
   

 

A University of Sussex PhD thesis 

Available online via Sussex Research Online: 

http://sro.sussex.ac.uk/   

This thesis is protected by copyright which belongs to the author.   

This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author   

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author   

When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

Please visit Sussex Research Online for more information and further details   



Control of Dynamical Regimes in Optical

Microresonators Exploiting Parametric

Interaction

Luigi Di Lauro

Submitted for the degree of Doctor of Philosophy

University of Sussex

August 2018



i

Declaration

I hereby declare that this thesis has not been and will not be submitted in whole or in part to another

University for the award of any other degree. Part of the contents of this work are reproductions

from published and un-published submissions to journals in which I was the first author. In the

specific, Chapters 3 and Chapter 4 have been included in the following publication:

L., Di Lauro, J., Li, D., Moss, R., Morandotti,S. T., Chu, M., Peccianti, and A., Pasquazi,

"Parametric control of thermal self-pulsation in micro-cavities", Optics Letters 42, 3407-3410

(2017).



ii

UNIVERSITY OF SUSSEX

LUIGI DI LAURO, DOCTOR OF PHILOSOPHY

CONTROL OF DYNAMICAL REGIMES IN OPTICAL

MICRORESONATORS EXPLOITING PARAMETRIC INTERACTION

SUMMARY

Microresonators have the ability of strongly enhancing the propagating optical field, enabling

nonlinear phenomena, such as bi-stability, self-pulsing and chaotic regimes, at very low powers.

It is fundamental to comprehend the mechanisms that generate such dynamics, which are crucial

for micro-cavities-based applications in communications, sensing and metrology.

The aim of this work is to develop a scheme for the control of nonlinear regimes in microres-

onators, assuming the interplay between the ultra-fast Kerr effect and a slow intensity-dependent

nonlinearity, such as thermo-optical effect.

The framework of the coupled-mode theory is applied to model the system, while the bifurcation

theory is used to investigate a configuration in which the power and frequency of a weak signal can

control the behaviour of a strong pump.

In this regards, this study demonstrates that the effect of a parametric interaction, specifically

the four-wave mixing, plays a fundamental role in influencing the nature of the stationary states

observed in a micro-cavity.

The results show possible new strategies for enhanced, low-power, all-optical control of sensors,

oscillators and chaos-controlled devices. Moreover, the outcomes provide new understanding of the

effect of coherent wave mixing in the thermal stability regions of optical micro-cavities, including

optical micro-combs.
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Introduction

Optical whispering-gallery-mode (WGM) microresonators confine light to small regions, enhancing

the optical field by resonant recirculation. The ratio between the quality factor and the modal volume

of the WGM is fundamental to define the threshold of optical nonlinear effects. Microcavities,

with extremely high Q-factors and reduced modal volumes, allow observing such nonlinear effects

at milliwatts powers. The high confinement of the optical field, by design, forces the optical

circulating power, lost at each round trip, to dissipate through a very small surface area, toward

the mode volume in the bulk of the microresonator. This phenomenon can be identified as the

"thermo-optic" effect, which causes a thermal drift of the cavity resonances, proportional to the

intensity of internal optical field; it can be observed in microcavities made with insulators [1],

as well as in semiconductor microcavities [2–4]. Another typical effect in third-order nonlinear

materials is the Kerr nonlinearity. The Kerr and thermo-optic have a different response time. The

Kerr effect is generally faster than thermo-optical one, having a ratio between relaxation times of

several orders of magnitude (e.g. integrated microresonators). Besides thermo-optic effect, there

exist other intensity-dependent nonlinearities, with a slow response if compared with the fast Kerr

one. For instance, free carries nonlinearities generated by two-photon absorption in semiconductor

cavities [2]. The interaction among slow and fast nonlinearities can influence the overall nonlinear

behaviour of the system, providing a low threshold for optical bi-stability and hysteretic response

[1, 5], oscillatory instability [6, 7], four-wave mixing amplification at milliwatt levels in integrated

ring-resonators [8, 9] and chaotic dynamics [1]. Generally speaking, the dynamical behaviour of a

microcavity depends on the type of equilibrium that the system reaches after an initial transient,

and from which it evolves in time, defying the system’s phase portrait. The nature of such an

equilibrium can vary as some specific parameters of the system are changed, producing bifurcations

of the equilibrium in the parameter space. A way to govern the system’s bifurcations plays a central

role in achieving the desired performance.
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The aim of this work is to demonstrate a possible approach for controlling nonlinear dynamics

in optical microcavities, in presence of both Kerr and an intensity-dependent nonlinearity with a

first-order time response, such as a thermal nonlinearity.

This thesis is organised as follows. In Chapter 1, I will discuss the properties of microresonators,

tracing back their origins, describing their properties and exploring the technologies of fabrication

and possible applications. Then, in Chapter 2, I will introduce some key concepts of dynamical

system theory, including methods for stability and bifurcation analysis, in order to build up a

theoretical background that will be essential to study the equilibrium configurations of the system

and predict its evolution in the phase space. I will investigate the conditions that define the nature of

a stable solution and show some relevant bifurcations in the domain of our analysis. The equations

modelling a microcavity will be derived in Chapter 3, within the framework of the coupled-mode

theory. Here, I will extend the classical approach of the coupling of modes in linear waveguided

structures to the case of nonlinear Kerr medium. In Chapter 4, the influence of the thermo-optic

effect, in addition to the Kerr nonlinearity, will be examined in different conditions. Firstly, in the

straightforward case of single frequency mode, then in the case of two frequencies coupling. In the

latter scenario, through our scheme for bifurcation control, I will prove that the nonlinear regimes

of a strong pump can be controlled and driven by a week-intensity signal, ruled by the four-wave

mixing. I will present some relevant examples of switching and transferring of dynamics between

cavity modes via four-wave mixing, including the case of a route to chaos through the intermittency

phenomenon. Finally, the main outcomes and future perspectives of this work will be summarised

and discussed in the Conclusions Chapter.



Chapter 1

Background and Applications of

Optical Microresonators

1.1 Wispering Gallery Mode Microresonators

At the beginning of 20th century, the whispering gallery effect was initially observed and studied

by Lord Rayleigh in the contest of the channelling of acoustic modes by the dome of St. Paul’s

Cathedral in London [10]. The sound waves produced at a point of the dome were reflected with

minimal diffraction by the surface of the wall, so that they could continuously bounce with the

same angle and travel along the dome’s wall. The idea of total internal reflection, applied to explain

this phenomenon in the field of acoustic, had already been applied to the field of optics by Daniel

Colladon and Jacques Babinet in the 1840s [11], to describe the propagation of electromagnetic

waves within curved waveguiding structures. The latter work allowed the fabrication of the first

optical fibre between the late 19th and early 20th centuries. With such an achievement, a complete

analogy among the fields of acoustic and optics was finally possible.

A whispering-gallery mode (WGM) inside a bent optical fibre is enabled when the reflected light

beam propagates along the outer surface, below a certain minimum radius of curvature [12]. An

optical cavity that supports WGMs is called whispering-gallery mode resonator (WGR). Resonant

cavities with size range from millimetres to a few micrometers are known as microresonators

or microcavities. The materials employed for microresonators fabrication include silica, silicon,

silicon nitride and oxynitride, semiconductors, such as gallium arsenide (GaAs), indium phosphide

(InP), and crystalline materials, such as lithium niobate (LiNbO3), calcium fluoride (CaF2) and

magnesium fluoride (MgF2). The large variety of cavity’s shapes that has been investigated over
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the years, for instance, microdisks [11, 13–16], microtoroids [17–20], photonic crystal cavities

[21–23], bottle [24, 25] and bubble [26–28] microresonators (see Fig. 1.1), offers suitability for

different applications. Indeed, in the past two decades, microcavities have gained a key role in

applied research, as well as integrated in devices performing complex functions for commercial

and technological purposes.

Figure 1.1. Examples of optical microresonator types: (a)
silica microsphere; (b) silica microtoroid cavity; (c) silica mi-
crodisc; (d) photonic crystal defect microcavity.
A. Pasquazi et al., Physics Reports 729 (2018), pp. 1–81.
T. M. Benson et al., arXiv:physics/0607239.

1.2 Fabrication Technologies for Microcavities

There are fundamental factors that we have to take into account when designing and fabricating

microcavities for potential applications, in the specific, the value of the Q-factor reachable, the

cost and robustness, the simplicity of fabrication and the integrability with other technologies.

Highly-compact microcavities, with small modal volumes and high-Q factors, exhibiting narrow

resonances linewidth, large free spectral range (FSR) and high optical power, are essential factors to

consider when realising compact and portable optical devices. Nowadays, it is possible to produce

microresonators with the size of a few micrometres [29] and Q-factors reaching 1010 −1011 [30].

Another important aspect to consider, which has an impact on the performance of microcavities,

is the coupling efficiency of the light into and out from the cavity. The latter can be achieved by

exploiting fabrication techniques based on the evanescent-wave coupling, a phenomenon similar to
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the tunnelling effect in quantum mechanics: placing two dielectric waveguides in close proximity

(i.e. a waveguide and a microcavity), the evanescent part of the modal field, propagating in

one waveguide, can penetrate the adjacent waveguide and excite the n-mode, whose propagation

constants are nearly equal [31]. Evanescent-field couplers are opportunely adjusted to control the

overlap of the evanescent fields and optimise the exchange of energy between coupled modes. For

this purpose, couplers have different geometries, such as prisms, tapered fibres, planar waveguides,

as shown in Fig. 1.2.

Figure 1.2. Different types of evanescent-field couplers, with various geometries such as
prisms, tapered fibres, planar and photonic crystals waveguides.
T. M. Benson et al., arXiv:physics/0607239.

The choice of the appropriate method of fabrication depends on the specific design needed (evanes-

cent coupler, shape, material, geometry, etc.), which in turn is tailored to meet the applications’s

requirements. We can distinguish two main categories of microcavities design: bulk and integrated

WGRs platforms.

1.2.1 Bulk Design

One of the simplest microcavity that can be produced in monolithic bulk design is a cylindrical

WGM cavity, using a standard piece of telecom single-mode optical fibre, stripped from coating

[32, 33]. From that, by choosing an opportune angle of tilting with respect to the coupling

waveguide, "spiral" WGMs along the longitudinal direction can be observed [34].

Microresonators with spherical shapes can be obtained in a lab with very effective, cheap and

reliable methods. For instance, by melting the tip of a standard telecommunication silica fibre,

followed by re-flow of the glass. This is performed typically through ablation via CO2 laser [35, 36],
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although other technique, using microwave plasma torch [37] or rotating electric arc [38], can be

applied. Because of the surface tension of the melted silica, the glass re-flows immediately forms a

perfect spherical volume, which is highly smooth and with very low roughness, due to the viscosity

of the silica. For the fabrication of microspheres with even smaller diameters, the fibre can be either

tapered or etched [39]. Microcavities are also shaped on the profile of silica rods, with a similar

process involving a CO2, while the rod is rotated on a spindle [40] (see Fig. 1.3).

Figure 1.3. Fused silica rod microresonators obtained
through ablation via CO2 laser, with diameters that vary from
200 µm to 8 mm.
A. Pasquazi et al., Physics Reports 729 (2018), pp. 1–81.

Other techniques rely on standard wafer manufacturing processes, where a thermally-grown silica

layer is placed at the top of a substrate of silicon. In this way, silica blocks are created on the

wafer and then molten into spherical geometry by controlled heating. Toroidal, disk and ring

microresonators can be obtained applying a similar technique: a circular silica pad is initially

imprinted on the silica substrate, then a dry-etching step is applied on the remain of the silica layer,

followed by a re-flow through a CO2 laser, in order to reduce the surface roughness and increasing

the Q-factor. Monolithic bulk resonators with symmetric shapes, such as spherical, cylindrical and

toroidal, allow Q-factors up to 1010 [41], as the fabrication processes are able to remove the most

of scattering losses [36, 42].

Differently, crystalline materials, such as magnesium or calcium fluorides, are not suitable for

melting techniques. Indeed, such a process would destroy their structure and compromise the purity.

Nevertheless, there are methods of grinding and polishing that produce crystalline microcavities

with very smooth surfaces on a sub-nanometers scale [36, 43, 44], reaching Q-factors up to 1011.
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This is also possible because of their low intrinsic absorption and the absence of impurities in the

lattice structure [45].

1.2.2 Integrated Technology

In the past ten years, integrated optics has made a huge progress in developing on-chip optical

devices, in terms of scalability, reduced footprint, robustness and costs [46–50]. In the same way

as electrical conductors carry electrons, bus waveguides can route optical signal directly on-chip.

The target is competing in terms of performance with the electronic chip industry, producing

complex optical circuits more and more compact, inclusive of filters, modulators, splitter, switches,

etc. Silicon is suitable for photonic platforms technology, providing several advantages. First

of all, it has very reduced manufacturing costs, then, it offers the possibility of interfacing with

existing electronic components, pretty much CMOS technology (Complementary Metal Oxide

Semiconductor) [46, 47]; last but not least, silicon is ideal to fabricate high-nonlinear Kerr optical

microcavities in different geometries and shapes. However, we have to take into account the

significant losses experienced by silicon, caused by two-photon absorption due to the free carriers.

To overcome this issue, new CMOS-compatible platforms for nonlinear optics have been developed,

for instance, silicon nitride (Si3N4) and Hydex glass (high-index doped silica glass) [51] represent

a good alternative to silica, with very low linear losses, large nonlinearities and good stability and

performances in operational regimes.

Ring microresonators made with Hydex, with a few micrometres of diameter, low bending

losses due to the high-index-contrast waveguides, allow high flexibility for compactness and

integrability purposes. Moreover, the short round-trip of the optical field enables large FSRs in

the order of hundred gigahertz. A four-port ring microresonator made with Hydex [52] is shown

in Fig. 1.4. Here, the waveguides are obtained using photolithography and reactive ion etching

before over-coating with silica glass. The full compatibility of the device with CMOS technology

is achieved by burying the waveguides in fused silica glass. The resonator reaches a Q-factor of

1.2×106, corresponding to a mode linewidth of 160 MHz and FSR of 200 GHz. Measurement

of nonlinearity have demonstrated a Kerr coefficient five times greater than silica glass, therefore

FWM is observed at low power, as well as the thermo-optic effect, as the high confinement of the

optical field [53].
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Figure 1.4. Integrated 4 port ring microresonator made with Hydex, with radius ≈ 135 µm.
(b) SEM (scanning electron microscopy) of the waveguide, with cross-section ≈ 1.45µm x
1.5 µm) before depositing upper cladding of SiO; the coupling waveguides (bus) have the
same cross section. The waveguide core is high index (n= 1.7 @ λ = 1.55 µm) and the
propagation losses have been shown to be as low as 25GW/cm2. (c) Linear transmission
spectra of the resonator at the drop port, with FSR of 200 GHz and a mode linewidth of 160
MHz, corresponding to a Q-factor of 1.2 million.
D. J. Moss et al., arXiv:1404.7619 (2014).

1.3 Applications for Microcavities

In microcavities realised with bulk design, coupling techniques permit the manipulation and

filtering of optical signals, obtaining channel-dropping filters and optical add/drop (de)multiplexers

[54]. In this regards, passive optical microcavity in the planar configuration (e.g ring or discs),

contributed hugely to the progress of telecommunications-oriented photonics. Tunable filters

can be made with resonators having an electrically controllable refractive index [15], suitable

for ultrafast modulation or switching [55], noise filtering [56], dynamic bandwidth allocation

[57], reconfigurable channel routing [58]. The high-quality factors of optical microcavities allow
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to stores the light in a reduced volume, realising long buffering in all-optical tunable buffering

applications [59], including signal processing in high capacity and ultra-fast communication

networks [60, 61]. In the previous section, it has been shown that integrated microcavities, made

either in silica or in CMOS-compatible technology, have several advantages with respect to the

monolithic bulk design, regarding compactness, portability and low-losses [62]. These features

make them preferable over bulk microresonators for optical wavelength multiple-channel filtering

for wavelength-division multiplexing in high performance telecommunications [63], modulators for

on-chip optical interconnect [64], quantum telecommunications [65],wide-band frequency combs

[66, 67], ultra-short pulse generation [68, 69].

Materials exhibiting third-order nonlinear response to an applied electrical field (e.g. silica,

silicon, calcium fluoride), such as the Kerr effect in presence of an optomechanical nonlinearity

[70], have been effectively employed for designing oscillators in the microwave regime [71]. In

integrated ring microresonators, the Kerr optical parametric gain can induce FWM with single

pumping laser source [8, 9]. Nonlinear parametric processes, such FWM, enable the generation of

optical frequency combs at low power, which offers a very stable optical reference source, with an

accuracy up to 10−18 [72–76] for applications in metrology [77]. Moreover, the ultra-fast Kerr effect

can compete with slower intensity-dependent nonlinearities, e.g thermo-optic nonlinearity (TO),

producing self-pulsing [79] and giant self-pulsation [80]. The control of the TO is fundamental

for reaching coherent regimes, such as temporal cavity solitons [69, 81, 82], which is crucial for

applications in telecommunication.

Microresonantors represent very powerful devices for sensing purpose as well. Due to the

considerable Q-factors, even a small change of the intra-cavity field wavelength can be practically

observed. Indeed, when placed nearby the evanescent field coupled to a WGM of the resonator,

molecules or particles can interact and be polarised by the photons of the field. The latter phe-

nomenon, in turn, induces a shift of the cavity resonances that are excited by the evanescent field,

which can be related with the number of molecules, as well as their weight. This can have a number

of applications in biology [83, 84] and quantum electrodynamics [42, 85, 86].



Chapter 2

Stability and Bifurcations of Equilibria

in Nonlinear Dynamical Systems

2.1 Chapter Introduction

Nonlinear dynamical systems are subject of intense study in transversal topics in various disciplines,

such as biology, medicine, chemistry and physics. The study of the equations describing the evolu-

tion of a dynamical system has been a branch of physics since the 1600s, after Newton’s formulation

of the laws of motion and universal gravitation, which laid the foundations of modern physics. In

1881 Poincaré provided a qualitative solution of the three-body problem, introducing the "Poincaré

maps" that allow investigating the stability of the steady state solutions of a dynamical system

without solving the dynamical equation [88]. Several mathematicians have made fundamental

contributions, from Poincaré [88] to van der Pol1 [89], Cartwright, Littlewood [90, 91], Levinson2

[92], Andronov3 [93] and Smale4 [94], to name only some of them.

With the advent of computers in the 1950s, algorithms to study dynamical systems enabled to

simulate numerically experimental conditions. In 1955, Fermi-Pasta-Ulam-Tsingou (FPUT) [95,

96] studied the thermalisation process in a solid, reducing the problem to a simpler unidimensional

chain of N atoms in crystals, and assuming the system as an ensemble of the nearest-neighbour

nonlinear coupled oscillator, described by the Hooke law. Following the ergodic condition, the

1A radio engineer who reported one of the first experimental observation of deterministic chaos.
2They studied the van der Pol’s equations equation for relaxation oscillation, finding simplified solutions.
3Andronov gave his contribution on the theory of stability of dynamical systems and bifurcation theory and structural
stability. He studied and forged the term “self-oscillation” a connection between oscillations seen in dynamical systems
and the theory of Lyapunov stability.

4Smale worked on dynamical systems and structural stability extending the previous work of Andronov.



11

energy supplied to the lowest mode should be equally distributed among the higher modes until

reaching the equilibrium, in a long enough time-transient. However, accidentally leaving the

computer performing the simulation for longer than scheduled, FPUT observed that the system

showed periodicity before converging again to its initial state. The latter was in contraposition with

the ergodic behaviour. This paradox, known as "FPUT problem", was one of the first demonstration

of nonlinear recurrence; it was solved a few years after, mainly assuming the existence of one-

dimensional stable solitons and deterministic chaos. In this perspective, fundamental contributions

were given in the 1965s by Zabusky et al. [97], who demonstrated a connection between the

periodic nature of the system and the existence of localised excitations, hence solitons. In the

1966s, Izrailev and Chirikiv proved that chaotic orbits appear when the nonlinearity is strong. As

the nonlinearity increases, the nonlinear resonances are no longer separate, but overlapped in the

frequency space, originating chaotic orbits in the phase space. In the same years, Lorenz performed

nonlinear numerical studies on the atmospheric convection, observing a chaotic behaviour of the

solutions in a low dimensional system. Such a discovery led Lorenz to define the Lorenz attractor,

where the set of chaotic solutions of the Lorenz system resemble a butterfly shape [98]. Here,

the solutions never reach a final state, rather, they keep on oscillating with non-periodical motion.

Moreover, Lorentz discovered that the final state was strongly dependent on the initial conditions.

Lorenz and, earlier Poincaré, have shown that chaos can have similarity in a large variety of

nonlinear dynamical systems, identifying well defined "routes" to reach a chaotic regime. For

instance, the period-doubling bifurcations phenomena is a typical route to chaos that, in the 1978,

was quantified in terms of Feigenbaum constants, and represented on bifurcation diagrams [99].

Nowadays, the study of nonlinear systems belongs to the area of mathematics known as Dynamical

System Theory. The latter applies different methods to study dynamical systems in a rigorous

manner, through the analysis of the steady state solutions and bifurcations, and how those affect the

system response.

In this chapter, I will present a qualitative description of basic concepts of stability and

bifurcation theory, which will be relevant to fully understand the analysis and results shown

in Chapter 4. In Section 2.2, I will define some common terminology concerning dynamical

system theory and discuss the stability of equilibrium points. Then, in Section 2.3, I will review

most relevant types of local bifurcations and some fundamental global bifurcations of orbits in

codimension-1 and codimension-2.
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2.2 Stability Analysis of Equilibria

Let us consider a continuous-time dynamical nonlinear system {R1,Rn,φ t}, defined by a set of

ordinary differential equations (ODEs) in the vector form:

ẋ = f (x), (2.1)

where f : Rn → Rn is the vector-valued function, and x ∈ X is the coordinates vector defined on

the system’s phase space X : {x : x = (x1,x2, ...,xn)
T ∈ Rn}. The system’s evolution is typically

represented by time-dependent trajectories of an evolution operator φ t that connects any initial

state x0 ∈ X to some state xt ∈ X at time t, assembling the system’s phase portrait in a deterministic

manner.

A very powerful approach to obtain an insightful analysis of the systems regimes consists

in solving the stability problem and classifying the nature of equilibrium points of X . Before

approaching the solution of such a problem, we need to introduce some general concepts on the

system’s stability and phase space of dynamical systems.

