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Abstract  
 
 
Particle engineering was used to modify particle morphology and the 
physicochemical/mechanical properties of carriers and active pharmaceutical ingredients. In this 
study, spray drying and crystallization were used as the main techniques for particle engineering; 
carriers included lactose, D-mannitol, and xylitol. L-leucine was used as an additive to modify the 
morphology of particles and salbutamol sulphate was used as an active pharmaceutical ingredient 
throughout the researched work. Engineered carriers were used, in some combination, in dry 
powder inhaler (DPI) formulations to determine whether or not there was an enhancement in the 
aerosolization performance of the engineered formulations. The prepared engineered carriers 
were analyzed using laser diffraction (particle size), differential scanning calorimetry (thermal 
behavior), scanning electron microscopy (morphology), powder X-ray diffraction (crystallinity), 
Fourier transform infrared spectroscopy (interaction at molecular level), powder flow 
characteristics (i.e. Carr’s Index and angle of repose), high pressure liquid chromatography 
(HPLC), UV-vis spectroscopy, and in vitro aerosolization performance (deposition). It was 
determined that the efficacy, via Fine Particle Fraction (FPF), of the engineered spray dried 
lactose-leucine DPI formulation was improved from 25.51 ± 1.23% to 47.11 ± 9.94%. The 
performance of the engineered spray dried mannitol-leucine DPI formulation was also improved 
to 52.96 + 5.21%. The engineered spray dried mannitol-lactose-leucine DPI formulation had an 
aerosolization performance of 61.42 + 4.21%. The engineered xylitol crystals, however, had an 
aerosolization performance of 42.94 + 15.21% whereas the mannitol-lactose crystals had an 
aerosolization performance of 68.69 + 4.65%. Finally, the mannitol-salbutamol sulphate crystals 
had a fine particle fraction (FPF) of 62.53 + 6.84%. A physical mixture comparative study showed 
that it was better to engineer the carriers rather than use the commercially available carriers 
currently in the market. In addition, the results also showed that L-leucine acts as a lubricating 
agent when incorporated into the DPI formulations. Lastly, all of the engineered carriers showed 
some degree of agglomeration, which made coarse particles suitable for DPI formulations. 
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Chapter 1 

Introduction 
 

1.1 Introduction1  

 

The pulmonary tract is used in a systematic fashion to tackle chronic obstructive pulmonary 

disease (COPD), asthma, bronchitis, airway disease, and cystic fibrosis (CF) through the 

administration of therapeutic agents.2 In addition, it is a noninvasive, rapid, and effective 

approach for the delivery of the therapeutic agent, both locally and systematically.3 It comes to 

no surprise as the respiratory tract offers a great potential for systematic delivery because the 

lungs have a large surface area for absorption with an  
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 Figure 1.1. The Respiratory Tract. Source: Ali Nokhodchi Lecture Note; Pulmonary 

Drug Delivery, 2018. 

abundant vasculature. There are approximately 300 million alveoli in each lung offering 

a surface area of about 100m2 for an effective gas exchange.4 It also contains small 

amounts of drug-metabolizing enzymes compared to the liver and gastrointestinal tract 

(GIT) providing conditions that favor drug absorption.5 Figure 1.1 presents a respiratory 

tree highlighting the different sections of the reparatory tract. 
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The respiratory tract, however, does pose a challenge; the effectiveness of the inhalation 

therapy depends upon the site of deposition of the active pharmaceutical ingredient 

(API). Deposition of inhaled drugs is a complicated process that relies on lung anatomy 

and physiology, the physicochemical properties of the API, the nature and 

characteristics of the formulation, and the type of delivery system used for 

administration.6 Only particles of a specific size (1-5µm) and shape will be able to deposit 

in the aveolar region, which is the main site of absorption.5, 7 Achieving this is usually 

done with a carrier; the chosen carrier needs to be safe, cost-effective, and pass strict 

pharmacopeia guidelines. It also needs to be selected in such a manner that it adheres 

to chemical properties that will not interfere with the drug delivery process and that 

complement the API.8–14 

 

Predicting the drug deposition of the drug in the respiratory tract is crucial in optimizing 

drug delivery and to evaluate its efficacy.15 Pharmaceutical aerosol particles can range 

from 10-2 to 102 µm and are categorized based on their size into coarse particles (≥ 5 

µm), fine particles (0.1 to 5 µm), and ultra-fine particles (≤ 0.1 µm).9 There are 

mathematical models available that illustrate the deposition and distribution of inhaled 

aerosols based on airway dimensions, flow dynamics, breathing pattern of the patient, 

and the shape of the particles involved.16 Particle deposition can occur via impaction, 

sedimentation, interception, or diffusion and Figure 1.217 presents the different types of 

particle deposition. 
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Figure 1.217. Particle Deposition. Mechanisms of deposition of inhaled particles in the 

respiratory tract.  

 

Impaction is considered a flow-dependent mechanism that is dependent on the 

aerodynamic diameter of the particle and is important for large particles (≥ 5 µm). 

Furthermore, large particles don’t follow the trajectory of the airway due to inertia and are 

subsequently swallowed by the patient.18-20 The deposition probability by impaction [P(I)] 

in cylindrical airways is calculated via Equation 1.121 and Equation 1.2 
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(Eq. 1.1)             

(Eq. 1.2)                               

 

where "	is the branching angle, p is the density of the particle, µ is the viscosity of fluid, 

v is the velocity of the particle, D is the diameter of the airway, and d is the particle 

diameter.  

 

Sedimentation occurs in the lower bronchial airway and the alveolar region, where airflow 

is slower, with particles in the range of 0.5 to 5 µm. If the aerosol particle size is between 

3 to 5 µm, then deposition occurs in the tracheal-bronchial region.22 Sedimentation of 

particles is governed by the gravitational force acting on the particles being more 

dominant than the dragging force imposed by the airflow; the rate of sedimentation 

increases with an increase in particle size and a decrease in flow rate.19, 22 The deposition 

probability by sedimentation [P(S)] in cylindrical airways is calculated with Equation 1.321 

 

(Eq. 1.3)                              

 

where g is the acceleration due to gravity, ⍬ is the angle relative to gravity, L is the tube 

length, p is the density of the particle, C is the Cunningham slip angle correction factor, d 

is the radius of the particle, R is the radius of the airway, and µ is viscosity of the fluid.  
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Particles deposited via interception do not diverge from the air stream and are elongated 

in their shape which causes them to be deposited as soon as they contact the airway 

wall. The aerodynamic diameter of these particles are smaller relative to their size causing 

them to be deposited in the lower airways.22,  23 

 

Diffusion is the key mechanism for particles that are less than 0.5 µm due to Brownian 

motion, which increases with decreasing particle size and air flow rate. Particles move 

from an area of high concentration to an area of lower concentration across the 

streamline and deposit upon contact with the airway wall; this is governed by geometric 

rather than aerodynamic size of the particles.21, 22, 24 The deposition probability by 

diffusion [p(D)] in cylindrical airways is calculated via Equation 1.421 

 

(Eq.1.4).                                 

 

where R is the airy diameter, k is the Boltzmann constant, T is the absolute 

temperature, n is the gas viscosity, and d is the particle diameter. 

 

The efficacy of inhaled therapy using a dry powder is dependent on at least four variables: 

the physicochemical properties of the formulation components, the design of the device, 

the mechanism of powder dispersion, and the patient inhalation maneuver.14, 25 The 

principal forces involved in dry powder dispersion from a dry powder inhaler (DPI) are 
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frictional, drag, lift, and inertial forces.8 Therefore, the blending technique used and the 

selection of the carrier properties such as size, shape, humidity, crystalline state, and 

surface roughness will influence the final aerosolization performance of the drug 

formulation.14 

 

DPIs are generally grouped into three categories based on the dose metering system: 

single-unit dose, multi-unit dose, and multi-dose reservoir. The single dose inhaler is the 

most widely utilized type of DPI which requires the patient to load the devise with a hard 

capsule containing micronized powder formulation prior to inhalation.26 The multi-dose 

devices are available with pre-metered doses stored in individually sealed protective 

packaging. The multi-dose reservoir contain the bulk powder formulation in a multi-dose 

reservoir where individual doses are metered under gravity and dispensed by a built-in 

mechanism.26 , 27 

 

Moreover, DPIs may be classified as passive or active devices. Passive devices rely 

solely on the energy generated by patient inspiratory flow rates to fluidize and disperse 

the powder. Active DPI devices possess an internal power source dispersion unit to 

aerosolize the powder using compressed air.28  

 

These principles have been implemented with those of particle engineering in such a 

way as to allow for novel formulations to be constructed and tested.  
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1.2 Particle Engineering 

§ 1.2.1 Spray Drying 

 

Methodologies for particle engineering have evolved from a traditional approach into 

taking on a more contemporary one, through the introduction of the spray drying 

technique, whose manifestation began about 140 years ago.29 More precisely, spray 

drying is an analytical technique in which dry powder is produced via the evaporation of 

an atomized liquid when it is mixed with a drying hot gas medium.30 Converting an 

aqueous solution into a solidified form in a matter of milliseconds, through the exchange 

of heat (ΔH), has allowed this technique to take on unique advantages while also granting 

it a wide spectrum of usage; both in industry and in research.30 Capable of producing an 

amorphous product, where the solid state of the active pharmaceutical ingredient (API) 

undergoes a phase equilibria change from the crystalline, or rather solid phase, to the 

amorphous phase, whose transition state underlies with that of the liquid and solid 

phases, can be be understood via Equation 1.5, which follows the Gas Laws30 

 

(Eq. 1.5).                            

 

where ΔG represents the Gibbs free energy difference between the two phase equilibria 

under standard conditions, R being the gas constant, T being the temperature at which 

the measurement was taken, in Kelvin, σAmorphous/σSolid as the solubility ratio of both phase 

equilibria, and where the moisture content and relative humidity follow US FDA guideline. 
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Spray drying, itself, is an energy intensive, continuous, and scalable drying process 

allowing for various specialized applications to be seen; from microcapsules to controlled 

release particles, composite micro-particles, and nanoparticles and liposomes.31-33 

Critical physical parameters that lie at the core of the process and feed variable induced 

changes are vapor pressure, evaporation rate, drying time, droplet size/distribution, 

crystallization rate, film formation rate, heat/mass transfer, and outlet temperature.34   

 

Inventive and innovative methods have been developed which include the ability to 

prepare solid amorphous dispersions, excipients in manufacturing, pulmonary and bio-

therapeutic particle engineering, encapsulation, and in drying a crystalline active API.30 

Moreover, the contemporary introduction of spray drying has allowed the, once poorly 

soluble API, to be more bioavailable such that there is an increase in the stability of the 

API in its amorphous state, an increase to the effective solubility to the API relative to the 

crystalline form, and in its ability to inherit crystallization of drug in vivo upon dosing and 

dissolution;35, 36  just to name a few. 

 

Aside from spray drying, however, other techniques are available that could be used like 

that of co-grinding, freeze drying, hot melt extrusion (HME), supercritical methods (SCM), 

or electrohydrodynamic based methods. In pharmaceutics, however, spray drying is a 

very well utilized unit of operation employed for drying operations to particle engineering 

of bulk active pharmaceutical ingredients, excipient and pulmonary formulations, 

granulations, etc.30, 37 Solid dispersions are kinetically stabilized systems and the chosen 
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method of manufacturing has a significant impact not only on the external morphology of 

the particle, but also on the intricate intra- and inter-molecular arrangement of the 

formulation. According to Chiou and Rielman, whom define solid dispersions, they consist 

of a dispersion of one or more active ingredients in an inert carrier matrix at solid state 

prepared by melting (fusion), solvent, or melting solvent method.38 Amorphous solid 

dispersions, soluble complexes, encapsulated systems, solid self-emulsifying systems, 

and nano-dispersion of poorly soluble drugs prepared by spray drying have become the 

primary solubilization strategy.39 Due to differences in the degree of disorder of the 

starting material, energy input, process time, drug-carrier mixing, and behavior of the 

formulation components in response to the process induced stress, the chosen technique 

is carefully selected as the solid state of the drug, its miscibility, molecular mobility, and 

stability are accounted for.40 Sugimoto et. al provides a comparison between the spray 

dried and co-grinding technique showing that the spray dried technique exhibited 

amorphous content while the co-grinding technique did not; highlighting an advantage to 

the use of the spray drying technique.41 Dontireddy and Crean  compared the spray drying 

technique with that of freeze drying showing the differences in amorphization between 

the two techniques; spray drying provided spherical particles via rapid evaporation 

whereas freeze drying provided irregular flake-like particles via rapid freezing.42  

 

Furthermore, when comparing spray drying to that of HME, it was found that spray drying 

had the advantage of being able to be used for thermo-labile and high melting API while 

also only requiring small amounts of API during the drug development process.34 Guns 
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et. al, however, states that HME provided higher kinetic miscibility between miconazole 

and Killicoat IR when compared to spray drying;43 opposite results were obtained by 

Mahmah et. al where a faster release rate was obtained from the spray dried formulation 

than with the HME formulation.44 Conventional HME does require an additional 

downstream process of extrudate milling that can contribute to the destabilization of the 

product. Apart from differences in solid state characteristics, the formulations are also 

expected to differ in their powder density, surface area, morphology, and flow 

properties.45 

 

Nevertheless, traditional methodologies implement an iterative design of experiments46 

or a statistical treatment47 when process parameters are in the developmental stages 

which are time intensive and require larger quantities of API. Reasoning to its reference 

as a contemporary approach were derived from the notion of spray drying taking on a 

spectrum of fundamental models that range from steady-state and equilibrium 

approaches to that of rate-based and computational fluid dynamics models.48 

 

Figure 1.3 presents a visual depiction of the spray drying process as an operational unit 

found within the laboratory; it’s small scale design allows for the careful manipulation of 

physicochemical properties like that of particle size, morphology, and microstructure. 

Dependent on key process parameters, particles may attribute a hollow sphere 

morphology with a low bulk density (<0.2g/cm3) or may have a shriveled raisin 

morphology having a high bulk density (0.2-0.4g/cm3).49 While other morphologies are 
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possible, however, large-sized spherical particles have been shown to give better flow 

properties and compressibility. 

 

Nevertheless, the industrial model follows the same principle as that of Figure 1.3 with 

the major difference being it’s intended purpose for larger scale production. Shifting from 

the lab scale to the production scale models requires adjustments like changing the feed 

system, atomization type, location, or conditions, drying gas dispensing system, chamber 

dimensions, exhaust gas duct, or change from single pass mode to multiple pass mode. 

Shifts have the capacity to alter the droplet trajectory, evaporation rate, increase the 

drying type, solvent mass in the drying air, and alter the wall depositions profiles, therefore 

it is imperative to understand the impact the parameters have on the overall system.50 It 

also becomes important to consider the downstream processing of the product and its 

development given the numerous avenues where key properties may be affected such 

as residual solvent, particle size, bulk density, flowability, compressibility, compatibility, 

disintegration, and overall stability.34 
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Figure 1.3.  Spray Drying Process Configuration. 

 

Furthermore, the spray drying process employs a series of offline experiments, an 

understanding of fundamental models, and a pre-disposed initial process definition that 

warrant a quick and efficient process. Concurrent processing of a hot gas medium, usually 

nitrogen, provides an inert process environment with the previously prepared organic 

solvent allowing spray dried solution to be atomized into droplets by the selected spray 

nozzle. The selected nozzles could be pneumatic, two-fluid, ultrasonic, rotary, and 

pressure nozzles.50, 51 Preparation of the solvent prior to its introduction is also of 

importance as the addition of a solute increases the thermal efficiency of the spray dried 

solution given that less solvent has to be evaporated.51 Physical properties of a solvent 
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such as its vapor pressure, boiling point, and freezing point are also affected upon 

addition of a solute.52 Solvents are either aqueous, alcohols (methanol, ethanol, or 

isopropanol), or other organic solvents such as dichloromethane (DCM), acetone, methyl 

ethyl ketone, dioxane, tetrahydrofuran (THF), ethyl acetate, chloroform, and acetonitrile; 

amongst these, DCM is the most utilized despite its toxicity potential.39 Choice of the 

mixture components and their ratio are critical to the process as a whole, as some 

combinations may result in a change in the particle’s morphology, which reduces the 

release of the API.53 Al-Obaidi et. al provides results from an investigation that explored 

the effect of changes in solvent ratios and their impact to the overall product.54 

 

Aiding to the drying process is the cyclone; efficient in separating dispersed particles from 

the continuous gas phase based on density differences between the two phases. As the 

solid particles become subjected to the accelerating flow, there is a lag in the velocity 

within a rotating vortex that allows for the separation of dense particles in relation to the 

low density medium. Commonly used cyclones include the reverse flow type where 

particle air dispersions are introduced tangentially into the top part of the cyclone. At the 

bottom of the cyclone the gas stream reverses leaving the cyclone through the vortex 

finder. As the acceleration of the gas flow increases, the chance for smaller particles to 

be separated also increases.39 

 

Droplet formation and solvent evaporation occur concurrently. This allows newly formed 

droplets to come into contact with the hot gas and then the encapsulated solvent 
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evaporates leaving behind a dried particle. The dried particle is collected in the collection 

chamber as shown in Figure 1.3.55 As solvent evaporation amerces, a solute mass 

concentration at the surface is observed where the concentration gradient between the 

droplet surface and core drives solute movement inward from the surface.56 During this 

movement, the droplet surface thickens the crust resisting mass transfer and any heat 

transfer to the droplet at this stage increases the particle temperature thereby facilitating 

further drying.57 Higher solvent evaporation rate implies increased transfer of thermal 

energy per unit time to solute molecules present in the droplet.58 Evaporative drying can 

be monitored or described using psychometric charts (Mollier diagrams) as they provide 

dry and wet bulb temperature, relative and absolute humidity, and enthalpy of the drying 

gas and relates them to one another.39 

 

Selection of the drying gas is crucial as the atomization gas type influences the droplet 

size, number density, and velocity that ultimately affect the characteristics of the final 

product.59, 60 Gases such as N2, Argon, and CO2 have completely varying profiles, when 

it comes to physical properties such as density and specific heat that are critical for the 

atomization process. For example, to obtain smaller droplets with high droplet velocities, 

lighter gases should be employed.34 Mass flow rate, specific heat, and temperature 

differential of the drying gas determine the energy lost in the evaporation process where 

CO2 provides better heat and mass transfer than that of air or N2.61, 218 Closed loop 

systems, while using N2 or CO2, have been studied and resulted in a lower yield of 40% 

of lactose powder as compared to 70% when air was used as the drying medium due to 
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lower absolute humidity in the system that used air as the drying medium.62 In the same 

study, it was shown that the degree of lactose crystallization was found to be highest 

when N2 was used when compared to CO2 thereby proving that the drying gas also has 

an effect on particle morphology. Conditioning of the drying gas, with respect to the 

humidity and temperature, are recommended given that this leads to the gas exerting its 

heat and mass transfer properties effectively.39  

 

Thermodynamic force for the solvent evaporation is the difference in the potential energy 

between the drying droplet and carrier gas; therefore the rate is given by Equation 1.663 

 

(Eq. 1.6)                         

 

where ρsatpure refers to the vapor pressure of pure water and ρw, air to the partial pressure 

of water in the gas phase. Nonetheless, droplet formation follows the principle of when 

the weight of ejected liquid overcomes the surface tension force, a newly formed droplet 

is observed. Such principle follows Equation 1.764  

 

(Eq. 1.7)                                                     

            

where r is the external radius of the opening, γ is the surface tension of the liquid, a2 is 

the capillary constant of the liquid which equals to 2γ/ρg, ρ is the density of the liquid, 
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and g is gavity. Thereby stable performance of the nozzle becomes keen as it ensures 

the success of particle production65 while also paying particular attention to the 

trajectories of droplets inside the drying chamber as this will avoid inter particle and 

particle-wall collisions.66 Under appropriate assumptions, the critical factors of the 

multivariable system can be identified as taking on the Stokes-Einstein equation, which 

is Equation 1.867 

(Eq. 1.8)                                              

        

where D is the diffusion coefficient, KB is the Boltzmann constant [1.38 x 10-23 m2 kg s-2 

K-1], T is the absolute temperature, η is the viscosity of the solution, and r is the globular 

radius. Moreover, water activity from within the droplet relates to the ratio of partial 

pressure and that of relative humidity (%RH), via Equation 1.9. 

 

(Eq. 1.9)                                      

 

Diffusion of the drug, polymer, and the solvent becomes an important attribute from the 

perspective of component distribution from within the particle and for homogeneity; 

surface enrichment of a particle is given by Equation 1.1030, 68 

 

(Eq. 1.10)                                    
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where Ei is the surface concentration of component i in relation to its average 

concentration in the droplet, cS,i being the surface concentration, cm, i is the average 

concentration of component i, and β is the profile function. Looking closer at the Peclet 

number [Pei], Equation 1.11, 

 

(Eq. 1.11)                                          

 

which relates to K , the evaporation rate, and the diffusion coefficient of component i in 

the liquid phase [Di]. When Pei < 1, the solute equalizes quickly leading to a uniform 

component distribution and formulation, whereas when Pei > 1, leads to a quick 

evaporation and a heterogeneous formulation.69 

 

Particle formation becomes dependent on the multivariable platform, like that of droplet 

formation, where the outcome of the overall system can be seen in Figure 1.4. Micro-

particles collected from the collection chamber take on one of three forms: (A) Monocore, 

(B) Polycore, or (C) Matrix. Porous microparticles have been shown to have unique 

advantages over non-porous ones, as they have less inter-particulate attractive forces 

with better flow characteristics and exhibit smaller aerodynamic diameters than their 

geometric diameters, which is known to facilitate greater deposition in the lower 

respiratory tract.70, 71 Dependent on the strength of the atomization, thickness of the outer 
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shell of the newly formed droplet, and internal pressure build up the particle can either 

explode, inflate, or crack.72 

 

 

 

 

 
 

Figure 1.4. Spray Dried Particle Differentiation 
 
 
Furthermore, large pilot-scale and production-scale spray dryers vary in that the operator 

may choose to operate the spray drier in an open-loop our closed-loop fashion. 

Differences between  the two is such that in the closed-loop option, the drying gas is 

recycled and passed through a condenser, reheated, and introduced back into the system 

while maintaining a constant pressure and inert environment.  

 

Two key control volumes are used in defining the physically of a spray drying unit: the 

macroscopic control volume and the droplet-environment control volume. Macroscopic 

control volume refers to the entire drying chamber and defines the overall thermodynamic 

based upon easily measured and monitored spray drying process parameters whereas 



35 
 

droplet-environment control volume comprises individual droplet formation, interaction 

with the hot gas and environment, and solvent evaporation.73 

 

Mass-balance and energy-balance calculations can be conducted using the inputs and 

outputs derived from the macroscopic control volume 51, 74 used to predict a continuum of 

outlet conditions across a range of inlet parameter values that characterize the spray 

drying operating space and defines a process design space. Droplet kinetics is defined in 

the droplet-environment control volume which focuses on two key factors already 

mentioned: droplet formation via the atomization process and solvent evaporation via the 

atomization plume.  

 

Choosing which mode of operation to go with is dependent on key thermodynamic 

process parameters and outlet conditions that relate with one another through 

fundamental relationships. 15 Such parameters include Msoln, drying gas flow rate (Mgas), 

Tin, Tout, and the relative saturation of the solvent (%RSout), which are related through the 

energy required to vaporize the solvent; as expressed in Equation 1.12  

 

(Eq. 1.12)                         

 

where ΔHvap is the heat of vaparization and xsolids is the mass fraction of solids in solution. 

Energy lost by the drying gas, however, takes on Equation 1.13 
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(Eq. 1.13)                          

where cp is the heat capacity of the drying gas. Furthermore, solving for %RSout gives 

rise to Equation 1.14 

(Eq. 1.14)  

   

where MWsolvent and MWgas refers to the molecular weight of the respective species, 

Pchamber is the absolute pressure of the spray drying chamber, and P * Tout is the 

equilibrium vapor pressure of the spray solvent evaluated at Tout.  

 

Nevertheless, it becomes important to mention that conventional methodologies use 

statistical design of experiment (DOE) analysis to understand the relationship of key 

process parameters75, 76 and the effect those parameters have on the quality of the 

product.77-84 Design space is the multidimensional combination and interaction of 

formulation variables and process parameters resulting in products with assured quality; 

therefore, the design space is crucial in post-approval manufacturing.85 Drawbacks in 

such approach include it lacking to take into account the fundamental physics of the 

process and is limited in its translational capabilities; where the aforementioned process 

takes into account all five process parameters.73 Quality by design is defined by the 

United State Food and Drug Administration (US FDA) as a systematic approach to 

development that begins with objectives and emphasizes product and process 
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understanding and process control, which are based on sound science and quality risk 

management.86 

 

Efforts by FDA’s process analytical technology (PAT) initiative, which coincides with those 

of the International Conference and Harmonization (ICH), are to assure high product 

quality through timely measurements of critical quality and performance attributes of raw 

materials, in-process materials, and final products.87 The said initiative supports the 

quality by design (QbD) model in that a methodology is drafted such that the desired final 

product not only meets all the predefined specifications, while achieving desired quality 

attributes but is also more cost-effective.88 

 

Needless to say, the effect that the aforementioned process parameters take on the 

physicochemical properties of the resulting spray dried formulation, while altering them 

from one another, and can be studied using the factorial design. Such design evaluates 

the response to surface models of the parameters while taking into account powder 

properties like particle size, fine particle fraction, yield, and outlet air temperature and are 

related to one another via Equation 1.1589 

 

(Eq. 1.15).   
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where y is the response, b0 - b1234 are equation coefficients, and x1 - x4 are factors (F, N, 

A, and T, respectively). Equation coefficients were calculated using coded values where 

the various terms are able to be compared regardless of their real magnitude; a positive 

parameter coefficient indicates that the response value increased with increasing variable 

and the opposite for that of the negative coefficient.  

 

Table 1.1371 presents the findings of Korycka et. al who used the aforementioned design 

on D-mannitol (mannitol) powders from 17-19 °C. 

 

Table 1.1. Factorial Design for Mannitol Powders 

Parameter Tout (°C) Y (%) VMD (µm) Span FPF (%) 

Average 85 88.0 5.16 1.34 49.0 

Standard 
Deviation  

1.2 0.1 0.27 0.14 4.8 

%CV 1.4 0.1 5.23 10.45 9.8 

Measure of 
absolute error 

2.2 0.1 0.27 0.14 2.8 

 

 

Table 1.290 91 culminates the factorial design while illustrating the effect that critical 

process parameters have on the final product when they are altered. It is known that 

process parameter alterations vary the crystallinity of the spray dried material thereby 

affecting porosity, flowability, sorption characteristics, solubility, dissolution rate, and 
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bioavailability.92 For instance, the rate at which the feed is injected influences the droplet 

size, its distribution, droplet velocity, and the particle’s surface topography while also 

having an influence on the heat of fusion.93-95 Temperature and moisture gradients 

generate inside the droplet due to higher temperatures influencing the particle formation 

process while also creating moisture gradients inside the droplet.96 Moisture uptake is 

related via the relative humidity of the environment as well as, both, the chemical (i.e. 

hydrophilicity and hydrophobicity) and physical (i.e. powder specific surface area and 

particle anomeric composition) properties.97 

 

Table 1.2. Process Parameters. Effect critical process parameters have on final product. 

Parameter  Effect on final product 

High Aspirator Rate  Increase in outlet gas temperature 

 Decrease in residual moisture in final product  

 Higher product uniformity 

High Viscosity or High Solid 
Content 

Increase in outlet gas temperature 

 Increase in particle size 

 Increase in yield 

 Decreased moisture content in final product  

High Humidity  Increase in wall deposition 

 Increased moisture in final product 

High Feed Rate Decrease in outlet temperature 

 Increase in particle size and droplet size 

 Increased moisture in final product 

High Gas Flow Decrease in outlet temperature 

 Decrease in particle size and droplet size 
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Parameter  Effect on final product 

High Inlet Temperature Increase in outlet gas temperature 

 Increased yield and a decrease in sticky nature 

Use of Organic Solvent Decrease in particle size due to a decrease in surface 
tension 

 

 

Moreover, selection of the correct nozzle correlates with that of the desired properties of 

the final product including its particle size distribution given that the droplet size, and by 

virtue particle size, is a function of the atomizer’s geometry, spray solution attributes (i.e. 

viscosity and surface tension), and atomization parameters (i.e. nozzle pressure).98 With 

that said, droplet size and soluble solids content directly correlate to the final size of the 

dried particle via Equation 1.16 

 

(Eq. 1.16).                    

 

where Dparticel is the diameter of the dried particle, Ddroplet is the diameter of the droplet, 

ρparticle is the density of the dried particle, and ρdroplet is the density of the spray dried 

solution. 

  

Two possible pathways arise from which nozzles are selected: continuous mode and 

droplet-on-demand. Operation with the continuous mode, as the name implies, introduces 

a continuous flowing liquid jet into the drying chamber whereas the droplet-on-demand 
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forms discrete droplets from a short duration of liquid jets. In practice, selection of one of 

the two modes becomes dependent on the required amount of droplets and the value of 

the liquid to be atomized.65 From that, selection is further divided into electro-

hydrodynamic generators (EHDG), mechano-hydrodynamic generators (MHDF), and 

thermo-hydrodynamic generators (THDG). Electro-hydrodynamic generators operate by 

using an external electric field to disturb the liquid jet into droplets causing there to be a 

surface charge in the liquid at the tip of the nozzle where the ejected liquid is transformed 

into a conical shape, called a Taylor cone, due to the induced electric stress.99 Mechano-

hydrodynamic generators, however, apply mechanical energy to the exiting liquid thereby 

disintegrating the liquid body into droplets; the applied mechanical energy may be in the 

form of shear force or vibrational forces via a piezoelectric transducer.100 Thermo-

hydrodynamic generators, however, employ thermal energy to the liquid causing it to heat 

the liquid thereby causing there to be an increase in pressure; leading to droplet 

formation.101 

 

Common atomizers used in the pharmaceutical industry include two-fluid nozzles 

(pneumatic atomization), pressure nozzles (hydraulic atomization), rotary atomizers 

(rotating wheel atomization) and ultrasonic atomizer.102-104 Mizoe et. al has introduced a 

methodology that uses a four-fluid atomizer system where its intent is to overcome the 

problem faced when needing a common solvent between two different API; here, two 

liquid and two gas passages are used such that it allows for the two different APIs to be 

dissolved in different solvents.105 In comparison, Chen et. al developed an amorphous 
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product by using a four-fluid atomizer and passing the API and solvent from four distinct 

routes giving an enhanced particle distribution in the lungs while increasing its 

absorption.106  

 

Rotary atomizers are governed by centrifugal forces and the droplet size is inversely 

proportional to the disk or wheel speed. Pressure nozzles, on the other hand, generate 

fine droplets by pressurizing a liquid feed from the pump into the nozzle orifice where the 

droplet size is inversely proportional to the pressure applied and directly proportional to 

the feed rate. Ultrasonic nozzles generate droplets based on piezoelectric driven 

actuators vibrating a thin perforated stainless steel membrane in a small spray cap; the 

membrane features an array of micron-sized holes that generates millions of droplets and 

a small droplet size distribution.39 

 

Following the formation of the droplet and its subsequent introduction into the chamber, 

other important properties come into play that have a major impact on the outcome of the 

formulation; one of which being the glass transition temperature (Tg). Understanding its 

importance can provide insight into wall deposition, which is a key processing problem, 

as the deposited particles indirectly affect the quality of the product through the 

degradation of the deposited particles onto the wall of the drying chamber.107 It has been 

shown that large drying chambers reduce wall depositions given that the walls are out of 

range from the particle trajectory.108, 109 Chamber geometry plays an integral role as it 

directly alters the airflow patterns thereby altering the particle behavior and particle flow 
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pattern110; pure conical, lantern, hour-glass,111 and parabolic geometries112 have been 

studied along with a horizontal configuration113. 

 

Particle deposition occurs due to the particle’s sticky nature as they dry, occurring above 

the glass transition temperature of the substance being spray dried; therefore, the outlet 

temperature should never be above the product’s glass transition temperature.114-116 The 

aforementioned sticky nature of the particles emerges due to the spray drying process as 

this produces amorphous powders that are thermoplastic due to their heating or their 

exposure to high humidity which results in water sorption and thermal plasticization of the 

particle’s surface.117 Stickiness is a significant issue with spray dried amorphous products 

resulting in low yields and overcoming this issue can be done by using high glass 

transition temperature additives.104, 118, 119 Higher drying temperatures correlate to an 

increase in the product's glass transition temperature and crystalline temperature while 

also decreasing molecular mobility aiding in the spray drying selection process.120 With 

this in mind, glass transition temperatures are a significant indicator of internal thermal 

stability which is why it is often regarded as a reference temperature for any given 

material. 

 

At temperatures above the glass transition temperature, the amorphous structure 

becomes rubber-like due to the polymer molecules becoming softer and more flexible 

allowing the polymer particles to have a greater molecular mobility. At temperatures below 

the glass transition temperature, the molecules are in a glassy state where the polymer 
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molecules have no segmental motion but vibrate slightly.121 Nevertheless, the introduction 

of additives to a formulation has been shown to increase the glass transition temperature 

of the droplet given that additives segregate to the surface of the droplets during spray 

drying.56, 69, 123 Therefore, polymers with higher glass transition temperatures are 

preferred given that they increase the product’s shelf-life while improving their physical 

stability.124, 125 

 

Moreover, understanding the formulation’s nucleation and saturation points may aid in 

the drawbacks that may be presented with the stickiness nature of the spray dried 

formulation and with attempting to preserve API and making it more cost effective. As 

Parimaladevi and Srinivasan presented in their work that deals with the uniformity of 

crystal size distribution in a solution, it was determined that when the supersaturation of 

the solution fell within the range of 4.51 to 5.67 (i.e. the concentration is 55-63g/100mL) 

nucleation of elongated needle-like crystals was observed.126 Taking this information into 

account, it, then, becomes applicable to the spray dried formulation given that when spray 

dried, a thin-like layer develops on the drying chamber walls, thus preventing any particles 

from further adhering to the chamber and obtaining a higher yield along the way. It shows 

that maintaining higher concentrations than the thermodynamically required amount in 

vivo/in vitro has provided a platform for higher absorption rates to be seen thereby 

highlighting the supersaturation maintenance potential of the formulation.127  Kaialy et. al  

has also presented results that affirm the success of needle-like crystals in the delivery 
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of salbutamol sulphate via the respiratory tract when compared to other, more uniform, 

spherical crystals.128  

  

Nevertheless, when a compound is in its amorphous form, it is known to have a higher 

Gibbs free energy, therefore a glassy material recrystallizes spontaneously into a more 

stable crystalline form with a lower Gibbs free energy.129 Moreover, the amorphous to 

crystalline transition state is a thermodynamically driven phenomenon due to the 

crystalline state being in a lower energy state than that of the amorphous state.34 This 

phenomenon is described by the William-Landel-Ferry equation where the crystallization 

rate of powder (r) is defined by the fraction of time for crystallization (θcr) at any 

temperature (T) for the time for crystallization (θg) at Tg.130, 131 Equation 1.17 summarizes 

the William-Landel-Ferry equation 

 

(Eq. 1,17).                   

 

where it is shown that ΔT directly contributes to the rate of powder crystallization.  

 

Given the occurrence of phase transitions in the spray drying process, it becomes 

important to understand the role that humidity plays in the overall schematics as the 

processed formulation may or may not undergo nucleation. Due to the amorphous state 

having a higher Gibbs free energy, thus resulting in having a higher solubility and a faster 



46 
 

dissolution in aqueous media,132 the Flory-Huggins theory aids in estimating the amount 

of water being absorbed by the formulation which is then coupled with the kinetics of 

nucleation and crystallization to provide more of an understanding of the chemical 

processes taking place.  

 

Another theory that becomes applicable is the Johnson-Mehl-Alvrami theory, which 

provides crystallization rate constants through its description of the solid-state reactions 

that take place and can be summarized by Equation 1.18. 

