach. The fluctuation exponent 1/3 is often used

to associate a model to the KPZ class [30, 31, 44, 55, 85], and determinental/combinatorial

approaches were developed for a variety of solvable growth models in order to compute

among other things explicit weak limits and formulas for Laplace transforms of last pas-

sage times and polymer partition functions. Lattice examples include the corner growth

model with i.i.d. geometric weights, (admissible steps e1, e2) [65], the log-gamma poly-

mer [16, 32], introduced in [102], the Brownian polymer [80, 105], the strict-weak lattice

polymer [33, 81], the random walk in a beta-distributed random potential, where the zero-

temperature limit is the Bernoulli-Exponential first passage percolation [11]. Particularly

12



for percolation in Bernoulli environment see [52], where Tracy-Widom distributions where

obtained for a class of models that also include the homogeneous model of [99]. The

result of [65] was also used to derive explicit formulas for the distribution of the discrete

Hammersley [84] with no boundaries via a particle system coupling using a mathematical

physics approach.

A more probabilistic approach to estimate the order of the variance in (1.3.2), was

developed in [21] and [54] where by adding Poisson distributed ‘sinks’ and ‘sources’ on

the axes, they could create invariant versions of the model. For the discrete Hammersley,

an invariant model with sinks and sources has been described in [12] and it was used to

re-derive the law of large numbers for Gm,n.

Chapter 3 is based on article [26], which is now submitted. It studies fluctuations of

a corner growth model that can be viewed as a discrete analogue of the Hammersley pro-

cess [56] or an independent analogue of the longest common subsequence (LCS) problem,

introduced in [25]. In particular we want to prove that the corresponding model where

we add some boundary conditions belongs to the KPZ class of models for the last pas-

sage time in a particular direction. The technique that we use in this chapter to find the

fluctuation order relies on finding the boundary weight distributions necessary to create

an invariant boundary model. Our approach is similar to those in [9, 102, 105] where a

Burke type property is first proven for the model with boundary and then exploited to

obtain the order of fluctuations. The success of all those proofs is reliant on the shape

function having quadratic Taylor expansion. This is the reason why we first prove the

shape function for this model and then the fluctuation order.

The model under consideration in this chapter was introduced in [98] where it is studied

the shape function. It is a directed corner growth model on the positive quadrant Z2
+.

Each site v of Z2
+ is assigned a random weight ωv which is Bernoulli p distributed. We have

changed the notation of the random variable at each site v from τ to ω to highlight the fact

that in the LCS interpretation a 1 or a 0 in a site corresponds respectively to a match or

no-match between the elements of two subsequences and not to a time for an infection to

reach a site. Therefore, in this case, the last passage time G corresponds to the length of

longest common subsequence. The admissible steps of a potential optimal path from (0, 0)

to (m,n) can be e1, e2 and e1 + e2. In order to obtain the longest common subsequence as

defined in the original problem [56] the optimal path can collect only through a diagonal

step e1 + e2 as specified by the potential

V (ω, z) = ωe1+e211{z = e1 + e2}. (1.3.3)
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Figure 1.3: A possible representation of the maximal path (green thick line) given a fixed

random environment. The red dots represent the sites where ω = 1 while the white dots

are when ω = 0. We have circled a dot to highlight that the maximal path cannot collect

that dot despite there is 1 at that site. This is due to the potential defined in (1.3.3).

At the first sight, except for the diagonal step, this model seems reminiscent of the

percolation model described above. But looking at the Hammersley process more carefully

it is possible to note that it has nothing to do with the percolation process since an optimal

path can go through a site which has drawn a 0 without collecting anything. While in

the percolation process a 0 correspond to a site or edge removal which means that a path

cannot go through it.

The law of large numbers forGV(m,n) was first obtained in [98] by first obtaining invariant

distributions for an embedded totally asymmetric particle system. It is precisely this

methodology that invites the characterization ‘discrete Hammersley process’ as the particle

system can be viewed as a discretized version of the Aldous-Diaconis process [2] which finds

the law of large numbers limit for the number of Poisson(1) points that can be collected

from a strictly increasing path in R2
+.

The original problem is mentioned as Ulam’s problem in the literature and it was

about the limiting law of large numbers for the length of longest increasing subsequence of

a random permutation of the first n numbers, denoted by In. Already in [43] it was shown

that In ≥
√
n and an elementary proof via a pigeonhole argument can be found in [56].

This gave the correct scaling and it was proven in [74, 107] that the limiting constant is 2.

Then the combinatorial arguments of these papers where changed to softer probabilistic

arguments in [2, 53, 97] where the full law of large numbers was obtained for a sequence

of increasing Poisson points.

For the discrete Hammersley the law of large numbers for the point-to-point shape
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function g
(p)
pp (s, t) was computed in [98] to be

g(p)
pp (s, t) = lim

n→∞

GVbnsc,bntc

n
=


s, t ≥ s

p ,

1
1−p
(
2
√
pst− p(t+ s)

)
, ps ≤ t < s

p ,

t, t ≤ ps.

(1.3.4)

This is a concave, symmetric, 1-homogeneous differentiable function which is continuous

up to the boundaries of R2
+ and it was the first completely explicit shape function for which

strict concavity is not valid. In fact, the formula indicates two flat edges, for t > s/p or

t < ps.

The argument used in [98] to obtain the formula in directions of the flat edge can also

be used in an identical way to obtain the law of large numbers in the same direction for

the much more correlated LCS model [25]. Comparisons between the discrete Hammersley

and the LCS are tantilizing. The Bernoulli environment η = {ηi,j} for the LCS model is

uniquely determined by two infinite random strings x = (x1, x2, . . .) and y = (y1, y2, . . .)

where each digit is uniformly chosen from a k-ary alphabet (i.e. xi, yj ∈ {1, 2, . . . , k}).

Then the environment ηi,j = 1{xi = yj} and it takes the value 1 with probability p = 1/k.

The random variable L(k)
n,n represents the longest increasing sequence of Bernoulli points

in this environment, which corresponds to the longest common subsequence between the

two words, of size n. The limit ck = limn→∞ n
−1L(k)

n,n is called in the literature as the

the Chvatal-Sankoff constant, and it was already observed in [98] that g
(1/k)
pp (1, 1) of the

discrete Hammersley lies between the known computational upper and lower bounds for

ck.

A formal connection between the discrete Hammersley, LCS and Hammersley models

arises in the small p (large alphabet size k) limit. Sankoff and Mainville conjectured in

[95] that

lim
k→∞

ck√
k

= 2.

For the discrete Hammersley model this is an immediate computation in (1.3.4) for p = 1/k

when we change ck with g
(1/k)
pp (1, 1). For the LCS, this was proven in [71]. The value 2

is the limiting law of large numbers value for the longest increasing sequence of Poisson

points in R2
+.

The flat edge in lattice percolation models

The discrete Hammersley is a model for which the shape function gpp(s, t) exhibits two

flat edges, for any value of p. Flat edge in percolation is not uncommon. A flat edge for

the contact process was observed in [38] and [39]. A simple explicitly solvable first passage
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(oriented) bond percolation model introduced in [99] allows for an exact derivation of the

limiting shape function and it also exhibits a flat edge. In this model the random weight

was collected only via a horizontal step, while vertical steps had a deterministic cost. For

the i.i.d. oriented bond percolation where each lattice edge admits a random Bernoulli

weight, a flat edge result for the shape was proved in [37] when the probability of success

p is larger than some critical value and percolation occurs. This was later extended in

[77] where further properties were derived. In [4] differentiability has been proven for the

shape at the edge of flat edge.

These properties for oriented bond percolation can be transported to oriented site per-

colation and further extended to corner growth models when the environment distribution

has a percolating maximum. For a general treatment to this effect, for non-exactly solv-

able models, see Section 3.2 in [50]. For directed percolation in a correlated environment,

a shape result with flat edges can be found in [41].

Local laws of large numbers of the passage time near the flat edge of the discrete

Hammersley model can be found in [45]. This work was later extended in [47], where

limiting Tracy-Widom laws were obtained in special cases, using also the edge results

of [15]. These ‘edge results’ are for the last passage time in directions that are below

the critical line (n, n/p) and into the concave region of gpp by a mesoscopic term of na,

0 < a < 1. When a > 1/2 the order of the fluctuations is between O(n1/3) and O(1). In

the present article we further prove that in directions above the critical line (in the flat

edge of gpp) the variance of the passage time is bounded above by a constant that tends

to 0 (see Section 3.6).

1.3.3 Large deviations

Large deviations rate functions for LPP and partition functions (for directed polymers)

have been computed in several cases when the model is exactly solvable. Below G stands

for a generic last passage time random variable. Define the upper (or right) and lower (or

left) tail for the rate function as

lim
n→∞

−N−1 logP{GNs,Nt ≥ rN} = Ju(r), lim
N→∞

−N−2 logP{GNs,Nt ≤ rN} = J`(r),

A priori the existence of the limits is not even guaranteed, and it depends for example

on the potential V and the environment ω among other things. The existence of Ju(r)

and J`(r) was proved for the exponential and geometric corner growth model in Z2 [65].

An earlier work where the right-tail rate function is explicitly computed appeared in [96].

Existence of the rate functions is also known in the case of the Hammersley process. Its
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fluctuations in the large deviations regime were studied in [35], obtaining also precise res-

ults for the upper and lower exponential tails. An explicit right-tail rate function was

computed in [100], using the invariant distributions for the particle system and study-

ing deviations for the tagged particle. In the framework of particles systems, functional

large deviation principle for TASEP, which is closely connected to Exponential LPP, was

obtained, for the n-speed tail in [64, 106] and for the n2-speed tail recently in [83].

Using the invariance structure offered by Burke’s property, a right-tail large deviation

rate function with speed n for the partition function in the log-gamma polymer was proven

[51]. Large deviations and KPZ fluctuations were computed for a random walk in a

dynamic i.i.d. beta random environment in [10]. The idea of [51] was later extended for

the free energy in the O’Connell-Yor polymer in [61], which is also a model with asymmetry

like the one in Chapter 4 where we utilise similar techniques. Moreover for our specific

model we are also able to find explicit limiting log-moment generating functions.

The approach for the existence of the right tail rate function is probabilistic in nature

and utilizes super-additivity and the explicit expression is computed using probabilistic

arguments. In general, the speed n2 and the existence of lower-tail rate functions remains

elusive, including for non-solvable models of last passage percolation, if one was to use

only probabilistic techniques. In [69] it was shown under a boundedness condition on the

environment that the n2 speed was correct, but with no existence of the rate function

results. This was for FPP. FPP and LPP have the same qualitative behavior with the

role of upper and lower tails reversed, an artefact of sub-additivity vs super-additivity.

Existence of the n2 speed rate function is proven in [13] and the result is expected to

extend to LPP with the same probabilistic approach. A variant of this result was earlier

proved in [24] for line-to-line first passage time.

In Chapter 4 we study large deviations for the last passage time in a Bernoulli en-

vironment. All the results come from the paper [27]. The technique that we use to find

the explicit formula for the log moment generating function relies on finding the invariant

model. Therefore we will first add the proper boundary weights to the axes which will

help proving the last passage time shape function for this model and its large deviations.

Casting the model in the framework of a Burke type boundary model is part of our main

contribution that is essential in computing explicit forms for the rate function and the

dual for both the boundary and non-boundary model. Explicit forms of rate functions

were only obtained for some of the exactly solvable models [51, 61, 65, 96, 100] and the

results in this chapter add to these.
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The original model was introduced in [99] as a simplified model of directed first pas-

sage percolation. In this model, the environment τ = {τκ,λv }v∈Z2
+

is a collection of i.i.d.

Bernoulli(p) under a background measure P with marginals

P{τv = λ} = p = 1− P{τv = κ}, κ > λ ∈ R+, v ∈ Z2
+.

The set of admissible paths from (0, 0) to (m,n) ∈ Z2
+ is denoted by Πm,n and it contains

all paths of the form

π(0,0),(m,n) = {0 = v0, v1, . . . , vm+n = (m,n)},

so that vi+1−vi ∈ R = {e1, e2}. We say that R is the set of admissible steps. The random

variable under consideration is the “first passage time”

Lκ,λ,p(0,0),(m,n) = inf
π∈Πm,n

∑
vi∈π

V (Tviτ, vi+1 − vi),

where Tv denotes the shift by v ∈ Z2
+ and V : Ω×R → R is the potential function given

by

V (τ, z) = τe111{z = e1}+ τ̄11{z = e2}.

Value τ̄ was constant and fixed from the beginning. The interest was to find the explicit

shape function

µ(s, t) = lim
n→∞

Lκ,λ,p(0,0),(bnsc,bntc)

n
.

The model can be mapped into a last passage directed percolation by two observations.

First, because the admissible paths are directed the number of vertical increments z =

e2 ∈ R are fixed for any fixed endpoint (m,n) (in fact they are n) and the cost for crossing

them is deterministic τ̄ . Thus, for simplification τ̄ can be set to be zero. Second, since

λ < κ, to minimize Lκ,λ,p one should try and take horizontal steps e2 ∈ R when the value

of the environment at the target site is λ. Define new environment

ωv =
1

κ− λ
(κ− τv) ∼ Ber(p) ∈ {0, 1}. (1.3.5)

Then define the last passage time

GV(0,0),(m,n) = max
π(0,0),(m,n)∈Π(0,0),(m,n)

{∑
vi∈π

V (Tviω, vi+1 − vi)
}
. (1.3.6)

The value of GV gives the number of horizontal steps through environment ωv = 1,

equivalently τv = λ. Each of the remaining horizontal steps contributes κ to Lκ,λ,p and

therefore we have

LV(0,0),(m,n) = (λ− κ)GV(0,0),(m,n) + κm+ τ̄n. (1.3.7)
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Figure 1.4: A possible representation of the maximal path (green thick line) given a fixed

random environment. The red dots represent the sites where ω = 1 while the white dots

are when ω = 0. The circled dots are the ones that the maximal path collects following

the potential (1.3.8). Finally note that despite there is a column of red dots the maximal

path doesn’t spend a lot of time there. This is due to the fact that by (1.3.8) it cannot

collect through an e1 step. This means that the maximal path does not really see columns

with high density of Bernoulli successes.

Therefore, for simplicity we study the last passage timeGV given by (1.3.6), in environment

ω given by (1.3.5), under potential V given by

V (ω, z) = ωe111{z = e1}. (1.3.8)

By (1.3.7) one can translate all results to LV .

The law of large numbers for Gm,n was first found in [99] by first obtaining invariant

distributions for an embedded totally asymmetric particle system. Most recently the LLN

was reproved in [12] using an invariant boundary model with sources and sinks. This

idea was utilised in the same article for the discrete version of Hammersley’s process [56],

introduced in [98]. The theorem states

Theorem 1.3.1 (The shape function for GbNsc,bNtc [99, 12]). Fix p in (0, 1) and (s, t) ∈

R2
+. Then we have the explicit law of large numbers limit

gpp(s, t) = lim
N→∞

GbNsc,bNtc

N
=


(√
ps+

√
(1− p)t

)2 − t, t < s1−p
p

s, t ≥ s1−p
p .

(1.3.9)

This is a concave, symmetric, 1-homogeneous differentiable function which is continu-

ous up to the boundaries of R2
+. Together with the shape function for the discrete Ham-

mersley [98], are the first completely explicit shape functions for which strict concavity is

not valid. In fact, the formula above indicates one flat edge, for t > s1−p
p .
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This simplified Bernoulli model was studied further in [52] where Tracy-Widom dis-

tributional limits were obtained for this and a generalised inhomogeneous version where

the probability of success of the Bernoulli environment changes with the first coordinate

of the site. Then the LLN was used for certain estimates in proving generalised properties

of the shape functions of last passage percolation in [78].

Other models for which a flat edge of the shape function exists are common, and well

studied. The discrete Hammersley model discussed in [26, 45, 47, 98] and the inhomogen-

eous model in [41] allow for an exact derivation of the limiting shape function and they

also exhibit two flat edges. Large deviations for the latter were obtained in [42]. In the

present chapter, we also study the behaviour of large deviations in directions for which

the shape is flat for this classical Bernoulli model.

1.4 Thesis organization

In this section we give the thesis layout and the contents of each section in each chapter.

Chapter 2

In Section 2.1 we describe the main theorems. First we state the law of large numbers limit

for the passage time (2.0.5). This is Theorem 2.1.5. The limiting shape function, denoted

by Γ(x, y) comes in the form of a variational formula, where a functional is maximised

over a set of suitable functions. Coninuity properties of Γ are proved in Section 2.4. The

proof of the law of large numbers is in Section 2.5.

We then state results for two explicitly analysable examples. The first one is the

shifted-two phase model with speed function (2.0.6); here we study properties of the

shape and show analytically that there are flat edges, convexity-breaking and points of

non differentiability for the shape function Γ(x, y). The related proofs are in Section 2.2.

The other example is the corner-inhomogeneous model with a speed function (2.0.7).

Under some regularity conditions on f , we are able to study properties of the maximisers of

the variational formula for the shape and how their behaviour depends on f . For example,

depending on f we may have points (x, y) for which the macroscopic maximiser follows

the axes. For both studied examples we have cases where macroscopic maximisers are not

unique. The proofs for this model can be found in Section 2.3.

Chapter 3

The chapter is structured as follows: In Section 3.1 we state our main results after de-

scribing the boundary model. In Section 3.2 we prove Burke’s property for the invariant

boundary model and compute the solution to the variational formula that gives the law of
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large numbers for the shape function of the model without boundaries. The main theorem

of this paper is the order of the variance of the model with boundaries in characteristic

directions. The upper bound for the order can be found in Section 3.3. The lower bound

is proven in Section 3.4. For the order of the variance in off-characteristic directions see

Section 3.5 and for the results for the model with no boundaries, including the order of

the variance in directions in the flat edge see Section 3.6. Finally, in Section 3.7 we prove

the path fluctuations in the characteristic direction, again in the model with boundaries.

Chapter 4

The chapter is organised as follows: in Section 4.1 we state our main results after describing

the boundary model. In Section 4.2 we prove Burke’s property for the invariant boundary

model and compute the solution to the variational formula that gives the law of large

numbers for the shape function of the model without boundaries. In Section 4.3 we prove

a full large deviation principle (LDP) for GbNsc,bNtc at speed N . General properties of the

rate function are also proven, including that its Legendre dual is the limiting logarithmic

moment generating function (l.m.g.f.) of GbNsc,bNtc via Varadhan’s lemma. Existence

of the full LDP is a direct consequence of the existence of a right-tail rate function. In

Section 4.4 we prove some important properties of the large deviations rate function which

are useful to prove the main theorems of this chapter. We prove an explicit variational

formula for the right-tail rate function and its Legendre dual, that we then proceed to

explicitly solve and obtain a closed formula in Section 4.5. Finally, in Section 4.6 we prove

an explicit expression of the limiting l.m.g.f. for the invariant boundary model.

1.5 Preliminaries

Throughout the thesis we will mention many times the theorems and lemmas that we

are going to present in this section. Therefore we state and prove them for completeness

and because the goal is to make the thesis self-sufficient.

1.5.1 Burke’s theorem

Consider a M/M/1 queue and assume ρ = λ/µ < 1, where µ and λ are respectively the r

customer arrival and service rates, so there is an equilibrium. Let Dt denote the number

of customers who have departed the queue up to time t. Let Xt denote the queue length

at time t and it is a positive recurrent Markov chain for any µ, λ > 0 with an invariant

distribution.

Theorem 1.5.1 ([19]). At equilibrium, Dt is a Poisson process with rate λ, independently

of µ (so long as µ > λ). Furthermore, Xt is independent from (Ds, s ≤ t).
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Proof. The proof consists of a time-reversal argument. Recall that X is a birth and death

chain and has an invariant distribution. So at equilibrium, X is reversible: thus for a

given T > 0, if X̂t = XT−t we know that (X̂t, 0 ≤ t ≤ T ) has the same distribution as

(Xt, 0 ≤ t ≤ T ). Hence X̂ experiences a jump of size +1 at constant rate λ. But note

that X̂ has a jump of size +1 at time t if and only if a customer departs the queue at time

T − t. Since the time reversal of a Poisson process is a Poisson process, we deduce that

(Dt, t ≤ T ) is itself a Poisson process with rate λ.

Likewise, X0 is independent from arrivals between 0 and T . Reversing the direction of

time this shows that XT is independent from departures between 0 and T .

The connection between Burke’s Theorem and property comes from the queues in

tandem interpretation of last passage time. The result in full generality can be found in

[50]. The authors define TASEP using sequences of arrival, service and waiting times to

describe the evolution of the particle system. The particle system equilibrates to what is

called a fixed point [76] and the equilibrium distribution of arrival and waiting times are

those of the boundary model. In the case of the exponential LPP the arrival equilibrium is

Exponential(ρ) while the particle distribution is i.i.d. Bernoulli(1− ρ). The independence

and the distributions come from Burke’s Theorem.

The Burke’s property that will be mentioned in Chapter 3 and Chapter 4 is a gen-

eralization for the last passage percolation of Theorem 1.5.1. The Burke property guar-

antees enough analytical tractability to classify these as an exactly solvable model of

the KPZ class [30]. Several well-studied models of last passage percolation and directed

polymers exhibit this characteristic. There is the continuum directed polymer studied in

[3], the log-gamma polymer introduced in [102], the polymer in a Brownian environment

with continuous-time random walk paths, discovered in [82], subsequently worked on in

[80, 81, 105], the strict-weak gamma polymer studied in [33] and [81] and the random walk

in Beta-distributed random potential [11]. The exactly solvable planar polymer models

with two admissible steps were recently classified in [22]. Exactly solvable models which

present environment inhomogeneity are for the corner growth model [41] and for totally

asymmetric particle systems associated to growth models [17, 72].

1.5.2 Subadditive ergodic theory

The subaddidive ergodic theorem was originally proved by Kingman in [70]. The improved

version that we are going to present is due to Liggett. Proofs of this theorem can be found

in many books of probability such as [40] and [66].
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Let {Xm,n : m,n ∈ Z+, 0 ≤ m < n} be a real-valued process that satisfies the following

assumptions:

(i) X0,n ≤ X0,m +Xm,n for 0 ≤ m < n.

(ii) For each k ∈ N, the process {Xnk,(n+1)k} is stationary.

(iii) The probability distribution of the process {Xm,m+j : j ∈ N} is the same for all

m ∈ Z+.

(iv) E[X+
0,1] <∞ and for some γ0 > −∞, E[X0,n] ≥ γ0n for all n ∈ N.

Theorem 1.5.2. Under the above assumptions, there is a limit

X = lim
n→∞

X0,n

n
almost surely and L1.

The expectation of X exists and satisfies

E[X] = lim
n→∞

E[X0,n]

n
= lim inf

n→∞

E[X0,n]

n
.

If all the stationary processes in assumption (ii) above are ergodic, then X is constant:

P{X = E[X]} = 1.

Suppose that Z is a non-negative super-additive process, then the moment assumptions

are not needed for almost sure convergence. Formally, let {Zm,n : m,n ∈ Z+, 0 ≤ m < n}

be a process that satisfies 0 ≤ Zm,n < ∞, assumptions (ii) and (iii) from above, and

super-additivity: Z0,n ≥ Z0,m + Zm,n for 0 ≤ m < n. Assume also that the processes

{Znk,(n+1)k : n ∈ Z+} are ergodic in addition to stationary.

Corollary 1.5.3. There exists a constant γ ∈ [0,∞) such that n−1Z0,n → γ almost surely.

Proof. For K ∈ N, the process Z
(K)
m,n = Zm,n ∧K(m − n) is super-additive, and Xm,n =

−Z(K)
m,n satisfies all the assumptions of Theorem 1.5.2, including the ergodicity of the

processes in assumption (ii). Thus there are constants γ(K) such that n−1Z
(K)
0,n → γ(K)

almost surely. Since we are considering countably many K ∈ N, there is a probability one

event Ω0 on which this convergence holds for all K ∈ N. Let γ = supK γ(K). We claim

that n−1Z0,n → γ on Ω0.

Since Z0,n ≥ Z(K)
0,n for all K, by letting n→∞ along a suitable subsequence and then

K ↗∞ gives limn→∞ n
−1Z0,n ≥ γ.

If γ = ∞ this already gives the limit. Suppose γ < ∞. If limn→∞ n
−1Z0,n > γ then

pick ε > 0 and a subsequence nj such that n−1
j Z0,nj > γ + ε for all j. Pick K > γ + ε.

Then on the one hand

n−1
j Z

(K)
0,nj

= (n−1
j Z0,nj ) ∧K > γ + ε for all j
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but on the other hand n−1
j Z

(K)
0,nj
→ γ(K) ≤ γ. This contradiction implies that limn→∞ Z0,n ≤

γ.

1.5.3 Borel-Cantelli lemma

Suppose that {An : n ≥ 1} is a sequence of events in a probability space. Then the event

A(i.o) = {An occurs for infinitely many n} is given by

A(i.o) = ∩∞k=1 ∪∞n=k An,

Lemma 1.5.4. Suppose that {An : n ≥ 1} is a sequence of events in a probability space.

If
∞∑
n=1

P{An} <∞,

then P{A(i.o)} = 0; only a finite number of the events occur, with probability 1.

Proof. Let 11n = 11{An} denote the indicator random variable for the event An, and let

N =

∞∑
n=1

11n,

denote the total number of the events to occur. Then P{A(i.o)} = 0 if and only if

P{N <∞} = 1. But if E[N ] <∞, then P{N <∞} = 1 (as in the case with any random

variable N), and by Tonelli’s (Fubini’s) theorem,

E[N ] =
∞∑
n=1

P{An},

which is assumed finite, thus completing the proof.

Lemma 1.5.5. Suppose that {An : n ≥ 1} is a sequence of independent events in a

probability space. If
∞∑
n=1

P{An} =∞, (1.5.1)

then P{A(i.o)} = 1.

Proof. Suppose that (1.5.1) holds, and note that if it holds then

∞∑
n=k

P{An} =∞, k ≥ 1. (1.5.2)

Let Ān denote the complement of the set An.

P{A(i.o)} = lim
k→∞

P{∪∞n=kAn} = 1− lim
k→∞

P{∩∞n=kĀn}.
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To complete the proof we will show that

P{∩∞n=kĀn} = 0, k ≥ 1.

By independence, and the fact that 1− x ≤ e−x, x ≥ 0,

P{∩∞n=kān} =
∞∏
n=k

P{Ān} =
∞∏
n=k

P{Ān}

≤
∞∏
n=k

eP{An} = e−
∑∞
n=k P{An} = 0,

where the last inequality is from (1.5.2).
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Chapter 2

Last passage percolation in an

exponential environment with

discontinuous rates

We consider a model of directed last passage growth model in two dimensions, where each

lattice site (i, j) of Z2
+ is given a random weight τi,j according to some background measure

P.

Given lattice points (a, b), (u, v) ∈ Z2
+, Π(a,b),(u,v) is the set of lattice paths π = {(a, b) =

(i0, j0), (i1, j1), . . . , (ip, jp) = (u, v)} whose admissible steps satisfy

(i`, j`)− (i`−1, j`−1) ∈ {(1, 0), (0, 1)}. (2.0.1)

If (a, b) = (0, 0) we simply denote this set by Πu,v.

For (u, v) ∈ Z2
+ and n ∈ N we remind the last passage time

G(a,b),(u,v) = max
π∈Π(a,b),(u,v)

{ ∑
(i,j)∈π

τi,j

}
. (2.0.2)

If (a, b) = (0, 0) and no confusion arises, we simply denote G(0,0),(u,v) with Gu,v.

In this chapter we derive the limiting constant for a sequence of scaled last passage

times on the lattice. The passage times themselves are coupled through a common realiz-

ation of exponential random variables. However, the rates of these random variables will

be chosen according to a discrete approximation of a macroscopic function

c : R2
+ −→ R+.

Consider the lattice corner Z2
+. The environment τ = {τi,j}(i,j)∈Z2

+
is a collection of i.i.d.

exponential random variables of rate 1. For any n ∈ N we alter the rate of each of these
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random variables by a scalar multiplication using the macroscopic speed function c(x, y).

Namely, define

r
(n)
i,j = c

( i
n
,
j

n

)−1
, (i, j) ∈ Z2

+, (2.0.3)

and define n-scaled, inhomogeneous environment by

τ
(n)
i,j = r

(n)
i,j τi,j . (2.0.4)

The rate of the exponential random variable τ
(n)
i,j is now determined by the scalar c

(
i
n ,

j
n

)
.

On each site the rate is completely determined by the speed function c(·, ·). We indicate

the corresponding exponential 1 random variable as τi,j .

For (u, v) ∈ Z2
+ and n ∈ N denote the last passage time

G(n)
u,v = max

π∈Πu,v

{ ∑
(i,j)∈π

r
(n)
i,j τ

n
i,j

}
= max

π∈Πu,v

{ ∑
(i,j)∈π

τ
(n)
i,j

}
. (2.0.5)

We impose several conditions on the function c(x, y) and they are described in Section

2.1. For the moment we emphasise that for any compact set K ⊆ R2
+ there exist finite

constant mK and MK such that

mK ≤ c(x, y) ≤MK for all (x, y) ∈ K

and there are a finite number (that depends on K) of discontinuity curves of the function

c(x, y). These are to avoid degeneracies: If c(x, y) can take the value 0 then the envir-

onment could take the value ∞ which leads to trivial passage times. If c(x, y) can be

infinity, that region of space will never be explored by a path. If the discontinuities have

an accumulation point, then no discretization of c(x, y) can capture that.

We prove a strong law of large numbers for n−1G
(n)
bnxc,bnyc. The limiting last passage

constant Γc(x, y) has a variational characterization that naturally leads to a continuous

version of a last passage time model (see Theorem 2.1.5). We study the variational formula

and discuss properties of the shape Γc(x, y) and obtain explicit minimizers in two cases of

interest.

The first example is the shifted two-phase model with speed function

c`(x, y) =


1, if y > x− λ,

r, if y ≤ x− λ.
(2.0.6)

and the second model is the corner-inhomogeneous model with speed function

cf (x, y) =


1, f(x) > y,

r, f(x) < y,

1 ∧ r, f(x) = y.

(2.0.7)
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Precise assumptions on f, r, λ can be found in Section 2.1.

2.0.1 Commonly used notation

N denotes the set of natural numbers. Z is the set of integers and Z+ = N∪{0}. R denotes

the real numbers and R+ the non-negative reals. If a variable τ follows the exponential

distribution with parameter r > 0 this means P{τ > t} = e−rt, in other words r is the

rate.

Bold-face letters (e.g. v) indicate two dimensional vectors (e.g. v = (v1, v2)). In par-

ticular letter x is reserved for denoting two-dimensional curves; often we write x(s) =

(x1(s), x2(s)) to emphasise that the curve is parametrised and seen as a function. Inequal-

ities of vectors v ≤ w or (v1, v2) ≤ (w1, w2) means the inequality holds coordinate-wise.

For a vector v = (v1, v2), we denote by bvc = (bv1c , bv2c).

Without any special mention, when we write ‖ · ‖ we mean ‖ · ‖∞ unless explicitly

referring to a different norm. For any continuous function g we denote its modulus of

continuity by ωg and we assume

‖g(z1)− g(z2)‖∞ ≤ ωg(|z1 − z2|∞).

In the sequence we use the fact that ωg is continuous at 0 and that ωg(0) = 0 without

particular mention.

For any set A ⊆ R+
2 , we denote the multiplication nA = {(nx, ny) : (x, y) ∈ R2

+} and

the floor bnAc = {(bnxc , bnyc) : (nx, ny) ∈ nA}. The topological interior of the set is

denoted by int(A). For vectors v,w, v ≤ w, we denote by R(v,w) the rectangle with

south-west corner v and north-east corner w.

Letter G is reserved for last passage times. Often we use the notation GA to denote

the last passage time in the set A, which is the maximum weight that can be collected on

up-right paths that lie in the set A. If no such paths exist, GA = 0.

2.1 Model and results

At this point, we state the technical conditions on c(x, y) that we are imposing. There

will be no special mention to these in the sequence, unless absolutely necessary. We explain

why these assumptions are used after the statement of Theorem 2.1.5.

We assume the speed function c(x, y) satisfies the following two assumptions:

Assumption 2.1.1 (Discontinuity curves of c(x, y)). Function c(x, y) is discontinuous on

a (potentially) countable set of curves Hc = {hi}i∈I that is locally finite in all the following

properties
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1. hi is either a linear segment or strictly monotone.

2. If hi is not a vertical line segment, it can be viewed as a graph

hi : [zi, wi] = Dom(hi)→ R,

3. If hi is strictly increasing, then

(a) hi is C1((zi, wi),R). At the boundary points zi, wi the derivative may take the

value ±∞, 0.

(b) The equation h′i(s) = 0 has finitely many solutions in [zi, wi].

4. If hi is strictly decreasing, then hi is continuous.

The discontinuity curves {hi}i∈I separate R2
+ into open regions in which c(x, y) is

assumed continuous. The number of regions is finite in any compact set of R2
+. Denote

the set of regions by Q.

There are two types of points on these discontinuity curves,

1. (Interior points) These are points w that belong on a single discontinuity curve hi.

For any point w of this form, we can find an ε > 0 so that hi partitions B(w, ε) in

to three disjoint sets, Uε,w (above hi), Lε,w (below hi) and (hi ∩B(w, ε)).

2. (Intersection/terminal points) These are points w that either belong on more than

one discontinuity curve or they are terminal for hi. There are finitely many of these

points in any compact set.

Assumption 2.1.2 (Further properties of c(x, y)).

1. c(x, y) is continuous on any Q ∈ Q, lower-semicontinuous on R2
+, that further sat-

isfies the following stability assumption:

For every i ∈ I and interior point w ∈ hi, there exists ε = ε(i,w) > 0 so that for all

y ∈ B(w, ε) ∩ hi there exists open set Qi,w ∈ {Lε,w, Uε,w}, so that for any sequence

zn ∈ Qi,w ∩B(w, ε) with zn → y,

lim
zn→y

c(z) = c(y). (2.1.1)

2. For any compact set K ⊂ R2
+, there exist two constants r

(K)
low > 0 and r

(K)
high <∞, so

that

r
(K)
low ≤ c(x, y) ≤ r(K)

high, ∀(x, y) ∈ K.
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Remark 2.1.3. Assumption 2.1.2, (1) gives by a standard compactness argument that

if c(x, y) is never continuous on hi then it must be that in a strip around hi the values

of c(x, y) on one of the incident regions is always smaller than the values in all other

incident regions. This is consistent with assumption F3, equation (1.12) in [20]. Lower

semi-continuity of c(x, y) implies that the limiting value in (2.1.1) is the smallest of all

possible limits on sequences that approach y. However, the assumption of [20] that c(x, y)

is (at least locally) Lipschitz is now removed.

Fix an (x, y) in R2
+ and a speed function c(·, ·). Define the function Γc(x, y) via the

variational formula

Γc(x, y) = sup
x(·)∈H(x,y)

{∫ 1

0

γ(x′(s))

c(x1(s), x2(s))
ds

}
, (2.1.2)

where γ(x, y) = (
√
x +
√
y)2 is the last-passage constant in a homogeneous rate 1 envir-

onment, x(s) = (x1(s), x2(s)) denotes a path in R2 and set

H(x, y) = {x ∈ C([0, 1],R2
+) : x is piecewise C1,x(0) = (0, 0),x(1) = (x, y),

x′(s) ∈ R2
+ wherever the derivative is defined}.

When the speed function c(x, y) = r constant, we can immediately compute

Γr(x, y) = sup
x(·)∈H(x,y)

∫ 1

0

γ(x′(s))

c(x1(s), x2(s))
ds =

1

r
sup

x(·)∈H(x,y)

∫ 1

0
γ(x′(s)) ds

≤ 1

r
sup

x(·)∈H(x,y)
γ
(∫ 1

0
x′1(s) ds,

∫ 1

0
x′2(s) ds

)
, by Jensen’s inequality since γ is concave

=
1

r
γ(x, y) ≤ Γr(x, y).

The last inequality follows from the fact that the straight line from 0 to (x, y) is an

admissible candidate maximiser for (2.1.2). The calculation shows two things that we use

freely in the sequence, namely

1. Straight lines are optimisers of (2.1.2) in homogeneous (constant) regions of c(x, y).

In fact, because γ is strictly concave, it is easy to show that the straight line will be

the unique maximiser. We refer to this fact as ‘Jensen’s inequality’ in the sequence.

2. Γr(x, y) corresponds to the limiting shape function for last passage times in a homo-

geneous Exp(r) environment.

Two more properties of Γc can be immediately obtained:
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(1) (Independence from parametrization) For any c > 0, γ(cx, cy) = cγ(x, y) so the value

of the integral

I(x) =

∫ 1

0

γ(x′(s))

c(x1(s), x2(s))
ds (2.1.3)

is independent of the parametrisation we choose for the curve x.

(2) (Superadditivity) Define Γc(x, y) := Γc((0, 0), (x, y)) and similarly define Γc from any

starting point (a, b) to any terminal point (x, y), (x, y) ≥ (a, b) by

Γc((a, b), (x, y)) = sup
x(·)∈H((a,b),(x,y))

{∫ 1

0

γ(x′(s))

c(x1(s), x2(s))
ds

}
, (2.1.4)

where

H((a, b), (x, y)) = {x ∈ C([0, 1],R2
+) : x is piecewise C1,x(0) = (a, b),x(1) = (x, y),

x′(s) ∈ R2
+ wherever the derivative is defined}.

Then, for any (a, b) ≤ (z, w) ≤ (x, y) we have

Γc((a, b), (x, y)) ≥ Γc((a, b), (z, w)) + Γc((z, w), (x, y)). (2.1.5)

In this respect, function Γc behaves like a ‘macroscopic last passage time’ and the first

theorem shows that it is a continuous function.

Theorem 2.1.4 (Continuity of Γ.). Let c(x, y) satisfy Assumptions 2.1.1 and 2.1.2. Fix

(a, b) and (x, y) ∈ R2
+. For any ε > 0 there exists a δ0 = δ0(ε) > 0 so that for all

δ1, δ2, δ3, δ4 ∈ (−δ0, δ0), we have

|Γc((a+ δ1, b+ δ2), (x+ δ3, y + δ4))− Γc((a, b), (x, y))| < ε. (2.1.6)

In the next theorem we obtain Γc in (2.1.2) as the law of large number of the microscopic

last passage time (2.0.5).

Theorem 2.1.5. Recall (2.0.5). Let c(x, y) be a macroscopic speed function which satisfies

Assumption 2.1.1, and let (x, y) ∈ R2
+. Then we have the scaling limit

lim
n→∞

n−1G
(n)
bnxc,bnyc = Γc(x, y) P− a.s. (2.1.7)

Remark 2.1.6 (The conditions on the discontinuity curves). In [20] the discontinuity

curves are assumed strictly monotone, outside of compact set. As such, when viewed as

graphs of continuous functions, they are differentiable almost everywhere. This is more

general than the piecewise C1 condition in Assumption 2.1.1 3-(a). In our case we cannot

relax the piecewise C1 assumption further; in Example 2.5.4 we prove that for a certain
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speed function c(x, y) the maximizing macroscopic path actually follows the discontinuity

curve of c(x, y) on a set of positive measure and the set of H contains only piecewise C1

paths.

We expect that under Assumptions 2.1.1 and 2.1.2 Γc(x, y) is in fact a maximum and

not a supremum.

We use Theorem 2.1.5 to analyse two examples.

2.1.1 The shifted two-phase model.

The first one is the shifted two-phase model. We want to study an explicit description of

the limit shape function for a two-phase corner growth model with a discontinuity of the

speed function along the line y = x− λ. It is a generalisation of the example provided in

[46] (with λ = 0). We assume λ ∈ R+. For a fixed r ∈ (0, 1) we use the macroscopic speed

function c`(s, t) on R2
+ defined as

c`(x, y) =


1, if y > x− λ,

r, if y ≤ x− λ.
(2.1.8)

Subscript ` is to remind the reader that the small rate is lower than the discontinuity

line, i.e. r < 1 in this example. Since the speed function only takes two values, the set of

optimal macroscopic paths from the origin to (x, y) are piecewise linear paths.

Theorem 2.1.7. Let c`(x, y) as in (2.1.8). There exist explicitly computable functions

A(r), D(r) (see equation (2.2.5)) and some optimal point a∗ > λ so that for any (x, y) ∈ R2
+

the limiting shape function is given by

Γc`(x, y) =


γ(x, y), if y ≥ L(x, y),

I(x, y), if x− λ ≤ y ≤ L(x, y),

γ(a∗, a∗ − λ) + r−1γ(x− a∗, y − a∗ + λ), if y < x− λ,

where I(x, y) is a linear section of Γc`(x, y), given by

I(x, y) = (1 +A(r))x+
(

1 +
1

A(r)

)
y −D(r) = 0,

and L(x, y) is described by the equation

L(x, y) =
(
A(r)x− 1

A(r)
y
)2
− 2D(r)

(
A(r)x+

1

A(r)
y
)

+D(r)2 = 0.
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2.1.2 The corner-discontinuous model.

The other example is what we call the corner-discontinuous model. We start with a C2

convex decreasing function f : [0, a0] −→ [0, b0] where f(0) = b0 > 0 and f(a0) = 0. Then

we define the speed function

cf (x, y) =


1, f(x) > y,

r, f(x) < y,

1 ∧ r, f(x) = y.

(2.1.9)

In words, after a bounded region of rate 1 delineated by f and the coordinate axes, the

rate becomes r. Computing analytically the shape function Γcf (x, y) is challenging; it

depends on properties of the function f . When f takes the specific form

f(x) = (1−
√
x)2, x ∈ [0, 1],

we will explicitly identify the shape function in Example 2.3.11 and the macroscopic max-

imisers of (2.1.2) are straight paths from (0, 0) to (x, y), despite the discontinuity.

Changing the function f , different properties of macroscopic maximisers can be ob-

tained. From the fact that c(x, y) is piecewise constant, macroscopic maximisers of (2.1.2)

exist and are piecewise linear segments, one in each of the two constant regions.

For each point (x, y) in the r-region, the variational formula will be maximised by

either a piecewise linear path that crosses f or by a piecewise linear path, with initial

segment on one of the coordinate axes.

Definition 2.1.8 (Types of maximisers). There are two types of potential maximisers of

(2.1.2) under speed function (2.1.9):

Type C: We say that the maximiser is of crossing type when it crosses the function f at some

optimal crossing point (a, f(a)), (0 < a < a0) which depends on (x, y).

Type B: We say that the maximiser is of boundary type, when the first linear segment of it

follows one of the coordinate axes.

Note that for (x, y) ∈ (0, a0) × (0, f(0)) we cannot have type B maximisers, and for

(x, y) in the 1-region the maximiser must be the straight line from (0, 0). Based on this

definition we define

R0,f(0) = {(x, y) ∈ R2
+ : maximiser of (2.1.2) is of type B and goes through (0, f(0)}.
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Similarly define Ra0,0 for which maximisers go through the horizontal axis. We would

like to know when R0,f(0) have non-empty interior. As it turns out, this only depends on

properties of the function f and the value of r.

A few definitions before stating the result. First we define a function m2 of a ∈ (0, a0)

by

m2(a) =
4(

− 1
f ′(a) − 1 +D +

√(
− 1

f ′(a) − 1 +D
)2
− 4 1

f ′(a)

)2
, (2.1.10)

where

D = Da = r
(

1 +

√
f(a)

a

)(√ a

f(a)
+

1

f ′(a)

)
. (2.1.11)

In Section 2.3 we prove that for any points (x, y) ∈ int(R2
+) which have a candidate

maximiser of type C, i.e. for any point (x, y) for which there exists at least one admissible

crossing point (ax,y, f(ax,y)) with 0 < ax,y < a0, the slope m2 = m2(ax,y) of the second

linear segment must satisfy the equation

y − f(ax,y)

x− ax,y
= m2(ax,y).

It is not necessary that for each (x, y) a unique ax,y will satisfy the equation above, but it

will be true that ax,y < x and f(ax,y) < y (see Lemma 2.3.5).

Furthermore, we define

α0 = inf
{
s : lim

a↘0
as|f ′(a)| = 0

}
and α∞ = sup

{
s : lim

a↘0
as|f ′(a)| =∞

}
.

Check that α0 ≥ α∞. The two values coincide when either of them is non-zero and finite.

To check that the two give the same α, reason by way of contradiction; Assume that there

exists a γ so that

sup
{
s : lim

a↘0
as|f ′(a)| =∞

}
< γ < inf

{
s : lim

a↘0
as|f ′(a)| = 0

}
.

Then 0 < lima→0 a
γ |f ′(a)| < ∞. Then for any ε > 0 small enough, we will have that the

same condition is true for γ + ε and that is a contradiction.

These let us define the order of growth of f ′ as

α =


inf
{
s : lima↘0 a

s|f ′(a)| = 0
}

= sup
{
s : lima↘0 a

s|f ′(a)| =∞
}

if α0 ∈ (0,∞)

∞, if α∞ =∞

0, if α0 = 0.

(2.1.12)

When the order of growth of f ′ is specified to be α, we further define

0 ≤ c(−)
α = lim

a→0
aα|f ′(a)| ≤ lim

a→0
aα|f ′(a)| = c(+)

α ≤ ∞. (2.1.13)
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Similarly we define

β =



β0 = sup
{
s : lim

a↗a0

|f ′(a)|
(a0 − a)s

= 0
}

= inf
{
s : lim

a↗a0

|f ′(a)|
(a0 − a)s

=∞
}

= β∞

if β0 ∈ (0,∞),

0, if β∞ = 0,

∞, if β0 =∞.

(2.1.14)

Again, at β, we similarly define η
(−)
β , η

(+)
β by

0 ≤ η(−)
β = lim

a→a0

|f ′(a)|
(a0 − a)β

≤ lim
a→a0

|f ′(a)|
(a0 − a)β

= η
(+)
β ≤ ∞. (2.1.15)

Now we are ready to state a theorem for this model.

Theorem 2.1.9. Let cf (x, y) be given by (2.1.9), for some C2((0, a0), (0, f(0))) convex

function f . Assume either that α 6= 1/2 or that α = 1/2 and r /∈
[

c
(+)
1/2

c
(+)
1/2
−
√
f(0)

,
c
(−)
1/2

c
(−)
1/2
−
√
f(0)

]
.

Then the following are equivalent:

1. lima→0m2(a) = +∞,

2. R0,f(0) = {0} × [f(0),∞).

Similarly, assume either that β 6= 1/2 or that β = 1/2 and r /∈
[

1

1−η(−)
1/2

√
a0

, 1

1−η(+)
1/2

√
a0

]
.

Then the following are equivalent:

1. lima→a0
m2(a) = 0,

2. Ra0,0 = [a0,∞)× {0}.

The situation when α = 1/2 and r ∈
[

c
(+)
1/2

c
(+)
1/2
−
√
f(0)

,
c
(−)
1/2

c
(−)
1/2
−
√
f(0)

)
or respectively, β = 1/2

and r ∈
[

1

1−η(−)
1/2

√
a0

, 1

1−η(+)
1/2

√
a0

)
, is a bit more delicate. While Theorem 2.1.9 is valid when

we know the behaviour of m2(a) as a generic function of a, when α = 1/2 we want the

behaviour of m2(a) on crossing points:

Definition 2.1.10 (Crossing points). A point (a, f(a)) is a crossing point if and only if

there exists (x, y) ∈ R2
+ so that a maximiser in (2.1.2) for Γcf (x, y) is the piecewise linear

segment (0, 0)→ (a, f(a))→ (x, y).

Theorem 2.1.11. Assume α = 1/2, r ∈
[

c
(+)
1/2

c
(+)
1/2
−
√
f(0)

,
c
(−)
1/2

c
(−)
1/2
−
√
f(0)

)
. Then the following are

equivalent:

1. There exists a sequence of crossing points (ak, f(ak)) so that ak → 0, m2(ak) → ∞

and lim
ak→0

a
1/2
k |f

′(ak)| <
r
√
f(0)

r − 1
.
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2. R0,f(0) = {0} × [f(0),∞).

Similarly, assume that β = 1/2 and r ∈
[

1

1−η(−)
1/2

√
a0

, 1

1−η(+)
1/2

√
a0

)
. Then the following are

equivalent:

1. There exists a sequence of crossing points (ak, f(ak)) so that ak → a0, m2(ak) → 0

and lim
ak→a0

a
1/2
k |f

′(ak)| <
r − 1

r
√
a0

.

2. Ra0,0 = [a0,∞)× {0}.

We closely look at the case for which α = 1/2 and c
(−)
1/2 = r

r−1

√
f(0) or η

(+)
1/2 = r−1

r
√
a0

and show that it is a phase transition; depending on how the limits are approached it may

or may not lead to non-degenerate regions for type B maximisers. We include the details

that justify this statement in Section 2.3, Proposition 2.3.9.

Finally, we obtain a partition of the parameter space (α, r) where we can a priori

identify whether lima→0m2(a) = ∞ or lima→a0
m2(a) = 0 as the content of the next

proposition.

