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MODELLING AND ANALYSING NEURONAL AND EPIDEMIOLOGICAL
DYNAMICS ON STRUCTURED STATIC AND DYNAMIC NETWORKS

SUMMARY

Many of the technological, social and biological systems we observe and partake in in
our everyday lives can be described as networks of interacting elements. Network-
based research can then be performed to improve our understanding about the
structural features of such complex networks, the behaviour of processes occurring
within such complex networks, and the interaction between the two. During my
PhD I have considered neuronal and epidemiological dynamics occurring on complex
networks, with the main aim of improving model realism by incorporating spatial or
local structure whilst maintaining model tractability. In total I have considered three
network-based research projects which are included in this thesis in chronological
order.

This thesis begins with an introduction to the study of complex networks and
processes occurring on complex networks. Comparisons are drawn between the
approaches of neuroscience and epidemiology-based network studies, including con-
sideration of the difficulties regarding modelling local spatial structure. Chapter
2 considers an existing model describing the activity-dependent growth and devel-
opment of a network of excitatory and inhibitory neurons embedded in space. A
systematic investigation of the effects of various spatial arrangements of neurons
on the resultant electrical dynamics finds that increased spatial proximity between
inhibitory neurons leads to oscillatory dynamics. Chapter 3 utilises the edge-based
compartmental modelling approach. Existing research is extended to derive and
validate equations describing the evolution of a susceptible-infected-recovered (SIR)
epidemic process occurring on a dual-layer multiplex network incorporating het-
erogeneity in the structure, type and duration of connections between individuals.
Chapter 4 considers pairwise models describing the SIR epidemic process and de-
rives and validates analytic expressions for the epidemic threshold, an improvement
on existing results. This thesis concludes with a discussion of the research contained
in Chapters 2-4, including suggestions for improvements and future research ideas.
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of an SIR epidemic on a static uniplex network (solid black line), for the

proposed EBCM of an SIR epidemic on a dual-layer multiplex with the

dynamic network layer being close to zero (thick dashed red line), and for

10 Gillespie simulations of the SIR epidemic on a single network of size

N = 5000 (solid blue lines). In all panels γ = 1, ρ = 0.05, and p = 0.5

and r = 10 generate a negative binomial distribution for pairs of edge

stubs. For the original static derivation (solid black line) ps = 0.5 = pt,

describing the proportion of edge-pairs that are split into two single lines

or remain as a triangle corner, respectively. For the multiplex derivation

(thick dashed red line) βs = βd, η = 0.01, and ps = 0.4999999, pt = 0.5

and hence pd = 10−7 describe the proportion of edge-pairs that become

two static lines, a static triangle corner, or two dynamic edges respectively.

(a) β′s = 1, C = 0.02677, (b) β′s = 0.5, C = 0.02670, (c) β′s = 0.25,

C = 0.02658, (d) β′s = 0.125, C = 0.02685, where C denotes the global

clustering coefficient of each static network layer generated for simulation . 69

3.6 Multiplex model convergence — no static layer, with simulation.

The time evolution of infection prevalence for the original EBCM of an SIR

epidemic on a dynamic uniplex network with conserved degrees and edge

re-wiring (solid black line), for the proposed multiplex EBCM of an SIR

epidemic with the static network layer being close to zero (thick dashed red

line), and for 10 Gillespie simulations of the process on a single network

of size N = 5000 (solid blue lines). In all panels γ = 1, ρ = 0.05, and

p = 0.5 and r = 10 generate a negative binomial distribution for pairs

of edge stubs. For the original conserved-degree derivation (solid black

line) pd = 1, indicating that all edge-pairs become two disjoint dynamic

edges. For the multiplex derivation (thick dashed red line), η = 0.01 and

ps = pt = 10−7 and pd = 0.9999998 describe the proportion of edge-pairs

that become two static lines, single triangle corners, or two dynamic edges

respectively. (a) β′s = 1, C = 0.004944, (b) β′s = 0.5, C = 0.005285, (c)

β′s = 0.25, C = 0.005344, (d) β′s = 0.125, C = 0.005127, where C denotes

the global clustering coefficient of each dynamic network layer generated

for simulation, at time zero . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
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3.7 Multiplex model prediction vs. simulation — varying clustering

and average degree. Plotting the dynamics of the proportion of infected

individuals over time. Each panel contains 25 Gillespie simulations on a sin-

gle multiplex network comprised of N = 1000 individuals (blue lines) and

the associated EBCM prediction (black line). All networks are generated

using a negative binomial distribution for pairs of edge stubs with parame-

ters p = 0.5 and various values for r. Networks in column 1 (counting from

left to right) have average degree 10 (achieved via r = 5), networks in col-

umn 2 have average degree 20 (achieved via r = 10) and networks in column

3 have average degree 30 (achieved via r = 15). Networks in row 1 (counting

from top to bottom) have minimised clustering via values ps = 0.99999998

and pt = 10−8. Networks in row 2 have the values ps = 0.49999999 = pt.

Networks in row 3 have maximised clustering via the values ps = 10−8 and

pt = 0.99999998. Counting panels from left to right and top to bottom,

starting with the upper-left panel, static networks have the following clus-

tering coefficients: C = 0.0161, C = 0.0267, C = 0.0370, C = 0.0535,

C = 0.0473, C = 0.0493, C = 0.0898, C = 0.0662, C = 0.0629. In all

panels, tmax = 10, ρ = 0.05, βs = βd = 0.25, γ = 1, η = 0.01 . . . . . . . . 72

3.8 Multiplex model prediction vs. simulation — varying infection

parameters βs and βd. Plotting the dynamics of the proportion of in-

fected individuals over time. Each panel contains 100 Gillespie simulations

(10 simulations on 10 multiplex networks comprised of N = 5000 individ-

uals) (blue lines) and the associated EBCM prediction (black line). All

multiplex networks follow a negative binomial distribution for pairs of edge

stubs with parameters p = 0.5 and r = 10, which were split into three

edge types via ps = 0.3 = pt and thus pd = 0.4. In all panels tmax = 10,

ρ = 0.05, γ = 1, η = 0.01. Across the panels, different values for βs and

βd have been used in the range [0.125, 0.25, 0.5], indicated by individual

column and row headings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
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3.9 Multiplex model predictions. Plotting the dynamics of the proportion

of infected individuals over time, for a number of different parameter sets. In

all panels, a baseline parameter set (p = 0.5, r = 10, ps = 0.3 = pt, pd = 0.4,

βs = 0.05, βd = 0.2, γ = 1, η = 0.01 = ρ, tmax = 10⇒ R0 = 1.076) is used

to plot dynamics predicted by multiplex model equations (3.1)-(3.23) (thick

black line). In each panel, a single parameter is varied and the resultant

predictions are plotted in various colours, indicated by individual panel

legends. In the bottom row of panels, parameters ps, pt and pd are being

varied. Since the model has the constraint (ps + pt + pd) ≡ 1, we alter the

triplet values in each panel in the following way. Assume we are varying the

parameter ps. If the new ps is larger than the baseline ps, we subtract 1
2 the

difference from the remaining baseline parameters pt and pd. Conversely, if

the new ps is smaller than the baseline ps,
1
2 the difference is added to each

of the values pt and pd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.10 Multiplex model layer contributions. Heat map plots depicting the

final epidemic size (equal to the fraction of the population who are either

infectious or recovered at the end of the epidemic process) predicted by

equations (3.1)-(3.23) for a multiplex network of various proportions ps, pt

(y-axes) and pd (x-axes), with the model constraint (ps+pt+pd) ≡ 1. For all

setups γ = 1, ρ = 0.01, tmax = 25 and pairs of edge stubs followed a discrete

homogeneous distribution where all individuals had 2 edge pairs (and hence

total degree 4). The values of remaining model parameters η, βs and βd

are indicated above each panel, with η ∈ [0.01, 1, 100], βs ∈ [0.55, 0.6, 0.65]

and βd ∈ [βs/2, βs, 2βs]. All 27 possible combinations of the parameters

η, βs and βd are considered. Prior to implementation, a number of setups

across the (ps, pt, pd) parameter spaces in each panel were tested by hand

to ensure that the epidemic process had concluded by time tmax = 25 . . . 76
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3.11 Validation of the basic reproduction number R0. Plotting values of

the basic reproduction number R0 (x-axis), found via the leading eigenvalue

of the matrix (3.24), against the associated final epidemic sizes (y-axis) pre-

dicted by multiplex equations (3.1)-(3.23) (red line) and recorded by single

statistically-correct Gillespie simulations (blue circles). Static and dynamic

line stubs follow binomial distributions with parameters n = 20 and p = 0.5.

The distribution of triangle corners follows a binomial distribution with pa-

rameters n = 1 and p = 0.001 to minimise clustering. Fixed parameters

were γ = 1, ρ = 0.001, η = 0.01, tmax = 10, N = 1000. In each setup

βs = βd. 100 transmission rates were tested, from βs = βd = 0.01 up to

βs = βd = 0.3, in equal-sized increments. In Gillespie simulations where

R0 > 1, if the number of infected individuals did not reach 10 times the

initial number of infectives, all data was discarded and the Gillespie script

restarted from initial conditions at time zero . . . . . . . . . . . . . . . . . 78

3.12 Effects of rewiring, average degrees and clustering. Plotting the

value of R0 and the associated final epidemic size found using EBCM equa-

tions (3.1)-(3.23), for a number of different setups. Upper-left panels: Test-

ing 100 evenly-spaced values for η in the range [0.01, 50]. Remaining model

parameters were ps = 0.3 = pt, βs = 0.1 = βd, γ = 1, ρ = 0.01 and

tmax = 25. Pairs of edge stubs followed a negative binomial distribu-

tion with parameters p = 0.5 and r = 5. Upper-right panels: Testing 15

evenly-spaced values for 〈k〉 ∈ [2, 30], generated using a negative binomial

distribution for pairs of edge stubs with fixed p = 0.5 and r ∈ [1, 15]. Re-

maining model parameters were ps = 0.3 = pt, βs = 0.0625 = βd, γ = 1,

η = 0.1, ρ = 0.01, tmax = 25. Lower-left panels: Testing 100 evenly-spaced

values for pt in the range [0.01, 0.99]. The proportion (1 − pt) was split

equally between parameters ps and pd. Remaining model parameters were

βs = 0.5 = βd, γ = 1, ρ = 0.01, η = 0.1 and tmax = 25. Pairs of edge

stubs followed a discrete homogeneous distribution where all individuals

had 2 edge pairs. Lower-right panels: Testing 15 evenly-spaced values for

〈k〉 ∈ [2, 30], generated using a discrete homogeneous distribution for pairs

of edge stubs where all individuals have identical degree. Remaining model

parameters were ps = 0.3 = pt, βs = 0.0625 = βd, γ = 1, ρ = 0.01, η = 0.1,
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Chapter 1

Introduction

1.1 Background and motivation

Networks, comprised of nodes connected by links or edges, can be utilised to describe many

of the complex systems we observe in the real-world, such as the structure of interconnected

neurons and synapses in the brain, as well as other technological, biological and social

networks [82]. Networks can be static, meaning that the population of nodes and their

connection structure remain fixed over time. Conversely, dynamic networks allow for

changes in the composition of the population and its structure over time. Individuals,

described by nodes, can join or leave the population, whilst connections between existing

population members can be continuously created and removed. A visualisation of part of

the structure of the internet, taken as a snapshot on the 15th of January 2005, is provided

in Figure 1.1 and demonstrates the level of complexity even partial and static real-world

networks can exhibit.

Studying the structural characteristics of naturally occurring and man-made real-world

networks can provide insight into which structural features are most common and how

such features influence the network’s characteristics as a whole. Recent examples of re-

search considering network architecture include the consideration of scientific collaboration

networks [83], ecological food webs [79], mobile phone communication networks [86], air

transportation networks [39], political blog networks [1], financial transaction networks [7],

metabolic networks [49] and semantic networks [108]. In dynamic networks, such research

can consider fluctuations in the prevalence of specific topological/structural features over

time [59].

As well as studying the topological features of empirical networks, research can consider

dynamical processes occurring within and between each node of a network over time [122].
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Figure 1.1: Partial map of the Internet based on the January 15, 2005 data found on The
Opte Project [67]. Each line is drawn between two nodes, representing two IP addresses.
The length of the lines are indicative of the delay between those two nodes. This graph
represents less than 30% of the Class C networks reachable by the data collection program
in early 2005. Lines are colour coded according to their corresponding RFC 1918 allocation
as follows: �: net, ca, us, �: com, org, �: mil, gov, edu, �: jp, cn, tw, au, de, �: uk,
it, pl, fr, �: br, kr, nl, �: unknown. Image reproduced without changes from Wikipedia
[126], licensed under a CC BY 2.5.

For example, the process of diseases spreading amongst populations of individuals [88], the

process of man-made viruses spreading across networked computers [5], or the processes

of rumour spreading and opinion formation within social networks [81, 34]. In many cases,

a major aim is to understand how specific structural features of the network affect the

dynamical process being modelled. For example, in the context of an epidemic spreading

within a human population, increased levels of clustering, describing the propensity for two

friends1 of an individual to also be friends themselves, has been shown to inhibit epidemic

spreading [125]. However, the relationship between clustering and the outcome of the

epidemic is complex. The same authors find that simultaneously increasing clustering and

1The terminology ‘friend’ is used to describe a population member that is connected to, or makes
connections with, the individual in question

https://en.wikipedia.org/wiki/Classful_network
https://tools.ietf.org/html/rfc1918
https://commons.wikimedia.org/wiki/File:Internet_map_1024_-_transparent,_inverted.png
https://creativecommons.org/licenses/by/2.5/
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Figure 1.2: The feedback loop that occurs between the dynamics on and of an adaptive
or coevolutionary network. Inspired by Figure 1 of [36].

the variance of the degree distribution, describing the probability distribution governing

the number of edges an individual partakes in, leads to an increase in the final size of the

epidemic [125].

When considering dynamic processes on dynamic networks, not only can research

investigate how the topological features of the network influence the dynamical process

on the network, it can also consider how the dynamical process influences the topological

features of the network. These interacting processes form a feedback loop between the

state of the nodes and the network’s topology [36], and such networks are referred to as

coevolutionary or adaptive networks. A visualisation of this feedback loop is given in

Figure 1.2.

The feedback loop between the dynamics on and of the network can be easily under-

stood in the context of an epidemic spreading through a population of individuals. As

mentioned previously, the connection structure between individuals influences the spread

of the epidemic, or the dynamics occurring on the network. The spread of the epidemic

determines the state of the various nodes in the network (e.g. some nodes become in-

fected). If population members become aware of the epidemic prior to becoming infected,

for example if their neighbour becomes infected, they may reduce their susceptibility by

altering the connections they make with other individuals. This process causes changes to

the connection structure of the network which are otherwise referred to as the dynamics

of the network. Thus, a reaction to the epidemic leads to a change in behaviour which

influences the network’s topology and eventually the course of the epidemic itself.

Awareness of an epidemic can itself be considered as a dynamical process, and the
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Susceptible Infectious Recovered

Figure 1.3: Flow diagram representing the compartments and transitions possible within
the basic SIR compartmental model

interaction between this process and the epidemic process has been considered on complex

networks in [29] and [35]. Reviews of research considering the influence of human behaviour

on infectious disease spread and of research on adaptive networks can be found in [30] and

[36], respectively.

1.2 Thesis contribution

This thesis is composed of three pieces of research I undertook during my PhD studentship.

All three pieces of research consider dynamic processes occurring on complex networks and

use the same mathematical formalism, whereby complex networks are described by a set

of nodes and their respective connections. The first piece of research considers a network-

based model from neuroscience which describes the growth and development of a network

of excitatory and inhibitory neurons embedded in space. The second and third pieces

of research consider network-based models from epidemiology, with both models tracking

the dynamics in time of a susceptible-infected-recovered (SIR) epidemic process. The

compartments and transitions possible within the SIR compartmental model are visualised

in Figure 1.3.

Early precursors of network-based models made strong unifying assumptions that dis-

regarded local spatial structure, be that spatial embedding or clustering. For example, the

original compartmental SIR model, derived following work by Kermack & McKendrick in

1927 [55], assumes homogeneous mixing, whereby all pairs of individuals within the pop-

ulation are assumed to come into contact at the same rate. The ordinary differential

equations governing the dynamics in time of each disease compartment are

dS

dt
= −βSI

N
(1.1)

dI

dt
= β

SI

N
− γI (1.2)

dR

dt
= γI, (1.3)

where S + I +R ≡ N , N being the population size, infectious individuals that come into

contact with susceptible individuals transmit infection at rate β and infectious individuals

recover at rate γ.
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However, with increasing evidence supporting the existence of non-random structure

in empirical networks [107], and with knowledge that many real-world networks occur in

space, network-based studies must consider any structural features of the network that

influence the outcome on a global scale. Incorporating such structure into network-based

models prevents researchers from making strong unifying assumptions, which in turn com-

plicates the modelling and analyses processes. Thus, improved models, modelling tech-

niques and analytical approaches are required.

In the first piece of research, contained in Chapter 2, a complex network comprised of

two types (excitatory and inhibitory) of nodes describing neurons that are assigned fixed

locations in space is considered. The dynamical processes modelled are i) the development

of the network’s structure over time, where each neuron has a variable neuritic radius de-

termining the connections it forms with other neurons in the network, and ii) the electrical

activity of neurons over time, where each individual neuron strives to maintain a set level

of electrical activity by increasing or decreasing it’s neuritic radius, altering the strength

of connections it makes with other excitatory and inhibitory neurons in the network and

thus the level of electrical input it receives. Various spatial arrangements of the two types

of neurons are considered and tested to determine how specific distributions of the neuron

types influence the connection structure and electrical activity of the network on a global

scale.

In the second piece of research, contained in Chapter 3, model equations are derived

which describe the dynamics in time of an SIR epidemic occurring on a complex network,

where individuals exhibit heterogeneity in the structure, duration and type of connections

made with other individuals. Namely, the model has an entirely static network layer with

its permanent connection structure being determined by two degree distributions, allowing

for varying levels of clustering to be considered. The network has a secondary network

layer, meaning the network can be considered as multiplex, where all such connections

rewire at a constant rate, generating an entirely dynamic network layer with finite du-

rations for each connection made. The model equations incorporate various parameters

as inputs such that distinct local spatial structures can be considered and the resultant

epidemic dynamics studied.

In the third piece of research, contained in Chapter 4, pairwise model equations re-

flecting the dynamics of an SIR epidemic occurring on a clustered complex network are

considered. The model equations incorporate the global clustering coefficient, meaning

that a range of clustering coefficients ∈ [0, 1] can be tested and the resultant dynamics
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analysed. A novel analytical approach is taken to derive expressions for the epidemic

threshold in two variants of the pairwise model, which are approximated and then vali-

dated by comparison to epidemic threshold expressions derived via alternative methods.

Although all of the research contained in Chapters 2-4 utilises the same underlying

mathematical formalism and considers the effects of local spatial structure on global dy-

namics, there are some clear differences between the analytical approaches typical of neu-

roscience and epidemiology. When considering activity in the brain, research tends to

focus on ‘healthy’ and ‘pathological’ activity states [101]. In a healthy state, the brain’s

activity is characterised by unstable oscillatory behaviour generated by individual firing

neurons that operates within a stable regime on a global scale. Pathological network ac-

tivity, for example in patients with epilepsy, can be characterised as abnormally excessive

or synchronous neuronal activity [27]. In a neuroscience-based network study, one might

study the effects on electrical activity of specific structural motifs in the network of neu-

rons or investigate the mechanisms that enable the network of neurons to remain within

healthy operational regimes. Further, researchers can consider what kind of techniques

could be used to treat patients who experience pathological brain activity.

On the other hand, researchers who study the dynamics of infectious diseases are most

interested in the extreme cases of an epidemic process. They ask questions such as: under

what conditions will the epidemic persist and spread, and under what conditions will it stop

spreading? These kind of questions lead epidemiologists to consider mathematical expres-

sions for epidemic thresholds, above which the epidemic is expected to spread and below

which it is expected to die out. Epidemic thresholds can incorporate disease transmission

rates and information regarding the network’s contact structure. Considering the origi-

nal compartmental SIR model governed by equations (1.1)-(1.3), the epidemic threshold

can be expressed as R0 = β/γ, which is commonly referred to as the basic reproduction

number and describes the expected number of new infections caused by a single infectious

individual in an otherwise susceptible population.

In the neuroscience-based model considered in Chapter 2, each neuron is modelled as

having a variable level of electrical activity within a bounded, continuous and closed range.

In contrast, both of the epidemiological-based models (Chapters 3 and 4 respectively)

consider nodes to be in one of three discrete states, indicated by the disease compartments

in Figure 1.3. Although the neuroscience-based research in Chapter 2 is restricted to

considering a neuron’s activity levels to exist within a continuous range, it is also possible

to describe a neuron’s activity by transitions between discrete states. For example, a
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Figure 1.4: Flow diagram representing the compartments and transitions possible within
the basic SIRS (upper) and QARQ (lower) compartmental models

neuron can be considered as being initially quiescent (Q), followed by becoming activated

(A) during firing and subsequently entering a period of refraction (R), before returning

to the initial quiescent state. This QARQ model can be considered similarly to the SIRS

epidemic model which describes a disease transmission model that is very similar to the

SIR model, but where individuals can return to the susceptible (S) disease state following

a period of recovery (R) from infection (Figure 1.4).

Although the statuses of neurons within a developing neural network and individuals in

a social network during an epidemic can be characterised in a similar way, these scenarios

diverge when transmission dynamics are considered (e.g. how do neurons or individuals

cause neighbouring neurons or individuals to change states?). In epidemiology the typical

approach is to assume that a disease-spreading contact between a susceptible and an

infectious individual occurs at a given rate. It is also typical to assume that infectious

individuals recover from infection at a given rate. However, in neuroscience, a common

approach is to consider ‘integrate-and-fire’ neuronal models [11, 12] whereby a neuron

receives excitatory and inhibitory inputs from other neurons, and a neuron only transitions

from quiescent to activated (or from not-firing to firing) when its electrical activity (or

membrane potential) exceeds a threshold value, upon which an action potential or spike

in the neuron’s activity is generated. A neuron is then considered to transition from the

activated state to the refractory state at a given rate, once it completes its firing activity.

A common theme across all three pieces of research in Chapters 2-4 is the considera-

tion of local spatial structure and its influence on the dynamic process being modelled at

a global scale. Specifically, the challenge here in considering both neuronal and epidemi-

ological dynamics is to utilise and analyse models where the network structure exhibits
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spatial embedding (for the neuronal network model, see Chapter 2) or the network exhibits

complex local structure such as clustering (for the epidemic network models, see Chapters

3 and 4).

1.3 Thesis structure

The remaining chapters of this thesis are structured as follows. In Chapter 2, a published

model [119] is considered which describes the activity-dependent growth and develop-

ment of a network of excitatory and inhibitory neurons embedded in Euclidean space. A

systematic investigation into the effect of various spatial arrangements of excitatory and

inhibitory neurons on the global dynamics of the network is performed. In this setting,

the physical locations of the neurons influence the network’s topology which in turn in-

fluences the electrical activity of each neuron. The electrical activity of each neuron also

influences the neuron’s local network topology: each neuron increases or decreases the size

of its neuritic field, which determines a neuron’s connection structure and strengths, to

increase or decrease electrical input until a homeostatic set point for electrical activity

can be reached by all neurons in the system simultaneously. As well as considering the

dynamic balance between the amount of excitation and inhibition in the network (called

the E/I balance), it is demonstrated that the spatial arrangement of the neurons is also an

important factor in determining global outcome. Further, measures for inhibitory cluster-

ing within one- and two-dimensional lattice structures with periodic boundary conditions

are defined, supporting the discovery that increased inhibitory clustering leads to unsta-

ble, oscillatory behaviour on a global scale in the model. Previous research had shown

that different spatial arrangements of neurons led to distinct outcomes, but no systematic

investigation into such spatial arrangements was published prior to this work.

In the second piece of research, contained in Chapter 3, novel model equations are

derived, following the existing edge-based compartmental modelling approach [124, 73,

74, 77]. The model equations describe an SIR epidemic spreading on a multiplex network

comprised of two layers that represent i) an individual’s permanent connections to their

local community and ii) transient connections made with other members of the population.

This work combines two existing edge-based compartmental models into a single set of

equations, allowing for a network-based model with a combination of static and dynamic

network architecture. The basic reproduction number, describing the average number

of infectious cases generated by a single infectious individual in an otherwise susceptible

population, is derived, and this is validated and tested alongside the model equations
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describing the prevalence of each disease compartment over time. The original abstract

for this piece of research is as follows:

The duration, type and structure of connections between individuals in real-

world populations play a crucial role in how diseases invade and spread. Here,

we incorporate the aforementioned heterogeneities into a model by consider-

ing a dual-layer static-dynamic multiplex network. The static network layer

affords tunable clustering and describes an individual’s permanent community

structure. The dynamic network layer describes the transient connections an

individual makes with members of the wider population by imposing constant

edge rewiring. We follow the edge-based compartmental modelling approach to

derive equations describing the evolution of a susceptible-infected-recovered epi-

demic spreading through this multiplex network of individuals. We derive the

basic reproduction number, measuring the expected number of new infectious

cases caused by a single infectious individual in an otherwise susceptible pop-

ulation. We validate model equations by showing convergence to pre-existing

edge-based compartmental model equations in limiting cases and by compari-

son with stochastically simulated epidemics. We explore the effects of alter-

ing model parameters and multiplex network attributes on resultant epidemic

dynamics. We validate the basic reproduction number by plotting its value

against associated final epidemic sizes measured from simulation and predicted

by model equations for a number of setups. Further, we explore the effect of

varying individual model parameters on the basic reproduction number. We

conclude with a discussion of the significance and interpretation of the model

and its relation to existing research literature. We highlight intrinsic limita-

tions and potential extensions of the present model and outline future research

considerations, both experimental and theoretical.

In the third piece of research, contained in Chapter 4, the epidemic threshold is con-

sidered in pairwise/correlation models [94, 54] describing an SIR epidemic process on

clustered and regular networks. Analytic expressions for the epidemic threshold are ob-

tained by utilising a novel analytical approach which exploits the presence of two fast

variables related to the correlation structure that develops in the network as the epidemic

spreads. Two analytic threshold expressions are derived and approximated, for two dis-

tinct pairwise model closures, and both expressions are validated numerically. Detailed

calculations are provided in Appendices 4.A-4.D. The abstract for this piece of research is
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given as follows:

The epidemic threshold is probably the most studied quantity in the modelling

of epidemics on networks. For a large class of networks and dynamics the

epidemic threshold is well studied and understood. However, it is less so for

clustered networks where theoretical results are mostly limited to idealised net-

works. In this paper we focus on a class of models known as pairwise models

where, to our knowledge, no analytical result for the epidemic threshold exists.

We show that by exploiting the presence of fast variables and using some stan-

dard techniques from perturbation theory we are able to obtain the epidemic

threshold analytically. We validate this new threshold by comparing it to the

numerical solution of the full system. The agreement is found to be excellent

over a wide range of values of the clustering coefficient, transmission rate and

average degree of the network. Interestingly, we find that the analytical form

of the threshold depends on the choice of closure, highlighting the importance

of model choice when dealing with real-world epidemics. Nevertheless, we ex-

pect that our method will extend to other systems in which fast variables are

present.

This thesis concludes with a discussion, contained in Chapter 5, which summarises

the research and results within Chapters 2-4 and discusses the implications of the work

presented, alongside considerations of potential improvements to the work, future research

ideas and interesting open questions related to the research of complex systems.
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Chapter 2

Clustered arrangement of

inhibitory neurons can lead to

oscillatory dynamics in a model of

activity-dependent structural

plasticity

2.1 Introduction

Neuronal networks continuously undergo changes in their connectivity. This structural

plasticity starts with development and continues throughout adulthood. It is typically

supported by experience-dependent mechanisms. In computational neuroscience, a num-

ber of mathematical models of activity-dependent structural plasticity have been devel-

oped to further our understanding of the formation, function, and underlying structure

of neuronal networks [90]. These models operate on the assumption that network struc-

ture results from a number of activity-dependent processes such as neurite outgrowth and

growth cone behaviour [16, 26, 100], and naturally occurring cell death [87, 25]. It has

been shown that combining the Shunting model [38], describing the neuronal activity of a

group of neurons, with terms describing activity-dependent outgrowth, in which initially

disconnected neurons organise themselves into a network under the influence of endoge-

nous activity, results in a model that can display complex periodic behaviour of electrical

activity and connectivity, including small-amplitude stable oscillations and intermittent
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unstable burst-like oscillations [118, 120]. A unifying assumption of this so-called Ex-

tended Shunting model (ES model hereafter) is the homeostatic regulation of neuronal

excitability toward a target level, a phenomenon which is considered ubiquitous in both

development and adulthood [114, 41]. Such a mechanism allows neurons to maintain sta-

bility of function whilst undergoing significant anatomical and functional changes and it

plays a key role in network growth and stability.

Early neural network formation depends on a number of factors: (1) neurotrophic

substances exerting chemoattraction and chemorepulsion, (2) neurotransmitters, most no-

tably glutamate (an excitatory transmitter), GABA (classically inhibitory transmitter but

may be temporarily excitatory during early development), glycine, and taurine, and (3)

neural network activity. It is important to note that neurotransmitters can act directly on

the network growth through modulation of intracellular calcium [42] and also indirectly

through synaptic mechanisms causing depolarisation (excitation) and hyperpolarisation

(inhibition) of the target neuron and thus modulation of neuronal activity [21, 128, 65]. It

is the third mechanism of network activity-dependent growth that the ES model considers

and in particular the balance between excitation and inhibition in a neuronal network,

which plays a crucial role in determining the stability and computational effectiveness of

the network [40]. Animal and human studies have shown that the disruption of excitatory

and inhibitory neurotransmitter levels results in neural migration disorders and epilepsy

[65]; furthermore it is noted that some human genetic disorders are associated with exces-

sive inhibition in the brain [31]. Previous work involving the ES model emphasised the

importance of the balance between excitation and inhibition, suggesting that a network

developing under conditions of relatively high inhibition is more likely to end up in a

pathological state with oscillatory behaviour, whereas a network developing under a low

level of inhibition during its development enables the system to move to the normal state,

where the network structure reaches a stable end state with stable levels of activity [120].

The oscillatory behaviour induced by moderate proportions of inhibition was thought to

be a result of interactions between excitatory and inhibitory activities, occurring on the

timescale of the electrical activity [119].

Central to this chapter is another factor that has been identified as affecting system

behaviour beyond the proportion of inhibitory neurons: namely, the spatial arrangement

of inhibitory neurons [119]. The developmental migration of inhibitory neurons within

the central nervous system was thought to be spatially random [2, 110]. Recent studies,

however, demonstrate that during neural development clusters of inhibitory neurons form.
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The result of this inhibitory clustering is the production of higher amplitude inhibitory

postsynaptic potentials (IPSPs) within excitatory neurons [8, 15].

