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Summary 
 

UNIVERSITY OF SUSSEX 
 

RAFAEL ISIDRO PARRA-PEÑA SOMOZA 
 

DEGREE OF DOCTOR OF PHILOSOPHY (PHD) IN ECONOMICS 
THREE ESSAYS ON CONFLICT AND CLIMATE EFFECTS IN COLOMBIA 

 
 
In Colombia, it is a common refrain that there is not a single family unaffected by the 
conflict that marked the country for over half a century. During 2016, with the peace 
agreement that ended 60 years of fighting with the FARC, the country entered into a post-
conflict phase. This thesis provides empirical evidence to inform policies designed to 
foster rural development (especially in places where the livelihoods have been damaged 
by conflict), protect the environment, and promote sustainable growth in a context of 
increasing extreme global weather events. In particular, the work is comprised of three 
empirical essays examining respectively the impact of conflict on (i) agribusiness 
durations, (ii) deforestation, and (iii) selected crime outcomes.  
 
The first essay provides an analysis on agribusiness contract durations, defined as the 
survival of contractual partnerships between smallholder producer organizations and their 
commercial buyers, and their relationship with specific manifestations of violence. There 
is evidence that the presence of violence increases the hazard rate of agribusiness contract 
commercial failure. In particular, the presence of terrorist events at the start year of the 
agribusiness contracts registers as the main determinant. In particular, when violent 
incidents vary over time, the subversive actions, mainly provoked by the guerrillas, 
emerge as a cause of commercial failure. 
 
The second empirical essay offers evidence on the relationship between armed conflict 
and its environmental impact. There is evidence that the armed conflict is a force for 
forest protection and growth, though the effect is found to be small. Forest degradation 
often increases in post-conflict situations. These findings highlight a need for increased 
protection of Colombia’s forests in the wake of the peace agreement. 
 
The third empirical essay investigates the impact of the most recent extreme weather 
event in Colombia, “La Niña” (between 2010-2011 and named by the local media as the 
“winter wave”) on theft rates in the municipalities affected. This essay demonstrates that 
the winter wave brought a decrease in theft from persons. This is perhaps attributable to 
the emergence of pro-social behaviour in the municipalities most affected. We also find 
an increase in theft from houses possibly linked to a ‘survival mechanism’. In addition, 
we also reveal that the presence of conflict discourages theft perhaps due to the 
establishment of coercive institutions by illegal armed groups.  
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1. Introduction 
 

It is a common refrain in Colombia that there is not a single family unaffected by the 

conflict. The human toll of the conflict is immense. Between 1958 and 2012, the armed 

conflict claimed the lives of around a quarter of a million people, with civilians 

accounting for an average of eight out of every 10 of these fatalities. There were 25,007 

forced disappearances (1985-2012) and around 27,023 persons kidnapped.1
  

 

Several academic studies within the conflict literature have used quantitative approaches 

to compute the high economic and social costs the country has paid during this violent 

conflict (Rubio 1995; Parra, 1998; Echeverry et al. 2001; Querubin, 2003; Vargas, 2003; 

Cárdenas, 2007; and Villa et al. 2013). For example, according to Villa et al. (2013), using 

panel data at the departmental level between 1988-2009, the average departmental GDP 

took around 18.5 years to double. In the absence of the armed conflict, it would have 

taken ten years less. Using time series data between 1980 and 1999 in conjunction with 

vector autoregession analysis (VAR), Cárdenas (2007), found that the growth of illicit 

crops and homicide rates were associated with a 0.3 percentage point reduction in GDP 

per capita growth due to a decline in factor productivity. The work of Vargas (2003), 

using a 3SLS model, confirmed this magnitude in reporting a per capita GDP growth that 

was 0.33% less, on average, during the 1990s. 

 

The social consequences of conflict are generally broader. Attacks on civilians led to the 

forced displacement of about 3.8 million people (8.4% of the population) between 1999 

and 2011.  According to Ibáñez (2009a), guerrillas are responsible for nearly half (45.8%) 

of this displacement, followed by paramilitaries (21.8%), with the remainder attributed to 

other groups engaging in drug trafficking and more general forms of criminality. These 

displaced households usually found themselves in a poverty trap due to the loss of assets 

and a lack of skills to compete in urban labour markets. Between 2002 and 2007, 95% of 

the displaced households were found to live below the poverty line (with 75% living in 

extreme poverty).2 

 

                                                
1 This is according to statistics reported at www.verdadabierta.com/, taken from Centro Nacional de 
Memoria Histórica. 
2 Further information on this can be found at:  
   http://focoeconomico.org/2014/05/27/acabar-el-conflicto-en-colombia-una-eleccion-racional/ 
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The negative consequences of violence are known to persist for several generations.  For 

example, these effects include, for example, an 8.8% decrease in years of education 

acquired (Rodríguez and Sánchez, 2012); children born into regions with exploding 

landmines weighed, on average, 8.7 grams less at birth due to high levels of maternal 

stress (caused by conflict) during the mother’s gestation period resulting in poorer 

cognitive development in the long term (Camacho, 2008).  

 

In the spirit of this work, the current research tackles unexplored research questions 

regarding conflict impacts using a set of novel Colombian municipal datasets and robust 

identification strategies.3  

 

This thesis is comprised of three empirical essays. The first empirical essay enhances the 

existing literature by estimating the effect of the conflict on agribusiness contract 

durations of small-holder farmers. This is defined as the survival of contractual 

partnerships between small-holder producer organizations and their commercial buyers. 

In Colombia, despite the fact that the rural population has incurred the economic and 

social costs of war disproportionately, little is known about how the conflict affects the 

agribusiness of small-holders. In fact, most of the conflict literature for Colombia 

has traditionally  focused on identifying the ways in which a farmer household copes with 

violence4 (See, for example, Ibañez et al., 2013; Arias et al., 2014) 

 

In order to provide a robust analysis on small-holders agribusiness durations and their 

relationship with specific episodes of violence, this essay employs original data drawn 

from 434 agri-business contracts.  These contracts were established by small-holder 

producer organizations obtained from the administrative records of the Rural Productive 

Alliances Project (Proyecto de Apoyo a Alianzas Productivas or PAAP, its Spanish 

acronym).  This is a major Colombian initiative linking farmers to markets and is partly 

sponsored by the World Bank. 5  It is implemented by the Colombian Ministry of 

Agriculture and Rural Development (MADR, its Spanish acronym). The information on 

                                                
3 An identification strategy is the manner in which a researcher uses observational data (i.e., data not 
generated by a randomized trial) to approximate a real experiment. 
4 Coping strategies involve the decision whether or not to withdraw from markets, which crop to plant, 
whether to implement a short growing cycle or a long one, which production technique to use, and other 
possible ways of risk-diversification.  
5 The World Bank co-financed about 70% of PAAP project operations. 
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the number and types of violent episodes perpetrated by both guerrilla and paramilitary 

groups in Colombia is obtained from an annual data set at the municipal level constructed 

by CEDE (Centro de Estudios Sobre Desarrollo Económico, Universidad de los Andes). 

 

The empirical approach uses common non-parametric, semi-parametric, and parametric 

duration models. The estimation results suggest that the presence of violence in the 

municipality where the producer organization is located increases the hazard rate of agri-

business commercial contract failure. In particular, the presence of terrorism at the start 

year of the agribusiness contract appears to be a key factor in commercial failure. 

However, when the duration models allow violent incidents to vary over time, the 

subversive actions mainly provoked by the guerrillas emerge as the main cause of failure. 

Thus, this essay confirms the hypothesis that the Colombian conflict had a degrading 

effect on the overall agri-business climate, constraining farmer capacity to sustain market 

linkages. 

 

The second empirical essay offers evidence on the relationship between armed conflicts 

and their environmental impacts. In particular, the overall effect of conflict on the 

environment remains an open empirical question. From an academic point of view this 

effect is ambiguous. One strand of the literature emphasizes pressures on environmental 

degradation with another strand suggesting the opposite. For example, in Colombia there 

is an environmental friendly attitude adopted by the guerrilla movements usually 

connected to the prevailing economic and military interests in the area. In other words, 

forest conservation helps rebel forces to conceal and to establish safe-havens with transit 

corridors for troops, military and other supplies, drugs, or illegally extracted natural 

resources (See, for example, Álvarez, 2003; Dávalos et al., 2011).  

 

Thus, the second essay provides evidence as to which of these strands is most likely for 

Colombia using a unique annual municipality panel dataset (from 2004 to 2012). The 

estimates for the share of the municipality area covered by the forests are based on 

satellite images collected by the Department of Geographical Sciences at the University 

of Maryland partnering with other major research centres 6 in the United States. The 

                                                
6 These are Google; the Department of Forest and Natural Resources Management, State University of New 
York; the Woods Hole Research Center; the Earth Resources Observation and Science, United States 
Geological Survey; and the Geographic Information Science Center of Excellence, South Dakota State 
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conflict measure used is forced displacement, which correctly captures the presence of 

extreme violence perpetrated by guerrilla and paramilitary groups in each municipality. 

The forced displacement source estimates are obtained from the Information System of 

Displaced Population (SIPOD, its Spanish acronym), the Central Registry for Victims 

Office (RUV)7 and the Observatory of the Presidential Human Rights and International 

Humanitarian Law of the Vice Presidency of Colombia. 

 

An instrumental variable approach that controls for a possible endogeneity between forest 

cover and forced displacement is deployed to estimate the causal impact of conflict on 

deforestation. This essay reveals that there is evidence that the conflict is a force for forest 

protection and growth. However, the estimated effect found is found to be numerically 

small. For example, the average estimated effect suggests that an additional person 

displaced per 1,000 inhabitants increases the percent of forest covered by 0.0028 of a 

percentage point at the municipality level. Forest degradation often increases in post-war 

situations. Thus, with the advent of peace in Colombia this research advocates for an 

appropriate forest conservation strategy. 

 

The third empirical essay estimates the impact of the most recent extreme weather event 

(EWE) in Colombia, “La Niña” (2010-2011) on the theft rates in the municipalities 

affected by this weather event.  This EWE is labelled by the local media as the “winter 

wave”.  In studying the causes of crime researchers often have concentrated their efforts 

on exploring the role of traditional socio-demographic variables, such as age, gender, 

race, and socio-economic status. However, very few researchers have investigated the 

mechanisms including the influence of weather, on criminal behaviour (Hsiang et al., 

2013). No studies have investigated to date the climate variability-crime and/or specific 

natural disaster-crime relationship using appropriate econometric techniques for 

Colombia. 

 

This essay employs information regarding theft activity in Colombia from the statistical 

Information System of Delinquency of the National Police, and official records at the 

municipal level relating to the weather disasters associated with the passing of “the winter 

                                                
University. 
7 This registry, established under Act 1448 of 2011, contains the number of registered victims of human 
rights violations during the armed conflict and over the period from 1985 to the present. 
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wave”8 (e.g.,  floods, avalanches and landslides, tornado, thunderstorm, wind, erosion 

and hail) directly from the archives of the Colombian Government National Unit for 

Disaster Risk Management (UNGRD, corresponding to the Spanish acronym).  

 

A Difference-in-Difference (D-i-D) procedure is used to estimate the impact of the 

“winter wave” on theft rates in the municipalities most exposed to adverse climatic 

effects. In particular, the “winter wave” intensity levels are measured according to the 

number of houses damaged and destroyed in each municipality. The results reveal that 

the winter wave brought a decrease in theft rates, especially, the theft from persons, in 

the treatment group compared to the control groups. This is perhaps viewed as attributable 

to the emergence of pro-social behaviour in the municipalities most affected. In addition, 

we also find an increase in theft from houses that is possibly linked to a ‘survival 

mechanism’, rather than one that seeks monetary reward like the Becker (1968) model of 

acquisitive crime. In addition, the D-i-D estimates also reveal that the presence of conflict, 

in general, discourages theft perhaps due to the establishment of coercive institutions by 

illegal armed groups. 

 

The 2016 peace agreement that ended 60 years of conflict with the FARC, aside from 

reducing victimization, is anticipated to yield immense economic benefits for the future. 

For example, a National Planning Department (DNP)9 study suggests that Colombia’s 

GDP will grow between 1.1 and 1.9 percentage points more in the wake of the peace 

accord. In particular, an increased confidence is anticipated to translate into a 2.5 

percentage points increase in consumption growth, a 5.5 percentage points increase in the 

investment rate (as a percentage of GDP), three times more Foreign Direct Investment 

(FDI), and a 17.7 percentage point increase in the openness to trade (exports plus imports 

as a share of GDP). From the supply side, the results are anticipated to be promising as 

well: 1.4 points of additional growth in the agricultural sector, 0.8 points of increased 

growth in the manufacturing sector, and a 4.4 percentage point increase in the rate of 

growth in the construction sector. 

 

                                                
8 This information is available from April 2010 to June 2011.  
9 This is based on DNP (2015), “Dividendo económico de la paz”. Power point presentation. 
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It is evident that the social and economic costs decrease sharply once violence has ceased. 

However, it is important to clarify that the peace dividends do not materialize without the 

necessary investments. In the aftermath of the peace, one cannot expect to immediately 

secure an increase of one or two percentage points in GDP growth. The economic benefits 

will be gradual: they will depend on how solid are the country’s foundations for economic 

development. Thus, an important aspect of these three essays lies in their policy 

implications. The findings of this thesis suggest greater income opportunities for rural 

families, especially in places where agribusinesses have been damaged by the conflict, an 

appropriate forest conservation strategy, and the promotion of the right climate adaptation 

and mitigation policies given a global context of increasing extreme weather events.  

 
The thesis is organized into six separate chapters. Chapter 2 presents a summary of the 

Colombian conflict in order to provide the reader with an adequate context within which 

to interpret the empirical results. Chapters 3 to 5 contain the three empirical essays. 

Finally, Chapter 6 offers some concluding remarks, a discussion of the limitations of the 

research, and an agenda for future research.  
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 Chapter 2 

2 The timeline and narrative of the conflict  
 

2.1 1958-1964: from political confrontation to subversion 

 

The Colombian armed conflict originated from a civil war known as “La Violencia” 

involving two main political parties, liberals (leftist) and conservadores (rightist). La 

Violencia is considered to have started on the 9th of April 1948 with the assassination of 

Jorge Eliécer Gaitán, the presidential candidate for the liberal party. In 1953, General 

Gustavo Rojas Pinilla seized power through a political coup d'état intended to restore 

peace and civil order. After a short period of military dictatorship, democracy returned in 

1957 with the National Front, in which the liberal and conservatives parties agreed to 

allow the opposite party to govern, alternating over a period covering four presidential 

terms, until 1970. 

 

The National Front imposed limitations on members of third political parties, barring 

them from participating in the electoral process or even becoming public employees. 

Major social problems such as poverty, income and land ownership inequality prevailed. 

In May 1964, Colombian troops launched an assault against less than 50 guerrilla families 

who had openly rebelled against the government and declared their own republic in the 

small town of Marquetalia. The objective of the operation was to eradicate a perceived 

communist threat. Five months after this operation, the survivors regrouped and 

established their first guerrilla conference, which gave birth to the longest running 

communist insurgency in Latin America: The Revolutionary Armed Forces of Colombia 

(FARC). 

 

Other leftist peasant resistance groups formed during La Violencia period and inspired 

by the Cuban revolution in the late 1950s evolved into the National Liberation Army 

(ELN). Initially, these were two small groups dedicated to seizing power with the goal of 

enacting social programs and undertaking radical agrarian reforms.  

 

2.2 1965-1981: The guerrilla’s consolidation and the fight against the state 

 



23	
 

During the 1970s, the M-19, another largely urban guerrilla group emerged. The M-19 

was founded in response to alleged fraud in the presidential election of a conservative 

politician, Misael Pastrana Borrero. 

 

During this decade, the FARC and ELN began to grow. They were involved in kidnapping 

to finance their activities, but they also engaged in political kidnappings to increase their 

bargaining strength with the government in power. At this time, FARC and ELN also 

began to engage in drug producing and trafficking operations. 

 

2.3 1982-1995: The armed conflict boost, drug lords and paramilitaries  

 

During the 1980s, the growing illegal drug trade and its consequences provided impetus 

to sustain the armed conflict. The appearance of the Medellin and Cali cartels led to either 

the bribery or murder of politicians and public servants – and anyone else who opposed 

them – particularly those who supported the implementation of the extradition of 

Colombian criminals to the United States.  

 

The kidnapping of drug cartel family members and the imposition of a tax on cattle 

breeders and land owners by the guerrillas led to the creation of the Muerte a 

Secuestradores (MAS) death squad (Death to Kidnappers), which was characterized as 

one of the first expressions of right-wing paramilitarism in Colombia.  

 

In 1985, the M-19 took over the Palace of Justice and held the Supreme Court hostage 

with the intention of staging a “trial” of President Belisario Betancur. After heavy fighting 

between the army and the rebels, the building was set alight and almost half of the 

Supreme Court Justice members, as well as several civilians, died in a subsequent and 

controversial army rescue operation. 

 

2.4 1996-2002: The armed conflict peak 

 

The M-19 group was successfully integrated into a peace process, which culminated in 

the elections for a Constituent Assembly of Colombia that would draft a new constitution 

that would eventually take effect in 1991.  
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During the 1990s, FARC military activity increased as the group continued to grow 

financially from both kidnapping and drug-related activities. The illicit crops rapidly 

spread throughout the countryside. In 1994, the alliance between paramilitaries and drug 

lords strengthened, both legally and illegally, with the creation of the armed Convivir 

groups, supported by the National Congress. In 1997, paramilitary forces and several 

former Convivir members united to create the United Self-Defence Forces of Colombia 

(AUC), a large paramilitary militia closely tied to drug trafficking which instigated 

attacks on the FARC and ELN rebel groups. 

 

In 1998, the president Andres Pastrana agreed with FARC commanders to create a 

demilitarized zone in the region of El Caguán river basin. The Caguán (1999–2002) was 

a demilitarized zone of 42,000 km² in southern Colombia.  It was within this zone that 

the government initiated their first effort at a peace process with the FARC. 

 

2.5 2003- 2015 

 

The Caguán peace process failed and the guerrillas became stronger than prior to the 

previous 40 years of fighting. A political outsider, Alvaro Uribe, was voted into the 

presidential office in 2002 on a promise to defeat the FARC. From 2002 onwards, with 

Mr. Uribe in power, the armed conflict declined. The elected government provided 

substantial financial resources to the army and a strong national security policy helped to 

reduce national levels of violence. Simultaneously, in 2003 a disarmament process began 

with the AUC and successfully concluded in 2006. However, some of their members 

started up smaller drug-dealing groups, known as the emergent criminal bands (Bacrim, 

in Spanish).  From November 2012, the FARC and the national government were engaged 

in discussions in an attempt to end South America’s longest-running internal conflict. 

 

2.6 From 2016 onwards 

 

After four years of talks in Havana, the Cuban capital, the government and the FARC 

reached a peace deal. It was put to a referendum in October and the public voted by a 

narrow margin to reject it (50.2%). The country was divided mainly in regard to some of 

the terms of the peace deal such as: i) the definition of what’s a fair time in prison for 

crimes committed by the rebels; ii) in what way should rebels found guilty of crimes be 
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barred from jail and running for public office, and; iii) how can FARC use their illicit 

gains to pay compensation to the victims of the conflict.  

 

In the aftermath of the referendum result, the government and the rebel leaders made 

changes to the deal. Colombia’s President, Juan Manuel Santos, was awarded the Nobel 

Peace Prize in recognition of his efforts to end the conflict. Finally, in December 2016, 

the Colombia's Congress bypassed the majority voter preferences and approved a revised 

peace deal.  
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Chapter 3 

3 Do violent incidents affects the duration of agribusiness contracts of smallholder 

farmers? Evidence from Colombia 
 

Summary 
 
This chapter provides a seminal analysis on agribusiness contract durations in Colombia. 

The empirical focus is on the survival of contractual partnerships between smallholder 

producer organizations and their commercial buyers, and their relationship with specific 

manifestations of violence. The study constructed a unique dataset of agribusiness 

contracts and producer organization attributes from the archives of a public project, 

whose primary goal is to establish commercial relationships between small producers 

and formal buyers in Colombia (Proyecto de Apoyo a Alianzas Productivas – PAAP, in 

Spanish). The empirical approach exploits a set of common non-parametric, semi-

parametric, and parametric duration models, as well as discrete time models for 

completeness. There is evidence that the presence of violence increases the hazard rate 

of agribusiness contract commercial failure. In particular, a presence of terrorism at the 

start year of the agribusiness contracts appears as the main cause. When violence 

incidents vary over time, the subversive action mainly perpetrated by the guerrillas, 

emerge as the key cause of commercial failure. 

 
Keywords: Conflict, violence, risk, uncertainty, investment climate, agricultural 
production, agribusiness, firm survival. 
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3.1 Introduction  

 
It is widely known that violence reduces welfare through its effects on physical or 

psychological harm, destruction of human capital and physical assets, and forced 

displacement. Violence also hinders economic efficiency and modifies behavioural 

norms and social organisational structures (Justino et al., 2013a). 

 

On the one hand, macroeconomic studies offer explanations for the negative correlation 

between GDP per capita, or broadly defined economic activity, and violence (Barro 1991; 

Alesina and Perotti 1996; Collier 1999;Gaviria 2002). For example, according to Collier 

(1999), GDP per capita declines at an annual rate of 2.2% during civil wars on average 

and ceteris paribus. On the other hand, there is a substantial body of research on the 

effects of violent conflict on its victims. Furthermore, households residing in areas with 

violence incur a multiplicity of social, economic and political consequences—including 

decisions regarding education, child nutrition, household consumption, labour market 

participation, political preferences and/or social engagement.  

 

However, little is known about how violence affects agribusiness contracts. In the 

developing world, many violent conflicts have their origins in agrarian disputes, such as 

conflicts over land, and escalate and reproduce fairly quickly in rural areas where state 

presence and governance is often weak. The research presented here is the first of its kind 

to utilize data on agribusiness contract durations to investigate the effects of violence on 

the survival of such contracts.  

 

The information on smallholder agribusiness contracts is obtained from a major public 

project linking farmers to markets (Proyecto de Apoyo a Alianzas Productivas – PAAP, 

in Spanish) partly financed by the World Bank and implemented from 2002 by the 

Colombian Ministry of Agriculture and Rural Development (MADR, in Spanish).  

 

The PAAP fosters agribusiness under formal contracts that unite buyers with smallholder 

Producer Organizations (POs). These agribusiness contracts are known as Productive 

Alliances (PAs). They are aimed at reducing technical, commercial, financial and social 

risks in pursuit of potential productivity and income gains in a particular value chain. 

First, under these contracts sponsored by the government, POs obtain access to critical 
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inputs and markets for their products, while buyers expand food-processing activities by 

securing supplies from small producers that meet minimum quality standards. Second, 

these contracts are initially funded through grants, known as modular incentives (MI), 

which the POs typically invest in technical assistance (production, management and 

marketing issues), infrastructure and/or equipment to fulfil the contract with the buyer 

(Collion and Friedman, 2012). 

 

Despite a major reduction in criminal activity in recent decades, Colombia continues to 

evoke in the minds of many an image of violence and drug trafficking. It is seen as the 

Latin American country where violence has been the most widespread and persistent, thus 

providing an ideal setting to study the consequences of violence on an outcome like the 

duration of agribusiness contracts. Guerrillas, paramilitary groups and drug barons have 

repeatedly perpetrated attacks that vary in both type and intensity, spanning both space 

and time.  

 

The information used here regarding the manifestations of violence were obtained via a 

yearly municipal-level dataset constructed by CEDE (Centro de Estudios sobre 

Desarrollo Económico, Universidad de los Andes, Bogotá), which contains information 

on violence and conflict between 2002 and 2012.  

 

Regarding the literature that explains how violence degrades the endurance of 

agribusiness contracts, “violent shocks” and “fear and uncertainty” may act as the main 

triggers. First, farmers located in conflict-affected areas are exposed to attacks, extortion 

or crop and livestock appropriation. Thus, violence can be understood as an additional 

negative shock faced by farmers, in addition to more conventional shocks due to 

variations in climatic conditions, crop diseases or natural disasters (Ibañez et al., 2013; 

Blattman and Miguel, 2010). Violent shocks generate a destruction of both physical and 

human capital. As a consequence, agribusinesses located in violent areas operate in 

scenarios prone to inefficient economic outcomes (i.e., market failures), leading to high 

operational costs and low investment levels due to a contraction in the supply of labour 

and goods, higher transaction costs, higher prices and reductions in existing networks 

(Abadie and Gardeazabal 2003; Justino 2009; Justino and Verwimp 2013; Justino et al. 

2013a).  
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Secondly, violence increases uncertainty and fear (Camacho and Rodriguez, 2013a; 

Rockmore, 2016). Farmers adjust their behaviour ex-ante in anticipation of a violent 

shock to minimize risk or exposure, rather than to maximize profits. For example, farmers 

may shift their production portfolio from long growing cycle crops to short ones, since 

they can be converted easily into cash (Verpoorten 2009; Arias, Ibáñez, Zambrano 2014). 

Additionally, farmers are reluctant to make irreversible investments that would otherwise 

increase productivity, volume and product quality such as investments in greenhouses or 

irrigation systems. Diversifying income sources by allocating time to off-farm activities 

provide another coping strategy.  

 

A duration analysis framework was employed to study the impact of violence on the 

survival rate of agribusiness contracts. The methods of analysis include a non-parametric 

Kaplan-Meier approach; semi-parametric Cox Proportional Hazard (PH) model; common 

parametric accelerated failure time duration models (e.g., Exponential, Weibull, and Log-

logistic); and discrete time models (Logistic and Cloglog) were all used to estimate the 

hazard duration function for 434 agribusiness contracts within the PAAP project context.  

The analysis incorporated information  on the presence of violence in the municipalities 

where the POs are located. 

 

The semi-parametric and parametric model estimates reveal that the presence of violence 

at the inception of a business hinders the ability of smallholder growers to sustain their 

agribusinesses contracts with formal buyers. In particular, acts of terror appear to be one 

of the main causes of agribusiness contract failure.  

 

The main advantage of using discrete time models compared to the semi and fully 

parametric duration models noted above is that they provide a simple way to permit the 

variables of interests to change over time. These discrete-time models reveal that 

subversive actions perpetrated by the guerrillas are the main determinants of agribusiness 

contract failure.  

 

The next section briefly reviews the existing theoretical and empirical literature on the 

relevant research question. A third section describes empirical modelling issues. A fourth 

discusses the data and provides some descriptive statistics. The fifth reports the empirical 

results and the final section offers some concluding remarks.  
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3.2 Literature Review 

 

This study enhances the existing literature on conflict and violence in a number of distinct 

ways. As previously mentioned, to the author’s knowledge, no studies currently exist that 

analyse the impact of violence on agribusiness contract durations, and certainly none for 

Colombia.  

 

We focus the literature review on the firm-level effects of exposure to violent 

environments as this appears particularly germane to our analysis. For example, at the 

cross-country level, Gaviria (2002) used data from a private sector survey10 and an OLS 

regression model that controls  for firm-level characteristics (sector, size, tenure, public 

or foreign ownership, public buyer, location, etc.) and country effects.  The author 

reported that firm sales in Latin America grow at a lower rate if entrepreneurs believe 

crime rates are high enough to interrupt their business activities. The author explains that 

simply a manager’s perceptions of crime and corruption raise a firm’s operational costs, 

causing a loss in valuable human and financial resources and preventing companies from 

entering profitable business. All of which leads to a lowering of competitiveness and firm-

level sales.  

 

At the country level Camacho and Rodriguez (2013a), for the case of Colombia, combine 

a panel of industrial firms from the Annual Manufacturing Survey with violence and 

conflict data collected between 1993 and 2004 to study the effect of armed conflict on 

industrial plant exits. Since the plant exit decision contains the possibility of reverse 

causality with the escalation of armed conflict, the authors used an instrumental variable 

approach instrumenting contemporaneous violence using lagged government deterrence 

measures, such as the number of dismantled laboratories and anti-narcotic operations. 

Using a two stage least squares estimator for the linear probability panel data model, and 

after controlling only for plant fixed effects, year effects and duration of the plants, the 

authors report that an increase in the number of guerrilla and paramilitary attacks in a 

municipality increases the probability of plant closure by 2.3 percentage points, ceteris 

paribus. 

                                                
10 Conducted by the World Bank and the Inter-American Development Bank in 1999. 
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Pshisva and Suarez (2010) merged information about crime across the 32 departments of 

Colombia with financial statements from around 11,000 firms operating between 1997 

and 2003. Using OLS and controlling for firm and state level characteristics, the authors 

find that kidnappings that directly target firm managers/owners exerted a statistically 

significant negative effect on firm level investment. The authors did not find statistical 

evidence of the impact of other forms of crime—such as guerrilla attacks or homicides–

on firm investment decisions. 

 

Collier and Duponchel (2013) studied the impact of the civil war in Sierra Leone from 

1991 to 2002. In many ways, this is one of the first papers to investigate how civil conflict 

affects the economy by studying its impact on firms. Using data from the World Bank 

2007 Employers Survey, they employed OLS, IV, binary and ordered probability models 

to exploit geographical variations in the intensity of conflict in four districts of the 

country. The study demonstrates that violence and conflict had a negative effect on both 

the firm’s size and income. Additionally, an entrepreneur’s willingness to pay for the 

training of the firm’s staff is higher in conflict regions, reflecting a shortage of skilled 

labour in these areas. 

 

Most of the literature exploring the relationship between violence and agribusiness 

focuses on identifying ways in which farmers cope with such violence. Coping strategies 

involve the decision of whether to withdraw from markets, which crop to plant, whether 

to implement a short growing cycle or a long one, which production technique to use and 

other possible ways of risk diversification (Brück 2003; Nillesen and Verwimp, 2010).  

For example, in the face of violence, farmers may reduce the accumulation of livestock 

in order to reduce their visibility to armed actors, thus decreasing the likelihood of being 

attacked. The possession of livestock becomes a very risky business due to the collapse 

of the local economy, a lack of access to services or the possibility of burglary and looting 

(Brück 2003; Nillesen and Verwimp 2010). Lastly, another potential coping strategy is to 

plant illicit crops, which also provide funding to the armed actors in a given region.   

 

Arias et al. (2014) and Arias and Ibáñez (2012) try to disentangle the effects of direct 

(violent shocks) and indirect (presence of violence) impacts on the agricultural production 

of small producers in Colombia. Using a household survey of 4,800 households in four 

micro-regions, the researchers use OLS technique with an array of explanatory variables 
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including the occurrence of violent shocks, the historical presence of armed groups, and 

the governance structures imposed on the population to investigate their impact on 

agricultural decisions. Their research reveals that those farmers most susceptible to 

violent shocks allocated 19.3% less land to long growing cycle crops, 13.7% more to 

short growing cycle crops and 14.6% more to grassland. Additionally, farmers living with 

a violent presence between four and six years allocated 7.7% and 7.3% more land to grass, 

respectively (Arias and Ibáñez, 2012). 

 

Ibañez et al. (2013) investigated how violence generates incentives for Colombian coffee 

growers to allocate more land towards the production of illegal crops. Using a unique 

panel data set of coffee-growers constructed from the Census of Coffee Growers between 

1993 and 1997, and using parametric and semi-parametric approaches, the authors found 

that coffee growers are more likely to reduce the allocation of land devoted to coffee 

when exposed to high levels of violence and the presence of illegal crops. An increase of 

1% in the average number of hectares allocated to coca cultivation at the municipality 

level reduces the probability of coffee production by between 0.062 and 0.075 percentage 

points, and decreases the land allocated to coffee by between 0.03% and 0.083%, on 

average and ceteris paribus. 

 

Despite the existence of a fairly extensive literature on the determinants of firm survival 

using duration analysis11, no systematic empirical research exists addressing the question 

of agribusiness contract durations, nor the impact of violence, using this methodology. It 

is often detected in the literature on the determinants of firm survival literature that a 

firm’s survival rate at the time of market entry depends on pre-entry experience, initial 

endowments, size, employee skills and capabilities, capital intensity and the firm-level 

heterogeneous innovation rate at the industry level, among other things (Audretsch and 

Mahmood 1995; Baldwin and Rafiquzzaman 1995; Klepper and Simons 2000; Agarwal 

and Gort 2002).  This emphasizes the central importance of initial conditions in 

determining firm survival. Thus, the role of such initial conditions will also be the subject 

of our contract duration analysis. 

 

                                                
11 See, for example, Disney et al. (2003) and Agarwal and Gort (2002) for the UK and US manufacturing 
cases, respectively. 
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3.3 Duration model specifications 

 
Duration models help explain the factors (or covariates) that accelerate or delay the length 

of time that elapses before an observed transition state – in this case the termination of an 

agribusiness contract. The time that elapses from the origin until the failure is known as 

the “spell at risk.” It is defined by a continuous random variable	T ≥ 0; the date on which 

the initial state begins 𝑇 = 0  may not be the same for all observations, and t is the time 

taken for an observation to actually change states. 

 

T follows the following cumulative distribution function F t : 

 

F t = f s ds = Prob	(T ≤ t)3
4     

 

A density function f t  is defined as: 

 

f t = 5F
5t

    

 

Therefore, the survivor function S t  is: 

 

S t = 1 − F t = Prob(T ≥ t)    

 

Consequently, the probability that an observation exits the original state in the short 

interval of length ∆t after t is given by: 

 

Prob	 t ≤ T ≤ t+ ∆t	 	T ≥ t) 
 

Another fundamental concept is “censoring.” Often, when collecting spells’ data, some 

of the observations fail to transition from the original state. This does not mean that they 

will not ultimately terminate in the future. In order to address problems caused by 

censored observations, a hazard rate approach is often used. This involves modelling the 

hazard function (θ t ) as the conditional probability that the observations will change 

state over a specified period conditioned on having survived to a particular point in time. 

The hazard rate can be thought of as the rate at which some observations change state 
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after the duration of the determined time t, given that some others preserve their state at 

least until time t. Specifically, to obtain the average probability of leaving the state per 

unit of time period over a short interval after t, the former equation is divided by ∆t and 

the limit is calculated as follows: 

 

θ t = lim
∆3→0

?@AB	 3CTCtD∆t EFt)
∆3

= lim
∆3→0

G(3D∆t)HF 3
∆3	I(3)

= 	 J(3)
I(3)

     

 

In practice, the kinds of duration models vary according to the specifications of the hazard 

rate function. The non-parametric models do not impose rigid structures on exit 

probability behaviour as a function of the state of duration t.  In contrast the parametric 

models assume distribution functions that exhibit different (sometimes fairly rigid) types 

of duration dependence.  

 

The Kaplan-Meier hazard estimator, a traditional non-parametric estimator, is the 

simplest form of a hazard estimator. Its main advantage is that it does not force the hazard 

function to take a particular shape. Further, it can be augmented within a discrete time 

framework to incorporate covariates. 

 

In the Kaplan-Meier, the hazard function is defined by the following equation: 

 

θ TK = 	 LM
NM

  

 

where the spells are sorted by duration in ascending order up to K different survival times 

TK,  hK is the number of spells completed at TK, and nK is the size of the risk set (failures) 

at time k. 

 

The popular Cox Proportional Hazard (PH) is generally viewed a more complete model 

that explicitly incorporates covariates, and one that is not fully parameterized in terms of 

the baseline hazard. The hazard function is given by: 

 

θ x, t = 	θ4 t 	exp βUxU + ⋯+ βKxK 		

 

or sometimes expressed taking logs as: 
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ln θW3 = 	βWxW 	+ ln	(θ4 t ) 

  

A baseline hazard θ4 t  is common to all units and does not vary across observations – 

it is left un-parameterized and is not explicitly estimated.  Meanwhile, the relative effects 

of covariates are parameterized in the following form as: exp βUxU + ⋯+ βKxK . An 

implication of the latter is that the ratio of the hazards for any two observations, say the 

ones indexed by i and j, depends on the regressors but not on time  t.  

 

By using an estimation method known as the partial likelihood method, it is possible to 

obtain consistent estimates of the parameters without specifying the baseline hazard. The 

interpretation of the estimated coefficients is also a fairly straightforward exercise. Thus, 

the Cox PH is generally viewed as one of the econometrically most convenient procedures 

– hence its use in the current chapter.  

 

The disadvantage of Cox is in its assumptions. For example, there is no reason to assume 

that the hazards are proportional. Furthermore, the model encounters estimation problems 

when there are many ties in the failure times (i.e., several failures in the same period). In 

contrast to the Cox Proportional Hazards model, there are a variety of parametric models 

that explicitly give structure (shape) to the hazard function. Regarding these parametric 

models, if the hazard function for a particular distribution slopes upwards (downwards), 

then the distribution has a positive (negative) duration dependence. Positive (negative) 

duration dependence implies that the likelihood of failure at time t, conditional on 

duration up until t, is increasing (decreasing) in t. The type of behaviour displayed by the 

hazard function depends upon the distribution selected (and the estimated shape 

parameter). First, the “Exponential” distribution displays constant duration dependence. 

The hazard function is thus expressed as: 

 

θ t = 	
f(t)

1 − f(t)
=
f(t)
F(t)

=
	θexp −θ	t
exp −θt = θ 

 

Thus, the hazard is completely described by one positive parameter (θ). Each unique 

value of θ determines a different exponential distribution implying the existence of a 

family of exponential distributions. Second, the “Weibull” distribution for which the 
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hazard function is either monotonically increasing or decreasing. The hazard function is 

denoted as: 

 

f(t)
F(t)

= θ t = 	ala𝑡YHU 

 

where λ is a positive scale parameter and a is a shape parameter. In particular, if a > 1 

this implies a positive duration dependence ([θ 3
[3

> 0) , a = 0  suggest no duration 

dependence ([θ 3
[3

= 0), and if a < 0 indicate a negative duration dependence ([θ 3
[3

<

0) . It is clear from the above that the use of the exponential distribution could be 

problematic if the duration data are characterized by either positive or negative duration 

dependence.  

 

The  “Log-Logistic” distribution is one choice for non-monotonic hazards. It can display 

increasing duration dependence initially, followed by decreasing duration dependence. It 

is also possible that the log-logistic distribution will display only negative duration 

dependence. The hazard function is defined as: 

 

θ t = 	
a	λYtαH1

1 +	 λt Y 

 

Consequently, θ t  increases and then decreases if a > 1; or monotonically decreasing 

when   a ≤ 1. The parameters of these parametric models are estimated by the standard 

method of maximum likelihood. 

 

In duration modelling the problem of neglected heterogeneity or ‘frailty’ arises as a result 

of an incomplete specification. Thus, duration analysis can be extended to handle 

neglected heterogeneity. Unobserved differences between observations are introduced in 

the specification for the hazard function via a multiplicative scaling factor, v^ generally 

as follows:  

 

θ^ x, t = 	 v^θ^ x, t 	 
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where v^ is an unobservable random variable independently and identically distributed as 

Inverse Gaussian (which is right-skewed with a heavy tail) or Gamma . These two 

distributions have been the most commonly used. After some extensive algebra, it can be 

shown that the heterogeneity introduces a tendency for a decreasing hazard rate. 

Estimation of this model is undertaken using maximum likelihood techniques and for the 

Gamma case it involves the estimation of an additional parameter σa.  It should be noted 

that if σa = 0 (i.e., the variance of v^ is zero), then there is no heterogeneity present in the 

data and the model collapses to θ∗ x, t = q(t), or the standard Weibull model in this 

particular case.   

 

The empirical literature has generally confirmed that if one (mistakenly) ignores 

unobserved heterogeneity the non-frailty model will over-estimate the degree of negative 

duration dependence in the (true) baseline hazard, and under-estimate the degree of 

positive duration dependence.  In such circumstances, the proportionate effect (βK) of a 

given regressor (xK) on the hazard rate is no longer constant and independent of the 

survival time, and the estimate of a positive (negative) βc derived from the (wrong) no-

frailty model will underestimate (overestimate) the ‘true’ parameter estimate. 

 

The failure time econometric modelling explained earlier is actually situated in a 

continuous framework. However, Jenkins (1995) suggested an approach to the estimation 

of discrete-time duration models using a binary logistic regression model (among other 

models). The motivation behind is that usually research data are collected retrospectively 

in a cross-sectional survey, where the dates are recorded to the nearest, month or year, or 

prospectively in waves of a panel study. This give rise to discretely-measured durations 

or also called interval-censored (i.e., we only know that an event occurred at some point 

during an interval of time). 

 

The discrete duration modelling requires re-organization of the data set away from the 

individual as the unit of observation to the spell at risk of event occurrence.  Thus, for 

each individual, there are as many data rows as there are time intervals at risk of the event 

occurring for each individual. In other words, we move from the data set discussed 

previously, with one row of data per individual unit, to another data set in which each 

individual unit contributes TW rows, where TW is the number of time periods i was at risk 
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of the event occurring. Naturally, an unbalanced panel data set-up emerges with a 

maximum of 𝑁  individuals observed over 𝑇  discrete time periods. Consequently, a 

binary dependent variable 𝑌 is created. If subject i’s survival time is censored, the binary 

dependent variable is equal to 0 for all of i’s spell periods; if subject i’s survival time is 

not censored, the binary dependent variable is equal to 0 for all but the last of i’s spell 

periods (period 1..., TW–1) and equal to 1 for the last period (period TW).  

 

The logistic regression model can be formulated as: 

 

Prob yW,3 = 1 = ghi 	βhj,kDγlmngoWNgpmqm@rj,k
UDghi βhj,kDγlmngoWNg	pmqm@rj,k

 

 

where the dependent variable represents the probability of individual i exiting in an 

interval around period t conditional on having survived to period t, where 𝑥^,t is a vector 

of covariates, which may or may not vary over time. The final step prior to estimation is 

to choose a functional form for the baseline hazard. They are, for example, the fully non-

parametric (𝛾′𝐷^,t) , where 𝐷^,t  represents a set of duration-interval-specific dummy 

variables, one for each spell, a log time baseline (log(t^ )), the time (γ t^ ) baseline, the 

quadratic polynomial baseline (γU tW + γa tW
a)  and the cubic polynomial baseline 

(γU tW + γa tW
a + γx tW

x	). 

 

In summary, the discrete duration modelling allows the introduction of time-varying 

covariates, and the development of a very flexible non-parametric baseline hazard that is 

ultimately determined by the data rather than a specific distributional assumption. 

However, there are some disadvantages using these types of models. First, the sample 

size is inflated but the estimates obtained remain maximum likelihood and retain the 

asymptotic properties. Second, the data re-organization also leads to the potential for 

correlation across observations that likely introduce some degree of inefficiency in the 

estimates and a potential downward bias in the sampling variance. Hence, a solution to 

this problem is the introduction of an error term of the type introduced to model neglected 

heterogeneity.    
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The empirical analysis of this chapter will include the explained variety of common non-

parametric, semi-parametric, parametric duration models, and discrete time models. First, 

the Kaplan–Meier smoothed-baseline hazard estimator is plotted. Second, there is a 

discussion of the Cox PH model estimates.  Third, the standard parametric models such 

as the Exponential (constant hazard), the Weibull, and the Log-Logistic, either 

incorporating or not incorporating a control for neglected heterogeneity, are employed. 

