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ABSTRACT 

Apolipoprotein E4 (ApoE4) is the major genetic risk factor in Alzheimer's disease (AD) and 

homozygous individuals are at 12-fold greater risk developing the disorder. Three ApoE 

isoforms exist that differ by a cysteine-arginine interchange at sites 112 and 158. While the 

most common ApoE3 variant has a cysteine at site 112 and an arginine at site 158, ApoE2 

has two cysteines and ApoE4 two arginines, respectively. The difference in primary structure 

is believed to alter ApoE tertiary/quaternary structure and its function and is presumably 

therefore responsible for ApoE4's increased risk for AD. However, the exact mechanism 

whereby ApoE4 differs functionally from ApoE3 (and ApoE2) is still elusive. In this thesis, 

isoform dependent differences in the binding ability to heparin, a natural analogue to heparan 

sulphate proteoglycans (HSPGs) that are physiological receptors of ApoE and important in 

brain lipoprotein metabolism, as well as new ApoE tool compounds are identified. ApoE4 binds 

stronger to heparin compared to ApoE2 and ApoE3 and induces substantial conformational 

changes as measured using small angle X-ray scattering (SAXS). The isoform-dependent 

difference in the heparin interaction suggests altered ApoE4 binding ability to HSPGs. 

Meanwhile, L-Thyroxine and it's analogue Tafamidis, as well as the selective estrogen receptor 

modulators (SERMs) Clomiphene, Tamoxifen, Toremifene, and the non-steroidal anti-

inflammatory drug (NSAID) Meclofenamic acid were identified as novel ApoE binders by 

biophysical screening using the Corning® Epic® label-free, followed by microscale 

thermophoresis (MST) and isothermal titration calorimetry (ITC). Although none of these drugs 

showed selectivity for the ApoE4 versus ApoE2 and ApoE3 isoforms, they can nevertheless 

be used to investigate ApoE function and may also provide starting points for future attempts 

to identify and develop molecules which interact selectively with ApoE4 and which might 

therefore be of therapeutic utility. 
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1 INTRODUCTION 

1.1 Definition of Alzheimer’s disease 

In 1906, Alois Alzheimer received brain material from Auguste Deter, a woman who died of a 

clinically unusual dementia at the age of 51. By using Bielschowsky’s improved staining 

method, Alzheimer described new pathological features in the patient’s brain and observed 

tangles of fibrils within the cytoplasm of neurons that stained differently from normal 

neurofibrils, as well as a pronounced plaque pathology (1). Today we know that the plaques 

and neurofibrillary tangles (NFTs) are formed by aggregated amyloid beta (Aβ) peptide and 

tau protein that are characteristic lesion of Alzheimer’s disease (AD) (2). 

Alzheimer’s disease is the main cause of dementia and represents a rapidly growing burden 

to the healthcare system (3). An estimated 47 million people worldwide were living with 

dementia in 2015 and this figure is projected to double every 20 years to approximately 131 

million in 2050 (4). Dementia is an umbrella term and describes a group of symptoms that 

occur when the brain is affected by certain diseases or conditions. According to the 11th version 

of the International Statistical Classification of Diseases and Related Health Problems (ICD-

11, World Health Organization) dementia falls under the category of mental, behavioural and 

neurodevelopmental disorders and is an “acquired brain syndrome characterized by a decline 

from a previous level of cognitive functioning with impairment in two or more cognitive domains 

(such as memory, executive functions, attention, language, social cognition and judgment, 

psychomotor speed, visuoperceptual or visuospatial abilities)” (5). Dementia can be attributed 

to a neurological or medical condition and is not a normal part of aging (5). Dementia due to 

Alzheimer’s disease is the most common form of dementia and is often accompanied by other 

mental or behavioural symptoms such as depression, psychoses and seizures at later stages 

(6).  

With novel imaging methods and advancements in biomarker research for Aβ and tau 

deposition, the definition of AD in a living person is starting to shift from a clinicopathological 

entity to a biological construct (7). Definite certainty on the cause of dementia however requires 

histopathological confirmation at autopsy (2). NFTs and neuritic plaques are the most 

characteristic lesion of AD and its neuropathology remains defined around these characteristic 

hallmarks (8). 
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1.2 Neuropathology of Alzheimer’s disease 

1.2.1 Amyloid plaques 

Amyloid plaques or senile plaques are extracellular deposits of the Aβ peptide that were initially 

isolated and sequenced by Glenner & Wong and Master’s et al (9–11). The Aβ peptide is 

derived by sequential proteolytic cleavage of the β-amyloid precursor protein (APP) (12). APP 

is a glycosylated type I transmembrane protein with its amino terminal domain positioned in 

the extracellular space and its carboxyl terminus within the cytosol (13, 14). APP is processed 

via two principle pathways that either generate Aβ (amyloidogenic pathway) or prevent Aβ 

formation (anti-amyloidogenic pathway) (Figure 1.1). APP is most commonly cleaved within 

the Aβ sequence by α-secretases that are members of the ADAM (a disintegrin and 

metalloproteinase) family and thus initiate the non-amyloidogenic pathway (15–17). A soluble 

ectodomain of APP (sAPP-α) is released into the lumen and leaves a membrane-bound 

carboxyl terminal fragment (α-CTF) behind that is further cleaved by the γ-secretase complex  

yielding a non-toxic p3 peptide and APP intracellular domain (AICD) (18–21). Alternatively, 

APP can be cleaved by β-secretase, also referred to as β-site APP cleaving enzyme 1 (BACE-

1) that releases a truncated APP soluble domain (sAPP-β) and β-CTF of 99 amino acids (22–

24). The carboxyl terminal fragment β-CTF is further processed by the γ-secretase complex to 

liberate Aβ peptides between 38-46 amino acids in length (25–27). Of particular interest are 

the Aβ peptides Aβ40 and Aβ42. While the Aβ40 peptide is most abundant in the brain and 

cerebrospinal fluid (CSF) (26, 28, 29) the longer and less soluble Aβ42 peptide is far more 

prone to oligomerization and to formation of amyloid fibrils as demonstrated by in vitro 

assembly studies (30, 31). Immature diffuse plaques are exclusively composed of the longer 

amyloid peptide which may serve as a starting point to recruit more soluble Aβ40 to form mature 

neuritic plaques (32).  
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Figure 1.1. APP processing through the amyloidogenic and non-amyloidogenic pathway. The non-

amyloidogenic pathway (left) is initiated by α-secretase mediated cleavage of β-amyloid precursor protein (APP) 

that enables secretion of the large and soluble ectodomain of APP (sAPP-α) into the lumen and retention of the 83 

amino acid long carboxyl terminal fragment in the membrane (α-CTF). The α-CTF fragment can be further 

processed by γ-secretase to release p3 peptide and retain APP intracellular domain (AICD). The amyloidogenic 

pathway (right) on the other hand is initiated by cleavage of APP by β-secretase, also referred to as β-site APP 

cleaving enzyme 1 (BACE-1), that releases a slightly truncated ectodomain of APP (sAPP-β) and the 99-residue 

carboxyl terminal fragment (β-CTF). Β-CTF can undergo heterogeneous cleavage by γ-secretase that releases Aβ 

of various length. The Aβ sequence is shown on the bottom with cleavage sites of α, β and γ secretases. 

The identification of dominantly inherited missense mutations flanking and within the Aβ 

sequence, as well as in the presenilin 1 and 2 (PSEN1 and PSEN2) genes that encode core 

subunits of the γ-secretase complex support a dominant role of Aβ in AD. These mutations are 

inherited in a fully penetrant, autosomal-dominant fashion and result in the early onset of AD 

that account for approximately 5% of AD cases (33, 34). To date, 51 mutations have been 

reported for the APP gene, 219 for PSEN1 and 16 for PSEN2 and can be accessed on the 

Alzheimer Disease and Frontotemporal Dementia Database (35). Most of these mutations 

result in altered processing of the APP protein that increase the ratio of aggregatory, longer 

forms of the Aβ peptide or directly increase the aggregatory properties of Aβ (36–39). On the 

other hand, an APP missense mutation reported by Jonsson et al (40) decreases APP 

cleavage by β-secretase and the generated Aβ peptide seems to possess slower aggregation 

kinetics (41, 42).  
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The focus has recently shifted from amyloid plaques to soluble Aβ oligomers. Particularly, in 

the more common, late-onset form of AD there is poor correlation between the severity of 

dementia and density of fibrillary plaque load. Reports have shown substantial amounts of 

plaques in non-demented individuals (43–48) and synapse loss, as well as levels of soluble 

Aβ provide a better pathological correlate of memory decline in AD (43, 49–51). Evidence 

suggests that soluble Aβ oligomers rather than insoluble Aβ fibrils in form of plaques may be 

the toxic species and are hypothesized to be early effectors on synaptic efficacy, inflammatory 

response and tangle formation (52–57).  

1.2.2 Neurofibrillary tangles 

Neurofibrillary tangles (NFTs) are intraneuronal cytoplasmic paired helical filaments that are 

formed by abnormally hyperphosphorylated tau protein (58–60). Six tau isoforms are 

expressed in the human brain as a result of alternative mRNA splicing of transcripts from the 

microtubule-associated protein tau (MAPT) gene that is located on chromosome 17 (61, 62). 

Tau protein is predominantly found in axons where it performs its functions including initiation 

of tubulin polymerization and microtubule growth, as well as regulation of microtubule-

dependent axonal transport (63–65). Tau protein undergoes post-translational modifications 

of which its phosphorylation is best characterized (66). Physiological tau phosphorylation 

weakens the binding of tau protein to tubulin and results in destabilization of microtubules 

(Figure 1.2) (67–69). In AD, phosphorylation levels of tau protein are increased three to four 

fold compared to control brains (70). Tau hyperphosphorylation is believed to decrease its 

solubility and to promote its self-aggregation, as well as to promote misfolding of normal tau 

and co-aggregation into filaments (71–73).  

Similar to amyloid plaques, it has been assumed that only insoluble NTFs are responsible for 

tau’s cytotoxic effects; however, intermediate aggregates of abnormal tau or other soluble 

lower-mass species seem to have neurotoxic properties and were shown to lead to behavioural 

abnormalities, as well as synaptic dysfunction in animal models of tauopathies (74–76). Tau 

oligomers have been detected in brains of AD patients (77, 78) and were shown to have 

substantial tau seeding capacity (i.e. ability of tau aggregate to recruit monomeric tau) and that 

seeding is enriched in the synapses as compared to the cytosol (79). This data supports the 

pathogenic role of tau oligomers and their ability to propagate from affected to unaffected brain 

regions during disease progression. However, the exact mechanisms by which tau oligomers 

cause neurodegeneration and propagate across the brain remain to be elucidated (80). 
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Figure 1.2. Intraneuronal aggregation of tau protein. Microtubules form part of the cytoskeleton and are 

cylindrical polymers that are composed of the two globular proteins α- and β-tubulin. Tau protein is one of the major 

microtubule-associated proteins (MAPs) that stabilizes microtubule architecture by interaction through its 

microtubule-binding repeats. Phosphorylation of tau protein at specific serine or threonine sites by different kinases 

attenuates tau binding to microtubules that results in their destabilization. Highly phosphorylated tau dissociates 

from the microtubule array and accumulates in paired helical filaments (PHFs). Figure adapted with permission 

from Springer Nature: Mazanetz and Fischer, Nature Reviews Drug Discovery, 2007, 6(6):464-79 (81). 

1.2.3 Synapse loss 

Synapse loss is a neuropathological change in AD that correlates most closely with symptoms 

(43) and was shown with immunohistochemical markers directed against pre- or postsynaptic 

proteins as well as with electron microscopy studies (8, 82). Immunohistochemical 

quantification of the presynaptic protein synaptophysin showed significant decrease (up to 

50%) in the density of the protein immunoreaction in different brain sections and ultrastructural 

studies revealed a decline in synapse numbers between controls and AD subjects (83–85). 

Aβ, as well as tau were shown to impair synapse functioning that is likely to result in synapse 

loss (86). Neurochemical analyses in the late 1970s and early 1980s revealed a substantial 

reduction of acetylcholine generating and metabolizing enzyme levels in AD brain tissue 

compared to controls, as well as degeneration in the cholinergic cell bodies of the basal 

forebrain that project to the cortex and hippocampus (87–91). These observations, in 

conjunction with pharmacological evidence linking the cholinergic system to learning and 

memory in animals and man led to the conclusion that in particular dysfunction and 

degeneration of cholinergic neurons contribute to the cognitive decline and the early symptoms 

in AD. Currently available and approved symptomatic drug therapies in AD are therefore 

cholinesterase inhibitors such as donepezil, galantamine and rivastigmine (92), but also the 

glutamate N-methyl-D-aspartate (NMDA) receptor antagonist memantine (as a blocker of 

excitotoxicity) (93). 
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1.3 Genetics of Alzheimer’s disease 

AD is commonly classified into early (< 65 years) and late (> 65 years) onset forms (94, 95). 

According to family history, AD cases can be further divided into autosomal dominant, familial 

or sporadic* AD (96). Most cases of autosomal dominant AD have an early onset with a 

heritability ranging between 92 to 100% (97). To date, three genes are known in which 

mutations are associated with autosomal dominant early onset AD: APP, PSEN1 and PSEN2 

(Section 1.2.1). These mutations have nearly complete genetic penetrance and ultimately 

cause AD (33). Late onset familial or sporadic AD is the most common form of the disease. 

Although, twin studies showed a substantial genetic component and a clear heritability in AD 

with late onset (98, 99), the pattern of inheritance seems far more complex in which genetic 

risk factors work together with environmental factors and life style (33). Genome wide 

association studies (GWAS) have significantly contributed to our current understanding of late 

onset AD and identified novel genetic risk loci (100, 101). Most risk loci cluster within three 

pathways including cholesterol and lipid metabolism, immune system and inflammatory 

response, and endosomal vesicle trafficking (102). Out of all the genetic risk loci revealed over 

the last decades, only one has a striking effect on AD risk and was identified before the 

availability of GWAS. The inheritance of the ɛ4 allele of the apolipoprotein E gene (APOE) is 

considered to be the major genetic risk factor for late onset AD (103–105). 

1.4 Introduction to Apolipoprotein E 

Apolipoprotein E (ApoE) was  identified by Shore and Shore in 1973 as a major protein 

constituent of very low density lipoproteins (VLDLs) and was initially termed “arginine-rich 

protein” (106). Two years later, Utermann et al (107) further characterized this arginine-rich 

protein, differentiated it from previously identified apolipoproteins B and C that are also present 

on VLDLs and coined it apolipoprotein E. Subsequent electrophoresis studies in the late 1970s 

and early 1980s showed distinct electrophoretic patterns of plasma VLDL-derived ApoE as a 

result of genetic polymorphism in the human population (108–113). The electrophoresis 

pattern revealed six different ApoE phenotypes that could be explained by three alleles at a 

single genetic locus. Amino acid analysis and sequencing in the same era by Weisgraber, 

Mahley and colleagues at the Gladstone Institute in California, USA demonstrated that ApoE’s 

heterogeneity is due to differences in primary structure and comprises cysteine-arginine 

                                                
* Autosomal dominant, familial and sporadic AD are defined by the American College of Medical Genetics and the 

National Society of Genetic Conselors (96) as follows: 
1 Autosomal dominant AD is characterized by disease that occurs in at least three individuals in two or more 

generations, with two of the individuals being first degree relatives. 
2 Familial AD is characterized by disease that occurs in more than one individual, and at least two of the affected 

individuals are third-degree relatives. 
3 Sporadic AD is characterized by an isolated case in the family or cases separated by more than three degrees 

of relationship. 



7 
 

interchanges (114, 115). A common nomenclature system to describe ApoE allelic variance 

was introduced in 1982 and was based on the electrophoretic behaviour of ApoE isoforms 

(116). The three major APOE alleles were termed ε2, ε3 and ε4; the corresponding proteins 

as seen in plasma by two-dimensional gel electrophoresis were named ApoE2, ApoE3 and 

ApoE4*. 

In humans, the three different APOE alleles (ɛ2, ɛ3 and ɛ4) are found on chromosome 19 and 

result in six possible genotypes (homozygous genotypes ε2/ε2, ε3/ε3, ε4/ε4 and heterozygous 

genotypes ε2/ε3, ε2/ε4, ε3/ε4) (117). The ɛ3 allele and therefore the ɛ3/ɛ3 genotype is most 

frequent with an allelic frequency of approximately 78% in the Caucasian population; ε2 and 

ε4 have frequencies of 8% and 14% respectively (118). Notably, the ɛ4 variant of APOE is 

overrepresented in patients with AD and increases the risk for the disease in a gene dose-

dependent fashion (103–105). Corder et al (105) in their 1993 landmark study investigated the 

gene dose effect of the ε4 allele in 42 families with late onset AD and showed that the 

proportion of individuals with AD to healthy subjects increased with the number of ε4 alleles. 

While approximately 21% of subjects with an ε3/ε3 genotype developed AD, the number of 

affected individuals increased to 48% of subjects with ε3/ε4 and 91% with ε4/ε4 genotype 

respectively. Additionally, Corder et al (105) showed that the ε4 allele drastically reduces the 

age at onset to a younger age. Individuals without the ε4 allele had a mean age at onset of 84 

years; one copy of the ε4 allele shifted the age at onset to 76 years, two copies to 68 years 

respectively. Meta-analysis by the ApoE and Alzheimer Disease Meta-Analysis Consortium 

(118) confirmed the odds and notably showed that women across all APOE genotypes are 

more likely to develop AD than men. The magnitude of the ε4 allele on the risk to develop AD 

should further be established with the upraise of GWAS that consistently confirmed APOE ε4 

as the major risk locus for late onset AD (100, 101). 

As mentioned, ApoE’s heterogeneity is due to cysteine-arginine interchanges and correspond 

to combinations of amino acids at residues 112 and 158. ApoE3 has a cysteine at site 112 and 

an arginine at position 158, ApoE2 has two cysteine and ApoE4 two arginine at both sites 

respectively (114, 115). ApoE is a 299 amino acid glycoprotein (MR 34,200 Da) that is 

predominantly expressed in the liver and brain as determined by immunohistochemistry and 

mRNA analysis in human tissue and other species (119–122). In the liver, ApoE is expressed 

by hepatocytes (119, 123) and in the brain mostly by astrocytes (124, 125). ApoE is the major 

lipid, as well as cholesterol carrier in the brain and is involved in lipoprotein metabolism through 

                                                
*  What happened to ε1 and ApoE1? As mentioned, the ApoE nomenclature system from 1982 is based on 

electrophoretic patterns. ApoE isoforms are separated by isoelectric focusing and bands with different isoelectric 
point and/or molecular weight are assigned a group number. A band observed at position 1 is normally caused by 
either sialylated ApoE2, E3 or E4 (116). However, a very rare ApoE variant was identified by Weisgraber et al (469) 
in 1984  that migrates to the E1 band (not due to sialylation) and was therefore coined ApoE1. It differs from ApoE2 
at site 127 (Gly127 → Asp). 
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interaction with its receptors such as low density lipoprotein (LDL) receptor (LDLR), LDL 

related protein 1 (LRP1) and heparan sulphate proteoglycans (HSPGs) (117, 126). 

1.4.1 Lipoprotein metabolism and physiological role of ApoE in the periphery 

The primary function of ApoE is to transport lipids and cholesterol in our body. Lipids are highly 

insoluble in aqueous solutions and therefore become associated with proteins (i.e. 

apolipoproteins) to form water soluble lipoprotein complexes (Figure 1.3) (127). The role of 

plasma lipoproteins and apolipoproteins in the periphery of our bodies has been studied 

extensively, whereas central nervous system (CNS) lipoproteins are less well characterized 

and differ from those in the periphery with respect to lipid as well as apolipoprotein composition 

(Section 1.4.2).  

 

Figure 1.3. Classification and constituents of plasma lipoproteins. Lipoproteins are a complex of lipids, 

cholesterol and proteins. All lipoproteins share a similar structural organization. Phospholipids (PL) enclose a core 

of triacylglycerols (TG), cholesteryl esters and cholesterol (C). Integrated into PL bilayer are apolipoproteins such 

as ApoE. Lipoprotein classes are based on their densities and diameters and can range from 600 nm to 10 nm. 

Chylomicrons and very low-density lipoproteins (VLDLs) contain a large core of triacylglycerols and 1-10% of 

apolipoprotein by weight. Low-density lipoproteins (LDLs) and high-density lipoproteins (HDLs) on the other hand 

have highest cholesterol and cholesteryl ester contents, as well as up to 50% protein. Figure adapted with 

permission from Elsevier: Jonas and Phillips, Biochemistry of Lipids, Lipoproteins and Membranes, 2008, 348:485-

506 (127). 

The principal function of lipoproteins in the periphery of our body is determined by their lipid 

and apolipoprotein composition. Lipid-rich chylomicrons (CM) are derived from the intestine 

and transport dietary-derived lipids to various tissues. CM undergo lipolysis (i.e. lipids are 

extracted from their core) while circulating in the blood stream and the CM remnants are 

eventually catabolized in the liver by hepatocytes via ApoE-receptor mediated endocytosis 

(128, 129). Very low-density lipoproteins (VLDLs) are synthesized in the liver and deliver 
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endogenous triglycerides, as well as cholesteryl esters from the liver to other tissues. VLDLs 

like CM are subject to lipolysis in the blood stream that results in the generation of low-density 

lipoproteins (LDLs). The most protein-rich and smallest high-density lipoprotein (HDL) particles 

take part in the reverse cholesterol transport. The reverse cholesterol transport is important in 

maintaining cholesterol homeostasis and forms a mechanism by which the body transports 

cholesteryl esters to steroid hormone synthesizing tissues, as well as by which it eliminates 

excessive cholesterol from the periphery (Figure 1.4) (128, 130). 

 

Figure 1.4. Peripheral lipoprotein metabolism. Dietary lipids, as well as cholesterol are combined into 

chylomicrons (CM) with apolipoprotein B48 (ApoB48) and secreted into circulation. Lipids are extracted by 

interaction with lipoprotein lipase (LPL) and CM remnants are eventually internalized by hepatocytes in the liver. 

Liver-derived lipids and sterols are packed into VLDLs with apolipoprotein B100 (ApoB100) and similar to CMs are 

catabolized in circulation by LPL. Processing results in the generation of LDLs. Reverse cholesterol transport is 

initialized by the secretion of lipid-poor apolipoprotein A1 (ApoA1) from the liver. ApoA1 acquires phospholipids and 

cholesterol in circulation, as well as from peripheral tissues that results in the formation of HDL particles. Cholesterol 

in the HDLs is then transported to peripheral tissues (e.g. where needed for steroid hormone synthesis), back to 

the liver or transferred by cholesterol ester transfer protein (CTEP) to other lipoproteins. ApoE is synthesized in the 

liver (but also intestine) and is transferred to most lipoproteins in circulation including CM, CM remnants, VLDLs 

and HDLs. ApoE, as well as ApoB48 and ApoB100 mediate the internalization of lipoproteins into the liver and 

peripheral tissues via interaction with LDLR, LRP1 and HSPGs. 

ApoE is a critical ligand for the clearance of lipoproteins via ApoE receptors and HSPGs. 

Intravenous infusion of recombinant human ApoE or ApoE isolated from rabbit plasma 

markedly reduced lipoprotein levels in cholesterol-fed rabbits by directing lipoproteins into the 

liver and transgenic animals overexpressing ApoE were shown to have accelerated CM 

remnant clearance (131–133). ApoE-knockout mice on the other hand show defective 
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lipoprotein clearance, subsequent cholesterol accumulation and phenotypically develop 

atherosclerotic plaques (134). 

Compelling evidence of ApoE’s role in lipoprotein metabolism comes from patients with type 

III hyperlipoproteinemia; a rare genetic disorder that is characterized by elevated cholesterol, 

as well as triglyceride plasma levels due to accumulation of lipoproteins and affected 

individuals are predisposed to premature development of atherosclerosis (135). Type III 

hyperlipoproteinemia is a result of rare ApoE mutants that have defective receptor binding 

ability. A naturally occurring ApoE4 variant that has a cysteine at site 142 instead of an arginine 

is associated with the dominant transmission of type III hyperlipoproteinemia (136, 137). The 

variant was shown to have approximately 20% of normal binding to LDLR, as well as strongly 

reduced binding to HSPGs (137). Expression of the ApoE4 variant (Arg142Cys) in mice 

reproduced the hyperlipidemic effects with accumulation of VLDLs, hypercholesterolemia and 

impaired lipoprotein clearance (138). Rare cases of complete ApoE deficiency in humans have 

been reported and deficiency has identical outcomes on lipoprotein metabolism as type III 

hyperlipoproteinemia (139). The ApoE2 variant has also a defective receptor binding site 

(Section 1.4.3) and is a susceptibility factor for the disorder; however, development of overt 

hyperlipoproteinemia requires homozygous ε2/ε2 genotype and additional pathology such as 

obesity or diabetes (135). 

Several steps are involved in the uptake of lipoproteins in the liver and particularly involve the 

interaction of ApoE with HSPGs (Figure1.5) (126, 140–142). Lipoprotein uptake is initialized 

by sequestration or capture through the interaction of ApoE to HSPGs in the perisinusoidal 

space (or space Disse; location in the liver between sinusoid and hepatocyte). Other enzymes 

such as hepatic lipase (HL) (143) and lipoprotein lipase (LPL) (144) were shown to bind to 

HSPGs and further process the particles. Internalization into hepatocytes involves the 

interaction of ApoE with cell surface receptors LDLR, LRP1 and HSPGs (126). Treatment of 

HepG2 hepatocytes or LDLR-negative familial hypercholesterolemic fibroblasts with 

heparinase, a heparin and HSPG degrading enzyme, impaired the binding and uptake of CM 

(145) and infusion of heparinase into mice in vivo resulted in reduced VLDL plasma clearance, 

as well as liver uptake (146). Internalization of lipoproteins by LRP1 seems to require the 

presence of HSPGs and LRP1 was shown to coimmunoprecipitate with proteoglycans (147).  

Studies by MacArthur et al (148) in mice with inactive HSPG biosynthetic enzyme N-acetyl-D-

glucosamine N-deacetylase/N-sulfotransferase 1 (Ndst1) proofed an independent role of 

HSPGs in lipoprotein uptake. Ndst1 is involved in HSPG synthesis by transferring sulphate to 

free amino groups of N-acetyl-D-glucosamine. Hepatic knockout of the Ndst1 gene in mice 

was shown to decrease HSPG sulfonation in the liver and mice accumulated ApoE containing 

triglyceride-rich lipoproteins (i.e. CM remnants and VLDLs) in the presence of LDLR and LRP1 
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which suggests an independent role of HSPGs in lipoprotein clearance. The relative 

contribution of HSPGs, LDLR and LRP1 was confirmed by the same research group in a follow-

up study by producing mice lacking various combinations of the three receptors (149). HSPGs 

and LDLR were shown to be the dominant receptors in mediating triglyceride-rich lipoprotein 

clearance under fasting conditions, whereas LRP1 plays a minor role. Notably, mice lacking 

HSPGs accumulated particles of smaller size (20-50 nm in diameter) that are enriched in ApoE 

compared to mice lacking the LDLR family members (30-60 nm in diameter) (149, 150). Cross-

breeding of the Ndst1 knockouts with ApoE deficient mice resulted in greater accumulation of 

plasma triglycerides compared to either single mutant alone (150). These studies establish the 

importance of ApoE in lipoprotein metabolism by HSPGs and suggest that HSPGs mediate 

the uptake of a subset of smaller, ApoE enriched triglyceride-rich lipoproteins (149, 150). One 

goal of this thesis is to expand our knowledge in the interaction of ApoE to HSPGs and evaluate 

isoform dependent differences. 

 

 

Figure 1.5. Lipoprotein clearance pathways in the liver. ApoE-containing lipoproteins enter the space of Disse 

(or perisinusoidal space) that is enriched with HSPGs, ApoE (E) and other enzymes such as hepatic lipase (HL) 

and lipoprotein lipase (LPL). Remnants are sequestered by HSPGs via ApoE and internalized into hepatocytes by 

LDLR, by the HSPG-LRP1 complex and/or by HSPGs alone. Figure adapted with permission from the American 

Society for Biochemistry and Molecular Biology: Mahley and Ji, Journal of Lipid Research, 1999, 40(1):1-16 (126). 
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1.4.2 Lipoprotein metabolism and physiological role of ApoE in the brain 

The brain is the most cholesterol-rich organ in the body and contains approximately 20% of 

the whole body’s cholesterol of which the majority is found in myelin (151–153). Such a large 

pool of cholesterol would presumably require uptake of plasma lipoproteins across the blood 

brain barrier (BBB). However, unlike hepatic sinusoids there are no fenestrations as a result 

of tight junctional attachments of endothelial cells that would allow paracellular transport (153, 

154). Cholesterol metabolism in the brain is thus insulated from changes in circulating 

cholesterol and comes entirely from local synthesis (155–158). Cholesterol alters the 

biophysical properties of membranes and influences synaptic function, integrity and 

development (159). Efficient cholesterol transport in the CNS is therefore essential and unlike 

in the periphery, where cholesterol transport is mediated by additional apolipoproteins ApoB48 

and ApoB100 (Figure 1.4), cholesterol transport in the brain is controlled by ApoE and ApoA1 

Several apolipoproteins have been detected in human cerebrospinal fluid (CSF), of which 

ApoE and ApoA1 are the most abundant with CSF concentrations around 4 µg/mL, or 4% and 

0.3% of their respective plasma levels (160). ApoE is the major apolipoprotein in the brain and 

is mostly synthesized and secreted by astrocytes in form of nascent lipoprotein particles (124, 

125). It is also expressed in microglia, as well as in neurons particularly under stress conditions 

or injury as assessed in mice expressing enhanced green fluorescent protein (EGFP) under 

control of the endogenous ApoE promoter (161). Studies in mice, as well as studies in human 

patients who received liver transplants of different APOE genotype to their own suggest that 

ApoE does not cross the BBB and therefore must come from local synthesis in the brain (162, 

163). ApoA1 on the other hand is not produced in the CNS, but instead is transferred from the 

periphery to the CSF (164). The exact mechanism and the specific transporter for the ApoA1 

transfer remains to be elucidated.  

Freshly synthesized ApoE-containing lipoproteins from astrocytes are lipidated by adenosine 

triphosphate (ATP) binding cassette A1 (ABCA1) shortly after their secretion (Figure 1.6) (165). 

Lipidation of ApoE by ABCA1 is critical in the regulation of ApoE levels and function in the 

CNS. Knockout ABCA1 mice have considerably lowered ApoE, as well as cholesterol levels in 

plasma and CSF due to abnormal lipidation and processing of ApoE (165). Conversely, 

overexpression of ABCA1 in transgenic mice results in an increased ApoE lipidation state 

(166). Astrocyte-secreted particles are discoid in shape with a diameter of 8-15 nm and lack a 

lipid core (167, 168). Human CSF lipoproteins on the other hand tend to be spherical (10-20 

nm in diameter) and resemble plasma HDLs (160). As suggested by LaDu et al (167) astrocyte-

secreted lipoproteins in brain parenchyma may accumulate cholesterol and develop a lipid 

core through the activity of various enzymes including lecithin cholesterol acyltransferase 

(LCAT). The ApoE-containing lipoproteins circulate within the CNS and transport cholesterol, 
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as well as lipids to neurons and are internalized by interaction of ApoE with the superfamily of 

LDLR proteins which are abundantly found in the brain (Figure 1.6) (169). Knockout of LDLR 

in mice was shown to increase levels of ApoE in brain parenchyma and CSF which suggests 

impaired metabolism of ApoE containing lipoproteins and deletion of LRP1 in mouse forebrain 

neurons had similar effects (170, 171). Overexpression of LDLR in transgenic mice on the 

other hand resulted in the opposite effects with a significant decrease in brain ApoE levels 

being observed (172). HSPGs and other proteoglycans are also widely expressed in brain 

tissue and are important for brain development, synaptogenesis and axonal growth (173). 

Similar to the periphery, HSPGs are likely involved in ApoE mediated uptake of lipoprotein 

particles in the brain. Astrocyte-secreted ApoE particles were shown to bind to heparin and 

require HSPGs for cellular uptake (174). Additionally, internalization of VLDLs isolated from 

rabbit plasma by rat hippocampal neurons and human astrocytoma cells was impaired after 

cells were treated with proteoglycan degrading enzymes (175). 

 

Figure 1.6. Central nervous system lipoprotein metabolism. ApoE is the major cholesterol and lipid transporter 

in the CNS. ApoE is secreted by astrocytes or microglia and further lipidated by ABCA1 to form HDL discs. The 

unesterified cholesterol in the discoidal HDLs is esterified by LCAT. ApoA1 after having crossed the blood brain 

barrier is also transferred to the HDLs. The ApoE and ApoA1 containing particles are then taken up by neurons via 

interaction with LDLR proteins and HSPGs where cholesterol and lipids are used for regeneration, axonal growth 

and synaptogenesis. 

ApoE and ApoE receptor-mediated lipid redistribution is important for synaptic plasticity and 

neuronal repair. In terms of neuro- and synaptic plasticity, the effect of ApoE on neurite 

outgrowth has been extensively investigated. Studies have shown that ApoE-containing 

lipoproteins promote neurite outgrowth in a variety of cultured cell types including rabbit dorsal 

root ganglions, mouse hippocampal neurons and mouse neuroblastoma cells (176–180). On 

the other hand, cortical neurons derived from APOE knockout mice had significantly shorter 
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neurites compared to wild type mice and hippocampal slice cultures from APOE knockout mice 

showed reduced sprouting of mossy fibres (178, 181). Importantly, the effects of ApoE 

containing lipoproteins on neurite outgrowth were stopped by blocking the interaction with 

LRP1 through anti-LRP1 antibodies or receptor-associated protein (RAP), a LRP1 antagonist 

(176–180).  

In addition, ApoE plays a critical role in neuronal repair and CNS inflammatory response. 

Secretion of ApoE by macrophages was observed to be strongly increased after peripheral, as 

well as optic nerve injury in rats, reaching a maximum number of ApoE positive cells at two 

weeks after lesion (182–184). Increased expression of ApoE by microglia was confirmed in 

vivo by treating EGFP-ApoE transgenic mice with kainic acid, a potent kainate receptor agonist 

that is known to activate microglia and induce gliosis (161). Similarly, increased ApoE levels 

were observed in rat and mouse brains following experimentally induced ischaemia and 

traumatic brain injury with glia cells being the major site of ApoE synthesis, as well as neuronal 

cells to a minor extent (185–187). Notably, APOE knockout mice were shown to have cognitive 

impairment and greater neurological damage compared to control animals after experimental 

head injury (188). Knockout animals had slower recovery rates, performed worse in the Morris 

water test and had higher hippocampal neuronal death compared to control mice (188). These 

data support the hypothesis that ApoE confers a neuroprotective and regenerative effect by 

redistributing lipids and cholesterol after nerve injury (185, 188). Respectively, the ApoE 

promoter region holds binding sites for several inflammatory transcription factors including a 

nuclear factor-κB (NF-κB) binding site that are likely to regulate ApoE expression and secretion 

during immune response (189–191). HSPGs were shown to participate in the nerve injury 

response, however, their interplay with ApoE in this scenario is not well characterized. HSPG 

synthesis was identified to be upregulated in astrocytes after brain injury in mice and rats and 

an increase in HSPG quantity was especially observed around the injury site (192, 193). 

Increased HSPG expression and secretion may enhance capture of ApoE containing 

lipoproteins, as well as other growth factors that are secreted by microglia, astrocytes and 

neurons and therefore promote neuron regeneration (194). 
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1.4.3 Apolipoprotein E structure and biochemistry 

As introduced in Section 1.4, three major ApoE isoform exist due to allelic variance that differ 

at site 112 and 158 (ApoE2 Cys112/Cys158, ApoE3 Cys112/Arg158, ApoE4 Arg112/Arg158, 

Figure 1.7) (114, 115). All ApoE isoforms have in their lipid-free state an independently folded 

amino terminal and carboxyl terminal domain that are linked by a flexible hinge region (195, 

196). The hinge region is prone to proteolysis and is cleaved by a variety of enzymes generally 

generating 22 kDa amino and 10 kDa carboxyl terminal domain digestion products (196).  

The amino and carboxyl terminal domain harbour the receptor and lipid binding regions that 

have characteristic basic and hydrophobic residues (Figure 1.7). Chemical modification of 

lipoprotein particles revealed that arginine and lysine residues are critical for ApoE mediated 

uptake of lipoproteins into human fibroblasts via LDLR (197, 198). The first indication that the 

central region of ApoE (residues 136-158) was involved in receptor binding emerged when the 

amino acid interchange in ApoE isoform was determined and ApoE2 with its cysteine at site 

158 was identified to possess impaired LDLR binding ability (114, 115, 199). Population based 

studies in patients with type III hyperlipoproteinemia revealed several naturally occurring 

mutations around the central region that should further help to define the receptor binding 

residues (200). Eventually, the receptor binding site was narrowed down to residues 134-150; 

an arginine and lysine rich region located on helix 4 of the amino terminal domain (Figure 1.7) 

(201–203). However, later studies revealed that full receptor binding activity additionally 

requires an arginine at site 172 (204). The lipid binding site on the other hand was predicted 

to be located on the carboxyl terminal domain based on primary structure (115). 

Apolipoproteins A, C and E have the same genomic structure and likely evolved from a 

common ancestral gene (205). Similar to other apolipoproteins, the ApoE carboxyl terminus 

contains amino acid sequences with amphipathic regions that are assumed to take an α-helical 

conformation. Segrest et al (206) hypothesized that these regions have a large apolar face 

that associates with the fatty acid side chains of phospholipids and a polar face with positively, 

as well as negatively charged amino acids that interact with the zwitterionic phospholipid polar 

head group. Assessment of lipid and lipoprotein binding ability of carboxyl terminally truncated 

ApoE, as well as various carboxyl terminal peptides located the lipid binding region around 

residues 244-272 (Figure 1.7) (207, 208). Interestingly, the receptor, as well as the lipid binding 

region seem to both be involved in heparin binding (209–213). 
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Figure 1.7. ApoE domain structure. A linear model of ApoE structure is shown. ApoE consists of two 

independently folded domains. A four α-helix bundle that contains the receptor binding site (residues 134-150) and 

an α-helical carboxyl terminus that harbours the lipid-binding region (residues 244-272). ApoE isoforms differ at 

sites 112 and 158. ApoE isoforms are prone to proteolysis and are cleaved by a set of proteases such as trypsin 

and chymotrypsin. Cleavage sites are found between the amino and carboxyl terminus located around site 200. 

ApoE is physiologically present on lipoprotein particles and is associated with lipids and 

cholesterol. The actual amount of lipid-free ApoE is expected to be small. On lipid binding and 

lipoprotein association, ApoE undergoes substantial conformational changes, firstly inferred 

from observations made that ApoE’s binding affinity to LDLR increases upon lipid binding 

(214). Further studies showed that binding affinity is also dependent on the presence of other 

apolipoproteins on the particles. C apolipoproteins (in particular ApoC1 that is also present in 

the brain) can oppose ApoE function in hepatic clearance of CM remnants, as well as VLDLs 

as assessed in studies with perfused rat liver (215–217) and presence of C apolipoproteins on 

VLDLs interferes with ApoE’s ability to interact with LRP1 (218, 219). These findings suggest 

that C apolipoproteins may displace ApoE from VLDLs and/or that they might induce 

conformational changes of ApoE and abolish its ability to bind to its receptors (216, 219). That 

ApoE may undergo conformational changes during lipoprotein metabolism was inferred by 

Sehayek et al (220) who investigated the effects of VLDL lipolysis on lipoprotein uptake and 

degradation in cultured fibroblasts, as well as hepatocytes. Incubation of human plasma 

derived ApoE-containing VLDLs with exogenous LPL enhanced their uptake and metabolism 

compared to untreated lipoproteins indicating that lipolysis may induce conversion of ApoE 

from a “receptor-inactive” to a “receptor-active” conformation. Notably, lipolysis was 

accompanied by the loss of ApoC1 on VLDLs that would be in accordance of its influence on 

ApoE conformation (220). 