Given a generic equilibrium x0, solution of the equation f (x0) = 0, the Jacobian matrix of f (x)

evaluated in x0 is J(x0). Let’s suppose ε(t) = (ε1, ...,εn) be a small perturbation vector, such that

|ε(t)|<< 1. Thus, the response of the system at time t against an external perturbation on its initial

equilibrium point x0 is: x(t) = x0 + ε(t). Substituting the perturbative expression of x(t) into Eq.

2.1, and assuming f (x) be a smooth function of x, such that we can approximate the function with

its Taylor series expansion and neglect terms of orderO(|ε|2), we achieve the following linearisation

ε̇ = J(x0)ε. (2.2)

Then, the general solution of Eq. 2.2 can be written as

ε(t) = ε0eλ t , (2.3)

where ε0 indicates the eigenvectors of J(x0), while λ its complex eigenvalues, such that λ = α ± iβ ,

with α and β real and imaginary parts, respectively. From Eq. 2.3, if all eigenvalues of the Jacobian

matrix have negative real parts, the equilibrium x0 is stable because |ε(t)| → 0 as t → ∞. Indeed, the

perturbed solution, after a certain transient of time, converges to x0 as ε tends to zero exponentially.

Instead, if one of the eigenvalues have a positive real part, ε(t) grows exponentially, such that:
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|ε(t)| → ∞ as t → ∞. At this point, it is useful to introduce a topological classification of the

equilibria that allows studying qualitatively the behaviour of our system nearby its equilibria, by

comparison with general features of the behaviour of equivalent systems.

In a continuous-time dynamical system, an equilibrium point x0 is called hyperbolic if all the

eigenvalues of J(x0) have non-zero real parts. Hyperbolic equilibria have noteworthy properties, first

of all, they are insensitive to small perturbations, preserving qualitatively the phase portrait nearby

the equilibria. In other words, the system’s phase portrait is structural stable in a neighbourhood of

a hyperbolic equilibrium. Secondly, hyperbolic equilibria allow the existence of stable and unstable

manifolds5, and, most important, the system is topological equivalent6 to its linearisation nearby an

hyperbolic equilibrium. The latter statement is supported by the Hartman-Grobman theorem [100],

also known as linearisation theorem, which makes possible studying the qualitative behaviour of a

nonlinear system, such as Eq. 2.1, by investigating quantitatively the behaviour of its linearisation,

thus Eq. 2.2, nearby its equilibria.

Conversely, when at least one eigenvalue of J(x0) has zero real part, the equilibrium x0 is called

non-hyperbolic. Those type of equilibria are very sensitive to even small perturbations, which can

cause a drastic change of the system’s phase portrait, leading to the branching of the equilibrium

curve, hence to local bifurcations of non-hyperbolic equilibria. Indeed, non-hyperbolic equilibria

represent critical points (or singularity) for the system. The type of stability of non-hyperbolic

equilibria cannot be defined by the sign of the eigenvalues of the Jacobian of the linearised system

Eq. 2.2; it depends on nonlinear terms of f (x). A simple classification of hyperbolic equilibria,

for two-dimensional (n=2) and three-dimensional (n=3) systems, is reported in Fig. 2.1 and Fig.

2.2, respectively. Non-hyperbolic equilibria typically assume the name of the bifurcation from

which they are originated, therefore, for sake of clarity, I will introduce some of them along with

the correspondent bifurcation directly in the next section.

5In our context, a manifold can be intended as a set of points in Rn that satisfy the system of equations: f (x) = 0.
6Two dynamical systems are topological equivalent when they have qualitatively similar phase portraits, for instance,
same number of equilibria and cycles of the same stability types.
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Figure 2.1. Hyperbolic equilibria in a 2-
d phase space. Eigenvalues", reporting the
eigenvalues on the complex plane with blue
dots for the stable case and yellow dots for the
unstable case. "Phase portrait" reporting the
system’s trajectories in the phase space, cor-
responding to the specific equilibrium.
Adapted from: Elements of Applied Bifurcation
Theory (pp. 49), by Y. A.Kuznetsov, 2004, New
York, NY, Springer Science. Copyright 2004 by
Springer.
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Figure 2.2. Hyperbolic equilibria in a 3-d phase space. "Eigenvalues", reporting the eigen-
values on the complex plane with blue dots for the stable case and yellow dots for the
unstable case. "Phase portrait" reporting the system’s trajectories in the phase space, cor-
responding to the specific equilibrium.
Adapted from Scholarpedia: "Equilibrium" by E. M. Izhikevich, 2007, Retrieved from
http://www.scholarpedia.org/article/Equilibrium, licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported License, 2011.

2.3 Local and Global Bifurcations in Codimension 1 and 2

In this section, a practical understanding of bifurcations is introduced in a generic dynamical

system. Bifurcation theory is a topic that has been widely investigated, either qualitatively or

quantitatively, providing a well-developed mathematical background for the study of nonlinear

dynamical systems. Bifurcation theory has its origin in the work of Poincaré [88], who introduced

the concept of branching of solutions, corresponding to a new phase object, such as equilibria or

cycles for instance, that appears into the phase portrait of the system when a parameter reaches

the critical value. In this way, it is possible to classify bifurcations by matching qualitatively

same phase objects. Later on, Andronov and colleagues (1930-1950), introduced the concept of

structural stability of a dynamical system, for which bifurcations manifest themselves by inducing a

qualitative change in the dynamical behaviour of the system, hence making the system structurally

unstable at the bifurcation points in the parameter space [101].
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In principle, for each bifurcation type, it is possible to define a prototypical system of equations,

technically called topological normal form

˙̃x = g(x̃,β ), x̃ ∈ Rn, β ∈ Rm, (2.4)

having a bifurcation at x̃ = x̃0, for β = βc, with β parameters vector and βc critical parameters

vector. The prototypical system 2.4 can be used to benchmark and classify bifurcations in any other

generic system:

ẋ = f (x,r), x ∈ Rn, r ∈ Rm, (2.5)

that is topologically equivalent near its critical equilibrium, (x0,rc), to the system 2.4. This means

that system 2.5 must satisfy certain bifurcation conditions at (x0,rc) of system 2.4 at (x̃0,βc).

Those conditions are called genericity conditions, specified together with the normal forms, in

order to define uniquely the bifurcation types of the equilibria; they assume the form of nonequalities

of certain partial derivatives of the function f (x,r) with respect to coordinates and parameters

evaluated at the critical point (x0,rc). The genericity conditions can be divided into nondegeneracy

conditions, when involving partial derivatives with respect to the coordinates, and trasversality

conditions, when the partial derivatives are performed with respect to the parameters. In other

words, the nondegeneracy conditions provide the number and stability of the equilibria when

the parameters change, while the transversality conditions show the possible ways to change the

hyperbolicity of the equilibria by varying the parameters (unfolding the singularity), exhibiting all

the bifurcations originating from the critical equilibria in presence of zero eigenvalues.

We can produce bifurcation diagrams where to depict the bifurcation types, by performing the

direct product of the phase and parameter space Rn ×Rm. A bifurcation diagram consists of a finite

number of regions in Rm, divided by bifurcation boundaries7, which delimit phase portraits of

topologically equivalent systems. Intuitively, bifurcations happen when the system moves between

such regions, crossing the boundaries.

The number of independent conditions that identify a bifurcation type and state the minimal

number of parameters for which that bifurcation arises, determines the codimension (or shortly

codim) of the bifurcation. The latter depends in turn on the dimensions of the parameter and phase

space. Therefore, the number of bifurcations types, as well as the complexity of the bifurcation

7A bifurcation boundary originates when a new phase object shows up in the phase portrait, and the bifurcation conditions
are satisfied
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diagrams, increases as the codim increases. Providing a full list of all the possible bifurcations,

especially in high-dimensional dynamical systems (e.g. n > 3), is impractical. For such a reason, in

the next section, only the most significant bifurcations in codim-1 and codim-2, essential to develop

our stability analysis for microresonators in Chapter 4 will be shown. We will also distinguish

between local bifurcations, referring to bifurcations confined in a small neighbourhood of an

equilibrium point, and global bifurcations, bifurcations that affect a larger portion of the phase

space.

2.3.1 Codimension-1 Bifurcations

One of the simplest bifurcation in codim-1 is the fold bifurcation, also known as saddle-node8

bifurcation, arising in 1D systems (n=1). A typical example of dynamical system in R1 ×R1

exhibiting a fold bifurcation is:

ẋ = r+ x2, (2.6)

with Jacobian J(x) = 2x and equilibrium solutions x0 =±
√
−r, found by assuming f = 0. As it is

shown in the diagram reported in Fig. 2.3 (a), when the parameter r is negative the function f (x)

has two equilibria, one stable and the other unstable (blue and yellow dots respectively). Indeed,

the Jacobian shows a negative eigenvalue when x0 is negative and a positive eigenvalue when x0 is

positive (see Fig. 2.3 (b)). As the parameter r increases from negative to positive values, the two

equilibria move toward each other, collapsing in a single semi-stable equilibrium point at x0 = 0

for the critical value rc = 0, vanishing when r > 0 eventually. The fold bifurcation occurring at

(x0,rc)≡ (0,0) provides a classic example of creations and destructions of equilibria, moreover,

from the bifurcation diagram reported in Fig. 2.3 (c), we better appreciated the origin of name fold:

as r approaches to zero the equilibrium curve "folds" manifesting a turning point.

The topological normal form R1 ×R1 of the system 2.6, having a fold bifurcation at (x0 =

0,rc = 0), can be written as

˙̃x = β ± x̃2, (2.7)

8The term saddle-node derives from the terminology adopted for higher dimensional systems, where the equilibria
vectors are called nodes and saddles.
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with the following genericity conditions on the function f , defining the system 2.6:

fxx(x0,rc) ̸= 0, (2.8a)

fr(x0,rc) ̸= 0, (2.8b)

in which fxx and fr are the partial derivatives of f with respect to the variable x and the parameter r,

respectively.

Figure 2.3. Example of fold bifurcation. (a) For r < 0 there are two equilibria
in the system, represented by dots: the blue one is stable, while the yellow
is unstable; the two equilibria approach each other as r approaches to zero,
resulting in a "collision" between equilibria that ends generating an unstable
equilibrium at x = 0. For r > 0 there are no equilibria in the system. (b)
The stability of the equilibria can be apreciated by observing the sign of the
eigenvalue by changing r. (c) The two equilibrium branches converge and
annihilate in the folding point at (x = 0,r = 0) (c).

Another fundamental codim-1 bifurcation is the Andronov-Hopf or simply Hopf bifurcation,

observed, for instance in two-dimensional dynamical systems9, represented by the following system

of equations: ẋ

ẏ

=

µ(r) −ω(r)

ω(r) µ(r)


x

y

− (x2 + y2)

x

y

 , (2.9)

9R2 is the lowest dimensional space required for Hopf bifurcatoins.
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The equilibria of system 2.9 at x0 ≡ (x,y) = (0,0) for all the r values, with the Jacobian matrix

evaluated at the origin

J(x0) =

µ(r) −ω(r)

ω(r) µ(r)

 , (2.10)

showing a pair of complex conjugate eigenvalues depending on the parameter r. The latter can be

expressed in terms of two real functions, µ(r) and ω(r), such that λ (r) = µ(r)± iω(r). A Hopf

bifurcation appears when the pair of eigenvalues becomes purely imaginary, i.e.: λ =±iω , as the

parameter r reaches the critical value rc = 0. Without loss of generality, we assume µ(r) = r and

ω(r) = ω0, with ω0 > 0 and plot the bifurcation diagram for the system 2.9 in Fig. 2.4.

Figure 2.4. Supercritical Hopf bifurcations. The origin is an equilibrium
point, which is a stable focus when r < 0 (a) and unstable when r > 0 (c).
When r = 0 (b) a stable limit cycle appears surrounding the origin.

By studying the sign of the eigenvalue of J(x0), for negative values of the control parameter r, the

equilibrium point x0 = (0,0) is linearly stable against small perturbations, hence nearby orbit in the

system’s phase portrait converge to x0 moving along spiral trajectories (Fig. 2.4 (a)). In this case,

x0 is called stable focus. When the parameter r < 0 approaches the critical value rc = 0, the orbits

still converge to the equilibrium point but with a slower decay time; once the parameter reaches the

critical value, the equilibrium is no longer linearly stable, and a stable limit cycle arises in the phase

portrait (Fig. 2.4 (b)). Finally, for positive values of r, x0 becomes an unstable focus (Fig. 2.4 (c)).

This scenario is known as supercritical Hopf bifurcation, which highlights the fact that a cycle

appears "after" the bifurcation takes place for positive values of r. A system having a supercritical

Hopf bifurcation shows stable self-sustained oscillations, whose period is related with the imaginary

part of the complex pair of eigenvalues (ω0), and size given by the real part of the eigenvalues.

Stable limit cycles are an example of periodic attractors: their phase portrait is characterised by a

periodic orbit, to which other nearby orbits, φ t , converge.

If we change sign to the cubic terms of Eqs. 2.9, we have a subcritical Hopf bifurcation, shown

in Fig. 2.5. In this case, an unstable limit cycle disappears as r becomes positive (hence the cycle
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exists "before" the critical value rc). In both cases, the system’s equilibrium undergoes a change of

stability when the real parts of the eigenvalues cross into the right half complex-plane as r changes

from negative to positive values.

Figure 2.5. Subcritical Hopf bifurcation. The origin is an equilibrium point,
which is a stable focus when r < 0 (a) and unstable when r > 0 (c). When
r = 0 (c) an unstable limit cycle disappears.

Any generic system with domain in the space R2 ×R1, having a critical equilibrium point at

x0 = (0,0) for r = rc and eigenvalues λ = µ(r)+ iω(r), such that µ(r) = 0 and ω(r) = ω0 > 0 for

r = rc, is topologically equivalent to the normal form

 ˙̃x

˙̃y

=

β −1

1 β


x̃

ỹ

+σ(x̃2 + ỹ2)

x̃

ỹ

 , (2.11)

in a neighbourhood of x̃ = x0, with σ =±1, if the following genericity conditions are satisfied:

l1(rc) ̸= 0, (2.12a)

µr(rc) ̸= 0. (2.12b)

The nondegeneracy condition 2.12a defines whether a Hopf bifurcation is supercritical (l1(rc)< 0)

or subcritical (l1(rc)> 0); its sign matches with the sign of σ [101, 102]. l1(rc) is a combination of

second and third terms of the Taylor series, resulting from a linearisation procedure to obtain the

normal form Eqs.2.11. The transversality condition 2.12b requires that the eigenvalues cross the

imaginary axis with non-zero speed.

A well-known example of a system showing Hopf bifurcation is the predator-prey model,

described by the Lotka–Volterra equations [103]. Such a dynamic is common in many other

systems, such as nerve cells (Rinzel and Ermentrout [104]), aeroplane wings (Thompson, Stewart

[105]) and fluid flows (Drazin and Reid [106]).
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The fold and Hopf bifurcation are examples of local bifurcations, in which equilibrium points

appear, disappear or change their stability. Then, there are other types of bifurcations that involve

entire orbits, which develops outside a neighbourhood of the equilibrium, covering large regions

on the phase space, and connecting different equilibrium points. We refer to the latter as global

bifurcations, such as homoclinic and hetorclinc, being the most important. Those occur when an

attractor collides with an equilibrium point or, in general, when stable and unstable manifolds of

equilibria intersect. In particular, we focus on homoclinic bifurcations involving nonhyperbolic

equilibrium, as their presence characterises complex dynamics in laser systems and nonlinear

passive cavities, including microresonators. Homoclinic and heteroclinic orbits or connections can

be formally defined by considering a continuos-time dynamical system, same as Eq. 2.1.

Assume x0, x1 and x2 equilibria of the system:

• an orbit Γ0 starting at a point x ∈Rn is called homoclinic to the equilibrium x0 if φ tx → x0 as

t →±∞;

• an orbit Γ0 starting at a point x ∈ Rn is called heteroclinic to the equilibria x1 and x2 if

φ tx → x1 as t →−∞ and φ tx → x2 as t →+∞.

In Fig. 2.6, an example for n= 3 of homoclinic (a) and heteroclinic (b) orbits connecting equilibrium

points is reported.

Figure 2.6. Homoclinic and heteroclinic orbits Γ0 in R3. A homoclinic orbit to a
saddle-focus in (a), while a heteroclinic orbit connecting a saddle and a focus in (b).
Note that Γ0 belongs to the intesection of a stable (W s) and an unstable manifold
(W u).
Adapted from: Elements of Applied Bifurcation Theory (pp. 196), by Y. A.Kuznetsov, 2004,
New York, NY, Springer Science. Copyright 2004 by Springer.
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Here, we observe the presence of stable and unstable sets, W s(xi) and W u(xi)
10, respectively, where

Γ0 belongs to their intersection. W s(xi) and W u(xi) are called invariant sets11, which allow to

rigorously generalise the concepts on bifurcations in low-dimensional systems to high-dimensional

systems.

In this regards, let’s consider a dynamical system, depending on one parameter in R3

ẋ = f (x,r), x ∈ R3, r ∈ R1. (2.13)

Suppose a critical equilibrium point x0 = {0,0,0} at rc = 0, having a simple zero eigenvalue and no

other eigenvalues on the imaginary axis. System 2.13, under the genericity conditions 2.8 defined

for fold bifurcations, can be represented in the following topological equivalent form near (x0,rc)

˙̃x1 = bx̃1
2,

˙̃x2 = σ2x̃2,

˙̃x3 = σ3x̃3,

(2.14)

in which σ2 and σ3 are the signs of the real parts of the nonzero eigenvalues, while b ̸= 0, generically.

Depending on the signs of the the eigenvalues, we have different equilibria generated by a

correspondent bifurcations:

1. σ2 =−1 and σ3 =−1

fixing b > 0, we find two stable eigenvalues in the left-half complex plane. Therefore, the

stable set W s(x0) is the half-space x̃1 ≤ 0, while the unstable set W u(x0) is the half-axis

x̃1 ≥ 0. The non-hyperbolic equilibrium produced is called saddle-node (see Fig. 2.7 (a));

2. σ2 = 1 and σ3 = 1

if we fix b > 0, we find two unstable eigenvalues in the right-half complex plane. Therefore,

this case is analogous to the previous one, the only difference is that stable set W s(x0) is the

half-axis x̃1 ≤ 0, while the unstable set W u(x0) is half-space x̃1 ≥ 0. The non-hyperbolic

equilibrium produced is called a saddle-node (see Fig. 2.7 (b));

3. σ1 = 1 and σ2 =−1

if we fix b > 0, we find one stable eigenvalue in the left-half complex plane and one

10W s(x0) = {x : φ tx → x0, t →+∞}, W u(x0) = {x : φ tx → x0, t →−∞}.
11An invariant set of a dynamical system {T,X ,φ t}is a subset W ⊂ X such that x0 ∈W ⇒ φ tx0 ∈W for all t ∈ T .
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unstable eigenvalue in the right-half complex plane. In this case, the two manifolds are

two-dimensional half-planes that intersect transversally. The non-hyperbolic equilibrium

produced is called saddle-saddle (see Fig. 2.7 (c)).

Figure 2.7. Nonhyperbolic saddle-node equilibria ((a) and (b)) and a saddle-saddle equi-
libria (c)in R3. Those bifurcatoins arise when an eigenvalue becomes zero, satisfying the
fold bifurcation genericity conditions. The two non-zero eigenvalues in (a) and (b) can be
either reals or complex conjugates. In the latter case, the orbits converge to the equilib-
rium by spiralling.
Adapted from: Elements of Applied Bifurcation Theory (pp. 254,255), by Y. A.Kuznetsov, 2004,
New York, NY, Springer Science. Copyright 2004 by Springer.

Near the origin, the equivalent topological normal form of system 2.13, depending on the parameter

is the following:

˙̃x = β (r)+b(r)x̃+O(x̃3). (2.15)

Thus, in the first and second case, as the parameter r approaches to rc = 0, an hyperbolic saddle and

a three-dimensional node disappear (appear) for b(0)β (0)>0 (b(0)β (0)<0) through a saddle-node
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bifurcation; in the third case, two topological different saddles disappear (appear) for b(0)β (0)>0

(b(0)β (0)<0), when the parameter r reaches zero, through a saddle-saddle bifurcation.

Assume that the system 2.13, showing a saddle-node or, alternatively, a saddle-saddle equi-

librium x0 at rc = 0 is topologically equivalent to the normal form 2.15; if there is an orbit Γ0

homoclinic to the saddle-node or, alternatively, to the saddle-saddle, then a limit cycle appears when

the equilibrium disappears. These bifurcations are called saddle-node homoclinic or saddle-saddle

homoclinic bifurcation, respectively. This is the statement of the Shilnikov Theorem [107]. Such

bifurcations are example of global bifurcation that originate from local bifurcations (specifically

fold-bifurcation). An illustration of the bifurcations is reported in Fig. 2.8.

For sake of completeness, the Shilnikov theorem describes homoclinic bifurcations involving

hyperbolic saddles or saddles-foci as well. Differently from the previous case, here the fold

bifurcation does not occur, rather, homoclinic orbits can bifurcate simply because there is a

topological change of the system’s phase space, which is due to perturbation induced by varying

β (r). Indeed, homoclinic orbit to hyperbolic equilibria are structurally unstable.

Figure 2.8. A homoclinic "Shilnikov" bifurcation occurs when a homoclinic
orbit is nearby a saddle-node (a) or a saddle-saddle nonhyperbolic equilibrium.
A limit cycle appears (stable in (a), saddle in (b)) after the equilibria disappears
by varying β (r).
Adapted from: Elements of Applied Bifurcation Theory (pp. 256,258), by Y. A.Kuznetsov,
2004, New York, NY, Springer Science. Copyright 2004 by Springer.
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2.3.2 Codimension-2 Bifurcations

In this subsection, I will illustrate a codim-2 bifurcation. For the purpose, consider a two-parameter

one-dimensional system having an equilibrium at x = x0, which satisfies the fold bifurcation

conditions for r = rc (single zero eigenvalue). Then, there exist an equilibrium curve Γ ⊂ R1 ×R2

intercepting the point (x0,rc), whose equilibrium points (x,r) ∈ Γ satisfy the fold bifurcation

conditions. The projection of Γ onto the plane (r1,r2) provides the bifurcation boundaries of the

fold bifurcation, γB (see Fig. 2.9).