Proposition 2.1.12. Let α, β and c
(−)
α , η

(+)
β as defined in equations (2.1.12), (2.1.14),

(2.1.13), (2.1.15) and let m2(a) be given by equation (2.1.10). Then, for (α, r) ∈ R2
+,

1. For lima→0 f
′(a) = −∞, we have

lim
a→0

m2(a) =



1

(r − 1)2
if α >

1

2
and r > 1,

1(
r − 1− r

√
f(0)

c
(−)
1/2

)2
if α =

1

2
, c

(−)
1/2 >

√
f(0), r >

c
(−)
1/2

c
(−)
1/2 −

√
f(0)

,

+∞ otherwise.

(2.1.16)

2. For lima→0 f
′(a) = −c

lim
a→0

m2(a) = +∞. (2.1.17)

By interchanging the role of the coordinates, we can obtain the corresponding results for

when a→ a0, namely

1. For lima→a0 f
′(a) = 0, we have

lim
a→a0

m2(a) =



(r − 1)2 if β >
1

2
and r > 1,(

r − 1− rη(+)
1/2

√
a0

)2
if β =

1

2
, η

(+)
1/2 < a

−1/2
0 , r >

1

1− η(+)
1/2

√
a0

,

0 otherwise.

(2.1.18)
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α

r

1

limm2 →∞

limm2 → 1
(r−1)2

limm2 → 1

(r(1−
√
f(0)/c

(−)

1/2
)−1)2

1
2

c
(−)

1/2

c
(−)

1/2
−
√
f(0)

(a) Behaviour for limm2(a) when α and

r vary, when a→ 0 and f ′(0)→ −∞, when

c
(−)
1/2 >

√
f(0).

β

r

1

limm2 → 0

limm2 → (r − 1)2

limm2 →
(
r − 1− rη(+)

1/2

√
a0
)2

1
2

1

1−√a0η(+)

1/2

(b) Behaviour for limm2(a) when β and

r vary, when a→ a0 and f ′(a0)→ 0, when

η
(+)
1/2 < a

−1/2
0 .

2. For lima→a0
f ′(a) = −c

lim
a→0

m2(a) = 0. (2.1.19)

Remark 2.1.13. We cannot say anything meaningful about the values of lima→0m2(a)

and lima→a0 m2(a). These values depend on the curvature of the function f but it is not

clear if they offer information about the maximisers. For example it is possible that the

lima→0m2(a) = constant when lima→0m2(a) = ∞ then we have countable a sequence of

point for which two miximisers exist.

Proposition 2.1.12 in conjunction with Theorem 2.1.9 classifies the cases for which

non-trivial maximisers of type B exist when α 6= 1/2. Theorem 2.1.11 is weaker, so

without further analysis, the proposition can only guarantee trivial type B maximisers

from the vertical axis when α = 1/2 and r /∈
[

1

1−η(−)
1/2

√
a0

, 1

1−η(+)
1/2

√
a0

]
. When α = 1/2 and

r ∈
[

1

1−η(−)
1/2

√
a0

, 1

1−η(+)
1/2

√
a0

)
one needs to verify that the optimal slopes tend to +∞.

We showcase the above results by performing some Monte Carlo simulations to show

the maximal paths in different cases. For all simulations we considered the curve y = f(x)

to be

f(x) = (c− xb/k)k,

and we varied the parameters b, c, k with b < k. See Figure 2.2.

Combining the explicit results obtained in the two examples, we can state the following

theorem of counterexamples, describing situations that do not occur in the homogeneous

setting.

Theorem 2.1.14. Depending on the speed function c(x, y),
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1. Γc(x, y) is not necessarily concave, and its level curves are not necessarily convex.

(Γc` in Theorem 2.1.7).

2. Γc(x, y) may exhibit flat edges. (Γc` in Theorem 2.1.7).

3. Γc(x, y) is not necessarily differentiable on the interior of R2
+. (Γc` in Theorem

2.1.7).

4. The maximisers of (2.1.2) for some (x, y) are not necessarily unique. (See points

on L(x, y) in Theorem 2.1.7, Remark 2.3.2, and Fig. 2.2)

5. It is possible to have terminal points (x, y) for which the maximiser of (2.1.2) has an

initial segment on one of the coordinate axes. (Theorem 2.1.9, Proposition 2.1.12).

We leave the calculus details necessary for the proof of Theorem 2.1.14 to the reader.

(a) c = 0.5, b = 1.2, k =

3, r = 3.

(b) c = 0.5, b = 2, k = 3, r =

3.

(c) c = 1, b = 1, k = 3, r = 3.

(d) c = 0.5, b = 1.2, k =

3, r = 4.

(e) c = 1, b = 1, k = 3.5, r =

3.

(f) c = 1, b = 1, k = 2, r = 3.

Figure 2.2: (Colour online) Blue paths are maximisers of type C, i.e. they cross to the r-

region from the interior of f . The set of all (x, y) reached by such paths may be bounded

(e.g. see subfigures (D), (E)). Green and red paths are type B maximisers that follow

either the y- or the x- axis respectively. Simulations suggest that when the regions R0,f(0)

and Ra0,0 are not degenerate they can intersect, and bound the Type C region. Finally,

the target points of yellow paths are those for which the maximiser is not unique.
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2.2 The shifted two-phase model

From Jensen’s inequality and Theorem 2.1.5 the variational formula for the limiting

last passage time can be simplified to

Γc`(x, y) =



sup
b1>a1≥λ

{
γ(a1, a1 − λ) +

1

r
γ(b1 − a1, b1 − a1)

+ γ(x− b1, y − b1 + λ)
} ∨

γ(x, y),

if y > x− λ,

sup
a2≥λ

{
γ(a2, a2 − λ) +

1

r
γ(x− a2, y − a2)

}∨
γ(x, y), if y = x− λ,

sup
a3≥λ

{
γ(a3, a3 − λ) +

1

r
γ(x− a3, y − a3 + λ)

}
, if y < x− λ.

(2.2.1)

The top and middle expressions correspond to passage times up to (x, y) above or on the

discontinuity line. If x ≥ λ then the optimal paths can either be a straight line up to (x, y)

corresponding to microscopic maximal path in environment Exp(1), or a piecewise linear

path which takes advantage of the smaller rate on the discontinuity line. Microscopically,

the maximal path enters the region with environment Exp(r) but does not fluctuate from

the discontinuity line macroscopically. It could also be that by default the maximal path

is the straight line segment when x < λ at which point the supremum takes the value −∞

and only γ(x, y) remains.

If (x, y) is below the discontinuity then it has to be that the macroscopic maximal

path is piecewise linear and it crosses the line t = s− λ at some optimal point.

In the computations that follow set

K(r) =

√
1 +

r2

4(1− r)
.

We treat the three cases separately:

(1) Case 1: y > x− λ: Assume x ≥ λ otherwise, as we discussed the maximal path is

the straight line and the shape function is γ(x, y). We begin by explicitly computing

the supremum, which after substitution of the formula for γ and some manipulation,

it becomes

Ic`,(x, y) = sup
b1≥a1

{(
2− 4

r

)
(a1 − b1) + x+ y

+ 2(
√
a1(a1 − λ) +

√
(x− b1)(y − b1 + λ))

}
,

where the parameters a1, b1, λ and the point (x, y) have to satisfy the constraints

x ≥ b1 ≥ a1 ≥ λ, and y ≥ b1 − λ.
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The unknowns are a1, b1 and they are the x - coordinates of the points on the line

t = s − λ that determine the second segment of the potential piecewise linear path.

Compute the first partial derivatives for a1 and b1 and set them equal to 0 to obtain

∂Ic`(x, y)

∂a1
= 2− 4

r
+

2a1 − λ√
a1(a1 − λ)

= 0

∂Ic`((x, y)

∂b1
=

4

r
− 2 +

2b1 − x− y − λ√
(x− b1)(y − b1 + λ)

= 0.

From the first equation, imposing the condition x ≥ a1 > 0 to obtain the optimal

entry point

(a∗1, a
∗
1 − λ) =

(λ
2

(K(r) + 1),
λ

2
(K(r)− 1)

)
. (2.2.2)

From the second equation and the condition and a1 ≤ b1 ≤ x, we get

(b∗1, b
∗
1 − λ) =

((x+ y + λ) + (x− y − λ)K(r)

2
,
(x+ y − λ) + (x− y − λ)K(r)

2

)
(2.2.3)

under the constraint

y ≤ K(r) + 1

K(r)− 1
x− 2K(r)

K(r)− 1
λ. (2.2.4)

The constraint is equivalent to a∗1 ≤ b∗1. When it is not satisfied, the optimal path

is the straight line. It is always true that b∗1 < x. Check that (a∗1, b
∗
1) gives a local

maximum by computing the Hessian matrix H(a1, b1) for which

det{H(a∗1, b
∗
1)} =

λ2(x− y − λ)2

4[a∗1(a∗1 − λ)(x− b∗1)(y − b∗1 + λ)]3/2
,

and
∂2Γc`(a

∗
1, b
∗
1)

∂a2
1

=
−λ2

2[a∗1(a∗1 − λ)]3/2
.

It is immediate to check that it is also a global maximum for Ic`(x, y). We substitute

the values of a∗1 and b∗1 of respectively (2.2.2) and (2.2.3) into (2.2.1) to obtain the

value on the trapezoidal path Ic`(x, y)

Ic`(x, y) = x
(

1 +
(2

r
− 1
)

(1 +K(r))−
√
K(r)2 − 1

)
+

+ y
(

1 +
(2

r
− 1
)

(1−K(r)) +
√
K(r)2 − 1

)
+ 2λ

((
1− 2

r

)
K(r) +

√
K(r)2 − 1

)
= (1 +A(r))x+

(
1 +

1

A(r)

)
y −D(r),

where we set

A(r) =
(1 +

√
1− r)2

r
, D(r) = 4λ

√
1− r
r

. (2.2.5)
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In order to find the region for which Ic`(x, y) is actually Γc`(x, y), we directly compare

with γ(x, y). The two functions give the same value on the curve

A(r)x+
1

A(r)
y −D(r) = 2

√
xy. (2.2.6)

For (x, y) in the region x − λ ≤ y ≤ K(r)+1
K(r)−1x −

2K(r)
K(r)−1λ, the left-hand side in the

display above is always positive, so we can square both sides and identify the curve as

0 =
(
A(r)x− 1

A(r)
y
)2
− 2D(r)

(
A(r)x+

1

A(r)
y
)

+D(r)2 = L(x, y),

where L(x, y) is defined by the expression in the display above. Equation L(x, y) = 0

defines a parabola. It has an axis of symmetry that is parallel to - and above - the line

(2.2.4) and it is tangent to the discontinuity line y = x−λ precisely at point (a∗1, a
∗
1−λ)

given by (2.2.2). Line (2.2.4) also crosses both the parabola and the discontinuity line

precisely at the same point (2.2.2). Therefore,

Ic`(x, y) = Γc`(x, y) if and only if

(x, y) ∈ Rλ,r = {(x, y) : a∗1 ≤ x, x− λ ≤ y, L(x, y) > 0}.
(2.2.7)

For (x, y) ∈ Rλ,r the maximiser is the trapezoidal path with second segment on the

discontinuity line of c`. For all other (x, y) with y > x − λ the maximizing path is

the straight line and Γc`(x, y) = γ(x, y). Points on the curve L(x, y) = 0 have two

maximizing paths.

One last remark is that if (x, y) and (z, w) both belong in Rλ,r then the slope of the

third segments of the corresponding maximising paths are actually the same and equal

to K(r)+1
K(r)−1 . Therefore they are parallel to the axis of symmetry of the parabola (so

they also intersect the critical parabola) and have finite macroscopic length.

(2) Case 2: y = x−λ. The same steps as before (or continuity of Γc`,(x, y) as y ↘ x−λ

) give

Γc`,(x, y) = (
√
a∗1 +

√
a∗1 − λ)2 +

1

r
(
√
x− a∗1 +

√
x− a∗1)2

=
4

r
x+ λ

(
K(r) +

√
K2(r)− 1− 2

r
(1 +K(r))

)
.

When x ≥ a∗1, the maximiser has two linear segments; the first one goes from 0 to

(a∗1, a
∗
1 − λ) and the second one follows the discontinuity line up to (x, x− λ).

(3) Case 3: y < x − λ. An explicit analytical solution to the variational problem is

not easily tractable. The maximisers are piecewise linear, with slopes m1, m2 with
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m2 > m1. The optimal crossing point (a∗3, a
∗
3−λ) on the discontinuity line always has

a∗3 < a∗1.

x0

y

y = x− λ

y = A(r)(A(r)x− 2λ (2−r)
r )

Figure 2.3: (Left) Maximal macroscopic paths for the shifted two-phase corner growth

model. In the blue region we have a straight line path, in the red region we have a three

piecewise linear path and in the green region we have a two piecewise linear path.

(Right) Numerical simulation of the shape function Γc`(x, y). Notice the non-convexity of

the level curves, and the points of non-differentiability of the level curves, and by extension

of Γc` .

Remark 2.2.1. When the environment is homogeneous and c(x, y) = c, the shape function

is strictly concave and in C2(R2
+). As one can see in Figure 2.3, the simulations suggest

that the shape function for the shifted inhomogeneous model is no longer strictly concave

or C1 in the interior of R2
+. Indeed this is a straight-forward calculation because we have

precise formulas for the shape function for (x, y) ∈ Rλ,r and for (x, y) for which y is above

the critical parabola. We leave this calculation to the reader. The concavity-breaking does

not occur in the two-phase model without shifting in [46]. The flat edge is common in both

inhomogeneous models.

2.3 The corner-discontinuous last passage percolation

It will be convenient to adopt a more general setting for the discontinuity curve f then

the one described in Section 2.1. To this end, we begin from considering a C2 function

g : R2
+ → R+ with the property that its level curve g(x, y) = k when viewed as a function

of y = f(x) is strictly decreasing and twice differentiable function so that the first and

second derivative never become zero, i.e.

df

dx
< 0,

d2f

dx2
6= 0.
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For what follows we restrict to the case where f is convex and its second derivative strictly

positive.

Since the gradient of g is always perpendicular to its level curve, for any (a, b) ∈ R2
>0

with g(a, b) = h we have that

∂xg(a, b) · ∂yg(a, b) > 0. (2.3.1)

Let a0 and b0 be defined by g(a0, 0) = g(0, b0) = k. They can also take the value infinity

if g does not intersect the coordinate axes.

We define the macroscopic speed function cg,k(x, y) on R2
+ to be

cg,k(x, y) =


1, if g(x, y) < k,

r, if g(x, y) ≥ k.

From Theorem 2.1.5 and the fact that macroscopic optimisers are piecewise linear in

constant regions, the limiting last passage time is given by

Γcg,k(x, y) =


γ(x, y), if g(x, y) ≤ k

sup
a≤x∧a0, b≤y∧b0, g(a,b)=k

{
γ(a, b) +

1

r
γ(x− a, y − b)

}
, if g(x, y) > k.

(2.3.2)

Except for some specific cases, the solution to the variational problem in (2.3.2) cannot

be explicit but can be approximated numerically. However, this model allows for partial

analysis, and despite its simplicity it demonstrates behaviour that can be rigorously shown

to differ from the passage time in a homogeneous environment.

We rewrite Definition 2.1.10 using the notation introduced so far in this section.

Definition 2.3.1 (Crossing points). We say that a point (a, b) is a (g -) crossing point for

point (x, y) if it belongs in the set

Sx,y = {(a, b) : g(a, b) = k which solve (2.3.2) for the given (x, y)}.

In words, (a, b) solves the optimization problem (2.3.2). The set of all crossing points is

defined by

S = {(a, b) : g(a, b) = k which solve (2.3.2) for some (x, y)}.

If |Sx,y| = 1 then there is a unique piecewise linear macroscopic maximal path from

the origin to (x, y) which is a maximiser of the variational formula (2.1.2), and this passes

through (a, b) ∈ Sx,y.

In the homogeneous environment (r = 1), maximisers of (2.1.2) are unique and are

straight lines, i.e. |Sx,y| = 1. Here, depending on the function g, this is no longer true, as

discussed in the following remark.
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Remark 2.3.2. Depending on the function g, it is possible to have a point (x, y) that does

not lead to a unique maximiser of the problem (2.3.2). Suppose you fix a point (t, t) in the

r-region, and further assume that f is symmetric about the main diagonal. By carefully

modulating the values of f around the main diagonal, and by appropriately lowering the

value of r, one can show that the main diagonal cannot be an optimiser for Γ. Then the

optimiser x is a concatenation of two linear segments that crosses f at some point. Because

f is symmetric, the piecewise linear curve that is symmetric to x about the diagonal is

also an optimiser. We leave the details to the reader.

Lemma 2.3.3. The set of crossing points S is dense on the curve g(a, b) = k.

Proof. To see this, fix an arbitrary segment on the level curve

I = {(a, b) : a1 < a < a2, b1 < b < b2, g(a, b) = k}

and consider (x, y) so that a1/2 < x < a2/2, b1/2 < y < b2/2, g(x, y) > k which is

possible since the level curve is convex. The maximal path to (x, y) has to cross the

curve at some point (ax,y, bx,y) with a1/2 < ax,y < a2/2, b1/2 < bx,y < b2/2 since it

will be piecewise linear with strictly positive slope for each segment. This suffices for the

proof.

Fix a crossing point (a, b). Then, for some (x, y), this point solves the Lagrange

multiplier problem

h(a, b, λ) = γ(a, b) +
1

r
γ(x− a, y − b) + λ(g(a, b)− k), (2.3.3)

0 ≤ a ≤ x ∧ a0, 0 ≤ b ≤ y ∧ b0.

Function h has two derivatives in the interior of its domain, so we can optimize over

(a, b, λ) as usual. If the local maximum is in the interior we will find it using the Lagrange

multiplier method. Otherwise, we will check even the boundary value of the region. The

derivatives give 
∂h
∂a =

√
a+
√
b√

a
− 1

r

√
x−a+

√
y−b√

x−a + λ∂ag(a, b) = 0, (2.3.4a)

∂h
∂b =

√
a+
√
b√

b
− 1

r

√
x−a+

√
y−b√

y−b + λ∂bg(a, b) = 0, (2.3.4b)

∂h
∂λ = g(a, b)− k = 0. (2.3.4c)

Solve the first two for λ and set the two expressions equal to obtain

r
(

1 +

√
b√
a

)
∂ag
(√a√

b
− ∂bg

∂ag

)
=

(
1 +

√
x− a√
y − b

)(
∂ag − ∂bg

√
y − b√
x− a

)
. (2.3.5)
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For the (x, y) for which the crossing point is the (a, b) that satisfies equation (2.3.5), the

maximal path is piecewise linear with slopes

m1 =
b

a
and m2 =

y − b
x− a

.

Then equation (2.3.5) can be written as

∇g(a, b) ·
(
r(1 +

√
m1)

√
m1

−
1 +
√
m2√

m2
,−r(1 +

√
m1) + (1 +

√
m2)

)
= 0. (2.3.6)

Equation (2.3.6) has a very convenient form. It shows that if for a fixed (x, y) the crossing

point (a, b) solves the Lagrange multiplier problem (2.3.3), then the same point (a, b) solves

(2.3.3) for any (x′, y′) = (a, b)+λ(x−a, y− b) on the line from (a, b) with slope m2. Using

the form g(x, y) = y − f(x), we have that ∇g(a, b) = (−f ′(a), 1). Relation (2.3.6) after

some algebraic manipulations then becomes

r − 1

r
+
√
m1 −

√
m2

r
= −f

′(a)

r

(
r − 1 +

r
√
m1
− 1
√
m2

)
. (2.3.7)

We will use this equation later, as any crossing point away from the boundary satisfies

relation (2.3.7).

The next lemma shows that if (a, b) solves (2.3.6) (or a solves (2.3.7)) does not imply

that we found a global maximiser.

Lemma 2.3.4 (Maximal paths cannot cross each other). Suppose that for a point (x, y)

there exist two crossing points (a∗1, b
∗
1) and (a∗2, b

∗
2) (a∗1 > a∗2) that satisfy (2.3.5), (2.3.6)

subject to the constraint (2.3.4c) and in particular maximise 2.3.3. Then for (x′, y′) =

(a∗1, b
∗
1) + κ(x− a∗1, y − b∗1) we have that

1. If κ > 1, crossing point (a∗1, b
∗
1) is a critical point for the Lagrange multiplier problem

when the terminal point is (x′, y′).

2. If κ > 1, crossing point (a∗1, b
∗
1) is not a maximiser for the Lagrange multiplier

problem when the terminal point is (x′, y′).

3. If κ < 1, crossing point (a∗1, b
∗
1) is the unique maximiser for the Lagrange multiplier

problem when the terminal point is (x′, y′).

Proof. See Figure 2.4 for the geometric construction.

For (1) the statement follows from the fact that slope of the segment (a∗1, b
∗
1)→ (x′, y′)

is the same as that for (a∗1, b
∗
1) → (x, y). Equation (2.3.6) is automatically satisfied so

(a∗1, b
∗
1) is a critical point.
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For (2) we reason as follows. The path (0, 0) → (a∗2, b
∗
2) → (x, y) → (x′, y′) cannot

be optimal for (x′, y′), because it is polygonal in the homogeneous region of rate r and

the straight line (a∗2, b
∗
2) is strictly better. However it has the same weight as the path

(0, 0)→ (a∗1, b
∗
1)→ (x′, y′) and therefore this path cannot be optimal for (x′, y′).

Part (3) follows with similar arguments.

x

y

r

1
(a∗1, b

∗
1)

(x, y)

(a∗2, b
∗
2)

(x′, y′)

Figure 2.4: The construction described in the proof of Lemma 2.3.4.

Next, we want to verify that the maximal path will never follow a vertical or horizontal

line in the r region, i.e. the slope of the second segment of a potential maximiser cannot

have slope equal to zero or infinity.

Lemma 2.3.5. Suppose that (a, b) ∈ Sx,y. Then a < x and b < y. In particular, any

(x, y) for which the maximiser of Γcg ,k(x, y) does not cross (a0, 0) or (0, b0) has to cross

at a point (a, b) that satisfies (2.3.5), (2.3.6) and the second segment has a non-zero, finite

slope.

Proof. We only show that a second segment of infinite slope is not optimal. The strictly

positive slope claim follows similarly. We compare the last passage time of a path which

crosses the discontinuity in the point whose x coordinate is the same of the point that it

has to reach, in other words a = x, b = f(x), and another path with a = x − ε. Under

these assumptions, we have that

f(x− ε) = b+ δ(ε) with lim
ε→0

ε

δ(ε)
= c ∈ (0,∞).

This is because b+ δ(ε) = f(x− ε) = f(x)− f ′(x)ε+ o(ε) = b− εf ′(x) + o(ε) by a Taylor

expansion around x and the fact that −f ′(x) ∈ (0,∞). Then, a direct comparison between

the weight of the two paths, π1 which crosses at (x, b) and π2 crossing at (x− ε, f(x− ε))

gives

Icg,k(π2)− Icg,k(π1) = (
√
x− ε+

√
b+ δ(ε))2 +

1

r
(
√
ε+

√
y − b− δ(ε))2
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− (
√
x+
√
b)2 − 1

r
(y − b)

=
(

1− 1

r

)
(δ(ε)− ε) + 2

√
(x− ε)(b+ δ(ε)) +

2

r

√
ε(y − b− δ(ε))− 2

√
xb

=
(

1− 1

r

)
(δ(ε)− ε)− ε[b− xf ′(x)]√

xb
+

2

r

√
ε(y − b− δ(ε)) + o(ε).

Divide through by ε and let it tend to 0 to see that the last expression is eventually

positive. As such, Icg,k(π2) is a lower bound for the shape function at (x, y) and therefore

the maximiser cannot be π1.

Lemma 2.3.6. Let (x, y) and (z, w) ∈ R2
+ so that (x, y) 6= λ(z, w) for any λ ∈ R. Then

Sx,y ∩ Sz,w ∈ {∅, (a0, 0), (0, b0)}.

In other words, the only possible crossing points from which more than one maximiser

passes, are the axes points (a0, 0), (0, b0).

Proof. Assume by way of contradiction that two terminal points in general position, (x, y)

and (z, w) have the same crossing point (a, b) for which 0 < a < a0 and 0 < b < b0. Then

the gradient of g at (a, b) is well defined. By the previous lemma, equation (2.3.6) holds

for m1 = b/a and for both values of m2,

m2 = mx,y =
y − b
x− a

, and m2 = mz,w =
w − b
z − a

.

For (i, j) ∈ {(x, y), (z, w)} define

vi,j =

(
r(1 +

√
m1)

√
m1

−
1 +
√
mi,j

√
mi,j

,−r(1 +
√
m1) + (1 +

√
mi,j)

)
= (v

(1)
i,j , v

(2)
i,j ).

Vector vi,j would be tangent to the level curve g(x, y) = k at (a, b) and at such, vi,j 6= 0.

The monotonicity of the level curve and the fact that (a, b) does not lie on one of the axes

give that v
(1)
i,j · v

(2)
i,j 6= 0. By planarity and (2.3.6), this and the last equation imply that

there exists a κ ∈ R \ {0} so that vz,w = κvx,y. The assumption that (x, y) and (z, w)

are not collinear gives that κ 6= ±1. Assume without loss of generality that mz,w > mx,y.

Then coordinate-wise,

v(1)
x,y < v(1)

z,w, v(2)
x,y < v(2)

z,w.

On the other hand, it has to be by equations (2.3.1) and (2.3.6) that the v
(1)
x,y and v

(2)
x,y

have opposite signs, otherwise (2.3.6) would never be satisfied. Assuming 0 < v
(1)
x,y, it has

to be that κ > 1, but that would imply that v
(2)
x,y > v

(2)
z,w which leads to a contradiction.

Similarly, we reach a contradiction when v
(1)
x,y < 0.
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From Lemma 2.3.6 we know that from each crossing point except (0, f(0)) and (a0, 0)

there is only one optimal slope that can be obtained. Remark 2.3.2 suggests that it is

possible that a point could be reached by two maximal paths that both cross at the

interior of f . Finally we discuss what happens when two maximal paths exists for a point

(x, y), one from the axis and the other from a crossing point or both from the axes.

Proposition 2.3.7. The following properties hold:

1. If a maximal path which crosses (0, f(0)) or (a0, 0) and a maximal path through any

crossing point (a, f(a)) intersect, they intersect at their terminal point and that point

has to belong on ∂R0,f(0).

2. If (x, y) ∈ int(R0,f(0)) and it also belongs on the extension of a maximiser x that

crosses at (a′, f(a′)), a′ 6= 0, it has to be

I(π0,(0,f(0))) + I(π(0,f(0)),(x,y)) > I(π0,(a′,f(a′))) + I(π(a′,f(a′)),(x,y)),

where πu,v is a linear segment between u and v. In particular, any (x, y) ∈ int(R0,f(0))

has a unique maximiser that has to go through (0, f(0)).

3. If R0,f(0) ∩ Ra0,0 6= ∅ and r > 1, then the intersection is a segment of a (possibly

degenerate) hyperbola.

Proof of Proposition 2.3.7. We prove all the three properties one by one starting from

the first.

(1) First, we show that also in this situation maximisers cannot cross. The contrary would

be impossible. In fact, if it was possible to extend either maximiser, we would be able

to construct a polygonal path which is not linear in a homogeneous environment, and

this is not optimal with the same arguments as in Lemma 2.3.4.

R0,f(0) by definition is a closed, star-shaped domain. Moreover, since maximal paths

cannot cross, R0,f(0) is simply connected. Suppose by way of contradiction that such a

terminal point (xT , yT ) ∈ int(R0,f(0)). Then the type C maximiser x0,(xT ,yT ) intersects

∂R0,f(0) at some point (xR, yR). Since R0,f(0) is closed, (xR, yR) has a maximiser

x0,(xR,yR) that goes through (0, f(0)). By Lemma 2.3.4, (xR, yR) is also maximised

by the portion of x0,(xT ,yT ) that terminates at (xR, yR), and by the discussion above,

(xR, yR) has to be a terminal point. This means that (xT , yT ) cannot be optimised by

that type C maximiser, which gives the desired contradiction.

(2) Same arguments as above imply the statement.
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(3) This is a computation of the set of all points (x, y) ∈ R2
+ which take the same amount

of time going through the x and y axis.

a0 +
1

r
(
√
x− a0 +

√
y)2 = f(0) +

1

r
(
√
x+

√
y − f(0))2

(a0 − f(0))
r − 1

2
=
√
x(y − f(0))−

√
y(x− a0).

Since r > 1, we have that (r− 1)/2 > 0. Then, for the equality to hold, we must have

a0 ≥ f(0) and y ≥ xf(0)/a0 or a0 < f(0) and y < xf(0)/a0. When either of these

hold, we can square both sides and after some rearrangements we have

2
√
xy(y − f(0))(x− a0) = 2xy − xf(0)− ya0 − (a0 − f(0))2 (r − 1)2

4
.

This holds only if y >
xf(0)+(a0−f(0))2 (r−1)2

4
2x−a0

and it implies that both sides above are

non-negative. Square both sides another time

0 = f(0)2x2 + a2
0y

2 − 2xy
(
a0f(0) + (a0 − f(0))2 (r − 1)2

2

)
+ (a0 − f(0))2 (r − 1)2

2
(f(0)x+ a0y) + (a0 − f(0))4 (r − 1)4

16
,

which represent the equation of a hyperbola since (a0f(0) + (a0 − f(0))2 (r−1)2

2

)2
−

a2
0f(0)2 > 0. Note that if a0 = f(0), the relation that gives the boundary is x = y.

We have now verified that the set of crossing points is dense on the level curve (Lemma

2.3.3) and each one corresponds to a non-degenerate (Lemma 2.3.5) unique value m2

(Lemma 2.3.6) which in turn corresponds to the slope of the second linear segment of the

maximiser. Starting from equation (2.3.5), we can identify m2.

Set

D = D(a, b) = r
(

1 +

√
b√
a

)(√a√
b
− ∂bg

∂ag

)
= r
(

1 +
√
m1

)(√ 1

m1
− ∂bg

∂ag

)
.

The left-hand side in (2.3.5) becomes ∂ag(a, b)D. Keep in mind that m2 > 0 and solve

(2.3.5) for m2:

m2 =
4(

∂bg
∂ag
− 1 +D +

√(
∂bg
∂ag
− 1 +D

)2
+ 4 ∂bg∂ag

)2
. (2.3.8)

Particularly, equation (2.3.8) uniquely identifies the slope of the second segment of the

optimal path for a given crossing point (a, b). Rewrite equation (2.3.8) using the fact that

when b = f(a), ∂bg
∂ag

(a, f(a)) = −1/f ′(a) to obtain equations (2.1.10) and (2.1.11).
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2.3.1 Maximisers that follow the axes

We investigate whether the optimization problem (2.3.2) in the region g(x, y) > k admits

maximisers (a0, 0), (0, b0), i.e. maximisers for which the first segment of the macroscopic

maximal path follows the axes.

For (x, y) ∈ [0, a0) × [0, f(0)) = B the maximal macroscopic path is obtained by the

solution of (2.3.2), and it is impossible for a maximiser to follow one of the axes. For this

behaviour to materialise, we consider an (x, y) outside of [0, a0)× [0, f(0)).

We are finally able to study what happens to m2 defined in (2.3.8) if a tends to the

boundary values. The idea is that if m2 for crossing points near the y-axis (resp. x-axis)

does not approach +∞ (resp. 0) then it has to be that type B maximisers exist.

The behaviour of m2 for a near 0 (resp. a0) is the content of Proposition 2.1.12, which

we prove next.

Proof of Proposition 2.1.12. We use equation (2.1.10) for the slope m2(a) and (2.1.11) for

the expression D = Da. We only show the case for which a→ 0 and leave a→ a0 to the

reader. Keep in mind that as a→ 0, f(a)/a→∞.

First we estimate the limiting behaviour of D using (2.1.11)

D0 = lim
a→0

D = lim
a→0

r
(

1 +
1

f ′(a)
+

1

f ′(a)

√
f(a)

a
+

√
a

f(a)

)

= r +
r
√
f(0)

lim
a→0

f ′(a)a1/2
=



r, α > 1
2 ,

r
(

1−
√
f(0)

c
(−)
1/2

)
, α = 1

2 ,

−∞, α < 1
2 .

(2.3.9)

(1) Case 1: a→ 0, f ′(a) → −∞: Focus on the denominator in (2.1.10)

lim
a→0

m2(a) = 4 lim
a→0

(
− 1

f ′(a)
− 1 +D +

√(
− 1

f ′(a)
− 1 +D

)2

− 4
1

f ′(a)

)−2

= 4 lim
a→0

(
− 1

f ′(a)
− 1 +D +

∣∣∣∣− 1

f ′(a)
− 1 +D

∣∣∣∣+O(
1

f ′(a)
)

)−2

= 4 lim
a→0

((
− 1

f ′(a)
− 1 +D

)(
1 + sign

(
− 1

f ′(a)
− 1 +D

))
+O(

1

f ′(a)
)

)−2

.

(2.3.10)

Focus for the moment on the sign function in the last display. We have

− 1

f ′(a)
− 1 +D = (r − 1) +

r − 1

f ′(a)
+ r

√
a

f(a)
+ r

1

f ′(a)

√
f(a)

a
.
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As a→ 0, the second and third term tend to 0 while the last term is negative and as

a→ 0 the lim inf of the last term is actually D0− r. Therefore, for a sufficiently small

sign
(
− 1

f ′(a)
− 1 +D

)
=


sign(r − 1), α > 1

2 ,

−1, α < 1
2 .

(2.3.11)

We are now in a position to finish the calculation from equation (2.3.10):

(a) r > 1, α > 1/2: From equation (2.3.11) substitute it in equation (2.3.10) to

obtain

lim
a→0

m2(a) =
1

(r − 1)2
.

(b) r < 1, α > 1/2, or r 6= 1, α < 1/2: From equations (2.3.11), (2.3.10) we now have

lim
a→0

m2(a) = +∞.

(c) When α = 1/2, there are several cases to consider:

(i) r < 1, then sign
(
− 1
f ′(a)−1+D

)
= −1 which implies lima→0m2(a) = +∞.

(ii) r > 1 and c
(+)
1/2 <

r
√
f(0)

r−1 , then sign
(
− 1

f ′(a) − 1 + D
)

= −1. In this case,

lima→0m2(a) = +∞.

(iii) r > 1 and c
(−)
1/2 >

r
√
f(0)

r−1 , then sign
(
− 1

f ′(a) − 1 + D
)

= +1. This is the

most interesting case, as it leads to yet a different possible limit. For the

condition to hold it has to be that

c
(−)
1/2 >

√
f(0) and that r >

c
(−)
1/2

c
(−)
1/2 −

√
f(0)

> 1.

When both these conditions are met, we have that

lim
a→0

m2(a) =
1(

r − 1− r
√
f(0)

c
(−)
1/2

)2
.

(iv) r > 1 and c
(−)
1/2 <

r
√
f(0)

r−1 ≤ c(+)
1/2 , then we can find a subsequence ak such that

the sign
(
− 1
f ′(ak)−1+D

)
= −1 and so that − 1

f ′(ak)−1+D → r−1− r
√
f(0)

c
(−)
1/2

.

Again, lima→0m2(a) = +∞.

(v) r > 1 and c
(−)
1/2 =

r
√
f(0)

r−1 , we cannot determine the sign function, however,

we can find a subsequence ak so that limak→0(− 1
f ′(ak) − 1 +D) = 0 so also

here lima→0m2(a) = +∞.
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(2) Case 2: a → 0, f ′(a) → −c: In this case, D → −∞ as a → 0 so the result follows

by a direct limiting argument on (2.1.10).

A close inspection of the previous proof suggests the following crucial lemma.

Lemma 2.3.8. Suppose that lima→0m2(a) = +∞, and that if α = 1/2 then

r /∈
[

c
(+)
1/2

c
(+)
1/2
−
√
f(0)

,
c
(−)
1/2

c
(−)
1/2
−
√
f(0)

]
. Then there exists a sequence {ak}k∈N with distinct elements

so that

1. limk→∞ ak = 0,

2. Points (ak, f(ak)) are all crossing points,

3. limk→∞m2(ak) = +∞.

Proof of Lemma 2.3.8. The lemma is immediately true if r = 1 and the environment is

homogeneous.

Now assume r 6= 1. From Proposition 2.1.12, we know that lima→0m2(a) = +∞ when

1. α < 1/2,

2. α > 1/2 and r < 1,

3. α = 1/2 and r ∈
(

1,
c
(−)
1/2

c
(−)
1/2
−
√
f(0)

]
where the interval may be potentially empty, in

which case we are not concerned with this case.

These correspond to cases 1b, 1 c(i), 1c(ii), 1c(iv), 1c(v) and 2, in the proof of Proposition

2.1.12.

The assumption of the Lemma guarantees we are not in cases 1c(iv), 1c(v); For these

cases c
(−)
1/2 ≤

r
√
f(0)

r−1 ≤ c(+)
1/2 which is equivalent to

r ∈
[ c

(+)
1/2

c
(+)
1/2 −

√
f(0)

,
c

(−)
1/2

c
(−)
1/2 −

√
f(0)

]
.

In cases 1b, 1c(i), 1c(ii) and 2, the fact that lima→0m2(a) = +∞ is independent of

which sequence of ak we select, as long as it tends to 0. Therefore we can select ak to be

sequence that corresponds to the first coordinate of crossing points and which tends to 0,

since by Lemma 2.3.3 we know they are dense on f .

Proof of Theorem 2.1.9. We only prove the theorem for a → 0, as the case a → a0 is

analogous.
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The direction (2) =⇒ (1) is immediate; the condition implies that all points (x, y) ∈

int(R2
+) are optimised by a type C maximiser, and by letting x→ 0 while keeping y > f(0)

fixed, the crossing points (ax,y, f(ax,y)) tend to (0, f(0)). This forces m2(ax,y) to +∞.

Now for (1) =⇒ (2). Assume that lima→0m2(a) = +∞ and assume by way of contra-

diction that int(R0,f(0)) 6= ∅.

Then we can find a sequence of points (xk, yk) ∈ R2
+ \R0,f(0) with (xk, yk)→ (0, f(0))

so that

1. For each k, the crossing points {(ak, f(ak))}k of a maximiser that does not follow

the axis are different; this is possible because the crossing points are dense on the

curve.

2. The limit limk→∞m2(ak) = +∞.

This can be done by Lemma 2.3.8.

Now, by Proposition 2.3.7-(2), we have that for any point (x, y) ∈ int(R0,f(0)) on the

line segment `k : (ak, f(ak))− (xk, yk)− (x, y) the limiting passage time satisfies

I(π0,(0,f(0))) + I(π(0,f(0)),(x,y)) > I(π0,(ak,f(ak))) + I(π(ak,f(ak)),(x,y)).

For notational convenience set ε = ak and notice that the relation above stays true when

we let (x, y) tend to infinity, along the line which contains the segment `k. We substitute

the explicit values for I(π) in the display above to obtain

f(0) +
1

r
(
√
x+

√
y − f(0))2 > (

√
ε+

√
f(ε))2 +

1

r
(
√
x− ε+

√
y − f(ε))2. (2.3.12)

Call m1(ε) = f(ε)
ε , m2(ε) = y−f(ε)

x−ε and m = y−f(0)
x and note that m2(ε) > m. Both slopes

are always finite for every (x, y) ∈ (0, a0)× R+. Inequality (2.3.12) is then re-written as

1

r

[
x
(

1+
√
m
)2
−x
(

1+
√
m2(ε)

)2]
> ε+f(ε)−f(0)+2

√
εf(ε)−ε

r

(
1+
√
m2(ε)

)2
. (2.3.13)

Since the point (x, y) belongs to the line y = m2(ε)(x − ε) + f(ε), taking x → ∞ gives

m→ m2(ε). We first manipulate the left-hand side of (2.3.13).

x
[(

1+
√
m
)2
−
(

1 +
√
m2(ε)

)2]
= x

[
2(
√
m−

√
m2(ε)) +m−m2(ε)

]
=
x(f(ε)− f(0)− εm2(ε)) + ε(εm2(ε)− f(ε) + f(0))

x− ε

[
1 +

2
√
m+

√
m2(ε)

]
.

Now take the limit x→∞ in (2.3.13). After that, and some algebraic operations, we get

that the limiting version of (2.3.13) is

53



1

r

( 1√
m2(ε)

+ 1− r
)f(ε)− f(0)

ε
≥ 1− 1

r
+ 2
√
m1(ε)−

√
m2(ε)

r

=
√
m1(ε) +

(r − 1

r
+
√
m1(ε)−

√
m2(ε)

r

)
. (2.3.14)

This is the point where we are using the fact that (ε, f(ε)) is a crossing point: Utilize

the relation of equation (2.3.7) to change the last parenthesis in (2.3.14) and obtain the

equivalent inequality

1

r

( 1√
m2(ε)

+ 1− r
)f(ε)− f(0)

ε
≥
√
m1(ε)− f ′(ε)

r

(
r − 1 +

r√
m1(ε)

− 1√
m2(ε)

)
,

or equivalently

1

r

( 1√
m2(ε)

+ 1− r
)(f(ε)− f(0)

ε
− f ′(ε)

)
≥
√
m1(ε)− f ′(ε)√

m1(ε)
. (2.3.15)

Now, if equation (2.3.15) is violated, we automatically reach a contradiction to the

assumption that int(R0,f(0)) 6= ∅. We will show precisely this by splitting the analysis

into cases:

(1) limε→0 f
′(ε) = c0: Then as ε → 0, the left-hand side of (2.3.15) converges to 0 while

the right-hand side tends to ∞. This gives the desired contradiction.

(2) r < 1: In this case, select an ε small enough so that 1√
m2(ε)

+1−r > 0. The convexity

and monotonicity of f imply that f(ε)−f(0)
ε −f ′(ε) < 0 so the left-hand side of (2.3.15)

is negative while the right-hand is strictly positive. This gives again a contradiction.

(3) r > 1, α < 1/2: Since α < 1/2, we have that for δ small, α + δ < 1/2. Then, using

definition (2.1.12), for any η small, we can find ε0 so that for all ε < ε0

−f ′(ε) < η

εα+δ
.

Integrating the inequality from 0 to ε we get

f(0)− f(ε) <
η

1− α− δ
ε1−α−δ < c

√
ε.

The last inequality is true for any constant c, as long as ε is small enough. We pick

c <

√
f(0)

2 and reduce ε further so that f(ε) > f(0)
2 . We then have for all ε small that

f(0)− f(ε)

ε
<

√
f(ε)

ε
=
√
m1(ε).

Reduce ε even more, so that 1/
√
m2(ε) < r−1

2 . Then we bound

1

r

( 1√
m2(ε)

+ 1− r
)(f(ε)− f(0)

ε
− f ′(ε)

)
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=
1

r

(
− 1√

m2(ε)
− 1 + r

)(f(0)− f(ε)

ε
+ f ′(ε)

)
<

1

r

(
r − 1− 1√

m2(ε)

)(f(0)− f(ε)

ε
− f ′(ε)√

m1(ε)

)
<
r − 1

r

(√
m1(ε)− f ′(ε)√

m1(ε)

)
<
√
m1(ε)− f ′(ε)√

m1(ε)
,

which is a direct violation of (2.3.15).

The remaining proof is for when α = 1/2. In this case we have that limm2(ak)→∞

for any sequence ak → 0 and r /∈
[

c
(+)
1/2

c
(+)
1/2
−
√
f(0)

,
c
(−)
1/2

c
(−)
1/2
−
√
f(0)

]
.

(4) We further impose on the subsequence of ak that

a
1/2
k |f

′(ak)| → c1/2 ≤ c
(+)
1/2 <

r
r−1

√
f(0) by the assumption. Here c1/2 can be any limit

point.

For any δ > 0 we can find a K = K(δ) so that for all k > K we have

r − 1

r
(c1/2 + 3δ) <

√
f(0)− δ <

√
f(ak), |a1/2

k f ′(ak) + c1/2| < δ.

The first inequality above is true for δ sufficiently small. Then we estimate, as in case

(3), that

−f ′(ak) < (c1/2 + δ)a
−1/2
k , for all k > K by construction

which implies that
f(0)− f(ak)

ak
< 2(c1/2 + δ)a

−1/2
k .

Then use the inequalities above to bound

1

r

(
− 1√

m2(ak)
− 1 + r

)(f(0)− f(ak)

ak
+ f ′(ak)

)
<

1

r

(
r − 1− 1√

m2(ak)

)(
2(c1/2 + δ)a

−1/2
k + f ′(ak)

)

<
1

r

(
r − 1− 1√

m2(ak)

)(c1/2 + 3δ
)

a
1/2
k

<
1

r

(
r − 1− 1√

m2(ak)

) r

r − 1

√
f(ak)

a
1/2
k

<
√
m1(ak)−

f ′(ak)√
m1(ak)

,

which also contradicts (2.3.15). The last inequality follows immediately from the fact

that f ′ < 0.
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Proof of Theorem 2.1.11. The proof is identical to that of case (4) in the proof of Theorem

2.1.9. The reason we cannot apply the argument directly is the fact that we do not know

a priori that the limak→0m2(ak) = 0 on a sequence of crossing points, since Lemma 2.3.8

does not apply here. This condition is now taken care by the assumption of Theorem

2.1.11.

To finish the proof, impose on this sequence {ak}k∈N of crossing points the extra

condition that a
1/2
k |f

′(ak)| → c1/2 <
r
r−1

√
f(0) by the assumption. Again, c1/2 can be

any limit point. Now the calculation for (4) in the proof of Theorem 2.1.9 can be repeated

and it finishes the proof.

2.3.2 Phase transition at c
(−)
1/2 = r

r−1

√
f(0)

Proposition 2.3.9 (Phase transition at c
(−)
1/2 = r

r−1

√
f(0)). Suppose that c

(−)
1/2 = r

r−1

√
f(0)

and assume that for some γ > 0 and some c ∈ R,

−f ′(a) = c
(−)
1/2a

−1/2 + caγ−
1/2. (2.3.16)

Then, when γ < 1/4 the equivalence of Theorem 2.1.11 is false when c < 0 and true when

c > 0. When γ > 1/4, type B maximisers exist.

We first need a geometric lemma:

Lemma 2.3.10. Assume that R0,f(0) = {0} × [f(0),∞) and Ra0,0 = [a0,∞) × {0} (i.e.

they are both degenerate). Then, there exists a sequence of points (xk, yk) with xk → ∞

as k →∞, so that their corresponding crossing points (βk, f(βk))→ (0, f(0)).

Proof of Lemma 2.3.10. Suppose by way of contradiction that there exists a constant A >

0 so that for all (x, y) ∈ R2
+ with x > A, the crossing points (ax,y, f(ax,y)) satisfy ax,y >

αA > 0.

Fix an α > 0 small and define

x+ = x+(α) = sup{x : ∃ y so that the crossing point (ax,y, f(ax,y)) satisfies ax,y ≤ α}.

(2.3.17)

The assumption guarantees that x+(α) is bounded for α small enough, and the set for

which we take the supremum is not empty, since crossing points are dense on the graph

of f by Lemma 2.3.3.

For any δ > 0 define the terminal point (xδ, yδ) = (x+ − δ, yδ) to be such that its

crossing point satisfies axδ,yδ ≤ α. Then it has to be that for all points (x+ − δ, y) with

y > yδ their corresponding crossing points has to satisfy axδ,y ≤ α. If this is not true, then
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the maximal path for (x+− δ, y) would cross the one for (xδ, yδ) and this is impossible by

Lemma 2.3.4.

Now there are three cases to consider:

(1) x+ > a0: In this case, consider now a point (x+ +ε, y0), for some small ε > 0. Because

of its x-coordinate, this point must have a crossing point with first coordinate larger

than α. The maximal possible slope for its second segment is mmax = y0

x++ε−a0
. Now

notice that for y0 large enough, the line y = mmax(x− a0) must intersect the optimal

path from 0 to (xδ, yδ) by planarity. In particular, the maximal paths to (xδ, yδ) and

(x+ + ε, y0) must intersect in the r-region, and this violates Lemma 2.3.4.

(2) x+ = a0: The same arguments as in case (1) give that the only possible crossing point

for (x+ + ε, y0) when y0 is large enough is (a0, 0) otherwise maximal paths would

intersect. This contradicts the assumption that Ra0,0 = [a0,∞)× {0}.

(3) x+ < a0: This is the most challenging case, and we need to split it into yet two more

cases.

(a) x+(α) is a maximum. Assume that (x+(α), y+(α)) is point with the crossing point

of its maximiser less than α. Now, for any δ, ε > 0, we can find y1 > y+(α) so that

the point (x+ +ε, y1) has crossing point ax++ε ≥ x+− δ. This is because maximal

macroscopic paths cannot cross, and any point (x++ε, y1) has to have a maximiser

with crossing point with ax++ε > α. Suppose by way of contradiction that the

crossing point ax++ε,y1 ≤ x+. Keeping ε > 0 but raising the value of y1, we can

find a crossing point larger than ax++ε,y1 . But that would mean that maximisers

cross, which cannot happen. Therefore, the crossing point ax++ε,y1 > x+. This

has to be true for all values of y1, and it is true for all ε > 0.