In order to study the conformation of physiologically lipid-bound ApoE, synthetic lipoproteins 

were used and analysed by fluorescence energy transfer (FRET), electron paramagnetic 



17 
 

resonance spectroscopy (EPR), small angle X-ray scattering (SAXS) and X-ray diffraction. 

These studies suggest that ApoE folds upon phospholipid binding into an α-helical hairpin-like 

structure (Figure 1.8) (221–225). Synthetic lipoproteins are ApoE-phospholipid complexes 

either made with dimyristoylphosphatidylcholine (DMPC) or dipalmitoylphosphatidylcholine 

(DPPC) and resemble HDLs in terms of density and metabolism (214, 221, 222). X-ray 

diffraction and SAXS data of ApoE bound to DPPC suggest an ellipsoidal to spheroidal particle 

surface that holds two horseshoe resembling ApoE molecules (221, 222). The α-helical hairpin 

model provides an explanation for why lipid association is important for high affinity LDLR 

binding. In ApoE’s lipid-free state, residues that form the receptor binding domain and arginine 

at site 172, which as mentioned is important for receptor binding activity, are separated by 

more than 15 Å. However, in the hairpin model all required residues are close together and 

therefore would result in full receptor binding activity (Figure 1.8) (222, 225). 
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Figure 1.8. The α-helical hairpin-like and horseshoe-like conformation model in ApoE-DPPC particles. 

Amino terminal helices are highlighted in colours (helix 1 in blue, helix 2 in red, helix 3 in yellow and helix 4 in 

green), while the carboxyl terminus is shown in grey. Upon lipoprotein binding, ApoE unfolds and adopts a 

horseshoe-like structure with residues involved in LDLR binding being in close proximity to each other (blue bars 

indicating alignment of crucial LDLR binding residues). Figure adapted with permission from Elsevier: Hatters, 

Peters-Libeu, Weisgraber, Trends in Biochemical Sciences, 2006, 31(8):445-454 (226). 

Observations made by isothermal titration calorimetry (ITC) (227), surface plasmon resonance 

(SPR) (228) and fluorescence analysis of ApoE labelled with fluorophores at its amino or 

carboxyl terminus (229) suggest a two-step binding mechanism of ApoE to small and large 

emulsions. Initially, ApoE binds to a lipid surface through its carboxyl terminal domain followed 

by a slower conformational reorganization of its amino terminal helix bundle. This model likely 

applies for binding of ApoE to large emulsion particles such as VLDLs. Interestingly, not only 

ApoE-lipid, but also the interaction of ApoE with resident proteins seems to be important for 

binding to HDLs (228–230). Removal of the carboxyl terminus by site directed mutagenesis 
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was shown to have minor effects on binding of ApoE to HDLs but had a substantial impact on 

VLDL binding (230). Most of the HDL particle surface is covered with proteins whereas in 

VLDLs most of the surface is phospholipids (127). The lipid interaction may therefore play a 

minor role in binding of ApoE to HDLs compared to other large phospholipid-rich particles (229, 

230). 

1.4.4 Structural and functional differences between apolipoprotein E isoforms 

The amino acid substitutions in ApoE isoforms are thought to have profound effects on their 

structure and properties. As previously mentioned, ApoE2 is associated with type III 

hyperlipoproteinemia and was identified as susceptibility factor in the late 1970s (108, 111). 

ApoE2 isolated from ε2/ε2 homozygotes, as well as from patients with overt 

hyperlipoproteinemia showed impaired binding to LDLR compared to ApoE3 and ApoE4 (199, 

231). Notably, the binding ability of the isoform could be rescued by chemical modification of 

its cysteine residues into cysteamines that mimic positively charged lysine residues (199). 

Chemical modification of ApoE3 on the other hand showed no effect on receptor binding ability 

which suggests the importance of a positive charge at site 158 (199). The high-resolution 

crystal structure of the ApoE2 amino terminal domain revealed that substitution of arginine to 

cysteine eliminates a salt bridge that normally forms between Arg158 and Asp154. Asp154 

interacts instead with Arg150 and perturbs the electrostatic potential within the receptor binding 

region, therefore reducing ApoE2’s ability to interact with LDLR (232, 233). Elimination of the 

Asp154 – Arg150 salt bridge in ApoE2 by mutation of Asp154 into alanine increased receptor 

binding activity of ApoE2 to normal levels and demonstrated the salt bridge to be a key 

determinant of the defective ApoE2-LDLR binding interaction (232). 

The additional arginine at site 112 in ApoE4 compared to ApoE3 is postulated to introduce 

more rigorous interactions between the amino and carboxyl terminus. This concept termed 

“ApoE4 domain interaction” is a prevailing hypothesis that postulates an intramolecular salt 

bridge between Arg61 and Glu255 in ApoE4 (Figure 1.9) (234). Although studies suggest this 

intramolecular salt bridge as an intrinsic property of ApoE4, there is no direct proof in form of 

a crystal structure and the theory remains unproven. Other reports propose altered receptor 

binding ability of ApoE4 or altered quaternary structure as a result of the amino acid 

interchange. It remains to be elucidated how exactly ApoE4 differs in terms of structure to 

ApoE2 and ApoE3. Following paragraphs discuss the evidence for and against the ApoE4 

intramolecular domain interaction. 
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Figure 1.9. ApoE4 domain interaction. The arginine at site 112 in ApoE4 is postulated to orient the side chain of 

Arg61 so that a salt bridge forms to Glu255, resulting in more rigorous interactions between the amino and carboxyl 

terminus. In ApoE3 on the other hand, Arg61 is buried between helix 2 (red) and 3 (yellow) which hinders the 

formation of an intramolecular salt bridge. 

ApoE4 was shown to preferentially bind to large lower-density lipoproteins (VLDLs and LDLs) 

in comparison to ApoE3 that preferably associates with smaller and cholesterol-rich HDLs 

(235–237). The altered lipoprotein distribution seems to be mediated by the positive charge at 

site 112. Chemical modification of ApoE3’s cysteine into a positively charged cysteamine was 

shown to shift its binding preference from HDLs to VLDLs, similar to ApoE4 (237). Based on 

this observation and the fact that the carboxyl terminal domain in ApoE mediates lipid 

association, Karl Weisgraber at the Gladstone Institute suggested in 1990 that both domains 

may interact via an ApoE4-specific salt bridge (237). Comparison of lipoprotein distribution of 

canine ApoE (arginine at equivalent position 112) and rabbit ApoE (cysteine at equivalent 

position 112) demonstrated however that both mammal apolipoproteins preferentially 

associate with HDLs identical to human ApoE3 (238). This indicated that ApoE4’s preferred 

binding to VLDLs involved additional residues other than Arg112. The high-resolution crystal 

structure of the ApoE4 amino terminal domain revealed that Arg112 interacts via a salt bridge 

with Glu109, leading to conformational changes of the second helix that contains Arg61; while 

Arg61 is buried in between helix 2 and 3 in ApoE3, it points away in ApoE4 and may interact 

with acidic residues located on the carboxyl terminus (238). Mutation of Arg61 into threonine 

resulted in identical lipoprotein distribution of ApoE4 compared to ApoE3 (238). Site directed 

mutagenesis of acidic residues on the carboxyl terminal domain identified Glu255 as potential 

interaction partner and its substitution with alanine shifted ApoE4’s binding preference from 

VLDL to HDL particles (239). These studies formed the basis of the ApoE4 domain interaction 

concept that suggests the Arg61 – Glu255 salt bridge as an intrinsic property of ApoE4 giving 

it a more compact structure compared to the other two isoforms (Figure 1.9) (237–239). 

According to Segrest et al (206), the length of the amphipathic, lipid binding α-helix in 

apolipoproteins influences the lipoprotein association. The intramolecular ionic interaction in 
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ApoE4 may stabilize an extended helical structure in the carboxyl terminus such that it may 

preferentially bind to less curved VLDLs instead of HDLs (238, 239). 

Further biophysical characterization was undertaken to evaluate the ApoE4 domain 

interaction. To assess the distance between amino and carboxyl terminus in living neurons, 

ApoE3 and ApoE4 were both fused with yellow and cyan fluorescent protein at their amino and 

carboxyl terminal domains respectively and the FRET between both fluorescent proteins was 

measured. Consistent with the domain interaction concept, a greater FRET signal was 

observed in the ApoE4 fusion protein (240). Additional studies on recombinant ApoE3 and 

ApoE4 using FRET and EPR support a closer distance of amino and carboxyl terminal domains 

in ApoE4 (224). Notably, only human ApoE has an arginine at site 61. In other species such 

as mouse, a threonine is found at the equivalent position (200). Thus, domain interaction in 

mouse ApoE is not observed, regardless of a cysteine or arginine at site 112 and therefore 

behaves like human ApoE3 in terms of lipoprotein association. However, substitution of Thr61 

with an arginine in mouse ApoE introduced postulated domain interaction and resulted in 

ApoE4-like properties, with preferred binding to VLDL and LDL over HDL (241). 

Although data suggest an Arg61 – Glu255 mediated domain interaction in ApoE4, there is no 

high-resolution crystal structure of full length ApoE4 available that could directly prove the salt 

bridge. Arginine at site 61 was identified in the ApoE4 amino terminal domain crystal structure 

and Arg61 being surface exposed was confirmed in the study to have high flexibility as 

assessed by its B-factor* (238). To draw conclusions solely based on the crystal structure of 

the amino terminal domain is difficult and it remains speculative whether Arg61 interacts with 

Glu255. In fact, a published full length mutant ApoE3 nuclear magnetic resonance (NMR) 

structure may suggest no interaction between the two residues in ApoE4 (242). Single amino 

acids were substituted in the carboxyl terminal domain of this ApoE3 mutant to prevent 

oligomerization and to enable structure determination. These mutations were confirmed not to 

affect receptor binding activity and biochemical properties (242, 243). The NMR structure 

revealed an overall six helix bundle with extensive amino and carboxyl terminal domain 

interactions (242). Arg61 forms a hydrogen bond with Thr194 and Glu255 a salt bridge with 

Lys95. Notably, solvent exposed Arg61 and Glu255 are separated by a carboxyl terminal helix 

that mostly contains hydrophobic residues (242, 244). The LDLR binding region located on 

helix 4 interacts with the carboxyl terminus and all lysine, as well as arginine residues involved 

in receptor binding are shielded. This is in accordance with observations made that LDLR 

binding affinity of lipid-free ApoE is reduced (214). Based on these findings Frieden & Garai 

(245) suggested an alternative pathway that may cause the structural differences between 

                                                
* The B-factor or sometimes referred as the temperature factor is a parameter that reflects the mobility 
of each atom in space. High B-factors represent high mobility (470). 
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ApoE3 and ApoE4. The Cys112 – Arg112 interchange in ApoE4 would affect movement of 

additional residue Arg114 that in turn would perturb ionization of His140. This eventually would 

affect the charge distribution in the receptor binding region on helix 4 and cause the functional 

differences between both isoforms (245). 

Other studies using improved cellular FRET systems to evaluate ApoE4 domain interaction 

have confirmed the greater FRET signal in the ApoE4 constructs (246, 247). However, this 

may be the result of altered intermolecular interactions between ApoE4 molecules instead of 

an intramolecular salt bridge. A more recent study by Kara et al (247) has shown substantial 

intermolecular interaction of ApoE in HEK cells, as well as astrocytes as assessed by FRET 

of GFP and red fluorescence protein (RFP). Intermolecular interactions between ApoE4 

molecules and therefore its FRET signal were much stronger compared to ApoE2 and ApoE3 

suggesting that ApoE4 molecules come either closer together, have altered quaternary 

structure or may form larger complexes (247). Consistently, expression of the monomeric 

ApoE3 mutant that was used to solve the NMR structure showed much lower intermolecular 

interaction and therefore reduced FRET signal within cells (247). 

ApoE isoforms seem also to differ in terms of chemical and thermal stability. ApoE4 was shown 

to be the least resistant to thermal and chemical denaturation, while ApoE2 shows highest and 

ApoE3 intermediate resistance (ApoE4 < ApoE3 < ApoE2) (248–250). These studies indicated 

a three-state denaturation process (folded/intermediate/unfolded) with a thermodynamically 

stable intermediate in ApoE4 that possesses structural characteristics of a molten globule* 

(248, 250). ApoE4’s decreased stability and molten globule formation seem to drive its 

propensity to form soluble, fibril-like oligomers; ApoE2 and ApoE3 on the other hand do not 

form high molecular weight species to such extent (251). Aggregation does not seem to be an 

effect of postulated ApoE4 domain interaction. Mutation of Glu255 into alanine did not alter 

ApoE4 aggregation behaviour, however, substitution of Arg61 with a threonine markedly 

reduced self-association into higher molecular weight species (251).  

The amino acid substitutions in ApoE isoforms clearly have pronounced effects on their 

structure and properties. While the amino acid change in ApoE2 has a well-defined effect on 

its receptor binding activity, the effect of the arginine interchange in ApoE4 seems less clear. 

A secondary objective of this thesis is to compare the structure of ApoE isoforms in solution, 

as well as attempt crystallization of full length ApoE4. Decreased conformational stability, as 

                                                
* Molten globules can be described as reactive intermediates that are a “highly dynamic form with native-like 

secondary structure and a loose protein core that admits solvent. The related (but still controversial) dry molten 
globule is an expanded form of the native protein with largely intact topology but a tighter protein core that excludes 
solvent.” (471). 
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well as altered structure of ApoE4 are hypothesized to influence its lipid and receptor binding 

properties and to contribute to ApoE4’s pathophysiological role in AD (252). 

1.5 Role of Apolipoprotein E4 in Alzheimer’s disease 

Although data suggest that ApoE4 contributes to AD pathogenesis through both Aβ-dependent 

and independent pathways (Table 1.1, Figure 1.11), the precise pathogenic nature of ApoE4 

in AD remains elusive. Co-localization in vivo of ApoE and Aβ was shown by immunostaining 

analysis (104, 253, 254) and pathological studies indicated a positive correlation between 

plaque density and ɛ4 allele dose in AD patients (255–257). Several PET studies using 11C 

Pittsburgh compound B (11C-PiB) or Florbetapir (18F) matched these histological findings and 

demonstrated that cognitively normal and demented ApoE4 carriers have higher cortical Aβ 

deposition than non-carriers (258–263). These findings strongly suggest an interplay between 

ApoE4 and Aβ in AD pathology but the mechanism by which ApoE isoforms modulate Aβ 

metabolism on the molecular and cellular level is still unclear.  

Table 1.1. Effects of ApoE3 versus ApoE4. 

Protective effects of ApoE3 Detrimental effects of ApoE4 

Stimulates neurite outgrowth Inhibits neurite outgrowth 

Protects from neurodegeneration Causes neurodegeneration 

Protects from cognitive decline Causes cognitive decline 

Protects tau from phosphorylation Stimulates tau phosphorylation 

Antioxidative effect Disrupts neuronal cytoskeleton 

Stimulates cholesterol efflux Causes neurodegeneration by ApoE4 fragments 

Stimulates Aβ clearance Enhances Aβ deposition 

Stimulates synaptic plasticity 
Potentiates Aβ-induced lysosomal 

leakage and apoptosis 

Table adapted from Mahley, Weisgraber, Huang, National Academy of Sciences, 2006, 103(15):5644-51 (234). 
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Figure 1.10. Aβ-dependent and Aβ-independent effects of ApoE4 in Alzheimer’s disease. Shown are 

presumed effects of ApoE4 on Aβ aggregation and clearance (left) and Aβ-independent effects (right). Aβ 

associates with ApoE-containing lipoproteins that promotes Aβ clearance through the BBB mediated by the VLDL 

receptor (VLDLR), degradation by immune cells and extracellular degradation by proteases. Clearance and 

degradation are impaired when complexed with ApoE4-containing lipoproteins. Additionally, ApoE4 seems to 

promote Aβ aggregation and deposition. Independent of the amyloid peptide, ApoE4 seems to promote tau fibril 

and therefore NFT formation, disrupt BBB integrity as well as mitochondrial function and was shown to have 

neurotoxic properties. 

1.5.1 Effects of Apolipoprotein E4 on Aβ aggregation and deposition 

Studies on the interaction between ApoE and Aβ and the effects of ApoE isoforms on Aβ 

aggregation are contradictory. Interaction in vitro between ApoE and Aβ was shown by using 

synthetic Aβ peptides and ApoE either secreted from mammalian cells (264, 265), purified 

from human CSF (266) or human plasma (267, 268). Studies using ApoE derived from human 

plasma that is delipidated in the purification process demonstrated that lipid-free ApoE forms 

detergent-stable complexes with the amyloid peptide and that binding occurs faster in ApoE4 

than in ApoE3 (267, 268). Conversely, other studies demonstrated that lipid associated ApoE3 

binds greater to Aβ than ApoE4 (264, 265, 269–271). LaDu and colleagues (269) investigated 

the discrepancy and confirmed that delipidation of ApoE attenuates the isoform-specific 

binding to Aβ. Lipoproteins secreted by ApoE3-expressing mammalian cells or native VLDLs 

from ε3/ε3 homozygotes showed increased binding of the amyloid peptide compared to ApoE4 

containing lipoproteins. However, isolation of ApoE and removal of lipids resulted in an 

increase in Aβ binding to ApoE4 (269). Follow-up binding studies of ApoE containing 

lipoproteins isolated by various cell lines confirmed higher binding affinity of ApoE3 to the 
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amyloid peptide compared to ApoE4 whereas delipidation decreased affinity, as well as 

abolished isoform-specificity (270). 

Numerous studies also investigated the effects of ApoE on Aβ aggregation. ApoE isoforms 

readily form high molecular weight complexes with the amyloid peptide that can be isolated by 

gel filtration chromatography and ApoE4 seems more likely to promote Aβ aggregation and 

fibrillogenesis in vitro than ApoE3 (272–275). However, many other studies obtained the 

opposite results and reported that both ApoE3 and ApoE4 delay or inhibit Aβ fibrillogenesis in 

vitro (276–280). Studies by Strittmatter et al (267) identified the carboxyl terminus lipid binding 

region of ApoE to be critical for complex formation with Aβ. Later studies additionally 

demonstrated that amyloid peptide interacts with ApoE through its receptor binding region and 

was shown to compete for the metabolism of ApoE-containing VLDLs by binding to HSPGs 

(281). It has been speculated that ApoE may sequester soluble amyloid peptide and therefore 

interfere with Aβ nucleation and aggregation into insoluble fibrils (282). Data from Cerf et al 

(283) suggest that ApoE inhibits amyloid peptide fibril formation by stabilizing Aβ in its 

oligomeric conformation. Notably, ApoE4 seems to have greater tendency to block Aβ in its 

oligomeric state compared to ApoE3 (283). As Aβ oligomers were postulated to be the toxic 

species in AD (Section 1.2.1), the observation by Cerf and colleagues (283) proposes an Aβ-

dependent role of ApoE4 in AD by promoting oligomer formation. Collectively, the in vitro 

binding studies do not answer whether ApoE4 is either more likely to promote Aβ aggregation 

or to inhibit fibrillogenesis. Differences in ApoE and Aβ preparations, the origin and state of 

ApoE (e.g. plasma derived, lipoprotein-bound, lipid-free etc), as well as differences in the 

conditions used to induce Aβ aggregation may have caused the conflicting results between 

the in vitro studies (284). 

The effects of ApoE isoforms on Aβ deposition in transgenic mice are more conclusive. Initial 

studies using PDAPP transgenic mice that overexpress human APP and develop characteristic 

Aβ pathology (285), showed a significant decrease in Aβ deposition when lacking murine ApoE 

(286, 287). Following these knockout models, several transgenic mice were generated either 

expressing murine ApoE, human ApoE isoforms or no ApoE. Primarily studies by Holtzman et 

al (287) observed suppression of early Aβ deposition in 9 month old mice expressing human 

ApoE3 or ApoE4, suggesting that human ApoE isoforms decrease Aβ deposition or increase 

its clearance. However, in a follow up study, Holtzman et al (288) showed that most ApoE4-

positive and some ApoE3-positive mice at the age of 15 months began to develop Aβ plaques 

with greater deposition in ApoE4-expressing mice. Interestingly, endogenously expressed 

murine ApoE resulted in significantly more Aβ deposition compared to human ApoE (288). 

Similarly, Fagan et al (289) observed over a longer period markedly delayed Aβ deposition in 

aged mice (18 – 24 months) when expressing human ApoE isoforms instead of mouse ApoE. 
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But, analysis of the older animals revealed an earlier age at onset of Aβ pathology and 

increased Aβ plaque formation in ApoE4 mice compared to their ApoE3 counterparts (289). 

Gene delivery of human APOE into APP transgenic mice confirmed the ApoE isoform-specific 

differences in Aβ deposition with the expression of ApoE4 resulting in higher plaque load (290, 

291). 

1.5.2 Effects of Apolipoprotein E4 on Aβ clearance 

Besides influencing Aβ aggregation and fibril formation, evidence suggests that ApoE may 

alter transport and metabolism of Aβ in brain. Aβ production and secretion is not unique to AD 

pathology, but is a constitutive process that is product of normal cell metabolism throughout 

life (25–27). Aβ is efficiently cleared under physiological conditions via three major pathways 

including (i) proteolytic degradation, (ii) cellular clearance through lysosomal degradation by 

microglia and astrocytes and (iii) cerebrovascular system-mediated clearance through the 

interstitial fluid (ISF) and across the BBB (292). 

Several studies identified a large set of zinc-metalloproteases, as well as serine and aspartyl 

proteases that are involved in intracellular and extracellular degradation of the amyloid peptide. 

Most prominent examples that have extensively been investigated include the zinc-

metalloproteases neprilysin (NEP), as well as insulin-degrading enzyme (IDE) (293). Deletion, 

inhibition or knockout of these enzymes in mice or rats was shown to increase Aβ levels and 

to promote accumulation of the amyloid peptide in the brain (294–296). Overexpression of 

NEP or IDE on the other hand was demonstrated to decrease Aβ pathology and plaque 

formation in mouse models of amyloidosis (297, 298). Notably, proteolytic degradation of Aβ 

peptide seems to be enhanced when it was in complex with ApoE. Treatment of microglia 

isolated from APOE deficient mice with ApoE-containing HDLs markedly increased 

degradation of soluble Aβ; ApoE2-HDLs and ApoE4-HDLs being the most and least efficient 

respectively. Modulation of ApoE lipidation status by influencing ABCA1 expression showed 

that increased levels of lipidated ApoE enhanced the capacity of NEP and IDE to degrade the 

amyloid peptide (299). It has been speculated that the proteases are more likely to recognize 

Aβ when complexed with ApoE-containing lipoproteins (292). 

Activated microglia, as well as astrocytes are found closely associated with amyloid plaques 

in patients with AD and electron microscopy studies revealed that microglia ingest amyloid 

fibrils and store them in phagosomes (300–303). As outlined in Section 1.4.3, expression and 

secretion of ApoE in microglia is highly increased in CNS inflammatory response and 

clearance, as well as degradation of Aβ by immune cells seems influenced by the ApoE 

genotype. Primary astrocytes from APOE knockout mice, as well as macrophages were shown 

to have impaired ability to degrade Aβ from plaque bearing PDAPP mouse brain sections and 
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degradation by wild-type immune cells was blocked by inactivation of LDLR and related 

receptors (304, 305). Additionally, macrophage-mediated degradation was most efficient by 

ApoE2-expressing cells, not only in vitro, but also in vivo as assessed after direct intracerebral 

injection of macrophages into old PDAPP mouse brain (305). Microglial cells and macrophages 

can take on a classical activated status (M1) in which pro-inflammatory cytokines are released 

and an alternatively activated stage (M2) in which anti-inflammatory factors are produced 

(306). Decreased anti-inflammatory functions and increased activation, as well as release of 

pro-inflammatory cytokines by glial cells were shown in ApoE4 transgenic mice when injected 

with lipopolysaccharide (LPS) (307). Additionally, microglia from ApoE4 transgenic mice 

showed slower migration in an in vitro chemotaxis migration assay compared to ApoE3 

microglia (308). This data indicates that ApoE4 may be less effective in mediating Aβ clearance 

by microglia due to impaired ability to activate phagocytosis and migration (292). 

Levels of CSF Aβ42 were consistently shown to be lower in AD patients that is likely a result of 

Aβ42 being sequestered into amyloid plaques (309). Low CSF Aβ42 levels are therefore 

biomarkers for amyloid plaque formation in the living person (7). Studies that accounted for 

APOE genotype showed markedly decreased levels of CSF Aβ42 in ε4-positive healthy control 

groups, as well as AD patients compared to ε4-negative individuals (310, 311). This data 

suggests that ApoE4 influences Aβ metabolism and is likely to impair its clearance from the 

brain, therefore promoting its deposition into plaques. A study in PDAPP transgenic mice 

confirmed impaired metabolism of Aβ in ApoE4 PDAPP mice (311). Halting of Aβ production 

with the potent and selective γ-secretase inhibitor LY411,575 demonstrated a longer half-life 

of Aβ in the hippocampus of ApoE4 PDAPP mice compared to ApoE2 and ApoE3 transgenes 

suggesting impaired amyloid peptide clearance from the brain by ApoE4 (311). 

Efflux of Aβ from the brain through the BBB is mediated by the superfamily of LDLR proteins, 

as well as HSPGs (292). LRP1 was identified as the major efflux receptor for Aβ at the BBB 

by a series of in vivo experiments in which radiolabelled amyloid peptide was injected into 

animal brain tissue and their clearance into plasma tracked in the absence of LRP1 function 

(312–315). The amyloid peptide binds with high affinity to LRP1 as determined by SPR binding 

studies and the aggregation-prone Aβ42 peptide exhibits greatly reduced binding affinity 

compared to Aβ40 (314). As a result, clearance of Aβ42 across the BBB in mice was significantly 

slower compared to the shorter peptide (312, 314). Notably, Aβ40 in complex with ApoE4 was 

cleared at a slower rate across the BBB in mice compared with the two other isoforms (312, 

316). Transport of ApoE-containing lipoproteins across the BBB is very slow and occurs 

predominantly via VLDL receptor (VLDLR). Complexation of Aβ with ApoE shifted the 

clearance from the fast LRP1-mediated pathway to the slow VLDLR transport mechanism 

(316). Moreover, ApoE4 was reported in APOE knock-in mice to disrupt BBB integrity that 
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results in reduced cerebral blood flow (317, 318). This might further retard Aβ clearance across 

the BBB and potentially drive cerebral amyloid angiopathy (CAA) by deposition of Aβ into walls 

of the blood vessels. Respectively, studies and meta-analyses showed possible association 

and severity of CAA in carriers of the ɛ4 allele (319–321). 

1.5.3 Aβ-independent effects 

The influence of APOE genotype on CSF tau biomarkers in healthy individuals, as well as AD 

patients is less clear compared to amyloid peptide levels. AD patients generally present higher 

total and phosphorylated CSF tau levels, but no correlation with APOE genotype was found 

(259, 322, 323). A significant influence of ε4 genotype on total and phosphorylated CSF tau is 

however observed in patients with mild cognitive impairment (MCI) (322, 323). Expression of 

human ApoE4 in mice under control of a neuron-specific enolase promoter (NSE) markedly 

increased brain accumulation of phosphorylated tau compared to ApoE3 expressing mice 

(324). A recent study by the Holtzman group (325) provided direct evidence that ApoE4 

influences tauopathy independent of Aβ. P301S mice that overexpress human tau were cross-

bred with knock-in mice with different human APOE genotypes and significantly greater brain-

atrophy was observed in P301S/ApoE4 mice compared to the ApoE2 and ApoE3 counterparts. 

Cultured P301S/ApoE4 microglia that were stimulated with LPS exhibited increased 

upregulation of proinflammatory genes compared to P301S/ApoE3 microglia and increased 

neuronal death occurred in P301S mouse primary neurons co-cultured with mixed glia cells 

derived from ApoE4 knock-in mice. Interestingly, the absence of ApoE in P301S mice 

attenuated brain atrophy and inflammatory response suggesting an ApoE, in particular ApoE4, 

gain of toxic function in tau-mediated neurodegeneration (325). However, a follow-up study by 

Zhao et al (326) came to opposite results and found significantly increased tau pathology in 

ApoE2 (> ApoE3 > ApoE4) transgenic mice expressing human tau protein bearing the P301L 

mutation. In contrast to the transgenic mice by the Holtzman group that were generated by 

cross-breeding (325), Zhao et al (326) introduced the tau P301L mutation via viral delivery in 

human ApoE targeted replacement mice. The discrepancy between the two studies is likely a 

result of the different model systems used that differ in terms of tau expression levels 

(transgenic versus viral mediated) and toxicity of the tau species (P301S versus P301L). 

Further studies are therefore necessary to investigate the effects of ApoE in different model 

systems (326). 

Behavioural studies gave additional insight into ApoE4’s effects in AD pathology. Especially 

female mice expressing the ApoE4 isoform under the NSE promoter showed impaired 

performance in the water maze test and only ApoE3 was neuroprotective against kainic acid-

induced neurodegeneration as assessed by staining for synaptic markers (327, 328). Similarly, 
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human ApoE4 knock-in mice showed an age-dependent decrease in GABAergic neurons that 

correlated with impaired spatial learning and memory (329, 330). 

ApoE4’s Aβ independent neurodegenerative effects may be explained by its increased 

susceptibility for proteolytic cleavage in neurons. Higher levels of ApoE4 fragments were 

identified in NFTs and amyloid plaques of AD patients compared to matched controls and 

increased proteolysis of ApoE4 was confirmed in vitro in transfected neuronal cells, as well as 

in vivo in ApoE4 transgenic mice (331–333). Fragmentation seems to be caused by a 

chymotrypsin-like serine protease that results in the generation of ApoE carboxyl and amino 

terminal fragments. In particular the amino terminal fragment was found to be present in NFTs 

of AD patients and expression of ApoE4 lacking residues 272-299 in mouse neuroblastoma 

cells resulted in the formation of intracellular NFT-like inclusions (332). The fragments were 

demonstrated to escape the secretory pathway and to interact with subunits of the 

mitochondrial respiratory complexes (334, 335). ApoE4 seems to negatively affect 

mitochondrial respiratory capacity and reduced levels of all mitochondrial respiratory 

complexes was shown in primary neurons derived from ApoE4 transgenic mice compared to 

ApoE3 neurons (336). Toxicity of the ApoE4 carboxyl terminal truncated fragments was further 

investigated in ApoE transgenic mice (333). Mice expressing high levels of ApoE4 lacking 

residues 272-299 died at young age and displayed AD-like neuropathological alterations such 

as abnormally phosphorylated tau protein. Animals expressing moderate protein levels were 

viable, but showed impaired learning and memory as assessed by the Morris water maze 

compared to wild type littermates (333). It has been suggested that ApoE4 when expressed in 

neurons induced by stressors (e.g. injury, oxidative stress) is proteolytically cleaved to a 

greater extent than ApoE3. ApoE4 fragments enter the cytosol and interfere with cytoskeletal 

components such as tau protein and neurofilaments leading to cytoskeletal disruption, 

mitochondrial dysfunction and neurodegeneration (337, 338). 

A recent study by Yadong Huang and colleagues (339) strongly suggests an ApoE4 gain of 

toxic function and confirmed many of ApoE4’s pathophysiological effects presented in this 

section. Human induced pluripotent stem cells (iPSCs) were generated from ε3 or ε4 

homozygotes and differentiated into mature neurons. A significantly higher ratio of ApoE 

fragments to full length protein was observed in ApoE4 neurons compared to ApoE3. ApoE4 

neurons secreted more soluble Aβ as a result of altered APP metabolism and showed higher 

levels of phosphorylated tau. However, the effect of ApoE4 on tau phosphorylation was 

demonstrated to be independent of increased amyloid peptide secretion as increased 

phosphorylated tau levels were still measured after treatment of neurons with potent β- and γ-

secretase inhibitors. Less GABAergic neurons were seen amongst neurons derived from 

ApoE4 iPSCs (which was not a developmental effect; the decrease in GABAergic neurons 
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occurred during late stages of neuronal differentiation) and ApoE4 GABAergic neurons 

showed higher levels of phosphorylated tau compared to the ApoE3 counterparts. Notably, 

gene editing of ApoE4 iPSCs into an isogenic ApoE3 cell line abolished the effects and 

lentiviral re-introduction of ApoE4 into APOE deficient neurons that were derived from an 

APOE deficient individual reproduced the pathophysiological effects on Aβ production, tau 

phosphorylation and GABAergic survival (339). 

1.6 Therapeutic approaches to modulating ApoE function 

Although the vast amount of biochemical, cell biological and animal studies provide 

explanations on how ApoE4 may contribute to AD pathology, many of these processes are still 

poorly understood and often remain speculative and, in some cases, contradictory. Recent 

data suggests an ApoE4 gain of toxic function, however, other studies provide evidence for a 

loss of normal function. Therefore, proposed therapeutic strategies either aim to decrease the 

toxic effects of ApoE4 by modulating its structure or to restore its physiological function by 

regulating its expression levels or lipidation state (Figure 1.11) (340, 341). 

 

Figure 1.11. Therapeutic approaches towards ApoE. Therapeutic strategies aim to decrease the toxic effects of 

ApoE4 and/or restore its physiological function. Therapeutic approaches include (i) modulation of ApoE4 structure 

by small molecular weight (Mw) compounds and turn it “ApoE3-like”, (ii) modulation of ApoE4 lipidation state through 

activation of ABCA1, (iii) blockage of the ApoE-Aβ interaction and (iv) ApoE-mimetic peptides that mimic beneficial 

effects of ApoE. 

As outlined in Section 1.5.2, enzymatic degradation of Aβ is facilitated by ApoE and was shown 

to be dependent on ApoE lipidation status (299). ApoE is lipidated by ABCA1 (Section 1.4.2) 

and overexpression of ABCA1 in PDAPP transgenic mice markedly reduced amyloid peptide 

deposition as a result of increased ApoE lipidation (166). These observations gave rise to a 
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therapeutic approach to increase levels of functional and lipidated ApoE by modulation of 

ApoE, as well as ABCA1 expression. Transcription of ApoE and ABCA1 in macrophages, 

adipocytes and astrocytes is regulated by liver X receptors (LXRs) that form heterodimers with 

retinoid X receptors (RXRs) (342–345). LXRs are ligand-activated transcription factors and are 

strongly activated by oxysterols (i.e. oxidized cholesterols) (346, 347). Administration of 

nonsteroidal LXR agonists GW3965 (GlaxoSmithKline) or T0901317 (Tularik, now Amgen) 

were shown to increase ApoE, as well as ABCA1 expression levels in mouse models of 

amyloidosis and to reduce amyloid burden by promoting Aβ clearance; these effects were 

accompanied by an improvement in spatial memory (299, 348, 349). Unfortunately, direct LXR 

agonists are hepatotoxic and promote triglyceride synthesis in the liver, as well as VLDL 

secretion which complicated the development of LXR agonists for the clinic (350). 

While some data suggests that increasing expression levels of functional ApoE via activation 

of the LXR pathway may be beneficial, other studies propose that decreasing, rather than 

increasing ApoE levels may be of therapeutic value (351). However, the physiological effects 

of reduced ApoE expression levels in humans remain unclear. In fact, a loss of expression and 

therefore loss of ApoE function may have toxic effects and needs further evaluation. 

Another still controversial therapeutic approach is the use of ApoE-mimetic peptides that 

possess structural and biological features of the ApoE amino terminal domain. Most prominent 

peptides include COG133 (ApoE residues 133-149) and COG1410 (ApoE residues 138-149; 

2-aminoisobutyric acid at position 141 and 145) that were shown to decrease LPS stimulated 

inflammatory response in primary mouse microglia, as well as in vivo in C57BL6/J mice (352–

354). Subcutaneous administration of COG1410 to APP transgenic mice improved learning 

and memory compared to matched controls and decreased NFT-like pathology, as well as 

amyloid peptide brain pathology (355). Similar effects were demonstrated with COG133 in a 

Drosophila model of AD (356). Alternative synthetic peptides that block the ApoE/Aβ 

interaction were also proposed as potential therapeutic agents. These peptides such as Aβ12-

28P (valine at position 18 substituted for proline) mimic the amyloid protein and bind with high 

affinity to ApoE (357). In APP/PS1 mice, Aβ12-28P reduced ApoE-positive plaque burden and 

resulted in improved working memory (357, 358). The effects of Aβ12-28P were additionally 

investigated in a noncontact neuron-astrocyte co-culture system (359). Hippocampal mouse 

primary neurons were shown to have a greater intraneuronal accumulation of exogenous Aβ 

when co-cultured with astrocytes compared to neuronal cultures alone. This observation 

suggested an increased uptake of amyloid peptide via ApoE-containing lipoproteins that were 

secreted by the astrocytes. Addition of Aβ12-28P to the co-culture medium reduced intraneuronal 

amyloid peptide accumulation and additionally prevented loss of synaptic proteins such as 

synaptophysin (359). As outlined in section 1.5.2, efflux of the amyloid peptide through the 
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BBB is mediated by LRP1, however, is shifted to the slow VLDLR pathway when complexed 

with lipid-associated ApoE (316). Blocking the ApoE-Aβ interaction would therefore enhance 

clearance of free Aβ from the brain (316). Further mapping of the ApoE/Aβ interaction by Liu 

et al (360) identified shorter peptide variants, as well as Congo Red dye and the X-34 dye 

derivate to be able to block the apolipoprotein – amyloid peptide interaction. 

The structural difference amongst ApoE isoforms is believed to alter ApoE biology and 

function. As outlined in Section 1.4.4, the amino acid substitution in ApoE4 has been postulated 

to alter ApoE4 tertiary and/or quaternary structure that results in the ApoE4-associated 

neuropathology (234, 252). A structural difference between ApoE isoforms paved way for the 

therapeutic strategy to convert ApoE4 into an ApoE3-like molecule by small molecule 

“structure correctors” (234). 

A first set of structure correctors was described by Ye et al (361) in 2005 who screened in silico 

for molecules that are potentially capable of binding to the amino terminal domain of ApoE4. 

Some of these in silico hits were observed to shift ApoE4’s preferred VLDL binding affinity to 

HDLs, identical to ApoE3, and additionally, decreased Aβ production in APP overexpressing 

B103 rat neuroblastoma cells (361). These molecules named GIND (for Gladstone Institute of 

Neurological Diseases) were further characterized in follow-up studies and reported to restore 

expression levels of mitochondrial respiratory complexes in cultured brain cortical neurons (but 

not astrocytes) extracted from ApoE4 transgenic mice, as well as to restore processing of 

ApoE4 through the secretory pathway (336, 362). Members of the GIND series were shown to 

modulate ApoE4 structure in living neuronal cells as assessed by the intracellular FRET assay 

(Section 1.4.4) (240, 363). A second structure corrector series was published a few years later 

by Chen et al (246) that include molecules with a phthalazinone core structure. These 

molecules were demonstrated to modulate ApoE4 structure in cells and to abolish many of its 

detrimental effects on mitochondrial respiratory function, mitochondrial motility and neurite 

outgrowth (246). However, the phthalazinones caused significant toxicity in mice and 

alternative, non-toxic pyrazoline analogues were identified that are currently in pre-clinical trials 

(364). One goal of this thesis is to identify small molecules that preferentially bind to ApoE4 

and that can be utilized as novel chemical probes. 
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1.7 Summary, Hypothesis and Objectives 

ApoE is the major lipid and cholesterol carrier in the brain and therefore is important in brain 

development, synaptogenesis and regeneration. It re-distributes lipoprotein components by 

interacting with specific receptors that are members of the LDLR family of proteins, as well as 

via proteoglycans including HSPGs (365). Often, LDLRs cooperate with HSPGs to internalize 

lipoprotein particles and cooperation was particularly proven important for the LRP1-HSPG 

pathway (142). The interaction of ApoE with HSPGs has not been well characterised and 

comparative binding studies between ApoE isoforms to HSPGs are lacking. ApoE isoforms 

differ at their sites 112 and 158 by a cysteine-arginine interchange that affects their 

functionality. The cysteine in ApoE2 markedly reduces its binding affinity to LDLR, whereas 

the arginine in ApoE4 was shown to alter its structure and possibly introduce more rigorous 

domain interactions that may also influence its receptor binding ability (226). However, the 

exact mechanisms by which ApoE4 gains a toxic function compared to ApoE3 remains elusive 

but could most likely be receptor-mediated such as by HSPGs. Novel tool compounds that 

bind to ApoE4 and modulate its structure could be used to investigate these mechanisms and 

potentially be utilized to reverse its pathophysiological properties. The overarching 

hypothesis of this thesis is that the structural difference in ApoE4 compared to ApoE3 

confers its functional difference and in particular alters its receptor binding ability. The 

main goal of this thesis is to investigate and compare the ApoE-HSPG interaction between the 

isoforms and to identify new ApoE small molecule tool compounds. In vitro biophysical 

techniques were used in this thesis to study the hypothesis and the main goal was achieved 

by the following specific objectives: 

Aim 1. To develop a novel method for the expression and purification of recombinant ApoE 

and to compare their structure in solution, as well as to attempt ApoE crystallization. 