Figure 2.9. Bifurcation curve Γ ⊂ R3 of a scalar system
(x,r1,r2), originating from critical equilibrium points that
satisfy specific bifurcation conditions. The projection γB of
Γ onto the plan (r1,r2) defines bifurcation boundaries.
Adapted from: Elements of Applied Bifurcation Theory (pp. 296),
by Y. A.Kuznetsov, 2004, New York, NY, Springer Science. Copy-
right 2004 by Springer.

Equivalently, if we consider a two-parameter two-dimensional system, having the equilibrium

x = x0 satisfying the condition for a Hopf bifurcation at r = rc, for some pair of purely imaginary

eigenvalues, then there exist an equilibrium curve Γ ⊂ R2 ×R2, whose projection onto the plane

(r1,r2), γB, provides the correspondent bifurcation boundaries of the bifurcation.

At this point, if either the fold or Hopf bifurcation conditions are satisfied at x = x0 for r = rc,

then the system shows a fold-Hopf bifurcation, also known as zero Hopf or saddle-node Hopf. This
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bifurcation occurs in dynamical systems where n ≥ 3, as a zero and a purely imaginary pair of

eigenvalues are required.

Consider a 3D system with two varying parameters

ẋ = f (x,r), x ∈ R3, r ∈ R2. (2.16)

with a fold-Hopf bifurcation at x0 = (0,0,0) for rc = (0,0). The normal form of the bifurcation

assumes the following equations in cylindrical coordinates:


ξ̇ = β1 +ξ 2 + sρ2,

ρ̇ = ρ(β2 +θξ +ξ 2),

φ̇ = ω +θξ ,

(2.17)

in which the first two equations are independent from the third one, which describes a rotation

around the ξ -axis. Thus, we can assume only the system of two equations for ξ and ρ:


ξ̇ = β1 +ξ 2 + sρ2,

ρ̇ = ρ(β2 +θε +ξ 2),

(2.18)

In a neighbourhood of x0 (ρ = 0), the system has two equilibria for β1 < 0:

(ξ 1,2
0 ,ρ1,2

0 ) = (∓
√

−β1,0), (2.19)

originating from a generic fold bifurcation at β1 = 0 and defying the boundary S = (β1,β2) : β1 = 0

and the branches S+ ⊂ S : β2 > 0 and S− ⊂ S : β2 < 0. The latter equilibria can bifurcate when

ρ > 0, generating a further equilibrium (node or saddle)

(ξ 3
0 ,ρ

3
0 ) =

(
− β2

θ
+O(β2),

√
−1

s

(
β1 +

β 2
2

θ 2 +O(β 2
2 )
))

, (2.20)

defying the boundary H =
{
(β1,β2) : β1 =−β 2

2
θ 2 +O(β 2

2 )
}

. In Fig. 2.10 the bifurcation diagram is

represented, corresponding to the normal form 2.18 for s−1 and θ > 0, reporting the bifurcation

boundaries γB. In the diagram, as we move clockwise around the origin, in the plane (β1,β2), we

have a stable focus in (1), generated from the branch S+. Then, crossing the β1-axis, the system
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undergoes a Hopf bifurcation originating a stable limit cycle in a small neighbour of x0 in (2). Such

a cycle grows as we move clockwise in (β1,β2), until reaching the boundary of the neighbourhood

of x0, corresponding to a further that originates the branch J. Once crossed J, from (2) to (3), the

limit cycle becomes invisible from the inner of the neighbourhood of x0, a phenomenon known

as cycle blow-up. Then, in the region (4), crossing the branch S− from (3) to (4), we have the

birth of two nodes and a saddle. The same scenario can be observed in the region (6), crossing the

branch S+, from (1) to (6) (anti-clockwise). In (5), we can appreciate a stable and an unstable node,

defined by the branches H− and H+ of H. Therefore H represents a pitchfork bifurcation, where

three equilibrium points are created.

Figure 2.10. Fold-Hopf bifurcation diagram for s = −1, and θ > 0. An example of
fold-Hopf bifurcation generating different equilibrium branches is reported. By moving
onto the plane (β1,β2), we observe the birth and death of a limit cycles (blow-up) and a
pitchfork bifurcation.
Adapted from: Elements of Applied Bifurcation Theory (pp. 343), by Y. A.Kuznetsov, 2004, New
York, NY, Springer Science. Copyright 2004 by Springer.

In conclusion, in this chapter, I have summarised some theoretical concepts of dynamical system

theory, which will support the results of our work shown in Chapter 4, in terms of stability and

bifurcations of microcavities equilibrium solutions.



Chapter 3

Dynamical Model for Nonlinear

Microcavities

3.1 Chapter Introduction

The coupled mode theory (CMT) is an efficient approach for describing the coupling between

propagating modes in waveguiding structures, such as microresonators, with high accuracy in

estimating the coupling coefficients and predicting the evolution of the optical fields. The CMT

was initially developed in the 1950s in the context of microwave apparatus, for the study of

electromagnetic devices [108–110]. Then, from the 1970s, has been expanded and tailored for

optical devices as well. [31, 54, 111–171]. This classical theory in linear regimes [31, 110–144],

has been generalised during the years to include nonlinear applications and describe quantum

regimes.

One of the pioneers of the CMT was Pierce, who, in the 1950s, approached the problem

of the interaction of electron beams and electromagnetic waves in tubes by developing a set of

coupled differential equations [108]. In the same years, Miller’s work provided a description of

microwaves waveguides and passive devices [109], whose results were generalised by Louisell to

treat tapered waveguide in 1955 [110]. In the following two decades, between the 1970s and 1990s.

In particular, Marcuse [110, 112], Snyder [113, 114], Yariv and Taylor [31, 115], independently,

developed a coupled-mode theory for optical waveguides. The latter achievement enabled the study

of several systems, such as guided-wave optoelectronic [116–119] and fibre optical devices [120–

124], multiple waveguide lenses [125, 126], phase-locked lasers array [127], grating waveguides

and couplers [128, 129, 131, 132], nonparallel waveguiding structures [111, 133–141], polarisation
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rotation in optical fibres [142–144]. Later on, the CMT has been generalised to study the wave

coupling in medium with a nonlinear response, such as second harmonic generation in bulk

structures [145], waveguides [146] and resonant cavities [54, 147–149], as well as to describe

nonlinear soliton propagation [150, 151] and modulation of instabilities in fibre [152].

Nonclassical phenomena, like squeezed states of the light [167] and quantum statistical prop-

erties of optical fields involving parametric processes in nonlinear optical couplers [168], have

been studied using the approach of the coupling of modes, including, more recently, quantum

proprieties of optical structures using a Hamiltonian framework of the CMT [170–172]. In early

formulations, the CMT equations were obtained from energy balancing considerations; the first

attempt to a rigorous formulation was developed by Schelkunoff [173], who showed that Maxwell’s

equations, with certain boundary conditions, can be reduced to the set of equations describing

the voltage and current into coupled transmission lines, called “Telegraphist’s Equations”. Such

an approach, based on the expansion of orthogonal modes of the uncoupled system, was known

as conventional orthogonal coupled mode theory (OCMT), which allows obtaining the coupling

coefficients unequivocally once the boundary conditions on the modes are defined. While studying

optical couplers, Chen and Wang [153] highlighted the limited accuracy of the OCMT. Then, Hardy

and Streifer [154] introduced a nonorthogonal formulation of the coupled-mode theory (NCMT),

arguing that it reproduced, with more accuracy than the OCMT, the same results for dispersion

curves and field patterns for the modes of parallel coupled waveguides. What emerged from such a

debate during those years was that a strong power nonorthogonality could modify the nature of the

coupling and, hence, the interaction among cavity modes. Following that, several reformulations

of the conventional OCMT had been developed until 1987, when Haus and co-author introduced

a formal approach that resolved almost all the discrepancies between the OCMT and the NCMT

[157]. They showed that the coupling of the modes in space [149, 157] and in time [54, 149]

could be obtained considering the unknown fields of the coupled system as a superposition of the

known fields of the uncoupled system (trial fields) on which applying a variational principle to

determine the best approximation of the coefficients of the expansion. In some works, it has been

also demonstrated that there exists a unique procedure to orthogonalise the power of the modes,

which reproduces the previous results of the OCMT. A few years later, a self-consistent NCMT

using the reciprocity theorem was presented by Chuang [161] as well.

In this chapter, I will derive the CMT equations using a variational principle in Section 3.2, in the

same fashion as the approach proposed by Haus [149]. Then, I will extend the equations to the
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case of nonlinear dielectric materials. In Section 3.3, I will explicitly show the model equations to

describe the fields propagation in an optical microcavity, in presence of third-order nonlinearities.

3.2 Coupled Mode Theory in Time

Haus and co-workers derived the nonorthogonal coupled mode equations in space using a variational

principle, for linear and lossless waveguides [157]. The NCTM is more general than the OCMT

and overcomes its limitation when the trial modes cannot be chosen being orthogonal, for instance

when they belong to different reference structures.

Let’s start from the Maxwell’s equations describing the electromagnetic complex fields prop-

agation in a lossless, non-homogeneous medium with a linear dielectric tensor ε , in general. By

neglecting any magnetization of the material, we can write


∇×E+µ0∂tH = 0,

∇×H−∂tD = 0,
(3.1)

in which µ0 is the magnetic permeability of vacuum, E and H are the electric and magnetic fields,

respectively, while D is the electric displacement field. Eqs. 3.1, combined together, provide the

wave equation for the electric field in a medium ε

∇× (∇×E) =−µ0∂
2
t D. (3.2)

By Fourier transforming the fields1, we obtain

E(r, t) =
1

2π

∫
Ẽ(r,ω)exp−iωt dω, (3.3)

D(r, t) =
1

2π

∫
D̃(r,ω)exp−iωt dω, (3.4)

where Ẽ and D̃ are the Fourier transforms of the complex fields E and D, while ω is the wave

frequency. Substituting Eqs. 3.3 and 3.4 into Eq. 3.2, we can write the wave equation in the

frequency domain

∇× (∇× Ẽ) = µ0ω
2D̃, (3.5)

1F(r, t) = 1
2π

∫
F̃(r,ω)exp−iωt dω
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where the displacement field D̃ is defined as

D̃(r,ω) = ε0ε(r)Ẽ(r,ω)+∆P̃(r,ω). (3.6)

In the above expression, ε0 is the permittivity of free space, ε(r) describes the geometry of the

"unperturbed" system and ∆P̃ takes into account all the perturbations from the ideal structure (e.g.

the presence of an external waveguide for the coupling, imperfections of the resonator, dispersion

of the refractive index), which may change the effective index of the modes and promoting to the

modal coupling.

By performing the scalar product of Eq. 3.5 by E∗, integrating both sides of such an equation

over the volume V of the whole space and solving for ω2, we reach

ω
2 =

∫
Ẽ∗ ·∇× (∇× Ẽ)dV

µ0
∫

Ẽ∗ · D̃dV
. (3.7)

Considering that the fields fade to zero at the infinite, and that there is no radiating power, we can

integrate Eq. 3.7 over the volume surrounding the dielectric instead. This leads us to

ω
2 =

∫
(∇× Ẽ∗) · (∇× Ẽ)dV

µ0
∫

Ẽ∗ · D̃dV
, (3.8)

in which ω assumes the role of action functional of the fields, providing an estimation of the

resonant frequencies of the cavity modes.

When ∆P̃ = 0, that is the case of an unperturbed system, we can "easily" solve the eigenproblem

associated to Eq. 3.5 and find the eigenvalues ωi and the eigenvectors ei of the i− th mode of

unperturbed system, which satisfies the following equations:

∇× (∇× ẽi) = µ0ω
2
i d̃i. (3.9)

The latter defines a set of trial fields ẽi, with which we can expand Ẽ and D̃ and approach the

solution of the coupled-modes problem when ∆P̃ ̸= 0. Therefore, given a set of N trial modes, ẽi, d̃i,

we assume the following ansatz

Ẽ =
N

∑
i=1

ãi(ω)ẽi, (3.10)

D̃ =
N

∑
i=1

ãi(ω)d̃i, (3.11)
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where ãi are the modal amplitudes. By replacing Eqs. 3.10 and 3.11 into Eq. 3.8, one obtains

ω
2 =

N

∑
i, j=1

ãi
∗ki, jã j

ãi
∗wi, jã j

, (3.12)

where

wi, j =
∫

ẽ∗i · d̃j dv, (3.13)

and

ki, j =
1
µ0

∫
(∇× ẽ∗i ) · (∇× ẽj)dV =

1
µ0

ω
2
j

∫
ẽ∗i · ε · d̃j dV, (3.14)

are the terms defining the matrices W and K, respectively. Eq. 3.12 can also be expressed in matrix

representation

ω(ã)2 =
ã†Kã
ã†Wã

. (3.15)

For lossless dielectrics, W is a Hermitian positive matrix, as W = ã†Wã represents the time-average

energy, which is real, while K is the correction onto the energy that takes into account the coupling

of modes, and it is Hermitian as well.

The variational principle states that the real path followed by the system during its evolution is

a stationary point of the action functional integral (Eq. 3.12 or Eq. 3.15). Thus, we can differentiate

the right hand side of Eq. 3.12 with respect to the amplitudes and phases of ã j, keeping ãi
∗ fixed or,

equivalently, by differentiating Eq. 3.12 with respect to the ãi
∗, keeping ã j fixed, and obtain the

best estimation for ω

ω
2Wã = Kã. (3.16)

According to the perturbation theory, we can assume that all the modes frequencies are located

around a central frequency value ω0. If we neglect the second-order deviations of ω from ω0, we

reach: δω ≈ (ω2 −ω2
0 )/2ω0. Then, we can look at iδω as the result of the time derivative of an

exponential function in the form: exp(iδω)t, which defines the inverse Fourier transform of ã(ω)

a(t) =
1

2π

∫
ã(δω)exp−i(δω)td(δω), (3.17)

from which we come to the variational formulation of the CMT equations in time:

W
da
dt

= iHa, (3.18)
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where H = (ω2
0 W−K)/2ω0 assumes the role of a coupling matrix, providing the coupling coeffi-

cients that quantify the modes interaction, hence the rate of energy exchanged one another. H is a

Hermitian matrix, as a direct consequence of the fact that both W and K are Hermitian matrices.

The latter aspect confirms that the overall of energy of the system must be conserved, indeed, if we

derive such an energy, W , with respect to the time and use Eq. 3.18, we can write

d
dt
[a†Wa] = i[a†Ha−a†H†a] = 0. (3.19)

3.3 Coupled Mode Theory for a Cavity with Kerr and Thermo-Optical

Effect

The microresonators’ ability of strongly enhancing the optical field triggers different nonlinear

effects and leads to noteworthy dynamical regimes. Bi-stability, self-pulsing (SP) and chaotic

regimes can be observed at low powers [1, 5]. The key role is played by slow and fast nonlinearities

and their interaction. A possible way of controlling the overall behaviour, in order to achieve a

desirable output, has been the main goal of this work.

In such a defined scenario, we exploit the approach of the CMT developed in the previous

section to derive a suitable model of equations to study nonlinear dynamics in a microcavity-based

oscillator, exhibiting both Kerr and an intensity-dependent nonlinearity, with a first-order time

response.

3.3.1 Presence of Kerr Effect

Let’s consider the electric displacement field, which takes into account the effect of the polarisation

of the material as a response to an electric field E

D(r, t) = ε0E(r, t)+P(r, t), (3.20)

where P(r, t) is the polarisation vector that, generally, is a nonlinear function of the electric field in

a nonlinear medium. We can express the overall polarisation field P as

P(r, t) = P0(r, t)+∆P(r, t), (3.21)
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in which P0 is the polarisation of the unperturbed system, while ∆P takes into account either linear

perturbation on the resonator, such as coupling waveguides, or nonlinear contributions

∆P(r, t) = PL(r, t)+PNL(r, t). (3.22)

In this regards, we assume that the resonator is ideal, scalar, isotropic, dispersionless, with a

third-order nonlinear response, i.e. Kerr materials, neglecting second-order nonlinear optical effects.

For the purpose of this work, we neglect also third-harmonic generation. Therefore, we can write


PL(r, t) = ε0∆χ(r)E(r, t),

PNL(r, t)≈ 3
4 χ(3)(r)|E(r, t)|2E(r, t),

(3.23)

where ∆χ considers external linear perturbation and material imperfections, while χ(3) is the third

order susceptibility [174]. As trial solution, we consider a superposition of orthogonal modes of

the uncoupled system, defined as

E(r, t) = ∑
i

Aiai(t)ei(r), (3.24)

where Ai =
√

2/ε0n2
i Vi are normalisation coefficients, in which Vi is the mode volume of the i− th

mode; it represents the space filled by the field profile inside the resonator, and it is defined as

Vi =
∫

||ei(r)||2dV. (3.25)

ni is the effective refractive index of the i− th mode ei

n2
i =

∫
ε(r)||ei(r)||2dV∫
||ei(r)||2dV

. (3.26)

Moreover, we suppose that the amplitudes ai(t) are slowly-varying functions of time. By using

the ansatz Eq. 3.24, we can introduce a generalization of the CMT equations 3.18 for nonlinear

medium [175, 176]
dai(t)

dt
=−1

4

√
2

ε0n2
i Vi

∫
∂

∆P
∂ t

· e∗i eiωitdV, (3.27)

in which ωi represents the frequency of the i− th mode. We can analyse the linear and nonlinear

contribution of the vector ∆P(r, t) separately. When the nonlinear term is neglected, we obtain an
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equivalent form of the CMT equations 3.19

dai(t)
dt

= ∑
l

Γil al(t)ei(ωi−ωl)t +ζ , (3.28)

where the exponential function ei(ωi−ωl)t removes all the modes of frequency ωl with a large phase

mismatch. The term ζ represent the coupling of the cavity with the input evanescent modes (though

input coupling). Γil are the overlap tensors, given by

Γi,l =
iωl

2

∫
∆χ(r)
ninl

el · e∗i
dV√
VlVi

, (3.29)

which evaluate the losses of the mode due to the output coupling. If there is no interaction with

other modes, the equation 3.28 reduces to

dai(t)
dt

=− 1
τph

ai(t)+

√
2
τe

Eine−i(ωi−ωin)t , (3.30)

where ωin is the external pump frequency and Ein its amplitude, τph represents the photon lifetime,

related with the linear coupling; τph depends on either intrinsic losses, due to the resonator itself, or

extrinsic losses, τe, because of the coupling geometry of the cavity. From τph we can determine

the amount of energy transferred through the coupling and define the bandwidth of the resonance:

δω = 2/τph. The field at output of the microcavity for every mode can be written as

Ei = Einei(ωi−ωin)t −
√

2
τe

ai, (3.31)

whose intensity is mediated by extrinsic losses, τe. Assuming a critical coupling of the microcavity,

the internal losses are equal to the coupling losses, hence τph = τe/2. It worthwhile pointing out

that the intra-cavity fields are expressed in [J]1/2, while the external coupled fields are in [W ]1/2.

When we consider the nonlinear contribution of ∆P into Eq. 3.27, we obtain

dai(t)
dt

= ∑
k,l,q

Γ
kl
iqak(t)al(t)aq(t)∗ei(ωi+ωq−ωk−ωl)t , (3.32)

with Γkl
iq nonlinear tensor expressed as

Γ
k,l
i,q = i(ωk +ωl −ω1)

3
4ε0

∫
χ(r)3eke∗i · el · e∗q

nkninlnq
√

VkViVlVq
dV. (3.33)
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The CMT assumes that all the modes of a cavity have frequencies that remain very close to their

natural value ω0, which, in other words, means that the theory assumes quasi-degenerate modes in

the spatial domain for those belonging to the same mode family i.e. ei ≈ ei0 . This approximation

can be used in our framework, because the phase mismatch ωi +ωq −ωk −ωl , which leads the

energy exchange among modes, prefers modes that satisfy the condition: ωi +ωq −ωk −ωl ≈ 0,

for efficiency reasons. Therefore, considering that the nonlinear susceptibility χ(3) is constant over

the mode volume, and that the refractive indices are degenerate, Eq. 3.33 becomes

Γi0 = iωi
3
4

χ(3)

ε0n4
0

∫
||ei0 ||4dV[∫
||ei0 ||2dV

]2 = iωi
n2c

n2
i0Ve f f

, (3.34)

with the Kerr refractive index n2 = 3χ(3)/(4ε0cn2
0), and Ve f f the effective volume of the cavity,

defined as: Ve f f =V 2
i0

[∫
||ei0 ||4dV

]−1.

At this point, we suppose both linear and nonlinear contributions of ∆P. Therefore, we replace

Eq. 3.34 into Eq. 3.32, then we combine Eqs. 3.30 and 3.32 to obtain, finally, the CMT equations

for nonlinear medium

dai(t)
dt

=− 1
τph

ai(t)+δi,i0

√
1

τph
Einei(ωi0−Ωin)t

+Γi0 ∑
k,q,l

δi+q−l−kak(t)al(t)a∗q(t)e
i(ωi+ωq−ωl−ωk)t .

(3.35)

Eqs. 3.35 takes into account an external coupling with a continuous-wave source, with power |Ein|2,

coupled into the mode ωi0 of the microcavity. Moreover, we also consider a laser detuning shift, Ωin,

with respect to the central value of frequency ωi0 , thus an effective pump frequency: ωin = ωi0 +Ωin.

The laser detuning introduces terms into the equations depending explicitly on the time. In order

to remove this dependence, we assume ωin as reference frequency, and express the modal fields

with respect to an equidistant frequency grid: ai = ǎi exp[i(ωi −ωin)t] = ǎi exp[i(ωi −ωi0 −Ωin)t].

Replacing the latter equation into Eq. 3.35, we finally achieve the coupled-mode equations for a

nonlinear microcavity

dǎi(t)
dt

= iΩinǎi(t)−
1

τph
ǎi(t)

+ ıΓi0 ∑
j,l,m

δi+l−m− jǎ j(t)ǎm(t)ǎ∗l (t)+ i
1

√
τph

δi0Šin.
(3.36)
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The third term on the right-hand side of Eq. 3.36 describes the mixing of four different photons due

to the Kerr nonlinearity, while Šin is the external field amplitude appropriately rescaled.