Under neural activity homeostasis, neural inhibition will induce outgrowth and allow

disconnected subnetworks to become connected. We therefore hypothesise that the spatial

distribution of inhibitory neurons will play an important role in the interaction between

structure and function. When highly clustered inhibitory cells (with self-inhibition) be-

come electrically inhibited, outgrowth of inhibitory neurons is stimulated (as their activity

is below the homeostatic target value), inducing long-range inhibition within the whole

network. This in turn means that these networks develop stronger excitatory-excitatory,

excitatory-inhibitory (and inhibitory-excitatory) connectivity, and as a result, possibly

increased network instability.

A comprehensive account of the extent to which the spatial organisation of excitatory

and inhibitory neurons influences global system behaviour and the structural characteris-

tics of the resulting neuronal networks is lacking. Such an account is made necessary by a

growing body of evidence suggesting the presence of nonrandom network attributes within

neuronal network structures, including modular community structure, short characteristic

path length (associated with high global efficiency of information transfer), high levels of

clustering (i.e., the propensity for neighbours of a random neuron to share a connection,

associated with robustness to random error), and degree distributions compatible with the

existence of highly connected hub neurons [10, 107, 117]. In this chapter, we investigate

how much influence the spatial arrangement of excitatory and inhibitory neurons, and

more specifically, the spatial clustering of inhibitory neurons, has on the global system

dynamics, network structure, and electrical activity in the ES model.

In what follows, we begin by outlining the differential equations governing the activity-

dependent neuronal network growth model, giving a detailed description of each model

element, and explaining how these elements combine to create a system in which each and

every neuron strives to maintain a desired level of electrical activity (homeostasis). We ex-

plain the choice of model parameters, describe the implementation of the numerical scheme

used to solve the resulting system of ordinary differential equations (ODEs), and outline

the terminologies and notation used throughout this chapter. We define novel methods

for measuring the extent of inhibitory clustering within one- and two-dimensional (1D

and 2D) lattice networks composed of various neuron arrangements. The lattice networks

have periodic boundary conditions, i.e., they are mapped onto a torus, thus approximating

large systems. In Section 2.5, we show that the proportion of inhibitory neurons alone is
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a necessary but not sufficient condition for inducing network instability characterised by

oscillatory behaviour of the connectivity and electrical activity. By considering 1D and

2D networks we are able to demonstrate that in general, higher levels of spatial clustering

of inhibition induce oscillatory behaviours, whilst lower levels of inhibitory clustering lead

to a final, stable end state. We look at the qualitatively distinct global system behaviours

produced by the ES model and attempt to understand whether different system behaviours

translate into different underlying network structures. This is done by using network theo-

retical measures and by comparing these across networks corresponding to different system

behaviours. We conclude with a discussion of our findings including neurodevelopmental

parallels and suggestions for future experimental and computational work in the field.

2.2 Model

This work is based on the model of structural plasticity proposed by Van Ooyen et al.

[119]. It extends the Shunting model proposed by Grossberg [38] by incorporating activity-

dependent outgrowth terms. This allows a network containing excitatory and inhibitory

neurons to be grown from initial conditions. Each neuron is assigned a unique spatial

location (see Subsection 2.4.2) and modelled with a variable radius, denoting the area of

its neuritic (axonal and dendritic) extensions. When the circular fields of two neurons

overlap, those neurons become connected with a strength proportional to the area of

overlap, multiplied by the appropriate synaptic efficacy term, determined by the type

(excitatory or inhibitory) of the two neurons.

Precisely, the system is governed by the following dimensionless coupled differential

equations describing the rate of change of electrical activity (denoted (Xi)i=1,...,N and

(Yj)j=N+1,...,N+M ) and neuritic radii (denoted (Ri)i=1,...,N and (Rj)j=N+1,...,N+M ) of N

excitatory and M inhibitory neurons respectively:

dXi

dT
= −Xi + (1−Xi)

N∑
k=1

WikF (Xk)− (H +Xi)
N+M∑
l=N+1

WilF (Yl) (2.1)

dYj
dT

= −Yj + (1− Yj)
N∑
k=1

WjkF (Xk)− (H + Yj)
N+M∑
l=N+1

WjlF (Yl) (2.2)

dRi
dT

= ρG(F (Xi)) (2.3)

dRj
dT

= ρG(F (Yj)). (2.4)

Equations (2.1) and (2.2) correspond to the original Shunting model, where Xi and Yj
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Parameter name Parameter description Default parameter value

ρ Rate of growth of neuritic field 0.0001
θ Firing threshold for firing rate function F 0.5
α Slope of firing rate function F 0.1
β Slope of growth function G 0.1
ε Threshold for growth function G 0.6
H Ratio between minimum and maximum

electrical activity values
0.1

See Excitatory to excitatory synaptic efficacy 1
Sei Inhibitory to excitatory synaptic efficacy 1
Sie Excitatory to inhibitory synaptic efficacy 1
Sii Inhibitory to inhibitory synaptic efficacy 1

Table 2.1: Default values for all model parameters used in simulations

refer to the electrical activity of excitatory neuron i and inhibitory neuron j, respectively,

expressed in units of a saturation value (finite maximum). Electrical activities have a

finite minimum, i.e., −H times the saturation value. A change in electrical activity of a

neuron is influenced by its own electrical activity and that of any other neuron it shares a

connection with. The strength of the connection between neurons i and j at any point in

time is given by element Wij of the (symmetric) weight matrix W . In this weight matrix,

self-overlap terms are set to zero (Wii = 0, ∀i ∈ {1, . . . , N+M}) and non-diagonal elements

are calculated as

Wij = AijS[i][j], (2.5)

where Aij describes the area of overlap between the circular neuritic fields of neurons i and

j, and S[i][j] describes a synaptic strength parameter from a neuron of type (excitatory or

inhibitory) [j] to a neuron of type [i].

Equations (2.3) and (2.4) result from extending the Shunting model to incorporate

activity dependency of neurite outgrowth. Ri and Rj denote the radii of the neuritic field

of excitatory neuron i ∈ {1, . . . , N} and inhibitory neuron j ∈ {N + 1, . . . , L = N +M},

respectively. Parameter ρ describes the rate of outgrowth of the neuritic radii (ρ is constant

in our analyses) and the functions F and G are continuous saturating functions:

F (u) =
1

1 + e(θ−u)/α
(2.6)

G(u) = 1− 2

1 + e(ε−u)/β
. (2.7)

The function F can be thought of as governing the mean firing rate of each neuron,

with values in the bounded range (0, 1). The function G describes the growth rate of a
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neuron as a function of the neuron’s firing rate and has values in the range (−1, 1). The

role and default values of parameters θ, α, ε, and β are given in Table 2.1. The value of ε

has great influence on system behaviour, since each neuron attempts to maintain electrical

activity equal to ε. When a neuron’s electrical activity stabilises at ε, the growth function

G tends to zero and the neuritic radius will cease to change. If all neurons in the system

are able to maintain an electrical activity equal to ε simultaneously, a system steady state

is reached.

2.3 Model implementation

All simulations were implemented in the MATLAB environment, using a variable-order

stiff ODE solver (ode15s). Initial conditions were specified, consisting of the spatial loca-

tion of all neurons within the system and the value of each neuron’s radius and electrical

activity at time zero. In the 1D model, neurons were placed onto lattice positions on

a line with periodic boundary conditions, leaving a nominal distance of 1 between each

neuron pair. In the 2D model, a square number L = N + M of neurons were assigned

positions on a square lattice with periodic boundary conditions, with every adjacent pair

of neurons being separated by nominal distance 1. In both 1D and 2D models, initial

electrical activity values were set to zero for all neurons. Different scenarios of initial radii

values were used as specified in each of the relevant sections. These included:

• Randomly (uniformly) generated values in the range (0, 0.6) creating an initially

largely disconnected network

• Identical values (radii=0.4) creating a totally disconnected network

• Identical values (radii=0.6) for a 1D ring network in which each neuron is only

connected to its two immediate neighbours.

We imposed that all neuritic radii be greater than or equal to zero at all times. The

ODE system was solved until system behaviour could be clearly identified (typically up

to a time > 105).

2.4 Methods

2.4.1 Parameter choice

Our analyses used similar parameters to those used by Van Ooyen et al. [119] and are

summarised in Table 2.1. They differed in two respects. First, whereas Van Ooyen et al.
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set the proportion of inhibitory neurons in the range of 10%− 20%, in accordance with in

vivo observations in various brain regions [119], we systematically varied this proportion

in order to provide a fuller picture of system behaviour in relation to the balance between

excitation and inhibition (see also the next subsection). Second, for simplicity, we kept

the synaptic efficacy parameters (See, Sei, Sie and Sii) identical throughout.

2.4.2 Spatial arrangement of excitatory and inhibitory neurons

Since connectivity is determined by the amount of overlap between neuritic fields centred

over fixed neuron locations, it follows that the joint degree1 distributions for X (excitatory)

and Y (inhibitory) neurons will strongly depend on the spatial arrangement of these

neurons, and particularly, whether they are well mixed or clustered – an operational

definition of this clustering will be given in the following subsection. We used a systematic

approach to building 1D arrangements of excitatory and inhibitory neurons assigned to

lattice positions. We define a tile as a single row of l ∈ Z+ neurons, with nominal distance

1 between consecutive neurons. Then, complex 1D networks with periodic boundary

conditions could be formed by duplicating tiles a specified number of times. For example,

a network of size L = 12 with a 1/3 proportion of inhibitory neurons could consist of a

single tile of length l = 12 with 4 inhibitory neurons or 4 identical tiles of length l = 3

with 1 inhibitory neuron each (see example neuron arrangement in subsequent paragraph).

The use of periodic boundary conditions means that any pair of neurons in the network

will be at most L/2 = (1/2 × number of neurons in the network) distance away from one

another. 2D arrangements of N excitatory and M inhibitory neurons were generated in

MATLAB using random permutations of a vector containing N zeros and M ones, and

reshaping the resulting column vector of size L× 1 into a matrix of size
√
L×
√
L.

When representing spatial arrangements throughout the text in this chapter, we use

filled circles to denote inhibitory neurons and empty circles to denote excitatory neurons,

e.g., • ◦ ◦ • ◦ ◦ • ◦ ◦ • ◦◦. In Figure legends, neuron arrangements are represented using

red circles in various hues to denote inhibitory neurons and blue circles in various hues to

denote excitatory neurons. The use of unique colours enables the reader to make a direct

comparison between each neuron’s spatial location and the associated dynamics of their

neuritic radius and electrical activity.

1The degree of a node in a network is the number of connections it has to other nodes in the network.
The joint degree distribution describes the probability distribution of connections between nodes of degree
k1 and nodes of degree k2 over the whole network.
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2.4.3 Measuring spatial clustering of inhibition in 1D and 2D neuron

arrangements

Measuring the clustering of inhibitory neurons in spatial arrangements of both excitatory

and inhibitory neurons is not straightforward, and we are not aware of any established

method for quantifying it. In what follows, we define measures for clustering in 1D and

2D lattice networks as defined previously.

1D inhibitory clustering measure

We define a measure of inhibitory clustering in a 1D network of neurons assigned to lattice

positions with periodic boundary conditions as

C1D =
1

D

(
D∑
i=1

1

i2
Ni−1

)
, (2.8)

where D is the shortest distance between the first and last inhibitory neurons in the

network, taking periodic boundary conditions into account, and Ni denotes the number of

pairs of inhibitory neurons with i excitatory neurons separating them. Ni is consistently

counted without multiplicity, meaning that the total Ni count will always be equal to

(M − 1) with M inhibitory neurons, and any Ni pairs of inhibitory neurons should not

have another inhibitory neuron in between them. For example, network • • ◦ ◦ • ◦ ◦ ◦ ◦◦

has D = 4, N0 = 1 (the only adjacent pair of inhibitory neurons), N2 = 1 (the single pair

of inhibitory neurons separated by 2 excitatory neurons), and N1 = N3 = N4 = 0 leading

to a clustering value of C1D = 1
4

(
1
11 + 1

32
1
)

= 10
36 . The inhibitory clustering measure takes

value 1 when the greatest possible level of inhibitory clustering is achieved in a network,

i.e., when all inhibitory neurons are adjacent to one another and hence N0 = D, and its

value tends toward zero as the extent of inhibitory clustering decreases. The contribution

of inhibitory neuron pairs decays with the number of excitatory neurons separating them.

The weighting factor was selected as a trade-off between an insufficient penalty for the

spreading out of inhibitory neurons (e.g., 1/i) and insensitivity to subtle variations in the

structure of the network (e.g., 1/i3), hence our choice of 1/i2.
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2D inhibitory clustering measure

We define a measure of inhibitory clustering for a 2D lattice network containing L neurons

with M inhibitory neurons and periodic boundary conditions as follows:

C2D = 1− WH

L

 rn∑
R=r1

NRWRH

(
RWRH

(WH −M)

)2
 (2.9)

where one firstly computes the smallest possible “covering rectangle” of width W and

height H which covers all M lattice positions of inhibitory neurons, taking continuous

boundary conditions into account, followed by decomposing all WH neurons contained

within the covering rectangle into n ∈ Z+ inhibitory-empty rectangles of various dimen-

sions, from the largest possible rectangle of size (W−1)×H or W×(H−1), to the smallest

possible rectangle of size 1 × 1, containing a single neuron. In each case, the width and

height of a rectangle are equal to the number of neurons along the width and height of the

rectangle, respectively. Each inhibitory-empty rectangle is counted without replacement.

RW and RH denote the width and height of rectangle R and the term NRWRH
denotes

the number of inhibitory-empty rectangles of size RW ×RH contained within the covering

rectangle. If a covering rectangle contains no excitatory neurons, the summation term will

be equal to zero and hence C2D = 1.

2.5 Results

2.5.1 1D results

The proportion of inhibitory neurons – a necessary condition for global system

behaviour

In our analyses, it was found that the proportion of inhibition alone cannot accurately

predict the system’s global behaviour. Simulations with tile size 13 were implemented

where the proportion of inhibition in the system was set to 4/13 ≈ 30.77% with all other

parameters held constant, bar the placement of neurons. For the initial conditions, all

electrical activity values were set to zero, and all neuritic radii values were set to 0.4,

creating a wholly disconnected network. A number of spatial arrangements were consid-

ered, randomly picked from a set of unique tile arrangements generated by a MATLAB

script that selected at random M out of L positions for inhibitory neurons, and placed

N excitatory neurons onto the remaining lattice positions (note that a more systematic

approach is used in the following subsection).
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Three qualitatively distinct global behaviours are found (Figure 2.1), namely (1) stable

periodic oscillations of small amplitude of both network structure and electrical activity

(Figure 2.1 A and B), (2) large amplitude unstable oscillations in the network structure

and unstable burst-like oscillations in electrical activity (Figure 2.1 C and D), and (3)

complete stabilisation of both network structure and electrical activity (Figure 2.1 E and

F), all occurring after an initial period of overshoot and pruning of connections.

Since all networks were initialised with identical neuritic field sizes and electrical activ-

ities, we conclude that varying the spatial arrangement of neurons within the network can

induce distinct global behaviours. The proportion of inhibition alone may be a necessary

but not sufficient condition to induce oscillatory system behaviour. The relationship be-

tween E/I ratio, spatial arrangement, and the occurrence of oscillations in the ES model

is nontrivial and cannot be attributed to any single characteristic. As pointed out by Van

Ooyen and Van Pelt [118], oscillations can arise as a result of the hysteresis loop formed

by the coupling between network structure and electrical activity in the ES model, or

due to fluctuations in the effective E/I ratio, i.e., the dynamically emerging ratio of total

excitatory to inhibitory connectivity, irrespective of the fixed number of excitatory and

inhibitory neurons in the arrangement.

The effect of inhibitory clustering on global system behaviour in 1D

The occurrence of different global behaviours when the proportion of inhibitory neurons in

a tile is fixed and simulations of various spatial arrangements are run (Figure 2.1) suggests

that some feature of spatial organisation of neurons (and specifically inhibitory neurons)

could impact the presence of oscillatory behaviour. As most models typically assume a

well-mixed population, here, we focus on the possibility that inter-inhibitory connectivity

induced by spatial clustering of inhibitory neurons could be an important determinant.

Simulations with fixed tile size and number of inhibitory neurons, but various levels of

inhibitory clustering, revealed distinct global behaviours and a trend suggesting that net-

works with a higher clustering measure are more likely to experience oscillatory behaviours

(Table 2.2). In networks containing three inhibitory neurons and seven excitatory neurons

(Figure 2.2), the most extreme oscillatory behaviour is observed when inhibitory clus-

tering is at its greatest (Figure 2.2 A and B). In this case, the network structure and

electrical activities experienced a bout of periodic oscillations, before developing unstable

burst-like oscillations of much greater amplitude. As the extent of inhibitory clustering

decreases slightly, the system experiences stable oscillations with a smaller amplitude, in
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Figure 2.1: Global system behaviour of mixed 1D lattice networks with various
spatial arrangements of neurons. In all cases L = 13, N = 9, M = 4 and default
parameters listed in Table 2.1 are used. The networks are initially wholly disconnected
and neurons are at rest. Figures on the left-hand side depict the dynamics of the individual
neuritic radii values; figures on the right-hand side depict the dynamics of the individual
electrical activity values. Neuron arrangements are as follows: ••••••••••••• (A,B),
••••••••••••• (C,D), ••••••••••••• (E,F).

both network structure and electrical activity (Figure 2.2 C and D). Here, an idiosyncratic

behaviour of the ES model is observed whereby the largest neuritic field in the network

continues to grow whilst experiencing stable oscillations (Figure 2.2 C). This behaviour

results from the fact that once the neuron’s field completely overlaps those of every other
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neuron in the network, further growth has no effect on the connection strengths to itself and

others and outgrowth continues unbounded. Eventually, the inhibitory neurons become

more evenly distributed across the lattice positions and the neuritic radii and their associ-

ated electrical activity experience complete stabilisation (Figure 2.2 E-H). An exhaustive

list (taking symmetries and reflections into account) of all possible spatial configurations

for tile sizes 8, 10, and 14, containing 2, 3, and 4 inhibitory neurons, respectively, also

suggests that higher inhibitory clustering increases the likelihood of oscillatory behaviour

being observed (Table 2.2).

A systematic mapping of the relationship between inhibitory clustering and the pro-

portion of inhibitory neurons reveal the emergence of distinct regimes (Figure 2.3). There

are no significant differences for the regimes observed between simulations with initially

disconnected networks (radii=0.4, Figure 2.3 A) and those starting with a regular ring

network (radii=0.6, Figure 2.3 B). Networks with lower proportions of inhibitory neu-

rons and lower clustering values are more likely to experience complete stabilisation of

electrical activity and network structure. However, a handful of configurations with high

inhibitory clustering and low proportions of inhibitory neurons also experienced complete

stabilisation. In general, as inhibitory clustering increases, systems developed oscillatory

behaviours. We observe that the oscillatory regime also extends into slightly higher pro-

portions of inhibitory neurons than the stabilisation regime. Past the oscillatory regime,

with the highest proportions of inhibitory neurons, and a range of inhibitory clustering

values, we see systems experience unbounded growth.

Table 2.2: Global system behaviour and clustering measure for mixed 1D simulations
with various spatial arrangements. Default values were used on initially disconnected net-
works. S denotes stabilisation of the network and activity, SO denotes stable oscillatory
behaviour, UO denotes unstable oscillatory behaviour, and TO denotes transient oscilla-
tory behaviour. All 1D clustering measures are given as exact values or to four significant
figures.

ID Spatial arrangement Tile size %I Behaviour 1D clustering measure

1 • • ◦ ◦ ◦ ◦ ◦◦ 8 25 SO 1

2 • ◦ • ◦ ◦ ◦ ◦◦ 8 25 S 0.125

3 • ◦ ◦ • ◦ ◦ ◦◦ 8 25 S 0.03704

4 • ◦ ◦ ◦ • ◦ ◦◦ 8 25 S 0.015625

5 • • • ◦ ◦ ◦ ◦ ◦ ◦◦ 10 30 UO 1

6 • • ◦ • ◦ ◦ ◦ ◦ ◦◦ 10 30 SO 0.4167

Continued on next page
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Table 2.2 – continued from previous page

ID Spatial arrangement Tile size %I Behaviour 1D clustering measure

7 • • ◦ ◦ • ◦ ◦ ◦ ◦◦ 10 30 SO 0.2778

8 • ◦ • ◦ • ◦ ◦ ◦ ◦◦ 10 30 S 0.125

9 • • ◦ ◦ ◦ • ◦ ◦ ◦◦ 10 30 SO 0.2125

10 • ◦ • ◦ ◦ • ◦ ◦ ◦◦ 10 30 S 0.07222

11 • ◦ • ◦ ◦ ◦ • ◦ ◦◦ 10 30 S 0.05208

12 • ◦ ◦ • ◦ ◦ • ◦ ◦◦ 10 30 S 0.03704

13 • • • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ 14 28.57 SO 1

14 • • • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ 14 28.57 UO 0.5625

15 • • ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ 14 28.57 UO 0.5625

16 • • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ 14 28.57 UO 0.4222

17 • • ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ 14 28.57 S 0.3

18 • • ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ 14 28.57 SO 0.4222

19 • ◦ • • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦◦ 14 28.57 S,TO 0.3

20 • • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦◦ 14 28.57 UO 0.3438

21 • • ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦◦ 14 28.57 S 0.2269

22 • • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦◦ 14 28.57 SO 0.2269

23 • • ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦◦ 14 28.57 S 0.3438

24 • ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦◦ 14 28.57 S 0.2269

25 • ◦ • ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦◦ 14 28.57 S 0.125

26 • • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦◦ 14 28.57 UO 0.2914

27 • • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦◦ 14 28.57 S 0.1875

28 • • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦◦ 14 28.57 S,TO 0.1746

29 • • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦◦ 14 28.57 S 0.1875

30 • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦◦ 14 28.57 S 0.2914

31 • ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦◦ 14 28.57 S 0.1875

32 • ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦◦ 14 28.57 S 0.08730

33 • ◦ • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦◦ 14 28.57 S 0.08730

34 • ◦ ◦ • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦◦ 14 28.57 S 0.1746

35 • • • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦◦ 14 28.57 SO (burst-like) 0.2535

36 • • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦◦ 14 28.57 S 0.1613

37 • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦◦ 14 28.57 S 0.1467

Continued on next page
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Table 2.2 – continued from previous page

ID Spatial arrangement Tile size %I Behaviour 1D clustering measure

38 • • ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦◦ 14 28.57 S 0.1467

39 • • ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦◦ 14 28.57 S 0.1613

40 • • ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦◦ 14 28.57 UO 0.2535

41 • ◦ • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦◦ 14 28.57 S 0.1613

42 • ◦ • ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦◦ 14 28.57 S 0.07031

43 • ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦◦ 14 28.57 S 0.05903

44 • ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦◦ 14 28.57 S 0.07031

45 • ◦ ◦ • • ◦ ◦ ◦ • ◦ ◦ ◦ ◦◦ 14 28.57 S 0.1467

46 • ◦ ◦ • ◦ • ◦ ◦ • ◦ ◦ ◦ ◦◦ 14 28.57 S 0.05903

Is there an optimal proportion of inhibition for inducing oscillatory behaviour

in 1D networks containing inhibitory clusters?

When high levels of inhibitory clustering are considered and networks are made up of

repeated tile arrangements, thus creating network structures with one or more inhibitory

clusters, a proportion of inhibitory neurons in the range [20%, 50%] induced oscillatory be-

haviour in both network structure and electrical activity (Figure 2.4). Within this range,

some configurations experienced stable oscillations of network structure and electrical

activity with small amplitudes, whilst the majority of other simulations experienced sus-

tained unstable burst-like oscillatory behaviour of electrical activity and sustained unstable

oscillations of neuritic radii values with larger amplitudes. For proportions of inhibition

below 20%, all simulations experienced complete stabilisation of network structure and

electrical activity. With a proportion of inhibition above 50%, the systems were unable to

achieve the desired level of electrical activity for every neuron (ε = 0.6). Neurons which are

unable to achieve an electrical activity of ε experience unbounded growth of their neuritic

field, with their electrical activity stabilising at a level below the homeostatic set-point. In

such a situation, a stable network end state is unachievable. We see very similar regimes

emerge when the starting network is either totally disconnected (Figure 2.4 A) or sparsely

connected (Figure 2.4 B). In both cases, we observe a transition between stabilisation and

oscillatory behaviours as the proportion of inhibition exceeds 20%, and between oscillatory

behaviours and unbounded growth as the proportion of inhibitory neurons exceeds that
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Figure 2.2: Global system behaviour of mixed 1D lattice networks with various
levels of inhibitory clustering. In all cases, L = 10, N = 7, M = 3 and default pa-
rameters listed in Table 2.1 are used. The networks are initially wholly disconnected and
neurons are at rest. Figures on the left-hand side depict the dynamics of the individual
neuritic radii values; figures on the right-hand side depict the dynamics of the individ-
ual electrical activity values. Neuron arrangements are as follows: •••••••••• (A,B),
•••••••••• (C,D), •••••••••• (E,F), •••••••••• (G,H).

of excitatory neurons.
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Figure 2.3: 1D system behaviours for growth simulation setups with various
proportions of inhibitory neurons and levels of inhibitory clustering. Green boxes
denote stabilisation of network structure and electrical activity. Purple boxes denote large
unstable oscillations in network structure and unstable burst-like oscillations in electrical
activity. Blue boxes denote stable oscillatory behaviour of neuritic radii and electrical
activities. Pink boxes denote unbounded growth examples, where the system was unable
to reach the desired level of electrical activity for all neurons, with all neuritic fields growing
indefinitely. White areas did not have any suitable configurations to run. In panel A, the
networks were initially disconnected. In panel B, the networks started as regular ring
networks.

Network analysis of 1D global behaviour types

To gain a deeper understanding of how distinct global network behaviours are charac-

terised in terms of network theoretical measures, we plotted neuritic radii and electrical
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Figure 2.4: 1D system behaviours as a function of the percentage of inhibitory
cells (horizontal axis) and number of tile repeats (vertical axis). All tile ar-
rangements are contiguous. Tiles are repeated in an adjacent manner to maintain a 1D
system. Green circles denote networks experiencing complete stabilisation. Blue circles
denote periodic (stable) oscillatory behaviour. Purple circles denote unstable oscillatory
behaviour. Pink circles denote simulations where all neuritic fields grow unbounded be-
cause the desired level of electrical activity cannot be reached. In panel A, the networks
were initially disconnected. In panel B, the networks started with sparse connectivity,
with neuritic radii values randomly generated in the interval (0, 0.6) (identical seed of
value 10 for all networks). All other parameters were as listed in Table 2.1.

activity dynamics, alongside corresponding network structure visualisations and degree

distributions, for three simulation configurations with distinct global behaviours (Figures

2.5 - 2.7). Using the subgraph counting algorithm described by Ritchie et al. [97], we
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performed motif analysis on networks at specific time points from each simulation to de-

termine if global behaviour types are also characterised by specific network motifs (Table

2.3). Here, we list the behaviour types observed and describe each in terms of structural

and electrical dynamics, and we discuss other noteworthy characteristics.

Total stabilisation Networks which experience total stabilisation of their structure

and electrical activity (Figure 2.5) undergo a period of rapid overshoot in the number

of connections, until a critical level of network connectivity is reached (Figure 2.5 A).

At this stage, a rapid pruning of connections occurs, with all neuritic radii shrinking at

a similar rate. Simultaneously, we observe an overshoot followed by a steep reduction

in the electrical activity for all neurons (Figure 2.5 B). Following periods of overshoot

and pruning, the neuritic radius and electrical activity for all neurons tend quickly toward

their equilibrium values. Once all values have stabilised, we look to a visual representation

of the final network structure (Figure 2.5 C) and the corresponding degree distribution

(Figure 2.5 D) to understand the structural elements in more detail. In areas containing

inhibitory neurons, neighbouring excitatory neurons have large field sizes, and areas of

high inhibitory clustering seem to coincide with even larger excitatory neighbours. The

corresponding degree distribution suggests that the introduction of inhibitory neurons has

resulted in a long-tailed degree distribution, with the presence of excitatory hub nodes with

high degree that are able to contact the majority of the remaining neurons in the system.

We note that the inhibitory clustering measure for the network structure (◦◦•◦•◦◦•◦◦◦•◦),

which experienced complete stabilisation of both network structure and electrical activity,

is 0.04707. Looking at the resulting network in terms of network motifs present within

the structure (Table 2.3), we observe that the majority of motifs at stabilisation contain

open loops as opposed to closed loops.

Stable oscillations Networks developing stable oscillatory behaviour appear to expe-

rience relatively minor changes in their structure over time (Figure 2.6). The associated

electrical activity dynamics for this scenario (Figure 2.1 B) show very similar behaviour

to that of the neuritic radii values. After the initial period of overshoot and pruning of

network connections, the stable oscillatory regime is reached, and both network structure

and electrical activity experience stable oscillations of similar, small amplitudes. Once

the system has reached the oscillatory regime, the network structure has a long-tailed

degree distribution, indicating the existence of hub nodes. Looking at the dynamics of the

two largest neuritic radii (both excitatory neurons neighbouring one or more inhibitory
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neurons), we observe that their oscillations are almost out of phase with one another; it

appears that it is the interaction between these two large neuritic fields which holds the

system in a stable oscillatory regime. The inhibitory clustering measure for the network

structure (◦◦◦◦◦••◦◦•◦•◦) is 0.2269. Furthermore, we note that the network structure

during the low point in the oscillation of one neuritic radius (Figure 2.6) contains very

similar motifs to the final network structure of the simulation which experienced complete

stabilisation (Figure 2.5), but by the mid- and high points in the oscillations, the majority

of motifs increase in number consistent with increased network connectivity (Table 2.3).

Unstable oscillations Networks experiencing sustained unstable oscillatory behaviour

undergo far more extreme changes in their structure, level of connectivity, and electrical

activity over time (Figure 2.7). From the start of the simulation, all neuritic radii endure

unstable oscillations with large amplitudes, mostly in synchronisation with one another

(i.e., all neuritic fields in the system are expanding or retracting simultaneously). During

each increase in field sizes, we see bursting behaviour of the electrical activity values,

followed immediately afterwards by a return to the resting electrical activity (equal to

zero in the ES model). Coinciding with the peak of each oscillation in field size, we see a

rapid increase in electrical activity for the majority of neurons. Following this, we observe

unstable movements of the electrical activity values and the neuritic fields reduce in size,

before the bursting behaviour commences once again. In terms of network attributes,

during unstable burst-like oscillations it is clear that the network structure alternates

between full and partial connectivity at various points during the oscillations. During the

bursting behaviour of the electrical activity, the network structure is not fully connected,

with a long-tailed degree distribution that implies the existence of excitatory hub nodes.

