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Summary

This work presents the development, analysis and numerical simulations of a model for

cell deformation and movement, which couples biochemical reactions and biomechanical

forces. The way that cells move is key to the creation and development of most organisms

on earth. Consequently a deeper understanding of cell motility is likely to have significant

applications to medicine. We propose a mechanobiochemical model which considers the

actin filament network as a viscoelastic and contractile gel. The mechanical properties

are modelled with a force balancing equation for the displacement. The pressure and

contractile forces are influenced by actin and myosin and we model these with a system

of reaction-diffusion equations.

The model consists of highly non-linear partial differential equations. To analyse the

model, we carry out linear stability analysis to determine key bifurcation parameters and

find analytical solutions close to bifurcation points. We then approximate the equations

and produce numerical solutions in multi-dimensions, using an evolving finite element

method. The solutions predicted from linear stability theory are replicated in the early

stages of cell movement. Subsequently, both simple and complex deformations, such as

expansions, protrusions, contractions and translations of the cell are observed.

This theoretical and computational framework allows the study of more complex

and experimentally driven reaction kinetics involving, actin, myosin and other molecu-

lar species that play an important role in cell movement and deformation.
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Chapter 1

Introduction and Background

1.1 Introduction to cell motility

Cells embody and empower every living creature on earth. Given their great complexity

and variety, there are endless biological and physical questions to answer. Cell biologists

and biochemists attempt to uncover the chemical composition of cells (Berg et al., 2015)

and the different components and processes (Cooper, 2000). Then taking this into account,

how, and why, does a cell grow, divide and die? (Alberts et al., 2002). The question we

want to help answer is crucial to evolution and medicine, from the very simple first cells

that existed, to the millions that work together inside our bodies: How, and why do cells

move? Cells were first observed to move under a microscope in 1674 by Anthony van

Leeuwenhoek, and from then onwards, scientists have been investigating and hypothesis-

ing on the mechanisms involved. The movement of cells from one location to another helps

unicellular organisms to find nutrients. Cell movement is just as critical in multicellular

organisms due to roles in embryogenesis, wound healing, immune response, cancer metas-

tasis, tumour invasion, and other processes, therefore, understanding cell movement is of

great importance to medicine and to understanding our origins (Bray, 2001; Friedl and

Gilmour, 2009; Brinkmann et al., 2004; Condeelis and Segall, 2003).

Some methods of movement are easier to explain than others, for example, many

bacteria and sperm cells have a tail which rotates to propel the cell body forward. There are

many other ways a cell can move such as crawling, swimming and squeezing mechanisms.

They can move collectively or individually. In this thesis, we restrict ourselves to single

cell movement, collective cell movement will be an interesting extension.

Cell motility combines complex biochemical reactions and biomechanical forces to move

a cell through an environment. Many mechanisms of movement depend on changes to the



2

shape of the cell, which is defined by the space that it occupies (Paluch and Heisenberg,

2009). The cell is confined by a plasma membrane, thus, its shape is dependent on

the internal and external forces which act on the membrane, as well as the stiffness and

curvature of the membrane itself. The internal forces are primarily produced by a complex

filamentous network, the cytoskeleton, which supports the cell. A key component of

the cytoskeleton is actin, a globular protein which polymerises to form filaments, which

in turn form relatively rigid bundles and networks. Myosin is a motor protein which

attaches to filaments causing contractions which pull on the membrane. In contrast, the

polymerisation of actin filaments, and/or osmotic pressure from contractions, can push the

membrane outward. The external forces on the membrane are usually due to adhesions

and confinement in an extracellular matrix. To balance these forces the cell needs tight

regulation through signalling and feedback between protein activation and mechanical

properties of the cell and its environment (Paluch and Heisenberg, 2009).

The most commonly described and modelled motility is a crawling mechanism which

consists of three steps: protrusion at the front of the cell, adhesion to the surface at the

front while adhesions at the back weaken, and finally a contraction of the rear (Mogilner,

2009; Rafelski and Theriot, 2004). This two dimensional model works well and is applicable

to cells translating across a surface. However, in most cases in vivo, cells are moving in

three dimensions, often through dense and varying environments. Thanks to advances

in microscopy, it is now possible to observe cell movement in three dimensions (Petrie

and Yamada, 2012). Along with these advances there has also been huge increases in

computing power, this means computing in three dimensions is not as time consuming

as it once was. The protrusion, adhesion and contraction processes are still seen but in

highly varying amounts, for example some cells can move fast with little to no adhesion

to their surroundings, while others have little need for contraction (Petrie et al., 2012;

Poincloux et al., 2011; te Boekhorst et al., 2016). In addition, it has been observed that

cells can change their mode of motility due to changes in conditions, for example, the

introduction of drugs which inhibit a certain method of movement, or migration into a

different environment (Sanz-Moreno et al., 2011; Wolf et al., 2003; Sahai and Marshall,

2003).

The objective of this chapter is to give the relevant biological background which is

considered when formulating the cell movement model, and to provide an overview of

mathematical approaches which have been implemented. In the next section we will detail

the biology involved in cell movement. In Sections 1.3 and 1.4 we will review the existing
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mathematical models. Section 1.5, and 1.6 introduce numerical methods, in particular the

finite element method, used to produce simulations of mathematical models proposed in

this thesis.

1.2 Biological Overview

1.2.1 Why study cell motility?

Cells are the fundamental unit of life. They have existed on earth for at least 3500 million

years (Schopf et al., 2007). There are similarities in structure between those first cells

and the multitudinous, diverse types of cells which exist now. A fundamental question

in biology is how cells group together to form tissues, which become organs, providing

different functions inside organisms, from fruit flies to human beings. The first cells

did not move autonomously since their environment contained the food and energy they

required. However to evolve further they needed to create their own energy. They do

this using adenosine triphosphate (ATP), giving them the energy required to replicate

and move (Cooper, 2000). This movement is what we wish to understand. In this section

we will motivate this and give a non-mathematical description of cells, in particular the

components and processes involved with movement.

Motility, is defined as “the ability of a living system to exhibit motion and to perform

mechanical work at the expense of metabolic energy” (Allen, 1981). Or more simply in our

case: a cell can make itself move. Single celled organisms use a process called chemotaxis

to detect chemical signals which tell them which direction has the highest concentration of

food (Petrie and Yamada, 2012; Eisenbach, 2004; Bray, 2001). In multicelluar organisms,

it is vital to understand motility because it is a key behaviour for growth, repair, and

defence (Bray, 2001). Cells can move collectively to build and repair complex tissues,

for example, the organisation of cells during the development of different organs in an

embryo, and the migration of a large sheet of epithelial cells over a wound (Friedl and

Gilmour, 2009). However in this work we focus on a cell moving independently. Single

cell movement allows cells to integrate into tissues or migrate around the body (Friedl and

Wolf, 2009). The most established example is neutrophils (the most common type of white

blood cells). Neutrophils also use chemotaxis to follow stimuli to sites of inflammation or

infection where they can engulf and kill bacteria (Bray, 2001; Brinkmann et al., 2004). A

second example of crucial importance in oncology, is the need to understand metastasis,

this happens when cancer cells can move from a primary tumour into the bloodstream,
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and create new tumours in different organs, this is a often when cancer becomes its most

deadly (Chambers et al., 2002; Condeelis and Segall, 2003). Thus, the importance to

medicine is clear. To begin, we need to introduce the main parts of a cell.

1.2.2 What are the important components in a cell?

Cells can be divided into two types. First, prokaryotes are typically single-celled organisms

like bacteria and are identified as lacking a nuclear envelope to enclose genetic material.

Secondly, eukaryotes are generally bigger and more complex. The first eukaryotes were

single celled, and many still are, with yeast being an example. Others evolved to group

together, become specialised and divide labour to make up the plants and animals which

exist today. Prokaryotes and eukaryotes both have an enormous diversity of subtypes.

Here we focus on eukaryotes and outline several of a cell’s integral parts.

Definition 1.2.1. (Nucleus) The nucleus is where most of the genetic material (DNA) of

the cell is enclosed in a membrane. This provides the stability for DNA to form structures

which control functions within the whole cell (Cooper, 2000).

Definition 1.2.2. (Membrane) The cell is bordered by a plasma membrane which pro-

tects and allows the cell to interact with its surroundings. It is selectively permeable to

substances in and out of the cell. Embedded in the membrane are proteins called integrins,

which allow the cell to adhere to the extracellular matrix and are involved in signalling

within and between cells (Alberts et al., 2002).

Definition 1.2.3. (Cytoplasm and Cytoskeleton) The cytoplasm is everything enclosed in

the membrane but the nucleus. This includes membrane bound organelles suspended in a

water-solution called cytosol. It also contains the cytoskeleton which is a dense network

of filaments which support the structure and aid transport of substances around the cell.

The filaments have three types: microtubules, intermediate filaments and microfilaments

(also known as actin filaments). Table 1.1 summarises the differences between the three.

These filaments support and are supported by crosslinking, motor and regulation proteins,

actomyosin complexes and ions (Pullarkat et al., 2007). Microtubules are stiff hollow

polymers that transfer materials within the cell. Intermediate filaments play an indirect

role in reinforcing elasticity in the cell (Pullarkat et al., 2007). Actin filaments, and the

myosin motors which attach to them, are thought to be especially significant in cell motility

therefore are the two proteins we will consider in our generalised mechanobiochemical

model. Next, we describe in more detail the actin and myosin proteins, and their roles in

cell motility.
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Actin Microtubule Intermediate

Thickness ∼ 8 nm ∼ 25 nm ∼ 10 nm

Persistence length ∼ 10 µm ∼ 1 mm ∼ 0.6 µm

Polar? X X ×

Formed from globular actin tubulin keratin, vimentin +

Associated motor proteins myosin kinesin, dynein none known

Disrupted by drug? Latrunculin-A Nocodazole not easily

Table 1.1: Properties of cytoskeletal filaments (Pullarkat et al., 2007)

(a) (b)

Figure 1.1: (a) Actin globular subunits (G-actin) arrange into long spiral chains called

filaments (F-actin) which in turn arrange into either bundles or networks. During cell

motility both bundles and networks can push on the cell membrane to produce a protrusion

at the front of the cell (in this figure the membrane is the black line. The plus end of the

filament is where polymerisation occurs and black arrows point to this end). (b) Myosin

II (in green) attaches to actin filaments and pulls in the direction of the grey arrows.

Actin

Actin is a globular protein which forms filaments in virtually all cells and is crucial for

cell structure and movement (Cooper, 2000). The filaments assemble into long bundles

and mesh networks (Figure 1.1). This provides scaffolding for the cell’s movement and

function.

Actin filaments are polarised, with growth at one end and disassembly at the other.

This polymerisation by actin subunits, and subsequent elongation of filaments, as well as

depolymerisation is the most widely studied and understood mechanism for movement in

the cell (Bray, 2001; Mogilner, 2009). Drugs that stabilise or depolymerise actin filaments

completely stop movement (Carlier et al., 2015). Polymerisation and depolymerisation

will form part of our modelling, as described in Section 3.2. The “treadmilling“ of actin



6

Figure 1.2: The barbed (plus) end of an actin filament is where regulation of assembly

is most significant. In this figure, we see the various agonists and antagonists of filament

assembly. Barbed ends elongate and push on the membrane. Capping proteins halt

elongations. ADF/cofilin severs and depolymerises older filaments. (With permission

from Carlier et al. (2015).)

has been described in detail in, for example, (Pollard and Borisy, 2003; Ananthakrishnan

and Ehrlicher, 2007; George, 2012; Mogilner, 2009). Figure 1.2 shows some of the many

protein machineries involved.

Myosin

Myosin II is a motor protein which converts chemical energy (ATP) into mechanical power

(Cooper, 2000). It is fundamental for muscle contraction but also plays an important role

in contractions during cell motility (Bray, 2001; Alt and Dembo, 1999; Mogilner, 2009).

Myosin attaches to actin filaments and slides them in opposite directions to produce the

contraction (Cooper, 2000). The presence of myosin is observed across cell types, but the

effect on motility varies (Murrell et al., 2015). Myosin is generally observed at the rear

of the cell, where the force generated from pulling on the actin filaments produces the
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contraction needed to pull the cell body forward. Wilson et al. (2010) show that myosin

also has a direct role in actin disassembly, which may have an effect on contractility,

since an excess of these rigid filaments would be harder to compact. Myosin II contractile

activity can be reversibly stopped by the drug blebbistatin, hindering the cell’s movements

(Kovács et al., 2004).

1.2.3 Types of cell movement

Two-dimensional crawling

In vitro observations have motivated two-dimensional (2D) models of a cell crawling on a

surface using three main processes: protrusion, adhesion and contraction (Abercrombie,

1980; Mogilner, 2009). These processes can happen in turn or, more often, continuously

and simultaneously. Protrusion is part of the cell extending in the direction of motion. The

main component of a protrusion is usually filamentous actin taking the form of wide, flat

lamellapodia, or long, thin filapodia (illustrated in Figure 1.2) (Mogilner and Edelstein-

Keshet, 2002a; Mogilner and Rubinstein, 2005; Atilgan et al., 2006; Carlier et al., 2015).

The area of the protrusion then strongly adheres to the surface while mature adhesions

at the rear weaken (Bershadsky et al., 2006). Finally, a myosin induced contraction of

the trailing edge completes the translocation of the cell (Svitkina et al., 1997). This 2D

crawling mechanism is preferred by some single celled organisms such as amoebae and

diatoms since it is more efficient for survival than swimming in a three dimensional (3D)

environment (Bray, 2001). The most recognised shape of motility is the semicircular or

fan shape which is commonly used by keratocytes. The majority of a keratocyte’s area is a

lamellapodium which pushes outwards and attaches itself to the substrate. Simultaneously,

actomyosin contraction pulls the rear of cell together and towards the front of the cell.

Thus the cell appears to keep its shape while translating. This is illustrated in Figure 1.3.

Modelling in two dimensions can help us understand the role of cell motility in wound

healing, and migration on blood and lymph vessels (Schneider et al., 2010; Carlin et al.,

2013). 2D models have limited application, however, since cells on a 2D surface move

differently to those moving in a more true to life 3D environment.

Note that in this thesis we will use 1D, 2D and 3D to mean either one-/two-/three-

dimensional or one/two/three dimensions, interchangeably.

Three-dimensional cell movement

In vivo cells generally travel in three dimensions through diverse environments such as
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Figure 1.3: The characteristic shape of a keratocyte crawling. Blue arrow is the direction

of motion, yellow arrows are the protrusive force due to actin polymerisation and red is

the contractile forces. The darker yellow is the nucleus. The cell stays approximately the

same shape as it migrates upwards.

body fluids, or dense connective tissue referred to as the extracellular matrix (ECM).

Because of these diverse environments, the cell crawling model is just one of many observed

modes of migration (Petrie and Yamada, 2012). For example, in dense tissue, cells deform

significantly and sometimes use traction from adhesions, whereas in bodily fluids they

become rounded, lack adhesions, and undergo passive drift or propel themselves using

actomyosin flow (te Boekhorst et al., 2016; Poincloux et al., 2011; Tjhung et al., 2015;

Chan et al., 2015).

Some cells can only use one mode of migration, however, many can change their mode

due to changes in environmental conditions. Mode switching is a topic of much interest

for two reasons. Firstly, attempts to control cancer cell motility by using a drug which

inhibits a method of movement have resulted in cells adapting by moving using different

mechanisms (Wolf et al., 2003; Sahai and Marshall, 2003; Petrie et al., 2012; Sanz-Moreno

et al., 2011). Secondly, in the process of metastasis, cancer cells are able to change modes

in order to move from one type of tissue to another, for example, breast cancer cells can

migrate into the very different environment of bone (Katti and Katti, 2017).

The three most commonly discussed migration strategies are termed mesenchymal,

amoeboid and blebbing. We briefly describe each of these modes below. Some studies

define up to 6 distinct modes (Zhu and Mogilner, 2016) which are variations and combi-

nations of these three.
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Figure 1.4: Different morphologies of the invasive tumour cells. Left mesenchymal mor-

phology of K4 sarcoma cells. Right amoeboid morphology of A3 sarcoma cells (repre-

sentative modulation contrast image recorded at an invasion depth of 50 µm). (With

permission from Paňková et al. (2010)).

Mesenchymal

Mesenchymal motility mode is characterised by an elongated shape, protruding at the

front and retracting at the rear. This mode relies on adhesions in the same way as 2D

crawling. In contrast to 2D migration, 3D cell migration is often more spindle-like with

one or more leading pseudopods. In addition, when migrating in this way, the cell utilises

proteolysis which entails enzymes breaking down ECM to create a path for migration

(Paňková et al., 2010). Examples of cells which commonly use mesenchymal migration

are fibroblasts, keratinocytes and endothelial cells (Aguilar-Cuenca et al., 2014; Paňková

et al., 2010).

Amoeboid

During amoeboid motility, the cell has a rounder shape and uses pressure to squeeze

through or deform, instead of degrading, the ECM. The cell forms actin networks or blebs

at the front of the cell and uses little to no adhesion. This means amoeboid is faster

than mesenchymal movement. The name comes from the movement of amoeba and can

also be seen in leukocytes and some tumour cells (Aguilar-Cuenca et al., 2014; Sahai and

Marshall, 2003; Wolf et al., 2003).
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Blebbing

Blebs are round expansions at the edge of a cell commonly observed during apoptosis (cell

death) (Mills et al., 1998) and cytokinesis (cell division) (Porter et al., 1973). They are

caused by an increase in pressure and the decoupling of the membrane from the actin

cortex, this causes cytosol to flow out of the cortex and inflate the bleb (Charras, 2008;

Cunningham, 1995). In most cases, the bleb then retracts, however when it does not,

it has been observed to induce motility (Friedl et al., 2001; Sahai and Marshall, 2003;

Even-Ram and Yamada, 2005; Wolf et al., 2003; Fackler and Grosse, 2008). In this case,

when a bleb stops growing an actin cortex is reformed on the membrane. This action can

produce sustained movement when the cell is polarised, with a sustained bleb at the front

of the cell and the rear of the cell contracting to move the whole cell forward.

Consideration of the nucleus

Generally, in two dimensions, the nucleus is considered a passive cargo at the rear. However

the contribution of the nucleus cytoskeleton to movement is a current area of interest.

The location of the nucleus in migrating cells varies widely, particularly when considering

three dimensions. The nucleus is much more rigid than the rest of the cell which can

hinder the cell’s movement through small gaps in the extracellular matrix (Friedl et al.,

2011; Cao et al., 2016). In contrast, the nucleus appears to play a part in, for example,

leukocyte migration where it is positioned at the front, Barzilai et al. (2017) observed

nuclear lobes being incorporated into lamellapodia which generated gaps between and

inside the endothelial cells. This could be described as the nucleus helping to drill through

endothelial layers (Calero-Cuenca et al., 2018).

Collective migration

Cells can move in sheets in two dimensions during wound healing or in strands, or clusters,

through a three-dimensional environment. These processes utilise actin and myosin in a

similar way to single cell migration but also employ junctions between cells to collectively

polarise, generate force and make decisions (Friedl and Gilmour, 2009). Collective cell

migration is lesser studied than single cell migration and cell-to-cell communication is not

considered in this thesis but could be an extension of the model in the future.

Next we will review mathematical and computational models which may aid our un-

derstanding of cell movement.
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1.3 Mathematical models of cell motility

There are thousands of proteins and processes involved in cell motility, so choosing which

processes to focus on is a daunting task. Accordingly, the problem of mathematically

modelling this movement has been approached in numerous ways. There are many models

which model a certain aspect of cell movement, for example, how protrusions are affected

by the concentration and orientation of actin filaments, and the stiffness of the membrane

(Mogilner and Edelstein-Keshet, 2002a; Mogilner and Rubinstein, 2005; Atilgan et al.,

2005, 2006). Mogilner and Edelstein-Keshet (2002a) found that the ability of a cell to

create a protrusion is correlated with the number of barbed ends of actin filaments pushing

at the membrane. If there are too few filaments then the force is not strong enough to

cause a protrusion, while if there are too many this decreases the velocity because there

are fewer monomers around for the filaments to extend themselves. Additionally, the

significance of the size and amount of actin filaments, and the stiffness of the membrane

and shown in Mogilner and Edelstein-Keshet (2002a), Mogilner and Rubinstein (2005) and

Atilgan et al. (2006). Another principal aspect concerns the assembly and disassembly of

adhesions (Webb et al., 2002).

Our model considers the whole cell, rather than just one aspect, therefore we will

discuss some existing models. First we will consider models in different dimensions, then

in Section 1.4 we will discuss particular types of models that relate to our objectives.

Table 1.2 orders all the models we discuss by dimension and by year published.

1.3.1 One- and two-dimensional mathematical models

As is often the case it makes sense to first consider just one dimension. A simple 1D

model by DiMilla et al. (1991) described cytoskeletal force with viscoelastic-solid model

with compartments containing springs, dashpots and contractile elements in different ar-

rangements. Nodes are linked with the substrate through dashpots and can be added at

the front and deleted at the rear. The model hypothesised that the cell speed is controlled

by the difference in adhesion at the front and back of the cell. If the difference is increased,

the velocity increases even when the adhesiveness of the substrate is different.

To obtain a more realistic view of cell movement, it makes sense to consider a contin-

uous model. For example in Gracheva and Othmer (2004), the 1D model considers the

cell to have a viscoelastic cytoskeleton, with actin polymerisation causing an active pro-

trusive force and myosin II motors creating contractile stress. It also incorporates integrin

receptors to model adhesion to a substrate. The model’s numerical solutions display areas
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1D 2D 3D

DiMilla et al. (1991) Lewis and Murray (1991)R

Lee et al. (1993)−

Alt and Tranquillo (1995)R∗

Caille et al. (2002)

Karcher et al. (2003)

Gracheva and Stephanou et al. (2004)R

Othmer (2004)R

Rubinstein et al. (2005)R Zaman et al. (2005)

Larripa and Du et al. (2006)*

Mogilner (2006)R Zaman et al. (2006)

Darling et al. (2007) Gladilin et al. (2007)

Rubinstein et al. (2009)R

Wolgemuth and Zajac (2010)R

Neilson et al. (2011)R Hawkins et al. (2011)R

Chen et al. (2012) Elliott et al. (2012)R

George (2012)R

Shao et al. (2012)R*

Tozluoğlu et al. (2013)

Sakamoto et al. (2014)R

Dreher et al. (2014)R

Blazakis (2015)−* Tjhung et al. (2015)

MacDonald et al. (2016)R*

Cao et al. (2016) Zhu and Mogilner (2016)

Camley et al. (2017)R Katti and Katti (2017)*

Campbell and Bagchi (2018)R*

Table 1.2: Features of different models are highlighted in this table. All but those labelled

with − consider mechanical forces and those labelled R consider reaction kinetics. Labelled

* are discussed in the numerical methods section.
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of stretch and compression and a number of agreements with experimental data: Firstly,

at the front of the cell the traction is large and negative while at the back it is large

and positive. Secondly cell speed as a function of cell-substrate has a similar bell-shaped

distribution to experimental observations.

However, a one-dimensional model is not appropriate for many cell types. The motion

of keratocytes must be considered in two dimensions because key active forces act orthog-

onal to the direction of motion. A cell moving across a flat surface (often a keratocyte in

its characteristic fan shape) is the basis of most in vitro studies. The shape is shown in

Figure 1.3. Two dimensional models are the most common in literature because they can

satisfactorily model this type of movement.

An early 2D model for cell migration is that proposed by Lee et al. (1993) which gave

a simple geometric formula for movement. This model was based on the suggestion that

extension and retraction of the cell boundary is locally normal to the boundary and local

rate of extension/retraction decrease from the centre to the sides of the cell. This model

provides an understanding of semi-circular moving cells, but does not identify how this

might be regulated by the cell.

Another noteworthy and much more complex 2D model by Rubinstein et al. (2005)

considers the actin network as elastic. Coupled to this is a convection-reaction-diffusion

model of actin transport, and a 1D model for actomyosin contraction at the rear of the

lamellipod. The simulations showed the persistent crescent shaped movement observed in

keratocytes. Notably this does not occur if the initial shape is a disk. Cell turning can

also be simulated. In a later paper Rubinstein et al. (2009) considered a steadily moving

cell as viscoelastic and computed the actin flow, myosin distribution and traction forces

in order to compare this to experimental values. The viscoelastic movement of the cell is

powered by myosin contraction, which happens at the rear. The reason for aggregation of

myosin at the rear is that, when the cell is moving, the relatively stiff F-actin network has

graded assembly and disassembly from front to back, and so myosin effectively is swept to

backwards.

As previously mentioned 2D modelling can tell us much more about how cells move on

a surface, in Rubinstein et al. (2005) they suggest the fan shape is likely to be the ”pure

form” of a cell crawling. However, many cells do not have a steady shape when moving

and, more importantly, a flat surface is not the environment most cells find themselves in.

In vivo, the majority of cell movement is in a three-dimensional environment.
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1.3.2 Three-dimensional mathematical models

Modelling 3D migration can be approached in many ways, most of which consider the

ECM. This is because, in 3D environments, the dense fibres affect how a cell can push

forward. An early effort by Zaman et al. (2005) modelled motion of the centre of a cell by

balancing forces at discrete time steps. Under this model, maximum speed is predicted at

intermediate ECM stiffness and intermediate amounts of cell-matrix adhesion. However,

this model did not consider the shape of the cell and the difference in forces between the

front and rear. A more recent, multiscale model of cancer cell motility was presented

by Tozluoğlu et al. (2013). It is a hybrid, agent-based/finite-element model which incor-

porates actin protrusions, contractility, the cell nucleus, adhesions, changes in the ECM,

and blebbing. Similar to Zaman et al. (2005) the model predicts that speed is affected

by the level of adhesion and that traction forces for amoeboid motility could be provided

by steric interactions between the cell and the ECM. Sakamoto et al. (2014) investigated

the effects of both internal cell mechanics and adhesions on migration behaviour. The

proposed hyperviscoelastic model predicted that the transition between the amoeboid and

mesenchymal (elongated) migration modes are caused by reduced adhesion and increased

elongation/retraction rates.