Now we want to understand the behaviour of the maximal paths when ε → 0

as y1 remains fixed. For each point (x+ + ε, y0) let (aε, f(aε)) the corresponding

crossing point. For all ε, aε > x+ and since maximal paths cannot cross each

other, limε→0 aε = x+: Then, as ε → 0 and by continuity of Γ (Theorem 2.1.4),

Γ(x+, y0) must also be optimised by the path 0 → (x+, f(x+)) → (x+, y0). By

Lemma 2.3.5 this is impossible.

(b) x+(α) is a supremum but not a maximum. Then consider terminal points of the

form (x+, y), and their crossing points (ax+,y, f(ax+,y)). Notice that for all y large

enough we must have

ax+,y ∈ (x+ − δ, x+).
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x

y

r

1

a0

f(0)

x+x+ − δ ax+,y1ax2,y2 x2

(x+, y1)

(x2, y2)

(x+, y3)

Figure 2.5: Construction in the proof of Lemma 2.3.10, part 3(b).

Set that y as y1. Now, for all y > y1, we have that ax+,y ∈ (x+ − δ, ax+,y1).

This is because the maximal paths cannot cross, by Lemma 2.3.4. Now consider a

terminal point (x2, y2) so that ax+,y1 < x2 < x+, y2 > y1 and ax2,y2 ≤ α. Finally,

find a y3 > y2 so that (x+, y3) has a crossing point with ax+,y3 ≥ x2. But this

implies that

ax+,y1 < ax+,y3 , while y3 > y1,

and in particular it means maximal paths cross. This cannot happen, so we

reached a contradiction.

Proof of Proposition 2.3.9. When f ′ satisfies (2.3.16), we have that c
(−)
1/2 = c

(+)
1/2 . This

implies that for any sequence ak → 0 we will simultaneously have

ak → 0, a
1/2
k |f

′(ak)| → c
(−)
1/2 and m2(ak)→∞.

In particular this will be true on a sequence ak coming from crossing points.

Fix any such sequence. Integrate both sides of (2.3.16) and divide by ak to obtain

f(0)− f(ak)

ak
= 2c

(−)
1/2a

−1/2
k +

c

γ + 1/2
a
γ−1/2
k . (2.3.18)

Moreover, we have that

(
√
f(0)−

√
f(ak))(

√
f(0) +

√
f(ak)) = 2c

(−)
1/2a

1/2
k +

c

γ + 1/2
a
γ+1/2
k .

Equation (2.3.16) also implies that −a1/2
k f ′(ak) = c

(−)
α + caγk . Now we are in position to

estimate

1

r

(
− 1√

m2(ak)
− 1 + r

)(f(0)− f(ak)

ak
+ f ′(ak)

)
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=
1

r

(
r − 1− 1√

m2(ak)

)(
2c

(−)
1/2a

−1/2
k +

c

γ + 1/2
a
γ−1/2
k + f ′(ak)

)

=
1

r

(
r − 1− 1√

m2(ak)

)(2c
(−)
1/2 + c

γ+1/2a
γ
k + a

1/2
k f ′(ak)

)
a

1/2
k

=
1

r

(
r − 1− 1√

m2(ak)

)(2c
(−)
1/2 + c

γ+1/2a
γ
k − c

(−)
1/2 − ca

γ
k

)
a

1/2
k

=
r − 1

r

(
c

(−)
1/2 + c1/2−γ

1/2+γ a
γ
k

)
a

1/2
k

− 1

r

1√
m2(ak)

(
c

(−)
1/2 + c1/2−γ

1/2+γ a
γ
k

)
a

1/2
k

.

In the last line there are two competing terms; one is asymptotically positive and the other

asymptotically negative so we must treat them separately: First the higher order positive

term

r − 1

r

(
c

(−)
α + c1/2−γ

1/2+γ a
γ
k

)
a

1/2
k

=

√
f(0)

a
1/2
k

+
r − 1

r
c

1/2− γ
1/2 + γ

aγk

a
1/2
k

=

√
f(ak)

a
1/2
k

+

√
f(0)−

√
f(ak)

a
1/2
k

+ c
r − 1

r

1/2− γ
1/2 + γ

aγk

a
1/2
k

=

√
f(ak)

a
1/2
k

+
2c

(−)
1/2 + c

γ+1/2a
γ
k√

f(0) +
√
f(ak)

+ c
r − 1

r

1/2− γ
1/2 + γ

aγk

a
1/2
k

.

Note that the term in the middle above vanishes as ak → 0. Then we work with the

negative term. First we perform an asymptotic expansion on 1/
√
m2(a) as a tends to 0:

1√
m2(a)

=


1

|c|(r−1)a
1/2−γ +O(a1/2), γ ∈ (0, 1/2),

a1/4√
c
(−)
1/2

+O(a1/2), γ ∈ [1/2,∞).

(2.3.19)

The details for (2.3.19) can be found in the Appendix A. Using this expansion we obtain

1

r

1√
m2(ak)

(
c

(−)
1/2 + c1/2−γ

1/2+γ a
γ
k

)
a

1/2
k

=
1

r

(
c

(−)
1/2 + c1/2−γ

1/2+γ a
γ
k

)
a

1/2
k

×


1

|c|(r−1)a
1/2−γ
k +O(a

1/2
k ), γ ∈ (0, 1/2),

a
1/4
k√
c
(−)
1/2

+O(a
1/2
k ), γ ∈ [1/2,∞).

=


c
(−)
1/2

|c|r(r−1)a
−γ
k +O(1), γ ∈ (0, 1/2),

√
c
(−)
1/2

ra
1/4
k

+O(1), γ ∈ [1/2,∞).

Combining the two expansions we have

1

r

(
− 1√

m2(ak)
− 1 + r

)(f(0)− f(ak)

ak
+ f ′(ak)

)
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=

√
f(ak)

a
1/2
k

+ c
r − 1

r

1/2− γ
1/2 + γ

a
γ−1/2
k −


c
(−)
1/2

|c|r(r−1)a
−γ
k +O(1), γ ∈ (0, 1/2),

√
c
(−)
1/2

ra
1/4
k

+O(1), γ ∈ [1/2,∞).

(2.3.20)

Now the phase transition reveals itself. First when γ > 1/4, the leading order terms in

(2.3.20) are those in the brace; they are negative and tend to −∞, so as before, (2.3.15)

is violated.

Now assume 1/4 ≥ γ. This means 1/2 − γ ≥ γ. Then, If c > 0, the middle term in

(2.3.20) tends to +∞, and immediately gives a contradiction to (2.3.15).

If c < 0 with a sufficiently large modulus (if γ < 1/4 any c < 0 will do), we have for

all ak sufficiently small that (2.3.20) can be bounded by

1

r

(
− 1√

m2(ak)
− 1 + r

)(f(0)− f(ak)

ak
+ f ′(ak)

)
>

√
f(ak)

a
1/2
k

+
c

2

r − 1

r

1/2− γ
1/2 + γ

a
γ−1/2
k

(2.3.21)

>

√
f(ak)

a
1/2
k

− f ′(ak)√
m1(ak)

+
c

4

r − 1

r

1/2− γ
1/2 + γ

a
γ−1/2
k .

(2.3.22)

Compare (2.3.22) with equation (2.3.15). The only difference is the last term on the

right-hand side, which for c < 0 and γ < 1/4 it is a positive term that goes to +∞ as

ak → 0.

Assume by way of contradiction that in this case R0,f(0) is degenerate. Then we can

find a sequence of terminal points (xk, yk) with xk → ∞ (as k → ∞) with corresponding

crossing points (βk, f(βk))→ (0, f(0)) by Lemma 2.3.10. Then it must be that m2(βk)→

∞ and we may assume without loss of generality that m2(βk) is strictly increasing.

Assume xk is large enough so that xk
xk−βk − 1 < Aβk for some constant A. Moreover

we have the relations

m1(βk) =
f(βk)

βk
, m2(βk) =

yk − f(βk)

xk − βk
,

m(βk) =
yk − f(0)

xk
and yk = m2(βk)(xk − βk) + f(βk).

Since we are assuming that the region R0,f(0) is degenerate, the weight collected on a

piecewise linear path that goes through (0, f(0)) and then to (xk, yk) must be less than

the weight collected on the path from the crossing point. As such, the same calculation

that led to (2.3.13), now gives the inequality

1

r

xk(f(βk)− f(0)− βkm2(βk)) + βk(βkm2(βk)− f(βk) + f(0))

xk − βk

[
1 +

2√
m(βk) +

√
m2(βk)

]
(2.3.23)
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< βk + f(βk)− f(0) + 2
√
βkf(βk)−

βk
r

(
1 +

√
m2(βk)

)2
.

In the left hand side use the bounds 1 < xk
xk−βk < 1 +Aβk and m2(βk) > m(βk) to bound

from below

1

r
(f(βk)− f(0)− βkm2(βk))(1 +Aβk)

[
1 +

2√
m(βk) +

√
m2(βk)

]
+

1

r

βk(βkm2(βk)− f(βk) + f(0))

xk − βk

[
1 +

1√
m2(βk)

]
< βk + f(βk)− f(0) + 2

√
βkf(βk)−

βk
r

(
1 +

√
m2(βk)

)2
.

Using equation (2.3.19), we have that βkm2(βk)→ 0, so we simplify the inequality above

one more time as

1

r
(f(βk)− f(0)− βkm2(βk))

[
1 +

2√
m(βk) +

√
m2(βk)

]
+O(βk) (2.3.24)

< βk + f(βk)− f(0) + 2
√
βkf(βk)−

βk
r

(
1 +

√
m2(βk)

)2
.

We finally use the estimate

|
√
m(βk)−

√
m2(βk)| ≤ Cx

√
m2(βk)(f(0)− f(βk)) ≤ C ′xβ

1/2
k .

The last inequality comes from (2.3.18). We use this for one last simplification in (2.3.24)

to

1

r
(f(βk)− f(0)− βkm2(βk))

[
1 +

1√
m2(βk)

]
+O(βk)

< βk + f(βk)− f(0) + 2
√
βkf(βk)−

βk
r

(
1 +

√
m2(βk)

)2
.

With the same algebraic manipulations that led to (2.3.15), we obtain

1

r

( 1√
m2(βk)

+ 1− r
)(f(βk)− f(0)

βk
− f ′(βk)

)
≤
√
m1(βk)−

f ′(βk)√
m1(βk)

+O(1). (2.3.25)

This gives the desired contradiction, since equality (2.3.25) is precisely opposite of inequal-

ity (2.3.22).

Example 2.3.11 (An exactly solvable corner-step model: (g(a, b) =
√
a+
√
b, k = 1).

We have that ∂bg/∂ag = 1/
√
m1 and therefore D = 0. Then

m2 =
4(

∂bg
∂ag
− 1 +

√(
∂bg
∂ag

+ 1
)2)2

=

(
∂ag

∂bg

)2

= m1.

61



Therefore, the optimal paths are straight lines and the last passage time can be explicitly

computed for any (x, y). If (x, y) are such so that
√
x+
√
y > 1 the common optimal slope

will be m = y/x ∈ R+. The crossing point is given by

(a∗, b∗) =
( x

(
√
x+
√
y)2

,
y

(
√
x+
√
y)2

)
, (2.3.26)

and the last passage time shape function can be computed to be

Γcg ,1(x, y) =


(

1− 1
r

)
+ 1

r (
√
x+
√
y)2, if

√
x+
√
y > 1

(
√
x+
√
y)2, if

√
x+
√
y ≤ 1.

One can verify directly that going through the axes is not optimal and all maximisers have

to cross the curve.

In fact, this is the unique case of a speed function with this form, for which the optimal

paths are straight lines. Assume that always m2 = m1 = m = b/a. From equation (2.3.6)

we have

0 = ∇g(a, b) ·
(

1√
m

+ 1,−(
√
m+ 1)

)
= ∇g(a, b) ·

(√
a√
b

+ 1,−
√
b√
a
− 1

)
. (2.3.27)

Solve the differential equation (2.3.27) for a and b to conclude that there exists c1, c2 ∈

R such that

g(a, b) = c2(
√
a+
√
b)2 + c1.

Then the level curve is enforced by (2.3.4c) and is given by
√
a +
√
b = α for some

α = α(k, c1, c2) in R+.

2.4 Continuity properties of Γ(x, y)

Now, we want to study what happen to the difference of the macroscopic last passage

time of two points that are very close to each other.

Lemma 2.4.1. Fix a, b, z, w > 0 and a speed function c. Then there exists a constant

C = C(a, b, z, w, c(·, ·)) <∞ such that for any δ > 0 we can find sufficiently small δ1, δ2 >

0 so that the following two regularity conditions hold: For 0 ≤ a ≤ z,

Γ((a, 0), (z + δ1, δ2))− Γ((a, 0), (z, 0)) ≤ C
√
δ. (2.4.1)

For 0 ≤ b ≤ w,

Γ((0, b), (δ1, w + δ2))− Γ((0, b), (0, w)) ≤ C
√
δ. (2.4.2)

Proof. The arguments will be symmetric, so we will prove only (2.4.2). Pick a δ positive.

First select δ1 ∈ [0, 1), δ2 ∈ [0, 1) small enough such that
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1. Any discontinuity curve hi in [0, δ1]× [0, w+ δ2] is monotone and their domain is the

interval [0, δ1].

2. The intersection points of the discontinuity curves in [0, δ1]× [0, w + δ2] (if any) all

lie on the y-axis.

The first one is possible since the hi are finitely many in any compact set, and piecewise

monotone functions. The second one because there only finitely many intersections points.

Let H be the number of discontinuity curves in this rectangle, and enumerate them from

the lowest to the highest, including the north and south straight boundaries. Decrease δ1

further so that

max
1≤i≤H

{ωhi(δ1)} < δ

and select an η = η(δ1) > 0 which satisfies the condition

η ≤ min
1≤i≤H

{ωhi(δ1)}.

Keep in mind that η → 0 as δ1 → 0. Decrease δ1 further so that Hη << w. Since

c(x, y) is piecewise constant, we have that in-between these discontinuity curves the rates

are fixed, and on the discontinuity curve the value is the smallest of the rates in the two

adjacent regions by condition (1) in Assumption 2.1.2.

From the hypotheses so far, we have that the rectangles Qi = [0, δ1] × [hi(0) ∧

hi(δ1), hi(0) ∨ hi(δ1)], have completely disjoint interiors for all 1 ≤ i ≤ H and c(x, y)

takes two values. In the rectangles Ri = [0, δ1] × [hi(0) ∨ hi(δ1), hi+1(0) ∧ hi+1(δ1)], the

speed function is constant. We allow the rectangles Ri, Qi to be degenerate horizontal

lines.

For any x = (x1(s), x2(s)) ∈ H(δ1, w + δ2) set

I(x) =

∫ 1

0

γ(x′(s))

c(x1(s), x2(s))
ds. (2.4.3)

Let ε > 0 and assume that φ = (φ1, φ2) ∈ H(δ1, w+ δ2) is a path such that Γ(δ1, w+ δ2)−

I(φ) < ε. It is possible to decompose φ into disjoint segments φj so that φ =
∑2H

j=1 φj and

that

1. For j even, φj ⊆ Rj/2, and therefore it is a linear segment with derivative φ′j in R2
+

2. For j odd, φj ⊆ Q(j+1)/2.

The sum
∑2H

j=1 φj means path concatenation.
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For j odd, the total contribution of φj to I(φ) can be bounded by 1
r`
γ(δ1, η(δ1)) where

r` = min
(x,y)∈[0,δ1]×[0,w+δ2]

c(x, y). Over all, the total contribution of the odd-indexed segments

is bounded above by 4Hr−1
` (η(δ1) ∨ δ1).

For j even, the path segment is linear and the maximum contribution of any such

segment is given by

I(φj) =
1

rRj
γ(δ1, height(Rj)) =

1

rRj
(δ1 + height(Rj) + 2

√
δ1height(Rj))

≤ 1

rRj
height(Rj) + 2Cj

√
δ1.

Overall, on the even-indexed segments, the total contribution to I(φ) is bounded above

by
∑H

k=1( 1
rR2k

height(R2k) + 2C2k)
√
δ1 ≤

∑H
k=1

1
rR2k

height(R2k) + C
√
δ1.

Then,

Γ(δ1, w + δ2)− ε ≤ I(φ) ≤
H∑
k=1

1

rR2k

height(R2k) + C
√
δ1 + 4Hr−1

` (η(δ1) ∨ δ1)

≤ Γ(0, w + δ2) + C
√
δ1 + 4Hr−1

` (η(δ1) ∨ δ1)

≤ Γ(0, w) +
1

r`
δ2 + C

√
δ1 + 4Hr−1

` (η(δ1) ∨ δ1)

≤ Γ(0, w) + Cδ2 ∨
√
δ1 ∨ η(δ1).

Let ε→ 0.

Corollary 2.4.2. Fix (x, y) ∈ R2
+ and a speed function c. Then there exists C =

C(x, y, c(·, ·)) <∞ such that for any δ positive, there exist δ1, δ2 sufficiently small

Γ(x+ δ1, y + δ2)− Γ(x, y) < Cδ. (2.4.4)

Proof. Let B(x,y) be a rectangle, where the north-east corner point is (x, y) and south-west

corner is (0, 0).

Let ε > 0 and φε a path such that Γ(x + δ1, y + δ2) − I(φε) < ε. Moreover, let u be the

point where φε first intersects the north or the east boundary of B(x,y). Without loss of

generality assume is the east boundary and so u = (x, b) for some b ∈ [0, y]. Then,

Γ(x+ δ1, y + δ2)− ε ≤ I(φε)

≤ Γ(x, b) + Γ((x, b), (x+ δ1, y + δ2))

= Γ(x, b) + Γ((x, b), (x, y)) + Γ((x, b), (x+ δ1, y + δ2))− Γ((x, b), (x, y))

≤ Γ(x, y) + Γ((x, b), (x+ δ1, y + δ2))− Γ((x, b), (x, y)).

A rearrangement of terms gives

Γ(x+ δ1, y + δ2)− Γ(x, y) ≤ Γ((x, b), (x+ δ1, y + δ2))− Γ((x, b), (x, y)) + ε
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≤ Cδ + ε

where we used (2.4.2), albeit with a starting point of (x, b). Let ε → 0 to prove the

corollary.

We are now ready to prove Theorem 2.1.4.

Proof of Theorem 2.1.4. Fix an ε > 0 and let ζ1, ζ2 small enough so that by Corollary

2.4.2 we have

Γ((a, b), (x+ ζ3, y + ζ4))− Γ((a, b), (x, y)) < ε/4.

Then, keep ζ3, ζ4 fixed and find a ζ1, ζ2 small enough so that again by Corollary 2.4.2,

Γ((a− ζ1, b− ζ2), (x+ ζ3, y + ζ4))− Γ((a, b), (x+ ζ3, y + ζ4)) < ε/4.

Together the inequalities above give

Γ((a− ζ1, b− ζ2), (x+ ζ3, y + ζ4))− Γ((a, b), (x, y)) < ε/2. (2.4.5)

Similarly, one can approximate from the inside, and find ζ5, ζ6, ζ7, ζ8 so that

Γ((a, b), (x, y))− Γ((a+ ζ5, b+ ζ6), (x− ζ7, y − ζ8)) < ε/2. (2.4.6)

Let δ0 = min1≤i≤8{ζi}. Since Γ(u, v) decreases in the first argument and increases in the

second argument the inequalities (2.4.5) and (2.4.6), together with our choice of δ0 give

Γ((a− δ0, b− δ0), (x+ δ0, y + δ0))− Γ((a+ δ0, b+ δ0), (x− δ0, y − δ0)) < ε.

and that for any ã ∈ [a−δ0, a+δ0], b̃ ∈ [b−δ0, b+δ0], x̃ ∈ [x−δ0, x+δ0], ỹ ∈ [y−δ0, y+δ0],

we have

Γ((a+ δ0, b+ δ0), (x− δ0, y − δ0)) ≤ Γ((ã, b̃), (x̃, ỹ)) ≤ Γ((a− δ0, b− δ0), (x+ δ0, y + δ0)).

The last two inequalities combined give the result.

The reason for this technical approximation is the statements in the next lemma,

motivated by the following argument. In the simplest case we would like to approximate

the limits of last passage times using the limiting Γc in rectangles where c(x, y) has one

discontinuity line. Unfortunately, unless the discontinuity of the speed is a line of slope

1, we cannot say at this point that the limit is Γc(x, y). However, if the speed function

is continuous, the fact that the limit of passage times is Γc in that environment is given

by Theorem 3.1. in [46]. So we may approximate Γc with the value Γc̃ where c̃ will be a

continuous speed function that approximates c(s, t).
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x0

y
(x, y)(x, y)

(α, 0) (α+ η, 0)

h

hη

(x− η, y)

(α− η, 0)

Figure 2.6: Graphical representation for the proof of Lemma 2.4.3.

Lemma 2.4.3 (Continuity of Γ in the speed function). Let c(s, t) take only two values

r1, r2 in two regions of [a, x]×[b, y] separated by a weakly monotone curve h, which satisfies

Assumption 2.1.1. Then, for every ε > 0 there exists a ηh,ε > 0 so that for all η < ηh,ε

there exists a continuous speed function ccontη (s, t) ≤ c(s, t) so that

Γccontη
((a, b)(x, y))− Γc((a, b), (x, y)) ≤ ε.

Proof of Lemma 2.4.3. Fix (x, y) and without loss assume that the starting point is (a, b) =

(α, 0) for some α > 0. We present the case when the curve h starts somewhere on [α, x]

and exits somewhere on the east boundary {x} × [0, y] and the rates above the curve is

r1 < r2. Symmetric arguments as the one below will work in all other cases, and are left

to the reader.

For a fixed ε > 0 we can find an ηε,h > 0 so that for all η < ηε,h > 0 we have

|Γc((α − η, 0), (x − η, y)) − Γc((α, 0), (x, y))| < ε. This is possible by Theorem 2.1.4. Fix

any such η and define the curve hη by the relation hη(t) = h(t+ η), i.e. this correspond

to shift of h by η to the right. Then, we define a speed function cη(·, ·) on [α, x]× [0, y]

cη(z, w) =


r1, if (z, w) is above or on the graph of hη,

r2, otherwise.

We make two observations:

1. c(z, w) ≥ cη(z, w) for all (z, w) ∈ [α, x]×[0, y], giving Γcη((α, 0), (x, y)) ≥ Γc((α, 0), (x, y)).
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2. By construction

Γc((α− η, 0), (x− η, y)) = Γcη((α, 0), (x, y)). (2.4.7)

From these observations we define a new, continuous function ccont
η (·, ·) on [α, x]× [0, y] so

that

cη(z, w) ≤ ccont
η (z, w) ≤ c(z, w), for all (z, w) ∈ [α, x]× [0, y].

This and (2.4.7) imply

Γccont
η

((α, 0), (x, y)) ≤ Γcη((α, 0), (x, y)) = Γc((α− η, 0), (x− η, y)) ≤ Γc((α, 0), (x, y)) + ε,

(2.4.8)

which in turn yields the Lemma.

2.5 Proof of Theorem 2.1.5

To prove Theorem 2.1.5 we need some Lemmas which help us to define some properties

of the last passage time in a 2D inhomogeneous environment.

We begin by identifying the last passage time limits in simple cases of speed function,

that will be used as building blocks for approximations to the general case. We first find

the law of large numbers without fixing the maximal path but forcing it to stay in a

homogeneous corridor. Let the speed function be

c(x, y) =


r2 y > x+ λ,

r1 x− λ ≤ y ≤ x+ λ,

r3 y < x− λ.

(2.5.1)

with λ ∈ R+.

Lemma 2.5.1 (Passage times in homogeneous corridors). Assume c(x, y) in (2.5.1) for

all (x, y) ∈ (0, b)×(0, e). Let (z, w) ∈ (0, b]×(0, e] with w ∈ (z−λ, z+λ) and let G̃(bnzc,bnwc)

be the last passage time from (0, 0) to (bnzc, bnwc) subject to the constraint that

admissible paths stay in the r1-rate region inside the strip bnbc − λ ≤ bnec ≤ bnbc+ λ,

except possibly for a bounded number of initial and final steps.

Then

lim
n→∞

n−1G̃(bnzc,bnwc) = r−1
1 γ(z, w), P− a.s. (2.5.2)
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Proof. To obtain the upper bound limn→∞ n
−1G̃(bnzc,bnwc) ≤ r−1

1 γ(z, w) ignore the path

restrictions and assume that the environment in the whole region is homogeneous of con-

stant rates r1.

For the lower bound we use a coarse graining argument, taking into account the path

restrictions. Fix an ε ∈ (0, 1) and consider the points

Pz,w,ε = {(k bεnzc , k bεnwc) : k = 1, 2, . . . ,
⌊
ε−1
⌋
} ∪ {bnzc , bnwc)}.

To bound G̃(bnzc,bnwc) from below, force the path to go through the partition points of

Pz,w,ε. By possibly reducing ε further, for each 1 ≤ k ≤
⌊
ε−1
⌋
, each rectangle with

lower-left and upper-right corners two consecutive points of Pz,w,ε is completely inside

the region of rate r1. For these rectangles we allow the path segments to explore space.

For 2 ≤ k <
⌊
ε−1
⌋

let GRnk be the last passage time from ((k−1) bεnzc , (k−1) bεnwc)

to (k bnzεc , k bnwεc). Rnk refers to the rectangle that contains all the admissible paths

between the two points.

Let 0 ≤ δ = δ(ε) < εr−1γ(z, w) and assume without loss that δ/ε → 0 as ε → 0. A

large deviation estimate (Theorem 4.1 in [96]) gives a constant C = C(r, z, w, ε, δ) such

that for k fixed

P{GRnk ≤ n(εr−1γ(z, w)− δ)} ≤ e−Cn2
. (2.5.3)

The sequence of passage times {GRnk }k are i.i.d. and as such, a Cramèr large deviation

estimate and a Borel-Cantelli argument give for large n,

G̃(bnzc,bnwc) ≥
bε−1c−1∑
k=1

GRnk ≥ n(
⌊
ε−1
⌋
− 1)(εr−1γ(z, w)− δ), P-a.s.

Divide the inequality through by n and take the lim inf as n→∞. After that, send ε→ 0

to finish the proof.

From the coarse graining argument in the previous proof, we see that when we restrict

to maximal paths in a narrow (but macroscopic) homogeneous corridor we still obtain the

same limiting passage time as if the environment was homogeneous throughout. This is a

consequence of the mesoscopic fluctuations of the maximal paths and the strict concavity

of γ. As the width ε of the corridor tends to 0, the limiting shape of the corridor is

a straight line, which is the shape of the macroscopic maximal path in a homogeneous

region.

Lemma 2.5.2 (Passage times in C1 homogeneous corridors). Let x(s) be a C1 increasing

path from (a, b) to (c, d), and let N (x, ε) be a neighborhood subject to the constraint that
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c(x(s)) = r (constant) on N (x, ε). Let G
(n)
nN (x,ε) be the passage time from bn(a, b)c to

bn(c, d)c, subject to the constraint that maximal paths never exit nN (x, ε). Then

lim
n→∞

n−1G
(n)
nN (x,ε) ≥

1

r

∫ 1

0
γ(x′(s)) ds.

Proof. Consider a partition of the interval [0, 1] P = {0 = s0 < s1 < . . . < sN = 1} fine

enough so that the rectangles R(x(si),x(si+1)) are completely inside the neighborhood

N (x, ε). Then,

lim
n→∞

n−1G
(n)
nN (x,ε) ≥ lim

n→∞
n−1

N−1∑
i=0

G
(n)
bnx(si)c,bnx(si+1)c ≥

N−1∑
i=0

lim
n→∞

n−1G
(n)
bnx(si)c,bnx(si+1)c

≥ 1

r

N−1∑
i=0

γ(x(si+1)− x(si)) =
1

r

N−1∑
i=0

γ
(x(si+1)− x(si)

si+1 − s1

)
(si+1 − si)

=
1

r

N−1∑
i=0

γ
(
x′(ξi)

)
(si+1 − si), for some ξi ∈ [si, si+1], by the mean value theorem.

As the mesh of the partition tends to 0, the last line converges to 1
r

∫ 1
0 γ(x′(s)) ds, as it is

a Riemann sum. This gives the result.

Lemma 2.5.3 (Passage times in two-phase rectangles). Consider a C1 function h :

[0, a]→ [0, b] and a macroscopic rectangle [0, a]× [0, b] and in which the speed function is

c(x, y) = r11{y>h(x)} + r21{y<h(x)} + r1 ∧ r21{y=h(x)}.

We further assume that

1. h([0, a]) = [0, b], h is monotone and h(x) /∈ {0, b}, for any x ∈ (0, a).

2. There exists η > 0 so that minx∈(0,a) |h′(x)| > η > 0.

3. If h is increasing, then we further assume that for the same η > 0 as in (2), we have

supx∈(0,a)

∣∣∣h′(x) − b
a

∣∣∣ < η. In particular, the first derivative is bounded and there

exists a constant L so that the curve is Lipschitz-L.

Assume for convenience that r1 < r2. Then, there exists a uniform constant Ch so that

last passage time limits satisfy

1. For h increasing ,

1

r1
γ(a, b)− 2

r1
Chlength(h)η ≤ lim

n
n−1G

(n)
bnac,bnbc ≤ lim

n
n−1G

(n)
bnac,bnbc ≤

1

r1
γ(a, b).

(2.5.4)
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Moreover,

1

r1
γ(a, b)− 2

r1
Chlength(h)η ≤ Γ(a, b) <

1

r1
γ(a, b), (2.5.5)

which in turn implies

lim
n→∞

|n−1G
(n)
bnac,bnbc − Γ(a, b)| ≤ 2

r1
Chlength(h)η. (2.5.6)

2. When h is decreasing

lim
n→∞

n−1G
(n)
bnac,bnbc = Γ(a, b). (2.5.7)

Proof. We first treat the case of increasing h. Without loss, assume h(0) = 0 and h(a) = b.

Since r1 < r2 we obtain the upper bound in (2.5.4) if we lower r2 to r1 and assume a

homogeneous environment with constant speed function clow(x, y) = r1. This also gives

the upper bound in (2.5.5) since clow(x, y) ≤ c(x, y).

Now for the lower bound. Let ε > 0, δ > 0 sufficiently small. First consider a graph

hε(x) = (h(x) + ε) ∧ b which lies solely in the r1 region of c(x, y).

By hypothesis (1), assume ε is small enough so that the first time hε touches the top

boundary [0, a] × {b}, is precisely at some point xε > a − δ. Consider a parametrisation

for h, (h(1)(s), h(2)(s)) : [0, 1]→ R2. Then point xε corresponds to some 1− sε ∈ [0, 1].

Then define the curve x that goes from (0, 0) to (0, hε(0)) by time sε, then follows hε

until it takes the value b by time 1 and then stays on the north boundary at value b for

time sε.

Since h is rectifiable, so is hε, and we assume without loss that hε has the Lipschitz

parametrization

(
h(1)

(
(s− sε)

1− sε
1− 2sε

)
, h(2)

(
(s− sε)

1− sε
1− 2sε

)
+ ε
)
, s ∈ [sε, 1− sε].

Then we estimate

Γ(a, b) ≥
∫ 1−sε

sε

γ(x′(s))

r1
ds =

1− sε
1− 2sε

∫ 1−sε

0

γ(h(1)′(s), h(2)′(s))

r1
ds

=
1− sε
1− 2sε

∫ 1−sε

0
h(1)′(s)

γ(1, h
(2)′ (s)

h(1)′ (s)
)

r1
ds =

1− sε
1− 2sε

∫ 1−sε

0
h(1)′(s)

γ(1, h′(h(1)(s))

r1
ds

=
1− sε
1− 2sε

∫ h(1)(1−sε)

0

γ(1, h′(u))

r1
du ≥ 1− sε

1− 2sε

∫ h(1)(1−sε)

0

γ(1, ba − η)

r1
du

=
1− sε
1− 2sε

h(1)(1− sε)
γ(1, ba − η)

r1

≥ a
γ(1, ba − η)

r1
− δ 1− sε

1− 2sε

γ(1, ba − η)

r1
− sε

1− 2sε

γ(1, ba − η)

r1
. (2.5.8)
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Letting ε→ 0 makes the last term vanish, and by then letting δ → 0 we obtain

Γ(a, b) ≥ γ(a, b− aη)

r1
=

1

r1

(
a+ b− aη + 2

√
a
√
b

√
1− aη

b

)
. (2.5.9)

By the mean value theorem η < min |h′(s)| < ba−1 and by item (2) in the hypothesis, one

can check that √
1− aη

b
≥ 1− aη

b
.

We now estimate the γ-term in the left hand side of (2.5.9).

γ(a, b− aη) = a+ b− aη + 2
√
a
√
b
(

1− aη

b

)
= a+ b− aη + 2

√
a
√
b− 2

a3/2η

b1/2
(2.5.10)

≥ γ(a, b)− 2η
(
a+

a3/2

b1/2

)
. (2.5.11)

Now the lower bound in (2.5.5). Let

C2
h >

1 + 2
√
L

L3
∨
(

1 +
1 + 2

√
L

minx∈(0,a) h′(x)

)
.

Keep in mind that by the mean value theorem, b/a ≥ minx∈(0,a) h
′(x) and by the choice

of Ch we have
b

a
≥ min

x∈(0,a)
h′(x) ≥ 1 + 2

√
L

C2
h − 1

.

Then we can bound

0 ≤ a2((C2
h − 1)b− (1 + 2

√
L)a) < (C2

h − 1)a2b− (1 + 2
√
L)a3 + C2

hb
3

= (C2
h − 1)a2b− a3 − 2

√
La3 + C2

hb
3 < (C2

h − 1)a2b− a3 − 2a5/2b1/2 + C2
hb

3.

In the last inequality above we used (3), since it implies h(a) − h(0) = b ≤ La. An

equivalent way to write the last inequality is(
a+

a3/2

b1/2

)2
< C2

h(a2 + b2). (2.5.12)

From (2.5.12), we conclude that a+ a3/2

b1/2
< Ch

√
a2 + b2 ≤ Chlength(h). Substitute this in

(2.5.11) to finally prove the lower bound in (2.5.5).

For the lower bound in (2.5.4) consider again the function hε and sε from before

and consider a partition of [0, 1 − sε], Psε,δ = {xk = kδ(1 − sε)}0≤k≤bδ−1c, of mesh

δ > 0. We assume the partition is fine enough so that the rectangles Rk = [xk, xk+1] ×

[hε(xk), hε(xk+1)] completely lie in the homogeneous region of rate r1 and so that Riemann

sum

bδc−1−1∑
k=0

r−1
1 γ(h(1)′(xk+1), h(2)′(xk+1))(xk+1 − xk) ≥

∫ 1−sε

0

γ(h(1)′(s), h(2)′(s))

r1
ds− θ1

(2.5.13)
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for some fixed tolerance θ1 > 0. Moreover, assume the partition is fine enough so that for

η1 sufficiently small, with 0 < η1 < α∣∣∣h(i)(xk+1)− h(i)(xk)

xk+1 − xk
− h(i)′(xk+1)

∣∣∣ < η1, for i = 1, 2.

Finally, fix a small θ2 > 0 and let n large enough so that Theorem 4.1 in [96] gives

P{GnRk < nr−1
1 γ(h(1)(xk+1)− h(1)(xk), h

(2)
ε (xk+1)− h(2)

ε (xk))− nθ2} ≤ e−cn.

By the Borel-Cantelli lemma we can then let n be large enough so that P-a.s. for all k

GnRk > nr−1
1 γ(h(1)(xk+1)− h(1)(xk), h

(2)
ε (xk+1)− h(2)

ε (xk))− nθ2.

Above we denoted by GnRk the maximum weight that can be collected from oriented paths

in the set nRk.

Remind that ωγ(·) is the modulus of continuity of γ. By superadditivity, the passage

times satisfy

G
(n)
bnac,bnbc ≥

bδc−1−1∑
k=0

GnRk

≥ n
bδc−1−1∑
k=0

r−1
1 γ(h(1)(xk+1)− h(1)(xk), h

(2)
ε (xk+1)− h(2)

ε (xk))− nθ2δ
−1

= n

bδc−1−1∑
k=0

r−1
1 γ

(h(1)(xk+1)− h(1)(xk)

xk+1 − xk
,
h

(2)
ε (xk+1)− h(2)

ε (xk)

xk+1 − xk

)
(xk+1 − xk)− nθ2δ

−1

≥ n
bδc−1−1∑
k=0

r−1
1 γ(h(1)′(xk+1)− η1, h

(2)′(xk+1)− η1)(xk+1 − xk)− nθ2δ
−1

≥ n
bδc−1−1∑
k=0

r−1
1 γ(h(1)′(xk+1), h(2)′(xk+1))(xk+1 − xk)−

n

r1
ωγ(η1)− nθ2δ

−1,

≥ n
∫ 1−sε

0

γ(h′(s))

r1
ds− n

r1
ωγ(η1)− nθ1 − nθ2δ

−1, by (2.5.13).

Divide through by n and take the lim on both sides. First let θ1, θ2 → 0. After that take

η1 → 0. The final estimate comes from a repetition of computation (2.5.8) and bounds

(2.5.11), (2.5.12).

When h is decreasing, the approximation argument is simpler. We briefly highlight it

but leave the details to the reader. First of all, any monotone curve from [0, a] to [0, b] will

have to cross h at a unique point (ζ, h(ζ)). Then from Jensen’s inequality, the piecewise

linear curve from 0 to (ζ, h(ζ)) and then to (a, b) achieves a higher value for the functional

(2.1.3). So, candidate macroscopic optimisers can be restricted to piecewise linear curves,
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and this gives the lower bound

Γ(a, b) ≤ lim
n→∞

n−1G
(n)
bnac,bnbc

by a coarse graining argument as for the case when h was increasing. For the upper bound,

partition the curve h finely enough with a mesh δ > 0. Any microscopic optimal path will

have to cross the microscopic curve [nh] at some point (bnζc , bn(h(ζ))c), lying between

two of the partition points. For n large enough, the passage time on this path will P-a.s

, be no more than nr−1
1 γ(ζ, h(ζ)) + nr−1

2 γ(a − ζ, b − h(ζ)) + nε + Cn
√
δ for any fixed ε.

Divide by n, take the quantifiers to 0 and then take supremum over all crossing points to

obtain the upper bound.

Example 2.5.4. Consider a square with south-west corner (0, 0) and north-east corner

(1, 1). This square is subdivided in two constant-rate regions by a parabola h(x) = x2 where

above the rate is 1 and below is r ∈ (0, 1). Then the set of the all potential optimisers is a

concatenation of straight lines in the 1 region and convex segments along the discontinuity

h(x).

x0

y (1, 1)

(x1, y1)

(x2, y2)

h(x)

h̃(x)
1

r `
˜̀

`

δ

(xt, yt)

Figure 2.7: Graphical representation for the Example 2.5.4.

From Jensen’s inequality and the convexity of h(x) it is immediate to see that any

segment of an optimiser in the rate 1 region will have to be a straight line from the entry

point to the exit point of the optimiser in the region. Therefore it remains to prove the

shape of the maximal path in the r region.

We first claim that for any potential optimiser ` ∈ H(1, 1), there exists a neighborhood

N` on [0, 1] such that for every x ∈ N` a potential optimiser in H(1, 1) takes the value

h(x) for x ∈ N`.
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To see this we use a proof by contradiction: First, we show that for r small enough, any

potential optimiser has to enter the r-region. If that was not the case, Jensen’s inequality

would give that the straight line from (0, 0) to (1, 1) is actually an optimiser and the last

passage time constant would be

I`(1, 1) =

∫ 1

0
(
√

1 +
√

1)2dt = 4.

However, the C1 curve h(x) is also an admissible curve, and it achieves potential

Ih(x)(1, 1) =
1

r

∫ 1

0
(1 +

√
2t)2dt =

2

r
(1 +

2

3

√
2),

by the lower semicontinuity assumption on c(x, y). Therefore, for r < 1
2 +

√
2

3 , we have

I`(1, 1) < Ih(x)(1, 1), so the optimiser ` has to enter the slow region.

Now suppose that r > 1
2 +

√
2

3 in order to complete the example. We can find points

(a, h(a)) and (b, h(b)) so that ` enters in the r region through the point (a, h(a)) with

a ∈ [0, 1) and stays in there without touching h(x) except until (b, h(b)). We allow that

potentially (1, 1) = (b, h(b)). Since ` is continuous, it is possible to find a δ > 0 so that

for t in some open interval N` we have

|h(t)− `(t)| > δ. (2.5.14)

To see that (2.5.14) is not respected by a potential optimiser, consider a δ shift h̃ =

(h − δ/2)+. Since ` is continuous it will cross h̃ at least in two points (a1, h̃(a1)) and

(b1, h̃(b1)) and without loss assume [a1, b1] ⊆ N`. Pick any t ∈ (a1, b1) and consider the

tangent line at (t, h̃(t)) on h̃. By construction, this should cross ` in (x1, y1) and (x2, y2)

(see Figure 2.7). By Jensen’s inequality we know that the path ˜̀ which goes through ` up

to point (x1, y1), straight to (x2, y2) and then follows `. Then, I(˜̀) > I(`) and therefore,

` cannot be an optimiser. This gives the desired contradiction.

The contradiction was reached by assuming that a potential optimiser enters the slow

region, but without following the discontinuity curve h. This completes the example.

Remark 2.5.5. In the above example, we only used the explicit form of the discontinuity

h just to argue that a potential optimiser will eventually enter the slow region. If this

information is known, the latter part of the proof is completely general and it uses local

convexity properties of the discontinuity. In particular it just uses the fact that the discon-

tinuity curve and the potential optimiser are continuous, piecewise C1 and there exists a

point (t, h(t)) for which the tangent line does not enter the fast region.

Remark 2.5.6. The previous example suggests that potential optimisers cannot be more

regular than the discontinuity curves.
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Lemma 2.5.7 (Exponential concentration of passage times with continuous speed). Let

c(s, t) be a continuous speed function in [0, x] × [0, y]. Then, for any θ > 0, there exists

constants A and κθ,c

P{G(n)
bnxc,bnyc ≥ nΓc(x, y) + nθ} ≤ Ae−κθ,cn. (2.5.15)

Proof of Lemma 2.5.7. Fix a tolerance ε small. Its size will be determined in the proof.

For a K ∈ N, consider the two partitions

P(K)
x = {α` = `xK−1}0≤`≤K , and P(K)

y = {β` = `yK−1}0≤`≤K

of [0, x] and [0, y] respectively. Let Ri,j denote the open rectangle with south-west corner

(αi, βj). Let

ri,j = inf
(s,t)∈Ri,j

c(s, t).

Define a speed function

clow(s, t) =
∑
(i,j)

ri,j1{(s,t)∈Ri,j} +
∑
(i,j)

ri−1,j ∧ ri,j1{s=αi,βj<t<βj+1}

+
∑
(i,j)

ri,j−1 ∧ ri,j1{αi<s<αi+1,t=βj}.

The value of c(αi, βj) is the minimum of the values in a neighborhood around it.

We are assuming the initial condition that ri,−1 = r−1,j = ∞. In words, clow(s, t)

is a step function with the minimum value of the neighbouring rates on the boundaries

of Ri,j . Note that clow(s, t) ≤ c(s, t). Let Ri,j denote the rectangle together with any

of its boundaries for which it contributed the rate, using some rules to break ties, if the

boundary value agrees for two rectangles.

At this point we assume that K = K(ε) is large enough so that ‖c− clow‖∞ < ε. This

implies that

Γclow
(x, y)− Γc(x, y) ≤ εγ(x, y)r−2

min,

where rmin is the smallest value of clow(x, y). This is because for any path x,∫ 1

0

{
γ(x′(s))

clow(x1(s), x2(s))
− γ(x′(s))

c(x1(s), x2(s))

}
ds

=

∫ 1

0

γ(x′(s))(c(x1(s), x2(s))− clow(x1(s), x2(s)))

c(x1(s), x2(s))clow(x1(s), x2(s))
ds ≤ ε

∫ 1

0

γ(x′(s))

c2
low(x1(s), x2(s))

ds

≤ εr−2
minγ(x, y),

and the bound extends to the supremum over paths x.

Pick a L > 0 so that L−1 << K−1 and further partition each axis segment

H
(L)
i = {αi + `(αi+1 − αi)L−1}0≤`≤L, and V

(L)
j = {βj + `(βj+1 − βj)L−1}0≤`≤L.
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Define

Di,j = {d`i,j = (αi + `(αi+1 − αi)L−1, βj)}, Ei,j = {e`i,j = (αi, βi + `(βi+1 − βi)L−1)}.

These completely partition all boundaries of the rectangles.

We are now ready to prove the concentration estimate. Let Glow
bnxc,bnyc denote the last

passage time in environment determined by clow. Let πmax be the maximal path, and let

πk be the segment of the path in the k-th rectangle it visits nRik,jk .

Now, for each k, πk will enter and exit nRik,jk between two consecutive points of

nDik,jk , nEik,jk . We denote by nz1ik,jk , nz2ik,jk the consecutive points for the entrance

and by nz1ik+1,jk+1
, nz2ik+1,jk+1

for the exit.

Let x be a continuous, piecewise linear path from (0, 0) to (x, y) so that it crosses

through the boundary segments [nz1ik,jk , nz2ik,jk ] at some point xk. Then for L small

enough, we have that for some predetermined δ that∣∣∣γ(z2ik+1,jk+2
− z1ik,jk)

rik,jk
− γ(xk+1 − xk)

rik,jk

∣∣∣ < δ.

We estimate

P{G(n)
bnxc,bnyc ≥ nΓc(x, y) + nθ} ≤ P{Glow

bnxc,bnyc ≥ nΓc(x, y) + nθ}

≤ P
{∑

k

Glow
πk
≥ nΓclow

(x, y) + n(θ − εγ(x, y)r−2
min)

}
≤ P

{∑
k

Glow

bnz1ik,jkc,
⌊
nz2ik+1,jk+1

⌋ ≥ nΓclow
(x, y) + n(θ − εγ(x, y)r−2

min)

}
≤ P

{∑
k

Glow

bnz1ik,jkc,
⌊
nz2ik+1,jk+1

⌋ ≥ n∑
k

γ(xk+1 − xk)

rik,jk
+ n(θ − εγ(x, y)r−2

min)

}
≤ P

{∑
k

Glow

bnz1ik,jkc,
⌊
nz2ik+1,jk+1

⌋

≥ n
∑
k

γ(z2ik+1,jk+2
− z1ik,jk)

rik,jk
+ n(θ − εγ(x, y)r−2

min −K
2δ)

}
≤
∑
k

P
{
Glow

bnz1ik,jkc,
⌊
nz2ik+1,jk+1

⌋

≥ n
γ(z2ik+1,jk+2

− z1ik,jk)

rik,jk
+ nK−2(θ − εγ(x, y)r−2

min −K
2δ)

}
≤ Ae−κθ,εn, by Theorem 4.2 in [96].

The last inequality is only true if θ−εγ(x, y)r−2
min−K2δ > 0 which can be achieved when ε is

small enough so that εγ(x, y)r−2
min < θ/3 and then we reduce δ so thatK2δ = K2(ε)δ < θ/3.

Theorem 4.2 in [96] is a large deviation principle which gives an exponential concentration

inequality for passage times in a homogeneous environment.
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The final approximation before the proof of the main theorem is the limiting time

constant in any piecewise constant environment.

Proposition 2.5.8. Let c(s, t) be a piecewise constant speed function satisfying assump-

tion 2.1.2, with a set of discontinuity curves {hi}i satisfying Assumption 2.1.1. Let

u = (x, y) ∈ R+
2 . Then the following law of large numbers holds

lim
n→∞

1

n
G

(n)
bnuc = Γc(u), P− a.s. (2.5.16)

Proof. Fix u = (x, y) ∈ R2
+ and consider any admissible path x ∈ H(x, y), viewed as a

curve s ∈ [0, 1] 7→ x(s) = (x1(s), x2(s)). Recall the definition of I(x) from (2.1.3) and

remember that Γ = supx∈H(x,y) I(x).

Before proceeding with the technicalities, we highlight the intuition and main approx-

imation idea. The most used technique in literature to prove this kind of limit is to find an

upper and lower bound for the microscopic last passage time and then show that they tend

to the same macroscopic last passage time in the limit n → ∞. For the lower bound we

use the superadditivity property of the microscopic last passage time, and any path acts

as a lower bound. For the upper bound we have to construct a particular path which will

represent an upper bound for the microscopic last passage time, while approximating the

macroscopic limit after scaling its weight by n. For this, we first partition the rectangle

R0,(x,y) = [0, x]× [0, y] in a very specific way so the following conditions are all satisfied.

1. Isolate the finitely many points of intersection of the discontinuity curves in squares

of size δ, where δ will be sufficiently small.

2. Isolate the finitely many points on strictly increasing hi for which h′i(s) = 0 or h′i(s)

is not defined, in squares of size δ.