Aim 2. To determine differences in heparin (as model of HSPGs) binding between ApoE 

isoforms by small angle X-ray scattering (SAXS). 

Aim 3. To identify novel ApoE tool compounds that preferentially bind to ApoE4 over ApoE2 

and ApoE3 by using biophysical assays. 
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2 ESTABLISHMENT OF A NOVEL APOE PURIFICATION 

PROTOCOL AND BIOPHYSICAL CHARACTERIZATION OF APOE 

ISOFORMS IN SOLUTION 

2.1 Introduction and Objectives 

ApoE can be isolated from plasma (366), CSF (160) or it can be recombinantly expressed in 

mammalian cell lines such as immortalized astrocytes (367) and hepatoma cells (123, 368). 

Large quantities can also be produced in Escherichia coli (E. coli) (369) that is particularly 

advantageous for biophysical studies such as SAXS and for protein crystallization since these 

methods require high amounts of protein. However, depending on the recombinant expression 

system, ApoE may differ in terms of glycosylation and lipidation state. 

Unlike ApoE that is derived from plasma or secreted by astrocytes in form of nascent HDLs 

(367), the recombinant protein produced in E. coli is not associated with lipoproteins and 

additionally does not undergo posttranslational modifications. Sialylated forms of ApoE are 

present in plasma and CSF that can be resolved by gel electrophoresis (113, 116). The 

attachment of sialic acid-containing carbohydrates occurs at threonine 194 via O-linked 

glycosylation and results in a heterogeneous mixture of apparent higher molecular weight 

species (34 – 39 kDa) that can be resolved by 2D gel electrophoresis and isoelectric point 

focusing (113, 116, 370). It has been hypothesized that sialylated forms of ApoE play an 

important role in neuron regeneration after injury (371). For instance, increased secretion of a 

37 kDa sialylated ApoE by macrophages was observed during immune response after 

peripheral, as well as optic nerve injury in rats (182–184). Sialylated forms are especially 

associated with neurons and account for approximately 50% of total neuronal ApoE as shown 

in neuron cultures isolated from transgenic mice (371). However, the importance of 

glycosylation on ApoE function is still unclear and a major proportion of human CSF and 

particularly plasma ApoE remains asialylated (372–374). 

Recombinant, non-glycosylated ApoE expressed in E. coli was shown to behave in an identical 

manner to plasma-derived protein in terms of receptor binding affinity, lipid binding and stability 

(369, 375, 376). Recombinant ApoE retains its functionality in vivo and was shown to promote 

lipoprotein uptake into human fibroblasts, as well as accelerate plasma lipoprotein clearance 

when infused into rabbits (131, 218). Therefore, ApoE expressed and purified from E. coli not 

only appears functionally relevant but also provides a system that can produce large quantities 

of protein for subsequent biophysical characterisation (375). In this regard, SAXS and protein 

crystallization particularly require pure and monodisperse protein (377). Glycosylation of ApoE 
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in mammalian expression systems results in the production of heterogenous ApoE that can be 

disadvantageous for its biophysical characterization and crystallization (375). 

Delipidated plasma-derived, as well as E.coli produced recombinant ApoE are tetrameric in 

solution, elongated in shape with oligomerization being mediated by the carboxyl terminal 

domain (195, 208, 378, 379). Other oligomeric species are present and formation of higher 

molecular weight species is dependent on ApoE concentration (378, 379). Self-association 

studies by measuring intermolecular tryptophan or protein label (i.e. Alexa dye) fluorescence 

and analytical ultracentrifugation (AUC) equilibrium studies are consistent with a monomer – 

dimer – tetramer equilibrium with tetrameric ApoE presenting the major component (379, 380). 

In particular ApoE4 seems more prone to form large species that were shown to assemble into 

fibril-like structures (251, 378). The tendency of ApoE to form high-molecular weight species, 

as well as being sensitive to proteolytic cleavage (196, 379) has hindered crystallization of the 

full-length protein. Crystal structures are available of the proteolytically-cleaved amino terminal 

domain that forms a four-helix bundle and is predominantly monomeric in solution (195, 232, 

233). Generation of a monomeric ApoE mutant enabled determination of a full-length NMR 

structure (242). Specific residues (F257A, W264R, V269A, L279Q, V287E) were mutated in 

the carboxyl terminus of ApoE to prevent oligomerization without affecting LDLR binding 

affinity and lipid-binding (242, 243). ApoE in its monomeric form is globular in shape and forms 

a six-helix bundle with extensive interactions between the amino and carboxyl terminus (242). 

However, the monomeric NMR structure does not reflect the nature of tetrameric wild type 

ApoE in solution that is likely to differ substantially in tertiary structure. Mutations inserted to 

keep ApoE3 in its monomeric state are substantial and the very most C-terminal residues (277-

299) in the NMR model are disordered and only loosely associated with the rest of the protein, 

making the validity of this NMR structure ambiguous (242). 

A majority of available ApoE purification protocols include a chemical denaturing step with 

subsequent re-folding by extensive dialysis (369, 375, 376, 381, 382). High concentrations of 

urea or guanidine hydrochloride keep denatured ApoE in its monomeric state and help to 

isolate the protein from the void volume of the gel filtration column (381). However, the re-

folding process is time consuming and can yield misfolded, as well as aggregated target protein 

(383). The objective of this chapter was to establish a novel method for the purification of full 

length ApoE isoforms, as well as the ApoE amino terminal domain (residues 1-191, ApoE1-191) 

and monomeric ApoE (ApoEmon) under non-denaturing conditions. ApoE isoforms were then 

characterized in solution, crystallized and used for SAXS studies (Chapter 3), as well as for 

the identification of small molecules that interact with ApoE (Chapter 4).  
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2.2 Materials and Methods 

2.2.1 Materials 

All materials were purchased from Sigma-Aldrich or Fisher Scientific and were the highest 

purity available. Isopropyl β-D-1-thiogalactopyranoside (IPTG, # I1003) and Tris(2-

carboxyethyl)phosphine (TCEP, # GEN-TCEP) were purchased from Generon. Rosetta2(DE3) 

cells (# 71400-3) were purchased from Merck Millipore. Luria-Bertani (LB) broth (Lennox) was 

purchased from Formedium (# LBX0103).  Roche ethylenediaminetetraacetic acid (EDTA) 

complete protease inhibitor Tablets (# 05056489001) and DNAse I (# D4527) were obtained 

from Sigma-Aldrich. Super optimal broth with catabolite repression (SOC, # 15544034) and 

the Gene JET miniprep kit (# K0502) were purchased from Thermo Fisher Scientific. QIAprep 

spin miniprep kit (# 27104) was retrieved from QIAGEN. The QuikChange Lightning Site-

Directed mutagenesis kit (# 210518) that includes XL10-Gold ultracompetent cells (# 200314) 

were obtained from Agilent. TALON® metal affinity resin was purchased from clontech (# 

635503). 

The codon-optimized (i.e. optimized for the expression in E. coli) human ApoE4 gene preceded 

by a six-histidine tag, thioredoxin (TRX) sequence and human rhino-virus (HRV) 3C protease 

cleavage site was synthesized and cloned into the NdeI/HindIII site of a pET17b vector by 

Thermo Fisher Scientific (pET17b_ApoE4). A plasmid map is included in the Appendix (Figure 

2.20E). The plasmid containing HRV 3C protease gene fused with glutathione S-transferase 

(GST; the HRV 3C-GST fusion protein is referred as PreScission protease) was provided by 

Dr Antony Oliver (Genome Damage and Stability Centre, University of Sussex). 

2.2.2 Site directed mutagenesis 

Codon optimized pET17b_ApoE4 (see above) was used as template to create the ApoE2 and 

ApoE3 full length variant by site directed mutagenesis. Additionally, truncated ApoE4 (ApoE41-

191) was generated by mutating position 192 into a stop codon and monomeric ApoE4 

(ApoE4mon) as described by Zhang et al (243) by mutation of 5 hydrophobic amino acids 

(F257A, W264R, V269A, L279Q, V287E) in the lipid binding domain. Residues were mutated 

using the QuikChange lightning site directed mutagenesis kit (Agilent). Synthesis of mutated 

strands and Dpn I digestion was performed as per the kit’s instructions. 

Primers were synthesized by Eurofins to high purity salt free (HPSF) grade and were used for 

the site directed mutagenesis (Table 2.1). Primers were dissolved in nuclease-free water at a 

concentration of 100 pmol/μL and warmed to 50°C for 10 min. Stock solutions were further 

diluted 1:10 in nuclease-free water before use.  
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Table 2.1. Primers and annealing temperatures Tm1 and Tm2. 

Description 
Forward primer 
Reverse primer 

Tm1 Tm2 

ApoE4 → ApoE3 
(R112C) 

5'-gggtgcagatatggaagatgtttgtggtcgtctgg-3' 
5'-ccagacgaccacaaacatcttccatatctgcaccc-3' 

60 65 

ApoE3 → ApoE2 
(R158C) 

5’- gccgatgatctgcagaaatgtctggcagtttatcag-3’ 
5’- ctgataaactgccagacatttctgcagatcatcggc-3’ 

60 (see text 
body) 

To create truncated 
ApoE (A192STOP) 

5'-tggtagaacagggtcgtgttcgttaagcaaccgttggt-3' 
5'-accaacggttgcttaacgaacacgaccctgttctacca-3' 

60 65 

To create monomeric 
ApoE (F257A) 

5'-gattcgtctgcaggcagaagcagctcaagcccgtct-3' 
5'-agacgggcttgagctgcttctgcctgcagacgaatc-3' 

60 65 

To create monomeric 
ApoE (W264R) 

5'-gcccgtctgaaaagccggtttgaaccgctgg-3' 
5'-ccagcggttcaaaccggcttttcagacgggc-3' 

61 66 

To create monomeric 
ApoE (V269A) 

5'-ctggtttgaaccgctggctgaagatatgcagcgtc-3' 
5'-gacgctgcatatcttcagccagcggttcaaaccag-3' 

60 65 

To create monomeric 
ApoE (L279Q) 

5'-cgtcagtgggcaggtcaggttgaaaaagtgcag-3' 
5'-ctgcactttttcaacctgacctgcccactgacg-3' 

60 65 

To create monomeric 
ApoE (V287E) 

5'-gtgcaggcagcagagggcaccagcgcag-3' 
5'-ctgcgctggtgccctctgctgcctgcac-3' 

60 65 

 

An altered polymerase chain reaction (PCR) program was used with specific annealing 

temperatures for each primer pair (Table 2.2). The PCR was performed in a T100™ Thermal 

Cycler (BioRad). Mutagenesis of ApoE3 to ApoE2 was performed by Ana Caroline-Raulin (Prof 

Louise Serpell lab, University of Sussex) as per the mutagenesis kit’s instructions and using 

the kit’s PCR program. 

Table 2.2. PCR program for site-directed mutagenesis. 

Segment Type Temperature [°C] Time [sec] Cycles 

1 Initial denaturation 95 120 1 

2 

Denaturation 95 20  
3 
 

Annealing 1 Tm1 (Table 2.1) 10 

Elongation 72 180 

3 

Denaturation 95 20  
15 
 

Annealing 1 Tm2 (Table 2.1) 10 

Elongation 72 180 

4 Final elongation 72 300 1 

5 Store 8 ∞ - 

 

After amplification of the mutated strands, the template DNA was digested with Dpn I. Enzyme 

(2 µL) provided with the kit were added directly to each amplification reaction and incubated 

first at 37°C for 8 min, then at room temperature (RT) for 5 to 8 min. The digested DNA mix 

was directly used for the transformation of XL10-Gold ultracompetent cells as per the 

manufacturer’s instructions. Hence, 50 μL of XL10-Gold cells were thawed on ice and 2 μL of 

β-mercaptoethanol provided with the kit were added to the XL10-Gold cells. Cells were 

incubated on ice for 10 min, then 5 µL of digested DNA were added and cells were again 
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incubated on ice for 30 min. Afterwards, cells were heat-pulsed at 42°C for 30 sec and cooled 

quickly on ice for 2 min. SOC medium (500 µL) was added and cells were incubated at 37°C 

for 1 h while shaking at 200 rpm. The transformation mixture was then plated on LB agar 

medium and incubated overnight at 37°C. The next day, colonies were picked from the agar 

plate to inoculate 8 mL of LB-medium supplemented with 100 µg/mL ampicillin and 35 µg/mL 

chloramphenicol and grown overnight at 37°C and 200 rpm. Plasmid DNA was isolated using 

the QIAprep spin miniprep kit (QIAGEN) or the GeneJET spin miniprep kit (Thermo Fisher 

Scientific) and confirmed by sequencing (Eurofins). Plasmids harbouring the wild type ApoE 

isoforms, as well as ApoE41-191 were sequenced using primer 5'-AAGGTGGAACAGGCCGTG-

3'. The ApoE4mon containing plasmid was sequenced using the T7 terminator primer. 

Sequencing results are shown in the Appendix (Figure 2.20). 

2.2.3 Transformation of Rosetta2(DE3) cells and glycerol stock preparation 

Rosetta2(DE3) cells (20 µL) were thawed on ice and plasmid DNA to a final concentration of 

2 ng/μL was added. Cells were incubated on ice for 5 min and then heat-pulsed at 42°C for 30 

sec and then incubated on ice for 2 min. SOC medium (250 µL) was added and cells were 

incubated at 37°C for 1 h while shaking at 200 rpm. To select transformed cells, 30 µL of cells 

were plated on LB agar medium containing 100 µg/mL ampicillin and 35 µg/mL 

chloramphenicol and incubated overnight at 37°C. 

Glycerol stocks of transformed cells were prepared by inoculating 8 mL of LB medium with a 

freshly transformed colony. The culture was incubated overnight at 37°C while constantly 

shaking at 200 rpm. The next day, 500 µL aliquots of cell suspension were mixed with 250 µL 

of 50% (v/v) sterile glycerol and stored at -80°C. 

2.2.4 Expression trials 

LB broth (10 mL) supplemented with 1% (v/v) glycerol and 100 µg/mL ampicillin were 

inoculated with transformed Rosetta2(DE3) (Section 2.2.3). Cells were grown for 6 h at 37˚C 

and 180 rpm, then stored overnight at RT. The next day, 500 µL of the pre-culture was used 

to inoculate 50 mL of LB broth supplemented with 1% (v/v) glycerol and 100 µg/mL ampicillin. 

Cells were grown at 180 rpm and 37˚C up to an optical density at 600 nm (OD600) of ~0.6 and 

induced with 1 mM IPTG. A non-induced control culture was included. Samples (200 µL) were 

taken before induction, 1, 2, 4 and 6 h after induction. The temperature was then decreased 

to 25˚C and cells grown overnight at 180 rpm. A final sample (200 µL) was taken the next day. 

All samples were centrifuged at 16’000 x g for 2 min, the supernatant discarded, and the pellet 

stored at -4˚C until use. Pellets were dissolved in 20 µL Bugbuster® (Novex) per OD600 of 1 

and per 100 µL sample taken, incubated at RT for 20 min and expression then analysed by 

sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS PAGE, Section 2.2.11). 
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2.2.5 Large-scale expression of ApoE isoforms, ApoE41-191 and ApoE4mon 

LB broth (200 mL) supplemented with 100 µg/mL ampicillin was inoculated with transformed 

Rosetta2(DE3) cells from glycerol stock (Section 2.2.3) and grown at 37˚C and 225 rpm until 

reaching an OD600 of 0.6 – 1.0. Cells were then stored overnight at RT. The next day, cells 

were centrifuged for 5 min at 2500 x g, re-suspended in 24 mL fresh LB broth and 2 mL of 

suspension used to inoculate 1 L of LB broth supplemented with 100 µg/mL ampicillin and 1% 

(v/v) glycerol. Typically, 8 – 12 L were grown as main culture. Cells were grown at 150 rpm 

and 37°C until reaching an OD600 of 0.7 – 0.9. Then, they were induced with 1 mM IPTG and 

incubated at 37°C and 180 rpm for 2 - 4 h. Cells were harvested by centrifugation at 4°C and 

9600 x g (JLA 9.1000 rotor, Beckman Coulter) for 10 min and the pellet was stored at -80°C. 

2.2.6 Purification of ApoE isoforms and ApoE4mon 

All ApoE isoforms and ApoE4mon were purified by a combination of immobilized metal ion 

affinity chromatography (IMAC), heparin affinity chromatography (HAC) and size exclusion 

chromatography (SEC). The final purification method is presented first; methodology for key 

purification trials are outlined after. Buffers for the final purification method are shown in Table 

2.3. 

Table 2.3. Buffers used for the purification of full length ApoE isoforms and monomeric ApoE4. 

Description Constituents 

Lysis buffer 
50 mM HEPES, 240 mM NaCl, 5 mM MgCl2, 10 mM imidazole, 1 
mM DTT, 10% (v/v) glycerol, 0.05% (v/v) Tween-20, 7 U/mL DNAse 
I, 1 protease inhibitor Tablet per 50 mL, pH 8.0 

IMAC binding buffer 
50 mM HEPES, 240 mM NaCl, 20 mM imidazole, 10% (v/v) 
glycerol, 0.05% (v/v) Tween-20, pH 8.0 

IMAC elution buffer 
50 mM HEPES, 240 mM NaCl, 300 mM imidazole, 10% (v/v) 
glycerol, 0.05% (v/v) Tween-20, pH 8.0 

SEC buffer 
20 mM HEPES, 300 mM NaCl, 10% (v/v) glycerol, 1 mM TCEP for 
ApoE2 and ApoE3 only, pH 8.0 

Heparin binding 
buffer (ApoE2 only) 

20 mM HEPES, 240 mM NaCl, 10% (v/v) glycerol, 1 mM TCEP, pH 
8.0 

Heparin elution 
buffer 

20 mM HEPES, 1000 mM NaCl, 10% (v/v) glycerol, pH 8.0 

The cell pellet was re-suspended in 200 mL ice-cold lysis buffer and cells disrupted by 

sonication (5 sec sonication, 5 sec break, 6 min total sonication time, 39% amplitude, Vibra 

cell sonicator VCX500, Sonics). Cell debris was separated from soluble protein by 

centrifugation for 10 min at 33’000 x g (JA 25.50 rotor, Beckman Coulter) and 4°C. The 

supernatant was filtered through a 0.45 µm filter and applied on 10-15 mL TALON® metal 

affinity resin (Clontech) that was equilibrated with IMAC binding buffer and placed into a 200 

mL Econo®-column (BioRad). Beads were incubated at 4°C while rocking for 1 h. After, the 

metal affinity resin was washed with 4 x 50 mL of IMAC binding buffer and protein eluted with 
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5 x 10 mL IMAC elution buffer. Elution fractions were pooled and directly applied to a 5 mL 

HiTrap Heparin column (GE Healthcare, pre-equilibrated with SEC buffer for ApoE3, ApoE4 

and ApoE4mon; pre-equilibrated with heparin binding buffer for ApoE2) at a flow rate of 1 

mL/min. An ÄKTA purifier (GE Healthcare) was used to perform all fast-performance liquid 

chromatography (FPLC) steps. The column was extensively washed with SEC buffer (ApoE3, 

ApoE4 and ApoE4mon) or heparin binding buffer (ApoE2) until the absorbance measured at 

280 nm (A280) stabilized to baseline. The HiTrap Heparin column was then disconnected from 

the ÄKTA purifier and 320 µg PreScission protease (Section 2.2.9) manually injected. The 

HiTrap Heparin column was sealed, and an on-column digestion performed at 4°C for 16 h 

while rocking. The next day, the HiTrap Heparin column was re-connected to the ÄKTA purifier 

and digested TRX removed by washing the column with 3 column volumes of SEC buffer 

(ApoE3, ApoE4 and ApoE4mon) or heparin binding buffer (ApoE2) at a flow rate of 1.5 mL/min. 

ApoE was then eluted by applying a linear NaCl gradient over 15 min at a decreased flow rate 

of 1 mL/min. ApoE elution fractions from the heparin column were pooled and loaded to a 

HiLoad Superdex 26/600 200 pg column (GE Healthcare) that was pre-equilibrated with SEC 

buffer. Protein was eluted at a flow rate of 1.5 mL/min. ApoE containing fractions were pooled, 

concentrated by using VivaSpin 20 concentrators (Sartorius, molecular weight cut-off, MWCO 

10’000 Da) at 4000 x g (SX4400 rotor, Beckman Coulter) and 4˚C, shock-frozen in liquid 

nitrogen and stored at -80˚C. All steps and purity of samples were analysed by SDS PAGE. 

The following paragraphs outline the methodology for key purification trials that contributed to 

the development of the final protocol presented above. To test purification by anion exchange 

chromatography (AEX), HAC (without on-column digestion) or directly by SEC (omitting 

heparin affinity chromatography), the bacterial pellet was lysed by sonication and ApoE 

captured by IMAC as described above. Lysis buffer, IMAC binding and IMAC elution buffer 

contained only 150 mM NaCl. IMAC elution fractions were pooled, 0.01% (w/w) PreScission 

protease added and digestion performed overnight at 4°C. In the case of AEX and HAC, 

digested protein was applied to a HiTrap Q HP anion exchange (GE Healthcare) or HiTrap 

heparin HP column (GE Healthcare) at a flow rate of 1.5 mL/min that was pre-equilibrated with 

binding buffer (50 mM HEPES, 150 mM NaCl, 10% (v/v) glycerol, pH 8.0). The column was 

extensively washed with binding buffer and protein eluted by applying a linear salt gradient 

over 15 min at a flow rate of 1 mL/min (150 – 1000 mM NaCl). In the case of SEC, ApoE was 

concentrated below a volume of 10 mL using VivaSpin 20 concentrators (Sartorius, MWCO 

10’000 Da) at 4000 x g (SX4400 rotor, Beckman Coulter) and 4˚C. Protein was then applied 

to a HiLoad 26/600 Superdex 200 pg column (GE Healthcare) pre-equilibrated with SEC buffer 

containing only 150 mM and gel-filtered at a flow rate of 1.5 mL/min. 
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To test purification without IMAC, the bacterial cell pellet was lysed by sonication as described 

above in lysis buffer containing 250 mM NaCl. Cleared cell lysate supernatant was then applied 

to a HiTrap heparin HP column (GE Healthcare) at a flow rate of 1.5 mL/min that was pre-

equilibrated with binding buffer (20 mM HEPES, 250 mM NaCl, 10% (v/v) glycerol, pH 8.0). 

The column was extensively washed with binding buffer and on-column digestion performed 

overnight as described above. The next day, cleaved TRX tag was washed out with 3 column 

volumes of binding buffer and ApoE eluted by applying a linear salt gradient over 15 min at a 

flow rate of 1 mL/min (250 - 1000 mM NaCl). ApoE containing fractions were pooled and 

applied to a HiLoad 26/600 Superdex 200 pg column (GE Healthcare). Protein was gel-filtered 

in SEC buffer at a flow rate of 1.5 mL/min.  

2.2.7 Purification of ApoE41-191 

ApoE41-191 was purified by a combination of IMAC and SEC. Buffer constituents are shown in 

Table 2.4. 

Table 2.4. Buffers used for the purification of ApoE41-191. 

Description Constituents 

Lysis buffer 
50 mM HEPES, 300 mM NaCl, 5 mM MgCl2, 10 mM imidazole, 1 
mM DTT, 10% (v/v) glycerol, 0.05% (v/v) Tween-20, 7 U/mL DNAse 
I, 1 protease inhibitor Tablet per 50 mL, pH 8.0 

IMAC binding buffer 
50 mM HEPES, 300 mM NaCl, 20 mM imidazole, 10% (v/v) 
glycerol, 0.05% (v/v) Tween-20, pH 8.0 

IMAC elution buffer 
50 mM HEPES, 300 mM NaCl, 300 mM imidazole, 10% (v/v) 
glycerol, 0.05% (v/v) Tween-20, pH 8.0 

SEC buffer 20 mM HEPES, 300 mM NaCl, 10% (v/v) glycerol 

The bacterial pellet was re-suspended in ice-cold lysis buffer, lysed by sonication and cleared 

from cell debris by centrifugation as described in Section 2.2.6. The clarified sonicate was then 

applied to a HiFliQ nickel-NTA column (Generon) and extensively washed with IMAC binding 

buffer at a flow rate of 1.5 mL/min. After overnight on-column digestion with PreScission 

protease at 4°C, cleaved ApoE41-191 was washed out with IMAC binding buffer at a flow rate of 

1.5 mL/min whilst the TRX tag stayed immobilized to the nickel column. ApoE41-191 containing 

fractions were pooled, applied to a HiLoad Superdex 26/600 75 pg column (GE Healthcare) 

and gel filtered in SEC buffer at a flow rate of 1.5 mL/min. Protein containing fractions were 

concentrated in VivaSpin 20 concentrators (Sartorius, MWCO 5000 Da) and protein stored at 

-80°C. 

2.2.8 Expression of PreScission protease 

LB broth (200 mL) supplemented with 50 µg/mL ampicillin and 35 µg/mL chloramphenicol was 

inoculated with transformed Rosetta2(DE3) cells from glycerol stock (Section 2.2.3) and grown 

at 37°C and 200 rpm overnight. The next day, 20 mL of the cell suspension were used to 
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inoculate 2 L of LB broth supplemented with the same antibiotics as the pre-culture. Cells were 

grown at 150 rpm and 37°C until reaching an OD600 of ~0.6. Cells were then put on ice for 15 

min, supplemented with 100 µg/mL ampicillin and induced with 0.4 mM IPTG. Cells were 

incubated overnight at 20˚C and 150 rpm. The next day, cells were harvested by centrifugation 

at 4°C and 9600 x g (JLA 9.1000 rotor, Beckman Coulter) for 20 min and the pellet was stored 

at -80°C. 

2.2.9 Purification of PreScission protease 

PreScission protease was purified by GST affinity chromatography using buffers shown in 

Table 2.5. 

Table 2.5. Buffers used for the purification of PreScission protease. 

Description Constituents 

Lysis buffer 
50 mM HEPES, 1000 mM NaCl, 5 mM MgCl2, 1 mM DTT, 7 U/mL 
DNAse I, 1 protease inhibitor Tablet per 50 mL, pH 8.0 

GST binding 
buffer 

50 mM HEPES, 1000 mM NaCl, 1 mM EDTA, 1 mM DTT, pH 8.0 

GST elution 
buffer 

50 mM HEPES, 1000 mM NaCl, 1 mM EDTA, 1 mM DTT, 10 mM 
reduced glutathione, pH 8.0 

Storage buffer 
50 mM HEPES, 1000 mM NaCl, 1 mM EDTA, 1 mM DTT, 20% (v/v) 
glycerol, pH 8.0 

The cell pellet was re-suspended in 50 mL ice-cold lysis buffer and disrupted by sonication for 

3 min as described in Section 2.2.6. Cell debris was separated from soluble protein by 

centrifugation for 10 min at 33’000 x g (JA 25.50 rotor, Beckman Coulter) and 4°C. The 

supernatant was filtered through a 0.45 µm filter and applied to a GSTrap FF column (GE 

Healthcare) at a flow rate of 1 mL/min. The column was extensively washed with GST binding 

buffer and PreScission protease then eluted with 10 mM reduced glutathione. Protease 

containing fractions were pooled, concentrated as in Section 2.2.6, re-buffered into storage 

buffer and stored at -80˚C. 

2.2.10 Residue modification of ApoE4 

Lysine residues in ApoE4 were methylated as previously described (384). Reductive 

methylation was performed after overnight on-column digestion of the TRX tag by PreScission 

protease. Every two hours, 160 µL of 1 M dimethylamine borane (DMAB) complex and 320 µL 

of formaldehyde were added to 8 mL of pooled heparin-purified ApoE4 and incubated at 4°C. 

After 6 h, a final 160 µL of 1 M DMAB and 320 µL of formaldehyde were added and incubated 

overnight at 4°C. Methylated ApoE4 was then purified by a final SEC polishing step as 

described in Section 2.2.6, concentrated and stored at -80°C. 

Modification of arginine residues with 1,2-cyclohexanedione (CHD) was also performed on 

ApoE4 after on-column digestion. The procedure was adopted from Busby and Gan (385). 
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Heparin-purified ApoE4 was concentrated to a volume of ~1 mL by using Vivaspin 6 

concentrators (Sartorius, MWCO 5000 Da) and diluted into 6.2 mL of 100 mM sodium 

tetraborate decahydrate (borax), pH 9.0. Then, 800 µL of 1 M CHD in 100 mM borax, pH 9.0 

was added and the mixture incubated at 38˚C in the dark at 150 rpm for 3 h. Arginine modified 

ApoE4 was purified by SEC as described in Section 2.2.6 and ApoE4 containing fractions 

concentrated and stored at -80°C. 

2.2.11 Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

Protein fractions were analysed by sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS PAGE). NuPAGE® Novex® 4-12% Bis-Tris protein gels from Life 

Technologies were used. Electrophoresis occurred in 1 x NuPAGE® MES SDS running buffer 

(Life Technologies) at constant 200 V. Samples were denaturized at 70°C for 10 min in 4 x 

NuPAGE® LDS Sample Buffer (Life Technologies) + 10 x NuPAGE® sample reducing agent 

(Life Technologies) prior loading on the gels. Gels were stained in InstantBlue (Expedeon) 

overnight and de-stained in twice-distilled water. 

2.2.12 Gel filtration studies 

The high molecular weight protein standard (GE Healthcare, # 28-4038-42) was used to 

calibrate the HiLoad Superdex 26/600 200 pg column (GE Healthcare). All protein standards 

and dextran blue were dissolved in SEC buffer to the manufacturers recommended 

concentrations (0.4 mg/mL Ferritin, 4 mg/mL Aldolase, 3 mg/mL Conalbumin, 3 mg/mL 

Ovalbumin) and 1.6 mL of the protein calibration mixture applied to the SEC column at a flow 

rate of 1.5 mL/min. Stokes radius (RS) values were calculated on the basis of ApoE elution 

volume using equation (2.1): 

𝐾𝑎𝑣 =  
𝑉𝑒 − 𝑉0

𝑉𝑡 − 𝑉0
     (2.1) 

where Ve = elution volume for the protein, V0 = Superdex 200 column void volume (112 mL), 

and Vt = total Superdex 200 column bed volume (320 mL). Kav values were calculated for each 

protein standard and a standard curve generated by plotting the √(-log(Kav)) versus RS of each 

standard (Ferritin 6.1 nm, Aldolase 4.8 nm, Conalbumin 4.04 nm, Ovalbumin 2.75 nm). ApoE’s 

RS was calculated using equation (2.2) representing the fit of the data: 

𝑦 = 0.1058 𝑥 + 0.2397 (𝑅2 = 0.9552)     (2.2) 

ApoE diffusion coefficient D was estimated from its RS by equation (2.3): 

𝐷 =
𝑅𝑇

𝑁𝐴𝑓
=  

𝑘𝑇

6𝜋𝜂𝑅𝑠
     (2.3) 
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where R [8.314 J K-1 mol-1] is the gas constant, NA [6.022 x 1023 mol-1] is Avogadro’s number, 

f is the frictional coefficient, k is the Boltzmann constant (1.38 x 10-23 m2 kg s-2 K-1; ratio R/NA), 

T is the experimental temperature (277.15 K) and η is the solvent viscosity (1.4181 x 10-3 Pa 

s) at temperature T. The right-hand version of the equation was obtained by the Stokes 

relationship: 

𝑓 = 6𝜋𝜂𝑅𝑠     (2.4) 

The frictional properties of a macromolecule are often expressed as the ratio of the frictional 

coefficient to that of a smooth sphere with identical mass and density, f/f0 (386). The frictional 

ratio f/f0 = RS/Rmin was calculated by assuming the minimal radius (Rmin) of a sphere that could 

contain the given mass of tetrameric ApoE (136800 Da) where Rmin is defined according to 

Erickson et al (387) as: 

𝑅𝑚𝑖𝑛 = 0.066 𝑀
1
3 (𝑓𝑜𝑟 𝑀 𝑖𝑛 𝐷𝑎𝑙𝑡𝑜𝑛, 𝑅𝑚𝑖𝑛 𝑖𝑛 𝑛𝑚)     (2.5) 

2.2.13 Size exclusion multi angle light scattering 

Multi angle (laser) light scattering (MALS) coupled with SEC has become one of the most 

widely used techniques to determine the molar mass and size of a particle in solution. When 

light hits a macromolecule, the electric field of the light induces an oscillating dipole within the 

macromolecule. This dipole will in turn re-radiate (i.e. scatter) light in any direction. The overall 

intensity of the light scattered by the macromolecule is directly proportional to its molecular 

weight and allows an estimate of its size (388, 389). 

SEC-MALS experiments were performed at the B21 beamline (Diamond Lightsource, UK). 

ApoE isoforms were diluted to 5 mg/mL in 20 mM HEPES, 300 mM NaCl, 1 mM TCEP, pH 8.0 

and delivered at RT via an in-line Agilent high performance liquid chromatography (HPLC) with 

a Shodex Kw-403 column. Refractive increments were determined by a Wyatt optilab T-rEX 

and scattering measured by a Wyatt Dawn Heleo equipped with a Quasi-Elastic Light 

Scattering (QELS) module. Data was analysed using the ASTRA software version 6.1.7 

(Wyatt). 

2.2.14 Analytical ultracentrifugation 

Analytical ultracentrifugation (AUC) provides useful information on the size, shape and 

molecular weight of a macromolecule as determined by its sedimentation velocity. In AUC 

velocity experiments, movement of macromolecules is measured in high centrifugal fields. 

Macromolecules sediment away from the centre of rotation and form a concentration boundary 

that moves towards the bottom of the centrifuge cell as a function of time. Opposing the 

centrifugal force are the buoyant and diffusion forces as solvent is being displaced by the 

macromolecule. The sedimentation velocity of the macromolecule with respects to the 
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centrifugal field is given by the Svedberg equation that defines the sedimentation coefficient, 

s, of a macromolecule: 

𝑠 =  
𝑢

𝜔2𝑟
=  

𝑀(1 −  𝑣𝜌)

𝑁𝐴𝑓
=  

𝑀𝐷(1 −  𝑣𝜌)

𝑅𝑇
     (2.6) 

where u is the radial velocity of the macromolecule, ω2r is the centrifugal field (with rotor 

angular velocity ω and distance r from the centre of rotation), M is the molar mass, ν is the 

partial specific volume, ρ is the density of the solvent, NA is Avogadro’s number, f is the 

frictional coefficient, D is the diffusion coefficient, and R the gas constant. The right-hand 

version of the Svedberg equation was obtained by the relationship defined in equation (2.3). 

The sedimentation coefficient is reported in units of Svedberg (S) that corresponds to 10-13 

sec. Values sought in a velocity experiment are the diffusion coefficient, D, and the 

sedimentation coefficient, s. These can be extracted by analysis programs that model the 

concentration distribution of a macromolecule as a function of time and radial position under 

influence of sedimentation and diffusion and fit it to the experimental data (386, 390, 391). 

Sedimentation velocity experiments were performed in collaboration with Prof John McGeehan 

(University of Portsmouth) and were carried out in a Beckman model XL-A analytical 

ultracentrifuge (Beckman Coulter, Fullerton, CA) at 20ºC using an AnTi60 rotor. ApoE isoforms 

(400 μL) were used at a concentration of 8 μM in 20 mM HEPES, 300 mM NaCl, 10% (v/v) 

glycerol, pH 8.0. Experiments were performed at a rotor speed of 40,000 rpm, and absorbance 

at 280 nm was recorded in situ at time intervals of 25 min and radial intervals of 0.003 cm. 

Data was fitted to a continuous size distribution c(s) Lamm equation model in the range of 0.1-

15 S using the programme Sedfit version 15.01b (392). The confidence interval (F-ratio) was 

set to 0.95. Buffer viscosity and density was calculated in Sednterp version 20120828 BETA 

(393). 

2.2.15 Small angle X-ray scattering 

An introduction to SAXS is provided in Chapter 3. 

SAXS experiments were performed at the B21 beamline (Diamond Light Source, UK) and 

scattering acquired with an X-ray wavelength of 1 Å on a Pilatus 2M detector and at a camera 

length of 4.036 m. Static SAXS experiments were performed at protein concentrations of 8, 4, 

2, 1 and 0.5 mg/mL in 20 mM HEPES, 300 mM NaCl, 4.4% (v/v) glycerol, pH 8.0. 

Measurements were performed at 15°C with 10 x 1 sec frames being recorded per sample. 

Data were reduced using the B21 beamline in-house pypeline software and further analysed 

in ScÅtter (Bioisis) version 3.1R. 
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For SAXS experiments coupled with SEC (SEC-SAXS), ApoE isoforms at a protein 

concentration of 10 mg/mL were delivered at 20°C and a flow rate of 0.16 mL/min via an in-

line Agilent high performance liquid chromatography (HPLC) with a Shodex Kw-403 column 

and 20 mM HEPES, 300 mM NaCl, pH 8.0 as running buffer. In total 620 frames were acquired, 

and each frame exposed for 3 sec. Buffer subtraction, averaging and analysis was performed 

in ScÅtter version 3.1R. Analysis of SEC-SAXS data was also performed in ATSAS version 

2.8.2 for comparison. 

2.2.16 Crystallography 

Protein crystals are grown in aqueous, so-called “mother” solutions. Nucleation and growth of 

crystals is dependent upon supersaturation of the mother liquor. Crystal growth starts with 

nucleation of protein aggregates on the nanometer scale. The protein forms small ordered 

assemblies (i.e. nuclei) that grow to crystals in a supersaturated environment. Supersaturation 

is a “non-equilibrium condition in which some quantity of the macromolecule in excess of the 

solubility limit […] is nonetheless present in solution” (394). The objective is therefore to keep 

the mother solution supersaturated so that crystals form and grow. Different techniques are 

available, however, most common are the hanging-drop and sitting-drop procedures for vapor 

diffusion that have the same principle: the sample mixed with the mother liquor is equilibrated 

in a small chamber that is filled with the mother liquor (= reservoir solution). The concentration 

of the mother solution in the droplet is less than that of the reservoir solution, hence, water 

evaporates from the droplet in a vapor phase. This concentrates the sample and increases 

supersaturation of the sample in the drop (395). In addition to the vapor diffusion method, 

proteins, in particular membrane proteins, can be stabilized and crystallized in lipid cubic phase 

(LCP). LCP is a liquid crystalline phase that forms spontaneously when mixing lipids (e.g. 

monoolein) with an aqueous protein solution at a certain ratio. The result is a complex, three-

dimensional network of lipid bilayers that contain the lipid binding protein and enclose aqueous 

channels (396). Addition of a precipitant will alter the properties of the LCP in terms of 

microstructure and phase separation. In separated phases that are enriched in protein, 

nucleation and crystallization of the protein can occur (397). 

