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A Bayesian framework for inverse problems for quantitative biology

by Eduard CAMPILLO-FUNOLLET

In this thesis, we present a Bayesian framework to solve inverse problems in the context

of quantitative biology. We present a novel combination of the Bayesian approach to inverse

problems, suitable for infinite-dimensional problems, with a parallel, scalable Markov Chain

Monte Carlo algorithm to approximate the posterior distribution. Both the Bayesian frame-

work and the parallelised MCMC were already known but they were not used in this context

in the past. Our approach puts together existing results in order to provide a tool to easily solve

inverse problems. We focus on models given by partial differential equations. Our methodol-

ogy differs from previous results in its approach: it aims to be as transparent and independent

of the model as possible, in order to make it flexible and applicable to a wide range of prob-

lems emerging from experimental and physical sciences. We illustrate our methodology with

three of such applications in the areas of theoretical biology and cell biology.

The first application deals with parameter and function identification within a Turing pat-

tern formation model. To the best of our knowledge, our results are the first attempt to use

Bayesian techniques to study the inverse problem for Turing patterns. In this example, we

show how our implementation can deal with both finite- and infinite-dimensional parameters

in the context of inverse problems for partial differential equations.

HTTP://WWW.SUSSEX.AC.UK
http://www.sussex.ac.uk/mps/
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The second example studies the spatio-temporal dynamics in cell biology. The study pro-

vides an example that seeks to best-fit a mathematical model to experimental data finding in

the process optimal parameters and credible regimes and regions. We present a new deriva-

tion of the model, that corrects the short-comings of previous approaches. We provide all the

details from techniques for data acquisition to the parameter identification, and we show in

particular how the mathematical model can be used as a proxy to estimate parameters that

are difficult to measure in the experiments, providing an novel alternative to more indirect

estimates that also require more complex experiments.

Finally, our third example illustrates the flexibility of our implementation of the method-

ology by using it to study traction force microscopy (TFM) data with a solver implemented

independent of the Bayesian approach for parameter identification. We limit ourselves to the

classical TFM setting, that we model as a two-dimensional linear elasticity problem. The re-

sults and methods generalise to more complex settings where quantitative modelling driven

by biological observations is a requirement.
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Chapter 1

Introduction

Quantitative biology is evolving quickly due to both the advances in mathematical techniques

and the modern experimental methods, that provide large amounts of high quality data.

Therefore, there is a need for robust and efficient parameter identification techniques that can

deal with the experimental data as well as with the complexity of the models.

Models of Partial differential equations (PDEs) are a good example of this situation. With

experimental advances providing data in space and time, the mathematical models moved

naturally to PDEs in order to incorporate all the available information. At the same time, the

parameterisation of the model may also incorporate space or time dependent parameters that

can reproduce accurately the biological system features.

It is clear that we require both theoretical and computational advances to tackle the inverse

problems in the context of quantitative biology. The computational power available today

makes it feasible to solve the mathematical model many times, for different parameter values,

in order to extract as much information as possible from the data. Furthermore, a sound ap-

proach allows a feedback cycle with the experimentalists, where they use the model results,

together with the new information about the parameters, to design new experiments and val-

idate or improve the mathematical model.

This thesis aims to present a novel mathematical and computational approach for quanti-

tative biology using a full Bayesian method. Within this approach, we present a methodology

for parameter identification problems, that exploits the available computational power for par-

allelisation, and at the same time is flexible in the use of different mathematical models and

implementations. Furthermore, our approach is robust in its interpretation, thus allowing a

sound interpretation of the results across a wide range of disciplines and applications.
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1.1 Quantitative biology

Despite the long history of applications of mathematics to biology, recent advances in experi-

mental acquisition of data in multi-dimensions necessitate new quantitative methods to mirror

such advances that have the capacity to deal with large and complex spatiotemporal series of

data. In this thesis, we are interested in quantitative modelling, and how the models help the

biologists in the study of biological systems. There are many different modelling approaches,

depending among other things on the questions of interest and the available data, but we are

interested in models defined by differential equations.

In many cases, a popular approach is to use ordinary differential equations (ODEs). Al-

though in some cases this imply a simplification in terms of the spatial features of the physical

system, the well-established analytical tools to study ODEs provide many insights on the char-

acteristics of the system and its solutions.

But with the advance of experimental techniques, data containing spatial information be-

came available, and therefore partial differential equations became more suitable. Further-

more, the advances in the theory of PDEs, both in analysis and numerics, contributed to the

popularisation of these models.

Therefore, there is need to study the parameter identification problem for PDEs, in order

to exploit at the same time the features of the model and the experimental data in a novel

quantitative biology approach.

1.2 Inverse problems

Parameter identification is the problem of extracting information about the parameters of a

model from the actual result of some measurement (Tarantola (2005)). This problem is known

by many different names, depending on the context. In mathematics, specially when dis-

cussing the theoretical aspects, the problem is referred to as an inverse problem, thus consid-

ering as a direct problem solving the mathematical model when the value of the parameters is

available. In other contexts, the same problem is known as model fitting or parameter fitting.

Let us introduce some basic notation, for the purposes of this introduction. We will provide

more details in Chapter 2. Assume we have a mathematical model. In the context of this

thesis, our model is always a system of partial differential equations. The model depends

on certain parameters, e.g. diffusion rates or reaction rates. Let u be the parameter of the
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model; in general, u is multidimensional. Let G be the solution operator for our model: given

a parameter u, G(u) is the solution to our system of PDEs. In general, in the actual experiment

we observe some projection of G onto a finite dimensional space. Let us denote this projection

by G(u).

Let y be the measurement from the experiment. If the mathematical model was a perfect

match with the physical system, we would observe G, that is

y = G(u). (1.1)

In reality, several errors affect the measurement. The simplest situation is when we assume

that our model is a perfect match with the physical system, but we consider some measure-

ment error in the form of additive noise. We then have

y = G(u) + η, (1.2)

where η represents the noise.

Using this notation, the parameter identification problem can be stated as follow: given a

measurement y, find the parameter u that corresponds to such measurement.

There are two main approaches to this problem. On one hand, we have two quantities, the

measurement y and the model solution G(u) that we want to match. The presence of noise

implies that in general we will not have an exact solution—i.e. ū such that (1.1) is satisfied.

Therefore, we can try to minimise the distance between the data y and the solution G(u). We

will refer to this approach as the optimisation or optimal control approach.

A second approach is the so called Bayesian approach. Here, the idea is to understand

all the involved quantities as probability distributions. Therefore, given a parameter u, (1.2)

characterises the conditional probability of observing y given u. By means of the Bayes’ the-

orem, we can compute the reverse condition: the probability of the parameter u given the

observation y. This is exactly our object of interest and the cornerstone of this thesis.

1.2.1 Optimisation approach

It is natural to tackle a parameter identification problem as an optimisation problem, by trying

to minimise the distance between the data and the solution to the mathematical model. In this

context, it is often necessary to include a regularisation term in order to address the difficulties
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presented by the inverse problem, in particular to ensure that the distance between data and

model solution is well-defined, and that the inverse problem is well-posed. A typical example

of ill-posedness of the inverse problem is when we have two local minima. If the value of the

local minima is close, a small change in the parameters, even if it only produces a small change

in the value of the local minima, may change the location of the global minimum drastically.

See Figure 1.1 for an illustration of this phenomenon.

FIGURE 1.1: An illustration of how even for a well-posed forward problem,
small changes in the parameter can lead to significant changes in the location
of the global minimum. The two curves, representing for instance the distance
from the model solution to the experimental data for each value of the param-
eter, are close to each other globally, yet the location of the minimum is drasti-

cally different.

The result of the optimisation problem is one value for the parameters, that we interpret

as the best possible value, i.e. the parameter that best reproduces the data. Using the same

example, two local minima with similar values in different locations imply that there are two

different parameter values that reproduce the data with similar accuracy. Another quantity

of interest when solving a parameter identification problem is the uncertainty of the result, in

other words, with how much accuracy are we estimating the parameter, given the available

data. From the optimisation point of view, the uncertainty can be estimated by studying the
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Hessian of the distance as the parameter varies, but the technical choices—for instance, the dis-

tance or any regularisation included to ensure well-posedness— impact its value. Therefore,

it is difficult to give a robust interpretation to this uncertainty.

1.2.2 Bayesian approach

The Bayesian approach to parameter identification starts with a change of paradigm: we do

not interpret the parameter as a single value or function, but instead we want to model our

knowledge about the parameter. The main premise of the Bayesian approach is to assume that

a probability distribution models our knowledge about a physical quantity.

This is a very general statement, and leads to different approaches to solve the problem.

It is important to notice that nowadays the term Bayesian refers to many different methods.

All of these methods have in common, implicitly or explicitly, the basic assumption that the

object of interest is a probability distribution, but they differ in how this probability is defined,

characterised and interpreted.

Here, we use the experimental model introduced in Section 1.2. Equation (1.2) defines

the relation between our physical measurement y, the parameter u and the noise η. Now, all

these terms are drawn from probability distributions, and in consequence, (1.2) characterises

the probability distribution of the measurement y if the parameter u is given. To solve the

parameter identification problem, we are interested in the reverse condition, which we can

compute by means of the Bayes’ theorem (see for instance (Sanz-Solé, 1999)). We will provide

the details in Chapter 2, but formally we have

P(u|y) = P(y|u)P(u)
P(y)

. (1.3)

Therefore, the knowledge about the parameter u given the data y is characterised in terms

of the knowledge about the data y given the parameter u, which we have from (1.2); the knowl-

edge about the parameter u regardless of the data, i.e. the marginal distribution of u; and the

marginal distribution of y. We can interpret the latter as a normalisation term to ensure that the

right hand side defines a probability. As we will discuss later, this term is in general difficult

to compute, but we can use numerical methods to avoid its computation.

The marginal distribution of u is known as the prior, because it is the knowledge about the
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parameter that we have a priori, before performing the experiment. It can be used to incorpo-

rate knowledge acquired in previous experiments, as well as constraints such as bounds on

a parameter value. Our distribution of interest, the distribution of the parameter u given the

data y, is known as the posterior.

We remark at this point that intuitively, we can expect to have well-posedness for this

problem as long as the evaluation of the operator G is well-posed. Note that now our quantities

of interest are probability distributions. Assuming that the prior for u is smooth in some sense,

if G is smooth with respect to the parameters, a small change in u will produce a small change

in the distribution of y given u (as a consequence of (1.2)), and in turn a small change in the

distribution of the parameter u given the data y (as a consequence of (1.3)).

The Bayes’ theorem characterises the distribution of the parameter given the data, but in

general we will not be able to solve the problem analytically and we will need to rely on

numerical methods to estimate the result. There are many available choices for the numerical

approach, but we have to take into account now what kind of mathematical models we will

be using, i.e. how do we evaluate G.

1.3 Novel numerical methods

We focus on models given by partial differential equations. In general, we do not have an-

alytical solutions to the relevant models, and we rely on numerical methods to compute ap-

proximate solutions. Note that even when a good numerical method is available, the imple-

mentation of the numerical solver in the computer may entail a significant amount of work

due to the complexity of the mathematical model. Note that in our formulation of the inverse

problem in (1.2), the evaluation of the operator G involves solving the mathematical model,

and this is, in general, a costly operation in terms of computational resources.

At first sight, it seems reasonable to aim to improve the numerical methods to solve the

PDEs. Since it is the most expensive operation, any improvement on that front will in turn

provide a significant improvement on the estimation of the posterior distribution, but there

are some limitations to this approach. First, it may simply not be possible to improve the

numerical method, or it may take a long time. In particular, we may have solvers in place for

a mathematical model that cannot be improved without re-implementing them from scratch.

In this situation, it is natural to try to make use of the existing solver as it is.



Chapter 1. Introduction 7

Similarly, we can obtain more information about G from its differential, but computing the

differential of G is typically an even more expensive operation than the evaluation of G itself,

specially if the solver has not been originally implemented with this goal in mind.

Therefore, we need to find an alternative to improving the solver by itself. We keep in

mind that our goal is to estimate the posterior distribution, and therefore what we need is an

approach that allows us to use any existing solver. In this way, instead of improving every

single evaluation of G, we settle for improving the way we perform these evaluations.

The main improvement in computational resources in recent years did not come from the

power of a single processor, but from the availability of parallel environments. Even with

regular computers, it is not unusual to have 4 to 8 cores available, and in High Performance

Computing (HPC) environments we can easily use a few hundred processors. We will exploit

these observations to improve the computational efficiency of our algorithm.

There are numerical methods for PDEs exploiting the parallelism, but again we assume

that either we have already a solver in place, or that the implementation of a parallel solver

is not feasible for any other reason. Even if a parallel solver if available, we have to consider

how does it scale in terms of the number of processors. In many cases, depending on the

algorithm, the implementation and the computational environment itself, there is a limit on

the improvement of the performance and it is not efficient to use more than a certain number

of cores.

Therefore, the alternative is to aim for methods that allow evaluations of the operator G

in parallel. This approach was introduced by Calderhead (2014). Instead of aiming to exploit

the parallelism in every single evaluation, we would like to use many instances of an existing

implementation of a solver for G and run them in parallel. We note that there are other Monte

Carlo methods suitable for parallelisation. Particle filters (Sequential Monte Carlo, SMC) are

a good example. See Del Moral (2004) for details, Kantas et al (2014) for an example of appli-

cation to PDEs with a comparison between serial and parallelised implementations, and Das

et al (2014); Murray et al (2016) for examples of parallelised particle filter algorithms.

In order to pursue this approach, our problems must meet several requirements. First, we

assume that we have a solver for our system, that is robust with respect to the parameters. We

will need to use the solver as a black box, that simply takes a parameter as input and gives the

solution of the mathematical model as output. Any fine tuning of the solver must be either

done in advance, or automated.
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On the other hand, we also need to look for a method to approximate the posterior distri-

bution that does not require anything else other than a solver for the PDEs. In particular, we

cannot rely on methods that require the evaluation of the differential of G. Therefore, we lose

performance by restricting ourselves to simple methods, but we expect to compensate it with

parallelism.

Finally, the characteristics of the computational environment limit the applicability of this

approach. In principle, this approach will scale very well with the number of processors, and

the main limitation will be how many of them can we use. From this point of view, there is

an arbitrary decision on what is a reasonable maximum time to solve our problem. In general,

we assume that computational times shorter than two days are acceptable.

1.4 Parameter estimation

In many situations, the parameters of the mathematical model are not scalar, but functions. A

typical example involves time- or space-dependent parameters. It is therefore important that

we use methodologies that allow the estimation of parameters lying in functional spaces.

One approach is to first discretise the parameters, and then apply the same methods that

one would use to deal with scalar-valued parameters. This is for instance a common approach

in statistics, where methods for estimating scalar parameters are well-developed. The main

limitation of this approach is that usually it is not possible to prove any convergence result

when the discretisation of the parameter is refined. This may lead to several issues, from

a total lack of convergence to convergence to objects that do not have the intended features.

Alternatively, one can devise a functional framework setting, and then apply the discretisation.

Of course, we still need the convergence results, but now we know that the limit object exists,

and at least in principle we are in a better position to look for convergence. We refer to Section

1.6 for references and a more complete literature review.

In terms of implementation, we must also keep in mind that the solver should be able to

work with functional parameters independent of its discretisation, to avoid the need of re-

implementation of the solver if we refine the parameter resolution.
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1.5 On the interaction between mathematics and biology

The ideal interaction between mathematical modelling and biology is a cycle. We can start

the cycle at almost any point, but to present the idea, let us assume that the experimentalist,

after performing the experiment, have some data at hand, and some hypothesis about the

underlying mechanisms on the system that they are studying.

The information about the underlying mechanisms defines the mathematical model. The

mathematician uses the hypotheses of the biologist to derive a mathematical model. In many

cases, the modelling process also needs some technical assumptions, that we assume reason-

able from the biological point of view. With the model at hand, the mathematician can imple-

ment a numerical solver in order to compute the solution of the model. At this point, for any

given numerical value for the parameters of the model, the mathematician is able the generate

synthetic data. For parameters that have a physical interpretation, the biologist may provide

estimates or constraints. In some cases, the parameters can be measured in independent exper-

iments, but in many situations not much is known and one can only rely on rough estimates.

Similarly, some parameters may not have a direct physical interpretation.

With this information at hand, the mathematician uses the experimental data to fit the

parameters of the model, and reports back to the biologist. Depending on the questions of

interest, the biologist evaluates this information in different ways. At the very least, the biolo-

gist have the knowledge to assess if the outputs of the model are reasonable and biologically

meaningful, and also to check the feasibility of the values obtained for the parameters. In

other situations, the biologist may go back to the laboratory to test the predictions of the mod-

els with new experiments. In any case, the biologist can report back to the mathematician, and

the cycle start again, incorporating the new information.

We are specially interested in two characteristics of this cycle. First, as argued before, the

modelling process, including the implementation of the model, is costly in terms of human

resources. On the other hand, the parameter identification step is independent of the rest

of the steps, in the sense that if the fitting method is general enough, it can be used with

many different mathematical models, and when the cycle starts again, in can incorporate new

information about the parameters.

The parameter identification stage is also critical for the cycle to work. Without it, math-

ematical models are limited to at most qualitative results about biological systems, and the

biologist is limited in its tools to understand the experimental data from a quantitative point
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of view. In order to facilitate the cycle, we aim to find a widely applicable methodology, that

can make use of existing solvers without the need for re-implementation, and that provides as

much information as possible about the parameters, including uncertainty quantification.

Our approach is to exploit parallelism in a suitable way, relying on existing theoretical

results that ensure the robustness of the approach under general assumptions, therefore pro-

viding a tool to fulfill the parameter identification step in a manner that is as transparent as

possible to the biologist. In this way, the biologist will be able to give a robust physical inter-

pretation to the results.

1.6 A literature review on quantitative methods in biology

1.6.1 Optimisation methods and inverse problems

Optimisation methods and inverse problem frameworks are a natural candidate to provide

quantitative methods for parameter fitting and model selection in experimental sciences. There

are many available resources for the optimisation approach. The theoretical basis of optimisa-

tion problems with PDE constraints can be found, for instance, in Tröltzsch (2010). The book

includes the basic results for both elliptic and parabolic systems of PDEs, but it is devoted to

the general theory of optimal control. A good reference for the use of optimisation methods

for parameter identification is Aster et al (2013). The book covers the main difficulties of pa-

rameter identification, both in the discrete and the continuous setting, and presents several

regularisation techniques, as well and numerical algorithms to solve the problems. The book

by Beck et al (1985) is slightly older, but offers a systematic presentation of the optimisation ap-

proach in the particular case of heat conduction problems, starting from the interpretation of

the physical measurements and including a discussing of both analytical and numerical tech-

niques. In terms of algorithms, Adby (2013) presents many of the most popular algorithms for

optimisation, including Gauss-Newton optimisation and the Levenberg-Marquardt method.

When the properties of the solution operator are not well-known, or in general when its

evaluation is not easy, there are randomised optimisation methods that are useful under gen-

eral assumptions. A popular choice are the so-called genetic algorithms, inspired by the idea

of natural evolution: one tries to optimise the fitness of the parameter by random changes—

interpreted as the mutations of a living organism—and discarding the parameters that do not

provide a good fit—in other words, eliminating the organisms that are not well adapted to the
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environment. See Schmitt (2001) and Schmitt (2004) for a general introduction to the method

and for examples of its applications.

In some situations, it is possible to perform an analytical parameter identification. For

example, Friedman and Reitich (1992) present a method for parameter identification in a class

of reaction-diffusion models. The applicability of this approach is very limited to particular

classes of models. In contrast, we aim to provide methods that work in general settings to

allow for a wider applicability of our computational framework.

1.6.2 The Bayesian approach to inverse problems

Our approach to parameter identification, including the idea of using a probability distribu-

tion as a model of the knowledge about a physical quantity, and to a certain extent, the idea of

discretising the functional parameters at the end, can be found in Tarantola (2005). The book

focus on the general ideas of the method and on the applications, specially to problems in

geophysics, but it does not develop a sound theoretical framework.

Within the general framework of Bayesian methods, the book by Kaipio and Somersalo

(2006) is a general reference for statistical methods for inverse problems. The theoretical ba-

sis for the application of Bayesian methods to inverse problem with PDEs can be found in

Stuart (2010), and in a more detailed presentation, in Dashti and Stuart (2016). These are our

two main references for the basis of our approach, and they provide all the necessary well-

posedness results for the Bayesian inverse problem, as well as for the discretisation of func-

tional parameters, and also for the study of the Markov Chain Monte Carlo methods (MCMC)

to numerically approximate the posterior distribution.

There are many relevant aspects when solving inverse problems. Kaipio and Somersalo

(2007) present a discussion of common issues when discretising an inverse problem, and in

particular when one applies model reduction techniques. In particular, it includes the discus-

sion of the so called inverse crime, when one tests an inverse problem method against synthetic

data provided by the same model that one uses for the inverse problem. In this situation, the

lack of experimental noise may lead to an overestimate of the performance of the method.

The estimation of the noise distribution is not trivial. Although in some cases the exper-

imental noise can be approximated from the experimental data, other sources of error, for

instance numerical error or simply the lack of accuracy of the model itself are more difficult to
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incorporate. See for instance Huttunen and Kaipio (2007) for a discussion of the approximation

errors in non-stationary inverse problems.

There are several considerations to take into account when defining the prior distributions

for the parameters. When the prior information is scarce, the prior must model the lack of in-

formation. Kass and Wasserman (1996) discuss several rules for the choice of non-informative

priors.

Note that our approach relies in particular on the idea that we have a good knowledge

about the mathematical model and the measurement model, and in particular we assume that

the noise distribution is known. When the noise distribution is completely unknown, or in

general, when it is not possible to evaluate the solution operator efficiently, other Bayesian

approaches can be suitable Wegmann et al (2009). See for instance Ross et al (2017) for an

application of Approximate Bayesian Computation estimate parameters in a cell migration

model, or Li et al (2017) for an application to evolutionary biology.

1.6.3 Estimation of the posterior distribution using Markov Chain Monte

Carlo methods

A basic introduction to MCMC methods, in the context of estimating distributions in proba-

bility and statistics, can be found in Norris (1998). In Toni et al (2009), the MCMC method is

presented and applied in the context of Approximate Bayesian Computation (ABC), in par-

ticular in the context of parameter identification for dynamical systems. Similarly, Brown

and Sethna (2003) use MCMC methods in an statistical approach to parameter identification.