A computational approach to modelling further adaptability of migration modes was

recently proposed by Zhu and Mogilner (2016). The cell and ECM are treated as 2D

node-spring networks connected, but kept separate, by a node-spring chain representing

the membrane. They found that, by varying the adhesions, locations of protrusion and

contraction, and including or excluding degradation of the ECM, the model reproduces

six distinct modes of motility which have been observed in experiments. These modes are

mesenchymal, chimneying, amoeboid, blebbing, finger-like protrusion and rear-squeezing.

The authors also note that since it is a discrete model it should be developed in parallel

with continuous 3D models such as the one we propose in this study.

The models of Tozluoğlu et al. (2013); Sakamoto et al. (2014); Zhu and Mogilner

(2016) are essentially in 2D but model 3D behaviour. There are also several models in

3D which model movement on a 2D surface (Holmes and Edelstein-Keshet, 2012; Tjhung

et al., 2015). Tjhung et al. consider a crawling cell by presenting a simplified physical

model of an active fluid droplet which supports the idea that cells may use physics based

mechanisms which do not directly depend on biochemical feedback networks.

A model which addresses a significantly different mode of migration to the classical

2D idea is that of Hawkins et al. (2011) which assumes cell to be a spherical surface. By
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considering instabilities in the cell cortex the model shows spontaneous cell motility could

be generated by acto-myosin contraction.

Surface PDEs are central element of many cell motility models (Neilson et al., 2011;

Elliott et al., 2012; Campbell and Bagchi, 2018). Elliott et al. (2012) considered the cell

membrane as an evolving surface whose movement was determined by internal and external

forces including pressure (in the enclosed volume and outside), the bending and stretching

of the surface, and a protrusive force which was linked to a reaction-diffusion equation

posed on the surface. The model was similar to 2D model by Neilson et al. (2011) and

the behaviour, such as pseudopod splitting, persisted into three dimensions. Numerical

simulations of both models successfully imitated features of directed pseudopod-driven

migration due to an external chemoattractant.

Mechanical forces and RDEs on an evolving surface are also part of the model of

Campbell and Bagchi (2018) which effectively modelled highly deforming pseudopod-

driven motility through a porous medium. The model included the resistance of the

membrane to shearing deformation, bending and surface area dilation. The bending en-

ergy was modelled with a strain energy function and following Helfrich’s formulation. On

the evolving cell surface, the protein interactions which cause protrusions were governed

by reaction-diffusion equations for activators and inhibitors. The activator concentration

directly affected the protrusive force (fp = ξa1n, where ξ is the force per actin filament).

Additionally, the cytoplasm and extracellular matrix were assumed to be incompressible,

Newtonian fluids and obstacles were considered in the form of rigid, non-moving spheres.

It was postulated that a deforming surface causes the RD system to be more unsta-

ble. Additionally, high curvature causes species to aggregate, this enhances the growth

of pseudopods. The significant deformations predicted by the simulation were similar to

experimental observations of cells squeezing through narrow spaces. It was observed in

simulations that the deformability must be sufficiently large to induce efficient motility,

this behaviour is experimentally observed in the more efficient migration of softer immune

cells through tissue compared to stiffer fibroblasts (Petrie and Yamada, 2015). The model

is a demonstration of non-adhesion driven motility. This model, and models of Elliott

et al. (2012) and Neilson et al. (2011) do not include any protein interactions in the bulk

of the cell.
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1.4 Research thesis objectives

In order to model 3D cell migration, clearly there are countless modelling goals to consider.

In this thesis, we will address the following research questions: What are the forces acting

on and being produced by the cytoskeleton? How does the actin - myosin network self

organise? How are these concepts connected?

In the next section we will discuss mechanical forces inside the cell and how they relate

to cell migration and in Section 1.4.2 we discuss biochemical interactions.

1.4.1 Biomechanical models for cell migration

Cytoskeletal dynamics have been studied using numerous force balancing models (Sun and

Zaman, 2017; Zaman et al., 2005, 2006; Camley et al., 2017). There are several models

which consider the actin network as hyperelastic (Caille et al., 2002; Wang and Gao,

2011; Gladilin et al., 2007; Chen et al., 2012). From these studies it is reported that the

stiffness of the cytoplasm increases nonlinearly and that when it is stretched it becomes

more stiff and incompressible (Gladilin et al., 2007). Additionally, cell’s stiffness depends

significantly on the stiffness of the extracellular environment (Chen et al., 2012). Other

models, similar to the one proposed in this study, consider the cytoplasm to be viscoelastic

(Karcher et al., 2003; DiMilla et al., 1991; Darling et al., 2007; Larripa and Mogilner, 2006;

Shao et al., 2012; Rubinstein et al., 2009).

As mentioned in Section 1.2.3 deformability of the nucleus can be a limiting factor

for cell migration. Therefore, Cao et al. (2016) developed a chemomechanical model of

nuclear strains and shapes for a cell squeezing through endothelial layers. The model

considers the nucleus to contain a soft poroelastic material enclosed in a stiff elastic shell

to represent the nuclear envelope, the mechanical resistance of which may be overcome by

actin contraction and cytosolic back pressure.

To produce directional movement, there must be a mechanism to introduce polarity

into the model. This may be done directly, by adding an asymmetry to one or more of

the forces. An example is Wolgemuth et al. (2011), who describe a biophysical model for

myosin contraction driven motility which deforms significantly but does not have a steady

moving space until polarity is added to the model with graded actin treadmilling.

The concentration of F-actin has been modelled to affect forces in very different ways.

For example, in Dreher et al. (2014), actin simply pushes on the membrane. The created

protrusion force is likely to be confined to the periphery of the cell (Shao et al., 2012). In

other models it is involved in generating contractile stresses and flows (Lewis and Murray,
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1991; Stephanou et al., 2004; George, 2012). The rate of adhesions forming can also be

considered to be proportional to the concentration of actin.

The concentration of myosin is thought to linearly affect either the stress (Gracheva and

Othmer, 2004; Wolgemuth et al., 2011; Rubinstein et al., 2009; Hodge and Papadopoulos,

2012; Shao et al., 2012) or similarly the rate of contraction (Murrell et al., 2015; Bendix

et al., 2008). The concentration of myosin and the stress forces in the cell have a posi-

tive feedback on each other, when attached to fixed point myosin induces movement of

the membrane, conversely, myosin responds to membrane tension (Aguilar-Cuenca et al.,

2014).

Actin and myosin interact with each other therefore the next question we address is

how to understand the biochemical interactions between them.

1.4.2 Biochemical reaction kinetics

A plausible paradigm for the consideration of molecules involved in cell motility is to con-

sider a reaction-diffusion system (Gierer and Meinhardt, 1972; Meinhardt, 1999; Turing,

1952; Schnakenberg, 1979) which typically take the form

∂u

∂t
= D∆u + F(u), (1.1)

where D is the matrix of diffusion coefficients and F is a vector of reaction terms which

may depend on the vector of concentrations, u. Equations of this type have long been

used to explain pattern formation in a great variety of areas. The seminal work by Turing

(1952) presented the elegant and counter-intuitive theory that patterning could be driven

by diffusion rather than reactions. This means a linearly stable homogeneous steady state

in the absence of diffusion can be driven unstable by the presence of diffusion. This model

is especially applicable in chemistry where the presence of diffusion-driven instability was

first verified (Castets et al., 1990; Ouyang and Swinney, 1991). General reaction-diffusion

systems are discussed in detail in Chapter 2.

Since there are many molecules which affect cell movement, reaction-diffusion systems

have been widely proposed in cell motility models (Levchenko and Iglesias, 2002; Mogilner,

2009; Rubinstein et al., 2009; Hawkins et al., 2011; Camley et al., 2017). Many models

of single cell motility focus on the key proteins actin and myosin Mogilner (2009), there-

fore, we next discuss various proposed reaction-diffusion models which emphasise different

mechanisms between actin and myosin.

Actin can be described as scaffold for myosin (Murrell et al., 2015) but not all myosin

within the cell is attached to the actin therefore many mathematical models consider
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”bound” and ”unbound” states. The amount of bound myosin generally depends on

binding/unbinding rate constants and the amount of free myosin (Hawkins et al., 2011;

Hodge and Papadopoulos, 2012; Rubinstein et al., 2005) as well as the concentration of

actin (Gracheva and Othmer, 2004). Often, either unbound myosin, or the sum of bound

and unbound, is treated as constant (Wolgemuth et al., 2011; Gracheva and Othmer, 2004;

Hodge and Papadopoulos, 2012).

There are also various ways to consider diffusion. Shao et al. (2012) emphasise that the

diffusion term for actin is not technically diffusion in the physical sense but is an effect of

polymerisation and depolymerisation and can be thought of as having the same effect as

diffusion. In their model, the diffusion coefficient for myosin is an inversely proportional

function of actin concentration. Rubinstein et al. (2009) only have a diffusion term for

unbound myosin, bound myosin and F-actin are instead affected by the drift of F-actin

compared to the velocity of the lamellipod. This is similar to the actomyosin model in

Wolgemuth et al. (2011), which does not have an equation for actin concentration and

unbound myosin diffuses while bound myosin moves with the network.

It is observed that the actin network becomes weaker towards the rear of the cell and

this is where myosin molecules (attached to actin filaments) become more concentrated

(Mogilner, 2009). To compound this, it is thought that contraction causes disassembly of

actin (Murrell et al., 2015) and that myosin bundles at rear reduce polymerisation of actin

(Wolgemuth et al., 2011).

There are a great number of studies which consider directed movement utilising chemo-

taxis (Hillen and Painter, 2009), the majority of which model populations of cells and their

collective migration. It has also been suggested that cells can amplify this signal or even

self-generate gradients (Mackenzie et al., 2016). This is considered in a single cell by Neil-

son et al. (2011), often a very small difference in concentration across a cell can cause a

cell to orient itself and move. Another such model, which has similarities to ours, is that of

Mackenzie et al. (2016), and one counterpart MacDonald et al. (2016), the model includes

reaction-diffusion equations on the surface and protrusive forces generated, these concepts

are coupled to local degradation of chemoattractants to study how cells may interpret and

create gradients and the resulting movement. In our model we do not consider an external

attractant and model only random deformations.

In summary, actin and myosin can be modelled to react with each other and diffuse.

Many cell motility models have been proposed to include one or two reaction-diffusion

equations but the kinetics are usually very simple. We will propose a framework such that
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it is possible for more complex dynamics to be considered.

1.4.3 A mechanobiochemical model for cell movement

In order to address the questions posed at the beginning of this Section 1.4, we will

consider a mechanobiochemical model previously studied in George (2012), George et al.

(2013) and Madzvamuse and George (2013), which we will extend to 3-dimensions as well

as introducing for the first time, the role of myosin in the model. The model considers

the cell to be viscoelastic and balances this with protrusions and contractions which are

influenced by the concentration of actin. The previous model consisted of a force balance

equation whose solution described the displacement of the cell and a reaction-diffusion

equation for actin. The model of George (2012) was in 2D, and the first novelty of ours

is that we will extend it into 3D, in the hope that it can be more applicable in real life.

The second novelty is the additional consideration of myosin, this is implemented with a

second reaction-diffusion equation for myosin and a new term in the force balance equation

to represent contraction due to myosin is added. Unlike previous studies of this nature,

our approach allows us to investigate more complex reaction kinetics between actin and

myosin.

1.5 Numerical methods for cell motility models

In this thesis we wish to formulate and solve a mechanobiochemical model comprising

of a system of reaction-diffusion equations and a viscoelastic mechanical model for cell

movement and deformation. Given that the model in its full glory is highly nonlinear, ex-

act analytical solutions are not possible to obtain in closed form, instead, we will seek to

compute numerical approximations to these exact solutions. Numerical methods abound

for solving complex PDEs. Methods that have been employed to model cell motility in-

clude finite differences, phase field methods, boundary element methods (BEM), immersed

boundary methods or level set methods (LSM), (Alt and Tranquillo, 1995; Stephanou et al.,

2004; Pozrikidis, 2005; Strychalski et al., 2010; Wolgemuth and Zajac, 2010; Bottino and

Fauci, 1998; Neilson et al., 2011). Choosing a suitable method for a particular model is a

balance between the ease of application within the model’s framework and the reliability

of solutions the produced.

Finite differences were used in previous incarnations of our model (Alt and Tranquillo,

1995; Stephanou et al., 2004). This method is very useful and easy to implement on fixed

and simple domains but it is significantly more complicated to incorporate an evolving
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domain and there are often problems with a moving boundary.

Phase Field methods are useful to study the interface between two materials with

differing characteristics or ”phases” thus it is natural to apply this to the inside and outside

of a cell. The technique involves taking distinct values in the two phases, for example 1

and −1, and a smooth change between these two values in a width around the interface.

This allows the problem to be solved on the whole system without explicit conditions

on the interface. Blazakis (2015) used a phase-field framework to fit a model of a cell

membrane derived form physical principles to experimental image data. Additionally, the

method has been used to understand deformation due to elastic bending in for example

Du et al. (2006), and closer to our problem, Shao et al. (2012) also consider protrusion

and contraction forces.

BEM are a way to solve PDEs which have been formulated as integral equations. It is

computationally efficient for linear problems where the surface is small in comparison to

the volume. This boundary integral method has been used to investigate elastic properties

when considering the micropipette aspiration contact problem (Haider and Guilak, 2002).

Our problem is inhomogenous and non-linear so this approach is not appropriate.

A technique to deal with the complex deforming boundary has been developed from

computational fluid dynamics: The immersed boundary method can model the cell as

a force field immersed in fluid domain (Peskin, 2002; Bottino and Fauci, 1998). The

previously mentioned paper by Campbell and Bagchi (2018) combined this with surface

finite elements, finite volumes and a spectral method, to present a 3D model of amoeboid

cell motility with obstacles. This means the model includes solid and fluid mechanics, and

pattern formation.

Level set methods are used extensively in cell simulations and are useful when cells

split and reconnect, therefore, it may be advantageous to use this method in the future

when considering cell proliferation (cell division) and apoptosis (cell death) (Yang et al.,

2017). In this thesis we are not concerned with cells splitting.

The finite element method is well known to easily handle complex and evolving cellular

domains and can be generalised to multidimensions with little complication, hence is the

ideal method to numerically solve our model system. In addition to the most recent

incarnation of this model (George, 2012), finite element methods have been widely used

to model cell motility (Bottino et al., 2002; Rubinstein et al., 2005; Gladilin et al., 2007;

Elliott et al., 2012; Chen et al., 2012; Tozluoğlu et al., 2013; Sakamoto et al., 2014; Blazakis,

2015; MacDonald et al., 2016; Manhart et al., 2017), and can be implemented in diverse
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ways depending on the model. For example, Rubinstein et al. (2005) propose a multiscale

2D model considering both an elastic network, and concentrations and orientation of

actin and myosin. Sakamoto et al. (2014) also use it in 2D to model the biomechanical

properties, in a hyperviscoelastic model, to find the velocity at each time step. Elliott

et al. (2012) focus on evolving surface finite elements. MacDonald et al. (2016) develop

a moving finite element method on coupled meshes of the bulk and surface to model the

interaction of a cell with a chemotactic field. Katti and Katti (2017) study the mechanics

of a cancer cell by separately modelling various elements, including cytoskeletal filaments,

cytoplasm, membrane and the nucleus, with different elastic moduli. This estimated the

force-displacement response of the cell. They see very small displacements and inelastic

behaviour.

1.6 The finite element method

Given the considerations of the previous section, we employ the moving grid finite element

method (Baines, 1994; Madzvamuse et al., 2003; Madzvamuse, 2006; Madzvamuse and

George, 2013) to compute approximate numerical solutions to the mechanobiochemical

models studied. The details of the finite element methodology, which is used to obtain the

numerical solutions in Chapters 2, 3 and 4, is described in Appendix A.

In this section, as an introduction, we briefly discuss the concept and motivation behind

the widely successful numerical method known as the finite element method.

The finite element method began with Galerkin and the concept of a collection of trial

functions (also known as test, or later shape, functions). Combinations of these functions

are then chosen to be close to the function to be approximated. Thus, the problem

becomes that of finding the appropriate amounts of each function. This means solving

many, very small equations. The idea was then developed in the seminal work of Courant

(1943) to have many more but simpler functions and this was made possible for computer

simulations.

The finite element discretisation transforms the partial differential equation into a

system of algebraic equations to be solved to find an approximate solution of the continuous

problem. A finite element mesh is a polygonal or polyhedral mesh that approximates a

geometric domain. The mesh is made up of many parts called elements with no gaps.

Elements are joined together by discrete nodes. Shape functions describe how a variable

can vary inside an element. They are usually low order polynomials which interpolate the

solution between the values at the nodes. A shape function equals one at its related node
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(a) (b)

Figure 1.5: Representations of our mesh. The second, on which we perform most simula-

tions is a refined version of the first, each element has been split into eight new elements

and the boundary has been appropriately modified.

and is zero at all others and the sum of all shape functions at any point is one. Degrees

of freedom are unknowns to be found at each node. Each node may have multiple degrees

of freedom for example the displacement in each direction.

The domain of our problem is continuously deforming so we use the moving grid finite

element method (Baines, 1994; Madzvamuse et al., 2003), this allows the nodes of the

computational grid to move. In fact, velocity of the nodes is computed directly from

the displacement solutions of the force balance equation. To obtain our finite element

approximation we follow the same steps as George (2012), namely:

1. Derive the weak formulation of the equations.

2. Find spatial and temporal discretisations to give a system of algebraic equations.

3. Assemble the element equations.

4. Implement domain velocity and movement.

Since we are now considering three, rather than two dimensions, our system of equations

is much bigger and more complex. See Appendix A for full derivations.

1.7 Summary

In this chapter we have given a biological introduction to cells and their movement. We

then discussed mathematical models and numerical methods describing cell movement.
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The importance of understanding cell motility cannot be underestimated, firstly to

understand our existence, and more urgently, because of the medical consequences in

oncology and the processes of wound healing. In this section we have given a brief in-

troduction to a typical cell, the complexity of cells, however, cannot be underestimated.

One estimate of the number of different proteins in a single cell type was 100,000 (Savage,

2015). Many biologists give descriptions of cell movement which outline the importance

of dozens of different proteins whose functions may include signalling, activation or in-

hibition. A model including everything would be excessively complex, and even if the

computing power was sufficient, the results would be impossible to interpret. Thus the

mathematician’s answer to this is to propose a model which captures some important

processes and gives believable, and ideally, useful results.

There is little argument that the two most important proteins are actin and myosin.

Actin filaments give the cell structure and are the primary component of protrusions.

Meanwhile, myosin attaches to, and pulls on the filaments to induce a contraction. These

two concepts, in combination with descriptions of the mechanical properties of the cyto-

plasm, are the focus of this thesis.

The well studied 2D model of protrusion, adhesion and retraction has proven very

useful. However when moving in three dimensions it is observed that the morphology

and processes used to move change significantly. Additionally, there are a number of

observed modes of migration in 3D and some cells can change their mode depending

on their environment. Advances in microscopy means studying cells in 3D is becoming

feasible while still technically complex. Correspondingly the advancement in computing

power means we can run much larger simulations, so implementing computational models

in 3D is less of a burden.

The majority of mathematical models of cell motility are in one, or two dimensions.

As computing power increases, more models are considering three dimensions. This allows

for more complex behaviour to be observed and is more applicable to what really happens

in vivo.

Mechanical systems are an intuitive choice for whole cell models because the structural

properties of a cell will directly affect their ability to move. In particular, the elasticity of

a cell is usually considered, often in combination with viscosity. This makes sense because

a cell is neither a solid nor a liquid but displays properties of both. The various stresses

can sometimes be measured in vitro and perturbations to their environment will lead to

movement.
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The mechanical forces will be affected by chemicals and proteins in the cell. The

presence of some proteins is often prescribed but in reality their concentrations vary. A

common solution is some variation of a reaction-diffusion equation (RDE). Many proteins

come in different forms, for example, actin alternates between being globular and poly-

merised into filaments, and myosin can be bound or unbound to actin. Several models

include all four of these states. Most models consider at least actin or myosin to be

constant and there are few models which have reaction terms between the two. We will

explicitly model just actin filaments (F-actin) and bound myosin since these directly affect

the forces.

Due to cell movement being such a complex process, the models can rarely be solved

exactly. Therefore numerical methods are utilised to produce simulations. Which method

is chosen depends on the equations and domain used. Finite differences, finite elements, fi-

nite volumes, phase field methods, boundary element methods (BEM), immersed boundary

methods and level set methods (LSM) have all been used. We choose the finite element

method for its simplicity, and ability to cope with complex and evolving geometries in

multidimensions.

1.8 Thesis outline

Reaction-diffusion systems play an important role in our model, and many other cell

motility models. These describe the concentrations of actin and myosin. We would like

to see patterns developing with areas of high and low concentration since this may cause

instability which leads to movement. Therefore, before describing our model of a cell

moving, in Chapter 2, we introduce reaction-diffusion systems and a method for finding

parameter values which will lead to particular patterns developing.

Our key contributions to the mathematical interpretation of cell motility are the ex-

tension of the 2D model of George et al. (2013) into 3D, and the introduction of myosin

into the model. In Chapter 3 we introduce and discuss the original model and begin our

extension by formulating it in three dimensions. Mechanical forces and actin concentration

are modelled. We then add myosin concentration to the model in Chapter 4. The model

now consists of a force balance equation and two coupled reaction-diffusion equations. In

both of these chapters predictions for behaviour of solutions will be made using linear

stability theory.

Since our models are highly non-linear with many parameters, we cannot find solutions

analytically, therefore, we choose here to use the finite element method for its efficiency
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in dealing with complex nonlinear systems on evolving domains (Johnson, 1987; Reddy,

1993). Numerical simulations are presented in Chapters 3 and 4, and show a wide variety

of protrusions and retractions due to, and affecting, the dynamics of actin and/or myosin

in the cell. Appendix A details the finite element method used. Finally, we discuss our

findings, limitations of the model and possible future directions in Chapter 5.
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Chapter 2

Biochemical reaction-diffusion

systems on arbitrary stationary

3-dimensional geometries

2.1 Introduction

In his seminal work, Turing (1952) presented an elegant mathematical theory of reaction-

diffusion type for pattern formation in developmental biology. He showed that, via a

symmetry breaking, a homogeneous steady state which is linearly stable in the absence of

diffusion may be driven unstable in the presence of diffusion to give rise to the emergence

of a spatially inhomogeneous pattern. This process is now well known as diffusion-driven

instability or Turing instability. Since then, reaction-diffusion systems have been proposed

and applied to model many natural phenomena including cancer invasion and angiogenesis

in cancer biology (Chaplain et al., 2001; Chaplain, 1995; Gatenby and Gawlinski, 1996),

pattern formation in developmental biology (Hunding, 1992; Maini and Solursh, 1991),

wound healing in biomedicine (Dale and Maini, 1994; Sherratt et al., 1992), cell motility

(Mogilner, 2009; Mogilner and Edelstein-Keshet, 2002b; George, 2012) and material sci-

ence (Bozzini et al., 2012; Krinsky, 1983), among many others. Despite their numerous

applications, Turing’s theory of pattern formation has been widely criticised mainly due

to the lack of robustness of the model system to changes in the parameters as well as

the lack of experimental evidence of the existence of so-called morphogens with varying

diffusivities. Only recently has the existence of chemical morphogens been experimentally

validated in hair follicle pattern formation by Sick et al. (2006).

Often, we are interested in identifying parameters which will lead to a particular pat-
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tern. Our approach, which is the basis of this chapter, is to compute eigenpairs of the

Laplacian on a variety of domains and use linear stability analysis to determine param-

eter values for the system that will lead to spatially inhomogeneous steady states whose

patterns correspond to particular eigenfunctions. This method has previously been used

on domains and surfaces where the eigenvalues and eigenfunctions are found analytically

in closed form (Madzvamuse, 2000; Chaplain, 1995). Our extension of this methodology

considers arbitrary domains and surfaces on which we numerically compute eigenpairs.

The remainder of this chapter is structured as follows. In Section 2.3 we introduce the

mathematical model which we study in this work. We derive the necessary and sufficient

conditions for Turing diffusion-driven instability in Section 2.4. We then detail how mode

selection and parameter identification are carried out. In Sections 2.5 and 2.7 we outline

the new theoretical and computational framework for mode selection and parameter iden-

tification. The numerical implementation is discussed in Section 2.6 and the formulation

of the finite element method is described in Section A.1. We then give specific examples

in 3-dimensions for regular (by which we mean domains on which analytic expressions

for the eigenfunctions are available) as well as general domains and surfaces (where no

analytical solutions exist). Our first example is the sphere, this is where we go into most

detail. In later chapters, we will perform mode isolation of a more complex system on

the sphere since this will be the assumed initial shape of a cell. We discuss the implica-

tions of our framework in the context of current methodologies and conclude that given

a biological pattern and a reaction-diffusion system, our approach provides a useful tool

for estimating parameter values which may give rise to the observed pattern. The results

in this chapter are published in our paper (Murphy et al., 2018) : Laura Murphy, Chan-

drasekhar Venkataraman, and Anotida Madzvamuse. Parameter identification through

mode isolation for reaction–diffusion systems on arbitrary geometries. International Jour-

nal of Biomathematics, 16(4):1850053, 2018. (A.M. conceived the idea, L.M. performed

the analysis and computations supervised by A.M. and C.V., article was written by L.M.

with input from A.M. and C.V.)

