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Glossary

Term Definition
Clonal expansion The explosive increase in the number of immune sys-

tem’s cells in the presence of an infection
Antigen A structural molecule that binds specifically to an an-

tibody
Leukocyte A type of blood cell that is produced in the bone mar-

row and found in the blood and lymph tissue, which
helps the body fight infection and other diseases

Macrophage A type of white blood cell that surrounds and kills
microorganisms, removes dead cells, and stimulates
the action of other immune system cells

Cytolitic Dissolution or destruction of a cell
Non-cytolitic cure Curing an infected cell without dissolution or destruc-

tion of the cell
Epitope A part of an antigen molecule that an antibody will

recognize and bind to
Self-reactivity The recognition of a self-antigen as a foreign antigen

by the immune response
Autoreactive An immune system’s cell with high level of self-

reactivity
Consuming reaction When the reactants of an unfinished reaction cannot

participate in a new reaction
fH bifurcation fold-Hopf bifurcation is defined as the situation where

the Jacobian matrix at an equilibrium has a zero
eigenvalue and a pair of purely imaginary eigenvalues

Propensity function When a system is in state x, a(x) is called a propensity
function for the reaction R if a(x)dt is the probability
that one R event will occur in the next time interval
dt
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Abstract

One of the major outstanding challenges in immunology is the development of a

comprehensive, quantitative and accurate approach to understanding the causes

and dynamics of immune responses. The immune system normally protects the

body against infections, but at the same time it is possible that it can fail to distin-

guish the host’s own cells from the cells affected by the infection, which can lead to

autoimmune disease. The question of what releases the auto-pathogenic potential

of T lymphocytes is at the heart of understanding autoimmune disease. Among

various possible causes of autoimmune disease, an important role is played by in-

fections that can result in a breakdown of immune tolerance, primarily through

the mechanism of molecular mimicry, where the introduction of pathogenic pep-

tides that structurally resemble self-peptides, derived from infection, may induce T

lymphocytes to proliferate and leave them with the ability to respond to self, as

well as foreign antigens. Deterministic and stochastic models have been extensively

used in the past to study the dynamics of immune responses and analyse a possi-

ble onset of autoimmunity. The main focus of this thesis is the development and

analysis of mathematical models of immune response to infection, as well as the

onset and progress of autoimmunity. Particular emphasis is made on developing

new mathematical approaches for elucidating the roles played by various cytokines

in the immune dynamics.

In the first part of the thesis I develop a mathematical model for dynamics of

immune response to hepatitis B. This model explicitly includes contributions from

innate and adaptive immune responses, as well as from cytokines. Analysis of the

model identifies parameter regimes where the model exhibits clearance of infection,

maintenance of a chronic infection, or periodic oscillations. Effects of nucleoside

analogues and interferon treatments are analysed, and the critical drug efficiency is

determined.
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The second part of the thesis investigates the dynamics of immune response to

a general viral infection and a possible onset of autoimmunity, which account for

regulatory T cells, T cells with different activation thresholds, and cytokines. Fea-

sibility and stability analyses of different steady states yield boundaries of stability

and bifurcations in terms of system parameters. This model exhibits bi-stability

and shows different regimes of normal clearance of viral infection, chronic infection,

or autoimmune behaviour. Therefore, it can provide significant new insights into

autoimmune dynamics.

To investigate the role of stochasticity in immune dynamics, I developed a

stochastic version of the model, and the major result is that adding stochasticity can

lead to the emergence of sustained oscillations around deterministically stable steady

states, thus providing a possible explanation for experimentally observed variations

in the progression of autoimmune disease. I also have investigated stochastic dynam-

ics in the regime of bi-stability and computed the magnitude of these fluctuations.

I have also analysed the effects of different time delays, as well as the inhibiting

effect of regulatory T cells on secretion of interleukin-2 on autoimmune dynamics.

To this end, I have performed a systematic analysis of stability of all steady states

of the corresponding model both analytically, and numerically. The identification of

basins of attraction of different steady states and periodic solutions indicates that

time delays can change the shape of these basins of attraction, and the new results

show better qualitative agreement with the experimental observations.

My thesis culminates with the last part, where I explore stochastic effects in a

time-delayed model for autoimmunity. The major achievement in this part of the

thesis is the development of a new methodology for deriving an Itô stochastic delay

differential equation (SDDE) from delay discrete stochastic models, as well as show-

ing the equivalency of previously proposed methods. Using this equivalence, I de-

rived a simpler SDDE model to perform numerical simulations. I have used a linear

noise approximation (LNA) to determine the magnitude of stochastic fluctuations

around deterministic steady states, and to obtain insights into how the coherence

of stochastic oscillations around deterministically stable steady states depends on

system parameters.
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Chapter 1

Introduction

1.1 Overview of immune response

The term immunity comes from the Latin word immunitas, which refers to the

protection from legal prosecution that was offered to Roman senators during their

tenures in office. In biology, immunity means defence from disease particularly

infectious disease. The immune system refers to the cells and molecules that are re-

sponsible for immunity, and their coordinated and collective response to the invasion

of foreign matters is called the immune response.

The main role of the immune system is to effectively protect its host against

parasites, which largely consists of identifying and destroying microbes and infected

cells. Human immune system has two major components: innate immunity and

adaptive immunity. Innate immune response is the early line of defence against

microbes. Components of the innate immunity are as follows: (1) physical and

chemical barriers, such as skin, mucosal epithelia and anti-microbial chemicals; (2)

natural killer (NK) cells, macrophages, and dendritic cells; (3) blood proteins; and

(4) cytokines which regulate some activities of the immune response. Innate immune

response is non-specific, i.e. anything that is identified as foreign, is a target for the

innate immune response.

Adaptive immune response is only stimulated upon encountering a foreign anti-

gen presented on antigen-presenting cells (APCs), such as macrophages and den-

dritic cells [1]. Unlike innate immune response, adaptive immune response is specific,

i.e. cells undergo clonal expansion by exposure to antigens, and it is able to distin-
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guish between different microbes and molecules. Adaptive immunity has two forms,

called humoral immunity and cell-mediated immunity. Humoral immunity is medi-

ated by macromolecules found in the blood, called antibodies. Antigen-stimulated

B lymphocytes (B cells) produce specific antibodies. Antibodies bind to microbial

antigens, neutralise their infectivity, and eliminate them by various effector mech-

anisms, such as ingestion (phagocytosis). Viruses and some bacteria, which have

survived against humoral immunity and proliferate inside host cells, are inaccessible

to antibodies. In this case, cell-mediated immunity delivered by T lymphocytes (T

cells) provides the defence against infection. T cells recognise antigens of intracellu-

lar microbes, and either destroy them through phagocytosis, or directly kill infected

cells. Major T cell populations are helper T cells and cytotoxic T lymphocytes

(CTLs). Helper T cells secrete cytokines, which stimulate the activation of T and B

cells, macrophages and other leukocytes. CTLs are responsible for killing infected

cells [1]. Moreover, in some diseases, such as hepatitis B, CTLs are able to induce

non-cytolytic “cure” of infected cells [2, 3, 4].

As mentioned above, the immune system can only be viewed as effective when it

can robustly identify and destroy pathogen-infected cells, while distinguishing such

cells from healthy cells. Under normal conditions, once foreign epitopes are presented

on APCs to T cells, this results in the proliferation of T cells and eliciting their ef-

fector function. T cells with high level of self-reactivity are removed from the system

by two different mechanisms: central and peripheral tolerances. Central tolerance

is associated with the removal of autoreactive T cells during their development in

the thymus, while the peripheral tolerance is usually controlled by regulatory T cells

[5]. However, these mechanisms are not perfect and sometimes cross-reactivity be-

tween epitopes associated with foreign and self-antigens can lead to a T cell response

against healthy host cells [6, 7]. The breakdown of self-tolerance, i.e. a failure of

self/non-self discrimination, results in a pathological immune response known as

autoimmune disease, whereby T cells are attacking host’s own healthy cells.

For many autoimmune diseases, the disease occurs in a specific organ or part

of the body, such as retina in uveitis, central nervous system in multiple sclero-

sis, or pancreatic β-cells in type-1 diabetes [8, 9, 10]. It is extremely difficult to

identify the specific causes of autoimmunity in individual patients, as it usually
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has contributions from a number of internal and external factors, including a ge-

netic predisposition, age, previous immune challenges, exposure to pathogens etc.

[11, 12, 13, 14]. Even though genetic predisposition is known to play a very signifi-

cant role, it is believed that some additional environmental triggers are required for

the onset of autoimmunity, and these are usually represented by infections [15, 16].

A very recent work has experimentally identified a gut bacterium that, when present

in mice and humans, can migrate to other parts of the body, facilitating subsequent

triggering of autoimmune disease in those organs [17]. Various mechanisms of onset

of pathogen-induced autoimmune disease have been identified, including bystander

activation [18], where the infection releases autoantigen in an environment rich in

cytokines that promote T cell activation, thus reducing the signal strength require-

ment for activation and allowing otherwise unresponsive autoreactive cells to be

stimulated by the self-antigens, and molecular mimicry [19, 20], where the introduc-

tion of pathogenic peptides that structurally resemble self-peptides, derived from

infection, may induce T lymphocytes to proliferate and leave them with the ability

to respond to self as well as foreign antigens. Molecular mimicry is particularly

important in the context of autoimmunity caused by viral infections.