The Metropolis-Hastings algorithm, which we will use for the MCMC, was presented first in

Metropolis et al (1953) for symmetric proposal kernels, and later extended to general kernels

in Hastings (1970). For a general discussion of the application of MCMC methods from the

statistical point of view, see Kass et al (1998).

The proposal kernel is a crucial component of the Metropolis-Hastings algorithm. Cotter

et al (2013) derive a number of proposal kernels by discretising a Langevin-type stochastic

differential equation. The advantage of this approach is that it ensures the consistency of the

kernel for infinite-dimensional parameters. On the other hand, efficient solvers may require

the evaluation of the differential of the solution functional, and therefore lie out of our area of

interest.
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The choice acceptance probability of a proposed state depends on the proposal kernel to

ensure that the MCMC approximates the desired probability. The choice of the acceptance

probability is also discussed in Cotter et al (2013), and in general, the basic details of its prop-

erties in the context of MCMC methods can be found in Tierney (1998).

In the context of MCMC methods, there are several criteria to assess the convergence and

quality of the Markov chain. Raftery and Lewis (1995) present some of the standard ap-

proaches.

A key component of our approach is the ability to parallelise the MCMC method. In order

to do that, we will use the method presented in Calderhead (2014), where the details of the

parallelisation approach are discussed, together with an application to systems of ODEs. The

method is in turn based on the results from Tjelmeland (2004), although the focus there is

different: Tjelmeland is interested on incorporating the information from rejected proposals

in MCMC methods in order to improve the estimates of the mean value of the chain. Other

Monte Carlo methods, such as Sequential Monte Carlo (SMC) also suitable for parallelisation;

see Del Moral (2004); Kantas et al (2014); Das et al (2014); Murray et al (2016). We decided to use

the parallel MCMC method proposed by Calderhead (2014) because it offers more flexibility

in terms of implementation.

There are alternatives to the MCMC methodologies. For instance, Schwab and Stuart (2012)

present the polynomial chaos technique in the context of Bayesian problems for PDEs. This

approach has been discussed extensively, see for instance Lu et al (2015) for a discussion of the

limitations of the approach, or the thesis Owen (2017) for an comparison between Gaussian

processes and polynomial chaos for uncertainty quantification.

1.6.4 Application of Bayesian methods

Bayesian techniques are common for parameter fitting in statistics. The Bayesian approach is

to a certain extent natural in statistics, because statistical models are defined in terms of prob-

ability distributions. For instance, Ma and Leijon (2011) present a Bayesian estimation method

for beta mixtures. Fan et al (2012) present a variational learning approach, that in its basics

is a parameter identification problem also defined in a Bayesian context. Similarly, the article

by Ma et al (2015) includes a Bayesian method for matrix factorisation with bounded data.

Although all these references apply the Bayesian techniques in a different context, and with a

different interpretation, they provide the contrast necessary to understand our approach. As
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a side note, the use of the term Bayesian is so popular that it becomes difficult to know what is

the actual method or technique used without looking deeper into the results.

Closer to our problem of interest, Xun et al (2013) present a Bayesian approach to parameter

estimation for PDE models. In the article, Xun et al represent the solution operator via a basis

function expansion. Although the method is readily applicable, there is no guarantee that it

will converge when the expansion is refined.

Although in a slightly different context, the book Robert et al (2014) presents a probabilis-

tic approach to machine learning which is similar in spirit to our proposed approach to the

Bayesian methods for parameter identification. In particular, it discusses several aspects of

the discretisation of functional parameters, although without providing rigorous theoretical

results. Similarly, Apte et al (2007) argue in favour of the Bayesian approach in the problem of

data assimilation.

Uncertainty quantification from the posterior distribution is a well studied problem. See

for instance Olbricht et al (1994) for an application to estimate thermodynamics properties of

minerals, including the computation of credible regions as the regions with highest posterior

density. The book by Soize (2017) provides a general introduction to the problem of uncer-

tainty quantification. (Mitov and Stadler, 2017, 2018) implement a parallel methodology to

evaluate uncertainty in models defined in terms of the Ornstein-Uhlenbeck stochastic process.

There are many examples of applications of Bayesian methods to PDEs in the literature.

Outside the field of mathematical biology, Iglesias et al (2014) apply the Bayesian techniques

in the sense of Stuart (2010) to the study inverse problems in subsurface flow. Similarly, Jiang

and Ou (2017) combine model reduction techniques and Bayesian methods in the context of

subsurface flow. Crestel et al (2017) develop a Bayesian method for the Helmholtz inverse

problem. Perdikaris and Karniadakis (2016) use a different Bayesian approach for a param-

eter identification problem in the three-dimensional modelling of the human cardiovascular

system.

1.6.5 Inverse problems in quantitative biology

Parameter identification problems are ubiquitous in mathematical biology. We note that even

the examples of models given by ODEs provide interesting insights on the typical problems

that one faces when performing parameter identification with experimental data from biolog-

ical systems.
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Ashyraliyev et al (2009) apply optimisation techniques to systems of ODEs modelling en-

zyme kinetics. In this case, uncertainty quantification is provided by means of confidence re-

gions computed using the second derivatives of the cost functional. The problem of parameter

identification for kinetic models is also studied in Gábor et al (2017), in this case focusing on

large networks. Ashyraliyev et al (2009) show the importance of studying the correlations be-

tween parameters, using the example of a model for the Drosopohila Melanogaster gap gene. The

study concludes that even when individual parameters cannot be identified, it is still possible

to draw conclusions about the topology of the gene network. Note that an intrinsic advantage

of the Bayesian approach, when applied to compute the posterior probability, is that one can

observe the correlations between parameters in the joint probability distribution. These corre-

lations may be invisible when one only computes the best value for the parameters, leading to

an overestimation of the uncertainty (Sutton et al (2016)). Similarly, the correlations between

parameters can suggest a non-dimensionalised form of the model to eliminate non-relevant

parameters from the problem. A general overview of inverse problems in systems biology can

be found in Engl et al (2009).

Optimisation techniques are also used in models given by PDEs. Garvie et al (2010) study

the inverse problem of Turing patterns using an optimisation approach, in contrast to our

Bayesian methods for the same problem as studied in Chapter 3 next. Similarly, Garvie and

Trenchea (2014) study space-time distributed parameters in the Gierer-Meinhardt system, and

Uzunca et al (2017) study the FitzHugh-Nagumo system. Stoll et al (2016) also study pattern

formation problems using the optimal control approach. In Blazakis et al (2015) we find an

application of the optimisation methods to a cell-tracking problem. The idea is to use optimal

control techniques on geometric evolution laws for the cell shape. Croft et al (2015) discuss two

alternative cost functionals for the identification of parameters in models of cell motility, using

imaging data of migrating cells. Yang et al (2015) also consider the optimisation of geometric

evolution laws in the context of cell migration, and presents a parallel, multigrid solver for

the optimal control problem. Portet et al (2015) inspired our example in Chapter 4; they use

a genetic algorithm to solve the problem of parameter identification for a family of reaction-

diffusion models for the dynamics of the keratin network. They also use a model selection

approach to find what are the relevant mechanisms in the system.

Bayesian techniques are widely applied in mathematical biology, although not so often

with PDE models. There are many examples of applications in the context of statistical models
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and ODEs. Engelhardt et al (2017) use a Bayesian approach to study hidden variables and

model errors in molecular networks. Sgouralis et al (2017) apply the Bayesian methods to a

topological data analysis problem, to reconstruct the trajectories of subcellular particles from

microscopy imaging data. Hasenauer et al (2015) review the data-driven modelling approach

to mathematical biology, with emphasis on multiscale models given by ordinary or partial dif-

ferential equations, and also agent-based models. The article also discusses the pros and cons

of optimisation vs Bayesian parameter identification techniques. Dewar et al (2010) present a

Bayesian framework for parameter identification in a stochastic reaction-diffusion model for a

morphogen. The study uses both synthetic and experimental data.

The uncertainty quantification for a discrete model of collective cell spreading is the main

result of Vo et al (2015). In this work, the authors use imaging data and an Approximate

Bayesian Computation (ABC) method to estimate the uncertainties in the model parameters.

ABC methods are very common. See for instance Wu et al (2014) for an application to

stochastic models for complex regulatory networks, or Smith and Gröhn (2015) to an applica-

tion in epidemiology.

Oden et al (2010) suggest a Bayesian inference approach for tumour growth models defined

by PDEs, and in particular for diffuse interface models. The study remarks the importance of

the parameter identification and uncertainty quantification for the validation of the mathe-

matical model. Hawkins-Daarud et al (2013) review the Bayesian parameter identification

problem for tumour growth models. Lima et al (2018) also addresses the parameter identifica-

tion for a tumour growth model using Bayesian techniques, in this case fitting the model to a

time-series of microscopy imaging data.

Perdikaris and Karniadakis (2016) study a model for the cardiovascular system using Bayesian

techniques. The article presents a combination of Bayesian optimisation methods with multi-

fidelity techniques, in order to reduce the number of evaluations of the solution operator of

the complete model.

Similarly to the approach in Portet et al (2015), one can perform model selection using

the results provided by Bayesian parameter identification. For instance, Vyshemirsky and

Girolami (2008) present a Bayesian ranking method for biochemical models, and Toni et al

(2009) use ABC to apply model selection methods to dynamical systems.

Lin et al (2016) present a Bayesian model selection to study growth patterns of fungi. In

this case, the growth models are statistical models, and the authors use the model selection
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methods to quantify the model error in three different cases. The study uses only synthetic

data.

The book by Friedman (2018) includes a chapter on parameter identification in mathemat-

ical biology, but uses an analytical approach. As usual, the analytical techniques can only be

applied to a limited class of models, yet they provide significant insights. Belgacem (2012)

analyse a parameter identification problem in a class of advection-reaction-diffusion models.

Although the study focuses on the theoretical aspects, the models studied there have many

applications in mathematical biology. Similarly, Trillos and Sanz-Alonso (2017) provide the

theoretical foundations for the Bayesian approach to parameter identification to fractional el-

liptic models.

1.6.6 Computational aspects of our Bayesian approach

For our implementation of the method, we will make an extensive use of the Python module

SciPy Jones et al (2001–). The module provides tools for scientific computation, including the

basic linear algebra routines and random number generators.

A general overview of the parallel programming paradigm can be found in Hamilton

(2013). Although we will rely on standard modules for most of our parallel algorithms, it

is necessary to understand the underlying parallel systems in order to design the algorithms.

Our approach is partly justified by the computational power that is available at present. It

is important to keep in mind that only 10 years ago, it was not possible to apply the methods

that we propose to obtain results in a reasonable time. See SIAM (2001) for a discussion of the

impact of the increase of computational power in the sciences.

1.7 Thesis objectives

The main objective of this thesis is to develop a methodology for parameter identification

problems, in particular in the context of quantitative biology, suitable for applications in a

wide range of problems in a transparent manner, both in terms of the interpretation of the

results and in terms of the requirements for the mathematical model.
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In particular, we aim for a methodology that can use existing implementations of the nu-

merical solver as a black box, with the only requirement to expose a routine that takes a pa-

rameter as an input, and produces the solution to the mathematical as an output. The solvers

must be robust in order to evaluate the solution for a wide range of parameters.

Our methods must be suitable for models defined by PDEs, although they may be applied

also in other situations such as ODEs or even of algebraic nature. Examples of the models that

we have in mind include elliptic problems and reaction-diffusion systems. We also aim to be

able to estimate functional parameters.

We are interested in providing uncertainty quantification for the parameters in a robust

way. Here, robust means that we want to avoid arbitrary technical choices that may impact

the final estimations. Furthermore, we aim to describe the theoretical results that justify the

applicability of the methodology. In particular, we are interested in a method for which we

can ensure well-posedness and convergence by using only results of the forward problem, i.e.

results about the well-posedness of the mathematical model.

Finally, we want to show the applicability of the proposed methodology in different prob-

lems in the field of quantitative biology. We selected the applications to illustrate different

aspects of our approach to relevant problems in mathematical biology.

In the first example, we study a parameter identification problem associated with Turing

patterns. Turing patterns provide a theoretical mechanism for pattern formation in biological

systems, and in some cases have been confirmed experimentally. See the references in Chapter

3 for details. We limit ourselves to synthetic data for the purpose of illustrating the applica-

bility of the method, but otherwise we follow the same approach as one would follow with

experimental data. The results also illustrate an application of our method to time-dependent

parameters, in this case, the estimation of the time-dependent growth of the domain from the

measurement of the Turing pattern at the final time.

Our second application is the study of the parameters of a model for the dynamics of the

keratin network. Keratin is a protein responsible for many of the mechanical properties of

the cell. Our parameter identification methods provide a method for estimating the assembly

and disassembly rates of keratin, quantities that otherwise can only be measured indirectly.

We present a detailed description of the data processing, from the raw data provided by the

biologists to the tidy data that we use to fit the mathematical model. This illustrates how the
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proposed methodology can deal with experimental data in a systematic manner. This applica-

tion also illustrates the approach to define priors for functional parameters incorporating the

hypotheses presented by the biologists.

Finally, we apply our techniques to the inverse problem of traction force microscopy (TFM).

In TFM, the experimentalists measure the deformation of an elastic substrate when a cell

moves, and the goal is to compute the force that the cell applies. It is a well-studied problem,

but is usually approached by using either analytical techniques or an optimisation approach.

In this case, we use again experimental data. Furthermore, in contrast with the previous ex-

amples, we use a solver implemented independently, to illustrate the ability of our imple-

mentation to invoke different solvers. The application is limited to the simplest experimental

setting, that can be modelled as a two-dimensional, linear elasticity problem, but because of

the flexibility of the method it could be extended to more complex experiments, such as three-

dimensional TFM in anisotropic, non-linear media.

1.8 Outline of the methods

In order to accomplish our objectives, we use a Bayesian approach based mainly in the ideas

presented in Tarantola (2005) and Stuart (2010). The Bayesian approach accomplishes naturally

many of our objectives, in particular the uncertainty quantification, together with a transparent

modelling that avoids as many technical choices as possible.

Stuart (2010) and Dashti and Stuart (2016) present the basic results to ensure the well-

posedness of the approach, together with the MCMC methods to estimate the posterior dis-

tribution. We extend the MCMC from Stuart (2010) to parallel algorithms from Calderhead

(2014). In this way, we provide a scalable algorithm that can be used in an HPC environment.

For the implementation of the methods, we use the programming language Python. The

choice of the language is influenced by several factors. First, Python allows a quick develop-

ment of the implementation, in a rapid cycle of test and improvement. Furthermore, Python

can interact easily with programs implemented in other languages, therefore providing flexi-

bility for the use of existing numerical solvers for the mathematical models. The main draw-

back of Python is its efficiency, but we use a carefully designed modular structure for our

implementation. In this way, the components of our method can be re-implemented in the

future to improve the efficiency of the program. Last but not least, the Python standard library
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includes a parallel toolbox that provides simple tools for the parallel evaluation of functions.

Therefore, for the first version of our solution, we can avoid dealing with the technical aspects

of the parallel programming, such as distributed memory architectures.

1.9 Structure of the thesis

The rest of this thesis is organised as follows. In Chapter 2 we present our methodology in

detail. We describe the Bayesian approach, its interpretation and the fundamental theoretical

results that justify the robustness of the techniques. Then we proceed to present the paral-

lelised MCMC method, and the description of the algorithm that we will use. We also discuss

the details on the discretisation of functional parameters. We devote the last part of Chapter 2

to discuss the design of the algorithm implementation.

Chapters 3, 4 and 5 present the applications of our methods. These three chapters include

detailed introductions to the corresponding problem and the discussion of the results.

Finally, Chapter 6 presents a brief discussion of the contribution of this thesis and the future

work.
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Chapter 2

Methods

2.1 General assumptions

For our methodology, we will follow the ideas in Tarantola (2005), Stuart (2010) and Dashti

and Stuart (2016). Stuart (2010); Dashti and Stuart (2016) provide the theoretical results to

make the approach rigorous, as well as the rigorous mathematical setting. In this chapter, we

present our approach to these ideas, and describe the methodology that we will follow. All

the results about the Bayesian approach that are presented in this section and the following

are available in the references mentioned above.

The first step in to give a rigorous formulation of the parameter identification problem.

We are interested, in particular, to give a clear interpretation of all the components of the

formulation, in order to then be able to provide a robust interpretation of the solution. In

particular, we want to limit the number of decisions that cannot be justified or understood in

terms of the physical system of study.

Since one of our objectives is to solve inverse problems involving time- or space-dependent

parameters, we shall frame our formulation in the context of Banach spaces. Finite dimen-

sional parameters, although much simpler and requiring less assumptions, can be interpreted

as a particular case of the Banach space setting. In this way, we keep our approach as general

as possible.

To make the ideas precise, let U be a Banach space, that we will interpret as the parameter

space; let X be a Banach space, the space of solutions to our mathematical model, and let Y ⊂

RM be an Euclidean space, the space of the observations. We note that here we assume already

that our observations will come from a physical, real-world measurement, and therefore they

will always be finite dimensional.
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For a given mathematical model, we denote by G the solution operator. G maps parameters

to solutions of the mathematical model,

G : U −→ X. (2.1)

For a given parameter u ∈ U, G(u) ∈ X is the solution of the mathematical model, for example,

the solution of the PDE.

In general, we cannot observe G(u) in a physical experiment. The real world observation

is given by a mapping P : X → Y, that maps solution to the mathematical model x ∈ X to the

physical observation y ∈ Y. In the simplest case, P represents a projection of X onto a finite

dimensional space. This is the case, for instance, when our observation is a finite number of

measurements of a function. P can also represent more complex measurements.

We denote by G : U → Y the composition P ◦ G. We refer to G as the observation operator,

and it maps a parameter u ∈ U to a the physical observation of the solution of the mathemati-

cal model, G(u) = P(G(u)). Note that if we assume that P has good smoothness properties,

the well-posedness of the mathematical model determines the properties of G, and in turn the

properties of G. In particular, when thinking about the general setting regardless of the func-

tional setting, one can abuse the notation and assume that G = G. The distinction becomes

only important when setting the functional spaces for solutions and observations.

In a physical measurement, we will also find errors or noise. Therefore, we make the

following assumption for the structure of the experimental measurement. Let y ∈ Y be the

result of a physical observation, and let η ∈ Y be an error term. We assume

y = G(u) + η, (2.2)

for a certain parameter u ∈ U.

Note that we could include other types of noise. For a general model, we could let η ∈ S,

where S is a suitable space, and define the observation operator as

G : U × S −→ Y. (2.3)

Here, the noise η can affect the solution in non-linear ways. The interpretation of this error
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term is also open to other possibilities rather than experimental noise. For instance, η can in-

corporate modelling errors in the inverse problem (see for instance the approach in Engelhardt

et al (2017)).

There are some limitations to the use of additive noise. Some problems, for instance geo-

metric evolution problems, are described by models that give as solution objects that do not

lie in Banach spaces. Even if the solution can be embedded in Banach space, the choice of the

Banach space must be informed by what addition will mean in terms of the perturbation of a

measurement. We will not be studying this type of problems in this thesis.

In this work we are only interested in modelling the experimental error, we restrict our-

selves to the additive noise as described in equation (2.2). We assume in particular that the

experimental error is additive. Although this is a very general assumption and it does not

restrict the applicability, it is important to keep it in mind to ensure the consistency of our

modelling approach with the physical experiments.

Note that the additive noise is very suitable when we assume that our mathematical model

is a model for the mean behaviour of the system of interest. In this case, from a series of physi-

cal measurements we will compute the average observation, and use it to fit the mathematical

model. The Central Limit Theorem ensures that for a large enough number of measurements,

we will have an additive Gaussian error in our average observation. Furthermore, we will

be able to estimate the standard deviation of the error also from the physical measurements.

In general, finding the noise distribution is not trivial (see for instance Kaipio and Somersalo

(2007); Huttunen and Kaipio (2007)).

To sum up, equation (2.2) is our main assumption in terms of the experimental measure-

ment, and it is well-defined in a Banach space setting, therefore allowing us to describe infinite-

dimensional parameters. The next step is to incorporate in it the idea of modelling the knowl-

edge of a physical quantity as a probability distribution. Stuart (2010) describes this setting in

similar terms.

2.2 Bayesian framework

The main idea underlying our approach is that we can model our knowledge about a physical

quantity as a probability distribution, as expressed in Tarantola (2005). This notion distin-

guishes the approach from a minimisation method, by giving a complete robust interpretation
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to all the components of the framework, avoiding any arbitrary choices. If a quantity is known

with infinite precision, then the probability distribution associated with this knowledge will

be concentrated at one point—a Dirac delta; the less we know, the more spread the distribution

will be.

Note that once we define the distributions of the noise η, and the parameter u, equation

(2.2) gives a complete characterisation of the distribution of the physical observation y given

a parameter u. Therefore, we discuss now the definition and interpretation of these distribu-

tions.

2.2.1 Parameters

Note that the distribution for the parameter u incorporates the knowledge about the parame-

ter regardless of the measurement, and it is known as the prior. It is important to note that this

distribution may incorporate information from independent measurements, but it must be in-

dependent of the observations that we intend to use for the parameter identification problem,

otherwise we may be incorporating the same information twice.

In the applications, several pieces of information can be modelled in the prior distribution

for the parameters. For example, if a parameter is known from independent measurements

with a given precision, this leads naturally to a prior distribution. Similarly, the prior dis-

tribution can incorporate bounds on the parameter, or restrictions such as positivity. In the

Chapters 3 and 4 we will see practical examples on how to model this features.

An more difficult question is how to model the lack of knowledge. Priors to model the

absence of informations are known as non-informative priors. It is a subject of debate what is

the actual interpretation of non-informative, that in turn is linked to the more philosophical

question of the interpretation of probabilities, i.e. what do we mean exactly by ”a probabil-

ity distribution models our knowledge”. We will not explore this questions, see for instance

Williamson (2010) for a discussion.

