
   

 

A University of Sussex PhD thesis 

Available online via Sussex Research Online: 

http://sro.sussex.ac.uk/   

This thesis is protected by copyright which belongs to the author.   

This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author   

The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author   

When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

Please visit Sussex Research Online for more information and further details   



Modelling and simulations of a viscous

model for cell migration

BENARD KIPCHUMBA KIPLANGAT

Submitted for the degree of Doctor of Philosophy

University of Sussex

December 2018



Declaration

I hereby declare that this thesis has not been and will not be submitted in whole or in part to

another University for the award of any other degree.

Signature:

BENARD KIPCHUMBA KIPLANGAT



iii

UNIVERSITY OF SUSSEX

BENARD KIPCHUMBA KIPLANGAT, Doctor of Philosophy

Modelling and simulations of a viscous model for cell migration

Summary

This thesis presents a mathematical and computational model for cell migration that couples
a system of reaction-advection-diffusion equations describing the interactions between F-actin and
myosin II to a force balance equation describing the velocity vector of the actin-myosin network.

Cell migration plays a crucial role in many biological processes. In eukaryotic cells, this mi-
gration is largely powered by a system of actin and myosin II. At the leading edge of the cell,
cross-linked actin filaments polymerise by adding actin monomers to their ends while at the back
of the cell, myosin II binds to a bundle of actin filaments. These processes create protrusive and
contractile forces generated by the action of actin polymerisation and myosin II contraction.

Based on the idea that cell migration is powered by the actin-myosin network of the cell, we
formulate model equations for migrating cell which comprises reaction-advection-diffusion equa-
tions that are coupled to a force balance equation describing the velocity vector of the network.
This is a viscous model with active stresses coming from the actin-myosin system. These equations
describing the migrating cells are highly nonlinear partial differential equations with no closed
form solutions and we therefore result to numerical methods in order to compute the approximate
solution.

F-actin and myosin II solution are the solution for the reaction-advection-diffusion equations
while the speeds of the cell come from the solution of the force balance equation. We begin
simulations on a unit disk at zero initial velocity with different data for the initial conditions of
F-actin and myosin II concentrations. We also vary some parameters at a time while keeping
all the other parameters constant: for example (i) total amount of actin ρtota and (ii) contraction
coefficient for myosin II η0

m.
Actin polymerisation causes protrusive stress at the cell periphery which results in expansion

of the cell. We observe that the initial conditions play an important role in the spatiotemporal
dynamics of F-actin as well as the evolution of the cell shape. Actin changes from the active state
(F-actin) to inactive state (G-actin) and vice-versa through polymerisation and depolymerisation
processes and hence the total amount of actin is conserved at any time. We note that in our
model, myosin II only diffuses inside the cell and exerts contractile stress in the cell. Its total
concentration in the entire cell is conserved.



iv

Acknowledgements

I would like to acknowledge and thank my supervisor Professor Anotida Madzvamuse for his in-

spiration, guidance and invaluable advice throughout my research. His encouragement, support

and patience led to the successful completion of this thesis. I am forever grateful to the University

of Sussex for fully funding my research and stay at the university through the Chancellor’s Inter-

national Research Scholarship. This provided me a conducive environment to carry out research.

Thanks also to Dr. Chandrasekhar Venkataraman for his co-supervision and advice. I also thank

all my colleagues in the Mathematics department particularly Wakil Sarfaraz, Muflih Alhazmi,

Eduard Campillo-Funollet, Laura Murphy, Victor Juma and Davide Cusseddu for walking through

this very wonderful research journey together and for all the insightful discussions on our research.

Thanks to all the support staff of the School of Mathematics and Physical Sciences (MPS) espe-

cially Richard Chambers and Rebecca Foster for being so helpful and providing the assistance I

needed throughout my studies. Special thanks to my wife Sharon Chepkemoi, parents, brothers

and sisters for their support and encouragement.



v

Contents

List of Tables vii

List of Figures x

1 Introduction 1

1.1 Cell structure and function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Structure of eukaryotic cell . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Actin cytoskeleton and force generation . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Cell adhesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.4 Signaling pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Models for cell migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Numerical methods for models of cell migration . . . . . . . . . . . . . . . . . . . . 10

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Model formulation for cell migration 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Mathematical preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Derivation of viscous model for cell migration . . . . . . . . . . . . . . . . . . . . . 15

2.4 Phase-field model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Numerical methods for the viscous model for cell migration 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 The finite element method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Theory of the finite element method . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 The Schnakenberg model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.3 The viscous model for cell migration . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Finite differences for the phase-field model . . . . . . . . . . . . . . . . . . . . . . . 88

3.3.1 Theory of finite difference method . . . . . . . . . . . . . . . . . . . . . . . 88

3.3.2 Finite differences for the phase-field model for cell migration . . . . . . . . 90

3.3.3 Numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



vi

4 Summary and future directions 101

4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Bibliography 105



vii

List of Tables

2.1 Dimensional parameters and their values. . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Non-dimensional parameter values for the non-dimensionalised viscous model. . . . 24

2.3 Non-dimensionalised parameters for the phase-field model. . . . . . . . . . . . . . . 30

3.1 Convergence of the u variable using the 2-SBDF scheme at different time steps τ

showing the effects of time-step refinement on the magnitudes of errors. . . . . . . 47

3.2 The parameters for the Schnakenberg model. . . . . . . . . . . . . . . . . . . . . . 49

3.3 Non-dimensional parameters for the non-dimensionalised viscous model . . . . . . 61

3.4 The numerical normals to a circle converge to the exact normal to a circle as the

mesh is refined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5 The nondimensionalised values of the parameters used in the model. . . . . . . . . 90



viii

List of Figures

1.1 Schematic representation of the cell showing the components of the cell Pullarkat

et al. (2007). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Schematic representation of actin polymerisation and depolymerisation Pollard and

Borisy (2003) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Double well potential for the phase-field. . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 The canonical quadrilateral element K̂. . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 A general quadrilateral element K. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Transformation of a general quadrilateral into the canonical quadrilateral element. 43

3.4 Solutions for the u variable of the Schnakenberg model using a 2-SBDF scheme

with τ = 2× 10−3. Blue signifies lowest values while red highest values. (a) Initial

condition as random perturbations about steady states for the u variable and (b)

solution at a final time step t = 10 showing convergence to an in-homogeneous

steady state. Parameters values used are a = 0.1, b = 0.9, d = 10 and γ = 29. . . . 46

3.5 Solutions for the v variable of the Schnakenberg model using a 2-SBDF scheme

with τ = 2× 10−3. Blue signifies lowest values while red highest values. (a) Initial

condition as random perturbations about steady states for the v variable and (b)

solution at a final time step t = 10 showing convergence to an in-homogeneous

steady state. Parameters values used are a = 0.1, b = 0.9, d = 10 and γ = 29. . . . 47

3.6 Solutions for the u variable of the Schnakenberg model with τ = 2× 10−3, a = 0.1,

b = 0.9, d = 10 and (a) γ = 29 and (b) γ = 100 showing convergence to in-

homogeneous steady states. Blue signifies lowest values while red highest values. . 48

3.7 Convergence history of the simulations of the Schnakenberg model using a 2-SBDF

scheme for the u variable with time refinements. . . . . . . . . . . . . . . . . . . . 48

3.8 Convergence history of the simulations of the Schnakenberg model for the v variable

with mesh refinements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.9 Triangulation of the unit disk using quadrilateral elements after (a) two global mesh

refinements, (b) three global mesh refinements, (c) four global mesh refinements and

(d) five global mesh refinements showing convergence to the unit disk. . . . . . . . 57



ix

3.10 Solutions for the ρm variable on a stationary unit disk using τ = 2 × 10−3. Blue

signifies the lowest values while red the highest values. (a) Initial condition for

mysoin II (b) ρm solution at time t = 0.8 and (c) ρm solution at time t = 3 showing

convergence to a homogeneous steady state. . . . . . . . . . . . . . . . . . . . . . . 58

3.11 Solutions for the ρa variable on a stationary unit disk using τ = 2 × 10−3. Blue

signifies the lowest values while red the highest values. (a) Initial condition for

F-actin (b) ρa solution at time t = 0.8 and (c) ρa solution at time t = 3 showing

convergence to a homogeneous steady state. . . . . . . . . . . . . . . . . . . . . . . 58

3.12 (a) Conservation of mass for actin and (b) diffusion coefficient for myosin II. We

used time-step τ = 2× 10−3 and mesh size h = 0.055126. . . . . . . . . . . . . . . 59

3.13 Convergence of the ρa variable with different time steps τ . . . . . . . . . . . . . . . 59

3.14 Graphical displays of the numerical results of the myosin II concentration ρm using

a 2-SBDF scheme with τ = 0.001. Blue signifies lowest values while red highest

values. (a) Initial condition as random perturbation about ρm = 1.0 (b) ρm at time

t = 0.004, (c) ρm at time t = 2 and (d) solution at final time t = 4. . . . . . . . . . 78

3.15 Graphical displays of the numerical results of the F-actin concentration ρa using

a 2-SBDF scheme with τ = 0.001. Blue signifies lowest values while red highest

values. (a) Initial condition as non-zero only in one half of the cell (b) ρa at time

t = 0.004, (c) ρa at time t = 2 and (d) solution at final time t = 4. . . . . . . . . . 79

3.16 Graphical display of the speed of the cell as the solution of the force balance equation

for the cell. Blue signifies lowest values while red highest values. (a) Cell at initial

stationary state (b) cell speed at time t = 0.004, (c) cell speed at time t = 2, (d)

cell speed at final time t = 4 and (e) area of the evolving cell as a function of time

showing increase in the area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.17 Solutions for the ρm variable using a 2-SBDF scheme with τ = 0.001. Blue signifies

lowest values while red highest values. (a) Initial condition as random perturbation

about ρm = 1.0, (b) ρm at time t = 0.004, (c) ρm at time t = 2 and (d) solution at

final time t = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.18 Solutions for the ρa variable using 2-SBDF scheme with τ = 0.001. Blue signifies

lowest values while red highest values. (a) Initial condition as random perturbation

about ρa = 1.0 (b) ρa at time t = 0.004, (c) ρa at time t = 2 (d) ρa solution at final

time t = 4 and (e) surface plot for the ρa solution at final time t = 4. . . . . . . . . 82

3.19 Graphical display of speed of the cell as the solution of the force balance equation

for the cell. (a) Cell at initial stationary state, (b) cell speed at time t = 2 and (c)

cell speed at final time t = 4 and (d) area of the evolving cell as a function of time

showing increase in area of the cell with time. . . . . . . . . . . . . . . . . . . . . . 83

3.20 Solutions for the ρm variable using τ = 0.001. Blue signifies lowest values while red

highest values. (a) Initial condition as random perturbation about ρm = 1 (b) ρm

at time t = 0.004, (c) ρm at time t = 2 and (d) solution at final time t = 4. . . . . 84



x

3.21 Graphical displays of the numerical results of the F-actin concentration ρa with

increased total amount of actin ρtota = 16 using a 2-SBDF scheme with τ = 0.001

and all other parameters held constant. Blue signifies lowest values while red highest

values. (a) Initial condition as random perturbation about ρa = 1.0 (b) ρa at time

t = 0.004, (c) ρa at time t = 2 and (d) solution at final time t = 4. . . . . . . . . . 85

3.22 Speed of the cell as the solution of the force balance equation for the cell. (a) Cell at

initial stationary state (b) cell speed at time t = 0.004, (c) cell speed at time t = 2,

(d) cell speed at final time t = 4 and (e) area of the evolving cell as a function of

time showing increase in area of the cell with time with increased total amount of

actin ρtota = 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.23 Area of the evolving cell as a function of time. (a) area of the cell with contraction

coefficient η1 = 0.2 while all other parameters held constant and (b) decreasing area

of the cell with a reduced total amount of actin ρtota = 5 while all other parameters

held constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.24 Cell shapes at different times showing the cell evolving with time. Red indicates

highest values and blue lowest values. (a) cell shape at initial time, (b) cell shape

at time t = 2 and (c) cell shape at time t = 5 . . . . . . . . . . . . . . . . . . . . . 100



xi

List of Abbreviations

ECM Extra-Cellular Matrix

CAMS Cell Adhesion Molecules

ATP Adenosine Triphosphate

FAK Focal Adhesion Kinase

F-actin Actin filaments

G-actin Globular actin (actin monomers)

RDEs Reaction-Diffusion-Equations

PDEs Partial Differential Equations

ODEs Ordinary Differential Equations

IMEX Implicit-Explicit scheme

SBDF Semi-Implicit Backward Differentiation Formula

CNAB Crank-Nicolson, Adams-Bashforth

CNLF Crank-Nicolson, Leap-Frog

FEM Finite Element Method

CG Conjugate Gradient

PCG Preconditioned Conjugate Gradient

GMRES Generalised Minimal Residual method

sup Supremum

lim Limit

Re Real part of

MATLAB Matrix Laboratory



1

Chapter 1

Introduction

Cells are the smallest unit of life and widely vary in their shape, structure and function Alberts

et al. (1995). They are complex in nature with different structural parts which work together

to perform specific functions. Cells can exist on their own in the form of amoeba or exist as a

group of cells as in multicellular organisms for example in plants and animals. Depending on their

structural parts, cells are classified into several types. They are classified into two broad categor-

ies, namely prokaryotes and eukaryotes. Prokaryotic cells lack membrane bound organelles while

eukaryotic cells are organised into complex structure with organelles enclosed within membranes

Alberts et al. (1995). Cells perform their different functions by responding to their environment

through deforming themselves and moving/migrating towards or away from stimuli. This is done

by reorganising their internal structure. In this chapter, we give a biological overview of the cell,

dynamics of cell migration, outline various models for cell migration that have been carried out

and give an overview of numerical methods.

1.1 Cell structure and function

In this research, we will only concentrate on eukaryotic cells. In humans for example, there are

more than 200 different types of cells each specialised for a specific function and are of order of

tens of micrometres Alberts et al. (1995). All cells in an organism carry the same genome but

as a result of differentiation, different cell types have different gene expression patterns Alberts

et al. (1995); Schwarz and Safran (2013). Different cells come together to form tissues which work

together to perform different functions. The formation of tissues and organs are brought about by

division and movement of cells. This places cells in a crucial position in development of organisms.

1.1.1 Structure of eukaryotic cell

For the biology of cells we make reference to Alberts et al. (1995). We will consider only eukaryotic

cells. A eukaryotic cell consists of three broad and major parts, namely: plasma membrane, nucleus

and cytoplasm.
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Plasma membrane

Plasma membrane is a phospholipid bilayer which encloses the contents of the cell and acts as a

selective barrier Alberts et al. (1995). It also helps in communication of a cell with its surroundings

or other cells. Communication between cells is mediated by extracellular signal molecules and the

reception of these signals depend on the receptor protein that are found on the cell surface.

Nucleus

Nucleus is a membrane bound organelle contained inside the cell and carries the genetic material

of the cell. It occupies about ten percent of the total cell area Alberts et al. (1995). The bilayer

membrane around the nucleus allows for selective transport of materials between the nucleus and

other parts of the cell .

Cytoplasm

Cytoplasm forms the rest of the cell and contains membrane-bound organelles. It is further sub-

divided into two parts: cytosol and cytoskeleton Alberts et al. (1995); Pullarkat et al. (2007).

Cytosol is the solvent inside the cell where organelles are suspended. The cytoskeleton is a net-

work of protein filaments and other associated proteins which render elasticity to the cell and

control cell shape, locomotion and cell division Pullarkat et al. (2007). The cytoskeleton is made

up of three filaments: actin filaments, microtubules and intermediate filaments which are distrib-

uted throughout the cell in an organised manner Pullarkat et al. (2007). The actin filaments form a

meshwork structure below the plasma membrane, the microtubules originate from the centrosome

close to the nucleus and extend all the way to the actin cortex while the intermediate filaments

are concentrated around the nucleus and extend in lower number away from the nucleus Pul-

larkat et al. (2007); Alberts et al. (1995). Intermediate filaments provide the cell with mechanical

strength, microtubules determine the positions of membrane enclosed organelles and direct intra-

cellular transport while actin filaments (also referred to as F-actin) determine the shape of the

cell’s surface and are necessary for whole-cell movement Pullarkat et al. (2007); Ananthakrishnan

and Ehrlicher (2007). A schematic representation of the cell is shown is Figure 1.1.

Motor proteins

The filaments are linked together by different proteins. Motor proteins convert the energy of

ATP hydrolysis into mechanical force that can either move organelles along the filaments or move

the filaments themselves Pullarkat et al. (2007). These motor proteins generate forces when they

interact with the filaments. Motor proteins are grouped into two categories depending on filaments

along which they interact with, namely actin motors and microtubule motors Alberts et al. (1995);

Pullarkat et al. (2007). Actin motors are made up of myosin family of proteins that carry out

unidirectional movements along actin filaments thus generating contractile forces Pullarkat et al.

(2007). The contractile forces play a crucial role in cell functioning. An example of myosin family is
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Figure 1.1: Schematic representation of the cell showing the components of the cell Pullarkat et al.

(2007).

the myosin II which interact with actin filaments thereby generating active stresses. These stresses

are necessary in providing cell with shape as well as controlling its movements. An example of

microtubule motors is dyenin Pullarkat et al. (2007) which also play a role in cellular transport.

Cross-linking proteins

Cross-linking proteins help in connecting the filaments and play an essential role in controlling

assembly and disassembly of filaments Ananthakrishnan and Ehrlicher (2007) and in elasticity of

actin filament network Pullarkat et al. (2007). The most common crosslinkers of actin filaments

are α−actinin and filamin Pullarkat et al. (2007).

Regulatory proteins

Other types of proteins are the regulatory proteins which are also referred to as nucleation-

promoting factors Pollard (2007); Ananthakrishnan and Ehrlicher (2007). They play an important

role in controlling the assembly-disassembly dynamics of filaments and the activity of motor pro-

teins Pullarkat et al. (2007).

Actomyosin complexes

Actomyosin complexes are formed by the association of myosin motors with actin filaments Pul-

larkat et al. (2007). The myosin II self-assembles into short chains which can then act on neigh-

bouring actin filaments to produce relative motion. Such complexes have a remarkable property of



4

generating active stresses within the actin network Pullarkat et al. (2007). Actomyosin complexes

can be highly organised to form stress fibers and are therefore the main cytoskeletal component

responsible for cell shape, generation of active stresses and locomotion. The actomyosin complexes

therefore give the cell its viscoelastic properties Pullarkat et al. (2007).

Actin occur in two forms: active form which is the F-actin and G-actin form (also called actin

monomers) which is the inactive form and moves freely within the cytosol Ananthakrishnan and

Ehrlicher (2007). Actin convert from the inactive state (G-actin) to the active state (F-actin)

through a process called actin polymerisation and conversely from the active state to the inactive

state through actin depolymerisation. The regulatory proteins are responsible for these actin

poymerisation-depolymerisation processes Pollard (2007); Ananthakrishnan and Ehrlicher (2007).

Actin polymerisation promoting proteins such as nucleator proteins helps in creating new actin

filaments. On the other hand, actin depolymerisation factor for example cofilin is capable of binding

to the actin filament thereby weakening it causing F-actin to break and form G-actin. It is largely

believed that cytosol takes a passive role in transmission of stresses Schwarz and Safran (2013).

On the outside, the cell is coupled to a multi-component gel-like network called the extracellular

matrix which we abbreviate ECM.

1.1.2 Actin cytoskeleton and force generation

Of all the components of the cytoskeleton, F-actin and its corresponding motor proteins play the

most crucial role in cell movement and therefore, we will focus on them. Actin occur in two forms:

F-actin and G-actin forms. It converts from the inactive state (G-actin) to the active state (F-

actin) through a process called actin polymerisation and conversely from the active state to the

inactive state through actin depolymerisation Ananthakrishnan and Ehrlicher (2007). The regu-

latory proteins are responsible for these actin poymerisation-depolymerisation processes Pollard

(2007); Ananthakrishnan and Ehrlicher (2007). Actin polymerisation promoting proteins such as

nucleator proteins helps in creating new actin filaments. On the other hand, actin depolymerisa-

tion factor such as cofilin is capable of binding to the actin filament thereby weakening it causing

F-actin to break and form G-actin monomers. Figure 1.2 summaries the dynamics of the actin

polymerisation and depolymerisation. Actin filaments have two distinct ends: a plus end called

barbed end which is a fast growing end and a minus end which is a slow growing end Pollard and

Borisy (2003); Pollard (2007). Polymerisation happens when G-actin are added to the barbed end

of F-actin Pollard and Borisy (2003). Actin filaments can assemble structures forming networks

and bundles through interaction with motor proteins Pellegrin and Mellor (2007); Pollard et al.

(2000). These structures produce cell protrusions called lamellipodia Schwarz and Safran (2013);

Pollard and Borisy (2003); Anderson and Cross (2000). It is these activities of actin that lead

to force generation. Actin cytoskeleton is therefore the main structure that contributes actively

to force generation and therefore drives the cell movement Schwarz and Safran (2013); Zhu et al.

(2000).

Actin filament is responsible for force generations that drive a cell forward through two major
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Figure 1.2: Schematic representation of actin polymerisation and depolymerisation Pollard and

Borisy (2003)

processes Cuvelier et al. (2007), namely: (i) rapid polymerisation of actin network at the cell

periphery through the growth of lamellipodia Schwarz and Safran (2013); Cavalcanti-Adam et al.

(2007); Ridley (2011); Shemesh et al. (2012). This leads to expansion of the plasma membrane and

thus to the development of a contact area with the substrate and (ii) development of stress fibres and

networks that are contractile due to the action of motor proteins that tend to slide actin filaments

relative to each other Schwarz and Safran (2013); Shemesh et al. (2012). The most abundant motor

proteins are the myosin II Pellegrin and Mellor (2007); Burridge and Wittchen (2013). These active

forces from polymerisation of actin and contraction of stress fibres are eventually transmitted to

the substrates through adhesion sites, providing the necessary forces required for cell propulsion

Ananthakrishnan and Ehrlicher (2007); Zhu et al. (2000).

Plasma membrane plays an indirect role in force generation by controlling the polymerisation

and the contraction of the stress fibres by triggering biochemical signals that regulate these pro-

cesses Schwarz and Safran (2013); Ridley (2011). The plasma membrane also plays a role in the

overall force balance in the cell since its tension and curvature elasticity provide counter-forces to

actin-generated forces that tend to extend and deform the membrane Schwarz and Safran (2013).
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There are counterforces exerted by the substrate on the cell. They originate from the substrate

elasticity that resists deformation by the cellular forces. The substrate resistance can reorganise

the cellular cystoskeleton and change the size of the adhesive regions Ananthakrishnan and Ehr-

licher (2007); Schwarz and Safran (2013). This means that cellular structure and functions can be

very sensitive to the elasticity and rigidity of the substrate.

1.1.3 Cell adhesion

Cell adhesion is the bonding of the cell to an object outside of the cell e.g when a cell binds to

another cell or to the extracellular matrix (ECM) (we will call them substrates) Liu et al. (2007).

Cellular adhesion is mediated by a wide variety of cell adhesion molecules (CAMS) also known

as receptors and ligands which interact with each other Liu et al. (2007). The active stresses

generated from actin polymerisation and contraction of myosin II motors are transmitted to the

substrates via adhesion sites. These sites connect the actin cytoskeleton to adhesion receptors

from the integrin family Schwarz and Safran (2013). The receptors then connect to the substrate

or the ECM. The adhesion sites are mainly localised at the cell periphery because it is strongly

coupled to the growth processes of the lamellipodium. Nascent adhesions are initiated close to

the leading edge and then move towards the cell centre Ananthakrishnan and Ehrlicher (2007).

This movement is mainly driven by the flow of actin away from the leading edge called retrograde

flow Schwarz and Safran (2013); Shemesh et al. (2012); Ananthakrishnan and Ehrlicher (2007) due

to the counterforces exerted on the polymerising actin by the membrane. As they move towards

the cell centre, these small adhesions either mature into micrometer-sized focal adhesions or decay

Ananthakrishnan and Ehrlicher (2007). The focal adhesions are responsible for attaching the cell

to the substrate.

Transformation of the nascent adhesions into mature ones and the growth of the mature ones

depends on the application of forces to them Schwarz and Safran (2013). The adhesions are stable

only if sufficient force is exerted upon them and the larger the adhesion sites, the larger the force

transmitted to the substrates Schwarz and Safran (2013). If filaments are sufficiently anchored to

their surroundings, they can no longer slip back and this greatly helps the cell to propel forward.

The force transmission to the substrates also largely depend on the substrates’ stiffness Schwarz

and Safran (2013). Cellular adhesion plays an important role in diverse biological and physiological

processes including cell migration, wound healing, differentiation, thrombosis, tumor metastasis,

arteriosclerosis and inflammation Gupta (2012); Schwarz and Safran (2013). The receptor-ligand

bond lifetime has been shown to be finite even in the absence of an external force Fournier et al.

(2010); Liu et al. (2007), that is, the individual receptor-ligand bonds will dissociate with or without

an applied force Qian et al. (2009). This will allow the cell to propel forward.

Focal adhesions act not only as mechanical linkers that anchor the cell to the substrate, but

also as prominent signalling centres that activate biochemical signalling molecules that diffuse into

the cytoplasm and towards the nucleus Vogel and Sheetz (2009). Mature adhesions are known for

signalling which upregulates both actin polymerisation and contractile myosin II motors. Many
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signalling molecules responsible for cell migration and differentiation are localised to focal adhe-

sions, most prominently the focal adhesion kinase (FAK) which is known to be important in many

types of cancer Mitra et al. (2005). The molecular clutch comprising of talin, vinculin and paxillin

connects the receptors to the actin cytoskeleton at the focal adhesion Schwarz and Safran (2013).

These clutches determine the extent to which the cytoskeleton and the underlying substrate are

linked and how they can interact by controlling the transmission of the cytoskeletal contractile

forces to the substrate. When the clutch is engaged, there will be an effective transmission of the

actomyosin contractile forces to the substrate leading to tight adhesion between the cell and the

substrate. In contrast, when the clutch is not engaged, there is an ineffective force transmission

to the substrate and thus adhesion is loosened Schwarz and Safran (2013); Ananthakrishnan and

Ehrlicher (2007).

1.1.4 Signaling pathways

During migration, the cell presents a front-rear polarity Schaub et al. (2007). This is brought

about by different distributions of molecules in the front and rear parts of the cell. Depending on

the type of the cell, some cells such as the Keratocytes, can polarise spontaneously in the absence

of external cues Mogilner and Edelstein-Keshet (2002); Mogilner and Keren (2009). In other cells,

polarity may be brought about by the extracellular environment. For example, the Dictyostelium

cells are able to sense gradients of chemo-attractants and move towards their source Buenemann

et al. (2010).

Multiple signaling pathways are initiated and organised at the cell surface to form a signalling

network. This network is regulated during cell migration and help co-ordinate the processes of

cell protrusion, adhesion, translocation of the cell body and retraction of the cell Pullarkat et al.

(2007); Buenemann et al. (2010)

Summary of steps for cell movement

Here, we summarise the processes of cell movement. Once a cell senses an external signal via the

receptors that live on the surface, the leading edge begins to move in the direction of the signal

by polymerising actin to form lamellipodia. This is called protrusion stage and is the first step

of cell movement. Soon after the leading edge begins to protrude, adhesion molecules gathered in

the extending region help attach the leading edge to the substrate. This is the adhesion stage and

happens when actin bundles link the cytoskeleton to the substrate at the focal adhesions. The

attachments prevent the leading edge from retracting. Also the cell de-adheres at the cell body

and the rear of the cell. Finally the cell is propelled forward because of the contraction of stress

fibres. This is the third stage of cell movement Ananthakrishnan and Ehrlicher (2007).
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1.2 Models for cell migration

Cell migration refers to the trans-location of cells from one point to another. As we have seen in

the section on the biology of the cell, the cytoskeleton plays a vital role in aiding cell migration and

its mechanical strength through different processes. Cell migration has become one of the areas of

much interest to many researchers from different fields including physics, computational sciences

and mathematics. It is a fundamental process in many biological systems, for example wound

healing, development of embryos, inflammation, cancer invasion, physiological process among oth-

ers Fidler (2003); Mogilner and Keren (2009); Pollard and Borisy (2003); Ridley et al. (2003);

Lauffenburger and Horwitz (1996).

For many centuries, experimental biology has occupied the minds of many researchers in the

quest to understand the complexity of cell motility. In recent decades, mathematical and compu-

tational modelling has rapidly become an essential research technique that has greatly contributed

to the understanding of the subject of cell motility Mogilner (2009). It is a fact that cell motility

involves a large number of proteins that interact together in a complex way Pullarkat et al. (2007).

Proposing an accurate model to account for the vast molecular interactions involved in cell motility

is therefore a non-trivial activity. It is also largely known that the interaction of actin with its

associated proteins is usually a major factor in the derivation of models for cell motility Mogilner

(2009). Many models are built on the concept that cell motility is composed of the following stages:

protrusion, adhesion and contraction Ananthakrishnan and Ehrlicher (2007). The cell pushes out

the front, then it assembles tight adhesions to the surface at the leading edge and weakens such

adhesions at the rear and finally the cell develops contractions that pull the weakly adherent rear

towards the strongly adhered front Mogilner (2009).

There have been different strategies of modeling cell migration in the last several decades. The

first modeling efforts were directed at quantifying actin treadmill and using thermodynamics to

understand the nature and magnitude of the polymerisation force Mogilner (2009). These early

works introduced fundamental ideas that are still used in developing complex models Mogilner

(2009). In Peskin et al. (1993), ’Polymerisation Brownian ratchet’ model was proposed to describe

actin polymerisation as rigid mechanism which elongates by rectifying the Brownian motion of

the membrane. According to this model, when the end of an actin filament comes into contact

with a membrane, the membrane would diffuse away and therefore create a gap sufficient for

monomers to be added Peskin et al. (1993); Mogilner (2009). These ratchet models used differential-

difference equations Peskin et al. (1993); Mogilner (2009). Later Mogilner and Oster (1996) made

an improvement to this model to consider the filaments as elastic springs whose behaviour is a

function of the bending modulus of the filament and the angle it makes with a load at its tip.