1.2 Mathematical modelling in immunology

Mathematical modelling has been very effective in the analysis of different aspects

of virus dynamics and the interactions between viruses and the immune system of

the host [21, 22, 23, 24, 25], such as hepatitis B [26], influenza [27], HIV [28, 29, 30],

and hepatitis C [31]. A nice review by Andrew et al. [32] discusses fundamental

modelling and computational issues associated with modelling immune response,

especially from the perspective of the possibility of making experimentally testable

predictions.

In the context of modelling the dynamics of immune response to HBV infection,

Ciupe et al. [33, 34] extended a standard model of immune response to study acute

infection and the role of time delay associated with activation and expansion of ef-

fector cells. In a subsequent work, they also looked into the role of pre-existing or

vaccine-induced antibodies in controlling the HBV infection [35]. Min et al. [36]
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used a standard incidence function rather than a mass action to account for a finite

liver size and susceptibility to HBV infection, while Gourley et al. [37] developed

a time-delayed extension of this model. Hews et al. [38] used a logistic growth for

hepatocyte population and a standard incidence to help the model better represent

available data, and to achieve more realistic values for the basic reproduction num-

ber. Yousfi et al. [39] analysed possible mis-coordination between different branches

of adaptive immune response, more specifically, between the CTLs and the antibod-

ies, during HBV infection. In terms of the effects of cytokines on mediating immune

response, Wiah et al. [40] studied a model that besides the CTLs and antibodies also

includes α- and β-interferons, whose role is taken to convert susceptible hepatocytes

into infection-resistant cells. Kim et al. [41] adapted an earlier model for hepatitis C

to include cytokines implicitly through allowing effector cells to cause non-cytolytic

recovery of the infected cells, and a similar approach has also been used by other re-

searchers [42, 43, 44] who considered a constant rate of non-cytolytic cure alongside

treatment.

Since the focus of all of these models was on the dynamics of immune response

against HBV infection, they all assumed that the immune system is able to distin-

guish the host’s own healthy cells from the cells affected by the infection, so that the

immune response only targets infected cells. However, immune response is a com-

plex process, which is not flawless, and cross-reactivity between epitopes associated

with foreign and self-antigens can sometimes lead to autoimmune disease.

Over the years, a number of mathematical models have investigated various

origins and aspects of immune response, with an emphasis on the onset and de-

velopment of autoimmune disease. Some of the early models analysed interactions

between regulatory and effector T cells without investigating specific causes of au-

toimmunity, but instead focusing on T cell vaccination [45]. Borghans and de Boer

[46] and Borghans et al. [47] showed how autoimmune dynamics, which they de-

fined as above-threshold oscillations in the number of autoreactive cells, can appear

in such models. León et al. [48, 49, 50] studied interactions between different T cells,

and how they can affect regulation of immune response and control of autoimmunity.

Carneiro et al. [51] presented an overview of that work and compared two possible

mechanisms of immune self-tolerance that are either based on control by specific
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regulatory T cells, or result from tuning of T cell activation thresholds. Iwami et al.

[52, 53] analysed a model of immune response to a viral infection with an emphasis

on explicitly including the virus population, and also investigated the effects of dif-

ferent forms of the growth function for susceptible cells on autoimmune dynamics.

Despite this model’s ability to demonstrate the emergence of autoimmunity, since it

does not allow for a viral expansion, it cannot support a regime of normal viral clear-

ance. Alexander and Wahl [54] focused on how interactions of professional APCs

with effector and regulatory T cells can control autoimmune response. Burroughs et

al. [55, 56] demonstrated how autoimmunity can arise through bystander activation

mediated by cytokines. An excellent overview of some of the latest development in

mathematical modelling of autoimmune disease can be found in a special issue on

“Theories and modelling of autoimmunity” [57].

Since T cells are known to be fundamental for the dynamics of autoimmunity,

several different methodologies have been proposed for the analysis of various roles

they play in coordinating immune response. Experimental evidence suggests that

a major component in controlling autoimmune behaviour is provided by regulatory

T cells, which are activated by autoantigens and act to shut down autoimmune re-

sponses [58, 59, 60], while impairment in the function of regulatory T cells results in

autoimmune disease [61, 62]. To model this process, Alexander and Wahl [54] and

Burroughs et al. [55, 56] explicitly included a separate compartment for regulatory

T cells that are activated by autoantigens and suppress the activity of autoreactive

T cells. Another theoretical approach supported by experimental evidence is the

idea that T cells have the capacity to adjust their activation threshold for response

to stimulation by autoantigens depending on various environmental conditions or

endogenous stochastic variation, which allows them to perform a variety of different

immune functions. The associated framework of tunable activation thresholds was

proposed for analysis of thymic [63] and peripheral T cell dynamics [64, 65], and

has been subsequently used to analyse differences in activation/response thresholds

that are dependent on the activation state of the T cell [66]. van den Berg and

Rand [67] and [68] developed and analysed stochastic models for tuning of acti-

vation thresholds. The importance of tuning lies in the fact that it provides an

effective mechanism for improving sensitivity and specificity of T cell signalling in

5



a noisy environment [69, 70], and both murine and human experiments have con-

firmed that activation of T cells can indeed dynamically change during their circu-

lation [71, 72, 73, 74]. It is noteworthy that the need for activation thresholds for

T cells can be derived directly from the first principles of signal detection theory

[75]. Blyuss and Nicholson [76, 77] proposed and analysed a mathematical model

that includes two types of T cells with different activation thresholds and allows for

a biologically realistic situation where infection and autoimmune response occur in

different organs of the host. Depending on parameter values, this model can exhibit

the regimes of normal viral clearance, a chronic infection, and an autoimmune state

represented by endogenous oscillations in cell populations, associated with episodes

of high viral production followed by long periods of quiescence. Such behaviour,

associated in the clinical practice with relapses and remissions, has been observed

in a number of autoimmune diseases, such as MS, autoimmune thyroid disease, and

uveitis [78, 79, 80]. Despite its successes, this model has several limitations. One of

those is the fact that the periodic oscillations in the model are only possible when

the amount of free virus and the number of infected cells are also exhibiting oscil-

lations, while in laboratory and clinical situations, one rather observes a situation

where autoimmunity follows full clearance of the initial infection. Another issue

is that this model does not exhibit bi-stability, which could explain clinical obser-

vations suggesting that patients with very similar parameters of immune response

can have significantly different course and outcome of the infection. However, in

the specific context of autoimmunity, León et al. [48] highlighted the importance

of bi-stability between steady states with high populations of either regulatory, or

effector T cells for effective representation of the adoptive transfer of tolerance. Roy

et al. [81] developed a general kinetic model to capture the role of vitamin D in

immunomodulatory responses, and they demonstrated that vitamin D extends the

region of bi-stability, thus allowing immune regulation to be more robust with re-

spect to changes in pathogenic stimulation. Baker et al. [82] analysed the dynamics

of immune response during rheumatoid arthritis with particular emphasis on the

effects of cytokines on bi-stability and treatment. Rapin et al. [83] proposed a sim-

ple model of autoimmunity that displays a bi-stability between stable steady states

corresponding to a healthy state and autoimmunity. The authors have shown how
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the system can be switched back to the healthy steady state by immunotherapy

aimed at destabilising an autoimmune steady state. In Chapter 3, I will show how

inclusion of regulatory T cells and the cytokine mediating T cell activity can al-

low one to overcome the above-mentioned difficulties and provide a more realistic

representation of various regimes in the dynamics of autoimmunity.

Since immune response is known to be a complex multi-factor process [22], a

number of studies have looked into various stochastic aspects of immune dynamics,

such as T cell selection and proliferation. Deenick et al. [84] analysed stochastic

effects of interleukin-2 (IL-2) on T cell proliferation from precursors. Blattman et al.

[85] have shown that repertoires of the CTLs populations during primary response to

a viral infection and in the memory pool are similar, thus providing further support

to the theory of stochastic selection for the memory pool. Detours and Perelson [86]

explored the distribution of possible outcomes during T cell selection with account

for a variable affinity between T cell receptors and MHC-peptide complexes. Chao

et al. [87] analysed a detailed stochastic model of T cell recruitment during immune

response to a viral infection. Stirk et al. [88, 89] developed a stochastic model for T

cell repertoire and investigated the role of competitive exclusion between different

clonotypes. Using the methodology of continuous-time Markov processes, the au-

thors computed extinction times, a limited multivariate probability distribution, as

well as the size of fluctuations around the deterministic steady states. Reynolds et

al. [90] used a similar methodology to investigate an important question of asym-

metric cell division and its impact on the extinction of different T cell populations,

and the expected lifetimes of naïve T cell clones. With regards to modelling autoim-

mune dynamics, Alexander and Wahl [54] studied the stochastic model of immune

response with an emphasis on professional APCs to show that the probability of

developing a chronic autoimmune response increases with the initial exposure to

self-antigen or autoreactive effector T cells.