A simple rule to define a non-informative prior is the principle of indiference, i.e. assign

equal probabilities to all the possibilities. This leads to uniform distributions, when they are

well-defined. There are also other approaches, for instance the use of priors that maximise the

Shannon entropy of the probability distribution, relying on the interpretation that the larger

the entropy, the less information is provided by the distribution (Jaynes (1968)).



Chapter 2. Methods 25

Unless stated otherwise, we denote the prior distribution by P0, a probability distribution

over the space U. When a probability density function (PDF) for P0 is available, we denote

this PDF by µ0.

In many situations, we can define the prior as a Gaussian distribution. A simple example

of this situation is when we are defining a prior for a scalar quantity, that have been measured

independently several times, and we define the prior by means of the Central Limit Theorem

as the average of the measurements, with the corresponding standard deviation. Gaussian

priors also have the advantage of being well-suited for the theoretical results.

2.2.2 Noise

Although technically noise is just another probability distribution, the interpretation of the

noise is different from the interpretation of the priors, and in consequence the treatment is

slightly different. Note in particular that if we would assume the general definition of the ob-

servation operator given in equation (2.3), at the mathematical level the role of the parameter

and the noise term is similar.

In our methodology, we assume that the knowledge about the noise comes from the exper-

imental setting. In the ideal situation, we will be able to estimate the noise also from the data,

but in general, we assume that the noise distribution is informed by the experimental setting,

and it is not defined following only technical criteria.

We denote by Q0 the probability distribution associated with the noise term η in equation

(2.2). Q0 is a distribution over the space Y, and we can assume without loss of generality that

it is a distribution centered at zero. Otherwise, we can include a translation in the observation

operator G. When a probability density is available, we denote by ρ the PDF of Q0.

In this work, we will restrict ourselves to Gaussian distributions for the noise. There are

two main reasons for this restriction: first, although some of the results can be generalised

easily to other distributions, Gaussian distributions are easy to define and manipulate, both

in the theory and in the numerics; second, as indicated above, in many situations we have

averaged data that leads naturally to a Gaussian noise distribution. This is the situation in the

problems that we study in Chapters 3, 4 and 5.

Since we assume that the noise distribution Q0 is a centered Gaussian, it is completely de-

termined by its covariance. Unless stated otherwise, we denote this covariance by Σ. This fact,
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together with an explicit density, are the main advantages that motivate the use of Gaussian

distributions.

So far, we have defined the distributions of the parameter and the noise, and together

with equation (2.2) we have a relation between these two quantities and the experimental

observations. The next step is to extract the information about the parameter u when the

observation is given.

2.3 Bayes’ theorem

Let us recall the basic idea from the Bayes’ theorem. Given two events A, B and a probability

P, if we know the conditional probability of A given B, P(A|B), and the respective marginal

distributions for A and B, P(A) and P(B), the Bayes’ theorem characterises the reverse condi-

tional probability,

P(B|A) =
P(A|B)P(B)

P(A)
. (2.4)

In our problem, equation (2.2) characterises the probability distribution of the observations,

given a parameter u. Intuitively, the Bayes’ theorem will therefore give us the reverse condi-

tion, the distribution of the parameter given an observation y. This is our object of interest,

since this distribution models the knowledge about the parameter that we obtain when we

incorporate the physical observations.

Let Qu be the probability distribution of the observation y given a parameter u. From

equation (2.2), Qu is the probability distribution of the noise shifted by G(u). Assume that

Qu � Q0 P0-almost surely. Then, there exist a potential Φ : U ×Y → R such that

dQu

dQ0
(y) = exp (−Φ(u, y)) . (2.5)

The existence of such potential is just the definition of the Radon-Nikodym derivative. Φ is

known as the negative log-likelihood. We can now formulate the Bayes’ theorem.

Theorem 1 (Bayes’ theorem). Assume that the potential Φ : U × Y −→ R is measurable with

respect to the product measure P0 ×Q0 and assume that

Z :=
∫

U
exp (−Φ(u, y))P0(du) > 0.
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Then, the conditional distribution P(p|y), denoted by Py(p), exists, and it is absolutely continuous

with respect to the prior distribution P0. Furthermore,

dPy

dP0
=

1
Z

exp (−Φ(p; y)) .

Proof. See Dashti and Stuart (2016), theorem 14.

We remark that Theorem 1 provides a characterisation of our distribution of interest, Py,

but in general this characterisation is not explicit and we will need to rely on numerical meth-

ods to approximate it. We will present the numerical methods in subsequent sections. Follow-

ing the notation introduced above, we will denote by µy a PDF associated with Py.

A particular situation, when both the noise and the prior distributions are Gaussian, it

turns out that the posterior distribution Py, that is, the Gaussian class of distributions is a

Bayesian conjugate to itself. In particular, it is easy to show that if the prior is a Gaussian with

center at u0 ∈ U and covariance Γ, and we denote by ‖ · ‖Λ the norm in Y weighted by Λ, we

have

Φ(u; y) = ‖y− G(u)‖2
Σ + ‖u− u0‖2

Γ.

For example, if both the noise and the prior distribution are standard Gaussian distributions

with unit or identity covariance, both norms in the previous expression are the standard L2-

norm.

Note that in the context of an optimisation approach, the goal will be to minimise exactly

this cost functional, but here we can see that the Tykhonov regularisation, that in the optimi-

sation approach is a technical addition, is actually defined by the prior distribution, i.e. about

the knowledge a prior about the parameter.

Note that the constant Z in Theorem 1 can be interpreted as a normalisation constant. In

general, Z could be very expensive to compute, since it is an integral over the whole parameter

space, but we will see that there are suitable numerical algorithms that do not require the

explicit computation of Z.

The formulation of Theorem 1 is general in order to be applied to Banach spaces, but the

theorem reduces to the well-known finite dimensional Bayes’ theorem in the case of finite-

dimensional spaces. In terms of PDFs, following the notation presented above, the theorem
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reads

µy(u) ∝ ρ (y− G(u)) µ0(u).

2.3.1 Well-posedness

One of the main drawbacks of the optimisation approach is that it is typically difficult to prove

the well-posedness of the inverse problem. As detailed in Chapter 1, even when the forward

problem is well-posed, the inverse problem understood as a minimisation problem can be

ill-posed.

Using only properties of the forward problem, the following theorem guarantees that the

parameter identification problem is well-posed in the Bayesian framework: the posterior dis-

tribution exists, and it depends continuously on the data y. Let us denote by B(0, r) ⊂ U the

ball with centre at the origin and radius r, and by ‖ · ‖Σ the Euclidean norm with weight Σ.

Theorem 2 (Well-posedness of the Bayesian inverse problem). Assume that Q0 is a Gaussian

distribution with covariance Σ, and that the potential is Φ(u; y) = ‖y − G(u)‖2
Σ. Assume that the

observation operator G satisfies the following conditions.

i) For all ε, there exists M ∈ R such that for all u ∈ U,

‖G(u)‖Σ ≤ exp
(

ε‖u‖2
U + M

)
.

ii) For all r > 0, there exists a K such that for all u1, u2 ∈ B(0, r),

‖G(u1)− G(u2)‖Σ ≤ K‖u1 − u2‖U .

Then, the distribution Py defined in Theorem 1 exists, and depends continuously on the data y in the

sense of the Hellinger distance.

Proof. See Stuart (2010), theorem 4.2.

Note that the first condition is a bound on the growth of the solution with respect to the

parameter u, whilst the second condition is the Lipschitz continuity of the observation opera-

tor.
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We remark that both conditions in the theorem refer to the forward problem. Therefore,

these results overcome at once many of the difficulties when studying the well-posedness of

the inverse problem, by reducing it to the study of the well-posedness of the forward problem.

In any case, well-posedness of the forward problem is expected, otherwise we may not

have a well-defined solution operator G. The existence of G is equivalent to the existence

and uniqueness of solutions of the mathematical model, and the second condition, Lipschitz

continuity of G, is the problem of continuous—actually, Lipschitz—dependence with respect

to the parameters of the model.

The first condition in Theorem 2 is not necessary to obtain well-posedness if the parameter

space U is finite dimensional. This condition is required in the infinite-dimensional setting to

ensure a fast enough decay of the probability distribution.

2.4 Sampling algorithms

Markov Chain Monte Carlo methods (MCMC) are a family of methods that produce a Markov

chain with a given distribution (Norris (1998)). For the problem at hand, the target distribution

is the posterior. Therefore, for each new state of the Markov chain, we obtain a sample of the

posterior distribution.

MCMC methods are robust but slow. The distribution of the Markov chain converges, un-

der general conditions, to the target distribution, but long chains are necessary to obtain good

approximations (see for instance Norris (1998)). Also, the methods are inherently sequential.

Furthermore, in the parameter identification framework, evaluation of the acceptance proba-

bility typically involves, at least, one evaluation of the potential Φ, and in consequence, one

evaluation of the observation operator G. This is an expensive operation in terms of comput-

ing time in cases where the model is a system of PDEs because it entails solving the system.

To overcome these difficulties we shall use a parallel Metropolis–Hastings algorithm (Calder-

head (2014); Tjelmeland (2004)). The key idea is to generate an N-dimensional Markov chain,

such that its distribution is N copies of the target distribution. This can be done in a way that

allows parallel evaluations of the potential Φ.

Let xk be the current state of the Markov Chain, and let k(xk, x) be a proposal kernel—the

probability to propose a state x if the present state is xk. For ease of presentation assume that
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the proposal kernel is symmetric, i.e. k(xk, x) = k(x, xk). Let a(xk, x) be the probability of

accepting a new state x if the present state is xk.

The choice of the proposal kernel k is critical to the performance of the algorithm. Further-

more, the choice of the acceptance probability a depends on the proposal kernel in order to

ensure that the Markov chain is reversible with respect to the target probability. Reversibility

implies, in turn, that the Markov chain preserves the target probability. We refer to Tierney

(1998) for details on the choice of a in general, and to Cotter et al (2013) for the case of infinite

dimensional states.

In the present work, we restrict ourselves to simple proposal kernelss. Given the prior

distribution P0, take the proposal kernel k satisfying

k(xk, ·) ∼ P0(·).

Together with the acceptance probability given by

a(xk, x) = min {1, exp (Φ(xk)−Φ(x))} , (2.6)

this choice corresponds to the standard Metropolis-Hastings method known as independence

sampler. We refer to Cotter et al (2013) for other choices suitable for infinite dimensional

problems. Note that the acceptance probability in this case, as well as for many other popular

choices, depends only on the potential Φ.

Although the independence sampler is useful for a general exploration of the parameter

space, it does not offer any tunable parameters, and therefore it may work poorly when the

values of the potential Φ have significant differences depending on where it is evaluated.

Another popular sampler is the preconditioned Crank-Nicholson (pCN). For a Gaussian

prior with mean 0 and covariance Γ, the proposal kernel for the pCN is given by

k(xk, x) ∼ N ((1− β)
1
2 xk, β2Γ),

where N (m, C) denotes a Gaussian distribution with mean m and covariance C, and β ∈

[0, 1]. The acceptance probability is the same as in the independence sampler, (2.6). With the

pCN, we can adjust the variance of the proposals by tuning the parameter β. The proposals

account for the local information provided by the current state xk. For β = 1, we recover the
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independence sampler. Taking smaller values of β entails that the samples are closer to the

current state and the acceptance probability increases.

Both independence sampler and pCN are suitable for infinite dimensional parameters.

Cotter et al (2013) consistently derive these and other proposal kernels by discretising a Langevin-

type stochastic differential equation.

We note that for some problems of interest, the evaluation of the potential Φ is compu-

tationally intensive, and therefore proposal kernels that require evaluations of quantities like

∇Φ may not be feasible.

In the standard Metropolis-Hastings method, given a current state xk, we generate a pro-

posal x from the proposal kernel. We accept the new proposal with probability a(xk, x), i.e.

xk+1 = x with probability a(xk, x), and xk+1 = xk otherwise. Note that the evaluation of

a(xk, x) involves the evaluation of Φ(x), which in turn involves the evaluation of the observa-

tion operator G. Since this evaluation of G is an expensive operation, the aim of the parallel

Metropolis-Hastings method is to evaluate Φ in parallel for many proposals.

The parallel Metropolis–Hastings algorithm goes as follows. We generate N new proposals

{xj}N
j=1 from the proposal kernel k(xk, ·). Take x0 = xk. Then, in parallel, we evaluate the

potentials Φ(xj), j = 1 . . . N. Note that this will be done by N instances of the PDE solver

running in parallel, but the solver itself need not to be parallel. Parallelising the solver for the

model will reduce the time spent solving the model system and therefore is, in some cases,

worth implementing. With the values of Φ(xj) at hand, the acceptance probability of each

proposal is computed by finding the stationary distribution of a Markov chain with N + 1

states, given by the transition matrix

A(i, j) =


1
N

a(xi, xj), if j 6= i,

1−∑
j 6=i

A(i, j), if j = i.

Finally, we sample N times from the stationary distribution to produce N new states (see

Algorithm 1). Note that this approach is nonintrusive, in the sense that it does not require

modifications of the solver of the PDEs.

There are many other sampling methods to approximate a probability distribution charac-

terised by the Bayes’ theorem. The parallelised Metropolis-Hastings method presented above

is suitable when a PDE solver for the mathematical model is already available, and the only
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Algorithm 1 One step of the parallel Metropolis–Hastings algorithm. This will generate N
new samples.

1. Draw N new points {xj}N
j=1 from the proposal kernel k(xk, xj). Take x0 = xk.

2. Evaluate, in parallel, Φ(xj), j = 1 . . . N.
3. Compute the acceptance probabilities of the proposals, given by the stationary distribu-
tion of a Markov chain with transition matrix

A(i, j) =


1
N

a(xi, xj), if j 6= i,

1−∑
j 6=i

A(i, j), if j = i.

4. Sample N times from the stationary distribution to produce xk+1, . . . , xk+N .

interest is in speeding-up the computations using a parallel HPC environment, without doing

any changes to the solver. In other words, it is a parallel sampling algorithm that works un-

intrusively with a given PDE solver to evaluate the potential Φ. Furthermore, the Metropolis-

Hastings methods work well for problems with infinite dimensional parameters (Stuart (2010);

Dashti and Stuart (2016)).

We remark that in this context, we assume that we can explicitly compute the potential Φ,

i.e. we can compute the likelihood. This is a consequence of (2.2), and allows us to incorporate

in the modelling the information available on the experimental noise. In other problems, spe-

cially when the noise distribution is completely unknown, or when the likelihood cannot be

computed in general, Approximate Bayesian Computation can be more suitable. See Ross et al

(2017) for an example of application of Approximate Bayesian Computation in mathematical

biology.

2.5 Discretisation of measures in Banach spaces

In this section, we describe the basic ideas to discretise probability measures on Banach spaces.

Note that in principle there is no difficulty in order to describe probabilities for finite dimen-

sional parameters. In contrast, we need to describe the probabilities for infnite-dimensional

parameters taking into account that we may refine the discretisation and expect convergence

to a limit probability, i.e. to a probability measure in a Banach space.

There is a natural approach to discretise an element of a Banach space: we fix a basis of

the space, we express the element in this basis, and then we cut the expansion to a finite

number of elements, in other words, we project it a finite dimensional subspace spanned by
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a finite number of basic functions. Any element of the Banach space is characterised by the

coefficients in the expansion.

Using this idea, we can define a probability distribution in a Banach space by giving a basis

and a probability distribution for the coefficient of each basic function. In this way, we can also

naturally use the projection of this probability distribution onto a subspace spanned by a finite

number of elements of the basis.

In general, let U be a separable Banach space, and let {ui}i∈N be a basis. We assume that

for all i ∈N, ‖ui‖ = 1, where ‖ · ‖ denotes the norm in U. Let {ωi}i∈N ⊂ R be a deterministic

sequence, and let {ξi}i∈N ⊂ R be an independent, identically distributed random sequence.

Later on, it will also useful to have a distinguished element m0 ∈ U, that we will use to adjust

the mean of our prior.

With this notation at hand, we can define a random element of U by

u = m0 + ∑ ωiξiui. (2.7)

The sum can be truncated to a finite number of terms to have a finite dimensional approxima-

tion of u.

Note that this approach does not actually require for {ui}i∈N to be a basis of U. Given a se-

quence {ui}, not necessarily a basis of U, this formulation will provide elements of a separable

subspace U′ ⊂ U.

We refer to Dashti and Stuart (2016) for detailed constructions of several types of prior,

together with convergence results to ensure the convergence of the sum in equation (2.7). We

discuss here briefly only two examples, uniform and Gaussian priors.

We define uniform priors by assuming that ξi ∼ U (−1, 1), i.e. a uniform distribution. Note

that in this case, since ξi are bounded and we assumed that the basis functions are normalised,

we can expect to have convergence in equation (2.7) as long as the weights ωi decay quickly

enough. In particular, if {ωi}i∈N ∈ `1, the sum converges. See Dashti and Stuart (2016) for

details.

To define Gaussian priors, we assume that ξi ∼ N (0, 1). In this case, the limit measure

is actually a Gaussian over U. In fact, for a Gaussian measure N (0, C), one could use the

Karhunen-Loeve basis associated with C to a create the expansion in equation (2.7). Note

that the Gaussian priors the equivalent to the so called Gaussian processes (Rasmussen (2004);
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Murphy (2012)), popular in machine learning.

As discussed in Section 2.2.1, the prior distribution models our a priori knowledge about

the parameters. For finite dimensional parameters, we can use the modelling approaches com-

monly used in statistics (see for instance Kass and Wasserman (1996); Gelman et al (2017)). In

the case of priors for infinite-dimensional parameters, once we have decided for a family of

priors—i.e. once we fixed the distribution ξi—, there are two objects that can be adjusted: the

sequence of weights ωi, and the actual Banach space, by the choice of the basis functions ui. In

Chapters 3 and 4 we see examples of how to perform this choices.

To sum up so far, we presented a theoretical framework for parameter identification, with a

robust formulation that depends in principle only on the well-posedness of the forward prob-

lem. All the elements of the formulation have a clear physical interpretation, thus allowing for

a physical interpretation of the results. We described scalable parallel algorithms to exploit the

framework numerically, and we described the ideas to design priors in infinite-dimensional

spaces. We will now describe design of the implementation.

2.6 Implementation

The language of choice for the implementation if Python. Python is a scripting language that

allows for the quick development of applications, with the drawback of a low efficiency in

comparison to compiled languages such as C (Ritchie et al (1988)) or field specific languages

such as Julia (Bezanson et al (2012)). Our implementation is original, and incorporates the

requirements to apply the framework presented in the previous sections together with the

parallel algorithm by Calderhead (2014).

Python have a large module ecosystem that facilitates the quick implementation of com-

mon tasks. In particular, Scipy (Jones et al (2001–)) is a collection of libraries for scientific

computation, including linear algebra routines and random number generation. The Stan-

dard Python Libraries include the module multiprocessing for the implementation of parallel

routines. Note that traditionally Python struggled with parallel tasks due to the so called

Global Interpreter Lock (GIL), a lock to protect Python programs from errors in memory man-

agement (Beazley (2010)). This lock effectively forbids the use of more than one thread, but the

module multiprocessing overcomes this difficulty by creating multiple instances of the Python

interpreter at the cost of a higher memory use.
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2.6.1 Structure of the implementation

We have two main goals in mind when designing the implementation of our methodology.

First, we want to keep the structure as modular as possible, to allow the re-implementation of

the different components in the future. In this way, parts of the code could be rebuild without

affecting the rest. The second goal is to keep the structure of the software as close as possible

to the theoretical framework. This provides an advantage to the final user, that can clearly

follow the logic of the software as long as she or he knows the theory.

In principle we assume that our software has access to a routine that evaluates the negative

log-likelihood Φ. Such a routine has actually two distinct parts, the solver of the mathematical

model and the actual computation of Φ, that compares the solution to the model with the

experimental data. We consider this evaluation of Φ as only one routine because the output

of the solver varies significantly depending on its implementation, whilst the results of the

evaluation of Φ is a single real value. In this way, we can keep our implementation open to

virtually any solver because we do not need to deal with any particular format for the solution

of the mathematical model. The routine to evaluate Φ has only one argument, an array of

real values that represent the parameter. The serialisation of the parameter, in other words,

its representation as an array of real values, and in general, all the routines to handle the

parameters, form another independent piece of the software.

We remark that Φ is the only routine that depends on the solver for the mathematical model,

and therefore our implementation is as flexible as possible to the use of different solvers, as

long as they can expose Φ.

The are three main classes in our implementation, linked to different elements of the theo-

retical framework. The class mc is the main data structure. It contains the Markov chain, and

includes the methods to add new states to the chain, save to a file, and load it. It also contains

metadata about the Markov chain, such as the seeds for the random number generators. In

this way, it is possible to reproduce exactly the same Markov chain twice. Note that we also

save in the Markov chain the value of all the evaluations of Φ, accepted or not. Since the eval-

uation of Φ is the most time-consuming part of the code, it is efficient to save it for possible

re-use.

The class pa implements all the routines to handle the proposal and acceptance of new

states in the Metropolis-Hastings algorithms. We implemented the independence sampler and

the pre-conditioned Crank-Nicolson sampler. The reason to have the proposal and acceptance
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routines as a separate class is that, as mentioned in Section 2.4, the acceptance depends on the

proposal kernel. Therefore, it is a good design to allow the user to choose only the proposal

method, and let the class pa adjust the acceptance accordingly. Note that for the proposals

that we implemented that acceptance does not change, but we will implement new proposal

methods in future versions of the software. An instance the pa class is configured with the

prior.

Finally, the class pmh implements the parallel Metropolis-Hastings method. To create an

instance of this class we require an instance of the mc and pa classes, together with metadata

for the simulation such as maximum running times and target number of samples, and with

the Φ evaluation routine.

As part of this thesis, we also implemented a post-processing module, that includes the

routines to read the data from the Markov Chains and analyse it. This module allows for the

computation of the mean, standard deviation and other statistics, the computation of credible

regions in two and three dimensions, and it includes several tools for data visualisation.

2.7 Description of the methodology

We summarise here our approach to the parameter identification problems. Given a mathe-

matical model, we begin by defining the priors for the parameters according to the information

provided by the experimentalist. Using the experimental data, and the knowledge about the

actual experiment, we define the noise distribution and in turn the log-likelihood.