Call the collection of these squares by Iδ = {Ii}1≤i≤Q. This include points of intersec-

tions with the boundary of R0,(x,y). It is fine if these squares overlap, as long as all these

problematic points are in their interior.

Away from Iδ, the discontinuity curves are isolated so that for all curves we can

partition each curve hi finely enough so that for a given tolerance η,

1. Rectangles Rhi(xj),hi(xj+1) only contain the discontinuity curve hi. Each rectangle

now satisfies Assumption (1) of Lemma 2.5.3.

2. Assumption (3) in Lemma 2.5.3 holds for any rectangle Rhi(xj),hi(xj+1). Assumption

(2) of Lemma 2.5.3 is automatically satisfied away from Iδ.
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Call the collection of these rectangles that cover curve hi by Jhi,η = {Ri,j = Rhi(xj),hi(xj+1)}j .

Lower Bound: Any macroscopic path x can be viewed as the concatenation of a finite

number of segments xj so that each segment belongs either in a constant rate region, or

in one of the rectangles Iδ or in one of the rectangles ∪iJhi,ε. Write

x(s) =

Q∑
k=1

x(s)1{x(s) ∈ Ik}+
∑
k,`

x(s)1{x(s) ∈ Rk,`}+

D∑
k=1

x(s)1{x(s) ∈ Dk}.

Refine the partition further, so that if x : [si, si+1] → R2 ∈ Dk, then the open rectangle

Rx(si),x(si+1) ⊆ Dk.

Let (x1(s), x2(s)) a parametrization of the path x. Partition the interval [0, 1] into

P = {0 = s0 < s1 < s2 < . . . < sK = 1} so that the path segment x : [si, si+1] → R2

belongs to exactly one Ik, Rk,`, or Dk. Note that I(x) =
∑K−1

i=0

∫ si+1

si

γ(x′(s))
c(x(s)) ds. The

constant K = Kδ,η is the total number of different regions the path touches.

We bound each contribution separately:

(1) x : [si, si+1]→ R2 ∈ Ik. Then, at most,∫ si+1

si

γ(x′(s))

c(x(s))
< Cδ.

Then for all n large enough∣∣∣G[bnx(si)c,bnx(si+1)c]

n
−
∫ si+1

si

γ(x′(s))

c(x(s))
ds
∣∣∣ < Cδ,

since also passage times in these rectangles are bounded by Cnδ.

(2) x : [si, si+1]→ R2 ∈ Dk, where Dk is the homogeneous region of rate rk. Fix a small

θ1 > 0. Then for all n large enough, by the concentration estimates in [96]

G[bnx(sk)c,bnx(sk+1)c]

n
>
γ
(
x(sk+1)− x(sk)

)
rk

− θ1 >

∫ si+1

si

γ(x′(s))

c(x(s))
ds− θ1.

(3) x : [si, si+1]→ R2 ∈ Rk,`. Define

s− = inf{s ∈ [si, si+1] : x(s)− hk = 0}, s+ = sup{s ∈ [si, si+1] : x(s)− hk = 0}.

In words, x(s−) and x(s+) are the points of first and last intersection of x with hk in

the rectangle Rk,`. Before x(s−) and after x(s+), x stays in a constant-rate region,

in this rectangle. Between x(s−) and x(s+), x touches the discontinuity curve. This

rectangle has two constant-rate regions. Denote the smallest one of those by rlow.

We bound in the case where the discontinuity curve in the rectangle is increasing. If

it is decreasing, s− = s+, and the argument simplifies since the path x only intersects

the discontinuity at a single point.
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Let G
(n),N (x,ε)
bnx(s)c,bnx(t)c denote the passage time from bnx(s)c to bnx(t)c, subject to the

constraint that paths stay in the strip nN (x, ε). We assume ε is small enough so that

the speed function stays constant on nN (x, ε) ∩ R(bnx(s)c , bnx(t)c) except possibly

at an O(ε) region near the beginning and end points of the rectangle.

G
(n)
bnx(si)c,bnx(si+1)c

n
≥
G

(n),N (x,ε)
bnx(si)c,bnx(s−)c

n
+
G

(n)
bnx(s−)c,bnx(s+)c

n
+
G

(n),N (x,ε)
bnx(s+)c,bnx(si+1)c

n

≥
∫ s−

si

γ(x′(s))

c(x(s))
ds− θ1 +

γ
(
x(s−)− x(s+)

)
rlow

− Ck,`length(hk ∩Rk,`)η

+

∫ si+1

s+

γ(x′(s))

c(x(s))
ds− θ1 −O(ε) (2.5.17)

≥
∫ s−

si

γ(x′(s))

c(x(s))
ds+

∫ s+

s−

γ(x′(s))

c(x(s))
ds+

∫ si+1

s+

γ(x′(s))

c(x(s))
ds

− 2θ1 − Ck,`length(hk ∩Rk,`)η −O(ε)

=

∫ si+1

si

γ(x′(s))

c(x(s))
ds− 2θ1 − Ck,`length(hk ∩Rk,`)η −O(ε). (2.5.18)

Line (2.5.17) follows from Lemma 2.5.2 for some θ1 > 0 and n large enough. The line

before last follows because either c(x(sk)) is the largest rate in Ri,j or, if it is the smallest

of the two, we use Lemma 2.5.3. The fact that these estimates hold for all large n follows

from a Borel-Cantelli argument and the large deviation estimates, as seen in the proof of

Lemma 2.5.1. Constants Ck,` are the constants given in Lemma 2.5.3, that show up in

bound (2.5.4). They are all bounded above by some constant C̃δ (which also depends on

x, y), since all points where the derivative of increasing hi is 0 or undefined are isolated in

cubes of side δ.

We are now in a position to bound, for all n large enough

G
(n)
bnxc,bnyc ≥

Kδ,η−1∑
i=0

G
(n)
bnx(si)c,bnx(si+1)c

≥ n
Kδ,η−1∑
i=0

∫ si+1

si

γ(x′(s))

c(x(s))
ds− 3Kδ,ηn(θ1 +O(ε))− C̃δn− nηC̃δ

Q∑
i=1

length(hi).

Divide by n, and take the lim as n→∞ to obtain

lim
n→∞

G
(n)
bnxc,bnyc

n
≥ I(x)− 3Kδ,η(θ1 +O(ε))− Cδ − Cδη −O(ε). (2.5.19)

As the quantifiers go to 0, Kδ,η and Cδ blow up, so we first send θ1 to 0 and ε→ 0. After

that send η → 0 and finally δ → 0 to obtain that for an arbitrary x ∈ H(x, y),

lim
n→∞

G
(n)
bnxc,bnyc

n
≥ I(x).
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A supremum over the class H(x, y) in the right hand-side of the display above gives

lim
n→∞

G
(n)
bnxc,bnyc

n
≥ Γc(x, y). (2.5.20)

Upper bound: For the upper bound we first partition [0, x] × [0, y] into rectangles,

so that it is a refinement of the partition used for the lower bound: This way conditions

(1)-(2) are satisfied and all rectangles in ∪iJhi,η and Iδ are part of this partition. Outside

of the union of ∪iJhi,η and Iδ, only the regions of constant rate remain. Divide each one

of the constant region into rectangles, of side no longer than δ1 > 0 and assume δ1 < δ.

Enumerate the rectangles in the two-dimensional partition by Qi,j = [xi, xi+1) ×

[yj , yj+1) and their total number is Nη,δ,δ1 <∞.

Now, for any n ∈ N define the environment according to c(x, y) and consider the

maximizing path (0, 0) to (bnxc , bnyc) which we denote by πmax
0,(bnxc,bnyc). The path can be

written as a finite concatenation of sub-paths

πmax
0,(bnxc,bnyc) =

∑
(xi,yj)

πbnQi,jc

where πbnQi,jc is the segment of the path in the rectangle [bnxic , bnxi+1c)×[bnyjc , bnyj+1c).

Some of these segments will be empty.

We partition the sides of each rectangle Qi,j further: Fix a δ2 > 0 and define partitions

Pe1,(i,j) = {h(i,j)
k = (xi, yj) + kδ2e1}0≤k≤xi+1−xi

δ2

,

Pe2,(i,j) = {v(i,j)
k = (xi, yj) + kδ2e2}0≤k≤ yi+1−yi

δ2

.

These completely define a partition of the boundaries Qi,j . Now, the entry point of πbnQi,jc

into nQi,j will be between two consecutive partition points, say a
(i,j)
k ≤ a

(i,j)
k+1 and its exit

point will be between b
(i,j)
` ≤ b

(i,j)
`+1 . Note that exit point of one rectangle will be the entry

point in an adjacent one, and all these points belong to some partition Pek,(i,j). If it so

happens and the path enters (or exits) from one of the macroscopic partition points, we

set a
(i,j)
k = a

(i,j)
k+1 (equiv. b

(i,j)
` = b

(i,j)
`+1 ).

When the environment in Qi,j is constant ri,j , we have the bound

G
(n)
bnQi,jc(π) =

∑
v∈πbnQi,jc

τ (n)
v ≤ G(n)

na
(i,j)
k ,nb

(i,j)
`+1

≤ n
(γ(b

(i,j)
`+1 − a

(i,j)
k )

ri,j
+ θ1

)

≤ n
(γ(b

(i,j)
` − a

(i,j)
k+1)

ri,j
+ Ci,jωγ(δ2) + θ1

)
. (2.5.21)

The second-to-last inequality follows by Theorem 4.2 in [96], for n large enough.
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When c(s, t) on Qi,j takes two values, r1, r2 separated by a curve h, we bound as

follows. First fix a tolerance ε and find δ3 > 0 so that we may define a continuous speed

function cδ3,h(s, t) as in Lemma 2.4.3, with the property cδ3,h(s, t) ≤ c(s, t) and

sup
ak,b`

(Γcδ3,h(ak,b`)− Γc(ak,b`)) < ε. (2.5.22)

Then,

G
(n)
bnQi,jc(π) =

∑
v∈πbnQi,jc

τ (n)
v ≤ G(cδ3,h)

na
(i,j)
k ,nb

(i,j)
`+1

≤ n
(
Γcδ3,h(a

(i,j)
k ,b

(i,j)
`+1 ) + θ1

)
by a Borel-Cantelli argument and Lemma 2.5.7,

≤ n
(
Γcδ3,h(a

(i,j)
k+1,b

(i,j)
` ) + ωΓc(2δ2) + θ1

)
by Theorem 2.1.4, (2.5.23)

≤ n
(
Γc(a

(i,j)
k+1,b

(i,j)
` ) + ε+ ωΓc(2δ2) + θ1

)
by equation 2.5.22. (2.5.24)

Using the estimates (2.5.21) and (2.5.24), we have total upper bound for the passage

time

G
(n)
bnxc,bnyc =

∑
(i,j)

G
(n)
bnQi,jc(π)

≤ n
∑
(i,j)

Γc(a
(i,j)
k+1,b

(i,j)
` ) + nNη,δ,δ1(max

(i,j)
Ci,jωγ(δ2) + θ1 + ε+ ωΓc(2δ2)) + nC|Iδ|δ

≤ n(Γc(x, y) +Nη,δ,δ1(max
(i,j)

Ci,jωγ(δ2) + θ1 + ε+ ωΓc(2δ2)) + C|Iδ|δ)

The last line follows from superadditivity of Γ. To finish the bound, divide by n and

take the limn→∞. Then, let δ2 → 0. This will result to finer Pek,(i,j) partitions, but by

modulating δ3 we can still keep estimate (2.5.22) with the same ε. Then let θ1 and ε tend

to 0. These are independent of the other quantifiers η, δ1 and δ. Finally send δ → 0.

Proof of Theorem 2.1.5. Fix (x, y) and fix an ε > 0. It is always possible to find piecewise

strictly positive constant functions c1 and c2 such that ||c1−c2||∞ ≤ ε that definitely have

the same discontinuity curves as the function c (but perhaps more). On [0, x] × [0, y] we

can further impose c1(x, y) ≤ c(x, y) ≤ c2(x, y), by defining each ci on smaller rectangles.

When the weights in (2.0.3) are defined via the speed function ci we write Gi for last

passage time and Γci for their limits. A coupling using common exponential variables

{τi,j} gives

G
1,(n)
bnxc,bnyc ≥ G

(n)
bnxc,bnyc ≥ G

2,(n)
bnxc,bnyc.

Letting rmin > 0 denote a lower bound for c(x, y) in the rectangle [0, x]× [0, y]. Then
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we bound for any x ∈ H:

0 ≤
∫ 1

0

{
γ(x′(s))

c1(x1(s), x2(s))
− γ(x′(s))

c2(x1(s), x2(s))

}
ds

=

∫ 1

0

γ(x′(s))(c2(x1(s), x2(s))− c1(x1(s), x2(s)))

c1(x1(s), x2(s))c2(x1(s), x2(s))
ds ≤ ε

∫ 1

0

γ(x′(s))

c2
1(x1(s), x2(s))

ds

≤ εr−2
minγ(x, y).

As the inequality is uniform across x, the bound extends to the suprema

0 ≤ Γc1(x, y)− Γc2(x, y) ≤ C(x, y)ε.

From Proposition 2.5.8 we know that the Γci are the limits for Gi. To obtain Theorem

2.1.5, let ε→ 0.
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Chapter 3

Order of the variance in the

discrete Hammersley process with

boundaries

The model under consideration in this chapter is a directed corner growth model on the

positive quadrant Z2
+. Each site v of Z2

+ is assigned a random weight ωv. The collection

{ωv}v∈Z2
+

is the random environment and it is i.i.d. under the environment measure P,

with Bernoulli marginals

P{ωv = 1} = p, P{ωv = 0} = 1− p.

Throughout the chapter we exclude the values p = 0 or p = 1. One way to view the

environment, is to treat site v as present when ωv = 1 and as deleted when ωv = 0. With

this interpretation, the longest strictly increasing Bernoulli path up to (m,n) is a sequence

of present sites

Lm,n = {v1 = (i1, j1), v2 = (i2, j2), . . . , vM = (iM , jM )}

so that 0 < i1 < i2 < . . . < iM ≤ m and 0 < j1 < j2 < . . . < jM ≤ n and so that if

{w1, w2, . . . , wK} is a different strictly increasing sequence of present sites, then it must

be the case that K ≤M .

In this chapter we cast the random variable Lm,n as a last passage time as in the

framework of [48]. With the previous description, a step of a potential optimal path up to

(m,n) can take one of O(m,n) values - any site is accessible as long as it has strictly larger

coordinates from the previous site. However, any integer vector of positive coordinates

can be written as a linear combination of e1, e2 and e1 + e2 steps. Our set of admissible
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steps is then restricted to R = {e1, e2, e1 +e2} and an admissible path from (0, 0) to (m,n)

is an ordered sequence of sites

π0,(m,n) = {0 = v0, v1, v2, . . . , vM = (m,n)},

so that vk+1− vk ∈ R. The collection of all these paths is denoted by Π0,(m,n). In order to

obtain the same variable Lm,n over this set of paths as the one from only strictly increasing

steps, we need to specify the measurable potential function V (ω, z) : RZ2
+×R → R already

defined in (1.3.3)

V (ω, z) = ωe1+e211{z = e1 + e2}.

This way, the path π will collect the Bernoulli weight at site v if and only there exists

a k such that vk+1 = v and vk = v − e1 − e2. No gain can be made through a horizontal

or vertical step. Using this potential function V we define the last passage time as

GVm,n = max
π0,(m,n)∈Π0,(m,n)

{∑
vi∈π

V (Tviω, vi+1 − vi)
}
. (3.0.1)

Above we used Tvi as the environment shift by vi in Z2
+. Now one can see that GV0,(m,n) =

Lm,n.

Common notation

Throughout the paper, N denotes the natural numbers, and Z+ the non-negative integers.

When we write inequality between two vectors v = (k, `) ≤ w = (m,n) we mean k ≤ m

and ` ≤ n. We reserve the symbol G for last passage times. We omit from the notation

the superscript V that was used to denote the dependence of potential function in (3.0.1),

since for the sequence we fix V as in (1.3.3), unless otherwise mentioned. The symbol π

is reserved for a generic admissible path.

3.1 The model and its invariant version

3.1.1 The invariant boundary model

The boundary model has altered distributions of weights on the two axes. The new

environment there will depend on a parameter u ∈ (0, 1) that will be under our control.

Each u defines different boundary distributions. At the origin we set ω0 = 0. For weights

on the horizontal axis, for any k ∈ N we set ωke1 ∼ Bernoulli(u), with independent

marginals

P{ωke1 = 1} = u = 1− P{ωke1 = 0}. (3.1.1)
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On the vertical axis, for any k ∈ N, we set ωke2 ∼ Bernoulli
(

p(1−u)
u+p(1−u)

)
with independent

marginals

P{ωke2 = 1} =
p(1− u)

u+ p(1− u)
= 1− P{ωke2 = 0}. (3.1.2)

The environment in the bulk {ωw}w∈N2 remains unchanged with i.i.d. Ber(p) marginal

distributions. Denote this environment by ω(u) to emphasise the different distributions on

the axes that depend on u.

In summary, for any i ≥ 1, j ≥ 1, the ω(u) marginals are independent under a back-

ground environment measure P with marginals

ω
(u)
i,j ∼



Ber(p), if (i, j) ∈ N2,

Ber(u), if i ∈ N, j = 0,

Ber
(

p(1−u)
u+p(1−u)

)
, if i = 0, j ∈ N,

0, if i = 0, j = 0.

(3.1.3)

In this environment we slightly alter the way a path can collect weight on the boundar-

ies. Consider any path π from 0. If the path moves horizontally before entering the bulk,

then it collects the Bernoulli(u) weights until it takes the first vertical step, and after that,

it collects weight according to the potential function (1.3.3). If π moves vertically from

0 then it also collects the Bernoulli weights on the vertical axis, and after it enters the

bulk, it collects according to (1.3.3).

Fix a parameter u ∈ (0, 1). Denote the last passage time from 0 to w in environment

ω(u) by G
(u)
0,w. The variational equality, using the above description, is

G
(u)
0,w = max

1≤k≤w·e1
max

z∈{e2,e1+e2}

{ k∑
i=1

ωie1 + V (Tke1ω, z) +Gke1+z,w

}
∨

max
1≤k≤w·e2

max
z∈{e1,e1+e2}

{ k∑
j=1

ωje2 + V (Tke2ω, z) +Gz+ke2,w

}
.

(3.1.4)

Our two first statements give the explicit formula for the shape function.

Theorem 3.1.1 (Law of large numbers for G
(u)
bNsc,bNtc). For fixed parameter 0 < u ≤ 1

and (s, t) ∈ R2
+ we have

lim
N→∞

G
(u)
bNsc,bNtc

N
= su+ t

p(1− u)

u+ p(1− u)
, P− a.s. (3.1.5)
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Theorem 3.1.2 ([98], [12]). Fix p in (0, 1) and (s, t) ∈ R2
+. Then we have the explicit

law of large numbers limit

lim
N→∞

GbNsc,bNtc

N
= inf

0<u≤1
{sE(ω

(u)
1,0 ) + tE(ω

(u)
0,1 )}

=


s, t ≥ s

p

1
1−p
(
2
√
pst− p(t+ s)

)
, ps ≤ t < s

p

t, t ≤ ps.

(3.1.6)

The main theorems of this article verify with probabilistic techniques the variance of

G(u) along deterministic directions. For a given boundary parameter u, there will exist

a unique direction (mu, nu) along which the last passage time at point N(mu, nu) time

will have variance of order O(N2/3) for large N . That is what we call the characteristic

direction. The form of the characteristic direction will become apparent from the variance

formula in Proposition 3.3.1; it is precisely the direction for which the higher order variance

terms cancel out. As it turns out, the characteristic direction ends up being

(mu(N), nu(N)) =

(
N,
⌊N
p

(
p+ (1− p)u

)2⌋)
. (3.1.7)

Throughout the paper we will often compare last passage times over two different bound-

aries that have different characteristic directions. For this reason we explicitly denote the

parameter in the subscript.

Note that as N →∞, the scaled direction converges to the macroscopic characteristic

direction

N−1(mu(N), nu(N))→
(

1,

(
p+ (1− p)u

)2
p

)
, (3.1.8)

which gives that for large enough N the endpoint (mu(N), nu(N)) is always between the

two critical lines y = x
p and y = px that separate the flat edges from the strictly concave

part of gpp.This defines the macroscopic set of characteristic directions

Jp =
{(

1,

(
p+ (1− p)u

)2
p

)
: u ∈ (0, 1)

}
.

Note that any (s, t) ∈ R2
+ for which (1, ts−1) ∈ Jp, the shape function gpp has a strictly

positive curvature at (s, t).

Theorem 3.1.3. Fix a parameter u ∈ (0, 1) and let (mu, nu) the characteristic direction

corresponding to u as in (3.1.8) and large scale approximation, (mu(N), nu(N)) as in

(3.1.7). Then there exists constants C1 and C2 that depend on p and u so that

C1N
2/3 ≤ Var(G

(u)
mu(N),nu(N)) ≤ C2N

2/3. (3.1.9)
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In the off-characteristic direction, the process G
(u)
m(N),n(N) satisfies a central limit the-

orem, and therefore the variance is of order N . This is due to the boundary effect, as we

show that maximal paths spend a macroscopic amount of steps along a boundary, and

enter the bulk at a point which creates a characteristic rectangle with the projected exit

point.

Theorem 3.1.4. Fix a c ∈ R. Fix a parameter u ∈ (0, 1) and let (mu, nu) the character-

istic direction corresponding to u as in (3.1.7). Then for α ∈ (2/3, 1],

lim
N→∞

G
(u)
mu(N),nu(N)+bcNαc − E[G

(u)
mu(N),nu(N)+bcNαc]

Nα/2

D−→ Z ∼ N (0,Var(ω
(u)
1,0 )1{c < 0}+ Var(ω

(u)
0,1 )1{c > 0}).

Remark 3.1.5. The set Jp contains only the directions (1, t) for which p < t < 1/p.

Any other directions with t < p or t > p−1 -that also correspond to the flat edge of the

non-boundary model- and for an arbitrary u ∈ (0, 1), are necessarily off-characteristic

directions and along those, the last passage time satisfies a central limit theorem.

We also have partial results for the model without boundaries. The approach does not

allow to access the variance of the non-boundary model directly, but we have

Theorem 3.1.6. Fix x, y ∈ (0,∞) so that p < y/x < p−1. Then, there exist finite

constants N0 and C = C(x, y, p), such that, for b ≥ C, N ≥ N0 and any 0 < α < 1,

P{|G(1,1),(bNxc,bNyc) −Ngpp(x, y)| ≥ bN1/3} ≤ Cb−3α/2. (3.1.10)

In particular, for N > N0, and 1 ≤ r < 3α/2 we get the moment bound

E
[∣∣∣∣G(1,1),(bNxc,bNyc) −Ngpp(x, y)

N1/3

∣∣∣∣r] ≤ C(x, y, p, r) <∞. (3.1.11)

The bounds in the previous theorem work in directions where the shape function is

strictly concave. In directions of flat edge we have

Theorem 3.1.7. Fix x, y ∈ (0,∞) so that p > y/x or y/x > p−1. Then, there exist finite

constants c = c(x, y, p) and C = C(x, y, p), such that

Var(G(1,1),(bNxc,bNyc)) ≤ CN2e−cN → 0 (N →∞). (3.1.12)

For finer asymptotics on the variance and also weak limits, particularly close to the

critical lines y = px and y = p−1x we direct the reader to [45, 47].

For this particular model, the maximal path is not unique - this is because of the

discrete nature of the environment distribution, so we need to enforce an a priori condition
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that makes our choice unique when we refer to it. Unless otherwise specified, the maximal

path we select is the right-most one (it is also the down-most maximal path).

Definition 3.1.8. An admissible maximal path from 0 to (m,n)

π̂0,(m,n) = {{(0, 0) = π̂0, π̂1, . . . , π̂K = (m,n)}

is the right-most (or down-most) maximal path if and only if it is maximal and if π̂i =

(vi, wi) ∈ π̂0,(m,n) then the sites (k, `), vi < k < m, 0 ≤ ` < wi cannot belong on any

maximal path from 0 to (m,n).

In words, no site underneath the right-most maximal path can belong on a different

maximal path. An algorithm to construct the right-most path iteratively is given in (3.4.1).

For this right-most path π̂ we define ξ(u) its exit point from the axes in the environment

ω(u). We indicate with ξ
(u)
e1 the exit point from the x-axis and ξ

(u)
e2 the exit point from the

y-axis. If ξ
(u)
e1 > 0 the maximal path π̂ chooses to go through the x−axis and ξ

(u)
e2 = 0

and vice versa. If ξ
(u)
e1 = ξ

(u)
e2 = 0 it means the maximal path directly enters into the bulk

with a diagonal step. When we do not need to distinguish from which axes we exit, we

just denote the generic exit point by ξ(u).

The exit point ξ
(u)
e1 represents the exit of the maximal path from level 0. To study the

fluctuations of this path around its enforced direction, define

v0(j) = min{i ∈ {0, . . . ,m} : ∃k such that π̂k = (i, j)}, (3.1.13)

and

v1(j) = max{i ∈ {0, . . . ,m} : ∃k such that π̂k = (i, j)}. (3.1.14)

These represent, respectively, the entry and exit point from a fixed horizontal level j of a

path π̂. Since our paths can take diagonal steps, it may be that v0(j) = v1(j) for some j.

Now, we can state the theorem which shows that N2/3 is the correct order of the

magnitude of the path fluctuations. We show that the path stays in an `1 ball of radius

CN2/3 with high probability, and simultaneously, avoid balls of radius δN2/3 again with

high probability for δ small enough.

Theorem 3.1.9. Consider the last passage time in environment ω(u) and let π̂0,mu(N),nu(N)

be the right-most maximal path from the origin up to (mu(N), nu(N)) as in (3.1.7). Fix

a 0 ≤ τ < 1. Then, there exist constants C1, C2 <∞ such that for N ≥ 1, b ≥ C1

P{v0(bτnu(N)c) < τmu(N)− bN2/3 or v1(bτnu(N)c) > τmu(N) + bN2/3} ≤ C2b
−3.

(3.1.15)
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The same bound holds for vertical displacements.

Moreover, for a fixed τ ∈ (0, 1) and given ε > 0, there exists δ > 0 such that

lim
N→∞

P{∃k such that |π̂k − (τmu(N), τnu(N))| ≤ δN2/3} ≤ ε. (3.1.16)

3.2 Burke’s property and law of large numbers

To simplify the notation in what follows, set w = (i, j) ∈ Z2
+ and define the last passage

time gradients by

I
(u)
i+1,j = G

(u)
i+1,j −G

(u)
i,j and J

(u)
i,j+1 = G

(u)
i,j+1 −G

(u)
i,j . (3.2.1)

When there is no confusion we will drop the superscript (u) from the above. When

j = 0 we have that {I(u)
i,0 }i,∈N is a collection of i.i.d. Bernoulli(u) random variables since

I
(u)
i,0 = ω(i,0). Similarly, for i = 0, {J (u)

0,j }j∈N is a collection of i.i.d. Bernoulli
(

p(1−u)
u+p(1−u)

)
random variables.

The gradients and the passage time satisfy recursive equations. This is the content of

the next lemma.

Lemma 3.2.1. Let u ∈ (0, 1) and (i, j) ∈ N2. Then the last passage time can be recurs-

ively computed as

G
(u)
i,j = max

{
G

(u)
i,j−1, G

(u)
i−1,j , G

(u)
i−1,j−1 + ωi,j

}
(3.2.2)

Furthermore, the last passage time gradients satisfy the recursive equations

I
(u)
i,j = max{ωi,j , J (u)

i−1,j , I
(u)
i,j−1} − J

(u)
i−1,j

J
(u)
i,j = max{ωi,j , J (u)

i−1,j , I
(u)
i,j−1} − I

(u)
i,j−1.

(3.2.3)

Proof. Equation (3.2.2) is immediate from the description of the dynamics in the boundary

model and the fact that (i, j) is in the bulk. We only prove the recursive equation (3.2.3)

for the J and the other one is done similarly and left to the reader. Compute

J
(u)
i,j = G

(u)
i,j −G

(u)
i,j−1

= max
{
G

(u)
i,j−1, G

(u)
i−1,j , G

(u)
i−1,j−1 + ωi,j

}
−G(u)

i,j−1 by (3.2.2),

= max
{

0, G
(u)
i−1,j −G

(u)
i,j−1, G

(u)
i−1,j−1 −G

(u)
i,j−1 + ωi,j

}
= max

{
0, G

(u)
i−1,j −G

(u)
i−1,j−1 +G

(u)
i−1,j−1 −G

(u)
i,j−1, G

(u)
i−1,j−1 −G

(u)
i,j−1 + ωi,j

}
= max

{
0, J

(u)
i−1,j − I

(u)
i,j−1,−I

(u)
i,j−1 + ωi,j

}
= max{ωi,j , J (u)

i−1,j , I
(u)
i,j−1} − I

(u)
i,j−1.
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The recursive equations are sufficient to prove a partial independence property.

Lemma 3.2.2. Assume that (ωi,j , I
(u)
i,j−1, J

(u)
i−1,j) are mutually independent with marginal

distributions given by

ωi,j ∼ Ber(p), I
(u)
i,j−1 ∼ Ber(u), J

(u)
i−1,j ∼ Ber

( p(1− u)

u+ p(1− u)

)
. (3.2.4)

Then, I
(u)
i,j , J

(u)
i,j , computed using the recursive equations (3.2.3) are independent with mar-

ginals Ber(u) and Ber( p(1−u)
u+p(1−u)) respectively.

Proof. The marginal distributions are immediate from the definitions and the independ-

ence follows when one shows

E(h(I
(u)
i,j )k(J

(u)
i,j ))

= E(h(ωi,j ∨ J (u)
i−1,j ∨ I

(u)
i,j−1 − J

(u)
i−1,j)k(ωi,j ∨ J (u)

i−1,j ∨ I
(u)
i,j−1 − I

(u)
i,j−1))

= E(h(I
(u)
i,j−1)k(J

(u)
i−1,j)).

for any bounded continuous functions h, k. We omit the details, as they are similar to the

proof of Lemma 3.2.4 below. However, in order to prove Lemma 3.2.4, one first needs to

prove Lemma 3.2.2.

A down-right path ψ on the lattice Z2
+ is an ordered sequence of sites {vi}i∈Z that

satisfy

vi − vi−1 ∈ {e1,−e2}. (3.2.5)

For a given down-right path ψ, define ψi = vi − vi−1 to be the i-th edge of the path and

set

Lψi =


I

(u)
vi , if ψi = e1

J
(u)
vi−1 , if ψi = −e2.

(3.2.6)

The first observation is that the random variables in the collection {Lψi}i∈Z satisfy the

following:

Lemma 3.2.3. Fix a down-right path ψ. Then the random variables {Lψi}i∈Z are mu-

tually independent, with marginals

Lψi ∼


Ber(u), if ψi = e1

Ber
(

p(1−u)
u+p(1−u)

)
, if ψi = −e2.
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Proof. The proof goes by an inductive “corner - flipping” argument: The base case is the

path that follows the axes, and there the result follows immediately by the definitions of

boundaries. Then we flip the corner at zero, i.e. we consider the down right path

ψ(1) = {. . . , (0, 2), (0, 1), (1, 1), (1, 0), (2, 0), . . .}.

Equivalently, we now consider the collection
{
{J (u)

0,j }j≥2, I
(u)
1,1 , J

(u)
1,1 , {I

(u)
i,0 }i≥2

}
. The only

place where the independence or the distributions may have been violated, is for I
(u)
1,1 ,

J
(u)
1,1 . Lemma 3.2.2 shows this does not happen. As a consequence, variables on the

new path satisfy the assumption of Lemma 3.2.2. We can now repetitively use Lemma

3.2.3 by flipping down-right west-south corners into north-east corners. This way, starting

from the axes we can obtain any down-right path, while the distributional properties are

maintained. The details are left to the reader.

For any triplet (ωi,j , I
(u)
i,j−1, J

(u)
i−1,j) with i ≥ 1, j ≥ 1, we define the event

Bi,j =
{

(ωi,j , I
(u)
i,j−1, J

(u)
i−1,j) ∈ (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (1, 1, 0)}. (3.2.7)

Using the gradients (3.2.3), the environment {ωi,j}(i,j)∈N2 and the events Bi,j we also define

new random variables αi,j on Z2
+

αi−1,j−1 = 11{I(u)
i,j−1 = J

(u)
i−1,j = 1}+ βi−1,j−111{Bi,j} for (i, j) ∈ N2. (3.2.8)

βi−1,j−1 is a Ber(p) random variable and is independent of everything else. Note that

αi−1,j−1 is automatically 0 when ωi,j = I
(u)
i,j−1 = J

(u)
i−1,j = 0 and check, with the help of

Lemma 3.2.2, that αi−1,j−1
D
= ωi,j . The following lemma gives the distribution of the triple

(I
(u)
i,j , J

(u)
i,j , αi−1,j−1). It is an analogue of Burke’s property for M/M/1 queues.

Lemma 3.2.4 (Burke’s property). Let (ωi,j , I
(u)
i,j−1, J

(u)
i−1,j) mutually independent Bernoulli

random variables with distributions

ωi,j ∼ Ber(p), I
(u)
i,j−1 ∼ Ber(u), J

(u)
i−1,j ∼ Ber

( p(1− u)

u+ p(1− u)

)
.

Then the random variables (αi−1,j−1, I
(u)
i,j , J

(u)
i,j ) are mutually independent with marginal

distributions

αi−1,j−1 ∼ Ber(p), I
(u)
i,j ∼ Ber(u), J

(u)
i,j ∼ Ber

( p(1− u)

u+ p(1− u)

)
.

Proof. Let g, h, k be bounded continuous functions. To simplify the notation slightly, set

` = `(u) = p(1−u)
u+p(1−u) . In the computation below we use equations (3.2.3) without special

mention.

E(g(αi−1,j−1)h(I
(u)
i,j )k(J

(u)
i,j ))
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= g(1)E
(
h(I

(u)
i,j )k(J

(u)
i,j )11{ I(u)

i,j−1 = J
(u)
i−1,j = 1}

)
+ g(0)E

(
h(I

(u)
i,j )k(J

(u)
i,j )11{ωi,j = I

(u)
i,j−1 = J

(u)
i−1,j = 0}

)
+ E

(
g(βi,j)h(I

(u)
i,j )k(J

(u)
i,j )11{Bi,j}

)
= g(1)h(0)k(0)u`+ g(0)h(0)k(0)(1− p)(1− u)(1− `)

+ E(g(βi,j))E
(
h(I

(u)
i,j )k(J

(u)
i,j )11{Bi,j}

)
= h(0)k(0)(1− u)(1− `)(pg(1) + (1− p)g(0))

+ E(g(βi,j))
∑
x∈Bi,j

E
(
h(I

(u)
i,j )k(J

(u)
i,j )11{x ∈ Bi,j}

)
= h(0)k(0)(1− u)(1− `)(pg(1) + (1− p)g(0))

+ E(g(βi,j))

×
(
h(1)k(1)p(1− u)(1− `) + h(0)k(1)[(1− p)(1− u)`+ p(1− u)`)]

+ h(1)k(0)[(1− p)u(1− `) + pu(1− `)]
)

= h(0)k(0)(1− u)(1− `)(pg(1) + (1− p)g(0))

+ E(g(βi,j))
(
h(1)k(1)u`+ h(0)k(1)(1− u)`+ h(1)k(0)u(1− `)

)
= (pg(1) + (1− p)g(0))E(h(I

(u)
i,j ))E(k(J

(u)
i,j ))

= E(g(αi−1,j−1))E(h(I
(u)
i,j ))E(k(J

(u)
i,j )).

The last necessary preliminary step is a corollary of Lemma 3.2.4 which generalises

Lemma 3.2.3 by incorporating the random variables {αi−1,j−1}i,j≥1. To this effect, for any

down-right path ψ satisfying (3.2.5), define the interior sites Iψ of ψ to be

Iψ = {w ∈ Z2
+ : ∃ vi ∈ ψ s.t. w < vi coordinate-wise}. (3.2.9)

Then

Corollary 3.2.5. Fix a down-right path ψ and recall definitions (3.2.6), (3.2.9). The

random variables

{{αw}w∈Iψ , {Lψi}i∈Z}

are mutually independent, with marginals

αw ∼ Ber(p), Lψi ∼


Ber(u), if ψi = e1

Ber
(

p(1−u)
u+p(1−u)

)
, if ψi = −e2.

The proof is similar to that of Lemma 3.2.3 and equal to that of Corollary 4.2.3 in

Chapter 4. Therefore we omit it here.
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3.2.1 Law of large numbers for the boundary model.

Proof of Theorem 3.1.1. From equations (3.2.1) we can write

G
(u)
bNsc,bNtc =

bNtc∑
j=1

J
(u)
0,j +

bNsc∑
i=1

I
(u)
i,bNtc

since the I, J variables are increments of the passage time. By the definition of the

boundary model, the variables are i.i.d. Ber(p(1−u)/(u+p(1−u)). Scaled by N , the first

sum converges to tE(J0,1) by the law of large numbers.

By Corollary 3.2.5 they are i.i.d. Ber(u), since they belong on the down-right path

that follows the vertical axes from ∞ down to (0, bNtc) and then moves horizontally. We

cannot immediately appeal to the law of large numbers as the whole sequence changes

with N so we first appeal to the Borel-Cantelli lemma via a large deviation estimate. Fix

an ε > 0.

P
{
N−1

bNsc∑
i=1

I
(u)
i,bNtc /∈ (u− ε, u+ ε)

}
= P

{
N−1

bNsc∑
i=1

I
(u)
i,0 /∈ (su− ε, su+ ε)

}
≤ e−c(u,s,ε)N ,

for some appropriate positive constant c(u, s, ε). By the Borel-Cantelli lemma we have

almost sure that for each ε > 0 there exists a random Nε so that for all N > Nε

su− ε < N−1

bNsc∑
i=1

I
(u)
i,bNtc ≤ su+ ε.

Then we have

su+ t
p(1− u)

u+ p(1− u)
− ε ≤ lim

N→∞

G
(u)
bNsc,bNtc

N
≤ lim

N→∞

G
(u)
bNsc,bNtc

N
≤ su+ t

p(1− u)

u+ p(1− u)
+ ε.

Let ε tend to 0 to finish the proof.

3.2.2 Law of large numbers for the i.i.d. model

Proof of Theorem 3.1.2. Let gpp(s, t) = limN→∞N
−1GbNsc,bNtc and denote by g

(u)
pp (s, t) =

limN→∞N
−1G

(u)
bNsc,bNtc. Recall that gpp(s, t) is 1-homogeneous and concave.

The starting point is equation (3.1.4). Scaling that equation by N gives us the mac-

roscopic variational formulation

g(u)
pp (1, 1)

= sup
0≤z≤1

{g(u)
pp (z, 0) + gpp(1− z, 1)}

∨
sup

0≤z≤1
{g(u)
pp (0, z) + gpp(1, 1− z)}

= sup
0≤z≤1

{zE(I(u)) + gpp(1− z, 1)}
∨

sup
0≤z≤1

{zE(J (u)) + gpp(1, 1− z)}. (3.2.10)
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We postpone the proof of (3.2.10) until the end. Assume (3.2.10) holds. Observe that

since gpp(s, t) is symmetric then gpp(1 − z, 1) = gpp(1, 1 − z) which we abbreviate with

gpp(1− z, 1) = ψ(1− z). Therefore

g(u)
pp (1, 1) = sup

0≤z≤1
{zE(I(u)) + ψ(1− z)}

∨
sup

0≤z≤1
{zE(J (u)) + ψ(1− z)}. (3.2.11)

Moreover if u ∈ [
√
p

1+
√
p , 1] then E(I(u)) ≥ E(J (u)). We restrict the parameter u to the subset

u ∈ [
√
p

1+
√
p , 1] of its original range u ∈ (0, 1]. Then we can drop the second expression in

the braces from the right-hand side of (3.2.11) because at each z-value the first expression

in braces dominates. Then

u+
p(1− u)

u+ p(1− u)
= sup

0≤z≤1
{zu+ ψ(1− z)}. (3.2.12)

Set x = 1− z. x still ranges in [0, 1] and after a rearrangement of the terms, we obtain

− p(1− u)

u+ p(1− u)
= inf

0≤x≤1
{xu− ψ(x)}. (3.2.13)

The expression on the right-hand side is the Legendre transform of ψ, and we have that its

concave dual ψ∗(u) = − p(1−u)
u+p(1−u) with u ∈ [

√
p

1+
√
p , 1]. Since ψ(x) is concave, the Legendre

transform of ψ∗ will give back ψ, i.e. ψ∗∗ = ψ. Therefore,

gpp(x, 1) = ψ(x) = ψ∗∗(x) = inf√
p

1+
√
p
≤u≤1

{xu− ψ∗(u)} = inf√
p

1+
√
p
≤u≤1

{
xu+

p(1− u)

u+ p(1− u)

}
= inf√

p

1+
√
p
≤u≤1

{
xE(I(u)) + E(J (u))

}
, for all x ∈ [0, 1]. (3.2.14)

Since gpp(s, t) = tgpp(st
−1, 1), the first equality in (3.1.6) is now verified. For the second

equality, we solve the variational problem (3.2.14). The derivative of the expression in the

braces has a critical point u∗ ∈ [
√
p

1+
√
p , 1] only when p < x < 1. In that case, the infimum

is achieved at

u∗ =
1

1− p

(√p

x
− p
)

and gpp(x, 1) = 1/(1 − p)[2√xp − p(x + 1)]. Otherwise, when x ≤ p the first derivative

for u ∈ [
√
p

1+
√
p , 1] is always negative and the minimum occurs at u∗ = 1. This gives

gpp(x, 1) = x. Again, extend to all (s, t) via the relation gpp(s, t) = tgpp(st
−1, 1). This

concludes the proof for the explicit shape under (3.2.10) which we now prove.

For a lower bound, fix any z ∈ [0, 1]. Then

G
(u)
N,N ≥

bNzc∑
i=1

I
(u)
i,0 +G(bNzc,1),(N,N).
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Divide through by N . The left hand side converges a.s. to g
(u)
pp (1, 1). The first term on

the right converges a.s. to zE(Iu). The second on the right, converges in probability to

the constant gpp(1 − z, 1). In particular, we can find a subsequence Nk such that the

convergence is almost sure for the second term. Taking limits on this subsequence, we

conclude

g(u)
pp (1, 1) ≥ zE(I(u)) + gpp(1− z, 1).

Since z is arbitrary we can take supremum over z in both sides of the equation above.

The same arguments will work if we move on the vertical axis. Thus, we obtain the

lower bound for (3.2.10). For the upper bound, fix ε > 0 and let {0 = q0, ε = q1, 2ε =

q2, . . . ,
⌊
ε−1
⌋
ε, 1 = qM} a partition of (0, 1). We partition both axes. The maximal path

that optimises G
(u)
N,N has to exit between bNkεc and bN(k + 1)εc for some k. Therefore,

we may write

G
(u)
N,N ≤ max

0≤k≤bε−1c

{ bN(k+1)εc∑
i=1

I
(u)
i,0 +G(bNkεc,1),(N,N)

}
∨

max
0≤k≤bε−1c

{ bN(k+1)εc∑
j=1

J
(u)
0,j +G1,(bNkεc),(N,N)

}
.

Divide by N . The right-hand side converges in probability to the constant

max
0≤k≤bε−1c

{(k + 1)εu+ gpp(1− εk, 1)}

∨
max

0≤k≤bε−1c

{
(k + 1)ε

p(1− u)

u+ p(1− u)
+ gpp(1, 1− εk)

}
= max

qk
{qku+ gpp(1− qk, 1)}+ εu∨

max
qk

{
qk

p(1− u)

u+ p(1− u)
+ gpp(1, 1− qk)

}
+ ε

p(1− u)

u+ p(1− u)

≤ sup
0≤z≤1

{zu+ gpp(1− z, 1)}+ εu

∨
max

0≤z≤1

{
z

p(1− u)

u+ p(1− u)
+ gpp(1, 1− z)

}
+ ε

p(1− u)

u+ p(1− u)
.

The convergence becomes a.s. on a subsequence. The upper bound for (3.2.10) now follows

by letting ε→ 0 in the last inequality.

In the following sections, either when the explicit dependence on u is not important

or when it is not necessary and there will be no confusion, we omit the superscripts (u)

from the gradients I, J without a particular mention.
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3.3 Upper bound for the variance in characteristic direc-

tions

We follow the approach of [9, 102] in order to find the order of the variance. All

the difficulties and technicalities in our case arise from two facts: First that the random

variables are discrete and small perturbations in the distribution do not alter the value

of the random weight. Second, we have three potential steps to contest with rather than

then usual two.

3.3.1 The variance formula

Let (m,n) be a generic lattice site. Eventually we will define how m,n grow to infinity

using the parameter u. Define the passage time increments (labelled by compass directions)

by

W = G
(u)
0,n −G

(u)
0,0 , N = G(u)

m,n −G
(u)
0,n, E = G(u)

m,n −G
(u)
m,0, S = G

(u)
m,0 −G

(u)
0,0 .

From Corollary 3.2.5 we get that each ofW,N , E and S is a sum of i.i.d. random variables

and most importantly, N is independent of E andW is independent of S by the definition

of the boundary random variables. From the definitions it is immediate to show the cocycle

property for the whole rectangle [m]× [n]

W +N = G(u)
m,n = S + E . (3.3.1)

We can immediately attempt to evaluate the variance of G
(u)
m,n using these relations,

by

Var(G(u)
m,n) = Var(W +N )

= Var(W) + Var(N ) + 2 Cov(S + E − N ,N )

= Var(W)−Var(N ) + 2 Cov(S,N ), (3.3.2)

Equivalently, one may use E and S to obtain

Var(G(u)
m,n) = Var(S)−Var(E) + 2 Cov(E ,W). (3.3.3)

In the sequence, when several Bernoulli parameters will need to be considered sim-

ultaneously, will add a superscript (u) on the quantities N , E ,W,S to explicitly denote

dependance on parameter u.

The covariance is not an object that can be computed directly, so the biggest proportion

of this subsection is dedicated in finding a different way to compute the covariance that
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also allows for estimates and connects fluctuations of the maximal path with fluctuations

of the last passage time.

In the exponential exactly solvable model there is a clear expression for the covariance

term [9]. Unfortunately this does not happen here, so we must estimate the order of

magnitude. This is the content of the next proposition.

Proposition 3.3.1. Fix 0 < u ≤ 1. There exist functions AN (u), AE(u) such that for any

m,n ∈ N we have

Var(G(u)
m,n) = n

pu(1− u)

[u+ p(1− u)]2
−mu(1− u) + 2u(1− u)AN (u)

= mu(1− u)− n pu(1− u)

[u+ p(1− u)]2
− 2u(1− u)AE(u) .

(3.3.4)

The result is proved by perturbing the parameter on one of the boundaries. Throughout

the proof, the endpoint (m,n) and the parameter u are fixed. Pick an ε > 0 and define

a new parameter uε so that uε = u + ε < 1. The only way this is not possible is when

u = 1. If that’s the case, G
(1)
m,n = m is deterministic and the variance is zero. Equation

(3.3.4) remains true as the right-hand side is a multiple of (1− u).

For any fixed realization of ω(u) = {ω(u)
i,0 , ω

(u)
0,j , ω

(u)
i,j } with marginal distributions (3.1.3)

we use the parameter ε to modify the weights on the south boundary only. Define new

bernoulli weights ωuε via the conditional distributions

P{ωuεi,0 = 1|ω(u)
i,0 = 1} = 1,

P{ωuεi,0 = 1|ω(u)
i,0 = 0} =

ε

1− u
, (3.3.5)

P{ωuεi,0 = 0|ω(u)
i,0 = 0} = 1− ε

1− u
,

i.e. we go through the values on the south boundary, and conditioning on the environment

returned a 0, we change the value to a 1 with probability ε
1−u . Then {ωuεi,0}1≤i≤m is a col-

lection of independent Ber(uε) r.v. . It is convenient to introduce an algebraic mechanism

to construct ωuε directly. To this effect introduce a sequence of independent Bernoulli

random variables H
(ε)
i ∼ Ber

(
ε

1−u
)
, 1 ≤ i ≤ m that are independent of the ω(u). Denote

their joint distribution by µε. Then construct ωuε the following way:

ωuεi,0 = H
(ε)
i ∨ ω(u)

i,0 . (3.3.6)

Check that (3.3.6) satisfies (3.3.5). It also follows that

ωuεi,0 − ω
(u)
i,0 ≤H

(ε)
i . (3.3.7)
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Under this modified environment,

ωuεi,0 ∼ Ber(uε), ω
(u)
i,j ∼ Ber(p), ω

(u)
0,j ∼ Ber

( p(1− u)

u+ p(1− u)

)
, (3.3.8)

the passage time is denoted by Guε and when we are referring to quantities in this model

we will distinguish them with a superscript uε. With these definitions we have Suε ∼

Bin(m,u+ ε), with mass function denoted by fSuε (k) = P{Suε = k}, 0 ≤ k ≤ m.