 

(Eq.1.18)                           

 

where  α is the fraction crystallized, Y(θ) represents the growth rate of all m dimensions 

of growth. g is a geometric constant, and I(τ) is the nucleation rate.133-137 Equation 1.18 

then, provides an avenue that helps understand the mechanism of nucleation that takes 

place during the spray drying process as the formulation begins to cool and changes its 

phase from liquid to solid. Continuous nucleation refers to the process where nuclei 

continue to form and grow throughout the transformation process. A fixed number of 

nucleation refers to when the growth proceeds from a fixed number of preexisting 

nucleation sites. Site-saturated nucleation is a hybrid of the above two cases where all 

nuclei are present at the beginning of the isothermal process and additional nuclei do not 

form during the transformation.138 
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Concentrating on the macro-level of the formulation’s physical composition, carrier 

selection proves to be significant given the known impact it has on the downstream 

processibility of the overall product. Characteristics such as chemical composition, 

molecular weight, molecular structure, solution/melt viscosity, kinetic and thermodynamic 

solubility in any given solvent, solubility parameters, melting point, glass transition 

temperature, and hydrogen donor/acceptor counts are but a few of the properties to 

consider when carrier selection is thought of.39 Determinant on composition, dispersions 

may be categorized into four generations with known specifications for each of them; first 

generation carriers utilize urea and sugars.139 Second generational carriers utilize 

amorphous polymers that are either synthetic in nature or starches and sugar glass. 

Popular synthetic carriers include, but are not limited to, poly(vinylpyrrolidone) (PVP), 

polyethylene glycol (PEG), crospovidone (PVP-CL), poly(1- vinylpyrrolidone-co-vinyl 

acetate) (PVP-VA), or polymethacrylates. Cellulose derivatives such as hydroxypropyl 

methylcellulose (HPMC), hydroxypropylcellulose (HPC), hydroxypropyl methylcellulose 

phthalate (HPMCP), or hydroxylpropyl methylcellulose acetate succinate (HPMC-AS) 

have also been utilized.34  

 

Third generation carriers utilize surfactants like poly(ethylene glycol)-block-

poly(propylene glycol)-block-poly(ethylene glycol) (poloxamer), glyceryl dibehenate 

(Compritol 888 ATO), lauroyl polyoxyl-32 glycerides (Gelucire), inulin lauryl carbamate 

(Inutec SP1) or polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft 
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copolymer (Soluplus). Meanwhile, fourth generation carriers, commonly used for 

controlled release purposes, are comprised of ethyl cellulose, hydroxypropyl cellulose, 

Eudragit RL, Eudragit RS, poly(ethylene oxide) (PEO), or poly(acrylic acid) (carbopol).34 

 

§ 1.2.2 Crystallization 

 

Crystallization is the separation of an ordered crystalline phase from a metastable 

solution.140 It is generally defined as an operation in which external means are used to 

adjust the solubility of an un-reactive solute to produce a supersaturation.141-143 The three 

major steps in the process of crystallization are the supersaturation of the solution, 

nucleation of the solution, and crystal growth of the target particles. 

 

Nucleation may occur to be primary or secondary in nature; primary nucleation is 

independent of seed or crystal present in the solution whereas secondary nucleation 

occurs as a result of a crystal present in the solution. When the nucleation is primary, it 

may occur as homogeneous or heterogeneous. Homogeneous nucleation is considered 

spontaneous, dependent on the degree of supersaturation, and occurs due to the 

clustering of solutes whereas heterogeneous nucleation occurs due to the presence of 

an external substance.144 

 

In essence, the main strategy in macromolecular crystallization is to gradually bring a 

target to solubilized in an appropriate aqueous solution to a region of supersaturation until 



49 
 

a crystal nucleates and grows. Crystals form under conditions that fall between those 

producing clear drops (conditions where macromolecular-solvent interactions are 

stronger than interactions between macromolecules) and those producing a 

precipitate.145 

 

Macromolecular crystallization in itself is a phase transition; to study the coexistence of 

the crystal and the solution forms of a macromolecule, one needs to determine the set of 

conditions at which the chemical potentials of the two phases are equal. These capitulate 

conditions under which different phases are thermodynamically stable.146-149 A phase, in 

other words, is simply a macroscopically homogeneous state of matter that does not 

account for any assumptions about its microscopic nature. 116 

 

That is to say, phase diagrams depict the state of matter under the variation of certain 

conditions; they help visualize different dependencies such as simple pressure-volume 

(P/V) isotherms or pressure-composition (P/x) diagrams. The phase diagrams that are 

commonly encountered in macromolecular crystallization, however, are temperature-

composition (T/x) and composition-composition (x/x) phase diagrams. While these phase 

diagrams all serve different purposes and contain different information, they all relate to 

each other as they are all thermodynamic phase diagrams.116 

 

In temperature-composition (T/x) phase diagrams, mixtures of the components are 

prepared and equilibrated at a given temperature and constant pressure and the nature 
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and relative amounts of phases are established point-by-point via experimental labor; 

from the sum of the data points, the phase fields and composition lines in the phase 

diagram are established. 116 In  composition-composition (x/x) phase diagrams, however, 

the primary components of the system are (1) water, (2) protein, and (3) a third pseudo-

component that contains constituents like that of buffer which is commonly known as the 

reagent. The downfall is that it is unknown where the solubility lines are, where the phase 

fields for stable crystals are located, or what other phases may or may not exist. 116 The 

area between the solubility line and the critical point is where crystallization is most likely 

to occur and has been coined as the nucleation zone or crystallization gap.150, 151 

 

§§ 1.2.2.1 Anti-solvent Crystallization 

 

Anti-solvent crystallization is a technique that is favored due to it offering an extended 

range of solvent polarity compared to single solvents.152 This, then, allows for the 

possibility to control crystal properties like that of purity152, crystal size153, 154, 

morphology155, crystal size distribution154, agglomeration156, 157, and polymorphism158-160. 

With anti-solvent crystallization, it is possible to produce a supersaturation fairly simply 

with low energy consumption which is why it is generally conducted in either batch or 

semi-batch mode for industrial production.157, 161, 162 

 

Supersaturation of the solution can be altered by simply adding an anti-solvent into the 

already supersaturated solution. Recent publications on the anti-solvent process using 
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various approaches are increasingly appearing in the literature.163-166 Techniques, like 

that of Zarkadas and Sirkar, use a porous hollow fibre membrane to maintain and 

control particle size distribution while those from Chen et. al use a modified technique to 

continuously coat drug particles with a nano-sized polymer for controlled drug 

delivery.167-169 

 

One of the main disadvantages with anti-solvent crystallization is the tendency for the 

solute to agglomerate uncontrollably.170 The cause of this is that the product solution 

becomes surrounded by the anti-solvent which is separated into an interface of solution 

and anti-solvent. When the two fluids are in contact with each other, the low solubility of 

the anti-solvent creates a localized high supersaturation with very high supersaturation 

ratios in the contact area. Before molecular mixing can occur, the localized high 

supersaturation forces the solute out of the solution without allowing sufficient time for 

ordering of molecules to enable crystal growth.171 

 

1.3 Strategic Application  

 

§ 1.3.1 Manufacturing Compliance  

 

Large-scale production and manufacturing of products used for purposes of inhalation 

are governed by the US FDA and the European Pharmaceutical Review in the United 

States and Europe, respectively. Their regulatory compliance is mandatory and failure 
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to comply will lead to product refusal. These governing bodies establish the standard 

operating procedures (SOP) for any given product while also ensuring that current good 

manufacturing procedures (cGMP) are followed by manufacturers.  

 

§§ 1.3.1.1 United States Food and Drug Administration (US FDA)  

 

According to the US FDA, a metered dose inhaler (MDI) consists of a drug formulation 

and a container closure system. A MDI drug formulation, then, contains the drug 

substance(s), either dissolved or suspended, in a propellant, mixture of propellants, or 

mixture of solvents, propellants, and/or other excipients. Concurrently, a MDI container 

closure system consists of the device constituent part (i.e. the canister, the actuator, the 

metering valve, etc.) and any additional features (i.e. integrated spacer, integrated dose 

counter, etc.) as well as protective secondary packaging (i.e. an overlap).172  

 

A DPI, on the other hand, differs considerably from those for MDIs and contains a drug 

formulation (the drug constituent part) as well as a container closure system. For 

purposes of DPIs, however, a drug formulation contains the drug substance and 

excipients including a drug carrier (i.e. D-mannitol, lactose, etc.). A DPI container closure 

system, then, contains the devices constituent part and any protective secondary 

packaging. Current designs of DPI products include pre-metered and device-metered 

DPIs; either of which can be driven by a patient’s own inhalation (passive) or with power-

assistance of some type (active) for production of drug particles intended for inhalation.172  
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Performance of MDI and DPI products depends on many key aspects of the drug 

formulation, container closure system, manufacturing, and patient handling. Product and 

process understanding is therefore critical to: (1) the development and manufacture of 

these products, (2) the maintenance of product quality and performance through the 

expiration date under patient use conditions, and (3) the maintenance of product quality 

and performance over the product lifecycle, including continual improvement.172 

 

This is why MDIs and DPIs are considered combination products by the US FDA. A 

combination product is defined as a product that is composed of two or more of the three 

types of medical products (i.e. drug, devise, and biological product) that are physically, 

chemically, or otherwise combined into a single entity, co-packaged together, or, under 

certain circumstances, distributed separately to be used together as a cross-labeled 

combination product.173 As such, they are subject to current good manufacturing practice 

(cGMP) requirements for drug and devises. For single-entity and co-packaged 

combination products, design control requirements apply to the development of the 

combination product as a whole. For cross-labeled combination products, design control 

requirements apply only to the devise constituent part but should ensure the safety and 

effectiveness of the device when used with the other constituent part(s) of the 

combination product.174 

 

Thereby, design controls apply to any combination product that includes a device 
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constituent part that is subject to them.175 This ensures that there are no negative 

interactions between the constituent parts while also ensuring that the product is safe, 

effective, and performs as expected. Guidance for industry on pharmaceutical 

development addresses product design and development procedures, which reflect 

quality by design principles. While quality by design and design controls share the same 

characteristics and goals, the device quality system regulation includes specific 

requirements for design development that manufacturers must satisfy.176 

 

§§ 1.3.1.2 European Pharmacopoeia Commission 

 

The European Pharmacopoeia Commission is the decision-making body for the 

European Pharmacopeia and is responsible for the elaboration and maintenance of its 

contents. More specifically, (1) it evaluates proposals for inclusion, revision, or 

suppression of monographs and general chapter, (2) allocates agreed work to a group of 

experts or working party, (3) reviews the overall progress that is made on the work being 

revised on a yearly basis, and (4) approves the terms of reference of groups of experts 

and working parties while defining the criteria that is to be applied for the selection of 

experts and ad hoc specialists which it appoints.177 

 

Together with the European Pharmaceutical Aerosol Group (EPAG) and the European 

Medicines Agency (EMEA), there exists a legal and scientific basis for quality control of 

medicines during their development, production, and marketing. The purpose of the 
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European Pharmacopeia is to promote public health through the recognized standards 

that promote the quality of medicines and its component; its existence allows for the free 

movement of medicinal products within Europe and abroad. This movement allows for 

the globalization and expansion of international trade to continue to develop global quality 

standards for medicines.178 

 

§1.3.2 Food Industry 

 

Particle engineering via spray drying has been implemented in the food industry in a 

manner that allows for its innovation to continue to advance. A manner that it is used is 

in the conversion of fruit juices into a powder form to increase a product’s shelf-life while 

also making it easier to handle.179, 180 The ease by which moisture is removed from the 

food specimens by rapid evaporation is what makes the use of spray drying more 

favorable.181 In addition, the interest of the food industry in natural flavor- and color-

enriched additives has driven the demand of fruit juices powders to increase. Fruits and 

vegetables which have been spray dried include, but are not limited to banana, orange, 

bayberry, mango, apricot, blackcurrant, raspberry, ginger, guava, lime, pineapple, 

tomato, and watermelon. 

 

Furthermore, the use of drying aids within the food industry is also something that is seen 

because they form an outer layer on the drops and alter the surface stickiness of the 

particles due to the transformation into a glassy state.182, 183 The changes in surface 
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stickiness reduce the particle-particle cohesion resulting in less agglomeration with lower 

water-holding capacity of the powders.184 

 

Karatas was able to develop an experimental spray dryer with a chamber wall scraper for 

tomato juice; a method that is useful for relatively less thermoplastic sugars like lactose 

and sucrose.185 Karatas and Esin investigated the fundamental aspects involved in the 

drying of tomato concentrate droplets fully exposed to air of constant humidity and 

velocity.186  

 

Masters modelled a pilot plant spray dryer with a cooling air jacket which reduced the 

particle stickiness on the wall while Masters introduced chambers with air brooms, which 

rotate slowly close to the wall, that can also cool the wall surface to prevent stickiness of 

powders; the air broom arm contains a row of nozzles that direct compressed air on to 

the wall surface.187, 188 Furthermore, Mani et. al used an air broom system for spray drying 

of banana and mango juice.180 

 

Introduction of atmospheric cool air at the lower part of the drying chamber is something 

that has also been seen as it results in the formation of solid particle surfaces which can 

also reduce the stickiness of the powder particles.189 However, only a limited amount of 

air can be introduced because the cooling process raises the relative humidity which then 

increases the surface moisture of the particles.190 
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Tonon et. al  spray dried acai pulp and studied the influence of inlet air temperature, feed 

flow rate, and maltodextrin concentration on process yield, powder moisture content, 

powder hygroscopicity, and anthocyanin retention, during micro-encapsulation.191 Tonon 

et. al studied the effect of temperature, water activity, and type of carrier agent on the 

anthocyanin stability and antioxidant activity of spray dried acai juice.192 Khalil and Sial 

studied the parameters for the production of instant mango juice powder.193 Goula et. al  

modeled the sorption isotherms using selected equations by spray drying tomato pulp 

and defining the glass transition temperature, water activity and water content 

relationships.194 

 

Chang and Nickerson micro encapsulated omega 3-6-9 via spray drying to be able to 

increase their concentration in food and prevent their oxidation.195 Papillo et. al, on the 

other hand, spray dried polyphenolic extract from Italian black rice and used it as an 

alternative ingredient in baked goods; they also found that the rise was a valuable source 

of polyphenols to produce functional foods.196  

 

§1.3.3 Pharmaceutical 

 

Within the pharmaceutical industry, there are numerous innovative ways spray drying is 

used, which continue to develop the technique further. Below are some of the most recent 

publications that involve the use of spray drying. 
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Rampacci et. al uses spray drying in a manner that provides clues on the in vitro 

performance of azithromycin/rifampicin combinations in co-spray dried microparticles 

against Rhodococcus equi, an emerging human pathogen found responsible for worrying 

zoonosis.197 Ito et. al, however, uses spray drying to prepare dry naked plasmid DNA 

(pDNA) powders which are then used to determine their effect on gene expression in the 

lugs of mice.198 Katsarov et. al, on the other hand, used spray drying to produce muco-

adhesive glutaraldehyde cross-linked chitosan micro-particles loaded with doxylamine 

succinate and pyridoxine hydrochloride for nasal drug delivery systems with sustained 

release. They found that the cross-linked particles exhibited sustained drug release at pH 

6.8 over a period of 5 h with an initial burst-effect in the first 30 min.199 Spray drying is 

also used by Ceschan et. al to formulate micro-particles carrying indomethacin (IN) for 

potential local (specific and non-specific bronchial inflammatory asthma responses) and 

systemic treatments (joint inflammation, rheumatoid arthritis and osteoarthritis pain) by 

optimizing micro-particle properties and characterizing their lung deposition, drug release, 

and evaluating cytotoxicity and also pharmacological effects in vitro.200  

 

Looking at the component of atomization in spray drying more specifically, researchers 

have been focussing on innovative atomization systems which use different forms of 

energy than the conventional nozzles; normally based on kinetic energy, pressure energy, 

centrifugal force, or piezoelectrospraying for droplet formation.34 Electrohydrodynamic 

spraying, also known as electrospraying, is a technique where the liquid feed is atomized 

via the application of electrical energy.201 , 202 
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Variations in the operating conditions, which help determine the shape of the liquid 

meniscus, its motion, and subsequent breakup, and introduction into the drying chamber, 

become tailored in such a way as to allow different jet formations and breakup patterns, 

or electrospraying modes, to be observed; some of which include dripping, micro-

dripping, spindle, multi-spindle, cone-jet, oscillating-jet, precession, or multi-jet type.203 , 

204 Such differences make electrospraying an attractive technique since it can produce 

particle sizes in the nanometer range.  

 

Its sophisticated set-up along with it producing low yields does provide a few drawbacks 

for the technique where more development is needed to allow it to be scalable to cGMP 

production levels.205, 206 However, the technique has been utilized to fabricate core-shell 

structures that improved the solubility of the API showing promise for the technique.207 

 

Pulse combustion drying, on the other hand, does show process intensification where the 

atomization of the feed takes place due to sound waves that are produced by a 

combustor.208, 209 Producing intermittent high temperature shock waves with a frequency 

of 50-100Hz makes this technique unique and promising.210 Its hot-high pressure gases 

and concurrent shockwaves result in a back-to-back combustion of fuel-air mixture in the 

pulse combustion chamber where drying takes place via shockwaves, ultrasonic waves 

(>155dB), gas flow, and gas temperature (>200°C) in the drying chamber. Pulse 

combustion dryers have the ability to improve the drying rate by 1.2 to 3 times, reduce air 
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consumption, and air emissions, but fall short with the amount of noise that is 

produced.211, 212 Wang et. al produced nitrendipine-Aerosil-Tween 80 amorphous solid 

dispersion particles that exhibited no agglomeration, were smaller in size and had a 

narrow size distribution.213 

 

With respect to crystallization, however, there are researchers like that of Mazlan et. al 

who has been able to elucidate the crystal structure and characterization of GDSL 

esterase J15, which is a member of Family II of the lipolytic enzyme.214 Ou et. al, on the 

other hand, used crystallization in developing a new method for the analysis of 

carbohydrates in matrix-assisted laser desorption/ionization (MALDI) MS.215 Afrose et. al  

used a controlled crystallization technique to develop ibuprofen (IBP) micro-particles to 

be used in improved dissolution studies. Their Raman data revealed that the excipients 

with a large number of hydroxyl groups distributed around the IBP particle in the crystal 

enhanced the dissolution of the drug due to the increase in the drug-solvent interactions 

through hydrogen bonding.216 Zhang et. al was able to use crystallization in the structural 

and functional characterization of a HIV-1 cell fusion inhibitor known as T20. Their crystal 

structure revealed the critical intra- and inter-helical interactions underlying the 

mechanism of action of T20 and its resistance to mutations.217   

 

While these are a few of the most recent publications dealing with the application of spray 

drying and crystallization, there are hundreds more.  
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1.4 Aims and Objectives 

 

The aim of this overall study is to engineer a carrier for salbutamol sulphate that will have 

optimal properties for a more effective aerosolization performance. The objectives are: 

(1) to be able to use these findings as a referencing tool for the development of aerosols, 

(2) to determine whether the use of excipients made a difference to the carrier’s 

aerosolization performance, (3) to determine optimized spray drying conditions for 

carriers to be used in DPI formulations, (4) to determine whether or not particle 

morphology and physicochemical properties played a role in the efficacy of aerosolized 

carriers, (5) to implement a set of practices that would be useful if any engineered 

formulation was to be commercialized, and (6) to find an innovative mechanism of 

agglomeration that resulted from the altering of physicochemical properties.  

 

Thus, making this research important as it contributes to the current understanding of 

aerosolized particles by providing further conclusions. This research also proposes 

principles and practices that aid in the development of the current field.  

 

Moreover, this chapter has presented the necessary background information that is 

needed for one to understand the intricacy of using inhalation as a means for drug 

delivery; it has also introduced techniques that are used in engineering a suitable 

formulation. Those techniques were then followed by extensively highlighting their most 

current application and use, both in industry and in research, while focusing on the theory 
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behind them. United States and European regulatory compliance agencies were also 

introduced as a way of illustrating the importance and magnitude that come with 

engineering aerosol formulations for therapeutic purposes.  

 

Chapter 3 explored the effect that L-leucine has on the aerosolization performance of 

spray dried lactose while Chapter 4 looked at the effect that L-leucine has on spray dried 

mannitol and its use as an alternative carrier for DPI formulations. Chapter 5 invetigates 

the effect that spray dried mannitol and lactose, in different ratios, has on its aerosolization 

performance while Chapter 6 investigates the use fo xylitol crystals in DPI formulations 

as well as its potential use as an alternative carrier in said formulations. Chapter 7 looks 

at mannitol and lactose crystals and Chapter 8 looks at mannitol and salbutamol crystals 

to determine their aerosolization efficacy. Chapter 9, then, looks at the effect L-leucine 

has on the aerosolization performance of physical mixtures while comparing them to the 

engineered carriers from Chapters 3-8. Finally, Chapter 10 provides a summary of all the 

findings while proposing future investigations.   
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Chapter 2 
 
         Materials and Methodological Approach 
 

2.1 Introduction 
 

In this chapter, a fundamental platform has been established through the creation of 

methodologies, which governed the original academic research presented in the chapters 

that follow. Here, one will find a more descriptive outline of the operating procedures that 

were used in the creation of the engineered carriers and drugs that were used throughout 

this overall study. It is important to note, however, that the standard operating procedures 

outlined within this chapter follow the regulatory guidelines set forth by the regulatory 

agencies from, both, the United States and the European Union. 

  

2.2 Materials 
  
 
D-Mannitol [Pearlitol®], Xylitol [(2S,4R)-pentane-1,2,3,4,5-pentol], and α-lactose 

monohydrate were supplied by Roquette (Lestrem, France), SS from L.B. (Bohle, 

Germany), and L-leucine by Acros Organics (Geel, Belgium), a Fisher Scientific company. 

Acros Organics also supplied the monobasic potassium phosphate and the 

Trifluoroacetic acid (TFA) used for the preparation of the mobile phase for high-pressure 

liquid chromatography (HPLC). Methanol, Ethanol, Acetone and Hydrochloric Acid were 

purchased from VWR International Ltd. (Leighton Buzzard, United Kingdom) and were 
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HPLC-grade.  

 

2.3 Spray Drying  
 

Spray drying was conducted using the Mini Spray Dryer B-290 from Buchi (Flawil, 

Switzerland) equipped with a dehumidifier (Dehumidifier B-296), an inert loop (Inert Loop 

B-295), and an outlet filter at room temperature (20°C). Parameters associated with the 

procedure were as follows: inlet temperature of 220°C, aspirator set to 100% 

(~35mm3/h), pump rate set to 5% (~2 mL/min), nozzle diameter of 5µm, and a flow rate 

of 22% designed for a closed environment with the use of nitrogen (N2) gas; several 

rigorous optimization procedures were implemented to achieve the selected parameters 

and overall protocol, however. 

 

In chapter three, each 100 mL of the solution for spray drying contained different 

concentrations of  L-leucine (0.1, 0.5, 1, 5, and 10 g) and 60 g of lactose. Meaning that 

the percentage of L-leucine in each solution was 0.1, 0.5, 1, 5, and 10% w/v, respectively. 

Both leucine and lactose were dissolved in deionized (DI) water while heating the solution 

to 75°C with a stirring speed of 120 rpm; the final solutions were spray dried under the 

conditions mentioned above.  

 

In chapter four, each 100 mL of spray dried solution contained different concentrations 

of L-Leucine (0.0, 0.06, 0.3, 0.6, 3.0, and 6.0g) and D-Mannitol (60.0, 59.94, 59.7, 59.4, 
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57.0, and 54.0g; respectively). Meaning that the percentage of L-Leucine in each solution 

was 0.0, 0.06, 0.3, 0.6, 3.0, and 6.0% w/v, respectively. Both L-leucine and D-mannitol 

were dissolved in deionized water and were heated to 75°C with a stirring speed of 120 

rpm at room temperature (20°C); the final solutions were then spray dried under the 

conditions mentioned above. 

 

In chapter five, the carriers for each of the formulations were prepared by weighing a 

constant amount of  L-leucine (5 g) to that of D-mannitol (1.35, 0, 47.5, 23.75, and 71.25g; 

respectively) and lactose (0, 1.35, 47.5, 71.25 and 23.75g; respectively) yielding the 

following carriers: Mannitol, Lactose, 1:1 (Mannitol:Lactose), 1:3 (Mannitol:Lactose), and 

3:1 (Mannitol:Lactose) all with 5% L-leucine (w/v). Carriers were dissolved in de-ionized 

(DI) water while heating the solution to 75°C while stirring at 120 rpm at room 

temperature (20°C); the final solutions were spray dried under the conditions mentioned 

above and consisted of them being w/w. Importantly, however, when preparing the D-

mannitol, lactose, and leucine solution for the carriers, it was important to add the lactose 

before the addition of D-mannitol and leucine to ensure a homogeneous mixture. 

 

2.4 Crystallization Methodology 

 

In chapter six, xylitol crystals were made with increasing concentrations of L-leucine (0, 

1, 5, and 10%; w/v) by weighing xylitol (60, 59.6, 57, and 54g, respectively) and L-leucine 

(0, 0.4, 3, and 6g, respectively) and combining them in a mixture. Doing this involved 

weighing the material and then placing them in a beaker where the volume was adjusted 
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to 100 mL with deionized (DI) water. Solutions were heated to 75°C under constant 

stirring (120 rpm) at room temperature (20°C) and then acetone was added at a constant 

rate of of 5 mL/min. The solutions were allowed to cool to room temperature to facilitate 

crystal formation. Crystals were then filtered under vacuum, placed in a dry oven to 

remove any residual moisture, and saved in glass vials for future use. 

 

In chapter seven, crystals were engineered to obtain a final stoichiometric ratio of the 

following carriers: [1:1 mannitol:lactose], [1:2 mannitol:lactose], [2:1 mannitol:lactose], 

[1:3 mannitol:lactose], and [3:1 mannitol:lactose] by weighing 25, 12.5, 25, 8.33, and 25g 

of D-Mannitol, respectively, and 25, 25, 12,5, 25, and 8.33g of lactose, respectively. After 

which, 200 mL of DI water was added to the blended material (w/v) where heating was 

conducted to obtain a final temperature of 75°C accompanied by a stirring speed of 120 

rpm at room temperature (20°C). Succeeding this, the solution was added to 500 mL of 

acetone at a constant rate of 1.5 mL/min to facilitate nucleation and, thus, crystal 

formation. Cooling was monitored at a close decreasing rate of 5°C/min after which the 

crystal formation process was allowed to ferment for 24 hrs upon nucleation. Upon 

completion of the incubation period, the engineered co-crystals were filtered under 

vacuum using 0.22 μm filters and allowed to dry completely overnight in a dry oven where 

the temperature was set to 50°C. The dried samples were kept in glass vials for future 

use. 

 

In chapter eight, carriers were engineered to obtain the following crystals: 1:1 

(salbutamol sulphate:mannitol), 1:2 (salbutamol sulphate:mannitol), 1:4 (salbutamol 
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sulphate:mannitol), 2:1 (salbutamol sulphate:mannitol), and 4:1 (salbutamol 

sulphate:mannitol). This was done by weighing salbutamol sulphate (10, 10, 6, 20, 20 g; 

respectively) and D-mannitol (10, 20, 24, 10, and 5 g; respectively) and mixing them with 

a Turbula blender (Type T2F,Junkermattstrasse, Switzerland) for 15 minutes at 72 rpm. 

After mixing, they were added to 100 mL of DI water and heated to 75°C at 200 rpm at 

room temperature (20°C). The heated solutions were then added to 500 mL of acetone 

at a rate of 1.5 mL/min and left overnight to facilitate crystallization. After crystallization 

had occurred the engineered co-crystals were filtered under vacuum using 0.22 μm 

filters and allowed to dry completely overnight in a dry oven where the temperature was 

set to 50°C.  

 
2.5 Sieving  
 

Mechanincal sieving is a pharmaceutical process where particles are passed through a 

series of sieves with progressively smaller mesh sizes; particles are then weighed and 

classified into size-fractions based on which mesh they fall on.219 In the process, coarse 

particles are removed from smaller particles.220 In general, however,  sieving produces 

lower levels of charge than other industrial processes such as micronization and 

pneumatic conveying.221 In drug-carrier DPI formulations, the carrier is sieved into a 

range of 63-90 μm or to 70-100 μm; in this case, it was 63-90 μm to comply with US 

FDA guidelines and the USA Pharmacopeia.222-226 In this study, particles that fell within 

the 63-90 μm range were collected using a Retsch AS 200 Digit Analytical Sieve Shaker 

(Hoan, Germany) where the collection pan was placed at the bottom, followed by the 63 

μm sieving pan, and finishing with the 90 μm sieving pan. The powders were placed on 
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top of the 90 μm sieving pan where sieving was performed for 30 minutes with an 

amplitude of 100 for each of the carriers. Particles which fell within the range of 63-90 

μm were collected, sealed, and stored in glass vials in an air-conditioned laboratory with 

a set temperature of 20°C and a relative humidity (RH) of 50% for future use within this 

study. 

 
2.6 Particle Size Distribution Analysis  

 

Particle Size Distribution Analysis was conducted using a laser diffraction particle size 

analyzer (Sympatec Ltd.,Waterford House, United Kingdom) equipped with a HELOS 

sensor and Windox software. Analysis of the formulations was completed using both the 

Rodos dry system and Cuvette wet system; the Cuvette system required the use of 

absolute ethanol and a stirring speed of 1200 rpm while the Rodos system required a 

pressure of 3.0 bar, feed rate of 60%, and trigger conditions that used optical 

concentration of greater than or equal to 0.2%. Detecting the particles was done using 

the R3 and R5 lenses, which have a particle size detection range of 0.5-175μm and 0.5-

875μm, respectively.  

 

The span of size distribution was calculated using Equation 2.1227 

 

(Eq. 2.1) 

  

 

%&'( = (+,-% − +0-%) +2-%
3  
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where  D90%, D50%, and D10% refer to the particle size (in μm) of 90, 50, and 10% of the 

cumulative particle size distribution, respectively. The aerodynamic diameter was 

calculated using Equation 2.210, 11 

  

(Eq. 2.2)                                       

 

where daer refers to the aerodynamic diameter, dg to the geometric diameter, P to the 

density of the particle, P0 to the unit density, and χ to the shape factor. 

 

2.7 Preparation of Dry Powder Inhalation (DPI) formulations 
 
 
Using the stored 63-90 μm sieved carriers, salbutamol sulphate (SS) was introduced 

such that a final ratio (Carrier: SS) of 67.5:1 was obtained. This, then, corresponded to a 

theoretical dosage of 482 + 1.5 μg of SS per single unit from 1.35 g of each carrier and 

20 mg of SS. Mixing was carried out with the use of a Turbula blender (Type T2 

,(Junkermattstrasse, Switzerland) where each of the formulations was subjected to 30 

minutes of blending at a speed of 72 rpm to ensure a homogeneous formulation. 

 

In chapter eight where salbutamol sulphate:mannitol (co-crystallised formulation)  was 

implemented, the concentration of salbutamol sulphate was first determined. Once the 

salbutamol sulphate concentration was known, a final ratio of 67.5:1 was obtained for 
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each carrier. The carriers used were 1:1 (salbutamol sulphate:mannitol), 1:2 (salbutamol 

sulphate:mannitol), 1:4 (salbutamol sulphate:mannitol), 2:1 (salbutamol 

sulphate:mannitol), and 4:1 (salbutamol sulphate:mannitol). This meant that each carrier 

was weighed (30.80, 69.46, 128.43, 34.01, and 23.82 mg; respectively) and added to D-

mannitol (1.289, 1.250, 1.191, 1.286, and 1.296 g;respectively) to achieve the 67.5:1 

(Carrier:SS) ratio.  

 

Each capsule (gelatin, size 3) was filled with ~33 mg of each formulation and a minimum 

of 10 capsules were used for one deposition test. The test was repeated three times for 

each formulation to obtain the mean and standard deviation. In total, 30 capsules were 

used in the deposition test for each formulation.  Once capsule filling was completed, 

they were stored for 24 hours to decrease the electrostatic charge prior to them being 

used in the in vitro aerosolization study. 

 
 
2.8 Differential Scanning Calorimetry (DSC) Analysis 

 

Perkin Elmer’s (Shelton, Connecticut, United States of America) Differential Scanning 

Calorimetry (DSC) 4000 equipped with a Standard Single-Furnace was used to perform 

thermodynamic analysis; viewing and analyzing the data was completed with the 

accompanied Pyris Series software. Endothermic events were displayed using the 

configurations shown in Figure 2.1 where an endothermic curve would point up and an 

exothermic curve would point down. 
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Nevertheless, calculating the enthalpy for each thermal event was done by using the 

area under each curve, given that the peak area of each thermal event is proportional to 

its experienced enthalpy.228 A temperature range of 25-300 °C, 25-120 °C, 25-400 °C, or 

25-150 °C was used with a heating scanning rate of 10 °C/min or 5°C/min for all of the 

samples; the scanning rate was decreased to 5°C/minute as such rate is known to 

provide a more thorough thermal analysis.128, 228 The adopted methodology consisted of 

the following: (1) holding the starting temperature for one minute, followed by (2) using 

one of the scanning temperatures above, and (3) holding the end temperature for a 

minute.  

Figure 2.1 Differential Scanning Calorimetry Curve 

 

 

(Exothermic) 

(Endothermic) 

ΔH 

ΔT (in °C) 
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Determining thermal events for each carrier was completed through the analysis of the 

arising peak areas (enthalpy change) as it is known that such areas are proportional to 

thermal effects experienced by the sample. Equation 2.3228 was used by the software 

to determine the peak area: 

 

(Eq. 2.3)                       

 

where A represents peak area, ∆H for the enthalpy associated with the sample, m as the 

mass of the sample, and K as the calibration constant known to be independent of 

temperature. 

 

In addition, calculating the heat capacity (Cp) was completed by using Equation 2.4  

 

(Eq. 2.4)                                       

 

where d is the displacement, m is the mass, and Cp is the heat capacity; it is important 

to understand, however, that the rate of heat flow into the sample is proportionate to its 

heat capacity. 228  

 

2.9 Powder X-Ray Diffraction (PXRD) 

 

To investigate any changes in the solid state of the crystallized or spray dried samples 
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X-ray diffraction (PXRD) was used. Determination of particle crystallinity/amorphousness 

was completed by implementing Siemens’ Diffraktometer D5000 (Munich, Germany), 

where ~200 mg of each carrier was placed on a stainless steel holder such that a levelled 

surface was obtained when observed in comparison to the pan and diffractometer. The 

holder was then placed on the Diffraktometer in a manner where analysis was possible. 

At which point, the sample was exposed to X-rays (Cu Κ⍺ - 1.54056Å) with a voltage of 

40 kV and a current of 30 mA while being scanned from 5-50° on the 2θ plane at a 

scanning rate of 0.1 increments per second. 

 

 2.10 Fourier Transform Infrared (FT-IR) Spectroscopy 

 

Vibrational frequencies are determined through the interactions between 

electromagnetic radiation and that of matter; making it possible to observe vibrations of 

different symmetry.229 Therefore, vibrational spectroscopies provide definitive 

fingerprints of molecules through the molecule’s absorption of infrared (IR) or mid-IR 

radiation through inelastic scattering of radiation, which produces shifts from the 

excitation laser wavelength.230 These vibrational differences provide insight into the 

polymorphic composition of the carriers and any changes in the molecular level that are 

subjected to testing. Polymorphism, nonetheless, is the ability of a particle(s) to exhibit 

a different stereochemistry from another, thereby making them isomers; about one-third 

of all drugs display polymorphism.231 Evaluation, on the basis of polymorphism and the 

presence or absence of functional groups was accomplished with Perkin Elmer's 
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Spectrum One FT-IR Spectrometer (Shelton, Connecticut, United States of America) 

equipped with a Universal ATR Sampling Accessory; the Spectrum software was used 

is unison. Preceding to analysis, methanol was used to clean the instrument, after which 

a few milligrams (~ 2-5 mg)  of each of the carriers was used with a pressure of 100 bar. 

Each of the samples was scanned three times over a range of 4000-500 cm-1 to obtain 

spectra with appropriate resolution. 

 

2.11 Scanning Electron Microscope (SEM)  

 

Electron micrographs were obtained using a JMS-820 Scanning Microscope (Freising, 

Germany) with a voltage of 4 kV to evaluate the morphology, size, shape, and presence 

or absence of agglomerates in the samples.232, 233 Before subjecting each formulation to 

electrons, they were thinly placed on double-sided carbon tape followed by them being 

sputter coated using Agar Scientific’s S150 Sputter Coater (Essex, United Kingdom) with 

gold (Au), under vacuum in an Argon-rich environment; to view each of the 

carriers/formulations, different magnifications were employed. 

 

Adjusting the brightness of the collected images was done using Equation 2.5: 

 

(Eq. 2.5)                                            
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where β refers to the brightness, βc to the current density at the cathode surface, e to 

the electron charge [1.59 X 10-19 C ], V to the accelerating voltage, k to Boltzmann’s 

content [8.6 X 10-5 eVK ], and T to the absolute temperature in Kelvin. 