If the solver for the mathematical is already implemented, we only need to implement the

log-likelihood routine and the priors. We can then run the algorithms to produce MCMC.

Typically we will need a few runs to adjust the proposal methods, and then we can proceed to

generate several independent Markov Chains, to ensure a good exploration of the parameter

space.

With the Markov Chains at hand, we can produce the results of interest for the biologist,

either numerical or in the form of data visualisation for the parameters and their credible

regions. Note that in principle we did not make any technical choice that could affect the

results. At this point the biologist may update the hypothesis about the parameters or the

model, and the cycle starts again.
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Chapter 3

Parameter identification for Turing

systems on stationary and evolving

domains

3.1 Introduction

Turing systems are a family of reaction-diffusion systems introduced by Turing Turing (1952).

Originally intended to model morphogenesis, they have since found many applications in

mathematical biology and other fields Lacitignola et al (2017); Das (2016); Wang et al (2016b);

Hu et al (2015); Guiu-Souto and Muñuzuri (2015). The main feature of these models is that

small perturbations of the homogeneous steady states may evolve to solutions with non-trivial

patterns Murray (2011, 2013). An example of such a model is the Schnakenberg system, also

known as the activator-depleted substrate model Gierer and Meinhardt (1972); Prigogine and

Lefever (1968); Schnakenberg (1979). This model has been widely studied, both analytically

and numerically Garvie et al (2010); Venkataraman et al (2012); Madzvamuse et al (2005). Note

that for some reaction-diffusion systems with classical reaction kinetics the Turing space can

be obtained analytically, thereby offering us a bench-marking example for our theoretical and

computational framework (see for instance Murray (2013)).

The parameter identification for Turing systems, using Turing patterns as data, was stud-

ied in Garvie et al (2010), both with Schnakenberg kinetics and with Gierer-Meinhardt kinetics,

but using an optimal control approach. Garvie and Trenchea (2014) also used an optimal con-

trol approach to identify space-time distributed parameters in a system with Gierer-Meinhardt
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kinetics. In contrast, here we use a Bayesian framework, that in particular allows the consis-

tent computation of credible regions for the estimated parameters. To the best of our knowl-

edge, this is the first study to address the inverse problem for Turing patterns in the Bayesian

framework, and in particular, in growing domains. Uzunca et al (2017) studies a convective

FitzHugh-Nagumo system which is similar to the system arising in growing domains, and

identifies finite-dimensional parameters using optimisation techniques.

Our first goal is to identify a time-dependent growth function for a reaction-diffusion sys-

tem posed on a one-dimensional growing domain. For this case, the rest of the model param-

eters are considered known and fixed. This example illustrates an application of our approach

to infinite dimensional parameter identification. Our second example is that of parameter

identification in a finite dimensional framework where we consider the reaction-diffusion sys-

tem posed on a stationary two-dimensional domain. For both examples, we use synthetic

patterns – computer generated – based on previous works using a fixed set of parameters

Garvie et al (2010); Madzvamuse et al (2010).

3.2 Turing systems

We consider infinite (as well as finite) dimensional parameter identification for a well-known

mathematical model, a reaction-diffusion system on evolving and stationary domains. As

mentioned earlier, we take the Schnakenberg kinetics Gierer and Meinhardt (1972); Prigogine

and Lefever (1968); Schnakenberg (1979) for illustrative purposes.

3.2.1 Reaction-diffusion system posed on uniform isotropic evolving do-

mains

Let Ωt ⊂ Rm (m = 1, 2) be a simply connected bounded evolving domain for all time

t ∈ I = [0, tF], tF > 0 and ∂Ωt be the evolving boundary enclosing Ωt. Also let u =

(u (x(t), t) , v (x(t), t))T be a vector of two chemical concentrations at position x(t) ∈ Ωt ⊂ Rm.

The growth of the domain Ωt generates a flow of velocity v. For simplicity, let us assume a

uniform isotropic growth of the domain defined by x(t) = ρ(t)x(0) where, x(0) ∈ Ω0 is the

initial domain and ρ(t) ∈ C1(0, 1) is the growth function (typically exponential, linear or lo-

gistic). We further assume that the flow velocity is identical to the domain velocity v := dx
dt .

The evolution equations for reaction-diffusion systems can be obtained from the application
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of the law of mass conservation in an elemental volume using Reynolds transport theorem.

Since the domain evolution is known explicitly, a Lagrangian mapping from an evolving to

a stationary reference initial domain yields the following non-dimensional reaction-diffusion

system with time-dependent coefficients Crampin et al (2002); Mackenzie and Madzvamuse

(2011); Madzvamuse and Maini (2007); Madzvamuse et al (2010, 2016)




ut +

mρ̇(t)
ρ(t) u = 1

ρ2(t)∆u + γ f (u, v),

vt +
mρ̇(t)
ρ(t) v = d

ρ2(t)∆v + γg(u, v),
x ∈ Ω0,

n · ∇u = n · ∇v = 0, x on ∂Ω0,

u(x, 0) = u0(x), and v(x, 0) = v0(x), x on Ω0,

(3.1)

where ∆ is the Laplace operator on domains and volumes, d is the ratio of the diffusion coeffi-

cients and ρ̇ := dρ
dt . Here, n is the unit outward normal to Ωt. Initial conditions are prescribed

through non-negative bounded functions u0(x) and v0(x). In the above, f (u, v) and g(u, v)

represent nonlinear reactions and these are given by the activator-depleted kinetics Crampin

et al (1999); Gierer and Meinhardt (1972); Prigogine and Lefever (1968); Schnakenberg (1979)

f (u, v) = a− u + u2v, and g(u, v) = b− u2v. (3.2)

To proceed, let us fix the parameters a, b, d, γ ≥ 0, and use the Bayesian approach to identify

the domain growth rate function ρ(t), assuming ρ(0) = 1, ρ(t) > 0 for t > 0 and that the

domain size at the final time, ρ(T), is known.

Well posedness results for the system of equations (3.1), as well as stability results, can be

found in Venkataraman et al (2012). Furthermore, the positivity of solutions is established.

These results ensure that the conditions in Theorem 2 are satisfied, and thus we can conclude

the well posedness of the parameter identification problem.

Proposition 1 (Well-posedness of the parameter identification problem). Let G be the observa-

tion operator associated with the reaction-diffusion system (3.1) with reaction-kinetics (3.2). Assume

that a, b, d, γ > 0, and ρ ∈ C1(0, T), ρ > 0. Then, the conditions in Theorem 2 are satisfied, and thus

the parameter identification problem is well-posed.
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Proof. The result follows from the analysis in Venkataraman et al (2012), where well-posedness

for the problem (3.1) is shown. In particular, the first condition in Theorem 2 is a consequence

of the a priori estimates for the solution. More precisely, the estimates in Venkataraman et al

(2012) show in particular that the L2-norm of the solution to (3.1) is controlled by the square

of the L2-norm of the domain growth, a bound tighter than the one required in Theorem 2. As

noted, this bound is only required for parameters in an infinite-dimensional space. Lipschitz

continuity of the solutions with respect to the parameter follows from the a priori estimates

in Venkataraman et al (2012) and the smoothness of the reaction terms with respect to the

solution.

Although this example is synthetic, it is biologically plausible. First, we generate the data

by adding noise to a numerical solution of the system, but the parameter identification prob-

lem would be analogous in the case of experimental data (see for instance Vigil et al (1992)

for an experiment that produces Turing patterns similar to the patterns that we use as data in

Example 2).

Since the noise follows a Gaussian distribution, we evaluate the potential Φ according to

Theorem 2. Let G̃ be the observation operator associated to the numerical solver, that maps a

parameter p to the numerical approximation of the solution of (3.1). Let y be the data, and let

Σ be the covariance of the noise. Then,

Φ(p; y) = ‖G̃(p)− y‖2
Σ,

where ‖ · ‖Σ is the Euclidean norm weighted with the noise covariance Σ.

Example 1: Infinite dimensional parameter identification

Without any loss of generality, we restrict our first example to the one-dimensional case (m =

1) where we fix model parameters with standard values in the literature as Murray (2013)

a = 0.1, b = 0.9, d = 10, γ = 1000.

We want to identify the growth function ρ(t) given synthetic data generated from two

different growth profiles defined by the exponential and logistic functions
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ρexp(t) = exp(0.001t), and ρlog(t) =
exp(0.01t)

1 + exp(0.01t)−1
exp(0.006)

. (3.3)

We fix the final time T = 600. Note that the size of the domain at time T is the same in both

cases.

Initial conditions are taken as small fixed perturbations around the homogeneous steady

state, (u∗, v∗) =
(

a + b, b
(a+b)2

)
, and these are given by

u0(x) = 1 + 0.005
9

∑
k=1

sin(kπx), and v0(x) = 0.9 + 0.005
9

∑
k=1

sin(kπx). (3.4)

The choice of the initial conditions is motivated by comparison with known results about

Turing patterns, and also to ensure a unique steady state. The same initial condition is used in

Garvie et al (2010) for parameter identification using an optimization approach, and therefore

by using the same initial condition we can use their results as a benchmark for validation.

Furthermore, the steady state pattern depends on the initial condition—more precisely, the

Turing instability only ensures the certain wave numbers will grow, thus the spectrum of the

initial condition affects the spectrum of the steady state pattern—. The problem of finding

the initial condition given final pattern could also be solved as an inverse problem, but it is

beyond the scope of this thesis.

We solve the system using the finite difference method both in space and time. The system

of PDEs is solved on the mapped initial unit square domain using a finite difference scheme.

Similar solutions can be obtained by employing finite element methods for example or any

other appropriate numerical method. The algebraic linear systems are solved using a conju-

gate gradient method from the module SciPy Jones et al (2001–).

The time-stepping scheme is based on a modified implicit-explicit (IMEX) time-stepping

scheme where we treat the diffusion part and any linear terms implicitly, and use a single

Picard iterate to linearise nonlinear terms Ruuth (1995); Madzvamuse (2006); Venkataraman

et al (2012). This method was analysed in Lakkis et al (2013) for finite element discretisation.

It is a first order, semi-implicit backward Euler scheme, given by
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un+1 − un

τ
+

ρ̇n

ρn un+1 =
1

ρ2n ∆hun+1 + γ(a− un+1 + unun+1vn),

vn+1 − vn

τ
+

ρ̇n

ρn vn+1 =
d

ρ2n ∆hun+1 + γ(b− (un)2vn+1),
(3.5)

where ∆h is the standard 3-point (or 5-point) stencil finite difference approximation of the

Laplacian operator in 1-D (or 2-D) respectively, with Neumann boundary conditions. The

parameters of the solver are h = 10−2 and τ = 10−4 for all the computations.

We remark that our aim here is to illustrate the applicability of the Bayesian approach and

the Monte Carlo methods for parameter identification to problems emanating from mathemat-

ical biology. More sophisticated solvers can be used and will improve the computational time

Venkataraman et al (2013). The synthetic data is generated by solving the reaction-diffusion

system (3.1) with reaction-kinetics (3.2) up to the final time T = 600, and then construct the

synthetic data by perturbing the solution with Gaussian noise with mean zero and standard

deviation equal to 5% of the range of the solution. The data is illustrated in Figure 3.1.

FIGURE 3.1: Synthetic data for the reaction-diffusion system (3.1) with reaction-
kinetics (3.2) on a one-dimensional growing domain with exponential and lo-
gistic growth functions. The figure depicts only the v-component of the solu-

tion, the u component is 180 degrees out of phase. (Colour version online).
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In order to identify a time-dependent parameter ρ(t), we approximate it on a finite dimen-

sional space by using a polynomial of degree four, with only three degrees of freedom. The

coefficients of order zero and four are fixed in order to satisfy the conditions for ρ(t) at times

t = 0 and t = T, respectively. The priors for the coefficients of the polynomial approximation

of ρ(t) are Gaussian distributions, adjusted to ensure that 95% of the samples lay in the large

shaded region in Figure 3.2 (yellow in colour version). Note that the results of Proposition

1, and in particular the Lipschitz continuity of the solutions with respect to ρ ensure that the

dicretised measure converges upon refining of the discretisation. Therefore, we are effectively

approximating an infinite dimensional parameter.

FIGURE 3.2: Regions where 95% of the samples of the prior (light colour, larger
region) and the posteriors for exponential growth (darker colour, bottom re-
gion) and logistic growth (darker colour, upper region). The exact growth used
to generate the data is traced with triangles (logistic) and circles (exponential).
The solid lines are the growth rates computed using the mean of each posterior

distribution (Colour version online).

The same prior is used for both the logistic and the exponential growth data sets. In Figure

3.2 we depict the regions where 95% of the samples from the posteriors lie, and also the region

where 95% of the samples of the prior lie. Observe that we could also plot the credible regions

for the coefficients of the finite dimensional approximation of ρ, but it is more difficult to
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Parameter Value
a 0.126779
b 0.792366
d 10
γ 1000

TABLE 3.1: Exact values of the parameters, used to generate the noisy data
shown in Figure 3.3.

visualise the result from it. We compute these credible regions as highest posterior density

regions, i.e. the smallest region of the parameter space has probability 0.95 with respect to the

posterior distribution.

For the final time T = 600, we find that the region corresponding to the parameters identi-

fied from the exponential growth rate and the region corresponding to the logistic growth rate

are completely separated: we can distinguish the type of growth from the solutions at the final

time T.

Example 2: Finite dimensional parameter identification

Next we demonstrate the applicability of our approach to identifying credible regions for pa-

rameters which are constant and not space nor time-dependent. This is an often encountered

problem in parameter identification. We will again use the reaction-diffusion system (3.1) with

reaction-kinetics (3.2) in the absence of domain growth, i.e. ρ(t) = 1 for all time. Our model

system is therefore posed on a stationary domain, for the purpose of demonstration, we as-

sume a unit-square domain. We seek to identify a, b, d and γ. For ease of exposition, we will

seek parameters in a pair-wise fashion.

Our “experimental data” are measurements of the steady state of the system. We fix the

initial conditions as a given perturbation of the spatially homogeneous steady state given by

(a + b, b
(a+b)2 ). For the values of the parameters given in Table 3.1, the initial conditions are

given by

u0(x, y) = 0.919145 + 0.0016 cos(2π(x + y)) + 0.01
8

∑
j=1

cos(2π jx),

v0(x, y) = 0.937903 + 0.0016 cos(2π(x + y)) + 0.01
8

∑
j=1

cos(2π jx).

(3.6)
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We let the system evolve until the L2-norm of the discrete time-derivative is smaller than a

certain threshold. For the numerical experiments presented here, the threshold is 10−5. At that

point, we assume that a spatially inhomogeneous steady state has been reached. We record

the final time T and save the solution. To confirm that the solution is indeed stationary, we

keep solving the system until time t = 2T and check that the difference between the solutions

at time T and 2T is below the threshold. To generate our synthetic measurement, we add

Gaussian noise to the solution, as illustrated in Figure 3.3.

This synthetic experiment is a situation similar to what one will face in an actual exper-

iment, although some assumptions, in particular the fixed known initial conditions, are not

realistic. A detailed study of the dependence of the solution with respect to initial conditions

will be necessary to drop this assumption. Alternatively, the initial conditions could be in-

cluded as a parameter to identify.

Case 1: Credible regions for a and b with little knowledge

For our first example, we assume that the values of the parameters γ and d are known, and

that we would like to find the values for the parameters a and b. In a first approach, we

assume very little knowledge about a and b: only their order of magnitude is assumed to

be known. This knowledge is modelled by a uniform prior distribution on the region given

by [0.1, 10]2. The data for this example has Gaussian noise with standard deviation 5% of

the range of the solution. We can see in Figure 3.4 a 95% probability region for the posterior

distribution. Observe how this region is concentrated around the exact value, in contrast to

our original knowledge of a uniform distribution on the region [0.1, 10]2. More precisely, the

credible region is contained within the range [0.126, 0.128]× [0.789, 0.796]. The length of the

credible region in the b-direction is approximately 3.5 times larger than in the a-direction,

although the size relative to the magnitude of the parameters is smaller in the b-direction.

Intuitively, the larger credible region in the b-direction might be connected with the contrast in

the diffusion coefficients for u and v. In order to have Turing patterns—i.e. Turing instability—

in fixed domains, the ratio between v-diffusion and u-diffusion must be larger than 1, and after

rescaling, we assumed without loss of generality that the diffusion coefficient for u is 1.

For the Schnakenberg reaction kinetics Gierer and Meinhardt (1972); Prigogine and Lefever

(1968); Schnakenberg (1979), it is possible to compute the region that contains the parameters
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that can lead to non-homogeneous steady states, the Turing space (see next example for de-

tails). We can see that our original prior covered an area much larger than the Turing space

(almost 100 times larger), but the posterior is concentrated in a small region completely con-

tained within it (see Figure 3.5).

Case 2: Credible regions for a and b using the Turing parameter space

Unlike the previous example, where we assume little knowledge of the prior, here we exploit

the well-known theory for reaction-diffusion systems on stationary domains and use a much-

more informed prior based on analytical theory of the reaction-diffusion system. On stationary

domains, diffusion-driven instability theory requires reaction-diffusion systems to be of the

form of long-range inhibition, short-range activation for patterning to occur (i.e. d > 1). More

precisely, a necessary condition for Turing pattern formation is that the parameters belong to

a well-defined parameter space Murray (2013) described by the inequalities (for the case of

reaction-kinetics (3.2))

fu + gv =
b− a
b + a

− (a + b)2 <0,

fugv − fvgu = (a + b)2 >0,

d fu + gv = d
(

b− a
b + a

)
− (a + b)2 >0,

(d fu + gv)
2 − 4d( fugv − fvgu)

=

(
d
(

b− a
b + a

)
− (a + b)2

)2
− 4d(a + b)2 >0,

(3.7)

where fu, fv, gu and gv denote the partial derivatives of f and g with respect to u and v,

evaluated at the spatially homogeneous steady state (a + b, b
(a+b)2 ). In Figure 3.5 we plot the

parameter space obtained with Schnakenberg kinetics.

In this second example, we use data with added Gaussian noise with standard deviation

10% of the solution range. For the prior, we now use a uniform distribution on the Turing space

of the system. In Figure 3.6 we can now see that despite the increased noise, the improved prior

reduced the size of the 95% probability region dramatically.
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Case 3: Credible regions for d and γ

In a third example, we assume that a and b are known, and we would like to find γ and d. To

illustrate the use of different types of priors, here we assume a log-normal prior that ensures

positivity of γ and d, which in the case of d is necessary to ensure a well-posed problem. We

use the data with 5% noise, and the prior distribution of a log-normal with mean (5, 500)

and standard deviation 0.95. A 95% probability region of the posterior is depicted in Figure

3.7. Note that the use of a log-normal or similar prior is essential here to ensure positivity

of the diffusion coefficient which is required for the well posedness of the forward problem.

The prior distribution covers a range of one order of magnitude for each parameter, and the

posterior distribution suggests relative errors of order 10−3.

Case 4: Credible regions for a, b, d and γ

Finally, we identify all four parameters a, b, d and γ from the set of data with 10% noise

respectively. We use the priors from Case 1 for a and b, and from Case 3 for d and γ. We do

not apply any further restrictions on the parameters.

In Figure 3.8 we depict the credible regions for the projection of the parameters to four

different coordinate planes. The noise for this experiment is higher than in Case 1 and 3. Also

note that compared to the previous experiments we assume here less knowledge a priori about

the parameters. It must be noted that assuming that a parameter is known is equivalent in the

Bayesian formulation to use a Dirac delta for the prior on the parameter; in comparison, the

prior distributions for Case 4 are more spread, therefore they represent less knowledge. Since

the level of noise is higher, and the prior knowledge lower, the credible regions that we obtain

are larger. In this case, the relative errors are of order 10−2 to 10−1.

3.2.2 HPC computations

For each of the examples shown in Section 3.2, we generate 10 Markov chains for a total of

approximately 106 samples. The mean and the correlation of each chain are examined, and

used to decide the burn-in—the fraction of the chain discarded due to the influence of the

initial value. The burn-in fraction is determined by checking the convergence of the mean for

each chain. Finally, the chains are combined in a big set, that we use to generate the plots.



Chapter 3. Parameter identification for Turing systems 48

All the results shown are generated using the local HPC cluster provided and managed by

the University of Sussex. This HPC cluster consists of 3000 computational units. The speci-

fications of the computational units are AMD64, x86 64 or 64 bit architecture, made up of a

mixture of Intel and AMD nodes varying from 8 cores up to 64 cores per node. Each unit is

associated with 2GB memory space. Most of the simulations in this paper are executed using

8-48 units. The wall-clock computation time for one chain ranged from 1 to 4 days, CPU time

ranged from 10 to 35 days for one chain. It must be noted that there are two levels of paral-

lelisation: first the algorithm is parallelised and uses 8 of the available cores, and then many

instances of the algorithm run at the same time to produce independent chains. We remark

that we produce independent chains in order to test the convergence of the algorithm.

3.3 Conclusion

The Bayesian framework offers a mathematically rigorous approach that allows for the inclu-

sion of prior knowledge about the parameters (or more generally functions). Furthermore,

the well-posedness results for the identification problem are often possible to obtain under

minimal assumptions other than those needed to ensure the well-posedness of the forward

problem.

Although exploring a whole probability distribution can be computationally expensive,

very useful information about the uncertainty or correlation of the parameters can be inferred

from it. The use of a parallel Metropolis-Hastings algorithm makes the computations feasible

using HPC facilities.

We studied the parameter identification problem for reaction-diffusion systems using Tur-

ing patterns as data for both scenarios: infinite and finite dimensional parameter identification

cases. We presented the results that ensure the well-posedness of the parameter identification

problem, and we performed several numerical simulations to find credible regions for the

parameters. In particular, we provided numerical evidence that we can distinguish between

different growth functions based solely on noisy observations of the data at the end time.

3.3.1 Further work

This approach opens many possibilities in the study of inverse problems connected with Tur-

ing patterns. As mentioned in Section 3.2.1, the initial conditions are not known in a real



Chapter 3. Parameter identification for Turing systems 49

application with experimental data, and can be treated as a parameter as well.

We can also study qualitative properties of the patterns, by means of alternative definitions

of the noise and the likelihood. For example, we could take data on the Fourier transform of

the pattern in order to identify parameters for different modes—i.e. spots, stripes, etc.— in the

patterns.

