Demo Abstract: A demonstration of automatic
configuration of OpenFlow 1n wireless ad hoc
networks

Sachin Sharma'! and Maziar Nekovee?
INational College of Ireland (sachin.sharma@ncirl.ie) and 2University of Sussex (M.Nekovee @sussex.ac.uk)

Abstract—Using OpenFlow, a network can be controlled from
one or more servers called controllers. In the demonstration, we
show automatic configuration of OpenFlow in a wireless ad hoc
network, deployed on a portable testbed, using MININET-WiFi
(an emulator for software defined wireless networks). Automatic
configuration is shown using a GUI (Graphical User Interface)
which shows wireless nodes discovered by the controller. In
addition, a video clip is streamed from one node to another and
displayed in real time. The demonstration includes automatic
configuration in the scenarios in which nodes move from one
location to another.

I. INTRODUCTION

A wireless Mobile Ad hoc NETwork (MANET) is an infras-
tructure less wireless network in which mobile wireless nodes
dynamically form a temporary network for communication
without the use of a fixed infrastructure. As each node in
ad hoc networks takes decisions (e.g., routing) independently,
these networks are too complex to manage, too prone to
vendor-locking, and too inflexible to adapt to the needs of
changing requirements. To overcome these problems there
is significant interest from research communities to apply
OpenFlow in wireless ad hoc networks [1]. One of the major
drivers of OpenFlow is its simplification. It simplifies networks
by allowing it to decouple complex software from nodes and
deploying it in external servers called controllers.

We propose a method which can automatically configure
OpenFlow in a wireless ad hoc network. In this method, we
deploy OpenFlow using existing OpenFlow software (Open
vSwitch). We consider an ad hoc network (Fig. 1) in which the

Wireless Wireless
Lik gy Lk Here, (S,), (S,), (Sy)and (S,)
(S) == are wireless ad hoc nodes and
% S) (S ) Cont(r((:);ler (C) is the controller
. - Wireless
ereless —— Link
Link

Fig. 1. A Wireless Ad hoc Network

controller is directly reachable to only a few wireless nodes
(see node S3 in Fig. 1). The challenge is therefore that the
nodes, which are not directly reachable to the controller, have
to find a path to the controller through other nodes (mobile) in
the network. This type of an ad hoc network is different from
an in-band OpenFlow network, discussed for wired networks
in [2]. This is because the nodes in our network can also move
from one location to another.

In this demonstration, we show automatic configuration
of OpenFlow (using our proposed method) in a wireless
ad hoc network, deployed using MININET-WiFi [3]. The

demonstration includes automatic configuration in mobility
scenarios in which nodes move from one location to another. In
addition, video streaming from one node to another, following
a path configured by an OpenFlow controller, is demonstrated.

II. OUR AUTOMATIC CONFIGURATION METHOD

We implement our automatic configuration method in hybrid
ad hoc nodes which support both OpenFlow and traditional
protocols (such as layer 3 protocols). The followings are two
challenges to run OpenFlow in wireless ad hoc networks:

1) Traffic forwarded through an OpenFlow node should be
successfully received by a neighbor OpenFlow node over
a wireless link.

2) Each wireless node should be able to establish an
OpenFlow session with the controller.

The difficulty in overcoming the first challenge is that the
MAC addressing scheme of current OpenFlow software (such
as Open vSwitch) is based on the IEEE 802.3 standard and
wireless ad hoc nodes do not support the IEEE 802.3 standard
[4]. They support the ad hoc mode of the IEEE 802.11
standard. To overcome this challenge, we insert tunnels (such
as GRETAP) between an OpenFlow node and its neighbor.

The difficulty in overcoming the second challenge is that an
OpenFlow session is usually built on top of a transport layer
session. Therefore, each node needs an IP address, needs to
know the controller IP address and transport layer parameters
(e.g., port), and needs to know a path to the controller.

A. Overview of our Method

In our automatic configuration method, communication be-
tween the controller and wireless nodes happens on a routing
path established by traditional routing protocols and commu-
nication between OpenFlow nodes follows a path configured
by the controller in the network.

We deploy an OpenFlow controller (shown in Fig. 1) and
the OVS-DB server on a wireless node (not shown in Fig. 1) in
the network. The controller and OVS-DB server also run the
routing protocol (e.g., OLSR). Moreover, all the other wireless
nodes run the following protocol stack: (1) an address auto-
configuration protocol [5], (2) a traditional routing protocol,
(3) a tunnel agent, (4) the OVS-DB client, (5) a transport layer
protocol, and (6) the OpenFlow protocol.