Fourth, moving beyond the continuous framework and, thus, situating the analysis within 

a discrete-time context a logistic form is used for the hazard modelling.  

 

3.4 Failure time econometric modelling for the PAAP 

 

3.4.1 The conflict in Colombia 
 

During the period covering this study (2005-2013), the armed conflict in Colombia was 

still active but declining from its 2002 levels (Figure 3.4.1 Selected incidents of violence 

in Colombia). In 2003 a disarmament process began with a paramilitary group named the 

United Self-Defence Forces of Colombia (AUC, its Spanish acronym) that successfully 

concluded in 2006. Nonetheless, some elements remained active due to lower level 

organization of some members, who started smaller drug-dealing and criminal bands, 

known as the Bacrim.  
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Figure 3.4.1 Selected incidents of violence in Colombia 

 

Kidnappings, acts of terror and subversive actions (Y-right axis); and homicides (Y-left axis). 
Source: based on data from Centre of Development Economics Studies (Centro de Estudios sobre 
Desarrollo Económico, CEDE in Spanish) from Universidad de los Andes in Bogotá, Colombia. 
 

The Revolutionary Armed Forces of Colombia (FARC), the oldest and largest active 

guerrilla group in Colombia engaged in discussions with the national government in 

November 2012 in an attempt to end the conflict. Peace negotiations concluded 

successfully in December 2016, though the second most important guerrilla group known 

as the National Liberation Army (ELN) remained active. 

 

3.4.2 The PAAP 

 

The agribusiness contracts data are obtained from the administrative records of the Rural 

Productive Alliances Project (Proyecto de Apoyo a Alianzas Productivas or PAAP, to 

give it its Spanish acronym).  This is a major Colombian government rural development 

project partly financed by the World Bank12 and implemented by the Colombian Ministry 

of Agriculture and Rural Development (MADR, its Spanish acronym). Between 2002 and 

2015 around 775 Productive Partnerships were sponsored by PAAP, covering 31 

                                                
12 The World Bank co-financed about 70% of all PAAP project operations.  
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departments 13in the country. These partnerships have benefited over 49,000 families and 

430 commercial partners, principally buyers in the processing sector.  Over 90% of these 

partnerships are still operating today. The total value of agribusinesses sponsored is 

approximately US $434 million, of which 23% corresponds to investments made by the 

MADR.14 

 

The PAAP enables Producer Organizations (PO) to overcome problems faced by 

individual small-scale producers in accessing markets (buyers) in a sustainable way by 

means of establishing formal Agribusiness Contracts (AC) with a commercial buyer 

(CB). POs receive full support to sustain this new formal business opportunity with 

technical assistance and capacity building (Figure 3.4.2 PA business model). These 

agribusinesses contracts are called Productive Alliances (PAs). 

  

                                                
13 Colombia is formed by 32 departments and Bogotá DC, which is a Capital District. Each department has 
a Governor and a Department Assembly elected by popular vote for a four-year period. Departments as an 
administrative division are formed by a grouping of municipalities. Thus, Colombia has 1,122 
municipalities in total headed by a Mayor and administered by a Municipal Council elected also for a four-
year period. 
14 The period of our study only covers PAAP operations from 2005 to 2012. 
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Figure 3.4.2 PA business model 

Source: authors 
 
PAAP is a project exclusively for smallholder farmers as only poor farmers are permitted 

to apply for its funding and benefits. Major pre-requisites include: i) at least one family 

member is literate; ii) the subsidy beneficiary is an adult and head of household; iii) the 

family net income must not exceed twice the value of the minimum wage (USD 

2*315.39= 630.79); iv) at least 75% of the household income is derived from agriculture; 

v) family asset value must not exceed 200 times the minimum wage (USD 63,780.5) and 

vi); the parcel size must not exceed two Family Agricultural Units (Unidades Agrícolas 

Familiares, or UAF, to give it its Spanish acronym15). 

 

The project cycle begins with a call for proposals (Figure 3.4.3 PA Life cycle below) 

where POs and CBs prepare and submit a basic proposal for a prospective business plan. 

The business plan must assist PO smallholders in responding to market demand. Eligible 

proposals that best meet the requirements and indicate a higher likelihood of long-term 

business relationships are subjected to a feasibility study. Multi-stakeholders review both 

the prospective plan and the feasibility study. Only those with satisfactory technical, 

financial and market feasibility obtain funding and full support.   

                                                
15 This size usually reflects subsistence households whose production is sufficient to meet only the basic 
needs of the family. UAFs (Unidades Agrícolas Familiares, in Spanish) vary depending on municipality.  
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Figure 3.4.3 PA Life cycle 

 
 

Source: authors. 
 

A subsidy known as a Modular Incentive (MI) is then granted in three instalments to POs. 

Its value cannot exceed 35% of the total projected investment stated in the business plan 

nor exceed COP $6,000,000 (USD 2,988) per beneficiary. MI resources may finance a 

wide range of investments to improve a producer’s productive efficiency. For example, 

MIs can be used to finance technical assistance in production or to co-finance 

infrastructure or equipment investments (such as irrigation equipment for individuals or 

collective storage and packing facilities).16 In addition, part of the subsidy is used to 

strengthen PO capacity building (both, technical and organizational), allowing producers 

to meet the market requirements defined by the buyer.  

 

In the implementation stage, an agribusiness contract is formally signed and a Rural 

Productive Alliance (PA) management committee is formed. An AC usually specifies 

product characteristics (size and varieties), quantity (produced/bought), production 

modalities (deliveries, how, by whom, when, grading and packing requirements), 

payment modalities and price determination criteria. It stipulates a buyer’s contribution 

to the PO, such as technical assistance, specific inputs and arrangements for input 

reimbursement (for example) at the time of sale.   

                                                
16 In fact, some PAs use this grant to buy seeds, inputs or as start-up capital. 
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Figure 3.4.4 Number of AC by department 

 

 
Source: PAAP M&E Unit, 2014. 
 

During a period covering 18 to 24 months, POs receive technical assistance in production 

and business skills and environmental management training (sustainable water and land 

management techniques) by a Regional Accompaniment Organization (Organizaciones 

Gestoras Acompañantes – OGA, in Spanish), which are assigned depending on the 

location of the PO. 

 

In order to promote AC survival, subsidy recipients should ideally repay a share of it. 

Repayments are deposited in a Revolving Fund (RF) that will provide credit to farmers 

once PAAP interventions are ended.17 Finally, during the sales stage, POs are left alone 

and should be able to sustain their new business opportunities, ideally maintaining or 

increasing sales over time. POs are also empowered to develop direct formal links with 

other CBs offering better deals.  

 

A data set comprising 434 agribusiness contracts covering the period from 2005 to 2012, 

including the start-up characteristics of the POs such as municipality location, tenure, PO 

size, PO labour, was constructed based on confidential files of the PAAP. Monitoring and 

                                                
17 This is a requirement but is not enforced by the project. 
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Evaluation (M&E) Unit 18  exclusively for the empirical analysis conducted in this 

research. 

 

3.4.3  The definition of the contract spell 

 

A major challenge to survival analysis is defining the origin and failure points. In the 

PAAP context, the point of origin is the date when PAAP managers approve the 

agribusiness contract before the PAAP implementation stage starts. This point ensures 

the availability a larger sample size. More than half (57.4%) of the PAs have not finished 

the implementation stage (See Section 3.5). 

 

The selection of the failure point was more complicated. A failure point may be 

understood as a situation in which the PO defaults the agribusiness contract established 

with the CB. This happens when the commercial ties between parties are over, therefore 

causing PO sales to decline. Each semester, which in Spanish is equivalent to a period of 

six months, PAAP inspectors visit POs in the field to survey and assess the 

implementation of their operational plan, as well as to assess their productive, 

organizational and environmental management performance. Field surveys ask if the PO 

currently has active commercial ties with one or more CBs. If so, there is not an 

agribusiness contract, but somehow a trade agreement is enforced, the answer is ‘yes’, 

otherwise the answer is ‘no’. This question is taken to define a failure point. The major 

limitation is that information on responses to this question is only available after January 

2010. Therefore, for a group of agribusiness contracts, failure time could have occurred 

before then. There is no way to identify exactly when before this time due to a lack of 

information.  This is one reason why we use time-invariant covariates in the first phase 

of our empirical analysis. 

 

The ‘yes’ responses include several default positions. Often, their combination 

contributes to the termination of an agribusiness contract. For example: i) PO 

beneficiaries revert to traditional ways of production and markets since they find that 

more profitable, they simply cannot sustain the original deal with the secured CB; ii) the 

selected PO lacks social cohesion and displays an inability to manage conflicts, ultimately 

                                                
18 The M&E unit tracks POs even after the termination of the implementation stage. 
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leading the agribusiness contract to failure; iii) the PO is inefficient in providing services 

to its members; and/or iv) the PO lacks adequate management, organizational, 

commercial or professional skills, such as the management of a revolving fund. Basically, 

the overall strength of the PO is a prerequisite for a successful agribusiness contract 

(Collion and Friedman, 2012). 

 

Finally, there are also cases in which the buyer goes out of business. Commercial failure 

may not be always a fault of the PO. Inherent reasons about this situation are unknown 

given the nature of the data. 

 

3.4.4  The key explanatory variables 

 

Since this study’s interest is on the effect of violence on the duration of agribusiness 

contracts of smallholder growers, the selection of the conflict variables is guided 

empirically by their potential impact on the municipal business climate environment. The 

information on violent incidents is obtained from a confidential dataset constructed by 

the Centre of Development Economics Studies (Centro de Estudios sobre Desarrollo 

Económico, CEDE in Spanish) from Universidad de los Andes in Bogotá, Colombia. The 

dataset contains information on various manifestations of violence and is event-based and 

available on an annual basis. The type of violence, date and location are recorded for each 

event. 

 

Four conflict-intensity measures, which are set to their initial values before the start of 

the contract, are constructed using information available at the municipal level where the 

POs are located:  

 

i) Acts of terror: total number of acts of terror including explosions, incendiaries or other 

type of terrorist acts; 

 

 ii) Subversive actions: total number of subversive actions undertaken by the illegal 

armed groups including attacks on private property, attacks on entities or facilities, attacks 

on military headquarters, political attacks, roadblocks, ambushes, harassments, raids and 

car hijackings; 
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iii) Kidnappings: total number of kidnappings of civilians, politically active individuals, 

or members of the army per 100,000 inhabitants; and 

 

iv) Homicides: the total number of homicides per 100,000 inhabitants. 

 

The choice of covariates to include in the analysis of agribusiness contract duration were 

selected on the basis of prior expectations, which also are primarily set to initial values 

before the start of the contract. Three broad groups of variables are assumed to have a 

potential impact on agribusiness contract durations:  

 

i) PO-characteristics: The total number of PO beneficiaries at the time when PAAP 

managers approved the agribusiness contracts is used in order to emphasize the 

importance of the PO size. It is likely that bigger POs uphold the agreement with the 

commercial buyer for longer based on scale economies in production and superior 

bargaining power. 

 

PO tenure is also an important explanatory factor related to the survival of the 

agribusiness contract. A dummy variable is constructed that distinguishes POs remaining 

in the implementation stage of PAAP from those that have completed it. In particular, the 

POs that have completed this stage have implicitly gained technical assistance in 

production, management and marketing from the technical service provider of PAAP, 

and also used the MI instalments (e.g., to cover investments in infrastructure or 

equipment), which would allow them to honour more easily the agribusiness contract 

with the commercial buyer.  

 

The average share of PO beneficiaries that work fulltime on the farm at the start of the 

agribusiness contract is also constructed. The inclusion of this variable proxies the level 

of engagement and commitment of the beneficiaries to the contract between the PO and 

the CB.  Given this, it is anticipated that the contract is likely to endure longer given the 

extent of beneficiary commitment to the contract.  

 

ii) Product-specific: The supported product type may have significant effects on 

agribusiness development and the duration of the contract. Typically, producers of long 

growing cycle crops (of more than 12 months’ maturity) require additional resources to 
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support their livelihoods. In addition, long growing cycle crops require huge amounts of 

pre-harvest investments, implying a need for backup resources. Alternative revenues 

outside of the farm are limited and not very stable. Therefore, in order to achieve business 

success, producers must have access to additional land often devoted to cultivating short 

growing cycle crops (three to 12 months of maturity) for either their own consumption or 

sales. A dummy variable for product cycle is constructed in order to establish its impact 

on agribusiness contracts durations.  

 

Furthermore, PAAP not only supports agricultural crops19 but also supports some non-

crop activities that take place in the countryside. The following dummy variables are 

included to capture a product’s inherent non-crop features: livestock, milk, fish and other 

non-crop products (beekeeping, silk thread and unrefined sugar cane). 

 

iii) Market access: The presence of wholesale food markets near the PO denote lower 

transportation and transaction costs, less post-harvest losses for producers and a higher 

number of clients, along with more possibilities to establish better business deals outside 

agribusiness contracts with current buyers. Conversely, remoteness relative to markets 

increases sales uncertainty, unless there already exists an enforced agribusiness contract.  

 

3.4.5 The determinants of agribusiness contract failure  
 

There is no systematic empirical research addressing the issue of agribusiness contract 

duration determinants, nor its relationship with violence. The research question is tackled 

empirically by using duration models.  

 

As an example, Equation (3.1) illustrates the form of the Cox Proportional Hazards model 

to be estimated: 

 
 θ(x^z, t) = θ4 t exp(	βU 		Violence^,t~4 + 	βaPOIig�WJW�nz,t~4 

+	βxProd���ogz,t~4 + 	β�ProdE�igz,t~4 + β�Market	Access^,t~4) 
(3.1) 

 

where i is the municipality, j the agribusiness contract and t the semester, which is 

                                                
19 PAAP support around 70 crops. The ten most popular are cocoa, specialty coffee, blackberry, plantain, 
rubber, mango, avocado, oil palm, fique, and pineapple.  
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equivalent (in Spanish) to a period of six months. Therefore, 𝛉(𝐱𝒊𝒋, 𝐭)	is the hazard rate 

of agribusiness failure, 𝛉𝟎 𝐭  is the baseline hazard common to all units – this is 

ultimately swept out of the Cox partial likelihood estimation procedure and not explicitly 

estimated; Violence represents alternative measures of violence in the municipalities 

where producers are located at the start of the agribusiness contract; PO_Specifics are 

the producer organization’s characteristics also at the start of the contract (tenure, PO size, 

PO labour); Product_Cycle is a dummy variable that distinguishes between a crop type 

produced in either a long (more than six months) or a short growing cycle and sold by the 

PO; Product_Type is a dummy categorizing other non-crop products produced and sold 

by the PO under the agribusiness contract – specifically livestock, fish, milk, and other 

non-crop products like beekeeping, silk thread and unrefined sugar cane. Finally; Market 

Access is the Euclidean (straight-line) distance between the municipalities where 

producers are located and the closest wholesale food market.  

 

In Equation (3.1) all of the explanatory variables are calibrated at the time of the start of 

the agribusiness contract and are thus time invariant. Hence, this particular equation is 

useful to explore the effects of the initial conditions of violence on the future of 

agribusiness contract durations.  

 

However, the use of time-invariant covariates is restrictive, particularly when some key 

measures relating to violence are time-varying.  The introduction of time-varying 

covariates is difficult in parametric models but considerably easier to do within a discrete 

spell at risk framework. Once the data are transformed into spells at risk, as explained 

above in the failure time econometric modelling section, the estimation of the hazard 

model is done using a conventional logit model. For example, Equation (3.2) illustrates 

the discrete time hazard model to be estimated: 

 

 

 

Prob yW,3 = 1 =
ghi 	b¢hj,kDγlmngoWNgpmqm@rj,k

UDghi b¢hj,kDγlmngoWNg	pmqm@rj,k
 

 

where 

 

 

 

(3.2) 
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 b¢xW,3 = 𝛽4 + βUViolence^,t + βaPOIig�WJW�nz,t~4 + βxProd���ogz,t~4 +

β�ProdE�igz,t~4 + β�Market	Access^,t~4^,t~4 

 
 

In the current case the discrete time models are estimated by maximum likelihood 

techniques using a logit cumulative distribution function operator. The subscript i is the 

municipality, j is the agribusiness contract and t is the semester. A binary dependent 

variable Y is created. If the agribusiness contract j’s survival time is censored, Y is equal 

to 0 for all of j’s spell semesters; if the agribusiness contract j’s survival time is not 

censored, Y equals 0 for all but the last of j’s spell semester (semester 1,... Tj–1), and 

equal to 1 for the last semester (semester Tj) and no further data are recorded for a contract 

after it expires and exits the state. 

 

Regarding the variables now listed above, once again Violence includes alternative 

measures of violence in the municipalities where producers are located. However, now 

we allow them to vary yearly. The duration of agribusiness contracts of smallholder 

growers for the PAAP are expressed in semesters, but the alternative measures for 

violence vary yearly (there is no availability of six-monthly data). Therefore, we have the 

same data point for the two semesters for each year. The PO_Specifics, Product_Cycle, 

Product_Type, and the Market Access variables are the same as in the Cox Proportional 

Hazards model. 

 

In addition, note that in Equation (3.2), the whole dataset is re-organised so that for each 

agribusiness contract there are as many data rows as there are time intervals at risk of the 

event of failure occurring for each one. The data now resemble an unbalanced panel.  

Consequently, this estimation is based on transforming the data set discussed earlier from 

one row of data per agribusiness contract, to another data set in which each agribusiness 

contract contributes Tj rows, where Tj is the number of time periods (semesters) that j 

was at risk of the event of contract failure occurring.  

 

The final step prior to estimation of Equation (3.2) is to choose a functional form for the 

Baseline Hazard function. Several alternative specifications for each failure time period 

are considered such as the fully non-parametric (𝛾′𝐷^,t), where 𝐷^,t represents a set of 

duration-interval-specific dummy variables, one for each spell, a log time baseline 
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(log(t^ )), the time (γ t^ ) baseline, the quadratic polynomial baseline (γU tW + γa tW
a) 

and the cubic polynomial baseline (γU tW + γa tW
a + γx tW

x	). 

 

3.5 Data and Selected Summary Statistics 

 

There is no reason to assume that the baseline hazard follows a particular form. Thus, the 

Kaplan–Meier smoothed-baseline hazard estimator is plotted in (Figure 3.5.1). The 

hazards rate of agribusiness contract failure increases until the tenth semester, when it 

begins to decline. Since the tail turning point is fairly late, this suggests that a Weibull 

distribution that exhibits a positive duration dependence could fit the data reasonable 

well. However, this has to be investigated further. 

 

Figure 3.5.1 Smoothed hazard estimate for agribusiness contract durations under 
PAAP context  

 

 
X-axis semesters. 
Source: authors. 
 
Two different sets of estimates are presented in the results section. The first corresponds 

to the set of variables at the time of the start of the agribusiness contract and the second 

estimation allows these variables of interest to vary over time. Table 3.5.1 and Table 3.5.2 

provide respectively a description of the variables used in both analyses and their 
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summary statistics. See Table 8.1.1 Variable models definitions found in the Appendix 

chapter 3 for a full set of variable model definitions.  

 

Data on 434 agribusiness contract durations signed in 27 of the 32 departments of 

Colombia for the period 2005 to 2013 are available for empirical analysis.  The summary 

statistics for these variables are reported in Table 3.5.1 and range in length from one to 

17 semesters. While 320 durations were ongoing at the time of this analysis (73.7% 

censored), 114 experienced the failure event (26.3% non-censored) and exited the state 

of interest.  

 

The municipalities where the POs are located have suffered from the presence of violence 

along various dimensions and intensities over the period covered by this study. For 

example, within the dataset, at the start of each agribusiness contract municipalities 

experienced an average number of 1.7 acts of terror, including explosive, incendiary or 

other type of terrorist acts, with the maximum at 26. The average number of subversive 

actions, mainly caused by the guerrillas, include kidnapping and killing rates per 100,000 

inhabitants, are 0.36, 1.20 and 52.95, respectively. 

 

On average, POs have 60 members and around 56.91% of these work in agriculture as 

their main income producing activity. More than half (57%) of the agribusinesses remain 

in the implementation stage of PAAP. The average distance to the nearest wholesale food 

markets in the departments where these POs are located is 65.53 kilometres. 
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Table 3.5.1 Summary stats set at the start of agribusinesses contracts 

 
VARIABLES  Mean Sd Min Max 
Duration (in semesters)  5.42 3.22 1 17 
Failure event  0.26 0.44 0 1 
Average failure time  5.4 3.2 1 17 
Acts of terror, at start  1.69 3.77 0 26 
Subversive actions, at start  0.36 1.07 0 8 
Kidnappings per 100,000 population at contract 
start 

 1.20 3.67 0 30.4 

Homicide rate per 100,000 population at contract 
start 

 52.95 49.83 0 413 

Number of PO beneficiaries selected, at contract 
start  

 60.06 32.1 14 203 

Avg. share of beneficiaries that work on the 
farm/UPA at start (0-100) 

 56.91 27.7 0 100 

PA still at implementation stage  0.57 0.50 0 1 
Distance to the nearest wholesales food markets in 
the department 

 65.53 57.5 0 379.4 

Crops  0.78 0.42 0 1 
Short growing cycle crop  0.04 0.19 0 1 
Livestock  0.03 0.16 0 1 
Fish  0.03 0.18 0 1 
Milk  0.13 0.33 0 1 
Other no crop product  0.03 0.17 0 1 
N: 434 agribusiness contracts 
Source: authors own calculations. 

     

 
Approximately 80% of the POs produce and commercialize crop products. About 4% of 

the sample trade in short growing cycle crops, 13.0% produce milk, 3% livestock, 3% 

fish and the other 3% produce non-crop products such as beekeeping, silk thread and 

unrefined sugar cane.20 

 

As mentioned previously in Table 3.5.2, the data are also re-organised for further analysis 

so that for each agribusiness contract, there are as many data rows as there are time 

intervals at risk of the event of failure occurring within each contract. While the conflict 

variables differ yearly (half-year data are not available), the other covariates remain set 

at the start of the agribusiness contract due to the absence of updated information on these 

particular variables.  However, since the key variables that are evolving over time are the 

conflict measures, we do not believe this represents a significant constraint in the current 

analysis.  

 

                                                
20 In view of some of these dummies have very small cell sizes, the interpretation of their estimates need to 
be done with care. 
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In addition, as mentioned earlier a limitation on agribusiness contract information is that 

failure is only detected after January 2010. Hence, the discrete time survival models 

employ a subsample of agribusiness contracts starting in 2007 onwards. This time is 

enough for the POs to complete the implementation stage of PAAP, and also establish 

commercial relationships with the buyers. After three years, it could be argued that the 

incidence of violence may cause contract failure. 

 

Table 3.5.2 Summary stats for spell at risk data 

 
Variable Mean Sd Min Max 
Failure (dummy) 0.05 0.22 0 1 
Acts of terror 1.39 3.39 0 34 
Subversive actions 0.33 1.03 0 8 
Kidnappings per 100,000 inhab, at start 1.21 3.83 0 59.4 
Killings per 100,000 inhab, at start 52.31 47.21 0 459.3 
PO beneficiaries selected, at start (#) 62.22 31.04 14 203 
Avg. share of beneficiaries that work on the farm, at start (0-
100) 56.94 27.39 0 100 

PA still under implementation stage 0.40 0.49 0 1 
Avg. distance to nearest wholesales food markets in the 
department 64.48 58.03 0 379.42 

Short growing cycle crop 0.04 0.20 0 1 
Livestock 0.02 0.15 0 1 
Fish 0.03 0.17 0 1 
Milk 0.13 0.33 0 1 
Other no crop product 0.04 0.19 0 1 
Ln(t) 1.12 0.73 0 2.64 
num_semester = t 3.94 2.75 1 14 
t2 23.04 31.59 1 196 
t3 173.55 352.84 1 274 

N: 2195 observations. 
Source: authors. 
 

The new dataset has 2195 observations. The probability of failure is 5%. The average 

number of acts of terror, subversive actions (mainly attributable to the guerrillas), 

kidnappings and killings (both per 100,000 inhabitants) are 1.39, 0.33, 1.21 and 52.31 

respectively. Regarding the other covariates, a degree of caution should be employed in 

the interpretation of the summary statistics in view of the reorganization of the data set, 

creating as many data rows as there are time intervals at risk of the event of failure 

occurring for each agribusiness contract. 
 

3.6 Empirical Results 
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3.6.1 The Cox PH model Estimates 

 

Attention now turns to a discussion of the Cox PH model estimates reported in Table 

3.6.1. This realization for all the covariates are fixed at the time of the start of the 

agribusiness contract. Hence, this estimation explains the agribusiness contracts with 

respect to initial conditions prevailing in terms of both the conflict as well as the other 

covariates. The difference between Columns 1 and 2 in Table 3.6.1 is that the latter 

column includes the departmental fixed effects (dummies).  

 

The estimates suggest that agribusiness contract durations are negatively affected by the 

acts of terror at the point when the contract was initially signed. Overall, their effect on 

the hazard rate is positive, meaning that one additional act of terror at the contract start 

increases the hazard rate of agribusiness contract failure by 9.4% (see Column 2, Table 

3.6.1 ), on average and ceteris paribus. 

 

The threat of terror degrades the overall business environment. It may well be the case 

that the buyer business delegates, such as transporters, decide not to travel to 

municipalities where acts of terror occur, ultimately making it quite complicated for PO 

farmers to uphold or maintain an agribusiness contract with the nominated buyer.  
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Table 3.6.1 Cox PH model estimates for commercial agreement failure 

 
VARIABLES (1) (2) 
Acts of terror, at start 0.069** 0.094** 
  (0.032) (0.048) 
Subversive actions, at start -0.150 -0.172 
  (0.119) (0.124) 
Kidnappings per 100,000 inhab, at start 0.026 0.000 
  (0.030) (0.033) 
Homicide rate per 100,000 inhab, at start -0.003 -0.005 
  (0.003) (0.003) 
PO beneficiaries selected, at start (#) -0.011*** -0.005 
  (0.004) (0.004) 
Avg. share of beneficiaries that work on the farm, at start (0-100) -0.007** -0.012*** 
  (0.003) (0.004) 
PA still under implementation stage 0.852*** 0.900*** 
  (0.223) (0.231) 
Avg. distance to nearest wholesales food markets in the department 0.001 0.007* 
  (0.001) (0.004) 
Short growing cycle crop 0.118 0.031 
  (0.353) (0.426) 
Livestock 1.059*** 1.169*** 
  (0.335) (0.418) 
Fish 0.389 1.083** 
  (0.436) (0.448) 
Milk -0.633 -0.849** 
  (0.398) (0.428) 
Other no crop product -0.412 0.024 
  (0.572) (0.475) 
Dummy Department (26) No Yes 
Observations 434 434 
Test of joint significance of department fixed effects (Prob>chi2)  n/a 0.00 
Test of joint significance of type of product (Prob>chi2) 0.015 0.001 
Model chi2 43.6 130.2 
Df 13 39 
Pseudo-Log(L) -581.9 -554.7 
AIC 1190 1187 
N. of fails (without a business partner) 114 114 
Cox regression -- Breslow method for ties.  
Robust standard errors in parentheses *** p<0,01, ** p<0,05, *p<0,1 
Source: authors. 

 

The PO characteristics matter for the duration of the PAs. For example, due to scale-

economies in the use of inputs and possibly stronger bargaining power, it is likely that 

bigger POs (with a higher number of beneficiaries at inception) may have the capacity to 

produce and sustain the volume and product quality requested by the buyer. Thus, adding 

one beneficiary to the PO at the start of the contract reduces the hazard rate of failure by 

1.1%, on average and ceteris paribus (Column 1, Table 3.6.1). However, this coefficient 

is not statistically significant in column 2, when the departmental fixed effects are 

included. 
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In addition, agribusiness contracts endure when POs have a higher number of household 

members that work directly in agriculture. A one percentage point increase in the average 

share of beneficiaries that work on the farm at contract start decreases the hazard rate of 

contract failure by 1.2%, on average and ceteris paribus (see Column 2, Table 3.6.1). 

 

The POs still involved in the implementation stage of PAAP are 146% more likely to fail 

than more mature ones that have received the full package of benefits of PAAP (technical 

assistance in production, business skills and environmental management training) on 

average and ceteris paribus (Column 2, Table 3.6.1).  

 

Access to markets also matters. Each additional kilometre between POs and the nearest 

wholesale food markets increases the hazard rate of agribusiness contract failure with the 

buyer by 0.7%, on average and ceteris paribus (Column 2, Table 3.6.1). 

 

Finally, product growth cycles (short or long growing cycle crops) do not appear to have 

an effect on agribusiness contract durations. However, product type does matter with 

respect to crops (the base category). Livestock and fish have 221.9% and 195.4% higher 

hazard rates of agribusiness contract failure than crops, respectively. In addition, milk 

displays a 57.2% smaller hazard rate of failure than crops, on average and ceteris paribus. 

However, some caution is required in all these cases as they represent a very small number 

of the contracts in the sample. 

 

Departmental differences in soil, altitude, climate (temperature and rainfalls), availability 

and quality of resources (such as infrastructure) determine agricultural products supply 

and demand and therefore agribusiness patterns. These are captured with the inclusion of 

the departmental fixed effects (dummies), which are found to be statistically significant 

overall (p-value 0.001).  

 

Finally, further diagnostic analysis is undertaken to determine the robustness of the Cox 

PH results. First, on the one hand, perhaps the violence incidents at the start year of the 

agribusiness contract are atypical, while on the other, producers’ expectations based on 

past violence experiences may affect intrinsic decisions relating to a producer’s 

agribusiness contract duration.  Thus, the conflict variables are recomputed as the average 

of the previous three years before the start period of the agribusiness contract. These 
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estimates are reported in Table 8.1.2 Cox PH model estimates for commercial agreement 

failure (Violent incidents average 3 years before start) found in Appendix chapter 3. Once 

more, in Column (1), the acts of terror at the start of the spell appear to be one of the main 

channels through which agribusiness contract durations are reduced. However, in Column 

(2), the departmental dummies absorbed most of the effect of violence variables since 

conflicts have a strong geographical dimension. 

 

Second, suspicion about the presence of spatial correlations often arise when using 

municipal-level data. Intuitively, no spatial correlation is expected in this dataset: spell 

origins occur in different times and the distance between municipalities is quite large due 

to the fact that PAAP is distributed around the whole country.  Using a formal test, we 

find no evidence of spatial correlations.21 

 

3.6.2  Parametric models  

 

The standard parametric models such as the Exponential (constant hazard), the Weibull, 

and the Log-logistic, either incorporating or not incorporating a control for neglected 

heterogeneity,22 are now employed to test the robustness of Cox PH model results.  

  

                                                
21 A spatial error model was estimated as part of an exploratory exercise. The durations again providing the 
dependent variable with the same covariates in Equation (3.1) included. This type of model is appropriate 
when there is an interest in correcting for spatial autocorrelation. First, we constructed a spatial weight 
matrix (W) based on POs municipalities’ distances (longitude and latitude). Second, the spatial dependence 
was added to a regression in a spatial error. The regression model is y = βx + e, the errors are spatially 
correlated e = λWe + u  or I − λW e = u , thus, the spatial error regression reduced form equation is 
defined by (I − λW)y = (I − λW)βx + e . The multipliers in front of the dependent and independent 
variables are the variation that cannot be explained by the neighbours’ values. Moran’s I test statistic is 
used to test if the data have spatial dependence. It is similar but not equivalent to a correlation coefficient.  
It varies from -1 (perfectly dispersed) to +1 (perfectly clustered). The Moran’s I test statistics applied to 
this model reveals no spatial dependencies (p-value 0.248). 
22 This distributional assumption is often made in this literature. 
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Table 3.6.2 Parametric models for commercial agreement failure 

VARIABLES Exponential Weibull Weibull with I.G 
Acts of terror, at start. 0.080* 0.104* 0.104* 
  (0.043) (0.053) (0.053) 
Subversive actions, at start -0.232* -0.195 -0.196 
  (0.119) (0.130) (0.130) 
Kidnappings per 100,000 population at contract start -0.009 -0.014 -0.014 
  (0.031) (0.037) (0.037) 
Homicide rate per 100,000 populations at contract start -0.003 -0.005 -0.005 
  (0.003) (0.003) (0.003) 
PO beneficiaries selected, at start (#) -0.003 -0.004 -0.004 
 (0.003) (0.004) (0.004) 
Avg. share of beneficiaries that work on the farm/UPA at start (0-100) -0.010** -0.011** -0.011** 
  (0.004) (0.005) (0.005) 
PA still under implementation stage 0.248 1.009*** 1.009*** 
  (0.185) (0.228) (0.228) 
Avg. distance to nearest wholesales food markets in the department 0.005 0.007* 0.007* 
  (0.003) (0.004) (0.004) 
Short growing cycle crop 0.027 0.041 0.041 
  (0.383) (0.439) (0.439) 
Livestock 0.851** 1.096** 1.096** 
  (0.360) (0.445) (0.445) 
Fish 1.011*** 1.400** 1.400** 
  (0.383) (0.557) (0.557) 
Milk -0.855** -0.849* -0.849* 
  (0.400) (0.437) (0.437) 
Other no crop product -0.039 -0.047 -0.047 
  (0.440) (0.472) (0.472) 
Constant -2.048*** -3.823*** -3.823*** 
  (0.541) -0.669 (0.669) 
Ln(alpha)  0.680*** 0.680*** 
   (0.074) (0.074) 
Ln(theta)   -12.732*** 
    (1.234) 
Departments dummies (26) Yes Yes Yes 
Observations 434 434 434 
Overall test (Prob>chi2) of product dummies 0.002 0.003 0.003 
Overall test (Prob>chi2) of departmental dummies 0.000 0.001 0.001 
Model chi-square 129.7 123.7 123.7 
Df 39 39 39 
Pseudo-Log(L) -270.1 -243.3 -243.3 
AIC 620.1 568.6 570.6 
N. of fails (without a business partner) 114 114 114 
Robust standard errors in parentheses *** p<0,01, ** p<0,05, * p<0,1.  
Source: author  
 
The estimation confirms that the acts of terror at the start of the contract shortens the 

duration of agribusiness contracts under PAAP thus increasing the hazard rate of failure. 

According to the Akaike Information Criterion (AIC)23 the standard Weibull model with 

positive duration dependence (alpha=1.974) fits the data better, which is consistent with 

the Kaplan–Meier smoothed-baseline hazard estimator with positive slope plotted in 

Figure 3.5.1 earlier above  

 

Thus, one additional act of terror at the contract start increases the hazard rate of 

agribusiness contract failure by 10.4% (Column 2, Table 3.6.2), on average and ceteris 

                                                
23 The Akaike information criterion (AIC) is a measure of the relative quality of statistical models for a 
given set of data. Given a collection of models for the data, AIC estimates the quality of each model, relative 
to each of the other models. 
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paribus. It is worth noting that the direction and the significance of the control variables 

remain similar to those reported for the Cox PH model.  

 

Often in the literature the models incorporating a control for neglected heterogeneity 

dominate any other parametric form.  However, this is not the case here. Perhaps the 

departmental fixed effects and the product dummies are absorbing the plausible presence 

of neglected heterogeneity. Alternatively, the Inverse Gaussian distribution used to model 

the neglected heterogeneity is not fit for purpose.   

 

It should be noted that the AIC values obtained from the Cox PH model estimation cannot 

be compared with the ones obtained from the parametric models estimation. This is 

because the Cox PH model is estimated by a method known as the partial likelihood, 

while the parametric models are estimated using a standard maximum likelihood method. 

However, given the positive slope of the Kaplan–Meier smoothed-baseline hazard 

estimator plotted in Figure 3.5.1, we actually can say with some degree of confidence that 

a very flexible hazard it is likely not required in this case, which provides further support 

for using the standard Weibull model with positive duration dependence rather than the 

Cox PH model. 

 

Moreover, another reason why we might be sceptical in using the Cox PH results relates 

to a high number of ties.24 In particular, 114 contracts experienced the failure event 

(26.3% non-censored) and exited the state of interest, the mean exit number is 5.4 per 

semester, with a maximum of 17 per semester. Table 8.1.3 in the Appendix chapter 3 

shows the contract durations statistics per semester. 

 

Finally, see Table 8.1.4 and Table 8.1.6  in the Appendix chapter 3 for the Accelerated 

Failure Time (AFC25) duration models results where similar findings are detected. 

                                                
24 The proportional hazards model assumes a series of comparisons of those subjects who fail to those 
subjects at risk of failing (the risk pool). For example, let’s assume that there are five subjects—x1, x2, x3, 
x4, and x5—in the risk pool, and that x1 and x2 fail. The “Breslow method” employed here for handling 
tied values says that because we do not know the failure order, we will use the largest risk pool for each 
tied failure event. This method assumes that both x1 and x2 failed from risk pool x1 + x2 + x3 + x4 + x5. 
However, if there are many ties, this approximation will not be accurate because the risk pools include too 
many observations. 
25 The AFT models are also parametric and provides an alternative to the commonly used proportional 
hazard models. Whereas a proportional hazards model assumes that the effect of a covariate is to multiply 
the hazard by a constant, an AFT model assumes that the effect of a covariate is to accelerate or decelerate 
the spell by some constant.  
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3.6.3  Discrete time survival models 

 

The incidence of violence in Colombia has varied in intensity both across regions and 

over time. The violent shocks, fear and uncertainty generated by the armed conflict have 

weakened economic activity. In fact, in the agricultural sector, farmers often invest and 

produce less and  avoid engaging in more profitable activities due to the higher costs of 

production and the perception of living potentially in a shorter time horizon in the midst 

of war (See Arias et al. 2014;  Arias and Ibáñez, 2012). 

 

Thus, the main advantage of using discrete time models over the semi-parametric and 

parametric duration models is that the former allows the violence variables to vary over 

time within the spell at risk.  In other words, it permits the inclusion of time-varying 

covariates.  

 

Since contract failure can only be detected after January 2010 given that there is 

information available on the answers to the question “does the PO currently has active 

commercial ties with one or more CBs?” in the dataset (See Section 3.4.3), the discrete 

time survival models employ a subsample of agribusiness contracts starting in 2007. 

 

This sub-sample essentially removes from the analysis those old contracts that are not so 

fragile, and we focus especially on an interval of time that allows the precise time for 

agribusiness to mature. In other words, it is assumed that three years before failures are 

detected provides enough time for the POs to complete the implementation stage of 

PAAP, and to establish concrete and prosperous commercial relationships with the 

buyers. Moreover, this particular sub-sample permits the inclusion of time-varying 

violence variables that match better the lifespan of the contracts in the dataset. Hence, 

after three years, the incidence of violence may emerge as a cause of contract failure.26 

 

In addition, in order to run the discrete time survival models some adjustments to the 

violence variables are required. The duration of agribusiness contracts of smallholder 

growers for the PAAP is expressed in semesters. However, the violence measures vary 

                                                
26 For the continuous-time duration analyses doing this subsampling exercise was not necessary due to the 
covariates are fixed at the time of the start of the agribusiness contract. 
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yearly, because there is no availability of six-monthly data of these statistics. Therefore, 

the yearly data point is used twice for the two semesters within each year. 

 

The functional forms for the Baseline Hazard function considered included in the 

estimations are the fully non-parametric baseline (𝛾′𝐷^,t) , where 𝐷^,t represents a set of 

duration-interval-specific dummies, one for each spell, a log time baseline (log(t^ )), the 

time (γ t^ ) baseline, the quadratic polynomial baseline (γU tW + γa tW
a) and the cubic 

polynomial baseline (γU tW + γa tW
a + γx tW

x	). 

 

Figure 3.5.1 provides some hints about which Baseline Hazard function would be most 

appropriate. Given the positive slope of the Kaplan–Meier smoothed-baseline hazard 

estimator plotted with a very late turning point, it is likely that the quadratic or a cubic 

polynomial baseline are fit for purpose. On the other hand, whereas it is expected that the 

last set of duration-interval-specific dummies of the fully non-parametric baseline may 

capture the tail at the end.  The log time (log(t^ )) would captured it too softly and the 

time (γ t^ ) baseline may not be enough to do the job.  

 

The discrete time models coefficients expressed in Equation (3.2) are estimated by 

maximum likelihood using the logistic cumulative distribution function (See Table 

3.6.3).27 In particular, although not reported in the table to save space, in the fully non-

parametric model 28  the last set of duration-interval-specific dummies that are 

statistically significant yield negative sign coefficients, and as time increases their 

magnitude decreases. On the other hand, regarding the cubic baseline, both estimated 

quadratic and cubic coefficients are statistically significant; while  γa  is positive, γx 	is 

negative and smaller, thus, capturing the late and not so deep turning point seen in Figure 

3.5.1.   