The 96-well format Structure Screen 1 & 2, PACT screen, Morpheus screen and JCSG screen 

were purchased from Molecular Dimensions. Screening of crystallization conditions for full 

length ApoE4 and ApoE4mon was performed at various concentrations of protein (5–10 mg/mL) 

and in the presence of various additives, as well as mild detergents (i.e. 10 mM suramin, 1 

mg/mL heparin, 25 mM octyl β-glucoside, OG, 30 mM octyl β-D-1-thioglucopyranoside, OTG) 

using the sitting drop method in MRC 2 Well Crystallization plates (Swissci) at 4°C or 20°C. 

Screening of lysine- and arginine-modified ApoE4 (Section 2.2.10) was performed at a 

concentration of 5 mg/mL using the sitting drop method in MRC 2 Well Crystallization plates 
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(Swissci) at 4°C and was compared to unmodified ApoE4. LCP crystallization trials were 

performed with full length ApoE4 and ApoE4mon in collaboration with the Membrane Protein 

Lab (Imperial College London, Diamond Light Source, UK) using the MemGold, MemGold 2, 

MemSys/MemStart and MemMeso crystallization screens (Molecular Dimensions). Proteins 

were buffer exchanged into 20 mM HEPES, 300 mM NaCl, 5% (v/v) glycerol, pH 8.0 using 

Vivaspin 2 concentrators (Sartorius, MWCO 10000) and adjusted to a concentration of ~25 

mg/mL. LCP was then performed as described by Moraes and Archer (398). 

To test the stability of ApoE4 over time, 20 µL aliquots of 1 µg/µL ApoE4, as well as 1 µg/µL 

ApoE4 + 25 mM OG were stored at RT for 2, 4 and 8 h, and 1, 2, 4, 5, 6, 7 and 8 d. Samples 

were then analysed by SDS PAGE. 

Screening with ApoE41-191 was performed at a concentration of 10 mg/mL protein using the 

sitting drop method in MRC 2 Well Crystallization plates (Swissci). Protein was mixed at a 1:1 

ratio with the mother solutions, the plates were sealed and stored at 20°C. Crystals were 

observed and documented using Leica microsystems. All crystals were transferred from 0 to 

30% (v/v) glycerol in steps of 10% prior to flash cooling in liquid nitrogen and data collection. 

X-ray diffraction data was collected at the Diamond Light Source (Oxfordshire, United 

Kingdom) on the I04 beamline (λ = 0.9795 Å) using a Dectris Pilatus 6M-F detector. The 

crystals were cooled at 100 K during data collection by a Cryostream (Oxford Cryosystems 

Ltd). Data were integrated and scaled using the automatic Xia2 processing at the Diamond 

Light Source. Part of the structure was initially solved by molecular replacement using a 

previously determined structure (Protein Data Bank (PDB) (399) entry 1GS9) and data was 

processed with CCP4 (400). Data collection and processing were performed by Dr Mark Roe 

(University of Sussex). Figures were prepared in Maestro 10.3 (Schroedinger). The protein 

was prepared using Maestro’s integrated protein preparation wizard before analysis: bond 

orders were assigned, hydrogens were added, zero-order bonds to metals and disulfide bonds 

were created, as well as water beyond 5 Å from hetero groups were deleted. Moreover, the 

protein was refined by assigning hydrogen bonds at pH 7.0. 
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2.3 Results 

2.3.1 ApoE is only expressed over a short period of time in Rosetta2(DE3) 

cells 

Full length ApoE isoforms, as well as ApoE41-191 and ApoE4mon were expressed as TRX fusion 

protein. The E. coli TRX has characteristics that make it very suitable as a fusion partner. It is 

a small redox protein with a molecular weight of 11 kDa and therefore represents only a small 

proportion of the fusion protein. Additionally, TRX was shown to increase solubility of various 

proteins and to promote release from the cell by osmotic shock or freeze/thaw treatments 

(401). With regards to the expression of ApoE in E. coli, TRX was shown to be advantageous 

in that high expression of soluble ApoE is achieved (375). 

Small scale expression trials of ApoE isoforms in Rosetta2(DE3) cells revealed that ApoE is 

only expressed over a short period of time at a temperature of 37°C (Figure 2.1). Highest 

expression is observed 1 h and 2 h after induction with IPTG and significantly decreases after 

this period. Only a reduced band of the TRX-ApoE fusion protein is seen after 4 h and 6 h of 

induction and no expression was observed after leaving the cells to grow overnight at 

decreased temperature of 25°C. This suggests metabolism of ApoE in E. coli and/or plasmid 

loss after long periods of expression. All ApoE isoforms behaved in a similar manner. An 

example showing the growth (represented by the OD600) of Rosetta2(DE3) cells expressing 

TRX-ApoE4 is presented in Figure 2.1A. As expected, cells that were not induced with IPTG 

reached higher optical densities at all time points compared to induced cells. Additionally, the 

OD600 of the induced culture after expression overnight fell below 1.0 which suggests lysis of 

cells. This effect was also confirmed for TRX-ApoE2 and TRX-ApoE3 (data not shown). For 

this reason, only short induction times were used for the large-scale expression of ApoE 

isoforms. 
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Figure 2.1. Expression of ApoE isoforms in Rosetta2(DE3) cells. (A) The OD600 is shown as a function of time 

for Rosetta2(DE3) cells expressing the TRX-ApoE4 fusion protein. Shown is the expression of the (B) TRX-ApoE2, 

(C) TRX-ApoE3 and (D) TRX-ApoE4 fusion protein (Mw ~45 kDa) in Rosetta2(DE3) cells over time. Cells were 

induced with 1 mM IPTG and samples taken before induction, after 1, 2, 4, 6 and 24 h. A non-induced control was 

included that shows no expression of TRX-ApoE.  

The TRX ApoE4 amino terminal domain (TRX-ApoE41-191) and the monomeric ApoE4 fusion 

protein (TRX-ApoE4mon) on the other hand seem more stable and are expressed up to 6 h after 

induction with peak expression at 4 h (Figure 2.2). However, similar to wild type ApoE isoforms, 

no band or only a minimal band is seen after growing the cells overnight. Expression of TRX-

ApoE41-191 and TRX-ApoE4mon seems not to be as cytotoxic as the expression of wild type 

ApoE isoforms and induced cultures reach a similar OD600 compared to the non-induced 

controls after incubation overnight (Figure 2.2A and 2.2C). Therefore, expression times up to 

4 h were adopted for the large-scale expression of TRX-ApoE4mon and TRX-ApoE41-191. 
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Figure 2.2. Expression of ApoE4mon and ApoE41-191 in Rosetta2(DE3) cells. (A) The OD600 as a function of time 

is shown for Rosetta2(DE3) cells expressing TRX-ApoE4mon as well as (B) the respective gel. (C) The OD600 as a 

function of time is shown for Rosetta2(DE3) cells expressing TRX-ApoE41-191 as well as (D) the respective gel. Cells 

were induced with 1 mM IPTG and samples taken before induction, after 1, 2, 4, 6 and 24 h. A non-induced control 

was included. 

2.3.2 Development of a novel procedure for the purification of ApoE4 

The purification protocol was developed using wild type ApoE4 and was then adopted for the 

two other isoforms (Section 2.3.3). Combinations of different affinity chromatography methods 

with SEC were tested under non-denaturing conditions and key trials that significantly 

contributed to the development of the final purification protocol are summarized in Table 2.6. 

A combination of IMAC followed by HAC and SEC were an ideal combination for the 

purification of ApoE4. 
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Table 2.6. Summary of key purification trials. The sequence of purification trials is shown that all include a 

capture step by IMAC (except #5) to enrich the protein of interest, digestion of the TRX tag by PreScission protease 

overnight, followed by an intermediate purification by either AEX or HAC and a final polishing by SEC. 

# Purification sequence Comment 

1 IMAC → SEC Moderate purity (Appendix Figure 2.21) 

2 IMAC → AEX 
Only moderate binding affinity of ApoE to AEX column and 
moderate purity (Figure 2.3) 

3 IMAC → HAC 
High binding affinity of ApoE to heparin column and 
selection of functional protein; improved purity compared 
to AEX (Figure 2.4) 

4 IMAC → HAC → SEC Selection of functional protein and high purity (Figure 2.5) 

5 HAC → SEC 
Selection of functional protein, but only moderate purity 
(Appendix Figure 2.22) 

A six-histidine tag is present at the amino terminus of the TRX-ApoE4 fusion protein. Therefore, 

a primary capture step by IMAC was always included to enrich the fusion protein and to remove 

major impurities. In the simplest purification trial, IMAC was followed by SEC, but the final 

purification product had only moderate purity (Appendix Figure 2.21). For this reason, 

intermediate purification steps by AEX and HAC were compared. With an isoelectric point (pI) 

of approximately 5.8 (109), ApoE4 should immobilize on AEX columns in buffers above its pI 

and on cation exchange chromatography (CEX) columns below its pI, respectively. Binding of 

ApoE4 to an AEX column was tested and as expected it immobilized to the column at a pH of 

8.0 (Figure 2.3). Pleasingly, the cleaved TRX tag did not immobilize to the AEX column which 

enabled simple separation of the solubility tag. However, ApoE4 started to elute at a low salt 

concentration (~ 190 mM) and hence the protein sample was determined to be of poor purity 

as other proteins co-eluted. 
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Figure 2.3. Purification of ApoE4 using immobilized metal affinity and anion exchange chromatography. 

After having captured TRX-ApoE4 by IMAC, the IMAC elution fractions were pooled and TRX-ApoE4 digested with 

PreScission protease overnight. Cleavage of the fusion protein was confirmed (digestion suspension) and the 

protein mixture was then applied to a HiTrap Q HP (GE Healthcare) anion exchange column. Elution of ApoE4 is 

observed during loading and the TRX tag is also found in the loading fractions. After having washed the column 

with binding buffer, ApoE4 was eluted with a linear salt gradient. Elution occurred at moderate salt concentration. 

As outlined in Chapter 1, Section 1.4.3, ApoE contains two heparin binding sites that mediate 

the binding to cell-surface HSPGs. ApoE’s heparin binding ability was exploited for high-

resolution purification of ApoE by using affinity columns in which heparin is covalently coupled 

to highly cross-linked agarose beads. In a first test, the digested protein mixture was applied 

to a HiTrap heparin HP (GE Healthcare) column and then eluted by applying a linear salt 

gradient (Figure 2.4A). ApoE4 immobilized to the heparin column and eluted at high NaCl 

concentrations (~420 mM). Additionally, the TRX tag was found to be in the loading fractions 

and therefore was separated from ApoE4. In a second trial, the binding ability of the TRX-

ApoE4 fusion protein to the heparin column was compared and cleavage of the TRX tag on 

the column was tested. The IMAC elution fractions were pooled and directly applied to the 

heparin column. PreScission protease was then manually injected and digestion performed 

overnight on the column. As can be seen on the gel in Figure 2.4B, cleavage on the column 

was successful and the TRX tag was removed by washing the column with a buffer containing 

low salt. ApoE4 on the other hand eluted at higher salt concentrations (~420 mM). HAC in 

combination with on-column digestion was selected as intermediate step in the final purification 

protocol, as it divides the purification process better in terms of work load; i.e. IMAC and 

loading of the heparin column are performed on Day 1 of the purification, elution of ApoE from 

the heparin column and SEC on Day 2. 
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Figure 2.4. Heparin affinity chromatography in combination with off- or on-column digestion. The HAC of 

ApoE4 is shown. (A) Digestion of ApoE4 by PreScission protease was performed in suspension. Cleavage of the 

TRX solubility tag was confirmed (digestion suspension) and the mixture was applied to a HiTrap heparin HP (GE 

Healthcare) affinity column. Identical to AEX, TRX did not bind to the heparin resin and was found in the loading 

fractions. By applying a linear salt gradient, ApoE4 was then eluted from the heparin column and eluted at high salt 

concentrations. (B) In a similar approach, undigested TRX-ApoE4 was directly applied to the heparin column and 

digestion performed overnight on the column. TRX was found in the low salt wash fractions after digestion and 

ApoE4 on the other hand in the elution fractions with high salt content. 

Each purification step included will result in a loss of protein of interest and reduce final yields. 

It was therefore of interest to test whether IMAC can be excluded and purification achieved by 

a combination of HAC and SEC only. Major impurities were found to be present after HAC and 

higher molecular weight species formed that eluted in the void volume of the SEC column 

(Appendix Figure 2.22). Final purity as assessed by SDS PAGE was determined to be only 

moderate. For this reason, IMAC was kept as a primary purification step in the final protocol. 

The strong binding affinity of ApoE4 to the heparin column and the fact that it elutes at high 

NaCl concentration was exploited to increase purity of the final product by adjusting the salt 

concentration in the purification buffers. Results are summarized in Table 2.7. A combination 

of 240 mM NaCl for loading TRX-ApoE4 and 300 mM for washing the heparin column were 

identified to be optimal in terms of yield and purity. Example gels of the final purification 

protocol are shown in Figure 2.5. Typically, 8-12 mg of ApoE4 were yielded from an 8 L 

expression culture with purities > 95% as determined by densitometric scanning using the 

Image J image analysis software (402). Example chromatograms of HAC and SEC are found 

in Appendix Figure 2.23. 
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Table 2.7. Adjustment of NaCl concentration in purification buffers. 

[NaCl] in buffers Approximate yield Comment 

250 mM 
0.3 mg final protein per 1 g 
wet pellet 

Good purity (> 90%) of final 
product; impurities still visible 

300 mM 
0.12 mg final protein per 1 g 
wet pellet 

High purity (> 95%); low yield 

400 mM --- 
ApoE4 does not immobilize to 
heparin column 

240 mM / 300 mM 
0.2 mg final protein per 1 g 
wet pellet 

High purity (> 95%); increased 
yield compared to 300 mM NaCl in 
all buffers 

 

Figure 2.5. Representative gels summarizing ApoE4 purification. The TRX-ApoE4 fusion protein shows good 

solubility in the lysis buffer used and soluble protein is found in the lysate supernatant as demonstrated by the left 

gel. However, major TRX-ApoE4 is found in the pellet with the cell debris. A primary capture step by IMAC enriches 

the protein of interest and removes major impurities. Some of the fusion protein is found in the flow through (IMAC 

FT), as well as wash fractions (IMAC wash) of the IMAC resin, however, most is found in the elution fractions (IMAC 

elution). The TRX-ApoE4 fusion protein shows excellent heparin binding affinity as only minimal amounts of protein 

are seen in the flow through of the column (heparin FT). The right-hand figure shows a gel that demonstrates 

successful digestion of the solubility tag on the heparin column. TRX protein elutes at lower salt concentrations and 

is therefore found in the wash fractions (heparin wash). ApoE4 on the other hand elutes at higher salt concentrations 

(heparin elution). A final purification step by SEC eliminates last impurities and aggregates that may have formed. 

ApoE4 elutes at two apparent elution volumes (Appendix Figure 2.23B). One smaller fraction at 131 mL and the 

major fraction at 151 mL. This suggests that different oligomeric species are present. Only the major fractions at 

151 mL were pooled and concentrated. The final concentrate (conc.) has high purity, with a minor impurity at 22 

kDa being observed. 
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2.3.3 The purification procedure can be applied to ApoE2 and ApoE3 

The purification protocol developed for ApoE4 was applied to ApoE2 and ApoE3. No 

adjustment was necessary for ApoE3 and an example gel that summarizes the purification 

process is shown in Figure 2.7B. The only difference compared to ApoE4 is the addition of 

TCEP to the SEC buffer as ApoE3 contains a cysteine that may form intermolecular disulphide 

bonds (381). Yields and purity were identical to ApoE4. 

Sodium chloride concentrations for the purification of ApoE2 had to be adjusted. Washing the 

heparin column after loading the TRX-ApoE2 fusion protein with SEC buffer containing 300 

mM NaCl resulted in elution of the fusion protein and therefore low yields (Figure 2.6). A 

comparison of the binding ability of ApoE isoforms to the HiTrap heparin HP column (GE 

Healthcare) revealed that ApoE2 elutes at lower a salt concentration compared to ApoE3 and 

ApoE4 (Chapter 3, Figure 3.12C). For this reason, sodium chloride concentrations were kept 

at 240 mM when washing the heparin column which prevented elution of TRX-ApoE2 during 

this stage. Due to lower concentrations of sodium chloride in buffers used for HAC, purity of 

the final ApoE2 product was slightly lower compared to the two other isoforms (Figure 2.7A). 

Final yields were similar to ApoE3 and ApoE4 (8-12 mg protein out of 8 L expression culture). 

 

Figure 2.6. Loading of ApoE2 to a heparin column with increased sodium chloride. (A) The gel summarizes 

the ApoE2 purification steps. TRX-ApoE2 is like TRX-ApoE4 soluble in the lysis buffer and is found in the soluble 

fractions (lysate supernatant). The enriched protein after IMAC (IMAC elution) was then applied to a HiTrap heparin 

HP column (GE Healthcare) and washed with SEC buffer containing 300 mM NaCl. This resulted in elution of the 

TRX-ApoE2 fusion protein (X2) that could be followed in the absorbance chromatogram as shown in panel (B). The 

absorbance at 280 nm is shown as a function of elution volume. X1-X2 represents the loading fraction. X2 – X4 are 

wash fractions during which the heparin column was flushed with SEC buffer. 

 



56 
 

 

Figure 2.7. Representative gels summarizing ApoE2 and ApoE3 purification. Example gels of the (A) ApoE2 

and (B) ApoE3 purification are shown. The TRX-ApoE2 and TRX-ApoE3 fusion protein are found in the soluble 

fraction of the lysate (lysate supernatant), however, some is found in the pellet with the cell debris (pellet). After 

enrichment of the fusion proteins by IMAC, they were applied to a heparin column. The fusion proteins show 

excellent heparin binding affinity as only minimal amount of protein is seen in the flow through of the column (heparin 

FT). Cleavage of the TRX solubility tag by PreScission protease was performed on the heparin column and TRX 

protein washed out the next day (heparin wash). Washing of the heparin column after loading the fusion protein, as 

well as after on column digestion was performed with reduced sodium chloride concentrations of 240 mM in the 

case of ApoE2 compared to 300 mM for ApoE3 and ApoE4. Elution of ApoE3 and ApoE2 was achieved by applying 

a linear salt gradient (heparin elution). Identical to ApoE4, two apparent elution peaks are observed for ApoE2 and 

ApoE3 in SEC; a minor shoulder at 131 mL and a major peak at 151 mL (Figure 2.10A). Fractions of the 151 mL 

peak were pooled and concentrated (conc.). The final concentrate has high purity, however, a minor impurity at 22 

kDa is seen, in particular in the case of ApoE2. 

2.3.4 Purification of ApoE4mon and ApoE41-191 

The ApoE4mon mutant was purified using identical conditions to wild type ApoE4 (Section 

2.3.2). Notably, the TRX-ApoE4mon fusion protein showed reduced binding affinity to the 

heparin column similar to ApoE2 and partly eluted during the wash with SEC buffer containing 

300 mM NaCl (Figure 2.8). However, final yields were high (15-18 mg out of an 8 L expression 

culture) since ApoE4mon generally expressed better in Rosetta2(DE3) cells than wild type ApoE 

isoforms (Section 2.3.1). A similar purification protocol used for ApoE2 with reduced sodium 

chloride during HAC was therefore not adopted or tested. The elution profile of ApoE4mon 

during SEC was not reproducible. Peaks in purifications were generally very broad, and the 

peak maximum shifted to lower retention volumes the more protein was injected into the SEC 

column (Figure 2.8C). This suggests a concentration dependent effect on ApoE4mon 

oligomerization and therefore size. SAXS confirmed the concentration dependent effect on the 

size as determined by the radius of gyration (Rg) (Section 2.3.5). 
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Figure 2.8. Summary purification of monomeric ApoE4. (A) An example gel of the ApoE4mon purification is 

shown. TRX-ApoE4mon fusion protein is found in the soluble fractions of the lysis supernatant and was enriched by 

IMAC (IMAC elution). IMAC elution fractions were then applied to a HiTrap heparin HP column (GE Healthcare) 

and washed with SEC buffer containing 300 mM NaCl. This resulted in partial elution of the TRX-ApoE4mon fusion 

protein (X2) that could be followed in the absorbance chromatogram as shown in panel (B). The absorbance at 280 

nm is shown as a function of elution volume. X1 represents the loading fraction. X2 and X3 are wash fractions 

during which the heparin column was flushed with SEC buffer. (C) SEC revealed a concentration dependent effect 

of ApoE4mon elution profile. Applying ApoE4mon at higher concentrations to the SEC column resulted in a shift of the 

elution peak maximum to lower volumes. The elution peak maximum was 164 mL, 167 mL and 177 mL when 

ApoE4mon was injected at concentrations of ~ 5.3 mg/mL, 4.5 mg/mL and 3 mg/mL respectively. In the purification 

presented here, ApoE4mon at a concentration of 4.5 mg/mL was applied to the column. Fractions around the 167 

mL elution peak maximum were pooled (area under the curve highlighted in blue) and concentrated. Final product 

(conc.) as seen in panel (A) has very high purity (> 95%). 

Primarily purifications of ApoE41-191 included batch IMAC using a cobalt resin followed by SEC. 

Although SEC separated the majority of the cleaved TRX tag from ApoE41-191, some TRX 

impurities were seen in the final product (Appendix Figure 2.24A). Additionally, high amounts 

of ApoE41-191 aggregate that eluted in the void volume of the SEC column formed during 

overnight digestion in suspension (Appendix Figure 2.24B) and reverse IMAC to remove 

residual TRX reduced yields of the amino terminal domain. An improved purification process 

was therefore adopted. The cleared lysate was loaded to a nickel column and digestion was 

performed on the column overnight. ApoE41-191 having lost its six-histidine tag was then 

washed out of the column with low imidazole concentrations while the TRX with the six-
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histidine tag at its amino terminus remained immobilized to the column (Figure 2.9). This 

enabled easy separation of ApoE41-191 from TRX and no reverse IMAC was necessary to 

remove residual TRX. Moreover, fewer ApoE41-191 aggregates formed during on-column 

digestion. Purity and yields of the final product were very high (~10 mg per 1 L expression 

culture). 

 

Figure 2.9. Purification of the ApoE4 amino terminal domain. (A) The gel summarizes the ApoE41-191 

purification steps. The TRX-ApoE41-191 fusion protein is found in the soluble fractions of the lysate (lysate 

supernatant), although some is also seen in the cell debris pellet (pellet). The fusion protein bound to the nickel 

column and none was found in the flow through fractions (IMAC FT). After digestion overnight on the column, the 

column was washed with 20 mM imidazole (IMAC wash) and ApoE41-191 eluted with TRX remaining bound to the 

nickel column. TRX with the six-histidine tag was eluted by applying a linear imidazole gradient (IMAC elution). SEC 

excluded aggregates (SEC peak 1), as well as other higher oligomeric ApoE41-191 species (SEC peak 2) that formed 

during purification. The final product (conc.) has high purity as determined by densitometric scanning (> 95%). 

Panels (B) and (C) illustrate the respective IMAC and SEC chromatograms. The absorbance at 280 nm is shown 

as a function of elution volume. Three elution peaks were observed during SEC. An aggregate peak 1, higher 

ApoE41-191 species peak 2 and major ApoE41-191 peak 3 that was pooled to yield the final product (area under the 

curve highlighted in blue). 
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2.3.5 ApoE forms stable tetramers in solution and is elongated in shape 

The structure of ApoE isoforms in solution was investigated using gel filtration, SEC MALS, 

AUC and SAXS. Since ApoE isoforms were isolated by a novel purification protocol, it was 

important to compare the behaviour of the proteins in solution with previous publications. ApoE 

isoforms were gel-filtered through a Superdex 200 column and all showed identical elution 

profiles with a minor shoulder at 131 mL and a major peak at 151 mL (Figure 2.10A). The ApoE 

retention volume was compared to the elution pattern of globular protein standards. From the 

standard curve for globular proteins, the Stokes radius (RS) of ApoE was determined to be 5.8 

nm that would correspond to a molecular mass of approximately 330 kDa (Figure 2.10). This 

much larger molecular weight of recombinant ApoE tetramer has already been observed in 

previous gel filtration studies (195, 379). A frictional ratio f/f0 of 1.71 was calculated based on 

the RS of 5.8 nm suggesting elongated shape in solution of ApoE. This elongation seems 

responsible for the discrepancy in molecular weight. 

 

Figure 2.10. Gelfiltration studies on ApoE isoforms. The elution pattern of ApoE isoforms on the Superdex 200 

column is shown in panel (A) as a function of absorbance at 280 nm versus the elution volume. All ApoE isoforms 

have a minor elution peak at 131 mL and a major at 151 mL. This suggests the presence of different oligomeric 

species. (B and C) A hydrodynamic radius of 5.8 nm, as well as a diffusion coefficient of 2.47 x 10-7 cm2 s-1 was 

calculated for ApoE by calibration of the Superdex 200 column using commercially available protein standards (1 – 

dextran blue, 2 – ferritin, 3 – aldolase, 4 – conalbumin, 5 – ovalbumin). 

To define the association state more accurately of the three ApoE isoforms in solution, their 

behaviour was analysed by SEC MALS and AUC. SEC MALS confirmed identical elution 

profile of all ApoE isoforms from a Kw-403 (Shodex) column (Figure 2.11). Molecular weights 

ranging from 139-151 kDa were calculated at the peak maximum suggesting tetramerization 

of ApoE isoforms in solution. The RS was determined to be slightly higher compared to the 

value measured using gelfiltration (Table 2.8). However, values of 6.4 – 6.8 nm come closer 

to previous observations made for ApoE3 determined to have a RS of 6.6 nm (195, 379). 
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Figure 2.11. SEC MALS studies on ApoE isoforms. The differential refractive index (RIU) and the calculated 

molecular weight (Mw) across the peak are shown as a function of elution time for (A) ApoE2, (B) ApoE3 and (C) 

ApoE4. 

Table 2.8. Hydrodynamic properties at elution peak determined by SEC MALS. 

 ApoE2 ApoE3 ApoE4 

Mw [kDa] 144 139 151 

Rs [nm] 6.55 6.40 6.81 

f/f0 1.93 1.88 2.00 

D [cm2 s-1] x 10-7 3.78 3.88 3.64 

AUC confirmed observations made in the SEC MALS study with respects to size and 

tetramerization. Sedimentation velocity analysis was performed by applying the continuous 

size distribution model c(S) (392). One major component around 3 S was identified after fitting 

the data which represents 92%, 75% and 91% of the soluble protein for ApoE2, ApoE3 and 

ApoE4 respectively (Figure 2.12 and Table 2.9). Higher molecular weight species are present 

and represent the rest of the soluble protein. In particular higher oligomeric species are seen 

in the ApoE3 sample at 4.5 S (Mw ~217 kDa). Normalization of sedimentation coefficients to 

standard conditions in water (s20,W) result in values of 5.06 – 5.19 S (Table 2.9) that compare 

well to values obtained in previous studies of s20,W 5.3 – 5.7 S (195, 379). 
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Figure 2.12. Sedimentation velocity of recombinant ApoE isoforms. Sedimentation velocity profiles of (A) 

ApoE2, (B) ApoE3 and (C) ApoE4 in SEC buffer are shown. The absorbance at 280 nm is plotted as a function of 

radial position. Curves were fitted to the Lamm equation with the SEDFIT program using the c(S) distribution 

function (upper panels). Grey scale of residual bitmap (medium panels) and residuals (bottom panels) plotted as a 

function of radial position attest of the quality of the fit. (D) Continuous c(S) size distributions of ApoE show no 

differences between all isoforms. One major species with a sedimentation coefficient at 3 S is detected for each 

isoform. 

Table 2.9. Sedimentation analysis of recombinant ApoE isoforms in SEC buffer. 

 f/f0
† 

s* 
[S] 

s20,W
# 

[S] 
RS 

[nm] 
D x 10-7 
[cm2 s-1] 

Mw* 
[kDa] 

Peak 
integration* 

RMSD 

ApoE2 1.75 3.19 5.09 5.72 2.50 122 ~92% 0.0033 

ApoE3 1.78 3.25 5.19 5.94 2.41 129 ~75% 0.0031 

ApoE4 1.79 3.17 5.06 5.92 2.42 126 ~91% 0.0028 

*Corresponding to the main sedimentation peak; †Best fitted friction ratio are used to calculate continuous size 
distribution; #Normalized to standard solution conditions of water at 20°C 
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Finally, small angle X-ray scattering (SAXS) was utilised to further investigate the shape of the 

ApoE isoforms in solution. All ApoE isoforms exhibit an identical scattering profile which 

suggest no difference in shape between ApoE isoforms (Figure 2.13). A Rg of 5.6 nm (56 Å) 

was calculated using the Guinier approximation and comes close to the hydrodynamic radius 

determined by gel filtration, SEC MALS and AUC. In the normalized Kratky representation, a 

compact, globular, monodispersed protein is observed as a near Gaussian peak with a 

maximum at 1.1 on the Y-axis and √3 on the X-axis (403). The presence of distinct maxima in 

the Kratky plots of all the ApoE isoforms indicate that they share a somewhat globular nature. 

However, the distinct shoulder found to the right of the main peak suggests that a portion of 

the protein is extended or polydispersed. This result is consistent with an extended multi-

domain protein in which at least some of the domains, tethered by flexible linkers, have some 

freedom of movement with respect to the bulk of the protein (403). The pair distance 

distribution function fits to a maximal dimension (Dmax) of approximately 19.5 nm (195 Å) and 

confirms elongation of ApoE in solution. 

 

Figure 2.13. Small angle X-ray scattering experimental data of WT ApoE isoforms. X-ray scattering curves 

and the dimensionless Kratky plot for (A) ApoE2, (B) ApoE3 and (C) ApoE4 are shown, as well as (D) their 

corresponding pair distance distribution function P(r). The red cross-hair in the dimensionless Kratky plot denotes 

the Guinier-Kratky point (x= √3, y= 1.1), the peak position for an ideal globular particle. 
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Static and SAXS coupled with SEC (SEC-SAXS) was also performed with ApoE41-191 and 

ApoE4mon. While ApoE41-191 remains monomeric and has stable Rg values at varying 

concentrations tested in the static measurements (Appendix Figure 2.25), a substantial 

concentration-dependent effect on Rg was observed in ApoE4mon (Figure 2.14). Estimation of 

the molecular weight (MW) indicates that ApoE4mon is tetrameric at a concentration of 8 mg/mL 

and predominantly dimeric at lower concentrations. Similarly, the Rg values varied across the 

elution peak in SEC-SAXS (Appendix Figure 2.27B). 

 

Figure 2.14. Scattering profile of ApoE4mon at different concentrations. (A) I(q) versus q as log-linear plots are 

shown for ApoE4mon at different concentrations (8, 4, 2, 1, 0.5 mg/mL; top to bottom scattering curve). (B) The 

estimated Rg from the Guinier approximation, as well as estimated MW are shown as a function of protein 

concentration. The degree of fitting in the Guinier approximation decreases with decreased protein concentration 

due to increased noise and therefore results in erroneous Rg. The molecular weight MW was estimated based on 

the method by Rambo et al (404).  

Analysis of the SEC-SAXS sample demonstrated that ApoE41-191 is globular and monodisperse 

in solution and peaks near the Guinier-Kratky point (x= √3, y= 1.1) as seen in the Kratky 

representation (Figure 2.15A). A Rg of 2.3 nm (23 Å) was calculated by using the Guinier 

approximation and a maximal dimension of 7.3 nm (73 Å) was fitted in the P(r) analysis. These 

dimensions compare well to the dimensions of the amino terminal domain crystal structure 

(~6.7 nm in length, ~2.3 nm in width, PDB entry 1GS9).  

The theoretical scattering pattern of a protein in solution can be calculated from its crystal 

structure. This can help to evaluate differences in the shape of the protein in solution to its 

structure in the crystal lattice (377). Computation of the theoretical scattering profile of the 

amino terminal domain crystal structure (PDB entry 1GS9) aligns well with the experimental 

scattering pattern (Figure 2.15A). This suggests that there are only small differences between 

ApoE41-191 in solution and in the crystal lattice. 
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ApoE4mon on the other hand is extended or polydispersed in nature and does not have its peak 

maximum at the Guinier-Kratky point (Figure 2.15B). Based on a Rg of 4.5 nm (45 Å), the 

molecular weight of the SEC-SAXS sample was estimated to be 62 kDa, suggesting 

dimerization of the protein. The theoretical scattering pattern of the deposited ApoE3 NMR 

structure (PDB entry 2L7B) that is monomeric and globular in nature does therefore not align 

with the experimental scattering profile (Figure 2.15B). Structural parameters of SAXS data, 

as well as SEC-SAXS frame selection are found in the Appendix. 

 

Figure 2.15. Small angle X-ray scattering experimental data of ApoE41-191 and ApoE4mon. X-ray scattering 

curves (left), the dimensionless Kratky plot (middle) and the P(r) fit (right) are shown for (A) ApoE41-191 and (B) 

ApoE4mon. Theoretical scattering profiles (in blue) were computed using the Fast X-ray Scattering (FOXS) web 

service (405). PDB entries 1GS9 and 2L7B were used to calculate theoretical scattering patterns of ApoE41-191 and 

ApoE4mon respectively. The quality of the fit χ2 is included.  

2.3.6 Crystallization trials 

Several attempts were made to crystallize full length ApoE4 (see Methodology Section 2.2.16). 

Crystals grown with full length ApoE4 had similar morphology to crystals of ApoE41-191 (Figure 

2.16A) and X-ray data collection of selected crystals revealed the amino terminal domain in 

the asymmetric unit. Analysis of crystals by SDS PAGE (not shown), as well as a stability test 

in solution confirmed degradation of full length ApoE4 in selected crystal conditions and its 

instability in vitro (Figure 2.16B). Notably, stability in solution could be increased by the addition 

of the mild detergent OG (Figure 2.16B). However, addition of OG, or the closely related OTG 

detergent only yielded crystals of the amino terminal domain (Figure 2.16C). Other additives 

such as heparin or Suramin that were shown to bind to ApoE4 (Chapter 3 and 4) did not yield 
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crystals of the full-length protein either (data not shown). Similar fragmentation was also 

observed with ApoE4mon (Figure 2.16D). 

 

Figure 2.16. Crystallization trials of full length ApoE4. (A) Example crystals that were grown with full length 

ApoE4 in the PACT crystallization screen are shown and only consist of the amino terminal domain. Morphology of 

the crystals was identical or very similar to crystals grown with ApoE41-191. (B) ApoE4 degrades with time into ~22 

kDa and ~12 kDa fragmentation products in solution at RT. Stability is drastically increased with the addition of 25 

mM OG. (C) Example crystals grown in the presence of 25 mM OG, as well as 1 mg/mL heparin are shown. (D) 

ApoE4mon crystals were analysed by SDS PAGE and revealed degradation of the protein. The scale bar in each 

picture of panels (A) and (C) represents 0.1 mm. JCSG, PACT and Morpheus (Molecular Dimension) are 

commercially available crystallization screens. Constituents of the mother solutions PACT B2, D1, E10, and JCSG 

C4, A9, C3, H3, and Morpheus A8, C9 are found in the Appendix (Table 2.13). 

The flexibility of a protein can influence crystallization success and flexible proteins may not 

form an ordered crystalline lattice. Flexibility can arise from the large movement of domains or 

loops, as well as due to solvent-exposed amino acid side chains such as from lysine residues. 

Chemical modification can reduce the surface entropy and therefore promote crystallization 

(384, 406). To test if crystallization of ApoE4 could be achieved by such residue modification, 

lysine and arginine residues were modified by reductive methylation and by chemical 

modification with 1,2-cyclohexanedione (CHD) (384, 385). Modification of residues was 
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performed on the heparin elution fractions after on-column digestion and modified proteins 

then purified by SEC. As can be seen on the gels in Figure 2.17A, ApoE4 has a slightly 

increased molecular weight after reductive methylation compared to unmethylated protein. 

This effect is more obvious in the modification of ApoE4 with CHD. Gelfiltration elution profiles 

were altered in both cases of modification with a shift to lower retention volumes (150 mL after 

lysine and 146 mL after arginine modification compared to 151 mL for unmodified protein, 

Figure 2.17B). Notably, a second elution peak with higher retention volume (187 mL) that 

contained modified ApoE4 was observed after arginine modification. A higher retention volume 

suggests a smaller size of the protein. Arginine modification may have moved the oligomeric 

state of ApoE4 to lower molecular weight species. 

 

Figure 2.17. Modification of lysine residues by reductive methylation and arginine residues with CHD in 

ApoE4. (A) The left-hand gel shows electrophoresis of ApoE4 before and after reductive methylation of lysine 

residues. ApoE4 runs at a slightly higher apparent molecular weight after methylation. SEC fractions were highly 

pure and fractions at the major peak around 150 mL were pooled and concentrated. The right-hand gel 

demonstrates the effects of arginine modification with a notable increase in molecular weight of ApoE4 after 

chemical modification. A shoulder at 125 mL, as well as a major and a minor elution peak at 146 mL and 187 mL 

respectively were observed during SEC of arginine modified ApoE4. (B) The gelfiltration chromatograms of modified 

ApoE4 are compared to unmodified protein. The normalized absorbance at 280 nm is shown as a function of elution 

volume. 

The Structure Screen (Molecular Dimension) condition C7 was identified in which a small 

crystal formed from lysine methylated ApoE4 (Figure 2.18A). Data collection at the synchrotron 

revealed however that the crystal was formed by the amino terminal domain. Arginine 

modification drastically influenced crystallization behaviour. While phase separation was 

predominantly observed in unmodified ApoE4 after mixing the protein with the mother solution 

(out of which the amino terminal domain eventually crystallized), arginine-modified ApoE4 
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precipitated with a dark colour and no crystals formed (Figure 2.18B). In a last effort, LCP 

crystallization was tested in collaboration with the Membrane Protein Lab (MPL, Imperial 

College at Diamond Lightsource), but unfortunately did not yield any crystals. 

 

Figure 2.18. Crystallization of modified ApoE4. (A) A crystal of methylated ApoE4 was identified in the Structure 

Screen (St. Sc.) condition C7. (B) Arginine-modified ApoE4 behaved differently to unmodified protein. The example 

PACT A7 condition is compared. While modified ApoE4 precipitates with a brown colour, phase separation is seen 

in unmodified ApoE4. The scale bar represents 0.1 mm. St. Sc. and PACT (Molecular Dimension) are commercially 

available crystallization screens. Constituents of the mother solutions St. Sc. C7 and PACT A7 are found in the 

Appendix (Table 2.13). 

As expected, ApoE41-191 readily crystalized and 62 conditions were identified in which protein 

crystals formed (ranging from low quality needles to high quality single crystals). A set of these 

crystals were sent to the synchrotron and the crystal obtained from the PACT A1 condition 

(Figure 2.19) diffracted to approximately 2.2 Å. Its structure was resolved by molecular 

replacement using a previous resolved structure (PDB entry 1GS9). Data collection, molecular 

replacement and structure refinement were performed by Dr Mark Roe (University of Sussex).  

