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ABSTRACT 

Actinide Complexes for Small Molecule Activation Featuring a 

Bis(phenoxide) Ligand with a Chelating Arene 

 

Christopher J. Inman 

Ph.D Thesis 

 

This thesis focuses on the use of TpMe2 (TpMe2 = [HB(C3N2HMe2)3]-) or pMe2O2 (pMe2O2 = C6H4{p-C-

(CH3)2C6H2Me2O-}2) as alternatives to Cp* and COTTIPS2 (Cp* = C5Me5 and COTTIPS2
 C8H6{1,4-

SiiPr3}2) respectively, in the synthesis of U(III) complexes for small molecule activation studies. The 

pMe2O2 ligand scaffold has also been incorporated into heteroleptic Th(IV) complexes and a formally 

Th(III) complex.  

The synthesis and reactivity studies of the half-sandwich complexes (U(η8-C8H6{1,4-SiMe3}2)(κ3-

TpMe2), U(η8-C8H4{1,4-SiiPr3}2)(κ3-TpMe2) and U(η8-C8H6{1,4-SiiPr3}2)(κ3-TpMe2) ( C8H4{1,4-SiiPr3}2 = 

PentTIPS2)) are documented and the observation of the uranium-carbonyl complex, U(η8-C8H4{1,4-

SiiPr3}2)(κ3-TpMe2)CO, at low-temperatures is reported. Electrochemical studies were carried out on 

these compounds to determine the UIII/UIV redox couple and compare the electron-donating ability of 

the TpMe2 complexes with their Cp* analogues.  

The bis(phenoxide) ligand, pMe2O2, featuring a central chelating arene is synthesised and incorporated 

into the new mixed-ligand U(III) complex, UCp*(pMe2O2). Cyclic voltammetry studies indicate this 

complex is highly reducing and suitable to activate small molecules. Reactivity studies have shown 

UCp*(pMe2O2) is able to activate CO2, CS2, C3O2 (carbon suboxide) and PhNNPh. One of these 

products, [{UCp*(pMe2O2)}2{µ-η2(C,S):η2(S,S)-CS2], was also found to activate CO2 and CO.  

A homoleptic thorium complex (Th(pMe2O2)2) was synthesised and subsequently reduced to [K(2.2.2-

cryptand)][Th(pMe2O2)2] using K/Hg and 2.2.2-Cryptand in THF. This reduced complex features a δ-

bonding thorium-arene SOMO with electron density that resides mostly on the arene. Also synthesised 

are several heteroleptic thorium-pMe2O2 complexes for the investigation of thorium-arene interactions 

and efforts towards ThCp*(pMe2O2). 
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1 Chapter One: Introduction 
 

1.1 Foreword 

Organometallic chemistry has had a profound impact on society, ranging from the development of 

catalysts that are able to facilitate novel and innovative chemical transformations for the production of 

fine chemicals such as polymers and pharmaceuticals, to cutting edge research that pushes the 

boundaries of our current knowledge and understanding on the behaviour of metal complexes and 

challenges scientific assumptions through new and unprecedented discoveries. A fundamental aspect 

of organometallic chemistry is the transformation and subsequent upgrading of small molecules such 

as CO, CO2, H2 and ethylene and others into more reactive and higher value chemicals.1 Although the 

bulk of industrial catalytic processes use heterogeneous catalysts, organometallic chemistry has 

provided the fundamental knowledge and mechanistic understanding for certain processes such as the 

enantioselective synthesis of menthol.2 The organometallic chemistry of the transition metals has played 

a pivotal role in such advances, for example, the polymerisation of alkenes using Ziegler-Natta 

catalysts. The production of polyethylene and polypropylene is one of the world’s largest scale 

applications of organometallic chemistry with an estimated production of about 100-150 million tons 

of polymers per annum worldwide.1 

Even though uranium was a very competent catalyst in the original Haber-Bosch patent for ammonia 

synthesis,3 its use and our understanding of the actinides lags far behind that of the transition metals. 

Although it is extremely unlikely that the actinides will replace transition metals for most of their current 

applications, from a fundamental point of view it is important to further our knowledge and deepen our 

understanding of these elements as they have unique properties that undoubtedly will lead to novel 

chemical transformations and a host of different applications. 

This thesis will explore the use of several ancillary ligands including a novel bis(phenoxide) ligand 

which features a central chelating arene ring that can support novel and reactive uranium(III) 

complexes. Furthermore, their reactivity towards small molecules – CO, CO2 and CS2 – and the 
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characterisation of the resulting products, using a range of techniques including electrochemistry is 

discussed. The chemistry of thorium has also been investigated using the bis(phenoxide) ligand, 

enabling the examination of thorium-arene interactions in both the +3 and +4 oxidation states.  

1.2 An Overview of Organometallic Uranium and Thorium Chemistry 

Uranium is one of the most divisive elements in society due to its applications in nuclear weapons and 

nuclear power. Uranium was first discovered in 1789 as the naturally occurring mineral U3O8, also 

known as pitchblende.4 Naturally occurring uranium consists of three isotopes: U238 (99.3%), U235 (ca 

0.7%) and trace amounts of U234.5 U238 is a weak α emitter and has a half-life of 4.5 billion years while 

U235 is fissile; the only naturally occurring fissile isotope on earth, and hence is of great interest for 

nuclear applications. Interest in organouranium compounds originates from the time of the Manhattan 

Project with the aim of creating volatile uranium compounds for isotope separation and enrichment.  

Thorium was first discovered in 1828 by Berzelius in the phosphate ore, monazite, which constitutes 

by mass approximately 10% Th alongside several other lanthanides.6 Thorium is found in a much higher 

abundance in the earth’s crust than uranium (9.6 ppm and 2.7 ppm, respectively) with the major isotope 

being Th232 (99.98%).5 Thorium-based nuclear reactors have been proposed as alternatives to uranium-

based reactors due to thorium’s nature of being a self-sustaining fuel that does not require fast neutron 

reactors, resulting in potentially safer operating conditions.7–9 

The chemistry of the early actinides is markedly different to that of the lanthanides and transition metals. 

This is due to the more diffuse nature of the 5f orbitals in comparison to the 4f orbitals of the lanthanides 

which are more contracted, through a much higher degree of shielding by the 5s and 5p electrons. The 

bonding regime of these elements are classed as mainly ionic, although the diffuse nature of the 5f 

orbitals allows for some degree of covalent bonding unlike that observed for the lanthanides.10 Thorium 

and uranium are classified as hard Lewis acids that are oxophilic and highly reducing in the +3 oxidation 

state, and exhibit redox couples approaching the strength of the alkali metals (ca -2.2 V vs FeCp2
+/0, Na: 

-3.04 V vs FeCp2
+/0).11,12 Moreover, their ionic radii are larger than those of the transition metals.13 The 



3 

 

combination of these properties results in a rich and diverse chemistry,14 but also inherently leads to 

difficulties in the preparation and characterisation of novel, low-valent and mid-valent species.  

1.3 Ligand Environments for Uranium Complexes 

The ligands that surround a metal centre are key to discovering new reactivity and accessing difficult 

oxidation states. For example, to isolate low-valent species, it is often necessary to use ligands that 

provide steric bulk to protect the highly reactive low valent metal centre. Electronic properties are also 

important as ligands can alter the redox couple of metal centres by hundreds of millivolts. Other 

important properties include crystallinity, and solubility properties, both of which are affected by 

ligands. The correct choice of ligand for the chosen application is vital. Below is a survey of ligands 

that have been used in this thesis. 

1.3.1 Cyclopentadienyl Uranium Complexes 

One of one the most common ligand systems used in organometallic chemistry is the anionic, aromatic, 

carbocyclic cyclopentadienyl ligand. Its use in organouranium chemistry was first reported in 1956 by 

Wilkinson et al. and since then it has featured heavily in uranium organometallic chemistry.15 The 

hybridised orbitals are able to form σ- and π-bonds with the 5f and 6d orbitals of uranium. The electronic 

and steric properties of the Cp ligand can be tuned using a variety of substituents; some characteristic 

examples are shown below in Figure 1.1. 

 

Figure 1.1 Examples of cyclopentadienyl ligands featured in uranium complexes, left to right, top to bottom: C5H5, 15 C5Me5,16 

C5Me4H,17 1,3-{SiMe3}2C5H3,18 C5H4(SiMe3),19 1,2,4-{tBu}3C5H2.20 
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Pentamethylcyclopentadienyl (Cp*) is one of the most common cyclopentadienyl derivatives in 

uranium chemistry due to the crystallinity, steric bulk and strong electron donating ability the methyl 

groups provide to the ligand and in turn to the metal centre. The Cp* ligand has provided an excellent 

platform for organometallic uranium chemistry to flourish with applications including small molecule 

activation, U–L multiple bond studies and catalysis.21 Although, the Cp* ligand has enabled a wide 

variety of uranium chemistry, it is not well-suited for isolating highly reducing low-valent species such 

as U(II). CpTMS and CpTMS2 are inherently less electron-donating to the metal centre and are more 

kinetically stabilising compared to Cp* and have featured in rare U(II) compounds (Scheme 1.1).19,22  

 

Scheme 1.1 Synthesis of [K(2.2.2-cryptand)][UCpSiMe3R
3].  

1.3.2 COT Uranium Complexes 

Another prominent metallocene ligand in organometallic uranium chemistry is COT2-. COT2- is an 

eight-membered, dianionic, 10π-aromatic carbocyclic ligand featuring a HOMO that is of the correct 

symmetry to interact with the 5f orbitals of uranium in a δ-bond fashion. Combined with the potential 

for two of these ligands to saturate the coordination sphere of uranium, it was anticipated that it may be 

possible to prepare a bis(COT) uranium metallocene complex analogous to the transition metal 

analogues. Streitwieser et al. outlined the synthesis and characterisation of such a complex, UCOT2 

(Figure 1.2) (referred to as uranocene), in 1968.23 Uranocene was the first sandwich complex of 

uranium and its structure resembles a dumbbell with D8h symmetry as confirmed by X-ray 

crystallography.  

Further studies involving COT focused on the functionalisation of the ligand to provide additional steric 

bulk and increase solubility to aid spectroscopic characterisation. Examples of functionalisation include 
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work by Streitwieser and Dempf, who synthesised derivatives of UCOTR
2 (R = OMe, NMe2, Et, tBu 

and Mes) (Figure 1.2),24,25 and the tetra-substituted derivatives U(COT4R)2 (R = Me, Ph).26,27 Curiously 

U(COT4Ph)2 is stable in air over several weeks. Silyl functionalisation has also been successfully carried 

out with examples including (1,4-{SiMe3}C8H6),28 (1,4-{SiiPr3}C8H6) (Figure 1.2),29 (1,4-

{SitBuMe2}C8H6),30 (1,3,5-{SiMe3}C8H6)31 and (1,4-{SiPh3}C8H6).32 The silylated ligands are cheaper, 

easier to synthesise and higher yielding in comparison to the alkylated congeners.  

 

Figure 1.2 Organouranium complexes featuring COT ligands: UCOT2, UCOTR2
2, UCpMe4R’’COTSiR’(THF)x where R = 

OMe, NMe2, Et, tBu and Mes, R’ = TIPS or TMS groups and R’’= H or Me and x = 0 or 1. 

Uranocenes are excellent for probing the interactions between the highly symmetric 5f orbitals and 

ligand orbitals though they offer very little in terms of reactivity due to saturation of the metal centre. 

Closely related to uranocenes are mono-COT compounds, these offer the steric protection of a single 

COT ligand and in combination with other ligands show a wider variety of reactivity. Streitwiser et al. 

reported the synthesis of UCOTCl2(Py)2, UCOTCl2(THF)2 (Figure 1.3) and UCOT(acac)2 though were 

unsuccessful in functionalising the dichloride complexes with alkylmetal reagents. 33 Employing the 

bulkier COTTMS2 ligand Cloke et al. demonstrated that the increased steric encumbrance and solubilising 

nature of the TMS ligand results in the isolation of UCOTTMS2(BH4)2 (Figure 1.3), free of coordinating 

solvent. Ephritikhine et al. were able to crystallographically characterise UCOT(BH4)2(OPPh3), the 

structure of which shows a three-legged piano stool configuration.34 In the same publication, the 

synthesis of the first uranium mixed-sandwich complex, UCOT(Cp)(BH4)OPPh3, was outlined. Soon 

after this, Clark et al. reported the synthesis of the U(III) mixed-ring complex, UCOTCp*(THF). 35 

Though no crystal structure was obtained, 1H NMR, IR and elemental analysis supported this 

formulation. Interestingly, UCOTCp*(THF) reacts with Me2bpy to form UCOTCp*(Me2bpy), an early 
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indication that U(III) mixed-sandwich compounds have a suitable ‘pocket’ which substrates may bind 

to. Several years later, Ephritikhine et al. reported the synthesis of UCOTI2(THF)2, which they used as 

a precursor to a range of mixed-sandwich systems, for example UCOTCp*I(THF).36 In terms of the 

reactivity of these complexes, Cloke et al. demonstrated how the mixed-sandwich complex, 

UCOTTIPS2Cp*(THF) (Figure 1.2),29 is able to reductively cyclotrimerize CO to give a binuclear 

deltate-bridged structure.  

 

Figure 1.3 Examples of organouranium ‘half-sandwich’ complexes, UCOTTMS2(BH4)2 and UCOTCl2(THF)2. 

1.3.3 Pentalene Uranium Complexes 

Pentalene, [C8H6]2- is an alternative 8-membered dianionic carbocyclic ligand to COT. It features two 

fused-five-membered rings with a 1,5-transannular bond and can participate in a wide variety of 

bonding modes. Due to challenging syntheses required, pentalene has received much less attention than 

COT but has been increasingly studied over the past two decades as the number of reliable synthetic 

procedures has increased. Jones and Schwab first demonstrated the synthesis of PentH2, a precursor to 

[C8H6]2-, as a mixture of four isomers from COT using flash vacuum pyrolysis (FVP). Cloke et al. later 

optimised the reaction conditions by carefully controlling the COT addition rate, pressure, flow rate and 

temperature to produce the isomers of PentH2. These isomers are then deprotonated with nBuLi to give 

[Li(DME)x]2Pent in 90% yield. In 1999 Cloke et al. reported the synthesis of U(PentTIPS2)2.37 The 

complex features two silylated pentalene ligands for increased crystallinity and solubility in 

hydrocarbon solvents.  

Several years later the U(III) complex, UPentTIPS2Cp*, was shown to mediate the reduction of N2 to N2
2- 

under an over pressure of N2
 (Figure 1.4). Crystallographic analysis of the reduced dinitrogen moeity, 

[(U{η5-Cp*}{η8 -PentTIPS2})2(µ- η2: η2- N2)], revealed an N–N bond length of 1.232(10) Å, significantly 
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longer than that of free N2 (1.098 Å), consistent with an N–N double bond.38 Using the same mixed-

sandwich compound, Cloke et al. later showed how tBuCP could be doubly reduced to give the 

bimetallic complex, [(U{η5-Cp*}{η8 -PentTIPS2})2(µ- η2: η1- tBuCP)], with the reduced tBuCP fragment 

coordinating to one of the uranium centres in an η2 fashion.39 

 

Figure 1.4 Dinitrogen activation using UCp*PentTIPS2.  

Using permethylated pentalene, Pn*, O’Hare et al. synthesised several uranium sandwich and half-

sandwich complexes, including: [Pn*U(μ-Cl)4][Li(TMEDA)]2,40 UPn*,41 [Pn*UCp*(μ-

Cl)2][Li(TMEDA)]40 and Pn*UCp2.40 UPn*2 was shown to have complicated electrochemical 

behaviour. The authors suggested a UIV/UIII redox couple of -1.13 V vs FeCp2
+/0 though this is not in 

agreement with similar uranium compounds measured in our laboratory; it seems more likely given our 

findings that the reduction event observed at ca -2.2 V vs FeCp2
+/0 is the UIV/UIII redox couple.  

 

Figure 1.5 Examples of pentalene containing uranium complexes, UCp*PentTIPS2 and UPn*2.  

1.3.4 Arene Uranium Complexes 

Metal-arene interactions for uranium are a cornerstone of modern organometallic chemistry. The first 

report of such an interaction was published in 1971 and described the synthesis of U(AlCl4)3(C6H6) 

under reducing conditions.42 The neutral π-basic arene ligand is coordinated to a highly Lewis acidic 

U(III) centre in a dative bonding interaction. Almost two decades later, Ephritikhine et al. published 



8 

 

work on a compound featuring a similar interaction, the synthesis of U(BH4)3Mes involved heating 

U(BH4)4 in mesitylene at 150 °C for 20 minutes to give the desired compound in 80% yield.43 

In 2000, Cummins et al. reported the synthesis of (µ-η6 η6 -C7H8)[U(N[R]Ar)2]2 (R = C(CH3)3 and Ar = 

3,5-C6H3-Me2) by the reduction of U(I)(N[R]Ar)2 with KC8 in toluene to form the bimetallic inverted 

sandwich complex (Figure 1.6).44 Structural analysis revealed a shortening of the C–C bonds in the 

central toluene moiety (with respect to free toluene) and a ‘puckering’ of one of the carbon atoms above 

the mean plane, indicating a strong uranium arene interaction. Most interestingly, DFT evidence 

suggests the uranium arene interaction features a considerable δ-backbonding interaction. Reactivity 

studies with PhSSPh indicate uranium is acting as a U(II) synthon, however, contrasting evidence from 

XANES studies suggest the uranium centres are in the +3 oxidation state.45 

 

Figure 1.6 Formation of uranium arene complex.  

The work by Cummins et al. on uranium δ-backbonding interactions sparked interest in uranium arene 

interactions and the following years saw an increase in publications on this subject, encompassing a 

wider range of uranium oxidation states, ligands, arene substrates and experimental techniques to probe 

the bonding interaction. Using a tri-anionic tripodal ligand system, Liddle et al. synthesized, 

[{U(TsXy)}2(µ-η6η6-C6H5Me)] (TsXy = HC-(SiMe2NAr)3; Ar = 3,5-Me2C6H3) (Figure 1.7),46 with 

experimental evidence suggesting the uranium centres are in the +5 oxidation state where the toluene 

bears a formal 4- charge.  
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Figure 1.7 Molecular structure of [{U(TsXy)}2(µ-η6η6-C6H5Me)]. Uranium, green; nitrogen, blue; silicon, orange; carbon, 

grey. Hydrogen atoms omitted for clarity. Displacement ellipsoids set to 30%. From ref46. 

Another method of investigating uranium arene interactions is to incorporate arene rings into 

preorganised ligands, effectively forcing such an interaction. Meyer et al. achieved this in the 

[((tBuArO)3mes)U] (Figure 1.8) complex which features a covalent δ-backbonding uranium-mesitylene 

interaction as shown by theoretical studies.47 This change in ligand framework results in significantly 

different electronic properties compared to the tacn-based ligand system as shown by differences in the 

magnetic moment and electronic absorption spectra, due to the U(5f)-mesityl(π*) δ-interaction. 

 

Figure 1.8 Structure of [((Ad,MeArO)3mes)U]. 

Several years later, using an extremely bulky monoanionic aryloxide,48 Meyer et al. synthesised two 

U(III) compounds featuring a terminal U-arene interaction with a pendant phenyl ring from the bulky 
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aryloxide ligand, [(Ar*O)3U(THF)] (Ar*O = 2,6-Ph2-C6H4-Me, 2,6-bis(diphenylmethyl)-4-

methylphenyl) (Figure 1.9).  

 

Figure 1.9 Molecular structure of [(Ar*O)3U(THF)]. U, green; oxygen, red; carbon, grey. Hydrogen atoms and parts of 

phenyl groups omitted for clarity. Displacement ellipsoids set to 50%. 

A recent publication from Fortier et al. outlined the synthesis of LArU(I)(DME) (L = p-terphenyl 

bis(anilide)) (Figure 1.10) which features a uranium arene interaction that is mostly electrostatic in 

nature and lacking in δ-backbonding, according to DFT studies.49  

 

Figure 1.10 Molecular structure of LArU(I)(DME). Uranium, green; nitrogen, blue; iodine, purple; carbon, grey. Hydrogen 

atoms and co-crystallised solvent omitted for clarity. Displacement ellipsoids set to 50%. 
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1.3.5 Aryloxide Uranium Complexes 

In comparison to cyclopentadienyl uranium complexes, complexes featuring aryloxides are far less 

common. Aryloxide ligands offer alternative steric and electronic properties to metallocene ligands. 

Firstly, they tend to have lower coordination numbers due to their mono-haptic coordination via the 

hard oxygen donor atom. Secondly, the steric profile of the ligand is more flexible as the phenyl ring 

that provides steric protection is not coordinated to the metal, thus enabling movement. These 

differences result in remarkably different reactivity in comparison to homoleptic cyclopentadienyl 

uranium complexes, especially towards small molecules. Aryloxides can be ligated onto metal centres 

via either salt metathesis or protonolysis methodologies, thus providing a greater synthetic scope.  

In 1983 Lappert et al. published a report which contained several uranium aryloxide complexes 

including UCl2O(O-2,6-tBu2C6H3)2 and U(NEt2)(OPh).50 The first homoleptic U(III) aryloxide complex 

was synthesised by Sattelberger et al. in 1988,51 U(O-2,6-R2C6H3)3 (R = iPr, tBu) via protonolysis of 

the free phenol with U(N(SiMe3)2)3 to give the resultant compounds in 50% yield. The crystal structure 

of U(O-2,6- iPr 2C6H3)3 revealed a three legged piano stool structure with a weak uranium-phenyl ring 

π-interaction resulting in a dimeric structure. Sattelberger et al. later published two examples of 

homoleptic uranium aryloxide complexes, U(O-2,6-R2C6H3)4 (R = iPr, tBu).52,53 



12 

 

 

Figure 1.11 Molecular structure of U(O-2,6- iPr 2C6H3)3 featuring the π-arene bridging interaction. Uranium, green; oxygen, 

red; carbon, grey. Hydrogen atoms have been omitted and only ipso carbons of the terminal phenoxides are shown for clarity.  

Nearly 30 years later Arnold et al. used some of the aforementioned U(III) aryloxide complexes to 

activate N2, CO and CO2.54 The U(III) complexes, U(O-2,6- tBu2C6H3)3 and U(O-2,4,6- tBu3C6H2)3, 

activate N2 to give, [U(OAr)3]2(μ-η2:η2-N2) (OAr = O-2,6- tBu2C6H3 and O-2,4,6- tBu3C6H2) (Scheme 

1.2), which is consistent with a N2
2- moiety as indicated by X-ray crystallography. [U(O-2,4,6- 

tBu3C6H2)3]2(μ-η2:η2-N2) is able to activate CO2 unlike U(O-2,6- tBu2C6H3)3, which undergoes ligand 

rearrangement upon reaction with CO2 to form U(O-2,6- tBu2C6H3)4 (Scheme 1.2).  

 

Scheme 1.2 Reactivity of U(OAr)3 and [U(OAr)3]2(μ-η2:η2-N2) towards CO2.  

Meyer et al. have been very successful in incorporating aryloxide ligands in various anchor motifs 

(Figure 1.8 and Figure 1.12).47,55,56 The steric bulk of the aryloxide arms can be readily modified with 

derivatives including tert-butyl, adamantyl and even diamantanyl, thus enabling a range of 
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environments around the ‘reaction pocket’ above the metal and between the ortho-substituents on the 

three aryoxide arms.57 The mesitylene anchored trisaryloxide ligand has been used to isolate a U(II) 

complex,58 [K(2.2.2-crypt)][((Ad,MeArO)3mes)U], from the low-temperature potassium reduction of 

[((Ad,MeArO)3mes)U] in the presence of 2.2.2-cryptand, with the mesitylene anchor key to stabilising 

uranium in the +2 oxidation state via a δ-backbonding interaction.  

 

Figure 1.12 Structures of [((Ad,MeArO)3tacn)U] (left), [((tBuArO)3N)U] (centre) and [K(2.2.2-crypt)][((Ad,MeArO)3mes)U] 

(right, [K(2.2.2-crypt)] not shown for clarity).  

A monoiodide U(III) cyclam complex, [U(κ6-{(tBu2ArO)2Me2-cyclam})I] (Figure 1.13), featuring two 

phenolate arms was synthesised in 2015.59 Two equivalents of this complex are able to effect the four-

electron reduction of azobenzene to give the U(VI) bis(imido) complex [U(κ4-{(tBu2ArO)2Me2-

cyclam})(NPh)2] and the U(IV) species [U(κ6 -{(tBu2ArO)2Me2-cyclam})I][I]. 

 

Figure 1.13 Molecular structure of [U(κ6-{(tBu2ArO)2Me2-cyclam})I]. Uranium, green; oxygen, red; nitrogen, blue; iodine, 

purple; carbon, grey. Hydrogen atoms and co-crystallised solvent omitted for clarity. Displacement ellipsoids set to 50%. 
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Recent years have seen the synthesis of tetra(aryloxide) uranium complexes. Arnold et al. synthesised 

the dinuclear uranium complex, (U2I4(THF)6LP*) (Figure 1.14 , left), as part of a family of compounds 

that provide a flexible,60 robust and modular platform for the two uranium centres suitable to mediate 

transformations. Using a cyclen anchor, Meyer et al. synthesised an air-stable tetra(aryloxide) 

complex,61 [((tBu,tBuArO)4cyclen)U] (Figure 1.14, right), with the uranium centre in an eight-coordinate 

tetragonal environment. 

 

Figure 1.14 Molecular structures of (U2I4(THF)6LP*) (left) and [((tBu,tBuArO)4cyclen)U] (right). Uranium, green; oxygen, 

red; nitrogen, blue; iodine, purple; carbon, grey. Hydrogen atoms and co-crystallised solvent omitted for clarity. 

1.3.6 Tris(pyrazolyl)borate Uranium Complexes 

Since their initial synthesis by Trofimenko, tris(pyrazolyl)borate (Tp) ligands have featured 

prominently in d-bock chemistry,62 whereas their application to f-block chemistry has been less 

prevalent. Tp ligands have proven to be extremely versatile due to the simplicity of their synthesis and 

the ease at which the electronic and steric properties can be tuned. Tp ligands are analogous to 

cyclopentadienyl (Cp) in that they are both anionic 6-electron donors, however, they differ in that Tp 

ligands are hard σ-donors while Cp ligands are softer π-donors.  

The first uranium-TpMe2 complex was reported by Bagnall et al. in 1975, synthesised by the reaction of 

UCl4 and KTpMe2 to give UCl3TpMe2.63 Takats et al. (and other laboratories), have published many 

reports investigating the structure of f-element complexes bearing scorpionate ligands, many of which 

have featured uranium with chloride and alkyl ligands.64,65 Using UI3(THF)4, Takats synthesised [U(κ3-
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TpMe2)I2(THF)2] and [U(κ3-TpMe2)(κ2-N,N-η2-(N=N)-TpMe2)I], the latter displaying an unexpected side-

on interaction between U and N=N of one of the pyrazolyl rings (Figure 1.15).66 The bulky nature of 

the TpMe2 ligand has enabled the exploration of rare U(III) alkyl insertion chemistry as part of a closed 

synthetic cycle with CO2.67 The use of TpMe2 has also enabled the synthesis of terminal-oxo complexes,68 

compounds containing redox active bpy ligands and low-valent uranium fluoride complexes that 

activate C–F bonds. 69,70 

 

 

Figure 1.15 Molecular structure of [U(κ3-TpMe2)(κ2-N,N-η2-(N=N)-TpMe2)I]. Uranium, green; nitrogen, blue; boron, yellow; 

carbon, grey. Hydrogen atoms omitted for clarity. Displacement ellipsoids not shown. A TpMe2 ligand has been removed 

from the right-hand image for clarity.  

This literature review has covered organometallic uranium complexes containing ligands relevant to 

this thesis. The next section will focus on small molecule activation using U(III) complexes, some of 

which have already been mentioned.  

1.4 Uranium Small Molecule Activation 

Judicious choice in ligands around the U(III) centre is key to enabling the activation of small molecules. 

Tuning of the steric and electron properties of the supporting ligands can result in exceptional 

differences in reactivity. Uranium in the +3 oxidation state is well placed to mediate transformations of 
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substrates such as CO and CO2 by virtue of its large ionic radii,13 oxophilic nature and easily accessible, 

yet large UIII/UIV redox couple.11 A summary of transformations mediated by U(III) complexes is given 

below.  

1.4.1 Carbon Monoxide 

Carbon monoxide is an important carbon feedstock and is used alongside H2 in the Fischer-Tropsch 

process in the production of hydrocarbons and oxygenates. This process is extremely energy intensive, 

due to the high temperatures and pressures typically used. Transition metal-CO interactions are 

extremely common due to the favourable σ bonding and π* back-bonding interactions with d-orbitals, 

while such interactions with the actinides are much less favourable due to the contracted and highly 

symmetric nature of the f-orbitals.  

Interest in uranium carbonyl complexes originated in the Manhattan Project as it was hoped that, like 

transition metal carbonyl complexes, a U(CO)6 complex would be more volatile and safer than UF6. 

U(CO)6 was synthesised in 1971 by condensing uranium metal vapour into a carbon monoxide-argon 

matrix at 4 K. The observation of a band at 1961 cm-1 implies that the uranium metal centre is acting as 

a π-donor to CO as indicated by the decreased CO stretch value.71 

The first organometallic uranium carbonyl complex was reported in 1986 by Andersen and co-

workers.72 Upon exposure to 1 atm of CO, a solution of UCpTMS2
3 immediately changed colour to give 

UCpTMS2
3CO, however, upon exposure to vacuum or purging with argon, CO was removed, indicating 

CO is only weakly bound. DFT studies calculated a U–CO bond strength of 14 Kcal mol-1 for 

UCpTMS2
3CO, substantially less than for the transition metal complex ZrCp*2CO2, which has a BDE 

value of 40 Kcal mol-1.73  

The first crystallographically characterised uranium carbonyl complex was synthesised in 1995 by 

Carmona et al..74 A solution of UCpMe4H
3 was exposed to an atmosphere of CO to give an end-on bound 

uranium carbonyl complex, UCpMe4H
3CO. As with UCpTMS2

3CO, the binding of CO to UCpMe4H
3CO 

(Figure 1.16) is reversible and the starting material can be reformed upon exposure to vacuum. X-ray 

diffraction studies revealed that the CO molecule is C bound with an elongated C–O bond length of 
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1.42(7) Å (free CO, 1.28 Å). Due to the value being within 3 σ of the value for free CO caution should 

be taken. Further CO activation studies were carried out on other tris cyclopentadienyl uranium 

complexes, including [UCpTMS2
3CO] and [(CptBu)3UCO].75 In 2003, Evans et al., reported the synthesis 

and characterisation of UCp*3CO, which has a linear U–C–O unit like the aforementioned complexes.76 

In comparison to other uranium carbonyl complexes, the higher stretching frequency found in 

UCp*3CO is due to the steric crowding from the Cp* ligands. Donation of electron density to CO via 

π-symmetry back bonding from UCpR
3 originate from ligand based orbitals as shown by DFT studies 

of such uranium complexes and, more recently a cationic Th(IV) carbonyl complex.77 

 

Figure 1.16 Molecular structure of U(CpMe4H)3CO. Uranium, green; oxygen, red; carbon, grey. Hydrogens omitted for clary. 

Displacment ellipsoids not shown.  