An important aspect of stochastic dynamics that has to be accounted for in

the models is the so-called coherence resonance or stochastic amplification [91, 92],

which denotes a situation where periodic solutions with decaying amplitudes in

the deterministic model can result in sustained stochastic periodic oscillations in

individual realisations of the same model [91, 92]. This suggests that whilst on
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average the behaviour may show decaying-amplitude oscillations, individual realisa-

tions represented by stochastic oscillations can explain relapses/remissions in clinical

manifestations of autoimmune disease as caused by endogenous stochasticity of the

immune processes. Moreover, recent experimental data on the progression of uveitis

(autoimmune inflammation in the eye) in rodent models [93, 94, 8] show noticeable

variation in the progress of disease even in individual eyes of the same animal, as

illustrated in Fig. 1.1. Since from a statistical point of view, one can consider the

progress of autoimmune disease in each eye of the same animal as independent re-

alisations of the same stochastic process, by computing the variance in the progress

of disease it is possible to quantify the level of noise. This would allow us to study

the contribution of stochastic processes to the unequal distribution of autoimmune

disease in identical organs of the same host.

Figure 1.1: Unequal distribution of experimental autoimmune uveitis in C57BL/6 mice.
Clinical disease score (y-axis) was obtained from photographs of the retina obtained
throughout the course of the disease. These were analysed to produce a disease score
by a trained individual, blinded to the origin of the pictures. These results compare two
independent realisations of the same stochastic process, from [93, 94].

One of the fundamental features of the immune dynamics is the fact that various

processes associated with development of infection, as well as with mounting the

appropriate immune response, are characterised by time delays, which can be non-

negligible, and thus have to be properly accounted for in mathematical models [95,

96, 97, 98]. In the specific context of viral infections, earlier mathematical models

of influenza, HIV and HCV have highlighted the importance of including viral lag

phase in the analysis of interactions between viruses and the immune system [99, 100,

101, 25]. This lag phase of the virus life cycle includes an eclipse phase consisting of

virus attachment, cell penetration and uncoating, and a latent phase, which includes
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virus assembly, maturation and release of new virions, and precise measurements of

different stages of virus life cycle have been performed for several viruses that have

been associated with triggering or exacerbating autoimmune disease [102, 103, 104,

105, 106, 107]. All of these processes result in a delayed production and release of

virions, as well as in the delay between a cell becoming infectious and the time it

becomes recognised as an infected cell by the CTLs [108].

The lag phase has been experimentally identified in viruses that are known to

sometimes cause or exacerbate autoimmune disease, such as Epstein-Barr virus

[103, 102] associated with multiple sclerosis (MS), systemic lupus erythematosus

(SLE), rheumatoid arthritis and autoimmune thyroid disease, HSV-1 virus [106, 107]

associated with autoimmune stromal keratitis, and the Coxsackie viruses [104, 105]

associated with type-1 diabetes. In these cases, precise measurements of different

stages of virus life cycle have been performed, and hence the details of the duration

of lag phase are available and can be used in testing different time delay effects.

Therefore, it is essential to correctly account for this in models of pathogen-induced

autoimmunity.

Other time delays involved include a delay between infection and developing

immune response [109, 110, 97, 111, 112], as well as the delay associated with the

process of stimulation of T cells by the IL-2 cytokine and their subsequent prolif-

eration. Kim et al. [113] have developed and analysed a very detailed model of

immune regulation that includes various time delays associated with proliferation

and stimulation of different types of T cells.

Since stochasticity and time delays are both essential features of the immune

system, it is important to also consider interactions between these processes in the

immune dynamics. Bratsun et al. [114] studied the combined effects of time delay

and intrinsic noise in the context of gene regulation. They presented a truncated

master equation for a set of biochemical reactions, some of which are delayed. They

also introduced modifications to the Gillespie algorithm to incorporate delayed re-

actions. However, this delay stochastic simulation algorithm (DSSA) ignores the

waiting time and only works for non-consuming delayed reactions [115]. Barrio et

al. [115] analysed oscillatory regulation of Hes1 and presented a new algorithm,

which takes into account the waiting time, but this method also only works for non-
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consuming delayed reactions. As an alternative, these authors presented an algo-

rithm for consuming delayed reactions termed the ‘rejection algorithm’, but did not

prove that these algorithms can exactly simulate the dynamics of a delayed system.

Cai [116] introduced a new algorithm called the ‘direct algorithm’ and showed that

this method and the rejection method are exact, with the difference that his method

generates less random variables and is faster. Zavala and Marquez-Lago [117] have

used the rejection algorithm to study stochastic effects in a simple genetic circuit

with negative feedback and transcriptional/translational delays. Later, Thanh et al.

[118, 119] developed some new algorithms which are faster compared with these two

algorithms. Delay chemical master equations (DCME) describes the exact proba-

bility distribution of finding the system in a particular state [114, 115]. Leier and

Marquez-Lago [120] have presented a general framework of DCMEs, which covers

both consuming and non-consuming delayed reactions. They have also described for

the first time direct and closed solutions of the DCME for simple reaction schemes.

Using DSSAs can be very computationally expensive [121, 122]. To overcome this

limitation, Tian et al. [121] have developed a method for deriving stochastic delay

differential equations (SDDEs), which are more computationally efficient, from a

discrete delayed stochastic model, and they used the Euler-Maruyama method for

numerical simulations. As an alternative, Niu et al. [123, 124] have introduced a

strong predictor-corrector method for the numerical solution of SDDEs. They have

indicated that the asymptotic mean-square stability bound (for more details see

[125, 126]) of this method will be much larger than that of the Euler-Maruyama

method, and also demonstrated that this implementation is much more efficient.

Frank [127] has shown how the probability distribution of a SDDE can be described

analytically as a solution of a delay Fokker-Planck equation (DFPE), and he has pre-

sented a method for deriving a DFPE from SDDEs [128]. Since solving a DCME or

DFPE directly is computationally a very challenging task, to describe fluctuations in

a delayed stochastic model Galla [129] has implemented the system size expansion,

where the time evolution of each cell population is decomposed into deterministic

and stochastic components. In this method the fluctuations around a deterministi-

cally stable steady state can be described as linear delay Langevin equations, which

are easier to deal with [122, 130].
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1.3 Thesis outline

In this thesis I focus on mathematical modelling of the effects of cytokines on me-

diating immune response to infection, as well as on the onset and development of

autoimmune disease. When deriving models of immune response, I make a particular

emphasis on the roles of time delays associated with different biological processes in-

volved in developing immune response, as well as on stochastic properties of immune

dynamics.

In Chapter 2, I focus on the interplay between various branches of the immune

system during HBV infection, as well as the role of cytokines in mediating immune

response and controlling viral replication. In Section 2.1 I give some general inorma-

tion about HBV infection and immune response against this infection. In Section 2.2

I discuss various biological aspects of the immune response against hepatitis B with

particular emphasis on interactions between innate immune response as exemplified

by NK cells, adaptive immune response represented by HBV-specific cytotoxic T

cells and antibodies, and various cytokines, and develop the corresponding mathe-

matical model. Section 2.3 contains systematic analysis of the steady states of the

model and their stability, complemented by numerical analysis and identification of

parameter regions where the model exhibits normal clearance of infection, mainte-

nance of a chronic infection, or periodic oscillations. Section 2.4 contains results

of numerical simulations in different parameter regimes, analysis of the effects of

nucleoside analogues and interferon treatments, and determination of the critical

drug efficiency. The results of the model are summarised in Section 2.5.

Chapter 3 follows a similar framework of studying immune response to viral

infection, but now I make the emphasis on the breakdown of immune tolerance and

study the onset of autoimmunity. Section 3.1 provides the key backgrounds of the

new model and its advantage over the previous models. In Section 3.2 I derive a

new mathematical model of immune response to a viral infection, with an emphasis

on the role of T cells having different activation thresholds and cytokines mediating

T cell activity, and a detailed analysis of this model is performed in Section 3.3.

These analytical results are further extended in Section 3.4 to identify regimes of

normal clearance of viral infection, chronic infection, or autoimmune behaviour,

as well as the boundaries of stability and bifurcations of relevant steady states in
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terms of system parameters and initial conditions. I perform numerical simulations

to illustrate different dynamical scenarios, and to identify basins of attraction of

different steady states and periodic solutions, highlighting the important role played

by the initial conditions in determining the outcome of immune interactions. The

Chapter concludes in Section 3.5 with the discussion of results.

Chapter 4 is devoted to analysis of the effects of stochasticity on the dynam-

ics of immune response and autoimmunity. As a first step, in Section 4.1 I use

the continuous-time Markov chain (CTMC) approach to derive a chemical mas-

ter equation, which describes the probability distribution of cell populations over

time. Subsequently, I develop an Itô stochastic differential equation model for find-

ing stochastic trajectories. At the end of this section, I use van Kampen’s system

size expansion method to investigate sustained oscillations around deterministically

stable steady states. Section 4.2 is concerned with the numerical simulations and

analysis of stochastic dynamics in the regime of bi-stability, and the discussion of

results is contained in Section 4.3.