Sometime after the bursting behaviour, the network structure becomes fully connected

once again and the cycle of behaviour continues. The inhibitory clustering measure for

the network structure (◦ ◦ • ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦) is 0.2914. Looking at motif analysis of

the network structure at various time points (Table 2.3), it is immediately obvious that

the changes in number and distribution of network motifs during the time course of this

simulation are much more extreme when compared with other behaviour types we analysed

in this section. At time 659,940, when the electrical activity values are exhibiting burst-

like behaviour (Figure 2.7), the network contains a wide array of motifs, from triangles

and squares to pentagons and even hexagons. However, once the network becomes fully

connected (after the bursting behaviour and at the peak of network connectivity), we see

that the network is entirely made up of fully connected squares (i.e., high clustering).
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Unbounded growth In some network configurations, it is not possible for neurons to

reach their desired level of activity ε. In such cases, the neuritic field of the neuron keeps

expanding seeking activity homeostasis. However, once the neuritic field overlaps the

neuritic fields of all remaining neurons, further increases in field size no longer yield any

extra input. Hence, whilst the electrical activity stabilises at a level below the homeostatic

set-point, the growth behaviour continues. As mentioned previously, this behaviour is an

idiosyncrasy of the ES model; it is not biologically relevant and therefore does not warrant

further analysis.

Figure 2.5: Global system behaviour and analysis of the associated network
structure at equilibrium. This is the same simulation as shown in Figure 2.1 E and
F, with the spatial arrangement •••••••••••••. Panel A depicts the dynamics of the
neuritic radii, B depicts the dynamics of the electrical activity values, C is a visualisation
of the network’s structure at the end of the simulation, where circles with shades of blue
denote the field of an excitatory neuron and circles with shades of red denote the field of
an inhibitory neuron. Panel D shows the degree distribution of all neurons at equilibrium.
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Figure 2.6: Network structure and degree distribution of the simulation shown
in Figure 2.1 A and B, at three time points during the periodic oscillations.
See coloured markers in panel C, where a red circle denotes a low point in an oscillation,
a green circle denotes a midpoint in an oscillation, and a pink circle denotes a high point
in an oscillation. The spatial arrangement of neurons is ••••••••••••• with the network
being initially disconnected. Panels B and D show the network structure and associated
degree distribution at a low point in an oscillation, panels E and G show the network
structure and associated degree distribution at a midpoint in an oscillation, and panels F
and H show the network structure and associated degree distribution at a high point of
an oscillation shown in panel C.
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Figure 2.7: Network structure and degree distribution of the simulation shown
in Figure 2.1 C and D, at three time points during the unstable oscillations.
See coloured markers in panel C, where a green triangle denotes a time during burst-
like behaviour of electrical activity, a red triangle denotes a time immediately after the
burst-like behaviour, and a pink triangle denotes a time where the network is experiencing
a peak of connectivity (corresponding triangles are also shown in panel A). The spatial
arrangement of neurons is ••••••••••••• with the network initially disconnected. Pan-
els B and D show the network structure and associated degree distribution during the
burst-like behaviour. Panels E and G depict the network structure and associated degree
distribution after the burst-like behaviour and panels F and H show the network structure
and associated degree distribution at the peak of connectivity.
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Table 2.3: Network motif counts at various points of the simulations in Figures 2.5 -
2.7. Network motifs are displayed here in two dimensions for ease of visualisation, but all
structures considered are 1D lattice structures with periodic boundaries.

Reference Fig 2.5 Fig 2.6 Fig 2.6 Fig 2.6 Fig 2.7 Fig 2.7 Fig 2.7

Time 1,000,000 397,061 448,310 496,220 659,940 700,040 733,720

Motif Motif count

1 1 3 4 17 715 715

11 12 18 19 45 0 0

0 0 0 0 2 0 0

0 0 0 0 0 0 0

23 39 75 69 21 0 0

13 13 17 19 38 286 286

Triangles in-

volved in com-

plete squares

4 4 11 15 36 286 286

Triangles in-

volved in diago-

nal squares

12 13 17 17 36 0 0

Triangles not

involved in com-

plete/diagonal

squares

0 0 0 0 0 0 0

48 52 64 64 75 0 0

51 43 28 31 77 0 0

Continued on next page
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Table 2.3 – continued from previous page

Reference Fig 2.5 Fig 2.6 Fig 2.6 Fig 2.6 Fig 2.7 Fig 2.7 Fig 2.7

Time 1,000,000 397,061 448,310 496,220 659,940 700,040 733,720

Motif Motif count

0 0 0 0 1 0 0

0 0 0 0 1 0 0

2.5.2 2D results

The effect of inhibitory clustering on global system behaviour in 2D

Growth simulations of various neuron arrangements on 2D lattice structures were imple-

mented, and in all cases we observed either complete stabilisation of network structure

and electrical activity, or stable oscillations in network structure and electrical activity.

Complete stabilisation and stable, periodic oscillations both occurred after the typical ini-

tial overshoot and pruning periods (Figure 2.8). No 2D growth simulations were observed

to exhibit burst-like behaviour of electrical activity and large unstable oscillations in net-

work structure, as seen previously in 1D growth simulations, e.g., Figure 2.2 A and B.

Although oscillatory 2D arrangements tended to have larger 2D clustering values, it was

still possible to detect deviations from this general rule, e.g., see arrangements 51 and 52 in

Table 2.4. Examples such as this suggest that the 2D inhibitory clustering measure (2.9)

is overly sensitive to how inhibitory neurons are organised within the covering rectangle.

Instead, when considering only the component of the 2D inhibitory clustering measure

which characterises the smallest area within which all inhibitory neurons are found, i.e.,

WH/M , and testing various arrangements of L = 36 neurons, with M = 6, 7, 8, 9, 10, 11

inhibitory neurons (and therefore varying levels of inhibition between 16.67% and 30.56%),

we find a robust relationship whereby neuron arrangements with smaller WH/M values

are more likely to experience oscillatory behaviour (Figure 2.9). Our results also show

that, for a given WH/M value, networks with larger M , and hence a higher proportion

of inhibitory neurons, are more likely to experience oscillatory behaviour. Intuitively the

observed relationship between WH/M and the presence of oscillatory behaviour is logi-
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cal, since the smallest possible value WH/M = 1 signifies that the covering rectangle is

of equal size to the total number of M inhibitory neurons and contains no excitatory neu-

rons, meaning that the inhibitory neurons are maximally clustered, e.g., arrangement 47

in Table 2.4. However, even with a fixed number of inhibitory neurons, maximal cluster-

ing can be achieved in multiple ways and can exhibit distinct outcomes. For example, for

M = 6, maximal clustering can be achieved using a single row of six neurons or two rows

of three neurons. When these arrangements were compared in growth simulations of a 2D

network of 36 neurons with all else held constant, the single line of six inhibitory neurons

induced complete stabilisation, whereas the network containing a single inhibitory cluster

of two lines of three neurons experienced stable oscillations in both network structure and

electrical activity.

Table 2.4: Global system behaviour and clustering measure for mixed 2D simulations with
various spatial arrangements. Default values were used on initially disconnected networks.

ID Spatial arrangement L M Behaviour 2D clustering

47

• • • ◦ ◦ ◦

• • • ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

36 6 Stable oscillatory 1

48

• • ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

• ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ • • ◦

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ • ◦ ◦

36 6 Stabilisation 0.8965

49

• • ◦ ◦ • ◦

• ◦ ◦ • • ◦

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

36 6 Stabilisation, transient oscillations 0.7222

Continued on next page
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Table 2.4 – continued from previous page

ID Spatial arrangement L M Behaviour 2D clustering

50

◦ ◦ ◦ • ◦ ◦

• • • • ◦ ◦

• ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

36 6 Stabilisation 0.6667

51

• • • ◦ ◦ ◦

• ◦ • ◦ ◦ ◦

◦ ◦ • ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

36 6 Stable oscillatory 0.8056

52

◦ ◦ • ◦ ◦ ◦

◦ ◦ ◦ • ◦ ◦

◦ ◦ • • ◦ ◦

◦ ◦ ◦ ◦ • ◦

◦ ◦ • ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦

36 6 Stabilisation 0.9794

2.6 Discussion

The main findings of our simulations relate to system stability and the effect of spatial

clustering of inhibitory neurons. We demonstrate that subtle alterations in 1D and 2D

arrangements of excitatory and inhibitory neurons can have marked effects on global be-

haviour of electrical activity and network connectivity in the spatially embedded ES model.

In particular, we find that lattice networks containing highly clustered inhibitory neurons

are more likely to display oscillatory dynamics of both electrical activity and network

structure than those where excitatory and inhibitory neurons are more evenly distributed

across all lattice positions.

Instability is mostly evident in 1D networks, where burst-like behaviour of electrical

activity and large unstable oscillations in network structure can be observed. Results of
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Figure 2.8: Global system behaviour of mixed 2D lattice networks with various
levels of inhibitory clustering. In all cases L = 36, N = 30, M = 6 and default
parameters listed in Table 2.1 are used. The networks are initially wholly disconnected
and neurons are at rest. Figures on the left-hand side depict the dynamics of the individual
neuritic radii values; figures on the right-hand side depict the dynamics of the individual
electrical activity values. Panels A and B depict the dynamics of arrangement 47 in Table
2.4, panels C and D depict the dynamics of arrangement 51 in Table 2.4, panels E and
F depict the dynamics of arrangement 49 in Table 2.4 and panels G and H depict the
dynamics of arrangement 50 in Table 2.4.

2D network simulations tend to be more stable; no burst-like behaviours are observed in

2D, suggesting that networks in higher spatial dimensions either mask or protect against

the emergence of the most pathological network behaviours. It is important to note that
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Figure 2.9: The proportion of 2D neural network growth simulations depicting
oscillatory behaviour of electrical activity and network connectivity for a range
of WH/M values, where the terms W, H and M are defined in Equation (2.9).
Growth simulations consisted of networks of L = 36 neurons with M = 6, 7, 8, 9, 10, 11
inhibitory neurons, and default parameters listed in Table 2.1 were used. Networks were
initially wholly disconnected and neurons were at rest. For each M , 2 million neuron
arrangements were generated at random, from which the unique set of WH values was
extracted. For each (M,WH) pair, 200 neuron arrangements were selected at random.
Growth simulations of all 200 arrangements were implemented and the result tested for
behaviour through thresholding of the norm of the variance of the last 10 data points,
where the norm was taken over all L neurons. Thresholds were empirically determined and
confirmed visually. The procedure of picking 200 arrangements for each (M,WH) pair was
repeated 50 times to obtain the mean and standard deviation, displayed in the plot using
error bars. Empty circles denote (M,WH) pairs for which less than 200 arrangements
were available for testing.

although we describe periodic oscillations as being stable, this type of behaviour does not

necessarily imply a healthy network outcome.

No attempt has been made here to simulate the extraordinarily complex 3D structure
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of the developing and mature mammalian cerebral cortex using the spatially embedded

ES model. Such results may lead to further dilution of the spatial effects given that higher

dimensions lead to greater overall connectivity. This may in turn move the system closer

to a well-mixed population where mean field models with fewer equations can provide

accurate approximations. Nevertheless, there are interesting parallels between the ES

model and the neurodevelopmental literature which will be discussed later. If it is a general

rule that increased spatial dimension leads to greater tolerance of inhibitory clustering

effects on network stability, then it is possible that 3D network activity-dependent network

growth will be even more robust than 2D network growth.

Oscillatory behaviour in network structure, especially an unstable one, has been con-

sidered, for the most part, to be an undesired outcome as it renders the network fragile

and therefore more vulnerable to the development of a pathological dynamical outcome.

Modelling work by Ehrens et al., e.g., suggested that seizures can manifest through small

perturbations in the synaptic connections that render the entire cortical network unstable

[24]. An alternative view is that instability of network structure that increases networks’

sensitivity to random perturbations might allow a network to depart from an undesirable

state, thus providing a means for resilience and adaptation. It is difficult to explore such

a possibility with the present model due to the lack of separation between network struc-

ture and electrical activity. Whilst the authors of the original model were able to observe

distinct oscillations in electrical activity and network structure, the simulations reported

in this chapter, in order to pursue a particular research question, used a narrower set of

parameters in which there was no separation of timescales.

2.6.1 Comparison to previous modelling results

Previous studies of the ES model have postulated that outgrowth and interactions between

excitation and inhibition can lead to complex patterns of development in individual cells

[119]. Excitation increases activity but inhibits outgrowth, whereas inhibition does the

opposite [119]. When dealing with a purely excitatory model, with individual neurons

assigned various outgrowth rates (the parameter ρ in the ES model), complex periodic be-

haviour of connectivity and electrical activity can be observed, with Van Ooyen and Van

Pelt concluding that the precise network behaviour depends on the spatial distribution of

the cells and the distribution of the outgrowth properties over the cells [118]. A later study

with a simple two-neuron E − I model showed that the introduction of inhibition could

account for network bistability [120]. It concluded that purely excitatory networks result
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in the same final attractor regardless of initial conditions, whereas mixed (excitatory and

inhibitory) networks do not necessarily do so, i.e., they can be bistable. Further this study

shed light on the excitation-inhibition balance, demonstrating that networks developing

under conditions of relatively high inhibition result in a “pathological” state with oscil-

latory activity whereas a low level of inhibition during the initial stage of development

enables the system to develop toward the “normal” stable end state [120].

Our work reinforces the idea that networks with higher levels of inhibition are more

likely to experience oscillatory dynamics of and on the network. However, through re-

vealing distinct global behaviours for different spatial arrangements with a fixed number

of excitatory and inhibitory neurons, we have established that the global behavioural dy-

namics and structural characteristics of the network rely not only on the balance between

excitation and inhibition but also on the spatial arrangement of neurons within the net-

work (and, to a limited extent, the initial conditions). In particular, we have offered that

spatial clustering of inhibitory neurons, which we have characterised through measures of

inhibitory clustering in 1D and 2D, is an important determinant of the network dynamics.

Networks with higher levels of inhibitory clustering are more likely to undergo oscillatory

dynamics in electrical activity and network structure than networks with low levels of

inhibitory clustering.

There is little published literature available on the effects of increased inhibitory clus-

tering on neuronal network structure and dynamics. In studies of the ES model, inhibitory

neurons are found to (1) impose a structure on neighbouring excitatory neurons, helping

them to connect to different parts of a structure by inducing outgrowth and (2) increase

the overall degree of connectivity in a network [119]. Van Ooyen et al. proposed that the

number and distribution of inhibitory neurons is important: when inhibitory neurons are

able to contact one another (i.e., our clustering measures (2.8) and (2.9) become larger),

the neurons are electrically inhibited (self-inhibition), but their outgrowth will become

stimulated [119]. This causes the ultimate level of inhibition in such a system to be higher

than in a network without self-inhibition. It has also been noted that long-range inhibition

is obtained when inhibitory cells occur in a clustered fashion and are able to stimulate one

another’s outgrowth [119]. More recently, Litwin-Kumar and Doiron investigated the im-

plications of excitatory clustering on cortical activity, finding that even modest clustering

substantially changed the behaviour of the network activity, introducing slow dynamics

during which clusters of neurons experience temporary changes in their firing rate [63].

In a network structure consisting of solely excitatory and inhibitory neurons, excitatory



41

clustering and inhibitory clustering will be somewhat congruous concepts, and, in this

respect, our results support and complement those of Litwin-Kumar and Doiron [63].

To test the hypothesis that network structures with high levels of inhibitory cluster-

ing are more likely to undergo oscillatory behaviour, we proposed measures of inhibitory

clustering within 1D tile networks and 2D lattice networks in which neurons are assigned

to lattice positions and networks are taken to have continuous boundary conditions. The

fundamental idea that spatial arrangements affect dynamical behaviour was highlighted

in the original work but not systematically investigated [119].

2.6.2 1D network behaviours

Performing growth simulations of 1D network arrangements, and in particular using the

notion of tiles, means that an exhaustive investigation of 1D network arrangements was

possible. As it stands, our 1D measure (2.8) captures the extent of inhibitory clustering

within a tile network and provides ease of comparison across tile network structures of

different sizes. Even within 1D networks, there is scope for improvement, however. Whilst

the measure takes into account the closeness of (M−1) inhibitory pairs with M inhibitory

neurons, it does not measure the order of these pairs. Using the current measure, it is

therefore possible to find distinct spatial arrangements which produce an identical cluster-

ing measure but experience different global behaviours. For example, arrangements 21 and

22 in Table 2.2 have the same clustering measure, but one network experiences complete

stabilisation whilst the other undergoes stable oscillations.

The 1D inhibitory clustering measure (2.8) allowed us to map out the relationship

between inhibitory clustering and proportion of inhibition in a 1D system, along with

the associated dynamics of and on the circular tile networks. Irrespective of whether

the networks were initially connected or disconnected, we observed a clear structure (see

Figure 2.3 A and B, respectively). However, it is important to note that the different

regimes are extremely coarse grained: for each segment plotted, we ran one individual

simulation, where the proportion of neurons was contained within an interval of width

10% and the clustering measure was contained within an interval of length 0.05. In order

to obtain sufficient coverage of all segments, we considered various network sizes, a range

of values for M and N , and various spatial arrangements. We therefore expected to

observe increased variability on the boundaries of areas delimiting different regimes, and

we treated the regimes produced with caution, focusing more on the qualitative results

than on specific behaviours.
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A similar structure is observed again when plotting the proportion of inhibitory neurons

in a contiguous tile versus the number of adjacent tile repeats combined to form the entire

1D network (Figure 2.4). The idea of having adjacent tile repeats is a similar concept

to that explored in a modelling study by Malagarriga et al. in which mixed cortical

macrocolumns, operating in a partially synchronised irregular regime, are seen to affect

the dynamics of the network itself [69]. The authors found that in this type of mesoscopic

network, excitation and inhibition spontaneously segregate, with some columns acting

mainly in an excitatory manner while some others had predominantly an inhibitory effect

on their neighbours. They also reported that hub nodes (i.e., nodes with high degree) are

preferentially inhibitory, contrasting with our finding that increased inhibitory clustering

induces excitatory neurons of high degree. Whilst we do not suggest that excitatory hubs

are physiologically likely, it is worth mentioning that in our networks, hubs are an emergent

property; whereas, in the above study, hubs are the result of imposing a scale-free network

structure on the model. Furthermore, in agreement with Malagarriga et al. [69], when we

analysed the characteristics of neuronal networks exhibiting distinct global behaviours, we

observed some emerging segregation of excitation and inhibition, suggesting that clustered

inhibitory neurons induce a secondary network “layer” of high degree excitatory neurons

which could be responsible for the transport of information across the whole network. We

acknowledge that the 1D networks studied here are biologically unrealistic due to their

size and therefore there are limited conclusions to be drawn regarding the presence of

network motifs and degree distributions. Nevertheless, our results speak to recent results

from mathematical work by Ritchie et al. showing that in networks with identical degree

distribution and clustering coefficient, differences in higher order structure (as assessed

by varied subgraph counts) can have marked effects on the dynamics running on the

networks [97]. Network analysis on simulations with larger networks consisting of 2D

and 3D lattices with periodic boundary conditions would provide more insight into the

emergence of specific network motifs and their function.

2.6.3 2D network behaviours

Increasing dimensionality leads to increasing complexity, such that an exhaustive list of 2D

neural network growth simulations has not been attempted here. Further, designing the

2D inhibitory clustering measure (2.9) using a similar approach to the 1D measure (2.8)

led to a loss of sensitivity and a not-always-monotonic relationship between the measure

(2.9) and the probability of oscillatory dynamics being observed; see, e.g., arrangements 48
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and 51 in Table 2.4. In fact, using simpler components of the 2D clustering measure (2.9)

to compute WH/M revealed a far clearer relationship between the arrangement of neurons

and the global behaviour of the network and its electrical activity (Figure 2.9), where in

general, configurations with smaller values WH/M were more likely to be oscillatory.

In contrast to this relationship, we found some 2D arrangements contained such large

clusters of inhibitory neurons, that the effects of this clustered inhibition appeared to

be eliminated, and the system experienced complete stabilisation (see, e.g., Figure 2.9,

M = 9, WH/M = 1, where 9 inhibitory neurons were arranged into a 3×3 grid of neurons

and hence were maximally clustered, but the system experienced complete stabilisation of

network structure and electrical activity – note that the inhibitory neuron in the centre

of such an arrangement is completely surrounded by inhibitory neurons). This finding

suggests that self-inhibition can have nontrivial effects and more work is needed to refine

methods for measuring spatial clustering of neurons and to understand how local structure

of neurons within the covering rectangle will determine global outcome.

Various approaches can be considered either to improve the sensitivity of the 2D

clustering measure (2.9) or to propose novel methods for quantifying clustering of neuron

locations in mixed neuronal arrangements. If one considers inhibitory neurons as clusters

in a “sea of excitatory neurons, the average cluster size of the cluster size distribution

coupled with intercluster distances may provide an improved picture of how the spatial

arrangement of neurons influences the outcome at system and network level. Furthermore,

topological or geometric measures such as the perimeter of inhibitory clusters may add

insights.

2.6.4 Future modelling studies

The ES model uses circular neuritic fields to model the area of influence of a single neuron.

One consequence of this is that all neurons connect to their direct neighbours before con-

necting to neurons located further away topologically. As a result, the networks cannot

develop the small-world properties observed in neuronal networks. Furthermore, restrict-

ing the state space of neuron locations to equally spaced lattice positions within a given

area is not biologically realistic and greatly reduces the possible arrangements of neurons.

Analytical work on the spatially embedded ES model (especially in more than 1D)

is not possible without engaging in coarse-grain modelling that would inevitably involve

removing the very characteristic that we seek to study, namely, spatial embedding. Indeed,

this has been the case for all analytical works carried out on this type of model to date, e.g.,
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Van Ooyen and Van Pelt [118]. However, as pointed out by Wolf et al. [127], “whenever the

essential ingredients of a phenomenon need to be identified or when a qualitatively novel

type of behaviour demands conceptual advancement, idealisation – even counterfactual

idealisation, that is the neglect of known features – is required.

Future modelling studies should investigate the effects of inhibitory clustering using an

activity-dependent growth model where neurons are assigned to random locations within

some state space, have a variable and discrete number of synaptic elements, and various

synapse formation rules can be implemented (e.g., random, distance-dependent, or other-

wise), in order to create specific network attributes. Such a modelling approach was shown

to conserve small-world network properties in a study investigating cortical reorganisation

after focal retinal lesions [13].

2.6.5 Future experimental studies

Until recently it was not appreciated that within the developing mesencephalon, there exist

inhibitory interneurons whose lineage results in their being spatially clustered rather than

randomly distributed [8, 15]. It is not known how such an arrangement could impact on in

vivo activity-dependent network development, but models such as the one explored in this

chapter point to clustering as having a crucial role in network structure and function. Our

results especially in 2D suggest that some degree of inhibitory clustering can be tolerated

by the network. Thus in vivo it may be that network stability is maintained whilst allowing

for the benefits of inhibitory clustering.

Networks in which there is inhibition of inhibition exist in vivo. The physiological

effect of such connectivity is to increase network excitation. The fact that such networks

can be detected in the mature nervous system again indicates that during development a

certain level of inhibitory to inhibitory connectivity is tolerated. In vivo such arrangements

are being actively studied but their functional implications remain poorly understood [93].

Interestingly, inhibitory to inhibitory interactions are seen only in certain inhibitory neuron

subtypes of the extremely diverse inhibitory interneuron network [68, 92]. Functionally

such arrangements within the sensory system have been shown to increase salience of

signal detection [93, 50]. How such networks emerge during in vivo development and how

inhibition of inhibition affects network activity-dependent growth remains to be explored.

Inhibitory neurons in the mature nervous system show greatest synaptic plasticity

[123]. In relation to the ES model, it is interesting to note that in vivo the on-going shaping

of network structure is crucially dependent on neural inhibition. In the mature nervous
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system, inhibitory synapses are more dynamic in response to the sensory environment than

excitatory synapses [123]. Furthermore, suppression of inhibition leads to more exuberant

yet less focused connectivity, and therefore in sensory systems a less functional connectivity

[21, 123, 28]. Future models may explore how through inhibitory mechanisms, dynamic

network stability is achieved, i.e., a network that can rapidly remodel to reflect changes

in environmental experience yet one in which the essential structure and dynamics are

preserved.

Excessive inhibition and disruption of inhibition leads to network pathology. As dis-

cussed, the results of our modelling study indicate that a certain level of inhibitory clus-

tering can be tolerated and result in a stable network. However, even small changes in

the arrangement or proximity between inhibitory neurons can lead to instability. In vivo

we suggest that early clustering of inhibitory neurons that inhibit one another during the

activity-dependent stage of neural development will lead to excessive connectivity and

network instability. Whilst it is unknown how inhibitory clustering might play out in vivo

studies of neural migration disorders, there are strong hints that such a mechanism or a

similar mechanism may be of importance [66]. We suggest that there should be particular

emphasis placed on the detection in vivo of inhibitory neuron clusters and an exploration

of their potential role in network pathology. Finally, in an era where clinical neuroscience

is exploring neural plasticity therapy as a way of overcoming the effects of brain injury,

a focus on neural inhibition as a potential target for inducing favourable network remod-

elling [31] will be informed by dynamic neural network growth models in which both the

quantity and the spatial arrangement of inhibition are important variables.

2.6.6 Concluding remarks

Simulations involving the ES model suggest that the complex dynamical behaviour neu-

ronal networks experience is influenced by a combination of factors, including the balance

between excitation and inhibition, the spatial topology of those excitatory and inhibitory

neurons, and the connections between them. There are too many intrinsic limitations

to the ES model to be allowed to make strong statements about cortical development.

Nevertheless, this work suggests that modelling studies should be careful to attribute

particular dynamic properties to the E/I ratio as such properties may be meaningful in

well-mixed populations but insufficiently descriptive in the kind of structured networks

found in physiological systems. This certainly highlights the need for further work in

developing tractable mathematical models on structured networks, where balancing the
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need for analytical tractability versus model realism is key in order to identify clear de-

pendencies between model ingredients and outcomes.
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Chapter 3

Edge-based compartmental

modelling of an SIR epidemic on a

dual-layer static-dynamic

multiplex network with tunable

clustering

3.1 Introduction

The continual design and development of mathematical models describing epidemic pro-

cesses on large, complex populations improves our understanding of how diseases and in-

dividuals behave during an epidemic, and how preventative measures can be implemented

for the greater good. With ever-increasing computational power, models can incorpo-

rate increasingly complex features, and model predictions may become more valuable.

Nonetheless, any model must tread a careful balance between capturing observed real-

world complexity and enabling calculations and conclusions to be drawn with ease. The

ultimate epidemiological model must therefore incorporate the behavioural and structural

features which significantly influence disease dynamics, whilst being analytically tractable.

Social heterogeneity describes the propensity for a social group to be diverse in charac-

ter or content, and is an important determinant when studying the dynamics and control

of infectious diseases [3]. In a social group, heterogeneity encompasses many descriptive

elements, such as variations in individuals’ behaviour or in susceptibility across group
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members. In network theory, social heterogeneity can also describe variations in the types

of connections an individual makes. For example, an individual can be connected to other

individuals in distinct groups, such as workplace or community groups.

Structured populations with multiple connection types are well described by multiplex

networks, where a population of individuals partakes in multiple network layers. Each

network layer describes a specific type of interaction between members of the population,

and network structure in one layer is allowed overlap with network structure in another

layer. A pair of individuals in a multiplex network can share more than one connection.

In a multiplex network, an individual is present in every network layer, but may or may

not partake in connections in individual network layers.

Existing multiplex modelling studies have shown that single-layer approximations or

aggregations of multiplex networks are not accurate enough to describe the epidemic pro-

cess [19, 131, 33, 17], and further that an epidemic can spread on a multiplex network

even if the individual layers are well below their respective epidemic thresholds [130]. A

global cascades model generalised for multiplex networks was used to show that multi-

plexes are more vulnerable to global cascades than single layer networks [9]. These studies

highlight the importance of accounting for heterogeneity in connection type by considering

multiplex network models.

Another determinant of infectious disease dynamics is heterogeneity in the structural

connections between individuals, within a single type of connection. Real-world networks

often exhibit community structure, with a high density of connections within communities

and a low density of connections between communities. They are also considered to exhibit

other structural characteristics such as network transitivity or clustering, described in

social network theory as the propensity for an individual to be connected to a friend of a

friend [84].

Community structure has been shown to affect disease dynamics on single-layered

(uniplex) networks, where on average, epidemics occurring on networks with community

structure exhibit greater variance in final epidemic size, a greater number of small, local

outbreaks that do not develop into epidemics, and higher variance in the duration of the

epidemic [99]. Network quality functions able to detect community structure in multiplex

networks have been developed [80]. Further, results such as the large graph limit of an SIR

epidemic process on a dynamic multilayer network, where one network layer represents

community links and another represents connections in healthcare settings, have been

derived [47].



49

In network models, increased clustering is generally considered to slow an epidemic

by increasing the epidemic threshold [71]. However, this relationship is not always mono-

tonic. Higher clustering in a multiplex study of information propagation led to an increase

in the epidemic threshold and a decrease in final epidemic size [132]. Increased cluster-

ing in a study of Watt’s threshold model generalised for a multiplex network comprised

of clustered network layers led to a decrease in the probability of a global cascade and

its size [131]. However, the authors also discovered a critical threshold for the average

degree, above which clustering was shown to facilitate global cascades [131]. A uniplex

network study found that simultaneously increasing clustering and the variance of the

degree distribution led to an increase in final epidemic size [125]. Moreover, clustering can

lead to correlations where high-degree individuals are more likely to connect with other

high-degree individuals. It is clear that the effect of clustering is complex and should be

considered in the design of network models.

In epidemiology it is also important to consider heterogeneity across contact duration.

In human populations, links between individuals may be long-lasting (persistent), e.g. be-

tween an infant child and their caregiver; temporary (transient), e.g. between workplace

colleagues; or more short-lived (fleeting), e.g. between strangers coming into close prox-

imity on public transport. In a study using a year’s mobile phone data as a proxy for

the structure and dynamics of a large social network, researchers found that persistent

links tend to be reciprocal and are more common for individuals with low degree and high

clustering [43]. Many network-based studies in the past have considered fully static net-

work structures, and hence solely investigate the effects of persistent connections between

individuals, see [53] for a review of differing approaches.