The first report of stoichiometric reduction of CO by a uranium(III) complex was published by Meyer 

et al. in 2004.78 A solution of [((tBuArO)3tacn)U] was placed under 1 atm of CO to give 

[{((tBuArO)3tacn)U}2(µ:η1,η1-CO](Figure 1.17). The product was characterised as a mixed valence 

bimetallic U(III)/U(IV) system with CO sitting on an inversion centre. The proposed mechanism 

involves the capping of a charge-separated species, [{((tBuArO)3tacn)U}2(µ:η1,η1-CO)] by an equivalent 

of the uranium(III) reactant. 
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Figure 1.17: Crystal structure of [{((tBuArO)3tacn)U}2(µ:η1,η1-CO]. Colours: U, pink; O, red; N, blue; C, grey. Hydrogen 

atoms and tert-butyl groups omitted for clarity. Displacement ellipsoids shown at 50% probability level. Image from.78 

Cloke et al. reported the reductive homologation of CO by UCOTTIPS2CpMe4R to give the deltate dianion 

(R = Me) (C3O3
2-) or squarate dianion (C4O4

2-) (R = H) (Figure 1.18).17,29 Up until these publications 

the homologation of carbon monoxide was limited to extremely harsh conditions involving molten 

alkali metals and high pressures. Addition of 0.95 equivalents of CO to UCOTTIPS2Cp* resulted in the 

selective formation of a uranium ynediolate complex, though addition of further equivalents of CO to 

this ynediolate complex did not yield higher oxocarbons. Subsequent theoretical studies suggested the 

formation of oxocarbons occurred through a zig-zag intermediate (Figure 1.18, top left).79,80 Discovery 

of this intermediate encouraged experiments involving CO and H2, leading to the reductive coupling of 

CO and H2 mediated by UCOTTIPS2Cp* to yield UCOTTIPS2Cp*(OMe).81 
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Figure 1.18 Reaction between UCOTTIPS2CpMe4RTHF (where R = H or Me) and CO. The proposed zig-zag intermediate 

calculated using DFT is also shown in the top left corner.  

Other examples of uranium ynediolate complex formation have been achieved using UCOTTMS2CpMe4R 

(R = Et and SiMe3),82 UNTMS2
3,83 UOAr3 (OAr = O-2,6-tBuC6H3 and O-2,4,6-tBuC6H2) and 

U(TRENTBDMS) (Figure 1.19).54,84 Upon heating U(TRENTBDMS)2(µ-η1: η1-C2O2) or (UNTMS2
3)2(µ-η1: 

η1-C2O2) ligand activation occurs, indicating functionalisation of the ynediolate moiety is possible. A 

closed synthetic cycle involving U(TRENTBDMS)2(µ-η1: η1-C2O2) was also shown to be possible with the 

use of RMe2SiI (R = Me or Ph) and potassium as electrophiles and strong reducing agents, respectively.  

 

Figure 1.19 Uranium ynediolate products. a) U(TRENTBDMS)2(µ-η1: η1-C2O2), b) (UCOTTMS2CpMe4R)2(µ-η1: η1-C2O2) (R = 

Et and SiMe3), c) U(N(SiMe3)2)3)2 (µ-η1: η1-C2O2) and d) U((OAr)3)2(µ-η1: -C2O2) (OAr = O-2,6-tBuC6H3 and O-2,4,6-

tBuC6H2). 
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1.4.2 Carbon Dioxide 

CO2 is a potent greenhouse gas and is produced and released into the atmosphere from anthropogenic 

sources in large quantities. It is therefore highly desirable to find technologies that utilise CO2 from the 

atmosphere as a C1 feedstock. One way of utilising CO2 is to use organometallic complexes to mediate 

its transformation into higher value chemicals such as methanol, as Millstein has shown.85 The first step 

in the transformation of CO2 is coordination to a metal centre, which is possible in several coordination 

modes, some of which are shown below (Figure 1.20).  

 

Figure 1.20 Coordination modes of CO2 in mono- and dinuclear complexes.  

Uranium is well placed to activate the strong (532 kJ mol-1) polar bonds of CO2 due to the oxophilic 

and highly reducing nature in the +3 oxidation state. Uranium reacts with CO2 in one of two main 

modes, one being the insertion of CO2 into a U–E bond that typically gives a product that coordinates 

in a bidentate fashion due to the large coordination sphere of the metal. As this reaction pathway has 

not been studied in this thesis, it will not be mentioned in further detail.  

More relevant to this thesis is the second mode of reactivity, the reduction of CO2. Early reports of CO2 

reduction involved the U(III) complex, UCpTMS2
3.86 Upon reaction with 1 atm of CO2, UCpTMS2

3 formed 

a µ-oxo bridging moiety, [{(UCpTMS2
3}2(µ-O)], with concomitant release of CO. The authors suggested 

that the mechanism involves a bimetallic µ-CO2 complex, based on the analogous CS2 complex,                  

{ UCpTMS2
3}2(µ-η1:η2-CS2), isolated from CS2. Meyer et al. carried out similar work with U(III) in the 

[((tBuArO)3tacn)U] system.87 Upon exposure to CO2 a µ-O adduct was formed along with concomitant 

release of CO. In the report, a colourless intermediate was observed, proposed to be an unstable 

bimetallic bridged CO2 species. 
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In 2004, it was demonstrated that a change in the sterics of the ligand from [((tBuArO)3tacn)U] to the 

adamantyl derivative [((AdArO)3tacn)U] can bring about a drastic change in reactivity.88 An η1-O-CO2 

capped monometallic species was formed when [((AdArO)3tacn)U] was reacted with excess CO2 at room 

temperature (Figure 1.21). This coordination mode is rare and can be attributed to the reactivity pocket 

created by the bulky adamantyl groups. The resonance structure for the product is shown below (Figure 

1.22) and is consistent with magnetic data and electronic/vibrational spectroscopic data.  

 

Figure 1.21: Crystal structure of [((AdArO)3tacn)U(CO2
S)]. Colours: U, green; N, blue; C, grey; O, red. Hydrogens omitted 

for clarity.  

 

Figure 1.22 Resonance structures for the uranium CO2 reduction product.  

 [((tBuArO)3tacn)U2(µ-O)] reacts with CO2 to give [((tBuArO)3N)U)2(µ-O)], no carbonate formation is 

observed due to the lack of accessibility of the bridging O2- ligand.87 Modifying the chelating anchor of 

these trisaryloxides systems to N- or mesitylene- in the following compounds, [((AdArO)3N)U] and 

[((tBuArO)3mes)U], results in different reactivity towards CO2.56 These complexes form the carbonate 

species, [{((AdArO)3N)U}2(µ-η1:η2-CO3)] and [{((tBuArO)3mes)U}2(µ-η2:η2-CO3)] respectfully, as the 

central anchors of these two complexes increase how much of the central oxygen is exposed in the 

bridging µ-O intermediates, therefore opening up the pathway to carbonate formation from CO2 

insertion into the U–O bond. Similar bridged carbonate systems have been observed with 
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UCOTTIPS2CpMe4H and [{U(OSi(OtBu)3)2(µ-OSi(OtBu)3}2].89,90 Upon exposure to an excess of CO2 both 

of these U(III) complexes form bimetallic U(IV) carbonate complexes. 

1.4.3 Reductive coupling of CO2 

Formation of oxalate, (C2O4)2-, from the reductive coupling of CO2 has been accomplished with many 

well-defined organometallic complexes across the periodic table including Mg(I),91,92 Ti(III),93 Fe(I),94 

Cu(I),95 Ln(II) complexes and more recently ThCpTMS2
3.96  

Recently, it has been shown uranium(III) complexes can mediate such transformations. Several years 

ago it was reported that UCOTTMS2CpMe4R (R = Me, Et and iPr) was able to reductively couple CO2 to 

give bimetallic η2:η2-C2O4 bridged complexes (Scheme 1.3), among other products, depending on the 

steric bulk of the Cp ligand.11 When UCOTTMS2CpMe4tBu was used, oxalate formation was not observed, 

presumably due to increased steric bulk. Electrochemical and theoretical studies indicated the difference 

in reactivity is due to the increasingly bulky ligands and not due to differing electronic properties of the 

marginally different ligand systems. Meyer et al. published a similar study outlining how 

[((nPArO)3tacn)U] is also able to reductively couple CO2 to form oxalate.97 

 

Scheme 1.3 Synthesis of {UCOTTMS2CpMe4R}2(µ-η2:η 2-C2O4) (R = Me, Et and iPr). 

1.4.4 Carbon Disulphide 

Activation and functionalisation of CS2 is of interest due to it being a CO2 analogue so it may augment 

our current understanding of CO2 and enable the isolation of otherwise unstable species.  

The first example of U(III) reduction of CS2 was reported by Andersen et al. who showed that two 

equivalents of U(CpMe)3(THF) doubly reduce CS2 to CS2
2- to form the complex, {U(CpMe)3}2(µ-η1:η2-

CS2) (Scheme 1.1), which features two inequivalent uranium centres as shown by 1H NMR and X-ray 
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crystallography.98 The bonding in this complex is very different to that of typical transition-metal CS2 

complexes as π-donation from U(IV) to the LUMO of CS2 is not possible due to the symmetry of the 

metal orbitals.  

 

Scheme 1.4: Formation of {U(CpMe)3}2(µ-η1:η2-CS2) from U(CpMe)3(THF) and CS2. 

Meyer et al. showed how [((AdArO)3N)U(DME)] reacts with CS2 to form [{((AdArO)3N)U}2(µ-η2:η2-

C2S4)] as the major product (80%) and [{((AdArO)3N)U}2(µ-η2:η2-CS3)] as the minor product (20%) 

(Scheme 1.5).99,100 The formation of tetrathiooxalate is likely due to dimerization of a reactive 

[((AdArO)3N)U(CS2
.-)] species, while the formation of thiocarbonate mirrors CO2 chemistry with the 

loss of ‘CS’ and insertion of CS2 into [((AdArO)3N)U2(µ-S)]. Reduction of [{((AdArO)3N)U}2(µ-η2:η2-

C2S4)] with Na/Hg led to the formation of the ethylenetetrathiolate complex, 

[Na(DME)3]2[{((AdArO)3N)U}2(µ-C2S4)].  

 

Scheme 1.5: Reaction of [((AdArO)3N)U(DME)] with CS2 to form [{((AdArO)3N)U}2(µ-η2:η2-CS3)] (20% yield) and 

[{((AdArO)3N)U}2(µ-η2:η2-C2S4)] (80% yield). Also shown is the reduction of [{((AdArO)3N)U}2(µ-η2:η2-C2S4)] with Na/Hg 

in DME to give [Na(DME)3]2[{((AdArO)3N)U}2(µ-C2S4)]. 

Mazzanti et al. have reported the reaction of [{U(OSi(OtBu)3)2(µ-OSi(OtBu)3)}2] with CS2 to form the 

dinuclear bridged species, [{U(OSi(OtBu)3)3}2-{µ-η2(C,S):η2(S,S)-CS2}] (Scheme 1.6).90 
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Scheme 1.6: Synthesis of [{U(OSi(OtBu)3)3}2-{µ-η2(C,S):η2(S,S)-CS2}] from [{U(OSi(OtBu)3)2(µ-OSi(OtBu)3)}2] and CS2. 

The same group has also shown that CS2 is activated by [K(18C6)][U(OSi(OtBu)3)4] to give rise to 

trithiocarbonate via a disproportionation reaction alongside other products (Scheme 1.7).101  

 

Scheme 1.7: [K(18c6)][U(OSi(OtBu)3)4] and its reactivity towards CS2. 

Mazzanti et al. carried out CS2 reactivity studies with [U(OSi(OtBu)3)4K]. Upon reaction with CS2 

several products were formed (Scheme 1.8). These products are readily displaced by the supporting 

siloxide ligands due to the tendency of uranium to preferentially bond to harder atoms such as oxygen 

as opposed to sulphur. It has been observed with these systems that the K+ cation is necessary to promote 

the reductive coupling of CS2.  

 

Scheme 1.8: [U(OSi(OtBu)3)4K] and its reactivity towards CS2. 

Employing the exceptional dinuclear uranium(III) nitride complex, Cs3[{U(OSi(OtBu)3)3}2(µ-N)], 

Mazzanti et al. were able to demonstrate that upon reaction with CS2, the nucleophilic nitride group is 

transferred to the electrophilic CS2 resulting in the extrusion of SCN- and formation of a bridging 

disulphide complex (Scheme 1.9).102  



25 

 

 

Scheme 1.9 Reactivity of Cs3[{U(OSi(OtBu)3)3}2(µ-N)] towards CS2. Atoms coloured for clairity. 

Dinuclear UIII complexes containing anthracene-hinged ‘Pacman’ Schiff-base pyrrole ligand, 

[Na(THF)4][{U(BH4)}2(BH4)(LA)(THF)2] and [{U(OAr)}2(KBH4)(LA)(THF)2], have also been used to 

activate CS2.103 [Na(THF)4][{U(BH4)}2(BH4)(LA)(THF)2] formally undergoes a four-electron process 

in which three CS2
2- moieties and two U(V) centres are formed in a “triple-decker” fashion with the 

uranium centres sandwiched between the thiocarbonates (Scheme 1.10, left). Upon reaction with excess 

CS2, [{U(OAr)}2(KBH4)(LA)(THF)2] forms a µ-S compound from a presumed µ-CS2 intermediate 

(Scheme 1.10, right). These compounds are remarkable as they are the first examples of pre-organised 

multinuclear U(III) complexes activating small molecules.  

 

Scheme 1.10 Reactions of [Na(THF)4][{U(BH4)}2(BH4)(LA)(THF)2] and [{U(OAr)}2(KBH4)(LA)(THF)2] with CS2. Scheme 

from reference 103. 
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1.5 Ligand Environments for Thorium Complexes 

1.5.1 Cyclopentadienyl Thorium Complexes 

Over the past few decades, cyclopentadienyl ligands have been ubiquitous in thorium as well as uranium 

chemistry,104 due to the steric saturation and crystallinity that cyclopentadienyl-derived ligands impart. 

The Cp*2Th moiety is common, and certain complexes containing it have been shown to have high 

catalytic activity in olefin polymerisation reactions and dimethylamine borane dehydrogenation.105,106 

The Cp*2Th fragment also enabled the isolation of metal-ligand multiple bonds in thorium-phosphorus 

and thorium-arsenic complexes.107 Tris-cyclopentadienyl thorium complexes date back to the 1970s 

with a report from Baumgärtner et al., who outlined the synthesis of ThCp3. Similar complexes will be 

highlighted below in the ‘Thorium in the +3 Oxidation State’ section.  

1.5.2 Arene Thorium Complexes 

Reports of thorium arene interactions in the literature are scarce. The first example of a thorium arene 

interaction was reported by Gambarotta in 2003, in a publication which outlined the synthesis of      

[{Et8-calix[4]tetrapyrrole)Th}{K(dme)}(µ-η4:η6-C10H8)(µ-K)]n and                                                                        

[{Et8-calix[4]tetrapyrrole)Th}{K(dme)}(µ-η4 : η6-C10H8)][Li(DME)3].108 Both of these compounds 

were synthesised from [{Et8-calix[4]tetrapyrrole)Th(µ-Cl)2][K(DME)]2 and two equivalents of 

M(naphthalene) (M = K, Li) in DME. Both compounds contain η4 interactions with a bent naphthalene 

fragment.  

Research carried out by Britten et al. showed how a series of thorium cations and a rare thorium 

dication, involve π-coordination of benzyl ligands from the counter anions.109,110 In the dicationic 

complex, [(XA2)Th][B(C6F5)3(CH2Ph)]2 [XA2 = 4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-

dimethylxanthene] (Figure 1.23), thorium is ligated to two benzyl ligands from the [B(CH2Ph)(C6F5)3] 

anions, through π-interactions as part of ion contact interactions. These complexes were tested as 

catalysts for ethylene polymerisation, however, polymer formation was not observed, most likely due 

to π-arene interactions blocking the metal centre.  
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Figure 1.23 Molecular structure of [(XA2)Th][B(C6F5)3(CH2Ph)]2. Th, green; O, red; N, blue; C, grey; B, yellow; F, bright 

green. Hydrogens omitted for clarity. Thermal ellipsoids set to 50%.  

Gambarotta et al. later synthesised a thorium complex with a dianionic bis-pyrrolide ligand system 

containing a central chelating C6 ring, which coordinates to the metal centre due to steric constraint.111 

The aforementioned complex, η6-{1,3-[(2-C4H3N)(CH3)2C]2C6H4}ThCl3][Li(DME)3], features an η6-

bonding interaction between the Th atom and phenyl ring with a Th-centroid distance of 2.701(8) Å. 

Reduction with potassium metal resulted in the formation of a paramagnetic complex containing a 

phenyl-based radical, as indicated by a non-planar phenyl ring (Figure 1.24) and a singlet with a Gav
 

value of 2.0012 in the EPR spectrum.  
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Figure 1.24 Molecular structure of [{η5-1,3-[ η5-2-C4H3N)(CH3)2C]2C6H4}ThK-(µ-Cl)3][Li(DME)3] . Thorium, light green; 

chloride, dark green; nitrogen, blue; carbon, grey. Hydrogens and [Li(DME)3] omitted for clarity.  

A thorium terphenolate complex featuring a thorium bis(arene) sandwich motif was published in 

2014.112 The thorium complex, Th(OTerMes)2(µ3-BH4)2 (Figure 1.25, left), contains two terphenolate 

ligands, one of which forms an interaction with thorium (Th-Ct(arene) distance: 4.05(1) and 2.815(3) 

Å). Arnold et al. published an additional thorium complex containing a thorium bis(arene) motif,113 in 

this instance the complex was [(trans-calix[2]benzene[2]pyrrolide)Th(N(SiMe3)2)][BPh4] (Figure 

1.25, right) and the average Th-Ct(arene) distance is 2.690 Å, indicative of a strong interaction.  

 

Figure 1.25 Molecular structures of Th(OTerMes)2(µ3-BH4)2 (left) and [(trans-

calix[2]benzene[2]pyrrolide)Th(N(SiMe3)2)][BPh4] (right, BPh4 counterion removed for clarity). Thorium, green; oxygen, 

red; boron, yellow; silicon, orange. Hydrogen atoms omitted for clarity.  
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1.5.3 Aryloxide Thorium Complexes 

Thorium aryloxide complexes have been a synthetic goal for chemists for a substantial time with the 

chemistry advancing at a similar rate to that of uranium aryloxide chemistry. This interest originates 

from research studies often including both thorium and uranium, that demonstrate the similar behaviour 

of both elements in the +4 oxidation state. In 1987 Lappert et al. published a report outlining the 

synthesis of several thorium complexes including: [Li(THF)][Th(O-2,6iPr 2C6H3)5], ThCl(O-2,6iPr 

2C6H3)3, ThCl2(O-2,6iPr 2C6H3)2 and Th(O-2,6iPr 2C6H3)4,114 all in good yields. Over a decade later Clark 

et al. published several aryloxide/Cp* thorium compounds of the formula ThCp*X(OAr)2 (where X = 

Br, Me, CH2SiMe3 and OAr = O-2,6iPr 2C6H3) for use as ethylene polymerisation catalysts.115 

Using the bis(phenolate) complex shown in Figure 1.26,116 Gambarotta et al. were able to cleave and 

hydrogenate dinitrogen. The authors propose the reaction proceeds via a transient zero-valent thorium 

species.  

 

Figure 1.26 Molecular structure of a thorium bis(phenolate) complex. Thorium, green; oxygen, red; potassium, cyan; 

carbon, grey. Hydrogens and 18-crown-6 groups removed, and naphthalene molecules drawn as ‘tubes’ for clarity. 
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A year later Gambarotta et al. synthesised the bulky homoleptic complex,117 Th(O-2,6-Ph2C6H3)4 as 

part of studies attempting to prepare low-valent species via potassium reduction. Solvent deoxygenation 

and cyclometallation were the result of these reactions, as opposed to the desired metal-based processes.  

In 2017 Arnold et al. synthesised a macrocyclic thorium complex containing two aryloxide ligands as 

part of studies exploring the coordination chemistry of the macrocyclic ligand TMTAA (TMTAA = 

Tetramethyl-tetra-aza-annulene),118 in uranium and thorium complexes. Th(O-2,6iPr 2C6H3)2TMTAA 

was synthesised from [Th(TMTAA)Cl2(THF)2] and two equivalents of KO-2,6iPr 2C6H3 in THF to give 

the desired product in 64% yield. A tetradentate Schiff base ligand containing two aryloxide arms was 

used to synthesise several Th(IV) complexes, (L)ThCl2Py2 (L = (±)-trans-6,6′-diethoxy-2,2′-

[cyclohexane-1,2-diylbis(nitrilomethanylylidene)]diphenoxide) is shown below (Figure 1.27, right).119  

 

Figure 1.27 Molecular structures of Th(O-2,6iPr 2C6H3)2TMTAA (left) and (L)ThCl2Py2 (right). Thorium, light green; 

chloride, dark green; nitrogen, blue; carbon, grey. Hydrogen atoms omitted and TMTAA ligand is shown as ‘tubes’ for 

clarity. Displacement ellipsoids set to 50% where shown. 

1.6 Thorium in the +3 Oxidation State 

Thorium primarily exists in the +4 oxidation state with only eight crystallographically authenticated 

examples of thorium in the +3 oxidation state reported to date.30,77,120–125 This is due to the highly 

reducing nature of the lower oxidation states and the lack of easily accessible starting materials in the 

+3 oxidation state. The possibility that thorium could exist in lower oxidation states was suggested by 

reports of “Th(III)” and “Th(II)” subhalides in the 1950s and 1960s.126,127 Subsequent reports of Th(II) 
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complexes using the tris-cyclopentadienyl framework have recently been reported,128 exemplifying how 

the ligand environment is key to isolating low-valent complexes.  

In 1974 the first attempts at preparing a molecular Th(III) species was reported; Baumgartner disclosed 

the preparation of ThCp3 from the Na/Naphalene reduction of ThCp3Cl.129 The authors characterised 

this species using elemental analysis, and infrared spectroscopy, but low solubility hindered  obtaining 

single crystals of suitable quality for X-ray diffraction studies, possibly due to the formation of a 

polymeric ionic species as has been observed in Ln chemistry.130,131 Circumventing the use of chemical 

reduction agents Marks explored the use of photolytic synthetic routes to Th(III) species. Experiments 

involving UV photolysis of ThCpR
3
iPr (R = H or Me) gave the Th(III) complexes, ThCpR

3, with 

concomitant formation of iPr and propylene in equal amounts.132 These complexes were characterised 

by mass spectrometry, elemental analysis, FTIR, Raman and electronic spectroscopy. Attempts were 

made to obtain magnetic data, however, results varied across several batches of the sample, possibly 

due to diamagnetic impurities.  

Marks also reported the synthesis of Th(C9H7)3, prepared via the photolysis of the Th(IV) alkyl 

precursor.133 Again, structural characterisation was not possible, though 1H NMR, elemental analysis, 

and IR analysis agree with the formulation.  

 

Scheme 1.11 Synthesis of Th(C9H7)3 using photolysis.  

It was not until 1986 that the first crystal structure of an authenticated Th(III) sample was published. 

Lappert described the preparation of ThCpTMS2
3 via the reduction of ThCpTMS2

2Cl2 with NaK in toluene 

to provide the compound in 85% yield.120 The electronic configuration was originally reported as 5f1 

though in a later publication this was corrected to a 6d1 configuration based on EPR studies.134 
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Figure 1.28 Structure of ThCpTMS2
3.  

Over 15 years later Cloke et al. reported the synthesis of the trivalent sandwich complex, 

[ThCOTTBDMS2
2][K(DME3)] (Figure 1.29),30 by the reduction of ThCOTTBDMS2

2 with a potassium mirror 

in DME. To this day this remains the only example in the literature of a Th(III) complex that does not 

contain a cyclopentadienyl ligand. Evans magnetic moment measurements gave a value of 1.20 µB, 

which is low in comparison to the expected value for a complex containing a single unpaired electron 

(1.73 µB); the authors propose this is due to diamagnetic impurities and low-lying magnetic states, 

whereby the observation of higher values for µB at higher temperatures agree with this hypothesis.  

 

Figure 1.29 Structure of [ThCOTTBDMS2
2][K(DME3)].  

The heteroleptic Th(III) species, ThCp2*(iPrNC(Me)NiPr), was prepared by the reduction of 

[ThCp2*(iPrNC(Me)NiPr)][BPh3Me] with KC8. EPR and electronic spectroscopic data are consistent 

with the formation of a Th(III) species containing a 6d1 configuration.  
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Figure 1.30 Molecular structure of ThCp*2(iPrNC(Me)NiPr). Thorium, green; nitrogen, blue; carbon, grey. Hydrogens 

omitted for clarity.  

Several derivatives of ThCpR
3 (R = Me4H, Me5 and 1,3-tBu) have also been synthesised and structurally 

authenticated with the 6d1 configuration confirmed using EPR and electronic spectroscopy.77,123,124 

Using pulsed EPR methods Mills et al. were able to obtain experimental evidence to quantify the 

electron-spin density at the ligand-nuclei and thus infer the extent of covalency in AnCptBu2
3 (An = Th 

and U). Their studies suggest that there is considerably more total spin density on the ligands in the 

uranium complex compared to that of thorium in AnCptBu2
3, which is due to the angular lobe of the 6dz2 

orbital being the only part of the orbital that has the correct orientation to overlap with ligand orbitals, 

while the 5f orbitals on uranium are more able to transfer spin density onto the ligands due to greater 

in-plane character.  

ThCpTMS2
3 has also been shown to activate CO2 and CS2 (Scheme 1.12).96 Two equivalents of 

ThCpTMS2
3 reduce CS2 to give {ThCpTMS2

3}2(µ-η1:η2-CS2), reactivity analogous to similar U(III) 

complexes (Scheme 1.4). More interestingly, ThCpTMS2
3 was found to react with CO2 to form an 

oxalate-bridged product as well as a carboxylate, resulting from the insertion reaction of CO2 into the 

Th-CpTMS2
3 moiety followed by silyl migration.  
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Scheme 1.12 Reactivity of ThCpTMS2
3 towards CS2 and CO2. 

As illustrated, over the past 50 years there has been many exciting discoveries that highlight the unique 

nature of actinide chemistry. Many of these discoveries have been facilitated using carbocyclic ligands 

such as Cp and COT, and more recently with aryloxide and arene ligands. The last decade has seen an 

increase in the number of actinide reactivity studies. This is an exciting area of research as the unique 

properties of the actinide elements will no doubt lead to fascinating reactivity modes. However, there 

are still many areas that could be developed. For example, reports of thorium electrochemistry are 

scarce, yet would provide valuable data on fundamental properties of this element which would help 

develop, still nascent, low-valent thorium chemistry. Another area of interest is that of actinide-arene 

interactions which hold much promise for stabilising highly reactive, low-valent species that may 

display exceptional reactivity. This thesis aims to address these deficits by exploring the use of mixed-

ligand systems, some of which feature arene ligands, with the aim of altering steric and electronic 

properties to furnish complexes that feature novel bonding interactions and unique reactivity towards 

small molecules. 
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2 Chapter Two: Uranium(III) TpMe2 Half-sandwich Complexes 
 

2.1  Introduction 

In stark contrast to cyclopentadienyl ligands, the use of the tris(pyrazolyl)borate (Tp) ligand in uranium 

chemistry has been far less investigated. The first organouranium complexes synthesised in the 1950s 

contained cyclopentadienyl ligands, and since then this ligand has been widely used to support uranium 

complexes in a range of oxidation states in tandem with other ligands.1 Tp-based ligands are, however, 

not without their merits; they are easily synthesised and modular, meaning steric and electronic 

properties can be easily modified.  

Parallels have been drawn between the cyclopentadienyl and tris(pyrazolyl)borate ligands because they 

are both anionic 6-electron donors that coordinate facially. Nevertheless, significant differences can be 

found both in their steric properties as well as the orbitals involved in the metal ligand bonding situation. 

One such difference that is widely accepted is that Tp and TpMe2 occupy substantially more space in the 

coordination sphere of metals compared to Cp and Cp*, respectively.2,3 This increase in steric bulk has 

enabled the isolation of the rare U(III) alkyl complex, UTpMe2
2Bz, which was used to functionalise CO2 

in a closed synthetic cycle.4 Less clear is how these ligands affect the electronics of the metals they 

coordinate to. A report comparing the electron donating properties of group 3 to group 9 Tp and Cp 

metal complexes found that the electron donor ability of both ligands varies across multiple factors such 

as the identity of the metal, its oxidation state and other ligands present in the complex.5 To date, no 

such study has been repeated for complexes of uranium. Furthering our understanding of ligand 

properties is of great importance, especially in the context of small molecule activation mediated by 

U(III) complexes, which has been the focus of research from our laboratory over the past decade. Our 

research has investigated the use of mixed-sandwich complexes containing the Cp* ligand with other 

carbocyclic ligands, specifically, silyl substituted COT and pentalene ligands discussed in the previous 

chapter.  
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This chapter focuses on the U(III) half-sandwich systems, U(η8-C8H6{1,4-SiMe3}2)(κ3-TpMe2) 2.1, U(η8-

C8H4{1,4-SiiPr3}2)(κ3-TpMe2) 2.2 and U(η8-C8H6{1,4-SiiPr3}2)(κ3-TpMe2) 2.3 and investigations to 

understand their reactivity and highlight differences with analogous Cp* systems.  

2.2 Synthesis and Characterisation of 2.1- 2.5 

Previous studies by Dr Joy Farnaby focused the synthesis and characterisation of 2.2 and 2.3.6,7 These 

investigations form the basis of the syntheses in this chapter, with an important alteration to the synthetic 

procedure as follows. A 2013 publication from our laboratory outlined the optimised procedure for the 

synthesis of UCp*COTTMS2(THF)x (x = 0 or 1) which required the addition of K2COTTMS2 to 

UI2Cp*(THF)n (n = 0 – 3) to be carried out at a lower temperature than UCp*COTTIPS2(THF)x and with 

a shorter work-up procedure.8 As a result, there was a significant decrease in the yield of the undesired 

thermodynamic side-product, U(COTTMS2)2, and an increase in the yield of the desired product 

UCp*COTTMS2(THF)x. It was therefore anticipated that this optimisation may result in improved yields 

of 2.2, 2.3 and the synthesis of UTpMe2COTTMS2, especially since previous attempts to synthesise the 

latter compound were unsuccessful.7 

The synthesis of 2.1-2.3 involves the addition of 0.8 equivalents of either the COT or pentalene 

dipotassium salt to UI2TpMe2(THF)x at -45 °C over 90 minutes, followed by Celite® filtration and 

recrystallisation to give the desired compounds in modest yields (13 - 25%) (Scheme 2.1).  



42 

 

 

Scheme 2.1 Synthesis of 2.1, 2.2 and 2.3. 

1H NMR spectroscopic data for 2.1 show that the proton resonances for the three pyrazolyl arms of 

TpMe2 are in a 9:9:3 ratio while the COT ring proton resonances exist in three distinct environments. 

This is similar to 2.2 in which the three pyrazolyl rings are also equivalent. In contrast to this, 2.3 

features two equivalent pyrazolyl arms as indicated by the 3:3:1:6:6:2 ratio of the protons in the TpMe2 

environment. The 29Si{1H} NMR chemical shift of silicon-containing ligands in uranium complexes 

has been shown to correlate well with the oxidation state at uranium.9 29Si{1H} NMR data (2.1: -138.48, 

2.2: -159.3 and 2.3: -115.6 ppm) are consistent with other U(III) complexes.9 The 29Si{1H}NMR 

chemical shift for 2.1 is similar to UCOTTMS2Cp* (-145 ppm) while 2.2 has a lower value in comparison 

to UCp*PentTIPS2 (-173 ppm).10,11 Less variation is observed in the 11B{1H} NMR spectra (2.1: 32.8, 

2.2: 37.7 and 2.3: 31.8 ppm). Due to the silylated ligands, the three complexes are amenable to EI-MS 

experiments and the molecular ion peak is observed for all species and is consistent with the expected 

isotope pattern. IR spectroscopy of 2.1 exhibits a band at ca 2400 cm-1 corresponding to a B–H stretch.12 

Hydrogen and nitrogen values were within a low margin of error in combustion analysis for 2.1, 

although percentage carbon values were found to be lower than expected. A possible reason for the 

observed values is incomplete combustion. Single crystals of 2.1 suitable for X-ray diffraction studies 
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were grown from a concentrated pentane solution at -35 °C, with the molecular structure given below 

(Figure 2.1).  

 

Figure 2.1 Molecular structure of 2.1. Uranium, green; nitrogen, blue; carbon, grey; boron, yellow; silicon, orange. 