                                                
27All models estimations report their correspondingly log pseudo likelihood value, which is always 
negative, and with higher values (closer to zero) indicating a better fitting. As expected, and according to 
the lecture of the log pseudo likelihood values, the fully non-parametric and the cubic baseline fits the data 
better.	
28 The inclusion of a full set of duration-interval-specific dummies, one for each spell, somehow over 
parametrize the model, for example, two dummies predicts failure perfectly (𝐷^,t~Ua,, 𝐷^,t~U�,) and two 
others generate collinearity problems (𝐷^,t~U�,, 𝐷^,t~U�,) causing estimations problems. That’s why the final 
estimation of this model include only 14 dummies and have 27 observations less than the others.  
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Table 3.6.3 Discrete time models coefficients (logistic regressions)  

Variables Baseline 
Fully non-
parametric 

Log(t) (t) Quadratic Cubic 

Acts of terror -0.044 -0.044 -0.046 -0.046 -0.046 
  (0.039) (0.039) (0.039) (0.039) (0.039) 
Subversive actions 0.234* 0.223* 0.234* 0.234* 0.228* 
  (0.134) (0.130) (0.131) (0.131) (0.133) 
Kidnappings per 100,000 
inhab 

0.010 0.012 0.012 0.012 0.010 

  (0.020) (0.019) (0.020) (0.020) (0.020) 
Killings per 100,000 inhab 0.001 0.001 0.001 0.001 0.001 
  (0.003) (0.003) (0.003) (0.003) (0.003) 
PO beneficiaries selected, at 
start (#) 

-0.006 -0.005 -0.006 -0.006 -0.006 

  (0.005) (0.005) (0.005) (0.005) (0.005) 
Avg. share of beneficiaries 
that work on the farm at start 

-0.013** -0.012** -0.013** -0.013** -0.013** 

  (0.005) (0.005) (0.005) (0.005) (0.005) 
PA still under 
implementation stage 

1.076*** 0.843*** 0.959*** 0.961*** 1.051*** 

  (0.258) (0.231) (0.246) (0.244) (0.251) 
Avg. distance to nearest 
wholesales food markets in 
the department 

0.007 0.006 0.006 0.006 0.007 

  (0.004) (0.004) (0.004) (0.004) (0.004) 
Short growing cycle crop 0.064 0.076 0.078 0.077 0.061 
  (0.540) (0.538) (0.544) (0.544) (0.545) 
Livestock 1.425*** 1.258** 1.333** 1.333** 1.384*** 
  (0.536) (0.529) (0.534) (0.534) (0.532) 
Fish 1.362** 1.420** 1.390** 1.390** 1.306** 
  (0.591) (0.571) (0.566) (0.566) (0.571) 
Milk -0.908** -0.912** -0.920** -0.919** -0.915** 
  (0.451) (0.444) (0.445) (0.447) (0.447) 
Other no crop product 0.238 0.198 0.243 0.242 0.235 
  (0.612) (0.622) (0.616) (0.613) (0.606) 
Ln(time=semester)   0.635***    
    (0.173)    
Time    0.187*** 0.192 -0.406 
     (0.039) (0.118) (0.292) 
Time⌃2     -0.000 0.119** 
      (0.009) (0.057) 
Time⌃3      -0.006** 

      (0.003) 
Constant   -3.096*** -3.153*** -3.165*** -2.441*** 
    (0.756) (0.773) (0.784) (0.872) 
Semesters dummy (14) Yes No No No No 
Departments dummy (26) Yes Yes Yes Yes Yes 
Observations 2,168 2,195 2,195 2,195 2,195 
Log pseudolikelihood  -368.8 -380.7 -378.0 -378.0 -375.7 

 

Table 3.6.4 shows the discrete time models marginal effects. The estimation results show 

that a one-unit increase in the number of subversive actions (mainly provoked by the 

guerrillas) raises the probability of agribusiness contract failure by 0.0065-0.0069 

probability points (0.65%-0.69%) on average and ceteris paribus.  
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Table 3.6.4 Discrete time models marginal effects (logistic regressions)  

Variables Baseline 
Fully non-
parametric 

Log(t) (t) Quadratic Cubic 

Acts of terror -0.0012 -0.0013 -0.0014 -0.0014 -0.0013 
  (0.0011) (0.0012) (0.0012) (0.0012) (0.0011) 
Subversive actions 0.0065* 0.0068* 0.0069* 0.0069* 0.0066* 
  (0.0036) (0.0039) (0.0038) (0.0038) (0.0038) 
Kidnappings per 
100,000 inhab 

0.0003 0.0004 0.0004 0.0004 0.0003 

  (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) 
Killings per 100,000 
inhab 

0.0000 0.0000 0.0000 0.0000 0.0000 

  (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 
PO beneficiaries 
selected, at start (#) 

-0.0002 -0.0002 -0.0002 -0.0002 -0.0002 

  (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 
Avg. share of 
beneficiaries that work 
on the farm at start 

-0.0004*** -0.0004** -0.0004*** -0.0004*** -0.0004*** 

  (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 
PA still under 
implementation stage 

0.0344*** 0.0284*** 0.0320*** 0.0321*** 0.0349*** 

  (0.0090) (0.0082) (0.0087) (0.0087) (0.0091) 
Avg. distance to 
nearest wholesales 
food markets in the 
department 

0.0002* 0.0002 0.0002 0.0002 0.0002* 

  (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 
Short growing cycle 
crop 

0.0018 0.0024 0.0024 0.0024 0.0018 

  (0.0159) (0.0174) (0.0172) (0.0172) (0.0166) 
Livestock 0.0783 0.0690 0.0740 0.0740 0.0772 
  (0.0489) (0.0459) (0.0479) (0.0478) (0.0487) 
Fish 0.0720 0.0835 0.0787 0.0787 0.0697 
  (0.0493) (0.0531) (0.0504) (0.0504) (0.0474) 
Milk -0.0188*** -0.0206*** -0.0202*** -0.0202*** -0.0197*** 
  (0.0072) (0.0077) (0.0075) (0.0075) (0.0073) 
Other no crop product 0.0074 0.0066 0.0080 0.0080 0.0075 
  (0.0209) (0.0224) (0.0224) (0.0223) (0.0215) 
Ln(time=semester)   0.0192***    
    (0.0054)    
Time    0.0055*** 0.0057 -0.0117 
     (0.0012) (0.0035) (0.0085) 
Time⌃2     -0.0000 0.0034** 
      (0.0003) (0.0017) 
Time⌃3      -0.0002** 

      (0.0001) 
Constant       
            
Semesters dummy 
(14) 

Yes No No No No 

Departments dummy 
(26) 

Yes Yes Yes Yes Yes 

Observations 2,168 2,195 2,195 2,195 2,195 
Log pseudolikelihood  -368.8 -380.7 -378.0 -378.0 -375.7 
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In general, these tables exhibit similar findings to those detected when the parametric 

models are used. The number of beneficiaries and the average share of beneficiaries that 

work on the farm (both at business contract inception) yield a negative relationship with 

the probability of agribusiness contract failure. In contrast, when the productive alliances 

remain in the implementation stage, the probability of agribusiness contract failure 

increases. Furthermore, when the POs produce livestock and fish, the probability of 

agribusiness contract failure is higher compared to producing crops. However, when they 

produce milk, the probability of agribusiness contract failure decreases. The marginal 

effects vary across the estimation methods as does the shape of the baseline hazard 

function. 

 

Finally, see also Table 8.1.5 in the Appendix chapter 3 for results when the cloglog29 

form is employed for the hazard discrete time modelling. Similar findings are detected. 

 

 

  

                                                
29 The Complementary Log-Log (cloglog) transformation is defined as 𝐿𝑜𝑔 −𝑙𝑜𝑔 1 − Prob yW,3 = 1 =
bxW,3. Like the logit transformation, it takes a response restricted to the (0,1) interval and converts it into 
something in (−∞, +∞) interval. Since 1 − Prob yW,3 = 1  is always a negative number, this is changed 
to a positive number before taking the log a second time. Therefore, the model can also be written as 
Prob yW,3 = 1 = 1 − exp −exp	(	bxW,3) . 
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3.7 Conclusions  

 

The findings of this chapter fill an important gap in the existing violence and conflict 

literature. Until now, to the author’s knowledge, there are no studies exploring the 

performance of agribusiness contracts that use econometric models. In addition, there is 

no study that has linked agribusiness data with violence at the municipal level. Going 

beyond studies that often use cross-country information, firms or individual farmer 

surveys, this investigation employs an original dataset of smallholder farmer agribusiness 

contracts to explore the relationship between their duration and violence in Colombia 

using data from a project focused on linking farmers to markets – PAAP.  

 

This chapter attempts to disentangle the channels through which violence affects 

agribusiness contract durations. Terrorism, at the start of the agribusiness contract, 

appears to be the main cause of smallholder agribusiness contract failure. When violent 

incidents vary over time, the armed conflict (i.e., the number of subversive actions) 

emerged as the cause of agribusiness contract failure. Thus, the Colombian armed conflict 

has had a degrading effect on the overall agribusiness climate, constraining farmer 

capacity to sustain market linkages.  

 

The empirical analysis of this chapter is subject to some data limitations. For example, 

non-state armed actors, such as the FARC, occasionally impose a ‘war tax’ on farmers, a 

payment of monthly dues to the guerrillas that allow them to continue working on their 

farms. The existence of the ‘war tax’ (vacunas, in Spanish) may affect agribusiness 

contract durations. However, the dataset used includes only smallholder producer 

organizations, which do not necessarily provide a lucrative tax base for such purposes.   

 

In addition, it is not possible to identify with the current dataset who is the actor that 

defaults from the original partnership. Buyers may also be tempted to look for other 

providers and the inherent reasons for contract failure, whether it is sourced on the supply-

side or the demand-side or indeed both, are unknown.  

 

Finally, failure from the original partnership is not necessary something bad. Indeed, if 

the PAAP, as a linking farmer to markets program, is effective, smallholder farmer 

beneficiaries at some point after its implementation may be able to link with buyers in 
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more sophisticated supply value chains that offer better business growth opportunities.  

Thus, contract failure may actually be a positive outcome.  However, this again is 

something we cannot inform directly on given data constraints.  
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Chapter 4 

4 Forests and Conflict in Colombia 
 
 

Summary 

 

This chapter offers evidence on the relationship between armed conflict and its 

environmental impacts. For the case of Colombia, using a unique annual municipality 

panel dataset (from 2004 to 2012) and an instrumental variable approach to control for 

possible endogeneity between forest cover and forced displacement, there is evidence that 

the armed conflict is a force for forest protection and growth. In December 2016, the 

Colombian government concluded the negotiations with the Revolutionary Armed Forces 

of Colombia (FARC) to end South America’s longest-running internal conflict. Forest 

degradation often increases in post-war situations. These findings highlight a need for 

increased protection of Colombia's forests in the wake of the peace settlement. 

 
Keywords: forest cover, forest change, reforestation, deforestation, armed conflict, 
violence, forced displacement, land abandonment, coca crops 
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4.1 Introduction 

 

The toll of civil conflict goes well beyond human suffering and the damage to physical 

infrastructure. Conflicts may also cause the degradation and destruction of local 

environments and biodiversity. This paper offers evidence on the relationship between 

armed conflicts and forest cover for the case of Colombia. 

 

Little attention has been given to the impact of conflicts on the environment. In fact, most 

conflict studies investigate the effects of conflict on socioeconomic and institutional 

outcomes, such as a country’s’ macroeconomic performance, human capital and asset 

accumulation, or civil political participation. For example, from a macroeconomic 

perspective Collier (1999) using a cross-country dataset (92 countries, 1960 to 1992) 

estimates a GDP per capita annual decline of 2.2% for a country that experienced a civil 

war relative to its counterfactual, on average. Likewise, Hoeffler and Reynal-Querol 

(2003) using a global dataset (211 countries, 1960 to 1999) report that civil wars that last 

five or more years reduce the country’s average annual growth rate by 2.4% on average.  

 

Regarding human capital accumulation Justino et al. (2013) examine the impact of 

violence in Timor Leste using data from 1999. In the short term, the authors found 

supporting evidence that school attendance was reduced. In the longer-term, primary 

school completion declined particularly for boys exposed to peaks of violence during the 

25-year conflict. Similarly, Shemyakina (2011) for the case of Tajikistan, found that girls 

aged between 7-15 years old in 1999 are about 11 percentage points less likely to be 

enrolled in school if their household's dwelling was damaged during a conflict period 

(1992-1998). 

 

In terms of asset accumulation Deininger (2003), using household data from Uganda, 

found that the conflict negatively affected investment and non-agricultural enterprise 

formation between 1992 and 1999. The household income decision on investment was 

affected by the imposition of war taxes by the rebel forces.  

 

On the subject of civil political participation, Bellows and Miguel (2006) investigate the 

socioeconomic and institutional outcomes in 2004 and 2005 in Sierra Leone, some years 

after the civil war period (1991-2002) had ended. The empirical evidence shows that 
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political mobilization measures became higher in areas that experienced more violence.  

 

Understanding how conflict affects forest cover could provide insights on the need to 

promote natural resource conservation with the corresponding governmental engagement 

in structural forest governance regulations particularly important in preventing the 

escalation of conflict.  

 

The 2016 peace deal was intended to end the 60 years of conflict with the FARC.  Apart 

from reducing victimization, it is anticipated to generate immense economic benefits for 

the country. For example, a National Planning Department (DNP)30 study suggests that 

Colombia’s GDP will grow between 1.1 and 1.9 percentage points more with the arrival 

of peace. However, it is important to clarify that the ‘environmental’ peace dividend 

would not necessarily be positive. In particular, in Colombia the effect of the conflict on 

forest cover is often regarded as ambiguous.  

 

On the one hand, the presence of illegal armed groups31 in protected areas restricts 

colonization trends and assist these areas to remain free of environmental damage 

(Álvarez, 2003;  Dávalos et al. 2011). In fact, guerrilla groups often served as the local 

environmental protection authority, taking explicit decisions on nature conservation, 

enacting and enforcing unofficial laws limiting hunting, fishing, and deforestation 

(Dávalos, 2001; Sánchez-Cuervo and Aide, 2013). 

 

The environmental friendly attitude of the guerrilla movement in Colombia is usually 

linked to their prevailing economic and military interests in the area. Conserving the 

forests helps rebel forces conceal their activity and establish safe-havens with transit 

corridors for troops, military supplies, drugs, or illegally extracted natural resources such 

as timber or minerals (Álvarez, 2003; Dávalos et al. 2011).  

 

                                                
30 This is based on DNP (2015), “Dividendo económico de la paz”. 
31 During the period covering this study the armed conflict comprised mainly two guerrilla organizations 
known as the Revolutionary Armed Forces of Colombia (FARC) and the National Liberation Army (ELN). 
In addition, there exists in the shadows a third actor, a right-wing paramilitary group known as the United 
Self-Defence Forces of Colombia (AUC), which even though signing a demobilization agreement in 2003 
remains active in criminal and drug-related activities. 
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On the other hand, in other areas, illegal armed groups have caused devastating effects 

on the ecosystem, destroying oil pipelines, engaging in illegal mining, and clearing forests 

to acquire land for the cultivation of illicit crops. The war on drugs has exacerbated this 

situation. Chemically or manually, coca eradication automatically causes localized 

deforestation in the area in which it is conducted. In response, coca producers tend to 

move to even more remote locations such as national parks or other protected areas where 

chemical fumigation is prohibited. New coca plantations are then established which 

ultimately lead to a cycle of deforestation (Dávalos et al., 2011). 

 

This paper complements and enhances the existing literature by identifying the direction 

of the relationship between armed conflicts and forestation in Colombia. The 

identification strategy used relies on exploring the causal effect that forced displacement 

exerts on forest cover at the municipal level.  

 

According to official figures more than 5.2 million persons were forcibly internally 

displaced between 1990-2012. This represented 11.2% of the population. Illegal armed 

groups are the main implicated parties. In fact, it well known that violence against 

civilians has not been random. Instead, it has been a deliberate strategy of war. Illegal 

armed groups have displaced peasants in order to secure control of valuable land rich in 

natural resources.  This enables the armed groups to engage in legal or illegal economic 

activities such as mining or planting illicit crops, or use the land to establish camps for 

troops, or store illegal drugs and weapons. Selective killings, massacres, death threats, 

disappearances, forced recruitment and property damage are consequences of attacks 

perpetrated by these groups to frighten and intimidate local inhabitants, which eventually 

leads to forced displacement (Roche-villarreal, 2012; Moya, 2012; Ibáñez, 2009).  

 

The research presented here provides an important contribution to the existing literature 

on conflict. In particular, the scope of existing studies has been limited by data restrictions 

regarding the availability of forest cover and conflict statistics at the sub-national level. 

Thus, while some studies have focused on examining a conflict’s environmental impacts, 

others exclusively deal with the impacts generated by a single conflict actor. In addition, 

few studies employ appropriate econometric techniques to tackle this research question. 

Therefore, this chapter goes beyond others studies by using a unique annual Colombian 

panel dataset of forest cover satellite imagery at the municipal level over the period from 
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2004 to 2012. Furthermore, the research also investigates and tests for the endogeneity 

problem between forest and conflict presence using an array of appropriate econometric 

techniques. Specifically, a fixed effects (FE) Instrumental Variable (IV) approach is used 

to address the potential endogeneity problem between forest cover and forced 

displacement. In exploiting forced displacement as the main conflict-specific explanatory 

variable we not only capture the effect of multiple perpetrators of violence, but also its 

link or relationship to land use.  This allows us to explore the conflict’s impact on forest 

coverage given armed conflicts invariably induce large flows of displaced persons either 

from the countryside to urban centres, or to unexploited frontier lands elsewhere. 

 

The main finding of this study is that the armed conflict has been a beneficial force for 

forest protection and growth in Colombia, but the estimated effect of the conflict on 

forestation is found to be small in magnitude. Consequently, the positive yield of conflict 

conservation is overwhelming offset by the negative consequences of violence which 

involve, for example, a high number of deaths in the fighting, the destruction of human 

capital and physical infrastructure, educational and health outcomes and market 

disruption, and the increments of drug production which undermines governance, among 

other things. Hence, the major achievement of the 2016 peace deal that ended 60 years of 

conflict with the FARC was reducing victimization. Yet, since forest degradation 

frequently increases in post-conflict situations the government may need to play an active 

role in developing conservation policies in those developing areas currently under the 

control of the guerrillas when the peace finally arrives. Otherwise, the peace dividend for 

the environment will not emerge. 

 

The paper is structured as follows. The next section presents a literature review which is 

followed by a section describing empirical modelling issues. A fourth section describes 

the data and some descriptive statistics. A fifth reports the empirical results, while a sixth 

section examines the role of a set of time-invariant variables on explaining forest cover. 

A final section offers some concluding remarks and the policy implications for the 

analysis. 

 

4.2 Literature review  

 

Most of the literature linking conflict and the environment emphasizes the connection 
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between abundant natural resources, armed conflict, and underdevelopment. This is 

generally known as the “resource curse” which makes reference to a situation in which 

the natural resources are mismanaged by a certain interest group (See, for example, Auty 

(2004); Ross (1999); Collier and Hoeffler (1998)32; and Sachs and Warner (1995)) 

 

The findings are somehow mixed in terms of the duration of conflicts and the presence 

of forests. For example, Collier et al. (2004) investigates the causes of civil war, 

exploiting a database of 161 countries over the period 1960-1999 (79 civil wars) and 

reports that the extent of forest cover is not statistically associated with longer conflicts. 

In contrast, De Rouen and Sobek (2004) exploit a database containing information on 114 

civil wars in 53 countries between 1944 and 1997, and find that highly forested countries 

are associated with a significantly decreasing probability33 of the civil war ending.  

 

However, studies that use cross-country data are subject to criticism. Often the forest 

cover is calculated for the whole country, but it is likely that only some parts of the 

country experienced the conflict. Hence, Lujala (2010) shows that the location of the 

natural resources are key determinants of conflict durations using a dataset known as 

PETRODATA 34 , which contains the geographic coordinates on the location of 

hydrocarbon (i.e., crude oil and natural gas) reserves for 111 countries. According to the 

author’s research, if these resources are located inside the actual conflict zone, the 

duration of the conflict actually doubles.  

 
There is also a growing literature that tries to explicitly link the relationship between civil 

war and forest cover. In particular, progress has been made in terms of incorporating 

spatially explicit forest cover in to empirical analysis given the evolution and 

development of user-friendly satellite data. Once again, these studies offer mixed results 

regarding the direction of the impact of conflicts on forests, and are usually subject to the 

                                                
32 In the Collier and Hoeffler (1998) paper on the economic causes of conflicts, countries experiencing civil 
wars were found to have marginally lower forest cover (29%) than their counterparts who did not 
experience civil war (31%). 
33 In this study, a logit model is used to explain what determines the probability of civil war outcomes (i.e., 
government victory, rebel victory, truce, or treaty), whereas a hazard analysis identifies the factors that 
determine the time to reach such an outcome. 
34  This dataset includes 890 onshore and 383 offshore locations with geographic coordinates and 
information on the first oil or gas discovery and production year. PETRODATA allows researchers to 
control for both the spatial and temporal overlap of regions with hydrocarbon reserves and armed 
conflict. PETRODATA is available at http://www.prio.no/CSCW/Datasets/Geographical-and-Resource . 
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inherent mechanics of country conflicts, which demonstrate the need for more focused 

research.  

 

Focusing on the experience of Colombia, Fergusson et al. (2014) is one of the few studies 

that addresses the endogeneity problem between conflict and forests. In particular, the 

authors focus on examining the deforestation impact of the paramilitary expansion, which 

was characterized by the perpetration of selective massacres and by forcing large 

populations to flee in order to secure territory during the late 1990s. They instrument 

paramilitary attacks with the distance to the Urabá region, the epicentre of the 

paramilitary activity. The forestation data were based on satellite images for the years 

1990, 2000, 2005 and 2010. The authors detected a negative effect of the paramilitary 

expansion on forest cover using cross-sectional models controlling for, among other 

things, municipality fixed effects,  

 

Dávalos et al. (2011), examining the case of Colombia, use forest cover maps at 1-km 

grid35 spatial resolution to quantify forest changes in the northern Andes, Chocó and the 

Amazon regions.  These represented the largest coca leaf producing zones between 2002 

and 2007. The authors use logistic regressions and control for the grid distance to the 

closest newest coca fields and the area of coca cultivation around 1 km2, and the 

population, road accessibility and climate controls, among other things. The study finds 

that the cell probability of transition from forest to no forest increases with shorter 

distances to the newest coca fields and with the area of coca cultivated in its boundaries. 

This paper suggests that establishing larger protected areas could help reduce 

deforestation and preserve biodiversity.36  

 

Viña et al. (2004) concentrate their analyses on the region along the Colombia-Ecuador 

border using satellite data between 1973 and 1996. The authors compare images to 

calculate the rates and patterns of land-cover changes along the border. Their comparison 

suggests that forest cover loss is higher on the Colombian side of the border with 43% on 

that side compared to 26% on the Ecuadorian side. They do not use an econometric model 

to identify specific factors driving these results. However, they suggest that the illegal 

                                                
35 These comprise a network of lines that cross each other to form a series of squares. 
36  Fjeldså (2005) report similar results, concluding that the eradication campaigns lead to a constant 
relocation of drug dealers, thus making illicit crops one of the main causes of deforestation.  
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coca production, occurring mainly along the Colombian side, might explain the 

differences in deforestation rates.  

 

Álvarez (2003) using information obtained through semi-structured interviews with local 

civilians and members of the guerrilla groups situated in the main forested regions of 

Colombia (e.g., the Macarena mountains, Munchique National Park, Tambito Nature 

Reserve, the San Lucas mountain range, and the Churumbelos mountains) emphasize that 

the relationship between conflict and forest cover is ambiguous. On the one hand, the 

author finds evidence of ‘gunpoint’ conservation in some sites, which means that the 

guerrilla groups, such as the ELN in the San Lucas mountain range, undertook 

conservation activities. In this particular case, this was done by placing landmines37 or 

posting signs that warn of landmines in patches of the forests. In turn, the forests served 

the guerrillas as cover from government surveillance and air strikes. On the other hand, 

guerrilla groups have also expedited deforestation. For example, in the Choco Department 

lowlands, forests were actually converted into cattle ranches or coca plantations. 

 

Among the international studies on this subject that are of relevance is Stevens et al. 

(2011). Their paper investigates the forest cover changes on two sites, with a total area of 

circa 160,000 hectares located along the Atlantic Coast of Nicaragua over a period 

covering the civil war (1978 to 1993). Based on a forest and non-forest image pixels38 

classification detection methods39, the authors find that in the first five to 7 years of the 

conflict, reforestation was greater than deforestation due to forced displacement. 

However, once the conflict terminated people returned to their lands and the level of 

deforestation was almost double the level of reforestation that had occurred during the 

conflict. 

 

Hecht and Saatchi (2007), using a visual interpretation of satellite imagery data of forest 

cover between 1990 to 2007 for El Salvador, highlight the expansion of woody 

vegetation, especially in the northern provinces, in mountainous zones at the edge of 

                                                
37 Landmines are in effect a ‘negative capital stock’ that society accumulates during a conflict. They 
continue to kill and mutilate people long after the actual fighting has ended (see Hoeffler & Reynal- Querol, 
(2003)). 
38 Pixels are the smallest elements of an image that can be individually processed in a digital screen.   
39 Based on a classification scheme, the pixel classes were divided into specific land cover categories, 
which included forests (deciduous, mixed, secondary) and non-forest (agriculture, rangeland, and barren 
land) types. 
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agricultural frontiers, and in regions that had been under the control of the Farabundo 

Martí Front for National Liberation. They conclude that woodland resurgence is 

positively correlated with the occurrence of the civil war. They note that many people 

fled the country to avoid being killed in the conflict. 

 

Nackoney et al. (2014) for the Democratic Republic of Congo, comparing satellite 

imagery data across two decades (1990–2010) with an algorithm that uses surface 

reflectance to detect image changes, report that primary forest loss and degradation rates 

occurring during the conflict decade (1990–2000) were over double the rates of the post 

war decade (2000–2010). This suggests pressure on the forests during periods of conflict. 

Despite the fact that their images do not consider forest regrowth, the authors note that 

after the end of the war in 2003, the rate of primary forest loss taking place within the 

agricultural zones increased, meaning that in the post-war era people returned from 

remote forested areas to their homes, and cleared forests in order to regenerate food 

production activity. 

 
Table 4.2.1 Selected studies on the relationship between conflict and forests 

Author Published Journal Sample coverage Methodology 
Conflicts 

impacts on 
forests 

Collier et al 
(2004) 

Journal of Peace 
Research 

Cross-country overtime 
(1960 - 1999) 161 
countries  

Probability model 
(logit) No impact 

Fergusson et 
al (2014) 

Working paper 
CEDE series, 
Universidad de los 
Andes, Colombia 

Colombia overtime 
(1990, 2000, 2005 and 
2010) 

Cross-sectional and 
instrumental 
variables models 

Negative (due to 
paramilitary 
activity 
expansion) 

Dávalos 
(2001) 

Environmental 
science technology 

Colombian regions 
(Northern Andes, 
Chocó and the Amazon) 
overtime (2002 - 2007) 

Probability model 
(logit) 

Negative (due to 
coca production) 

Viña et al 
(2004) 

Journal of the 
Human 
Environment 

Colombia & Ecuador 
border region overtime 
(1973 - 1996) 

Satellite imagery 
analysis 

Negative (due to 
coca production) 

Alvarez 
(2003) 

Journal of 
Sustainable 
Forestry  

Colombia main forested 
regions (Macarena 
mountains, Munchique 
National Park, Tambito 
Nature Reserve, the San 
Lucas mountain range, 
and the Churumbelos 
mountains) 2003 

Not Econometrics 
(interviews) 

Ambiguous (due 
to "gunpoint" 
conservation) 

Stevens et al 
(2011) 

Biodiversity and 
Conservation 

Nicaragua's Atlantic 
Coast (160,000 ha) 
overtime (1978-1993) 

Satellite imagery 
analysis 

Positive (due to 
displacement) 



77	
 

Hecht and 
Saatchi 
(2007) 

BioScience El Salvador overtime 
(1990 - 2007) 

Satellite imagery 
analysis 

Positive (due to 
displacement) 

Nackoney et 
al (2014) 

Biological 
Conservation  

Democratic republic of 
Congo overtime (1990-
2010) 

Satellite imagery 
analysis 

Negative (due to 
pressure on 
natural resources) 

Burgess et al 
(2015) 

Environmental 
Research Letters  

Sierra Leone overtime 
(1990 and 2000) 

Log linear 
regressions 

Positive (due to 
displacement) 

 

In contrast, Burgess et al. (2015) for Sierra Leone, merged satellite imagery of forest 

cover with chiefdom-level conflict incidents (151 observations) for the years 1990 (prior 

to the civil war) and 2000 (just prior to the end of the civil war) and found that conflict 

prevented local deforestation. In particular, conflict-ridden chiefdoms experienced 

significantly less forest loss relative to their counterparts due to forced displacement. 

 

Table 4.2.1 provides a short summary of the research done in this topic reviewing data 

sources, methodologies and key findings. The major constraint on research progress on 

this topic have been a lack of data on both conflict and forest cover at the sub-national 

level. Some studies concentrate their analysis only on particular biomass areas (eco-

regions), while others are confined to the effects of a single perpetrator of violence. Very 

few adopt a clear or clean identification strategy, and address the endogeneity problem 

between the conflict and forestation or deforestation. Although, it is acknowledged the 

potential problem may not be present in the current application since, as we have found, 

it depends on the choice of the conflict variable used in the empirical analysis. The aim 

of this paper is to fill these lacunae. 

 

4.3 Empirical and identification strategy 

 

The research question is addressed empirically by using instrumental variables and panel 

data methods. The variation of the dependent and explanatory variables over time and 

across municipalities is exploited to identify the effects of the armed conflict on forest 

cover. Equation (4.1) outlines the specification to be estimated: 

 

 
 𝐹𝑜𝑟𝑒𝑠𝑡^,t = 	𝛾𝐹𝐷^,t + 𝛽𝑋^,t + 𝛼^ + 𝜆t + 𝜀^,t (4.1) 
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where Foresti,t is the share of municipality i’s area covered by forest in year t. The conflict 

variable is the forced displacement rate per 1000 of the municipal population (FDi,t). 

Following the literature review, the main reason as to why forced displacement was 

chosen as a variable to measure the impact of the armed conflict on forests is because it 

not only represents a deliberate40 strategy used in war, but also is linked to land use and 

conservation trends.41 Similar to areas with harsh environmental conditions42 that may 

experience agricultural abandonment and a subsequent spontaneous ecosystem recovery, 

productive areas abandoned by humans due to conflict may experience a reduction on 

land pressure, which leads to forest regrowth (See Sanchez-Cuervo and Aide, 2013).  

 

CNMH (2015), using statistics from the Central Registry for Victims Office (RUV) 

(1985-2014), suggest that 62.5% percent of the victims of forced displacement declared 

that the perpetrator was an illegal armed group (41.4% of which were guerrillas and 

21.1% paramilitaries, respectively). The emergent criminal bands (known by the name of 

Bacrims in Spanish) accounted for 4% of the total displacement, while various state forces 

were found to be directly responsible for only 0.8%. Unfortunately, the remainder of the 

victim statements  (32.7%) contained in the RUV do not offer a detailed description of 

the actors identified by the victims as the displacement perpetrators.  

 

In Colombia, illegal armed groups promoted forced displacement often to reduce the 

offensive capacity of the “enemy”, expropriate and concentrate land, exploit and usufruct 

the dispossessed territory, or to establish and sustain illegal economies (e.g., money 

laundering, planting of illicit crops, development of drug trafficking routes). Forced 

displacement is not an unintended result of the internal conflict. Instead, groups attack 

the civil population to strengthen territorial strongholds, expand territorial control, 

weaken support for the opponent, and accumulate valuable assets (Ibáñez and Vélez, 

2008).These actions are the standard modus operandi of a warlord who seeks territorial 

control and appropriation of the revenues of the territory (CNMH, 2015; Duncan, 2004). 

Thus, forced displacement is provoked by any threats or direct attacks by an armed group, 

regional indiscriminate violence, or even the mere presence of armed groups. Civilians 

                                                
40 According to Ibáñez (2009) violence against civilians is not a random act. 
41 Forced displacement is the conflict consequence most connected to forestation trends.    
42 Environmental variables can explain the patterns of forestation because they can restrict or encourage 
different land uses. 
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are displaced to avoid direct victimization, or, simply as a way of preventing a 

confrontation (Ibáñez, 2009a).  

 

In particular, Engel and Ibáñez (2007) and Ibáñez and Vélez (2008) investigate 

displacement determinants using logistic regression models for a sample of 376 

households conducted during the year 2000. The data cover displaced households (200) 

from the departments of Antioquia and Cordoba (the expulsion zones) which migrated to 

Bogota, Medellin and Cartagena, and others (176) that remained at their place of origin. 

The probability of displacement is determined by variables capturing the strategies 

pursued by armed groups, state presence, income generation possibilities, and household 

characteristics. For example, the study finds that a household is significantly more likely 

to opt for displacement if there were violent acts committed in its surrounding area, the 

presence of a subversive group (either paramilitary or guerrilla), if it owns larger 

landholdings or high levels of livestock43, it is far from economic markets, or it is located 

in a region with a high index of basic needs. On the contrary, the probability of household 

displacement is reduced when there is an active presence of military forces and the 

national police, there is access to social services (education and health), and when the age 

of the household head and the level of education is high.  

 

Dueñas et al. (2014) present similar results based on fixed effects panel data estimation 

for the period 2004–2009. In particular, the authors show that the rate of expulsion of a 

displaced person is positively and strongly correlated with the conflict intensity (attacks 

undertaken by illegal armed groups), the presence of coca crops, royalties (which is a 

proxy for the presence of natural resources) and low economic and security conditions at 

the municipal level.  

 

In summary, violence and security perceptions are the major determinants of 

displacement and are, therefore, viewed as the key levers in preventing displacement 

(Ibáñez and Vélez, 2008).  

 

                                                
43 Livestock can be transformed into cash relatively easily (more easily than land). Thus, it provides 
financial resources that help to cover the costs of displacement and provide a basis for a new start in the 
receiving location. 
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Authors such as Aide and Grau (2004) and Meyerson et al. (2007) have shown that rural–

urban forced displacement promotes ecosystem recovery due to the reduction of human 

pressure on land. The research findings in this thesis is in line with that hypothesis. 

Despite the fact that rural to rural displacement might also increase forest degradation, in 

Colombia most of the forced displacement is actually rural to urban in nature.  In other 

words, it goes from forested areas and most often to the larger cities. According to official 

figures during the study period (2004-2012) around 60% of the total displaced people 

were expelled from a “strictly”44 rural municipality, and around 75% of the displaced was 

received by a “strictly” urban municipality.  

 

In Equation (4.1), γ is the primary parameter of interest in the empirical analysis. In 

order to identify the causal effect of forced displacement on forest coverage, the error 

term (εi,t) needs to be uncorrelated with the forced displacement rate per population (i.e., 

the main variable of interest (FDi,t) must be exogenous). The standard econometric 

literature suggest that there are at least three possible reasons why the FDi,t may be 

endogenous (i.e,. correlated with the error term): i) measurement error, ii) simultaneity, 

and iii) omitted variables. Yet, in this particular case it should be noted that one cannot 

rule out the possibility that the measurement error bias dominates the other two 

endogeneity causes. 

 

First, it is expected that measurement error may play a role in the estimation of γ due 

to data on 𝐹𝐷^,t may be subject to underreporting. In particular, precise statistics for the 

number of people who have been internally displaced in Colombia are unavailable.  

 

The government Registry for Displaced Populations (RUPD) consolidates forced 

displacement statistics. The RUPD objective is to legally recognize displaced households, 

and, therefore, quantify the demand for public aid. Displaced persons approach local 

government authorities to declare, under oath, the circumstances of their displacement. 

                                                
44 The municipal urban and rural classification follows the theoretical framework developed by the 
“National Mission for Rural Transformation of Colombia” led by the National Planning Department 
during 2014-2015, which defined four categories of municipalities according to its degree of “rurality” 
(cities and agglomeration, intermediate, dispersed rural, and rural) based on three variables: the number 
of inhabitants, the population density per square kilometre, and the share of people that reside in their 
main cities. In particular, whilst the categories “cities and agglomerations” and “intermediate” are 
assumed “urban”, the “dispersed rural” and "rural" are assumed “rural”. 
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Then, public servants confirm whether or not this is truthful. According to Ibáñez (2009) 

approximately 30% of the displaced population is believed not to be registered.  

 

Displacement is not confined to remote or isolated municipalities as it extends throughout 

the whole of Colombia. Underreporting in displacement is due to a person’s 

unwillingness to become registered in the official registration system for reasons 

including a fear it places on an individual’s personal and household security at risk, the 

desire of anonymity because of the situation of displacement, reticence or mistrust 

towards the state and its institutions, the lack of information on the existence of the 

registration system, or unawareness about the system registration benefits, among other 

factors (Ibáñez, 2009; Silva and Sarmiento, 2013). 

 

On the other hand, there are registration inefficiencies and bureaucratic procedures that 

could vary regionally. For example, it can be the case of refusal to register by an official 

in charge of feeding the system in a region due to the non-recognition of certain causes 

of displacement (e.g., due to a state-caused displacement through the aerial fumigation of 

coca crops in the region). Finally, depending on the case, the regional authorities may not 

record the number and the reasons for the rejection. Similarly, there aren’t records about 

the number of appeals or of the responses to appeals (See Rivadeneira, 2009). In 

conclusion, under-registration makes the true extent of displacement impossible to 

quantify with certainty. All of these explanations are random and municipality case-

specific.  Therefore, although the levels of registrations may be affected, we do not 

believe that the variation in registrations are affected given the random nature of under-

reporting.    Hence, we believe it is a reasonable assumption to make that measurement 

error in the forced displacement variable is likely to be random in nature. Furthermore, 

we believe that the IV estimation procedure used would address the issue of measurement 

error if it were systematic (rather than random) in nature. 

 

Bottom-line, measurement error may conceal the true impact of 𝐹𝐷^,t  on forest cover. 

Since underreporting is likely to be negatively correlated with the 𝐹𝐷^,t the estimate of 

γ is likely to be downward biased if estimated by OLS. 

 

Second, simultaneity issues may also bias the parameter estimate of γ. 𝐹𝑜𝑟𝑒𝑠𝑡^,t	 and 
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𝐹𝐷^,t are possibly determined simultaneously. On the one hand, 𝐹𝐷^,t may be particularly 

widespread in forested regions. The illegal armed groups are profit-driven actors and 

therefore, natural resources such as faunae, timber, minerals, and tree crop booms attract 

them to the forests for harvesting purposes. These groups often then enter into conflict 

with the local people or with each other causing civilian displacement. For example, it is 

well known that the FARC and other criminal gangs, known locally as “Bacrims”, have 

sought control of illegal mining activities in the more remote forest lands. In the 

department of Choco illegal armed groups have violently secured control of territories, 

which are used by locals to carry out illegal gold mining. The FARC then charges the 

miners a gold production tax and a fee for using each unit of machinery (i.e., 

excavators).45  

 

On the other hand, the presence of illegal armed groups affects forest conservation efforts. 

Historically, the Colombian government has often neglected remote regions and their 

inhabitants. As a result, local populations have limited loyalty to local governments, and 

look to other groups to perform traditional government functions. Thus, the guerrillas 

have taken advantage and have performed natural resource management and conflict 

resolution to legitimize their role as a local political actor in these regions. For example, 

it has been well documented that the ELN protected forests in the Serranía de San Lucas, 

a forested massif located in the department of Bolívar, northern Colombia, because of 

their major role in the local hydrology (See Álvarez, 2003; and Dávalos et al., 2011). In 

the Serranía de la Macarena, a set of mountains located in the Department of Meta, eastern 

Colombia, FARC violently enforced environmental protection. A noteworthy example is 

a ban they established on yellow catfish harvesting, a threatened species, especially when 

it is migrating up rivers and streams to spawn.46 

 

Therefore, if there is a simultaneity bias one could expect a negative correlation between 

the unobservables determining 𝐹𝑜𝑟𝑒𝑠𝑡^,t	 and 𝐹𝐷^,t , (𝜀^,t  ) and (u^,t), respectively, that 

might explain a downward bias in the estimate of γ if OLS is used in preference to an 

appropriate IV estimation procedure. However, looking for unobservables and also a 

                                                
45 For example, see the article entitled “El medio ambiente: la víctima olvidada” an online special edition 
of Semana Magazine retrieved from: http://sostenibilidad.semana.com/medio-
ambiente/multimedia/medio-ambiente-conflicto-colombia/33709 
46 Ibid. 
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convincing narrative that leads to this particular result is hard. In fact, it is more likely 

that the correlation between unobservables is weak.  
 

Third, omitted variables could also potentially affect the estimate for this key parameter 

as well. The set of controls (Xi,t) may neglect some time-varying factors that are difficult 

to capture but are also correlated with forest cover and forced displacement. For example, 

Acevedo (2015) argues that in coca areas the increase in coca yield is associated with a 

decrease in forced displacement mainly due to the establishment of ‘coercive’ institutions 

enforced by illegal actors. Thus, forced displacement only occurs when farmers are able 

to escape safely from the coca-farming contract entered into with the guerrillas and local 

drug barons. The negative correlation between the establishment of coercive institutions 

by guerrillas and forced displacement could potentially downward bias the OLS estimate 

of γ, though the direction of bias cannot be known a priori.  However, the inclusion of 

municipal fixed effects may attenuate this particular bias in this circumstance. 

 

It is likely that the measurement error bias dominates the other two endogeneity sources 

due to a presence of increased underreporting found in the forced displacement variable. 

First, even if the simultaneity and measurement error act in opposite directions, the 

correlation between unobservables determining 𝐹𝑜𝑟𝑒𝑠𝑡^,t	 and 𝐹𝐷^,t is likely to be weak, 

which means that simultaneity bias is largely offset by the measurement error bias. 

Second, since inclusion of municipal fixed effects controls for permanent unobserved 

heterogeneity, the omitted variable problem is attenuated. 

 

In order to tackle these endogeneity concerns, an instrumental variable (IV) technique is 

employed.  Therefore, equation (4.1) represents the structural model and comprises the 

second-stage equation in a two-stage estimation procedure.47 The IV estimation seeks to 

separate the exogenous part of the total variance of the variable of interest from a part 

that is endogenous and thus correlated with the error term in equation (4.1). Under the 

assumption that this separation is undertaken correctly, the final least squares estimates 

                                                
47 One alternative way to bypass the endogeneity problem is to use the lag of the FDi,t variable. It could be 
argued that this might solve the simultaneity problem as it could be argued that today’s forest cover will 
not influence armed conflict activity in the past. However, the weakness of this approach is that if there is 
any inertia in the variables, the lags will not necessarily resolve the endogeneity problem.  In any event, 
exogeneity, in its most stringent form, requires the unobservables to be independent of past, present and 
future values of the conflict variable.  In general, this condition is rarely satisfied.  
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will be unbiased and consistent. In practice, it is necessary to find a set of variables, 

known as instruments, which are independent wither respect to forest cover, but strongly 

correlated with the variable of interest (i.e., displacement).  The three important features 

of a good instrument are that: i) it should be correlated with the endogenous variable (i.e., 

relevance); ii) it should be uncorrelated with the error term (orthogonality) ; and most 

importantly iii) there should be a persuasive narrative about the use of the instrument(s). 

The first two of these requirements can be investigated empirically. 

 

Thus, the first-stage Equation (4.2) is defined as: 

 
 𝐹𝐷W,3 	= 	πZ^,t 	+ 	δX^,t 	+ 	α^ 	+ 	λt 	+ 	u^,t	 (4.2) 

where (Zit) is the set of instruments that includes the lagged values of the victims of 

massacres per 100,000 inhabitants and the number of conflict kidnappings per 100,000 

inhabitants. Exploiting various valid instruments can improve precision, hence, the use 

of a third instrumental variable is also explored. In particular, it is considered the 

percentage of the agricultural frontier with coca crops fumigated48   and manually49 

eradicated; or expressed as the percentage of the municipal area with coca fumigated and 

manually eradicated. The vector X^,t is comprised of exactly the same set of variables 

assumed exogenous in Equation (4.1). The key point here is that the predicted variable 

𝐹𝐷¢,3, by construction, is independent of u^,t and thus the estimation yields unbiased and 

consistent estimates. The ui,t is an error term assumed to be identically independently 

distributed with zero mean and a constant variance.  