Similarly, there will be instances for which we want to perturb only the weights of the

vertical axis, again when the parameter will change from u to u + ε. In that case, we

denote the modified environment by Wuε and it is given by

ω
(u)
i,0 ∼ Ber(u), ω

(u)
i,j ∼ Ber(p), ωuε0,j ∼ Ber

( p(1− u− ε)
u+ ε+ p(1− u− ε)

)
, (3.3.9)

Again, we use auxiliary i.i.d. Bernoulli variables {V (ε)
j }1≤j≤n with

V
(ε)
j ∼ Ber

(
1− ε 1 + u(1− p)

(1− u)(p+ u(1− p)) + (1− p)ε

)
,

where we assume that ε is sufficiently small so that the distributions are well defined.

Then, the perturbed weights on the vertical axis are defined by

ωuε0,j = ω
(u)
0,j · V

(ε)
j . (3.3.10)

Denote by νε the joint distribution of V
(ε)
j . It will also be convenient to couple the

environments with different parameters. In that case we use common realizations of i.i.d.

Uniform[0, 1] random variables η = {ηi,j}(i,j)∈Z2
+

. The Bernoulli environment in the bulk

is then defined as

ωi,j = 1{ηi,j < p}

and similarly defined for the boundary values. The joint distribution for the uniforms we

denote by Pη.

Proposition 3.3.2. The following bounds in terms of the right-most exit points of the

maximal paths hold

AN (u) =


Cov(S(u),N (u))

u(1−u) = lim
ε→0

EP⊗µε(N uε −N (u))

ε
, 0 < u < 1

0 u = 0, 1.

(3.3.11)

Similarly,

AE(u) =


Cov(W(u),E(u))

u(1−u) = lim
ε→0

EP⊗νε(Euε − E(u))

ε
, 0 < u < 1

0 u = 0, 1.

(3.3.12)
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Proof of Proposition 3.3.1. The conditional joint distribution of (ωuεi,0)1≤i≤m given the

value of their sum Su+ε is independent of the parameter ε. This is because the sum

of i.i.d. Bernoulli is a sufficient statistic for the parameter of the distribution. In partic-

ular this implies that E[N u+ε|Su+ε = k] = EP⊗µε [N (u)|S(u) = k]. For clarity, we added

the superscript (u) on the background measure P to emphasise that it is the measure on

environment ω(u).

Then we can compute the E(N u+ε)

EP⊗µε(N uε −N (u)) =
m∑
k=0

E[N uε |Suε = k]P⊗ µε{Suε = k} − EP(N (u))

=
m∑
k=0

E[N (u)|S(u) = k]P⊗ µε{Suε = k} − EP(N (u))

=
m∑
k=0

E[N (u)|S(u) = k]
(
P⊗ µε{Suε = k} − P{S(u) = k}

)
(3.3.13)

To show that the limits in the statement are well defined, it suffices to compute

lim
ε→0

P⊗ µε{Suε = k} − P{S(u) = k}
ε

=

(
m

k

)
lim
ε→0

(u+ ε)k(1− u− ε)m−k − uk(1− u)m−k

ε

=

(
m

k

)
d

du
uk(1− u)m−k =

(
m

k

)
k −mu
u(1− u)

uk(1− u)m−k.

Combine this with (3.3.13) to obtain

lim
ε→0

EP⊗µε(N uε −N (u))

ε
=

1

u(1− u)

m∑
k=0

E[N (u)|S(u) = k]kP{S(u) = k}

− mu

u(1− u)

m∑
k=0

E[N (u)|S(u) = k]P{S(u) = k}

=
1

u(1− u)

(
E(N (u)S(u))− E(N (u))E(S(u))

)
=

1

u(1− u)
Cov(N (u),S(u)). (3.3.14)

Identical symmetric arguments, prove the remaining part of the proposition.

For the rest of this proof, we prove the estimates on AN (u) by estimating the covariance

in a different way.

Fix any boundary site w = (w1, w2) ∈ {(i, 0), (0, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. The total

weight in environment ω collected on the boundaries by a path that exits from the axes

at w is

Sw =

w1∑
i=1

ωi,0 +

w2∑
j=1

ω0,j , (3.3.15)
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where the empty sum takes the value 0. Let S (u) be the above sum in environment ω(u)

and let S ue denote the same, but in environment (3.3.8).

Recall that ξe1 is the rightmost exit point of any potential maximal path from the

horizontal boundary, since it is the exit point of the right-most maximal path. Similarly,

if ξe2 > 0, ξe2 is the down-most possible exit point. When the dependence on the parameter

u is important, we put superscripts (u) to denote that.

Lemma 3.3.3. Let ξe1 be the exit point of the maximal path in environment ω(u). Let

N uε denote the last passage increment in environment (3.3.8) of the north boundary and

S uε
ξe1

the weight collected on the horizontal axis in the same environment, but only up to

the exit point of the maximal path in environment ω(u). N (u) S
(u)
ξe1

are the same quantities

in environment ω(u). Then

EP⊗µε(S
uε
ξe1
−S

(u)
ξe1

) ≤ EP⊗µε(N uε−N (u)) ≤ EP⊗µε(S
uε
ξe1
−S

(u)
ξe1

)+C(m,u, p)ε3/2. (3.3.16)

Similarly, in environments (3.3.9) and ω(u),

EP⊗νε(S
uε
ξe2
−S

(u)
ξe2

) ≥ EP⊗νε(Euε −E(u)) ≥ EP⊗νε(S
uε
ξe2
−S

(u)
ξe2

)−C(n, u, p)ε4/3. (3.3.17)

Proof. We only prove (3.3.17) as the same arguments work for (3.3.16). Modify the weights

on the vertical axis and create environment Wuε given by (3.3.9). The first inequality in

equation (3.3.17) follows by first noting that

Euε − E(u) ≤ Wuε −W ≤ 0. (3.3.18)

The left inequality in (3.3.17) is then immediate, because the modification decreases all

weights on the west boundary by (3.3.10). To see the inequality in (3.3.18), do a double

induction on m,n using equations (3.2.3) and the cocycle property (3.3.1), starting from

the first corner square.

The remaining proof is to establish the second inequality in (3.3.17). Consider the

event {ξuε 6= ξ}. Since we only modify weights on the vertical axis, the exit point ξ of

the original maximal path will be different from ξuε only if ξuε = ξuεe2 . Moreover, since the

modification actually decreases the weights, one of two things may happen:

1. ξuε 6= ξ and S uε
ξuεe2

+G(1,ξuεe2 ),(m,n) > S uε
ξe2

+G(1,ξe2 ),(m,n), or

2. ξuε 6= ξ and S uε
ξuεe2

+G(1,ξuεe2 ),(m,n) = S uε
ξe2

+G(1,ξe2 ),(m,n)

We use these cases to define two auxiliary events:

A1 = {ξuε 6= ξ and S uε
ξuεe2

+G(1,ξuεe2 ),(m,n) > S uε
ξe2

+G(1,ξe2 ),(m,n)},
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A2 = {ξuε 6= ξ and S uε
ξuεe2

+G(1,ξuεe2 ),(m,n) = S uε
ξe2

+G(1,ξe2 ),(m,n)}

and note that {ξuε 6= ξ} = A1 ∪ A2. On A2 we can bound

Euε − E(u) = Guεm,n −G(u)
m,n = S uε

ξe2
+G(1,ξe2 ),(m,n) −S

(u)
ξe2
−G(1,ξe2 ),(m,n)

= S uε
ξe2
−S

(u)
ξe2
.

Then we estimate

Euε − E(u) = (Euε − E(u)) · 1{ξuε = ξ}+ (Euε − E(u)) · 1{ξuε 6= ξ}

= (S uε
ξ −S

(u)
ξ ) · 1{ξuε = ξ}+ (Euε − E(u)) · (1A1 + 1A2) (3.3.19)

≥ (S uε
ξe2
−S

(u)
ξe2

) + (Euε − E(u)) · 1A1 . (3.3.20)

The last inequality is justified in the following way: Only the weights on the vertical

axis were changed-actually decreased. Therefore, if the maximal path chose to move

horizontally before the modification, it would do so after and the first term in (3.3.19)

must be 0. The first term may not equal zero only when the maximal path takes a vertical

first step before the modification. On the event 1{ξuε = ξ} the bound in (3.3.20) still

holds.

To bound the second term of (3.3.20), we use Hölder’s inequality with exponents

p = 3, q = 3/2 to obtain

EP⊗νε((E(u) − Euε) · 1A1) ≤ EP⊗νε((E(u) − Euε)3)1/3(P⊗ νε{A1})2/3. (3.3.21)

The first expectation on the right is bounded above by C(u, p)n since E(u) is a sum of i.i.d.

Bernoulli random variables that bounds above E(u) − Euε .

Now to bound the probability. Consider the equality of events

A1 = {S uε
k +G(1,k),(m,n) > S uε

ξe2
+G(1,ξe2 ),(m,n) for some 0 ≤ k 6= ξ ≤ n}

= {S uε
k −S uε

ξe2
> G(1,ξe2 ),(m,n) −G(1,k),(m,n) for some 0 ≤ k 6= ξ ≤ n}

= {S uε
k −S uε

ξe2
> G(1,ξe2 ),(m,n) −G(1,k),(m,n) ≥ S

(u)
k −S

(u)
ξe2

for some 0 ≤ k 6= ξ ≤ n}.

Coupling (3.3.10) implies that the events above are empty when k > ξe2 . Therefore,

consider the case ξe2 > k. In that case, since ξe2 is the down-most possible exit point, the

second inequality in the event above can be strict as well. Thus

A1 ⊆
⋃

(k,i):0≤k<i≤n

{S uε
k −S uε

i > G(1,i),(m,n) −G(1,k),(m,n) > S
(u)
k −S

(u)
i }.
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The strict inequalities in the event and the fact that these random variables are integer,

we see that the difference S uε
k −S uε

i −S
(u)
k + S

(u)
i ≥ 2. This way, for some k, i

2 ≤ S uε
k −S uε

i −S
(u)
k + S

(u)
i = −

i∑
j=k+1

ωuε0,j +

i∑
j=k+1

ω
(u)
0,j

=

i∑
j=k+1

(
ω

(u)
0,j − ω

uε
0,j

)
by (3.3.10)

≤
n∑
j=0

(
ω

(u)
0,j − ω

uε
0,j

)
=

n∑
j=0

ω
(u)
0,j

(
1− V

(ε)
j

)
= Wε. (3.3.22)

Wε is defined by the last equality above and we therefore just showed A1 ⊆ {Wε ≥ 2}.

The event {Wε ≥ 2} holds if at least 2 indices j satisfy with ω
(u)
0,j

(
1 − V

(ε)
j

)
= 1. By

definition (3.3.22) we have that Wε is binomially distributed with probability of success

Cε under P⊗ νε and therefore, in order to have at least two successes,

P⊗ νε{Wε ≥ 2} ≤ C(n, u)ε2. (3.3.23)

Combine (3.3.20) and (3.3.23) to conclude

EP⊗νε(Euε − E(u)) ≥ EP⊗νε(S
uε
ξe2
−S

(u)
ξe2

)− C(n, u)ε4/3. (3.3.24)

Lemma 3.3.4. Let 0 < u < 1. Then,

AN (u) ≤
E(ξ

(u)
e1 )

1− u
, and AE(u) ≥ −

p(1 + u(1− p))
(u+ p(1− u))2

E(ξ(u)
e2 ) (3.3.25)

Proof. Now we bound the first term. Compute

EP⊗νε(S
uε
ξe1
−S

(u)
ξe1

) =

m∑
y=1

E
[
S uε
y −S (u)

y

∣∣∣ξe1 = y
]
P{ξe1 = y}

≤
m∑
y=1

E
[ y∑
i=1

H
(ε)
i

∣∣∣ξe1 = y
]
P{ξe1 = y}, from (3.3.7),

=
m∑
y=1

Eµε
[ y∑
i=1

H
(ε)
i

]
P{ξe1 = y}, since Hi, ω

(u) independent,

= ε
E(ξe1)

1− u
.

Now substitute in (3.3.16), divide through by ε and take the limit as ε→ 0 to obtain

lim
ε→0

E(N λε −N )

ε
≤ E(ξ

(u)
e1 )

1− u
.

For the second bound, write

EP⊗νε(Euε − E(u)) ≥ EP⊗νε(S
uε

ξ
(u)
e2

−S
(u)

ξ
(u)
e2

) + o(ε)
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= EP⊗νε

( ξ(u)
e2∑
j=1

ωuε0,j − ω
(u)
0,j

)
+ o(ε) = −EP⊗νε

( ξ(u)
e2∑
j=1

ω
(u)
0,j (1− V

(ε)
j )

)
+ o(ε)

= −
n∑
k=1

k∑
j=1

EP⊗νε
(
ω

(u)
0,j (1− V

(ε)
j )1{ξ(u)

e2 = k}
)

+ o(ε)

= −
n∑
k=1

k∑
j=1

EP
(
ω

(u)
0,j 1{ξ

(u)
e2 = k}

)
Eνε(1− V

(ε)
j ) + o(ε)

≥ −
n∑
k=1

k∑
j=1

P{ξ(u)
e2 = k}Eνε(1− V

(ε)
j ) + o(ε)

= −εEP(ξ(u)
e2 ) · 1 + u(1− p)

(1− u)(u+ p(1− u)) + (1− p)ε)
+ o(ε).

Divide both sides of the inequality by ε and let it tend to 0.

Lemma 3.3.5. Let 0 < r1 < r2 < 1 and let ξ(ri) the corresponding right-most (resp.

down-most) exit points for the maximal paths in environments coupled by common uni-

forms η. Then

ξ(r1)
e1 ≤ ξ(r2)

e1 and ξ(r1)
e2 ≥ ξ(r2)

e2 .

Proof. Assume that in environment ω(r1) the maximal path exits from the vertical axis.

Then, since r2 > r1 and the weights coupled through common uniforms, realization by

realization ω
(r2)
0,j ≤ ω

(r1)
0,j . Assume by way of contradiction that ξ

(r1)
e2 < ξ

(r2)
e2 . Then

G
(1,ξ

(r1)
e2

),(m,n)
≥ G

(1,ξ
(r2)
e2

),(m,n)
+ S

(r1)

ξ
(r2)
e2

−S
(r1)

ξ
(r1)
e2

≥ G
(1,ξ

(r2)
e2

),(m,n)
+ S

(r2)

ξ
(r2)
e2

−S
(r2)

ξ
(r1)
e2

,

giving

G
(0,ξ

(r1)
e2

),(m,n)
+ S

(r2)

ξ
(r1)
e2

≥ G
(0,ξ

(r2)
e2

),(m,n)
+ S

(r2)

ξ
(r2)
e2

= G(r2)
m,n,

which cannot be true because ξ
(r2)
e2 is the down-most exit point in ω(r2). The proof for a

maximal path exiting the horizontal axis is similar.

3.3.2 Upper bound

In this section we prove the upper bound in Theorem (3.1.3). We begin with three com-

parison lemmas. One is for the two functions AN (u) that appear in Proposition 3.3.1 when

we vary the parameter. The other comparison is between variances in environments with

different parameters.

Lemma 3.3.6. Pick two parameters 0 < r1 < r2 < 1. Then

AN (r1) ≤ AN (r2) +m(r2 − r1). (3.3.26)
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Proof of Lemma 3.3.6. Fix an ε > 0 small enough so that r1 +ε < r2 and r2 +ε < 1. This

is not a restriction as we will let ε tend to 0 at the end of the proof. We use a common

realization of the Bernoulli variables H
(ε)
i and we couple the weights in the ω(r2) and ω(r1)

environments using common uniforms η = {ηi,j} (with law Pη), independent of the H
(ε)
i .

We need to bound in a different way starting from the line before (3.3.20).

N u+ε −N (u) = (S u+ε
ξ −S

(u)
ξ ) · 1{ξu+ε = ξ}+ (N u+ε −N ) · (1A1 + 1A2)

= (S u+ε
ξe1
−S

(u)
ξe1

) · 1{ξu+ε
e1 = ξe1}+ (N u+ε −N ) · (1A1 + 1A2)

= (S u+ε
ξe1
−S

(u)
ξe1

) + (N u+ε −N − (S u+ε
ξe1
−S

(u)
ξe1

)) · (1A1 + 1A2). (3.3.27)

We first show that the second term can never be negative. Write

N u+ε −N − (S u+ε
ξe1
−S

(u)
ξe1

) = Gu+ε
m,n −G(u)

m,n − (S u+ε
ξe1
−S

(u)
ξe1

)

= S u+ε

ξu+ε
e1

+G(ξu+ε
e1

,1)(m,n) −G(ξe1 ,1)(m,n) −S u+ε
ξe1

.

On A2 this expression is 0. On A1 the sum of the first two terms is strictly larger than

the sum of the last two. Then, (3.3.27) becomes

N u+ε −N (u) ≥ S u+ε
ξe1
−S

(u)
ξe1
.

Use this to bound the first term in the computation that follows. The second term we

bound with (3.3.16).

Eµε⊗Pη(N r2+ε −N (r2))− Eµε⊗Pη(N r1+ε −N (r1))

≥ Eµε⊗Pη(S r2+ε

ξ
(r2)
e1

−S
(r2)

ξ
(r2)
e1

)− Eµε⊗Pη(S r1+ε

ξ
(r1)
e1

−S
(r1)

ξ
(r1)
e1

) + o(ε)

= Eµε⊗Pη

( ξ(r2)
e1∑
i=1

1{H (ε)
i = 1}1{ηi,0 > r2}

)

− Eµε⊗Pη
( ξ(r1)

e1∑
i=1

1{H (ε)
i = 1}1{ηi,0 > r1}

)
+ o(ε)

≥ Eµε⊗Pη
( ξ(r1)

e1∑
i=1

1{H (ε)
i = 1}

(
1{ηi,0 > r2} − 1{ηi,0 > r1}

))
+ o(ε)

≥ −mEµε⊗Pη
(
1{H (ε)

i = 1}
(
1{ηi,0 > r1} − 1{ηi,0 > r2}

))
+ o(ε)

= −mε(r2 − r1) + o(ε).

Divide by ε and let ε→ 0 to get the result.
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Lemma 3.3.7 (Variance comparison). Fix δ0 > 0 and parameters u, r so that p <

p + δ0 < u < r < 1. Then, there exists a constant C = C(δ0, p) > 0 so that for all

admissible values of u and r we have

Var(G
(u)
m,n)

u(1− u)
≤ Var(G

(r)
m,n)

r(1− r)
+ C(m+ n)(r − u). (3.3.28)

Proof. Begin from equation (3.3.4), and bound

Var(G
(u)
m,n)

u(1− u)
= n

p

[u+ p(1− u)]2
−m+ 2AN (u)

= n
p

[r + p(1− r)]2
−m+ 2AN (u) + np(

1

[u+ p(1− u)]2
− 1

[r + p(1− r)]2
)

≤ Var(G
(r)
m,n)

r(1− r)
+ np(

1

[u+ p(1− u)]2
− 1

[r + p(1− r)]2
) + 2m(r − u)

≤ Var(G
(r)
m,n)

r(1− r)
+ 2np(1− p) (r − u)

[u+ p(1− u)]3
+ 2m(r − u)

≤ Var(G
(r)
m,n)

r(1− r)
+ 2n

p(1− p)
δ3

0

(r − u) + 2m(r − u).

In the third line from the top we used Lemma 3.3.6. Set C = 2p(1−p)
δ3
0
∨ 2 to finish the

proof.

From this point onwards we proceed by a perturbative argument. We introduce the

scaling parameter N that will eventually go to ∞ and the characteristic shape of the

rectangle, given the boundary parameter. We will need to use the previous lemma, so we

fix a δ0 > 0, so that δ0 < λ < 1 and we choose a parameter u = u(N, b, v) < λ so that

λ− u = b
v

N

At this point v is free but b is a constant so that δ0 < λ < u. The north-east endpoint

of the rectangle with boundary of parameter λ is defined by (mλ(N), nλ(N)) which is the

microscopic characteristic direction corresponding to λ defined in (3.1.7).

The quantities G(ξe2 ,1),(m,n), ξe2 and Gm,n connected to these indices are denoted by

G(ξe2 ,1),(m,n)(N), ξe2(N), Gm,n(N). In the proof we need to consider different boundary

conditions and this will be indicated by a superscript. When the superscript u will be

used, the reader should remember that this signifies changes on the boundary conditions

and not the endpoint (mλ(N), nλ(N)), which will always be defined by (3.1.7) for a fixed

λ.

Since the weights {ωi,j}i,j≥1 in the interior are not affected by changes in boundary

conditions, the passage time G(z,1),(m,n)(N) will not either, for any z < mλ(N).
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Proposition 3.3.8. Fix λ ∈ (0, 1). Then, there exists a constant K = K(λ, p) > 0 so

that for any b < K, and N sufficiently large

P{ξ(λ)
e2 (N) > v} ≤ CN

2

bv3

(E(ξ
(λ)
e2 )

bv
+ 1
)
, (3.3.29)

for all v ≥ 1.

Proof. We use an auxiliary parameter u < λ so that

u = λ− bvN−1 > 0.

Constant b is under our control. We abbreviate (mλ(N), nλ(N)) = tN (λ). Whenever we

use auxiliary parameters we explicitly mention it to alert the reader that the environments

are coupled through common realizations of uniform random variables η. The measure

that we are using for all computations is the background measure Pη but to keep the

notation simple we omit the subscript η.

Since G
(u)
tN (λ)(N) is utilised on the maximal path,

S (u)
z +G(1,z),tN (λ)(N) ≤ G(u)

tN (λ)(N)

for all 1 ≤ z ≤ nλ(N) and all parameters p + δ0 < u < λ < 1. Consequently, for integers

v ≥ 0,

P{ξ(λ)
e2 (N) > v} = P{∃ z > v : S (λ)

z +G(1,z),tN (λ)(N) = G
(λ)
tN (λ)(N)}

≤ P{∃ z > v : S (λ)
z −S (u)

z +G
(u)
tN (λ)(N) ≥ G(λ)

tN (λ)(N)}

= P{∃ z > v : S (λ)
z −S (u)

z +G
(u)
tN (λ)(N)−G(λ)

tN (λ)(N) ≥ 0}

≤ P{S (λ)
v −S (u)

v +G
(u)
tN (λ)(N)−G(λ)

tN (λ)(N) ≥ 0}. (3.3.30)

The last line above follows from the fact that u < λ, which implies that S
(λ)
k −S

(u)
k is

non-positive and decreasing in k when the weights are coupled through common uniforms.

The remaining part of the proof goes into bounding the last probability above. For any

α ∈ R we further bound

P{ξ(λ)
e2 (N) > v} ≤ P{S (λ)

v −S (u)
v ≥ −α} (3.3.31)

+ P{G(u)
tN (λ)(N)−G(λ)

tN (λ)(N) ≥ α}. (3.3.32)

We treat (3.3.31) and (3.3.32) separately for

α = −E[S (λ)
v −S (u)

v ]− C0
v2

N
(3.3.33)

where C0 > 0. Restrictions on C0 will be enforced in the course of the proof.
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Probability (3.3.31): That is a sum of i.i.d. random variables so we simply bound using

Chebyshev’s inequality. The variance is estimated by

Var(S (λ)
v −S (u)

v ) =
v∑
j=1

Var
(
ω

(λ)
0,j − ω

(u)
0,j

)
≤ Cp,λv(λ− u) = cp,λ

bv2

N
.

Then by Chebyshev’s inequality we obtain

P
{

S (λ)
v −S (u)

v ≥ E[S (λ)
v −S (u)

v ] + C0
v2

N

}
≤
cp,λ
C2

0

· bN
v2
. (3.3.34)

Probability (3.3.32): Substitute in the value of α and subtract from both sides

E[G
(u)
tN (λ)(N)−G(λ)

tN (λ)(N)]. Then

P{G(u)
tN (λ)(N)−G(λ)

tN (λ)(N) ≥ α}

= P{G(u)
tN (λ)(N)−G(λ)

tN (λ)(N)− E[G
(u)
tN (λ)(N)−G(λ)

tN (λ)(N)]

≥ v(λ− u)
p

(p+ (1− p)u)(p+ (1− p)λ)
− C0

v2

N
− E[G

(u)
tN (λ)(N)−G(λ)

tN (λ)(N)]}

≤ P{G(u)
tN (λ)(N)−G(λ)

tN (λ)(N)− E[G
(u)
tN (λ)(N)−G(λ)

tN (λ)(N)]

≥ v(λ− u)Cλ,p − C0
v2

N
− E[G

(u)
tN (λ)(N)−G(λ)

tN (λ)(N)]}. (3.3.35)

where

Cλ,p =
p

(p+ (1− p)λ)2
.

We then estimate

E[G
(u)
tN (λ)(N)−G(λ)

tN (λ)(N)] = mλ(N)(u− λ) + nλ(N)
( p(1− u)

u+ p(1− u)
− p(1− λ)

λ+ p(1− λ)

)
= mλ(N)(u− λ)− nλ(N)

p

(p+ (1− p)u)(p+ (1− p)λ)
(u− λ)

≤ N 1− p
p+ (1− p)u

(λ− u)2

≤ Du,p

N
b2v2.

The first inequality above comes from removing the integer parts for nλ(N). The constant

Du,p is defined as

Du,p =
1− p

p+ (1− p)u
.

It is now straightforward to check that line (3.3.35) is non-negative when

b <
Cλ,p

4Du,p
and C0 = b

Cλ,p
2
.

With values of b, C0 as are in the display above, for any c smaller than bCλ,p/4, we have

that the difference

G
(λ)
tN (λ)(N)−G(u)

tN (λ)(N)− E[G
(λ)
tN (λ)(N)−G(u)

tN (λ)(N)] ≥ cv2N−1 > 0.
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Using this, we can apply Chebyshev’s inequality one more time. In order, from Cheby-

shev’s inequality, Lemma 3.3.7 and finally Proposition 3.3.1

Probability(3.3.35) ≤ P{|G(u)
tN (λ)(N)−G(λ)

tN (λ)(N)

− E[G
(u)
tN (λ)(N)−G(λ)

tN (λ)(N)]| ≥ cv2N−1}

≤ N2

c2v4
Var(G

(u)
tN (λ)(N)−G(λ)

tN (λ)(N))

≤ N2

c2v4

(
Var(G

(u)
tN (λ)(N)) + Var(G

(λ)
tN (λ)(N))

)
≤ 4

N2

c2v4

(
Var(G

(λ)
tN (λ)(N)) + CN(λ− u)

)
≤ 4

N2

c2v4
|AE(λ) |+ Cb

N2

c2v3
.

This together with the bound in Lemma 3.3.4 suffice for the conclusion of this proposition.

Proof of Theorem 3.1.3, upper bound. We first bound the expected exit point for bound-

ary with parameter λ. In what follows, r is a parameter under our control, that will

eventually go to ∞.

E(ξ(λ)
e2 (N)) ≤ rN2/3 +

nλ(N)∑
v=rN2/3

P{ξ(λ)
e2 (N) > v}

≤ rN2/3 +
∞∑

v=rN2/3

C
N2

v3

(E(ξ
(λ)
e2 )

v
+ 1
)

by(3.3.29)

≤ rN2/3 +
CE(ξ

(λ)
e2 )

r3
+
C

r2
N2/3.

Let r sufficiently large so that C/r3 < 1. Then, after rearranging the terms in the inequal-

ity above, we conclude

E(ξ(λ)
e2 (N)) ≤ CN2/3.

The variance bound follows from this, Lemma 3.3.4 and equation (3.3.4) when m,n satisfy

(3.1.7).

An immediate corollary of this is the following bound in probability that is obtained

directly from expression (3.3.29) is

Corollary 3.3.9. Fix λ ∈ (0, 1). Then, there exists a constant K = K(λ, p) > 0 so that

for any r > 0, and N sufficiently large

P{ξ(λ)
e2 (N) > rN2/3} ≤ K

r3
. (3.3.36)
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3.4 Lower bound for the variance in characteristic direc-

tions

3.4.1 Down-most maximal path and Competition interface

In this section first we want to construct the down-most maximal path and a possible

competition interface. Then we identify their properties and relations which will be crucial

to find the lower bound for the order of fluctuations of the maximal path.

The down-most maximal path

Consider a triple (Ii,j , Ji,j , ωi,j) defined in (3.2.4), and keep in mind the increment defin-

ition (3.2.1). Recall that the maximal path in the interior process collects weights only

with a diagonal step with probability given by ω. We define the down-most maximal path

π̂ starting from the target point (m,n) and going backward following the rules

π̂k+1 =


π̂k + (0, 1) if G(π̂k + (0, 1)) = G(π̂k),

π̂k + (1, 0) if G(π̂k + (1,−1)) < G(π̂k + (0, 1)) and ωπ̂k+(1,0) = 0,

π̂k + (1, 1) if G(π̂k) = G(π̂k + (1, 0)) and ωπ̂k+(1,1) = 1.

(3.4.1)

The moment that π̂ hits one of the two axes (or the origin) it starts to collect from the

axis, which it has hit, down to the origin.

The maximal path π̂ can be formalized in the following way.

The graphical representation is in Figure 3.1.

(i− 1, j − 1) (i, j − 1)

(i, j)(i− 1, j)

π̂

ωi,j = 0, 1

Ji,j = 0

Ii,j = 0, 1

(i− 1, j − 1) (i, j − 1)

(i, j)(i− 1, j)

π̂

ωi,j = 1

Ji,j = 1

Ii,j = 0, 1

(i− 1, j − 1) (i, j − 1)

(i, j)(i− 1, j)

π̂
ωi,j = 0

Ji,j = 1

Ii,j = 0

(a) Combination of I, J and

ω for a down (−e2) step.

(b) Combination of I, J and

ω for a diagonal step.

(c) Combination of I, J and

ω for a left (−e1) step.

Figure 3.1: One-step backward construction for the down-most maximal path π̂.
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The competition interface

The competition interface is an infinite path ϕ which takes only the same admissible steps

as the paths we optimise over. ϕ = {ϕ0 = (0, 0), ϕ1, . . .} is completely determined by the

values of I, J and ω. In particular, for any k ∈ N,

ϕk+1 =



ϕk + (0, 1) if
G(ϕk + (0, 1)) < G(ϕk + (1, 0)) or

G(ϕk + (0, 1)) = G(ϕk + (1, 0)) and G(ϕk + (0, 1)) = G(ϕk),

ϕk + (1, 0) if G(ϕk + (1, 0)) < G(ϕk + (0, 1)),

ϕk + (1, 1) if G(ϕk + (0, 1)) = G(ϕk + (1, 0)) and G(ϕk + (0, 1)) > G(ϕk).

(3.4.2)

(0, 0) (1, 0)

(1, 1)(1, 0)

ϕ1

ω1,1 = 0, 1

I1,0 = 1

J0,1 = 0

(0, 0) (1, 0)

(1, 1)(1, 0)

ϕ1

ω1,1 = 0, 1

I1,0 = 0

J0,1 = 0

(a) Combination of I, J and

ω for an up step.

(b) Combination of I, J and

ω for an up step.

(0, 0) (1, 0)

(1, 1)(1, 0)

ϕ1

ω1,1 = 0, 1

I1,0 = 0

J0,1 = 1

(0, 0) (1, 0)

(1, 1)(1, 0)

ϕ1

ω1,1 = 0, 1

I1,0 = 1

J0,1 = 1

(c) Combination of I, J and

ω for a right step.

(d) Combination of I, J and

ω for a diagonal step.

Figure 3.2: Constructive admissible steps for ϕ1.

In words, the path ϕ always chooses its step according to the smallest of the possible

G-values. If they are equal, the competition interface decides to go up if the last passage

time of the up and right point are equal and they are also equal to the last passage time

of the starting point otherwise it takes a diagonal step.

Remark 3.4.1. In literature the name competition interface comes from the fact that it

represents the threshold interface between the points which will be reached by the maximal
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path whose first step is right or up. Since our model is discrete, and we have three (rather

than two) possible steps and our maximal path is not unique, our definition of ϕ depends

on our choice of maximal path; here we chose the down-most path as our maximal path

and then we accordingly defined the competition interface, so that we exploit certain good

duality properties in the sequence.

This being said, the partition of the plain into the two competing clusters is useful in

some parts of the proofs that follow, so we would like to develop it in this setting. Define

C↑,↗ = {v = (v1, v2) ∈ Z2
+ : there exists a maximal path from 0 to v

with first step e2 or e1 + e2}.

The remaining sites of Z2
+ are sites for which all possible maximal paths to them have to

take a horizontal first step. We denote that cluster by C→ = Z2
+ \ C↑,↗.

Some immediate observations follow. First note that the vertical axis {(0, v2)}v2∈N ∈

C↑,↗ while {(v1, 0)}v1∈N ∈ C→. We include (0, 0) ∈ C↑,↗ in a vacuous way.

Then observe that if (v1, v2) ∈ C↑,↗ then it has to be that (v1, y) ∈ C↑,↗ for all y ≥ v2.

This is a consequence of planarity. Assume that for some y > v2 the maximal path π0,(v1,y)

has to take a horizontal first step. Then it will intersect with the maximal path π0,(v1,v2)

to (v1, v2) with a non-horizontal first step. At the point of intersection z, the two passage

times are the same, so in fact there exists a maximal path to (v1, y) with a non-horizontal

first step: it is the concatenation of the π0,(v1,v2) up to site z and from z onwards we follow

π0,(v1,y).

Finally, note that if v 6= 0 and v ∈ C↑,↗ and v + e1 ∈ C→, it must be the case that

Iv+e1 = G0,v+e1 −G0,v = 1.

Assume the contrary. Then, if the two passage times are the same, a potential maximal

path to v + e1 is the one that goes to v without a horizontal initial step, and after v it

takes an e1 step. This would also imply that v + e1 ∈ C↑,↗ which is a contradiction.

These observations allow us to define a boundary between the two clusters as a piece-

wise linear curve ϕ̃ = {0 = ϕ̃0, ϕ̃1, . . .} which takes one of the three admissible steps,

e1, e2, e1 + e2. We first describe the first step of this curve when all of the {ω, I, J} are

known. (see Figure 3.3).

ϕ̃1 =


(1, 0), when (ω1,1, I1,0, J0,1) ∈ {(1, 0, 1), (0, 0, 1)},

(1, 1), when (ω1,1, I1,0, J0,1) ∈ {(1, 0, 0), (0, 0, 0), (1, 1, 0), (1, 1, 1), (0, 1, 1)},

(0, 1), when (ω1,1, I1,0, J0,1) ∈ {(0, 1, 0)}.
(3.4.3)
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(0, 0) (1, 0)

(1, 1)(1, 0)

ϕ̃1

ω1,1 = 0, 1

I1,0 = 0

J0,1 = 0

(0, 0) (1, 0)

(1, 1)(1, 0)

ϕ̃1

ω1,1 = 1

I1,0 = 1

J0,1 = 0, 1

(0, 0) (1, 0)

(1, 1)(1, 0)

ϕ̃1

ω1,1 = 0

I1,0 = 1

J0,1 = 1

(a) Combination of I, J and

ω for a diagonal step.

(b) Combination of I, J and

ω for a diagonal step.

(c) Combination of I, J and

ω for a diagonal step.

(0, 0) (1, 0)

(1, 1)(1, 0)

ϕ̃1

ω1,1 = 0

I1,0 = 1

J0,1 = 0

(0, 0) (1, 0)

(1, 1)(1, 0)

ϕ̃1

ω1,1 = 0, 1

I1,0 = 0

J0,1 = 1

(d) Combination of I, J and

ω for an up step.

(e) Combination of I, J and

ω for a right step.

Figure 3.3: Constructive admissible steps for ϕ̃1. Compare with Figure 3.2 and see that

the ϕ̃ steps are always lower or equal than the ones for ϕ

From this definition we see that ϕ̃1 stays on the x-axis only when I1,0 = 0 and J0,1 = 1.

If that is the case, repeat the steps in (3.4.3) until ϕ̃ increases its y-coordinate and changes

level. Any time ϕ̃ changes level from ` − 1 to `, it takes horizontal steps (the number of

steps could be 0) until a site (v`, `) where (v`, `) ∈ C↑,↗ but (v` + 1, `) ∈ C→. In that case,

Iv`+1,` = 1, by the second and third observations above, and ϕ̃ will change level, again

following the steps in (3.4.3).

From the description of the evolution of ϕ̃, starting from (3.4.3) and evolving as we

describe in the previous paragraph, the definition of the competition interface ϕ in (3.4.2),

implies as piecewise linear curves, (as it is possible to see comparing the admissible steps

in Figures 3.2 and 3.3)

ϕ ≥ ϕ̃, (3.4.4)

i.e. if (x, y1) ∈ ϕ and (x, y2) ∈ ϕ̃ then, y1 ≥ y2. Similarly, if (x1, y) ∈ ϕ and (x2, y) ∈ ϕ̃

then, x1 ≤ x2. Moreover, if u ∈ Z2
+ 6∈ ϕ̃ then it has to belong to one of the clusters; C→ if

u is below ϕ̃ and C↑,↗ otherwise. (see Figure 3.4).
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(m,n)

ϕ̃

ϕ

C→

C↑,↗

Figure 3.4: Graphical representation of ϕ̃ and ϕ. Both curves can be thought as com-

petition interfaces. ϕ̃ separates competing clusters, depending on the first step of the

right-most maximal path, while ϕ follows the smallest increment of passage times with a

rule to break ties. As curves they are geometrically ordered, ϕ̃ ≤ ϕ.

The reversed process

Let (m,n) with m,n > 0 be the target point. Define

G∗i,j = Gm,n −Gm−i,n−j , for 0 ≤ i < m and 0 ≤ i < n. (3.4.5)

It represents the time to reach point (i, j) starting from (m,n) for the reversed process.

We also define the new edge and the bulk weights by

I∗i,j = Im−i+1,n−j , when i ≥ 1, j ≥ 0 (3.4.6)

J∗i,j = Jm−i,n−j+1, when i ≥ 0, j ≥ 1 (3.4.7)

ω∗i,j = αm−i,n−j , when i ≥ 1, j ≥ 1. (3.4.8)

Then we have the reverse identities.

Lemma 3.4.2. Let I∗ and J∗ be respectively the horizontal and vertical increment for

the reversed process. Then, for 0 ≤ i < m and 0 ≤ i < n, we have

I∗i,j = ω∗i,j ∨ I∗i,j−1 ∨ J∗i−1,j − J∗i−1,j = G∗i,j −G∗i−1,j (3.4.9)

J∗i,j = ω∗i,j ∨ I∗i,j−1 ∨ J∗i−1,j − I∗i,j−1 = G∗i,j −G∗i,j−1. (3.4.10)

Proof. First note that

Im−i+1,n−j = Gm−i+1,n−j −Gm−i,n−j
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= Gm−i+1,n−j −Gm,n +Gm,n −Gm−i,n−j = G∗i,j −G∗i−1,j .

by (3.4.5). We also prove the other identity only for the I∗i,j and leave the proof for the

second set of equations to the reader. A direct substitution to the right-hand side gives

ω∗i,j ∨ I∗i,j−1 ∨ J∗i−1,j − J∗i−1,j

= αm−i,n−j ∨ Im−i+1,n−j+1 ∨ Jm−i+1,n−j+1 − Jm−i+1,n−j+1

= (αm−i,n−j − Jm−i+1,n−j+1) ∨ (Gm−i+1,n−j −Gm−i,n−j+1) ∨ 0

= (αm−i,n−j − Jm−i+1,n−j+1) ∨ (Gm−i+1,n−j −Gm−i,n−j +Gm−i,n−j −Gm−i,n−j+1) ∨ 0

= (αm−i,n−j − (ωm−i+1,n−j+1 ∨ Im−i+1,n−j ∨ Jm−i,n−j+1 − Im−i+1,n−j))

∨ (Im−i+1,n−j − Jm−i,n−j+1) ∨ 0

= Im−i+1,n−j +
(

(αm−i,n−j − ωm−i+1,n−j+1 ∨ Im−i+1,n−j ∨ Jm−i,n−j+1)

∨ (−Jm−i,n−j+1) ∨ (−Im−i+1,n−j)
)
.

Focus on the expression in the parenthesis. We will show that it is always 0, and there-

fore the lemma follows by (3.4.6). We use equations (3.2.3) and (3.2.8). If the pair

(Im−i+1,n−j , Jm−i,n−j+1) = (1, 1) then αm−i,n−j = 1 and the first maximum is zero. Simil-

arly, when the triple (ωm−i+1,n−j+1, Im−i+1,n−j , Jm−i,n−j+1) = (0, 0, 0), αm−i,n−j = 0 and

the value is zero again. When exactly one of Im−i+1,n−j , Jm−i,n−j+1 is zero the overall max-

imum in the parenthesis is 0, irrespective of the values of αm−i,n−j , ωm−i+1,n−j+1. Finally,

when ωm−i+1,n−j+1 = 1 and both the increment variables (Im−i+1,n−j , Jm−i,n−j+1) =

(0, 0), the first term is either 0 or −1 and again the overall maximum is zero.

Throughout the paper quantities defined in the reversed process will be denoted by

a superscript ∗, and they will always be equal in distribution to their original forward

versions.

Competition interface for the forward process vs maximal path for the reversed

process

We want to show that the competition interface defined in (3.4.2) is always below or

coincides (as piecewise linear curves) with the down - most maximal path π̂∗ for the

reversed process. The steps of the competition interface for the forward process coincide

with those of π̂∗ in all cases, except when (Ii,j , Ji,j , ωi,j) = (0, 1, 1). In that case, π̂∗ will

go diagonally up, while ϕ will move horizontally. Thus, ϕ is to the right and below π̂∗ as

curves.
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Now, define

v(n) = inf{i : (i, n) = ϕk for some k ≥ 0}

w(m) = inf{j : (m, j) = ϕk for some k ≥ 0}
(3.4.11)

with the convention inf ∅ =∞. In words, the point (v(n), n) is the left-most point of the

competition interface on the horizontal line j = n, while (m,w(m)) is the lowest point on

the vertical line i = m. This observation implies

v(n) ≥ m =⇒ w(m) < n or w(m) ≥ n =⇒ v(n) < m. (3.4.12)

Then, on the event {w(m) ≥ n}, we know that π̂∗ will hit the north boundary of the

rectangle at a site (`, n) so that

m− ` = ξ∗e1(π̂∗), ` ≤ v(n).

Then, we have just showed that

Lemma 3.4.3. Let ϕ be the competition interface constructed for the process G(λ) and

π̂∗ the down-most maximal path for the process G∗,(λ) defined by (3.4.5) from (m,n) to

(0, 0). Then on the event {v(n) ≥ m},

m− v(n) ≤ ξ∗(λ)
e1 (π̂∗) (3.4.13)

Finally, note that by reversed process definition we have

ξ∗(λ)
e1

D
= ξ(λ)

e1 . (3.4.14)

3.4.2 Last passage time under different boundary conditions

In our setting the competition interface is important because it bounds the region where

the boundary conditions on the axes are felt. For this reason we want to give a Lemma

which describes how changes in the boundary conditions are felt by the increments in the

interior part.

Lemma 3.4.4. Given two different weights {ωi,j} and {ω̃i,j} which satisfy ω0,0 = ω̃0,0,

ω0,j ≥ ω̃0,j, ωi,0 ≤ ω̃i,0 and ωi,j = ω̃i,j for all i, j ≥ 1. Then all increments satisfy Ii,j ≤ Ĩi,j

and Ji,j ≥ J̃i,j.

Proof. By following the same corner-flipping inductive proof as that of Lemma 3.2.3 one

can show that the statement holds for all increments between points in Lψ ∪ Iψ where

Lψ and Iψ are respectively defined in (3.2.6) and (3.2.9) for those paths for which Iψ is

finite. The base case is when Iψ is empty and the statement follows from the assumption

made on the weights {ωi,j} and {ω̃i,j} and from the definition of the increments made in

(3.2.3).
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Lemma 3.4.5. We are in the settings of Lemma 3.4.4. Let GW=0 (resp.GS=0) be the

last passage times of a system where we set ω̃0,j = 0 for all j ≥ 1 (resp. ωi,0 = 0) and the

paths are allowed to collect weights while on the boundaries. Let v(n) be given by (3.4.11).

Then, for v(n) < m1 ≤ m2,

G(1,1),(m2,n) −G(1,1),(m1,n) ≤ GW=0
(0,0),(m2,n) −G

W=0
(0,0),(m1,n)

= G(0,0),(m2,n) −G(0,0),(m1,n).
(3.4.15)

Alternatively, for 0 ≤ m1 ≤ m2 < v(n),

G(1,1),(m2,n) −G(1,1),(m1,n) ≥ GS=0
(0,0),(m2,n) −G

S=0
(0,0),(m1,n)

= G(0,0),(m2,n) −G(0,0),(m1,n).
(3.4.16)

Proof. We prove (3.4.16) and similar arguments prove (3.4.15). The first inequality in

(3.4.16) follows from Lemma 3.4.4 in the case ω̃0,j = ω̃i,0 = 0. The subsequent equality

comes from the fact that if v(n) ≥ m2 ≥ m1. By (3.4.11) the target points (m1, n)

and (m2, n) are above the competition interface ϕ and therefore, by (3.4.4) are strictly

above ϕ̃. This implies that (m1, n) and (m2, n) belong to the cluster C↑,↗ and therefore

we can choose the respective maximal paths to not take a horizontal first step. In turn,

the maximal path does not need to go through the x-axis and hence it does not see the

boundary values ωi,0. Thus, GS=0
(0,0),(m,n) = G(0,0),(m,n).

3.4.3 Lower bound

In this section we prove the lower bound for the order of the variance. Before giving the

proof we need to prove two preliminary lemmas. For the rest of this section, whenever we

say maximal path, we mean the down-most maximal path.

Lemma 3.4.6. Let a, b > 0 two positive numbers. Then there exist a positive integer

N0 = N(a, b) and constant C = C(a, b) such that for all N > N0 we have

P
{

sup
0≤z≤aN2/3

{S (u)
z +G(z∨1,1),(mu(N),nu(N)) −G(1,1),(mu(N),nu(N))} ≥ bN1/3

}
≤ Ca3(b−3 + b−6).

(3.4.17)

Proof. First note that if the supremum in the probability is attained at z = 0 then the

expression in the braces is tautologically 0 and the statement of the lemma is vacuously

true. Therefore without loss of generality, we can prove the bound for the supremum when

1 ≤ z ≤ aN2/3.
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Select and fix any parameter 0 < r < b/a and let N large enough. The exact de-

pendence of r on the parameters a and b will be obtained later in the proof. Define λ by

λ = u− rN−1/3. (3.4.18)

and use it to define boundary weights on both axes using that parameter and independently

of the original boundary weights with parameter u. The environment in the bulk is the

same for both processes. Let ϕ(λ) be the competition interface under environment ω(λ)

and let v(λ) be as in equation (3.4.11). Restrict on the event vλ(n) > m. Define the

increment V(λ)
z−1 = G

(λ)
(0,0),(m,n) −G

(λ)
(0,0),(m−z+1,n). Then use Lemma 3.4.5 to obtain

G(1,1),(m,n) −G(1,1),(m−z+1,n) ≥ V
(λ)
z−1.

Recall that V(λ)
z−1 is a sum of i.i.d. Bernoulli(λ) variables and it is independent of S

(u)
z .

When (m,n) equals the characteristic direction (mu(N), nu(N)) corresponding to u,

P
{

sup
1≤z≤aN2/3

{S (u)
z +G(z,1),(mu(N),nu(N)) −G(1,1),(mu(N),nu(N))} ≥ bN1/3

}
≤ P

{
v(λ)

(⌊N
p

(
p+ (1− p)u

)2⌋) ≤ bNc}
+ P

{
sup

1≤z≤aN2/3

{S (u)
z − V(λ)

z−1} ≥ bN
1/3
}

≤ P
{
v(λ)

(⌊N
p

(
p+ (1− p)u

)2⌋) ≤ bNc} (3.4.19)

+ P
{

sup
1≤z≤aN2/3

{S (u)
z−1 − V

(λ)
z−1} ≥ bN

1/3 − 1
}
.

(3.4.20)

Where the first inequality is obtained by applying the law of total probability and making

P
{

sup1≤z≤aN2/3{S (u)
z + G(z,1),(mu(N),nu(N)) − G(1,1),(mu(N),nu(N))} ≥ bN1/3|v(λ)

(⌊
N
p

(
p +

(1 − p)u
)2⌋) ≤ bNc} = P

{
v(λ)

(⌊
N
p

(
p + (1 − p)u

)2⌋)
> bNc

}
= 1. We bound the

two probabilities separately. We begin with (3.4.20). Define the martingale as Mz−1 =

S
(u)
z−1 − V

(λ)
z−1 − E[S

(u)
z−1 − V

(λ)
z−1], and note that for 1 ≤ z ≤ aN2/3,

E[S
(u)
z−1 − V

(λ)
z−1] = (z − 1)u− (z − 1)λ ≤ raN1/3. (3.4.21)

From (3.4.21) follows that

S
(u)
z−1 − V

(λ)
z−1 ≤Mz−1 + raN1/3.