Hydrogen atoms omitted for clarity. The disordered TMS groups on COTTMS2 are shown. Selected structural parameters (Å): 

U1–Ct(COT) = 1.9868(5), average U–N = 2.615.  

Unsurprisingly, the molecular structure of 2.1 is similar to the analogous COTTIPS2 complex 2.3.6 The 

U–COT centroid distance of 1.9868(5) Å is slightly shorter than in 2.3 (2.000(5) Å)6 due to the reduced 

steric bulk of the TMS groups. This value is the same as in UCp*COTTMS2 (1.971(15) Å) within esds.8 

The U–Nav value of 2.630 Å is similar to that in 2.2 (2.596 Å), 2.3 (2.615 Å) and UTpMe2I2(THF)2 

(2.53(3) Å).13 

As we were planning to study compounds 2.1 – 2.3 electrochemically, it would be advantageous to also 

prepare analogous U(IV) complexes, e.g. UTpMe2PentTIPS2Cl, to verify whether electrochemical 

processes are indeed related to a UIV/UIII redox couple while enabling comparisons with Cp* congeners. 

Unfortunately, attempts towards the synthesis of the U(IV) chloride derivatives of 2.1 and 2.2 were 

unsuccessful. Initially, the synthesis of the chloride analogues of 2.1 and 2.2 were attempted by reacting 
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with one equivalent of tBuCl as a chloride transfer agent, which has been successfully used previously 

by us and others.14,15 Unfortunately, resulting reactions yielded intractable mixtures with significant 

amounts of ligand decomposition observed in the 1H NMR spectra. Due to the decomposition observed, 

a different oxidising agent was tested. Compound 2.3 was reacted with [FeCp*2][B(C6F5)4] in an attempt 

to synthesise the U(IV) cation, [2.3][B(C6F5)4]. Analysis of the 1H NMR data (C6D6) showed the 

consumption of 2.3 and the formation of FeCp*2, indicating a reaction had taken place. Unfortunately, 

all attempts at crystallisation were unsuccessful.  

This having failed, we then turned our attention to an alternative synthesis. Unpublished work from our 

laboratory has involved the synthesis of {U(Penttips2)(µ-Cl2}4 (2.4), an ideal precursor to 

UTpMe2Penttips2Cl, whereas COT analogues were not synthetically accessible.16 Compound 2.4 was 

synthesised through a ligand rearrangement reaction between U(PentTIPS2)2 and an excess of UCl4 in a 

concentrated solution of THF at 90 °C (Scheme 2.2).16 A concentration of ca 0.050 M U(PentTIPS2)2 is 

optimal for the reaction to reach completion overnight. 1H NMR spectroscopy of 2.4 is relatively simple 

and contains five environments with the expected integral values. Due to low solubility, a peak for 2.4 

was not observed in the 29Si{1H} NMR spectrum. Instead, d8-THF was used to break up the tetrameric 

structure of 2.4 and form the more soluble, monomeric THF-adduct of 2.4. 1H NMR spectroscopic data 

are consistent with this formulation and one environment is observed in the 29Si{1H} NMR spectrum (-

111.58 ppm) which is also consistent with other U(IV) 29Si{1H} chemical shift values.9 Elemental 

analysis results are consistent with the proposed formulation. Compound 2.4 is tetrameric in the solid 

state, as evidenced via a single crystal X-ray diffraction study.16  

 

Scheme 2.2 Synthesis of 2.4. Simplified representation of tetrameric 2.4 is drawn. 
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To synthesise the desired UTpMe2PentTIPS2Cl complex, compound 2.4 was then reacted with four 

equivalents of KTpMe2 to give 2.5 as a dark green crystalline solid. Analysis by 1H NMR revealed peaks 

across a range between 55 and -63 ppm which could not be assigned.  

11B{1H} NMR spectroscopy revealed one resonance at -5.21 ppm as anticipated, however, no peaks 

were observed in the 29Si{1H} NMR spectrum despite long experiment times (10,000 scans) and the use 

of concentrated samples. EI-MS showed the desired peak at m/z = 985. Carbon values were low in the 

elemental analysis, a result that has been previously observed with other uranium-pentalene-containing 

compounds.17  

 

Scheme 2.3 Synthesis of UTpMe2Penttips2Cl (2.5).  

 

Single crystals of 2.5 were obtained from a saturated pentane solution (-35 °C), which enabled X-ray 

diffraction studies to be carried out and confirm the molecular structure of 2.5 (Figure 2.2 and Table 

2.1). The Pent–U–TpMe2 angle in 2.5 is 15° smaller than that observed in 2.2, due to the extra chloride 

ligand in the coordination sphere of the uranium to minimise steric interaction between TpMe2 and 

pentalene ligands. The U–Cl bond length of 2.6575(12) Å is comparable to that found in 

UCp*COTtips2Cl (2.6496(12) Å)18. The average U–N bond distance in 2.5 is 2.5593 Å, shorter than in 

2.2 (2.596 Å). This is, however, expected due to 2.5 containing a smaller U(IV) centre; this is also the 

reasoning for the shorter pentalene centroid distance. A similar trend has previously been observed with 

UCp*COTTIPS2Cl.18 
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Figure 2.2 The molecular structure of 2.5. Uranium, green; nitrogen, blue; boron, yellow; chlorine, green; carbon, grey; 

silicon, orange. H atoms and iPr groups are omitted for clarity. Structure shown with 50% thermal ellipsoids. 

Table 2.1 Bond lengths (Å) and angles (°) for 2.2 and 2.5. 

Parameter 2.2 2.5 

Pentalene Centroid 1 to U distance 2.395(3) 2.3585(2) 

Pentalene Centroid 2 to U distance 2.416(3) 2.3613(2) 

Fold angle of pentalene 136.4(7) 135.7(5) 

U1–C18–C19–C23 torsion angle 75.4(8) 73.0(6) 

Centroid1–U1–Centroid 2 angle 65.04(14) 47.735(4) 

Pent–U–TpMe2 Angle 166.60(2) 151.630(7) 

U1–N2 2.604(6) 2.615(5) 

U1–N4 2.572(8) 2.486(5) 

U1–N6 2.612(8) 2.577(4) 

Average U–N 2.596(12) 2.5593(4) 

U1– Cl1 n/a 2.6575(12) 
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2.4 Cyclic voltammetry of 2.1, 2.2, 2.3 and 2.5 

With the U(III) complexes (2.1 – 2.3) and U(IV) complex (2.5) in hand, electrochemical studies were 

carried out to gauge how the TpMe2 ligand affects the UIV/UIII redox couple compared to their Cp* 

analogues. The cyclic voltammograms of 2.1, 2.2, 2.3 and 2.5 are shown below.  

 

Figure 2.3: Cyclic voltammogram of a 5 mM solution of 2.1 in 0.1 M [nBu4N][B(C6F5)4] / THF. Scan rate 100 mV s-1
.  

 

Figure 2.4: Cyclic voltammogram of a 5 mM solution of 2.2 in 0.1 M [nBu4N][B(C6F5)4] / THF. Scan rate 100 mV s-1
. 
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Figure 2.5: Cyclic voltammogram of a 5 mM solution of 2.3 in 0.1 M [nBu4N][B(C6F5)4] / THF. 

Scan rate 100 mV s-1
. 

Scanning in the anodic direction revealed quasi-reversible processes at -1.40, -1.55 and -1.33 V vs 

FeCp2
+/0 for 2.1 (Figure 2.3), 2.2 (Figure 2.4) and 2.3 (Figure 2.5) respectively and are tentatively 

assigned to a ligand-based process. Irreversible processes were observed for 2.1, 2.2 and 2.3 at -2.10, -

2.16 and -2.10 V vs FeCp2
+/0 respectively. The Cp* analogues of 2.1 (UCp*COTTMS2(THF)) and 2.3 

(UCp*COTTIPS2(THF)) show reduction potentials of ca -2.10 V vs FeCp2
+/0,19 while the Cp* analogue 

of 2.2 (UCp*PentTIPS2(THF)) has a reduction potential of ca -2.20 V vs FeCp2
+/0,20 0.10 V more reducing 

than its COTTIPS2 congeners. The nature of these processes are unclear, therefore they remain 

unassigned. An oxidative half wave process seen at -2.30 V vs FeCp2
+/0 in the voltammogram of 2.1 is 

unassignable.  
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Figure 2.6 Cyclic voltammogram (2 cycles) of a 5 mM solution of 2.5 in 0.1 M [nBu4N][B(C6F5)4] / THF. Scan rate 100 mV 

s-1 

The voltammogram of 2.5 (Figure 2.6) is complex and displays several more processes in comparison 

to 2.2 where only three processes can be assigned with some confidence. The process at -2.52 V vs 

FeCp2
+/0 is assigned to a pentalene-based process.20 The processes that are unable to be assigned may 

originate from electrochemically-generated species, contaminants or decomposition products due to the 

solvent and/or electrolyte.  

These cyclic voltammogram studies show that the U(III) complexes 2.1, 2.2 and 2.3 contain complex 

electrochemistry that cannot be easily explained. Therefore, comparisons cannot be made with their 

Cp* congeners which are more reactive to small molecues. One possible reason for this lack of reactivity 

in the case of 2.1, 2.2, and 2.3 is the steric hindrance imposed by the TpMe2 ligand that prevents small 

molecules approaching the metal centre. The bent COTR2–U–Cp* (R = TIPS or TMS) arrangement in 

the mixed-sandwich compounds (UCp*COTR2(THF)n (R = TIPS or TMS) and n = 0 or 1) allows small 

molecules to approach the metal centre more easily. 
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2.3 Reactivity of 2.1 and 2.2 Towards Small Molecules 

The ability of the mixed-sandwich systems, UCp*COTR2 (R = TIPS or TMS) and UCp*PentTIPS2, to 

activate small molecules (CO, CO2 and N2 among others) was discussed in the previous chapter. 

Electrochemistry studies indicate these systems have similar reduction potentials to their TpMe2 

congeners, 2.1-2.3, yet they show divergent reactivity towards the aforementioned small molecules. 

Previous studies by Dr Joy Farnaby demonstrated that 2.3 was unreactive towards CO and CO2 under 

mild conditions. With this in mind it was envisaged that the reduced steric bulk of 2.1 compared to 2.3 

would increase reactivity.  

Unfortunately, 2.1 was unreactive towards CO and CO2 under similar reaction procedures which is 

surprising given the wealth of U(III) compounds that activate CO2.22 Therefore, the more reactive NO 

molecule was reacted with 2.1. Upon addition of one equivalent of NO at -78 °C, 2.1 undergoes a 

reaction, however, 1H NMR spectroscopy on the resulting intractable mixture shows significant ligand 

decomposition products.  

N2O is a potent greenhouse gas that U(III) complexes are well placed to activate due to their oxophilic 

and reducing nature. There are numerous examples of U(III) complexes that cleanly react with N2O to 

form µ-oxo or terminal-oxo species.23,24 One equivalent of N2O was added to a -78 °C solution of 2.1 

and again NMR spectroscopic data indicated formation of ligand decomposition by-products. The 

decomposition of tris(pyrazolyl)borate ligands has previously been observed in low-valent lanthanide 

and uranium complexes.25 

As outlined previously, UCp*COTTIPS2(THF) reductively trimerizes CO to form a bimetallic deltate 

complex.26 At the time of publication it was clear that 2.2 did not react with CO in the same way as 

observed for UCp*COTTIPS2(THF), however, it was unclear how 2.2 did react with CO. Studies in this 

prior publication involved the reaction of 2.2 under an overpressure of CO at ambient conditions which 

was subsequently probed using NMR spectroscopy (1H, 11B{1H}, 13C{1H} and 29Si{1H}) and EI-MS 

only.6 There was no evidence for the formation of any new species using these methods at ambient 

temperature. It was proposed that exchange between free and bound CO was taking place at such a rate 
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that was too fast to be observed during NMR experiments at room temperature.6 Therefore, VT-NMR 

and low-temperature in situ IR spectroscopy were targeted to probe this reaction further. It was hoped 

that NMR experiments at lower temperatures may enable the observation of new species. Also, in situ 

IR spectroscopy is well-suited to observe metal-carbonyl compounds due to the prominent nature of the 

metal-carbonyl stretches.  

Upon addition of an excess of 13CO to a solution of 2.2 at -78 ºC, a colour change from dark maroon to 

dark brown was observed, which persisted upon gradual warming to -25 °C. However, above this 

temperature the solution changed back to dark maroon indicating loss of CO in the proposed uranium 

carbonyl complex. This colour change was observed over several cycles of cooling and warming the 

solution, indicating that this process is reversible. Variable temperature NMR (1H, 11B{1H}, 13C{1H} 

and 29Si{1H}) studies of a d8-toluene solution of 2.2 containing an excess of 13CO were carried out from 

-50 °C to 30 °C, but no new species were observed by NMR spectroscopy.  

Next, IR spectroscopy on 2.2 was carried out. A solution of 2.2 in methylcyclohexane was degassed 

and then pressurised with an excess of 12CO at -78 °C. After 30 minutes at -78 °C, an IR stretch was 

observed at 1941 cm-1 (Figure 2.7) which persisted up to -25 °C. Above this temperature this signal 

began to decrease in intensity. To verify whether this observed stretch is indeed related to a uranium 

carbonyl complex, the reaction was repeated using 13CO, which led to the observation of a band at 1906 

cm-1 as expected (Figure 2.7).27 These observations are strong evidence for the formation and decay of 

a uranium carbonyl complex that is unstable above -25 °C. We hypothesise that the carbonyl complex 

is kinetically unstable and readily dissociates above -25 °C to reform 2.2. 



52 

 

 

Figure 2.7 IR spectrum of 2.2 plus 12CO (black) or 13CO (red) at -78 °C. Carbonyl stretches are highlighted.  

Reported solution ν12CO values for uranium carbonyl complexes range from 1900 to 1976 cm-1 (Table 

2.2). The ν12CO of 1941 cm-1 for 2.2 indicates that the uranium complex is back-donating electron density 

into a π* orbital of CO (νCO of free CO = 2145 cm-1) and reducing it to a significant degree. Of the other 

reported uranium carbonyl complexes, U(Cp*)3CO and U(CpMe4)3CO can be isolated as a crystalline 

material, whereas complexes featuring ν12CO values greater than 1925 cm-1 have not been isolated to 

date. DFT studies of actinide cyclopentadienyl (U, Th) systems have indicated donation to CO 

originates from cyclopentadienyl-based orbitals.28,29 Owing to the similarities between pentalene and 

cyclopentadienyl, it is postulated this may also be the case in the carbonyl complex of 2.2 though 

computational studies would be required to evidence this.  
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Table 2.2 Uranium carbonyl complexes and their reported solution νCO. 

Uranium carbonyl complex Solution ν12CO / cm-1 

U(CpTMS2
3)CO 198830 

U(CpTMS2)3CO 197631 

U(CptBu)3CO 196030 

UTpMe2PentTIPS2CO 1941c 

U(Cp*)3 192532 

UCp*COTTIPS2CO 192033 

U(CpMe4)3CO 190034 

  

2.4 Conclusions  

The synthesis of three U(III) complexes 2.1, 2.2 and 2.3 are described (Scheme 2.1). Unfortunately, 

compound 2.1 either decomposes or does not react with the small molecules surveyed. In contrast, 

complex 2.2 forms a uranium-carbonyl complex that is stable up to -25 °C as evidenced by in-situ IR 

studies with 12CO and 13CO. Furthermore, the synthesis of the potentially useful U(IV) complex 2.4 and 

its use as a synthon to access the U(IV) complex 2.5 has been achieved (Scheme 2.3).  

Electrochemical studies were carried out to determine the UIII/UIV redox couple of 2.1, 2.2, 2.3 and 2.5, 

and these are comparable to their Cp* analogues, although their electrochemical behaviour is more 

complex than their Cp* analogoues therefore comparisons were made.  

With these conclusions in mind, our attention was focused towards other U(III) complexes that are 

stable yet reactive towards small molecules, such as UCp*(pMe2O2), which will be explored in the next 

chapter.  
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2.5 Experimental Details for Chapter Two 

Synthesis of UTpMe2COTTMS2 2.1 

An ampoule was charged with UI3 (0.620 g, 1 mmol) and THF (40 ml) added. To this a suspension of 

KTpMe2 (0.337 g, 1 mmol) in THF (20 ml) was added dropwise over 30 minutes at room temperature 

and stirred for 24 h. The mixture was stripped to dryness, toluene (40 ml) was added, the suspension 

filtered and dried in vacuo. THF (30 ml) was added to the resulting solid and the solution cooled to -45 

°C. To this, a solution of K2COTTMS2 (0.263 g, 0.8 mmol) in THF (20 ml) was added over 90 minutes. 

The mixture was left to warm to room temperature over 30 minutes and then evacuated to dryness. The 

residue was dissolved in pentane (40 ml), filtered through Celite®, reduced by half and left overnight 

at -45 °C to yield dark maroon crystals of 2.1. Yield: 114 mg, 14.5% based on UI3. 

Analysis calculated (found) for C29H46BN6Si2U: % C 44.443 (41.307), % H 5.916 (5.882), % N 10.723 

(10.406). Low carbon values have also been seen with UCp*COTTMS2 complexes, we propose this is 

due to incomplete combustion.  

1H NMR (399.5 MHz, d8-toluene, 303 K): δH 19.0 (br, d, 1H, B-H), 8.4 (br, s, 3H, TpMe2-CH), 2.1 (br, 

s, 9H, TpMe2-CH3), -6.6 (s, 18H, Si-CH3), -17.9 (s, 9H, TpMe2-CH3), -28.5 (s, 2H, COT ring CH), -47.1 

(s, 2H, COT ring CH), -50.6 (s, 2H, COT ring CH).  

11B{1H} NMR (128.2 MHz, d8-toluene, 303 K): δB 32.8 

29Si{1H} NMR (79.4 MHz, d8-toluene, 303 K): δSi -138.48 

MS (EI): m/z = 783 (M)+ 

Synthesis of UTpMe2PentTIPS2 2.2 

Compound 2.2 was synthesised following a similar procedure to that of 2.1 except that K2PentTIPS2 

(0.390 g, 0.8 mmol) was used instead of K2COTTMS2. Yield: 248 mg, 25% based on UI3. 
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1H NMR (399.5 MHz, d8-toluene, 303 K): δH 17.9 (br, S, 1H, B-H), 7.7 (s, 3H, TpMe2-CH), 7.3 (br, s, 

1H, pentalene ring C-H), 2.5 (s, 9H, TpMe2-CH3), -5.3 (s, 18H, iPr-CH3), -9.9 (s, 18H, iPr-CH3), -11.6 

(s, 6H, iPr-CH), -17.0 (s, 9H, Tp-CH), -23.2 (s, 2H, pentalene ring CH). 

11B{1H} NMR (128.2 MHz, d8-toluene, 303 K): δB 37.7 

MS (EI): m/z = 949 (M)+ 

Synthesis of UTpMe2COTTIPS2
 2.3 

Compound 2.2 was synthesised following a similar procedure to that of 2.1 except that K2PentTIPS2 

(0.375 g, 0.8 mmol) was used instead of K2COTTIPS2. Yield: 120 mg, 12.6% based on UI3. 

1H NMR (399.5 MHz, d8-toluene, 303 K): δH 19.2 (br, s, 1H, B-H), 10.9 (s, 2H, TpMe2-CH), 4.3 (s, 1H, 

TpMe2-CH), 3.4 (s, 6H, TpMe2-CH3), -0.08 (s, 3H, TpMe2-CH3), -1.8 (s, 18H, iPr-CH3), -2.2 (s, 18H, iPr-

CH3), -2.7 (s, 6H, iPr-CH), -15.5 (s, 3H, TpMe2-CH), -17.7 (s, 6H, TpMe2-CH3), -22.0 (s, 2H, COT ring 

CH), -50.2 (s, 2H, COT ring CH), -54.5 (s, 2H, COT ring CH).  

11B{1H} NMR (128.2 MHz, d8-toluene, 303 K): δB 31.8 

MS (EI): m/z = 951 (M)+ 

Synthesis of {UPentTIPS2Cl2}4 2.4 

To a high pressure ampoule U(PentTIPS2)2 (0.260 g, 0.243 mmol), UCl4 (0.143 g, 0.376 mmol), and THF 

(5 mL). The ampoule’s headspace was evacuated and the vessel heated at 90 °C for 24 h. The crude 

reaction mixture was filtered and evacuated to dryness. The residues were extracted in hexane (15 mL), 

filtered, reduced to 8 mL and stored at -35 °C to yield 2.4 as a dark green crystalline solid.  

1H NMR (399.5 MHz, d8-toluene, 303 K): δH 27.49 (s, 2H, Pn-H), -3.42 (s, 18H, iPr-CH3), -6.03 

(s, 18H, iPr-CH3), -15.35 (s, 6H, iPr-CH), -46.59 (s, 2H, Pn-H). 

29Si{1H} NMR (79.4 MHz, d8-THF, 303 K): δSi -111.58 

Analysis calculated (found) for C26H46Cl2Si2U: % C 43.147 (43.499), % H 6.406 (6.415). 

Synthesis of UTpMe2PentTips2Cl 2.5 
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A 20 mL scintillation vial was charged with {UPenttips2Cl2}4 (0.198 g, 0.067 mmol) and a stirrer bar. 

To this, pre-chilled THF (2 mL) was added and the vial stored at -35 °C for 10 minutes. A suspension 

of KTpMe2 (0.092 g, 0.273 mmol) in THF (2 mL) was added to a stirred solution of {UPenttips2Cl2}4 over 

2 minutes using a pipette. The solution was left to stir at room temperature for an hour and the solvent 

removed under reduced pressure. The green residues were extracted in pentane (10 mL) and filtered 

through Celite® on a frit. The solvent was reduced to ca 1.5 mL and the sample was stored at -35 °C. 

After 3 d the mother liquor was carefully removed and the crystalline material washed with cold SiMe4 

(0.5 mL) and pentane (2 x 1 mL) to give the title compound as a dark green crystalline solid. A second 

recrystallization using pentane was required to remove trace impurities observed in the 11B{1H} NMR.  

Yield 0.120 g (44%) 

Analysis calculated (found) for C41H68BClN6Si2U: % C 49.969 (48.989), % H 6.955 (6.980), % N 8.528 

(7.840). 

1H NMR (399.5 MHz, d6-benzene, 303 K): δH 32.02 (br, s, 0.60H, unknown), 28.03 (br, s, 0.52H, 

unknown), 17.24 (br, s, 0.29H, unknown), 15.60 (br, s, 0.43H, unknown), 8.94 (br, s, 2.32H ,unknown) 

4.62 (br, s, 4.07H, unkown), 2.66 (br, s, 2.81H, unknown), 1.25 (m, pentane), 0.87 (t, pentane), 0.32 

(br, s, 8.71H, unknown), -1.34 (br, s, 2.77H, unknown), -2.93 (br, s, 2.55H, unknown), -4.19 (br, d, iPr-

CH3), -5.41 (br, several overlapping singlets, 12.46H, unknown), -6.58 (br, s, 1.05H, unknown), -7.22 

(br, s, 1.29H, unknown), -10.26 (br, two overlapping singlets, 2.78H, unknown), -11.18 (br, s, 4.75H, 

unknown), -15.26 (br, s, 1.84H, unknown), -62.6 (br, s, 0.96H, unknown). Total H = 65.87, expected 

total is 68H. Spectrum cannot be assigned with confidence due to asymmetric nature of the complex.  

11B{1H} NMR (128.2 MHz, d6-benzene, 303 K): δB -5.21 

29Si{1H} NMR (79.4 MHz, d6-benzene, 303 K): δSi No signal observed after a 10,000 scan experiment.  

EI-MS: m/z = 985 (M)+ 
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3 Chapter Three: Synthesis of [U(Cp*)(pMe2O2)] and its Reactivity 

Towards CO2 

3.1 Introduction 

Cyclopentadienyl and aryloxide ligands have played a pivotal role in the coordination chemistry of 

uranium complexes by influencing their reactivity towards small molecules. Both ligand classes have 

significantly different effects on the uranium centre due to their inherently different electronic and steric 

attributes. This point is emphasised by the difference in reactivity between U(CpMe4H)3 (3A) and 

U(O(2,6-tBuC6H3)3 (3B) towards CO.1,2 Complex 3A reacts to form the uranium-carbonyl complex, 

(3A)CO, while 3B reductively homologates CO to give the enediolate complex, (3B)2(µ-η1: η1-C2O2). 

With this observation in mind, we pursued a related aryloxide ligand that could be installed around a 

uranium metal centre in tandem with a Cp* ligand as an alternative to dianionic cyclooctatetraenyl or 

pentalene ligands, in the hopes of unveiling new reactivity. The new dianionic bis(aryloxide) pMe2O2 

ligand containing a central arene ring was recently developed in our laboratory (Figure 3.1) and this 

chapter will discuss its synthesis, the synthesis of its Cp*UIII derivative and reactivity towards CO2. 

This chapter will also discuss the electrochemistry of these uranium complexes.  

 

Figure 3.1 pMe2O2 ligand. 

3.2 Novel Bis(phenoxide) Ligand 

The pMe2O2 ligand was designed to form robust U(III) complexes that contain a reactive ‘pocket’ to 

facilitate the approach of small molecules towards the reducing U(III) centre. An important design 

consideration of the pMe2O2 ligand scaffold is the C(CH3)2 linkers; potentially reactive functional 

groups are avoided to mitigate undesired side reactions that can be brought about by the existence of 

such functionalities in the ligand scaffold. For example, previous work from our laboratory reported 
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that the silyl groups in UCp*(NTMSNTMS
2)Cl underwent migration upon reaction with CO (Scheme 1.1).3 

Furthermore, Meyer et al. showed how [((Ad,MeArO)3mes)U] underwent redox isomerisation at one of 

the methylene bridges upon reduction with KC8 or Na metal at room temperature.4  

 

Scheme 1.1 Silyl group migration triggered by CO.  

The central arene group is another key aspect of the ligand. Beyond simply providing steric bulk, the 

arene is centrally situated to promote stabilisation of low-valent uranium centres via δ backbonding. 

Inspiration was taken from [((Ad,MeArO)3mes)U] which features a central chelating mesitylene ring 

which is able to form δ-backbonding interactions with uranium.5 Such interactions have enabled the 

isolation of a U(II) complex and the electrocatalytic reduction of water as shown in the first chapter.5  

Previous work in the group by Dr Alistair Frey led to the development of pMe2O2H2 (3.1) via 

modification of a procedure reported in the patent literature.6,7 α,α,α′,α′-Tetramethyl-1,4-

benzenedimethanol undergoes an acid catalysed condensation reaction with 2,4-dimethylphenol 

(excess, as solvent) to give crude 3.1 (Scheme 3.2). Recrystallization from Et2O gave 3.1 as white 

crystals in 40-50% overall yield, with analytical purity confirmed by elemental analysis. 1H and 13C{1H} 

NMR spectroscopic data show 2-fold symmetry, indicating that in solution the phenol rings freely rotate 

around the C(CH3)2 units linking them and the central arene ring. 

 

Scheme 3.2 Synthesis of 3.1.  
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The solid-state molecular structure of 3.1 was determined by X-ray diffraction and is shown in Figure 

3.2.7 The phenol rings adopt an anti-conformation with respect to the central arene, and the quaternary 

sp3 carbon (C9) linking the phenol and arene rings is tetrahedral (C6–C9–C12 angle of 109.05(10)°), 

consistent with a lack of strain. The central arene C–C distances are the same within error as those 

observed in the solid-state structure of p-xylene (3.1, average 1.3930 Å; p-xylene, average 1.392 Å), 

and the central arene displays a negligible amount of ring torsion (3.1, ±0.15°; p-xylene, ±0.10°).8 The 

two phenol rings are related via a crystallographic inversion centre, and the angle between the planes 

of the central arene and each phenol ring is 81.51°. 

 

Figure 3.2 Molecular structure of 3.1. Hydrogen atoms omitted for clarity and thermal ellipsoids are given at 50% 

probability. Selected structural parameters (Å, deg): C12–C13 = 1.390(17), C12–C14 = 1.3933(18), C6–C9–C12 = 

109.05(10), C1–O1 = 1.3843(15). 

Compound 3.1 is readily deprotonated by 2 equivalents of KH in DME to give the dipotassium salt 

[(pMe2O2K2)(DME)n] (3.2) as a fractional solvate (n = 1.5-2) in 85-95% yield. The crude material thus 

obtained returned elemental analyses which were slightly high in C and H; however, it was successfully 

used in subsequent salt metathesis reactions without further purification. Compound 3.2 is sufficiently 

soluble in d5-pyridine to allow the degree of DME solvation in individual samples to be determined by 

1H NMR spectroscopy; these solutions were too dilute to allow acquisition of 13C{1H} NMR 

spectroscopic data. 
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3.3 Mixed-Ligand Uranium(III) Complex 

Dipotassium salt 3.2 reacts with 1 equivalent of [U(Cp*)I2(THF)n] (prepared in situ in THF) to give, 

after workup, the mononuclear U(III) complex [U(Cp*)(pMe2O2)] 3.3 as dark green-black crystal plates 

in yields of 60-75% (Scheme 3.3).7 

 

Scheme 3.3 Synthesis of 3.3. 

Complex 3.3 is soluble in hydrocarbons and ethers, and single crystals suitable for X-ray 

crystallography were obtained by recrystallization from pentane at -50 °C. The asymmetric unit contains 

two crystallographically independent molecules of 3.3 (Figure 3.3) featuring the bisaryloxide ligand in 

a syn conformation,7 allowing both aryloxide oxygens to chelate to the U centre with an average U–O 

distance of 2.179 Å, which is within the range observed for other U(III) aryloxides (2.155-2.338 Å).9 

The Cp* ring assumes the usual η5-binding mode (average Ct(Cp*)–U = 2.487 Å), while the central 

arene ring is planar (maximum deviation from C6 plane 0.038 Å) and is bound to the U centre via an 

η6-arene interaction with an average U–C(arene) distance of 2.774 Å. This is similar to the U–C(arene) 

distance in the mesityl-anchored chelating U(III) complex [((tBu2ArO)3mes)U], (average 2.73 Å)10 and 

somewhat shorter than those in other U(III) complexes featuring arene substituents on the ortho position 

of the aryloxide (e.g., (2,6-Ph2-4-Me-C6H3-O)3U, 2.853 Å; (2,6-Ph2-4-Me-C6H3-O)3U(THF), 2.964 Å)11 

and discrete arenes (e.g., (C6Me6)U(AlCl4)3, 2.93 Å;12 (C6Me6)U(BH4)3, 2.93 Å).13 The central arene 

C–C distances in 3.3 (average 1.411 Å) are slightly longer than those observed in 3.1 (average 1.393 

Å). Interestingly, the metal centre bears no coordinated Lewis base (i.e., THF), unlike, for example, the 

mixed-sandwich complexes [U(η8-C8H6{SiMe3-1,4}2)(η5-C5Me4R)(THF)] (R = Me, Et, iPr, tBu).14  
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Figure 3.3 ORTEP diagram for the molecular structure of compound 3.3. One crystallographically independent molecule is 

shown with 50% probability thermal ellipsoids, and H atoms are omitted for clarity. Selected structural parameters (Å, deg): 

average U–O = 2.179, average U–C(arene) = 2.774, average Ct(arene)–U = 2.388, average Ct(Cp*)–U = 2.487, average O1–

U–O2 = 117.9. 

The 1H NMR spectrum of paramagnetic 3.3 contains resonances over the range 18.3 to -13.5 ppm 

(C6D6). Both the CH3 groups of the bridging arms and the central arene protons appear as two distinct 

sets of resonances due to the reduced symmetry imposed by a rigid aryloxide and Cp* coordination 

environment. 

