
   

 

A University of Sussex PhD thesis 

Available online via Sussex Research Online: 

http://sro.sussex.ac.uk/   

This thesis is protected by copyright which belongs to the author.   

This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author   

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author   

When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

Please visit Sussex Research Online for more information and further details   



Quantification Under

Class-Conditional Dataset Shift

David James Frederick Spence

A thesis presented for the degree of

Doctor of Philosophy

October 2018



Declaration

• This thesis, in full or in part, has not been previously submitted to this or any other

university for a degree.

• None of the material in this thesis has already been submitted as part of required

coursework at any university.

• No part of the thesis results from joint work with other persons other than the

development of the 4dSDA dataset as set out in Section 3.4.1.

David James Frederick Spence

Date:



Abstract

Classification is the estimation of the class of each instance in a dataset, quantification is

the estimation of the number of instances of each class in a dataset. Quantification meth-

ods typically assume that the data which is being quantified has the same class-conditional

distribution as the data on which the quantifier was trained. This thesis addresses the

situation where this assumption cannot be made, where there is class-conditional dataset

shift between the training data and the test data. The work was motivated by sentiment

analysis tasks using tweets on Twitter. By selecting users based on the content of their

tweet, the users cannot be considered to have been randomly drawn from the population.

In this thesis, domain adaptation methods from classification have been applied to the

problem of quantification. Separating the data into explicit sub-domains and quantifying

each sub-domain separately can increase quantification accuracy but under certain condi-

tions it can also decrease it. An expression for expected quantification error was derived in

closed-form with some simplifying assumptions. In tests on real datasets, a method based

on this approach gave a modest improvement to quantification accuracy. Constructing a

new feature representation has proved successful for domain adaptation in classification.

An approach using Stacked Denoising Autoencoders to generate a new feature represen-

tation gave a 3.3% relative improvement in quantification accuracy. Finally, a method

based on using Kernel Mean Matching for weighting instances in the training set gave a

relative improvement in quantification accuracy of 10.7%. Experiments were conducted

on publicly available datasets and also on a custom dataset of Twitter users.



Acknowledgements

I would like to thank...

David Weir and Novi Quadrianto for supervising me.

Luc Berthouze for chairing my thesis committee.

My fellow members of the department, in particular Chris Inskip, Oliver Thomas, Matti

Lyra and Miro Batchkarov for helping me get things to work.

My friends Ian Handel and Mark Bronsvoort at Edinburgh University and Neil Hawkins

at Glasgow University for their general advice on doing a PhD and their specific advice,

particularly on statistics.

Thomas Kober for gender labelling the 4dSDA dataset.

Chris Inskip for the use of the SDA dataset.

CASM Consulting LLP for the use of Method52.

Katie Barnett for putting up with me.



Contents

List of Figures vi

List of Tables xi

List of Variables xiv

1 Introduction 1

2 Literature review 7

2.1 Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Classify and count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Classify and adjust methods . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Distribution matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.4 Direct quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.5 Quantification loss functions . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.6 Quantification test methods . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.7 Quantification applied to specific areas . . . . . . . . . . . . . . . . . . 16

2.2 Dataset shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Causality and dataset shift . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Causes of dataset shift . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Measures of dataset shift . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Unsupervised domain adaptation . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Mixtures of sub-domains . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Importance weighting of instances . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Feature representations . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.4 Weakly supervised . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Quantification under class-conditional dataset shift . . . . . . . . . . . . . . 32

i



ii

3 Domain adaptation with explicit sub-domains 34

3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Validation data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.2 Test data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.3 Extension to sub-domains . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.4 R* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.5 Quantification performance measures . . . . . . . . . . . . . . . . . . . 39

3.2 Quantification by matrix-inversion . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Quantification with and without sub-domains . . . . . . . . . . . . . . . . . 41

3.3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Initial experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Analytic exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.1 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.2 Random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.3 General closed-form solution . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.4 Simplification: nt is large . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.5 Simplification: nv is large . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 Numerical validation of the closed-form solution . . . . . . . . . . . . . . . . 65

3.6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7 Quantification accuracy and classifier accuracy . . . . . . . . . . . . . . . . 67

3.8 Exploration of explicit sub-domains through simulation . . . . . . . . . . . . 69

3.8.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.8.2 Simulation settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.8.3 Validation set size nv . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.8.4 Multiple regression analysis . . . . . . . . . . . . . . . . . . . . . . . . 74

3.8.5 Main-class recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.8.6 Sub-domain recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.8.7 Test set size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



iii

4 Domain adaptation with thresholded sub-domains 79

4.1 Experiment 1: Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1.2 Simulation settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Experiment 2: UCI datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.2 Generation of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.4 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.5 Classifier performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Experiment 3: determining thresholds . . . . . . . . . . . . . . . . . . . . . 96

4.3.1 Single criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3.2 Multiple criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.3 Evaluation against the held-out UCI test datasets . . . . . . . . . . . 98

4.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Experiment 4: Twitter dataset . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4.1 Twitter Age Friends (TAF) dataset . . . . . . . . . . . . . . . . . . . 102

4.4.2 Dataset initial analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5 Domain adaptation by instance weighting 109

5.1 Measuring dataset shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3 Instance weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4 Kernel Mean Matching (KMM) . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5 Unconstrained Least Squares Importance Fitting (uLSIF) . . . . . . . . . . 114

5.6 Instance weights by class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



iv

5.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.7 Quantification by instance-weighted classify and adjust (IWCA) . . . . . . . 123

5.7.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.8 Classifier-based sample selection bias correction (SSBC) . . . . . . . . . . . 134

5.8.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.8.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.9 Iterative test-train bias reduction (ITTBR) . . . . . . . . . . . . . . . . . . 136

5.9.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.9.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.9.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.9.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6 Domain adaptation with feature representations 146

6.1 Marginalised Stacked Denoising Autoencoders (mSDA) . . . . . . . . . . . . 147

6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2.1 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2.2 mSDA training time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2.3 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.2.4 Oversampling from the Target domain . . . . . . . . . . . . . . . . . . 149

6.2.5 Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.2.6 Classifier parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2.7 Dataset samples and methods . . . . . . . . . . . . . . . . . . . . . . . 151

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.3.1 Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.3.2 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.3.3 Oversampling from the Target domain . . . . . . . . . . . . . . . . . . 154

6.3.4 Training and test set size . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.3.5 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.3.6 By level of bias and by dataset . . . . . . . . . . . . . . . . . . . . . . 158

6.3.7 TAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160



v

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7 Conclusions and further work 163

7.1 Datasets and bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.2 Explicit subdomains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.3 Importance weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.4 Feature representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.5 Direct quantification with biased training sets . . . . . . . . . . . . . . . . . 171

7.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.7 Last words... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8 Bibliography 173

A Quantification methods 185

A.1 Forman’s Adjusted Count as matrix-inversion . . . . . . . . . . . . . . . . . 185

A.2 Saerens et al. [97] probabilistic expectation-maximisation method . . . . . . 186

A.3 Joachims [72] SVM for multivariate performance measures . . . . . . . . . . 188

A.4 Hofer [62] distribution matching with Gaussian mixtures . . . . . . . . . . . 189

B Importance weighting methods 192

B.1 Importance weighting methods generally . . . . . . . . . . . . . . . . . . . . 192

B.2 Kernel mean matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

B.3 Unconstrained least squares importance fitting . . . . . . . . . . . . . . . . 194



List of Figures

1.1 Estimated and actual class distribution with the classify and count method 2

1.2 Estimated vs. actual class proportions using both the classify and count

and the classify and adjust methods. UCI dev datasets. Data from Section

5.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Absolute quantification error using classify and adjust method vs. class-

conditional dataset shift. Data from Section 5.9. 95% confidence intervals. . 4

1.4 Common approach to quantification under class-conditional dataset shift . . 5

3.1 Process for computation of quantification error with and without the use of

sub-domains. See Table 3.2 for key to symbols. . . . . . . . . . . . . . . . . 42

3.2 Validation of the 4dSDA dataset between datasets . . . . . . . . . . . . . . 46

3.3 Distribution by estimated year of birth in the 4dSDA dataset . . . . . . . . 47

3.4 Mean main-class proportion error vs. main-class proportion and sub-domain

proportion. Classify and count method. 4dSDA dataset . . . . . . . . . . . 49

3.5 Mean main-class proportion error vs. main-class proportion and sub-domain

proportion. nsd-method. 4dSDA dataset . . . . . . . . . . . . . . . . . . . . 50

3.6 Mean main-class proportion error vs. main-class proportion and sub-domain

proportion. sd-method. 4dSDA dataset . . . . . . . . . . . . . . . . . . . . 51

3.7 Mean value of class proportion estimate error . . . . . . . . . . . . . . . . . 52

3.8 Variance in class proportion estimate error . . . . . . . . . . . . . . . . . . . 52

3.9 Normalised RMSE of estimate for size of main-class α: simulation values

less values from Equations 3.97 and 3.112 vs. log10 of size of validation set

nv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.10 Mean absolute quantification error using classify and adjust method vs.

classifier recall and dataset size(n). Simulated data. . . . . . . . . . . . . . 69

vi



vii

3.11 Kernel density estimation plot showing correlation of main-class α recall

values between the two sub-domains γ and δ . . . . . . . . . . . . . . . . . 71

3.12 Quantification error in RMSE for the sd and nsd methods vs. log10 of

validation set size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.13 Boxplot of ∆RMSE against size of validation set . . . . . . . . . . . . . . . 72

3.14 Kernel density estimation plot showing correlation of main-class α recall

values between the two sub-domains γ and δ . . . . . . . . . . . . . . . . . 73

3.15 Boxplot ∆RMSE against size of validation set when main-class recall is the

same in both sub-domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.16 RMSE vs. main mainclass recall. 95% CI shown. . . . . . . . . . . . . . . . 76

3.17 ∆RMSE vs. sub-domain recall mean . . . . . . . . . . . . . . . . . . . . . . 77

3.18 ∆RMSE vs. Log10 of size of test set when validation set >10,000 . . . . . . 77

4.1 Mean delta absolute error nsd-method minus absolute error sd-method by

validation dataset size. 95% confidence intervals shown. . . . . . . . . . . . 83

4.2 Mean delta absolute error (nsd-method minus absolute error sd-method) by

quartile of bs prop prod. 95% confidence intervals shown. . . . . . . . . . . 84

4.3 Delta RMSE (nsd-sd) by quartile of bs prop prod and quartile of SDD . . . 85

4.4 Distribution of trv set sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5 Classifier accuracy by dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6 Mean delta absolute error nsd-method minus absolute error sd-method by

decile of trv size. UCI dev datasets. 95% confidence intervals . . . . . . . . 92

4.7 Mean delta absolute error nsd-method minus absolute error sd-method by

decile of trv size. UCI dev datasets. 95% confidence intervals . . . . . . . . 92

4.8 Mean delta absolute error nsd-method minus absolute error sd-method by

decile of log10 c2p sum. UCI dev datasets. 95% confidence intervals . . . . 93

4.9 Mean delta absolute error nsd-method minus absolute error sd-method by

decile of log10 c2p sum. UCI dev datasets. 95% confidence intervals . . . . 94

4.10 Mean delta absolute error nsd-method minus absolute error sd-method by

absolute difference in sub-domain proportion between trv and te (SDDN).

UCI dev datasets. 95% confidence intervals . . . . . . . . . . . . . . . . . . 95

4.11 Distribution by estimated year of birth in the TAF training dataset . . . . . 103

4.12 Mainclass recall values by subset of the TAF dev dataset . . . . . . . . . . . 105



viii

5.1 Typical normalised distribution of the level of dataset shift in the test sets

drawn from UCI dev, UCI test and TAF. Dataset shift measured by PADcb.111

5.2 Typical distribution of the level of dataset shift in the UCI dev datasets

test sets. Dataset shift measured by PADcb. . . . . . . . . . . . . . . . . . . 112

5.3 Typical distribution of level of dataset shift in the UCI test datasets test

sets. Dataset shift measured by PADcb. . . . . . . . . . . . . . . . . . . . . 112

5.4 Median cumulative weight proportion from KMM method vs. level of

dataset shift as measured by PADcb. Shown separately by dev dataset,

kernel size multiple and B parameter . . . . . . . . . . . . . . . . . . . . . . 114

5.5 Median cumulative weight proportion from uLSIF method vs. level of

dataset shift as measured by PADcb. Shown separately by dev dataset,

kernel size multiple and B parameter . . . . . . . . . . . . . . . . . . . . . . 115

5.6 Classifier accuracy by dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.7 Proportion of instance weight applied to class 0 instances in the training set

vs. proportion of class 0 instances in the test set. KMM method. UCI dev

datasets. Kernel size multiples {0.01, 0.1, 1, 10} . . . . . . . . . . . . . . . . 121

5.8 Proportion of instance weight applied to class 0 instances in the training

set vs. proportion of class 0 instances in the test set. UCI dev datasets.

uLSIF method. Sigma parameter {1.0, 3.162, 10.0} . . . . . . . . . . . . . . 122

5.9 MAE of ut method with KMM weighting, threshold=0.5, kernel size mul-

tiple=1.0 and uu baseline method vs. PADcb quartile. UCI dev datasets.

95% confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.10 MAE of ut method with KMM weighting, threshold=0.5, kernel size mul-

tiple=1.0 and uu baseline method vs. PADcb quartile. UCI test datasets.

95% confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.11 Delta MAE of ut method with KMM weighting, threshold=0.5, kernel size

multiple=1.0. vs uu baseline method by PADcb quartile. 95% confidence

intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.12 MAE of ut method with KMM weighting, threshold=0.7, kernel size mul-

tiple=1.0. and uu baseline method vs. PADcb quartile. UCI dev datasets.

95% confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.13 MAE of ut method with KMM weighting, threshold=0.7, kernel size mul-

tiple=1.0. and uu baseline method vs. PADcb quartile. UCI test datasets.

95% confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



ix

5.14 Absolute quantification error using classify and adjust method vs. class-

conditional dataset shift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.15 ITTBR. PADcb by sub-iteration step. UCI dev datasets. . . . . . . . . . . . 141

5.16 ITTBR. Absolute quantification error delta from initial value. Dev datasets.

95% confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.17 Baseline absolute quantification error delta from initial value. Points re-

moved from training set at random. Dev datasets. 95% confidence intervals 142

5.18 ITTBR absolute quantification error delta from initial value less baseline

value. Dev datasets. 95% confidence intervals . . . . . . . . . . . . . . . . . 142

5.19 Absolute quantification error (actual vs. predicted class 0 proportion). Dev

datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.1 Mean mSDA calculation time per layer vs. number of data instances. 95%

confidence intervals shown. All UCI datasets . . . . . . . . . . . . . . . . . 149

6.2 RMSE of results from UCI dev datasets. mSDA layers from 0 to the layer

indicated. 95% confidence intervals shown. . . . . . . . . . . . . . . . . . . . 153

6.3 RMSE of results from UCI dev datasets. mSDA layers from the layer indi-

cated up to and including layer 5. 95% confidence intervals shown. . . . . . 153

6.4 RMSE of results from UCI dev datasets vs. level of noise. 95% confidence

intervals shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.5 RMSE of results from UCI dev datasets. Impact of the balance of mSDA

training data between Source and Target domains. 95% confidence intervals

shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.6 Absolute quantification error vs. recall delta. mSDA results. UCI dev

datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.7 Recall delta vs. mSDA highest layer for mSDA results with UCI dev datasets.

Lowest layer = layer 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.8 Recall delta vs. mSDA lowest layer for mSDA results with UCI dev datasets.

Highest layer = layer 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.9 MAE of best mSDA method and baseline method vs. PADcb quartile.

UCI dev datasets. 95% confidence intervals . . . . . . . . . . . . . . . . . . 158

6.10 MAE of best mSDA method and baseline method vs. PADcb quartile.

UCI test datasets. 95% confidence intervals . . . . . . . . . . . . . . . . . . 158

6.11 MAE of ‘best’ method minus MAE baseline by PADcb quartile for UCI dev

datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



x

6.12 MAE of ‘best’ method minus MAE baseline by PADcb quartile for UCI test

datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.13 MAE of best mSDA method and baseline method vs. PADcb quartile. TAF

dataset. 95% confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . 161

7.1 Common approach to quantification under class-conditional dataset shift . . 163



List of Tables

2.1 Variations on the Adjusted Count method from Forman [44] . . . . . . . . . 9

2.2 Quantification loss functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Types of dataset shift [88] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Reasons for dataset shift from Storkey [103] . . . . . . . . . . . . . . . . . . 18

2.5 Importance weighting methods from Sugiyama and Kawanabe [104] . . . . . 27

2.6 Comparison of importance weighting methods [104] . . . . . . . . . . . . . . 27

3.1 Class, main-class and sub-domain . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Key to symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Class, main-class and sub-domain . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Observed recall values by main-class and sub-domain in the 4dSDA dataset 50

3.5 RMSE of sd and nsd methods . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Mean and variance sd and nsd method . . . . . . . . . . . . . . . . . . . . . 53

3.7 Class, main-class and sub-domain . . . . . . . . . . . . . . . . . . . . . . . . 54

3.8 Numerical simulation: fixed parameter values . . . . . . . . . . . . . . . . . 70

3.9 Numerical simulation: sampled parameter values . . . . . . . . . . . . . . . 70

3.10 Numerical simulation: results of OLS regression using 6 parameters, full

range of parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.11 Numerical simulation: results of OLS regression using 6 parameters, nv >

10, 000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1 Numerical simulation: fixed parameter values . . . . . . . . . . . . . . . . . 82

4.2 Numerical simulation: sampled parameter values . . . . . . . . . . . . . . . 82

4.3 Development datasets: UCI dev . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Held-out test datasets: UCI test . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xi



xii

4.6 Difference in abs error between nsd and sd-methods for various values of

baseline log10 trv size. UCI dev datasets . . . . . . . . . . . . . . . . . . . . 96

4.7 Optimum multiple parameter values. UCI dev datasets . . . . . . . . . . . . 97

4.8 Comparison of quantification performance of single and multiple criteria on

the UCI dev datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.9 Combined UCI test datasets. Quantification performance with single and

multiple criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.10 UCI CASP dataset. Quantification performance with single and multiple

criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.11 UCI credit card default dataset. Quantification performance with single

and multiple criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.12 UCI online news popularity dataset. Quantification performance with sin-

gle and multiple criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.13 Proportion of results where the nsd-method gives larger error than the sd-

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.14 Filtering applied in the generation of the TAF dataset . . . . . . . . . . . . 103

4.15 Dimensionality reduction steps in the generation of the TAF dataset . . . . 104

4.16 TAF dataset split into tr, dev and te . . . . . . . . . . . . . . . . . . . . . . 104

4.17 UCI online news popularity dataset. Quantification performance with sin-

gle and multiple criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.18 Proportion of results where the nsd-method gives larger error than the sd-

method, TAF dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.19 TAF dataset. Quantification performance with single and multiple criteria. 107

4.20 Summary of Chapter 4 results . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1 Overall parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 KMM parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 uLSIF parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4 Classifier kernel selection by dataset . . . . . . . . . . . . . . . . . . . . . . 119

5.5 Approaches to introduce class-conditionality into instance weighting . . . . 124

5.6 Methods used to combine computed instance weights with the matrix-

inversion quantification method . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.7 Method-parameter settings with lower MAE than baseline which are sta-

tistically significant at α < 0.05 under the Friedman test with Bonferroni

corrections. UCI dev datasets. . . . . . . . . . . . . . . . . . . . . . . . . . 127



xiii

5.8 Best method by mean rank from Table 5.7 . . . . . . . . . . . . . . . . . . . 127

5.9 Performance of best method from UCI dev datasets on the held-out UCI test

datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.10 Best method-parameter by MAE on UCI dev datasets for both KMM and

uLSIF instance weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.11 Best SSBC methods by mean rank, RMSE and MAE. UCI dev datasets . . 135

5.12 Best SSBC methods by mean rank, MAE and RMSE. UCI test datasets . . 136

5.13 ITTBR parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.14 Summary of Chapter 5 results . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.1 Ten feature representations plus baseline constructed from the original fea-

tures (layer 0) and the five mSDA layers . . . . . . . . . . . . . . . . . . . . 150

6.2 Best mSDA methods on UCI dev datasets against mean rank, RMSE and

MAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.3 Best mSDA methods from UCI dev measured on the UCI test datasets . . . 152

6.4 RMSE from best method on UCI dev datasets vs. baseline for varying tr

and te set sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.5 Best mSDA methods from UCI dev measured on the TAF dataset . . . . . 160

6.6 Best mSDA methods on TAF dataset against mean rank, RMSE and MAE 160

6.7 Summary of Chapter 6 results . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.2 Size of validation set above which the sd-method gave better quantification

accuracy than the nsd-method . . . . . . . . . . . . . . . . . . . . . . . . . 167



xiv

Variables

Style Example Use

Italic Roman lowercase nt Scalars

Bold Roman lowercase avs Vectors

Italic Roman uppercase P Random Variables

Roman uppercase R∗ Matrices

Bold Italic Roman uppercase P Vector of Random Variables



xv

av Vector of actual counts by class (main-class and sub-domain) in the

validation dataset

at Vector of actual counts by class (main-class and sub-domain) in the test

dataset

ant Vector of actual counts by class (main-class only) in the test dataset

R∗ Matrix of actual-to-predicted class probabilities implicit in the classifier

Rv Matrix of actual-to-predicted class (main-class and sub-domain) ratios

as observed for the validation dataset

pv Vector of predicted counts by class (main-class and sub-domain) as gen-

erated by the classifier from the validation dataset

Rnv Matrix of actual-to-predicted class (main-class only) ratios as observed

for the validation dataset

pt Vector of predicted counts by class (main-class and sub-domain) as gen-

erated by the classifier from the test dataset

pnt Vector of predicted counts by class (main-class only) as generated by

the classifier from the test dataset

ât Vector of estimated actual counts by class (main-class and sub-domain)

for test dataset using sub-domain method

âtm Vector of estimated actual counts by class (main-class only) in the test

dataset using sub-domain method

ânt Vector of estimated actual counts by class (main-class only) in the test

dataset using no-sub-domains method

esd Error between estimated and actual class counts in the test dataset from

method using sub-domains

ensd Error between estimated and actual class counts in the test dataset from

method not using sub-domains

nv The size of the validation dataset

nt The size of the test dataset



Chapter 1

Introduction

How do you accurately estimate the class proportions in a dataset

when the class-conditional feature distribution is different to that of

the dataset that is available for training?

Often it is not the class of individual data points that is of interest, it is the distribution of

classes in the whole dataset. In sentiment analysis it might be the proportion of a group

that is positive about a product. In market research it might be the ratio of men to women

in a group of respondents and in epidemiology it might be the prevalence of a disease in a

population. Increasingly, the requirements for privacy and anonymity mean that analysis

has to be presented as group aggregates with any information at individual level removed.

Estimating the class distribution in a dataset instead of the classes of individual data

points has been termed quantification [42].

The näıve approach (classify and count) is simply to classify the data with a classifier

and count the number of instances assigned to each class. However this approach is flawed

because classifiers are imperfect. Consider Figure 1.1. Given a test sample that is made up

of 100% positive instances, a classifier will only classify some of those instances as positives.

The proportion of actual positive instances that are classified as being positive is the True

Positive Rate (tpr). Similarly when the test sample is made up of 100% negative instances,

a classifier will inevitably classify some of those instances as positives. The proportion of

actual negative instances that are classified as positive is the False Positive Rate (fpr).

For some value of class distribution m∗ the number of false negatives will exactly offset

the number of false positives and the estimated class distribution will be correct. For all

1



2

other class distributions the estimate will be incorrect.

tprEstimated 
Prevalence 

q+

m*

fpr

1

1

0
0

m*

Actual Prevalence m+

Ideal 
Classifier

Imperfect 
Classifier

Figure 1.1: Estimated and actual class distribution with the classify and count method

This can be relatively simple to correct. Classify and adjust methods apply an adjustment

to the output of the classifier that corrects for its imperfect classification. Figure 1.2 shows

the quantification performance of a classify and count method and a classify and adjust

method. The estimates from the classify and count method are as would be expected

from Figure 1.1 while the improvement in estimation accuracy from the classify and adjust

method is clear.

Classify and adjust methods typically require the assumption that the performance of the

classifier on each class in the test data is the same as it was on each class in the original

labelled training data. This implies that the class-conditional feature distribution in the

test data, Pte(x|y), is the same is it is in the training data, Ptr(x|y). As per the usual

convention, x represents the features of the data while y represents the class labels.

However, the class-conditional feature distribution may not the same in both the training

and test sets, for example:

A ‘quantifier’ has been trained to give an estimate of the male/female gender balance

in a group of individual Twitter users based on the accounts that they are following on

Twitter. The quantifier has been trained with a broad set of UK Twitter users with each

user correctly labelled as male or female. The quantifier is then used to estimate the gender



3

0.0 0.2 0.4 0.6 0.8 1.0
Actual class proportion

0.0

0.2

0.4

0.6

0.8

1.0

E
st

im
at

ed
 c

la
ss

 p
ro

po
rti

on
Method

Classify and Adjust
Classify and Count
Actual

Figure 1.2: Estimated vs. actual class proportions using both the classify and count and

the classify and adjust methods. UCI dev datasets. Data from Section 5.9

balance of another group of individuals. This group of individuals have all been selected

because they tweeted about retirement homes in Scotland.

This group of Twitter users, selected from a population on the basis of the content of what

they say in a tweet, are unlikely to have the same class-conditional feature distribution as

the group of users on which the quantifier was trained. In this example, within each class

(male and female) the age and location distribution of the dataset in question is likely to

be different. This difference could result in an error in the estimation of the gender balance

of the group. In general, we cannot simply assume that a dataset that has been generated

as a result of some selection process has the same class-conditional feature distribution as

the dataset on which the quantifier was originally trained.

When class-conditional feature distributions are different we refer to this as class-conditional

dataset shift. Figure 1.3 shows how quantification accuracy with a standard classify and

adjust method degrades with increasing class-conditional dataset shift1.

The majority2 of academic work on quantification makes the assumption that class-

1see Section 5.1 for an explanation of PADcb
2e.g. [11] [13] [35] [37] [42] [49] [68] [97] [117] [121]



4

0.2 0.4 0.6 0.8 1.0
Class-conditional dataset shift (PADcb)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

A
bs

ol
ut

e 
qu

an
tif

ic
at

io
n 

er
ro

r

Figure 1.3: Absolute quantification error using classify and adjust method vs.

class-conditional dataset shift. Data from Section 5.9. 95% confidence

intervals.

conditional dataset shift has not occurred. The novelty in this thesis is that its focus is on

quantification when class-conditional dataset shift has occurred. Its main contribution is

to demonstrate that several approaches can reduce quantification error under conditions

of class-conditional dataset shift. The best of these, using importance weighting to select

from the labelled validation data, gave a relative improvement in quantification error of

10.7% over the classify and adjust baseline on datasets where the class-conditional feature

distribution is different from that of the training data.

In this thesis, three different approaches are applied to the problem of quantification

under class-conditional dataset shift : explicit sub-domains in Chapters 3 and 4; importance

weighting of instances in Chapter 5 and feature representations in Chapter 6. However, all

of these methods fundamentally address the problem in a similar way: applying a domain

adaptation step to reduce (or ideally eliminate) the class-conditional feature distribution

difference between the training and test sets so that a standard quantification method that

relies on the assumption of no change in class-conditional feature distribution can work

effectively. This is shown diagrammatically in Figure 1.4.



5

Classify and Adjust 
Quantification

Domain 
Adaptation

!" # $
≠ !& # $

!" # $
≈ !& # $

Quantification under class-conditional 
dataset shift

Validation 
Data

Source 
Domain 

(S)

Target 
Domain 

(T)

(!&($)

Training 
Data

Test Data

Figure 1.4: Common approach to quantification under class-conditional dataset shift

The explicit sub-domains approach in Chapters 3 and 4 can be thought of as a ‘divide and

conquer’ approach. In these chapters the assumption is made that the data can be broken

down into smaller groups (‘sub-domains’) in which the conditional feature distributions

do not vary. Quantification is carried out at this sub-domain level and the results then

aggregated up to class level as a final step. A limitation of this method is that the sub-

domain has to be identified up-front and labelled in the training data. Another drawback of

this approach is that dividing the training set into smaller groups increases the relative level

of ‘noise’. The question explored in these chapters is whether the advantages of quantifying

in smaller sub-domains outweighs the disadvantages from increased noise. An analytic

approach yielded a closed-form answer to this question but only when the assumption was

made that there is a large amount of labelled data available at training time. Numerical

simulation allowed the question to be explored without making simplifying assumptions

and showed the significance of a number of parameters.

In Chapter 4, the insights from Chapter 3 are used to develop a method which utilises sub-

domains only when doing so was likely to improve quantification accuracy. This method

achieved a 4.5% relative improvement in mean absolute error over the baseline method on

the test data.

In Chapter 5, importance weighting of instances methods are used for domain adapta-

tion. With these methods, the distribution of the training data is brought closer to the

distribution of the test data by applying ‘importance’ weights to individual instances in

the training set. Several methods of computing importance weights are used including

Sample Selection Bias Correction [122], Kernel Mean Matching [58] and Unconstrained



6

Least-Squares Importance Fitting [104]. These methods work on aligning data distri-

butions overall, not specifically the class-conditional distribution differences, so various

approaches were taken to address the issue of class-conditionality. Ultimately, a method

using Kernel Mean Matching gave a 10.7% relative improvement in mean absolute error

over the baseline method on the test data.

In Chapter 6, attention switches from instances to features. Domain adaptation is ad-

dressed by using the Marginalised Stacked Denoising Autoencoder (mSDA) method [29]

to transform the original features into a new representation. The best paramater settings

gave a 3.3% relative improvement in mean absolute error over the baseline method on the

test data.

The relevant literature is reviewed in Chapter 2 and conclusions and directions for potential

further work are set out in Chapter 7.

The motivation for this work came from the Polly project in 2014-15. The Polly project

was a collaboration between the University of Sussex, CASM Consulting LLP, the market

research firm Ipsos-Mori and the think-tank Demos. It was funded by the UK Technology

Strategy Board (now Innovate UK), the EPSRC3 and the ESRC4. A key part of the

project was to explore the potential for the demographic profiling of Twitter users and

promising results were obtained for estimating age, gender and location. The question of

a dataset shift between the dataset being tested and the dataset on which the classifiers

were trained was acknowledged as a possible issue but was not explicitly addressed as part

of the project.

3The Engineering and Physical Sciences Research Council
4The Economic and Social Research Council



Chapter 2

Literature review

This Chapter is organised into four sections. Literature on quantification is explored in

Section 2.1, dataset shift in Section 2.2 and unsupervised domain adaptation in Section

2.3. Finally, literature that has brought together domain adaptation and quantification is

reviewed in Section 2.4.

Throughout the thesis, data that is used for training purposes is referred to as the training

set and we say that it has been drawn independently and identically distributed (iid) from

the Source domain. Similarly, we say that the data that is used for testing purposes is the

test set which has been drawn iid from the Target domain.

2.1 Quantification

The approaches to quantification can be grouped into four broad categories:

• Classify and count

• Classify and adjust

• Distribution matching

• Direct quantification

7



8

2.1.1 Classify and count

For the reasons outline in the Introduction, classify and count is a näıve approach to

quantification. The inevitable imperfection of the classifier gives an inevitably imperfect

method of estimating class proportions.

2.1.2 Classify and adjust methods

Classify and adjust methods still rely on a trained classifier to classify or assign class

probabilities to the data but then a second adjustment step is applied to arrive at the

actual estimate of class proportions. The adjustment step implicitly or explicitly relies

on information about the relationship between the actual and estimated class labels that

has been obtained from labelled data, typically at the time that the classifier is trained.

The two most common approaches to making this adjustment are matrix-inversion and

probabilistic expectation-maximisation.

2.1.2.1 Matrix-inversion

The error from the classify and count method can be corrected with a simple linear

transformation. Assume we have two classes, positive (+) and negative (-). The test

set contains nt instances of which a+ are in the positive class. We define m+ as the

proportion of actual positive class instances in the test set:

m+ =
a+

nt
, (2.1)

and m̂+ as the estimate of this value. Counting the instances by predicted class as given

by the classifier (i.e. the classify and count method) we have p+ positives. We define q+

as the proportion of predicted class positive instances in the test set where:

q+ =
p+

nt
. (2.2)

The matrix-inversion estimate of m+ is then [42]:

m̂+ =
q+ − fpr

tpr− fpr
, (2.3)

where the True Positive Rate (tpr) and False Positive Rate (fpr) are calculated from

labelled validation data normally at the same time that the classifier is trained but which



9

has not been used to train the classifier. This method relies on the assumption that the

computed tpr and fpr values are the same as would be seen on the test data if its labels

were available for inspection i.e. that the class-conditional feature distribution in the

Target domain is the same as that in the Source domain.

In the field of machine learning, the matrix-inversion method is usually credited to Forman

[42] as the Adjusted Count method, although this is fundamentally the same method that

was seen earlier in Vucetic and Obradovic [117]. In epidemiology this method has been

used since at least the 1960s. Rogan and Gladen [95], Levy and Kass [81] and Buck et al.

[21] are widely cited.

Forman [44] puts forward a range of variations on the Adjusted Count method that are

aimed at prioritising quantification performance over classification performance. These

are shown in Table 2.1.

Table 2.1: Variations on the Adjusted Count method from Forman [44]

Method Description

Crossover Set the threshold of the classifier such that it gives fpr = (1− tpr)

T50 Select the classifier threshold that results in tpr = 50%

Max Select the classifier threshold that results in the maximisation of

the denominator i.e. maximise (tpr - fpr)

Median Sweep Compute m̂+ for every setting of the classifier threshold and return

the median of these values

Forman [44] observes that Median Sweep performs better than the Mixture Model and

Adjusted Count methods although he suggests though that T50 and Crossover may be

simpler to implement.

While many further works discussed in this section claim to have achieved higher levels

of performance, the performance of the simple matrix-inversion method has proved to be

strong. It has frequently been used as a baseline and has frequently been shown to perform

on a similar level to the author’s own chosen approach (e.g. Barranquero et al. [12] Esuli

and Sebastiani [37] Gao and Sebastiani [49] Milli et al. [86] Xue and Weiss [121]). González

et al. [52] states that the AC method is a theoretically perfect method when its learning

assumptions are fulfilled i.e. if we have perfect estimates for tpr and fpr for the data on

which the quantification is being performed.



10

Bella et al. [13] put forward a variation on Adjusted Count method which they called Scaled

Probability Average. They believe that class-probabilities offer richer information on the

dataset than estimated class labels. In this method the aggregated class probabilities from

a classifier are first computed and then are adjusted in a similar manner to the way that

Forman [44] adjusts the counts by class with the Adjusted Count method. Bella et al. [13]

found that their Scaled Probability Average method outperformed other methods including

the Forman [44] Adjusted Count method. However, Esuli and Sebastiani [37] performed

a number of tests and found that Scaled Probability Average was not consistently better

than Adjusted Count.

Further details of the Forman [42] Adjusted Count method can be found in Section A.1

2.1.2.2 Probabilistic expectation-maximisation

In 2002 Saerens et al. [97] outlined a probabilistic expectation-maximisation method for

estimating class distribution that is considered to be seminal [35] and arguably the most

popular algorithm for quantification [52].

The method requires a classifier that generates an output that can be interpreted as the

probability of being a member of each class, P (y|x). In the matrix-inversion method

above, the information about the probabilistic relationship between actual and predicted

class labels is explicit in the values of tpr and fpr. In this method this information is

implicit in the training of the classifier and the class label probabilities that it assigns.

The classifier is trained on the labelled training data and then used to assign estimated

class probabilities to the test data from the Target domain, PT (y|x). After that a two

step adjustment process iterates until a convergence criteria is met:

1. The class distribution PT (y) is re-estimated by marginalising the latest estimate of

posterior class probabilities PT (y|x).

2. The posterior class probabilities PT (y|x) are re-estimated using the latest estimate

of the class-distribution PT (y).

Further details of the Saerens et al. [97] method can be found in Section A.2.



11

2.1.3 Distribution matching

The observed distribution of features, PT (x), or estimated class probabilities, PT (ŷ), in

the Target domain is assumed to be a mixture of the class-conditional feature distributions

in the Source domain observed at training time.