 
 
2.12 Powder Flow Characterization 
 
 
§ 2.12.1 Carr’s Index (CI) 

 

Carr’s index (CI) was measured for some carriers as an indication of powder flowability 

using an Erweka (Heusenstamm, Germany). Each powdered carrier was filled into a 10 

mL graduated cylinder and weighed. After recording the volume (bulk volume) the 

cylinder was tapped 100 times under standard conditions [room temperature at 20°C 

and relative humidity (RH) at 50%] and the new volume (tap volume) was recorded. Using 

mass, bulk and tapped volume, the bulk and tapped density was calculated 

(mass/volume). Carr’s Index (CI), was calculated using Equation 2.6.  

 

(Eq. 2.6)                                  

 

where CI is the Carr’s index, Dt is the tap density, and Db is the bulk density.  

 

§ 2.11.2 Angle of Repose (δ) 
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Angle of repose (δ) was measured using the methodology outlined in the European 

Pharmacopoeia234 where the angle of repose was the constant solid angle (relative to the 

horizontal base) assumed naturally by a cone-shaped pile of powder. Such angle was 

calculated using Equation 2.8: 

(Eq. 2.8)                                          

  

where h is the height of the powdered cone and D is the diameter of the base of the 

formed powdered pile. The angle of repose of less than 30° indicates excellent flow 

characteristics whereas values beyond 45° indicate poor powder flowability.  

 
2.13 In vitro Deposition Study 

§ 2.12.1 Multi-Stage Liquid Impinger (MSLI) 

 

A Multi-Stage Liquid Impinger (MSLI), equipped with a USP induction port (Copley 

Scientific in Nottingham, United Kingdom), was used alongside the Critical Flow 

Controller (Copley TPK) and a High Capacity Pump (Copley HCP5) that allow for a 4kPa 

pressure drop to be observed. Because the MSLI has the capacity to filter particles, it 

allowed for cutoff diameters to be taken into account in each of the individual stages. 

Calculating the cutoff diameter for each individual stage was determined using Equation 

2.9:  
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(Eq.2.9)                                                          

 

where D50,Q refers to the cutoff diameter at the flow rate of Q, and N refers to the values 

obtained for each individual stage of the MSLI when the flow rate is 60 L/min. As a result, 

when such flow rate is used, the cutoff diameters for each of the individual stages 

become 13.00, 6.80, 3.10, and 1.70 μm, respectively. Furthermore, at the flow rate of 

100 L/min, the cutoff diameters change and become 10.07, 5.27, 2.40, and 1.32 μm, 

respectively.  

 

Moreover, the Equation 2.10 was employed to determine the test flow duration, in 

seconds, used within each deposition to adhere with the United States Pharmacopeia 

(USP) specific standard test methods for Aerosols, Nasal Sprays, Metered-dose inhalers 

(MDIs), and Dry Powder Inhalers.222, 223 

(Eq.2.10)                                           

 

where Qout is the volume of air passing through the airflow meter. Testing the air flow 

through the device was done with a calibrated Test Flow Meter DFM3 (Nottingham, 

United Kingdom) ensuring a 4kPa pressure drop across the whole device; the Test Flow 

Meter DFM3 also conforms with USP 33 and Ph. Eur. 6.0.235, 236 
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Each in vitro deposition study used 10 capsules (size 3) per run where every capsule was 

filled with ~33 mg of the Carrier:SS being investigated which corresponded to a 

theoretical API dose of 482 + 1.5 μg of salbutamol sulphate per capsule. All of the 

formulations were done a total of three times, equivalent to 30 capsules (each filled with 

~33mg) per formulation.  

 

In addition, specific parameters were employed for the analysis of the aerosolization of 

said capsules including the recovery dose (RD), emitted dose (ED), percent recovery, 

percent emission, impaction loss, mass median aerodynamic diameter (MMAD), 

geometric standard deviation (GSD), fine particle fraction (FPF), fine particle dose (FPD), 

drug loss (DL), dispersibility (DS), and effective inhalation index (EI). 

 

Moreover, RD is defined as the amount of drug (in μg) recovered from the inhaler, 

induction port (IP), mouthpiece (M), and Stages 1-5 (S1-5), ED as the amount of drug (in 

μg) recovered from IP and S1-5, percent recovery as the ratio of RD to the theoretical 

dose (482 + 1.5 μg), percent emission as the ratio of ED to RD, impaction loss as the 

mass fraction of drug in IP and S1 to RD (IP + S1: RD), MMAD as the mass median 

aerodynamic diameter, GSD as the geometric standard deviation, FPF as the ratio 

between FPD to RD (FPD:RD), FPD as the sum of drug (in μg) from S3-5, DL as the ratio 

of the amount of salbutamol sulphate recovered from capsules, mouthpiece, and inhaler 

to RD [(capsules + (I + M)): RD], and DS as the ratio of FPD to ED (FPD:ED).  
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Furthermore, to determine the effective inhalation index (EI) of each of the formulations, 

Equation 2.11 was implemented where EI refers to the effective inhalation index, EM to 

the percent emission, and FPF to the Fine Particle Fraction.227, 237 

(Eq.2.11)                                   

 

All the in vitro deposition studies were conducted in an air-conditioned laboratory where 

the temperature was 20°C and the relative humidity (RH) was 50%.  

 

2.14 Homogeneity Assessment 

 

Assessing the uniformity of salbutamol sulphate (SS) in each of the formulations that was 

prepared and compare it to the theoretical dose of 482 + 1.5μg found in each capsule 

[which was expressed in terms of coefficient of variation (%CV)]. To this end, ten different 

samples were taken from each of the formulations in an ordered fashion; eight out of the 

ten simulating a circle, while the ninth and tenth sample were taken directly from the 

middle. Carefully weighing the ten samples from each formulation, which yielded a mass 

range of 10-12mg, they were introduced to 100 mL of deionized (DI) water in volumetric 

flasks for preparation for high-pressure liquid chromatography (HPLC). 

 

In chapter four through eight, UV-vis spectroscopy was used rather than HPLC. For 

those formulations, 3 or 5 samples were taken from each, which yielded a mass range 

of 50 mg, and were then introduced to 50 mL of deionized (DI) water in volumetric flasks; 
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the wavelength associated to the assay was set at 225nm. Results are based on 

obtaining the average of the three or five samples alongside the standard deviation for 

each distinct formulation. 

 

2.15 High-Pressure Liquid Chromatography (HPLC) 

§ 2.15.1 Qualitative and Quantitative Analysis of 4-[2-(tert-butylamino)-1- 

hydroxyethyl]-2-(hydroxymethyl)phenol;sulfuric acid  

 

In chapters three, four, and five, qualitative and quantitative analysis of salbutamol 

sulphate was completed by using a mobile phase containing 95% (v/v) of 25 mM 

potassium phosphate (monobasic) pH 3.0 and 5% (v/v) of methanol. The flow rate of the 

mobile phase through the HPLC column was 1.5 mL/min with a total run time of 25 

minutes per injection set at a wavelength of 225 nm yielding a retention time of 12min. 

To adjust the pH to 3.0, a 1 M HCl solution was used while stirring at 180rpm, after which 

the mobile phase was filtered and degassed using a Fisher Scientific (Leicestershire, 

England) 0.22-μm filter before its use.  

 

In chapters six, seven, and eight, however, a mobile phase containing 80% 0.1% 

Trifluoroacetic acid (TFA) and 20% methanol was used at a flow rate of 1.5mL/min with 

a total run time of 10 minutes per injection and a wavelength of 225 nm, which yielded a 

retention time of 6 min. Samples in chapter nine used both methods. The methodology 

was adjusted due to the residual matter that accumulated in the crevices of the system. 
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Nonetheless, HPLC was executed via the Agilent 1100 series HPLC system (Santa Clara, 

California, USA) where a degasser (G1322A), binary pump (G1312A), variable wavelength 

detector (VWD G1314A), column thermostat (G1316A), and thermostatic autosampler 

(ALS G1329A) coupled with the Waters Spherisorb 5 μm ODS2 4.6 × 150 mm analytical 

column (Milford, Massachusetts, USA). Likewise, internal standards of varying 

salbutamol sulphate concentrations (0.00. 0.50, 2.50, and 5.00 μg/mL, respectively) were 

used to calibrate and normalize the results.  

 

§ 2.15.2 Qualitative and Quantitative Analysis of L-Leucine 

 

Qualitative and quantitative analysis of L-Leucine was completed by using a mobile 

phase containing 50% (v/v) of 0.1% Trifluoroacetic acid (TFA) in water and 50% (v/v) of 

methanol. The flow rate of the mobile phase through the HPLC column was 0.8 mL/min 

with a total run time of 15 minutes per injection set at a wavelength of 260 nm which 

yielded a retention time of 3 minutes. Standard solutions of varying L-Leucine 

concentrations (0.00, 0.50, 1.00, 5.00, and 10.00mg/mL, respectively) were used to 

calibrate and normalize the results. 

 

2.16 Statistical Analysis (ANOVA) 

 

One-way analysis of variance (ANOVA) was used to evaluate the results in this study 

where statistical probability (P) values less than 0.05 were considered a significant 
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difference. The test was followed by the Tukey’s Honestly Significant Difference (HSD) 

test. All data is expressed as the mean ± standard deviation. 

 

2.17 Air Jet Mill 

 

Air jet milling was conducted using an MC Jet Mill MC One from DEC Group with the 

following settings: Venturi set to 5 and the Ring set to 4.  
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Chapter 3 

 

 Agglomerated novel spray dried lactose-leucine tailored 
as a carrier to enhance the aerosolization performance of 

salbutamol sulphate from DPI formulations  
 

 

3.1 Introduction  
 

In this chapter, the focus was to engineer a spray dried carrier composed of lactose and leucine 

and investigate the effect that leucine has on the overall aerosolized dry powder inhaler (DPI) 

performance for salbutamol sulphate. To date, lactose is the most commonly documented 

carrier in the pharmaceutical industry due to it being highly stable, adhering to good flow 

properties, and being widely accepted as a safe excipient.14 Although other carriers such as 

mannitol128 and sorbitol238 have been suggested in DPI formulations, lactose is still the only 

excipient approved by the US FDA in DPI formulations of APIs. 

 

The use of leucine, however, has previously been shown to improve the aerosolization 

performance of several drugs from DPIs because it reduces the inter-particulate adhesive forces 

and API aerodynamic particle size due to its surfactant behavior.239-242 Coupling both lactose 

and leucine together in a spray dried solution allowed for the manufacture of an agglomerate 
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spray dried lactose-leucine system to be created which was aimed to enhance the performance 

of salbutamol sulphate in DPI formulations. 

 

3.2 Materials and Methodology  

§ 3.2.1- 3.2.12  

Refer to Chapter 2 sections 2.2, 2,3, 2.5-2.11, 2.14, and 2.15.  

 

3.3 Results and Discussion  

  

§ 3.3.1 Particle Size Analysis 

Figure 3.1 shows two cumulative particle size distribution (PSD) diagrams that illustrate each of 

the carrier’s PSD when using the (A) dry system and when using the (B) wet system. Because of 

the use of the Mini Spray Dryer B-290, it was expected to obtain particle sizes below the approved 

range of 63–90-μm (Figure 3.1A), given that the spray drying process produces particles below 

10μm.68  

 

Likewise, Figure 3.1B shows that the particle sizes of each of the carriers, when using the wet 

system, fell within the 63– 90 μm range. The known occurrence of agglomeration was exploited 

in such a manner that allowed for it to be used as a carrier within this study. Such focus offered 

the opportunity to investigate the agglomerates on the basis of parameters that are used in the 

characterization and analysis of single particles. The particle size measurement in the dry system 

was able to break the aggregates of spray dried particles (due to applying a pressure of 3 bar 

during the measurement) whereas in the wet system the spray dried particles stayed as 

aggregates, although the ultrasound was applied during the measurement.  
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Figure 3.1 Particle Size Distribution. Particle size distribution (PSD) diagrams of each carrier 
when using the (A) RODOS dry system and when using the (B) CUVETTE wet system; the 
carriers used were spray dried lactose monohydrate containing 0, 0.1, 0.5, 1, 5, and 10% L- 
leucine  
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Table 3.1 highlights each of the carrier’s distinct characteristics such as volume mean diameter 

(VMD) and span of the RODOS dry system and the CUVETTE wet system comparing each 

characteristic side by side. Table 3.1 shows that all of the carriers experienced a significant 

difference in their VMDs when comparing each system to one another. For the dry system, the 

VMD ranged from 8.39 ± 0.40 to 37.97 ± 0.08 μm whereas the range for the wet system was 

79.31 ± 2.19 to 87.95 ± 1.91 μm due to the presence of aggregated particles. The dry system  

experienced a particle diameter range of 1.56 ± 0.05 μm (D10%) to 75.46 ± 7.22 μm (D90%) 

whereas the particle diameter range for the wet system fell between 20.77 ± 11.02 μm (D10%) 

and 147.87 ± 170.11 μm (D90%). Due to the aggregation of particles, samples that were measured 

through the wet system showed smaller span values (narrower distribution) compared to that of 

the dry system, coinciding with the possibility of the dry system containing mixtures of aggregated 

and de-aggregated spray dried particles during the measurement (Table 3.1). 

 

Table 3.1 Particle Analysis. Particle analysis of spray-dried lactose monohydrate and spray-dried 

lactose monohydrate-leucine where the concentration of leucine was 0.1, 0.5, 1, 5, and 10% 

Formulation VMD (μm) Dry 
System 

VMD (μm) 
Wet System 

Span 
Dry System 

Span 
Wet System 

Spray Dried Lactose 37.97 ± 0.08 87.14 ± 0.35 2.12 ± 0.09 1.36 ± 0.01 

0.1% L-Leucine 23.95 ± 5.35 87.47 ± 4.94 3.61 ± 0.11 1.61 ± 0.14 

0.5% L-Leucine 11.50 ± 0.28 79.68 ± 1.78 2.67 ± 0.13 2.14 ± 0.10 

1% L-Leucine 8.39 ± 0.40 86.88 ± 0.84 2.57 ± 0.06 1.73 ± 0.03 

5% L-Leucine 13.58 ± 0.20 79.31 ± 2.19 2.62 ± 0.12 1.74 ± 0.08 

10% L-Leucine 17.47 ± 0.63 87.95 ± 1.91 3.10 ± 0.23 1.40 ± 0.02 
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showing the volume mean diameter (VMD) and span when using the RODOS dry system vs the 

CUVETTE wet system (mean + standard deviation) 

  

Such outcomes, then, allowed for the carriers to be implemented and further studied to determine 

their physicochemical properties and particle morphology given that they underwent spray drying, 

known to alter such characteristics, while also introducing L-leucine as an excipient. VMD 

(obtained via wet method) of the formulation after mixing for 30 min with salbutamol sulphate 

showed that the mixing process was unable to break down the agglomerates as the VMD was 

similar to the VMD of particles before mixing. For example, the VMD of formulations containing 

0.1 and 10% L-Leucine after 30 min of mixing with SS was 88.0 ± 9.62 and 71.97 ± 0.16 μm, 

respectively.  

 

Figure 3.2 highlights the electron micrographs of each of the carriers making it evident that all of 

the formulations, with respect to their carrier, experienced some agglomeration giving way to their 

larger particle size; thereby supporting the results presented in Figure 3.1 and Table 3.1. 

Moreover, the SEM micrographs also indicate each of the carrier’s morphology contains spherical 

particles with some agglomerates, particularly in the cases of 0.5% leucine (some of these 

agglomerated particles for each formulation are shown by red arrows). Such irregularity has 

previously been shown to be more effective in the delivery of salbutamol sulphate when compared 

to particles that are classified as being more spherical and regular in shape.243 The morphology 

of the spray dried lactose, with increasing concentrations of leucine, is supported by data 

published by Aquino et al. where they showed that more irregular and corrugated particles were 

obtained in the presence of high concentrations of leucine.244 Generally, corrugated particles 

disperse better than spherical ones as this kind of particle reduces contact areas and decreases 

inter-particulate cohesion.  
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Figure 3.2 Scanning Electron Microscopy. SEM images of (A) spray dried lactose monohydrate, 
spray dried lactose containing leucine where leucine concentrations were (B) 0.1%, (C) 0.5%, 
(D) 1%, (E) 5%, and (F) 10% L-leucine.  

 

(A) Spray Dried 
Lactose

(B) 0.1% L-Leucine 

(C) 0.5% L-Leucine (D) 1% L-Leucine 

(E) 5% L-Leucine (F) 10% L-Leucine 
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Therefore, it was expected that the formulation composition of the leucine carrier would result 

with an enhanced aerosolization performance when compared to the carrier without leucine, 

which, in essence, would deliver salbutamol sulphate more poorly.  

§ 3.3.2 Solid-state characterization of spray dried samples  

 

Figure 3.3 shows DSC traces of L-leucine, original lactose monohydrate, and spray dried lactose 

containing 0, 0.1, 0.5, 1, 5, and 10% L-leucine indicating where water evaporation, amorphous 

lactose recrystallization (Hc), α- lactose melting (Hα), and β-lactose melting (Hβ) took place. It is 

obvious from the figure that commercial lactose monohydrate shows an endothermic peak around 

149°C, which corresponds to the evaporation of water, followed by an exothermic peak around 

171°C, indicating the amorphous state in the sample; moreover, the endothermic peak around 

220°C corresponds to the melting of α-lactose whereas any peak around 238°C is an indication 

of the presence of β-lactose in the sample.224  

 

Pure L-leucine was also tested to determine whether or not any thermal events arose between 

the 25–300°C range, which would rule out whether such events were due to the presence of L-

leucine or not. No thermal events were seen within the range where lactose thermal events 

occurred and the endothermic peak around 300°C corresponds to the melting of L-leucine or its 

decomposition. Spray dried lactose showed three main thermal events with the first being an 

exothermic peak around 170°C, attributed to the recrystallization of amorphous lactose to both α-

lactose and β-lactose, which was then followed by the melting of α-lactose at around 220°C; 

furthermore, the third endothermic peak around 238°C was an indication of β-lactose in the 

sample. Moreover, spray dried lactose did not show any thermal traces for the water evaporation 

which was a similar pattern that was observed for spray dried lactose containing 0.1, 0.5, and 1% 
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leucine but with different intensities when compared to the spray dried carrier with no leucine. 

Spray dried formulations containing 5 and 10% L-leucine did not show any sharp or obvious peaks 

for water evaporation, the transition of amorphous lactose to crystalline lactose, and melting of 

lactose.  

 

Figure 3.3 Differential Scanning Calorimetry. DSC thermal peaks of L-leucine, commercial lactose 

monohydrate, spray-dried lactose monohydrate-leucine where the concentration of leucine were 

0, 0.1, 0.5, 1, 5, and 10% w/v (where an exothermic peak would point up and an endothermic 

peak would point down). 

 

On the basis of this information, all spray dried carriers were considered to be in their amorphous 

state as the data that was collected indicates given that a definite crystalline structure was not 
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present prior to their analysis which would have been depicted through the emergence of the 

amorphous lactose recrystallization enthalpy. Neither a recrystallization nor a melting peak was 

observed in the 5 and 10% L-leucine carrier which serves as an indicator of their higher stability 

against recrystallization. Such results follow similar patterns that have been presented elsewhere 

where amorphous drug carriers were formulated in such a way as to increase amorphous 

stability.245-248 To make sure spray dried lactose was in the amorphous state, a more reliable 

technique (PXRD) was used. 

 

Figure 3.4 contains the X-ray diffraction peaks for spray dried lactose monohydrate containing 0, 

0.1, 0.5, 1, 5, and 10% L-leucine which provides an insight into the polymorphic state of each of 

the carriers. A carrier’s morphology plays an integral role in the drug delivery process that dictates 

whether a formulation is deemed effective in the delivery of the API of interest.224  

 

Figure 3.4. X-Ray Diffraction. X-Ray diffraction patterns of spray dried lactose monohydrate, 

spray dried lactose monohydrate-leucine where the concentration of leucine was: 0.1%, 0.5%, 

1%, 5% and 10%. 
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Looking at Figure 3.4 more closely, it becomes evident that all of the carriers, from each of the 

formulations, were classified as being in their amorphous state given the absence of peaks (halo 

structure). In addition, all of the carriers showed two distinct peaks each (2θ = 12.2° and 18.6°) 

that were broad and distributed over a wide range of degrees on the 2θ plane, which also 

characterizes them as being of amorphous state. Likewise, given that all of the carriers exhibited 

irregular diffraction of electromagnetic radiation when compared to pure L-leucine (XRD not 

shown), it correspondingly catalogues them as amorphous as well.249 

 

To further assess the solid-state of each carrier within this study and identify any interaction 

between lactose and leucine at the molecular level, FT-IR spectroscopy was implemented with 

the understanding that amorphous lactose displays a distinct frequency at 1260 and at 900 cm-1, 

α-lactose monohydrate at 920 cm-1, and β-lactose at 950 cm-1.224 Figure 3.5 presents the results 

for the FT-IR spectra of L-leucine, spray-dried lactose monohydrate with its different 

concentrations of L-leucine (0, 0.1, 1, 5, and 10%), and further supports the fact that the carriers 

are in their amorphous state as the aforementioned peaks were present. In addition, Figure 3.5 

also reveals that, with the increasing concentration of L-leucine, each formulation underwent a 

phenomenon known as Fermi resonance where a shift in the vibrational energy causes the 

spectra to have a change in its intensity and resolution.250 251 
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Figure 3.5. FT-IR. FT-IR spectra of pure L-leucine, spray dried lactose monohydrate, spray dried 

lactose monohydrate-leucine where the concentration of leucine was: 0.1%, 0.5%, 1%, 5% and 

10% highlighting the areas that are eliminated or broadened as the concentration of L-leucine 

increases while also showing where the amorphous, α-lactose, and β-lactose peaks are to be 

found. 

 

Such variation within the spectra explains why the frequencies that are associated to key 

functional groups like aromatic C-H, alkanes, aldehydes, hydroxyl, carbonyl, ethers, and primary 

amines (which have frequencies at 2900, 3100–3400, 800–1400, and 3500 cm-1) become 

broadened or eliminated completely. 
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§ 3.3.3 In vitro analysis of DPI formulations  

§§ 3.3.3.1Salbutamol sulphate assessment 

 

Performance of the drug delivery profile of salbutamol sulphate, with respect to each of the 

formulations within this overall study, is defined in Figure 3.6 where the amount of salbutamol 

sulphate recovered from each individual section within the MSLI is looked with a narrower focus: 

capsules (C), inhaler (I), mouthpiece (M), induction port (IP), stage 1, stage 2, stage 3, stage 4, 

and filter (stage 5). All of the formulations experienced minimal salbutamol sulphate deposits in 

the capsules with 5 and 10% L-leucine having the least amount after their actuation due to the 

lubrication effect of leucine, which makes particles flow more easily from the capsule to the inhaler 

device (Cyclohaler). The lubrication effect of the spray dried leucine has been reported where 

increasing amounts of L-leucine show good lubricating properties.252 As particles manoeuvre 

through the respiratory tract, spray dried lactose monohydrate along with 0.1% L-leucine 

experienced the highest amounts of salbutamol sulphate (43.63 ± 23.48 and 49.89 ± 27.80μg, 

respectively) in the inhaler device when compared to the concentrations above 0.5% L-leucine 

which experienced the least amount at 13.79 ± 11.47μg; the lubrication effect of leucine can also 

be observed here, as described previously. Furthermore, all of the formulations showed about the 

same amount of salbutamol sulphate in the mouthpiece (Figure 3.6) but begin to differ at the IP 

as spray dried lactose monohydrate had the highest amount (65.24 ± 4.26μg) when compared to 

the other formulations, which had a range of 12.66 ± 5.66 to 29.02 ± 18.56μg. 
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Figure 3.6. Aerosolization Profile. Aerosolization performance of each of the formulations (spray 

dried lactose monohydrate, spray dried lactose monohydrate-leucine where the concentration of 

leucine was:  0.1%, 0.5%, 1%, 5% and 10% highlighting the amount of SS recovered (percent 

recovered). 

 

 

Moreover, 0.1% L-leucine had the highest salbutamol sulphate recovered from within stage 1 

(176.06 ± 50.94μg), but where it began to change was with stage 2 onward as 0.5% L-leucine 

experienced the highest salbutamol sulphate amounts in stage 2, stage 3, stage 4, and filter 

(81.89 ± 50.20, 145.58 ± 88.08, 87.45 ± 48.49, and 29.25 ± 20.16μg, respectively) indicative of it 
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being the most successful at delivering salbutamol sulphate to the targeted area that correlates 

to the alveoli, found in the lower respiratory tract. In other words, the formulations ranked in the 

following order 0.5% L-leucine > 0.1% L-leucine > 1% L-leucine > spray dried lactose monohydrate 

> 5% L-leucine > 10% L-leucine.  

 

Table 3.2 shows the aerosolization performance and deposition data for all formulations studied. 

All of the formulations differed remarkably (p < 0.05) from one another with respect to DL and 

percentage emission (Table 3.2) given that they all undertook a high number of actuations (n = 

10) per run, with each being filled with a consistent weight of around 33 ± 1 mg. The table shows 

that the performance of DPI formulations containing spray dried leucine is much better than when 

leucine was excluded from the formulation (the lowest drug loss belonged to spray dried lactose 

containing 0.5% L-leucine).  

 

Impaction loss (IL) within the formulations varied from 34.61 ± 12.38%, attributed to 0.5% L-

leucine, to 52.49 ± 2.81%, belonging to spray dried lactose monohydrate. Such variation between 

the formulations could be attributed to their aerodynamic diameter given that impaction is a flow-

dependent mechanism governed by particle size.18 

 

Effective inhalation index (EI) ranged from 10.87 ± 0.22 (spray dried lactose monohydrate) to 

11.98 ± 0.37 (0.5% L-leucine) aligning with other data suggesting that 0.5% L-leucine has a high-

drug aerosolization efficiency.  
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DS and FPD also showed a variation among the formulations with ranges of 29.31 ± 0.36 to 48.94 

± 10.78% and 262.28 ± 156.60 to 110.41 ± 4.77 μg, respectively. Such variation was attributed 

to the formulation’s particle size given that the phenomenon of inertial impaction becomes 

prevalent for large particles.18 

 

When it came to MMAD and GSD, however, all of the formulations gave similar results with MMAD 

being 3.12 ± 0.10 μm and GSD being 2.12 ± 0.03 μm. Because particles greater than or equal to 

10 μm are removed by the mucociliary escalator and subsequently swallowed in the upper 

respiratory tract, it was determined that SS had the ability to enter the respiratory tract without 

facing any problems.20, 21 

 

The results showed that spray dried lactose-leucine (containing 0.5% L-leucine) exhibited the 

highest FPF of 47.11 ± 9.94% suggesting that such formulation was the most efficient at delivering 

the most SS to the lower respiratory tract. This is because of the correlation that is seen between 

FPF and amount of SS delivered; that is to say, when FPF increases, the expected amount of SS 

that is delivered to the lower respiratory tract also increases.253 Such values, when compared to 

those obtained by Kaialy et. al254 (FPF of 44.85 ± 1.76%) and Kaialy and Nokhodchi255 (FPF of 

46.9 ± 3.6%), prove to be an increase in the efficacy of salbutamol sulphate’s aerosolization 

performance. This formulation also had the highest percentage emission of 96.41 ± 1.23%, when 

compared to the other formulations (Table 3.2), suggesting that SS was able to detach itself from 

the carrier easier when compared to the other formulations. This means that optimal 

physicochemical properties were attained such that a complementary system emerged between 

SS and the 0.5% L-leucine carrier. On the other hand, spray dried lactose monohydrate showed 

the lowest percentage emission (87.02 ± 3.79%) and consequently the lowest FPF (25.51 ± 
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1.23%). Such results infer that SS had a more difficult time detaching itself from the spray dried 

lactose monohydrate carrier during inhalation when compared to 0.5% L-leucine. 
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Table 3.2 Aerosolization Parameters. Recovered dose (RD), emitted dose (ED), percent recovery, percent emission, percent impact loss, mass 

median aerodynamic diameter (MMAD), geometric standard deviation (GSD), fine particle dose (FPD), fine particle fraction (FPF), drug loss (DL), 

dispersibility (DS), and effective inhalation index (EI) of salbutamol sulphate obtained from each of the different formulations (spray dried lactose 

monohydrate, spray dried lactose-leucine where the concentration of leucine was 0.1%, 0.5%, 1%, 5%  and 10% ) 

 

Formulation RD  
(μg) 

ED  
(μg) 

Recovery 
 (%) 

Emission (%) Impact Loss 
(%) 

MMAD 
(μm) 

GSD  
(μm) 

FPD 
(μg) 

FPF  
(%) 

DL  
(%) 

DS  
(%) 

EI 

SD Lactose 434.09 ± 40.27 376.79 ± 19.65 90.25 ± 8.37 87.02 ± 3.79 52.49 ± 2.81 3.13 ± 0.15 2.18 ± 0.07  110.41 ±  4.77 25.51 ±  1.23 14.31 ±  4.12 29.31 ±  0.36 10.87 ±   
0.22 

0.1% L-
Leucine 

455.47 ± 53.13 398.95 ± 29.95 94.69 ± 11.05 87.92 ± 4.89 43.46 ± 10.14 3.19 ± 0.09 2.09 ± 0.03  158.53 ±  39.73 34.99 ±  8.89 13.72 ±  5.34 39.62 ±  8.79 10.93 ±   
0.39 

0.5% L-
Leucine 

542.26 ± 297.51 520.92 ±281.30 112.74 + 61.85 96.41 ± 1.23 34.61 ± 12.38 3.26 ± 0.05  2.09 ± 0.01  262.28 ± 156.60 47.11 ±  9.94 4.14 ± 1.52  48.94 ± 10.78 11.98 ±   
0.37 

1% L-
Leucine 

363.63 ± 49.05 342.77 ± 51.17 75.60 ± 10.20 94.15 ± 1.54 37.60 ± 10.86 3.16 ± 0.13  2.10 ± 0.03  159.45 ±  14.31 44.33 ±  6.53 6.55 ±  1.53 47.12 ±  7.23 11.77 ±  
 0.26 

5% L-
Leucine 

297.32 ±175.08 272.87 ±179.66 61.81 ± 36.40 88.91 ± 7.43 35.95 ± 4.00 3.00 ± 0.18 2.13 ± 0.08 134.81 ±  91.41 43.08 ±  7.38 12.00 ±  8.18 48.26 ±  5.35 11.48 ±  
 0.63 

10% L-
Leucine 

366.52 ±166.33 338.81 ±149.50 76.20 ± 34.58 92.82 ± 2.34 38.74 ± 22.45 2.99 ± 0.23  2.12 ± 0.08 174.83 ± 121.38 44.50 ± 17.40 7.82 ±  2.26 48.27 ± 19.67 11.71 ±  
 0.66 
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§§ 3.3.3.2 Homogeneity assessment 

Assessing the homogeneity of each of the formulations was an essential phase of this study given 

that a uniform formulation will give rise to a more effective drug delivery profile with a consistent 

dose to the patient. Table 3.3 eludes the homogeneity profile of each of the formulations (spray 

dried lactose monohydrate, samples spray dried with 0.1, 0.5, 1, 5, and 10% L-leucine) under 

investigation showing the potency of each and also presents the percent content homogeneity, 

which is expressed as the percent coefficient of variation (%CV), of each of the aforementioned 

formulations. The drug content of all formulations was within 75–125%, and the smallest %CV of 

5.48% belonged to 0.5% L-leucine, which was the formulation that showed the best aerosolization 

performance. Such results indicate that 0.5% L-leucine had the best salbutamol sulphate content 

homogeneity among all of the formulations followed by 0.1% L-leucine with a %CV of 7.15%. In 

addition, the results showed that it is a bit difficult to obtain a very low CV% for DPI formulation 

containing salbutamol sulphate in the DPI formulation studied in the current research. This should 

be investigated more in the future ongoing research.  

Table 3.3. Content Homogeneity. Content homogeneity of Spray Dried Lactose Monohydrate, 
0.1% L-Leucine, 0.5% L-Leucine, 1% L-Leucine, 5% L-Leucine, and 10% L-Leucine expressed as 
the percentage coefficient of variation (%CV). 

Formulation Potency %CV 

Spray Dried Lactose 91.36 ± 9.40 10.29 

0.1% L-Leucine 83.62 ± 5.98 7.15 

0.5% L-Leucine 102.66 ± 5.62 5.48 

1% L-Leucine    94.72 ± 16.97 17.92 

5% L-Leucine    89.71 ± 11.87 13.23 

10% L-Leucine 89.98 ± 7.78 8.65 

*However, has not been taken into account for in vivo inhalation studies.  
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3.4 Conclusion 

 

The results presented in this chapter have proven that the addition of L-leucine into the spray dried 

solutions altered the physicochemical properties of lactose. This alteration allowed for a more 

effective aerosolization performance of salbutamol sulphate to be observed; there was a two-fold 

increase in the fine particle fraction (FPF) of the 0.5% L-leucine formulation. Furthermore, the 

addition of L-leucine also proved to improve the stability of amorphous spray dried lactose, as was 

evident in the DSC data. L-leucine also provided a lubrication effect for the formulations, which 

the in vitro deposition study showed. All these benefits provide a foundational platform from which 

to build on in the chapters that follow. Never the less, this chapter has also proven that a more 

effective formulation can be achieved than the one that is currently in use in the market.  

 

 

 

 

 



102 
 

Chapter 4 

The Crucial Role of Leucine Concentration on Spray Dried 
Mannitol-Leucine as a Single Carrier to Enhance the 

Aerosolization Performance of Albuterol Sulphate  
 

 

4.1 Introduction 
 

The main aim of this chapter is to explore D-mannitol (mannitol) as an alternative carrier to lactose 

for lactose intolerant patients. To this end, in this chapter, the focus was to engineer a spray dried 

carrier composed of D-mannitol and leucine and investigate the effect of leucine concentration on 

the overall aerosolized DPI performance for albuterol sulphate; DPIs are a common tool for use 

in patients facing COPD and asthma. It has previously been documented that pulmonary delivery 

of a therapeutic dose has tremendous advantages over any other form of administrative route.256 

In recent years, the respiratory tract has been used as a diagnostic tool for patients suffering from 

intermittent allergic asthma or allergic rhinitis through the use of D-mannitol as a means to increase 

the water content in the respiratory tract.257 It has also been postulated that D-mannitol could be 

an alternative carrier in DPI formulations to lactose,258 which is a carrier that is widely used in the 

pharmaceutical industry.14 

 

Efforts to use D-mannitol have shown to have an altering effect on the viscoelastic properties 

associated to the phlegm, which is located in the airway, while also increasing the water content 

by creating an osmotic gradient, which facilitates an efflux of water into the airway lumen.259-265 In 

addition, D-mannitol is not classified as being a reducing sugar, given the absence of the aldehyde 
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functional group, and it is less hygroscopic than lactose. D-Mannitol also provides a sweet 

aftertaste which can be used as a benefit for the patient by confirming that an adequate dose has 

been delivered.266 ,  267 

 

In Chapter 3, it was determined that the addition of L-leucine improved the aerosolization 

performance of the 0.5% L-leucine carrier by altering its physicochemical properties causing an 

increase in the FPF to 47.11 ± 9.94%. In this chapter, an investigation was carried out to see if 

the same concentration will have the same effect on D-mannitol. In addition, this chapter explores 

the modified D-mannitol as an alternative to lactose to be used in dry powder inhalation 

formulations. Moreover, D-mannitol on the market usually shows poor aerosolization performance, 

therefore, the commercial D-mannitol has to be modified to enhance its performance in DPI 

formulations..   

 

4.2 Materials and Methodology  

§ 4.2.1- § 4.2.13 

Refer to Chapter 2 sections 2.2, 2,3, 2.5-2.11, and 2.13-2.16. 

 

4.3 Results and Discussion   

§ 4.3.1 Particle size analysis  

 

Figure 4.1 shows the cumulative size distribution obtained by two distinct systems: Rodos (dry 

system; Figure 4.1A) and Cuvette (wet system; Figure 4.1B). Based on the information from the 

figure, it was deduced that the carriers all underwent a degree of agglomeration. The pressure 

applied to the carriers in the dry system was able to de-agglomerate particles and reduce their 

size range. This explains why there was such a remarkable difference in the size of the particles 
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between the two systems. The difference was expected because the spray drying technique 

produces single particles between 1-10μm.268, 269  

 

The agglomeration, however, was explored further in a manner that helped in the understanding 

of the carrier’s adhesive and cohesive forces. It was these forces that helped in the 

characterization of whether or not a formulation was effective in its aerosolization performance. 