3.4 Carbon Dioxide Activation 

The reductive activation of 13CO2 by 3.3 was investigated in solution (Scheme 3.4). An excess (ca 2 

equiv) of 13CO2 was added to a solution of 3.3 in C6D5CD3 at -78 °C using a Töepler pump. When the 

sample was warmed to ambient temperature, the colour changed from black to orange, and the 1H NMR 

spectrum showed the presence of two products (3.4 and 3.5). In addition to excess 13CO2 and free 13CO 

(arising from the reductive disproportionation of 13CO2 to form the carbonate complex 3.4), three 

paramagnetically shifted resonances were observed in the 13C{1H} NMR spectrum of the reaction 

mixture. A singlet at -101 ppm was assigned to the bridging 13CO3 in 3.4, and two mutually coupled 

doublets appeared at -130 and -199 ppm; all three resonances remained unchanged in the 1H-coupled 

spectrum. The observed coupling in the latter is consistent with coupling between two proximal, 

inequivalent 13C atoms (JCC = 70 Hz), thus pointing towards the formation of an oxalate complex 

resulting from the reductive coupling of 13CO2. 
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Scheme 3.4 Synthesis of 3.4 and 3.5 from 3.3 and CO2. 

The bridging carbonate complex{U(Cp*)(pMe2O2)}2(μ-η1:η2-CO3) 3.4 was identified by X-ray 

diffraction studies which were carried out by Dr Alistair Frey.15 The solid-state molecular structure of 

3.4 is shown in Figure 3.4 and reveals a dinuclear structure with a μ-η1:η2-bound carbonate bridging 

two uranium centers. The central CO3 unit is disordered in the crystal, resulting in superposition of two 

η1:η2 bound carboxylate units with 50:50 occupancy. The resulting model required isotropic refinement 

for the central carbonate (which has a regular planar triangular structure), and as a result the bond 

lengths and angles within the central carbonate unit cannot be determined accurately. The η1-U–O 

distance (2.162(11) Å) is shorter than the η2-U–O distances (average 2.448 Å), a feature which was also 

observed in the mixed-sandwich U(IV) carbonate complex {U(η8-C8H6{SiiPr3-1,4}2)(η5-C5Me4H)}2(μ-

η1:η2-CO3) (η1, 2.227(12) Å; η2, average 2.422(10) Å).16 Each U centre is chelated by a pair of 

bisaryloxide oxygens (average U–O = 2.175 Å), with the central U–arene interaction (average U–

C(arene) = 3.124 Å) significantly weaker than that observed in 3.3, possibly due to the larger number 

of O donors and greater steric congestion in 3.4. This weak U–arene interaction is consistent with a pair 

of U(IV) centres each binding to a neutral, unreduced central arene. The complex is twisted around the 

central carbonate unit to minimize steric interaction between opposite bisaryloxides (torsion angle as 

measured between opposite arene centroids Ct1(arene) – U1–U2–Ct2(arene) = 67.95°). 
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Figure 3.4 ORTEP diagram for molecular structure of compound 3.4, with 50% probability thermal ellipsoids shown. 

Solvent masking was employed to remove a highly disordered C6H6 from the refinement. Selected structural parameters (Å, 

deg): average U–O(aryloxide) = 2.175, η1-U2–O5 2.162(11), average η2-U–O = 2.448, average U–C(arene) = 3.124, 

Ct(arene) – U = 2.7902(3), Ct(Cp*)–U = 2.4958(3), O1–U1–O2 = 161.6(3). 

The torsion observed in the solid-state structure of 3.4 persists in solution. At 0 °C the 1H NMR 

spectrum of 3.4 (C6D5CD3) consists of eight CH resonances, eight CH3 resonances, and one resonance 

for the two freely rotating Cp* ligands paramagnetically shifted between 33.0 and -67.1 ppm. Above 

10 °C the aryloxide resonances exhibited varying degrees of coalescence in addition to the changes in 

chemical shift expected for a paramagnet, but there was no resolution to a discrete, higher symmetry 

species even at 100 °C. 

Fractional crystallization from benzene and then diethyl ether produced yellow crystals of the bridging 

oxalate complex 3.5 suitable for single-crystal X-ray diffraction. The molecular structure is shown in 

Figure 3.5 and shows a η2:η2 bridging oxalate unit in which the two carbons are inequivalent (the two 

Cp* ligands are effectively cis to one another) and hence consistent with 13C{1H} NMR data. Of note 

is the O1–C1–C2–O2 torsion angle of 22.2(12)°, which is not seen in the molecular structures of [{U(η8-

C8H6{SiMe3-1,4}2)(η5-C5Me4
iPr)}2(μ-η2:η2-C2O4)]14 and [((nP,MeArO)3tacn)U]U}2(μ-η2:η2-C2O4),17 

possibly due to the steric hindrance around the uranium centre. The U–O(oxalate) and oxalate C–C and 

C–O bonds are, however, consistent with those found in the latter U(IV) oxalate complexes. The 

average arene centroid to uranium distance of 2.828 Å in 3.5 is again indicative of a weak interaction 

between the uranium centre and the central arene ring. 
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Figure 3.5 ORTEP diagram for molecular structure of compound 3.5, with 50% probability thermal ellipsoids shown. 

Selected structural parameters (Å, deg): C1–C2 = 1.531(12), O1–C1–C2–O2 torsion angle = −22.2(12), average U–

O(aryloxide) = 2.147, average Ct(Cp*)–U = 2.5030, average Ct(arene)–U = 2.828, average O–U–O (aryloxide) = 160.6, 

Ct(Cp*)–U–Ct(arene) = 120.184(14). 

To gain further insight into the distribution of products (3.4 and 3.5) formed from 3.3 and 13CO2, the 

reaction was repeated but the reaction mixture was allowed to stir at -78 °C for 2 days followed by slow 

warming to room temperature over 1 day. This furnished a mixture of 3.4 and 3.5 in a ratio of 30:70, as 

judged by the relative integration of the Cp* resonances in the 1H NMR spectrum of the crude reaction 

mixture. When addition of 13CO2 to 3.3 at -78 °C was followed by rapid equilibration to room 

temperature, the ratio of 3.4 to 3.5 was found to be 83:17. The above observations suggest that the 

formation of 3.4 competes with the formation of 3.5 and the two pathways can be manipulated. 

3.5 Electrochemistry 

To investigate the redox behaviour of the bis(aryloxide)/Cp* complexes and enable comparison with 

similar U(III) and U(IV) systems, voltammetric data for 3.3-3.5 were obtained in 

[nBu4N][B(C6F5)4]/THF.18 Cyclic voltammetry was also carried out on the U(IV) derivative , 

UCp*(pMe2O2)I 3.6 by Dr Alexander Kilpatrick to gain insight into the nature of the processes seen in 

3.3.7,19 UCp*(pMe2O2)I 3.6 was synthesised by Dr Alistair Frey. Tabulated electrochemical data can be 

found in the experimental section. The cyclic voltammogram of 3.3 is quite complex and displays 
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several processes, as shown in Figure 3.6. Four quasi-reversible processes were observed at -2.56, -

2.18, -1.71, and +0.13 V vs FeCp2
+/0. In addition, the CV of 3.3 shows a minor oxidation feature at ca -

1 V vs FeCp2
+/0. 

 

Figure 3.6 Overlaid CV scans (10 cycles) for 3.3 in THF/0.05 M [nBu4N][B(C6F5)4] (scan rate 100 mV s-1). 

Complex 3.6 shows an irreversible reduction wave at -2.19 V vs FeCp2
+/0 (Figure 3.7), which is in 

excellent agreement with the quasi-reversible process at -2.18 V vs FeCp2
+/0 seen in 3.3 and is assigned 

to the UIV/UIII couple in this system. This value is similar to other UIV/UIII redox couples found in other 

U(III) systems studied by us and others and is consistent with a strongly reducing metal centre.14,20,21 

Further supporting this assignment is the observation of a single quasi-reversible reduction process at -

2.19 V vs FeCp2
+/0 in the dinuclear U(IV) complex 3.4 (Figure 3.8). 

 

Figure 3.7 Overlaid CV scans (10 cycles) for 3.6 in 0.05 M [nNBu4][B(C6F5)4] / THF, scan rate 100 mV s-1. 
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Figure 3.8 Overlaid CV scans (2 cycles) for 3.4 in THF / 0.05 M [nNBu4][B(C6F5)4], scan rate 100 mV s-1. 

 

Upon scanning to more negative potentials, 3.3 and 3.6 showed a quasi-reversible process observed at 

-2.56 and -2.59 V vs FeCp2
+/0 respectively. This process lies at an extremely negative potential and may 

be attributable to a ligand-based reduction; however, the free ligand 3.2 did not show a cathodic process 

within this potential region (Figure 3.9). Another possibility is a UIII/UII reduction process, and Meyer 

and co-workers have recently reported a trivalent uranium monoarene complex derived from the 

chelating tris(aryloxide)arene ligand [((Ad,MeArO)3mes)U], which shows a nearly reversible and 

chemically accessible reduction at -2.495 V vs FeCp2
+/0.5 

 

Figure 3.9 Overlaid CV scans (5 cycles) for 3.2 in THF / 0.05 M [nNBu4][B(C6F5)4], 

scan rate 100 mV s−1. Voltammetric data was collected by Dr Alexander Kilpatrick.  

When 3.4 was studied in 0.1 M [nBu4N][PF6]/THF, the first UIV to UIII reduction event occurred at -2.25 

V vs FeCp2
+/0 (Figure 3.10). For comparison reduction processes in the carbonate-bridged complexes 
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based on the [U(η8-C8H6{SiMe3-1,4}2)(η5-C5Me4R)] (R = Et, iPr, tBu) mixed-sandwich ligand system 

were observed between -2.11 and -2.17 V vs FeCp2
+/0 in 0.1 M [nBu4N][PF6]/THF.14 

 

Figure 3.10 Overlaid CV scans (2 cycles) for 3.4 in THF / 0.1 M [nNBu4][PF6], scan rate 100 mV s-1. 

The electrochemistry of 3.5 was studied in 0.05 M [nBu4N][B(C6F5)4]/THF and showed two quasi-

reversible events at -2.24 and -2.56 V vs FeCp2
+/0 (Figure 3.11). These processes are assigned to the 

[UIV–UIV]/[UIV–UIII]− and [UIV–UIII]−/[UIII–UIII]2- couples on the basis of reasonable agreement with 

corresponding processes observed in 3.3, 3.4, and 3.6 and in [U(η8-C8H6{SiMe3-1,4}2)(η5-

C5Me4
iPr)]2(μ-η2:η2-C2O4).14 Peak current ratios (ipc/ipa) for these processes of 1.32 and 1.72, 

respectively, indicate that the species generated on the cathodic scan are not completely oxidized back 

on the return anodic scan. The ΔE1/2
I-II value of 320 mV is indicative that a mixed-valance state is stable 

on the electrochemical timescale. Two minor anodic processes were observed at -520 and -1007 mV, 

which not assigned with any certainty. 
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Figure 3.11 Overlaid CV scans (5 cycles) for 5 in THF/0.05 M [nBu4N][B(C6F5)4] (scan rate 100 mV s-1). 

3.3 Conclusions 

The combination of the soft pentamethylcyclopentadienyl ligand and a hard, chelating aryloxide ligand 

affords the U(III) complex [U(Cp*)(pMe2O2)] 3.3, whose UIV/UIII redox couple is essentially identical 

with that of the mixed-sandwich complexes of the type U(η8-C8H6{SiR3-1,4}2)(η-C5Me4R′) (where R = 

Me or iPr and R’ = H, Me, Et, iPr and tBu).14 The work presented here demonstrates that the new ligand 

(pMe2O2)2- in [U(Cp*)(pMe2O2)] can significantly alter the reactivity toward CO2. The new bidentate 

ligand presented can be synthesized cleanly, in moderate yield and provides an alternative system to 

the COT- and pentalene-based mixed sandwiches already established in actinide chemistry. Using this 

ligand, a U(III) complex has been used to reductively disproportionate and reductively couple CO2 to 

give the uranium carbonate and oxalate complexes (3.4 and 3.5), respectively. Studies have shown that 

the reactivity toward CO2 can be controlled via temperature with the formation of 3.4 favoured at higher 

temperatures while 3.5 is favoured at lower temperatures. Electrochemical studies have shown that 3.3 

has a UIV/UIII redox couple of -2.18 V vs FeCp2
+/0, indicating that this ligand supports a highly reducing 

metal centre and can thus promote reductive chemistry. Aspects of this reactivity towards other 

substrates other than CO2 are addressed in the next chapter.  
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3.4 Experimental Details for Chapter Three  

Synthesis of pMe2O2H2 3.1 

α,α,α',α'-tetramethyl-1,4-benzenedimethanol (10 g, 50 mmol) was added over 4 h to a stirred solution 

of 2,4-dimethylphenol (45 g) containing p-tolylsulfonic acid (0.30g, 1.5 mmol, 3 mol%) at 150 °C. 

Na2CO3 (0.60 g, 5 mmol) was added to neutralise the catalyst and the mixture stirred for another 40 

min. Excess 2,4-dimethylphenol was distilled off under vacuum and the solid, beige coloured reside 

stirred in Et2O ( 100 mL) overnight. The solid was washed with Et2O (3 x 10 mL), cold toluene (10 mL) 

and 40-60 petroleum ether (10 mL). The white solid was extracted with hot toluene (100 mL), filtered 

hot and stored at -45 °C to yield 3.1 as a white powder (11.8 g, 47%).  

1H NMR (399.5 MHz, d1-chloroform, 303 K): δH 7.36 (s, 4H, Ar-H), 7.18 (s, 2H, Ar-H), 6.95 (s, 2H, 

Ar-H), 4.28 (s, 2H, OH), 2.39 (s, 6H, CH3), 2.18 (s, 6H, CH3), 1.73 (s, 12H, C(CH3)2).  

13C{1H} NMR (100.5 MHz, d1-chloroform, 303 K): δC 149.9 (Ar-C), 147.3 (Ar-C), 134.6 (Ar-C), 130.4 

(Ar-C-H), 129.1 (Ar-C), 127.1 (Ar-CH), 126.2 (Ar-C), 124.9 (Ar-CH), 41.7 (C(CH)3), 30.0 (C(CH)3), 

21.2 (Ar-CH3), 16.4 ppm (Ar-CH3).  

Analysis calculated (found) for C28H34O2: % C 83.54 (83.26), H, 8.51 (8.49).  

MS (EI): m/z 953 (M+). 

Synthesis of pMe2O2K2(DME)x 3.2 

A solution of 3.1 (2.66 g, 6.62 mmol) in DME (40 mL) was added dropwise over 1 h to a stirred 

suspension of KH (0.533 g, 13.3 mmol) in DME (60 mL). After 18 h the reaction mixture was cooled 

to -30 °C for 1.5 h, filtered through a P3 frit, and the solids thus obtained dried in vacuo for 2.5 h to 

give the product as a white powder (3.95 g, 95%).  

1H NMR (399.5 MHz, d5-pyridine, 303 K): δH 7.43 (s, 4H, Ar-H), 7.42 (s, 2H, Ar-H), 7.11 (s, 2H, Ar-

H), 3.51 (s, 6.7H, DME CH, 6.6H, DME CH2), 3.29 (s, 9.9H, DME CH3), 2.54 (s, 6H, Ar-CH3), 2.33 

(s, 6H, Ar-CH3) 1.90 (s, 12H, C(CH3)2). 
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Unable to obtain 13C NMR spectrum due to low solubility.  

Analysis calculated (found) for C28H32O2K2.1.65(C4H10O2): % C 66.2 (69.2), H, 7.79 (8.19).  

Synthesis of pMe2O2K2(Et2O)0.05 3.2a 

An alternative preparation of 3.2 was developed to avoid filtration due to the difficulty in filtering the 

thick suspension that 3.2 forms in DME. Et2O was used in place of DME due to its lower boiling point, 

meaning the removal of solvent is easier. 

A solution of 3.1 (2.66 g, 6.62 mmol) in Et2O (40 mL) was added dropwise over 1 h to a stirred 

suspension of KH (0.533 g, 13.3 mmol) in Et2O (60 mL). After 18 h the reaction mixture was pumped 

to dryness in vacuo at 60 °C overnight.  

1H NMR (399.5 MHz, d5-pyridine, 303 K): δH 7.43 (s, 4H, Ar-H), 7.42 (s, 2H, Ar-H), 7.11 (s, 2H, Ar-

H), 3.37 (q, 0.24H, Et2O CH2), 2.54 (s, 6H, Ar-CH3), 2.33 (s, 6H, Ar-CH3) 1.90 (s, 12H, C(CH3)2), 1.15 

(t, 0.26H, Et2O CH3). 

Unable to obtain 13C NMR spectrum due to low solubility.  

UCp*(pMe2O2) 3.3 

[UCp*I2(THF)n] was prepared by adding THF (30 mL) to KCp* (0.696 g, 4.00 mmol) and UI3 (2.474 

g, 4.00 mmol) with overnight stirring followed by filtration with toluene. To a -45°C THF solution (20 

mL) of [UCp*I2(THF)n] was added pMe2O2K2(DME)4.7 (3.07 g, 3.40 mmol) in THF (60 mL) over 2 h. 

The brown reaction mixture was left to warm to room temperature and stir overnight. The reaction 

mixture was stripped to dryness, extracted in pentane (150 mL), filtered through Celite® on a P4 frit 

and reduced to 100 mL. Slow cooling to -50 °C gave 3.3 as ink black crystals which were rinsed with 

cold pentane (3 x 5 mL) and dried in vacuo (1.55 g, 59%).  

1H NMR (399.5 MHz, d6-benzene ,303 K): δH 18.54 (s, 2H, Ar-H), 10.13 (s, 2H, Ar-H), 9.07 (s, 2H, 

Ar-H), 4.53 (s, 6H, CH3), 4.18 (s, 6H, CH3), 0.86 (s, 6H, CH3), -2.28 (s, 6H, CH3), -3.92 (s, 15H, 

Cp*), -13.64 (s, 2H, Ar-H). 
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 Synthesis of [{ UCp*(pMe2O2)}2CO3] 3.4 and [{ UCp*(pMe2O2)}2C2O4] 3.5 

A 50 mL J. Young ampoule was charged with UCp*pMe2O2 (300 mg, 0.385 mmol) and toluene (3 mL). 

The solution was cooled to -78 °C and degassed, and 4 equiv of CO2 gas was added. A colour change 

from black to orange was observed shortly after the addition of CO2. The reaction was stirred at -78 °C 

for 2 days and then at room temperature for 1 day. Volatiles were removed in vacuo, benzene (5 mL) 

was added and the suspension was heated at almost reflux and slowly cooled to ambient temperature 

overnight to afford 3.4 as a microcrystalline red solid. The latter was collected by filtration, and washed 

with benzene (3 x 3 mL), and the washings combined with the original filtrate. This solution was then 

concentrated to ca 3 mL and allowed to stand at room temperature overnight, depositing a further, small 

amount of [{UCp*(pMe2O2)}2CO3] which was filtered off. Finally, the filtrate from this second 

crystallisation was pumped to dryness, dissolved in Et2O (3 mL), and stored at -35 °C to give small 

yellow crystals of 3.5 (32 mg, 10%).  

3.4 

1H NMR (399.5 MHz, d8-toluene, 273 K): δH 32.89 (s, 6 H, CH3), 29.69 (s, 6H, CH3), 28.81 (s, 6H, 

CH3), 27.22 (s, 2H, CH), 19.01 (s, 2H, CH), 17.57 (s, 2H, CH), 14.81 (s, 6H, CH3), 13.76 (s, 2H, CH), 

10.64 (s, 6H, CH3), 5.22 (s, 6H, CH3), 0.15 (s, 6H, CH3), −3.94 (s, 6H, CH3), −10.65 (s, 30H, Cp*), 

−51.26 (s, 2H, CH), −61.22 (s, 2H, CH), −63.30 (s, 2H, CH), −67.11 (s, 2H, CH). 

3.5 

1H NMR (399.5 MHz, d6-benzene, 303 K): δH 39.34 (s, 12 H, CH3), 31.67 (s, 4 H, Ar-H), 25.45 (s, 4 

H, Ar-H), 22.68 (s, 12 H, CH3), 14.82 (s, 12 H, CH3), −3.77 (s, 12 H, CH3), −7.62 (s, 30 H, Cp*), −53.91 

(s, 4 H, Ar-H), −62.33 (s, 4 H, Ar-H).  

Analysis calculated (found) for C78H94O8U2: % C 57.28 (57.00), H, 5.79 (6.02).  
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Cyclic Voltammetry Data 

 

Table S4. Electrochemical parameters for 3.3 in 0.05 M [nNBu4][B(C6F5)4] / THF. 

 Process I Process II Process III Process IV Process V 

Epa / V vs FeCp2
+/0 -2.466 -2.134 -1.686 -1.069 – 

Epc / V vs FeCp2
+/0 -2.654 -2.242 -1.731 – -0.652 

E1/2 / V vs FeCp2
+/0 -2.560 -2.188 -1.709 – – 

ΔEpp / mV 188 108 45 – – 

ipa / µA 33.33 4.65 2.17 2.67 – 

ipc / µA 36.32 11.54 2.7 – -2.10 

ipa/ipc 1.09 2.48 1.24 – – 

ΔEpp = | Epc - Epa | 

 

Table S5. Electrochemical parameters for 3.4 in 0.05 M [nNBu4][B(C6F5)4] / THF. 

 Process I 

Epa / V vs FeCp2
+/0 -2.139 

Epc / V vs FeCp2
+/0 -2.237 

E1/2 / V vs FeCp2
+/0 -2.188 

ΔEpp / mV 98 

ipa / µA 1.70 

ipc / µA 2.13 

ipa/ipc 1.33 

ΔEpp = | Epc - Epa | 

 

Table S6. Electrochemical parameters for 3.4 in 0.1 M [nNBu4][PF6] / THF. 

 Process I Process II 

Epa / V vs FeCp2
+/0 -2.447 -2.105 

Epc / V vs FeCp2
+/0 -2.637 -2.384 

E1/2 / V vs FeCp2
+/0 -2.542 -2.245 

ΔEpp / mV 190 279 

ipa / µA 19.07 13.03 

ipc / µA 19.08 17.96 

ipa/ipc 1.00 1.38 

ΔEpp = | Epc - Epa | 
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Table S7. Electrochemical parameters for 3.5 in 0.05 M [nNBu4][(B(C6F5)4] / THF. 

 Process I Process II Process III Process IV 

Epa / V vs FeCp2
+/0 -2.493 -2.166 -0.520 -1.007 

Epc / V vs FeCp2
+/0 -2.634 -2.322 – – 

E1/2 / V vs FeCp2
+/0 -2.564 -2.244 – – 

ΔEpp / mV 141 156 – – 

ipa / µA 9.56 3.21 1.07 3.34 

ipc / µA 12.66 5.53 – – 

ipa/ipc 1.32 1.72 – – 

ΔEpp = | Epc - Epa | 

 

Table S8. Electrochemical parameters for 3.6 in 0.05 M [nNBu4][B(C6F5)4] / THF. 

 Process I Process II Process III Process IV Process V Process 

VI 

Process 

VII 

Process 

VIII 

Epa / V vs FeCp2
+/0 -2.490 – -1.725 -1.024 – -0.122 0.150 0.409 

Epc / V vs FeCp2
+/0 -2.692 -2.189 -1.777 – -0.621 – – – 

E1/2 / V vs FeCp2
+/0 -2.591 – -1.751 – – – – – 

ΔEpp / mV 202 – 52 – – – – – 

ipa / µA 26.85 – 3.61 1.53 – 16.93 22.0 35.04 

ipc / µA 47.18 39.8 3.33 – 1.67 – – – 

ipa/ipc 1.76 – 0.92 – – – – – 

ΔEpp = | Epc - Epa | 

 

Scans towards the positive region of the potential window of complex 3.6 revealed a series of irreversible oxidation 

waves at -0.12, 0.15, and 0.42 V vs FeCp2
+/0 which may be attributed to loss of electrons from the coordinated phenoxide 

groups the central arene ring in the (bp) ligand, or possibly the UIV/UV couple. Survey scans of 3.3 to more positive 

potentials showed a single process at +11 V vs FeCp2
+/0 showed electrochemically reversible behavior (ipa/ipc ≈ 1) 
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4 Chapter Four: Reactivity of UCp*(pMe2O2) With Other Small 

Molecules 

4.1  Introduction 

As discussed in chapter three, the U(III) complex, UCp*(pMe2O2) 3.3, reductively activates CO2 to give 

the bimetallic U(IV) oxalate and carboxylate complexes. Reactivity towards CO2 is assumed to proceed 

via a [UIV]-CO2-[UIV] intermediate, though such a species eluded observation or isolation due to its 

transient nature. To circumvent this, CS2 was used as a model for CO2 to gain some insight into the 

reactivity of 3.3 towards CO2 as it is known U(III) complexes can form the CS2 analogue, [UIV]-CS2-

[UIV], as discussed in chapter one. 

In the same light, these investigations were expanded to include other substrates – i.e. carbon suboxide 

and azobenzene– to further probe the reactivity of 3.3. 

4.2  Carbon Disulphide 

4.2.1 Synthesis and Characterisation of [{UCp*(pMe2O2)}2{µ-η2(C,S):η2(S,S)-CS2] 4.1 

Treatment of a C6D6 solution of 3.3 (0.13 M in 0.5 mL) with 1 equivalent of neat CS2 at room 

temperature gave a dark brown solution. Subsequent work-up and cooling to -35 °C produced a dark 

brown solid in 28% crystalline yield (99% spectroscopic yield), which was identified as 

[{UCp*(pMe2O2)}2{µ-η2(C,S):η2(S,S)-CS2] 4.1 spectroscopically and analytically (Scheme 4.1). 

During the synthesis of 4.1, it was found that a second product (4.2) was formed. To avoid the formation 

of this side-product, a high concentration of 3.3 relative to CS2 was employed. 1H NMR spectroscopy 

suggests 4.1 contains two uranium environments. The 13CS2 analogue, 4.113C, was also synthesised, 

though unfortunately the 13CS2 ligand peak was not observed over a 2000 ppm window in the 13C NMR 

spectrum.  



78 

 

 

Scheme 4.1 Synthesis of 4.1 and 4.2 from 3.3. 

The bimetallic structure of 4.1 was confirmed by single crystal X-ray diffraction studies and is shown 

below in Figure 4.1, together with selected bond lengths and angles. The central CS2 core is asymmetric 

and features C–S bonds (C1–S1 = 1.715(12) and C1–S2 = 1.736(11) Å) substantially lengthened in 

comparison to free CS2 (C–S = 1.560(3) Å)1. Furthermore, the S1–C1–S2 angle of 116.3(6)° is  63.7 

degrees less than free CS2. These structural data are similar to those reported for other bimetallic U(IV) 

CS2
2- complexes reported by Andersen et al. and Mazzanti et al.,2,3 though there are key structural 

differences between these complexes and 4.1. For example, in [{U(CpMe)3}2(µ-η1(S):η2(C,S’)-CS2)] 4A 

and [{U(OSi(OtBu)3)3}2-{µ-η2(C,S):η2(S,S)-CS2}] 4B, the S–C–S angles are larger (4A = 143.8(11) 

and 4B = 131.6(8) Å) and there is a greater difference between the two C–S bond distances in these 

complexes (4A: C–S = 1.831(19) and 1.464(19), 4B: C–S = 1.747(13) and 1.594(11) Å, respectively)2,3 

indicating an unequal distribution of electron density in the CS2
2- ligand. Also, the binding mode of CS2 

in 4.1 is µ-η2(C,S):η2(S,S)-CS2, which is identical to 4B though slightly different to 4A which binds in 

a µ-η1(S):η2(C,S)-CS2 fashion.  
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Figure 4.1 Molecular structure of 4.1. Hydrogen atoms and toluene molecule removed for clarity. Thermal ellipsoids are 

given at 50% probability. Selected structural parameters (Å, °): C1–S1 = 1.715(12), C1–S1 = 1.737(11), S1–C1–S2 = 

116.2(6), U1–S1 = 2.890(3), U1–S2 = 3.0672(17), U2–C1 = 2.409(11), U2–S2 = 2.9935(18), U1–O1 = 2.138(4), U1–O2 = 

2.150(4), U2–O3 = 2.166(5), U2–O4 = 2.133(4), U1–Ct(Cp*) = 2.4973(2), U2–Ct(Cp*) = 2.5117(2), U1–Ct(arene) = 

2.9647(3), U2–Ct(arene) = 2.8974(2), Ct(Cp*)–U1–Ct(arene) = 118.966(8), Ct(Cp*)–U2–Ct(arene) = 120.729(8), O1–U1–

O2 = 158.53(18), O3–U2–O4 = 160.41(18). 

The most obvious difference in structural parameters between 3.3 and 4.1 is the increase in the U–

Ct(arene) distance from 2.382(6) Å to 2.8974(2) Å in 4.1 which could be due to the increased steric 

congestion around the uranium centre due to the bridging CS2 unit and the smaller ionic radii of the 

formally U(IV) centres in 4.1. In agreement with this observation, is the increase in the U–Ct(Cp*) 

distance in 4.1 compared to 3.3, as well as an increase in the bite angle of the pMe2O2 ligand (3.3: 

117.8.3, 4.1: 158.53(18)°) and a decrease in the [Ct(Cp*)–U–Ct(arene)] angle, (3.3: 134.6(2), 4.1: 

118.996(8)°). 

The reactivity of 3.3 towards CS2 is similar to U(CpMe)3 and U(OSi(OtBu)3)3 in that all of the products 

of these reactions contain two U(IV) centres and a CS2
2- core. In contrast to this, the U(III) complex, 

[((Ad,MeArO)3N)U(DME)] 4C, displays different reactivity towards CS2, with its reactivity more similar 
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to U(III) CO2 chemistry.4 As outlined in Scheme 1.5, this complex reacts with CS2 to form the 

tetrathiooxalate complex [{4C}2(µ-η 2(S,S′):η 2(S’’,S’’’)-C2S4)] as the major product (80%) along with 

the trithiocarbonate-bridged complex [{4C}2(μ-η2(S,S′):η2(S,S″)-CS3] as the minor product (20%). 

[{4C}2(μ-η2(S,S′):η2(S,S″)-CS3] forms via a [{4C}2(μ-S)] intermediate with concomitant loss of CS. 

The observation that the tris-aryloxide scaffold of 4C can influence reactivity towards CS2 and result 

in the loss of CS, given the relative instability of CS compared with CO (ΔfH
0

298 K = -110.5 and 276.5 

kJ mol-1 respectively) is remarkable.5,6 This is in stark contrast to 4.1, 4A and 4B which do not induce 

formation of CS upon reaction with CS2.  

Further reactivity towards CS2 was not observed despite heating a sample of 4.1 with five equivalents 

of CS2 at 60 °C for three days. To investigate how the “soft” U–S and U–C bonds react with more 

nucleophilic substrates, two equivalents of N2O were added to a solution of 4.1, in the hope of 

synthesising a dithiocarbonate complex. Unfortunately, no reaction was observed by 1H NMR 

spectroscopy. 

4.2.2 Synthesis and Characterisation of [{UCp*(pMe2O2)}{η2(S,S’)-CS2H] 4.2 

The reaction between a solution of 3.3 and a solution of CS2 with both reactants in more dilute toluene 

results in the formation of the dithioformate complex, 4.2 (Scheme 4.1). The addition of a 0.033 M CS2 

(1 equivalent) toluene solution to a 0.016 M toluene solution of 3.3 at -78 °C gives 4.1 and 4.2 in a ratio 

of 32:68 (via relative integration of Cp* peak in 1H NMR spectrum). The ratio of these products does 

not show much variation with temperature as shown by carrying out the reaction at 25 °C and 45 °C. 

1H NMR spectroscopic data indicated that 4.2 contains a single “UCp*(pMe2O2)” environment with 

sharp signals over a window spanning from 43 ppm to -148 ppm. Upon use of 13CS2, a doublet at -304 

ppm (1JCH = 180 Hz) is observed in the 13C NMR spectrum as well as a doublet at -89 ppm (1JCH = 180 

Hz) in the 1H NMR spectrum (Figure 4.2, left and right, respectively). When 12CS2 is used, a singlet is 

observed at -89 ppm instead. This coupling constant is similar to the 1JCH value for the carbon adjacent 

to sulphur in thiophene (185 Hz)7. These NMR data provide strong evidence for the formation of a 

dithioformate moiety (S2CH) though the proton source is unclear.  
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Figure 4.2 13C NMR spectrum of 4.213C (left) and overlaid 1H NMR spectra of the S2CH peak of 4.213C (red, doublet) and 

4.2 (green, singlet) (right). 