The class distribution in the Target domain is estimated by comparing the test set to a

synthetic dataset which has been made up by sampling the labelled data from the Source

domain to a given class proportion. The estimate of the class proportion in the Target

domain is the class proportion in the synthetic set which minimises some measure of

distance between the distribution of the synthetic set and the distribution of the test set.

Different authors have used different distance metrics.

Clearly these methods are again dependent on the assumption that the class-conditional

feature distribution is the same in the Source and Target domains.

2.1.3.1 Distribution matching in the estimated label space Ŷ

Forman [42] put forward the Mixture Model method. Firstly, a classifier is trained with

data from the Source domain, then other labelled data from the Source domain is put

through the trained classifier to give a distribution of raw classifier output values for each

class.

Forman [42] uses a measure he defines as PP-Area to measure the distance between the

test and the synthetic datasets. PP-Area is defined as the area bounded by the Cu-

mulative Distribution Function (CDF) of the test dataset and the CDF of the synthetic

dataset. Forman [42] considered PP-Area to be a better metric than the more conven-

tional Kolmogorov-Smirnov value. He found that Mixture Model was very resilient to wide

variations in the class distribution of the training data, but was normally outperformed

by the variants on the Adjusted Count method (Crossover, T50, Max, Median Sweep (see

Section 2.1.2.1)).

GonzáLez-Castro et al. [54] measured the distance between the two distributions using

Hellinger Distance. They found that estimating class proportions with a method based

on the predicted class labels ŷ performed better than the method based the feature dis-

tributions x (see Section 2.1.3.2).



12

2.1.3.2 Distribution matching in the feature space X

Du Plessis and Sugiyama [35] showed that the Saerens et al. [97] EM algorithm can be re-

fomulated as a mixture method which minimises Kullback-Liebler (KL) divergence. They,

however, prefer Pearson (PE) divergence to KL-divergence as the measure to minimise.

PE-divergence can be considered to be the squared-loss variant of KL-divergence [35].

They prefer PE-divergence largely for reasons of practical implementation but also state

that it has superior convergence properties. There was some difference in performance for

the five methods that they implemented when they were applied to the six datasets, but

in all six cases the PE-divergence based method either equalled or was better than the

Saerens et al. [97] EM method.

As discussed above, GonzáLez-Castro et al. [54] explored distribution matching by min-

imising the Hellinger Distance in both the estimated label space Ŷ in the previous section,

and in the feature space X. They obtained better performance when working in Ŷ and be-

lieved that the lower performance in X was down to the issue of sparseness. The approach

taken by Du Plessis and Sugiyama [35] and Iyer et al. [68] to measuring distance in X is ar-

guably more sophisticated than the Hellinger distance approach used by GonzáLez-Castro

et al. [54] and this may explain its superior performance.

2.1.3.3 Distribution matching in a transformed feature space

Iyer et al. [68] and Kawakubo et al. [76] projected the distributions into a Reproducing-

Kernel Hilbert Space (RKHS) and then minimised Maximum Mean Discrepancy (MMD)

(see Section 2.2.3.2). Their work builds on previous work such as Saerens et al. [97],

Du Plessis and Sugiyama [35] and Zhang et al. [124]. Iyer et al. [68] initially used the PE-

divergence method favoured by Du Plessis and Sugiyama [35] as a baseline, but dropped it

stating that it (surprisingly) performed no better than a baseline of counting by predicted

class using a classifier built on the work of Sun et al. [107].

2.1.4 Direct quantification

Given that the ultimate aim is quantification and not classification an alternative approach

is to learn a quantifier directly and not to learn a classifier as an intermediate step. This

is typically done by minimising a loss function based on quantification error rather than



13

on classification error.

Esuli and Sebastiani [37] [38], Barranquero et al. [12] and Gao and Sebastiani [49] [48] all

used the SVM for Multivariate Performance Measures (SVM∆
multi) method as put forward

by Joachims [72]. This method is itself a development from Tsochantaridis et al. [111].

Classifiers typically minimise a loss function where the loss is aggregated from the losses

computed for each individual instance in the training set. Joachims [72] SVM∆
multi method

is different in that it can minimise a loss function that has been computed across a set

of data instances where the loss cannot be dis-aggregated to a loss for each instance, for

example from a confusion matrix. This allows a classifier to be trained to directly optimise

a measure of quantification accuracy.

Esuli and Sebastiani [37] [38] use the Kullback-Leibler divergence (KLD) for their loss

function. Specifically the KLD between the actual class distribution and the predicted

class distribution based on the count of instances by predicted class from the classifier.

They compare this method (which they term SVM(KLD)) to other baseline methods such

as those of Forman [44] and Bella et al. [13] and claim that it is superior in accuracy,

stability and running time.

Interestingly they comment that tpr and fpr were far from invariant across different sets

and they argue that this supports the SVM(KLD) method over methods such as Adjusted

Count that require explicit values for tpr and fpr. However, SVM∆
multi / SVM(KLD) is

still optimising over the full set of training data. The assumption is that the test set and

the training set are be drawn iid from the same domain. The SVM(KLD) will have learnt

some relationship between the set of x values of the instances in the training set and the

set of class labels y. While the method does not rely on explicit values for tpr and fpr it

will be just as susceptible to the underlying changes in the relationship between x and y

that cause those changes in tpr and fpr.

Barranquero et al. [12] also implemented a similar quantification approach to that used

by Esuli and Sebastiani [37] i.e. one based solely on quantification loss. They found that

it performed poorly. They argue that in order to generalise well a quantifier must still

be a good classifier. A loss function that only focuses on quantification error (such as is

the case with Esuli and Sebastiani [37]) is, in their view, unsuitable because the resulting

hypothesis space contains several local optima. Like Esuli and Sebastiani [37] they also

use the (SVM∆
multi) but their loss function, the Q-function, is a linear combination of



14

quantification loss function and a classification loss function1. However, when they applied

the analytical approach as advised in Demšar [31] they found no statistically significant

difference between this method and 6 of the 7 Forman [44] methods that were used as

benchmarks.

One possible explanation for the better performance claimed by Esuli and Sebastiani [37]

is that their experiments used a large number of classes (88 in one experiment and 99

in another) whereas the Barranquero et al. [12] experiment used binary classes. As the

number of classes tends towards the number of data instances (i.e. to a point where each

class contains just one data instance and vice versa) the error in the estimate of class

distribution (the quantification error) tends towards the classification error. By choosing

such a large number of classes Esuli and Sebastiani [37] are effectively incorporating a

degree of classification loss into their quantification loss based approach.

Tasche [109] looked at both the Barranquero et al. [11] and Esuli and Sebastiani [37] direct

quantification methods and evaluated the method from Barranquero et al. [11] both from

a theoretical perspective and experimentally. He found that the method was sensitive to

mis-calibration and limited in its application.

Milli et al. [86] put forward a direct quantification method that did not make use of

the Joachims [72] SVM∆
multi . Their method used decision trees (Quantification Trees).

They reported better performance than the Forman [44] Adjusted Count method, although

in several cases the Adjusted Count method actually gave the best performance. The

baselines for Adjusted Count used classifiers with the parameters set at their default values.

Finally, the class distribution of the training sets was varied between 0.05 and 0.95. There

are known issues when using unbalanced datasets to train standard classifiers [26] [69]

[79] and this may have a larger negative impact on the baseline SVM classifier than on

their decision tree method. However, despite these reservations, there is the possibility

that their method is somehow akin to building a robust feature representation as per the

methods set out in Section 2.3.3 and would potentially be an interesting area for further

work.

In summary, Barranquero et al. [12] re-implemented the method from Esuli and Sebastiani

[37] and found it performed poorly but found that their own method is not statistically

1They modelled their Q-measure on F-measures for balancing recall and precision in classification



15

significantly better than the methods from Forman [44]. Tasche [109] also found that their

method was no better than simple classify and adjust methods such as those from Forman

[44]. Finally, the method in Milli et al. [86] was also not found to be clearly superior to

the methods from Forman [44].

My conclusion was that none of the direct quantification methods are demonstrably supe-

rior than the far simpler Adjusted Count method from Forman [44] so this is the method

chosen for use in this thesis.

2.1.5 Quantification loss functions

The distribution matching methods in Section 2.1.3 and the direct quantification methods

in Section 2.1.4 minimise a loss function over a set of instances rather than aggregate a

loss function calculated separately for each instance in a set. Different authors have used

a variety of loss functions, some of which are listed in Table 2.2 below:

Table 2.2: Quantification loss functions

Title Used in Note

NSS Normalised Square Score [12]

NAS Normalised Absolute Score [12]

EMD Earth Mover’s Distance [62] [76] see 2.2.3.3

HDx Hellinger Distance in X [54]

HDy Hellinger Distance in y [54]

PE Pearson Divergence [35]

MMD Maximum Mean Discrepancy [68] [76] see 2.2.3.2

PP-Area PP-Area [44]

2.1.6 Quantification test methods

The normal method (e.g. Forman [44], Bella et al. [13], Barranquero et al. [12]) for testing

for quantification accuracy is to construct test datasets of a given class distribution by

separately sampling instances of each class from the available labelled data. This is the

approach I have used.

However, Esuli and Sebastiani [37] prefer to use the datasets in their ‘natural’ state i.e.



16

without any adjustment to the class proportions. They argue that artificially adjusting

class proportions would create unrealistic datasets. González et al. [52] are sympathetic

to this approach, observing that the class-conditional sampling methods may be artificial

with respect to the actual data distribution of the problem.

This is an interesting question for further work and is discussed further in Chapter 7.

2.1.7 Quantification applied to specific areas

In many papers the motivation to explore quantification is driven by a particular problem

in a particular field.

In epidemiology, estimating disease prevalence using screening tests is effectively the equiv-

alent of quantification in computer science [87]. The limitations of the simple classify and

count method with an imperfect test are well known and the matrix-inversion formula

that computer scientists credit to Forman [42] in 2005 has been used by epidemiologists

for estimating disease prevalence since Rogan and Gladen [95] in 1978, Levy and Kass [81]

in 1970 or Buck et al. [21] in 1966.

However, while epidemiologists have been working with the problem of quantification with

imperfect classifiers for many years (e.g. Cowling et al. [30], Donald et al. [33], Greiner

and Gardner [56], Joseph et al. [73], McV Messam et al. [85]) they do not appear to have

developed methods for dealing with quantification under dataset shift that could be used

as part of the work for this thesis.

In social science, Hopkins and King [65] point out that practitioners want generalisations

about the population of documents rather than the classification of individual documents

i.e. quantification rather than classification. The focus of their work is on quantifying

electronic records (blogs, speeches, government records, newspapers etc.) by category.

Finally, sentiment analysis is an area which features heavily in the works on quantification.

Works in this area include Blitzer et al. [19], Chan and Ng [25], Esuli et al. [38], Amati

et al. [6], Chan and Ng [24] and Gao and Sebastiani [48]. By its nature, users of sentiment

analysis tend to be interested in the aggregate opinion of a group rather than the opinion

of individuals.



17

2.2 Dataset shift

Dataset shift is when the joint distribution between features x and labels y in the Target

domain T differs from that in the Source domain S [93] i.e.

PT (x, y) 6= PS(x, y) (2.4)

Bayes’ rule gives:

P (x, y) = P (x|y)P (y) = P (y|x)P (x). (2.5)

Using Bayes’ rule, Moreno-Torres et al. [88] put forward the taxonomy for types of dataset

shift shown in Table 2.3.

Table 2.3: Types of dataset shift [88]

Conditional Marginal

Prior probability shift: PT (x|y) = PS(x|y) PT (y) 6= PS(y)

Covariate shift: PT (y|x) = PS(y|x) PT (x) 6= PS(x)

Concept shift: PT (x|y) 6= PT (x|y) PT (y) = PS(y)

or PT (y|x) 6= PT (y|x) PT (x) = PS(x)

Other shift: PT (x|y) 6= PT (x|y) PT (y) 6= PS(y)

or PT (y|x) 6= PT (y|x) PT (x) 6= PS(x)

Most works on quantification assume Prior Probability Shift [68] i.e. that while the class

distribution is different in the Target domain to the Source domain PT (y) 6= PS(y), the

class-conditional feature distributions are not i.e. PT (x|y) = PS(x|y).

In this thesis, the assumption is that the class-conditional feature distribution P (x|y) is

not the same in both the Source and Target domains. Assuming both that PS(y) 6= PT (y)

and PS(x|y) 6= PT (x|y) would be classified as other dataset shift in Moreno-Torres et al.

[88]. They regard these problems are so hard that they are currently ‘impossible’ to solve.

However, several works have attempted to address this ‘impossible’ problem, typically by

applying some form of constraint between the Source and Target domain.

Throughout this thesis the term bias is used interchangeably with the term dataset shift.



18

2.2.1 Causality and dataset shift

Both Moreno-Torres et al. [88] and Storkey [103] link type of dataset shift to the direction

of causality. A common point of reference for both is Fawcett and Flach [39], which is itself

a response to Webb and Ting [118]. Moreno-Torres et al. [88] states that writing the joint

distribution as P (x|y)P (y) applies only to Y → X problems. However González et al.

[53] think that this is not correct. Their view is that the property that P (x|y) remains

unaltered must be analysed for each particular application, independently of whether it

belongs to X → Y or Y → X problems.

2.2.2 Causes of dataset shift

Storkey [103] considered the reasons for dataset shift and proposed the six categories given

in Table 2.4 below:

Table 2.4: Reasons for dataset shift from Storkey [103]

Simple Covariate Shift Only the distributions of X change, everything

else stays the same

Prior Probability Shift Only the distribution of Y changes, everything

else stays the same

Sample Selection Bias Distributions differ as a result of an unknown

sample rejection process

Imbalanced Data Deliberate dataset shift for computational or

modelling convenience

Domain Shift Changes in measurement

Source Component Shift Changes in strength of contributing components

While these are given as causes for dataset shift, they are in reality a mix of causes and

types. Moreno-Torres et al. [88] makes a clearer separation of causes and types. They state

that while there are a variety of potential causes the most important causes of dataset

shift are sample selection bias and non-stationary environments.

Sample selection bias is itself a major area of study. With over 27,000 citations Heckman

[60] is regarded as the seminal work on the subject and is the field of study for which

he won the Nobel prize in Economic Science. Zadrozny [122] applied Heckman’s methods



19

for correcting for sample selection bias to the world of machine learning and these are

discussed in Section 2.3.2.1.

The concept of sample selection bias is very relevant to this thesis. Going back to the

motivating in Chapter 1, sample selection bias has occurred because the group of individ-

uals that we are looking to quantify have been selected on the basis of the content of their

tweets. They are not a simple random iid sample of Twitter users.

By non-stationary environments, Moreno-Torres et al. [88] are considering environments

where the data is non-stationary in time or non-stationary in space. They give the example

of junk mail as an example of a non-stationary environment in time. The creators of junk

mail change the content and format of the junk mails they generate to attempt to defeat

advances in junk mail filtering. Kelly et al. [77], Gama et al. [45] and others address

dataset shift as temporally non-stationary environment problem and in this area the term

drift is typically used.

Sample selection bias and non-stationary environments can be seen as two ways of looking

at the same issue: non-stationary environments can be considered as the equivalent of

sample selection bias where the data in the Target domain has been sampled with sample

selection bias biased on either time or on space.

2.2.3 Measures of dataset shift

Measuring the shift between datasets is not a trivial problem. The three main approaches

appear to be:

• A-distance

• Maximum Mean Discrepancy

• Earth Mover Distance

2.2.3.1 A-distance

A-distance was originally defined in Kifer et al. [78] where they state that the intuitive

meaning of A-distance is that it is the largest change in probability of a set that the user

cares about. The authors were looking for a distance function that would detect a distance

> ε between two distributions P1 and P2 with a sample of at most n points from each



20

of P1 and P2. They considered, and rejected several existing measures. They rejected

Jensen-Shannon Divergence because it can only be applied to discrete distributions and

because they felt that the concepts of entropy on which it is built are hard to convey to end

users. They rejected other common measures of distance between distributions because

they are too sensitive (e.g. L1) or too insensitive (e.g. Lp with p > 1)2.

However, the authors state that in practice, computing the exact A-distance is impossible

and that one has to compute a proxy. Ben-David et al. [14] showed that a proxy for A-

distance can be found by optimising a classifier to discriminate between the two datasets

and observing the error.

Proxy A-distance d̂A is defined as:

d̂A = 2(1− 2ε), (2.6)

where ε is the error rate obtained with the best hypothesis from the hypothesis set.

This has an intuitive meaning: if an optimised classifier cannot distinguish between two

equal-sized datasets then they are close. In this case the classifier error rate will be around

0.5 giving a d̂A of around 0.

Using classification accuracy as a measure of dataset shift was also used by Torralba

and Efros [110] to measure the similarity between image datasets. Similarly the sample

selection bias correction method from Zadrozny [122] uses a classifier that is trained to

distinguish between two datasets.

A-distance is a popular measure in the literature, probably because it can be computed

simply, has an intuitive meaning and is theoretically grounded.

Some recent works on domain adaptation have either used A-distance in their analysis

(e.g. Glorot et al. [50]) or have used it as a fundamental part of an adversarial learning

approach (e.g. Ajakan et al. [4], Ganin et al. [47]).

2.2.3.2 Maximum Mean Discrepancy (MMD)

The concept behind Maximum Mean Discrepancy (MMD) is to take samples from the

two domains in question and project the data in the samples into a Reproducing Kernel

2There is more discussion on Lp norms in Section 2.3.2.6



21

Hilbert Space (RKHS) using a kernel function. The MMD test statistic is the difference

between the mean values of the domain samples computed in the RKHS. The smaller the

test statistic the more likely it is that the two samples were drawn from the same domain

i.e. the more similar the domains. Maximum Mean Discrepancy is defined in Borgwardt

et al. [20] and Gretton et al. [57].

Under certain circumstances MMD is equivalent to the metric of Energy Distance [98].

Energy distance is a statistical distance between the distributions of random vectors, which

characterizes equality of distributions [108].

MMD has been used in a variety of works on dataset shift and domain adaptation including

Hoffman et al. [64], Long et al. [82], [83], Pan et al. [91]. Interestingly MMD has also

been used for straightforward quantification but always under the prior probability shift

assumption that class-conditional feature distributions are the same in both the Target

and Source domains e.g. Iyer et al. [68], Kawakubo et al. [76].

2.2.3.3 Earth Mover Distance (EMD)

Earth Mover Distance (EMD) was first introduced by Rubner et al. [96] [62]. It is con-

ceptually very similar to Wasserstein3 distance. EMD and Wasserstein distance are the

same when the two distributions being compared have equal mass [80]. EMD is popular

measure for distributional similarity in the field of image processing (e.g. Rubner et al.

[96]) but has also been used in other areas of dataset shift and domain adaptation (e.g.

Hofer [62])

EMD is based on the concept of computing the minimal cost to transform one distribution

to another and is effectively a transport problem [96]. As such the concept of ground

distance is fundamental. In 2D images where pixels are features, ground distance has a

natural physical meaning. In Hofer [62], Euclidean distance in the feature space is used

as the measure for ground distance.

3Also known as Mallow distance



22

2.3 Unsupervised domain adaptation

Methods that address dataset shift typically go under the heading of domain adaptation.

In this thesis we are only interested in unsupervised dataset shift i.e. when labelled data

is only available from the Source domain and not from the Target domain.

Very commonly, researchers have been addressing situations where they have a classifier

that has been trained with data from one domain and then want to perform the same

classification task in a similar but non-identical domain where the amount of labelled data

is limited or non-existent. There is the strong intuition that they should still try to use

knowledge obtained from the original domain, but to adapt it to the new domain.

Domain adaptation is also referred to as transductive transfer learning itself a subset

of transfer learning [90] [106]. Storkey [103] notes that ‘the problem of dataset shift is

closely related to another area of study known by various terms such as transfer learning

or inductive transfer ’.

Domain adaptation is of particular interest in the fields of natural language processing

(NLP) and image processing.

Approaches to unsupervised domain adaptation can be broadly categorised into four

groups:

• Mixtures of sub-domains

• Importance weighting of instances

• Feature representations

• Weakly supervised

Domain adaptation is a very large area of study. In this literature review I have focussed on

selected papers that are particularly relevant to the quantification under class-conditional

dataset shift problem.

2.3.1 Mixtures of sub-domains

With mixture of sub-domain methods, the assumption is that the Source and Target

domains are both made up from a mixture of common sub-domains. While the class-

conditional feature distribution differs between Source and Target domains the assumption



23

is that it does not vary within the sub-domains. The difference in class-conditional feature

distribution between the Source and Target domains is then assumed to be fully accounted

for by a difference in their constituent proportions of sub-domains.

2.3.1.1 Ensemble approaches

Broadly, in ensemble approaches, a classifier is trained specifically for each sub-domain and

the overall output (say instance classification) is computed as a function of the outputs of

the ensemble of classifiers. Works in this area include Mansour et al. [84] and Duan et al.

[36].

2.3.1.2 Latent domains

In Alaiz-Rodŕıguez et al. [5] they extend the method from Saerens et al. [97] into ‘sub-

classes’. Within each class the class-conditional feature distributions P (x|y) are assumed

not to be the same in the Source and Target domains. Each class is considered to be

made up of a number of sub-classes and for each sub-class the class-conditional feature

distribution is assumed to be the same in both the Source and Target domains. The

Saerens et al. [97] expectation-maximisation approach is applied at this sub-class level.

They reported some good results but when they ran the experiment using feature-based

biassing, as used by Zadrozny [122] and Gretton et al. [57], they found that their method

offered no improvement over the class-level method from Saerens et al. [97] and in some

cases performed worse.

The method outlined in Hofer [62] is effectively a distribution matching method (see

Section 2.1.3) but one which works at a latent sub-domain level. The conditional feature

distributions from the Source domain and the unconditional feature distribution from

the Target domain are separately modelled as mixtures of Gaussian distributions. The

unconditional feature distribution in the Target domain is considered to be made up

of probability mass transferred from the conditional feature distributions in the Source

domain, where that transfer minimises the Earth Mover Distance (Section 2.2.3.3). Full

details of the method are given in Section A.4.

The authors applied this method to a dataset of company insolvencies that was obtained

from the Danish tax authority. Estimates of class-proportions were benchmarked against



24

estimates from two other baseline methods, Global : the Global Drift Model from the

author’s earlier work Hofer and Krempl [63] and LFS : the Linear Feature Shift model

proposed in Biernacki et al. [17]. The published results indicate that the author’s method

is superior to the chosen baseline methods.

However, in deciding which of the many approaches to re-implement I rejected the Hofer

[62] method for a number of reasons. The dataset on which it was tested was confidential

so I could not get access to it. They had not applied their method to any public domain

datasets. The dataset they used was very low dimensionality: 4 categorical and 2 contin-

uous features in contrast to the higher dimensionality datasets in this thesis. None of the

papers that have subsequently cited Hofer [62] have re-implemented the method. Finally

the authors were approached but were unwilling to share their code.

Having said this, I still believe it would still be an interesting piece of further work to

benchmark the results in this thesis against the method from Hofer [62].

2.3.2 Importance weighting of instances

The second general approach to unsupervised domain adaptation is importance weighting

of instances, often shortened to instance weighting.

The principle behind instance weighting is to apply a weight to each instance of the training

data that has been drawn from the Source domain so that its weighted joint probability

distribution is as close as possible to that of the test data drawn from the Target domain.

In theory, a classifier that is then trained on that weighted training data should perform

well on the test data.

More detail on method for importance weighting of instances is given in Appendix B.

2.3.2.1 Sample selection bias correction

In Zadrozny [122], the training set is considered to be a sample drawn from the Target

domain with a sampling bias based on the value of a selector variable. This sample selection

bias is corrected for by applying weights to the instances in the training set. The weights

are computed using the class-probabilities given by a classifier that has been trained to

discriminate between instances from the training set and instances from the test set.



25

2.3.2.2 Kernel density estimation (KDE)

In common with other instance weighting approaches, importance weights to be applied

to each instance in the training set are given by the ratio of the joint distributions:

wi =
PT (x, y)

PS(x, y)
=
PT (y|x)PT (x)

PS(y|x)PS(x)
. (2.7)

Again, in common with other instance weighting approaches, this method contains the

assumption of covariate shift i.e. that PT (y|x) = PS(y|x) so:

wi =
PT (xSi)

PS(xSi)
. (2.8)

The weights applied to the instances in the training set are the ratio of the data density

in the two domains.

The most obvious approach is simply to independently estimate PS(x) and PT (x) using

the training and test data. This was the approach taken by Shimodaira [101] in what was

probably the first work to propose a method of instance weighting to deal with covariate

shift. This method is efficient because it does not require optimisation.

However, Sugiyama et al. [105] describes this approach as ‘näıve’, as it suffers from the

curse of high dimensionality and subsequently may not be reliable in high-dimensional

problems. Sugiyama and Kawanabe [104] state that the method is contrary to Vapnik’s

principle [115] that: one should not solve more difficult intermediate problems when solving

a target problem. They, and others, have proposed methods for direct estimation of the

density ratio.

2.3.2.3 Kernel mean matching (KMM)

One such method for direct estimation of instance weights, Kernel Mean Matching, was

first put forward by Huang et al. [66] and updated by the same authors in Gretton et al.

[58]. KMM works by finding the weights for the training data that minimise the Maximum

Mean Discrepancy between the weighted training data and the test data.

Huang et al. [66] reported that “KMM always4 improves test performance compared to

the unweighted case” but in Gretton et al. [58] the same authors report more ambiguous

4Author’s italics



26

results. It appears that Huang et al. [66] had used overly simple models. Gretton et al.

[58] found was that KMM did substantially improves learning performance in cases where

the class of functions output by the learning algorithm is simpler than the true function.

However, when better models were fitted to the data, KMM generally either did not affect

performance or actually made it worse.

Further details of the Kernel Mean Matching method are given in Section B.2.

2.3.2.4 Unconstrained least-squares importance fitting (uLSIF)

Sugiyama and Kawanabe [104] put forward the Least Squares Importance Fitting (LSIF)

method in which the instance weights wi are given by:

wi =
t∑
l=1

αlKσ(xi, cl), (2.9)

where Kσ is the Gaussian kernel function and cl is a template point randomly chosen from

the test set.

The vector of α values, α, is computed by minimising the squared loss between the densities

in the Source and Target domains. LSIF is computationally very efficient but it sometimes

suffers from a numerical problem and is therefore not reliable in practice. To address this

problem, Sugiyama and Kawanabe [104] put forward the unconstrained version, uLSIF,

where the non-negativity constraint on the α terms in the optimisation is replaced with a

max function where α′ = max(0, α).

Further details of the unconstrained Least-Squares Importance Fitting method are given

in Section B.3

2.3.2.5 Comparison of importance weighting methods

Sugiyama and Kawanabe [104] evaluated several alternative methods for computing im-

portance weights. These are set out in Table 2.5.



27

Table 2.5: Importance weighting methods from Sugiyama and Kawanabe [104]

Method Title Reference Note

KDE Kernel Density Estimation Shimodaira [101] Section 2.3.2.2

KMM Kernel Mean Matching Gretton et al. [57] Section 2.3.2.3

LR Logistic Regression Also known as the

log-linear model

KLIEP Kullbeck-Leibler Importance

Estimation Procedure

Sugiyama et al. [105]

LSIF Least Squares Importance

Fitting

Kanamori et al. [74]

uLSIF Unconstrained Least Squares

Importance Fitting

Kanamori et al. [74]

Table 2.6 is a summary of their comparison of the different methods:

Table 2.6: Comparison of importance weighting methods [104]

Method Density Estimation Model Selection Optimisation Out-of-sample

Prediction

KDE Necessary Available Analytic Possible

KMM Not necessary Not available Convex QP Not possible

LR Not necessary Available Convex non-linear Possible

KLIEP Not necessary Available Convex non-linear Possible

LSIF Not necessary Available Convex QP Possible

uLSIF Not necessary Available Analytic Possible

Sugiyama and Kawanabe [104] claim that uLSIF is a preferable method for importance

estimation because it is solvable analytically (and is therefore fast) and enables parameter

setting by cross-validation.

Bickel et al. [16] developed a method which computed instance weights and trained the

classifier at the same time. They compared their method to the Gretton et al. [58] KMM

method and to the Zadrozny [122] sample selection bias correction method. They found

that their method improved performance on a spam filtering task whereas the Gretton

et al. [58] KMM method degraded performance and the Zadrozny [122] sample selection



28

bias method only gave a marginal improvement. On a landmine detection task both their

method and the Gretton et al. [58] KMM method performed well while the Zadrozny [122]

sample selection bias correction method again gave only a very marginal improvement.

2.3.2.6 Distance measures in importance weighting

The KMM and uLSIF (and other) methods use a Gaussian kernel. The concept of distance

is fundamental and the Gaussian kernels use Euclidean distance (the L2 norm) in the

standardised feature space. However Aggarwal et al. [3] notes that the meaningfulness of

the Lk norm in high dimensional spaces is sensitive to the value of k. They found that the

Manhattan distance metric (L1 norm) is consistently preferable to the Euclidean distance

metric (L2 norm) for high dimensional data mining applications. High dimensionality is

a concern in this thesis. The motivating example in which the feature set is accounts

followed on Twitter is very high dimensional.

The exploration of alternative distance metrics is another interesting avenue for potential

further work and is discussed in Chapter 7.

2.3.3 Feature representations

The third main approach to domain adaptation is to transform the features, x, so that

information in the features that is relevant to classification is separated from, or unaffected

by, information that relates to the domain from which the data was taken.

2.3.3.1 Feature manipulation

Structured Correspondence Learning (SCL) was put forward in Blitzer et al. [18]. They

built on earlier work from Ando and Zhang [8]. Ben-David et al. [14] found that SCL

was able to reduce the difference between the Source and Target domains. However they

also observed that choosing the pivot features was potentially problematic [90]. In Blitzer

et al. [19] SCL was updated to use mutual information for the selection of pivot features.



29

2.3.3.2 Subspace learning

The principle with Subspace Learning is to learn a new, typically lower-dimension, feature

representation (a subspace) in which the difference between Source and Target domains is

minimised but information required for the classification task is preserved.

Pan et al. [91] approach this as ‘transfer learning via dimensionality reduction’ . They

chose Maximum Mean Discrepancy (MMD) (see Section 2.2.3.2) as their measure of dis-

tance between domains and named their method Maximum Mean Discrepancy Embedding

(MMDE). A kernel matrix K is computed by constrained optimisation to minimise the

MMD between domains, then PCA is applied to the matrix K to construct the low-

dimensional representation. Later, in Pan et al. [92] the authors note that this method

has drawbacks, firstly that it is transductive and cannot generalise to unseen patterns, and

secondly it is computationally intensive. They rework the method to use a much more

efficient optimisation function and name this new method Transfer Component Analysis.

The methods in Gong et al. [51] and Gopalan et al. [55] involve creating a series of subspaces

that follow a path that morphs the domain between between Source and the Target. This

first part of the process is unsupervised. As a second step labelled data from the Source

domain is then projected onto the sub-spaces and these projections used to train a classifier

that can then be used to label data from the Target domain.

Fernando et al. [40] then builds on the work of Gong et al. [51] and Gopalan et al. [55].

Their approach is to first transform the Source and Target domains to respective subspaces

by selecting their first d PCA components and then to find a mapping function that

transforms the Source subspace into the Target subspace. The matrix that maps the Source

to the Target subspace can be found in closed form. Their results on image processing

tasks appear to compare favourably with others.

2.3.3.3 Unsupervised feature representation

As with Gong et al. [51] and Gopalan et al. [55] above, being unsupervised these methods

do not explicitly attempt to generate a new domain-independent feature representation.

Raina et al. [94] utilised large quantities of unlabelled data to facilitate transfer learning in

image processing in a method that they called Self-Taught Learning. Bengio et al. [15] used

stacked autoencoders to generate a new feature representation. Vincent et al. [116] then



30

made a significant advance by switching from stacked autoencoders to stacked de-noising

autoencoders (SDA). Their intuition was that by inserting noise into the autoencoder it

learns a mapping from input to output that is more robust. The motivation in Vincent

et al. [116] was to generate a new feature representation which would improve the learning

performance of deep neural network models. This method was then picked up specifically

for domain adaptation in Glorot et al. [50] where it was tested experimentally on the

Amazon product reviews dataset and benchmarked against various other state of the art

domain adaptation methods including SCL [18]. They found that on their sentiment

classification task the SDA method outperformed all other methods.

Chen et al. [29] put forward their marginalised version of the Stacked De-noising Autoen-

coder, the mSDA method, in which the SDA model parameters are computed quickly in

closed form. Prior to this, in Glorot et al. [50] for example, the denoising autoencoders

had been built with neural networks. Chen et al. [29] claim that while the mSDA method

is faster by two orders of magnitude is achieves similar levels of performance to neural-

network based SDAs.

In the mSDA architecture each autoencoder is simply a linear mapping W : Rd → Rd.

Chen et al. [29] also believed that the non-linearity of the Glorot et al. [50] neural-network

based SDA was key to their success. With the auto-encoding itself being linear, the

non-linearity is added by including non-linear squashing functions between each layer of

auto-encoder. Several options are available but Chen et al. [29] used the tanh() function.

A further advantage of mSDAs is that they only require two parameters, the amount of

noise to be added and the number of layers (typically up to 5). As the mSDA is fast to

train, it is possible to set these parameters using cross validation.

While the mSDA method is better at dealing with high-dimension data than the SDA

method, it is still a potential limitation. The authors include a method for performing

mSDA on sub-sets of the features and recombining the results. This method is based on

the works of Blitzer et al. [18] and Glorot et al. [50].

2.3.3.4 Adversarial feature representation

Adversarial feature representation methods have parallels with multi-task learning [22].

The common principle in these methods is that the new feature representation is learnt

by simultaneously optimising two objectives: generating a representation that is good for



31

the required classification task but is also bad for the task of determining which domain

the instance of data is from. Unlike the SDA method above, these methods learn domain

adaption in supervised manner. These methods have a similarity to the Subspace Learning

approaches outlined in Section 2.3.3.2.

Ganin and Lempitsky [46] [47] put forward the Domain-Adversarial Neural Network (DANN)

method. As Chen et al. [28], Glorot et al. [50] and others had done before them they mea-

sured the performance of their approach on the Amazon reviews dataset. They used both

the original features and a transformed feature set built using the Marginalised Stacked

Denoising Autoencoders (mSDA) method5 from Chen et al. [29].

According to their results, while DANN was better most of the time, some of the im-

provements look to be small. On the original features the mean accuracy across the

Source-Target combinations went from 0.760 for the SVM baseline to 0.763. Looking

at their results, pre-processing the features using the mSDA method appears to have a

greater impact on performance than the DANN method itself.

Ganin and Lempitsky [46] [47] use proxy A-distance as their measure of distance between

domains while Shen et al. [100] suggest that the Wasserstein distance (see Section 2.2.3.3) is

a better measure. Several other works ([83], [112] and [125] amongst others) use Maximum

Mean Discrepancy (MMD) (see Section 2.2.3.2).

Published at a similar time to Ganin et al. [47], Zhuang et al. [127] shares their motivation

of utilising a method that creates a feature representation that explicitly minimises the dif-

ference between domains, while simultaneously explicitly maximising information relating

to labels. Like Vincent et al. [116], Glorot et al. [50] and Chen et al. [29] they base their

method on auto-encoders. Where they differ is that in addition to the loss between the

original input and its recreated output they also explicitly minimise loss functions in the

two encoding hidden layers. On the first encoded layers they minimise the KL Divergence

between an instance from each domain, minimising domain information in this encoded

representation. On the second encoding layer they minimise the loss on a softmax label

classifier.

Tzeng et al. [113] follow a similar adversarial approach, using a deep model and optimising

a loss function that includes both domain confusion loss (which seeks to make the domains

55 layers, 50% noise



32

indistinguishable) and classification loss on the labelled data. Their approach is to use a

small amount of labelled data in the Target domain (i.e. it is supervised) to ensure align-

ment over classes. They make an interesting observation that while maximising domain

confusion pulls the marginal distributions of the domains together, it does not necessarily

align the classes in the Target with those in the Source. This touches on the point made

earlier that for good quantification we expect a difference in class distribution between

Source and Target, but aim for as little difference as possible in class-conditional feature

distribution.