We used synthetic data in this work, but we presented the method keeping in mind the

applicability for problems with experimental data, by trying to use for the parameter identi-

fication only data that could be measured in an experiment, for instance, the final pattern but

not all the evolution of the system. Furthermore, with an adequate PDE solver, we can also ap-

ply this approach to problems posed on manifolds. A manuscript presenting the application

of these methods with experimental data is in preparation.

A comparison between different methods to estimate posterior distributions in the context

of problems involving PDEs and infinite-dimensional parameter would provide more insights

on the performance of the different algorithms. For example, we could compare the method

presented here with the Approximate Bayesian Computation.

The comparison of the approach presented here with the optimal control approach would

allow a better understanding of the trade-off between the information about the parameters

and the computational cost of the method.
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(a)

(b)

(c)

FIGURE 3.3: The u-component of the solution to the Schnakenberg system
Gierer and Meinhardt (1972); Prigogine and Lefever (1968); Schnakenberg
(1979), with added Gaussian noise with mean zero and standard deviation 5%
(b) and 10% (c) of the range of the solution. Solutions of the v-component are
180 out-of-phase with those of u and as such their plots are omitted (Colour

version online).
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FIGURE 3.4: 95% credible region for the posterior distribution for the parame-
ters a and b, using a uniform prior on the region [0.1, 10]2. Note that for ease of

visualisation, scales for a and b are different (Colour version online).
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FIGURE 3.5: Darker region (blue in the online version), the Turing space for
the parameters a and b of the Schnakenberg reaction kinetics Gierer and Mein-
hardt (1972); Prigogine and Lefever (1968); Schnakenberg (1979). Lighter region
(red in the online version), the region plotted in Figure 3.4, depicting where the

credible region is contained (Colour version online).
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FIGURE 3.6: 95% credible region for the posterior distribution for the parame-
ters a and b, using a uniform prior on the Turing space (Colour version online).

FIGURE 3.7: 95% credible region for the posterior distribution for the parame-
ters d and γ, a log-normal prior with mean (5,500) and standard deviation 0.95

(Colour version online).
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FIGURE 3.8: 95% credible region for the posterior distribution for the param-
eters a, b, d and γ. See Case 1 and 3 for a description of the priors. The data
has a noise of 10% of the range of the solution. Each subplot corresponds to the
projection of the credible region onto a coordinate plane for two of the param-
eters, given by the row and the column of the subplot. The exact value of the

parameters is marked with a triangle.(Colour version online).
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Chapter 4

Parameter identification for the

spatiotemporal organisation of

keratin material

4.1 Introduction

Keratins are a family of fibrous structural proteins. The basic keratin monomer assembles in

the form of intermediate filaments, one of the main components of the cytoskeleton. As part

of the cytoskeleton, keratins can exhibit a very dynamic behaviour, with assembly and dis-

assembly occurring in a continuous cycle; yet in other cases such as cornified tissues, keratin

forms a passive, static structure. Antibodies for keratin can be used as a fluorescent marker,

thus allowing the observation of the keratin structures in a microscope.

Keratins are a ubiquitous material. They are present in epithelial cells and in particular in

keratinocytes, the predominant cell type in the epidermis. Keratin is also the main material

in hair, nails, claws, horns and the whale baleen. In birds and reptiles, keratins are present in

beaks, feather and scales (Wang et al (2016a)).

The mechanical properties of keratins are crucial to their main functions. As part of the

cytoskeleton, keratins provide epithelial cells with resistance to stress and physical damage.

In cornified tissue, keratins fill the cells almost completely, changing the mechanical properties

of tissue (Tombolato et al (2010)). For example, calluses are formed by cornification of the out-

ermost layer of the epidermis in response to mechanical stresses such as rubbing or pressure

(Greenberg et al (1991)).
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Malfunctions of the keratin can lead to several diseases. Mutations in the keratins genes

cause Epidermolysis bullosa and other skin blistering diseases. Keratin is present in some

types of cancer, and the analysis of keratin expression is useful in determining the origin of

some metastases (Itakura et al (2001); Omary et al (2009)).

In this work, we are interested in the dynamics of the keratin network in cells. Our aim is

to derive a mathematical model that includes several possible mechanisms of assembly, disas-

sembly and transport of keratin, and to use experimental data to find the model parameters.

The properties of the parameters, extracted from the posterior probability distribution, contain

information about the plausible underlying mechanisms. In contrast to the model derivation

in Portet et al (2015), we give a detailed description of the biological assumptions and derive

the model from first principles. Furthermore, our derivation ensures conservation of the total

amount of keratin, which is not guaranteed in the form of the model presented in Portet et al

(2015).

The keratin network assembles near the membrane of the cell, and then it moves towards

the nucleus. Near the nucleus, the network disassembles and keratin is transported back to

the membrane. The exact mechanisms of transport, assembly and disassembly are not known.

There are several mathematical models for the keratin dynamics in the literature. Sun et al

(2013) present a model for the average concentration of keratin in the cell. The model con-

siders three different states of keratin: assembled, soluble, and precursor. Precursor keratin

is an intermediate state between assembled and soluble, and it consists of short chains of ker-

atin created near the boundary. A previous model (Portet and Arino (2009)) uses yet another

intermediate state, in this case between the precursor and the assembled keratin, to model

short filaments. Similarly, Sun et al (2017) use a model based on delayed ordinary differential

equations to study the disassembly of keratin, by modelling three different states.

Portet et al (2015) presented a model that includes the spatial dynamics of the keratin. The

model is a reaction-diffusion-advection system for two state variables: assembled and soluble

keratin. The same paper includes a study of the parameter fitting to a set of experimental

data, and they use an information theory approach to find the best model among a hierarchy

of combinations of the biologically plausible mechanisms.
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4.2 Experimental data for the structure of the Keratin material

Fluorescence microscopy permits the direct observation of keratin structure in living cells.

Generally speaking, the technique consists of using a cell strain that expresses a modified

version of the protein. The modified protein includes a fluorescent structure. During the

experiment, the cell is excited with light at the right wavelength, and the fluorescent protein

becomes visible under the microscope.

In particular, in order to observe keratin, a fluorescent structure is attached to the wild

type keratins (Moch et al (2013)). Soluble keratin—the disassembled form—is very dilute in

the cytosol, and in consequence it does not emit enough light in order to be observed. In

contrast, the assembled keratin is clearly observable.

We shall use experimental data recorded in the experiments described in Moch et al (2013).

For these experiments, the cells were keratinocytes expressing the fluorescent keratins. The

experiment proceeded as follows: 24 hours after seeding the cells, Moch et al. recorded a

first set of images of the keratin network. 24 hours later—48 hours since the beginning of the

experiment—, they captured a second set of images (see Fig. 4.2). We will refer to these two

data sets as early and late.

The data was pre-processed by the authors of the experimental study, following the meth-

ods described in Herberich et al (2010) and Ma and Plonka (2010). The main step in the pre-

process of the images is the application of a curvelet-based denoising algorithm to reduce the

image noise without blurring the structure of the keratin filaments.

Different cells have different shapes during the experiment. In order to facilitate the com-

parison of the data from different cells, Moch et al. normalised the data from the different

geometries to a circle. The normalised cells are circles, of radius 22.5µm; this is the average

radius of the keratinocytes (Möhl et al (2012); Moch et al (2013)).

We receive the data in the form of two collections of images, 50 images of early cells—24

hours after seeding—, and 84 images of late cells—48 hours after seeding—. The center of

the normalised cells coincides with the center of the image. Each image measures 1024 x 1024

pixels, and the cell radius, in pixels, is 313 pixels. The format of the images is TIFF, without

data loss due to compression.
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FIGURE 4.1: An image of a hepatocellular carcinoma cell expressing fluorescent
keratin. The keratin network is sparser near the cell boundary, where it is as-
sembled; it then moves towards and nucleus and becomes denser in the nuclear
periphery. The image is part of a time-lapse. See the supporting information in

Portet et al (2015) for a video. Image from Portet et al (2015).

4.3 A novel approach to data processing in quantitative biol-

ogy

For the data, the cell shape is a circle. There is no significant polarisation in the cells, and

therefore when we compare the data of two different cells, any possible direction is the same

in terms of the data. As a consequence, any attempt of modelling this data requires a circular

symmetry, and can be simplified to a one dimensional model, restricted to a radius of the cell.

We choose to derive the model directly in one dimension, because it is simpler and it also
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allows direct comparison with previous works on the topic (e.g. Portet et al (2015)).

As a result, our first goal is to reduce the images to two one-dimensional datasets, one for

the cells measured at the early time, and one for the cells measured at a late time. We describe a

novel data processing approach for the early time dataset. The process is completely analogous

for the late time dataset.

We use the standard deviation of the intensity at each point in space to estimate the noise.

The Central Limit Theorem (see for instance Dudley (2018)) guarantees that the mean intensity

at a fixed distance of the center is distributed as a Gaussian, and that the sample average and

standard deviation are good estimators of the mean and variance.

Let us consider that the cell centre is at the origin of coordinates. On the positive x direction

of the radius, there are 313 pixels. This is the best resolution that we can obtain from the image.

We shall bin the pixels in the dataset in 313 different bins, according to the distance to the centre

of the image in pixels, rounded to the nearest integer.

Since the data in a cell of radius measures 313 pixels, we let n ∈ {1, . . . , 313}. Let Lk(i, j)

be the intensity of the pixel with coordinates (i, j) in the k-th image. The average m and the

standard deviation s at a distance n from the center are given by

m = ∑
k

∑
i2+j2=n2

Lk(i, j)/Nn, (4.1)

s = ∑
k

∑
i2+j2=n2

(Lk(i, j)−m)2/(Nn − 1), (4.2)

where Nn is the total number of pixels at distance n from the center of the image.

Since we measure the noise independently at each point in space, we are actually over-

estimating the standard deviation. A more comprehensive approach would be to treat each

cell radius in the data as a realisation of a Gaussian process, measured at the discrete space

points. This approach would require a larger dataset in order to get a good estimate of the

underlying Gaussian process. With the process that we just described, we obtain a dataset for

the average intensity. In order to interpret the data in terms of keratin concentration, we make

the following assumptions.

(A1) The luminosity L(i, j) of a pixel (i, j) is proportional to the concentration of assembled

keratin at the same point.



Chapter 4. Parameter identification for keratin material 60

(A2) 95% of the keratin content of a given cell is in the assembled form.

(A3) The distribution of disassembled keratin at the initial time is proportional to the distri-

bution of assembled keratin.

Previous studies (Moch et al (2013); Portet et al (2015)) on this topic used Assumption (A1).

As long as the intensity does not reach the saturation limit of the camera sensor, this assump-

tion corresponds to the fact that the light emitted by the fluorescent molecules is proportional

to the number of molecules. Feng et al (2013) measured the average keratin content cK of

keratinocytes to be

cK = 520µM.

Let cL be the mean luminosity in the data set. We compute the proportionality constant ρ

between keratin concentration and luminosity as

ρ = cK/cL, (4.3)

and therefore the keratin concentration at a given point with luminosity l is given by ρl.

The second assumption corresponds to the experimental results reported in Chou et al

(1993). Since our goal is to derive a dynamic model of the keratin networks, in order to perform

simulations we need to prescribe initial conditions. As we will see in the sequel, the dependent

variables in the model correspond to the assembled and disassembled keratin concentrations.

Thus we need to prescribe initial conditions for both species, but the experimental data only

provides information about the assembled keratin concentration. Using Assumptions (A2)

and (A3), we can compute the distribution of disassembled keratin at the initial time as

g0 =
0.05
0.95

f0, (4.4)

where f0 is the distribution of assembled keratin, that we estimate from the experimental data.

Therefore, in order to obtain the data corresponding to our mathematical model, we first

use (4.1) to obtain the mean luminosity over a radius, and then by means of (4.3) we convert the

luminosity to keratin concentration. Since the observations correspond only to the assembled

keratin, we finally apply (4.4) to obtain the concentration of the disassembled keratin.
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Summing up, we obtain three datasets, corresponding to the average concentration of as-

sembled and disassembled keratin at the early time, and to the concentration of assembled

keratin at the late time. The concentrations at an early are the initial conditions for our model;

the concentration of assembled keratin at the late time is the data to measure the fitness of the

model.

FIGURE 4.2: Images of the keratin network. The cell shape is normalised to a
circle, according to the methods from Möhl et al (2012). The experimentalist
provided us with two data sets, corresponding to two different times of the ex-
periment: 24 hours after seeding (top row) and 48 hours after seeding (bottom
row). The early-time data set contains 50 images, whilst the late-time data set

84 contains images.

4.4 Data-driven mathematical model

Let L ∈ R+ be the radius of a normalised cell, and let Ω = [−L, L] a domain that represents

a cell diameter. Let T0, T ∈ R+ be the initial and final times of the experiment, respectively.
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FIGURE 4.3: Tidy data set obtained from the images of cells normalised to a
circle. We average the intensity over a radius, for all the images taken at same
time; by means of (4.3) and (4.4) we convert the intensity values to keratin con-
centration. Since the mathematical model provides solutions along a diameter,
for purposes of representation, we symmetrise the data with respect to the ori-

gin.

For our modelling purposes, we consider two forms of keratin: insoluble and soluble. Solu-

ble keratin represents keratin disolved in the cytosol, whilst insoluble keratin represents the

assembled keratin network. Let uI(x, t) and uS(x, t) be the concentrations of insoluble and

soluble keratin, respectively, at x ∈ Ω, t ∈ [0, T]. Similarly, let JI(x, t) and JS(x, t) be the fluxes

insoluble and soluble keratin.

In order to derive the mathematical model for the dynamics of the keratin network, we

make the following assumptions.

(A1) Keratin is locally conserved.

(A2) There is no flux of keratin through the boundaries.

(A3) Keratin is only present in assembled and disassembled forms.
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The assumption on local conservation (A1) implies that we are not modelling the synthe-

sis and degradation of keratin. Synthesis and degradation of keratin occurs at a small rate

compared with the transport dynamics that we are modelling (Jaitovich et al (2008)).

With (A1) we are also not taking into account the keratin transport in the direction per-

pendicular to the view plane. The cell is a three-dimensional entity, and keratin may move

up and down; in the data, keratin transported in the direction perpendicular to the image will

disappear, and vice versa, keratin coming into the view plane will seem to appear. The reason

is that as soon as keratin is displaced in the perpendicular direction, it moves out of focus and

cannot be observed in the current configuration of the microscope.

The local conservation of keratin (A1) allows as to write a conservation law for the concen-

tration of keratin (see for instance Eck et al (2017)). For j ∈ {I, S}, we have

∂tuj(x, t) + div(Jj(x, t)) = Rj(x, t), (4.5)

where Rj is a source term accounting for the creation or destruction of keratin.

Keratin does not flow through the cellular membrane, thus (A2). Let ν be the normal di-

rection at the boundary of the domain Ω. For j ∈ {I, S}, (A2) is equivalent to

Jj · ν = 0 at ∂Ω. (4.6)

Assumption (A3) is a modelling assumption. We could also include intermediate states

between soluble (disassembled) keratin and the insoluble (assembled) network, see Sun et al

(2013, 2017). Since we have experimental data only for the concentration of assembled keratin,

we choose a minimum model.

If we sum (4.5) for soluble and insoluble keratin, integrate over the entire domain, and use

(4.6), we deduce that RI + RS = 0. We can therefore define R = RI , and we have RS = −R.
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Therefore, the concentrations uI(x, t) and uJ(x, t) satisfy the following system of partial

differential equations:




∂tuI(x, t) + div(JI(x, t)) = R(x, uI , uS),

∂tuS(x, t) + div(JS(x, t)) = −R(x, uI , uS),
(x, t) ∈ Ω× [T0, T],

JI · ν = JS · ν = 0, (x, t) ∈ ∂Ω× [T0, T],

uI(x, T0) = uI0(x), uS(x, T0) = uS0(x), (x, t) ∈ Ω× {0},

(4.7)

where uI0 and uS0 represent the initial concentrations of insoluble and soluble keratin.

The soluble keratin diffuses through the cytosol. We do not account for any other transport

mechanism of the soluble pool, therefore we define the flux JS as

JS = −DS∇uS, (4.8)

where DS is the diffusion rate of soluble keratin in the cytosol. Results from independent

experiments provide an estimate for the value of DS, see section 4.5.1 for details.

On the other hand, we assume an active transport of the assembled keratin network. There

is experimental evidence that keratin filaments interact with the molecular motors attached to

the microtubules and actin filaments, producing the movement of the assembled keratin along

the microtubules (Windoffer et al (2011); Windoffer and Leube (1999); Helfand et al (2004);

Robert et al (2014); Yoon et al (2001)). We represent this active transport of the assembled

keratin by a transport velocity v, according to

JI = vuI . (4.9)

We assume a nonlinear reaction term R, in order to account for a limit reaction rate in both

the assembly and the disassembly reactions. We note that this reactions are a simplification of

the actual biological process. There are no conclusive results on the entire reaction pathway for

these reactions, but it is reasonable to assume that this reactions are controlled by other com-

pounds in the cell, available only in a limited amount. Furthermore, our results suggest than a

linear reaction rate would not give a better fit (see section 4.7 for details). In consequence, our



Chapter 4. Parameter identification for keratin material 65

reaction rate is

R(x, uI , uS) =
ka(x)

kS + uS
uS −

kd(x)
kI + uI

uI . (4.10)

The scalar parameters kS and kI control the saturation limit of the reaction. They are linked

to the actual reaction, and therefore we assume that they are constant across the cell. The

reaction rates ka and kd, are respectively the assembly and disassembly reaction rates. We

assume that they depend on the position x in the cell. The results in Moch et al (2013) suggest

already that assembly and disassembly reactions occur at characteristic regions of the cell.

The insoluble keratin flux JI , as defined above, leads to an hyperbolic equation that may

develop fronts. In order to ensure well-posedness of the model, we regularise the equation for

the insoluble keratin with the addition of a small diffusion term,

JI = vuI − DI∇uI . (4.11)

We shall set the diffusion rate DI to be always smaller than the diffusion rate DS, e.g DI =

10−4DS. In this way, we limit the actual error in the model introduced by the regularisation.

Summing up, the model for the evolution of the insoluble and soluble keratin concentration

becomes 


∂tuI(x, t) + div(JI) = R(x, uI , uS),

∂tuS(x, t) + div(JS) = −R(x, uI , uS),
(x, t) ∈ Ω× [0, T],

JI · ν = JS · ν = 0, (x, t) ∈ ∂Ω× [0, T],

uI(x, 0) = uI0(x), uS(x, 0) = uS0(x), (x, t) ∈ Ω× {0}.

(4.12)

In this form, (4.12) is a reaction-diffusion system, a system of parabolic partial differential

equations with smooth, bounded reaction terms. Well-posedness results for similar models

can be found in Smoller (1982). Note that since v is bounded, and the reaction terms are

bounded for positive solutions, we can use a regularised system to prove existence of solu-

tions, and with enough regularity, positivity and uniqueness.
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4.5 Inverse problem

With the data at hand, and the mathematical model, our goal is to apply the inverse problem

framework from Chapter 2 to find the probability distributions for the parameters given the

data. The model includes both scalar and space-dependent parameters.

The parameters of the model are the diffusion coefficient DS, the reaction rates ka and kd,

the limiting constants kS and kI , and the transport velocity v. The following proposition shows

the well-posedness of the inverse problem, under general assumptions on the parameters.

Proposition 2 (Well-posedness of the parameter identification problem). Let G be the observa-

tion operator associated with the reaction-diffusion system (4.12). Assume that kI , kS, DS > 0, and

ka, kd and v are smooth, bounded and positive. Then, the conditions in Theorem 2 are satisfied, and

thus the parameter identification problem is well-posed.

We omit the details of the proof. The general theory of reaction-diffusion systems ensures

well-posedness of the problem, including Lipschitz continuity with respect to the parameters.

Solutions are bounded and controlled by kS and kI , which in turn implies the bound on the

growth of the solution with respect to the parameters. See Hundsdorfer and Verwer (2013)

and the references therein for the general results on the theory of reaction-diffusion equations

with transport terms.

4.5.1 Prior distribution of the parameters

In order to proceed with the parameter identification, we shall define the prior distributions

for the parameters, i.e. the probability distributions a priori, regardless the data.

Diffusion rates

The diffusion rate for the soluble keratin, DS, is a scalar parameter. Kölsch et al (2010) mea-

sured DS experimentally, obtaining a value of 0.88µm2s−1, with a standard deviation of 0.08µm2s−1.

Therefore, we use a Gaussian prior for DS, with mean 0.88µm2s−1, and standard deviation

0.08µm2s−1.

The diffusion rate for the insoluble keratin does not have a direct physical interpretation.

We include a diffusion term in the insoluble keratin equation for technical reasons, namely to

regularise the problem and simplify the analysis of the forward problem. In order to limit the
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effect of this regularisation, we take DI small. More precisely, we set

DI = 10−4DS.

We remark that this is the same approach of the study by Portet et al (2015), although the

justification is different.

Limit reaction disassembly and assembly rates

The scalar parameters kI and kS limit the disassembly and assembly reaction rates. There are

no experimental results on their values. Therefore, we use a conservative prior given by a

uniform distribution in the interval [250, 1500](µM).

For the rest of parameters, we follow the approach presented in Chapter 2 to define the

prior distributions of infinite-dimensional parameters. Since all the parameters ka, kd and v

must be positive, we will define the priors for the logarithm of the parameter, and then take

the exponential of the samples to find the parameter values. Recall that the general form of

this priors is (see Section 2.5):

exp

(
m0(x) +

N

∑
i=1

ξiwi fi(x)

)
.

The disassembly rate

The parameter kd controls the disassembly rate of keratin. It is not directly measurable in

these experiments, and therefore we use only mild assumptions for its prior. We assume that

kd : [−L, L] → R+ is smooth, and by construction of the model, it must be symmetric with

respect to the origin.