In Chapter 5, I study the effects of viral and cytokine delays on dynamics of

autoimmunity. After deriving the model and discussing its basic properties in Sec-

tion 5.1, I then derive analytical conditions for local stability of the steady states in

terms of system parameters and delays, identifying the conditions for stability and

possible delay-induced Hopf bifurcation. Section 5.3 is concerned with extensive

numerical bifurcation analyses of the model and numerical simulations to demon-

strate behaviour in different dynamical regimes. The results and their biological

interpretation are present in Section 5.4.

In Chapter 6, I investigate stochastic effects in a time-delayed model for autoim-

munity. Using the discrete stochastic simulation method, in Section 6.1 I derive a

delayed chemical master equation. Section 6.2 contains a new systematic method for

deriving an Itô SDDE from a discrete stochastic delay model. In Section 6.3 I im-

plement system size expansion method on the DCME to study fluctuations around

deterministic attractors. Section 6.4 is concerned with numerical simulations and

stability analysis of the model. The results are presented in Section 6.5.

The thesis concludes in Chapter 7 with a general discussion of results and open

problems.
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Chapter 2

Mathematical model of immune

response to hepatitis B

This chapter is based on the publication F. Fatehi Chenar, Y.N. Kyrychko, K.B.

Blyuss, Mathematical model of immune response to hepatitis B, J. Theor. Biol.

447, 98–110, 2018.

In this chapter a new detailed mathematical model for dynamics of immune

response to hepatitis B is proposed, which takes into account contributions from

innate and adaptive immune responses, as well as cytokines. Stability analysis of

different steady states is performed to identify parameter regions where the model

exhibits clearance of infection, maintenance of a chronic infection, or periodic oscil-

lations. Effects of nucleoside analogues and interferon treatments are analysed, and

the critical drug efficiency is determined.

2.1 Background

Hepatitis B is a major viral infectious disease that affects a third of the world

population, with 240-350 million people having a chronic infection [131, 132], and

over 129 million new infections having occurred since 2013 [133]. This disease is

a significant public health burden, causing 750,000 deaths annually [132], of which

about 300,000 can be attributed to liver cirrhosis and hepatocellular carcinoma [134].

Whilst the prevalence of hepatitis B is relatively low (below 1%) in Western Europe

and North America, it remains significant in south-east Asia and sub-Saharan Africa,
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where 5-10% of the adult population are chronically infected [132].

The disease is caused by the hepatitis B virus (HBV), which is a hepatotropic

noncytopathic DNA virus of the Hepadnaviridae family [135]. There are two main

routes of transmission of the HBV virus. One is a vertical (perinatal) transmission

from an infected mother to a child, resulting in subsequent infection, which in 90% of

cases becomes chronic [136, 137]. The other possibility is a horizontal transmission

between adults primarily through sexual contacts, intravenous drug use or poor

sanitary habits. This type of transmission usually results in recovery, with only

5-10% of adults developing chronic infections [136, 137]. Multiple branches of the

immune system are involved in mounting the response during different phases of the

HBV infection. In many viral infections of humans, such as HIV, LCMV, Epstein-

Barr, the main contribution to the immune response during the early stages of

infection comes from the innate immune response, i.e. natural killer (NK) cells and

antiviral cytokines, which aim at reducing the spread of the virus and facilitating the

development of an adaptive immune response. Contrary to this general observation,

early stages of HBV infection are characterised by a delayed viral production and

the lack of production of IFN-α/β [138]. Several potential suggestions have been

proposed to explain this, including the possibilities that the initial replication of

HBV is very slow, or that the virus does not immediately reach the liver and remains

for a period of time in other organs [138, 139], however, the exact mechanism is still

largely unknown. Once the exponential phase of HBV expansions properly starts, it

activates the innate response and the cytokines [2], which, in turn, induces adaptive

immune response, with cytotoxic T lymphocytes (CTLs) being responsible for killing

infected cells, and antibodies against HBV surface antigen (HBsAg) neutralizing

virus particles and preventing (re)infection of cells. Interestingly, besides killing

HBV-infected hepatocytes, CTLs are able to induce non-cytolytic “cure” of such

cells [1, 2, 3]. An important role in the dynamics of immune response against HBV

is played by cytokines, which reduce viral replication [140, 141, 142], activate NK

and CTL cells [143, 3, 144], and facilitate induction of immunity in uninfected target

cells [145, 40].
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2.2 Model derivation

This model consists of nine cell populations as follows,

T (t) is the number of susceptible cells at time t,

I(t) is the number of infected cells at time t,

F1(t) is the amount of type-1 interferons at time t,

F2(t) is the amount of type-2 interferons at time t,

N(t) is the number of NK cells at time t,

E(t) is the number of effector T cells at time t,

R(t) is the number of refractory cells at time t,

V (t) is the viral load at time t,

A(t) is the number of antibodies at time t.

In order to analyse various aspects of immune response to HBV infection, I build

on the methodology of some earlier HBV models [146, 30, 147]. The host liver cells

are divided into populations of uninfected cells T (t), HBV-infected cells I(t), and

refractory cells R(t). Healthy hepatocytes are assumed to be produced at a constant

rate λ (cell day−1), die at a rate d (day−1) [34, 76], and they are infected by virions

(free virus particles) at a rate β (cell−1day−1). New HBV virions V (t) are produced

by the infected cells at a rate p (day−1), and they are cleared at a rate c (day−1).

Interactions between all cell populations are illustrated in Fig. 2.1.
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Figure 2.1: A diagram of immune response to HBV infection. Blue circles indicate host
cells (uninfected, infected, and refractory cells), green circles denote adaptive immune
response (antibodies, CTLs), yellow circles show cytokines (type-1 and type-2 interferon),
red circle is the innate immune response (NK cells), and grey indicates virus particles
(virions).

Adaptive immune response consists of HBsAg-specific antibodies A(t) that de-

stroy virions at a rate k (cell−1day−1), and HBV-specific CTLs, also referred to

as effector cells, E(t). After viral clearance, because of the long-lived plasma and

memory B cells, antibody level is kept at some homeostatic level [35]. To model

this, I assume that antibodies are produced at a constant rate λa (cell day−1), and

die at per capita rate da (day−1). During infection, antibodies are produced at rate

q (day−1) proportional to the viral load. Whilst antibodies are responsible for elim-

inating free virus, CTLs instead kill infected cells at a rate µ2 (cell−1day−1). Some

models assume certain basal level of CTLs s/de in the absence of infection, where

s is the source of CTLs, and 1/de is their average lifespan [33, 34]. We will instead

assume the dynamics of effector cells in the absence of infection to have the form

of logistic growth with the proliferation rate re (day−1) and the carrying capacity

Emax. Upon infection, the immune response is activated, and the population of
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effector cells will expand at rate αIE (α cell−1 day−1) [33, 34]. Similarly to effector

cells, in the absence of infection, NK cells are assumed to obey logistic growth with

the linear growth rate rn (day−1) and the carrying capacity Nmax.

Let us now focus on the role of cytokines in the immune dynamics. Type-1 in-

terferons IFN-α/β, to be denoted by F1(t), are produced by infected cells [148, 3]

at a rate p1 (day−1), and they are destroyed at a rate δ1 (day−1). Type-2 interfer-

ons IFN-γ, denoted as F2(t), are produced by CTLs and NKs (natural killer cells)

N(t) [3, 140, 149, 150] at rates p2 (day−1) and p3 (day−1), respectively, and they

are lost at a rate δ2 (day−1). Both types of interferons have the capacity to render

the uninfected cells protected from infection through making them resistant to in-

fection [40, 151, 152], or by turning them into refractory cells [145, 153]. Therefore,

the combined effect of interferons making uninfected cells refractory is taken to be

ϕ1(F1 +F2) per uninfected cell, and refractory cells can lose their viral resistance at

a rate ρ [33]. During infection, IFN-α/β are able to activate NK cells [154], while

IFN-γ induces protein-10 (CXCL-10) that recruits NK cells [155, 143] and can also

activate NK cells [3]. Hence, the combined effect of interferons on activating NK

cells is taken to occur at a rate q1NF1 + q2NF2 (qi cell−1 day−1). Besides positive

contribution to the production of new NK cells, IFN-α/β also increase the cytotoxi-

city of NK cells and CTLs [1]. On the other hand, IFN-γ increases the expression of

MHC antigen acting to help CTLs destroy infected cells [144], and it also enhances

the activity of NK cells [156, 157]. Thus, both types of interferons increase cytolytic

activity of NKs and CTLs, and hence, I will assume that NKs and CTLs destroy

infected cells at rates µ1(1+s1F1 +s2F2)IN (si cell−1) and µ2(1+s′1F1 +s′2F2)IE (s′i
cell−1), respectively. Moreover, antiviral cytokines, such as IFN-γ and TNF-α, can

non-cytopathically purify viruses from infected cells [3], so that HBV-specific CTLs

and NK cells can effectively “cure” infected cells through a non-cytolytic antiviral

activity mediated by IFN-γ [3, 140, 4, 158]. Hence, infected cells can be lost due

to non-cytolytic response of IFN-γ at a rate ϕ2IF2 (ϕ2 cell−1 day−1). Studies have

shown that IFN-γ can activate a number of intracellular mechanisms that suppress

viral replication [140, 141, 142, 159], while IFN-α/β can stimulate the activation of

intracellular antiviral pathways to limit the development and spread of viral repli-

cation [3]. Thus, both types of interferons help infected cells reduce production of
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new virus particles, so infected cells produce virions at a rate p/(1 + s3F1 + s4F2).