Unfortunately, the synthesis of analytically pure 4.2 proved challenging due to the persistent formation 

of 4.1 as an undesired side-product, between 5-40% in reactions employing the same conditions, 

highlighting the capricious nature of this chemistry. The formation of unknown side-products was also 

observed under these conditions. 

The molecular structure of 4.2 is shown below in Figure 4.3 and is consistent with the crude 1H NMR 

data suggesting the presence of a species containing the Cp*(pMe2O2) ligand environment with a 

dithioformate ligand.  

 

Figure 4.3 Molecular structure of 4.2. All Hydrogen atoms except one on dithioformate removed for clarity. Thermal 

ellipsoids are given at 50% probability. Selected structural parameters (Å, °): C1–S1 = 1.666(11), C1–S2 = 1.629(12), S1–

C1–S2 = 126.6(7), U1–S1 = 2.870(2), U1–S2 = 2.998(2), U–Ct(Cp*) = 2.5383(2), U1–O1 = 2.145(5), U1–O2 = 2.161(5), 

U–Ct(arene) = 2.8863(2), Ct(arene) –U–Ct(Cp*) = 121.698(8), O1 –U–O2 = 155.7(2). 
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The molecular structure of 4.2 reveals the formation of a monometallic CS2H complex that features an 

S–C–S angle of 126.6(7)° that is bound to uranium in an η2(S,S’) fashion. The C–S bond lengths (C1–

S1 = 1.666(11) Å and C1–S2 = 1.629(12) Å) lie between that of the C–S bond of free CS2 (1.54(3) Å) 

and those found in the CS2 moiety of 4.1.8 H1 was not found in the difference map but the metrical 

parameters of the S2CH ligand are markedly similar to metal complexes containing a η2(S,S’)-S2CR 

unit (where R = H or p-tolyl) (cis-[Ir(H)2(η2-S2CH)(PCy3)2]: C–S = 1.657(3) and 1.671(3), S–C–S = 

116.01(16)°. [W(η2-(S2CC6H4Me-4)}(CO)2(η-C5H5)]: C–S = 1.702(9) and 1.689(9) Å, S–C–S = 

125.3(7)°)9,10.  

In comparison to 4.1, the C–S bonds of 4.2 are shorter (C1–S1 = 1.666(11) Å and C1–S2 = 1.629(12) 

Å) and consistent with a CS2 unit that has been activated to a lesser extent. The S–C–S angle of 4.2 is 

10 degrees larger than 4.1, further suggesting CS2 has been activated to a lesser extent. Also, the U–S 

bonds of both complexes are similar. The U–Ct(Cp*) distance of 4.2 (2.5383(2) Å) is greater than in 

4.1 (U1–Ct(Cp*) = 2.4973(2) and U2–Ct(Cp*): 2.5117(2) Å) by 0.041 and 0.0267 Å, respectively.  

Complex 4.2 does not react with 3.3 though it is reactive towards CO (see below) and CO2 albeit more 

slowly than 4.1 as judged by NMR-scale reactions between CO2 and solutions containing 4.1 and 4.2. 

4.2.3  Reactivity of [{UCp*(pMe2O2)}2{µ-η2(C,S):η2(S,S)-CS2] 4.1 Towards CO2  

With complex 4.1 in hand, its reactivity towards CO2 was investigated. A d8-toluene solution of 4.1 was 

reacted with one molar equivalent of 13CO2 at -78 °C administered precisely via a Toepler pump and 

then immediately warmed to room temperature. 1H NMR spectroscopic analysis of the crude reaction 

mixture revealed the consumption of 4.1 along with the formation of two new [Cp*pMe2O2] 

environments and 0.2 equivalents of the uranium carbonate species 3.4. The 13C NMR spectrum features 

a peak at -323 ppm which likely corresponds to the incorporation of 13C into a uranium species. After 

24 h, the peaks initially observed in the 1H NMR spectrum had reduced by ca 95% and a new set of 

peaks which precluded assignment had formed. The 13C NMR spectrum after 24 h does not contain any 

new peaks, although when 4.113C is used, a peak at -330 ppm is observed, suggesting that the final 
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product contains a 13C atom originating from 4.113C. Unfortunately, due to time constraints it was not 

possible to purify samples for elemental analysis and fully assignable 1H NMR spectra. 

From the reaction mixture containing the final product, single crystals suitable for X-ray diffraction 

studies were obtained. The molecular structure of [{UCp*(pMe2O2)}2{µ-η2(S,O):η2(S,O’)-CO2S] 4.3 

(Figure 4.4) contains two tetravalent uranium centres bridged by CO2S2- in a µ-η2(S,O):η2(S,O’) 

fashion. Similar to the CO2S ligand in 4.3 are the metrics of [{4C}2(µ-η 1(O):η 2(O’,S)-CO2S)] (C–S = 

1.742(5), C–O = 1.283(5) and 1.262(5) Å, though unlike 4.3 this complex features a different bonding 

mode and a planar CO2S unit. As a result of this bonding mode, the U–S bonds are shorter than in 

complex 4.3 (U–S: 2.892(1) Å). The C–S distance of 1.761(9) Å is similar the monoanionic alkyl 

thiocarbonate complexes [CpFe(CO)2SCO2Et] and [fac-(CO)3(dppe)MnSC(O)OCH3] (C–S = 1.748(3) 

and 1.729(10) Å, respectively).11,12 The two C–O bonds (1.284(11) and C1–O2: 1.257(11) Å) are 

characteristic of double bonds and the bridging CO2S ligand is not flat across the U–U plane as shown 

in Figure 4.5, an indication that there is delocalisation of electron density along O–C–O and not C–S. 

U–Ct(Cp*), U–Ct(Cp*), U–O(Ar) bond lengths are consistent with other U(IV) complexes reported in 

this chapter.  
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Figure 4.4 Molecular structure of 4.3. Hydrogen atoms omitted for clarity. Thermal ellipsoids are given at 50% probability. 

Selected structural parameters (Å, °): C1–S1 = 1.761(9), C1–O1 = 1.284(11), C1–O2 = 1.257(11), U1–O1 = 2.343(7), U1–

S1 = 3.031(2), U2–O2 = 2.376(7), U2–S1 = 3.068(2), U1–O3 = 2.128(6), U1–O4 = 2.159(6), U2–O5 = 2.137(6), U2–O6 = 

2.151(6), U1–Ct(Cp*) = 2.5269(3), U2–Ct(Cp*) = 2.5118(3), U1–Ct(arene) = 2.9003(3), U2–Ct(arene) = 2.8158(3), 

Ct(Cp*)–U1–Ct(arene) = 120.959(10), Ct(Cp*)–U2–Ct(arene) = 121.140(11), O3–U1–O4 = 157.2(2), O5–U2–O6 = 

160.8(3). 

 

Figure 4.5 View across the U–U plane and CO2S bridging ligand.  

Computational studies by Maron et al. provided mechanistic insight into the reactivity of 

UCOTTMS2Cp* with CO2 (Figure 4.6).13 Calculations of this complex revealed two main reaction 

pathways that led to the formation of a carbonate product. Pathway M1 involves the reductive 

disproportionation of CO2 that leads to a µ-oxo-bridged species that then undergoes a CO2 insertion 
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reaction to give the carbonate species. The other pathway, M2, features a bimetallic six-membered ring 

intermediate that loses CO2 to give the carbonate product.  

 

 

Figure 4.6 Mechanism for the activation of CO2 to give diuranium carbonate. [U] refers to UCOTTMS2Cp*. 

4.2.4  Reactivity of 4.1 Towards CO 

It was envisaged that the ‘soft’ interactions between uranium and the CS2 ligand in 4.1 would lead to 

interesting reactivity towards the ‘harder’ carbon monoxide due to the oxophilicity of uranium. 

Compound 4.113C was prepared in-situ as a C6D6 solution and then one equivalent of 13CO added with 

a Toepler pump. Analysis of the 1H NMR spectrum taken after 24 h shows that >97% of 4.1 has been 

consumed and new products had formed. 13C NMR spectroscopy shows two major peaks (643 and -244 

ppm) and two minor peaks (-139 and -254 ppm). NMR spectroscopic data of the reaction mixture after 

3 d exhibited significant changes. The 1H NMR spectrum displays a reduction of some peaks and 

increase of others, suggesting the reaction proceeds though an intermediate. In agreement with this, the 

13C NMR spectrum shows the decrease of peaks at 643 and -244 ppm and the increase in intensity of 

peaks at -139 and -245 ppm. Unfortunately, due to time constraints it was not possible to purify samples 

for elemental analysis and fully assignable 1H NMR spectra. 

Single crystals suitable for X-ray diffraction studies were grown from a saturated benzene solution and 

the resulting molecular structure of [{UCp*(pMe2O2)}2{µ-η2(S,O):η2(C,S)-OSCCS] 4.4 is shown 

below in Figure 4.7.  
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Figure 4.7 Molecular structure of 4.4. Hydrogens, residual benzene atoms and three disordered Me groups on the Cp* 

ligands removed for clarity. Thermal ellipsoids are given at 50% probability. Selected structural parameters (Å, °): C1–C2 = 

1.45(3), C1–O3 = 1.28(2), C1–S1 = 1.707(14), C2–S2 = 1.635(18), O3–C1–S1 = 120.5(14), C1–C2–S2 = 125.1(13), S2–

C2–U1 = 82.2(7), U1–C2 = 2.469(17), U1–S2 = 2.771(5), U2–O3 = 2.469(13), U1–O1 = 2.134(9), U1–O2 = 2.156(11), U2–

O4 = 2.160(12), U2–O5 = 2.133(12), U1–Ct(Cp*) = 2.522(10), U2–Ct(Cp*) = 2.519(8), U1–Ct(arene) = 2.748(7), U2–

Ct(arene) = 2.839(6). 

Complex 4.4 formed as the result of CO insertion into a C–S bond of 4.1. The bimetallic complex is 

bridged by a thiocarboxylate-thiocarbene ligand which features a uranium-thienyl interaction 

perpendicular to the thiocarboxylate arm. The bond length values in this thiocarboxylate-thiocarbene 

moiety lie between those expected for single and double-bonds, suggesting delocalisation of electron 

density.14 The uranium-based metrical parameters (distances: U–Ct(Cp*),U–O(Aryloxide). Angles: 

Ct(Arene)–U–Ct(Cp*) and Ct(Ar)–U–O(Ar)) are similar to 4.1, 4.2 and 4.3. 

Calculations on the reactivity of 4.1 towards CO proved to be challenging so the model U(III) system 

in Figure 4.8 is used. DFT studies by Maron et al. showed that the pathway to the final product could 

not be located due to the complexity of the reaction. The pathway to a potential intermediate is shown 

in Figure 4.8 and may plausibly represent the intermediate observed in the NMR spectroscopy 

experiments.  
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Figure 4.8 In complete computed free energy profile for the mechanism of CO reactivity with 4.1.  

Serendipitously, a small number of crystals of the compound with molecular structure shown below in 

Figure 4.9 were grown from a reaction between 4.1 and CO which contained small amounts of 4.2. The 

molecular structure shows a methyl group on the aryloxide arm that has been activated by a possible 

carbene-like intermediate because of CO insertion into a C–S bond. C1–C2, C2–C3, C3–C4 and C2–

S2 are all consistent with single bonds as depicted more clearly in Figure 4.10. U–O(Ar), U–Ct(Cp*) 

and U–Ct(arene) bond lengths are similar to other U(IV) species reported in this chapter. 

 

Figure 4.9 Molecular structure of 4.5. All hydrogens bar four are removed for clarity. Thermal ellipsoids are given at 50% 

probability. Selected structural parameters (Å, °): C1–C2 = 1.511(14), C2–C3 = 1.586(14), C3–C4 = 1.504(14), C2–S2 = 

1.825(10), C1–O1 = 1.275(12), C1–S1 = 1.690(9), U1–O1 = 2.369(7), U1–S1 = 2.987(3), U1–O2 = 2.173(6), U1–O3 = 

2.135(6), U1–Ct(Cp*) = 2.4983(3), U1–Ct(arene) = 2.7864(3).  
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Figure 4.10 Diagram of 4.5.  

The mechanism of the formation of 4.5 is unclear. It is plausible that CO has inserted into the C–S bond 

of 4.2, the product of which has attacked the usually inert methyl group on the aryloxide. Unfortunately, 

synthesis of 4.5 could not be scaled up in large enough quantities for further investigation.  

 

4.3 Reactivity of 3.3 Towards Carbon suboxide 

Carbon suboxide (C3O2) is an oxo-carbon belonging to the same series as CO2. While the chemistry of 

CO2 has been widely studied and documented,15 the chemistry of C3O2 is much less developed.16,17 

Reactivity studies by Hillhouse et al. demonstrated how C3O2 can act as a source of CO and ketene 

(O=C=C:) towards phosphine-containing transition metal complexes. Reacting WCl2(PMePh2)4 with 

C3O2 leads to the formation of (CO)(PMePh2)2{C,C’:η2 -C(O)CPMePh2} which contains a phosphorus-

ylide ligand as a result of ketene trapping.18 Work by the same authors showed that C3O2 is also able to 

coordinate to Ni in an η2 fashion similar to olefins. The reaction between [(PPh3)2Ni(COD)] and C3O2 

yielded [(PPh3)2Ni(:η2(C,C’)-C3O2)].19 Recent work from our laboratory showed that [Ti2(µ:η5, η5-

PentTIPS2)2] forms the mono C3O2 adduct, [Ti2(µ:η5, η5-PentTIPS2)2(η2-C3O2)], as the first step towards 

the C3O2 trimeric complex, [Ti2(µ:η5, η5-PentTIPS2)2(µ-C9O6)].20 Given the dearth of C3O2 reactivity 

studies it is unsurprising that there have been no studies involving U(III) systems. Uranium(III) systems 

have mediated unique transformations of CO and CO2 so it was envisaged that 3.3 would display equally 

exceptional reactivity towards C3O2.  

C3O2 was prepared by a modified literature preparation which involves the dehydration of malonic acid 

with phosphorus pentoxide. Acetic acid is produced as side-product but can be easily removed via 



89 

 

passage of the gas mixture through a CaO scrubbing column. After this, CO2 is easily removed from 

C3O2 under reduced pressure at -110 °C due to its higher vapour pressure. Carbon suboxide can then 

stored indefinitely at -78 °C.  

Vacuum transfer of C3O2 to an ink-black d8-toluene solution of 3.3 produced an instant colour change 

to brown-orange. The crude 1H NMR could not be assigned and EI-MS was uninformative. Single 

crystals suitable for X-ray diffraction were grown from a saturated iPr2O solution that was allowed to 

evaporate slowly over two weeks. The molecular structure of [{UCp*(pMe2O2)}3{µ-η1(O):η2(C,O’): 

η2(O’’,O’’’)-C6O4] 4.6 is shown below. Unfortunately, due to an unforeseen issue with the cryostream, 

significant amounts of ice were deposited on the crystal and resulted in ice rings appearing on the 

diffraction data. Due to this, the dataset could not be refined below R1 = 13.72%. The data provide 

confirmation of connectivity and allows discussion of bond lengths and bond angles with a degree of 

confidence. The molecular structure of 4.6 reveals a trimetallic uranium compound with a core 

composed of two units of C3O2 that have dimerised at the nucleophilic central and electrophilic terminal 

carbon atoms to form an C4 moiety (Figure 4.12), possibly via a [2+2] cycloaddition mechanism. The 

C–C bonds (1.46643(4), 1.48745(5), 1.46081(4) and 1.47247(5) Å) in this unit are consistent with the 

ones found in the 1,2-diphenyl-3,4-bis(trimethylsilyl)-cyclobutadiene dianion (dilithium) (C–C: 

1.462(4), 1.479(4), 1.488(4), 1.521(4) Å)21.  
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Figure 4.11 Molecular structure of 4.6. Hydrogen atoms, residual iPr2O molecules, O4a atom and thermal ellipsoids not 

shown for clarity. Selected structural parameters (Å, °): C1–O1 = 1.28397(4), C1–C2 = 1.35065(6), C2–C3 = 1.46643(4), 

C3–O2 = 1.21786(3), C2–C3 = 1.46643(4), C3–C4 = 1.48745(5), C4–C5 = 1.46081(4), C5–C2 = 1.47247(5), C5–O3 = 

1.22625(3), C4–C6 = 1.39496(6), C6–O4 = 1.31029(4), U1–O1 = 2.30752(5), U1–O2 = 2.44377(10), U2–O3 = 2.30922(6), 

U3–O4 = 2.45709(9), U3–C6 = 2.81579(13), U3–C6–O4 = 60.726(3), U1–Ct(Cp*) = 2.55752(6), U1–O6 = 2.14360(6), U1–

O7 = 2.15876(6), U1–Ct(arene) = 3.05203(14), Ct(Cp*)–U1–Ct(arene) = 118.973(2), O6–U1–O7 = 159.8577(8), C37–O6–

U1 = 141.5215(13), C17–O7–U1 = 149.3320(11), U2–Ct(Cp*) = 2.46456(8), U2–O8 = 2.12991(6), U2–O8 = 2.16691(6), 

U2–Ct(Arene) = 2.65274(10), Ct(Cp*)–U1–Ct(arene) = 128.313(2), O8–U2–O9 = 156.2484(8), C54–O8–U2 = 

152.5539(11), C74–O9–U2 = 151.7276(12), U3–Ct(Cp*) = 2.51790(6), U3–O10 = 2.15704(6), U3–O11 = 2.15044(6), U–

Ct(arene) = 2.74714(8), Ct(Cp*)–U3–Ct(arene) = 121.564(3), O10–U3–O11 = 160.3799(7), C92–O10–U3 = 153.6477(9), 

C117–O11–U3 = 154.5140(9). 
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Figure 4.12 C6O4U3 core of 4.6 from Figure 4.11. Atom O4a is shown.  

The crystal structure contains two oxygen atoms (O4 and O4a) which may be disordered over two sites 

as shown in Figure 4.12, therefore it is reasonable to consider this may in fact be a carboxylate group 

that formed as a result of a reaction with an adventitious oxygen source. If the O4 atom is treated as 

disordered over two sites then the η2 interaction between C6–O4 and U3 bears resemblance to the 

oxycarbene moieties in [Cp*2Th(η2(C,O)-COCH2(CH3)3)Cl] 4D (Th1–C1: 2.672(6) Å, Th–O: 2.37(2) 

Å, C1–O1: 1.18(3) Å Th1–C1–O1: 73(1)° )22 and [Me2Si(C5Me4)(NPh)Sc{η2(C,O)-

OCB(NDippCH)2}(THF)] 4E (Sc1–C1–O1: 69.48(12)°, C1–O1: 1.266(3) Å)23. The U1–C6–O4 angle 

in 4.6 (60.726(3)°) is more acute than in 4D and 4E while the C6–O4 distance (1.31029(4) Å) is slightly 

longer. The lengthened C–O distance may be due to greater carbene-like character as opposed to greater 

acyl-like character in 4D and 4E.  

 

Scheme 4.2 Resonance structures highlighting the acyl and carbene like character of the MCOR moiety.  
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Interestingly, the three uranium centres of 4.6 have significantly different uranium-based metrical 

parameters, unlike 4.1-4.5 which feature less variation in the uranium-based parameters. U1 features 

the longest U–Cp* centroid distance (2.55752(6) Å), 0.09292 and 0.03962 Å longer than U2 and U3 

(2.46456(8) and 2.51790(6) Å respectively)). U1 also has a much longer U–arene centroid distance 

(3.05203(14) Å), 0.3993 Å and 0.30549 Å longer than U2 and U3 (2.65274(10) and 2.74714(8) Å 

respectively)) which is closer in value to the U(IV) complex, 4.1 (U1–Ct(arene): 2.9647(3) Å). These 

parameters in U2 and U3 are closer to those in the U(III) complex 3.3 (3.3: U1–Ct(Cp*): 2.494(7), U1–

Ct(arene): 2.382(6) Å respectively) than U1. These differences can be rationalised by the different 

groups ligated to the uranium centres. U1 features two O interactions with C6O4 while U2 features only 

one O bond and U3 is bonded to C–O.  

The C4–C6 bond length (1.3946(6) Å) is reminiscent of a benzene C–C bond (1.38(1) Å)24 while the 

C1–C2– bond length (1.35065(6) Å) is slightly shorter and more similar to ethylene (1.3305(10) Å).25 

The C5–O3 bond (1.22625(3) Å) is similar to a C–O double bond (1.230 Å).26 The exact nature of the 

bonding situation in the central C6O4 moiety is unclear as many of the bond lengths lie in-between single 

and double bonds; (Figure 4.13) depicts a plausible structure given the bond lengths. Also of note is 

the flat nature of C6O4 core, possibly indicating a degree of aromaticity. Spectroscopic studies (IR, 

Raman, UV-vis/NIR) would provide vital evidence that would clarify this picture (Figure 4.13) and 

give some information as to the formal oxidation state of the uranium centres. Regrettably, it was not 

possible to synthesise large enough quantities of 4.6 for such spectroscopic studies due to significant 

amount of decomposition of the sample during crystallisation. Future studies will focus on fully 

characterising 4.6 and elucidating the reactivity of 3.3 towards C3O2. 
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Figure 4.13 Diagram of 4.6. Atom labels are from Figure 4.11. 

4.4 Reactivity of 3.3 Towards Azobenzene 

This chapter and the previous one have shown 3.3 is able to mediate the one electron reduction of 

several substrates, but multi-electron processes have yet to be realised with this system. Azobenzene is 

a substrate that can undergo multi-electron reduction upon reaction with uranium systems. Therefore, 

to explore the potential for 3.3 to mediate multi-electron processes, its reactivity towards azobenzene 

was investigated.  

The four-electron reduction of azobenzene with uranium(III) complexes has been well documented. 

UCp*3, [{Cp*2U}2(η6:η6 -C6H6)], [Cp*2U][(μ- Ph)2BPh2] have all been shown to effect the cleavage of 

azobenzene to give the uranium(VI) complex, UCp*2(NPh)2.27–29 The U(IV) complex, 

UCp*(PDI)(THF) (PDI = pyridine-(diamine) is also able to reductively cleave azobenzene to generate 

a uranium bis(imido) species,30 UCp*(PDI)(NPh)2, in a four-electron reduction of azobenzene (Scheme 

4.3), though in this case three electrons originate from the PDI ligand and one from uranium.  
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Scheme 4.3 Reaction between UCp*(PDI)(THF) and PhNNPh to form UCp*(PDI)(NPh)2. 

Another pathway for the activation of azobenzene is the comproportionation of uranium(III) halide 

complexes. UCp*2Cl(NaCl) and [U(κ6-{(tBu2ArO)2Me2-cyclam})I] react with azobenzene to give 

U(VI) bis(imido) species (UCp*2(NPh)2 and [U(κ6-{(tBu2ArO)2Me2-cyclam})(NPh)2] respectively) and 

U(IV) bis(halide) (UCp*2Cl2 and [U(κ6-{(tBu2ArO)2Me2-cyclam})I][I] respectively. These reactions 

are proposed to go through a U(V) intermediate as shown in Scheme 4.4. 

 

Scheme 4.4 Reactivity of UCp*2Cl(NaCl) and [U(κ6-{(tBu2ArO)2Me2-cyclam})I] towards PhNNPh. 
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Bart et al. showed how the formally U(III) complex featuring the redox-active 2,2’-bipyridine ligand, 

UTpMe2
2(2,2’-bpy), is able to effect the two-electron reduction of azobenzene to (PhN-NPh)2-,31 with 

one electron provided by the uranium centre and the other by the 2,2’-bipyridine radical anion ligand.  

 

Scheme 4.5 Synthesis of UTpMe2
2(PhN-NPh) 

The one-electron reduction of azobenzene to the azobenzene radical has been well documented in 

lanthanide chemistry,32–34 yet in uranium chemistry there has only been one report. The U(III) complex, 

[{(SiMe2NPh)3-tacn}U], is able to mediate the one-electron reduction of azobenzene to give the radical 

azobenzene complex, [{(SiMe2NPh)3-tacn}U(µ2(N,N’)-N2Ph2
·)] 4F (Scheme 4.6).35  

 

Scheme 4.6 Synthesis of , [{(SiMe2NPh)3-tacn}U(µ2(N,N’)-N2Ph2
·)]. 

Addition of one equivalent of azobenzene to a C6D6 solution of 3.3 resulted in a colour change to dark 

maroon. Recrystallisation from pentane gave dark maroon crystals of [{UCp*(pMe2O2)}{µ2(N,N’)-



96 

 

N2Ph2
·}] 4.7 (Scheme 4.7). This formulation is consistent with combustion analysis and 1H NMR 

spectroscopic data.  

 

Scheme 4.7 Reaction between 3.3 and PhNNPh to form 4.7.  

The molecular structure of 4.7 is shown below in Figure 4.14 with selected structural parameters. The 

complex is monometallic with a (N,N’)-N2Ph2 interaction. Strong evidence for the radical nature of the 

azobenzene ligand is the N1–N2 bond length (1.337(8) Å) which has a value between that of the N=N 

bond of azobenzene (1.251 Å)36 and the N-N bond of hydrazine (av. 1.45 Å)37. This value is also similar 

to reported values for 4F (1.353(4) Å)35, [{SmCp*2}{µ2(N,N’)-N2Ph2
·}] (1.32(1) Å)32, and 

[{SmTpMe2
2}{µ2(N,N’)-N2Ph2

·}] (1.332(12) Å)33. The C39–N2–N1–C45 torsion angle (28.0 (10)°) is 

further crystallographic evidence for the reduction of the N=N bond as torsion angles of this size would 

not be possible in the presence of a double bond (cis-azobenzene torsion angle: 8°)38. The U–N bond 

lengths (U1–N1: 2.311(5) and 2.365(5) Å) are slightly shorter than those found in 4F (2.353(3) and 

2.413(3) Å)35, possibly due to the different ligand environments. Complex 4.7 features U–Ct(Cp*), U–

O(Ar), U–Ct(arene), O–U–O, Ct(Cp*)–U–Ct(arene) parameters that are similar to other U(IV) 

complexes discussed in this chapter.  
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Figure 4.14 Molecular structure of 4.7. Hydrogen atoms and other molecule of 4.7 in unit cell not shown for clarity. 

Thermal ellipsoids are given at 50% probability. Selected structural parameters (Å, °): N1–N2 = 1.337(8), C39–N2–N1–C45 

= 28.0(10), U1–N1 = 2.311(5), U1–N2 = 2.365(5), N2–U1–N1 = 33.2(2), U1–Ct(Cp*) = 2.5504(2), U1–O2 = 2.171(4), U1–

O1 = 2.186(4), U1–Ct(arene) = 2.8416(2), Ct(arene)–U1–Ct(Cp*) = 121.957(8).  

The samarium azobenzene complex, [{SmCp*2}{µ2(N,N’)-N2Ph2
·}], has been shown to react with CO 

to form [{SmCp*2}{µ-η4-(C,O)-(PhN)OCCO(NPh)}] therefore it was envisaged that 4.7 would display 

similar behaviour.32  

Further reactivity studies of 4.7 with CO, CO2 and H2 were unfruitful, possibly due to the stability of 

the U–N bonds and sterically encumbered nature of the uranium centre.  

The reactivity of 3.3 towards PhNNPh is comparable to 4F in that it also mediates the one-electron 

reduction of azobenzene. This contrasts with uranium complexes that feature redox-active ligands, 

which as a result, are able to mediate the multi-electron activation of azobenzene.  

 

 4.5 Conclusions 

In summary, this chapter has expanded on the small molecule reactivity studies of 3.3 to include CS2, 

C3O2 and azobenzene. Reaction with CS2 gave the bimetallic complex, 4.1, which features a doubly 

reduced CS2 moiety, and the monometallic 4.2 that contains a dithioformate ligand, the presence of 

which was confirmed via NMR spectroscopic studies with 13CS2. These studies also showed that the 
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relative quantities of 4.1 and 4.2 formed is concentration dependant. Compound 4.1 was then reacted 

with CO2 to give the thiocarbonate product 4.3. Compound 4.1 was also reacted with CO which gave 

the thiocarbonate-thiocarbene linked complex, 4.4. During these studies compound 4.5 was also 

isolated, which had undergone ligand activation at a methyl position on the pMe2O2 ligand, highlighting 

the reactive nature of these reaction intermediates.  

Complex 4.6 was isolated from the reaction of C3O2 and 3.3. The molecular structure of this complex 

shows that C3O2 has been trimerized with three uranium centres. X-ray diffraction studies reveal that 

the three uranium centres have significantly different environments. Future studies will focus on 

elucidating the electronic structure of this complex.  

The one-electron reduction of azobenzene with 3.3 was also discussed. Complex 3.3 reacts 

quantitatively to give 4.7. The molecular structure is consistent with a mono-reduced azobenzene 

ligand. 
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4.6 Experimental for Chapter Four 

Synthesis of [{ UCp*(pMe2O2)}2CS2] 4.1 

A J. Young NMR tube was charged with UCp*pMe2O2 (50 mg, 0.0643 mmol) and C6D6 (0.5 mL). To 

this was added neat CS2 (4 µl, 0.066 mmol), and upon addition an instant colour change from black to 

dark brown was observed. Volatiles were removed and the resulting residues taken up in Et2O (3 mL), 

toluene (0.7 mL) was added dropwise with heating until the residues had dissolved. This was followed 

by filtration and then storage at -35 °C for 3 days to yield the title compound as brown crystals (15 mg, 

28%).  

1H NMR (399.5 MHz, d6-benzene, 303 K): δH 55.84 (s, 6H, CH3), 48.52 (s, 6H, CH3), 37.47 (s, 2H, Ar-

H), 37.15 (s, 2H, Ar-H), 36.56 (s, 2H, Ar-H), 33.71 (s, 2H, Ar-H), 24.85 (s, 2H, Ar-H), 22.55 (s, 2H, 

Ar-H), 16.38 (s, 6H, CH3), 16.27 (s, 6H, CH3), 15.44 (s, 6H, CH3), 15.29 (s, 2H, Ar-H), 14.34 (s, 6H, 

CH3), -3.58 (s, 6H, CH3), -3.68 (s, 6H, CH3), -5.71 (s, 2H, Ar-H), -6.83 (s, 15H, Cp*), -11.12 (s, 15H, 

Cp*), -45.74 (s, 2H, Ar-H), -55.77 (s, 2H, Ar-H), -57.44 (s, 2H, Ar-H), -58.00 (s, 2H, Ar-H). 

Analysis calculated (found) for C77H94O4S2U2: % C 57.18 (56.98), H, 5.97 (6.05).  

Synthesis of [{UCp*(pMe2O2)}{η2(S,S’)-CS2H] 4.2 

A toluene solution of CS2 (1.5 μl in 2 mL) was added to a toluene solution of 3.3 (30 mg in 3 

mL) at -78 °C and stirred for 10 minutes. An instant colour change from dark purple to brown was 

observed. Volatiles were removed in vacuo and crystals of 4.2 suitable for X-ray diffraction studies 

were grown from a saturated heptane solution that was left to evaporate slowly over 2 d. Despite several 

attempts with various solvent systems and crystallisation methods, 4.2 could not be completely purified 

from concomitant 4.1 and unidentified products. It was also observed that the yields of 4.2 relative to 

4.1 varied widely over several repeat reactions employing the same reaction conditions. These rations 

varied from 99:1 to 32:68 (using Cp* peak of both compounds as a reference). 
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1H NMR (399.5 MHz, d6-benzene, 303 K): δH 42.87(s, 2H, Ar–H), 31.69 (s, 2H, Ar–H), 30.72 (s, 6H, CH3), 

27.58 (s, 6H, CH3), 14.54(s, 2H, Ar-H), 10.55 (s, 6H, CH3), -0.94 (s, 6H, CH3),-1.61 (s, 2H, Ar-H), -3.88 (s, 15H, 

Cp*), -89.13 (s, 1H, CS2H). 