The resolved crystal structure revealed a compact four-helix bundle that is similar to published 

structures (Figure 2.19) (212, 238). Residues at the amino (1 – 22) and carboxyl (163 – 191) 

termini, as well as residues connecting helix 2 and 3 are strongly disordered and did not allow 

any modelling. The structure perfectly aligns with 1GS9 with a root-mean-square deviation 

(RMSD) of atomic positions of 0.962 Å. Subtle differences to previously resolved structures 

are observed and involve Arg61, the residue implicated in mediating ApoE4 domain interaction 

(Chapter 1, Section 1.4.4). While Arg61 in truncated ApoE3 (PDB entry 1NFN) is buried in 

between helix 2 and 3 of the four-helix bundle, it seems to point away in truncated ApoE4 (PDB 

entry 1GS9, Figure 2.19). Here, the resolved structure confirms that surface exposed Arg61 in 

ApoE41-191 is flexible and is able to point towards both helices as found in ApoE3 amino 

terminal domain. Data collection and refinement statistics are found in the Appendix (Table 

2.14). 
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Figure 2.19. Crystal structure of ApoE41-191. The amino terminal domain forms a compact four-helix bundle (left 

Figure) that contains the receptor binding domain on helix 4 (highlighted in orange). Residues 82-84 that connect 

helix 2 and 3 could not be modelled due to weak electron density (indicated by dotted line). Comparison of this 

resolved structure with other amino terminal domains deposited in the protein data bank (middle and right figures) 

reveals high flexibility of Arg61. In ApoE3 (1NFN), Arg61 is buried between helix 2 and 3, while pointing away in 

ApoE4 (1GS9). Arg61 takes a similar conformation in this resolved structure as in ApoE3. Overlay of published 

structures (right figure; 1FNF in orange, 1GS9 in red, 1LE4 in yellow, resolved structure in blue) demonstrates 

conformation of Arg61 across resolved structures. 
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2.4 Discussion 

The purification protocol developed as part of this thesis isolates ApoE isoforms in three steps 

under non-denaturing conditions. ApoE is expressed as a TRX fusion protein in Rosetta2(DE3) 

cells and, similar to previous observations, can only be produced over a short period of time 

(Figures 2.1 and 2.2) (369, 375) since longer expression times (> 6 h) result in lysis of the 

bacterial cells and low protein yields. Typically, 8 L were expressed as a main culture that 

yielded on average 10 mg of pure protein. Previous protocols report yields up to 20 mg of final 

product per 1 L of expression culture (375, 381). Compared to amounts of protein obtained 

here (~1.25 mg per 1 L culture), yields from the previous purification methods seem 

surprisingly high. In particular, since previous purification protocols involve additional steps 

including lipidation of ApoE with DMPC, ultracentrifugation in a potassium bromide gradient, 

extensive dialysis and delipidiation (375, 381). Other protocols that exclude these steps and 

purify ApoE solely by IMAC and SEC (under denaturing conditions) report yields up to 10 mg 

per 1 L expression culture (382). Identical amounts were obtained here with ApoE41-191 in a 

similar two-step purification process. Previous protocols purified ApoE under denaturing 

conditions (369, 375, 376, 381, 382). Chemical denaturation keeps ApoE in its monomeric 

state and prevents aggregation. This avoids elution of ApoE in the void volume of the size 

exclusion column and helps to separate it from other impurities (381). Chemical denaturation 

of ApoE was not performed in here developed purification protocol. Identical purity to previous 

methods was instead achieved by the inclusion of an additional purification step (i.e. HAC). 

The lower yields of wild type ApoE isoforms compared to previous methods is likely due to loss 

of protein at the IMAC and HAC step. Although most TRX-ApoE eluted at high imidazole 

concentrations, some was also found to be present in the IMAC flow through and wash 

fractions (Figures 2.6 and 2.7). This suggests impaired binding or overloading of the TRX-

ApoE fusion protein to the cobalt resin and partial elution at low imidazole concentrations (10 

– 20 mM). Purifications were also tested with no imidazole and 5 mM imidazole in the lysis and 

IMAC binding buffer respectively, but also at these imidazole concentrations TRX-ApoE was 

found in the flow through and wash fractions (data not shown). A nickel resin could have been 

tested to capture TRX-ApoE since nickel resins have higher binding affinity for the six-histidine 

tag. This may prevent or reduce elution of TRX-ApoE at low imidazole concentrations. 

However, nickel resins have lower specificity compared to cobalt resins for the six-histidine tag 

that is likely to result in increased non-specific binding of other proteins and therefore in 

reduced purity (407). Nevertheless, final yields were limited by HAC. HiTrap Heparin HP 

columns (GE Healthcare) have a protein binding capacity of approximately 3 mg/mL medium 

(408). A 5 mL column as used in the purification established here will bind up to 15 mg of 

ApoE. Accounting for the loss of protein during HAC and SEC, final yields of approximately 10 
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mg are therefore explained due to limited binding capacity of the heparin column. Usage of a 

bigger heparin column is likely to have increased final protein yields. 

Although the heparin column has only moderate protein binding capacity, its inclusion in the 

ApoE purification process was important. HAC substantially contributed to the purity of the final 

product and only functional (i.e. heparin binding) protein was selected. The intermediate HAC 

step however had to be adopted for ApoE2 that has reduced heparin binding affinity compared 

to ApoE3 and ApoE4 (Chapter 3). 

Surprisingly, substantial concentration-dependent effects on the gel filtration elution profile 

were observed for ApoE4mon (Figure 2.8C). Elution peaks were very broad and applying the 

protein at lower concentrations resulted in a shift of the peak maximum to higher retention 

volumes. Static and SEC-SAXS measurements confirmed the concentration dependent effect 

on ApoE4mon size (Figure 2.14B). Suggestive is a monomer – dimer – tetramer equilibrium of 

ApoE4mon. At high concentrations (> 8 mg/mL), the equilibrium is shifted towards the ApoE4mon 

tetramer, whereas dimers and monomers seem predominantly present at lower protein 

concentrations (0.5 – 8 mg/mL). This contradicts previous observations that a monomeric state 

persists up to concentrations of 15 mg/mL (243). Further characterization by complementary 

techniques such as AUC or SEC MALS should be performed in future to confirm results made 

in this thesis. Similar to ApoE2, ApoE4mon started to elute when washing the heparin column 

with SEC buffer (Figure 2.8B). This may be a result of ApoE4mon altered multimerization state. 

Heparin binding ability was shown to be dependent on ApoE oligomerization and monomeric, 

carboxyl-terminus truncated ApoE was shown to exhibit impaired binding to heparin (409, 410). 

Monomeric or dimeric forms of ApoE4mon will therefore have reduced heparin binding ability 

and elute at lower salt concentrations. 

Characterization of wild type ApoE isoforms by gelfiltration (Figure 2.10), SEC MALS (Figure 

2.11) and AUC (Figure 2.12) confirmed tetramerization of lipid-free ApoE isoforms in solution 

and hydrodynamic parameters determined here are well in accordance with previous results 

(195, 208, 378, 379). SAXS data on lipid-free ApoE has not been reported to date and adds to 

observations made with the other biophysical techniques. All ApoE isoforms resemble one 

another in solution in terms of size, shape and multimerization and their X-ray scattering data 

compares well to that of an elongated multi-domain protein that has a certain degree of 

flexibility (403). 

Crystallization attempts of full length, lipid-free ApoE only yielded crystals of the amino terminal 

domain. ApoE’s flexibility in solution as confirmed by SAXS (Figure 2.13) may hinder its 

assembly into a highly ordered crystal lattice. Modification of lysine and arginine residues 

(Figure 2.17), addition of small molecules or detergents, as well as LCP crystallization did not 
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produce any full-length ApoE4 protein crystals either. Crystals of full-length ApoE were 

previously yielded in complex with DPPC that diffracted to ~10 Å maximum resolution (221, 

222). The diffraction data was used to create a low-resolution molecular envelope model that 

was confirmed by SAXS (411) (Chapter 1, Section 1.4.3). However, crystals diffracted only to 

low-resolution and the DPPC within the crystal resulted in strong diffuse scattering that would 

not allow for solving high-resolution data (221, 222). Additional strategies could be tested in 

future to increase crystallization success of the full-length protein. Fragmentation occurs at the 

flexible hinge region that is prone to proteolysis (196). Identification and mutation of critical 

residues in the hinge region could increase stability of ApoE in solution and therefore favour 

its crystallization. Chaperone-assisted crystallography could additionally be employed to 

decrease ApoE’s intrinsic flexibility. Protein fusion partners such as TRX not only help proper 

folding of the target protein during recombinant expression, they can also aid with its 

crystallization. Several proteins were successfully crystallized as maltose binding protein 

(MBP) fusion partner and/or in the presence of designed ankyrin repeat proteins (DARPins) 

(412, 413). DARPins are genetically engineered antibody mimetic peptides that bind with high 

affinity to the target protein and may help to stabilize it in a certain conformation (412). ApoE 

with the right fusion partner may be stabilized in solution and lose some of its flexibility that 

may promote its assembly into a crystal. 

Crystallization of the ApoE4 amino terminal domain confirmed high flexibility of the surface 

exposed Arg61 side chain. The ApoE4 domain interaction hypothesis was based in parts on 

observations made in the amino terminal high-resolution crystal structure that showed Arg61 

to point away from the ApoE4 four-helix bundle (Chapter 1, Section 1.4.4). It has been 

suggested by Dong et al (238) that the altered conformation of Arg61 in ApoE4 enables its 

interaction with acidic residues located on the carboxyl terminus. In here resolved structure, 

Arg61 is buried between helix 2 and 3, identical to ApoE3 (Figure 2.19). This contradicts the 

observations that were made by Dong et al (238) and it therefore remains speculative whether 

Arg61 interacts with Glu255. 

In conclusion, the purification process developed as part of this thesis yielded enough amounts 

of highly pure protein to perform biophysical characterization studies in solution and to set up 

crystallization trials. Selection of functional protein by use of a heparin column and the 

exclusion of non-denaturing conditions assures purification under mild conditions of native 

ApoE. 
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2.5 Appendix Chapter 2 

 

Figure 2.20. Sequencing results. Plasmid mutagenesis was confirmed by sequencing (Eurofins) and sequencing 

results were aligned with the ApoE4 DNA plasmid sequence in Snapgene version 4.2.6 (GSL Biotech). Sequencing 

chromatograms are shown below (green – adenine [A], red – thymine [T], black – guanine [G], blue – cytosine [C]). 

(A) ApoE2, (B) ApoE3, (C) ApoE41-191 and (D) ApoE4mon. (E) The pET17b-TRX-ApoE4 plasmid map. 
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Figure 2.21. Purification of ApoE4 by a combination of IMAC and SEC. (A) Expression of ApoE4 is confirmed 

over 4 h (T0, T2, T4). A primary capture step by IMAC enriches ApoE4 and removes major impurities. ApoE4 shows 

good solubility and is found in the lysate supernatant after removal of the cell debris. Although most ApoE4 elutes 

at high imidazole concentration during the elution steps (IMAC elution), some is found in the flow through, as well 

as the wash fractions (IMAC FT and IMAC wash). The IMAC elution fractions were then pooled and the thioredoxin 

(TRX) protein removed by digestion with PreScission protease. (B) Digestion of the fusion protein was confirmed 

(digestion suspension) and the protein further purified by size exclusion chromatography (SEC). As seen in the 

elution fractions (SEC elution), ApoE4 is nicely separated from the TRX solubility tag by SEC, however, impurities 

are found to be co-eluting with ApoE4 resulting in moderate purity. 
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Figure 2.22. Purification of ApoE4 by a combination of HAC and SEC. (A) After lysis of the cells and removal 

of the cell debris, the lysate supernatant was directly applied to a heparin column and an on-column digestion was 

performed overnight. The next day, cleaved TRX was washed out (wash fractions) and ApoE4 eluted by increasing 

the salt concentration. Although the most pronounced observable band in the elution fractions is ApoE4, many other 

impurities are seen. (B and C) Purity improved by SEC, however, non-separable elution peaks are seen in the 

elution chromatogram. ApoE4 assumes different oligomeric states apparent from three major elution volumes (115 

mL, 131 mL and 151 mL). 

 

Figure 2.23. ApoE4 elution profiles. Example ApoE4 elution chromatograms are shown for (A) the heparin column 

and (B) the SEC column. The area under the curve highlighted in blue were ApoE4-containing fractions that were 

pooled for downstream processing. The absorbance at 280 nm is shown as a function of elution volume. 
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Figure 2.24. Purification of truncated ApoE4 by a combination of batch IMAC and SEC. (A) In a first purification 

procedure, ApoE41-191 was purified by capture on a cobalt resin, followed by SEC. After digestion overnight 

(digestion suspension), ApoE41-191 was applied to a HiLoad 26/600 Superdex 75 pg column (GE Healthcare). (B) 

Four elution peaks were observed. Peak 1 contains substantial amounts of aggregated ApoE41-191, peak 2 higher 

oligomeric species and peak 3 most of the monomeric ApoE41-191. The last peak consists of TRX. Although, TRX 

and ApoE41-191 were separated by SEC, some TRX was found to be present in the concentrate (conc.). Reverse 

IMAC to capture TRX resulted in great loss of ApoE41-191. 

 

Figure 2.25. Scattering profile of ApoE41-191 at different protein concentrations. (A) I(q) versus q as log-linear 

plots are shown for ApoE41-191 at different concentrations (8, 4, 2, 1, 0.5 mg/mL; top to bottom scattering curve). 

(B) I(0), the intensity measured at zero angle (q= 0), is plotted as a function of protein concentration and 

demonstrates well behaviour of the sample. (C) The estimated Rg from the Guinier approximation as a function of 

protein concentration is shown. 

 

B 
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Figure 2.26. In-line SEC-SAXS frame selection for ApoE isoforms. Scattering profiles to curves (A) 296-302 

(ApoE2), (B) 296-303 (ApoE3) and (C) 295-302 (ApoE4) were selected for analysis and averaging. The integral of 

scattering intensity as well as the Rg are plotted against the frame number. 
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Figure 2.27. In-line SEC-SAXS frame selection for ApoE41-191 and ApoE4mon. Scattering profiles to curves (A) 

398-406 (ApoE41-191) and (B) 337-342 (ApoE4mon) were selected for analysis and averaging. A broad elution peak 

for ApoE4mon is observed with a decrease in calculated Rg across the peak. The integral of scattering intensity as 

well as the Rg are plotted against the frame number. 
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Table 2.10. Structural parameters of ApoE SEC-SAXS data. 

 ApoE2 ApoE3 ApoE4 

 ATSAS ScÅtter ATSAS ScÅtter ATSAS ScÅtter 

Gunier analysis       

Guinier Rg, (Å) 
56.35 ± 

0.15 
56.34 ± 

0.63 
56.69 ± 

0.14 
56.81 ± 

0.59 
57.64 ± 

0.15 
57.69 ± 

0.66 

Gunier I(0), arbitrary 
units 

0.2500 ± 
0.0005 

0.2759 ± 
0.0004 

0.2500 ± 
0.0004 

0.2494 ± 
0.0003 

0.2400 ± 
0.0004 

0.2395 ± 
0.0063 

P(r) analysis 
(manual) 

      

P(r) Rg, (Å) 
58.20 ± 

0.08 
57.56 ± 

1.88 
58.56 ± 
0.088 

57.78 ± 
1.88 

59.33 ± 
0.07 

58.46 ± 
1.33 

P(r) I(0), arbitrary 
units 

0.2785 ± 
0.0004 

0.2746 ± 
0.0094 

0.2511 ± 
0.0003 

0.2464 ± 
0.0086 

0.2411 ± 
0.0003 

0.2355 ± 
0.0063 

Dmax, (Å) 194.5 194.5 195 195 195.5 195.5 

q range, (Å-1) 
0.0089 - 
0.2513 

0.0083 - 
0.2461 

0.0056 -
0.2414 

0.0054 - 
0.2394 

0.0058 - 
0.235 

0.0056 - 
0.2351 

GNOM total estimate 0.92 --- 0.922 --- 0.929 --- 

χ2 (Sk2) --- 1.17 (0.33) --- 0.88 (0.37) --- 1.02 (0.42) 

P(r) analysis 
(Autognom) 

      

P(r) Rg, (Å) 
58.48 ± 

0.12 
--- 

58.69 ± 
0.11 

--- 
59.52 ± 

0.13 
--- 

P(r) I(0), arbitrary 
units 

0.2789 ± 
0.0005 

--- 
0.2515 ± 
0.0004 

--- 
0.2415 ± 
0.0004 

--- 

Dmax, (Å) 204.68 --- 203.65 --- 207.92 --- 

q range, (Å-1) 
0.0054 – 
0.1419 

--- 
0.0054 – 
0.1401 

--- 
0.0056 – 
0.1383 

--- 

GNOM total estimate 0.896 --- 0.899 --- 0.856 --- 

MW estimate       

Volume of correlation 
Vc, (Å2) † 

--- 1062 --- 1068 --- 1103 

MW estimate (kDa)* --- 159 ± 5 --- 160 ± 5 --- 169 ± 4 

 
Structural parameters. Parameters were calculated for comparison in ATSAS 2.8.2 and ScÅtter 3.1R.  
† P(r) based Vc. 
* Mass estimates based on P(r) Rg and Vc (404). 

 

Table 2.11. Rg and I(0) of ApoE41-191 and ApoE4mon at different concentrations. 

ApoE41-191 [mg/mL] Guinier Rg [Å] I(0), arb. Units 

8 25.25 ± 0.29 0.120 ± 0.00025 

4 24.47 ± 0.44 0.060 ± 0.00020 

2 23.20 ± 0.89 0.027 ± 0.00020 

1 22.37 ± 1.39 0.013 ± 0.00015 

0.5 22.61 ± 3.85 0.006 ± 0.00020 

ApoE4mon [mg/mL] Guinier Rg [Å] I(0), arb. Units 

8 58.35 ± 0.92 0.552 ± 0.00110 

4 55.19 ± 1.13 0.303 ± 0.00084 

2 50.52 ± 1.91 0.136 ± 0.00072 

1 46.32 ± 2.93 0.046 ± 0.00043 

0.5 39.02 ± 4.83 0.020 ± 0.00039 
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Table 2.12. Structural parameters of ApoE1-191 and ApoE4mon SEC-SAXS data. 

 ApoE41-191 ApoE4mon 

 ATSAS ScÅtter ATSAS ScÅtter 

Gunier analysis     

Guinier Rg, (Å) 23.22 ± 0.06 23.33 ± 0.19 45.38 ± 0.24 45.16 ± 1.38 

Gunier I(0), arbitrary units 
0.0420 ± 
0.0001 

0.0417 ± 
0.0001 

0.0660 ± 
0.0002 

0.0660 ± 
0.0003 

P(r) analysis (manual)     

P(r) Rg, (Å) 23.47 ± 0.041 22.65 ± 0.26 46.68 ± 0.11 45.56 ± 0.74 

P(r) I(0), arbitrary units 
0.0415 ± 
0.0001 

0.0415 ± 
0.0006 

0.0663 ± 
0.0001 

0.0649 ± 
0.0015 

Dmax, (Å) 74 74 146.5 146.5 

q range, (Å-1) 
0.0067 – 
0.3379 

0.0065 – 
0.3384 

0.0047 – 
0.2461 

0.0045 – 
0.2461 

GNOM total estimate 0.9 --- 0.879 --- 

χ2 (Sk2) --- 0.89 (0.31) --- 0.82 (0.37) 

P(r) analysis (Autognom)     

P(r) Rg, (Å) 23.37 ± 0.033 --- 46.66 ± 0.15 --- 

P(r) I(0), arbitrary units 
0.0414 ± 
0.0001 

--- 
0.0663 ± 
0.0002 

--- 

Dmax, (Å) 73 --- 144 --- 

q range, (Å-1) 0.0085 – 0.344 --- 0.0061 – 0.176 --- 

GNOM total estimate 0.856 --- 0.807 --- 

MW estimate     

Porod volume, (Å3) --- 39460 --- 131500 

Volume of correlation Vc, (Å2) † --- 253.1 --- 588.4 

MW estimate (kDa)* --- 22.98 --- 61.73 

 
Structural parameters. Parameters were calculated for comparison in ATSAS 2.8.2 and ScÅtter 3.1R.  
† P(r) based Vc. 
* Mass estimates based on P(r) Rg and Vc (404). 
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Table 2.13. Crystal screen conditions. 

Condition Constituents 

JCSG A9 0.2 M ammonium chloride, 20 % (w/v) PEG 3350 

JCSG C3 0.2 M ammonium nitrate, 20 % (w/v) PEG 3350 

JCSG C4 0.1 M HEPES pH 7.0, 10 % (w/v) PEG 6000 

JCSG H3 0.1 M Bis-Tris pH 5.5, 25 % (w/v) PEG 3350 

PACT A1 0.1 M SPG (succinic acid, sodium phosphate monobasic monohydrate, 
glycine) pH 4.0, 25 % (w/v) PEG 1500 

PACT A7 0.2 M sodium chloride, 0.1 M sodium acetate pH 5.0, 20 % (w/v) PEG 
6000 

PACT B2 0.1 M MIB (sodium malonate dibasic monohydrate, imidazole, boric acid), 
25 % (w/v) PEG 1500 

PACT D1 0.1 M MMT (malic acid, MES monohydrate, Tris), 25 % (w/v) PEG 1500 

PACT E10 0.02 M sodium/potassium phosphate, 20 % (w/v) PEG 3350 

Structure 
Screen C7 

0.1 M HEPES pH 7.5, 20 % (w/v) PEG 4000, 10 % (v/v) 2-propanol 

Morpheus A8 0.06 M magnesium chloride hexahydrate, 0.06 M calcium chloride 
dihydrate, 0.1 M HEPES, 0.1M MOPS pH 7.5, 12.5 % (v/v) MPD, 12.5 % 
(w/v) PEG 1000, 12.5 % (w/v) PEG 3350 

Morpheus C9 0.09 M sodium nitrate, 0.09 sodium phosphate dibasic, 0.09 M ammonium 
sulphate, 0.1 M Tris, 0.1 M bicine pH 8.5, 40% (v/v) PEG 500 MME, 20 % 
(w/v) PEG 20000 

PEG - polyethylene glycol, MOPS - 3-(N-morpholino)propanesulfonic acid, MDP - 2-Methyl-2,4-pentanediol, PEG 

MME - polyethylene glycol methyl ether 
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Table 2.14. Data collection and refinement statistics of ApoE41-191. 

Resolution range 37.74 - 2.16 (2.237 - 2.16) 

Space group P 2 21 21 

Unit cell 28.4566 47.7983 122.967 90 90 90 

Unique reflections 9409 (920) 

Completeness (%) 97.48 (96.36) 

Wilson B-factor 35.19 

Reflections used in refinement 9344 (900) 

Reflections used for R-free 438 (59) 

R-work 0.2381 (0.3660) 

R-free 0.2873 (0.4261) 

Number of non-hydrogen atoms 1138 

  macromolecules 1084 

  solvent 54 

Protein residues 137 

RMS (bonds) 0.014 

RMS (angles) 1.85 

Ramachandran favored (%) 92.48 

Ramachandran allowed (%) 5.26 

Ramachandran outliers (%) 2.26 

Rotamer outliers (%) 11.43 

Clashscore 6.05 

Average B-factor 45.39 

  macromolecules 45.23 

  solvent 48.69 
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3 DIFFERENTIAL BINDING OF APOE ISOFORMS TO HEPARIN 

INVESTIGATED BY SMALL ANGLE X-RAY SCATTERING 

3.1 Introduction and Objectives 

The main function of ApoE is maintaining lipid and cholesterol homeostasis in the brain and 

peripheral tissues and it does so by interacting with specific cell surface receptors and HSPGs 

(Chapter 1, Section 1.4.1 and 1.4.2). HSPGs are glycoproteins that contain covalently attached 

glycosaminoglycan (GAG) chains such as heparan sulphates (HS) and they are either 

membrane associated, secreted into the extracellular matrix or found in secretory vesicles 

(414). Heparin is a member of the GAG family of carbohydrates and is a highly sulphated form 

of HS (Figure 3.1) (414, 415). As outlined, HSPGs can enhance the uptake of ApoE-containing 

lipoproteins which is particularly important in the HSPG-LRP1 pathway of lipoprotein uptake or 

they can function as lipoprotein receptors in their own right (126). 

 

Figure 3.1. Heparan sulphate proteoglycans. HSPGs are glycoproteins that consist of a protein and one or more 

covalently attached GAG chains. GAGs are highly sulphated, linear polysaccharides and include for example HS 

and heparin. The inlet demonstrates the possible disaccharide subunits of heparin. Each disaccharide contains an 

uronic acid (Iduronic acid or Glucuronic acid) and a glucosamine component that can be modified (e.g. sulphated) 

at several positions. ApoE (E) as a constituent of lipoproteins interacts with the polyanionic GAGs through positively 

charged amino acids located in its heparin binding sites. 

Binding of ApoE to HSPGs is mostly mediated by its heparin binding site located at the amino 

terminal domain (residues 136–147) and to a lesser extent by a second binding site at the 

carboxyl terminus that involves basic residues around lysine 233 (209, 210, 409, 416). Several 

studies have investigated the interaction of ApoE isoforms to heparin using surface plasmon 

resonance (SPR) (212, 213, 410, 416, 417). By passing defined amounts of ApoE over 

heparin-containing SPR sensor chips, binding affinities were determined to be in the 

nanomolar range and the interaction appears to be largely electrostatic, being sensitive to the 
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salt concentration (409, 417). Nuclear magnetic resonance (NMR) experiments demonstrate 

that Lys143 and Lys146 in the heparin binding region have low pKa values of 9.5 and 9.2 

respectively (typical pKa of lysine side chain ~ 10.5) due to the high positive electrostatic 

potential in the vicinity of these residues that would favour deprotonation of the lysine ε-amino 

group (213, 409, 418) and mutagenesis studies have confirmed the importance of these 

residues for binding of ApoE to GAGs (213, 409). The binding kinetics are consistent with a 

two-step process where a fast initial electrostatic interaction is followed by a slower 

hydrophobic interaction (416). The binding is dependent on the ApoE oligomerization state 

and monomeric carboxyl-terminus truncated ApoE exhibits reduced binding to GAGs (409, 

410). Lipidation state on the other hand does not seem to influence heparin binding affinity as 

assessed with DMPC complexed ApoE (410). Size of the heparin units on the other hand 

seems to influence binding affinity and small GAGs with less than six saccharide units do not 

interact with ApoE (212). Notably, ApoE4 was shown to exhibit up to 3-fold greater binding to 

GAGs with faster association rates compared to ApoE2 and ApoE3 due to an enhanced 

electrostatic initial interaction through its amino terminal domain (410, 416). 

Structural information on the interaction of ApoE with GAG molecules such as heparin is 

limited. Far-UV circular dichroism (CD) studies suggest that there is no major structural change 

in secondary structure upon binding of ApoE to GAGs (410, 416), however, these techniques 

do not account for changes in tertiary or quaternary structure and conformation. In this chapter, 

the ApoE-heparin interaction was investigated using SAXS. Isoform-dependent differences in 

heparin binding affinity, as well as major structural changes that occur in ApoE upon heparin 

binding were identified. Additionally, the importance of critical lysine residues for the ApoE-

heparin interaction are demonstrated.
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3.2 Material and Methods 

3.2.1 Materials 

All materials were purchased from Sigma-Aldrich or Fisher Scientific and were the highest 

purity available. Heparin was purchased from Fisher Scientific (# 411210010) and Suramin 

from Sigma-Aldrich (# S2671). 

3.2.2 Site directed mutagenesis 

The ApoE4 (K143A, K146A) mutant was generated by site directed mutagenesis as described 

in Chapter 2, Section 2.2.2 using primers 5'-gtctggcaagccatctgcgtgcactgcgcaaacg-3' (K143A) 

and 5'-atctgcgtaaactgcgcgcacgtctgctgcgtgatg-3' (K146A). Sequencing results are presented in 

the Appendix (Figure 3.15). 

3.2.3 Protein production and purification 

ApoE isoforms and ApoE41-191 were produced and purified as described in Chapter 2, Sections 

2.2.6 and 2.2.7. 

3.2.4 Reductive methylation 

Lysine residues in ApoE4 were modified by reductive methylation as described in Chapter 2, 

Section 2.2.10. 

3.2.5 Heparin column binding studies 

ApoE isoforms at 5 mg/mL in 20 mM HEPES, 150 mM NaCl, 10% (v/v) glycerol, pH 8.0 were 

loaded on a 5 mL HiTrap Heparin FF column (GE Healthcare) at a flow rate of 1.5 mL/min. The 

column was washed with 10 mL of 20 mM HEPES, 150 mM NaCl, 10% (v/v) glycerol, pH 8.0 

and bound protein then eluted by applying a linear NaCl gradient of 0.15 – 1.0 M NaCl over 30 

mL at a flow rate of 1.5 mL/min. 

3.2.6 Small angle X-ray scattering 

The following theoretical introduction to SAXS is mostly based on the review by Putnam et al 

(377). Additionally, the book on SAXS by Glatter and Kratky (419) and the webinars that are 

found online by Dr Thomas Grant (University at Buffalo, USA) (420) and Dr Alexey Kikhney 

(EMBL, Hamburg, Germany) (421) were used as a source. 

In SAXS, a collimated, monochromatic beam of X-rays is directed through a sample that 

contains the protein of interest (Figure 3.2). Electrons oscillate under the influence of the 

electric field of the X-ray beam and emit secondary X-rays with the same wavelength as the 

incident beam, albeit out of phase (termed coherent X-ray scattering or Thomson scattering). 

SAXS is a contrast method and the scattering of the macromolecule in solution is derived from 

the difference in the average electron density of the sample containing the target molecule and 
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sample solvent. In practice, scattering of a buffer blank and the sample are collected and 

subtracted to yield the scattering of the pure macromolecule (Figure 3.2). The resulting 

scattering curve I(q) is radially symmetric (isotropic) due to random orientation of the particles 

in solution and is given as a function of momentum transfer. The momentum transfer is defined 

as: 

𝑞 =  
4𝜋𝑠𝑖𝑛𝜃

𝜆
     (3.1) 

where 2θ is the scattering angle and λ is the wavelength of the incident X-ray beam. The unit 

of the momentum transfer q is therefore inverse angstroms [Å-1]. In this thesis, scattering data 

was acquired at a wavelength of 1 Å and q ranging from 0 to 0.4 Å -1. This corresponds to 

scattering angles 2θ of 0° to 3.6° respectively. 

 

Figure 3.2. Experimental setup of SAXS data acquirement. A collimated, monochromatic X-ray beam is directed 

through a sample containing the target macromolecule. The intensities of the scattered X-rays are recorded by an 

X-ray detector. A beamstop prevents burning of the X-ray detector by the direct synchrotron beam (i.e. beam that 

is not scattered, zero angle). Intensities are then radially averaged and plotted as shown on the right as a function 

of momentum transfer (or scattering angle). The scattering intensity decreases with increasing scattering angle. 

Experimentally, scattering intensities of the buffer blank have to be subtracted from the sample to yield the pure 

scattering signal of the macromolecule. 

The low-resolution portion (or low q range, ~ 0 – 0.2 Å-1) contains information about the size 

of the particle. The parameter that is extracted from the low-resolution range is the radius of 

gyration (Rg). The Rg is the average of square centre-of-mass distances in the molecule and 

can be extracted by the Guinier approximation that is defined as: 

 

𝐼(𝑞) = 𝐼(0) 𝑒−
𝑞2𝑅𝑔2

3      (3.2) 
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ln 𝐼(𝑞) = ln 𝐼(0) − 
𝑞2𝑅𝑔2

3
     (3.3) 

where I(0) is the scattering intensity at zero angle. The scattering data will give a straight line 

in the Guinier plot (ln I(q) versus q2) and is only valid over a q range of qRg < 1.3 for globular 

proteins. The Guinier plot additionally helps to assess the quality of the data and no linearity 

will exist for aggregated protein samples. The experimental setup of SAXS data collection does 

not allow for the direct measurement of scattering intensity at zero angle (Figure 3.2). 

Scattering intensity at zero angle, I(0) can be determined through linear extrapolation of the 

data in the Guinier plot. On an absolute scale, I(0) is the number of electrons in the protein 

sample and therefore can be used to determine the molecular weight. Similarly, intermediate 

q-vales can be used to obtain the cross-sectional radius (Rc) of an elongated macromolecule. 

Its definition is given in equation (3.4) and (3.5) and Rc is obtained from the slope of the linear 

portion of the plot ln qI(q) versus q2.  

𝑞𝐼(𝑞) = 𝐼(0) 𝑒−
𝑞2𝑅𝑐2

2      (3.4) 

ln 𝑞𝐼(𝑞) = ln 𝐼(0) −  
𝑞2𝑅𝑐2

2
     (3.5) 

Higher q-values (q ~ 0.2 – 0.4 Å-1) contain details on the molecular shape of the sample and 

can visualize conformational changes. An excellent tool for the evaluation of folding and 

conformational change of the sample is the Kratky plot (q2I(q) versus q). Often, the Kratky plot 

is normalized to the Rg and I(0) of the sample (Figure 3.3). Folded domains and globular 

proteins will peak at the Kratky-Guinier (x = √3, y = 1.1) point. Elongated or multidomain 

proteins have extended shoulders whereas unfolded samples will not reach baseline (Figure 

3.3). 

 

Figure 3.3. The Kratky representation. The normalized Kratky plot visualizes “foldedness” of the macromolecule. 
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The pair distance distribution function, P(r) represents the histogram (or probability) of 

distances between pairs of points within the particle (Figure 3.4). It is defined as: 

𝑃(𝑟) =  𝛾(𝑟) 𝑟2     (3.6) 

where γ(r) is a probability function that evaluates the probability to find a distance r within the 

molecule. P(r) is obtained by indirect Fourier transform. Trial P(r) functions are constructed for 

the sample and evaluated against the experimental scattering data. The P(r) function is 

typically constrained to be zero at r = 0 and r ≥ Dmax, where Dmax is the maximal linear 

dimensions in the scattering particle. The Rg and I(0) of the macromolecule can also be 

calculated from the P(r) function and unlike in the Guinier approximation uses the whole q 

range for their determination (377, 419). 

 

Figure 3.4. The pair distance distribution function. (A) The pair distance distribution function of a theoretical 

molecule with four atoms is shown. The P(r) function resolves the distances within the molecule (i.e. from atom to 

atom). (B) The P(r) function of three example bodies are shown that all have a maximal dimension of 10 nm. Figure 

3.4A was adapted with permission from Cambridge University press: Putnam et al, Quarterly Reviews of Biophysics, 

2007, 40(3):191-285 (377). 

Proteins were buffer-exchanged into 20 mM HEPES, 300 mM NaCl, 1 mM TCEP, pH 8.0 by 

using Vivaspin 15 concentrators (Sartorius, MWCO 10000 Da). To determine ideal protein 

concentration for static measurements, scattering of ApoE at 8, 4, 2, 1 and 0.5 mg/mL protein 

in 20 mM HEPES, 300 mM NaCl, 1 mM TCEP, pH 8.0 was collected.  Static SAXS experiments 

in the presence of heparin or Suramin were performed at an ApoE concentration of 4 mg/mL 

in 20 mM HEPES, 300 mM NaCl, 1 mM TCEP, pH 8.0 and final concentrations of 4, 12, 37, 

110 and 330 µg/mL heparin or 4, 12, 37, 110 and 330 µM Suramin. SAXS data was collected 

on beamline B21 (Diamond Light Source, Oxford, UK) at an X-ray wavelength of 1 Å on a 

Pilatus 2M detector at a camera length of 4.036 m. Measurements were performed at 20°C 

and 28 x 1 sec frames were collected per sample. For size exclusion chromatography coupled 
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with SAXS (SEC-SAXS), ApoE at 10 mg/mL were delivered at 20°C and a flow rate of 0.16 

mL/min via an in-line Agilent high performance liquid chromatography (HPLC) with a Shodex 

Kw-403 column and 20 mM HEPES, 300 mM NaCl, 1 mM TCEP, pH 8.0 as running buffer. 

For studies on the interaction of ApoE with heparin and Suramin, ApoE was pre-equilibrated 

with 1 mg/mL heparin or 1 mM Suramin and gel-filtered in 20 mM HEPES, 300 mM NaCl, 1 

mM TCEP, pH 8.0. Measurements of each protein were also performed in 20 mM HEPES, 300 

mM NaCl, 1 mM TCEP, 1 mg/mL heparin, pH 8.0. A total of 620 frames with 3 sec exposure 

per frame were recorded for each protein and the data processed using the B21 beamline in-

house pypeline software and further analysed using the ATSAS data analysis 2.8.4 software. 

3.2.7 Isothermal titration calorimetry 

Proteins were dialysed against PBS + 0.01% (v/v) Triton X-100 overnight at 4˚C using 3.5 K 

Slide-A-LyzerTM dialysis cassettes (ThermoFisher Scientific). Titration experiments were 

carried out on a Microcal PEAQ-ITC (Malvern) at 25˚C and a cell stirrer speed of 750 rpm. An 

initial 1 µL injection of 300 μM protein followed by an additional eighteen 2 μL injections were 

performed into the sample cell containing Suramin at 50 µM in PBS + 0.01% (v/v) Triton X-100 

+ 2% (v/v) DMSO. DMSO concentrations in the syringe and sample cell were matched. 

Injection of protein into PBS + 0.01% (v/v) Triton X-100 + 2% (v/v) DMSO was used as a control 

experiment and the integrated control heats were subtracted from the reaction heats. Data was 

analysed using the Microcal PEAQ-ITC analysis software version 1.1.0.1262. 

3.2.8 Circular dichroism 

Circular dichroic (CD) spectra were measured on a Jasco J-715 spectropolarimeter. Spectra 

were collected with the support of Ana Caroline-Raulin and Dr Youssra Al-Hilaly (Louise 

Serpell lab, University of Sussex). Proteins were extensively dialyzed against 20 mM sodium 

phosphate, pH 8.0 overnight at 4˚C using 3.5 K Slide-A-LyzerTM dialysis cassettes 

(ThermoFisher Scientific) and far UV CD spectra were measured at 25 µM protein 

concentration and either 500 µM Suramin or 500 µg/mL heparin. The mean residue ellipticity 

([Θ] mdeg cm2 dmol-1) at wavelength λ is calculated from the measured ellipticity Θ using 

equation (3.7).  

[Θ] =
Θ

10. 𝑛. 𝐶. 𝑙
    (3.7) 

with n is the number of peptide bonds in the protein, C the concentration of the sample in mol 

L-1 and l is the path length in cm. Temperature was maintained at 21°C. All spectra were 

collected in 0.01 cm path length clear quartz cuvettes (Starna Scientific, Essex, UK) in the 

wavelength range of 280-180 nm at a resolution of 0.1 nm and with a band-width of 1 nm. The 

scanning-speed was 50 nm/min and the response time 1 sec. Three spectra were acquired 

per sample, averaged and normalized by subtracting the buffer-only spectrum. 
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3.3 Results 

3.3.1 Determination of ideal protein concentration for static SAXS 

measurements 

To perform static SAXS measurements in the presence of ligands, the ideal protein 

concentration had to be determined, as well as the behaviour of the sample in solution. As 

demonstrated in Chapter 2, Section 2.3.5, a concentration-dependent effect on the Rg was 

identified for ApoE4mon which reflects a change in size and presumably oligomerization state. 

Such effects can make static SAXS measurements and downstream data analysis 

problematic. Scattering profiles were acquired of ApoE isoforms at varying concentration 

(Figure 3.5). No concentration-dependent effect was observed on the Rg value (Figure 3.5F, 

Appendix Table 3.2) and evaluation of the Guinier region shows no or minimal protein 

aggregation (Figure 3.5D, Appendix Figure 3.16). This suggests that ApoE retains its 

tetrameric state over the concentration range tested. A working concentration of 4 mg/mL was 

selected for static SAXS measurements in the presence of ligand as a good scattering signal 

was achieved while only moderate protein amounts were required.  

 

Figure 3.5. Scattering profile of ApoE isoforms at different concentrations. I(q) versus q as log-linear plots are 

shown for (A) ApoE2, (B) ApoE3 and (C) ApoE4 at different concentrations. (D) Example Guinier fits of ApoE4 at 

different concentration (red lines, 8 – 0.5 mg/mL from top to bottom) for qRg < 1.3 are shown. Filled blue symbols 

indicate data that was used for the Guinier fit. Fits for ApoE2 and ApoE3 are found in Appendix Figure 3.16. (E) I(0) 

is plotted as a function of protein concentration and demonstrates linearity. (F) The estimated Rg from the Guinier 

approximation is shown as a function of protein concentration. 
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3.3.2 Increase in size and mass of ApoE isoforms upon binding to heparin 

SAXS profiles of all three ApoE isoforms were collected in the presence of increasing heparin 

concentrations. Static SAXS profiles collected in the absence of heparin confirm observations 

made in SEC-SAXS (Chapter 2, Section 2.3.5) and reflect a similar size, shape, Rg and Rc as 

determined by the Guinier approximation. Based on the Rg and Rc, an approximate co-axial 

length of ~ 192 Å was calculated for each isoform (Table 3.1). 