2.2 Mathematical preliminaries

2.2.1 Bessel’s equation and Bessel Functions

We will need Bessel functions when solving the eigenvalue problem on the sphere in Section

2.8.1. The solutions to Bessel’s equation are well known and we will give an outline of the
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solutions (Bessel functions) which can be found using the method of Frobenius (Zill and

Cullen, 2000; Arfken et al., 2013). Before introducing the problem, we define a regular

singular point and Frobenius’ theorem.

Definition 2.2.1. (Regular Singular Point) Consider the ODE

y′′ + P (x)y′ +Q(x)y = 0. (2.1)

If P (x) and Q(x) remain finite at x = x0, then x0 is called an ordinary point. If either

P (x) or Q(x) diverges as x→ x0, then x0 is called a singular point. If either P (x) or Q(x)

diverges as x→ x0 but (x− x0)P (x) and (x− x0)2Q(x) remain finite, then x0 is a regular

singular point.

Theorem 1. (Frobenius’ Theorem) If an ODE has a regular singular point at x = x0

then, by Frobenius theorem, there exists at least one solution of the form

y =
∞∑
n=0

cn(x− x0)n+κ. (2.2)

Where κ is a constant to be determined. The series will converge on at least some interval

0 < x− x0 < R. (Zill and Cullen, 2000).

Bessel’s Equation

The Bessel equation is:

x2y′′ + xy′ + (x2 − α2)y = 0. (2.3)

The origin is a regular singular point of this equation so there is at least one solution of

the form y = xκ
∑∞

n=0 cnx
n. Inputting this into (2.3) we obtain

x2y′′ + xy′ + (x2 − α2)y =
∞∑
n=0

cn(n+ κ)(n+ κ− 1)xn+κ +
∞∑
n=0

cn(n+ κ)xn+κ

+
∞∑
n=0

cnx
n+κ+2 − α2

∞∑
n=0

cnx
n+κ = 0,

(2.4)

which simplifies to

c0(κ2 − α2) + c1((κ+ 1)2 − α2)x+
∞∑
n=2

[cn((n+ κ)2 − α2) + cn−2]xn = 0. (2.5)

We cannot have that c0 = 0 because that would lead to the trivial solution but the first

term must be zero, therefore κ satisfies κ2−α2 = 0. Therefore κ = ±α, so first considering

κ = α > 0, which gives

c1(2α+ 1)x+

∞∑
n=2

[cn((n+ α)2 − α2) + cn−2]xn = 0. (2.6)
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We must have that each coefficient of power of x is equal to zero, i.e.

c1(2α+ 1) = 0, (2.7a)

cn((n+ α)2 − α2) + cn−2 = 0, n = 2, 3, ... . (2.7b)

So from (2.7a) we infer c1 = 0 and cn = −cn−2

n(n+2α) , n = 2, 3, ... combining these two leads to

see that c3 = c5 = c7... = 0. Then we can choose n = 2k, k = 1, 2, 3, ... and deduce that

c2k =
−1

22k(k + α)
c2k−2. (2.8)

So this c2k can be written in terms of c0 (this can be seen by writing out c2, c4, c6, etc.)

c2k =
(−1)kα!

22kk!(k + α)!
c0. (2.9)

Let

c0 =
1

2αΓ(1 + α)
=

1

2αα!
,

to give:

c2k =
(−1)kα!

22kk!(k + α)!

1

2αα!
=

(−1)k

22k+αk!Γ(1 + k + α)
.

So one solution is

y =
∞∑
k=0

c2kx
2k+α =

∞∑
k=0

(−1)k

k!Γ(1 + k + α)

(x
2

)2k+α
=: Jα(x).

Similarly for the second root κ = −α gives the solution:

y =

∞∑
k=0

(−1)k

k!Γ(1 + k − α)

(x
2

)2k−α
=: J−α(x). (2.10)

Bessel Functions of the First Kind

Jα(x) and J−α(x) are called Bessel functions of the first kind. If α is not an integer, these

functions are linearly independent, so are distinct solutions of Bessel’s equation and the

general solution would be

y = c1Jα(x) + c2J−α(x).

However if α ∈ Z then Jα(x) = (−1)αJ−α(x) so they are not linearly independent.

Bessel Functions of the Second Kind

If α /∈ Z then we can define:

Yα(x) =
cos(απ)Jα(x)− J−α(x)

sin(απ)
. (2.11)

This allows us to define solutions that have singularities at zero.
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2.2.2 Spaces and norms

We introduce the spaces and norms that will be used in formulating the approximation of

the model problem. For 1 ≤ p <∞, we define the Banach space for Ωt ⊂ R3

Lp(Ωt) =

{
v(x, t) a measurable function:

∫
Ωt

|v(x, t)|pdΩt <∞ for x ∈ Ωt, t ∈ I
}
,

and its norm ||v(x, t)||Lp(Ωt) =
(∫

Ωt
|v(x, t)|pdΩt

) 1
p
. We also define the Hilbert space

H1(Ωt) =
{
v(x, t) ∈ L2(Ωt), D

αv ∈ L2(Ωt), |α| ≤ 1 for x ∈ Ωt, t ∈ I
}
,

where α = (α1, α2, α3), |α| = α1 +α2 +α3 and Dα represents the distributional derivative

at every time t ∈ I

Dαv =
∂|α|v

∂α1x∂α2y∂α3z
.

2.3 Mathematical modelling framework

In order to illustrate with clarity the novelty of our approach, we will introduce the stan-

dard theoretical framework for reaction-diffusion systems in multi-dimensions (Murray,

2003). First we will outline how a reaction-diffusion equation can be derived.

2.3.1 Derivation of a reaction-diffusion equation

Let Ω ⊂ Rn (n = 1, 2, 3) be a simply connected bounded stationary domain for all time

and ∂Ω be the boundary enclosing Ω. Also let a (x, t) and m (x, t) be two chemical

concentrations at position x ∈ Ω ⊂ Rn and times t ∈ I. To define the equation we

consider the flux J(x(t), t) ∈ C1(Ω). This is the amount of a which passes the across

boundary. The conservation equation tells us that the rate of change of the total amount

of a material in a volume is equal to the flux through (normal to) the boundary plus the

net formation of the material within the domain. Hence we can write the conservation of

material as follows

∂

∂t

∫
Ω
a dΩ = −

∫
∂Ω

J · n dS +

∫
Ω
f(a,m) dΩ, (2.12)

where n is the unit normal to the boundary ∂Ω and f(a,m) is the net formation of a due

to the chemical concentrations, a and m. Using the divergence theorem on the boundary

integral leads to
∂

∂t

∫
Ω
a dΩ =

∫
Ω

(−∇ · J + f(a,m)) dΩ. (2.13)
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Next, we assume classical diffusion, i.e. that a substance moves from high to low concen-

tration at a magnitude proportional to the concentration gradient. Thus we use Fick’s law

of mass diffusion, which states that J = −Da∇a, where Da is a positive constant diffusion

coefficient and ∆ denotes the usual Cartesian Laplace operator. Hence:∫
Ω

(∂a
∂t
−Da∆a− f(a,m)

)
dΩ = 0. (2.14)

Since this holds for any arbitrary domain and the integrand is continuous we have:

∂a

∂t
−Da∆a = f(a,m) for x ∈ Ω, t ∈ I. (2.15)

The same argument can be made for m(x, t) with corresponding diffusion coefficient Dm

and reaction term g(a,m). In fact, we can generalise to many species as was described in

Equation (1.1), in Section 1.4.2.

2.3.2 Theoretical framework

We consider the standard two component dimensional system


at = Da∆a+ f(a,m),

mt = Dm∆m+ g(a,m),

x ∈ Ω, t > 0,

n · ∇a = n · ∇m = 0, x ∈ ∂Ω, t ≥ 0,

a(x, 0) = a0(x), and m(x, 0) = m0(x), x ∈ Ω, t = 0,

(2.16)

where Da > 0 and Dm > 0 are diffusion coefficients and initial conditions are prescribed

through non-negative bounded functions a0(x) and m0(x). In the above, f(a,m) and

g(a,m) represent nonlinear reactions. We have zero flux boundary conditions (homoge-

neous Neumann) because we want only internal sources of instability, i.e. self-organisation

of the system. However, our same procedure may be adapted to use Dirichlet or mixed

conditions.

In the case where the domain is a surface, the Laplace operator is replaced by the

Laplace-Beltrami operator ∆Γ, where Γ is the (smooth) surface. Surface gradients are

also employed. This can be described as follows (for further details we refer the interested

reader to see Dziuk and Elliott (2013)). If f : Γ → R is differentiable at x ∈ Γ we can

define the tangential gradient of f at x ∈ Γ by

∇Γf = ∇f̄ −∇f̄ · nn. (2.17)

Here f̄ is a smooth extension of f : Γ→ R to an (n+ 1)-dimensional neighbourhood U of

the surface Γ, so that f̄ |Γ = f . ∇ is the gradient in Rn+1 and n is the unit normal. The
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Laplace-Beltrami operator applied to a twice differentiable function f ∈ C2(Γ) is given by

∆Γf = ∇Γ · ∇Γf. (2.18)

It must be observed that if the surface does not have a boundary, no boundary conditions

are needed. If the surface has a boundary, we assume homogeneous Neumann boundary

conditions.

Since the reaction terms are nonlinear, analytical solutions cannot normally be ob-

tained. Therefore we investigate solution behaviour using linear stability theory and nu-

merical methods. Linear stability analysis is one way of determining the behaviour of

a nonlinear system near a given stationary point, normally a uniform steady state, of

the given system. The idea is to find under what conditions on the nonlinear reaction

kinetics is the uniform steady state linearly asymptotically stable in the absence of diffu-

sion. When diffusion is introduced, the uniform steady state is driven unstable in what

is now known as the process of diffusion-driven instability with the system converging to

a spatially inhomogeneous steady state, thereby giving rise to patterning (Murray, 2003;

Turing, 1952). The mathematical treatment of the derivation of the necessary conditions

for diffusion-driven instability requires solving the well known eigenvalue problem, with

W a solution of

∆W + k2W = 0, x ∈ Ω, (2.19a)

(n · ∇)W = 0, x ∈ ∂Ω, (2.19b)

where the solution pairs (k (eigenvalues), Wk(x) (eigenfunctions) are obtained either an-

alytically on certain spatial domains or numerically for the general case) of this equation

can be compared to the spatially inhomogeneous steady state solutions of (2.16), with

good agreement expected near primary bifurcation points.

This approach is generally called mode isolation. The most famous exploration of this

problem is the celebrated article ”Can one hear the shape of the drum?” by Mark Kac

(1966). The posed question is, if one knows all the eigenvalues of the eigenvalue problem

is it possible to determine the domain? It was later proven by Gordon et al. (1992) that

the answer is no and they gave examples of distinct regions with identical eigenvalues.

Other work concerned with mode isolation and linear stability theory for reaction-

diffusion systems can be found in Chaplain et al. (2001) and Madzvamuse (2000), here the

validation has been mainly restricted to special domains and volumes where the eigenvalue

problem can be solved analytically. In this chapter we will depart from this framework,

instead we will compute approximations of the eigenpairs on arbitrary, simply connected
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domains, volumes and surfaces. We then use these eigenvalues to calculate, by use of the

Turing-parameter space restrictions, appropriate model parameter values. This approach

can be thought to be analogous to an inverse parameter identification approach whereby,

given the eigenvalues and eigenfunctions solving the eigenvalue problem (2.19), find model

parameter values that would give rise to an inhomogeneous spatially varying solution

similar to that exhibited by the eigenfunction. To confirm numerical predictions, we

use the computed model parameter values to solve the full nonlinear reaction-diffusion

systems and compare approximated eigenfunctions on these arbitrary domains, volumes

and surfaces to the spatially inhomogeneous solutions obtained numerically.

To proceed, next we show the two-component form which we will work with and derive

the conditions for diffusion-driven instability. These will help us to isolate particular

modes.

2.4 Conditions for diffusion-driven instability for reaction-

diffusion systems

All two component reaction-diffusion systems of the form (2.16) can be non-dimensionalised

and scaled to take the form

at = γf(a,m) + ∆a, mt = γg(a,m) + d∆m, x ∈ Ω ⊂ Rn, t ∈ [0,∞], (2.20a)

(n · ∇)

 a

m

 = 0 x ∈ ∂Ω t ∈ [0,∞], (2.20b)

a(x, 0), m(x, 0) given, (2.20c)

where a = a(x, t),m = m(x, t), d is the ratio of diffusion coefficients, f(a,m) and g(a,m)

describe the non-dimensionalised reaction kinetics. For simplicity, we assume that f and g

are continuously differentiable, γ can be described as the relative strength of the reaction

terms or alternatively as proportional to the domain size. A uniform steady state (as,ms)

is a fixed point where (a,m) = (as,ms), constant in time and space, satisfies (2.20). We

can find the steady state by solving f(as,ms) = g(as,ms) = 0.

The conditions for instability due to diffusion are well known and we recall the method

here (Murray, 2003). Linear stability begins by considering a small spatial perturbation

from the steady state (as,ms). We will then examine the behaviour as t→∞. We define

the perturbation as

εâ(x, t) = a(x, t)− as, εm̂(x, t) = m(x, t)−ms, |ε| << 1. (2.21)
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2.4.1 Stability without diffusion

The first objective is finding the conditions for stability without diffusion. Inputting

(2.21) into the system at = γf(a,m), mt = γg(a,m) and discarding higher order terms,

we obtain

εât = γ(εâfa(as,ms) + εm̂fm(as,ms)), (2.22a)

εm̂t = γ(εâga(as,ms) + εm̂gm(as,ms)). (2.22b)

εs cancel and the system can be written in matrix-vector form

wt = γAw, (2.23)

where

w =

 â

m̂

 and A =

fa fm

ga gm


as,ms

(this is the stability matrix). (2.24)

Let λ be an eigenvalue of A, then solutions are of the form w = beλt, where b is a constant

vector. If Re(λ) < 0 then w → 0 as t → ∞. In other words, since w is a perturbation

from the steady state, Re(λ) < 0 means that the steady state is linearly stable. Thus, to

proceed, we find the eigenvalues of A as follows

|A− λI| =

∣∣∣∣∣∣fa − λ fm

ga gm − λ

∣∣∣∣∣∣ = 0 (2.25a)

=⇒ λ1, λ2 =
1

2

{
fa + gm ±

√
(fa + gm)2 − 4(fagm − fmga)

}
, (2.25b)

where fa, fm, ga and gm are evaluated at (as,ms). We consider the first eigenvalue

λ1 =
1

2

{
fa + gm −

√
(fa + gm)2 − 4(fagm − fmga)

}
, (2.26)

and see that, for Re(λ1) < 0, it is a sufficient condition that fa + gm < 0. We also want

Re(λ2) < 0 so we also need

fa + gm +
√

(fa + gm)2 − 4(fagm − fmga) < 0

⇐⇒ fagm − fmga > 0.

Therefore, in the absence of diffusion, the steady state (as,ms) is linearly stable if and

only if the partial derivatives of f and g at (as,ms) satisfy

fa + gm < 0 and fagm − fmga > 0. (2.28)
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2.4.2 Instability due to diffusion

Now considering the full system (2.20) with perturbation (2.21) we obtain

wt = γAw + D∇2w, where D =

1 0

0 d

 . (2.29)

To solve this, we let W(x) be a time-independent solution of

∇2W + k2W = 0 x ∈ Ω,

(n · ∇)W = 0 x ∈ ∂Ω.

Wk(x) is the eigenfunction corresponding to k satisfying boundary conditions. We look

for solutions of (2.29) of the form:

w(x, t) =
∑
k

cke
λtWk(x). (2.31)

The coefficients ck are determined by Fourier expansion when t = 0. For each k, substi-

tuting w(x, t) = cke
λtWk(x) and its derivatives into (2.29) gives

λeλtWk(x) = γAeλtWk(x)−Dk2eλtWk(x)

=⇒ λWk = γAWk −Dk2Wk.

This is true if Wk = 0 (which is trivial) or |λI− γA + Dk2| = 0, i.e.∣∣∣∣∣∣λ
1 0

0 1

− γ
fa fm

ga gm

+

1 0

0 d

 k2

∣∣∣∣∣∣ = 0, (2.33)

which becomes the dispersal relation

λ2 + b(k2)λ+ c(k2) = 0,

where


b(k2) = k2(1 + d)− γ(fa + gm),

c(k2) = dk4 − γ(dfa + gm)k2 + γ2(fagm − fmga).

(2.34)

For instability we need the real part of at least one root of this polynomial to be positive.

We know that b(k2) > 0 because in the previous section we imposed that fa+gm < 0, and

k2, d > 0. Therefore Re(λ1) = 1
2{−b(k

2)−
√

(b(k2))2 − 4c(k2)} < 0. Then considering the

second root

Re(λ2) =
1

2
{−b(k2) +

√
(b(k2))2 − 4c(k2)} > 0

=⇒ c(k2) = dk4 − γ(dfa + gm)k2 + γ2(fagm − fmga) < 0.
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Since dk4 and γ2(fagm − fmga) are positive we need (dfa + gm) > 0. This is a necessary

but not sufficient condition. We now must consider if

c(k2) = d(k2)2 − γ(dfa + gm)k2 + γ2(fagm − fmga) < 0, (2.36)

to ensure Re(λ2) > 0. We differentiate twice to find the value of k2 at the turning point

and determine if it is a minimum

∂c

∂(k2)
= 2d(k2)− γ(dfa + gm) = 0 =⇒ k2 =

γ(dfa + gm)

2d
is a turning point, (2.37a)

∂2c

∂(k2)2
= 2d > 0 =⇒ it is a minimum. (2.37b)

The minimum of c(k2) is the value at this turning point

c(k2)min = c

(
λ(dfa + gm)

2d

)
= γ2

[
1

4d
(dfa + gm)2 − 1

2d
(dfa + gm)2 + fagm − fmga

]
= γ2

[
− 1

4d
(dfa + gm)2 + |A|

]
.

(2.38)

For cmin to be negative for some k 6= 0 we require

(dfa + gm)2

4d
> |A|

⇐⇒ (dfa + gm)2 − 4d(fagm − fmga) > 0.

(2.39)

This is the final condition for instability with diffusion.

Qualitative solutions of the dispersal relation change at cmin = 0, or

(dfa + gm)2 = 4d(fagm − fmga).

So we can define a critical diffusion coefficient ratio dc as the root of

d2
cf

2
a + 2(2fmga − fagm)dc + g2

m = 0, (2.40)

and define a critical wave number

k2
c = γ

dcfa + gm
2dc

= γ

√
fagm − fmga

dc
.

The roots of c(k2) = 0 (2.34) give the range of k2 that mean instability for certain d.

These roots are

k2
± = γ

(dfa + gm)±
√

(dfa + gm)2 − 4d(fagm − fmga)
2d

. (2.41)

Therefore we conclude that instability will occur if

dfa + gm > 0, (dfa + gm)2 − 4d(fagm − fmga) > 0 (2.42)
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and k2 lies in the range k2
− < k2 < k2

+ from equation (2.41).

We exploit this range to isolate particular patterns/modes. The unstable modes will

correspond to the eigenfunctions of the Laplacian (or Laplace-Beltrami) on the chosen

domain or surface with the selected boundary conditions and k2 the associated eigenvalues.

The effect of varying d and γ on (2.34) is shown in Figure 2.1 on page 41.

In summary the necessary conditions for diffusion-driven instability are

fa + gm < 0, fagm − fmga > 0, (2.43a)

dfa + gm > 0, (dfa + gm)2 − 4d(fagm − fmga) > 0. (2.43b)

Additionally, the sufficient conditions for patterning formation are that one must be able to

isolate distinct real wave numbers and that the domain must be large enough (Madzvamuse

et al., 2010, 2015; Murray, 2003).

2.4.3 Examples of reaction kinetics

For illustrative purposes, we consider three classical reaction kinetics as summarised below.

The work presented in this chapter holds true for other similar reaction kinetics capable

of generating Turing patterns. In later chapters we will introduce similar equations for

proteins in a cell.

Schnakenberg or activator-depleted substrate kinetics

The Schnakenberg kinetics (Schnakenberg, 1979) are a condensed version of the well doc-

umented Brusselator model describing a series of autocatalytic reactions also known as

activator-depleted models (Gierer and Meinhardt, 1972; Prigogine and Lefever, 1968), and

these are characterised by

A
 X B +X → Y +D 2X + Y → 3X. (2.44)

If a and m are the concentrations of X and Y respectively, using the law of mass action

and the non-dimensionalisation of f and g, within system (2.20), we obtain that

f(a,m) = c− a+ a2m and g(a,m) = b− a2m, (2.45)

where c and b are positive parameters.

Gierer-Meinhart kinetics

One of the models proposed by Gierer and Meinhardt (1972) describes a system whereby

an ”activator” activates the production of an ”inhibitor” which inhibits the production of



38

the activator. Again the non-dimensionalised form can be obtained

f(a,m) = c− ba+
a2

m(1 + ka2)
, and g(a,m) = a2 −m, (2.46)

where c and b are positive parameters (representing constant production rate and linear

degradation respectively) and k can be thought of as the saturation concentration of a.

Thomas kinetics

The Thomas model (Thomas and Kernevez, 1976) is an immobilised-enzyme substrate-

inhibition mechanism which can be written in non-dimensional form as

f(a,m) = c− a− ρam

1 + a+Ka2
, g(a,m) = αb− αm− ρam

1 + a+Ka2
, (2.47)

where c, ρ, K, α, β are all non-negative parameters. This can be interpreted as in Murray

(1982) by saying that a and m: (i) are generated by constant production a and αb respec-

tively, (ii) decay linearly proportional to a and αm respectively and (iii) are used up in a

substrate inhibition manner ρav
1+a+Ka2 .

We have presented forms that reaction-diffusion equations can take, and the conditions

for patterns to occur. These patterns are called modes and relate to the wavenumber k2.

This means we are now in a position to ask how we can identify parameters in order for a

particular pattern to appear (or, in other words, which parameters cause particular modes

to be isolated)?

2.5 Parameter identification through mode isolation for reaction-

diffusion systems on 3-D geometries

To-date mode selection and parameter identification for reaction-diffusion systems have

been mainly carried out on regular planar domains and surfaces where the eigenvalue prob-

lem can be analytically solved to yield analytical forms of the wave numbers as well as

their corresponding eigenfunctions (Madzvamuse, 2000; Madzvamuse et al., 2003; George,

2012). Here, we will depart from this framework and extend computationally mode se-

lection and parameter identification to include arbitrary domains and stationary surfaces.

First, we will solve the eigenvalue problem numerically using finite elements on planar

domains or surface finite elements on smooth surfaces, respectively, to obtain the eigen-

modes and their corresponding eigenfunctions. Here, we employ the Krylov-Schur algo-

rithm (Stewart, 2002) for solving the resulting algebraic system arising from the finite
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element discretisation. Second, we then pick an eigenmode to which we apply the nec-

essary and sufficient conditions for Turing diffusion-driven instability in order to isolate

reaction-kinetic model parameter values within a reaction-diffusion system. This process

can be loosely thought of as an inverse problem for model parameter identification. Once

the parameter values are isolated, the full reaction-diffusion system is then solved with

these isolated parameter values to obtain an inhomogeneous spatially varying solution

which is then compared to the numerically computed eigenfunction on the domain or sur-

face. Alternatively, one could pose the following problem to which this methodology will

provide insightful information which is otherwise out of reach with the current methodol-

ogy: Given a biological pattern on a domain or surface and a plausible reaction-diffusion

system, what are the model parameter values within this reaction-diffusion system that will

give rise to the observed pattern? This chapter provides a theoretical and computational

framework to answer such a question. A recent article by Dhillon et al. (2017) uses a

similar approach to model pattern development and presents a multiresolution algorithm

for tracing bifurcation branches.

It must be observed that the eigenvalue problem and the reaction-diffusion system are

both solved by a similar numerical method, the finite element method in multi-dimensions

(Johnson, 1987). The finite element method is well known for its capability to deal with

complex irregular geometries (Barreira et al., 2011; Elliott et al., 2012; Venkataraman et al.,

2011). Alternative numerical methods such as finite differences (Beckett and Mackenzie,

2001), spectral methods (Chaplain et al., 2001; Ruuth, 1995) and finite volume methods

among others could be used but with considerable efforts in dealing with geometrical

complexities. The finite element method is discussed more extensively in Appendix A.

As mentioned above one interpretation of our approach is that it provides a means of

estimating parameter values such that the pattern predicted by linear stability analysis is

close to a desired pattern. It must be noted that in many cases the steady state pattern may

not be an eigenfunction (or a linear combination of the eigenfunctions) of the Laplacian on

the given domain. This is since the nonlinear terms play a role in the resultant steady state

pattern (Murray, 2003). In such a setting our approach may provide parameters which

serve as a suitable initial guess for a more advanced parameter identification algorithm

(Croft et al., 2014; Garvie et al., 2010).

The goal of mode isolation is to choose parameters, in our case (d, γ), so that a trajec-

tory starting from a small random perturbation from the steady state will evolve into a

spatial pattern generated by one that corresponds, or at least is close to, a chosen eigen-
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function of the Laplacian on that domain. Wavenumber isolation of reaction-diffusion

systems is described in one dimension, squares and triangles in Madzvamuse (2000). In

George (2012) wavenumbers of a visco-elastic model are isolated on the unit disk. We use

similar ideas in the present work. The basic steps are as follows.