With the above assumptions, the complete model for immune response to HBV

infection takes the form

dT

dt
= λ− dT − βV T + ρR− ϕ1T (F1 + F2),

dI

dt
= βV T − δI − µ1(1 + s1F1 + s2F2)IN − µ2(1 + s′1F1 + s′2F2)IE − ϕ2IF2,

dF1

dt
= p1I − δ1F1,

dF2

dt
= p2E + p3N − δ2F2,

dN

dt
= rnN

(
1− N

Nmax

)
+ (q1F1 + q2F2)N,

dE

dt
= reE

(
1− E

Emax

)
+ αIE,

dR

dt
= ϕ1T (F1 + F2) + ϕ2IF2 − ρR,

dV

dt
= p

1 + s3F1 + s4F2
I − cV − kAV,

dA

dt
= λa − daA− kAV + qV.

(2.1)

All parameters are non-negative. To reduce the complexity of the model and the

number of free parameters, I introduce the following rescaled parameters

d̂ = d

rn
, β̂ = βλa

darn
, ρ̂ = ρλad

rnλda
, δ̂ = δ

rn
, ŝi = si

λa
da
, i = 1, 2, 3, 4,

µ̂1 = µ1Nmax

rn
, µ̂2 = µ2Emax

rn
, ϕ̂i = ϕiλa

darn
, p̂1 = p1

rn
, p̂2 = p2daEmax

rnλa
,

p̂3 = p3daNmax

rnλa
, r̂e = re

rn
, α̂ = αλa

rnda
, p̂ = p

rn
, ĉ = c

rn
, k̂ = kλa

rnda
,

d̂a = da
rn
, q̂ = q

rn
, ŝ′i = s′i

λa
da
, δ̂i = δi

rn
, q̂i = qiλa

rnda
, i = 1, 2,
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and new variables

t̂ = rnt, T = λ

d
T̂ , I = λa

da
Î , F1 = λa

da
F̂1, F2 = λa

da
F̂2, N = NmaxN̂ ,

E = EmaxÊ, R = λa
da
R̂, V = λa

da
V̂ , A = λa

da
Â.

Substituting these variables into the model (2.1) and dropping all hats gives the

following non-dimensionalised system of equations

dT

dt
= d(1− T )− βV T + ρR− ϕ1T (F1 + F2),

dI

dt
= βV T − δI − [µ1(1 + s1F1 + s2F2)N + µ2(1 + s′1F1 + s′2F2)E + ϕ2F2] I,

dF1

dt
= p1I − δ1F1,

dF2

dt
= p2E + p3N − δ2F2,

dN

dt
= N(1−N) + (q1F1 + q2F2)N,

dE

dt
= reE(1− E) + αIE,

dR

dt
= ϕ1T (F1 + F2) + ϕ2IF2 − ρR,

dV

dt
= p

1 + s3F1 + s4F2
I − cV − kAV,

dA

dt
= da(1− A)− kAV + qV.

(2.2)

It is straightforward to show that this system is well-posed, i.e. its solutions with

non-negative initial conditions remain non-negative for all t ≥ 0.

2.3 Steady states and their stability

We begin our analysis of the system (2.2) by looking at its steady states

S∗ = (T ∗, I∗, F ∗1 , F ∗2 , N∗, E∗, R∗, V ∗, A∗),
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that can be found by equating the right-hand sides of equations in (2.2) to zero and

solving the resulting system of algebraic equations. Due to the high dimensionality

of the system (2.2), it can admit a significant number of possible steady states.

Hence, in order to systematically find and analyse all of them, I begin with steady

states characterised by the absence of virus particles, i.e. V ∗ = 0, which immediately

implies I∗ = F ∗1 = 0 and T ∗ = A∗ = 1, which represents the clearance of infection.

There are four such steady states,

S∗1 = (1, 0, 0, 0, 0, 0, 0, 0, 1), S∗2 =
(

1, 0, 0, p2

δ2
, 0, 1, ϕ1p2

ρδ2
, 0, 1

)
,

S∗3 =
(

1, 0, 0, p3

δ2 − p3q2
,

δ2

δ2 − p3q2
, 0, ϕ1p3

ρ(δ2 − p3q2) , 0, 1
)
,

S∗4 =
(

1, 0, 0, p2 + p3

δ2 − p3q2
,
δ2 − p3q2 + p2q2 + p3q2

δ2 − p3q2
, 1, ϕ1(p2 + p3)

ρ(δ2 − p3q2) , 0, 1
)
.

Whilst the steady states S∗1 and S∗2 are feasible for any values of parameters, S∗3 and

S∗4 are only biologically feasible, provided δ2− p3q2 > 0. Linearisation of the system

(2.2) near each of these steady states shows that S∗1 , S∗2 and S∗3 are always unstable,

while S∗4 is stable if the following condition holds

K < Kc, K = pβ(δ2 − p3q2)3

(c+ k)(p2s4 − p3q2 + p3s4 + δ2) , (2.3)

with

Kc = δp2
3q

2
2 + µ1p

2
2q2s2 − µ1p2p3q

2
2 + µ1p2p3q2s2 − µ2p2p3q2s

′
2 + µ2p

2
3q

2
2 − µ2p

2
3q2s

′
2

−2δδ2p3q2 + δ2µ1p2q2 + δ2µ1p2s2 − δ2µ1p3q2 + δ2µ1p3s2 + δ2µ2p2s
′
2 − 2δ2µ2p3q2

+δ2µ2p3s
′
2 − p2p3q2ϕ2 − p2

3q2ϕ2 + δδ2
2 + δ2

2µ1 + δ2
2µ2 + δ2p2ϕ2 + δ2p3ϕ2.

(2.4)

When K = Kc, equilibrium S∗4 undergoes a steady-state bifurcation, and for K >

Kc, this steady state is unstable.

For V ∗ 6= 0, one has to distinguish between two cases, k = q and k 6= q. For

k = q, one finds A∗ = 1, and there are four associated steady states with different

combinations of E∗ = 0 or E∗ 6= 0, and N∗ = 0 or N∗ 6= 0. The first of these, S∗5 ,

characterised by the absence of CTLs and NKs, i.e. E∗ = 0 and N∗ = 0, has other
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components given by

T ∗ = (c+ k)(dp1s3 + δδ1)
cdp1s3 + dkp1s3 + βpδ1

, I∗ = dδ1(pβ − cδ − kδ)
δ(cdp1s3 + dkp1s3 + βpδ1) ,

F ∗1 = dp1(pβ − cδ − kδ)
δ(cdp1s3 + dkp1s3 + βpδ1) , F ∗2 = 0,

R∗ = dp1ϕ1(c+ k)(dp1s3 + δδ1)(pβ − cδ − kδ)
δρ(cdp1s3 + dkp1s3 + βpδ1)2 , V ∗ = dδ1(pβ − cδ − kδ)

β(c+ k)(dp1s3 + δδ1) ,

and this steady state is always unstable. The steady state S∗6 with E∗ = 0 and

N∗ 6= 0 has components given by

I∗ = δ1F
∗
1

p1
, F ∗2 = 1 + q1F

∗
1

a
, N∗ = δ2F

∗
2

p3
, V ∗ = pI∗

(c+ k)(1 + s3F ∗1 + s4F ∗2 ) ,

T ∗ = d+ ϕ2I
∗F ∗2

d+ βV ∗
, R∗ = ϕ1T

∗(F ∗1 + F ∗2 ) + ϕ2I
∗F ∗2

ρ
,

where F ∗1 satisfies the cubic equation

b3(F ∗1 )3 + b2(F ∗1 )2 + b1F
∗
1 + b0 = 0,

where the coefficients b1, b2 and b3 are always positive, and

b0 = dp1 [−a3pp3β + (c+ k)(a+ s4)(a2p3δ + aδ2µ1 + ap3ϕ2 + s2δ2µ1)] ,

a = δ2 − p3q2

p3
.

The steady state S∗6 is also always unstable.

Similarly, the steady state S∗7 with E∗ 6= 0 and N∗ = 0 has its state variables

given by

I∗ = δ1F
∗
1

p1
, F ∗2 = p2

δ2

(
1 + αδ1F

∗
1

rep1

)
, V ∗ = pI∗

(c+ k)(1 + s3F ∗1 + s4F ∗2 ) ,

E∗ = re + αI∗

re
, T ∗ = d+ ϕ2I

∗F ∗2
d+ βV ∗

, R∗ = ϕ1T
∗(F ∗1 + F ∗2 ) + ϕ2I

∗F ∗2
ρ

,

with F ∗1 satisfying the cubic equation

m3(F ∗1 )3 +m2(F ∗1 )2 +m1F
∗
1 +m0 = 0,
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where m1, m2 and m3 are positive, and

m0 = dp3
1r

3
e

[
−βpδ2

2 + (c+ k)(p2s4 + δ2)(µ2p2s
′
2 + δδ2 + µ2δ2 + ϕ2p2)

]
.