The thermal fluctuations of actin filaments displaces the actin filaments from the membrane and

creates a gap for the elongation of the filament Mogilner and Oster (1996). This model was

able to predict an optimal angle between the actin filament and the load for the effective force

transmission. In Mogilner and Oster (2003), ratchet models underwent further development when
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it was suggested that some of the actin filaments are attached to the surface they push. This model,

the ’tethered ratchet’ model, explains the mechanism by assuming that the filament attach to the

surface transiently, dissociating fast and growing freely until getting capped and losing contact

with the surface altogether Mogilner and Oster (2003). In Marée et al. (2006); Satyanarayana and

Baumgaertner (2004); Satulovsky et al. (2008), actin polymerisation and depolymerisation were

treated as stochastic processes.

Mogilner and Edelstein-Keshet (2002) developed a mathematical model that describes key

details of actin dynamics in protrusion associated with cell motility. This model was based on the

dendritic-nucleation hypothesis for lamellipodial protrusion in nonmuscle cells such as Keratocytes.

An output of the model was a relationship between the protrusion velocity and the number of

filament barbed ends pushing the membrane. They observed that this relationship has a local

maximum: too many barbed ends deplete the available monomer pool and too few are insufficient

to generate protrusive force. Their result suggested that to achieve rapid motility, some tuning of

parameters affecting actin dynamics must be operating in the cell Mogilner and Edelstein-Keshet

(2002).

Continuum models have also been developed to study cell motility. Examples are: a two-

phase fluid model for cytosol and the actin network in Alt and Dembo (1999), a one-dimensional

viscoelastic model of the cytoplasm and active stress generation in Gracheva and Othmer (2004),

a one-dimensional model for the actin distribution and its reaction in Mogilner et al. (2001), a

two-dimensional elastic continuum model in Rubinstein et al. (2005) and a cytomechanical model

that couples a force balance mechanical equation for actin network to a reaction-diffusion equation

for actin Stephanou et al. (2004). This cytomechanical model was later extended in George (2012)

where they used a cartesian coordinate system.

Another modelling strategy is to use phase-field method Biben and Misbah (2003); Biben et al.

(2005); Liu et al. (2007); Zhang et al. (2009); Lowengrub et al. (2009); Shao (2011); Shao et al.

(2012). In Shao et al. (2010), Keratocyte cell was modelled as a two dimensional sheet with fixed

area. The shape of the cell membrane was determined by the interactions of various forces including

the surface tension, the bending forces and the pressure that constraints the cell area. In Biben

and Misbah (2003); Biben et al. (2005), phase-field method has been used to simulate vesicles’

deformation and tumbling while in Liu et al. (2007); Zhang et al. (2009), phase-field method was

used to study the three dimension deformation of a vesicle membrane using an energetic framework.

An extension of this model to multi-component vesicles was studied in Lowengrub et al. (2009). In

Shao et al. (2012), a phase-field model for the Keratocyte cell that couples actin flow and adhesion

mechanism during cell migration was presented. In the model, both myosin II contraction and

actin polymerisation were treated as active stresses. The adhesion sites could switch between the

gripping mode and the slipping mode and their dynamics were integrated with actin flow. They

also included tension and bending forces at the membrane. The various forces involved in cell

migration are then considered and translated into velocity which then evolve the cell shape. The

model we consider is an extension of this model.
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1.3 Numerical methods for models of cell migration

In many cases models for cell migration contain highly nonlinear reaction terms which make it

impossible to obtain analytical solutions. Numerical methods are therefore a good choice in solving

these models. Numerical methods for partial differential equations consist of two parts: a space

discretisation to transform the system of partial differential equations into a system of ordinary

differential equations and a time discretisation to transform the system of ordinary differential

equations into a system of algebraic equations which can be solved using different techniques of

linear algebra.

For the biochemical dynamics inside the cell, we will consider the well known model that was

proposed by Turing (1952) that take the form

∂u

∂t
= D∆u + F(u), (1.3.1)

where u is the vector of chemical concentrations, F represents the reaction kinetics and D is the

diagonal matrix of positive diffusion coefficients.

Space discretisation include finite differences Morton and Mayers (1998); Mitchell and Grif-

fiths (1980), finite elements Süli (2007); Reddy (1993); Houston et al. (2002), boundary elements

Brebbia (1980) among other methods. The moving grid finite element method was introduced in

Madzvamuse et al. (2003, 2005) to study partial differential equations on complex evolving domains.

It is a robust numerical method that has been applied to compute solutions of reaction-diffusion

equations in continuously deforming domains Madzvamuse et al. (2003, 2005); Madzvamuse (2006).

The finite element method is an efficient method that is able to deal with complex and irregular

geometries and has been widely used for growing and deforming domains. In this thesis, it is

sufficient to use finite differences and finite elements. For detailed theory on finite differences and

finite elements, we make reference to Morton and Mayers (1998) and Süli (2007); Reddy (1993)

respectively.

The space derivatives of (1.3.1) will be approximated by finite elements Reddy (1993) and finite

differences Morton and Mayers (1998) to give a system of the form

∂U

∂t
= D∆hU + F(U), (1.3.2)

where D∆hU and F(U) arise from the diffusion and reaction terms respectively.

Several time discretisation have been used to obtain solutions for partial differential equations

on both stationary and evolving domains. Fully explicit methods require very small time steps

which result in computations that are expensive especially when it comes to multi-dimensions.

Ruuth (1995) presented different IMplicit-EXplicit (hence IMEX) schemes. The key essence of

these schemes is that an implicit scheme is applied to approximate the diffusive term and an

explicit scheme is used to approximate the reaction kinetics. The IMEX schemes presented in

Ruuth (1995); Madzvamuse (2006) include a first order semi-implicit backward differentiation

formula (1-SBDF) which applies a backward differentiation formula to the diffusive term, Crank-

Nicolson, Adams-Bashforth (CNAB) which applies Crank-Nicolson to the diffusive term and second
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order Adams-Bashforth to the reaction terms, Crank-Nicolson Leap Frog (CNLF) which applies

something similar to Crank-Nicolson to the diffusive term and a leap frog to the reaction terms,

the second order semi-implicit backward differentiation formula (2-SBDF), which applies a second

order formula to the diffusive term, the third order semi-implicit backward differentiation formula

(3-SBDF) which applies a third order formula to the diffusive term and the first order backward

Euler finite difference scheme (1-SBEM) which treats both the diffusive term and linear part of the

reaction term implicitly and non-linear part of the reaction semi-implicitly. We note that the 1-

SBDF, the 2-SBDF and the 3-SBDF schemes are known to give strong decay of high frequency error

components while unfortunately the CNAB and CNLF schemes are known to give a weak damping

of high frequency error components Ruuth (1995). From numerical experiments, the 2-SBDF is

recommended as a good scheme to many two dimensional problems Ruuth (1995); Madzvamuse

(2006). Recently, Madzvamuse and Chung (2014) used a fully implicit scheme to solve a system of

bulk surface coupled reaction-diffusion equations. This scheme requires some special linearisation

techniques as shown in Madzvamuse and Chung (2014). For this work, it is sufficient to apply the

second order semi-implicit backward differentiation formula (2-SBDF). Applying the second order

semi-implicit backward differentiation formula to (1.3.2) gives

3Un+1 − 4Un + Un−1

2τ
= D∆hU

n+1 + 2F(Un)− F(Un−1), (1.3.3)

where τ = tn+1 − tn is the time-step size Ruuth (1995). This method gives a strong decay of high

frequency components Ruuth (1993).

1.4 Outline of the thesis

Hence, this thesis is structured as follows. In Chapter 2, we introduce some mathematical notations

and formulae that will be used in the later parts of this thesis and formulate the viscous model for

cell migration from conservation laws. This model includes reaction-advection-diffusion equations

for actin and myosin II which represent the biochemical dynamics inside the cell and a force balance

mechanical equation for the actin-myosin system. We also explore the phase-fields method and

formulate the phase-field framework of the viscous model. This method introduces an auxiliary

field, a free energy functional and a double well potential. The auxiliary function takes a value

in one region and another value in another region and varies smoothly in the interface between

the two regions. The double well potential has minima which describe the value of the auxiliary

function in each region. In the context of the cell, one region would mean the interior of the

cell and the other the exterior of the cell. The interface between the two regions of the cell will

be the boundary of the cell. Furthermore, we non-dimensionalise both models and end up with

non-dimensionalised viscous and phase-field models for cell migration.

These formulated model equations comprises of highly nonlinear partial differential equations

with no closed form solutions. Therefore, in Chapter 3, we solve the models numerically. We

start by considering the well studied Schnakenberg model and construct its numerical solvers. The
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rationale behind this is that a lot of analytical results are known for the Schnakenberg model close

to bifurcation points through the use of linear stability analysis. Once we have validated that our

finite element solver is working for such complex nonlinear reaction-diffusion systems, we will then

apply the solver to our original viscous model. It must be noted that reaction kinetics are a key

component of the viscous model. The model equations we derive on growing domains assume that

the domain deforms continuously. The most appropriate numerical technique to deal with domain

growth is the moving finite element method Reddy (1993). Therefore, we outline the theory behind

the finite element method and then apply it to the viscous model for cell migration and present

numerical results for this model.

In Chapter 3, we also solve the phase-field model using finite differences for space discretisation.

The original domain representing the evolving cell is defined inside a larger and regular domain.

With this, we propose to use finite differences Morton and Mayers (1998) to discretise the new

domain. We then solve the phase-field model using finite differences and present some preliminary

results.

Finally, in Chapter 4, we summarise our work and outline possible extensions and future dir-

ections.
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Chapter 2

Model formulation for cell

migration

2.1 Introduction

In this chapter we introduce some mathematical concepts and formulae that will be used throughout

this thesis and formulate model equations for cell migration that take into account the actin-myosin

system as a machinery that drives cell movement. We will formulate a viscous model for cell

motility that takes into account the bio-chemical nature of the cell and its mechanical structure as

was discussed in Chapter 1. In particular, our model is based on two major principles: (i) F-actin

and myosin II interact together inside the cell thereby generating forces that drive the cell and (ii)

that the actin-myosin network is a viscous gel that exhibits the characteristics of viscous materials.

The model consists of reaction-advection-diffusion equations for the F-actin and myosin II and a

force balance mechanical equation for the actin-myosin system. Once formulated, we construct its

corresponding phase-field framework to obtain a phase-field model for cell motility.

2.2 Mathematical preliminaries

Some basic notations

A two dimensional euclidean space is denoted as R2 where

R2 = {x = (x, y) | x, y ∈ R} .

We will consider a subset of R2 which is bounded and simply connected to be our domain. The

domain representing a continuously deforming and moving cell at time t will be denoted by Ωt ⊂ R2

with a corresponding boundary denoted by ∂Ωt, where t = (0, T ] Madzvamuse et al. (2005). We

also define dΩt = dxdy while ds will be the element of arclength.

Let u(x, t) be a C1(Ωt × (0, T ]) scalar function, v(x, t) be a C2(Ωt × (0, T ]) scalar function,

w(x, t) = (w1, w2) be a C1(Ωt × (0, T ]) vector valued function and n = (n1, n2) denote the unit
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outward normal vector to ∂Ωt. We begin by defining the following operators as outlined in Gilbarg

and Trudinger (2015):

The gradient of u is given by

∇u =

(
∂u

∂x
,
∂u

∂y

)
.

The divergence of w is given by

∇ ·w =

(
∂w1

∂x
+
∂w2

∂y

)
.

The directional derivative of u in the direction n is given by

∇u · n =
∂u

∂n
.

The Laplacian of v is defined by

∆v = ∇ · ∇v =

(
∂2v

∂x2
+
∂2v

∂y2

)
.

Theorems

Let Ωt be a bounded and simply connected domain with C1 boundary ∂Ωt, u(x, t) and g(x, t) be

C1(Ωt× (0, T ]) scalar functions, v(x, t) be a C2(Ωt× (0, T ]) scalar function, w(x, t) = (w1, w2) be

a C1(Ωt × (0, T ]) vector valued function and n = (n1, n2) denote the unit outward normal vector

to ∂Ωt. We then have the following theorems:

Divergence theorem

The divergence theorem is given by∫
Ωt

∇ ·w dΩt =

∫
∂Ωt

w · n ds, (2.2.1)

where ds indicates the dimensional area element in ∂Ωt and n is the outward unit normal to ∂Ωt

Gilbarg and Trudinger (2015). In particular, if u is a C2(Ωt×(0, T ]) function, we can take w = ∇u

and have ∫
Ωt

∆u dΩt =

∫
∂Ωt

∇u · n ds =

∫
∂Ωt

∂u

∂n
ds. (2.2.2)

Gradient theorem

The gradient theorem of scalar function u is stated as Reddy (1993)∫
Ωt

∇u dΩt =

∫
∂Ωt

un ds, (2.2.3)

where n = (n1, n2) is the outward unit normal to ∂Ωt. Applying this formula to the product ug

and expanding using product rule for differentiation gives∫
Ωt

g (∇u) dΩt +

∫
Ωt

u (∇g) dΩt =

∫
∂Ωt

ugn ds. (2.2.4)

Therefore, in x and y directions, the gradient theorem becomes∫
Ωt

g
∂u

∂x
dΩt +

∫
Ωt

u
∂g

∂x
dΩt =

∫
∂Ωt

ugn1 ds, (2.2.5)
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Ωt

g
∂u

∂y
dΩt +

∫
Ωt

u
∂g

∂y
dΩt =

∫
∂Ωt

ugn2 ds, (2.2.6)

respectively.

Green’s formula

Let Ωt be a bounded and simply connected domain with C1 boundary ∂Ωt for which the divergence

theorem holds and let v and g be functions defined as above. We can select w = g∇v in the

divergence theorem (2.2.1), and have∫
Ωt

g∆v dΩt +

∫
Ωt

∇v · ∇g dΩt =

∫
∂Ωt

g
∂v

∂n
ds, (2.2.7)

which is known as the Green’s formula Gilbarg and Trudinger (2015); Larsson and Thomée (2003).

Reynold’s transport theorem

Let g(x, t) be a scalar function in Ωt defined as above and β(x, t) be a flow velocity field, then

d

dt

∫
Ωt

g dΩt =

∫
Ωt

(
Dg

Dt
+ g∇ · β

)
dΩt, (2.2.8)

where D
Dt = ∂

∂t + β · ∇ denotes the material derivative Acheson (1990); Madzvamuse (2000). We

will use this theorem to derive the weak formulation of partial differential equations in Chapter 3.

Fick’s first law of diffusion

This law says that the flux, J, of material which can be amount of chemical, cells and so on, is

proportional to the gradient of the concentration of the material. Consider a material and let its

concentration be given by a scalar function g(x, t). Then, diffusion flux, J(x, t) of the material is

directly proportional to the gradient of the concentration g(x, t) of the material. Mathematically,

this law is

J = −D∇g(x, t), (2.2.9)

where D is the diffusivity Murray (2002). The minus sign simply means that diffusion takes place

from high to low concentration.

Having stated the theorems and mathematical concepts that we will require in model formulation,

we now go ahead and derive the viscous model for cell migration.

2.3 Derivation of viscous model for cell migration

In many eukaryotic cells, migration is powered by the actin-myosin system and assisted by the

adhesion of the cell to substrates. At the cell’s leading edge, cross-linked actin filaments polymerise

by adding actin monomers to their barbed ends while at the back of the cell myosin II binds to

the bundled actin filaments and exerts contractile stress. The active stresses generated by the

actin-myosin system are transmitted to the substrates through adhesion sites. The model system

we consider is the Keratocyte cell which extends broad Lamellipodia and has a fan-like shape. The
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viscous model for cell migration consists of three coupled partial differential equations representing

three different components of cell movement. The first two equations are reaction-advection-

diffusion equations describing concentrations of actin filaments and myosin II. These equations

have diffusion terms for both actin filaments and myosin II, advection terms due to cell movement

and reaction kinetics which represent polymerisation and depolymerisation. The third equation is

a force balance mechanical equation for the actin-myosin network. For this equation, we will seek

to compute velocity vector for the cell which will be the solution for this equation. The reaction-

advection-diffusion equations are derived from mass conservation laws as outlined in Murray (2002);

Edelstein-Keshet (1988) while the force balance mechanical equation is derived from continuum

mechanics Murray (2002, 2001). The model consists of three variables: myosin II and actin filament

densities and velocity of actin network. We will first derive reactions-advection-diffusion equations

for F-actin and myosin II followed by force balance equation.

Reaction-advection-diffusion equations for F-actin and myosin II

Reaction-diffusion equations have been used to model different biological phenomena to study

pattern formation on fixed and growing domains Murray (2001, 2002); Edelstein-Keshet (1988);

Madzvamuse et al. (2005). On fixed domains, reaction-diffusion equations generally take the form

Murray (2002)

∂u

∂t
= D∆u + F(u), (2.3.1)

with for example zero-flux boundary conditions. Here, u is the vector of chemical concentrations,

F represents the reaction kinetics and D is the diagonal matrix of positive diffusion coefficients. As

we will be considering domain growth in two spatial dimensions, we will derive the equations on a

two-dimensional evolving domain. We will be interested with the case of two species representing

the dynamics of F-actin and myosin II.

Let Ωt ⊂ R2 be a simply connected, bounded and continuously deforming domain representing

the cell shape at time t ∈ (0, T ], T > 0 and ∂Ωt be the boundary of the cell with normal n at a

point x(t). At any point x(t) = (x(t), y(t)) ∈ Ωt, let ρm = ρm(x, t) be the myosin II concentration,

ρa = ρa(x(t), t) be the F-actin concentration in Ωt and β = β(x, t) be the actin flow velocity. We

consider a subset R(t) ⊆ Ωt with boundary ∂R(t). Actin polymerisation occurs when actin

monomers are added to the actin filaments at the leading edge of the cell Pollard (2007). Let

this reaction be given by f(ρa(x, t), ρcyta (x, t)) which depends on the actin filament concentration,

ρa(x, t) and also on the concentration of actin monomers in the cytosol ρcyta (x, t)). We will give the

precise reaction kinetics shortly. Myosin II is bound to the actin bundles at the rear end of the cell

and generates contractile stress. The conservation equation states that the rate of change of the

quantity of a material in R(t) ⊆ Ωt is equal to the net flux of the material through the boundary

∂R(t) plus the net creation of the material within the domain Murray (2002); Edelstein-Keshet

(1988); Madzvamuse (2000). Applying the conservation equation to the dynamics of F-actin, we
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have,

d

dt

∫
R(t)

ρa(x, t) dR(t) = −
∫
∂R(t)

J · n dS +

∫
R(t)

f(ρa(x, t), ρcyta (x, t))dR(t), (2.3.2)

where J = J(x, t) is the flux of F-actin across the boundary, that is, the amount of F-actin crossing

a unit area per unit time and n is the normal vector to the boundary. Applying the divergence

theorem (2.2.1) to the conservation equation above gives

d

dt

∫
R(t)

ρa(x, t) dR(t) =

∫
R(t)

(
−∇ · J + f(ρa(x, t), ρcyta (x, t))

)
dR(t). (2.3.3)

By using Reynold’s transport theorem (2.2.8), we further get∫
R(t)

(
Dρa(x, t)

Dt
+ ρa(x, t)∇ · β(x, t)

)
dR(t) =

∫
R(t)

(
−∇ · J + f(ρa, ρ

cyt
a )
)
dR(t), (2.3.4)

where β(x, t) is the actin flow velocity and D
Dt = ∂

∂t +β · ∇ is the material derivative. Upon using

the definition of material derivative to (2.3.4), we arrive at∫
R(t)

(
∂ρa
∂t

+ β · ∇ρa + ρa∇ · β
)
dR(t) =

∫
R(t)

(
−∇ · J + f(ρa, ρ

cyt
a )
)
dR(t), (2.3.5)

where J = J(x, t) and ρa = ρa(x, t). We next assume that actin flow from regions of high

concentration to regions of low concentration and its flux J is proportional to its concentration

gradient. Using Fick’s law of diffusion (2.2.9) and the product rule

∇ · (ρaβ) = β · ∇ρa + ρa∇ · β,

we have ∫
R(t)

(
∂ρa
∂t

+∇ · (ρaβ)

)
dR(t) =

∫
R(t)

(
Da∆ρa + f(ρa, ρ

cyt
a )
)
dR(t), (2.3.6)

where Da is the F-actin diffusion coefficient. Finally, bringing the right hand side terms to the left

gives ∫
R(t)

(
∂ρa
∂t

+∇ · (ρaβ)−Da∆ρa − f(ρa, ρ
cyt
a )

)
dR(t) = 0, (2.3.7)

where ρa = ρa(x, t). Since equation (2.3.7) holds true for any arbitrary R(t) ⊆ Ωt for all time

t and the integrands are continuous, we will have the following equation which represents the

reaction-advection-diffusion equation for the variable ρa(x, t)

∂ρa
∂t

+∇ · (ρaβ)−Da∆ρa − f(ρa, ρ
cyt
a ) = 0, (2.3.8)

for all x ∈ Ωt.

A relevant boundary condition is the zero-flux boundary condition which specifies that there is

no flow of actin into and out of the domain but it is contained inside the cell. We will consider this

type of boundary condition. The variable ρa therefore satisfies the following reaction-advection-

diffusion equation in Ωt with zero flux boundary condition on ∂Ωt
∂ρa
∂t +∇ · (ρaβ) = Da∆ρa + f(ρa, ρ

cyt
a ), x ∈ Ωt, t ∈ (0, T ],

ρa(x, 0) = ρ0
a(x), x ∈ Ωt, t = 0,

∂ρa
∂n = 0, x ∈ ∂Ωt, t ∈ (0, T ],

(2.3.9)
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with ρa = ρa(x, t) and β = β(x, t). The second term on the left represents the advection term for

the actin filaments, the first and second terms on the right are the diffusion and reaction terms

respectively. The zero-flux boundary condition ∂ρa
∂n = 0 specifies that actin filaments are confined

into the domain and do not cross the boundary, neither are they increased by external sources.

Actin exchanges between active membrane bound (ρa) and inactive cytosolic (ρcyta ) states. We

use a mass-conserved reaction kinetics f(ρa, ρ
cyt
a ) as in Mori et al. (2008); Camley et al. (2013) to

describe the dynamics of ρa variable which is

f(ρa, ρ
cyt
a ) = kb

(
ρ2
a

K2
a + ρ2

a

+ ka

)
ρcyta − kcρa, (2.3.10)

with

ρcyta =
ρtota −

∫
Ωt
ρa dΩt∫

Ωt
dΩt

.

The first term on the right hand side of (2.3.10) represents the rate of polymerisation which is

a function of ρa and ρcyta and the last term is a simple depolymerisation rate. For simplicity, we

have assumed that there is a positive feedback from the active form ρa to its own production, i.e

the conversion rate from ρcyta to ρa depends nonlinearly on ρa whereas the reverse conversion rate

takes place at a constant basal rate. We represent the positive feedback by a Hill function with

power 2. The parameters ka and kc are constant basal rates, kb is the overall activation rate and

Ka is a saturation parameter. Since the actin monomers are small molecules and can diffuse fast

Pollard (2007), we assume that they are uniformly distributed throughout the cell. The parameter

ρtota is the total amount of actin in the cell and
∫
Ωt
dΩt is the area of the cell .

Myosin II is bound to a bundle of F-actin network at the rear of the cell and travels with actin

flow Pullarkat et al. (2007). In this work, we assume that myosin II is advected together with

the F-actin and diffuses inside the cell and is not created with time, that is, we will assume that

myosin II is not added through reaction. Applying conservation law to myosin II concentration,

ρm, we have
d

dt

∫
R(t)

ρm(x, t) dR(t) = −
∫
∂R(t)

J · n dS, (2.3.11)

where J is myosin II flux across the boundary and n is the normal vector to the boundary. Applying

the divergence theorem (2.2.1) to the conservation equation above gives

d

dt

∫
R(t)

ρm(x, t) dR(t) = −
∫

R(t)

∇ · J dR(t). (2.3.12)

By using Reynold’s transport theorem (2.2.8) and the material derivative D
Dt = ∂

∂t +β ·∇ , we get∫
R(t)

(
∂ρm
∂t

+ β · ∇ρm + ρm∇ · β
)
dR(t) = −

∫
R(t)

∇ · J dR(t). (2.3.13)

We now assume that myosin II flows from regions of high concentration to regions of low concen-

tration and its flux J is proportional to its concentration gradient and similarly to the F-actin

concentration and write it as J = −Dm(ρa)∇ρm. This gives∫
R(t)

(
∂ρm
∂t

+∇ · (ρmβ)−∇ ·Dm(ρa)∇ρm
)
dR(t) = 0, (2.3.14)
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Since equation (2.3.14) holds true for any arbitrary R(t) ⊆ Ωt for all time t and the integrands

are continuous, we will have the following equation

∂ρm
∂t

+∇ · (ρmβ)−∇ ·Dm(ρa)∇ρm = 0, (2.3.15)

for all x ∈ Ωt which represents the dynamics of the variable ρm. We prescribe a zero-flux boundary

condition for the variable ρm and have the dynamics of ρm as
∂ρm
∂t +∇ · (ρmβ) = ∇ ·Dm(ρa)∇ρm, x ∈ Ωt, t ∈ (0, T ],

ρm(x, 0) = ρ0
m(x), x ∈ Ωt, t = 0,

∂ρm
∂n = 0, x ∈ ∂Ωt, t ∈ (0, T ]

(2.3.16)

where ρm(x, t) is the myosin II concentration and β(x, t) is the actin flow velocity. The second

term on the left represents advection term for myosin II and the term on the right is the diffusion

term. We have prescribed a zero-flux boundary condition and set initial condition for ρm. The

parameter Dm(ρa) is a positive diffusion coefficient depending on F-actin solution ρa such that

it decreases with increasing F-actin concentration. We formulate it as was done in Camley et al.

(2013), that is

Dm(ρa) =
D0
m

1 + ρa
KD

, (2.3.17)

where D0
m ∈ R+ is the maximum myosin II diffusion coefficient in the absence of ρa and KD is the

myosin II diffusion threshhold.

For our model, actin and myosin II are the main source of active stresses which lead to protrusion

and contraction of the cell. The reaction-advection-diffusion equations derived above will therefore

be coupled to a force balance equation which we now present.

Force balance mechanical equation for the actin-myosin system

We model the network of actin filaments in the cell as a viscous gel as was done done in Murray

(2001). The forces present in the cell are the viscous forces, polymerisation forces and contraction

forces. It is assumed that within the cell, mechanisms adhere to Newtonian dynamics. The inertial

effects are neglible compared to the viscous forces Lewis and Murray (1991). The viscous network

of actin filaments interact with myosin II to generate contractile stress in the cell’s cytoplasm. As

the actin network continue to contract as a result of interaction with myosin II, actin filaments will

become aligned into bundles and this will lead to more contraction because myosin II is favoured to

work in the same direction Pullarkat et al. (2007). Similarly, at the cell’s leading edge, cross-linked

actin filaments polymerise by adding actin monomers to their barbed ends causing expansive stress

at the cell periphery.

At any point x = (x(t), y(t)) ∈ Ωt, let β(x, t) be the flow velocity of the elements of the actin

network. When the actin network is at mechanical equilibrium, the sum of all forces acting at

each point x = (x(t), y(t)) ∈ Ωt will be zero Lewis and Murray (1991); Murray (2001); Rubinstein

et al. (2009); Stephanou et al. (2004); Alt and Tranquillo (1995). Thus, in the quasi-steady state,
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we have the following force balance equation in Ωt ∇ · (σν(x, t) + σmyo(x, t) + σpoly(x, t)) = 0, x ∈ Ωt, t ∈ (0, T ],

σν · n = 0, x ∈ ∂Ωt, t ∈ (0, T ],

(2.3.18)

with stress free boundary condition. The terms σv(x, t), σmyo(x, t) and σpoly(x, t) are the viscous,

myosin II driven contractile and actin generated expansive stress tensors respectively as described

below.

Myosin II driven contractile stress

Myosin II generates contractile stress and this stress is considered to have a magnitude proportional

to the density of myosin II. Let σmyo(x, t) denote this myosin II driven contractile stress, ρm(x, t)

denote myosin II density and η0
m be the myosin II contraction coefficient. Then at each point

x = (x(t), y(t)) ∈ Ωt, we model this myosin II driven contractile stress as

σmyo(x, t) = η0
mρm(x, t)I, x ∈ Ωt, t ∈ (0, T ], η0

m ∈ R+, (2.3.19)

where

I =

1 0

0 1

 . (2.3.20)

This means that this contractile stress is isotropic and acts proportionately to the density of myosin

II at each point inside the cell. Thus, the higher the myosin II density, the more the contraction.

Viscous stress

Actomyosin network is treated as a viscous gel. As viscous materials, they deform and spread

when external force is applied to them and do not return to their original state. We assume that

the cell obeys newtonian dynamics in such a way that inertial terms is negligible compared to the

viscous forces Lewis and Murray (1991). At any point x = (x(t), y(t)) ∈ Ωt, let β(x, t) be the

flow velocity of the elements of the actin network. The viscous stress is proportional to the rate of

strain tensor and we model it as

σν(x, t) =
ν0

2

(
∇β(x, t) + (∇β(x, t))T

)
, x ∈ Ωt, t ∈ (0, T ], ν0 ∈ R+, (2.3.21)

where ν0

2

(
∇β(x, t) + (∇β(x, t))T

)
is the strain rate tensor Acheson (1990); Murray (2001). We

note that we have considered the cell actomyosin system only as a viscous gel unlike in Stephanou

et al. (2004); George (2012) where they considered actin filaments as viscoelastic gel. A feature

of viscoelastic materials is that they deform and spread when an external force is applied to them

but they return back to their original state slowly.