In Tzeng et al. [114] the authors have tried to put the adversarial methods for domain

adaptation into a generalised framework. By generalising the methods of others they

claim to have arrived at a novel configuration which they call Adversarial Discriminative

Domain Adaptation (ADDA).

2.3.4 Weakly supervised

Weakly supervised approaches to domain adaptation are not as prominent in the field

of domain adaptation and are included here for completeness. In weakly supervised ap-

proaches, instances in the test set are given class probabilities by a classifier trained on

the training set. The instances with the highest probability of being in a particular class

are assigned that class label and are added to the training set with some weighting. Zhou

[126] gives a broad overview of the field of weakly supervised learning but in this thesis I

have just focussed on the approach set out by Jiang and Zhai [71]. Their approach was

iterative with a number of instances being transferred from the test set to the training

set on each iteration before re-training the classifier with the revised training set. They

found that giving a higher weight to the instances transferred from the test domain gave

a higher performance.

2.4 Quantification under class-conditional dataset shift

As stated in the Introduction, what makes this thesis novel is that there has been very

little published work on quantification under conditions of class-conditional dataset shift.

In their 2017 review paper A review of quantification learning González et al. [52] states

that ‘Only a few methods assume that P (x|y) may change, for instance Hofer [62]’. Hofer



33

[62]’ is reviewed in Section 2.3.1.2 and in more detail in A.4.



Chapter 3

Domain adaptation with explicit

sub-domains

As discussed in Section 2.3.1, a number of authors have approached the problem by con-

sidering the Source and Target domains to be a mixture of common sub-domains in which

the class-conditional feature distributions are domain-invariant. Typically these authors

assume that the sub-domains are latent. In this Chapter, a simpler approach is taken

where it is assumed that the sub-domains are explicitly labelled in the training data.

If the class-conditional feature distributions at a sub-domain level are domain-invariant

then a standard classify and adjust quantifier for each sub-domain should be effective for

estimating the class proportions in that sub-domain. The outputs from each of these sub-

domain quantifiers can then be aggregated to give an estimate of overall class proportions

in the Target domain.

Going back to Chapter 1 and the motivating example of Twitter users tweeting about

retirement homes in Scotland. The sub-domains could possibly be by age: older vs.

younger, by location: Scotland vs. the rest of the UK or maybe by both: older Scottish

people vs. the rest of the UK. Class-conditional dataset shift in this context is assumed

to be fully accounted for by a difference in the proportion of the groups in our test set

to the proportion which we originally had in our training set. Given the features that

we are using in our motivating example, Twitter accounts followed, this makes intuitive

sense. Older people are unlikely to follow Ariana Grande or the latest YouTube vloggers.

Southern Rail’s Twitter account is unlikely to be of interest to many Scots.

34



35

Switching to the more formal language of data science, the question addressed in this chap-

ter is: when class-conditional dataset shift has occurred, can we get better quantification

accuracy by considering the Source and Target domains to be made up from a mixture of

common sub-domains where we can assume that conditional dataset shift has not occurred?

The work in this chapter rests on four assumptions:

1. The class-conditional feature distributions within each sub-domain do not vary with

domain i.e. PS(x|y, sd) = PT (x|y, sd), where sd designates sub-domain.

2. Each instance is from one sub-domain only.

3. The sub-domain for each instance in the Source domain is known and labelled and

hence is explicit.

4. The difference in class-conditional feature distribution at Source and Target domain

level is completely accounted for by different proportions of the sub-domains in those

domains.

The approach in this chapter is limited by the assumption that the sub-domain is known.

It may be a relatively simple task to identify the sub-domain that is the main source

of the difference in class-conditional feature distribution between the Source and Target

domains. In the example given above, age and location are clearly reasonable candidates.

However, in other cases, determining the right sub-domain may not be straightforward.

The first of the four assumptions is that PS(x|y, sd) = PT (x|y, sd). For a discriminative

classifier P (ŷ|x) is constant i.e. once the classifier is trained the probability of assigning

an estimated label ŷ is solely dependent on the features x that are input to the classifier.

If P (x|y, sd) is constant then so therefore is P (ŷ|y, sd).

P (ŷ = 0|y = 0) is the recall for class 0 (r0) while P (ŷ = 1|y = 1) is the recall for class 1

(r1). If we designate class 0 as the positive class and class 1 as the negative class then the

relationship between recall, tpr and fpr is simply:

r0 = tpr, (3.1)

r1 = 1− fpr. (3.2)

If P (ŷ|y, sd) is constant then recall is constant for each combination of main-class and

sub-domain. This is a core assumption in this chapter.



36

A first step was to run some exploratory experiments using real Twitter data. These are

described in Section 3.4. These showed that while using sub-domains can reduce the bias

in the estimate of class proportions it can also increase the level of noise, leading to an

increase the variance. The problem of bias vs. variance in quantification with explicit sub-

domains looked like a problem that might be solvable in closed-form. This was explored

in Sections 3.5 and 3.6.

A closed-form solution was found to only be realistic when we assume we have a large set

of validation data from the Source domain so in Section 3.8 numerical simulation was used

to get past this limitation and explore the problem more generally.

3.1 Definitions

It is important to first establish some definitions that will be used throughout the chapter.

If we have a dataset with two classes, 0 and 1. The number of instances in class 0 and 1

(actual counts) are given by a0 and a1 respectively and we define a as the vector of those

counts:

a =

a0

a1

 . (3.3)

The classifier assigns a predicted class label to each instance. The number of instances by

predicted class for class 0 and class 1 are given by p0 and p1 respectively and we define p

as the vector of those counts:

p =

p0

p1

 . (3.4)

The classifier recall for classes 0 and 1 are given by r0 and r1. By definition these recall

values relate the values (a0, a1) to (p0, p1):p0

p1

 =

 r0 (1− r1)

(1− r0) r1

a0

a1

 . (3.5)

We define this matrix of recall values as R:

R =

 r0 (1− r1)

(1− r0) r1

 , (3.6)

so:

p = Ra. (3.7)



37

Going further, if we define the matrix P as our confusion matrix:

P =

p00 p01

p10 p11

 , (3.8)

where pij is the count of the number of instances of actual class j that have been assigned

class label i by the classifier.

From the definition of p:

p = P1n, (3.9)

and from the definition of a:

a = PT1n, (3.10)

where 1n is a vector of 1’s of size n, and n is the number of classes. In this case n=2:

12 =

1

1

 . (3.11)

If we convert a into a diagonal matrix A:

A =

a0 0

0 a1

 , (3.12)

then:

P = RA, (3.13)

i.e.: p00 p01

p10 p11

 =

 r0 (1− r1)

(1− r0) r1

a0 0

0 a1

 . (3.14)

So we can derive the R matrix from the confusion matrix P and the counts by actual class

A:

R = P(A)−1. (3.15)

3.1.1 Validation data

We assume we have a validation set of data from the Source domain that is labelled both

for main-class and for sub-domain and has not been used in the training of the classifier.

In practice this would typically be achieved with cross-validation on the training set. The

validation set is used to determine the performance of the classifier, in this case to compute

the recall values.



38

The subscript v is used to denote validation. The count by actual class av (and Av) is

given for this dataset. This dataset is classified by the trained classifier which assigns a

predicted class label to each instance. The R matrix computed from the validation data,

Rv, is then derived from the resulting confusion matrix Pv and from Av:

Rv = Pv(Av)
−1. (3.16)

3.1.2 Test data

The aim of quantification is to estimate the counts by actual class in the test set designated

as ât.

We define the error et as the difference between our estimated class distribution in the

test set ât and the actual class distribution in the test set at i.e.:

et = ât − at. (3.17)

3.1.3 Extension to sub-domains

In the introduction to this chapter we made the assumption that recall is constant for each

combination of class and sub-domain. To avoid confusion over terminology the original

2-classes are now renamed as the main classes and are designated as α and β. The two

sub-domains are designated as γ and δ.

Our 2 main-class, 2 sub-domain problem is now converted to a 4-class problem where each

combination of main-class and sub-domain is a separate class:

Table 3.1: Class, main-class and sub-domain

Class Main-class Sub-domain

1 α γ

2 α δ

3 β γ

4 β δ

In this example there are 2 main-classes and 2 sub-domains but clearly this approach can

be extended to problems with any number of classes and sub-domains.



39

3.1.4 R*

R∗ is defined as the matrix of latent recall probabilities for a classifier on a domain.

The elements in the R∗ matrix, rij , are the probabilities with which a randomly sampled

instance from class j is assigned the estimated class label of i.

For a set of instances, sampled iid from the domain and classified by a trained classifier,

the resulting number of instances by predicted class (given by the vector p) is stochastic

with its values determined by the actual number of instances in each class given in a and

the latent recall probabilities in R∗ for the classifier on that domain.

As a stochastic process, if we take multiple iid samples from the domain each with the

same counts by actual class given in a then we will obtain a distribution of values of p.

p ∼ R∗a. (3.18)

This distribution will be multinomial (binomial in the case where there are only two

classes).

Each separate set of data k of actual class count a will, when processed by the classifier,

generate a vector of predicted class counts pk which we can connect with a matrix Rk.

We can consider Rk to be the matrix of observed recall values for data sample k:

pk = Rka. (3.19)

If the instances are sampled iid from the domain then, according to the Law of Large

Numbers, as the size of the sample increases then the observed Rk will tend towards the

latent R∗.

3.1.5 Quantification performance measures

Two measures of quantification error are used in this thesis: Mean Absolute Error (MAE)

and Root Mean Squared Error (RMSE).

If ei are the model errors:

ei = m̂−m, (3.20)

where m is the actual class proportion and m̂ is the estimated class proportion, then

Absolute Error (AE) is defined as:

AE = |ei|, (3.21)



40

and for a set of n model errors, Mean Absolute Error is simply:

MAE =
1

n

n∑
i=1

|ei|, (3.22)

and Root Mean Squared Error (RMSE) [23] is:

RMSE =

√√√√ 1

n

n∑
i=1

e2
i . (3.23)

RMSE can be decomposed into bias and variance:

RMSE =
√
bias2 + variance. (3.24)

3.2 Quantification by matrix-inversion

Equation 3.7 states:

p = Ra, (3.25)

so:

a = R−1p. (3.26)

This applies to both the test set:

at = R−1
t pt, (3.27)

and to the validation set:

av = R−1
v pv. (3.28)

Clearly, Rt is unknown and we want to estimate at. To compute our estimate ât we assume

that we can use our known R−1
v in place of the unknown R−1

t .

If we make that assumption then we define our estimate of at as ât where:

ât = R−1
v pt. (3.29)

Solving such an inverse problem by inverting a matrix can sometimes be problematic.

However, matrix-inversion makes sense in our case because:

• R is square

• With a limited number of classes the R matrix is small



41

• The R matrix will normally be conditioned: when classifying instances of class i a

realistic classifier will typically predict class i more than other classes. So the R

matrix will normally have large values on its leading diagonal and smaller values

elsewhere.

Importantly, matrix-inversion allows us to explore a closed-form solution.

The matrix-inversion method is the method used by Vucetic and Obradovic [117] and

Forman [44] amongst others. The equivalence of matrix-inversion and Forman’s Adjusted

Count method [44] is shown in Section A.1

3.3 Quantification with and without sub-domains

The method that uses sub-domains is defined as the sd-method and the method that does

not use sub-domains as the nsd-method . We want to compare these two methods on the

same data.

3.3.1 Method

The common data is created with both main-classes and sub-domains. The sd-method

works with sub-domains throughout the process, only marginalising them out at the end

to get the estimates by main-class. The nsd-method ignores the sub-domains in the data

by marginalising them out at the start.

The process for comparing the sd and nsd methods on the same data is shown diagram-

matically in Figure 3.1:



42

av Clf Pv Rv

Q

Rnv

R*

at Clf pt ().()

( )-1

ât âtm Δ

ant

pnt ().() ânt Δ

esd

ensd

( )-1

Input 
Values Results

Q

Pnv

anv

Q

Q

Q

Figure 3.1: Process for computation of quantification error with and without the use of

sub-domains. See Table 3.2 for key to symbols.

Table 3.2: Key to symbols

Clf Classify the dataset ().() Matrix-vector dot-product multiplication

()−1 Matrix-inversion Θ Marginalise-out the sub-domains

∆ Difference

Considering again our 2-class, 2-sub-domain problem as a 4-class problem:

Table 3.3: Class, main-class and sub-domain

Class Main-class Sub-domain

1 α γ

2 α δ

3 β γ

4 β δ

The trained classifier classifies the validation set (labelled for both main-class and sub-



43

domain) generating a confusion matrix Pv:

Pv =


pv11 pv12 pv13 pv14

pv21 pv22 pv23 pv24

pv31 pv32 pv33 pv34

pv41 pv42 pv43 pv44

 , (3.30)

where pvij is the count of the number of instances in the validation set of actual class j

that have been assigned class label i by the classifier.

3.3.1.1 With sub-domains (sd method)

av is the vector of counts by class in the validation set. The matrix Av is av in diagonalised

form. Rv is given by Equation 3.16:

Rv = Pv(Av)
−1. (3.31)

at is the vector of counts by class in the test set. It is classified by the same trained

classifier to give a vector of counts by predicted class of pt. The estimate of the counts by

actual class ât is given by Equation 3.29:

ât = R−1
v pt. (3.32)

Finally, at the end of the process, the sub-domains are marginalised out to get our estimate

of counts by actual main-class âtm:

âtm =

âtα
âtβ

 = ΘT (Rv)
−1pt = ΘTAv(Pv)

−1pt, (3.33)

where âtα and âtβ are the estimated number of instances in the test set in main-class α

and β respectively and where the marginalising matrix Θ is given by:

Θ =


1 0

1 0

0 1

0 1

 . (3.34)

3.3.1.2 Without sub-domains (nsd method)

Both methods are applied to the same underlying data so Av, Pv and pt are all the same

as above, but the sub-domains are marginalised out at the start of the process.



44

We define the 2x2 matrix Pnv as:

Pnv =

pvαα pvαβ

pvβα pvββ

 , (3.35)

where pvij is the count of the number of instances in the validation set of main-class j that

have been assigned a main-class label i by the classifier. This is produced by marginalising

out the sub-domains from Pv with the marginalising matrix Θ:

Pnv = ΘTPvΘ. (3.36)

Similarly the sub-domains are marginalised from Av to give Anv:

Anv =

avα 0

0 avβ

 = ΘTAvΘ. (3.37)

From Equation 3.15 we can define the 2x2 matrix Rnv in terms of the 2x2 matrices Pnv

and Anv:

Rnv = Pnv(Anv)
−1. (3.38)

Substituting in the expressions for Pnv and Anv from Equations 3.35 and 3.37 then gives:

Rnv = ΘTPvΘ(ΘTAvΘ)−1. (3.39)

Similarly we are disregarding sub-domain information in our counts by predicted class pt

to give a vector of counts by predicted main-class only pnt:

pnt =

ptα
ptβ

 = ΘTpt, (3.40)

and the estimate of class distribution by main-class in our test set is now computed, again

using Equation 3.16:

ânt = R−1
nvpnt, (3.41)

so when we do not use sub-domains our estimate of actual counts by main-class is:

ânt = ΘTAvΘ(ΘTPvΘ)−1ΘTpt. (3.42)

Comparing this to the expression for the class estimate when using sub-domains given in

Equation 3.43:

âtm = ΘTAvP
−1
v pt, (3.43)

then the difference in the estimates between the sd-method and the nsd-method is given

by:

âtm − ânt = ΘTAv

(
P−1
v −Θ(ΘTPvΘ)−1ΘT

)
pt. (3.44)



45

3.4 Initial experiment

The aim of this initial experiment was to explore the sd and nsd methods with a real

dataset.

3.4.1 Dataset

This initial experiment used the 4dSDA dataset of 5,981 Twitter users (instances) that

was split into 2,925 for training and 3,016 for testing. The dataset was labelled for age

group (main-class) and gender (sub-domain).

The 4dSDA dataset is an aggregation of the 4dUser dataset and the SDA dataset.

3.4.1.1 4dUser

Twitter accounts were sampled using the free random 1% tweet feed using Method521.

Users were then filtered by Language (‘en’) and Timezone (London or Edinburgh). The

hypothesis was that in order to make a chosen screenname2 unique, some users would

add the four digits of their date of birth at the end. Assuming that this was the case,

we filtered for only users with screennames where the last four digits were numerical in

the range 1949 to 1999. Further screening was made to remove users that did not follow

any other Twitter accounts (‘friends’) or had a very large number of followers (which were

likely to be organisations or celebrities rather than ‘normal’ individuals).

3.4.1.2 SDA

Chris Inskip at The University of Sussex [67] generated the SDA dataset of Twitter users.

He sampled the Twitter 1% tweet feed and applied similar filtering to that used in the

creation of the 4dUser dataset. He then used a set of regular expressions (‘reg-exes’) to

extract declarations of age from user’s description text (e.g. ‘...I am a 21 year old student

at...’). Some users may be less conscientious than others about maintaining their Twitter

user description so it was assumed that some age descriptions may be a little out of date.

1Courtesy of CASM Consulting LLP
2Each user creates their own ‘screenname’ which must be unique



46

3.4.1.3 Aggregation and validation

Through the Polly project we had access to a dataset of 2,749 individuals containing

both Twitter screennames and a range of demographic information including age (the

‘MR3 dataset’). The dataset was small and we had concerns that it may not be very

representative, but it gave us ground-truth age labels for a set of Twitter users that we

could use for validating the other datasets.

MR

SDA4dUser

4dSDA

1 2

3

Figure 3.2: Validation of the 4dSDA dataset between datasets

Validation 1 : 79 users in the MR dataset had Twitter screennames that met the criteria

for the 4dUser dataset. In 77 of these cases the implied year of birth from the screenname

corresponded to the given age of the individual.

Validation 2 : 16 users in the MR dataset generated an age using the process used to create

the SDA dataset. In 12 cases this was exactly correct and in a further 3 it was correct

within 3 years.

Validation 3 : 86 users in the SDA dataset met the criteria for the 4dUser dataset. 76 of

these gave an exact age match. A further 3 were within 4 years. Of the remaining 7 cases,

after inspecting the Twitter accounts it appears that 4dUser was correct with 2 and SDA

with the other 5.

I felt that the validation was strong enough to combine the 4dUser and SDA datasets into

a single 4dSDA dataset for use.

3Market Research



47

3.4.1.4 Age labels

Instances with an estimated year of birth of 1983 or before were labelled 0 and instances

with an estimated year of birth from 1991 onwards were labelled 1. Instances with an

estimated year of birth 1984-1990 inclusive were discarded. The distribution of the Twitter

users in the 4dSDA dataset by estimated year of birth is shown in Figure 3.3.

1950 1960 1970 1980 1990 2000
Year of birth

0

100

200

300

400

500

600

700

800

4dSDA Dataset

Figure 3.3: Distribution by estimated year of birth in the 4dSDA dataset

3.4.1.5 Gender labels

Thomas Kober of the University of Sussex applied gender labels to the datasets. He

mainly used online tools where gender is assigned based on the first word in the name

field, typically based on a person’s first name. Instances where this word would not

resolve to a gender id were removed from the dataset e.g. organisation names, blank fields

or non gender-specific names such as ‘Alex’. Of the 5,981 instances in the final dataset

4,139 were labelled male and 1,802 labelled female.

3.4.2 Method

The binary age labels were used to label main-class and the binary gender labels were

used to label sub-domain. Two classifiers were trained on the labelled training data, one

for main-class and one for sub-domain. The features were the IDs of the Twitter accounts



48

that each user followed.

3.4.2.1 Algorithm

The pseudocode for the simulation program is given below.

Data: 4dSDA

Result: Actual and estimated test set class proportions

while split count < 40 do

split the dataset into training and validation-test ;

for main-class proportion in [0.0, 0.2, 0.4, 0.6, 0.8, 1.0] do

for sub-domain proportion in [0.0, 0.2, 0.4, 0.6, 0.8, 1.0] do

while training count < 10 do

sample a class-balanced training set of 1600 instances from training

split;

train main-class and sub-domain classifiers;

classify all instances in validation-test split;

while validation count < 10 do

sample a class-balanced validation set of 1000 instances from

validation-test split;

compute R matrices for sd and nsd;

end

while test count < 10 do

sample a test set of 800 instances of given main-class and

sub-domain proportions from validation-test split;

compute counts by predicted main-class for nsd;

compute counts by predicted main-class and sub-domain for sd;

end

compute estimated class proportions in test with sd and nsd method

for every validation count / test count combination;

end

end

end

end

Algorithm 1: Initial explicit sub-domains experiment



49

3.4.3 Results

3.4.3.1 Classify and count

Figure 3.4 shows the result of calculating class proportions by simply counting up the

instances by predicted class:

0.0 0.2 0.4 0.6 0.8 1.0
Main-class proportion

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

S
ub

-d
om

ai
n 

pr
op

or
tio

n

0.06

0.03

0.00

0.03

0.06

Figure 3.4: Mean main-class proportion error vs. main-class proportion and sub-domain

proportion. Classify and count method. 4dSDA dataset

The result is as expected. The imperfect nature of the classifier leads to over and under-

estimation of class proportions at the extremes with some cross-over point where true and

predicted class proportion is the same.

3.4.3.2 Classify and adjust without sub-domains (nsd-method)

Figure 3.5 shows the result of applying the classify and adjust method without using

sub-domains:



50

0.0 0.2 0.4 0.6 0.8 1.0
Main-class proportion

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

S
ub

-d
om

ai
n 

pr
op

or
tio

n

0.06

0.03

0.00

0.03

0.06

Figure 3.5: Mean main-class proportion error vs. main-class proportion and sub-domain

proportion. nsd-method. 4dSDA dataset

Applying the standard Adjusted Count formula using the computed recall values by main-

class without using sub-domains gives a more accurate mean estimate of class proportions

than the classify and count approach shown in Figure 3.4.

Figure 3.5 also shows that when the dataset is predominantly main-class 0 (the right hand

side of the chart) then the level of class proportion estimation error is sensitive to the sub-

domain proportions of the sample. This is because recall for main-class 0 varies between

sub-domains much more than recall varies for mainclass 1.

Table 3.4: Observed recall values by main-class and sub-domain in the 4dSDA dataset

sub-domain 0 sub-domain 1 Difference

Recall main-class 0 0.863 0.880 0.017

Recall main-class 1 0.836 0.841 0.005

3.4.3.3 Classify and adjust with sub-domains (sd-method)

Figure 3.6 shows the mean main-class proportion error against main-class proportion and

sub-domain proportion using the sd-method:



51

0.0 0.2 0.4 0.6 0.8 1.0
Main-class proportion

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

S
ub

-d
om

ai
n 

pr
op

or
tio

n

0.06

0.03

0.00

0.03

0.06

Figure 3.6: Mean main-class proportion error vs. main-class proportion and sub-domain

proportion. sd-method. 4dSDA dataset

By using sub-domains, the estimation bias in mean values observed with the nsd-method

largely disappears.

3.4.3.4 Comparison of methods

The heatmaps shown above give mean errors computed from repeated samples. Each of

the main-class-sub-domain combination has been estimated 40,000 times. Variance has

been averaged out.

However, when looking at Root Mean Squared Error (RMSE) the sd-method actually

gives a slightly higher error than the nsd-method.

Table 3.5: RMSE of sd and nsd methods

Method RMSE 2.5% CI 97.5% CI

sd 0.041 0.04054 0.04065

nsd 0.038 0.03765 0.03775

RMSE can be de-composed into bias and variance (Equation 3.24). Figures 3.7 and 3.8

are from the the same data as Figures 3.5 and 3.6.



52

0.03 0.02 0.01 0.00 0.01 0.02 0.03
Mean class proportion estimation error

0

2

4

6

8

10

12

14

16 sd
nsd

Figure 3.7: Mean value of class proportion estimate error

Figures 3.7 shows that bias is lower with the sd-method than with the nsd-method. This

is as would be expected from Figures 3.5 and 3.6.

Figure 3.8 shows the distribution of variance values for the results using the sd-method

and the nsd-method.

0.0010 0.0015 0.0020 0.0025 0.0030
Variance in class proportion estimation error

0

2

4

6

8

10

12

14 sd
nsd

Figure 3.8: Variance in class proportion estimate error

Variance is typically higher with the sd-method than with the nsd-method.

Table 3.6 gives the decomposition of quantification error:



53

Table 3.6: Mean and variance sd and nsd method

Variance of Mean of

Method Mean Variance

x10e-6 x10e-3

sd 19 1.63

nsd 193 1.23

On average, the sd-method has lower bias but higher variance than the nsd-method.

3.4.4 Discussion

This experiment on the 4dSDA dataset showed that using explicit sub-domains reduced

the bias (mean error) in the estimate of the class proportions in the test set. However,

while the bias was reduced the variance increased. Overall the Root Mean Squared Error

(RMSE) was slightly higher when using explicit sub-domains (sd method) than when not

using explicit sub-domains (nsd method).

In other circumstances the reduction in bias could outweigh any increase in variance

meaning that the sd method would give a lower overall error (e.g. as measured by RMSE)

than the nsd-method.

The next section explores whether it is possible to compute expected RMSE from the sd

and nsd methods analytically in closed-form.

3.5 Analytic exploration

The initial experiment in Section 3.4 showed that using explicit sub-domains can reduce

bias but increase variance. Given that overall quantification error expressed as RMSE is

a combination of both bias and variance then it is important to understand whether using

explicit sub-domains will reduce or increase that overall error.

The aim of this section is to see if that assessment can be made analytically. To see if a

closed-form expression can be derived for quantification error.

As discussed in Section 3.1.4, under the assumptions made in this chapter the distribution



54

of the counts by predicted class can be considered as a multinomial distribution. Multino-

mial distributions can be approximated to the normal (Gaussian) distribution [99]. The

sum of normal random variables is normal and the product of normal distributions is nor-

mal. Given this, it is reasonable to assume that it may be possible to derive closed-form

expressions for quantification error, although none has been found in the papers on quan-

tification. Vucetic and Obradovic [117] observed that while the distributions of predicted

values could easily be estimated using the multinomial distribution it can be difficult to

obtain the distribution of the estimated true prevalence in a closed form.

3.5.1 Classes

As set out previously in Table 3.1, the 4 classes are defined by the 2 main-classes and 2

sub-domains:

Table 3.7: Class, main-class and sub-domain

Class Main-class Sub-domain

1 α γ

2 α δ

3 β γ

4 β δ

3.5.2 Random variables

Equation 3.29 gives us the estimated counts by actual class ât as:

ât = R−1
v pt, (3.45)

and Equation 3.16 gives us Rv as:

Rv = Pv(Av)
−1. (3.46)

We can consider the confusion matrix P to be a matrix of random variables Pij where, for

a dataset with actual counts by class a, each random variable Pij captures a probability

distribution for the number of instances of actual class j that are assigned the predicted



55

class of i:

P =


P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44

 . (3.47)

Av is a matrix with scalar values on its leading diagonal and zeros otherwise so, like Pv,

Rv will be a matrix of random variables.

For each dataset the counts by actual class, a and A are fixed values. These values are

known for the validation set and unknown for the test set (our aim is of course to estimate

these for the test set). As set out in Section 3.1.4 the probabilities in R∗ that link A to P

for a trained classifier on a domain are also considered to be fixed but unknown.

Given the fixed values of the probabilities in R∗, we can consider Pij to be multinomially

distributed with p = rij and n = aj .

P ∼ R∗A. (3.48)

With the test set, the actual class labels are unknown so we only see the total counts by

predicted class pt and not the full confusion matrix Pt. The relationship between p and

P was given previously in Equation 3.9:

pt = Pt1n. (3.49)

As we are considering Pt to be a matrix of random variables then pt is a vector of random

variables Pt.

So the estimated counts by actual class ât is also a vector of random variables Ât where:

Ât = R−1
v Pt. (3.50)

3.5.3 General closed-form solution

Temporarily reverting to a 2-class model to simplify the handling of the non-independent

variables and to simplify the notation, we can express Ât = R−1
v Pt in a two-class case as:

Ât =

 Ât0

nt − Ât0

 =

 R0 (1−R1)

(1−R0) R1

−1 P0

nt − P0

 , (3.51)



56

so:

Ât0 =
P0 − nt(1−R1)

R0 − (1−R1)
. (3.52)

As discussed earlier, we can regard P0, R0 and R1 as normally distributed random variables

so we can put Ât0 into the form:

Ât0 =
N1

N2
, (3.53)

where N1 and N2 are themselves normally distributed random variables. If N1 and N2

had independent standard4 normal distributions then the resulting distribution for Ât0

would be a Cauchy distribution [102]. However, R1 appears in both N1 and N2 so we

cannot regard them as independent. Also N1 and N2 will not have zero means and

therefore will not have standard normal distributions. In these circumstances the ratio of

N1 to N2 becomes considerably more complicated [1] [61]. In my judgement, the level of

mathematical complexity to pursue a general solution in closed-form is beyond the scope

of a thesis in informatics. Proceeding further with a closed-form solution in this thesis

requires simplifying assumptions to be made.

3.5.4 Simplification: nt is large

The first simplifying assumption is to assume that the test set is large i.e. that nt is large.

If we make this assumption then the Law of Large Numbers can be applied under which

we can replace random variables with their mean values. The matrix of random variables

Rt can be replaced by the matrix of scalar values R∗ meaning that Pt can then simply be

regarded as a vector of fixed scalar values pt.

As the validation set is assumed not to be large (i.e. nv is not large) then the Rv matrix

remains a matrix of random variables.

Referring back to Equation 3.52, the random variable P0 now becomes a scalar value p0,

but there are no other changes so Ât0 is now:

Ât0 =
p0 − nt(1−R1)

R0 − (1−R1)
. (3.54)

We still have the same problem as in the general case above i.e. while the numerator and

4mean of zero and unit standard deviation



57

denominator are normal random variables they do not have independent standard normal

distributions. So assuming that nt is large does not significantly help with the closed-form

analysis.

3.5.5 Simplification: nv is large

The second simplifying assumption is to assume that the validation set is large i.e. that

nv is large.

As the test set is not large (i.e. nt is not large), Pt remains a vector of random variables.

From Equation 3.50:

Ât = R−1
v Pt. (3.55)

If we assume that we do have a large validation set i.e. that nv is large then, again, from

the Law of Large Numbers:

Rv → R∗ (3.56)

3.5.5.1 With sub-domains (sd)

The estimate of the count by class in the test set Ât then becomes:

Ât = (R∗)−1Pt. (3.57)

To obtain the estimates for class distribution by main-class we marginalise out the sub-

domains as per Equation 3.43:

Âtm =

Âα
Âβ

 = ΘT Ât = ΘT (R∗)−1Pt. (3.58)

As Âα + Âβ = nt, the errors in both main class estimates will be the same magnitude

but in the opposite direction. As such, we can simply focus on one main-class and we

arbitrarily choose class α:

Âα = φTΘT (R∗)−1Pt, (3.59)

where:

φ =

1

0

 . (3.60)



58

At this point it is helpful to add two further definitions, firstly Φ:

Φ = Θφ =


1

1

0

0

 , (3.61)

and secondly w:

w =
(
ΦT (R∗)−1

)T
, (3.62)

so the expression for Âα given above in Equation 3.59 now becomes:

Âα = wTPt, (3.63)

where w is simply a vector of scalar constants:

w =


w1

w2

w3

w4

 . (3.64)

So Âα, the random variable for the estimate of the count by class α in the test set using

the sd-method when nv is large is given by:

Âα = wTPt = wTPt14 =
(
w1 w2 w3 w4

)

P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44




1

1

1

1

 . (3.65)

From this point onward the t sub-scripts are dropped for clarity. By default, absence of a

sub-script indicates the test set.

3.5.5.2 Bias: sd

From Equation 3.63 the expected value of Âα is given by:

E[Âα] = E[wTP] = wTE[P]. (3.66)

From the definition of R∗ in Section 3.1.4:

E[P] = R∗a. (3.67)



59

The mean value of the normal distribution to which we are approximating the distribution

of Âα is equal to the expected value so:

µÂα = E[Âα] = wTR∗a. (3.68)

The bias in the estimate Âα is simply:

bias(Âα) = µÂα − aα, (3.69)

so:

bias(Âα) = wTR∗a− aα. (3.70)

Given that:

aα = ΦTa, (3.71)

then:

bias(Âα) = (wTR∗ − ΦT )a. (3.72)

Given the expression for w from Equation 3.62:

wT = ΦT (R∗)−1, (3.73)

then:

bias(Âα) = (ΦT (R∗)−1R∗ − ΦT )a = 0. (3.74)

i.e. under the assumptions in this chapter, when we use sub-domains the estimate is

unbiased.

3.5.5.3 Variance: sd

Equation 3.65 stated:

Âα = wTPt = wTPt14. (3.75)

We now define another vector of random variables V as:

VT = wTP, (3.76)



60

so:

Âα = VT14 =
4∑

k=1

Vk. (3.77)

Transposing both sides of Equation 3.76 gives:

V = PTw (3.78)
V1

V2

V3

V4

 =


P11 P21 P31 P41

P12 P22 P32 P42

P13 P23 P33 P43

P14 P24 P34 P44




w1

w2

w3

w4

 , (3.79)

i.e.:

Vk =

4∑
j=1

wjPjk. (3.80)

Each Vk is a random variable which is a weighted sum of the random variables that

originally arose from (and sum to) ak. The four random variables that it is summing

are all approximated to the normal distribution so Vk can also be assumed to be an

approximation to a normal distribution. However, as the four variables that make up each

Vk sum to ak they are not independent of each other.

The variance of Vk is then given by:

V ar(Vk) = V ar
( 4∑
j=1

wjPjk

)
=

4∑
i=1

4∑
j=1

wiwjCov(Pik, Pjk). (3.81)

The variance and covariance of the multinomially distributed random variables (Pik, Pjk)

is:

Cov(Pik, Pjk) = −akrikrjk, (3.82)

where i 6= j and:

Cov(Pik, Pik) = V ar(Pik) = akrik(1− rik), (3.83)

where i = j.

If we define the covariance matrix Ck as:

Ck =


c11k c12k c13k c14k

c21k c22k c23k c24k

c31k c32k c33k c34k

c41k c42k c43k c44k

 , (3.84)



61

where:

cijk = Cov(Pik, Pjk), (3.85)

then Equation 3.81 becomes:

V ar(Vk) = wTCkw. (3.86)

Going back to the equations for covariance (Equation 3.82 and Equation 3.83) we can

consider the covariance matrix Ck to be:

Ck = ak(C
d
k − Cs

k), (3.87)

where:

Cd
k =


r1k 0 0 0

0 r2k 0 0

0 0 r3k 0

0 0 0 r4k

 , (3.88)

and:

Cs
k =


r1kr1k r1kr2k r1kr3k r1kr4k

r2kr1k r2kr2k r2kr3k r2kr4k

r3kr1k r3kr2k r3kr3k r3kr4k

r4kr1k r4kr2k r4kr3k r4kr4k

 . (3.89)

As each Vk is independent of the other random variables Vk then the variance of their sum

is simply the sum of their variances so:

V ar(Âα) =

4∑
k=1

V ar(Vk) =

4∑
k=1

wTCkw =

4∑
k=1

wTak(C
d
k − Cs

k)w (3.90)

V ar(Âα) =

4∑
k=1

wTakC
d
kw−

4∑
k=1

wTakC
s
kw (3.91)

4∑
k=1

wTakC
d
kw = wTWR∗a, (3.92)

where W is the diagonalised matrix of the vector w:

W =


w1 0 0 0

0 w2 0 0

0 0 w3 0

0 0 0 w4

 , (3.93)

and:
4∑

k=1

wTakC
s
kw = wTR∗A(R∗)Tw, (3.94)

so:



62

V ar(Âα) = wTWR∗a−wTR∗A(R∗)Tw. (3.95)

If again we substitute for wT using Equation 3.62 then the expression for V ar(Âα) when

using sub-domains simplifies to:

V ar(Âα) = ΦT
(
(R*)−1WR∗ − I

)
a. (3.96)

3.5.5.4 RMSE: sd

As bias is always zero in the sub-domains case (Equation 3.74) the RMSE (Equation 3.24)

becomes simply the square-root of the variance:

RMSEsd =
√

ΦT
(
(R*)−1WR∗ − I

)
a. (3.97)

3.5.5.5 Without sub-domains (nsd)

The approach taken here is to get the estimate Âα into the same form as Equation 3.63

i.e:

Ânα = wT
nPt. (3.98)

The subscript n designating that these variables relate to the nsd-method.