Table 3.1. Approximated radius of gyration, cross-sectional radius and length of ApoE isoforms. 

 

* Co-axial length was calculated using the formula L = √12(Rg2-Rc2). 

A concentration-dependent effect on the Rg, as well as on the cross-sectional radius Rc of 

ApoE isoforms was observed in the presence of heparin (Figure 3.6A and 3.6B). This effect 

was most pronounced for ApoE4 with an increase in Rg and Rc at the highest heparin 

concentration of +14 Å and +6 Å respectively. In comparison, the Rg of ApoE3 and ApoE2 

increases by +11 Å and +10 Å, and the Rc by +5 Å and +3 Å respectively. Additionally, 

evaluation of the intensity at zero angle I(0) as determined by the Guinier fit confirms a 

concentration dependent effect of heparin on ApoE mass with the highest I(0) measured for 

ApoE4 (Figure 3.6C). These results suggest that ApoE4 binds with higher affinity to heparin 

than ApoE2 and ApoE3. 

 Rg [Å] Rc [Å] L [Å]* 

ApoE2 61.7 ± 0.8 27.1 ± 0.4 192.1 

ApoE3 61.4 ± 0.7 26.9 ± 0.3 191.2 

ApoE4 61.8 ± 0.5 27.0 ± 0.3 192.4 
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Figure 3.6. The effect of heparin on ApoE size. (A) The Rg, (B) the cross-sectional radius Rc and (C) the 

scattering intensity through zero angle I(0) as functions of heparin concentration for ApoE2, ApoE3 and ApoE4 

determined by the Guinier approximation are shown. 

To investigate the role of critical lysine residues that are involved in heparin binding, ApoE4 

was subjected to reductive lysine methylation (Chapter 2, Section 2.3.6). Additionally, lysine 

residues that have previously been shown to be critical for heparin binding were mutated to 

alanine (K143A and K146A) (213, 409). Lysine methylation strongly reduced the concentration 

dependent effect of heparin on ApoE4 size and mass and mutation of the critical lysine 

residues completely abolished the effect (Figure 3.7). The absence of structural changes in 

the ApoE4 (K143A, K146A) mutant indicate that the observed changes in unmodified ApoE 

isoforms can be ascribed to a specific binding event and not due to background subtraction 

errors in the heparin containing samples. Mutation of the lysine residues that are located at the 

amino terminal of ApoE demonstrated the predominance of the amino terminus in heparin 

binding (409). Hence, binding of heparin to ApoE41-191 alone was confirmed (Appendix Figure 

3.19). 
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Figure 3.7. The effect of heparin on methylated ApoE4 and ApoE4 (K143A, K146A) size. (A) The Rg, (B) the 

cross-sectional radius Rc and (C) the scattering intensity through zero angle I(0) as functions of heparin 

concentration for ApoE4, methylated ApoE4 and ApoE4 (K143A, K146A) determined by the Guinier approximation 

are shown. 

3.3.3 Heparin binding induces substantial conformational changes in ApoE 

Comparison of the SAXS profiles using a structure similarity map (SSM) (422) allows for 

quantitation of the degree of a structural change. A decrease in structural and conformational 

similarity was observed with increasing heparin concentration when compared to the 

respective unbound states (Figure 3.8). The degree of structural alteration follows the order 

ApoE4 > ApoE3 > ApoE2 and is mitigated by lysine methylation. As expected, no structural 

change is observed for the ApoE4 (K143A, K146A) mutant with the defective heparin binding 

site. 

 

Figure 3.8. Comparison of heparin-induced conformational change of ApoE by a structure similarity map. 

The magnitude of the conformational changes in ApoE at different heparin concentrations depicted as SSM scored 

on the Volatility of Ratio (VR) metric (422) is shown. Scores were assigned a gradient colour with white indicating 

high agreement and blue indicating low agreement. SAXS curves (q = 0.015 – 0.2) from heparin bound states were 

judged for agreement against their respective heparin-unbound states. Values at 330 µg/mL heparin denote change 

in Rg (+ Å). 
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Evaluation of the SAXS profiles in the normalized Kratky representation also confirmed the 

concentration dependent effect of heparin on ApoE shape (Figure 3.9A-C). As already 

confirmed in the SEC-SAXS measurements (Chapter 2, Section 2.3.5), ApoE isoforms share 

globular features. However, the shoulder to the right of the main peak seen in the unbound 

state of ApoE (i.e. at 0 µg/mL heparin) suggests that a portion of the protein is extended or 

polydispersed. Binding to increasing concentrations of heparin appears to reduce the 

magnitude of this shoulder implying an overall compaction and stabilization of ApoE by 

bringing its domains into closer proximity with each another. The importance of critical lysine 

residues in the ApoE-heparin interaction is again reflected in the normalized Kratky plots of the 

methylated ApoE4 and the ApoE4 (K143A, K146A) mutant (Figure 3.9D and 3.9E). 

Stabilization of the protein occurs to a lesser extent in methylated ApoE4 and no difference in 

conformation is seen in ApoE4 (K143A, K146A) across all heparin concentrations tested. A 

slight difference between the conformation of wild type and mutant ApoE4 (K143A, K146A) in 

the unbound state was however observed (Figure 3.9E). The ApoE4 mutant appears to adopt 

a more extended confirmation compared to wild type ApoE4 reflecting an involvement of 

Lys143 and Lys146 residues in ApoE quaternary structure. But, comparison of the far UV CD 

spectra of both proteins demonstrated no significant differences in secondary structure (Figure 

3.9F). 
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Figure 3.9. The effect of heparin on ApoE conformation. Smooth fits of the dimensionless Kratky representations 

for (A) ApoE2, (B) ApoE3, (C) ApoE4, (D) methylated ApoE4 and (E) ApoE4 (K143A, K146A) in the presence of 

different concentrations of heparin are shown. (F) Comparison of the wild type ApoE4 far UV CD spectrum with 

ApoE4 (K143A, K146A) mutant shows no difference in secondary structure. 

3.3.4 Suramin binding promotes compaction of ApoE and induces similar 

structural changes as heparin 

Heparin is a highly sulfonated polysaccharide that is member of the GAG family of 

carbohydrates. Native heparin has a molecular weight ranging from 3 to 30 kDa and consists 

of variably sulfonated repeating disaccharide units. The polydispersity and heterogeneity 

arising from the variable sulfonation of heparin makes its characterization, as well as 

fractionation challenging (415) and for this reason a more tractable heparin substitute was 

sought. Suramin, a sulfated naphtylamine has been reported to decrease the association of 

ApoE3 to the extracellular matrix of HepG2 cells (423–425), probably by antagonizing the 

ApoE-HSPG interaction. 

SAXS was performed on ApoE in the presence of Suramin and substantial compaction of ApoE 

isoforms in a Suramin concentration dependent manner as assessed by the Rg and Rc was 

observed (Figure 3.10A, Appendix Figure 3.19F). The degree of compaction follows the order 

ApoE2 > ApoE3 > ApoE4 with a change in Rg of -10 Å for ApoE2 at the highest Suramin 

concentration. Reduction in size is also exhibited by methylated ApoE4 and ApoE4 (K143A, 
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K146A) mutant, however it was not as pronounced as wild type ApoE (Figures 3.10B and 

3.10C). The SSM depicts the increasing compaction with increasing Suramin concentration in 

all three ApoE isoforms (Figure 3.10C), confirmed by the example normalized Kratky 

representation for ApoE4 (Figure 3.10D). On a molar basis the effect of Suramin on ApoE 

structure is significantly greater than that of heparin. Strong structural compaction is also 

exhibited by methylated ApoE4 upon binding to Suramin (Figure 3.10E) but is somewhat 

reduced in the heparin binding site ApoE4 (K143A, K146A) mutant (Figure 3.10F). These 

results suggest that additional residues besides the critical heparin binding lysine 143 and 146 

are involved in Suramin binding. 

 

Figure 3.10. The effect of Suramin on ApoE size and conformation. Rg as a function of Suramin concentration 

for (A) wild type ApoE isoforms and (B) methylated ApoE4 and ApoE4 (K143A, K146A) is shown. (C) The magnitude 

of the conformational changes in ApoE at different Suramin concentrations is depicted as an SSM. Values denote 

change in Rg (- Å) at 330 µM Suramin. The smooth fits of the example dimensionless Kratky representations for 

(D) ApoE4, (E) methylated ApoE4 and (F) mutant ApoE4 (K143A, K 146A) confirm the effects on ApoE 

conformation. 
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3.3.5 Heparin and Suramin have different effects on the quaternary structure 

of ApoE and Suramin shows no specificity between the ApoE homologues 

A pair-wise distance distribution function P(r) was calculated for SAXS profiles obtained at 

different heparin and Suramin concentrations. P(r) effectively represents the distribution of all 

pairwise distances within the particle. As all the measurements were made at the same protein 

concentration, changes in the integrated area under the distributions relate to the mass of the 

particle. With increasing heparin concentrations, the overall shape of the distribution functions 

does not change dramatically, rather the curves scale up (Figure 3.11A). This effect is 

consistent with heparin evenly coating the surface of the protein leading to increases in both 

mass and volume. In contrast, the integrated area under the distribution functions for ApoE 

treated with increasing concentrations of Suramin do not change significantly. Rather, the 

shape of the curve changes with a decrease in long and an increase in short distance vectors 

consistent with an overall compaction of the protein (Figure 3.11B). An interesting detail in the 

P(r) functions is a small shoulder to the left of the main peak at r ~ 25 Å. This population of 

short distance vectors may indicate the existence of a small domain that is discrete from the 

bulk of the protein. The shoulder disappears with increasing heparin or Suramin concentration 

suggesting that this domain may be pulled closer to the main body of the protein upon ligand 

binding. 

The various ApoE isoforms show similar qualitative but different quantitative responses to 

heparin and Suramin. The calculated Dmax in the presence of heparin followed the order ApoE4 

> ApoE3 > ApoE2 and were concentration dependent (Figure 3.11A). Rg values determined 

from the P(r) function were similar to those obtained from the Guinier fit (Appendix Table 3.3). 

A Suramin concentration dependent decrease in Dmax was also determined for all ApoE 

isoforms following the order ApoE2 > ApoE3 > ApoE4 (Figure 3.11B). Examples of the P(r) 

functions for ApoE3 are presented in Figure 3.11. The extended conformation of ApoE in its 

unbound state is demonstrated in its P(r) function which displays a Dmax of ~200 Å.  
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Figure 3.11. Pairwise distribution function of ApoE in the presence of heparin and Suramin. Fitted maximal 

dimension Dmax of wild type ApoE isoforms as a function of (A) heparin and (B) Suramin concentration are shown, 

as well as example ApoE3 pairwise distribution functions (right plots). 

To determine if this isoform dependent difference in heparin and Suramin binding is the result 

of altered binding affinity, Suramin binding was monitored by isothermal titration calorimetry 

(ITC). A substantial release of heat was measured when titrating ApoE into Suramin and similar 

binding affinities (ranging from 3.3-4.9 µM) were calculated for all three ApoE isoforms (Figure 

3.12A). ApoE appears to possess two Suramin binding sites per monomer that are most likely 

located at the amino terminal domain and involve additional residues other than the critical 

lysine 143 and 146. Consistently, binding of Suramin to ApoE41-191 (Appendix Figure 3.19D 

and 3.19E) and the ApoE4 (K143A, K146A) mutant was confirmed (Figure 3.12A). It was not 

possible to measure the binding of heparin by ITC as its undefined molecular weight poses 

problems in determining the stoichiometry and hence the affinity. Nevertheless, the salt 

dependency of the ApoE-heparin interaction was confirmed and ApoE4 was observed to elute 

at a higher salt concentration from a heparin column compared to ApoE2 and ApoE3 (Figure 

3.12C). This effect may arise from the additional arginine residue 112 in ApoE4 compared to 

ApoE3 that enhances the electrostatic interaction (410). It was of interest to determine the 

nature of the structural changes observed in the SAXS studies of ApoE binding to heparin and 
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Suramin. Far UV CD spectra of ApoE3 in the presence of heparin and Suramin indicated no 

secondary structural differences (Figure 3.12B) consistent with the possibility of tertiary and/or 

quaternary structural rearrangements. 

 

Figure 3.12. Suramin and heparin binding affinities to ApoE. (A) Binding affinity (Kd) values for the binding of 

Suramin to ApoE were determined by ITC. Normalized binding heats are presented with the solid line representing 

the nonlinear least square fits to a single-site binding model. Suramin binding affinities (± SD) of 4.9 ± 0.5 µM, 3.5 

± 0.5 µM, 3.3 ± 0.4 µM and 8.9 ± 1.6 µM were determined for ApoE2, ApoE3, ApoE4 and ApoE4 (K143A, K146A) 

respectively. Raw titration heats are presented in Appendix Figure 3.19. (B) Far UV CD spectroscopy demonstrates 

no change in secondary structure for ApoE3 in the presence of 500 µg/mL heparin or 500 µM Suramin. (C) The 

ApoE-heparin interaction is salt-dependent, with ApoE4 eluting from a heparin column at a higher salt concentration 

than ApoE2 and ApoE3 (only the elution from 0.5-0.8 M NaCl is shown out of the full 0.15-1.0 M NaCl gradient 

elution). 

3.3.6 SAXS coupled with size exclusion chromatography reproduces the 

effects of heparin and Suramin on ApoE 

Size exclusion chromatography coupled SAXS (SEC-SAXS) measurements were additionally 

performed to confirm observations made in the static measurements (Appendix Figures 3.17 

and 3.18). Purity and monodispersity of the sample are essential for structural studies, as 

macromolecular aggregation affects SAXS data quality (377). As previously reported (251) and 

as observed by the Serpell lab (University of Sussex), ApoE4 has a propensity to form higher 

oligomeric species in solution under certain conditions. SEC-SAXS can be employed to 

exclude any ApoE aggregates that may have formed.  

The SEC-SAXS measurements were performed in the presence of heparin and Suramin and 

data is in good agreement with the static measurements. Elution profiles reflecting the 

structural effects of ApoE interaction with heparin and Suramin are presented in Figure 3.13A. 

A lower retention volume and higher Rg’s across the elution peak were measured in the 

presence of heparin, consistent with an increase in volume and size whereas pre-equilibration 

of ApoE with Suramin produced the opposite effect. Figure 3.13B presents example ApoE4 

normalized Kratky plots and P(r) functions obtained from the SEC-SAXS measurements. 



 

99 
 

 

Figure 3.13. SEC-SAXS of ApoE4 in the presence of heparin and Suramin. The effects of heparin and Suramin 

on ApoE isoforms were reproduced in SEC-SAXS. (A) Example elution profiles of ApoE4 are shown. The 

normalized intensity (circles) and Rg (squares) are plotted as a function of frame number. Filtering ApoE4 through 

a column equilibrated with an additional 1 mg/mL heparin resulted in a decreased retention volume and an 

increased Rg. The opposite effect (compaction) is seen when ApoE4 has been pre-equilibrated with Suramin. (B) 

The smooth fits of the dimensionless Kratky representations (left) and ApoE4’s respective P(r) functions (right) are 

presented and compare well to the static measurements. 

Gel filtration of ApoE isoforms through the SEC column equilibrated in 1 mg/mL heparin 

resulted in only slightly different retention volumes and Rg values between ApoE isoforms 

(Appendix Figure 3.17). On the other hand, pre-equilibration of ApoE isoforms with heparin 

followed by SEC in the absence of heparin yielded the expected isoform dependent size 

difference with ApoE4 having larger Rg’s across the elution peak and a lower retention volume 

(Figure 3.14A). This data is consistent with ApoE4 binding more heparin than ApoE2 and 

ApoE3. Lysine methylation under the same conditions resulted in a broadening of the elution 

peak with the peak maximum eluting at the identical volume as unbound ApoE4 (Figure 3.14B). 

In contrast, heparin binding had no effect on the elution profile and Rg values of the ApoE4 

(K143A, K146A) mutant (Figure 3.14B). 
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Figure 3.14. Comparison of SEC-SAXS elution profiles of ApoE isoforms in the presence of heparin. Elution 

profiles and Rg’s across the peak of (A) wild type ApoE isoforms and (B) methylated, as well as ApoE4 (K143A, 

K146A) when pre-equilibrated with 1 mg/mL heparin and filtered through a column without heparin are shown. 
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3.4 Discussion 

Substantial isoform-dependent conformational changes in ApoE upon heparin binding were 

identified. These effects are apparent in the SAXS profiles (Figure 3.9) but not in the far UV 

CD spectra (Figure 3.12B), indicating that they arise from changes in the ApoE tertiary and/or 

quaternary structure. In addition, the normalized Kratky plots reflect reduced flexibility and 

stabilization of ApoE by heparin. Analysis of ApoE size in terms of Rg, Rc and Dmax by the 

Guinier approximation (Figure 3.6) and by the P(r) function (Figure 3.11A) demonstrated an 

increase in size (and hence mass) with increased heparin concentration, consistent with the 

binding of heparin to ApoE. The effect was greatest for ApoE4 which appears to be able to 

bind more avidly to GAG than either ApoE2 or ApoE3. The ApoE4-heparin interaction also 

appears to be higher affinity than that of the other two isoforms as it retains more bound 

polysaccharide after size exclusion column chromatography (Figure 3.14A) and binds more 

tightly to a heparin column (Figure 3.12C). This data is consistent with previous observations 

by Yamauchi et al (410) who have shown by SPR that the ionic interactions involved in HS 

binding of ApoE4 are three-fold greater than for ApoE3. The authors proposed that the 

additional arginine at site 112 in ApoE4 enhances the electrostatic potential of positively 

charged GAG binding residues (Lys143 and Lys146) leading to a stronger electrostatic 

interaction with heparin. In this study, the importance of Lys143 and Lys146 residues in the 

ApoE-heparin interaction was confirmed (213, 409, 418). Non-specific lysine methylation in 

ApoE4 strongly reduced its heparin binding capacity and mutation of the critical lysine residues 

Lys143 and Lys146 into alanine completely abolished the heparin binding by ApoE4 (Figures 

3.7, 3.9D and 3.9E). 

As heparin is a heterogeneous polysaccharide consisting of a mixture of GAGs (415), Suramin 

was used as model system to test its binding to ApoE isoforms. Suramin mimicked the effects 

of heparin on ApoE structure, promoting substantial compaction in a concentration-dependant 

fashion (Figures 3.10A and 3.10D). Effects of Suramin on the ApoE4 (K143A, K146A) mutant 

were still substantial, demonstrating that this ligand must interact with residues other than the 

heparin-binding Lys143 and Lys146 (Figures 3.10B and 3.10E). Binding stoichiometry by ITC 

was determined as two Suramin binding sites per ApoE monomer. Both binding sites are likely 

located on the amino terminus since binding of Suramin was confirmed to the amino terminal 

domain of ApoE4 by ITC (Appendix Figures 3.19D and 3.19E). The SAXS P(r) functions 

demonstrate the disappearance of a small domain(s) upon ApoE binding to both heparin and 

Suramin and far UV CD spectra indicate that these structural changes are tertiary/quaternary 

rather than secondary (Figures 3.11 and 3.12B). The data is consistent with a model in which 

the independently folded domains of ApoE come closer together upon ligand binding resulting 
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in compaction and stabilization. Similar structural reorganisations have previously been 

demonstrated for DNA binding proteins (426, 427). 

In this study, recombinant protein was utilized that was produced in E. coli. As outlined in 

Chapter 2, Section 2.1, E. coli produced ApoE is not lipoprotein associated and hence heparin 

binding studies in this chapter were performed on lipid-free ApoE. ApoE is physiologically 

present on lipoprotein particles in the brain and actual amounts of lipid-free ApoE are expected 

to be small (Chapter 1, Section 1.4.2). It therefore remains to be determined if the isoform-

dependent effect on heparin binding as observed here is retained when ApoE is complexed 

with lipids. Nevertheless, observations made here allow for broader conclusions. 

ApoE’s important role in the brain and its function in synaptic plasticity and neuronal repair 

have been outlined in Chapter 1, Section 1.4.2. ApoE and ApoE-containing lipoproteins are 

mostly secreted by astrocytes and microglia and are internalized by the interaction with the 

superfamily of LDLR proteins, as well as HSPGs (169, 173). In particular, during CNS 

inflammatory response, synthesis and secretion of ApoE is increased and ApoE is thought to 

promote regeneration by redistributing lipids and cholesterol (182–185, 188). HSPGs 

participate in the immune response and their expression, as well as secretion were shown to 

be upregulated around injury sites that help to capture ApoE-containing lipoproteins and other 

growth factors (192, 193). Differential binding of ApoE isoforms to GAGs as shown in this 

chapter may result in altered CNS immune response. Consistent with this hypothesis, 

increased activation, as well as release of pro-inflammatory cytokines by glial cells were shown 

in ApoE4 transgenic mice (307) which may be an effect of ApoE4’s higher affinity to GAGs. 

Several studies have additionally investigated the effects of ApoE isoforms on Aβ aggregation 

and plaque formation (284) and also the role of ApoE receptors, including HSPGs, in Aβ 

clearance and production (428, 429), but the mechanism whereby ApoE4 increases 

susceptibility to AD is still unknown. Recent research has shown that ApoE receptors and 

HSPGs are involved in synaptic signalling and plasticity, as well as in neurite outgrowth (173, 

430, 431).  In particular, HSPG-mediated neurite outgrowth is promoted by higher intracellular 

levels of ApoE3 rather than ApoE4 (432). Similarly, endosome recycling of ApoE receptors, as 

well as NMDA and AMPA receptors in the synapse appears to be reduced by ApoE4 resulting 

in altered glutamate receptor homeostasis (433). Altered binding and particularly dissociation 

of ApoE4 to HSPGs may slow down the release of lipoproteins, as well as recycling of synaptic 

receptors from the endosome compared to ApoE3 and ApoE2 and therefore influence synaptic 

plasticity. The structural data on the binding modes of ApoE to heparin presented in this 

chapter will help to elucidate the differential physiological effects of the three major ApoE 

isoforms in AD.
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3.5 Appendix Chapter 3 

 

Figure 3.15. Sequencing results pET17B_ApoE4_K143A_K146A. 

 

 

Figure 3.16. Guinier plot of ApoE2 and ApoE3 at varying concentration. Scattering in the Guinier 

representation is shown for (A) ApoE2 and (B) ApoE3 at 8, 4, 2, 1, and 0.5 mg/mL (top to bottom). Filled blue 

symbols indicate data that was used for the Guinier fit for qRg < 1.3. 
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Table 3.2. Guinier-derived Rg and I(0) of ApoE isoforms at different concentrations. 

ApoE2 [mg/mL] Guinier Rg [Å] I(0), arb. Units 

8 61.14 ± 1.21 0.695 ± 0.002 

4 62.13 ± 1.75 0.375 ± 0.001 

2 63.15 ± 2.54 0.197 ± 0.001 

1 62.70 ± 5.21 0.100 ± 0.001 

0.5 61.17 ± 6.60 0.049 ± 0.001 

ApoE3 [mg/mL] Guinier Rg [Å] I(0), arb. Units 

8 58.79 ± 1.07 0.678 ± 0.002 

4 58.80 ± 1.06 0.339 ± 0.001 

2 58.52 ± 2.68 0.172 ± 0.001 

1 58.88 ± 4.69 0.090 ± 0.001 

0.5 60.74 ± 8.68 0.045 ± 0.001 

ApoE4 [mg/mL] Guinier Rg [Å] I(0), arb. Units 

8 59.55 ± 1.09 0.564 ± 0.001 

4 59.31 ± 1.35 0.348 ± 0.001 

2 58.92 ± 2.68 0.181 ± 0.001 

1 58.50 ± 4.41 0.087 ± 0.001 

0.5 54.73 ± 4.53 0.045 ± 0.001 
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Figure 3.17. Comparison of SEC-SAXS data of wild type ApoE isoforms in the absence and in the presence 

of heparin and Suramin. ApoE isoforms were filtered through a Shodex Kw-403 column without ligand (black), 

pre-equilibrated with 1 mM Suramin (red) or additionally after supplementation with 1 mg/mL heparin to the SEC 

buffer (blue). The scattering intensities (circles) and radii of gyration Rg (squares) are plotted against the frame 

number in panels A, C and E. Profiles corresponding to curves (A) 291-303 (ApoE2), 290-298 (+ heparin) and 296-

309 (+ Suramin), (C) 291-303 (ApoE3), 292-298 (+ heparin) and 296-307 (+ Suramin), (E) 296-305 (ApoE4), 290-

296 (+ heparin) and 299-309 (+ Suramin) were averaged and used for analysis. These data points are depicted in 

yellow. Logarithmic intensity plots (left), their respective Kratky plots (middle) and P(r) functions (right) are presented 

for (B) ApoE2, (D) ApoE3 and (F) ApoE4. The Kratky plots indicate that the ApoE isoforms adopt an extended 

conformation in solution with a maximal dimension of ~200 Å. Suramin binding induces compaction of the ApoE 

isoforms such that ApoE elutes later from the SEC column with lower Rg values across the elution peak compared 

to native ApoE. Notably, Suramin has less compaction effect on ApoE4 when compared to ApoE2 and ApoE3. The 

lower retention volumes and higher Rg across the elution peak in the presence of heparin is consistent with heparin 

binding to ApoE. Heparin induces identical conformational changes as Suramin, but as it is a long polysaccharide 

it is expected to confer a larger hydrodynamic radius to ApoE isoforms. 

 

 



 

106 
 

 

Figure 3.18. Comparison of SEC-SAXS data of methylated ApoE4, ApoE4 (K143A, K146A) and ApoE41-191 in 

the absence and presence of heparin and Suramin. The scattering intensities (circles) and the radii of gyration 

Rg (squares) are plotted against the frame number in panels A, C and E for proteins without (black), after pre-

equilibration with 1 mM Suramin (red) and additionally after supplementation with 1 mg/mL heparin to the SEC 

buffer (blue). Profiles corresponding to curves (A) 295-302 (methylated ApoE4), 290-297 (+ heparin) and 297-312 

(+ Suramin), (C) 289-299 (ApoE4 K143A K146A), 290-300 (+ heparin) and 291-301 (+ Suramin), (E) 385-395 

(ApoE41-191), 364-374 (+ heparin) and 374-390 (+ Suramin) were averaged and used for analysis. These data points 

are depicted in yellow. Logarithmic intensity plots (left), their respective Kratky plots (middle) and P(r) functions 

(right) are presented for (B) methylated ApoE4, (D) ApoE4 (K143A K146A) and (F) ApoE41-191. (B) Methylated 

ApoE4 binds heparin and Suramin and adopts a similar conformation to wild type ApoE4, but the magnitude of the 

conformational change is diminished, presumably owing to impaired binding ability. (D) As expected, no 

conformational change and no effect on the elution profile is observed for ApoE4 (K143A K146A) mutant in the 

presence of heparin. On the other hand, binding of Suramin is still observed. (F) No change in ApoE41-191 flexibility 

as assessed in the Kratky plot is seen in the presence of Suramin. However, a lower retention volume is observed 

when the ApoE4 amino terminal domain is pre-equilibrated with Suramin. The data is consistent with a Suramin 

binding induced increase in hydrodynamic radius without perturbation of the ApoE41-191 conformation. The 

substantial increase in ApoE41-191 extension by heparin indicated by the Kratky representation is consistent with the 

binding of the flexible (and unfolded) polysaccharide to the amino terminal domain. 
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Figure 3.19. Static SAXS measurements of ApoE41-191 in the presence of heparin and Suramin and ITC 

titration heats. (A) ApoE41-191 change in Rg as a function of heparin and Suramin concentration is depicted. A 

concentration dependent increase in Rg is seen for both ligands. Normalized Kratky representations are for (B) 

heparin and (C) Suramin. (D) Presented are the normalized binding heats of the ApoE41-191 titration into Suramin 

with the solid line representing nonlinear least square fit using a single-site binding model. Suramin binding affinity 

(± SD) was determined to be 8 ± 1 µM with a stoichiometry N of 2. (E) Raw titration heats of 300 μM ApoE41-191 

titrated into 50 µM Suramin are presented. (F) The concentration dependent effect of Suramin on wild type ApoE 

Rc is shown (G) Raw titration heats of 300 μM ApoE2, ApoE3, ApoE4 and mutant ApoE4 into 50 µM Suramin are 

shown. DP – differential power. 
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Table 3.3. Static SAXS parameters in the presence of heparin. 

 ApoE2       

Heparin [µg/mL] Guinier Rg [Å] I(0), arb. Units Pr Rg [Å] Pr I(0), arb.units Dmax [Å] q range [A-1] Gnom estimate 

330 72.17 ± 0.86 0.77 ± 0.01 73.42 ± 0.32 0.76 ± 0.01 245 0.0075 - 0.2253 0.76 

110 70.61 ± 0.73 0.66 ± 0.01 71.58 ± 0.40 0.65 ± 0.01 240 0.0079 - 0.23 0.57 

37 65.27 ± 0.81 0.55 ± 0.01 67.51 ± 0.61 0.56 ± 0.01 234 0.0106 - 0.2347 0.70 

12 63.80 ± 0.82 0.51 ± 0.01 64.64 ± 0.44 0.51 ± 0.01 217 0.0106 - 0.2253 0.76 

4 61.85 ± 0.71 0.50 ± 0.01 62.99 ± 0.34 0.50 ± 0.01 207 0.011 - 0.2253 0.78 

0 61.70 ± 0.82 0.46 ± 0.01 62.36 ± 0.33 0.46 ± 0.01 205 0.011 - 0.2253 0.78 
 ApoE3       

Heparin [µg/mL] Guinier Rg [Å] I(0), arb. Units Pr Rg [Å] Pr I(0), arb.units Dmax [Å] q range [A-1] Gnom estimate 

330 72.71 ± 0.90 0.85 ± 0.01 75.57 ± 0.52 0.86 ± 0.01 259 0.0103 - 0.2309 0.74 

110 75.05 ± 0.98 0.73 ± 0.01 75.45 ± 0.58 0.72 ± 0.01 258 0.0077 - 0.2216 0.63 

37 69.14 ± 0.89 0.59 ± 0.01 69.97 ± 0.54 0.59 ± 0.01 239 0.0088 - 0.2253 0.69 

12 65.04 ± 0.83 0.50 ± 0.01 65.76 ± 0.42 0.50 ± 0.01 220 0.0160 - 0.2436 0.74 

4 62.79 ± 0.72 0.47 ± 0.01 63.84 ± 0.37 0.46 ± 0.01 208 0.0103 - 0.2253 0.78 

0 61.40 ± 0.69 0.44 ± 0.01 62.89 ± 0.41 0.45 ± 0.01 206 0.0103 - 0.2253 0.78 
 ApoE4       

Heparin [µg/mL] Guinier Rg [Å] I(0), arb. Units Pr Rg [Å] Pr I(0), arb.units Dmax [Å] q range [A-1] Gnom estimate 

330 76.11 ± 0.62 0.96 ± 0.01 77.98 ± 0.46 0.96 ± 0.01 265 0.0072 - 0.2253 0.75 

110 76.28 ± 0.89 0.82 ± 0.01 78.49 ± 0.49 0.82 ± 0.01 270 0.0083 - 0.2253 0.72 

37 70.47 ± 0.74 0.62 ± 0.01 73.17 ± 0.53 0.62 ± 0.01 258 0.0068 - 0.2207 0.74 

12 66.86 ± 0.63 0.52 ± 0.01 67.72 ± 0.28 0.51 ± 0.01 220 0.0068 - 0.2196 0.63 

4 64.40 ± 0.59 0.45 ± 0.01 65.40 ± 0.34 0.45 ± 0.01 212 0.0072 - 0.2031 0.78 

0 61.78 ± 0.54 0.46 ± 0.01 63.40 ± 0.33 0.46 ± 0.01 208 0.0079 - 0.2253 0.78 
 Methylated E4       

Heparin [µg/mL] Guinier Rg [Å] I(0), arb. Units Pr Rg [Å] Pr I(0), arb.units Dmax [Å] q range [A-1] Gnom estimate 

330 69.12 ± 0.78 0.64 ± 0.01 70.55 ± 0.41 0.64 ± 0.01 237 0.0077 - 0.2253 0.77 

110 67.72 ± 0.92 0.55 ± 0.01 69.23 ± 0.45 0.55 ± 0.01 237 0.0095 - 0.2253 0.77 

37 63.92 ± 0.61 0.50 ± 0.01 65.81 ± 0.44 0.50 ± 0.01 222 0.0083 - 0.2253 0.77 

12 63.09 ± 0.63 0.46 ± 0.01 63.98 ± 0.34 0.46 ± 0.01 208 0.007 - 0.2184 0.79 

4 61.13 ± 0.54 0.43 ± 0.01 62.72 ± 0.33 0.44 ± 0.01 202 0.0061 - 0.2236 0.79 

0 60.75 ± 0.56 0.43 ± 0.01 62.20 ± 0.36 0.43 ± 0.01 203 0.0075 - 0.2365 0.78 
 K143A K146A       

Heparin [µg/mL] Guinier Rg [Å] I(0), arb. Units Pr Rg [Å] Pr I(0), arb.units Dmax [Å] q range [A-1] Gnom estimate 

330 61.82 ± 1.05 0.34 ± 0.01 62.22 ± 0.47 0.34 ± 0.01 208 0.0091 - 0.2422 0.68 

110 60.72 ± 0.79 0.34 ± 0.01 62.46 ± 0.55 0.34 ± 0.01 212 0.0111 - 0.2395 0.77 

37 62.30 ± 1.52 0.35 ± 0.01 62.35 ± 0.48 0.35 ± 0.01 213 0.0102 - 0.2259 0.77 

12 61.00 ± 1.10 0.34 ± 0.01 61.94 ± 0.48 0.34 ± 0.01 205 0.0115 - 0.2037 0.68 

4 61.48 ± 0.89 0.34 ± 0.01 62.20 ± 0.40 0.34 ± 0.01 205 0.0091 - 0.2197 0.71 

0 61.58 ± 0.89 0.34 ± 0.01 62.35 ± 0.50 0.34 ± 0.01 207 0.0088 - 0.2259 0.78 
 ApoE41-191 

      

Heparin [µg/mL] Guinier Rg [Å] I(0), arb. Units Pr Rg [Å] Pr I(0), arb.units Dmax [Å] q range [A-1] Gnom estimate 

330 31.35 ± 0.67 0.130 ± 0.001 31.32 ± 0.30 0.110 ± 0.001 105 0.0248 - 0.2698 0.64 

110 26.91 ± 0.56 0.098 ± 0.001 26.13 ± 0.23 0.085 ± 0.001 83 0.0281 - 0.2848 0.64 

37 25.57 ± 0.30 0.081 ± 0.001 25.33 ± 0.16 0.080 ± 0.001 82 0.0208 - 0.3104 0.61 

12 24.63 ± 0.26 0.079 ± 0.001 24.55 ± 0.17 0.078 ± 0.001 78 0.0181 - 0.3219 0.76 

4 24.21 ± 0.25 0.076 ± 0.001 24.53 ± 0.18 0.075 ± 0.001 80 0.0177 - 0.3273 0.76 

0 24.16 ± 0.23 0.078 ± 0.001 24.22 ± 0.15 0.078 ± 0.001 77 0.0152 - 0.3293 0.67 
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Table 3.4. Static SAXS parameters in the presence of Suramin. 

 ApoE2       

Suramin [µM] Guinier Rg [Å] I(0), arb. Units Pr Rg [Å] Pr I(0), arb.units Dmax [Å] q range [A-1] Gnom estimate 

330 51.58 ± 0.47 0.55 ± 0.01 53.06 ± 0.30 0.55 ± 0.01 178 0.0130 - 0.2187 0.71 

110 56.37 ± 0.62 0.49 ± 0.01 56.42 ± 0.26 0.49 ± 0.01 182 0.0088 - 0.2144 0.67 

37 58.91 ± 0.59 0.49 ± 0.01 60.14 ± 0.33 0.48 ± 0.01 198 0.009 - 0.2017 0.73 

12 60.96 ± 0.72 0.48 ± 0.01 61.66 ± 0.32 0.47 ± 0.01 203 0.0083 - 0.2211 0.76 

4 60.88 ± 0.80 0.47 ± 0.01 61.89 ± 0.38 0.47 ± 0.01 205 0.0106 - 0.222 0.77 
 ApoE3       

Suramin [µM] Guinier Rg [Å] I(0), arb. Units Pr Rg [Å] Pr I(0), arb.units Dmax [Å] q range [A-1] Gnom estimate 

330 52.30 ± 0.49 0.54 ± 0.01 54.09 ± 0.35 0.55 ± 0.01 186 0.0103 - 0.214 0.63 

110 55.85 ± 0.68 0.47 ± 0.01 56.65 ± 0.33 0.47 ± 0.01 191 0.0106 - 0.2253 0.67 

37 59.80 ± 0.63 0.46 ± 0.01 60.59 ± 0.44 0.46 ± 0.01 203 0.0106 - 0.2075 0.76 

12 61.38 ± 0.52 0.45 ± 0.01 61.93 ± 0.32 0.45 ± 0.01 200 0.0066 - 0.2253 0.72 

4 62.33 ± 0.60 0.46 ± 0.01 62.17 ± 0.30 0.45 ± 0.01 201 0.009 - 0.2209 0.79 
 ApoE4       

Suramin [µM] Guinier Rg [Å] I(0), arb. Units Pr Rg [Å] Pr I(0), arb.units Dmax [Å] q range [A-1] Gnom estimate 

330 53.98 ± 0.39 0.58 ± 0.01 56.34 ± 0.33 0.59 ± 0.01 196 0.0095 - 0.2191 0.69 

110 54.91 ± 0.43 0.46 ± 0.01 56.93 ± 0.39 0.47 ± 0.01 195 0.0095 - 0.2086 0.74 

37 60.29 ± 0.57 0.48 ± 0.01 61.03 ± 0.30 0.48 ± 0.01 201 0.0083 - 0.2109 0.77 

12 60.94 ± 0.55 0.45 ± 0.01 62.40 ± 0.27 0.45 ± 0.01 201 0.0086 - 0.2142 0.8 

4 61.82 ± 0.53 0.46 ± 0.01 62.73 ± 0.29 0.45 ± 0.01 204 0.007 - 0.2213 0.78 
 Methylated E4       

Suramin [µM] Guinier Rg [Å] I(0), arb. Units Pr Rg [Å] Pr I(0), arb.units Dmax [Å] q range [A-1] Gnom estimate 

330 60.45 ± 0.60 0.73 ± 0.01 61.85 ± 0.30 0.73 ± 0.01 206 0.007 - 0.2189 0.74 

110 56.52 ± 0.59 0.48 ± 0.01 57.14 ± 0.21 0.48 ± 0.01 181 0.0061 - 0.2169 0.78 

37 58.08 ± 0.62 0.44 ± 0.01 59.92 ± 0.29 0.44 ± 0.01 196 0.0099 - 0.2307 0.78 

12 59.94 ± 0.56 0.43 ± 0.01 60.88 ± 0.30 0.43 ± 0.01 194 0.0068 - 0.2209 0.76 

4 60.42 ± 0.50 0.43 ± 0.01 61.58 ± 0.25 0.43 ± 0.01 197 0.0052 - 0.222 0.8 
 K143A K146A       

Suramin [µM] Guinier Rg [Å] I(0), arb. Units Pr Rg [Å] Pr I(0), arb.units Dmax [Å] q range [A-1] Gnom estimate 

330 59.74 ± 0.67 0.52 ± 0.01 62.67 ± 0.51 0.53 ± 0.01 224 0.0111 - 0.2173 0.71 

110 55.38 ± 0.61 0.37 ± 0.01 56.87 ± 0.37 0.37 ± 0.01 189 0.0113 - 0.2342 0.76 

37 59.39 ± 0.18 0.36 ± 0.01 59.94 ± 0.07 0.36 ± 0.01 199 0.0102 - 0.2328 0.85 

12 59.67 ± 0.82 0.34 ± 0.01 61.18 ± 0.46 0.35 ± 0.01 202 0.0106 - 0.2279 0.78 

4 61.05 ± 0.61 0.35 ± 0.01 61.84 ± 0.39 0.35 ± 0.01 204 0.01 - 0.2228 0.64 
 ApoE41-191 

      

Suramin [µM] Guinier Rg [Å] I(0), arb. Units Pr Rg [Å] Pr I(0), arb.units Dmax [Å] q range [A-1] Gnom estimate 

330 30.44 ± 0.19 0.210 ± 0.001 31.15 ± 0.19 0.215 ± 0.001 111 0.0121 - 0.2618 0.74 

110 28.17 ± 0.23 0.130 ± 0.001 28.60 ± 0.16 0.128 ± 0.001 95 0.0097 - 0.2832 0.74 

37 25.89 ± 0.23 0.093 ± 0.001 25.69 ± 0.14 0.092 ± 0.001 80 0.0123 - 0.3079 0.65 

12 24.68 ± 0.23 0.081 ± 0.001 25.03 ± 0.17 0.080 ± 0.001 82 0.0121 - 0.323 0.76 

4 24.33 ± 0.27 0.081 ± 0.001 24.31 ± 0.16 0.079 ± 0.001 78 0.0168 - 0.3253 0.78 

Values in the unbound state are found in Table 3.3. 
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Table 3.5. Parameters of SEC-SAXS data. 