Actin generated expansive stress

Actin filaments are normally confined close to periphery of the cell and point outwards. They

polymerise by adding actin monomers to their barbed ends hence apply protrusive force leading to
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expansive stress at the cell periphery. This actin generated expansive stress is normally confined

to the cell periphery because the actin filaments are oriented in such a way that their barbed

ends, where actin monomers are added, are close to the cell membrane and point outwards Pollard

and Borisy (2003). The polymerisation of actin generates expansive stress which is assumed to

be normal to the membrane (no shear stress) and proportional to the cross linked actin filaments

density. Let σpoly(x, t) be this expansive stress acting in the domain Ωt and ρa(x, t) be the cross-

linked actin filaments density. We assume that this expansive stress is confined to the periphery

of the cell and is proportional to ρa(x, t). Then at each point x = (x(t), y(t)) ∈ Ωt, we model the

actin generated expansive stress as

σpoly(x, t) = −η0
aρa(x, t)δ(l)I, x ∈ Ωt, t ∈ (0, T ], η0

a ∈ R+, (2.3.22)

where I is the identity tensor, δ(l) labels the cell periphery and η0
a is the F-actin protrusion

coefficient. This polymerisation stress only acts in the cell periphery. In order to describe this

stress, we will assume an initial domain of a disk and specify that σpoly(x, t) only acts in the region

which is some distance l from the centre of the disk domain. With this we define the function δ(l)

to be of the form

δ(l) =

1 if the point x is such its distance from the origin of the disk is more than l,

0 otherwise.

This means that far from the cell periphery, only the contractile stress acts on the cell and close

to the cell periphery both the contractile and the actin generated polymerisation stresses act on

the cell.

The viscous model

We have formulated model equations that drives cell migration through the action of the actomyosin

system. This model couples reaction-advection-diffusion of F-actin and myosin II to a force balance

mechanical equation. We hereby give the summary of the model



∂ρm
∂t +∇ · (ρmβ) = ∇ ·Dm(ρa)∇ρm, x ∈ Ωt, t ∈ (0, T ],

∂ρa
∂t +∇ · (ρaβ) = Da∆ρa + f(ρa, ρ

cyt
a ), x ∈ Ωt, t ∈ (0, T ],

∇ · (σν(x, t) + σmyo(x, t) + σpoly(x, t)) = 0, x ∈ Ωt, t ∈ (0, T ],

ρm(x, 0) = ρ0
m(x), ρa(x, 0) = ρ0

a(x), x ∈ Ωt, t = 0,

∂ρm
∂n = ∂ρa

∂n = 0, x ∈ ∂Ωt, t ∈ (0, T ],

σν · n = 0, x ∈ ∂Ωt, t ∈ (0, T ],

(2.3.23)
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Parameters Description Value Reference

Da Actin diffusion coefficient 0.8µm2/s Shao et al. (2012)

D0
m Max myosin II diffusion coefficient 2µm2/s Camley et al. (2013)

ρ0
m(x) Initial myosin II density 0.2− 0.4µm−2 Shao et al. (2012)

ν0 Shear viscosity coefficient for actin 103pNs/µm Camley et al. (2013)

η0
a F-actin protrusion coefficient 560pNµm2 Shao et al. (2012)

η0
m Myosin II contraction coefficient 100pNµm Shao et al. (2012)

Ka Positive feedback threshhold 1µm−2 Camley et al. (2013)

ka Base polymerisation rate 0.01 Camley et al. (2013)

kc F-actin depolymerisation rate 10s−1 Shao et al. (2012)

kb Overall polymerisation rate 10s−1 Shao et al. (2012)

KD Myosin II diffusion threshhold 0.5µm−2 Camley et al. (2013)

ρtota Total actin density 800 Shao et al. (2012)

Table 2.1: Dimensional parameters and their values.

where 

f(ρa, ρ
cyt
a ) = kb

(
ρ2
a

K2
a+ρ2

a
+ ka

)
ρcyta − kcρa,

ρcyta =
ρtota −

∫
Ωt

ρa dΩt∫
Ωt

dΩt
,

σmyo(x, t) = η0
mρm(x, t)I, η0

m ∈ R+,

σν(x, t) = ν0

2

(
∇β(x, t) + (∇β(x, t))T

)
, ν0 ∈ R+,

σpoly(x, t) = −η0
aρa(x, t)δ(l)I, η0

a ∈ R+,

(2.3.24)

where the variables ρa = ρa(x, t) and ρm = ρm(x, t) are the F-actin and myosin II concentrations

respectively at a point x = (x(t), y(t)) ∈ Ωt, the variable β(x, t) = (β1(x, t), β2(x, t)) is the flow

velocity for the actin network, Da is a positive diffusion coefficient for F-actin and Dm(ρa) is vari-

able diffusion rate for myosin II. The function f(ρa(x, t), ρcyta (t)) is a reaction term which depends

on the actin filament concentration, ρa(x, t), and also on the concentration of actin monomers in

the cytosol ρcyta (t). We let the initial domain Ω0 to be a disk. The parameters for the dimen-

sional model are listed in Table 2.1. Having formulated the viscous model, we now go ahead and

non-dimensionalise the model. The non-dimensionalised parameters are displayed in Table 2.2.

Non-dimensionalisation of the viscous model

We introduce non-dimensional rescaled variables as follows:ρ̂m = ρm
Ka
, ρ̂a = ρa

Ka
, ρ̂a

cyt =
ρcyt
a

Ka
, x̂ = x

R , β̂ = β
kbR

,

t̂ = t
τ , ∇ = 1

R∇̂, ∆ = 1
R2 ∆̂, Ω̂t = Ωt

R ,

(2.3.25)

where τ is the scaling factor for time and R is the scaling factor for length. We begin by non-

dimensionalising the reaction-advection-diffusion equations. Substituting the new variables into
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the reaction-diffusion equations for F-actin and myosin II gives

Ka

τ

∂ρ̂m

∂t̂
+ kbKa∇̂ ·

(
ρ̂mβ̂

)
− KaD

0
m

R2
∇̂ ·

((
1

1 + Kaρ̂a
KD

)
∇̂ρ̂m

)
= 0, (2.3.26)

and

Ka

τ

∂ρ̂a

∂t̂
+kbKa∇̂ ·

(
ρ̂aβ̂

)
− DaKa

R2
∆̂ρ̂a−kbKa

(
K2
a ρ̂a

2

K2
a +K2

a ρ̂a
2 + ka

)
ρ̂a
cyt+kcKaρ̂a = 0, (2.3.27)

Now divide (2.3.26) and (2.3.27) by Ka

τ gives

∂ρ̂m

∂t̂
+ kbτ∇̂ ·

(
ρ̂mβ̂

)
− τD0

m

R2
∇̂ ·

((
1

1 + Kaρ̂a
KD

)
∇̂ρ̂m

)
= 0,

and
∂ρ̂a

∂t̂
+ kbτ∇̂ ·

(
ρ̂aβ̂

)
−Da

τ

R2
∆̂ρ̂a − τkb

(
K2
a ρ̂a

2

K2
a +K2

a ρ̂a
2 + ka

)
ρ̂a
cyt + kcτ ρ̂a = 0,

respectively. Choosing
τD0

m

R2 = 1 gives

∂ρ̂m

∂t̂
+
kbR

2

D0
m

∇̂ ·
(
ρ̂mβ̂

)
− ∇̂ ·

((
1

1 + Kaρ̂a
KD

)
∇̂ρ̂m

)
= 0,

and
∂ρ̂a

∂t̂
+
kbR

2

D0
m

∇̂ ·
(
ρ̂aβ̂

)
− Da

D0
m

∆̂ρ̂a −
R2kb
D0
m

(
ρ̂a

2

1 + ρ̂a
2 + ka

)
ρ̂a
cyt +

kcR
2

D0
m

ρ̂a = 0.

Let d = Da

D0
m

, a = Ka

KD
, k3 = R2kb

D0
m

, k4 = R2kakb
D0

m
, b = kbR

2

D0
m

and e = R2kc
D0

m
and have

∂ρ̂m

∂t̂
+ b∇̂ ·

(
ρ̂mβ̂

)
− ∇̂ ·

((
1

1 + aρ̂a

)
∇̂ρ̂m

)
= 0,

and
∂ρ̂a

∂t̂
+ b∇̂ ·

(
ρ̂aβ̂

)
− d∆̂ρ̂a −

(
k3ρ̂a

2

1 + ρ̂a
2 + k4

)
ρ̂a
cyt + eρ̂a = 0.

Finally, for notational simplicity, we drop all hats to obtain the following non-dimensionalised

system.

∂ρm
∂t

+ b∇ · (ρmβ) = ∇ ·
((

1

1 + aρa

)
∇ρm

)
,

∂ρa
∂t

+ b∇ · (ρaβ) = d∆ρa +

(
k3ρ

2
a

1 + ρ2
a

+ k4

)
ρcyta − eρa,

with

ρcyta (t) =
ρtota −

∫
Ωt
ρa dΩt∫

Ωt
dΩt

.

Similarly, the non-dimensionalised force balance mechanical equation is given by

∇ · (σν(x, t) + σmyo(x, t) + σpoly(x, t)) = 0,

where 
σmyo(x, t) = η1ρm(x, t)I, η1 ∈ R+,

σν(x, t) = ∇β(x, t) + (∇β(x, t))T ,

σpoly(x, t) = −η2ρa(x, t)δ(l)I, η2 ∈ R+,

with

η1 =
2Kaη

0
m

kbν0
and η2 =

2Kaη
0
a

kbν0
.

We choose R = 10.0 µm and have the non-dimensionalised parameters in Table 2.2.
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Parameters a k3 k4 b d e η1 η2 ρtota

Value 2.0 500.0 5.0 500.0 0.4 500.0 1
50

56
500 8.0

Table 2.2: Non-dimensional parameter values for the non-dimensionalised viscous model.

The non-dimensionalised viscous model

The non-dimensionalised viscous model for cell migration is summarised below with parameters as

given in Table 2.2.

∂ρm
∂t + b∇ · (ρmβ) = ∇ ·

((
1

1+aρa

)
∇ρm

)
, x ∈ Ωt, t ∈ (0, T ],

∂ρa
∂t + b∇ · (ρaβ) = d∆ρa +

(
k3ρ

2
a

1+ρ2
a

+ k4

)
ρcyta − eρa, x ∈ Ωt, t ∈ (0, T ],

∇ · (σν(x, t) + σmyo(x, t) + σpoly(x, t)) = 0, x ∈ Ωt, t ∈ (0, T ],

ρa(x, 0) = ρ0
a(x), ρm(x, 0) = ρ0

m(x) , x ∈ Ωt, t = 0,

σν · n = 0, x ∈ ∂Ωt, t ∈ (0, T ],

∂ρa
∂n = ∂ρm

∂n = 0, x ∈ ∂Ωt, t ∈ (0, T ],

(2.3.28)

with

ρcyta (t) =
ρtota −

∫
Ωt
ρa dΩt∫

Ωt
dΩt

,

σmyo(x, t) = η1ρm(x, t)I, η1 ∈ R+,

σν(x, t) = ∇β(x, t) + (∇β(x, t))T ,

σpoly(x, t) = −η2ρa(x, t)δ(l)I, η2 ∈ R+,

where ρa, ρm and β are the dependent variables for this model. The initial domain is now the unit

disk with radius r = 1. Since the polymerisation force is assumed to work only in the periphery

of the cell, we let it act only in the region where the radius is r > 0.8. For subsequent time, we

assume that there exists a family of bijective functions that map the point η = (ηx, ηy) of the initial

domain to point x = (x, y) of the current domain Ωt. Consider the mapping l : Ωt×(0, T ]→ R and

its corresponding mapping l̂ : Ω0× (0, T ]→ [0, 1] on the initial domain Ω0 where l̂(η, t) represents

the distance from the centre of Ω0 and the point η with l(x(η, t), t) = l̂(η, t). To denote the region

where the polymerisation force act, we define a delta function δ(l) such that

δ(l) =


1 if the point (x, t) with l(x(η, t), t) = l̂(η, t)

is such that the distance
√
η2
x + η2

y > 0.8 in the initial domain,

0 elsewhere.

We have now obtained the non-dimensionalised viscous model for cell motility. In order to

solve models such as the viscous model that we have derived, one would need to keep track of
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the boundary. There are several methods that can be employed with no need to track the sharp

evolving boundary. Phase-field method is one of these methods. We will explore this method in

the next section and write the phase-field framework of the viscous model that we have already

derived.

2.4 Phase-field model

Introduction

Phase-field method has been used extensively to solve moving boundary problems. It has been

applied to a number of problems such as crack propagation Karma et al. (2001), diffusional prob-

lems in complicated geometries Teigen et al. (2009); Li et al. (2009); Kockelkoren et al. (2003),

solidification Rappel (2001), problems on mean-curvature flow Du et al. (2005); Deckelnick et al.

(2005), surface PDEs Dziuk and Elliott (2013); Rätz et al. (2006), cell biology Shao (2011) among

other moving boundary problems. This method avoids the tracking of the interface by introdu-

cing an auxiliary field that locates the interface and whose dynamics is coupled to other physical

fields through an appropriate set of partial differential equations. Here, we will give mathematical

concepts used in phase-field modeling and then derive the phase-field framework of the viscous

model.

Theory of phase-field modelling

To construct phase-field models, one needs to introduce an auxiliary field φ(x, t), a free energy

functional F [φ] and a double well potential G(φ). The auxiliary field φ(x, t) (also known as the

phase-field parameter) takes a value say φ(x, t) = 0 in one region and another value φ(x, t) = 1 in

another region and varies smoothly between 0 and 1 in the interface between the two regions. The

double well potential has minima which describes the value of φ in each region. In the context

of the cell, one region would mean the interior of the cell and the other the exterior of the cell.

The interface between the two regions of the cell will be the boundary of the cell. In this case

one needs to define a double well potential with two minima, such that the first minima would

correspond to the value of the phase-field parameter φ(x, t) inside the cell and the second minima

would correspond to the value of φ(x, t) outside the cell. The phase-field parameter will vary

smoothly from one minima to the other across the region which represents the boundary of the

cell.

On this note, let the inside of the cell be represented by φ(x, t) = 1 and the exterior of the cell

by φ(x, t) = 0. Let φ(x, t) vary smoothly from 0 to 1 across the boundary of the cell. We note

that the cell membrane will be represented by φ(x, t) = 1
2 . To this end, we define a double well

potential and free energy functional of the form

G(φ) = 18φ2(1− φ)2,
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F [φ] =

∫
Ω

(
ε|∇φ|2

2
+
G(φ)

ε

)
dx :=

∫
Ω

f (x, φ,∇φ) dx, (2.4.1)

respectively where ε is the width of the phase field Du et al. (2005). F [φ] is assumed to have

continuous first and second derivatives with respect to φ. The double well potential has two

minima φ(x, t) = 1 and φ(x, t) = 0 which distinguish the inside of the cell from the outside. The

graph for the double well potential is shown in Figure 2.1. We consider the simple case that the cell

only possesses the interface energy (2.4.1) and assume that F [φ] has continuous first and second

derivatives with respect to φ. The variational relation of the interface energy (2.4.1)

ε
∂φ

∂t
= −δF

δφ
(2.4.2)

will give rise to the phase-field equation for the cell shape as shown below. Here, δF
δφ is known as

the variational derivative of the functional F [φ]. In two-dimensions, the variational derivative is

defined as Gelfand et al. (2000)

δF

δφ
=
∂f

∂φ
−

i=2∑
i=1

∂

∂xi

(
∂f

∂φxi

)
. (2.4.3)

Following (2.4.3), the variational relation of energy functional F [φ] becomes

ε
∂φ

∂t
= −δF [φ]

δφ

= −G
′(φ)

ε
+

∂

∂x

(
∂

∂φx

[
ε

2

((
∂φ

∂x

)2

+

(
∂φ

∂y

)2
)

+
G(φ)

ε

])

+
∂

∂y

(
∂

∂φy

[
ε

2

((
∂φ

∂x

)2

+

(
∂φ

∂y

)2
)

+
G(φ)

ε

])
,

= −G
′(φ)

ε
+ ε

∂

∂x

(
∂φ

∂x

)
+ ε

∂

∂y

(
∂φ

∂y

)
= −G

′(φ)

ε
+ ε

∂2φ

∂x2
+ ε

∂2φ

∂y2
,

= ε∆φ− G′(φ)

ε
,

(2.4.4)

where G(φ(x, t)) is a double well potential with mimima at φ(x, t) = 1 and φ(x, t) = 0. The

variational relation is therefore given by

ε
∂φ

∂t
= ε∆φ− G′(φ)

ε
. (2.4.5)

However, in two dimension, the circle will shrink with time if we only consider the interface energy.

To remedy this, we add a term to balance the interface energy. We follow the formulation in Biben

et al. (2005); Biben and Misbah (2003) and have the following variational relation

ε
∂φ

∂t
= ε∆φ− G′(φ)

ε
+ cε|∇φ|, (2.4.6)

where c is the local interface curvature given by c = ∇ · ∇φ|∇φ| .
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Figure 2.1: Double well potential for the phase-field.

The model equations for cell migration (2.3.23) can be formulated in a phase-field framework

by adding an additional equation that will track the cell shape. We will summarise the phase-field

framework for the equations governing cell migration.

Phase-field framework for cell migration model

We formulate these equations in phase-field framework where cell shape is tracked by a phase-field

φ(x, t) that takes value one inside the cell and zero outside. The phase-field parameter varies

smoothly across the cell boundary, which is set by φ(x, t) = 1
2 . The equation for the cell shape is

therefore given by

∂φ

∂t
+∇ · (βφ) = Γ (ε∆φ−G′(φ)/ε+ cε|∇φ|) , x ∈ Ω, t ∈ (0, T ], (2.4.7)

where β is the cytoskeletal velocity , Γ is a relaxation coefficient, c is the local interface curvature

given by c = ∇· ∇φ|∇φ| , ε is a parameter for the interface width and G(φ) = 18φ2(1−φ)2 is a double

well potential with minima at φ = 0 and φ = 1 representing the outside and inside of the cell

respectively. The reaction-advection-diffusion equations for myosin II and actin filaments in the

phase-field framework are respectively given by

∂(φρm)

∂t
+∇ · (φρmβ) = ∇ · (φDm(ρa)∇ρm), x ∈ Ω, t ∈ (0, T ], (2.4.8)

∂(φρa)

∂t
+∇ · (φρaβ) = Da∇ · (φ∇ρa) + φf(ρa, ρ

cyt
a ), x ∈ Ω, t ∈ (0, T ], (2.4.9)
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where Dm(ρa) and f(ρa, ρ
cyt
a ) are the variable diffusion for myosin II and reaction kinetics for actin

respectively and are given by

Dm(ρa) =
D0
m

1 + ρa
KD

,

f(ρa, ρ
cyt
a ) = kb

(
ρ2
a

K2
a + ρ2

a

+ ka

)
ρcyta − kcρa,

with

ρcyta =
ρtota −

∫
Ωt
φρa dΩt∫

Ωt
φdΩt

.

The force balance equation is also written in the phase-field framework as

∇ · (σν(x, t) + σmyo(x, t) + σpoly(x, t)) = 0, x ∈ Ω, t ∈ (0, T ], (2.4.10)

where 
σν(x, t) = ν0

2 φ(∇β(x, t) + (∇β(x, t))T ), ν0 ∈ R+

σmyo(x, t) = η0
mφρm(x, t)I, η0

m ∈ R+,

σpoly(x, t) = −η0
aφε|∇φ|2ρa(x, t)I, η0

a ∈ R+,

(2.4.11)

where ε|∇φ|2 labels the cell periphery and ε is the width of the interface.

Non-dimensionalised phase-field model for cell migration

We carry out non-dimensionalisation as before by using the following rescaled variables

ρ̂m =
ρm
Ka

, ρ̂a =
ρa
Ka

, ρ̂a
cyt =

ρcyta
Ka

, x̂ =
x

R
, β̂ =

β

kbR
t̂ =

t

τ
, ∇ =

1

R
∇̂, ∆ =

1

R2
∆̂, (2.4.12)

where τ is the scaling factor for time and R is the scaling factor for length. Substituting the new

variables into the equation for the cell shape (2.4.7) and the reaction-diffusion equations for F-actin

and myosin II gives

1

τ

∂φ

∂t̂
+ kb∇̂ · (β̂φ) = Γ

( ε

R2
∆̂φ−G′(φ)/ε+

ε

R2
ĉ|∇̂φ|

)
, (2.4.13)

Ka

τ

∂(φρ̂m)

∂t̂
+ kbKa∇̂ ·

(
φρ̂mβ̂

)
− KaD

0
m

R2
∇̂ ·

((
φ

1 + Kaρ̂a
KD

)
∇̂ρ̂m

)
= 0, (2.4.14)

and

Ka

τ

∂(φρ̂a)

∂t̂
+ kbKa∇̂ ·

(
φρ̂aβ̂

)
− DaKa

R2
∇̂ ·
(
φ∇̂ρ̂a

)
= φ

(
kbKa

(
K2
a ρ̂a

2

K2
a +K2

a ρ̂a
2 + ka

)
ρ̂a
cyt − kcKaρ̂a

)
,

(2.4.15)

Now divide (2.4.13) by 1
τ and (2.4.14) and (2.4.15) by Ka

τ gives

∂φ

∂t̂
+ τkb∇̂ · (β̂φ) = τΓ

( ε

R2
∆̂φ−G′(φ)/ε+

ε

R2
ĉ|∇̂φ|

)
,

∂(φρ̂m)

∂t̂
+ kbτ∇̂ ·

(
φρ̂mβ̂

)
− τD0

m

R2
∇̂ ·

((
φ

1 + Kaρ̂a
KD

)
∇̂ρ̂m

)
= 0,

and

∂(φρ̂a)

∂t̂
+ kbτ∇̂ ·

(
φρ̂aβ̂

)
−Da

τ

R2
∇̂ ·
(
φ∇̂ρ̂a

)
= φ

(
τkb

(
K2
a ρ̂a

2

K2
a +K2

a ρ̂a
2 + ka

)
ρ̂a
cyt − kcτ ρ̂a

)
,
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respectively. Choosing
τD0

m

R2 = 1 gives

∂φ

∂t̂
+
kbR

2

D0
m

∇̂ · (β̂φ) =
R2

D0
m

Γ
( ε

R2
∆̂φ−G′(φ)/ε+

ε

R2
ĉ|∇̂φ|

)
,

∂(φρ̂m)

∂t̂
+
kbR

2

D0
m

∇̂ ·
(
φρ̂mβ̂

)
− ∇̂ ·

((
φ

1 + Kaρ̂a
KD

)
∇̂ρ̂m

)
= 0,

and

∂(φρ̂a)

∂t̂
+
kbR

2

D0
m

∇̂ ·
(
φρ̂aβ̂

)
− Da

D0
m

∇̂ ·
(
φ∇̂ρ̂a

)
= φ

(
R2kb
D0
m

(
ρ̂a

2

1 + ρ̂a
2 + ka

)
ρ̂a
cyt − kcR

2

D0
m

ρ̂a

)
.

Let 

d = Da

D0
m
, a = Ka

KD
,

k3 = R2kb
D0

m
, k4 = R2kakb

D0
m

,

b = kbR
2

D0
m
, e = R2kc

D0
m
,

γ = εΓ
D0

m
, λ = R2Γ

εD0
m
,

and have
∂φ

∂t̂
+ b∇̂ · (β̂φ) = γ∆̂φ− λG′(φ) + γĉ|∇̂φ|,

∂(φρ̂m)

∂t̂
+ b∇̂ ·

(
φρ̂mβ̂

)
− ∇̂ ·

((
φ

1 + aρ̂a

)
∇̂ρ̂m

)
= 0,

and
∂(φρ̂a)

∂t̂
+ b∇̂ ·

(
φρ̂aβ̂

)
− d∇̂ ·

(
φ∇̂ρ̂a

)
= φ

((
k3ρ̂a

2

1 + ρ̂a
2 + k4

)
ρ̂a
cyt − eρ̂a

)
.

Finally, for notational simplicity, we drop all hats to obtain the following non-dimensionalised

system.

∂φ

∂t
+ b∇ · (φβ) = γ∆φ− λG′(φ) + γc|∇φ|,

∂(φρm)

∂t
+ b∇ · (φρmβ) = ∇ ·

((
φ

1 + aρa

)
∇ρm

)
,

∂(φρa)

∂t
+ b∇ · (φρaβ) = d∇ · (φ∇ρa) + φ

((
k3ρ

2
a

1 + ρ2
a

+ k4

)
ρcyta − eρa

)
,

with

ρcyta (t) =
ρtota −

∫
Ω
φρa dΩ∫

Ω
φdΩ

.

Similarly, the non-dimensionalised force balance mechanical equation is given by

∇ · (σν(x, t) + σmyo(x, t) + σpoly(x, t)) = 0.

where 
σmyo(x, t) = η3φρm(x, t)I, η3 ∈ R+,

σν(x, t) = φ(∇β(x, t) + (∇β(x, t))T ),

σpoly(x, t) = −η4φ|∇φ|2ρa(x, t)I, η4 ∈ R+,

with

η3 =
2Kaη

0
m

kbν0
and η4 =

2Kaη
0
aε

kbν0R2
.
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Parameters a k3 k4 b d e λ γ η3 η4 ρtota

Value 2.0 500.0 5.0 500.0 0.4 500.0 10 0.4 1
50

112
50,000 8.0

Table 2.3: Non-dimensionalised parameters for the phase-field model.

We end up with the following non-dimensionalised model in Ω, t ∈ (0, T ] with non-dimensional

parameters values in Table 2.3.

∂φ
∂t + b∇ · (φβ) = γ∆φ− λG′(φ) + γc|∇φ|,
∂(φρm)
∂t + b∇ · (φρmβ) = ∇ ·

((
φ

1+aρa

)
∇ρm

)
,

∂(φρa)
∂t + b∇ · (φρaβ) = d∇ · (φ∇ρa) + φ

((
k3ρ

2
a

1+ρ2
a

+ k4

)
ρcyta − eρa

)
,

∇ · (σν(x, t) + σmyo(x, t) + σpoly(x, t)) = 0,

φρa(x, 0) = φρ0
a(x), φρm(x, 0) = φρ0

m(x), at t = 0,

(2.4.16)

where 

ρcyta (t) =
ρtota −

∫
Ω
φρa dΩ∫

Ω
φdΩ

,

c = ∇ · ∇φ|∇φ| ,

σν(x, t) = φ(∇β(x, t) + (∇β(x, t))T ),

σmyo(x, t) = η3φρm(x, t)I, η3 ∈ R+,

σpoly(x, t) = −η4φ|∇φ|2ρa(x, t)I, η4 ∈ R+,

(2.4.17)

with periodic boundary conditions.

2.5 Summary

In this chapter, we derived a viscous model for cell migration using conservation law. The model

consists of three coupled equations, namely, reaction-advection-diffusion equations for F-actin and

myosin II and a force balance equation for the actin-myosin system. The reaction-advection-

diffusion equations assume that actin changes from its active state to inactive state and vice-versa

and is advected inside the cell. Similarly, myosin II is bound to actin bundles and advected inside

the cell. F-actin and myosin II are treated as the source of active stresses and their actions of

polymerisation and contraction generate forces that drive the cell. Actin polymerisation takes

place close to the periphery of the cell and results in expansion of the cell while contraction of

myosin II leads to the cell being pulled inwards. We also considered the actin system as a viscous

gel that exhibits the characteristics of a viscous material. At quasi-steady state, all the forces

balance off and their sum is zero. The model has three variables, namely F-actin concentration,

myosin II concentration and velocity of the actin-myosin network. Furthermore, we formulated

the phase-field framework of the viscous model by introducing a phase-field parameter. Finally,

we non-dimensionalised both models and ended up with non-dimensional parameters.

Now that we have derived the viscous and phase-field models for cell migration, we would like
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to solve them. The model equations are highly nonlinear making analytical solutions difficult to

get. We will therefore explore numerical solutions for these models in Chapter 3.
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Chapter 3

Numerical methods for the viscous

model for cell migration

3.1 Introduction

The aim of this chapter is to solve the viscous and phase-fields models (2.3.28) and (2.4.16) re-

spectively. Our models, just as in many models for cell migration, contain highly nonlinear terms

which make it impossible to obtain analytical solutions. In such cases where analytical solutions

to mathematical problems are difficult to get, numerical methods serve as good choice to obtain

the approximate solutions to the problems. Numerical methods for partial differential equations

consist of two parts: a space discretisation to transform the system of partial differential equations

into a system of ordinary differential equations and a time discretisation to transform the system

of ordinary differential equations into a system of algebraic equations which can be solved using

different techniques of linear algebra.

There are many numerical methods that have been developed and widely used to study different

problems. When choosing a particular numerical method to solve a given problem, one may

consider the ease in applying the method to the problem being solved, the ability of the method

to generate accurate results in comparison to other numerical methods and the robustness of the

numerical methods. Space discretisation include finite differences Morton and Mayers (1998);

Mitchell and Griffiths (1980), finite elements Süli (2007); Reddy (1993), boundary elements Hall

(1994); Brebbia (1980) among others. Finite differences have been used in different modelling

aspects for example in solving problems in phase-fields Camley et al. (2013); Crampin et al. (1999);

Shao et al. (2010, 2012). Their main advantages are that on fixed domains with simple geometries,

they are simple to apply, easy to implement and can be easily parallelised Morton and Mayers

(1998). However, their application to irregular domains which are continuously changing is usually

non-trivial Madzvamuse et al. (2005). In such situations, finite elements are usually good choice.

The moving grid finite element method was introduced to solve partial differential equations on

complex evolving domains and has been applied to compute solutions of reaction-diffusion equations
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in continuously deforming domains Madzvamuse et al. (2003, 2005); Madzvamuse (2006). In this

thesis, it is sufficient to use finite differences and finite elements to discretise the domains.

Several time discretisation have been used to obtain solutions for partial differential equations

on both stationary and evolving domains. Fully explicit methods require very small time steps

which result in computations that are expensive especially when it comes to multi-dimensions

while fully implicit schemes require some special linearisation techniques as shown in Madzvamuse

and Chung (2014). Ruuth (1995) and Madzvamuse (2006) presented different IMplicit-EXplicit

(hence IMEX) schemes. The key essence of these schemes is that an implicit scheme is applied to

approximate the diffusive term and an explicit scheme is used to approximate the reaction kinetics.

We will explore the second order semi-implicit backward differentiation formula (2-SBDF) scheme

in this thesis. The 2-SBDF is an example of IMEX schemes. We begin by reviewing the theory of

finite elements and then apply it to solve the viscous model.