The current biological models (Moch et al, 2013) assume that the disassembly rate peaks

near the nucleus, and decays towards the boundary. We incorporate this hypothesis by as-

suming that kd has only one local maximum in [0, L]. We also assume that at the origin the

disassembly rate vanishes, because of the presence of the nucleus. Note that according to the

biologists, we cannot assume in general that kd vanishes towards the boundary. For compari-

son, all these assumptions are included in the reaction rates modelled in Portet et al (2015).
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In order to incorporate the assumptions mentioned above, we define the prior for kd as an

expansion over a basis of sine functions, with exponentially decaying weights. The exponen-

tial decay accomplishes two purposes: first, it ensures that the first mode (i.e. lowest frequency

base function) dominates, and therefore kd will have only one maximum in [0, L]; secondly, it

guarantees convergence if the expansion is refined. The numerical values of the mean and the

weights are adjusted to cover a reasonable range of reaction rates, and in particular, to include

the family of reaction rates from Portet et al (2015). The values of the coefficients of the prior

for kd, according to (4.5.1) are

ξi ∼ U [−1, 1],

m0(x) = −2, ∀x ∈ [−L, L],

wi = 2e−i,

fi(x) = sin
(
(i + 1)π(|x| − 3)

25.5

)
.

(4.13)

We include a shift in the base functions to allow for the possibility of non-vanishing dis-

assembly rates at the boundary of the domain. Figure 4.5 depicts one thousand samples from

the prior for kd. Note that the shift in the base functions produces an artifact at the origin.

This artifact is not accurate biologically, but nevertheless the prior includes the biologically

correct reaction rates that vanish at the origin. We will see later that this artifact is not present

in the posterior distribution, and therefore it is not necessary to add complexity to the prior to

remove it.

The assembly rate

The modelling of the assembly reaction rate ka follows the same steps as the modelling of the

prior for the disassembly reaction rate kd. In analogy to the assumptions for the disassembly

rate, we assume that ka : [−L, L] → R+ is a smooth function, symmetric with respect to the

origin.

The biological models imply that ka has only one local maximum, near the boundary, and

decays to zero. We assume that it vanishes at the origin, but as before, we cannot assume that

it vanishes at the boundary. The prior for ka is defined by the following values:
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ξi ∼ U [−1, 1],

m0(x) = −2, ∀x ∈ [−L, L],

wi = 5e−i,

fi(x) = sin
(
(i + 1)π(|x| − 3)

25.5

)
.

(4.14)

As for the disassembly rate kd, the shift of the base functions produces an artifact at the

origin, but we will see that it is not present in the posterior distribution.

Modelling transport speed

The transport velocity v always points towards the nucleus, i.e. towards the origin in our

model. Let s : [−L, L] → [−1, 1] be a smooth approximation of the sign function, and let

v : [−L, L]→ R+ be a smooth function, symmetric with respect to the origin. We define

v = s(x)v(x).

Therefore, to define a prior for v we shall define a prior, according to (4.5.1), for v. The as-

sumptions for the reaction rates are also valid here: v can have at most one peak at each side

of the origin, and it must vanish at the origin due to the presence of the nucleus. The values

for the prior of v are the following:

ξi ∼ U [−1, 1],

m0(x) = −10, ∀x ∈ [−L, L],

wi = 4e−i,

fi(x) = sin

1
2
(i + 1)π

3
√
|x|

27.5

27.5

 .

(4.15)

In the case of the speed, we use a different set of base functions to avoid the artifact at the

origin. Although the argument about the artifact not showing in the posterior would still be

valid in this case, however the artifact at the origin can create numerical instabilities in the

solver for the system of PDEs.
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FIGURE 4.4: Standard deviation of the mean keratin concentration, computed
from the raw data sets. Every point in the tidy data corresponds to the average
of at least 50 data points (84 for the late-time data), and it is therefore reasonable
to approximate the noise in the measurements by a Gaussian distribution with

covariance matrix given by the sample standard deviation.

4.6 Numerical results

We perform the parameter identification for (4.12) using the algorithms described in Chapter

2 and the priors defined in Section 4.5.1. We run the algorithm using the University of Sussex

HPC cluster, using a maximum of 80 cores. The wall clock computation time is about 70 hours.

The algorithm converges in mean with a tolerance of 10−8. We solve the system of PDEs by

means of the finite element method described in Skeel and Berzins (1990).

A 95% credible region for the posterior is represented in Figure 4.6. In order to depict

the credible region, we sample 1000 parameter values from the posterior distribution for the

parameters, and we colour the region that contains the graph of the corresponding solutions.

Near the boundaries of the domain, the credible region is narrower. Towards the perinu-

clear region, the credible region has more variance, to a maximum of a range of about 100µM.

Figure 4.6 also presents the experimental data obtained in Section 4.2. The credible region

contains almost all the experimental data points, suggesting that the model is able to explain
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the data within the error range given by our knowledge of the experimental noise and the

parameters.

The red line in Figure 4.6 corresponds to the solution of (4.12) using the mean value of

the posterior distribution as the parameter. The mean solution reproduces the data qualita-

tively well, specially near the boundaries and in the nuclear region. It fails to reproduce the

features of the data at position x = ±10, where the experimental results show a increase in

concentration.

Figure 4.7 depicts the posterior probability distribution for the reaction rates ka and kd, and

for the velocity v. The mean value, represented by the red line, shows two peaks, at distance

19.27µm from the center of the cell. The assembly rate decays rapidly to zero; it is smaller than

0.5µM in the region x ∈ [−9.70, 9.70]. Note that the prior for the assembly rate included the

possibility for a smaller zero-assembly region, compare with the samples in Figure 4.5. Note

also that the rate assembly is not zero at the cell boundary.

The orange area in Figure 4.7 (top panel) represents the 95% credible region for the poste-

rior distribution of the assembly rate ka. The credible region is very narrow around the mean

in the inner region of the cell. In the region x ∈ [−15, 15] the maximum range of the credible

region is 0.34µM. The credible region allows for more variability in the outer region of the cell,

with a maximum range of 2.79µM at x = ±20.49, near the peaks, and a range of 1.81µM at the

boundary.

Although the variability in the maximum assembly rate is high, the location of the peaks

is constrained. The maximum assembly rates for the reaction rates within the 95% credible

region are located in the intervals [−21,−19] and [19, 21].

The second panel in Figure 4.7 corresponds to the posterior distribution of the disassembly

rate. The disassembly rate vanishes in the nuclear region, and it is small near the boundary

of the cell. The mean value of the posterior distribution for the disassembly rates peaks at

x = ±13.44.

The credible region for the disassembly rate shows a low absolute variability in the distri-

bution, although the relative variability is significant. The credible region is narrow were the

disassembly rates is small. Near the peaks of the reaction rate, the credible region has a range

of 14.59µM. The location of the maximum disassembly rate varies; within the 95% credible

region, it lies in the intervals [−15,−12] and [12, 15].

In contrast to the assembly rate, the location of the maximum disassembly rate is closer to
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the nucleus, and at the boundary, the assembly rate does not vanish. Note also the different

scales of the top and middle panels in Figure 4.7. The disassembly rate is low in comparison

to the assembly rate.

The last panel in Figure 4.7 shows the posterior distribution for the speed v. The posterior

mean value, represented with a red solid line, has peaks at x = ±17.18, and it decreases to

zero towards the nucleus. Although the prior includes the possibility for very sharp decays,

and almost constant values away from the nucleus, we see in the posterior that the speed has

two clear peaks.

The credible region shows variability near the peaks and towards the boundary, and it is

narrow in the nuclear region. The maximum value for the speed ranges from 0.0019µms−1

to 0.0026µms−1 within the 95% credible region. At the boundary, the speed is in the interval

[0.0013, 0.0018](µms−1).

4.7 Conclusion and interpretation of the results

We derive the mathematical model from first principles based on experimental observations,

accounting for the biological hypotheses provided by the biological experts. Our derivation

ensures global conservation of keratin, which was a short-coming of the previous models. The

required assumptions to obtain the model are detailed explicitly, and therefore allow for a clear

understanding of what to take into account.

We justify the main limitation of the model—the restriction to only one dimension—in two

ways. First, the lack of spatial orientation of the data implies that spatial heterogeneity could

be either intrinsic, reflecting some characteristic spatial features of the cell, or a random event,

i.e. it could happen in any direction. With the information at hand, we cannot distinguish

between the two scenarios. If we assume the second case—random events—, then we could

average the data as it is, and derive a two dimensional model on the disc, using the assump-

tions similar to the assumptions in Section 4.4. But there would be the possibility that we

will model as noise features that actually reflect an intrinsic, deterministic characteristic of the

cells, and the model will not allow us to distinguish between these scenarios. Furthermore,

the amount of data is reduced in this case. With the approach that we present here, for each

location in the one-dimensional domain, we get data from each radius, in each image. In par-

ticular, we only get as many data points as images in the data set for the center of the cell
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(radius 0), but we get as much as 42588 data points for the locations near the cell membrane.

More precisely, we get 25350 data points near the membrane for the early time data set, and

42588 for the late time data set.

Furthermore, the consensus from the experimentalists, supported by other studies, is that

the keratin dynamics is predominantly in the radial direction. This justifies not taking into

account mechanisms for displacement in the tangential direction. For the assembled keratin

network, this is also supported by the observation that the keratin filaments move along other

cell structures aligned with the radial direction. Diffusion is not naturally limited in that direc-

tion, but for simplicity we account only for diffusion in the radial direction. Since diffusion is

only significant for disassembled keratin, and given that the concentrations are low, we would

not expect significant changes in the results if we incorporate tangential diffusion. The effect

of tangential diffusion will be higher near the origin, where in any case the accuracy of the

model is lower due to the presence of the nucleus. Only in a full three dimensional model we

could model the nucleus and the movement of keratin around it.

The processing of the experimental data requires only a few explicit assumptions. We

extract information not only about the mean values, but also about the noise distribution.

Therefore, our estimates for the noise are consistent with the experiments, and in turn we get

consistent credible regions for the posterior distributions. This is one of the main features

of the Bayesian framework. Since we treat the parameters not as deterministic values but

as probability distribution, the level of knowledge about them is incorporated in the mathe-

matical setting, and in consequence we can give an interpretation of the posterior probability

distributions in terms of level of knowledge about the results. Note that the variability that

comes from the priors is expected to vanish provided we have enough data, according to the

Bernstein-von Mises theorem (see for instance Lu et al (2017)).

The results on Figure 4.6 show a great degree of accuracy. The only significant feature of

the data that is not present in the solution are the local maxima at x = ±10. In contrast, the

model reproduces accurately the concentration of keratin in the nuclear region. We know that

the model is in fact less accurate near the nucleus, but we did not incorporate any noise from

the model inaccuracy. Therefore, a plausible explanation for the discrepancies at x = ±10 is

an over fitting of the model in the nuclear region.

Although the representation of the posterior distribution via the image of the solution op-

erator is symmetric with respect to the mean, the data is located at the top half of the credible
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region (see Figure 4.6). This suggests that the model is systematically underestimating the

concentration of keratin.

The posterior distributions for the reaction rates confirm the hypothesis that assembly takes

place near the cell membrane, and disassembly takes place near the nucleus. This can be

seen in the relative position of the peaks of the assembly and disassembly reaction rates. As

expected, the assembly reaction peak rate is not at the boundary, because the vertical of the

cell is smaller there, and therefore there is less physical space for the keratins to assemble.

Note that our results are in agreement with the results in Moch et al (2013) with a com-

pletely different approach; in the cited paper, Moch et al. use an image processing, and a time

sequence of images, to approximate the assembly and disassembly rates as the rates of change

in luminosity. Similarly, they estimate the speed of the keratin network by tracking features

of the network in the images. For comparison, see Figure 4 in Moch et al (2013) or Figure 2 in

Portet et al (2015).

Portet et al (2015) present a similar model for the dynamics of the keratin network, using a

different approach to model the parameters. In their paper, they define a hierarchy of models,

accounting for different mechanisms: linear versus nonlinear reactions, localised versus non

localised reaction rates, constant versus non constant speed. In total, they fit 36 models to

the experimental data, and they use an information theory approach (the Akaike Information

Criteria) to find the most suitable model, and the most relevant mechanisms in the dynamics.

Our approach, with parameters defined in a functional space, covers all the models in the

hierarchy defined in Portet et al (2015), with the only exception of the linear reaction rates.

We note that if linear reaction rates were a better fit, we would expect the reaction saturation

parameters kI and kS to become larger. We do not observe this behaviour, and we are therefore

confident that the Michaelis-Menten reaction type is more accurate than a linear reaction term.

For comparison, we performed the model fitting for the best model in Portet et al (2015)

using our Bayesian techniques. The results, depicted in Figure 4.8 are similar to the results in

Portet et al (2015). Not that although the fitted parameters minimise the distance to the data,

the solution exhibits oscillations that are not present in the experimental results.

The data set in Portet et al (2015) comes from the same experiments as the data set that

we use here. The data processing method is different, in particular the data is reduced to one

dimension by taking the intensities on a diameter of the cell, instead of a radius. This leads to a

non-symmetric data set. Our model, as well as the models in Portet et al (2015) use parameters
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that are symmetric with respect to the origin, and therefore solutions will tend to a symmetric

distribution, even more so when the initial data is symmetric or nearly symmetric. Therefore,

the model cannot reproduce the asymmetric features of the data. This can be seen in Figure 4.8,

as well as in Portet et al (2015). The solution corresponding to the posterior mean parameters

fits the left hand side of the data better than the right hand side.

Note also the credible region is much narrower than in our solutions. The main reason is

that the experimental noise is not modelled in Portet et al (2015). More precisely, they objec-

tive functional for minimisation is the squared (Euclidean) distance between the data and the

solution, i.e. Portet et al (2015) use a least-squares method. If we interpret the least-squares

objective functional in the Bayesian framework, it corresponds to assuming a Gaussian distri-

bution for the noise, with mean zero and unit covariance. This is a much lower covariance than

the values we extracted from the experimental data, suggesting that the range of the credible

region in Figure 4.8 is underestimated.

In the past, researchers in biology obtained results on the dynamics of keratin assembly

in disassembly using different techniques. One approach was to measure the dynamics by

direct observation of the fluorescent keratin. For example, a technique known as fluorescence

recovery after photobleaching (FRAP), in which a region of the cell is photobleached—the

fluorescence of keratin is eliminated, and it is then possible to observe the keratin dynamics by

observing how the fluorescent keratin from other parts of the cell invades the photobleached

region (see for example Kölsch et al (2010); Windoffer et al (2004)).

A second approach, presented in Moch et al (2013), relies on image analysis tools to extract

information from time-lapse fluorescence recordings. This approach overcomes some of the

limitations of the FRAP-type approaches. In particular, the image analysis approach provides

some quantification of the assembly and disassembly regions.

The results presented here offer a new approach to the study of the assembly and disas-

sembly dynamics of keratin. The mathematical model is derived using precise assumptions,

based on the current knowledge in biology. Then, by fitting the model to the experimental

data, we obtain information about the parameters, and in particular, information about the as-

sembly and disassembly regions is extracted from the posterior distributions for the assembly

and disassembly rates.

There are some limitations in the mathematical model presented in this chapter. Since

we only have access to data at the initial and final times, but not at the intermediate times,
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we have not attempted to model the transient dynamics of keratin. At this point, it is not

clear if it would be necessary to incorporate more features in the model, such as the vertical

displacement of the keratin network—i.e. assembled keratin moving out of focus—in order to

fit the transient dynamics; it is possible that on average, the vertical displacement of keratin

does not have any effect.
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FIGURE 4.5: One thousand samples from the prior for the assembly rate ka
and the speed v. Note that the prior for ka produces samples with an artifact
at the origin due to the shift in space of the prior base functions. The artifact
is not consistent with the biology. Although it is possible to eliminate the it
by refining the base functions, we can keep as long as it does not show in the
posterior distributions, i.e. as long as it does not provide a better fitting than

the samples consistent with the biology.
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FIGURE 4.6: Solution to the model with the parameters set to the posterior
mean. The credible region corresponds to the region covered by the solutions
to the model within the 95% credible region of the posterior distribution. We
include the experimental data for comparison. The solution to the mathemati-
cal model is close to the data both in quantitative and qualitative terms, and the

data is almost completely included in the credible region.
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FIGURE 4.7: Mean and 95% credible region for the parameters. The parameters
cannot be measured experimentally, but they agree with the estimates for the
parameters obtained by means of image processing techniques, as reported in

Portet et al (2015).
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FIGURE 4.8: Using the methods presented here, we reproduce the model fitting
from Portet et al (2015). ”Model 21” is the model that gets the best score accord-
ing to the Akaike Information Criterion. Note that the structure of the model
is the same, but the priors for the parameters are different. The experimental
data set is the same, but the data processing is different. The fitting is not able

to reproduce the qualitative features of the data.
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Chapter 5

Bayesian analysis of traction force

microscopy data

5.1 Introduction

Traction force microscopy is a technique for measuring the traction forces generated by a mov-

ing cell on a substrate or surface. In its more basic setting, the cells are placed on an elastic sub-

strate, that contains fluorescent beads. When the cell moves, it applies a force to the substrate,

producing a displacement that can be measured by observing the positions of the fluorescent

beads. See Wang and Lin (2007) for a general overview of the technique.

The idea of observing the mechanical effects of cell migration on the substrate to study cell

locomotion goes back to Harris et al (1980), where cells are cultured on thin silicone sheets.

Cell migration produces wrinkles in the silicone, that can be observed by measuring the dis-

tortion when light crosses the substrate. However, this experimental setting is hard to model

mathematically, due to the inherent randomness of the wrinkling.

In contrast, Dembo and Wang (1999) and Munevar et al (2001) introduced the idea of em-

bedding fluorescent microspheres in the substrate, and measuring their displacement. This ap-

proach is much more suitable to data analysis and mathematical modelling. Since the problem

can be reduced to linear elasticity, and the mechanical properties of the substrate are known,

one can use the Green’s function method to explicitly solve the problem (see for instance Gould

(1994)).

Traction force microscopy has many applications. In cancer biology, the experimental data
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suggests that there is a strong correlation between the force that the cells generates and its in-

vasiveness: cells that generate large forces are more invasive (Koch et al (2012); Peschetola et al

(2013)). These results suggest that traction forces can be used as a proxy to estimate the inva-

siveness of a cancer cell line. Other applications include the optimal design of scaffolds for tis-

sue engineering (Pasqualini et al (2018)) and regeneration of various tissues (López-Fagundo

et al (2014); George et al (2014); Vedula et al (2014)). See Style et al (2014) for application in

other fields, such as physics and chemistry.

Although in this work we restrict ourselves to the two-dimensional problem, the experi-

mental techniques can also provide three-dimensional data (see for instance Koch et al (2012)).

Note that our approach can be readily applied in this setting as well as in the case of anisotropic

substrates, where the analytical methods have a limited applicability.

The inverse problem of computing the traction force for the displacement data is a linear

inverse problem that can be studied using a range of techniques, both analytically and nu-

merically. Schwarz and Soiné (2015) review the computational techniques for this problem.

See for instance Vitale et al (2012) for an analysis of the inverse problem accounting for the

pointwise observations. In the applications, most biologists rely in the modules included in

popular image analysis software such as ImageJ (Abràmoff et al (2004)). These modules are

typically based on the original ideas of Dembo and Wang (1999), that use the explicit solutions

of the problem to identify the traction force. Kozawa et al (2012) use a Bayesian approach to

introduce priors for the cell shape and improve the accuracy of the estimated traction force.

Their results differ from our approach in the available data: we do not estimate the cell shape

because we have information available on the focal adhesions, and therefore we know—i.e. we

have data about—how the forces are distributed. Huang et al (2018) apply a Bayesian method

to avoid the image filters and regularisation that are usually required when solving the prob-

lem using analytical techniques. In this thesis, we use already processed data provided by

the experimentalist. Huang et al (2018) deals with the problem of how to do this process in

a robust manner, and in particular they use Bayesian techniques to remove background noise

from the images.

When the cell migrates, it attaches itself to the substrate at discrete locations, the focal ad-

hesions. The location of the focal adhesions can be observed by means of immunofluorescent

coloration of vinculin, a protein associated with attachment sites (Humphries et al (2007)).
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Using our methodology, we compute not only the traction force but we also provide esti-

mates on the uncertainty of the result. In the following we will illustrate this by performing

the force identification and uncertainty quantification with experimental data that includes

the location of the focal adhesions.

5.2 Mathematical model for the recovery of traction forces

The biological system—a cell applying a force on an elastic substrate—, corresponds to a well

studied problem in continuum mechanics: linear elasticity (see for instance Gould (1994)). We

assume that the substrate is isotropic, and enough regularity on the boundary to have smooth

solutions. Both assumptions are based on the actual experimental setting. In particular, the

substrate is large in comparison to the area of influence of a cell, and the problem of regularity

of the boundary has no actual effects on the displacement produced by the cell traction.

Let Ω ⊂ R2 be the domain, and let u(x) represent the displacement of the point x ∈ Ω

under a force f (x). Then, u satisfies

div(C : ∇u) = f . (5.1)

The system is closed by prescribing boundary conditions. Since we consider measurements

of isolated cells, we assume homogeneous Dirichlet boundary conditions on the domain, rep-

resenting a fixed boundary. The product C : ∇u represents the stress tensor, and it can be

described in terms of the Lamé parameters λ and µ such that

C : ∇u = 2µ∇u + λtr(∇u)I.

The goal of parameter identification in traction force microscopy is to compute the force

f given the experimental measurement of the displacement u. Using the notation introduced

in Chapter 2, the observation operator G maps a force f to the discrete measurements of the

displacement, that corresponds to the values of the solution u to Equation (5.1) evaluated at

the locations of the fluorescent beads.

In this setting, G is linear with respect to the parameter f , and this suffices to conclude the

well-posedness of the inverse problem, provided that f lives in a sufficiently smooth space.
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Furthermore, in this case, if the prior distribution for the force f and the noise distribution

are Gaussian, then the posterior distribution is also Gaussian (see for instance Stuart (2010)).

5.3 Data, noise and priors

During the experiment, the cells are placed on an elastic substrate with embedded fluorescent

beads. The positions of the beads at rest are measured at the end of the experiment. The

position of the beads is measured also when a cell is applying a force. By computing the

difference between these two measurements, one obtains the displacement of each bead due

to the cell force. Note that a drift correction is applied. The drift is computed in a bead in the

boundary of the domain, where we assume that the cell force does not cause displacement.