Finding the mean, variance and RMSE error is then simply a matter of substituting values

of wn into in the formulae in the previous section.

From Equation 3.39:

Rnv = ΘTPvΘ(ΘTAvΘ)−1. (3.99)

As nv is large then by The Law of Large Numbers:

Pv = R∗Av, (3.100)

so:

Rnv = ΘTR∗AvΘ(ΘTAvΘ)−1. (3.101)



63

Given also Equation 3.40

pnt = ΘTpt, (3.102)

and Equation 3.41

ânt = R−1
nvpnt, (3.103)

and considering that pt and ânt are now vectors of random variables Pt and Ânt then:

Ânt =
(
ΘTR∗AvΘ(ΘTAvΘ)−1

)−1
ΘTPt (3.104)

Ânt = ΘTAvΘ(ΘTR∗AvΘ)−1ΘTPt, (3.105)

so:

Ânα = φTΘTAvΘ(ΘTR∗AvΘ)−1ΘTPt, (3.106)

which is now in the same form as Equation 3.98:

Ânα = wT
nPt, (3.107)

i.e.:

wT
n = φTΘTAvΘ(ΘTR∗AvΘ)−1ΘT . (3.108)

We can now use wn in the previously derived equations for bias and variance.

3.5.5.6 Bias: nsd

Using Equation 3.68 to get the mean of Ânα gives:

µÂnα = wT
nR∗a. (3.109)

From Equation 3.72 we get an expression for the bias of the distribution of Ânα:

bias(Ânα) = (wT
nR∗ − ΦT )a. (3.110)



64

3.5.5.7 Variance: nsd

From Equation 3.95 we get an expression for the variance of the distribution of Ânα:

V ar(Ânα) = wT
n

(
WnR∗a− R∗A(R∗)Twn

)
. (3.111)

3.5.5.8 RMSE: nsd

So the Root Mean Squared Error (Equation 3.24) when sub-domains are ignored and nv

is large is given by:

RMSEnsd =

√(
(wT

nR∗ − ΦT )a
)2

+ wT
n

(
WnR∗a− R∗A(R∗)Twn

)
. (3.112)

3.5.5.9 ∆RMSE

Defining ∆RMSE as:

∆RMSE = RMSEnsd − RMSEsd, (3.113)

from Equation 3.97 and Equation 3.112 we now have:

∆RMSE =

√(
(wT

nR∗ − ΦT )a
)2

+ wT
n

(
WnR∗a− R∗A(R∗)Twn

)
−
√

ΦT
(
(R*)−1WR∗ − I

)
a.

(3.114)

Ideally we would like a usable closed form expression for ∆RMSE that would allow us

to know when using sub-domains gives smaller errors and when it gives larger errors.

Unfortunately, the above expression for ∆RMSE does not simplify to a readily usable

expression. The expression may be correct (see Section 3.6) but it is not particularly

useful.

Attempts to simplify the expression through parameterisation of its terms did not result

an expressions that were simpler or more usable. For an assumed R∗ (or from observation

given that for a large nv: R∗ ≈ Rv) and counts by class a, the expected value of RMSE



65

can be calculated using Equation 3.114. However, it may be as simple to just do this with

numerical simulation.

3.6 Numerical validation of the closed-form solution

This aim of this section is use numerical simulation to validate the closed-form expressions

that were derived for both the sd and nsd methods in the Section 3.5.

3.6.1 Method

Validation and test sets were repeatedly synthesised based on set parameters and in accor-

dance with the assumptions as set out at the start of this chapter, most importantly that

recall is treated as constant within each main-class/sub-domain combination. Quantifica-

tion both with and without using sub-domains was then carried out using those datasets.

If the formulae are correct then the difference between the error computed from the for-

mulae and the error computed from the simulated data itself will reduce to zero as the

size of the validation set nv increases.



66

Data: Synthetic

Result: Formula and empirical values

while Outer Loop count < 20, 000 do

Sample the recall parameters;

Sample the validation set size;

Sample the test set size;

Sample the test set main-class and sub-domain proportions;

Construct computed variables: R∗, at etc.;

while Inner Loop count < 5, 000 do

Generate Pv from av and the probabilities in R∗;

Generate pt from at and the probabilities in R∗;

Compute Âα with sd-method;

Compute Ânα with nsd-method;

end

Compute empirical values from inner-loop results;

Compute formula values from outer-loop parameters;

end

Algorithm 2: Numerical validation of closed-loop formulae

As the size of the test set varied in the simulation, RMSE was normalised by dividing by

the size of the test set (nt).

3.6.2 Results

Figure 3.9 shows the difference in RMSE between the observed values from the simulation

and the value computed using Equations 3.97 and 3.112, against the size of the validation

set.



67

2 3 4 5 6 7 8
Log 10 of Validation Dataset Size

−0.0100

−0.0075

−0.0050

−0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

N
o 

m
al

is
ed

 R
M

S
E

: S
im

ul
at

io
n-

Fo
rm

ul
a

sd

2 3 4 5 6 7 8
Log 10 of Validation Dataset Size

−0.0100

−0.0075

−0.0050

−0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

N
o 

m
al

is
ed

 R
M

S
E

: S
im

ul
at

io
n-

Fo
rm

ul
a

nsd

Figure 3.9: Normalised RMSE of estimate for size of main-class α: simulation values less

values from Equations 3.97 and 3.112 vs. log10 of size of validation set nv

As the size of the validation set nv becomes larger, the value of RMSE calculated from

Equations 3.97 and 3.112 converges with the observed values.

Similar results were found separately for both bias and variance. In all cases the value

from the numerical simulation converged to the value from the formula as the size of the

validation set nv increased. It appears from that the closed-form solutions in Section 3.5

are valid.

3.7 Quantification accuracy and classifier accuracy

The principle behind classify and adjust methods is that the estimate of class proportions

from counting the classifier outputs by class is adjusted to effectively negate the effect of

the classifier inaccuracy.



68

However, with finite-sized test and validation sets, stochasticity has a double impact on

quantification accuracy.

Firstly on the estimation of the true values of classifier recall, R∗. We use a finite amount

of labelled validation data to compute Rv which is our estimate of R∗. Equation 3.16 gives

Rv = Pv(Av)
−1. (3.115)

While Av is fixed, the values in Pv are stochastic with its values distributed multi-nomially.

Restating Equation 3.48:

Pv ∼ R∗Av. (3.116)

Secondly the counts by predicted class for the test set will also be stochastic and distributed

multi-nomially:

pt ∼ R∗at. (3.117)

The the estimate of class membership, ât is given by Equation 3.29:

ât = R−1
v pt. (3.118)

So when the estimate of class membership, ât, is computed the two stochastic effects are

compounded. Figure 3.10 shows results from a simulation of a matrix-inversion classify

and adjust quantifier with varying validation and test set sizes (n) and classifier recall

values.



69

0.6 0.7 0.8 0.9 1.0
Classifier recall

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
ea

n 
ab

so
lu

te
 q

ua
nt

ifi
ca

tio
n 

er
ro

r
n
100
1000
10000
100000

Figure 3.10: Mean absolute quantification error using classify and adjust method vs.

classifier recall and dataset size(n). Simulated data.

Higher levels of classifier recall lead to lower quantification errors. A perfect classifier is a

perfect quantifier. However, Figure 3.10 indicates that lower levels of recall may not be a

practical issue if the validation and test sets are sufficiently large.

3.8 Exploration of explicit sub-domains through simulation

In Section 3.5, closed-form expressions were derived for the expected quantification error

when using, and when not using, explicit sub-domains. These were validated in Section

3.6. It was only possible to derive expressions for the case when the validation set was large

and the resulting expressions do not readily simplify. In this section, numerical simulation

is used to explore the the impact of individual parameters.

3.8.1 Method

The work in this section used the same basic program code that was used for numerical

validation of the closed-form formulae that was outlined in Section 3.6.1.



70

3.8.2 Simulation settings

The numerical simulation was driven by a number of parameters shown in Tables 3.8 and

3.9.

Table 3.8: Numerical simulation: fixed parameter values

Parameter Value

Outer loops 10,000

Inner loops 200

Recall parameters5 8

Class-balanced validation set True

Table 3.9: Numerical simulation: sampled parameter values

Parameter Lower Upper Distribution

Main-class recall target 0.6 0.95 Uniform

Sub-domain recall target 0.6 0.95 Uniform

Validation set size nv 100 10,000,000 Uniform log10

Test set size nt 100 10,000,000 Uniform log10

Test set main-class proportion 0.05 0.95 Uniform

Test set sub-domain proportion 0.05 0.95 Uniform

A target recall value for each main-class was sampled from a uniform distribution. This

value was then used as the mode for a beta distribution from which the main-class recall

values were sampled for each sub-domain. This gave a correlation between the recall values

as shown in Figure 3.11 below.

5The R∗ matrix is constructed from main-class and sub-domain recall parameters



71

0.5 0.6 0.7 0.8 0.9 1.0
Recall mainclass alpha sub-domain gamma

0.5

0.6

0.7

0.8

0.9

1.0

R
ec

al
l m

ai
nc

la
ss

 a
lp
ha

 s
ub

-d
om

ai
n 
de

lta

pearsonr = 0.68; p = 0

Figure 3.11: Kernel density estimation plot showing correlation of main-class α recall

values between the two sub-domains γ and δ

3.8.3 Validation set size nv

Figure 3.12 shows the mean quantification error (RMSE) against the size of the validation

dataset for the sd and nsd methods separately.



72

2.0 3.0 4.0 5.0 6.0 7.0
Log10 Size of Validation Dataset

0.02

0.03

0.04

0.05

0.06

0.07

R
M
S
E

sd_nsd
sd
nsd

Figure 3.12: Quantification error in RMSE for the sd and nsd methods vs. log10 of

validation set size

It shows that while the accuracy of both methods improves as the validation set increases

in size, the sd method is more accurate than the nsd method when the validation set

is large but can be worse then the nsd method when the validation set is small. This

difference in performance is shown with the same data in Figure 3.13.

2 3 4 5 6
Log10 Size of Validation Dataset

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

D
el
ta
-R
M
S
E

Figure 3.13: Boxplot6of ∆RMSE against size of validation set



73

The under-performance of the sub-domain method when the amount of validation data is

small is effectively a noise problem. Without sub-domains, the validation data is used to

compute an R matrix containing 4 recall values. With sub-domains it is used to calculate

a matrix with 16. With one quarter the amount of data per ‘class’, the impact of binomial

noise is much more significant.

To show the effect of this noise the simulation was re-run with the underlying R∗ values

of main-class recall set to be the same for both sub-domains (see Figure 3.14). Any

difference in observed main-class recall by sub-domain is then purely as a result of noise

in the samples.

0.5 0.6 0.7 0.8 0.9 1.0
Recall mainclass alpha sub-domain gamma

0.5

0.6

0.7

0.8

0.9

1.0

R
ec

al
l m

ai
nc

la
ss

 a
lp
ha

 s
ub

-d
om

ai
n 
de

lta

pearsonr = 1; p = 0

Figure 3.14: Kernel density estimation plot showing correlation of main-class α recall

values between the two sub-domains γ and δ

Figure 3.15 shows that, as expected, the effect of multi-nomial noise had a large nega-

tive effect on quantification error for the sd-method relative to the nsd-method when the

amount of available validation data was small.

6Seaborn Boxplot documentation: “The box shows the quartiles of the dataset while the whiskers

extend to show the rest of the distribution, except for points that are determined to be “outliers” using a

method that is a function of the inter-quartile range.”



74

2 3 4 5 6
Log10 Size of Validatio  Dataset

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

D
el
ta
-R
M
S
E
 (N

or
m
al
is
ed

)

Delta-RMSE when main-class recall is the same in both sub-domains

Figure 3.15: Boxplot ∆RMSE against size of validation set when main-class recall is the

same in both sub-domains

3.8.4 Multiple regression analysis

The candidate independent variables and the dependent variable were all standardised to

zero mean and unit standard deviation. The independent variables consisted of both the

original parameters and their logarithms. The dependent variable was ∆RMSE. Ordinary

Least Squares (OLS) regression was performed multiple times, each time dropping the

variable that contributed least as judged by its confidence interval. In this way the initial

set of 12 independent variables was reduced to the 6 shown in Table 3.10.



75

Table 3.10: Numerical simulation: results of OLS regression using 6 parameters, full

range of parameter values

Parameter Coefficient 2.5% CI 97.5% CI

Test set size (log10) 0.154 0.146 0.162

Validation set size (log10) 0.423 0.415 0.431

Main-class recall mean 0.034 0.026 0.042

Main-class recall difference by sd7 0.283 0.275 0.291

Sub-domain recall mean 0.093 0.085 0.101

Sub-domain proportion difference8 0.203 0.195 0.211

R-squared 0.334

Number of observations 40,000

The R-squared value of 0.334 is quite low indicating that, as would be expected, a simple

linear model is not a good fit for the actual observed difference in errors.

The largest coefficient is for Validation set size (log10). This is not unexpected given the

observations made in Section 3.8.3 earlier. To reduce the impact of the validation set size

and explore other coefficients, the regression was re-run after removing the observations

where nv was less than 10,000. The results are given below in Table 3.11.

Table 3.11: Numerical simulation: results of OLS regression using 6 parameters,

nv > 10, 000

Parameter Coefficient 2.5% CI 97.5% CI

Test set size (log10) 0.250 0.240 0.260

Validation set size (log10) 0.054 0.045 0.064

Main-class recall mean -0.120 -0.130 -0.110

Main-class recall difference by sd 0.459 0.449 0.469

Sub-domain recall mean 0.024 0.015 0.034

Sub-domain proportion difference 0.327 0.317 0.337

R-squared 0.384

Number of observations 24,174

7The absolute difference within each main-class weighted by the size of the main-class
8The absolute difference between the proportion of sub-domain gamma and sub-domain delta



76

The coefficient for Validation set size (log10) has dropped very considerably. This is as

previously observed in Figure 3.13. Once the validation set size is above a certain size the

impact of further size increases is much smaller.

The impact of other individual parameters is discussed below.

3.8.5 Main-class recall

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Mean Mainclass Recall

0.01

0.02

0.03

0.04

0.05

0.06

R
M
S
E

sd_nsd
sd
nsd

Figure 3.16: RMSE vs. main mainclass recall. 95% CI shown.

The results of the multiple regression analysis in Table 3.11 show a negative correlation

with Main-class recall mean. This is initially perplexing, that an increase in main-class

recall favours the method that does not use sub-domains over the method that does. Figure

3.16 shows how quantification error measured by RMSE varies with main-class recall for

both the sd-method and the nsd-method. It appears that this negative correlation arises

because RMSE is initially higher and decreases more quickly in the nsd method than with

the sd method.

3.8.6 Sub-domain recall

A reasonable hypothesis would be that for the sub-domains method to be effective it re-

quires that sub-domains can be accurately classified i.e. that there is a positive correlation

between sub-domain recall and ∆RMSE.



77

However, the results of the simulation in Figure 3.17 do not show a strong correlation:

0.6 0.7 0.8 0.9
Sub-domain recall mean

−0.04

−0.02

0.00

0.02

0.04

0.06

D
el
ta
 R
M
S
E

Figure 3.17: ∆RMSE vs. sub-domain recall mean

A simple t-test on the ∆RMSE values when rs = 0.6 vs. when rs = 0.9 gave a p-value of

0.0001 indicating that it is unlikely that there is no difference. However any difference is

small relative to the differences seen with some other parameters.

3.8.7 Test set size

As seen with the OLS multivariate regression in Section 3.8.4 above, the sd-method out-

performs the nsd-method as the test set becomes large.

2 3 4 5 6 7
Log10 Size of Te t Data et

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

D
el
ta
-R

M
S
E
 (N

or
m
al
is
ed

)

Figure 3.18: ∆RMSE vs. Log10 of size of test set when validation set >10,000

Again, the hypothesis is that this relates to noise: that as the size of the test set increases



78

the variance due to mis-classification reduces and the effect of the actual difference in

recall between sub-domains can be seen.

3.9 Conclusions

Initial experiments with Twitter data showed that introducing explicit sub-domains in

the matrix-inversion method (the sd-method) reduced bias but increased variance. The

intuition was that it might be possible to derive a closed-form expression for expected

quantification error for quantification using matrix-inversion and explicit sub-domains.

This was possible for the case when there was a large amount of labelled data available.

A closed-form expression for the general case may also be possible, but deriving it is likely

to be very complex and its usefulness is likely to be limited.

The limitations of the closed-form approach justified the use of numerical simulation for

further exploration. The numerical simulation showed a strong relationship between the

relative performance of the sd and nsd methods and the size of the validation set nv.

Under the parameters of the simulated dataset when nv was small the nsd-method was

more accurate while when nv was large the sd-method was better. In the simulation the

transition between the two was when nv was around 1000.

The simulation also showed that the advantage of the sd-method over the nsd-method

was correlated to other parameters, most strongly to the difference in main-class recall

between sub-domains and to the difference in the proportions of the sub-domains (relative

the validation set where the proportions were balanced). The size of the test set was

correlated while sub-domain recall, the ability of the classifier to assign instances to the

correct sub-domain, was found to be much less strongly correlated.

However, it is still not clear at this stage how to specifically determine in advance whether

the sd or the nsd method will give the highest quantification accuracy. This is the focus for

Chapter 4, whether the insights from this chapter about the relative performance of the

two methods can be used in a method that gives a meaningful and reliable improvement

on the baseline nsd method.



Chapter 4

Domain adaptation with

thresholded sub-domains

The work in Chapter 3 indicated that a method using explicit sub-domains can improve

quantification accuracy. However, it also showed that using explicit sub-domains can also

reduce quantification accuracy. Whether a method using explicit sub-domains gives better

quantification accuracy than one which does not was shown to be correlated to a number

of parameters.

The aim of this chapter is to see whether an effective method, the Thresholded Sub-

Domains (tsd) method, can be devised that uses explicit sub-domains when the value of

certain parameters indicates that it will increase quantification accuracy.

A simple approach would be to use a threshold based on validation set size. A clear

relationship between the effectiveness of using explicit sub-domains and validation set

size was shown with simulated data in Chapter 3. Explicit sub-domains could be used

only when the validation dataset was sufficiently large. However, it may be be difficult

to define a value for ‘sufficiently large’ that works for all potential domains that may be

encountered.

An alternative, and perhaps more principled approach, would be to use the statistical sig-

nificance of the observed difference in main-class recall between the explicit sub-domains.

The results in Chapter 3 showed that differences in recall due solely to random sampling

could have a large negative impact on quantification accuracy when using explicit sub-

domains. Using explicit sub-domains only when the difference in recall was unlikely to be

79



80

due to such a random effect could be a robust solution.

The problem is explored with data from three sources: with simulated data in Section 4.1,

with public-domain datasets from the UCI repository in Sections 4.2 and 4.3 and with a

dataset of Twitter users in Section 4.4.

4.1 Experiment 1: Simulation

In Chapter 3, simulated data was used to explore the performance of a quantification

method using explicit sub-domains. This section takes a similar approach. Simulated

data is used to explore whether criteria based on thresholds can determine whether quan-

tification using explicit sub-domains will give a better performance than quantification

that does not use explicit sub-domains.

4.1.1 Method

In each iteration, a validation set and a biased test set was simulated, with the simulation

being controlled by a range of fixed and variable parameters. In the validation sets the

main-class and sub-domain proportions remained fixed and balanced. In the test sets the

main-class and sub-domain proportions varied. For each validation and test set pairing the

main-class proportions in the test set were estimated using the matrix-inversion method

seen in Chapter 3. In each case the estimate of main-class proportions was made both

using explicit sub-domains (sd-method) and not using explicit sub-domains (nsd-method).

Bootstrapping was used to estimate the probability that the difference in main-class recall

between the two sub-domains was due to a genuine difference in underlying recall probabil-

ities rather than arising simply as a product of random sampling. The null-hypothesis was

that there is no difference in underlying main-class recall between the two sub-domains.

Using the validation set, recall values were calculated for each main-class in total, ignoring

sub-domains. These recall values were then used as the probability of correctly classifying

and instance from each class. Bootstrap samples were constructed using those probabili-

ties and the actual size of each main-class and sub-domain in the validation set. Observed

recall values were then computed from each bootstrap set. The p-value for each main-class

was then computed as the proportion of the bootstrap samples where the difference in ob-

served recall values between the sub-domains was greater than that seen in the original



81

validation set.

Data: Synthetic

Result: Estimated test set class proportions by nsd and sd-methods and bootstrap

null-hypothesis proportion

while Loop count < 100, 000 do

Sample the recall parameters, validation set size etc.;

Construct computed variables: R∗, at etc.;

Generate Pv by random sampling using probabilities from R∗ and values from

Av;

Generate Rv from Pv and Av;

Marginalise Rv into 8 recall values and construct Rv8 from these values;

Marginalise Rv8 into Rvm0 by assuming that there is no difference in main-class

recall between sub-domains;

Calculate A: = Difference in main-class recall between sub-domains in Rv8

while Bootstrap count < 10, 000 do

Generate Pvb by random sampling using probabilities from Rvm0 and values

from Av;

Generate Rvb from Pvb and Av;

Calculate B = Difference in main-class recall between sub-domains in Rvb;

if B > A then

add 1 to null-hypothesis counter

end

end

Compute bootstrap null-hypothesis proportions from null-hypothesis counts and

number of bootstraps;

Compute ât using both sd and nsd-methods;

Write parameters and results to file;

end

Algorithm 3: Experiment 1

As is normal with the matrix-inversion method, the values for ât were clipped to lie

between zero and the size of the test set.



82

4.1.2 Simulation settings

The parameter values are shown in Tables 4.1 and 4.2.

Table 4.1: Numerical simulation: fixed parameter values

Parameter Value

Iterations (Outer-Loops) 100,000

Bootstraps (Inner-Loops) 10,000

Recall parameters 8

Test set size nt 1,000

Class-balanced validation dataset True

Sub-domain was labelled for all data, including the test data, and did not have to be

estimated using a classifier as was the case in previous chapters.

Table 4.2: Numerical simulation: sampled parameter values

Parameter Lower Upper Distribution

Main-class recall target 0.6 0.95 Uniform

Validation set size nv 100 100,000 7 discrete values

test set main-class proportion 0.05 0.95 Uniform

test set sub-domain proportion 0.05 0.95 Uniform

4.1.3 Results

4.1.3.1 Validation dataset size

Figure 4.1 shows the difference in Mean Absolute Error (MAE) between the sd and the

nsd-methods against the validation dataset size (nv).



83

100 316 1000 3160 10000 31600 100000
validation dataset size

−0.010

−0.005

0.000

0.005

0.010

ab
s 
er
ro
r n

sd
 - 

ab
s 
er

ro
r s

d

Delta abs error nsd-sd vs. validation dataset size

Figure 4.1: Mean delta absolute error nsd-method minus absolute error sd-method by

validation dataset size. 95% confidence intervals shown.

The findings are consistent with the earlier observation seen in Section 3.8.3 that when

the validation dataset is below a certain size the quantification accuracy of the sd-method

drops below that of the nsd-method.

4.1.3.2 Statistical significance of sub-domain recall difference

The bootstrap method generates separate p-values for the two main-classes but a single

combined value is useful for analysis. In quantification the class balance of the test set is, of

course, unknown so the joint probability1 was selected as the single metric (bs prop prod)

to ensure that the p-value is low for both main-classes. A max(p0, p1) function would have

been another option.

Figure 4.2 below show the difference in Mean Absolute Error (MAE) between the sd and

the nsd-method against bs prop prod quartiles.

1The product of the p-values for the two classes



84

1 2 3 4
bs_prop_prod quartile

−0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

ab
s 
er
ro
r n

sd
 - 
ab

s 
er
ro
r s

d

Delta abs error nsd-sd vs. bs_prop_prod quartile

Figure 4.2: Mean delta absolute error (nsd-method minus absolute error sd-method) by

quartile of bs prop prod. 95% confidence intervals shown.

When the value of bs prop prod is low (i.e. when the difference in main-class recall values

between sub-domains is most significant) the sd-method typically gives a lower error than

the nsd-method. In this experiment, for the first quartile of bs prop prod values, the

sd-method has a mean absolute error of around 1.4 percentage points lower than the

nsd-method.

4.1.3.3 Statistical significance of difference in recall by subdomain and dif-

ference in sub-domain proportions

When there is no difference in the distribution of sub-domains within each main-class

between the test set and the validation set2 then, in this experimental setup, there will

be no difference in overall main-class recall between the validation and test sets. If this

is the case then clearly, using sub-domains for quantification will not give any advantage

over the nsd-method.

I defined the metric of Sub-Domain Distance (SDD) to capture the difference in sub-

domain distribution within the main-classes as a single value. It is modelled on Euclidean

2i.e. we see no class-conditional dataset shift



85

Distance. Importantly, it is independent of the difference in main-class proportions be-

tween the validation and test sets.

SDD =

√(avαγ
avα

− atαγ
atα

)2
+
(avβγ
avβ

−
atβγ
atβ

)2
+
(avαδ
avα
− atαδ
atα

)2
+
(avβδ
avβ
−
atβδ
atβ

)2

(4.1)

As defined in Section 3.1.3, the main-classes and are designated as α and β while the two

sub-domains are designated as γ and δ. A large value of SDD indicates a large difference

in sub-domain proportions within each main-class between the validation and the test set.

Figure 4.3 is a heatmap showing the difference in RMSE between the nsd and sd-methods

by SDD quartile and by bs prop prod quartile.

1 2 3 4
bs_prop_prod quartile

1
2

3
4

sd
d 

qu
ar

til
e

0.0045 -0.0019 -0.0092 -0.0091

0.014 0.0062 -0.01 -0.0042

0.02 0.011 -0.012 -0.007

0.029 0.019 -0.014 -0.0079

RMSE(nsd-sd): simulation data

−0.008

0.000

0.008

0.016

0.024

Figure 4.3: Delta RMSE (nsd-sd) by quartile of bs prop prod and quartile of SDD

As expected, when bs prop prod is low3 (1st quartile) the advantage of the sd-method

over the nsd-method is clearly dependent on the difference in sub-domain proportions, in

this case as measured using the SDD metric. When bs prop prod is low (quartile 1) and

SDD is high (quartile 4) then the RMSE of the sd-method is 2.9 percentage points lower

than the RMSE of the nsd-method.

3i.e. the main-class recall difference is unlikely to have arisen purely by random chance



86

4.1.4 Discussion

On its own, high statistical significance (as given by low values of bs prop prod) does

identify situations where carrying out quantification using sub-domains can give a better

quantification accuracy. Unfortunately, to avoid situations where quantification accuracy

could actually be reduced the threshold would have to be set at a level where only 25% of

the results would be selected.

4.2 Experiment 2: UCI datasets

The objective of this second experiment was to see if the observations made on simulated

data in Section 4.1 would be replicated on real datasets.

4.2.1 Datasets

I downloaded seven datasets from the University of California at Irvine (UCI) repository

[32]. The original experiment with a Twitter dataset in Section 3.4 had used a dataset

with very high dimensionality so for consistency UCI datasets were chosen which also

had higher dimensionality. The other main selection criteria was that the dataset should

be sufficiently large to allow multiple samples to be drawn of varying sizes. The seven

datasets represent a wide variety of domains, from census data on individuals to the

chemical properties of proteins.

Any real values in the datasets were standardised to zero mean and unit standard devi-

ation and any categorical values were converted to multiple binary features with one-hot

encoding. Real or categorical labels were converted to binary labels with a logical cut-off

or grouping that would result in a reasonably balanced class distribution.

Finally, the datasets were arbitrarily split into two groups: 4 for development purposes,

shown in Table 4.3, and 3 which were held-out for final testing shown in Table 4.4:



87

Table 4.3: Development datasets: UCI dev

Dataset Description Number of Number of

Instances Features

n d

Adult Census data from 1994 15,061 56

Label: person earns >$50k

Bank Marketing Customer data from a marketing

campaign

45,211 34

Label: person took up offer

Covertype Predicting forest cover type from car-

tographic variables

581,012 54

Label: categorical - type of cover

Letter Recognition Integer values computed from images

of letters

20,000 16

Label: letter of alphabet

Table 4.4: Held-out test datasets: UCI test

Dataset Description Number of Number of

Instances Features

n d

Casp Physicochemical properties of protein

tertiary structure

45,730 9

Label: size of the residue

Credit Card Default Customer personal data and financial

history

25,318 42

Label: defaulted on payment

Online News Popu-

larity

Statistics extracted from online news

articles

39,644 58

Label: number of shares



88

4.2.2 Generation of results

In each iteration a train-validation (‘trv’) set and a test set was sampled from the dataset.

The trv set was class and sub-domain balanced. The test set was built to a given class

balance and given sub-domain balance. On each iteration, one of the binary features in

the dataset was randomly selected to indicate the sub-domain. This could be one of the

original features or one of the ‘binarised’4 versions of the first five Principle Component

Analysis (PCA) components. The recall values by class and by sub-domain were computed

with 5-times cross validation on the trv set, then the classifier was trained with the full

trv set.

While the original features might represent real-world sub-domains such as age, gender or

occupation status in UCI Adult, the PCA features are clearly abstractions and may not

map onto any any real-world attribute.

In this experiment the sub-domain is explicit and known in both the trv and test sets. It

was not necessary to estimate the sub-domain label in the test set. As such it was not

necessary to treat this as a 4-class problem as it was in Section 3.3. Instead it was treated

as a set of 2-class quantification problems. 2-class quantification was carried out both

separately for each sub-domain and then aggregated (the sd-method) and also for all the

data together without consideration of sub-domains (the nsd-method).

In Section 4.1 bootstrapping was used to generate a p-value. In this experiment the p-value

was simply computed using Pearson’s chi-squared test. Again, this gives us the likelihood

of seeing at least the number of correctly and incorrectly classified instances within each

sub-domain if the null-hypothesis were true that there was no difference in classifier recall

between the two sub-domains5.

As with bootstrapping in Section 4.1, the chi-squared test gives a separate p-value for

mainclass 0 and for mainclass 1 where it would be useful to have a single metric for

analysis purposes. Again, the joint probability was used. The final metric log10 c2p sum

was the negative log10 of the product of the two p-values.

4Assigned a value of 1 if feature value is greater than zero and 0 otherwise
5Not a strictly accurate definition but one which will suffice for these purposes



89

4.2.3 Algorithm

Data: 7 UCI Datasets

Result: Estimated test set class proportions by nsd and sd-methods

for dataset in set of UCI Datasets do

import the dataset X and y;

for feature in features suitable for use as sub-domain do

use the binary value of that feature to indicate sub-domain;

for log10(trv size) in [2.0 to 4.0] do

find optimal C value using 4-fold cross validation;

while number of dataset splits < 5 do

split the dataset into trv with balanced main-class and sub-domain

distribution and rem;

compute recall by main-class in total and by sub-domain;

compute chi-squared p-value from confusion matrices for

sub-domains;

train classifier on full trv set and classify the full rem set;

while number te samples < 5 do

for te main-class proportion in [0.1 to 0.9] do

for te sub-domain proportion in [0.1 to 0.9] do

sample a te set from rem with replacement;

compute class proportions in te using sd and nsd-methods;

write results to file;

end

end

end

end

end

end

end

Algorithm 4: Exploration of sd and nsd quantification methods on UCI Datasets

This generated a large set of results that were then randomly sampled to give 400,000

results per dataset.



90

4.2.4 Parameters

Table 4.5: Parameter settings

Parameter Value Notes

Training set size 102 to 104 See Fig. 4.4

Training set class 0 proportion 0.5

Test set size 103

Test set class 0 proportion 0.1 to 0.9 Steps of 0.1

Classifier type SVM

Classifier kernel Linear

C values {10−4 to 101} Chosen by CV6

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
log10 trv size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4.4: Distribution of trv set sizes

6The C value was chosen based on accuracy with 5-fold cross validation on the training-validation set



91

4.2.5 Classifier performance

0.55 0.60 0.65 0.70 0.75 0.80 0.85
Accuracy

UCI_adult_test

UCI_bank_marketing

UCI_casp

UCI_covertype

UCI_credit_card_default

UCI_letter_recognition

UCI_online_news_popularity

Figure 4.5: Classifier accuracy by dataset

With reference to Figure 3.10: the accuracy of the classifier on 6 of the 7 UCI datasets

should be sufficiently high to ensure acceptable quantification accuracy. The lower accu-

racy of the classifier for the Online New Popularity dataset could lead to low quantification

accuracy, particularly with training sets of close to 100 instances. However, the focus of

this section is on the differential performance of two quantification methods and any any

poor performance with Online New Popularity is not apparent in the results in Section

4.3.3.

4.2.6 Results

4.2.6.1 Size of validation dataset

Figure 4.6 shows the impact of the size of the training-validation set (trv) on the absolute

performance of the sd and nsd-methods.



92

0 1 2 3 4 5 6 7 8 9
log10 trv size deciles

0.02

0.04

0.06

0.08

0.10

0.12

0.14

M
ea

n 
A

bs
ol

ut
e 

E
rr
or

Mean absolute error (MAE) vs. trv size deciles, UCI dev datasets

sd_nsd
sd
nsd

Figure 4.6: Mean delta absolute error nsd-method minus absolute error sd-method by

decile of trv size. UCI dev datasets. 95% confidence intervals

Figure 4.7 plots the same data but shows the differential performance of the sd and nsd-

methods for each of the UCI dev datasets separately.

0 1 2 3 4 5 6 7 8 9
log10 trv size deciles

−0.03

−0.02

−0.01

0.00

0.01

0.02

de
lta
 m
ea

n 
ab

s 
lu
te
 e
rr
 r
 n
sd
-s
d

Delta mean absolute error (nsd-sd) vs. trv size deciles, UCI dev datasets

dataset
UCI_adult_test
UCI_bank_marketing
UCI_covertype
UCI_letter_recognition

Figure 4.7: Mean delta absolute error nsd-method minus absolute error sd-method by

decile of trv size. UCI dev datasets. 95% confidence intervals

The four UCI dev datasets show the same relationship as was seen with the simulated data

in Sections 3.8.3 and 4.1.3.1, i.e. when the validation dataset is small the nsd-method gives

better mean quantification accuracy than the sd-method but once the validation dataset is

above a certain size, on average the sd-method out-performs the nsd-method. The initial



93

hypothesis was that it would be difficult to find a value for the size of the validation set

that was ‘sufficiently large’ for all datasets. However, figure 4.7 shows that for all four

UCI dev datasets, when the validation set was in the 5th decile or above7 (above ≈ 1000

instances) then, on average, the sd method was better than the nsd method.

4.2.6.2 Probability of difference in recall by sub-domain

Figure 4.8 shows the relationship between the significance of the difference in recall at

sub-domain level (expressed through log10 c2p sum) and the absolute performance of the

sd and nsd-methods on the UCI dev datasets overall.

0 1 2 3 4 5 6 7 8 9
log10_c2p_sum deciles

0.03

0.04

0.05

0.06

0.07

M
ea

n 
A
bs
ol
ut
e 
E
rr
or

Mean absolute error (MAE) vs. log10_c2p_sum deciles, UCI dev datasets

sd_nsd
sd
nsd

Figure 4.8: Mean delta absolute error nsd-method minus absolute error sd-method by

decile of log10 c2p sum. UCI dev datasets. 95% confidence intervals

Figure 4.9 again plots the same data but shows the relationship between the significance

of the difference in recall at sub-domain level (expressed through log10 c2p sum) and the

relative performance of the sd and nsd-methods on each UCI dev dataset separately.

7Deciles 4 and 5 in Figure 4.7 span a trv size range from 489 to 1,148



94

0 1 2 3 4 5 6 7 8 9
log10_c2p_sum deciles

−0.01

0.00

0.01

0.02

0.03

de
lta
 m
ea

n 
ab

s 
lu
te
 e
rr
 r
 n
sd
-s
d

Delta mean absolute error (nsd-sd) vs. log10_c2p_sum deciles, UCI dev datasets

dataset
UCI_adult_test
UCI_bank_marketing
UCI_covertype
UCI_letter_recognition

Figure 4.9: Mean delta absolute error nsd-method minus absolute error sd-method by

decile of log10 c2p sum. UCI dev datasets. 95% confidence intervals

Again, this is consistent with the observations made with simulated data in Section

4.1.3.3. When the statistical significance of the recall difference is high (high values of

log10 c2p sum) the sd-method outperforms the nsd-method. However, for all four UCI dev

datasets this improvement only occurs in the top 2 deciles i.e. for only 20% of the results.