3.2 The finite element method

3.2.1 Theory of the finite element method

We begin by summarising the main attributes of the finite element method for a partial differential

equation of the form
∂u

∂t
= Lu, (3.2.1)

where L is a differential operator containing u and its spatial derivatives and is in general nonlinear.

For such problems, exact analytical solutions are not very trivial to get and therefore numerical

techniques are usually sought in order to find the approximate solution to the problem. The basic

idea behind the finite element method is to discretise the given continuous problem with infinitely

many degrees of freedom to obtain a discrete system of equations with a finite number of degrees of

freedom. The discretisation process begins with the reformulation of the given partial differential

equation (3.2.1) to an equivalent weak form over some space V which we will define shortly. We

multiply (3.2.1) by a test function v ∈ V and apply Greens theorem (2.2.7) to have the following

problem: find u ∈ V such that

(v,
∂u

∂t
) = (v,Lu), for all v ∈ V (3.2.2)

where

(u, v) =

∫
Ωt

uv dΩt, (3.2.3)

is the L2-inner product. To obtain a problem that can be solved numerically, we replace the space

V by a finite-dimensional subspace Vh and seek both the approximate solution and test function

v in this space. We get the following finite-dimensional problem: find uh ∈ Vh such that

(vh,
∂uh

∂t
) = (vh,Luh), for all vh ∈ Vh. (3.2.4)

Next, we will subdivide the domain into sub-domains Ki and define a triangulation Th to be a

finite union of the Ki and seek approximate uh as a linear combination of a basis function of the



34

space Vh. In order to carry out the weak formulation and obtain the semi-discrete problem, we

need to define the space with which to require the solution and also what sort of derivative to use.

We define them below.

Spaces and norms

Let N denote the set of non-negative integers. An n−tuple

α = (α1, ..., αn) ∈ Nn

is called a multi-index and its length is given by |α| = α1 + ...+ αn.

Lp(Ωt) space

Let Ωt ⊆ R2 be an open, bounded and continuously deforming domain with boundary ∂Ωt and

let p ≥ 1 be a real number. We define a space of integrable functions Lp(Ωt) on Ωt by

Lp(Ωt) :=

{
u(x, t) a measurable function :

∫
Ωt

| u(x, t) |p dΩt <∞ for x ∈ Ωt, t ∈ (0, T ]

}
.

The space Lp(Ωt) is equipped with the norm

‖u‖Lp(Ωt) =

(∫
Ωt

| u(x, t) |p dΩt

) 1
p

.

For p =∞, the space L∞(Ωt) is equipped with the norm

‖u‖L∞(Ωt) = ess.supx(t)∈Ωt
| u(x, t) |,

where ess.supx(t)∈Ωt
| u(x, t) | denotes the essential supremum of | u(x, t) | Süli (2007).

Sobolev spaces

Having defined the Lp(Ωt) space, we now introduce a class of spaces which play an important role

in the theory of the finite element method. Suppose that u(x, t) is a locally integrable function

defined on Ωt and suppose also that there exists a function wα(x, t) also locally integrable on Ωt

such that∫
Ωt

wα(x, t) · v(x, t)dΩt = (−1)|α|
∫

Ωt

u(x, t) ·Dαv(x, t)dΩt for all v(x, t) ∈ C∞0 ,

then we say that wα(x, t) is a weak derivative of the function u(x, t) of order |α| = α1 + ...+αn and

we write wα(x, t) = Dαu(x, t) Süli (2007). With this, we give an explicit definition of a Sobolev

space. Let k be a non-negative integer and suppose that p ∈ [1,∞] then

Wk
p(Ωt) = {u ∈ Lp(Ωt) | Dαu(x, t) ∈ Lp(Ωt), |α| ≤ k}

is called a Sobolev space of order k Süli (2007). This space is equipped with the norm

‖u‖Wk
p(Ωt) =

 ∑
|α|≤k

‖Dαu(x, t)‖pLp(Ωt)

 1
p

, for 1 ≤ p <∞,
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and

‖u‖Wk
∞(Ωt) =

∑
|α|≤k

‖Dαu(x, t)‖L∞(Ωt), when p =∞.

An important case is when p = 2 which is a Hilbert space Wk
2(Ωt) commonly denoted by Hk(Ωt)

with inner product

(u, v)Hk(Ωt) :=
∑
|α|≤k

(Dαu(x, t),Dαv(x, t)).

Throughout this thesis, we will only be interested with the case k = 1, that is, the case H1(Ωt). We

let V = H1(Ωt) and define a conforming finite element space by Vh ⊂ V = H1(Ωt). The solution

uh is known as the weak solution of the partial differential equation (3.2.1). A summary for finite

element method is therefore to seek solutions of partial differential equations in the Sobolev space

H1(Ωt), discretise the domains using triangular or quadrilateral elements and seek solutions only

in a finite dimensional space Vh.

To determine the values of the finite element approximate solutions to the semi-discrete problem

(3.2.4), it remains to integrate the system of ordinary differential equations in time. There are two

broad approaches to time-stepping, namely explicit and implicit methods. The simplest example

of an explicit method is the forward Euler method. The forward Euler method for (3.2.1)is given

by
un+1 − un

τ
= Lun, (3.2.5)

where τ is the time-step size, un and un+1 are the solutions at time tn and tn+1 respectively and

τ = tn+1 − tn. This method is conditionally stable Morton and Mayers (1998). For a moderately

small mesh size h, this method requires very small time steps. This can be very restrictive. To

avoid such restrictions, implicit methods are a natural choice Morton and Mayers (1998). There

are two broad implicit methods, namely the backward Euler method and the trapezoidal rule. The

backward Euler method for the partial differential equation (3.2.1) can be expressed as

un+1 − un

τ
= Lun+1, (3.2.6)

while the trapezoidal rule can be written in the general form as

un+1 − un

τ
=

1

2

(
Lun + Lun+1

)
. (3.2.7)

Both the backward Euler and trapezoidal rule are stable regardless of the time-step. For general

linear diffusion problems, the implicit methods are unconditionally stable. The backward Euler

method is a first order scheme in time while the trapezoidal rule is a second order scheme in time

Morton and Mayers (1998).

Now that we have defined the space on which to seek solutions from, namely, H1(Ωt), we are

in a position to solve the viscous model (2.3.28). We take for illustrative purposes the well studied

Schnakenberg model and then construct its numerical solvers. The rationale behind is that a lot

of analytical results are known for the Schnakenberg model close to bifurcation points through the

use of linear stability analysis. Once we have validated that our finite element solver is working

for such complex nonlinear reaction-diffusion systems, we will then apply the solver to our original

viscous model. It must be noted that reaction kinetics are a key component of the viscous model.
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3.2.2 The Schnakenberg model

A lot of studies on reaction-diffusion equations on different domains with different reaction kinetics

have been done and are well understood Turing (1952); Murray (2002); Schnakenberg (1979);

Madzvamuse (2000, 2006); Madzvamuse and Chung (2014); Chung (2016). In particular, reaction-

diffusion equations with Schnakenberg reaction kinetics have been considered and are well known

on both stationary and evolving domains Schnakenberg (1979); Murray (2002); Madzvamuse et al.

(2005); Madzvamuse (2000); Chung (2016). For illustrations, we only consider the Schnakenberg

model on a stationary domain and construct its numerical solvers. We note that this solver can

be extended to include the terms that come as a result of domain growth when one is considering

model equations on evolving domains.

Model equations on a stationary domain

Let Ω be a convex and stationary domain with Lipschitz boundary ∂Ω and let I = (0, T ] be some

time interval. For illustrative purposes, we consider the well known Schnakenberg reaction kinetics

and have the following model equations on Ω

∂u
∂t −∆u = γ(a− u+ u2v) := γf(u, v), x ∈ Ω, t ∈ I,

∂v
∂t − d∆v = γ(b− u2v) := γg(u, v), x ∈ Ω, t ∈ I,

u(x, 0) = u0(x), x ∈ Ω, t = 0,

∂u
∂n = 0, x ∈ ∂Ω, t ∈ I,

v(x, 0) = v0(x), x ∈ Ω, t = 0,

∂v
∂n = 0, x ∈ ∂Ω, t ∈ I,

(3.2.8)

for concentrations u(x, t) and v(x, t) with a, b, d and γ being some real positive constants. Here, d

measures the ratio of the relative diffusivity of the v to u variables while γ measures the strength

of the reaction. For this system, we have chosen homogeneous Neumann boundary conditions on

the entire boundary and initial conditions will be chosen to be small random perturbations about

the steady state

(û, v̂) =

(
a+ b,

b

(a+ b)2

)
. (3.2.9)

Conditions for diffusion-driven instability

We derive briefly the conditions for diffusion-driven instability as showed by Turing (1952). In the

absence of diffusion, (3.2.8) becomes

∂u

∂t
= γf(u, v) and

∂v

∂t
= γg(u, v). (3.2.10)

Define |ξ| � 1 and |η| � 1 such that (u, v) = (û+ ξ, v̂ + η) where (û, v̂) is a homogeneous state of

(3.2.10). Then linearising (3.2.10) about the steady state (û, v̂) gives∂u
∂t

∂v
∂t

 =

 ∂ξ
∂t

∂η
∂t

 = γ

fu fv

gu gv

ξ
η

 , (3.2.11)
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where the derivatives of f and g are evaluated at the equilibrium point (û, v̂). Here, we note that

in deriving (3.2.11), we have ignored the second order and higher order terms of ξ and η. By

calculation, it can be shown that the equilibrium point (û, v̂) is linearly stable provided

fu + gv < 0 and fugv − fvgu > 0, (3.2.12)

where the derivatives are evaluated at the equilibrium point (3.2.9) Murray (2002). If one then

allows spatial in-homogeneity, it is possible that the system evolves to an inhomogeneous steady

state. This phenomenon is described as diffusion-driven instability or Turing instability Turing

(1952); Murray (2002). We now consider the model in the presence of diffusion, i.e
∂u
∂t −∆u = γ(a− u+ u2v) := γf(u, v),

∂v
∂t − d∆v = γ(b− u2v) := γg(u, v),

(3.2.13)

and investigate under what conditions the equilibrium point (û, v̂) becomes unstable when diffusion

is added. Let ζ = (ξ, η)T and

J =

fu fv

gu gv

 , D =

1 0

0 d

 ,

where the derivatives have been evaluated at the equilibrium point (û, v̂). Linearising (3.2.13)

about the equilibrium point (û, v̂), we obtain

∂ζ

∂t
= γJζ + D∆ζ, (3.2.14)

with homogeneous Neumann boundary conditions Murray (2001). The partial differential equation

(3.2.14) can be solved by separation of variables to get

ζ(x, t) =
∑
k

cke
λtζk(x). (3.2.15)

For each k, ck represents the vector of Fourier coefficients and ζk is the eigenfunction of the

Laplacian Murray (2001), that is, it satisfies

∇2ζk + k2ζk = 0, (3.2.16)

with zero flux boundary conditions

(n · ∇)ζk = 0. (3.2.17)

Substituting (3.2.15) and (3.2.16) into (3.2.14), we obtain the following eigenvalue problem for

each k

(λI− γJ + Dk2)ck = 0, (3.2.18)

where I is the identity matrix. As we require nontrivial solutions for ck, the following must be

satisfied Murray (2001)

|λI− γJ + Dk2| = 0. (3.2.19)

It can be shown that λ = λ(k2) satisfies the following dispersion relation

λ2 + b(k2) + c(k2) = 0, (3.2.20)
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where

b(k2) = k2(1 + d)− γ(fu + gv), (3.2.21)

c(k2) = dk4 − γ(dfu + gv)k
2 + γ2(fugv − fvgu). (3.2.22)

We note that the condition (fu + gv) < 0 implies that b(k2) > 0 for all k2. For diffusion-driven

instability to occur, one of the roots of (3.2.20) must have Reλ(k2) > 0 for some k2 > 0. We see

that Reλ(k2) > 0 only when c(k2) < 0 for some k2 > 0. Since the equation (3.2.22) is quadratic

in terms of k2, we can show easily that c(k2) < 0 for some k2 > 0. This is possible if and only if

dfu + gv > 0 (3.2.23)

and

(dfu + gv)
2 − 4d(fugv − fvgu) > 0. (3.2.24)

Therefore the conditions for diffusion-driven instability can be summarised as follows Edelstein-

Keshet (1988); Murray (2001); Madzvamuse (2000): In the absence of diffusion

fu + gv < 0 and fugv − fvgu > 0, (3.2.25)

and adding diffusion

dfu + gv > 0 and (dfu + gv)
2 − 4d(fugv − fvgu) > 0, (3.2.26)

where the derivatives have been evaluated at the equilibrium point. The choices a = 0.1, b = 0.9,

d = 10 and γ = 29 will lead to diffusion-driven instability Madzvamuse (2000). For linear stability

analysis of this model, we make reference to Murray (2002); Madzvamuse (2000).

Numerical methods

Due to the non-linearities in the Schnakenberg model (3.2.8), its analytical solution is not readily

available and therefore we seek its numerical solutions using the finite element method. The finite

element method is based on the idea of dividing a domain into sub-domains such that the whole

domain is approximated as a collection of these sub-domains. These sub-domains are known as

elements while their vertices are called nodes. The model equations are then described on each

element and solution is approximated over the elements by polynomials in terms of values at

the nodes and then assembled at the nodes to form an approximate system of equations for the

entire domain. For time dependent problems, this formulation renders the problem into a system

of ordinary differential equations and therefore a time discretisation is required to transform the

system of ordinary differential equations into a system of algebraic equations which when solved

gives values of the unknown quantities at the nodes. This temporal discretisation is often achieved

using finite differences. The finite element method therefore involves the following steps: derivation

of weak formulation of the partial differential equations, the finite element spatial discretisation to

obtain a system of semi-discrete equations and a temporal discretisation to obtain fully discrete

equations.
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Weak formulation

To derive the weak formulation of the reaction-diffusion equation (3.2.8), we multiply each of the

equations by a test function say ψ(x, t) ∈ H1(Ω) and integrate over Ω as follows∫
Ω

ψ
∂u

∂t
dΩ−

∫
Ω

ψ∆udΩ = γ

∫
Ω

ψ
(
a− u+ u2v

)
dΩ, (3.2.27)

and ∫
Ω

ψ
∂v

∂t
dΩ− d

∫
Ω

ψ∆vdΩ = γ

∫
Ω

ψ
(
b− u2v

)
dΩ. (3.2.28)

Now we apply Green’s formula to the above equations and use ∂u
∂n = ∂v

∂n = 0 on ∂Ω to arrive at

the following weak formulation: find u(x, t), v(x, t) ∈ H1(Ω), t ∈ (0, T ] such that
∫
Ω
ψ ∂u∂t dΩ +

∫
Ω
∇ψ · ∇udΩ = γ

∫
Ω
ψ
(
a− u+ u2v

)
dΩ,∫

Ω
ψ ∂v∂t dΩ + d

∫
Ω
∇ψ · ∇vdΩ = γ

∫
Ω
ψ
(
b− u2v

)
dΩ,

(3.2.29)

for all ψ(x, t) ∈ H1(Ω).

The finite element spatial discretisation

Let Ωh be the computational domain which is a polyhedral approximation to Ω. We define Th to

be a triangulation of Ωh made up of non-degenerate rectangular elements Ki such that Th =
⋃
iKi.

We call each Ki an element of the mesh Th where h is the diameter of the largest element. For

the mesh Th, we require that it is made up of a finite number of elements and the elements must

intersect along a complete edge, or at a vertex or not at all. We carry out the space discretisation

using quadrilateral elements and seek a piece-wise linear approximation of the solution. To this

end, we define the finite element space Vh ⊂ H1(Ωt) by

Vh =
{
vh ∈ C0(Ω) : vh|K is linear

}
(3.2.30)

We will seek solutions of the Schnakenberg model in this space. The discretised version of the

weak forms of the reaction-diffusion equations above therefore reads: find uh(x, t), vh(x, t) ∈ Vh
such that

∫
Ωh

ψh ∂u
h

∂t dΩh +
∫
Ωh
∇ψh · ∇uhdΩh = γ

∫
Ωh

ψh
(
a− uh + (uh)2vh

)
dΩh,∫

Ωh
ψh ∂v

h

∂t dΩh + d
∫
Ωh
∇ψh · ∇vhdΩh = γ

∫
Ωh

ψh
(
b− (uh)2vh

)
dΩh,

(3.2.31)

for all ψh ∈ Vh. Since Vh is a linear space, it must have a basis. We introduce the basis function

φi(x) ∈ Vh, i = 1, 2, ..., Nh (3.2.32)

such that

φi(pj) =

1 if i = j,

0 if i 6= j,

(3.2.33)

where pj is the jth nodal point of the mesh. The basis function φi(x) is called piece-wise linear

finite element nodal basis functions. We seek to find the finite element numerical approximations
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uh(x, t), vh(x, t) ∈ Vh expressed as linear combinations of the linear nodal basis functions φi(x) as

follows

uh(x, t) =

Nh∑
j=1

Uj(t)φj(x) and vh(x, t) =

Nh∑
j=1

Vj(t)φj(x), (3.2.34)

where Uj(t) = uh(pj , t) and Vj(t) = vh(pj , t). Without loss of generality, we replace the test

functions ψh(x, t) by φi(x) ∈ Vh, i = 1, 2, ..., Nh and have the following equations:

Nh∑
j=1

∫ ∫
Ωh

φi(x) · φj(x)
dUj(t)

dt
dxdy +

Nh∑
j=1

∫ ∫
Ωh

∇φi(x) · ∇φj(x) Uj(t) dxdy =

γa

∫ ∫
Ωh

φi(x) dxdy − γ
Nh∑
j=1

∫ ∫
Ωh

φi(x) · φj(x)Uj(t) dxdy

+ γ

∫ ∫
Ωh

φi(x)

Nh∑
j=1

φj(x)Uj(t)

2
Nh∑
k=1

φk(x)Vk(t) dxdy,

(3.2.35)

and

Nh∑
j=1

∫ ∫
Ωh

φi(x) · φj(x)
dVj(t)

dt
dxdy + d

Nh∑
j=1

∫ ∫
Ωh

∇φi(x) · ∇φj(x) Vj(t) dxdy =

γb

∫ ∫
Ωh

φi(x) dxdy − γ
∫ ∫

Ωh

φi(x)

Nh∑
j=1

φj(x)Uj(t)

2
Nh∑
k=1

φk(x)Vk(t) dxdy,

(3.2.36)

respectively, for all i = 1, 2, ..., Nh and x = (x, y). Integrating over the whole computational

domain Ωh gives rise to the following semi-discrete equationsMdU(t)
dt + AU(t) = γaH− γMU(t) + γC(U(t),V(t)),

MdV(t)
dt + dAV(t) = γbH− γC(U(t),V(t)),

(3.2.37)

where U(t) = (U1(t), U2(t), ..., UNh
(t))T and V(t) = (V1(t), V2(t), ..., VNh

(t))T are the solution

vectors. The matrices M and A are the global mass matrix and the global stiffness matrix while

the vectors H and C(U(t),V(t)) are the global force vector and the non-linear vector corresponding

to the term u2v respectively. Their entries are

M = {mij} : mij =
∫ ∫

Ωh
φi(x) · φj(x) dxdy,

A = {aij} : aij =
∫ ∫

Ωh
∇φi(x) · ∇φj(x) dxdy.

H = {hi} : hi =
∫ ∫

Ωh
φi(x) dxdy,

C = {ci} : ci =
∫ ∫

Ωh
φi(x)

(∑Nh

j=1 φj(x)Uj(t)
)2 (∑Nh

k=1 φk(x)Vk(t)
)
dxdy,

(3.2.38)

respectively for all i, j = 1, 2, ..., Nh. We note that the matrices M and A are symmetric and

positive definite.
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Time discretisation

So far we have computed the spatial approximation and ended up with two semi-discrete ODEs.

We are now in a position to approximate the system of ODEs in time using finite difference formula

for the time derivatives.

We subdivide the time interval [0, T ] into N uniform subdivisions each of length τ = T
N . We

denote the initial time by t0 and the final time by tN . Any intermediate time is denoted by tn.

For the interval [0, T ], we have t0 = 0 and tN = T . Any point in this interval is therefore given

by tn = nτ and the size of each time interval is τ = tn+1 − tn. Next, the derivatives with respect

to time are approximated by finite differences. As was discussed in Chapter 1, we propose to use

the second order semi-implicit backward differentiation formula (2-SBDF) as outlined in Ruuth

(1995); Madzvamuse (2006) to (3.2.37). This scheme treats the diffusion terms implicitly and the

reaction terms explicitly at time tn and tn−1 as follows
M
(

3Un+1−4Un+Un−1

2τ

)
+ AUn+1 = 2Fn − Fn−1,

M
(

3Vn+1−4Vn+Vn−1

2τ

)
+ dAVn+1 = 2Gn −Gn−1,

where τ is the time-step and Fn, Fn−1, Gn and Gn−1 represent the discretised reaction kinetics

and are shown on the right hand side of (3.2.37). We therefore have the following

M
(

3Un+1−4Un+Un−1

2τ

)
+ AUn+1 = 2(γaH− γMUn + γC(Un,Vn))

−(γaH− γMUn−1 + γC(Un−1,Vn−1)),

M
(

3Vn+1−4Vn+Vn−1

2τ

)
+ dAVn+1 = 2(γbH− γC(Un,Vn))

−(γbH− γC(Un−1,Vn−1)).

Collecting similar terms and rearranging the equations give the following system of linear equations:

(3M + 2τA) Un+1 = 4MUn −MUn−1 + 2τγaH + 2τγMUn−1

− 2τγC(Un−1,Vn−1)− 4τγMUn + 4τγC(Un,Vn),
(3.2.39)

and

(3M + 2τdA) Vn+1 = 4MVn −MVn−1 + 2τγbH

+ 2τγC(Un−1,Vn−1)− 4τγC(Un,Vn).
(3.2.40)

Here we notice that we need solutions at both times t = tn and t = tn−1. Solutions for the last two

time-steps will therefore need to be stored. To start with, we will use a one step backward Euler

method with the reaction terms treated explicitly to solve for the U1 and V1 solutions as follows

(M + τA) U1 = MU0 + τγaH− τγMU0 + τγC(U0,V0),

(M + τdA) V1 = MV0 + τγbH− τγC(U0,V0).

and then proceed with the 2-SBDF for all the other time-steps.
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Gaussian quadrature formula

So far we have discretised the space and time and obtained fully discrete system of equations for

the Schakenberg model (3.2.8). Before we can solve the system of equations, we will further need

to obtain the discrete form of the integrals in the matrices and vectors that we have already set up,

namely the mass and stiffness matrices, the global vector and vector representing the non-linear

term of the reaction kinetics. To implement the discretisation, we use deal.II library Bangerth

et al. (2007). Let us begin by reviewing Gaussian quadrature formula very briefly. Consider the

canonical quadrilateral element K̂ = [−1, 1]2 in Figure 3.1.

ξ

η

(−1,−1) (1,−1)

(1, 1)(−1, 1)

Figure 3.1: The canonical quadrilateral element K̂.

We write the Gaussian quadrature formula for the function g(ξ, η) on the canonical quadrilateral

element K̂ = [−1, 1]2 shown in Figure 3.1 as

∫
K̂

g(ξ, η) dξdη =

∫ 1

−1

∫ 1

−1

g(ξ, η) dξdη

≈
N∑
i=1

N∑
j=1

wiωjg(ξi, ηj),

(3.2.41)

where wi, ωj are the quadrature weights and ξi, ηj are the quadrature points in ξ and η directions

respectively. Here, we have used N quadrature points in each direction. For a general quadrilateral

element, we first need to transform it to the canonical element and then apply the quadrature

formula (3.2.41). We consider the general quadrilateral element K in Figure 3.2 with straight

boundary lines and vertices (xi, yi), i = 1, 2, 3, 4 arranged in anticlockwise manner.
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x

y

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

Figure 3.2: A general quadrilateral element K.

To evaluate the integral

I =

∫∫
K

F (x, y) dxdy,

we first define the nodal shape functions on the canonical quadrilateral element as follows:

φ̂1(ξ, η) = 1
4 (1− ξ)(1− η),

φ̂2(ξ, η) = 1
4 (1 + ξ)(1− η),

φ̂3(ξ, η) = 1
4 (1 + ξ)(1 + η),

φ̂4(ξ, η) = 1
4 (1− ξ)(1 + η).

We note that φ̂1 takes value 1 at the vertex (−1,−1) and 0 in all the other vertices, φ̂2 takes value

1 at the vertex (1,−1) and 0 in all the other vertices, φ̂3 takes value 1 at the vertex (1, 1) and 0 in

all the other vertices and φ̂4 takes value 1 at the vertex (−1, 1) and 0 in all the other vertices and

4∑
i=1

φ̂i(ξ, η) = 1.

We then construct a linear mapping to map the general quadrilateral to the canonical element

R = [−1, 1]2 as shown in Figure 3.3.

x

y

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

Transformation←−−−−−−−−−→
ξ

η

(−1,−1) (1,−1)

(1, 1)(−1, 1)

Figure 3.3: Transformation of a general quadrilateral into the canonical quadrilateral element.
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The mappings can be achieved conveniently by using the nodal shape functions as followsx = P (ξ, η) =
∑4
i=1 xiφ̂i(ξ, η),

y = Q(ξ, η) =
∑4
i=1 yiφ̂i(ξ, η).

With this transformation, we write the integral I as

I =

∫
K

F (x, y) dxdy =

∫
K̂

F (P (ξ, η), Q(ξ, η))|J(ξ, η)| dξdη,

where |J(ξ, η)| is the determinant of the Jacobian of transformation written as

|J(ξ, η)| =

∣∣∣∣∣∣
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

∣∣∣∣∣∣ .
Applying the quadrature formula (3.2.41) yields

I =

∫
K

F (x, y) dxdy =

∫
K̂

F (P (ξ, η), Q(ξ, η))|J(ξ, η)| dξdη

≈
N∑
i=1

N∑
j=1

wiωjF (P (ξi, ηj), Q(ξi, ηj))|J(ξi, ηj)|,

which is the Gaussian quadrature formula for a general quadrilateral element. Having reviewed the

quadrature formula, we now write down the discrete versions of the integrals (3.2.38). We split the

integrals over the entire domain into integrals over each cell Ki and over each cell, discretisation

of the integrals are done. This is achieved by mapping back to the reference cell K̂ where all

the integrations are carried out. The global matrices and vectors will therefore be given as the

contribution over each cell as shown in the equations below

mij =
∑
K∈Ωh

∫
K

φi(x) · φj(x)dK

=
∑
K∈Ωh

∫
K̂

φ̂i(x̂) · φ̂j(x̂)|JK(x̂)|dK̂

=
∑
K∈Ωh

∑
q

φ̂i(x̂q) · φ̂j(x̂q)|JK(x̂q)|w(x̂q),

(3.2.42)

where (x̂q) is the qth quadrature point on the reference cell K̂ and w(x̂q) is the corresponding

weight. Similarly, for the stiffness matrix A, we have

aij =
∑
K∈Ωh

∫
K

∇φi(x) · ∇φj(x)dK

=
∑
K∈Ωh

∫
K̂

∇̂φ̂i(x̂)J−1
K (x̂q) · ∇̂φ̂j(x̂)J−1

K (x̂q)|JK(x̂)|dK̂

=
∑
K∈Ωh

∑
q

∇̂φ̂i(x̂q)J−1
K (x̂q) · ∇̂φ̂j(x̂q)J−1

K (x̂q)|JK(x̂q)|w(x̂q),

(3.2.43)

for the global vector H, we have

hi =
∑
K∈Ωh

∫
K

φi(x)dK =
∑
K∈Ωh

∫
K̂

φ̂i(x̂)|JK(x̂)|dK̂

=
∑
K∈Ωh

∑
q

φ̂i(x̂q)|JK(x̂q)|w(x̂q),

(3.2.44)
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and for the vector C, we have

ci =
∑
K∈Ωh

∫
K

φi(x)

Nh∑
j=1

φj(x)Uj(t)

2(
Nh∑
k=1

φk(x)Vk(t)

)
dK

=
∑
K∈Ωh

∫
K̂

φ̂i(x̂)

Nh∑
j=1

φ̂j(x̂)Uj(t)

2(
Nh∑
k=1

φ̂k(x̂)Vk(t)

)
|JK(x̂)|dK̂

=
∑
K∈Ωh

∑
q

φ̂i(x̂q)

Nh∑
j=1

φ̂j(x̂q)Uj(t)

2(
Nh∑
k=1

φ̂k(x̂q)Vk(t)

)
|JK(x̂q)|w(x̂q).

(3.2.45)

To implement the discretisation, we use deal.II library Bangerth et al. (2007) which is an efficient

finite element library written in C++ language. It is an open-source library and provides tools

to solve problems that specifically use the finite element method. We note that both the mass

and stiffness matrices M and A respectively are large, sparse, symmetric and positive definite.

A sparse matrix has very few nonzero entries. This suggests that the classical direct methods

for solving these systems will not be efficient. Iterative methods are therefore the best option

Saad (2003). By iterative methods, we refer to a wide range of techniques that use successive

approximations to obtain a more accurate solution to a linear system at each time step. Here, we

will use iterative methods that use pre-conditioners. The rate of convergence of an iterative method

depends greatly on the spectrum of the matrices, that is, the rate of convergence depends on the

condition number of the matrices M and A Saad (2003). A pre-conditioner is a transformation

matrix that when applied to the matrices M or A will give rise to a more favourable spectrum of the

resultant matrices Barrett et al. (1994); Madzvamuse (2000). Therefore a good pre-conditioner will

improve the rate of convergence of the iterative method Barrett et al. (1994). Since the matrices M

and A are both symmetric, Equations (3.2.39) and (3.2.40) can be solved using a preconditioned

conjugate gradient method (PCG) Saad (2003). This method requires that the matrices M, A and

preconditioners be symmetric and positive definite. For these matrices, we will choose the diagonal

matrices diag(3M + 2τA) and diag(3M + 2τdA) as the pre-conditioners Saad (2003). Since both

matrices M and A are symmetric and positive definite, so are the diagonal matrices.