The emergence of agglomerates arising after spray drying is not something new as it has been 

found before (see Chapter 3) where lactose agglomerated into more coarse particles and were 

then implemented into the engineered DPI formulations being investigated.227 
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Figure 4.1. Particle Size Distribution. Particle Size Distribution (PSD) diagrams of each 

formulation’s carriers when using the (A) Rodos dry system and when using the (B) Cuvette wet 

system; Spray Dried Mannitol, 0.06% L-leucine:Mannitol, 0.3% L-leucine:Mannitol, 0.6% L-

leucine:Mannitol, 3% L-leucine:Mannitol, and 6% L-leucine:Mannitol. 
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Table 4.1 elucidates the volume mean diameter (VMD) along with the span of each of the distinct 

carriers comparing the Rodos and Cuvette systems side-by-side. All of the carriers experienced 

a significant difference in their VMDs (p < 0.05) with ranges from 23.98 ± 0.26μm (Spray Dried 

Mannitol) to 52.99 + 4.05μm (6%  L-Leucine)  when the dry system was used; in the case of using 

the wet system, these values increased (Table 4.1). In all the cases, the results showed that the 

VMDs for the spray dried samples were smaller when measured with the dry system than when 

the wet system was used. Furthermore, it was concluded that all of the carriers from each of the 

formulations underwent a degree of agglomeration, which supports the data already presented. 

The values for the dry system are smaller than the wet system because a pressure of 3 bar was 

used during the measurement, which allowed the aggregated particles to de-agglomerate, as 

previously stated. The wet system’s aggregated particle sizes, however, were close to the size of 

carriers used in DPI formulations. Moreover, it was concluded that the performance of the DPI 

system was not compromised due to the size of the particles.  

 

Table 4.1. Particle Analysis. Particle Analysis of Spray Dried Mannitol, 0.06% L-leucine, 0.3% L-

leucine, 0.6% L-leucine, 3% L-leucine, and 6% L-leucine showing the volume mean diameter 

(VMD) and span when using the Rodos dry system or the Cuvette wet system. 

Carrier VMD (μm)        
Dry System   

VMD (μm)        
Wet System   

Span               
Dry System  

Span               
Wet System  

Spray Dried Mannitol 23.98 + 0.26 69.55 + 3.85 2.43 + 0.09 1.65 + 3.50 

0.06% L-Leucine 40.50 + 0.73 81.10 + 2.34 1.55 + 0.83 1.08 + 2.77 

0.3% L-Leucine 33.91 + 1.34 87.03 + 2.54 1.97 + 0.63 1.09 + 2.60 

0.6% L-Leucine 27.05 + 0.95 64.74 + 1.69 2.69 + 0.44 1.42 + 2.02 

3% L-Leucine 29.86 + 0.19 72.82 + 0.07 2.25 + 1.95 2.02 + 0.20 

6% L-Leucine 52.99 + 4.05 63.46 + 0.18 1.45 + 0.15 1.63 + 6.71 
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With respect to the Span, all of the carriers experienced similar values (p > 0.05) having ranges 

from 1.45 + 0.15 (belonging to 6% L-Leucine) to 2.69 + 0.44 (belonging to 0.6% L-Leucine) and 

1.08 + 2.77 (from 0.06% L-Leucine) to 2.02 + 0.20 (from 3% L-Leucine); for both the dry and wet 

systems, respectively. Moreover, the dry system experienced a particle diameter range of 5.98 + 

0.76 μm (D10%) to 66.76 + 1.66 μm (D90%) where the particle diameter range for the wet system 

fell between 28.77 + 0.62 μm (D10%) and 124.72+3.62 μm (D90%). 

 

Figure 4.2, nonetheless, presents the electron micrographs of each of the carriers in each 

formulation (0, 0.06, 0.3, 0.6, 3, and 6% L-Leucine; respectively). All of the carriers were 

characterized as spheroidal with confirmation of there being some degree of agglomeration, which 

correlates to the results already presented in Figure 4.1 and Table 4.1. 
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Figure 4.2. Scanning Electron Microscopy. SEM electron micrograms of (A) Spray Dried 

Mannitol, (B) 0.06% L-leucine, (C) 0.3% L-leucine, (D) 0.6% L-leucine, (E) 3% L-leucine, and (F) 

6% L-leucine. 

 

§ 4.3.2 Solid-state characterization of spray dried samples 

(A) SD Mannitol (B) 0.06% L-Leucine 

(C) 0.3% L-Leucine (D) 0.6% L-Leucine 

(E) 3% L-Leucine (F) 6% L-Leucine 
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Figure 4.3 presents the DSC traces of L-leucine, Spray Dried Mannitol, 0.06% L-leucine, 0.3 L-

leucine, 0.6% L-leucine, 3% L-leucine, and 6% L-leucine; the endothermic peak is associated to 

the melting of mannitol. Moreover, Table 4.2 summarizes the enthalpy and melting peak of each 

formulation. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Differential Scanning Calorimetry. DSC thermal peaks of L-Leucine, Spray Dried 

Mannitol, 0.06%  L-leucine, 0.3%  L-leucine, 0.6%  L-leucine, 3%  L-leucine, and 6%  L-leucine, 

where an exothermic peak would point up and an endothermic peak would point down. 

 

Table 4.2 authenticates the results presented in Figure 4.3, where it illustrates an endothermic 

event at 169.79 + 0.45°C which is known to be the melting of mannitol.237, 270	An important 

observation to highlight, nonetheless, is the broadening of the endothermic peak as the leucine 

concentration increases. The increase in enthalpy can be associated to the ability for leucine to 

provide a stabilization effect for the carriers. This stabilization effect is supported by the fact that 

more energy is needed to melt the mannitol crystals as the concentration of leucine increases. 
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Additionally, pure leucine was tested to determine whether or not any thermal event would take 

place between the 25-300°C  range, and, as can be seen in Figure 4.3, it was well above 300°C. 

Furthermore, Table 4.3 shows the actual amount of leucine presents in each of the carriers via 

HPLC analysis. 

 

In a study conducted by Kaialy et. al, it was found that freeze-dried mannitol containing the three 

polymorphic forms (α-, β-, and Δ-) produced a larger endotherm peak than mannitol with two 

polymorphic forms (α- and β-).271 Conventionally, the melting enthalpy (ΔH) represents the degree 

of crystallinity of a substance. By mixing two substances, the purity is reduced and lower melting 

points appear in the DSC thermographs. Any shift in melting point is indicative of a strong solid-

solid interaction, which explains why the 6% Leucine carrier had the broadest thermal peak.272 273 

 

Table 4.2. DSC Thermal Traces. DSC thermal traces of Spray Dried Mannitol, 0.06%  L-leucine, 

0.3%  L-leucine, 0.6%  L-leucine, 3%  L-leucine, 6%  L-leucine, and L-leucine that indicate the 

enthalpy, in J/g, of mannitol melting (ΔH) along with the Temperature (°C) of where such melting 

took place. 

Carrier Temperature (°C) ∆H (J/g) 

Spray Dried Mannitol 170.01 + 0.16 198.38 + 8.97 

0.06% L-Leucine 170.07 + 0.77 175.52 + 55.68 

0.3%  L-Leucine 170.45 + 0.11 213.10 + 6.17 

0.6%  L-Leucine 169.49 + 0.06 182.87 + 19.44 

3%  L-Leucine 169.32 + 0.33 201.98 + 16.61 

6%  L-Leucine 169.41 + 0.15 213.79 + 3.21 

 L-Leucine — — 
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Table 4.3. L-Leucine Content. Actual amount of L-leucine found in each of the carriers (Spray 

Dried Mannitol, 0.06%  L-leucine, 0.3%  L-leucine, 0.6%  L-leucine, 3%  L-leucine, 6%  L-leucine). 

Formulation % L-Leucine 

Spray Dried Mannitol 0.00 ± 0.00  

0.06% L-Leucine 0.02 ± 0.02  

0.3% L-Leucine 0.82 ± 1.84  

0.6% L-Leucine 2.86 ± 1.22  

3% L-Leucine 7.24 ± 2.01  

6% L-Leucine 12.93 ± 1.19  

 

Figure 4.4 demonstrates the powder X-ray diffraction (PXRD) patterns obtained from each of the 

formulation’s carriers highlighting the presence and location of the distinctive polymorphic 

characterization. It is understood that mannitol possesses three distinctive polymorphs (α-, β-, 

and Δ-) that are characterized by where they present themselves on the diffraction patterns; with 

α-mannitol exhibiting peaks at 9.57° and 13.79°, β-mannitol at 10.56° and at 14.71°, and Δ-

mannitol with a peak at 9.74° and 22.2°.271, 274-276  

 

PXRD of commercial mannitol showed the main diagnostic peaks for β-mannitol at 10.56°, 14.71°, 

23.40°, 29.50° and 38.80°. This indicates that the commercial mannitol contains only β form of 

mannitol. Spray Dried Mannitol showed extra peaks at 2θ of 13.79° and around 17° which is an 

indication of α-mannitol; this shows that the spray dried mannitol contains both α- and β- mannitol. 
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It is obvious from PXRD of spray dried mannitol containing various concentrations of L-Leucine 

that these samples contained both α- and β-mannitol. Although all spray died samples showed 

the presence of α- and β-mannitol, the intensities of diagnostic peaks are not the same, which 

could be an indication of different ratios of these two polymorphic forms in the sample. The lack 

of any diagnostic peak at 9.74° and 22.2 indicates there is no Δ-mannitol in the samples. Table 

4.4 summarizes all the polymorphic forms of mannitol associated with each carrier. In conclusion, 

XRD results showed that all formulations are in a crystalline state regardless of the type of 

polymorphic form they contain.  

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.4. X-Ray Diffraction. Powder X-Ray diffraction patterns of Leucine, Spray Dried 

Mannitol (SDM), SDM- 0.06% L-leucine, SDM-0.3% L-leucine, SDM-0.6% L-leucine, SDM-3% L-

leucine, and SDM-6% L-leucine.  
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Table 4.4. Mannitol Polymorphs. Characterization of mannitol polymorphs found within each 
formulation’s carriers.  

Carrier α-mannitol β-mannitol Δ-mannitol 

Commercial Mannitol  — ✓ — 

Spray Dried Mannitol ✓ ✓ — 

0.06% L-Leucine ✓ ✓ — 

0.3% L-Leucine ✓ ✓ — 

0.6% L-Leucine ✓ ✓ — 

3% L-Leucine ✓ ✓ — 

6% L-Leucine ✓ ✓ — 

 

 

Solid-state characterization was further assessed with the implementation of FT-IR (Figure 4.5). 

It was understood that α-mannitol exhibits a peak at 1195cm-1, β-mannitol at 929cm-1, 959cm-1, 

and 1209cm-1, and Δ-mannitol at 967cm-1.258 Looking at Figure 4.5, it is clear that the commercial 

mannitol showed the main peaks for β-mannitol. Spray Dried Mannitol exhibited the peaks 

associated to the β-polymorph (α-mannitol was not detectable due to a very low concentration, it 

was more clear in the XRD figure) whereas all other spray dried samples containing leucine 

showed peaks associated to the α-mannitol and β-mannitol polymorphs. 

 

The apparent broadening and widening in the peaks within 2500-3700cm-1
 
is due to the presence 

of L-leucine in the samples. L-Leucine, being a branched-chain amino acid (BCAA), belongs to a 

group of proteins that are known for having an aliphatic side-chain and that are non-polar; the 
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aliphatic side-chain explains the results obtained in the spectra. In essence, the presence of L-

leucine allowed for there to be an increase in the vibrational stretching that is observed by the 

hydroxyl group.277 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. FT-IR. FT-IR spectra of commercial mannitol, Spray Dried Mannitol, spray dried 

mannitol containing 0.06% L-leucine, 0.3% L-leucine, 0.6% L-leucine, 3% L-leucine, 6% L-leucine, 

and L-leucine where ⇡ represents α-mannitol, ↑ represents β-mannitol, and ⇞ represents Δ-

mannitol.  

Commercial Mannitol 

SD Mannitol 

0.06% L-Leucine 

0.3% L-Leucine 

0.6% L-Leucine 

3% L-Leucine 

6% L-Leucine 

L-Leucine 
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§ 4.3.3 In vitro analysis of DPI formulations  

§§ Albuterol sulphate assessment 

 

Aerosolization performance of all of the formulations is summarized in Figure 4.6 where the 

amount of Albuterol sulphate deposited in each of the stages of the deposition is shown [capsules 

(C), inhaler (I), mouthpiece (M), induction port (IP), Stage 1, Stage 2, Stage 3, Stage 4, and Stage 

5]. All of the formulations experienced minimal Albuterol sulphate deposits (p > 0.05) in the 

capsules with 3% L-leucine having the highest amount (6.62 + 4.59μg) and 0.06% L-leucine having 

the lowest amount (2.98 + 0.42 μg). As particles maneuvered through the simulated respiratory 

tract (MSLI), 3% L-leucine experienced the highest amount of Albuterol sulphate (51.35 + 

49.66μg) in the inhaler when compared to 6% L-leucine, which experienced the least amount at 

13.26+6.34μg. Furthermore, all of the formulations showed similar amounts of Albuterol sulphate 

in the mouthpiece and induction port (see Figure 4.6), but began to differ at Stage 1 where 

aerodynamic particle size becomes more significant.  
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Figure 4.6. Aerosolization Profile. Aerosolization performance of each formulation (Spray Dried 
Mannitol, spray dried mannitol containing 0.06% L-leucine, 0.3% L-leucine, 0.6% L-leucine, 3% L-
leucine, and 6% L-leucine) highlighting the amount of Albuterol sulphate (AS) recovered (percent 
recovered).  
 

Moreover, Spray Dried Mannitol had the highest Albuterol sulphate recovered from within Stage 

1 (170.70 + 37.06μg), but 0.06% L-leucine and 0.3% L-leucine were not far behind with 157.75 + 

9.04μg and 148.30 + 32.12μg, respectively. This shows that as the concentration of L-leucine 

increases the amount of Albuterol sulphate deposits in Stage 1 decreases. This could be due to 

the lubrication effect that is seen when L-leucine is added as an excipient (Chapter 3). The results 

showed that 6% L-leucine experienced the highest Albuterol sulphate amounts from within Stage 

3, and Stage 4 (118.74 + 44.84μg, and 67.40 + 15.75μg; respectively) indicative of it being the 

most successful at delivering Albuterol sulphate to the lower part of the lungs. In other words, the 

formulations, with respect to MMAD, ranked in the following order: 6% L-leucine = 0.06% L-leucine 

> Spray Dried Mannitol > 0.6% L-leucine > 0.3% L-leucine > 3% L-leucine. 
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Likewise, looking at the RD, ED, and percentage recovery of each formulation, which is presented 

in Table 4.5, it was concluded that all of the formulations, with the exception of Spray Dried 

Mannitol, experienced similar values (p < 0.05). Such results are indicative of L-leucine’s powder 

dispersion effect,244, 278, 279 its ability to act as a lubricant (see Chapter 3), and its ability to aid in 

storage and stability280 as Spray Dried Mannitol showed significantly different results and 

contained no L-leucine. 

  

Additionally, all of the formulations differed remarkably from one another (p < 0.05) with respect 

to drug loss (DL), see Table 4.5, given that they all undertook a high number of actuations (n= 

10) per run with each being filled with a consistent weight of 33.13 + 0.46 mg. Nevertheless, 6%  

L-leucine experienced the least amount of drug loss with 9.64 + 1.01% indicative of optimized 

properties allowing for the best attachment and detachment of Albuterol sulphate when compared 

to all other formulations.  
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Table 4.5. Aerosolization Parameters. Recovered Dose (RD), Emitted Dose (ED), Percent Recovery, Percent Emission, Percent 
Impact Loss, Mass Median Aerodynamic Diameter (MMAD), Geometric Standard Deviation (GSD), Fine Particle Dose (FPD), Fine 
Particle Fraction (FPF), Drug Loss (DL), Dispersibility (DS), and Effective Inhalation Index (EI) of Albuterol sulphate obtained from 
each of the different formulations (Spray Dried Mannitol, 0.06% L-leucine, 0.3% L-leucine, 0.6% L-leucine, 3% L-leucine, and 6% L-
leucine)  

Formulation RD (μg) ED (μg) Recovery 
(%) 

Emission 
(%) 

Impact Loss 
(%) 

MMAD 
(μm) 

GSD 
(μm) FPD FPF (%) DL (%) DS (%) EI 

Spray Dried Mannitol 431 + 
143.68 

394.56 + 
147.19 

89.74 + 
29.87 

90.34 + 
5.20 

45.59 +  
6.29 

 
3.06 +  
0.10 

 
2.10 + 
0.08 

168.20 + 
85.39 

37.06 + 
8.66 

10.54 + 
5.35 

40.75 + 
7.55 

11.28 + 
0.62 

0.06% L-Leucine 376.84 + 
41.04 

338.39 + 
41.00 

78.034 + 
8.53 

89.72 + 
1.16 

45.34 +  
2.08 

3.20 +  
0.05 

2.01 + 
0.03 142.08 + 

24.68 
37.54 + 

2.46 
11.08 + 

1.25 
41.83 + 

2.19 
11.28 + 

0.16 

0.3% L-Leucine 356.54 + 
7.83 

320.93 + 
15.09 

74.13 +  
1.63 

89.98 + 
2.43 

45.84 +  
9.97 

2.92 + 
 0.07 

2.09 + 
0.01 138.80 + 

32.62 
38.86 + 

8.54 
11.29 + 

2.76 
43.19 + 

9.34 
11.35 + 

0.40 

0.6% L-Leucine 394.58 + 
61.56 

355.06 + 
58.83 

82.03 + 
12.80 

89.88 + 
1.58 33.68 + 9.98 

3.01 + 
 0.11 

2.07 + 
0.06 194.60 + 

61.90 
48.45 + 

9.44 
11.30 + 

1.67 
53.80 + 

9.69 
11.76 + 

0.47 

3% L-Leucine 386.66 + 
97.37 

327.19 + 
109.64 

80.39 + 
20.24 

84.25 + 
13.76 30.01 + 4.96 

2.91 + 
 0.17 

2.11 + 
0.06 182.85 + 

73.96 
47.19 + 
13.76 

17.42 + 
13.92 

55.15 + 
8.13 

11.42 + 
1.24 

6% L-Leucine 376.34 + 
73.37 

354.95 + 
68.08 

78.24 + 
15.25 

94.35 + 
0.64 

28.74 + 
 9.13 

3.20 +  
0.21 

2.05 + 
0.05 201.78 + 

58.77 
52.96 + 

5.21 9.64 + 1.01 56.14 + 
5.61 

12.14 + 
0.21 
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It is interesting to note that when the concentration of L-leucine increased from 0 to 0.3% no 

significant changes were observed in impaction loss (IL), whereas beyond 0.3% a significant 

reduction was observed for the IL value so that samples containing 6% L-leucine showed the least 

IL (28.74 + 9.13%). Such variation between the formulations could be attributed to their 

aerodynamic diameter given that impaction is a flow-dependent mechanism governed by particle 

size.18 In addition, 6% L-leucine showed the smallest VMD of its coarse particulate matter (VMD 

of 63.46 + 0.18μm; results from Table 4.1) when compared to the other formulations; all of which 

had higher VMDs for their agglomerated coarse particles (see Table 4.1 and Figure 4.2).  

 

Effective inhalation index (EI) ranged from 11.28 + 0.16 (0.06% L-leucine) to 12.14 + 0.21 (6% L-

leucine) showing a linear relationship with FPF (r2
 
= 0.81), data not shown. This indicates that 

the presence of L-leucine is necessary to enhance the EI value.  

 

DS (dispersibility) and FPD also confirmed that samples with a higher concentration of L-leucine 

showed better dispersibility and high fine particle dose where both are an indication of a good 

aerosolization performance of Albuterol sulphate. There was a linear relationship (r2
 
= 0.89) 

between the carriers of the wet system’s VMDs and that of FPD (data not shown) which brings in 

the notion of inertial impaction and its prevalence, as previously discussed; such relationship also 

builds upon the variations observed between the formulations.  

 

When it came to MMAD and GSD, however, all of the formulations gave similar results with MMAD 

and GSD (p > 0.05). In addition, a linear correlation (r2= 0.69) between the L-leucine concentration 

and FPF was established (data not shown) suggesting that L-leucine played a significant role (p 
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< 0.05) in decreasing the particle’s density and size,279 while providing an anti-hygroscopic 

effect,280 as it has been shown for L-leucine to precipitate on the surface of drying droplets when 

spray drying.30, 278, 279, 281, 282  These precipitated L-leucine patches were accounted for when 

engineering the carriers as the end product shows; knowing this aids in the developmental 

process for physicochemical property selection and with the invention/creation of methodological 

processes.  

 

Furthermore, 6% L-leucine witnessed the highest FPF of 52.96 + 5.21% indicative of it being the 

most efficient at delivering the highest amount of Albuterol sulphate to the lower respiratory tract. 

In addition, this formulation also showed the best drug-carrier cohesive-adhesive balance ratio as 

this ratio is directly related to the FPF of any given API.283  Such results also support those of 

Labiris and Dolovich which experienced a similar outcome.284 Moreover, this formulation also had 

the highest percentage emission of 94.35 + 0.64%, when compared to the other formulations (see 

Table 4.5) inferring that it released the most Albuterol sulphate into the simulated system 

providing sufficient evidence to classify it as the best formulation.  

 

All in all, optimal properties were attained such that a complementary system emerged between 

Albuterol sulphate and the 6% L-leucine carrier and one that was effective when implemented. 

Arriving to this conclusion was done through numerous factors and checkpoints (i.e 

physicochemical properties, particle size, particle density, etc.) along the way that catalyzed a 

cascade of favorable conditions for the 6% L-leucine carrier-to-Albuterol sulphate system. On the 

other hand, Spray Dried Mannitol showed the lowest FPF (37.06 + 8.66%) inferring that Albuterol 

sulphate had a more difficult time detaching itself from the Spray Dried Mannitol carrier during the 
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inhalation process when compared to 6% L-leucine, which performed with the highest efficacy 

profile for aerosolization purposes.  

 

§§ 4.3.3.2 Homogeneity assessment 

 

Assessing the homogeneity of each formulation was an essential phase of this overall study 

given that a uniform formulation will give rise to a more effective drug delivery profile with a 

consistent dose to the patient; it also adheres to USP guidelines. Figure 4.7 eludes the 

homogeneity profile of each of the formulations (0, 0.06, 0.3, 0.6, 3, and 6% L-leucine) under 

investigation showing the potency of each while Table 4.6 presents the percentage content 

homogeneity, which is expressed as the percentage coefficient of variation (%CV), of each of 

the aforementioned formulations.  
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Figure 4.7. Potency. Percent potency of each formulation (Spray Dried Mannitol, spray dried 

mannitol containing 0.06% L-leucine, 0.3% L-leucine, 0.6% L-leucine, 3% L-leucine, and 6% L-

leucine) with respect to Albuterol sulphate.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



123 
 

 
Table 4.6. Content Homogeneity. Content homogeneity of Spray Dried Mannitol, 0.06% L-leucine, 
0.3% L-leucine, 0.6% L-leucine, 3% L-leucine, and 6% L-leucine expressed as the percent 
coefficient of variation (%CV)  

Formulation Assay % % CV 

Spray Dried Mannitol 91.95 ± 19.22  20.90 

0.06% L-Leucine 122.37 ± 4.75  3.88 

0.3% L-Leucine 105.18 ± 14.81  14.08 

0.6% L-Leucine 112.02 ± 13.38  11.94 

3% L-Leucine 110.07 ± 13.11  11.90 

6% L-Leucine 110.96 ± 14.84  13.38 

*However, has not been taken into account for in vivo inhalation studies.  

 

All of the formulations varied considerably from one another with regard to potency with a range 

of 122.37 + 4.75% (sample containing 0.06% L-leucine) to 91.95 + 19.22% (Spray Dried Mannitol 

without L-leucine). Regarding %CV, the smallest %CV of 3.88% belonged to 0.06% L-leucine 

and the highest %CV of 20.90 belonged to Spray Dried Mannitol without L-leucine (see Table 

4.6). Such results indicate that 0.06% L-leucine had the best Albuterol sulphate content 

homogeneity amongst all of the formulations. Table 4.6 also showed that the presence of L-

leucine improved the homogeneity of the samples compared to the sample without L-leucine. 

The table also shows that all formulations adhered to the acceptable range of 75-125% set by 

the USP and its European counterpart.  

 

4.4 Conclusion 

 

The results presented in this chapter have proven that mannitol solutions containing different 

concentrations of L-leucine were successfully spray dried.  In addition, it was also shown that the 
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presence of L-leucine changed the properties of the resultant spray dried particles. This modified 

mannitol showed an improvement in the aerosolization performance of Albuterol sulphate (FPF =  

52.96 + 5.21%), which was measured through the FPF. The results also confirmed that mannitol 

can serve as a suitable alternative carrier over lactose in DPI formulations and could be suitable 

for lactose intolerant patients suffering from asthma or COPD. In the future, it would be beneficial 

to explore the use of both spray dried lactose and mannitol, together, to determine their effect 

when used in DPI formulations. 
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Chapter 5 

 

Effect Different Mixtures of the Spray Dried Mannitol and 
Lactose with Leucine have on Dry Powder Inhaler 

Performance of Salbutamol Sulphate (Albuterol)  
 

5.1 Introduction 
 

In this chapter, the focus was to engineer a spray dried carrier composed of mannitol, lactose,  

and 5% L-leucine (w/w) and investigate the effect that different mannitol:lactose ratios have on the 

overall aerosolized dry powder inhaler (DPI) performance for salbutamol sulphate. β2-Andrenergic 

receptor agonists, like that of to salbutamol sulphate, acts on the β2-andrenergic receptor 

facilitating smooth muscle relaxation and dilation of bronchial passages.285 This enables patients 

suffering from asthma, a chronic inflammatory disease characterized by the obstruction of airflow 

due to bronchial airway constriction in response to a stimulus,286 the ability to breathe. Such 

process, however, is achieved via delivery of a successful therapeutic dosage of salbutamol 

sulphate to be deposited more peripherally; that is to say, in the middle and small airway.287, 288 

Therefore, aerosolization performance becomes a significant factor in the development and 

implementation of any given dry powder inhaler (DPI) formulation given that inter-particulate 

forces are directly influenced by particle density, morphology, surface roughness, particle-size 

distribution, presence of fine particle excipients, surface energy, carrier flow, and carrier 

material.289,  290 
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In Chapter 4, it was determined that the aerosolization performance of albuterol sulphate 

containing spray dried 6% L-leucine with mannitol was affected in such a way that the FPF was 

increased to 52.96% from 47.11% (Chapter 3). This increase suggested that mannitol can serve 

as an alternative carrier to lactose. In this investigation, the goal is to determine whether a spray 

dried formulation containing binary mixtures of mannitol:lactose with different ratios (with 5% L-

leucine; w/w) can improve the aerosolization performance further or not. 

 

5.2 Materials and Methodology  

§ 5.2.1- § 5.2.13 

Refer to Chapter 2 sections 2.2, 2,3, 2.5-2.11, and 2.14-2.16. 

 

5.3 Results and Discussion  

 § 5.3.1 Particle Size Analysis and Morphology  

 

Particle interactions are of great importance in DPI formulations where the dispersion of the active 

pharmaceutical ingredient particles from carrier particles is critical for lung deposition.220 It holds 

true that particles with a diameter between 5-10 μm deposit primarily in the extrathoracic airways 

and particles between 1-5 μm mostly deposit in the tracheo-bronchiol region; particles with a 

diameter below 1 μm deposit in the alveolar region.291, 292  

 

Nonetheless, particle analysis was carried out for each of the carriers within this study to 

determine whether their volume mean diameter (VMD) fell within the pre-requisite range of 63-90 

μm.222, 293 Figure 5.1 presents the particle size distribution (PSD) diagrams of the carriers 

illustrating their particle size and their cumulative distribution when using the (A) Rodos  dry 
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system (Figure 5.1A) and (B) Cuvette wet system (Figure 5.1B). As is clear by Figure 5.1B, the 

carrier’s VMDs are greater than those in Figure 5.1A due to particle agglomeration. Small particles 

carry a greater net charge-to-surface ratio (net-CSR) than larger particles as particle charge is 

inversely related to particle mean diameter.128, 294, 295 

 

Furthermore, the aggregated particles comply with pharmacopoeia guidelines as they all fall 

between 63-90 μm; Table 5.1 provides the true numerical VMD values along with the span for 

each of the carriers for both the dry and wet systems. When the carriers were subjected to the 

Rodos system, their VMDs ranged from 13.58 + 0.20 μm (Lactose) to 37.52 + 0.52μm (3:1 

[Mannitol:Lactose]), however, with the Cuvette system, this range became 69.59 + 0.99μm (1:3 

[Mannitol:Lactose]) to 86.38 + 1.62μm (3:1 [Mannitol:Lactose]). The span for the carriers was 

determined to be 1.62 + 0.05 (3:1 [Mannitol:Lactose]) to 2.62 + 0.12 (Lactose) and 1.15 + 0.02 

(1:1 [Mannitol:Lactose]) to 2.03 + 0.02 (1:3 [Mannitol:Lactose]) for the dry and wet systems, 

respectively. The dry system experienced a particle diameter range of  6.48 + 2.22 μm (D10%) to 

64.94 + 9.70 μm (D90%) whereas the wet system showed a range of 52.88 + 6.36 μm (D10%) to 

142.66 + 19.14 μm (D90%). 
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Figure 5.1. Particle Size Distribution. Particle Size Distribution (PSD) diagrams of carriers (Spray 

Dried Mannitol, Spray Dried Lactose, 1:1 [Mannitol:Lactose], 1:3 [Mannitol:Lactose], and 3:1 

[Mannitol:Lactose]) when using the (A) Rodos dry system and when using the (B) Cuvette wet 

system. 

(A) 

(B) 
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Table 5.1. Particle Analysis. Particle size Analysis of Spray Dried Mannitol, Spray Dried Lactose, 

mixtures of mannitol:lactose (1:1, 1:3, and 3:1) showing the volume mean diameter (VMD) and 

span when using the Rodos dry system or the Cuvette wet system. 

Carrier VMD (μm)          
Dry System   

VMD (μm)          
Wet System   

Span                    
Dry System  

Span                    
Wet System  

Spray Dried Mannitol 29.86 + 0.19 72.82 + 0.07 2.25 + 1.95 2.02 + 0.20 

Spray Dried Lactose 13.58 + 0.20 79.31 + 2.19 2.62 + 0.12 1.74 + 0.08 

1:1  [Mannitol:Lactose] 37.51 + 0.48 79.95 + 1.16 1.75 + 0.04 1.15 + 0.02 

1:3  [Mannitol:Lactose] 35.06 + 6.21 69.59 + 0.99 2.28 + 0.19 2.03 + 0.02 

3:1  [Mannitol:Lactose] 37.52 + 0.52 86.38 + 1.62 1.62 + 0.05 1.36 + 0.01 
 
 

 

Figure 5.2 presents the electron micrograms of all the carriers (SD Mannitol, SD Lactose,  different 

ratios of Mannitol:Lactose (1:1,1:3 and 3:1). Both the SD Mannitol and SD Lactose carriers were 

characterized as resembling the structure of a tomahawk while the other ratios of 

Mannitol:Lactose] (1:1, 1:3 and 3:1) were characterized as spherical. Based on the electron 

micrograms, nonetheless, it was deduced that some degree of agglomeration took place which 

coincides with the data presented in Figure 5.1 and Table 5.1. 
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Figure 5.2. Scanning Electron Microscopy. SEM electron micrograms of (A) Spray Dried 

Mannitol, (B) Spray Dried Lactose, (C) SD 1:1 [Mannitol:Lactose], (D) SD 1:3 [Mannitol:Lactose], 

and (E) SD 3:1 [Mannitol:Lactose] all with 5% L-leucine (w/w). 

 

(A) Spray Dried  Mannitol (B) Spray Dried  Lactose 

(C) 1:1 [Mannitol:Lactose] (D) 1:3 [Mannitol:Lactose] 

(E) 3:1 [Mannitol:Lactose] 
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§ 5.3.2 Solid-state characterization of spray dried samples 

 

Figure 5.3 presents the thermal traces associated to each of the carriers while highlighting the 

endotherm or exotherm found within each sample. To rule out the possibility of L-leucine having 

any thermal events within the 25-300°C range, a pure sample of L-leucine was analyzed; as can 

be seen from Figure 5.3, L-leucine had no thermal event within the aforementioned range. 

 

 

 

 

 

 

 

 

 

Figure 5.3. Differential Scanning Calorimetry. DSC thermal peaks of Spray Dried Mannitol, Spray 

Dried Lactose, 1:1 [Mannitol:Lactose], 1:3 [Mannitol:Lactose], and 3:1 [Mannitol:Lactose], where 

an exothermic peak points up and an endothermic peak points down. 

 

Spray Dried Mannitol with 5% L-leucine (w/w) presented an endothermic peak at 169.79 + 0.35 

°C, known to be attributed to the melting of mannitol,224, 270  with a resulting enthalpy of 208.66 + 

6.87J/g (Table 5.2). Spray Dried Lactose with 5% L-leucine (w/w), however, showed four 

endothermic peaks (138.88 + 1.06, 160.16 + 0.13,  208.48 + 0.30, and 227.45 + 1.82°C) and one 

exothermic peak (171.13+ 0.23°C). The first and second endothermic peaks (138.88 + 1.06°C 

and 160.16 + 0.13°C), which are associated to the evaporation of water,297 resulted with an 
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enthalpy of 84.15 + 9.29 and 33.04 + 10.72 J/g (Table 5.2) whereas the third endothermic peak 

(208.48 + 0.30°C), associated to the melting of α-lactose,297 gave an enthalpy of 53.96 + 5.98 J/g 

(Table 5.2). The last endothermic peak at 227.45 + 1.82°C associated to the melting of β-

lactose,297 resulted with an enthalpy of 29.87 + 4.65J/g (Table 5.2). The exothermic peak at 

171.13+ 0.23°C is due to the crystallization of  amorphous lactose297 which had an enthalpy of -

16.35 + 2.09J/g (Table 5.2). 
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Table 5.2. DSC Thermal Traces. DSC thermal traces of Spray Dried Mannitol, Spray Dried Lactose, 1:1 [Mannitol:Lactose], 1:3 
[Mannitol:Lactose], and 3:1 [Mannitol:Lactose] (all with 5% L-leucine [w/w]) that indicate the enthalpy (ΔH), in J/g, of each thermal 
event along with the Temperature (°C) of where such thermal event took place. 
 

   Water 
Evaporation Mannitol Melting Amorphous 

Lactose α-lactose melting β-lactose melting 

Formulation 
Temper

ature 
(°C) 

∆H (J/g) 
Tempe
rature 
(°C) 

∆H 
(J/g) 

Temperat
ure (°C) 

∆H 
(J/g) 

Temper
ature 
(°C) 

∆H 
(J/g) 

Temperatu
re (°C) 

∆H 
(J/g) 

Temper
ature 
(°C) 

∆H (J/g) 

Spray Dried 
Mannitol — — — — 168.79 + 

 0.35 
208.66+ 

6.87 — — — — — — 

Spray Dried 
Lactose 

138.88 + 
1.06 

84.15 +  
9.29 

160.07 +  
0.13 

33.04 + 
10.72 — — 171.13 +  

0.23 
-16.3+ 
2.09 

208.48 +  
0.30 

53.9+ 
5.98 

227.45 + 
 1.82 29.87 + 4.65 

1:1 129.77 + 
0.00 

49.07 +  
11.40 — — 158.19 + 

 0.05 
166.39+ 

19.04 — — — — — — 

1:3 127.22 + 
2.98 

36.88 +  
3.03 — — 156.11 +  

0.16 
91.36 + 

9.80 — — 201.34 + 
 0.08 

33.71 + 
23.48 

219.55 + 
 5.09 9.54 + 5.12 

3:1 126.33 + 
0.25 

21.54 +  
0.53 — — 163.94 +  

0.01 
178.22+ 

25.63 
138.46 + 

 0.05 
3.00 + 
0.12 — — — — 

L-Leucine — — — — — — — — — — — — 
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Furthermore, when looking at the carriers containing mixtures of Mannitol:Lactose with 5% L-

leucine (w/w) and their respective thermal events, it appears that they all experienced temperature 

shifts from those observed from the Spray Dried Mannitol and Spray Dried Lactose  both with 5% 

L-leucine (w/w) (see Figure 5.3 and Table 5.2). This shift is associated to the introduction of L-

leucine in the samples prior to undergoing spray drying. 