4.2.6.3 Difference in sub-domain proportion

Figure 4.10 shows the relationship between the difference in sub-domain proportions be-

tween the trv dataset and the te dataset and the relative performance of the sd and

nsd-methods.

The concept of sub-domain distance (SDD) was introduced in Section 4.1.3.3. In this

experiment the sub-domain label of the data instances in the test set is known but, as we

are looking for a method that can be used in practice we are assuming that we do not

know their main-class label and therefore we cannot use SDD. Instead we simply measured

the absolute difference between sub-domain proportions in the trv dataset (always set to

0.5 in this experiment) and the sub-domain proportions in the test set (ranging between

0.1 and 0.9) regardless of main-class. This metric was termed SDDN .

Figure 4.10 shows the relationship between mean absolute error and SDDN.



95

0.0 0.1 0.2 0.3 0.4
sddn ((sd prop in trv) - (sd prop in te))

−0.005

0.000

0.005

0.010

0.015

0.020

de
lta

 m
ea

n 
ab

so
lu

te
 e

rr
or

 n
sd

-s
d

Delta mean absolute error (nsd-sd) vs. sddn, UCI dev datasets

dataset
UCI_adult_test
UCI_bank_marketing
UCI_covertype
UCI_letter_recognition

Figure 4.10: Mean delta absolute error nsd-method minus absolute error sd-method by

absolute difference in sub-domain proportion between trv and te (SDDN).

UCI dev datasets. 95% confidence intervals

Again, this is consistent with the observations made with simulated data in Section 4.1.3.3,

when SDDN is small the nsd-method outperforms the sd-method. However, for most of

the datasets the effect is small even at high values of SDDN. When SDDN is small, in all

cases there was, on average, no advantage to using the sd-method.

4.2.7 Discussion

The results with the UCI dev datasets are consistent with the simulation findings in Sec-

tion 4.1. The statistical significance of the recall difference by sub-domain (log10 c2p sum)

and the difference in sub-domain proportions between the trv set and the test set (SDDN)

can be used as thresholds for the application of sd-method but they only identify a small

proportion of the total cases where applying the sd-method would be advantageous.

As a single parameter, the size of the trv set itself appears to be a better measure for

identifying when using the sd-method will, on average, be advantageous. The hypothesis

at the start of this section was that it would potentially be difficult to identify a value for

trv size that would be ‘sufficiently large’. However, as shown in Figure 4.7 and previously

with simulated data in Figure 4.1, when the validation set size is above around 1000 the

sd-method on average gives a higher quantification accuracy than the nsd-method.



96

4.3 Experiment 3: determining thresholds

Contrary to initial expectations, the conclusion from Section 4.2 was that the size of the trv

set was the best single measure against which to set a threshold for the application of the

sd-method. However, while they are perhaps not as good individually, log10 c2p sum and

SDDN could potentially be included in a multi-criteria threshold. log10 c2p sum appeared

to be a good measure for identifying a small number of cases where large benefits might

be obtained while SDDN appeared to be a good measure for identifying cases where the

sd-method should not be applied. In this section, the aim is to see if a multi-criteria

threshold can give a better performance than just using the size of the trv set alone.

As was seen earlier, it is possible to set the criteria-thresholds to get a large improvement

on a small proportion of results or to set them to get a smaller improvement over a larger

proportion of results. The chosen method for measuring quantification accuracy was to

look at the mean improvement over all results e.g. a 2% improvement that applied to 50%

of the results would be a 1% mean improvement over all results. In addition, the criteria-

thresholds should ideally be set to minimise the likelihood of using the sd-method when

it may reduce performance so proportionate performance is also taken into consideration.

In the tables below ∆MAE is the shortened term for ‘delta mean absolute error nsd-sd’.

4.3.1 Single criteria

The results with trv size as the single criteria are given in Table 4.6:

Table 4.6: Difference in abs error between nsd and sd-methods for various values of

baseline log10 trv size. UCI dev datasets

log10 trv size 2.0 2.5 3.0 3.5

Number of results above threshold 1,597,502 1,117,226 684,635 267,488

Proportion of results above threshold 100.0% 69.9% 42.9% 16.7%

∆MAE absolute, results above threshold 0.0009 0.0047 0.0065 0.0083

∆MAE absolute, all results 0.0009 0.0033 0.0028 0.0014

A log10 trv size of 102.5 (i.e. 316) gave the highest ∆MAE mean average over all results.



97

4.3.2 Multiple criteria

Using a grid search the optimum parameter values were found to be those shown in Table

4.7:

Table 4.7: Optimum multiple parameter values. UCI dev datasets

Parameter Value

trv size > 316

AND log10 c2p sum > 1.71

AND SDDN ≥ 0.1

Table 4.8 shows the performance using the single and the multiple criteria on the UCI dev

datasets:

Table 4.8: Comparison of quantification performance of single and multiple criteria on

the UCI dev datasets

UCI dev

Number of results 959,498

Criteria Baseline Single Multiple

trv size >316 >316

log10 c2p sum all >1.71

SDDN all ≥0.1

All results

MAE mean 0.0560 0.0529 0.0528

∆MAE mean, absolute improvement 0.0031 0.0032

∆MAE mean, relative improvement 5.4% 5.6%

Results above threshold

Number 654,646 299,236

Proportion 68% 31%

∆MAE mean, absolute improvement 0.0030 0.0101

On the UCI dev collection of 4 datasets the multiple criteria are only marginally better

than the method using just the validation dataset size. However the multiple criteria

method is more selective, selecting less than half the number of results for use with the



98

sd-method. This is explored further in Section 4.3.3.1.

4.3.3 Evaluation against the held-out UCI test datasets

Table 4.9 shows the results for the combined UCI test datasets on the optimal criteria

that were set on the UCI dev datasets:

Table 4.9: Combined UCI test datasets. Quantification performance with single and

multiple criteria.

All UCI test Datasets

Number of results 720,000

Baseline Single Multiple

All results

MAE mean 0.1128 0.1086 0.1077

∆MAE mean, absolute improvement 0.0042 0.0051

∆MAE mean, relative improvement 3.7% 4.5%

Results above threshold

Number 513,361 244,325

Proportion 71% 34%

∆MAE mean, absolute improvement 0.0059 0.0150

Tables 4.10, 4.11 and 4.12 show the same results as Table 4.9 broken down by individual

UCI test datasets:



99

Table 4.10: UCI CASP dataset. Quantification performance with single and multiple

criteria.

CASP

Number of results 240,000

Baseline Single Multiple

All results

MAE mean 0.0784 0.0728 0.0728

∆MAE mean, absolute improvement 0.0056 0.0056

∆MAE mean, relative improvement 7.1% 7.1%

Results above threshold

Number 180,163 120,371

Proportion 75% 50%

∆MAE mean, absolute improvement 0.0075 0.0112

Table 4.11: UCI credit card default dataset. Quantification performance with single and

multiple criteria.

Credit Card Default

Number of results 240,000

Baseline Single Multiple

All results

MAE mean 0.0960 0.0940 0.0933

∆MAE mean, absolute improvement 0.0020 0.0027

∆MAE mean, relative improvement 2.1% 2.8%

Results above threshold

Number 165,236 63,730

Proportion 69% 27%

∆MAE mean, absolute improvement 0.0030 0.0103



100

Table 4.12: UCI online news popularity dataset. Quantification performance with single

and multiple criteria.

Online News Popularity

Number of results 240,000

Baseline Single Multiple

All results

MAE mean 0.1633 0.1584 0.1565

∆MAE mean, absolute improvement 0.0048 0.0068

∆MAE mean, relative improvement 2.9% 4.2%

Results above threshold

Number 168,226 60,465

Proportion 70% 25%

∆MAE mean, absolute improvement 0.0068 0.0270

Using multiple criteria for selecting when to use the sd-method gives better overall result

than just using the single criteria of trv size on all three UCI test datasets. Using a single

criteria of trv size itself also outperformed the nsd-method on all three UCI test datasets.

4.3.3.1 Proportionate performance

Ideally the selection criteria would be perfectly discriminative and would select all results

where the sd-method is going to be better than the nsd-method and no results where the

nsd-method is going to be better.

Table 4.13 shows the proportion of cases where the sd-method was chosen (i.e. the criteria-

threshold was met) and where the sd-method gave a lower quantification error than the

nsd-method.



101

Table 4.13: Proportion of results where the nsd-method gives larger error than the

sd-method

Dataset Proportion Proportion Proportion

nsd>sd nsd>sd nsd>sd

Selected by Selected by

Full Dataset Single Criteria Multiple Criteria

CASP 51% 55% 58%

Credit Card Default 46% 50% 57%

Online News Popularity 45% 50% 62%

Overall 48% 52% 59%

This shows that while the proportion of results where the sd-method is better than the

nsd-method is higher using the single criteria of validation set size than in all results as a

whole, it is higher again using multiple criteria. Multiple criteria are more discriminative

than the single criteria.

4.3.4 Discussion

In this experiment, using a threshold for applying the sd-method based only on trv size did

result in better mean quantification accuracy on all three of the UCI test datasets when

compared with the nsd-method. However, using a threshold criteria made up from a combi-

nation of trv size, statistical likelihood of a recall difference by sub-domain (log10 c2p sum)

and difference in the proportion of sub-domains (SDDN ) gave a better mean quantifica-

tion performance than when the criteria was only on trv size. Using multiple criteria gave

a mean absolute improvement in MAE of 1.54 percentage points on the 34% of cases that

met the criteria equating to a mean absolute improvement of 0.51 percentage points overall

with a range of 0.27 to 0.68 percentage points over the three UCI test datasets.

4.4 Experiment 4: Twitter dataset

The aim in this section is to revisit Twitter users and see if the tsd-method can deliver

similar improvements in quantification accuracy to those seen with UCI datasets in Section

4.3.



102

4.4.1 Twitter Age Friends (TAF) dataset

A new, and significantly larger Twitter dataset was built for this experiment. Twitter

provide a free stream of a 1% random sample of all tweets. This was sampled between

February 2017 and April 2018 using the Method528 tool. The users that generated the

tweets were added to the dataset. Each user would appear just once in the dataset re-

gardless of how many of their tweets were picked up so sampling over such a long period

of time should reduce the potential bias in the dataset towards users that send tweets the

most frequently.

The method of building the dataset was broadly in line with that described earlier in

Section 3.4. The Tweet and the attached user details were selected if the user screenname

ended in 4 digits that were between 1940 and 1999 inclusive9. The IDs of the Twitter

accounts that were being followed (‘friends’) by these users were collected using API10

calls in Method52. This generated in a file of 274,000 users and a file of 126M user-friend

pairings. Method52 was then again used to label (‘annotate’) users by gender, social-class,

location and presence of children (POC). These annotation labels were then used as our

sub-domain labels.

The last four digits of the user screenname were taken as a plausible year of birth (see

Section 3.4.1.1). To make this into a classification problem the dataset was split on the

median year of birth of 1984. Users from years 1983, 1984 and 1985 were removed from

the dataset to give a separation between the classes. Age label 0 was assigned to users

with an estimated year of birth before 1983 and an age label of 1 was assigned to users

with an estimated year of birth after 1985. The distribution by estimated year of birth in

the finished TAF dataset is shown in Figure 4.11.

8Courtesy of CASM Consulting LLP
9Potentially indicative of year of birth

10Application Programming Interface



103

1940 1950 1960 1970 1980 1990 2000
Estimated year of birth

0

1000

2000

3000

4000

5000

N
um

be
r o

f i
ns

ta
nc

es

Estimated year of birth distribution in TAF_tr dataset

Figure 4.11: Distribution by estimated year of birth in the TAF training dataset

Table 4.14 lists the further filtering was applied to ‘clean’ the dataset.

Table 4.14: Filtering applied in the generation of the TAF dataset

Filter Rationale

1 >2000 friends Likely not to be individuals

2 >2000 friends Likely not to be individuals

3 Classified as ‘institution’ by

Method52

Likely not to be individuals

4 Tweet and user language is not

English11

Accounts followed are likely to be lan-

guage specific

In Twitter terminology an account that is being followed is called a ‘friend’. Following

an account results in the user seeing the Tweets that are made from that account. Any

Twitter user can follow any other Twitter account. Using accounts followed (friends) as

features resulted in very high dimensionality (initially 14M features in this case). Dimen-

sionality reduction was applied to reduce the number of features to a manageable level

while maintaining classification accuracy. The dimensionality reduction steps are given in

Table 4.15. Accuracy was measured by training a linear kernel SVM classifier on 10,000

11Language codes: en, en-AU, en-GB, en-IN, en-US, en-gb, und



104

instances selected at random from TAF tr and then tested on 1,000 instances selected at

random from TAF dev.

Table 4.15: Dimensionality reduction steps in the generation of the TAF dataset

Processing Number of Accuracy

Features

1 Remove friends followed by < 50 users in the dataset 108,421 0.744

2 Chi-squared feature selection 20,000 0.735

3 Principal Component Analysis 200 0.748

This gave a dataset of 174,667 user instances which was split into three datasets by random

sampling:

Table 4.16: TAF dataset split into tr, dev and te

Purpose Size

TAF tr Training 100,000

TAF dev Test and validation while developing 54,667

TAF te Held-out for final testing 20,000

4.4.2 Dataset initial analysis

Main-class recall can vary by sub-domain, as shown in Chapter 3. Method 52 was used to

annotate the Twitter users in the TAF dataset by gender, social class, location (continent)

and presence of children in the household (POC). A linear-kernel SVM classifier was

trained on a random sample of 5,000 instances from the TAF tr dataset. This was then

used to classify all the data in the TAF dev dataset. Recall by main-class for the classifier

was computed overall (‘All’) for the full TAF dev dataset then separately for each sub-

domain.

Figure 4.12 shows the differences in recall for classes 0 and 1 across those four attributes

against the baseline recall figures for all the instances in the TAF dev dataset.



105

0.575 0.600 0.625 0.650 0.675
recall_cl1

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

re
ca
ll_
cl
0

sd = gender

0.575 0.600 0.625 0.650 0.675
recall_cl1

sd = socialClass

0.575 0.600 0.625 0.650 0.675
recall_cl1

sd = continent

0.575 0.600 0.625 0.650 0.675
recall_cl1

sd = POC_flag

Value
All
male
female
ABC1
C2DE
Europe
Asia
North America
0
1

Figure 4.12: Mainclass recall values by subset of the TAF dev dataset

The largest differences in recall appear between users estimated to be in different conti-

nents. For class 0, recall for users located in Asia is 0.731 compared to 0.899 for users

located in North America and 0.871 for the TAF dev dataset as a whole.

These differences in recall values illustrate the problem at the core of this thesis: how to

quantify accurately when the distribution of the dataset being quantified does not match

that on which the quantifier was trained. For example, a classify and adjust quantifier

that is trained on the TAF dataset and which (directly or indirectly) uses the performance

figures for the classifier obtained on the whole TAF dataset would potentially give an

inaccurate estimate of class proportions if it was applied to a set of users located in Asia.

4.4.3 Method

The method was the same as for the previous experiments with the UCI dev datasets with

the exception that the annotated values for gender, social class, location (continent) and

presence of children in the household (POC) were used for indicating sub-domain instead

of using binary features from the dataset itself.

The program was run 8 times generating a results dataset of 1,004,400 separate sample

experiments.

4.4.4 Results

Table 4.19 shows the results from applying the tsd-method with the criteria and thresholds

set previously on the UCI dev datasets (see Table 4.8) to the TAF dataset:



106

Table 4.17: UCI online news popularity dataset. Quantification performance with single

and multiple criteria.

TAF

Number of results 240,000

Baseline Single Multiple

All results

MAE mean 0.0981 0.0978 0.0975

∆MAE mean, absolute improvement 0.0003 0.0007

∆MAE mean, relative improvement 0.3% 0.7%

Results above threshold

Number 178,302 71,701

Proportion 74% 30%

∆MAE mean, absolute improvement 0.0004 0.0022

Similarly - looking at the proportion of results within the selection criteria where the

sd-method was better than the nsd-method:

Table 4.18: Proportion of results where the nsd-method gives larger error than the

sd-method, TAF dataset

TAF Proportion Proportion Proportion

nsd>sd nsd>sd nsd>sd

Selected by Selected by

Full Dataset Single Criteria Multiple Criteria

Overall 45% 48% 53%

Both the single selection criteria of validation set size and the multiple criteria give mean

improvements in quantification performance with the TAF dataset but the improvements

are considerably smaller than were seen with the UCI test datasets in Section 4.3.3. This

could be because the thresholds set on the UCI dev dataset do not work with the TAF

dataset or because the scope for improvement in quantification accuracy improvement

with the sd-method on the TAF dataset is limited. To test this thresholds were set on

the TAF dataset itself (TAF optimum). The comparison between thresholds set using

UCI dev dataset and thresholds set using the TAF dataset itself are shown in Table 4.19.



107

Table 4.19: TAF dataset. Quantification performance with single and multiple criteria.

TAF

Baseline Single Single Multiple Multiple

Criteria optimised on: UCI dev TAF UCI dev TAF

trv size >316 >1,000 >316 >1,000

log10 c2p sum all all >1.71 >0.22

SDDN all all ≥0.1 ≥0.2

All results

MAE mean 0.0981 0.0978 0.0971 0.0975 0.0970

∆MAE mean, absolute 0.0003 0.0010 0.0007 0.0011

∆MAE mean, relative 0.3% 1.0% 0.7% 1.1%

Results above threshold

Proportion 74% 43% 30% 28%

∆MAE mean, absolute 0.0004 0.0023 0.0022 0.0038

Comparing quantification performance on the TAF dataset with selection criteria opti-

mised on both UCI dev and on TAF itself shows that using multiple criteria gets closer

to its TAF-optimal performance than using the single criteria of validation set size.

4.4.5 Discussion

The results on the TAF dataset were an order of magnitude worse than those obtained on

the UCI test datasets. When the multiple criteria based method identified that explicit

sub-domains should be used this gave better quantification accuracy in only 53% of cases

with the TAF dataset as compared to 59% of cases with the UCI test datasets. This

may be due to the method of biassing. The TAF dataset was biased using the annotated

sub-domains shown in Figure 4.12. Some of those categories have large difference in recall,

e.g. ‘Asia’ in location, but many do not. It may simply be that the test sets were not

particularly biased. This hypothesis is supported by the finding that the set thresholds

achieved a performance that was 55% of the optimal performance for the dataset i.e. there

was not actually much room for improvement above the baseline which would be consistent

with a low level of bias in the test sets.



108

4.5 Conclusions

A summary of the results of the various experiments are given in Table 4.20.

Table 4.20: Summary of Chapter 4 results

Method Set Measured ∆MAE ∆MAE

On On Absolute Relative

Tab. 4.9 tsd single UCI dev UCI test 0.42% 3.7%

Tab. 4.9 tsd multiple UCI dev UCI test 0.51% 4.5%

Tab. 4.19 tsd single UCI dev TAF 0.03% 0.3%

Tab. 4.19 tsd multiple UCI dev TAF 0.07% 0.7%

In Chapter 3 it was shown that a quantification method that uses explicit sub-domains

(the sd-method) can give better quantification accuracy than one that does not (the nsd-

method). In this chapter it has been possible to use threshold-criteria based on parameter

values that would be known a priori to determine when explicit sub-domains should and

should not be used. These give an improvement in quantification accuracy on held-out

test data in all cases. Using multiple criteria applied to the UCI test datasets produced

relative improvements in mean absolute error in quantification accuracy of between 2.8%

and 7.1%. However, the improvement over the baseline nsd-method with the TAF dataset

of Twitter users was much more modest. This may be due to lower levels of bias in the

test sets than was the case with the UCI test datasets.

A key limitation of the explicit sub-domains approach is that the sub-domains have to be

identified in advance. No approach is put forward for finding optimal sub-domains. In

reality, sub-domains would most likely be chosen in a trial and error process using the data

labels that were available. Furthermore, the biassing of the test datasets was made using

the same explicit sub-domains. As a result, the improvements in quantification accuracy

that were found are likely to be towards the upper bound.

In the following chapters, methods are put forward do not require any up-front knowledge

of the source of potential dataset shift and are these are tested on test datasets with a

broad range of biasing.



Chapter 5

Domain adaptation by instance

weighting

In Chapters 3 and 4, an improvement in quantification accuracy under class-conditional

dataset shift was achieved by using explicit sub-domains for domain adaptation. A rela-

tive improvement in Mean Absolute Error (MAE) of 4.5% was obtained on the UCI test

datasets. However, these methods require that the sub-domains on which the dataset shift

has occurred are known in advance and are explicitly labelled in the training and test data.

The approach in this chapter is more general. No prior knowledge of the cause, direction

or scale of the dataset shift is required. Correction for class-conditional dataset shift is

made solely on the basis of the observed difference in the distribution of the data between

the set that is being tested and the set used for training.

The methods in this chapter are based on the instance weighting methods for domain

adaptation. Weights are computed for each instance in the training set using the data

from the training and test sets. The instances in the training set that are assigned higher

weights can be considered to be ‘close’ to the instances in the test set. The weighted

distribution of the training set (drawn from the Source domain) should be the same, or

very similar to, the unweighted distribution of the test set (drawn from the Target domain).

In this chapter the aim is to see if these instance weighting methods can be adapted so

that they reduce or eliminate class-conditional dataset shift. If they do, then the classify

and adjust quantification methods that rely on the class-conditional feature distributions

in the Target domain being similar to those in the Source domain should be effective at

estimating class proportions in the Target domain.

109



110

The two main importance weighting methods used in this chapter are Kernel Mean Match-

ing (KMM) and Unconstrained Least Squares Importance Fitting (uLSIF). Overviews of

these methods are given in Sections 5.4 and 5.5 respectively. Section 5.6 explores the rela-

tionship between class-proportions in the test set and the distribution of instance weights.

In Section 5.7 the KMM and uLSIF methods are used with a matrix-inversion classify and

adjust quantifier. An alternative instance weighting method, Sample Selection Bias Cor-

rection (SSBC), is explored in Section 5.8, while an iterative derivative of this is explored

in Section 5.9. Finally the chapter conclusions are in Section 5.10.

5.1 Measuring dataset shift

Quantification is about estimating the class proportions in a test set. The assumption

is that these class proportions can vary without constraint, that one class can make up

anywhere between 0% and 100% of the test set. Standard measures of dataset shift (see

Section 2.2.3) simply compare the overall distributions. A difference due simply to the

class distribution that we are trying to estimate, with no difference in class-conditional

feature distribution, would still be seen as dataset shift under these measures.

Consider a toy example. There are two classes 0 and 1. Set A consists of 90% instances of

class 0, 10% class 1. Set B consists of 10% instances of class 0 and 90% class 1. A classifier

can distinguish between class 0 and class 1 with high accuracy. All the class 0 instances

in both A and B have been drawn iid from all the class 0 instances in the same domain.

The same with class 1. Class-conditionally, there is no difference between A and B but

the distribution of A is quite different from B. As there is no class-conditional difference a

standard classify and adjust quantification method should work well despite the presence

of dataset shift.

Ideally we would like a measure of class-conditional dataset shift. To do this, we compare

training and test sets that have the same class proportions. With no difference in class

proportions, the difference between the two sets should then be due to differences in class-

conditional feature distribution. Sub-samples are taken from the training data of the

same class-proportions as the test set and Proxy A-distance (PAD) (see Section 2.2.3.1) is

measured between the two sets. This is repeated a number of times with different random

samples of the training set and the values of Proxy A-distance are averaged. I have termed

the resulting value class-balanced proxy A-distance or PADcb for short. Clearly, as this



111

requires knowledge of the class distribution in the test set, this cannot be used as part of

a method but it can be used in analysis.

5.2 Datasets

The UCI and TAF datasets from Chapter 4 were used. The method used for generating

the biassed1 test sets was taken from Gretton et al. [58] (which itself was originally from

Zadrozny [122]). Test set instances were selected from the dataset based on comparing the

value of a randomly chosen feature against a value drawn from a normal distribution of

random mean and random variance. The test sets were built to a given class proportion

which was selected randomly in the range [0.04, 0.96]. This range was chosen to give

both a wide range of class proportions but also to minimise the impact of clipping class

proportions into [0,1]. As well as original features Gretton et al. [58] also used the first

PCA component for biassing. I was concerned that the first PCA component might have

a strong correlation with class so I used the first five PCA components.

Figure 5.1 shows the distribution of the test sets by dataset shift as measured by PADcb.

0.0 0.5 1.0 1.5
PADcb

0.00

0.25

0.50

0.75

1.00

1.25

UCI_dev

0.0 0.5 1.0 1.5
PADcb

UCI_test

0.0 0.5 1.0 1.5
PADcb

TAF

Figure 5.1: Typical normalised distribution of the level of dataset shift in the test sets

drawn from UCI dev, UCI test and TAF. Dataset shift measured by PADcb.

Despite the biassing method and parameters being identical for all datasets, the outcome

in terms of distribution of test sets by dataset shift is clearly quite different.

The distribution of test sets by dataset shift for the individual datasets within UCI dev is

1i.e. with dataset shift relative to the original dataset from where the instances were sampled



112

shown in Figure 5.2 and within UCI test in Figure 5.3.

0.0 0.5 1.0 1.5
PADcb

0.00

0.25

0.50

0.75

1.00

UCI_adult_test

0.0 0.5 1.0 1.5
PADcb

UCI_bank_marketing

0.0 0.5 1.0 1.5
PADcb

UCI_covertype

0.0 0.5 1.0 1.5
PADcb

UCI_letter_recognition

Figure 5.2: Typical distribution of the level of dataset shift in the UCI dev datasets test

sets. Dataset shift measured by PADcb.

0.0 0.5 1.0 1.5
PADcb

0.0

0.2

0.4

0.6

0.8

UCI_casp

0.0 0.5 1.0 1.5
PADcb

UCI_credit_card_default

0.0 0.5 1.0 1.5
PADcb

UCI_online_news_popularity

Figure 5.3: Typical distribution of level of dataset shift in the UCI test datasets test

sets. Dataset shift measured by PADcb.

Again, while all the datasets were biased using a common method and common parameters,

there were obvious differences in the distribution of dataset shift in the different datasets.

5.3 Instance weighting

The instance weighting approaches used in this chapter rely on the assumption that the

dataset shift that is being dealt with can be characterised as covariate shift. If the Target

domain from which the training set is drawn is within the span of the Source domain from

which the test set is drawn, and the feature space X contains information from which the

identity of the Target domain could be reasonably estimated then this assumption appears

reasonable.

With the covariate shift assumption PT (y|x) = PS(y|x), the weights wi are the ratio of

the densities in the two domains as previously given in Equation 2.8:

wi =
PT (xSi)

PS(xSi)
. (5.1)



113

The various means of computing the weights wi are discussed in Section 2.3.2.

5.4 Kernel Mean Matching (KMM)

Kernel Mean Matching is a well-known and widely-cited method for direct density ratio

estimation that was originally put forward in Huang et al. [66] and Gretton et al. [58]. The

principle behind the method is to project the training and test data into a Reproducing

Kernel Hilbert Space (RKHS) and compute the weights for the training data that minimise

the difference in the means of the training and test sets in the RKHS.

The original authors provided Matlab code for the KMM method on their website. I

converted this to Python and verified the Python conversion against their Matlab original

with synthetic data. CVXOPT [7] was used for solving the convex optimisation problem.

Further details of the KMM method are given in Appendix B.2.

The KMM method has two parameters, the kernel size (sigma) and the number of kernels

(B). A rule-of-thumb that is sometimes applied (e.g. [58]) with Gaussian kernels is to

set the kernel size equal to the median L2-norm distance between instances. Rather than

simply rely on this rule-of-thumb, in this experiment the median L2-norm distance between

instances in is used as the basis kernel size for each dataset. The kernel size was then set

as a multiple of this basis size with multiples of 0.01, 0.1, 1 or 10. The number of kernels

(B) was either 160, 500 or 1600. The training set size was 1600 instances.

Figure 5.4 shows how the distribution of weights varies with sigma and B for the four

UCI dev datasets. The y-axis gives median cumulative weight proportion, i.e. the propor-

tion of the total sum of weights that is assigned to instances whose weight is above the

median weight. A figure of 0.5 implies that all the instances are equally weighted. A figure

approaching 1.0 implies that a small number of instances have a very high weighting.

Figure 5.4 shows that a kernel size of 0.01 times the median L2-norm distance between

instances gives an unreliable allocation of weights with large differences in weight allocation

between datasets. A kernel size multiplier in the range of 0.1 to 10 appears to give a more

consistent distribution of weight to the instances with more concentration of weight on

a smaller number of instances at higher levels of dataset shift. The variation in that

distribution (as can be observed by the slope of the correlation line) is greater for higher

kernel sizes (multiple of 10) than for small kernels (multiple of 0.1).



114

0.0

0.2

0.4

0.6

0.8

1.0

m
ed

ia
n_

ct
ve

_w
gt
_p

ro
p

UCI_adult_test UCI_bank_marketing UCI_covertype

kernel_m
ult = 0.01

UCI_letter_recognition

0.0

0.2

0.4

0.6

0.8

1.0

m
ed

ia
n_

ct
ve
_w

gt
_p

ro
p

kernel_m
ult = 0.1

0.0

0.2

0.4

0.6

0.8

1.0

m
ed

ia
n_

ct
ve
_w

gt
_p

ro
p

kernel_m
ult = 1.0

0.0 0.5 1.0 1.5
PADcb

0.0

0.2

0.4

0.6

0.8

1.0

m
ed

ia
n_

ct
ve
_w

gt
_p

ro
p

0.0 0.5 1.0 1.5
PADcb

0.0 0.5 1.0 1.5
PADcb

0.0 0.5 1.0 1.5
PADcb

kernel_m
ult = 10.0

B
160
500
1600

Figure 5.4: Median cumulative weight proportion from KMM method vs. level of

dataset shift as measured by PADcb. Shown separately by dev dataset,

kernel size multiple and B parameter

5.5 Unconstrained Least Squares Importance Fitting (uL-

SIF)

Unconstrained Least Squares Importance Fitting was developed more recently than Kernel

Mean Matching. Sugiyama and Kawanabe [104] claim that it gives superior performance.

With uLSIF, instance weights are computed in closed-form so it is considerably quicker

than methods that require the optimisation of a function such as KMM.

As with KMM, the original authors provided Matlab code for the method on their website.

Again, I converted this to Python and verified the Python conversion against their Matlab

original with synthetic data. Further details of the uLSIF method are given in Appendix



115

B.3.

The uLSIF method has three parameters, the kernel size (sigma), the number of kernels

(B) and the regularisation parameter (lamdba). The regularisation parameter was set

automatically using cross validation within the uLSIF method.

Figure 5.5 shows how the distribution of weights varied with sigma and B for the four

UCI dev datasets..

0.0

0.2

0.4

0.6

0.8

1.0

m
ed

ia
n_

ct
ve

_w
gt
_p

ro
p

UCI_adult_test UCI_bank_marketing UCI_covertype

kernel_m
ult = 0.01

UCI_letter_recognition

0.0

0.2

0.4

0.6

0.8

1.0

m
ed

ia
n_

ct
ve
_w

gt
_p

ro
p

kernel_m
ult = 0.1

0.0

0.2

0.4

0.6

0.8

1.0

m
ed

ia
n_

ct
ve
_w

gt
_p

ro
p

kernel_m
ult = 1.0

0.0 0.5 1.0 1.5
PADcb

0.0

0.2

0.4

0.6

0.8

1.0

m
ed

ia
n_

ct
ve
_w

gt
_p

ro
p

0.0 0.5 1.0 1.5
PADcb

0.0 0.5 1.0 1.5
PADcb

0.0 0.5 1.0 1.5
PADcb

kernel_m
ult = 10.0

B
160
500
1600

Figure 5.5: Median cumulative weight proportion from uLSIF method vs. level of

dataset shift as measured by PADcb. Shown separately by dev dataset,

kernel size multiple and B parameter

Again, a kernel size multiple of 0.01 gives an unreliable allocation of weights. Weight

allocation is broadly consistent across the datasets. With a kernel size multiple of 0.1

most of the weight is allocated to a small number of instances while at a size multiple

of 10.0 weight is allocated evenly across instances. Weight distribution does not vary as



116

much with the level of dataset shift as it does with the KMM method.

5.6 Instance weights by class

Instance weighting methods compute an importance weight for each instance in the train-

ing set that minimises the difference between the weighted distribution of the training set

and the distribution in the test set. The aim of this section was to explore the relationship

between the distribution of instance weights by class and the class distribution of the test

set.

5.6.1 Method

Training, validation and biassed test sets were repeatedly sampled from the UCI datasets.

Weights for the instances in the training set were generated with both the uLSIF and

KMM methods.



117

5.6.1.1 Algorithm

Data: UCI Datasets (7)

Result: Instance weights by class

for UCI dataset do

Find optimal classifier parameters for the dataset;

for Number of iterations do

Sample an unbiassed training set from the UCI dataset;

Sample an unbiassed validation set from the UCI dataset;

Sample a biassed test set from the UCI dataset;

for KMM methods and parameter settings do

Compute instance weights;

end

for uLSIF methods and parameter settings do

Compute instance weights;

end

end

Write results to file;

end

Algorithm 5: Instance weighting by class

5.6.1.2 Parameter settings

Table 5.1: Overall parameter settings

Parameter Value Notes

Training set size 1600

Training set class 0 proportion 0.5

Test set size 500

Test set class 0 proportion [0.4, 0.96] See footnote2

Classifier type SVM

Classifier kernel {Linear, RBF} Optimised

Classifier hyper-parameters Optimised3



118

Table 5.2: KMM parameter settings

Parameter Value Notes

Kernel size multiples4 {0.01, 0.1, 1.0, 10.0} Optimum selected

Number of kernels (B) {160, 500, 1600} All

Table 5.3: uLSIF parameter settings

Parameter Value Notes

Kernel size multiples {0.01, 0.1, 1.0, 10.0} Optimum selected

Number of kernels (B) {160, 500, 1600} All

Regularisation parameter (Lambda) Set automatically

Figures 5.4 and 5.5 showed previously that the results were insensitive to the B parameter

so the results from all B parameter settings were used.

Figure 5.6 shows the accuracy achieved with the selected parameters for each dataset.

Parameters were set only once per dataset but the program was run multiple times hence

the distribution of accuracy values for each dataset.

2To minimise the impact of clipping while still retaining a wide range of class proportions
3The kernel and hyper-parameters were selected that gave the highest accuracy on the validation set
4sigma equals the median instance spacing for the dataset multiplied by the kernel size multiple



119

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Accuracy

UCI_adult_test

UCI_bank_marketing

UCI_casp

UCI_covertype

UCI_credit_card_default

UCI_letter_recognition

UCI_online_news_popularity

Figure 5.6: Classifier accuracy by dataset

The accuracy figures are clearly better than those obtained on the same datasets in Chapter

4 as shown in Figure 4.5. In part this will be due to the size of the training set (1,600

instances vs. between 100 and 10,000). However, a large part of the improved accuracy is

likely to be due to a wider choice of classifier tuning parameters. Classifier parameters are

set on each run for each dataset. Table 5.4 shows the proportion of times that the selected

kernel was linear or RBF. It shows that in the majority of cases a Radial Basis Function

(RBF) kernel gave the highest classifier accuracy. In Chapter 4, only linear kernels were

used.

Table 5.4: Classifier kernel selection by dataset

Dataset Linear RBF

UCI adult 0.76 0.24

UCI bank marketing 0.15 0.85

UCI casp - 1.0

UCI covertype - 1.0

UCI credit card default 0.46 0.54

UCI letter recognition - 1.0

UCI online news popularity 0.29 0.71

Overall 0.32 0.68



120

The rbf kernel has two parameters while the linear kernel has just one. Including the

rbf kernel considerably increased the size of the parameter space over which to search.

Accuracy was measured on a total of 55 parameter combinations. To keep run times down,

this parameter tuning was done once per dataset per run. Slightly higher accuracies may

have been obtained by tuning the parameters for every sampled training set but it was

felt that any improvement would be marginal and not worth the impact on run time.