Later studies of epidemic processes on networks have incorporated persistent and tran-

sient connections into their models by imposing rewiring rules on static networks. Rewiring

rules considered include spatially-constrained rewiring [95], random link activation and

deletion [111, 102, 56], and temporary link deactivation [113, 105]. On the other hand,

epidemic processes with fleeting contact duration can be well-described via the mass action

model, which assumes all pairs of individuals contact one another at the same rate, the

mean-field social heterogeneity model (also known as the degree-based mean-field model),

which generalises the mass action model by allowing for variations in contact rate across

the population, and the dynamic fixed- and dynamic variable-degree models, where edges

are swapped at a given rate, or edges are broken and created at given rates, respectively

[78, 77].
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Here, we suppose that static and dynamic connections coexist in any complex popu-

lation. We aim to derive a network model describing an SIR epidemic process spreading

through a population where each individual has two types of connections: persistent links

to individuals in their household, constituting a static network layer with community struc-

ture, and transient connections to strangers in the wider population, where all such edges

rewire at a constant rate, constituting a dynamic network layer with conserved degrees.

In what follows, we utilise the edge-based compartmental modelling (EBCM) approach

[124, 73, 74, 77], deriving equations which describe the time evolution of classical quantities

of interest, where the underlying dual-layered static-dynamic network has heterogeneity

in contact-type, contact-duration, and contact-structure. We derive the associated basic

reproduction number R0, following the next generation matrix approach [20]. We describe

the implementation of the EBCM model and of statistically-correct Gillespie simulations

of the epidemic process [32]. The new model is validated, firstly by showing that collapsing

either the static or dynamic network layers leads model equations to converge to existing

equivalent model equations, and secondly by comparing the dynamics predicted by model

equations to those from exact simulations. We explore how various combinations of model

parameters and network layers influence global dynamics, uncover behavioural regimes

that the model can achieve for specific combinations of infection and rewiring rates, and

show that our derived R0 behaves as expected. The chapter concludes with a discussion

of potential implications of the work as well as possible extensions.

3.2 Methods

Our solutions are based on the class of undirected random graphs (networks). Each node

is a member of a random number of static lines (2-vertex cliques), static triangles (3-

vertex cliques) and dynamic lines (2-vertex cliques). The probability that a node has

s static line stubs, t static triangle corners and d dynamic line stubs is described by

the probability mass function ps,t,d. The model captures network structure using the

probability generating function (PGF)

g(x, y, z) =
∑
s,t,d

ps,t,dx
sytzd. (3.1)

When differentiating the PGF (3.1), we use superscripts such that g(x) denotes the first

(partial) derivative of g with respect to x and g(y,y) denotes the second (partial) derivative

of g with respect to y. Equation (3.1) can be used to calculate useful properties of the



51

multiplex network. For example, Ms, the expected number of static line stubs that belong

to a randomly selected individual, Mt, the expected number of static triangle corners that

belong to a randomly selected individual, and Md, the expected number of dynamic line

stubs that belong to a randomly selected individual, are calculated as follows:

Ms =
∑
s,t,d

sps,t,d = g(x)(1, 1, 1),

Mt =
∑
s,t,d

tps,t,d = g(y)(1, 1, 1),

Md =
∑
s,t,d

dps,t,d = g(z)(1, 1, 1).

We consider a basic SIR compartmental model. Infections occur across edges on the

static network layer at a constant rate βs whilst infections occur across edges on the

dynamic network layer at a constant rate βd. Infected individuals recover at a constant

rate γ. Once recovered, a node cannot be reinfected, and can no longer transmit infection

to its neighbours. A comprehensive list of model variables and parameters is given in

Table 3.1.

Table 3.1: Definitions for model variables and parameters. Many definitions refer to the
test node u, which is selected at random from the population and modified so that it
cannot transmit infection, but can itself become infected.

Variable/Parameter Definition

βs Per-edge disease transmission rate on static network layer

βd Per-edge disease transmission rate on dynamic network layer

γ Per-individual disease recovery rate

ρ The proportion of initially infectious individuals

η Edge rewiring rate on dynamic network layer

S(t), I(t), R(t) The susceptible, infectious and recovered proportion of the

population at time t ≥ 0

ps,t,d The proportion of individuals in the network that are a mem-

ber of s static line stubs, t triangle corners and d dynamic

line stubs

g(x, y, z) Probability generating function for the numbers of static

lines, triangles and dynamic lines of which an individual is

a member

Continued on next page
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Table 3.1 – continued from previous page

Variable/parameter Definition

θ2(t) A survivor function for remaining susceptible for some time

t ≥ 0, given that the individual in question is a member of

a single static line

θ3(t) A survivor function for remaining susceptible for some time

t ≥ 0, given that the individual in question is a member of

a single triangle corner

θ4(t) A survivor function for remaining susceptible for some time

t ≥ 0, given that the individual in question is a member of

a single dynamic line

φS(t),φI(t),φR(t) The probabilities that a neighbour of u along a static line is

susceptible, infectious or recovered, and has not transmitted

infection to u by time t ≥ 0

φXY (t) The probability that two neighbours of u in a triangle are

in states X and Y ∈ {S, I,R} and have not transmitted

infection to u by time t ≥ 0

A(t) The rate (at time t ≥ 0) at which a random triangle neigh-

bour v of u is infected from outside the triangle, given that

v was susceptible

B(t) The rate (at time t ≥ 0) at which a random dynamic line

stub neighbour v of u becomes infected from outside the

dynamic line joining u and v, given that v was susceptible

ψS(t),ψI(t),ψR(t) The probabilities (at time t ≥ 0) that a random dynamic

stub belonging to u has never been involved in transmitting

infection to u and is currently connected to a susceptible,

infected, or recovered individual, respectively

πS(t),πI(t),πR(t) The probabilities (at time t ≥ 0) that a randomly chosen

dynamic stub belongs to a susceptible, infected, or recovered

individual, respectively
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3.2.1 Edge-based compartmental model derivation

We follow the edge-based compartmental modelling approach by considering the fate of

a randomly selected test node u, which is prevented from transmitting infection. This

assumption is a useful tool that eliminates conditional probability arguments that would

need to be considered otherwise [77]. It does not introduce any approximation. At time

zero, infection is introduced to a fraction ρ of the population chosen uniformly at random,

comprising the initial condition of the system. We assume that the test node u is a

member of s static line stubs, t static triangle corners and d dynamic line stubs. Then the

probability that u is susceptible is (1−ρ)θs2θ
t
3θ
d
4 , where θ2 is the probability that a random

line (2-clique) on the static network layer has not transmitted infection to the test node,

θ3 is the probability that neither of the other nodes in a random triangle on the static

network layer have transmitted infection to the test node, and θ4 is the probability that

a random stub connected to u on the dynamic network layer has never been involved in

transmitting infection to the test node. Assuming we are able to calculate θ2, θ3 and θ4 as

functions of time, we are able to calculate the proportion of susceptible individuals S as a

function of time. Given S(t), we use I(t) = 1− S(t)−R(t) and Ṙ(t) = γI(t) to calculate

I(t) and R(t), completing the system.

Considering θ2

We divide θ2 into φS , φI and φR, the probabilities that a random neighbour along a line

on the static network layer has not transmitted infection to u, and is susceptible, infected,

or recovered, respectively. The probability the neighbour has not transmitted infection to

u is θ2 = φS +φI +φR, and (1− θ2) is the probability that it has transmitted infection to

u. The fluxes between these quantities is shown in Figure 3.1. The fluxes from φI to φR

and from φI to (1− θ2) are proportional to one another. Both φR and (1− θ2) are equal

to zero at time zero since we assume that no infection or recovery events can occur prior

to time zero. By integrating the relation dφR
dt = γ

βs

d(1−θ2)
dt , and using the initial condition

φR(0) = (1− θ2(0)) = 0, we find the relation

φR =
γ

βs
(1− θ2). (3.2)

Next, we must calculate an expression for φS . Consider the number of static line

stubs attached to an individual that we reach by following a randomly chosen static line.

Similarly, consider the number of static triangle corners attached to an individual reached
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φS φI φR
γφI

1− θ2

βsφI

Figure 3.1: Flow diagram for the flux of a static line partner through different
states. The flux between the probabilities that the test node u is connected by a line
(2-clique) on the static network layer to a node v that has not transmitted infection to u
and is susceptible (φS), infectious (φI) or recovered (φR), and the probability that v has
transmitted infection to u, equal to (1− θ2)

by following a randomly chosen static triangle edge, and the number of dynamic line

stubs attached to an individual we reach by following a randomly chosen dynamic line.

Following edges in this way means we are more likely to arrive at an individual with a

higher degree, in direct proportion to that individual’s degree [70]. The random number

of such lines and triangle corners is described by the excess degree distribution, and we

calculate the associated probability density functions for each edge type as follows. Denote

qs−1,t,d ∝ sps,t,d as the probability of there being (s−1) static line stubs, t triangle corners

and d dynamic line stubs connected to a node that we reach by following a static line, not

counting the line by which we arrived. Similarly, denote rs,t−1,d ∝ tps,t,d as the probability

that if we follow a triangle edge to a node, there are s static line stubs, (t − 1) triangle

corners and d dynamic line stubs connected to that node, not counting the triangle edge

by which we arrived, and ws,t,d−1 ∝ dps,t,d as the probability that if we follow a dynamic

edge to a node, there are s static line stubs, t triangle corners and (d − 1) dynamic line

stubs connected to that node, not counting the dynamic edge by which we arrived.

From above, we note that the probability that there are s static line stubs, t triangle

corners and d dynamic line stubs attached to a random neighbour of u across a static line

(not counting the line it was reached across) is qs−1,t,d ∝ sps,t,d. A neighbour reached by

following a static line connected to u is susceptible with probability (1−ρ)θs−12 θt3θ
d
4 (recall

that u cannot transmit infection), where s, t and d are realisations of the excess degree

distribution. We calculate φS by multiplying the probability that a random neighbour

across a static line has (s, t, d) neighbours, with the probability the random neighbour is

susceptible, summing over all possible values of (s, t, d), and dividing by Ms = g(x)(1, 1, 1),

the expected number of static lines a randomly selected node belongs to. We find

φS =
(1− ρ)

∑
s,t,d sps,t,dθ

s−1
2 θt3θ

d
4

Ms
=

(1− ρ)g(x)(θ2, θ3, θ4)

g(x)(1, 1, 1)
. (3.3)



55

φSS φSI
2AφSS

φSR
γφSI

φII

(A+ βs)φSI

1− θ3

2βsφII
βsφSI

φIR φRR

AφSR

2γφII

γφIR

βsφIR

Figure 3.2: Flow diagram for the flux of two triangle neighbours through dif-
ferent states. The flux between the probabilities that the test node u is connected in a
triangle to two nodes in all possible disease status configurations, where neither triangle
neighbour has transmitted infection to u, as well as the probability (1 − θ3) that a node
v 6= u in the triangle has transmitted infection to the test node u

From the original definition of θ2 we have

φI = θ2 − φS − φR. (3.4)

We are now able to calculate an expression for θ2 using equations (3.2)-(3.4), and noting

from Figure 3.1 that θ̇2 = −βsφI :

θ̇2 = −βsθ2 + βs
(1− ρ)g(x)(θ2, θ3, θ4)

g(x)(1, 1, 1)
+ γ(1− θ2). (3.5)

Considering θ3

Since θ3 denotes the probability that neither of the other nodes in a triangle have trans-

mitted infection to the test node, we must divide θ3 into six quantities φSS , φSI , φSR,

φII , φIR and φRR in order to consider all possible disease status combinations for two

individuals. For example, φSI denotes the probability that one triangle neighbour of u

is susceptible, whilst the other is infectious, and neither have transmitted infection to u.

The flux between the various compartments can be seen in Figure 3.2. There is no simple

relation between φRR and θ3, so we take a different approach than before. We start with

θ̇3, which satisfies

θ̇3 = −βsφSI − 2βsφII − βsφIR. (3.6)

To calculate elements in the right hand side of (3.6), we must first obtain an expression
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for φSS , the probability that both neighbours in a triangle are still susceptible. Under the

assumption that no transmission events have occurred in the triangle, the probability that

a single triangle neighbour of u is susceptible is

(1− ρ)
∑
s,t,d

tps,t,dθ
s
2θ
t−1
3 θd4/Mt = (1− ρ)g(y)(θ2, θ3, θ4)/g

(y)(1, 1, 1),

where Mt is the expected number of static triangle corners belonging to a randomly chosen

individual. Since we require both triangle neighbours of u to be susceptible, we have

φSS =

(
(1− ρ)g(y)(θ2, θ3, θ4)

g(y)(1, 1, 1)

)2

. (3.7)

We choose A to denote the rate at which a single triangle neighbour of u becomes infected

from outside the triangle. From Figure 3.2 we know that dφSS
dt = −2AφSS , which implies

A = −dφSS
dt /2φSS . To arrive at an explicit formula for A, we begin by calculating dφSS

dt

via the chain rule:

dφSS
dt

= 2

(
(1− ρ)g(y)(θ2, θ3, θ4)

g(y)(1, 1, 1)

)
d

dt

(
(1− ρ)g(y)(θ2, θ3, θ4)

g(y)(1, 1, 1)

)

=
2(1− ρ)2g(y)(θ2, θ3, θ4)

g(y)(1, 1, 1)

(
g(y)(1, 1, 1)

(
g(y)(θ2, θ3, θ4)

)′ − g(y)(θ2, θ3, θ4) (g(y)(1, 1, 1)
)′(

g(y)(1, 1, 1)
)2

)
,

where the prime (′) notation is used to denote the derivative with respect to time t. We

know that
(
g(y)(1, 1, 1)

)′
= 0, since g(y)(1, 1, 1) =

∑
s,t,d tps,t,d ∈ R. Hence

dφSS
dt

=
2(1− ρ)2g(y)(θ2, θ3, θ4)

g(y)(1, 1, 1)

(
g(y)(1, 1, 1)

(
g(y)(θ2, θ3, θ4)

)′(
g(y)(1, 1, 1)

)2
)

=
2(1− ρ)2g(y)(θ2, θ3, θ4)

g(y)(1, 1, 1)

((
g(y)(θ2, θ3, θ4)

)′
g(y)(1, 1, 1)

)
.

Next, we calculate
(
g(y)(θ2, θ3, θ4)

)′
using dg(x,y,z)

dt = ∂g
∂x

dx
dt + ∂g

∂y
dy
dt + ∂g

∂z
dz
dt to obtain

(
g(y)(θ2, θ3, θ4)

)′
= g(y,x)(θ2, θ3, θ4)θ̇2 + g(y,y)(θ2, θ3, θ4)θ̇3 + g(y,z)(θ2, θ3, θ4)θ̇4,

where the dot ( ˙ ) notation is also used to denote the derivative with respect to time t.

Thus we have

dφSS
dt

=
2(1− ρ)2g(y)(θ2, θ3, θ4)

g(y)(1, 1, 1)

(
(g(y)(θ2, θ3, θ4))

′

g(y)(1, 1, 1)

)
.
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Using A = −dφSS
dt /2φSS and some simplification, we find an explicit formula for A:

A = −

(
g(y,x)(θ2, θ3, θ4)θ̇2 + g(y,y)(θ2, θ3, θ4)θ̇3 + g(y,z)(θ2, θ3, θ4)θ̇4

g(y)(θ2, θ3, θ4)

)
. (3.8)

Now we are ready to calculate equations for φSI , φII and φIR. We also require φSR,

but do not require a formula for φRR. Using the flow diagram in Figure 3.2, we have

˙φSI = 2AφSS − (A+ 2βs + γ)φSI , (3.9)

˙φSR = γφSI −AφSR, (3.10)

˙φII = (A+ βs)φSI − 2(βs + γ)φII , (3.11)

˙φIR = AφSR + 2γφII − (βs + γ)φIR. (3.12)

Considering θ4

To take into account the dynamic rewiring of edges, we introduce θ4 = ψS + ψI + ψR,

where ψI denotes the probability that a random dynamic stub belonging to the test node

u has never been involved in transmitting infection to u, and is currently connected to

an infectious node. Other important assumptions with respect to dynamic edge rewiring

are the following: we assume that when one partnership ends, a new partnership forms

immediately, neglecting any between-partner period, and we assume that edges break at

rate η. The flux between the various compartments of interest can be seen in Figure 3.3.

Previously, φS (which corresponds to ψS in this subsection) was calculated explicitly as

the probability that the neighbour is susceptible. With dynamic edge rewiring, a line stub

that previously transmitted infection to u may later become connected to a susceptible

node, so the previous calculation of φS does not apply here. To find ψS , we need to

calculate the probability that a newly formed edge connects to a susceptible, infectious,

or recovered individual. We call these probabilities πS , πI and πR and note that they are

equivalent to the probabilities that a randomly chosen dynamic stub belongs to a node in

each disease compartment. The flux between these probabilities can be seen in Figure 3.4.

First, we calculate the values πS , πI and πR, beginning with πS . If we select a dynamic

stub at random, the probability that it belongs to an individual partaking in s static lines,

t triangles and d dynamic stubs is dps,t,d/Md, where Md = g(z)(1, 1, 1) is the expected

number of dynamic edges that a random individual belongs to. At time zero, infection is

introduced at random to a proportion ρ of the population. Thus the probability of any

node being susceptible at time zero is (1 − ρ). The probability of a node with degree
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1− θ4

ψIψS ψR

ηθ4

βdψI

γψIBψS

ηψR
ηθ4πRηψS

ηθ4πS

ηψIηθ4πI

Figure 3.3: Flow diagram for the flux of a dynamic edge partner through dif-
ferent states. The flux between the probabilities θ4 = ψS + ψI + ψR that a random
stub currently connected to u on the dynamic network layer has never been involved in
transmitting infection to u. Note that the compartment denoted ηθ4 is not a compartment
in the typical sense. When edges break (at rate η) in the model, moving into ‘compart-
ment’ ηθ4, new edges are formed immediately without delay, moving straight back into
compartments ψS , ψI or ψR. πS , πI and πR denote the probabilities that a randomly
chosen dynamic stub belongs to a susceptible, infected, or recovered node, respectively

πS πI πR
γπI

Figure 3.4: Flow diagram for the flux of a dynamic line stub through different
states. The flux between πS , πI and πR, the probabilities that a randomly chosen dynamic
stub belongs to a susceptible, infected or recovered node, respectively
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(s, t, d) being susceptible after some time, given that it was susceptible at time zero, is

θs2θ
t
3θ
d
4 . Hence πS = (1 − ρ)

∑
s,t,d ps,t,ddθ

s
2θ
t
3θ
d
4/Md, with the summation taken over all

degree possibilities described by the probability mass function ps,t,d. Stubs belonging to

infected nodes become stubs belonging to recovered nodes at rate γ, hence π̇R = γπI , and

πI = 1−πS −πR. The equation for πS can be condensed using the PGF (3.1), so we have

πS =
(1− ρ)

∑
s,t,d ps,t,ddθ

s
2θ
t
3θ
d
4∑

s,t,d ps,t,dd
=

(1− ρ)θ4g
(z)(θ2, θ3, θ4)

g(z)(1, 1, 1)
, (3.13)

πI = 1− πS − πR, (3.14)

π̇R = γπI . (3.15)

To complete the system we need to calculate the flux BψS from ψS to ψI by solving

a differential equation for ψS . B describes the rate at which a susceptible dynamic-edge

neighbour v of u becomes infected from outside the dynamic edge joining u and v. Consider

a random test node u and a random dynamic-edge neighbour v of u, at some time t. Let ζ

denote the probability that the two stubs joining u and v have not previously been involved

in transmitting infection to u or to v, prior to the u−v edge forming. The probability that

v is susceptible and that u’s stub has not previously transmitted to u is ζ(1− ρ)θs2θ
t
3θ
d−1
4 ,

where s is the number of static lines v partakes in, t is the number of triangles v partakes

in, and d is the dynamic line stub degree of v. Since we do not know the values (s, t, d) for

v, we must consider all possible combinations of degrees. The probability of a randomly

chosen dynamic stub belonging to a node with degree (s, t, d) is dps,t,d/g
(z)(1, 1, 1). We

conclude that

ψS =
ζ(1− ρ)

∑
s,t,d ps,t,ddθ

s
2θ
t
3θ
d−1
4

g(z)(1, 1, 1)
=
ζ(1− ρ)g(z)(θ2, θ3, θ4)

g(z)(1, 1, 1)
.

To calculate the derivative of ψS , we first consider the derivative of ζ. This is given

by subtracting the rate at which such edges break, ηζ, from the rate at which such edges

form, ηθ24 (one θ4 for u’s stub and one for v’s stub). We have

ζ̇ = ηθ24 − ηζ.
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We have an expression for ζ̇, so the derivative of ψS can be found via the chain rule:

ψ̇S = ζ̇
(1− ρ)g(z)(θ2, θ3, θ4)

g(z)(1, 1, 1)
+

ζ(1− ρ)

g(z)(1, 1, 1)

(
g(z)(θ2, θ3, θ4)

)′
=
ηθ24(1− ρ)g(z)(θ2, θ3, θ4)

g(z)(1, 1, 1)
− ηζ(1− ρ)g(z)(θ2, θ3, θ4)

g(z)(1, 1, 1)
+

ζ(1− ρ)

g(z)(1, 1, 1)

(
g(z)(θ2, θ3, θ4)

)′
= ηθ4πS − ηψS +

ζ(1− ρ)

g(z)(1, 1, 1)

(
g(z,x)(θ2, θ3, θ4)θ̇2 + g(z,y)(θ2, θ3, θ4)θ̇3 + g(z,z)(θ2, θ3, θ4)θ̇4

)
= ηθ4πS − ηψS +

ψS

(
g(z,x)(θ2, θ3, θ4)θ̇2 + g(z,y)(θ2, θ3, θ4)θ̇3 + g(z,z)(θ2, θ3, θ4)θ̇4

)
g(z)(θ2, θ3, θ4)

,

with simplifications achieved by utilising πS = (1 − ρ)θ4g
(z)(θ2, θ3, θ4)/g

(z)(1, 1, 1) and

ψS = ζ(1−ρ)g(z)(θ2, θ3, θ4)/g
(z)(1, 1, 1). From Figure 3.3 we have ψ̇S = ηθ4πS−ηψS−BψS ,

so we calculate the flux between compartments ψS and ψI using the rate

B = −

(
g(z,x)(θ2, θ3, θ4)θ̇2 + g(z,y)(θ2, θ3, θ4)θ̇3 + g(z,z)(θ2, θ3, θ4)θ̇4

g(z)(θ2, θ3, θ4)

)
. (3.16)

The ψS to ψI flux is the product of ψS , the probability that a random dynamic stub

has not transmitted infection to the test node u and is currently connected to a susceptible

node, with rate B, the rate at which a susceptible dynamic-edge neighbour v of u becomes

infected from outside the dynamic edge joining u and v. Following the flow diagram in

Figure 3.3, we have the differential equations

θ̇4 = −βdψI , (3.17)

ψ̇S = ηθ4πS − (B + η)ψS , (3.18)

ψ̇I = BψS + ηθ4πI − (η + γ + βd)ψI , (3.19)

ψ̇R = γψI + ηθ4πR − ηψR. (3.20)

Population-level equations

We began the EBCM derivation by considering the probability of a randomly selected test

node u (which is prevented from transmitting infection) being susceptible as θs2θ
t
3θ
d
4 , given

that the node has degree (s, t, d). Since we have calculated formulae for θ2, θ3 and θ4, we

can derive population-level equations describing the proportion of the population in each
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disease compartment at each point in time:

S(t) = (1− ρ)g(θ2(t), θ3(t), θ4(t)) = (1− ρ)
∑
s,t,d

ps,t,dθ2(t)
sθ3(t)

tθ4(t)
d, (3.21)

I(t) = 1− S(t)−R(t), (3.22)

Ṙ(t) = γI(t). (3.23)

Equations (3.1)-(3.23) form a complete system describing an SIR epidemic spreading across

a dual-layer multiplex network consisting of a static network layer constructed from line

stubs and triangle corners and a dynamic network layer constructed from line stubs only,

where edges rewire and degrees are conserved.

3.2.2 Deriving the basic reproduction number R0

The basic reproduction number R0 is defined as the average number of infections caused

by a single infectious individual, early in an epidemic process, in an otherwise susceptible

population. In the model, a multiplex network structure is generated using three distinct

edge distributions (static line stubs, static triangle corners and dynamic line stubs). To

compute R0 we must consider the average number of infections caused across each type

of edge, whilst also considering the type of edge that the infection was originally received

across. With 3 edge types, this constitutes 9 values, grouped together to form the next

generation matrix

G =


Gss Gst Gsd

Gts Gtt Gtd

Gds Gdt Gdd

 ,

where matrix element Gij describes the average number of infections caused across edges

of type j, where the infector received infection across an edge of type i. Following the

next generation matrix approach [20], the value of R0 is found via the leading eigenvalue

of the matrix G, or equivalently, the eigenvalue with greatest magnitude. We note that

the matrix G defined here is the transpose of the next generation matrix as defined in

[20]. However, this discrepancy does not affect the eigenvalues or therefore the value R0.

To find R0, we begin by deriving expressions for values in the first column of G.

Firstly, consider the non-diagonal matrix entries Gts and Gds. We want to compute

the expected number of infection events occurring across static lines, when individuals

contracted infection across a triangle edge or a dynamic line. In both cases, we require the

expected static line stub degree, multiplied by the expected number of infections caused
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across a single static line attached to the infectious individual. Say the expected static

line stub degree is denoted 〈ks〉. Now we require the expected number of infections caused

across a single static edge attached to an infectious individual, in an otherwise susceptible

population. A single static edge joining a susceptible and an infectious individual, in an

otherwise susceptible population, has two event possibilities: a single recovery, or a single

infection. Denote X as the random variable describing the number of infection events

occurring across a single static line joining a susceptible to an infectious individual, in an

otherwise susceptible population. Using the expectation formula, and since there can only

be zero or one infection events occurring across such an edge, we find the expected number

of infections across a static line joining a susceptible to an infectious individual simply as

P(X = 1). The probability of a single infection occurring across such a static edge, prior

to any recovery, is βs
βs+γ

. Thus we can say that Gts = Gds = 〈ks〉 βs
βs+γ

.

Finally, we calculate an expression for the diagonal matrix element Gss, by multiply-

ing the expected excess static line stub degree, denoted 〈s〉, by the expected number of

infections caused across a single static line joining a susceptible individual to an infectious

individual in an otherwise susceptible population. Following the same argument for Gts

and Gds, we compute the expected number of infection events for Gss as βs
βs+γ

, and we

obtain Gss = 〈s〉 βs
βs+γ

.

Next we derive expressions for the values Gst, Gtt and Gdt in the second column of

the matrix G. We firstly consider the non-diagonal elements Gst and Gdt. Both Gst and

Gdt are calculated by multiplying the expected triangle corner degree, denoted 〈kt〉, by

the expected number of infection events caused within a single triangle attached to an

infectious node in an otherwise susceptible population. In a single triangle comprised of

two susceptible individuals attached to an infectious individual, there are a finite number

of infection event possibilities: either no further infections occur (the infectious individual

recovers), one infection event occurs, or two infection events occur. Define Y as the

random variable describing the number of infection events within such a triangle. Using

the expectation formula, we find the expected number of infection events within a triangle

comprised of two susceptible individuals and an infective, in an otherwise susceptible

population, as P(Y = 1) + 2 · P(Y = 2). To continue, we must compute the probabilities

P(Y = 1) and P(Y = 2) explicitly. P(Y = 1) describes the probability that the original

infective infects one out of two triangle neighbours. In this case, either one of the two

susceptible neighbours can become infectious, and both infectious triangle members must

then recover, so that it is impossible for any more than one infection event to occur. In a
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triangle comprised of a single infective and two susceptible nodes, there are four distinct

nodal orders in which a single infection event is followed by the recovery of both infectious

nodes. We find

P(Y = 1) =
4βs

2βs + γ

(
γ

2βs + 2γ

)(
γ

βs + γ

)
=

2βs
2βs + γ

(
γ

βs + γ

)2

.

Considering P(Y = 2) is more complex, as there are two distinct ways in which two in-

fection events can occur in a triangle between an infective and two susceptible individuals.

Firstly, the original infective can infect both of its triangle neighbours consecutively, prior

to any recovery events. The probability of both triangle infection events occurring in suc-

cession is given by
(

2βs
2βs+γ

)(
2βs

2βs+2γ

)
=
(

2βs
2βs+γ

)(
βs

βs+γ

)
. Secondly, the original infective

can cause two triangle infections via three consecutive events. In this case, the originally

infectious triangle member firstly infects one susceptible triangle neighbour at rate 2βs
2βs+γ

.

The triangle is now comprised of two infectious individuals attached to a single susceptible

individual. The second event to occur is a recovery of either the original infector or its

first infectee, occurring at rate 2γ
2βs+2γ = γ

βs+γ
. The triangle is now comprised of a sus-

ceptible, an infective, and a recovered individual, in an otherwise susceptible population.

Following the recovery event, the final event is an infection of the remaining susceptible

triangle member, occurring at rate βs
βs+γ

. The probability of all three events occurring in

succession is thus 2βs
2βs+γ

(
γ

βs+γ

)(
βs

βs+γ

)
.

In the latter case of an infection, followed by a recovery, followed by another infection

within a triangle originally composed of an infective and two susceptible individuals in

an otherwise susceptible population, the original infector may not be directly involved in

every single infection event. However, for the purposes of deriving R0, we say that the

original infector caused these infections, regardless of the order in which triangle members

recover and infect one another.

Since there are two distinct ways in which two infections can take place within a

triangle comprised of an infective and two susceptible individuals, we take the sum of

both individual probabilities to obtain P(Y = 2):

P(Y = 2) =
2βs

2βs + γ

(
βs

βs + γ

)
+

2βs
2βs + γ

(
γ

βs + γ

)(
βs

βs + γ

)
=

2βs
2βs + γ

(
βs

βs + γ

)[
1 +

γ

βs + γ

]
.
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We find the expected number of infection events within a triangle comprised of two sus-

ceptible individuals and an infective, in an otherwise susceptible population, as

P(Y = 1) + 2 · P(Y = 2) =
2βs

2βs + γ

(
γ

βs + γ

)2

+
4βs

2βs + γ

(
βs

βs + γ

)[
1 +

γ

βs + γ

]
=

2βs
2βs + γ

[
2−

(
γ

βs + γ

)2
]
.

Then we have Gst = 〈kt〉 2βs
2βs+γ

[
2−

(
γ

βs+γ

)2]
= Gdt, where 〈kt〉 denotes the expected

static triangle corner degree. Finally, we have Gtt = 〈t〉 2βs
2βs+γ

[
2−

(
γ

βs+γ

)2]
, where 〈t〉

denotes the expected excess static triangle corner degree.

We conclude by deriving elements from the third column of G, starting with non-

diagonal matrix elements Gsd and Gtd. In both cases, we multiply the expected dynamic

line stub degree, denoted 〈kd〉, by the expected number of infection events occurring across

a single dynamic line stub attached to an infectious individual, in an otherwise susceptible

population.