Using this result and taking N large enough so that

b > ra+N−1/3 (3.4.22)
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we get by Doob’s inequality, for any d ≥ 1.

P
{

sup
1≤z≤aN2/3

{S (u)
z−1 − V

(λ)
z−1} ≥ bN

1/3 − 1
}

≤ P
{

sup
1≤z≤aN2/3

Mz−1 ≥ N1/3(b− ra−N−1/3)
}

≤ C(d)N−d/3

(b− ra−N−1/3)d
E[|MbaN2/3c|

d] ≤ C(d, u)ad/2

(b− ra−N−1/3)d
. (3.4.23)

Then for N ≥ 43b−3 the above bound is further dominated by C(d, u)ad/2(3b
4 − ra

)−d
which becomes C(d, u)a3b−6 once we choose

r =
b

4a
, (3.4.24)

d = 6, and properly re-define the constant C(d, u). This concludes the bound for (3.4.20).

For (3.4.19), we rescale N as

N ′ =
(p+ (1− p)u
p+ (1− p)λ

)2
N.

Then we write

P
{
v(λ)

(⌊N ′
p

(
p+ (1− p)λ

)2⌋)
<
⌊(p+ (1− p)λ
p+ (1− p)u

)2
N ′
⌋}

Since u > λ, then ⌊(p+ (1− p)λ
p+ (1− p)u

)2
N ′
⌋
≤ bN ′c.

Thus, by redefining (3.1.7) and (3.4.13) with N ′ and λ, we have that the event v(λ)(bN ′p (p+

(1− p)λ)2c) < b(p+(1−p)λ
p+(1−p)u)2N ′c is equivalent to

ξ∗(λ)
e1 (N ′) ≥ bN ′c − v(λ)

(⌊N ′
p

(
p+ (1− p)λ

)2⌋)
> bN ′c −

⌊(p+ (1− p)λ
p+ (1− p)u

)2
N ′
⌋
.

By (3.4.14), we conclude

P
{
v(λ)

(⌊N
p

(
p+ (1− p)u

)2⌋)
< bNc

}
= P

{
ξ(λ)
e1 (N ′) > bN ′c −

⌊(p+ (1− p)λ
p+ (1− p)u

)2
N ′
⌋}
. (3.4.25)

Utilizing the definitions (3.4.18) and (3.4.24) of λ and r, for N ≥ N0 there exists a constant

C = C(u) such that

bN ′c −
⌊(p+ (1− p)λ
p+ (1− p)u

)2
N ′
⌋
≥ CrN ′2/3.
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Combining this with Corollary 3.3.9 and definition (3.4.24) of r we get the bound

P
{
v(λ)

(⌊N
p

(
p+ (1− p)u

)2⌋)
< bNc

}
≤ P[ξ(λ)

e1 (N ′) > CrN ′2/3]

≤ Cr−3 ≤ C(a/b)3. (3.4.26)

The result now follows.

The other Lemma gives an asymptotic limit of the probability order of the exit point

from the x-axis. We will discuss the exit point from the y-axis as a Corollary of this

Lemma.

Lemma 3.4.7. Let u ∈ (0, 1) and (mu(N), nu(N)) the characteristic direction. Then the

exit point of a maximal path from 0 to (mu(N), nu(N)) satisfies

lim
δ→0

lim
N→∞

P
{

0 ≤ ξ(u)
e1 (N) ∨ ξ(u)

e2 (N) ≤ δN2/3
}

= 0.

Proof. We only show the result for ξ
(u)
e1 (N). The same result for ξ

(u)
e2 (N) follows by in-

terchanging vertical and horizontal directions and the fact that both boundaries have

Bernoulli variables.

First pick a parameter δ > 0. Recall that ξ
(u)
e1 (N) = 0 if the down-most maximal path

makes the first step diagonally or up. Also keep in mind that ξ
(u)
e1 (N) = 0 is the right-most

possible exit point, therefore all paths that exit later, have to have a smaller passage time.

Then, we may bound

P{0 ≤ ξ(u)
e1 (N) ≤ δN2/3} ≤ P

{
sup

δN2/3<x≤N2/3

{S (u)
x +G(x,1),(mu(N),nu(N))}

< sup
0≤x≤δN2/3

{S (u)
x +G(x∨1,1),(mu(N),nu(N))}

}
.

Then, we subtract the term G(1,1),(m(N),n(N)) from both sides and we bound the resulting

probability from above by

P
{

sup
δN2/3<x≤N2/3

{S (u)
x +G(x,1),(mu(N),nu(N)) −G(1,1),(mu(N),nu(N))}

< sup
0≤x≤δN2/3

{S (u)
x +G(x∨1,1),(mu(N),nu(N)) −G(1,1),(mu(N),nu(N))}

}
≤ P

{
sup

δN2/3<x≤N2/3

{S (u)
x +G(x,1),(mu(N),nu(N)) −G(1,1),(mu(N),nu(N))} < bN1/3

}
(3.4.27)

+ P
{

sup
0≤x≤δN2/3

{S (u)
x +G(x∨1,1),(mu(N),nu(N)) −G(1,1),(mu(N),nu(N))} > bN1/3

}
.

(3.4.28)
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(3.4.28) is bounded from above using Lemma 3.4.6 by Cδ3(b−3 + b−6).

To bound (3.4.27) we use similar arguments that we employed in the proof of Lemma

3.4.6. Define an auxiliary parameter λ

λ = u+ rN−1/3, (3.4.29)

where conditions on r will be specified in the course of the proof. From Lemma 3.4.5 the

following inequalities hold

G(x,1),(mu(N),nu(N)) −G(1,1),(mu(N),nu(N)) ≥ G
(λ)
(0,0),(mu(N)−x+1,nu(N)) −G

(λ)
(0,0),(mu(N),nu(N))

= −V(λ)
x−1 ≥ −V

(λ)
x .

whenever v(λ)
(⌊

N
p

(
p+ (1− p)u

)2⌋) ≤ bNc − x. Using these, we have

P
{

sup
δN2/3<x≤N2/3

{S (u)
x +G(x,1),(mu(N),nu(N)) −G(1,1),(mu(N),nu(N))} < bN1/3

}
≤ P

{
v(λ)

(⌊N
p

(
p+ (1− p)u

)2⌋)
> bNc −N2/3

}
(3.4.30)

+ P
{

sup
δN2/3<x≤N2/3

{S (u)
x − V(λ)

x } < bN1/3
}
. (3.4.31)

We claim that, for η > 0 and parameter r, it is possible to fix δ, b > 0 small enough so

that, for some N0 <∞, the probability in (3.4.31) satisfies

P
{

sup
δN2/3<x≤N2/3

{S (u)
x − V(λ)

x } < bN1/3
}
≤ η for all N ≥ N0. (3.4.32)

In order to prove this, we use a scaling argument: Uniformly over y ∈ [δ, 1] as N →∞,

N−1/3E[S
(u)

byN2/3c − V
(λ)

byN2/3c] = N−1/3(byN2/3cu− byN2/3c(u+ rN−1/3))→ −ry

and

N−2/3 Var(S
(u)

byN2/3c − V
(λ)

byN2/3c) = yu(1− u) + y(u+ rN−1/3)(1− u− rN−1/3)

→ 4u(1− u)y = σ2(u)y

Since we are scaling the supremum of a random walk with bounded increments, the prob-

ability (3.4.32) converges as N →∞, to

P
{

sup
δ≤y≤1

{σ(u)B(y)− ry} ≤ b
}

where B(·) is a standard Brownian motion. The random variable

sup
δ≤y≤1

{σ(u)B(y)− ry}
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(mu(N), nu(N))
(v(λ)(nu(N)), nu(N))

ϕ(λ)

(m̃u(N), ñu(N))

(v
(
p(1−λ)

λ+p(1−λ) )
(ñu(N)), ñu(N))

ϕ
(
p(1−λ)

λ+p(1−λ) )

π̃∗

ϕ̃
(
p(1−λ)

λ+p(1−λ) )

Figure 3.5: Comparison of various curves in ωi,j and ω̃i,j = ωj,i environments. The

thickset blue curve (color online) in the left figure is the competition interface in ωi,j

and the reflected curve can be seen in the same color to the right. The green curve is the

competition interface in ω̃i,j weights which is higher than the reflected ϕ and the red curve

is the right-most maximal paths in the reversed ω̃∗i,j weights with boundaries on north and

east, which is higher than both the other curves.

is positive almost surely when δ is sufficiently small. Therefore, the above probability is

less than η/2 for a suitably small b. This implies (3.4.32).

Finally we bound (3.4.30). Using (3.4.12) and the transpose environment ω̃i,j = ωj,i

for i, j ≥ 0 under the measure P̃

P
{
v(λ)

(⌊N
p

(
p+ (1− p)u

)2⌋)
> bN −N2/3 − 1c

}
≤ P̃

{
v

(
p(1−λ)

λ+p(1−λ)

)
(bN −N2/3 − 1c) ≤

⌊N
p

(
p+ (1− p)u

)2⌋}
. (3.4.33)

Under measure P̃ the environment is still i.i.d. and the only change is the alternation

of parameter values on the boundaries. Moreover, in the transposed environment, the

new competition interface ϕ
(
p(1−λ)

λ+p(1−λ)
)

constructed using (3.4.2), would be above (as a

curve) from the transposed competition interface ϕ(λ), so it would still exit from the north

boundary. (see Figure 3.5). From (3.4.29) substitute u as a function of λ,

Probability in (3.4.33) =P̃
{
v

(
p(1−λ)

λ+p(1−λ)

)
(bN −N2/3 − 1c)

≤
⌊N
p

(
p+ (1− p)λ

)2 − 2

p
(p+ (1− p)λ)(1− p)rN2/3 + o(N2/3)

⌋}
.

Define N ′ as

N ′ = N −N2/3 − 1 =⇒ N = N ′ +N ′2/3 + o(N ′2/3).

Replace N with N ′ in the probability above to obtain

Probability in (3.4.33) ≤ P̃
{
v

(
p(1−λ)

λ+p(1−λ)

)
(bN ′c) ≤

⌊N ′
p

(p+ (1− p)λ)2
⌋
−KN ′2/3

}
,
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where K = p−1(p+(1−p)λ)(2(1−p)r−(p+(1−p)λ)) which is positive for r large enough.

Using (3.4.13) and (3.4.14)

Probability(3.4.33)

≤ P̃
{
ξ
∗
(

p(1−λ)
λ+p(1−λ)

)
e1 (N ′) > KN ′2/3] = P̃

{
ξ

(
p(1−λ)

λ+p(1−λ)

)
e1 (N ′) > KN ′2/3] ≤ CK−3,

where the last inequality follows from Corollary 3.3.9. We are now ready to prove the

lemma. Start with a fixed η > 0. Then, fix an r large enough so that CK−3 < η and

probability (3.4.30) is controlled. This also imposes a restriction on the smallest value

of N that we can take, since we must have λ < 1. Under a fixed r, we can modulate

δ, b and select them small enough, so that (3.4.32) holds. Finally, make δ smaller so that

Cδ3(b−3 + b−6) < η and probability (3.4.28) is also controlled. Thus, unifying all these

results we have

P{0 ≤ ξ(u)
e1 (N) ≤ δN2/3} ≤ 2η. (3.4.34)

Note that by shrinking δ while b remains fixed, (3.4.32) is reinforced. This concludes the

proof of the lemma.

Proof of Theorem 3.1.3, lower bound. We first claim that

AN (u) ≥ E
(
ξ −

ξ∑
i=1

ωi,0

)
= E

( ξ∑
i=1

(1− ωi,0)
)
. (3.4.35)

Under this claim, we can write

AN (u) ≥ E
( ξ(u)

e1∑
i=1

(1− ωi,0)
)

≥ E
(
1{ξ(u)

e1 (N) ≥ δN2/3}
bδN2/3c∑
i=1

(1− ωi,0)
)

≥ αN2/3P
{
ξ(u)
e1 (N) ≥ δN2/3,

bδN2/3c∑
i=1

(1− ωi,0) ≥ αN2/3
}
.

Fix an η positive and smaller than 1/4. Now, by making δ sufficiently small, we can make

the event {ξ(u)
e1 (N) ≥ δN2/3} have probability larger than 1 − η by Lemma 3.4.7, for N

sufficiently large. With δ fixed, we can make α smaller, so that the event
{∑bδN2/3c

i=1 (1−

ωi,0) ≥ αN2/3
}

also has probability larger than 1 − η. Therefore their intersection has

probability greater than 1− 2η.

By Proposition 3.3.1 and the fact that we are in a characteristic direction, the result

follows.
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It now remains to verify (3.4.35). Using the fact that

H
(ε)
i,0 ∨ ωi,0 − ωi,0 = H

(ε)
i,0 −H

(ε)
i,0 ωi,0,

we write using (3.3.16)

EP⊗µε(N uε −N (u)) ≥ EP⊗µε

(
S uε

ξ
(u)
e1

−S
(u)

ξ
(u)
e1

)
= EP⊗µε

( ξ(u)
e1∑
i=1

H
(ε)
i,0 −H

(ε)
i,0 ωi,0

)

= εE(ξ(u)
e1 )− EP⊗µε

( ξ(u)
e1∑
i=1

H
(ε)
i,0 ωi,0

)

= εE(ξ(u)
e1 )− EP⊗µε

(mu(N)∑
y=1

y∑
i=1

H
(ε)
i,0 ωi,01{ξ

(u)
e1 = y}

)

= εE(ξ(u)
e1 )− EP⊗µε

(mu(N)∑
i=1

H
(ε)
i,0 ωi,01{ξ

(u)
e1 ≥ i}

)

= εE(ξ(u)
e1 )− εE

(mu(N)∑
i=1

ωi,01{ξ(u)
e1 ≥ i}

)
= εE(ξ(u)

e1 )− εE
( ξ(u)

e1∑
i=1

ωi,0

)
.

Combine the expectations and divide by ε. Then take a limit as ε → 0 to finish the

proof.

3.5 Variance in off-characteristic directions

In this section we want to deduce the central limit theorem for rectangles that do not

have characteristic shape.

Proof of Theorem 3.1.4. We prove the theorem in the case c < 0, analogue arguments

follow for c > 0. Set m∗u(N) = mu(N) + bcNαc. Now, the point (m∗u(N), nu(N) + bcNαc)

is in the characteristic direction. Thus

G
(u)
mu(N),nu(N)+bcNαc = G

(u)
m∗u(N),nu(N)+bcNαc +

mu(N)∑
i=m∗u(N)+1

Ii,nu(N)+bcNαc.

Note that the second the term on the right hand side is a sum of mu(N)−m∗u(N) = bcNαc

i.i.d Bernoulli distributed with parameter u. We center by the mean of each random

variable and we indicate them with a bar over the random variable. Multiply both sides

by N−α/2 to obtain

N−α/2Ḡ
(u)
mu(N),nu(N)+bcNαc = N−α/2(Ḡ

(u)
m∗u(N),nu(N)+bcNαc +

mu(N)∑
i=m∗u(N)+1

Īi,nu(N)+bcNαc).

The first term on the right hand side is stochastically O(N1/3−α/2). Since α > 2/3 this

term converges to zero in probability. On the other hand the second term satisfies a

CLT.
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Note that for any λ ∈ (0, 1), for any ε > 0 the endpoint (N, pN−εN) (resp. (N,N/p+

εN)) will always be the north-east corner of an off-characteristic rectangle no matter what

the value of λ.

3.6 Variance without boundary

In this section we prove some results for the last passage time in the model without

boundaries but still with fixed endpoint. We begin reminding the last passage time of

the model without boundaries to reach a point in the characteristic direction (3.1.7) is

G(1,1),(mu(N),nu(N)) and the last passage time of the model with boundaries to reach the

same point is G
(u)
(0,0),(mλ(N),nλ(N)). We want to prove another version of Lemma 3.4.6.

Lemma 3.6.1. Fix 0 < α < 1. Then there exist a positive integer N0 = N(b, u) and

constant C = C(α, u) such that, for all N ≥ N0 and b ≥ C0 we have

P{G(u)
(0,0),(mλ(N),nλ(N)) −G(1,1),(mu(N),nu(N)) ≥ bN1/3} ≤ Cb−3α/2.

Proof. We prove only the case where the maximal path exits from the x-axis. Similar

arguments hold for the maximal path exits from the y-axis and find the same bound.

Note that

P{G(u)
(0,0),(mλ(N),nλ(N)) −G(1,1),(mu(N),nu(N)) ≥ bN1/3}

≤ P
{

sup
1≤z≤aN2/3

{
S (u)
z +G(z,1),(mu(N),nu(N)) −G(1,1),(mu(N),nu(N))

}
≥ bN1/3

}
(3.6.1)

+ P
{

sup
1≤z≤aN2/3

{
S (u)
z +G(z,1),(mu(N),nu(N))

}
6= G(1,1),(mu(N),nu(N))

}
.

(3.6.2)

For (3.6.2) using 3.3.9, there exists a C = C(u) such that

P
{

sup
1≤z≤aN2/3

{
S (u)
z +G(z,1),(mu(N),nu(N))

}
6= G(1,1),(mu(N),nu(N))

}
≤ P[ξ(u)

e1 (N) ≥ aN2/3] ≤ Ca−3.

(3.6.3)

For (3.6.1) we use the results from the proof of Lemma 3.4.6. Define

λ = u− rN−1/3

From (3.4.20) and (3.4.23), where we choose a = bα/2, d = 2 and r = bα/2 we have the

upper bound

P
{

sup
1≤z≤aN2/3

{S (u)
z−1 − V

(λ)
z−1} ≥ bN

1/3 − 1
}
≤ C(α, u)bα/2

(b− bα −N−1/3)2
(3.6.4)
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where C(α, u) > 0 is large enough so that for b ≥ C (3.4.22) is satisfied and the denomin-

ator in (3.6.4) is at least b/2. Then we can claim that for all b ≥ C and N ≥ N0 = 43b−3

P
{

sup
1≤z≤aN2/3

{
S (u)
z +G(z,1),(mu(N),nu(N)) −G(1,1),(mu(N),nu(N))

}
≥ bN1/3

}
≤ P

{
v(λ)

(⌊N
p

(
p+ (1− p)u

)2⌋) ≤ bNc}+ Cbα/2−2.

Since N ≥ N0 we can use the result (3.4.26) and remembering that r = bα/2 in this case

we obtain

P
{

sup
1≤z≤aN2/3

{
S (u)
z +G(z,1),(mu(N),nu(N)) −G(1,1),(mu(N),nu(N))

}
≥ bN1/3

}
≤ Cb−3α/2 + Cbα/2−2.

(3.6.5)

Combining (3.6.5) and (3.6.3) we obtain the final result.

All the constants which will be defined in this section depend on the values x, y and p.

Proof of Theorem 3.1.6. By Chebyshev, Theorem 3.1.3 for the upper bound, Lemma 3.6.1

P{|G(1,1),(bNxc,bNyc) −Ngpp(x, y)| ≥ bN1/3}

≤ P{|G(1,1),(mu(N),nu(N)) −G
(u)
(0,0),(mλ(N),nλ(N))| ≥

1

2
bN1/3}

+ P[|G(u)
(0,0),(mλ(N),nλ(N)) −Ngpp(x, y)| ≥ 1

4
bN1/3]

≤ Cb−3α/2 + Cb−2 ≤ Cb−3α/2.

To get the moment bound,

E
[∣∣∣∣G(1,1),(bNxc,bNyc) −Ngpp(x, y)

N1/3

∣∣∣∣r] =

∫ ∞
0

P
[∣∣∣∣G(1,1),(bNxc,bNyc) −Ngpp(x, y)

N1/3

∣∣∣∣r ≥ b]db.
At this point using (3.1.10) where b in this case is b1/r∫ ∞

0
P
[∣∣∣∣G(1,1),(bNxc,bNyc) −Ngpp(x, y)

N1/3

∣∣∣∣r ≥ b]db ≤ C0 +

∫ ∞
C0

Cb
−3α
2r db <∞,

which converges iff 1 ≤ r < 3α/2.

3.6.1 Variance in flat-edge directions without boundary

We only treat explicitly the case for which y ≤ px. Since our model is symmetric, the

same arguments can be repeated to prove the case y ≥ 1
px.

We force macroscopic distance from the critical line, i.e. we assume that we can find

ε > 0 so that the sequence of endpoints (N,n(N)) satisfy

lim
n→∞

n(N)

N
≤ p− ε. (3.6.6)
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Proof of Theorem 3.1.7. Consider the following naive strategy: We construct an approx-

imate maximal path π for GN,n(N), knowing that for large n(N) < b(p− ε/2)Nc without

using the boundaries. π enters immediately inside the bulk and moves right until it finds

a weight to collect diagonally. After that this procedure repeats. For each iteration of this

procedure, the horizontal length of this path increases by a random Geometric(p) length,

independently of the past.

The probability that π will take more than N steps before reaching level n(N) is

the same as the probability that the sum of n(N) independent Xi ∼ Geometric(p) r.v.’s

exceeds the value N which is a large deviation event. In symbols

P{GN,n(N)(π) < n(N)} = P
{ n(N)∑

i=1

Xi > N
}
≤ P

{ b(p−ε/2)Nc∑
i=1

Xi > N
}
≤ e−cN .

Now, let A = {GN,n(N)(π) = n(N)}.

Var(GN,n(N)) = E(G2
N,n(N))− (E(GN,n(N)))

2

≤ (n(N))2 − (E(GN,n(N)1A)2 = (n(N))2 − (n(N))2P{A}2

≤ (n(N))2(1− (1− e−cN )2) ≤ CN2e−cN → 0.

3.7 Fluctuations of the maximal path in the boundary model

In this last section we prove the path fluctuations in the characteristic direction in the

model with boundaries. The idea behind it is to study how long the maximal path spends

on any horizontal (or vertical) level and find a bound for the distance between the maximal

path and the line which links the starting and the ending point which corresponds to the

macroscopic maximal path.

Fix a boundary parameter λ and for this section the characteristic direction in (3.1.8)

(mλ(N), nλ(N)) is abbreviated by (m,n) and it is the endpoint for the maximal path.

Consider two rectanglesR(k,`),(m,n) ⊂ R(0,0),(m,n) with 0 < k < mλ(N) and 0 < ` < nλ(N).

In the smaller rectangle R(k,`),(mλ(N),nλ(N)) impose boundary conditions on the south and

west edges given by the distributions defined in Lemma 3.2.4.

Ii,`
D
= Ii,0 Jk,j

D
= J0,j with i ∈ {k + 1, . . . ,m}, j ∈ {`+ 1, . . . , n}. (3.7.1)

Recall that (3.1.13) and (3.1.14) define respectively the i coordinate where the maximal

path enters and exits from a fixed horizontal level j. Since we are interested in studying

either the horizontal and vertical fluctuations we also define the j coordinate where the

maximal path enters and exits from a fixed vertical level i as

w0(i) = min{j ∈ {0, . . . , n} : ∃k such that πk = (i, j)}, (3.7.2)
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and

w1(i) = max{j ∈ {0, . . . , n} : ∃k such that πk = (i, j)}. (3.7.3)

To make our notation clearer we distinguish the exit point for the path which starts

from (0, 0) to the one which starts from (k, `) adding the superscript (0, 0) or (k, `). We

define the exit point from the south edge of the rectangle R(k,`),(m,n) as

ξ(k,`)
e1 = max

π∈Π(k,`),(m,n)

{r ≥ 0 : (k + i, `) ∈ π for 0 ≤ i ≤ r, π is the right-most maximal}.

(3.7.4)

Observe from (3.7.1) that ξ
(k,`)
e1 and v1(`)− k have the same distribution, i.e.

P{ξ(k,`)
e1 = r} = P{v1(`) = k + r}. (3.7.5)

Proof of Theorem 3.1.9. Note that if τ = 0 (3.1.15) and (3.1.16) are already contained in

(3.3.29) and (3.4.34).

For 0 < τ < 1 set v = bbN2/3c and (k, `) = (bτmc, bτnc). We add a superscript P(·,·){·}

when we want to emphasise the target point for which we are computing the probability.

Remember that the rectangle R(k,`),(m,n) has boundary condition (3.7.1). By Lemma 3.2.4

P(m,n){v1(bτnc) ≥ bτmc+ v} = P(m,n){ξ(k,`)
e1 ≥ v}, by (3.7.5)

= P(m−k,n−`){ξ(0,0)
e1 ≥ v}, by (3.2.1), (3.7.1).

(3.7.6)

Note that (m − k, n − `) is still in the characteristic direction since (m − k, n − `) =

(1− τ)(m,n). Therefore, from (3.7.6) and Corollary 3.3.9

P(m,n){v1(bτnc) > τm+ bN2/3} ≤ C2b
−3.

To prove the other part of (3.1.15) notice that

P(m,n){v0(bτnc) < bτmc − v} ≤ P(m,n){w1(bτmc − v) ≥ bτnc}. (3.7.7)

Let k = bτmc−v and ` = bτnc−bnv/mc. Then, up to integer-part corrections, k/` = m/n.

For a constant Cλ > 0 and N sufficiently large , bτnc ≥ ` + CλbN
2/3. Note that from

(3.7.1) we can write

P(m,n){ξ(k,`)
e2 = r} = P(m,n){w1(k) = `+ r}. (3.7.8)

The vertical analogue of (3.7.6) for w1 is

P(m,n){w1(bτmc − v) ≥ bτnc} = P(m,n){w1(k) ≥ `+ CλbN
2/3}

= P(m,n){ξ(k,`)
e2 ≥ CλbN2/3} by (3.7.8)
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= P(m−k,n−`){ξ(0,0)
e2 ≥ CλbN2/3} by (3.2.1), (3.7.1).

Combine this last result with (3.7.7) and from Corollary 3.3.9 applied to ξe2 (3.1.15)

follows.

Finally, we prove (3.1.16). We want to compute

P{∃ k such that |π̂k − (τm, τn)| ≤ δN2/3}.

If the path π̂ comes within `∞ distance δN2/3 of (τm, τn), then it necessarily enters

through the south or west side of the rectangle R(k+1,`+1),(k+4bδN2/3c,`+4bcδN2/3c) (or via a

diagonal step from the south-west corner), where the point (k, `) = (bτmc−2bδN2/3c, bτnc−

2bcδN2/3c and the constant c > m/n for large enough N . The constant c is there to make

the rectangle of characteristic shape.

From the perspective of the rectangle R(k,`),(m,n) this event is equivalent to either

0 ≤ ξ(k,`)
e1 ≤ 4δN2/3 or 0 ≤ ξ(k,`)

e2 ≤ 4cδN2/3. For these reasons we have

P(m,n){∃k such that |π̂k − (τm, τn)| ≤ δN2/3}

≤ P(m,n){0 < ξ(k,`)
e1 ≤ 4δN2/3 or 0 < ξ(k,`)

e2 ≤ 4cδN2/3}

= P(m−k,n−l){0 ≤ ξ(0,0)
e1 ≤ 4δN2/3 or 0 ≤ ξ(0,0)

e2 ≤ 4cδN2/3}.

We get the result using equation (3.4.34) for both exit points.
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Chapter 4

A Large deviation principle for

last passage times in an

asymmetric Bernoulli potential

The model under consideration in this chapter is a directed corner growth model on the

positive quadrant Z2
+. Each site v of Z2

+ is assigned a random weight ωv. The environment

is the same as the one in the previous chapter. In fact, the collection {ωv}v∈Z2
+

is i.i.d.

under the environment measure P, with Bernoulli marginals

P{ωv = 1} = p, P{ωv = 0} = 1− p.

Throughout the chapter we exclude the values p = 0 or p = 1. One way to view the

environment, is to treat site v as present when ωv = 1 and as deleted when ωv = 0. The

last passage Bernoulli path up to (m,n) is a sequence of present sites

Lm,n = {v1 = (i1, j1), v2 = (i2, j2), . . . , vM = (iM , jM )} (4.0.1)

so that 0 < i1 < i2 < . . . < iM ≤ m and 0 < j1 < j2 < . . . < jM ≤ n.

What differentiate this model from the previous one are the admissible steps and the

potential. In particular, the set of admissible steps is then restricted to R = {e1, e2} and

an admissible path from (0, 0) to (m,n) is an ordered sequence of sites

π(0,0),(m,n) = {(0, 0) = v0, v1, v2, . . . , vM = (m,n)},

so that vk+1−vk ∈ R. The collection of all these paths is denoted by Π(0,0),(m,n). Moreover,

the admissible paths can collect the random weights only via a horizontal step and no gain

can be made through a vertical step. This is specified by the measurable potential function

V (ω, z) : RZ2
+ ×R → R defined in (1.3.8).
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Using this potential function V we define the last passage time as

GV(0,0),(m,n) = max
π(0,0),(m,n)∈Π(0,0),(m,n)

{∑
vi∈π

V (Tviω, vi+1 − vi)
}
. (4.0.2)

Above we used Tvi as the environment shift by vi in Z2
+. Now that V is specified we

omit it from the notation. We also omit (0, 0) as the starting point, when it is implied.

Therefore, the last passage time (4.0.2) is simply denoted by Gm,n. If the starting point

is (k, `) we write G(k,`),(m,n).

4.0.1 Commonly used notation

Throughout the paper, N denotes the natural numbers, and Z+ the non-negative integers.

Symbol G is always denoting a last passage time. As we already mentioned, the superscript

V will be omitted as there is no confusion on the potential; in our case we always use

(1.3.8). Letter π signifies a generic admissible path.

Bold-face letters (e.g. v) indicate two-dimensional vectors (e.g. w = (w1, w2)). In the

rare cases where we write v ≤ w we mean the inequality holds coordinate-wise.

The Legendre (convex) dual of a function f : R → (−∞,∞] is defined f∗(y) =

supx∈R{xy − f(x)}. The statement f = f∗∗ is used throughout the article without any

special mention, and it is true if and only if f is convex and lower semicontinuous, which is

why we pay particular attention into having the rate function lower-semicontinuous at the

boundaries of their set that they are finite. Finally, in two occasions we need the infimal

convolution of two generalised convex functions f, g, and we write

f�g(r) = inf
x∈R
{f(x) + g(r − x)}.

The important fact is that (f�g)∗ = f∗ + g∗. We refer to [92] for the necessary convex

analysis.

4.1 The model and its invariant model

4.1.1 The invariant boundary model

For the boundary model we alter the distribution of the weights on the two axes. The

new environment there will depend on a parameter u ∈ (p, 1] that will be under our

control. Each u defines different boundary distributions. At the origin we set ω0 = 0. For

weights on the horizontal axis, for any k ∈ N we set ωke1 ∼ Bernoulli(u), with independent

marginals

P{ωke1 = 1} = u = 1− P{ωke1 = 0}. (4.1.1)
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On the vertical axis, for any k ∈ N, we set ωke2 ∼ Geometric
( u−p
u(1−p)

)
with independent

marginals

P{ωke2 = `} =
u− p
u(1− p)

(p(1− u)

u(1− p)

)`
, ` ∈ Z+. (4.1.2)

The environment in the bulk {ωw}w∈N2 remains unchanged with i.i.d. Ber(p) marginal

distributions. Denote this environment by ω(u) to emphasise the different distributions

on the axes that depend on u. In summary, for any i ≥ 1, j ≥ 1, the ω(u) marginals are

independent with marginals

ω
(u)
i,j ∼



Ber(p), if (i, j) ∈ N2,

Ber(u), if i ∈ N, j = 0,

Geom
(

u−p
u(1−p)

)
, if i = 0, j ∈ N,

δ0, if i = 0, j = 0.

(4.1.3)

In this environment we slightly alter the way a path can collect weight on the boundar-

ies. Consider any path π from 0. If the path moves horizontally before entering the bulk,

then it collects the Bernoulli(u) weights until it takes the first vertical step, and after that,

it collects weight according to the potential function (1.3.8). If π moves vertically from

0 then it also collects the geometric weights on the vertical axis, and after it enters the

bulk, it collects according to V . This is the only difference from the potential V of the

i.i.d. model, namely while on the y-axis, the path can still collect positive weight.

Fix a parameter u ∈ (p, 1]. Denote the last passage time from 0 to w in environment

ω(u) by G
(u)
0,w. The variational equality, using the above description, is

G
(u)
0,w = max

1≤k≤w·e1

{ k∑
i=1

ωie1 +GVke1+e2,w

}
∨

max
1≤k≤w·e2

{ k∑
j=1

ωje2 + ωe1+ke2 +GVe1+ke2,w

}
. (4.1.4)

Our first statement give the explicit formula for the shape function of the invariant model.

Theorem 4.1.1 (Law of large numbers for G
(u)
bNsc,bNtc). For fixed parameter p < u ≤ 1

and (s, t) ∈ R2
+ we have

g(u)
pp (s, t) = lim

N→∞

G
(u)
bNsc,bNtc

N
= su+ t

p(1− u)

u− p
, P− a.s. (4.1.5)

It is convenient to introduce to passage times, depending on the first step of the set of

paths we are optimizing over. Define

G
(u),hor
bNsc,bNtc = max

1≤k≤bNsc

{ k∑
i=1

ωi,0 +G(k,1),(bNsc,bNtc)

}
(4.1.6)
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and

G
(u),ver
bNsc,bNtc = max

1≤`≤bNtc

{∑̀
j=1

ω0,j + ω1,` +G(1,`),(bNsc,bNtc)

}
. (4.1.7)

Then, by (4.1.4)

G
(u)
bNsc,bNtc = G

(u),hor
bNsc,bNtc ∨G

(u),ver
bNsc,bNtc. (4.1.8)

Remind from the introduction in Chapter 1 that gpp(s, t) represents the shape function

for the model without boundaries. Passage times (4.1.6) and (4.1.7) satisfy a law of large

numbers as well, given in the next

Theorem 4.1.2. Let s, t ≥ 0, u ∈ (p, 1].

(a) The following limit exists and is given by

g(u),hor
pp (s, t) = lim

N→∞
N−1G

(u),hor
bNsc,bNtc =


g

(u)
pp (s, t) if t < s (u−p)2

p(1−p) ,

gpp(s, t) if t ≥ s (u−p)2

p(1−p) .

(4.1.9)

(b) The following limit exists and is given by

g(u),ver
pp (s, t) = lim

N→∞
N−1G

(u),ver
bNsc,bNtc =


g

(u)
pp (s, t) if t > s (u−p)2

p(1−p) ,

gpp(s, t) if t ≤ s (u−p)2

p(1−p) .

(4.1.10)

As is usual in the exactly solvable models of last passage percolation, there is the

notion of a characteristic direction. In this case, for the model with boundaries for a given

boundary parameter u ∈ (p, 1], there exists a unique direction (m(N), n(N)) whose scaled

direction, as N →∞, converges to the macroscopic characteristic direction

N−1(mu(N), nu(N))→
(

1,
(u− p)2

p(1− p)

)
, (4.1.11)

which gives that for large enough N the endpoint (m(N), n(N)) is always below the critical

line y = 1−p
p x that separates the flat edge from the strictly concave part of gpp(s, t) in

Theorem 1.3.1. Here the characteristic direction already manifested in Theorem 4.1.2 as

the cutting line between feeling the boundary effect versus entering the bulk.

The full rate function is described in Theorem 4.1.4. As it is usually the case with

models of last passage percolation, large deviations of the passage time above its mean are

of different exponential scale than the deviations below its mean. With this in mind, in

order to obtain a full LDP, one only needs the right-tail rate function. This is our starting

point.
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Suppose that the target point is (s, t), then, since the last passage time collects

Bernoulli weights only through the right step, the last passage time definition implies

that the probability

P{GbNsc,bNtc ≥ Nr} 6= 0 if and only if r < s. (4.1.12)

In the particular case where s is rational, the probability above can be strictly positive for

certain values of N , but otherwise it is 0.

Theorem 4.1.3. For ((s, t), r) with 0 ≤ r < s <∞ and t ∈ R+, the following R+-valued

limit exists:

− lim
N→∞

N−1 logP{GbNsc,bNtc ≥ Nr} = Js,t(r). (4.1.13)

Js,t(r), as a function of ((s, t), r) is a continuous convex function on the interior of the

set A = {((s, t), r) : s ≥ r ∨ 0, t ∈ R+, r ∈ R+}. It can be uniquely extended to a finite

continuous convex function on Ā which we denote by Js,t(r). Moreover, Js,t(r) > 0 for

r > gpp(s, t).

We show the existence of a good rate function Is,t(r) and list its properties; this is the

content of the next theorem. We restrict r ∈ [0, s] because Is,t(r) = ∞ for any r outside

this interval.

Theorem 4.1.4. Let ωi,j ∼Bernoulli(p) with i, j ≥ 1 and (s, t) ∈ (0,∞)2. Then there

exists a generalised function Is,t(r) so that the distributions of N−1GbNsc,bNtc satisfy an

LDP with normalisation N and rate function Is,t(r). To be precise, the following bounds

hold for any open set H and any closed set F in [0, s]:

lim
N→∞

N−1 logP{N−1GbNsc,bNtc ∈ F} ≤ − inf
r∈F

Is,t(r) (4.1.14)

and

lim
N→∞

N−1 logP{N−1GbNsc,bNtc ∈ H} ≥ − inf
r∈H

Is,t(r). (4.1.15)

The rate function Is,t(r) is defined by

Is,t(r) =


Js,t(r), r ∈ [gpp(s, t), s],

∞, otherwise.

(4.1.16)

Rate function Js,t(r) is the right-tail rate function computed in Theorem 4.1.3. In par-

ticular, on [gpp(s, t), s] the rate function Is,t is finite, strictly increasing, continuous and

convex. Moreover, the unique zero of Is,t(r) is at r = gpp(s, t).
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Corollary 4.1.5. Let ξ ∈ R. Then

lim
N→∞

N−1 logEeξG0,(bNsc,bNtc) = I∗s,t(ξ) =


J∗s,t(ξ) if ξ > 0,

0 if ξ = 0,

ξgpp(s, t) if ξ < 0.

(4.1.17)

The variational characterization of Js,t requires the log-moment generating functions

for Bernoulli(p) random variables, given by

C
(p)
B (ξ) = log(1− p+ peξ), ξ ∈ R. (4.1.18)

and Geometric(p) random variables given by

C
(p)
G (ξ) =


log p

1−(1−p)eξ , ξ < − log(1− p)

∞, otherwise.

(4.1.19)

Both log-moment generating functions can be seen as the Legandre duals of the rate

functions for sums of i.i.d. Bernoulli (4.1.18) and for sums of i.i.d. geometric random

variables, given by

I
(p)
G (r) = sup

ξ<− log(1−p)

{
rξ − C(p)

G (ξ)
}

= r log
r

(1− p)(1 + r)
− log(1 + r)p for r > 0.

(4.1.20)

The two theorems that give the precise forms for J and J∗ follow.

Proposition 4.1.6. Let (s, t) ∈ R2
+. Then for all ξ ∈ R, the convex dual J∗(s,t)(ξ) is given

by

J∗s,t(ξ) =


infu∈(p,1]{sC

(u)
B (ξ)− tC

( u−p
u(1−p) )

G (−ξ)}, if ξ > 0,

0, if ξ = 0,

∞, if ξ < 0.

The closed form for J∗ is given in the following

Theorem 4.1.7. Fix p ∈ (0, 1), ξ ≥ 0 and (s, t) ∈ R2
+. Define

∆ = ∆p,s,t,ξ = p(1− p)(eξ + e−ξ − 2)
[
p(1− p)(s+ t)2(eξ + e−ξ − 2) + 4st

]
. (4.1.21)

Then,

J∗s,t(ξ) =



s log
p(1− p)(s+ t)(eξ + e−ξ − 2) + 2s+

√
∆

2s(1− p(1− e−ξ))

+ t log
[p(1− p)(s+ t)(eξ + e−ξ − 2) +

√
∆](1− p(1− e−ξ))

p(1− p)(t− s)(eξ + e−ξ − 2) +
√

∆
,

if t < 1−p
p s,

sξ, if t ≥ 1−p
p s.

(4.1.22)
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Define the last passage time’s l.m.g.f. for the boundary model

Λ
(u)
(s,t)(ξ) = lim

N→∞
N−1 logEeξG

(u)
bNsc,bNtc . (4.1.23)

It will be convenient to also define the l.m.g.f. for the two passage times conditional

on the first step being e1 or e2, G
(u),hor
bNsc,bNtc and G

(u),ver
bNsc,bNtc given by (4.1.6) and (4.1.7)

respectively. The corresponding l.m.g.f. are

Λ
(u),hor
(s,t) (ξ) = lim

N→∞
N−1 logEeξG

(u),hor
bNsc,bNtc (4.1.24)

and

Λ
(u),ver
(s,t) (ξ) = lim

N→∞
N−1 logEeξG

(u),ver
bNsc,bNtc . (4.1.25)

The existence of the above limits is verified in Lemma 4.6.1 below, but we state it as part

of the main Theorem 4.1.8.

The existence of the two limits above then gives rise to the formula

Λ
(u)
(s,t)(ξ) = Λ

(u),hor
(s,t) (ξ) ∨ Λ

(u),ver
(s,t) (ξ) for any ξ > 0. (4.1.26)

Thus, finding Λ
(u)
(s,t)(ξ) is equivalent to finding Λ

(u),hor
(s,t) (ξ),Λ

(u),ver
(s,t) (ξ), which is the content

of Theorem 4.1.8 below.

Heuristically, one expects the creation of some critical direction for (s, t) that will

depend on ξ, p, u; below the direction the boundary effect will be felt at the l.m.g.f. level,

and otherwise the model will behave like the boundary is not present. This was also

observed at the LLN level in Theorem 4.1.2. In fact this is the case.

For ξ > 0

k(u)(ξ) :=
(∂C(u)

B (ξ)

∂u

)
/
(∂C(u)

G (−ξ)
∂u

)
. (4.1.27)

The relevant conditions that create a critical line are

t = k(u)(ξ)s, and t = k(u)(−ξ)s, (4.1.28)

for Λ(u),hor and Λ(u),ver respectively. Recall that l.m.g.f of GbNsc,bNtc is given by Corollary

4.1.5, and is equal to I∗s,t(ξ) = J∗s,t(ξ). For uniformity of notation in the section, set

Λ(s,t)(ξ) = I∗s,t(ξ).

Theorem 4.1.8. Let s, t ≥ 0, u ∈ (p, 1) and ξ ≥ 0.

(a) The limit in (4.1.24) exists and is given by

Λ
(u),hor
(s,t) (ξ) =


sC

(u)
B (ξ)− tC

( u−p
u(1−p) )

G (−ξ) if t < k(u)(ξ)s,

Λ(s,t)(ξ) if t ≥ k(u)(ξ)s.

(4.1.29)

135



(b) The limit in (4.1.25) exists and is given by

Λ
(u),ver
(s,t) (ξ) =


tC

( u−p
u(1−p) )

G (ξ)− sC(u)
B (−ξ), if ξ ∈ [0, log u(1−p)

p(1−u)) and t > k(u)(−ξ)s,

Λ(s,t)(ξ), if ξ ∈ [0, log u(1−p)
p(1−u)) and t ≤ k(u)(−ξ)s,

∞, if ξ ∈ [log u(1−p)
p(1−u) ,∞).

(4.1.30)

The last theorem proves the full l.m.g.f. for the boundary model. Define

`(u)(ξ) =
C

(u)
B (ξ) + C

(u)
B (−ξ)

C
( u−p
u(1−p) )

G (ξ) + C
( u−p
u(1−p) )

G (−ξ)
. (4.1.31)

Then, the l.g.m.f. for the boundary last passage time is given by

Theorem 4.1.9. Let s, t ≥ 0 and u ∈ (p, 1]. Then the limit in (4.1.23) exists for ξ ≥ 0

and is given by

Λ
(u)
(s,t)(ξ) =


sC

(u)
B (ξ)− tC

( u−p
u(1−p) )

G (−ξ), if ξ ∈ [0, log u(1−p)
p(1−u)) and t < `(u)(ξ)s,

tC
( u−p
u(1−p) )

G (ξ)− sC(u)
B (−ξ), if ξ ∈ [0, log u(1−p)

p(1−u)) and t ≥ `(u)(ξ)s,

∞, if ξ ∈ [log u(1−p)
p(1−u) ,∞).

(4.1.32)

4.2 Burke’s property and law of large numbers

To simplify the notation in what follows, set w = (i, j) ∈ Z2
+ and define the last passage

time gradients by

I
(u)
i+1,j = G

(u)
0,(i+1,j) −G

(u)
0,(i,j), and J

(u)
i,j+1 = G

(u)
0,(i,j+1) −G

(u)
0,(i,j). (4.2.1)

When there is no confusion we will drop the superscript (u) from the above. When j = 0 we

have that {I(u)
i,0 }i∈N is a collection of i.i.d. Bernoulli(u) random variables since I

(u)
i,0 = ω(i,0).

Similarly, for i = 0, {J (u)
0,j }j∈N is a collection of i.i.d. Geometric( u−p

u(1−p)) random variables.

The gradients and the passage time satisfy recursive equations. This is the content of

the next lemma.

Lemma 4.2.1. Let u ∈ (p, 1] and (i, j) ∈ N2. Then the last passage time can be recursively

computed as

G
(u)
0,(i,j) = max

{
G

(u)
0,(i,j−1), G

(u)
0,(i−1,j) + ωi,j

}
. (4.2.2)

Furthermore, the last passage time gradients satisfy the recursive equations

I
(u)
i,j = max{I(u)

i,j−1 − J
(u)
i−1,j , ωi,j},

J
(u)
i,j = (J

(u)
i−1,j − I

(u)
i,j−1 + ωi,j)

+.
(4.2.3)
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Proof. Equation (4.2.2) is immediate from the description of the dynamics in the boundary

model and the fact that (i, j) is in the bulk. We only prove the recursive equation (4.2.3)

for the J and the other one is done similarly and left to the reader. Compute

J
(u)
i,j = G

(u)
0,(i,j) −G

(u)
0,(i,j−1)

= max
{
G

(u)
0,(i,j−1), G

(u)
0,(i−1,j) + ωi,j

}
−G(u)

0,(i,j−1) by (4.2.2),

= max
{
G

(u)
0,(i,j−1) −G

(u)
0,(i,j−1), G

(u)
0,(i−1,j) −G

(u)
0,(i,j−1) + ωi,j

}
= max

{
0, G

(u)
0,(i−1,j) −G

(u)
0,(i,j−1) +G

(u)
0(i−1,j−1) −G

(u)
0(i−1,j−1) + ωi,j

}
= (J

(u)
i−1,j − I

(u)
i,j−1 + ωi,j)

+.

Using the gradients (4.2.3) and the environment {ωi,j}(i,j)∈N2 we also define new ran-

dom variables αi,j on Z2
+

αi−1,j−1 = min{I(u)
i,j−1, J

(u)
i−1,j + ωi,j} for (i, j) ∈ N2. (4.2.4)

Since the I
(u)
i,j are Bernoulli, so are the αi,j . The following lemma gives the distribution of

the triple (I
(u)
i,j , J

(u)
i,j , αi−1,j−1). It is an analogue of Burke’s property for M/M/1 queues.

Lemma 4.2.2 (Burke’s property). Let independent random variables be distributed by

(I
(u)
i,j−1, J

(u)
i−1,j , ωi,j) ∼

(
Ber(u),Geom

( u− p
u(1− p)

)
,Ber(p)

)
, (4.2.5)

where we assume u > p. Then, for (i, j) ∈ N2, the triple obtained via equations (4.2.3),

(4.2.4) is also an independent triple

(I
(u)
i,j , J

(u)
i,j , αi−1,j−1) ∼

(
Ber(u),Geom

( u− p
u(1− p)

)
,Ber(p)

)
. (4.2.6)

Proof. We omit the superscripts and indices from the I, J and we simply denote

Ĩ = max{I − J, ω}, and J̃ = (J − I + ω)+.

The marginal distributions of (Ĩ , J̃ , α) can be computed directly, using equations (4.2.3),

(4.2.4). For example, since α only takes the values 0 or 1 it suffices to compute

P{α = 1} = P{min{I, J + ω} = 1} = P{I = 1, J + ω ≥ 1}

= u
(
p+ (1− p)

(
1− u− p

u(1− p)

))
= p.

The remaining calculations are left to the reader.