As discussed in Section 2.3.2.3, the results for the KMM method applied to classification

reported in Gretton et al. [58] were not as good as those reported earlier by the same

authors in Huang et al. [66]. Gretton et al. [58] put this down to fitting over simple

hypotheses in the earlier work. The intention of optimising the classifier over a wide

range of hyper-parameter settings was to avoid similar problems and to avoid crediting

the KMM-based quantification with improvement that could be obtained by simply fitting

a better classifier.

5.6.2 Results

Figures 5.7 and 5.8 show the relationship between the proportion of total instance weight

by class against the class distribution of the test set, with instance weights computed by

KMM and uLSIF respectively. Colours identify the degree of dataset shift between the

training and test sets with quartile 1 representing the lowest level of dataset shift and

quartile 4 representing the highest dataset shift as measured using PADcb.



121

0.0

0.2

0.4

0.6

0.8

1.0

cl
0_

tr_
w
gt
_p

ro
p

UCI_adult_test UCI_bank_marketing UCI_covertype

kernel_m
ult = 0.01

UCI_letter_recognition

0.0

0.2

0.4

0.6

0.8

1.0

cl
0_

tr_
w
gt
_p

ro
p

kernel_m
ult = 0.1

0.0

0.2

0.4

0.6

0.8

1.0

cl
0_

tr_
w
gt
_p

ro
p

kernel_m
ult = 1.0

0.0 0.2 0.4 0.6 0.8 1.0
cl0_te_prop

0.0

0.2

0.4

0.6

0.8

1.0

cl
0_

tr_
w
gt
_p

ro
p

0.0 0.2 0.4 0.6 0.8 1.0
cl0_te_prop

0.0 0.2 0.4 0.6 0.8 1.0
cl0_te_prop

0.0 0.2 0.4 0.6 0.8 1.0
cl0_te_prop

kernel_m
ult = 10.0

PADcb_qtl
1
2
3
4

Figure 5.7: Proportion of instance weight applied to class 0 instances in the training set

vs. proportion of class 0 instances in the test set. KMM method. UCI dev

datasets. Kernel size multiples {0.01, 0.1, 1, 10}



122

0.0

0.2

0.4

0.6

0.8

1.0

cl
0_

tr_
w
gt
_p

ro
p

UCI_adult_test UCI_bank_marketing UCI_covertype

kernel_m
ult = 0.01

UCI_letter_recognition

0.0

0.2

0.4

0.6

0.8

1.0

cl
0_

tr_
w
gt
_p

ro
p

kernel_m
ult = 0.1

0.0

0.2

0.4

0.6

0.8

1.0

cl
0_

tr_
w
gt
_p

ro
p

kernel_m
ult = 1.0

0.0 0.2 0.4 0.6 0.8 1.0
cl0_te_prop

0.0

0.2

0.4

0.6

0.8

1.0

cl
0_

tr_
w
gt
_p

ro
p

0.0 0.2 0.4 0.6 0.8 1.0
cl0_te_prop

0.0 0.2 0.4 0.6 0.8 1.0
cl0_te_prop

0.0 0.2 0.4 0.6 0.8 1.0
cl0_te_prop

kernel_m
ult = 10.0

PADcb_qtl
1
2
3
4

Figure 5.8: Proportion of instance weight applied to class 0 instances in the training set

vs. proportion of class 0 instances in the test set. UCI dev datasets. uLSIF

method. Sigma parameter {1.0, 3.162, 10.0}

5.6.3 Discussion

Figures 5.7 and 5.8 show that in some cases there is a positive correlation between the

proportion of the total weight assigned to a class by the instance weighting method and

the proportion of that class in the test set. A positive correlation indicates that some of

the instance weight is as a result of a difference in P (y), the class distribution, between

the test set and the training set.



123

5.7 Quantification by instance-weighted classify and adjust

(IWCA)

In this section, the weighted instances are used in combination with a classify and adjust

quantifier (Section 2.1.2). The hypothesis is that if the class-conditional feature distri-

bution of the weighted training set is close to that of the test set then a classify and

adjust quantifier trained with the weighted training set will give a good quantification

performance on the test set.

However, these instance weighting methods look to minimise the overall distance between

the distribution of the training set and the distribution of the test set. As discussed

earlier, this difference can be disaggregated into a difference in class distribution P (y)

which is to be expected in quantification, and a difference in class-conditional feature

distribution P (x|y) which we would like to reduce or eliminate if a standard classify and

adjust quantifier is to work effectively. The results in Section 5.6 showed that instance

weights do sometimes correlate with class proportions.

There are several approaches that can be taken to try to focus the instance weighting on

addressing differences in class-conditional feature distribution while ignoring differences

due to class distribution. These are set out in Table 5.5.



124

Table 5.5: Approaches to introduce class-conditionality into instance weighting

1 Class-balanced weights Scaling the instance weights of each class to ensure

that the ratio of total sum weight assigned to in-

stances of each class is equal to the ratio of the num-

ber of instances of each class

2 Class-balanced thresh-

olding

Using instance weights as an indicator of which in-

stances to keep and which to remove from the train-

ing set and removing equal proportions from each

class

3 Matched sub-samples Sub-sampling the training set to sets of the same

class proportions as the estimated class proportions

of the test set. Averaging instance weights for re-

peated sub-samples from the training set until all

instances in the training set have been weighted

4 Weakly supervised Identifying instances in the test set with the

strongest likelihood of membership of a particular

class. Using these instances to compute weights for

the training set separately for each class.

Approaches 1, class-balanced weights, and 2, class-balanced thresholding, are used in the

experiment in Section 5.7.1. Approach 3, matched sub-samples is applied in Section 5.9. A

range of experiments were carried out with the weakly supervised approach but the results

were no better than the baseline.

5.7.1 Method

The underlying method was the same as that set out in Section 5.6.1, in fact the same

experiment generated the data for both sections. Instance weighting was made both with

the KMM and uLSIF methods. Quantification was made with a matrix-inversion classify

and adjust method (see Section 2.1.2.1). As is usual with matrix-inversion methods, the

class proportion estimates were clipped to lie within [0,1].

The computed instance weights were either used directly as instance weights (‘w’) or

for selecting which instances to keep and which to remove from the respective set (‘t’).



125

Alternatively the weights were not used and the instances simply remained unweighted

(‘u’).

When the weights were used directly (‘w’) they were used both as-computed by the in-

stance weighting method and balanced by class as described in approach 1, class-balanced

weights, in Table 5.5.

When the weights were used in a thresholded way (‘t’) to identify which instances to keep

in the set and which to remove, the same proportion of instances in each class with the

highest weights were retained. The others were removed. This is approach 2, class-balanced

thresholding, in Table 5.5.

The matrix-inversion method relies on two sets of labelled data: a training set to train the

classifier and a validation set on which to compute the values of classifier recall from which

the adjustments are calculated. To make maximum use of the available labelled data, a

deployed version would probably utilise cross-validation instead of a separate validation

dataset. However, in this experiment there is a plentiful supply of labelled data and using

separate training and validation sets was quicker than cross-validation.

Five overall methods were created by making logical combinations of the three approaches

(u, w and t) for training the classifier and for computing the recall values. These are

shown in Table 5.6.

Table 5.6: Methods used to combine computed instance weights with the

matrix-inversion quantification method

Method Classifier Training Computing Recall Note

tr set val set

uu unweighted unweighted baseline

ut unweighted thresholded

uw unweighted weighted

tt thresholded thresholded

ww weighted weighted

The uu method, which takes no account of instance weighting, is the baseline against

which the other methods are measured.

On each iteration a training, validation and test set was sampled from the full dataset.

In total there were 259 iterations for each dataset. The KMM and uLSIF methods were



126

applied on each iteration, each with a range of parameters. In total there were 480 method-

parameter combinations applied to each of the 259 iterations of each dataset.

With a wide range of biassing and parameter settings, occasionally the matrix of recall

values could not be inverted. When this happened the baseline uu result was returned.

5.7.2 Results

5.7.2.1 Ranked comparison on the UCI dev datasets

The method-parameter settings were ranked by the absolute error between the estimated

class distribution and the true value of the class distribution for each of the dataset-

iterations. The mean value of both the absolute error and the ranking was computed

across all the dataset-iterations.

5.7.2.2 Friedman test with Bonferroni corrections on the UCI dev datasets

The statistical significance of the results from each method-parameter combination was

tested using a Friedman test with Bonferroni corrections [2][31]. This test identified the

method-parameter settings where the null-hypothesis of no difference to the baseline uu

method could be rejected with an α of 0.05. All of the method-parameter settings with

lower MAE than the baseline uu method that passed this test are given in Table 5.7 along

with the uu baseline.



127

Table 5.7: Method-parameter settings with lower MAE than baseline which are

statistically significant at α < 0.05 under the Friedman test with Bonferroni

corrections. UCI dev datasets.

Method Weighting Class Threshold Number of Kernel MAE Mean

Balanced Value Kernels Multiple Rank

uu 0.100 128.0

ut KMM 0.5 160 1.0 0.088 106.7

ut KMM 0.5 1600 1.0 0.088 107.0

ut KMM 0.5 500 1.0 0.088 107.1

ut KMM 0.7 500 1.0 0.091 108.9

ut KMM 0.7 160 1.0 0.091 109.1

ut KMM 0.7 1600 1.0 0.091 109.2

ut KMM 0.7 160 0.1 0.092 111.0

ut KMM 0.7 500 0.1 0.092 111.0

ut KMM 0.7 1600 0.1 0.093 111.2

ut KMM 0.9 160 10.0 0.094 112.6

ut KMM 0.9 1600 10.0 0.095 112.7

ut KMM 0.9 500 10.0 0.095 113.0

ww uLSIF True 160 1.0 0.095 113.8

ut KMM 0.9 1600 1.0 0.096 114.1

ut KMM 0.9 160 1.0 0.096 114.2

ww uLSIF True 500 1.0 0.095 114.2

ww uLSIF True 1600 1.0 0.095 114.2

ut KMM 0.9 500 1.0 0.096 114.4

From the results in Table 5.7 the best method is:

Table 5.8: Best method by mean rank from Table 5.7

Instance weighting: KMM with a kernel size equal to the median L2-norm dis-

tance between instances in the dataset

Classifier training: Full training set, unweighted

Recall calculation: The 50% of the instances in the training set with the highest

weights, then equally weighted



128

The best method used 160 kernels but as can be seen from Table 5.7 the methods using

1600 and 500 kernels had very similar performance. A formal test of statistical significance

between these methods was not carried out but, given the similarity of the results, it is

unlikely that the number of kernels is significant.

5.7.2.3 Class-conditionality

All of the methods in Table 5.7 have some measure of class-balancing. Looking back to

Table 5.5, the ut method is class-balanced thresholding while the ww methods were those

that used class-balanced weights.

5.7.2.4 Wilcoxon signed-rank test on the UCI test datasets

Having established a best method against the UCI dev datasets, this method was com-

pared to the uu baseline method on the three held-out UCI test datasets. The p-value

for the null hypothesis that the results from this method were no different to the results

from the baseline method was computed using a Wilcoxon signed rank test [31][120]. The

results are shown in Table 5.9

Table 5.9: Performance of best method from UCI dev datasets on the held-out UCI test

datasets

Method Weighting Threshold Number of Kernel MAE Mean p-value

Value Kernels Multiple Rank

uu baseline 0.122 1.55

ut KMM 0.5 160 1.0 0.109 1.45 1.7e-4

∆MAE absolute 0.013

∆MAE relative 10.7%

On the on the UCI test datasets, the method selected as best using the results on the

UCI dev datasets gave an absolute improvement in MAE of 1.3 percentage points against

the uu baseline method, a relative improvement of 10.7%. With a p-value of 1.7e-4 the

null-hypothesis can be rejected with a high degree of confidence.



129

5.7.2.5 Performance vs. dataset shift

Figures 5.9 and 5.10 show the MAE of the best method from Table 5.8 and the uu method

baseline against level of dataset shift for the UCU dev and UCI test groups of datasets

respectively. Figure 5.11 shows the difference in MAE between the the best method and

the baseline, for each dataset individually.

1 2 3 4
PADcb quartile

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
ea

n 
A

bs
ol

ut
e 

E
rr

or
 (M

A
E

)

legend
KMM_1.0_ut_0.5
uu_baseline

Figure 5.9: MAE of ut method with KMM weighting, threshold=0.5, kernel size

multiple=1.0 and uu baseline method vs. PADcb quartile. UCI dev

datasets. 95% confidence intervals



130

1 2 3 4
PADcb quartile

0.075

0.100

0.125

0.150

0.175

0.200

0.225

M
ea

n 
A

bs
ol

ut
e 

E
rr

or
 (M

A
E

)

legend
KMM_1.0_ut_0.5
uu_baseline

Figure 5.10: MAE of ut method with KMM weighting, threshold=0.5, kernel size

multiple=1.0 and uu baseline method vs. PADcb quartile. UCI test

datasets. 95% confidence intervals

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

a_
ha

t_
ut
[0
]_
uu

_a
bs
er
r_
de

lta

UCI_adult_test UCI_bank_marketing UCI_casp

1 2 3 4
PADcb_qtl

UCI_covertype

1 2 3 4
PADcb_qtl

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

a_
ha

t_
ut
[0
]_
uu

_a
bs
er
r_
de

lta

UCI_credit_card_default

1 2 3 4
PADcb_qtl

UCI_letter_recognition

1 2 3 4
PADcb_qtl

UCI_online_news_popularity

Figure 5.11: Delta MAE of ut method with KMM weighting, threshold=0.5, kernel size

multiple=1.0. vs uu baseline method by PADcb quartile. 95% confidence

intervals



131

The methods have been evaluated over a set of test sets. The distribution of dataset

shift of those test sets has been shown earlier in Figures 5.2, 5.3 and 5.1. Figure 5.11

shows that different methods have different levels of performance relative to the baseline

at different values of class-conditional dataset shift. Clearly, a different distribution of

class-conditional dataset shift may give a different overall result. The best method will

depend on the expected distribution of class-conditional dataset shift. This is discussed

further in Section 7.1.

For example, Table 5.7 shows that when the threshold value is increased from 0.5 to 0.7,

overall performance over the full range of test sets drops slightly. However, as shown in

Figures 5.12 and 5.13, performance relative to the baseline improves when bias is low.

1 2 3 4
PADcb quartile

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
ea

n 
A

bs
ol

ut
e 

E
rr

or
 (M

A
E

)

legend
KMM_1.0_ut_0.7
uu_baseline

Figure 5.12: MAE of ut method with KMM weighting, threshold=0.7, kernel size

multiple=1.0. and uu baseline method vs. PADcb quartile. UCI dev

datasets. 95% confidence intervals



132

1 2 3 4
PADcb quartile

0.075

0.100

0.125

0.150

0.175

0.200

0.225

M
ea

n 
A

bs
ol

ut
e 

E
rr

or
 (M

A
E

)

legend
KMM_1.0_ut_0.7
uu_baseline

Figure 5.13: MAE of ut method with KMM weighting, threshold=0.7, kernel size

multiple=1.0. and uu baseline method vs. PADcb quartile. UCI test

datasets. 95% confidence intervals

This method is more conservative. The level of potential improvement over the baseline

is lower but so is the scale of any possible performance drop at low levels of dataset shift.

5.7.2.6 Comparative performance of methods

Table 5.10 is taken from the same source as Table 5.7 above and shows the settings that

achieved the lowest MAE on the UCI dev datasets for each of the five methods listed in

Table 5.6 for each of the two weighting methods (KMM and uLSIF).



133

Table 5.10: Best method-parameter by MAE on UCI dev datasets for both KMM and

uLSIF instance weighting

Weights Class Thr Num Kernel Mean MAE ∆MAE ∆MAE

Bal Value Kernels Mult Rank Abs. Rel.

uu 128.0 0.100

tt KMM 0.5 1600 1.0 116.1 0.091 0.009 9.0%

tt uLSIF 0.9 500 0.1 123.4 0.099 0.001 1.0%

ut KMM 0.5 160 1.0 106.7 0.088 0.012 12.0%

ut uLSIF 0.7 160 1.0 123.2 0.096 0.004 4.0%

uw KMM False 1600 0.01 133.4 0.104 - -

uw uLSIF False 160 1.0 116.5 0.097 0.003 3.0%

ww KMM True 1600 10.0 140.1 0.104 - -

ww uLSIF True 1600 1.0 114.2 0.095 0.005 5.0%

Where the computed weights were then used with a thresholded approach (i.e. the ut and

tt methods) the weights computed by KMM gave better results than those computed by

uLSIF. The uLSIF method gave better MAE than KMM with the uw and ww methods.

The thresholded methods (ut and tt) with KMM instance weighting delivered lower

MAE than the methods that used the weights directly. However, only the ut-KMM and

ww-uLSIF methods were statistically significantly different from the baseline under the

Friedman-Bonferroni test with an α of 0.05. These are indicated in bold in Table 5.10.

5.7.3 Discussion

IWCA appears to be a good method of improving quantification accuracy under conditions

of class-conditional dataset shift. The method-parameter setting that gave the best overall

quantification accuracy used KMM-computed weights in a thresholded way to select the

50% of the instances in the validation set that was had been assigned the highest instance

weights. All of the training set was used, unweighted, to train the classifier. The best

parameter settings gave an absolute improvement in mean absolute quantification error of

1.3% over the baseline, a relative improvement of 11%.

Class-conditionality appears to be important, with all of the methods that were signifi-

cantly better than the baseline being class-balanced in some way.



134

5.8 Classifier-based sample selection bias correction (SSBC)

The Zadrozny [122] method for instance weighting, Sample Selection Bias Correction

(SSBC), pre-dates the KMM and uLSIF methods by a number of years and other do-

main adaptation methods have usually been shown to be superior. However, the results

in Section 5.7.2 showed a quantification method based on the older KMM method out-

performed a method based on the newer uLSIF method. Given this result, I was interested

to see if the potentially inferior SSBC method might actually out-perform both of these

methods when applied to the quantification task.

In SSBC the training set is considered to be a sample drawn from the Target domain with

a sampling bias. Whether an instance is in the training set or not can be thought of as

being determined by the value of a selector variable s. Instances that are in the training

set have a selector variable value of 1, those not in the training set have a selector variable

value of 0. Zadrozny [122] makes the assumption that the probability that the value of

the selector variable being 1 is a function of x only and is independent of the class label

y i.e. P (s = 1|x, y) = P (s = 1|x).

To correct for this sample selection bias the weight of each instance i, wi, is given by:

wi =
P (s = 1)

P (s = 1|xi)
, (5.2)

where P (s = 1) is the overall selection probability:

P (s = 1) =
∑

(x,y,s)∼T

P (s = 1, x). (5.3)

The values for P (s = 1|x) for the instances in the training set are estimated by training a

probabilistic classifier (in this case logistic regression) with a dataset containing instances

from the test set labelled as s=0 and instances from the training set labelled as s=1.

5.8.1 Method

The method of quantification using instance weights was the same as set out previously

in Section 5.7. If the test set was smaller than the training set then over-sampling with

replacement was used to bring it up to the same size.

The method for computing the instance weights used the sci-kit learn LogisticRegres-

sionCV classifier with a linear kernel. This classifier optimised its only hyper-parameter,



135

the regularisation parameter, on each iteration using cross validation with the aim of

maximising classification accuracy. As before, in each iteration a training, validation and

a biassed test set was sampled from the full dataset. 56 iterations were made for each

dataset. While the computation of instance weights did not require any external param-

eters, there were 20 different parameter settings for each iteration that controlled the

application of those weights to quantification. The parameter settings that gave the best

quantification performance are shown below.

5.8.2 Results

The table below gives the three best parameter settings as measured by mean-rank, MAE

and RMSE respectively for the UCI dev datasets. The best figures for each are shown in

bold. The p-values are computed based on the MAE values for the chosen method vs.

those from the baseline uu method across the 224 iterations (56 iterations x 4 datasets).

Table 5.11: Best SSBC methods by mean rank, RMSE and MAE. UCI dev datasets

Method Class Thr. Mean RMSE MAE ∆MAE ∆MAE p-value

Bal. Value Rank Abs. Rel.

uu 10.3 0.192 0.121

ww True 9.2 0.178 0.123 - -

ut True 0.7 9.5 0.169 0.128 - -

ut True 0.9 9.4 0.179 0.119 0.002 1.7% 0.107

As before in Section 5.7, a Friedman test with Bonferroni corrections [2][31] was carried

out on these results. Only the parameter setting that gave the best MAE had a lower

MAE than the baseline but its p-value was far below the level at which the null hypothesis

could comfortably be rejected5.

These three best methods were compared to the baseline uu method on the UCI test

datasets.

5an α of 0.05 equates to a p-value of below 0.0025



136

Table 5.12: Best SSBC methods by mean rank, MAE and RMSE. UCI test datasets

Method Class Threshold Mean MAE RMSE

Balanced Value Rank

uu baseline 8.6 0.107 0.166

ww True 9.8 0.146 0.217

ut True 0.9 8.0 0.108 0.164

ut True 0.7 9.1 0.131 0.181

On the held-out UCI test data none of the methods identified as best from the UCI dev

data had an MAE lower than the baseline.

5.8.3 Discussion

From these experiments, a quantifier based on the Zadrozny [122] SSBC method is inferior

to the KMM and uLSIF based methods in Section 5.7.

A linear kernel was used for the classifier which computed instance weights. A comparison

of Figures 4.5 and 5.6 indicates that with some of the datasets the Radial Basis Function

(RBF) kernel can give higher classification accuracy. It may be that using a classifier with

an RBF kernel in the SSBC method would have given a better quantification performance.

5.9 Iterative test-train bias reduction (ITTBR)

Section 5.7 showed that class-balanced methods that used the instance weights computed

by the KMM method could successfully increase quantification accuracy under class-

conditional dataset shift.

The approach taken in this approach was iterative and based on the SSBC concept of

using a classifier to weight instances in the training set by their closeness to the instances

in the test set as we applied in Section 5.8. The process was:

• The estimate of class proportions in the test set is estimated using a classify and

adjust quantifier that is trained on all the currently active training data



137

• Multiple samples of this estimated class proportion are drawn from the currently

active training set and with each sample a probabilistic classifier is trained to dis-

tinguish between instances from this training set sample and the test set.

• A fixed proportion of the currently active training set with the lowest probability

of being from the test set (averaged over all of the samples) are removed from the

currently active training set

• The process repeats with the new currently active training set

The rationale was that with an iterative approach as the least relevant training instances

were removed the quantifier becomes more accurate; and so the class-balance of the sample

from the training set becomes more accurate; and so the identification of the least relevant

instances from the training set becomes more accurate.

Looking at the baseline results from the UCI dev datasets (Figure 5.14) supports the

argument that when the training and test datasets are close, as measured by PADcb, then

the accuracy of a standard classify and adjust quantifier is higher.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Class-conditional dataset shift (PADcb)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
bs

ol
ut

e 
qu

an
tif

ic
at

io
n 

er
ro

r

Figure 5.14: Absolute quantification error using classify and adjust method vs.

class-conditional dataset shift.

The hypothesis that is tested in this section is that by actively reducing the distance



138

between the training and test sets as measured by PADcb then quantification accuracy

will improve.

5.9.1 Method

A logistic regression classifier (clf trte) was used to discriminate between instances from

the training set and instances from the test set. The classifier was trained on a training

set made up of the whole of the test set (labelled ‘te’) and a similarly sized sample from

the active training set (labelled ‘tr’). To minimise the potential impact of class imbalance

the class proportion of the sampled active training dataset was set to be the same as the

estimated class proportion of the test dataset. This was previously identified as approach

3 in Table 5.5. This class proportion is itself estimated using a second classifier trained on

the active training set but using the class labels (clf 01). The class proportion in the test

set was then estimated using the Saerens EM method (see Section 2.1.2.2). As there will

be class-conditional dataset shift, this method will not give a perfect estimate of the class

proportions. This is the rationale behind the iterative approach. By only removing the

training instances that are furthest from the test set on each iteration, the estimate of the

class proportions should improve and the identification of the training instances furthest

from the test set should also improve. The Saeren’s EM method requires a classifier that

gives probabilistic outputs. A Logistic Regression classifier was used in this experiment.

The clf trte then assigns tr-te probabilities to the instances in the active training set that

have not been used in training clf trte. By repeated sampling of the training set for clf trte

and averaging of the instance tr-te probabilities, eventually a sufficiently large proportion

of the active training set will have an estimated tr-te probability. At this point a fixed

proportion of the active training set with the lowest probability of being in the test set

are removed from the active training set. The process then repeats.

The same seven UCI datasets were used. As before, the training and biassed test sets were

sampled from full UCI dataset. This was done 30 times per dataset. For each iteration

of the training and test set there were 12 sub-iterations (‘steps’) in which the 15% of the

currently active training set instances with the highest probability of being in the training

set were removed from the active set.



139

Table 5.13: ITTBR parameter settings

Parameter Value Notes

Training set size 1600 See note6

Training set class 0 proportion 0.5

Test set size 500

Test set class 0 proportion [0.4, 0.96] See footnote7

Classifier type Logistic Regression

Classifier kernel Linear

Classifier C-value {10−4 to 104} Optimised8

6This was the initial size. The training set reduced in size by 15% on each iteration
7To minimise the impact of clipping while still retaining a wide range of class proportions
8The sklearn LogisticRegressionCV function was used which each time set the C-value through cross

validation to be the value that maximised accuracy score



140

5.9.2 Algorithm

Data: UCI Datasets (7)

Result: Estimated test set class proportions

for UCI dataset do

for Number of iterations do

Randomly split into training and remainder;

Sample a biassed test set from remainder;

Set the training set as the active training set;

for Number of steps do

Train a classifier with the active training set;

Use the classifier to estimate class probabilities of the instances in test;

Apply Saerens EM to estimate class proportions in test;

while Proportion of active tr set < target do

Sample a set from the active training set, same size as the test set

and to estimated class proportions;

Combine this training sub-set and the test set and train a classifier

with train-test labels;

Use classifier to estimate tr-te probabilities of the other instances in

the active training set;

Compute running mean of tr-te probabilities for each instance in

active training set;

Compute proportion of active training set with non-null mean

probability;

end

Compute PADcb;

Remove fixed proportion of instances from active training set with

highest mean probability of being from training set;

end

end

Write results to file;

end

Algorithm 6: Iterative test-train bias reduction (ITTBR)



141

5.9.3 Results

Figure 5.15 shows that at each step the method reduces the distance between the training

and test sets as measured by PADcb.

0 1 2 3 4 5 6 7 8 9 10 11
Step Number

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
A
D
cb

dataset = UCI_adult_test

0 1 2 3 4 5 6 7 8 9 10 11
Step Number

dataset = UCI_ba k_marketi g

0 1 2 3 4 5 6 7 8 9 10 11
Step Number

dataset = UCI_covertype

0 1 2 3 4 5 6 7 8 9 10 11
Step Number

dataset = UCI_letter_recog itio 

Figure 5.15: ITTBR. PADcb by sub-iteration step. UCI dev datasets.

However, as shown below in Figure 5.16 on three of the four UCI dev datasets, despite

the reduction in PADcb the mean absolute quantification error vs. baseline (Delta MAE)

worsened.

0 1 2 3 4 5 6 7 8 9 10 11
loop number

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

D
el
ta
 M
A
E

dataset
UCI_adult_test
UCI_bank_marketing
UCI_coverty e
UCI_letter_recognition

Figure 5.16: ITTBR. Absolute quantification error delta from initial value. Dev

datasets. 95% confidence intervals

Some worsening of performance is to be expected as the size of the training set reduces

by 15% on each step. Figure 5.17 shows the baseline effect of randomly removing 15% of

the instances at each step.



142

0 1 2 3 4 5 6 7 8 9 10 11
loop number

0.00

0.02

0.04

0.06

0.08

0.10

D
el
ta
 M
A
E

dataset
UCI_adult_test
UCI_bank_marketing
UCI_covertype
UCI_letter_recognition

Figure 5.17: Baseline absolute quantification error delta from initial value. Points

removed from training set at random. Dev datasets. 95% confidence

intervals

Finally, Figure 5.18 is the error shown in Figure 5.16 less the random baseline error shown

in Figure 5.17.

0 1 2 3 4 5 6 7 8 9 10 11
loop number

−0.08

−0.06

−0.04

−0.02

0.00

0.02

D
el
ta
 M
A
E

dataset
UCI_adult_test
UCI_bank_marketing
UCI_coverty e
UCI_letter_recognition

Figure 5.18: ITTBR absolute quantification error delta from initial value less baseline

value. Dev datasets. 95% confidence intervals



143

On two of the four datasets, UCI adult test and UCI letter recognition, the ITTBR method

improves on the baseline of removing datapoints at random. However, on the other two

datasets, UCI bank marketing and UCI covertype, it would be difficult to claim any sig-

nificant difference between the ITTBR method and the random baseline.

Figure 5.19 shows the relationship between quantification accuracy and dataset shift be-

tween the active training set and the test set at different steps in the ITTBR process.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ab
so

lu
te

 e
rr
or

step 0 step 3 step 6

dataset = U
C

I_adult_test

step 9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ab
so

lu
te

 e
rr
or

dataset = U
C

I_bank_m
arketing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ab
so

lu
te

 e
rr
or

dataset = U
C

I_covertype

0.00 0.25 0.50 0.75 1.00 1.25
PADcb

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ab
so

lu
te

 e
rr
or

0.00 0.25 0.50 0.75 1.00 1.25
PADcb

0.00 0.25 0.50 0.75 1.00 1.25
PADcb

0.00 0.25 0.50 0.75 1.00 1.25
PADcb

dataset = U
C

I_letter_recognition

Figure 5.19: Absolute quantification error (actual vs. predicted class 0 proportion). Dev

datasets.

The original hypothesis behind the ITTBR approach was motivated by the relationship

between quantification accuracy and PADcb shown in Figure 5.14. If the relationship was

causal from PADcb to quantification accuracy, then taking measures that reduce PADcb

should improve quantification accuracy.



144

However, Figure 5.19 shows that while the ITTBR steps do reduce PADcb (points moving

to the left on the x-axis) the quantification error (on the y-axis) does not reduce to the

extent that had been hypothesised.

5.9.4 Discussion

The ITTBR method explicitly minimises the difference between the Source and Target

domains as measured by PADcb. However, with a quantifier that relies on a classifier

performing similarly in the two domains, quantification accuracy is poor. This appears

to go against the theory espoused by Ben-David et al. [14]: ‘Our theory ... also points

toward a promising new model for domain adaptation: one which explicitly minimises

the difference between the source and target domains, while at the same time maximising

the margin of the training set.’ Ganin and Lempitsky [46] also cited this in their work:

‘Our approach is motivated by the theory on domain adaptation (Ben-David et al., 2006,

2010), that suggests that a good representation for cross-domain transfer is one for which

an algorithm cannot learn to identify the domain of origin of the input observation.’

Chen et al. [29] and Glorot et al. [50] both found that the SDA architecture (see Chapter

6) improved domain adaptation but actually increased PAD. Again, an apparent contra-

diction to the theory of Ben-David et al. [14].

This throws up interesting questions for further work. As far as this thesis is concerned,

the conclusion is that the ITTBR method of explicitly reducing PADcb may work well

with certain datasets but overall gives poor quantification accuracy performance.

As with the SSBC method (Section 5.8), it could be that choosing a domain classifier

with a higher accuracy (e.g. using an RBF kernel) would result in a better quantification

performance. Again, another area for potential further work.

5.10 Conclusions

A summary of the results of the various experiments are given in Table 5.14.

9Was this finding statistically significant



145

Table 5.14: Summary of Chapter 5 results

Method Set Measured ∆MAE ∆MAE Stat

On On Absolute Relative Sig9

Tab. 5.9 KMMut0.5 UCI dev UCI test 1.3% 10.7% yes

Tab. 5.10 uLSIFww UCI dev UCI dev 0.5% 5.0% yes

Tab. 5.11 SSBCut0.9 UCI dev UCI dev 0.2% 1.7% no

A potential downside of instance weighting is that it effectively reduces the size of the

training set. The negative impact on classifier performance of reducing the size of the

training set is well documented (e.g. [41]) so clearly a balance needs to be struck between

the potential positive and the potential negative effects of instance weighting. Interestingly,

the best performing method utilises all of the training set for training the classifier but

then calculates the classifier recall for the quantification adjustment using only the 50%

of the validation data that is effectively closest to the data in the test set.

Another potential downside to importance-weighted quantification is run-time. The clas-

sifiers on which the quantification method is built cannot be trained until the instance

weights are computed and the instance weights themselves cannot be computed until the

test set is presented. Both of these two steps can be potentially time consuming and

the instance weighting methods typically do not scale well to larger datasets. So, if fast

run-times with large datasets are important, these methods could be problematic.

As shown in Figure 5.10, if there was no bias in the test set relative to the training set

then even this best method would actually not perform as well as the baseline. In this

chapter, ‘best’ has been judged on the basis of mean performance across the distribution

of biassed datasets that was generated by the biassing method. In deployment the best

method will depend on the expected level of bias. This is discussed further in Chapter 7.

The KMM, uLSIF and SSBC instance weighting methods are not inherently class balanced.

All of the methods that had a quantification accuracy that was significantly better than

the baseline had been separately class-balanced in some way.



Chapter 6

Domain adaptation with feature

representations

In Chapter 5, instance weighting methods from domain adaptation were applied to the

problem of quantification under class-conditional dataset shift. A method based on Kernel

Mean Matching was found to be effective in increasing quantification accuracy. However,

instance weighting methods for domain adaptation are not particularly new and methods

that generate new feature representations are now often regarded as giving state-of-the-art

performance. The objective of this chapter was to see whether a quantification method

that was built on one of these feature representation approaches to domain adaptation

would give better quantification performance than the methods that were built on instance

weighting.

There are a variety of feature representation methods for domain adaptation. I chose

the Stacked De-noising Autoencoder (SDA) method [50]. The SDA method appears to

perform strongly and in its marginalised form [29] it is simple to implement and quick to

run.

As in the previous chapters, we assume that the class-conditional feature distributions in

the Source and Target domains are different, i.e. that PS(x|y) 6= PT (x|y). With Stacked

De-Noising Autoencoders the original features x are transformed into a new represen-

tation x′. A classifier is then trained on the new feature representation, x′, to give an

optimal classification hypothesis h. The inclusion of the hypothesis h is important. Glo-

rot et al. [50] showed that the SDA approach to projecting the data into the new feature

representation on its own did not reduce the distance between the Source and Target

146



147

domains. What it did do, however, was to disentangle information relating to domain

from information relating to class. In finding an optimum hypothesis h a regularised

classifier will give weight to the features that carry class information but not to those

that only carry domain information. As such, it is reasonable to assume that PS(x′|y, h)

and PT (x′|y, h) will become close. A standard classify and adjust quantifier can work

effectively if PS(x′|y, h) ≈ PT (x′|y, h).

Quantification built on the Marginalised Stacked De-noising Autoencoder (mSDA) method

[29] was incorporated into the same experimental approach that was used with instance

weighting methods in Chapter 5. The results from both chapters are comparable.

6.1 Marginalised Stacked Denoising Autoencoders (mSDA)

An autoencoder can be thought of as a two-part device. The first part of the autoencoder,

the encoder takes an input feature vector and transforms it. Very often (although not

in the case of the mSDA) this transformation might be dimensionality reduction. The

second part, the decoder is then the transformation of this encoded representation back to

an output that is as close as possible to the original input. The encode and decode stages

are typically trained by minimising a loss function on the accuracy of the re-creation of

the original input. Instance labels are not needed. Training an autoencoder in this way

is unsupervised. In a denoising autoencoder, the input values are partially corrupted with

random noise. With the mSDA the noise takes the form of a set proportion of the input

features being randomly set to zero.

In the SDA architecture the denoising autoencoders are stacked so that the output of the

first denoising autoencoder is the input to the second, the output of the second is the

input to the third etc. While Glorot et al. [50] used neural networks for the de-noising

autoencoders, Chen et al. [29] found a way of using a simple and fast linear transformation

as the denoising autoencoder layer.

Deploying a Stacked Denoising Autoencoder is a two step process. As a first step the

SDA is trained using unlabelled instances from both the Source and the Target domains.

The auto-encoders are trained greedily i.e. the first auto-encoder is trained from the data

before the second is trained from the representation of the data generated by the first

layer and so on. For a given input feature vector the new output feature vector is then



148

a concatenation of the outputs from the SDA layers. As a second step, the labelled data

from the Source domain is processed by the SDA to give each instance the new feature

representation. A classifier is then trained using the new feature representation and the

original instance labels.