The probability of a dynamic stub attached to an infective in an otherwise susceptible

population transmitting infection at least once is βd
βd+γ

. If such an infection occurs, the

I-S pairing becomes an I-I pairing with a dynamic edge joining the two individuals. The

probability of a dynamic I-I edge rewiring, prior to any recovery event, is η
η+γ . We can

assume that any I-I edge rewires to become an I-S edge in the limit of large population size,

since we are early on in an epidemic process, and we began with an otherwise susceptible

population. The probability that an infectious dynamic stub infects its new susceptible

neighbour is βd
βd+γ

. This rewiring and infecting process can occur an arbitrary number of

times in the model. The expected number of infections of this type can be calculated by

taking the sum
∞∑
n=0

βd
βd + γ

rn =
βd

βd + γ

(
1

1− r

)
,

by the geometric series, and where r is defined as ηβd
(η+γ)(βd+γ)

, the probability of an in-

fectious individual’s dynamic edge rewiring, followed immediately by its dynamic stub

infecting the new (susceptible) neighbour across the rewired edge. We obtain the matrix

values Gsd = 〈kd〉 βd
βd+γ

(
1

1−r

)
= Gtd.

Finally, we compute Gdd, defined as the expected number of infections caused across

dynamic edges, where the infector received infection across a dynamic edge itself. Firstly,

consider the single dynamic I-I edge which originally infected our individual. The prob-

ability of the edge rewiring, leaving our infective in an I-S dynamic edge pairing, is η
η+γ .
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The probability of the infectious dynamic stub infecting the new susceptible neighbour is

βd
βd+γ

. Thus the probability that the dynamic stub which originally contracted infection

infects ≥ n individuals is rn, where r = ηβd
(η+γ)(βd+γ)

. We compute the expected number of

infections of this type by taking the sum of rn for n = 1 :∞

∞∑
n=1

rn =
r

1− r
,

by the geometric series. Now consider the remaining dynamic edges associated with our

infectious individual. We require the expected number of infections caused by a single

edge of this type. Using the same argument as for Gsd and Gtd, we find the expected

number of infections caused by one dynamic edge attached to our infectious individual as

βd
βd+γ

(
1

1−r

)
. Thus we find Gdd = r

1−r + 〈d〉 βd
βd+γ

(
1

1−r

)
, where 〈d〉 is the expected excess

dynamic line stub degree.

In detail, the next generation matrix G takes the form
〈s〉 βs

βs+γ
〈kt〉 2βs

2βs+γ

(
2−

(
γ

βs+γ

)2)
〈kd〉 βd

βd+γ

(
1

1−r

)
〈ks〉 βs

βs+γ
〈t〉 2βs

2βs+γ

(
2−

(
γ

βs+γ

)2)
〈kd〉 βd

βd+γ

(
1

1−r

)
〈ks〉 βs

βs+γ
〈kt〉 2βs

2βs+γ

(
2−

(
γ

βs+γ

)2)
r

1−r + 〈d〉 βd
βd+γ

(
1

1−r

)

 , (3.24)

where 〈ks〉, 〈kt〉 and 〈kd〉 denote the expected static line stub, static triangle corner and

dynamic line stub degrees, 〈s〉, 〈t〉 and 〈d〉 denote the expected excess static line stub,

static triangle corner and dynamic line stub degrees, and r = ηβd
(η+γ)(βd+γ)

. The basic re-

production number R0 is the eigenvalue of the next generation matrix (3.24) with greatest

magnitude.

3.2.3 Model implementation

A variable-order stiff differential equation solver (ode15s in the MATLAB environment)

was used to solve all relevant systems of equations. Initial conditions were specified,

consisting of appropriate degree distributions and parameters for each edge-based com-

partmental model type, and of a user specified end time for the computation.

Solutions to equations (3.1)-(3.23) were found using both interdependent and inde-

pendent distributions for the three edge types. For interdependent distributions, a single

probability distribution governed the distribution of pairs of edge stubs, and additional

model parameters (ps + pt + pd) ≡ 1 were used to distribute each pair of stubs into: two

static line stubs (with probability ps), a single static triangle corner (with probability
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pt), or two dynamic line stubs (with probability pd). In such cases we used a negative

binomial distribution for pairs of edge stubs with parameters p and r describing the prob-

ability of success in a single trial and the number of trial successes respectively, where the

distribution itself is generated by gnb(x; r, p) = ( p
1−(1−p)x)r and models the number of fail-

ures before a specified number of successes is reached in a series of identical, independent

Bernoulli trials. We also utilised a discrete homogeneous distribution for pairs of edge

stubs where all individuals had identical degree. For independent distributions, we used

three separate binomial distributions for the number of static line stubs, static triangle

corners and dynamic line stubs.

3.2.4 Simulation implementation

To test the validity of solutions to equations (3.1)-(3.23), found in the MATLAB en-

vironment, Gillespie simulations [32] were implemented to produce statistically-correct

trajectories of SIR epidemic processes occurring on equivalent static-dynamic multiplex

networks. Prior to each simulation, static and ‘dynamic’ adjacency matrices were gener-

ated according to a configuration model approach, described as follows: for a population

of N individuals, three vectors of length N were generated to record the number of static

line stubs, static triangle corners, and dynamic line stubs associated with each individual,

according to user-specified degree distributions provided to the script. The script ensured

that the total number of static line stubs was even, the total number of dynamic line stubs

was even, and that the total number of static triangle corners was a multiple of three.

Firstly, the static network layer was generated using vectors containing the number of

static line stubs and triangle corners each individual partook in. Pairs of static line stubs

and triples of static triangle corners were selected at random. Provided potential static

lines and triangles did not generate self-loops (where an individual is joined to itself with

an edge) or double edges (where an edge exists more than once within the static network

layer), they were added to the static adjacency matrix. The unmatched static line stubs

and static triangle corners lists were updated, and the process continued until all static

line stubs and triangle corners were successfully matched.

Secondly, the initial structure of the dynamic network layer was generated using the

vector storing the number of dynamic line stubs each individual partook in. Pairs of

dynamic line stubs were selected at random. Provided a potential dynamic edge did not

generate a self-loop or a double-edge within the dynamic network layer, it was added to

the dynamic adjacency matrix. Successfully paired dynamic stubs were removed from
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the unmatched stubs list, and the process continued until all dynamic line stubs were

successfully matched.

The nature of this configuration model approach meant that the wiring processes for

the static and dynamic network layers may have had to be restarted multiple times in order

to achieve final network structures. Once all static line stubs, static triangle corners and

dynamic line stubs had been wired up, the configuration process was complete. Although

the script prevented double-edges from occurring within each network layer, it was possible

for double-edges to occur across the network layers, i.e. for two individuals to share both

a static and a dynamic connection simultaneously.

Given static and dynamic adjacency matrices describing the multiplex network struc-

ture, simulated epidemic processes were implemented. In each Gillespie simulation, ρN

initially infectious individuals were selected at random from the population. At each time

step, a vector of length (N + 1) described the state transition rate (infection or recovery)

for all N individuals, followed by a single edge swapping rate, ηM
2 , where M := total

number of edges in the dynamic network layer. Inter-event times followed an exponential

distribution with scale parameter 1
R , where R := the sum of the rates vector at the cur-

rent time step. Each event occurring was either an infection, a recovery or an edge swap.

Uniformly distributed random numbers were generated at each time step to determine the

next event to occur. When an edge swap event occurred, the script selected two dynamic

edges at random, ensuring that all four nodes involved in these edges were unique. The

script also ensured that the proposed new dynamic edges did not already exist within the

dynamic network layer. Given these conditions, an edge swap occurred and the Gillespie

process continued. The process terminated once the user specified end time was reached.

3.3 Results

In what follows, we assess the validity of equations (3.1)-(3.23) and of the basic repro-

duction number R0, obtained via the next generation matrix (3.24). We firstly consider

two extreme cases of the multiplex model: when either the static or the dynamic network

layers are negligible (close to zero). In such cases, we show that predictions made by

equations (3.1)-(3.23) resolve to predictions made by existing uniplex EBCM equations.

When the full multiplex model is considered, with static and dynamic network elements

present, there exists no basis for comparison other than generating exact simulations of the

epidemic process. To this end, we utilise Gillespie simulations to demonstrate the valid-

ity of equations (3.1)-(3.23) in predicting the epidemic process for a number of multiplex
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network configurations. By solely considering the predictions of equations (3.1)-(3.23),

we explore the consequences of varying individual model parameters and of considering

various combinations of model parameters (ps + pt + pd) ≡ 1, governing the contributions

of each edge type. Further, we explore the contributions of each edge type and how the

resulting final epidemic size is altered within a systematic consideration of combinations

of model parameters βs, βd and η. Finally, we test the performance of the derived basic

reproduction number R0 in predicting the outcome of an epidemic and we explore vari-

ations in the value of R0 and the associated final epidemic size predicted by equations

(3.1)-(3.23) when altering the rate of rewiring, the extent of clustering, and the average

degree in the multiplex model.

3.3.1 Model convergence to existing uniplex model equations

Model without dynamic layer

When the dynamic network component of the dual-layer static-dynamic multiplex is re-

moved, the model reduces to describe an SIR epidemic on a static uniplex network gener-

ated by lines and triangles. Biologically speaking, this reduced model tracks the epidemic

as it spreads across persistent connections in a population with community structure. The

EBCM approach was followed to derive equations describing an SIR epidemic on such a

network in [125].

By comparing predictions made by uniplex model equations in [125] with those of

multiplex model equations (3.1)-(3.23) when dynamic network elements are close to zero,

we were able to test the multiplex model’s convergence (Figure 3.5). Excellent agreement

was observed between multiplex model equations where dynamic network elements are

negligible, uniplex model equations [125] and Gillespie simulated epidemics on equivalent

multiplex networks, for a number of scenarios with varying forces of infection.

Model without static layer

When the static component of the dual-layer static-dynamic multiplex is removed, the

model describes an SIR epidemic on a dynamic uniplex network generated by lines, where

edges rewire at constant rate η and degrees are conserved. Biologically, the reduced model

describes an epidemic spreading through a population where connections between pairs

of individuals are temporary but the number of connections an individual partakes in

remains fixed. The EBCM approach was followed to derive equations describing an SIR

epidemic spreading on such a network in [77].
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Figure 3.5: Multiplex model convergence — no dynamic layer, with simulation.
The time evolution of infection prevalence for the original EBCM of an SIR epidemic on
a static uniplex network (solid black line), for the proposed EBCM of an SIR epidemic on
a dual-layer multiplex with the dynamic network layer being close to zero (thick dashed
red line), and for 10 Gillespie simulations of the SIR epidemic on a single network of size
N = 5000 (solid blue lines). In all panels γ = 1, ρ = 0.05, and p = 0.5 and r = 10
generate a negative binomial distribution for pairs of edge stubs. For the original static
derivation (solid black line) ps = 0.5 = pt, describing the proportion of edge-pairs that are
split into two single lines or remain as a triangle corner, respectively. For the multiplex
derivation (thick dashed red line) βs = βd, η = 0.01, and ps = 0.4999999, pt = 0.5 and
hence pd = 10−7 describe the proportion of edge-pairs that become two static lines, a
static triangle corner, or two dynamic edges respectively. (a) β′s = 1, C = 0.02677, (b)
β′s = 0.5, C = 0.02670, (c) β′s = 0.25, C = 0.02658, (d) β′s = 0.125, C = 0.02685,
where C denotes the global clustering coefficient of each static network layer generated
for simulation

Excellent agreement was observed between predictions made by equations (3.1)-(3.23)

when static network elements are close to zero, output from the dynamic fixed-degree
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derivation in [77] and Gillespie simulations describing the SIR epidemic and edge rewire

processes occurring simultaneously on equivalent multiplex networks, for a number of

setups with varying forces of infection (Figure 3.6).

Figure 3.6: Multiplex model convergence — no static layer, with simulation.
The time evolution of infection prevalence for the original EBCM of an SIR epidemic on a
dynamic uniplex network with conserved degrees and edge re-wiring (solid black line), for
the proposed multiplex EBCM of an SIR epidemic with the static network layer being close
to zero (thick dashed red line), and for 10 Gillespie simulations of the process on a single
network of size N = 5000 (solid blue lines). In all panels γ = 1, ρ = 0.05, and p = 0.5 and
r = 10 generate a negative binomial distribution for pairs of edge stubs. For the original
conserved-degree derivation (solid black line) pd = 1, indicating that all edge-pairs become
two disjoint dynamic edges. For the multiplex derivation (thick dashed red line), η = 0.01
and ps = pt = 10−7 and pd = 0.9999998 describe the proportion of edge-pairs that become
two static lines, single triangle corners, or two dynamic edges respectively. (a) β′s = 1,
C = 0.004944, (b) β′s = 0.5, C = 0.005285, (c) β′s = 0.25, C = 0.005344, (d) β′s = 0.125,
C = 0.005127, where C denotes the global clustering coefficient of each dynamic network
layer generated for simulation, at time zero
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3.3.2 Model validation by comparison with simulation

We have observed excellent agreement between multiplex model predictions, uniplex model

predictions and Gillespie simulated epidemics in extreme cases where either static or dy-

namic network elements are negligible (Figures 3.5 - 3.6). When multiplex network el-

ements are non-negligible, static and dynamic network layers coexist in the model. In

such cases, Gillespie simulated epidemics become the sole basis for assessing the validity

of multiplex model equations (3.1)-(3.23).

A number of comparisons have been made between multiplex model predictions and

Gillespie simulations when static and dynamic network elements coexist (Figures 3.7 -

3.8). Excellent agreement was observed for a number of comparisons with various average

degrees (imposed via negative binomial parameters p and r, describing the distribution

governing pairs of edge stubs) and various levels of clustering (imposed by varying param-

eter pt with the constraint (ps + pt + pd) ≡ 1) (Figure 3.7). Excellent agreement was also

observed for a number of comparisons with various combinations of the multiplex model’s

infection parameters βs and βd (Figure 3.8).

3.3.3 A brief exploration of parameter spaces

Having observed excellent agreement between simulated epidemic processes and equivalent

predictions made by multiplex model equations, we investigated the effects of varying single

parameters on the dynamics of epidemics predicted by equations (3.1)-(3.23). In total,

9 individual model parameters were varied systematically whilst all (or the majority of)

other parameters were held constant (Figure 3.9). Across all parameters being varied,

an identical baseline parameter set was utilised, with the resulting prediction made by

equations (3.1)-(3.23) plotted in black to enable ease of comparison between different

parameter scenarios.

This brief exploration highlights the effect that increasing or decreasing a single pa-

rameter has on the global dynamics of an SIR epidemic spreading across a dual-layer

static-dynamic multiplex. Larger values of p, where p describes the probability of success

in a single Bernoulli trial, generate a negative binomial distribution with smaller average

degree and a reduction in variance, slowing the epidemic’s spread. Larger values of r,

where r denotes the number of successful Bernoulli trials that must be reached before

the experiment is stopped, led the epidemic to spread more rapidly due to an increase in

average degree and variance of the negative binomial distribution for pairs of edge stubs.

Varying the rewiring rate η led to less pronounced differences, where larger values of η
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Figure 3.7: Multiplex model prediction vs. simulation — varying clustering
and average degree. Plotting the dynamics of the proportion of infected individuals
over time. Each panel contains 25 Gillespie simulations on a single multiplex network
comprised of N = 1000 individuals (blue lines) and the associated EBCM prediction
(black line). All networks are generated using a negative binomial distribution for pairs
of edge stubs with parameters p = 0.5 and various values for r. Networks in column 1
(counting from left to right) have average degree 10 (achieved via r = 5), networks in
column 2 have average degree 20 (achieved via r = 10) and networks in column 3 have
average degree 30 (achieved via r = 15). Networks in row 1 (counting from top to bottom)
have minimised clustering via values ps = 0.99999998 and pt = 10−8. Networks in row 2
have the values ps = 0.49999999 = pt. Networks in row 3 have maximised clustering via
the values ps = 10−8 and pt = 0.99999998. Counting panels from left to right and top to
bottom, starting with the upper-left panel, static networks have the following clustering
coefficients: C = 0.0161, C = 0.0267, C = 0.0370, C = 0.0535, C = 0.0473, C = 0.0493,
C = 0.0898, C = 0.0662, C = 0.0629. In all panels, tmax = 10, ρ = 0.05, βs = βd = 0.25,
γ = 1, η = 0.01

led to a slight increase in the speed at which the epidemic spread through the population.

Increasing a single infection parameter βs or βd leads to an increase in the rate of epidemic
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Figure 3.8: Multiplex model prediction vs. simulation — varying infection
parameters βs and βd. Plotting the dynamics of the proportion of infected individuals
over time. Each panel contains 100 Gillespie simulations (10 simulations on 10 multiplex
networks comprised of N = 5000 individuals) (blue lines) and the associated EBCM
prediction (black line). All multiplex networks follow a negative binomial distribution for
pairs of edge stubs with parameters p = 0.5 and r = 10, which were split into three edge
types via ps = 0.3 = pt and thus pd = 0.4. In all panels tmax = 10, ρ = 0.05, γ = 1,
η = 0.01. Across the panels, different values for βs and βd have been used in the range
[0.125, 0.25, 0.5], indicated by individual column and row headings

spread. Altering the parameter ρ means changing the number of individuals who are in-

fectious at the start of an epidemic process. Increasing the value of ρ leads to changes in

the shape of the curve I(t), describing the prevalence of infection at time t, and to the

epidemic process finishing sooner. Altering the values ps, pt and pd, with the constraint

(ps + pt + pd) ≡ 1, demonstrates the range of dynamics that can be achieved using a fixed
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Figure 3.9: Multiplex model predictions. Plotting the dynamics of the proportion of
infected individuals over time, for a number of different parameter sets. In all panels, a
baseline parameter set (p = 0.5, r = 10, ps = 0.3 = pt, pd = 0.4, βs = 0.05, βd = 0.2, γ = 1,
η = 0.01 = ρ, tmax = 10 ⇒ R0 = 1.076) is used to plot dynamics predicted by multiplex
model equations (3.1)-(3.23) (thick black line). In each panel, a single parameter is varied
and the resultant predictions are plotted in various colours, indicated by individual panel
legends. In the bottom row of panels, parameters ps, pt and pd are being varied. Since the
model has the constraint (ps + pt + pd) ≡ 1, we alter the triplet values in each panel in the
following way. Assume we are varying the parameter ps. If the new ps is larger than the
baseline ps, we subtract 1

2 the difference from the remaining baseline parameters pt and
pd. Conversely, if the new ps is smaller than the baseline ps,

1
2 the difference is added to

each of the values pt and pd
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distribution for pairs of edge stubs with additional parameters to distribute edge pairs

into three edge types. Baseline infection parameters are used across all three panels, thus

βs = 0.05 < 0.2 = βd, meaning that an increase in the proportion of dynamic edges leads

to an increase in the speed of the epidemic, whilst any increase in the proportion of static

edges leads to a decrease in the rate of epidemic spread.

3.3.4 Contribution of network layers via (ps + pt + pd) ≡ 1

When degree distributions are interdependent, the parameters (ps+pt+pd) ≡ 1 afford the

ability to investigate the effects on epidemic dynamics of altering the proportion of edges

of each type. Previously, we observed changes in the dynamics of I(t), caused by altering

the contributions of each edge type (Figure 3.9), where βd > βs, rewiring was slow, and

pairs of edge stubs were governed by a negative binomial distribution.

In this multiplex setting, increasing the force of infection on one network layer ef-

fectively reduces the force of infection on remaining network layers. Thus the value of

parameters βs, βd and η, and the ratios between them, bias the effect of varying model

parameters ps, pt and pd. To take this into account, we allowed parameters βs, βd and

η to take three distinct values (specifically βs ∈ [0.55, 0.6, 0.65], βd ∈ [βs2 , βs, 2βs] and

η ∈ [0.01, 1, 100]), and we considered all 27 combinations of their values, before varying

the contributions of each edge type and recording the final epidemic size predicted by

equations (3.1)-(3.23) in each case (Figure 3.10). This approach enabled isolation of the

effects of changing single infection or rewiring parameters and exploration of the contribu-

tions made by various combinations of edge proportions ps, pt and pd in distinct parameter

settings.

Increasing the proportion of triangle corners via pt consistently led to decreases in final

epidemic size, suggesting that clustering slows the epidemic process regardless of the choice

of parameters βs, βd and η (Figure 3.10). Generally, increasing the value of η resulted in

an increase in final epidemic size when comparing identical edge contributions. Likewise,

increasing the value of infection parameters βs or βd led to an increase in final epidemic

size. Dependant on the combination of parameters βs, βd and η, different behavioural

regimes emerge, indicated by the orientation of colours and the direction in which they

change in individual panels. We observe that a single edge proportion can have a more

or less dominant effect on the outcome, dependent on the particular parameter set. For

example, when η = 0.01 and βs = 0.55 = βd, changing the proportion of dynamic edges

pd has little effect on the final epidemic size. However, when η = 100, βs = 0.65 and
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Figure 3.10: Multiplex model layer contributions. Heat map plots depicting the
final epidemic size (equal to the fraction of the population who are either infectious or
recovered at the end of the epidemic process) predicted by equations (3.1)-(3.23) for a
multiplex network of various proportions ps, pt (y-axes) and pd (x-axes), with the model
constraint (ps + pt + pd) ≡ 1. For all setups γ = 1, ρ = 0.01, tmax = 25 and pairs
of edge stubs followed a discrete homogeneous distribution where all individuals had 2
edge pairs (and hence total degree 4). The values of remaining model parameters η, βs
and βd are indicated above each panel, with η ∈ [0.01, 1, 100], βs ∈ [0.55, 0.6, 0.65] and
βd ∈ [βs/2, βs, 2βs]. All 27 possible combinations of the parameters η, βs and βd are
considered. Prior to implementation, a number of setups across the (ps, pt, pd) parameter
spaces in each panel were tested by hand to ensure that the epidemic process had concluded
by time tmax = 25
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βd = 1.3, altering the parameter pd leads to more extreme changes in final epidemic size,

a result of βd dominating βs and an increased rate of dynamic edge rewiring.

3.3.5 Validation of basic reproduction number R0

The next generation matrix G (3.24) and the value R0 can be validated by testing to see if

the final epidemic size is disturbed as R0 exceeds the epidemic threshold (R0 = 1). When

the basic reproduction number is sub-threshold (R0 < 1), the associated epidemic process

is expected to ‘die-out’. However, when R0 > 1 the epidemic is expected to take hold and

spread within a population.

For a number of setups, we recorded the final epidemic size predicted by equations

(3.1)-(3.23), the final epidemic size of a single Gillespie simulation of the same process,

and the associated R0 value (Figure 3.11). To obtain a suitable range of R0 values we

systematically increased βs = βd from sub-threshold values, while all other parameters

were held constant. Independent binomial distributions were used for static line stubs,

static triangle corners, and dynamic line stubs. In Gillespie simulations where R0 > 1, we

imposed an additional constraint requiring the number of infectives to reach at least ten

times the initial number of infected individuals, otherwise a new Gillespie simulation was

implemented. As R0 exceeded the epidemic threshold, the final epidemic size predicted by

model equations (3.1)-(3.23) and from individual simulations increased rapidly, suggesting

the derivation of the next generation matrix G and associated R0 is rigorous.

We plotted R0 and the associated final epidemic size predicted by equations (3.1)-

(3.23) for a number of scenarios to investigate the impact on their values of varying specific

multiplex network attributes (rewiring, clustering and average degree), and to explore the

relationship between R0 and final epidemic size (Figure 3.12). Varying the rewiring rate

η demonstrates that R0 and the associated final epidemic size increase with the value of

η. Varying η can also move the system below or above the epidemic threshold R0 = 1.

However, there is a limit to this relationship; as η increases above 20, the changes in R0 and

final epidemic size are negligible. We have seen previously that larger values of pt result in

smaller final epidemic sizes, suggesting that increased clustering slows epidemic processes

on multiplex networks (Figure 3.10). Here, we find that increasing pt leads to decreases

in both R0 and the associated final epidemic size (Figure 3.12). The relationship between

pt and final epidemic size appears to be linear. For smaller pt the curve with R0 appears

to be linear, but as pt tends towards its maximal value, the reduction in R0 increases.

An increase in average degree 〈k〉, where pairs of edge stubs follow a negative binomial
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Figure 3.11: Validation of the basic reproduction number R0. Plotting values of
the basic reproduction number R0 (x-axis), found via the leading eigenvalue of the matrix
(3.24), against the associated final epidemic sizes (y-axis) predicted by multiplex equations
(3.1)-(3.23) (red line) and recorded by single statistically-correct Gillespie simulations
(blue circles). Static and dynamic line stubs follow binomial distributions with parameters
n = 20 and p = 0.5. The distribution of triangle corners follows a binomial distribution
with parameters n = 1 and p = 0.001 to minimise clustering. Fixed parameters were γ = 1,
ρ = 0.001, η = 0.01, tmax = 10, N = 1000. In each setup βs = βd. 100 transmission
rates were tested, from βs = βd = 0.01 up to βs = βd = 0.3, in equal-sized increments.
In Gillespie simulations where R0 > 1, if the number of infected individuals did not reach
10 times the initial number of infectives, all data was discarded and the Gillespie script
restarted from initial conditions at time zero

distribution, led to increases in R0 and final epidemic size (Figure 3.12). The relationship

between 〈k〉 (negative binomial) and R0 appears to be linear. However, the relationship

between 〈k〉 and final epidemic size differs. The final epidemic size increases at a faster

rate above some critical average degree, say 〈k〉 = 12. A similar pattern emerges in
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Figure 3.12: Effects of rewiring, average degrees and clustering. Plotting the value
of R0 and the associated final epidemic size found using EBCM equations (3.1)-(3.23), for a
number of different setups. Upper-left panels: Testing 100 evenly-spaced values for η in the
range [0.01, 50]. Remaining model parameters were ps = 0.3 = pt, βs = 0.1 = βd, γ = 1,
ρ = 0.01 and tmax = 25. Pairs of edge stubs followed a negative binomial distribution
with parameters p = 0.5 and r = 5. Upper-right panels: Testing 15 evenly-spaced values
for 〈k〉 ∈ [2, 30], generated using a negative binomial distribution for pairs of edge stubs
with fixed p = 0.5 and r ∈ [1, 15]. Remaining model parameters were ps = 0.3 = pt,
βs = 0.0625 = βd, γ = 1, η = 0.1, ρ = 0.01, tmax = 25. Lower-left panels: Testing
100 evenly-spaced values for pt in the range [0.01, 0.99]. The proportion (1− pt) was split
equally between parameters ps and pd. Remaining model parameters were βs = 0.5 = βd,
γ = 1, ρ = 0.01, η = 0.1 and tmax = 25. Pairs of edge stubs followed a discrete
homogeneous distribution where all individuals had 2 edge pairs. Lower-right panels:
Testing 15 evenly-spaced values for 〈k〉 ∈ [2, 30], generated using a discrete homogeneous
distribution for pairs of edge stubs where all individuals have identical degree. Remaining
model parameters were ps = 0.3 = pt, βs = 0.0625 = βd, γ = 1, ρ = 0.01, η = 0.1,
tmax = 25

the relationship between the average degree, R0 and final epidemic size when pairs of

edge stubs follow a discrete homogeneous distribution. This is not surprising, as we
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saw previously that the relationship between R0 and final epidemic size is non-linear

(Figure 3.11). However, these results show that small average degrees make it hard for

the epidemic to take hold in the population. Potentially, this is a result of the multiplex

network becoming divided into more than one connected component, meaning the disease

can get trapped within smaller sub-populations of individuals, limiting its effect.

3.4 Discussion

We have proposed a model describing the time evolution of an SIR epidemic spreading

through a population of individuals in a multiplex network consisting of two layers: a

static network layer representing persistent human connections and a dynamic network

layer representing temporary human interactions made outside of a typical household.

The model incorporates heterogeneity in the structure, type and duration of connections

between individuals and the number of model equations remains fixed regardless of pop-

ulation size. We designed the multiplex model to afford control of network transitivity

(clustering), on the static layer only, by generating the associated network structure using

a combination of 2-vertex and 3-vertex cliques, referred to here as static lines and triangles.

The dynamic network layer was generated via a single distribution for 2-vertex cliques.

Following the EBCM approach [74], we obtained expressions for time-evolving quantities

of interest, such as the infectious proportion of the population I(t). We have also applied

the next generation matrix method [20] to compute the basic reproduction number R0,

a measure of the expected number of infections a typical infectious individual will cause

during an epidemic, in an otherwise susceptible population.

Multiplex model equations (3.1)-(3.23) were validated, first by testing convergence

of epidemic dynamics to predictions made by existing uniplex edge-based compartmental

model equations, when either network layer (static or dynamic) was eliminated, and second

by comparing full model (with static and dynamic elements) predictions to the dynamics

of corresponding statistically-correct Gillespie simulations [32].

The multiplex model’s parameter space was explored by varying individual parame-

ters and plotting the resulting epidemic dynamics, and by mapping the outcome on final

epidemic size of having various proportions of each edge type when considering different

combinations of model parameters βs, βd and η. The basic reproduction number R0,

found via the leading eigenvalue of the next generation matrix G (3.24), was validated by

demonstrating that continually incrementing infection parameters βs and βd, with all else

held constant, led to a rapid increase in final epidemic size as R0 exceeded its epidemic
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threshold. Finally, we explored the effect on R0 and the associated final epidemic size pre-

dicted by equations (3.1)-(3.23) of altering specific multiplex network attributes governing

the rate of rewiring, the extent of clustering and the average degree.

Our unique contribution towards the literature is a model with a combination of static

and dynamic network elements, derived by combining the EBCM approach to modelling an

SIR epidemic on a static network with tunable clustering [125] with the EBCM approach to

modelling an SIR epidemic on a dynamic fixed-degree network [77], under the framework

of a dual-layer multiplex network.

The EBCM approach allows us to model variations in contact structure, contact type,

and contact duration simultaneously. Modelling such heterogeneities via EBCM provides

an opportunity to investigate the effects of heterogeneities observed in real-world networks

[91, 58, 121], alongside consideration of common network attributes such as clustering and

degree distributions. EBCM also affords a huge reduction in the number of equations

required to track the epidemic, compared with full simulation.

This work progresses the drive to derive population models that capture reasonable

levels of complexity and heterogeneity whilst exhibiting a tractable number of equations.

By providing a clear and concise ‘walkthrough’ to deriving and validating our desired

model, we hope that future researchers are inspired to build on these results by designing

and implementing novel models, modelling approaches, and computational algorithms.

The work here extends previous research following the edge-based compartmental mod-

elling approach. Prior EBCM approaches derived model equations describing the SIR epi-

demic process on wholly static or wholly dynamic uniplex networks. For example, EBCM

has been utilised to describe the SIR epidemic on static actual-degree configuration model

(CM) networks [77], static CM networks with tunable clustering [125], and static expected

degree mixed Poisson (MP) networks [77].