1. Determine a subset of eigenpairs of the Laplacian with suitable boundary conditions

on the domain. For special domains this can be done analytically but in general

must be done numerically.

2. Compute the dispersal relation (2.34) for the chosen reaction kinetics (this is inde-

pendent of the geometry) and the range of admissible wave numbers as a function

of d and γ.

3. Compute d∗ and γ∗ such that only one of the eigenvalues (wave numbers) computed

in step 1 is in the range.

4. In order to compare with the patterned state, solve the reaction-diffusion system

numerically with computed parameter values and compare with the numerically

computed eigenfunctions.

It is possible to implement the above procedure simply because if a domain is bounded

and the boundary is sufficiently regular, the Neumann Laplacian has a discrete spectrum

of infinitely many non-negative eigenvalues with no finite accumulation point

0 < λ1 ≤ λ2 ≤ · · · , λn →∞, (2.48)

and this is due to the spectral theorem for compact self-adjoint operators (Benguria, 2015;

Kreyszig, 1978; Taylor, 1996).

The aim is to have an algorithm to find the parameter values d and γ for a given

eigenpair (k2,W ) such that only patterns analogous to W will grow. For this, one needs

that the corresponding k is in the range defined in (2.41)

γL = k2
− < k2 < k2

+ = γR, (2.49)

where

L =
(dfa + gm)−

√
(dfa + gm)2 − 4d(fagm − fmga)

2d
, (2.50a)

R =
(dfa + gm) +

√
(dfa + gm)2 − 4d(fagm − fmga)

2d
, (2.50b)

and that no other k is in this range. In other words, the sign of the polynomial c(k2) for
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(a) γ = 15 (b) d = 10

Figure 2.1: Here the c(k2) is plotted (for Schnakenberg kinetics). For a fixed value of γ,

when d is below the critical value dc, c(k
2) has no roots so no modes can be isolated. As d

increases as does the difference between the two roots so there is more chance the value of

k we seek will be between k2
− and k2

+. Similarly, for a fixed value of d, increasing γ causes

both k2
− and k2

+ to increase.

a given k determines if the mode will grow. Figure 2.1 illustrates how the graph of c(k2)

changes as d and γ are varied. On page 36, we defined the critical diffusion ratio dc as the

root of

d2
cf

2
a + 2(2fmga − fagm)dc + g2

m = 0, (2.51)

c(k2) in the case when d = dc is illustated in Figure 2.1(a).

We find (k2,W ) either analytically or numerically. Then we propose the following

algorithm described in pseudo-code:

Input: d = dc + ε, ε ≈ dc/5, γ > 0, f, g and the kl,n that we wish to be uniquely isolated.

1. Compute k2
− and k2

+ from (2.49).

2. If k2
l,n < k2

− increase γ by 1 (this number is arbitrary but should be small). This

moves the curve to higher values of k.

3. If k2
l,n < k2

+ decrease γ by 1. This moves the curve to lower values of k.

4. If there exists another k∗l,n 6= kl,n such that k2
− < k∗2l,n < k2

+ then decrease ε by dc/100.

This shifts the curve upwards so the difference between k2
− and k2

+ is smaller.

5. If kl,n is uniquely isolated END. If not go to 3.

Output: The appropriate d, γ.

Note that we cannot have d < dc (because then c(k2) would have no roots so the conditions

on page 36 are not met), nor γ < 0 (because k2 > 0).
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2.6 Numerical methods

In order to validate that our mode isolation algorithm does indeed isolate the desired un-

stable mode, we will simulate the reaction-diffusion systems under consideration with the

computed parameter values. To do this we employ a finite element method for the space

discretisation and an implicit-explicit time-stepping scheme for the temporal approxima-

tion (Lakkis et al., 2013; Madzvamuse, 2006; Ruuth, 1995). We implement using the C++

software library deal.II (Bangerth et al., 2016). For an introduction and more information

regarding the finite element method, see Section 1.6 and Appendix A, in particular the

implementation used in this chapter is described in Section A.1.

2.6.1 Mesh generation

All the mesh generation is carried out using the deal.II library. We use hexahedral meshes

for the volumes and quadrilaterals for the surfaces. In Figure 2.2 we exhibit different

meshes generated by this package on which we will carry out computations. We also

consider smooth surfaces; these meshes are generated by creating a triangulation Ωh of

the bulk of the domain Ω then the surface triangulation is defined by collecting the faces

of the elements of the bulk triangulation that lie on the surface (Γh = Ωh|dΩ), i.e., the

surface mesh is the trace of the volume mesh (in the example of the cylinder with open

ends we use only the elements on the curved surface). For this reason the equations are

not being approximated on the actual surface but on an approximation of it. For more

details on surface mesh generation the reader is referred to Bangerth et al. (2016) and the

references therein.

2.6.2 Numerical computations

We take the parameter values as shown in Table 2.1. The uniform states for Schnakenberg

kinetics were obtained analytically while for the Gierer-Meinhardt and Thomas reaction

kinetics these were calculated computationally using the Newton-Raphson method (Ar-

fken et al., 2013; Madzvamuse, 2000). For the initial data we use small quasi-random

perturbations around the uniform steady state values. The linear system (A.7) is solved

using the conjugate gradient method (Bangerth et al., 2016; Golub and Van Loan, 1993;

Hestenes and Stiefel, 1952).
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(a) Unit sphere (b) Unit sphere cut to

show inside

(c) Surface of sphere

(d) Dumbbell mesh (e) Inside dumbbell mesh

(f) ”fish” mesh (g) ”eel” meshes (with and without

boundary)

Figure 2.2: Examples of mesh generation for different volumes and surfaces: (a-c) Mesh

generation on the unit sphere. (d-e) The dumbbell is a deformation of the bulk of a sphere.

(f) The ”fish” shape is a deformation of the surface of a sphere. (g) An ”eel” is modelled

by a cylinder with an open boundary and additionally as the same cylinder with added

rounded boundaries.
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Model a b k K α ρ as ms

Schnakenberg 0.9 0.1 1 0.9

Gierer-Meinhart 0.1 1 0.5 0.8395 0.7047

Thomas 150 100 0.05 1.5 13 37.74 25.16

Table 2.1: Parameters for reaction kinetic models and the corresponding uniform steady

states.

Domain Type Degrees of freedom No. of cells h

Sphere Volume 3817 3584 0.0915064

Dumbbell Volume 29521 28672 0.0280245

Sphere surface Surface area 6146 6144 0.0630101

”fish” Surface 6146 6144 0.00940557

”eel open” Surface 2112 2048 0.0540314

”eel closed” Surface 4610 4608 0.00631303

Table 2.2: Discretisation parameters. Time-step fixed as 10−3.

2.6.3 Convergence

Figure 2.3 plots the L2 norm of the discrete time-derivative of U and V against the elapsed

time. To begin with the difference is large. This quickly decays due to diffusion then

there is a rapid growth, because of the exponentially growing modes. The time-derivative

eventually starts to decay due to the effects of the nonlinear terms that act to bind the

exponentially growing solution thereby giving rise to a spatially inhomogeneous steady

state.

2.7 Isolating modes on general domains

On arbitrary domains, analytical solutions for the eigenvalue problem are not typically

available but approximate eigenpairs can be computed numerically. Numerically approx-

imating these pairs is a significant challenge. In general, as we are typically interested

in a small number of eigenpairs, it is not necessary to find all solution pairs, however

for our approach to mode isolation to remain applicable, it is important that we obtain

consecutive pairs.
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Figure 2.3: Plot of the L2 norm of the discrete time-derivative over time for a typical

example. There is an initial decay due to diffusion followed by a growth because of the

exponentially growing modes which eventually decays, due to the dominant nonlinear

terms.

As previously stated, the eigenvalue problem we wish to solve is as follows,
∆W + k2W = 0, x ∈ Ω,

(n · ∇)W = 0, x ∈ ∂Ω.

(2.52)

To approximate the solution we employ the finite element method for the spatial discreti-

sation outlined in Section A.1. We work with the weak formulation of the eigenvalue

problem and look for an approximate eigenpairs (Wh, k
2
h) ∈ Vh × R+ (where Vh contains

all continuous piecewise linear functions on a given mesh) such that∫
Ω
∇Wh · ∇φ = k2

∫
Ω
Wh · φ, ∀φ ∈ Vh. (2.53)

As in (A.4) this may be written in matrix-vector form, we want to find (w, k2
h) ∈ Rm×R+,

where m is the dimension of Vh such that

Aw = k2Mw, (2.54)

where A and M are stiffness and mass matrices defined in the same way as in equation

(A.5). This is a generalised eigenvalue problem. We utilise the same finite element software

library as we use for numerical simulations, namely, deal.II (Bangerth et al., 2016), in this

case for its approximation using SLEPc and the Krylov-Schur algorithm.



46

2.8 Comparisons of eigenfunctions and spatially inhomoge-

neous steady states

2.8.1 Example 1: Sphere

We start by considering the unit sphere, a domain for which the eigenvalue problem can

be solved analytically. We will refer back here later in the thesis because we assume the

starting shape to be a sphere in our 3D simulations of a cell moving.

Eigenvalues and eigenfunctions on a sphere

The wavenumbers on the sphere are found by solving the eigenvalue problem. The solutions

of this are well known and are obtained using separation of variables (Arfken et al., 2013;

Morimoto, 1998). First, it is necessary to convert into spherical coordinates with

x = r sin θ cosφ, y = sin θ sinφ, z = r cos θ. (2.55)

Substituting these into ∆w + k2w = 0 leads to

1

r2

∂

∂r

(
r2∂w

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂w

∂θ

)
+

1

r2 sin2 θ

∂2w

∂φ2
+ k2w = 0. (2.56)

Similarly to Arfken et al. (2013), we assume there are solutions of the form w(r, θ, φ) =

R(r)Y (θ, φ). Multiplying through by r2

RY , we can separate into two equations:

1

R

∂

∂r

(
r2∂R

∂r

)
+ k2r2 = c,

1

Y

1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

Y

1

sin2 θ

∂2Y

∂φ2
= −c, (2.57)

where c is a constant. It happens that c = l(l+1). Multiplying the first equation of (2.57)

by R we obtain

r2∂
2R

∂r2
+ 2r

∂R

∂r
+ [k2r2 − l(l + 1)]R = 0. (2.58)

Since we are now only working on the radius of the circle (so in one dimension), we can

let x = kr and look for solutions of the form R(r) = X(x)x−
1
2 , so we now have

x2∂
2X

∂x2
+ x

∂X

∂x
+ [x2 − (l +

1

2
)2]X = 0. (2.59)

This is a Bessel differential equation, whose solutions we defined these in Section 2.2.1.

The normalised general solution is

R(r) = A
Jl+ 1

2
(kr)

√
kr

+B
Yl+ 1

2
(kr)

√
kr

. (2.60)

We require the solution to be continuous and therefore not unbounded as r → 0, this

means B = 0. Next we must satisfy the Neumann boundary conditions (∂w∂r = 0 when
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r = 1). To do this we define j′
l+ 1

2
,n

as the zeros of J ′
l+ 1

2

(kr). Therefore the eigenvalues

and eigenfunctions are

λl,n = k2
l,n = (j′

l+ 1
2
,n

)2, fl,n(r) = Jl+ 1
2
(j′
l+ 1

2
,n
r), l = 0, 1, 2, ..., n = 1, 2, 3, ... . (2.61)

Now considering the second equation of (2.57), we separate variables again by assuming

Y (θ, φ) = Θ(θ)Φ(φ), to obtain the two equations:

1

Φ

∂2Φ

∂φ2
= −m2, l(l + 1) sin2(θ) +

sin θ

Θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
= m2. (2.62)

The first gives the general solution Θ(θ) = Beimφ + Ce−imφ. In the second, we can use

the substitution

x = cos θ =⇒ sin2 θ = 1− x2 & ∂θ = − ∂x

sin θ
, (2.63)

so the equation assumes the form of the Associated Legendre Differential Equation:

∂

∂x

[
(1− x2)

∂Θ

∂x

]
+

[
l(l + 1)− m2

1− x2

]
Θ = 0, (2.64)

which, for a given integer l ≥ 0, and each integer m such that −l ≤ m ≤ l, has the

solutions

Θ = Pml (x) = (−1)m(1− x2)
m
2
∂m

∂xm
(Pl(x)), (2.65)

where Pl(x) is the Legendre polynomial which can be defined by Pl(x) = 1
2ll!

∂l

∂xl
(x2 − 1)l.

(Note: It is sufficient to say l ≥ 0 because if l < 0, l(l + 1) = ((−1− l′)((−1− l′) + 1) =

l′(l′ + 1) for some l′ ≥ 0.)

Therefore, for the full system we have:

wml,n(r, θ, φ) = Aml,nJl+ 1
2
(j′
l+ 1

2
,n
r)eimφPml (cos θ), (2.66)

where Aml,n is a constant.

Thus, there are an infinite number of solutions of this form with corresponding wavenum-

bers k2
l,n = (j′

l+ 1
2
,n

)2. We can find the eigenvalues k2
l,n = (j′

l+ 1
2
,n

)2 numerically (using the

fact that J ′
l+ 1

2
,n

= l
kJl+ 1

2
(k) − Jl+ 3

2
(k)). The first 21 of these are shown in Table 2.3.

It follows that for each eigenvalue λl,n = k2
l,n there are 2l + 1 possible eigenfunctions.

Figure 2.4 shows the eigenfunctions for some selected values of l, m and n. For example

k1,1 = 2.08158 is the first zero of J 3
2
(x) and corresponds to the eigenfunctions

wm1,1(r, θ, φ) = J 3
2
(k1,1r)e

imφPm1 (cos θ), with m = −1, 0, 1. (2.67)

The spherical Bessel function is given by J 3
2
(k1,1r) =

sin(k1,1r)
(k1,1r)2 − cos(k1,1r)

k1,1r
. Meanwhile

Y m
1 = eimφPm1 (cos θ) are spherical harmonics whose real parts can be written in Cartesian
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Figure 2.4: Analytical solutions to the eigenvalue problem on the unit sphere i.e. (2.66) for

selected values of l,m, n. For l ≥ 1 there are multiple eigenfunctions for each eigenvalue.

n k2
0,n k2

1,n k2
2,n k2

3,n k2
4,n k2

5,n

1 4.4934 2.0816 3.3421 4.5141 5.6467 6.7565

2 7.7253 5.9404 7.2899 8.5838 9.8404 11.0702

3 10.9041 9.2058 10.6139 11.9727 13.2956 14.5906

4 14.0662 12.4044 13.8461

Table 2.3: Zeros of the first derivatives of the spherical Bessel functions. These are our

wavenumbers k2
l,n.
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coordinates as Y −1
1 =

√
3

4π ·
y
r , Y 0

1 =
√

3
4π ·

z
r and Y 1

1 =
√

3
4π ·

x
r (Hobson, 1931). Since the

system we are solving is not sensitive to polarity we can consider these to be equivalent.

Figure 2.4 contains a plot of the eigenfunction

w1
1,1 = (

sin(k1,1r)

(k1,1r)2
− cos(k1,1r)

k1,1r
) · x
r
, (2.68)

corresponding to k2
1,1, where as usual r2 = x2+y2+z2. The second example, k2,1 = 3.34209

corresponds to the eigenfunctions

wm2,1(r, θ, φ) = J 5
2
(k2,1r)e

imφPm2 (cos θ), with − l ≤ m ≤ l. (2.69)

Choosing m = 0, converting the above to Cartesian coordinates and taking the real part

gives

w0
2,1(x, y, z) =((

3

k2
2,1r

2
− 1

)
sin(k2,1r)

k2,1r
− 3 cos(k2,1r)

k2
2,1r

2

)(
1

4

√
5

π
· −x

2 − y2 + 2z2

r2

)
.

The plot of the function w0
2,1 is shown in the middle of the second row of Figure 2.4.

Mode isolation on the sphere

Using the method described in Section 2.5 with all other parameters fixed as in Table

2.1 we can isolate the wavenumbers for the reaction-diffusion system with Schnakenberg

kinetics and these are shown in Table 2.4. Similarly, for Thomas and Gierer-Meinhart

(Table 2.5). In all these cases the interval [k−, k+] is centred on kl,n.

d γ k− k+ Wavenumbers excited

10 15 1.7321 2.7386 k1,1 = 2.08158

10 40 2.8284 4.4721 k2,1 = 3.34209

9 60 3.9319 5.0866 k0,2 = 4.49341, k3,1 = 4.51410

8.81 85 4.8575 5.8955 k4,1 = 5.64670

Table 2.4: Given a particular d and γ we obtain values for k− and k+ meaning that the

shown wavenumbers are isolated on the sphere, for the system with Schnakenberg kinetics.

Simulations of the reaction-diffusion systems on the unit sphere

Solving using deal.II we use the mesh shown in Figure 2.2(a). The time-step is taken to

be τ = 10−3. We take the initial conditions to be a small random perturbation from the
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(a) γ = 15, d=10 (b) γ = 40, d=10

(c) γ = 70, d=9 (d) γ = 85, d=8.81

Figure 2.5: Converged solutions of system (2.20) with Schnakenberg kinetics (2.45). These

solutions represent the species u. The isolated modes are w1
1,1, w0

2,1, w0
3,1 and w−3

4,1.

(a) GM, γ = 80, d=74 (b) Thomas, γ = 40, d=30

(c) GM, γ = 160, d=74 (d) Thomas, γ = 70, d=28

(e) GM, γ = 200, d=72 (f) Thomas, γ = 90, d=27.5

Figure 2.6: Converged solutions of system (2.20) for the species u with Gierer-Meinhart

kinetics (2.46) on the left with isolated modes w0
2,1, w3

3,1 and w−3
4,1 and Thomas (2.47) on

the right with isolated modes w0
2,1, w−2

3,1 and w−3
4,1.
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Gierer-Meinhart Thomas Wavenumbers excited

d=74 γ=30 d=30 γ=15 k1,1

d=74 γ=80 d=30 γ=40 k2,1

d=74 γ=160 d=28, γ=60 k0,2, k3,1

d=72 γ=200 d=27.5 γ=90 k4,1

Table 2.5: The values of d and γ which isolate the given wavenumbers on the sphere for

the Gierer-Meinhart and Thomas reaction kinetics.

previously computed homogeneous steady state. So for the reaction-diffusion system with

Schnakenberg kinetics, at each point in the grid we set the initial conditions to be:

α0 = 0.995 + 0.01ε, β0 = 0.895 + 0.01ε, (2.70)

where ε is a uniformly distributed random variable between 0 and 1.

For each eigenvalue there are a number of different eigenfunctions. Computing using

the values obtained with mode isolation, the solution converges to either one of the eigen-

functions or a linear combination. These converged solutions are shown in Figure 2.5 and

2.6. It is possible to force the solution to converge to an eigenfunction (which it does not

appear to with random initial perturbation) by making a suitable choice of initial condi-

tion, for example a perturbation of the desired eigenfunction, suitably scaled. Hence, in

the case where multiple wave numbers are excited, pattern selection is heavily influenced

by the choice of initial conditions which act as the basin of attraction, one of the major

criticisms of Turing’s theory for pattern formation (Bard and Lauder, 1974). We notice

similar phenomena later in the thesis in our mechanobiochemical model. See Section 3.6.

Since the results are very similar for the three different models, in all subsequent examples

we only show the results for Schnakenberg kinetics.

2.8.2 Example 2: Dumbbell

As a second example we consider the dumbbell shaped domain shown in Figure 2.2(d). The

solver for the eigenvalue problem on this mesh gives the output of eigenvalues and eigen-

functions shown in Figure 2.7. Figure 2.8 shows the converged solutions of the reaction-

diffusion system when the chosen values of d and γ isolate the corresponding wavenumbers

k2
i = λi. It must be observed that the pattern computed will be a scalar multiple of the

eigenfunction. This scalar may be negative which results in a reversed pattern (compare

for example Figure 2.7 (f) and 2.8 (e). This is also seen later in 2.10 (a), (c), and (d)).
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(a) λ1 = 1.49 (b) λ2 = 12.68 (c) λ3 = 22.86

(d) λ4 = 22.98 (e) λ5 = 26.52 (f) λ6 = 49.91

Figure 2.7: Eigenfunctions corresponding to the labelled eigenvalues on the dumbbell.

These are solutions of (2.52) approximated using deal.II.

(a) d=10, γ = 5 (b) d=9, γ = 40 (c) d=8.8, γ = 60

(d) d=8.8, γ = 88 (e) d=8.65, γ = 130

Figure 2.8: Converged u solutions of system (2.20) with Schnakenberg kinetics (2.45) on

a dumbbell. Eigenvalues λ1, λ2, λ5, λ6 have been isolated, however since λ3 ≈ λ4 in (c)

we see a linear combination of their eigenfunctions. It must be noted that the pattern

can appear to be reversed (e.g. in (e)), this is due to the choice of the initial conditions.

Choosing appropriate initial conditions results in a pattern similar to that shown in Figure

2.7(e).
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(a) The surface finite element solution

with given parameters d = 9 and γ =

35

(b) Numerically computed eigenfunc-

tion corresponding to eigenvalue λ9 =

12.0186

Figure 2.9: Mode isolation for the reaction-diffusion system with Schnakenberg kinetics

on the surface of the sphere.

2.8.3 Example 3: Surface of a sphere

In all the previous examples we considered bulk, volumetric domains. In this example we

have a curved surface as the domain. This means using the Laplace Beltrami operator ∆Γ

instead of the Laplacian ∆ in (2.52) and (2.20). To approximate solutions in this case,

we employ the surface finite element method (Barreira et al., 2011; Dziuk, 1988; Dziuk

and Elliott, 2013; Elliott and Ranner, 2014; Elliott et al., 2012; Madzvamuse and Chung,

2016).

The eigenpairs on the surface of the unit sphere can be found analytically and are well

known and documented in Chaplain et al. (2001) for example. The eigenfunctions are

referred to as spherical harmonics. They are the restriction of the eigenfunctions (3.14) to

the surface. The eigenvalues are of the form k2 = l(l + 1), where l is an integer, and the

eigenfunctions are

wml (θ, φ) = Aml e
imφPml (cos θ), (2.71)

where m and Pml are as described in Section 2.8.1. Therefore we can test the performance

of the eigenvalue problem solver with this example. Using the eigenvalue solver on an

approximated mesh of the surface of the sphere using 98306 degrees of freedom we obtain
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the following output of the first 30 eigenvalues computed to 6 significant figures.

k2
h = 2.00009, 2.00009, 2.00009, 6.00042, 6.00042, 6.00042, 6.00053, 6.00053,

12.0013, 12.0015, 12.0015, 12.0015, 12.0016, 12.0017, 12.0017, 20.003,

20.003, 20.0032, 20.004, 20.0041, 20.0042, 20.0042, 20.0045, 20.0046,

30.0066, 30.0067, 30.0067, 30.0068, 30.0081, 30.0095.

(2.72)

As expected these are the first 5 values of the form k2 = l(l+ 1) with l = 1, 2, 3, 4, 5. The

multiplicity is due to the fact that for each l there are 2l + 1 eigenfunctions (see Section

2.8.1). It must be observed that the finite element method is known to be less effective for

higher eigenvalues due to the min-max theorem (Strang and Fix, 1973). This means we

must use a highly refined mesh in order to obtain values that are closer to the analytical

values. The eigenfunctions are analogous to those detailed in Section 2.8.1 restricted to

the boundary. This shows that the eigenvalue solver gives the required output. Since the

results are shown in Section 2.8.1 we only show one example of mode isolation in Figure

2.9. As mentioned in Section 2.4, γ can be thought of as being proportional to the domain

size. Here we only consider a sphere with radius one. As the size of the sphere (radius

R) increases, the eigenvalues decrease (specifically they are multiplied by 1
R2 ). This effect

is demonstrated in Lacitignola et al. (2017) where they show that fixing other values and

increasing R causes higher mode patterns and hence more complex patterns are obtained.

2.8.4 Example 4: ”fish” surface

We now consider a smooth surface on which no analytical expression for the eigenpairs is

available, the surface is taken to be diffeomorphic to the sphere and is shown in Figure

2.2(f), it is meant to (very loosely) mimic the shape of a fish. We found the first 100

eigenpairs then chose several to isolate. These are shown in Figure 2.10. Various patterns

are observed including stripes, spots and concentric rings.

2.8.5 Example 5 and 6 ”eel” shapes

When computing on surfaces, one has to consider whether or not the surface has a bound-

ary. In papers modelling fish or eel patterns (see for example Venkataraman et al. (2011)),

a surface with a boundary is often used. To investigate whether having a boundary is

significant in this example we consider a surface with and without boundary. We see that

the eigenvalues and eigenfunctions are very similar and it is possible to isolate similar

patterns using the same parameter values.
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(a) d = 8.9, γ = 130 (b) λ5 = 40.18

(c) d = 8.58, γ = 240 (d) λ10 = 79.56

(e) d = 8.58, γ = 400 (f) λ15 = 134.73

(g) d = 8.58, γ = 510 (h) λ19 = 175.98

Figure 2.10: Surface finite element solutions corresponding to the u species of the reaction-

diffusion system with Schnakenberg kinetics with the given parameters on the left and

numerically computed eigenfunctions corresponding to the given eigenvalue on the right.

Again we observe reversed modes as described in subsection 2.8.2.
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(a) λ4(open) = 54.43 (b) λ4(closed) = 44.94

(c) λ23(open) = 253.69 (d) λ25(closed) = 257.54

(e) λ24(open) = 253.73

Figure 2.11: Eigenfunctions of the Laplace-Beltrami operator on the ”eel” shape with the

corresponding eigenvalue. The left column shows the surface without a boundary and the

right has a boundary. Note that, although the eigenfunctions are different, λ23 ≈ λ24.