The literature around mSDAs and related methods is reviewed in Section 2.3.3.3

6.2 Method

The hypothesis at the core of this chapter is that with the new feature representations

generated by the mSDA and the classifier hypothesis h, the Source and Target domains

are closer than they were with the original features. Therefore the classifier should have

less of a recall difference between the Source and Target domains than a classifier that

was trained on the original features. With a smaller difference in recall between domains

a classify and adjust quantifier should be more accurate in the Target domain than one

trained on the original Source domain features.

6.2.1 Code

The Python code for the mSDA method was downloaded from Weinberger [119], a co-

author1 on Chen et al. [29].

6.2.2 mSDA training time

The Chen et al. [29] mSDA method is claimed to be significantly faster than the neural-

network based SDA method from Glorot et al. [50]. However, Figure 6.1 shows that it

still does not scale particularly well.

1Chen’s PhD supervisor



149

0 500 1000 1500 2000 2500 3000
number of instances

0

20

40

60

80

100

120

140

tim
e 

pe
r l

ay
er

 (s
)

Figure 6.1: Mean mSDA calculation time per layer vs. number of data instances. 95%

confidence intervals shown. All UCI datasets

6.2.3 Noise

The same approach was taken as that taken in the original paper by Chen et al. [29].

In each mSDA layer a fixed proportion of the input features are randomly set to zero

with each data instance. In Chen et al. [29] the value for noise was determined by cross-

validation. The approach taken here was to carry out quantification of the test set for all

parameter combinations for later analysis. A value of 0.8 was chosen because Glorot et al.

[50] had found that this value tended to be optimal. Chen et al. [29] had used 7 different

noise values. To reduce the time required to run the experiment I used three values. A

low value of 0.2, a medium value of 0.5 and the high value of 0.8.

6.2.4 Oversampling from the Target domain

It is not explicitly stated in Chen et al. [29] but the implication is that the datasets they

used were all of equal size. In this experiment the training set was either 1200 or 1600

instances while the test set was either 400 or 800 instances. I hypothesised that the domain

adaptation to the Target domain (from which the test set was drawn) will not be as good

if the amount of training data for the mSDA from the Target domain is much less than the

amount from the Source domain. To test this hypothesis additional Target domain data



150

was added to the set being used to train the mSDA. This additional data was generated

by sampling with replacement from the test set. The amount of additional data that was

added was such that such that the total number of instances from the Target domain

would then be 80% of the number from the Source domain. As a baseline, no additional

data was added.

6.2.5 Layers

Both Glorot et al. [50] and Chen et al. [29] limited their experiments to 5 SDA layers and

I did the same. Table 6.1 shows how the outputs from the 5 layers plus original features

(layer 0) were then concatenated in eleven different arrangements to form ten new feature

representation (B to K) and the baseline representation of the original features (A).

Table 6.1: Ten feature representations plus baseline constructed from the original

features (layer 0) and the five mSDA layers

A 0 baseline

B 0 1

C 0 1 2

D 0 1 2 3

E 0 1 2 3 4

F 0 1 2 3 4 5

G 1 2 3 4 5

H 2 3 4 5

I 3 4 5

J 4 5

K 5

Glorot et al. [50] found that while the new feature representations generated by the SDAs

did not reduce A-distance between domains, they did ‘disentangle’ information relating

to domain from information relating to class. In the new representation, they found that

the features that were most informative for determining class tended to be uninformative

for determining domain and vice versa.

The hypothesis is that the features that the classifier finds most useful for the classifi-

cation task will contain little or no domain information and therefore the performance

of a classifier trained on the new representation will be less sensitive to domain. Fur-



151

thermore that this disentangling might be greatest in the higher mSDA layers, hence the

inclusion of representations G to K where the lower layers are gradually dropped from the

representation.

6.2.6 Classifier parameters

An SVM classifier with linear kernel was used, the same approach as Chen et al. [29]. The

linear-SVM classifier regularisation parameter C was optimised using cross-validation for

each iteration. This was felt to be necessary because of the the varying size of the training

set and the varying number of features in the different representations.

However, as pointed out in Section 6.2.5, Glorot et al. [50] showed that the SDA repre-

sentation tended to disentangle information important to classification from information

important to domain. By setting the amount of regularisation to only maximise classifica-

tion accuracy, the classifier may be using features that still carry some domain information

and so this may reduce the domain adaptation impact of the SDA representation. This is

discussed further at the end of this chapter.

6.2.7 Dataset samples and methods

As in Chapter 5 the training and (biased) test sets were drawn from the datasets. 320 such

‘dataset-sample’ iterations were carried out for each dataset giving 1,280 dataset-samples

for UCI dev, 960 for UCI test and 320 for TAF. For each dataset-sample, quantification

was carried out using each of 60 mSDA parameter combinations plus the baseline. The

biassing method and parameters were the same as in Section 5.2.

6.3 Results

On the UCI dev datasets, 29 of the 60 method-parameter combinations had a mean rank

that was better than the baseline and where the null-hypothesis of no difference to the

baseline could be rejected using the Friedman test with Bonferroni corrections at an α <

0.05. The results of the best performing mSDA methods on the UCI dev datasets are

given in Table 6.2.



152

Table 6.2: Best mSDA methods on UCI dev datasets against mean rank, RMSE and

MAE

Method First Last Noise T-S Mean RMSE MAE ∆MAE ∆MAE

Layer Layer Ratio Rank Abs. Rel.

baseline 31.8 0.143 0.094

mSDA 0 5 0.2 26.7 0.136 0.087 0.007 7.4%

mSDA 0 5 0.5 27.8 0.135 0.088 0.006 6.4%

mSDA 0 4 0.2 0.8 27.0 0.135 0.087 0.007 7.4%

Table 6.3 shows the performance on the UCI test datasets of the methods identified as

best on the UCI dev datasets in Table 6.2.

Table 6.3: Best mSDA methods from UCI dev measured on the UCI test datasets

Method Best First Last Noise T-S MAE ∆MAE ∆MAE Stat

On Layer Layer Ratio Abs. Rel. Sig

baseline 0.151

mSDA Rank 0 5 0.2 0.149 0.002 1.3% 0.51

mSDA MAE 0 4 0.2 0.8 0.146 0.005 3.3% 0.02

mSDA RMSE 0 5 0.5 0.151 0.000 0.0% 0.90

Statistical significance is measured using a Wilcoxon signed-rank test [31]. While one of

the best methods does give a statistically significant improvement in MAE against the

baseline (with a p-value of 0.02), the improvement in MAE is modest and arguably, as

with the Bonferroni corrections, the test of significance should take into account that three

methods have been tested.

The impact of the mSDA parameters on quantification performance with the UCI dev

datasets is analysed below.

6.3.1 Layers

If generating a new feature representation with the mSDA architecture reduces the distance

between domains then it is reasonable to think that that distance reduces at the higher



153

mSDA layers and therefore that the performance of a classifier trained on those higher

layers would be more domain independent.

0.0 1.0 2.0 3.0 4.0 5.0
mSDA_highest_layer

0.136

0.137

0.138

0.139

0.140

0.141

0.142

0.143

R
M
S
E

Figure 6.2: RMSE of results from UCI dev datasets. mSDA layers from 0 to the layer

indicated. 95% confidence intervals shown.

Figure 6.2 indicates that the addition of additional mSDA layers does reduce quantification

error as measured by RMSE, but that there is no additional benefit obtained by adding

layers above layer 3.

0.0 1.0 2.0 3.0 4.0 5.0
mSDA_lowest_layer

0.135

0.140

0.145

0.150

0.155

0.160

R
M
S
E

Figure 6.3: RMSE of results from UCI dev datasets. mSDA layers from the layer

indicated up to and including layer 5. 95% confidence intervals shown.

However, contrary to our hypothesis, Figure 6.3 shows that removing the lower mSDA

layers (starting with layer 0 the original features) reduces, rather than improves perfor-

mance.



154

6.3.2 Noise

0.2 0.5 0.8
mSDA_noise

0.138

0.140

0.142

0.144

0.146

0.148

0.150

R
M
S
E

Figure 6.4: RMSE of results from UCI dev datasets vs. level of noise. 95% confidence

intervals shown.

Figure 6.4 indicates that performance is better with lower levels of noise, although this

should be considered with caution given the overlapping confidence intervals. Further

work would be needed to establish the optimum level of noise.

6.3.3 Oversampling from the Target domain

In Section 6.2 the hypothesis was put forward that adaptation between the Source and

Target domains would work better when similar amounts of unlabelled data were used

from both domains for training the mSDA.

Figure 6.5 indicates that adding oversampled data from the Target domain has no statis-

tically significant effect.



155

0.8
mSDA_T_S_ratio

0.140

0.141

0.142

0.143

0.144

0.145

R
M
S
E

Figure 6.5: RMSE of results from UCI dev datasets. Impact of the balance of mSDA

training data between Source and Target domains. 95% confidence intervals

shown.

The RMSE in cases where additional data was sampled from the Target domain to make

this Target domain 0.8 times the size of the Source domain was not different from the

RMSE observed when no additional data was added.

Given the negative impact of increasing the number of data instances on mSDA speed

shown in Figure 6.1, it is useful to know that adding additional Target domain instances

through over-sampling does not appear to give any performance improvement.

6.3.4 Training and test set size

The expectation was that larger datasets would give better results. However, Table 6.4

indicates that there is no strong relationship between the size of the training and test sets

and performance.

Table 6.4: RMSE from best method on UCI dev datasets vs. baseline for varying tr and

te set sizes

RMSE RMSE ∆RMSE ∆RMSE

te size tr size best baseline Abs. Rel.

800 1200 0.127 0.135 0.008 5.9%

800 1600 0.136 0.144 0.008 5.6%

400 1200 0.154 0.164 0.010 6.1%

400 1600 0.124 0.128 0.004 3.1%



156

6.3.5 Recall

As discussed earlier in Section 6.2, the hypothesis at the core of this chapter is that a

classifier trained on the SDA-transformed Source data would have less of a recall difference

between the Source and Target domains than a classifier trained on the original features.

With that classifier used in a classify and adjust quantifier, the smaller recall difference

should translate into better quantification accuracy in the Target domain.

For analysis a single metric, ‘recall delta’, has been computed for the difference in recall

between the Target and Source domains:

recall delta =
√

(r0T − r0S)2 + (r1T − r1S)2, (6.1)

where rcD is the recall for class c in domain D.

The recall values for the Source domain were computed from the training set with cross-

validation. The recall values for the Target domain were computed from the test set.

Figure 6.6 shows the observed relationship between absolute quantification error and re-

call delta.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
recall_delta

0.0

0.2

0.4

0.6

0.8

a_
ha

t_
0_

er
r_
ab

s

Figure 6.6: Absolute quantification error vs. recall delta. mSDA results. UCI dev

datasets

Figure 6.6 indicates that higher quantification accuracy can be obtained when the differ-

ence in classifier recall between the domains is small.

Figures 6.7 and 6.8 show how recall delta changes with the construction of the feature



157

representation from the mSDA layers.

0.0 1.0 2.0 3.0 4.0 5.0
mSDA_highest_layer

0.100

0.101

0.102

0.103

0.104

0.105

0.106

0.107

re
ca

ll_
de

lta

Figure 6.7: Recall delta vs. mSDA highest layer for mSDA results with UCI dev

datasets. Lowest layer = layer 0

It shows that while adding additional layers initially reduces recall delta, there appears

to be no reduction in recall delta after adding a second mSDA layer. The mean value for

recall delta does not drop below 0.102.

0.0 1.0 2.0 3.0 4.0 5.0
mSDA_lowest_layer

0.100

0.102

0.104

0.106

0.108

0.110

re
ca
ll_
de

lta

Figure 6.8: Recall delta vs. mSDA lowest layer for mSDA results with UCI dev

datasets. Highest layer = layer 5

It was hypothesised that classifier recall may be more domain independent in the higher

mSDA layers, however Figure 6.8 shows that removing lower layers from the feature rep-

resentation increases the recall difference between the Target and Source domains.



158

6.3.6 By level of bias and by dataset

From Table 6.3, the best mSDA method has layers 0 to 5 and a noise setting of 0.2. Figures

6.9 and 6.10 show the quantification performance of this method with the UCI dev and

UCI test datasets respectively.

1 2 3 4
PADcb quartile

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
ea

n 
A

bs
ol

ut
e 

E
rr

or
 (M

A
E

)

legend
mSDA
baseline

Figure 6.9: MAE of best mSDA method and baseline method vs. PADcb quartile.

UCI dev datasets. 95% confidence intervals

1 2 3 4
PADcb quartile

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

M
ea

n 
A

bs
ol

ut
e 

E
rr

or
 (M

A
E

)

legend
mSDA
baseline

Figure 6.10: MAE of best mSDA method and baseline method vs. PADcb quartile.

UCI test datasets. 95% confidence intervals

As would be expected, the performance vs. baseline is in general better at higher levels of



159

dataset bias. The level of improvement from the best mSDA method is not as large as was

seen earlier in Figures 5.9 and 5.10 with instance weighting using Kernel Mean Matching.

Figures 6.11 and 6.12 show the difference in quantification performance for the best mSDA

method against the baseline vs. dataset bias for the individual datasets in UCI dev and

UCI test respectively. Values above zero indicate that the method is worse than the

baseline, values below zero indicate that the method is better than the baseline.

1 2 3 4
PADcb_qtl

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

M
A

E
 b

es
t m

et
ho

d 
m

in
us

 b
as

el
in

e

UCI_adult_test

1 2 3 4
PADcb_qtl

UCI_bank_ma keting

1 2 3 4
PADcb_qtl

UCI_cove type

1 2 3 4
PADcb_qtl

UCI_lette _ ecognition

Figure 6.11: MAE of ‘best’ method minus MAE baseline by PADcb quartile for

UCI dev datasets

1 2 3 4
PADcb_qtl

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

M
A
E
 b
e 

t m
et
ho

d 
m
in
u 

 b
a 

el
in
e

UCI_ca p

1 2 3 4
PADcb_qtl

UCI_credit_card_default

1 2 3 4
PADcb_qtl

UCI_online_new _popularity

Figure 6.12: MAE of ‘best’ method minus MAE baseline by PADcb quartile for

UCI test datasets

As in the previous chapter, the best method has been judged on the basis of average

performance over the distribution of biased datasets that was generated in the experiments

by the biassing method. In deployment the best method will depend on the expected level

of bias.



160

6.3.7 TAF

Table 6.5 shows the results of applying the best methods as determined on the UCI dev

datasets (Table 6.2) to the TAF dataset.

Table 6.5: Best mSDA methods from UCI dev measured on the TAF dataset

Method Best First Last Noise T-S MAE ∆MAE ∆MAE Stat

on Layer Layer Ratio Abs. Rel. Sig

baseline 0.085

mSDA Rank 0 5 0.2 0.080 0.005 5.9% 0.22

mSDA MAE 0 4 0.2 0.8 0.082 0.003 3.5% 0.52

mSDA RMSE 0 5 0.5 0.084 0.001 1.2% 0.97

While these methods gave a quantification accuracy that was better than the baseline

accuracy, the null-hypothesis of no-difference could not be reliably rejected. The Friedman-

Bonferroni test was run on the TAF dataset. Again, a number of methods performed better

than the baseline none were statistically significantly different to the baseline method. The

results are shown in Table 6.6.

Table 6.6: Best mSDA methods on TAF dataset against mean rank, RMSE and MAE

Method First Last Noise T-S Mean RMSE MAE ∆MAE ∆MAE

Layer Layer Ratio Rank Abs. Rel.

baseline 29.9 0.113 0.085

mSDA 0 3 0.5 0.8 26.9 0.102 0.078 0.007 8.2%

mSDA 0 4 0.5 0.8 27.5 0.100 0.078 0.007 8.2%

Figure 6.13 shows that, as with the UCI dev and UCI test datasets, the mSDA method

gives a larger improvement over the baseline at higher levels of dataset bias. For compar-

ison purposes the PADcb quartile values used in Figure 6.13 are those derived from the

UCI dev datasets not the quartiles from the TAF dataset itself.



161

1 2 3 4
PADcb quartile

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

M
ea

n 
A

bs
ol

ut
e 

E
rr

or
 (M

A
E

)

legend
mSDA
baseline

Figure 6.13: MAE of best mSDA method and baseline method vs. PADcb quartile.

TAF dataset. 95% confidence intervals

6.4 Conclusions

Table 6.7 gives a summary of the results.

Table 6.7: Summary of Chapter 6 results

Method Set Measured ∆MAE ∆MAE Stat

On On Absolute Relative Sig2

Tab. 6.2 mSDA UCI dev UCI dev 0.7% 7.4% yes

Tab. 6.3 mSDA UCI dev UCI test 0.5% 3.3% yes

Tab. 6.5 mSDA UCI dev TAF 0.5% 5.9% no

Tab. 6.6 mSDA TAF TAF 0.7% 8.2% no

The best parameter settings found using UCI dev gave an MAE that was 0.5% points

lower than the baseline method on the held-out UCI test datasets. This was a relative

improvement in MAE of 3.3%.

It is possible that some further improvement could be obtained from the mSDA feature

2Was this finding statistically significant



162

representation methods. In particular, looking at feature selection and regularisation to

actively minimise the influence of domain information on the classifier.

It would be interesting to look further at the impact of noise level on the results and also

to explore whether adding genuine (rather than over-sampled) unlabelled instances from

the Target domain has an impact. If additional instances are unavailable then potentially

the SMOTE method [27] could be used to generate synthetic datapoints for the Target

domain.

While the mSDA method [29] is much quicker to train than the original neural-network

based SDA method [50], as shown in Figure 6.1 it still takes time to train and it does

not scale well to larger datasets. Unless other unlabelled data is already available from

the Target domain this method has the same run-time issue as the instance weighting

based method i.e. that the classifiers for quantification cannot be trained until the feature

representation has been trained and this cannot happen until the test set data is presented.



Chapter 7

Conclusions and further work

The question that this work has aimed to address is:

How do you accurately estimate the class proportions in a dataset

when the class-conditional feature distribution is different to that of

the dataset that is available for training?

Or more mathematically, how do we accurately estimate PT (y) when PS(y) is known but

PS(x|y) 6= PT (x|y)?

All of the approaches that were taken in this thesis followed the same basic structure:

reduce the difference in class-conditional feature distributions so that a standard classify

and adjust quantification method can work effectively:

Classify and Adjust 
Quantification

Domain 
Adaptation

!" # $
≠ !& # $

!" # $
≈ !& # $

Quantification under class-conditional 
dataset shift

Validation 
Data

Source 
Domain 

(S)

Target 
Domain 

(T)

(!&($)

Training 
Data

Test Data

Figure 7.1: Common approach to quantification under class-conditional dataset shift

163



164

Standard classify and adjust quantification methods were used while the focus was on the

domain adaptation step: how to bring the class-conditional feature distributions from the

two domains as close together as possible. Three quite different approaches were taken

to the domain adaptation problem: Explicit Sub-Domains (ESD) in Chapters 3 and 4,

Instance Weighting (IW) in Chapter 5 and Feature Representations (FW) in Chapter 6.

A full summary of the results of the various experiments is given in Table 7.1.

Table 7.1: Summary of results

Method Set Measured ∆MAE ∆MAE Stat

on on Abs. Rel. Sig1

Tab. 4.9 ESD tsd single UCI dev UCI test 0.42% 3.7% -

Tab. 4.9 ESD tsd multiple UCI dev UCI test 0.51% 4.5% -

Tab. 4.19 ESD tsd single UCI dev TAF 0.03% 0.3% -

Tab. 4.19 ESD tsd multiple UCI dev TAF 0.07% 0.7% -

Tab. 5.9 IW KMMut0.5 UCI dev UCI test 1.3% 10.7% yes

Tab. 5.10 IW uLSIFww UCI dev UCI dev 0.5% 5.0% yes

Tab. 5.11 IW SSBCut0.9 UCI dev UCI dev 0.2% 1.7% no

Tab. 6.2 FR mSDA UCI dev UCI dev 0.7% 7.4% yes

Tab. 6.3 FR mSDA UCI dev UCI test 0.5% 3.3% yes

Tab. 6.5 FR mSDA UCI dev TAF 0.5% 5.9% no

Tab. 6.6 FR mSDA TAF TAF 0.7% 8.2% no

All the results in Table 7.1 are averages over the distribution of biased test data generated

by the experiments.

Caution should be exercised when comparing results from explicit sub-domains (ESD)

with the results from instance weighting (IW) and feature representations (FR). Firstly,

with explicit sub-domains the feature that was used for biassing the datasets was also the

feature that defined the sub-domains. While in some situations the sub-domain where

bias has occurred is obvious (e.g. older people in Scotland) in other cases it may be less

so. Had the sub-domains been specified without knowledge of the feature used for biassing

then it is likely that the results would not be as good. Secondly, the method of biasing the

1Result is statistically significant



165

test sets was different. With explicit sub-domains in Chapters 3 and 4, the biased datasets

were constructed by sampling to a given sub-domain proportion. In Chapters 5 on instance

weighting and 6 on feature representations, biassing was done with the method used by

Gretton et al. [58] with parameters that remained constant on all tests as described in

Section 5.2.

7.1 Datasets and bias

Biassing of the test sets was carried out with a consistent method and parameters but

generated different distributions of test sets by bias for each dataset as shown in Figures

5.1. The input in terms of method and parameters was effectively constant but the outcome

varied by dataset. It would be quite feasible to sample the test sets to give constant

outcome distributions of bias for each dataset but then the question arises as to what

distribution is ‘correct’? I am not aware of any work that has been done to establish the

degree to which the artificial bias used in the test datasets is representative of the bias

that would be encountered in real applications.

This would also be an interesting area of further study. It would be possible to analyse the

sets of users generated by projects that have been carried out at the University of Sussex

using the Method 52 tool. The observed bias between these groups and the populations

from which they are drawn could be compared to the levels of bias generated by the

method used in this thesis.

Twitter had provided the motivation the the initial experiment in Chapter 3 so it made

sense to return to Twitter in the later chapters. In Chapter 4, results on the TAF dataset

were an order of magnitude worse than those obtained on the UCI test datasets, but in

Chapter 6 the results on the TAF dataset were comparable to the results with the UCI test

datasets. This may be due to the method of biassing. In Chapter 6 the Gretton et al. [58]

method was used, while in Chapter 4 the TAF dataset was biased using the annotated

sub-domains shown in Figure 4.12. While some of those categories have large difference

in recall, e.g. ‘Asia’ in location, many do not. It may simply be that the test sets in

Chapter 4 were not particularly biased. This hypothesis is supported by the finding that

the set thresholds achieved a performance that was 55% of the optimal performance for the

dataset i.e. there was not much room for improvement above the baseline, which would

be consistent with a low level of bias in the test sets.



166

7.2 Explicit subdomains

With explicit sub-domains the assumption is made that the data can be broken down into

smaller groups (‘sub-domains’) in which the conditional feature distributions do not vary

i.e.:

PS(x|y, sd) ≈ PT (x|y, sd) (7.1)

The difference in class-conditional feature distributions between the two domains is then

explained by different proportions of sub-domains. Quantification is carried out at the

sub-domain level and the results then aggregated up to class level as a final step.

It appeared that a closed-form solution might be possible for the expected error when

doing quantification by matrix-inversion with explicit sub-domains. It was important to

explore this, at the very least to check that the solution was not trivial. As it turned out,

the solution was not trivial. In this thesis, a closed-form expression could only be found

for the case where the validation set was assumed to be large. An obvious piece of further

work would be to obtain a general solution without that simplifying assumption, however

it is still not clear whether the more complex mathematics that would be required would

deliver a useful closed-form expression. To be useful the closed form expression should

indicate whether the sd-method or nsd-method will give the lowest quantification error

based on parameters that would be known in advance such as the dataset sizes and the

classifier recall values in the Source domain.

The fact that the solution was non-trivial justified the use of simulation in Section 3.8.

Simulation showed the impact of separate parameters on the expected quantification error.

These insights were then used to formulate the thresholded sub-domain method in Chapter

4. The hypothesis at the start of this chapter was that while it appeared that the size

of the validation set could be a good threshold for when to apply explicit sub-domains

and when not to apply them, it may be be difficult to define a value for sufficiently large

that works for all potential domains that may be encountered. It was felt that a more

principled threshold based on the significance of the recall difference between sub-domains

might be more reliable across different domains.

However, the threshold at which using explicit sub-domains (sd-method) gave better quan-

tification accuracy proved to be quite consistent across a number of datasets as shown in

Table 7.2.



167

Table 7.2: Size of validation set above which the sd-method gave better quantification

accuracy than the nsd-method

Section Dataset nv Note

Threshold

3.8.3 Simulated ≈ 1000

4.1.3.1 Simulated ≈ 1000

4.2.6.1 UCI dev datasets ≈ 1000 All2

4.3.1 UCI dev dataset ≈ 316 Average3

4.4.4 TAF ≈ 1000 Optimal for TAF

It would be interesting to explore this relationship further and see if a principled link can

be established between quantification accuracy and validation set size. While validation

set size was the best single criteria to use, combining it with other criteria did lead to be

better quantification accuracy.

In this thesis, the sub-domains were explicit. Several published works ([5][62][64]) explored

domain adaptation through latent sub-domains as a way of improving classification and

these were reviewed in Section 2.3.1.2. Typically in these works, the class-proportion in

the test set was estimated as an intermediate step towards improving classification. While

some of the published results of these methods are not completely compelling it would still

be worthwhile exploring if they can give low quantification error under class-conditional

dataset shift. The method in Hofer [62] appears to perform well but was not implemented

for the reasons set out in Section 2.3.1.2. However, benchmarking this method against the

methods in this thesis would be an interesting piece of further work.

As stated earlier, the explicit sub-domains methods used relied on the sub-domain being

the same as the label used for biassing the dataset. It would be quite possible to devise

a method which identified the best feature for use as the sub-domain. The best feature

would be one that combined a difference in distribution between the validation dataset

and the test dataset and a difference in main-class recall between the different values of

the feature in the validation data.

2Above this threshold value the sd-method gave better accuracy on all four datasets
3Above this threshold value the sd-method gave better accuracy on average across the four datasets



168

Instead of individual features, a better way to identify sub-domains might be to look

at clusters of ‘similar’ users. With a user typically following only a few hundred other

accounts of the many millions available, the information about the user from following

an account is not the simple inverse of not following that account. There are a range of

possible techniques that could be used for finding clusters in this type of categorical data

including Rock [59], Limbo [9], Chameleon [75], Clicks [123] or Coolcat [10]. Alternatively,

network concepts such as modularity [89] might lead to the identification of meaningful

sub-domains.

7.3 Importance weighting

Weights w were computed for the instances in the training data (from the Source domain)

and used to bring the class-conditional feature distributions from the Target and Source

domains close together:

PS(x|y, w) ≈ PT (x|y) (7.2)

The KMM, uLSIF and SSBC instance weighting methods are not inherently class balanced.

The methods compute the instance weights that will minimise the difference in the joint

distribution P (x, y) between the Source and Target domains under the covariate shift

assumption that P (y|x) is constant. With Bayes rule we can express the joint distribution

as P (x, y) = P (x|y)P (y). The results of Section 5.6 show a correlation between the weights

and the marginal class distributions. For quantification we ideally want the weights to align

the conditional feature distributions, PS(x|y) = PT (x|y), but not to align the marginal

class distributions PS(y) and PT (y). Table 5.5 set out the four approaches were adopted

to try and achieve this. All of the methods that had a quantification accuracy that was

significantly better than the baseline were class-balanced using one of the four approaches.

Applying the computed weights directly to the instances in the training set should min-

imise the difference between the Source and Target distributions. However, the method

that actually gave the best quantification accuracy used KMM-computed weights in a

thresholded way to select the 50% of the validation set that was most similar to the test

data from the Target domain. All of the training set was used, unweighted, to train the

classifier. The best parameter settings gave a mean absolute quantification error that was

10.7% lower than the baseline method. Initial expectations had been low for the KMM



169

method after the original authors in Gretton et al. [58] had shown poor results. However,

KMM-based methods out-performed methods that used weights computed by uLSIF and

SSBC. The relatively poor performance of the SSBC method from Section 5.8.2 was not

that surprising. The method pre-dates the KMM and uLSIF methods and where this

method has been evaluated by other authors it has generally not been the best performer.

However, the uLSIF method is more modern than the KMM method and in Sugiyama and

Kawanabe [104] the authors had said that in comparison with other methods including

KMM that uLSIF is a preferable method for importance estimation.

One of the four approaches to class-balancing was the weakly supervised approach. In a

range of experiments it was not possible to get this approach to achieve a quantification

accuracy that was better than the baseline. Despite this, I think there may be some merit

in pursuing the weakly supervised methods further. With training data consisting of both

labelled data from the Source domain and some (weakly) labelled data from the Target

domain, direct distribution matching separately by class would be possible.

Better than weakly supervised, if some actual labelled data was available in the Target

domain then semi-supervised approaches could be applied. With Twitter users this could

well be possible. If we want to quantify by age group then (as described in Section 3.4.1)

it is quite likely that some users in the test set will have usernames that end in a number

that is a plausible year of birth. Similarly if we want to quantify by gender then some of

the instances in the Target domain could conceivably be gender labelled with a method

that uses first names. With some labelled data in the Target domain it would be possible

to apply instance weighting class-conditionally.

Both the KMM and uLSIF importance weighting methods used Gaussian kernels. The

L2-norm (Euclidean distance) is fundamental to the Gaussian kernel, but Aggarwal et al.

[3] casts doubt on the L2-norm as a distance measure with high-dimensional data. Given

the high dimensionality of the motivating problem of Twitter users and the accounts that

they follow, it would be interesting to see whether alternative measures of distance would

yield better results. Euclidean distance in a sparse categorical feature space does not make

much sense. It would be interesting to explore whether categorical clustering methods such

as those in Section 7.2 would give insights on finding training data that was close to the

test data.



170

7.4 Feature representation

The feature representations approach was to generate a new representation x′, and train

a classifier on this representation with hypothesis h such that:

PS(x′|y, h) ≈ PT (x′|y, h) (7.3)

While the results are not strictly comparable with the results from the explicit sub-domains

experiments in Chapters 3 and 4, they are comparable with the instance weighting results

from Chapter 5. The mSDA feature representation approach is not as strong a that of

the best KMM based method from Chapter 5. The best paramater settings gave a mean

absolute quantification error that was 3.3% lower than the baseline method.

One area where further work would quite conceivably improve performance is in the area

of regularisation and feature selection. As stated in Sections 6.2.5 and 6.2.6, Glorot et al.

[50] found that the SDA approach did not remove information on domain but rather

‘disentangled’ it from information on class. Features that were most informative for class

were not very informative for domain and vice versa. In this work, the classifier had access

to all features in the given representation and regularisation was set by cross validation

to only maximise classification accuracy.

It may be better to conduct feature selection and/or regularisation to give good classifi-

cation accuracy but at the same time to minimise the information relating to domain in

the weighted features. The method used by Donini et al. [34] could be tried. There are

also potential overlaps with the adversarial methods discussed in Section 2.3.3.4 and with

multi-task learning [22].

The only feature representation approach used in this thesis was Stacked De-noising Au-

toencoder method from Glorot et al. [50] and Chen et al. [29]. As discussed in Section 2.3.3

a range of other methods of generating feature representations for domain adaptation are

available and could be explored. The Quantification Trees approach from Milli et al. [86]

was reviewed in Section 2.1.4. I speculated that a tree based approach to quantify a set of

instances might be robust to shifts in class-conditional feature distributions. This could

be a dead-end but given the success that boosted tree-based approaches for classification

(e.g. CatBoost, XGBoost) it could also be an interesting line of research.

Adversarial methods using neural networks (e.g. [47]) are currently regarded as state of

the art for domain adaptation. They are discussed in Section 2.3.3.4. If they are able to



171

build a feature representation from which it is difficult to detect domain then a classify and

adjust quantifier trained on that representation should be domain independent. However,

the results from the ITTBR method in 5.9 showed that minimising the Proxy A-distance

between domains does not necessarily result in classifier performance being independent

of domain.

There is common ground between the work in this thesis and in ongoing work on fairness

at the University of Sussex. If domains are thought of as representing people from various

protected categories (e.g. age, gender, race), an aspect of ‘fairness’ is that classification

decisions are domain independent.

7.5 Direct quantification with biased training sets

Direct quantification methods were discussed in Section 2.1.4. In these methods a quan-

tifier is trained on training sets of known class distributions, and the loss function for

training is linked to the quantification error on a set as opposed to (or as well as [12]) the

classification error on individual instances. From the published work it does not appear

that anyone had tried to train direct quantification methods to cope with class-conditional

feature distribution changes using biased training sets.

One potential approach would be to train a multi-layer neural network to estimate class

proportions in sets of instances where each training set would be artificially biased. Bi-

assing methods could be the same as those used to generate biased test sets in Section

5.2. The neural network would require some function to generate a single feature rep-

resentation from a labelled training set. Instance weighting and feature representation

methods work by performing some function with data from both the Source domain and

the particular Target domain. In this method a quantifier learns from artificially biased

training sets from the Source domain. This raises interesting questions. To what degree

can such a quantifier generalise from the artificially biased sets on which it was trained, to

an unseen, ‘naturally’ [38] biased set from the Target domain? Is it possible (and useful)

to train the quantifier both on sets of artificially biased labelled training data and on the

unlabelled data from the Target domain? How could you be certain that that the method

was generalising and not simply ‘learning’ the specific method of creating biased datasets,

especially if similar methods are used for biassing both the training and the test sets?

Clearly there is a strong link to the discussion on bias in reality in Section 7.1.



172

7.6 Implementation

Both the KMM based, thresholded method and the mSDA method would be straight-

forward to implement in an operational system. There are a number of considerations.

Both approaches learn using the unlabelled test data so there will inevitably be some time

delay between the presentation of the test data and the computation of the estimated class

proportions. Both methods are known to have issues with scaling and dimensionality. For

the mSDA method, an approach to dealing with this is in the original paper by Chen

et al. [29]. Depending on the application area, some work may be required to implement

an approach that is sufficiently fast.

7.7 Last words...

‘Unsupervised domain adaptation is an inherently hard problem’ [55]. Many seemingly

promising methods failed to improve on the performance of a simple classify and adjust

baseline and were rejected. However, all three of the approaches taken in this thesis,

explicit subdomains, instance weighting and feature representations did eventually deliver

methods that improved on the baseline quantification performance. Of the three, a method

using Kernel Mean Matching to weight instances in the validation data showed the best

performance.



Chapter 8

Bibliography

[1] The distribution of a ratio of correlated normals. https://davegiles.blogspot.

com/2015/08/the-distribution-of-ratio-of-correlated.html. [Online; ac-

cessed 25-September-2018].

[2] Friedman’s two-way analysis of variance by ranks — analysis of k-within-group data

with a quantitative response variable. http://psych.unl.edu/psycrs/handcomp/

hcfried.PDF. [Online; accessed 30-August-2018].

[3] Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. On the surprising

behavior of distance metrics in high dimensional space. In International Conference

on Database Theory, pages 420–434. Springer, 2001.

[4] Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, and Mario

Marchand. Domain-adversarial neural networks. arXiv preprint arXiv:1412.4446,

2014.

[5] Roćıo Alaiz-Rodŕıguez, Alicia Guerrero-Curieses, and Jesús Cid-Sueiro. Class and

subclass probability re-estimation to adapt a classifier in the presence of concept

drift. Neurocomputing, 74(16):2614–2623, 2011.

[6] Giambattista Amati, Simone Angelini, Marco Bianchi, Luca Costantini, and

Giuseppe Marcone. A cumulative approach to quantification for sentiment anal-

ysis. arXiv preprint arXiv:1610.01366, 2016.

[7] Martin Andersen, Joachim Dahl, and Lieven Vandenberghe. Cvxopt. https://

cvxopt.org/. [Online; accessed 31-August-2018].

173



174

[8] Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures

from multiple tasks and unlabeled data. Journal of Machine Learning Research, 6

(Nov):1817–1853, 2005.

[9] Periklis Andritsos, Panayiotis Tsaparas, Renée J Miller, and Kenneth C Sevcik.

Limbo: Scalable clustering of categorical data. In EDBT, pages 123–146. Springer,

2004.