 

The rationale underlying the “relevance” of these instruments is now discussed. First, 

forced displacement is usually preceded by an escalation of violence, driven by exposure 

to more than one type of violence. In such instances, displacement becomes the last resort 

to survive. One of the main reasons driving people to flee their homes is the occurrence 

of massacres. Massacres are defined as those events in which four or more people are 

murdered at once. Usually, illegal armed groups have conducted massacres as a deliberate 

tool to instil fear and intimidate the civilian population in order to seize assets, 

                                                
48 Aerial spraying is undertaken using an herbicide called glyphosate, commercially sold as Roundup. It 
kills the plants inhibiting their ability to produce amino acids. The herbicide is sprayed from small aircrafts 
as closely as possible to the coca crops. 
49 Manual eradication is performed by a group of men who destroy coca crops by hand. 
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disintegrate entire communities, and appropriate territory  (Calderón-Mejía and Ibáñez, 

2015; Roche-villarreal, 2012). 50  According to Ibáñez (2009a) the occurrence of 

massacres account for about one fifth (21.1%) of the total forced displacements.  

 

Forced displacement and massacres are strongly linked at the municipal level in 

Colombia. In particular, high incidences of displacement and massacres coincide in 

66.2% of Colombian municipalities; conversely, municipalities with low incidences of 

forced migration also exhibit a low incidence of massacres (Ibáñez and Vélez, 2008). 

 

Second, kidnappings, just like other acts of violence, serve to remind the local inhabitants 

that coercive threats are real, and that a violent event could happen to anyone within the 

community boundaries (See Moya (2012)). According to Ibáñez (2009a) kidnappings 

explain 7.6% of the total forced displacements.  

 

Third, there is evidence of a positive effect of the drug trade on violence (Dell, 2015; 

Dube and Vargas, 2013; and Angrist and Kugler, 2008). The presence of coca has fuelled 

Colombia’s long enduring civil conflict. Despite the fact that coca production appears to 

improve crop producers’ income, violence increases sharply in the coca-growing regions. 

Guerrillas derive substantial income by taxing coca-growers. Violence, or the threat of 

violence, is regularly used to enforce coca farming contracts in this illegal industry, which 

ultimately leads to displacement (See Acevedo, 2015; Rabasa and Chalk, 2001). 

 

In particular, coca leaf production and forced displacement are potentially related. 

According to Ibáñez (2009,a) the growth in illicit crop areas adds pressure on land and 

displacement not only because of the acquisition of lands for cocaine and poppy crops by 

illegal armed groups but also due to the importance of establishing transport routes for 

drugs. This is tested empirically by Dueñas et al. (2014). The authors, using fixed effects 

municipal panel data estimation for the period 2004–2009, report that the rates of 

expulsion of the forced displaced is positively correlated with the higher areas under coca 

cultivation. 

 

                                                
50 Most massacres were committed during the time of the right-wing paramilitary activity between 1999 
and 2003, rendering this armed group responsible for 58% of these cases.  
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Angrist and Kugler (2008) explain that coca crops generate only modest economic gains 

by farmers, mostly in the form of increased self-employment earnings51 , and increased 

labour supply provided by teenage boys. However, rural areas which experience 

accelerated coca production subsequently become more violent due to an increase in the 

economic resources available to illegal armed actors.  This in turn leads to increased 

forced displacement. In contrast, Acevedo (2015) suggests that coca production by 

farmers in some situations is not a voluntary choice. Instead it is forced by the illegal 

armed groups. In particular, coca planting, harvesting and processing into cocaine are 

activities that may be enforced with violence or the threat of violence. This is consistent 

with some anecdotal evidence that suggests that the economic benefits of coca growing 

are largely taxed. This kind of reasoning postulates that an increase in coca productivity 

should be associated with expansion efforts by the coercive non-state armed groups and 

a decrease in forced displacement. The Acevedo (2015) results confirm that an additional 

millimetre of precipitation above the municipality mean, which positively affects the 

yield of the crops, decreases forced displacement by 1.22% in coca-suitable areas with 

rich harvest data. An inference to be drawn from this is that forced displacement occurs 

only when farmers are able to leave “safely” the coca farming contract (and the region) 

thus mitigating the risks of retaliation.  

 

Finally, programs to eradicate illicit crops may also produce displacement. According to 

Engel and Ibáñez (2007) aerial fumigation of illicit crops destroys farmer  assets, 

generating a  negative income shock. This exacerbates violence in coca crops regions. 

Especially, the Forced Eradication Anti-Drug Programs in Colombia is one of the most 

aggressive programs in the world.52  Data from the Colombian Anti-narcotics Police 

(DIRAN) suggest that in 2014 these programs treated around 68,050 hectares (UNODC, 

2015). According to Rozo (2013), when the share of municipality area sprayed increased 

by 1%, the homicide rates increased by 4.56 per 100,000 inhabitants, the number of armed 

engagements increased by 1.69 per 100,000 inhabitants and the number of displaced 

people increased by around 41.6 per 100,000 inhabitants in the municipality.  

                                                
51 Coca cultivation per se may do little to enrich the cultivators. The price of raw coca leaf makes up a 
small fraction of the price of cocaine. 
 
52 Aerial spraying was first implemented in Colombia in 1978. Manual eradication programs began in 2007 
and are modest in size given its high cost in terms of human lives. Reports from the Anti-narcotics National 
Police estimate that since its implementation, 135 men have been killed through explosions of mines hidden 
in the ground to prevent the eradication (Gaviria and Mejía, 2011). 
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In regard to the “orthogonality” of these instruments, which imply that they are 

independent of forest cover, all three instrument are as good as randomly assigned. First, 

the massacres reflect a complex interaction between gangs, paramilitaries, guerrillas and 

drug trafficking interests, which together have created several cycles of extreme violence 

in different geographies independently of forest cover presence. Second, forest cover has 

nothing to do with kidnappings. Kidnap victims are frequently targeted for their political 

beliefs or their wealth, and even others due to being in the wrong place at the wrong time. 

Today kidnapping is becoming not as lucrative as drug trafficking, is riskier and requires 

more resources than other crimes like extortion. And, third, the monitoring of coca crops 

cultivation in Colombia is based on the interpretation of satellite images and the 

validation of the data obtained through aerial or terrain reconnaissance each semester. 

Hence, eradication depends on detection. It can also be said that the cultivation of coca 

occurs in agricultural hubs, which means that it is not necessary to clear forests to plant 

coca bushes (See Dávalos et al., 2011) 

 

The vector Xi,t represents the municipal characteristics that affect forest cover. In 

particular, equation (4.1) controls for the legal53 extraction of valuable minerals such as 

gold, silver or platinum in municipality i in year t. Due to the potential bias that its 

inclusion might cause through a potential simultaneity problem with the dependent 

variable, the lag of the mining presence variable is used. In particular, mining is expected 

to have a negative environmental impact. It involves increased erosion, loss of 

biodiversity, and the contamination of soil, ground and surface waters by chemicals. 

Mining also often requires the clearance of large areas of forest, both for the mine itself, 

but also to create space for the storage of the created debris, and for the roads and other 

required infrastructures. Mining can be interpreted as part of the mechanisms enhancing 

conflict driven deforestation. For example, when the prices of minerals increase and/or 

national security policies reduce the incomes of the guerrilla groups and/or criminal gangs 

(e.g., the illegal incomes earned from kidnapping and drug trafficking), these illegal 

actors frequently finance themselves through mining. For example, it is well known that 

FARC controls mines legally or illegally either through having direct stakes in operations 

                                                
53 There are only official statistics for the legal extraction of minerals. At the moment, the government is 
trying to formalise the status of traditional miners who operate without licenses, while concurrently 
cracking down on those which serve the rebel groups and criminal gangs. 
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or through extortion, respectively.54 

 

Mining usually occurs in those municipalities rich in environmental resources - from the 

Pacific lowlands and rivers of the Amazon to the coffee-growing regions. Around 18%55 

of Colombia’s territory has been licensed to national and multinational corporations in 

order to develop mining projects. This fact reflects the government’s objective to turn the 

country into a mining powerhouse. Some mining requests have even been granted in 

protected forested areas such as national parks, indigenous territories and collectively 

held lands occupied by communities of African heritage.56 

 

In Equation (4.1), the additional time varying controls included are the municipal 

population and municipality urbanization levels. Both variables account for the pressure 

of human activities on forests, capturing the increased demand for food products and 

timber which leads to both the need for converting forests into land for agriculture and an 

over-exploitation of forests.  

 

The income tax revenue per inhabitant, which mirrors the heterogeneity in the overall 

economic activities at the municipality level, is also included as a control variable. Due 

to the high degree of fiscal decentralization, Colombian municipalities differ in terms of 

their fiscal abilities. There is significant dispersion in terms of a municipality’s ability to 

raise local taxes or to invest tax revenues generated locally (Cardenas et al., 2016). 

 

A potential question is whether any of the explanatory variables in the model, might also 

be affected by the presence of conflict. Although there is a link, the yearly effect of the 

conflict on population and urbanization is not sizeable when compared to the more 

standard natural drivers of population such as births and deaths. Thus, according to 

                                                
54 According to governmental estimates around 80% of all gold in the country is mined illegally, and as 
much as 20% of the profits from these illegal activities go to the FARC, ELN and other criminal 
organizations. See also the article entitled “El medio ambiente: la víctima olvidada” in an online special 
edition of Semana Magazine retrieved from: http://sostenibilidad.semana.com/medio-
ambiente/multimedia/medio-ambiente-conflicto-colombia/33709 
55 This is according to statistics from the Mining and Energy Planning Unit (UPME, acronym in Spanish). 
This share corresponds to the current and potential mining areas estimates. See also the article entiled “En 
sus 130 años, la U. Externado entrega estudio sobre minería” in El Tiempo newspaper retrieved from: 
http://www.eltiempo.com/estilo-de-vida/educacion/universidad-externado-entregara-estudio-sobre-
mineria/16510296. 
56  See the article “Fiebre minera se apoderó de Colombia” in Semana magazine retrived from 
http://www.semana.com/nacion/articulo/la-fiebre-minera-apodero-colombia/246055-3 
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official statistics during the study period (2004-2012) the average yearly rate of 

reception57 of displaced people is 8.6 per 1000 inhabitants (8.0 per 1000 inhabitant in 

urban municipalities). On the other hand, while the average yearly birth rate is 15.7 per 

1000 inhabitants (16.1 per 1000 inhabitants in urban municipalities), the average yearly 

deaths rate is 4.3 per 1000 inhabitants (4.5 per 1000 inhabitants in urban municipalities). 

Hence, the rate of natural increase of the population (and urban populations) is greater 

than the rate of reception of displaced people (also with respect to urban municipalities). 

Migration, which is not necessarily directly related to conflict in many cases and is 

difficult to quantify, is likely to have an effect on urban population growth. In any event, 

the key purpose of the variables relating to population and urbanization are to act as 

controls.  There is no research interest in this study to causally identify the impact of 

conflict on municipal population and urbanization levels. That represents a different 

research question and is not the primary one investigated here. 

 

Finally, the inclusion of municipality fixed effects (αi) controls for any municipality-

specific characteristics that are assumed constant over time. The time fixed effects (λt) 

control for aggregate time trends in forest cover, and thus potentially capture 

macroeconomic shocks and outcomes to any shifts in deforestation policies that may have 

occurred in particular years. The standard errors are clustered at the municipality level 

and are thus robust to the presence of both autocorrelation and heteroscedasticity (Stock 

and Watson, 2008). 

 

4.4 Data  

 

The panel dataset used consists of annual municipal-level observations from 2004 to 2012 

(inclusive). Colombia has a total of 1,123 municipalities. However, we use only 859 of 

these municipalities given the requirement around the availability of satellite data to 

compute the forest coverage variable. The forest cover variable calculations were done 

by research staff at the International Centre for Tropical Agriculture (CIAT) using 

satellite images (at 30-meter resolution) compiled by the Department of Geographical 

                                                
57 It corresponds average number of displaced people that arrived to municipalities divided by its 
population per 1000 inhabitants in the study period. 
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Sciences at the University of Maryland partnering with other major research centres58 in 

the United States (Hansen et al., 2013). For 265 of the municipalities, the forest cover 

estimates using satellite images were either not available at all, or only available for one 

or, in some exceptional circumstances, just two years. The criterion used here for the 

empirical analysis is that the data panel requires observations on forest cover must be 

available for a minimum of three continuous years.  

 

Although this may be viewed as a limitation, we present three reasons why we believe 

this should not be a major concern for the empirical analysis undertaken here. First, the 

Figure 8.2.1 in the Appendix 8.2, which presents the final sample map, reveals that the 

location of the municipalities excluded are in fairly remote parts of the country.59 In 

particular, some are situated in the Amazon Jungle, South East Colombia bordering 

Brazil, while others are in the Chocó Department, Northwest Colombia, which borders 

Panama, and is also a jungle area and rich in natural resources. The other missing areas 

included are in the Orinoquía Region, East Colombia, which borders Venezuela, also 

known as the “Eastern Plains” (“Llanos Orientales” in Spanish), where traditionally 

raising beef cattle and oil exploitation occurs; the Cesar Department, North Colombia, 

part of the Caribbean regions with valleys; and in Norte de Santander Department 

bordering Venezuela, with a mixed geography comprising mountainous areas, deserts, 

plateaux, plains and hills. 

 

Second, in order to examine the relationship between the conflict and the forestation 

impacts using relevant maps, Figure 8.2.1 in Appendix 8.2 presents a map of the main 

locations of forced displacement in Colombia for the last decade60, which reflects visual 

testimony of where in Colombia the armed conflict has had an incidence. The 

considerable overlay between maps, Figure 8.2.2 (which proxies the presence of conflict) 

and Figure 8.2.1 (which maps the final sample locations), both reported in the Appendix 

8.2, suggest a plausible correlation between the conflict locations and the forest cover 

areas that are available to us for analysis. We highlight that we do not know a priori the 

sign of the direction of a causal relationship. However, since the municipalities excluded 

                                                
58 Google; the Department of Forest and Natural Resources Management, State University of New York; 
the Woods Hole Research Center; the Earth Resources Observation and Science, United States Geological 
Survey; and the Geographic Information Science Center of Excellence, South Dakota State University. 
59 The final sample includes municipalities with prominent economic activity. 
60 2005-2014. 
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from the analysis are fairly remote, we can say with some degree of confidence that their 

exclusion is unlikely to affect the sign of the correlation that we are trying to disentangle 

empirically in the econometric analysis. 

 

Third, Table 4.4.1 presents the summary statistics for the final sample. In addition, Table 

8.2.1 and Table 8.2.2 reported in Appendix 8.2 reports the mean statistics for the key 

variables for the omitted municipalities, and the means statistical differences t-test 

between both samples. The mean values for the direct conflict kidnappings per 100.000 

inhabitants (lagged one year), the percentage of the agricultural frontier with coca crops 

fumigates and manually eradicated (lagged one year), the percentage of the municipal 

area with coca fumigated and manually eradicated (lagged one year), mining (gold, silver, 

or platinum) [Yes=1; No=0] (lagged one year), and the income tax revenue per 

inhabitants are broadly similar between samples. The sample mean values of the share of 

municipality area with forest coverage [0-100], the forced displacement per 1000 

inhabitants, victims of massacres per 100,000 inhabitants (lagged one year), the 

percentage of urban population, and the municipal population are statistically different 

between these samples. Overall, the variable means are not necessarily similar for these 

two sets of municipalities.61 It should be stressed that these comparisons are likely to be 

unreliable given the significant presence of missing values in the set of remote and 

excluded municipalities.  

 

However, given the differing geographical and socio-economic nature of the included and 

excluded municipalities, the detection of differences in observables is to be anticipated.  

Our argument is that the econometric results are conditional on the sample used. We 

acknowledge the data that we are employing may not be representative of the country.  

This does not vitiate the analysis nor does it undermine our attempt to identify the size 

and the sign of the effect of conflict on forest cover in those areas where conflict has had 

the most pervasive effect.  

 

Table 4.4.1, as mentioned, presents the descriptive statistics employed in the regression 

analysis for coefficients interpretation purposes. Note that the sample period is adjusted 

to start at year 2005. This is because the 2004 observations are “lost” when the set of 

                                                
61 This result is not surprising, as mentioned, due to the absence in the final sample of a significant part of 
the Amazon Jungle and the forests of Chocó Department. 
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instruments are lagged one year. As noted above, the primary outcome is the share of 

municipality area covered by forest. Between 2005 and 2012, the average share of the 

municipality area covered with forest is more than half (58.4%) the land size of Colombia.  

 

Table 4.4.1 Summary statistics 

Variable Mean SD Min Max 
Share of municipality area with forest [0-
100%] 58.40 25.85 0.67 98.93 

Forced displacement per 1000 of the municipal 
population  10.09 22.87 0.00 702.72 

Victims of massacres per 100,000 inhabitants 
(lagged one year) 0.43 4.98 0.00 187.62 

Direct conflict kidnappings per 100.000 
inhabitants (lagged one year) 1.04 5.56 0.00 185.56 

Hectares of coca fumigated and manually 
eradicated (lagged one year) 173.23 1091.46 0.00 34432.53 

Percentage of the agricultural frontier with 
coca crops fumigates and manually eradicated 
[0-100%] (lagged one year) 

0.12 0.75 0.00 27.63 

Percentage of the municipal area with coca 
fumigated and manually eradicated [0-100%] 
(lagged one year) 

0.11 0.68 0.00 24.81 

Mining (gold, silver, or platinum) [Yes=1; 
No=0] (lagged one year) 0.16 0.36 0.00 1.00 

Population 32027.15 80091.16 885 1200513 
Log Population 9.58 1.10 6.79 14.00 
Percentage of urban population [0-100] 43.10 23.79 1.68 99.89 
Income tax revenue per inhabitants (COP62) 86762.13 126009.15 385.47 2749220 
Log income tax revenue per inhabitants 10.93 0.97 5.95 14.83 
Statistics refer to N = 6826 observations for 859 municipalities over the period 2005-2012. 

 

  

                                                
62 Colombian peso. 
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Satellite images issues such as persistent cloud cover in the tropics, shadows from the tree 

canopy, and the complexity of forest structure can all lead to (random) small errors in 

forest cover calculations. Furthermore, the ambiguity in the concept “forest” leads to 

different assessments of the extent of forest cover. For example, geographers and 

ecologist have long called for the definition to be more standardized. One scientist could 

consider that the area is forested if 30 percent of the land is covered with trees (the 

definition employed here by CIAT), while another could argue that a forest exits when 

there is 10 percent tree cover and excluding areas of intermediate tree cover, such as 

savannahs, scrublands, mountain ridge forests, and boreal taiga. Thus, many researchers 

currently claim that there should be either a single, unambiguous definition of forest/non-

forest that can be used globally or, preferably, that the research community should shift 

to the use of measureable ecological characteristics such as tree cover, canopy 

height, and/or biomass. 

 

The use of satellite images for forest cover is not free from critics. However, if the 

estimation manages to yield statistically significant coefficients with an apparent mis-

measured dependent variable, this is actually good news. Measurement error in the 

dependent variable does not cause the slope coefficients to be biased, but it does cause 

the standard error for the slope coefficients to be larger, which suggests that in this case 

a statistical significant coefficient is way more significantly different from zero. 

 

The primary conflict variable is the forced displacement rate per 1,000 of the population 

(𝐹𝐷W,3) and is calculated based on estimates from the Information System of Displaced 

Population (SIPOD, its Spanish acronym), the Central Registry for Victims Office 

(RUV) 63 , and the Observatory of the Presidential Human Rights and International 

Humanitarian Law of the Vice Presidency of Colombia. As discussed in Section 3, the 

main drawback on displacement statistics is under-reporting. In the dataset, an average of 

10.09 people per 100,000 inhabitants were forcibly displaced due to violence at the 

municipal level. One municipality experienced a displacement of 702.7 people per 

100,000 of its population in one year (see Table 4.4.1). 

 

                                                
63 This registry, established under Act 1448 of 2011, contains the number of registered victims of human 
rights violations during the armed conflict and over the period from 1985 to the present. 
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Regarding the data sources for the identifying instrumental variables, the victims of 

massacres per 100,000 inhabitants are based on data from Colombia’s National Centre of 

Historical Memory. The statistics on the direct conflict kidnappings 64  per 100,000 

inhabitants are taken from a conflict panel dataset constructed by the Centre of 

Development Economics Studies (Centro de Estudios sobre Desarrollo Económico, 

CEDE in Spanish), Universidad de los Andes, Bogotá, Colombia.  

 

The number of hectares of coca fumigated and manually eradicated in the municipalities 

is calculated using satellite-based information from the Integrated Monitoring System of 

Illicit Crops of the United Nations Office of Drugs and Crime (SIMCI65-UNODC) and 

the Anti-Narcotics Directorate of the Ministry of National Defence in Colombia. The 

municipal agricultural frontier area corresponds to the sum of agricultural, agroforestry, 

animal husbandry and forest vocation areas calculated by the Geographic Institute 

Agustin Codazzi (IGAC, in Spanish). 

 

In the municipality dataset used in the regressions, around 0.43 people per 100,000 of the 

population were killed in massacres, with a maximum reported of 187.6 per 100,000 

inhabitants. Armed groups kidnapped one person 1.04 per 100,000 inhabitants and the 

military fumigated and manually eradicated a total of 173.2 hectares of coca plants on 

average, which corresponds to circa 0.12% and 0.11% of the average municipal 

agricultural frontier and municipal area, respectively (see Table 4.4.1).66 

 

A dichotomous variable [Yes=1; No=0], representing the extraction of elements such as 

gold, silver or platinum, is constructed using data on municipal mining records from the 

Colombian Mining Information System (SIMCO, its Spanish acronym). About 16% of 

the municipalities have mining activities, producing gold, silver or platinum (see Table 

4.4.1). 

 

                                                
64 Bear in mind that these types of kidnappings mainly target businessmen, political leaders and senior 
members of the army.  
65 This is known as the Integrated System for Monitoring Illicit Crops (SIMCI, according to its Spanish 
acronym). 
66 Not all municipalities of the country produce coca. In fact, only 16% of municipalities produce coca, on 
average. 
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The information on socioeconomic and geographic covariates such as the municipal 

population, the percentage of urban population, and the income tax revenue per inhabitant 

was provided by the National Administrative Department of Statistics (DANE, according 

to its Spanish acronym) and the National Planning Department (DNP, according to its 

Spanish acronym). The municipality average population is 31,846 inhabitants and almost 

half of these (43.1%) live in cities, and their inhabitants pay yearly on average COP 

82,389.69 in income tax. 

 

4.5 Empirical results 

 

4.5.1 Validity of the instruments 
 

The first stage regression results employing initially two instruments are presented in 

Table 4.5.1 with the standard IV-diagnostic tests presented in the bottom panel of this 

table.  
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Table 4.5.1 First stage reduced form results (two instruments) 
 

Dependent variable: Forced displacement per 1000 inhabitants 
Two instruments: a) Victims of massacres per 100,000 inhabitants (lagged one 
year); and b) Direct conflict kidnappings per 100.000 inhabitants (lagged one 
year) 
 

 

 (1) 
1st Stage FE 

Victims of massacres per 100,000 inhabitants (lagged one year) 0.19** 
 (0.083) 
Direct conflict kidnappings per 100.000 inhabitants (lagged one year) 0.15** 
 (0.070) 
Mining (gold, silver, or platinum) [Yes=1; No=0] (lagged one year) -1.69 
 (1.69) 
Log Population -22.2** 
 (10.4) 
Percentage of urban population [0-100] -1.21** 
 (0.53) 
Log income tax revenue per inhabitants -0.57 
 (0.75) 
Year 2006 1.39* 
 (0.74) 
Year 2007 2.8*** 
 (1.05) 
Year 2008 1.51 
 (0.95) 
Year 2009 -3.51*** 
 (0.99) 
Year 2010 -5.32*** 
 (1.14) 
Year 2011 -3.89*** 
 (1.37) 
Year 2012 -4.03** 
 (1.59) 
Observations 6826 
Cragg-Donald Wald F statistic 16.99 
Hansen J statistic 0.000 
Hansen p-value 0.999 
Std. Err. (in parentheses) adjusted for clusters in municipality 
* p < .10, ** p < .05, *** p < .01  

 

 

The IV estimator is based on asymptotic properties. Thus, it is subject to finite sample 

bias which can only be reduced through using stronger and more relevant instruments. In 

addition, using stronger instruments ensures that the estimator follows a normal 

distribution. That’s why the relevance condition is so important.67  

 

                                                
67 It is possible to attempt to bypass the endogeneity issue by using explicitly the lagged values of 𝐹𝐷W,3 
(See Table 8.2.3 in the Appendix chapter 4), however, the correct method of estimation is IV. 
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The Cragg and Donald (1993) test yields a value 16.99, indicating that the instruments 

are relevant. However, the result comfortably passes the ‘rule-of-thumb’68 value of 10. 

The Hansen (1982) J-test provides a p-value of 0.999. Thus, the null hypothesis of zero 

correlation between the instruments and the error term is upheld at the conventional 

significance levels, though the prob-value is acknowledged to be on the high side. 

 

We now turn to an interpretation of the estimates for the selected identifying instruments.  

The individual significance of these identifying instrument imply that the military 

strategies adopted by the illegal armed groups and forced displacements are strongly 

correlated. Indirect violence, including massacres and directly related conflict 

kidnappings, play a strong role in determining civilian displacement. If the number of 

victims of massacres per 100,000 municipality inhabitants in the previous year increases 

by 1, which is a sizeable increase relative to the mean, approximately 1.9 persons per 

10,000 of the population are forced displaced, on average and ceteris paribus. The 

empirical estimates also reveal that an increase in 1 conflict-related kidnapping in the 

previous year per 100,000 inhabitants, which is effectively a doubling relative to the 

sample mean, is associated with an increase of 1.5 displaced persons per 10,000 of the 

municipal population, on average and ceteris paribus. 

 

In order to improve IV models efficiency, the use of a third instrumental variable related 

to drug production in municipality i is explored as well. The first stage regression results 

including the percentage of the agricultural frontier with coca crops fumigated and 

manually eradicated; or the percentage of the municipal area with coca fumigated and 

manually eradicated, along with the standard IV-diagnostic tests are presented in Table 

4.5.2 and Table 4.5.3, respectively. In both cases, the estimated coefficient associated 

with the instrument with coca crops presence is borderline statistically significant with a 

t-ratio of 1.6. However, overall all three instruments are jointly statistically significant 

with a F-test of 14.26 and 14.34, respectively, which exceed the conventional ‘rule-of-

thumb’ of 10. 

  

                                                
68 This rule-of-thumb means that we are tolerating a 10% finite sample bias in the IV estimator relative to 
the OLS estimator. 
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Table 4.5.2 First stage reduced form results (Three instruments A.) 

 
Dependent variable: Forced displacement per 1000 inhabitants 
3rd instrument: Percentage of the agricultural frontier with coca crops fumigates 
and manually eradicated (lagged one year) 
  

 

 (1) 
1st Stage FE 

Victims of massacres per 100,000 inhabitants (lagged one year) 0.18** 
 (0.082) 
Direct conflict kidnappings per 100.000 inhabitants (lagged one year) 0.15** 
 (0.070) 
Percentage of the agricultural frontier with coca crops fumigates and manually 
eradicated (lagged one year) 

1.19 

 (0.74) 
Mining (gold, silver, or platinum) [Yes=1; No=0] (lagged one year) -1.62 
 (1.68) 
Log Population -22.1** 
 (10.3) 
Percentage of urban population [0-100] -1.21** 
 (0.53) 
Log income tax revenue per inhabitants -0.59 
 (0.75) 
Year 2006 1.31* 
 (0.75) 
Year 2007 2.68*** 
 (1.04) 
Year 2008 1.41 
 (0.95) 
Year 2009 -3.59*** 
 (0.99) 
Year 2010 -5.35*** 
 (1.14) 
Year 2011 -3.89*** 
 (1.36) 
Year 2012 -4.03** 
 (1.59) 
Observations 6826 
Cragg-Donald Wald F statistic 14.26 
Hansen J statistic 0.0883 
Hansen p-value 0.957 
Std. Err. (in parentheses) adjusted for clusters in municipality 
* p < .10, ** p < .05, *** p < .01 
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Table 4.5.3 First stage reduced form results (Three instruments B.) 

 
Dependent variable: Forced displacement per 1000 inhabitants 
3rd instrument: Percentage of the municipal area with coca fumigated and 
manually eradicated (lagged one year) 
 

 

 (1) 
1st Stage FE 

Victims of massacres per 100,000 inhabitants (lagged one year) 0.18** 
 (0.082) 
Direct conflict kidnappings per 100.000 inhabitants (lagged one year) 0.15** 
 (0.070) 
Percentage of the municipal area with coca fumigated and manually eradicated 
(lagged one year) 1.32 

 (0.83) 
Mining (gold, silver, or platinum) [Yes=1; No=0] (lagged one year) -1.62 
 (1.68) 
Log Population -22.1** 
 (10.3) 
Percentage of urban population [0-100] -1.21** 
 (0.52) 
Log income tax revenue per inhabitants -0.59 
 (0.75) 
Year 2006 1.31* 
 (0.75) 
Year 2007 2.68*** 
 (1.04) 
Year 2008 1.41 
 (0.95) 
Year 2009 -3.59*** 
 (0.99) 
Year 2010 -5.35*** 
 (1.14) 
Year 2011 -3.88*** 
 (1.36) 
Year 2012 -4.02** 
 (1.59) 
Observations 6826 
Cragg-Donald Wald F statistic 14.34 
Hansen J statistic 0.0923 
Hansen p-value 0.955 
Std. Err. (in parentheses) adjusted for clusters in municipality 
* p < .10, ** p < .05, *** p < .01 

 

 

The disruption of drug production and forced displacement are also correlated. If a 

municipality is subject to a one percentage point increase of the agricultural frontier with 

coca crops fumigates and manually eradicated, or a one percentage point increase in the 

municipal area with coca fumigated and manually eradicated, both in the previous year 

(and representing substantial increases of circa 8.3 and 9 times their mean, respectively),  

this leads to an increase of 11.9 and 13.2 forced displaced persons per 100,000 

municipality inhabitants, on average and ceteris paribus. If the scale of disruption 

activities is correlated with the scale of drug production activities, this result is consistent 
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with the literature indicating that coca production is associated with the establishment of 

coercive institutions governed by the illegal armed groups. Thus, forced displacement 

only occurs when farmers are able to escape safely from the region (Acevedo, 2015). 

 

The instruments related to victims of massacres and conflict kidnappings maintain their 

expected sign, size and statistical significance.  

 

4.5.2 IV Estimates of the Causal Effect 
 

Table 4.5.4 provides evidence on the relationship between the armed conflict and forest 

coverage in Colombia using initially two instruments. In particular, it provides estimates 

based on treating forced displacement per 1000 of the municipal population endogenously 

and instrumenting it (FE-IV). Under this context the results are a causal effect and, in 

some sense, a Local Average Treatment Effect (LATE). The treatment effect estimate is 

local, because it only applies to the subset of municipalities who are exposed to the 

treatment and experience forced displacement, because of variation in the instruments.69 

The model also includes the controls described in Section 4.3.  

 

 

                                                
69 The IV estimate can be interpreted under weak conditions as a weighted average of LATEs, where the 
weights depend on the elasticity of the endogenous variable to changes in the instruments. This means that 
the effect of a variable is only revealed for the sub-populations affected by the observed changes in the 
instruments, and that sub-populations which respond most to changes in the instruments will have the 
largest effects on the magnitude of the IV estimate. 
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Table 4.5.4 Forest cover FE-IV equation estimates (two instruments) 

 
Dependent variable: Share of municipality area with forest [0-100] 
Two instruments: a) Victims of massacres per 100,000 inhabitants (lagged one 
year); and b) Direct conflict kidnappings per 100.000 inhabitants (lagged one 
year) 
 

 

 (2) 
2nd Stage  

FE-IV 
Forced displacement per 1000 of the municipal population 0.012 
 (0.0074) 
Mining (gold, silver, or platinum) [Yes=1; No=0] (lagged one year) -0.076 
 (0.056) 
Log Population -2.89*** 
 (0.51) 
Percentage of urban population [0-100] -0.035 
 (0.025) 
Log income tax revenue per inhabitants 0.054* 
 (0.029) 
Year 2006 -0.20*** 
 (0.017) 
Year 2007 -0.43*** 
 (0.030) 
Year 2008 -0.60*** 
 (0.033) 
Year 2009 -0.81*** 
 (0.051) 
Year 2010 -0.96*** 
 (0.066) 
Year 2011 -1.17*** 
 (0.069) 
Year 2012 -1.40*** 
 (0.077) 
Observations 6826 
R-Squared 0.536 
F-stat 105.0 
Exogeneity test statistic 2.027 
p-value (Ho: Regressor is exogenous) 0.155 
Std. Err. (in parentheses) adjusted for clusters in municipality 
* p < .10, ** p < .05, *** p < .01 
 

 

 

On the basis of the instruments used, the exogeneity assumption for the forced 

displacement variable is not rejected by a Hausman test (p-value of 0.155), thus, 

confirming there is no need to use IV techniques in the application using two instruments. 

The same happens when employing a third instrument related to drug production in the 

municipality. In particular, the Hausman test p-values are 0.12 and 0.13, respectively (See 

Table 4.5.2 and Table 4.5.3). 
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Table 4.5.5 Forest cover FE-IV equation estimates (three instruments A.) 

Dependent variable: Share of municipality area with forest [0-100] 
3rd instrument: Percentage of the agricultural frontier with coca crops fumigates 
and manually eradicated (lagged one year) 
 

 

 (2) 
2nd Stage 

FE-IV 
Forced displacement per 1000 of the municipal population 0.011* 
 (0.0063) 
Mining (gold, silver, or platinum) [Yes=1; No=0] (lagged one year) -0.077 
 (0.055) 
Log Population -2.90*** 
 (0.50) 
Percentage of urban population [0-100] -0.036 
 (0.024) 
Log income tax revenue per inhabitants 0.054* 
 (0.029) 
Year 2006 -0.20*** 
 (0.016) 
Year 2007 -0.42*** 
 (0.028) 
Year 2008 -0.60*** 
 (0.032) 
Year 2009 -0.81*** 
 (0.049) 
Year 2010 -0.97*** 
 (0.063) 
Year 2011 -1.17*** 
 (0.066) 
Year 2012 -1.41*** 
 (0.075) 
Observations 6826 
R-Squared 0.541 
F-stat 105.5 
Exogeneity test statistic 2.314 
p-value (Ho: Regressor is exogenous) 0.128 
Std. Err. (in parentheses) adjusted for clusters in municipality 
* p < .10, ** p < .05, *** p < .01 
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Table 4.5.6 Forest cover FE-IV equation estimates (three instruments B.) 

 
Dependent variable: Share of municipality area with forest [0-100] 
3rd instrument: Percentage of the municipal area with coca fumigated and 
manually eradicated (lagged one year) 
 

 

 (2) 
2nd Stage 

FE-IV 
Forced displacement per 1000 of the municipal population 0.011* 
 (0.0063) 
Mining (gold, silver, or platinum) [Yes=1; No=0] (lagged one year) -0.077 
 (0.055) 
Log Population -2.91*** 
 (0.50) 
Percentage of urban population [0-100] -0.036 
 (0.024) 
Log income tax revenue per inhabitants 0.054* 
 (0.029) 
Year 2006 -0.20*** 
 (0.016) 
Year 2007 -0.42*** 
 (0.028) 
Year 2008 -0.60*** 
 (0.032) 
Year 2009 -0.81*** 
 (0.049) 
Year 2010 -0.97*** 
 (0.063) 
Year 2011 -1.17*** 
 (0.067) 
Year 2012 -1.41*** 
 (0.075) 
Observations 6826 
R-Squared 0.541 
F-stat 105.5 
Exogeneity test statistic 2.260 
p-value (Ho: Regressor is exogenous) 0.133 
Std. Err. (in parentheses) adjusted for clusters in municipality 
* p < .10, ** p < .05, *** p < .01 
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4.5.3 The OLS fixed effects (FE-OLS) 

 

The OLS fixed effects (FE-OLS) estimation are presented in Table 4.5.7. The downward 

bias of the OLS fixed effects (FE-OLS) of γ (0.0028) relative to the IV models (0.012 and  

0.011, using two and three instruments, respectively) estimates suggests that 

measurement error is a probable source of the downward bias reported, which dominates 

the simultaneous reverse causality problem. Note that the use of municipal fixed effects 

is likely to attenuate the omitted variable bias problem here. Nonetheless, the more 

appropriate method to make inferences is the OLS fixed effects (FE-OLS) model, in the 

light of the Exogeneity tests involving the selected set of instruments used. 

 

Table 4.5.7 Forest cover FE-OLS equation estimates	

Dependent variable: Share of municipality area with forest [0-100]  
 FE-OLS 
Forced displacement per 1000 of the municipal population 0.0028** 
 (0.0011) 
Mining (gold, silver, or platinum) [Yes=1; No=0] (lagged one year) -0.090* 
 (0.051) 
Log Population -3.07*** 
 (0.48) 
Percentage of urban population [0-100] -0.046** 
 (0.023) 
Log income tax revenue per inhabitants 0.048* 
 (0.029) 
Year 2006 -0.19*** 
 (0.012) 
Year 2007 -0.40*** 
 (0.023) 
Year 2008 -0.59*** 
 (0.031) 
Year 2009 -0.84*** 
 (0.041) 
Year 2010 -1.01*** 
 (0.050) 
Year 2011 -1.21*** 
 (0.059) 
Year 2012 -1.44*** 
 (0.067) 
Observations 6826 
R-Squared 0.571 
F-stat 108.6 
Std. Err. (in parentheses) adjusted for clusters in municipality 
* p < .10, ** p < .05, *** p < .01 
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We now focus, therefore, on the FE-OLS  model estimates for our discussion of the causal 

estimate of interest. The estimate in column two is well determined statistically and 

suggests that an increase in one forced displaced person per 1,000 of the municipal 

population, which represents a 9.91% increase with respect to the sample mean, increases 

the share of the municipality covered by forest by 0.0028 of a percentage point, on 

average and ceteris paribus. This represents a small effect relative to the mean forest 

coverage rate of 58.4%.  In other words, an approximate 10% increase in displaced person 

per 1,000 of the population leads to a 0.003% increase in forest cover.  

 

Although the estimated effect is economically small in terms of its magnitude, the 

explanation for this is straight-forward.  The presence of armed groups means that large 

rural areas become inaccessible and thus are preserved and protected from the economic 

forces and rural production activities that encourage deforestation. In this case, the armed 

conflict appears to be a force that favours forest protection and growth, albeit in extremely 

modest terms. As mentioned previously, this is because some of the armed groups 

practice a form of forest conservation, although one situated within a highly localized and 

coercive framework and entirely to the benefit of such groups rather than the 

environment. 

 

Regarding the other municipality-level characteristics that are statistically significant, the 

presence of mining, as expected, has a negative environmental impact. A municipality in 

which there was extraction of elements such as gold, silver or platinum compared to 

another that did not experience extraction, in the previous year, exhibits a reduction of 

0.09 percentage points in the share of municipality area covered by forest, on average and 

ceteris paribus. 

 

On the other hand, a 10 percent increase in the municipality population is associated with 

a 0.307 percentage points decrease in the share of municipality area covered by forest. 

This effect is anticipated as it reflects the impact of population pressure on forest 

resources and their conservation. The population effect could be easily interpreted as an 

increase of one person per 1,000 of the municipal population, which is equivalent to a 

3.12% increase in the population. This increase is associated with a 0.096 percentage 

point reduction in the share of municipality area covered by forest. Population pressure 
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reduces the forest cover thirty-four times (34.2) more than the effect induced by forced 

displacement when using the same metric (i.e., one person per 1,000 increase of the 

municipal population). This confirms the relatively small magnitude of the forced 

displacement effect on forest cover compared to conventional demographic pressures on 

forestation. 

 

An increase of 10 percentage points in the percentage of urban population is related to a 

0.46 percentage point decrease in the share of municipality area with forest cover, on 

average and ceteris paribus. 

 

In addition, an increase of 10 percentage points in the income tax revenues per inhabitant 

is associated with a 0.0048 percentage point increase in the share of municipality area 

covered with forest. This may reflect the fact that revenues are being used to conserve 

forests. The estimate may also reflect the role of governance and the rule of law. However, 

revenues are mainly generated in major cities reflecting the strength of local economies 

already in place. The concentration of people in cities leaves room for nature. It is likely 

that major cities do not have large sized forests left to clear. Large industrial farms have 

already taken over rural areas and expanded further into the nearest forests.   

 

Finally, the estimated time dummy effects reveal sizeable annual reductions in forest 

coverage.  The average effects per year are about one-fifth of a percentage point, ceteris 

paribus.  This does suggest a secular trend in deforestation, the magnitude of which is 

sizeable compared to the estimates corresponding to the other regressors included in this 

specification. 
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4.6 Are coca crops to blame for forest cover loss? 

 
In this section, we explore some alternative expressions of the conflict to test the 

sensitivity of the IV results obtained in the last section. Often when exposed to high levels 

of violence, farmers tend to reduce the allocation of land devoted to legal crops. Illegal 

crops are planted instead and additional forest clearing occurs (Ibañez et al., 2013). 

Between 2001 and 2014, it is estimated that planting coca has caused the deforestation of 

around 290,992 hectares of forest, which is equivalent to a little over twice the area of 

Bogotá city (UNODC, 2015). Therefore, we use the presence of coca crops to re-estimate 

Equation (4.1) with the presence of coca crops replacing the forced displacement variable.   

 

The conflict variable in Equation (4.1) is now represented by the presence of coca crops 

in the municipalities. The selected set of instruments that meet the econometric 

requirements for valid instruments are the lagged number of dismantled coca crystal 

laboratories and the confiscation of cocaine paste base (tons). 70  In particular, both 

measures are taken to reflect the government’s capacity to counteract criminal activity in 

the municipalities, and are also highly correlated with the armed conflict. In addition, it 

is difficult to argue they are correlated with forest cover.71 

 

Table 4.6.1 Summary statistics when the presence of coca crops is used as an 
explanatory variable 

Variable Mean SD Min Max 
Presence of coca crops [Yes=1; 
No=0] 0.16 0.37 0.0 1.0 

Dismantling of coca crystal 
laboratories (number, lagged 
one year) 

0.22 1.34 0.0 45.0 

Confiscation of cocaine pasta 
base (tons, lagged one year)  0.052 0.420 0.0 18.72 

Statistics refer to N = 6826 observations for 859 municipalities during 2004-2012. 
 