In the same experiment, the position of the focal adhesions is measured, using cells that ex-

hibit fluorescence at the focal adhesions. Since the focal adhesions are the points of attachment

of the cell to the substrate, we assume that the force is applied only at focal adhesions.

The data is represented in Figure 5.1. The displacement field is represented with black ar-

rows, scaled for convenience of visualisation. The red dots correspond to the focal adhesions.

FIGURE 5.1: Measured displacement field and positions of the focal adhesions.
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The data is captured in one picture, and hence the experimental error is a combination

of resolution limit and optical error. We will not attempt to model its precise distribution, but

rather assume a Gaussian noise with a conservative estimate of the covariance. More precisely,

we assume that the standard deviation of the measurement of the position of the fluorescent

beads is 2µm.

We do not assume any restriction on the force direction in the prior. The prior consists of

a collection of independent Gaussian variables centered at the focal adhesions. At each focal

adhesion, the standard deviation of the force is 4 · 10−9N/µm2. This corresponds to the force

to be applied at only one point to produce the largest measured displacement.

The typical size of a focal adhesion is of the order of 1µm. Therefore, we smooth the force

applied at each focal adhesion over a circle of radius 5µm, by multiplying by a smooth cut-off

function defined as

φ(x) =


exp

(
−1

1−|x−x0 |2/52

)
e−1 , if |x− x0| < 5,

0 otherwise,

(5.2)

where x0 is the location of the corresponding focal adhesion. Note that this is a smooth molli-

fier with support in the ball of radius 5 around the focal adhesion.

5.4 Numerical methods

The partial differential equation (5.1) is solved numerically using a Finite Element Method (see

for instance Ern and Guermond (2013)) using the standard Lagrange elements. The equation

is discretized over a grid of 6400 elements (80× 80), refined around focal adhesions to a total

of 13, 520 elements. The solver is implemented in Python using Fenics (Dupont et al (2003)).

The posterior probability distribution is approximated using a Markov-chain Monte Carlo

method. A first exploration is done using an independence sampler (i.e. proposals are in-

dependent samples from the prior). A pre-conditioned Crank-Nicholson method (Cotter et al

(2013)) is used to provide a detailed approximation of the posterior. A total of 500, 000 states of

the Markov-Chain are computed, and then they are thinned to 25, 000 independent samples.

All the numericals experiments are performed on a desktop computed with the specifications

Intel(R) i7-4790 CPU @ 3.60GHz, 8 cores, 64 bits, 16G RAM.
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5.5 Computational results

Figure 5.2 represents the displacements corresponding to the posterior mean for the force.

The posterior mean force is represented in Figure 5.3. Note that despite not imposing any

FIGURE 5.2: Displacement field corresponding to the posterior mean force.

restriction on the direction of the force, the forces tend to point to the central region of the

cell. The uncertainty for the force is low, and cannot be appreciated at the scale of the cell. In

FIGURE 5.3: Force field corresponding to the posterior mean force.

Figure 5.4 we represent the prior and posterior credible regions corresponding to 3 standard
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deviations for the focal adhesion located at (41.297µm, 58.043µm). As mentioned above, the

posterior credible region is not centered at the focal adhesion, but rather displaced towards

the central region of the cell.

FIGURE 5.4: Prior (black solid line) and posterior (blue) credible regions for the
focal adhesion at (41.297µm, 58.043µm).

5.6 Discussion

A common application of Bayesian methods in traction force motility is to use the priors to

restrict the direction of the cell force. This idea is based on empirical observations and me-

chanical considerations: since the cell produces traction by contraction of polymer fibers, it

cannot easily produce expanding forces.

Here we proceeded without imposing any distinguished direction in the priors, and we

can in turn conclude that according to the data, the forces point towards the central region of

the cell. We can also observe clearly the different force intensities at different focal adhesions.

The credible region for the posterior distribution shows how robust this methodology is.

Even with our very conservative estimate of the error, the posterior distribution is very con-

centrated, both in the direction and in the magnitude. An interesting question for a future
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project is how this uncertainty would change with a more accurate derivation of the noise

distribution.

The uncertainty will also be reduced if a more informed prior is available. In Figure 5.4 we

can see that the uncertainty reduces about ten times from the prior to the posterior. The low

uncertainty suggests that this techniques can be applied to infer characteristics of individual

cells, without the need of averaging cell population data.

Note that as discussed Chapter 2, we do not need to impose any technical condition to

solve the problem. In particular, we have not applied any regularisation to the data. The

only manipulation of the data previous to the parameter identification is the drift correction.

Although the drift correction is quite precise, we could incorporate the drift as a parameter in

the model, with a precise prior defined by the experimental measurement.

From a methodology point of view, for this problem we use a numerical solver imple-

mented in Fenics, which is completely independent of our parameter identification approach.

This illustrates the flexibility of our implementation. Note also that in this case, we do not

use an HPC environment for the computations. A regular desktop PC with 8 cores is enough

to obtain this results in a few hours. Although this is a significantly longer time in compar-

ison to solving the inverse problem using analytical techniques, we apply more transparent

methods—in particular, we do not use any regularisation—, and we obtain the uncertainty

quantification results.

5.6.1 Future work

The model that we use here is simple, but the general methodology remains the same if

the model is changed to a three-dimensional domain. Another extension will be to include

anisotropic materials, very common in the applications of TFM to tissue engineering.

Even with our simple model, there are a number of questions that we could study if there

was enough experimental data. First, we could not use the information about the focal ad-

hesions, and instead used a functional prior for a force distributed inside the contour of the

cell. The cell contour itself could be modelled as a parameter, following the ideas in Kozawa

et al (2012). There are two interesting questions in this case: to what extent do we observe a

predominant central directionality of the traction forces, and how well can we locate the focal

adhesions using the inverse problem approach and validating the results against the experi-

mental data. The first question relates to the importance of using priors restricting the force,
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whilst the second question may offer an alternative way to observe the location of the focal

adhesions without the need of immunofluorescence experiments.
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Chapter 6

Conclusion

In this thesis, we proposed a methodology to apply a Bayesian framework to parameter iden-

tification problems in quantitative biology. The methodology is robust and based on existing

theoretical results, and it is designed to be as transparent as possible to the biologist. Although

both the Bayesian framework that we use, and the parallel MCMC algorithm are known re-

sults, their combination and implementation is a novel contribution from this thesis. The

examples in Chapters 3, 4 and 5 illustrate the novelty and power of our approach.

In some situations, there might be concerns about the efficiency of our methods. As dis-

cussed in 1, we pay a price in terms of efficiency due to our interest in keeping the parameter

identification algorithms independent of the solver. This places the main limit to the applica-

bility of our approach, but the parallel scalability of our algorithms ensures that we can study

a wide range of problems. Again, the examples in Chapters 3, 4 and 5 show that our methods

can be applied in a medium-size HPC facility, or even with a desktop PC in the case of 5.

Another common criticism comes from the statistics field. This has more to do with the fact

that the term Bayesian is an umbrella term for many different techniques, and in turn different

people have different interpretations of the Bayesian framework. In statistics, Bayesian tech-

niques are well established and have been applied to numerous problems, including PDEs.

Our approach is slightly different in philosopy—the interpretation of the distributions, and

the idea relies on using expert information for the definitions, instead of technical decisions—,

and also in the applications to PDEs, it is based on rigorous theoretical results that are usually

not available in statistics.

The results in this work help to close the gap between experimental results and mathemat-

ical models. Even when good mathematical models are in place, many times they remain ap-

plicable but not applied due to the difficulties in incorporating the experimental knowledge and
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data in the modelling. A methodology that is both satisfactory for the mathematicians—i.e. it

is based on rigorous results—and for the biologist is essential to bridge this gap. Furthermore,

as we discussed in Chapter 1, a feedback cycle between the mathematician and experimental-

ist provides improvements in both fields, with better, more accurate mathematical models and

also deeper knowledge for the biologist.

The results in Chapter 3 are already published (Campillo-Funollet et al, 2018), together

with a general description of our approach, whilst manuscripts for the results in Chapters 4

and 5 are in preparation.

6.1 Other applications in quantitative biology

We are already applying the techniques presented here to other problems. For example, with

V. Juma, S. Portet, L. Dehmelt and A. Madzvamuse, we are using our methodology to an

ODE model for Rho GTPases. The inverse problem in this case includes a constraint on the

eigenvalues of the linearised system. Our methods are flexible enough to incorporate this

constraint.

We are also currently applying this approach to new models for genome replication. In

this case, the parameters are in general functions of the position along the DNA molecule. The

mathematical model is given by a one-dimensional, hyperbolic PDE.

Also in the field of genomics, we plan to apply our methods to study the replication of the

kinetoplast DNA (kDNA) in trypanosomes. In this case, we are still in the early stages of the

model development, but we expect to also have space-dependent parameters in connection to

the topology of the kDNA.

6.2 Future work

In future works, we plan to release our software as an open source application. In view of

the applications that we presented here, we believe that this software will be well received by

the experimentalists in various fields. There are several tasks to complete before being able to

publish the software for general use. First, the documentation is limited now, and it needs to be

improved to enhance the final user experience. Some parts of the code, specially the sampling

routines within the parallel Metropolis-Hastings methods can be reimplemented for efficiency.



Chapter 6. Conclusion 92

The parallel structure of the code can also be improved to allow runtime management of the

available cores. The idea here will be to allow the code to assign more processors to an instance

of the solver when necessary. This of course requires solvers that are more efficient when

several cores are available.

Another feature that can be included in the software is model selection methods. The

information provided by the posterior distribution can be used in several model selection ap-

proaches and these could be easily implemented to allow the comparison of different math-

ematical models. Similarly, we can use our approach to build robust classifiers, that instead

of using only one estimated value for a sample, use its posterior distribution, thus allowing a

more accurate description of the classification.

In Chapters 3, 4 and 5 we already mentioned some extensions of the work. Inverse prob-

lems related to the Turing patterns have plenty of applications. There are experimental re-

sults that pinpoint the exact Turing mechanism underlying pattern formation, see for instance

Glover et al (2017), or for a more controlled setting, the chemical reactions in Castets et al

(1990). The application of our methodologies to experimental data for this model paradigm

would provide nice insights on the actual parameter regimes in the systems.

Our results on the keratin dynamics suggest a promising approach to use mathematical

models as a proxy to measure parameters of a biological system. A next step to ensure the

robustness of the approach is to improve the analytical results on the model, in particular to

ensure positivity of solutions. A more challenging question is the extension of the models

to use two-dimensional data. Ideally, we would like to be able to fit a model without any

normalisation of the cell shape, and without any averaging.

In traction force microscopy, the information on uncertainty quantification, together with

the fact that we do not regularise the data, can be useful to make robust predictions on the cell

state and behaviour based on the tractions. For example, the classification of cells for cancer

invasiveness based on its tractions can be improved by means of the credible regions of the

posterior.

6.2.1 Applications in other fields

We presented a methodology with the goal of applying it to problems in quantitative biology,

but the methods that we presented are general and can be applied to many other fields.
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For instance, we successfully applied the approach that we presented in this thesis to the

study of the crime dynamics in Cape Town, South Africa. In this case, the mathematical model

is an ODE model, and our parameter identification method allows us to show that the crime

in an average police station is in an increasing regime, towards a stable steady state. The

credible regions for the parameters allow us to show that significant changes in policy would

be required to change this tendency. A manuscript of this study is in preparation.
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Appendix A

The pmh module

"""

Parallel Metropolis-Hastings methods and Optimal Control methods for \

parameter identification.

by Eduard Campillo-Funollet

May 2015 to August 2017.

"""

import numpy as np #Numerical tools

from scipy.linalg import eig #Eigenvector calculation.

import scipy.optimize as sco #Optimization routines.

import pickle as pk #Save/Load to file

import os #OS tools

import multiprocessing as mp#Parallelism

import logging #Logs used to monitorize tasks

import time #Time methods

def setSeed(seed):

"""

Sets the seed for all number generations to be done. For \

reproducibility.
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"""

np.random.seed(seed=seed)

class mc(object):

"""

Markov chain and related information

id - list -lookup table- to find state given id.

Contains pairs [chunk_number,indext within chunk]

states - list of states that appear (or not!) in the chain

logl - list of log-likelihoods of states

chain - list of indices corresponding to the states in the list \

states.

The actual Markov Chain

accepted - list of true and false values.

True means the state comes from an acceptace step.

Note: The states are numpy arrays, but "states","logl",... \

are Python lists.

Note: It is optimized to work fast for adding and iterative \

reading.

Filename codification: basename_C, where C is the chunk number

-states,logl-. basename_data -chain,accepted,id-

"""

def __init__(self,basename="testmc",limSize=10000):

#Attributes initialization

self.id = []
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self.reset_chunk() #Sets states and logl to empty lists.

self.chain = []

self.accepted = []

#Current number of states. It is used to generate ids.

self.counter = 0

self.current_chunk = 0

self.last_chunk = 0

#Store arguments

self.basename = basename

self.limSize = limSize

#Load the chain if already exists.

if os.path.isfile(self.getDataName()):

self.load()

def reset_chunk(self):

"""

Reset the loaded chunk

"""

self.states = []

self.logl = []

def getChunkName(self,c):

"""

Filename for chunk c

"""

return self.basename+"_"+str(c)+".p"

def getDataName(self):

return self.basename+"_data.p"



Appendix A. The pmh module 97

def save_data(self):

"""

Save id,chain and accepted. Also last chunk.

"""

data = {"id":self.id,"chain":self.chain,\

"accepted":self.accepted, "last":self.last_chunk,\

"limSize":self.limSize}

pk.dump(data,open(self.getDataName(),"wb"))

def load_data(self):

"""

Loads the data.

"""

data = pk.load(open(self.getDataName(),"rb"))

self.id, self.chain, self.accepted,self.last_chunk = \

data["id"],data["chain"],data["accepted"],data["last"]

self.limSize = data["limSize"]

def save_chunk(self):

"""

Saves the current chunk to a file.

"""

pk.dump({"states":self.states,"logl":self.logl},\

open(self.getChunkName(self.current_chunk),"wb"))

self.save_data() #Save the current data.

def load_chunk(self,c):

"""

Load the chunk number c
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WARNING: It does not save the current chunk before \

replacing it!

"""

chunk = pk.load(open(self.getChunkName(c),"rb"))

self.states,self.logl = chunk["states"],chunk["logl"]

self.current_chunk = c

def load(self):

"""

Loads data and first chunk.

"""

self.load_data()

self.load_chunk(0)

def save(self):

"""

Saves data and current chunk

"""

#self.save_data() #Now data is saved when a chunk is saved,

#so save_chunk is enough.

self.save_chunk()

def addBlock(self,states,logl,chain,accepted):

"""

Adds a new block of states to the chain.

Note that states in self.states may be duplicated!

"""

#Integrity check

if len(states) != len(logl) or len(chain) != len(accepted):
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raise ValueError("Non-matched dimensions in \

the new block.")

#Set current chunk to last

if self.current_chunk != self.last_chunk:

self.save_chunk()

self.load_chunk(self.last_chunk)

self.current_chunk = self.last_chunk

shift = len(states)

L = len(self.states)

id_shift = len(self.id)

newIds = [[self.current_chunk,L + k] for k in range(shift)]

#By now the id referes to an index in the self.states list.

self.id += newIds

self.states += states

self.logl += logl

self.chain += [state_index+id_shift for state_index in chain]

self.accepted += accepted

if self.getSize() > self.limSize:

self.save_chunk()

self.reset_chunk()

self.last_chunk += 1

self.current_chunk = self.last_chunk

def getState(self,id):

"""

Get state with given id

WARNING
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It does not save the current chunk if \

it has to load a different one.

"""

c,i = self.id[id][0],self.id[id][1]

if self.current_chunk != c:

self.load_chunk(c)

return self.states[i]

def getLogl(self,id):

"""

Get logl with given id

WARNING

It does not save the current chunk \

if it has to load a different one.

"""

c,i = self.id[id][0],self.id[id][1]

if self.current_chunk != c:

self.load_chunk(c)

return self.logl[i]

def getChain(self):

"""

Returns the actual Markov chain

"""

return [self.getState(id) for id in self.chain]
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def getAcceptance(self):

"""

Returns acceptance/rejection list.

"""

return self.accepted

def __iter__(self):

"""

Allows iteration over an instance of the class

as iteration over the chain.

"""

return iter(self.getChain())

def __getitem__(self,i):

"""

Allows indexing.

"""

return self.getState(self.chain[i])

def __len__(self):

"""

Allows len(mc)

"""

return len(self.chain)

def getSize(self):

"""

Returns the approximate memory size of the states attribute.

It will be used as a criteria for file storage.

Note: It requires the states to be numpy arrays!

"""
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if len(self.states) == 0:

return 0

return self.states[0].nbytes * len(self.states)

def getStateLogl(self):

"""

Returns two Python lists,

-the MC, i.e. list of states

-the logl of the states in the MC

"""

pairs = [ [self.getState(id),self.getLogl(id)] \

for id in self.chain]

return [p[0] for p in pairs],[p[1] for p in pairs]

class pa(object):

"""

Proposal - acceptance class. Implements different samplers.

is - Independence sampler

pCN - preconditioned Crank - Nicholson

gCN - pCN with generic sampler.

"""

def __init__(self,sampler,*args,**kwargs):

"""

sampler is a string.
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"is" - independence sampler. args[0]=prior sampler.

"pCN" - preconditioned Crank-Nicolson. args[0]=covariance of

prior (np array (matrix)). args[1]=beta

Note: pCN assumes normal prior with 0 mean.

For other means, shift the problem.

"""

if "cutoff" in kwargs:

self.cutoff = lambda x,f=kwargs["cutoff"]: f(x)

else:

self.cutoff = None

if sampler == "is":

self.proposer = lambda x,f=args[0]: f(x)

self.compute_prob = self.compute_acceptance_std

self.sample = self.sample_acum

elif sampler == "pCN":

self.proposer = lambda x,C=args[0],\

b=args[1]:self.proposal_pcn(C,b,x)

self.compute_prob = self.compute_acceptance_std

self.sample = self.sample_acum

if "range" in kwargs:

self.range = kwargs["range"]

self.cutoff = self.in_range

else:

self.range = None

elif sampler == "wp":

self.proposer = lambda x,f=args[0],\

b=args[1]: self.proposal_wp(f,b,x)
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self.compute_prob = self.compute_acceptance_std

self.sample = self.sample_acum

elif sampler == "bp":

self.proposer = lambda x,f=args[0],\

r=args[1]: self.proposal_bp(f,r,x)

self.compute_prob = self.compute_acceptance_std

self.sample = self.sample_acum

self.proposal = lambda x: self._proposal(self.proposer,x,\

self.cutoff)

def _proposal(self,proposer,x,cutoff):

"""

Proposal wrapper, to take cutoff into account.

"""

if not cutoff:

return proposer(x)

prop = proposer(x)

while not cutoff(prop):

prop = proposer(x)

return prop

def compute_acceptance_std(self,logl):

"""

Computes the acceptance probability of each proposal.

Standard: applies to independence sampler and pCN.
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"""

rows = [] #Rows of transition matrix.

for i in range(len(logl)):

#Mask to distinguish the "current" state.

mask = range(len(logl))

mask.remove(i) #Remove the current state from the mask.

row = np.array(logl)

row[mask] = row[i] - row[mask] #phi(u)-phi(v)

#Take minimum (i.e. cutoff to 1 in the exp).

row[mask] = np.array([min(0,row[k]) for k in mask])

row[mask] -= np.log(len(row)-1) #When exp, division by N

row[mask] = np.exp(row[mask]) #Compute exponential.

row[i] = 1 - sum(row[mask])

rows.append(row)

A = np.vstack(rows) #Transition matrix

w,v = eig(A,left=True,right=False)

#Eigenvector of eigenvalue (closest to) 1

p = v[:,np.argmin(abs(1.-w))]

p = p / sum(p) #Normalization

self.compute_acum(p)

def in_range(self,prop):

"""
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self.range is an iterable with pairs [xmin,xmax],[ymin,ymax],...

"""

for r,p in zip(self.range,prop):

if p < r[0] or p > r[1]:

return False

return True

def proposal_wp(self,prior,beta,current):

"""

Weighted average.

beta = 0 -> we stay at current state.

beta = 1 -> independence sampler

"""

return (1-beta)*current + beta*prior(current)

def proposal_bp(self,prior,radius,current):

"""

Proposals in a ball of maximum radius radius.

"""

prop = prior(current)

norm = np.linalg.norm(prop-current)

if norm == 0:

return current

return current + \

np.random.uniform(0,radius)*(prop-current)/norm

def proposal_pcn(self,covar,beta,current):

"""
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Generates a sample using the pCN sampler \

with the given parameters

Note: Assumes mean 0. In any other case, shift the problem.

"""

return np.sqrt(1-beta**2)*current + \

beta*np.random.multivariate_normal(np.zeros(len(covar)),\

covar)

def compute_acum(self,logl):

"""

Compute acumulated probability.

"""

self.acum = np.zeros(len(logl))

self.acum[0] = logl[0]

for k in range(1,len(logl)):

self.acum[k] = self.acum[k-1] + logl[k]

def sample_acum(self):

"""

Samples from self.acum

"""

r = np.random.uniform(0,1)

k=0

while self.acum[k] < r:
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k = k + 1

return k

class pmh(object):

"""

Main class.

Run the Parallel Metropolis Hastings method.

Requires:

A log-likelihood function phi.

A proposal acceptance.

A mc instance to store the chain.

Initial state.

Parameters of the Parallel Metropolis Hastings method:

Npool - number of workers. If "all", uses all available processors.

If 0<Npool<1, uses that fraction of

the available processors.

N - #states to be proposed each step

(i.e. N+1 states in total, N proposals + 1 current)

M - #states to be sampled each step (default M=N)

K - Evaluations per worker.

If defined, overrides the value of N and sets N = Npool*K + 1

maxT - Maximum number of seconds to run (wallclock time)

maxDate - Deadline for the process to run (POSIX time)

targetIt - target number of states to generate.

Notes:

Logs are saved using the Markov Chain basename.log

Defaults are to a 1 worker - standard Parallel MH.
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The stopping conditions can be set to a negative value \

to be ignored. If all of them are negative, \

an error is raised.