Numerical simulations

We now present some numerical simulations for the Schnakenberg model. For our simulations,

the domain Ω is the unit disk. We discretise the unit disk into 5120 quadrilaterals (elements)

with 5185 degrees of freedom. The initial data is chosen to be a random perturbations from the

equilibrium points (3.2.9). In all the simulations, we choose parameters as displayed in Table 3.2.

To check the stability, consistency and convergence of the numerical solutions of the model, we

verify computationally that the errors between successive finite element approximate solutions

decay with time and that the numerical solutions are bounded. We do so by computing the L2-

norm ‖u
n+1−un

τ ‖ for the solutions of the u variable and similarly for the v variable ‖ v
n+1−vn
τ ‖. For

comparison of the numerical results to results from linear stability analysis, we refer to Murray

(2002); Madzvamuse (2000); Chung (2016); George (2012). The simulations were allowed to run
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(a) (b)

Figure 3.4: Solutions for the u variable of the Schnakenberg model using a 2-SBDF scheme with

τ = 2× 10−3. Blue signifies lowest values while red highest values. (a) Initial condition as random

perturbations about steady states for the u variable and (b) solution at a final time step t = 10

showing convergence to an in-homogeneous steady state. Parameters values used are a = 0.1,

b = 0.9, d = 10 and γ = 29.

until a spatially in-homogeneous steady state was reached as shown in Figures 3.4, 3.5 and 3.6.

At each time step, we carry out multiple iterations and terminate computation subject to the

condition that

‖uk+1 − uk‖2 ≤ Tol,

where k is number of iterations and (Tol) is some acceptable tolerance between two successive

iterations. We chose different time-step sizes and compared the L2-norm ‖u
n+1−un

τ ‖ for the solu-

tions for u variable and similarly for the v variable ‖ v
n+1−vn
τ ‖. Furthermore, for a particular τ , we

varied the mesh size and compared the L2-norm. To check the stability region, we computed the

relative error given by

Relative error =

√∑
|Un+1 − Un|2∑
|Un+1|2

, (3.2.46)

at the final time t = 10 and displayed the results in Table 3.1. We also varied the parameter γ

and plot the solutions in Figure 3.6. We plot the graph for the L2-norm with time as shown in

Figures 3.7 and 3.8.

Discussion of the numerical results

The simulations began with initial conditions as random perturbations about the steady states

(3.2.9). Simulation was allowed to run until time t = 10 which was long enough to achieve spatially

varying steady states for the variables u and v. The L2-norm is related to the rate of change of

the variables. We note that the L2-norms decay with time indicating convergence of the numerical
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(a) (b)

Figure 3.5: Solutions for the v variable of the Schnakenberg model using a 2-SBDF scheme with

τ = 2× 10−3. Blue signifies lowest values while red highest values. (a) Initial condition as random

perturbations about steady states for the v variable and (b) solution at a final time step t = 10

showing convergence to an in-homogeneous steady state. Parameters values used are a = 0.1,

b = 0.9, d = 10 and γ = 29.

Time-step τ No. of time steps Relative error ‖un+1−un‖
τ

2.0× 10−2 500 0.157128 518.582

1.85× 10−2 540 0.00239478 3.81838

1.82× 10−2 550 8.79775× 10−7 0.00522085

1.33× 10−2 750 2.58141× 10−7 0.00141715

10−2 1, 000 2.34805× 10−7 0.00171531

2.0× 10−3 5, 000 6.51356× 10−8 0.00237928

10−3 10, 000 3.30758× 10−8 0.0024164

Table 3.1: Convergence of the u variable using the 2-SBDF scheme at different time steps τ showing

the effects of time-step refinement on the magnitudes of errors.
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(a) (b)

Figure 3.6: Solutions for the u variable of the Schnakenberg model with τ = 2 × 10−3, a = 0.1,

b = 0.9, d = 10 and (a) γ = 29 and (b) γ = 100 showing convergence to in-homogeneous steady

states. Blue signifies lowest values while red highest values.
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Figure 3.7: Convergence history of the simulations of the Schnakenberg model using a 2-SBDF

scheme for the u variable with time refinements.
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a b d γ

0.1 0.9 10 29, 100

Table 3.2: The parameters for the Schnakenberg model.

solutions. We observed three key phases in the numerical process as shown in the plots for the

L2-norm. These are initial decay, followed by growth and then again decay as the solution converge

to the spatially varying steady states. There was a significant effect of time-step refinement on the

numerical solutions and the magnitudes of errors as seen in Table 3.1 and Figure 3.7. There was

no significant effect of mesh refinement on the numerical solutions.

Our results validate the theoretical results of diffusion-driven instability (Turing instability)

which states that in the absence of diffusion, equilibrium point (3.2.9) is linearly stable provided

that condition (3.2.12) is satisfied but if one then allows spatial inhomogeneity, it is possible

that the system evolves to an in-homogeneous steady state. We began with initial condition as

random perturbation about steady states for both the u and v variables and solutions evolved to

in-homogeneous steady states. For diffusion-driven instability to be achieved, parameters need to

be selected from a space called Turing space Murray (2002).

Summary

We have considered the well known Schnakenberg model. We derived the conditions for diffusion-

driven instability as indicated in Murray (2002); Turing (1952); Madzvamuse (2000). Since the

model is highly nonlinear, we went ahead and sought numerical solution using finite elements.
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We dealt with the weak formulation of the model, then described the standard finite element

method. In our case, we used the Galerkin method which uses the same space of functions for

both the approximate finite element solutions and the test functions. The construction of the finite

element method was done using quadrilateral elements to discretise the space. To discretise the

time, we used the 2-SBDF method. The resulting discrete system of equations was solved using

preconditioned conjugate gradient method. The solution for the discrete system is the approximate

solution of the u and v variables.

In summary, our results validate the theoretical results of diffusion-driven instability which

states that in the absence of diffusion, equilibrium point (3.2.9) is linearly stable provided that

condition (3.2.12) is satisfied but if one then allows spatial inhomogeneity, it is possible that the

system evolves to an in-homogeneous steady state. We began with initial conditions as random

perturbation about steady states for both the u and v variables and solutions evolved to in-

homogeneous steady states. Now that we have demonstrated that our solver works for the standard

and well known Schnakenberg model, we apply it to the viscous model for cell migration.

3.2.3 The viscous model for cell migration

In this section, we aim to solve the full model for cell migration that was formulated in the previous

chapter. We will use the unit disk as our domain representing the cell at the initial time. We will

apply the finite element method that we discussed to discretise the space and the second order

semi-implicit backward differentiation formula (2-SBDF), see Ruuth (1995); Madzvamuse (2006)

for the time discretisation to transform the system of partial differential equations to a system of

algebraic equations. We will first consider the model equations on a stationary cell and solve the

biochemical model for F-actin and myosin II. Once we have solved the biochemical model, we will

incorporate the force balance equation in order to solve the full model for cell migration. We begin

by rewriting the non-dimensionalised viscous model for cell migration.

The non-dimensionalised viscous model for cell migration



∂ρm
∂t + b∇ · (ρmβ) = ∇ ·

((
1

1+aρa

)
∇ρm

)
, x ∈ Ωt, t ∈ (0, T ],

∂ρa
∂t + b∇ · (ρaβ) = d∆ρa +

(
k3ρ

2
a

1+ρ2
a

+ k4

)
ρcyta − eρa, x ∈ Ωt, t ∈ (0, T ],

∇ · (σν(x, t) + σmyo(x, t) + σpoly(x, t)) = 0, x ∈ Ωt, t ∈ (0, T ],

ρa(x, 0) = ρ0
a(x), ρm(x, 0) = ρ0

m(x), x ∈ Ωt, t = 0,

σν · n = 0, x ∈ ∂Ωt, t ∈ (0, T ],

∂ρa
∂n = ∂ρm

∂n = 0, x ∈ ∂Ωt, t ∈ (0, T ],

(3.2.47)
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with 

ρcyta (t) =
ρtota −

∫
Ωt

ρa dΩt∫
Ωt

dΩt
,

σmyo(x, t) = η1ρm(x, t)I, η1 ∈ R+,

σν(x, t) = ∇β(x, t) + (∇β(x, t))T ,

σpoly(x, t) = −η2ρa(x, t)δ(l)I, η2 ∈ R+.

(3.2.48)

Biochemical model for F-actin and myosin II

We consider a stationary domain Ω ⊂ R2 representing the cell. This means that we consider the

case β(x, t) = 0 in (3.2.47). The reaction-diffusion equations for actin-myosin system on Ω now

reads 
∂ρm
∂t = ∇ ·

((
1

1+aρa

)
∇ρm

)
, x ∈ Ω, t ∈ (0, T ],

ρm(x, 0) = ρ0
m(x), x ∈ Ω, t = 0,

∂ρm
∂n = 0, x ∈ ∂Ω, t ∈ (0, T ],

(3.2.49)

and 
∂ρa
∂t = d∆ρa +

(
k3ρ

2
a

1+ρ2
a

+ k4

)
ρcyta − eρa, x ∈ Ω, t ∈ (0, T ],

ρa(x, 0) = ρ0
a(x), x ∈ Ω, t = 0,

∂ρa
∂n = 0, x ∈ ∂Ω, t ∈ (0, T ],

(3.2.50)

with

ρcyta =
ρtota −

∫
Ω
ρa dΩ∫

Ω
dΩ

,

which is the biochemical model for myosin II and F-actin respectively.

Weak formulation for the reaction-diffusion equation on a stationary domain

To derive the weak formulation of the reaction-diffusion equation (3.2.49) and (3.2.50), we multiply

by a test function say ψ1(x, t) ψ2(x, t) ∈ H1(Ω) respectively and integrate over Ω as follows∫
Ω

ψ1
∂ρm
∂t

dΩ =

∫
Ω

ψ1∇ · (Dm(ρa)∇ρm) dΩ, (3.2.51)∫
Ω

ψ2
∂ρa
∂t

dΩ =

∫
Ω

(
dψ2∆ρa + ψ2f(ρa, ρ

cyt
a )
)
dΩ. (3.2.52)

Now we apply Green’s formula to the above equations and use ∂ρm
∂n = 0 and ∂ρa

∂n = 0 on ∂Ω.

This gives the following weak formulation: find ρm(x, t), ρa(x, t) ∈ H1(Ω), t ∈ (0, T ] such that∫
Ω

ψ1
∂ρm
∂t

dΩ = −
∫

Ω

Dm(ρa)∇ψ1 · ∇ρmdΩ, (3.2.53)∫
Ω

ψ2
∂ρa
∂t

dΩ =

∫
Ω

(
−d∇ψ2 · ∇ρa + ψ2f(ρa, ρ

cyt
a )
)
dΩ, (3.2.54)

for all ψ1(x, t), ψ2(x, t) ∈ H1(Ω), where

Dm(ρa) =
1

1 + aρa
,

f(ρa, ρ
cyt
a ) =

(
k3ρ

2
a

1 + ρ2
a

+ k4

)
ρcyta − eρa,

ρcyta =
ρtota −

∫
Ω
ρa dΩ∫

Ω
dΩ

.
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Space discretisation

To be able to apply a numerical method, the continuous domain needs to be discretised and

only be defined at some finite number of points. We do this by using finite elements which is

well adapted even for irregularly-shaped domains. Let Ωh be the computational domain which is a

polyhedral approximation to Ω. We define Th to be a triangulation of Ωh made up of non-degerate

rectangular elements Ki such that Th =
⋃
iKi. We call each Ki an element of the mesh Th where

h is the diameter of the largest element. For the mesh Th, we require that it is made up of a finite

number of elements and the elements must intersect along a complete edge, or at a vertex or not

at all. The space discretisation is carried out using quadrilateral elements and a piece-wise linear

approximation of the solution is sought. We define the finite element space Vh ⊂ H1(Ω) by

Vh =
{
vh ∈ C0(Ω) : vh|K is linear

}
(3.2.55)

We will seek solutions of the reaction-diffusion equations (3.2.49) and (3.2.50) in this space. The

discretised version of the weak forms of the reaction diffusion equations above therefore reads: find

ρhm(x, t), ρha(x, t) ∈ Vh such that∫
Ωh

ψh1
∂ρhm
∂t

dΩh = −
∫

Ωh

Dm(ρha)∇ψh1 · ∇ρhmdΩh, (3.2.56)∫
Ωh

ψh2
∂ρha
∂t

dΩh =

∫
Ωh

(
−d∇ψh2 · ∇ρha + ψh2 f(ρha)

)
dΩh, (3.2.57)

for all ψh1 (x, t), ψh2 (x, t) ∈ Vh, where

Dm(ρha) =
1

1 + aρha
,

f(ρha , ρ
cyt,h
a ) =

(
k3(ρha)2

1 + (ρha)2
+ k4

)
ρcyt,ha − eρha ,

ρcyt,ha =
ρtota −

∫
Ωh

ρha dΩh∫
Ωh

dΩh
.

Since Vh is a linear space, it must have a basis. We introduce the basis function

φi(x) ∈ Vh, i = 1, 2, ..., Nh, (3.2.58)

such that

φi(pj) =

1 if i = j,

0 if i 6= j,

(3.2.59)

where pj is the jth nodal point of the mesh. We seek to find the finite element numerical approx-

imations of the form ρhm(x, t), ρha(x, t) ∈ Vh expressed as linear combinations of the linear nodal

basis functions φi(x) as follows

ρhm(x, t) =

Nh∑
j=1

ωj(t)φj(x) and ρha(x, t) =

Nh∑
j=1

ρj(t)φj(x), (3.2.60)
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where ωj(t) = ρhm(pj , t) and ρj(t) = ρha(pj , t). Without loss of generality, we replace the test

functions ψh1 (x, t), ψh2 (x, t) by φi(x) ∈ Vh, i = 1, 2, ..., Nh and have the equations approximated

by
Nh∑
j=1

∫
Ωh

φi(x) · φj(x)
dωj(t)

dt
dΩh = −

Nh∑
j=1

∫
Ωh

∇φi(x) · ∇φj(x) ωj(t)

1 + a
∑Nh

k=1 ρk(t)φk(x)
dΩh, (3.2.61)

and

Nh∑
j=1

∫
Ωh

φi(x) · φj(x)
dφj(t)

dt
dΩh = −d

Nh∑
j=1

∫
Ωh

∇φi(x) · ∇φj(x) ρj(t) dΩh

− e
Nh∑
j=1

∫
Ωh

φi(x) · φj(x)ρj(t) dΩh

+ k4amon(t)

∫
Ωh

φi(x) dΩh

+ k3amon(t)

∫
Ωh

φi(x)
(∑Nh

j=1 ρj(t)φj(x)
)2

1 + (
∑Nh

j=1 ρj(t)φj(x))2
dΩh,

(3.2.62)

respectively, for all i = 1, 2, ..., Nh where x = (x, y). The parameter amon(t) represents the well

mixed actin monomers concentration. Integrating over the whole computational domain Ωh gives

rise to the following semi-discrete equations

M
dω(t)

dt
= −P(t)ω(t), (3.2.63)

and

M
dρ(t)

dt
= −dAρ(t)− eMρ(t) + k4amon(t)H + k3amon(t)L(t), (3.2.64)

where ω(t) = (ω1(t), ω2(t), ..., ωNh
(t))T and ρ(t) = (ρ1(t), ρ2(t), ..., ρNh

(t))T are the solution vec-

tors. Here, M is the global mass matrix, A is the global stiffness matrix, H is the global force

vector, P(t) is a variable matrix while L(t) is a variable vector. The mass and stiffness matrices

are respectively given by

M = {mij} : mij =

∫
Ωh

φi(x) · φj(x) dΩh,

A = {aij} : aij =

∫
Ωh

∇φi(x) · ∇φj(x) dΩh,

which are symmetric and positive definite. The global force vector is given by

H = {hi} : hi :=

∫
Ωh

φi(x) dΩh,

while the ρa dependent matrix is given by

P = {pij} : pij =

∫
Ωh

∇φi(x) · ∇φj(x)

1 + a
∑Nh

k=1 ρk(t)φk(x)
dΩh,

and is non-symmetric. The nonlinear vector is given by

L = {li} : li =

∫
Ωh

φi(x)
(∑Nh

k=1 ρk(t)φk(x)
)2

1 + (
∑Nh

k=1 ρk(t)φk(x))2
dΩh.
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Time discretisation

So far, we have computed the spatial approximation and ended up with two semi-discrete ODEs.

We can now approximate the system of ODEs in time using finite differences for the time derivat-

ives. We subdivide the time interval (0, T ] into N uniform subdivisions each of length τ = T
N . We

denote the initial time by t0 and the final time by tN . Any intermediate time is denoted by tn.

We employ the second order semi-implicit backward differentiation formula as follows

M

(
3ωn+1 − 4ωn + ωn−1

2τ

)
= −P(tn)ωn+1,

and

M

(
3ρn+1 − 4ρn + ρn−1

2τ

)
= −dAρn+1 + 2 (−eMρn + k4amon(tn)H + k3amon(tn)L(tn))

−
(
−eMρn−1 + k4amon(tn−1)H + k3amon(tn−1)L(tn−1)

)
.

Simplifying the above system of equations yields

(3M + 2τP(tn))ω(tn+1) = 4Mω(tn)−Mω(tn−1), (3.2.65)

and

(3M + 2dτA)ρ(tn+1) = 4Mρ(tn)−Mρn−1

+ 4τ (−eMρn + k4amon(tn)H + k3amon(tn)L(tn))

− 2τ
(
−eMρn−1 + k4amon(tn−1)H + k3amon(tn−1)L(tn−1)

)
.

(3.2.66)

where ωn, ωn+1 are the myosin II solutions at time tn and tn+1 respectively while ρn, ρn+1 are

the F-actin solutions at time tn and tn+1 respectively. Here, we need solutions at both times t = tn

and t = tn−1. Solutions for the last two time-steps will therefore need to be stored. To start with,

we will use a one step backward Euler method where the reaction terms are treated explicitly to

solve for the ω(t1) and ρ(t1) solutions as follows

(
M + τP(t0)

)
ω(t1) = Mω(t0),

(M + dτA)ρ(t1) = Mρ(t0) + τ
(
−eMρ(t0) + k4amon(t0)H + k3amon(t0)L(t0)

)
,

and then proceed with the 2-SBDF for all the other time-steps.

Quadrature formula

Before we are able to implement an algorithm to solve the discrete system above, we further need to

discretise the integrals in the matrices and vectors. To implement the discretisation, we use deal.II

library Bangerth et al. (2007). Let each quadrilateral be mapped onto the canonical quadrilateral

K̂ by a bi-linear transformation. We split the integrals over the entire domain into integrals over

each cell Ki and map each cell to K̂. The global matrices and vectors will therefore be given as
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the contribution over each cell. The quadrature formula for the mass matrix is given by

mij =
∑
K∈Ωh

∫
K

φi(x) · φj(x)dK

=
∑
K∈Ωh

∫
K̂

φ̂i(x̂) · φ̂j(x̂)|JK(x̂)|dK̂

=
∑
K∈Ωh

∑
q

φ̂i(x̂q) · φ̂j(x̂q)|JK(x̂q)|w(x̂q),

(3.2.67)

where (x̂q) is the qth quadrature point on the reference cell K̂ and w(x̂q) is the corresponding

weight. Similarly, the quadrature formula for the stiffness matrix is

aij =
∑
K∈Ωh

∫
K

∇φi(x) · ∇φj(x)dK

=
∑
K∈Ωh

∫
K̂

∇̂φ̂i(x̂)J−1
K (x̂) · ∇̂φ̂j(x̂)J−1

K (x̂)|JK(x̂)|dK̂

=
∑
K∈Ωh

∑
q

∇̂φ̂i(x̂q)J−1
K (x̂q) · ∇̂φ̂j(x̂q)J−1

K (x̂q)|JK(x̂q)|w(x̂q),

(3.2.68)

while for the force vector, we have

hi =
∑
K∈Ωh

∫
K

φi(x)dK =
∑
K∈Ωh

∫
K̂

φ̂i(x̂)|JK(x̂)|dK̂

=
∑
K∈Ωh

∑
q

φ̂i(x̂q)|JK(x̂q)|w(x̂q).

(3.2.69)

For the ρa-dependent matrix, we have

pij =
∑
K∈Ωh

∫
K

∇φi(x) · ∇φj(x)

1 + a
∑Nh

k=1 ρk(t)φk(x)
dK

=
∑
K∈Ωh

∫
K̂

∇̂φ̂i(x̂)J−1
K (x̂) · ∇̂φ̂j(x̂)J−1

K (x̂)

1 + a
∑Nh

k=1 ρk(t)φ̂k(x̂)
|JK(x̂)|dK̂

=
∑
K∈Ωh

∑
q

∇̂φ̂i(x̂q)J−1
K (x̂q) · ∇̂φ̂j(x̂q)J−1

K (x̂q)

1 + a
∑Nh

k=1 ρk(t)φ̂k(x̂q)
|JK(x̂q)|w(x̂q),

(3.2.70)

and the nonlinear vector by

li =
∑
K∈Ωh

∫
K

φi(x)
(∑Nh

k=1 ρk(t)φk(x)
)2

1 + (
∑Nh

k=1 ρk(t)φk(x))2
dK

=
∑
K∈Ωh

∫
K̂

φ̂i(x̂)
(∑Nh

k=1 ρk(t)φ̂k(x̂)
)2

1 + (
∑Nh

k=1 ρk(t)φ̂k(x̂))2
|JK(x̂)|dK̂

=
∑
K∈Ωh

∑
q

φ̂i(x̂q)
(∑Nh

k=1 ρk(t)φ̂k(x̂q)
)2

1 + (
∑Nh

k=1 ρk(t)φ̂k(x̂q))2
|JK(x̂q)|w(x̂q).

(3.2.71)
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To implement the discretisation, we use deal.II library Bangerth et al. (2007). We note that both

the mass and stiffness matrices M and A respectively are large, sparse, symmetric and positive

definite while P is sparse and non-symmetric. A sparse matrix has very few nonzero entries.

Iterative methods are the best suited for such systems Saad (2003). Here, we will use iterative

methods that use pre-conditioners. The rate of convergence of an iterative method depends greatly

on the spectrum of the matrices, that is, the rate of convergence depends on the condition number

of the matrices Saad (2003). A pre-conditioner gives rise to a more favourable spectrum of the

resultant matrices Barrett et al. (1994); Madzvamuse (2000). Since the matrices M and A are both

symmetric and positive definite, the system (3.2.66) can be solved using a preconditioned conjugate

gradient method (PCG) Saad (2003); Barrett et al. (1994) with a diagonal pre-conditioner. The

system (3.2.65) will be solved using a generalised minimal residual method (GMRES) with a

diagonal preconditioner as illustrated in Freund et al. (1992); Saad (2003).

Numerical simulations

Next, we present some results for the biochemical model. The implementation of the model equa-

tions (3.2.65) and (3.2.66) was carried out by extending the library in deal.II. We use the unit

disk to denote the domain and seek solutions of the ρa and ρm inside this unit disk. We start

by illustrating triangulations of the unit disk by carrying out global mesh refinements. We note

that as the number of global refinements increase, the triangulations converge to the unit disk as

shown in Figure 3.9. The initial data for both variables is chosen to be random perturbation about

ρm = ρa = 1.0 in the entire domain. The simulations were allowed to run until time t = 6 which

was long enough for convergence to take place. We have chosen the second order semi-implicit

backward differentiation formula, 2-SBDF, scheme with τ = 2× 10−3, τ = 10−3 and τ = 5× 10−4

and compared the L2-norms ‖ρ
n+1
a −ρna
τ ‖ for the solutions of ρa variable as shown in Figure 3.13.

Mesh refinements is also performed and comparison for L2-norms done. We note that solutions

for both the ρa and ρm variables converge to homogeneous steady state as shown in Figure 3.10

and Figure 3.11. This is expected because of the nature of our model equations on stationary

domain. Our reaction kinetics for actin is only a function of F-actin ρa and actin monomers ρcyta

and is independent of ρm. That is, actin only converts from active state to inactive state and

vice-versa. Since the total amount of actin is conserved, ρa and ρcyta concentrations will reach

equilibrium states. We plot the conservation of mass for actin in Figure 3.12. We note that ρa

and ρm equations are coupled in the diffusion of ρm in such a way that diffusion of ρm variable is

reduced when the concentration of ρa is high and vice-versa. This implies that solutions for the

ρm variable will converge to a homogeneous steady state when the ρa solution has converged. We

also plot the graph of the diffusion of ρm variable versus time in Figure 3.12.

Discussion of the numerical results

We summarise this section by discussing the results for the biochemical model for F-actin and

myosin II. We have developed a finite element method by deriving the weak formulation of the
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(a) (b)

(c) (d)

Figure 3.9: Triangulation of the unit disk using quadrilateral elements after (a) two global mesh

refinements, (b) three global mesh refinements, (c) four global mesh refinements and (d) five global

mesh refinements showing convergence to the unit disk.
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(a) (b)

(c)

Figure 3.10: Solutions for the ρm variable on a stationary unit disk using τ = 2 × 10−3. Blue

signifies the lowest values while red the highest values. (a) Initial condition for mysoin II (b) ρm

solution at time t = 0.8 and (c) ρm solution at time t = 3 showing convergence to a homogeneous

steady state.

(a)
(b)

(c)

Figure 3.11: Solutions for the ρa variable on a stationary unit disk using τ = 2 × 10−3. Blue

signifies the lowest values while red the highest values. (a) Initial condition for F-actin (b) ρa

solution at time t = 0.8 and (c) ρa solution at time t = 3 showing convergence to a homogeneous

steady state.
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Figure 3.12: (a) Conservation of mass for actin and (b) diffusion coefficient for myosin II. We used

time-step τ = 2× 10−3 and mesh size h = 0.055126.
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reaction-diffusion system, then discretised the space using finite elements. The resulting semi-

discrete equations were then discretised in time using the second order semi-implicit backward

differentiation formula to obtain a fully discrete system. We then carried out implementation of

the discrete equations using deal.II software. The integrals for the global matrices and vectors were

discretised in deal.II using quadrature formula. The resulting linear systems were solved using a

preconditioned CG and GMRES methods to obtain solutions for F-actin and myosin II variables.

Initial conditions for the model was assumed to be random perturbation about ρa = ρm = 1.

We ran simulations until homogeneous steady states was reached. We expect the solution for

the two variables to converge to homogeneous steady states with time. This is because of the

nature of the biochemical model. The reaction kinetics for F-actin is only a function of F-actin

(ρa) and actin monomers (ρcyta ) and is independent of ρm. That is, actin only converts from its

active state to inactive state and vice-versa. Since the total amount of actin is conserved, ρa and

ρcyta concentrations will reach equilibrium states. Also, the reaction-diffusion equations are only

coupled at the diffusion term for ρm in such a way that diffusion of ρm variable is reduced when

the concentration of ρa is high and vice-versa. This implies that solutions for the ρm variable will

converge to a homogeneous steady state when the ρa solution converges.

We now turn attention to the full viscous model for cell migration which couples reaction-

advection-diffusion equations to a force balance equation.

The non-dimensionalised viscous model

In the previous section, attention was made to solve the biochemical model for F-actin and myosin

II. Here, we aim to solve the non-dimensionalised viscous model for cell migration that couples

reaction-advection-diffusion equations of F-actin and myosin II to a force balance equation on an

evolving domain Ωt. We start by restating the model on Ωt. The non-dimensional parameter

values are displayed in Table 3.3.



∂ρm
∂t +∇ · (ρmβ) = ∇ ·

(
1

1+aρa
∇ρm

)
, x ∈ Ωt, t ∈ (0, T ],

∂ρa
∂t +∇ · (ρaβ) = d∆ρa +

(
k3ρ

2
a

1+ρ2
a

+ k4

)
ρcyta − eρa, x ∈ Ωt, t ∈ (0, T ],

∇ · (σν(x, t) + σmyo(x, t) + σpoly(x, t)) = 0, x ∈ Ωt, t ∈ (0, T ],

ρa(x, 0) = ρ0
a(x), ρm(x, 0) = ρ0

m(x), x ∈ Ωt, t = 0,

σν · n = 0, x ∈ ∂Ωt, t ∈ (0, T ],

∂ρa
∂n = ∂ρm

∂n = 0, x ∈ ∂Ωt, t ∈ (0, T ],

(3.2.72)

with

ρcyta (t) =
ρtota −

∫
Ωt
ρa dΩt∫

Ωt
dΩt

.
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Parameters Description Value

a Corresponds to diffusion threshold for myosin II 2.0

k3 Corresponds to actin polymerisation rate due to positive feedback 500.0

k4 Corresponds to base polymerisation rate 5.0

b Coefficient for advection 500.0

d Diffusion ratio 0.4

e F-actin depolymerisation rate 500.0

η1 Contraction coefficient rate 1
50

η2 Protrusion coefficient rate 56
500

ρtota Total amount of actin 8.0

Table 3.3: Non-dimensional parameters for the non-dimensionalised viscous model

.

The terms σν(x, t), σmyo(x, t) and σpoly(x, t) are the viscous, myosin II driven and F-actin

generated stresses respectively and are given by
σν(x, t) = ∇β(x, t) + (∇β(x, t))T ,

σmyo(x, t) = η1ρm(x, t)I, η1 ∈ R+,

σpoly(x, t) = −η2ρa(x, t)δ(l)I, η2 ∈ R+,

(3.2.73)

where β(x, t) is the actin network flow velocity. The protrusive stress σpoly(x, t) is assumed to be

confined to the cell periphery because F-actin are oriented in such a way that their barbed ends,

where the new actin monomers are added are close to the cell membrane and point outwards.