 

Nevertheless, the 1:1 [Mannitol:Lactose] carrier exhibited two endothermic peaks at 129.77 + 

0.00 and 158.19 + 0.05 °C) corresponding to the evaporation of water and the melting of mannitol 

with enthalpies of 49.07 + 11.40 J/g and 166.39 + 19.04 J/g, respectively. The 1:3 

[Mannitol:Lactose] carrier, however, experienced four endothermic peaks (127.22 + 2.98, 156.11 

+ 0.16, 201.34 + 0.08, and 219.55 + 5.09°C) where the enthalpies for the endothermic peaks 

were 36.88 + 3.03, 91.36 + 9.80, 33.71 + 23.48, and 9.54 + 5.12J/g (respectively) [see Table 5.2]. 

These thermal events indicate the occurrence of water evaporation (127.22 + 2.98°C), 

amorphous lactose recrystallization (175.23 + 7.87°C), the melting of mannitol (156.11 + 0.16°C), 

α-lactose melting (201.34 + 0.08°C), and β-lactose melting (219.55 + 5.09°C); see Figure 5.3 and 

Table 5.2. 

 

Moreover, the 3:1 [Mannitol:Lactose] carrier resulted in having three endothermic peaks (126.33 

+ 0.25, 138.46 + 0.05, and 163.94 + 0.01°C) where the enthalpy for the evaporation of water 

(126.33 + 0.25°C) was 21.54 + 0.53J/g, amorphous lactose recrystallization (138.46 + 0.05°C) 

was 3.00 + 0.12J/g, and the enthalpy for the melting of mannitol (163.94 + 0.01°C) was 178.22 + 

25.63J/g. Interestingly, the 1:1 [Mannitol:Lactose] and 3:1 [Mannitol:Lactose] carriers failed to 

show any traces of α-lactose or β-lactose melting suggesting their absence in the sample. 

Moreover the 3:1 [Mannitol:Lactose] carrier showed signs of its amorphicity through the presence 
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of the amorphous lactose recrystallization enthalpy, which was absent in the 1:1 

[Mannitol:Lactose] carrier. 

 

Figure 5.4 shows the powder X-Ray diffraction (PXRD) peaks associated to each carrier, aiding 

in the characterization of the carrier’s polymorphic form. Powder X-Ray Diffraction (XRPD) can 

identify if the sample is crystalline or amorphous. 

 

Mannitol’s polymorphic forms ( α-, β-, and Δ-) are known to exhibit distinguishable diffraction 

peaks with α-mannitol having such peaks at 9.57° and 13.79°, β-mannitol at 10.56° and 14.71°, 

and Δ-mannitol at 9.74° (see Chapter 3).296 With the results presented in the Figure, it was 

determined that spray dried mannitol, 1:1 [Mannitol:Lactose], 1:3 [Mannitol:Lactose], and 3:1 

[Mannitol:Lactose] were composed of the  α-  and β-polymorph as indicated in the Figure. Spray 

Dried Lactose, on the other hand, differed remarkably from all the other carriers due to its 

amorphous nature; the broadened and shallow peaks at 12.5° and 18.3° have been reported 

elsewhere as being attributed to lactose’s amorphicity (see Chapter 3). Moreover, such results 

support those presented in Figure 5.3 via a more reliable and accepted technique of solid-state 

characterization of newly developed formulations. 
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  α-mannitol 
 
β-mannitol 
 

Figure 5.4. X-Ray Diffraction. Powder X-Ray diffraction patterns of Spray Dried Mannitol, Spray 

Dried Lactose, 1:1 [Mannitol:Lactose], 1:3 [Mannitol:Lactose], and 3:1 [Mannitol:Lactose]. 

 

 

Figure 5.5 presents the infrared spectrum of all the carriers, and that of L-leucine, indicating the 

solid-state characterization of each carrier within this overall study. It has been documented 

elsewhere that lactose possesses four peaks within the spectra that elucidates its polymorphic 

form; amorphous lactose presenting peaks at 1260cm-1 and 900cm-1, α-lactose at 920cm-1, and 

β-lactose at 950cm-1. Mannitol, on the other hand, is distinguishable via five peaks: α-mannitol at 

1195cm-1, β-mannitol at 929cm-1, 959cm-1, and 1209cm-1, and � -mannitol at 967cm-1.296 

SD Mannitol 

SD Lactose 

1:1 
[Mannitol:Lactose] 

1:3 
[Mannitol:Lactose] 
3:1 
[Mannitol:Lactose] 
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By looking at Figure 5.5, Spray Dried Mannitol is composed of the α- and β-polymorph, Spray 

Dried Lactose with amorphous content,  α-lactose and β-lactose, 1:1 [Mannitol:Lactose] with  α- 

and β-mannitol, 1:3 [Mannitol:Lactose] with amorphous lactose,  α-lactose, β-lactose,  α-mannitol, 

and β-mannitol, and 3:1 [Mannitol:Lactose] with amorphous lactose,  α-mannitol, and β-mannitol. 

Furthermore, these results, and those presented in Figure 5.3, complement one another and 

were, therefore, used in the solid-state characterization of the carriers. 
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Figure 5.5. FT-IR. FT-IR spectra of Spray Dried Mannitol, Spray Dried Lactose, 1:1 

[Mannitol:Lactose], 1:3 [Mannitol:Lactose], 3:1 [Mannitol:Lactose], and  L-leucine where ⇡ 

represents α-mannitol, ↑ represents β-mannitol, and ⇞ represents Δ-mannitol. 
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§ 5.3.3 In vitro analysis of DPI formulations  

§§ 5.3.3.1 Salbutamol sulphate assessment 

 

Aerosolization performance of all of the formulations is summarized in Figure 5.6 where the 

amount of salbutamol sulphate deposited into each of the stages of the Multi-Stage Liquid 

Impinger (MSLI) is shown [capsules (C), inhaler (I), mouthpiece (M), induction port (IP), Stage 1, 

Stage 2, Stage 3, Stage 4, and Stage 5]. As can be seen in the figure, spray dried lactose 

obtained the lowest amount of salbutamol sulphate in the capsules with 1.90 ± 0.58 μg while the 

1:1 [Mannitol:Lactose] carrier obtained the highest with 9.52  ± 7.32 μg. When it came to the 

inhaler device, however, the 1:3 [Mannitol:Lactose] carrier exhibited the least with 8.82 ± 2.47 

μg whereas the 1:1 [Mannitol:Lactose] carrier exhibited the highest amount with 42.11 ± 41.74 

μg.  

 

When it came to the mouthpiece, spray dried mannitol obtained the least amount of salbutamol 

sulphate with 8.11 ± 0.91 μg while the 1:1 [Mannitol:Lactose] carrier obtained the highest 

amount with 12.21 ± 4.93 μg. In the induction port, the 1:3 [Mannitol:Lactose] carrier obtained 

the least mount of salbutamol sulphate with 7.84 ± 3.42 μg while spray dried lactose obtained 

the highest amount with 14.58 ± 6.15μg. The 1:3 [Mannitol:Lactose] carrier also had the least 

amount of salbutamol sulphate in Stage 1 with 73.30 ± 14.22 μg while the 3:1 

[Mannitol:Lactose] carrier had the most with 130.33 ± 23.93μg. In Stage 2-5, the 1:3 

[Mannitol:Lactose] carrier obtained the highest amount of salbutamol sulphate with 41.30 ± 

23.89, 128.10 ± 56.12, 79.01 ± 33.48, and 24.51 ± 15.16μg (respectively) categorizing it as the 

optimal carrier. As far as the lowest amounts are concerned, the 3:1 [Mannitol:Lactose] carrier 

obtained 19.68 ± 8.86μg for Stage 2, Spray Dried Lactose obtained 67.78 ± 48.36μg for Stage 
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3, the 3:1 [Mannitol:Lactose] carrier obtained 49.90 ± 12.55μg for Stage 4, and the 1:1 

[Mannitol:Lactose] carrier obtained 9.56 ± 2.35μg for Stage  5. 

  

  

  

    

   

    

   

  

 

Figure 5.6. Aerosolization Profile. Aerosolization performance of each formulation (Spray Dried 

Mannitol, Spray Dried Lactose, 1:1 [Mannitol:Lactose], 1:3 [Mannitol:Lactose], and 3:1 

[Mannitol:Lactose]) highlighting the amount of salbutamol sulphate recovered (percent 

recovered). 

 

Table 5.3 presents the recovered dose (RD), emitted dose (ED), percent recovery, percent 

emission, percent impact loss, mass median aerodynamic diameter (MMAD), geometric standard 

deviation (GSD), fine particle dose (FPD), fine particle fraction (FPF), drug loss (DL), dispersibility 

(DS), and effective inhalation index (EI) for salbutamol sulphate obtained from each of the 

different formulations (Spray Dried Mannitol, Spray Dried Lactose, 1:1 [Mannitol:Lactose], 1:3 

[Mannitol:Lactose], and 3:1 [Mannitol:Lactose]) and correlates with the data already presented in 
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Figure 5.6. With that being said, Spray Dried Mannitol accounted for receiving the least amount 

of salbutamol sulphate for RD, ED, percent recovery, and percent emission with 213.23 + 

59.44μg, 147.97 + 53.44μg, 44.33 + 12.36%, and 73.03 + 28.66% (respectively); the 1:3 

[Mannitol:Lactose] carrier, however, received the highest amount of salbutamol sulphate for RD, 

ED, percent recovery, and percent emission with 371.01 + 144.43μg, 354.07 + 140.71μg, 77.13 

+ 30.03%, and 95.21 + 0.95% (respectively). 

 

The 1:3 [Mannitol:Lactose] carrier received the lowest impact loss with 23.29 + 5.83% whereas 

the highest was the 3:1 [Mannitol:Lactose] carrier with 44.65 + 11.75%. These results suggest 

that the 1:3 [Mannitol:Lactose] carrier obtained the best aerosolized performance amongst the 

carriers. With respect to MMAD, the 1:1 [Mannitol:Lactose] carrier obtained the largest diameter 

with 3.10 + 0.06μm, whereas Spray Dried Lactose obtained the lowest diameter with 3.00 + 

0.18μm. In addition, the 1:1 [Mannitol:Lactose] carrier also received the lowest GSD with 2.03 + 

0.04μm whereas the highest GSD came from Spray Dried Lactose with 2.13 + 0.08μm.  

 

With respect to FPD, the 1:3 [Mannitol:Lactose] carrier obtained the highest amount with 231.63 

+ 103.21 and the lowest amount was from Spray Dried Mannitol with 75.82 + 43.07. The 1:3 

[Mannitol:Lactose] carrier received the highest FPF with 61.42 + 4.21% whereas the lowest was 

from Spray Dried Mannitol with 38.10 + 21.84%. These results prove that the 1:3 

[Mannitol:Lactose] carrier was the best engineered carrier amongst all the carriers. The 1:3 

[Mannitol:Lactose] carrier also received the lowest drug loss with 5.93 + 1.04% whereas the 

highest drug loss was from Spray Dried Mannitol with 29.10 + 30.22%. The 1:3 [Mannitol:Lactose] 

carrier had the highest dispersibility with 64.49 + 3.77% and effective inhalation index with 12.51 

+ 0.21 whereas the lowest dispersibility came from the 3:1 [Mannitol:Lactose] carrier with 45.82 

+ 10.19% and the lowest effective inhalation index came from Spray Dried Mannitol with 10.32 + 
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2.63. All in all, taking all of the measurements as a whole and not individually, the 1:3 

[Mannitol:Lactose] carrier navigated itself as having the best aerosolization performance when 

compared to the other carriers. That being said, this carrier is the most effective at delivering 

salbutamol sulphate to the lower respiratory tract via a dry powder inhaler.  



143 
 

Table 5.3. Aerosolization Parameters. Recovered Dose (RD), Emitted Dose (ED), Percent Recovery, Percent Emission, Percent 

Impact Loss, Mass Median Aerodynamic Diameter (MMAD), Geometric Standard Deviation (GSD), Fine Particle Dose (FPD), Fine 
Particle Fraction (FPF), Drug Loss (DL), Dispersibility (DS), and Effective Inhalation Index (EI) of salbutamol sulphate obtained from 

each of the different formulations (Spray Dried Mannitol, Spray Dried Lactose, 1:1 [Mannitol:Lactose], 1:3 [Mannitol:Lactose], and 3:1 
[Mannitol:Lactose]). 
 

Formulation RD (μg) ED (μg) Recovery 
(%) 

Emission 
(%) 

Impact Loss 
(%) 

MMAD 
(μm) 

GSD 
(μm) FPD FPF (%) DL (%) DS (%) EI 

Spray Dried Mannitol 213.23 + 
59.44 

147.97 + 
53.44 

44.33 + 
12.36 

73.03 + 
28.66 

28.89 +  
3.20 

3.05 + 
 0.14 

2.05 + 
0.01 75.82 +  

43.07 
38.10 + 
21.84 

29.10 + 
30.22 

48.53 + 
14.22 

10.32 + 
2.63 

Spray Dried Lactose 297.32 + 
175.08 

272.87 + 
179.66 

61.83 + 
36.40 

88.91 + 
7.43 

35.95 +  
4.00 

3.00 + 
 0.18 

2.13 + 
0.08 

134.81 + 
91.41 

43.08 + 
7.38 

12.00 + 
8.18 

48.26 + 
5.35 

11.48 + 
0.63 

1:1 348.55 + 
68.13 

294.22 + 
87.42 

72.46 + 
14.16 

83.63 + 
14.25 

34.42 +  
7.71 

3.10 +  
0.06 

2.03 + 
0.04 153.89 + 

83.95 
42.58 + 
18.43 

18.96 + 
14.88 

49.30 + 
15.65 

11.17 + 
1.51 

1:3 371.01 + 
144.43 

354.07 + 
140.71 

77.13 + 
30.03 

95.21 + 
0.95 

23.29 +  
5.83 

3.02 +  
0.17 

2.08 + 
0.03 231.63 + 

103.21 
61.42 + 

4.21 5.93 + 1.04 64.49 + 
3.77 

12.51 + 
0.21 

3:1 316.06 + 
38.22 

295.68 + 
34.92 

65.71 + 
7.95 

93.57 + 
0.49 

44.65 +  
11.75 

3.02 +  
0.06 

2.04 + 
0.03 

137.69 + 
47.09 

42.85 + 
9.36 8.91 + 1.57 45.82 + 

10.19 
11.68 + 

0.38 
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§§ 5.3.3.2 Homogeneity assessment 

 

To assess the formulations for their homogeneity they underwent a uniformity assessment. Figure 

5.7 presents the homogeneity profiles for all of the formulations (Spray Dried Mannitol, Spray 

Dried Lactose, 1:1 [Mannitol:Lactose], 1:3 [Mannitol:Lactose], and 3:1 [Mannitol:Lactose]) through 

percent potency; Table 5.4 shows the percent content homogeneity, which is expressed as the 

percent coefficient of variation (%CV). 

 

With respect to their potency, all of the formulations adhered to the required specification set by 

the US Food and Drug Administration by falling within the 75-125% range. When it came to %CV, 

3:1 [Mannitol:Lactose] obtained the smallest %CV with 0.76% whereas the largest %CV was 

obtained by the 1:3 [Mannitol:Lactose] carrier with 23.47%. These results indicate that the 3:1 

[Mannitol:Lactose] carrier had the best content homogeneity amongst all of the carriers and the 

1:3 [Mannitol:Lactose] carrier had the worst content homogeneity. The 1:3 [Mannitol:Lactose] 

carrier, which was the best engineered carrier, obtained a %CV of 23.47%. 
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Figure 5.7. Potency. Percent potency of each formulation (Spray Dried Mannitol, Spray Dried 

Lactose, 1:1 [Mannitol:Lactose], 1:3 [Mannitol:Lactose], and 3:1 [Mannitol:Lactose]) with respect 

to salbutamol sulphate. 
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Table 5.6. Content Homogeneity. Content homogeneity of Spray Dried Mannitol, Spray Dried 

Lactose, 1:1 [Mannitol:Lactose], 1:3 [Mannitol:Lactose], and 3:1 [Mannitol:Lactose] expressed 

as the percent coefficient of variation (%CV). 

Formulation % CV 

Spray Dried Mannitol 11.90 

Spray Dried Lactose 13.23 

1:1 (Mannitol:Lactose) 13.22 

1:3 (Mannitol:Lactose) 23.47 

3:1 (Mannitol:Lactose) 0.76 

*However, has not been taken into account for in vivo inhalation studies.  

 

 

5.4 Conclusion 

 

The results presented in this chapter have proven that different concentrations of mannitol:lactose 

solutions were successfully spray dried. They also show that the aerosolization performance of 

the 1:3 [Mannitol:Lactose] carrier was successfully achieved; this achievement was measured in 

the carrier’s FPF, which was 61.42 + 4.21%. The use of 5% L-leucine (w/w) modified the 

physicochemical properties of the spray dried particles along with their morphology. The results 

also showcase the lubrication effect that L-leucine provides to the carriers upon aerosolization. 

They also show that by combining mannitol and lactose in a spray dried solution, with 5% L-

leucine, an improved DPI formulation can be achieved; one more effective than the current 

marketed brand. 
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Chapter 6 

 
 

Effect of Leucine on Dry Powder Inhaler Performance of 
Salbutamol Sulphate containing Xylitol Crystals 

 

 

6.1 Introduction 
 

In this chapter, the focus was to engineer a crystal composed of xylitol and different 

concentrations of L-leucine and investigate the effect it has on the overall aerosolized DPI 

performance of salbutamol sulphate. In addition, the current chapter investigates whether xylitol 

could be a good alternative to lactose in DPI formulations containing salbutamol sulphate. 

(2S,4R)-pentane-1,2,3,4,5-pentol, commonly known as xylitol, is a five carbon sugar found in 

berries, mushrooms, cauliflower, lettuce, corn, and birch tree bark and it is most commonly used 

as a diabetic sweetner. Xylitol is not metabolized by cariogenic bacteria, which are cavity-causing 

bacteria found in the human mouth, allowing for its popular use as an ingredient in chewing gum. 

Studies have shown that xylitol chewing gum prevents acute otitis media (ear aches or infections) 

because the continuous act of chewing and swallowing assist with the disposal and removal of 

earwax while also clearing the middle ear.298 Having a low glycemic index and it being insulin 

independent has allowed xylitol to be used by non-insulin dependent diabetics as well as by the 

obese.299 
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Orally administered xylitol is known to prevent colds and facilitate calcium absorption, which  is 

known to give way to stronger bones; it’s cooling effect serves as an effective means of masking 

unpleasant flavors associated to medications.300 Furthermore, its use in tableting has been known 

to significantly improve a tablet’s mechanical strength and dissolution behavior.301 Its use as a 

carrier in DPI formulations, however, has never been studied, and is the focal point of this overall 

study. 

 

Among metered-dose inhalers (MDI), nebulizers, and DPIs, which are the three aerosol devices 

used to deliver therapeutic agents to the lungs, the DPI is the most promising due to them being 

propellant-free, portable, easy to use, cost-effective, and the formulations used with said device 

experience enhanced stability when stored.302 Crystals, as a whole, provide a unique opportunity 

by allowing one to modulate their physicochemical properties and limit polymorphs.303 Moreover, 

crystal engineering also improves solubility304-306, physical stability307, 308, mechanical properties309, 

310 such as flowability and compressibility, increases bioavailability311, improves pharmacokinetic 

properties312, and improves permeability301. Use of an additive (i.e. L-leucine) has already been 

reported to alter the micrometric properties (i.e. size and shape) of engineered crystals.301 

 

In addition, an attempt was made in this chapter to investigate whether or not L-leucine can 

enhance  the aerosolization behavior of salbutamol sulphate in DPI formulations used with a 

cyclohaler device. Furthermore, an attempt was made to explore whether or not xylitol can act as 

another carrier to replace lactose DPI formulations for lactose intolerant patients. 
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6.2 Materials and Methodology  

§ 6.2.1- § 6.2.13 

Refer to Chapter 2 sections 2.2, 2.4-2.11, and 2.13-2.16. 

 

6.3 Results and Discussion  

 § 6.3.1 Particle size analysis 

 

Figure 6.1 provides the particle size distribution (PSD) diagrams of the unseived engineered 

carriers from each formulation for both the RODOS and Cuvette systems. In Figure 6.1A, all of 

the carriers, with the exception of Xylitol with 0% L-leucine (LEU), experienced similar particle size 

distribution curves; therefore, it was determined that the presence of L-leucine affected the kinetics 

and nucleation behavior of xylitol. Xylitol with 0% LEU  experienced a fixed number of nucleations, 

thereby given larger crystals, whereas all the other carriers experienced a continuous nucleation 

process, henceforth the smaller crystals. Figure 6.1B, however, shows all of the carriers adhering 

to, and satisfying, the requirement of being between 63-90μm when used for inhalation. The 

results also show that the engineered carriers underwent some degree of agglomeration given 

the difference in particle size between the Rodos and Cuvette systems. 
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Figure 6.1. Particle Size Distribution. Particle Size Distribution (PSD) diagrams of the engineered 

carriers (Xylitol with 0% LEU, Xylitol with 1% LEU, Xylitol with 5% LEU, and Xylitol with 10% LEU) 

when using the (A) Rodos dry system and when using the (B) Cuvette wet system. 
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Table 6.1 presents the volume mean diameter (VMD) alongside the span for each of the 

engineered carriers under Rodos and Cuvette conditions. All of the carriers experienced a 

difference in their VMDs with ranges from 19.68 + 2.66 μm from Xylitol with 1% LEU to 55.49 + 

4.06 μm from Xylitol with 0% LEU and 63.40 + 1.21 μm from Xylitol with 0% LEU to 86.75 + 12.92 

μm from Xylitol with 1% LEU for the dry and wet systems, respectively. 

  

With respect to the carrier’s span, the dry system experienced a range of 1.17 + 0.13 from Xylitol 

with 0% LEU to 6.37 + 0.56 from Xylitol with 10% LEU while the wet system experienced a range 

from 1.02 + 0.07 from Xylitol with 0% LEU to 1.81 + 0.12 from Xylitol with 5% LEU. Furthermore, 

the dry system experienced a particle diameter range of 6.44 + 9.60 μm (D10%) to 64.34 + 14.78 

μm (D90%) where the particle diameter range for the wet system fell between 23.75 + 8.53 μm 

(D10%) and 137.73 + 25.84 μm (D90%). 

  

 

Table 6.1. Particle Analysis. Particle Analysis of Xylitol with 0% LEU, Xylitol with 1% LEU, Xylitol 

with 5% LEU, and Xylitol with 10% LEU showing the volume mean diameter (VMD) and span 

when using the Rodos dry system and the Cuvette wet system. 

Carrier VMD (μm)        
Dry System   

VMD (μm)        
Wet System   

Span               
Dry System  

Span               
Wet System  

Xylitol with 0% LEU 55.49 + 4.06 63.40 + 1.21 1.17 + 0.13 1.02 + 0.07 

Xylitol with 1% LEU 19.68 + 2.66 86.75 + 12.92 4.14 + 0.50 1.52 + 0.34 

Xylitol with 5% LEU 22.03 + 0.62 80.34 + 3.25 5.53 + 0.10 1.81 + 0.12 

Xylitol with 10% LEU 19.93 + 1.69 82.80 + 1.16 6.37 + 0.56 1.66 + 0.04 
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Figure 6.2 presents the electron micrograms of all the carriers where it was determined that both 

commercial Xylitol and Xylitol with 1% LEU presented needle-like shapes, Xylitol with 0% LEU 

showed a spherical shape, and Xylitol with 5% LEU along with Xylitol with 10% LEU showed a 

tomahawk shape. Based on these results and those reported by Kaialy et. al 313 where it was 

argued that a needle-like shape serves as a better carrier than that of a spherical one or tomahawk 

one; thus, it was determined that either Commercial Xylitol or Xylitol with 1% LEU would perform 

the best in the aerosolization study. 
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Figure 6.2. Scanning Electron Microscopy. SEM micrograms of (A) Commercial Xylitol, (B) Xylitol 

with 0% LEU, (C) Xylitol with 1% LEU, (D) Xylitol with 5% LEU, and (E) Xylitol with 10% LEU. 

 

§ 6.3.2 Solid-state characterization of engineered carriers 

 

Figure 6.3 presents the chromatographs of Commercial Xylitol and the engineered carriers (Xylitol 

with 0% LEU, Xylitol with 1% LEU, Xylitol with 5% LEU, and Xylitol with 10% LEU) indicating the 

location of any thermal event taking place; whereas Table 6.2 summarizes the enthalpy of the 

(A) Commercial  Xylitol (B) Xylitol with 0% LEU 

(C) Xylitol with 1% LEU (D) Xylitol with 5% LEU 

(E) Xylitol with 10% LEU 
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reaction (ΔHrxn) for each individual carrier’s thermal event with the corresponding temperature, in 

°C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. Differential Scanning Calorimetry. DSC thermal peaks of L-Leucine, Commercial 

Xylitol, Xylitol with 0% LEU, Xylitol with 1% LEU, Xylitol with 5% LEU, and Xylitol with 10% LEU, 

where an exothermic peak points up and an endothermic peak points down. 
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Table 6.2. DSC Thermal Traces. DSC thermal traces of Commercial Xylitol, Xylitol with 0% LEU, 

Xylitol with 1% LEU, Xylitol with 5% LEU, and Xylitol with 10% LEU, and L-Leucine indicating the 

enthalpy, in J/g, of xylitol melting (ΔHrxn) along with the Temperature (°C) of where such melting 

took place. 

Carrier Temperature (°C) ∆Hrxn (J/g) 

Commercial Xylitol 95.87 + 0.14 194.09 + 2.67 

Xylitol with 0% LEU 95.36 + 0.40 146.37 + 3.92 

Xylitol with 1% LEU 95.78 + 0.66 196.44 + 8.97 

Xylitol with 5% LEU 95.74 + 0.03 116.34 + 5.03 

Xylitol with 10% LEU 95.01 + 0.26 96.25 + 6.75 

Pure Leucine — — 
 
 

Data presented in Table 6.2 authenticates the illustrated data presented in Figure 6.3 where it 

shows a xylitol exothermic event at 95.53 + 0.57°C, which is known to being associated to the 

melting of the orthorhombic stable form of xylitol.314 Due to the lack of any thermal events below 

100°C, it was determined that there were no detectable amounts of free water in the samples. 

Absence of said peaks can also be attributed to the presence of L-leucine as it is known to facilitate 

moisture protection while providing stability for the formulation. Furthermore, the lack of any 

thermal event at 61°C in all xylitol samples indicates the absence of the monoclinic hygroscopic 

metastable form of xylitol in the carriers.315 

 

L-Leucine’s introduction into the engineered formulations had an effect on the enthalpies of the 

reactions of all the samples by manifesting a reduction in the sample’s overall enthalpy as the 

concentration of L-leucine increases; this linear correlation (data not shown) is attributed to the 

inter- and intra-molecular interactions (i.e. Van dar Waals, hydrogen bonding, etc.) that have been 
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altered, in the micro level, from the original. Using the crystallization methodology of this study 

proved to have no significant impact on xylitol’s polymorphous form or its molecular structure 

given that FT-IR spectroscopy showed no significant changes from sample to sample (data not 

shown). 

 

Figure 6.4 depicts the powder X-ray diffraction (PXRD) patterns for Commercial Xylitol, L-leucine,  

and all of the engineered carriers (Xylitol with 0% LEU, Xylitol with 1% LEU, Xylitol with 5% LEU, 

and Xylitol with 10% LEU) providing insight into their crystallinity. Demonstrating sharp diffraction 

angles with no halo background or widening allowed for them to be classified as crystalline. 

Moreover, a linear correlation (r2 = 0.99) existed between the increase in L-leucine concentration 

and the sharpening of the peaks, as seen in the figure. It is also worth noting that the desired 

polymorph was obtained by all of the carriers which presented improved pharmaceutical 

performance. 
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Figure 6.4. X-Ray Diffraction. Powder X-Ray diffraction patterns of Pure Leucine, 

Commercial Xylitol, Xylitol with 0% LEU, Xylitol with 1% LEU, Xylitol with 5% LEU, and Xylitol with 

10% LEU. 

 

§ 6.3.3 In vitro analysis of DPI formulations 

  

§§ 6.3.3.1 Salbutamol sulphate assessment 

 

Aerosolization performance of all of the formulations is summarized in Figure 6.5 where the 

amount of salbutamol sulphate deposited into each of the stages of the Multi-Stage Liquid 

Impinger (MSLI) is shown [capsules (C), inhaler (I), mouthpiece (M), induction port (IP), Stage 1, 

Stage 2, Stage 3, Stage 4, and Stage 5 (filter)]. As can be seen in the figure, Commercial Xylitol 

obtained the lowest amount of salbutamol sulphate in the capsules with 1.16 + 0.32 μg while 
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Xylitol with 10% LEU obtained the highest amount with 6.09 + 4.98 μg. When it came to the inhaler 

device, however, Commercial Xylitol exhibited the highest amount with 14.26 + 4.26 μg and Xylitol 

with 10% LEU with the least amount with 5.27 + 2.49 μg. 

 

Additionally, Commercial Xylitol obtained the lowest amount of salbutamol sulphate in both the 

mouthpiece, with 3.87 + 2.18 μg, and induction port, with 4.89 + 2.74 μg; whereas Xylitol with 5% 

LEU received the highest amount, with 11.93 + 2.31 μg, in the mouthpiece and Xylitol with 10% 

LEU received the highest amount with 12.71 + 3.27 μg in the induction port. For Stages 1-5, Xylitol 

with 5% LEU accounted for obtaining the highest amount in all five stages: 141.73 + 5.97, 32.34 

+ 20.46, 88.37 + 62.34, 56.33 + 32.09, and 38.78 + 43.23 μg, respectively. For the lowest 

amounts, however, Xylitol with 0% LEU obtained 75.87 + 21.63 μg in Stage 1, Xylitol with 1% 

LEU obtained 19.06 + 4.71 μg for Stage 2, 23.28 + 15.21 μg for Stage 3, 16.02 + 8.12 μg for 

Stage 4, and Xylitol with 0% LEU obtained 6.11 + 4.95 μg for Stage 5. These preliminary results 

suggested that Xylitol with 5% LEU would prove to be the most effective at delivering the 

salbutamol sulphate into the alveoli rather than the Commercial Xylitol and Xylitol with 1% LEU, 

which were both previously categorized as needle-like in shape. 
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Figure 6.5. Aerosolization Profile. Aerosolization performance of Commercial Xylitol and each 

engineered formulation (Xylitol with 0% LEU, Xylitol with 1% LEU, Xylitol with 5% LEU, and Xylitol 

with 10% LEU) highlighting the amount of SS recovered (percent recovered) for each and 

comparing them side-by-side. 

 

 

Table 6.3 presents the recovered dose (RD), emitted dose (ED), percent recovery, percent 

emission, percent impact loss, mass median aerodynamic diameter (MMAD), geometric standard 

deviation (GSD), fine particle dose (FPD), fine particle fraction (FPF), drug loss (DL), dispersibility 

(DS), and effective inhalation index (EI) for salbutamol sulphate obtained from each of the 

different formulations (Commercial Xylitol, Xylitol with 0% LEU, Xylitol with 1% LEU, Xylitol with 

5% LEU, and Xylitol with 10% LEU) and correlates with the data already presented in Figure 6.5. 

Xylitol with 1% LEU accounted for receiving the least amount of salbutamol sulphate for RD, ED, 

and percent recovery with 173.67 + 44.85 μg, 160.49 + 38.62 μg, and 36.11 + 9.32%, 

respectively; Xylitol with 5% LEU, however, received the highest amount of salbutamol sulphate 
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for RD, ED, and percent recovery with 390.01 + 163.29 μg, 369.23 + 154.57 μg, and 81.08 + 

33.95%, respectively. 

 

Moreover, Xylitol with 5% LEU also received the highest percent emission with 94.67 + 0.01% 

whereas Xylitol with 0% LEU received the lowest with 91.91 + 3.46% suggesting that Xylitol with 

5% LEU was capable of injecting more of the engineered formulation into the system than any 

other formulations. 

 

Xylitol with 1% LEU received the highest impaction loss with 61.38 + 13.21% whereas 

Commercial Xylitol received the lowest amount with 43.72 + 12.20%. With respect to MMAD, 

Xylitol with 10% LEU obtained the largest diameter with 3.29 + 0.10 μm, which further supports 

its performance fallacy, whereas Commercial Xylitol received the lowest with 2.77 + 0.45μm 

indicating a positive correlation between the smaller particle diameter to that of its efficacy. In 

addition, Xylitol with 5% LEU obtained the largest GSD with 2.21 + 0.13μm and Xylitol with 10% 

LEU received the smallest with 2.05 + 0.01 μm. 

 

With respect to FPD, Xylitol with 5% LEU received the highest with 183.48 + 137.26 µg and the 

lowest was Xylitol with 1% LEU with 46.41 + 26.06 µg. Commercial Xylitol proved to obtain the 

highest FPF amongst all of the formulations with a FPF of 44.13 + 11.27%, whereas Xylitol with 

5% LEU came at a close second with 42.94 + 15.21%. A linear correlation (r2 = 0.97) between 

FPF and effective inhalation index was established correlating to the formulation’s effeciency. 

Xylitol with 5% LEU, however, was managed to obtain the lowest drug loss with 6.57 + 0.39%, 

but the highest with 10.28 + 1.95% was from Xylitol with 1% LEU; thereby placing Commercial 

Xylitol as the more effective formulation as a whole. Commercial Xylitol did receive the highest 

dispersibility with 47.90 + 11.69%, but the lowest went to Xylitol with 1% LEU with 27.88 + 11.96%. 
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Lastly, Xylitol with 5% LEU received the highest effective inhalation index with 11.72 + 0.65 

whereas Xylitol with 1% LEU obtained the lowest with 10.88 + 0.50. 
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Table 6.3. Aerosolization Parameters. Recovered Dose (RD), Emitted Dose (ED), Percent Recovery, Percent Emission, Percent 

Impact Loss, Mass Median Aerodynamic Diameter (MMAD), Geometric Standard Deviation (GSD), Fine Particle Dose (FPD), Fine 

Particle Fraction (FPF), Drug Loss (DL), Dispersibility (DS), and Effective Inhalation Index (EI) of salbutamol sulphate obtained from 

each of the different formulations (Commercial Xylitol, Xylitol with 0% LEU, Xylitol with 1% LEU, Xylitol with 5% LEU, and Xylitol with 

10% LEU). 

 

Formulation RD (μg) ED (μg) Recovery 
(%) 

Emission 
(%) 

Impact 
Loss 
(%) 

MMAD 
(μm) 

GSD 
(μm) FPD FPF 

(%) 
DL 
(%) DS (%) EI 

Commercial Xylitol 239.29  + 
111.70 

221.16  + 
106.22 

49.75 + 
23.22 

92.01 + 
1.75 

43.72 + 
12.20 

2.77 + 
0.45 

2.18 + 
0.31 

113.57 + 
82.45 

44.13 + 
11.27 

8.56 + 
2.11 

47.90 + 
11.69 

11.66 
+ 0.53 

Xylitol with 0% LEU 216.19 + 
170.69 

197.97 + 
154.33 

44.95 + 
35.49 

91.91 + 
3.46 

50.01 + 
19.40 

3.10 + 
0.10 

2.09 + 
0.06 

92.87 + 
109.59 

34.25 + 
16.98 

10.12 + 
3.94 

37.27 + 
18.73 

11.21 
+ 0.78 

Xylitol with 1% LEU 173.67 + 
44.85 

160.49 + 
38.62 

36.11 + 
9.32 

92.75 + 
2.08 

61.38 + 
13.21 

2.92 + 
0.24 

2.19 + 
0.10 

46.41 +  
26.06 

25.84 + 
11.05 

10.28 + 
1.95 

27.88 + 
11.96 

10.88 
+ 0.50 

Xylitol with 5% LEU 390.01 + 
163.29 

369.23 + 
154.57 

81.08 + 
33.95 

94.67 + 
0.01 

43.87 + 
16.61 

2.83 + 
0.26 

2.21 + 
0.13 

183.48 + 
137.26 

42.94 + 
15.21 

6.57 + 
0.39 

45.36 + 
16.07 

11.72 
+ 0.65 

Xylitol with 10% LEU 264.91 + 
76.86 

249.25 + 
69.90 

55.07 + 
15.98 

94.25 + 
0.88 

49.13 + 
13.56 

3.29 + 
0.10 

2.05 + 
0.01 

93.27 + 
 33.93 

35.61 + 
12.58 

7.88 + 
2.12 

37.75 + 
13.10 

11.39 
+ 0.57 
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All in all, taking all of the measurements as a whole and not individually, Xylitol with 5% Leu was 

the formulation with the best aerosolization performance given its FPD over that of Commercial 

Xylitol which had the best FPF. That is to say, Xylitol with 5% Leu delivered more salbutamol to 

the lower stages of the MSLI compared to Commercial Xylitol making Xylitol with 5% Leu the 

better formulation. 