[10] Daniel Barbará, Yi Li, and Julia Couto. Coolcat: an entropy-based algorithm for

categorical clustering. In Proceedings of the eleventh international conference on

Information and knowledge management, pages 582–589. ACM, 2002.

[11] Jose Barranquero, Pablo González, Jorge Dı́ez, and Juan José Del Coz. On the

study of nearest neighbor algorithms for prevalence estimation in binary problems.

Pattern Recognition, 46(2):472–482, 2013.

[12] Jose Barranquero, Jorge Dı́ez, and Juan José del Coz. Quantification-oriented learn-

ing based on reliable classifiers. Pattern Recognition, 48(2):591–604, 2015.

[13] Antonio Bella, Cesar Ferri, José Hernández-Orallo, and Maria Jose Ramirez-

Quintana. Quantification via probability estimators. In Data Mining (ICDM), 2010

IEEE 10th International Conference on, pages 737–742. IEEE, 2010.

[14] Shai Ben-David, John Blitzer, Koby Crammer, Fernando Pereira, et al. Analysis of

representations for domain adaptation. Advances in neural information processing

systems, 19:137, 2007.

[15] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-

wise training of deep networks. In Advances in neural information processing sys-

tems, pages 153–160, 2007.

[16] Steffen Bickel, Michael Brückner, and Tobias Scheffer. Discriminative learning for

differing training and test distributions. In Proceedings of the 24th international

conference on Machine learning, pages 81–88. ACM, 2007.

[17] Christophe Biernacki, Farid Beninel, and Vincent Bretagnolle. A generalized dis-

criminant rule when training population and test population differ on their descrip-

tive parameters. Biometrics, 58(2):387–397, 2002.

[18] John Blitzer, Ryan McDonald, and Fernando Pereira. Domain adaptation with struc-

tural correspondence learning. In Proceedings of the 2006 conference on empirical



175

methods in natural language processing, pages 120–128. Association for Computa-

tional Linguistics, 2006.

[19] John Blitzer, Mark Dredze, Fernando Pereira, et al. Biographies, bollywood, boom-

boxes and blenders: Domain adaptation for sentiment classification. In ACL, vol-

ume 7, pages 440–447, 2007.

[20] Karsten M Borgwardt, Arthur Gretton, Malte J Rasch, Hans-Peter Kriegel, Bern-

hard Schölkopf, and Alex J Smola. Integrating structured biological data by kernel

maximum mean discrepancy. Bioinformatics, 22(14):e49–e57, 2006.

[21] AA Buck, JJ Gart, et al. Comparison of a screening test and a reference test

in epidemiologic studies. ii. a probabilistic model for the comparison of diagnostic

tests. American Journal of Epidemiology, 83(3):593–602, 1966.

[22] Rich Caruana. Multitask learning. In Learning to learn, pages 95–133. Springer,

1998.

[23] Tianfeng Chai and Roland R Draxler. Root mean square error (rmse) or mean ab-

solute error (mae)?–arguments against avoiding rmse in the literature. Geoscientific

Model Development, 7(3):1247–1250, 2014.

[24] Yee Seng Chan and Hwee Tou Ng. Word sense disambiguation with distribution

estimation. In IJCAI, volume 5, pages 1010–5, 2005.

[25] Yee Seng Chan and Hwee Tou Ng. Estimating class priors in domain adaptation

for word sense disambiguation. In Proceedings of the 21st International Conference

on Computational Linguistics and the 44th annual meeting of the Association for

Computational Linguistics, pages 89–96. Association for Computational Linguistics,

2006.

[26] Nitesh V Chawla. Data mining for imbalanced datasets: An overview. In Data

mining and knowledge discovery handbook, pages 853–867. Springer, 2005.

[27] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.

Smote: synthetic minority over-sampling technique. Journal of artificial intelligence

research, 16:321–357, 2002.

[28] Minmin Chen, Yixin Chen, and Kilian Q Weinberger. Automatic feature decomposi-

tion for single view co-training. In Proceedings of the 28th International Conference

on Machine Learning (ICML-11), pages 953–960, 2011.



176

[29] Minmin Chen, Zhixiang Xu, Kilian Weinberger, and Fei Sha. Marginalized denoising

autoencoders for domain adaptation. arXiv preprint arXiv:1206.4683, 2012.

[30] David W Cowling, Ian A Gardner, and Wesley O Johnson. Comparison of methods

for estimation of individual-level prevalence based on pooled samples. Preventive

veterinary medicine, 39(3):211–225, 1999.

[31] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal

of Machine learning research, 7(Jan):1–30, 2006.

[32] Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017. URL

http://archive.ics.uci.edu/ml.

[33] Alan W Donald, Ian A Gardner, and Alvin D Wiggins. Cut-off points for aggreate

herd testing in the presence of disease clustering and correlation of test errors. Pre-

ventive Veterinary Medicine, 19(3):167–187, 1994.

[34] Michele Donini, Luca Oneto, Shai Ben-David, John Shawe-Taylor, and Massimil-

iano Pontil. Empirical risk minimization under fairness constraints. arXiv preprint

arXiv:1802.08626, 2018.

[35] Marthinus Christoffel Du Plessis and Masashi Sugiyama. Semi-supervised learning

of class balance under class-prior change by distribution matching. Neural Networks,

50:110–119, 2014.

[36] Lixin Duan, Ivor W Tsang, Dong Xu, and Tat-Seng Chua. Domain adaptation

from multiple sources via auxiliary classifiers. In Proceedings of the 26th Annual

International Conference on Machine Learning, pages 289–296. ACM, 2009.

[37] Andrea Esuli and Fabrizio Sebastiani. Optimizing text quantifiers for multivariate

loss functions. arXiv preprint arXiv:1502.05491, 2015.

[38] Andrea Esuli, Fabrizio Sebastiani, and Ahmed ABBASI. Sentiment quantification.

IEEE intelligent systems, 25(4):72–79, 2010.

[39] Tom Fawcett and Peter A Flach. A response to webb and ting’s on the application of

roc analysis to predict classification performance under varying class distributions.

Machine Learning, 58(1):33–38, 2005.

[40] Basura Fernando, Amaury Habrard, Marc Sebban, and Tinne Tuytelaars. Unsu-

pervised visual domain adaptation using subspace alignment. In Proceedings of the

IEEE International Conference on Computer Vision, pages 2960–2967, 2013.



177

[41] Peter Flach. Machine learning: the art and science of algorithms that make sense

of data. Cambridge University Press, 2012.

[42] George Forman. Counting positives accurately despite inaccurate classification. In

Machine Learning: ECML 2005, pages 564–575. Springer, 2005.

[43] George Forman. Quantifying trends accurately despite classifier error and class

imbalance. In Proceedings of the 12th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 157–166. ACM, 2006.

[44] George Forman. Quantifying counts and costs via classification. Data Mining and

Knowledge Discovery, 17(2):164–206, 2008.

[45] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid

Bouchachia. A survey on concept drift adaptation. ACM computing surveys (CSUR),

46(4):44, 2014.

[46] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by back-

propagation. arXiv preprint arXiv:1409.7495, 2014.

[47] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,

François Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial

training of neural networks. Journal of Machine Learning Research, 17(59):1–35,

2016.

[48] Wei Gao and Fabrizio Sebastiani. Tweet sentiment: From classification to quantifica-

tion. In Proceedings of the 2015 IEEE/ACM International Conference on Advances

in Social Networks Analysis and Mining 2015, pages 97–104. ACM, 2015.

[49] Wei Gao and Fabrizio Sebastiani. From classification to quantification in tweet

sentiment analysis. Social Network Analysis and Mining, 6(1):1–22, 2016.

[50] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for large-

scale sentiment classification: A deep learning approach. In Proceedings of the 28th

international conference on machine learning (ICML-11), pages 513–520, 2011.

[51] Boqing Gong, Fei Sha, and Kristen Grauman. Overcoming dataset bias: An un-

supervised domain adaptation approach. In NIPS Workshop on Large Scale Visual

Recognition and Retrieval, volume 3, 2012.



178

[52] Pablo González, Alberto Castaño, Nitesh V Chawla, and Juan José Del Coz. A

review on quantification learning. ACM Computing Surveys (CSUR), 50(5):74, 2017.

[53] Pablo González, Jorge Dı́ez, Nitesh Chawla, and Juan José del Coz. Why is quan-

tification an interesting learning problem? Progress in Artificial Intelligence, 6(1):

53–58, 2017.

[54] Vı́Ctor GonzáLez-Castro, RoćıO Alaiz-RodŕıGuez, and Enrique Alegre. Class dis-

tribution estimation based on the hellinger distance. Information Sciences, 218:

146–164, 2013.

[55] Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Domain adaptation for

object recognition: An unsupervised approach. In Computer Vision (ICCV), 2011

IEEE International Conference on, pages 999–1006. IEEE, 2011.

[56] M Greiner and IA Gardner. Application of diagnostic tests in veterinary epidemio-

logic studies. Preventive veterinary medicine, 45(1):43–59, 2000.

[57] Arthur Gretton, Karsten M Borgwardt, Malte Rasch, Bernhard Schölkopf, Alexan-

der J Smola, et al. A kernel method for the two-sample-problem. Advances in neural

information processing systems, 19:513, 2007.

[58] Arthur Gretton, Alex Smola, Jiayuan Huang, Marcel Schmittfull, Karsten Borg-

wardt, and Bernhard Schölkopf. Covariate shift by kernel mean matching. Dataset

shift in machine learning, 3(4):5, 2009.

[59] Saikat Guha, Rajeev Rastogi, and Kyuseok Shim. Rock: A robust clustering al-

gorithm for categorical attributes. In Data Engineering, 1999. Proceedings., 15th

International Conference on, pages 512–521. IEEE, 1999.

[60] James J Heckman. Sample selection bias as a specification error (with an application

to the estimation of labor supply functions), 1977.

[61] David V Hinkley. On the ratio of two correlated normal random variables.

Biometrika, 56(3):635–639, 1969.

[62] Vera Hofer. Adapting a classification rule to local and global shift when only unla-

belled data are available. European Journal of Operational Research, 243(1):177–189,

2015.



179

[63] Vera Hofer and Georg Krempl. Drift mining in data: A framework for addressing

drift in classification. Computational Statistics & Data Analysis, 57(1):377–391,

2013.

[64] Judy Hoffman, Brian Kulis, Trevor Darrell, and Kate Saenko. Discovering latent

domains for multisource domain adaptation. In Computer Vision–ECCV 2012, pages

702–715. Springer, 2012.

[65] Daniel J Hopkins and Gary King. A method of automated nonparametric content

analysis for social science. American Journal of Political Science, 54(1):229–247,

2010.

[66] Jiayuan Huang, Arthur Gretton, Karsten M Borgwardt, Bernhard Schölkopf, and

Alex J Smola. Correcting sample selection bias by unlabeled data. In Advances in

neural information processing systems, pages 601–608, 2006.

[67] Chris Inskip. Inferring user demographics from social media. Undergraduate final

year project, The University of Sussex, 2015.

[68] Arun Iyer, Saketha Nath, and Sunita Sarawagi. Maximum mean discrepancy for

class ratio estimation: Convergence bounds and kernel selection. In ICML, pages

530–538, 2014.

[69] Nathalie Japkowicz. The class imbalance problem: Significance and strategies. In

Proc. of the Int’l Conf. on Artificial Intelligence. Citeseer, 2000.

[70] Jing Jiang. A literature survey on domain adaptation of statistical classifiers. URL:

http://sifaka. cs. uiuc. edu/jiang4/domainadaptation/survey, 2008.

[71] Jing Jiang and ChengXiang Zhai. Instance weighting for domain adaptation in nlp.

In ACL, volume 7, pages 264–271, 2007.

[72] Thorsten Joachims. A support vector method for multivariate performance mea-

sures. In Proceedings of the 22nd international conference on Machine learning,

pages 377–384. ACM, 2005.

[73] Lawrence Joseph, Theresa W Gyorkos, and Louis Coupal. Bayesian estimation of

disease prevalence and the parameters of diagnostic tests in the absence of a gold

standard. American Journal of Epidemiology, 141(3):263–272, 1995.



180

[74] Takafumi Kanamori, Shohei Hido, and Masashi Sugiyama. A least-squares approach

to direct importance estimation. Journal of Machine Learning Research, 10(Jul):

1391–1445, 2009.

[75] George Karypis, Eui-Hong Han, and Vipin Kumar. Chameleon: Hierarchical clus-

tering using dynamic modeling. Computer, 32(8):68–75, 1999.

[76] Hideko Kawakubo, Marthinus Christoffel Du Plessis, and Masashi Sugiyama. Com-

putationally efficient class-prior estimation under class balance change using energy

distance. IEICE TRANSACTIONS on Information and Systems, 99(1):176–186,

2016.

[77] Mark G Kelly, David J Hand, and Niall M Adams. The impact of changing popula-

tions on classifier performance. In Proceedings of the fifth ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining, pages 367–371. ACM,

1999.

[78] Daniel Kifer, Shai Ben-David, and Johannes Gehrke. Detecting change in data

streams. In Proceedings of the Thirtieth international conference on Very large data

bases-Volume 30, pages 180–191. VLDB Endowment, 2004.

[79] Sotiris Kotsiantis, Dimitris Kanellopoulos, Panayiotis Pintelas, et al. Handling im-

balanced datasets: A review. GESTS International Transactions on Computer Sci-

ence and Engineering, 30(1):25–36, 2006.

[80] Elizaveta Levina and Peter Bickel. The earth mover’s distance is the mallows dis-

tance: Some insights from statistics. In Computer Vision, 2001. ICCV 2001. Pro-

ceedings. Eighth IEEE International Conference on, volume 2, pages 251–256. IEEE,

2001.

[81] Paul S Levy and Edward H Kass. A three-population model for sequential screening

for bacteriuria. American Journal of Epidemiology, 91(2):148–154, 1970.

[82] Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, and Philip S Yu.

Transfer joint matching for unsupervised domain adaptation. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 1410–1417, 2014.

[83] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning trans-

ferable features with deep adaptation networks. In International Conference on

Machine Learning, pages 97–105, 2015.



181

[84] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation

with multiple sources. In Advances in neural information processing systems, pages

1041–1048, 2009.

[85] Locksley L McV Messam, Adam J Branscum, Michael T Collins, and Ian A Gardner.

Frequentist and bayesian approaches to prevalence estimation using examples from

johne’s disease. Animal Health Research Reviews, 9(01):1–23, 2008.

[86] Letizia Milli, Anna Monreale, Giulio Rossetti, Fosca Giannotti, Dino Pedreschi, and

Fabrizio Sebastiani. Quantification trees. In Data Mining (ICDM), 2013 IEEE 13th

International Conference on, pages 528–536. IEEE, 2013.

[87] Letizia Milli, Anna Monreale, Giulio Rossetti, Dino Pedreschi, Fosca Giannotti,

and Fabrizio Sebastiani. Quantification in social networks. In Data Science and

Advanced Analytics (DSAA), 2015. 36678 2015. IEEE International Conference on,

pages 1–10. IEEE, 2015.

[88] Jose G Moreno-Torres, Troy Raeder, Roćıo Alaiz-Rodŕıguez, Nitesh V Chawla, and

Francisco Herrera. A unifying view on dataset shift in classification. Pattern Recog-

nition, 45(1):521–530, 2012.

[89] Mark EJ Newman. Modularity and community structure in networks. Proceedings

of the national academy of sciences, 103(23):8577–8582, 2006.

[90] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions

on knowledge and data engineering, 22(10):1345–1359, 2010.

[91] Sinno Jialin Pan, James T Kwok, and Qiang Yang. Transfer learning via dimension-

ality reduction. In AAAI, volume 8, pages 677–682, 2008.

[92] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. Domain adap-

tation via transfer component analysis. IEEE Transactions on Neural Networks, 22

(2):199–210, 2011.

[93] Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D

Lawrence. Dataset shift in machine learning. The MIT Press, 2009.

[94] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y Ng. Self-

taught learning: transfer learning from unlabeled data. In Proceedings of the 24th

international conference on Machine learning, pages 759–766. ACM, 2007.



182

[95] Walter J Rogan and Beth Gladen. Estimating prevalence from the results of a

screening test. American journal of epidemiology, 107(1):71–76, 1978.

[96] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s distance as

a metric for image retrieval. International journal of computer vision, 40(2):99–121,

2000.

[97] Marco Saerens, Patrice Latinne, and Christine Decaestecker. Adjusting the outputs

of a classifier to new a priori probabilities: a simple procedure. Neural computation,

14(1):21–41, 2002.

[98] Dino Sejdinovic, Bharath Sriperumbudur, Arthur Gretton, and Kenji Fukumizu.

Equivalence of distance-based and rkhs-based statistics in hypothesis testing. The

Annals of Statistics, pages 2263–2291, 2013.

[99] Thomas A Severini. Elements of distribution theory, volume 17. Cambridge Univer-

sity Press, 2005.

[100] Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Wasserstein distance guided

representation learning for domain adaptation. 2018.

[101] Hidetoshi Shimodaira. Improving predictive inference under covariate shift by

weighting the log-likelihood function. Journal of statistical planning and inference,

90(2):227–244, 2000.

[102] Melvin Dali Springer. The algebra of random variables. Technical report, 1979.

[103] Amos Storkey. When training and test sets are different: characterizing learning

transfer. Dataset shift in machine learning, pages 3–28, 2009.

[104] Masashi Sugiyama and Motoaki Kawanabe. Machine learning in non-stationary

environments: Introduction to covariate shift adaptation. MIT Press, 2012.

[105] Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul V Buenau, and Mo-

toaki Kawanabe. Direct importance estimation with model selection and its appli-

cation to covariate shift adaptation. In Advances in neural information processing

systems, pages 1433–1440, 2008.

[106] Shiliang Sun, Honglei Shi, and Yuanbin Wu. A survey of multi-source domain

adaptation. Information Fusion, 24:84–92, 2015.



183

[107] Zhaonan Sun, Nawanol Ampornpunt, Manik Varma, and Svn Vishwanathan. Mul-

tiple kernel learning and the smo algorithm. In Advances in neural information

processing systems, pages 2361–2369, 2010.

[108] Gábor J Székely and Maria L Rizzo. Energy statistics: A class of statistics based

on distances. Journal of statistical planning and inference, 143(8):1249–1272, 2013.

[109] Dirk Tasche. Does quantification without adjustments work? arXiv preprint

arXiv:1602.08780, 2016.

[110] Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In Computer

Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 1521–

1528. IEEE, 2011.

[111] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun.

Support vector machine learning for interdependent and structured output spaces.

In Proceedings of the twenty-first international conference on Machine learning, page

104. ACM, 2004.

[112] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep do-

main confusion: Maximizing for domain invariance. arXiv preprint arXiv:1412.3474,

2014.

[113] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep

transfer across domains and tasks. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 4068–4076, 2015.

[114] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discrimi-

native domain adaptation. arXiv preprint arXiv:1702.05464, 2017.

[115] Vladimir Naumovich Vapnik. An overview of statistical learning theory. IEEE

transactions on neural networks, 10(5):988–999, 1999.

[116] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Ex-

tracting and composing robust features with denoising autoencoders. In Proceedings

of the 25th international conference on Machine learning, pages 1096–1103. ACM,

2008.

[117] Slobodan Vucetic and Zoran Obradovic. Classification on data with biased class

distribution. In Machine Learning: ECML 2001, pages 527–538. Springer, 2001.



184

[118] Geoffrey I Webb and Kai Ming Ting. On the application of roc analysis to predict

classification performance under varying class distributions. Machine learning, 58

(1):25–32, 2005.

[119] Kilian Q Weinberger. Marginalized stacked denoising autoencoder. http://www.cs.

cornell.edu/~kilian/code/code.html, 2018. [Online; accessed 14-August-2018].

[120] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics bulletin,

1(6):80–83, 1945.

[121] Jack Chongjie Xue and Gary M Weiss. Quantification and semi-supervised classifi-

cation methods for handling changes in class distribution. In Proceedings of the 15th

ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 897–906. ACM, 2009.

[122] Bianca Zadrozny. Learning and evaluating classifiers under sample selection bias. In

Proceedings of the twenty-first international conference on Machine learning, page

114. ACM, 2004.

[123] Mohammed J Zaki, Markus Peters, Ira Assent, and Thomas Seidl. Clicks: An

effective algorithm for mining subspace clusters in categorical datasets. Data &

Knowledge Engineering, 60(1):51–70, 2007.

[124] Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, and Zhikun Wang. Domain

adaptation under target and conditional shift. In ICML (3), pages 819–827, 2013.

[125] Xu Zhang, Felix Xinnan Yu, Shih-Fu Chang, and Shengjin Wang. Deep transfer

network: Unsupervised domain adaptation. arXiv preprint arXiv:1503.00591, 2015.

[126] Zhi-Hua Zhou. A brief introduction to weakly supervised learning. National Science

Review, 5(1):44–53, 2017.

[127] Fuzhen Zhuang, Xiaohu Cheng, Ping Luo, Sinno Jialin Pan, and Qing He. Supervised

representation learning: Transfer learning with deep autoencoders. In IJCAI, pages

4119–4125, 2015.



Appendix A

Quantification methods

A.1 Forman’s Adjusted Count as matrix-inversion

The matrix-inversion classify and adjust method is set out in Section 3.2. The estimate

of counts by class in the test set ât is given by:

ât = R−1
v pt, (A.1)

where â is the vector of estimated counts by class:

ât =

ât0
ât1

 , (A.2)

and â0 and â1 are the estimated count of instances by class 0 and 1 respectively and where

pt is the vector of predicted counts by class for the test set as given by the classifier:

pt =

pt0
pt1

 , (A.3)

R was defined in Equation 3.6 as:

R =

 r0 (1− r1)

(1− r0) r1

 . (A.4)

Adding the sub-scripts to designate the validation set and inverting gives:

R−1
v =

1

rv0rv1 − (1− rv0)(1− rv1)

 rv1 (rv1 − 1)

(rv0 − 1) rv0

 , (A.5)

so â0 is:

â0 =
rv1pt0 + (rv1 − 1)pt1

rv0rv1 − (1− rv0)(1− rv1)
. (A.6)

185



186

The test set contains nt instances so:

nt = at0 + at1 = pt0 + pt1. (A.7)

If we define the proportion of each actual class i in the test set as mi where:

mi =
ai
nt
, (A.8)

and the proportion of each predicted class i in the test set as qi where:

qi =
pi
nt
, (A.9)

then our estimate of the proportion of class 0 in the test set, m̂0 is given by:

m̂0 =
rv1q0 + (rv1 − 1)q1

rv0rv1 − (1− rv0)(1− rv1)
, (A.10)

which simplifies to:

m̂0 =
q0 − (1− rv1)

rv0 − (1− rv1)
. (A.11)

By definition, the true positive rate for class 0, tpr0, and the false positive rate for class 0,

fpr0, computed with the validation set are given by:

tpr0 = rv0, (A.12)

and:

fpr0 = 1− rv1, (A.13)

so the estimate of the proportion of class 0 in the set, m̂0 is given by:

m̂0 =
q0 − fpr0

tpr0 − fpr0

, (A.14)

which is the Adjusted Count formula from Forman [43].

A.2 Saerens et al. [97] probabilistic expectation-maximisation

method

The method relies on a classifier that generates an output that can be interpreted as the

probability of an instance belonging to a class. The adjustment method takes the class

probabilities assigned to each instance in the test set by the trained classifier as its input

and generates both an estimate of the class distribution in the test set and revised class

probabilities for each instance.



187

With Bayes rule, the estimate of the probability of the data x given the class label yi for

our training set, P̂tr(x|yi), can be expressed as:

P̂tr(x|yi) =
P̂tr(yi|x)P̂tr(x)

P̂tr(yi)
. (A.15)

Similarly for the test set:

P̂te(x|yi) =
P̂te(yi|x)P̂te(x)

P̂te(yi)
. (A.16)

The usual assumption is made that the class-conditional feature distribution is the same

in the training and the test set i.e.:

P̂tr(x|yi) = P̂te(x|yi), (A.17)

so the posteriori probabilities in the test set can be given by:

P̂te(yi|x) =

P̂te(yi)

P̂tr(yi)
P̂tr(yi|x)

n∑
j=1

P̂te(yj)

P̂tr(yj)
P̂tr(yj |x)

. (A.18)

Clearly this relies on knowing, or estimating, the class distribution (the class priors) in

the test set which of course is the quantification problem that we are trying to solve. The

class priors are estimated with an Expectation-Maximisation algorithm:

Consider the test set to consist of n items (x1,x2, ...,xn) and that there are c classes.

The likelihood of seeing this set of data is given by:

L(x1,x2, ...xn) =
n∏
k=1

Pte(xk) (A.19)

=
n∏
k=1

[
c∑
i=1

Pte(xk, yi)

]
(A.20)

=

n∏
k=1

[
c∑
i=1

Pte(xk|yi)Pte(yi)

]
. (A.21)

Again, making the within-class invariance assumption that Ptr(xk|yi) = Pte(xk|yi) the

EM algorithm then estimates the class priors for the new data P̂te(yi) that maximise the

likelihood of the data.

P̂tr(yi|xk) is the output of the model, trained on the training set, corresponding to class

yi when the input data is xk.

P̂tr(yi) is the class prior at training time and is simply given by the class count in the

training set.



188

In the EM method both P̂te(yi) and P̂te(yi|xk) are re-estimated on each iteration. The

superscript s being used to denote the iteration step.

The class prior is initialised to the value from the training set:

P̂ 0
te = P̂tr(yi). (A.22)

The two steps at each iteration are then:

1. Update the posteriori probability based on the estimated class priors:

P̂ ste(yi|xk) =

P̂ ste(yi)

P̂tr(yi)
P̂tr(yi|xk)

c∑
j=1

P̂ ste(yj)

P̂tr(yj)
P̂tr(yj |xk)

. (A.23)

2. Update the estimate of the class prior probabilities by summing the a posteriori esti-

mates:

P̂ s+1
te (yi) =

1

N

N∑
k=1

P̂ ste(yi|xk). (A.24)

The iterations continue until a convergence criteria is met.

A.3 Joachims [72] SVM for multivariate performance mea-

sures

Instead of mapping individual instance mapping feature vectors to estimated labels the

SVM∆
multi hypothesis h̄ maps the tuple of feature vectors to the tuple of estimated labels:

ȳ = h̄w(x̄) (A.25)

Where x̄ is a tuple of n feature vectors (x1, ...,xn) and ȳ is the corresponding tuple of n

labels (y1, ..., yn) and ȳ′ is the corresponding tuple of n estimated labels (y′1, ..., y
′
n).

Joachims [72] SVM optimisation problem is:

min
w,ξ≥0

1

2
w.w + Cξ (A.26)

Such that:

∀ȳ′ ∈ Ȳ \ ȳ : wT [Ψ(x̄, ȳ)−Ψ(x̄, ȳ′)] ≥ ∆(ȳ′, ȳ)− ξ (A.27)

Where: Y = {−1,+1}



189

Ψ(, ) is simply:

Ψ(x̄, ȳ) =

n∑
i=1

y′ixi (A.28)

∆(ȳ′, ȳ) is the loss function between the tuple of actual labels and the tuple of estimated

labels. This allows a loss to be computed over the elements of a confusion matrix for

example.

A.4 Hofer [62] distribution matching with Gaussian mix-

tures

The conditional distributions in the Source domains and the unconditional distribution in

the Target domain are considered to be separate mixtures of sub-distributions. Hofer [62]

states that the model is not restricted to a particular mixture distribution but that they

chose a Gaussian mixture.

In the Source domain the class-conditional distributions, fS(x|y) are considered to be a

weighted sum of Ky Gaussian distributions hi(x|y) :

fS(x|y) =

Ky∑
i=1

αiyhi(x|y) y = 0, 1. (A.29)

The unconditional distribution is always simply the sum of the class-conditional distribu-

tions weighted by the class proportions i.e.:

f(x) = P (y = 0)f(x|y = 0) + P (y = 1)f(x|y = 1). (A.30)

The unconditional distribution in the Target domain fT (x) is also considered to be a

weighted sum of Gaussian distributions. In this case the weighted sum of L distributions

gj(x):

fT (x) =
L∑
j=1

γjgj(x). (A.31)

The relationship between the distributions hi(x|y) and the distributions gj(x) is given by

the matrices M0 and M1. The elements of the matrix My, mijy, describe the proportion

of the distribution hi(x|y) that is within gj(x).



190

In order for probability mass to be conserved, clearly:

L∑
j=1

mijy = 1 ∀i = 1, ...,Ky y = 0, 1. (A.32)

So:

γj =

K0∑
i=1

PT (y = 0)αi0mij0 +

K1∑
i=1

PT (y = 1)αi1mij1. (A.33)

This is rewritten as:

γj =

K0+K1∑
i=1

aij , (A.34)

where:

aij =


PT (y = 0)αi0mij0 i = 1, ...,K0

PT (y = 1)αi1mij1 i = 1, ...,K1.

(A.35)

With only two classes, 0 and 1:

PS(y = 0) + PS(y = 1) = PT (y = 0) + PT (y = 1) = 1 (A.36)

The parameters for the two class-conditional Gaussian mixtures from the Source domain

fS(x|y = 0) and fS(x|y = 1), and the unconditional Gaussian mixture from the Target

domain fT (x) are all estimated separately from the labelled Source data and unlabelled

Target data using the standard EM algorithm for Gaussian mixtures. This gives estimates

for the parameters {α10, α20, ..., αK00} , {α11, α21, ..., αK11} and {γ1, γ2, ..., γL} along with

the parameters for the Gaussian distributions {h1(x|y = 0), h2(x|y = 0), ..., hK0(x|y = 0)},

{h1(x|y = 1), h2(x|y = 1), ..., hK1(x|y = 1)} and {g1(x), g2(x), ..., hL(x)}.

Hofer [62] does not give details on how number of components in each mixture (K0,K1, L)

are set.

The second step is to estimate the other model parameters: the elements of the M matrices

and the class distribution in the Target domain PT (y).

The full set of parameters enables values of {γ1, γ2, ..., γL} to be recalculated using Equa-

tion A.33 and then for the unconditional distribution to be synthesised with these param-

eter values using Equation A.31). This is done with a two step iterative process where at

each step the Earth Mover Distance (see Section 2.2.3.3) is minimised.

Earth Mover Distance (EMD) is given by:

EMD =

K0+K1∑
i=1

L∑
j=1

aijdij , (A.37)



191

where dij is the Euclidean distance between the centroid of the distribution hi and the

centroid of the distribution gj and aij represents the mass transferred.

The two steps of this iterative stage of the process are:

1. Minimise EMD with respect to PT (y) holding the M parameters constant

2. Minimise EMD with respect to the M parameters holding PT (y) constant

While Hofer [62] use Euclidean distance they make it clear that the choice of distance

measure is not pre-determined and that cross-validation can be used to select a measure.

In practice an adjustment was made to the Euclidean distance values dij to avoid unwanted

splitting of components where some components move large distances. They replaced dij

with d′ij where:

d′ij = dij + ψfij , (A.38)

where:

fij =


|γj − PT (y = 0)αi0| i = 1, ...,K0

|γj − PT (y = 1)αi1| i = K0, ...,K0 +K1.

(A.39)

The value of ψ was found using cross-validation.

At this stage the estimate for the class distribution in the Target domain, PT (y), has been

made. The authors then go on the use the estimated parameters to generate estimates of

the class-conditional distributions in the Target domain.



Appendix B

Importance weighting methods

B.1 Importance weighting methods generally

The standard Empirical Risk Minimisation (ERM) framework for supervised learning is

[70]:

θ∗ = arg min
θ∈Θ

∑
(x,y)∈(X,Y )

P (x, y)l(x, y, θ) (B.1)

Where θ∗ is our optimal model and l(x, y, θ) is our chosen loss function.

The aim is to have an optimal model for the Target domain i.e.:

θ∗T = arg min
θ∈Θ

∑
(x,y)∈(X,Y )

PT (x, y)l(x, y, θ) (B.2)

However the training instances have been randomly sampled from the Source domain so

if we rewrite equation B.3 as:

θ∗T = arg min
θ∈Θ

∑
(x,y)∈(X,Y )

PT (x, y)

PS(x, y)
PS(x, y)l(x, y, θ) (B.3)

PS(X,Y ) is unknown so we estimate it from the empirical distribution P eS(X,Y ) and now

our estimate of θ∗T becomes:

θ̂∗T = arg min
θ∈Θ

∑
(x,y)∈(X,Y )

PT (x, y)

PS(x, y)
P eS(x, y)l(x, y, θ) (B.4)

If our set of training data from the Source domain DS consists of NS instances {(xSi, ySi)}

then we can rewrite equation B.4 as:

θ̂∗T = arg min
θ∈Θ

NS∑
i=1

PT (xSi, ySi)

PS(xSi, ySi)
l(xSi, ySi, θ) (B.5)

192



193

i.e. each instance i of data in the training set is weighted by weight wi:

wi =
PT (xSi, ySi)

PS(xSi, ySi)
(B.6)

However, our true distributions PT (x, y) and PS(x, y) and unknown.

B.2 Kernel mean matching

ŵ = {ŵ1, ŵ2, ...ŵNS} (B.7)

ŵ = arg min
w

(1

2
wTKw− κTw

)
(B.8)

Under certain constraints of:

wi ∈ [0, B], (B.9)

and ∣∣∣∣∣
NS∑
i=1

wi −NS

∣∣∣∣∣ ≤ NSε. (B.10)

Where w is the vector of weights for the NS instances of training data from the Source

domain:

w = w1, ..., wNS (B.11)

and

K =

KS,S KS,T

KT,S KT,T

 (B.12)

and

Kij = k(xi, xj) (B.13)

and

κi =
NS

NT

NT∑
j=1

k(xi, xTj ) (B.14)

where

xi ∈ XS ∪XT (B.15)

and

xTj ∈ XT (B.16)



194

B.3 Unconstrained least squares importance fitting

As before the importance weights are defined as the ratio of the probability densities for

that point x in the Target and in the Source domains:

wi =
PT (xSi)

PS(xSi)
(B.17)

Where xSi is the ith datapoint in the training set from the Source domain.

Firstly the squared loss lSQ is defined:

lSQ =

∫ (
ŵ(x)− w(x)

)2
PS(x)dx (B.18)

Expanding the squared term:

lSQ =

∫
ŵ(x)2PS(x)dx− 2

∫
ŵ(x)w(x)PS(x)dx+

∫
w(x)2PS(x)dx (B.19)

As we will minimise the loss function with respect to ŵ(x) the final term is constant and

so can be ignored in the minimisation:∫
w(x)2PS(x)dx = C (B.20)

The loss function now becomes:

lSQ =

∫
ŵ(x)2PS(x)dx− 2

∫
ŵ(x)w(x)PS(x)dx+ C (B.21)

From our definition of w:

w(x)PS(x) = PT (x) (B.22)

So the loss function becomes:

lSQ =

∫
ŵ(x)2PS(x)dx− 2

∫
ŵ(x)PT (x)dx+ C (B.23)

The loss function can be approximated by using the empirical values from the training set

(Source) and test set (Target):

l̂SQ =
1

NS

NS∑
j=1

ŵ(xSj)
2 − 2

NT

NS∑
i=1

ŵ(xT i) + C (B.24)

The estimated weight function ŵ(x) is modelled as a sum of b basis functions φ(x) weighted

with the constants α:

ŵ(x) =
b∑
l=1

αlφl(x) = αTφ(x) (B.25)



195

So the loss function can be expressed as:

lSQ = αT Ĥα− 2ĥTα (B.26)

Where:

Ĥ =
1

NS

NS∑
j=1

φ(xSj)φ(xSj)
T (B.27)

And:

ĥ =
1

NT

NT∑
i=1

φ(xT i) (B.28)

With l2 regularisation the constraint that the values of α must all be positive can be

dropped and hence this is unconstrained. This now gives the unconstrained minimisation:

min
α

[1

2
αT Ĥα− ĥTα +

λ

2
αTα

]
(B.29)

Which has a closed form solution:

α̃ = (Ĥ + λI)−1ĥ (B.30)

Since the non-negativity constraint on α was dropped it is possible that come of the learned

values are negative so to compensate for this approximation error the solution is modified

as:

α̂ = max(0, α̃) (B.31)



196

************* End of document *************


	PhD Coversheet
	PhD Coversheet

	Spence, David James Frederick