The dot product σν · n = 0 represents the stress-free boundary condition. The myosin II driven

contractile stress, σmyo(x, t), is assumed to be isotropic. The diffusion for myosin II, Dm(ρa), is

assumed to depend on F-actin density. We will use the unit disk Ω0 to represent the cell at initial

time with radius r = 1. Since the polymerisation force is assumed to work only in the periphery

of the cell, we prescribe some region of the disk where this force acts. We let this force act only in

the region where the radius is r > 0.8. For subsequent time, we assume that there exists a family

of bijective functions that map the point η = (ηx, ηy) of the initial domain to point x = (x, y) of

the current domain Ωt. Consider the mapping l : Ωt × (0, T ]→ R and its corresponding mapping

l̂ : Ω0×(0, T ]→ [0, 1] on the initial domain Ω0 where l̂(η, t) represents the distance from the centre

of Ω0 to the point η with l(x(η, t), t) = l̂(η, t). To denote the region where the polymerisation

force act, we define a delta function δ(l) such that

δ(l) =


1 if the point (x, t) with l(x(η, t), t) = l̂(η, t)

is such that the distance
√
η2
x + η2

y > 0.8 in the initial domain,

0 elsewhere.

We proceed as we have done before with the other models, that is, derive the weak formulations

and discretise the domain and the time using finite elements and finite differences respectively.
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Derivation of the weak formulation

Weak formulation of the reaction-advection-diffusion equations

Reaction-advection-diffusion equations for myosin II and F-actin are respectively given by
∂ρm
∂t +∇ · (ρmβ) = ∇ ·

(
1

1+aρa
∇ρm

)
,

∂ρa
∂t +∇ · (ρaβ) = d∆ρa +

(
k3ρ

2
a

1+ρ2
a

+ k4

)
ρcyta − eρa,

(3.2.74)

where ρm = ρm(x(t), t) and ρa = ρa(x(t), t) are the myosin II and F-actin concentrations respect-

ively and β = β(x(t), t) = (β1(t), β2(t)) is the flow velocity of the actin network. Here, we note

that the reaction kinetics of F-actin only depends on ρa variable and no reaction kinetics for the

myosin II equation.

In order to obtain the weak formulation, we will rearrange (3.2.74). We apply product rule for

gradient to the advection terms and write the equations as

∂ρm
∂t

+ β · ∇ρm + ρm∇ · β = ∇ ·
(

1

1 + aρa
∇ρm

)
, (3.2.75)

and

∂ρa
∂t

+ β · ∇ρa + ρa∇ · β = d∆ρa +

(
k3ρ

2
a

1 + ρ2
a

+ k4

)
ρcyta − eρa. (3.2.76)

We recall that the quantities ∂ρm
∂t + β · ∇ρm and ∂ρa

∂t + β · ∇ρa are called material derivatives of

ρm and ρa and we write them as Dρm
Dt = ∂ρm

∂t +β · ∇ρm and Dρa
Dt = ∂ρa

∂t +β · ∇ρa. Now, using this

definition for material derivatives above, we write (3.2.75) and (3.2.76) as

Dρm
Dt

+ ρm∇ · β = ∇ ·
(

1

1 + aρ
∇ρm

)
, (3.2.77)

and

Dρa
Dt

+ ρa∇ · β = d∆ρa +

(
k3ρ

2
a

1 + ρ2
a

+ k4

)
ρcyta − eρa. (3.2.78)

In order to obtain the weak formulations, we multiply (3.2.77) and (3.2.78) by test functions

ψ1(x, t), ψ2(x, t) ∈ H1(Ωt), t > 0 and integrate using Green’s formula (2.2.7) in the domain Ωt

and use the boundary conditions ∂ρa
∂n = ∂ρm

∂n = 0. This yields∫
Ωt

(
ψ1
Dρm
Dt

+ ψ1ρm∇ · β
)
dΩt = −

∫
Ωt

1

1 + aρa
∇ψ1 · ∇ρm dΩt, (3.2.79)

and ∫
Ωt

(
ψ2
Dρa
Dt

+ ψ2ρa∇ · β
)
dΩt = −

∫
Ωt

d∇ψ2 · ∇ρadΩt

+

∫
Ωt

ψ2

((
k3ρ

2
a

1 + ρ2
a

+ k4

)
ρcyta − eρa

)
dΩt.

(3.2.80)

We further use product rule for the time derivatives in the equations (3.2.79) and (3.2.80) and

write ∫
Ωt

(
D(ψ1ρm)

Dt
− ρm

Dψ1

Dt
+ ψ1ρm∇ · β

)
dΩt = −

∫
Ωt

1

1 + aρa
∇ψ1 · ∇ρm dΩt, (3.2.81)
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and∫
Ωt

(
D(ψ2ρa)

Dt
− ρa

Dψ2

Dt
+ ψ2ρa∇ · β

)
dΩt = −

∫
Ωt

d∇ψ2 · ∇ρadΩt

+

∫
Ωt

ψ2

((
k3ρ

2
a

1 + ρ2
a

+ k4

)
ρcyta − eρa

)
dΩt.

(3.2.82)

Finally Reynold’s transport theorem (2.2.8) gives

d

dt

∫
Ωt

ψ1ρm dΩt −
∫

Ωt

ρm
Dψ1

Dt
dΩt = −

∫
Ωt

1

1 + aρa
∇ψ1 · ∇ρm dΩt, (3.2.83)

and

d

dt

∫
Ωt

ψ2ρa dΩt −
∫

Ωt

ρa
Dψ2

Dt
dΩt = −

∫
Ωt

d∇ψ2 · ∇ρa dΩt

+

∫
Ωt

ψ2

((
k3ρ

2
a

1 + ρ2
a

+ k4

)
ρcyta − eρa

)
dΩt.

(3.2.84)

The weak formulation of the reaction-advection-diffusion equations therefore reads:

find ρm(x(t), t), ρa(x(t), t) ∈ H1(Ωt), t > 0 such that

d

dt

∫
Ωt

ψ1ρm dΩt −
∫

Ωt

ρm
Dψ1

Dt
dΩt = −

∫
Ωt

1

1 + aρa
∇ψ1 · ∇ρm dΩt, (3.2.85)

and

d

dt

∫
Ωt

ψ2ρa dΩt −
∫

Ωt

ρa
Dψ2

Dt
dΩt = −

∫
Ωt

d∇ψ2 · ∇ρa dΩt

+

∫
Ωt

ψ2

((
k3ρ

2
a

1 + ρ2
a

+ k4

)
ρcyta − eρa

)
dΩt,

(3.2.86)

for all ψ1(x, t), ψ2(x, t) ∈ H1(Ωt).

Weak formulation of the force balance equations

The force balance equation on an evolving domain Ωt representing the cell is given by

∇ · (σν(x, t) + σmyo(x, t) + σpoly(x, t)) = 0, x ∈ Ωt, t ∈ (0, T ],

σν · n = 0, x ∈ ∂Ωt, t ∈ (0, T ],

(3.2.87)

where σν(x, t), σmyo(x, t) and σpoly(x, t) are the viscous, myosin II driven and F-actin generated

stresses respectively and are given by


σν(x, t) = ∇β(x, t) + (∇β(x, t))T ,

σmyo(x, t) = η1ρm(x, t)I, η1 ∈ R+,

σpoly(x, t) = −η2ρa(x, t)δ(l)I, η2 ∈ R+.

(3.2.88)
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In order to write the weak formulation of the force balance equation above, we first decouple the

stresses into x and y directions as follows.

σν(x, t) =

 2∂β1

∂x

(
∂β2

∂x + ∂β1

∂y

)
(
∂β2

∂x + ∂β1

∂y

)
2∂β2

∂y

 ,

σmyo(x, t) =

η1ρm 0

0 η1ρm

 ,

σpoly(x, t) =

−η2ρaδ(l) 0

0 −η2ρaδ(l)

 .

(3.2.89)

The force balance equation in x and y directions is therefore

∂

∂x

(
2
∂β1

∂x

)
+

∂

∂y

(
∂β2

∂x
+
∂β1

∂y

)
+
∂(η1ρm)

∂x
− ∂

∂x
(η2ρaδ(l)) = 0, (3.2.90)

∂

∂x

(
∂β2

∂x
+
∂β1

∂y

)
+

∂

∂y

(
2
∂β2

∂y

)
+
∂(η1ρm)

∂y
− ∂

∂y
(η2ρaδ(l)) = 0. (3.2.91)

We then multiply the decoupled equations (3.2.90) and (3.2.91) by a test function ψ3 ∈ H1(Ωt),

use Green’s formula to integrate in the domain and apply the stress free boundary condition given.

The boundary terms will vanish and the weak formulation thus reads: find β1(x(t), t), β2(x(t), t) ∈

H1(Ωt) such that∫
Ωt

(
2
∂ψ3

∂x

(
∂β1

∂x

)
+
∂ψ3

∂y

(
∂β2

∂x
+
∂β1

∂y

))
dΩt =

∫
Ωt

ψ3

(
∂f

∂x

)
dΩt, (3.2.92)

and ∫
Ωt

(
∂ψ3

∂x

(
∂β2

∂x
+
∂β1

∂y

)
+ 2

∂ψ3

∂y

(
∂β2

∂y

))
dΩt =

∫
Ωt

ψ3

(
∂f

∂y

)
dΩt, (3.2.93)

for all ψ3 ∈ H1(Ωt), where

f = δ(l)η2ρa − η1ρm.

We find it convenient to rewrite the right hand sides of equations (3.2.92) and (3.2.93) such that we

have the derivatives of the shape function ψ3 instead of function f which depends on the solution

values. We do so using the gradient formulae (2.2.5) and (2.2.6). This gives the following weak

formulation: find β1(x(t), t), β2(x(t), t) ∈ H1(Ωt) such that∫
Ωt

(
2
∂ψ3

∂x

(
∂β1

∂x

)
+
∂ψ3

∂y

(
∂β2

∂x
+
∂β1

∂y

))
dΩt = −

∫
Ωt

f
∂ψ3

∂x
dΩt +

∫
∂Ωt

(n1fψ3) dS, (3.2.94)

and∫
Ωt

(
∂ψ3

∂x

(
∂β2

∂x
+
∂β1

∂y

)
+ 2

∂ψ3

∂y

(
∂β2

∂y

))
dΩt = −

∫
Ωt

f
∂ψ3

∂y
dΩt +

∫
∂Ωt

(n2fψ3) dS, (3.2.95)

for all ψ3 ∈ H1(Ωt), where

f = δ(l)η2ρa − η1ρm,

and n = (n1, n2) is the outward unit normal to the boundary.
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Finite element discretisation

Solutions for the weak formulations are defined in an infinite dimensional space H1(Ωt). The

essence of the finite element method is to seek solutions in a finite dimensional space. We start by

restating the weak formulations of the coupled problem:

find ρm(x(t), t), ρa(x(t), t), β1(x(t), t), β2(x(t), t) ∈ H1(Ωt) such that

d

dt

∫
Ωt

ψ1ρm dΩt −
∫

Ωt

ρm
Dψ1

Dt
dΩt = −

∫
Ωt

1

1 + aρa
∇ψ1 · ∇ρm dΩt, (3.2.96)

d

dt

∫
Ωt

ψ2ρa dΩt −
∫

Ωt

ρa
Dψ2

Dt
dΩt = −

∫
Ωt

d∇ψ2 · ∇ρa dΩt

+

∫
Ωt

ψ2

((
k3ρ

2
a

1 + ρ2
a

+ k4

)
ρcyta − eρa

)
dΩt,

(3.2.97)

∫
Ωt

(
2
∂ψ3

∂x

(
∂β1

∂x

)
+
∂ψ3

∂y

(
∂β2

∂x
+
∂β1

∂y

))
dΩt = −

∫
Ωt

f
∂ψ3

∂x
dΩt +

∫
∂Ωt

(n1fψ3) dS, (3.2.98)

and∫
Ωt

(
∂ψ3

∂x

(
∂β2

∂x
+
∂β1

∂y

)
+ 2

∂ψ3

∂y

(
∂β2

∂y

))
dΩt = −

∫
Ωt

f
∂ψ3

∂y
dΩt +

∫
∂Ωt

(n2fψ3) dS, (3.2.99)

for all {ψk}3k=1 ∈ H1(Ωt), where

f = δ(l)η2ρa − η1ρm.

We let Ωh,t be the computational domain which is a polyhedral approximation to Ωt. We define

Th(t) to be a triangulation of Ωh,t made up of non-degerate rectangular elements Ki such that

Th(t) =
⋃
iKi. We call each Ki an element of the mesh Th(t) where h is the diameter of the largest

element. For the mesh Th(t), we require that it is made up of a finite number of elements and the

elements must intersect along a complete edge, or at a vertex or not at all. The space discretisation

is carried out using quadrilateral elements and we seek piece-wise linear approximation of the

solution. We define the finite element space Vh(t) by

Vh(t) =
{
vh(t) ∈ C0(Ω) : vh(t)|K is linear

}
(3.2.100)

We will seek solutions of the viscous model in this space. The discretised version of (3.2.96)-(3.2.99)

therefore reads: find

ρhm(x(t), t), ρha(x(t), t), βh1 (x(t), t), βh2 (x(t), t) ∈ Vh(t)

such that

d

dt

∫
Ωh,t

ψh1 ρ
h
m dΩh,t −

∫
Ωh,t

ρhm
Dψh1
Dt

dΩh,t = −
∫

Ωh,t

1

1 + aρha
∇ψh1 · ∇ρhm dΩh,t, (3.2.101)

d

dt

∫
Ωh,t

ψh2 ρ
h
a dΩh,t −

∫
Ωh,t

ρha
Dψh2
Dt

dΩh,t = −
∫

Ωh,t

d∇ψh2 · ∇ρha dΩh,t

+

∫
Ωh,t

ψh2

((
k3(ρha)2

1 + (ρha)2
+ k4

)
ρcyt,ha − eρha

)
dΩh,t,

(3.2.102)
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Ωh,t

(
2
∂ψh3
∂x

(
∂βh1
∂x

)
+
∂ψh3
∂y

(
∂βh2
∂x

+
∂βh1
∂y

))
dΩh,t = −

∫
Ωh,t

fh
∂ψh3
∂x

dΩh,t

+

∫
∂Ωh,t

n1f
hψh3 dS,

(3.2.103)

and ∫
Ωh,t

(
∂ψh3
∂x

(
∂βh2
∂x

+
∂βh1
∂y

)
+ 2

∂ψh3
∂y

(
∂βh2
∂y

))
dΩh,t = −

∫
Ωh,t

fh
∂ψh3
∂y

dΩh,t

+

∫
∂Ωh,t

n2f
hψh3 dS,

(3.2.104)

for all {ψhk}3k=1 ∈ Vh(t), where

fh = δ(l)η2ρ
h
a − η1ρ

h
m. (3.2.105)

We define a basis function for the space Vh(t) by φi(x, t) ∈ Vh(t) for i = 1, 2, ..., Nh such that

φi(xj , t) =

1 if i = j,

0 if i 6= j,

(3.2.106)

where xj(t) is the jth nodal point of the mesh and Nh is the total number of degrees of freedom

of the nodes. We seek finite element approximations of the form

ρhm(x, t) =
∑Nh

j=1 ωj(t)φj(x, t),

ρha(x, t) =
∑Nh

j=1 ρj(t)φj(x, t),

βh1 (x, t) =
∑Nh

j=1 Uj(t)φj(x, t),

βh2 (x, t) =
∑Nh

j=1 Vj(t)φj(x, t).

(3.2.107)

We note that the shape function φi is now a function of time t. We will make use of the following

Lemma:

Lemma: Transport property of the basis functions: The finite element space on the discretised

domain is a space of continuous piece-wise linear functions whose nodal basis functions have the

remarkable property
Dφi(x, t)

Dt
|K = 0 (3.2.108)

on element K for all φi where the derivative denotes the material derivative Dziuk and Elliott

(2007).

Proof : Each quadrilateral K(t) ∈ Ωh,t with vertices xk, k = 1, 2, 3, 4 can be parametrised using

co-ordinates in the canonical quadrilateral K̂. If we let the co-ordinates in the canonical element

be given by (ξ, η) and the shape functions in this canonical element be φ̂k, then we can write any

point on K(t) by

x(t) =

4∑
k=1

xk(t)φ̂k(ξ, η). (3.2.109)

Also, each φi(x, t), i = 1, 2, 3, 4 can be transformed as φi(x, t) = φ̂i(f(ξ, η)). Now we have

Dφi(x, t)

Dt
|K =

Dφ̂i(f(ξ, η))

Dt
|K̂ =

∂φ̂i(f(ξ, η))

∂t
|K̂ + β · ∇φ̂i(f(ξ, η))|K̂ . (3.2.110)
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and have

Dφi(x, t)

Dt
|K =

Dφ̂i(f(ξ, η))

Dt
|K̂ = 0, (3.2.111)

which completes the proof

Semi-discrete equations for the reaction-advection-diffusion equations

In equations (3.2.101) and (3.2.102), we substitute {ψhl (x, t)}2l=1 by φi(x, t), i = 1, 2, ..., Nh and

ρhm, ρ
h
a by their corresponding finite element approximations and use (3.2.108). This gives

d

dt

Nh∑
j=1

∫
Ωh,t

φi(x, t) · φj(x, t)ωj(t) dΩh,t

 = −
Nh∑
j=1

∫
Ωh,t

∇φi(x, t) · ∇φj(x, t) ωj(t)
1 + a

∑Nh

k=1 ρk(t)φk(x, t)
dΩh,t,

and

d

dt

Nh∑
j=1

∫
Ωh,t

φi(x, t) · φj(x, t)ρj(t) dΩh,t

 = −d
Nh∑
j=1

∫
Ωh,t

∇φi(x, t) · ∇φj(x, t) ρj(t) dΩh,t

− e
Nh∑
j=1

∫
Ωh,t

φi(x, t) · φj(x, t)ρj(t) dΩh,t

+ k4amon(t)

∫
Ωh,t

φi(x, t) dΩh,t

+ k3amon(t)

∫
Ωh,t

φi(x, t)
(∑Nh

j=1 ρj(t)φj(x, t)
)2

1 + (
∑Nh

j=1 ρj(t)φj(x, t))
2

dΩh,t,

respectively, for all i = 1, 2, ..., Nh. The parameter amon(t) represents the well mixed actin

monomers concentration at time t. Now, integrating over Ωh,t yields the semi-discrete equations

for the reaction-advection-diffusion equations as

d

dt
(M(t)ω(t)) = −S(ρ(t))ω(t), (3.2.112)

and

d

dt
(M(t)ρ(t)) = −(dK(t) + eM(t))ρ(t) + amon(t)k4H(t) + k3amon(t)L(ρ(t)), (3.2.113)

where ω(t) = (ω1(t), ω2(t), ..., ωNh
(t))T and ρ(t) = (ρ1(t), ρ2(t), ..., ρNh

(t))T are the solution vec-

tors and amon(t) is actin monomers concentration at time t. M(t) is the time-dependent global

mass matrix, K(t) is the time-dependent global stiffness matrix, H(t) is the time-dependent global

force vector and S(ρ(t)) and L(ρ(t)) are the time-dependent matrix and vector respectively which
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are functions of the solution vectors. These are given by

M(t) = {mij(t)} : mij(t) =

∫
Ωh,t

φi(x, t) · φj(x, t) dΩh,t,

K(t) = {kij(t)} : kij(t) =

∫
Ωh,t

∇φi(x, t) · ∇φj(x, t) dΩh,t,

S(ρ(t)) = {sij(t)} : sij(t) =

∫
Ωh,t

∇φi(x, t) · ∇φj(x, t)
1 + a

∑Nh

k=1 ρk(t)φj(x, t)
dΩh,t,

L(ρ(t)) = {li(t)} : li(t) =

∫
Ωh,t

φi(x, t)
(∑Nh

k=1 ρk(t)φk(x, t)
)2

1 + (
∑Nh

k=1 ρk(t)φj(x, t))2
dΩh,t,

H(t) = {hi(t)} : hi(t) =

∫
Ωh,t

φi(x, t) dΩh,t.

Semi-discrete equations for the force balance equation

In (3.2.103) and (3.2.104), we substitute ψh3 (x, t) by φi(x(t), t), i = 1, 2, ..., Nh and βh1 , β
h
2 , ρ

h
m, ρ

h
a

by their corresponding finite element approximations and integrate over Ωh,t. The semi-discrete

equation in x direction will be

Nh∑
j=1

∫
Ωh,t

(
2
∂φi
∂x

(
∂φj
∂x

Uj(t)

)
+
∂φi
∂y

(
∂φj
∂x

Vj(t) +
∂φj
∂y

Uj(t)

))
dΩh,t =

−
∫

Ωh,t

(
fh(x(t))

∂φi
∂x

)
dΩh,t +

∫
∂Ωh,t

(
n1f

h(x(t))φi
)
dS,

(3.2.114)

for all i = 1, 2, ..., Nh and can be rearranged as

Nh∑
j=1

∫
Ωh,t

(
2
∂φi
∂x

∂φj
∂x

+
∂φi
∂y

∂φj
∂y

)
Uj(t) dΩh,t +

Nh∑
j=1

∫
Ωh,t

∂φi
∂y

∂φj
∂x

Vj(t) dΩh,t =

−
∫

Ωh,t

(
fh(x(t))

∂φi
∂x

)
dΩh,t +

∫
∂Ωh,t

(
n1f

h(x(t))φi
)
dS,

(3.2.115)

for all i = 1, 2, ..., Nh. We note that (3.2.115) can be written as

a11(t)U1(t) + a12(t)U2(t) + · · ·+ a1Nh
(t)UNh

(t) + b11(t)V1(t) + · · ·+ b1Nh
(t)VNh

(t) = F 1
1 (t),

a21(t)U1(t) + a22(t)U2(t) + · · ·+ a2Nh
(t)UNh

(t) + b21(t)V1(t) + · · ·+ b2Nh
(t)VNh

(t) = F 1
2 (t),

...

aNh1(t)U1(t) + aNh2(t)U2(t) + · · ·+ aNhNh
(t)UNh

(t) + bNh1(t)V1(t) + · · ·+ bNhNh
(t)VNh

(t) = F 1
Nh

(t),

where aij(t), bij(t) and F 1
i (t) are integrals over Ωh,t which we will describe shortly. This means

we can split the left hand side of the above system of equations into two parts: one with Uj(t) and

the other with Vj(t).
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Similarly, the Y direction of the force balance equation is

Nh∑
j=1

∫
Ωh,t

∂φi
∂x

∂φj
∂y

Uj(t) dΩh,t +

Nh∑
j=1

∫
Ωh,t

(
∂φi
∂x

∂φj
∂x

+ 2
∂φi
∂y

∂φj
∂y

)
Vj(t) dΩh,t =

−
∫

Ωh,t

(
fh(x(t))

∂φi
∂y

)
dΩh,t +

∫
∂Ωh,t

(
n2f

h(x(t))φi
)
dS,

(3.2.116)

for all i = 1, 2, ..., Nh, and expanded as

c11(t)U1(t) + c12(t)U2(t) + · · ·+ c1Nh
(t)UNh

(t) + d11(t)V1(t) + · · ·+ d1Nh
(t)VNh

(t) = F 2
1 (t),

c21(t)U1(t) + c22(t)U2(t) + · · ·+ c2Nh
(t)UNh

(t) + d21(t)V1(t) + · · ·+ d2Nh
(t)VNh

(t) = F 2
2 (t),

...

cNh1(t)U1(t) + cNh2(t)U2(t) + · · ·+ cNhNh
(t)UNh

(t) + dNh1(t)V1(t) + · · ·+ dNhNh
(t)VNh

(t) = F 2
Nh

(t),

with cij(t), dij(t) and F 2
i (t) integrals over Ωh,t. These systems of equations can be written more

compactly in matrix-vector form as follows

a11 a12 · · · a1Nh
b11 b12 · · · b1Nh

a21 a22 · · · a2Nh
b21 b22 · · · b2Nh

...
...

. . .
...

...
...

. . .
...

aNh1 aNh2 · · · aNhNh
bNh1 bNh2 · · · bNhNh

c11 c12 · · · c1Nh
d11 d12 · · · d1Nh

c21 c22 · · · c2Nh
d21 d22 · · · d2Nh

...
...

. . .
...

...
...

. . .
...

cNh1 cNh2 · · · cNhNh
dNh1 dNh2 · · · dNhNh





U1(t)

U2(t)
...

UNh
(t)

V1(t)

V2(t)
...

VNh
(t)



=



F 1
1 (t)

F 1
2 (t)
...

F 1
Nh

(t)

F 2
1 (t)

F 2
2 (t)
...

F 2
Nh

(t)



, (3.2.117)

where aij , bij , cij and dij are functions of time t. The vectors (U1(t), U2(t) , · · · , UNh
(t))T and

(V1(t), V2(t) , · · · , VNh
(t))T are the solution vectors. We let

A =


a11 a12 · · · a1Nh

a21 a22 · · · a2Nh

...
...

. . .
...

aNh1 aNh2 · · · aNhNh

 , B =


b11 b12 · · · b1Nh

b21 b22 · · · b2Nh

...
...

. . .
...

bNh1 bNh2 · · · bNhNh

 ,

C =


c11 c12 · · · c1Nh

c21 c22 · · · c2Nh

...
...

. . .
...

cNh1 cNh2 · · · cNhNh

 , D =


d11 d12 · · · d1Nh

d21 d22 · · · d2Nh

...
...

. . .
...

dNh1 dNh2 · · · dNhNh

 ,



U(t) = (U1(t), U2(t) , · · · , UNh
(t))T ,

V(t) = (V1(t), V2(t) , · · · , VNh
(t))T ,

F1(t) = (F 1
1 (t), F 1

2 (t) , · · · , F 1
Nh

(t))T ,

F2(t) = (F 2
1 (t), F 2

2 (t) , · · · , F 2
Nh

(t))T ,
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and write (3.2.117) in block-vector form asA(t) B(t)

C(t) D(t)

U(t)

V(t)

 =

F1(t)

F2(t)

 . (3.2.118)

We define the matrices and vectors by

A(t) = {aij(t)} : aij(t) =

∫
Ωh,t

(
2
∂φi
∂x

∂φj
∂x

+
∂φi
∂y

∂φj
∂y

)
dΩh,t,

B(t) = {bij(t)} : bij(t) =

∫
Ωh,t

∂φi
∂y

∂φj
∂x

dΩh,t,

C(t) = {cij(t)} : cij(t) =

∫
Ωh,t

∂φi
∂x

∂φj
∂y

dΩh,t,

D(t) = {dij(t)} : dij(t) =

∫
Ωh,t

(
∂φi
∂x

∂φj
∂x

+ 2
∂φi
∂y

∂φj
∂y

)
dΩh,t.

F1(t) =
{
F 1
i (t)

}
: F 1

i (t) = −
∫

Ωh,t

(
fh(x(t))

∂φi
∂x

)
dΩh,t +

∫
∂Ωh,t

(
n1f

h(x(t))φi
)
d∂Ωh,t,

F2(t) =
{
F 2
i (t)

}
: F 2

i (t) = −
∫

Ωh,t

(
fh(x(t))

∂φi
∂y

)
dΩh,t +

∫
∂Ωh,t

(
n2f

h(x(t))φi
)
d∂Ωh,t,

with

fh = δ(l)η2

Nh∑
j=1

ρj(t)φj − η1

Nh∑
j=1

ωj(t)φj ,

We also note from (3.2.115) and (3.2.116) that C(t) = (B(t))T and write (3.2.118) as A(t) B(t)

(B(t))T D(t)

U(t)

V(t)

 =

F1(t)

F2(t)

 . (3.2.119)

We let

A(t) =

 A(t) B(t)

(B(t))T D(t)

 , ξ(t) =

U(t)

V(t)

 , F =

F1(t)

F2(t)

 ,

and have the following semi-discrete equation for the force balance equation

A(t)ξ(t) = F(t). (3.2.120)

Semi-discrete equations for the coupled problem

The semi discrete equations for the reaction-advection-diffusion and force balance equations are of

the form
d

dt
(M(t)ω(t)) = −S(ρ(t))ω(t), (3.2.121)
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and

d

dt
(M(t)ρ(t)) = −(dK(t) + eM(t))ρ(t) + amon(t)k4H(t) + k3amon(t)L(ρ(t)), (3.2.122)

and

A(t)ξ(t) = F(t). (3.2.123)

Fully discrete model

To obtain fully discrete equations for the coupled problem, we discretise the time interval (0, T ]

into a finite number N of uniform sub-intervals with sub-interval size τ = tn+1 − tn and write

tn = τn. From the semi-discrete equations

d

dt
(M(t)ω(t)) = −S(ρ(t))ω(t),

and

d

dt
(M(t)ρ(t)) = −(dK(t) + eM(t))ρ(t) + amon(t)k4H(t) + k3amon(t)L(ρ(t)),

we employ the 2-SBDF as follows

3M(tn+1)ω(tn+1)− 4M(tn)ω(tn) + M(tn−1)ω(tn−1)

2τ
= −S(ρ(tn))ω(tn+1),

and

3M(tn+1)ρ(tn+1)− 4M(tn)ρ(tn) + M(tn−1)ρ(tn−1)

2τ
= −dK(tn+1)ρ(tn+1)

+ 2 (−eM(tn)ρ(tn) + k4amon(tn)H(tn) + k3amon(tn)L(ρ(tn)))

−
(
−eM(tn−1)ρ(tn−1) + k4amon(tn−1)H(tn−1) + k3amon(tn−1)L(ρ(tn−1))

)
.

For (3.2.123), we compute A(t) and F(t) at time step tn as follows

A(tn)ξn+1 = F(tn).

The above equations yield the following fully discrete equations

(
3M(tn+1) + 2τS(ρ(tn))

)
ω(tn+1) = 4M(tn)ω(tn)−M(tn−1)ω(tn−1), (3.2.124)

(
3M(tn+1) + 2dτK(tn+1)

)
ρ(tn+1) = 4M(tn)ρ(tn)−M(tn−1)ρ(tn−1)

+ 4τ (−eM(tn)ρ(tn) + k4amon(tn)H(tn) + k3amon(tn)L(ρ(tn)))

− 2τ
(
−eM(tn−1)ρ(tn−1) + k4amon(tn−1)H(tn−1) + k3amon(tn−1)L(ρ(tn−1))

)
,

(3.2.125)

A(tn)ξn+1 = F(tn), (3.2.126)

with τ as the time-step size, ρ(tn+1) and ω(tn+1) are the actin filaments and myosin II solutions

at time tn+1 and ξn+1 is the velocity solutions at time tn+1.