Synthesis of [{UCp*(pMe2O2)}2{µ-η2(S,O):η2(S,O’)-13CO2S] 4.3 

A J. Young NMR tube was charged with 3.3 (50 mg, 0.0643 mmol) and C6D6 (0.5 mL). To this was 

added neat 13CS2 (4 µl, 0.066 mmol) to give 4.113C in quantitative spectroscopic yield. Two equivalents 

of 13CO2 was administered to this solution accurately using a Toepler pump. The reaction mixture was 

reduced by half and left to stand overnight to precipitate concomitant 3.4 as red blocks. The mother 

liquor was evacuated to dryness, taken up in iPr2O (0.5 mL), filtered and stored at -35 °C to deposit 

brown crystals of 4.3. The amount of material was not enough for 1H NMR studies or elemental analysis 

and the crude NMR could not be assigned.  

Synthesis of [{UCp*(pMe2O2)}2{µ-η2(S,O):η2(C,S)-OS13C13CS] 4.4 

A J. Young NMR tube was charged with 3.3 (50 mg, 0.0643 mmol) and C6D6 (0.5 mL). To this was 

added neat 13CS2 (4 µl, 0.066 mmol) to give 4.113C in quantitative spectroscopic yield. Two equivalents 

of 13CO were administered to this solution accurately using a Toepler pump. The reaction mixture was 

filtered and left to evaporate overnight to yield crystals of 4.4. The amount of material was not enough 

for 1H NMR studies or elemental analysis and the crude NMR could not be assigned with confidence.  

Synthesis of 4.5 

A J. Young NMR tube was charged with 3.3 (30 mg, 0.0643 mmol) and C6D6 (0.5 mL). To this was 

added neat CS2 (4 µl, 0.066 mmol) to give 4.1 and 4.2 in a 87:13 ratio. Three equivalents of 13CO were 

administered to this solution accurately using a Toepler pump. After 3 d the solution mixture was 

evacuated to dryness and single crystals were grown from a saturated solution of TBME (0.6 mL). The 

crystalline material deposited was not enough to carry out 1H NMR experiments.  
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Synthesis of [{UCp*(pMe2O2)}3{µ-η1(O):η2(C,O’): η2(O’’,O’’’)-C6O4] 4.6 

C3O2 (ca1 equivalent) was transferred to a toluene solution of 3.3 (80 mg in 0.8 mL) on a high-vacuum 

line at -78 °C. A colour change from dark purple to brown was observed. Volatiles were removed at -

78 °C for 10 minutes then -15 °C for one hour. After this point the resulting sticky matrix was allowed 

to warm to room temperature while under vacuum. The brown solids were taken up in iPr2O (4 mL), 

filtered, and left to evaporate slowly over 14 d at room temperature. A small amount of single crystals 

suitable for X-ray diffraction studies were deposited. From this batch of single crystals was the structure 

of 4.6 obtained. Unfortunately, during this time significant amounts of product had also decomposed as 

indicated by the deposition of amorphous black solids. The amount of crystalline material was not 

enough for 1H NMR studies. Despite several attempts with various solvent systems and crystallisation 

methods, it was not possible to produce crystalline material of 4.6.  

Synthesis of [{ UCp*(pMe2O2)}PhNNPh] 4.6 

To an ampoule charged with UCp*pMe2O2 (325 mg, 0.411 mmol) and PhNNPh (75 mg, 0.412 mmol) 

was added C6H6 (4 mL), a colour change from black to dark maroon was observed. The reaction mixture 

was stirred for 2 hours and then pumped to dryness. Pentane (15 mL) was added, the residues extracted, 

filtered and then stored at -35 °C for 2 days to yield large black crystals of 4.6 (182 mg, 52%). 

1H NMR (399.5 MHz, d6-benzene, 303 K): δH 71.11 (s, 6zH), 61.53 (s, 2H), 37.98 (s, 2H), 31.51 (s, 

6H), 24.49 (s, 2H), 15.76 (s, 6H), -2.75 (s, 6H), -3.27 (s, 1H) , -5.18 (s, 15H), -54.49 (s, 2H), -56.05 (s, 

2H), -114.41 (s, 2H), -134.45 (s, 2H), -216.26 (s, 2H), -245.32 (s, 1H). 

Analysis calculated (found) for C50H57N2O2U2: % C 63.62 (63.77), H, 6.43 (6.41), N, 2.82 (2.91). 
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5 Chapter Five: Thorium-pMe2O2 Coordination Chemistry Including a 

Reduced Th(pMe2O2)2 Species With a δ-Bonding Arene-Interaction 

5.1 Introduction 

Stabilisation of highly reactive, low-valent species through metal-arene interactions is a well understood 

concept within transition metal chemistry.1 This bonding motif has also found application in actinide 

chemistry, in that recent advances in low-valent uranium chemistry have been facilitated by these 

stabilising metal-arene interactions. For example, the U(II) complex, [K(2.2.2-

crypt)][((Ad,MeArO)3mes)U],2 features a central mesitylene anchor capable of δ-symmetry interactions 

with uranium. Furthermore, a covalent δ-bonding arene interaction in the complex, ((Ad,MeArO)3mes)U, 

was found to be an essential component to the complex's ability to electrocatalytically split water.3 

Although these examples highlight the progress that has been made in low-valent uranium chemistry, 

our understanding of thorium chemistry is vastly underdeveloped by comparison. Thorium-arene 

interactions have been reported far less despite potentially supporting low-valent thorium systems that 

have unique electronic configurations and reactivity. The nine Th(III) complexes published to date all 

contain derivatives of the carbocyclic ligands, Cp or COT, as they contain orbitals of suitable symmetry 

and energy that are able to stabilise a 6dz2
1 configuration.4–10  

It was envisaged that the carbocyclic C6 ring of pMe2O2 would be able to support low-valent species in 

a similar manner to the aforementioned Cp and COT systems. Gambarotta et al. showed that it was 

possible to synthesise the reduced thorium-arene species, [η5-{1,3-[( η5-2-C4H3N)(CH3)2C]2C6H4}ThK-

(μ-Cl)3][Li(DME)3] 5A, which contains a primarily ligand-based π-symmetry SOMO.11 The arene in 

this complex is puckered, possibly because of the meta configuration of the pyrrolide ‘arms’ of this 

ligand therefore it was hoped that the para configuration of pMe2O2 would allow a more planar thorium-

arene interaction and a δ-bonding interaction in a reduced species. pMe2O2 was also chosen due to the 

favourable Th–O bonds it would form in a thorium complex. 

The synthesis of stable and isolable Th(III) complexes has historically proved to be a highly challenging 

endeavour; one that has yet to reach the same levels of success as analogous uranium(III) complexes. 
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For example, ThCOTTIPS2Cp*X (X = Cl or I) displayed an irreversible one-electron reduction in cyclic 

voltammetry studies at ca -3.3 V vs FeCp2
0/+, thus suggesting potential access to a Th(III) complex, 

however, attempts to chemically reduce these species resulted in the formation of ThCOTTIPS2
2 and 

Th(0),12 presumably due to disproportionation of a short-lived Th(III) complex.  

It was hypothesised that the pMe2O2 scaffold could be used as an alternative to the venerable bis-CpR 

(where R = Me5, 1,3-tBu etc) framework which has been widely utilised in thorium coordination 

chemistry,13 with this framework supporting a range of ligands including hydrides,14 alkyls and 

fluorides.14,15 It was expected that the overall rigidity of pMe2O2 and its stabilising central arene ring, 

would provide a platform to investigate the coordination chemistry of thorium as well as grant access 

to thorium-arene interactions. 

This chapter describes the entry of this ligand into thorium chemistry and investigations into the 

synthesis of homoleptic and heteroleptic Th(IV) and Th(III) complexes. Also reported in this chapter 

are the first examples of ThIV/ThIII redox couple values.  

5.2 Synthesis and Characterisation of Th(pMe2O2)2 5.1 and [K(2.2.2-

cryptand)][Th(pMe2O2)2] 5.2 

The homoleptic complex, Th(pMe2O2)2, was targeted as a pre-cursor to a reduced thorium species as it 

avoids the use of other ligands and therefore enables investigations into its viability to support low-

valent thorium systems without relying on other ligands that may hinder the formation of a low-valent 

complex.  

5.2.1 Th(pMe2O2)2 

ThBr4THF4 reacts with two equivalents of pMe2O2K2 (Scheme 5.1) to give, after workup, the Th(IV) 

complex Th(pMe2O2)2 5.1 as white powder in excellent yield and high purity by 1H and 13C{1H} NMR 

spectroscopy. The arene ring protons of 5.1 appear as two doublets (3JHH = 8.14 Hz) in the 1H NMR 

spectrum, consistent with coupling between two aromatic protons. The parent ion for 5.1 is observed in 

the EI-MS experiment with the expected isotope pattern. Elemental analysis is consistent with 

5.1.(Toluene)0.7 following recrystallisation from toluene/Et2O.  
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Scheme 5.1 Synthesis of 5.1. 

The molecular structure of 5.1 was determined using single crystal X-ray diffraction (Figure 5.1) by 

Dr Alistair Frey.16 Complex 5.1 features thorium in a pseudo-octahedral geometry with four aryloxide 

and two η6-arene interactions. The Th1–O1 and Th1–O2 bond lengths of 2.228(3) and 2.231(3) Å are 

slightly longer than other thorium aryloxide complexes reported in the literature (2.16(1) – 2.211(9) 

Å).17–19 The Th-Cent(arene) distance of 2.88397(12) Å is indicative of a weak η6-interaction unlike the 

two Th-arene contacts in [(trans-calix[2]benzene[2]pyrrolide)Th(C≡CSiMe3)2NiPCy3] which are much 

stronger interactions (Th–Cent(arene)avg = 2.665 Å).20  

 

Figure 5.1 ORTEP diagram for the molecular structure of compound 5.1. Structure with 50% thermal ellipsoids is shown, 

hydrogens omitted for clarity. Selected structural parameters (Å, deg): Th1–O1 = 2.228(3), Th1–O2 = 2.231(3) O1–Th1–O2 

= 165.94(11), Th1–O1–C1 = 159.1(3), Th1–O2–C26 = 156.0(3), Th–Cent(arene) = 2.88397(12) and C–C (central arene 

ring)avg = 1.397. 
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5.2.2 [K(2.2.2-cryptand)][Th(pMe2O2)2] 

The quasi-reversible reduction in the voltammogram of 5.1 at -2.90 V vs FeCp2
+/0 suggested that the 

reduction product could be chemically accessible (Figure 5.2). The ipa/ipc value of 0.62 points towards 

a quasi-reversible process that under-goes decomposition after the anodic scan. [nNBu4][BPh4] was 

chosen as an electrolyte due to higher current responses and increased stability of analyte compared to 

[nNBu4][B(C6F5)4], see section 5.2.3 for more detail. 

 

Figure 5.2 Overlaid CV scans (6 cycles) for 0.005 M 5.1 in 0.05 M [nNBu4][BPh4] / THF, scan rate 100 mV s-1. 

 

Indeed, addition of K/Hg to a THF solution of 5.1 and 2.2.2-cryptand led to a rapid colour change from 

colourless to deep red. 1H NMR spectroscopy indicated the consumption of 5.1 and the formation of a 

new paramagnetic species with broad peaks that precluded assignment. Elemental analysis is consistent 

with [K(2.2.2-cryptand)][Th(pMe2O2)2] 5.2. The Evans method shows that this new paramagnetic 

species (5.2) has a µB value of 1.80,21 consistent with a species containing one unpaired electron with 

little spin-orbit coupling (spin-only value is 1.73 µB). 
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Scheme 5.2 Synthesis of 5.2. Counter cation, [K(2.2.2-cryptand)], not shown for clarity. The notation pMe2O2[A] and 

pMe2O2[A] is used to differentiate the two pMe2O2 ligands of 5.2 and is used herein. Also, this notation is unrelated to the 

shorthand, 5A. 

 To gain insight into the electronic structure of 5.2, UV/vis-NIR spectra were recorded (Figure 5.3). A 

single broad absorbance was observed at 810 nm (ε = 68 M-1 cm-1) which is far less intense than other 

Th(III) complexes (ThCp*3: λmax = 539 nm (ε = 9500 M-1 cm-1)9, ThCpTMS2
3: λmax = 654 nm (ε = 5100 

M-1 cm-1)22). It is unclear whether this absorbance is an f–f transition or a ligand-based transfer.  

 

Figure 5.3 UV-vis/NIR spectrum of a 10 mM THF solution of 5.2. Absorbance highlighted with a black circle and artefacts 

highlighted in black boxes.  

To gain insight into the molecular structure of 5.2, X-ray diffraction studies were carried out. 

Gratifyingly, single crystals suitable for X-ray diffraction studies were obtained by the drop-wise 

addition of DME to an Et2O suspension of 5.2 (Figure 5.4). Owing to its highly symmetrical nature, 
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the thorium atom of 5.2 is disordered over two sites. This was overcome by splitting the thorium atom 

over two sites with occupancies of 0.6359 and 0.3641. Most strikingly, the molecular structure of 5.2 

features a significantly contracted Th1–Cent(pMe2O2[A]) distance of 2.5109(16) Å, 0.373 Å shorter 

than in 5.1 and 0.145 Å less than the average value found in compound 5A.20 Arene bonding in 

pMe2O2[A] is only slightly perturbed as judged by the minimal distortion from planarity.  

The geometrical parameters of 5.2 show that the pMe2O2 ligands are coordinated to thorium very 

differently. pMe2O2[A] features a shorter Th–Cent(arene) contact, shorter Th–O bonds, and a less acute 

ligand bite angle in comparison to pMe2O2[B]. These structural differences are due to the strong metal-

arene interaction between thorium and pMe2O2[A], which result in the contraction of metrical 

parameters. Numerous structural parameters of 5.1 lie between the values found in pMe2O2[A] and 

pMe2O2[B]; this is the case for the Th–O bond lengths and some angles (O–Th–O and Th–O–C) (Table 

5.1).  

Table 5.1 Selected parameters for 5.1 and the pMe2O2[A] and pMe2O2[B] ligands in 5.2. 

 5.1 pMe2O2[A] pMe2O2[B] 

Th–O (Å) 2.228(3), 2.231(3) 2.229(3), 2.208(3) 2.313(3), 2.289(3) 

O–Th–O (deg) 165.94(11) 174.65(2) 141.81(2) 

Th–O–C (deg) 159.1(3), 156.0(3) 149.0(2), 145.9(3) 166.6(2), 170.9(2) 
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Figure 5.4 ORTEP diagram for the molecular structure of 5.2. 50% thermal ellipsoids shown with [(K)2.2.2-crypt], 

hydrogens and an Et2O molecule removed for clarity. Th2 atom not shown. Notation to differentiate the two pMe2O2 ligands 

of 5.2 is shown. Selected structural parameters (Å, deg): Th1–O1 = 2.229(3), Th1–O2 = 2.208(3), Th1–O3 = 2.313(3), Th1–

O4 = 2.289(3), O1–Th1–O2 = 174.65(2), O3–Th1–O4 = 141.81(2), Th1–O1–C1 = 149.0(2), Th1–O2–C27 = 145.9(3), Th1–

O3–C50 = 166.6(2), Th1–O4–C29 = 170.9(2), Th1–Cent(central arene of pMe2O2[A]) = 2.5109(16), Th1–Cent(central arene 

of pMe2O2[B]) = 3.4344(15), C–C(central arene of pMe2O2[A])avg = 1.404.  

The X-band EPR spectrum of polycrystalline 5.2 shows a single broad resonance with a g-value of 

1.964 (Figure 5.5) at 290 K that was successfully modelled.23 The observation of a signal at 290 K rules 

out the possibility of a 5f-based electron as it is expected a signal will only be observed at low-

temperature.24 The g-value of 1.964 is very similar to that of [η5-{1,3-[( η5-2-

C4H3N)(CH3)2C]2C6H4}ThK-(μ-Cl)3][Li(DME)3] 5A (2.0012 at 273 K) and 

[((Ad,MeArO)3mes)U=O(THF)] (1.997 at 94 K) which both contain arene-based radicals.11,25 The 

formally Th(III) complex, ThCp3
TMS2 has a g-value of 1.910, significantly less than that of 5.2.22 It is 

unclear why there is a second signal in the EPR spectrum of polycrystalline 5.2. 
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Figure 5.5 X-band EPR spectrum of polycrystalline powder 5.2 at 290 K. Experimental (black) and simulated (red).  

The X-band EPR spectrum of 5.2 in 1-MeTHF displays an axial signal with three principal g-values 

from 290 to 5 K (Figure 5.6 and Table 5.2).  

 

 

 

 

Figure 5.6 X-band EPR spectrum of 5.2 in 1-MeTHF at different temperatures. Experimental (top) and simulated (bottom).  

 



112 

 

 

Table 5.2 g-values from the X-band EPR spectrum of 5.2 in 1-MeTHF at several temperatures. 

Temperature gx gy gz 

290 K 2.020 1.962 1.920 

150 K 1.997 1.984 1.941 

70 K 1.997 1.986 1.943 

20 K 1.997 1.9865 1.943 

5 K 1.997 1.987 1.943 

 

To elucidate the electronic structure of 5.2, density functional calculations were performed by Professor 

Jennifer Green using the ADF program suite (BP86/TZP). The optimized geometries of 5.1 and 5.2 

were in good agreement with the X-ray structures and for 5.2 reproduced the shorter Th-arene distance 

and the increase in O–Th–O bite angle for ligand [A]. A view of the calculated geometry of 5.2 is shown 

in Figure 5.7 which indicates the Cartesian axes used in the calculation. The four-fold orientation of 

the coordinating O atoms lifts the degeneracy of the Th d(±2) and f(±2) orbitals. With our axis choice 

the O atoms lie on the bisectors of the x and y axes and interact strongly with the Th 6dxy orbital, whereas 

the Th 6dx2-y2 and 5f z (x2-y2) are non-bonding with respect to any O -donation. The coordinating arene 

is not aligned with the x and y axes.  

 

Figure 5.7 Calculated structure of 5.2 indicating orientation of axes. 

The unpaired electron of 5.2 occupies an orbital responsible for the covalent binding of the arene ring 

to thorium and consequently the short associated distance found experimentally. As shown in Figure 
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5.8 it takes the anticipated form of a  bond. The calculated composition of the arene ring closest to 

thorium is 73% C 2p, 13% Th 5f z (x2-y2) and 6% Th 6dx2-y2. The orientation of the arene discussed above 

ensures that all six C atoms of the arene ring are involved in the bonding hence there is no apparent 

distortion of the ring from planarity. An indication of the strength of the thorium-arene interaction is 

given by the difference in energy of the SOMO and an unoccupied  orbital on the uncoordinated arene 

ring of ligand [B]. The SOMO is 0.96 eV more stable.  

 

 

Figure 5.8 SOMO of 5.2. 

The g-values of 5.2 were calculated in order to establish whether the calculated electronic structure was 

consistent with the EPR measurements. For the calculations, which used full spin-orbit coupling, the 

structure was simplified by replacing the methyl groups with H atoms (5.2H). The principal g values 

were calculated as 1.81, 1.95 and 1.97, the pattern of two larger than the third being consistent with that 

found experimentally. 

The electronic structure of the thorium-arene interaction is different to that of [η5-{1,3-[( η5-2-

C4H3N)(CH3)2C]2C6H4}ThK-(μ-Cl)3] (Figure 5.9), which was used as a simplified model for 5A in 

electronic structure calculations.11 These studies showed that the SOMO is purely π-character and 

Mulliken population analysis indicated that the spin density is concentrated on the distorted carbon 

atom above the plane of the arene ring (69.8%). Compound 5.2 features a similar amount of spin density 

located on the arene ring although the ring in 5.2 features much less distortion and a SOMO with  

character. This difference in electronic structure is probably due to the meta arrangement of the 

pyrrolide arms which pushes the carbon atom out of the plane due to increased steric repulsion in 
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comparison to the para configuration of 5.2. The thorium atom in this system contains 13.4% of the 

electron spin density in this system, similar to that calculated for 5.2. 

 

Figure 5.9 α-HOMO and Atomic Spin Density Distribution Values (%) for the Simplified Model of Complex 5A. Image 

from reference11. 

The voltammogram of 5.2 (Figure 5.10, Figure 5.11 and Figure 5.12) shows a quasi-reversible 

oxidation at -2.90 V vs FeCp2
+/0, which is in agreement with the voltammogram of 5.1. Interestingly, a 

quasi-reversible process is also observed at -3.4 V vs FeCp2
+/0, which alludes to the possibility of 

accessing even lower formal oxidation states of thorium supported by this ligand. These two processes 

(-2.90 and -3.4 V vs FeCp2
+/0) are also present when voltammograms are scanned anodically.  

 

Figure 5.10 CV scan for 0.005 M 5.2 in 0.05 M [nNBu4][BPh4] / THF, scan rate 100 mV s-1. 
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Figure 5.11 CV scan for 0.005 M 5.2 in 0.05 M [nNBu4][BPh4] / THF, scan rate 200 mV s-1. 

 

Figure 5.12 Zoomed in view of voltammogram in Figure 5.11. 

5.2.3 Cyclic Voltammetry Studies on the ThIV/ThIII Redox Couple 

There is a paucity of electrochemical studies on known Th(III) complexes, therefore several Th(III) 

complexes were synthesised and studied using cycling voltammetry to enable comparisons with the 

electrochemical behaviour of 5.1 and 5.2. These studies will also enable the comparison of different 

ligand systems and how they influence the ThIV/ThIII reduction potential. Values often referenced for 

the estimated ThIV/ThIII redox couple (-3.0 and -3.7 V vs SHE) date back to the 1970s and 1980s and 

are based on atomic spectroscopy and theoretical calculations,26,27 but not voltammetry. In the absence 

of E1/2 values for the ThIV/ThIII redox couple, such potentials have been indirectly estimated by the 



116 

 

reaction of Th(III) complexes with substrates of known E1/2 values.28 This method offers an indirect 

way to gauge the minimum of this value but its obvious limitations such as steric properties of the 

substrates, are a hindering factor.  

The lack of thorium electrochemistry studies is partly due to the rarity of thorium complexes in the +3 

oxidation state and the incompatibility with common electrolytes such as [nBu4N][PF6]. For instance, 

we have previously observed that the ThIV complex ThCOTTIPS2Cp*Cl displays an irreversible reduction 

wave at -3.33 V vs FeCp2
+/0 in [nBu4N][PF6] / THF but decomposes over several cycles.12 Our group 

has had success using the more inert electrolyte, [nBu4N][B(C6F5)4],29,30 with U(III) complexes which 

are stable on the electrochemical timescale over many cycles. Unfortunately, this was not the case when 

this electrolyte was used to study such processes with various Th(IV) complexes (Figure 5.13 and 

Figure 5.14) and therefore a different electrolyte was sought.  

 

 

Figure 5.13 CV scan for 0.005 M ThCpTMS2
3Cl in 0.05 M [nBu4N][B(C6F5)4] / THF, scan rate 200 mV s-1. 
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Figure 5.14 CV scan for 0.005 M ThCOTTBDMS2
2 in 0.05 M [nBu4N][B(C6F5)4] / THF, scan rate 200 mV s-1. 

 

Due to the fluorophilic nature of thorium we postulated that an electrolyte devoid of fluorides had to be 

used to increase current response and stability of the analyte. Arnold et al. have reported the use of 

[nBu4N][BPh4] to successfully study electrochemical processes in uranium compounds.31,32 We decided 

to test the viability of [nBu4N][BPh4] as an electrolyte and to our delight it proved highly compatible; 

for example a sample of ThCpTMS2
3 in 0.05 M [nBu4N][BPh4] / THF was stable over a 24 hour period. 

Therefore, we decided to use this electrolyte in the investigation of the ThIV/ThIII redox couple using 

CV. Gratifyingly, it allowed us to study a range of Th(IV) compounds that are precursors to known 

Th(III) complexes as well as an authentic Th(III) complex (Figure 5.15). Tables of electrochemical 

parameters are given in the experimental section of this chapter. 
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Figure 5.15 Thorium compounds included in this electrochemical study.  

Table 5.3 summarizes the results obtained from CV for the compounds depicted in Figure 5.15. As can 

be seen they all display processes between -2.92 and -3.29 V vs FeCp2
+/0 which we assign to the 

ThIV/ThIII redox couple and are indicative of strongly reducing metal centres.28  
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Table 5.3: Thorium compounds and their ThIV/ThIII redox couples. 

Compound ThIV/ThIII redox couple vs FeCp2
+/0 / V 

ThCpTMS2
3Cl 4 -2.92 

ThCpTMS2
3 4 -2.95 

ThCOTTBDMS2
2 5 -3.21 

[ThCOTTBDMS2
2][K(DME)2]5 n/a 

ThCpMe4H
3Br 7 -3.23 

ThCOTTIPS2Cp*Cl 12 -3.29 

ca 0.005 M analyte in 0.05 M [nBu4N][BPh4] / THF. 

For example, the cyclic voltammogram of ThCpTMS2
3Cl (Figure 5.16, right) features a process at -2.92 

V vs FeCp2
+/0 which is in excellent agreement with voltammograms obtained for ThCpTMS2

3 (Figure 

5.16, left and Figure 5.17) which display a process at -2.95 V vs FeCp2
+/0. The voltammogram of 

ThCpTMS2
3 in Figure 5.17 also features a process at a very negative potential (ca -3.3 V vs FeCp2

+/0) 

with a very small current response. Electrochemical studies on [2.2.2-Cryptand][ThCpTMS2
3] would 

provide further information which may verify this assignment as a ThIII/ThII redox process.33 These two 

compounds also feature a process at ca -1.4 V vs FeCp2
+/0 (Figure 5.17) which we attribute to a ligand 

based process. ThCpTMS2
3 also features an irreversible reduction at -2.2 V vs FeCp2

+/0 which is only 

observed when scanning oxidatively. Linear dependence of ipa versus ν1/2 (Figure 5.18) for the ThIV/ThIII 

redox couple in the voltammogram of ThCp3
TMS2Cl indicates the process is diffusion controlled and the 

observed increase in ΔEpp with increasing ν is consistent with quasi-reversible electron-transfer kinetics 

(Table S4, experimental section).  
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Figure 5.16 Overlaid CV scans for ThCpTMS2
3 (6 cycles, 7 mM) (left) and ThCpTMS2

3Cl (5 cycles, 3 mM) (right) in 0.05 M 

[nBu4N][BPh4] / THF, scan rate 100 mV s-1. ThCpTMS2
3 |ipa/ipc| = 0.90, ThCpTMS2

3Cl |ipa/ipc| = 0.80. 

 

Figure 5.17 CV scan for ThCpTMS2
3 in 0.05 M [nBu4N][BPh4] / THF, scan rate 200 mV s-1. 

  

 

Figure 5.18 Plot of ipa versus v1/2 for the ThIII/ThIV process in the CV of ThCpTMS2
3Cl. R2 = 0.9881. 



121 

 

 

In comparison to ThCpMe4H
3Br (Table 5.3), ThCpTMS2

3Cl is easier to reduce as expected for a less 

electron rich cyclopentadienyl ligand. Such an effect has been observed in the La(III) complexes 

(LaCptBu2
3 E1/2 = -3.1 V vs FeCp2

+/0, LaCpTMS2
3 E1/2 = -2.8 V vs FeCp2

+/0).34,35 In more detail, cathodic 

scans of ThCpMe4H
3Br in the same solvent and electrolyte system revealed a quasi-reversible process at 

-3.23 V vs FeCp2
+/0 (Figure 5.19), this process has a very small anodic current response (ipa/ipc = 0.14) 

indicating that the electrochemically generated species on the anodic wave is unstable. This complex 

also displays three irreversible oxidation processes which we are unable to assign with any certainty.  

 

 

Figure 5.19 CV scan for ThCpMe4H
3Br in 0.05 M [nBu4N][BPh4] / THF, scan rate 100 mV s-1.  

In the case of ThCOTTBDMS2
2 its CV features a quasi-reversible process at -3.21 V vs FeCp2

+/0 (Figure 

5.20). Further ligand-based processes at -0.88 and 0.72 V vs FeCp2
+/0 were also observed. 
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Figure 5.20 Overlaid CV scans (5 cycles) for ThCOTTBDMS2
2 in 0.05 M [nBu4N][BPh4] / THF, scan rate 100 mV s-1. 

Unfortunately, we were unable to study the redox behavior of [ThCOTTBDMS2
2][K(DME)2] by CV due 

to rapid decomposition of the analyte evidenced by an immediate change of colour from dark green to 

pale yellow with significant amounts of precipitate (Figure 5.21).  

 

Figure 5.21 Overlaid CV scans (3 cycles) for [ThCOTTBDMS2
2][K(DME)2] in 0.05 M [nBu4N][BPh4] / THF, scan rate 200 

mV s-1. 

ThCOTTIPS2Cp*Cl displays a quasi-reversible process at -3.29 V vs FeCp2
+/0 that has a decreasing 

current response over several cycles, (Figure 5.22) and is in good agreement with the irreversible 

reduction we previously reported for this compound.12 ThCOTTIPS2Cp*Cl exhibits an irreversible 

process at -1.49 V vs FeCp2
+/0 which we assign as a ligand-based process. 
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Figure 5.22 Overlaid CV scans (6 cycles) for ThCOTTIPS2Cp*Cl in 0.05 M [nBu4N][BPh4] / THF, scan rate 200 mV s-1. 

The ThIV/ThIII redox couples studied range from -2.92 to -3.29 V vs FeCp2
+/0 and are indicative of 

extremely reducing metal centres which are well placed to activate substrates. Compounds 5.1 and 5.2 

also feature an extremely negative reduction process (-2.90 V vs FeCp2
+/0) which is comparable to the 

ThIV/ThIII redox couple of ThCp3
TMS2 (-2.92 V vs FeCp2

+/0). These two compounds also display a process 

at ca -3.3 V vs FeCp2
+/0 which is similar to the possible ThIII/ThII process observed in the voltammogram 

of ThCp3
TMS2. 

 

5.3 Thorium- pMe2O2 Coordination Chemistry 

5.3.1 Attempts Towards ThCp*(pMe2O2) 

The previous section showed that it was possible to synthesise a thorium-pMe2O2 complex (5.2) that 

features an extremely reducing formally Th(III) centre. Inspired by this result and the synthesis of 

UCp*(pMe2O2) 3.3, the analogous thorium complex, ThCp*(pMe2O2), was targeted.  

There are several plausible synthetic routes to synthesise ThCp*(pMe2O2), starting from 

ThCp*(pMe2O2)X (X = Cl, Br or I) prior to reduction. Two sensible retrosynthetic procedures to 

synthesise ThCp*(pMe2O2)X are outlined in Scheme 5.3, the first of which, a) (Scheme 5.3), will be 

discussed in the following section. 
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Scheme 5.3 Retrosynthesis of ThCp*(pMe2O2).  

5.3.2 Synthesis, Characterisation, and Reactivity of ThI2(pMe2O2)(THF) 5.3 

A complex of the formula ThI2(pMe2O2) would be an ideal precursor to ThCp*(pMe2O2)X for two 

reasons. Firstly, it is free of coordinating ethereal solvent, which are prone to activation by strongly 

Lewis-acidic thorium centres.36 Secondly, iodide ligands are a superior leaving group to chlorides and 

more amenable to reduction. Unfortunately, it proved not possible to synthesise ThI2(pMe2O2) as 

reactions between ThI4 and one equivalent of pMe2O2K2 in toluene produced 5.1. The use of a 

coordinating solvent, either as a bulk solvent or as an adduct on thorium tetraiodide, was found to be 

essential in supressing the formation of 5.1, as it stabilises adducts such as ThI2(pMe2O2)(THF) and 

prevents their rearrangement to 5.1. 