3.3.2 Thermo-Optical Effect

Coupled mode theory can also be efficiently used to model different types of nonlinearity, such as

thermo-optical effect. When a laser pumps energy into a microcavity, it can act as an internal heat

source, producing a strong increase of the temperature due to the small mode volume and high-Q

factor. The intensity of the propagating optical field can reach values above 1GW/cm2 [175]. The

generated heat propagates through the bulk of the resonator and then to the surroundings. This

phenomenon has an effect on the refractive index, which is temperature dependent, and manifest

itself with a shift of the WGMs and a variation of the free spectral range of the cavity. Therefore,

we need to consider an additional terms of detuning into the Eqs. 3.36 that we define as εT (t),

which is dependent on the energy coupled into the resonator. In a first approximation, it can be

expressed with a first-order decay equation as the following

τT
dεT

dt
=−εT +QT , (3.37)

where τT is a decay constant that models the thermal dissipation of the system, while QT represents

the heating of the resonator, which is proportional to the total inner energy

Q ∝ ∑
i
|ai|2. (3.38)

By inserting Eq. 3.37 in 3.27, and properly setting ωin = ωi0 +Ωin we obtain the full set of CMTs

including the thermal detuning of the cavity resonances

dǎi(t)
dt

= iΩinǎi(t)+ iΩT ǎi(t)−
1

τph
ǎi(t)

+ ıΓi0 ∑
j,l,m

δi+l−m− jǎ j(t)ǎm(t)ǎ∗l (t)+ i
1

√
τph

δi0 Šin,
(3.39)

τT
dΩT

dt
= ΓT ∑

k
|ǎk(t)|2 −ΩT , (3.40)

in which

ΓT = iωi
nT

2 c
n2

i0Ve f f
, (3.41)
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where nT
2 is the thermo-optic refractive index, controlling the slow nonlinear detuning rate, while

τT is its decay time.

3.3.3 Derivation of the Model for Kerr Microcavities with a Thermo-Optical Non-

linearity

We consider the coupling of two external fields, Šp and Šs, that we refer as pump and signal,

with frequencies ωp and ωs, respectively. Eqs 3.39 and 3.40 are suitable to model a nonlinear

microcavity subjects to the Kerr and thermo-optical effects.

In third-order materials, the Kerr nonlinearity generates self-phase modulation (SPM) and

cross-phase modulation (XPM), two nonlinear effects arising because of the dependence of the

refractive index from the intensity of the propagating electric fields. SPM is responsible of a

self-induced phase shift of the individual optical fields Šp and Šs meanwhile they are propagating,

while XPM manifests itself with a phase shift of the the individual optical field, Šp, due to the

presence of Šs and vice versa. The overall phase shift experienced by the fields can be quantified

as: ∆φp,s ∝ (|Šp,s|2 +2|Šs,p|2), in which the first term is related with SPM, while the second one

depends on the XPM. From the previous equation for phase shift, we note that, given equally

intense optical fields, the amount of shift due to XPM is twice that of SPM. In terms of conservation

of energy ωi must be equal to ω f , so that, to observe SPM or XPM, one of the following conditions

must be satisfied:

ωp,s +ωp,s = ωp,s +ωp,s, for SPM,

ωp +ωs = ωp +ωs, for XPM.

We anticipate that, the model that we are developing in this chapter will be initially applied to the

case of degenerate four-wave mixing (FWM), where two photons of the pump laser with frequency

ωp interact with one photon of the signal at frequency ωs, to generate the idler’s photon at ω
l,r
id .

The apexes l and r state for "left" and "right" idler, or in other words, generated at lower or at

higher frequency with respect to the pump frequency ωp (down-conversion or up-conversion),

respectively). Following the conservation of energy, this process must satisfy the conditions:

2ωp = ωs −ω l
id or 2ωs = ωp −ωr

id , with ωs and ω
l,r
id symmetrically distributed with respect to the

central pump frequency, ωp, as depicted in Fig. 3.1 (a). Then, we will also take into account higher

order FWM terms generation, specifically, up to the presence of a secondary idler, whose frequency

must satisfy the condition: ωp +ωs = ω l
id −ωr

id , as shown in Fig. 3.1 (b).
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Figure 3.1. Examples of four-wave mixing processes. (a) Degenerate four-wave mix-
ing in which two photon of the pump ωp, interacting with the nonlinear material, are
converted in one photon of the signal ωs and in one photon of the idler ω l

id , respectively.
In the same manner, two photon of the signal ωs are converted in one photon of the
pump ωp and in one photon of the idler ωr

id , respectively. (b) The FWM can generate a
secondary idler, in the specific one photon of the pump ωp and one photon of the signal
ωs, through nonlinear interactions with the medium, are converted in one photon of the
left idler ω l

id and in one photon of the right idler ωr
id , respectively.

Under the above conditions, assuming the coupling of four different intra-cavity fields, a pump (ǎp),

a signal (ǎs), a primary idler (ǎl
id) and a secondary idler (ǎr

id) due to the external coupled fields, Šp

and Šs, the CMT Eqs. 3.39 and 3.40 can be explicitly written as

dǎp

dt
=−

[
iΩp + τ

−1
ph + iΩT − iΓK(|ǎp|2 +2 |ǎs|2 +2|ǎl

id |2 +2|ǎr
id |2)

]
ǎp

+ΓK(2ǎ∗pǎsǎl
id + ǎ2

s ǎr∗
id +2ǎ∗s ǎr

id ǎl
id)− iτ−1/2

ph Šp,

(3.42)

dǎs

dt
=−

[
iΩs + τ

−1
ph + iΩT − iΓK(|ǎs|2 +2 |ǎp|2 +2|ǎl

id |2 +2|ǎr
id |2)

]
ǎs

+ΓK(2ǎ∗s ǎpǎr
id + ǎ2

pǎl∗
id +2ǎ∗pǎr

id ǎl
id)− iτ−1/2

ph Šs,

(3.43)

dǎl
id

dt
=−

[
iΩl

id + τ
−1
ph + iΩT − iΓK(|ǎl

id |2 +2 |ǎp|2 +2 |ǎs|2 +2|ǎr
id |2)

]
ǎl

id

+ΓK(ǎ2
pǎ∗s +2ǎr∗

id ǎpǎs),

(3.44)

dǎr
id

dt
=−

[
iΩr

id + τ
−1
ph + iΩT − iΓK(|ǎr

id |2 +2 |ǎp|2 +2 |ǎs|2 +2|ǎl
id |2)

]
ǎr

id

+ΓK(ǎ2
s ǎ∗p +2ǎl∗

id ǎpǎs),

(3.45)

τT
dΩT

dt
= ΓT (|ǎp|2 + |ǎs|2 + |ǎl

id |2 + |ǎr
id |2)−ΩT . (3.46)
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where Ωp, Ωs, Ωl
id and Ωr

id are the detuning from the resonant frequencies of the pump, signal,

primary and secondary idler respectively, while ΓK is given by Eq. 3.34. It is helpful to introduce

a dimensionless normalization of the temporal variable t against the photon lifetime τph, hence

tτph provides the physical time in seconds. In order to obtain dimensionless equations, the optical

amplitudes must be normalized with respect to the Kerr constant, by defining the set of intra-cavity

amplitudes and external coupling amplitudes: ai(t) = ǎi(t)
√

τphΓK and Si(t) = Ši(t)
√

τ2
phΓK ,

respectively. Finally, we obtain

dai

dt
=−ai − i[δi +∆− (2IT −|ai|2)]ai + iFi − iSi, (3.47)

σ
d∆

dt
=−∆−ρIT , (3.48)

in which (0) is the pump, (1) is the signal, (-1) the primary idler and (2) the secondary idler.

IT = ∑k=0±1 Ik is the total cavity energy; Ii = |ai|2, Pi = |Si|2 and δi = Ωiτph are the normalized

intra-cavity energies, the coupled powers and frequency detuning, respectively. ∆ is the detuning

due to the slow nonlinearity (thermo-optical), where σ = τT/τph is the normalised relaxation

time; ρ = ΓT/ΓK is the effective nonlinear coefficient normalised against the Kerr constant. The

parameter σ depends on the quality factor and can be engineered. Crystalline high-Q resonators

can easily have σ of the order of a few tens, while integrated resonators, with a lower Q-factor and

a higher relaxation constant, can have σ up to several orders of magnitude. The values for ρ are

usually in the range of one to three orders of magnitude and can exhibit both signs [5, 177, 178].

The FWM terms in the Eq. 3.47 are

F0 = 2a∗0a1a−1 +a2
1a∗2 +2a∗1a2a−1, (3.49)

F1 = 2a∗1a2a0 +a2
0a∗−1 +2a∗0a2a−1, (3.50)

F−1,2 = a2
0,1a∗1,0 +2a∗2,−1a0a1, (3.51)

Therefore, in this chapter, the framework of the non-orthogonal coupled mode theory in time

(Section 3.2) has been applied to model the special case of a homogeneous, anisotropic, disper-

sionless microresonator. A set of ordinary differential equations, which is a prototypical model for

time-dependent nonlinearities, has been built; it describes the dynamics of the intra-cavity fields and

providing a general understanding of a large class of devices, accurately reproducing the thermal

relaxation in microcavities [1] with a time response τT and a nonlinear thermo-optical index ΓT .
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In the next chapter, I will discuss relevant results obtained by performing a numerical study in

function of the fundamental parameter of the system, appreciating how the interaction among fast

and slow nonlinearities can be opportunely adjusted to achieve a desired nonlinear regime.



Chapter 4

Analysis of Stability and Nonlinear

Dynamical Regimes in Kerr

Microcavities with a Thermo-Optical

Nonlinearity

4.1 Chapter Introduction

Thermo-optic and Kerr effect can have a strong impact on the response of microresonators, for

instance, they can induce a frequency shift of the resonant frequencies of the optical modes,

affecting also the free spectral range of the cavity. Such nonlinear effects are related to a linear

dependence of the refractive index on the optical intensity and they may have different origins and

timescales. Whereas the Kerr effect arises from the interaction between the electric field and the

medium, quantified by the third-order component of the nonlinear polarisation vector, the thermal

effect is due to the self-heating of the cavity, enhanced by the strong confinement of the light inside

the modes volume of a microresonator. In this manner, a propagating field acts as an internal

source of heat, with the result that the cavity undergoes an increase of the temperature. Then, the

generated heat is dissipated toward the surroundings until the system reaches an equilibrium. This

results in a gradient of temperature within the confined inner region of the microresonator. Since

the refractive index is temperature-dependent, the temperature gradient causes a further shift of

the cavity resonances. Such an occurrence may contribute to thermo-optic instabilities, such as
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self-pulsing (SP), as we will see in this chapter. We take into Kerr and thermo-optical nonlinearity,

which are quantified in our model by their constants, ΓK and ΓT , respectively. The Kerr effect acts

at atomic timescales, usually modelled as an instantaneous response. Conversely, other third-order

nonlinearities, such as thermo-optical, opto-mechanical and free carrier, have a slower relaxation

time compared to the Kerr response, as it has been seen in the introduction and in Chapter 1.

Here, we are focused on the interplay between the Kerr and thermo-optical nonlinearity, and in

which way those influence the system’s equilibrium stability, in order to implement a scheme that

allows ruling desired dynamical regimes. Particularly, we consider a configuration in which a weak

signal is meant to trigger and control the self-oscillatory behaviour of a strong pump coupled into a

microcavity, considering the role of the four-wave mixing (FWM).

A dramatic change of the dynamics of a nonlinear system(e.g. an optical microcavity), usually

matches a bifurcation of some equilibrium point in the parameter space. Therefore, we need to

investigate the stability of the steady-state solutions of microresonators and the bifurcations of its

equilibria, in order to determine the dynamical evolution of the system from an initial stationary

state. The theoretical background defined in Chapter 2 and 3 will be applied to provide an analysis

of the system’s phase space and find bifurcations in the parameter space. Numerical techniques

based on the Newton-Raphson continuation method [101] and a 5th order step-adaptive Runge-

Kutta-Fehlberg method (see Appendix A.3) are suitable to propagate the coupled-mode theory

(CMT) equations in time1.

This chapter is organised as follows: in Section 4.2 I will apply a perturbative method to linearise

the model equations 3.47 and 3.48, and obtain the perturbation matrix, whose eigenvalues define

the stability of the steady state solutions for a system of coupled fields in an optical microcavity.

Then, in Section 4.3, I will use the linearised model to describe the illustrative case of single-

frequency coupling, determining analytic expressions for the boundaries separating different region

of stability. I will also introduce the concept of the stability maps and bifurcation diagrams. The

interplay between the thermo-optical and Kerr effect on the nonlinear response of a microcavity

will be discussed in Section 4.4. The outcomes from Sections 4.3 and 4.4 will lay the basis to

fully comprehend the case of two frequency coupling in Sections 4.5 and 4.6, where I will prove

that the four-wave mixing, induced to the coupling of the signal, is fundamental in creating and

reallocating bifurcations in the parameter space and changing the nature of the equilibria of the

system, hence its dynamical evolution. Finally, in Section 4.7, I will provide a clear example

1MATLAB and MATCONT for the numerical continuation and bifurcation study of continuous and discrete parametrised
dynamical system have been used. The codes are reported in Appendix A.
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of switching between different operational regimes and transferring of dynamics between cavity

modes, via FWM, including the case of chaotic states.

4.2 Linearisation of the Coupled Mode Equations

The system of equations 3.47 and 3.48 describes the time evolution of complex fields propagating

into a microcavity. Hence, we can consider the field amplitudes and their correspondent complex

conjugate counterparts such that the system can be written as:



dai
dt =−ai − i[δi +∆− (2IT −|ai|2)]ai + iFi − iSi,

da∗i
dt =−a∗i + i[δi +∆− (2IT −|ai|2)]a∗i − iF∗

i + iS∗i ,

σ
d∆

dt =−∆−ρIT .

(4.1)

We remind the explicit expression of the terms appearing above: F0 = 2a∗0a1a−1+a2
1a∗2+2a∗1a2a−1,

F1 = 2a∗1a2a0 +a2
0a∗−1 +2a∗0a2a−1, F−1,2 = a2

0,1a∗1,0 +2a∗2,−1a0a1 are the FWM terms, while Ii =

|ai|2 and Pi = |Si|2 are the normalised intra-cavity energies and coupled powers, respectively.

Moreover, ρ = ΓT/ΓK , while σ = τT/τph.

Following the notation introduced in Section 2.2, Eqs. 4.1 represent a set coupled ODEs,

where the vector-valued function is: f : C9 ×R6 →C15, while the amplitude and parameter vectors

are: x = (a0,a∗0,a1,a∗1,a−1,a∗−1,a2,a∗2,∆)
T and r = (σ ,ρ,δ0,δ1,P0,P1)

T , respectively. Then, let

x0 = (A0,A∗
0,A1,A∗

1,A−1,A∗
−1,A2,A∗

2,D) be a steady state solution of the system and consider the

following first-order perturbative ansatz


ai(t) = Ai +δai(t),

∆(t) = D+δ∆(t),
(4.2)

where δai(t) and δ∆(t) are first-order perturbation terms, belonging to the perturbation vector

ε = (δa0,δa∗0,δa1,δa∗1,δa−1,δa∗−1,δa2,δa∗2,δ∆)T . The latter is found solving the following

linearised equation
dε

dt
= Mε (4.3)
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where M is the perturbation matrix evaluated in x0

M =


∂ fa0
∂a0

∂ fa0
∂a∗0

. . .
∂ fa0
∂∆

. . .
. . .

∂ f∆

∂a0

∂ f∆

∂a∗0
. . . ∂ f∆

∂∆

 (4.4)

The linearisation theorem discussed in Section 2.2 allows to analyse the stability of the steady state

solutions, by numerically solving the eigenvalues problem associated to the Jacobian matrix M(x0).

Once worked out the eigenvalues for each equilibrium point, we can realise stability maps and

study the bifurcations of the equilibrium curve by changing some parameters of the system.

Given a set of initial conditions, the system evolves from one initial steady state toward a final

steady state, according with the equations, defining the time-parametrised phase portrait that we

can numerically represent.

4.3 Single Frequency Continuous Wave Pumping

Assume an external field S0 due to a single pump source, with frequency ω0, coupled into a

microcavity mode. The model of Eqs. 4.1, is reduced to the following system of two coupled ODEs



da0
dt =−a0 − i[δ0 +∆−|a0|2]a0 − iS0,

da∗0
dt =−a∗0 + i[δ0 +∆−|a0|2]a∗0 + iS∗0,

σ
d∆

dt =−∆−ρ|a0|2,

(4.5)

The steady state solutions of Eqs.4.5 can be analytically found by solving the cubic equation

− iS0 − ia0(−i+δ0 − (1+ρ)|a0|2) = 0, (4.6)

from which we obtain the general set of solutions

a0 =
{ 3

√
b

3
√

232/3η2
+

3
√

2
3 η1

3
√

ζ
;−

(
1− i

√
3
)

3
√

ζ

2 3
√

232/3η2
−

(
1+ i

√
3
)

η1

22/3 3
√

3 3
√

ζ
;−

(
1+ i

√
3
)

3
√

ζ

2 3
√

232/3η2
−

(
1− i

√
3
)

η1

22/3 3
√

3 3
√

ζ

}
,

∆ =−ρa0,

(4.7)
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with

η1 = (−i+δ0), η2 = (1+ρ), ζ = 9χ
2
2 S0 +

√
3
√

27χ4
2 S2

0 −4χ3
2 χ3

1 .

In Fig. 4.1, for a value of ρ = −10, we represent the stationary resonances (Eq. 4.6), for two

fixed values of pump power, P0 = 0.01,0.1, by varying the pump detuning δ0 and the intra-cavity

energy I0. Comparing Fig. 4.1 (a) with (b), we qualitatively note that, when the energy is low

(Fig. 4.1 (a)), the resonance exhibits the "classic" Lorentzian shape, due to the linear terms of Eq.

4.6. When the pumping is increased (Fig. 4.1 (b)), the optical circulating power increases in turn,

thus the contribution of Kerr and thermo-optical nonlinearity will no be longer negligible. This

results in a frequency "drifting" of the resonance with respect to the central value, giving rise to

a "triangular" or "bent" shape that is typical observed from the measurements. Equivalently, the

latter phenomenon arises when the bi-stable threshold is reached. Such a threshold indicates when

the contribution of the nonlinear term of the Eq. 4.6 becomes competitive over the linear terms.

This aspect will be discussed in detail in the next section, when we analyse the resonances shift in

relation with the ρ coefficient, which depends on the microcavity material.

Figure 4.1. Comparison between stationary solutions at
low and high power, in (a) and (b) respectively, with sin-
gle pumping, by varying δ0 and I0, fixing P0. When P0 =
0.01 the shape of the resonance is a typical Lorentzian
peak. At higher power in (b), with P0 = 0.1, the shape
is subject to a drift, which is due to the contribution of
nonlinear terms.
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By using the linearisation procedure, with the ansatz 4.2, we can write the terms of the Jacobian 4.4

as

M =


−1+ i(2|a0|2 −∆−δ0) ia2

0 −ia0

−ia∗0 −1− i(2|a0|2 −∆−δ0) ia∗0

−ρ
a∗0
σ

−ρ
a0
σ

− 1
σ
.

 (4.8)

Then, we solve the characteristic equation Det(M−λ I) = 0, from which we may have one real

and a complex pair of eigenvalues or three real eigenvalues, depending on the discriminant of the

equation.

According to Section 2.2, if one of the real eigenvalues is positive at a specific equilibrium

point, such an equilibrium is unstable; if all the real eigenvalues are negative, the equilibrium is

stable. Instead, if there is a complex conjugate pair of eigenvalues with positive real parts, then the

system shows periodic instability.

The condition that define the unstable boundaries is given by the equation: Det (M) = 0, corre-

sponding to a simple zero eigenvalue of the matrix 4.8.

IU,±
0 =

2δ0 ±
√

δ 2
0 −3

3(ρ −1)
, (4.9)

where IU,+
0 represents the upper unstable boundary, while IU,−

0 the lower one. By imposing

IU,+
0 = IU,−

0 , we can work out the critical value of detuning for the U region, δU
c =±

√
3, which

depends on the sign of ρ . From the critical detuning we can estimate the bi-stability threshold:

IB
0 =±

√
3

3(ρ −1)
, (4.10)

To obtain the expressions for the SP boundaries we impose the eigenvalues be in the complex

form: λ = λr)+ i λi and substitute the latter expression into the characteristic equation for the

determinant of Jacobian 4.8. Then, we separate the real from the imaginary contributions and

impose Re(λi) = 0, such that we reach


d2λ 2

i −d0 = 0,

λ 2
i −d1 = 0,

(4.11)
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where d0, d1 and d2 are combinations of the coefficient of M:


d0 =

2+σ+δ 2
0 σ−4δ0I2

0 σ+3I4
0 σ+2δ0I2

0 ρσ−4I4
0 ρσ+I4

0 ρσ

σ
,

d1 =
δ 2

0 +4δ0I0ρ−4δ0I0+3I2
0 ρ2−6I2

0 ρ+3I2
0+1

σ
,d2 =

2σ+1
σ

.

(4.12)

By solving Eq. 4.11 with respect to λi we reach the following relation between the coefficients:

d0 = d1d2, from which obtaining the SP energy boundaries by means of Eqs. 4.12

ISP,±
0 =

δ0(2(2+ρ)σ −ρ)

2(1+ρ)(ρ(σ −1)+3σ)
±

√
δ 2

0 (2(2+ρ)σ −ρ)2

4(1+ρ)2(ρ(σ −1)+3σ)2 −
1+σ(2+σ +δ 2

0 σ)

σ(1+ρ)(ρ(σ −1)+3σ)
,

(4.13)

while the critical detuning value for the SP region is given by imposing ISP,+
0 = ISP,−

0

δ
SP
0 =

2(1+σ)

ρ −2σ

√
σ−1(1+ρ)(ρ(σ −1)+3σ). (4.14)

Figure 4.2. Stability map of equilibria (a) system’s phase space (b) and dynamical evolu-
tion (c) of a set of steady state solutions, with σ = 50 and ρ = −10. The stable region is
represented in blue (S), the unstable region in yellow (U) and the self-pulsing region (SP)
in red. The analytic boundaries of U and S are obtained by plotting Eqs. 4.9 and 4.13
respectively. In (b) and (c), with the detuning is δ0 = −15, we can appreciate the phase
portraits (b) and relative output in (c). They correspond to a stable focus in S, showing
stationary output (blue line), an unstable saddle-node in U, having unstable output (yellow
line), and a limit cycle in SP, with periodic solution (red line).
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The analysis of stability carried out, resulting in the stability diagram or map (δ0, I0) represented in

Fig. 4.2 (a), allow us to predict different dynamical regimes in a neighbour of the equilibria within

the S, U and SP region. This is, indeed, reported in the phase portraits and in the response graph

I0(t), shown in Fig. 4.2 (b) and (c) respectively. Here, it has been represented the time evolution

from a stable solution in S (blue line), an unstable in U (yellow line) and a periodic one in SP (red

line).The chosen values of σ = 50 and ρ =−10 in Fig. 4.2 consider a thermo-optic nonlinearity

being 10 times larger than the Kerr one, with opposite sign, while a thermo-optical relaxation time

being 50 times slower than the photon lifetime, allowing slow heat dissipation per round-trip. Such

values are typical of bulk resonators, as microspheres or microrods [6, 179, 180]. The sign and

magnitude of the thermo-optical coefficient depends on the material, such as density of material

and polarizability, both connected to the temperature, hence to the strength of the electric field

applied. For instance, CaF2, BaF2 and NaF have a negative thermo-optica coefficient, while for

SiO2, MgF2 and Si is positive [180].