Around 16% of the municipalities report the presence of coca crops. Regarding the set of 

instruments, the police dismantled 0.22 coca crystal laboratories and confiscate 0.052 

                                                
70 The “extraction” laboratories called “kitchens”, “Chagres”, “Chongos, “Saladeros”, “Picaderos” are 
basic constructions at the farmers houses for the extraction of coca paste base by processing raw materials 
(plant material) using organic solvents. Thus, the coca pasta base is an extract of the leaves of the coca 
bush. It contains coca alkaloids, and its purification yields cocaine. Then, the coca crystal laboratories are 
those in which the cocaine is obtained through the chemical processes. 
71 Camacho and Rodriguez (2013) provide support for these instruments. In their study, the authors used 
an instrumental variable approach, in which contemporaneous armed conflict was instrumented with lagged 
government deterrence measures.  
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tons of cocaine paste base on average72 (see Table 4.6.1). The data source for these 

variables is the Anti-Narcotics Directorate of the Ministry of National Defence of 

Colombia.  

  

                                                
72 The confiscation of cocaine paste base obviously is quite low in most of the municipalities, however, 
more than 90 experienced one ton or more up to a maximum of 18.72 tons. 
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Table 4.6.2 First stage results when the presence of coca crops is used as an 
explanatory variable 

Dependent variable: Presence of coca crops [Yes=1; No=0] 

 (1) 
1st Stage FE 

Dismantling of coca crystal laboratories (lagged one year) 0.0098* 
 (0.0050) 
Confiscation of cocaine paste base (lagged one year) 0.014* 
 (0.0081) 
Mining (gold, silver, or platinum) [Yes=1; No=0] (lagged one year) 0.0091 
 (0.011) 
Log Population 0.091 
 (0.073) 
Percentage of urban population [0-100] 0.0024 
 (0.0035) 
Log income tax revenue per inhabitants -0.0058 
 (0.0065) 
Year 2006 0.0078 
 (0.0065) 
Year 2007 0.0026 
 (0.0071) 
Year 2008 0.0096 
 (0.0086) 
Year 2009 0.015 
 (0.0091) 
Year 2010 0.0079 
 (0.010) 
Year 2011 0.012 
 (0.011) 
Year 2012 0.0085 
 (0.012) 
Observations 6826 
R-Squared 0.89 
Cragg-Donald Wald F statistic 13.87 
Hansen J statistic 0.0372 
Hansen p-value 0.847 
Exogenity test statistic 0.021 
Exogeneity p-value (Ho: Regressor is exogenous) 0.885 
Std. Err. (in parentheses) adjusted for clusters in municipality 
* p < .10, ** p < .05, *** p < .01 

 

Table 4.6.2 presents the first stage results. Both instruments signal the municipality’s 

potential of producing coca. The strength of the instruments is assessed using the Cragg-

Donald Wald F statistic (1993). The hypothesis of weak instruments is rejected, though 

again the relevance of the instruments is not strong with the Wald-transformed F-test for 

exclusion of instruments 13.87, only marginally above the threshold of 10. The Hansen 

(1982) J-test p-value is 0.84, hence, instruments are orthogonal to the error structure in 

the structural equation. However, the proposition that the presence of coca crops is 

exogenous cannot be rejected in this case. Therefore, the use of IV is not required. This 

indeed is confirmed by the exogeneity test, which yields a p-value of 0.885. 

  



110	
 

Table 4.6.3 Effect of the presence of coca crops on forest cover 

Dependent variable: Share of municipality area with forest [0-100] 
 FE-OLS 
Presence of coca crops [Yes=1; No=0] 0.027 
 (0.073) 
Mining (gold, silver, or platinum) [Yes=1; No=0] (lagged one year) -0.095* 
 (0.052) 
Log Population -3.13*** 
 (0.49) 
Percentage of urban population [0-100] -0.049** 
 (0.023) 
Log income tax revenue per inhabitants  0.046 
 (0.029) 
Year 2006 -0.19*** 
 (0.012) 
Year 2007 -0.40*** 
 (0.022) 
Year 2008 -0.59*** 
 (0.031) 
Year 2009 -0.85*** 
 (0.041) 
Year 2010 -1.03*** 
 (0.050) 
Year 2011 -1.22*** 
 (0.060) 
Year 2012 -1.45*** 
 (0.068) 
Observations 6826 
R-Squared 0.568 
F-stat 107.3 

Std. Err. (in parentheses) adjusted for clusters in municipality 
* p < .10, ** p < .05, *** p < .01 
 

Table 4.6.3 present the FE-OLS model results which is the more efficient method of 

estimation. Thus, the FE-IV results can be found in Table 8.2.4 in the Appendix 8.2.73 

Consistent with FE-OLS model results, the presence of coca crops has no effect on forest 

cover, on average. These results are plausible since coca crops account for only a small 

percentage of total deforestation rates. In addition, compared to a root vegetable like 

cassava, which requires a lot of space and effort to harvest but brings in a relatively small 

amount of money, the coca plant has a dense leaf cover and fetches high prices. This 

means that coca farmers obtain higher value per areas cultivated. 

 

4.7 An Analysis of the forest cover OLS fixed effects estimates  

 

Forests play a crucial role in biodiversity conservation. It helps to purify the air, sustain 

the quality and availability of freshwater supplies, and provide essential services to local 

                                                
73 The coefficients and the standard errors from the FE-IV estimates are almost identical to those from FE. 
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populations. Furthermore, forest preservation has been attracting increased attention in 

the fight against climate change. The FE-OLS  model cannot accommodate time-invariant 

variables. Thus, any time-invariant variables are absorbed within the fixed effects.  

However, understanding which time-invariant factors potentially influence forest 

coverage is of considerable interest and may provide some insights that aid the design of 

policy interventions. 

 

Equation (4.3) describes the model that examines the determinants of the estimated fixed 

effects retrieved from the estimation reported Table 4.5.7. These fixed effects are 

regressed on a set of time-invariant covariates and thus provide insights on the impact of 

time-invariant factors on municipality forest cover. The model is specified as: 

 

 𝛼𝑖 	= 	 c𝑖 	+ δ𝑖W𝑖 	+ 	v𝑖	, with	𝑖 = 	1; … , n. (4.3) 

 

𝛼 i is the estimated municipality 𝑖  specific fixed effect estimate corresponding to the 

coefficient on the municipality dummy variables in Equation (4.1). Wi is a vector of time-

invariant covariates assumed to affect forest cover, which for the purposes of the analysis 

here include the municipality’s degree of elevation, average monthly precipitation, the 

distance to the department capital, and a soil quality index. The variable ci is the constant 

and the term vi represents the error assumed to satisfy the standard assumptions. The 

analysis is conducted using only 848 (of 859) municipalities for which forest coverage 

and the other time-invariant covariates data is available.74  

 

 

 

 

 

 

 

                                                
74 In particular, we lost 11 data points due to the presence of missing values in the soil quality index. This 
index is calculated by the Geographic Institute Agustin Codazzi (IGAC, in Spanish) based on georeferenced 
information regarding topography types, drainage presence, municipality climates, and others fundamentals 
that affect soils quality. 
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Table 4.7.1 Time-invariant covariates summary statistics 

Variable Mean SD Min Max 
Municipality elevation 
(m) 1225.8 1221.9 2.0 25221.0 

Avg. precipitation 
monthly (mm)  176.1 85.6 52.8 712.0 

Distance to the 
department capital (km) 76.6 54.3 0.0 376.1 

Soils quality index [1-8] 2.7 1.2 0.0 8.0 
N=848 municipalities during 2004-2012. 
 
The data source for the time-invariant covariates is the Centre of Development Economics 

Studies (Centro de Estudios sobre Desarrollo Económico, CEDE in Spanish), 

Universidad de los Andes, Bogotá, Colombia, which treasures official statistics produced 

by the National Administrative Department of Statistics (DANE, in Spanish), the 

Geographic Institute Agustin Codazzi (IGAC, in Spanish) and the National Planning 

Department (DNP, in Spanish). Table 4.7.1 above reports the summary statistics.  

 

An average municipality has an elevation of 1,229.4 meters and the precipitation levels 

reach 173.5 millimeters (mm)75of rain monthly. The soil quality index measures the 

suitability of the land for agricultural activities depending on land topography and soil 

type. It ranges from 1.0 (not suitable for agriculture) to 8.0 (fully suitable for agriculture). 

The average municipality has a soil quality index value of 2.73.  

 

Table 4.7.2 reports the estimates for a regression of the fixed effects estimates from the  

FE-OLS  model (Section 4.5.3) on this set of time invariant variables using a Weighted 

Least Squares (WLS) method.76 The weights are proportional to the estimated standard 

errors from the FE-IV model. Thus, the fixed effects that are more precisely estimated 

secure a higher weight in the WLS estimation procedure. Since each weight is inversely 

proportional to the standard error variance, it reflects the information contained in that 

fixed effect.  

(See the  

  

                                                
75 The standard instrument for the measurement of rainfall is the 203mm (8 inch) rain gauge. This is a 
circular funnel with a diameter of 203mm which is kept in an open area, so that it collects the rain into a 
graduated and calibrated cylinder. The measuring cylinder can record up to 25mm of precipitation. The 
precipitation value in mm is referring to the amount of rain per square meter in one hour. One millimeter 
of rainfall is the equivalent of one liter of water per square meter. 
76 See Table 8.2.5 for the determinants of forest cover fixed effects using the OLS model. 
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Table 4.7.2 Determinants of forest cover fixed effects 

 
Dependent variable: Estimated municipal fixed effects  
 WLS 
Municipality elevation (m) 0.0015* 
 (0.00078) 
Avg. precipitation monthly (mm) 0.14*** 
 (0.011) 
Distance to the department capital (km) 0.028* 
 (0.015) 
Soils quality index [1-8] -3.70*** 
 (0.70) 
Constant 72.3*** 
 (3.58) 
Observations 848 
R-Squared 0.244 
Robust (heteroscedasticity correction) std. err. (in parentheses)  
WLS model weighting proportional to the u_i Std.Err. 
* p < .10, ** p < .05, *** p < .01 
 

 

Most of the regressors have strong explanatory power.77 This is confirmed by the R-

squared indicating that the regressors explain almost a quarter (24.4%) of the variation in 

the FE-OLS coefficients.  Fluctuations in temperature and rainfall levels are due mainly 

to changes in elevations.  Elevation also affects biodiversity. The lowlands are often more 

easily accessible and thus more suitable for agriculture. Thus, according to Table 4.7.2 , 

an increase in elevation of 100 meters is associated with a 0.15 percentage points increase 

in the share of the municipality covered by forest. Forests are often located in tropical 

climates where precipitation is high and occurs all year-round. Therefore, an increase in 

10 millimetres of average monthly precipitation (which represents about a 5.7% increase 

in monthly precipitation relative to the sample mean) is associated with a 1.4 percentage 

point increase in the share of the municipality covered by forest. 

 

There is more pressure to convert forest land to non-forest uses particularly when forest 

land is located near main cities. In contrast, remote forest land tends to be less valuable 

and, therefore, more likely to be conserved. The estimates above confirm this dichotomy.  

Thus, an increase of 10 km in the distance to the department capital is associated with a 

0.28 percentage points increase in the share of municipality area covered by forest, on 

average and ceteris paribus. 

                                                
77 We also included in the regression a land concentration measure based on a Gini coefficient. We found 
no impact of land holding inequality on deforestation. The estimated effect for the land concentration index 
is not found to be well determined at a conventional level. 
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On the other hand, agriculture is identified as a key factor implicated in forest 

degradation. This is likely to be exacerbated by poor agricultural technologies, which 

means that more land is cleared for agriculture. Areas with soil quality more suited to 

agricultural activity are likely to be associated with greater levels of deforestation.  There 

is nothing wrong with deforestation due to agriculture production provided it is well 

planned and managed. The estimates reported here suggest that an increase of 1 unit in 

the soil quality index (approximately an increase of over 1/3 relative to the sample mean 

and implying better soil suitability for agriculture) is associated with a 3.7 percentage 

point decrease in the area of a municipality covered by forest.  

 

Overall, the foregoing estimates suggest considerably stronger effects on deforestation 

mediated through elevation, precipitation, and soil quality compared to the magnitude 

detected for displacement effects due to conflict. 

 

4.8 Conclusions 

 

The literature on the impact of conflict and violence on forestation is ambiguous and 

many studies fail to address the endogeneity issue of the empirical relationship. On the 

one hand, violence could lead to more deforestation as armed groups exploit natural 

resources. On the other, the presence of armed groups also means that large rural areas 

become inaccessible and thus are preserved and protected from deforestation. So, the 

impact could go in either direction in theory and, therefore, the direction as well as the 

magnitude of the effect remains an empirical question.   

 

A major challenge for this chapter was obtaining accurate estimates of the share of 

municipality area covered by the forest. However, the availability of satellite-based 

information on forest coverage for not less than three years in the period of the study 

restricts the panel data we use here to 859 municipalities, which represents about 76.6% 

of all municipalities in Colombia.78 

 

The final sample used for the analysis excluded the more remote municipalities. Using 

suggestive mapping, the spatial distribution overlaps fairly well with the Colombian 

                                                
78 Accounting for 62.4% of the population. 
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conflict locations. Hence, the main challenge of this chapter is to disentangle the sign of 

the direction of a plausible causal relationship using econometric analysis. In addition, 

the summary statistics comparing mean outcomes between the included and excluded 

municipalities reveal that the mean values are not necessarily similar for some key 

variables. However, a summary analysis of differences in mean statistics between 

samples is fraught with difficulty. For example, the extent of missing values for some 

variables in the sub-set of municipalities excluded is large.  Nevertheless, it is difficult to 

argue that the set of municipalities used for our analysis is not subject to some degree of 

selection bias.  However, the problem of missing values in the end dictates the sample we 

focus down on. 

 

In addition, our main and preferred econometric specifications are influenced by the work 

of Fergusson et al. (2014), which sets the framework for our research question. This 

framework is primarily concerned with how the presence conflict affects the changes in 

the level of forest coverage in Colombia. However, since only a number of models are 

presented and discussed in this chapter, there obviously exists space for further research 

on this topic. For example, a different research approach could try to identify the 

determinants of the rate of growth of deforestation. This can be done using the change in 

(log of) forest cover (or the log differences) as a dependent variable. The deforestation 

growth is not necessarily explained by the structural drivers (e.g., the role of population 

or urbanization) as captured by the explanatory variables used in our estimation. Instead, 

the deforestation growth is closely linked to market forces and policy incentives (e.g., 

changes in food prices, the presence of taxes, or conservation laws, etc.) and may be 

viewed short-run in nature. Often, econometric deforestation growth models include the 

market forces or policy incentives variables expressed in terms of their changes. In 

addition, deforestation growth models often encounter significant econometric problems 

since market forces and policy incentives are potentially endogenous to decisions of 

deforestation. Finally, their estimation includes a lag of the dependent variable (log of 

forest cover) which by construction is an endogenous variable in a panel setting. 

Therefore, GMM and dynamic panel data models estimations are required (for example, 

see, for example, Hargrave and Kis-Katos, 2013).  Overall, this represents an agenda for 

future research and is not one that is pursued in this chapter. 

 

Our empirical analysis attempted to causally identify the impact of civilian displacement 
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through violence (or the threat of violence) on forestation.  We believe the identifying 

instruments used are valid and provide us with some confidence that the estimated effect 

is causally identified.  Our estimates suggest there is evidence that the armed conflict is 

indeed a force for forest conservation. In particular, the alignment between rural 

underdevelopment and the rural–urban displacement as a result of the violence 

contributed to the protection of forests. The estimated effect suggests that an additional 

person displaced per 1,000 inhabitants increases the percent of forest covered by 0.0028 

of a percentage point at the municipality level.79 The magnitude of this effect is relatively 

small, and even more so when compared to more conventional forestation drivers such as 

the effects associated to average precipitations monthly (0.14), the distance to the 

department capital (0.028) and the soils quality index (3.7).  In addition, based on the 

same metric of one person per 1,000 increase of the municipal population, the population 

pressure reduces the forest cover thirty-four times (34.2) more than the effect in which 

forced displacement increases it. 

 

A naïve view of the result of this chapter may interpret the armed conflict as something 

good for the country since it brought a positive environmental yield. However, it is 

important to emphasize the fact that the major achievement of the 2016 peace deal that 

ended 60 years of conflict with the FARC was reducing victimization. According to 

official figures during the study period (2004-2012) at least 150,164 people were killed 

in the fighting, 6016 killed and permanently 1476 wounded by landmines, 4,990 people 

kidnapped, and approximately 2.6 million forcibly internally displaced.  All of this 

reflects an immense human toll of suffering against which any environmental gains from 

forestation induced by conflict pales into insignificance. 

 

The results of this research are also consistent with the literature that emphasizes that 

rural–urban displacement due to violence promotes ecosystem recovery due to the 

reduction of human pressure on natural resources (for example, Aide and Grau 2004; and 

Meyerson et al. 2007). Forest degradation frequently increases in post-conflict situations. 

Some studies show that after the end of a conflict people resettled and expanded 

                                                
79 According to the sample used in the regressions, the average share of the municipality area covered with 
forest is more than half (58.04%), which corresponds to 51,168.57 hectares (511.7 km2). The estimated 
effect suggests that one person displaced per 1,000 inhabitants increase the municipality covered by forest 
by 1.43 hectares (0.0016% of the total municipality area), on average and ceteris paribus.	
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agricultural lands (see, for example, Stevens et al. 2011 for the case of Nicaragua’s 

Atlantic coast). Governments also pacify former rebels and provide patronage to 

demobilize forces by promoting rural and agricultural development. In addition, those 

civilians forced displaced by the conflict return to areas abandoned during the conflict, 

and so new people enter into forest zones previously seen as too dangerous within which 

to live.  

 

It is imperative to emphasize that there is nothing wrong with deforestation as long it is 

managed properly and effectively. Rain forests and their watersheds support the 

livelihoods of many.  Therefore, their protection and conservation is of paramount 

importance. Enforcement of conservation of currently protected regions and areas 

previously administered under a ‘gunpoint conservation’ regime by the guerrillas will be 

fundamental. Hence, this chapter indirectly advocates for an appropriate conservation 

strategy when peace fully arrives in Colombia. In the past, the zones protected by the state 

assisted in reducing settlements and illegal drug activity. However, this might not be 

enough for the future (See Dávalos, 2001).  

 

  



118	
 

Chapter 5 
 

5 Climate variability and theft in Colombia 
 
 

Summary 

 
The objective of this chapter is to estimate the causal impact of the most recent extreme 

weather event (EWE) in Colombia (‘La Niña’ between 2010-2011), labelled as the 

‘winter wave’ by the local media, on persons, houses, business and car theft rates in 

municipalities subject to the treatment of this EWE. Using a novel annual municipal panel 

dataset (2007-2012, inclusive), and measuring the affected areas according to the 

number of houses damaged and destroyed, this study relies on a Difference-in-Difference 

(D-i-D) model to show that the concurrent year of the winter wave brought a decrease in 

theft rates, especially, theft from persons. This may be perhaps attributable to the 

emergence of pro-social behaviour in the municipalities most affected. We also find an 

increase in theft from houses possibly linked to a ‘survival mechanism’, rather than one 

that one that seeks reward like the type the Becker (1968) model of crime and punishment. 

In addition, the D-i-D estimates also reveal that the presence of conflict, in general, 

discourages theft perhaps due to the establishment of coercive institutions by illegal 

armed groups. 

 
Keywords: Natural Disasters, Environmental Economics, Violence, Crime, Weather, 
Climate Variability, and Climate Change. 
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5.1 Introduction 

 

The number of Extreme Weather Events (EWE) in Colombia increased from 58.3 to 

332.7 between 1965-1975 and 2005-2015.80 Each decade is warmer than the previous 

one81, and although it is not right to say that EWEs are caused by climate change, the 

magnitude, frequency and the durations of EWEs are influenced by the emergence of a 

warmer atmosphere (WMO, 2011). 

 

Countries are not affected equitably when affecting by EWEs. Developing countries, 

which contribute little to worldwide greenhouse gases, continue to bear a larger share of 

the costs related to greater climate variability. For example, in the developing world the 

weather shocks often push households below the poverty line. Usually, poor rural families 

lack formal insurance mechanisms and access to financial markets, so are required to 

either dispose of their productive assets, reducing household consumption, and/or decide 

not to send their children to school. This offers a strategy to offset the fall in income, 

rendering them even less able to recover in the long run. To worsen the situation, some 

of the urban poor families are often found on the periphery of rural zones prone to natural 

disasters like landslides or avalanches (See Hsiang et al., 2011).  

 

The most recent major EWEs in Latin America comprised floods in Argentina (2007, 

2012), two hurricanes in Mexico (2009), a tropical storm (2010) in Venezuela, and floods 

in Colombia (2010-2011) (See Garlati, 2013). In particular, between 1965 and 2015, 

Colombia faced 121 EWEs, placing it globally among the top three countries most 

exposed to climate variability after Brazil and Mexico (both, with 191 EWEs) in Latin 

America.  

 

The main objective of this chapter is to estimate the causal impact of the most recent 

EWE in Colombia, the ‘La Niña’ episode of 2010-2011, on municipal-level theft rates. 

In particular, the seasonal occurrence of ‘La Niña’ and ‘El Niño’ climatic events alter the 

likelihood of distinctive climate patterns around the globe. Both are opposite phases of 

                                                
80 These calculations are based on data from the Centre for Research on the Epidemiology of Disasters 
(CRED), Université Catholique de Louvain (UCL) in Brussels -http://www.emdat.be -. Natural EWEs 
include climatological (drought, wildfire), hydrological (flood, landslide), and meteorological (extreme 
temperature, storm) events. 
81 The years 2010, 2005 and 1998 ranked as the warmest years on record. 
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what is known as the El Niño-Southern Oscillation (ENSO) cycle. La Niña is associated 

with a cooling of the Pacific tropical waters below normal temperatures, which causes 

heavy precipitation. On the other hand, El Niño relates to a band of warm seawater 

causing extreme droughts. The regions bordering the Pacific coasts of Colombia, Ecuador 

and Peru, which are highly dependent on agriculture and fishing, are particularly 

vulnerable.  

 

During 2010-2011 La Niña hit Colombia extremely hard. It was a unique climate 

anomaly. It came along with intense rainfalls and floods higher than those observed 

historically. It caused approximately USD $7.8 billion losses related to the destruction of 

infrastructure, flooding of agricultural lands, and the payment of governmental subsidies. 

In addition, it left 3.68 million people affected, 467 people dead, 577 injured, 41 missing, 

half-a-million damaged homes with over 15,000 homes destroyed (CEPAL, 2012). 

 

La Niña episode 2010-2011 was so strong that the local media in Colombia referred to it 

as ‘the winter wave’ (‘La ola invernal’ in Spanish). Under the winter wave aftermath two 

contrasting hypotheses emerge on what could have been the direction of the theft rates of 

the affected municipalities. On the one hand, the magnitude of the disaster forced some 

people to subsist by whatever means necessary; living with friends and family, or 

temporally on the streets in improvised shelters. Theft rates, therefore, have had the 

potential to increase because of the desperate living conditions of the victims.82 On the 

other hand, theft rates may have decreased due to an increase in solidarity and pro-social 

behaviour in the communities affected – an occurrence frequently observed after a natural 

disaster episode. 83 

 

Historians have suggested the correlation between climatic disturbances triggered by the 

ENSO cycle, such as droughts, famines, floods, temperature extremes, and thecollapse of 

ancient civilizations.84 In recent years, Hsiang et. al (2011), using data from 1950 to 2004, 

                                                
82 The winter wave may have exacerbated some of the factors that eventually lead to poverty, and, in turn, 
to violence, crime and conflict.  
83 For example, Rodriguez et al. (2006) found in the aftermath of Hurricane Katrina pro-social behaviour, 
including both physical and emotional support, was by far the primary response to this event by the people 
of New Orleans in Louisiana State. 
84 See Brian Fagan's book “Floods, Famines and Emperors: El Niño and the Fate of Civilizations (1999)”.  
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find that the ENSO cycle may have had a role in explaining about one-fifth of civil 

conflicts since 1950. 

 

In addition, Rojas et al. (2014) highlight straightforward negative correlations between a 

country’s agricultural production (using the FAO’s Agriculture Stress Index), and the 

occurrence of the ENSO (measured with the Oceanic Niño ‘ONI’ and the Southern 

Oscillation ‘SOI’ Indexes). In particular, the authors mention that the ENSO affects 

agriculture negatively causing extreme drought conditions, particularly during el Niño. 

 

A sub-theme of the research in this chapter is to explore the impact of conflict on 

municipal-level theft rates so that we can situate this analysis within a context broadly 

similar to that governing the research presented in the previous chapters. In particular, the 

negative consequences of conflict on economic growth, development and poverty is a 

well-stablished fact (see, for example, Collier (1999); Hoeffler and Reynal-Querol 

(2003); and Justino (2012) 85 ). However, the role of conflict on criminality and, in 

particular on theft, along with the inherent security implications on the state authority and 

the rule of law, remains a subject to be explored in more detail. In particular, limited data 

have constrained the ability to accurately measure the scope of conflict on theft in fragile 

developing contexts (De Boer and Bosetti, 2015). 

 

In order to estimate the causal impact of ‘the winter wave’ on theft rates, this chapter 

relies on a Difference-in-Difference (D-i-D) estimator. A municipal panel dataset is 

constructed for the years 2007 and 2012 (subject to the availability of theft data) to assess 

specifically theft rates in the municipalities affected during a pre-treatment and a post-

treatment period (i.e., before and after La Niña 2010-2011 episode). Colombian 

legislation states that a theft86 belongs to the property crime category. What determines 

the degree of theft charges that an accused could face is the type and value of the property 

stolen. The outcome variable used in our analysis relates to the overall theft rate per 1,000 

inhabitants expressed in terms of crimes against persons, houses, business, and cars. In 

                                                
85 Regarding the involvement of the poor in armed conflicts, Justino's (2012) paper offers five well-
documented drivers: i) violence as a means to try to improve a social position, taking advantage of the 
opportunities of conflict; ii) joining militias to get access to basic needs and ensure the protection of families 
and livelihoods; iii) socio-emotional motivations such as a sense of injustice and unfairness and, thus, a 
feeling of revenge; iv) participation in conflicts through coercion, abduction and fear; and v) individual 
non-participation becomes costly, thus, participation occurs in spite of the risk to better manage the conflict. 
86 Theft is the act of intentionally depriving someone of his or her property. 
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addition, the sum of total thefts per 1,000 of the population is also used as an outcome 

measure. 

 

An examination of the impact of EWEs on theft is apposite. Given evidence of increased 

theft behaviour after natural disasters, policy makers will be able to plan ex ante the 

implementation of safety net systems to prevent and mitigate the adverse consequences 

of the EWE in terms of increased criminal activity. Prompt government action in the 

aftermath of natural disasters is key to curtailing disaster losses. For example, anecdotal 

evidence suggests that the promotion of formal or informal insurance for households, and 

the establishment of community-safety-based systems assists in coping with, and 

mitigating, the impacts of natural shocks (see, for example, Wetherley, 2014). 

 

The contribution of this study is that it provides empirical evidence on the causal impact 

of a natural disaster on the theft rates, a matter on which there is no research in Colombia 

to date. The number of houses damaged and destroyed by the EWE associated with the 

passing of the winter is used to construct three-exposure thresholds that differentiate the 

municipalities belonging to the treatment from the control groups. Employing different 

sets of treatment and comparison groups ensures that the overall analysis is not driven by 

the characteristics of a certain group of affected municipalities. Finally, a D-i-D estimator 

is used in conjunction with an appropriate identification strategy. 

 

The remainder of the chapter is structured as follows. The next section briefly reviews 

the literature regarding the climate variability-natural disasters-crime relationship. The 

following sections provide respectively the contextual background to the ‘winter wave’ 

2010-2011, the empirical strategy, and the data (including the descriptive statistics), the 

empirical results, and then some concluding remarks. 
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5.2 Literature review 

 

The economic theory of crime popularized by Becker (1968) and Ehrlich (1973) has 

demonstrated that an individual engages in criminal actions if the net marginal returns 

from illegal activities exceed the net marginal benefit from legal activities. Consequently, 

appropriate legislation and enforcement decrease violence and crime rates, including 

theft, as criminals anticipate a greater cost in perpetrating illegal acts.  

 

The seminal works of Becker (1968) and Ehrlich (1973) led to a wave of empirical 

research examining the socioeconomic determinants of crime, including economic 

disadvantage and social disorganization factors. In particular, rational choice has been 

implicated as the main driver of criminal behaviour. Individuals are rational and engage 

in either legal or illegal behaviour according to the relative returns from each activity 

conditional on the degree of deterrence. Thus, the role of income, inequality, and labour 

market conditions on determining property crime rates has been deeply studied. 

 

First, in the literature the effect of income on crime is often considered ambiguous. On 

the one hand, the family income could be taken as proxy for the availability of illegal 

opportunities reflected in a bigger set of lucrative targets for the potential criminals; and 

on the other, it also could be associated with the availability of more remunerative legal 

jobs in the economy that deter entrance into criminal activity.  

 

For example, Reilly and Witt (1996), using data from 42 Police-Force Areas (PFA) over 

12 years (1980-1991) in the UK, and employing fixed effects regressions, find that per 

capita household income exerted a strong negative influence on the recorded rates of 

burglary and theft. Nonetheless, the authors notice that the inclusion of the unemployment 

rate in the regressions often rendered the income coefficient insignificant suggesting that 

the income variable may act as a proxy for the effects of unemployment. In any case, 

these authors also report that the growth in unemployment is seen to impact positively 

burglary and theft activity over the time period considered.87 

 

                                                
87 The authors preferred estimation suggest that 1% rise in unemployment raises burglary and theft by 
0.17% and 0.12%, on average and ceteris paribus, respectively.  
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Doyle et. al (1999) employing a 48-contiguous state panel dataset for the US for the years 

1984-1997, and running fixed-effects and GMM models, find evidence that the level of 

wages has a substantial negative effect on property and violent crime as explained by a 

reduction in the opportunity cost of crime. In particular, the authors report that a 10% 

increase in wages reduces property crime by 5.8%, on average and ceteris paribus.  

 

In contrast, Han et al. (2013) , using data from PFAs covering the period 1992–2008 for 

the UK, and adopting a fixed effect dynamic GMM estimation methodology, find that 

real earnings exert a positive and statistically significant effect on property crime. In 

particular, the authors suggest that higher earnings imply greater opportunities for 

potential criminals.  

 

Entorf and Spengler (2000) use static and dynamic panel models with data at Laenders 

(state) level covering the period 1975 and 1996 for Germany.  The authors  show that 

absolute income, as measured by GDP per capita, turns out to be a measure of illegal 

rather than legal income opportunities (i.e., higher income is associated with higher crime 

rates). 

 

Second, one shared hypothesis among studies is that relative privation, as measured by 

income inequality, resulting even in feelings of antipathy and or even rage, leads to crime 

as well. Thus, for example, Han et al. (2013) also include in their regressions the Gini 

coefficient as a measure of income inequality. They find that the Gini coefficient has a 

positive and significant effect on burglary and theft.  

 

Kelly (2000), however, using data taken from the 1991 FBI Uniform Crime Reports for 

829 metropolitan counties in the US, and employing Poisson regressions shows that 

income inequality has no impact on property crime, but it does on violent crimes, with an 

elasticity above 0.5. Kelly (2000) goes further and also indicates that poverty is one of 

the strongest and stable predictors of property crime, with an elasticity of 0.3. 

 

Third, there are also studies which show that unemployment has positive impacts on 

crime, but the magnitude of this effect may be relatively small. The reason is that 

unemployment encourages criminality, but people who engage in crime are also part of 

the legitimate labour force, and derive income from legitimate jobs (See Machin and 
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Meghir, 2004). For example, Entorf and Spengler (2000) find that unemployment yields 

small, often insignificant, and ambiguous signs in their crime regressions models for 

Germany. 

 

Pratt and Cullen (2005) perform a meta-analysis synthesizing the results from over 214 

studies of crime rates dated between 1960 and 1999, which contained 509 statistical 

models that produced a total of 1,984 size effect estimates for the US. They find that the 

unemployment rate and the length of unemployment variables are important predictors 

of crime rates. 

 

Han et al. (2013), in contrast to Reilly and Witt (1996), show that higher unemployment 

leads to a “lower” level of burglary and fraud and forgery in the UK. The authors argue 

that the unemployment rate captures the net effect of two opposite situations; while higher 

unemployment motivates potential criminals, it also reduces the opportunities available 

for them.   

 

The percentage of young people in the population is also included in crime models, as 

they are considered the most likely socio-demographic age group to engage in criminality 

given their low-risk aversion. In fact, it is often found that the likelihood of committing 

crime typically increases with age until the late teens and then it starts to decline. For 

example, Grogger (1998) using individual level data in the US from the National 

Longitudinal Survey of Youth, and employing probit and GMM models, showed that a 

fall in the real wage played an important role in determining youth crime during the 1970s 

and 1980s. According to the author, a 10% increase in the wage lead to a 1.8 percentage 

point reduction in the juvenile crime participation rate, on average and ceteris paribus. 

Pratt and Cullen (2005) found that the proportion of young people to be only a moderate 

predictor of the crime rate. 

 

There are also other social disorganization factors that affect crime such as the rate of 

urbanization, family structure, racial composition or even nationality. For example, 

Hooghe et al. (2011) analysed the geographical distribution of crime rates in the 598 

Belgian municipalities, covering the period 2001-2006 and using spatial regression 

techniques  to demonstrate that crime rates tend to be concentrated in the urban regions. 
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In particular, there is a strong and consistent effect of population density on crime rates, 

and this holds for both property and for violent crime. 

 

Comanor and Phillips (2002), using data from the US National Longitudinal Survey of 

Youth (NLSY) over the period from 1979 to 1980, employed probit models to reveal that 

parental roles that influence the behaviour of their children. In particular, according to the 

authors’ regressions, the most critical family structure factor affecting the prospect that a 

male’s youth will face the criminal justice system is the absence of a father in the home. 

 

Pratt and Cullen (2005) provide evidence for the US indicating that some racial 

compositions exhibit higher levels of involvement in crimes, in part due to a labour 

market phenomenon. For example, blacks typically earn less than whites, and also are 

segregated from certain high paying jobs. Finally, Entorf and Spengler (2000), in their 

study for Germany, show that areas with a higher percentage of foreigners experienced 

more property crime rates. 

 

Lastly, most these studies presented reveal that deterrence variables (including 

imprisonment, detection rates, police force levels) act as powerful influences in reducing 

crimes (both violent and property crime). The more successful are the police in detecting 

crime the lower the crime rate (Pratt and Cullen, 2005). 

 

The analysis of Becker (1968) and Ehrlich (1973) hinges on the existence of social 

control, which may be weakened during a time of crisis. The simultaneity of climate 

variability and a natural disaster is neither a necessary nor a sufficient condition for a 

crime to occur, but it may increase its likelihood, holding other factors (such as the state 

capacity of law enforcement and/or the emergence of conflicts) constant.88 In particular, 

understanding the mechanisms that drives the climate-crime relationship remains a major 

lacuna in the literature (Hsiang et al., 2013).  

 

The existing research for the developed world tends to explain the temperature-crime 

positive gradient through a “psychological” channel relating heat to crime. Particularly 

                                                
88 For example, Buhaug (2010) argues that climate variability is a poor predictor of violence and conflicts. 
In its place, structural conditions, such as poverty, inequality, and a weak institutional framework are the 
major drivers. 
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violent crimes such as assault, murder, rape, and domestic violence, tend to increase at 

higher temperatures. Possible explanations draw on theories in which external conditions 

that facilitate social interactions directly affect human judgment in ways that cause 

heightened aggression and a loss of control89 (see, for example, Blakeslee and Fishman, 

2015; and Ranson, 2014). On the other hand, the studies for the developing world often 

correlate rainfall fluctuations with crime through an ‘income 90 and poverty’91  channel.  

This is because in that context of agricultural production, wages, and employment are 

more affected by rainfall due to the larger share of agriculture in such economies (see, for 

example, Dell et al., 2014).92 

 

This chapter integrates two strands of the existing literature: one that concerns the climate 

variability-crime relationship, and another about a specific natural disaster-crime 

relationship. On the first theme, the literature differentiates two types of criminal 

outcomes due to climate variability: i) “interpersonal” referring to violence and crime 

between individuals, such as theft, murder, rape, and domestic violence (See, for example, 

Ranson; 201493); and ii) “inter-conflicts”, incorporating the emergence of social conflict 

and/or riots (See, for example, Hidalgo et al.; 201094). In particular, Burke et al (2015)  

synthesized the increasing econometric literature concerning the links between climate, 

crime, and conflicts into a meta-analysis. Based on data from 55 studies and 45 datasets 

from around the world with a periodicity spanning 10,000 years BC to the present. They 

show that each standard deviation change in climate towards warmer temperatures and 

                                                
89 These situations are more frequent when individuals drink alcohol in hot conditions, since it enters the 
blood stream more rapidly. 
90 There is a large body of literature that uses weather shocks as instruments for income. In turn, income 
reductions are associated with crime and conflict emergence. For example, the seminal paper by Miguel et 
al. (2004) uses rainfall variation as an instrumental variable to illustrate that economic growth is strongly 
negatively related to civil conflict in Africa. Panel estimation for 41 African countries during 1981–1999 
demonstrate that a negative growth shock of five percentage points increases the likelihood of conflict by 
one-half the following year. In addition, La Ferrara and Harari (2014) also report that over the period 1997-
2011, the link between weather and conflicts in sub-Saharan Africa are primarily driven by climate shocks 
during the growing season of the main crop in a given region. 
91 Justino (2012) provides an extensive review showing the strong empirical association between poverty 
and violence, crime and conflicts. 
92 This paper provides a literature review that examines how temperature, precipitation, and windstorms 
influence economic outcomes including agricultural output, industrial output, labour productivity, energy 
demand, health, conflict, and economic growth, among other things. 
93 In line with Ranson (2014), for the case of United States there is a nonlinear effect of temperature on 
property crimes and a linear effect of temperature on violent crimes, such as murder. 
94 Using a municipal level dataset of 5,299 land invasions from 1988 to 2004 in Brazil, Hidalgo et al. (2010) 
show that adverse economic shocks, instrumented by rainfall, cause the rural poor to invade and occupy 
large landholdings. 
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extreme precipitation increase the frequency of interpersonal violence by 4% and inter-

conflict violence by 14%. 

 

Focusing exclusively on the climate-theft outcomes (interpersonal) Blakeslee and 

Fishman (2015), using a crime and climate yearly panel dataset at the district level from 

India (1971-2000 inclusive), show that crime increases with elevated heat and droughts95 

which independently also reduce agricultural output. The effects are larger and more 

uniform for property crimes than for violent crimes. Droughts lead to a 4.5% increase in 

property crimes (2.3% increase in violent crimes), elevated temperatures lead to a 4.5% 

increase in property crimes (2.7% increase in violent crimes). 

 

Similarly, Iyer & Topalova (2014) shed light on the mechanisms underlying the rainfall-

crime relationship using a four-decade annual panel dataset (1971-2000) at the district 

level from India. Fixed effects estimation, controlling for the inclusion of weather and 

trade shocks, reveal that the income channel is the primary mechanism behind the 

emergence of a negative rainfall-crime relationship. 96  In particular, a one standard 

deviation increase in the log of rainfall is associated with a reduction of violent 

interpersonal crimes (4.2% decline), property crimes (2.2% decline) and economic crimes 

(3.8% decline). 

 

Mehlum et al. (2006), using instrumental variables, estimated the causal effect of high 

grain (rye) prices on crime rates in 19th century Bavaria. The main innovation lies in 

using the lagged rainfall as a source of exogenous variation in the rye prices (which are a 

proxy of the cost of living in 19th century Bavaria given that rye was the main staple). 

According to the first-stage regression, the lagged rainfall variable had a positive effect 

on the rye price97, and, in the second-stage estimation, the estimated rye price had a 

positive effect on property crime.  Specifically, a one standard deviation increase in the 

estimated rye price was found to increase property crime by 8%, on average and ceteris 

paribus. 

                                                
95 The authors defined the climate shocks as rainfall/temperatures of one standard deviation above the mean 
at the district level. 
96 The authors suggest that an additional source of exogenous income shocks for households in rural India 
(completely independent of the amount of rainfall) was the trade liberalization process. 
97 Excessive rainfall reduces rye yields by interfering with the sowing season for winter grains and by 
destroying the harvest. 
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On the second subject, which covers the literature about a specific natural disaster-crime 

relationship, Wetherley (2014) assessed the impact of typhoons on crime rates using an 

annual panel dataset (1990-2008 inclusive) covering 13 regions of the Philippines. The 

fixed effects estimation, using lagged weather-related explanatory variables such as 

precipitation, temperature and wind speed, reveal that the theft rates decreased during the 

immediate year of intense precipitation. However, the theft rates increased during the year 

following high wind speeds. In particular, an increase of one centimetre of rainfall is 

estimated to yield a decrease in thefts of 0.365 per 100,000 inhabitants, which is 

suggestive of  pro-social behaviour immediately following a storm. 

 

In contrast, Roy (2010) investigates how the crime rates respond to several kinds of 

natural disasters (e.g., hydrological, climatological, meteorological and geophysical) 

using an annual panel dataset for 227 districts between 1971 and 2006 from India. The 

size of the natural disaster is captured by intensity and frequency measures along with the 

number of disaster related deaths per district. The fixed effect regression estimates reveal 

that property crimes increase by 0.203-0.832 98  per 100,000 people following high 

magnitude events. Other noteworthy results reported revealed that a higher pre-disaster 

newspaper circulation reduces crime rates. In particular, large disasters attract a lot of 

media attention in local newspapers, which perhaps suggest greater ex-post government 

aid for recovery. 

 

In contrast, Leitner et al. (2011) assessed the impact of the massive population 

displacement following Hurricane Katrina in the US state of Louisiana on parish99 crime 

rates using time series models (ARIMA) based on data from January 2000 through to 

June 2006. The results showed that the crime rates remained unchanged following the 

Hurricane for the majority of the parishes that received evacuees from the impacted areas. 

The authors explain that after the storm, the crime rates fell drastically in some parishes 

due to the arrival of National Guard troops. 

 

There are also studies that focus on the impact of an “exogenous shock”, not necessarily 

a natural disaster, on criminal activity. One of the best examples of an “exogenous shock” 

                                                
98 The focus was armed robbery and burglary, respectively. 
99 The name parish goes back to colonial Louisiana. There are sixty-four parishes in the state. 
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is terrorism. In particular, Draca et al. (2011) study the crime-police relationship before 

and after a terror attack using an instrumental variable approach. In particular, the terror 

attacks in London during July 2005 resulted in a large redeployment of police officers to 

central London boroughs as compared to the outer London areas. The authors report that 

during the time period when police presence was high, crime rates fell significantly in 

central relative to outer London. They estimate an elasticity of crime with respect to 

police of approximately −0.3 to −0.4, so that a 10 percent increase in police activity 

reduces crime by around 3 to 4 percent. 