Thus, ThI4(THF)4 was chosen as a suitable thorium halide precursor. Regrettably, the sample of 

ThI4(THF)4 had decomposed to ThI3(OBuI)(THF)3, as determined via 1H NMR spectroscopy.36 Despite 

this, reaction with pMe2O2K2 in C6H6 at 85 °C yielded ThI2(pMe2O2)(THF) (5.3), with small amounts 

of the side product Th(pMe2O2)2. To produce 5.3 quantitatively, it was found that 1.2 equivalents of 

ThI3(OBuI)(THF)3 were required. This slight excess ensures that the formation of 5.1 is supressed via 

a ligand rearrangement to form exclusively 5.3. This result was confirmed in the independent reaction 

of ThI3(OBuI)(THF)3 and Th(pMe2O2)2, which produced 5.3 in approximately 20% yield. 
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Figure 5.23 Synthesis of 5.3.  

The synthesis of 5.3 is easily scalable and after work-up, 3.2 g of the title compound could be isolated 

routinely as an off-white solid. NMR spectroscopic analysis (1H and 13C{1H}) revealed the expected 

product. Elemental analysis was consistent with the proposed formulation. Unfortunately, 5.3 could not 

be observed by mass spectrometry (EI).  

Single crystals of 5.3 suitable for X-ray diffraction studies were grown from a saturated solution of THF 

at -35 °C. Analysis of XRD data revealed 5.3 crystallised in the P21/c space group with two independent 

molecules in the unit cell. The two independent molecules have similar metric parameters therefore the 

parameters for one of the molecules will be discussed.  

The Th–Oaryloxide bond lengths (2.141(6) and 2.127(5) Å) are ordinary and comparable to other thorium 

aryloxide complexes reported in literature (2.16 – 2.21 Å)17,18,37, as are the Th–I bonds (5.3: 3.1205(7) 

and 3.1376(7) Å, selected literature: 3.155 – 3.165 Å)36 while the Th–O(THF) bond is shorter in 

comparison to similar moieties found in the literature (5.3: 2.149(7) Å, selected literature: 2.474 - 2.549 

Å36,38). More interestingly, 5.3 features a thorium-arene interaction as indicated by the centroid distance 

of 2.7177(3) Å, similar to other neutral complexes featuring a thorium-arene interaction (2.665 – 

2.815(3) Å).20,39 
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Figure 5.24 Molecular structure of 5.3. Thorium, green; iodide, purple; oxygen, red; carbon, grey. Hydrogens and other 

molecule in the unit cell omitted for clarity and thermal ellipsoids given at 50% probability. Selected structural parameters 

(Å, deg): Th1–O1 = 2.141(6), Th1–O2 distance = 2.127(5), Th1–O3 distance = 2.419(7), Th1–I1 distance = 3.1205(7), Th1 

to I2 distance = 3.1376(7), Th–Ct(arene) 2.7177(3). 

With 5.3 in hand, reactivity towards Cp* transfer agents was explored. Compound 5.3 and one 

equivalent of MCp* (M = Li, Na, K or MgCl) were stirred in a benzene solution at room temperature. 

After 24 h, crude 1H NMR spectroscopic data revealed the presence of unreacted 5.3, small amounts of 

Th(pMe2O2)2 and Cp*H. Using THF as the solvent had no effect on reactivity nor did alterations in 

temperature and stoichiometry of the reaction.  

Upon heating to 85 °C and addition of excess MCp* (M = Li, Na, K, MgCl), complete consumption of 

5.3 was observed with formation of Th(pMe2O2)2 and peaks corresponding to a new species via 1H 

NMR spectroscopy. EI-MS of crude reaction mixtures also confirmed the presence of a new species 

with an m/z value corresponding to the formulation ThCp*(pMe2O2)I. Unfortunately, isolation of this 

species via fractional crystallisation was unsuccessful, probably due to other by-products present in the 

crude reaction mixture.  

During these endeavours the molecular structure of ThCp*(pMe2O2)(OBuCp*) was obtained from a 

reaction of 5.3 with KCp* in THF (Figure 5.25). Though the data was of poor quality, it was sufficient 
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to confirm connectivity. Isolation of bulk material was unfortunately not possible and thus no other 

spectroscopic or analytical data are available.  

 

Figure 5.25 Molecular structure of ThCp*(pMe2O2)(OBuCp*). Th, green; oxygen, red; carbon, grey. Hydrogens omitted for 

clarity. Ellipsoids not shown due to poor quality of data.  

There are two conceivable pathways for the formation of ThCp*(pMe2O2)(OBuCp*) (Scheme 5.4). 

One possible pathway involves the complex ThCp*(pMe2O2)(OBuI), formed by the activation of THF 

by ThCp*(pMe2O2)I, which then undergoes a salt metathesis reaction with KCp*. An alternative 

pathway is the sterically-induced reduction of THF mediated by ThCp*2(pMe2O2) to generate the 

complex ThCp*(pMe2O2)(OBuCp*). Sterically induced reduction has been documented with bulky tris-

cyclopentadienyl lanthanide and uranium compounds.40,41 As both of these pathways involve the 

activation of THF, substitution for other coordinating solvents may assist efforts towards the synthesis 

of ThCp*(pMe2O2)I. 
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Scheme 5.4 Plausible pathways for the formation of ThCp*(pMe2O2)(OBuCp*). 

In thorium chemistry, DME is often used in place of THF as a solvent in order to avoid activation of 

the latter.38,42 With this in mind, a solution of 5.3 was stirred in thoroughly dried and degassed DME at 

room temperature overnight. 1H NMR spectroscopy revealed the formation of a new species consistent 

with the formulation ThI2(pMe2O2)(DME), plus 0.17 equivalents of pMe2O2H2. It remains unclear as to 

why pMe2O2H2 forms in such significant amounts. Unfortunately again, it was not possible to separate 

and purify ThI2(pMe2O2)(DME) due to its similar solubility with pMe2O2H2.  

As further attempts to replace THF with DME yielded intractable mixtures, our attention was instead 

turned to Et2O, to replace the coordinating THF. Compound 5.3 was stirred in Et2O for 24 hours, 

evacuated to dryness and then the procedure repeated a further two times. 1H NMR spectroscopy 

indicated the formation of a new species consistent with the formulation, ThI2(pMe2O2)(Et2O) 5.4, 

although 0.6 equivalents of unreacted 5.3 were still present. Unfortunately, attempts to remove residual 

5.3 through fractional crystallisation were in vain due to the large amount of co-crystallised 5.3 present 

as these two compounds have similar solubilities. 

Despite this, the molecular structure of ThI2(pMe2O2)(Et2O) was obtained from X-ray suitable crystals 

grown from a saturated Et2O solution at room temperature (Figure 5.26). Structural parameters are 

similar to 5.3. As it was not possible to synthesis 5.4 cleanly, further reactivity studies involving Cp* 

transfer agents were not carried out.  
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Figure 5.26 Molecular structure of 5.4. Thorium, green; iodide, purple; oxygen, red; carbon, grey. Hydrogens omitted for 

clarity and thermal ellipsoids given at 50% probability. Selected structural parameters (Å, deg): Th1–I1 = 3.1249(9), Th–O1 

= 2.145(9), Th–O2 = 2.460(14), Th–Ct(arene) = 2.7063(4).  

5.3.3 Synthesis, Characterisation, and Reactivity of ThI2(pMe2O2)ITMe 

In continual efforts to synthesise an appropriate precursor to ThCp*(pMe2O2)I, a ligand with stronger 

donor properties and lacking oxygen atoms was targeted, as this may provide cleaner reactivity towards 

Cp* transfer agents. NHC ligands have found applications in a variety of research areas due to their 

electron-rich and strong σ-donating nature, in contrast to classical ligands such as phosphines.43 NHC 

complexes of thorium are rare by comparison and only a handful have been reported, all of which 

feature a tethered NHC unit incorporated into anionic ligands.44–49  

Th(L)4 (L = [OCMe2CH2(1-C{NCHCHNiPr})]) (Figure 5.27, left) contains four alkoxy-tethered NHC 

ligands that coordinate around the thorium metal in a square-antiprismatic fashion. Th–C bond lengths 

range from 2.852(6) Å to 2.884(5) Å.44 In 2016, Arnold et al. synthesised the bis(NHC)borate complex, 

Th(BcMes)2I2 (Figure 5.27, right)45 with Th–Ccarbene bond lengths ranging from 2.623(6) to 2.634(6) Å.  
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Figure 5.27 Molecular structures of Th(L)4 (left) and Th(BcMes)2I2 (right). Thorium, green; iodide, purple; oxygen, red; 

nitrogen, blue; boron, yellow; carbon, grey. Thermal ellipsoids, hydrogens and parts of molecular structures deemphasised 

for clarity. Molecular structures are from references 44,45. 

ITMe was chosen for its small size and strongly σ-donating ability in order to substitute the THF ligand 

in 5.3. Reaction of 5.3 with ITMe resulted in the formation of a white suspension (Scheme 5.5) that via 

NMR spectroscopy was consistent with the formulation ThI2(pMe2O2)(ITMe) 5.5. A distinctive 

13Ccarbene shift of 210.2 ppm was observed, in agreement with other Th-NHC complexes.44,45 The 

molecular ion peak of 5.5 was not observed via mass spectrometry analysis. Elemental analysis results 

were consistently low in carbon. This has been previously been observed in other organothorium 

complexes.  

 

Scheme 5.5 Synthesis of ThI2(pMe2O2)(ITMe) 5.5. 

Colourless crystals of 5.5 were obtained by Mr Ryan Brown from a concentrated solution of toluene 

with the molecular structure shown below in Figure 5.28.50 Unsurprisingly, there are similarities 
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between the structure of 5.5 and 5.3 and 5.4 as shown by similar Th–O, Th–I and Th–Ct(arene) 

distances. The Th–C1 distance of 2.625(9) is similar to the Th–C(NHC) distances in Th(BcMes)2I2 

(2.623(6) to 2.634(6) Å)45 and shorter than the distances in Th([OCMe2CH2(1-C{NCHCHNiPr})])4 

(2.852(6) Å to 2.884(5) Å)44. 

 

 

Figure 5.28 Molecular structure of 5.5. Thorium, green; iodine, purple; oxygen, red; nitrogen, blue; carbon, grey. Hydrogen 

atoms omitted for clarity and thermal ellipsoids given at 50% probability. Selected structural parameters (Å): Th1–I1 = 

3.31307(4), Th–O1 = 2.172(4), Th–Ct(arene) = 2.7548(3) and Th–C1 = 2.625(9).  

Unfortunately, 5.5 displayed reactivity towards Cp* transfer agents akin to 5.3. Large amounts of Cp*H 

and unreacted 5.5 were observed in the 1H NMR spectrum of the crude reaction mixture. Reactivity of 

5.3 and 5.5 towards MCp* suggest the iodide ligands may hinder the formation of ThCp*(pMe2O2)I, 

possibly due to undesired solvent activation pathways. Therefore, synthesis of a chloride and THF-free 

analogue of 5.3 was pursued. It was anticipated that chloride ligands may alleviate solvent activation 

issues due to the increased Lewis-acidity of the chloride ligands in comparison to the iodide ligands. 

Also, coordinating DME as opposed to THF may also mitigate solvent activation due to its non-cyclic 

nature.  

ThCl4(DME)2 was reacted with pMe2O2K2 in DME (Scheme 5.6) to give ThCl2(pMe2O2)(DME) 5.6 as 

the major product. The 1H spectrum of the crude reaction mixture revealed that the target complex and 

0.25 equivalents of pMe2O2H2 and 0.13 equivalents of Th(pMe2O2)2 are present. Despite several 
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attempts, purification of 5.6 proved non-trivial therefore 13C{1H} NMR spectroscopy and elemental 

analysis were not attempted.  

 

Scheme 5.6 Synthesis of ThCl2(pMe2O2)(DME) 5.6. 

Single crystals of 5.6 were grown from a saturated benzene solution at room temperature. The Th–Cl 

bond lengths (2.7334(6) and 2.7293(6) Å) are longer that in ThCl4(DME)2 (2.675(1) – 2.697(1) Å)42, 

while the Th–ODME bond lengths (2.579(5) and 2.578(6) Å) are similar to that in ThCl4(DME)2 (2.567(3) 

– 2.616(3) Å)42. The Th–Ct(arene) distance of 2.954(3) Å is remarkably longer than in 5.3 (2.707 Å) 

and 5.5 (2.7548(3) Å). 

 

 

Figure 5.29 Molecular structure of 5.6. Thorium, light green; chloride, dark green; oxygen, red; carbon, grey. Hydrogens 

and residual solvent molecules omitted for clarity and thermal ellipsoids given at 50% probability. Selected structural 

parameters (Å): Th1–Cl1 = 2.7334(6), Th1–Cl2 = 2.7293(6), Th1–O1 = 2.177(6), Th1–O2 = 2.175(6), Th1–O3 = 2.579(5), 

Th1–O4 = 2.578(6), Th–Ct(arene) = 2.954(3). 
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5.3.4 Attempted synthesis of ThCp*(pMe2O2)Cl from ThCp*Cl3 

As outlined in Scheme 5.3, another potential route towards ThCp*(pMe2O2)Cl involves ThCp*Cl3. Our 

group has previously used ThCp*Cl3 as a precursor in the synthesis of ThCp*COTTIPS2Cl so it was 

proposed that this methodology could be applied to ThCp*(pMe2O2)Cl.12 

A THF slurry of pMe2O2K2 was added to a -40 °C THF solution of ThCp*Cl3 over the course of 30 

minutes. The reaction mixture was left to stir overnight, after which time an aliquot was taken and 

analysed by 1H NMR spectroscopy and EI-MS. 1H NMR spectroscopy revealed significant amounts of 

pMe2O2H2 and Th(pMe2O2)2 and small amounts of unassignable peaks. Due to the high quantities of 

undesired side products, isolation of the new products was not pursued. Instead, toluene was used in 

place of THF, but again this gave similar results. One possibility would be to use lithium, sodium or 

even thallium salts of pMe2O2
2- as transfer agents, as potassium salts potentially interfere with salt 

metathesis reactions due to their nucleophilicity. Unfortunately, due to time constraints this was not 

carried out.  

 

5.3.5  Synthesis and Characterisation of Th(pMe2O2)N’’2 5.7 

The pMe2O2 ligand scaffold is an ideal candidate to investigate thorium coordination chemistry and 

arene interactions due to the proximity of the central arene ring to thorium. Silyl-amide ligands such as 

(N’’ = (N(SiMe3)2) are commonly used in inorganic chemistry as they increase the solubility of 

complexes in hydrocarbon solvents, impart crystallinity and increase volatility to aid purification via 

sublimation. Moreover, the 29Si nucleus provides a useful ‘handle’ for NMR spectroscopy. 

The synthesis of 5.7 was achieved by the reaction of 5.3 and two equivalents of KN’’ in C6H6 at room 

temperature. 1H, 13C{1H} and 29Si{1H} NMR spectroscopy indicated 5.7 is C2v-symmetric in solution. 

The expected parent ion was observed in EI mode mass spectrometry with the expected isotope 

envelope. Unfortunately, crystalline samples of 5.7 returned values low for %C. This has previously 

been observed for other silicon rich f-element compounds.51 



134 

 

Single crystals of 5.7 suitable for X-ray diffraction studies were grown from a TBME/hexane solution 

at -35 °C, the molecular structure of which is shown below in Figure 5.30. The thorium metal centre is 

in a pseudo-tetrahedral geometry. Complex 5.7 features a Th–Ct(arene) distance of 2.91891(18) Å, ca 

0.2 Å longer compared to 5.3 (2.7177(3) Å) and 5.7 (2.7548(3) Å).  

The Th–N bond distance of 2.326(4) Å is slightly longer than that in ThN’’3Cl (2.2923(17) Å),52 

possibly caused by the increased steric bulk of the pMe2O2 ligand. In 5.7 the Th–O bond length 

(2.207(3) Å) is slightly longer than 5.3 and 5.5. The O–Th–O angle of 162.45(19)° is more acute than 

in 5.3 (176°(average)). 

 

Figure 5.30 Grown molecular structure of 5.7 shown, image on left drawn as ball and stick model with no labels for clarity. 

Methyl groups of the N’’ are omitted for clarity on the image on the right. Thermal ellipsoids are given at 50% probability. 

Thorium, green; oxygen, red; nitrogen, blue; silicon, orange; oxygen, red; carbon, grey. Hydrogens omitted for clarity. 

Selected structural parameters (Å, °): Th1–O1 = 2.207(3), Th1–N1 = 2.326(4), Th–Ct(arene) = 2.91891(18), O1–Th1–O1 = 

162.45(19), N1–Th–N1 = 118.80(19).  

Compound 5.7 was reacted with TMSCl with the aim of synthesising the base-free dichloride complex 

ThCl2(pMe2O2). Unfortunately, 1H NMR spectroscopic data indicated no reaction had occurred between 

a C6D6 solution of 5.7 and one equivalent of TMSCl, even when heated to 85 °C overnight.  

5.3.6 Synthesis and characterisation of Th(pMe2O2)Bz2 5.8 

Organothorium complexes have been earmarked for potential use in organic synthesis and catalysis. 

For example, thorium-alkyl complexes in particular are used as catalysts for the polymerisation of cyclic 

esters.53–55  



135 

 

Benzyl complexes of thorium are easily prepared by salt metathesis from KBz (potassium benzyl) and 

an appropriate thorium halide complex such as ThCp2
2tBuCl2, as shown by Ren et al..56 A benzene slurry 

of 5.3 and two equivalents of KBz was vigorously stirred for 24 h to yield Th(pMe2O2)Bz2 (5.8). 1H 

and 13C{1H} NMR spectroscopy indicated 5.8 is both Bz ligands and all four protons in the central arene 

are ring equivalent. Unfortunately, the molecular ion of 5.8 was not observed in EI-MS. Elemental 

analysis results consistently returned low values for carbon despite the samples being pure by 1H NMR 

spectroscopy. Single crystals of 5.8 suitable for X-ray diffraction studies were grown from a TBME 

(tert-butyl methyl ether) solution layered with hexane, the molecular structure of which is shown below 

in Figure 5.31. 

 

Figure 5.31 Molecular structure of 5.8. Thorium, green; oxygen, red; carbon, grey. Hydrogens omitted for clarity. 50% 

thermal ellipsoids shown. Selected structural parameters (Å, °): Th1–C1 = 2.544(4), Th1–C8 = 2.547(5), Th1–O1 = 

2.194(3), Th1–O2 = 2.190(3), Th1–Ct(arene) = 2.75971(16), Th1–C1 = 2.544(4), Th1–C2 = 2.960(4), Th1–C8 = 2.547(5), 

Th1–C9 = 2.840(4), Th1–C10 = 3.024(4), C1–Th–C8 = 123.72(15), Th1–C1–C2 = 91.1(3), Th1–C8–C9 = 86.1(3), O1–Th1–

O = 171.86(11). 

The two benzyl ligands in 5.8 are coordinated in a η3 and η2 fashion and the Th1–C1–C2 and Th1–C8–

C9 angles of 91.1(3)° and 86.1(3)° are more acute than in ThCp2
2tBuBz2 (129.3(2) and 134.6(2) Å)56, 

due to the pMe2O2 scaffold of 5.8. Th1–C1 and Th1–C8 distances of 2.544(4) and 2.547(8) Å are 

comparable to ThCp2
2tBuBz2.56 Complex 5.8 features a Th1–Ct(arene) distance of 2.75971(16) Å, similar 

to 5.3 and 5.5, yet shorter than 6.3. 

With complex 5.8 in hand, reactivity towards small molecules was investigated in collaboration with 

Mr Ryan Brown. A C6D6 solution of 5.8 was exposed to 1 bar of H2.57 After 12 h, a peak at 17.98 ppm 
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was observed in the 1H NMR spectrum, possibly suggesting the formation of a hydride complex.18,58 

The formation of toluene and the consumption of 5.8 was observed after 3 d. Unfortunately, the hydride 

species was also consumed after 3 d. Formation of a hydride species is assumed to form via a sigma-

bond metathesis pathway.  

Attempts to optimise reaction conditions and increase the yield of the hydride species failed. Further 

addition of more H2 and leaving the reaction mixture to stir for a longer period of time resulted in the 

formation of significant amounts of 5.1 and toluene. In an attempt to access the transient hydride 

compound via another synthetic route, 5.3 was reacted with KH d8-THF. As can be seen in Figure 5.32, 

the highlighted section of the downfield section of the 1H NMR spectrum is complex. Unfortunately, 

5.1 was again the major product (> 90%).  

 

Figure 5.32 1H NMR spectrum of reaction between 5.3 and excess KH in d8-THF. 

Exposure of 5.7 to 13CO2 resulted in the formation of a significant amount of Th(pMe2O2)2 plus a new 

species, as observed by 1H NMR spectroscopy. The 13C{1H} NMR spectrum displayed a peak at 167.23 

ppm, consistent with a thorium benzyl-carboxylate species.12 Only the parent ion peak for Th(pMe2O2)2 

was present in the EI-MS data. Unfortunately, it was not possible to isolate any new complexes via 

crystallisation.  

5.4 Conclusions 

In section 5.2 the synthesis and characterisation of homoleptic 5.1 was described which was 

subsequently reduced to 5.2. Compound 5.2 features a δ bonding SOMO involving the thorium metal 

centre and the adjacent arene ring as indicated by EPR and DFT studies. Voltammograms of 5.1 and 

5.2 show that both complexes feature a process at ca -2.90 V vs FeCp2
+/0. In section 5.2.3 The first 
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measured values for the ThIV/ThIII redox couple in organometallic complexes using cyclic voltammetry 

was reported. These studies indicate the thorium centre is highly reducing and that reduction potentials 

range from -2.92 to -3.29 V vs FeCp2
+/0 and to the best of our knowledge this is the first example of 

such an investigation using CV. 

In section 5.3 the synthesis and characterisation of six new thorium-pMe2O2 compounds was described. 

These complexes were characterised by NMR spectroscopy, single crystal XRD studies and in some 

cases EA and EI-MS. Unfortunately, attempted synthesis of ThCp*(pMe2O2)X (X = Cl or I) or 

precursors towards ThCp*(pMe2O2) were unsuccessful.  
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Experimental Details for Chapter Five 

Synthesis of Th(pMe2O2)2 5.1 

Et2O (30 mL) was added to a mixture ThBr4(THF)4 (1.566 g, 1.86 mmol) and pMe2O2K2 (1.809 g, 3.73 

mmol) in a Schlenk flask. The mixture was allowed to warm to room temperature and stirred for 20 h. 

The solvent was removed in vacuo and the product extracted in toluene (3 x 25 mL) and filtered over 

Celite®. The solvent was removed to yield 1 as a white powder (1.64 g, 85%).  

1H NMR (399.5 MHz, d6-benzene/drop of d8-THF, 303 K): δH 7.82 (d, JHH = 7.82 Hz, 4H, Ar-H), 7.46 

(d, JHH = 7.45 Hz, 4H, Ar-H), 7.12 (s, 4H, Ar-H), 6.99 (s, 4H, Ar-H), 2.32 (s, 12H, Ar-CH3), 2.16 (s, 

12H, Ar-CH3), 1.61 (s, 12H, C-CH3), 1.42 (s, 12H, C-CH3).  

13C{1H} NMR (125.7 MHz, d6-benzene, 303 K): δC 159.9 (Ar C), 149.3 (Ar C), 134.0 (Ar C), 130.1 

(Ar C), 129.6 (Ar C), 127.5 (Ar C-H), 126.6 ((Ar C), 124.4 (Ar C-H), 41.4 (C(CH3)2), 32.2 (Ar-CH3), 

27.7 (Ar-CH3), 20.9 (C(CH3)2), 18.0 (C(CH3)2).  

Analysis calculated (found) for C56H64O4Th.(Toluene)0.7: % C 66.64 (66.56), H, 6.39 (6.48). 

Synthesis of [K(2.2.2-cryptand)][Th(pMe2O2)2] 5.2 

To an ampoule containing 1 (100 mg, 0.0967 mmol), 2.2.2-cryptand (36.5 mg, 0.0969 mmol) and a 

glass-coated stirrer bar was added THF (1 mL). K/Hg (0.4% K, 1.233 g, 0.114 mmol, 1.17 eq.) was 

added and the mixture stirred for 1 hour upon which time a red solution had formed. The solution was 

filtered and dried in vacuo. Et2O (0.7 mL) was added to the residues followed by THF (7 drops). This 

was followed by immediate deposition of large red crystals which were washed with toluene (3 x 3 mL) 

and Et2O and dried. The compound was recrystallised a further three times in a similar manner.  

Unable to assign 1H NMR spectroscopic data due to the paramagnetic nature of the complex. 

Analysis calculated (found) for C74H100KN2O10Th: % C 61.350 (60.899), H, 6.957 (6.790), N, 

1.934 (1.742).  
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Synthesis of ThI2(pMe2O2)THF 5.3 

An ampoule was charged with ThI3(OBuI)(THF)3 (4.066 g, 3.96 mmol), pMe2O2K2(Et2O)0.207 

(1.594 g, 3.23 mmol), benzene (30 mL) and heated at 75 °C for 3 days. The crude reaction 

mixture was extracted with hot toluene (4 x 30 mL), filtered through Celite®, followed by 

removal of all volatiles to yield the title compound as an off-white powder (3.117 g, 98.5%). 

Single crystals suitable for X-ray diffraction were grown from a saturated THF solution at -35 

°C.  

1H NMR (399.5 MHz, d6-benzene, 303 K): δH 7.60 (s, 4H, Ar-H), 7.06 (s, 2H, Ar-H), 6.93 (s, 

2H, Ar-H), 4.28 (s, 4H, THF-H), 2.44 (s, 6H, Ar-Me), 2.31 (s, 6H, Ar-Me), 1.48 (s, 12H, 

C(CH3)2), 1.26 (s, 4H, THF-H). 

13C {1H} NMR (125.7 MHz, d6-benzene, 303 K): δC 158.16 (Ar-C), 153.11 (Ar-C), 133.27 

(Ar-C), 131.82 (Ar-CH), 130.92 (Ar-CH), 129.39 (Ar-C), 127.87, 127.41 (Ar-C), 124.44 (Ar-

CH), 75.18 (THF-CH2), 42.11(C(CH3)2, 30.53 (CH3), 24.66 (THF-CH2) , 21.29 (CH3), 18.88 

(CH3). 

EI-MS: Molecular ion not observed, only Th(pMe2O2)2 was observed in the mass spectrum.  

Analysis calculated (found) for C32H40I2O3Th: % C 40.10 (40.25), H, 4.21 (4.29).  

Attempted synthesis of ThI2(pMe2O2)Et2O 5.4 

An ampoule was charged with 5.3 (300 mg, 0.306 mmol, Et2O (50 mL) and stirred for 24 h. The 

resulting white suspension was evacuated to dryness and this procedure repeated a further two times. 

The white suspension was extracted in Et2O (20 mL), filtered and stored at -35 °C. The molecular 

structure of 5.4 was obtained form this batch of crystals though unfortunately 1H NMR analysis 

revealed the presence of ca 1.5 equivalents of 5.1. 
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1H NMR (399.5 MHz, d6-benzene, 303 K): δH 7.57 (s, 2H, Ar–H), 7.13 (s, 4H, Ar–H), 6.83 (s, 2H, 

Ar–H), 4.23 (s, 4H, Et2O), 2.55 (s, 6H, Ar–CH3), 2.27 (s, 6H, Ar–CH3), 1.52 (s, 12H, C(CH3)2), 1.02 

(s, 6H). 

Synthesis of ThI2(pMe2O2)ITMe 5.5 

ThI2(pMe2O2)THF (308 mg, 314 mmol), ITMe (41 mg, 0.333 mmol) and toluene (30 mL) were 

added to an ampoule and stirred for 1 h after which time the crude reaction mixture was filtered 

and pumped to dryness. The reaction mixture was washed with pentane (3 x 1 mL) and dried 

for 1 h under vacuum. Crystals were obtained from a saturated toluene solution.  

1H NMR (399.5 MHz, d6-benzene, 303 K): δH 7.74 (s, 4H, Ar-H), 6.98 (s, 2H, Ar-H), 3.76 (s, 

6H, IT-CH3), 2.55 (s, 6H, Ar-CH3), 2.37 (s, 6H, Ar-CH3), 1.65 (s, 12H, C(CH3)2), 1.11 (s, 

6H, IT-CH3). 

13C {1H} NMR (125.7 MHz, d6-benzene, 303 K): δC 210.24 (carbene), 158.49, 152.26, 

133.97, 131.56, 130.97, 129.09, 127.64, 124.97, 124.52, 42.25, 38.34, 30.79, 21.29, 18.62, 

8.08. 

Elemental analysis results consistently returned low carbon values.  

Synthesis of ThCl2(pMe2O2)DME 5.6 

An ampoule was charged with ThCl4(DME)4 (0.325 mg, 0.443 mmol), pMe2O2K2(Et2O)0.207 

(0.242 g, 0.489 mmol), DME (30 mL) and stirred for 3 days. The crude reaction mixture was 

extracted with benzene (4 x 30 mL), filtered through Celite®, followed by removal of all 

volatiles to yield the title compound as an off-white powder.  

1H NMR (399.5 MHz, d6-benzene, 303 K): δH 7.60 (s, 4H, Ar-H), 7.06 (s, 2H, Ar-H), 6.93 (s, 

2H, Ar-H), 4.28 (s, 4H, THF-H), 2.44 (s, 6H, Ar-Me), 2.31 (s, 6H, Ar-Me), 1.48 (s, 12H, 

C(CH3)2), 1.26 (s, 4H, THF-H). 
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Synthesis of ThI2(pMe2O2)N’’2 5.7 

ThI2(pMe2O2)THF(toluene)0.227 (300 mg, 0.306 mmol), KN’’ (122 mg, 0.613 mmol) and toluene (10 

mL) were added to an ampoule and stirred overnight. The reaction mixture was pumped to dryness, 

extracted with hexane (30 mL), filtered and dried in vacuo to give an off-white oil. The oil was triturated 

with TMS (5 mL) and pumped to dryness to give an off-white powder (137 mg, 47%).  

1H NMR (499.9 MHz, d8-toluene, 303 K): δH 7.37 (s, 4H, Ar-H), 7.16 (s, 2H,Ar-H), 6.92 (s, 

2H, Ar-H), 2.45 (s, 6H, Ar-CH3), 2.28 (s, 6H, Ar-CH3), 1.53 (s, 12H, C(CH3)2), 0.33 (s, 36H, 

Si-CH3). 

13C{1H} NMR (125.7 MHz, d8-toluene, 303 K): δC 160.28 (Ar-C), 135.77 (Ar-C), 131.27 (Ar-

CH),128.22 (Ar-CH), 125.46 (Ar-CH), 42.17 (CH3), 31.75 (CH3), 5.64 (CH3), 3.04 (CH3). Several 

peaks are covered by solvent.  

29Si{1H} NMR (79.4 MHz, d8-toluene, 303 K): δSi -9.38.  

MS (EI)+: m/z 402 (M+). 

Several batches of this compound were sent for combustion analysis and all results returned low carbon 

values, consistent with thorium carbide formation.  

Synthesis of ThI2(pMe2O2)Bz2 5.8 

ThI2(pMe2O2)THF(toluene)0.227 (300 mg, 0.306 mmol), benzyl potassium (80.7 mg, 0.621 mmol) and 

toluene (8 mL) were added to an ampoule and stirred vigorously overnight by which time a yellow 

solution with white precipitate had formed. The crude reaction mixture was filtered and evacuated to 

dryness. The resulting yellow residue was extracted in TBME (5 mL), filtered to remove white solids, 

reduced to 1 mL and layered with hexane (3 mL). 3 d later large yellow crystals were deposited, the 

mother liquor was removed and the material washed with hexane (1 mL) to give the title compound 

(103 mg, 41%).  
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1H NMR (499.9 MHz, d6-benzene, 303 K): δH 7.14 (s, 2H, H-ArO), 7.07 (t, 4H, Hpara-Ar(Bz)), 

7.00 (s, 4H, H-Ar(central)), 6.93 (s, 2H, H-ArO), 6.83 (d, 4H, Hortho-Ar(Bz)), 6.67 (t, 2H, Hmeta-Ar(Bz) 

), 2.34 (s, 6H, CH3-ArO), 2.32 (s, 6H, CH3-ArO), 2.03 (s, 4H, CH2Bz), 1.33 (s, 12H, C(CH3)2). 