(a) d = 8.8, γ = 140 (b) d = 8.8, γ = 140

(c) d = 8.6, γ = 750 (d) d = 8.6, γ = 750

Figure 2.12: Converged solutions corresponding to the u species of the reaction-diffusion

system with Schnakenberg kinetics on the surface of an eel. The surfaces on the right

have a boundary whereas those on the left do not. We find that using the same parameter

values on both surfaces gives very similar results.
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2.8.6 Quantitative comparisons

By inspecting the plots it can be observed that the modes qualitatively appear to be

isolated. To further expand on this, we normalise both the solutions and eigenfunctions

so that all values are the range [−1, 1] then compute the L2 norm of their difference and

results of these computations are shown in Table 2.6. Results on the sphere are not possible

due to rotational symmetry. It turns out that these L2 norm differences are small and are

due to a number of factors: Firstly, the chosen numerical parameters: the differences get

smaller and smaller with further grid refinement. On the other hand, numerical tests seem

to suggest that refining the time-step does not make a significant difference in the decrease

of the L2 norms. Secondly, due to mode clustering, the L2 norm differences can be affected

by small contributions from nearby modes that are residing in the same excitable region.

Lastly, the treatment of the nonlinear terms plays a significant role in the decrease of these

L2 norm differences.

Dumbbell L2 ”Fish” L2

ω1 0.35029 ω5 0.076100

ω2 0.034952 ω10 0.015871

ω5 0.020861 ω15 0.010345

ω6 0.010280 ω19 6.9365× 10−3

Table 2.6: L2 norm of difference between converged solution and the selected eigenfunction

(U − ωk) are found for the examples shown.

2.9 Conclusion and further challenges

In this chapter, we have considered reaction-diffusion systems and have presented a frame-

work for isolating particular spatially inhomogeneous patterns. The method involves find-

ing eigenpairs of the Laplacian, (or more generally Laplace-Beltrami), and computing

parameters such that when the reaction-diffusion system is solved numerically, only pat-

terns analogous to a particular eigenfunction will grow. In previous works the eigenvalue

problem is solved analytically whereas in this paper both the eigenvalue problem and

the reaction-diffusion system are solved using the finite element method. Advances in

numerical software mean that we can find 100 eigenpairs in a few minutes and we have

demonstrated that these eigenpairs match analytical results. The approach is shown to

work for 3 different examples of nonlinear reaction kinetics and on a variety of domains
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and surfaces. In summary, the main observations are:

• Mode isolation is straightforward for low values of k2 but can become slightly more

difficult for higher values of k2. This is due to the approximation of the nonlinear

terms and clustering of the eigenvalues of the linear problem.

• When two or more eigenvalues are clustered close to each other it becomes difficult

to isolate them computationally as well as analytically. If two or more eigenvalues

are in the permissible range then the inhomogeneous steady state could be a linear

combination of the corresponding eigenfunctions.

• We display an example of two surfaces where pattern formation appears to be ro-

bust despite the fact one has a boundary while the other does not. An interesting

investigation would be to see if this can be true for other geometries. Note that this

observation is only for the case of zero-flux boundary conditions. Imposing Dirichlet

or Robin-type boundary conditions would result in substantially different patterns.

In this chapter we have only considered stationary volumes and surfaces. However the

domains of biological processes generally evolve with time (Barreira et al., 2011; Elliott

et al., 2012; Lakkis et al., 2013; Madzvamuse, 2006; Venkataraman et al., 2011). This adds

more complexity to solving the reaction-diffusion systems. An interesting and natural

extension of this work would be to introduce domain growth and surface evolution. For

this extension, studies on the effects of initial conditions would also be worthwhile.

For the rest of this thesis we will be formulating a model for cell movement which will

include a reaction-diffusion system. It will be possible to isolate modes in a similar way

for small time. However, at longer timescales, the deformation may be large and irregular,

so mode isolation will be too time consuming to be useful. In the next chapter, we will

introduce the model and begin our extension of it.
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Chapter 3

Model 1: A 3D

mechanobiochemical model with a

single actin reaction-diffusion

model

3.1 Introduction

In this chapter we introduce the first of two models for cell motility. This model is an

extension of a previous model, from 2D to 3D. The equations are derived, linear stability

analysis is carried out and numerical simulations are presented.

3.1.1 Origins of the model

The model we consider and extend is inspired by contractile models of the actin cytogel by

Lewis and Murray (1991) and Oster et al. (1985). These models are composed of a force

balance equation modelling the displacements of the cell when deformed and a reaction-

diffusion equation for the concentration of the gel that in turn drives cell movement. The

idea of pressure driven protrusion and the use of concentration of actin originates from Alt

and Tranquillo (1995). In their model they assume movement is produced by a balance

between contractile force of the actin network pulling on the membrane and pressure

pushing on the membrane.

This was extended by Stephanou et al. (2004) so that large deformations could be

modelled which is more realistic for most cells. George (2012) further extended this model
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by adding that higher actin concentration in a region leads to more pressure.

In the previous models a polar coordinate system was used and radial extension of

the cell was calculated (Alt and Tranquillo, 1995; Stephanou et al., 2004). Unlike this

approach, we follow the work of George (2012) and study the mechanobiochemical model

in its physical Cartesian coordinates without any need for coordinate transformation. In

this chapter, we undertake our first major extension of the work by George (2012) by

extending the same model to three dimensions. We remark further, that in this chapter,

we will consider (as in previous studies) a single reaction-diffusion equation for F-actin with

no other molecular species involved. Extensions to include more species are undertaken

in Chapter 4.

3.2 Derivation of a single actin reaction-diffusion equation

on moving 3D geometries

The model described in this chapter is the same as that of George (2012) but implemented

in three rather than two dimensions. The RDE derivation is much the same as in Section

2.3.1 except that we are now considering a moving volume, thus, we introduce the flow

velocity β = ∂u
∂t . We assume that the cell shape is a simply connected and continuously

deforming domain: Ωt ⊂ R3 with boundary ∂Ωt, where t ∈ I = [0, Tf ], Tf > 0. Any

point x ∈ Ωt is defined by x = (x(t), y(t), z(t)). We define the displacement of x at time

t by u = (u(x(t), t), v(x(t), t), w(x(t), t))T . Let the concentration of F-actin at point x(t)

be a = a(x(t), t). Define ac to be the concentration of F-actin at chemical equilibrium.

This differentiates the states of polymerisation and depolymerisation. Therefore, given

a polymerisation rate ka we can describe the net formation of F-actin from G-actin by

ka(ac−a). To define the equation we consider the flux J(x(t), t) ∈ C1(Rt) where Rt ⊂ Ωt

is a portion of Ωt with boundary ∂Rt. This is the amount of actin which passes the across

boundary. The conservation equation tells us that the rate of change of the total amount of

a material in a volume is equal to the flux through (normal to) the surface boundary plus

the net formation of the material within the volume. Hence we can write the conservation

of actin as follows

∂

∂t

∫
Rt

a dRt = −
∫
∂Rt

J · n dS +

∫
Rt

ka(ac − a) dRt, (3.1)



61

where n is the unit normal to the boundary ∂Rt. Using the divergence theorem on the

boundary integral leads to

∂

∂t

∫
Rt

a dRt =

∫
Rt

(−∇ · J + ka(ac − a)) dRt. (3.2)

Here we can use the Reynolds transport theorem (for proof and use of this see Madzva-

muse (2000); Acheson (1990)) which says, for a(x, t), a scalar function, and the material

derivative Da
Dt = ∂a

∂t + β∇a, then

∂

∂t

∫
Rt

a dRt =

∫
Rt

(Da
Dt

+ a(∇ · β)
)
dRt. (3.3)

Using this theorem and the product rule turns (3.2) into∫
Rt

(∂a
∂t

+∇ · (aβ)
)
dRt =

∫
Rt

(−∇ · J + ka(ac − a)) dRt. (3.4)

Here we assume F-actin flows from high to low concentrations at a magnitude proportional

to the concentration gradient. This means we can use Fick’s law as in Section 2.3.1, and

obtain that ∫
Rt

(∂a
∂t

+∇ · (aβ)−Da∆a− ka(ac − a)
)
dRt = 0, (3.5)

where Da is a positive constant diffusion coefficient for F-actin. Since this holds for any

arbitrary domain Rt ⊂ Ωt and the integrand is continuous we have:

∂a

∂t
+∇ · (aβ)−Da∆a = ka(ac − a) for x ∈ Ωt, t ∈ I. (3.6)

The boundary conditions are zero flux because actin does not flow in or out of the cell. In

the case β = 0 we have a reaction-diffusion equations on a stationary volume.

3.3 A viscoelastic model of cell motility

For the sake of completeness, we state the model for the displacement of the cell through a

force balance equation. The key point is that cell deformation is determined by the active

mechanical forces. These forces are mostly due to the mechanical properties of the actin

network. The F-actin network and myosin interact to generate contractile stress in the

cytoplasm. This induces osmotic pressure (cytoplasm is 80% water) and there is additional

pressure due to polymerisation. We assume the cell complies to Newtonian dynamics and

inertial terms are negligible (Lewis and Murray, 1991).

The model represents the actin filament network as a viscoelastic and contractile gel

in the same way as (Lewis and Murray, 1991; Stephanou et al., 2004). The polymerisation

kinetics, described in Section 1.2.2, mean that the filaments push on the membrane when



62

they polymerise. Conversely actomyosin contractions pull on the membrane. This causes

cytoplasmic flows and increased pressure. At any given time the actin network is in

mechanical equilibrium so we have the force balance mechanical equation:

∇ · (σv + σe + σc + σp) = 0, (3.7)

where stress tensors are described as follows

• Viscous tensor σv(u): The viscous tensor is defined by σv = µ1
∂ε
∂t + µ2

∂φ
∂t I, where

µ1 and µ2 are shear and bulk viscosities respectively, ε is the strain tensor (1
2(∇u +

∇uT )) and φ is the dilation (∇ · u).

• Elastic tensor σe(u): The elastic tensor is defined by σe = E
1+ν (ε+ ν

1−2νφI), where

E is the Young’s modulus and ν is the Poisson ratio.

• Contractile tensor σc(a): Let the contractile tensor σc = ψa2e−a/asatI, where ψ

is the contractility coefficient, and asat is the saturation coefficient of actin. This

formulation means that the contractility increases parabolically with actin density

until it reaches the saturation concentration then decreases exponentially due to

compaction of the network.

• Pressure tensor σp(a,u): Let the pressure tensor σp =
p

1 + φ

(
1 + 2

π δ(l) arctan a
)
I.

This describes two types of pressure. First is the hydrostatic pressure which is present

everywhere and corresponds to the osmotic pressure in the cell which depends on

the dilation φ and pressure coefficient p. Secondly, close to the membrane there

is also polymerisation pressure caused by the polymerising actin filaments pushing

on the cell membrane. This increases with increasing concentration of filaments

a. We choose close to the membrane to mean less than 20% of the cell radius

from the surface in the initial state. To define this we use δ(l) and the points

ξ = (ξx, ξy, ξz) ∈ Ω0. There exists a family of bijective mappings between the initial

and current domains we can let l : Ωt× I → R and corresponding l̂ : Ω0× I → [0, 1]

then l̂(ξ, t) = l(x(ξ, t), t). So we calculate the distance from the centroid by

δ(l) =

 1, if
√
ξ2
x + ξ2

y + ξ2
z > 0.8,

0, otherwise.
(3.8)

Therefore far from the membrane, only the osmotic component exists while close to

the membrane polymerisation reinforces osmotic stress. A representation of this is

displayed in Figure 3.1
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(a) (b)

Figure 3.1: Pictoral and graphical representation of the variation of pressure in the cell. (a)

A 3-dimensional illustration where both the dark blue part shows where there is hydrostatic

and polymerisation pressure, while the light shows the region where there is only the

hydrostatic pressure. (b) Plot of how polymerisation pressure varies with the concentration

of actin (letting p = 1 and φ = 0).

3.4 A mechanobiochemical with a single actin reaction-diffusion

equation

We have formulated a system of two equations which are interlinked. The solution to

actin reaction-diffusion equation affects the contractile and pressure parts of the force

balance equation and the displacement solution of the force balance equation drives the

reaction-diffusion equation through the convection term and the changing shape of the

domain.

We can now combine the equations to obtain the following system

∇ · (σv + σe + σc + σp) = 0 in Ωt, t ∈ I, (3.9a)

∂a

∂t
+∇ · (aβ)−Da∆a− ka(ac − a) = 0 in Ωt, t ∈ I, (3.9b)

a(x(t), t) = a0, u(x(t), t) = 0 for x ∈ Ω0, (3.9c)

β = ωn(x) for x ∈ ∂Ωt, t ∈ I, (3.9d)

σv · n = σe · n = n · ∇a = 0 for x ∈ ∂Ωt, t ∈ I. (3.9e)

For illustrative purposes, we assume that the initial domain is a unit sphere. Biologi-

cally, this corresponds to a cell just after mitosis. The initial condition for actin density is

a small perturbation from the homogeneous steady state (when a = ac = 1). The bound-

ary conditions are zero-flux for the reaction-diffusion equation and stress-free for the force

balance equation (3.9e). Other parameters are defined in Table 3.1. We will now examine
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Description Form / Value Reference

ε strain tensor 1
2(∇u +∇uT )

φ dilation ∇ · u

β flow velocity ∂u
∂t

ωn normal velocity of boundary

µ1 shear viscosity 96.15dyn·s
cm2 Bausch et al. (1998)

µ2 bulk viscosity 250dyn·s
cm2 Bausch et al. (1998)

E Young’s modulus 1.5dyn·s
cm2 Estimated George (2012)

ν Poisson ratio 0.3 Estimated George (2012)

Da diffusion coefficient 0.012 cm
2

s Stephanou et al. (2004)

ka rate of polymerisation 0.03s−1 Estimated George (2012)

ac conc. at equilibrium 1mol
cm3 normalised Derived in George (2012)

asat saturation conc. 1.4mol
cm3 normalised Stephanou et al. (2004)

l0 vicinity of the membrane 80% of cell radius Estimated George (2012)

ψ contractility coefficient 70

p pressure coefficient 1.7

Table 3.1: Descriptions of parameters. ψ and p will be varied to select patterns.

linear stability when considering small perturbations around the uniform steady state.

3.5 Linear stability analysis of the mechanobiochemical model

We employ linear stability theory to identify key parameters and compute analytical solu-

tions close to bifurcation points. It will validate the numerical scheme that we will use to

find approximate solutions to the model problem. Close to the steady state, the problem

can be approximated by a linear one. The method for the mechanobiochemical model

is described in George et al. (2013) for the case of two dimensions, here we extend this

analysis to 3-dimensions. Letting L be the typical radius of a cell, we use the following

dimensionless quantities
t̃ = tka, ã = a

ac
= a, ũ = u

L , ∇̃ = L∇, ∆̃ = L2∆,

ãsat = asat
ac

= asat, p̃ = p1+ν
E , φ̃ = φ, ε̃ = ε, µ̃i = µika

1+ν
E ,

ψ̃ = ψa2
c

1+ν
E , β̃ = β

kaL
, d = D̃a = Da

kaL2 , l̃0 = l0
L .

(3.10)
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Substituting the appropriate scales above and using the dimensionless quantities defined,

system (3.9) reduces to the following
∇̃ ·
[
(µ̃1ε̃t + µ2φ̃tI) + (ε̃+ ν

1−2ν φ̃I) + (ψ̃ã2e−ã/ãsatI)+(
p̃

1+φ̃

(
1 + 2

π δ(l) arctan ã
)
I
) ]

= 0,

∂ã
∂t̃

+ ∇̃ · (ãβ̃)− d∆̃ã = 1− ã.

(3.11)

We restrict our analysis by considering an initial volume which is a unit sphere. Further-

more, we assume that for a very short time, say t1 > 0 such that t1 = t0 + ∆t << 1

the deformed sphere is still very close to the initial unit sphere, i.e., Ωt1 ≈ Ωt0 . This

system has a steady state at as = 1, us = 0. Given small variations â and û consider

the perturbation from the steady state ã = as + â = 1 + â and ũ = us + û = û. Let

σ(a) = ψa2e−a/asat . Using Taylor expansion and neglecting all but the linear terms, we

obtain the linearised partial differential equations
∇̃ ·
[
(µ̃1ε̂t + µ2φ̂tI) + (ε̂+ ν

1−2ν φ̂I) + âσ′(1)I + p̃(1− φ̂)I + p̃ 2
π δ(l)âI

]
= 0,

∂â
∂t̃

+ ∇̃ · (β̂)− d∆̃â+ â = 0,

(3.12)

where σ′(1) = ∂σ(a)
∂a |a=ac . Next we look for solutions of the form â(x, t) = a∗eλt+ik·x

and û(x, t) = u∗eλt+ik·x where λ and k represent the growth rate (also known as an

eigenvalue) and the wave vector respectively, and assume that a∗ and u∗ are constants of

proportionality. Inputting this into the nondimensionalised system leads to the dispersal

relation,

λ(k2) =
−b(k2)±

√
(b(k2))2 − 4µ̃k2c(k2)

2µ̃k2
, (3.13)

where b(k2) = d̃k2 +1+ν ′+ µ̃−σ′(1)− p̃− p̃ 2
π δ(l) and c(k2) = d(1+ν ′+ p̃)k2 +1+ν ′+ p̃. If

k2 = 0, the dispersal relation (3.13) is indeterminate so we consider only k2 > 0. In order

for there to be instability (i.e. modes to grow) we need λ(k2) > 0. This occurs if b(k2) < 0

or c(k2) < 0 or both. First considering c(k2) we can see that p̃ > 1 + ν ′ =⇒ c(k2) < 0,

for all k2 > 0. Next considering b(k2) and defining G := 1 + ν ′ + µ̃ − σ′(1) − p̃ − 2
π δ(l),

we say that the necessary and sufficient conditions for growth of modes are (George et al.,

2013):

• G < 0,

• µ̃dk2 < |G|,

• k2
1 ≤ k2

crit = |G|
µ̃d .
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In the last condition k2
1 is the first positive wavenumber, this must be smaller than the

value of k2 where b(k2) is zero, to ensure there is a wavenumber in the region where b(k2)

is negative. We see that the parameters affecting the sign of G are p and σ′(1) which is

proportional to ψ. Therefore we can vary p and ψ to isolate particular patterns/modes.

Let w(x) := (a(x),u(x))T denote the time independent eigenfunctions of the linear system

(3.12). By considering only the spatial variations, we obtain the eigenvalue problem ∆w =

−k2w, thus the unstable modes will correspond to eigenfunctions of the Laplacian on the

chosen domain, which in our case is the unit sphere Ω0 = {(x, y, z) : x2 + y2 + z2 ≤ 1}.

We described how to find these eigenvalues, and eigenfunctions on the unit sphere

(with homogeneous Neumann boundary condition) in Section 2.8.1. Following derivations

in Section 2.8.1, there are an infinite number of discrete solutions of the form

wml,n(r, θ, φ) = Aml,nJl+ 1
2
(j′
l+ 1

2
,n
r)eimφPml (cos θ), (3.14)

where l,m, n are all integers such that |m| ≤ l ≤ n, Aml,n are constants, Jα(x) is a Bessel

function of the first kind, i.e. Jα(x) =
∑∞

j=0
(−1)j

j!Γ(1+j+α)

(
x
2

)2j+α
where Γ(n) = (n − 1)!,

Pml (x) are associated Legendre polynomials, and j′
l+ 1

2
,n

are zeros of the differential of the

spherical Bessel function. Using the approach described in Chapter 2, we compute the

eigenvalues k2
l,n = (j′

l+ 1
2
,n

)2 numerically. For each eigenvalue λl,n = k2
l,n there are 2l + 1

possible eigenfunctions. Figure 3.2 shows the eigenfunctions for some selected values of l,

m and n. The wave numbers are discrete. Keeping all other parameters fixed as in Table

3.1 we can calculate the values of ψ which are required to make certain wavenumbers

unstable. These are displayed in Table 3.2. Note that it is rarely possible to isolate just

one eigenvalue and when l ≥ 1 we have that each eigenvalue has many eigenfunctions so

“mixed modes”, which are a linear combination of eigenfunctions, will be common.

ψ isolated wavenumbers

40 k2
0,1

70 k2
0,1, k2

1,1

100 k2
0,1, k2

1,1, k2
2,1

180 k2
0,1, k2

1,1, k2
2,1, k2

3,1

230 k2
0,1, k2

1,1, k2
2,1, k2

3,1, k2
4,1

Table 3.2: The value of ψ required by the dispersal relation to isolate particular wavenum-

bers. Note that in the dispersal relation we use dimensionless ψ̃ = ψa2
c

1+ν
E .
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(a) w1
1,1 (b) w0

2,1 (c) w0
3,1 (d) w2

3,1

(e) w1
4,1 (f) w1

4,1 (g) w3
4,1

Figure 3.2: Analytical solutions to the eigenvalue problem on the unit sphere i.e. (3.14)

for selected values of l,m, n.

3.6 Numerical simulations for Model 1

As a first step, we computed numerical results in two dimensions following the work of

George et al. (2013). We used the same finite element formulation but implemented it in

the software library deal.II (Bangerth et al., 2016). Solving the actin and force balance

equations on the unit disk over time, the results were found to be matching those reported

by George et al. (results not shown for the sake of brevity), thereby giving us confidence

that the numerical results are independent of the numerical method employed. We then

proceeded to extend the numerical solutions into three dimensions using the finite element

formulation as outlined in Appendix A. Note that the formulation in Appendix A includes

myosin which is not yet considered in this Chapter therefore, we set myosin concentration

m = 1 at all times (this makes reaction kinetics for actin ka(ac−a) as required) and c = 0,

then solve only for actin and displacement. In the same way as in two dimensions, we

found it is possible to isolate modes and significant deformation is subsequently seen.

In this section, the results from linear stability of the last section are validated when

0 < t << 1, this is possible because at that time the domain evolution from the unit sphere

(Ω0) is negligible. The time step ∆t = 10−3, unless otherwise stated. The finite element

mesh has 8192 active cells and 27123 degrees of freedom. Initial perturbations of actin

vary depending on which eigenmode we wish to excite but are always a small perturbation
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from the steady state (a = 1) and include the variable rand which is a randomly generated

number between 0 and 0.1. In all examples we continue computing the solution until the

mesh is so deformed that the numerical method can no longer be used.

3.6.1 Excitation of eigenmodes

We solve the system over time, for varying ψ using the values from Table 3.2. We see

that early in the simulations the modes are excited and are qualitatively similar to the

eigenfunctions shown in Figure 3.2. When the geometry becomes deformed, linear stability

no longer holds and the cell deforms significantly, generally with high displacement where

actin concentration is high. In these simulations the displacement plotted is the magnitude

of the vector u = (u(x(t), t), v(x(t), t), w(x(t), t))T , i.e.
√
u2 + v2 + w2.

Example 1 - k0,1

The first eigenvalue is λ = k2
0,1 = 3.1416. The eigenfunction is w0

0,1 =
sin(k0,1r)
k0,1r

. Choosing

ψ = 40 isolates this mode. This eigenfunction depends only on r (the distance from the

centre) and is monotonic between 0 and 1. We present numerical results with parameters

chosen to excite w0
0,1 in Figure 3.3. We can see that initially the solution looks like a scalar

multiple of w0
0,1. Subsequently this causes the cell to expand almost uniformly, the volume

increase is shown in Figure 3.3(d).

Example 2 - k2,1

Next, we select k2,1 by choosing ψ = 70 and initial conditions a(x) = 1 +w1
2,0(x)× rand,

and present this in Figure 3.4. The solution begins to resemble that of the correspond-

ing eigenfunction w0
2,1 (illustrated in Figure 3.2(b)) and then the cell expands in the

y-direction. The cell pushes out significantly at both ends, where there is high actin con-

centration (in red), and resembles a cell just before mitosis. The displacement solutions

are qualitatively similar to the actin solutions, therefore in the rest of this section, we only

show the actin solutions.

Other modes

Choosing ψ = 230 means that the wavenumbers k2
3,1 and k2

4,1 can be excited (in addition to

k2
0,1, k2

1,1 and k2
2,1). k2

3,1 and k2
4,1 have 7 and 9 corresponding eigenfunctions, respectively.

In order to encourage a particular mode wml,1 to grow we choose initial perturbation rand×

wml,1. Figures 3.5–3.9 show modes being selected and the subsequent large deformations.
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(a) t=0 (b) t=10

(c) t=180 (d) Change in volume

Figure 3.3: Selecting k0,1. We cut the sphere in half so that at first we see the mode

is excited and then the volume steadily increases over time. Actin concentration and

displacement are higher in the vicinity of the membrane.
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(a) t=0 (b) t=2

(c) t=10 (d) t=23

(e) Length of cell (f) Index of Polarity = range(y)
range(z)

Figure 3.4: Selecting w0
2,1. We see a significant elongation of the cell, predominantly in

the z-direction, with actin concentration highest at the protruding ends.
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(a) t=0 (b) t=0.2 (c) t=1.2

Figure 3.5: Selecting w0
3,1. The eigenfunction is shown in Figure 3.2(c).

(a) t=0 (b) t=2 (c) t=4

Figure 3.6: Selecting w2
3,1. The eigenfunction is shown in Figure 3.2(d).

(a) t=0 (b) t=0.2 (c) t=0.8

Figure 3.7: Selecting w0
4,1. The eigenfunction is shown in Figure 3.2(e).