Dynamic uniplex networks have also been considered via the EBCM approach. Namely,

CM networks with mean-field social heterogeneity (edges are broken and rewired at a very

fast rate, meaning all pairs of individuals contact each other at the same rate, and edge

durations are fleeting), dynamic fixed-degree CM networks (edges are rewired but edge

durations are finite), dormant contact CM networks (existing edges are broken and remain

dormant for some time, before being re-established), MP networks with mean-field social

heterogeneity (fleeting edge duration), and dynamic variable-degree MP networks (finite

edge duration) [77].

Existing modelling approaches incorporating heterogeneity include the consideration
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of an epidemic with two ‘levels’ of mixing between individuals (but no network structure)

[4], and the later considerations of epidemic processes occurring on structured populations

with two levels of mixing [129], and with two routes of transmission [130]. Recently, the

EBCM approach was used to derive equations describing an SIR epidemic process with

non-sexual and sexual transmission routes, a characteristic of diseases such as Ebola and

Zika [75].

Other modelling approaches have incorporated dynamicity of connections between indi-

viduals (and hence heterogeneity in contact duration) by, e.g., considering an SIR epidemic

on a network with intermittent social distancing, where susceptible individuals break links

with infectious individuals for some time tb, after which the connection is re-established

[115]. Another approach considered the effects of constrained rewiring during an SIS

epidemic, whereby susceptible individuals cut links to infectious individuals regardless of

distance, and rewire to a susceptible individual within a given radius, where the nodes of

the network were embedded in Euclidean space [95].

Research considering the large graph limit of an SIR epidemic on a dynamic multi-

layer network affords heterogeneity in contact type and in contact duration by allowing

individual network layers to contain either activating or de-activating edges, and by al-

lowing edges in different layers to correspond to different types of contacts [47]. Although

[47] considers the SIR epidemic spreading on a multiplex network, including providing a

dual-layer multiplex example where edge types correspond to community and healthcare

contacts, they do not consider any fully static network components.

There are a number of adaptations that can be made to the proposed model. The

model considers a heterogeneous contact structure between N individuals. However, the

locations of N individuals are not taken into account. Real-world networks occur in

space [6] and thus it is important to investigate the effects of considering node locations.

In this study, we have chosen to disregard the spatial locations of individuals. A more

realistic model of an SIR epidemic spreading on a multiplex network of individuals would

be achieved by embedding the locations of each individual into Euclidean space. Even

more complex models could consider dynamic node locations, or a combination of static

and dynamic node locations.

Another potential adaptation is considering weighted network connections. In the

proposed model, all connections are considered to be unweighted, or equivalently to share

equal weight (homogeneity). The model could be adapted by, e.g., making the weight of

each connection proportional to the Euclidean distance between the two node locations
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(given spatial embedding), by imposing a distribution of connection weights, or by assign-

ing weights at random. Then, the probability of contracting disease across a connection

can be made proportional to the weight of that connection.

In the present model, the population of N individuals is fixed. We do not consider

the effect of flux in or out of the population, e.g. by births, deaths or migration events.

An important next step is to adapt the model presented here to consider in- and out-

flow of members of the population, or at least to consider whether such in- and outflows

significantly influence disease dynamics.

Another model limitation concerns the assumptions made surrounding edge rewire

events on the dynamic network layer. Here, we assume that when one partnership ends,

a new partnership forms immediately. Thus, given a non-zero degree on the dynamic

network layer, individuals remain connected to strangers from the wider population (via

dynamic network connections) at all times. In reality, the fleeting connections an individ-

ual makes with strangers are temporary, and individuals can remain disconnected from

these connections for some time. An improvement to the model could thus be achieved

by allowing for gaps to occur between partnerships by implementing the dormant contact

approach on the dynamic network layer (e.g. see Section 3.3 of [77], [115], [105] and [113]).

The immediate implication of such an approach is a more accurate model in relation to ob-

served human behaviours. However, the dynamics of the epidemic process will be slowed,

especially if the duration of the gap (in time) between partnerships is comparable to or

longer than the typical time it takes to transmit infection to a partner. Alternative rules

for edge dynamicity can also be considered, such as constrained rewiring [95] and edge

activation and deletion [47, 102, 111]. Other model adaptations include allowing for tun-

able clustering on all network layers (and thus imposing two edge distributions on each

network layer), implementing more complex distributions governing the degrees of each

node and biasing initially infectious individuals instead of selecting them at random.

The multiplex model affords tunable clustering on the static network layer by gener-

ating its contact structure using a distribution of line stubs and a distribution of triangle

corners. However, the configuration model wiring process requires that any two individ-

uals share at most one connection within a single network layer. Double edges can occur

across network layers (i.e. when the same edge is present in both network layers), but not

within them. This constraint greatly reduces the possibilities for placing triangles suitably

into the network, meaning the configuration process is slowed down and the extent of clus-

tering that can be achieved is reduced. Greater control over clustering could be achieved
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by adapting the model to allow for overlapping triangles (and either allowing double edges

to occur in single network layers, or amalgamating any double edges that occur into single

edges, or doubly-weighted edges).

Other than making adaptations to the proposed model, there are a number of tests and

analyses which are beyond the scope of this work. Firstly, a comprehensive exploration of

the entire parameter space would elucidate the behavioural ‘envelope’ of the model and

uncover any parameter regions where the model poorly predicts the SIR epidemic process,

compared with simulation. A more thorough understanding of the impact of degree and

degree heterogeneity on the relationship between parameters and system behaviour will

require consideration of additional edge distributions with various levels of heterogeneity

and average degrees. Secondly, the model’s utility can be investigated by using real-

world data from historical epidemics or similar processes, e.g. livestock herd contact

tracing data or Twitter data tracking the prevalence of a hashtag over time. Using real

data, model parameters could be estimated using Bayesian estimation techniques and the

resulting model predictions compared with prior knowledge of what occurred. The basic

reproduction number R0 can be tested in the same way.

This work considers an SIR compartmental model under the guise of a disease spread-

ing through a networked population. Thought must be given to what other real-world

processes can be well described by the SIR compartmental model, such as opinion forma-

tion, rumour spreading or uptake of fashion trends. Further, a two-layer multiplex like

the proposed model could be used to investigate the dynamics of two interacting SIR-type

processes, such as a physical disease spreading process occurring on one network layer in

combination with a disease awareness process occurring on the opposing network layer,

using similar approaches to those of [29] and [61].

Future research can build on these observations by considering similar modelling ap-

proaches that account for compartmental models other than the SIR-type. For example,

the SIS model (describing infections that do not confer lasting immunity, such as the

common cold) and the SEIR model (describing infections with incubation periods, where

individuals have contracted a disease but are not yet infectious and hence are in the ‘ex-

posed’ disease state) are not considered here. Modelling an SEIR infection may require

simple adaptation of the existing EBCM approach. However, consideration of an SIS-type

epidemic process requires an altogether new modelling approach. A key assumption of the

present approach is the consideration of all neighbours of the test node u as being indepen-

dent. Attempting to impose this assumption would prevent modelling of SIS dynamics, a
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consequence which is discussed in [76] and [77].

Experiments that can be performed to improve and inform future modelling approaches

include: quantifying the levels of heterogeneity in existing populations, including be-

havioural and structural heterogeneity, gaining a deeper understanding of the biological

processes underlying disease spreading processes, improving on existing algorithmic and

analytic approaches, and fostering closer relations between modellers and practitioners, in

order to maximise the benefits arising from research.
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Chapter 4

Epidemic threshold in pairwise

models for clustered networks:

closures and fast correlations

4.1 Introduction

Epidemic dynamics on networks, being susceptible-infected-susceptible (SIS), susceptible-

infected-recovered/removed (SIR) or otherwise, are often modelled as continuous time

Markov chains with discrete but extremely large state spaces of order mN , where m is the

number of different disease statuses (e.g. m = 2 for SIS and m = 3 for SIR) and N is the

number of nodes/individuals in the network. This makes the analysis of the resulting exact

system almost impossible, except for some specific network topologies such as the fully

connected network, networks with considerable structural symmetry or networks with few

nodes [57, 44] that allow for simplification.

This problem, instead, has been dealt with by focusing on mean-field models where the

goal is to derive, often heuristically, a system of ordinary or integro-differential equations

that describe (non-Markovian) epidemics for some average quantities, such as the expected

number of nodes in various states, the expected number of links in various states or the

expected number of star-like structures (focusing on a node and all of its neighbours).

These methods usually rely on closures to break the dependency on higher-order moments

(e.g. the expected number of nodes in a state depends on the expected number of links

in certain states and so on). Such an approach has led to a number of models including

heterogeneous or degree-based mean-field [89, 88], pairwise [94, 54], effective-degree [62],

edge-based compartmental [77] and message passing [51], to name a few. These models
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essentially differ in the choice of variables over which the averaging is done. Perhaps the

most compact model with the fewest number of equations is the edge-based compartmental

model [78] and this is valid for heterogeneous networks with Markovian SIR epidemics,

although extensions of this model for arbitrary infection and recovery processes are also

possible [104].

Pairwise models have been extremely popular and the very first model for regular

networks and SIR epidemics [94, 54] has been generalised to heterogeneous networks [23],

preferentially mixing networks [23], directed [103] and weighted networks [96], adaptive

networks [37, 56, 109], and structured networks [45] among others. Perhaps this is due

to the relative simplicity and transparency of the pairwise model, whereby variables have

a straightforward interpretation and a basic understanding of the network and epidemic

dynamics coupled with good bookkeeping leads to valid and analytically tractable model

equations. Pairwise models have been successfully used to derive analytically the epidemic

threshold and final epidemic size, with these results mostly limited to networks without

clustering. The propensity of contacts to cluster, i.e. that two friends of an individual/node

are also friends of each other, is known to lead to many complications, and modelling

epidemics on clustered networks using analytically tractable mean-field models is still

limited to networks with very specific structural features [45, 85, 71, 72, 52, 125, 98].

However, using approaches borrowed from percolation theory [72] and focusing more on

the stochastic process itself [112], some results have been obtained. For example, in [72] it

was shown that for the susceptible-infected-recovered (SIR) epidemic on clustered networks

with heterogeneous degree distributions, the basic reproduction number is given by

R0 =
〈k2 − k〉
〈k〉

T −
2〈n4〉
〈k〉

T 2 + · · · , (4.1)

where 〈ki〉 stands for the ith moment of the degree distribution, T is the probability of

infection spreading across a link connecting an infected to a susceptible node and 〈n4〉

denotes the average number of triangles that a node belongs to. The first positive term

in (4.1) corresponds to the threshold for configuration-type networks without clustering.

The second term, which is negative, shows that clustering reduces the epidemic threshold

when compared to the unclustered case, the contribution of the remaining terms being of

a smaller order.

For pairwise models, clustering first manifests itself by requiring a different and more

complex closure, which makes the analysis of the resulting system, even for regular net-

works and SIR dynamics, challenging. Furthermore, it turns out that such a closure may
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in fact fail to conserve pair-level relations and may not accurately reflect the early growth

of quantities such as closed loops of three with all nodes being infected [46]. Such con-

siderations have led to an improved closure being developed in an effort to keep as many

true features of the exact epidemic process as possible [46]. In this chapter we focus on

the classic pairwise model for regular networks with clustering, using both the simplest

closure and a variant of the improved closure. We show that by working with two fast

variables corresponding to correlations between neighbouring nodes during the epidemic,

we can determine the epidemic threshold analytically as an asymptotic expansion in terms

of the global clustering coefficient φ, defined in Section 4.2.1.

The use of fast variables is not completely new and has been used in [54] and [22], but

the epidemic threshold has only been obtained numerically and it was framed in terms of

a growth-rate-based threshold which is equivalent to the basic reproduction number at the

critical point of the epidemic spread. In [22] a hybrid pairwise model incorporating random

and clustered contacts is considered, with the analysis focused on the growth-rate-based

threshold. The authors of [22] managed to derive a number of results, some analytic (the

critical clustering coefficient for which an epidemic can take off) and some semi-analytic,

and have shown, in agreement with most studies, that clustering inhibits the spread of the

epidemic when compared to an equivalent network without clustering but with equivalent

parameter values governing the epidemic process. However, no analytic expression for the

threshold was provided.

More recently, in [60], the epidemic threshold in a pairwise model for clustered networks

with closures based on the number of links in a motif, rather than nodes, was calculated

as

R0 =
(n− 1)τ

τ + γ + τφ
, (4.2)

where n is the average number of links per node, φ is the global clustering coefficient and

τ and γ are the infection and recovery rates, respectively. The expression above can be

expanded in terms of φ to give

R0 =
(n− 1)τ

τ + γ

(
1

1 + φ τ
τ+γ

)
' (n− 1)τ

τ + γ

(
1− φ τ

τ + γ
+ · · ·

)
, (4.3)

which again demonstrates that clustering reduces the epidemic threshold.

Building on these results, and effectively extending the work in [54, 22], our work

presents a method to determine the epidemic threshold analytically and applies it in

the context of pairwise models with two different closures for clustered networks. The
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chapter is structured as follows. In Section 4.2 we outline the model with closures for

unclustered and clustered networks discussed in Section 4.3. In Section 4.4 we briefly

review existing results and approaches for the pairwise model with the simple closure

and then focus on the correlation structure in terms of fast variables, showing that the

epidemic threshold can be expressed via the solution of a cubic polynomial. This key

solution is determined numerically and analytically as an asymptotic expansion in terms

of the clustering coefficient. In Section 4.5 we show that our approach can be extended to

consider a compact version of the improved closure, thus validating and generalising our

approach. Finally we conclude with a discussion of the results, including comparing the

threshold to other known results and touching upon a number of possible extensions.

4.2 Model formulation

4.2.1 The network

We begin by considering a population of N individuals with its contact structure described

by an undirected network with adjacency matrix G = (gij)i,j=1,2,...,N where gij = 1 if nodes

i and j are connected and zero otherwise. Self-loops are excluded, so gii = 0 and gij = gji

for all i, j = 1, 2, . . . N . The network is static and regular, such that each individual

has exactly n edges or links. The sum over all elements of G is defined as ||G||=
∑

i,j gij .

Hence, the number of doubly counted links in the network is ||G||= nN . More importantly,

using simple matrix operations on G, we can calculate the global clustering coefficient of

the network

φ =
trace(G3)

||G2||−trace(G2)
, (4.4)

where trace(G3) yields six times the number of closed triples or loops of length three

(uniquely counted) and ||G2||−trace(G2) is twice the number of triples (open and closed,

also uniquely counted).

4.2.2 SIR dynamics

The standard SIR epidemic dynamics are considered on the network defined in Section

4.2.1. The dynamics are driven by two processes: (a) infection and (b) recovery from

infection. Infection can spread from an infected/infectious node to any of its susceptible

neighbours and this is modelled as a Poisson point process with per-link infection rate τ .

Infectious nodes recover from infection at constant rate γ.
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4.2.3 The unclosed pairwise model

Let Ai equal 1 if the individual at node i is of type A and equal zero otherwise. Then

single nodes (singles) of type A can be counted as [A] =
∑

iAi, pairs of nodes (pairs) of

type A − B can be counted as [AB] =
∑

i,j AiBjgij and triples of nodes (triples) of type

A − B − C can be counted as [ABC] =
∑

i,j,k AiBjCkgijgjk. This method of counting

means that pairs are counted once in each direction, so [AB] = [BA], and [AA] is even.

Using this notation to keep track of singles, pairs and triples leads to the following system

of pairwise equations describing the SIR epidemic process on networks:

˙[S] = −τ [SI], (4.5)

˙[I] = τ [SI]− γ[I], (4.6)

˙[SI] = τ([SSI]− [ISI]− [SI])− γ[SI], (4.7)

˙[SS] = −2τ [SSI], (4.8)

˙[II] = 2τ([ISI] + [SI])− 2γ[II]. (4.9)

We note that equations (4.7)-(4.9) contain triples which are not defined within the entire

system of equations (4.5)-(4.9). The flow between compartments and the associated rates

of the SIR pairwise model are illustrated in Figure 4.1. To determine solutions of the

system, we must find a way to account for these triples in terms of pairs and singles, a

method referred to as closing the system.

4.3 Closures

A quick inspection of the unclosed pairwise system (4.5)-(4.9) reveals that only triples of

type [ASI] need closing, with A ∈ {S, I}. These triples, as well as triples of type [RSI],

are illustrated in Figure 4.2 for unclustered and clustered networks.

4.3.1 Closure for unclustered networks

First, we consider the situation depicted in Figure 4.2a. Several observations can be

made. The expected number of A − S type links is [AS] and the total number of links

emanating from susceptible nodes counted across the whole network is n[S]. Hence, the

most straightforward approximation would be to assume that Xi, with i = 1, 2, . . . , n− 1,

are independent and identically Bernoulli distributed random variables with a probability

of success being equal to pucA|S−I = [AS]
n[S] , where pucA|S−I stands for the probability that a
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Figure 4.1: Flow diagrams showing the flux between compartments of singles (left) and
compartments of pairs (right) in the SIR pairwise model. In the compartments of pairs,
straight arrows denote infections coming from within the pair (with a rate depending on a
pair) or from outside the pair (with a rate depending on a triple), and curved arrows denote
a recovery. The colour indicates the status of the “first” node in the pair. Symmetry allows
us to conclude that some of the variables (see lighter shaded variables on the right hand
side of the pairs diagram) must equal their symmetric version (e.g. [RS] = [SR]), so we
do not need to directly calculate both quantities.

Xn−1

S

I

X1X2

(a)

Xn−1

S

I

X1X2

(b)

Figure 4.2: General setup for a central susceptible node with a given infected neighbour for
(a) unclustered and (b) clustered regular networks with degree n. Dashed arrows indicate
that the infected node may be connected to the other neighbours of the central susceptible
node. Random variables X1, X2, . . . , Xn−1 take values from the set {S, I,R}.
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neighbour of a susceptible node already connected to an infected node will be in state A,

provided that the network is unclustered. Averaging across the whole network leads to

the closure

[ASI] = [SI](n− 1)pucA|S−I =
n− 1

n

[AS][SI]

[S]
. (4.10)

It is important to note that the new, closed system, obtained upon using equation (4.10) in

the exact pairwise model (4.5)-(4.9), is effectively an approximation of the exact pairwise

model (4.5)-(4.9) and one should question if the closure (4.10) conserves the properties of

the stochastic process and of the counting on the network. For example, it is expected that

in the closed system the number of nodes is conserved, i.e. [S]+[I]+[R] = N . Furthermore,

the number of pairs of different types must sum to nN . More subtle conditions refer to

the conservation of link types at node level ([SS] + [SI] + [SR] = n[S]) and pair level

([SSI] + [ISI] + [RSI] = (n − 1)[SI]), respectively. It turns out that the closure for

unclustered networks (4.10) conserves these relations [57]. Finally, the validity of closures

can be empirically assessed by looking at the initial growth rate of the number of open

and closed triples, where the number of open triples comprised of three infectious nodes

should grow differently to the number of such closed triples. Of course such subtle tests

are usually preceded by direct comparisons between the numerical solution of the closed

pairwise system and explicit stochastic network simulations for a range of parameters.

Such tests initially focus on prevalence of infection and final epidemic size but may include

expected number of pairs.

4.3.2 Closure for clustered networks

Simple closure

The presence of closed loops of length three, as illustrated in Figure 4.2b, introduces some

complications. Namely, a neighbour of the central susceptible node that is itself connected

to an infected neighbour of the central node is less likely to be susceptible due to the

added pressure from the infected neighbour, when compared to the case when the force

of infection is distributed evenly, as is the case for the closure for unclustered networks

(4.10). More precisely, the epidemic process on the network displays clear correlations.

In [14] it has been shown that the exact SIS and SIR epidemics on networks are non-

negatively correlated in the sense that P(IiIj) ≥ P(Ii)P(Ij). Here, P(IiIj) represents

the probability that nodes i and j, connected by a link, are both infected, while P(Ii)

stands for the probability of node i being infected. For this result to hold, all processes

must be Markovian and infection rates across all links and recovery rates of all nodes have
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to be fixed a priori. Using the pairwise model for an SIS epidemic on an unclustered

network with closure (4.10), it has been shown that the same correlation is preserved

when averaging at the population level [57]. While the proof has not been extended to

the pairwise SIR model, intuitively we expect to find the same correlation structure.

Based on these observations, we assume that the correlation structure in exact SIS and

SIR epidemics on networks averaged at the population level is maintained. Hence, the

inequalities

[SI] ≤ n[S]
[I]

N
, [II] ≥ n[I]

[I]

N
, and [SS] ≥ n[S]

[S]

N
, (4.11)

hold, where [AB] and [A] with A,B ∈ {S, I} represent the expected counts of pairs and

singles of the corresponding types taken from the exact model, i.e., the continuous time

full Markov chain.

Intuitively, this means that as the epidemic spreads on the network, infected nodes are

more likely to have neighbours which are themselves infected (either those that infected

the node or were infected by it), and at the ‘front’ of the epidemic we would expect to

observe a ‘sea’ of susceptible nodes alongside a ‘front’ of links between susceptible and

infected nodes that drives the epidemic. Hence, clustering and correlations need to be

accounted for and a new pcA|S−I for clustered networks needs to be defined. This has been

done in [54] and relies on a correlation factor, CAB, that is able to capture the propensity

that two nodes connected by a link are in states A and B, respectively. This is given by

CAB =
[AB]

n[A] [B]
N

, (4.12)

where A,B ∈ {S, I}. This effectively compares the expected number of edges of type [AB]

to what its value would be if nodes were labelled at random with [A] nodes of type A and

[B] nodes of type B. If CAB > 1, then nodes of type A and B are positively correlated,

whereas if nodes of type A and B are negatively correlated, CAB < 1. As expected,

CAB = 1 means that nodes are effectively labelled as type A or B at random. Equation

(4.11) implies that

CSI ≤ 1, CII ≥ 1 and CSS ≥ 1. (4.13)

We can modify pucA|S−I = [AS]
n[S] to reflect these observations, leading to pcA|S−I = [AS]

n[S]CAI .

However, before the closure can be expressed, open and closed loops need to be treated

separately. In order to do this, we split the closure based on whether the neighbour whose

state is to be determined is part of a closed loop of three nodes and thus in direct contact
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with an infectious node, or not. This leads to

pcA|S−I =


pucA|S−I with probability (1− φ),

pucA|S−ICAI with probability φ,

(4.14)

where φ is defined in equation (4.4). With this in mind, the closure can be derived by

averaging equation (4.10) over the unclustered and clustered parts of the network. This

leads to

[ASI] = (1− φ)(n− 1)[SI]pucA|S−I + φ(n− 1)[SI]pucA|S−ICAI (4.15)

=
(n− 1)

n

[AS][SI]

[S]

(
(1− φ) + φ

N [AI]

n[A][I]

)
. (4.16)

Framing pucA|S−I and pcA|S−I more generally and independently of the network type, i.e.

simply considering pA, the following statement holds:

Proposition 1. Consider a closure of the following form [ASI] = (n − 1)[SI]pA. If∑
A pA = 1, where A is taken over all possible states, then

∑
A[ASI] = (n− 1)[SI].

Proof.
∑

A[ASI] = (n− 1)[SI]
∑

A pA = (n− 1)[SI].

Improved closure

We note that while pucA|S−I satisfies the above proposition, pcA|S−I does not. In particular,

we find

∑
A

[ASI] =
∑
A

(n− 1)[SI]pucA|S−I =
∑
A

(n− 1)[SI]
[AS]

n[S]

=
(n− 1)[SI]

n[S]

∑
A

[AS] =
(n− 1)[SI]

n[S]
n[S] = (n− 1)[SI].

However, for the clustered part of the network this is not the case. We find that

∑
A

[ASI] =
∑
A

(n− 1)[SI]pcA|S−I =
∑
A

(n− 1)[SI]
[AS]

n[S]

N [AI]

n[A][I]

=
(n− 1)N [SI]

n2[S][I]

∑
A

[AS][AI]

[A]
,
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which does not result in the desired (n−1)[SI]. This can be corrected in a straightforward

way by defining

pcnew

A|S−I =


pucA|S−I with probability (1− φ),

pc
A|S−I∑
a p

c
a|S−I

with probability φ.

(4.17)

Hence we can now write

∑
A

[ASI] =
∑
A

((1− φ)[ASI] + φ[ASI])

= (1− φ)(n− 1)[SI]
∑
A

pucA|S−I + φ(n− 1)[SI]
∑
A

pcnew

A|S−I

= (1− φ)(n− 1)[SI]
∑
A

[AS]

n[S]
+ φ(n− 1)[SI]

∑
A

pcA|S−I∑
a p

c
a|S−I

= (1− φ)(n− 1)[SI]
1

n[S]

∑
A

[AS] + φ(n− 1)[SI]

= (1− φ)(n− 1)[SI] + φ(n− 1)[SI]

= (n− 1)[SI],

as required. It is informative to investigate the relationship between the various probability

models that lead to different closures. This is summarised in the following proposition.

Proposition 2. For closures applied across the clustered part of the network and assuming

that the number of nodes in state R is negligible, it follows that

pcnew

S|S−I =
[SS][I]

[SS][I] + [II][S]
, pcS|S−I =

[SS]

n[S]

N [SI]

n[S][I]
, pucS|S−I =

[SS]

n[S]
, (4.18)

and

pcS|S−I ≤ p
uc
S|S−I and pcnew

S|S−I ≤ p
uc
S|S−I . (4.19)

Proof. All three probabilities follow from their definitions and assuming that A ∈ {S, I}.

Since S − I links are negatively correlated (4.11), it follows that CSI = N [SI]
n[S][I] ≤ 1 and as

a result

pcS|S−I =
[SS]

n[S]
CSI ≤

[SS]

n[S]
= pucS|S−I . (4.20)

While pcS|S−I has a natural interpretation (it is a simple discounted variant of the prob-

ability from the unclustered network case and takes into account the observation that if
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the neighbour of a central susceptible node is connected to one of the infected neighbours

of the same node then it is less likely that the node in question is susceptible), the inter-

pretation of pcnew

S|S−I is less obvious. A close inspection reveals that pcnew

S|S−I can be rewritten

as

pcnew

S|S−I =
[SS][I]

[SS][I] + [II][S]
=

[SS]

[SS] + [II] [S][I]

. (4.21)

However, combining [SI] ≤ n[S] [I]N with [I] ≤ N
n

[II]
[I] , as given in equation (4.11), leads to

[SI] ≤ [II] [S][I] . Finally, using the relation [SI] ≤ [II] [S][I] in equation (4.21) yields

pcnew

S|S−I =
[SS]

[SS] + [II] [S][I]

≤ [SS]

[SS] + [SI]
=

[SS]

n[S]
= pucS|S−I . (4.22)

Equation (4.22) illustrates that as expected pcnew

S|S−I ≤ pucS|S−I . Again, this simply shows

that for clustered networks and for the setup in Figure 4.2, it is less likely to find neighbours

who are susceptible compared with the unclustered network case.

Taking into account the new way of defining pcnew

A|S−I , the improved closure yields

[ASI] = (1− φ)[ASI] + φ[ASI]

= (1− φ)(n− 1)[SI]
[AS]

n[S]
+ φ(n− 1)[SI]

[AS]
n[S]CAI∑
a p

c
a|S−I

= (1− φ)
(n− 1)

n

[AS][SI]

[S]
+ φ(n− 1)[SI]

[AS]
n[S]

N [AI]
n[A][I]∑

a
[aS]
n[S]

N [aI]
n[a][I]

= (1− φ)
(n− 1)

n

[AS][SI]

[S]
+ φ(n− 1)

[AS][SI][IA]

[A]
∑

a
[aS][aI]

[a]

= (n− 1)

(
(1− φ)

[AS][SI]

n[S]
+ φ

[AS][SI][IA]

[A]
∑

a[aS][aI]/[a]

)
. (4.23)

We finally note that the closures rely heavily on the assumption of how the states

of the neighbours are distributed, and the assumption of independent and identically

Bernoulli-distributed variables is a strong one. For clustered networks in particular, we

have illustrated different ways of incorporating correlations induced by closed cycles of

length three. Despite these seemingly strong assumptions, it is known that the pairwise

model for unclustered networks is equivalent to the edge-based compartmental equivalent

on configuration networks [76, 57] and the latter has been shown to be the limiting system

of the stochastic network epidemic model [18, 48]. For clustered networks we are not aware

of such results.
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4.4 Results for the pairwise model with the simple closure

4.4.1 Background

Using the simple closure for clustered networks (4.16), and writing ξ = (n−1)
n , we obtain

the following closed pairwise model equations describing an SIR epidemic on a clustered

regular network of N individuals with degree n:

˙[S] = −τ [SI], (4.24)

˙[I] = τ [SI]− γ[I], (4.25)

˙[SI] = −(τ + γ)[SI] + τξ
[SS][SI]

[S]

(
(1− φ) + φ

N [SI]

n[S][I]

)
− τξ [SI]2

[S]

(
(1− φ) + φ

N [II]

n[I]2

)
,

(4.26)

˙[SS] = −2τξ
[SS][SI]

[S]

(
(1− φ) + φ

N [SI]

n[S][I]

)
, (4.27)

˙[II] = 2τ [SI]− 2γ[II] + 2τξ
[SI]2

[S]

(
(1− φ) + φ

N [II]

n[I]2

)
. (4.28)

For model equations (4.24)-(4.28), in [54] the basic reproductive ratio (R0) is consid-

ered. Starting from the evolution equation for the expected number of infectious individ-

uals leads to

˙[I] = τ [SI]− γ[I]

=

(
β[S]

N
CSI − γ

)
[I],

where CSI is defined in equation (4.12). Taking into account that τn = β and that initially

[S] ' N , in [54] it is claimed that R0 = CSIβ/γ. It is important to note that this R0 is not

the classical R0 in the sense of describing the expected number of new infections produced

by a typical infectious individual when introduced into a fully susceptible population.

Rather it can be thought of as a growth-rate-based threshold, and has the same properties

as the classical R0 when both are exactly one. In what follows, we will simply refer to it

as R [22, 56].

In order to determine R explicitly, the author in [54] considered the early behaviour

of CSI and found that this variable is given by the ordinary differential equation (ODE)

ĊSI = −τ
(
CSI + C2

SI − nξ(CSI − C2
SI)(1− φ) + nξC2

SIφ
[I]CII
N

)
. (4.29)

However, the ODE (4.29) depends on the behaviour of [I]CII/N and in [54] it was shown
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that
[I]CII
N

−→ 2τCSI
γ + βCSI − 2ξβC2

SIφ
. (4.30)

Considering the quasi-equilibrium of CSI , referred to as C∗SI , in equation (4.29) together

with the expression for [I]CII/N in equation (4.30), one finds that C∗SI is given by

1 + C∗SI − nξ(1− C∗SI)(1− φ) +
2τnξφC∗SI

2

γ + βC∗SI − 2ξβC∗SI
2φ

= 0. (4.31)

Hence, R can be calculated as C∗SIβ/γ, at least numerically. Variables such as CSI and

CII describe the correlations between the states of neighbouring nodes on the network as

the epidemic unfolds and these have been studied numerically in [54].