 

Finally, for the case of Colombia there is no research regarding both types of relationship 

(i.e., climate variability-crime and/or specific natural disaster-crime relationships). There 

is only one study worthy of mention here for Colombia which explores a link between 

climate and conflict. Specifically, Acevedo (2015), using a municipality panel dataset 

from 2004 to 2010 estimates the causal effect of a weather-induced agricultural shock on 

labour market conditions and on forced displacement. The author finds that each 

additional millimetre of rain is positively associated with an increase in the coca crop 

yields. This translates into a higher demand for rural workers, but the rural wage level 

remains unchanged. With respect to the conflict consequences, the author finds that an 

additional millimetre of precipitation above the municipality average decreases forced 

displacement by 1.22% in areas suitable for coca crop production.  This result may be 

attributable to an increase in coca production and the coercion enforced by illegal armed 

coca-profiting groups. 

 

As noted above, a small body of research suggests that crime is influenced by changes in 

climate. However, no paper has focused directly on Colombia, and only a small number 

have explored the behaviour of the common categories of property crime in a systematic 

way (See, for example, Mejia et al. 2014, Sánchez et al. 2003; Sánchez and Núñez, 2001). 

To address this gap in the literature, this chapter estimates the impact of the most recent 

Extreme Weather Event in Colombia, “La Niña” between 2010-2011 on the theft rates 

per inhabitant across categories related to persons, houses, businesses, and cars.   

 

5.3 The ‘winter wave’ event 2010- 2011 
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El Niño and La Niña, meaning respectively the little boy and the little girl in Spanish, are 

periodic weather patterns resulting from the interactions between the ocean surface and 

the trade winds that often blow from east to west over the tropical Pacific Ocean. Both 

are opposite phases of the El Niño-Southern Oscillation (ENSO) cycle. El Niño and La 

Niña episodes typically occur every three to five years. The changes in ocean 

temperatures normally reveal their presence.  Under El Niño conditions, the trade winds 

reverse direction, blowing from west to east. The warm waters migrate across the tropical 

Pacific towards Peru, and the waters turn cold in Asia.  Typically, during a period of El 

Niño, Colombia experiences drier-than-average seasons. 

 

Conversely, under La Niña conditions, colder than normal waters start to develop in the 

eastern equatorial Pacific as the trade winds intensify from the east (America) to the west 

(Asia). Strong high pressure builds over the eastern equatorial Pacific while low pressure 

follows the warm waters towards Asia. During a period of La Niña, Colombia experiences 

extreme rainy seasons. 

 

El Niño typically lasts nine to twelve months, and La Niña endures for between one to 

three years. Both tend to develop during March-June, reach a peak of intensity between 

December and April, and then weaken during May-July (CEPAL, 2012).  

 

La Niña episode of 2010-11 was very much out of line with anything that had occurred 

before in terms of the frequency of natural disaster events in Colombia. Figure 5.3.1 

graphically depicts the number of houses affected (damaged and destroyed) by 

“atmospheric” (such as winds, gales, storms, or wild fires) and “hydrological” (such as 

floods, droughts, or landslides) natural events. The “winter wave”, which is mostly 

associated with an excess of hydrological natural events, is clearly an outlier.100 During 

2010 and 2011, La Niña left almost four million people affected and half-a-million 

damaged houses (CEPAL, 2012).  

 

The study period (2007-2012) includes also the presence of El Niño 2009. However, the 

magnitude of that episode in terms of asset losses is minor when compared to the damage 

inflicted by La Niña 2010-2011 (CEPAL, 2012). The “El Niño” episodes are mostly 

                                                
100 During La Niña 2010-2011 episode the number of houses affected is above the mean by about one 
standard deviation as computed over the period 1998-2017. 
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associated with “atmospheric” events which are primarily caused by the warming of the 

Pacific waters and the increase in temperatures. In particular, during El Niño 2009 

Colombia experienced some wild fires and water scarcity. Since wild fires101 typically 

occur in remote and forested areas, and water scarcity effects are often mitigated given 

the prompt implementation of water management policies102, it is not anticipated that 

there would be a link of this particular adverse climatic episode with the incidence of 

municipal theft rates. In fact, in 2009, the Government of Colombia protected the water 

reserves through increasing the generation of thermal energy (therefore, reducing the 

generation of hydroelectric energy). This increased its supply from 14% to 50% of the 

country's demand during that year (see World Bank, 2012). 

 

  

                                                
101 During El Niño 2009, approximately 1,878 forest fires were reported, which affected 83,270 hectares of 
forest and vegetation cover. 
102 During El Niño 2009.  
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Figure 5.3.1 Atmospheric and hydrological registered events 1998-2017 

 
 
Source: author’s calculations based on natural disaster categories established by the National Planning 
Department using data from the National Unit for Disaster Risk Management. 
 

The Figure 5.3.2 taken from CEPAL (2012) graphically depicts the excess (or deficits) 

of rainfall relative to historical averages of each month in Colombia during La Niña 

episode 2010-2011 with darker blue colours. In early June 2010, La Niña initiated when 

the Pacific Ocean waters began to cool down with anomalous temperatures below –0.5°C. 

During September of the same year, the tropical Pacific water temperature dropped down 

to  –1.5°C. La Niña episode was “strong”103, in particular between July and August 2010, 

November and December 2010, and March and May 2011.  

 

   

                                                
103 According to the US National Oceanic and Atmospheric Administration (NOAA), La Niña episode has 
reached the “strong” category only six times since 1950. 
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Figure 5.3.2 The monthly precipitation anomalies in Colombia 2010-2011 

2010 

 
2011 

 
 

Note: maps show spatially excess (or deficits) rainfall relative to historical averages of each month. 
Source: IDEAM, 2011  
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The excess of rainfall, well above historical averages, translated into an increase in the 

number of weather disasters such as rivers and water bodies over flooding, landslides and 

landmass movements. Consistent with Figure 5.3.3, based on statistics from the 

Colombian Government Disaster Management Unit, the number of weather disasters 

reached two major peaks between November (491) and December (483) 2010, and April 

(538) and May (372) 2011. Thus, in the period between September 2010 and May 2011, 

which covers the two major peaks, the official number of weather disasters registered was 

2,219, which comprised 1,233 floods (55.6%), 778 landslides (35.1%), 174 gales and 24 

avalanches, respectively. The other 10 remaining events were thunderstorms, hailstorms 

and tornadoes.  

 

Figure 5.3.3 The “winter wave” 2010-2011 

 

 
Note: Weather disasters (floods, avalanches and landslides, tornados, thunderstorm, wind, erosion and hail). 
Source: author based on National Unit for Disaster Risk Management data. 
 

One element common to all kinds of natural disasters relates to the “winter wave” in the 

municipalities impacted was a high degree of property damage rather than a high death 

toll (CEPAL, 2012). Figure 5.3.4 shows that around 451,270 (79.7%), 99,905 (17.6%) 

and 15,381 (2.7%) homes were affected by floods, avalanches and landslides, and others 

weather events such as tornados, thunderstorm, wind, erosion and hail. 
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Figure 5.3.4 Houses affected by type of natural disaster during the “winter wave” 
2010-2011  

 
 
Note: houses affected (damaged and destroyed) and others weather natural disasters (tornados, 
thunderstorm, wind, erosion and hail) 
Source: author based on National Unit for Disaster Risk Management data. 
 

Approximately 46.6%104 of the country’s area coverage experienced floods. Among the 

most shocking natural disaster tragedies, comparable to the floods caused by the 

Hurricane Katrina (2005) in New Orleans (US), was the rupture of the levees of the Dique 

channel (Canal del Dique), which connects the main Colombian river, El Magdalena, 

which historically has provided a vital trade route with the city of Cartagena, Colombia’s 

major port in the Caribbean. Some branches of the El Magdalena River crested and 

flooded entire villages in the proximity of the river.  

 

In addition, the landslides generated substantial infrastructure damages including houses, 

roads, and aqueducts. For example, in December 2010 a large landmass movement in the 

municipality of Gramalote, Northern Santander Department, negatively affected more 

than 4,000 people, leaving around 100 homes destroyed and 900 damaged. The 

government ordered a large-scale town evacuation. Another tragedy occurred in Bello, 

Antioquia Department, where a landslide killed 82 people, left 38 missing, and 10 injured, 

with 107 houses destroyed and 735 people without homes.   

                                                
104 Based on a representative sample that covered 66.3 % of continental national territory (IGAC-IDEAM-
DANE).  
 

451,270 
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15,381 
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In summary, the passing of the “winter wave” left 467 people dead, 577 injured, 41 

missing, and 566,556 either damaged or completely destroyed homes.105  The estimated 

cost of damages caused by the ‘winter wave’ was estimated to be USD 6.052 billion 

(CEPAL, 2012).  

 
5.4 Empirical and identification strategy 

 
The key research objective is to estimate the causal impact of the ‘winter wave’ on theft 

rates in the municipalities most affected by the extreme weather event. A standard D-i-D 

estimation procedure is employed using an annual panel dataset (2007-2012). The years 

are selected due to municipal-level data availability. The model is specified in Equation 

(5.1) as follows: 

 

 
 TW,3 = 	αW + 	λ3 + β(WW ∗ PW,a4U4) + γ´XW,3 + εW,3  (5.1) 

 

where Ti,t is either the persons, houses, business and car theft rates per 1,000 of the 

population of  municipality  𝑖 in year 𝑡 depending on the specification used. In addition, 

we also use as an outcome variable the aggregate of these four criminal categories per 

1000 of inhabitants for municipality, including and also excluding car theft. WW 

corresponds to the treatment indicator (a dummy variable for whether or not the 

municipality 𝑖 has been affected by the “winter wave”). Since a panel data fixed effects 

estimator is employed WW does not appear on its own.  𝑃 ,a4U4 is a dummy variable for the 

post 2010 period, therefore, the primary parameter of interest is 𝛽, which captures the 

average effect of the ‘winter wave’ on the different types of theft rates per inhabitant.  It 

is assumed that the ‘winter wave’, like any other accidental or random climate event, 

caused a random allocation of the treatment and control groups similar to one yielded by 

a random experiment. In other words, the treated municipalities are presumed to be 

scattered randomly throughout the country.  

 

Natural disasters typically set in motion a complex chain of events that can disrupt the 

local economy and, in extreme cases, the national economy. One element common to all 

                                                
105  Statistics from the Colombian Government Disaster Management Unit (Unidad Nacional para la 
Gestión del Riesgo de Desastres, UNGRD Acronym in Spanish),	May 31st 2011 cut-off date. 
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kinds of natural disasters related to the ‘winter wave’ in the municipalities impacted is a 

high degree of property damage rather than a high death toll. Hence, the number of houses 

affected per 1,000 inhabitants, defined as the sum of houses damaged and destroyed, 

regardless of the kind of the natural disaster, is used to construct the treatment dummy 

WW (See, Figure 5.3.4).  

 

Three treatments groups for the D-i-D regression models are constructed based on the 

intensity of damage induced by the ‘winter wave’. In particular, the municipal statistics 

on houses registered as affected per 1000 inhabitant due to the passing of the ‘winter 

wave’ were sorted from largest to smallest in number. We define the treatment groups in 

three different ways depending on the intensity of the damage to houses of the ‘winter 

wave’. Specifically, if the municipality registered a number of houses affected by the 

‘winter wage’ per 1,000 inhabitants in the top 10% of the distribution, then the 

municipality is in the treatment group and all other municipalities are in the control group. 

We relax this restriction by then re-defining the treatment group to include those 

municipalities that were in the top 15% of those affected by housing damage by the 

‘winter wave’, with the remainder then consigned to the control group. Finally, we also 

use a 20% cut-off point as final way to delineate the treatment and control groups.  

 

Bottom-line, consistent with this data sorting, a municipality belongs to the more intense 

to the less intense treatment group [Yes=1; No=0] if the number of houses registered as 

affected per 1000 inhabitant is in the top 10%; 15%; and 20% of the distribution, 

respectively. Therefore, we have three separately define treatment groups that range in 

the intensity of their exposure to the ‘winter wave’ with the 10% the most intensively 

affected.  

 

The decision on how the cut-off points are defined is not random. The treatment intensity 

cuts-off points (i.e., 10%, 15% and 20%) capture adequately the level of destruction 

associated with the passing of the ‘winter wave’.  

 

According to these cut-off points, the municipalities included in the treatments groups at 

least experienced 39.8 houses registered as affected per 1,000 inhabitants, with a 

maximum of 529.9, a figure slightly above the mean (29.4), but way below the mean plus 

one standard deviation (83.2). Hence, the cut-off points used approximately capture a 
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treatment effect and this is conveyed in the Figure 5.4.1 below. Indeed, the 20% cut-off 

point is “conservative” in nature in the sense that it allows the inclusion of municipalities 

that weren’t severely affected in the treatment group. The cut-off points 10% and 15% 

are more precise in capturing the degree of asset destruction due to the ‘winter wave’. 

 

Figure 5.4.1 Houses registered as affected per 1000 inhabitant at municipal level 
sorted from largest to smallest in number. 

Source: author based on natural disaster categories established by the National Planning Department using 
data from the National Unit for Disaster Risk Management. 
 

Additionally, the cut-off points defined ensures a reasonable number of municipalities in 

the treatment groups. Thus, the 10%, 15% and 20% cut-off points restrict to 109, 163 and 

217 municipalities included in the three treatment groups, respectively. A 5% cut-off 

point is not used as it would comprise a small number of treated municipalities (55), 

which would reduce the empirical power of the analysis (Table 5.4.1). 
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Table 5.4.1 The treatments groups for the D-i-D regression models constructed 
based on the intensity of damage induced by the ‘winter wave’. 

 
Treatment 
intensity # Municipalities 

Houses affected per 1000 inhabitants 
Mean Min Max 

10% 55 219.75 126.81 529.88 
54 97.08 75.89 126.07 

15% 54 63.74 52.29 75.53 
20% 54 45.91 39.84 52.21 

30% 54 35.18 32.21 39.61 
54 28.36 25.43 32.17 

40% 55 22.77 20.18 25.36 
54 17.85 15.82 20.15 

50% 54 14.22 12.84 15.78 
54 11.24 9.78 12.81 

60% 54 8.35 7.42 9.75 
54 6.67 5.98 7.39 

70% 54 5.26 4.48 5.97 
55 3.83 3.26 4.48 

80% 
54 2.64 2.05 3.25 
54 1.61 1.17 2.02 

100% 54 0.80 0.54 1.16 
162 0.07 0.00 0.53 

Source: author based on natural disaster categories established by the National Planning Department using 
data from the National Unit for Disaster Risk Management. 
 

The key research question of this chapter is to correlate the destruction associated with 

this natural disaster with theft. Therefore, setting a set of more lenient cut-off points is 

not consistent with the chapter’s empirical objective.  Furthermore, it would likely entail 

the construction of treatment groups that are less accurate in terms of exposure to 

treatment, and at the same time, smaller control groups which will reduce the empirical 

power of the analysis. For example, a 90% cut-off point as the treatment involves 

subjecting 867 municipalities to a fake ‘treatment’ since many would not necessarily be 

affected by the ‘winter wave’.  The corollary of this is that remainder of the municipalities 

would be consigned to an unrealistically small control group and would generate very 

little empirical power (Table 5.4.1). 

 

Overall, although it is possible to amend these thresholds at the margin, we do not believe 

such changes would make a difference to the substantive finding in this chapter (See 

Figure 5.4.1).  Further, the use of a radical threshold like 90% for treatment would make 

little sense in the current context given what has been depicted in the above figure where 

the effects of the weather event is fairly flat. Furthermore, the sample size of 
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municipalities in the control group would shrink about 108 or less which not provide an 

adequate control group for our analysis. 

 

On the other hand, in order to ensure clean control groups for each one of the treatment 

groups defined above, the number of houses registered as affected per 1,000 inhabitants 

is regarded also in conjunction with some available statistics concerning the number of 

people who declared that they were affected per inhabitant at the municipality level by 

the weather event. It is worth noting that the passing of the ‘winter wage’ left mainly 

property damage, thus, the number of people affected per inhabitant is only employed as 

a complementary indicator for improving the quality of the control groups. 106  In 

particular, both variables were again sorted from the largest to smallest number. A 

municipality is taken to belong to the more intense or to the less intense control group 

[Yes=1; No=0] if the number of houses and people registered as affected per 1000 

inhabitant does not belong to the top 10%; 15%; and 20% of the distribution, respectively.  

 

This data organization implies that for each treatment of intensity there is a particular 

sample size that guarantees a clear split between treatment and control groups. In 

addition, the existence of missing values in the dataset relate to the type of theft used in 

the regressions will also play a role in defining the final samples sizes. In any case, the 

use of a different sets of treatment and comparison groups ensures that the overall analysis 

is not driven by the characteristics of a certain group of municipalities affected. 

 

The vector XW,3 represents the municipal characteristics likely to affect the theft rates per 

inhabitant. In particular, the equation controls for the log of income tax revenue per 

inhabitant, the percentage of urban population [0-100], the log of density (ratio of 

population to area (Km2)) and the gross enrolment ratio (primary and secondary) [0-100].  

 

In addition, Colombia has experienced high levels of crime, forced displacement, 

kidnappings, and corruption during a conflict which persisted for more than a half 

                                                
106 The use of the number of people affected per inhabitant alone is not recommended. It may be subject to 
measurement error, since the local governmental authorities usually offer a monetary donation for disaster 
relief. In any case, when the number of people affected per inhabitant was employed alone as an input to 
construct a treatment dummy, no impact on the theft rates was detected. In contrast, the statistics regarding 
the number of houses registered as affected per inhabitant are not only more suitable, covering more 
municipalities, but also accurate and easily verifiable by the local authorities, for example, using 
aerial imaging.    
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century. Therefore, the inclusion of the presence of conflict (illegal armed groups such as 

FARC and ELN) [Yes=1; No=0] as an explanatory control variable for theft at the 

municipality level is necessary. First, illegal armed groups are frequently conformed by 

potential criminals which can affect local theft rates. Second, illegal armed groups often 

deteriorate the presence of the state through intimidation, annihilation or expulsion, which 

in turn can affect local theft rates due to the establishment of coercive institutions. 

Guerrillas are habitually discouraged to commit crimes against property since it isn’t as 

profitable as narcotraffic. In other words, illegal armed groups may provide a theft-free 

environment for coca growers in order to ensure a high level of drug production. As a 

corollary, guerrillas don’t necessarily have the criminal networks established to sell the 

possible items to be stolen affecting theft rates. Therefore, the country is an exceptional 

laboratory for researchers interested in studying the relationship between conflict and 

theft (See Sánchez et al., 2003a). 

 

The inclusion of municipality fixed effects (αi) controls for any municipality-specific 

characteristics assumed fixed over time. The time fixed effects (λt) control for aggregate 

time trends in the theft rates per inhabitant, capturing, for example, annual shifts in 

departmental security policies.107  

 

In Equation (5.2) the “year lags108” are included to capture whether the treatment effect 

dissipates over time, stays constant, or even increases. These are constructed by testing 

the statistical significance of the estimates corresponding to the dummy variables for the 

years 2011 and 2012, and interacting them with the treatment indicator (WW) measuring 

the year-by-year effect after the ‘winter wave’ event.  This leads to the specification of 

the following equation: 

 
 TW,3 = 	αW + 	λ3 + ρ´(WW ∗ PW,3)

a4Ua

3~a4UU

+ γ´XW,3 + 	ξW,3 
(5.2) 

 

                                                
107 The model in Equation (5.1) was also estimated excluding the time fixed effects (λt). These estimations 
reveal that the magnitudes and levels of significance of the coefficients (β) associated with the treatment 
indicator (WW) is not considerably affected. 
108 The literature generally refers to as “leads” and as “lags” to the interactions of the treatment indicator 
with the “pre-treatment” and “post-treatment” time dummies, respectively. 
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where 𝜌´ is a vector capturing the effects of the winter wave in year 1 (2011) and year 2 

(2012).  

 

A questionable assumption embedded in the estimation of Equation (5.1) is that, in the 

absence of the treatment, 𝑇 ,t	is evolving naturally over time in the same way as in the 

treated and non-treated groups. This is the “parallel trends” assumption. In fact, the 

potential change in theft rates in both groups of municipalities could be different due to 

intrinsic factors not necessarily related to the ‘winter wave’. For example, in a 

hypothetical case, the municipalities most affected could be implementing better theft 

prevention polices, which in turn renders the common trends assumption less reasonable. 

This example illustrates that the parallel trend assumption is usually implausible if the 

treatment selection is correlated with some characteristics affecting the dynamics of the 

outcome variable. 

 

In order to test the presence of parallel trends between treatment and comparison groups, 

trend (time dummies) and treatment interactions with the periods are included, essentially 

not limiting the ‘winter wave’ to just 2010. Thus, in Equation (5.3), three “year leads” are 

included.  

 
 TW,3 = 	αW + 	λ3 + 	 φ´(WW ∗ PW,3)

a4U4

3~a44ª

+ ρ´(WW ∗ PW,3)
a4Ua

3~a4UU

+ γ´XW,3 + ζW,3 
(5.3) 

  
 

Here, implicitly we are creating “placebo” treatments in all years. If the assumption of 

parallel trends holds for the treated and comparison groups for the period before ‘winter 

wave’, the estimates corresponding to the interaction of the treatment group with the ‘year 

leads’ should be statistically insignificant. In other words, the null hypothesis of similar 

trends is φ´ = 0. Note that the 2007 pre-treatment interaction is not included to avoid the 

dummy variable trap. 

 

Finally, accordingly to Bertrand et al. (2004), D-i-D estimation, particularly those over 

an extended period, may yield biased standard errors due to the presence of serial 

correlation. Thus, supplementary estimation is conducted ignoring the time series 

information. The data before and after the winter wave periods are averaged across two 
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periods and a panel of length two is estimated as a quasi-robustness test. Finally, in all 

estimation the standard errors are clustered at the municipality level. Thus, they are 

expected to be robust to the presence of both autocorrelation and heteroskedasticity.  

 

5.5 Data and descriptive statistics 

 

The panel dataset consists of yearly municipal observations from 2007 to 2012 

(inclusive). The summary statistics reported for the treatment and control groups are 

given in Table 5.5.1 and Table 5.5.2 respectively. This contains the means, standard 

deviations, and the number of observations for the three treatment intensities defined in 

the Empirical and identification strategy section 5.4 above. The treatment (control) 

sample sizes contract (expands) when increasing the intensity of damage criterion from 

20% to 10% exposure, respectively. The summary statistics for the full sample dataset, 

which merges treatment and control group observations, are presented in Table 5.5.3. The 

full sample size decreases from 20% to 10% exposure, due to a reduction in the 

availability of data points for the treatment groups as again defined in the Empirical and 

identification strategy section. 
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Table 5.5.1 Summary statistics -treatment sample- 

Variable Statistic Treatment intensity 
20% 15% 10% 

Theft from persons per 1000 inhabitant 
Mean 0.24 0.22 0.22 

Sd 0.38 0.08 0.36 
N 1257 941 612 

Theft from houses per 1000 inhabitant 
Mean 0.13 0.12 0.11 

Sd 0.27 0.25 0.23 
N 1233 917 600 

Theft from business per 1000 inhabitant 
Mean 0.1 0.08 0.08 

Sd 0.17 0.16 0.16 
N 1208 892 593 

Theft from persons, houses and business per 
1000 inhabitant 

Mean 0.49 0.46 0.44 
Sd 0.7 0.68 0.63 
N 1137 821 534 

Theft of cars per 1000 inhabitant 
Mean 0.05 0.04 0.04 

Sd 0.09 0.08 0.08 
N 742 527 288 

Theft to persons, houses, business and cars 
per 1000 inhabitant 

Mean 0.64 0.61 0.65 
Sd 0.81 0.81 0.77 
N 712 497 270 

Houses damage treatment group [Yes=1; 
No=0]   

Mean 1 1 1 
Sd 0 0 0 
N 1298 982 653 

Post 2010 [Yes=1; No=0] 
Mean 0.5 0.5 0.5 

Sd 0.5 0.5 0.5 
N 1298 982 653 

Post 2010 [Yes=1; 
No=0]*Treatment[Yes=1; No=0] 

Mean 0.5 0.5 0.5 
Sd 0.5 0.5 0.5 
N 1298 982 653 

Log income tax revenue per inhabitant 
Mean 10.62 10.51 10.38 

Sd 1.03 1.04 1.07 
N 1298 982 653 

Percentage of urban population [0-100] 
Mean 36.67 36.59 35.84 

Sd 21.55 22.15 20.6 
N 1298 982 653 

Log population to area (Km2) density 
Mean 9.23 9.26 9.18 

Sd 0.82 0.86 0.77 
N 1298 982 653 

Gross enrolment ratio, primary and 
secondary [0-100] 

Mean 3.53 3.52 3.51 
Sd 0.98 0.93 0.92 
N 1298 982 653 

Presence of conflict [Yes=1; No=0] 
Mean 0.29 0.29 0.29 

Sd 0.45 0.45 0.45 
N 1298 982 653 

Note: SD: Standard Deviation; and N: observations. 
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Table 5.5.2 Summary statistics –control sample- 
 

Variable Statistic Treatment intensity 
20% 15% 10% 

Theft from persons per 1000 inhabitant 
Mean 0.51 0.5 0.48 

Sd 0.8 0.78 0.77 
N 4319 4623 4898 

Theft from houses per 1000 inhabitant 
Mean 0.25 0.25 0.24 

Sd 0.4 0.39 0.39 
N 4280 4572 4841 

Theft from business per 1000 inhabitant 
Mean 0.18 0.17 0.17 

Sd 0.27 0.27 0.27 
N 4231 4535 4780 

Theft from persons, houses and business 
per 1000 inhabitant 

Mean 0.96 0.94 0.92 
Sd 1.29 1.26 1.25 
N 4179 4471 4710 

Theft of cars per 1000 inhabitant 
Mean 0.06 0.06 0.06 

Sd 0.11 0.11 0.11 
N 3519 3710 3907 

Theft to persons, houses, business and cars 
per 1000 inhabitant 

Mean 1.12 1.10 1.07 
Sd 1.39 1.37 1.35 
N 3455 3646 3837 

Houses damage treatment group [Yes=1; 
No=0]  

Mean 0 0 0 
Sd 0 0 0 
N 4355 4659 4934 

Post 2010 [Yes=1; No=0] 
Mean 0.5 0.5 0.5 

Sd 0.5 0.5 0.5 
N 4355 4659 4934 

Post 2010 [Yes=1; 
No=0]*Treatment[Yes=1; No=0] 

Mean 0 0 0 
Sd 0 0 0 
N 4355 4659 4934 

Log income tax revenue per inhabitant 
Mean 11.19 11.17 11.15 

Sd 0.89 0.9 0.9 
N 4355 4659 4934 

Percentage of urban population [0-100] 
Mean 45.78 45.07 44.54 

Sd 24.35 24.06 24.18 
N 4355 4659 4934 

Log population to area (Km2) density 
Mean 3.93 3.89 3.87 

Sd 1.36 1.35 1.34 
N 4355 4659 4934 

Gross enrolment ratio, primary and 
secondary [0-100] 

Mean 80.12 80.19 80.34 
Sd 15.22 15.5 15.38 
N 4355 4659 4934 

Presence of conflict [Yes=1; No=0] 
Mean 0.41 0.4 0.4 

Sd 0.49 0.49 0.49 
N 4355 4659 4934 

Note: SD: Standard Deviation; and N: observations. 
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Table 5.5.3 Summary statistics -full sample- 
 

Variable Statistic Treatment intensity 
20% 15% 10% 

Theft from persons per 1000 
inhabitant 

Mean 0.45 0.45 0.45 
Sd 0.74 0.74 0.74 
N 5576 5564 5510 

Theft from houses per 1000 inhabitant 
Mean 0.22 0.22 0.23 

Sd 0.38 0.38 0.38 
N 5513 5489 5441 

Theft from business per 1000 
inhabitant 

Mean 0.16 0.16 0.16 
Sd 0.26 0.26 0.26 
N 5439 5427 5373 

Theft from persons, houses and 
business per 1000 inhabitant 

Mean 0.86 0.86 0.87 
Sd 1.2 1.2 1.21 
N 5316 5292 5244 

Theft of cars per 1000 inhabitant 
Mean 0.06 0.06 0.06 

Sd 0.11 0.11 0.11 
N 4261 4237 4195 

Theft to persons, houses, business and 
cars per 1000 inhabitant 

Mean 1.04 1.04 1.05 
Sd 1.32 1.32 1.33 
N 4167 4143 4107 

Houses damage treatment group 
[Yes=1; No=0]   

Mean 0.23 0.17 0.12 
Sd 0.42 0.38 0.32 
N 5653 5641 5587 

Post 2010 [Yes=1; No=0] 
Mean 0.5 0.5 0.5 

Sd 0.5 0.5 0.5 
N 5653 5641 5587 

Post 2010 [Yes=1; 
No=0]*Treatment[Yes=1; No=0] 

Mean 0.11 0.09 0.06 
Sd 0.32 0.28 0.23 
N 5653 5641 5587 

Log income tax revenue per 
inhabitant 

Mean 11.06 11.06 11.06 
Sd 0.96 0.96 0.96 
N 5653 5641 5587 

Percentage of urban population [0-
100] 

Mean 43.69 43.59 43.53 
Sd 24.04 23.96 23.95 
N 5653 5641 5587 

Log population to area (Km2) density 
Mean 3.84 3.83 3.83 

Sd 1.3 1.3 1.3 
N 5653 5641 5587 

Gross enrolment ratio, primary and 
secondary [0-100] 

Mean 80.91 81.03 80.98 
Sd 16.22 16.22 16.14 
N 5653 5641 5587 

Presence of conflict [Yes=1; No=0] 
Mean 0.38 0.38 0.38 

Sd 0.49 0.49 0.49 
N 5653 5641 5587 

Note: SD: Standard Deviation; and N: observations. 
 
  



148	
 

This study treats as the outcome variables the persons, houses, business, and car theft 

rates (and the sum) per 1000 inhabitants for all municipalities. Theft is the act of taking 

any valuable item from another person without proper consent and with the intention of 

never returning it. According to the Colombian penal code, theft belongs broadly to the 

property crime category.109 What determines the degree of theft charges that an accused 

could face is the type and the value of the property stolen. In addition, charges will be 

interpreted as ‘aggravated’ when the act of theft involved the threat of force or direct 

violent behaviour. In some cases, the perpetrator’s final intention will also play a role in 

defining the scale and magnitude of the charges.  

 

The information regarding theft activity in Colombia is obtained from the statistical 

Information System of Delinquency Statistics of the National Police of Colombia 

(SIEDCO, correspond to the Spanish acronym). Individuals who have been the subject of 

theft often visit their local police departments and provide details, such as what property 

was stolen, when it was stolen, and how it was stolen. Thus, the theft statistics used here 

are mainly the reports for stolen property as filed by the victims and recorded by the 

police. 

 

In the SIEDCO data, the availability of municipal theft data points varies accordingly to 

the type of theft. In particular, the lack of municipal data points increases from persons 

to houses, businesses and car theft respectively. This explains why each regression has 

its own sample size determined not only by the treatment intensities but also by the type 

of theft category. It is likely that the distinction between urban and rural municipalities is 

part of the explanation as to why there are more available data points for some types of 

theft than others. First, some type of thefts are more an urban than a rural phenomenon, 

such as is the case of car thefts. Second, large urban municipalities have more organized 

police departments with the resources to record a higher number of thefts. In order to 

control for such factors, the regression models include the municipal percentage of the 

urban population. 

 

The effort here to model separately each type of theft represents a novel approach to try 

and identify the impact of the ‘winter wave’ on different theft rates in the municipalities 

                                                
109 In Spanish “Delitos contra el patrimonio económico”. 
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affected. However, the use of car theft data is particularly worrisome. Approximately 

72% (4,494) of all car thefts are reported in three main metropolitan areas, Bogotá, Cali 

and Valle de Aburra (Medellin). Therefore, the use of this particular category raises 

questions as the incidence reflects what is happening in the main cities of the country. In 

addition, car theft is distinct from the other types of acquisitive theft in the sense that it is 

usually conducted as part of a highly organised criminal activity.  This should be borne 

in mind in interpreting the results. 

 

The official municipal data regarding the number of houses and people per 1,000 

inhabitants registered as affected due to the passing of the winter110 are obtained from the 

National Unit for Disaster Risk Management (UNGRD, based on the Spanish acronym). 

The UNGRD, which acts as the coordinator of the National System for Disaster 

Prevention and Attention (SNPA, corresponding to the Spanish acronym), consolidates 

the emergency reports submitted by the Local Committees for Emergencies and Disasters 

Prevention and Attention (CLOPAD, using the Spanish acronym) and the Regional 

Committees for Emergencies and Disasters Prevention and Attention (CREPA, using the 

Spanish acronym) at the city and departmental levels, respectively. When a weather 

disaster occurs the CLOPADs and the CREPADs, composed of public servants from 

the mayor and governor offices, the Secretariats of Agriculture, Finance, Health and 

Environment, and members of the Colombian Red Cross, Civil Defence and the Fire 

Department, coordinate the disaster response and the data collection at the site of event. 

The disaster data collection often serves two purposes: i) design a proper assistance to the 

immediate needs generated by the disaster; ii) inform policy decisions to help reduce 

disaster risks and build resilience.  

 

On the other hand, the information regarding the presence of conflict at the municipality 

level was obtained via a yearly municipal-level dataset constructed by CEDE (Centro de 

Estudios sobre Desarrollo Económico, Universidad de los Andes, Bogotá), which 

contains information on the attacks perpetrated by the guerrillas.  

 

The data on the income tax revenue per inhabitant, the percentage of urban population [0-

100], the log of density (ratio of population to area (Km2)), the gross enrolment ratio 

                                                
110 Available from April 2010 to June 2011.  
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(primary and secondary) [0-100], was provided by the National Administrative 

Department of Statistics (DANE, according to its Spanish acronym), the Ministry of 

Education, and the National Planning Department (DNP, according to its Spanish 

acronym). 

 

5.6 An overview of the theft rates before and after the ‘winter wave’ 

 

A comparison of the theft rate trends split between the affected municipalities and non-

affected ones, and, before and after the ‘winter wave’, can provide a portrait of the impact 

this extreme weather event on criminal activity. First, a visual inspection of the municipal 

theft rates reveals that the theft rates from the treated municipalities are higher than those 

of the control group (on average) as shown in Figure 5.6.1, Figure 5.6.2 and Figure 5.6.3. 

Second, when increasing the intensity of damage criterion, from the top 20% to 10% 

exposure, respectively, it is likely that the ‘parallel trend’ assumption test may hold for 

all theft categories excluding car theft and theft from business. And, third, after 2010, for 

most of the theft categories the treatment group is growing at slower rate than the control 

group, which means that perhaps the ‘winter wave’ may have brought a reduction in 

criminal activity in the municipalities affected.  

 

  



151	
 

Figure 5.6.1 Theft rates treatment and control groups of municipalities - 20% 
treatment intensity- 
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Figure 5.6.2 Theft rates treatment and control groups of municipalities - 15% 
treatment intensity- 

 

 
  



153	
 

Figure 5.6.3 Theft rates treatment and control groups of municipalities - 10% 
treatment intensity- 
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Beyond visual comparisons of the theft rate trends, a preliminary estimation using the D-

i-D method can be conducted using the descriptive statistics. All that is necessary is to 

measure theft outcomes in the treatment group and control groups both before and after 

the ‘winter wave’. In particular, the impact is computed as difference of the following 

two differences: 

 
 𝐷𝑖𝐷	𝑖𝑚𝑝𝑎𝑐𝑡 = 		 T^	∈	t°±²t³±´tµ¶·t − 		T^	∈	t°±²t³±´tµ°±	 − 	 T^	∈	¸¶´t°¶¹µ¶·t − 		T^	∈	¸¶´t°¶¹µ°±	 			  (5.4) 

 

Note that the municipality 𝑖 is observed before and after the weather event. In addition, 

the D-i-D method implicitly controls for both, the observed and unobserved time-

invariant characteristics given that when the difference in theft outcomes is computed, 

the effect of the characteristics that do not change over time cancel out. In particular, 

Table 5.6.1 disentangles the components of the D-i-D method using the panel dataset 

constructed. The table rows contain the mean theft outcomes for the treatment and control 

groups before and after the ‘winter wave’. 
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Table 5.6.1 Theft outcomes pre and post the ‘winter wave’ 

 
Outcome 
variables 

Pre & 
Post 

‘winter 
wave’ 

Statistic Winter Wave treatment intensity 
20% 15% 10% 

Treatment  Control Treatment  Control Treatment  Control 

Theft from 
persons per 
1000 
inhabitant 

Pre mean 0.23 0.48 0.21 0.46 0.19 0.45 
SD 0.39 0.76 0.39 0.75 0.32 0.74 
N 628 2154 471 2305 306 2443 

Post mean 0.25 0.55 0.24 0.53 0.24 0.51 
SD 0.38 0.84 0.39 0.82 0.39 0.81 
N 629 2165 470 2318 306 2455 

Theft from 
houses per 
1000 
inhabitant 

Pre mean 0.13 0.25 0.11 0.24 0.09 0.24 
SD 0.28 0.39 0.26 0.38 0.24 0.38 
N 616 2136 459 2281 300 2416 

Post mean 0.13 0.25 0.12 0.25 0.13 0.24 
SD 0.26 0.41 0.25 0.4 0.22 0.4 
N 617 2144 458 2291 300 2425 

Theft from 
business per 
1000 
inhabitant 

Pre mean 0.08 0.16 0.07 0.16 0.07 0.16 
SD 0.14 0.24 0.14 0.24 0.13 0.23 
N 603 2111 446 2262 296 2385 

Post mean 0.11 0.19 0.1 0.19 0.1 0.19 
SD 0.2 0.3 0.18 0.3 0.18 0.29 
N 605 2120 446 2273 297 2395 

Theft from 
persons, 
houses and 
business per 
1000 
inhabitant 

Pre mean 0.46 0.91 0.43 0.88 0.37 0.87 
SD 0.7 1.21 0.7 1.19 0.59 1.18 
N 568 2086 411 2231 267 2351 

Post mean 0.52 1.02 0.48 0.99 0.5 0.96 
SD 0.69 1.36 0.67 1.33 0.67 1.31 
N 569 2093 410 2240 267 2359 

Theft of cars 
per 1000 
inhabitant 

Pre mean 0.04 0.06 0.04 0.06 0.03 0.06 
SD 0.09 0.11 0.07 0.11 0.07 0.11 
N 371 1756 264 1851 144 1950 

Post mean 0.05 0.06 0.04 0.06 0.04 0.06 
SD 0.09 0.12 0.09 0.12 0.08 0.11 
N 371 1763 263 1859 144 1957 

Theft to 
persons, 
houses, 
business and 
cars per 1000 
inhabitant 

Pre mean 0.6 1.0 0.58 1.0 0.56 1.0 
SD 0.82 1.3 0.84 1.28 0.75 1.27 
N 356 1725 249 1820 135 1916 

Post mean 0.68 1.19 0.65 1.17 0.73 1.14 
SD 0.8 1.47 0.77 1.45 0.78 1.43 
N 356 1730 248 1826 135 1921 

Note: SD: Standard Deviation; and N: observations. 
 

The impact estimates computed using the formula in Equation (5.4) are reported in Table 

5.6.1. These preliminary estimates are calculated assuming that there are not differential 

time varying factors between the two groups, other than the weather event, that is likely 

to influence theft rate behaviour over time. Furthermore, it is assumed that the treatment 

and comparison groups would have equal trends in outcomes in the absence of treatment. 

Since both assumptions are very strong, these D-i-D impact estimates may be invalid. 

However, they retain the ability to reveal the direction in which the theft rates will follow 

after the ‘winter wave’ event. Hence, it is likely that the D-i-D regression models will 

disclose a negative impact effect of the ‘winter-wave’ on the theft rates at the municipality 
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level. For example, theft from persons, and the aggregate of the criminal categories, 

excluding and including car theft. It is unlike to detect and impact on car theft. In contrast, 

it is likely to detect an increase of theft rates, especially from houses and the aggregates, 

when the treatment intensity is high (i.e., 10% exposure). Finally, the D-i-D impact 

regression coefficients magnitudes more or less should be similar to these ones. 

 

Table 5.6.2 Preliminary DiD impact estimates  

 
Outcomes Winter Wave treatment intensity 

20% 15% 10% 
Theft from persons per 1000 
inhabitant -0.05 -0.04 -0.01 

Theft from houses per 1000 
inhabitant 0.00 0.00 0.04 

Theft from business per 1000 
inhabitant 0.00 0.00 0.00 

Theft from persons, houses and 
business per 1000 inhabitant -0.05 -0.06 0.04 

Theft of cars per 1000 inhabitant 0.01 0.00 0.01 
Theft to persons, houses, business 
and cars per 1000 inhabitant -0.07 -0.07 0.04 

 

5.7 Empirical results  

 

The mechanics and the explanations underlying the impact effects are likely to be 

different according to the type of theft considered. In particular, in the Becker (1968) 

model of crime and punishment, which is based on a ‘rational choice’ approach, criminal 

behaviour can be understood as if people choose crime by using the principles of cost-

benefit analysis. Thus, thieves are highly motivated by the value of the reward they could 

obtain from the property stolen. In contrast, the higher the probability of arrest and 

punishment, the more certain is crime deterrence. However, real life does not preclude 

the possibility of people acting irrationally (i.e., choosing actions inconsistent with their 

expected preferences). In fact, people may pursue a course of action entirely inconsistent 

with their utility function because of false consciousness, survival motivation, habit, 

national culture, the rise of an emotional state, or even a sudden change in context.  
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Thus, often when a disaster strikes, there is a collapse of social control and poor people 

suffer the most.111 Usually, people affected resort to theft as a ‘safety net’.  In such 

circumstances, the acquisitive motivation behind such behaviour is a ‘survival 

mechanism’, rather than one that seeks reward like in the Becker (1968) model of crime 

and punishment. 

 

On the other hand, in the aftermath of a natural disaster often the social control fails, but 

the state of the organised criminal networks is unaffected. In fact, this sudden change of 

context creates new opportunities for organised crime. Thus, automobile theft, being a 

highly organised criminal activity, has the potential to thrive. In other words, the low risk 

and minimum penalties associated with apprehension in such circumstances, and the 

substantial difference between the potential gains from theft and the associated costs of 

apprehension, render car theft a profitable activity in the municipalities most affected, 

thus, providing support for the Becker's (1968) model of crime and punishment. 