 ApoE2 ApoE2 + heparin ApoE2 + Suramin 

Guinier Rg [Å] 57.75 ± 0.12 61.06 ± 0.18 51.42 ± 0.09 

I(0), arb. Units 0.22 ± 0.01 0.32 ± 0.01 0.28 ± 0.01 

Pr Rg [Å] 59.36 ± 0.09 62.8 ± 0.1 53.57 ± 0.07 

Pr I(0), arb.units 0.22 ± 0.01 0.32 ± 0.01 0.28 ± 0.01 

Dmax [Å] 200 210 183 

q range [Å-1] 0.0059 - 0.2921 0.0066 - 0.2698 0.007 - 0.2921 

Gnom estimate 0.8 0.8 0.79 
 ApoE3 ApoE3 + heparin ApoE3 + Suramin 

Guinier Rg [Å] 58.18 ± 0.15 60.88 ± 0.21 51.25 ± 0.1 

I(0), arb. Units 0.24 ± 0.01 0.23 ± 0.01 0.28 ± 0.01 

Pr Rg [Å] 59.7 ± 0.08 63.31 ± 0.12 53.21 ± 0.09 

Pr I(0), arb.units 0.24 ± 0.01 0.24 ± 0.01 0.28 ± 0.01 

Dmax [Å] 200 213 193 

q range [Å-1] 0.0075 - 0.2921 0.0052 - 0.2921 0.0059 - 0.2921 

Gnom estimate 0.83 0.77 0.74 
 ApoE4 ApoE4 + heparin ApoE4 + Suramin 

Guinier Rg [Å] 59 ± 0.16 61.29 ± 0.21 55.57 ± 0.14 

I(0), arb. Units 0.22 ± 0.01 0.27 ± 0.01 0.23 ± 0.01 

Pr Rg [Å] 60.46 ± 0.1 63.68 ± 0.13 56.96 ± 0.09 

Pr I(0), arb.units 0.22 ± 0.01 0.28 ± 0.01 0.23 ± 0.01 

Dmax [Å] 200 216 187 

q range [Å-1] 0.0052 - 0.2921 0.0075 - 0.2921 0.0066 - 0.2921 

Gnom estimate 0.76 0.76 0.8 
 Methylated E4 Methylated E4 + heparin Methylated E4 + Suramin 

Guinier Rg [Å] 59.48 ± 0.18 63.59 ± 0.21 53.36 ± 0.15 

I(0), arb. Units 0.22 ± 0.01 0.27 ± 0.01 0.23 ± 0.01 

Pr Rg [Å] 60.9 ± 0.1 64.91 ± 0.15 55.44 ± 0.10 

Pr I(0), arb.units 0.22 ± 0.01 0.27 ± 0.01 0.23 ± 0.01 

Dmax [Å] 200 217 185 

q range [Å-1] 0.0066 ± 0.2881 0.0063 - 0.291 0.0097 - 0.2921 

Gnom estimate 0.81 0.76 0.74 
 K143A K146A K143A K146A + heparin K143A K146A + Suramin 

Guinier Rg [Å] 58.13 ± 0.17 56.96 ± 0.16 53.68 ± 0.14 

I(0), arb. Units 0.19 ± 0.01 0.18 ± 0.01 0.2 ± 0.1 

Pr Rg [Å] 59.63 ± 0.1 59 ± 0.11 55.06 ± 0.78 

Pr I(0), arb.units 0.19 ± 0.01 0.18 ± 0.01 0.2 ± 0.1 

Dmax [Å] 202 198 183 

q range [Å-1] 0.0077 - 0.2927 0.0073 - 0.3005 0.0048 - 0.2923 

Gnom estimate 0.82 0.82 0.79 
 ApoE41-191 ApoE41-191 + heparin ApoE41-191 + Suramin 

Guinier Rg [Å] 23.25 ± 0.05 41.78 ± 0.41 23.74 ± 0.05 

I(0), arb. Units 0.05 ± 0.01 0.07 ± 0.01 0.05 ± 0.01 

Pr Rg [Å] 23.55 ± 0.03 45.09 ± 0.44 24.32 ± 0.05 

Pr I(0), arb.units 0.05 ± 0.01 0.07 ± 0.01 0.05 ± 0.01 

Dmax [Å] 76 168 83 

q range [Å-1] 0.0164 - 0.3426 0.0164 - 0.2253 0.0146 - 0.3364 

Gnom estimate 0.78 0.61 0.78 
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4 A BIOPHYSICAL APPROACH TO THE IDENTIFICATION OF 

NOVEL APOE CHEMICAL PROBES 

4.1 Introduction and Objectives 

Data suggest that ApoE4 may contribute to AD pathogenesis through both Aβ-dependent and 

Aβ-independent pathways (Chapter 1, Section 1.5). One underlying hypothesis is that a 

structural difference between ApoE isoforms may confer ApoE4’s detrimental effects in AD. It 

has been suggested that the amino acid substitution in ApoE4 alters the protein structure such 

that either (i) a salt bridge forms between Arg61 and Glu255 resulting in ApoE4 domain 

interaction (237–239), (ii) that the Arg112 affects charge distribution in the receptor binding 

region (245) which would be consistent with observations made here on the isoform dependent 

difference in heparin binding ability, or (iii) that ApoE4 may oligomerize differently and as a 

result may form large, fibril like oligomers (Chapter 1, Section 1.4.4) (247, 251). Regardless of 

the mechanism by which the structural and therefore functional difference arises, a potential 

therapeutic strategy is to use small molecules to convert ApoE4 into an ApoE3-like protein and 

thereby abolish ApoE4’s detrimental effects in AD (234) (Chapter 1, Section 1.6). 

This therapeutic approach has been investigated based on the hypothesis of the ApoE4 

intramolecular domain interaction that attributes ApoE4’s neuropathological effects to the 

Arg61-Glu255 salt bridge (252). For example, targeted replacement mice in which Thr61 in 

mouse ApoE was substituted with an arginine to mimic presumed domain interaction (241), 

show cognitive impairment compared to wild type matched controls and generally have lower 

levels of pre- and post-synaptic markers such as synaptophysin in the hippocampus (434). 

Primary cultured astrocytes from these targeted replacement mice have lower levels of ApoE 

due to increased activation of the unfolded protein response pathways and degradation of the 

protein (435). Similarly, increased neuronal degradation of ApoE4 compared to ApoE3 was 

demonstrated in mouse neuroblastoma cells, human brain lysates and in mice expressing 

ApoE under control of the neuron-specific enolase promoter (324, 332, 333). It has been 

suggested that the increased rate of proteolytic cleavage of ApoE4 results in fragments that 

enter the cytosol and interfere with cytoskeletal components such as tau (324) and may disrupt 

mitochondrial function (336) (Chapter 1, Section 1.5.3). Some of these effects can be reversed 

by disrupting the ApoE4 presumed domain interaction either by site directed mutagenesis (i.e. 

substituting Arg61 with a threonine) or by the use of small molecule “structure correctors” (364).  

The structure correctors series include disulfonates such as GIND-25 (Azocarmine G) (363) 

and molecules with a phthalazinone core structure including PH002 (246) (Chapter 1, Section 

1.6). These compounds were initially identified in silico (GIND series), as well as by drug 



 

112 
 

screening (phthalazinone series) using a cell-based FRET system (246, 363). In the cell-based 

FRET assay, ApoE fused with a fluorescence protein at its carboxyl and amino terminus 

respectively was expressed in mouse neuroblastoma cells (246). As outlined in Chapter 1, 

Section 1.4.4, a greater FRET signal was observed in the ApoE4 fusion construct consistent 

with the domain interaction concept. A reduction in the FRET signal was interpreted as 

disruption of the domain interaction due to a ligand induced change in conformation (246). 

Most recently, the effects of PH002 were investigated in human iPSCs with ε4 genotype that 

were developed by Yadong Huang and colleagues (339). As outlined in Chapter 1, Section 

1.5.3, lower numbers of GABAergic neurons were derived from ε4 iPSCs and neurons showed 

increased ApoE4 fragmentation, altered APP metabolism, as well as increased tau 

phosphorylation. Treatment with PH002 reversed all these effects in a concentration 

dependent manner (339).  

Although PH002 and other structure correctors have beneficial effects in AD cellular models, 

they were shown to cause significant toxicity in mice (364). Alternative small molecules that 

bind to ApoE4 are lacking. The objective of this section was to validate biophysical assays to 

enable screening for novel ApoE chemical probes that preferentially bind to ApoE4 over ApoE2 

and ApoE3. The biophysical assays that were optimised were an optical label-free assay 

(Corning® Epic®), microscale thermophoresis (MST) and isothermal titration calorimetry (ITC). 

The 707-compound NIH clinical collection was screened against human full length 

recombinant ApoE4, with the label-free assay being used as the primary screen and MST and 

ITC being used for confirmation (Figure 4.1). Taking the screening hits through the orthogonal 

MST and ITC assays, binding of six drugs, as well as a selected drug analogue was confirmed. 

All drugs are in clinical use and include the hormone L-Thyroxine and it's analogue Tafamidis, 

as well as the selective estrogen receptor modulators (SERMs) Clomiphene, Tamoxifen, 

Toremifene, and the non-steroidal anti-inflammatory drug (NSAID) Meclofenamic acid. 

Although the functional effects of these compounds on ApoE structure and function remain to 

be elucidated, this thesis chapter nevertheless demonstrates the feasibility of using biophysical 

assays to screen for molecules that interact with ApoE4. 

 

Figure 4.1. Summary of the screening strategy. Compounds are screened against full length human ApoE4 

using the Corning® Epic® and hits then tested by MST and ITC. Hits are also evaluated by ITC against human full 

length ApoE2 and ApoE3 to determine selectivity.
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4.2 Material and Methods 

4.2.1 Materials 

All materials were purchased from Sigma-Aldrich or Fisher Scientific and were the highest 

purity available. N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC, # 

03450), Suramin (# S2671) and PH002 (# SML0461) were obtained from Sigma-Aldrich. Sulfo-

N-hydroxysulfosuccinimide (sulfo-NHS, # 24510) and Azocarmine G (# 11444154) were 

purchased from Thermo Fisher Scientific. Corning® Epic® high sensitivity biochemical assay 

plates (# 5046) were retrieved from Corning®. Monolith NT.115 capillaries (# MO-K022) and 

the amine reactive Monolith protein labeling Kit RED-NHS (# MO-L001) were obtained from 

Nanotemper. The NIH clinical collection (NCC) was kindly provided by the National Institute of 

Health (NIH) and distributed by Evotec. 

4.2.2 Protein production and purification 

ApoE isoforms and ApoE41-191 were produced and purified as described in Chapter 2, Sections 

2.2.6 and 2.2.7. 

4.2.3 The Corning® Epic® label free technique 

The Corning® Epic® technology is a label free technology that measures a change in 

wavelength of refracted light. The refractive index of a material is a dimensionless number that 

describes how light propagates through the material. It is defined as: 

𝑛 =  
𝑐

𝑣
     (4.1) 

where c is the speed of light and v the phase velocity of light in the medium. The refractive 

index of a material determines how strong a ray of light is bent, or refracted, when it enters the 

material. The law of refraction (or Snell’s law after Willebrord Snellius) states that the ratio of 

phase velocities is equivalent to the ratio of sines of the angles of incidence and refraction. 

sin 𝜃1

sin 𝜃2
=  

𝑣1

𝑣2
=   

𝑛2

𝑛1
     (4.2) 

Snell’s law implies that light is refracted perpendicularly when travelling from a medium with 

higher refractive index (e.g. water) to one with lower refractive index (e.g. air) (Figure 4.2). If 

the ray of light enters the medium with lower refractive index at a critical angle it is completely 

reflected (total internal reflection). However, the electromagnetic field in the second medium 

does not disappear and propagates along the boundary in form of an evanescent wave. This 

evanescent wave or field decays exponentially with increasing distance from the interface and 

has only a short penetration depth (150-200 nm) (436, 437). 
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Figure 4.2. Snell’s law. Light that travels from a medium with a higher refractive index n1 to a medium with a lower 

refractive index n2 is refracted at their boundaries. At a critical angle the light is internally reflected and creates an 

evanescent field that enters the medium with lower refractive index n2. 

Each well of a Corning® Epic® plate contains an optical sensor (also referred as to resonant 

waveguide grating) that only reflects a narrow band of wavelengths when illuminated with 

broadband light. As outlined above, reflection of the light will create an evanescent field that 

enters the well of the Corning® Epic® plate. The wavelength of the reflected light depends on 

the local index of refraction at the surface of the biosensor; any change in the refractive index 

(e.g. by binding of an analyte to the target) will increase the local index of refraction and cause 

a shift in the resonant wavelength (Figure 4.3) (438, 439). 

 

Figure 4.3. Principle of the Corning® Epic®. The target protein is immobilized on a chemistry surface via amine 

coupling. The well is then illuminated from below with broadband light and only a narrow band of wavelengths is 

reflected (here shown as green arrow or green light). Binding of analytes to the target will change the refractive 

index on the sample area and shift the wavelength of reflected light (here from green to red). An integral part of 

each well is the reference area (ref) that prevents binding of the target and filters out any physical effects such as 

temperature. 
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4.2.4 Activation of Corning® Epic® plates and immobilization of ApoE4 

Corning® Epic® 384-well plates (# 5046) were activated with 200 mM EDC and 50 mM sulfo-

NHS. For this, 400 mM EDC and 100 mM sulfo-NHS freshly dissolved in twice-distilled water 

were combined, vortexed and 15 µL of the mixture dispensed into each well of the Corning® 

Epic® plate. The plate was centrifuged at 87 x g at RT for 1 min, sealed and incubated at 26°C 

for 30 min. The plate was then washed three times with 15 µL twice-distilled water per well and 

protein then immobilized. 

ApoE4 (5 µL) diluted to 300 μg/mL in 20 mM sodium citrate pH 5.6 were dispended into wells 

and incubated at 26°C for 1 h. The microplate was subsequently washed three times with PBS 

+ 0.1% (v/v) Triton X-100 + 2% (v/v) DMSO (PBSTD) and remaining reactive groups on the 

biosensor then blocked by incubation with 50 mM ethanolamine in PBSTD for 5 min at RT. 

The plate was washed three times with PBSTD and after the final wash, 15 µL PBSTD were 

added to each well, sealed and placed into the Epic® reader for 1.5 h for thermal equilibration. 

To measure immobilization levels and/or to take the baseline before compound addition after 

thermal equilibration, 10-15 total points were recorded with 4 x 3 sec scans averaged per point. 

Immobilization levels were calculated through wells where no ApoE4 was added. The level of 

immobilization expressed in picometer (pm) was obtained by subtracting the response of wells 

with no ApoE4 from wells with protein. 

To determine ideal immobilization conditions, binding of ApoE4 to the Corning® Epic® 

biosensor was tested in 20 mM sodium acetate pH 5.5, sodium citrate pH 6.0, sodium 

phosphate pH 6.5 and sodium phosphate buffer pH 7 at 100, 150 and 200 µg/mL. Refined pH 

screening was then performed in 20 mM sodium citrate buffer at pH 5.6, pH 5.8 and pH 6.0 at 

100, 150 and 300 µg/mL. 

4.2.5 Suramin binding curve on the Corning® Epic® 

After thermal equilibration of the Corning® Epic® plate and baseline read (Section 4.2.4), the 

measurement was paused on the Epic® reader, the plate removed and Suramin added into 

the wells (total volume 30 μL) in triplicate at different concentrations, ranging from a control of 

0 to 12 mM. The plate was sealed and placed back into the Epic® reader for 30 min. Binding 

shifts were then measured over 15-20 points in total with 4 x 3 sec scans averaged per point. 

Responses were measured as shifts in reflected wavelength and were expressed in pm. 

To determine the correlation in between immobilization levels and shifts caused by Suramin, 

5 µL ApoE4 in sodium citrate buffer pH 5.6 at different concentration (25, 50 and 300 µg/mL) 

was dispensed into each well of the Corning® Epic® plate. After immobilization, blocking and 

baseline read (Section 4.2.4), 15 µL of 2 mM Suramin in PBSTD was added as described 

above. PBSTD only was used as a negative control. 
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4.2.6 Screening plate test 

Screening was performed with the aid of the FluidX-Xpp-721 (FluidX) automated liquid 

handling system. To assess reproducibility of the automated liquid handling system, plate tests 

were performed with Suramin at a final concentration of 150 µM randomly distributed across 

the plate. The plate layout is depicted in Figure 4.4. Suramin (2 µL) at 15 mM in neat DMSO 

was transferred into 98 µL of PBS + 0.1% (v/v) Triton X-100 (PBST) using the FluidX to yield 

intermediate 96-well plates. Suramin (15 µL) from intermediate plates was then transferred 

into the Corning® Epic® plate to a final volume of 30 µL using the automated liquid handling 

system. Additionally, Suramin at 150 µM and 5 mM was used as positive control. The plate 

was sealed, equilibrated in the Epic® reader for 30 min and response measured as described 

in 4.2.5. 

 

Figure 4.4. Plate test layout. Suramin at 5 mM (dark green) and 150 µM (bright green), as well as PBSTD (red) 

were used as positive and negative controls during screen. Immobilization levels were determined through wells 

where no ApoE4 was added (white). In the plate test, Suramin at 150 µM was randomly dispensed into the Corning® 

Epic® plate (orange). PBSDT (grey) was added to the remaining wells. 

4.2.7 Screening 

The NIH clinical collection that contains 707 compounds was screened against ApoE4. 

Screening was carried out at a compound concentration of 100 μM in two identical runs. 

Compounds at 10 mM in neat DMSO were diluted to 200 μM in PBS + 0.1% (v/v) Triton X-100 

(resulting in 2% (v/v) DMSO) and then dispensed into the Epic® plate (total volume 30 μL) 

after having read the baseline. Plates were left for 30 min in the Epic® and binding shifts 

measured as described in section 4.2.5. Suramin at 5 mM and 150 μM was used as positive 

control; buffer only was used as negative control. Only plates with a Z’-factor above 0.5 were 

accepted. The Z’-factor is defined as: 

Z′ = 1 −
3 (𝜎𝑝 + 𝜎𝑛)

|µ𝑝 − µ𝑛|
    (4.3) 
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where σ is the standard deviation and µ the mean of the positive (p) and negative (n) control. 

The Z’-factor was calculated individually with the 150 µM and 5 mM Suramin positive control. 

Screening data was extracted with the Epic® Analyzer (version 02-27-2015) and responses 

corrected for background signal. Only samples with ApoE4 immobilization levels > 1800 pm 

were included in data analysis. Median and median absolute deviation (MAD) for both 

screening runs were calculated separately and hit threshold arbitrarily set to 5 x MAD of the 

sample. Compounds with negative shifts were excluded as well as compounds with shifts ≥ 

150 pm. Prioritized compounds that met hit criteria were tested in form of concentration 

response and were diluted 1:2 in neat DMSO, then transferred into PBS + 0.1% Triton X-100 

as above and added into the wells (total volume 30 μL) in duplicate at different concentration, 

ranging from 0.2 to 100 μM. 

4.2.8 Microscale thermophoresis 

Thermophoresis describes the movement of particles in a temperature gradient. The velocity, 

v of particles is linear to the temperature gradient: 

𝑣 =  −𝐷𝑇∆𝑇     (4.4) 

with thermal diffusion coefficient (or thermophoretic mobility) DT and the temperature gradient 

ΔT. In steady state, thermophoresis is counterbalanced by mass diffusion. The depletion of 

macromolecules in the region of elevated temperature is quantified by the Soret coefficient ST. 

𝑐ℎ𝑜𝑡

𝑐𝑐𝑜𝑙𝑑
=  𝑒−𝑆𝑇∆𝑇     (4.5) 

where chot and ccold is the concentration of the macromolecule in a defined region at elevated 

and non-elevated temperature respectively. The Soret coefficient is the ratio of thermophoretic 

mobility DT over diffusion coefficient D of the macromolecule. 

𝑆𝑇 =  
𝐷𝑇

𝐷
     (4.6) 

An increase in temperature leads to depletion of solvated molecules and commonly movement 

of the molecules into colder regions. This solvent depletion is dependent on the interface 

between the molecules and the solvent. Binding of a ligand to the molecule will often induce 

changes in size, charge, as well as solvation and alter the molecule’s thermophoretic 

behaviour. This allows for the analysis of binding events by MST. The macromolecule is 

labelled with a fluorescent dye (e.g. Alexa 647) and movement in solution monitored by 

measuring the fluorescence (Figure 4.5) (440–442). 
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Figure 4.5. Microscale thermophoresis. The experimental setup of the MST experiment is shown on the left. MST 

is performed in a capillary and fluorescence excitement, as well as measurement of the labelled protein is measured 

through the same optics. An infrared (IR) laser is guided through the capillary and heats up a small sample volume 

that will induce movement of the molecules. Thermophoresis is therefore given as a change in fluorescence with 

time. A typical MST signal plot is shown on the right. (A) Initially, distribution of molecules (yellow circles) is 

homogenous in solution and a constant initial fluorescence is measured. (B) Application of the IR laser will heat up 

a small region within the capillary and induce thermophoresis. (C) In steady state, thermophoresis is 

counterbalanced by diffusion. (D) The IR laser is turned off which allows backdiffusion of the molecules. Figure 

adapted by permission from: Elsevier, Jerabek-Willemsen et al, Journal of Molecular Structure, 2014, 1077:101-

113 (440). 

ApoE4 was labelled in SEC buffer (Chapter 2, Section 2.2.6) using the Monolith NT-647 Protein 

Labeling Kit Red-NHS (Nanotemper) following the manufacturer’s instruction and the labelling 

reaction was performed with 20 μM ApoE4 and 40 μM labelling dye. Labelled protein was 

centrifuged at 16000 x g for 5 min at RT before use and then diluted to 200 nM in 20 mM 

HEPES, 500 mM NaCl, 10% (v/v) glycerol, 0.1% Triton X-100 (MST buffer). Binding of hits 

identified by screening with the Corning® Epic® (Section 4.2.7) was first tested in 8-point 

concentration response assays. Compounds at 5 mM in neat DMSO were diluted 1:2 in DMSO 

and then transferred into MST buffer. Diluted compounds in MST buffer (4% (v/v) DMSO) were 

then combined with equal volumes of 200 nM labelled protein, resulting in a 2% (v/v) DMSO 

working concentration, 100 nM labelled ApoE4 and compound concentrations ranging from a 

control of 0 to 100 μM. The mixture was pulse centrifuged and incubated at RT for 5 min. 

Samples were then centrifuged at 16000 x g for 5 min and soaked into standard capillaries in 

duplicate. To achieve full binding curves of compounds, 12-point concentration responses 

were performed from 0.25 to 250 µM or 0.5 to 500 μM in triplicate. For this, compounds were 

diluted 1:2 in neat DMSO from 12.5 or 25 mM respectively, transferred into MST buffer and 

combined with equal volumes of 200 nM ApoE4. MST measurements were performed on the 

Monolith NT.115 (Nanotemper). Capillaries were thermally equilibrated at 25˚C for 5 min and 
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MST traces then collected at 20-40% LED excitation power and 20% IR power. Data were 

analysed on the integrated analysis software (MO affinity analyser version 2.2.4, Nanotemper). 

A sample denaturation test was performed for samples that altered initial fluorescence signal. 

The compound-ApoE4 mixture was centrifuged for 5 min at 16000 x g at RT and then mixed 

with equal volumes of 2 x denaturing buffer (4% SDS, 40 mM DTT). Samples were denatured 

at 95˚C for 5 min, soaked into capillaries and initial fluorescence measured. To test 

autofluorescence of compounds, compounds at 250 – 500 µM were mixed with 40 nM of NT-

647 dye (Nanotemper) and fluorescence measured on the Monolith NT.115 (Nanotemper). 

Binding affinities as presented in Table 4.1 are the average of six independent experiments (± 

SD). 

To determine optimal ApoE4 concentration and buffer for MST measurements used above, 

ApoE4 in PBS, PBS + 0.1% (v/v) Triton-X 100, SEC buffer and MST buffer was soaked into 

capillaries at 20, 40, 80 and 100 nM final concentration and capillary scans performed over 

time (0, 10 and 20 min) at 40% LED excitation power. To evaluate DMSO tolerance, 

thermophoresis of ApoE4 at 100 nM in MST buffer was tested at varying (v/v) DMSO 

concentrations (0, 1, 2, 4%) in quadruplicates. Capillaries were thermally equilibrated, and 

measurements performed as described above. 

4.2.9 Isothermal titration calorimetry 

Isothermal titration calorimetry (ITC) measures the heat change that occurs when two 

macromolecules (e.g. protein – ligand) interact. Depending on the type of reaction (exothermic 

versus endothermic) heat is released or absorbed. Measurements are performed at a constant 

temperature (isothermal) and the ligand is injected into the sample cell that contains the protein 

or vice versa. In ITC, heat changes are monitored by measuring the power required to keep a 

reference cell at equal temperature to the sample cell. The reference cell normally contains 

water or the sample buffer. Nearly all binding events are accompanied by a change in enthalpy 

Δ°H and all reactions will produce a calorimetric signal. ITC will therefore allow direct 

estimation of enthalpy changes in addition to the dissociation constant by the relation: 

∆°𝐺 = ∆°𝐻 − 𝑇∆°𝑆 = −𝑅𝑇 𝑙𝑛𝐾𝐴 = 𝑅𝑇 𝑙𝑛𝐾𝐷    (4.7) 

with Δ°G being the standard free energy, Δ°S the entropy, R the gas constant [8.314 J 

K−1 mol−1], T the temperature (in kelvin), KA and KD the association and dissociation constant 

respectively. The right-hand version of the equation was obtained by the relation KA = KD
-1 

(443, 444). 

ITC titrations were performed as described in Chapter 3, Section 3.2.7. Hence, ApoE isoforms, 

as well as ApoE41-191 were dialysed against PBS + 0.01% (v/v) Triton X-100 overnight at 4˚C 

using 3.5 K Slide-A-LyzerTM dialysis cassettes (ThermoFisher Scientific). ApoE, as well as 
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ApoE41-191 at 300 μM was injected into the cell containing compound at 25-50 μM in PBS + 

0.01% (v/v) Triton X-100 + 2% (v/v) DMSO. DMSO concentrations in syringe and cell were 

matched. Titration experiments were carried out on a Microcal PEAQ-ITC (Malvern) at 25˚C 

and 750 rpm and consisted of a first (1 μL) injection followed by additional 18 (2 μL) injections. 

Injection of protein into PBS + 0.01% (v/v) Triton X-100 + 2% (v/v) DMSO was used as control 

experiment and integrated control heats were subtracted from the reaction heats. Data were 

analysed on the Microcal PEAQ-ITC analysis software version 1.1.0.1262 and data fitted for 

one set of sites. Binding affinities as presented in Table 4.1 are the average of two independent 

experiments (± SD).
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4.3 Results 

4.3.1 Corning® Epic® assay development 

The binding of protein to the Corning® Epic® biosensors has to be optimised in order to 

achieve high levels of protein immobilization since low amounts of protein on the sensor will 

result in low and highly variable binding signals. Immobilization levels are obtained by 

comparing the response (in picometers, pm) of biosensors to which protein was added with 

sensors containing no protein. The immobilization response has to be in the range of 1500 – 

3000 pm. Proteins are covalently bound to the biosensor via amine coupling and identification 

of the right pH for the immobilization procedure is necessary (Appendix Figure 4.18). 

Binding of ApoE4 to the chemistry surface of the biosensor was tested in buffers with pH 

ranging from 5.5 – 7.0 (Figure 4.6A). The highest immobilization response was achieved in 

sodium acetate buffer pH 5.5 at an ApoE4 concentration of 200 µg/mL. However, ApoE4 visibly 

precipitated in sodium acetate buffer pH 5.5. Sodium acetate at low pH seems to affect ApoE4 

conformation and altered elution pattern was confirmed by SEC (Appendix Figure 4.19). 

Therefore, ApoE4 immobilized to the biosensor in sodium acetate buffer pH 5.5 may be 

unfunctional. Good immobilization levels were still achieved in sodium citrate buffer pH 6.0 and 

variation of the pH to slightly lower values increased binding of ApoE4 to the biosensor without 

observing any precipitation. Increasing ApoE4 concentration to 300 µg/mL resulted in optimal 

protein immobilization (Figure 4.6B). 

 

Figure 4.6. ApoE4 immobilization optimization. (A) ApoE4 immobilization levels on the Corning® Epic® 

biosensor in 20 mM sodium acetate pH 5.5, 20 mM sodium citrate pH 6.0, 20 mM sodium phosphate pH 6.5 or 20 

mM sodium phosphate pH 7.0 to final concentrations of 100, 150 or 200 µg/mL are shown. An immobilization 

response < 1500 pm is considered low. (B) Binding of ApoE4 at 100 µg/mL in 20 sodium citrate pH 6.0, 5.8 and 5.6 

is shown, as well as in 20 mM sodium citrate pH 5.6 at 100, 150 and 300 µg/mL. Each graph bar represents 12 

wells measured for immobilization; standard deviation is expressed by error bars. 
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After having identified ideal immobilization conditions of ApoE4 to the biosensor (i.e. ApoE4 at 

300 µg/mL in 20 mM sodium citrate buffer pH 5.6), the binding of ApoE4 structure correctors 

GIND-25 (or Azocarmine G) (361), PH002 (246) and EZ-482 (445) as well as Suramin were 

tested. Binding of Suramin to ApoE has not been described to date and was tested based on 

previous observations made that it interferes with the association of ApoE containing 

lipoproteins to the extracellular matrix of HepG2 cells (Chapter 3, Section 3.3.4). Only Suramin 

positively shifted the reflected wavelength, whereas PH002, as well as EZ-482 led to slight 

negative shifts which suggests binding of these compounds to the reference surface of the 

biosensor (Figure 4.7). No binding of GIND-25 was detected at concentrations used. 

 

Figure 4.7. Selection of Suramin as positive control. Available ApoE4 modulators, as well as Suramin were 

tested by concentration response on the Corning® Epic® against ApoE4. Only Suramin positively shifted the 

wavelength suggesting binding, whereas negative shifts were observed for PH002 and EZ-482 which may indicate 

precipitation of compounds or binding to the reference surface of the biosensor. No binding was detected for GIND-

25 at concentrations used. The data are expressed as mean of three independent experiments, the standard 

deviation (SD) is represented by the error bars. 

Suramin was therefore selected as positive control and binding tested in the presence of 

DMSO, as well as the non-ionic detergent Triton X-100. Addition of detergents to assay buffers 

can help to stabilize proteins and particularly prevent compound aggregation during screening 

(446). Triton X-100 and DMSO did not affect the signal response and a DSMO concentration 

up to 2% (v/v) was well tolerated (Figure 4.8). Additionally, the influence of ApoE4 

immobilization levels on the Suramin binding response was investigated. Varying amounts of 

ApoE4 were added to the biosensor and binding of Suramin at 1 mM tested (Figure 4.8D). As 

expected, decreased Suramin binding responses were measured the less ApoE4 was 

immobilized to the Corning® Epic® biosensor.  



 

123 
 

 

Figure 4.8. Suramin concentration response. The concentration response of Suramin is shown for buffers (A) 

PBS + 1% (v/v) DMSO, (B) PBS + 1% (v/v) DMSO + 0.1% (v/v) Triton X-100 and (C) PBS + 2% (v/v) DMSO + 0.1% 

Triton X-100. Suramin binding affinities of (± SD) 78 ± 21, 142 ± 25 and 184 ± 18 µM were calculated respectively 

(n= 3). (D) The response (in pm) caused by 1 mM Suramin is plotted as a function of ApoE4 immobilization levels 

(in pm). High immobilization levels (~3000 pm) result in good binding signals; lower levels of ApoE4 on the biosensor 

result in decreased signal. 

A plate test was performed before compound screening to evaluate the signal-to-noise ratio. 

Suramin at 5 mM and 150 µM was selected as positive control as these concentrations resulted 

in approximately 100% and 50% binding signal respectively (Figure 4.8C). The plate test 

revealed excellent coupling of ApoE4 to the biosensor with average immobilization levels of 

2700 pm (Figure 4.9C). Suramin at both concentrations gave a good signal-to-noise ratio 

(Figure 4.9A and 4.9B). The Corning® Epic® assay was therefore determined to be suitable 

for compound screening. 
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Figure 4.9. Screening plate test. (A) The response (in pm) of Suramin at 5 mM and 150 µM, as well as buffer only 

is shown for each well of the 384-well Corning® Epic® plate. (B) The average signal of Suramin at 5 mM (n= 12) 

and 150 µM (n= 12), as well as the buffer negative control (n= 24) is shown and demonstrates an excellent signal-

to-noise ratio. (C) ApoE4 immobilization levels are normally distributed across the Corning® Epic® plate. Average 

immobilization (± SD) was 2739 ± 164 pm. 

4.3.2 Secondary assays development 

MST and ITC were selected as secondary assays to confirm binding of screening compounds. 

In MST, protein and ligand are soaked into glass capillaries and thermophoresis induced by 

applying an IR laser (Figure 4.5). Proteins can bind to the glass surface of the capillary which 

will result in non-homogeneous distribution of the protein and affect thermophoresis (Appendix 

Figure 4.20). Therefore, the MST assay buffer has to be optimized to prevent such association. 

In the case of ApoE4, addition of Triton X-100, as well as high salt concentration were 

necessary to stop binding to the capillary (Appendix Figure 4.21, Figure 4.10B). Labelling of 

ApoE4 with the NT-647 dye (Nanotemper) by amine coupling in SEC buffer was successful 

(Figure 4.10A) and DMSO concentrations up to 4% (v/v) were well tolerated for thermophoresis 

measurements (Figure 4.10C and 4.10D). Binding of Suramin was then tested and notably, 

Suramin altered the initial fluorescence measured before applying the IR laser (Figure 4.11A 

and 4.11C). It has to be evaluated if a change in the initial fluorescence induced by a ligand is 

the result of a binding event. Non-specific effects such as ligand-induced protein aggregation 

or loss of material have to be excluded. This is achieved by denaturing the protein and thus 

disrupting the protein-ligand interaction. The fluorescence intensity in the target and complex 

sample will be equal after denaturation. Similarly, auto-fluorescence of ligands has to be ruled 

out. Enhancement of the initial fluorescence by Suramin was found to be the result of a binding 

event as assessed by the denaturation test and test for auto-fluorescence (Figure 4.11B). MST 

raw traces are found in the Appendix (Figure 4.22). Binding of PH002 and EZ-482 could not 

be confirmed by MST. However, ligand-induced fluorescence was seen with GIND-25 

(Appendix Figure 4.22). 
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Figure 4.10. MST assay development. (A) After labelling of ApoE4 with the amine reactive dye, the protein was 

separated from free dye by SEC. The elution profile is shown as a function of absorbance at 280 nm (protein) and 

647 nm (dye) versus elution fraction. Fractions 5-6 showed highest levels of ApoE4 and were pooled in this example 

for MST binding studies. (B) The fluorescence scan across four capillaries is shown. Relative fluorescence (FL) is 

normally distributed which suggests no binding of ApoE4 to the glass capillaries in the optimized MST buffer. (C) 

The initial measured FL is shown as a function of DMSO concentration. An increase in initial FL is visible at 4% 

(v/v) DMSO. (D) Thermophoresis (Fnorm) induced by 20% and 40% IR laser power is shown as a function of DMSO 

concentration. DMSO does not affect thermophoresis of ApoE4. 

 

Figure 4.11. MST Suramin concentration response. (A) The initial fluorescence (FL) normalized to background 

(ΔFL) is shown as a function of Suramin concentration. Suramin enhances the initial FL in a concentration-

dependent fashion. A mean binding affinity of (± SD) 28 ± 8 μM was calculated. (B) The Suramin-induced 

enhancement of FL is specific. Shown in the left panel is the FL before and after denaturing ApoE4 and the ApoE4-

Suramin complex. The right panel demonstrates no autofluorescence of 500 µM Suramin (S) in the presence of 40 

nM dye (D). 
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Lastly, binding of Suramin to ApoE4 was tested by ITC and the standard procedure (i.e. 

Suramin in syringe, ApoE4 in the sample cell) was evaluated against reverse ITC (i.e. ApoE4 

in the syringe, Suramin in the sample cell). No difference in Suramin binding affinity was 

determined using both methods (Figure 4.12). Reverse ITC was selected as screening 

compounds that were identified (Section 4.3.3) had only moderate solubility. Because 

compound concentrations were kept low in the reverse procedure, their aggregation or 

precipitation from solution was avoided. Slight background heats were observed when injecting 

ApoE4 into buffer only that were subtracted during data analysis (Appendix Figure 4.23). 

 

Figure 4.12. Binding of Suramin to ApoE4 evaluated by ITC. The upper panels show the raw titration heats, the 

lower panels are the normalized binding heats with the solid line representing nonlinear least square fits using the 

single-site binding model. (A) Injection of 500 µM Suramin into 20 µM ApoE4. (B) Injection of 300 µM ApoE4 into 

50 µM Suramin. Binding affinities (± SD) of 5.0 ± 1.0 µM and 3.0 ± 0.4 µM were calculated respectively. DP – 

differential power (i.e. the power that is required to maintain the reference cell at equal temperature to the sample 

cell). 
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4.3.3 Screening identifies 59 compounds as ApoE4 binders 

The NIH clinical collection (707 drugs) was screened against ApoE4 at 100 µM in two separate 

runs. The NIH clinical collection was selected as screening library due to the clinical history 

and diversity of compounds. Additionally, the small size of the library made the compound 

collection an optimal choice for a screening trial. Suramin was used as a positive control and 

at concentrations of 150 µM and 5 mM produced a mean response measured as shifts in 

reflected wavelength of 53 ± 11 and 146 ± 17 pm respectively (Figure 4.13A). All plates had a 

Z’ above 0.5 (mean Z’ values of 0.66 ± 0.05 and 0.82 ± 0.04 when using Suramin as a positive 

control at concentrations of 150 µM and 5 mM respectively) and were all included in data 

analysis (Figure 4.13B). Shift signals were normally distributed in both runs (Appendix Figure 

4.24). Wells with low ApoE4 immobilization levels (< 1800 pm) were excluded from data 

analysis and in total, 5 wells out of 1920 had to be excluded (Figure 4.13C).  