For model equations (4.24)-(4.28) and when there is no clustering present in the net-

work structure (thus φ = 0), a further simplification of equation (4.31) can be achieved

[54]. To determine R = C∗SIβ/γ in this case, simply solve

1 + C∗SI − nξ(1− C∗SI) = 0 (4.32)

to find C∗SI = n−2
n and thus R = (n−2)τ

γ .

Unfortunately when φ 6= 0, according to our knowledge, the quasi-equilibrium values

can only be determined numerically via equation (4.31). In what follows, we show that

by working with two new variables, α := [SI]/[I] and δ := [II]/[I], which are still closely

linked to the correlations formed during the spreading process, it is possible to obtain the

epidemic threshold as the solution of a cubic equation and, more importantly, we show

that this solution can be approximated by an asymptotic expansion in powers of φ.

4.4.2 Epidemic threshold

Consider the initial phase of an infection invading an entirely susceptible population in

the pairwise model, described by equations (4.24)-(4.28). We find that

˙[I] = τ [SI]− γ[I] = γ[I]

(
τ [SI]

γ[I]
− 1

)
. (4.33)

We know the quantity γ[I] remains non-negative regardless of time in the epidemic process,

and we choose to consider the threshold in terms of [SI]
[I] . This leads to R = τ [SI]

γ[I] . When

R > 1 an epidemic will occur, and when R < 1 the epidemic will die out. Although we

know the values of τ and γ, to determine if an epidemic will occur a priori, we require

further knowledge about the quantity [SI]
[I] at some initial time close to t = 0. At t = 0
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and at the disease-free steady state, both [SI] and [I] equal zero and hence their ratio is

ill-defined. We will see that gaining knowledge about the behaviour of [SI]
[I] will involve

[II]
[I] and this term is also ill-defined at time zero and at the disease-free steady state.

While this is similar to the approach taken in [54], we focus on the variables [SI]
[I] and

[II]
[I] , and we motivate our choice below. The problem of finding the epidemic threshold

can be dealt with in at least two more different but equivalent ways. First, one can carry

out a simple linear stability analysis of the disease-free steady state and this is shown

in Appendices 4.C and 4.D. Second, the threshold can also be computed as the largest

eigenvalue of the next generation matrix, see Section 4.6. However, in both cases, the

variables [SI]/[I] and [II]/[I] turn out to play a key role and their values for small times

need to determined.

4.4.3 Fast variables with the simple closure

To circumvent the problem of the ill-defined variables above, we exploit the fact that

α = [SI]
[I] and δ = [II]

[I] are fast variables when compared to the time course of the epidemic.

Figure 4.3 shows clearly that α and δ are fast compared to the epidemic process and

that they quickly converge to a quasi-equilibrium. Hence, at early times α and δ attain

their quasi-equilibrium values, and these are the values that can be used to compute the

epidemic threshold.

We continue by deriving differential equations for the variables α = [SI]
[I] and δ = [II]

[I] .

Differentiating α and δ and using equations (4.24)-(4.28) leads to

dα

dt
= −τα+ τξn(1− φ)α+ τξφα2 − τξ 1

n
φα2δ − τα2, (4.34)

dδ

dt
= 2τα− γδ + 2τξ

1

n
φα2δ − ταδ. (4.35)

The detailed derivation for equations (4.34) and (4.35) can be found in Appendix 4.A.

Fast variables without clustering

When clustering is negligible and hence φ = 0, we find that

dα

dt
= −τα+ τξnα− τα2, (4.36)

dδ

dt
= 2τα− γδ − ταδ, (4.37)
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Illustration of the dynamics of prevalence, [I]/N , over time ((a)-(b)), compared

to that of α = [SI]
[I] ((c)-(d)) and δ = [II]

[I] ((e)-(f)) for the pairwise model with the simple

(left column) and the improved (right column) closures. Parameter values are N = 10000,
n = 5, φ = 0.5 and τ = γ = 1.

where ξ = (n−1)
n . The steady states of the system (4.36)-(4.37) are given by (α∗1, δ

∗
1) = (0, 0)

and (α∗2, δ
∗
2) =

(
(n− 2), 2τ(n−2)

γ+τ(n−2)

)
. Based on equation (4.33), it follows that R =

τα∗2
γ =

τ(n−2)
γ .

Fast variables with clustering

When clustering is present in the network, the differential equations for α and δ are more

complex and thus steady states are harder to compute. Firstly, we set equation (4.34)
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equal to zero and rearrange to isolate δ, finding

δ =
−1 + ξn(1− φ) + ξφα− α

ξ 1
nφα

. (4.38)

Plugging equation (4.38) into equation (4.35) leads to the following cubic equation in α:

(2τξφ(1− ξφ))α3 + (τξnφ− 2τξ2nφ(1− φ)− τn)α2

+ (−n(τ + γ) + τξn2(1− φ) + γξnφ)α+ (γξn2(1− φ)− γn) = 0. (4.39)

The solution of the cubic equation (4.39) provides the steady state(s) of system (4.34)-

(4.35), and allows the computation of the threshold via the formula Rc = τα∗

γ . We note

that the steady state in α has to be biologically plausible. α = [SI]
[I] restricts the steady state

to be positive and to be less than n, since the average number of susceptible neighbours

averaged over all infected nodes needs to be less than the average degree.

4.4.4 Asymptotic expansion of the epidemic threshold

The case of φ 6= 0 can be regarded as a perturbation of the case with no clustering and

we thus set out to find α using a perturbation method. More precisely, we seek to find

the roots of the cubic polynomial, given in equation (4.39), in terms of an asymptotic

expansion in powers of φ, that is

α = α0 + φα1 + φ2α2 + · · · . (4.40)

Plugging (4.40) into equation (4.39) leads to

(4.41)

2τξφ(1− ξφ)(α0 + φα1 + φ2α2 + · · ·)3

+ (τξnφ− 2τξ2nφ(1− φ)− τn)(α0 + φα1 + φ2α2 + · · ·)2

+ (−n(τ + γ) + τξn2(1− φ) + γξnφ)(α0 + φα1 + φ2α2 + · · ·)
+ (γξn2(1− φ)− γn) = 0.

Collecting terms of order φ0 in (4.41) and after some algebra we find that α0 satisfies:

n(α0 − (n− 2))(τα0 + γ) = 0. (4.42)

Hence, α0 = (n − 2). The other solution α0 = −γ/τ is not biologically feasible since by

definition α is positive. As expected, α0 = (n − 2) corresponds to the unclustered case.
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Collecting terms of order φ in (4.41), we find a polynomial in terms of α0 and α1:

2τξα3
0 + (τξn− 2τξ2n)α2

0 + (γξn− τξn2)α0− 2τnα0α1 + (τξn2− n(τ + γ))α1− γξn2 = 0.

(4.43)

Equation (4.43) leads to

α1 =
γξn2 − 2τξα3

0 + (2τξ2n− τξn)α2
0 + (τξn2 − γξn)α0

τξn2 − n(τ + γ)− 2τnα0
,

which after substituting α0 = (n− 2) and ξ = (n−1)
n yields

α1 =
−2(n− 1)

n2

(
2τ(n− 1)(n− 2) + γn

τ(n− 2) + γ

)
. (4.44)

To summarise, we have determined the first two coefficients α0 and α1 of the asymp-

totic expansion (4.40) which solves the cubic equation (4.39). Hence, the true solution is

approximated by:

α = (n− 2)− φ2(n− 1)

n2

(
2τ(n− 1)(n− 2) + γn

τ(n− 2) + γ

)
+O(φ2). (4.45)

We make several remarks. First, the epidemic threshold will be given by Rc = τα/γ.

Second, the coefficient of the first order correction of α can be rearranged in terms of

R = τ(n−2)
γ , the threshold for the case of unclustered networks, leading to

Rc = R− φaτ
γ

(
aR+ 1

R+ 1

)
, (4.46)

where a = 2(n− 1)/n and where terms in φ of order larger than one have been neglected.

Finally, it is clear that due to the first order correction being negative, we have that

Rc = R− φaτ
γ

(
aR+ 1

R+ 1

)
≤ R =

τ(n− 2)

γ
. (4.47)

The goodness of the estimate for α (4.45) is tested by comparing it to the numerical

solution of the cubic equation (4.39). This is done in Figure 4.4 for five different values of

the clustering coefficient. The asymptotic approximation performs well and only breaks

down for values of clustering larger than ' 0.3. From the same figure it is clear that

higher values of clustering push the critical Rc = 1 curve to higher values of τ and n.

Hence, in the presence of clustering a viable epidemic requires either a denser network or

a higher transmission rate, noting that the transmission rate and the recovery rate γ are

not strictly independent.
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4.4.5 Numerical examples

In the previous section we have demonstrated that for the pairwise model with the simplest

closure for clustered networks, the determination of the epidemic threshold involves the

solution of a cubic equation. While this can be obtained numerically, we presented an

asymptotic approximation of the solution in terms of powers of the clustering coefficient φ.

In Figure 4.4 we present a systematic test of the newly determined threshold by comparing

the threshold based on the numerical solution of the cubic equation (4.39) (continuous line

in the (τ, n, 0) plane), the asymptotic approximation of the solution to the cubic equation

(4.45) (dashed line and markers - ◦) and the numerical solution of the full ODE system

corresponding to the closed pairwise model (4.24)-(4.28).

The agreement between the explicit numerical solution of the closed pairwise system

and threshold based on the numerical solution of the cubic equation is excellent for all

clustering values and other parameter combinations. Moreover, the agreement of these

results with the threshold based on the asymptotic approximation is also excellent and

remains valid for values of 0 ≤ φ ≤ 0.3. Our numerical tests confirm that our analytical

results are correct. The initial conditions for the closed pairwise systems were set in the

following way: [I](0) = I0 = 1, [S](0) = N − I0 = S0, [SI](0) = nI0
S0
N , [SS](0) = nS0

S0
N

and [II](0) = nI0
I0
N . The ODEs were run for a sufficiently long time (Tmax = 1000) to

ensure that the epidemic died out. It is worth noting that the correct numerical solution

of the cubic equation can be chosen by keeping in mind that 0 ≤ α = [SI]
[I] ≤ n.

4.5 Results for the pairwise model with the compact im-

proved closure

Starting from the improved closure (4.23) but in line with Proposition 2, we adapt the

closure so that the term responsible for the approximation on the clustered part of the

network does not consider variables, singles or pairs involving the recovered/removed class.

This leads to the new closure

[ASI] = (n− 1)

(1− φ)
[AS][SI]

n[S]
+ φ

[AS][SI][IA]

[A]
(
[SS][SI]

[S] + [SI][II]
[I]

)
 , (4.48)

which we refer to as the compact improved closure. Plugging equation (4.48) into the exact

system (4.5)-(4.9) leads to a self-consistent system that is written out in full in Appendix

4.B.
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Figure 4.4: Assessing the validity of the epidemic threshold based on the asymptotic ap-
proximation (4.45) (dashed line and markers - ◦) by comparing it to the epidemic threshold
based on the numerical solution of the cubic equation (4.39) (continuous lines). In the
right hand column we compare both threshold curves in the (τ, n, 0) plane. In the left hand
column both curves are compared to the final epidemic size based on numerical integration
of the pairwise model equations with the simple closure. Parameter values are N = 10000,
γ = 1 and from top to bottom the clustering coefficients are φ = 0, 0.15, 0.3, 0.45, 0.6.

In line with our procedure so far, we aim to find the epidemic threshold of this new

pairwise system with the compact improved closure. It turns out that the approach used
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for the pairwise system with the simple closure is applicable to this case, and the steps

and results are summarised below.

4.5.1 Fast variables with the compact improved closure

As we have shown before, finding the threshold relies on finding the quasi-equilibrium of

α = [SI]
[I] . In Appendix 4.B we show that this requires knowledge about the behaviour

of the δ = [II]
[I] variable and indeed a system of differential equations involving these two

variables can be derived. This system is given below

dα

dt
= −τα− τα2 + τ(n− 1)

(
(1− φ)α+ φα

(
n− δ
n+ δ

))
, (4.49)

dδ

dt
= 2τα− γδ + 2τ(n− 1)

(
φαδ

n+ δ

)
− ταδ. (4.50)

As previously, the steady states of this system are of interest and apart from the trivial

(α∗, δ∗) = (0, 0) steady state, the quasi-equilibrium can be found by first expressing δ as a

function of α. This can be done by setting equation (4.49) equal to zero and rearranging,

leading to

α = (n− 2)− (n− 1)φ
2δ

n+ δ
. (4.51)

Plugging equation (4.51) into equation (4.50) and collecting powers of δ leads to the

following cubic equation

(−A−B)δ3 + (−n(n− 2)−A2 − 2nB)δ2

+ (−n(n− 2)A+ 2nA− n2B)δ + 2n2(n− 2) = 0, (4.52)

where A = (n − 2) − 2φ(n − 1) and B = γ/τ . It is worth noting that in this case it is

easier to work with δ, but any results can be converted in terms of α which is the main

variable of interest.

4.5.2 Asymptotic expansion of the epidemic threshold

As in Section 4.4.4, we require the roots of the cubic polynomial given in equation (4.52).

To do so, we express δ as an asymptotic expansion in powers of φ. We substitute

δ = δ0 + δ1φ+ δ2φ
2 + · · · . (4.53)
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Plugging the expansion for δ (4.53) into equation (4.52) leads to

(4.54)(−A−B)(δ0+δ1φ+δ2φ
2+· · ·)3+(−n(n−2)−A2−2nB)(δ0+δ1φ+δ2φ

2+· · ·)2

+ (−n(n− 2)A+ 2nA− n2B)(δ0 + δ1φ+ δ2φ
2 + · · ·) + 2n2(n− 2) = 0.

Alternatively, substituting (4.51) into the differential equation for δ (4.50), setting the

expression equal to zero and rearranging leads to

γδ(n+ δ)2 = τ [(n− 2)(n+ δ)− 2φ(n− 1)δ][(2− δ)(n+ δ) + 2φ(n− 1)δ]. (4.55)

Substituting (4.53) into (4.55) and collecting terms of order φ0 yields

γδ0(n+ δ0)
2 = τ [(n− 2)(n+ δ0)][(2− δ0)(n+ δ0)] (4.56)

γδ0 = τ(n− 2)(2− δ0) (4.57)

δ0(γ + τ(n− 2)) = 2τ(n− 2) (4.58)

δ0 =
2τ(n− 2)

γ + τ(n− 2)
. (4.59)

Following the same process to collect terms of order φ1, we find

(4.60)γδ1[(n+ δ0)
2 + 2(n+ δ0)δ0] = τ(n− 2)(n+ δ0)[δ1(2− n− 2δ0) + 2(n− 1)δ0]

+ τ(2− δ0)(n+ δ0)[(n− 2)δ1 − 2(n− 1)δ0],

which can be rearranged to yield

δ1 =
2τ(n− 1)δ0(n− 4 + δ0)

γ(n+ 3δ0) + τ(n− 2)(n+ 3δ0 − 4)
, (4.61)

with δ0 defined in (4.59). In summary, we have determined the first two coefficients δ0 and

δ1 of the asymptotic expansion for δ given in equation (4.53). Hence, the true solution is

approximated by the following expression:

(4.62)δ =
2τ(n− 2)

γ + τ(n− 2)
+

2τ(n− 1)δ0(n− 4 + δ0)φ

γ(n+ 3δ0) + τ(n− 2)(n+ 3δ0 − 4)
+O(φ2).

Finally, we are able to plug (4.62) into the quasi-equilibrium point for α, given in equation

(4.51), to obtain

α = (n− 2)− 2(n− 1)φ
δ0

n+ δ0
+O(φ2), (4.63)

which, upon neglecting terms in φ of order larger than one, can be rearranged to find

α = (n− 2)− φ 4τ(n− 1)(n− 2)

τ(n+ 2)(n− 2) + γn
. (4.64)
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The expression for α (4.64) can be used to determine the epidemic threshold as follows

Rcci =
τα

γ
=

(n− 2)τ

γ
− φτ

γ

(
4τ(n− 1)(n− 2)

τ(n+ 2)(n− 2) + γn

)
. (4.65)

It is straightforward to see that again Rcci ≤ R, with clustering making the spread of the

epidemic less likely.

4.5.3 Numerical examples

In Figure 4.5 we repeat the systematic test of comparing the epidemic threshold generated

via the numerical solution of the cubic equation (4.52), the epidemic threshold generated

by the asymptotic expansion (4.65) and the numerical value of the final epidemic size

predicted by pairwise model with the compact improved closure, over a wide range of

(τ, n) values. Several observations can be made. First, it is clear that higher values of

clustering push the location of the threshold to higher τ and n values, meaning that the

limiting effect of clustering on the epidemic spread can only be overcome if either the value

of the transmission rate or average degree increases. Second, the agreement between the

threshold based on the numerical solution of the cubic equation (4.52) and the asymptotic

expansion (4.62) is excellent over a wide range of φ values. In fact, in this case the

agreement is excellent for 0 ≤ φ ≤ 0.45, with only small deviations even for φ = 0.6.

The agreement between the numerical solution of the pairwise model and the threshold

based on the numerical solution of the cubic equation (4.52) remains excellent across all

parameter values.

4.6 Discussion

In this chapter we set out to obtain an analytic epidemic threshold using pairwise models

but for clustered networks. For the unclustered case this problem has been solved previ-

ously [54]. Furthermore, in [54] it was shown that one way to approach the computation

of the threshold is to exploit the presence of fast variables. In particular, working out

the quasi-steady state of the fast variables allowed the authors to determine the epidemic

threshold analytically. However, this was done only for the case when the network is

unclustered. Here, we went one step further and showed that the quasi-equilibrium can

be found as an asymptotic expansion in powers of the clustering coefficient. Prior to this

new result we re-derived known closures by providing extra intuition for the assumptions

underlying them as well as for the motivation for deriving them.
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Figure 4.5: Assessing the validity of the epidemic threshold based on the asymptotic
expansion (4.62) (dashed line and markers - ◦) by comparing it to the epidemic threshold
based on the numerical solution of the cubic equation (4.52) (continuous lines). In the
right hand column we compare both threshold curves in the (τ, n, 0) plane. In the left
hand column both curves are compared to the final epidemic size based on numerical
integration of the pairwise model equations with the compact improved closure. Parameter
values are N = 10000, γ = 1 and from top to bottom the clustering coefficients are
φ = 0, 0.15, 0.3, 0.45, 0.6.
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Exploiting the presence of fast variables and combining this with elements of pertur-

bation theory allowed us to compute the epidemic threshold for the pairwise model with

two different closures that take clustering into account. Our results are in line with the

findings of [60] and [72]. In [60], the epidemic threshold in a pairwise model for clustered

networks with a closure based on the number of links in a motif, rather than nodes, was

calculated as

R0 =
(n− 1)τ

τ + γ + τφ
. (4.66)

Equation (4.66) can be expanded in terms of φ to give

R0 =
(n− 1)τ

τ + γ

(
1

1 + φ τ
τ+γ

)
' (n− 1)τ

τ + γ

(
1− φ τ

τ + γ
+ · · ·

)
, (4.67)

which again reflects our finding that clustering reduces the epidemic threshold.

Similarly but for clustered networks with heterogeneous degree distributions, in [72] it

was found that

R0 =
〈k2 − k〉
〈k〉

T −
2〈n4〉
〈k〉

T 2 + · · · , (4.68)

where 〈ki〉 stands for the ith moment of the degree distribution, T is the probability of

infection spreading across a link connecting an infected to a susceptible node and 〈n4〉

denotes the average number of triangles that a node belongs to. The expression above again

shows that clustering reduces the epidemic threshold when compared to the unclustered

case. Furthermore, if the network is regular and we assume that infections and recoveries

are Markovian processes with rates τ and γ respectively, giving T = τ/(τ + γ), R0 above

reduces to

R0 =
τ(n− 1)

τ + γ
− (n− 1)φ

(
τ

τ + γ

)2

+ · · · , (4.69)

where we have used the fact that a global clustering coefficient of φ translates to a node on

average being part of 1
2n(n− 1)φ uniquely counted triangles. This in turn coincides with

equation (4.67), and this is perhaps unexpected since the first expression was obtained

based on a new type of closure for pairwise models while the other expression was based

on percolation theory type arguments. In [112], specific networks with household structure

were used to investigate the effects of clustering and infectious period distribution on a

modified version of R0 referred to as R∗, and lower and upper bounds for the value of this

quantity were found.

Our analysis confirms that clustering starves the spreading epidemic of susceptible

neighbours such that the epidemic is less likely to spread if the networks are clustered,
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all other parameters being equal. More importantly, the epidemic threshold is model-

dependent and the pairwise model with the compact improved closure leads more readily

to epidemic outbreaks when compared to the pairwise model with the simple closure, see

Figures 4.4 - 4.5. While this ordering is true for the parameters used in this chapter, it

is easy to show that this relation can change if parameters are tuned accordingly. For

example, looking at the limit of γ → 0 (or τ/γ large limit), the two epidemic thresholds

are the same if
2(n− 1)

n2

(
2(n− 1)(n− 2)

(n− 2)

)
=

4(n− 1)(n− 2)

(n− 2)(n+ 2)
. (4.70)

After some simple algebra this reduces to n = 2. Hence, if the τ/γ ratio is large we

will essentially have that (i) if n > 2 then Rc0 < Rcci0 , and (ii) if n < 2 then Rc0 > Rcci0 .

This highlights the difficulty of determining the epidemic threshold and emphasises the

importance of model choice when modelling real-world epidemics.

The analysis of the pairwise model with the full improved closure is still outstanding

and will be the subject of a separate research paper. In this case, we expect that additional

fast-variables need to be identified. Intuition tells us that [SI]
[I] and [II]

[I] may need to be

extended to include [SR]
[R] and [RI]

[I] .

The computation of the true R0 for pairwise models can be attempted by considering

the next generation matrix approach [116]. Looking at the pairwise model with the sim-

plest closure and ordering the variables involved in the spreading process as: [I],[SI], the

generation of new infectious cases at the disease-free steady state is given by

F =

0 τ

0 τ(n− 1)(1− φ) + τξφα

 , (4.71)

where the lower right term is obtained from equation (4.26) by looking at the rate of growth

of [SI] in terms of [SI] itself and evaluating the terms [S] and [SS] at the disease-free

equilibrium, that is

˙[SI] = +τξ
[SS]

[S]

(
(1− φ) + φ

N

n

[SI]

[I]

)
[SI] ' (τ(n− 1)(1− φ) + τξφα) [SI].

Now all other transfers between compartments are summarised in the V matrix, which is

given below

V =

γ 0

0 (τ + γ) + τ ξnαδφ

 , (4.72)

where the lower right term describes the rate at which [SI] pairs are depleted. This is
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obtained from equation (4.26) by looking at the rate at which [SI] pairs are depleted and

evaluating the terms [S] and [SI] at the disease-free equilibrium, as shown below

˙[SI] = −
(

(τ + γ) + τξ
[SI]

[S]
(1− φ) + φτξ

[SI]

[S]

N [II]

n[I]2

)
[SI] ' −((τ + γ) + τ

ξ

n
αδφ)[SI].

Now R0 is given by the leading eigenvalue of FV −1, which turns out to be

R0 =
τn(n− 1)− τ(n− 1)(n− α)φ

n(τ + γ) + τξαδφ
. (4.73)

Obviously, this seems like a rather complicated expression since the quasi-equilibrium

values for α and δ are needed. These are only available as asymptotic expansions in

powers of φ. Nevertheless, for φ = 0, R0 = τ(n−1)
τ+γ , which agrees perfectly with the two

results quoted above. Considering the φ > 0 case, we write R0 = r0 + φr1, α = α0 + φα1

and δ = δ0 + φδ1. Plugging these into equation (4.73) leads to

r0 =
τ(n− 1)

τ + γ
and r1 = −τ

2(n− 1)

(τ + γ)2

[
2(τ + γ)

nτ
+

(n− 1)

n
α0δ0

]
.

While the first term in the expansion for R0 agrees with the results quoted above, the

second term seems less likely to be equivalent to those shown above. This same approach

can be used to compute R0 when the compact improved closure is used. We believe

that comparing these different ways of computing the epidemic threshold can contribute

to reconciling different methods and will lead to more clarity and transparency between

various modelling approaches.

The ODE systems for the fast variables are worth investigating in more detail. We

expect that these systems will exhibit a number of steady states, some stable and some

unstable. Namely, we expect the quasi-steady states to be unstable and the trivial zero

steady states to be stable. However, numerical solutions of the cubic polynomials show

that other equilibria exist. It will also be worthwhile to compare different models in order

to identify the impact of clustering on epidemics by mapping out regions in the param-

eter space where its effect is strongest. It is known that when the network is dense the

effect of clustering is limited and the same holds when the transmission/recovery rates are

high/low, respectively. Of course there remains the issue of accounting for degree hetero-

geneity and this has been addressed to some extent by using percolation type approaches.

The approach that we presented in this chapter may be extended to degree-heterogeneous

clustered networks, but this will require more sophisticated models such as effective-degree,

or compact/super-compact pairwise models [106]. These will no doubt lead to more com-
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plex systems which are more challenging to analyse. However, we hope that the results of

this chapter may encourage other researchers to consider and tackle the challenges posed

by modelling epidemic dynamics on clustered networks with heterogeneous degree distri-

butions. Finally, it would be worthwhile to test our findings against explicit stochastic

network simulations. This was beyond the scope of the present work, whose focus was on

exploiting the presence of fast variables and the use of perturbation analysis to determine

the epidemic threshold analytically.
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Appendices

4.A Derivation of evolution equations for the fast variables

with simple closure

We begin by computing differential equations for the variables α := [SI]
[I] and δ := [II]

[I] .

Differentiating α = [SI]
[I] gives

dα

dt
=

˙[SI][I]− [SI] ˙[I]

[I]2

=
˙[SI]

[I]
− [SI] ˙[I]

[I]2
,

and substituting ˙[SI] from equation (4.26) and ˙[I] from equation (4.25), we obtain

dα

dt
= −(τ + γ)

[SI]

[I]
+ τξ

[SS][SI]

[S][I]

(
(1− φ) + φ

N [SI]

n[S][I]

)
− τξ [SI]2

[S][I]

(
(1− φ) + φ

N [II]

n[I]2

)
− τ [SI]2

[I]2
+ γ

[SI]

[I]
.

Replacing all [SI]
[I] terms by α and all [II]

[I] terms by δ gives

dα

dt
= −(τ + γ)α+ τξ

[SS]

[S]
α

(
(1− φ) + φ

N

n[S]
α

)
− τξ [SI]

[S]
α

(
(1− φ) + φ

N

n[I]
δ

)
− τα2 + γα

= −τα+ τξ
[SS]

[S]
α

(
(1− φ) + φ

N

n[S]
α

)
− τξ [SI]

[S]
α

(
(1− φ) + φ

N

n[I]
δ

)
− τα2

= −τα+ τξ
[SS]

[S]
(1− φ)α+ τξφ

N [SS]

n[S]2
α2 − τξ [SI]

[S]
(1− φ)α− τξ N [SI]

n[S][I]
φαδ − τα2

= −τα+ τξ
[SS]

[S]
(1− φ)α+ τξφ

N [SS]

n[S]2
α2 − τξ [SI]

[S]
(1− φ)α− τξ N

n[S]
φα2δ − τα2

In Section 4.4.2 we considered an epidemic threshold and a condition for stability of the

disease-free steady state. In both cases, we consider the state of the system at time zero.

At time zero we assume that [S] = N , [SS] = nN , and [SI] = 0, therefore we substitute
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these values into the differential equation for α to obtain

dα

dt
= −τα+ τξ

nN

N
(1− φ)α+ τξφ

NnN

nN2
α2 − τξ N

nN
φα2δ − τα2

= −τα+ τξn(1− φ)α+ τξφα2 − τξ 1

n
φα2δ − τα2,

where ξ = (n−1)
n . Differentiating δ = [II]

[I] gives

dδ

dt
=

˙[II][I]− [II] ˙[I]

[I]2

=
˙[II]

[I]
− [II] ˙[I]

[I]2
,

and substituting ˙[II] from equation (4.28) and ˙[I] from equation (4.25), we obtain

dδ

dt
= 2τ

[SI]

[I]
− 2γ

[II]

[I]
+ 2τξ

[SI]2

[S][I]

(
(1− φ) + φ

N [II]

n[I]2

)
− τ [SI][II]

[I]2
+ γ

[II]

[I]
.

Replacing all [SI]
[I] terms by α and all [II]

[I] terms by δ gives

dδ

dt
= 2τα− 2γδ + 2τξ

[SI]

[S]
α

(
(1− φ) + φ

N

n[I]
δ

)
− ταδ + γδ

= 2τα− γδ + 2τξ
[SI]

[S]
α

(
(1− φ) + φ

N

n[I]
δ

)
− ταδ

= 2τα− γδ + 2τξ
[SI]

[S]
(1− φ)α+ 2τξ

N [SI]

n[S][I]
φαδ − ταδ

= 2τα− γδ + 2τξ
[SI]

[S]
(1− φ)α+ 2τξ

N

n[S]
φα2δ − ταδ.

At time zero we assume that [S] = N and [SI] = 0. We substitute these values into the

differential equation for δ to obtain

dδ

dt
= 2τα− γδ + 2τξ

1

n
φα2δ − ταδ.

Combining the differential equations for both α = [SI]
[I] and δ = [II]

[I] , we have

dα

dt
= −τα+ τξn(1− φ)α+ τξφα2 − τξ 1

n
φα2δ − τα2, (4.74)

dδ

dt
= 2τα− γδ + 2τξ

1

n
φα2δ − ταδ. (4.75)
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4.B Derivation of evolution equations for the fast variables

with the compact improved closure

Using the improved closure (4.23) in line with Proposition 2, which we refer to as the

reduced improved closure, we find that

[ASI] = (n− 1)

(
(1− φ)

[AS][SI]

n[S]
+ φ

[AS][SI][IA]

[A]
∑

a[aS][aI]/[a]

)
(4.76)

= (n− 1)

(1− φ)
[AS][SI]

n[S]
+ φ

[AS][SI][IA]

[A]
(
[SS][SI]

[S] + [SI][II]
[I]

)
 . (4.77)

Using equation (4.77) to close the original pairwise equations (4.5)-(4.9), we obtain the

following system of equations:

˙[S] = −τ [SI] (4.78)

˙[I] = τ [SI]− γ[I] (4.79)

(4.80)

˙[SI] = −(τ + γ)[SI] + τ(n− 1)

(
(1− φ)

[SS][SI]

n[S]
+ φ

[I][SS][SI]

[I][SS] + [S][II]

)
− τ(n− 1)

(
(1− φ)

[SI]2

n[S]
+ φ

[S][SI][II]

[I][SS] + [S][II]

)

(4.81)˙[SS] = −2τ(n− 1)

(
(1− φ)

[SS][SI]

n[S]
+ φ

[I][SS][SI]

[I][SS] + [S][II]

)

(4.82)˙[II] = 2τ [SI]− 2γ[II] + 2τ(n− 1)

(
(1− φ)

[SI]2

n[S]
+ φ

[S][SI][II]

[I][SS] + [S][II]

)
.