The proof of independence goes by calculating the Laplace transform of the triple

(Ĩ , J̃ , α). Let x ∈ R, z ∈ R and y > log[p(1− u)/(u(1− p))]. Recall that u ∈ (p, 1]. Then

compute, using (4.2.3) and (4.2.4), the joint Laplace transform

E(e−xĨ−yJ̃−zα) = E[e−xmax{I−J,ω}−y(J−I+ω)+−zmin{I,J+ω}]
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= puE[e−x(max{1−J,1})−yJ−zmin{1,J+1}] + p(1− u)E[e−x−y(J+1)+
]

+ (1− p)uE[e−x(1−J)+−y(J−1)+−z(1∧J)] + (1− p)(1− u)E[e−yJ ]

= pu
u− p
u(1− p)

e−(x+z)
∞∑
j=0

(
p(1− u)

u(1− p)

)j
e−yj

+ p(1− u)
u− p
u(1− p)

e−(x+y)
∞∑
j=0

(
p(1− u)

u(1− p)

)j
e−yj

+ (1− p)u u− p
u(1− p)

(
e−x +

∞∑
j=1

(
p(1− u)

u(1− p)

)j
e−y(j−1)−z

)

+ (1− p)(1− u)
∞∑
j=0

(
p(1− u)

u(1− p)

)j
e−yj

=

u−p
u(1−p)

1− p(1−u)
u(1−p)e

−y

(
pue−(x+z) + p(1− u)e−(x+y) + (1− p)(1− u)

)

+ (1− p)u
u−p
u(1−p)

1− p(1−u)
u(1−p)e

−y

[
e−x
(

1− p(1− u)

u(1− p)
e−y
)

+ e−z
p(1− u)

u(1− p)

]

=

u−p
u(1−p)

1− p(1−u)
u(1−p)e

−y

(
pue−(x+z) + (1− p)(1− u) + (1− p)ue−x + p(1− u)e−z

)
= E(e−yJ̃)E(e−xĨ)E(e−zα)

A down-right path ψ on the lattice Z2
+ is an ordered sequence of sites {vi}i∈Z that

satisfy

vi − vi−1 ∈ {e1,−e2}.

For a given down-right path ψ, define ψi = vi − vi−1 to be the i-th edge of the path and

set

Lψi =


I

(u)
vi , if ψi = e1

J
(u)
vi−1 , if ψi = −e2.

Also define the interior sites Iψ of ψ to be

Iψ = {w ∈ Z2
+ : ∃ vi ∈ ψ s.t. w < vi coordinate-wise}.

A convenient way to state Lemma 4.2.2 is the following.

Corollary 4.2.3. Fix a down-right path ψ. Then the random variables

{{αw}w∈Iψ , {Lψi}i∈Z} (4.2.7)

are mutually independent, with marginals

αw ∼ Ber(p), Lψi ∼


Ber(u), if ψi = e1

Geom
(

u−p
u(1−p)

)
, if ψi = −e2.
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Proof. The proof is inductive. Consider the countable set of paths Ψ that connect the

y-axis to the x-axis. The trivial case is when Iψ0 = ∅ (i.e. ψ0 is the union of the two axes,

ψ0 ∈ Ψ) and then the statement reduces to the independence of the ωi,j ’s on the x and y

axes which is true by the definition of the environment.

Assume that for a ψ ∈ Ψ the statement holds. We say that a lattice vertex vi0 on ψ

(i, j) ∈ Z2
+ is a west-south corner of ψ if

(vi0−1, vi0 , vi0+1) = ((i, j + 1), (i, j), (i+ 1, j)).

Now define a new path ψ̃ by replacing vi0 with ṽi0 = (i+ 1, j + 1) and keep all the other

points intact which means that vi = ṽi for i 6= i0. In this way we have Iψ̃ = Iψ ∪ {(i, j)}.

Going from ψ to ψ̃ we have also a change in the set of random variables in (4.2.7). In

fact

{Ii+1,j , Ji,j+1} (4.2.8)

have been replaced by

{Ii+1,j+1, Ji+1,j+1, αi+1,j+1}. (4.2.9)

By (4.2.3) and (4.2.4) the variables in (4.2.9) are determined by (4.2.8) and ωi+1,j+1. By

construction ωi+1,j+1 is independent of (4.2.7) for the ψ under consideration. By construc-

tion the triple {Ii+1,j , Ji,j+1, ωi+1,j+1} are independent random variables and by the in-

duction assumption we have they are in turn independent of the all other variables (4.2.7).

Finally Lemma 4.2.2 implies that also the triple {Ii+1,j+1, Ji+1,j+1, ωi,j} are independent

random variables with the correct marginal distribution and they are independent of all

the random variables of ψ̃. All these observations prove that also ψ̃ satisfies the statement

of the corollary.

Note that if we start with ψ0, we can build a path ψ ∈ Ψ by flipping west-south

corners finitely many times. The induction argument guarantees that class Ψ satisfies the

corollary.

The general statement follows also for an arbitrary down-right path ψ using the inde-

pendence of finite subcollections. Consider any square R = {i ≤ 0, j ≤ M} large enough

so that the corner (M,M) lies outside ψ ∪ Iψ. The α and L(ψ) variables associated to

ψ that lie in R are a subset of the variables of the path ψ̃ that goes through the points

(0,M), (M,M) and (M, 0). This path ψ̃ connects the axes so the first part of the proof

applies to it. Thus the variables (4.2.7) that lie inside an arbitrarily large square are

independent.

139



Theorem 4.2.4 (Variational formula for the LLN of the non boundary model). Fix p in

(0, 1) and (s, t) ∈ R2
+. Then we have the explicit law of large numbers limit

gpp(s, t) = inf
p<u≤1

{sE(I(u)) + tE(J (u))} = inf
p<u≤1

g(u)
pp (s, t). (4.2.10)

Remark 4.2.5. From (4.2.10) it is possible to see the characteristic direction manifesting

in a different way. Without loss set s = 1. Then the u∗ that minimizes the expression

above is u∗ = p +
√
tp(1− p) if t < q/p and 1 otherwise. Assume t < q/p. Solve the

expression for t we obtain

t =
(u∗ − p)2

p(1− p)
.

In other words, gpp(1, t) = g
(u∗)
pp (1, t) and direction (1, t) is characteristic according to

(4.1.11) for the boundary model with parameter u∗. Note that the range of characteristic

directions only covers the directions for which g
(u)
pp (s, t) is strictly concave. The flat edge

of gpp corresponds to u∗ = 1.

Remark 4.2.6. Along the characteristic direction the last passage time at point N(m,n)

it is expected ( but not proven yet ) to have variance of order O(N2/3) for large N , while

in the other directions the fluctuations of GbNsc,bNtc to have order of magnitude N1/2 and

they are asymptotically Gaussian. Finally it is possible to prove using similar arguments

as in [26] that the order of the variance in the flat edge is o(1).

From these considerations, we expect that the large deviations, for the boundary model,

to be ‘unusual’ in the characteristic direction, while in the off-characteristic directions

to be the typical decay of order e−N for both tails. We can show that the right tail has

deviations of order e−cN , but conditional on one of the boundaries being absent. This is

essentially equation (4.6.2). In Lemma 4.3.2 we give a bound on the left tail that indicates

superexponential decay when we move along direction (4.1.11) for the boundary model.

Proof of Theorem 4.1.1. From equations (4.2.1) we can write the last passage time of the

invariant model as

G
(u)
bNsc,bNtc =

bNsc∑
j=1

I
(u)
i,0 +

bNtc∑
j=1

J
(u)
bNsc,j

where the I, J variables are respectively the horizontal and vertical increments of the

passage time. By the definition of the boundary model, the I variables are i.i.d. Ber(u).

Scaled by N , the first sum converges to sE(I1,0) by the law of large numbers.

By Corollary 4.2.3 the J variables are i.i.d. Geom( u−p
u(1−p)), since they belong on the

down-right path that goes from (0, bNtc) horizontally to (bNsc , bNtc) and then vertically

down to (bNsc , 0). At this point we cannot immediately evoke the law of large numbers
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as before since the whole sequence changes with N . Therefore, we first appeal to the

Borel-Cantelli lemma via a large deviation estimate. Fix an ε > 0.

P
{
N−1

bNtc∑
j=1

J
(u)
bNsc,j /∈

(p(1− u)

u− p
− ε, p(1− u)

u− p
+ ε
)}

= P
{
N−1

bNtc∑
j=1

J
(u)
0,j /∈

(
t
p(1− u)

u− p
− ε, t p(1− u)

u− p
+ ε
)}

≤ e−c(u,p,t,ε)N ,

for some proper positive constant c(u, p, t, ε). By the Borel-Cantelli lemma we have that

for each ε > 0 there exists a random Nε so that for all N > Nε

t
p(1− u)

u− p
− ε < N−1

bNtc∑
j=1

J
(u)
bNsc,j ≤ t

p(1− u)

u− p
+ ε.

Then we have

su+ t
p(1− u)

u− p
− ε ≤ lim

N→∞

G
(u)
bNsc,bNtc

N
≤ lim

N→∞

G
(u)
bNsc,bNtc

N
≤ su+ t

p(1− u)

u− p
+ ε.

Let ε tend to 0 to finish the proof.

In order to prove Theorem 1.3.1 and Proposition 4.1.6 we need the following technical

result. This is in the spirit of Proposition 3.10 in [61] but tailored to our particular case.

Proposition 4.2.7. Let I = (a, b] ⊆ R with a, b ∈ R. Let the convex functions h, g:

I → R be twice continuously differentiable with h′(u) > 0 and g′(u) < 0 for every u ∈ I.

Define

fs,t(u) = sh(u) + tg(u) with (s, t) ∈ R2
+.

Suppose that f ′′s,t(u) > 0 for all (s, t) ∈ R2
+, limu↘a fs,t(u) = ∞ and fs,t(b) = c < ∞ with

c ∈ R. If Λ(s, t) is a continuous function in (s, t) with the property that for all (s, t) ∈ R2
+

and u ∈ I the identity

0 = sup
0≤z≤s

{Λ(s− z, t)− fs−z,t(u)} ∨ sup
0≤z̃≤t

{Λ(s, t− z̃)− fs,t−z̃(u)} (4.2.11)

holds, then for every t < −h′(b)
g′(b)s,

Λ(s, t) = min
u∈I
{fs,t(u)}.

Proof. Fix (s, t) ∈ R2
+ and call ν = t

s . Observe that under the hypotheses of this propos-

ition there exists a unique u∗s,t = arg minu∈I fs,t(u) = u∗1,ν . This minimum point can be
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eventually reached at u∗s,t = b if f ′s,t(u) ≤ 0 for all u ∈ I. In particular, u∗s,t solves the

equation

f ′s,t(u) = sh′(u) + tg′(u) = 0 =⇒ t = −h
′(u)

g′(u)
s. (4.2.12)

The largest value −h′(u)
g′(u) can take is when u = b. For any (s, t) above the line

t = −h
′(b)

g′(b)
s, (4.2.13)

equation (4.2.12) has no solution and in fact f ′s,t(u) < 0 and arg min fs,t(u) = b. For any

(s, t) below this line (4.2.13) a solution to (4.2.12) exists and is giving the minimizing

argument. We call the line (4.2.13) the critical line.

The identity in (4.2.11) implies that for all z ∈ [0, s] and z̃ ∈ [0, t] the following

inequalities hold

Λ(s− z, t) ≤ fs−z,t(u∗s−z,t), Λ(s, t− z̃) ≤ fs,t−z̃(u∗s,t−z̃).

Fix a u ∈ I and subtract, from each side of the inequalities above, fs−z,t(u) and fs,t−z̃(u)

respectively, to obtain

Λ(s− z, t)− fs−z,t(u) ≤ fs−z,t(u∗s−z,t)− fs−z,t(u), (4.2.14)

Λ(s, t− z̃)− fs,t−z̃(u) ≤ fs,t−z̃(u∗s,t−z̃)− fs,t−z̃(u). (4.2.15)

Since the minimizer is unique we have that fs−z,t(u
∗
s−z,t)− fs−z,t(u) < 0 unless u = u∗s−z,t

and fs,t−z̃(u
∗
s,t−z̃) − fs,t−z̃(u) < 0 unless u = u∗s,t−z̃. Set u = u∗s,t and substitute it in

(4.2.14) and (4.2.15)

Λ(s− z, t)− fs−z,t(u∗s,t) ≤ fs−z,t(u∗s−z,t)− fs−z,t(u∗s,t), (4.2.16)

Λ(s, t− z̃)− fs,t−z̃(u∗s,t) ≤ fs,t−z̃(u∗s,t−z̃)− fs,t−z̃(u∗s,t). (4.2.17)

Note that (4.2.11) implies that there exists a sequence zn → z ∈ [0, s] or z̃n → z̃ ∈ [0, t]

such that at least one of the following limits holds

Λ(s− zn, t)− fs−zn,t(u∗s,t)→ 0, (4.2.18)

Λ(s, t− z̃n)− fs,t−z′n(u∗s,t)→ 0. (4.2.19)

If t < −h′(b)
g′(b)s then the point (s, t − z̃) is below the critical line for every z̃ ∈ [0, t].

The point (s − z, t) can be above or below the critical line according to the value of z.

We analyse these two cases for the first supremum in (4.2.11). The case for the second

supremum is identical to case (a) below, as for all z̃, the index point stays below the

critical line.
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(a) If 0 ≤ z < s+ t g
′(b)
h′(b) , we have that both u∗s,t, u

∗
s−z,t ∈ (a, b). In particular

h′(u∗1,ν) + νg′(u∗1,ν) = 0. (4.2.20)

By the implicit function theorem we can take the derivative of the previous expression

respect to ν and find

du∗1,ν
dν

= −
g′(u∗1,ν)

h′′(u∗1,ν) + νg′′(u∗1,ν)
> 0.

This implies that for all z ∈ (0, s+ t g
′(b)
h′(b)) and z̃ ∈ (0, t), u∗s,t−z̃ < u∗s,t < u∗s−z,t.

We want to show that (4.2.18) is possible if only zn → 0 from which the result follows

from continuity. The right hand side in (4.2.16) is negative and therefore, by continuity

we can argue that the supremum will be attained at one of the boundary points. Thus,

we have only to show that

lim
z↗s+t g

′(b)
h′(b)

fs−z,t(u
∗
s−z,t)− fs−z,t(u∗s,t) < 0. (4.2.21)

For any fixed z ∈ (0, s+ t g
′(b)
h′(b)) we have that

fs−z,t(u
∗
s−z,t)− fs−z,t(u∗s,t) < 0.

Therefore we obtain the proof if we show that the last expression is decreasing in z.

Take the derivative in z, use (4.2.20), recall that u∗s,t < u∗s−z,t and h(u) is an increasing

function by hypothesis

d

dz

(
(s− z)h(u∗s−z,t) + tg(u∗s−z,t)− [(s− z)h(u∗s,t) + tg(u∗s,t)]

)
= −h(u∗s−z,t) +

(
(s− z)h′(u∗s−z,t) + tg′(u∗s−z,t)

)du∗s−z,t
dz

+ h(u∗s,t)

= h(u∗s,t)− h(u∗s−z,t) < 0.

(b) If s+ t g
′(b)
h′(b) ≤ z ≤ s, we have that u∗s−z,t = b. Note that u∗s,t < u∗s−z,t = b in this case

and therefore fs−z,t(b)− fs−z,t(u∗s,t) < 0 for every z ∈ [s+ t g
′(b)
h′(b) , s]. This implies that

(4.2.18) can never be true for z ∈ (s+ t g
′(b)
h′(b) , s]. But the boundary point z = s+ t g

′(b)
h′(b)

is also not optimal by continuity considerations and (4.2.21).

Therefore, the potential maximum happens at z = 0. Similarly, this will be true for

z̃ = 0 and therefore Λ(s, t) = fs,t(u
∗
s,t) as required.

Proof of Theorems 4.2.4, 1.3.1. Let g
(u),ver
pp (s, t) = limN→∞N

−1G
(u),ver
bNsc,bNtc. Recall that

gpp(s, t) is 1-homogeneous and concave.
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If t < 1−p
p s, the starting point is equation (4.1.4). Scaling that equation by N gives us

the macroscopic variational formulation

g(u)
pp (s, t) = g(u),hor

pp (s, t)
∨
g(u),ver
pp (s, t)

= sup
0≤z≤s

{g(u)
pp (z, 0) + gpp(s− z, t)}

∨
sup

0≤z̃≤t
{g(u)
pp (0, z̃) + gpp(s, t− z̃)}

= sup
0≤z≤s

{zE(I(u)) + gpp(s− z, t)}
∨

sup
0≤z̃≤t

{z̃E(J (u)) + gpp(s, t− z̃)}. (4.2.22)

We postpone this bit of the proof until the end. Assume (4.2.22) holds. Subtract

g
(u)
pp (s, t) from either side of (4.2.22)

0 = sup
z∈[0,s]

{
gpp(s− z, t)−

[
(s− z)u+ t

p(1− u)

u− p

]}
∨

sup
z̃∈[0,t]

{
gpp(s, t− z̃)−

[
(t− z̃)p(1− u)

u− p
+ su

]}
.

We use Proposition 4.2.7 by identifying as I = (p, 1], Λ(s, t) = gpp(s, t), h(u) = s,

g(u) = p(1−u)
u−p and therefore fs,t(u) = su+tp(1−u)

u−p . Note that h′(u) > 0, g′(u) < 0 for every

u ∈ (p, 1] and in particular f ′′s,t(u) > 0 for every (s, t) ∈ R2
+. Moreover limu↘p fs,t(u) =∞

and fs,t(1) = s <∞. Therefore

gpp(s, t) = min
u∈(p,1]

{
su+ t

p(1− u)

u− p

}
=
(√
ps+

√
(1− p)t

)2− t, if t < s
1− p
p

. (4.2.23)

If t ≥ 1−p
p s, We want to find an upper and a lower bound for GbNsc,bNtc. The upper

bound is trivial since by model definition GbNsc,bNtc ≤ bNsc. For the lower bound, force

a macroscopic distance from the critical line, i.e. assume that it is possible to find a ε > 0

so that the sequence of endpoints (bNsc , bNtc) satisfy

lim
N→∞

bNtc
bNsc

≥ 1− p
p

+ ε. (4.2.24)

Then consider the following strategy: construct an approximate maximal path π for

GbNsc,bNtc, knowing that for large bNtc ≥ (1−p
p + ε) bNsc, π starts from (0, 0) and moves

up until it finds a weight to collect horizontally on his right. After that this procedure

repeats. For each iteration of this procedure, the vertical length of this path increases by

a random Geometric(p) length, independently of the past. Define Y ∼ Geometric(p) with

range on 0, 1, .... By construction, we have

{ bNsc∑
i=1

Yi > bNtc
}
⊇ {GbNsc,bNtc < bNsc}.

The relation on (s, t) implies that the larger event above is large deviation event, and

therefore by the Borel-Cantelli lemma, GbNsc,bNtc = bNsc almost surely. Scaling by N

and letting it tend to ∞ completes the proof.
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We finally prove (4.2.22). For a lower bound, fix any z ∈ [0, s] and z̃ ∈ [0, t] . Then if

we move on the horizontal axis

G
(u)
bNsc,bNtc ≥

bNzc∑
i=1

I
(u)
i,0 +G(bNzc,1),(bNsc,bNtc).

Divide by N . Observe that the left hand side converges a.s. to g
(u)
pp (s, t). While the

first term on the right converges a.s. to zE(Iu). The second on the right, converges in

probability to gpp(s − z, t). In particular, we can find a subsequence Nk such that the

convergence is almost sure for the second term. Taking limits on this subsequence, we

conclude

g(u)
pp (s, t) ≥ zE(Iu) + gpp(s− z, t).

Since z is arbitrary we can take supremum over z in both sides of the inequality above.

The same arguments will work if we move on the vertical axis. Thus, we obtain the lower

bound for (4.2.22).

For the upper bound, we partition both axes. Fix ε, ε̃ > 0 and let {0 = q0, ε = q1, 2ε =

q2, . . . , s
⌊
ε−1
⌋
ε, s = qM} a partition of (0, s) and {0 = q0, ε̃ = q1, 2ε̃ = q2, . . . , t

⌊
ε̃−1
⌋
ε̃, t =

qM̃} a partition of (0, t). The maximal path that utilises G
(u)
N,N has to exit between bNkεc

and bN(k + 1)εc for some k if it chooses to go through the x-axis and between
⌊
Nk̃ε̃

⌋
and⌊

N(k̃ + 1)ε̃
⌋

for some k̃ if it goes through the y-axis. Therefore, we may write

G
(u)
bNsc,bNtc ≤ max

0≤k≤bε−1c

{ bN(k+1)εc∑
i=1

I
(u)
i,0 +G(bNkεc,1),(bNsc,bNtc)

}
∨

max
0≤k̃≤bε̃−1c

{ bN(k̃+1)ε̃c∑
j=1

J
(u)
0,j +G(1,(bNk̃ε̃c)),(bNsc,bNtc)

}
.

Divide by N . The right-hand side converges in probability to the constant

max
0≤k≤bε−1c

{(k + 1)εu+ gpp(s− εk, t)}∨
max

0≤k̃≤bε̃−1c

{
(k̃ + 1)ε̃

p(1− u)

u− p
+ gpp(s, t− ε̃k̃)

}
= max

0≤k≤bε−1c
{kεu+ gpp(s− εk, t)}+ εu

∨
max

0≤k̃≤bε̃−1c

{
k̃ε̃
p(1− u)

u− p
+ gpp(s, t− ε̃k̃)

}
+ ε̃

p(1− u)

u− p

= max
qk
{qku+ gpp(s− qk, t)}+ εu∨

max
qk̃

{
qk̃
p(1− u)

u− p
+ gpp(s, t− qk̃)

}
+ ε̃

p(1− u)

u− p

≤ sup
0≤z≤s

{zu+ gpp(s− z, t)}+ ε̃u
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∨
max
0≤z̃≤t

{
z̃
p(1− u)

u− p
+ gpp(s, t− z̃)

}
+ ε̃

p(1− u)

u− p
.

The convergence becomes a.s. on a subsequence. The upper bound for (4.2.22) now

follows by letting ε→ 0 and ε̃→ 0 in the final equation.

Proof of Theorem 4.1.2. By definition (4.1.6) and (1.3.9) we have

g(u),hor
pp (s, t) = lim

N→∞
N−1G

(u),hor
bNsc,bNtc

= lim
N→∞

max
1≤k≤bNsc

{
N−1

k∑
i=1

I
(u)
i,0 +N−1G(k,1),(bNsc,bNtc)

}
(4.2.25)

= sup
0≤a≤s

{au+ gpp(s− a, t)}.

The last line follows by the same coarse graining arguments as in the proof of Theorem

4.2.4.

If t < 1−p
p s

g(u),hor
pp (s, t) = sup

0≤a≤s− pt
1−p

{au+ (
√
p(s− a) +

√
(1− p)t)2 − t} ∨ sup

s− pt
1−p<a≤s

{a(u− 1) + s}.

The second supremum is attained at the boundary point s − pt
1−p since it optimizes a

decreasing function of a. In the first supremum, a unique minimizing point exists and

it is either a boundary point or the critical point a∗ of the derivative of f(a) = au +

(
√
p(s− a) +

√
(1− p)t)2 − t, given by

a∗ = s− p(1− p)t
(u− p)2

.

If s− p(1−p)t
(u−p)2 < 0 then we have that a∗ = 0. Otherwise, we can substitute a∗ into f(a) and

obtain

f(a∗) = su+
p(1− u)

u− p
t = g(u)

pp (s, t).

Finally, if t ≥ 1−p
p s

g(u),hor
pp (s, t) = sup

0≤a≤s
{au+ s− a} = s = gpp(s, t).

The proof for g
(u),ver
pp (s, t) is similar and left to the reader.

4.3 I.i.d. Model: Full LDP

We first focus on the model without boundaries. Recall that the maximal path can

collect Bernoulli weights only when it takes a step to the right.
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Proof of Theorem 4.1.3. First we prove the existence of limit (4.1.13). Take m,n ∈ N and

an error due to the floor function xm,n ∈ (0, 1)2 such that (b(m+ n)sc , b(m+ n)tc) =

(bmsc , bmtc) + (bnsc , bntc) + xm,n. We have

P{Gb(m+n)sc,b(m+n)tc ≥ (m+ n)r}

≥ P{Gbmsc,bmtc +G(bmsc,bmtc),(b(m+n)sc,b(m+n)tc) ≥ (m+ n)r}, by superadditivity

≥ P{Gbmsc,bmtc ≥ mr}P{Gbnsc,bntc ≥ nr}P{Gbxm,nc ≥ 0}, by independence.

By (4.1.12) P{Gbxm,nc ≥ 0} = 1. Take logarithms in the last inequality; then by Fekete’s

lemma the limit

lim
N→∞

N−1 logP{GbNsc,bNtc ≥ Nr}

exists for any (s, t) ∈ R2\{0} and r ∈ [0, s] and in fact equals supN N
−1 logP{GbNsc,bNtc ≥

Nr}. The value of the limit is now denoted by −Js,t(r).

From the superadditivity of G we can also obtain the convexity of the limit. Pick

any λ ∈ (0, 1) and define the triple ((s, t), r) = λ((s1, t1), r1) + (1 − λ)((s2, t2), r2) with

r1 ∈ [0, s1] and r2 ∈ [0, s2]. Then

N−1 logP{GbNsc,bNtc ≥ Nr}

≥ λ(λN)−1 logP{GbNλs1c,bNλt1c ≥ Nλr1}

+ (1− λ)((1− λ)N)−1 logP{GbN(1−λ)s2c,bN(1−λ)t2c ≥ N(1− λ)r2}.

Multiply both sides by −1 and invert the sign of the inequality to obtain for N →∞

Js,t(r) ≤ λJs1,t1(r1) + (1− λ)Js2,t2(r2). (4.3.1)

From (4.1.12) we know that J is finite and we have just proven that it is also convex. This

implies that J is continuous on A and upper semicontinuous on the whole set Ā, from

Theorems 10.1 and 10.2 in [92]. Moreover, Js,t(r) on A can be uniquely extended to a

continuous function on Ā by Theorem 10.3 in [92].

Finally, the law of large numbers for the last passage time implies J(s,t)(r) = 0 for

r < gpp(s, t) and then by continuity for r ≤ gpp(s, t). Use the same method of proof of

Proposition 3.1(b) of [29] to get the concentration inequality:

P{|GbNsc,bNtc − E[GbNsc,bNtc]| ≥ Nε} ≤ 2e−cε
2N ∀N ∈ N. (4.3.2)

This holds for a given (s, t) ∈ R2
+, and ε > 0. Constant c > 0 will depend on s, t, ε. Since

N−1E[GbNsc,bNtc] → gpp(s, t), this implies that J(s,t)(r) > 0 for r > gpp(s, t) (without

excluding the value ∞).
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r

J2,1 (r)

Figure 4.1: Graphical representation of the function Js,t(r). In both figures we used

p = 1/2 and t = 1. To the left we have the lower-semicontinuous version of Js,1(r) as

a function of (s, r). You can see that it is finite for s ≤ r. To the right is the function

J2,1(r).

The continuous extension up to Ā makes the function Js,t(r) lower-semicontinuous on

R3 where it takes the value ∞ outside of Ā.

It will be useful to also know some of the boundary values of the lower semi-continuous

extension. We summarise the results in the following corollary:

Corollary 4.3.1. The lower-semicontinuous extension of Js,t(r) takes the following values

on ∂A

Js,t(r) =



0, t = 0, r ≤ 0, s ∈ R+,

0, t ∈ R+, r ≤ 0, s = 0,

sI
(p)
B (r/s), t = 0, 0 ≤ r ≤ s, s ∈ R+

limr↗s Js,t(r), t, s ∈ R>0, r = s.

(4.3.3)

This follows from the fact that Js,t needs to be lower-semicontinuous, as it has briefly

been pointed out before. Above we defined IB to be the Cramér rate function for sums of

i.i.d. ωi ∼ Bernoulli(p),

I
(p)
B (r) =


− lim
N→∞

N−1 logP
{ N∑
i=1

ωi ≥ Nr
}

= r log
r

p
+ (1− r) log

1− r
1− p

, r ∈ [p, 1],

0, r < p

∞, r > 1.

(4.3.4)

In order to obtain a full large deviation principle, we must estimate the lower tail for

the probabilities of the last passage time. As it is usual in the solvable models of last

passage percolation, the speed for the lower tail is different than N . Our first lemma
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establishes the same fact for this model. In turn, this gives left tail bounds strong enough

to imply Is,t(r) =∞ for r < gpp(s, t) for both boundary and i.i.d. model.

Lemma 4.3.2. There exist constants c > 0, C <∞ that depend on parameters s, t, p, u,so

that for all N ≥ 1 the following estimates hold:

(a) For (s, t) ∈ (0,∞)2 and r ∈ [0, gpp(s, t))

P{GbNsc,bNtc ≤ Nr} ≤ Ce−cN
2
.

(b) For (s, t) = α
(

1, (u−p)2

p(1−p)

)
for some α > 0, parallel to the characteristic direction, and

r ∈ [0, g
(u)
pp (s, t)),

P{G(u)
bNsc,bNtc ≤ Nr} ≤ Ce

−cN2
.

Proof. We prove (b) but similar arguments work for (a). We bound G
(u)
bNsc,bNtc from below,

using the superadditivity property of the last passage times.

For this reason we consider a subset of lattice paths, arranged in a collection of i.i.d.

last passage time over subsets of rectangles. This block argument proof was first used in

[69] and later adapted in [96] for the last passage time and in [51, 61] for the log-gamma

polymer and the Brownian polymer model respectively.

Note that if (s, t) are chosen in the characteristic direction it is immediate to see that

g
(u)
pp (s, t) = gpp(s, t).

We first show the result for (s, t) ∈ Q2
+. In order to highlight this distinction we assume

that the target point is (q1, q2) ∈ Q2
+. Fix 0 < ε < 1/4(g

(u)
pp (q1, q2)−r). Define a new scale

parameter m ∈ N large enough so that m(q1 ∧ q2) ≥ 1, mq1,mq2 ∈ N+ and

E[Gmq1,mq2 ] > m(r + 2ε). (4.3.5)

We will use mq1 and mq2 to coarse-grain our environment. Let Rk,`a,b = {a, . . . , a+ k−

1}×{b, . . . , `+b−1} denote the k×` rectangle with lower left corner at (a, b). For i, ` ≥ 0

define pairwise disjoint mq1 ×mq2 rectangles

Ri` = Rmq1,mq2(`+i)mq1+i+1,`(mq2+1)+1.

The rectangles Ri` are separated by the inter-site distance to avoid a scenario where a path

goes along a common edge between two rectangles. This way, we will be able to clearly

say in which one of the two rectangles the path goes through. For each i we define the

diagonal union of rectangles as ∆i =
⋃
`≥0Ri`, i ≥ 0 and in the sequence we are considering

potential paths that stay in a fixed ∆i.
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Moreover, note that the last passage times Gvwi,`,v
e
i,`

in each rectangle are all identically

distributed, where vwi,` = (` + i)mq1 + 1 + i, `(mq2 + 1) + 1) and vei,` = ((i + 1)mq1 +

`mq1, (1 + `)(mq2 + 1)) are respectively the south-west and north-east corners of Ri`.

Define B,M = M(B) ∈ N the maximal integers which satisfy

(M + 1)mq1 +Bmq1 ≤ Nq1 and (4.3.6)

(1 +B)(mq2 + 1) ≤ Nq2. (4.3.7)

The fact that B is maximal and (4.3.7) imply that

B =

⌊
Nq2

mq2 + 1

⌋
− 1. (4.3.8)

Substituting (4.3.8) in (4.3.6) we obtain

M =

⌊
N

m
−
⌊

Nq2

mq2 + 1

⌋⌋
and hence

⌊
N

m(mq2 + 1)

⌋
≤M ≤

⌊
N

mq2 + 2

m(mq2 + 1)

⌋
. (4.3.9)

Since m is a constant and assumed much smaller than N , we have that B = B(N) = O(N)

and M = M(N) = O(N). Fix a diagonal ∆i for 0 ≤ i ≤ M and define the union of

rectangles in ∆i ∩ ([0, Nq1]× [0, Nq2]) as ∆B
i =

⋃
0≤`≤BRi`.

Let G∆
i be the last passage time of all lattice paths in ∆B

i from the lower left corner

of Ri0 to the upper right corner of RiB. G∆
i are i.i.d, where in particular G∆

0 is the sum of

the B last passage times of rectangle R0 whose mean is controlled by (4.3.5). A standard

large deviation estimate for an i.i.d sum gives the following bound

P{G(u)
bNq1c,bNq2c ≤ Nr} ≤ P{G∆

i ≤ Nr for 0 ≤ i ≤M}

≤ P{G∆
0 ≤ Nr}M ≤ P

{B(N)∑
k=0

G0
k ≤ Nr

}M(N)

≤ e−cB(N)M(N) ≤ e−c1N2
.

(4.3.10)

This completes the proof for (s, t) ∈ Q2
+.

Finally we show (4.3.10) holds also for s, t ∈ R+. We boundG
(u)
bNsc,bNtc usingG

(u)
bNq1c,bNq2c

for some special (q1, q2) ∈ Q2
+ which are close enough to (s, t) ∈ R2

+. For any (q1, q2) ≤

(s, t) we have that

P{G(u)
bNsc,bNtc ≤ Nr} ≤ P{G(u)

bNq1c,bNq2c ≤ Nr}, for all r ∈ [0, g(u)
pp (s, t)). (4.3.11)

For any δ > 0 find (q1, q2) so that δ > g
(u)
pp (s, t)− g(u)

pp (q1, q2) > 0. This is possible by the

continuity and monotonicity of g
(u)
pp . We choose δ <

g
(u)
pp (s,t)−r

2 and therefore

r < g(u)
pp (s, t)− 2δ < g(u)

pp (q1, q2)− δ < g(u)
pp (s, t),

for some (q1, q2) ∈ Q2
+ Then (4.3.11) is a left-tail large deviation anyway for G

(u)
bNq1c,bNq2c

so (4.3.10) holds.
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bNsc

bNtc

R0
0 R1

0

R0
1 R1

1

RMBRM−1
B

∆M∆M−1

∆0 ∆1

Figure 4.2: Representation of the coarse grained bmsc×bmtc rectangles and the diagonals

∆i in the proof of Lemma 4.3.2. The blue thick line is one of the possible maximal paths.

For the bound needed, we are allowed to ignore the path segments outside of the coarse-

grained diagonals, particularly we may ignore the correlated segments when candidate

paths traverse the south and north boundary of [0, bNsc] × [0, bNtc]. Passage times in

each ∆i are i.i.d. and smaller than the overall passage time.

Proof of Theorem 4.1.4. This proof is a consequence of the lemmas and theorems that we

have already proved. Define for r ∈ R function Is,t(r) by (4.1.16).

Then, the regularity properties proved for J in Theorems 4.1.3 and 4.3.1 are also valid

for Is,t. For the upper large deviation bound (4.1.14) we consider two cases:

(1) if F ⊆ [0, gpp(s, t)), then r∗ = max{x : x ∈ F} < gpp(s, t) and we have

P{N−1GbNsc,bNtc ∈ F} ≤ P{GbNsc,bNtc ≤ Nr∗} ≤ e−N
2
.

The last inequality comes from Lemma 4.3.2. Take logarithms on both sides, divide

by N , take the limit N →∞ and finally by definition (4.1.16) conclude that

lim
N→∞

N−1 logP{N−1GbNsc,bNtc ∈ F} = −∞ = − inf
r∈F

Is,t(r).

(2) If F ∩ [gpp(s, t), s] 6= ∅ then we split into two different cases:

Case 1: F 63 gpp(s, t). Then there exists an ε > 0 such that (gpp(s, t)−ε, gpp(s, t)+ε) ⊆

F c. Then we bound

P{N−1GbNsc,bNtc ∈ F} ≤ P{N−1GbNsc,bNtc ≤ gpp(s, t)− ε}
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+ P{N−1GbNsc,bNtc ∈ F ∩ [gpp(s, t) + ε, s]}.

By the previous calculations, we already control the first addend by e−cN
2

therefore

we focus only on the second one which will be of an exponential order of magnitude

larger and control the value of the lim. Since F and [gpp(s, t) + ε, s] are two closed

sets there exists an r∗ such that r∗ = min{r : r ∈ F ∩ [gpp(s, t)+ε, s]}. It follows that

P{N−1GbNsc,bNtc ∈ F} ≤ e−cN
2

+ P{GbNsc,bNtc ≥ Nr∗}.

Now take the logarithm of both sides, divide by N and take the lim,

lim
N→∞

N−1 logP{N−1GbNsc,bNtc ∈ F} ≤ lim
N→∞

N−1 log(e−cN
2

+ P{GbNsc,bNtc ≥ Nr∗})

= −Js,t(r∗) = − inf
r∈F

Is,t(r).

The last line is obtained using (4.1.13), (4.1.16) and the fact that Is,t(r) is a strictly

increasing function.

Case 2: F 3 gpp(s, t). In this case, infr∈F Is,t(r) = 0, therefore, inequality (4.1.14) is

automatically satisfied.

For the lower large deviation bound (4.1.15), we need to consider three cases according

to H:

(1) If gpp(s, t) ∈ H, then P{N−1GbNsc,bNtc ∈ H} → 1 and (4.1.15) holds as an equality.

(2) If H ⊆ [0, gpp(s, t)), (4.1.15) holds because its right-hand side is −∞.

(3) The remaining case is the one where H contains an interval (a, b) ⊂ (gpp(s, t), s). Then

for any ε > 0 small enough, we can find a non-trivial interval [a + ε, b − ε] ⊆ H and

bound

N−1 logP{N−1GbNsc,bNtc ∈ H} ≥ N−1 logP{N−1GbNsc,bNtc ∈ [a+ ε, b− ε]}

= N−1 log
(
P{N−1GbNsc,bNtc ≥ a+ ε} − P{N−1GbNsc,bNtc ≥ b− ε

)
→ −Js,t(a+ ε). (4.3.12)

Equation (4.3.12) follows after taking lim on both sides and keeping in mind that the

two terms in the logarithm have different exponential orders of magnitude.

Monotonicity and convexity Js,t on [gpp(s, t), s] implies that for some constant C,

Js,t(a+ ε) ≤ Js,t(a) + Cε. Then, (4.3.12) becomes

lim
N→∞

N−1 logP{N−1GbNsc,bNtc ∈ H} ≥ −Js,t(a)− Cε
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Let ε→ 0 in the last display. Then take a = inf H ∩ (gpp(s, t), s) to finish using

Js,t(a) = inf
r∈H∩(gpp(s,t),s)

Is,t(r) = inf
r∈H

Is,t(r).

Proof of Corollary 4.1.5. Since GbNsc,bNtc ≤ Ns, for any γ > 1 and ξ ∈ R,

sup
N

(
Eeγξ GbNsc,bNtc

)1/N
<∞.

This bound together with Theorem 4.1.4 suffice to apply Varadhan’s theorem (e.g. page

38 in [88]) which gives

lim
N→∞

N−1 logEeξG0,(bNsc,bNtc) = I∗s,t(ξ) = sup
r∈R
{rξ − Is,t(r)}

= sup
r∈[gpp(s,t),s]

{rξ − Is,t(r)} = sup
r∈[gpp(s,t),s]

{rξ − Js,t(r)}.

The first equality on the second line is because Is,t(r) =∞ if r ∈ (−∞, gpp(s, t)) or r > s

and there is no difference in excluding that interval from the supremum.

Then we can compute I∗s,t. Is,t is increasing for r ∈ [gpp(s, t), s], therefore if ξ < 0,

the supremum is always attained at r = gpp(s, t). Instead, when ξ ≥ 0, Is,t(ξ)
∗ = J∗s,t(ξ)

since r can range over all of R and the last supremum will still be attained for some

r ∈ [gpp(s, t), s].

4.4 Basic properties of the rate function

In this section we prove some important properties of the rate function which will be

necessary later on.

Lemma 4.4.1 (Continuity in the macroscopic directions). Let (s, t) ∈ R2
>0 and uN =

(sN , tN ) ∈ Z2
+ an increasing sequence such that N−1uN → (s, t). Then for r ∈ [0, s)

lim
N→∞

N−1 logP{GsN ,tN ≥ Nr} = −Js,t(r). (4.4.1)

Proof. Since uN and (bNsc , bNtc) are non-decreasing in N , for each N we can find two

sequences `N and mN such that

b`N (s, t)c ≤ uN ≤ bmN (s, t)c with N −mN , N − `N = o(N).

Then it is immediate that

Gb`Nsc,b`N tc ≤ GsN ,tN ≤ GbmNsc,bmN tc,

which gives

P{GbmNsc,bmN tc ≥ Nr} ≥ P{GsN ,tN ≥ Nr} ≥ P{Gb`Nsc,b`N tc ≥ Nr}.
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Taking the lim of both sides and by the continuity of the rate function we have

lim
N→∞

N−1 logP{GsN ,tN ≥ Nr} ≤ lim
N→∞

N−1 logP{GbmNsc,bmN tc ≥ Nr}

≤ lim
N→∞

m−1
N (

mN

N
) logP{GbmNsc,bmN tc ≥ mNr − (mN −N)r}

≤ lim
N→∞

m−1
N (

mN

N
) logP{GbmNsc,bmN tc ≥ mN (r − ε)}

for any ε > 0 and N large enough

= −Js,t(r − ε).

Then let ε→ 0 and invoke the continuity of J for the upper bound. Same arguments are

valid for the lower bound, using limN→∞ .

From Theorem 4.1.3 we have that Js,t(r) can be continuously extended to the boundary

of the domain A = {(s, t, r) : Js,t(r) <∞},

∂A = {s = 0, t ≥ 0, r ≤ 0} ∪ {t = 0, s ≥ r ∨ 0} ∪ {s = r, t ≥ 0}.

It will be convenient to understand the values of the continuation of Js,t(r) on ∂A.

For any s, t > 0 and r ≤ 0, Js,t(r) = 0. Therefore, we will have that

Js,0(r) = J0,t(r) = 0, r ≤ 0.

Now for the r > 0 case. Since we want Js,0(r) with (s ≥ r) continuous we define Js,0(r) =

limh→0 Js,h(r). An approximation using thin rectangles as in [51] gives that

Js,0(r) = sIB(r/s) = r log
r

sp
+
(
s− r

)
log

1− r/s
1− p

.

Recall that IB is the Cramér rate function for sums of i.i.d. ωi ∼ Bernoulli(p). This

discussion is summarised in Corollary 4.3.1.

Lemma 4.4.2 (Infimal convolutions). For each N let LN and ZN be two independent

random variables. Assume their rate functions

λ(s) = − lim
N→∞

N−1 logP{LN ≥ Ns}, (4.4.2)

φ(s) = − lim
N→∞

N−1 logP{ZN ≥ Ns} (4.4.3)

exists and

1. λ(s) is finite in (−∞, b) with b ∈ R̄ and λ(s) =∞ when s > b.

2. λ is continuous at all points for which is finite and lower semi-continuous on R.
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3. φ(s) is finite for all s ∈ R.

4. λ(aλ) = φ(aφ) = 0 for some aλ, aφ ∈ R.

Then for r ∈ R

lim
N→∞

N−1 logP{LN+ZN ≥ Nr}

=


− infaλ≤s≤b∧(r−aφ){φ(r − s) + λ(s)}, r > aφ + aλ,

0, r ≤ aφ + aλ.

(4.4.4)

Proof. First observe that the infimum in (4.4.4) is obtained when s satisfies aλ ≤ s ≤

b ∧ (r − aφ).

The lower bound follows from the independence of the two random variables

P{LN + ZN ≥ Nr} ≥ P{ZN ≥ N(r − s)}P{LN ≥ Ns}.

To upper bound for r ≤ aλ + aφ is immediate.

We therefore only discuss the case r > aλ + aφ. Take a finite partition aλ = q−1 =

q0 < · · · < qm−1 = b ∧ (r − aφ) < qm = qm+1.

Use a union bound and the independence of LN , ZN to derive

P{LN + ZN ≥ Nr} ≤ P{LN + ZN ≥ Nr,LN < Nq0}

+

m−1∑
i=0

P{LN + ZN ≥ Nr, nqi ≤ LN ≤ Nqi+1}+ P{LN ≥ Nqm}

≤ P{ZN ≥ N(r − q0)}+
m−1∑
i=0

P{ZN ≥ N(r − qi+1)}P{LN ≥ Nqi}+ P{LN ≥ Nqm}.

Now take the logarithm on both sides, divide by N and finally take N →∞ to obtain

lim
N→∞

N−1 logP{LN + ZN ≥ Nr}

≤ −min
{
φ(r − q0), min

0≤i≤m−1
{φ(r − qi+1) + λ(qi)}, λ(qm)

}
.

We may simplify the last inequality as

P{LN + ZN ≥ Nr} ≤ − min
−1≤i≤m

{φ(r − qi+1) + λ(qi)}

This is because λ(q0) = 0. Also, if b ≤ r− aφ then λ(qm) =∞ and it can be omitted from

the minimum. If b > r− aφ then φ(r− qm) = 0. The result then follows by the continuity

of λ on [aλ, b] by arbitrarily refining the partition.
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4.5 I.i.d. model: Right tail rate function and log moment

generating function

The main goal of this section is to prove an explicit variational formula for the rate

function Js,t(r). That formula, while precise does not enjoy enough analytical tractability

to further obtain a closed formula. However, its dual J∗s,t(ξ) will be explicitly computed

by the end of the section.

4.5.1 Exact computations for Js,t(r)

We first present a series of key technical lemmas, and we encourage the reader familiar

with these techniques to proceed to the proof of Proposition 4.1.6.

We will use the invariance property of the model with boundaries first. Consider the

last passage time in the model with boundary G
(u)
bNsc,bNtc and we iteratively apply equation

(4.2.1) to obtain

G
(u)
bNsc,bNtc −G

(u)
0,bNtc =

bNsc∑
i=1

I
(u)
i,bNtc.

Focus on the left hand side. From equation (4.1.4) and (4.2.1) we can write the previous

difference as

bNsc∑
i=1

I
(u)
i,bNtc = G

(u)
bNsc,bNtc −G

(u)
0,bNtc

= max
1≤k≤bNsc

{ k∑
i=1

I
(u)
i,0 +G(k,1),(bNsc,bNtc) −

bNtc∑
j=1

J
(u)
0,j

}
∨

max
1≤k≤bNtc

{ k∑
j=1

J
(u)
0,j + ω1,k +G(1,k),(bNsc,bNtc) −

bNtc∑
j=1

J
(u)
0,j

}

= max
1≤k≤bNsc

{ k∑
i=1

I
(u)
i,0 −

bNtc∑
j=1

J
(u)
0,j +G(k,1),(bNsc,bNtc)

}
∨

max
1≤k≤bNtc

{
−
bNtc∑
j=k+1

J
(u)
0,j + ω1,k +G(1,k),(bNsc,bNtc)

}
.

To compactify notation we use a convention where the y-axis is labeled by negative indices

and we define

for k ∈ Z ηk =


−
∑bNtc

j=−k+1 J
(u)
0,j k ≤ 0,∑k

i=1 I
(u)
i,0 −

∑bNtc
j=1 J

(u)
0,j k ≥ 1.

(4.5.1)

As such, we can say that the last passage time can be obtained on path that enters the
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bulk N2 at a point vz defined by

for z ∈ R v(z) =


(1, b−zc) z ≤ −1,

(1, 1) −1 < z < 1,

(bzc , 1) z ≥ 1,

(4.5.2)

and the gradient can be written as

bNsc∑
i=1

I
(u)
i,bNtc = max

b−Ntc≤k≤bNsc,k 6=0

{
ηk + ωv(k)1{k < 0}+Gv(k),(bNsc,bNtc)

}
.

Then the following inequalities are immediate:

ηk +Gv(k),(bNsc,bNtc) (4.5.3)

≤
bNsc∑
i=1

I
(u)
i,bNtc

≤ max
b−Ntc≤k≤bNsc,k 6=0

{ηk +Gv(k),(bNsc,bNtc)}+ 1. (4.5.4)

This inequality will be crucial for our purposes. We briefly discuss the main idea.

The second line in the last display is a sum of i.i.d. Bernoulli, so it has a known

large deviation rate function. A deviation for the
∑
I(u) is controlled above and below

by deviations for the expressions ηk + Gv(k),(bNsc,bNtc). ηk itself is either a sum of i.i.d.

geometric random variables or a difference of two independent sums; in either case the

large deviation rate function for ηk is computable, and the only unknown will be the

large deviation rate function for G (albeit in a complicated expression). The subsection is

devoted to following this program and to solve for the rate function of G.

It will be crucial to understand the function defined by

Ha,b
s,t (r) = − lim

N→∞
N−1 logP{ηbNac +Gv(Nb),(bNsc,bNtc) ≥ Nr}, (4.5.5)

where a, b ∈ [−t, s]. We first argue why the limit exists. This fact will be a direct

consequence of Lemma 4.4.2, when we show that the ηbNac and Gv(Nb),(bNsc,bNtc) will have

a right tail rate function.

We begin by computing the rate function for the ηk. For real a ∈ [−t, s], and r ∈ R

define

κa(r) = − lim
N→∞

N−1 logP{ηbNac ≥ Nr}. (4.5.6)

From (4.5.1) we observe that if k ≤ 0 ηk is a sum of i.i.d. geometric distributed random

variables while if k ≥ 1, ηk is the difference of two independent sums of i.i.d. random

variables.
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The convex dual is

κ∗a(ξ) = sup
r∈R
{ξr − κa(r)}

=



(t+ a)
[

log u−p
u(1−p) − log

(
1− p(1−u)

u(1−p)e
−ξ
)]
, for ξ > log p(1−u)

u(1−p) ,−t ≤ a ≤ 0,

t
[

log u−p
u(1−p) − log

(
1− p(1−u)

u(1−p)e
−ξ
)]

+ a log(ueξ + 1− u),

for ξ > log p(1−u)
u(1−p) , 0 < a ≤ s,

∞, otherwise.