 

The main regression results for the D-i-D models are reported in Table 5.7.1. The 

dependent variable is either the theft rates per 1,000 of the population from either persons, 

houses, business or cars. The aggregates of these four criminal categories per 1,000 of the 

municipal population, including and also excluding car theft, are also employed as a 

dependent variable. Finally, panels A, B, and C distinguish between the three treatment 

intensities based on the exposure to ‘winter wave’ as outlined in the Empirical and 

identification strategy in section 5.4. We now turn to a review of these estimates. 

 

  

                                                
111 Poor people are more likely to live in fragile housing in vulnerable areas and frequently work in sectors 
highly susceptible to EWEs (like agriculture). 
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Table 5.7.1 D-i-D estimation of criminal activity rates (2007-2012) 
Panel A: 10% treatment intensity 

 T_(i,t) Persons Houses Business Total Cars Total (+ cars) 
Post 2010 [Yes=1; 
No=0]*Treatment[Yes=1; No=0] -0.014 0.025 -0.0046 0.011 0.0085 0.017 

  (0.026) (0.021) (0.012) (0.049) (0.007) (0.084) 
Log income tax revenue per inhab 0.034** 0.030*** 0.016* 0.091*** -0.0077 0.11** 
  (0.014) (0.011) (0.010) (0.030) (0.006) (0.048) 
Percentage of urban population [0-
100] 0.0067 0.00028 0.0076 0.015 0.0011 0.022 

  (0.011) (0.008) (0.006) (0.022) (0.002) (0.027) 
Log population to area (Km2) 
density -0.26 -0.44* -0.23 -1.02* 0.0039 -1.34* 

  (0.310) (0.230) (0.180) (0.600) (0.071) (0.780) 
Gross enrolment ratio, primary and 
secondary [0-100] 0.00059 -0.00026 0.00026 0.00019 -0.00023 -0.00057 

  (0.001) (0.001) (0.001) (0.002) (0.000) (0.003) 
Presence of conflict [Yes=1; No=0] -0.051*** -0.025** -0.015** -0.092*** 0.0013 -0.086** 
  (0.017) (0.011) (0.007) (0.030) (0.004) (0.036) 
Observations 5510 5441 5373 5244 4195 4107 
R-Squared (within) 0.0461 0.0379 0.0403 0.0647 0.00741 0.0754 
F-stat 15.37 12.92 12.26 20.76 2.431 17.53 
Panel B: 15% treatment intensity             
 T_(i,t) Persons Houses Business Total Cars Total (+ cars) 
Post 2010 [Yes=1; 
No=0]*Treatment[Yes=1; No=0] -0.047* 0.00037 -0.014 -0.067 0.011 -0.084 

  (0.027) (0.020) (0.011) (0.050) (0.008) (0.075) 
Log income tax revenue per inhab 0.035** 0.029** 0.017* 0.090*** -0.0085 0.11** 
  (0.014) (0.011) (0.010) (0.030) (0.006) (0.048) 
Percentage of urban population [0-
100] 0.0059 -0.0000014 0.0074 0.013 0.0011 0.02 

  (0.011) (0.008) (0.006) (0.022) (0.002) (0.027) 
Log population to area (Km2) 
density -0.29 -0.44* -0.24 -1.07* 0.00086 -1.47* 

  (0.310) (0.230) (0.180) (0.600) (0.069) (0.780) 
Gross enrolment ratio, primary and 
secondary [0-100] 0.00046 -0.00028 0.00015 0.00006 -0.00023 -0.00067 

  (0.001) (0.001) (0.001) (0.002) (0.000) (0.003) 
Presence of conflict [Yes=1; No=0] -0.050*** -0.025** -0.014* -0.092*** 0.0017 -0.086** 
  (0.016) (0.011) (0.007) (0.029) (0.004) (0.036) 
Observations 5564 5489 5427 5292 4237 4143 
R-Squared (within) 0.0464 0.0373 0.0402 0.0646 0.00808 0.0756 
F-stat 15.46 12.72 12.13 20.7 2.55 17.48 

Panel C: 20% treatment intensity 
 T_(i,t) Persons Houses Business Total Cars Total (+ cars) 
Post 2010 [Yes=1; 
No=0]*Treatment[Yes=1; No=0] -0.052** -0.0025 0.0033 -0.057 0.0043 -0.081 

  (0.024) (0.018) (0.011) (0.044) (0.007) (0.062) 
Log income tax revenue per inhab 0.037** 0.029*** 0.019* 0.092*** -0.0083 0.10** 
  (0.015) (0.011) (0.010) (0.030) (0.006) (0.047) 
Percentage of urban population [0-
100] 0.0039 0.00037 0.0064 0.0095 0.00087 0.019 

  (0.011) (0.008) (0.006) (0.022) (0.002) (0.027) 
Log population to area (Km2) 
density -0.27 -0.42* -0.2 -1.01* -0.002 -1.42* 

  (0.310) (0.230) (0.180) (0.600) (0.068) (0.770) 
Gross enrolment ratio, primary and 
secondary [0-100] 0.00034 -0.00029 0.00012 -0.000084 -0.0002 -0.00085 

  (0.001) (0.001) (0.001) (0.002) (0.000) (0.003) 
Presence of conflict [Yes=1; No=0] -0.049*** -0.024** -0.014* -0.090*** 0.0016 -0.085** 
  (0.017) (0.011) (0.007) (0.029) (0.004) (0.035) 
Observations 5576 5513 5439 5316 4261 4167 
R-Squared (within) 0.0463 0.037 0.041 0.0643 0.0079 0.0756 
F-stat 15.18 12.68 12.74 20.74 2.585 17.38 
All panel regressions control for year fixed effects. 
Standard errors in parentheses -adjusted for clusters in municipality-. 
Treatment dummy does not appear due to fixed effects panel data estimation. 
* p < .10, ** p < .05, *** p < .01 
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The coefficients associated with the primary variable of interest (Post 2010 [Yes=1; 

No=0]*Treatment [Yes=1; No=0]) captures the impact of the ‘winter wave’ on the 

various theft rates. In the circumstances when the treatment intensity is very high (i.e., 

10% exposure), the estimation results reveal a negative effect of the ‘winter-wave’ on the 

theft rates from persons. This is found to be statistically significant at the 5% and 10% 

levels. As the treatment groups become larger and we focus down on a weaker exposure 

to the ‘winter wave’ overall (i.e., 15% and 20% exposure), the estimated impact of the 

‘winter wave’ on theft from houses becomes better determined.  

 

The magnitudes of the estimated causal effects can be interpreted as follows: i) a 

municipality in the top 15% treatment group most affected by the ‘winter wave’ exhibits 

a reduction of 4.7 theft from persons per 100,000 of the population, which represents a 

10.4% decrease with respect to the mean (0.45), on average and ceteris paribus (Table 

5.7.1, Panel B) ; and ii) a municipality in the top 20% treatment group affected by the 

‘winter wave’ exhibited a reduction of 5.2 thefts from persons per 100,000 of the 

population, representing a 11.5% decrease with respect to the mean (0.45), on average 

and ceteris paribus (Table 5.7.1, Panel C). 

 

The results confirm that the winter wave led to a decrease of theft from persons. Overall 

these results signal a pro-social community response to the ‘winter wave’, which led to a 

reduction in criminal activity. Often when a disaster strikes social barriers fall and people 

come together to survive and get through the hard times as a community, rather than 

turning on each other. 

 

Most of the newspapers and media in Colombia captured how La Niña 2010-2011 

fostered compassion and unity among the Colombians that discouraged theft in the 

municipalities affected by this natural disaster. For example, Grupo Aval Acciones y 

Valores S.A, the largest financial conglomerate in Colombia and one of the leading 

banking groups in Central America, with over USD 236.5 trillions in total assets and 

468.0 trillion in assets under management, donated COP 15.000 million (equivalent to 

circa USD. 4.8 million) to the people affected 112 ;  popular bands of well-known 

Colombian artists throw a benefit concert increasing the donations113; and also, Mario 

                                                
112 https://www.dinero.com/pais/articulo/grupo-aval-dona-15000-millones-para-damnificados/109158 
113 https://www.eltiempo.com/archivo/documento/MAM-4314123 
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Hernandez, an emblematic entrepreneur of the fashion industry in Colombia, openly 

called for action asking the solidarity of the people to donate in the “Colombia 

Humanitaria” fund, a governmental imitative to offset the damages caused by the ‘winter 

wave’ 114. 

 

Other donations were received and administered by private NGO’s. For example, 

Teletón, the largest NGO that works in favor of children, youth and adults with physical 

or motor disabilities in the country, gather and invested more than COP 3.000 million 

(equivalent to USD 940.000)115 in the territories affected. The Red Cross distributed more 

than 232 tons of aid116, and most of the commercial banks initiated social campaigns for 

receiving donations117.   

 

In some municipalities the victims of this natural disaster gathered around “communal 

cooking pots” (“Ollas comunitarias”, in Spanish). This pro-social initiative consisted in 

providing a shared lunch; indeed, all affected neighbours of some municipalities cooked 

and shared cups of soups118. 

 

In fact, in many one would anticipate hijacking, rioting, and looting in the wake of a 

natural disaster. However, there are also cases where altruism, cooperative behaviour, 

and solidarity among those adversely affected flourish. For example, there are well-

documented cases of pro-social behaviour backed up with police reinforcements 

following a tsunami in Southeast Asia (December 2004), Hurricane Katrina119 (2005), 

                                                
114 https://www.eltiempo.com/archivo/documento/MAM-4297321 
115 https://www.elespectador.com/noticias/nacional/teleton-ha-recaudado-3000-millones-hasta-el-
momento-articulo-241195 
116 http://caracol.com.co/programa/2010/12/06/audios/1291645500_395713.html 
117 
http://www.elcolombiano.com/historico/solidaridad_para_ayudar_a_los_damnificados_por_el_invierno-
LDEC_112393 
http://www.elcolombiano.com/antioquia/ayudas-para-damnificados-por-tragedia-invernal-en-mocoa-
putumayo-AA6255626 

118 http://www.vanguardia.com/historico/84054-un-mute-solidario-por-los-damnificados-del-invierno 
https://www.elheraldo.co/local/ollas-comunitarias-mas-que-una-solucion-alimentaria-para-los-
damnificados 
119 Many survivors invited victims to stay in their home temporarily, hotels housed displaced families, and 
even local doctors and nurses created improvised clinics in shelters. 
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and even during the terrorist attacks in London120 (July 7, 2005) and New York City121 

(September 11, 2001). 

 

While the empirical evidence previously shown supports the notion of pro-social 

behavior, it may not be the only explanation that reduced theft rates in the municipalities 

affected by the ‘winter wave’. On the one hand, the disruption to infrastructure reduced 

the ability of criminals and opportunists to engage in theft. During the ‘winter wave’ 

episode there were reports from at least 13 departments that faced a major damage in one 

of their primary roads that link them with other departments. These damages included 7 

major bridges structures weakened, which needed immediate reinforcement or even re-

building. The cost of damages caused to primary roads and bridges was estimated about 

circa USD 689 million. In addition, the destruction in secondary and tertiary roads 

accounted for 7% and 30% of their total length, respectively (CEPAL, 2012). Bottom-

line, these damages were significant, and turned into a barrier for transporting criminal’s 

loots.  

  

On the other hand, another reason of theft reduction is people relocation. The 

abandonment of settled areas with more destruction gives support to the hypothesis that 

there was also a reduction in the lucrative targets set for the potential criminals after this 

natural disaster. For examples, the settlements of Gramalote122, Campo de la Cruz123, 

Manatí 124 , and El Arenal 125  ended covered by water, hence, leaving most of their 

inhabitants homeless. The media named them, the ghost towns (“Pueblos fantasmas”, in 

Spanish), since most of their infrastructure was devastated, therefore, their inhabitants 

left (including the potential criminals).  

 

Another key finding that informs a sub-theme of our research, and links back to the earlier 

chapters, is that the presence of conflict impacts negatively on all theft rates, except the 

car theft category. All estimated regression models yield statistically significant and 

                                                
120 The attacks resulted in a large deployment of police officers to central London. During this time, crime 
fell significantly in central relative to outer London (See, for example, Draca et al.; 2011).  
121 There was 40% to 60% drop in the homicide rate in New York City after September 11, 2001. 
122 https://www.elespectador.com/impreso/articuloimpreso-241366-gramalote-un-pueblo-fantasma 
123 http://caracol.com.co/radio/2011/01/20/regional/1295517000_413848.html 
124 https://www.elespectador.com/noticias/nacional/municipio-de-manati-atlantico-totalmente-bajo-el-
agua-articulo-306043 
125 http://www.eluniversal.com.co/cartagena/bol%C3%ADvar/arenal-bajo-el-agua-0 
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negative coefficients associated with presence of conflict dummy at the municipality 

level.126 The theft reductions vary from 1.5 to 9.2 per 100,000 of the population, on 

average and ceteris paribus, depending on the specification and the theft category used. 

A dominant explanation of why the consolidation of some guerrilla fronts has been 

stronger in some municipalities than in others is related to weak state presence, especially 

in remote rural areas, where there is no effective provision of basic public goods such as 

sanitation, electricity, education or health.127 Consequently, in those municipalities the 

provision of justice and the protection of fundamental legal rights have been neglected 

by the state. In the absence of a state presence, the illegal armed groups fill the vacuum, 

take advantage of the situation and provide ‘justice and protection’ through the 

establishment of coercive institutions which successfully deter thefts (or other types of 

crime). However, this happens only in areas where the guerrilla groups have territorial 

interests they control. For example, in coca production areas controlled by the guerrillas 

there are known to be few acquisitive criminal acts. Guerrillas protects coca farmers from 

theft to provide the security within which they can grow and harvest their illegal crops 

(see, for example, Sánchez and Chacón, 2005; and Acevedo, 2015). 

 

The connection between low income and a high theft rate128 is a research subject that has 

animated many social scientists in the past. Low and unstable income along with a high 

frequency of unemployment is usually positively correlated with acquisitive criminality. 

The log of the income tax revenue per inhabitant, which mirrors heterogeneity in the 

                                                
126  Omitting the presence of conflict as an explanatory variable could potentially lead to biased and 
inconsistent coefficient estimates, though this is ultimately an empirical question. In any case, as an 
illustrative exercise, in Table 8.3.2  found in the Appendix 8.3 shows the D-i-D estimation of criminal 
activity rates (2007-2012) without controlling for the presence of conflict. The main results persist. The 
estimated impact of the ‘winter wave’ on theft remain negative and becomes better determined on a weaker 
exposure overall (i.e., 15% and 20% exposure). The magnitudes of the estimates of the ‘winter wave’ casual 
effects also remain similar. Table A, B, and C, also in the Appendix X, exhibit comparable estimates signs 
and sizes. The regression results including the year lags effects on theft, once again, one year after the 
“winter wave”, show negative impacts concerning theft from persons, business and total thefts (excluding 
car theft). The D-i-D estimation results with all year lags and leads confirm a reduction of the theft rates, 
specially theft from persons, during the subsequent years of the “winter wave”. These regressions also 
capture the positive effect on private houses during 2010, revealing that the ‘winter wave’ generated a mix 
of both pro-social behaviour and survival strategies. 
127 Sánchez and Chacón (2005) also point out the availability of economic resources and war economic 
interest as factors that also determine guerrilla groups’ consolidation in some areas. 
128 In principle, following Becker's (1968) seminal paper, all other things being equal, an increase in the 
probability of being caught when committing a crime should deter the act of crime. Thus, in all of our 
empirical models, we also tried to include the number of criminal gangs and guerrilla members captured 
per 1,000 inhabitants as a proxy for policing efficiency and for the likelihood of getting caught. However, 
this estimated effect was not found to be well determined statistically in any of the specifications. 
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overall economic activities at the municipality level, is included in all the specifications. 

It yielded positive and a statistically significant effect in most cases. This finding could 

be taken to reflect the fact that higher incomes provide a greater opportunity set for 

thieves. 

 

The percentage of the urban population and the log of the population density variables 

are included to assess the role of the city size and population density on crime, 

respectively. The percentage of the urban population yielded statistically insignificant 

estimates in all cases. This may be related to the fact that much of the cross-sectional 

variation in the urban population variable is absorbed within the income measure and the 

municipal fixed effects. On the other hand, the population density remains significant at 

10% level regardless of the treatment intensity and exhibits a negative relationship with 

theft from houses, perhaps due to more effective policing in highly populated 

municipalities where the delivery of policing resources can exploit economies of scale. 

 

The inclusion of the gross enrolment ratio (primary and secondary) may explain the role 

of education on theft. One can expect that individuals with higher levels of education are 

less likely to engage in theft activities given that, if apprehended, they would incur a large 

financial cost in terms of unusable and depreciated human capital (see, for example, 

Reilly and Witt 1996). However, for all the specifications based on the three different 

treatment intensities, there is no statistical relationship between the gross enrolment ratios 

(primary and secondary) and the theft rates. Once again, it is likely that much of the cross-

sectional variation of this measure was absorbed within the municipal fixed effects. 

 
The year lags effects of the ‘winter wave’ on thefts are reported in Table 5.7.2. The 2011 

coefficient are small and statistically insignificant, nonetheless in 2012, one year after the 

natural disaster, the results reveal that there are some negative lag effects of the ‘winter 

wave’ on theft not only from persons, but also from businesses and total thefts but 

excluding car theft. The exact interpretation of the lag effects depends on the 

specifications (the treatment intensities and the type of theft), but they once again reveal 

that the post- ‘winter wave’ period was likely characterized by an increased degree of 

pro-social behaviour, therefore, a reduction in theft rates in the treatment groups. In 

particular, during 2012 theft reductions vary from 4.5 (from business) to 18 (total 

excluding car theft) per 100,000 of the municipality population, on average and ceteris 
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paribus.  

 

Table 5.7.2. is somehow telling half of the story; it is important to consider what would 

be the impact effect on theft when including also the year leads. The D-i-D estimation 

results, with all year lags and leads, are presented in Table 5.7.3. 
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Table 5.7.2 D-i-D estimations with year lags after the “winter wave” 
Panel A: 10% treatment intensity 

 T_(i,t) Persons Houses Business Total Cars Total (+ 
cars) 

Year 2011 [Yes=1; No=0] *Treatment 
[Yes=1; No=0] -0.03 -0.014 -0.012 -0.051 0.0025 -0.071 

  (0.028) (0.016) (0.015) (0.046) (0.010) (0.064) 
Year 2012 [Yes=1; No=0] *Treatment 
[Yes=1; No=0] -0.10*** -0.034 -0.023 -0.15** 0.0047 -0.19** 

  (0.035) (0.030) (0.018) (0.069) (0.011) (0.097) 
Log income tax revenue per inhabitant 0.034** 0.029*** 0.016 0.090*** -0.0077 0.10** 
  (0.014) (0.011) (0.010) (0.030) (0.006) (0.048) 
Percentage of urban population [0-
100] 0.0066 0.00039 0.0076 0.015 0.0011 0.021 

  (0.011) (0.008) (0.006) (0.022) (0.002) (0.028) 
Log population to area (Km2) density -0.32 -0.48** -0.24 -1.14* 0.0016 -1.50* 
  (0.310) (0.230) (0.180) (0.610) (0.070) (0.790) 
Gross enrolment ratio, primary and 
secondary [0-100] 0.00041 -0.00035 0.00022 -0.000081 -0.00022 -0.00087 

  (0.001) (0.001) (0.001) (0.002) (0.000) (0.003) 
Presence of conflict [Yes=1; No=0] -0.049*** -0.024** -0.015** -0.090*** 0.0013 -0.084** 
  (0.017) (0.011) (0.007) (0.029) (0.004) (0.036) 
Observations 5510 5441 5373 5244 4195 4107 
R-Squared (within) 0.0478 0.0381 0.0407 0.0659 0.00728 0.0768 
F-stat 14.29 11.94 11.01 19.35 2.131 16.16 

Panel B: 15% treatment intensity             

 T_(i,t) Persons Houses Business Total Cars Total (+ 
cars) 

Year 2011 [Yes=1; 
No=0]*Treatment[Yes=1; No=0] -0.011 -0.0061 -0.016 -0.035 0.007 -0.044 

  (0.031) (0.016) (0.017) (0.051) (0.010) (0.071) 
Year 2012 [Yes=1; 
No=0]*Treatment[Yes=1; No=0] -0.11*** -0.032 -0.045** -0.18** 0.0081 -0.20* 

  (0.036) (0.032) (0.018) (0.073) (0.011) (0.100) 
Log income tax revenue per inhabitant 0.036** 0.029** 0.017* 0.090*** -0.0085 0.11** 
  (0.014) (0.011) (0.010) (0.030) (0.006) (0.048) 
Percentage of urban population [0-
100] 0.0061 0.00015 0.0075 0.013 0.0011 0.02 

  (0.011) (0.008) (0.006) (0.022) (0.002) (0.027) 
Log population to area (Km2) density -0.31 -0.45** -0.25 -1.10* -0.0021 -1.50* 
  (0.310) (0.230) (0.180) (0.600) (0.069) (0.780) 
Gross enrolment ratio, primary and 
secondary [0-100] 0.00032 -0.00033 0.000095 -0.00013 -0.00023 -0.00075 

  (0.001) (0.001) (0.001) (0.002) (0.000) (0.003) 
Presence of conflict [Yes=1; No=0] -0.049*** -0.024** -0.014* -0.091*** 0.0018 -0.084** 
  (0.016) (0.011) (0.007) (0.029) (0.004) (0.036) 
Observations 5564 5489 5427 5292 4237 4143 
R-Squared (within) 0.0477 0.0376 0.0413 0.0657 0.00773 0.0764 
F-stat 14.33 11.9 11.04 19.21 2.293 16.21 

Panel C: 20% treatment intensity             

 T_(i,t) Persons Houses Business Total Cars Total (+ 
cars) 

Year 2011 [Yes=1; 
No=0]*Treatment[Yes=1; No=0] -0.024 -0.0065 0.0014 -0.032 0.0015 -0.05 

  (0.027) (0.016) (0.015) (0.044) (0.009) (0.058) 
Year 2012 [Yes=1; 
No=0]*Treatment[Yes=1; No=0] -0.11*** -0.036 -0.02 -0.16** 0.0053 -0.19** 

  (0.033) (0.028) (0.018) (0.066) (0.010) (0.090) 
Log income tax revenue per inhabitant 0.037** 0.029** 0.019* 0.091*** -0.0083 0.10** 
  (0.015) (0.011) (0.010) (0.030) (0.006) (0.047) 
Percentage of urban population [0-
100] 0.0039 0.00036 0.0063 0.0095 0.00086 0.019 

  (0.011) (0.008) (0.006) (0.022) (0.002) (0.027) 
Log population to area (Km2) density -0.29 -0.44* -0.22 -1.06* -0.0028 -1.46* 
  (0.310) (0.230) (0.180) (0.600) (0.068) (0.780) 
Gross enrolment ratio, primary and 
secondary [0-100] 0.00024 -0.00035 0.000085 -0.00024 -0.0002 -0.00096 

  (0.001) (0.001) (0.001) (0.002) (0.000) (0.003) 
Presence of conflict [Yes=1; No=0] -0.048*** -0.023** -0.014* -0.088*** 0.0016 -0.084** 
  (0.017) (0.011) (0.007) (0.029) (0.004) (0.035) 
Observations 5576 5513 5439 5316 4261 4167 
R-Squared (within) 0.0477 0.0375 0.0414 0.0655 0.00788 0.0766 
F-stat 14.17 11.93 11.35 19.41 2.364 16.23 
All panel regressions control for year 
fixed effects.             

Standard errors in parentheses -adjusted for clusters in municipality-.         
Treatment dummy does not appear due to fixed effects panel data 
estimation.         

* p < .10, ** p < .05, *** p < .01 
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The D-i-D estimation results, with all year lags and leads, are presented in Table 5.7.3. 

The test for parallel trends between the treatment and comparison groups for the pre 

‘winter wave’ period (2007-2010) is presented at the bottom of each intensity of treatment 

regression. The estimates suggest that we cannot reject the null of similar trends between 

the comparison and the treated groups for theft rates from persons, houses, business, and 

the aggregates (excluding and including car theft). However, as noticed previously, the 

treatment and control groups for the car theft category do not follow parallel trends.  

Hence, it is likely that D-i-D method yields biased estimates, which weaken any 

inferences drawn from the car theft regressions. One of the possible reasons why car theft 

does not pass the parallel trends test is because it occurs mostly in big cities (where it is 

a well-established enterprise), and such cities are not well represented in the control 

groups.129 

  

It is confirmed that the subsequent years of the ‘winter wave’ exhibited a reduction of the 

theft rates, mainly in terms of theft from persons. However, in the specification where the 

treatment intensity is calibrated to be medium and low (i.e., 15% and 20% exposure), the 

estimation results reveal a positive effect of the ‘winter-wave’ on the theft rates from 

private houses during 2010. A municipality most severely affected by the ‘winter wave’ 

exhibits an increase of 4.1 theft from houses per 100,000 of the population, which 

represents a 18.6% increase with respect to the mean (0.22) on average and ceteris 

paribus. House thefts are very common in the aftermath of a natural disaster. Thieves 

steal from the damaged and destroyed houses, while residents are distracted by other 

matters or evacuated. However, the motivation behind house theft is a survival/coping 

mechanism. In summary, the aftermath of the ‘winter wave’ generated a mix of both pro-

social behaviour and survival strategies that impacted theft rates against persons and 

houses.   
  
Finally, the regression results based on averaging the data before and after the winter 

wave using a panel of length two are reported in Table 8.3.1 of the Appendix 8.3. The 

results remain broadly consistent with our key findings.  

                                                
129	Big cities were also severely affected by the ‘winter wave’. However, they are not in the treatment 
groups due to the ratio of houses affected and population is small. Nevertheless, nearby smaller cities are 
in the treatment groups. 
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Table 5.7.3 D-i-D estimation with year lags and leads after the “winter wave” 
Panel A: 10% treatment intensity 

 T_(i,t) Persons Houses Business Total Cars Total (+ 
cars) 

Year 2008 [Yes=1; 
No=0]*Treatment[Yes=1; No=0] -0.039 0.033 0.00077 -0.017 0.013 0.065 

  (0.033) (0.024) (0.016) (0.058) (0.013) (0.080) 
Year 2009 [Yes=1; 
No=0]*Treatment[Yes=1; No=0] -0.074** 0.022 -0.015 -0.081 -0.018 -0.081 

  (0.031) (0.025) (0.015) (0.058) (0.012) (0.081) 
Year 2010 [Yes=1; 
No=0]*Treatment[Yes=1; No=0] -0.058* 0.038 0.013 -0.031 0.0038 -0.044 

  (0.031) (0.024) (0.015) (0.060) (0.013) (0.087) 
Year 2011 [Yes=1; 
No=0]*Treatment[Yes=1; No=0] -0.073* 0.0091 -0.012 -0.083 0.0022 -0.087 

  (0.039) (0.024) (0.019) (0.066) (0.014) (0.094) 
Year 2012 [Yes=1; 
No=0]*Treatment[Yes=1; No=0] -0.14*** -0.011 -0.024 -0.18** 0.0043 -0.21* 

  (0.042) (0.036) (0.021) (0.084) (0.016) (0.120) 
Log income tax revenue per 
inhabitant 0.034** 0.029*** 0.015 0.090*** -0.0077 0.11** 

  (0.014) (0.011) (0.010) (0.030) (0.006) (0.048) 
Percentage of urban population [0-
100] 0.0067 0.00038 0.0076 0.015 0.0011 0.021 

  (0.011) (0.008) (0.006) (0.022) (0.002) (0.028) 
Log population to area (Km2) density -0.35 -0.47** -0.24 -1.16* -0.0012 -1.53* 
  (0.310) (0.230) (0.180) (0.610) (0.069) (0.800) 
Gross enrolment ratio, primary and 
secondary [0-100] 0.00035 -0.00034 0.00021 -0.00016 -0.00025 -0.001 

  (0.001) (0.001) (0.001) (0.002) (0.000) (0.003) 
Presence of conflict [Yes=1; No=0] -0.049*** -0.024** -0.015** -0.090*** 0.0013 -0.084** 
  (0.017) (0.011) (0.007) (0.029) (0.004) (0.036) 
Observations 5510 5441 5373 5244 4195 4107 
R-Squared (within) 0.0484 0.0384 0.0411 0.0662 0.00909 0.0773 
F-stat 11.87 9.577 9.657 15.93 2.721 13.69 
F-test for Par. Trend 1.89 1.08 1.35 0.82 3.54 1.06 
Prob > F (0.13) (0.36) (0.26) (0.48) (0.01) (0.37) 

 
Panel B: 15% treatment intensity 

 T_(i,t) Persons Houses Business Total Cars Total (+ 
cars) 

Year 2008 [Yes=1; 
No=0]*Treatment[Yes=1; No=0] -0.014 0.037 -0.0083 0.012 0.013 0.1 

  (0.031) (0.023) (0.016) (0.053) (0.011) (0.073) 
Year 2009 [Yes=1; 
No=0]*Treatment[Yes=1; No=0] -0.051* 0.022 -0.024* -0.06 -0.014 -0.04 

  (0.028) (0.025) (0.014) (0.051) (0.009) (0.069) 
Year 2010 [Yes=1; 
No=0]*Treatment[Yes=1; No=0] -0.031 0.041* 0.0039 -0.0021 0.0049 0.0086 

  (0.028) (0.021) (0.015) (0.052) (0.010) (0.073) 
Year 2011 [Yes=1; 
No=0]*Treatment[Yes=1; No=0] -0.034 0.018 -0.022 -0.047 0.0077 -0.028 

  (0.038) (0.023) (0.020) (0.064) (0.012) (0.090) 
Year 2012 [Yes=1; 
No=0]*Treatment[Yes=1; No=0] -0.14*** -0.0086 -0.052*** -0.19** 0.0088 -0.19 

  (0.040) (0.037) (0.020) (0.082) (0.013) (0.120) 
Log income tax revenue per 
inhabitant 0.036** 0.028** 0.018* 0.091*** -0.0084 0.11** 

  (0.014) (0.011) (0.010) (0.030) (0.006) (0.048) 
Percentage of urban population [0-
100] 0.0062 0.0000095 0.0075 0.013 0.0011 0.02 

  (0.011) (0.008) (0.006) (0.022) (0.002) (0.027) 
Log population to area (Km2) density -0.31 -0.45** -0.25 -1.11* -0.0042 -1.52* 
  (0.310) (0.230) (0.180) (0.600) (0.069) (0.780) 
Gross enrolment ratio, primary and 
secondary [0-100] 0.00029 -0.00034 0.000076 -0.00019 -0.00026 -0.00088 

  (0.001) (0.001) (0.001) (0.002) (0.000) (0.003) 
Presence of conflict [Yes=1; No=0] -0.049*** -0.024** -0.013* -0.090*** 0.0018 -0.084** 
  (0.016) (0.011) (0.007) (0.029) (0.004) (0.036) 
Observations 5564 5489 5427 5292 4237 4143 
R-Squared (within) 0.0481 0.0382 0.0418 0.0659 0.00923 0.0769 
F-stat 11.98 9.562 9.746 16 2.739 13.8 
F-test for Par. Trend 1.15 1.80 1.71 0.85 3.01 1.22 
Prob > F (0.33) (0.15) (0.16) (0.47) (0.03) (0.30) 
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Panel C: 20% treatment intensity 

 T_(i,t) Persons Houses Business Total Cars Total (+ 
cars) 

Year 2008 [Yes=1; 
No=0]*Treatment[Yes=1; No=0] -0.031 0.032 0.00029 -0.0082 0.0056 0.045 

  (0.033) (0.022) (0.015) (0.056) (0.012) (0.073) 
Year 2009 [Yes=1; 
No=0]*Treatment[Yes=1; No=0] -0.069** 0.023 -0.011 -0.069 -0.019* -0.053 

  (0.030) (0.024) (0.014) (0.056) (0.012) (0.076) 
Year 2010 [Yes=1; 
No=0]*Treatment[Yes=1; No=0] -0.048 0.041* 0.016 -0.012 -0.00057 -0.0058 

  (0.031) (0.023) (0.015) (0.058) (0.012) (0.081) 
Year 2011 [Yes=1; 
No=0]*Treatment[Yes=1; No=0] -0.061* 0.018 0.0027 -0.054 -0.0021 -0.054 

  (0.037) (0.023) (0.018) (0.063) (0.013) (0.087) 
Year 2012 [Yes=1; 
No=0]*Treatment[Yes=1; No=0] -0.15*** -0.012 -0.019 -0.18** 0.0017 -0.19* 

  (0.040) (0.034) (0.020) (0.081) (0.015) (0.110) 
Log income tax revenue per 
inhabitant 0.037** 0.029** 0.019* 0.091*** -0.0083 0.10** 

  (0.015) (0.011) (0.010) (0.030) (0.006) (0.047) 
Percentage of urban population [0-
100] 0.004 0.00036 0.0064 0.0094 0.00084 0.019 

  (0.011) (0.008) (0.006) (0.022) (0.002) (0.027) 
Log population to area (Km2) density -0.32 -0.43* -0.21 -1.07* -0.0062 -1.47* 
  (0.310) (0.230) (0.180) (0.600) (0.068) (0.780) 
Gross enrolment ratio, primary and 
secondary [0-100] 0.00017 -0.00033 0.000074 -0.00031 -0.00023 -0.0011 

  (0.001) (0.001) (0.001) (0.002) (0.000) (0.003) 
Presence of conflict [Yes=1; No=0] -0.048*** -0.023** -0.014* -0.088*** 0.0016 -0.084** 
  (0.017) (0.011) (0.007) (0.029) (0.004) (0.035) 
Observations 5576 5513 5439 5316 4261 4167 
R-Squared (within) 0.048 0.038 0.042 0.066 0.009 0.077 
F-stat 11.69 9.581 9.929 15.97 2.868 13.59 
F-test for Par. Trend 1.73 1.29 1.30 0.84 2.96 0.64 
Prob > F (0.16) (0.28) (0.27) (0.47) (0.03) (0.59) 
All panel regressions control for year fixed effects. 
Standard errors in parentheses -adjusted for clusters in municipality-. 
Treatment dummy does not appear due to fixed effects panel data estimation. 
* p < .10, ** p < .05, *** p < .01 

 
 
5.8 Conclusions 
 

During 2010-2011, as a result of the extraordinary and sustained increase in rainfall, 

Colombia faced one of the greatest natural disasters of its recent history, the ‘winter 

wave’. This affected more than 3.2 million people, left 467 people dead, 577 injured, at 

least 566,556 damaged or completely destroyed homes, and left damages 2,300 

institutional buildings damaged. According to CEPAL (2012) losses amounted to about 

USD 6.052 billion. 

 

This chapter has exploited a novel municipal panel dataset to determine whether the most 

recent EWE in Colombia, “La Niña” between 2007-2011, impacted theft activity in the 

municipalities affected. A Difference-in-Difference estimation procedure was used to 

show that the ‘winter wave’ induced a decrease in theft from persons. This finding is 

consistent with pro-social behaviour. Increased precipitation led to higher levels of 

flooding, landslides and washed away roads. Then, it created a situation where distress 

was evident and tended to increase compassion, cooperation and solidarity. Municipal 

members came together to help each other, giving a family a place to stay, helping clear 
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a landslide or even rebuilding community houses together.  

 

However, we also perceived a positive effect of the ‘winter-wave’ on the theft rates from 

private houses during 2010. When there is a collapse of social control we argue that the 

motivation behind theft from houses is likely best represented as a ‘survival mechanism’ 

rather than pecuniary reward, which conflicts with the Becker (1968) cost-benefit notion 

of acquisitive criminal behaviour. Crime rates could increase due to insufficient savings 

and lack of income, creating a desperate situation for vulnerable households. 

 

On the other hand, the use of car theft data remains worrisome and some caveats are 

required. First, for interpretation purposes car theft rates could be interpreted within 

Becker's (1968) model of crime and punishment. Second, most of the car theft occurs in 

the main cities. Therefore, the use of this particular sample was questionable, as the 

sample may not accurately reflect the characteristics of the general population. This type 

of selection bias issue perhaps translated into different trends between treated and control 

groups of municipalities weakening the D-i-D estimation procedure for this category. 

 

The conclusions drawn here have distinct policy implications, given climate patterns 

around the globe will continue to change due to the effect of greenhouse gases, such as 

carbon dioxide emissions from burning fossil fuels or deforestation. The need to develop 

instruments to mitigate criminality following an EWE is clear. Governmental planning 

and implementation of community-based safety net systems are fundamental to deal with 

disasters such as the ‘winter wave’ and will help ensure individuals do not need to resort 

to crime as a ‘safety net in such circumstances. 

 

In fact, the Colombian government responded to the ‘winter wave’ with enthusiasm and 

support, gathering citizens and corporations around “Colombia Humanitaria” – a national 

public-private response and reconstruction pooled fund which managed to administered 

in cash and in-kind donations of around USD $83 million.The “Colombia Humanitaria” 

response delivered more than 39,503 tons of food, 4.283 infrastructure projects were 

executed, 66,601 homes where repaired and another 60,671 households were benefited 

with lease support, among many other achievements. However, the magnitude of the 

tragedy surpassed this disaster response. According to Dara (2012), some 

mismanagement and a deficient prioritisation limited Colombia Humanitaria’s 
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performance, lowering the quality of the assistance provided. Good intentions and well-

meant efforts are not always enough to build a working response system overnight.  

Hence, as a lesson learnt, disaster risk reduction and building local capacity should be a 

priority in the near future. 

 

Finally, a sub-theme of this paper was to uncover the nexus between conflict presence 

and theft rates in Colombia. The empirical results reveal that the illegal armed groups 

have provided protection through the establishment of coercive institutions. This is 

particularly the case in the municipalities without a strong state presence, which in turn 

may have discouraged theft. This scenario is not necessarily optimal because the illegal 

armed groups, as any other criminal organization, have their own economic and political 

interests at the centre of their behaviour.  
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Chapter 6 
 

6 Conclusions 
 

This thesis contained three empirical essays around conflict, agricultural contracts, 

climate and environmental economics issues. In particular, the role of conflict on 

agribusiness contract durations, the civil war deforestation impacts, and the relationship 

of theft rates with the increasing presence of climate variability are all examined. Until 

now there were no previous studies exploring the research questions included in each one 

of these thesis chapters for the Colombian case. This makes this thesis unique, but 

naturally at the same time subject to limitations, and also opens new research avenues 

that will demand future work. The thesis’s main findings, limitations and future work are 

discussed as follows: 

 

Chapter 3 asked if the Colombian armed conflict has hampered the farmer capacity to 

sustain market linkages. In particular, some of the channels through which violence is 

allowed to affect agribusiness contract durations were examined. The primary finding of 

this chapter was that terrorism at the start of agribusiness contracts , appears to be the 

main cause of smallholder agribusiness contract failure. In addition, when the duration 

model allows violent incidents to vary over time, the armed conflict (i.e., the number of 

subversive actions) emerged as the main cause of agribusiness contract failure. 

Availability of rich data on agribusiness contracts and producer organization 

characteristics as obtained from archives of a public project whose goal is to establish 

commercial relationships between small producers and formal buyers (Proyecto de Apoyo 

a Alianzas Productivas – PAAP, in Spanish) facilitated this empirical analysis. 

 

One limitation of the chapter was the absence of data regarding the reasons as to why the 

contract failed.  With the current dataset, it is not possible to identify who is the actor that 

defaults from the original contract. Not only the producer organizations, but also the 

buyers may also be tempted to look for other providers. 

 

In the context of linking farmers to markets, failure of the original contract is not 

necessarily something bad. Indeed, if the PAAP, linking farmers to a markets program, 
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is effective, smallholder farmer beneficiaries at some point after its implementation may 

be able to link with buyers in more sophisticated supply value chains that offer better 

business growth opportunities. Therefore, a crucial research question raised by the 

findings of this chapter is which is the actor more prone to default? The producer 

organization or the buyer? A secondary question left unanswered is: what are the causes 

of failure? For example, future work could reveal the key explanatory variables 

constraining producer organizations to produce the agreed volume of products and/or 

meet a certain quality criteria; the buyer’s inability to meet purchasing commitments; the 

changing market conditions (the business cycle); and/or the buyer’s evolving business 

priorities. 

 

The Chapter 4 examined the relationship between the Colombian armed conflict and its 

environmental impacts. In particular, using a unique annual municipality panel dataset 

(from 2004 to 2012) and an instrumental variable approach to control for possible 

endogeneity between forest cover and forced displacement, the primary finding of this 

chapter is that the armed conflict is a force of forest protection and growth. On the basis 

of the instruments used, the exogeneity assumption for the forced displacement variable 

is not rejected by a Hausman test, thus, the more appropriate method to make inferences 

is the OLS fixed effects (FE-OLS) model. The estimated effect suggests that an additional 

person displaced per 1,000 inhabitants increases the percent of forest covered by 0.0028 

of a percentage point at the municipality level. The detected forestation effect is found to 

be negligible in magnitude when compared to other forestation drivers such as the average 

precipitations monthly, the distance to the department capital or a soils quality index. In 

any case, it is essential to highlight that the conflict imposed immense human pain and 

suffering that can’t be compensated by such a small environmental forestation impact.   

 

In addition, with the advent of peace in Colombia this chapter advocates for an 

appropriate conservation strategy since forest degradation often increases in post-war 

situations. The government will need to be ready to deploy conservation policies in areas 

currently under control of the guerrillas. In the past, the protected zones by the state 

helped in reducing settlements and illegal drug activity. However, this might not be 

enough for the future. Conservation enforcement of currently protected regions and areas 

previously under a “gunpoint conservation” regime by the guerrillas will be fundamental. 

Rain forests and their watersheds support the lives of many.  Therefore, their protection 
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and conservation is crucial. These findings spotlight a need for increased protection of 

Colombia's forests.  

 

A major challenge for this chapter was getting the right estimates for the share of 

municipality area covered by the forest. Thus, an extension of this chapter could be an 

exploration of other forest cover estimates sources that may be useful not only to test the 

robustness of the econometric model results presented in the chapter, but also to include 

more municipalities enriching the sample representativeness. In addition, it would be 

desirable to examine in future work other factors that are difficult to measure that affect 

forest cover changes such as the conversion of forest areas into pastures, illegal logging 

and forest fires. 

 

Chapter 5 estimates the impact of the most recent Extreme Weather Event in Colombia, 

“La Niña” on the theft rates in the municipalities affected between 2010-2011. Using a 

novel annual municipal panel dataset (2007-2012, inclusive), and measuring the affected 

areas according to the number of houses damaged and destroyed, this study relies on a 

Difference-in-Difference (D-i-D) model to show that the concurrent year of the winter 

wave brought a decrease in theft rates, in particular theft from persons. This could be 

perhaps attributable to the emergence of pro-social behaviour in the municipalities most 

affected. Together, we also find an increase in theft from houses possibly linked to a 

‘survival mechanism’, rather than one that seeks pecuniary reward. In addition, the D-i-

D estimates reveal that the presence of conflict, in general, discourages theft perhaps due 

to the establishment of coercive institutions by illegal armed groups. 