As we have shown in the main body of the chapter, the computation of the threshold

requires a system of differential equations for the fast variables α = [SI]/[I] and δ =

[II]/[I]. We find

dα

dt
=

˙[SI]

[I]
− [SI] ˙[I]

[I]2

and substituting ˙[SI] from equation (4.80) and ˙[I] from equation (4.79), we obtain

(4.83)

dα

dt
= −(τ + γ)

[SI]

[I]
+ τ(n− 1)

(
(1− φ)

[SS][SI]

n[S][I]
+ φ

[SS][SI]

[I][SS] + [S][II]

)
− τ(n− 1)

(
(1− φ)

[SI]2

n[S][I]
+ φ

[S][SI][II]

[I]2[SS] + [S][I][II]

)
− τ [SI]2

[I]2
+ γ

[SI]

[I]
.
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Replacing all [SI]
[I] terms by α and all [II]

[I] terms by δ gives

(4.84)

dα

dt
= −(τ + γ)α+ τ(n− 1)

(
(1− φ)

[SS]

n[S]
α+ φα

[SS]

[SS] + [S]δ

)
− τ(n− 1)

(
(1− φ)

[SI]

n[S]
α+ φαδ

[S]

[SS] + [S]δ

)
− τα2 + γα,

and evaluating dα
dt at the disease-free steady state ([S], [I], [SI], [SS], [II]) = (N, 0, 0, nN, 0)

(4.93) gives

(4.85)

dα

dt
= −(τ + γ)α+ τ(n− 1)

(
(1− φ)α+ φα

nN

nN +Nδ

)
− τ(n− 1)

(
φαδ

N

nN +Nδ

)
− τα2 + γα.

After simplification we find that

dα

dt
= −τα+ τ(n− 1)

(
(1− φ)α+ φα

n

n+ δ
− φαδ 1

n+ δ

)
− τα2 (4.86)

= −τα+ τ(n− 1)

(
(1− φ)α+ φα

(
n− δ
n+ δ

))
− τα2. (4.87)

Differentiating δ = [II]
[I] gives

dδ

dt
=

˙[II]

[I]
− [II] ˙[I]

[I]2
,

and substituting ˙[II] from equation (4.82) and ˙[I] from equation (4.79), we obtain

(4.88)

dδ

dt
= 2τ

[SI]

[I]
− 2γ

[II]

[I]
+ 2τ(n− 1)

(
(1− φ)

[SI]2

n[S][I]
+ φ

[S][SI][II]

[I]2[SS] + [S][I][II]

)
− τ [SI][II]

[I]2
+ γ

[II]

[I]
.

Replacing all [SI]
[I] terms by α and all [II]

[I] terms by δ gives

dδ

dt
= 2τα− 2γδ + 2τ(n− 1)

(
(1− φ)

[SI]

n[S]
α+ φαδ

[S]

[SS] + [S]δ

)
− ταδ + γδ

= 2τα− γδ + 2τ(n− 1)

(
(1− φ)

[SI]

n[S]
α+ φαδ

[S]

[SS] + [S]δ

)
− ταδ,

and evaluating dδ
dt at the disease-free steady state (4.93) gives

dδ

dt
= 2τα− γδ + 2τ(n− 1)

(
φαδ

N

nN +Nδ

)
− ταδ (4.89)

= 2τα− γδ + 2τ(n− 1)

(
φαδ

1

n+ δ

)
− ταδ. (4.90)
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Combining the differential equations for both α = [SI]
[I] and δ = [II]

[I] , we have

dα

dt
= −τα+ τ(n− 1)

(
(1− φ)α+ φα

(
n− δ
n+ δ

))
− τα2 (4.91)

dδ

dt
= 2τα− γδ + 2τ(n− 1)

(
φαδ

n+ δ

)
− ταδ. (4.92)

4.C Standard linear stability analysis for the case of the

simple closure

An alternative way to determine the epidemic threshold is to consider the stability of the

disease-free steady state

([S], [I], [SI], [SS], [II]) = (N, 0, 0, nN, 0). (4.93)

When the disease-free steady state is stable, the system will always end up at the disease-

free steady state and thus no epidemic will occur. When the disease-free steady state

becomes unstable, there exists (at least) a second steady state whereby an epidemic will

occur and [S] will no longer be equal to N . To determine a stability condition for the

disease-free steady state (4.93), we must compute the Jacobian matrix J of the system

(4.24)-(4.28), evaluated at the disease-free steady state, and solve to find its eigenvalues.

By computing partial derivatives of each differential equation (4.24)-(4.28) with respect

to each model variable [S], [I], [SI], [SS] and [II], and evaluating each expression at the

disease-free steady state (4.93), we obtain

Jdf =



0 0 −τ 0 0

0 −γ τ 0 0

0 ∂ ˙[SI]
∂[I]

∂ ˙[SI]
∂[SI] 0 ∂ ˙[SI]

∂[II]

0 ∂ ˙[SS]
∂[I]

∂ ˙[SS]
∂[SI] 0 0

0 ∂ ˙[II]
∂[I]

∂ ˙[II]
∂[SI] 0 ∂ ˙[II]

∂[II]


, (4.94)

with ∂ ˙[SI]
∂[I] = τξφ

(
2[SI]2[II]
n[I]3

− [SI]2

[I]2

)
, ∂

˙[SI]
∂[SI] = −(τ +γ) + τξ(1−φ)n+ 2τξφ

(
[SI]
[I] −

[SI][II]
n[I]2

)
,

∂ ˙[SI]
∂[II] = −τξφ [SI]2

n[I]2
, ∂

˙[SS]
∂[I] = 2τξφ [SI]2

[I]2
, ∂

˙[SS]
∂[SI] = −2τξ(1−φ)n−4τξφ [SI]

[I] , ∂
˙[II]

∂[I] = −4τξφ [SI]2[II]
n[I]3

,

∂ ˙[II]
∂[SI] = 2τ + 4τξφ [SI][II]

n[I]2
and ∂ ˙[II]

∂[II] = −2γ+ 2τξφ [SI]2

n[I]2
all containing variables [SI]

[I] and [II]
[I] .

The zero entries in Jdf reflect the true values that the respective partial derivatives attain

at the disease-free equilibrium. However, the majority of the non-zero matrix entries in-

volve [SI]
[I] and [II]

[I] . Since [I] = [SI] = [II] = 0 at the disease-free steady state, both of
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these quantities are ill-defined. Hence, not all entries of the Jacobian can be evaluated at

the equilibrium. This issue prevents the computation of the eigenvalues of Jdf and thus

the value of the epidemic threshold. In order to progress, we need to determine the correct

values for α = [SI]
[I] and δ = [II]

[I] . We note that the correct value of α = [SI]
[I] is also required

in equation (4.33), and the threshold cannot be computed without it.

In fact, using only φ = 0, the Jacobian at the disease-free steady state (4.93) becomes

Jdf no clust =



0 0 −τ 0 0

0 −γ τ 0 0

0 0 −γ + τ(n− 2) 0 0

0 0 −2τ(n− 1) 0 0

0 0 2τ 0 −2γ


. (4.95)

It is straightforward to show that the eigenvalues are given by λ1 = 0, λ2 = −γ, λ3 =

τ(n − 2) − γ, λ4 = 0 and λ5 = −2γ. The only eigenvalue that can be non-zero and non-

negative is λ3 = τ(n− 2)− γ. Hence, we know that the disease-free steady state (4.93) is

stable when λ3 ≤ 0 and becomes unstable when λ3 > 0. Thus, the epidemic threshold is

given by λ3 = 0 and this can be rearranged to give τ(n− 2)/γ = 1. This is equivalent to

the calculation based on determining the quasi-equilibrium of the fast variables.

4.D Standard linear stability analysis for the case of the

compact improved closure

To determine an epidemic threshold, we consider conditions for stability of the disease-

free steady state (4.93). To do so, we compute the Jacobian matrix evaluated at the

disease-free steady state as

Jdf2 =



0 0 −τ 0 0

0 −γ τ 0 0

0 ∂ ˙[SI]
∂[I]

∂ ˙[SI]
∂[SI] 0 ∂ ˙[SI]

∂[II]

0 ∂ ˙[SS]
∂[I]

∂ ˙[SS]
∂[SI] 0 ∂ ˙[SS]

∂[II]

0 ∂ ˙[II]
∂[I]

∂ ˙[II]
∂[SI] 0 ∂ ˙[II]

∂[II]


(4.96)

where ∂ ˙[SI]
∂[I] = 2τ(n − 1)φαδ n

n2+2nδ+δ2
, ∂ ˙[SI]
∂[SI] = −(τ + γ) + τ(n − 1)

(
(1− φ) + φ

(
n−δ
n+δ

))
,

∂ ˙[SI]
∂[II] = −2τ(n− 1)

(
φα n

n2+2nδ+δ2

)
, ∂

˙[SS]
∂[I] = −2τ(n− 1)

(
φαδ n

n2+2nδ+δ2

)
, ∂

˙[SS]
∂[SI] = −2τ(n−

1)
(

(1− φ) + φ n
n+δ

)
, ∂

˙[SS]
∂[II] = 2τ(n−1)

(
φα n

n2+2nδ+δ2

)
, ∂

˙[II]
∂[I] = −2τ(n−1)

(
φαδ n

n2+2nδ+δ2

)
,
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∂ ˙[II]
∂[SI] = 2τ+2τ(n−1)

(
φδ 1

n+δ

)
and ∂ ˙[II]

∂[II] = −2γ+2τ(n−1)
(
φα n

n2+2nδ+δ2

)
cannot be fully

evaluated as they contain products of the problematic variables α = [SI]
[I] and δ = [II]

[I] .

The Jacobian (4.96) becomes useful once analytic expressions for α and δ are obtained

(or it could be approximate values obtained via an asymptotic expansion or even numerical

values). Plugging these values into the Jacobian (4.96) will allow either numerical or

analytical computation of the threshold. We note that using linear-stability analysis or

focusing on the initial growth rate should lead to the same threshold value, as was shown

previously for the case of the system with the simple closure, see Section 4.C.
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Chapter 5

Discussion

In this thesis, I have presented three pieces of research, contained in Chapters 2-4, which

consider dynamic processes occurring on complex structured networks. A key theme con-

sidered in all three pieces of research is the influence of local spatial or network structure

on the dynamic process(es) being modelled on a global scale. The first piece of research, in

Chapter 2, considers a neuroscience-based model describing the activity-dependent growth

and development of a network of excitatory and inhibitory neurons embedded in space.

The second and third pieces of research, in Chapters 3 and 4 respectively, consider models

tracking the SIR epidemic spreading on complex networks. Here, I will summarise the

research and results presented in Chapters 2-4, as well as considering potential improve-

ments to each piece of work. I will also discuss the implications of the results presented

and consider ideas for future research, as well as interesting open questions related to the

research of complex systems.

In Chapter 2, the model allows for a dual-direction interaction between the network’s

structure and the dynamic process being modelled, namely the electrical activity of the

neurons. In this model, there exists a feedback loop whereby structure influences electrical

activity, and electrical activity influences structure, as illustrated by the feedback loop in

Figure 1.2. This process occurs until a system steady state can be reached whereby all

neurons achieve a desired level of electrical activity simultaneously. In Chapter 3, the

network consists of a static and a dynamic network layer whose structures influence the

SIR epidemic process. In Chapter 4, the network consists of a single, fully static network

layer which also influences the process of the SIR epidemic. However, in both Chapter 3

and Chapter 4, the SIR epidemic process cannot influence the network’s structure, and

therefore only a one-way interaction between structure and the dynamic process being

modelled is considered in these cases.
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5.1 Summarising the work presented in Chapter 2

In Chapter 2, we consider the effects of local spatial structure on a published model [119]

describing the activity-dependent growth and development of a network of excitatory and

inhibitory neurons embedded in space. We introduce the model, outlining its equations and

parameters, and we discuss the implementation of growth simulations including detailing

the choices made regarding initial conditions, model parameters and spatial arrangements

of excitatory and inhibitory neurons. We hypothesised that the spatial arrangement of

neurons would be an important factor in determining global outcome and thus derived

novel measures for inhibitory clustering within one- and two-dimensional lattice networks

with periodic boundary conditions.

We performed various tests and analyses on growth simulations of one- and two-

dimensional arrangements of excitatory and inhibitory neurons within lattice networks

exhibiting periodic boundary conditions. Considering one-dimensional arrangements of

neurons, we demonstrated that the proportion of inhibitory neurons in a system cannot

accurately predict global outcome, by showing that systems with distinct neuron arrange-

ments but identical proportions of inhibitory neurons can exhibit qualitatively distinct

behaviours.

By considering an exhaustive list of one-dimensional arrangements of neurons, and

recording the behavioural outcome against the associated inhibitory clustering measure

(2.8), we demonstrate that, in one-dimensional lattice networks, arrangements with high-

est inhibitory clustering exhibit the most extreme oscillatory dynamics. We observe an

idiosyncratic outcome of the model where neurons are unable to achieve the desired elec-

trical activity, and neurite outgrowth continues indefinitely. The global outcomes observed

in one-dimensional examples are characterised as stabilisation, stable oscillatory, unsta-

ble oscillatory and unbounded growth behaviour types. We conclude that stabilisation of

electrical activity and network structure occurs most often when inhibitory neurons are

evenly distributed onto lattice positions. We map the relationship between the proportion

of inhibitory neurons in the system and the extent of inhibitory clustering within each

network, recording the behavioural outcome in each case.

Further, we considered one-dimensional networks comprised of multiple excitatory and

inhibitory clusters of neurons. This was done by considering adjacent repeats of one-

dimensional networks containing contiguous arrangements of excitatory and inhibitory

neurons. In this case, we investigated what proportions of inhibitory neurons were likely

to result in specific behavioural outcomes. We found that networks with proportions
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of inhibition below 20% exhibited stabilisation, proportions of inhibition in the range

[20%, 50%] induced oscillatory behaviours, and proportions of inhibition above 50% in-

duced unbounded growth. Finally, we investigated what network attributes characterised

each behavioural outcome observed.

In two-dimensional lattice networks, we considered growth simulations of various spa-

tial arrangements of neurons and observed two behaviour types: complete stabilisation

of electrical activity and network structure, and stable oscillatory behaviour of electrical

activity and neuritic radii. Oscillatory neuron arrangements generally had a higher two-

dimensional inhibitory clustering measure (2.9) than arrangements which reached equi-

librium. However, after considering a simplification of the originally proposed measure

for inhibitory clustering in two-dimensional lattice networks, we found a clearer relation-

ship between outcome and extent of inhibitory clustering, reinforcing the conclusion that

inhibitory clustering can induce oscillatory behaviours.

Other than finding that increased inhibitory clustering induces oscillatory behaviour,

we concluded that global behavioural dynamics rely on the balance between excitation and

inhibition, as well as the arrangement of neurons and the initial conditions of the system.

Increased inhibitory clustering was also found to induce emerging segregation between

excitation and inhibition, in the form of excitatory neurons with high degrees, which

were hypothesised to be responsible for long-range communication within the network.

Further, we concluded that instability was most evident in one-dimensional networks,

whilst two-dimensional network outcomes tended to be more stable. It was hypothesised

that networks in higher dimensions might protect against the emergence of the most

pathological behaviours. Finally, our findings reinforced the idea that networks with higher

levels of inhibition are more likely to experience oscillatory dynamics.

We have identified a number of improvements that can be made to the work in Chap-

ter 2, including considering the activity-dependent model in three-dimensions and deriving

an associated measure for inhibitory clustering within three-dimensional lattice networks.

Further, improvements can be made to both the one- and two-dimensional inhibitory clus-

tering measures (2.8)-(2.9), in order to improve their sensitivity in relation to the extent of

clustering and behavioural outcome. A number of tests and analyses can be repeated with

a finer grain level of detail, allowing for stronger conclusions to be drawn regarding the re-

lationship between the proportion of inhibition, the spatial arrangement of neurons, initial

conditions and behavioural outcome. Network analysis was performed in one-dimensional

examples only, and another extension of this work would involve performing the same



123

type of analysis on two- and three-dimensional network examples. Finally, we identified

that the model itself can be altered to consider more realistic scenarios, such as for the

arrangement of neurons onto specific locations as opposed to being restricted to lattice

positions, and the consideration of various synapse formation rules.

The results of the research presented in Chapter 2 reinforce some existing ideas regard-

ing the influence of neural inhibition, whilst highlighting the previously under-examined

effect of the spatial arrangement of neurons, and specifically the clustering of inhibitory

neurons. We suggest that future modelling studies such as this one should consider both

the number and arrangement of neurons, and should be careful when attributing partic-

ular dynamic properties to the ratio between excitation and inhibition. Further, work is

required to develop tractable mathematical models that afford consideration of distinct

neuron types within structured networks. One such example, which was discovered by the

authors following publication of the work in Chapter 2, considers the dynamics of recur-

rent cortical networks containing excitatory and multiple subtypes of inhibitory neurons,

investigating how perturbations of distinct neuronal subtypes recruits changes in activity

through recurrent synaptic projections, and concluding that “recurrent inhibitory dynam-

ics must be taken into account to fully understand many properties of cortical dynamics

observed in experiments” [64].

From an experimental perspective, future work should focus on the detection and

classification of inhibitory and/or excitatory neuron clusters in vivo, as well as into the

exploration of their role in network pathology. Experiments can be performed to de-

termine how inhibition of inhibition affects network development and behaviour and to

design treatments that focus on neural inhibition as a target for inducing favourable net-

work remodelling in patients experiencing pathological network activity. Some of the key

questions we should be asking in the future include: i) how is dynamic network stability

achieved and maintained in the brain?, ii) how do different neuron subtypes and distinct

arrangements of these different neuron subtypes affect outcome? and iii) how can we utilise

our knowledge of neuron subtypes and arrangements and their effect on global outcome to

design effective treatments for pathological neural activity?

5.2 Summarising the work presented in Chapter 3

In Chapter 3, we have extended the existing modelling framework by deriving a series of

model equations that accurately describe the SIR epidemic process, following the edge-

based compartmental modelling approach [124, 73, 74, 77]. The epidemic occurs on a



124

complex multiplex network of N individuals, comprised of two distinct network layers. The

first network layer remains static in time and is generated using two edge distributions,

in order to achieve varying levels of clustering. The second network layer is dynamic in

time, with all pairs of edges rewiring at a constant rate, and is generated using a single

edge distribution. Each network layer is intended to describe distinct types of connections

an individual makes with other population members. This work combines two previous

edge-based compartmental models on uniplex networks [125, 77], generating a model which

considers the SIR epidemic occurring on a complex network containing both static and

dynamic network architecture.

The multiplex model’s equations were validated by i) testing their convergence towards

the dynamics of each pre-existing uniplex model when either the static or dynamic net-

work elements were tending towards zero and ii) comparing their predictions against the

dynamics of simulated SIR epidemics occurring on real networks generated according to

equivalent parameter values. The multiple model’s parameter space was explored by test-

ing various combinations of model parameters and recording the outcome of the epidemic

process.

To determine an expression for the basic reproduction number, we utilised the next

generation matrix approach [20], generating a square matrix containing values represent-

ing the average number of infections caused across each type of edge, when the original

infection was received across each type of edge. Here, the next generation matrix (3.24) is

comprised of 9 values, since the multiplex model is generated using three types of edges.

The basic reproduction number is calculated as the leading eigenvalue of the next gener-

ation matrix. The expression derived for the basic reproduction number was validated by

checking that the final epidemic size was perturbed as the associated value of the basic

reproduction number exceeded the epidemic threshold. The effect on the basic reproduc-

tion number of varying parameters and rates describing rewiring, clustering and average

degree was also explored.

Following the edge-based compartmental modelling approach enabled us to derive a

fixed number of equations that are able to predict the outcome of an SIR epidemic on a

complex network of N individuals. These equations afford a huge reduction in the cost

of making such predictions, when compared to the cost of making predictions via fully

simulated epidemic processes. The model captures more complexity in network structure

than previous modelling attempts and the work itself provides a concise illustration of

model design, derivation, implementation and testing. We have further demonstrated the
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utility of the edge-based compartmental modelling approach in capturing and describing

complexity when modelling epidemics on networks and we hope that this work encour-

ages future researchers to improve on current models, modelling approaches and analysis

techniques.

We identified a number of potential extensions and improvements to the work presented

in Chapter 3. Potential improvements to the model include: embedding the N individuals

in space, considering weighted network connections, allowing for flux in and out of the

population, considering more realistic rules for edge rewiring events and generating the

dynamic network layer using two edge distributions to allow for tunable clustering on both

network layers. Regarding the implementation and analysis of the model, we identified

many unexplored areas, such as a comprehensive exploration of the entire parameter space

and tests and analyses of various edge distributions and their effect on global outcome.

Furthermore, the model’s predictions can be tested using historic data from real-world

epidemics.

In the future, research continuing along the themes we have explored in Chapter 3

should consider quantifying the various heterogeneities observed within existing popula-

tions, investigating how observed heterogeneous features influence disease spreading dy-

namics, searching out clear relationships or dependencies between population features and

global outcome and designing and testing mechanisms or approaches with the aim of con-

trolling disease spread. Further, there is an endless need for research that improves on

existing models, modelling approaches and analytical techniques, especially as compu-

tational capabilities continue to improve. Pertinent questions arising from this research

include: how much complexity do we need to consider in our models in order to gain useful

insights? and how can we utilise current mathematical models to reduce the severity of

future disease outbreaks?

5.3 Summarising the work presented in Chapter 4

In Chapter 4, we extend the analytical framework by utilising a unique approach to con-

sidering the epidemic threshold for pairwise model equations describing an SIR epidemic

spreading through a clustered, regular network of N individuals. We begin by outlin-

ing the network-based formalism, SIR disease dynamics and the unclosed pairwise model

equations describing the dynamics in time of the SIR epidemic process. We outline the

motivation behind and the derivation of relevant closures for the model, including the two

closures for clustered networks considered within the chapter.
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Firstly, we consider the clustered pairwise model with the simple closure. We utilise

the simple closure to express the full, closed model equations. We summarise pre-existing

results [54] that derive a growth-rate-based expression for the epidemic threshold by util-

ising the correlation factor CSI , which describes the propensity for nodes of type S and

I to be neighbouring nodes in the network. We then provide an alternative approach to

deriving an expression for the epidemic threshold, by utilising two variables α = [SI]
[I] and

δ = [II]
[I] which are shown to converge to quasi-equilibrium values much faster than the epi-

demic process converges itself. We calculate differential equations for both fast variables

α and δ, and aim to determine steady state values for both variables that would uncover

the epidemic threshold expression.

When clustering is negligible, we find that the differential equations for α and δ can

be solved easily to find steady state values, and we use these to determine the associated

epidemic threshold. When clustering is present in the network, the differential equations

for α and δ are far more complex, and trying to determine steady state values leads to

a single cubic equation in terms of the variable α. We demonstrate that the roots of the

cubic equation can be determined by utilising an asymptotic expansion of the solution in

powers of the clustering coefficient φ. This approach leads to an estimate of the root of

the cubic equation which is used to determine the epidemic threshold.

The epidemic threshold based on the asymptotic expansion of the root of the cubic

equation in α is tested and validated by comparing its value to the epidemic threshold

generated via the numerical solution to the cubic equation in α and to the epidemic

threshold generated by solving numerically the full system of pairwise ODEs.

Additionally, we consider the clustered pairwise model with the compact improved clo-

sure, an adjustment of the improved closure which assumes that the number of nodes in

the recovered state is negligible. This adjustment enables us to utilise the same approach

to determining an epidemic threshold expression as was used for the pairwise model with

the simple closure. Namely, we use the compact improved closure to express the full

system of pairwise model equations and compute another system of differential equations

involving the fast variables α = [SI]
[I] and δ = [II]

[I] . We identify the trivial (0, 0) steady

state by observing the differential equations for α and δ. However, in order to identify

a non-trivial steady state expression, we rearrange the differential equations set equal to

zero, resulting in another cubic equation in terms of the δ variable. Once again, we ap-

proximate the root of the cubic equation in δ via an asymptotic expansion of the root

in powers of the clustering coefficient φ. This approximated root leads to an equivalent
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approximated epidemic threshold for the pairwise model with the compact improved clo-

sure. The epidemic threshold for the clustered pairwise model with the compact improved

closure, generated via the asymptotic expansion, is tested and validated by comparing its

predictions to the threshold generated by solving numerically the cubic equation in δ and

to the final epidemic size generated by solving the full system of pairwise ODEs.

We conclude the work by summarising the results presented and by making compar-

isons with the findings of research using differing approaches to deriving epidemic thresh-

old expressions for clustered networks. We highlight potential extensions of the work,

including testing our epidemic threshold expressions against explicit stochastic network

simulations, investigating analytically the ODE systems for the fast variables α and δ and

analysing the pairwise model with the full improved closure, i.e. without using Propo-

sition 2. Further, we suggest that future research should utilise and compare different

models in order to identify systematically the impact of clustering on epidemic spread

and should make comparisons between the true basic reproduction number R0, which can

be computed in various ways including using the next generation matrix approach [20],

and epidemic threshold expressions derived by other means in order to reconcile different

methods and improve the analytical approaches used. In Appendices 4.A and 4.B we

provide detailed calculations of the differential equations for the fast variables α and δ

and Appendices 4.C and 4.D contain standard linear-stability analysis of the disease-free

steady state for each of the pairwise models considered, an alternative method of deriving

a threshold condition. This work is likely to inform and improve future modelling and

analysis techniques in mathematical epidemiology. It also provokes interesting questions

such as: how can we optimise and improve on current analytical techniques used on net-

work models?, which epidemic descriptors provide us with the most insight? and how can

we test systematically the performance of various epidemic descriptors currently used?

5.4 Implications of the work & future research

In the work presented within this thesis, we have considered three mathematical models

describing neuronal and epidemiological processes occurring within structured networks.

There are a number of implications which arise after considering each of these modelling

studies. For neuroscience, the finding in Chapter 2 that increased inhibitory clustering in-

creases the likelihood of oscillatory behaviour in a model describing the activity-dependent

development of a network of neurons highlights the importance of the spatial arrangement

of the various types of neurons observed in the brain on behavioural outcome. For epi-
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demiology, the work in Chapters 3 and 4 highlights the importance of considering the

heterogeneous nature of connections within complex networks and how they can influence

disease spreading dynamics. Further, all three pieces of research reinforce the importance

of developing improved models and modelling and analysis techniques.

There are numerous implications which are relevant to both neuroscience, epidemi-

ology, and many other fields. In Chapter 2 the locations of the neurons (or nodes) are

embedded in space, whereas Chapters 3 and 4 consider heterogeneous structural connec-

tions between individuals but do not embed node locations in space. An obvious next step

would be to make direct comparisons between these network models with and without

spatial embedding, investigating what changes occur to the process(es) being modelled.

Further, there are numerous implications to consider when modelling the influence

of network structure on dynamical processes. Models that capture more complexity are

required, meaning that simpler models which rely on unifying assumptions, such as mean-

field model equations, cannot always capture the important effects to be investigated.

However, as models become more complex, it becomes more difficult to communicate

and pass on knowledge regarding the model and results of the model. In many modelling

situations there are so many interacting factors that it is challenging to determine causality.

There may also be a limit to the complexity of structure that can be considered in order for

the model to be analytically tractable. A central question for modellers to ask themselves

is when to stop incorporating additional complexity into models and assume that enough

features have been considered to capture the important dynamics.

Another issue to consider is that there may already exist novel techniques and methods

that can consider such complexity but are yet to have been discovered or utilised in the

correct way. This highlights the difficulty in seeing and predicting that which we do not

already know. On the other hand, we may be at the limit of what current mathematical

techniques offer us to deal with complexity. These implications provoke other questions

such as: is there a unifying structural descriptor that captures sufficient complexity but

allows for simple modelling? For example, does the clustering coefficient describe enough

complexity or do we need to utilise additional structural descriptors? Further, will increas-

ing computational power eventually mean that we can model all of the structural features

we observe in complex networks? Overall, research must continue to tread a careful bal-

ance between homogeneity and heterogeneity in complex network models. Some unifying

assumptions will be acceptable, and in some cases will be necessary, whereas others as-

sumptions must be neglected in order to investigate the effects of certain heterogeneities.
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5.5 Final remarks

I believe that complex networks research offers and will continue to offer unrivalled insight

into the complex systems and processes that occur around us in the real world. It is clear

that the graph or network theory formalism can be used to describe complex systems in

every corner of our existence and beyond, from the atomistic level all the way to describing

the structure of the universe itself. Further, the underlying formalism of complex networks,

namely graph theory in mathematics, provides a modelling and analysis framework that

is beautiful, visual, universal and easily understood. For example, regardless of language

spoken, two individuals from different cultures can communicate and understand the same

idea via a simple drawing of a network or graph. Further, even within the same spoken

language, the network theory formalism can be easily understood by researchers coming

from completely different backgrounds. Effectively, network theory can be used as a form

of communication. The ease of communication surrounding network theory will provoke

cross-fertilisation and academic competition that will inevitably move the state of the art

(or science!) forwards.

One drawback of the network theory formalism is that there exists some confusing

and/or overlapping terminology. For example, multilayer versus multiplex networks and

coevolutionary versus adaptive networks. One would argue that the global research com-

munity should agree upon a single list of terminology and definitions in order to facilitate

communication and collaboration between researchers and to maximise the output from

network-based research.

Regardless of the terminology and metrics that are used to describe complex networks

and their features, the field itself will enable and improve our problem solving capabilities.

With ever-increasing computational power, we will have the ability to study larger, more

complex and more heterogeneous systems, as well as considering more complex dynamic

processes. Greater computational abilities will also lead to more comprehensive tests

and analyses being performed. Considering today’s computational capabilities, one might

rule out certain exhaustive searches due to the time and computational cost, whereas in

ten years the same exhaustive search might be considered a necessity. Notwithstanding

increases in computational ability, it is the progress of individual women and men across

the globe doing research that will inevitably lead to better insight and greater analytical

prowess, and it is my hope that this work inspires them.
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[34] Andrzej Grabowski and RA Kosiński. Ising-based model of opinion formation in a

complex network of interpersonal interactions. Physica A: Statistical Mechanics and

its Applications, 361(2):651–664, 2006. 2
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