=


(t+ a)C

( u−p
u(1−p) )

G (−ξ), for ξ > log p(1−u)
u(1−p) ,−t ≤ a ≤ 0,

tC
( u−p
u(1−p) )

G (−ξ) + aC
(u)
B (ξ), for ξ > log p(1−u)

u(1−p) , 0 < a ≤ s,

∞, otherwise.

(4.5.7)

The first line in (4.5.7) follows from Cramer’s theorem when the random variables are

geometric. The second line follows from Lemma 4.4.2 when LN =
∑bNac

i=1 I
(u)
i,0 and ZN =

−
∑bNtc

j=1 J
(u)
0,j , and the fact that the dual of an infimal convolution is the sum of the

corresponding duals.

Remark 4.5.1. The condition on ξ can be stated equivalently in terms of u. In fact, if

ξ ∈ R is fixed, the inequality ξ > log p(1−u)
u(1−p) becomes u > pe−ξ

1−p+pe−ξ . Moreover if ξ > 0,

pe−ξ

1−p+pe−ξ < p and so it remains u ∈ (p, 1].

The rightmost zero mκ,a of κa is the law of large numbers limit

mκ,a = lim
N→∞

N−1ηbNac =


−(t+ a) u−p

p(1−u) , −t ≤ a ≤ 0,

au− t u−p
p(1−u) , 0 < a ≤ s.

(4.5.8)

Note that when viewed as functions of a, κa, κ
∗
a and mκ,a are all continuous at a = 0.

For the rate function of Gv(Nb),(bNsc,bNtc), we first introduce the equivalent macroscopic

version of (4.5.2) for a ∈ R, by

N−1v(Na)→ v̄(a) =


(0,−a), −t ≤ a ≤ 0,

(a, 0), 0 < a ≤ s.
(4.5.9)

With this notation, the rate function of the last past passage time in the interior is

J(s,t)−v̄(a)(r) = − lim
N→∞

N−1 logP{Gv(Na),(bNsc,bNtc) ≥ Nr}. (4.5.10)

This is because Gv(Na),(bNsc,bNtc) equals in distribution G(0,0),(bNsc,bNtc)−v(Na). There will

be a small discrepancy between (bNsc , bNtc)−v(Na) and bN((s, t)− v̄(a))c but Lemma

4.4.1 proves that it is negligible in the limit.
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Let mκ,a and mJ,b be the rightmost zeros respectively of κa (defined by (4.5.8)) and

J(s,t)−v̄(b) (which equals gpp((s, t)− v̄(b)). Using Lemma 4.4.2 for (a, b) ∈ [−t, s]2, we have

Ha,b
s,t (r) =


0, r < mκ,a +mJ,b,

infmκ,a≤x≤r−mJ,b{κa(x) + J(s,t)−v̄(b)(r − x)}, mκ,a +mJ,b ≤ r ≤ s.
(4.5.11)

The following regularity lemma follows from the continuity properties we discussed up to

this point, and the details are left to the reader.

Lemma 4.5.2. Fix s, t ∈ (0,∞) and fix any compact set K ⊆ (−∞, s]. Then Ha,b
s,t (r) is a

uniformly continuous function of (b, r) ∈ [−t, s]×K, uniformly in a ∈ [−t, s]. In symbols

lim
δ→0

sup
a,b,b′∈[−t,s],r,r′∈K:
|b−b′|≤δ,|r−r′|≤δ

|Ha,b
s,t (r)−Ha,b′

s,t (r′)| = 0. (4.5.12)

When a = b we simplify the notation as Ha
s,t(r) = Ha,a

s,t (r). Observe that at this point

an expression involving Js,t manifested on the right-hand side of (4.5.11). Our goal is to

invert the relation and isolate Js,t.

The next lemma is the continuous version of the discrete inequalities (4.5.3), (4.5.4)

at the level of the rate functions.

Lemma 4.5.3. Let s, t ∈ (0,∞) and r ∈ [0, s]. Then

sI
(u)
B (r/s) = inf

−t≤a≤s
Ha
s,t(r). (4.5.13)

Proof. For any a ∈ [−t, s], by (4.5.3)

−sI(u)
B (r/s) = lim

N→∞
N−1 logP

{ bNsc∑
i=1

I
(u)
i,bNtc ≥ Nr

}
≥ lim

N→∞
N−1 logP{ηbNac +Gv(bNac),(bNsc,bNtc) ≥ Nr}

= −Ha
s,t(r).

This is true for an arbitrary a, therefore

sI
(u)
B (r/s) ≤ inf

−t≤a≤s
Ha
s,t(r). (4.5.14)

To get the lower bound we use (4.5.4) together with a coarse graining argument.

We begin describing the partition which will be helpful when we will use (4.5.4). Fix a

small enough δ > 0 to partition the interval [−t, s]. In particular, define −t = a0 < a1 <
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· · · < aq = 0 < · · · < am = s where |ai+1 − ai| < δ. Moreover, we fix an ε > 0 and we

assume that N is large enough so that Nε > 1.

When ai ≥ 0, for any k ∈ [bNaic , bNai+1c] ∩ Z,

P{ηk +Gv(k),(bNsc,bNtc) ≥ Nr} ≤ P
{
ηbNai+1c +Gv(bNaic),(bNsc,bNtc) ≥ Nr

}
.

Similarly, when ai < 0 and bNaic < k ≤ bNai+1c the bound becomes

P{ηk +Gv(k),(bNsc,bNtc) ≥ Nr} ≤ P
{
ηbNaic +Gv(bNai+1c),(bNsc,bNtc) ≥ Nr

}
.

From (4.5.4) we bound

P
{ bNsc∑

i=1

Ii,bNtc ≥ Nr
}
≤ P

{
max

b−Ntc≤k≤bNsc,
k 6=0

{ηk +Gv(k),(bNsc,bNtc)}+ 1 ≥ Nr
}

≤ P
{

max
b−Ntc≤k≤bNsc,

k 6=0

{ηk +Gv(k),(bNsc,bNtc)} ≥ N(r − ε)
}
.

Take logarithm on both sides and divide by N and use a union bound to obtain

N−1 logP
{ bNsc∑

i=1

Ii,bNtc ≥ Nr
}

≤ N−1 logm+
{

max
0≤i≤q−1

{
N−1 logP{ηbNaic +Gv(bNai+1c),(bNsc,bNtc) ≥ N(r − ε)}

}}
∨
{

max
q≤i≤m−1

{
N−1 logP{{ηbNai+1c +Gv(bNaic),(bNsc,bNtc) ≥ N(r − ε)}

}
.

Take N →∞ to get

−sI(u)
B (r/s) ≤

{
max

0≤i≤q−1
{−Hai,ai+1

s,t (r − ε)}
}
∨
{

max
q≤i≤m−1

{−Hai+1,ai
s,t (r − ε)}

}
≤ sup

a,b∈[−t,s]:|a−b|≤δ
{−Ha,b

s,t (r − ε)}.

Use Lemma 4.5.2 by letting δ → 0; this also implies b→ a. Then let ε→ 0.

The following lemma is the last technical tool we need in order to finally solve (4.5.13)

for the unknown rate function J . It proves convexity and lower semi-continuity of the

Legendre dual of J .

Lemma 4.5.4. For a fixed ξ ∈ R+, the function J∗s,t(ξ), as a function of (s, t), is

continuous and finite on R2
+.

Proof. By definition J∗s,t(ξ) = supr∈R{ξr − Js,t(r)}, but, since Js,t(r) = ∞ for r > s, and

Js,t(r) = 0 for r < gpp(s, t), we can write for ξ ≥ 0 that

J∗s,t(ξ) = sup
r∈[gpp(s,t),s]

{ξr − Js,t(r)}.
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ξ

J★10,1 (ξ)

Figure 4.3: Graphical representation of the function J∗s,t(r). In both figures we used

p = 0.1 and t = 1. To the left we have J∗s,1(ξ) as a function of (s, ξ) and one see the

directions of convexity when s is fixed and ξ varies, and the direction of concavity ranges

when ξ is fixed and s varies as described in the proof of Lemma 4.5.4. The blue line is at

s = 1/9 which the is characteristic point for p = 0.1 and t = 1. For smaller s, J∗s,1(ξ) = sξ.

To the right is the convex continuous function J∗10,1(ξ).

Then it is immediate to see that

J∗s,t(ξ) ≤ ξs, for all(s, t) ∈ R2
+.

Continuity will follow once we prove that J∗s,t(ξ) is a concave finite function. Let

λ ∈ (0, 1) and (s, t) = λ(s1, t1) + (1 − λ)(s2, t2) for some (si, ti) ∈ R2
+. Recall that J is

convex and lower-semicontinuous in (s, t, r) from Theorem 4.1.3. Write r as the convex

combination r = λr1 + (1− λ)r2 for some r1, r2 ∈ R. By convexity

inf
r∈R
{Js,t(r)− ξr}

≤ inf
r∈R

{
inf

(r1,r2):λr1+(1−λ)r2=r
{λ(Js1,t1(r1)− ξr1) + (1− λ)(Js2,t2(r2)− ξr2)}

}
= inf

(r1,r2)∈R2
{λ(Js1,t1(r1)− ξr1) + (1− λ)(Js2,t2(r2)− ξr2)}

= λ inf
r1∈R]
{Js1,t1(r1)− ξr1}+ (1− λ) inf

r2∈R
{Js2,t2(r2)− ξr2}

= −λJ∗s1,t1(ξ)− (1− λ)J∗s2,t2(ξ).

In the end we have

J∗s,t(ξ) ≥ λJ∗s1,t1(ξ) + (1− λ)J∗s2,t2(ξ),

which is enough to prove the concavity of J∗s,t(ξ) in (s, t).

Now we can find a variational expression for J∗.
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Proof of Proposition 4.1.6. If ξ < 0, by definition

J∗s,t(ξ) = sup
r∈R
{rξ−Js,t(r)} = sup

r<gpp(s,t)
{rξ−Js,t(r)}∨ sup

r∈[gpp(s,t),s]
{rξ−Js,t(r)}∨sup

r>s
{rξ−Js,t(r)}.

Note that the first supremum is +∞ since Js,t(r) = 0 for r < gpp(s, t) and ξ < 0. Therefore

J∗s,t(ξ) =∞ if ξ < 0.

If ξ ≥ 0, equation (4.5.11) gives that Ha
(s,t) is the infimal convolution of κa and

J(s,t)−v̄(a) since the value of the infimum does not change when we allow r to range over

all of R. We compactify the notation by writing Ha
s,t(r) = κa�J(s,t)−v̄(a)(r). By Theorem

16.4 in [92], the addition operation is dual to the infimal convolution operation. From

(4.5.13) of Lemma 4.5.3, take the Legendre dual on both sides to obtain

sC
(u)
B (ξ) = sup

−t≤a≤s

{
sup
r∈R
{rξ − (κa�J(s,t)−v̄(a))(r)}

}
= sup
−t≤a≤s

{
(κa�J(s,t)−v̄(a))

∗(ξ)
}

= sup
−t≤a≤s

{
(κ∗a(ξ) + J∗(s,t)−v̄(a)(ξ)

}
.

(4.5.15)

From (4.5.7) we can substitute the explicit expression of κ∗a(ξ). Define

−`ξ(u) = C
( u−p
u(1−p) )

G (−ξ) = log
u− p

u(1− p)− p(1− u)e−ξ
,

dξ(u) = C
(u)
B (ξ) = log(ueξ + 1− u).

(4.5.16)

Use this to simplify (4.5.15) into

sdξ(u) + t`ξ(u) = sup
0≤a≤t

{a`ξ(u) + J∗s,t−a(ξ)
}∨

sup
0≤a≤s

{adξ(u) + J∗s−a,t(ξ)
}
.

Subtract sdξ(u) + t`ξ(u) to either side

0 = sup
0≤z≤s

{J∗s−a,t(ξ)− [(s− a)dξ(u) + t`ξ(u)]
}
∨ sup

0≤z̃≤t
{J∗s,t−a(ξ)− [sdξ(u) + (t− a)`ξ(u)]

}
.

Use Proposition 4.2.7 identifying as I = (p, 1], Λ(s, t) = J∗s,t(ξ), h(u) = dξ(u), g(u) = `ξ(u)

and therefore fs,t(u) = sdξ(u) + t`ξ(u). The only hypothesis that is not immediately

verifiable is continuity of J∗ in s, t, but that is now covered by Lemma 4.5.4. Therefore,

if t < 1−p
p s

J∗s,t(ξ) = min
u∈(p,1]

{sdξ(u) + t`ξ(u)} = min
u∈(p,1]

{sC(u)
B (ξ)− tC

( u−p
u(1−p) )

G (−ξ)}.

For t ≥ 1−p
p s we reason directly: Js,t(r) = +∞1{r > s} and its convex dual will be sξ for

ξ > 0. This is also the minu∈(p,1]{sC
(u)
B (ξ)− tC

( u−p
u(1−p) )

G (−ξ)}, with the minimum obtained

at u = 1.
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4.5.2 Closed formula for J∗s,t(ξ)

Proof of Theorem 4.1.7. The aim of this proof is to find an analytical result for the in-

fimum in Proposition 4.1.6 when t < 1−p
p s. Therefore we start computing the derivatives

of the two cumulant-generating function and to find the optimizing point we solve the

equation

0 =s
∂C

(u)
B (ξ)

∂u
− t

∂C
( u−p
u(1−p) )

G (−ξ)
∂u

= s
eξ − 1

1 + u(eξ − 1)

− t p(p− 1)(e−ξ − 1)

u2(1 + p(e−ξ − 1))− up[1 + e−ξ + p(e−ξ − 1)] + p2e−ξ

or equivalently, after the algebraic simplification of denominators

0 =u22s[(1− p)(eξ − 1) + p(1− e−ξ)]− up[(1− p)(s+ t)(eξ + e−ξ − 2) + 2s(1− e−ξ)]

+ (e−ξ − 1)p((1− p)(s+ t)− s).

The minimum is in fact attained to the solution to this equation (for further details see

Appendix B.1). The minimizing point is

u∗ =
p(1− p)(s+ t)(eξ + e−ξ − 2) + 2sp(1− e−ξ) +

√
∆

2s[(1− p)(eξ − 1) + p(1− e−ξ)]
(4.5.17)

with ∆ = p(1− p)(eξ + e−ξ − 2)[(1− p)p(s+ t)2(eξ + e−ξ − 2) + 4st]. Then (4.1.22) follows

directly by

J∗s,t(ξ) = sC
(u∗)
B (ξ)− tsC(u∗)

G (−ξ).

4.6 Invariant model: Limiting log-moment generating func-

tions

Before proving the two main theorems, we begin by verifying the existence of limits

(4.1.24) and (4.1.25). We begin by noting that similar arguments as in Lemma 4.5.3 give

that

− lim
N→∞

N−1 logP{G(u),hor
bNsc,bNtc ≥ Nr} = inf

a∈[0,s]
inf
x∈R
{aI(u)
B ((r − x)/a) + Js−a,t(x)}. (4.6.1)

Equation (4.6.1) in particular verifies the existence of the limit in the left-hand side, and

we denote it by

− lim
N→∞

N−1 logP{G(u),hor
bNsc,bNtc ≥ Nr} = J

(u),hor
s,t (r). (4.6.2)

Finally, observe that we take the Legendre transform, equation (4.6.1) becomes

(J
(u),hor
s,t )∗(ξ) = sup

a∈[0,s]
{aC(u)

B (ξ) + J∗s−a,t(ξ)}. (4.6.3)

Symmetric definitions and arguments give similar equations for J
(u),ver
s,t .
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Lemma 4.6.1. Let G
(u),hor
bNsc,bNtc be the last passage time given by (4.1.6), and let (J

(u),hor
s,t )∗(ξ)

given by (4.6.3). Then for ξ > 0,

lim
N→∞

N−1 logE[e
ξG

(u),hor
bNsc,bNtc ] = (J

(u),hor
s,t )∗(ξ). (4.6.4)

Corresponding statements hold for G
(u),ver
bNsc,bNtc.

Proof. Let ξ ≥ 0. Set

γ = lim
N→∞

N−1 logE[e
ξG

(u),hor
bNsc,bNtc ] and γ̄ = lim

N→∞
N−1 logE[e

ξG
(u),hor
bNsc,bNtc ].

The lower bound is immediate using the exponential Chebyshev inequality

N−1 logP{G(u),hor
bNsc,bNtc ≥ Nr} ≤ −ξr +N−1 logE[e

ξG
(u),hor
bNsc,bNtc ].

Letting N → ∞ along a suitable subsequence gives γ ≥ ξr − J (u),hor
s,t (r) for all r ∈ [0, s].

Thus γ ≥ (J
(u),hor
s,t )∗(ξ) holds.

For the upper bound we first claim that for every r > s

N−1 logE[e
ξG

(u),hor
bNsc,bNtc1{G(u),hor

bNsc,bNtc ≥ Nr}] = −∞. (4.6.5)

To see this, apply Holder’s inequality to the expectation in (4.6.5). For any α > 1,

N−1 logE[e
ξG

(u),hor
bNsc,bNtc1{G(u),hor

bNsc,bNtc ≥ Nr}]

≤ N−1 log{E[e
αξG

(u),hor
bNsc,bNtc ]α

−1
E[1{G(u),hor

bNsc,bNtc ≥ Nr}
α
α−1 ]

α−1
α }

= (αN)−1 log(E[e
αξG

(u),hor
bNsc,bNtc ]) + (α− 1)α−1N−1 logP{G(u),hor

bNsc,bNtc ≥ Nr}.

The first term is finite since G
(u),hor
bNsc,bNtc ≤ bNsc and for the same reason the second term

equals −∞.

To show the upper bound in (4.6.4) pick a δ > 0 and partition R with ri = iδ, i ∈ Z:

N−1 logE[e
ξG

(u),hor
bNsc,bNtc ]

≤ N−1 log
[ m∑
i=−m

eNξri+1P{G(u),hor
bNsc,bNtc ≥ Nri}

+ eNξr−m + E[e
ξG

(u),hor
bNsc,bNtc1{G(u),hor

bNsc,bNtc ≥ Nrm}]
]
.

(4.6.6)

By (4.6.5), for each M > 0 there exists m = m(M) so that for all N large enough

N−1 logE[e
ξG

(u),hor
bNsc,bNtc1{G(u),hor

bNsc,bNtc ≥ Nrm}] < −M.

Take a limit as N →∞ along any subsequence that achieves γ̄ to see that (4.6.6) implies

γ̄ ≤ max
−m≤i≤m

{ξri+1 − J (u),hor
s,t (ri)} ∨ ξr−m ∨ (−M)
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≤
(

sup
r∈[0,s]

{ξr − J (u),hor
s,t (r)}+ ξδ

)
∨ ξr−m ∨ (−M).

The statement of the Lemma follows by letting δ → 0, m→∞ and M →∞.

In order to repeat the estimates for G
(u),ver
bNsc,bNtc the equivalent statement for (4.6.5) is

lim
r→∞

lim
N→∞

N−1 logE[e
ξG

(u),ver
bNsc,bNtc1{G(u),ver

bNsc,bNtc ≥ Nr}] = −∞.

We omit the remaining details, but the interested reader can find a similar calculation in

[51].

Proof of Theorem 4.1.8. The existence of limit (4.1.24) is verified by Lemma 4.6.1. Then,

use in sequence equations (4.6.3) and (4.6.4) and Proposition 4.1.6 to write

Λ
(u),hor
(s,t) (ξ) = sup

a∈[0,s]
{aC(u)

B (ξ) + J∗s−a,t(ξ)}

= sup
a∈[0,s]

{
inf

θ∈(p,1]
{a
(
C

(u)
B (ξ)− C(θ)

B (ξ)
)

+ sC
(θ)
B (ξ)− tC

( θ−p
θ(1−p) )

G (−ξ)}
}
.

The sup and inf can be interchanged by a minimax theorem (e.g. [67]). The function

inside the supremum is linear in a. Thus the supremum will be reached at one of the two

boundary points according to the sign of the difference

C
(u)
B (ξ)− C(θ)

B (ξ)


> 0, if θ ∈ (u, 1],

= 0, if θ = u,

< 0, if θ ∈ (p, u).

Therefore we have

Λ
(u),hor
(s,t) (ξ) = inf

θ∈(u,1]
{sC(u)

B (ξ)− tC
( θ−p
θ(1−p) )

G (−ξ)} ∧ {sC(u)
B (ξ)− tC

( u−p
u(1−p) )

G (−ξ)}

∧ inf
θ∈(p,u)

{sC(θ)
B (ξ)− tC

( θ−p
θ(1−p) )

G (−ξ)}.
(4.6.7)

Note that, since −C
( θ−p
θ(1−p) )

G (−ξ) is increasing in θ, the first term on the right-hand side of

(4.6.7) is always greater than the second one. So, it remains to compare the second and

the third term.

Call θ∗ the minimizing point in (p, 1] for the expression sC
(θ)
B (ξ) − tC

( θ−p
θ(1−p) )

G (−ξ)

(4.5.17) in this specific case. Then, there are two possible cases:

(1) If θ∗ ≤ u, then

Λ
(u),hor
(s,t) (ξ) = inf

θ∈(p,u)
{sC(θ)

B (ξ)−tC
( θ−p
θ(1−p) )

G (−ξ)} = sC
(θ∗)
B (ξ)−tC

( θ∗−p
θ∗(1−p) )

G (−ξ) = Λ(s,t)(ξ).
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(2) If θ∗ > u then

Λ
(u),hor
(s,t) (ξ) = sC

(u)
B (ξ)− tC

( u−p
u(1−p) )

G (−ξ).

This concludes the proof of (4.1.29). For the analogous result in the vertical case, first

note that we may write

Λ(s,t)(ξ) = J∗s,t(ξ) = inf
u∈(p,1]

{tC
( u−p
u(1−p) )

G (ξ)− sC(u)
B (−ξ)}. (4.6.8)

That is possible to prove either by repeating the same computation in the subsection 4.5.1

but starting G
(u)
bNsc,bNtc−G

(u)
bNsc,0 =

∑bNtc
j=1 J

(u)
bNsc,j , or by computing (4.6.8) as in the proof

of Theorem 4.1.7 and observe that it gives the same result.

Then as in the case for the horizontal boundary only,

Λ
(u),ver
(s,t) (ξ) = sup

a∈[0,t]
{aC

( u−p
u(1−p) )

G (ξ) + J∗s,t−a(ξ)}

= sup
a∈[0,t]

{
inf

θ∈(p,1]
{a
(
C

( u−p
u(1−p) )

G (ξ)− C
( θ−p
θ(1−p) )

G (ξ)
)

+ tC
( θ−p
θ(1−p) )

G (ξ)− sC(θ)
B (−ξ)}

}
.

From this expression we see that we need to restrict ξ ∈ [0, log u(1−p)
p(1−u)), otherwise Λ

(u),ver
(s,t) (ξ)

is not finite. Then, as before, for ξ ∈ [0, log u(1−p)
p(1−u))

Λ
(u),ver
(s,t) (ξ)

=


infθ∈(p,1]{tC

( θ−p
θ(1−p) )

G (ξ)− sC(θ)
B (−ξ)} = Λ(s,t)(ξ) if t ≤ k(u)(−ξ)s,

infθ∈(p,u]{tC
( θ−p
θ(1−p) )

G (ξ)− sC(u)
B (−ξ)} = tC

( u−p
u(1−p) )

G (ξ)− sC(u)
B (−ξ) if t > k(u)(−ξ)s.

This concludes the proof of the theorem.

Since the following proof is based on (4.1.26), we want to show first that it is true. As

usual we proceed finding an upper and a lower bound for Λ
(u)
s,t (ξ). We start from the lower

bound. By (4.1.8) we have that

0 ≤ G(u),i
bNsc,bNtc ≤ G

(u)
bNsc,bNtc, where i = {hor, ver}.

Then, if ξ > 0

E[e
ξG

(u),i
bNsc,bNtc ] ≤ E[e

ξG
(u)
bNsc,bNtc ].

Take the logarithm of both sides, divide by N and let N →∞ to obtain the lower bound

Λ
(u),i
(s,t) (ξ) ≤ Λ

(u)
(s,t)(ξ).

For the upper bound, let v1 be the first step that the maximal path makes starting from

(0, 0) and note that

E[e
ξG

(u)
bNsc,bNtc ] = E[e

ξG
(u)
bNsc,bNtc11{v1 = e1}] + E[e

ξG
(u)
bNsc,bNtc11{v1 = e2}]
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≤ E[e
ξG

(u),hor
bNsc,bNtc ] + E[e

ξG
(u),ver
bNsc,bNtc ] ≤ 2

(
E[e

ξG
(u),hor
bNsc,bNtc ] ∨ E[e

ξG
(u),ver
bNsc,bNtc ]

)
.

Take the logarithm of both sides, divide by N and let N →∞ to get

Λ
(u)
(s,t)(ξ) ≤ Λ

(u),hor
(s,t) (ξ) ∨ Λ

(u),ver
(s,t) (ξ).

Proof of Theorem 4.1.9. All the proof is based on (4.1.26). First note that by Proposition

4.1.6 and (4.6.8) we have that for any u

Λ(s,t)(ξ) ≤ sC
(u)
B (ξ)− tC

( u−p
u(1−p) )

G (−ξ) and Λ(s,t)(ξ) ≤ tC
( u−p
u(1−p) )

G (−ξ)− sC(u)
B (−ξ).

(4.6.9)

Therefore, if ξ ∈ [log u(1−p)
p(1−u)),∞), Λ

(u)
(s,t)(ξ) =∞.

If ξ ∈ (0, log u(1−p)
p(1−u)) we define three regions in the quadrant by

L = {(s, t) : t < k(u)(−ξ)s}, M = {(s, t) : k(u)(−ξ)s ≤ t ≤ k(u)(ξ)s}, U = R2
+ \ (M ∪ L).

k(u)(ξ) is defined by (4.1.27) and one can directly verify that k(u)(−ξ) < k(u)(ξ). For

(s, t) ∈ L, Λ
(u)
s,t (ξ) = sC

(u)
B (ξ) − tC

( u−p
u(1−p) )

G (−ξ) = Λ
(u),hor
(s,t) (ξ) by (4.1.26),(4.6.9), since

Λ
(u),ver
(s,t) (ξ) = Λ(s,t)(ξ). For (s, t) ∈ U the arguments are symmetric, with Λ

(u)
(s,t)(ξ) =

tC
( u−p
u(1−p) )

G (ξ)− sC(u)
B (−ξ).

From (4.1.26), (4.6.9) and Theorem 4.1.8, we have that

Λ
(u)
(s,t)(ξ) =


Λ

(u),ver
(s,t) (ξ), t ≥ k(u)(ξ)s,

Λ
(u),ver
(s,t) (ξ) ∨ Λ

(u),hor
(s,t) (ξ), k(u)(ξ)s < t < k(u)(ξ)s,

Λ
(u),hor
(s,t) (ξ), t ≤ k(u)(−ξ)s.

By (4.1.26) and Theorem 4.1.8, Λ
(u)
(s,t)(ξ) is continuous in (s, t). From this and the fact

that the middle branch above is linear in (s, t), we conclude that the slope `(u)(ξ) of the

line

t = `(u)(ξ)s⇐⇒ {(s, t) ∈ R2
+ : Λ

(u),ver
(s,t) (ξ) = Λ

(u),hor
(s,t) (ξ)}

satisfies k(u)(ξ) ≥ `(u)(ξ) ≥ k(u)(−ξ) and therefore

Λ
(u)
(s,t)(ξ) =


sC

(u)
B (ξ)− tC

( u−p
u(1−p) )

G (−ξ), if k(u)(−ξ))s ≤ t ≤ `(u)(ξ)s,

tC
( u−p
u(1−p) )

G (ξ)− sC(u)
B (−ξ), if `(u)(ξ)s < t ≤ k(u)(ξ))s.

This gives the theorem.
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with sources and sinks. ALEA Lat. Am. J. Probab. Math. Stat., 13:33–52, 2016. 13,

19, 86

[13] Riddhipratim Basu, Shirshendu Ganguly, and Allan Sly. Upper tail large deviations

in first passage percolation. arXiv preprint arXiv:1712.01255, 2017. 17

[14] Riddhipratim Basu, Vladas Sidoravicius, and Allan Sly. Last passage percolation

with a defect line and the solution of the slow bond problem. arXiv preprint

arXiv:1408.3464, 2014. 11, 12

[15] Thierry Bodineau, James Martin, et al. A universality property for last-passage per-

colation paths close to the axis. Electronic Communications in Probability, 10:105–

112, 2005. 10, 16

[16] Alexei Borodin, Ivan Corwin, and Daniel Remenik. Log-gamma polymer free energy

fluctuations via a Fredholm determinant identity. Comm. Math. Phys., 324(1):215–

232, 2013. 12

[17] Alexei Borodin and Leonid Petrov. Inhomogeneous exponential jump model. Prob-

ability Theory and Related Fields, 172(1-2):323–385, 2018. 12, 22

[18] Simon R Broadbent and John M Hammersley. Percolation processes: I. crystals

and mazes. In Mathematical Proceedings of the Cambridge Philosophical Society,

volume 53, pages 629–641. Cambridge University Press, 1957. 2

[19] Paul J Burke. The output of a queuing system. Operations research, 4(6):699–704,

1956. 21

[20] Jeff Calder. Directed last passage percolation with discontinuous weights. Journal

of Statistical Physics, 158(4):903–949, 2015. 11, 30, 31

[21] Eric Cator and Piet Groeneboom. Second class particles and cube root asymptotics

for Hammersley’s process. Ann. Probab., 34(4):1273–1295, 2006. 13

169



[22] Hans Chaumont and Christian Noack. Characterizing stationary 1+ 1 dimensional

lattice polymer models. Electronic Journal of Probability, 23, 2018. 22

[23] Gui-Qiang Chen, Nadine Even, and Christian Klingenberg. Hyperbolic conservation

laws with discontinuous fluxes and hydrodynamic limit for particle systems. Journal

of Differential Equations, 245(11):3095–3126, 2008. 11

[24] Yunshyong Chow and Yu Zhang. Large deviations in first-passage percolation. The

Annals of Applied Probability, 13(4):1601–1614, 2003. 17
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[43] P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio Math.,

2:463–470, 1935. 14

[44] Patrik L Ferrari and Herbert Spohn. Random growth models. arXiv preprint

arXiv:1003.0881, 2010. 12

[45] Nicos Georgiou. Soft edge results for longest increasing paths on the planar lattice.

Electronic Communications in Probability, 15:1–13, 2010. 16, 20, 87

[46] Nicos Georgiou, Rohini Kumar, and Timo Seppäläinen. TASEP with discontinuous

jump rates. ALEA Lat. Am. J. Probab. Math. Stat., 7:293–318, 2010. 11, 32, 42, 65

[47] Nicos Georgiou and Janosch Ortmann. Optimality regions and fluctuations for

bernoulli last passage models. Mathematical Physics, Analysis and Geometry,

21(3):22, 2018. 16, 20, 87

171



[48] Nicos Georgiou, Firas Rassoul-Agha, and Timo Seppäläinen. Variational formulas
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common subsequence for large alphabets. Advances in Mathematics, 197(2):480–

498, 2005. 15

173



[72] Alisa Knizel, Leonid Petrov, and Axel Saenz. Generalizations of tasep in discrete

and continuous inhomogeneous space. arXiv preprint arXiv:1808.09855, 2018. 12,

22

[73] Arjun Krishnan. Variational formula for the time-constant of first-passage percola-

tion. Comm. Pure Appl. Math., 2016. To appear (arXiv:1311.0316). 10

[74] B. F. Logan and L. A. Shepp. A variational problem for random Young tableaux.

Advances in Math., 26(2):206–222, 1977. 14

[75] Carolyn T MacDonald, Julian H Gibbs, and Allen C Pipkin. Kinetics of biopolymer-

ization on nucleic acid templates. Biopolymers: Original Research on Biomolecules,

6(1):1–25, 1968. 7

[76] Jean Mairesse and Balaji Prabhakar. The existence of fixed points for the ·/GI/1

queue. The Annals of Probability, 31(4):2216–2236, 2003. 22

[77] R. Marchand. Strict inequalities for the time constant in first passage percolation.

Ann. Appl. Probab., 12(3):1001–1038, 2002. 16

[78] James B Martin. Limiting shape for directed percolation models. Annals of probab-

ility, pages 2908–2937, 2004. 10, 20

[79] James B Martin. Last-passage percolation with general weight distribution. Markov

Process. Related Fields, 12(2):273–299, 2006. 6

[80] J. Moriarty and N. O’Connell. On the free energy of a directed polymer in a Brownian

environment. Markov Process. Related Fields, 13(2):251–266, 2007. 12, 22

[81] Neil O’Connell and Janosch Ortmann. Tracy-widom asymptotics for a random poly-

mer model with gamma-distributed weights. Electron. J. Probab., 20(25):1–18, 2015.

12, 22

[82] Neil O’Connell and Marc Yor. Brownian analogues of Burke’s theorem. Stochastic

Process. Appl., 96(2):285–304, 2001. 22

[83] Stefano Olla and Li-Cheng Tsai. Exceedingly large deviations of the totally asym-

metric exclusion process. arXiv preprint arXiv:1708.07052, 2017. 17
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[98] Timo Seppäläinen. Increasing sequences of independent points on the planar lattice.

The Annals of Applied Probability, 7(4):886–898, 1997. 13, 14, 15, 19, 20, 86
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Appendix A

A.1 Approximation in 2.3.19

In this appendix section we perform all the computations step by step to get (2.3.19).

From (2.3.16)

f(a) = f(0) +

∫ a

0
f ′(s)ds = f(0)− 2c

(−)
1/2a

1/2 − c

γ + 1/2
aγ+1/2, (A.1.1)

for a small enough. Since m2 in (2.3.8) is defined as a very complicated function of a we

prefer to approximate every addend separately and then put all together.

Recall

1

c1xα + c2xβ
=

1

c1xα
1

1 + c2
c1
xβ−α

=
1

c1xα

(
1− c2

c1
xβ−α +O(x2(β−α))

)
α < β. (A.1.2)

Use (A.1.2) to compute

1

f ′(a)
=

−a1/2

c
(−)
1/2 + caγ

= −a
1/2

c
(−)
1/2

1

1 + c

c
(−)
1/2

aγ

= −a
1/2

c
(−)
1/2

(
1− c

c
(−)
1/2

aγ +O(a2γ)
)

= −a
1/2

c
(−)
1/2

+
c

c
(−)2
1/2

aγ+1/2 +O(a2γ+1/2). (A.1.3)

Since m1(a) = f(a)/a = f(0)
a (1− 2r

r−1
a1/2√
f(0)
− c

γ+1/2
aγ+1/2

f(0) ) we then have

m1(a)

f ′(a)
= −

(r − 1)
√
f(0)

r
a−1/2 + c

(r − 1)2

r2
aγ−1/2 + 2− 2cγ

(γ + 1/2)c
(−)
1/2

aγ +O(a2γ+1/2).

(A.1.4)

By the Taylor expansion
√

1 + x = 1 +
1

2
x+O(x2) (A.1.5)

we obtain

√
m1(a) =

√
f(0)

a

(
1− r

r − 1

a1/2√
f(0)

− c

2(γ + 1/2)

aγ+1/2

f(0)
+O(a)

)
=
√
f(0)a−1/2 − r

r − 1
− c

2(γ + 1/2)

aγ√
f(0)

+O(a1/2)
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and using 1√
1+x

= 1− 1
2x+O(x2) we get

1√
m1(a)

=

√
a

f(0)

(
1 +

r

r − 1

a1/2√
f(0)

+
c

2(γ + 1/2)f(0)
aγ+1/2 +O(a)

)
=

a1/2√
f(0)

− r

(r − 1)f(0)
a− c

2(γ + 1/2)(f(0))3/2
aγ+1 +O(a3/2). (A.1.6)

From (2.1.11) we are able to expand − 1
f ′(a) − 1 + D which after some rearrangement we

can substitute (A.1.3), (A.1.4), (A.1.6) in and obtain

− 1

f ′(a)
− 1 +D = (r − 1)

( 1

f ′(a)
+ 1
)

+ r
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(A.1.7)
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( ra1/2√

f(0)
− r2

(r − 1)f(0)
a

− rc

2(γ + 1/2)(f(0))3/2
aγ+1 +O(a3/2)

)(
−

(r − 1)
√
f(0)

r
a−1/2 + c

(r − 1)2

r2
aγ−1/2 + 3

− 2cγ

(γ + 1/2)c
(−)
1/2

aγ +O(a2γ+1/2)
)

= − 3r2

(r − 1)f(0)
a+

3r2 + 2r − 1

r
√
f(0)

a1/2 + c
(r − 1)2

r
√
f(0)
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− c
(

2− (r − 1)2
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r(4γ − 1)
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To know at which order of a we can approximate we split out analysis into two cases

according to the value of γ

1. γ ∈ (0, 1/2),

2. γ ∈ [1/2,∞).

If γ ∈ (0, 1/2), from (A.1.8)(
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Substitute (A.1.9) into the following expression√(
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and by (A.1.5) we can Taylor expand√(
− 1
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In the end, putting all estimates together, we approximate (2.3.8)

1√
m2(ε)

=
1

2

∣∣∣− 1

f ′(a)
− 1 +D +

√(
− 1

f ′(a)
− 1 +D

)2
− 4

1

f ′(a)

∣∣∣
=

1

2

∣∣∣3r2 + 2r − 1

r
√
f(0)

a1/2 − c(r − 1)2

r
√
f(0)

aγ + c
(r − 1)2

r
√
f(0)

aγ +
2

c(r − 1)
a−γ+1/2

+
(
− r2(4γ − 1)− 4r(γ + 1/2) + 2(γ + 1/2)

) (3r2 + 2r − 1)

(2γ + 1)(r − 1)3c
(−)2
1/2

a1/2 +O(aγ+1/2)
∣∣∣

=
1

2

∣∣∣((2γ + 1)
(

2r − 1 + r(r − 1)
√
f(0)

)
+ r2(4γ − 1)

) (3r2 + 2r − 1)

(2γ + 1)(r − 1)3c
(−)2
1/2

a1/2

+
2

c(r − 1)
a−γ+1/2 +O(aγ+1/2)

∣∣∣.
(A.1.10)

If γ ∈ [1/2,∞), from (A.1.8)

(
− 1

f ′(a)
− 1 +D

)2
=

(3r2 + 2r − 1)2

r2f(0)
a− 2c

(3r2 + 2r − 1)

c
(−)2
1/2

aγ+1/2 +O(aγ+1). (A.1.11)

Use (A.1.11) to obtain√(
− 1

f ′(a)
− 1 +D

)2
− 4

1

f ′(a)
=
( 4

c
(−)
1/2

a1/2 +
(3r2 + 2r − 1)2

r2f(0)
a

+ c
(
− r2(4γ − 1)− 4r(γ + 1/2) + 2(γ + 1/2)

)(r − 1)(3r2 + 2r − 1)

r3(γ + 1/2)f(0)3/2
aγ+1/2 +O(aγ+1)

)1/2

= 2

√
c

(−)
1/2a

1/4
(

1 +
(3r2 + 2r − 1)2

4r(r − 1)
√
f(0)

a1/2

+ c
(
− r2(4γ − 1)− 4r(γ + 1/2) + 2(γ + 1/2)

) 3r2 + 2r − 1

4r2(γ + 1/2)f(0)
aγ +O(aγ+1/2)

)1/2
.

By (A.1.5)√(
− 1

f ′(a)
− 1 +D

)2
− 4

1

f ′(a)
= 2

√
c

(−)
1/2a

1/4 +
(3r2 + 2r − 1)2

2r3/2
√
r − 1f(0)3/4

a3/4

+ c
(
− r2(4γ − 1)− 4r(γ + 1/2) + 2(γ + 1/2)

) (3r2 + 2r − 1)
√
r − 1

2r5/2(γ + 1/2)f(0)5/4
aγ+1/4 +O(aγ+3/4)

)
.
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Finally, combining the estimates we have

1√
m2(ε)

=
1

2

∣∣∣− 1

f ′(a)
− 1 +D +

√(
− 1

f ′(a)
− 1 +D

)2
− 4

1

f ′(a)

∣∣∣
=

1

2

∣∣∣2√c(−)
1/2a

1/4 +
3r2 + 2r − 1

r
√
f(0)

a1/2 + c
r − 1

c
(−)
1/2

aγ +O(a3/4)
∣∣∣. (A.1.12)

Equation (2.3.19), follows from (A.1.10) and (A.1.12).
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Appendix B

B.1 Proof of the minimum point u∗ in (4.5.17)

In this appendix section we want to find the solutions to

0 =u22s[(1− p)(eξ − 1) + p(1− e−ξ)]− up[(1− p)(s+ t)(eξ + e−ξ − 2) + 2s(1− e−ξ)]

+ (e−ξ − 1)p((1− p)(s+ t)− s).
(B.1.1)

And prove that the correspondent result is a minimum point for the function

f(u) = sC
(u)
B (ξ)− tC

( u−p
u(1−p) )

G (−ξ).

(B.1.1) is a second degree equation in u which has two real solutions if its ∆ ≥ 0.

∆ = e2ξ(1− p)2(s+ t)2p2 + e−2ξ(1− p)2(s+ t)2p2 + 6(1− p)2(s+ t)2p2

− 8p(1− p)st− 4e−ξ[p2(1− p)2(s+ t)2 − p(1− p)st]− 4eξ{p2(1− p)2(s+ t)2

− p(1− p)st}

= [(1− p)p(s+ t)(eξ + e−ξ − 2)]2 + 4p(1− p)st(eξ + e−ξ − 2)

= p(1− p)(eξ + e−ξ − 2)[(1− p)p(s+ t)2(eξ + e−ξ − 2) + 4st]

= 4p(1− p)(cosh ξ − 1)[(1− p)p(s+ t)2(cosh ξ − 1) + 2st] ≥ 0 ∀ξ ≥ 0,

since cosh ξ ≥ 1 . So the two optimal solutions are given by

u∗ =
p(1− p)(s+ t)(eξ + e−ξ − 2) + 2sp(1− e−ξ)±

√
∆

2s(2p− 1 + (1− p)eξ − pe−ξ)
.

To be proper candidates, these u∗ have to satisfy two features

(1) u∗ ∈ (p, 1],

(2) u∗ have to be two minimum points.

We begin from checking if u∗ ∈ (p, 1]. We analyze the two solutions separately starting

from the plus one.

p(1− p)(s+ t)(eξ + e−ξ − 2) + 2sp(1− e−ξ) +
√

∆

2s[(1− p)(eξ − 1) + p(1− e−ξ)]
> p
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p(1− p)(s+ t)(eξ + e−ξ − 2) + 2sp(1− e−ξ)(1− p) +
√

∆− p2s(1− p)(eξ − 1)

2s[(1− p)(eξ − 1) + p(1− e−ξ)]
> 0

p(1− p)(t− s)(eξ + e−ξ − 2) +
√

∆

2s[(1− p)(eξ − 1) + p(1− e−ξ)]
> 0

The numerator is always positive while the denominator is positive if ξ > 0. The other

bound

p(1− p)(s+ t)(eξ + e−ξ − 2) + 2sp(1− e−ξ) +
√

∆

2s[(1− p)(eξ − 1) + p(1− e−ξ)]
≤ 1

p(1− p)(s+ t)(eξ + e−ξ − 2) +
√

∆− 2s(1− p)(eξ − 1)

2s[(1− p)(eξ − 1) + p(1− e−ξ)]
≤ 0.

The denominator is always positive for ξ > 0, therefore the overall fraction is negative if

and only if

p(1− p)(s+ t)(eξ + e−ξ − 2) +
√

∆− 2s(1− p)(eξ − 1) ≤ 0 (B.1.2)

If p(1− p)(s+ t)(eξ + e−ξ − 2) > 2s(1− p)(eξ − 1) the numerator is automatically positive

and so the all fraction is never less than zero. Thus, we treat the case p(1− p)(s+ t)(eξ +

e−ξ− 2) < 2s(1− p)(eξ− 1) for which it is useful to know the hyperbolic function equality

2eξ cosh ξ = e2ξ + 1.

p(1− p)(s+ t)(eξ + e−ξ − 2) < 2s(1− p)(eξ − 1)

p(s+ t)(cosh ξ − 1) < s(eξ − 1)

where in the last inequality we have divide both sides by 1 − p. Substitute cosh ξ =

(eξ + e−ξ)/2 and divide both sides by (eξ − 1)

p(s+ t)e−ξ(eξ − 1)2 < 2s(eξ − 1)

p(s+ t)(1− e−ξ) < 2s

t <
( 2

p(1− e−ξ)
− 1
)
s.

If the above condition is satisfied, we can isolate on one side
√

∆ in (B.1.2) and square

both sides

p(1− p)(s+ t)(eξ + e−ξ − 2) +
√

∆− 2s(1− p)(eξ − 1) ≤ 0

4(1− p)2p2(s+ t)2(cosh ξ − 1)2 + 8stp(1− p)(cosh ξ − 1)

≤ 4p2(1− p)2(s+ t)2(cosh ξ − 1)2 + 4s2(1− p)2(e2ξ + 1− 2eξ)

− 8sp(1− p)2(s+ t)(cosh ξ − 1)(eξ − 1)

8stp(cosh ξ − 1) ≤ 8s2(1− p)eξ(cosh ξ − 1)
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− 8sp(1− p)(s+ t)(cosh ξ − 1)(eξ − 1)

stp(eξ − p(eξ − 1)) ≤ s2(1− p)eξ − s2p(1− p)(eξ − 1)

stp(eξ(1− p) + p) ≤ s2(1− p)(eξ(1− p) + p)

t ≤ (1− p)
p

s.

It is immediate to verify that
(

2
p(1−e−ξ) − 1

)
s > (1−p)

p s for every ξ > 0.

Now repeat the same computations for the minus solution

p(1− p)(s+ t)(eξ + e−ξ − 2) + 2sp(1− e−ξ)−
√

∆

2s[(1− p)(eξ − 1) + p(1− e−ξ)]
> p

p(1− p)(t− s)(eξ + e−ξ − 2)−
√

∆

2s[(1− p)(eξ − 1) + p(1− e−ξ)]
> 0

The numerator in this case is always negative therefore the all fraction is positive if ξ < 0.

Therefore we automatically know that this solution is not acceptable.

It remains to see if u∗ is a minimum point when u∗ ∈ (p, 1] is satisfied. Since computing

the second derivative of the two logarithm generating functions is demanding it is quicker

to study the sign of their first derivative since most of the calculus has already been done.

If ξ > 0

s
∂C

(u)
B (ξ)

∂u
− t

∂C
( u−p
u(1−p) )

G (ξ)

∂u
> 0

s
eξ − 1

1 + u(eξ − 1)
− t p(p− 1)(e−ξ − 1)

u2(1 + p(e−ξ − 1))− up[1 + e−ξ + p(e−ξ − 1)] + p2e−ξ
> 0.

Find the least common multiple and treat the numerator and the denominator of the

resulting fraction separately and restrict the analysis to the interval u ∈ (p, 1].

The numerator is

N(u, ξ) =u2s[2p− 1 + eξ(1− p)− pe−ξ]− up{−2((1− p)(s+ t)− s) + eξ(1− p)(s+ t)

− e−ξ[s(1 + p)− t(1− p)]}+ (e−ξ − 1)p((1− p)(s+ t)− s) > 0.

This is a parabola with upward concavity if ξ > 0 and downward concavity if ξ < 0. Hence

N(u, ξ)


≥ 0 if ξ > 0 and u ∈ [u∗, 1],

< 0 if ξ > 0 and u ∈ (p, u∗),

where u∗ = p(1−p)(s+t)(eξ+e−ξ−2)+2sp(1−e−ξ)+
√

∆
2s[(1−p)(eξ−1)+p(1−e−ξ)] .

The denominator is

D(u, ξ) = [1− u+ ueξ][u2(1 + p(e−ξ − 1))− up[1 + e−ξ + p(e−ξ − 1)] + p2e−ξ] > 0.
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The first factor is always positive for this reason we study the sign of the parabola in the

second factor. This parabola has upward concavity for every ξ ≥ 0 and we compute its

zeros

u∗∗± =
p(1 + e−ξ + p(e−ξ − 1))±

√
p2(1 + e−ξ + p(e−ξ − 1))2 − 4p2e−ξ(1 + p(e−ξ − 1))

2(1 + p(e−ξ − 1))

=
p[1 + e−ξ + p(e−ξ − 1)±

√
(1 + e−ξ)2 − 4e−ξ + p2(e−ξ − 1)2 − 2p(e−ξ − 1)2]

2(1 + p(e−ξ − 1))

=
p[1 + e−ξ + p(e−ξ − 1)± (e−ξ − 1)(1− p)]

2(1 + p(e−ξ − 1))

from which we obtain u∗∗− = p, u∗∗+ = pe−ξ

1−p+pe−ξ . We already know from the previous part

that u∗∗+ < p if ξ > 0. Therefore we have

D(u, ξ) > 0 if ξ > 0 and u ∈ (p, 1].

This means than u∗ is a minimum point if ξ > 0.
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