Figure 4.3. Bifurcation diagram reporting hysteresis response for σ = 50, ρ =−10 and
δ0 = −15. The stable branch of the region S lies below the unstable branch within the
region U, which is included between two limit points (fold bifurcations, LP). On the upper
branch, Hopf bifurcations (H) delimit the region SP, where the system is self-stable. The
hysteresis loop is shown first increasing, then decreasing the pump power.
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The stability of the stationary solutions can change with the variation of a parameter of particular

interest, also defined as active parameter (see Section 2.3). In order to show an example of

bifurcations of the equilibria a bifurcation diagram has been realised in Fig. 4.2, considering the

input pump power P0 as active parameter and fixing δ0 =−15. The diagram (P0, I0) is reported in

Fig. 4.3. The black line in Fig. 4.3 represents the steady-state curve: moving along the curve, from

low to high powers (magenta path), we encounter, first the lower stable branch, then we switch to

the upper stable branch without achieving the self-stable region, since the presence of the unstable

branch. Conversely, from high to low powers (cyan path), we encounter, initially, the upper stable

branch, then the self-stable branch and, finally, we switch to the lower stable branch. This is the

effect due to the bi-stable nature of the system, manifesting with the phenomenon of hysteresis.

The hysteresis loop is due to the presence of an unstable branch separating two stable branches.

Here, in fact, for the same value of power P0 there are two stable and one unstable solution for I0.

The particular state reached depends on how we previously pumped the cavity.

Now, we examine in details the eigenvalues of the system, defining the equilibrium curve

(P0, I0) in Fig. 4.3 (σ = 50, ρ =−10 and δ0 =−15). In Fig. 4.4, the real and imaginary parts of

the eigenvalues are plotted as a function of I0. The critical values, where the system presents a

bifurcation, are opportunely highlighted.

For low values of I0, we have a complex pair of eigenvalues (λ1,3, green line) with negative real

parts and a real leading eigenvalue2 λ2 (black dashed), which is negative as well. This generates

stable foci-nodes, for which nearby trajectories approaching them defining spirals in the 3D phase

space (this can be clearly appreciated by looking at the blue curve in Fig. 4.2 (b)). Such equilibria

belong to the region S in Fig. 4.2 (a). Then, a saddle-node bifurcation or limit point bifurcation

(LP), appears at the critical value I0 = 0.55, as the leading eigenvalue λ2 is zero. Here, two new

hyperbolic equilibria are generated, a focus and a saddle. In this case, any nearby trajectory moves

away from the equilibrium along spirals, because of the complex pair λ1,3, as represented in Fig.

4.2 (b) (yellow curve). These equilibria belong to the region U in Fig. 4.2 (a). For sake of clarity, it

appears that the real part of the leading eigenvalue has opposite sign with respect to the real parts

of the complex pair so that the bifurcation generates a homoclinic loop. However, if the conditions

of the Shilnikov theorem are met (see Section 2.3), limit cycles are originated from the homoclinic

orbits. Then, there is a second saddle-node bifurcation happening at the critical value I0 = 1.66

where Re(λ2) becomes negative again. It is worthwhile to note that the region where we observe

2The eigenvalue with negative real part, closest to the imaginary axes are called leading eigenvalue.
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bi-stability is delimited by two LP bifurcations. At the critical value I0 = 1.70, the complex pair

of eigenvalues, whose real parts becoming positive crossing the semi-half complex plan. This

gives rise to a Hopf bifurcation, that we label with H and define the region SP in 4.2 (a). Here, the

trajectories converge to the stable limit cycle, originated by the bifurcation and depicted with the

red line in Fig. 4.2 (b). Thus, the output of the system has periodic oscillation, as reported in Fig.

4.2 (c). Finally, I0 = 2.16 represents another critical point, where the real parts of λ1,2,3 become

negative, reaching stable steady states in the region S.

Figure 4.4. Real and imaginary parts of the eigenvalues of the Jacobian matrix 4.8 for
σ = 50, ρ = −10, δ0 = −15, plotted as function of the intra-cavity energy I0, in (a) and
(b) respectively. The yellow marks state LP bifurcations, while the red dots correspond
to Hopf ones. Initially, the real leading eigenvalue λ2, (black dashed) is negative and
the equilibria are stable foci in S. Then, the leading eigenvalue assumes positive values
between I0 = 0.55, and I0 = 1.66, generating the unstable branch in U, included among LP
bifurcations. Here, the equilibria are unstable a saddle-foci. Between the values I0 = 1.66
and I0 = 1.70, λ2 is negative, thus we find again stable foci. At the critical value I0 = 1.70,
the complex pair of eigenvalues λ1, λ3 lead, having real positive parts. This produces the
self-stable branch in SP, included between two Hopf bifurcations, H, at I0 = 1.70, and
I0 = 2.16 respectively. At I0 = 2.16, we have another critical point due to the negative
part of λ2, that produces stable foci in the region S.
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4.4 Kerr Against the Thermo-Optic Effect

For practical purposes, the frequency of the pump laser needs to be adequately adjusted to take

into account the drift of the resonances, due to the Kerr and the thermo-optic nonlinearity. We can

numerically analyse this problem, by overlapping the stability maps with the nonlinear resonances

curves. This situation is represented by the left graphs in Fig. 4.5 for σ = 50 and different values of

ρ =−10,0,10, in (a), (c) and (e), respectively. Instead, in the right graphs of Fig. 4.5, we highlight

the nature of the equilibria with respect to amount of pump power P0, for the same values of σ and

ρ , in (b), (d) and (f), respectively. The bent shapes of the nonlinear resonances quantify the overall

shift that they undergo as P0 is increased. For ρ = −10, the nonlinear terms globally produce a

blue-shift (see Fig. 4.5 (a) and (b)). Therefore, if we set a negative detuning value, for instance

δ0 =−15 (Fig. 4.5, black dashed line), we start from a stable solution on the negative slope of the

resonance curve, then we reach an unstable point, finally, if the coupling is strong enough, we have

either a stable or a self-pulsing solution located on the the positive slope.

When ρ → 0, hence when the Kerr effect dominates over the thermo-optical effect, we observe

a red-shift of the resonance the resonances in Fig. 4.5 (c,d). Similarly, in Fig. 4.5 (e,f), when

ρ = 10. In both cases (ρ ≥ 0), the system seems not to show self-stable solutions at high energy,

conversely to the case with ρ < 0.

In general, from Fig. 4.5, we better realise that an increment of the circulating power leads to

an enhancement of the drift of the resonances, which can have either a thermal origin or derive

from the Kerr effect. Overall, the amount of shift is the result of the competition between the Kerr

and thermo-optic nonlinearity, and determine the hysteresis loop seen in Fig. 4.3. Indeed, the area

of the hysteresis can be related with ρ , as well as with the laser detuning; the area reduces as δ0

approaches to the central frequency ω0, as the hysteresis becoming negligible.

We can discuss those results taking a look directly at the eigenvalues plotted in Fig. 4.6, as

function of I0, for σ = 50, ρ = −10 and δ0 = −15 in (a), ρ = 0 and δ0 = 3 in (b) and ρ = 10

and δ0 = 15 in (c). We compare the case of ρ < 0 in Fig. 4.6 (a) with the case of ρ ≥ 0 in (b)

and (c). When ρ < 0, there is a complex pair of eigenvalues with positive real parts in the range

I0 = [1.702,16], where the SP region appears (Fig. 4.6 (a)). When ρ ≥ 0 the imaginary parts of

the complex pair of eigenvalues are zero where the system showed SP solutions for ρ < 0 in (a).

Therefore, there are not regions of SP observed for ρ ≥ 0 (Fig. 4.6 (b) and (c)).
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Figure 4.5. Stability maps and nonlinear resonances against thermo-optic coefficient, for
σ = 50, ρ =−10,0,10, in (a), (c) and (e) respectively. The difference of sign between Kerr
and the thermo-optic coefficients affects the stability of the regions, inducing a blue-shift of
the cavity resonances, when ρ < 0 or a red-shift, when ρ > 0. This aspect becomes more
clear by observing the stationary states from 5 to 100 (resonances curves) plotted in overlap
with the stability maps in each of the previous cases, for values of δ0 =−15,3 and 15 in (b),
(d) and (f) respectively.
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Figure 4.6. Eigenvalues for σ = 50, ρ =−10, δ0 =
−15 in (a), ρ = 0, δ0 = 3 in (b) and ρ = 10, δ0 = 15
in (c). The eigenvalues analysis show that when
ρ >= 0 (b,c) there are not self-pulsing region in
the system, conversely to the case with ρ < 0 (a).

Reaching self-stable regimes with low pump power might result experimentally tricky because the

hysteresis phenomena. Nonetheless, it is possible to define the condition to achieve SP regimes

from stable equilibrium states at low energies

δ
SP
0 < δ

U
0 , (4.15)

which defines a map as a function of the parameters (ρ ,σ ).
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Figure 4.7. The map (ρ ,σ ) reports the parameters ρ and σ that satisfy Eq. 4.15, whose energy
to observe the SP regime increases from low to high, in accordance with the colormap from
dark-red to white color. The dark region is defined by (ρ,σ) that do not meet the condition
4.15 or by the discontinuity condition 4.16. Green dashed lines are concerning the values of
P0 supplied.

The colour map of Fig. 4.7 defines the threshold power for a P0 necessary to enable SP: low power

values correspond to dark-red, high values to white. The map has been worked out from Eq. 4.13,

evaluated at δ SP
0 = δU

0 =±
√

3. It is useful to identify discontinuity regions of values (ρ ,σ )

(1+ρ)(ρ(σ −1)+3σ)≤ 0. (4.16)

The black region in the map, corresponding to (ρ ,σ ) values where SP states are not accessible from

lower energy states, depends on either the discontinuity condition 4.16, or when the condition 4.15

is not satisfied. We observe that the energy required to achieve the condition 4.15 shrinks with

σ . The latter means that when the thermo-optical nonlinearity compete with the Kerr effect on

timescales that become comparable, or in those cavities having high Q-factors [175], SP states are

easily observed. The lowest values of energy are found in the region given by |σ/ρ|<< 1. There

is a narrow region, defined by σ/ρ > 1, in the semi-negative ρ plane that allows SP solutions for

relatively low values of energy. Therefore, in the next sections, it will be interesting to investigate
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the influence of the FWM on the thermal dynamics assuming σ values within the range from 1 to

100.

4.5 Case of Two-Frequency Continuous Wave Excitation: the Role

of Parametric Effects

The ability to control multi-stability, SP and other interesting dynamics arising from the nonlinear

interaction between optical fields and the cavity medium, is fundamental for achieving the desired

performance. The theory of stability showed in Chapter 2 has provided us with the theoretical tools

to study the steady states of a microresonator and the bifurcations of its equilibrium, while the

framework of CMT, derived in Chapter 3, has defined the theoretical background to describe the

dynamical evolution of the propagating fields. In the Sections 4.3 and 4.4, our analysis has been

applied to the simple case of a single mode. We had a preliminary understanding of the role played

by the parameters ρ , σ and by the detuning of the resonances.

Given a certain configuration of the stationary states for the pump cavity field, a relocation of

its bifurcations in the system’s parameter space would create new branches of equilibria, modifying

the behaviour of a microcavity. Under this assumption, we study the role that a signal may have in

influencing the nonlinear regimes (e.g. self-oscillations) of a strong pump, taking into account the

effect of a parametric interaction, specifically FWM [181].

It will be demonstrated that the additional mode coupled into the microcavity affect dramatically

the dynamics of the pump even at very low signal powers. It will be shown that oscillating regimes

can be induced, as well as controlled in amplitude and shape, changing the amplitude of the signal.

Let us consider two continuous wave lasers coupled into two different resonant frequencies of

the cavity, (pump and signal). We assume that these waves can interact in a third-order nonlinear

medium via FWM, generating a primary and, possibly, a secondary (weaker) idler, as described in

Section 3.3.

If the energy of the pump is very high, the signal and idler fields can be generated through

FWM in a similar way as achieved in optical parametric oscillators (OPO), whose gain is given by

k = G−1, (4.17)



57

where

G = Re
{√

I2
0 −∆2

k

}
,

with ∆k = δ0 + I0(2+ρ) the effective phase mismatch. Therefore, when the gain overcomes the

intrinsic losses, which here are normalised to one, the signal and idler amplitudes grow. The

condition for which G > 1 represents the threshold of the OPO. In this work, the parametric gain is

neglected, thus G < 1 for each case that is described next.

Considering the generation of a single idler, a−1 ,the system 4.1 becomes



da0
dt =−a0 − i[δ0 +∆− (2IT −|a0|2)]a0 +2ia∗0a1a−1 − iS0,

da∗0
dt =−a∗0 + i[δ0 +∆− (2IT −|a0|2)]a∗0 −2ia0a∗1a∗−1 + iS∗0,

da1
dt =−a1 − i[δ1 +∆− (2IT −|a1|2)]a1 + ia2

0a∗−1 − iS1,

da∗1
dt =−a∗1 + i[δ1 +∆− (2IT −|a1|2)]a∗1 − i(a2

0)
∗a−1 + iS∗1,

da−1
dt =−a−1 − i[δ−1 +∆− (2IT −|a−1|2)]a−1 + ia2

0a∗1,

da∗−1
dt =−a∗−1 + i[δ−1 +∆− (2IT −|a−1|2)]a∗−1 − i(a2

0)
∗a1,

σ
d∆

dt =−∆−ρIT ,

(4.18)

We have a perturbation 7× 7 matrix associated to the system above, given by the Jacobian 4.4,

whose eigenvalues can be worked out numerically. It is possible, however, to obtain an approximate

expression for the boundaries of the equilibrium regions when the idler terms are neglected. In this

case, the interaction between the pump and the signal occurs via cross-phase modulation (XPM). In

the limit of large absolute pump detuning |δ0|>> 0, the tongue is bounded by:

IXPM
0 =

δ1 −2I1(1+ρ)±
√

I2
1 (1+ρ)2 −1

2+ρ
(4.19)

These regions allow to easily distinguish the effect of the parametric FWM from the effect of the

XPM, where the idler plays no role. Relevantly, new SP/U regions appear where the stationary

state has a large idler’s intensity. Here the FWM can be considered the dominant effect. To roughly

identify the region where the FWM is strong, we can note that high FWM gain occurs where the

generated idler frequency is resonantly coupled, i.e. δ−1 = (2+ρ)IT − I−1, leading to:

δ0 =
δ1

2
+

(2+ρ)IT − I−1

2
≈ δ1

2
+

I0(2+ρ)

2
(4.20)
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being the latter approximation valid for low I±1 intensities.

4.5.1 Equilibrium Analysis for a negative ρ

We assume σ = 50 and ρ =−10, which can be compatible with materials like CaF2, BaF2. Then,

we study the map of stability setting a signal detuning δ1 =−7 and an intra-cavity signal energy

I1 = 0.1. The results are reported in Fig. 4.8.

Figure 4.8. (a), (Stability map and (b) stationary state for σ = 50, ρ =−10, δ1 =−7; I1 = 0.1.
(a) Stable (S), unstable (U), self-pulsing (SP) and overlapping SP\U region are in white, dark
gray, light gray, and black, respectively. The boundaries of the SP regions for S1(t) = 0 and
Fi = 0 are in dashed red and orange, respectively. Black and magenta dotted lines are Eqs. 4.19
and 4.20, respectively. (b) Stationary state values for the lowest I−1 are reported in fake colors;
nonlinear resonances are in blue for P0 from 5 to 100.

It is important to stress that such energy values are small comparable to the threshold 2|
√

3(ρ +

1)|−1 ≈ 0.12, for observing any signal bi-stability when the pump is off. Nevertheless, such an

energy is able to produce in the stability regions two relevant changes, when compared to the

case of no signal (S1 = 0, red dashed lines). First of all, the coupled signal creates a new tongue

in the U region, purely related to the XPM and to the change in the detuning ∆ induced by the

signal. This is visible when comparing the results with the regions where no FWM is present,

Fi = 0 (orange) in Fig. 4.8 (a), described by Eq. 4.19. Unfortunately, these regions cannot be

easily accessed experimentally at low intensities, requiring values P0 > 30 in the examples reported.

This is clear when looking at the iso-level curves of the stationary state for constant input pump

powers in Fig. 4.8 (b) (blue contour lines). Secondly, new FWM induced, SP/U region arise where

the stationary state has a large idler’s intensity, with detuning δ0 satisfying Eq. 4.20. The latter
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equation is plotted with a magenta line for the specific cases. Notably, those SP/U3 regions can be

accessed for relatively low input pump powers, with P0 > 3. The idler mode can have up to three

real solutions, which, however, are found only for high pump excitation (P0 > 40); the stationary

state of the idler solution with the lowest energy is reported in Fig. 4.8, in false colour map.

Figure 4.9. The stability regions of the system can be opportunely "adjusted" by tuning the
signal detuning δ1. We consider σ = 50, ρ =−10 and two values of I1 = 0.1,0.2 (left and right
graphs respectively), for detuning δ1 = −3,−12,−20 in (a,b), (c,d) and (e,f) respectively. We
observe that new SP tongues emerges and merges with exiting SP and U regions. Their shapes
can also be modified by the signal intra-cavity energy I1 (follow the graphs from top to bottom).

3It is important to remind that the overlapping of SP with U region means that SP solutions are found for values of the
pump energy P0 included between the two LP points which define the unstable branch of the bi-stability curve at a given
detuning.
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In general, Eqs. 4.19 and 4.20 provide a useful mean to evaluate the regions that can be affected by

the presence of the signal. In particular, 4.20 shows that the signal detuning can be used to move

the SP regions over the (δ0, I0) plane. This indeed appears clear when observing the sequence of

plots shown in Fig. 4.9, realised by progressively changing the signal detuning, which assume

the values: δ1 =−3,−12,−20 in (a,b), (c,d) and (e,f) respectively, for I1 = 0.1 in (a,c,e) and for

I1 = 0.2 in (b,d,f), for σ = 50 and ρ =−10. Following the graphs from top to bottom, we note that

the primary SP tongue merges with a secondary one, which is mainly generated by the idler via

FWM, as δ1 increases. Moreover, the signal detuning modifies the shape and the dimension of the

primary U region, contributing the development of secondary unstable region in the high-energy SP

domain. Therefore, δ1 is a fundamental parameter for a reallocation of the equilibria.

We can have a better insight looking at the eigenvalues of a solution of interest of the map, in

order to study how the real and imaginary parts change as δ1 changes and how the FWM affects

it. The case with σ = 50, ρ = −10, δ0 = −5.4, I0 = 0.8 and signal energy I1 = 0.2 has been

represented in Fig. 4.10, including either the contribution of the FWM in Fig. 4.10 (a) or neglecting

its terms from the Eqs. 4.18 in Fig. 4.10 (b). Therefore, in Fig. 4.10 (a), when we consider

the FWM contribution, we can distinguish thee pair of complex conjugate eigenvalues and a real

eigenvalue (black dashed). The latter is leading in the range δ1 = [−8,−9.4] and δ1 = [−11.2,−20],

remaining very close to zero but never becoming positive. Instead, in the range δ1 = [−2.9,−8]

and δ1 = [−9.4,−11.2] two complex conjugate pairs are leading (green and red lines), which

assume positive values giving rise to Hopf bifurcations. The third pair (blue line) has negative

real values over the whole δ1 range. Therefore, the solutions present a self-oscillating behaviour

at the energy and pump detuning considered. In absence of FWM (Fig. 4.10 (b)), the real parts

of all the eigenvalues are negative over the values of δ1 considered, having steady state solutions.

Remarkable, in presence of FWM, is that SP solution are reached for detuning and energy values

that do not lie on the unstable branch, where the system shows bi-stability.
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Figure 4.10. We consider σ = 50, ρ =−10, δ0 =−5.4 I0 = 0.8 and I1 = 0.2,
including in (a) FWM contribution and neglecting its terms from Eqs. 4.1 in
(b). The Jacobian matrix of the system Eq. 4.4 has three complex conjugate
pairs and one real eigenvalues, shown in different colours. Imaginary parts
of the same pair of complex conjugate eigenvalues are drawn with the same
colours. In (a), the leading eigenvalue (black dashed) is real and negative in the
range δ1 = [−8,−9.4] and δ1 = [−11.2,−20]. Then, Hopf bifurcations appear
in the range δ1 = [−2.9,−8] and δ1 = [−9.4,−11.2], due to leading complex
conjugate pairs of eigenvalues (green and red lines), with positive real parts.
There is a further complex pair of eigenvalues (blue line) with negative real
parts all over the range of δ1. When we remove the FWM in (b) all real parts
of the eigenvalues assume negative values over the range of δ1 considered,
thus the self-stable equilibria are replaced by stable foci.

4.5.2 Equilibrium Analysis for a positive ρ

We now study the case of Kerr and thermo-optic coefficient having the same sign, which is typical in

materials like SiO2 and Si. We set σ = 50, ρ = 10 , I1 = 0.1. From the preliminary considerations

regarding the case of single pump coupling discussed in Section 4.4 and shown in Fig. 4.5 (c)

for ρ > 0, we set a positive pump detuning range and plot the stability map. From Fig. 4.11 (a),

we note that SP and U overlapping regions now appear where the system had uniquely unstable

steady solutions (see Fig. 4.5 (c) for comparison). Those new SP regions, especially at low energy,

are still related to the XPM and the detuning ∆ induced by the signal, approximate by Eq. 4.19

when |δ0|>> 0. As for ρ < 0, the regions where the FWM is stronger are those located where the
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stationary states have a large idler’s intensity. This appears clear from the iso-level curves of the

stationary state for constant input pump powers in Fig. 4.11 (b). Differently from the case of ρ < 0,

the SP regions seem to be bounded exclusively within the U region, in other words, SP cannot be

experimentally observed because of the bi-stability.