  

 

§§ 6.3.3.2 Homogeneity Assessment 

 

All of the formulations underwent a homogeneity assessment to determine their uniformity which 

allows each formulation to be referenced with the specification guidelines set by the 

pharmaceutical governing bodies. Figure 6.6 presents the homogeneity profiles for all of the 

formulations (Commercial Xylitol, Xylitol with 0% LEU, Xylitol with 1% LEU, Xylitol with 5% LEU, 

and Xylitol with 10% LEU) through percent potency; Table 6.4 shows the percent content 

homogeneity, which is expressed as the percent coefficient of variation (%CV). 
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Figure 6.6. Potency. Percent potency of each formulation (Commercial Xylitol, Xylitol with 0% 

LEU, Xylitol with 1% LEU, Xylitol with 5% LEU, and Xylitol with 10% LEU) with respect to 

salbutamol sulphate. 

 

With respect to percent potency, all of the formulations adhered to the required specification set 

by the US Food and Drug Administration by falling within the 75-125% potency range. Xylitol with 

5% Leu had the smallest potency with a potency of 110.60 + 15.30% while Xylitol with 10% Leu 

had the highest potency with 121.06 + 3.07%. Moreover, Xylitol with 10% LEU obtained the 

smallest %CV with 2.53% whereas Xylitol with 1% LEU obtained the highest %CV with 19.68% 

(see Table 6.4). These results indicate that Xylitol with 10% LEU had the best content uniformity 

amongst all of the formulations highlighting the significant role that L-leucine plays as an excipient. 

L-Leucine improves the inter- and intra- molecular interactions of the particles by altering the 
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physicochemical properties of the formulation, yielding a favorable uniformity profile. 

 

Table 6.4. Content Homogeneity. Content homogeneity of Commercial Xylitol, Xylitol with 0% 

LEU, Xylitol with 1% LEU, Xylitol with 5% LEU, and Xylitol with 10% LEU expressed as the percent 

coefficient of variation (%CV). 

Formulation Potency (%) % CV 

Commercial Xylitol 113.03 + 15.09 13.35 

Xylitol with 0% LEU 119.07 + 14.05 11.72 

Xylitol with 1% LEU 111.76 + 22.00 19.68 

Xylitol with 5% LEU 110.60 + 15.30 13.83 

Xylitol with 10% LEU 121.06 + 3.07 2.52 

*However, has not been taken into account for in vivo inhalation studies.  

 

6.4 Conclusion 

The results presented in this chapter have proven that xylitol crystals with different 

concentrations of L-leucine can be successfully crystalized. They also showed that L-leucine 

altered the physicochemical properties of the carriers affecting their inter- and intra-molecular 

interactions. This caused the uniformity of the carriers to improve with increasing L-leucine 

concentration. Xylitol with 5% LEU (FPF = 42.94 + 15.21) was the best DPI formulation within 

this study. This formulation had particles classified as tomahawk, which is known to show better 

aerosolized efficacy over particles with spherical morphology. The Xylitol with 5% LEU, 

however, does not compare to the 1:3 [Mannitol:Lactose] carrier from Chapter 5 whose FPF 

was 61.42 + 4.21%. 
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Chapter 7 

Effect Mannitol and Lactose crystals have on Aerosolized 
Dry Powder Inhaler Performance containing Salbutamol 

Sulphate 

 

 

7.1 Introduction 
 

In this chapter, the focus was to engineer a crystal composed of mannitol:lactose in different 

concentrations and investigate the effect it has on the overall aerosolized DPI performance of 

salbutamol sulphate. Crystal engineering is viewed as a form of supramolecular synthesis, often 

referred to as the chemistry beyond the molecule, and contributes to the continued development 

of pharmaceuticals and functional materials.316-318   For instance, Roy et. al engineered a crystal 

in such a way as to provide supramolecular hybrids where they were synthesized by a 

hydrothermal route under different pH using a hydrolyzable naphthalene diimide ligand.319  

 

Moreover, crystal engineering offers an opportunity to optimize physicochemical properties, such 

as solubility, stability, hydration, and melting point, mechanical properties, such as flowability and 

compressibility, pharmacokinetic properties, bioavailability, and permeability.320-323 Because 

amorphous powders have a higher surface free energy over crystalline material, it makes 

crystalline material a more favorable choice for drug formulation.324 
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Conventional DPI methods include milling, spray drying, and freeze drying9 whereas those 

associated to crystal formation include slurry solutions325-327, ultrasonic crystallization328, 

evaporation329, or supercritical fluids330; supercritical fluids being the chosen method here. During 

the process, supersaturation is generated by adding a second liquid to a solution of the crystals 

to be crystallized, which is miscible with the solvent and in which the crystals are insoluble or 

sparingly soluble.331 

 

DPIs as a dosage form consist of a powder formulation designed to deliver an API to the 

respiratory tract. Formulations are filled into hard-gelatin capsules that are subsequently pierced 

by the inhaler devise directly before its application.332 Recent studies have shown mannitol’s and 

lactose’s aerosolization performance in a DPI formulation showing mannitol’s more favorable 

performance over that of lactose; fine particle fraction (FPF) of 52.96 + 5.21% [Chapter 4] and 

47.11 + 9.94% [Chapter 3], respectively. Another study showed the aerosolization performance 

of spray dried mannitol and lactose combined in different ratios where the FPF was found to be 

61.42 + 4.21% [Chapter 5]. Additionally, xylitol crystals have also been used as a carrier in a DPI 

formulation where the resulting FPF was 42.94 + 15.21% [Chapter 6]. 

  

Mannitol and lactose are popular carriers to be used in DPI formulation. In many cases, 

researchers have made attempts to engineer these carriers individually. The author of this thesis 

believes that crystallization of these two carriers with different ratios simultaneously might create 

a carrier with optimum properties suitable for DPI formulations as a carrier.  With this in mind, the 

aim of this study was to engineer a crystal using different mannitol-lactose ratios and observe the 

impact it had on aersolization performance and the efficacy of the physicochemical properties of 

the DPI formulation for the delivery of salbutamol sulphate. 
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7.2 Materials and Methodology  

§ 7.2.1- § 7.2.14 

Refer to Chapter 2 sections 2.2 and 2.4-2.16. 

 

7.3 Results and Discussion  

§7.3.1 Particle size analysis 

 

Dispersion of inhaled particles is dependent on the aerodynamic stress and particle aggregate 

strength associated to the particulates. In addition, other interdependent factors such as  particle 

morphology, size, density are also at play.333-337 Figure 7.1 presents the particle size distribution 

(PSD) diagrams of the engineered carriers  (1:1 [Mannitol:Lactose], 1:2 [Mannitol:Lactose]. 1:3 

[Mannitol:Lactose], 2:1 [Mannitol:Lactose], and 3:1 [Mannitol:Lactose]) when using the Rodos and 

Cuvette systems of analysis. Figure 7.1A focusses on the Rodos system which shows the carriers’ 

true particle size, and Figure 7.1B focusses on the Cuvette system which shows the carrier’s size 

in a liquid. Comparing these two figures, it can be concluded that some degree of agglomeration 

occurred between the particles in the wet system. This occurrence has to do with the fact that for 

mixtures containing fine and coarse particles, fine particles tend to charge negatively, whereas 

large particles tend to charge positively regardless of whether the net-charge is positive or 

negative;338-341 in other words, it has to do with electrostatic charge. This accounts for the 

discrepancies in size between the two systems. In addition, the wet system might have not 

generated enough force to de-aggregate the particles, whereas in dry system a pressure of 3 bars 

wa sufficient enough to de-aggregate the particles to their original size.  
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Figure 7.1. Particle Size Distribution. Particle Size Distribution (PSD) diagrams of carriers (1:1 

[Mannitol:Lactose], 1:2 [Mannitol:Lactose]. 1:3 [Mannitol:Lactose], 2:1 [Mannitol:Lactose], and 3:1 

[Mannitol:Lactose]) when using the (A) Rodos dry system and when using the (B) Cuvette wet 

system. 

(A) 

(B) 
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Taking a closer look at the particle size for each system, Table 7.1 provides the volume mean 

diameter (VMD) and the particle span for the carriers. Carriers experienced differences in their 

VMDs ranging from 11.45 ± 1.57μm for the 3:1 (Mannitol:Lactose) carrier to 25.20 ± 0.38μm for 

the 1:2 (Mannitol:Lactose) carrier and 67.82 ± 3.76μm for the 1:3 (Mannitol:Lactose) carrier to 

88.21 ± 1.28μm for the 2:1 (Mannitol:Lactose) carrier, in the Rodos and Cuvette systems 

respectively. It becomes important to mention that large particles have been shown to manifest 

higher surface roughness225, 342, 343, more likely to exhibit surface impurities344, greater shape 

irregularities (i.e. cracks and dislocations)345, decreased disorder in crystal lattice225, 342, 346, and 

lower moisture uptake347, when compared to smaller particles. Moreover, particle span also 

showed differences between the two systems with particles falling between 2.85 ± 0.07 for the 

1:2 (Mannitol:Lactose) carrier to 11.87 ± 0.22 for the 3:1 (Mannitol:Lactose) carrier to 2.28 ± 0.03 

for the 3:1 (Mannitol:Lactose) carrier to 7.22 ± 0.48 for the 1:3 (Mannitol:Lactose) carrier in the 

Rodos and Cuvette systems, respectively. Furthermore, the Rodos system experienced a particle 

diameter range of 1.51 ± 0.79μm (D10%) to 42.95 ± 10.17μm (D90%) where the particle diameter 

range for the Cuvette system fell between 7.14 ± 4.42μm (D10%) and 180.01 ± 33.46μm (D90%). 

 

It becomes important to note that electrostatic forces become more significant and may even 

dominate over other particulate forces, including van der Waals forces, when the particle size is 

decreased in low environmental humidities; therefore, powder charge is inversely related to 

particle mean diameter.128, 294, 295  In addition, it has been suggested that the energy required to 

transfer an electron between two insulating solid particles is highly dependent on particle size.348, 

349 It has been reported that the amount of net-charge accumulated on mannitol increases with 

the fine particle fraction of small mannitol while it has also been shown that the net-charge of 
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lactose increases with decreasing particle size.350-354 Moreover, during the mixing of a cohesive 

powder, it is the coarser particles which act like a nuclei where they are subsequently coated with 

a thin layer of fine particles which could be  the case in our study (see Figure 7.1 and Table 7.1).355 

In the event that fine particles are in excess, it becomes true that one of the finer particulates will 

act as the nuclei thereby facilitating the catalysis of agglomeration.  

 

Table 7.1. Particle Analysis. Particle Analysis of 1:1 [Mannitol:Lactose], 1:2 [Mannitol:Lactose], 

1:3 [Mannitol:Lactose], 2:1 [Mannitol:Lactose], and 3:1 [Mannitol:Lactose] showing the volume 

mean diameter (VMD) and span when using the Rodos dry system and the Cuvette wet system. 

 

Carrier VMD (μm)        
Dry System   

VMD (μm)        
Wet System   

Span               
Dry System  

Span               
Wet System  

1:1 (Mannitol:Lactose) 21.72 + 0.80 70.76 + 1.14 4.00 + 0.10 2.76 + 0.04 

1:2 (Mannitol:Lactose) 25.20 + 0.38 79.76 + 4.25 2.85 + 0.07 5.01 + 0.50 

1:3 (Mannitol:Lactose) 15.72 + 0.42 67.82 + 3.76 4.15 + 0.18 7.22 + 0.48 

2:1 (Mannitol:Lactose) 13.32 + 0.76 88.21 + 1.28 4.84 + 0.23 3.77 + 0.02 

3:1 (Mannitol:Lactose) 11.45 + 1.57 80.21 + 1.54 11.87 + 0.22 2.28 + 0.03 
 

 

Figure 7.2 presents the electron micrograms of all the carriers where it was determined that the 

1:1 [Mannitol:Lactose] carrier and the  3:1 [Mannitol:Lactose] carrier exhibited needle-like crystal 

structures whereas the 1:2 [Mannitol:Lactose], 1:3 [Mannitol:Lactose], and 2:1 [Mannitol:Lactose] 

carriers exhibited rhombic crystal structures. These results indicate that the 1:1 [Mannitol:Lactose] 

carrier and the  3:1 [Mannitol:Lactose] carrier would perform better than the 1:2 

[Mannitol:Lactose], 1:3 [Mannitol:Lactose], and 2:1 [Mannitol:Lactose] carriers due to the results 

found by Kaialy et. al 313 where it was argued that needle-like crystal structures aerosolize more 
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effectively over rhombic and spherical crystal structures. In addition, it is important to nderstand 

that most pharmaceutical solid particles are diverged from the spherical shape and that a 

particle’s shape has a significant effect on that particle’s net charge.356 357 

Figure 7.2. Scanning Electron Microscopy. SEM micrograms of (A) 1:1 [Mannitol:Lactose], (B) 

1:2 [Mannitol:Lactose], (C) 1:3 [Mannitol:Lactose], (D) 2:1 [Mannitol:Lactose], and (E) 3:1 

[Mannitol:Lactose] carrier. 

 

(A) 1:1 [Mannitol:Lactose] (B) 1:2 [Mannitol:Lactose] 

(C) 1:3 [Mannitol:Lactose] (D) 2:1 [Mannitol:Lactose] 

(E) 3:1 [Mannitol:Lactose] 
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§ 7.3.2 Solid-state Characterization of Engineered Carriers 

 

Polymorphism provides the ability of a particle to exist in more than one isomer; about one-third 

of all drugs exhibit some form of polymorphism.231 Polymorphism is an obstacle in the 

pharmaceutical industry because different polymorphs display different physical properties 

making it important to isolate different polymorphs in a batch.331 Crystal formation has been shown 

to improve physicochemical properties (i.e. solubility, dissolution, and stability) as well as the 

mechanical properties and bioavailability of the crystal.358-360 With this in mind, Figure 7.3 presents 

the chromatographs of the engineered crystal carriers (1:1 [Mannitol:Lactose], 1:2 

[Mannitol:Lactose]. 1:3 [Mannitol:Lactose], 2:1 [Mannitol:Lactose], and 3:1 [Mannitol:Lactose]) 

indicating the location of any thermal event taking place; whereas Table 7.2 summarizes the 

enthalpy of the reaction (ΔHrxn) for each individual carrier’s thermal event with the corresponding 

temperature, in °C, where such event took place. 

 

Moreover, a particle’s surface area is considered a measure of surface geometry whereas surface 

free energy represents the amount of energy needed to separate particles from surfaces.361 In 

general, particles that exhibit smaller size distributions and more surface irregularities have higher 

surface areas362 whereas powders with higher specific surface areas tend to show higher moisture 

uptake347 and higher surface free energies363. Consequently, particle surface roughness affects 

the overall charge-transfer because it affects the inter-particulate and particle-surface contact 

areas.364 Looking at the results obtained from SEM and particle size analysis, it was determined 

that the above is true for this study. 
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Figure 7.3. Differential Scanning Calorimetry. DSC thermal peaks of 1:1 [Mannitol:Lactose], 1:2 

[Mannitol:Lactose]. 1:3 [Mannitol:Lactose], 2:1 [Mannitol:Lactose], and 3:1 [Mannitol:Lactose]; 

where an exothermic peak points up and an endothermic peak points down. 

 

Data presented in Table 7.2 authenticates the illustrated data presented in Figure 7.3 where it 

shows lactose having an endothermic event at 145.16 ± 0.00°C, which corresponds to the 

evaporation of water, and another endothermic event at both 216.56 ± 0.11°C and 231.41 ± 

0.94°C, which are indicative of ⍺-lactose and β-lactose, respectively. Moisture uptake is directly 

related to relative humidity (an external factor) as well as the chemical (i.e. hydrophilicity and 

hydrophobicity) and physical (i.e. powder specific surface area and particle anomeric 

composition) properties.347 In the context of aerosolization performance, it has been suggested 
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that in an optimal relative humidity there is a balance between electrostatic and capillary forces 

leading to minimal cohesive forces and, thus, an improved DPI dispersion behavior.365   
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Table 7.2. DSC Thermal Traces. DSC thermal traces of Commercial Lactose, Commercial Mannitol, 1:1 [Mannitol:Lactose], 1:2 

[Mannitol:Lactose], 1:3 [Mannitol:Lactose], 2:1 [Mannitol:Lactose], and 3:1 [Mannitol:Lactose] indicating the enthalpy (ΔHrxn), in J/g, 

along with the Temperature (°C) of where such event took place. 

Formulation Temperature (°C) ∆Hrxn (J/g) Temperature (°C) ∆Hrxn (J/g) Temperature (°C) ∆Hrxn (J/g) Temperature 
(°C) ∆Hrxn (J/g) 

Commercial Lactose 145.16 + 0.00 102.52 + 3.96 — — 216.56 + 0.11 85.17 + 1.29 231.41 + 0.94 39.72 + 2.63 

Commercial Mannitol — — 168.91 + 0.66 186.64 + 19.55 — — — — 

1:1 (Mannitol:Lactose) 
130.46 + 0.12 49.48 + 9.32 163.29 + 0.16 73.77 + 17.04 204.66 + 0.25 14.02 + 4.35 228.20 + 0.06 22.49 + 6.39 

1:2 (Mannitol:Lactose) 
131.13 + 0.71 77.79 + 21.67 163.42 + 0.29 29.70 + 7.86 219.60 + 0.69 40.62 + 11.64 232.65 + 0.12 11.04 + 1.89 

1:3 (Mannitol:Lactose) 
127.66  + 0.19 82.07 + 13.15 162.61 + 0.11 33.68 + 4.17 217.07 + 0.40 39.36 + 5.42 230.36 + 0.06 11.18 + 1.58 

2:1 (Mannitol:Lactose) 
128.33 + 0.60 13.42 + 2.14 164.37 + 0.00 171.51 + 7.67 — — 228.84 + 1.31 11.65 + 0.77 

3:1 (Mannitol:Lactose) 
129.99 + 0.58 19.83 + 4.95 163.96 + 0.00 142.98 + 2.54 — — 229.12 + 0.42 11.38 + 1.97 
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Furthermore, because of the absence of any thermal event taking place at 177°C, it was 

concluded that none of the carriers were in the amorphous state as this is the corresponding place 

it is found in.237 On the other hand, mannitol experienced one endothermic event at 168.91 + 

0.66°C which corresponds to the melting of mannitol.237, 283 Determining mannitol’s polymorphic 

state, however, required further analysis (i.e. the implementation of PXRD) given that DSC, alone, 

cannot distinguish mannitol’s polymorphs. 

 

Nevertheless, 1:1 [Mannitol:Lactose], 1:2 [Mannitol:Lactose], and 1:3 [Mannitol:Lactose] where 

characterized as having both ⍺- and β-lactose polymorphs along with the exhibition of the 

mannitol thermal event and 2:1 [Mannitol:Lactose] and 3:1 [Mannitol:Lactose] were characterized 

as having the mannitol thermal event along with being composed of only the β-lactose polymorph, 

as the ⍺-lactose polymorph peak was found to be missing (see Figure 7.3 and Table 7.2). 

 

Figure 7.4 depicts the powder X-ray diffraction (PXRD) patterns for all of the engineered carriers 

providing insight into their crystalline state as well as differentiating between their polymorphic 

forms. It is known that lactose has two polymorphs (⍺- and β-), which are distinguishable via 

thermodynamic analysis, and mannitol is known to have three possible polymorphic forms (⍺-, β-

, and Δ-), which are known to have specific diffraction patterns when using PXRD; ⍺-mannitol is 

known to have peaks at 9.57° and 13.79° on the 2θ plane, β-mannitol is known to exhibit peaks 

at 10.56° and 14.71° on the 2θ plane, and Δ-mannitol is known to possess peaks at 9.74° on the 

2θ plane. 274, 275, 334 With that said, 1:1 [Mannitol:Lactose] was composed of the ⍺- and β-mannitol, 

1:2 [Mannitol:Lactose] was composed of all three mannitol polymorphs (⍺-, β-, and Δ-), 1:3 
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[Mannitol:Lactose] was composed of ⍺- and Δ-mannitol, 2:1 [Mannitol:Lactose] was composed of 

⍺- and β-mannitol, and 3:1 [Mannitol:Lactose] was composed of ⍺- and β-mannitol. In addition, 

the peaks demonstrated sharp diffraction angles with no halo background, therefore they were 

classified as crystalline. 

Figure 7.4. X-Ray Diffraction. Powder X-Ray diffraction patterns of the 1:1 [Mannitol:Lactose], 1:2 

[Mannitol:Lactose]. 1:3 [Mannitol:Lactose], 2:1 [Mannitol:Lactose], and 3:1 [Mannitol:Lactose] 

carriers. 

 

To further assess and characterize the engineered carriers, FT-IR spectra can be seen in Figure 

7.5 where ⍺-Lactose exhibits a distinct peak at 920 cm-1 and β-lactose at 950 cm-1 whereas 

Lactose Mannitol 
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α-mannitol exhibits a distinct peak at 1195 cm-1, β-mannitol at 929 cm-1, 959 cm-1, and 1209 cm-

1, and Δ-mannitol at 967 cm-1.227, 237, 296 FT-IR spectra confirmed the classifications already 

mentioned (see Figure 7.4) for the carriers; furthermore, Table 7.3 summarizes the results of the 

different polymorphic forms for each carrier contained. 

Figure 7.5. FT-IR. FT-IR spectra of commercial mannitol, commercial lactose, and the 1:1 

[Mannitol:Lactose], 1:2 [Mannitol:Lactose]. 1:3 [Mannitol:Lactose], 2:1 

[Mannitol:Lactose], and 3:1 [Mannitol:Lactose] carriers. 
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Table 7.3. Summary of Polymorphic Form. Summary of the different polymorphic forms each 

carrier contains. 

Carrier ⍺-lactose β-lactose ⍺-manntol β-mannitol Δ-mannitol 

1:1 (Mannitol:Lactose) ✓ ✓ ✓ ✓ — 

1:2 (Mannitol:Lactose) ✓ ✓ ✓ ✓ ✓ 

1:3 (Mannitol:Lactose) ✓ ✓ ✓ — ✓ 

2:1 (Mannitol:Lactose) — ✓ ✓ ✓ — 

3:1 (Mannitol:Lactose) — ✓ ✓ ✓ — 
 

 

§ 7.3.3 Powder Flow Characterization 

 

Bulk density (Db), tap density (Dt), Carr’s Index (CI), and angle of repose (!) for each of the carriers 

is listed in Table 7.4. Comparing the different carriers, the 1:3 (Mannitol:Lactose) and 3:1 

(Mannitol:Lactose) carrier had the lowest Db (0.28 ± 0.00 g/cm3) and the 1:1 (Mannitol:Lactose) 

carrier had the highest Db (0.36 ± 0.00 g/cm3) whereas, for Dt, the 3:1 (Mannitol:Lactose) carrier 

had the lowest (0.29 ± 0.01 g/cm3) and the 1:1 (Mannitol:Lactose) carrier had the highest (0.49 ± 

0.02 g/cm3). Such results are attributed the solid state characteristics already discussed in the 

previous section.  Regarding the CI and angle of repose, the 2:1 (Mannitol:Lactose) and 3:1 

(Mannitol:Lactose) carriers showed the best flow characteristics, which is needed to achieve 

satisfactory DPI formulation metering, fluidization, and dispersion.366  
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Table 7.4. Powder Flow Characteristics. Bulk density (Db), tap density (Dt), Carr’s Index (CI), and 

angle of repose (!) for each of the carriers: 1:1 [Mannitol:Lactose], 1:2 [Mannitol:Lactose]. 1:3 

[Mannitol:Lactose], 2:1 [Mannitol:Lactose], and 3:1 [Mannitol:Lactose]. 

Carrier Db (g/cm3) Dt (g/cm3) CI (%) 
Angle of 

repose (°) 

1:1 (Mannitol:Lactose) 0.36 ± 0.00 0.49 ± 0.02 48.67 ± 5.77 46.21 ± 0.00 

1:2 (Mannitol:Lactose) 0.32 ± 0.00 0.43 ± 0.01 33.33 ± 4.04 29.13 ± 0.00 

1:3 (Mannitol:Lactose) 0.28 ± 0.02 0.38 ± 0.00 41.00 ± 8.66 35.83 ± 0.00 

2:1 (Mannitol:Lactose) 0.30 ± 0.01 0.32 ± 0.01 6.33 ± 3.51 29.13 ± 0.00 

3:1 (Mannitol:Lactose) 0.28 ± 0.00 0.29 ± 0.01 5.00 ± 1.73 30.14 ± 0.00 
 

 

§ 7.3.4 In vitro analysis of DPI formulations  

§§ 7.3.4.1 Salbutamol sulphate assessment 

 

Aerosolization performance of all of the formulations is summarized in Figure 7.6 where the 

amount of salbutamol sulphate deposited into each of the stages of the Multi-Stage Liquid 

Impinger (MSLI) is shown [capsules (C), inhaler (I), mouthpiece (M), induction port (IP), Stage 1, 

Stage 2, Stage 3, Stage 4, and Stage 5]. As can be seen in the figure, 1:2 (Mannitol:Lactose) 

obtained the lowest amount of salbutamol sulphate in the capsules with 2.03 + 1.02 μg while 3:1 

(Mannitol:Lactose) obtained the highest amount with 7.69 + 7.23 μg. When it came to the inhaler 

device, however, 3:1 (Mannitol:Lactose) exhibited the highest amount with 28.54 + 6.71μg and 

1:3 (Mannitol:Lactose) with the least amount with 3.95 + 1.50 μg. 
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In addition, the 1:2 (Mannitol:Lactose) carrier obtained the lowest amount of salbutamol sulphate 

(SS), in both, the mouthpiece (M) and induction port (IP) with 10.58 ± 6.42μg and 16.92 ± 6.30μg, 

respectively. In contrast, the 2:1 (Mannitol:Lactose) carrier obtained the highest amount of SS, in 

both, the M and IP with 18.05 + 9.83μg and 35.42 + 13.83μg, respectively. When it came to stages 

1-5, the following occurred: the highest amount of SS for Stage 1 went to the 3:1 

(Mannitol:Lactose) carrier with 116.79 + 18.30μg, for Stage 2 the 1:3 (Mannitol:Lactose) carrier 

obtained the highest amount with 109.55 + 18.62μg, for Stage 3 the 2:1 (Mannitol:Lactose) carrier 

obtained the highest amount with 233.62 + 54.94μg, for Stage 4 and Stage 5 the 1:3 

(Mannitol:Lactose) carrier obtained the highest amount with 200.22 + 41.53μg and 80.52 + 

22.39μg, respectively. Therefore, it was determined that the 1:3 (Mannitol:Lactose) carrier was 

better at delivering salbutamol sulphate to the lower regions of the lung suggesting a high fine 

particle fraction (FPF) from this carrier. 
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Figure 7.6. Aerosolization Profile. Aerosolization performance of each engineered formulation 

(1:1 [Mannitol:Lactose], 1:2 [Mannitol:Lactose]. 1:3 [Mannitol:Lactose], 2:1 [Mannitol:Lactose], 

and 3:1 [Mannitol:Lactose]) highlighting the amount of SS recovered (percent recovered) for each 

and comparing them side-by-side. 

 

Table 7.5 presents the recovered dose (RD), emitted dose (ED), percent recovery, percent 

emission, percent impact loss, mass median aerodynamic diameter (MMAD), geometric standard 

deviation (GSD), fine particle dose (FPD), fine particle fraction (FPF), drug loss (DL), dispersibility 

(DS), and effective inhalation index (EI) for salbutamol sulphate obtained from each of the 

different engineered formulations (1:1 [Mannitol:Lactose], 1:2 [Mannitol:Lactose], 1:3 

[Mannitol:Lactose], 2:1 [Mannitol:Lactose], and 3:1 [Mannitol:Lactose]). With that being said, the 

1:1 [Mannitol:Lactose] carrier accounted for having the lowest RD with 474.28 + 194.53 μg while 

the 3:1 [Mannitol:Lactose] carrier obtained the lowest ED, percent recovery, and percent emission 

with 407.26 + 190.92 μg, 93.70 + 40.56 %, 89,53 + 3.26% respectively; the 2:1 [Mannitol:Lactose] 
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carrier, however, received the highest RD, ED, and percent recovery with 637.30 + 149.78 μg, 

603.51 + 129.20 μg, and 132.49 + 31.14% respectively.  
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Table 7.5. Aerosolization Parameters. Recovered Dose (RD), Emitted Dose (ED), Percent Recovery, Percent Emission, Percent 

Impact Loss, Mass Median Aerodynamic Diameter (MMAD), Geometric Standard Deviation (GSD), Fine Particle Dose (FPD), Fine 

Particle Fraction (FPF), Drug Loss (DL), Dispersibility (DS), and Effective Inhalation Index (EI) of salbutamol sulphate obtained from 

each of the different engineered formulations (1:1 [Mannitol:Lactose], 1:2 [Mannitol:Lactose]. 1:3 [Mannitol:Lactose], 2:1 

[Mannitol:Lactose], and 3:1 [Mannitol:Lactose]). 

Formulation RD (μg) ED (μg) Recovery 
(%) 

Emission 
(%) 

Impact 
Loss 
(%) 

MMAD 
(μm) 

GSD 
(μm) FPD FPF 

(%) 
DL 
(%) 

DS 
(%) EI 

1:1 (Mannitol:Lactose) 474.28 + 
194.53 

439.55+ 
188.18 

98.60 + 
40.44 

92.30 + 
2.58 

30.23 + 
16.13 

3.22 + 
0.31 

2.01+ 
0.03 

263.61+ 
147.77 

52.34+ 
15.08 

8.59+ 
2.80 

56.74+ 
16.79 

12.02+ 
0.63 

1:2 (Mannitol:Lactose) 475.48 + 
134.09 

451.24+ 
117.27 

98.85 + 
27.88 

95.31 + 
2.62 

29.30 + 
7.29 

3.60 + 
0.13 

1.97+ 
0.02 

238.91 
+ 89.82 

49.13+ 
5.94 

5.02+ 
2.69 

51.64+ 
7.53 

12.02+ 
0.14 

2:1 (Mannitol:Lactose) 637.30 + 
149.78 

603.51+ 
129.20 

132.49 + 
31.14 

94.98 + 
1.82 

21.33 + 
2.38 

3.47 + 
0.04 

1.99+ 
0.01 

360.50 
+ 88.20 

56.49+ 
1.54 

5.89+ 
1.63 

59.50+ 
2.30 

12.31+ 
0.08 

1:3 (Mannitol:Lactose) 566.51 + 
100.14 

545.53+ 
93.29 

117.78 + 
20.82 

96.36 + 
0.59 

7.82 + 
1.09 

2.64 + 
0.19 

2.37+ 
0.04 

391.00 
+ 89.41 

68.69+ 
4.65 

4.08+ 
0.57 

71.29+ 
4.95 

12.85+ 
0.18 

3:1 (Mannitol:Lactose) 450.70 + 
195.11 

407.26+ 
190.92 

93.70 + 
40.56 

89.53 + 
3.26 

37.39 + 
13.75 

3.38 + 
0.10 

2.0+ 
0.02 

200.05+ 
138.32 

41.18+ 
11.17 

12.82+ 
5.14 

45.76+ 
10.75 

11.42+ 
0.61 
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In addition, the 1:3 [Mannitol:Lactose] carrier obtained the highest percent emission and lowest 

impact loss with 96.36 + 0.59% and 7.82 + 1.09% meaning that this carrier was the most effective 

at introducing the most API into the system while also preventing its loss during the process; the 

3:1 [Mannitol:Lactose] carrier obtained the highest impact loss with 37.39 + 13.75% thereby 

having poor physicochemical properties as the salbutamol sulphate couldn’t detach itself from the 

carrier. 

 

With respect to MMAD and GSD, the 1:2 [Mannitol:Lactose] carrier obtained the highest MMAD 

with 3.60 + 0.13 μm while the 1:3 [Mannitol:Lactose] carrier obtained the lowest with 2.64 + 

0.19μm; the highest GSD was attributed to the 1:3 [Mannitol:Lactose] carrier with 2.37 + 0.04 

while the lowest GSD was attributed to the 1:2 [Mannitol:Lactose] carrier with 1.97 + 0.02.  A 

linear correlation (r2 = 0.87) between EI and GSD was established between all of the carriers. 

Therefore, given these correlations and those between performance efficacy, particle size (i.e. 

lower MMAD), and FPF, it was concluded that the 1:3 [Mannitol:Lactose] carrier was the most 

effective at its delivery of salbutamol sulphate. 

 

Furthermore, the highest FPD received was from the 1:3 [Mannitol:Lactose] carrier with 391.00 + 

89.41μg while the lowest was attained by the 3:1 [Mannitol:Lactose] carrier with 200.05 + 

138.32μg. The 1:3 [Mannitol:Lactose] carrier proved to obtain the highest FPF from all of the 

engineered carriers with a FPF of 68.69 + 4.65% with the second highest being the 2:1 

[Mannitol:Lactose] carrier with a FPF of 56.49 + 1.54%. These results justify the results already 

discussed in Figure 7.6 where the 1:3 [Mannitol:Lactose] carrier deposited the most salbutamol 

sulphate in Stages 4 and 5. A linear correlation (r2 = 0.98) between FPF and effective inhalation 

index (EI) was established supporting the notion of the carrier’s aerosolized efficacy. With regard 

to the drug loss, the 1:3 [Mannitol:Lactose] carrier had the lowest percentage with 4.08 + 0.57% 
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while the highest drug loss was from the 3:1 [Mannitol:Lactose] carrier with 12.82 + 5.14%; as the 

results show, the most effective carrier from this overall study was the 1:3 [Mannitol:Lactose] 

carrier. In addition, the 1:3 [Mannitol:Lactose] carrier also obtained the highest dispersibility with 

71.29 ± 4.95% while the lowest was from the 3:1 [Mannitol:Lactose] carrier with 45.76 + 10.75%; 

a linear correlation (r2 = 0.95) was established between EI and the dispersibility of the carriers. 

Lastly, as was expected, the 1:3 [Mannitol:Lactose] carrier obtained the highest EI with 12.85 + 

0.18 whereas the 3:1 [Mannitol:Lactose] carrier obtained the lowest with 11.42 + 0.61.  

 

In summary, taking all of the results that have been presented into account, the carrier that 

showed the best aerosolized performance profile was the 1:3 [Mannitol:Lactose] carrier; a carrier 

containing optimal physical, chemical, and mechanical properties. 

 

§§ 7.3.4.2 Homogeneity Assessment 

 

Because the manufacturing process is considered to be an important specification looked at for 

regulatory bodies, it comes to no surprise that the blending of API with its carrier provides a critical 

checkpoint in determining blend homogeneity for a quality product. Therefore, all of the 

formulations underwent a homogeneity assessment to determine their uniformity and to determine 

whether they abided to the tightly regulated specifications from the US FDA and the European 

counterpart. Figure 7.7 presents the homogeneity profiles for all of the formulations within this 

study showcasing their percent potency; all of the engineered carriers adhered and passed the 

potency specification, which is set to the range of 75-125%. Table 7.6 shows the percent content 

homogeneity, which is expressed as the percent coefficient of variation (%CV) for each of the 

carriers. The 3:1 (Mannitol:Lactose) carrier obtained the smallest %CV with 1.60% whereas the 

2:1 (Mannitol:Lactose) carrier received the highest %CV with 12.51% (see Table 7.6) indicting 
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that the 3:1 (Mannitol:Lactose) carrier had the best content uniformity amongst all the formulations 

and the 2:1 (Mannitol:Lactose) carrier had the worst.  

 

 

Figure 7.7. Potency. Percent potency of each engineered formulation (1:1 [Mannitol:Lactose], 1:2 

[Mannitol:Lactose]. 1:3 [Mannitol:Lactose], 2:1 [Mannitol:Lactose], and 3:1 [Mannitol:Lactose]) 

with respect to salbutamol sulphate. 
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Table 7.6. Content Homogeneity. Content homogeneity of 1:1 [Mannitol:Lactose], 1:2 

[Mannitol:Lactose]. 1:3 [Mannitol:Lactose], 2:1 [Mannitol:Lactose], and 3:1 [Mannitol:Lactose] 

expressed as the percent coefficient of variation (%CV). 

Formulation % CV 

1:1 (Mannitol:Lactose) 7.39 

1:2 (Mannitol:Lactose) 6.27 

2:1 (Mannitol:Lactose) 12.51 

1:3 (Mannitol:Lactose) 5.88 

3:1 (Mannitol:Lactose) 1.60 

*However, has not been taken into account for in vivo inhalation studies.  