Using the address auto-configuration protocol, a wireless
node gets an IP address without running the DHCP server in
the network. Using traditional routing (e.g., OLSR), a wireless
node knows the IP addresses of neighbors and paths to servers



(such as OVS-DB server and the controller). The tunnel agent
creates tunnels (e.g., GRE) with all the neighbors discovered
by traditional routing. These tunnels are used to transport IEEE
802.3 frames (generated by Open vSwitch) over a wireless
link. Using an OVS-DB client, the OVS-DB server configures
the controller IP address and OpenFlow related transport layer
parameters (e.g., port) in a wireless OpenFlow node. Once
all the aforementioned parameters are known, the transport
layer protocol establishes a transport layer session between the
wireless node and the controller. The path between the wireless
node and the controller is decided by the routing protocol.
Once the transport layer session is established, the wireless
node establishes an OpenFlow session with the controller
using the path discovered by the routing protocol.

As wireless nodes may move from one location to another,
they may become unreachable from their neighbor nodes.
When the path between the controller (or the OVS-DB server)
and a wireless node contains an unreachable neighbor, the
communication between them does not work until a new
valid path (decided by the routing protocol) is established in
the network. In case, OpenFlow detects the communication
failure, the OpenFlow session is broken and a new session is
established, when the routing protocol establishes a new path.

B. Emulations

We have emulated different ad hoc networks - linear,
sparse and dense - on the Fed4Fire testbed using Mininet-
WiFi. Twenty wireless ad hoc nodes are deployed using
MININET-WiFi software. The radio range of nodes is 74
meter. Open vSwitch and the POX controller are used for
OpenFlow emulations. OpenFlow detects the communication
failure in our experiment in 15 seconds. OLSR is deployed as
a routing protocol and OLSR neighbor hold time is kept as 20
seconds. TCP is used as a transport layer protocol between the
controller and wireless nodes. The OVS-DB server is located
on the controller. All the experiments are run 50 times and

minimum, average and maximum values are shown in results.

100

® Initial Configuration Time Reconnection Time with the Controller

80
60
40
20

Time (seconds)

1 2 3 4 5 6 7 8 9
Minumber number of hops from the controller

10 11 12 13 14 15 16 17 18 19

Fig. 2. Automatic configuration time
Fig. 2 shows the results of initial configuration time and

the controller re-connection time when nodes move from
one location to another. Moreover, we performed data traffic
experiments. The results of these experiments show that there
is performance degradation in data traffic communication, as
we used tunnels to transport the IEEE 802.3 standard frames
(generated by Open vSwitch) on wireless links. The perfor-
mance degradation (in the average delay) was approximately
3.74 ms per packet in our experiments. This performance
degradation can be reduced by deploying OpenFlow on high-
speed hardware devices.

Laptop 1 @

v |

MININET-
WiFi-GUI

Sender
Ny

= WiFi

Controller

Video Clip
Receiver

WiFi-GUI

Controller GUI
Fig. 3. Demonstration on a Portable Testbed

With the portable testbed (2 laptops connected using a WiFi
link, Fig. 3), we demonstrate the automatic configuration of
OpenFlow in a MANET, using the similar emulation setting
as performed on the Fed4Fire testbed. We emulate 10 wireless
ad hoc nodes on laptop 1 and the other 10 wireless nodes on
laptop 2, using Mininet-WiFi (Fig. 3). Wireless node /N7 and
Ny (see Fig. 3) are connected using a WiFi link. Therefore,
all the wireless nodes of laptop 1 and 2 should be able to
communicate with each other using the WiFi link.

The controller and the OVS-DB server are deployed on one
of the wireless nodes in the network (Fig. 3). All the nodes run
the protocol stack, as explained in previous section. Moreover,
for the address automatic configuration protocol, we use the
automatic IP addressing scheme, used by Mininet-WiFi [3].

We run our automatic configuration method in the deployed
MANET and demonstrate its working using a GUI installed on
the controller node. When a wireless node is able to create an
OpenFlow session with the controller, the node will be shown
in the GUI In addition to the controller GUI, we show the
wireless ad hoc network topology using the GUIs generated
by MININET-WiFi on both the laptops.

During the demonstration, we manually move wireless
nodes from one location to another using the command line
interface of Mininet-WiFi and show in the GUI that the
controller has detected it and removed unreachable nodes from
the GUI. In addition, when these nodes are able to establish
new sessions with the controller, they are again shown in the
GUI. Moreover, we stream a video clip from one of the nodes
in laptop 1 to another node in laptop 2. We will see that
the controller is able insert forwarding entries (using Open
vSwitch commands) in the network to send video traffic. The
video client on laptop 2 is then able to display it in real time.

REFERENCES

[1] P. Bellavista et. al., MANET-oriented SDN: Motivations, Challenges,
and a Solution Prototype, WoWMoM, 14-22, 2018.

[2] S. Sharma, et. al., In-band control, queuing, and failure recovery
functionalities for openflow, IEEE Network, vol. 30(1), 106-112, 2016.

[3] Mininet-WiFi: https://github.com/intrig-unicamp/mininet-wifi

[4] M. Rademacher et. al., Experiments with OpenFlow and IEEE802.11
Point-to-Point Links in a WMN, ICWMC, 2016

[5] A. Munjal, Address Auto-Configuration Protocols and their message
complexity in Mobile Adhoc Networks, PhD Dissertation, IIT, 2015