Figure 4.11. (a) Stability map and (b) stationary state values for the lowest I−1 for σ = 50,
ρ = 10, δ1 = 7, I1 = 0.1. In (a), stable (S), unstable (U), self-pulsing (SP) and overlapping
SP\U regions are in white, dark gray, light gray, and black, respectively. The boundaries of
the S regions for S1(t) = 0 and Fi = 0 are in dashed red and orange, respectively. Black and
magenta dotted lines are Eqs. 4.19 and 4.20, respectively. (b) Stationary state values for the
lowest I−1 are reported in fake colors; nonlinear resonances are in blue for P0 from 5 to 100.

We can try to exceed this limitation by tuning δ1 as it has been previously done for ρ < 0. In Fig.

4.12 we consider δ1 = 3,12,20 in (a,b), (c,d) and (e,f) respectively for I1 = 0.1 in (a,c,e) and for

I1 = 0.2 in (b,d,f). Even though the signal detuning changes, the SP regions are still bounded within

the U region. However, we take into account the idler solution with the lowest energy, thus the

substantial FWM contribution in promoting self-pulsing may be observed at higher energies (yet,

they are tricky to access experimentally).

For sake of completeness, we now chose a particular solution in the region resulting from the

overlap U/SP, and examine the eigenvalues as δ1 changes. The outcome is displayed in Fig. 4.13

for σ = 50, ρ = 10, δ0 = 20, I0 = 1.5 and signal energy I1 = 0.2. In 4.13 (a), when we take into

account the FWM contribution, there are a positive real leading eigenvalue and three complex pairs

(there are different eigenvalues with the same imaginary part), whose real parts are positive in the

range δ1 = [0,17]. The latter are responsible for the narrow SP tongue enclosed at the bottom of

the U region in (Fig. 4.12 (b) (d) and (f). Then, in the range δ1 = [17,20] all the eigenvalues have

negative real parts, hence the solutions produce stable foci, becoming unstable or self-pulsing when
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δ1 > 20, which is due to the presence of a real positive eigenvalue (black dashed) and complex

pairs (blue line) with positive real parts (Hopf bifurcation).

When we neglect the FWM from the system, in Fig. 4.13 (b), we have only one real leading

eigenvalue (black dashed) that remains constantly positive for all the range of δ1 < 20 considered,

defining unstable solutions.

Figure 4.12. The stability regions of the system can be opportunely "adjusted" by tuning the
signal detuning δ1. We consider σ = 50, ρ = 10 and two values of I1 = 0.1,0.2 (left and right
graphs respectively), for detuning δ1 = 3,12,20 in (a,b), (c,d) and (e,f) respectively. Variation of
the signal detuning slightly change the equilibrium regions of the system, although SP regions
are bounded to the U regions.
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Figure 4.13. We consider σ = 50, ρ = 10, δ0 = 20 I0 = 1.5 and I1 = 0.2, including in (a)
FWM contribution and neglecting its terms from Eqs. 4.1 in (b). The Jacobian matrix of
the system Eq. 4.4 has three complex conjugate pairs and one real eigenvalues, shown in
different colours. Imaginary parts of the same pair of complex conjugate eigenvalues are
drawn with the same colours. By including the FWM contribution in (a), in the range δ1 =
[0,17] we have a positive real leading eigenvalue (black dashed) and complex pairs with
real positive parts and degenerate imaginary parts (we can observe only a single blue line,
as there is an overlapping between different eigenvalues). Therefore, we have coexistence
of self pulsing and unstable equilibria. We also observe a real eigenvalue (green), which is
negative and non-leading. When δ1 = [17,20] all the eigenvalues have negative real parts.
The system shows stable behaviour. When δ1 > 20, we have a similar situation, with SP/U
regions overlapped. In (b), where the FWM is neglected, the system shows instability over
the whole the range of δ1 plotted, indeed there is only a real and positive leading eigenvalue
(black dashed).

We may obtain SP solutions at low energy in the stable region by decreasing the ratio σ/ρ , hence,

in materials with a slower thermal relaxation time, for instance, those having free carries like silicon.

In Fig. 4.14 (a) are reported the stability map by setting σ = 1.5, ρ = 10, δ1 = 10 and I1 = 0.2.

From that, we can appreciate a substantial change with respect to the case with σ = 50. A wide SP

region located above of the U region appears, but it is still related to the XPM rather than FWM at

low energies (see the red dashed boundary). Indeed, from the plot of the nonlinear resonances in

fake colours in Fig. 4.14 (b), we note that the idler has a strong enhancement only when the pump

intra-cavity energy I0 is above I0 ≈ 3, that is beyond the range of energy experimentally easily

reachable.
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These results are in perfect agreement with our considerations expressed in Section 4.4, where

the map (σ ,ρ) in Fig. 4.7 clearly excludes the possibility of observing SP when |σ/ρ| >> 1.

Here, we come to a preliminary conclusion for which FWM has a strong influence in supporting

nonlinear thermal dynamics in microcavities, having a negative thermo-optic coefficient, while a

very marginal role in promoting such dynamics in materials with a positive thermo-optic coefficient.

However, the situation can be improved as the ratio σ/ρ becomes smaller and smaller.

Figure 4.14. Stability map fixing σ = 1.5, ρ > 0, δ1 = 10, I1 = 0.2. (a) A large SP region arises
in the region where thee system equilibria were previously stable (σ = 50). However, the new
region is produced manly by XPM at low energies (below I0 = 2), while receiving contribution
from FWM at higher energies. This can be observed from the stationary state values for the
lowest I1 in (b).

4.6 Dynamical Behaviour of the System

Now, we include all the terms of cascading FWM, responsible for the generation of a secondary

idler a2. This allows us to test the validity of our approach at higher pump and signal rates, which

may arise in the SP regimes. Further cascaded generation is neglected here as the energies involved

are low. The dynamical analysis of microcavities performed in this section will integrate the results

achieved from the analysis of stability developed in the previous section. From Eqs.4.1, the system
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that we study is the following:



da0
dt =−a0 − i[δ0 +∆− (2IT −|a0|2)]a0 +2ia∗0a1a−1 + ia2

1a∗2 +2ia∗1a2a−1 − iS0,

da∗0
dt =−a∗0 + i[δ0 +∆− (2IT −|a0|2)]a∗0 −2ia0a∗1a∗−1 − ia∗1

2a∗2 −2ia1a∗2a∗−1 + iS∗0,

da1
dt =−a1 − i[δ1 +∆− (2IT −|a1|2)]a1 +2ia∗1a2a0 + ia2

0a∗−1 +2ia∗0a2a−1 − iS1,

da∗1
dt =−a∗1 + i[δ1 +∆− (2IT −|a1|2)]a∗1 −2ia1a∗2a∗0 − ia∗0

2a−1 −2ia0a∗2a∗−1 + iS∗1,

da−1
dt =−a−1 − i[δ−1 +∆− (2IT −|a−1|2)]a−1 + ia2

0a∗1 +2ia∗2a0a1,

da∗−1
dt =−a∗−1 + i[δ−1 +∆− (2IT −|a−1|2)]a∗−1 − ia∗0

2a1 −2ia2a∗0a∗1,

da2
dt =−a2 − i[δ2 +∆− (2IT −|a2|2)]a2 + ia2

1a∗0 +2ia∗−1a0a1,

da∗2
dt =−a∗2 + i[δ2 +∆− (2IT −|a2|2)]a∗2 − i(a2

1)
∗a0 −2ia−1a∗0a∗1,

σ
d∆

dt =−∆−ρIT ,

(4.21)

4.6.1 Case with ρ < 0

Assuming the stability map of Fig. 4.9, we carry out our analysis by varying the input pump power

P0, for σ = 50, ρ = −10 and δ0 = −6.7, so that we set the system initial conditions in order to

reach an equilibrium at t = 0 located at lowest energy within the secondary SP tongue, where

the idler has strong coupling. For such a detuning, SP is never observed when S1(t) = 0. Indeed,

from Eq. 4.14, the maximum detuning for SP δ SP
0 =−7.25. Therefore, oscillations due to Hopf

bifurcations cannot appear if only the pump is coupled into the system.

Suppose S1 ̸= 0, we study two different cases: δ1 =−7, P1 = 0.2 in Fig. 4.15 and δ1 =−12,

P1 = 0.9 in Fig. 4.16. Either in Fig. 4.15 or Fig. 4.16, in (a) the bifurcation diagrams associated to

a hard excitation by varying the pump power P0 from low to high values have been plotted, in (b,d)

the phase portraits of the trajectories of interests, in (c) the propagation in time of the intra-cavity

fields. Although the two cases are obtained for the same pump parameters, they show a substantially

different behaviour. We consider, firstly, the case of Fig. 4.15, with δ1 =−7 and P1 = 0.2. Here

the signal power and detuning have been chosen to observe a fold-Hopf bifurcation. Looking at the

stationary state stability map in Fig. 4.8 (a), we see that the FWM-controlled SP and the U regions

are in close proximity for δ0 =−6.7 and I0 ≈ 1: such a point belongs to the to the stationary curve

with P0 ≈ 5 (Fig. 4.8 (b)), where we expect to find the fold-Hopf bifurcation. Fig. 4.15 (a) reports

I0 versus P0 for the stationary state (magenta), for the dynamical response of the full system (in

black for the stable case and in red and blue for the maxima and minima of the oscillating case),
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for the system with S1(t) = 0 (yellow curve) and neglecting the FWM terms from the system of

equatoins 4.21 (green curve). Starting from low power, the system moves along the stationary

state until it approaches the switching threshold at P0 > 5. Here, for S1(t) = 0 the system switches

but, as expected, does not oscillate. Conversely, the full system exhibits the expected heteroclinic

bifurcation from a saddle point to a saddle-focus trajectory (fold-Hopf) at P0 = 5 and, eventually, a

homoclinic bifurcation to a focus at P0 = 15 (Fig. 4.15 (b)). The fold-Hopf bifurcation converges to

a stable limit. Such a phase orbit is a homoclinic saddle-focus (Shilnikov) trajectory, which jumps

between low and high values of the slow detuning ∆ (Fig. 4.15 (d)). For a thermal nonlinearity, this

means that the temperature of the system oscillates, mostly between two points. Such a trajectory

results in the formation of large pulses (Fig. 4.15 (c)), typical of this type of bifurcation, featuring

ripples due to the presence of the focus in the trajectory.

Figure 4.15. Dynamical response at increasing values of P0 for σ = 50, ρ = −10, δ0 = −6.7,
δ1 = −7, P1 = 0.2. (a) Bifurcation diagram of I0 versus P0, stable outputs are in black, while
the maxima and minima of the oscillatory output are in red and blue, respectively. The yellow
plot is for S1 = 0, green corresponds to Fi = 0 and magenta is for the stationary state. (b) Phase
portrait of the bifurcation diagram for P0 against Re[a0] and Im[a0]. (c) Time evolution of I0 at
P0 = 5.5,10,15 from dark to light blue, respectively, and (d) long term phase plots for ∆ versus
Re[a0] and Im[a0].
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Giant pulse generation has recently been studied in thermal systems with two relaxation constants

[80]. Such oscillating states are produced mainly by FMW contribution, as it appears by observing

the yellow curve.

A completely different scenario is obtained in the case reported in Fig. 4.16 with δ1 = −12

and P1 = 0.9, where the FWM controlled SP region is far from the U region (see Fig. 4.8 (b) for

δ0 =−6.7).

Figure 4.16. Dynamical response at increasing values of P0 for σ = 50, ρ = −10, δ0 = −6.7,
δ1 = −12, P1 = 0.9 (a) Bifurcation diagram of I0 versus P0, stable outputs are in black, while
the maxima and minima of the oscillatory output are in red and blue, respectively. The yellow
plot is for S1 = 0, green corresponds to Fi = 0 and magenta is for the stationary state. (b) Phase
portrait of the bifurcation diagram for P0 against Re[a0] and Im[a0]. (c) Time evolution of I0 at
P0 = 17,25,38 (dark to light blue, respectively) and (d) long term phase plots for ∆ versus Re[a0]
and Im[a0].

In this case, the system experiences first (P0 = 5) a saddle-node bifurcation, characteristic of

bi-stable systems and ruled by a single leading real eigenvalue that changes sign, similarly to the

case with S1(t) = 0. At higher powers (P0 = 15) it goes to a Hopf (Andronov-Hopf) bifurcation.

Here a couple of complex conjugate leading eigenvalues changes sign, resulting in a smooth cycle

(Fig. 4.16 (b)). The real and imaginary parts (Re[a0], Im[a0]) of the pump amplitude (Fig. 4.16
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(d) dark blue) do not present significant oscillation in the detuning region, resulting in a clean

periodical oscillation (Fig. 4.16 (c) dark blue). The system bifurcates again to a stable focus at

P0 = 18, while a new Hopf bifurcation appears for P0 > 25 where the real part of another set of

complex conjugate eigenvalues changes sign. In this case, the phase portraits (Fig. 4.16 (d), light

blue) show an oscillation also in the detuning dimension. This last bifurcation belongs to an SP

region that appears also when the effect of the FWM is disregarded (green curve in Fig. 4.16 (a)).

The FWM, however, contributes to modifying its domain of existence.

Let us remind that the system has a hysteretic response, hence, to have a complete understanding

of dynamic, we need to access to the solutions that are on either the lower equilibrium branch or

the upper equilibrium branch of the bi-stable curve.

Figure 4.17. Effects of the bi-stability and FWM on the dynamics for σ = 50, ρ = −10, δ0 =
−6.7, δ1 = −7, P1 = 0.2. (a) Bifurcation diagram of I0 versus P0, stable outputs are in black,
while the maxima and minima of the oscillatory output are in red and blue, respectively. The
green plot corresponds to Fi = 0 and magenta is for the stationary state. The pump power is
first increased in (a), then decreased in (b), in order to reproduce the hysteresis response of
the system. The presence of the unstable branch "hide" some of the oscillating states that are
not achievable when moving forward with pump power, but reachable when moving backward.
Those oscillations are due to XPM in the range P0 = [1.5,5] and to the FWM above the value of
P0 = 5. (c) and (d) report the dynamical output and the phase portraits respectively, for all the
cavity fields, fixing P0 = 17.
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In order to reproduce the hysteresis loop, we simulate an increase of the circulating power followed

by a decreasing4 inside the microcavity and report the outcomes in Fig. 4.17 for the case of

δ0 =−6.7, δ1 =−7 and I1 = 0.2.

The stable states are represented in magenta colour while the green line considers the system

4.21 without FWM terms. In Fig. 4.17 (a) we note that there are oscillating states, as well as some

stable states, that cannot be reached when moving forward because of the presence of the unstable

branch. Conversely, such states are achievable when moving backwards in Fig. 4.17 (b), as they are

located on the upper bi-stable branch. Moreover, we have to consider the further role played by the

FWM, whose effects can be distinguished from those deriving from other nonlinearities, e.g. XPM.

This appears clear having a look at the bifurcations diagrams (a) and (b) in Fig. 4.18, obtained for

σ = 50, ρ =−10, δ0 =−6.7, δ1 =−7, P1 = 0.2, in which we can observe the location of critical

points on the equilibrium curve and how those are reallocated via FWM.

Figure 4.18. Bifurcation diagram I0 versus P0 of the stationary states for σ = 50, ρ = −10,
δ0 =−6.7, δ1 =−7, P1 = 0.2. FWM is able to relocate bifuractions into the parameter space,
modifying the critical values (P0, I0) showing Fold and Hops bifurcations. In (a), including
FWM contribution, we have two LP bifurcations (yellow marks) at PLP1

0 = 0.7 and PLP2
0 = 5,

respectively and two Hopf bifurcations (red dots) at PH1
0 = 1.6 and PH2

0 = 15.7, respectively. In
(b), by neglecting the FWM terms, the critical points for the Hopf bifurcations are P̃H1

0 = 1.5
and P̃H2

0 = 5.4, while the LP critical points remain practically unchanged.

In details, in Fig. 4.18 (a), where the FWM is taken into account, we have two-fold bifurcations,

LPs, at PLP1
0 = 0.7 and PLP2

0 = 5 respectively, delimiting the unstable branch; a first Hopf bifurcation

at PH1
0 = 1.6 and the second one at PH2

0 = 15.7, so that the system achieves SP in the range of

P0 = [1.6,15.7] . On the other hand, when we have only XPM contribution, as in Fig. 4.18 (b), one

of the critical point for Hopf bifurcation is located at P̃H1
0 = 1.5 (very close to the previous value,

PH1
0 = 1.6), while the second critical point for another Hopf bifurcation is located at P̃H2

0 = 5.4,

4we use the terminology "forward" or "backwards" to indicate an increase or a decrease of circulating power
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so that the system achieves the oscillating states in the range of P0 = [1.5,5.4]. Therefore, the

self-pulsing branch is substantially modified by the presence of the FWM, while the unstable one

remains pretty much unchanged. However, in both cases (Fig. 4.18 (a) and (b)), there are critical

points for Hopf bifurcations that fall between LPs, making the dynamics more interesting. Notably

is that the cavity fields show a very similar dynamical response, i.e. the dynamics are transferred

from one mode to the other. This can be appreciated in fig 4.17 (c) and (d), in which the output (c)

and the relative phase portraits (d) are plotted for P0 = 17.

4.6.2 Case with ρ > 0

The analysis of stability presented in Fig. 4.11 and 4.12 of Section 4.5.2, has shown that the

overlap between the self-pulsing and the unstable region affects the achievement of self oscillating

dynamics for the set of parameter chosen (σ = 50, ρ = 10, δ0 = 12, δ1 = 14 and I1 = 0.1,0.2). For

the same case, in Fig. 4.19 the bifurcations diagram is plotted by setting P1 = 0.2 and varying the

pump power P0.

Figure 4.19. Bifurcation diagram I0 versus P0 of the stationary states for
σ = 50, ρ = 10, δ0 = 12, δ1 = 14, P1 = 0.2, reporting the stationary states
curve of the full system in dashed magenta line, the equilibria when Fi = 0
in green. By varying the pump power P0 there are two critical points corre-
sponding to Hopf bifurcations (red dots) at PH1

0 = 4 and PH2
0 = 9 respectively.

The latter bifurcations lie on the unstable branch, identified through LP bifur-
cations (yellow marks) at PLP1

0 = 1 and PLP2
0 = 23 respectively. Therefore, the

critical points of the Hopf bifurcations are not accessible through hysteresis,
while stationary solutions are achieved (black circles). For this set of parame-
ter the FWM is not able to trigger SP (see green line).
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We observe two Hopf bifurcations located at PH1
0 = 4 and PH2

0 = 9 respectively, on the unstable

branch defined by LP bifurcations at PLP1
0 = 1 and PLP2

0 = 23, respectively. That’s the reason

for which oscillating states cannot be transferred onto the output, as the system immediately

collapse to stable steady states on the lower energy branch (observe the black circles in Fig. 4.19).

Neither exploiting the hysteresis and pumping backward nor increasing the signal intensity helps to

reallocate the bifurcations to produce non trivial dynamics.

According to the stability map of Fig 4.14, we consider σ = 1.5, ρ = 10, δ0 = 10.5, δ1 = 10

and P1 = 0.6 and realise the bifurcation diagrams I0 versus P0 in Fig. 4.20, in presence (a) and in

absence (b) of FWM. In details, in Fig. 4.20 (a) we have two LP bifurcations at PLP1
0 = 0.4 and

PLP2
0 = 15, and two Hopf bifurcations at PH1

0 = 3.3 and PH2
0 = 47. In Fig. 4.20 (b), the locations

of the critical points for LPs remain pretty much the same as in (b), where we achieve two LP

bifurcations at P̃LP1
0 = 0.3 and P̃LP2

0 = 15 respectively, while for the Hopf bifurcations we have a

slightly change of the critical points, being P̃H1
0 = 5.2 and P̃H2

0 = 53.2, respectively.

Figure 4.20. Bifurcation diagram I0 versus P0 of the stationary states for σ = 1.5, ρ = 10,
δ0 = 10.5, δ1 = 10, P1 = 0.6. In (a), including FWM contribution, we have two LP bifur-
cations (yellow marks) at PLP1

0 = 0.4 and PLP2
0 = 15, and two Hopf bifurcations (red dots) at

PH1
0 = 3.3 and PH2

0 = 47. In (b), neglecting FWM terms, the critical point for the Hopf bifur-
cation are P̃H1

0 = 5.2 and P̃H2
0 = 53.2, while the LP critical point are P̃LP1

0 = 0.3 and P̃LP2
0 = 15.

FWM slightly relocates the bifurcations into the parameter space, modifying the critical values
(P0, I0).

For the same set of parameters (σ = 1.5, ρ = 10, δ0 = 10.5, δ1 = 10 and P1 = 0.6), in Fig. 4.21 (a)

the bifurcation diagram is shown, including the equilibrium solutions in magenta, the stationary

solutions with S1(t) = 0 in yellow, the stationary solution states without FWM terms in green.

Self-pulsing regimes are achievable for energies still comparable with the bi-stability threshold

energy, which is ≈ 0.12. The phase portraits of the bifurcation diagrams for P0 against Re[a0] and

Im[a0] in Fig. 4.21 (b) and (d) show that the Hopf bifurcation at P0 ≈ 3.3 gives birth to a stable
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limit cycle, whose size decrease as the power increases. Consequently, oscillations are observed on

the output in Fig. 4.21 (c), whose amplitudes and periods correspond to those of the limit cycle.

The latter is represented in Fig. 4.21 (d) for different values of P0. The limit cycle is extinguished

at P0 ≈ 47 (corresponding to P0 = PH2
0 ). It it noteworthy that when S1(t) = 0 (only considering the

pump) the SP states disappears at P0 ≈ 80, rather than P0 = 47.

Figure 4.21. Dynamical response at increasing values of P0 for σ = 1.5,ρ = 10, δ0 = 10.5,
δ1 = 10, P1 = 0.6. (a) Bifurcation diagram of I0 versus P0, stable outputs are in black, while
the maxima and minima of the oscillatory output are in red and blue, respectively. The yellow
plot is for S1 = 0, green corresponds to Fi = 0 and magenta is for the stationary state. (b) Phase
portrait of the bifurcation diagram for P0 against Re[a0] and Im[a0]. (c) Time evolution of I0 at
P0 = 20,25,30 from dark to light blue, respectively, and (d) long term phase plots for ∆ versus
Re[a0] and Im[a0].