 

7.4 Conclusion 

 

The results presented in this chapter have proven that mannitol:lactose crystals with different 

weight per weight ratios can be successfully crystalized. They have also shown a positive 

correlation between particle size and concentration of mannitol with regard to the dry system; 

when the concentration of mannitol increases the particle size decreases. The opposite holds true 

for the wet system, however; when the concentration of mannitol increases, the particle size of 

the carriers also increases. The results have also shown that the 1:3 (Mannitol:Lactose) carrier 

[FPF= 68.69 + 4.65%] was the most effective at delivering salbutamol sulphate to the deep 

regions of the lung. This formulation had crystals classified as rhombic in structure and out-

performed the 1:3 [Mannitol:Lactose] carrier from Chapter 5 whose FPF was 61.42 + 4.21%. 
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Chapter 8 

Aerosolization performance of crystallized Mannitol-
Salbutamol Sulphate with different ratios  

 

 

8.1 Introduction 
 

In this chapter, the focus was to engineer a crystal composed of salbutamol:mannitol in different 

concentrations and investigate the effect it had on the overall aerosolized DPI performance of 

salbutamol sulphate. As already discussed in Chapter 7, pulmonary drug delivery has transformed 

from being a platform for local pulmonary disease treatment to being a means of systematic drug 

delivery. Particle properties are critical as they affect inhalation efficacy, pulmonary deposition, 

drug delivery, and overall performance. Moreover, crystal engineering provides an opportunity to 

optimize particles at the morphological, physicochemical, and molecular levels.367 

 

With that said, the aim of this study was to engineer a crystal using different salbutamol-mannitol 

ratios and observe the impact it had on aersolization performance and the efficacy of the 

physicochemical properties of the DPI formulation for the delivery of salbutamol sulphate. 

 

 

 



191 
 

8.2 Materials and Methodology  

§ 8.2.1- § 8.2.14 

Refer to Chapter 2 sections 2.2, 2.4-2.11, and 2.13-2.17. 

 

8.3 Results and Discussion  

§ 8.3.1 Particle size analysis 

 

The salbutamol-mannitol crystals were originally above the approved 1-5 µm range (see Table 

8.1), therefore they were all subjected to air jet milling to decrease their particle size. Figure 8.1 

presents the particle size distribution (PSD) diagram of the engineered air jet milled carriers in 

this study (1:1 [Salbutamol:Mannitol], 1:2 [Salbutamol:Mannitol]. 1:4 [Salbutamol:Mannitol], 2:1 

[Salbutamol:Mannitol], and 4:1 [Salbutamol:Mannitol]) when using the Rodos system of analysis. 
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Figure 8.1. Particle Size Distribution. Particle Size Distribution (PSD) diagram of engineered air 

jet milled carriers (1:1 [Salbutamol:Mannitol], 1:2 [Salbutamol:Mannitol]. 1:4 

[Salbutamol:Mannitol], 2:1 [Salbutamol:Mannitol], and 4:1 [Salbutamol:Mannitol]) when using the 

Rodos dry system. 

 

Taking a closer look at the particle size, Table 8.1 provides the volume mean diameter (VMD) 

before and after air jet milling and the particle span for the engineered air jet milled carriers. 

Carriers experienced differences in their original VMDs ranging between 9.79 μm for the 4:1 

[Salbutamol:Mannitol] carrier to 26.52 μm for the 1:1 [Salbutamol:Mannitol] carrier. After being 

subjected to air jet milling, the carrier’s VMDs ranged between 1.74 + 0.12 μm for the 2:1 

[Salbutamol:Mannitol] carrier to 4.94 + 2.09 μm for the 1:1 [Salbutamol:Mannitol] carrier. These 

results indicate that there was a successful reduction in particle size coming from the carriers. 
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Moreover, the particle span of the air jet milled carriers fell between 2.21 + 0.09 for the 1:2 

[Salbutamol:Mannitol] carrier to 3.55 + 0.68 µm for the 1:1 [Salbutamol:Mannitol] carrier. 

Furthermore, the Rodos system experienced a particle diameter range of 0.66 ± 0.05μm (D10%) 

to 5.11 ± 2.86μm (D90%). 

 

Table 8.1. Particle Analysis. Particle Analysis of the 1:1 [Salbutamol:Mannitol], 1:2 

[Salbutamol:Mannitol]. 1:4 [Salbutamol:Mannitol], 2:1 [Salbutamol:Mannitol], and 4:1 

[Salbutamol:Mannitol] carriers showing the original and air jet milled volume mean diameter 

(VMD) and span of the air jet milled carriers. 

 

Carrier VMD (μm)        
Original   

VMD (μm)        
Air Jet Milled   

Span of               
Air Jet Milled 

1:1 [Salbutamol:Mannitol] 26.52 4.94 + 2.09 3.55 + 0.68 

1:2 [Salbutamol:Mannitol] 19.14 1.85 + 0.13 2.21 + 0.09 

1:4 [Salbutamol:Mannitol] 16.53 2.29 + 0.61 2.81 + 0.60 

2:1 [Salbutamol:Mannitol] 16.39 1.74 + 0.12 2.26 + 0.14 

4:1 [Salbutamol:Mannitol] 9.79 3.29 + 2.77 2.47 + 0.32 
 

 

Figure 8.2 presents the electron micrograms of all the carriers after air jet milling where it was 

determined that all of the engineered carriers (1:1 [Salbutamol:Mannitol], 1:2 

[Salbutamol:Mannitol]. 1:4 [Salbutamol:Mannitol], 2:1 [Salbutamol:Mannitol], and 4:1 

[Salbutamol:Mannitol]) were rhombic in their crystal structure. 
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Figure 8.2. Scanning Electron Microscopy. SEM micrograms of (A) 1:1 [Salbutamol:Mannitol], 

(B) 1:2 [Salbutamol:Mannitol], (C) 1:4 [Salbutamol:Mannitol], (D) 2:1 [Salbutamol:Mannitol], and 

(E) 4:1 [Salbutamol:Mannitol] carrier. 

 

 

 

(A) 1:1  [Salbutamol:Mannitol] (B) 1:2 [Salbutamol:Mannitol] 

(C) 1:4 [Salbutamol:Mannitol] (D) 2:1 [Salbutamol:Mannitol] 

(E) 4:1 [Salbutamol:Mannitol] 
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§ 8.3.2 Solid-state Characterization of Engineered Carriers 

 

Figure 8.3 presents the DSC traces  of the engineered crystal carriers (1:1 [Salbutamol:Mannitol], 

1:2 [Salbutamol:Mannitol]. 1:4 [Salbutamol:Mannitol], 2:1 [Salbutamol:Mannitol], and 4:1 

[Salbutamol:Mannitol]) indicating the location of any thermal event taking place; whereas Table 

8.2 summarizes the enthalpy (ΔH) for each individual carrier’s thermal event with the 

corresponding temperature, in °C,  where such event took place. 

 

 

 

 

 

 

 

 

 

 

Figure 8.3. Differential Scanning Calorimetry. DSC thermal peaks of 1:1 [Salbutamol:Mannitol], 

1:2 [Salbutamol:Mannitol]. 1:4 [Salbutamol:Mannitol], 2:1 [Salbutamol:Mannitol], and 4:1 

[Salbutamol:Mannitol]; where an exothermic peak points up and an endothermic peak points 

down. 

 

Data presented in Table 8.2 authenticates the illustrated data presented in Figure 8.3 where it 

shows all of the carriers, with the exemption of commercial salbutamol, having an endothermic 

Ch
an

ge
 in

 E
nt

ha
lp

y 



196 
 

event at 166.02 ± 2.10°C which corresponds to the melting of mannitol. It also shows that all of 

the carriers, with the exemption of commercial mannitol, having an endothermic event at 229.79 

± 17.94°C, which corresponds to the melting of salbutamol sulphate. The carriers (1:1 

[Salbutamol:Mannitol], 1:2 [Salbutamol:Mannitol]. 1:4 [Salbutamol:Mannitol], 2:1 

[Salbutamol:Mannitol], and 4:1 [Salbutamol:Mannitol]) exhibited a dramatic shift (p < 0.05) in their 

salbutamol endothermic temperature going from 196.31 ± 0.71°C to 236.49 ± 8.12°C. The 

mannitol endothermic shift, however, was not as significant going from 169.27 ± 0.30°C to 165.37 

± 1.53°C (p > 0.05). 

 

Table 8.2. DSC Thermal Traces. DSC thermal traces of Commercial Mannitol, Commercial 

Salbutamol, 1:1 [Salbutamol:Mannitol], 1:2 [Salbutamol:Mannitol]. 1:4 [Salbutamol:Mannitol], 2:1 

[Salbutamol:Mannitol], and 4:1 [Salbutamol:Mannitol] indicating the enthalpy (ΔH), in J/g, along 

with the Temperature (°C) of where such event took place. 

Formulation Temperature (°C) ∆H (J/g) Temperature (°C) ∆H (J/g) 

Commercial Mannitol 169.27 ± 0.30 193.34 ± 16.39 — — 

Commercial Salbutamol — — 196.31 ± 0.71 141.97 ± 36.15 

1:1 [salb.:mannitol] 167.31 ± 0.14 120.03 ± 11.53 244.54 ± 1.91 124.06 ± 19.35 

1:2 [salb.:mannitol] 166.16 ± 0.62 98.61 ± 30.60 241.82 ± 2.83 58.57 ± 13.12 

1:4 [salb.:mannitol] 165.70 ± 0.48 71.30 ± 31.13 240.02 ± 1.24 86.13 ± 11.55 

2:1 [salb.:mannitol] 164.19 ± 0.21 45.47 ± 5.14 225.28 ± 0.23 44.21 ± 3.78 

4:1 [salb.:mannitol] 163.51 ± 0.07 36.59 ± 14.56 230.77 ± 7.06 36.01 ± 8.06 
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Figure 8.4 depicts the powder X-ray diffraction (PXRD) patterns for all of the engineered carriers 

providing insight into their crystalline state as well as differentiating between their polymorphic 

form. Mannitol is known to have three possible polymorphic forms (⍺-, β-, and Δ-), which are 

known to have specific diffraction patterns when using PXRD. ⍺-mannitol is known to have peaks 

at 9.57° and 13.79° on the 2θ plane, β-mannitol is known to exhibit peaks at 10.56° and 14.71° 

on the 2θ plane, and Δ-mannitol is known to possess peaks at 9.74° on the 2θ plane.274, 275 With 

that said, the 1:1 [Salbutamol:Mannitol] carrier was composed of ⍺- and β-mannitol, the 1:2 

[Salbutamol:Mannitol] carrier was composed of all three mannitol polymorphs (⍺-, β-, and Δ-), the 

1:4 [Salbutamol:Mannitol] carrier was composed of ⍺- and β-mannitol, the 2:1 

[Salbutamol:Mannitol] carrier was composed of β- and Δ-mannitol, and the 4:1 

[Salbutamol:Mannitol] carrier was composed of ⍺- and β-mannitol. In addition, the peaks 

demonstrated sharp diffraction angles with no halo background, therefore they were classified as 

crystalline.  

 

To further assess and characterize the engineered carriers, FT-IR spectra can be seen in Figure 

8.5 where α-mannitol exhibits a distinct peak at 1195 cm-1, β-mannitol at 929 cm-1, 959 cm-1, and 

1209 cm-1, and Δ-mannitol at 967 cm-1.237, 296 FT-IR spectra confirmed the classifications already 

mentioned (see Figure 8.4) for the carriers; furthermore, Table 8.3 summarizes the results of the 

different polymorphic forms each carrier contained. The broadening in the 3,000-3,500 cm-1 region 

is due to the increase in mannitol concentration. 
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Figure 8.4. X-Ray Diffraction. Powder X-Ray diffraction patterns of the 1:1 
[Salbutamol:Mannitol], 1:2 [Salbutamol:Mannitol]. 1:4 [Salbutamol:Mannitol], 2:1 
[Salbutamol:Mannitol], and 4:1 [Salbutamol:Mannitol] carriers. 

 
Figure 8.5. FT-IR. FT-IR spectra of commercial mannitol, commercial salbutamol, and the 1:1 
[Salbutamol:Mannitol], 1:2 [Salbutamol:Mannitol]. 1:4 [Salbutamol:Mannitol], 2:1 
[Salbutamol:Mannitol], and 4:1 [Salbutamol:Mannitol] carriers. 
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Table 8.3. Summary of Polymorphic Form. Summary of the different polymorphic forms each 

carrier contains. 

Carrier ⍺-manntol β-mannitol Δ-mannitol 

1:1 (Salbutamol:Mannitol) ✓ ✓ — 

1:2 (Salbutamol:Mannitol) ✓ ✓ ✓ 

1:4 (Salbutamol:Mannitol) ✓ ✓ — 

2:1 (Salbutamol:Mannitol) — ✓ ✓ 

4:1 (Salbutamol:Mannitol) ✓ ✓ — 
 
 

§ 8.3.3 In vitro analysis of DPI formulations  

§§ 8.3.3.1 Salbutamol Sulphate Assessment 

 

Aerosolization performance of all of the engineered formulations is summarized in Figure 8.6 

where the amount of salbutamol sulphate deposited into each of the stages of the Multi-Stage 

Liquid Impinger (MSLI) is shown [capsules (C), inhaler (I), mouthpiece (M), induction port (IP), 

Stage 1, Stage 2, Stage 3, Stage 4, and Stage 5]. As can be seen in the figure, the 1:1 

[Salbutamol:Mannitol] carrier obtained the lowest amount of salbutamol sulphate in the capsules 

with 2.12 + 0.11 μg while the 4:1 [Salbutamol:Mannitol] carrier obtained the highest amount with 

5.80 + 0.72 μg. When it came to the inhaler device, however, the 2:1 [Salbutamol:Mannitol] carrier 

obtained the highest amount of salbutamol sulphate with 18.89 + 3.23 μg while the lowest went 

to the 1:1 [Salbutamol:Mannitol] carrier with 6.36 + 4.09 μg. 

 

Furthermore, the 1:2 [Salbutamol:Mannitol] carrier obtained the lowest amount of salbutamol 

sulphate (SS), in both, the mouthpiece (M) and induction port (IP) with 6.92 ± 2.56 μg and 20.03 
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± 8.23 μg, respectively. In contrast, the 2:1 [Salbutamol:Mannitol] carrier obtained the highest 

amount of SS for the mouthpiece with 13.58 ± 1.46 μg while the 1:4 [Salbutamol:Mannitol] carrier 

obtained the highest amount in the IP with 27.70 ± 7.61 μg. With regard to Stages 1-5, the 1:4 

[Salbutamol:Mannitol] carrier obtained the highest amount for Stage 1 (157.03 ± 19.27μg), the 

2:1 [Salbutamol:Mannitol] carrier obtained the highest amount for Stages 2-4 (82.61 ± 45.27, 

211.95 ± 49.51, and 109.23 ± 26.55μg; respectively), and the 4:1 [Salbutamol:Mannitol] carrier 

obtained the highest amount in Stage 5 (24.28 ± 9.28μg). Moreover, the 4:1 [Salbutamol:Mannitol] 

carrier obtained the lowest amount in Stage 1 (76.82 ± 20.49μg), and the 1:1 

[Salbutamol:Mannitol] carrier obtained the lowest amount in Stage 2-5 (35.08 ± 3.84, 34.02 ± 

8.30, 9.54 ± 3.33, and 2.12 ± 0.81 μg; respectively). It was, therefore, determined that the 2:1 

[Salbutamol:Mannitol] carrier was better at delivering salbutamol sulphate to the lower regions of 

the lung suggesting a high fine particle fraction (FPF) from this carrier. 
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Figure 8.6. Aerosolization Profile. Aerosolization performance of each engineered formulation 
(1:1 [Salbutamol:Mannitol], 1:2 [Salbutamol:Mannitol]. 1:4 [Salbutamol:Mannitol], 2:1 
[Salbutamol:Mannitol], and 4:1 [Salbutamol:Mannitol]) highlighting the amount of SS recovered 
(percent recovered) for each and comparing them side-by-side. 
 

 

Table 8.4 presents the different parameters that were taken into account in determining the 

formulation’s aerosolization performance. The 1:1 [Salbutamol:Mannitol] carrier obtained the 

lowest RD, ED, and percent recovery with 317.30 + 34.31 μg, 303.66 + 30.33 μg, and 65.97 + 

7.13% respectively while the 2:1 [Salbutamol:Mannitol] carrier obtained the highest RD, ED, and 

percent recovery with 541.42 + 83.72 μg, 508.95 + 85.45 μg, and 112.56 + 17.41% respectively. 

 

With respect to percent emission, the 1:1 [Salbutamol:Mannitol] carrier obtained the highest 

percentage with 95.76 + 1.11% while the 4:1 [Salbutamol:Mannitol] carrier obtained the lowest 
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percentage with 93.35 + 3.85%. This suggests that the 1:1 [Salbutamol:Mannitol] carrier emitted 

the most API than any other formulation. The 1:1 [Salbutamol:Mannitol] carrier, however, did have 

the highest impact loss with 70.16 + 2.52% while the 2:1 [Salbutamol:Mannitol] carrier obtained 

the lowest with 16.41 + 2.35%. 
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Table 8.4. Aerosolization Parameters. Recovered Dose (RD), Emitted Dose (ED), Percent Recovery, Percent Emission, Percent 
Impact Loss, Mass Median Aerodynamic Diameter (MMAD), Geometric Standard Deviation (GSD), Fine Particle Dose (FPD), Fine 
Particle Fraction (FPF), Drug Loss (DL), Dispersibility (DS), and Effective Inhalation Index (EI) of salbutamol sulphate obtained from 
each of the different engineered formulations (1:1 [Salbutamol:Mannitol], 1:2 [Salbutamol:Mannitol]. 1:4 [Salbutamol:Mannitol], 2:1 
[Salbutamol:Mannitol], and 4:1 [Salbutamol:Mannitol]). 
 

Formulation RD (μg) ED (μg) Recovery 
(%) 

Emission 
(%) 

Impact 
Loss (%) 

MMAD 
(μm) GSD (μm) FPD FPF 

(%) DL (%) DS (%) EI 

1:1 (Salbutamol:Mannitol) 317.30 + 
34.31 

303.66 + 
30.33 

65.97 + 
7.13 

95.76 + 
1.11 

70.16 + 
2.52 

 
 
 4.09 ± 
0.11 

  
 
2.03 ±  
0.03 

46.50 + 
10.63 

14.52 
+ 1.94 

4.93 + 
0.80 

15.18 
+ 2.11 

10.50 
+ 0.08 

1:2 (Salbutamol:Mannitol) 399.70 + 
30.89 

378.12 + 
32.81 

83.10 + 
6.42 

94.55 + 
1.34 

35.34 + 
6.52 

 
 
3.04 ± 
0.16 

 
 
2.08 ±  
0.02 

198.79 + 
35.35 

49.47 
+ 5.23 

6.86 + 
0.71 

52.29 
+ 5.08 

12.00 
+ 0.26 

1:4 (Salbutamol:Mannitol) 442.96 + 
7.24 

419.72 + 
8.63 

92.09 + 
1.51 

94.76 + 
1.49 

41.72 + 
5.13 

 
 
3.22 ± 
0.19 

 
 
2.03 ±  
0.03 

191.70 + 
25.21 

43.23 
+ 5.04 

6.14 + 
1.64 

45.61 
+ 5.11 

11.75 
+ 0.25 

2:1 (Salbutamol:Mannitol) 541.42 + 
83.72 

508.95 + 
85.45 

112.56 + 
17.41 

93.86 + 
1.39 

16.41 + 
2.35 

 
 
3.33 ± 
0.17 

 
 
2.00 ±  
0.06 

338.73 + 
68.45 

62.53 
+ 6.84 

6.99 + 
1.65 

66.63 
+ 7.33 

12.50 
+ 0.28 

4:1 (Salbutamol:Mannitol) 428.86 + 
93.95 

401.47 + 
94.81 

89.16 + 
19.39 

93.35 + 
3.85 

23.96 + 
8.77 

 
 
3.04 ± 
0.22 

 
 
2.09 ±  
0.07 

249.06 + 
76.31 

57.39 
+ 4.93 

8.06 + 
4.03 

61.52 
+ 5.35 

12.28 
+ 0.28 
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With respect to MMAD and GSD, however, the 1:1 [Salbutamol:Mannitol] carrier obtained the 

highest MMAD with 4.09 ± 0.11 μm while the 1:2 [Salbutamol:Mannitol] carrier and the 4:1 

[Salbutamol:Mannitol] carrier obtained 3.04 ± 0.16 μm and 3.04 ± 0.22 μm, respectively; the 

highest GSD was attributed to the 4:1 [Salbutamol:Mannitol] carrier with 2.09 ±  0.07 while the 

lowest GSD was from the 2:1 [Salbutamol:Mannitol] carrier with 2.00 ±  0.06. A linear relationship 

(r2 = 0.73) was established between MMAD and FPF for all of the carriers.  

 

Furthermore, the highest FPD has been obtained for the 1:2 [Salbutamol:Mannitol] carrier with 

338.73 + 68.45 while the lowest was for the 1:1 [Salbutamol:Mannitol] carrier with 46.50 + 10.63. 

The 1:2 [Salbutamol:Mannitol] carrier showed the highest FPF with 62.53 + 6.84% while the 

second highest was obtained for  the 4:1 [Salbutamol:Mannitol] carrier with 57.39 + 4.93%. These 

results proved that the 1:2 [Salbutamol:Mannitol] carrier was the most effective at aerosolizing 

salbutamol sulphate and support the results presented in Figure 8.6. A linear correlation (r2 = 

0.99) between FPF and effective inhalation index (EI) was established supporting the carrier’s 

aerosolized efficacy. Regarding drug loss, however, the 4:1 [Salbutamol:Mannitol] carrier had the 

highest percentage with 8.06 + 4.03% while the 1:1 [Salbutamol:Mannitol] carrier had the lowest 

with 4.93 + 0.80%. To no surprise, the 2:1 [Salbutamol:Mannitol] carrier obtained the highest 

dispersibility and effective inhalation index (EI) with 66.63 + 7.33% and 12.50 + 0.28 respectively. 

The results showed that the lowest dispersibility and EI was obtained for the  1:1 

[Salbutamol:Mannitol] carrier; a linear relationship (r2 = 0.99) was established between EI and the 

dispersibility of the carriers.. 

  

§§ 8.3.3.2 Homogeneity Assessment  

 

The 1:1 [Salbutamol:Mannitol] carrier was the only carrier to abide by the tightly regulated 
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specifications from the US Food and Drug Administration (US FDA) and the European 

counterpart.368 All the other carriers (1:2 [Salbutamol:Mannitol], 1:4 [Salbutamol:Mannitol], 2:1 

[Salbutamol:Mannitol], and 4:1 [Salbutamol:Mannitol]) went above the 75-125% range. Figure 8.7 

presents the homogeneity profiles for all of the formulations within this study. Table 8.5 presents 

the percent content homogeneity, expressed as the percent coefficient of variation (%CV), for 

each of the carriers. The 2:1 (Salbutamol:Mannitol) carrier obtained the smallest %CV with 1.66% 

whereas the 1:2 (Salbutamol:Mannitol) carrier received the highest %CV with 7.15% (see Table 

8.5) which indicate that the 2:1 (Salbutamol:Mannitol) carrier had the best content uniformity 

amongst all the formulations and the 1:2 (Salbutamol:Mannitol) carrier had the worst. 

 

Figure 8.7. Potency. Percent potency of each engineered formulation (1:1 [Salbutamol:Mannitol], 

1:2 [Salbutamol:Mannitol]. 1:4 [Salbutamol:Mannitol], 2:1 [Salbutamol:Mannitol], and 4:1 

[Salbutamol:Mannitol]) with respect to salbutamol sulphate. 
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Table 8.5. Content Homogeneity. Content homogeneity of the 1:1 [Salbutamol:Mannitol], 1:2 

[Salbutamol:Mannitol]. 1:4 [Salbutamol:Mannitol], 2:1 [Salbutamol:Mannitol], and 4:1 

[Salbutamol:Mannitol] carrier expressed as the percent coefficient of variation (%CV). 

Formulation % CV 

1:1 (Salbutamol:Mannitol) 2.30 

1:2 (Salbutamol:Mannitol) 7.15 

1:4 (Salbutamol:Mannitol) 2.16 

2:1 (Salbutamol:Mannitol) 1.66 

4:1 (Salbutamol:Mannitol) 2.86 
*However, has not been taken into account for in vivo inhalation studies.  

 

 

8.4 Conclusion 

 

The results presented in this chapter have proven that salbutamol:mannitol crystals can be 

successfully crystalized to enhanced its aerosolization performance. They have also shown that 

when the concentration of salbutamol increases the particle size of the resultant crystal 

decreases. It was also proven that salbutamol:mannitol crystals can be successfully air jet 

milled. The results have also shown that the 2:1 (Salbutamol:Mannitol) carrier [FPF = 62.53 + 

6.84%] was the most effective at delivering salbutamol sulphate to the deep regions of the lung. 

This carrier had crystals classified as rhombic in structure and was unable to out-perform the 

1:3 (Mannitol:Lactose) carrier from Chapter 7 whose FPF was 68.69 + 4.65%. 
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Chapter 9 

Physical Mixture Comparative Study 

 

 

9.1 Introduction 
 

In this chapter, the focus was to compare each of the individual studies (Chapters 3-8) to its 

respective physical mixture counterpart. This allowed for the opportunity to determine whether it 

is most cost-effective to engineer each carrier separately or to simply use physical mixtures of the 

commercially available product. Furthermore, this chapter continued to investigate the effect L-

leucine concentration on each physical mixture formulation had on the overall aerosolized dry 

powder inhaler (DPI) performance of salbutamol sulphate. 

 

9.2 Materials and Methodology  

§ 9.2.1- § 9.2.6 

Refer to Chapter 2 sections 2.2, 2.7, and 2.13-2.16. 

 

9.3 Results and Discussion 

§ 9.3.1 In vitro analysis of DPI formulations  

§§ 9.3.1.1 Spray Dried Lactose-Leucine 
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Evaluating each of the formulations on their aerosolization performance, with increasing L-Leucine 

concentration, with that of its spray dried counterpart was done through a physical mixture 

comparative study. Figure 9.1 presents the data collected from the study where the amount of 

salbutamol sulphate (in µg) is reported for each of the MSLI compartments [capsules (C), inhaler 

(I), mouthpiece (M), induction port (IP), Stage 1, Stage 2, Stage 3, Stage 4, and Stage 5]. 

Comparing the spray dried formulations with that of the physical mixture formulations, which 

consisted of mixing spray dried lactose monohydrate, salbutamol sulphate, and the respective L-

Leucine concentration, it became evident that all of the physical mixture formulations had similar 

aerosolization performance from one another with all of them delivering the most salbutamol 

sulphate to Stage 1 (Figure 9.1) whereas the spray dried formulations experienced more of an 

array of salbutamol sulphate delivery (see Chapter 3) with 0.5% Lleucine acquiring the most 

effective aerosolization performance amongst all of the formulations.  
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Figure 9.1. Aerosolization Profile of Spray Dried Lactose-Leucine. Aerosolization performance of 
each of the physical mixture formulations (Spray Dried Lactose Monohydrate, 0.1% L-leucine, 
0.5% L-leucine, 1% L-leucine, 5% L-leucine, and 10% L-leucine) highlighting the amount of SS 
recovered (percent recovered). 
 

Furthermore, taking a closer look at the data that is presented in Table 9.1 it becomes apparent 

that the physical mixture formulations on an overall case, with the exception of 0.5% L-leucine, 

attained higher RD, ED, percent recovery, and percent emission when compared to the spray 

dried formulations. On the other hand, the spray dried formulations had less impaction loss than 

the physical mixture formulations which explains their higher FPF, DS, and EI. That is to say, 

while the physical mixture formulations were able to deliver more salbutamol sulphate into the 

respiratory tract than the spray dried formulations, the spray dried formulations were able to 

deliver more salbutamol sulphate further into the lower respiratory tract than the physical mixture 

formulations. Therefore, it was deduced that the spray dried formulations were more effective in 

their
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aerosolization performance than the physical mixture formulations. The spray dried 0.5% L-leucine formulation was the most effective 

with an FPF of 47.11 + 9.94% (see Chapter 3). 

Table 9.1. Aerosolization Parameters of Physical Mixtures of Lactose-Leucine. Recovered Dose (RD), Emitted Dose (ED), Percent 
Recovery, Percent Emission, Percent Impact Loss, Mass Median Aerodynamic Diameter (MMAD), Geometric Standard Deviation 
(GSD), Fine Particle Dose (FPD), Fine Particle Fraction (FPF), Drug Loss (DL), Dispersibility (DS), and Effective Inhalation Index 
(EI) of salbutamol sulphate obtained from each of the different physical mixture formulations (Spray Dried Lactose Monohydrate, 0.1% 
L-leucine, 0.5% L-leucine, 1% L-leucine, 5% L-leucine, and 10% L-leucine).  

Formulation RD  
(μg) 

ED  
(μg) 

Recovery 
(%) 

Emission 
(%) 

Impact 
Loss 
(%) 

MMAD 
(μm) 

GSD  
(μm) 

FPD 
(μg) 

FPF  
(%) 

DL  
(%) 

DS  
(%) 

EI 

SD Lactose 434.09 + 
40.27 

376.79 + 
19.65 

90.25 + 
8.37 

87.02 + 
3.79 

52.49 + 
2.81 

3.13 + 
0.15 

2.18 + 
0.07  

110.41 + 
4.77 

25.51 + 
1.23 

14.31 + 
4.12 

29.31 + 
0.36 

10.87 + 
0.22 

0.1% L-Leucine 400.75 + 
74.78 

371.34 + 
81.01 

83.32 + 
15.55 

92.32 + 
3.29 

50.43 + 
7.27 

3.29 + 
0.20 

2.08 + 
0.06  

126.89 + 
22.45 

31.90 + 
4.98 

10.33 + 
5.06 

34.55 + 
5.22 

11.23 + 
0.33 

0.5% L-Leucine 448.39 + 
90.97 

393.77 + 
49.03 

93.22 + 
18.91 

88.69 + 
6.66 

37.14 + 
5.19 

3.31 + 
0.09  

2.10 + 
0.02  

171.29+ 
35.23 

38.21 + 
1.79 

12.08 + 
7.00  

43.22 + 
3.41 

11.14 + 
0.38 

1% L-Leucine 446.87 + 
101.35 

419.43 + 
96.19 

92.90 + 
21.07 

93.84 + 
0.73 

40.55 + 
5.95 

3.14 + 
0.11  

2.13 + 
0.04  

190.00 + 
66.58 

41.68 + 
5.55 

7.32 + 
0.81 

44.41 + 
5.79 

11.89 + 
0.67 

5% L-Leucine 413.69 + 
59.04 

376.05 + 
71.15 

86.01 + 
12.27 

90.49 + 
4.42 

31.27 + 
4.73 

3.22 + 
0.11 

2.11 + 
0.05 

190.99 + 
54.83 

45.53 + 
6.71 

11.86 + 
2.84 

50.16 + 
5.04 

11.48 + 
0.77 

10% L-Leucine 416.86 + 
204.87 

391.55 + 
203.14 

86.67 + 
42.59 

93.07 + 
2.71 

38.46+ 
12.38 

3.27 + 
0.08  

2.07 + 
0.02 

168.36 + 
61.70 

42.38 + 
8.87 

7.84 + 
2.98 

45.71 + 
10.53 

11.51 + 
0.14 
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§§ 9.3.1.2 Spray Dried Mannitol-Leucine 

 

Figure 9.2  presents the data collected from the study where the amount of salbutamol sulphate 

(in �g) is reported for each of the MSLI compartments. Comparing the spray dried formulations 

with that of their physical mixture counterpart, which consisted of mixing spray dried mannitol, 

salbutamol sulphate, and the respective L-leucine concentration, it became evident that 0.5% L-

leucine, 5% L-leucine, and 10% L-leucine delivered the most salbutamol sulphate to Stage 1, while 

0.1% L-leucine and 1% L-leucine to Stage 3. Nevertheless, their delivered amounts were 

significantly less (p < 0.05) than that of the spray dried formulations, where 6% L-leucine (see 

Chapter 4) had the most effective aerosolization performance.  

 

   

 

   
 
Figure 9.2. Aerosolization Profile of Spray Dried Mannitol-Leucine. Aerosolization performance 
of each physical mixture formulation (Spray Dried Mannitol, 0.1% L-leucine, 0.5% L-leucine, 1 L-
leucine, 5% L-leucine, and 10% L-leucine) highlighting the amount of SS recovered (percent 
recovered) for each and comparing them side-by-side. 
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Furthermore, taking a closer look at the data that is presented in Table 9.2 it becomes apparent 

that the physical mixture formulations, on an overall case, attained lower RD, ED, and percent 

recovery when compared to the engineered spray dried formulations. In addition, the spray dried 

formulations, for the most part, also witnessed higher impact loss than the physical mixture 

formulations, but the physical mixture formulations, on an overall case, showed higher percent 

emission values than the spray dried formulations. That is to say, while the physical mixture 

formulations were able to deliver more salbutamol sulphate into the system than the spray dried 

formulations, the spray dried formulations were able to deliver more salbutamol sulphate further 

into the lower respiratory tract than the physical mixture formulations. In addition, the RD of the 

spray dried formulations surpasses that of the physical mixture formulations suggesting that 

attachment/detachment of SS from the physical mixture formulations was compromised. 

Therefore, based on such comparison, it was deduced that the spray dried formulations were 

more effective in their aerosolization performance than the physical mixture formulations. The 

spray dried 6% L-leucine formulation was the most effective with an FPF of 52.96 + 5.21% (see 

Chapter 4). 
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Table 9.2. Aerosolization Parameters of Physical Mixtures of Mannitol-Leucine. Recovered Dose (RD), Emitted Dose (ED), Percent 
Recovery, Percent Emission, Percent Impact Loss, Mass Median Aerodynamic Diameter (MMAD), Geometric Standard Deviation 
(GSD), Fine Particle Dose (FPD), Fine Particle Fraction (FPF), Drug Loss (DL), Dispersibility (DS), and Effective Inhalation Index (EI) 
of salbutamol sulphate obtained from each of the different physical mixture formulations (Spray Dried Mannitol, 0.1% L-leucine, 0.5% 
L-leucine, 1% L-leucine, 5% L-leucine, and 10% L-leucine). 
 