This steady state is unstable for any parameter values.

The last steady state S∗8 with E∗ 6= 0 and N∗ 6= 0 has components

I∗ = δ1F
∗
1

p1
, E∗ = re + αI∗

re
, F ∗2 = αp2δ1F

∗
1 + rep1 [p2 + p3(1 + q1F

∗
1 )]

rep1(δ2 − p3q2) ,

N∗ = δ2F
∗
2 − p2E

∗

p3
, V ∗ = pI∗

(c+ k)(1 + s3F ∗1 + s4F ∗2 ) ,

T ∗ = d+ ϕ2I
∗F ∗2

d+ βV ∗
, R∗ = ϕ1T

∗(F ∗1 + F ∗2 ) + ϕ2I
∗F ∗2

ρ
,

and F ∗1 satisfies a cubic equation. It does not prove possible to determine stability

of this steady state in a closed form, so is has to be done numerically.

For k 6= q, we again have four options, depending on whether E∗ = 0 or E∗ 6= 0,

and N∗ = 0 or N∗ 6= 0. Similar to the case k = q, the steady states S∗9 with

E∗ = N∗ = 0, S∗10 with E∗ = 0 and N∗ 6= 0 and S∗11 with E∗ 6= 0 and N∗ = 0, are

always unstable. The steady state S∗12 with all components being positive cannot be

found in a closed form.

The cases k = q and k 6= q have to be considered separately, since for k 6= q

one has a relation V ∗ = da(1−A∗)/(kA∗ − q), which cannot be directly used in the

case k = q with A∗ = 1. However, it is straightforward to show that as k → q, the

steady states S∗9 , S∗10, S∗11 and S∗12 converge to S∗5 , S∗6 , S∗7 and S∗8 , respectively. Of

these steady states, only S∗4 and S∗12 (or equivalently S∗8 for k = q) can potentially

change stability, as all other steady states are unstable for any parameter values.

To gain a better understanding of how stability of different steady states is

affected by various parameters in the model, I perform numerical stability and bi-

furcation analysis. Baseline values of parameters are given in Table 2.1, though one

should note that at this stage it is only feasible to explore different qualitative sce-

narios, as the actual values of many of these parameters have not yet been measured,

or significant variations in their values have been reported.

Figure 2.2 shows regions of feasibility and stability of the disease-free steady state
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S∗4 . Our earlier analysis indicates that this steady state is only feasible, provided

δ2 − p3q2 > 0, which means that this steady state can only exist if the rate p3 of

production of IFN-γ by NK cells, and the rate q2 at which IFN-γ in turn upregulates

the production of new NK cells, are not too large, as illustrated in Fig. 2.2(a) and

(b).

Figure 2.2: Stability of the disease-free steady state S∗4 with parameter values from
Table 2.1. Black hatched area indicates the region where there are no feasible steady
states. Colour code denotes maximum real part of the largest characteristic eigenvalue for
the disease-free steady state S∗4 when it is feasible.

Stability of the disease-free steady state S∗4 is determined by the value ofK defined in

(2.3), and Figs. 2.2(a) and (b) suggest that increasing p3 can stabilise this equilibrium

if it were previously unstable, which should be expected, as increasing the number

of NK cells and the amount of IFN-γ leads to a more effective eradication of the

viral population. Similarly, increasing the rate of clearance of virions by antibodies

k, the rate at which IFN-γ inhibits production of new virus particles s4, or the rate

of IFN-γ-induced conversion from infected cells to refractory cells ϕ2, all lead to
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the stabilisation of the disease-free steady state. At the same time, comparison of

Fig. 2.2(a) with (c) and (d) indicates that if antibodies are not very effective, i.e. if

k is small, it is easier to clear the infection, i.e. achieve stability of the disease-free

steady state, by increasing production of IFN-γ by NK cells, since both s4 and ϕ2

have to be increased very significantly before the stability can be achieved.
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Figure 2.3: Stability of the endemic steady state S∗12 with parameter values from Table 2.1.
White area shows the region where the endemic steady state is not feasible, but the disease-
free steady state S∗4 is feasible and stable. Black hatched area indicates the region where
there are no feasible steady states. Colour code denotes maximum real part of the largest
characteristic eigenvalue for the endemic steady state S∗12 when it is feasible.

Figure 2.3 illustrates how regions of feasibility and stability of the endemic steady

state S∗12 depend on system parameters. Comparison of Fig. 2.3(a) with Fig. 2.2(a)
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suggests that as the disease-free steady state loses its stability, the endemic steady

state becomes biologically feasible and stable. However, for very small values of p3,

there is a certain range of k values, for which the endemic steady state is also unsta-

ble, and one could expect the appearance of periodic solutions. This is illustrated

in more detail in the bifurcation diagram shown in Fig. 2.4(a), which indicates that

when one fixes some small value of p3 and increases k, the endemic steady state does

indeed lose its stability via a supercritical Hopf bifurcation, and then regains it at

a (reverse) supercritical Hopf bifurcation for yet higher value of k.

Figure 2.4: Bifurcation diagram (a) and periods of periodic solutions (b) with parameter
values from Table 2.1. (a) In this figure p3 = 0.3. The blue line shows the endemic
steady state, and the red line shows the disease-free steady state, with solid (dashed)
lines corresponding to stable (unstable) steady states. At k = 6.277 and k = 10.74 there
is a Hopf bifurcation of the endemic steady steady state, and at k = 11.2389 there is a
transcritical bifurcation. Between the two HB points there is a stable periodic solution, the
minimum and maximum of T are shown in green. (b) This figure shows the dependence of
the period of periodic solutions on k for p3 = 0.1 (black), p3 = 0.3 (blue), p3 = 0.5 (red).
This figure was computed using MATLAB.

In the range of k values where the endemic steady state S∗12 is unstable, one observes

a stable periodic orbit, whose period increases with k but reduces with p3, as shown

in Fig. 2.4(b). The effects of varying s4 and ϕ2 on stability of S∗12 are similar to those

of varying p3, with the exception that for small k, increasing s4 or ϕ2 does not make

this steady state infeasible, i.e. biologically irrelevant. Figures 2.3(b) and (f) are

quite similar to each other in that for each value of k, there is some minimal value

of the infection rate β or production rate of new virions p, above which the endemic

steady state S∗12 becomes biologically feasible and stable. If k is small, then further

increases of β or p do not have effect on stability, and S∗12 remains stable, whilst for

higher k increasing either β or p results in the loss of stability through a supercritical
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Hopf bifurcation. A very interesting behaviour is observed in Fig. 2.3(d), which

shows that for k small or very large, the stability of S∗12 is unaffected by changes in

the rate of production of new antibodies q, whereas for an intermediate range of k,

S∗12 is unstable for small q but gains stability as q is increased. This is quite counter-

intuitive, as one would normally expect that if more antibodies are produced for the

same viral load, this would help clear the infection. Since k is also the rate at which

antibodies are binding free virus and, hence, are removed, this means that it is the

balance between k and q that determines whether the infection is maintained at a

steady level, i.e. S∗12 is stable, or if periodic oscillations appear in the dynamics.

Similar behaviour can be observed in Fig. 2.3(e), which shows that the endemic

steady state S∗12 is unstable for small ρ, i.e. for long periods of viral resistance, but

it stabilises as the duration of viral resistance reduces, i.e. for higher values of ρ.

In order to better understand the role of cytokines in system’s dynamics, I present

in Fig. 2.5 stability of the endemic steady state depending on cytokine-related pa-

rameters. Figures 2.5(a) and (b) suggest that increasing the rates s1 and s2 at which

IFN-α/β and IFN-γ enhance cytolytic activity of NK cells, or the rates s3 and s4

at which these interferons inhibit production of new virions, results in stabilisation

of the endemic steady state S∗12. One should note, however, that while increasing

the rates s1 or s3, associated with IFN-α/β only acts to make the endemic steady

state more stable, increasing the rates s2 or s4 associated with IFN-γ can actually

make the endemic steady state biologically irrelevant, thus helping clear the infec-

tion by moving the system to a stable disease-free steady state. This suggests the

profoundly different effects of IFN-α/β and IFN-γ on viral dynamics. A similar

phenomenon is observed when one investigates the role of cytokines in producing

refractory cells from either uninfected or infected cells. Increasing the rate ϕ1 of

conversion of uninfected cells into refractory cells, which involves contributions from

both types of interferon, results in destabilisation of the endemic steady state. On

the other hand, increasing the rate ϕ2 of non-cytolytic cure of infected cells by IFN-

γ initially stabilises the endemic steady state, but subsequent increase makes the

endemic steady state infeasible, thus leading to clearance of infection, as shown in

Fig. 2.5(c).
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Figure 2.5: Stability of the endemic steady state S∗12 with parameter values from Table 2.1.
White area shows the region where the endemic steady state is not feasible, but the disease-
free steady state S∗4 is feasible and stable. Colour code denotes maximum real part of the
largest characteristic eigenvalue for the endemic steady state S∗12 when it is feasible.