Now, we analyse how the hysteresis may affect the response. In Fig. 4.22 (a), as we move forward

with P0, initially, the system reaches stationary stable states, then approaches the switching threshold

given by the LP point at P0 = 15. If we further increase the power, the system jumps from the

lower stable branch to the upper self-stable branch. Here, there is a heteroclinic orbit that connects

the saddle points of the unstable branch to the limit cycle, produced through the Hopf bifurcation

at P0 = 3.3. Finally, the system reaches again stable equilibria for P0 > 47, where the limit cycle
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disappears. On the other hand, starting from equilibria located on the upper stable branch, when

we decrease the power P0 (backward) in Fig. 4.22 (b), the output is first stable, then self-stable,

corresponding to the portion of branch between the Hopf bifurcations (P0 = [3.3,47]). Following,

the system becomes stable again before reaching the LP bifurcation at P0 = 0.4 and switching to

the lower stable branch.

Figure 4.22. Effects of the bi-stability response and FWM on the dynamics for σ = 1.5, ρ = 10,
δ0 = 10.5, δ1 = 10, P1 = 0.6. (a) Bifurcation diagram of I0 versus P0, stable outputs are in
black, while the maxima and minima of the oscillatory output are in red and blue, respectively.
The green plot corresponds to Fi = 0 and magenta is for the stationary state. The pump power is
increased in (a), then decreased in (b), in order to reproduce the hysteresis response of the system.
Notable the influence of the FWM on the hysteresis region by comparing (a) with (b). (c) and
(d) report the dynamical output and the phase portraits respectively, for all the cavity fields, with
P0 = 20.

4.7 Controlling and Transferring Nonlinear Regimes

To fully understand the possibility of controlling thermally-induced dynamics in our microresonator,

we study the system’s response in relation to an on/off signal, for different signal input powers.

The results are shown in Fig. 4.23. We consider σ = 50, ρ =−10, δ0 =−6.7 and chose δ1 =−7
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and P0 = 6, for Fig. 4.23 (a) and (c) (corresponding to the case of Fig. 4.15), while δ1 =−12 and

P0 = 18 for Fig. 4.23 (b), (d) (corresponding to the case of Fig. 4.16). A homoclinic saddle-focus

(Shilnikov orbits) and circular orbits (limit cycles) are observed, respectively, for a range of values

of P1. The system can repeatedly switch between stable and self-pulsing states, as the signal is

turned on–off.

Figure 4.23. Time evolution for repeatedly on/off P1 signal for σ = 50, ρ =−10, δ0 =−6.7. The
range of parameters is chosen in the SP regions of Fig. 4.15 for (a), (c) P0 = 6, δ1 = −7 and of
4.16 for (b), (d) P0 = 18, δ1 =−12. Blue, red, green, and yellow are for the pump and signal first
and second idler, respectively. (a) and (b) show the time response for the intra-cavity energies. P1
is turned on and off repeatedly with power linearly increasing from 0.1 to 0.4 and from 0.1 to 0.6
in (a) and (b), respectively. (c) and (d) show a typical long-term phase portrait for P1 0.3 and 0.5,
respectively, showing the homoclinic saddle-focus (Shilnikov) and circular trajectories.

Finally, we study the role played by the FWM in a case involving chaotic dynamics, which can

be observed by setting σ = 1.5, ρ = −10, δ0 = −12, δ1 = −15 and P1 = 0.6. We obtain the

graphs reported in Fig. 4.24, showing bifurcation diagrams in (a) and (b), phase portraits of the

bifurcation diagram for P0 against Re[a0] and Im[a0] in (c) and (d), the 2-d transverse sections of

the phase portraits onto the plane Re[a0], Im[a0] for all P0 values in (e) and (f). We consider the

FWM contribution in the left graphs of Fig. 4.24, while neglecting FWM in the right graphs.

Let us assume the presence of the FWM and increase the pump power, moving on the equilib-

rium curve represented in Fig. 4.24 (a) from low to high values of P0. As we see, the system has
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stable solutions at low power until approaching an LP bifurcation at P0 = 28.8. The latter produces

saddles-nodes/foci equilibria, hence the unstable branch, delimited by the second LP bifurcation at

P0 = 1.34. Moreover, on the upper bi-stable branch, we have several Hopf bifurcations, in particular,

some of them are very close to LPs (e.g the Hopf at P0 = 26.5). Thus, in correspondence of the

first LP point at P0 = 28.8, the system becomes unstable. Consequently, its trajectory in the phase

space tries to reach the nearest stable equilibrium with the closest energy value possible. The only

accessible states, at this point, lie on the upper branch, where we have a Hopf bifurcation at about

the same power value (P0 = 26.5). What we achieve is an apparent chaotic behaviour, as shown

in the phase portrait of the bifurcation diagram for P0 against Re[a0] and Im[a0] in Fig. 4.24 (c).

The theoretical background of Chapter 2 can support our analysis at this point: at the critical point

for a LP (P0 = 28.8), the unstable manifold of the saddle point approach the manifold of the limit

cycle, as consequence of the bi-stability. When those manifolds with different stability are close

enough (without intersect) can interact and repeatedly attract and repel nearby trajectories in a

confined region of the phase space, producing bursts of chaos that may possibly settle down to a

non-chaotic attractor after a very long transient. This particular behaviour is the typical signature of

intermittency, that is one of the routes to reach chaos in a dynamical system. This phenomenon can

involve local bifurcations, in our case saddle-node bifurcations. On the other hand, if we increase

the power, the system gradually become periodic, as it appears in Fig. 4.24 (a) and (c). Specifically,

from P0 ≈ 67 to P0 ≈ 100, we observe from Fig. 4.24 (a) the clear presence of multiple oscillating

components, before reassembling a single-period limit cycle in the phase portrait (Fig. 4.24 (c)).

This is known as inverse-period doubling bifurcation, which allows switching from chaotic regimes

to periodic ones. The mechanism of period-doubling represents another route to chaos. If we plot

the transverse sections for all P0 values of the diagram (4.24 (c)), we can obtain the diagram of

Fig. 4.24 (e), which includes all of the 3D phase portraits of Fig. (4.24 (c) projected onto the plane

(Re[a0],Im[a0]). We note that the trajectories are confined in a circular region of the phase space,

bonded to the limit cycle of the Hopf bifurcation and chaotically distributed within.

At this point, let’s investigate the dynamical response of the system at a specific P0 value.

Therefore, we set P0 = 60 and consider the left graphs of Fig. 4.25. In Fig. 4.25 (a), the specific

section of interest of the phase portrait is shown in red, while the output and long-term phase

portraits are plotted in 4.25 (c) and (e) respectively. As the initial equilibrium that we chose is in the

chaotic region, the output in Fig. 4.25 (c), and the relative 2D phase portraits in Fig. 4.25 (e), have

irregular oscillations alternated by periodicity. This effect involves all cavity modes, resulting in
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bursts of chaos modulated by a periodic component, according to the confinement of the trajectories

in a region of the phase space, as we pointed out before. It is worthwhile to note that there is a

"gradual" transition from chaos to periodicity, as the power approaches the LP point. This is a

signature of period doubling mechanism.

By opportunely adjusting the coupling of the signal, the previous scenario can be modified.

The exclusion of the FWM terms from Eqs. 4.21 strongly affects the bifurcations in the parameter

space, as shown in Fig. 4.24 (b). Here, we observe a Hopf bifurcation at P0 = 14.3, therefore the

chaotic region is confined in a smaller region of the parameter space with respect to the previous

case, as it appears in Fig. 4.24 (d). This can be further proved by comparing the diagrams of Fig.

4.24 (e) with Fig. 4.24 (f).

In Fig. 4.25 (d), the equilibrium chosen at P0 = 60, previously chaotic, shows a periodic

behovior now. It resembles a period-2 output on the pump (blue curve), while it appears to have

single period on the signal (red curve). By looking at the 3D phase portrait in Fig. 4.25 (f), we

realise that the signal actually has a period-2 orbit, as the attractor presents a folded part. However,

such a folding is very small compared to rest of the attractor. On the contrary, the pump attractor

has a well-defined figure-eight shape, like the Lorenz attractor [182]. This is a remarkable example

that shows the FWM affecting chaotic dynamics, allowing to switch from chaos to periodicity.

If we keep unchanged all parameters of the previous examples, except the pump power and

assume another initial equilibrium, having P0 = 84, we obtain the graphs reported in Fig. 4.26.

Comparing the left with the right diagrams, we observe that the system can switch from a chaotic

to a periodic regime, with period-1 output.

From the results we may conclude that chaotic regimes are more likely to be achieved with a

small value of σ , which regulates the damping of thermal oscillation. Therefore, when the damping

on the thermal oscillations is weak, chaotic dynamics take place. We considered the case of Kerr

and thermo-optic coefficients of the opposite sign, however, chaotic regimes might be reached even

in systems with positive ρ values.
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Figure 4.24. Chaotic dynamics controlled by FWM for σ = 1.5, ρ =−10, δ0 =−12, δ1 =−15,
P1 = 0.6. The situation depicted in the left graphs (a), (c) and (e) takes into account the effects
of the FWM, conversely to the right graphs (b), (d) and (f), in which the FWM contribution is
neglected. Bifurcation diagrams I0 versus P0 are plotted in (a) and (b), reporting stable outputs
in black, while the maxima and minima of the oscillatory output in red and blue, respectively.
The curve of the stationary states is in magenta. Phase portrait of the bifurcation diagrams
are represented in (c) and (d), their transverse sections onto the plane (Re[a0],Im[a0]) for all
P0-values, in (e) and (f). In presence of FWM, chaotic behaviour is observed in the range
P0 = [30,67], while in absence of FWM the range is reduced to P0 = [30,52]. This corresponds
to a reajustment of the bifurcation into the space parameter.
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Figure 4.25. Chaotic dynamics controlled by FWM, specific case for σ = −1.5, ρ = −10,
δ0 = −12, δ1 = −15, P0 = 60, P1 = 0.6. The situation depicted in the left graphs (a,c,e) takes
into account the effects of the FWM, conversely to the right graphs (b,d,f) in which the FWM
contribution is neglected. In (a) and (b) bifurcation diagrams I0 versus P0 show the correspon-
dent sections of interest of the phase space (Re[a0], Im[a0]). Correspondent dynamic of the
intra-cavity energy associated to the output fields in (c) and (d), with inserts reporting the detail
of the oscillations. Long term phase plots for ∆ versus Re[a0] and Im[a0] in (e) and (f).
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Figure 4.26. Chaotic dynamics controlled by FWM, specific case for σ = −1.5, ρ = −10,
δ0 = −12, δ1 = −15, P0 = 84, P1 = 0.6. The situation depicted in the left graphs (a,c,e) takes
into account the effects of the FWM, conversely to the right graphs (b,d,f) in which the FWM
contribution is neglected. In (a) and (b) bifurcation diagrams I0 versus P0 show the correspon-
dent sections of interest of the phase space (Re[a0], Im[a0]). Correspondent dynamic of the
intra-cavity energy associated to the output fields in (c) and (d), with inserts reporting the detail
of the oscillations. Long term phase plots for ∆ versus Re[a0] and Im[a0] in (e) and (f).



Chapter 5

Conclusions

The aim of this work was to demonstrate a novel approach to control nonlinear regimes in optical

microcavities, exhibiting a time-dependent nonlinearity with a first-order time response, such as

a thermo-optical nonlinearity, in presence of Kerr effect. In order to achieve our goal, in Chapter

1, the concept of whispering-gallery-mode, which laid the basis for the development of optical

microcavities, has been introduced. An overview of the fabrication techniques, suitable to produce

the state of the art microresonators, either in monolithic bulk technology or on-chip for integrated

photonics platforms, has been provided. Improvements over the years and new materials, shapes and

geometries have produced a number of advantages in terms of performance, compactness/portability

and costs. Those aspects are strictly connected with a wide range of applications achievable with

microcavities. Therefore, it is essential to perform a study of the stability of the equilibria of the

system in terms of significant parameters, in order to predict its operational regimes.

It is possible to define the boundaries of the equilibrium regions and locate critical points

at which the system shows a drastic change of its dynamical pattern, hence bifurcations in the

parameter space. This falls under the domain of the "Dynamical System Theory" for parameter-

dependent multidimensional nonlinear dynamical systems, which has been qualitatively discussed

in Chapter 2.

The model equations describing our microresonator has been derived in Chapter 3, within the

framework of the coupled-mode theory for homogeneous, isotropic, dispersionless microresonators,

including nonlinear contributions of energy exchange among cavity modes due to the Kerr effect

and a slow response nonlinearity, in the specific, the thermo-optical nonlinearity.

In Chapter 4, the results of our approach have been presented and the model tested, considering,

initially, the simple situation of a single frequency continuous-wave pumping. In this regards,
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analytic expressions for the energy boundaries of the unstable and self-pulsing region have been

defined. Critical detuning values, corresponding to specific codim-1 bifurcations occurring in the

parameter space (e.g. Hopf, Shilnikov), have been found. Noteworthy is that the ratio between the

characteristic relaxation time and the nonlinear coefficients of Kerr and thermo-optic effect (σ/ρ)

is fundamental to adjust the overlap and boundaries of the equilibrium regions.

When a configuration involving two-frequency continuous-wave optical fields is achieved, it

has been proven that a weak signal governs the nonlinear behaviour of a strong pump, through

the presence of four-wave mixing. Desirable dynamics can be triggered and controlled at low

power by coupling an additional continuous-wave field (signal) into the microcavity. The latter’s

presence can effectively influence the interaction among different nonlinearities (in our case Kerr

and thermo-optical) through the four-wave mixing action. Hence, the effect of a week signal onto

the system, within different regions of the parameter space, has been investigated considering, in

particular, either negative or positive thermo-optical coefficients, and taking into account potential

materials that might be employed for the fabrication of the cavity. The stability maps and bifurcation

diagrams produced, as well as the phase portraits of the cavity fields plotted, are strongly affected

when the idler is resonantly coupled, therefore when the four-wave mixing has high efficiency. This

can be exploited to transfer dynamics between cavity modes as well.

With practical examples, it has been demonstrated that, by acting on the intensity of the signal,

thermal instabilities can be modulated, allowing self-oscillations to be turned off and on, as well as

controlled in amplitude and shape. Chaotic regimes in a confined region of the phase space, under

particular conditions, can be observed.

The outcomes of this work prove that new strategies for designing efficient microcavity-based

oscillators and sensors for metrology [87], biology [183] are achievable. The possibility of changing

the equilibria of a microcavity and trigger specific dynamics at will has profound implications.

For instance, an effective control of the thermal instabilities through our scheme "pump/signal"

could have applications for the next-generation of communication and information processing

devices [184], including all-optical switches [55, 185, 186], modulators [64] and filters [15]. The

coupled signal can adjust LP bifurcations defining the bi-stable branch, hence change the bi-stability

threshold. The latter effect might be exploited to build single-wavelength optical memories for

all-optical signal processing using microcavities [187].

The dynamics of coherent regimes, such as temporal cavity solitons in passive microcavities

[82, 188, 189], are affected by thermal instabilities. Therefore, it is essential governing such effect
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when realising devices for parallel wavelength-division multiplexing in high-speed communications

[190, 191] and for the generation of highly stable broadband frequency combs [192, 175].

Our approach could be also implemented for chaos-based communication systems, where the

control of chaotic regimes is a relevant subject of study. As the chaotic signals are noiselike and

broadband [193], they are difficult to predict, thus they appear to be potentially useful for secure

data communication, in which the synchronization of nonlinear and chaotic systems provide a

way to encode data packets over fibre transmission for optical cryptography [194–196], as well as

for wireless radio frequency transmission [197]. This is possible through opportune encryption

schemes, such as chaos masking [198], chaos shift keying [199] and chaos modulation [200, 201].
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Appendix A

Numerical Algorithms for Stability and

Dynamical Analysis of Microresonators

We report MatLab and Mathematica scripts that have been developed for this work, in order to

study stability of the model equations 4.21 for an optical micro-cavity in a configuration where

a pump and a signal are coupled, in presence of Kerr and thermo-optical effect in a third-order

nonlinear material, considering four-wave mixing. We show also the numerical approach used to

propagate the fields equations, based on Runge-Kutta method

A.1 System of Equations

Intra-cavity fields

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% aa -> pump %

% bb -> signal %

% cc1 -> left idler %

% cc2 -> right idler %

% dd thermal detuning %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Parameters for the model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% sigma -> ratio between thermal decay time and photon lifetime %

% rho -> ratio between Kerr and thermo-optical coefficient %

% dwa -> pump detuning %

% dwb -> signal detuning % %

% aa_in -> pump input field %

% bin_0 -> signal input field %

% FWM -> four-wave mixing contributions on/off %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

System of equations

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% fa = @(aa,bb,cc1,cc2,dd,ain_0) (-(1i*dwa+1+1i*dd-1i*(abs(aa).^2+2 %

% *abs(bb).^2+2*abs(cc1).^2+2*abs(cc2).^2)).*aa+1i*FWM*(2*conj(aa) %

% .*bb.*cc2+conj(cc1).*bb.^2+2.*conj(bb).*cc1.*cc2)-1i*ain_0); %

% %

% fb = @(aa,bb,cc1,cc2,dd,bin_0) (-(1i*dwb+1+1i*dd-1i*(2*abs(aa).^2 %

% abs(bb).^2+2*abs(cc1).^2+2*abs(cc2).^2)).*bb+1i*FWM.*(2*conj(bb) %

% .*aa.*cc1+conj(cc2).*aa.^2+2.*conj(aa).*cc2.*cc1)-1i*bin_0); %

% %

% fc1 = @(aa,bb,cc1,cc2,dd) (-(1i*dwc1+1+1i*dd-1i*(2*abs(aa).^2+2* %

% abs(bb).^2+abs(cc1).^2+2*abs(cc2).^2)).*cc1 +1i*FWM.*(conj(aa) %

% .*bb.^2+2*conj(cc2).*aa.*bb)); %

% %

% fc2 = @(aa,bb,cc1,cc2,dd) (-(1i*dwc2+1+1i*dd-1i*(2*abs(aa).^2+2* %

% abs(bb).^2+2*abs(cc1).^2+abs(cc2).^2)).*cc2 + 1i*FWM.*(conj(bb) %

% .*aa.^2+2*conj(cc1).*bb.*aa)); %

% %

% fd = @(aa,bb,cc1,cc2,dd) (rho*(abs(aa).^2+abs(bb).^2+abs(cc1).^2 %

% +abs(cc2).^2)-dd)./sigma; %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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A.2 Numerical Stability: Case of Degenerate Four-Wave Mixing

% sol_c, function that returns the stationary solutions given

% bb and the arrays a_vet (intra-cavity field) and

% dwa_vet (pump detuning).

% cc is the lowest energy solution for the idler.

[cc,err,c01,c02,c03] = solc(rho,dwb,a_vet,dwa_vet,bb,FWM);

[Dwa,aa]=meshgrid(dwa_vet,a_vet);

dd = rho.*(abs(aa).^2+abs(bb).^2+abs(cc).^2);

% Input fields

ain = 1i*(1i*Dwa+ 1 + 1i*dd - 1i* ( abs(aa).^2+2*abs(bb).^2+...

2*abs(cc).^2))*aa+ FWM*2*conj(aa).*bb.*cc;

bin = 1i*(1i*dwb+ 1 + 1i*dd - 1i* (2*abs(aa).^2+ abs(bb).^2...

+2*abs(cc).^2))*bb+ FWM*conj(cc).*aa.^2;

% Calculating the eigenvalues of the stationary solutions

for numa = 1:length(a_vet)

for numd = 1:length(dwa_vet)

dwa=Dwa(numa,numd)

dwc=2*dwa-dwb;
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% Steady state solution

a0 = aa(numa,numd);

a0r = real(a0);

a0i = imag(a0);

b0r = real(b0);

b0i = imag(b0);

c0r = real(cc(numa,numd));

c0i = imag(cc(numa,numd));

d0=dd(numa,numd);

% Jacobian matrix for the perturbative approach

eqar = [(-1)+(-2).*a0i.*a0r+(-2).*(b0r.*c0i+b0i.*c0r)...

.*FWM,(-3).*a0i.^2+(-1).*a0r.^2+(-2).*b0i.^2+(-2).*b0r...

.^2+(-2).*c0i.^2+.(-2).*c0r.^2+d0+dwa+(-2).*b0i.*c0i...

.*FWM+2.*b0r.*c0r.*FWM,(-4)*a0i.*b0r+(-2).*a0r.*c0i....

*FWM+2.*a0i.*c0r.*FWM,(-2).*(2.*a0i.*b0i+a0i.*c0i....

*FWM+ a0r.*c0r.*FWM),(-4).*a0i.*c0r+(-2).*a0r.*b0i....

*FWM+2.*a0i.*b0r.*FWM,(-2).*(2.*a0i.*c0i+a0i.*b0i.*FWM...

+a0r.*b0r.*FWM),a0i];

eqai = [a0i.^2+3.*a0r.^2+2.*b0i.^2+2.*c0i.^2+2.*c0r...

.^2+(-1).*d0+(-1).*dwa+(-2).*b0i.*c0i.*FWM+2.*b0r...

.*(b0r+c0r.*FWM),(-1)+2.*a0i.*a0r+2.*b0r.*c0i.*FWM...

+2.*b0i.*c0r.*FWM,2.*(2.*a0r.*b0r+a0i.*c0i.*FWM+a0r...

.*c0r.*FWM),4.*a0r.*b0i+(-2).*a0r.*c0i.*FWM+2.*a0i....

*c0r.*FWM,2.*(2.*a0r.*c0r+a0i.*b0i.*FWM+a0r.*b0r....

*FWM),4.*a0r.*c0i+(-2).*a0r.*b0i.*FWM+2.*a0i.*b0r....

*FWM,(-1).*a0r];
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eqbr = [(-4).*a0r.*b0i+2.*a0r.*c0i.*FWM+(-2).*a0i...

.*c0r.*FWM,(-2).*(2.*a0i.*b0i+a0i.*c0i.*FWM+a0r....

*c0r.*FWM),(-1)+(-2).*b0i.*b0r,(-2).*a0i.^2+(-2)....

*a0r.^2+(-3).*b0i.^2+(-1).*b0r.^2+(-2).*c0i.^2+(-2)...

.*c0r.^2+d0+dwb,(-2).*(2.*b0i.*c0r+a0i.*a0r.*FWM),(-4)...