Formulation RD (μg) ED (μg) Recovery 
(%) 

Emission 
(%) 

Impact 
Loss (%) 

MMAD 
(μm) 

GSD 
(μm) FPD FPF 

(%) DL (%) DS (%) EI 

Spray Dried 
Mannitol 

431 + 
143.68 

394.56 + 
147.19 

89.74 + 
29.87 

90.34 + 
5.20 

45.59 + 
6.29 

3.06 + 
0.10 

2.10 + 
0.08 

168.20 + 
85.39 

37.06 + 
8.66 

10.54 + 
5.35 

40.75 + 
7.55 

11.28 + 
0.62 

0.1% L-Leucine 358.27 + 
56.95 

323.00 + 
55.85 

74.48 + 
11.84 

90.01 + 
1.59 

29.73 + 
7.94 

2.96 + 
0.08 

2.09 + 
0.02 

190.60 + 
53.42 

52.45 + 
7.23 

12.44 + 
2.03 

58.19 + 
7.12 

11.93 + 
0.37 

0.5% L-Leucine 299.25 + 
95.92 

273.32 + 
91.84 

62.21 + 
19.94 

91.07 + 
1.43 

33.21 + 
9.83 

2.83 + 
0.22 

2.14 + 
0.08 

157.59 + 
77.77 

50.91 + 
8.23 

11.81 + 
2.37 

55.83 + 
8.18 

11.91 + 
0.40 

1% L-Leucine 335.68 + 
68.56 

299.12 + 
58.47 

69.79 + 
14.25 

89.22 + 
1.22 

30.12 + 
2.73 

2.95 + 
0.06 

2.06 + 
0.01 

175.69 + 
32.76 

52.48 + 
1.59 

14.19 + 
3.26 

58.81 + 
0.98 

11.90 + 
0.12 

5% L-Leucine 204.82 + 
54.55 

147.97 + 
53.44 

42.58 + 
11.34 

76.29 + 
31.09 

30.10 + 
4.93 

3.05 + 
0.14 

2.05 + 
0.01 

75.82 + 
43.07 

39.97 + 
23.39 

25.91 + 
32.54 

48.53 + 
14.22 

10.54 + 
2.80 

10% L-Leucine 225.30 + 
41.38 

206.25 + 
43.17 

46.84 + 
8.60 

91.26 + 
2.70 

35.04 + 
1.93 

2.93 + 
0.10 

2.06 + 
0.05 

114.56 + 
29.01 

50.49 + 
3.38 

11.97 + 
2.67 

55.30 + 
2.56 

11.90 + 
0.24 
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§§ 9.3.1.3 Spray Dried Mannitol-Lactose-Leucine 

 

Figure 9.3  presents the data collected from the study where the amount of salbutamol sulphate (in 

µg) is reported for each of the MSLI compartments. Comparing the spray dried formulations with 

that of their physical mixture counterpart, which consisted of mixing spray dried mannitol, spray 

dried lactose, salbutamol sulphate, and the respective L-leucine concentration, it became evident 

that the spray dried mannitol, 1:1 [Mannitol:Lactose], 1:3 [Mannitol:Lactose], and the 3:1 

[Mannitol:Lactose] physical mixture formulations delivered the most salbutamol sulphate to Stage 

1 while the spray dried lactose delivered the most salbutamol sulphate to Stage 3. The 1:3 

[mannitol:lactose] physical mixture formulation was the most effective in its aerosolization 

performance delivering the most salbutamol to Stages 3-5 when comparing them to the rest of the 

physical mixture formulations. When comparing the physical mixture formulations to their spray 

dried counterpart, however, the spray dried 1:3 [mannitol:lactose] carrier was the most effective 

in its aerosolization performance. 
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Figure 9.3. Aerosolization Profile of Spray Dried Mannitol-Lactose-Leucine. Aerosolization 
performance of each physical mixture formulation (Spray Dried Mannitol, Spray Dried Lactose, 
1:1 [Mannitol:Lactose], 1:3 [Mannitol:Lactose], and 3:1 [Mannitol:Lactose]) highlighting the 
amount of SS recovered (percent recovered) for each and comparing them side-by-side. 
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Furthermore, taking a closer look at the data that is presented in Table 9.3 it becomes apparent that the physical mixture formulations, 

on an overall case, attained similar results to the spray dried formulations. The 1:3 [mannitol:lactose] physical mixture carrier obtained 

the best aerosolization profile amongst all the physical mixture formulations, but, when compared to the spray dried formulations, the 

1:3 [mannitol:lactose] spray dried carrier obtained the best aerosolization profile amongst all the carriers with an FPF of 61.42 + 4.21% 

(see Chapter 5). 

Table 9.3. Aerosolization Parameters of Physical Mixtures of Mannitol-Lactose-Leu. Recovered Dose (RD), Emitted Dose (ED), 
Percent Recovery, Percent Emission, Percent Impact Loss, Mass Median Aerodynamic Diameter (MMAD), Geometric Standard 
Deviation (GSD), Fine Particle Dose (FPD), Fine Particle Fraction (FPF), Drug Loss (DL), Dispersibility (DS), and Effective Inhalation 
Index (EI) of salbutamol sulphate obtained from each of the different physical mixture formulations (Spray Dried Mannitol, Spray Dried 
Lactose, 1:1 [Mannitol:Lactose], 1:3 [Mannitol:Lactose], and 3:1 [Mannitol:Lactose]). 

Formulation RD (μg) ED (μg) Recovery 
(%) 

Emission 
(%) 

Impact 
Loss (%) 

MMAD 
(μm) 

GSD 
(μm) FPD FPF 

(%) DL (%) DS (%) EI 

Spray Dried 
Mannitol 

204.82 + 
54.55 

147.97 + 
53.44 

42.58 + 
11.34 

76.29 + 
31.09 

30.10 + 
4.93 

3.05 + 
0.14 

2.05 + 
0.01 

75.82 + 
43.07 

39.97 + 
23.39 

25.91 + 
32.54 

48.53 + 
14.22 

10.54 + 
2.80 

Spray Dried 
Lactose 

413.69 + 
59.04 

376.05 + 
71.15 

86.01 + 
12.27 

90.49 + 
4.42 

31.27 + 
4.73 

3.22 + 
0.11 

2.11 + 
0.05 

190.99 + 
54.83 

45.53 + 
6.71 

11.86 + 
2.84 

50.16 + 
5.04 

11.48 + 
0.77 

1:1 374.64 + 
49.47 

350.00 + 
48.71 

77.89 + 
10.28 

93.36 + 
1.40 

36.98 + 
8.97 

3.28 + 
0.59 

2.09 + 
0.01 

183.82 + 
36.17 

49.11 + 
8.34 

8.83 + 
3.22 

52.53 + 
8.23 

11.93 + 
0.40 

1:3 386.73 + 
53.24 

363.49 + 
54.58 

80.40 + 
11.07 

93.88 + 
1.42 

34.69 + 
8.80 

3.30 + 
0.58 

2.06 + 
0.06 

201.78 + 
51.52 

51.63 + 
6.43 

7.62 + 
2.13 

54.96 + 
6.33 

12.06 + 
0.31 

3:1 324.10 + 
73.47 

293.03 + 
75.19 

67.38 + 
15.27 

90.03 + 
3.16 

33.94 + 
11.28 

3.04 + 
0.01 

2.04 + 
0.01 

162.59 + 
69.68 

48.88 + 
10.11 

11.94 + 
3.63 

54.25 + 
10.55 

11.78 + 
0.49 
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§§ 9.3.1.4 Xylitol-Leucine Crystals 

 

Figure 9.4 presents the data collected from the physical mixture comparative study where the 

amount of salbutamol sulphate (in μg) is reported for each of the MSLI compartments. When 

comparing the data, it became evident that the physical mixture formulations carried significantly 

more (p > 0.05) salbutamol sulphate to Stage 1 than the crystallized formulations. Furthermore, 

when it came to the inhaler (I), mouthpiece (M), and induction port (IP), the physical mixture 

formulations also exhibited more salbutamol sulphate, but in this case, more salbutamol sulphate 

suggests more API being delivered to the non-targeted area. 

 

 

  

   

 

  

Figure 9.4. Aerosolization Profile of Xylitol-Leucine Crystals. Aerosolization performance of each 

physical mixture formulation (Commercial Xylitol, Xylitol with 0% LEU, Xylitol with 1% LEU, Xylitol 

with 5% LEU, and Xylitol with 10% LEU) highlighting the amount of SS recovered (percent 

recovered) for each and comparing them side-by-side. 
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Moreover, Table 9.4 presents the data from the aerosolization of the physical mixtures; comparing 

this data, it becomes evident that the physical mixture formulations observed higher RD, ED, and 

percent recovery when compared to their crystallized counterpart. Both the crystallized and the 

physical mixture formulations experienced similar percent emission values suggesting salbutamol 

sulphate being introduced into the system at a consistent rate. When it comes to impaction loss, 

however, the physical mixture formulations experienced higher values meaning more salbutamol 

sulphate was lost as a result of poor adhesive and cohesive forces; such results also correspond 

to their bigger size as indicated by their higher MMAD values. GSD for the crystallized formations 

was higher than the physical mixture formulations, but their FPD was higher. In addition, as a 

result of their bigger size and despite their higher dosage, the physical mixture formulations 

resulted in obtaining higher FPF with commercial xylitol having the highest FPF with 44.13 + 

11.27% when compared to the crystallized formulations where xylitol with 5% LEU obtained 42.94 

+ 15.21% (see Chapter 6). While commercial xylitol obtained the highest FPF from all of the 

formulations, it failed to adhere to the potency specification, like previously mentioned. Drug loss 

was higher with the crystallized formulations along with the effective inhalation index, but lower in 

dispersibility.  
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Table 9.4. Aerosolization Parameters of Physical Mixtures of Xylitol-Leucine Crystals. Recovered Dose (RD), Emitted Dose (ED), 
Percent Recovery, Percent Emission, Percent Impact Loss, Mass Median Aerodynamic Diameter (MMAD), Geometric Standard 
Deviation (GSD), Fine Particle Dose (FPD), Fine Particle Fraction (FPF), Drug Loss (DL), Dispersibility (DS), and Effective Inhalation 
Index (EI) of salbutamol sulphate obtained from each of the different physical mixture formulations (Commercial Xylitol, Xylitol with 0% 
LEU, Xylitol with 1% LEU, Xylitol with 5% LEU, and Xylitol with 10% LEU). 

Formulation RD (μg) ED (μg) Recovery 
(%) 

Emission 
(%) 

Impact 
Loss (%) 

MMAD 
(μm) 

GSD 
(μm) FPD FPF 

(%) 
DL 
(%) 

DS 
(%) EI 

Commercial Xylitol 239.29  
+ 111.70 

221.16  
+ 106.22 

49.75 + 
23.22 

92.01 + 
1.75 

43.72 + 
12.20 

2.77 + 
0.45 

2.18 + 
0.31 

113.57 + 
82.45 

44.13 + 
11.27 

8.56 + 
2.11 

47.90 + 
11.69 

11.66 
+ 0.53 

Xylitol with 0% LEU 216.19 + 
170.69 

197.97 + 
154.33 

44.95 + 
35.49 

91.91 + 
3.46 

50.01 + 
19.40 

3.10 + 
0.10 

2.09 + 
0.06 

92.87 + 
109.59 

34.25 + 
16.98 

10.12 + 
3.94 

37.27 + 
18.73 

11.21 
+ 0.78 

Xylitol with 1% LEU 461.51 + 
55.77 

431.00 + 
53.37 

95.95 + 
11.59 

93.37 + 
1.29 

73.20 + 
7.64 

3.08 + 
0.02 

2.14 + 
0.05 

75.48 + 
39.98 

16.02 + 
7.76 

7.56 + 
1.31 

17.09 + 
8.03 

10.45 
+ 0.43 

Xylitol with 5% LEU 511.81 + 
135.10 

481.56 + 
131.94 

106.40 + 
28.09 

93.89 + 
1.18 

65.43 + 
4.82 

3.26 + 
0.04 

2.00 + 
0.02 

122.23 + 
44.08 

23.57 + 
3.98 

6.77 + 
1.52 

25.10 + 
4.15 

10.84 
+ 0.20 

Xylitol with 10% LEU 535.92 + 
73.24 

501.43 + 
66.79 

111.42 + 
15.23 

93.59 + 
1.08 

48.89 + 
5.33 

3.27 + 
0.06 

1.99 + 
0.01 

198.78 + 
34.95 

37.05 + 
3.05 

7.16 + 
1.13 

39.61 + 
3.70 

11.43 
+ 0.09 
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§§ 9.3.1.5 Mannitol-Lactose Crystals 

 

Figure 9.5  presents the data collected from the study where the amount of salbutamol sulphate (in 

µg) is reported for each of the MSLI compartments. Comparing the crystallized formulations with 

that of their physical mixture counterpart, which consisted of mixing mannitol, lactose, and 

salbutamol sulphate, it became evident that the 1:1 [mannitol:lactose], 1:2 [mannitol:lactose], and 

1:3 [mannitol:lactose] carriers delivered the most salbutamol sulphate to Stage 1. The 2:1 

[mannitol:lactose] carrier delivered the most salbutamol sulphate to Stage 3 while the 3:1 

[mannitol:lactose] carrier delivered the most salbutamol sulphate to Stage 2.  

     

Figure 9.5. Aerosolization Profile of Mannitol-Lactose Crystals. Aerosolization performance of 

each physical mixture formulation (1:1 [Mannitol:Lactose], 1:2 [Mannitol:Lactose], 2:1 

[Mannitol:Lactose], 1:3 [Mannitol:Lactose], and 3:1 [Mannitol:Lactose]) highlighting the amount 

of SS recovered (percent recovered) for each and comparing them side-by-side.   
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Furthermore, taking a closer look at the data that is presented in Table 9.5 it becomes apparent 

that the physical mixture formulations, on an overall case, attained lower RD, ED, percent 

recovery, and percent emission than the crystallized formulations. The physical mixture 

formulations, however, obtained higher impact loss but lower MMAD and GSD when compared 

to the crystallized formulations. The crystallized formulations attained higher FPD and FPF when 

compared to the physical mixture formulations, but the physical mixture formulations attained 

higher drug loss. The crystallized formulations also obtained higher dispersibility and effective 

inhalation index. As a whole, the crystallized formulations outperformed the physical mixture 

formulations in their aersolization profile. The highest FPF for the crystallized formulations was 

from the 1:3 [mannitol:lactose] carrier with 68.69 + 4.65% (see Chapter 7) whereas for the 

physical mixture formulations the 2:1 [mannitol:lactose] carrier obtained an FPF of 46.00 + 

15.03%.  

 

§§ 9.3.1.6 Mannitol-Salbutamol Crystals 

 

A physical mixture comparative study was not conducted for the mannitol:salbutamol sulphate 

crystals since it would have consisted of mixing mannitol with salbutamol sulphate, which has 

already been done in this overall study. Therefore, the values obtained from the spray dried 

mannitol-leucine carriers were used, specifically the Spray Dried Mannitol sample, and it was 

determined that it was better to crystallize the carriers than to physically mix them. The highest 

FPF from the crystallized carriers was from the 2:1 [salbutamol:mannitol] carrier with an FPF of 

62.53 + 6.84% (see Chapter 8) whereas the Spray Dried Mannitol physical mixture carrier had an 

FPF of 37.06 + 8.66%. 
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Table 9.5. Aerosolization Parameters of Physical Mixtures of Mann.-Lac. Crystals. Recovered Dose (RD), Emitted Dose (ED), Percent 
Recovery, Percent Emission, Percent Impact Loss, Mass Median Aerodynamic Diameter (MMAD), Geometric Standard Deviation 
(GSD), Fine Particle Dose (FPD), Fine Particle Fraction (FPF), Drug Loss (DL), Dispersibility (DS), and Effective Inhalation Index (EI) 
of salbutamol sulphate obtained from each of the different physical mixture formulations (1:1 [Mannitol:Lactose], 1:2 [Mannitol:Lactose], 
1:3 [Mannitol:Lactose], 2:1 [Mannitol:Lactose], and 3:1 [Mannitol:Lactose]). 
 
 

Formulation RD (μg) ED (μg) Recover
y (%) 

Emission 
(%) 

Impact 
Loss (%) 

MMAD 
(μm) 

GSD 
(μm) FPD FPF 

(%) 
DL 
(%) 

DS 
(%) EI 

1:1 (Mannitol:Lactose) 277.95  + 
52.19 

257.85  + 
49.66 

57.79 + 
10.85 

92.72 + 
0.42 

48.22 + 
0.94 

3.15 + 
0.30 

2.07 + 
0.10 

102.58 + 
25.68 

36.64 + 
2.19 

8.47 + 
0.72 

39.52 + 
2.20 

11.37 
+ 0.11 

1:2 (Mannitol:Lactose) 192.03  + 
37.55 

165.10  + 
46.66 

39.92 + 
7.81 

84.96 + 
8.59 

34.03 + 
9.26 

3.21 + 
0.21 

2.05 + 
0.07 

82.17 + 
39.90 

41.14 + 
12.86 

17.54 + 
9.16 

47.73 + 
10.82 

11.20 
+ 0.96 

2:1 (Mannitol:Lactose) 317.19  + 
123.10 

285.55  + 
115.17 

65.94 + 
25.59 

89.64 + 
1.50 

35.05 + 
14.79 

3.17 + 
0.07 

2.03 + 
0.05 

157.54 + 
100.74 

46.00 + 
15.03 

12.12 + 
2.42 

51.14 + 
16.02 

11.63 
+ 0.72 

1:3 (Mannitol:Lactose) 329.80  + 
120.01 

300.45  + 
111.88 

68.57 + 
24.95 

90.94 + 
1.23 

39.42 + 
17.88 

3.05 + 
0.26 

2.09 + 
0.12 

154.65 + 
111.62 

43.27 + 
14.99 

10.90 + 
2.21 

47.51 + 
16.08 

11.57 
+ 0.66 

3:1 (Mannitol:Lactose) 244.24  + 
188.34 

204.43  + 
194.57 

50.78 + 
39.16 

73.41 + 
21.63 

38.02 + 
6.86 

3.44 + 
0.80 

2.16 + 
0.07 

60.32 + 
56.56 

21.16 + 
9.34 

31.07 + 
23.49 

27.88 + 
6.78 

9.63 + 
1.65 
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§ 9.3.2 Homogeneity Assessment 

§§ 9.3.2.1 Spray Dried Lactose-Leucine 

 

A homogeneity assessment was completed to assess the uniformity of each of the physical 

mixture formulations. Table 9.6 presents the results where it shows the percent potency and the 

coefficient of variation (%CV), which was the indicator used to assess the homogeneity of the 

formulations. SD lactose was the only formulation that passed the specification requirement  that 

is set by the US Food and Drug Administration and its European counterpart with a potency of 

91.36%; the range being 75-125%. The formulation that was the most homogeneous was the 1% 

Leu with a %CV of 5.27%. 

 
Table 9.6. Potency and Homogeneity of Physical Mixtures of Lactose-Leucine. Percent potency 
and content homogeneity of the Spray Dried Lactose-Leucine  physical mixture formulations (SD 
Lactose, 0.1% Leu, 0.5% Leu, 1% Leu, 5% Leu, and 10% Leu), expressed as the percent 
coefficient of variation (%CV). 

Formulation 
Potency 

(%) 
% CV 

SD Lactose  91.36 10.29 

0.1% Leu 49.54 10.31 

0.5% Leu 48.50 13.54 

1% Leu 44.39 5.27 

5% Leu 58.90 28.71 

10% Leu 33.32 35.31 

*However, has not been taken into account for in vivo inhalation studies.  
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§§ 9.3.2.2 Spray Dried Mannitol-Leucine 

 
Table 9.7 presents the percent potency and the coefficient of variation (%CV), which was the 
indicator used to assess the homogeneity of the formulations, for the spray dried mannitol-leucine 
physical mixture formulations. The results show that all of the physical mixture formulations 
adhered to the potency specifications with the exception of the 1% L-leucine and 5% L-leucine 
which were 54.53% and 77.56% potent, respectively. With respect to the homogeneity of the 
physical mixture formulations, the 0.1% L-leucine obtained the best content homogeneity with a 
%CV of 5.44%.  
 
Table 9.7. Potency and Homogeneity of Physical Mixtures of Mannitol-Leucine. Percent potency 
and content homogeneity of the Spray Dried Mannitol-Leucine  physical mixture formulations (SD 
Mannitol, 0.1% Leu, 0.5% Leu, 1% Leu, 5% Leu, and 10% Leu), expressed as the percent 
coefficient of variation (%CV). 

Formulation 
Potency 

(%) 
% CV 

SD Mannitol  91.95 20.90 

0.1% Leu 93.34 5.44 

0.5% Leu 98.21 25.02 

1% Leu 54.53 15.55 

5% Leu 77.56 9.82 

10% Leu 93.34 20.70 

*However, has not been taken into account for in vivo inhalation studies.  

 

§§ 9.3.2.3 Spray Dried Mannitol-Lactose-Leucine 

 

Table 9.8 presents the percent potency and the coefficient of variation (%CV), which was the 
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indicator used to assess the homogeneity of the formulations, for the spray dried mannitol-lactose-

leucine physical mixture formulations. All of the physical mixture formulations adhered to the 75-

125% potency range. Moreover, the physical mixture formulation that was the most uniform was 

the 1:3 [Mannitol:Lactose] formulation with a %CV of 3.15%. 

 

Table 9.8. Potency and Homogeneity of Physical Mixtures of Mann.-Lac.-Leucine. Percent 

potency and content homogeneity of the Spray Dried Mannitol-Lactose-Leucine physical mixture 

formulations (SD Mannitol, SD Lactose, 1:1 [Mannitol:Lactose], 1:3 [Mannitol:Lactose], and 3:1 

[Mannitol:Lactose]), expressed as the percent coefficient of variation (%CV).  

 

  

 

 

 

  

*However, has not been taken into account for in vivo inhalation studies.  

 

 

§§ 9.3.2.4 Xylitol-Leucine Crystals 

 

Table 9.9 presents the percent potency and the coefficient of variation (%CV), which was the 

indicator used to assess the homogeneity of the formulations, for the xylitol-leucine physical 

mixture formulations. The Xylitol with 1% Leu, Xylitol with 5% Leu, and the Xylitol with 10% Leu 

adhered to the 75-125% potency specification with 90.97%, 94.20%, and 94.61% (respectively) 

while the Commercial Xylitol and Xylitol with 0% Leu failed the specification with potencies of 

Formulation Potency (%) % CV 

SD Mannitol  110.07 11.90 

SD Lactose 89.71 13.23 

1:1 [Mannitol:Lactose] 115.07 8.02 

1:3 [Mannitol:Lactose] 110.01 3.15 

3:1 [Mannitol:Lactose] 84.15 8.88 
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51.55% and 73.42% (respectively). With respect to the uniformity of the physical mixture 

formulations, the Xylitol with 10% Leu was the most homogeneous amongst all of the physical 

mixture formulations with a %CV of 4.67%. 

 

Table 9.9. Potency and Homogeneity of Physical Mixtures of Xylitol-Leu. Crystals. Percent 

potency and content homogeneity of the Xylitol-Leucine physical mixture formulations 

(Commercial Xylitol, Xylitol with 0% Leu, Xylitol with 1% Leu, Xylitol with 5% Leu, and Xylitol with 

10% Leu), expressed as the percent coefficient of variation (%CV).  

 

  

 

 

 

*However, has not been taken into account for in vivo inhalation studies.  

 

§§ 9.3.2.5 Mannitol-Lactose Crystals 

 

Table 9.10 presents the percent potency and the coefficient of variation (%CV), which was the 

indicator used to assess the homogeneity of the formulations, for the Mannitol-Lactose physical 

mixture formulations. The only physical mixture formulation that did not adhere to the potency 

specification was the 1:2 (Mannitol:Lactose) formulation which had a percent potency of 69.50%. 

All the other physical mixture formulations [1:1 (Mannitol:Lactose), 1:3 (Mannitol:Lactose), 2:1 

(Mannitol:Lactose), and 3:1 (Mannitol:Lactose)] adhered to the potency specification [see Table 

Formulation Potency (%) % CV 

Commercial Xylitol 113.03 13.35 

Xylitol with 0% Leu 73.42 15.95 

Xylitol with 1% Leu 90.97 13.38 

Xylitol with 5% Leu 94.20 5.38 

Xylitol with 10% Leu 94.61 4.67 
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9.10]. With respect to their homogeneity, however, the most uniform physical mixture formulation 

was the 1:1 (Mannitol:Lactose) formulation with a %CV of 6.48%. 

 

Table 9.10. Potency and Homogeneity of Physical Mixtures of Mann.-Lac. Crystals. Percent 

potency and content homogeneity of the Mannitol-Lactose physical mixture formulations [1:1 

(Mannitol:Lactose), 1:2 (Mannitol:Lactose), 1:3 (Mannitol:Lactose), 2:1 (Mannitol:Lactose), and 

3:1 (Mannitol:Lactose)], expressed as the percent coefficient of variation (%CV).  

 

  

 

  

 

 

*However, has not been taken into account for in vivo inhalation studies.  

 

§§ 9.3.2.6 Mannitol-Salbutamol Crystals 

 

As mentioned in §§ 9.2.1.6, a physical mixture comparative study was not conducted for mannitol-

salbutamol formulation since it would have consisted of mixing mannitol with salbutamol sulphate, 

which was something that has already been done (see §§ 9.2.1.2). 

 

9.4 Conclusion  

 

The results presented in this chapter showed that it was better to use the engineered carriers than 

their respective physical mixture counterpart. More optimal aerosolization performances were 

Formulation Potency (%) % CV 

1:1 (Mannitol:Lactose) 108.00 6.48 

1:2 (Mannitol:Lactose) 69.50 19.40 

1:3 (Mannitol:Lactose) 90.88 18.73 

2:1 (Mannitol:Lactose) 95.63 28.28 

3:1 (Mannitol:Lactose) 114.85 24.60 
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attained from the engineered carriers than from the physical mixture formulations. Parameters 

like FPF were higher in the engineered carriers than the physical mixture formulations; such 

parameter is used to determine a formulation’s aerosolization performance. Moreover, based on 

the results presented in this chapter, it was determined that it was more cost-effective to engineer 

the carriers than to use the physical mixture counterpart. Looking at the physical mixture 

formulations on their own, the results presented in this chapter have shown that the addition of L-

leucine lowers the potency of the resultant formulations. The addition of L-leucine causes a 

change in the inter- and intra- molecular interactions which affects the adhesive forces of 

salbutamol sulphate thus affecting the formulation’s aerosolization performance. 
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Chapter 10 

 

General Discussion and Future Work 

 

10.1 General Discussion 
 

The previous chapters illustrated an enhanced methodological approach for the 

enhancement of aerosolized particulates. The goal was to engineer a carrier with optimal 

aerosolization properties such that an increase in the FPF was observed. It was also 

important to engineer the carriers following the US Food and Drug Administration’s 

guidelines, which also follow the US Pharmacopeia, in the event that any of the carriers 

become used for manufacturing purposes; these guidelines also follow the European 

pharmacopeia.222, 223, 235, 368 

 

Chapter 3 looked at spray dried lactose-leucine carriers to determine their aerosolized 

efficiency concluding that the optimal FPF that was reached was 47.11± 9.94% from the 

0.5% L-leucine carrier. It was also determined that the addition of L-leucine improved the 

stability of amorphous spray dried lactose while also providing a lubrication effect.21 

Moreover, the results obtained from the physical mixture comparative study (see Chapter 
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9) showed that it is more efficient and effective to engineer the carriers than to mix spray 

dried lactose, L-leucine, and salbutamol sulphate. 

 

Chapter 4 looked at spray dried mannitol-leucine carriers and it was concluded that the 

optimal FPF that was reached was from the 6% L-Leucine with a FPF of 52.96 + 5.21%. 

The results also confirmed that mannitol can serve as a suitable alternative carrier over 

lactose in DPI formulations and could be suitable for lactose intolerant patients suffering 

from asthma, COPD, or other lung diseases which can be treated via DPI formulations.14 

224 258 The physical mixture comparative study showed that it is more effective to engineer 

the carriers than to mix spray dried mannitol, L-leucine, and salbutamol sulphate 

(Albuterol sulphate). Finally, the results also supported the findings from Chapter 3 where 

it showed L-leucine’s lubrication effect. 

 

Chapter 5 looked at spray dried mannitol-lactose-leucine carriers and it was concluded 

that the optimal FPF that was reached was from the 1:3 [Mannitol:Lactose] carrier with a 

FPF of 61.42 + 4.21%. Comparing this to the physical mixture comparative study, it was 

concluded that it is more efficient to engineer the carriers than to mix spray dried lactose, 

sprayed dried mannitol, L-leucine, and salbutamol sulphate. The use of 5% L-leucine (w/w) 

modified the physicochemical properties of the spray dried particles along with their 

morphology. The results also showcase the lubrication effect that L-leucine provides to 

the carriers upon aerosolization. 

 

In chapter 6, the type of carrier was changed from lactose and mannitol to xylitol to see if 
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a more suitable carrier can be developed for DPI formulations with a high FPF. Therefore, 

in chapter 6 xylitol-leucine crystals as carriers were developed and it was concluded that 

the optimal FPF that was reached was from the Xylitol with 5% LEU with a FPF of 42.94 

+ 15.21%; this was because the Commercial Xylitol (FPF = 44.13 + 11.27) failed the 

uniformity assessment and, as a result, could not be used or implemented. Xylitol with 

5% LEU had particles classified as tomahawk, which is known to show better aerosolized 

efficacy over particles with a spherical morphology. The results also showed that L-leucine 

altered the physicochemical properties of the carriers which affected their inter- and intra-

molecular interactions. Comparing these formulations to the formulations in the physical 

mixture comparative study, it was concluded that it was more efficient to engineer the 

carriers than to simply mix xylitol, L-leucine, and salbutamol sulphate together.  

 

In Chapter 7 the idea was to develop binary mixtures of some of there main carriers 

including lactose and mannitol to enhance the aerosolization performance of drugs from 

DPI formulations. The results concluded that the optimal FPF that was observed was from 

the 1:3 [Mannitol:Lactose] carrier with a FPF of 68.69 + 4.65%. This formulation had 

crystals classified as rhombic in structure and out-performed the 1:3 [Mannitol:Lactose] 

carrier from Chapter 5 whose FPF was 61.42 + 4.21%. The results also showed an 

inverse relationship between particle size and concentration of mannitol with regards to 

the dry system; when the concentration of mannitol increased the particle size decreased. 

In addition, there was a positive correlation between the concentration of mannitol and 

the particle size with respect to the wet system; when the concentration of mannitol 
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increased, the particle size of the carriers also increased. Comparing these results to the 

physical mixture comparative study (see Chapter 9), it was determined that it was more 

efficient and cost-effective to engineer the carriers rather than simply mixing mannitol, 

lactose, and salbutamol sulphate. 

 

In other chapters, generally, salbutamol sulphate was physically added to the engineered   

carrier particles, whereas in Chapter 8 the idea was to develop an engineered carrier-API 

via a crystallization technology. The results proved that the optimal FPF that was 

observed was from the 2:1 [Salbutamol:Mannitol] carrier with a FPF of 62.53 + 6.84%. 

This carrier had crystals that were classified as rhombic in structure. There was also an 

inverse relationship between the concentration of salbutamol and the particle size of the 

resultant crystals; when the concentration of salbutamol increased, the crystal size 

decreased. These carriers were also successfully air jet milled. Comparing these results 

to the physical mixture comparative study (see Chapter 9), it was concluded that it was 

more effective to engineer the carriers than to simply mix mannitol and salbutamol 

sulphate.  

 

All in all, these results have shown that it is more efficient and cost-effective to engineer 

carriers for pulmonary delivery than to use commercially available products. They have 

also shown the impact that L-leucine, as an excipient, has on the overall aerosolization 

performance of any given carrier. This effect was shown via the lubrication effect that L-

leucine provides when it is used as an excipient.21 Using L-leucine also alters the physical 
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chemical properties of the resultant carrier in such a way as to allow for an increase in 

the aerosolization performance, measured via the carrier’s FPF, to be seen.342 L-Leucine 

also alters the carrier’s morphology, creating more of an irregular shape, causing a 

change in the carrier’s aerosolization profile.345 Furthermore, the results also provide, and 

support, the notion that an irregular crystal has a better aerosolization performance than 

a more spherical shape crystal;356 this was seen in a number of carriers that were used 

throughout this overall study. The results also show that the methodology that has been 

presented has the capability of altering the polymorphic form of the resultant carrier 

wether that be via spray drying or crystallization. 

 

Moreover, commercially available DPI have emitted doses of approximately between 50% 

and 80% and FPFs between 20% and 40%, but this overall study showed that FPFs can 

reach almost 70%.369, 370 Table 10.1 presents all of the carriers that were used throughout 

this overall study highlighting their FPF and %CV, which was used as an indicator for 

content homogeneity. As the table shows, the 1:3 [mannitol:lactose] crystal carrier was 

the most effective in reaching the highest FPF among all of the carriers. Throughout this 

overall study, one of the goals was to attain a high FPF and a low %CV. The carrier that 

was the most homogeneous (lowest %CV) was the spray dried 1:3 (mannitol:lactose) 

carrier with a %CV of 0.76%. On an overall case, however, the bet carrier and, thus, 

formulation was the 1:3 [mannitol:lactose] crystal carrier. 
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Table 10.1. Summary of all Formulations. Summary of all carriers used within this Thesis 
highlighting FPF and content homogeneity expressed as the percent coefficient of variation 
(%CV). 
Formulation FPF (%) % CV 

Spray Dried Lactose 25.51 ±  1.23 10.29 

SD Lactose w/ 0.1%L-Leucine 34.99 ±  8.89 7.15 

SD Lactose w/ 0.5% L-Leucine 47.11 ±  9.94 5.48 

SD Lactose w/ 1% L-Leucine 44.33 ±  6.53 17.92 

SD Lactose w/ 5% L-Leucine 43.08 ±  7.38 13.23 

SD Lactose w/ 10% L-Leucine 44.50 ± 17.40 8.65 

Spray Dried Mannitol 37.06 + 8.66 20.90 

SD Mannitol w/ 0.06% L-Leucine 37.54 + 2.46 3.88 

SD Mannitol w/ 0.3% L-Leucine 38.86 + 8.54 14.08 

SD Mannitol w/ 0.6% L-Leucine 48.45 + 9.44 11.94 

SD Mannitol w/ 3% L-Leucine 47.19 + 13.76 11.90 

SD Mannitol w/ 6% L-Leucine 52.96 + 5.21 13.38 

SD 1:1 (Mannitol:Lactose) 42.58 + 18.43 13.22 

SD 1:3 (Mannitol:Lactose) 61.42 + 4.21 23.47 

SD 3:1 (Mannitol:Lactose) 42.85 + 9.36 0.76 

Commercial Xylitol 44.13 + 11.27 13.35 

Xylitol with 0% LEU 34.25 + 16.98 11.72 

Xylitol with 1% LEU 25.84 + 11.05 19.68 

Xylitol with 5% LEU 42.94 + 15.21 13.83 

Xylitol with 10% LEU 35.61 + 12.58 2.52 

1:1 (Mannitol:Lactose) 52.34 + 15.08 7.39 

1:2 (Mannitol:Lactose) 49.13 + 5.94 6.27 

2:1 (Mannitol:Lactose) 56.49 + 1.54 12.51 

1:3 (Mannitol:Lactose) 68.69 + 4.65 5.88 

3:1 (Mannitol:Lactose) 41.18 + 11.17 1.60 

1:1 (Salbutamol:Mannitol) 14.52 + 1.94 2.30 

1:2 (Salbutamol:Mannitol) 49.47 + 5.23 7.15 

1:4 (Salbutamol:Mannitol) 43.23 + 5.04 2.16 

2:1 (Salbutamol:Mannitol) 62.53 + 6.84 1.66 



235 
 

4:1 (Salbutamol:Mannitol) 57.39 + 4.93 2.86 
 

 

10.2 Future Work 

 

The research that has been presented in these chapters offer a major contribution to the 

field of chemistry and pharmaceutical sciences. They provide an insight into how to 

engineer carriers and tailor them for the usage via the pulmonary tract. Nevertheless, 

there are other methods and techniques that can be used which have not been discussed 

and/or implemented within this overall study. 

 

One of those includes co-crystals; co-crystals represent a useful way of altering chemical 

properties at the atomic level, by choosing a suitable co-former that will form a specific 

non-covalent bond, to yield an engineered supramolecular architecture. Co-crystals are 

formulations of increasing interest to the pharmaceutical industry given their potential of 

improving the solubility and dissolution behavior, while also improving the physical 

stability of the active pharmaceutical ingredient compared to their pure state.  

 

Co-crystals are defined as crystalline single phase materials composed of two or more 

molecular and/or ionic compounds generally in a stoichiometric ratio which are neither 

solvents nor salts. Co-crystals offer an opportunity to optimize physicochemical 

properties, such as solubility, stability, hydration, and melting point, mechanical 

properties, such as flowability and compressibility, pharmacokinetic properties, 
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bioavailability, and permeability. Because amorphous powders have a higher surface free 

energy over crystalline material, it makes crystalline material a more favorable choice for 

drug formulation. In addition, it has been shown that co-crystals also alter the bulk and 

surface properties of the active pharmaceutical ingredient (API) of interest. 

 

Another technique that can be explored further and become implemented within this 

overall study is spray freeze drying. Spray freeze drying is a particle engineering 

technology that has been investigated in the production of inhalable powder formulations. 

It is a process that produces lyophilized powders with a spherical morphology and one 

that combines the advantages of both freeze-drying and spray-drying as the drying 

process is extremely mild and most powders are flowable without further processing. 

 

Subsequently, the frozen solvents produce porous particles which affect the carrier’s 

behavior and, consequently, affect their aerosolization performance. In addition, this 

technique also provides a mechanism to control the size of the particles that are 

produced. A parameter that has been shown, in this overall study, to have critical 

importance.  

 

Furthermore, another technique that can be used to further this overall study’s findings is 

that of 3D printing. Fused deposition modeling (FDM) is a type of extrusion 3D printing 

technology where a polymer filament is heated and extruded through a nozzle to create 

an object. These objects can have ultra-fine particles which are usually less than 100 nm 
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in size; these ultra-fine particles can be used, if engineered to agglomerate, as carriers 

or as is if made from the API of interest. The ultra-fine particles are released at rates of 

billions of particles per minute during operation. Moreover, these 3D printers are 

increasingly popular because of their low cost, low weight of filaments, processing 

flexibility, and ease of use. 

 

Operating these printers is done with poly-lactic acid (PLA) which is derived from 

renewable sources like corn. PLA is popular because of its mechanical properties, 

biodegradability, and low cost. Something to consider, however, is whether or not they 

are safe to use for inhalation purposes.   
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