(a) t=0 (b) t=0.2 (c) t=3.2

Figure 3.8: Selecting w1
4,1. The eigenfunction is shown in Figure 3.2(f).
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(a) t=0 (b) t=1 (c) t=7

Figure 3.9: Selecting w3
4,1. The eigenfunction is shown in Figure 3.2(g).

The cell protrudes in areas of high actin concentration (shown in red) and contracts

areas of low concentration (shown in blue). Figure 3.5(c) looks similar to some images of

amoeboidal movement in literature (Petrie et al., 2012; Cao et al., 2016). Figure 3.7(c)

displays two protrusions with high actin concentration and looks similar to lobopodia

exploring before choosing a direction through an extracellular matrix (Chen et al., 2014).

Contraction

As a numerical experiment we can take pressure to be negative, p = −0.5 and ψ = 70.

In this case the cell contracts as shown in Figure 3.10. Initial conditions for actin are

a = 1 + rand, then as the cell contracts the actin concentration is highest in the centre

and decreases towards the boundary. The decrease in volume is shown in Figure 3.10(d).

3.7 Summary

We have introduced the mechanobiochemical model in three dimensions. It is assumed

that cell movement is a consequence of the protrusive and contractile properties of the

actomyosin network, and the viscoelastic nature of the cytoplasm. The model consists of a

reaction-diffusion equation for the concentration of actin and a force balance equation. The

solution of the force balance equation gives the displacement of the cell. The displacement

affects the reaction-diffusion equation due to a flow term and the changing domain shape,

while the concentration of actin affects the contractile and pressure tensors in the force

balance equation.

We considered linear stability analysis and identified the contractility coefficient ψ and

the pressure p as key parameters whose value determines which wavenumbers will become

unstable (George et al., 2013).
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(a) t=0 (b) t=32 (c) t=32 cut through

(d) Change in volume

Figure 3.10: Allowing pressure to be negative leads to contraction of the cell with the

highest concentration of actin at the centre.
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The numerical simulations are consistent with the predictions from linear stability the-

ory in the early stages of movement. This validates the numerical scheme which is outlined

and described in Appendix A. Subsequently we see significant deformations, some of which

are consistent with shapes found in 3D experiments. In particular, we see expansion, con-

traction and changes in the index of polarity. The outward movement is most significant

in areas with high actin concentration, in addition where there is higher curvature, higher

actin concentration is observed.

We use the same parameter values as George (2012), in order to confirm that the

mathematical and computational model works in three dimensions. A future work would

likely benefit from finding relevant parameter values for 3D cells.

Although these results are promising, contraction is such a pivotal element of the

system, and contraction is reliant on myosin. Hence, it is a logical next step to wish to

model the concentration of myosin, and include this in the force balance equation. Since

the myosin and actin have an effect on each other’s concentration, and both “effectively”

diffuse (see Section 4.2), we next propose a plausible reaction-diffusion system for actin

and myosin, then couple this system to an updated force balance equation.
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Chapter 4

Model 2: A 3D

mechanobiochemical model with

actin and myosin

reaction-diffusion models

4.1 Introduction

In the previous chapter we saw that a mechanobiochemical model, with a single actin

reaction-diffusion equation, for single cell migration could be extended into three dimen-

sions. In this chapter we further extend the model to include the effect of the concentration

of myosin. This involves adding a further reaction-diffusion equation for myosin, and sub-

sequently the reaction kinetics between actin and myosin. Additionally, contraction due

to myosin is represented by a new term in the force balance equation.

The reaction kinetics between actin and myosin are not rigorously known and F-actin

and bound myosin do not diffuse in the way that free particles do. Nonetheless, many

have modelled their spatially varying quantities with reaction-diffusion equations (Camley

et al., 2017; Hawkins et al., 2011; Wolgemuth et al., 2011; Hodge and Papadopoulos, 2012;

Gracheva and Othmer, 2004; Mogilner, 2009; Rubinstein et al., 2009). We have described

some of their ideas in Section 1.4.2.

In this chapter, we describe the additions to the model of Chapter 3 and analyse

stability of steady states. Before doing this for the full system we first consider the linear

stability analysis on the stationary sphere for just the reaction-diffusion equations. This

may allow us to identify diffusion-driven instability. Since we have a two component
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system, and the domain is stationary, it can be nondimensionalised to the form we discuss

in Chapter 2. This means we can investigate the standard conditions for diffusion-driven

instability. We will discuss whether a Turing instability is necessary in the full system. We

then explore linear stability in the full mechanobiochemical model. We present numerical

simulations for both the reaction-diffusion system and the full system.

We first introduce the new equation and investigate plausible reaction-diffusion models

describing the interactions between actin and myosin in 3D geometries.

4.2 Acto-myosin reaction-diffusion model

As in Chapter 3, we consider Ωt ⊂ R3. For t ∈ I = [0, Tf ], Tf > 0, x = (x(t), y(t), z(t))

describes a point in and Ωt and a = a(x(t), t) is the concentration of F-actin, at that

point. We now introduce m = m(x(t), t) to be the concentration of bound myosin. The

interactions between actin and myosin are described by the reaction terms f(a,m) and

g(a,m) respectively. They describe the net formation of actin filaments or bound myosin

due to the current concentrations of both F-actin or bound myosin. To define the equation

we use the same method as in Section 3.2 but replacing ka(ac − a) by the new reaction

term f(a,m). This gives us

∂a

∂t
+∇ · (aβ)−Da∆a = f(a,m). (4.1)

We argue in the same way for the equation for myosin to obtain

∂m

∂t
+∇ · (mβ)−Dm∆m = g(a,m), (4.2)

where Dm is the diffusion coefficient for myosin. The boundary conditions are again zero-

flux. It is worth noting that actin filaments do not diffuse significantly but globular actin

does and since actin is continuously polymerising and depolymerising, the effect can be

considered to be diffusive. Similarly, myosin is frequently binding and unbinding; when it

is bound to actin, it simply moves with the filament, however “free” myosin diffuses very

fast. Thus we consider this binding and unbinding effect to also be equivalent to diffusion.

For simplicity, from now on we will simply refer to the variables as actin and myosin.

4.2.1 Hypothetical reaction kinetics

In order to define the functions f(a,m) and g(a,m) which represent reaction kinetics, we

take into account the biological considerations discussed in Section 1.4.2. In particular,

we propose that when the concentration of myosin is above equilibrium, this will cause the
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concentration of actin to decrease, and the concentration of myosin to increase. Addition-

ally when actin concentration is higher than equilibrium, this will cause actin to decrease

and myosin to increase.

We investigated several plausible reaction kinetics. The implementation of this model

means that these can easily be interchanged to consider different models. Kinetics which

we will use for demonstration in this chapter are

f(a,m) = ka(ac − a) + kam
a2(mc −m)

1 +Ka2
, (4.3a)

g(a,m) = −kma(ac − a)− kam
a2(mc −m)

1 +Ka2
, (4.3b)

where we begin with the same reaction term, ka(ac − a), which we used in Chapter 3.

G-actin polymerises at rate ka into F-actin until the concentration of F-actin a reaches

equilibrium concentration ac and if the concentration is above this F-actin will depoly-

merise at the same rate. This formulation ensures that, if we set m = 1 everywhere in

the domain, set c = 0, and neglect (4.2) we get model 1. Next, since myosin binds to

actin the amount of myosin will increase due to higher concentration of actin, hence the

term −kma(ac − a) where kma is the rate of binding/unbinding of myosin. Defining mc

as the unstable equilibrium concentration of m, the last term in the actin equation rep-

resents that actin will depolymerise with higher concentrations of myosin and is subject

to a saturation coefficient K, for a. The negation is true for myosin, since myosin often

accumulates.

4.3 Modelling myosin in the force balance equation

The main mechanical effect of myosin in a cell is contraction. Concentration of myosin

is generally assumed to linearly affect the contractile force (Gracheva and Othmer, 2004;

Wolgemuth et al., 2011; Rubinstein et al., 2009; Hodge and Papadopoulos, 2012; Shao

et al., 2012; Murrell et al., 2015; Bendix et al., 2008). Thus we adjust the contractile

tensor in the force balance equation to be

σc = (ψa2e−a/asat + cm)I. (4.4)
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We now have the full system,

∇ · (σv + σe + σc + σp) = 0 in Ωt, t ∈ I, (4.5a)

∂a

∂t
+∇ · (aβ)−Da∆a− f(a,m) = 0 in Ωt, t ∈ I, (4.5b)

∂m

∂t
+∇ · (mβ)−Dm∆m− g(a,m) = 0 in Ωt, t ∈ I, (4.5c)

a(x(t), t) = a0, u(x(t), t) = 0 for x ∈ Ω0, (4.5d)

β = ωn for x ∈ ∂Ωt, t ∈ I, (4.5e)

σv · n = σe · n = n · ∇a = n · ∇m = 0 for x ∈ ∂Ωt, t ∈ I, (4.5f)

Thus the three equations are connected: the solutions to (4.5b) (actin concentration) and

(4.5c) (myosin concentration) affect the contractile and pressure parts of the force balance

equation and the solution to (4.5a) (displacement) affects the reaction-diffusion equations

through the convection terms and the changing shape of the domain.

Similarly to Model 1, the initial domain is the unit sphere and initial conditions for

actin and myosin densities are small perturbations from the homogeneous steady states

(when a = ac = m = mc = 1). The boundary conditions are zero flux for the reaction-

diffusion equations and stress free for the force balance equation (4.5f). We will now

non-dimensionalise before considering linear stability for small perturbations from the

steady state.

4.4 Non-dimensionalisation

We perform non-dimensionalisation to reduce parameters and simplify calculations. It

also allows the reaction-diffusion equations to take the form necessary to use the standard

conditions for diffusion-driven instability. We choose the example kinetics (4.3) and the

nondimensionalised parameters:

t̃ =
L2

Da
t, ã =

a

ac
= a, m̃ =

m

mc
= m, d =

Dm

Da
, K̃ =

K

ac
,

γ =
L2ka
Da

, ˜kma =
kma
ka

, ˜kam =
kam
ka

, k̃m =
km
ka
, ∆̃ = L2∆,

∇̃ = L∇, ũ =
u

L
, φ̃ = φ, ε̃ = ε, p̃ = p

1 + ν

E
,

β̃ =
βL

Da
, ãsat =

asat
ac

, ψ̃ = ψa2
c

1 + ν

E
µ̃i =

µiDa(1 + ν)

EL2
.

(4.6)



79

In the above, L is the typical radius of a cell. Substituting appropriately and carrying out

algebraic manipulations leads to the following non-dimensionalised system

∇̃ ·

[
(µ̃1ε̃t + µ2φ̃tI) + (ε̃+

ν

1− 2ν
φ̃I) + (ψ̃ã2e−ã/ãsatI) + c̃m̃I + (4.7a)

(
p̃

1 + φ̃

(
1 +

2

π
δ(l) arctan ã

)
I

)]
= 0, (4.7b)

∂ã

∂t̃
+ ∇̃ · (ãβ̃)− ∆̃ã− γ

(
(1− ã) + ˜kam

ã2(1− m̃)

1 + K̃ã2

)
= 0, (4.7c)

∂m̃

∂t̃
+ ∇̃ · (m̃β̃)− d∆̃m̃− γ

(
− ˜kma(1− ã)− ˜kam

ã2(1− m̃)

1 + K̃ã2

)
= 0. (4.7d)

We are interested in what may cause instability and self-organisation of actin and myosin.

To this end, we temporarily drop the force balance equation, leaving the coupled reaction-

diffusion equations for actin and myosin.

4.5 Linear stability analysis of reaction-diffusion system

In the model of George (2012), the reaction-diffusion equation alone could not cause

patterning. Without the flow term, the prescribed reactions meant the concentration of

actin would always return to the homogeneous steady state of a = ac. In our case we

have two coupled reaction-diffusion equations which are well known to induce patterning

in certain cases.

Without the force balance equation, we have a system of coupled reaction-diffusion

equations on a stationary volume and β̃ = 0, so the equations are written in the standard

form, (see Chapter 2 and, for example, Murray (2003)), i.e.:

at = γf(a,m) + ∆m, mt = γg(a,m) + d∆m. (4.8)

This means we can investigate the necessary conditions for diffusion-driven instability in

the same way as in Section 2.4. In summary, (see (2.43)), we need

fa + gm < 0, fagm − fmga > 0, (4.9a)

dfa + gm > 0, (dfa + gm)2 − 4d(fagm − fmga) > 0, (4.9b)

and k2 in the range k2
− < k2 < k2

+ where

k2
± = γ

(dfa + gm)±
√

(dfa + gm)2 − 4d(fagm − fmga)
2d

. (4.10)

We exploit this range to isolate particular patterns/modes. The unstable modes will

correspond to the eigenfunctions of the Laplacian on the sphere and k2 the associated

eigenvalues.
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We have non-dimensionalised equations

∂ã

∂t̃
− ∆̃ã = γ

(
(1− ã) + ˜kam

ã2(1− m̃)

1 + K̃ã2

)
, (4.11a)

∂m̃

∂t̃
− d∆̃m̃ = γ

(
− ˜kma(1− ã)− ˜kam

ã(1− m̃)

1 + K̃ã2

)
. (4.11b)

There is a steady state when ã = m̃ = 1. In the reaction kinetics we have chosen, we have

that fa = −1, fm = − ˜kam
1+K̃

, ga = ˜kma and gm =
˜kam

1+K̃
. Inputting these values into (4.9a)

and (4.9b) gives the following conditions for diffusion-driven instability

d(1 + K̃) < ˜kam < 1 + K̃, (4.12a)

1 < ˜kma <
(

˜kam
1+K̃

+ d)2(1 + K̃)

4d ˜kam
. (4.12b)

Since we would like particular patterns to occur we isolate them using the dispersal relation

(2.34), as in Chapter 2, using the appropriate k2
l,n which we found on the sphere.

4.5.1 Parameter selection

In Section 2.4, equation (2.34), we defined a dispersal relation λ2 + b(k2)λ + c(k2) = 0,

where b(k2) = k2(1 + d)− γ(fa + gm) and c(k2) = dk4− γ(dfa + gm)k2 + γ2(fagm− fmga).

There is instability if Re(λ > 0), where λ is the maximum root of this equation, therefore

we can vary parameters in order to allow particular wavenumbers k2 to be unstable.

In Figure 4.1, we use MATLAB to plot the maximum real part of λ against the wave

number k2. Since Re(λ > 0) means instability, these graphs can help us chose parameters:

If the coloured line is above the x-axis for a particular wavenumber (labelled k2
∗,∗ in

Figure 4.1(a)), that wavenumber will be unstable when the varying parameter has the

corresponding value. For example, in Figure 4.1(a), the saturation coefficient K is varied

and we can see that k2
1,1 = 2.0816 will be unstable when K = 4 but no other wavenumbers

will be. Similarly in 4.1(b) reaction constant kam is varied, we see that kam = 0.08 or 0.1

will allow just k2
1,1 to be unstable but letting kam = 0.16 leads to wavenumbers k2

0,1, k2
1,1,

k2
2,1 and k2

3,1 all being unstable.

Next, in Figure 4.2 we fix k2 = k2
1,1 = 2.0816 and vary kam,K and d and plot in red

when Re(λ) > 0. This shows the values which may cause a pattern similar to w1
1,1 to

grow. Unless otherwise stated, in these plots other parameter are fixed as: d = 0.1, ka =

0.04, kma = 0.05, kam = 0.8,K = 2.
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(a) The effect of varying K on max(Re(λ))

(b) The effect of varying kam on max(Re(λ))

Figure 4.1: Plots of the maximum real part of the solutions to the dispersal relation against

the wavenumber k2. If Re(λ(k2
m,n)) > 0, we have instability of the wavenumber k2

m,n.
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Figure 4.2: Plot to show the points in the parameter space (kam,K, d) where k2
1,1 is

unstable.

4.6 Numerical simulations of the reaction-diffusion system

In Section 4.5.1 we saw that it was possible to choose parameters to isolate modes. Here we

numerically solve the two equations on the fixed domain and observe modes growing. All

modes can potentially be selected to grow by choosing appropriate conditions. The small

initial perturbations always include a random component and are varied to encourage

different modes to be dominant. Since for each eigenvalue k2
l,n there are m = 2l + 1

eigenfunctions, any one or a combination of two or more of these eigenfunctions may

grow. If necessary, we can force a particular pattern to grow by multiplying the random

component by that eigenfunction or something similar to it.

4.6.1 Excitation of mode w1
1,1

In this example, the actin and myosin concentration solutions will be the negation of each

other with actin concentration highest on one side and myosin concentration highest on

the opposite side. This mode is the first eigenfunction that one might hope to see for the

organisation of actin and myosin in a cell because it is similar to what is often observed in

a moving cell. k2
1,1 = 2.0816 is also the lowest eigenvalue. We can see the growth of this

eigenmode on the left hand side of Figure 4.3. We plot the concentrations of actin a and

myosin m at times t = 0, 1, 175. The initial conditions are a small random perturbation

from a(x) = m(x) = 1. Parameter values are ka = 0.04, kma = 0.05 and kam = 0.12.
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(a) t=0 (b) t=0

(c) t=10 (d) t=10

(e) t=60 (f) t=90

Figure 4.3: Graphical displays of the actin and myosin concentrations i.e. numerical

solutions to the reaction-diffusion system. The same parameter values are used but with

different initial conditions, as described in Table 4.1. On the left w1
1,1 grows while on the

right, w0
2,1 grows.
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Subsection 4.6.1 4.6.2 4.6.2 4.6.3

Figure 4.3 4.3 4.4 4.4

a(x, 0) 1− ran 1 + ran 1 + w2,0(x)× ran 1− w2,0(x)× ran

m(x, 0) 1 + ran 1− ran 1 + w2,0(x)× ran 1− w2,0(x)× ran

ka 0.04 0.04 0.05 0.06

kma 0.05 0.05 0.06 0.09

kam 0.12 0.12 0.07 0.15

Table 4.1: Initial conditions and parameters for simulations in this section.

The simple first mode is not the only organisation which makes sense or shows sim-

ilarities to organisation seen in cells. The cell can protrude in more than one direction

because of actin accumulation at both ends, or deform in many other ways. Alternatively,

myosin could accumulate and ”squeeze” on both sides. Therefore we continue by isolating

other modes. We see that both the parameters and the initial conditions have an effect

on which mode will grow.

4.6.2 Excitation of mode w0
2,1

We see that it is possible to excite the mode w0
2,1, in two different cases, shown in Figures

4.3 and 4.4. In Figure 4.3 the same parameters are used for both simulations but with

different initial conditions. Conversely, in 4.4, the same initial conditions but different

parameter values are used.

4.6.3 Excitation of mode w0
3,1

On the right hand side of Figure 4.4 we see the isolation of w0
3,1. The same initial conditions

are used in Figures 4.4a and 4.4b but reaction constants are different as described in Table

4.1. If random initial conditions are used, for the parameters in the final column, the

resultant pattern is a linear combination of the modes wn3,1 such that n ∈ {−3 : 1 : 3} and

the growth is highly asymmetrical.

4.6.4 Contrast to Chapter 2

One of the key features of the simulations in Chapter 2 is that a pattern quickly grows

but this growth slows to a stop due to the bounding effects of the nonlinear terms, and

we have a spatially inhomogeneous steady state known as a Turing pattern. We do not

observe this slowing down with the kinetics we have chosen, this is likely because the
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(a) t=0 (b) t=0

(c) t=1 (d) t=1

(e) t=10 (f) t=6

Figure 4.4: Graphical displays of the actin and myosin concentrations. Both simulations

have the same initial conditions but on the left reaction constants are chosen to excite the

mode w0
2,1 and one the right for w0

3,1.
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nonlinear terms are not of the appropriate form. Because of this unbounded growth, we

cannot call these Turing patterns as before. The modes are growing towards plus and

minus infinity until the solver can no longer cope with the large numbers. We plot the L2

norm of the difference between time steps in Figure A.1 (page 116) for the Example 4.6.2.

In this, (and other examples in Section 4.6), the difference between successive solutions

grows exponentially. The situation of unbounded growth of a mode is not realistic because

concentrations become negative. Further work into nonlinear analysis of this, and similar

systems, could give insight into biologically plausible kinetics which could produce spatially

inhomogeneous steady states. However when coupled with the force balance equation, the

full system does not give rise to negative concentrations so the full system may still be

realistic.

4.7 Linear stability analysis of full system

So we now can predict when patterns will occur due to diffusion when the domain is

stationary but what movements does this produce? And what effect does this movement

have on the concentrations and distribution of actin and myosin? To address this we

need to analyse the full system (4.5). The full nondimensionalised system, (with general

kinetics), is

∂ã

∂t̃
+ ∇̃ · (ãβ̃)− ∆̃ã− γf(ã, m̃) = 0, (4.13a)

∂m̃

∂t̃
+ ∇̃ · (m̃β̃)− d∆̃m̃− γg(ã, m̃) = 0, (4.13b)

∇̃ ·

[
(µ̃1ε̃t + µ2φ̃tI) + (ε̃+ ν ′φ̃I) + σ(ã)I + c̃m̃I +

p̃(ã)

1 + φ̃
I

]
= 0, (4.13c)

where σ(ã) = ψ̃ã2e−ã/ãsat , ν ′ = ν
1−2ν and p̃(ã) = p̃

(
1 + 2

π δ(l) arctan ã
)
. We choose only

f and g such that system has a steady state at as = 1, ms = 1, us = 0. Given small

variations â, m̂ and û, consider the perturbation from the steady state ã = as + â =

1 + â, m̃ = ms + m̂ = 1 + m̂, ũ = us + û = û. This results in the linear system

∂â

∂t̃
+ ∇̃ · (β̂)− ∆̃â− γfaâ− fmm̂ =0, (4.14a)

∂m̂

∂t̃
+ ∇̃ · (β̂)− d∆̃m̂− γgaâ− gmm̂ =0, (4.14b)

∇̃ ·
[
(µ̃1ε̂t + µ̃2φ̂tI) + (ε̂+ ν ′φ̂I) + âσ′(1)I + cm̂I + p̃(1− φ̂)I + p̃

2

π
δ(l)âI

]
=0. (4.14c)

We now look for solutions of the form

â(x, t) = a∗eλt+ik·x, m̂(x, t) = m∗eλt+ik·x and û(x, t) = u∗eλt+ik·x, (4.15)
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where λ is the growth rate, k is the wave vector, and a∗,m∗ and u∗ are small amplitudes.

eλt+ik·x will cancel and the equations become

λa∗ + λiku∗ + k2a∗ − γfaa∗ − γfmm∗ = 0,

λm∗ + λiku∗ + dk2m∗ − γgaa∗ − γgmm∗ = 0,

−µ̃k2λu∗ − k2(1− ν ′)u∗ + ikσ′(1)a∗ + cikm∗ + p̃k2u∗ + ikp̃
2

π
δ(l)a∗ = 0,

where k = |k| and µ̃ = µ̃1 + µ̃2. We require solutions to be non-trivial and so we obtain

the stability matrix∣∣∣∣∣∣∣∣∣
λ+ k2 − γfa −γfm λik

−γga λ+ dk2 − γgm λik

−ikσ′(1)− ikp̃ 2
π δ(l) −cik µ̃k2λ+ k2(1 + ν ′)− p̃k2

∣∣∣∣∣∣∣∣∣ = 0, (4.17a)

=⇒ (f(λ) :=)µλ3 + a(k2)λ2 + b(k2)λ+ c(k2) = 0, (4.17b)

where a(k2) = k2(1 + d)− γ(fa + gm) + 1 + ν ′ − p− c− (σ′(1) + p̃
2

π
δ(l)), (4.17c)

b(k2) = µ̃(k2 − γfa)(dk2 − γgm) + (1 + ν ′ + p)(k2(1 + d)− γ(fa + gm)) (4.17d)

−c(k2 + γ(−fa + ga)) + (σ′(1) + p̃
2

π
δ(l))(γ(fm + gm)− dk2)− γ2µ̃fmga, (4.17e)

and c(k2) = (1 + ν ′ + p)
(
(k2 − γfa)(dk2 − γgm)− γ2fmga

)
. (4.17f)

Thus f(λ) = 0 (4.17b) is our new dispersal relation and we are concerned with the solutions

λ1,2,3. The sign of the real parts, and the existence of the imaginary parts, of λ1,2,3

determine whether patterns occur, and if they are oscillatory in time and/or space.

4.7.1 Choosing parameters for instability

We can classify instabilities using the real and imaginary parts of the roots of the dispersal

relation (Cross and Hohenberg, 1993; Yang et al., 2002). In Section 4.5, when considering

the two component reaction-diffusion system, we showed the conditions necessary for Tur-

ing instability. Conditions given in equation (4.9b) ensure that we had Im(λ(k) = 0) ∀k

and then it was possible to investigate for which k, Re(λ(k) > 0). In summary, Turing

instability occurs when all λi ∈ R and at least one is positive. This produces stationary

patterns which are inhomogeneous in space.

If we now allow solutions to be complex, we can also encounter patterns which vary

in time. Hopf instability occurs when a pair of solutions, say λ1,2, are contained in C \ R

and Re(λ1,2) > 0, in this case we can see patterns in time and space.
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Figure 4.5: Plot to show maximum real (solid line) and imaginary (dotted line) parts of

the solution to the dispersal relation. The three colours are denote three different values

of c.

Figure 4.6: Plot to show maximum real part of λ as ψ is varied.
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When we consider the full system, the conditions on the positivity of the roots are nu-

merous and the coefficients of the polynomial are burdensome. Therefore, we numerically

find these roots and observe the real and imaginary parts. We found that contractility

due to myosin (c), and due to actin (ψ) are particularly significant for finding unstable

wavenumbers. In Figure 4.5 we plot the real and imaginary parts of the solution against k2

for three different values of c. We can see that when wavenumbers k2 are less than ∼ 8.5,

max
(

Re(λ)
)
> 0 for all three values of c, therefore the wavenumbers will be unstable.