.*b0i.*c0i+((-1).*a0i.^2+a0r.^2).*FWM,b0i];

eqbi = [2.*(2.*a0r.*b0r+a0i.*c0i.*FWM+a0r.*c0r.*FWM),...

4.*a0i.*b0r+2.*a0r.*c0i.*FWM+(-2).*a0i.*c0r.*FWM,2...

.*a0i.^2+2.*a0r.^2+b0i.^2+3.*b0r.^2+2.*c0i.^2+2.*c0r...

.^2+(-1).*d0+(-1).*dwb,(-1)+2.*b0i.*b0r,4.*b0r.*c0r+...

((-1).*a0i.^2+a0r.^2).*FWM,4.*b0r.*c0i+2.*a0i.*a0r....

*FWM,(-1).*b0r];

eqcr = [(-4).*a0r.*c0i+2.*a0r.*b0i.*FWM+(-2).*a0i...

.*b0r.*FWM,(-2).*(2.*a0i.*c0i+a0i.*b0i.*FWM+a0r...

.*b0r.*FWM),(-2).*(2.*b0r.*c0i+a0i.*a0r.*FWM),...

(-4).*b0i.*c0i+((-1).*a0i.^2+a0r.^2).*FWM,(-1)...

+(-2).*c0i.*c0r,(-2).*a0i.^2+(-2).*a0r.^2+(-2)...

.*b0i.^2+(-2).*b0r.^2+(-3).*c0i.^2+(-1).*c0r...

.^2+d0+dwc,c0i];

eqci = [2.*(2.*a0r.*c0r+a0i.*b0i.*FWM+a0r.*b0r...

.*FWM),4.*a0i.*c0r+2.*a0r.* b0i.*FWM+(-2).*a0i...

*b0r.*FWM,4.*b0r.*c0r+((-1).*a0i.^2+a0r.^2).* ...

FWM,4.*b0i.*c0r+2.*a0i.*a0r.*FWM,2.*a0i.^2+2...

.*a0r.^2+2.*b0i.^2+2.*b0r.^2+c0i.^2+3.*c0r...

.^2+(-1).*d0+(-1).*dwc,(-1)+2.*c0i.*c0r,(-1).* ...

c0r];
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eqd = 1./sigma*([2*rho0.*a0r,2*rho0.*a0i,2...

*rho0.*b0r,2*rho0.*b0i,2*rho0.*c0r,2*rho0.*c0i,-1]);

% Eigenvalues

op = [eqar.’,eqai.’,eqbr.’,eqbi.’,eqcr.’,eqci.’,eqd.’].’;

[eigvect eigval] = eig(op);

eigval0 = [eigval(1,1) eigval(2,2) eigval(3,3) eigval...

(4,4) eigval(5,5) eigval(6,6) eigval(7,7)];

% Sorting out the eigenvalues

[dum ind] = sort(imag(eigval0));

[dumr indr] = sort(real(eigval0));

eigval_vett(numa,numd,:) = (eigval0(ind));

% Eigenvalues variable

eigval_vettr(numa,numd,:) = (eigval0(indr));

end

end

% Test to determine the stability of the equilibria (US states for

%% the unstable points, SP for the self-pulsing points)

th = 1e-15;

US = zeros(length(a_vet),length(dwa_vet),length(l));

SP = US;

for num=1:7

US = US+((real(eigval_vett(:,:,:,num))>0)....

*(abs(imag(eigval_vett(:,:,:,num)))<th).*1);

SP = SP+((real(eigval_vett(:,:,:,num))>0)...

.*(1-(abs(imag(eigval_vett(:,:,:,num)))<th))*1);

end
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% Results of the test

test = (US(:,:,:)>0)*1.5+(SP(:,:,:)>0)*2;

% Function that return the boundaries of the US and SP regions

PdSP1 = real(psp1(rho_vet,dwa_vet,dwb,b0,sigma));

PdSP2 = real(psp2(rho_vet,dwa_vet,dwb,b0,sigma));

PdU1 = real(psu1(rho_vet,dwa_vet,dwb,b0,sigma));

PdU2 = real(psu2(rho_vet,dwa_vet,dwb,b0,sigma));

PdU3 = real(psu3(rho_vet,dwa_vet,dwb,b0,sigma));

PdU4 = real(psu4(rho_vet,dwa_vet,dwb,b0,sigma));

% Strong regime boundaries

Pda11u = (-1).*(dwa+b0.^2.*((-2)+rho)).*((-1)+rho).^(-1);

Pda22u = (-1).*(dwa+b0.^2.*((-1)+rho)).*((-2)+rho).^(-1);

Pda33u = (-1/6).*(2+(-3).*rho+rho.^2).^(-1).*((-3).*b0...

.^2+(-2).*dwa+(-3).*dwb+(-6).*b0.^2.*rho+dwa.*rho+3.*dwb...

.*rho+6.*b0.^2.*rho.^2+((-12).*(dwa+b0.^2.*((-2)+rho))...

.*(dwb+3.*b0.^2.*((-1)+rho)).*(2+(-3).*rho+rho.^2)+(dwa...

.*((-2)+rho)+3.*dwb.*((-1)+rho)+b0.^2.*((-3)+(-6).*rho+6...

.*rho.^2)).^2).^(1/2));

Pda44u = (1/6).*(2+(-3).*rho+rho.^2).^(-1).*(3.*b0.^2+2...

.*dwa+3.*dwb+6.*b0.^2.*rho+(-1).*dwa.*rho+(-3).*dwb.*rho...

+(-6).*b0.^2.*rho.^2+((-12).*(dwa+b0.^2.*((-2)+rho))...

.*(dwb+3.*b0.^2.*((-1)+rho)).*(2+(-3).*rho+rho.^2)+(dwa...

.*((-2)+rho)+3.*dwb.*((-1)+rho)+b0.^2.*((-3)+(-6).*rho+6...

.*rho.^2)).^2).^(1/2));
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% Single pump US and SP boundaries

PPdSP1 = real((1/2).*((-1)+rho).^(-1).*(rho.*((-1)+s)+(-3)...

.*s).^(-1).*(dwa.*rho+4.*dwa.*s+(-2).*dwa.*rho.*s+s.*(s....

^(-3).*((-4).*((-1)+rho).*(rho.*((-1)+s)+(-3).*s)....

*(1+s).^2+dwa.^2.*s.*(rho+2.*s).^2)).^(1/2)));

PPdSP2 = real((1/2).*((-1)+rho).^(-1).*(rho.*((-1)+s)+(-3)...

.*s).^(-1).*(dwa.*rho+4.*dwa.*s+(-2).*dwa.*rho.*s+(-1).*s....

*(s.^(-3).*((-4).*((-1)+rho).*(rho.*((-1)+s)+(-3).*s)....

*(1+s).^2+dwa.^2.*s.*(rho+2.*s).^2)).^(1/2)));

PPdU1 = real((-1/3).*(2.*dwa.*((-1)+rho)+(((-3)+dwa.^2)...

.*((-1)+rho).^2).^(1/2)).*((-1)+rho).^(-2));

PPdU2 = real( (1/3).*((-2).*dwa.*((-1)+rho)+(((-3)+dwa.^2)...

.*((-1)+rho).^2).^(1/2)).*((-1)+rho).^(-2));



103

A.3 Numerical Continuation of the Equilibrium Curve

% Initial guess

x0=fsolve(@(x01) system_eqs(x01,dwa,dwb,dwc1,dwc2,rho,FWM...

,a0,b0,1),x01,options);

dd=rho*(abs(x2(1)).^2+abs(x0(2)).^2+abs(x0(3)).^2+abs(x0(4)).^2);

MatCont scripts

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This function intialize the vectors for the continuation of the %

% equilibrium curve %

% %

% [x1,v1] = init_EP_EP(@system_eqs,[real(x2(1));imag(x2(1)); %

% real(x2(2));imag(x2(2));real(x2(3));imag(x2(3));real(x2(4)); %

% imag(x2(4));dd],par,pos); %

% %

% Continuation of the equilibrium curve %

% %

% [xf,vf,sf,hf,ff] = cont(@equilibrium,x1,v1,opt); %

% %

% Moving backward along the curve %

% %

% opt=contset(opt,’Backward’,1); %

% [xb,vb,sb,hb,fb] = cont(@equilibrium,x1,v1,opt); %

% %

% xf and xb are the vector containing the steady state curve and %

% the type of bifurcation that may have been occurred %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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A.4 Numerical Propagation of the Model Equations

A step-adaptive Runge-Kutta-Fehlberg Method (RKF45) has been used to perform the numerical

propagation of the intra-cavity fields

% Runge-Kutta parameters

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% maxt -> number of seconds for the propagation %

% eps -> error in approximating the solution %

% h -> initial step %

% tstep -> t=tstep, initial time %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Solution at t = 0, with initial guess x0

x=fsolve(@(x0) stablestate(x0,dwa,dwb,dwc1,dwc2,rho,FWM,ain_0...

,bin_0,1),x0,options);

aa=x(1);

bb=x(2);

cc1=x(3);

cc2=x(4);

dd=rho*(abs(aa)^2+abs(bb)^2+abs(cc1)^2+abs(cc2)^2);

% Runge-Kutta-Fehlberg RK(45)

i=1;

while tstep<maxt

% saving the i-th value of the fields

AA(i) = aa;

BB(i) = bb;

CC1(i) = cc1;

CC2(i) = cc2;

DD(i) = dd;

t(i) = tstep; % saving the time step
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h = min(h,maxt-tstep); % adjusting the step

%Runge-Kutta-Fehlberg coefficients

k1a = h*fa(aa,bb,cc1,cc2,dd,ain_0);

k1b = h*fb(aa,bb,cc1,cc2,dd,bin_0);

k1c1 = h*fc1(aa,bb,cc1,cc2,dd);

k1c2 = h*fc2(aa,bb,cc1,cc2,dd);

k1d = h*fd(aa,bb,cc1,cc2,dd);

k2a = h*fa(aa+k1a/4,bb+k1b/4,cc1+k1c1/4,cc2+k1c2/4,...

dd+k1d/4,ain_0);

k2b = h*fb(aa+k1a/4,bb+k1b/4,cc1+k1c1/4,cc2+k1c2/4,...

dd+k1d/4,bin_0);

k2c1 = h*fc1(aa+k1a/4,bb+k1b/4,cc1+k1c1/4,cc2+k1c2/4,...

dd+k1d/4);

k2c2 = h*fc2(aa+k1a/4,bb+k1b/4,cc1+k1c1/4,cc2+k1c2/4,...

dd+k1d/4);

k2d = h*fd(aa+k1a/4,bb+k1b/4,cc1+k1c1/4,cc2+k1c2/4,dd...

+k1d/4);

k3a = h*fa(aa+3*k1a/32+9*k2a/32,bb+3*k1b/32+9*k2b/32,...

cc1+3*k1c1/32+9*k2c1/32,cc2+3*k1c2/32+9*k2c2/32,dd+...

3*k1d/32+9*k2d/32,ain_0);

k3b = h*fb(aa+3*k1a/32+9*k2a/32,bb+3*k1b/32+9*k2b/32...

,cc1+3*k1c1/32+9*k2c1/32,cc2+3*k1c2/32+9*k2c2/32,dd+...

3*k1d/32+9*k2d/32,bin_0);

k3c1 = h*fc1(aa+3*k1a/32+9*k2a/32,bb+3*k1b/32+9*k2b/32...

,cc1+3*k1c1/32+9*k2c1/32,cc2+3*k1c2/32+9*k2c2/32,dd+...

3*k1d/32+9*k2d/32);
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k3c2 = h*fc2(aa+3*k1a/32+9*k2a/32,bb+3*k1b/32+9*k2b/32,...

cc1+3*k1c1/32+9*k2c1/32,cc2+3*k1c2/32+9*k2c2/32,dd+...

3*k1d/32+9*k2d/32);

k3d = h*fd(aa+3*k1a/32+9*k2a/32,bb+3*k1b/32+9*k2b/32,...

cc1+3*k1c1/32+9*k2c1/32,cc2+3*k1c2/32+9*k2c2/32,dd+...

3*k1d/32+9*k2d/32);

k4a = h*fa(aa+1932*k1a/2197-7200*k2a/2197+7296*k3a/2197...

,bb+1932*k1b/2197-7200*k2b/2197+7296*k3b/2197,cc1+1932...

*k1c1/2197-7200*k2c1/2197+7296*k3c1/2197,cc2+1932*k1c2/...

2197-7200*k2c2/2197+7296*k3c2/2197,dd+1932*k1d/2197-7200...

*k2d/2197+7296*k3d/2197,ain_0);

k4b = h*fb(aa+1932*k1a/2197-7200*k2a/2197+7296*k3a/2197...

,bb+1932*k1b/2197-7200*k2b/2197+7296*k3b/2197,cc1+1932...

*k1c1/2197-7200*k2c1/2197+7296*k3c1/2197,cc2+1932*k1c2/...

2197-7200*k2c2/2197+7296*k3c2/2197,dd+1932*k1d/2197-7200...

*k2d/2197+7296*k3d/2197,bin_0);

k4c1 = h*fc1(aa+1932*k1a/2197-7200*k2a/2197+7296*k3a/2197...

,bb+1932*k1b/2197-7200*k2b/2197+7296*k3b/2197,cc1+1932...

*k1c1/2197-7200*k2c1/2197+7296*k3c1/2197,cc2+1932*k1c2...

/2197-7200*k2c2/2197+7296*k3c2/2197,dd+1932*k1d/2197-7200...

*k2d/2197+7296*k3d/2197);

k4c2 = h*fc2(aa+1932*k1a/2197-7200*k2a/2197+7296*k3a/2197...

,bb+1932*k1b/2197-7200*k2b/2197+7296*k3b/2197,cc1+1932...

*k1c1/2197-7200*k2c1/2197+7296*k3c1/2197,cc2+1932*k1c2...

/2197-7200*k2c2/2197+7296*k3c2/2197,dd+1932*k1d/2197-7200...

*k2d/2197+7296*k3d/2197);
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k4d = h*fd(aa+1932*k1a/2197-7200*k2a/2197+7296*k3a/2197...

,bb+1932*k1b/2197-7200*k2b/2197+7296*k3b/2197,cc1+1932...

*k1c1/2197-7200*k2c1/2197+7296*k3c1/2197,cc2+1932*k1c2...

/2197-7200*k2c2/2197+7296*k3c2/2197,dd+1932*k1d/2197-7200...

*k2d/2197+7296*k3d/2197);

k5a = h*fa(aa+439*k1a/216-8*k2a+3680*k3a/513-845*k4a/4104,...

bb+439*k1b/216-8*k2b+3680*k3b/513-845*k4b/4104,cc1+439*...

k1c1/216-8*k2c1+3680*k3c1/513-845*k4c1/4104,cc2+439*k1c2/...

216-8*k2c2+3680*k3c2/513-845*k4c2/4104,dd+439*k1d/216-8*...

k2d+3680*k3d/513-845*k4d/4104,ain_0);

k5b = h*fb(aa+439*k1a/216-8*k2a+3680*k3a/513-845*k4a/4104,...

bb+439*k1b/216-8*k2b+3680*k3b/513-845*k4b/4104,cc1+439*...

k1c1/216-8*k2c1+3680*k3c1/513-845*k4c1/4104,cc2+439*k1c2/...

216-8*k2c2+3680*k3c2/513-845*k4c2/4104,dd+439*k1d/216-8*...

k2d+3680*k3d/513-845*k4d/4104,bin_0);

k5c1 = h*fc1(aa+439*k1a/216-8*k2a+3680*k3a/513-845*k4a/4104,...

bb+439*k1b/216-8*k2b+3680*k3b/513-845*k4b/4104,cc1+439*...

k1c1/216-8*k2c1+3680*k3c1/513-845*k4c1/4104,cc2+439*k1c2/...

216-8*k2c2+3680*k3c2/513-845*k4c2/4104,dd+439*k1d/216-8*...

k2d+3680*k3d/513-845*k4d/4104);

k5c2 = h*fc2(aa+439*k1a/216-8*k2a+3680*k3a/513-845*k4a/4104,...

bb+439*k1b/216-8*k2b+3680*k3b/513-845*k4b/4104,cc1+439*...

k1c1/216-8*k2c1+3680*k3c1/513-845*k4c1/4104,cc2+439*k1c2/...

216-8*k2c2+3680*k3c2/513-845*k4c2/4104,dd+439*k1d/216-8*...

k2d+3680*k3d/513-845*k4d/4104);
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k5d = h*fd(aa+439*k1a/216-8*k2a+3680*k3a/513-845*k4a/4104,...

bb+439*k1b/216-8*k2b+3680*k3b/513-845*k4b/4104,cc1+439*...

k1c1/216-8*k2c1+3680*k3c1/513-845*k4c1/4104,cc2+439*k1c2/...

216-8*k2c2+3680*k3c2/513-845*k4c2/4104,dd+439*k1d/216-8*...

k2d+3680*k3d/513-845*k4d/4104);

k6a = h*fa(aa-8*k1a/27+2*k2a-3544*k3a/2565+1859*k4a/4104-...

11*k5a/40,bb-8*k1b/27+2*k2b-3544*k3b/2565+1859*k4b/4104-...

11*k5b/40,cc1-8*k1c1/27+2*k2c1-3544*k3c1/2565+1859*k4c1/...

4104-11*k5c1/40,cc2-8*k1c2/27+2*k2c2-3544*k3c2/2565+1859...

*k4c2/4104-11*k5c2/40,dd-8*k1d/27+2*k2d-3544*k3d/2565+...

1859*k4d/4104-11*k5d/40,ain_0);

k6b = h*fb(aa-8*k1a/27+2*k2a-3544*k3a/2565+1859*k4a/4104-...

11*k5a/40,bb-8*k1b/27+2*k2b-3544*k3b/2565+1859*k4b/4104-...

11*k5b/40,cc1-8*k1c1/27+2*k2c1-3544*k3c1/2565+1859*k4c1...

/4104-11*k5c1/40,cc2-8*k1c2/27+2*k2c2-3544*k3c2/2565+1859...

*k4c2/4104-11*k5c2/40,dd-8*k1d/27+2*k2d-3544*k3d/2565+1859...

*k4d/4104-11*k5d/40,bin_0);

k6c1 = h*fc1(aa-8*k1a/27+2*k2a-3544*k3a/2565+1859*k4a/4104-...

11*k5a/40,bb-8*k1b/27+2*k2b-3544*k3b/2565+1859*k4b/4104-...

11*k5b/40,cc1-8*k1c1/27+2*k2c1-3544*k3c1/2565+1859*k4c1...

/4104-11*k5c1/40,cc2-8*k1c2/27+2*k2c2-3544*k3c2/2565+1859...

*k4c2/4104-11*k5c2/40,dd-8*k1d/27+2*k2d-3544*k3d/2565+1859...

*k4d/4104-11*k5d/40);
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k6c2 = h*fc2(aa-8*k1a/27+2*k2a-3544*k3a/2565+1859*k4a/4104...

-11*k5a/40,bb-8*k1b/27+2*k2b-3544*k3b/2565+1859*k4b/4104-...

11*k5b/40,cc1-8*k1c1/27+2*k2c1-3544*k3c1/2565+1859*k4c1...

/4104-11*k5c1/40,cc2-8*k1c2/27+2*k2c2-3544*k3c2/2565+1859...

*k4c2/4104-11*k5c2/40,dd-8*k1d/27+2*k2d-3544*k3d/2565+1859...

*k4d/4104-11*k5d/40);

k6d = h*fd(aa-8*k1a/27+2*k2a-3544*k3a/2565+1859*k4a/4104...

-11*k5a/40,bb-8*k1b/27+2*k2b-3544*k3b/2565+1859*k4b/4104-...

11*k5b/40,cc1-8*k1c1/27+2*k2c1-3544*k3c1/2565+1859*k4c1...

/4104- 11*k5c1/40,cc2-8*k1c2/27+2*k2c2-3544*k3c2/2565+1859...

*k4c2/4104-11*k5c2/40,dd-8*k1d/27+2*k2d-3544*k3d/2565+1859...

*k4d/4104-11*k5d/40);

aa_1 = aa+25*k1a/216+1408*k3a/2565+2197*k4a/4104-k5a/5;

bb_1 = bb+25*k1b/216+1408*k3b/2565+2197*k4b/4104-k5b/5;

cc1_1 = cc1+25*k1c1/216+1408*k3c1/2565+2197*k4c1/4104-k5c1/5;

cc2_1 = cc2+25*k1c2/216+1408*k3c2/2565+2197*k4c2/4104-k5c2/5;

dd_1 = dd+25*k1d/216+1408*k3d/2565+2197*k4d/4104-k5d/5;

aa_2 = aa + 16*k1a/135+6656*k3a/12825+28561*k4a/56430-9*k5a...

./50+2*k6a/55;

bb_2 = bb + 16*k1b/135+6656*k3b/12825+28561*k4b/56430-9*k5b...

./50+2*k6b/55;

cc1_2 = cc1 + 16*k1c1/135+6656*k3c1/12825+28561*k4c1/56430-...

9*k5c1/50+2*k6c1/55;

cc2_2 = cc2 + 16*k1c2/135+6656*k3c2/12825+28561*k4c2/56430-...

9*k5c2/50+2*k6c2/55;

dd_2 = dd + 16*k1d/135+6656*k3d/12825+28561*k4d/56430-9*k5d

/50+2*k6d/55;
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Ra = abs(aa_1-aa_2)/h;

Rb = abs(bb_1-bb_2)/h;

Rc1 = abs(cc1_1-cc1_2)/h;

Rc2 = abs(cc2_1-cc2_2)/h;

Rd = abs(dd_1-dd_2)/h;

%Error estimation

delwa = 0.84*(eps/Ra)^(1/4);

delwb = 0.84*(eps/Rb)^(1/4);

delwc1 = 0.84*(eps/Rc1)^(1/4);

delwc2 = 0.84*(eps/Rc2)^(1/4);

delwd = 0.84*(eps/Rd)^(1/4);

if (Ra<=eps && Rb<=eps && Rc1<=eps && Rc2<=eps && Rd<=eps)

tstep = tstep+h;

aa = aa_1;

bb = bb_1;

cc1 = cc1_1;

cc2 = cc2_1;

dd = dd_1;

i = i+1;

h = min([delwa,delwb,delwc1,delwc2,delwd])*h;

else

h = min([delwa,delwb,delwc1,delwc2,delwd])*h;

end

end
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