72

One-step backward Euler scheme

We will need solutions at the last two time steps in order to implement the 2-SBDF. We therefore

implement a one-step backward Euler method to solve for ρ(t1) and ω(t1) and then proceed with

2-SBDF scheme. A one-step backward Euler scheme for (3.2.121) and (3.2.122) is given by

(
M(t1) + τS(ρ(t0))

)
ω(t1) = M(t0)ω(t0), (3.2.127)(

M(t1) + dτK(t1)
)
ρ(t1) = (1− eτ)M(t0)ρ(t0) + τk4amon(t0)H(t0) + τk3amon(t0)L(ρ(t0)).

(3.2.128)

Displacements of the nodes

We now describe how the nodes of the mesh will be displaced to obtain a new nodal location. The

position of any new node will be a function of its current position and the amount of displacement

it has achieved. Let tn+1 = tn + τ and consider the points x(tn) ∈ Ωh,tn and x(tn+1) ∈ Ωh,tn+1

in the respective domains. We can define a first order linear approximation of the flow velocity as

follows:

ξ(x(tn), tn) =
x(tn+1)− x(tn)

τ
. (3.2.129)

This means that the new domain can be approximated by

x(tn+1) = x(tn) + τξ(x(tn)), (3.2.130)

where ξ(x(tn)) is the solution of the force balance equation at time tn. We note that τξ(x(tn)) is

the displacement from point x(tn) to x(tn+1). Thus, the new nodal position will be given as the

sum of the current node and its displacement.

Quadrature formula

It now remains to discretise the integrals in the matrices and vectors. To implement the discret-

isation, we use deal.II library Bangerth et al. (2007). Let each quadrilateral be mapped onto

the canonical quadrilateral K̂ by a bi-linear transformation. We split the integrals over the entire

domain into integrals over each cell Ki and map each cell to K̂. The global matrices and vectors

will therefore be given as the contribution over each cell. The quadrature formula for the matrices

and vectors are given by

mij(t) =
∑

K∈Ωh,t

∫
K

φi(x(t), t) · φj(x(t), t) dK

=
∑

K∈Ωh,t

∫
K̂

φ̂i(x̂(t), t) · φ̂j(x̂(t), t)|JK(x̂(t)) | dK̂

=
∑

K∈Ωh,t

∑
q

φ̂i(x̂q(t), t) · φ̂j(x̂q(t), t)|JK(x̂q(t))|w(x̂q(t)),
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kij(t) =
∑

K∈Ωh,t

∫
K

∇φi(x(t), t) · ∇φj(x(t), t) dK

=
∑

K∈Ωh,t

∫
K̂

∇̂φ̂i(x̂(t), t)J−1
K (x̂(t), t) · ∇̂φ̂j(x̂(t), t)J−1

K (x̂(t), t)|JK(x̂(t))| dK̂

=
∑

K∈Ωh,t

∑
q

∇̂φ̂i(x̂q(t), t)J−1
K (x̂q(t), t) · ∇̂φ̂j(x̂q(t), t)J−1

K (x̂q(t), t)|JK(x̂q(t))|w(x̂q(t)),

sij(t) =
∑

K∈Ωh,t

∫
K

∇φi(x(t), t) · ∇φj(x(t), t)

1 + a
∑Nh

k=1 ρk(t)φk(x)
dK

=
∑

K∈Ωh,t

∫
K̂

∇̂φ̂i(x̂(t), t)J−1
K (x̂(t), t) · ∇̂φ̂j(x̂(t), t)J−1

K (x̂(t), t)

1 + a
∑Nh

k=1 ρk(t)φ̂k(x̂(t), t)
|JK(x̂(t))| dK̂

=
∑

K∈Ωh,t

∑
q

∇̂φ̂i(x̂q(t), t)J−1
K (x̂q(t), t) · ∇̂φ̂j(x̂q(t), t)J−1

K (x̂q(t), t)

1 + a
∑Nh

k=1 ρk(t)φ̂k(x̂q)
|JK(x̂q(t))| w(x̂q(t)),

aij(t) =
∑

K∈Ωh,t

∫
K

(
2
∂φi
∂x

∂φj
∂x

+
∂φi
∂y

∂φj
∂y

)
dΩh,t

=
∑

K∈Ωh,t

∫
K̂

∇̂φ̂i(x̂(t), t)J−1
K (x̂(t))G1 · ∇̂φ̂j(x̂(t), t)J−1

K (x̂(t))|JK(x̂(t))| dK̂

=
∑

K∈Ωh,t

∑
q

∇̂φ̂i(x̂q(t), t)J−1
K (x̂q(t))G1 · ∇̂φ̂j(x̂q(t), t)J−1

K (x̂q(t))|JK(x̂q(t))|w(x̂q(t)),

bij(t) =
∑

K∈Ωh,t

∫
K

∂φi
∂y

∂φj
∂x

dK

=
∑

K∈Ωh,t

∫
K̂

∇̂φ̂i(x̂(t), t)J−1
K (x̂(t))G3 · ∇̂φ̂j(x̂(t), t)J−1

K (x̂(t))G4 |JK(x̂(t))| dK̂

=
∑

K∈Ωh,t

∑
q

∇̂φ̂i(x̂q(t), t)J−1
K (x̂q(t))G3 · ∇̂φ̂j(x̂q(t), t)J−1

K (x̂q(t))G4 |JK(x̂q(t))|w(x̂q(t)),

dij(t) =
∑

K∈Ωh,t

∫
K

(
∂φi
∂x

∂φj
∂x

+ 2
∂φi
∂y

∂φj
∂y

)
dK

=
∑

K∈Ωh,t

∫
K̂

∇̂φ̂i(x̂(t), t)J−1
K (x̂(t)) · ∇̂φ̂j(x̂(t), t)J−1

K (x̂(t))G2 |JK(x̂(t))| dK̂

=
∑

K∈Ωh,t

∑
q

∇̂φ̂i(x̂q(t), t)J−1
K (x̂q(t)) · ∇̂φ̂j(x̂q(t), t)J−1

K (x̂q(t))G2 |JK(x̂q(t))|w(x̂q(t)),

hi(t) =
∑

K∈Ωh,t

∫
K

φi(x(t), t)dK =
∑

K∈Ωh,t

∫
K̂

φ̂i(x̂(t), t)|JK(x̂(t))| dK̂

=
∑

K∈Ωh,t

∑
q

φ̂i(x̂q(t), t)|JK(x̂q(t))| w(x̂q(t)),
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li(t) =
∑

K∈Ωh,t

∫
K

φi(x(t), t)
(∑Nh

k=1 ρk(t)φk(x(t), t)
)2

1 + (
∑Nh

k=1 ρk(t)φk(x(t), t))2
dK

=
∑

K∈Ωh,t

∫
K̂

φ̂i(x̂(t), t)
(∑Nh

k=1 ρk(t)φ̂k(x̂(t), t)
)2

1 + (
∑Nh

k=1 ρk(t)φ̂k(x̂(t), t))2
|JK(x̂(t))| dK̂

=
∑

K∈Ωh,t

∑
q

φ̂i(x̂q(t), t)
(∑Nh

k=1 ρk(t)φ̂k(x̂q(t), t)
)2

1 + (
∑Nh

k=1 ρk(t)φ̂k(x̂q(t), t))2
|JK(x̂q(t))| w(x̂q(t)).

F 1
i (t) = −

∑
K∈Ωh,t

∫
K

(
fh(x(t))

∂φi
∂x

)
dK +

∑
Z=K∩∂Ωh,t

∫
Z

(
n1f

h(x(t))φi
)
dZ

= −
∑

K∈Ωh,t

∫
K̂

fh(x̂(t))

(
2∑
l=1

∂φ̂i(x̂(t))

∂ζl

∂ζl
∂x

)
|JK(x̂(t))| dK̂

+
∑

Z=K∩∂Ωh,t

∫
K̂

(
n1f

h(x̂(t))φ̂i(x̂(t))
)
|JZ(x̂(t))| dẐ

= −
∑

K∈Ωh,t

∑
q

fh(x̂q(t))

(
2∑
l=1

∂φ̂i(x̂q(t))

∂ζl

∂ζl
∂x

)
|JK(x̂q(t))| w(x̂q(t))

+
∑

Z=K∩∂Ωh,t

∑
q

(
n1f

h(x̂q(t))φ̂i(x̂q(t))
)
|JZ(x̂q(t))| w(x̂q(t)),

and

F 2
i (t) = −

∑
K∈Ωh,t

∫
K

(
fh(x(t))

∂φi
∂y

)
dK +

∑
Z=K∩∂Ωh,t

∫
Z

(
n2f

h(x(t))φi
)
dZ

= −
∑

K∈Ωh,t

∫
K̂

fh(x̂(t))

(
2∑
l=1

∂φ̂i(x̂(t))

∂ζl

∂ζl
∂y

)
|JK(x̂(t))| dK̂

+
∑

Z=K∩∂Ωh,t

∫
K̂

(
n2f

h(x̂(t))φ̂i(x̂(t))
)
|JZ(x̂(t))| dẐ

= −
∑

K∈Ωh,t

∑
q

fh(x̂q(t))

(
2∑
l=1

∂φ̂i(x̂q(t))

∂ζl

∂ζl
∂y

)
|JK(x̂q(t))| w(x̂q(t))

+
∑

Z=K∩∂Ωh,t

∑
q

(
n2f

h(x̂q(t))φ̂i(x̂q(t))
)
|JZ(x̂q(t))| w(x̂q(t)),

with

fh = δ(l)η2

Nh∑
j=1

ρj(t)φj − η1

Nh∑
j=1

ωj(t)φj ,

G1 =

2 0

0 1

 , G2 =

1 0

0 2

 , G3 =

0 0

1 0

 , G4 =

1 0

0 0

 .
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To implement the discretisation, we use deal.II library Bangerth et al. (2007). We note that

both the mass and stiffness matrices M(t) and K(t) respectively are large, sparse, symmetric and

positive definite while matrices A(t), B(t), D(t) and S(t) are large, sparse and non-symmetric. A

sparse matrix has very few nonzero entries. Iterative methods are the best suited for solving such

systems Saad (2003). Here, we will use iterative methods that use preconditioners. The rate of

convergence of an iterative method depends on the spectrum of the matrices, that is, the rate of

convergence depends on the condition number of the matrices Saad (2003). A preconditioner gives

rise to a more favourable spectrum of the resultant matrices Barrett et al. (1994); Madzvamuse

(2000). Since the matrices M(t) and K(t) are both symmetric and positive definite, the system

(3.2.125) can be solved using a preconditioned conjugate gradient method (PCG) with a diagonal

preconditioner Saad (2003); Barrett et al. (1994). The systems (3.2.124) and (3.2.126) will be

solved using a generalised minimal residual method (GMRES) with a diagonal preconditioner as

illustrated in Freund et al. (1992). Since the computational domain will change at each time t, the

matrices and vectors have to be updated at each time t. We summarise the numerical algorithm

that we use as follows:

1. Initialise parameters to be used and the initial conditions for the variables.

2. Discretise the initial domain Ωh,t0 .

3. Assemble matrices at initial time t0.

4. Solve (3.2.127) for ω1, (3.2.128) for ρ1 and one step of (3.2.126) for ξ1.

5. WHILE t < Final time

(a) Compute the computational domain Ωh,tn .

(b) Assemble matrices and vectors at time tn.

(c) Solve the discrete system (3.2.126) for the force balance equation to obtain solution at

tn+1.

(d) Compute the new domain Ωh,tn+1 .

(e) Assemble new matrices and vectors at time tn+1.

(f) Solve the the discrete systems (3.2.124) and (3.2.125) for the reaction-advection-diffusion

equations to obtain solution at tn+1.

(g) t = t+ τ .

(h) Old solution=new solution.

6. END.

Computation of the unit normal vector to the boundary

In the integration over the boundary of the domain, we need to compute the unit normals n(x, t) =

(n1(x, t), n2(x, t)) to the boundary. We hereby describe techniques for computing the normals at
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a point on the boundary ∂Ωh,t. We check whether the numerically computed normals converge to

the analytical normals as the number of boundary nodes increase, that is, as h tends to zero.

On the boundary ∂Ωh,t of the domain Ωh,t, any two nodes are connected by a straight line. For

a general point Pi (i = 1, 2, ..., nd) where nd is the total number of nodes on the boundary ∂Ωh,0,

we have the outward pointing unit normal vector to the line joining any two points as

n =

(
yi − yi+1√

(yi − yi+1)2 + (xi+1 − xi)2
,

xi+1 − xi√
(yi − yi+1)2 + (xi+1 − xi)2

)
, (3.2.131)

Zill et al. (2011). We note that there will be two outward pointing unit normals at each node Pi on

the boundary as a result of intersection of the two line segments. The numerically computed unit

normal will therefore be obtained by using the paralellogram law of vector addition. The equation

of the unit circle centred at the origin is given by f(x, y) = x2 +y2−1. The exact outward pointing

unit normal at any point (x, y) of the unit circle is given by n(x, y) = ∇f(x,y)
|∇f(x,y)| Zill et al. (2011).

To check the accuracy of the computed normals nnum at the nodal points, we compute the L2

norm ‖nnum−nexact

τ ‖ where nexact is the exact normal at the nodes. Table 3.4 shows that as the

number of refinements increase, the numerically computed normal converge to the exact normal

to the unit circle.

Mesh mesh diameter h ‖nnum−nexact

τ ‖L2

1 1.08239 0.517638

2 0.709704 0.234199

3 0.404102 0.114279

4 0.211681 0.056795

5 0.109097 0.028355

6 0.055126 0.014172

Table 3.4: The numerical normals to a circle converge to the exact normal to a circle as the mesh

is refined.

Numerical simulation of cell movement

Here, we present some numerical results for the non-dimensionalised viscous model. The solution

for this model is in form of F-actin and myosin II concentration and the speed of the cell. F-

actin and myosin II solution are the solution for the reaction-advection-diffusion equations while

speeds of the cell come from solution of the force balance equation. We begin simulations on a

unit disk to represent the cell at initial time with zero initial speed. We consider different data

for the initial conditions of F-actin and myosin II concentrations. The first set of initial conditions

for the concentrations are: for myosin II, we consider random perturbations about ρm = 1.0 as

is in Figure 3.14 and for F-actin, a nonzero concentrations of ρa = 1.0 only in one half of the

cell as shown in Figure 3.15 while the second set of initial conditions are random perturbations

about ρa = ρm = 1.0 as is in Figures 3.17, 3.18, 3.20, 3.21 and 3.22. We also vary the following
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parameters at a time while keeping all the other parameters constant: (i) total amount of actin

ρtota Figures 3.20, 3.21, 3.22 and 3.23 and (ii) contraction coefficient for myosin II ηm Figure 3.23.

Actin polymerisation causes polymerisation stress at the cell periphery which results in expan-

sion of the cell. We observe that the initial conditions chosen determine the dynamics of F-actin

and cell shape. Choosing a perturbation about ρa = 1.0 as the initial condition for ρa variable

leads to a uniform expansion of the cell as shown in Figures 3.19 and 3.22. For this case, actin

polymerises around the cell periphery and depolymerises in most of the other parts of the cell.

Choosing a non-zero initial concentrations of F-actin only in one half of the cell leads to symmetry

breaking where the cell identifies its front and rear. Actin polymerises at the cell front and results

in protrusion stress at the front while it depolymerises at the rest of the cell. This leads to an

irregular expansion of the cell as shown in Figure 3.16 and hence in a directed migration of the

cell towards the direction with high F-actin concentrations.

We note that in our model, myosin II only diffuses inside the cell and exerts contractile stress

in the cell. Its total concentration in the entire cell is conserved. Myosin II exerts contractile stress

in regions where protrusive stress does not act. This stress helps in propelling the cell forward.

Actin changes from the active state (F-actin) to inactive state (G-actin) and vice-versa through

polymerisation and depolymerisation processes and hence the total amount of actin is conserved

at all time. F-actin assembles together causing expansive stress on the cell. We varied the total

amount of actin in the cell and observed that the more the total amount of actin, the more the

expansion of the cell. Figures 3.16, 3.19, 3.22 and 3.23 show change in the area of the motile cell

with time. Figures 3.14, 3.15 and 3.16 show one set of solution with initial data for myosin II as

random perturbation about ρm = 1, initial condition for ρa nonzero only in one half of the cell

and all other parameters as in Table 3.3 while Figures 3.17, 3.18 and 3.19 is a solution set with

initial data for the concentrations as random perturbation about ρm = 1 and ρa = 1 while all other

parameters as in Table 3.3. Figures 3.20, 3.21 and 3.22 is a solution set with initial data for the

concentrations as random perturbation about ρm = 1 and ρa = 1, total amount of actin increased

to ρtota = 16 while all other parameters unchanged, Figure 3.23 part (a) is a graph when contraction

coefficient is chosen to be η1 = 0.2 while all other parameters unchanged and Figure 3.23 part (b)

is the graph of area of cell with time when total amount of actin is reduced to ρtota = 5.
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(a) (b)

(c) (d)

Figure 3.14: Graphical displays of the numerical results of the myosin II concentration ρm using

a 2-SBDF scheme with τ = 0.001. Blue signifies lowest values while red highest values. (a) Initial

condition as random perturbation about ρm = 1.0 (b) ρm at time t = 0.004, (c) ρm at time t = 2

and (d) solution at final time t = 4.
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(a) (b)

(c) (d)

Figure 3.15: Graphical displays of the numerical results of the F-actin concentration ρa using a

2-SBDF scheme with τ = 0.001. Blue signifies lowest values while red highest values. (a) Initial

condition as non-zero only in one half of the cell (b) ρa at time t = 0.004, (c) ρa at time t = 2 and

(d) solution at final time t = 4.
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(a) (b)

(c) (d)
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Figure 3.16: Graphical display of the speed of the cell as the solution of the force balance equation

for the cell. Blue signifies lowest values while red highest values. (a) Cell at initial stationary state

(b) cell speed at time t = 0.004, (c) cell speed at time t = 2, (d) cell speed at final time t = 4 and

(e) area of the evolving cell as a function of time showing increase in the area.
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(a) (b)

(c) (d)

Figure 3.17: Solutions for the ρm variable using a 2-SBDF scheme with τ = 0.001. Blue signifies

lowest values while red highest values. (a) Initial condition as random perturbation about ρm = 1.0,

(b) ρm at time t = 0.004, (c) ρm at time t = 2 and (d) solution at final time t = 4.
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(a) (b)

(c)
(d)

(e)

Figure 3.18: Solutions for the ρa variable using 2-SBDF scheme with τ = 0.001. Blue signifies

lowest values while red highest values. (a) Initial condition as random perturbation about ρa = 1.0

(b) ρa at time t = 0.004, (c) ρa at time t = 2 (d) ρa solution at final time t = 4 and (e) surface

plot for the ρa solution at final time t = 4.
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Figure 3.19: Graphical display of speed of the cell as the solution of the force balance equation for

the cell. (a) Cell at initial stationary state, (b) cell speed at time t = 2 and (c) cell speed at final

time t = 4 and (d) area of the evolving cell as a function of time showing increase in area of the

cell with time.
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(a) (b)

(c) (d)

Figure 3.20: Solutions for the ρm variable using τ = 0.001. Blue signifies lowest values while

red highest values. (a) Initial condition as random perturbation about ρm = 1 (b) ρm at time

t = 0.004, (c) ρm at time t = 2 and (d) solution at final time t = 4.
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(a) (b)

(c) (d)

Figure 3.21: Graphical displays of the numerical results of the F-actin concentration ρa with

increased total amount of actin ρtota = 16 using a 2-SBDF scheme with τ = 0.001 and all other

parameters held constant. Blue signifies lowest values while red highest values. (a) Initial condition

as random perturbation about ρa = 1.0 (b) ρa at time t = 0.004, (c) ρa at time t = 2 and (d)

solution at final time t = 4.



86

(a) (b)

(c) (d)

0 0.5 1 1.5 2 2.5 3 3.5 4

time

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

A
r
e
a

Area of cell

(e)

Figure 3.22: Speed of the cell as the solution of the force balance equation for the cell. (a) Cell at

initial stationary state (b) cell speed at time t = 0.004, (c) cell speed at time t = 2, (d) cell speed

at final time t = 4 and (e) area of the evolving cell as a function of time showing increase in area

of the cell with time with increased total amount of actin ρtota = 16.
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Figure 3.23: Area of the evolving cell as a function of time. (a) area of the cell with contraction

coefficient η1 = 0.2 while all other parameters held constant and (b) decreasing area of the cell

with a reduced total amount of actin ρtota = 5 while all other parameters held constant.

Discussion of the numerical results

We have illustrated the numerical solution for the non-dimensionalised viscous model for cell migra-

tion which consists of reaction-advection-diffusion equations for F-actin and myosin II and a force

balance mechanical equation. The variables for the model are F-actin and myosin II concentrations

and flow velocity of the actin-myosin system. We observe that our domain which represents the

cell evolved in shape and size with time and the concentrations for myosin II and F-actin reached

in-homogeneous steady states. Unlike the biochemical model that we solved earlier, these con-

centrations do not reach homogeneous steady state. This is because in addition to diffusion, we

now have advection of the two quantities following evolution of the cell. We note that the advec-

tion term drives cell movement. As F-actin and myosin II assemble inside the cell, they lead to

polymerisation and contractile stresses inside the cell. The polymerisation stress causes protrusion

forces which extend the cell forward in the region with high F-actin concentration. On the other

hand, contractile stress results in cell being pulled inwards isotropically. These two forces play a

major role in cell movement. We note that the initial conditions we start with determine greatly

the evolution and movement of the cell. Taking a random perturbation about the steady states for

F-actin and myosin II resulted in the cell expanding uniformly at the cell periphery while choosing

a nonzero F-actin concentration only in one region of the cell resulted in symmetry breaking where

the cell determined its front and back and was able to attain a directional movement. Another

important parameter in our model is the total amount of actin, i.e, the total F-actin and G-actin

concentrations. By varying the parameter for total amount of actin, we arrived at different profiles

for the solution. Other parameters that determines the profile of the solution are contraction and

polymerisation coefficients. We also plotted graphs which show increase (and decrease) of cell area.
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Summary

In summary, we have solved the non-dimensionalsed viscous model (2.3.28) for cell migration. The

model comprises of reaction-advection-diffusion equations for actin and myosin II coupled to a

force balance equation. We began by deriving the weak formulation of the model followed by

space discretisation to arrive at semi-discrete equations. In order to get fully discrete equations,

we discretised the time derivative. The fully discrete equations were solved to get solution in terms

of concentrations of F-actin and myosin II and speeds of the cell at various points in the cell.

Furthermore, we varied some parameters (total amount of actin, contraction coefficient and initial

conditions) and obtained different profiles.

In our implementation of the viscous model, we specified a way to update the mesh and we

had to keep track of the boundary at every time-step. To avoid this, phase-field methodology can

be used. A phase-field function is introduced to distinguish the inside of the cell from the outside.

This method is able to find cell shapes without the need of tracking the evolving boundary and

has been applied in different modeling aspects Shao et al. (2010). We aim to solve the phase-field

model as an alternative model using finite differences in the next section.

3.3 Finite differences for the phase-field model

3.3.1 Theory of finite difference method

We begin by summarising the theory of finite differences for partial differential equations of the

form

ut = Lu, (3.3.1)

where L is a differential operator in two dimensions which is nonlinear in general containing u and

its spatial derivatives. Finite differences involves subdividing a given domain into sub-domains

with grid spacing say hx in the x direction and grid spacing hy in the y direction, approximate

the derivatives with finite differences at grid points and seek solutions only at the grid points. We

denote any point in the grid by xi,j = (xi, yj) where i, j denote indices in the x and y directions

respectively while solution at any grid point is denoted by ui,j = u(xi, yj). Below, we summarise

the finite differences formulae in two dimensions following Morton and Mayers (1998); Jain (1983)

that will be used throughout this section.

Forward difference

The forward difference for the gradient of u is given by(
∂u

∂x

)
i,j

=
ui+1,j − ui,j

hx
+O(hx), (3.3.2)(

∂u

∂y

)
i,j

=
ui,j+1 − ui,j

hy
+O(hy). (3.3.3)
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Backward difference

The backward difference for the gradient of u is given by(
∂u

∂x

)
i,j

=
ui,j − ui−1,j

hx
+O(hx), (3.3.4)(

∂u

∂y

)
i,j

=
ui,j − ui,j−1

hy
+O(hy). (3.3.5)

Therefore, both the forward and backward differences are first order methods in space.

Central difference operator

The second order central difference for the gradient of u is written as(
∂u

∂x

)
i,j

=
ui+1,j − ui−1,j

2hx
+O(h2

x), (3.3.6)(
∂u

∂y

)
i,j

=
ui,j+1 − ui,j−1

2hy
+O(h2

y). (3.3.7)

while the second order central difference for the laplacian of u is given by

(∆u)i,j =
ui+1,j − 2ui,j + ui−1,j

h2
x

+
ui,j+1 − 2ui,j + ui,j−1

h2
y

+O(h2
x, h

2
y). (3.3.8)

Next, we consider the time discretisation of the PDE (3.3.1). We subdivide the time interval (0, T ]

into N equal subintervals of size τ = T
N . There are two main approaches to time-stepping, namely

explicit and implicit methods. The simplest example of an explicit method is the forward Euler

method which we define as follows

Forward Euler method

∂un

∂t
=
un+1 − un

τ
+O(τ), (3.3.9)

with u evaluated at point (xi, yj). Therefore, the forward Euler scheme for (3.3.1) is written as

un+1 − un

τ
= Lun. (3.3.10)

This method is conditionally stable Morton and Mayers (1998) in that it requires very small time

steps if the mesh size is moderately small. This condition can be very restrictive especially in high

dimensional problems. To avoid such restrictions, implicit methods are a natural choice. Examples

of implicit methods are the backward Euler method and the trapezoidal rule.

Backward Euler method

∂un

∂t
=
un − un−1

τ
+O(τ), (3.3.11)

with u evaluated at point (xi, yj). Therefore, the backward Euler scheme for (3.3.1) is written as

un+1 − un

τ
= Lun+1. (3.3.12)
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Trapezoidal rule

The trapezoidal rule takes the form

un+1 − un

τ
=

1

2
L
(
un + un+1

)
, (3.3.13)

which is a second order method in time. We note that both the forward Euler and backward Euler

are first order methods in time. Now that we have stated the finite difference formulae, we go ahead

and solve the phase-field model for cell migration. We begin by rewriting the model equations.

The non-dimensionalised phase-field model for cell migration

∂φ
∂t + b∇ · (φβ) = γ∆φ− λG′(φ) + γc|∇φ|, x ∈ Ω, t ∈ (0, T ]

∂(φρm)
∂t + b∇ · (φρmβ) = ∇ ·

((
φ

1+aρa

)
∇ρm

)
, x ∈ Ω, t ∈ (0, T ],

∂(φρa)
∂t + b∇ · (φρaβ) = d∇ · (φ∇ρa) + φ

((
k3ρ

2
a

1+ρ2
a

+ k4

)
ρcyta − eρa

)
, x ∈ Ω, t ∈ (0, T ],

∇ · (σν(x, t) + σmyo(x, t) + σpoly(x, t)) = 0, x ∈ Ω, t ∈ (0, T ],

φρa(x, 0) = φρ0
a(x), φρm(x, 0) = φρ0

m(x), x ∈ Ω, t = 0,

(3.3.14)

where

ρcyta (t) =
ρtota −

∫
Ω
φρa dΩ∫

Ω
φdΩ

,

G(φ) = 18φ2(1− φ)2,

c = ∇ · ∇φ
|∇φ|

,

σν(x, t) = φ(∇β(x, t) + (∇β(x, t))T ), ν0 ∈ R+,

σmyo(x, t) = η3φρm(x, t)I, η3 ∈ R+,

σpoly(x, t) = −η4φ|∇φ|2ρa(x, t)I, η4 ∈ R+.

a b d e k3 k4 ρtota λ γ η3 η4

2 500 0.4 500 500 5 8 10 0.4 1
50

112
50000

Table 3.5: The nondimensionalised values of the parameters used in the model.

3.3.2 Finite differences for the phase-field model for cell migration

We let Ω = [−3, 3] × [−3, 3] be the domain and I = (0, T ] be the time interval. We subdivide

the square domain into NΩ uniform grids of grid size hx = hy = h = 6
NΩ

in each direction and

divide the time interval I = (0, T ] into sub-intervals with fixed time step τ . We begin with initial

conditions φ(0), ρ
(0)
m , ρ

(0)
a and β(0) and denote solutions at time tn+1 by φ(n+1), ρ

(n+1)
m , ρ

(n+1)
a and
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β(n+1) = (β
(n+1)
1 , β

(n+1)
2 ). The derivatives will be approximated by finite differences as illustrated

above.

Discretisation of the phase-field equation

We begin by discretisation of the phase-field equation

∂φ

∂t
+ b∇ · (φβ) = γ∆φ− λG′(φ) + γc|∇φ|.

We employ time discretisation of the form

φn+1 − φn

τ
= −b∇ · (φnβ(n)) + γ∆φn+1 − λG′(φn) + γc(n)|∇φn|, (3.3.15)

where the Laplacian term is treated implicitly. We discretise the Laplacian, divergence and gradient

terms using the central difference formula as follows

[∆φ(n+1)]ij =
φ

(n+1)
i+1,j − 4φ

(n+1)
i,j + φ

(n+1)
i−1,j + φ

(n+1)
i,j+1 + φ

(n+1)
i,j−1

h2
, (3.3.16)

[∇ · (φ(n)β(n))]ij =
φ

(n)
i+1,jβ

(n)
1,i+1,j − φ

(n)
i−1,jβ

(n)
1,i−1,j

2h
+
φ

(n)
i,j+1β

(n)
2,i,j+1 − φ

(n)
i,j−1β

(n)
2,i,j−1

2h
, (3.3.17)

[∇φ(n)]ij =

(
φ

(n)
i+1,j − φ

(n)
i−1,j

2h
,
φ

(n)
i,j+1 − φ

(n)
i,j−1

2h

)
, (3.3.18)

and end up with the discrete scheme (3.3.19).