"""

def __init__(self,pa,mc,initialState,Npool=1,N=1,M=-1,K=-1,\

maxT=-1, maxDate=-1,targetIt=-1):

#Check that a stopping condition is provided

if maxT < 0 and maxDate < 0 and targetIt < 0:

raise ValueError("Invalid stoppping condition.")

#Save stopping conditions

self.stopConditions = {"maxT":maxT,"maxDate":maxDate,\

"targetIt":targetIt}

#Set the number of workers

if Npool == "all":

self.Npool = mp.cpu_count()

elif 0<Npool and Npool<1:

self.Npool = int(Npool*mp.cpu_count())

else:

self.Npool = Npool

#Set the number of states.

if K > 0:

self.N = self.Npool*K

else:

self.N = N

#Set the number of samples per step

if M > 0:

self.M = M
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else:

self.M = self.N

#Basic attributes.

self.pa = pa

self.mc = mc

self.initialState = initialState

#Configure logging

logging.basicConfig(filename=self.mc.basename+".log",\

level=logging.DEBUG)

def getPresentConditions(self,startT,it):

"""

Returns a dictionary to use to check the stopping conditions.

"""

return {"maxT":time.time()-startT,\

"maxDate":time.time(),"targetIt":it}

def checkStopping(self,presentConditions):

"""

Check the stopping conditions. \

Returns True if it is time to stop.

"""

for cond in self.stopConditions:

if self.stopConditions[cond] > 0 and \

presentConditions[cond]>self.stopConditions[cond]:

return True

#If we arrive here, the conditions are not satisfied.

return False
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def getConfigString(self):

"""

Header of the log file.

"""

tx="Configuration: \nNumber of workers: "+ \

str(self.Npool)+"\nNumber of states: "+ \

str(self.N+1)+"\nNew states per step: "+ \

str(self.M)+"\n\nStopping conditions: \n"

if self.stopConditions["targetIt"] > 0:

tx += "Target chain length: "\

+str(self.stopConditions["targetIt"])+"\n"

if self.stopConditions["maxT"] > 0:

tx += "Maximum running time: "\

+str(self.stopConditions["maxT"])+"\n"

if self.stopConditions["maxDate"] > 0:

tx += "Deadline: "\

+str(self.stopConditions["maxDate"])+"\n"

tx+="\nInitial state: "+str(self.initialState)+"\n"

return tx

def getStepString(self,stepTime,nstates,startT):

"""

Debug of each step.

Includes stepTime and stepTime based estimations of

remaining time and candidate stopping condition.

"""

tx = "Last step: "+str(stepTime)+"\n"
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timeToGoals = []

stop = []

if self.stopConditions["targetIt"]>0:

timeToGoals.append((self.stopConditions["targetIt"]\

-nstates)*stepTime/self.M)

stop.append("target chain length will be reached.")

if self.stopConditions["maxT"] > 0:

timeToGoals.append(self.stopConditions["maxT"]-\

(time.time()-startT))

stop.append("maximum running time will be reached.")

if self.stopConditions["maxDate"] > 0:

timeToGoals.append(self.stopConditions["maxDate"]\

- time.time())

stop.append("deadline will be reached.")

t = min(timeToGoals)

cause = stop[timeToGoals.index(t)]

tx+="Remaining time "+str(t)+" because "+cause

return tx

def run(self,phi):

"""

Runs the algorithm.

"""

#Log the configuration.
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logging.info(self.getConfigString())

#Initializes the pool of workers.

pool = mp.Pool(self.Npool)

#Initializes proposals and logl lists

proposals = [None]*(self.N+1)

logl = [None]*(self.N+1)

proposals[0] = self.initialState

#logl[0] = self.phi(self.initialState)

logl[0] = phi(self.initialState)

i = 0 #Current state.

#Store the start time. Initializes number of states counter.

startT = time.time()

nstates = 0

while not self.checkStopping(\

self.getPresentConditions(startT,nstates)):

#For logging and estimation of total time.

step_startT = time.time()

#Prepare the mask to the proposals.

mask = range(self.N+1)

mask.remove(i)

#Generate proposals

save = proposals[i]

proposals = [self.pa.proposal(proposals[i])\

for k in range(self.N)]

proposals.insert(i,save)

#Now the parallelized evaluation of the log-likelihood.

save = logl[i]
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logl = pool.map(phi,[proposals[k] for k in mask])

logl.insert(i,save)

#The instance of pa takes care of the computations.

self.pa.compute_prob(logl)

#Generate the new block of states and acceptance vector.

newState = [self.pa.sample()]

if newState[0] == i:

acc = [False]

else:

acc = [True]

for m in range(self.M-1):

newState.append(self.pa.sample())

if newState[-1] == newState[-2]:

acc.append(False)

else:

acc.append(True)

#Add the new block to the chain.

self.mc.addBlock(proposals,logl,newState,acc)

#Update current state, nstates

i = newState[-1]

nstates += self.M

logging.debug(self.getStepString(\

time.time()-step_startT,nstates,startT))

#Save the chain to file.

self.mc.save()
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#Close the pool

pool.close()

pool.join()

logging.info("Total running time: "+str(time.time()-startT))
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Appendix B

The pp module

"""

Postprocessing module for the PMH.

Included as a different module to avoid import matplotlib \

in when not necessary.

Requires:

pmh

by Eduard Campillo-Funollet

May 2015 to September 2015

"""

import pmh

import matplotlib.pyplot as plt

import matplotlib.patches as patches

import numpy as np

from scipy import stats,interp

class pp(object):

"""

Class to encapsulate postprocessing methods.

It receives an instance of mc when instanciated \
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or a string with the basename.

"""

def __init__(self,mc,preload=True):

if isinstance(mc,basestring):

self.mc = pmh.mc(basename=mc)

else:

self.mc = mc

if preload == True:

#Loads the chain to avoid excesive file IO.

self.chain = self.mc.getChain()

else:

self.chain = None

def getLen(self):

"""

Returns lengnth of the chain.

"""

if self.chain is not None:

return len(self.chain)

else:

return len(self.mc)

def getDim(self):

"""

Returns the dimension of the states.

"""

if self.chain is not None:

return len(self.chain[0])
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return len(self.mc[0])

def scatter2D(self,c1,c2,mask=None,style='.',**kwargs):

"""

Scatter plot component c1 vs. c2

"""

if self.chain is not None:

if mask == None:

chain = np.array([[s[c1],s[c2]] for s in self.chain])

else:

chain = np.array([[s[c1],s[c2]] \

for s in [self.chain[k] for k in mask]])

else:

if mask == None:

chain = np.array([[s[c1],s[c2]] for s in self.chain])

else:

chain = np.array([[s[c1],s[c2]] \

for s in [self.chain[k] for k in mask]])

plt.figure()

plt.plot(chain[:,0],chain[:,1],style,**kwargs)

plt.show(block=False)

def hist(self,c,mask=None,**kwargs):

"""

Plots the histogram of the coordinate c of the chain.

kwargs passed to plt.hist.

mask allows to use only part of the chain.

"""

plt.figure()

if self.chain is not None:
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if mask == None:

plt.hist([s[c] for s in self.chain],**kwargs)

else:

plt.hist([s[c] for s in [self.chain[k] for k in mask]],**kwargs)

else:

if mask == None:

plt.hist([s[c] for s in self.mc],**kwargs)

else:

plt.hist([s[c] for s in [self.mc[k] for k in mask]],**kwargs)

plt.show(block=False)

def hist2d(self,c1,c2,mask=None,noPlot=False,**kwargs):

"""

Plots 2D-histogram of the coordinates c1,c2.

kwargs passed to plt.hist2d

mask allows to use only part of the chain.

noPlot = True -> returns counts, xedges, yedges,

and does not show the plot.

"""

plt.figure()

if self.chain is not None:

if mask == None:

counts,xedges,yedges,img = plt.hist2d([s[c1] \

for s in self.chain],[s[c2] \

for s in self.chain],**kwargs)

else:

counts,xedges,yedges,img = plt.hist2d([s[c1] \

for s in [self.chain[k] for k in mask]],[s[c2] \

for s in [self.chain[k] for k in mask]],**kwargs)

else:
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if mask == None:

counts,xedges,yedges,img = plt.hist2d([s[c1] \

for s in self.mc],[s[c2] \

for s in self.mc],**kwargs)

else:

counts,xedges,yedges,img = plt.hist2d([s[c1] \

for s in [self.mc[k] for k in mask]],[s[c2] \

for s in [self.mc[k] for k in mask]],**kwargs)

if noPlot:

return counts,xedges,yedges

else:

plt.show(block=False)

def kde(self,c,mask=None,res=100,**kwargs):

"""

Plots Kernel Density Estimation for the coordinate c.

kwargs passed to scipy.stats.gaussian_kde

mask allows to use only part of the chain

res - resolution, number of points.

"""

if self.chain is not None:

if mask == None:

chain = [s[c] for s in self.chain]

else:

chain = [s[c] for s in [self.chain[k] for k in mask]]

else:

if mask == None:

chain = [s[c] for s in self.mc]

else:
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chain = [s[c] for s in [self.mc[k] for k in mask]]

X = np.linspace(min(chain),max(chain),res)

kernel = stats.gaussian_kde(chain,**kwargs)

Z = kernel(X)

plt.figure()

plt.plot(X,Z)

plt.show(block=False)

def kde2d(self,c1,c2,mask=None,res=100j,noPlot=False,**kwargs):

"""

Plots Kernel Density Estimation for the coordinates c1,c2.

kwargs passed to scipy.stats.gaussian_kde

mask allows to use only part of the chain

res - resolution, number of points.

noPlot - returns chain,X,Y,Z instead of plotting.

"""

if self.chain is not None:

if mask == None:

chain = np.array([[s[c1],s[c2]] for s in self.chain])

else:

chain = np.array([[s[c1],s[c2]] \

for s in [self.chain[k] for k in mask]])

else:

if mask == None:

chain = np.array([[s[c1],s[c2]] for s in self.chain])

else:

chain = np.array([[s[c1],s[c2]] \

for s in [self.chain[k] for k in mask]])
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xmin,xmax,ymin,ymax = \

min(chain[:,0]),max(chain[:,0]),\

min(chain[:,1]),max(chain[:,1])

X,Y = np.mgrid[xmin:xmax:res,ymin:ymax:res]

positions = np.vstack([X.ravel(),Y.ravel()])

kernel = stats.gaussian_kde(chain.T,**kwargs)

Z = np.reshape(kernel(positions).T,X.shape)

if noPlot:

return chain,X,Y,Z

else:

plt.figure()

plt.imshow(np.rot90(Z),\

extent=[xmin,xmax,ymin,ymax],aspect="auto")

plt.show(block=False)

def contours(self,c1,c2,mask=None,res=100j,\

fractions=[0.3,0.6,0.9], \

noPlot=False,labels=True,**kwargs):

"""

Plots contour curves for components c1,c2 distribution,

at levels fractions. kwargs to gaussian_kde.

noPlot = True, then return axes,contours \

and does not show the plot.

"""

chain,X,Y,Z = self.kde2d(c1,c2,mask=mask,\

res=res,noPlot=True,**kwargs)

plt.figure()
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axes = plt.axes()

contours = axes.contour(X,Y,Z,200,extend='both')

levs = contours.levels

fracs = np.array(fracs_inside_contours(chain[:,0],\

chain[:,1],contours))

sortinds = np.argsort(fracs)

levs = levs[sortinds]

fracs = fracs[sortinds]

levels = interp(fractions,fracs,levs)

for coll in contours.collections:

coll.remove()

contours.__init__(axes,X,Y,Z,levels)

if noPlot:

return axes,contours

else:

if labels:

frac_label_contours(chain[:,0],chain[:,1],contours)

plt.show(block=False)

def credible_region(self,c1,c2,mask=None,res=100j,cred=0.95,\

method="kde",ret=False,**kwargs):

"""

Plots credible region of credibility cred.
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Method kde uses kde, hist uses the histogram.

ret == True, then returns the figure or axes.

"""

if method == "kde":

axes,contours = self.contours(c1,c2,mask=mask,res=res,\

fractions = [cred],noPlot=True,labels=False,**kwargs)

for (icollection,collection) \

in enumerate(contours.collections):

path = collection.get_paths()[0]

patch = patches.PathPatch(path,\

facecolor='orange',lw=2)

axes.add_patch(patch)

plt.show(block=False)

if ret:

return axes

elif method == "hist":

counts,xedges,yedges = \

self.hist2d(c1,c2,mask=mask,noPlot=True,**kwargs)

barea = (xedges[1]-xedges[0])*(yedges[1]-yedges[0])

#Mass normalized to 1.

ncounts = counts / tmass(counts,barea)

region_mass = 0.

region = np.zeros(ncounts.shape)

while region_mass < cred:

#print "Region mass ", region_mass
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imax,jmax = max_counts(ncounts) #Find max mass element.

#Add the mass of the element to the total

region_mass +=ncounts[imax][jmax]*barea

region[jmax][imax] = 1. #This point is in the region.

#This point does not contribute anymore.

ncounts[imax][jmax] = 0.

xcoord = midedge(xedges) #Coordinates of x axis

ycoord = midedge(yedges) #y axis

fig = plt.figure()

plt.pcolormesh(np.array(xcoord),np.array(ycoord),region)

plt.show(block=False)

if ret:

return fig

else:

print "Unknown method."

def getAcceptance(self):

"""

Returns acceptance rate.

"""

return float(sum(self.mc.getAcceptance()))/self.getLen()

def getRejection(self):

"""

Returns rejection rate.

"""
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return 1 - self.getAcceptance()

def plotAcceptance(self,*args):

"""

Plots acumulated number of accepted states.

If an argument is passed,

it is used as acceptance chain \

(to be used to plot rejections).

"""

if len(args)==0:

acc = self.mc.getAcceptance()

else:

acc = args[0]

s = [sum(acc[0:1])] #1 if first element is true, 0 otherwise.

for i in range(1,len(acc)):

s.append(s[i-1]+acc[i])

plt.figure()

plt.plot(range(len(acc)),s)

plt.show(block=False)

def plotRejection(self):

"""

Plots acumulated number of rejected states.

"""

#Negate acceptance -> rejection list.

rej = [not s for s in self.mc.getAcceptance()]

self.plotAcceptance(rej)
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def plotState(self,c,mask=None):

"""

Evolution of coordinate c

"""

if self.chain is not None:

if mask == None:

y = [s[c] for s in self.chain]

else:

y = [s[c] for s in [self.chain[k] for k in mask]]

else:

if mask == None:

y = [s[c] for s in self.mc]

else:

y = [s[c] for s in [self.mc[k] for k in mask]]

plt.figure()

plt.plot(range(len(self.mc)),y)

plt.show(block=False)

def getMean(self,c,mask=None):

"""

Computes the mean of component c

mask allows to use only part of the chain.

"""

if self.chain is not None:

if mask == None:

res = np.mean([s[c] for s in self.chain])

else:
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res = np.mean([s[c] \

for s in [self.chain[k] for k in mask]])

else:

if mask == None:

res = np.mean([s[c] for s in self.mc])

else:

res = np.mean([s[c] \

for s in [self.mc[k] for k in mask]])

return res

def getStateMean(self,mask=None):

"""

Return a list of the mean of each component

"""

res = []

for c in range(self.getDim()):

res.append(self.getMean(c,mask=mask))

return res

def getCorr(self,c,mask=None):

"""

Computes the normalized autocorrelation of component c

Autocorrelation(X)[k] = 1/(sqrt(N*Var(X))sum(x_i * x_{i+k})

mask allows to use only part of the chain.

"""
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if self.chain is not None:

if mask == None:

ch = [s[c] for s in self.chain]

else:

ch = [s[c] for s in [self.chain[k] for k in mask]]

else:

if mask == None:

ch = [s[c] for s in self.mc]

else:

ch = [s[c] for s in [self.mc[k] for k in mask]]

#Normalize

ch = (np.array(ch) \

- np.mean(ch))/np.sqrt(len(ch)*np.var(ch-np.mean(ch)))

return np.correlate(ch,ch,mode='full')

def getStateCorr(self,mask=None):

"""

Returns a list of the normalized \

autocorrelation of each component

"""

res = []

for c in range(self.getDim()):

res.append(self.getCorr(c,mask=mask))

return res

def getMode2D(self,c1,c2,mask=None,res=100j,method="kde",**kwargs):

"""

Returns the maximum of the probability density, \
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approximated by method.

"""

if method == "kde":

chain,X,Y,Z = self.kde2d(c1,c2,mask=mask,res=res,\

noPlot=True,**kwargs)

argmax = np.where(Z == Z.max())

return X[argmax[0][0],argmax[1][0]],Y[argmax[0][0],\

argmax[1][0]]

elif method == "hist":

counts,xedges,yedges = self.hist2d(c1,c2,mask=mask,\

noPlot=True,**kwargs)

barea = (xedges[1]-xedges[0])*(yedges[1]-yedges[0])

#Mass normalized to 1.

ncounts = counts / tmass(counts,barea)

imax,jmax = max_counts(ncounts) #Find max mass element.

xcoord = midedge(xedges) #Coordinates of x axis

ycoord = midedge(yedges) #y axis

return xcoord[imax],ycoord[jmax]

def plotMeans(self,c,res = 10, mask=None, **kwargs):

"""

Divides the chain in res parts and plot the means of each part.

"""

if self.chain is not None:

if mask == None:
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ch = [s[c] for s in self.chain]

else:

ch = [s[c] for s in [self.chain[k] for k in mask]]

else:

if mask == None:

ch = [s[c] for s in self.mc]

else:

ch = [s[c] for s in [self.mc[k] for k in mask]]

l = len(ch) // res #Points per part.

means = [np.mean(ch[k*l:(k+1)*l]) for k in range(res)]

plt.figure()

plt.plot(range(len(means)),means,**kwargs)

plt.show(block=False)

def plotCumMean(self,c,res = 100, mask = None, **kwargs):

"""

Divides the chain in res parts \

and plot the mean up to that point.

"""

if self.chain is not None:

if mask == None:

ch = [s[c] for s in self.chain]

else:

ch = [s[c] for s in [self.chain[k] for k in mask]]

else:

if mask == None:

ch = [s[c] for s in self.mc]

else:

ch = [s[c] for s in [self.mc[k] for k in mask]]
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l = len(ch) // res #Points per part.

means = [np.mean(ch[0:(k+1)*l]) for k in range(res)]

plt.figure()

plt.plot(range(len(means)),means,**kwargs)

plt.show(block=False)

def chain_recombination(chains,bname,burns=0.,ret=False):

"""

Combines the chains in a new chain with name basename.

chains can be either a (Python) list of strings \

or a list of mc instances.

bname is a string, basename of the new chain.

burns can be either a float or a list of floats.

It is the fraction of the chain to be burned.

If burns is a float, the same burn out will \

be applied to each chain.

If ret is True, the mc instance with the new chain is returned.

"""

#Init

#Create mc instances of the chains.

for i in range(len(chains)):

if isinstance(chains[i],basestring):

chains[i] = pmh.mc(basename=chains[i])

#Fill the burns list.



Appendix B. The pp module 133

if not isinstance(burns,list):

burns = [burns]*len(chains)

#Error handling

if len(chains) != len(burns):

raise ValueError("Number of chains must be \

equal to number of burns")

#The new chain.

mc = pmh.mc(basename=bname)

for chain,burn in zip(chains,burns):

#Get states and logls

states,logls = chain.getStateLogl()

#Burn out

states = [states[i] \

for i in range(int(burn*len(chain)),len(chain))]

logls = [logls[i] \

for i in range(int(burn*len(chain)),len(chain))]

mc.addBlock(states,logls,range(len(states)),\

[True]*len(states))

#Save the chain, return if necessary.

mc.save()

if ret:

return mc

#Auxiliary methods. Adapted from github/roban/plot2Ddist
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def frac_inside_poly(x,y,path):

"""Calculate the fraction of points x,y inside path .

path

"""

xy = np.vstack([x,y]).transpose()

return float(sum(path.contains_points(xy)))/len(x)

def fracs_inside_contours(x, y, contours):

"""Calculate the fraction of points x,y \

inside each contour level.

contours -- a matplotlib.contour.QuadContourSet

"""

fracs = []

for (icollection, collection) in enumerate(contours.collections):

path = collection.get_paths()[0]

frac = frac_inside_poly(x,y,path)

fracs.append(frac)

return fracs

def frac_label_contours(x, y, contours, format='%.3f'):

"""Label contours according to the fraction of points x,y inside.

"""

fracs = fracs_inside_contours(x,y,contours)

levels = contours.levels

labels = {}

for (level, frac) in zip(levels, fracs):

labels[level] = format % frac

contours.clabel(fmt=labels)

#Auxiliary functions for histogram based credible region.
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def tmass(counts,barea):

"""

Compute the total mass

Assumes equidistant edges.

"""

totalmass = 0.

for i in range(len(counts)):

for j in range(len(counts[i])):

totalmass += counts[i][j]*barea

return totalmass

def max_counts(ncounts):

"""

Returns the coordinates i,j of the max in ncounts.

"""

indmax = []

maxrows = []

for i in range(len(ncounts)):

maxrows.append(max(ncounts[i]))

indmax.append(np.where(ncounts[i] == max(ncounts[i]))[0][0])

imax = maxrows.index(max(maxrows))

jmax = indmax[imax]

return imax,jmax

def midedge(edges) :

"""

Returns a vector of length len(edges)-1, \
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with the midpoints of edges

"""

medges = []

for i in range(len(edges)-1):

medges.append((edges[i]+edges[i+1])/2.)

return medges

#Test chain generator.

def gaussian(x):

"""

Gaussian distribution mean 0, variance 1.

"""

return np.linalg.norm(x)**2

def uniform2d(x):

"""

Uniform proposal in -10,10 square.

"""

return np.array([np.random.uniform(-10,10),\

np.random.uniform(-10,10)])

def testchain(name,length=1000):

"""

Creates a MC for testing purposes.

Gaussian, two components explored using independence sampler.

"""

c = pmh.mc(basename=name)

pa = pmh.pa("is",uniform2d)
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mh = pmh.pmh(pa,c,uniform2d(0),Npool="all",targetIt=length)

mh.run(gaussian)

c.save()

return c
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