 

13C {1H} NMR (125.7 MHz, d6-benzene, 303 K): δC 158.44(Ar C), 152.84 (Ar C), 149.41 (Ar C), 

133.57 (Ar C), 131.65 (Ar CH/CH3), 130.97 (Ar CH/CH3), 128.87 (Ar CH/CH3), 128.24 (Ar C) 

127.27 (Ar C), 125.28 (Ar CH/CH3), 124.26 (Ar CH/CH3), 121.00 (Ar CH/CH3), 75.54 (CH2-Ar), 

42.08 (C(CH3)2) , 30.77 (CH3), 21.23 (CH3), 18.25 (CH3). 

EI-MS: molecular ion peak not seen due to thermal instability. 

Anal. Calcd for C42H46O2Th: C, 61.907; H, 5.690. Found: C, 58.489; H, 5.711. This is an 

average from two samples (each ran twice) which were independently synthesized and 

spectroscopically pure prior to sample submission. The results obtained don’t agree with 

spectroscopic evidence. We postulate low value for C content is due to thorium carbide 

formation as seen in other carbon rich thorium complexes.5 

Cyclic Voltammetry Studies 

ThCpTMS2
3Cl,4 ThCpTMS2,4 ThCOTTBDMS2

2
5 and ThCpMe4H

3Br7 were prepared using standard literature 

procedures. Samples of [ThCOTTBDMS2
2][K(DME)2]1 and ThCOTTIPS2Cp*Cl12 have been previously 

synthesised in our group.  
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Table S1 Electrochemical parameters for ThCpTMS2
3Cl in 0.05 M [nBu4N][B(C6F5)4] / THF, scan rate 200 mV s-1. 

 Process I Process II 

Epa / V vs FeCp2
+/0 - -1.52 

Epc / V vs FeCp2
+/0 -3.04 - 

E1/2 / V vs FeCp2
+/0 - - 

ΔEpp / mV - - 

ipa / µA - 8 

ipc / µA 110 - 

| ipa/ipc | - - 

ΔEpp = | Epc - Epa | 

 

 

Table S2 Electrochemical parameters for ThCOTTBDMS2
2 in 0.05 M [nBu4N][B(C6F5)4] / THF, scan rate 200 mV s-1 

 Process I Process II Process III 

Epa / V vs FeCp2
+/0 - -2.47 -1.85 

Epc / V vs FeCp2
+/0 -2.954 - - 

E1/2 / V vs FeCp2
+/0 - - - 

ΔEpp / mV - - - 

ipa / µA - 63 91 

ipc / µA 42 - - 

| ipa/ipc | - - - 

 ΔEpp = | Epc - Epa | 
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Table S3 Electrochemical parameters for ThCpTMS2
3Cl in THF / 0.05 M [nBu4][BPh4]. 

 Process I Process II 

Epa / V vs FeCp2
+/0 -2.85 -1.41 

Epc / V vs FeCp2
+/0 -3.00 - 

E1/2 / V vs FeCp2
+/0 -2.92 - 

ΔEpp / mV 150 - 

ipa / µA 8 5 

ipc / µA 9 - 

| ipa/ipc | 0.80 - 

ΔEpp = | Epc - Epa | 

 

Table S4 Table of parameters for variable scan rate studies of process I in ThCpTMS2
3Cl. 

v / mV s-1 Epa ipa Epc ipc |ipa/ipc| v1/2 ΔEpp 

50 -2285 3 -2403 -8 0.343 7.071 -118 

100 -2285 5 -2413 -10 0.495 10.000 -128 

150 -2258 6 -2411 -12 0.492 12.247 -153 

200 -2265 7 -2424 -13 0.528 14.142 -159 

250 -2259 8 -2433 -16 0.519 15.811 -174 

300 -2249 10 -2425 -15 0.670 17.321 -176 

400 -2245 12 -2432 -17 0.692 20.000 -187 

500 -2235 13 -2441 -19 0.718 22.361 -206 

752 -2228 15 -2455 -20 0.757 27.423 -227 

1000 -2237 18 -2469 -24 0.747 31.623 -232 
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Table S5: Electrochemical parameters for ThCpTMS2
3 in THF / 0.05 M [nBu4N][BPh4]. 

 Process I Process II 

Epa / V vs FeCp2
+/0 -2.86 -1.45 

Epc / V vs FeCp2
+/0 -3.03 - 

E1/2 / V vs FeCp2
+/0 -2.95 - 

ΔEpp / mV 170 - 

ipa / µA 27 41 

ipc / µA 30 - 

| ipa/ipc | 0.90 - 

ΔEpp = | Epc - Epa | 

 

Large broad cathodic current response more negative than process I was observed in survey scans of 

ThCpTMS2
3, we postulate this is due to decomposition of ThCpTMS2

3 to Th(0) and Th(IV) species.  

 

Table S6 Electrochemical parameters for ThCOTTBDMS2
2 in THF / 0.05 M [nBu4][BPh4]. 

 Process I Process II Process III Process IV 

Epa / V vs FeCp2
+/0 -3.06 -2.20 -0.88 0.724 

Epc / V vs FeCp2
+/0 -3.35 -   

E1/2 / V vs FeCp2
+/0 -3.21 -   

ΔEpp / mV 290 -   

ipa / µA 61 18 4 3 

ipc / µA 62 -   

| ipa/ipc | 0.98 -   

ΔEpp = | Epc - Epa | 
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Table S7 Electrochemical parameters for ThCpMe4H
3Br in THF / 0.05 M [nBu4][BPh4]. 

 Process I Process II Process III Process IV 

Epa / V vs FeCp2
+/0 -3.16 -1.95 -1.44 -0.60 

Epc / V vs FeCp2
+/0 -3.35 - - - 

E1/2 / V vs FeCp2
+/0 -3.23 - - - 

ΔEpp / mV 190 - - - 

ipa / µA 20 1.1 2 1.4 

ipc / µA 146 - - - 

| ipa/ipc | 0.14 - - - 

     

ΔEpp = | Epc - Epa | 

 

Table S8 Electrochemical parameters for ThCOTTIPS2Cp*Cl in THF / 0.05 M [nBu4N][BPh4]. 

 Process I Process II 

Epa / V vs FeCp2
+/0 -3.16 -1.49 

Epc / V vs FeCp2
+/0 -3.42 - 

E1/2 / V vs FeCp2
+/0 -3.29 - 

ΔEpp / mV 260 - 

ipa / µA 108 15 

ipc / µA 138 - 

| ipa/ipc | 0.79 - 

 ΔEpp = | Epc - Epa | 
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Appendix One: Experimental Details 
 

A1.1 General procedures and techniques 

All manipulations were carried out in an MBraun glovebox under N2 or Ar ( O2 and H2O < 1 ppm) or 

by using standard Schlenk techniques under Ar (BOC Pureshield) passed through a column containing 

BASF R3-11(G) catalyst and activated molecular sieves (4 Å). All glassware was dried at 160 °C 

overnight before use. Celite® was pre-dried in a 270 °C oven and flame dried under dynamic vacuum 

(<2 x 10-2 mbar) or heated at 180 °C overnight under dynamic vacuum (< 10 x 10-1 mbar) and stored in 

an Ar-filled glovebox before use. Filter cannulas were made using Whatman® 25 mm glass microfibre 

filters and were pre-dried at 160 °C. 

A1.2 Purification of solvents 

Solvents were pre-dried over sodium wire. Toluene, benzene, DME, TBME, iPr2O and THF were dried 

over molten K for a minimum of 3 days and distilled under an N2 atmosphere and stored over activated 

molecular sieves (with the exception of toluene and benzene which were stored over a potassium 

mirror). Pentane and Et2O were dried over NaK for a minimum of 3 days, distilled under an N2 

atmosphere and stored in a Young ampoule over a potassium mirror. Methylcyclohexane and SiMe4 

was dried over NaK, distilled under Ar and stored over activated molecular sieves (4 Å) in a Ar-filled 

glovebox. Deuterated solvents were degassed by three freeze-pump-thaw cycles, dried by refluxing 

over K for 3 days, vacuum distilled and stored in a glovebox. 

A1.3 Preparation of reagents 

The following reagents were prepared according to the literature procedures: K2PentTIPS2,1 UI3,2 KTpMe2, 

3, ThCl4(DME)4,4 KCp* (synthesised by deprotonating HCp* with KNTMS2).5 

K2COTTMS2, K2COTTIPS2, PhNNPh, K/Hg, ThI3OBuI(THF)3, ITMe, KBz, KH CS2, [
nBu4N][B(C6F5)4], 

NaCp*, MgClCp* and LiCp* were kindly donated. 13CS2 was purchased without purification and used. 

The following chemicals were purified following their purchase: nBuli (filtered over Celite then 

titrated), KNTMS2 (recrystallized from toluene), K and Na metal (washed with pentane and oxide layer 
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removed in glove box), 2.2.2-cryptand (dried overnight in vacuo) , COT (stored in the dark over 4 Å 

molecular sieves and degassed before use) and [nBu4N][BPh4] (dried overnight in vacuo). Isotopically 

enriched gases (13CO, 13CO2) were supplied by Cambridge Isotope Laboratories Inc., and used without 

further purification. Cylinders of 12CO2 (100.00%) and H2 (99.999%) were supplied by BOC gases and 

used as supplied. 13CS2 

A1.4  Instrumentation 

A1.4.1 NMR spectroscopy 

NMR spectra were either recorded on a Varian VNMRS 400 spectrometer operating at 399.49 MHz 

(1H), 128.17 MHz (11B) 79.35 MHz (29Si) and 100.45 MHz (13C) or on a Varian VNMRS 500 MHz 

spectrometer operating at 499.91 MHz (1H) and 125.72 MHz (13C). The spectra were referenced 

internally to the residual protic solvent or the signals of the solvent (13C). 29Si NMR spectra were 

referenced externally to SiMe4 and 11B referenced externally to BF3.Et2O. All spectra were recorded at 

303 K unless stated otherwise. 

A1.4.2 Mass spectrometry 

EI-MS mass spectra were recorded on a VG-Autospec Fisions (electron ionisation at 70 eV) instrument 

at the University of Sussex. 

A1.4.2 Cyclic voltammetry 

Cyclic voltammetry studies were performed in an Ar glovebox using a BASi-Epsilon potentiostat under 

computer control. IR drop was compensated using the feedback method. CV experiments were 

performed using the three electrode method with glassy carbon disk (7.0 mm2) as the working electrode, 

Pt wire as the counter electrode and Ag wire as the pseudoreference electrode. Sample solutions were 

prepared by dissolving the appropriate supporting electrolyte in 2 mL of solvent followed by addition 

of the analyte to give a concentration of ca 5mM. The reported half potentials are referenced to FeCp2
+/0 

redox couple, which was measured by adding ferrocene (ca 1mg) to the sample solution. 
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A1.4.3 Elemental analysis 

Elemental analyses were performed at the School of Chemistry at University of Bristol or Mr Stephen 

Boyer of London Metropolitan University.  

A1.4.4 X-ray crystallography 

Data sets were collected on an Agilent Gemini Ultra diffractometer with an Enhance source (Mo Kα or 

Cu Kα) equipped with an Eos CCD area detector and an Oxford Cryosystems low-temperature device 

(173 K), operating in ω scanning mode with ψ and ω scans to fill the Ewald sphere. The program used 

for control, integration, and absorption correction was CrysalisPro.6 The crystals were mounted on glass 

fibers or MiTiGen loops with vacuum oil. All solutions and refinements were performed using the 

OLEX2 package.7 The author solved all of the datasets apart from where it is mentioned in the text. The 

author also received assistance from Dr N. Tsoureas (disorder in 4.1, 4.4) and Dr M.S Roe (thorium 

atom disorder in 5.2). All non-hydrogen atoms were refined using anisotropic thermal parameters, and 

hydrogens were added using a riding model. Single-crystal XRD data for 3.4 were collected by the UK 

National Crystallographic Service (NCS) at the University of Southampton8 on a Rigaku FR-E+ Ultra 

High Flux diffractometer (Mo Kα) equipped with VariMax VHF optics and a Saturn 724+ CCD area 

detector. The data were collected at 100 or 150 K using an Oxford Cryostreams Cobra low-temperature 

device. An empirical absorption correction was carried out using the MULTI-SCAN program. Data 

collected by the NCS were processed using CrysAlisPro, and unit cell data parameters were refined 

against all data. 

A1.4.5  EPR spectroscopy 

EPR spectroscopy was carried out by Dr F. Tuna and Ms. L.E. Nodaraki with the assistance of Dr F. 

Ortu at the EPSRC National UK EPR Facility and Service at the University of Manchester. X-band 

EPR measurements were performed using a Bruker E580 ELEXSYS spectrometer and simulated with 

the XSophe suite.9 
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A1.4.6 IR spectroscopy 

IR spectra were recorded using a Mettler-Toledo ReactIR system featuring an IR probe inside a gas-

tight cell attached to a Toepler pump. IR spectra were also recorded on a Perkin-Elmer 1600 Fourier 

Transform spectrometer. Samples were prepared in a glove box as a thin film between NaCl plates.  

A1.5 Computational Details 

Unrestricted density functional calculations were carried out using the ADF program suite 

version 2016.107.10 The Slater-type orbital (STO) basis sets were of triple-ζ quality augmented 

with a one polarization function (ADF basis TZP). Core electrons were frozen (C, O 1s; Th 4f) 

in our model of the electronic configuration for each atom. The local density approximation 

(LDA) by Vosko, Wilk and Nusair (VWN)11 was used together with the exchange correlation 

corrections of Becke and Perdew (BP86).12,13 Scalar relativistic corrections were made using 

ZORA. Optimized geometries were ascertained as local mimima via frequency calculations. 

The g-tensor and the nuclear magnetic dipole hyperfine interaction (A-tensor) were calculated 

using a spin-orbit coupled spin unrestricted relativistic ZORA calculation.14,15 
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Appendix Two: Crystallographic Information 

Identification code UTpMe2COTTMS2 (2.1) (CJI1066)  UTpMe2PentTips2Cl (2.5) CJI219 pMe2O2H2 (3.1)  

Empirical formula C29H46BN6Si2U C41H61BClN6Si2U C17H20O 

Formula weight 783.74 978.42 240.33 

Temperature/K 173(2) 173(2) 173 

Crystal system orthorhombic triclinic monoclinic 

Space group Pbca P-1 I2/c 

a/Å 10.5992(4) 10.4912(3) 12.2074(3) 

b/Å 24.6462(10) 13.6484(5) 10.8875(3) 

c/Å 25.4849(8) 18.6544(7) 21.4159(7) 

α/° 90 71.230(4) 90 

β/° 90 75.911(3) 93.108(3) 

γ/° 90 72.842(3) 90 

Volume/Å3 6657.4(4) 2383.71(17) 2842.17(14) 

Z 8 2 8 

ρcalcg/cm3 1.564 1.363 1.123 

μ/mm-1 4.976 10.822 0.519 

F(000) 3096.0 982.0 1040.0 

Crystal size/mm3 ? × ? × ? 0.3 × 0.1 × 0.05 0.42 × 0.38 × 0.1 

Radiation MoKα (λ = 0.71073) CuKα (λ = 1.54184) CuKα (λ = 1.54184) 

2Θ range for data collection/° 6.476 to 54.966 7.04 to 143.182 8.27 to 144.294 

Index ranges -13 ≤ h ≤ 13, -31 ≤ k ≤ 32, -33 ≤ l ≤ 32 -12 ≤ h ≤ 12, -15 ≤ k ≤ 16, -22 ≤ l ≤ 21 -14 ≤ h ≤ 9, -13 ≤ k ≤ 13, -25 ≤ l ≤ 26 

Reflections collected 31520 17909 8919 

Independent reflections 7472 [Rint = 0.1238, Rsigma = 0.1486] 9089 [Rint = 0.0523, Rsigma = 0.0688] 2755 [Rint = 0.0322, Rsigma = 0.0284] 

Data/restraints/parameters 7472/516/395 9089/0/485 2755/84/184 

Goodness-of-fit on F2 1.196 0.780 1.064 

Final R indexes [I>=2σ (I)] R1 = 0.0892, wR2 = 0.2311 R1 = 0.0363, wR2 = 0.1021 R1 = 0.0457, wR2 = 0.1305 

Final R indexes [all data] R1 = 0.1474, wR2 = 0.2564 R1 = 0.0422, wR2 = 0.1062 R1 = 0.0483, wR2 = 0.1339 

Largest diff. peak/hole / e Å-3 1.80/-1.69 1.16/-1.90 0.22/-0.21 

 



155 

 

 

Identification code UCp*(pMe2O2) (3.3) [{ UCp*(pMe2O2)}2CO3] (3.4) [{ UCp*(pMe2O2)}2C2O4](3.5) 

Empirical formula C38H47O2U C38.5H47O3.5U C78H94O8U2 

Formula weight 773.78 803.79 1635.59 

Temperature/K 173(2) 173 100.15 

Crystal system orthorhombic tetragonal triclinic 

Space group P212121 P-4 P-1 

a/Å 16.74311(19) 16.7904(4) 12.2345(7) 

b/Å 17.08611(18) 16.7904(4) 14.6878(10) 

c/Å 25.4469(3) 12.4156(5) 20.2521(14) 

α/° 90 90 68.893(6) 

β/° 90 90 89.659(5) 

γ/° 90 90 76.512(5) 

Volume/Å3 7279.71(14) 3500.2(2) 3289.2(4) 

Z 8 4 2 

ρcalcg/cm3 1.412 1.525 1.651 

μ/mm-1 12.754 13.320 4.975 

F(000) 3064.0 1592.0 1620.0 

Crystal size/mm3 ? × ? × ? 0.46 × 0.21 × 0.16 0.08 × 0.07 × 0.06 

Radiation CuKα (λ = 1.54184) CuKα (λ = 1.54184) MoKα (λ = 0.71075) 

2Θ range for data collection/° 7.392 to 138.254 5.264 to 144.034 4.358 to 54.994 

Index ranges -13 ≤ h ≤ 20, -18 ≤ k ≤ 20, -30 ≤ l ≤ 30 -18 ≤ h ≤ 20, -16 ≤ k ≤ 20, -11 ≤ l ≤ 14 -15 ≤ h ≤ 15, -19 ≤ k ≤ 18, -26 ≤ l ≤ 26 

Reflections collected 52545 11255 42086 

Independent reflections 13500 [Rint = 0.0606, Rsigma = 0.0544] 6469 [Rint = 0.0501, Rsigma = 0.0666] 15081 [Rint = 0.1136, Rsigma = 0.1641] 

Data/restraints/parameters 13500/0/765 6469/10/399 15081/6/819 

Goodness-of-fit on F2 1.061 1.057 0.978 

Final R indexes [I>=2σ (I)] R1 = 0.0497, wR2 = 0.1353 R1 = 0.0360, wR2 = 0.0927 R1 = 0.0677, wR2 = 0.1237 

Final R indexes [all data] R1 = 0.0575, wR2 = 0.1428 R1 = 0.0370, wR2 = 0.0937 R1 = 0.1392, wR2 = 0.1477 

Largest diff. peak/hole / e Å-3 2.71/-1.74 1.53/-2.27 2.35/-2.11 
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Identification code [{ UCp*(pMe2O2)}2CS2] (4.1) CJI279 [{UCp*(pMe2O2)}2CS2H] (4.1) CJI482-2 [{UCp*(pMe2O2)}2OSCCS] 4.4 CJI578 

Empirical formula C84H94O4S2U2 C39H47O2S2U C87H97O5S2U2 

Formula weight 1707.87 849.91 1762.82 

Temperature/K 173.15 173 173(2) 

Crystal system orthorhombic monoclinic triclinic 

Space group Pbca P21/c P-1 

a/Å 14.4443(2) 9.3301(3) 13.0928(8) 

b/Å 28.7119(5) 20.7632(5) 13.8896(8) 

c/Å 35.2879(5) 18.4239(5) 22.3563(10) 

α/° 90 90 103.164(4) 

β/° 90 103.075(3) 97.641(5) 

γ/° 90 90 100.935(5) 

Volume/Å3 14634.7(4) 3476.60(17) 3820.3(4) 

Z 8 4 2 

ρcalcg/cm3 1.5502 1.624 1.532 

μ/mm-1 13.273 14.507 12.740 

F(000) 6707.7 1684.0 1750.0 

Crystal size/mm3 0.2 × 0.2 × 0.08 0.1 × 0.1 × 0.001 0.070 × 0.050 × 0.020 

Radiation Cu Kα (λ = 1.54184) CuKα (λ = 1.54184) CuKα (λ = 1.54184) 

2Θ range for data collection/° 7.3 to 143.16 8.518 to 143.36 8.522 to 134.158 

Index ranges -17 ≤ h ≤ 13, -34 ≤ k ≤ 35, -43 ≤ l ≤ 40 -10 ≤ h ≤ 11, -24 ≤ k ≤ 25, -22 ≤ l ≤ 19 -15 ≤ h ≤ 15, -15 ≤ k ≤ 16, -17 ≤ l ≤ 26 

Reflections collected 36136 19486 22622 

Independent reflections 14006 [Rint = 0.0634, Rsigma = 0.0663] 6709 [Rint = 0.0437, Rsigma = 0.0450] 13469 [Rint = 0.0921, Rsigma = 0.1209] 

Data/restraints/parameters 14006/0/855 6709/456/410 13469/16/867 

Goodness-of-fit on F2 1.040 1.158 1.026 

Final R indexes [I>=2σ (I)] R1 = 0.0488, wR2 = 0.1203 R1 = 0.0451, wR2 = 0.1327 R1 = 0.0814, wR2 = 0.2086 

Final R indexes [all data] R1 = 0.0604, wR2 = 0.1307 R1 = 0.0514, wR2 = 0.1449 R1 = 0.1092, wR2 = 0.2383 

Largest diff. peak/hole / e Å-3 1.73/-2.20 2.08/-1.76 4.14/-2.17 
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Identification code 4.5 CJI315 4.6 CJI533 4.7 CJI323-1 

Empirical formula C78H94O5S2U2 C124H144O12U3 C50H57N2O2U 

Formula weight 1651.71 2540.47 956.00 

Temperature/K 173(2) 173(2) 173(2) 

Crystal system monoclinic triclinic monoclinic 

Space group P21/c P-1 P21/c 

a/Å 13.8556(3) 15.6902(4) 10.0517(3) 

b/Å 12.3174(3) 16.3604(5) 21.2380(5) 

c/Å 22.8357(6) 27.0111(8) 39.8748(9) 

α/° 90 93.873(2) 90 

β/° 93.285(2) 101.068(2) 90 

γ/° 90 110.285(3) 90 

Volume/Å3 3890.83(16) 6314.6(3) 8512.4(4) 

Z 3 3 8 

ρcalcg/cm3 2.115 2.004 1.492 

μ/mm-1 18.700 16.670 11.041 

F(000) 2454.0 3780.0 3832.0 

Crystal size/mm3 0.12 × 0.07 × 0.05 0.4 × 0.2 × 0.01 0.2 × 0.2 × 0.05 

Radiation CuKα (λ = 1.54184) CuKα (λ = 1.54184) CuKα (λ = 1.54184) 

2Θ range for data collection/° 7.756 to 143.014 3.368 to 135.63 7.846 to 143.92 

Index ranges -12 ≤ h ≤ 16, -15 ≤ k ≤ 12, -28 ≤ l ≤ 26 -17 ≤ h ≤ 18, -19 ≤ k ≤ 19, -32 ≤ l ≤ 31 -12 ≤ h ≤ 11, -26 ≤ k ≤ 25, -49 ≤ l ≤ 34 

Reflections collected 21579 95460 63582 

Independent reflections 7448 [Rint = 0.0688, Rsigma = 0.0656] 21932 [Rint = 0.1232, Rsigma = 0.0819] 16427 [Rint = 0.0787, Rsigma = 0.0605] 

Data/restraints/parameters 7448/579/428 21932/0/1444 16427/0/1017 

Goodness-of-fit on F2 1.309 1.873 0.956 

Final R indexes [I>=2σ (I)] R1 = 0.0614, wR2 = 0.1649 R1 = 0.1373, wR2 = 0.3193 R1 = 0.0482, wR2 = 0.1276 

Final R indexes [all data] R1 = 0.0754, wR2 = 0.1781 R1 = 0.1555, wR2 = 0.3369 R1 = 0.0578, wR2 = 0.1397 

Largest diff. peak/hole / e Å-3 3.73/-2.40 7.44/-2.05 2.92/-1.74 
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Identification code 5.1 AJ64_1 
[K(2.2.2-cryptand)][Th(pMe2O2)2] 

5.2 CJI443  
ThI2(pMe2O2)(THF) 5.3 CJI376-2 

Empirical formula C56H64O4Th C77H107KN2O11Th C32H40I2O3Th 

Formula weight 1033.11 1507.78 958.48 

Temperature/K 173(2) 173(2) 173 

Crystal system monoclinic monoclinic monoclinic 

Space group C2/c P21/c P21/c 

a/Å 24.0498(11) 20.3425(5) 31.6217(6) 

b/Å 13.1618(5) 14.7794(4) 9.5305(2) 

c/Å 18.2697(8) 24.5893(6) 32.7296(7) 

α/° 90 90 90 

β/° 103.520(4) 97.437(3) 112.737(3) 

γ/° 90 90 90 

Volume/Å3 5622.8(4) 7330.6(3) 9097.1(4) 

Z 4 4 8 

ρcalcg/cm3 1.220 1.366 1.400 

μ/mm-1 8.842 7.535 21.388 

F(000) 2088.0 3120.0 3616.0 

Crystal size/mm3 0.200 × 0.050 × 0.050 0.15 × 0.08 × 0.01 0.3 × 0.05 × 0.03 

Radiation CuKα (λ = 1.54184) CuKα (λ = 1.54184) CuKα (λ = 1.54184) 

2Θ range for data collection/° 7.562 to 134.14 6.994 to 142.804 7.564 to 134.16 

Index ranges -28 ≤ h ≤ 25, -15 ≤ k ≤ 12, -21 ≤ l ≤ 20 
-22 ≤ h ≤ 24, -11 ≤ k ≤ 17, -29 ≤ l ≤ 

30 

-19 ≤ h ≤ 14, -17 ≤ k ≤ 12, -23 ≤ l ≤ 

32 

Reflections collected 8550 28986 15933 

Independent reflections 4962 [Rint = 0.0336, Rsigma = 0.0541] 
13909 [Rint = 0.0374, Rsigma = 

0.0520] 
15933 [Rint = 0.0725, Rsigma = 0.0897] 

Data/restraints/parameters 4962/0/284 13909/0/866 15933/0/695 

Goodness-of-fit on F2 0.653 0.999 0.987 

Final R indexes [I>=2σ (I)] R1 = 0.0310, wR2 = 0.0845 R1 = 0.0391, wR2 = 0.0971 R1 = 0.0645, wR2 = 0.1588 

Final R indexes [all data] R1 = 0.0352, wR2 = 0.0893 R1 = 0.0520, wR2 = 0.1048 R1 = 0.0820, wR2 = 0.1685 

Largest diff. peak/hole / e Å-3 1.33/-1.28 0.74/-1.04 4.15/-2.46 
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Identification code ThI2(pMe2O2)(Et2O) 5.4 CJI446 ThI2(pMe2O2)(ITMe) 5.5 RKB122 ThCl2(pMe2O2)(DME) 5.6 CJI530 

Empirical formula C16.5H22IOTh0.5 C35H44I2N2O2Th C32H42ClO4Th 

Formula weight 479.26 1010.56 792.28 

Temperature/K 173(2) 173(2) 173 

Crystal system monoclinic monoclinic triclinic 

Space group C2/c C2/c P-1 

a/Å 14.7150(5) 12.7205(5) 10.8745(6) 

b/Å 10.8193(3) 13.3241(5) 14.2643(9) 

c/Å 21.2433(5) 21.2968(7) 15.4791(9) 

α/° 90 90 80.535(5) 

β/° 96.713(3) 89.990(3) 84.420(5) 

γ/° 90 90 78.696(5) 

Volume/Å3 3358.86(17) 3609.6(2) 2317.2(2) 

Z 8 5 4 

ρcalcg/cm3 1.895 2.324 1.473 

μ/mm-1 28.939 33.734 11.758 

F(000) 1816.0 2400.0 1032.0 

Crystal size/mm3 ? × ? × ? 0.15 × 0.1 × 0.05 0.5 × 0.2 × 0.007 

Radiation CuKα (λ = 1.54184) CuKα (λ = 1.54184) CuKα (λ = 1.54184) 

2Θ range for data collection/° 8.382 to 142.084 8.304 to 142.464 7.968 to 143.188 

Index ranges -17 ≤ h ≤ 17, -11 ≤ k ≤ 13, -25 ≤ l ≤ 22 -14 ≤ h ≤ 15, -15 ≤ k ≤ 16, -25 ≤ l ≤ 25 -13 ≤ h ≤ 12, -16 ≤ k ≤ 17, -18 ≤ l ≤ 19 

Reflections collected 10023 5917 17188 

Independent reflections 3211 [Rint = 0.0668, Rsigma = 0.0500] 3402 [Rint = 0.0557, Rsigma = 0.0593] 8805 [Rint = 0.0938, Rsigma = 0.0968] 

Data/restraints/parameters 3211/0/173 3402/12/197 8805/0/524 

Goodness-of-fit on F2 1.989 1.033 1.049 

Final R indexes [I>=2σ (I)] R1 = 0.0691, wR2 = 0.2167 R1 = 0.0399, wR2 = 0.0992 R1 = 0.0588, wR2 = 0.1496 

Final R indexes [all data] R1 = 0.0759, wR2 = 0.2360 R1 = 0.0427, wR2 = 0.1023 R1 = 0.0648, wR2 = 0.1630 

Largest diff. peak/hole / e Å-3 7.18/-6.27 1.27/-2.72 2.79/-3.03 
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Identification code Th(pMe2O2)N’’2 5.7 CJI427 Th(pMe2O2)Bz2 5.8 CJI428-2 

Empirical formula C40H68N2O2Si4Th C42H46O2Th 

Formula weight 953.36 814.83 

Temperature/K 173(2) 173 

Crystal system monoclinic monoclinic 

Space group I2/a P21/n 

a/Å 11.99936(18) 13.7202(2) 

b/Å 16.8590(3) 17.2826(3) 

c/Å 22.6661(4) 15.3571(3) 

α/° 90 90 

β/° 103.0469(15) 106.166(2) 

γ/° 90 90 

Volume/Å3 4466.92(12) 3497.50(11) 

Z 4 4 

ρcalcg/cm3 1.418 1.547 

μ/mm-1 12.042 14.000 

F(000) 1936.0 1616.0 

Crystal size/mm3 0.3 × 0.05 × 0.01 0.2 × 0.05 × 0.01 

Radiation Cu Kα (λ = 1.54184) Cu Kα (λ = 1.54184) 

2Θ range for data collection/° 6.596 to 142.454 7.652 to 142.438 

Index ranges -14 ≤ h ≤ 13, -20 ≤ k ≤ 19, -27 ≤ l ≤ 26 -16 ≤ h ≤ 15, -20 ≤ k ≤ 13, -17 ≤ l ≤ 18 

Reflections collected 8574 12334 

Independent reflections 4259 [Rint = 0.0459, Rsigma = 0.0523] 6644 [Rint = 0.0276, Rsigma = 0.0396] 

Data/restraints/parameters 4259/0/232 6644/0/414 

Goodness-of-fit on F2 1.061 1.042 

Final R indexes [I>=2σ (I)] R1 = 0.0318, wR2 = 0.0813 R1 = 0.0284, wR2 = 0.0696 

Final R indexes [all data] R1 = 0.0358, wR2 = 0.0844 R1 = 0.0338, wR2 = 0.0735 
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