 

The conclusions drawn by this chapter also have policy implications, as the climate 

patterns across the globe continue to change more rapidly due to the effect of greenhouse 

gases, such as carbon dioxide emissions from burning fossil fuels or deforestation. The 

need to develop pro-social behaviour instruments that have the potential to drastically 

decrease criminality following an EWE is increasing. For example, governmental 

planning and implementation of community-based safety net systems in the cities are 

fundamental to deal with a natural disaster such as the winter wave. 

 

One of the major limitation of this chapter is the use of car theft. Most of car theft occurs 

in the main cities. Therefore, this particular sample reflect the characteristics of the 
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general population, and doesn’t pass the parallel trends assumption. Although it is beyond 

the current scope of this chapter, future research for the case of Colombia could address 

the impact of a specific natural disaster, not only on property crime, but also on violent 

crimes. This would fit well with an existing literature that connects violent behaviour with 

weather conditions.   
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8 Appendix   
 
8.1 Appendix chapter 3 

 
Table 8.1.1 Variable models definitions 

Variable Definition 
Failure event Dummy: 1 if the agribusiness contract fail; 0 otherwise  
Average failure time Average spell duration length of agribusiness contracts 

Acts of terror, at start Acts of terror including explosions, incendiaries or other type 
of terrorist acts 

Subversive actions, at start 

Subversive actions undertaken by the non-state armed actors 
such as guerrillas and paramilitaries including assaults to 
private property, attacks on entities or facilities, attacks on 
military headquarters, political attacks, roadblocks, ambushes, 
harassments, raids and car hijackings 

Kidnappings per 100,000 
inhab., at start 

Kidnappings of civilians, political or members of the army per 
100,000 inhabitants 

Homicide rate per 100,000 
inhab., at start Homicides per 100,000 inhabitants 

PO beneficiaries selected, 
at start (#) 

Number of the PO beneficiaries exactly at the time when 
PAAP managers approved the agribusiness contracts  

Avg. share of beneficiaries 
that work on the farm/UPA 
at start (0-100) 

Average share of PO beneficiaries that work fulltime on the 
farm at the start of the agribusiness contract is computed 

PA still at implementation 
stage 

Dummy: 1 if POs remaining in the implementation stage of 
PAAP; 0 otherwise 

Avg. distance to nearest 
wholesales food markets 

Average distance to nearest wholesales food markets (kms) in 
the department 

Crops Dummy: 1= if the PO produce a crop product; 0 otherwise 

Short growing cycle crop Dummy: 1 if the PO produce a growing cycle crops (three to 
12 months of maturity); 0 otherwise 

Livestock Dummy: 1 if the PO produce livestock; 0 otherwise 
Fish Dummy: 1 if the PO produce fish; 0 otherwise 
Milk Dummy: 1 if the PO produce milk; 0 otherwise 

Other no crop product Dummy: 1 if the PO produce beekeeping, silk thread and 
unrefined sugar cane; 0 otherwise 
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Table 8.1.2 Cox PH model estimates for commercial agreement failure (Violent 
incidents average 3 years before start) 

 
VARIABLES (1) (2) 
Acts of terror, avg. 3 years before start 0.066** 0.007 
  (0.030) (0.045) 
Subversive actions, avg. 3 years before start -0.029 0.094 
  (0.127) (0.120) 
Kidnappings per 100,000 inhab, avg. 3 years before start 0.089 0.083 
  (0.097) (0.168) 
Homicide rate per 100,000 inhab, avg. 3 years before start -0.006 -0.004 
  (0.004) (0.003) 
PO beneficiaries selected, at start (#)  -0.011*** -0.006 
  (0.004) (0.004) 
Avg. share of beneficiaries that work on the farm, at start (0-100)  -0.006*  -0.001** 
  (0.003) (0.004) 
PA still under implementation stage 0.925*** 0.975*** 
  (0.226) (0.229) 
Average distance to nearest wholesales food markets 0.001 0.006* 
  (0.001) (0.004) 
Short growing cycle crop 0.075 0.094 
  (0.387) (0.425) 
Livestock 0.996*** 1.185*** 
  (0.350) (0.395) 
Fish 0.372 1.04** 
  (0.429) (0.451) 
Milk  -0.706*  -0.898** 
  (0.391) (0.419) 
Other no crop product -0.454 0.146 
  (0.546) (0.509) 
Dummy Department (26) No Yes 
Observations 434 434 
Test of joint significance of departments (Prob>chi2)   0.002 
Test of joint significance of type of product (Prob>chi2) 0.019 0.001 
Model chi2 40.65 127.60 
Df 13 39 
Pseudo-Log(L) -581.1 -556.4 
AIC 1188 1191 
N. of fails (without a business partner) 114 114 
Robust standard errors in parentheses *** p<0,01, ** p<0,05, *p<0,1 
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Table 8.1.3 Contract durations statistics per semester 

Semester Contracts Fail Net Lost Survivor 
Function Std. Error [95% Conf. Int.] 

1 434 17 0 0.9608 0.0093 0.9377    0.9755 
2 417 23 0 0.9078 0.0139 0.8765    0.9315 
3 394 12 122 0.8802 0.0156 0.8458    0.9073 
4 260 8 19 0.8531 0.0178 0.8142    0.8844 
5 233 9 63 0.8201 0.0202 0.7765    0.8561 
6 161 9 35 0.7743 0.0242 0.7225    0.8176 
7 117 7 14 0.728 0.0284 0.6677    0.7791 
8 96 10 17 0.6521 0.0341 0.5809    0.7143 
9 69 5 3 0.6049 0.0376 0.5270    0.6740 

10 61 6 14 0.5454 0.041 0.4616    0.6216 
11 41 3 6 0.5055 0.044 0.4164    0.5878 
12 32 1 11 0.4897 0.0454 0.3982    0.5749 
13 20 3 6 0.4162 0.0549 0.3081    0.5207 
14 11 1 4 0.3784 0.0616 0.2594    0.4967 
15 6 0 5 0.3784 0.0616 0.2594    0.4967 
17 1 0 1 0.3784 0.0616 0.2594    0.4967 
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Table 8.1.4 Parametric accelerated failure time duration models  

VARIABLES Weibull AFT Log-logistic 
AFT 

Log-logistic AFT 
with I.G 

Acts of terror, at start. -0.053* -0.050* -0.050* 
  (0.027) (0.026) (0.026) 
Subversive actions, at start 0.099 0.109 0.109 
  (0.066) (0.070) (0.070) 
Kidnappings per 100,000 inhab, at start 0.007 0.010 0.010 
  (0.019) (0.024) (0.024) 
Homicide rate per 100,000 inhab, at start 0.002 0.002 0.002 
  (0.002) (0.002) (0.002) 
PO beneficiaries selected, at start (#) 0.002 0.002 0.002 
 (0.002) (0.002) (0.002) 
Avg. share of beneficiaries that work on the  0.006** 0.005* 0.005* 
farm/UPA at start (0-100) (0.002) (0.003) (0.003) 
PA still under implementation stage -0.511*** -0.537*** -0.537*** 
  (0.108) (0.120) (0.120) 
Average distance to nearest wholesales food 
markets 

-0.003* -0.003 -0.003 

  (0.002) (0.002) (0.002) 
Short growing cycle crop -0.021 0.083 0.083 
  (0.222) (0.270) (0.270) 
Livestock -0.555** -0.539* -0.539* 
  (0.225) (0.297) (0.297) 
Fish -0.709** -0.671*** -0.671*** 
  (0.276) (0.239) (0.239) 
Milk 0.430* 0.504** 0.504** 
  (0.228) (0.229) (0.229) 
Other no crop product 0.024 0.119 0.119 
  (0.239) (0.260) (0.260) 
Constant 1.937*** 1.776*** 1.776*** 
  (0.320) (0.348) (0.348) 
Ln(alpha) 0.680***   
  (0.074)   
Ln(gamma)  -0.828*** -0.828*** 
   (0.080) (0.080) 
Ln(theta)   -13.582*** 
    (0.846) 
Departments dummies (26) Yes Yes Yes 
Observations 434 434 434 
Overall test (Prob>chi2) of product dummies 0.003 0.006 0.006 
Overall test (Prob>chi2) of departmental dummies 0.024 0.002 0.002 
Model chi-square 110.1 120.3 120.3 
Df 39 39 39 
Pseudo-Log(L) -243.3 -244.8 -244.8 
AIC 568.6 571.7 573.7 
N. of fails (without a business partner) 114 114 114 
Robust standard errors in parentheses *** p<0,01, ** p<0,05, *p<0,1 
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Table 8.1.5 Discrete time coefficients (cloglog regressions) 
 

Variables Baseline 
Fully non-
parametric 

Log(t) (t) Quadratic Cubic 

Acts of terror -0.043 -0.042 -0.044 -0.044 -0.045 
  (0.037) (0.037) (0.037) (0.038) (0.037) 
Subversive actions 0.226* 0.215* 0.226* 0.226* 0.221* 
  (0.126) (0.124) (0.125) (0.126) (0.127) 
Kidnappings per 
100,000 inhab 

0.010 0.011 0.011 0.011 0.008 

  (0.019) (0.017) (0.018) (0.018) (0.019) 
Killings per 100,000 
inhab 

0.002 0.001 0.001 0.001 0.002 

  (0.003) (0.003) (0.003) (0.003) (0.003) 
PO beneficiaries 
selected, at start (#) 

-0.006 -0.005 -0.005 -0.005 -0.006 

  (0.005) (0.005) (0.005) (0.005) (0.005) 
Avg. share of 
beneficiaries that work 
on the farm at start 

-0.013*** -0.012** -0.013*** -0.013*** -0.013*** 

  (0.005) (0.005) (0.005) (0.005) (0.005) 
PA still under 
implementation stage 

1.037*** 0.817*** 0.933*** 0.934*** 1.019*** 

  (0.245) (0.219) (0.235) (0.232) (0.239) 
Avg. distance to nearest 
wholesales food 
markets in the 
department 

0.006 0.006 0.006 0.006 0.006 

  (0.004) (0.004) (0.004) (0.004) (0.004) 
Short growing cycle 
crop 

0.077 0.087 0.091 0.091 0.074 

  (0.512) (0.514) (0.518) (0.518) (0.517) 
Livestock 1.329*** 1.180** 1.255** 1.255** 1.304*** 
  (0.504) (0.489) (0.496) (0.496) (0.496) 
Fish 1.364** 1.459** 1.432** 1.432** 1.334** 
  (0.573) (0.570) (0.557) (0.557) (0.555) 
Milk -0.879** -0.876** -0.887** -0.886** -0.883** 
  (0.437) (0.433) (0.432) (0.435) (0.434) 
Other no crop product 0.240 0.199 0.246 0.246 0.240 
  (0.597) (0.600) (0.598) (0.595) (0.590) 
Ln(time=semester)   0.606***    
    (0.169)    
Time    0.179*** 0.181 -0.390 
     (0.038) (0.113) (0.283) 
Time⌃2     -0.000 0.114** 
      (0.009) (0.055) 
Time⌃3      -0.006** 

      (0.003) 
Constant   -3.150*** -3.222*** -3.225*** -2.516*** 
    (0.729) (0.750) (0.753) (0.848) 
Semesters dummy (14) Yes Yes Yes Yes Yes 
Departments dummy 
(26) 

Yes Yes Yes Yes Yes 

Observations 2,168 2,195 2,195 2,195 2,195 
Log pseudolikelihood  -367.9 -380.1 -377.2 -377.2 -374.9 
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Table 8.1.6 Discrete time marginal effects (cloglog regressions) 
 

Variables Baseline 
Fully non-
parametric 

Log(t) (t) Quadratic Cubic 

Acts of terror -0.0012 -0.0013 -0.0013 -0.0013 -0.0013 
  (0.0010) (0.0011) (0.0011) (0.0011) (0.0011) 
Subversive actions 0.0063* 0.0065* 0.0067* 0.0067* 0.0064* 
  (0.0035) (0.0038) (0.0037) (0.0037) (0.0036) 
Kidnappings per 
100,000 inhab 

0.0003 0.0004 0.0003 0.0003 0.0002 

  (0.0005) (0.0005) (0.0005) (0.0005) (0.0005) 
Killings per 100,000 
inhab 

0.0000 0.0000 0.0000 0.0000 0.0000 

  (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 
PO beneficiaries 
selected, at start (#) 

-0.0002 -0.0001 -0.0002 -0.0002 -0.0002 

  (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 
Avg. share of 
beneficiaries that work 
on the farm at start 

-0.0004*** -0.0004*** -0.0004*** -0.0004*** -0.0004*** 

  (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 
PA still under 
implementation stage 

0.0334*** 0.0277*** 0.0314*** 0.0314*** 0.0341*** 

  (0.0087) (0.0078) (0.0084) (0.0084) (0.0088) 
Avg. distance to 
nearest wholesales 
food markets in the 
department 

0.0002* 0.0002 0.0002 0.0002* 0.0002* 

  (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 
Short growing cycle 
crop 

0.0022 0.0027 0.0028 0.0028 0.0022 

  (0.0153) (0.0169) (0.0166) (0.0166) (0.0161) 
Livestock 0.0726 0.0647 0.0697 0.0697 0.0730 
  (0.0463) (0.0429) (0.0451) (0.0451) (0.0462) 
Fish 0.0753 0.0918 0.0866 0.0866 0.0752 
  (0.0518) (0.0594) (0.0556) (0.0556) (0.0507) 
Milk -0.0184*** -0.0200*** -0.0196*** -0.0196*** -0.0192*** 
  (0.0070) (0.0076) (0.0073) (0.0074) (0.0072) 
Other no crop product 0.0075 0.0066 0.0082 0.0081 0.0078 
  (0.0207) (0.0219) (0.0221) (0.0220) (0.0213) 
Ln(time=semester)   0.0185***    
    (0.0053)    
Time    0.0053*** 0.0054 -0.0113 
     (0.0011) (0.0034) (0.0083) 
Time⌃2     -0.0000 0.0033** 
      (0.0003) (0.0016) 
Time⌃3      -0.0002* 

      (0.0001) 
Constant       
            
Semesters dummy 
(14) 

Yes Yes Yes Yes Yes 

Departments dummy 
(26) 

Yes Yes Yes Yes Yes 

Observations 2,168 2,195 2,195 2,195 2,195 
Log pseudolikelihood  -367.9 -380.1 -377.2 -377.2 -374.9 
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8.2 Appendix chapter 4 

 
Figure 8.2.1 Final sample spatial distribution  

  
: The municipality belongs to the sample. 

Source: author 
 

Figure 8.2.2 Forced displacement 2005-2014 

 

 
Source: Centro Nacional de Memoria Histórica.  
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Table 8.2.1 Summary statistics of municipalities with missing values  

 
Variable Mean SD Min Max 
Share of municipality area with forest [0-100] 69.59 25.4 2.7 99.96 
Forced displacement per 1000 inhabitants 13.43 31.19 0 490.33 
Victims of massacres per 100,000 inhabitants (lagged 
one year) 0.67 6.09 0 100.64 

Direct conflict kidnappings per 100.000 inhabitants 
(lagged one year) 0.98 7.15 0 215.32 

Hectares of coca fumigated and manually eradicated 
(lagged one year) 98.37 533.78 0 11183.05 

Percentage of the agricultural frontier with coca crops 
fumigates and manually eradicated (lagged one year) 0.12 0.78 0.00 24.34 

Percentage of the municipal area with coca fumigated 
and manually eradicated (lagged one year) 0.13 0.78 0.00 23.49 

Mining (gold, silver, or platinum) [Yes=1; No=0] 
(lagged one year) 0.17 0.37 0 1 

Population 63887.63 483841.68 216 7571345 
Log Population 9.39 1.16 5.38 15.84 
Percentage of urban population [0-100] 41.76 23.78 3.43 99.79 
Income tax revenue per inhabitants  84489.54 108837.26 0 1027696.81 
Log income tax revenue per inhabitants 10.83 1.03 5.77 13.84 
Variables statistics refer to a N that varies between 733 and 2334 observations for the rest of 
municipalities not included in the panel due to considerable presence of missing values in the period of 
our study 2004-2012. 
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Table 8.2.2 A Comparison of sample means for the included versus the excluded 
municipalities using t-test for difference of means	
 

  t-test p-value 
Share of municipality area with forest [0-100] -11.2 0.000 
Forced displacement per 1000 inhabitants -5.3 0.000 
Victims of massacres per 100,000 inhabitants (lagged one year) -1.8 0.069 
Direct conflict kidnappings per 100.000 inhabitants (lagged one year) 0.4 0.689 
Hectares of coca fumigated and manually eradicated (lagged one year) 3.2 0.002 
Percentage of the agricultural frontier with coca crops fumigates and 
manually eradicated (lagged one year) 

0.0005 0.99 

Percentage of the municipal area with coca fumigated and manually 
eradicated (lagged one year) 

-1.13 0.25 

Mining (gold, silver, or platinum) [Yes=1; No=0] (lagged one year) -1.1 0.251 
Population -5.2 0.000 
Log Population 7.1 0.000 
Percentage of urban population [0-100] 2.3 0.023 
Income tax revenue per inhabitants  0.8 0.452 
Log income tax revenue per inhabitant  4.1 0.000 
Ho: diff = mean(x) - mean(y)=0.; Ha: diff != 0.    
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Table 8.2.3 Effect of lagged forced displacement rate on forest cover 

Dependent variable: Share of municipality area with forest [0-100]  
 FE  
Forced displacement per 1000 inhabitants (lagged one year) 0.0022** 
 (0.0011) 
Mining (gold, silver, or platinum) [Yes=1; No=0] (lagged one year) -0.088* 
 (0.052) 
Log Population -3.14*** 
 (0.49) 
Percentage of urban population [0-100] -0.047** 
 (0.023) 
Log income tax revenue per inhabitants 0.049* 
 (0.029) 
Year 2006 -0.19*** 
 (0.012) 
Year 2007 -0.40*** 
 (0.023) 
Year 2008 -0.59*** 
 (0.031) 
Year 2009 -0.86*** 
 (0.041) 
Year 2010 -1.02*** 
 (0.050) 
Year 2011 -1.21*** 
 (0.059) 
Year 2012 -1.44*** 
 (0.068) 
Constant 90.7*** 
 (4.99) 
Observations 6826 
R-Squared 0.570 
F-stat 108.6 
Sigma 25.72 
Sigma_e 0.503 
Std. Err. (in parentheses) adjusted for clusters in municipality 
* p < .10, ** p < .05, *** p < .01 
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Table 8.2.4 Effect of the presence of coca crops on forest cover (FE-IV model) 

Dependent variable: Share of municipality area with forest [0-100]  
 FE-IV 
Presence of coca crops [Yes=1; No=0] -0.0030 
 (1.17) 
Mining (gold, silver, or platinum) [Yes=1; No=0] (lagged one year) -0.094* 
 (0.051) 
Log Population -3.13*** 
 (0.50) 
Percentage of urban population [0-100] -0.049** 
 (0.024) 
Log income tax revenue per inhabitants  0.046 
 (0.030) 
Year 2006 -0.19*** 
 (0.014) 
Year 2007 -0.40*** 
 (0.022) 
Year 2008 -0.59*** 
 (0.033) 
Year 2009 -0.85*** 
 (0.044) 
Year 2010 -1.03*** 
 (0.051) 
Year 2011 -1.22*** 
 (0.061) 
Year 2012 -1.45*** 
 (0.068) 
Observations 6826 
R-Squared 0.568 
F-stat 107.5 

Std. Err. (in parentheses) adjusted for clusters in municipality 
* p < .10, ** p < .05, *** p < .01 
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Table 8.2.5 Determinants of forest cover fixed effects (OLS model) 

 
Dependent variable: Estimated municipal fixed effects  
 OLS 
Municipality elevation (m) 0.0013* 
 (0.00073) 
Avg. precipitation monthly (mm) 0.13*** 
 (0.011) 
Distance to the department capital (km) 0.030** 
 (0.015) 
Soils quality index [1-8] -3.53*** 
 (0.70) 
Constant 71.9*** 
 (3.56) 
Observations 848 
R-Squared 0.237 
Robust (heteroscedasticity correction) std. err. (in parentheses)  
* p < .10, ** p < .05, *** p < .01 
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8.3 Appendix chapter 5 

 
Table 8.3.1 DiD estimation pre and post averages -before and after the “winter 
wave” 

Panel A: 10% treatment intensity 
 T_(i,t) Persons Houses Business Total Cars Total (+ cars) 
Post 2010 [Yes=1; No=0] 
*Treatment[Yes=1; No=0] -0.0013 0.025 -0.00057 0.03 0.0093 0.046 

  (0.026) (0.021) (0.012) (0.049) (0.007) (0.083) 
Log income tax revenue per 
inhab 0.070*** 0.012 0.033*** 0.13*** -0.01 0.23*** 

  (0.022) (0.016) (0.013) (0.043) (0.009) (0.063) 
Percentage of urban population 
[0-100] 0.023** -0.00007 0.020*** 0.040** -0.00015 0.050** 

  (0.010) (0.007) (0.005) (0.019) (0.002) (0.023) 
Log population to area (Km2) 
density 0.081 -0.41* -0.18 -0.55 0.038 -0.73 

  (0.310) (0.220) (0.180) (0.590) (0.072) (0.730) 
Gross enrolment ratio, primary 
and secondary [0-100] -0.00036 0.001 0.00075 0.0012 -0.00052 0.00089 

  (0.002) (0.002) (0.001) (0.003) (0.000) (0.005) 
Presence of conflict [Yes=1; 
No=0] -0.062 -0.060** -0.0027 -0.14* -0.0015 -0.15* 

  (0.039) (0.029) (0.017) (0.071) (0.012) (0.088) 
Observations 1842 1818 1796 1752 1402 1372 
R-Squared (within) 0.0294 0.0121 0.039 0.0345 0.00676 0.0501 
F-stat 5.79 2.784 6.463 7.195 0.826 8.205 

Panel B: 15% treatment 
intensity             

 T_(i,t) Persons Houses Business Total Cars Total (+ cars) 
Post 2010 [Yes=1; No=0] 
*Treatment [Yes=1; No=0] -0.032 0.0013 -0.0089 -0.044 0.012 -0.052 

  (0.026) (0.019) (0.011) (0.049) (0.008) (0.073) 
Log income tax revenue per 
inhab 0.076*** 0.014 0.036*** 0.14*** -0.012 0.24*** 

  (0.023) (0.016) (0.013) (0.044) (0.009) (0.064) 
Percentage of urban population 
[0-100] 0.025** 0.00092 0.020*** 0.043** -0.00041 0.052** 

  (0.010) (0.007) (0.005) (0.018) (0.002) (0.023) 
Log population to area (Km2) 
density 0.075 -0.40* -0.18 -0.55 0.033 -0.79 

  (0.310) (0.220) (0.180) (0.590) (0.072) (0.720) 
Gross enrolment ratio, primary 
and secondary [0-100] -0.00052 0.00094 0.00066 0.00084 -0.00048 0.00066 

  (0.002) (0.002) (0.001) (0.003) (0.000) (0.005) 
Presence of conflict [Yes=1; 
No=0] -0.061 -0.057** -0.0036 -0.13* -0.0011 -0.16* 

  (0.039) (0.028) (0.016) (0.071) (0.012) (0.087) 
Observations 1860 1834 1814 1768 1416 1384 
R-Squared (within) 0.030 0.010 0.040 0.034 0.009 0.051 
F-stat 5.64 2.18 6.35 6.56 0.91 8.23 

Panel C: 20% treatment 
intensity             

 T_(i,t) Persons Houses Business Total Cars Total (+ cars) 
Post 2010 [Yes=1; No=0] 
*Treatment [Yes=1; No=0] -0.031 -0.0019 0.0093 -0.027 0.005 -0.04 

  (0.022) (0.017) (0.010) (0.041) (0.007) (0.058) 
Log income tax revenue per 
inhab 0.078*** 0.016 0.034*** 0.15*** -0.011 0.24*** 

  (0.023) (0.016) (0.013) (0.044) (0.009) (0.064) 
Percentage of urban population 
[0-100] 0.025** 0.0014 0.018*** 0.041** -0.00021 0.054** 

  (0.010) (0.007) (0.005) (0.019) (0.002) (0.022) 
Log population to area (Km2) 
density 0.13 -0.37* -0.14 -0.45 0.035 -0.71 

  (0.310) (0.220) (0.180) (0.590) (0.071) (0.720) 
Gross enrolment ratio, primary 
and secondary [0-100] -0.00051 0.00092 0.00064 0.00083 -0.00046 0.00061 

  (0.002) (0.002) (0.001) (0.003) (0.000) (0.005) 
Presence of conflict  [Yes=1; 
No=0] -0.057 -0.056** -0.0078 -0.13* -0.0012 -0.16* 

  (0.039) (0.028) (0.016) (0.071) (0.011) (0.086) 
Observations 1864 1842 1818 1776 1424 1392 
R-Squared (within) 0.030 0.010 0.041 0.033 0.007 0.051 
F-stat 5.38 2.13 7.31 6.45 0.69 8.29 
All panel regressions control for year fixed effects. 
Standard errors in parentheses -adjusted for clusters in municipality-. 
Treatment dummy does not appear due to fixed effects panel data estimation. 
* p < .10, ** p < .05, *** p < .01 
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Table 8.3.2 D-i-D estimation of criminal activity rates (2007-2012) without 
controlling for the presence of conflict 

Panel A: 10% treatment intensity 

 T_(i,t) Persons Houses Business Total Cars Total (+ 
cars) 

Post 2010 [Yes=1; No=0]*Treatment[Yes=1; No=0] -0.016 0.024 -0.0053 0.0084 0.0085 0.017 
  (0.026) (0.022) (0.012) (0.049) (0.007) (0.084) 
Log income tax revenue per inhab 0.035** 0.030*** 0.016* 0.091*** -0.0077 0.11** 
  (0.014) (0.011) (0.010) (0.030) (0.006) (0.048) 
Percentage of urban population [0-100] 0.0074 0.00061 0.0078 0.016 0.0011 0.024 
  (0.011) (0.008) (0.006) (0.022) (0.002) (0.027) 
Log population to area (Km2) density -0.26 -0.44* -0.23 -1.02* 0.0038 -1.34* 
  (0.310) (0.230) (0.180) (0.610) (0.071) (0.790) 
Gross enrolment ratio, primary and secondary [0-
100] 0.00066 -0.00021 0.00029 0.00037 -0.00023 -0.00042 

  (0.001) (0.001) (0.001) (0.002) (0.000) (0.003) 
Observations 5510 5441 5373 5244 4195 4107 
R-Squared (within) 0.0442 0.037 0.0395 0.0626 0.00738 0.0739 
F-stat 16.73 14.1 13.36 22.57 2.645 19.07 

Panel B: 15% treatment intensity 

 T_(i,t) Persons Houses Business Total Cars Total (+ 
cars) 

Post 2010 [Yes=1; No=0]*Treatment[Yes=1; No=0] -0.050* -0.00086 -0.014 -0.071 0.011 -0.088 
  (0.027) (0.020) (0.011) (0.051) (0.008) (0.075) 
Log income tax revenue per inhab 0.036** 0.029** 0.018* 0.091*** -0.0085 0.11** 
  (0.014) (0.011) (0.010) (0.030) (0.006) (0.048) 
Percentage of urban population [0-100] 0.0065 0.00031 0.0075 0.014 0.0011 0.021 
  (0.011) (0.008) (0.006) (0.022) (0.002) (0.027) 
Log population to area (Km2) density -0.3 -0.44* -0.24 -1.08* 0.00081 -1.47* 
  (0.310) (0.230) (0.180) (0.600) (0.069) (0.780) 
Gross enrolment ratio, primary and secondary [0-
100] 0.00053 -0.00023 0.00017 0.00024 -0.00023 -0.00052 

  (0.001) (0.001) (0.001) (0.002) (0.000) (0.003) 
Observations 5564 5489 5427 5292 4237 4143 
R-Squared (within) 0.0444 0.0365 0.0395 0.0625 0.00803 0.0741 
F-stat 16.83 13.89 13.24 22.49 2.766 19 

Panel C: 20% treatment intensity 

 T_(i,t) Persons Houses Business Total Cars Total (+ 
cars) 

Post 2010 [Yes=1; No=0]*Treatment[Yes=1; No=0] -0.054** -0.0035 0.0028 -0.06 0.0043 -0.084 
  (0.024) (0.018) (0.011) (0.044) (0.007) (0.062) 
Log income tax revenue per inhab 0.037** 0.029** 0.019* 0.092*** -0.0084 0.11** 
  (0.015) (0.011) (0.010) (0.030) (0.006) (0.048) 
Percentage of urban population [0-100] 0.0046 0.00069 0.0065 0.011 0.00085 0.02 
  (0.011) (0.008) (0.006) (0.022) (0.002) (0.027) 
Log population to area (Km2) density -0.28 -0.42* -0.2 -1.01* -0.0021 -1.41* 
  (0.310) (0.230) (0.180) (0.600) (0.068) (0.780) 
Gross enrolment ratio, primary and secondary [0-
100] 0.00042 -0.00024 0.00015 0.000096 -0.0002 -0.0007 

  (0.001) (0.001) (0.001) (0.002) (0.000) (0.003) 
Observations 5576 5513 5439 5316 4261 4167 
R-Squared (within) 0.0445 0.0362 0.0403 0.0624 0.00786 0.0741 
F-stat 16.52 13.85 13.89 22.56 2.814 18.91 
All panel regressions control for year fixed effects. 
Standard errors in parentheses -adjusted for clusters in municipality-. 
Treatment dummy does not appear due to fixed effects panel data estimation. 
* p < .10, ** p < .05, *** p < .01 

 
 
  



198	
 

Table 8.3.3 D-i-D estimations with year lags after the ‘winter wave’ without 
controlling for the presence of conflict 

Panel A: 10% treatment intensity 
 T_(i,t) Persons Houses Business Total Cars Total (+ 

cars) 
Year 2011 [Yes=1; No=0]*Treatment[Yes=1; No=0] -0.032 -0.015 -0.013 -0.053 0.0025 -0.071 
  (0.028) (0.016) (0.015) (0.046) (0.010) (0.063) 
Year 2012 [Yes=1; No=0]*Treatment[Yes=1; No=0] -0.10*** -0.036 -0.024 -0.16** 0.0048 -0.20** 
  (0.035) (0.030) (0.018) (0.069) (0.011) (0.098) 
Log income tax revenue per inhabitant 0.035** 0.029*** 0.016* 0.090*** -0.0077 0.11** 
  (0.014) (0.011) (0.010) (0.030) (0.006) (0.048) 
Percentage of urban population [0-100] 0.0073 0.00071 0.0077 0.016 0.0011 0.022 
  (0.011) (0.008) (0.006) (0.022) (0.002) (0.028) 
Log population to area (Km2) density -0.33 -0.48** -0.25 -1.15* 0.0016 -1.50* 
  (0.310) (0.230) (0.180) (0.610) (0.070) (0.800) 
Gross enrolment ratio, primary and secondary [0-100] 0.00048 -0.0003 0.00025 0.000089 -0.00023 -0.00073 
  (0.001) (0.001) (0.001) (0.002) (0.000) (0.003) 
Observations 5510 5441 5373 5244 4195 4107 
R-Squared (within) 0.046 0.0372 0.04 0.064 0.00726 0.0753 
F-stat 15.42 12.93 11.88 20.89 2.302 17.47 

Panel B: 15% treatment intensity             
 T_(i,t) Persons Houses Business Total Cars Total (+ 

cars) 
Year 2011 [Yes=1; No=0]*Treatment[Yes=1; No=0] -0.014 -0.0072 -0.016 -0.038 0.0071 -0.046 
  (0.031) (0.016) (0.017) (0.051) (0.010) (0.070) 
Year 2012 [Yes=1; No=0]*Treatment[Yes=1; No=0] -0.12*** -0.034 -

0.046** 
-0.19** 0.0082 -0.21** 

  (0.037) (0.032) (0.018) (0.073) (0.011) (0.100) 
Log income tax revenue per inhabitant 0.036** 0.029** 0.018* 0.091*** -0.0085 0.11** 
  (0.014) (0.011) (0.010) (0.030) (0.006) (0.048) 
Percentage of urban population [0-100] 0.0067 0.00046 0.0076 0.014 0.0011 0.021 
  (0.011) (0.008) (0.006) (0.022) (0.002) (0.027) 
Log population to area (Km2) density -0.31 -0.46** -0.25 -1.11* -0.0022 -1.50* 
  (0.310) (0.230) (0.180) (0.600) (0.069) (0.790) 
Gross enrolment ratio, primary and secondary [0-100] 0.00039 -0.00029 0.00012 0.000037 -0.00023 -0.00061 
  (0.001) (0.001) (0.001) (0.002) (0.000) (0.003) 
Observations 5564 5489 5427 5292 4237 4143 
R-Squared (within) 0.0459 0.0368 0.0407 0.0637 0.00767 0.0749 
F-stat 15.48 12.88 11.94 20.73 2.465 17.52 

Panel C: 20% treatment intensity             
 T_(i,t) Persons Houses Business Total Cars Total (+ 

cars) 
Year 2011 [Yes=1; No=0]*Treatment[Yes=1; No=0] -0.014 -0.0072 -0.016 -0.038 0.0071 -0.046 
  (0.031) (0.016) (0.017) (0.051) (0.010) (0.070) 
Year 2012 [Yes=1; No=0]*Treatment[Yes=1; No=0] -0.12*** -0.034 -

0.046** 
-0.19** 0.0082 -0.21** 

  (0.037) (0.032) (0.018) (0.073) (0.011) (0.100) 
Log income tax revenue per inhabitant 0.036** 0.029** 0.018* 0.091*** -0.0085 0.11** 
  (0.014) (0.011) (0.010) (0.030) (0.006) (0.048) 
Percentage of urban population [0-100] 0.0067 0.00046 0.0076 0.014 0.0011 0.021 
  (0.011) (0.008) (0.006) (0.022) (0.002) (0.027) 
Log population to area (Km2) density -0.31 -0.46** -0.25 -1.11* -0.0022 -1.50* 
  (0.310) (0.230) (0.180) (0.600) (0.069) (0.790) 
Gross enrolment ratio, primary and secondary [0-100] 0.00039 -0.00029 0.00012 0.000037 -0.00023 -0.00061 
  (0.001) (0.001) (0.001) (0.002) (0.000) (0.003) 
Observations 5564 5489 5427 5292 4237 4143 
R-Squared (within) 0.0459 0.0368 0.0407 0.0637 0.00767 0.0749 
F-stat 15.48 12.88 11.94 20.73 2.465 17.52 
All panel regressions control for year fixed effects. 
Standard errors in parentheses -adjusted for clusters in municipality-. 
Treatment dummy does not appear due to fixed effects panel data estimation. 
* p < .10, ** p < .05, *** p < .01 
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Table 8.3.4 D-i-D estimation with year lags and leads after the ‘winter wave’ without 
controlling for the presence of conflict 

Panel A: 10% treatment intensity 

 T_(i,t) Persons Houses Business Total Cars Total (+ 
cars) 

Year 2008 [Yes=1; No=0]*Treatment[Yes=1; No=0] -0.038 0.033 0.001 -0.015 0.013 0.066 
  (0.034) (0.024) (0.016) (0.058) (0.013) (0.081) 
Year 2009 [Yes=1; No=0]*Treatment[Yes=1; No=0] -0.074** 0.022 -0.015 -0.082 -0.018 -0.081 
  (0.031) (0.025) (0.015) (0.058) (0.012) (0.082) 
Year 2010 [Yes=1; No=0]*Treatment[Yes=1; No=0] -0.058* 0.038 0.014 -0.031 0.0038 -0.044 
  (0.032) (0.024) (0.015) (0.060) (0.013) (0.087) 
Year 2011 [Yes=1; No=0]*Treatment[Yes=1; No=0] -0.075* 0.0082 -0.013 -0.085 0.0022 -0.086 
  (0.039) (0.024) (0.019) (0.066) (0.014) (0.094) 
Year 2012 [Yes=1; No=0]*Treatment[Yes=1; No=0] -0.15*** -0.013 -0.025 -0.19** 0.0044 -0.21* 
  (0.042) (0.036) (0.021) (0.085) (0.016) (0.120) 
Log income tax revenue per inhabitant 0.035** 0.029*** 0.016 0.091*** -0.0077 0.11** 
  (0.014) (0.011) (0.010) (0.030) (0.006) (0.048) 
Percentage of urban population [0-100] 0.0073 0.00069 0.0077 0.016 0.0011 0.022 
  (0.011) (0.008) (0.006) (0.022) (0.002) (0.028) 
Log population to area (Km2) density -0.35 -0.47** -0.24 -1.17* -0.0013 -1.53* 
  (0.310) (0.230) (0.180) (0.610) (0.069) (0.800) 
Gross enrolment ratio, primary and secondary [0-100] 0.00042 -0.00029 0.00023 0.0000082 -0.00025 -0.00088 
  (0.001) (0.001) (0.001) (0.002) (0.000) (0.003) 
Observations 5510 5441 5373 5244 4195 4107 
R-Squared (within) 0.0466 0.0376 0.0404 0.0642 0.00906 0.0759 
F-stat 12.61 10.18 10.29 16.9 2.911 14.56 
F-test for Par. Trend 1.87 1.09 1.37 0.83 3.54 1.06 
Prob > F (0.13) (0.35) (0.25) (0.48) (0.01) (0.36) 

Panel B: 15% treatment intensity 

 T_(i,t) Persons Houses Business Total Cars Total (+ 
cars) 

Year 2008 [Yes=1; No=0]*Treatment[Yes=1; No=0] -0.012 0.038* -0.0079 0.015 0.013 0.1 
  (0.031) (0.023) (0.016) (0.054) (0.011) (0.073) 
Year 2009 [Yes=1; No=0]*Treatment[Yes=1; No=0] -0.051* 0.022 -0.025* -0.06 -0.014 -0.04 
  (0.028) (0.025) (0.014) (0.051) (0.009) (0.069) 
Year 2010 [Yes=1; No=0]*Treatment[Yes=1; No=0] -0.031 0.041* 0.0041 -0.0014 0.0049 0.0089 
  (0.028) (0.021) (0.015) (0.052) (0.010) (0.073) 
Year 2011 [Yes=1; No=0]*Treatment[Yes=1; No=0] -0.036 0.017 -0.023 -0.049 0.0077 -0.029 
  (0.038) (0.023) (0.020) (0.064) (0.012) (0.090) 
Year 2012 [Yes=1; No=0]*Treatment[Yes=1; No=0] -0.14*** -0.011 -0.053*** -0.20** 0.0089 -0.19 
  (0.041) (0.037) (0.020) (0.082) (0.013) (0.120) 
Log income tax revenue per inhabitant 0.037*** 0.028** 0.018* 0.092*** -0.0085 0.11** 
  (0.014) (0.011) (0.010) (0.030) (0.006) (0.048) 
Percentage of urban population [0-100] 0.0068 0.00031 0.0076 0.014 0.0011 0.021 
  (0.011) (0.008) (0.006) (0.022) (0.002) (0.027) 
Log population to area (Km2) density -0.32 -0.45** -0.25 -1.12* -0.0043 -1.52* 
  (0.310) (0.230) (0.180) (0.610) (0.069) (0.790) 
Gross enrolment ratio, primary and secondary [0-100] 0.00035 -0.00029 0.000097 -0.000028 -0.00026 -0.00074 
  (0.001) (0.001) (0.001) (0.002) (0.000) (0.003) 
Observations 5564 5489 5427 5292 4237 4143 
R-Squared (within) 0.0462 0.0373 0.0412 0.0639 0.00917 0.0754 
F-stat 12.72 10.17 10.41 16.98 2.92 14.69 
F-test for Par. Trend 1.14 1.83 1.73 0.89 3.01 1.25 
Prob > F (0.33) (0.14) (0.16) (0.45) (0.03) (0.29) 

Panel C: 20% treatment intensity 

 T_(i,t) Persons Houses Business Total Cars Total (+ 
cars) 

Year 2008 [Yes=1; No=0]*Treatment[Yes=1; No=0] -0.029 0.032 0.00066 -0.0055 0.0056 0.047 
  (0.033) (0.022) (0.015) (0.056) (0.012) (0.074) 
Year 2009 [Yes=1; No=0]*Treatment[Yes=1; No=0] -0.069** 0.023 -0.011 -0.07 -0.019* -0.052 
  (0.030) (0.024) (0.014) (0.056) (0.012) (0.076) 
Year 2010 [Yes=1; No=0]*Treatment[Yes=1; No=0] -0.048 0.041* 0.016 -0.013 -0.00056 -0.0065 
  (0.031) (0.023) (0.015) (0.058) (0.012) (0.081) 
Year 2011 [Yes=1; No=0]*Treatment[Yes=1; No=0] -0.063* 0.017 0.0023 -0.055 -0.0021 -0.055 
  (0.037) (0.023) (0.018) (0.063) (0.013) (0.087) 
Year 2012 [Yes=1; No=0]*Treatment[Yes=1; No=0] -0.15*** -0.014 -0.02 -0.19** 0.0018 -0.20* 
  (0.041) (0.035) (0.020) (0.081) (0.015) (0.120) 
Log income tax revenue per inhabitant 0.037** 0.029** 0.019* 0.092*** -0.0084 0.11** 
  (0.015) (0.011) (0.010) (0.030) (0.006) (0.048) 
Percentage of urban population [0-100] 0.0046 0.00068 0.0065 0.01 0.00082 0.019 
  (0.011) (0.008) (0.006) (0.022) (0.002) (0.027) 
Log population to area (Km2) density -0.32 -0.43* -0.21 -1.08* -0.0063 -1.47* 
  (0.310) (0.230) (0.180) (0.600) (0.068) (0.780) 
Gross enrolment ratio, primary and secondary [0-100] 0.00024 -0.00028 0.000099 -0.00014 -0.00024 -0.0009 
  (0.001) (0.001) (0.001) (0.002) (0.000) (0.003) 
Observations 5576 5513 5439 5316 4261 4167 
R-Squared (within) 0.047 0.037 0.041 0.064 0.009 0.075 
F-stat 12.39 10.19 10.6 16.95 3.064 14.46 
F-test for Par. Trend 1.71 1.31 1.31 0.86 2.96 0.65 
Prob > F (0.16) (0.27) (0.27) (0.46) (0.03) (0.58) 
All panel regressions control for year fixed effects. 
Standard errors in parentheses -adjusted for clusters in municipality-. 
Treatment dummy does not appear due to fixed effects panel data estimation. 
* p < .10, ** p < .05, *** p < .01 
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