Additionally these wavenumbers will be have time oscillations when c = 10. There are

also intervals of k2 with Hopf instability for all three values of c. In Figure 4.6 we fix other

parameters and vary ψ to see that, just like in Chapter 3 higher values of ψ mean higher

wavenumbers can be excited.

4.7.2 Is diffusion-driven instability necessary for single cell migration?

In the model of George (2012) there is no instability without the force balance equation.

The reaction term used means that, on a stationary domain, the solutions always return

to the equilibrium concentration. Once the force balance equation is incorporated, the

movement of the grid causes instability. In this section we have seen that it is possible to

meet the conditions for diffusion-driven instability, however, in Section 3.6 we observe that

the patterns which occur do not become stationary patterns (in fact they grow without

bound) so are not Turing instabilities. Choosing appropriate kinetics for actin and myosin,

it will be possible to find stationary Turing patterns.

We do not believe it is necessary to have stationary patterns in our biological modelling

because although some steadily moving cells appear to have reasonably constant concen-

trations, this is not always the case. Further, it may be preferable to have conditions such

that there is no instability on stationary domain and that instability comes from the force

balance equation. This would mean that, on a stationary domain the concentrations of

actin and myosin always return to a stable homogeneous equilibrium state rather than

self-organise into patterns.

4.8 Numerical simulations for Model 2

We now present simulations of our full mechanobiochemical model. The aim is to find

organisation of proteins into regions which will cause the cell to move. This organisation

may be caused by diffusion-driven instability, or due to the movement of the cell combined

with the reaction-diffusion equations. The linear stability analysis of Section 4.7 holds true
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Figure 4.7: Graphical displays of the actin and myosin concentrations at time t = 1. These

are numerical solutions to the full system (4.5) using the finite element formulation (A.35),

as described in Section 4.8.1.

close to critical bifurcation points, these include parameters as well as the geometrical

deformation of the cell. As we observed in Section 4.7 the conditions for stability are

more numerous than when simply considering reaction-diffusion equations. In Section

4.7.1 we described that instability can affect patterns in time, space or both. We attempt

to choose parameters so that particular modes will be selected. When we consider longer

time, and therefore far away from equilibrium, linear stability theory no longer holds but

we see significant protrusions and contractions which deform the mesh into many different

shapes. Parameters used are in Table 4.2.

4.8.1 Excitation of mode w1
1,1

We begin with the simplest mode. Choosing parameters ψ = 20, c = −80, ka =

0.04, kma = 0.05 and kam = 0.06 and initial conditions

a(x, 0) = 1 + w1
1,1(x)× ran, m(x, 0) = 1− w1

1,1(x)× ran,

we observe that the mode w1
1,1 is selected for actin and myosin. In Figure 4.7 we plot the

concentrations of actin and myosin at time t = 1. Blue indicates where the concentration

is low, while red indicates that concentration is high. In this case very little deformation

is seen.



91

(a) t=0

(b) t=1

(c) t=6.3

Figure 4.8: Graphical displays of the actin and myosin concentrations, and the displace-

ment at increasing time t, for the conditions described in Section 4.8.2. There is high actin

at two ends, and high myosin in the middle. We then see in (c) that the cell squeezes in

the middle stretches in the two directions of higher actin.
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4.8.2 Cell deformation when w0
2,1 is excited initially

The first large deformation is seen when choosing initial conditions

a(x, 0) = 1 + w0
2,1(x)× ran, m(x, 0) = 1− w0

2,1(x)× ran.

In Figure 4.9 we plot the concentrations of actin and myosin and the norm of the displace-

ment (|u| =
√
u2 + v2 + w2). The cell expands at the two ends where actin concentration

is high and contracts in the middle where myosin concentration is high. So far the results

are visually similar to Model 1, one difference is that there is only a very small volume

increase because the cell is contracting in the middle as well as protruding. The similarity

is because the excited mode for myosin is the inverse of the mode for actin. Other results

when this is the case, (not shown), are very similar to Model 1. Therefore, we investigate

whether more interesting dynamics may occur if we try to excite differing modes for the

two concentrations.

4.8.3 Cell deformation when w1
1,1 and w0

2,1 are excited for actin and

myosin, respectively

While the idea that actin and myosin accumulate in opposite sides is quite well founded,

their concentrations gradients are rarely exactly opposite. Therefore here we investigate

if differing modes can be excited for actin and myosin. Choosing appropriate conditions

we see the effects of actin and myosin in a different way. In Figure 4.9 we plot the

concentrations of actin and myosin and the norm of the displacement when the initial

conditions are

a(x, 0) = 1 + w1
1,1(x)× ran, m(x, 0) = 1 + w0

2,1(x)× ran.

The cell squeezes where there is high myosin concentration and there is a protrusion in

the direction of higher actin. The minimum and maximum in each spatial direction are

shown in Figure 4.10.

4.8.4 Cell deformation when w0
2,1 and w0

1,1 are excited for actin and

myosin, respectively

In Figure 4.11, the initial conditions

a(x, 0) = 1 + w0
2,1 × ran, m(x, 0) = 1 + w0

1,1(x)× ran,
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(a) t=0

(b) t=1

(c) t=9

(d) t=13

Figure 4.9: Graphical displays of the actin and myosin concentrations, and the displace-

ment at increasing time t, for the conditions described in Section 4.8.3. The sphere is

squeezed where there is high myosin and then there is a protrusion in the area of high

actin.
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Figure 4.10: Plot to show the minimum and maximum of x (red), y (blue) and z (green)

for the example in Section 4.8.3 and Figure 4.9. The cell is contracting in the y direction,

expanding slightly in the x direction but significantly in the positive z-direction.

contain same two eigenfunctions as the last example but with different orientations, (w0
1,1

is a rotation of w1
1,1), we observe a quite different deformation. There is high actin con-

centration at the top and bottom of the sphere. Without the effect of myosin one would

expect it to extend in both directions in the same way as in Section 4.8.2, however there

is high myosin at the bottom so the cell only protrudes upwards. Then at t = 5 the

protrusion slows and there is a contraction at the bottom where myosin concentration is

high. There is another subsequent expansion and contraction with the actin and myosin

concentrations reorganising to be is higher nearer the surface except when the cell is con-

tracting, when the opposite is true, this is displayed in Figure 4.12. Figure 4.13b shows

the translation of the cell and Figure 4.13a shows the change in length.

4.8.5 Cell deformation when w0
1,1 and w0

3,1 are excited for actin and

myosin, respectively

Next, we begin with initial conditions

a(x, 0) = 1 + w1
1,1(x)× ran, m(x, 0) = 1 + w0

3,1(x)× ran,

which leads to a protrusion in the area with highest actin which is pulling the cell in the

negative z-direction. At the same time there is inward movement in areas of high myosin.

The cell has translated in the negative z-direction and this is plotted in Figure 4.14, and

the change in volume is illustrated in Figure 4.15.
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(a) t=0

(b) t=5

(c) t=20

(d) t=29

(e) t=36

Figure 4.11: Graphical descriptions of the solutions to simulations as described in Section

4.8.4. The cell expands and contracts twice, this can be seen more clearly in Figure 4.13.

The concentration of myosin inside the sphere is shown in Figure 4.12.
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(a) t=5 (b) t=20 (c) t=29 (d) t=36

Figure 4.12: Graphical representations of solutions for myosin shown in Figure 4.11 with a

cut-through to see the behaviour in the bulk. When the cell is expanded the concentration

is highest and the edge and later when it is contracted it is highest at the centre. This is

also seen in a similar, slightly less pronounced way in the actin concentration.

(a) Length of cell in z-direction (b) Translation the centre of the cell in z-direction

Figure 4.13: Plots to illustrate how the cell expands, contracts and translates in Figure

4.11. (Example 4.8.4).
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(a) t=0

(b) t=0.1

(c) t=2

(d) t=7.1

Figure 4.14: Graphical displays of the solutions with conditions as described in Section

4.8.5. There is contraction in areas of high myosin, actin accumulates in areas of high

curvature and the cell protrudes where there is high actin.
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(a) Bounds on z (b) Volume of the cell

Figure 4.15: Plotting of the range demonstrates that there is a translation followed an

expansion in the z-direction. The cell is also being squeezed in the x- and y-direction so

we do not observe a significant volume increase. (Example 4.8.5 and Figure 4.14).

4.8.6 Cell deformation when w1
1,1 and w0

4,1 are excited for actin and

myosin, respectively

In another example of mixed modes, we start with

a(x, 0) = 1 + w1
1,1(x)× ran, m(x, 0) = 1 + w0

4,1(x)× ran.

This leads to the expansion in Figure 4.16. The cell contracts inwards at areas of high

myosin concentration and protrudes in the remaining areas, there are large protrusions in

two opposing directions, the largest being the direction where actin was initially highest,

subsequently, actin concentrates in areas of high curvature and protrudes further.

Section 4.8.2 4.8.3 4.8.4 4.8.5 4.8.6

Figure 4.8 4.9 4.11 4.14 4.16

ψ 200 20 150 100 100

c -40 -80 -40 -80 -100

ka 0.04 0.4 0.04 0.4 0.09

kma 0.05 0.5 0.05 0.05 0.09

kam 0.06 0.12 0.06 0.07 0.15

Table 4.2: Parameters for simulations in this section.

4.9 Summary

Our model revolves around an equation which balances elasticity, viscosity, contractility

and pressure. Connected to this are two reaction-diffusion equations for the concentrations

of F-actin and bound myosin.
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(a) t=0

(b) t=1

(c) t=67

Figure 4.16: Graphical displays of the solutions with conditions as described in Section

4.8.6. We see protrusions in a similar way to in Figure 4.14 but in two directions.
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In this chapter we have presented a mathematical analysis of this model using linear

stability theory. The process shows us which parameters we may choose in order for

particular patterns to emerge. We outlined conditions on the parameters that will allow

for instability and predicted the growth of modes which are defined as the eigenfunctions

of the Laplacian on the domain.

This allows us to validate the numerical methods, outlined in Appendix A, we used

produce the simulations. This is done by checking the numerical results are in agreement

with linear stability theory, close to bifurcation points.

Our linear stability analysis is only valid when the shape is close to the sphere and will

not tell us what will happen far away from this. Therefore we must construct a numerical

method to provide more insight into the behaviour of the system.

In this chapter we have presented two collections of simulations. In the first, we solve

the acto-myosin reaction-diffusion system on the stationary sphere, in the absence of me-

chanical properties. This verified the existence of diffusion-driven instability as predicted

in Section 4.5. In the second we solve the full system, Model 2, which includes both

biomechanical properties and biochemical reactions. Again, we see instability. Initally

the results appear very similar to Model 1, however when differing modes are prompted

for myosin and actin, respectively, the simulations have new attributes and details which

were not possible to produce with the previous model.

4.9.1 Main observations from numerical results

Our numerical simulations showed that the new mechanobiochemical model extends natu-

rally to three-dimensions and the addition of myosin allows some symmetries to be broken

and more striking deformations are seen. In summary the main observations are:

• In the same way as in previous models of this nature, we see outward movement in

areas of high actin concentration. Also, where there is higher curvature, higher actin

concentration is observed.

• Outward movement due to high actin concentration is halted in areas with high

myosin concentration.

• If there is low actin and high myosin, we can see negative curvature.

• With the addition of an equation for myosin, identifying bifurcation parameters

becomes more complicated than in the previous model. The contractility due to

myosin, c, strongly effects the speed of the deformation while the reaction constants
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ka, kma and kam, and the diffusion coefficients Da and Dm play a part in which

mode the actin and myosin concentrations will arrange into. It is not as possible to

isolate single modes just by picking parameter values, however, choosing appropriate

initial conditions enhances the possibility of selecting the desired modes.

• In all our modelling framework, volume conservation is not modelled and numerical

simulations exhibit cases where slight volume increase or decrease occurs. This

suggests that a model for volume conservation or constraint would be necessary and

this forms part of our future studies.

• Initial conditions are one of the most significant factors for the progression of the

solutions.
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Chapter 5

Conclusion and future directions

5.1 Thesis Summary

Ever since scientists discovered that all living things are made of cells, they have puzzled

over the mechanisms of cell movement. By studying this movement we can help explain

such diverse concepts as embryogenesis, wound healing and cancer metastasis. In this

thesis we have discussed the mechanisms involved and plausible mathematical models of

a single cell moving.

Most models consider only two dimensions because of computational constraints and,

until recently, two dimensions was all that could be observed under a microscope. Because

of advances in technology it is now possible to observe cells moving in three dimensions

over time (Petrie et al., 2012; Friedl et al., 2012). The movements that are seen are much

more varied and complex, therefore, the new challenge is understanding three dimensional

movement. Laboratory experiments are still costly and time consuming, therefore, if

computer programs are sufficiently developed they may be able to work alongside these

experiments to accelerate advances and reduce costs.

The model we employ includes an equation which balances viscoelastic, contractile

and pressure forces within the cell. Actin and myosin are key factors in the contractile

and pressure forces so we also model these with reaction-diffusion equations. Since these

equations are such a large part of our model we have discussed our novel method for

parameter identification through mode isolation for such reaction-diffusion systems on

3-D geometries.

We begin our extension of the cytomechanical model (George, 2012; George et al.,

2013; Madzvamuse and George, 2013) by extending it from two to three dimensions. This

model consists of a force balance equation and a single reaction-diffusion equation for
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actin. We subsequently add a second reaction-diffusion equation for myosin.

All these systems of partial differential equations are too complex to solve analytically.

We perform linear stability analysis to analyse some behaviour of the systems and identify

important parameters. This of course only holds close to bifurcation points therefore we

need a numerical method to give further insight. The linear stability analysis allows us to

verify the numerical method. We use the finite element method to solve our systems of

equations numerically. For our purposes, it is the most efficient numerical method because

of its ease in dealing with complex and evolving domains.

5.2 Key contributions

Unlike the previous study of George (2012) we used the software library deal.II (Bangerth

et al., 2016) to implement the finite element method. The key difference between this

software and the previously used ALBERTA (Schmidt et al., 2007) is that the elements

are quadrilaterals rather than triangles. The implementation is therefore different but we

were able to appropriately replicate the previous results of cytomechanical model on a unit

disk. Once this new implementation was verified we extended the model substantially in

several ways:

• The two-dimensional formulation was extended to three dimensions.

• Unlike previous studies of this modelling framework, for the first time, we consid-

ered a second reaction-diffusion model to describe how myosin interacts with actin

and how it contributes cell contraction during cell migration. To take into account

contraction, an additional linear tensor term was added to the viscoelastic model.

In the absence of experimental observations, we postulated hypothetical reaction

kinetics describing the interaction between actin and myosin.

• As a first step in understanding solution behaviour in three dimensions of the full

model, linear stability analysis close to bifurcation points was carried out and ap-

propriate key parameter values were identified.

• An evolving finite element method was implemented in multi-dimensions.

5.2.1 Biological applicability

Three dimensional cells deform into many unusual and irregular shapes, the addition of

myosin to the model led to more irregular deformations. In addition, in one example
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we saw a repeated expansion and contraction which can sometimes be seen in migrating

cells (Friedl, 2004; Noguchi et al., 2015; Zhu and Mogilner, 2016). Collaborations with

experimentalists will be important to determine key parameter values and to see if the

model performs in a quantitatively and qualitatively similar way to experimental data.

5.3 Future directions

Our research suggests various research questions which are still to be addressed and could

be incorporated into extensions of the model:

• New experimentally driven reaction kinetics between actin and myosin can readily

be included into the modelling and computational framework. Furthermore, interac-

tions between three or more molecular species can also be included into the modelling

and computational framework, however, analysis of such models becomes very diffi-

cult. Example of interactions between multi-molecular species include actin, myosin,

GEF, Rho, Rac and CDC42 (Simon et al., 2013; Nobes and Hall, 1995; Hall, 1998;

Holmes et al., 2016).

• In our simulations we have significant shape deformations which often lead to dis-

torted cells. Therefore using or formulating re-meshing strategies would lead to more

accurate, stable and longer running simulations.

• In all the current and previous models, cell volume conservation is not maintained.

The introduction of a mechanism for volume conservation would help rule out unre-

alistic large volume increases or decreases (Elliott et al., 2012).

• Many models theorise that adhesions are key for cell movement; in this framework

it is possible to model adhesions to allow the cell to interact with either other cells

(hence cell-to-cell interactions or cell-obstacle interactions) or to the extracellular

matrix (in both two and three dimensions). Since adhesions occur at the cell cortex

or membrane/surface, a bulk-surface modelling framework would be a natural candi-

date approach (MacDonald et al., 2016; Elliott and Ranner, 2013; Madzvamuse and

Chung, 2016; Rätz and Röger, 2014; Cusseddu et al., 2018). Within this coupled

bulk-surface approach the role of curvature, geometry, and surface tension can be

easily studied both theoretically and computationally.
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Appendix A

Finite element formulation

We introduced the finite element in Section 1.6 and in this appendix we outline exactly

the formulations used for the numerical simulations presented in this thesis. The finite

element formulation is obtained by first deriving a weak formulation, and then discretising

in space and time. This transforms the continuous and complex model into a system of

algebraic equations which can by solved computationally to give approximate solutions.

A.1 Finite element formulation for the reaction-diffusion

equations in Chapter 2

A.1.1 Weak formulation

In general, a weak formulation does not hold absolutely but allows us to find a weak

solution with respect to a test function. To find the weak formulation, we take the usual

route and multiply by test functions φ ∈ H1(Ω), where H1(Ω) is a Hilbert space, as defined

in Section 2.2.2, and integrate over the domain. Hence, we write the weak formulation of

(2.20) as follows: Find a,m ∈ L2(0, T ;H1(Ω)) such that for all φ, ψ ∈ H1(Ω) we have
∫

Ω atφ+
∫

Ω∇a · ∇φ = γ
∫

Ω f(a,m)φ,∫
Ωmtψ + d

∫
Ω∇m · ∇ψ = γ

∫
Ω g(a,m)ψ,

x ∈ Ω, t > 0. (A.1)

We assume the well posedness of the weak formulation above.

A.1.2 Spatial discretisation

We now wish to define the problem at discrete points in space. We define the compu-

tational domain Ωh by requiring that Ωh is a polyhedral approximation to Ω. Further-

more, we define Th to be a triangulation of Ωh made up of non-degenerate elements κi,
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i.e., Th =
⋃
i{κi}. Finally, we define the finite element space Vh := {vh ∈ C0(Ωh) :

vh|κ is linear}. The semidiscrete (space discrete) finite element approximation to (A.1)

seeks a pair (ah,mh) ∈ V 2
h such that∫

Ωh

∂ah
∂t

φ+

∫
Ωh

∇ah · ∇φ = γ

∫
Ωh

Ih [f(ah,mh)]φ, (A.2a)∫
Ωh

∂mh

∂t
ψ + d

∫
Ωh

∇mh · ∇ψ = γ

∫
Ωh

Ih [g(ah,mh)]ψ, (A.2b)

∀φ, ψ ∈ Vh, where we use the Lagrange interpolant Ih of the initial data into Vh as initial

conditions for the scheme. Letting Nh be the total number of degrees of freedom of the

nodes for the finite element discretisation, we can write

ah =

Nh∑
i=1

αiφi, mh =

Nh∑
i=1

µiφi, where φi(xj , t) ∈ Vh : φi =


1 if i = j,

0 if i 6= j.

(A.3)

In order to illustrate a concrete example of the scheme, we focus on the reaction-diffusion

system with Schnakenberg kinetics (2.45). The finite element approximation (A.2a) with

the Schnakenberg kinetics can be written in matrix-vector form as follows

Mαt + Aα = γ
[
aH−Mα+ Mα2µ

]
, (A.4a)

Mµt + dAµ = γ
[
bH−Mα2µ

]
, (A.4b)

where α = (α1, ..., αNh
) and µ(µ1, ..., µNh

) are the coefficient vectors of the finite element

functions ah and mh respectively, α2µ is a pointwise product, and M and A are mass and

stiffness matrices and H is a load vector with entries given by

Mi,j =

∫
Ωh

φiφj , Ai,j =

∫
Ωh

∇φi · ∇φj , Hj =

∫
Ωh

φj , i = 1, ..., Nh. (A.5)

A.1.3 Temporal discretisation

For the temporal discretisation we employ an IMEX method (Lakkis et al., 2013; Madzva-

muse, 2006; Ruuth, 1995) in which the diffusive term is treated implicitly and the reaction

terms are treated explicitly, for simplicity we employ a uniform time step τ . Introducing

the shorthand for a time discrete sequence of functions, fn = f(tn), the fully discrete

scheme we employ reads, for n = 0, 1, . . . , given (anh,m
n
h) ∈ V 2

h find (an+1
h ,mn+1

h ) ∈ V 2
h

such that, ∀φ, ψ ∈ Vh,
∫

Ωh

1
τ

(
an+1
h − anh

)
φ+

∫
Ωh
∇an+1

h · ∇φ = γ
∫

Ωh
Ih [f(anh,m

n
h)]φ,∫

Ωh

1
τ

(
mn+1
h −mn

h

)
ψ + d

∫
Ωh
∇mn+1

h · ∇ψ = γ
∫

Ωh
Ih [g(anh,m

n
h)]ψ,

(A.6)
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where we use Lagrange interpolant of the initial data into Vh as initial conditions for the

scheme. This leads us to the following matrix vector form(
1

τ
M + A

)
αn+1 = γ

[
aH−Mαn + M(αn)2µn

]
+

1

τ
Mαn, (A.7a)(

1

τ
M + dA

)
µn+1 = γ

[
bH−M(αn)2µn

]
+

1

τ
Mµn. (A.7b)

Since we are interested in convergence to a spatially inhomogeneous steady state, for the

stopping criteria we use the L2 norm of the approximate time-derivative of the discrete

solution, stopping the computation if this decreases below a tolerance, usually 10−9 (see

Figure 2.3 on page 45).

We use a very similar formulation for the reaction-diffusion equations in Chapters 3

and 4 but there are differences due to including a flow term. The full formulation is

discussed in the next section.

A.2 Finite element formulation for the full system

A.2.1 Derivation of the weak formulation

To begin, the force balance is separated into a system of three partial differential equa-

tions representing the three space dimensions. This clarifies the derivation of the weak

formulation. Since σv,σe,σc and σp are all stress tensors (defined in section 3.3) we can

write them in matrix form. As a reminder they are:

σv = µ1
∂ε

∂t
+ µ2

∂φ

∂t
I, σe =

E

1 + ν
(ε+

ν

1− 2ν
φI),

σc = (ψa2e−a/asat + cm)I, σp =
p

1 + φ

(
1 +

2

π
δ(l) arctan a

)
I.

In three dimensions, strain and dilation are given by

ε(u) :=
1

2
(∇u + (∇u)T ) =


∂u
∂x

1
2( ∂v∂x + ∂u

∂y ) 1
2(∂u∂z + ∂w

∂x )

1
2( ∂v∂x + ∂u

∂y ) ∂v
∂y

1
2(∂v∂z + ∂w

∂y )

1
2( ∂v∂x + ∂u

∂y ) 1
2(∂w∂y + ∂v

∂z ) ∂w
∂z



and φ(u) :=
∂u

∂x
+
∂v

∂y
+
∂w

∂z
.
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It follows then that we can write the stress tensors in three-dimensional tensor-matrix

form:

σv =


(µ1 + µ2)∂u̇∂x + µ2(∂v̇∂y + ∂ẇ

∂z ) µ1

2 ( ∂v̇∂x + ∂u̇
∂y ) µ1

2 (∂ẇ∂x + ∂u̇
∂z )

µ1

2 ( ∂v̇∂x + ∂u̇
∂y ) µ2(∂u̇∂x + ∂ẇ

∂z ) + (µ1 + µ2)∂v̇∂y
µ1

2 (∂v̇∂z + ∂ẇ
∂y )

µ1

2 (∂ẇ∂x + ∂u̇
∂z ) µ1

2 (∂v̇∂z + ∂ẇ
∂y ) (µ1 + µ2)∂ẇ∂z + µ2(∂u̇∂x + ∂v̇

∂y )

 ,

σe =
E

1− ν



∂u
∂x + ν′(∂u∂x + ∂v

∂y + ∂w
∂z ) 1

2 ( ∂v∂x + ∂u
∂y ) 1

2 (∂u∂z + ∂w
∂x )

1
2 ( ∂v∂x + ∂u

∂y ) ∂v
∂y + ν′(∂u∂x + ∂v

∂y + ∂w
∂z ) 1

2 (∂v∂z + ∂w
∂y )

1
2 (∂w∂x + ∂u

∂z ) 1
2 (∂v∂z + ∂w

∂y ) ∂w
∂z + ν′(∂u∂x + ∂v

∂y + ∂w
∂z )

 ,

σc =


ψa2e−a/asat 0 0

0 ψa2e−a/asat 0

0 0 ψa2e−a/asat

 ,

σp =


p

1+φ

(
1 + 2

π δ(l) arctan a
)

0 0

0 p
1+φ

(
1 + 2

π δ(l) arctan a
)

0

0 0 p
1+φ

(
1 + 2

π δ(l) arctan a
)

 .