We have also looked into the effects of both types of interferon on enhancing cytotoxic

activity of CTLs, as represented by parameters s′1 and s′2. In this case, numerical

calculations suggest that the stability of the endemic steady state is not sensitive

to s′1, implying that this particular contribution from IFN-α/β does not help clear

the infection. In this respect, IFN-γ plays a more important role, since increasing

s′2 above a certain level makes the endemic steady state biologically irrelevant, so

the system reverts to a stable disease-free state. Finally, Figure 2.5(d) shows that

increasing the rates q1 and q2 of cytokine-related activation of NK cells leads to

stabilisation of the endemic steady state, however, increasing the rate q2 associated

with IFN-γ beyond certain level results in this steady state becoming biologically

irrelevant, thus eradicating the viral infection.
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Table 2.1: Table of baseline parameter values

Parameter Value Definition
d 0.003 Natural death rate of uninfected cells
β 7 Infection rate
ρ 5 Rate of missing refractory state
ϕ1 14 Rate of IFN-induced conversion from uninfected cells to refractory cells
δ 0.56 Natural death rate of infected cells
µ1 5 Death rate of infected cells by NK cells
s1 1.5 Effect of IFN-α/β on NK cells to kill infected cells
s2 0.6 Effect of IFN-γ on NK cells to kill infected cells
µ2 0.14 Death rate of infected cells by HBV-specific CTLs
s′1 1.9 Effect of IFN-α/β on the HBV-specific CTLs
s′2 2 Effect of IFN-γ on the HBV-specific CTLs
ϕ2 21 Rate of IFN-γ-induced conversion from infected cells to refractory cells
p1 1 Production rate of IFN-α/β by infected cells
δ1 4.9 Natural death rate of IFN-α/β
p2 0.5 Production rate of IFN-γ by HBV-specific CTLs
p3 0.9 Production rate of IFN-γ by NK cells
δ2 5.16 Natural death rate of IFN-γ
q1 0.8 Production rate of NK cells by IFN-α/β
q2 0.6 Production rate of NK cells by IFN-γ
re 0.5 Maximal growth rate of HBV specific cytotoxic T cells
α 1 Antigen-dependent proliferation rate of HBV-specific CTLs
p 20 Production rate of free virus
s3 1.7 Effect of IFN-α/β on the production of free viruses
s4 1 Effect of IFN-γ on the production of free viruses
c 0.67 Natural clearance rate of free viruses
k 2 Clearance rate of free viruses by antibodies
da 0.332 Natural death rate of free antibodies
q 5 Production rate of free antibody by free viruses

2.4 Numerical simulations

To demonstrate different types of dynamical behaviour that can be exhibited by

the model (2.2) in various parameter regimes, I solve this system numerically using

MATLAB ode45 routine implementing Runge-Kutta method of the fourth order,

with the absolute and relative tolerances set to 1e-13, the baseline values of param-

eters given in Table 2.1, and the initial condition

(T (0), I(0), F1(0), F2(0), N(0),E(0), R(0), V (0), A(0))

= (0.9, 0, 0, 0, 0.1, 0.2, 0, 0.33, 0.1). (2.5)
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Note that since there are significant differences in the reported values of many of

the model parameters, and some of them have not even been measured yet, I fix

the values of these parameters randomly to be able to do some qualitative analysis

of the model and show different possible dynamics of the model mathematically.

The results are shown in Figs. 2.6, 2.7, 2.8. In all these figures, the free virus V (t)

exhibits the behaviour that is qualitatively similar to that of the number of infected

cells, hence, I plot instead the dynamics of the population of refractory cells R(t).

Figure 2.6: Numerical solution of the model (2.2) with parameter values from Table 2.1,
and p3 = 3, k = 8. In this case, the disease-free steady state S∗4 is stable, so immune
system is able to clear the initial infection.
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Figure 2.6 illustrates the dynamics of immune response when the condition (2.3)

holds. In this case, the initial viral growth leads to an increase in the numbers of

NKs and CTLs, as well as both types of interferons, which results in the successful

clearance of the HBV infection, upon which type-1 interferons are also destroyed,

and the system settles on a stable disease-free steady state S∗4 .

Figure 2.7: Numerical solution of the model (2.2) with parameter values from Table 2.1,
and p3 = 0.3, k = 0.3. In this case, the system approaches a stable endemic steady state
S∗12.

Figure 2.7 shows the dynamics in the case where the endemic steady state S∗12 is

feasible and stable. One observes that the initial viral growth is suppressed by the
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combined effects of different branches of the immune system. However, the approach

to the endemic steady state is oscillatory with the amplitude of oscillations decaying,

with each subsequent viral peak being smaller than the previous one.

Figure 2.8: Numerical solution of the model (2.2) with parameter values from Table 2.1,
and p3 = 0.3, k = 8. In this case, both the disease-free S∗4 and the endemic steady state
S∗12 are unstable, and the system exhibits a periodic solution.

In the case when the endemic state is unstable due to Hopf bifurcation, one observes

stable oscillations, as shown in Fig. 2.8. Biologically, these would correspond to

the so-called “flare-ups” [160, 161], where the infection is never completely cleared,

but through the interactions between the virus and the immune system, there are

periods of very low viral activity followed by the periods of acute viral growth. This
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situation is reminiscent of the infection-induced autoimmune reaction, where initial

viral infection can lead to a breakdown of immune tolerance, so that even in the

absence of any exogenous factors or subsequent infections, patients exhibit periods

of remission and relapses [76, 77]. It is worth noting that the behaviour shown in

Fig. 2.8 has the hallmarks of slow-fast dynamics, or relaxation oscillations, that are

not uncommon in models of immune response [162, 163]. At every “flare-up”, there

is a significant growth in the number of infected cells that triggers the proliferation

of both types of interferon, as well as the growth in the populations of CTLs and

natural killer cells. All of them are growing very quickly, resulting in a fast immune

response that reduces the infection, but as the number of infected cells subsides,

so do all the various populations associated with the immune response. Hence, the

infection is not completely cleared but rather is kept in check at a very small level.

Now, as the population of susceptible cells recovers, which is happening on a much

longer time-scale, more of these cells become the target of free virus, resulting in a

new episode of high viral load, and the cycle repeats.

As a next step, I look into effects of antiviral treatments on HBV. There are two

main types of drugs used to treat HBV infection: nucleot(s)ide analogues (NAs),

such as lamivudine, adefovir, entecavir, tenofovir, telbivudine, famciclovir, telbivu-

dine, clevudine, and IFN-based therapy, which includes stand-alone IFN-α (roferon,

intron) or pegylated interferon peg-IFN-α2a/2b [42, 41, 164, 44, 131]. These treat-

ments individually [165, 146] and in combinations [166, 43] result in either reduction

of the production of new virus particles, or in blocking de novo infections. Math-

ematically, one can represent these two effects by a modified viral production rate

(1− ε)p and a modified transmission rate (1− η)β, where 0 ≤ ε ≤ 1 and 0 ≤ η ≤ 1

are drug efficacies associated with inhibiting viral production and preventing new

infections, respectively. In order to characterise the overall effectiveness of treat-

ment, it can be helpful to consider a cumulative parameter describing the total drug

effectiveness εtot, which is defined as 1− εtot = (1− η)(1− ε) [42]. This would allow

one to determine a critical drug efficacy, εc, corresponding to stability boundary

of the disease-free steady state S∗4 , so that this steady state would be stable for

εtot > εc. With these modifications, new equations for the numbers of healthy and
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infected cells, as well as the free virus, have the non-dimensional form

dT

dt
= d(1− T )− β(1− η)V T + ρR− ϕ1T (F1 + F2),

dI

dt
= β(1− η)V T − δI − µ1(1 + s1F1 + s2F2)IN − µ2(1 + s′1F1 + s′2F2)IE

−ϕ2IF2,

dV

dt
= p(1− ε)

1 + s3F1 + s4F2
I − cV − kAV,

(2.6)

with the rest of the equations remaining the same as in the main model (2.2).

Figure 2.9 (a) shows that for parameter values from Table 2.1, if η > 0.7646,

then pure NAs therapy is sufficient to destabilise the endemic steady state and thus

clear the infection, and similarly, if ε > 0.7646, then just IFN-therapy can make the

disease-free steady state S∗4 stable. This Figure also suggests that disease clearance

can be achieved if the combined efficacy εtot exceeds some critical value εc.

Figure 2.9: Effects of NAs and interferon therapy on the dynamics of HBV with parameter
values from Table 2.1, and k = 7, β = 30.(a) Stability plot for the endemic steady state S∗12,
with the colour code denoting maximum real part of the largest characteristic eigenvalue
for the endemic steady state when it is feasible. White area shows the region where the
endemic steady state S∗12 is not feasible, and the disease-free steady state S∗4 is stable. (b)
Dependence of the critical drug efficacy (εc) on k, with disease being cleared for εtot > εc,
with p3 = 0.1 (black line), p3 = 0.9 (blue line), p3 = 2 (red line).