φn+1
i,j − φni,j

τ
= −b[∇ · (φnβ(n))]ij + γ[∆φn+1]ij − λ[G′(φn)]ij + γ[c(n)|∇φn|]ij , (3.3.19)

with

[G′(φn)]ij = 36φ
(n)
i,j (1− φ(n)

i,j )(1− 2φ
(n)
i,j ), (3.3.20)

for i, j = 1, 2, 3, ..., NΩ + 1. The curvature term is calculated by

c(n) = ∇ · ∇φ
(n)

|∇φ(n)|
,

when |∇φ(n)| > 0.01, and set to be zero otherwise. Rearranging (3.3.19) gives

φ
(n+1)
i,j − τγ[∆φ(n+1)]ij = φ

(n)
i,j − bτ [∇ · (φ(n)β(n))]ij + τ

(
−λ[G′(φ(n))]ij + γ[c(n)|∇φ(n)|]ij

)
,

(3.3.21)

for i, j = 1, 2, 3, ..., NΩ + 1. We use the periodic boundary conditions as follows

φ
(n+1)
1,j = φ

(n+1)
NΩ+1,j ,

φ
(n+1)
i,1 = φ

(n+1)
i,NΩ+1,

φ
(n+1)
0,j = φ

(n+1)
NΩ,j

,

φ
(n+1)
i,0 = φ

(n+1)
i,NΩ

,

φ
(n+1)
NΩ+2,j = φ

(n+1)
2,j ,

φ
(n+1)
i,NΩ+2 = φ

(n+1)
i,2 .

(3.3.22)
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Incorporating the periodic boundary conditions and letting r = τ
h2 gives the following system of

equations

A1α
(n+1) = b

(n)
1 , (3.3.23)

where

A1 =



A B 0 · · · 0 B

B A B · · · 0 0

0 B A · · · 0 0
...

...
...

. . .

0 0 0 · · · A B

B 0 0 · · · B A


, (3.3.24)

with

A =



(1 + 4rγ) −rγ 0 · · · 0 −rγ

−rγ (1 + 4rγ) −rγ · · · 0 0

0 −rγ (1 + 4rγ) · · · 0 0
...

...
...

. . .

0 0 0 · · · (1 + 4rγ) −rγ

−rγ 0 0 · · · −rγ (1 + 4rγ)


, (3.3.25)

and

B =



−rγ 0 0 · · · 0 0

0 −rγ 0 · · · 0 0

0 0 −rγ · · · 0 0
...

...
...

. . .

0 0 0 · · · −rγ 0

0 0 0 · · · 0 −rγ


. (3.3.26)

The vector α(n+1) = (φ
(n+1)
1,1 , φ

(n+1)
2,1 , φ

(n+1)
3,1 , ..., φ

(n+1)
NΩ+1,NΩ+1)T is the solution vector at time t(n+1)

and the right-hand side of (3.3.23) is given by

b
(n)
1 =


φ

(n)
1,1 − bτ [∇ · (φ(n)β(n))]1,1 + τ

(
−λ[G′(φ(n))]1,1 + γ[c(n)|∇φ(n)|]1,1

)
φ

(n)
2,1 − bτ [∇ · (φ(n)β(n))]2,1 + τ

(
−λ[G′(φ(n))]2,1 + γ[c(n)|∇φ(n)|]2,1

)
...

φ
(n)
NΩ+1,NΩ+1 − bτ [∇ · (φ(n)β(n))]NΩ+1,NΩ+1 + τ

(
−λ[G′(φ(n))]NΩ+1,NΩ+1 + γ[c(n)|∇φ(n)|]NΩ+1,NΩ+1

)

 ,

with the finite differences as given above.

Discretisation of the reaction-diffusion equations for myosin and F-actin

We first note that we can write

∇ · (φDm(ρa)∇ρm) = ∇(φDm(ρa)) · ∇ρm + φDm(ρa)∆ρm,

∇ · (φ∇ρa) = ∇φ · ∇ρa + φ∆ρa.
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We apply a forward Euler method to the reaction-advection-diffusion equations for myosin II and

F-actin and have

φ(n+1)ρ
(n+1)
m − φ(n)ρ

(n)
m

τ
= ∇(D(n)

m φ(n)) · ∇ρ(n)
m + φ(n)D(n)

m ∆ρ(n)
m

− b∇ ·
(
φ(n)ρ(n)

m β(n)
)
,

(3.3.27)

and

φ(n+1)ρ
(n+1)
a − φ(n)ρ

(n)
a

τ
= Da(∇φ(n) · ∇ρ(n)

a + φ(n)∆ρ(n)
a )

− b∇ ·
(
φ(n)ρ(n)

a β(n)
)

+ φ(n)f(ρna).

(3.3.28)

Next, we use central differences to approximate the spatial derivatives as follows

[∆ρ(n)
a ]ij =

ρ
(n)
a,i+1,j − 4ρ

(n)
a,i,j + ρ

(n)
a,i−1,j + ρ

(n)
a,i,j+1 + ρ

(n)
a,i,j−1

h2
, (3.3.29)

[∆ρ(n)
m ]ij =

ρ
(n)
m,i+1,j − 4ρ

(n)
m,i,j + ρ

(n)
m,i−1,j + ρ

(n)
m,i,j+1 + ρ

(n)
m,i,j−1

h2
, (3.3.30)

[∇ · (φ(n)ρ(n)
a β(n))]ij =

φ
(n)
i+1,jρ

(n)
a,i+1,jβ

(n)
1,i+1,j − φ

(n)
i−1,jρ

(n)
a,i−1,jβ

(n)
1,i−1,j

2h

+
φ

(n)
i,j+1ρ

(n)
a,i,j+1β

(n)
2,i,j+1 − φ

(n)
i,j−1ρ

(n)
a,i,j−1β

(n)
2,i,j−1

2h
,

(3.3.31)

[∇ · (φ(n)ρ(n)
m β(n))]ij =

φ
(n)
i+1,jρ

(n)
m,i+1,jβ

(n)
1,i+1,j − φ

(n)
i−1,jρ

(n)
m,i−1,jβ

(n)
1,i−1,j

2h

+
φ

(n)
i,j+1ρ

(n)
m,i,j+1β

(n)
2,i,j+1 − φ

(n)
i,j−1ρ

(n)
m,i,j−1β

(n)
2,i,j−1

2h
,

(3.3.32)

[∇D(n)
m,i,jφ

(n)]ij =

(
D

(n)
m,i+1,jφ

(n)
i+1,j −D

(n)
m,i−1,jφ

(n)
i−1,j

2h
,
D

(n)
m,i,j+1φ

(n)
i,j+1 −D

(n)
m,i,j−1φ

(n)
i,j−1

2h

)
.

(3.3.33)

This gives the following schemes

φ
(n+1)
i,j ρ

(n+1)
m,i,j = τ([∇(D(n)

m φ(n)) · ∇ρ(n)
m ]ij + φ

(n)
i,j D

(n)
m,i,j [∆ρ

(n)
m ]ij)

+ φ
(n)
i,j ρ

(n)
m,i,j − bτ [∇ ·

(
φ(n)ρ(n)

m β(n)
)

]ij ,
(3.3.34)

and

φ
(n+1)
i,j ρ

(n+1)
a,i,j = Daτ([∇φ(n) · ∇ρ(n)

a ]ij + φ
(n)
i,j [∆ρ(n)

a ]ij)

+ φ
(n)
i,j ρ

(n)
a,i,j − bτ [∇ ·

(
φ(n)ρ(n)

a β(n)
)

]ij + τφ
(n)
i,j f(ρna,i,j),

(3.3.35)

where

Dn
m,i,j =

1

1 + aρ
(n)
a,i,j

and f(ρ
(n)
a,i,j) =

(
k3(ρ

(n)
a,i,j)

2

1 + (ρ
(n)
a,i,j)

2
+ k4

)
ρn,cyta − eρ(n)

a,i,j . (3.3.36)
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We use periodic boundary conditions of the form

ρ
(n)
a,1,j = ρ

(n)
a,NΩ+1,j ,

ρ
(n)
a,i,1 = ρ

(n)
a,i,NΩ+1,

ρ
(n)
a,0,j = ρ

(n)
a,NΩ,j

,

ρ
(n)
a,i,0 = ρ

(n)
a,i,NΩ

,

ρ
(n)
a,NΩ+2,j = ρ

(n)
a,2,j ,

ρ
(n)
a,i,NΩ+2 = ρ

(n)
a,i,2,

(3.3.37)



ρ
(n)
m,1,j = ρ

(n)
m,NΩ+1,j ,

ρ
(n)
m,i,1 = ρ

(n)
m,i,NΩ+1,

ρ
(n)
m,0,j = ρ

(n)
m,NΩ,j

,

ρ
(n)
m,i,0 = ρ

(n)
m,i,NΩ

,

ρ
(n)
m,NΩ+2,j = ρ

(n)
m,2,j ,

ρ
(n)
m,i,NΩ+2 = ρ

(n)
m,i,2.

(3.3.38)

Equations (3.3.34) and (3.3.35) respectively give rise to the following systems of equations

A2ω
(n+1) = b

(n)
2 and A3ρ

(n+1) = b
(n)
3 , (3.3.39)

where A2 = A3 are given by

A2 = A3 =



φ
(n+1)
11 0 0 · · · 0 0

0 φ
(n+1)
21 0 · · · 0 0

0 0 φ
(n+1)
31 · · · 0 0

...
...

...
. . .

0 0 0 · · · φ
(n+1)
NΩ−1,NΩ

0

0 0 0 · · · 0 φ
(n+1)
NΩ,NΩ


. (3.3.40)

The vectors ρ(n+1) and ω(n+1) are the solution vectors and b
(n)
2 and b

(n)
3 are the right hand sides

of (3.3.34) and (3.3.35) respectively with the periodic boundary conditions (3.3.37) and (3.3.38).

On the right hand side of (3.3.34) and (3.3.35), we note that we have used a Laplacian term of the

form 

L P 0 · · · 0 0 P

P L P · · · 0 0 0

0 P L · · · 0 0 0
...

...
...

. . .

0 0 0 · · · P L P

P 0 0 · · · 0 P L


, (3.3.41)
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where

L =



−4rγ rγ 0 · · · 0 0 rγ

rγ −4rγ rγ · · · 0 0 0

0 rγ −4rγ · · · 0 0 0
...

...
...

. . .

0 0 0 · · · rγ −4rγ rγ

rγ 0 0 · · · 0 rγ −4rγ


, (3.3.42)

and

P =



rγ 0 0 · · · 0 0 0

0 rγ 0 · · · 0 0 0

0 0 rγ · · · 0 0 0
...

...
...

. . .

0 0 0 · · · 0 rγ 0

0 0 0 · · · 0 0 rγ


. (3.3.43)

Discretisation of the actin flow equation

To solve the actin flow equation

∇ · (σν(x, t) + σmyo(x, t) + σpoly(x, t)) = 0, (3.3.44)

we construct its corresponding parabolic problem as follows

∂β

∂t
= ∇ · (σν(x, t) + σmyo(x, t) + σpoly(x, t)) . (3.3.45)

If the solution converges to a limit as t → ∞, then this limit will be the solution of the force

balance equation (3.3.44). We will therefore solve (3.3.45) for multiple iterations until we reach a

steady state. We first expand the terms in the force balance equation (3.3.44) as follows:



∇ · (φ(∇β(x, t) + (∇β(x, t))T )) =


2φ∂

2β1

∂x2 + φ∂
2β1

∂y2 + 2∂φ∂x
∂β1

∂x + ∂φ
∂y

(
∂β2

∂x + ∂β1

∂y

)
+ φ ∂

2β2

∂y∂x

φ∂
2β2

∂x2 + 2φ∂
2β2

∂y2 + 2∂φ∂y
∂β2

∂y + ∂φ
∂x

(
∂β2

∂x + ∂β1

∂y

)
+ φ ∂

2β1

∂x∂y

 ,

∇ · (η3φρm(x, t)I) =

η3
∂
∂x (φρm)

η3
∂
∂y (φρm)

 ,

∇ ·
(
−η4φ|∇φ|2ρa(x, t)I

)
=

−η4
∂
∂x (φρaδφ)

−η4
∂
∂y (φρaδφ)

 ,

(3.3.46)

where for convenience we have used δφ to denote the interface term |∇φ|2. Splitting equation

(3.3.45) into x and y directions give
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∂β1

∂t
= 2φ

∂2β1

∂x2
+ φ

∂2β1

∂y2
+ 2

∂φ

∂x

∂β1

∂x
+
∂φ

∂y

(
∂β2

∂x
+
∂β1

∂y

)
+ φ

∂2β2

∂y∂x

+ η3
∂

∂x
(φρm)− η4

∂

∂x
(φρaδφ),

(3.3.47)

and

∂β2

∂t
= φ

∂2β2

∂x2
+ 2φ

∂2β2

∂y2
+ 2

∂φ

∂y

∂β2

∂y
+
∂φ

∂x

(
∂β2

∂x
+
∂β1

∂y

)
+ φ

∂2β1

∂x∂y

+ η3
∂

∂y
(φρm)− η4

∂

∂y
(φρaδφ),

(3.3.48)

respectively. To arrive at the discrete versions of (3.3.47) and (3.3.48), we apply central differences

to approximate the space derivatives and use a time discretisation as shown in (3.3.49) and (3.3.50).

This implies that at each time step n + 1, we solve discrete equations (3.3.49) and (3.3.50) until

convergence has been achieved. For these equations, we note that we set β
(k=0)
1,i,j = β

(n)
1,i,j and

β
(k=0)
2,i,j = β

(n)
2,i,j and solve the equations iteratively until convergence is achieved. The converged

solution will therefore be the solution at time t(n+1), i.e β
(n+1)
1,i,j and β

(n+1)
2,i,j . We also note that we

make use of the already computed solutions φ
(n+1)
i,j , ρ

(n+1)
a,i,j and ρ

(n+1)
m,i,j . Here k represents the kth

iteration while n represents time. Therefore, at each time n+ 1, we apply a number of iterations

until the solution at time n+ 1 converges.

β
(k+1)
1,i,j − 2τφ

(n+1)
i,j [2φ

∂2β
(k+1)
1

∂x2
+ φ

∂2β
(k+1)
1

∂y2
]ij = β

(k)
1,i,j + 2τ

[
∂φ(n+1)

∂x

∂β
(k)
1

∂x

]
ij

+ τ

[
∂φ(n+1)

∂y

(
∂β

(k)
2

∂x
+
∂β

(k)
1

∂y

)]
ij

+ τφ
(n+1)
i,j

[
∂2β

(k)
2

∂y∂x

]
ij

+ τη3

[
∂

∂x
(φ(n+1)ρ(n+1)

m )

]
ij

− τη4

[
∂

∂x
(φ(n+1)ρ(n+1)

a δ
(n+1)
φ )

]
ij

,

(3.3.49)

and

β
(k+1)
2,i,j − 2τφ

(n+1)
i,j [φ

∂2β
(k+1)
2

∂x2
+ 2φ

∂2β
(k+1)
2

∂y2
]ij = β

(k)
2,i,j + 2τ

[
∂φ(n+1)

∂y

∂β
(k)
2

∂y

]
ij

+ τ

[
∂φ(n+1)

∂x

(
∂β

(k)
2

∂x
+
∂β

(k)
1

∂y

)]
ij

+ τφ
(n+1)
i,j

[
∂2β

(k)
1

∂x∂y

]
ij

+ τη3

[
∂

∂y
(φ(n+1)ρ(n+1)

m )

]
ij

− τη4

[
∂

∂y
(φ(n+1)ρ(n+1)

a δ
(n+1)
φ )

]
ij

,

(3.3.50)

where [
∂2β

(k+1)
1

∂x2

]
ij

=
β

(k+1)
1,i+1,j − 2β

(k+1)
1,i,j + β

(k+1)
1,i−1,j

h2
, (3.3.51)
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[
∂2β

(k+1)
1

∂y2

]
ij

=
β

(k+1)
1,i,j+1 − 2β

(k+1)
1,i,j + β

(k+1)
1,i,j−1

h2
, (3.3.52)

[
∂2β

(k)
2

∂y∂x

]
ij

=
β

(k)
2,i+1,j+1 − β

(k)
2,i+1,j−1 − β

(k)
2,i−1,j+1 + β

(k)
2,i−1,j−1

4h2
, (3.3.53)

[
∂2β

(k)
1

∂x∂y

]
ij

=
β

(k)
1,i+1,j+1 − β

(k)
1,i+1,j−1 − β

(k)
1,i−1,j+1 + β

(k)
1,i−1,j−1

4h2
, (3.3.54)

and similarly to the terms ∂2β2

∂x2 and ∂2β2

∂y2 . All the other derivatives can be obtained as before. We

use periodic boundary conditions of the form



β
(k+1)
1,1,j = β

(k+1)
1,NΩ+1,j ,

β
(k+1)
1,i,1 = β

(k+1)
1,i,NΩ+1,

β
(k+1)
1,0,j = β

(k+1)
1,NΩ,j

,

β
(k+1)
1,i,0 = β

(k+1)
1,i,NΩ

,

β
(k+1)
1,NΩ+2,j = β

(k+1)
1,2,j ,

β
(1)
1,i,NΩ+2 = β

(k+1)
1,i,2 ,

(3.3.55)



β
(k+1)
2,1,j = β

(k+1)
2,NΩ+1,j ,

β
(k+1)
2,i,1 = β

(k+1)
2,i,NΩ+1,

β
(k+1)
2,0,j = β

(k+1)
2,NΩ,j

,

β
(k+1)
2,i,0 = β

(k+1)
2,i,NΩ

,

β
(k+1)
2,NΩ+2,j = β

(k+1)
2,2,j ,

β
(k+1)
2,i,NΩ+2 = β

(k+1)
2,i,2 ,

(3.3.56)

and have the following system of equations

A4U
(n+1) = b

(n)
4 and A5V

(n+1) = b
(n)
5 , (3.3.57)

where

A4 =



C1 D1 0 · · · 0 0 D1

D2 C2 D2 · · · 0 0 0

0 D3 C3 · · · 0 0 0
...

...
...

. . .

0 0 0 · · · DNΩ−1 CNΩ−1 DNΩ−1

DNΩ
0 0 · · · 0 DNΩ

CNΩ


, (3.3.58)
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with

Cj =



1 + 6rφ
(n+1)
1,j −2rφ

(n+1)
1,j 0 · · · 0 −2rφ

(n+1)
1,j

−2rφ
(n+1)
2,j 1 + 6rφ

(n+1)
2,j −2rφ

(n+1)
2,j · · · 0 0

0 −2rφ
(n+1)
3,j 1 + 6rφ

(n+1)
3,j · · · 0 0

...
...

...
. . .

0 0 0 · · · 1 + 6rφ
(n+1)
NΩ−1,j −2rφ

(n+1)
NΩ−1,j

−2rφ
(n+1)
NΩ,j

0 0 · · · −2rφ
(n+1)
NΩ,j

1 + 6rφ
(n+1)
NΩ,j


and

Dj =



−rφ(n+1)
1,j 0 0 · · · 0 0

0 −rφ(n+1)
2,j 0 · · · 0 0

0 0 −rφ(n+1)
3,j · · · 0 0

...
...

...
. . .

0 0 0 · · · −rφ(n+1)
NΩ−1,j 0

0 0 0 · · · 0 −rφ(n+1)
NΩ,j


,

while

A5 =



E1 F1 0 · · · 0 0 F1

F2 E2 F2 · · · 0 0 0

0 F3 E3 · · · 0 0 0
...

...
...

. . .

0 0 0 · · · FNΩ−1 ENΩ−1 FNΩ−1

FNΩ
0 0 · · · 0 FNΩ

ENΩ


, (3.3.59)

with

Ej =



1 + 6rφ
(n+1)
1,j −rφ(n+1)

1,j 0 · · · 0 −rφ(n+1)
1,j

−rφ(n+1)
2,j 1 + 6rφ

(n+1)
2,j −rφ(n+1)

2,j · · · 0 0

0 −rφ(n+1)
3,j 1 + 6rφ

(n+1)
3,j · · · 0 0

...
...

...
. . .

0 0 0 · · · 1 + 6rφ
(n+1)
NΩ−1,j −rφ(n+1)

NΩ−1,j

−rφ(n+1)
NΩ,j

0 0 · · · −rφ(n+1)
NΩ,j

1 + 6rφ
(n+1)
NΩ,j


and

Fj =



−2rφ
(n+1)
1,j 0 0 · · · 0 0

0 −2rφ
(n+1)
2,j 0 · · · 0 0

0 0 −2rφ
(n+1)
3,j · · · 0 0

...
...

...
. . .

0 0 0 · · · −2rφ
(n+1)
NΩ−1,j 0

0 0 0 · · · 0 −2rφ
(n+1)
NΩ,j


.
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The vectors U(n+1) and V(n+1) are the solution vectors and b
(n)
4 and b

(n)
5 are the right hand sides

of (3.3.49) and (3.3.50). The equations we now seek to solve are

A1α
(n+1) = b

(n)
1 ,

A2ρ
(n+1) = b

(n)
2 ,

A3ω
(n+1) = b

(n)
3 ,

A4U
(n+1) = b

(n)
4 ,

A5V
(n+1) = b

(n)
5 .

(3.3.60)

The matrices in these systems of equations are large and sparse and can therefore be solved by

iterative methods e.g preconditioned conjugate gradient and GMRES methods.

3.3.3 Numerical simulation

We will only show preliminary results for the phase-field model. Let Ω = [−3, 3] × [−3, 3] be the

domain and the unit disk denote the cell at the initial time. We let φ = 1 inside the cell and φ = 0

outside the cell. We also allow φ to vary smoothly between φ = 1 and φ = 0 across the boundary

of the cell. We start with initial conditions as random perturbation about the point φρm = 1 for

myosin II and consider a non-zero concentration of F-actin only in one half of the cell at initial

time. The parameters used are as shown in Table 3.5. The domain is subdivided into 100 equal

sub-intervals in each direction. We allowed the simulation to run until t = 5. All the simulations

were carried out in Matlab. Figure 3.24 shows evolution of the cell shape with time.

Discussion of the numerical result

We have attempted to solve the phase-field model as an alternative method for solving model for

cell migration. We note that we have only given preliminary results for the phase-field model, i.e,

the results for the cell shape. The disk representing the cell is now embedded into the domain

Ω = [−3, 3]× [−3, 3]. Our preliminary result for the phase-field model shows that the cell evolves

with time and maintains the value φ = 1 inside the cell and φ = 0 outside the cell. The diffuse

width of the cell is such that φ varies smoothly between φ = 1 and φ = 0.

3.3.4 Summary

Here, we considered the phase-field model as an alternative model for cell migration. The main

advantage of this method is that it avoids the need of tracking the boundary. The model comprises

of reaction-advection-diffusion equations for F-actin and myosin II coupled to a force balance

equation. To show evolution of the cell, we use an additional equation for the phase-field. This

was done by introducing an auxiliary field φ(x, t) which takes the value φ(x, t) = 1 inside the cell

and the value φ(x, t) = 0 outside the cell and varies smoothly between 0 and 1 in the interface

between the two regions, a free energy functional F [φ] and a double well potential whose minima

describes the value of φ in each region. We discretised the space using central differences and
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(a) (b)

(c)

Figure 3.24: Cell shapes at different times showing the cell evolving with time. Red indicates

highest values and blue lowest values. (a) cell shape at initial time, (b) cell shape at time t = 2

and (c) cell shape at time t = 5

considered forward and backward Euler methods to discretise the time and ended up with systems

of linear equations. The systems of equations were then solved iteratively in matlab to obtain the

solution for the phase-field model. We have only displayed preliminary results for this model.

In Chapter 4, we will give a summary, discuss the findings from our work and outline future

directions.
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Chapter 4

Summary and future directions

In this chapter, we summarise and discuss the general results from our work and outline future

research.

4.1 Summary

Cell migration has become one of the areas of much interest to many researchers. It is a funda-

mental process in many biological systems, for example wound healing, development of embryos,

inflammation, cancer invasion, physiological process among others. In this work, we proposed a

model and implemented numerical methods to study cell migration.

We began with a detailed review on the biology of cell migration and outlined various mod-

elling strategies that have been applied to study cell migration. The cell’s cytoskeleton is largely

responsible for force generation that drive cell migration. It does so through the actin-myosin

system. Rapid polymerisation of actin network at the cell periphery leads to the growth of lamelli-

podia. This leads to expansion of the plasma membrane and thus to the development of a contact

area with the substrate. Also, the development of stress fibres and networks that are contractile

due to the action of myosin II that tend to slide actin filaments relative to each other leads to

contraction of the cell . These active forces from polymerisation of actin and contraction of stress

fibres are eventually transmitted to the substrates thereby providing the necessary forces required

for cell propulsion. Actin filament and myosin II are therefore responsible for force generations

that drive the cell forward. We therefore derived models based on the idea that F-actin and myosin

II are the main active stresses in the cell.

We constructed two models for cell migration. The first model is the viscous model which treats

the actin-myosin system as a viscous material. This model is composed of reaction-advection-

diffusion equations coupled to a force balance mechanical equation. The reaction-advection-

diffusion equations for actin and myosin II are derived from conservation laws. The reaction

kinetics for actin depends on the concentration of F-actin and actin monomers. We assumed that

the total amount of actin is conserved in the entire cell. Actin converts from its active state to
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inactive state and vice-versa and is independent of myosin II concentration. Since actin monomers

are small molecules and they can diffuse fast, we assumed that they are well mixed inside the

cell. We assumed that myosin II only diffuses inside the cell and that the two reaction-advection-

diffusion equations are only coupled at the diffusion term for myosin II. For our models, actin and

myosin II are the source of active stresses. Therefore at quasi-steady state, all the forces balance

off and is equal to zero.

During numerical simulation of the viscous model, we note that we had to specify a way in

which the mesh moves and keep track of the boundary at all time steps. To avoid this, one could

explore the phase-field framework. We therefore formulated the corresponding phase-field model

as an alternative model for cell migration. We introduced a phase-field function φ which takes the

value φ = 1 inside the cell and φ = 0 outside the cell. The phase-field function was allowed to vary

smoothly from φ = 1 to φ = 0 across the boundary of the cell. We note that this method avoids

the need of tracking the boundary every time step. In addition to the reaction-advection-diffusion

equations and force balance equation, we now have a phase-field equation which gives the shape of

the cell. In both models, we carried out non-dimensionalisation and ended up with dimensionless

models. For the viscous model, we proposed to discretise the space using finite elements. The finite

element method is well suited for domains that are irregular and evolving. To obtain fully discrete

equations, we used the second order semi-implicit backward differentiation formula and solved the

model. To begin with, we considered the well studied Schnakenberg model and constructed its

numerical solvers. We summarise our observations in the next paragraph.

Actin filaments and myosin II are the main sources of stresses in the cell and are responsible for

driving cell migration. We varied the parameter for total actin and observed a linear relationship

between the cell expansion and total amount of actin. The more the total amount of actin, the

more the expansion. A decrease in the total amount of actin beyond a certain threshold leads to

cell shrinking. Myosin II is responsible for cell contraction. By varying the contraction coefficient

for myosin II, we observed effect in contraction of the cell. Our results validate the theory that

myosin II and actin are the main ingredients that drive cell motility. The initial condition also

played a role in the dynamics of cell migration. We considered two sets of initial conditions for the

F-actin and myosin II variables. A random perturbation about ρa = 1 led to uniform expansion

of the cell where the periphery of the cell expanded or contracted uniformly. By considering a

non-zero initial concentration of F-actin only in one half of the cell, we observed a directed growth

of the cell where the cell expanded in the direction with more concentration of actin and began to

migrate in that direction.

The findings and conclusion from our work is therefore as follows: in the absence of advection

of actin and myosin II and domain evolution, the biochemical model for F-actin and myosin II

will reach steady state. The advection terms drive cell movement. F-actin and myosin II are the

main sources of active stresses in the cell and are responsible for driving cell migration. Some of

the parameters and variables that are important in the dynamics of cell migration are: the initial

conditions for F-actin, the total amount of actin inside the cell, the contraction and polymerisation
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coefficients.

For the phase-field model, we proposed to use finite differences to discretise the space. This

is because finite differences are simple to work with on simple geometries, which is our case. We

note however that on complicated geometries implementation with finite differences is not trivial.

We used a forward and backward Euler method to discretise the time derivatives and solved

the resulting system of linear equations using iterative methods, for example the preconditioned

conjugate gradient and GMRES methods. Our preliminary results for this model was able to give

cell shapes at different times. We note that the boundary is now a diffuse layer and the phase-field

function distinguishes the inside of the cell from the outside. Our result is able to depict some

aspects of cell migration. We note however that some aspects of the results for the phase-field

model are missing including the dynamics of F-actin and myosin II and velocity solution.

4.2 Future directions

Cell migration is a very complex area and include different modules, for example signalling path-

ways, actin polymerisation, myosin II contraction, adhesion among others. Our models were able

to describe some aspect of cell migration although this is just a few of the many aspects of cell

migration. Our model results show consistency with experimental studies but we note that it has

several limitations.

• First, the cell is treated as two-dimensional. As much as this is a reasonable approximation

for the lamellipodium, it is not sufficient to describe the bulbous cell body. Extension to

three dimensions are in principle straightforward, albeit computationally more intensive.

• Secondly, our numerical results indicated expansion of the cell with time. An improvement to

the model would be to introduce extra mechanisms for volume conservation which is missing

in our models.

• It would be interesting to investigate the effects of different other parameters on cell velocities.

• Furthermore, our reaction-advection-diffusion model can be extended to include more com-

plicated actin-myosin dynamics. For example, it has been suggested that myosin II can

disassemble actin filaments at the back of the cell. A modification for the reaction-advection

equations would be to introduce a reaction term to the myosin II equation which depends on

actin and myosin II and similarly, a reaction term to actin equation that depends on both

actin and myosin II.

• Also, it would be interesting to include extra pathways to control the quantity ρtota so as to

enable the cell to polarise.

• It would be interesting to incorporate adhesion mechanism and to investigate the effects of

barriers on the cell velocity.
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• Finally, an extension of the numerical simulation of the phase-field model in terms of com-

puting the steady state shapes and velocity of the cell and the steady state distributions of

F-actin and myosin II can be done in order to compare the two modelling framework.
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