Substituting these values into ∇ · (σv + σe + σc + σp) = 0 gives us three equations

∂

∂x

(
D11

∂u̇

∂x
+ D12(

∂v̇

∂y
+
∂ẇ

∂z
) + C11

∂u

∂x
+ C12

(
∂v

∂y
+
∂w

∂z

))
+
∂

∂y

(
D33(

∂v̇

∂x
+
∂u̇

∂y
) + C33(

∂v

∂x
+
∂u

∂y
)

)
+

∂

∂z

(
D33(

∂ẇ

∂x
+
∂u̇

∂z
) + C33(

∂w

∂x
+
∂u

∂z
)

)
= −∂f

∂x
,

∂

∂x

(
D33(

∂v̇

∂x
+
∂u̇

∂y
) + C33(

∂v

∂x
+
∂u

∂y
)

)
+

∂

∂y

(
D11

∂v̇

∂y
+ D12(

∂u̇

∂x
+
∂ẇ

∂z
)

+C11
∂v

∂y
+ C12(

∂u

∂x
+
∂w

∂z
)

)
+

∂

∂z

(
D33(

∂ẇ

∂y
+
∂ẇ

∂z
) + C33(

∂w

∂z
+
∂v

∂z
)

)
= −∂f

∂y
,

∂

∂x

(
D33(

∂ẇ

∂x
+
∂u̇

∂z
) + C33(

∂w

∂x
+
∂u

∂z
)

)
+

∂

∂y

(
D33(

∂v̇

∂z
+
∂ẇ

∂y
) + C33(

∂v

∂z
+
∂w

∂y
)

)
+
∂

∂z

(
D11

∂ẇ

∂z
+ D12(

∂v̇

∂y
+
∂u̇

∂x
) + C11

∂w

∂z
+ C12(

∂u

∂x
+
∂v

∂y
)

)
= −∂f

∂z
,
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where

f =

[
p

1 + φ

(
1 +

2

π
δ(l) arctan a

)
+ ψa2e−a/asat

]
, (A.13a)

D11 = µ1 + µ2, D12 = µ2, D33 =
µ1

2
, (A.13b)

C11 =
E(1− ν)

(1 + ν)(1− 2ν)
, C12 =

Eν

(1 + ν)(1− 2ν)
and C33 =

E

2(1 + ν)
. (A.13c)

To find the weak formulation like in Section A.1, we multiply by a test function φ̂(x, t) ∈
H1(Ωt), and integrate over the domain. This takes into account Green’s formula and

the boundary conditions. The boundary condition σv · n = σe · n = 0 means that

boundary term disappears during integration. The weak formulation is a u(x, t), v(x, t)

and w(x, t) ∈ H1(Ωt), t ∈ I such that∫
Ωt

∂φ̂

∂x

(
D11

∂u̇

∂x
+ D12(

∂v̇

∂y
+
∂ẇ

∂z
) + C11

∂u

∂x
+ C12

(
∂v

∂y
+
∂w

∂z

))
+

∂φ̂

∂y

(
D33(

∂v̇

∂x
+
∂u̇

∂y
) + C33(

∂v

∂x
+
∂u

∂y
)

)
+
∂φ̂

∂z

(
D33(

∂ẇ

∂x
+
∂u̇

∂z
) + C33(

∂w

∂x
+
∂u

∂z
)

)
dΩt

= −
∫
Ωt

∂φ̂

∂x
fdΩt +

∫
∂Ωt

φ̂fn1ds,

∫
Ωt

∂φ̂

∂x

(
D33(

∂v̇

∂x
+
∂u̇

∂y
) + C33(

∂v

∂x
+
∂u

∂y
)

)
+
∂φ̂

∂y

(
D11

∂v̇

∂y
+ D12(

∂u̇

∂x
+
∂ẇ

∂z
)+

C11
∂v

∂y
+ C12(

∂u

∂x
+
∂w

∂z
)

)
+
∂φ̂

∂z

(
D33(

∂ẇ

∂y
+
∂ẇ

∂z
) + C33(

∂w

∂z
+
∂v

∂z
)

)
dΩt

= −
∫
Ωt

∂φ̂

∂y
fdΩt +

∫
∂Ωt

φ̂fn2ds,

∫
Ωt

∂φ̂

∂x

(
D33(

∂ẇ

∂x
+
∂u̇

∂z
) + C33(

∂w

∂x
+
∂u

∂z
)

)
+
∂φ̂

∂y

(
D33(

∂v̇

∂z
+
∂ẇ

∂y
) + C33(

∂v

∂z
+
∂w

∂y
)

)
+

∂φ̂

∂z

(
D11

∂ẇ

∂z
+ D12(

∂v̇

∂y
+
∂u̇

∂x
) + C11

∂w

∂z
+ C12(

∂u

∂x
+
∂v

∂y
)

)
dΩt

= −
∫
Ωt

∂φ̂

∂z
fdΩt +

∫
∂Ωt

φ̂fn3ds.

Since ∂f
∂x ,

∂f
∂y and ∂f

∂z are difficult to evaluate, we have used identities derived from the

gradient theorem to write the weak form as above. In other words we have used that∫
Ωt

∂fj
∂x

φ̂dΩt = −
∫

Ωt

∂φ̂

∂x
fjdΩt +

∫
∂Ωt

φ̂fjnjds, (A.15)

for j = 1, 2, 3, where x can also be substituted by y and z. n1, n2, n3 are the direction

components of the outward unit vector n normal to ∂Ωt.

Next we want to find the weak formulation of the reaction-diffusion equations which

are given as

∂a

∂t
+∇ · (aβ)−Da∆a = f(a,m),

∂m

∂t
+∇ · (mβ)−Dm∆m = g(a,m). (A.16)
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We apply the product rule and convert to the material derivative (defined as Da
Dt = ∂a

∂t +

a(∇ · β), in Reddy (1993)). This gives

Da

Dt
−Da∆a+ a(∇ · β) = f(a,m),

Dm

Dt
−Dm∆m+m(∇ · β) = g(a,m).

Now continuing as with the force balance equation, we multiply by a test function ψ̂(x, t) ∈

H1(Ωt) and integrate over the domain∫
Ωt

(
Da

Dt
+ a(∇ · β)

)
ψ̂ − (Da∆a)ψ̂ dΩt =

∫
Ωt

f(a,m)ψ̂ dΩt,∫
Ωt

(
Dm

Dt
+m(∇ · β)

)
ψ̂ − (Dm∆m)ψ̂ dΩt =

∫
Ωt

g(a,m)ψ̂ dΩt.

The terms (Da∆a)ψ̂ and (Dm∆m)ψ̂ can integrated by parts (applying the boundary

condition n · ∇a = n · ∇m = 0) and for the remaining part of the left hand side we can

use Reynolds transport theorem which is given by:

Theorem 2. (Reynolds Transport Theorem) Let g(x, t) be a scalar function defined on

Ωt and β be a flow velocity field then

∂

∂t

∫
Ωt

gdΩt =

∫
Ωt

(
Dg

Dt
+ g∇ · β

)
. (A.19)

A proof of this theorem can be found in Madzvamuse (2000)

This means the weak formulation can be written as: Find a(x, t), m(x, t) ∈ H1(Ωt), t ∈ I

such that

∂

∂t

∫
Ωt

aψ̂dΩt +

∫
Ωt

(Da∇a · ∇ψ̂)dΩt =

∫
Ωt

(f(a,m)ψ̂ + a
Dψ̂

Dt
) dΩt, (A.20a)

∂

∂t

∫
Ωt

mψ̂dΩt +

∫
Ωt

(Dm∇m · ∇ψ̂)dΩt =

∫
Ωt

(g(a,m)ψ̂ +m
Dψ̂

Dt
) dΩt, (A.20b)

for all ψ̂(x, t) ∈ H1(Ωt).

A.2.2 Space discretisation

To discretise in space, we define the computational domain Ωh,t as a polyhedral approxi-

mation to Ωt, Th,t the discretisation of Ωh,t made up of non-degenerate elements κi and

the finite element space Vh(t) := {vh ∈ C0(Ωt) : vh|κ is linear}. Thus the space-discrete
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problem is to find uh(x, t), vh(x, t), wh(x, t), ah(x, t), mh(x, t) ∈ Vh(t), t ∈ I, such that∫
Ωh,t

∂φ̂

∂x

(
D11

∂u̇h

∂x
+ D12(

∂v̇h
∂y

+
∂ẇh

∂z
) + C11

∂uh

∂x
+ C12

(
∂vh
∂y

+
∂wh

∂z

))
+
∂φ̂

∂y

(
D33(

∂v̇h
∂x

+
∂u̇h

∂y
)

+ C33(
∂vh
∂x

+
∂uh

∂y
)

)
+
∂φ̂

∂z

(
D33(

∂ẇh

∂x
+
∂u̇h

∂z
) + C33(

∂wh

∂x
+
∂uh

∂z
)

)
dΩt

= −
∫
Ωh,t

∂φ̂

∂x
fdΩh,t +

∫
∂Ωh,t

φ̂fn1ds,

∫
Ωh,t

∂φ̂

∂x

(
D33(

∂v̇h
∂x

+
∂u̇h

∂y
) + C33(

∂vh
∂x

+
∂uh

∂y
)

)
+
∂φ̂

∂y

(
D11

∂v̇h
∂y

+ D12(
∂u̇h

∂x
+
∂ẇh

∂z
)

+ C11
∂vh
∂y

+ C12(
∂uh

∂x
+
∂wh

∂z
)

)
+
∂φ̂

∂z

(
D33(

∂ẇh

∂y
+
∂ẇh

∂z
) + C33(

∂wh

∂z
+
∂vh
∂z

)

)
dΩh,t

= −
∫
Ωh,t

∂φ̂

∂y
fdΩh,t +

∫
∂Ωh,t

φ̂fn2ds,

∫
Ωh,t

∂φ̂

∂x

(
D33(

∂ẇh

∂x
+
∂u̇h

∂z
) + C33(

∂wh

∂x
+
∂uh

∂z
)

)
+
∂φ̂

∂y

(
D33(

∂v̇h
∂z

+
∂ẇh

∂y
) + C33(

∂vh
∂z

+
∂wh

∂y
)

)
+
∂φ̂

∂z

(
D11

∂ẇh

∂z
+ D12(

∂v̇h
∂y

+
∂u̇h

∂x
) + C11

∂wh

∂z
+ C12(

∂uh

∂x
+
∂vh
∂y

)

)
dΩh,t

= −
∫

Ωh,t
∂φ̂

∂z
fdΩh,t +

∫
∂Ωh,t

φ̂fn3ds,

for all φ̂ ∈ Vh(t), and

∂

∂t

∫
Ωh,t

ahψ̂dΩh,t +

∫
Ωh,t

(Da∇ah · ∇ψ̂)dΩh,t =

∫
Ωh,t

(Ih(f(ah,mh))ψ̂ + ah
Dψ̂

Dt
) dΩh,t,

∂

∂t

∫
Ωh,t

mhψ̂dΩh,t +

∫
Ωh,t

(Dm∇mh · ∇ψ̂)dΩh,t =

∫
Ωh,t

(Ih(g(ah,mh))ψ̂ +mh
Dψ̂

Dt
) dΩh,t.

for all ψ̂ ∈ Vh(t). We can then express uh, vh, wh, ah and mh in terms of the linear basis

functions:

uh =
nde∑
j=1

Ujφj , vh =
nde∑
j=1

Vjφj , wh =
nde∑
j=1

Wjφj , ah =
nde∑
j=1

αjφj and mh =
nde∑
j=1

µjφj .

(A.23)
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This means that we are left with equations which contain only simple functions and their

derivatives and point values for our variables and these are of the form∫
Ωh,t

(
D11

∂φ̂

∂x

∂φj

∂x

dUj

dt
+ D12

(
∂φ̂

∂x

∂φj

∂y

dVj

dt
+
∂φ̂

∂x

∂φj

∂z

dWj

dt

)
+ C11

∂φ̂

∂x

∂φj

∂x
Uj + C12

(
∂φ̂

∂x

∂φj

∂y
Vj

+
∂φ̂

∂x

∂φj

∂z
Wj

)
+ D33

(
∂φ̂

∂y

∂φj

∂x

dVj

dt
+
∂φ̂

∂y

∂φj

∂y

dUj

dt

)
+ C33

(
∂φ̂

∂y

∂φj

∂x
Vj +

∂φ̂

∂y

∂φj

∂y
Uj

)
+ D33

(
∂φ̂

∂z

∂φj

∂x

dWj

dt

+
∂φ̂

∂z

∂φj

∂z

dUj

dt

)
+ C33

(
∂φ̂

∂z

∂φj

∂x
Wj +

∂φ̂

∂z

∂φj

∂z
Uj

))
dΩt = −

∫
Ωh,t

∂φ̂

∂x
fdΩh,t +

∫
∂Ωh,t

φ̂fin1ds,

∫
Ωh,t

(
D33

(
∂φ̂

∂x

∂φj

∂x

dVj

dt
+
∂φ̂

∂x

∂φj

∂y

dUj

dt

)
+ C33

(
∂φ̂

∂x

∂φj

∂x
Vj +

∂φ̂

∂x

∂φj

∂y
Uj

)
+ D11

∂φ̂

∂y

∂φj

∂y

dVj

dt
+

D12

(
∂φ̂

∂y

∂φj

∂x

dUj

dt
+
∂φ̂

∂y

∂φj

∂z

dWj

dt

)
+ C11

∂φ̂

∂y

∂φj

∂y
Vj + C12

(
∂φ̂

∂y

∂φj

∂x
Uj +

∂φ̂

∂y

∂φj

∂z
Wj

)
+ D33

(
∂φ̂

∂z

∂φj

∂y

dWj

dt

+
∂φ̂

∂z

∂φj

∂z

dWj

dt

)
+ C33

(
∂φ̂

∂z

∂φj

∂z
Wj +

∂φ̂

∂z

∂φj

∂z
Vj

))
dΩh,t = −

∫
Ωh,t

∂φ̂

∂y
fdΩh,t +

∫
∂Ωh,t

φ̂fin2ds,

∫
Ωh,t

(
D33

(
∂φ̂

∂x

∂φj

∂x

dWj

dt
+
∂φ̂

∂x

∂φj

∂t

dUj

dt

)
+ C33

(
∂φ̂

∂x

∂φj

∂x
Wj +

∂φ̂

∂x

∂φj

∂z
Uj

)
+ D33

(
∂φ̂

∂y

∂φj

∂z

dVj

dt

+
∂φ̂

∂y

∂φj

∂y

dWj

dt

)
+ C33

(
∂φ̂

∂y

∂φj

∂z
Vj +

∂φ̂

∂y

∂φj

∂y
Wj

)
+ D11

∂φ̂

∂z

∂φj

∂z

dWj

dt
+ D12

(
∂φ̂

∂z

∂φj

∂y

dVj

dt
+
∂φ̂

∂z

∂φj

∂x

dUj

dt

)
+C11

∂φ̂

∂z

∂φj

∂z
Wj + C12

(
∂φ̂

∂z

∂φj

∂x
Uj +

∂φ̂

∂z

∂φj

∂y
Vj

)
dΩh,t = −

∫
Ωh,t

∂φ̂

∂z
f

)
dΩh,t +

∫
∂Ωh,t

φ̂fin3ds.

The same is done in the reaction-diffusion equations, and we additionally use the transport

property of basis functions,
(
Dψ̂
Dt = 0

)
which is demonstrated in Dziuk and Elliott (2007)

and George (2012), to obtain

∂

∂t

∫
Ωh,t

αjφjψ̂dΩh,t +

∫
Ωh,t

(Daαj∇φj · ∇ψ̂)dΩh,t =

∫
Ωh,t

Ih(f(αj , µj))φjψ̂ dΩh,t,

∂

∂t

∫
Ωh,t

µjφjψ̂dΩh,t +

∫
Ωh,t

(Dmµj∇φj · ∇ψ̂)dΩh,t =

∫
Ωh,t

Ih(g(αj , µj))φjψ̂ dΩh,t.

Hence, the force balance equations can be written in block matrix-vector form
A11 A12 A13

[A12]T A22 A23

[A13]T [A23]T A33




∂U
∂t

∂V
∂t

∂W
∂t

+


B11 B12 B13

[B12]T B22 B23

[B13]T [B23]T B33




U

V

W

 =


F1

F2

F3

 , (A.26)
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where {U(t)} = (U1(t), ...Unde), {V(t)} = (V1(t), ...Vnde) and:

A11
ij (t) :=

∫
Ωh,t

D11
∂φi

∂x

∂φj

∂x
+ D33

(
∂φi

∂y

∂φj

∂y
+
∂φi

∂z

∂φj

∂z

)
dΩh,t,

A22
ij (t) :=

∫
Ωh,t

D33

(
∂φi

∂x

∂φj

∂x
+
∂φi

∂z

∂φj

∂z

)
+ D11

∂φi

∂y

∂φj

∂y
dΩh,t,

A33
ij (t) :=

∫
Ωh,t

D33

(
∂φi

∂x

∂φj

∂x
+
∂φi

∂y

∂φj

∂y

)
+ D11

∂φi

∂z

∂φj

∂z
dΩh,t,

B11
ij (t) :=

∫
Ωh,t

C11
∂φi

∂x

∂φj

∂x
+ C33

(
∂φi

∂y

∂φj

∂y
+
∂φi

∂z

∂φj

∂z

)
dΩh,t,

B22
ij (t) :=

∫
Ωh,t

C33

(
∂φi

∂x

∂φj

∂x
+
∂φi

∂z

∂φj

∂z

)
+ C11

∂φi

∂y

∂φj

∂y
dΩh,t,

B33
ij (t) :=

∫
Ωh,t

C33

(
∂φi

∂x

∂φj

∂x
+
∂φi

∂y

∂φj

∂y

)
+ C11

∂φi

∂z

∂φj

∂z
dΩh,t,

A12
ij (t) :=

∫
Ωh,t

D12
∂φi

∂x

∂φj

∂y
+ D33

∂φi

∂y

∂φj

∂x
dΩh,t, A13

ij (t) :=

∫
Ωh,t

D12
∂φi

∂x

∂φj

∂z
+ D33

∂φi

∂z

∂φj

∂x
dΩh,t,

A23
ij (t) :=

∫
Ωh,t

D12
∂φi

∂y

∂φj

∂z
+ D33

∂φi

∂z

∂φj

∂y
dΩh,t, B12

ij (t) :=

∫
Ωh,t

C12
∂φi

∂x

∂φj

∂y
+ C33

∂φi

∂y

∂φj

∂x
dΩh,t,

B13
ij (t) :=

∫
Ωh,t

C12
∂φi

∂x

∂φj

∂z
+ C33

∂φi

∂z

∂φj

∂x
dΩh,t, B23

ij (t) :=

∫
Ωh,t

C12
∂φi

∂y

∂φj

∂z
+ C33

∂φi

∂z

∂φj

∂y
dΩh,t,

F1
i (t) := −

∫
Ωh,t

f
∂φi

∂x
dΩh,t +

∫
∂Ωh,t

n1fiφids, F2
i (t) := −

∫
Ωh,t

f
∂φi

∂y
dΩh,t +

∫
∂Ωh,t

n2fiφids,

F3
i (t) := −

∫
Ωh,t

f
∂φi

∂z
dΩh,t +

∫
∂Ωh,t

n3fiφids.

For convenience in notation and computation we have the block matrices and vectors

[A] :=


A11 A12 A13

[A12]T A22 A23

[A13]T [A23]T A33

 , [B] :=


B11 B12 B13

[B12]T B22 B23

[B13]T [B23]T B33

 , (A.28a)

{U} :=


U

V

W

 and {F} :=


F1

F2

F3

 . (A.28b)

Therefore the force balance equation’s semi-discrete finite element formation can be writ-

ten compactly as

[A]
∂{U}
∂t

+ [B]{U} = {F}. (A.29)

Now considering the reaction kinetics to be as in Section 4.2.1 we can similarly write the

reaction-diffusion equations in semi-discrete form

∂

∂t
(Mα) +DaKα = kaacH− kaMα+ kam

α(1− µ)

1 +Kα2
M, (A.30a)

∂

∂t
(Mµ) +DmKµ = −kmaacH + kmaMα− kam

α(1− µ)

1 +Kα2
M, (A.30b)

where

Mi,j =

∫
Ωh,t

φiφj , Ki,j =

∫
Ωh,t

∇φi · ∇φj and Hj =

∫
Ωh,t

φj . (A.31)
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To compute these integrals we use Gauss numerical quadrature (Press et al., 2007). This

is done as follows. First we can consider the integrals elementwise,

Mi,j =
∑
∆k

∫
∆k

φiφj , Ki,j =
∑
∆k

∫
∆k

∇φi · ∇φj and Hj =
∑
∆k

∫
∆k

φj . (A.32)

Then choose a numerical quadrature, this is a set of points and weights. This can be

written as a formula for the integral of a function ξ∫
ξ(x) ≈

∑
q

ξ(x̄q)wq, (A.33)

where x̄q and wq are the qth quadrature points and weights respectively. Therefore the

integrals can be approximated by

Mi,j ≈
∑
∆k

∑
q

φi(x̄q)φj(x̄q)wq, Ki,j ≈
∑
∆k

∑
q

∇φi(x̄q) · ∇φj(x̄q)wq

and Hj ≈
∑
∆k

∑
q

φj(x̄q)wq.
(A.34)

A.2.3 Time discretisation

Next we carry out the temporal discretisation of the system of ordinary differential equa-

tions arising from the finite element discretisation. To proceed, we split the interval into

a finite number of subintervals [tn, tn+1] use a uniform time step ∆t := tn+1 − tn. We can

then use a modified implicit finite differentiation formula (forward Euler) (Lakkis et al.,

2013; Madzvamuse, 2006; Ruuth, 1995). Thus the fully discrete problem is now

([A]n + ∆t[B]n) Un+1 =[A]n{U}n + ∆t{F}n, (A.35a)[
Mn+1 + ∆tDaK

n+1
]
αn+1 =

Mnαn+∆t(ka(acH
n −Mnαn) + kam

αn(1− µn)

1 +K(αn)2
Mn),

(A.35b)

[
Mn+1 + ∆tDmKn+1

]
µn+1 =

Mnµn + ∆t(−kma(acHn −Mnαn)− kam
αn(1− µn)

1 +K(αn)2
Mn),

(A.35c)

where the superscripts n and n+1 are the computed values on the mesh at times tn and

tn+1 respectively.

Hence we have three equations all with the same form. At each time-step we assemble

the matrices to obtain a system of linear algebraic equations. When solving (A.35a) we

see that the block matrix on the left hand side is not symmetric therefore we use the most

effective solver for this which is GMRES (Saad and Schultz, 1986). The equations (A.35b)

and (A.35c) are solved using the conjugate gradient method (Hestenes and Stiefel, 1952).
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Nodal displacements

The displacement of the nodes of the mesh is chosen to be equal to the flow velocity

therefore β := ∂U
∂t . Letting tn+1 = tn + ∆t and x(tn) ∈ Ωtn ,x(tn+1) ∈ Ωtn+1 be points in

the respective domains. We can define a first order linear approximation as:

β(x, tn) =
x(tn+1)− x(tn)

∆t
. (A.36)

This means we can define a new approximation to the domain Ωtn+1 such that

x(tn+1) = x(tn) + ∆t
∂U

∂t
= x(tn) + (Ut+1 −Ut). (A.37)

At each step we have a new mesh with new shape functions so we must assemble new

matrices Mn,Hn,An,Bn,Fn to iteratively solve the discrete coupled problem.

Numerical algorithm

The fully discrete problem is solved iteratively with the following algorithm:

• Initialise U, α and fixed parameters

• WHILE t < endtime

– Assemble Mn,Hn,An,Bn,Fn

– Solve for Un+1 using (A.35a)

– Compute the new domain from Un+1

– Solve for αn+1 and µn+1 using (A.35b) and (A.35c)

– t = t+ ∆t

• END

We create a mesh using Gmsh (Geuzaine and Remacle, 2009) and implement this al-

gorithm using deal.II (Bangerth et al., 2016), a C++ software library which provides tools

to solve partial differential equations which are discretised with finite element methods.

Unlike the majority of other finite element software, deal.II uses hexahedral and quadri-

lateral elements rather than triangles and tetrahedra. The main advantage is that these

shapes can provide better approximation quality with same number of degrees of freedom

as triangular meshes. One disadvantage is that it is harder to find an adaptive finite

element method without hanging nodes.
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Figure A.1: Plot of the divergence of solutions for the example in Section 4.6.2. There

is an initial decrease in difference between the solutions due to diffusion, then the mode

grows exponentially.

A.2.4 L2 norms

In Figure A.1 we plot the norm of the difference between successive solutions for the exam-

ple in Section 4.6.2, where just the reaction-diffusion system is solved, and see that there

is exponential growth. In Figure A.2 we plot the norm of differences between successive

solutions in the case of the full system example in Section 4.8.4. We see an increase, or

decrease, in the L2 norm when the rate of deformation is accelerating, or decelerating, re-

spectively. The qualitative changes in the L2 norms are similar, but the changes in myosin

and displacement appear slightly later than actin. This may suggest, in this example, that

the change in actin triggers the change in the other variables.

A.3 Summary

In this chapter we have outlined a moving grid finite element method which we use to solve

the equations of our mechanobiochemical cell motility model (Baines, 1994; Madzvamuse

et al., 2003). The formulation is based on the construction of George (2012); Madzvamuse

and George (2013). The block matrices which make up the discretised form of the force

balance equation are now bigger and more complex than the case in two dimensions.
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Figure A.2: Plot of the L2 norm of difference between successive solutions for the example

shown in Figure 4.11. There is an initial decrease due to diffusion, increases when the

deformation is accelerating and decreases as deformation decelerates.

In most of the numerical solutions in Sections 3.6 and 4.8 the cell becomes deformed in

such a way that means the mesh becomes unreliable and eventually breaks. In this case,

re-meshing the deformed geometries with new elements of more regular shape would be

very useful to obtain more accurate solutions and in order to see what may happen for

larger time.
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