 

Figure 4.13. Screening statistics. Suramin at 5 mM and 150 μM was used as positive control and buffer as 

negative control during screen. (A) Suramin gave a mean shift (± SD) of 146 ± 17 pm and 53 ± 11 pm at 5 mM and 

150 μM respectively. (B) Z’-factors across all plates were > 0.5. (C) The majority of wells had high ApoE4 

immobilization levels with mean ± SD immobilization levels of 2921 ± 86 pm. Only five biosensors had low ApoE4 

immobilization levels (< 1800 pm) and were excluded from data analysis. 

Out of the 707-compounds screened, 59 compounds met the criterion to be considered a hit 

(i.e., response greater than 5-fold above the median absolute deviation of the sample median; 

Figure 4.14A). Due to a production issue which limited the availability of Corning® Epic® 

plates, 45 out of the 59 compounds were prioritized based on quantitative response and 

chemical attractiveness and tested by concentration response on the Corning® Epic®. 

Fourteen of these hits gave full or partial binding curves (Figure 4.14C and Appendix Figure 

4.25) and were further evaluated in the secondary assays. Compounds were soluble and did 

not precipitate at 100 µM. Surprisingly, steroid-like compounds Ethylestrenol and 

Ethynylestradiol were initially identified as hits, however, gave no binding signal in the follow-

up concentration-response study (data not shown). 
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Figure 4.14. Screening and hit identification on the Corning® Epic®. (A) Hit threshold was set to five times the 

median absolute deviation (MAD) and a shift above 16 pm was considered a hit. In total 59 compounds met criteria 

to be considered a hit and their correlated shifts from both runs are shown in panel (B). 45 of these hits indicated 

as blue circles in (B) were prioritized and tested by 10-point concentration response on the Corning® Epic® with a 

top concentration of 100 μM. 14 compounds returned with beginning binding curves and examples are shown in 

panel (C). The remaining binding curves are found in Appendix Figure 4.25. 

4.3.4 Evaluation of screening hits by MST and ITC confirms six drugs 

The hits identified by the initial screening in the Corning® Epic® assay were next evaluated by 

MST. Three hits altered thermophoresis of ApoE4 in a concentration-dependent fashion and 

five altered the measured initial fluorescence (Figure 4.15).  Affinities were determined to be 

in the micromolar range (Table 4.1) and some of these drugs such as Clomifene, Tamoxifen 

and Toremifene share structural features. One confirmed hit, Hydroxyzine pamoate, contained 

Pamoic acid as a counter ion. It was of interest to determine as to whether Hydroxyzine itself 

causes the quenching in initial fluorescence or Pamoic acid. Binding of Hydroxyzine 

dihydrochloride and Pamoic acid was therefore tested and Pamoic acid was found to be 

responsible for the response (Figure 4.15D). Quenching or enhancement of initial fluorescence 

by the hits was found to be binding-specific as assessed by the denaturation test and test for 

auto-fluorescence (Figure 4.16). Raw MST traces are found in the Appendix (Figure 4.26). 
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Figure 4.15. Hit confirmation by microscale thermophoresis. Hits were tested by concentration response from 

500 or 250 μM. (A) Three out of these eight hits did alter thermophoresis without affecting the initial fluorescence 

(Chlorpromazine, Meclofenamic acid, Thioridazine), (B) three increased the initial fluorescence (Clomifene, 

Tamoxifen, Toremifene) and (C and D) two reduced the initial fluorescence (L-Thyroxine, Hydroxyzine pamoate) in 

a concentration dependant fashion. (D) Pamoic acid and not Hydroxyzine is responsible for the reduction in initial 

fluorescence. Data is expressed as the mean ± SD of three independent experiments. 
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Figure 4.16. Microscale thermophoresis denaturation studies and compound auto-fluorescence. For 

compounds that altered initial fluorescence a denaturation test was performed, as well as tested for auto-

fluorescence. Shown is the initial fluorescence before and after denaturation in the absence and presence of (A) 

Clomifene, (B) Tamoxifen, (C) Toremifene, (D) L-Thyroxine and (E) Pamoic acid. (F) Compounds were also tested 

for auto-fluorescence in the presence of fluorescence dye without protein. Compounds do not influence the 

fluorescence signal of the dye. Data are expressed as the mean ± SD of three independent experiments. 

Finally, the eight hits identified by screening on the Corning® Epic® and confirmed by the 

orthogonal MST assay were tested by ITC and six drugs were confirmed (Figure 4.17 and 

Appendix Figure 4.28) whereas the binding of Thioridazine and Chlorpromazine to ApoE4 

could not be confirmed. As already observed in the MST binding studies, some of the hits 

share structural features. Tafamidis that binds to the L-Thyroxine binding site in transthyretin 

(a transport protein of the thyroid hormone) (447) was therefore purchased and its binding to 

ApoE4 was confirmed (Figure 4.17B). Additionally, binding of all six hits and Tafamidis by ITC 

was tested against ApoE2 and ApoE3 and similar binding to all ApoE isoforms was observed 

(Appendix Figures 4.28 to 4.31). Interestingly, no binding of the hits to ApoE41-191 could be 

measured (Appendix Figure 4.32) which suggests the importance of tertiary/quaternary 

structure or that identified drugs bind to the carboxyl terminus of ApoE. 
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Figure 4.17. Hit confirmation by isothermal titration calorimetry. All eight hits successfully tested by MST were 

finally probed by ITC and six could be confirmed. Binding curves could not be fully resolved of a majority of hits due 

to binding affinities being in micromolar range. Binding to ApoE4 was confirmed for (A) L-Thyroxine, (B) its 

compound analogue Tafamidis, (C) Meclofenamic acid, (D) Pamoic acid, (E) Clomifene, (F) Tamoxifen and (G) 

Toremifene. Isotherms of raw titration are shown in Appendix Figure 4.28. Figures show the normalized binding 

heats with the solid line representing nonlinear least square fits using the single-site binding model. 

Table 4.1. Binding affinities determined by MST and ITC. 

 
ApoE4 ApoE2 ApoE3  

MST [μM] ITC [μM] ITC [μM] ITC [μM] 

L-Thyroxine ✓ 18 ± 12 33 ± 10 20 ± 3 

Tafamidis - 8 ± 2 6 ± 2 8 ± 1 

Meclofenamic acid 51 ± 12 45 ± 13 47 ± 32 47 ± 9 

Pamoic acid ✓ 38 ± 4 55 ± 14 119 ± 50 

Clomifene 44 ± 2 15 ± 10 67 ± 36 24 ± 9 

Tamoxifen 67 ± 19 ✓ ✓ ✓ 

Toremifene 44 ± 6 ✓ ✓ ✓ 

✓ denotes that binding was confirmed, however, binding affinity could not be determined accurately. 
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4.4 Discussion 

The aim of this study was to identify novel ApoE4 binders using a biophysical approach. 

Biophysical techniques have become key components of the drug discovery process and are 

routinely used for hit identification and/or confirmation (448). However, these techniques can 

be limited by the amount of protein required, sample preparation and throughput. The 

Corning® Epic® label-free assay measures a change in wavelength of refracted light when an 

analyte binds to a target that was immobilized on a biosensor (439). The technique is very 

sensitive and affinities in the nanomolar range can be determined. Micrograms of material is 

required and the 384-well plate format allows screening in an high throughput format. However, 

buffers must be well matched for additives and solvents that will otherwise result in artificial 

signals. Due to the limitations of individual biophysical methods, validation of hits by orthogonal 

assays, in the present study MST and ITC, are often used to increase the confidence in 

identifying protein-ligand interactions. MST monitors movement of molecules in a temperature 

gradient with this movement being tracked by a fluorophore that is covalently coupled to the 

molecule. The interaction of two molecules (e.g. drug binding to protein) will alter this 

movement and can therefore be used to detect binding (440). MST requires nanograms of 

material and thermophoresis curves can give information on unspecific effects such as ligand-

induced protein aggregation. Although automated systems are available, the non-automated 

capillary-based system used in the present study only allows low throughput (up to 16 samples 

at a time) and additional validation steps may be required if extrinsic labelling is used. Finally, 

ITC can provide additional information on thermodynamic parameters and binding 

stoichiometry. High protein consumption and low throughput limit ITC to hit validation (448). It 

is for these various reasons that the Corning® Epic® was used for hit identification, and MST, 

as well as ITC used as orthogonal assays for hit validation (Figure 4.1). 

Surprisingly, no binding of described structure correctors PH002 and EZ-482 to ApoE4 was 

observed during assay development. These compounds generally showed poor solubility that 

resulted in negative binding responses on the Corning® Epic® (Figure 4.7) and no change in 

thermophoresis (Appendix Figure 4.22 C-E). These results contradict previous observations 

that confirmed binding of PH002 and EZ-482 to recombinant, lipid-free ApoE by 

hydrogen−deuterium exchange and mass spectroscopy (HDX MS), as well as EPR (246, 445). 

As high concentrations of compounds were used in the previous studies, the observed binding 

effects may have been unspecific or due to compound aggregation. 

The NIH clinical collection of 707 chemically-diverse drugs that all have a history of clinical use 

or entered clinical trials was screened against ApoE4. Suramin was used as a positive control, 

although it is neither a specific nor selective ApoE binder and has been shown to interact with 

many other proteins (449–451). Initially, 59 drugs were identified that bind to ApoE4 resulting 
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in a relatively high hit rate of 8%. MST proved a powerful secondary assay for confirmation 

studies and reduced the number of hits to eight compounds (1.1% hit rate). Using the MST, 

Pamoic acid was identified to be binding to ApoE4 instead of Hydroxyzine, which was the 

presumed “active” constituent of Hydroxyzine pamoate. Similar observations were made by 

Zhao et al (452) who screened for novel agonists of the orphan receptor GPR35. In their 

primary screen they identified Oxantel pamoate as an agonist for GPR35, however, 

subsequent testing with related compounds and Pamoic acid revealed the latter to be 

responsible for the agonist activity. Although Pamoic acid does not bind with high affinity to 

ApoE, these results, as well as those of Zhao and colleagues (452), emphasize how the 

counterion can be the active component and need to be tested in terms of screening (453).  

Six out of eight drugs could be confirmed by ITC. All hits besides Pamoic acid are in clinical 

use and include a hormone (L-Thyroxine), three SERMs (Clomifene, Tamoxifen, Toremifene) 

and one NSAID (Meclofenamic acid). Binding of L-Thyroxine to ApoE has been previously 

reported using a radio-ligand binding assay (454, 455) with binding affinities in micromolar 

range. Interestingly, binding of L-Thyroxine in the radio-ligand assay was shown to be inhibited 

by Meclofenamic acid (455) which may suggest a shared binding site(s). In contrast to the 

previous studies (454, 455), no binding of L-Thyroxine, nor Meclofenamic acid could be 

confirmed to the amino terminal domain, however, binding of Tafamidis that shares chemical 

features of L-Thyroxine was confirmed. Notably, the interaction of SERMs to ApoE was 

observed. SERMs are agonists or antagonists of the estrogen receptor and have been 

considered as a possible treatment for women with AD. However, it is still a matter of debate 

if hormone therapy and SERMs have beneficial effects on cognitive function and clinical 

studies came to inconsistent results (456, 457). 

The hits identified in the present study do not show selectivity for ApoE4 versus ApoE2 and 

ApoE3 and binding to all ApoE isoforms with similar affinities was confirmed by ITC. This 

indicates that ApoE isoforms share structural features and that compounds bind to conserved 

binding sites. Affinities are in the micromolar range (Table 4.1) and it was therefore not possible 

to accurately determine stoichiometry for a number of hits. This was most notable with 

Tamoxifen and Toremifene for which it was only possible to confirm binding by ITC but, the 

binding affinities could not be measured. Despite being non-selective, the identified 

compounds might alter ApoE function and may have beneficial effects such as on ApoE 

lipidation and expression, although this remains to be determined. Moreover, they provide 

chemical starting points for medicinal chemistry efforts for further optimization to attempt to 

identify isoform-selective binders.    
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4.5 Appendix Chapter 4 

The target protein is immobilized to the Corning® Epic® biosensor via amine coupling. The 

biosensor surface is coated with a hydrophilic carboxymethylated polymer that is activated with 

the EDC crosslinker and sulfo-NHS (Figure 4.18). The free amines of the protein have to be 

uncharged to react with the activated ester (458). ApoE4’s theoretical isoelectric point 

calculated by using the ProtParam webtool (459) is 5.65 and experimentally, ApoE isoforms 

focus with isoelectric points between pH 5.3 and 5.8 (109). Hence, ApoE4’s overall charge will 

be neutral at pH 5.6 that will promote amine coupling to the biosensor. 

 

Figure 4.18. Amine coupling to the Corning® Epic® biosensor. The carboxyl moieties of the hydrophilic surface 

of the sensor are activated with EDC and sulfo-NHS to form stable amine-reactive sulfo-NHS esters. Protein is then 

covalently attached by its primary amine(s) (458). 
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As shown in Chapter 2, Section 2.3.6, ApoE4 is unstable in solution and degrades into ~22 

kDa and ~10 kDa fragmentation products with time. It was therefore of interest to determine 

stability of ApoE4 in low pH buffers as ApoE4 was immobilized to the Corning® Epic® plates 

in 20 mM sodium citrate pH 5.6. ApoE4 visibly precipitated upon dilution into 20 mM sodium 

acetate pH 5.5 and notably, its elution pattern is altered in a sodium acetate buffer compared 

to sodium citrate and SEC buffer (Figure 4.19). 

 

Figure 4.19. Stability and elution of ApoE4 at low pH. (A) Stability of ApoE4 at 1 mg/mL was tested in 20 mM 

sodium acetate buffer pH 5.5. No fragmentation is observed over 2 h. (B) Elution patterns of ApoE4 in 20 mM 

sodium acetate, 150 mM NaCl pH 5.5 and in 20 mM sodium citrate, 150 mM NaCl, pH 5.6 is compared. ApoE4 was 

delivered at 5 mg/mL. Sodium chloride was added to prevent unspecific binding of ApoE4 to the resin of the HiLoad 

26/600 Superdex 200 pg (GE Healthcare) column. Elution of ApoE4 in sodium acetate pH 5.5 is shifted to a higher 

retention volume which suggests compaction of ApoE4. 

It is crucial to optimise the MST assay buffer to prevent association of the protein to the glass 

surface of the capillary. Binding of proteins to the capillaries is identified during capillary scan. 

Homogenous distribution of the protein within the capillary will result in a bell-shaped 

fluorescence signal; inhomogeneous distribution on the other hand will result in distorted 

signals (Figure 4.20). 

 

Figure 4.20. Protein association to MST capillaries. Capillaries are scanned from left to right and the 

fluorescence of the labelled protein is measured across the capillary. If the protein does not bind to the capillary, 

the fluorescence signal will be bell-shaped. Highest fluorescence signal is measured in the middle of the capillary 

in this case. If protein binds to the glass surface, the signal will be distorted due to inhomogeneous distribution of 

the protein. 
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Behaviour of ApoE4 in MST capillaries at varying concentrations (20, 40, 80 and 100 nM) was 

tested in PBS, PBS + 0.1% (v/v) Triton-X 100, SEC buffer (not shown) and a modified SEC 

buffer (20 mM HEPES, 500 mM NaCl, 10% (v/v) glycerol, ± 0.1% (v/v) Triton X-100, pH 8.0). 

Substantial binding to the capillaries was seen in PBS ± Triton X-100, whereas no binding in 

the modified SEC buffer with Triton X-100. Addition of detergent also increased the 

fluorescence signal. This suggests that ApoE4 in buffers without detergent bound to the test 

tubes during sample preparation and hence material was lost (Figure 4.21). 

 

Figure 4.21. Scans of capillaries containing labelled ApoE4 in varying buffers. ApoE4 at 100, 80, 40 and 20 

nM was left in standard MST capillaries over 20 min in (A) PBS, (B) PBS + 0.1% (v/v) Triton X-100, (C) 20 mM 

HEPES, 500 mM NaCl, 10% (v/v) glycerol, pH 8.0, or (D) 20 mM HEPES, 500 mM NaCl, 10% (v/v) glycerol, 0.1% 

(v/v) Triton X-100, pH 8.0 (MST assay buffer). Substantial binding to the capillaries over time was seen in buffers 

(A) – (C), no binding in buffer (D). 
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Figure 4.22. Suramin, GIND-25, PH002 and EZ482 MST traces. (A) Raw MST traces (left) in the presence of 

Suramin, the respective binding curve (middle) and the denaturation test (right) are shown. Suramin increased the 

initial fluorescence (FLin) in a concentration dependent fashion. (B) Same plots are shown for GIND-25 that reduced 

the FLin in a concentration dependent fashion. (C) Raw MST traces of PH002. (D) Raw MST traces of EZ482. 

PH002 and EZ482 did not alter FLin, nor alter thermophoresis. Thermophoresis is calculated based on fluorescence 

measured before applying the IR laser (Fcold) and during steady state (Fhot). The normalized fluorescence ΔFnorm 

is the ratio Fhot/Fcold multiplied by a factor of 1000 (therefore yielding a fluorescence change in per thousand, ‰). 

(E) The normalized fluorescence is shown as a function of PH002 and EZ482 concentration. Data is expressed as 

the mean ± SD of three independent experiments. 
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Figure 4.23. Titration of ApoE4 into buffer. (A) Shown are the raw isotherms of 300 µM ApoE4 titrated into PBS 

+ 0.1% (v/v) Triton-X 100 + 2% (v/v) DMSO. (B) Integrated heats (µcal) are shown as a function of injection number. 

DP – differential power. 

 

Figure 4.24. Screening response distribution. Shown is the number of compounds (frequency) as a function of 

response (in pm) for (A) screening run 1 and (B) screening run 2. Shift signals are normally distributed. Compounds 

with a response > 16 pm were considered a hit (red area).  
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Figure 4.25. Confirmation of hits on the Corning® Epic®. Due to a production issue which limited the availability 

of Corning® Epic® plates, 45 out of the 59 compounds were prioritized based on quantitative response and 

chemical attractiveness and tested by concentration response on the Corning® Epic®. Fourteen of these hits gave 

full or partial binding curves that are shown here and in Figure 4.14C. 
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Hits were initially evaluated in form of 8-point concentration response by MST with a top 

concentration of 100 µM. If a compound did alter thermophoresis or initial fluorescence, the 

compound was obtained from a commercial vendor and re-tested in a 12-point concentration 

response. Out of the 14 compounds that were confirmed on the Corning® Epic®, three 

compounds did alter thermophoresis (Meclofenamic acid, Chlorpromazine, Thioridazine), 

three increased the initial fluorescence (Clomifene, Tamoxifen, Toremifene) and one 

decreased the initial fluorescence (Hydroxyzine pamoate). These compounds were purchased 

and re-confirmed by MST by 12-point concentration response as presented in Section 4.3.4 

(Figure 4.15). Compounds that had to be excluded for evaluation on the Corning® Epic® due 

to plate production shortage (Section 4.3.3) were also tested by MST. Three compounds 

decreased the initial fluorescence (Figure 4.26) of which L-Thyroxine was eventually confirmed 

(Figure 4.15, Section 4.3.3).  

In a secondary strategy, the hit threshold was decreased to three times the median absolute 

deviation of the sample median (hit threshold > 10 pm) to see if additional drugs could be 

identified by MST. None of the compounds significantly altered thermophoresis. One drug 

decreased the initial fluorescence, however, it could not be confirmed after repurchasing 

(Figure 4.26). 

 

Figure 4.26. Evaluation of hits by MST. Shown is the mean signal of thermophoresis response (left panel) or 

initial fluorescence (right panel) of compounds at 100 µM from the 8-point concentration response. In black are the 

14 compounds that were evaluated on the Corning® Epic® by concentration response. In blue are compounds that 

had to be excluded for evaluation on the Corning® Epic®. In red are novel compounds after setting the hit threshold 

to 3 x MAD. The asterisk (*) denotes hits that were eventually confirmed by 12-point concentration response and 

further evaluated by ITC. 
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Figure 4.27. MST traces. Shown are the MST traces of (A) Clomifene, (B) Tamoxifen and (C) Toremifene that 

increased the measured initial fluorescence in a concentration-dependent fashion; (D) Pamoic acid and (E) L-

Thyroxine that decreased the initial fluorescence; (F) Meclofenamic acid, (G) Chlormpromazine and (H) 

Thioridazine that altered thermophoresis. Fluorescence counts (FL) and thermophoresis (Fnorm) are plotted as a 

function of time. 
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Figure 4.28. Isotherms of raw titration ApoE4. Shown are the isotherms of raw titration heat of 300 μM ApoE4 

titrated into (A) PBS + 0.01% (v/v) Triton X-100 + 2% (v/v) DMSO, (B) 50 μM L-Thyroxine, (C) 25 μM Tafamidis, 

(D) 25 μM Meclofenamic acid, (E) 25 μM Pamoic acid, (F) 35 μM Clomifene, (G) 50 μM Tamoxifen and (H) 50 μM 

Toremifene.  
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Figure 4.29. Hit confirmation by isothermal titration calorimetry. All confirmed hits were also tested against 

ApoE2 and ApoE3. Binding to ApoE2 and ApoE3 was confirmed for (A) L-Thyroxine, (B) its compound analogue 

Tafamidis, (C) Meclofenamic acid, (D) Pamoic acid, (E) Clomifene, (F) Tamoxifen and (G) Toremifene. Shown are 

the normalized binding heats with the solid line representing nonlinear least square fits using single-site binding 

model. 
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Figure 4.30. Isotherms of raw titration ApoE2. Shown are the isotherms of raw titration heat of 300 μM ApoE2 

titrated into (A) PBS + 0.01% (v/v) Triton X-100 + 2% (v/v) DMSO, (B) 50 μM L-Thyroxine, (C) 25 μM Tafamidis, 

(D) 25 μM Meclofenamic acid, (E) 25 μM Pamoic acid, (F) 35 μM Clomifene, (G) 50 μM Tamoxifen and (H) 50 μM 

Toremifene. 
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Figure 4.31. Isotherms of raw titration ApoE3. Shown are the isotherms of raw titration heat of 300 μM ApoE3 

titrated into (A) PBS + 0.01% (v/v) Triton X-100 + 2% (v/v) DMSO, (B) 50 μM L-Thyroxine, (C) 25 μM Tafamidis, 

(D) 25 μM Meclofenamic acid, (E) 25 μM Pamoic acid, (F) 35 μM Clomifene, (G) 50 μM Tamoxifen and (H) 50 μM 

Toremifene. 
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Figure 4.32. Isotherms of raw titration ApoE41-191. Shown are the isotherms of raw titration heat of 300 μM 

ApoE41-191 titrated into (A) PBS + 0.01% (v/v) Triton X-100 + 2% (v/v) DMSO, (B) 50 μM L-Thyroxine, (C) 25 μM 

Tafamidis, (D) 25 μM Meclofenamic acid, (E) 25 μM Pamoic acid, (F) 35 μM Clomifene, (G) 50 μM Tamoxifen and 

(H) 50 μM Toremifene. 
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5 CONCLUSIONS 

As outlined in Chapter 1, the inheritance of the ε4 allele of the apolipoprotein E gene is an 

established risk factor for the late onset, most common form of AD and homozygote carriers 

of the ε4 allele have up to a 12-fold greater risk of developing AD than non-carriers (103–105, 

460). ApoE is a component of lipoproteins and its primarily function is the transport of lipids 

and cholesterol in our body. ApoE recognizes specific receptors such as LDLR and LRP1 that 

mediate the uptake of lipoproteins (117). Internalization of lipoproteins is often enhanced by 

HSPGs that can also function as receptors by themselves (126). Three ApoE isoforms exist 

that differ at amino acid sites 112 and 158 by a cysteine-arginine interchange (114, 115). The 

difference in primary structure confers a functional difference although the exact mechanism 

by which ApoE4 increases the risk of developing AD remains elusive. A more thorough 

understanding of functional differences between ApoE isoforms is required such as functional 

differences in the ApoE-HSPG interaction. 

The identification of small molecules that specifically interact with ApoE4 and that may alter its 

structure and function can be utilized to investigate ApoE biology. Such small molecules may 

also be of therapeutic value. Therefore, the central objective of this thesis was to study the 

ApoE-heparin interaction, identify any isoform-dependent differences in heparin binding and 

to screen for novel ApoE tool compounds. This research work provides novel findings on the 

ApoE-heparin interaction and identifies new drugs that bind, albeit non-selectively to the 

different ApoE isoforms. The thesis does answer the overarching hypothesis that a structural 

difference (i.e. amino acid interchange) results in a functional difference (i.e. altered heparin 

binding) between ApoE variants. However, biophysical techniques used to address the 

hypothesis did not identify differences in tertiary and/or quaternary structure between the 

proteins that are likely to be small. This may also be the reason why no specificity of screening 

compounds was observed against ApoE4 over ApoE2 and ApoE3. Nevertheless, drugs 

identified in this thesis are in clinical use and it may be worthwhile to evaluate their effects on 

ApoE biology and their use as therapeutic agents. 

5.1 Chapter 2: Conclusions and future directions 

In Chapter 2, a novel purification protocol of wild type ApoE2, ApoE3 and ApoE4, as well as 

the truncated ApoE41-191 and monomeric ApoE4mon variants under non-denaturing conditions 

was developed. Proteins were additionally compared in solution by complementary techniques 

including gel filtration, SEC MALS, AUC and SAXS, and crystallization trails of ApoE4 were 

conducted. 
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Highly pure protein is yielded in the newly developed protocol that selects functional protein by 

HAC. All ApoE isoforms resemble one another in solution in terms of structure and shape and 

have similar hydrodynamic properties. A Stokes radius RS of 5.8 – 6.8 nm was calculated by 

gel filtration, SEC MALS and AUC, as well as a radius of gyration Rg of ~5.6 nm by SAXS; all 

of which are values similar to those reported in previous studies (195, 379). All biophysical 

techniques suggest an elongated tetrameric shape for ApoE in solution and SAXS additionally 

confirms intrinsic flexibility and/or polydispersity. This flexibility in combination with ApoE’s 

intrinsic and/or proteolytic instability hindered its crystallization and only the amino terminal 

domain readily crystallized. 

A prevailing hypothesis for ApoE4’s increased risk of AD is the introduction of a salt bridge 

between Arg61 and Glu225 that is postulated to result in ApoE4’s decreased stability, with the 

consequently increased fragmentation leading to cytotoxicity (252). This domain interaction is 

thought to give ApoE4 a more compact structure compared to ApoE2 and ApoE3. As outlined 

in Chapter 1, Section 1.4.4, there is indirect evidence for the ApoE4 domain interaction, but 

also suggestions for altered oligomerization behaviour or conformational changes within the 

receptor binding region due to the amino acid interchange in ApoE4. Large conformational 

changes in ApoE4 structure, such as a more compact shape compared to the two other 

isoforms are likely to be recognized in the biophysical techniques used in this thesis. However, 

no difference between ApoE isoforms was identified and all proteins behaved similar in terms 

of sedimentation and light scattering suggesting that there are no gross differences in 

secondary, tertiary and/or quaternary structure between ApoE2, ApoE3 and ApoE4; data that 

all suggest that under the conditions used in the present study the proposed ApoE4 

intramolecular interaction does not occur. Direct proof of the Arg61 – Glu255 salt bridge in 

ApoE4 can only be obtained by a high-resolution crystal structure and the ApoE4 domain 

interaction hypothesis therefore remains inferential. 

Although crystallization of full length ApoE4 was tested under various conditions, it would be 

of interest to further evaluate LCP in future. Preliminary LCP trials in collaboration with the 

Membrane Protein Lab (Imperial College) did not yield any crystals and focus was therefore 

shifted to in-solution structural techniques such as SAXS. However, as ApoE seems more 

stable in the presence of detergents, lipids and/or lipid surrogates LCP crystallization presents 

a promising approach to obtain a full-length crystal structure. 

Interestingly, ApoE4mon is not entirely monomeric since dimeric, as well as tetrameric species 

are present particularly at higher protein concentrations which contradicts previous 

observations (243). Additionally, an elongated shape, polydispersity and/or intrinsic flexibility 

was confirmed by SAXS. This differs from the globular structure deduced by the NMR studies 
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(242). In future, it will be of interest to further investigate if additional residues other than the 

five residues that have been replaced in ApoE4mon are responsible for the oligomerization of 

ApoE. 

5.2 Chapter 3: Conclusions and future directions 

The ApoE-heparin and ApoE-Suramin interactions were investigated in Chapter 3 using SAXS 

and isoform-dependent differences were identified in their heparin binding ability, as well as 

substantial conformational changes upon ligand binding. ApoE4 binds with higher affinity to 

heparin compared to ApoE2 and ApoE3 that may be a result of an altered charge distribution 

in the receptor binding region due to the amino acid interchange at positions 112 and 158. 

Previous studies using SPR have reported higher binding affinity of ApoE4 to heparin or HS 

compared to ApoE2 and ApoE3 (410). SAXS data collected in this thesis is consistent with an 

isoform-dependent difference in heparin binding and shows major structural changes when 

ApoE binds to the ligand. Heparin binding seems predominantly mediated by the amino 

terminal domain (residues 134-150) in the lipid-free protein as mutation of critical lysine 

residues in the receptor binding region abolishes the effects of heparin on ApoE size and 

conformation. The second heparin binding site located around Lys233 therefore seems to play 

a minor role in the heparin interaction. 

As outlined in Chapter 1, Sections 1.4.1 and 1.4.2, HSPGs are glycoproteins that contain 

covalently attached GAGs such as heparin and are important receptors for the uptake of ApoE-

containing lipoproteins. Differences in the ApoE-heparin (or ApoE-HSPG) interaction will likely 

result in altered lipoprotein metabolism and will influence the biological effects that ApoE has 

in the periphery and CNS such as on the immune response, neuron regeneration and growth. 

However, differences in lipoprotein metabolism between ApoE isoforms are subtle and 

particularly ApoE3 and ApoE4 seem equally efficient at clearing plasma cholesterol levels in 

vivo (461). Impaired HSPG binding affinity as in the case of ApoE2 can lead to the development 

of type III hyperlipoproteinemia. Affected individuals accumulate lipoprotein cholesterol and 

lipids in plasma which predisposes them to the premature development of atherosclerosis 

(Chapter 1, Section 1.4.1). However, less than 10% of ε2/ε2 homozygotic carriers develop 

overt type III hyperlipoproteinemia; most ε2/ε2 subjects, paradoxically, are normolipidemic or 

even hypocholesterolemic (135). Carriers of the ε4 allele on the other hand were shown to 

have higher LDL cholesterol levels compared to ε2 and ε3 individuals and ε4/ε4 homozygotes 

have a slightly increased risk to develop coronary disease compared to ε3/ε3 homozygotes 

(462). ApoE4 preferentially associates with large VLDLs compared to ApoE3 that preferably 

binds smaller HDLs and therefore promotes VLDL clearance from plasma (235–237). It has 

been suggested that accelerated ApoE4-mediated VLDL clearance results in downregulation 
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of LDLR and related receptors and therefore in an increase of plasma LDL levels (463). Lower 

levels of LDLR, LRP1 and related receptors in the liver may additionally be promoted by 

ApoE4’s increased binding ability to HSPGs as shown in this thesis with heparin. For example, 

ApoE4-containing lipoproteins may be trapped in the endosomes due to slower dissociation of 

ApoE4 from HSPGs and therefore impair recycling of LDLRs back to the cell surface (Figure 

5.1). Similarly, in the CNS where ApoE is the major apolipoprotein, higher binding affinity of 

ApoE4 to HSPGs may trap receptors such as NMDA and AMPA receptors (NMDAR and 

AMPAR) in synaptic endosomes resulting in altered glutamate receptor homeostasis (Figure 

5.1) (433). Altered HSPG binding ability will also influence lipoprotein metabolism and 

clearance of the Aβ peptide in the brain. Unfortunately, it is still unclear how lipoprotein 

metabolism in the brain differs between ApoE isoforms and especially the role of HSPGs in 

the CNS needs further studying.  

 

Figure 5.1. Proposed mechanism by which ApoE influences receptor homeostasis in liver and brain. ApoE 

containing VLDLs are cleared faster by ApoE4 in the liver (left) compared to ApoE3 due to preferred binding of 

ApoE4 for VLDLs and higher binding affinity of ApoE4 to HSPGs. Internalized ApoE-containing lipoproteins 

disengage in the endosome and receptors such as LDLR are recycled back to the cell surface. Due to ApoE4’s 

altered binding to HSPGs, the recycling step is delayed compared to ApoE3 (and ApoE2) and the process stalled 

in the endosomes. Lower levels of ApoE receptors at the cell surface will result in accumulation of smaller 

lipoproteins such as LDLs and cholesterol. Similarly, in the synapse (right) recycling of glutamate receptors (AMPAR 

and NMDAR) trapped in the vesicle with ApoE4 is stalled resulting in altered glutamate (Glu) receptor homeostasis. 

The exact mechanism for the altered heparin interaction between ApoE isoforms remains to 

be addressed. As mentioned, the ApoE amino terminal domain is largely responsible for 

heparin binding. Binding was only tested on ApoE41-191 in this thesis and it will be of interest to 

compare the interaction to the respective ApoE2 and ApoE3 amino terminal domains. If the 
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isoform dependent difference is still seen in the amino terminal domains, it suggests that the 

increased ApoE4 heparin binding is a result of altered charge distribution in the receptor 

binding region. On the other hand, if the amino terminal domains equally interact with heparin, 

this will indicate a role of ApoE tertiary and/or quaternary structure in the interaction. The 

assessment of further ApoE4 mutants in which the Arg112 is changed into other residues such 

as alanine, glutamic acid or lysine will additionally address the role of a positive charge at 

position 112. 

Lastly, SAXS experiments were performed on lipid-free ApoE and it will be important to assess 

isoform dependent differences in lipidated or lipoprotein-associated ApoE in future. However, 

SAXS may not be the appropriate technique to investigate the heparin interaction with lipid-

associated ApoE. SAXS is a contrast method and any additives such as detergents or lipid 

surrogates will increase noise and complicate data analysis. Nevertheless, as SAXS has 

successfully been employed on ApoE-DMPC complexes in previous studies (411) it is worth 

evaluating the heparin interaction on such complexes, particularly in conjunction with other 

biophysical techniques such as AUC. 

5.3 Chapter 4: Conclusions and future directions 

The screening in Chapter 4 identified novel ApoE binders by using three complementary 

biophysical assays. Hits identified include L-Thyroxine and its analogue Tafamidis, as well as 

the SERMs Clomiphene, Tamoxifen, Toremifene, and the NSAID Meclofenamic acid. Although 

none of the hits identified differentiated between ApoE isoforms, the methods used 

nevertheless provide a novel means of identifying compounds that may be useful in defining 

the physiological functions of ApoE. Identified drugs may also provide starting points for future 

attempts to develop molecules which interact selectively with ApoE4 and which might therefore 

be of therapeutic utility. 

As determined in Chapter 2, ApoE isoforms resemble one another in terms of size and shape 

and structural differences must be small. Non-selective binding of compounds is therefore 

expected. Selectivity may however be of minor importance. In a therapeutic approach, 

identified drugs may only be used in ε4 positive carriers and modulation of the other isoforms 

(e.g. in heterozygotic patients such as ε3/ε4 carriers) may not pose a problem or be harmful.  

The drugs identified are all in clinical use and their effects on ApoE biology in the brain (and 

periphery) remain to be investigated. Binding of L-Thyroxine to ApoE was previously 

demonstrated (454, 455) and the hormone was shown to increase ApoE expression and 

secretion in HTB14 astrocytes via activation of the thyroid receptor (464). Similar effects were 

also shown with steroid hormones. Progesterone and the synthetic progestin, Lynestrenol, at 

concentrations of 5-10 µM were demonstrated to induce ApoE secretion from human CCF-
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STTG1 astrocytoma cells by activation of the LXR and progesterone receptor (465), and 

Estradiol increased ApoE levels in cultured mouse cortical neurons, as well as living mice via 

activation of the estrogen receptors respectively (466, 467). As outlined in Chapter 1, Section 

1.6, a therapeutic strategy for AD includes increasing levels of lipidated and functional ApoE 

by activation of the LXR pathway. Therefore, it will be of interest in future to evaluate the effects 

of L-Thyroxine, as well as the SERMs Clomiphene, Tamoxifen and Toremifene on ApoE 

secretion in cellular models and to identify the pathways that lead to increased expression. 

Characterizing the binding mode of the probes to ApoE remains to be addressed as well. No 

binding of hits was observed against ApoE41-191 which suggests that identified drugs either 

bind to the carboxyl terminus and/or that tertiary/quaternary structure of the full-length protein 

is required for binding. Due to the lack of a full length ApoE crystal structure, no computational 

approach can be used to identify the binding mode (e.g. by docking the compounds). However, 

this can be addressed experimentally, for example by hydrogen−deuterium exchange and 

mass spectroscopy (HDX MS). In HDX MS, proteins are equilibrated in deuterated water (D2O) 

and certain hydrogens in the protein exchanged for deuterium (some hydrogens will exchange 

fast such as hydrogens from surface exposed residues, others including backbone hydrogens 

will exchange relatively slowly). Deuterium has a higher mass compared to hydrogen which 

can be monitored by MS. Ligands or inhibitors that bind to the protein will influence deuteration. 

The rate at which the protein is deuterated and where the hydrogen is exchanged for deuterium 

can be converted into conformational information that will give insights into the binding mode 

of the ligand (468). Similarly, Mondal et al (445) used HDX MS to investigate the effects of the 

modulator EZ-482 on ApoE structure. EZ-482 binds with similar affinity to the carboxyl terminus 

of ApoE3 and ApoE4, however, binding to ApoE4 is accompanied by a conformational 

reorganization of the amino terminus. 

5.4 Limitations 

The studies described in this these were performed in vitro using recombinant protein. In vitro 

work uses simple systems without the complexities and variabilities of the system in a living 

organism, such as the lipidation state of ApoE, and extrapolations to the in vivo situation should 

therefore be made with caution. For example, the heparin binding studies using SAXS in 

Chapter 3 suggest an isoform dependent difference, however, it is still not clear how ApoE3 

and ApoE4 differ in terms of lipoprotein metabolism in humans and if the increased risk of 

ApoE4 to develop AD is a result of altered HSPG binding (461). SAXS studies were performed 

on lipid-free protein, however, ApoE is physiologically present on lipoproteins when interacting 

with its receptors and HSPGs. Although the observations reported in this thesis may not be 

directly physiologically relevant, they nevertheless provide clear hypotheses, such as an ApoE 
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isoform-specific difference in interaction with HPSGs, that can be tested under more functional 

and/or physiological conditions.  

Similarly, the biophysical assays used to screen for novel ApoE binders are very simple 

systems that will not reflect the physiology of ApoE in the living organism. However, such 

biophysical (and biochemical) assays are good starting points for drug discovery efforts and to 

evaluate drug-target engagement before going into other in vitro cell based or in vivo animal 

models. In the case of this thesis work, screening was performed using the Corning® Epic® in 

which ApoE4 was immobilized to the biosensor surface via amine coupling. Coupling may have 

occurred at critical lysine residues located in the receptor binding region which may have 

affected functionality of the protein and influenced compound binding. Likewise, labelling of 

ApoE4 for MST measurements may have taken place at identical sites. The inclusion of ITC 

as a final assay in which no labelling or alteration of the protein is necessary was therefore 

appropriate. Triton X-100 detergent was added to all assay buffers to reduce compound 

aggregation and non-specific binding, as well as to keep ApoE in a more physiological 

conformation, similar to being associated to lipoproteins. However, it is not clear to what extent 

Triton X-100 influences ApoE structure or if ApoE isoforms differ structurally from each other 

in a lipid- or detergent-associated state. Despite the above discussed limitations, the 

biophysical assays used in this thesis remain a good system for identifying and characterizing 

ApoE binders and for generating initial data that may direct into further in vitro or in vivo studies. 
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