Figure 2.9 (b) illustrates how this critical combined efficacy εc varies with the rate

k of clearance of free virus by antibodies and the rate p3 of production of type-2

interferons by NK cells. One observes that the critical combined efficacy εc decreases

with k, implying that the faster the free virus is cleared by antibodies, the less
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stringent is the requirement on the efficacy of treatment to clear the infection, and

for sufficiently high k the disease clearance can be achieved even in the absence of

treatment. Surprisingly, for the same value of k, having a higher rate of production

of type-2 interferons by NK cells requires a higher combined efficacy εc for viral

clearance.

Figure 2.10: Numerical solution of the model (2.2) with treatment (2.6) parameter values
from Table 2.1 and the initial condition (2.5) and (k = 0.3, p = 0.3) in (a-b), and (k = 8,
p = 0.3) in (c-d). In all plots, blue colour denotes a rescaled number of uninfected cells
T (t), and red colour denotes a rescaled number of infected cells I(t). (a)-(b) Treatment of
the chronic infection with εtot < εc (η = 0.6, ε = 0.5) (a), and εtot > εc (η = 0.9, ε = 0.6)
(b). (c)-(d) Treatment of the relapsing infection with εtot < εc (η = 0.2, ε = 0.1) (c), and
εtot > εc (η = 0.2, ε = 0.4) (d).

Figure 2.10 illustrates the effect of using combined NAs and interferon therapy

on chronic and relapsing HBV infections. In both regimes, application of treatment

with sub-optimal efficacy, i.e. with εtot < εc, does not cause qualitative change in

the system dynamics but results in an increased number of uninfected cells and a

decreased number of infected cells. On the contrary, for εtot > εc, in both cases

the number of infected cells is reduced to zero, and the system approaches a stable

disease-free steady state S∗4 , which corresponds to a successful clearance of infection.
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2.5 Discussion

In this chapter I have derived and analysed a new model for HBV infection with

particular emphasis on interactions between different branches of immune system,

including innate immune response as exemplified by NK cells, adaptive immune

response represented by HBV-specific cytotoxic T cells and antibodies, and various

cytokines. During infection the cytokines play an important role in recruitment of

innate and adaptive immune factors, and they also help them to be more effective,

as well as facilitate non-cytolytic cure of infected cells.

Stability analysis of the steady states has shown how various parameters affect

the dynamics of immune response, with some of the results being intuitively clear,

and others being quite unexpected. Naturally, increasing the number of NK cells,

the rate of clearance of free virus by antibodies, the rate of inhibition of viral pro-

duction by IFN-γ, or the rate of conversion from infected to refractory cells, all

facilitate a more efficient clearance of infection, making the disease-free steady state

stable. Once the disease-free steady state loses its stability, the endemic equilibrium

becomes biologically feasible and stable. For sufficiently small values of the rate of

production of IFN-γ by NK cells, the endemic steady state can lose its stability via

Hopf bifurcation, giving rise to stable periodic solutions. We have found that for

a very small or a very large rate of free virus clearance by antibodies, the stability

of the endemic steady state is unaffected by how quickly the new antibodies are

produced, whereas for an intermediate range of virus clearance rate, this steady

state is unstable for low production of antibodies, and gains stability as the rate of

antibody production is increased. This is a very surprising result, as normally one

would expect that a higher rate of production of antibodies for the same viral load

leads to a clearance of infection, rather than stabilisation of a chronic state. The

implication of this observation is that it is not the individual rates of production of

antibodies and viral clearance, but rather the balance between them that determines

whether the system maintains a chronic infection or exhibits periodic oscillations.

In terms of the role of cytokines on mediating various branches of immune re-

sponse, a surprising result of the analysis is that increasing the rates at which IFN-

α/β and IFN-γ increase cytolytic activity of NK cells or inhibit production of free

virus, actually leads to stabilisation of the endemic steady state. The major differ-
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ence in the effects of cytokines IFN-α/β and IFN-γ lies in the observation that whilst

increasing the rates associated with IFN-α/β just results in the stabilisation of an

otherwise unstable endemic steady state, increasing the same rates for IFN-γ can

result in making the endemic steady state biologically irrelevant, thus qualitatively

changing the dynamics. The same result holds for IFN-γ-facilitated non-cytolytic

cure of infected cells. If the production of IFN-γ by NK cells is too high, this

makes all steady states of the system unstable, leading to persistent oscillations,

thus maintaining the infection.

We have also looked into modelling the dynamics of HBV treatment with nu-

cleot(s)ide analogues and/or stand-alone or pegylated interferons. Since these treat-

ments are known to act by reducing the appearance of new infections and blocking

production of free virus, I have looked at how the combined drug efficacy depends

on these two properties. Numerical studies have shown the existence of a minimum

drug efficacy required to clear the infection, and, unexpectedly, this critical drug

efficacy is actually increasing with the rate of production of IFN-γ by NK cells.

There are several directions in which the model presented in this chapter can be

extended. One important aspect of the immune dynamics is the non-instantaneous

nature of several important processes, such as the lag between infection and recruit-

ment of CTLs, production of new virus particles once a cell becomes infected, the

time required for viral cell entry etc [99, 167]. Mathematically, this can be rep-

resented by including discrete or distributed time delay for each of the associated

processes, which would make the model more realistic but would also make the anal-

ysis much more involved. Furthermore, it is known that antibodies do not kill the

virus particles directly, but rather stick to them, creating a virus-antibody complex

[35]. These complexes are not stable forever and can experience some dissociation,

hence, explicitly including them into the model can provide better insights into the

dynamics. The immune response is not perfect, and the breakdown of self-tolerance

results in autoimmune disease [6, 7]. In Chapter 3 I propose a mathematical model

of immune response to a viral infection and subsequent autoimmunity to study the

dynamics of autoimmune diseases.
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Chapter 3

Bifurcations and multi-stability in

a model of cytokine-mediated

autoimmunity

This chapter is based on the publication F. Fatehi, Y.N. Kyrychko, R. Molchanov,

K.B. Blyuss, Bifurcations and multistability in a model of cytokine-mediated au-

toimmunity, Int. J. Bif. Chaos, 29(3), 1950034, 2019.

This chapter investigates the dynamics of immune response and autoimmunity

with particular emphasis on the role of regulatory T cells (Tregs), T cells with

different activation thresholds, and cytokines in mediating T cell activity. Analysis

of the steady states yields parameter regions corresponding to regimes of normal

clearance of viral infection, chronic infection, or autoimmune behaviour, and the

boundaries of stability and bifurcations of relevant steady states are found in terms

of system parameters. Numerical simulations are performed to illustrate different

dynamical scenarios, and to identify basins of attraction of different steady states and

periodic solutions, highlighting the important role played by the initial conditions

in determining the outcome of immune interactions.

3.1 Background

Autoimmune disease is a pathological condition characterised by the failure of the

immune system to efficiently discriminate between self-antigens and foreign antigens,
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resulting in unwanted destruction of healthy organ cells. In the case of normal func-

tioning, recognition of foreign epitopes presented on antigen presenting cells (APCs)

to T lymphocytes results in proliferation and effector function from T cells, while

cross-reactivity between epitopes leads to the possibility of T cell response against

self-antigens [6, 7]. During an infection T cells with high level of self-reactivity are

removed from the system by Tregs [5].

A particularly important role in the immune dynamics, and more specifically, in

the performance of T cells, is played by cytokines. Activated T cells produce growth

cytokines (primarily, interleukin-2, IL-2), and expression of IL-2 receptor by these

T cells triggers cytokine-driven proliferation [168, 169]. Importantly, whereas IL-2

appears to be essential for proliferation of regulatory T cells [170], these T cells do

not actually produce IL-2 even upon activation [171, 170].

In the next section, I use the model that has been presented by Blyuss and

Nicholson [76] and show how by adding the effects of Tregs and IL-2 to that model

we can develope a new model which can provide a more realistic representation of

autoimmune dynamics.

3.2 Model derivation

This model consists of eight cell populations as follows,

A(t) is the number of susceptible cells at time t,

F (t) is the number of infected cells at time t,

Tin(t) is the number of naïve T cells at time t,

Treg(t) is the number of regulatory T cells at time t,

Tnor(t) is the number of activated T cells which acts against foreign antigen at time

t,

Taut(t) is the number of autoreactive T cells which acts against self antigen at time

t,

I(t) is the amount of interleukin 2 (IL-2) at time t,

V (t) is the viral load at time t.

To analyse the dynamics of immune response to infection and possible onset of

autoimmunity, I use an approach similar to some of the earlier models of immune
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response [76, 77, 172, 21]. The underlying idea is the mechanism of molecular

mimicry, where immune response against an infection can lead to a breakdown of

immune tolerance due to cross-reaction with one or more self-antigens that share

some of their immunological characteristics with a pathogen [20, 19]. Experimental

evidence suggests that while antibodies are important in a wider picture of immune

response to viral infections, within the context of autoimmunity, B cells can be

dispensable, so that autoimmune disease can develop even in their absence [173].

Moreover, it has been shown in some studies that the development of antibodies can

itself depend on prior interactions of T cells with a pathogen [174]. Hence, in this

chapter I rather focus on the role of T cells and associated cytokines.

We consider a situation where both infection and autoimmune response are tar-

geting the same organ of the body, and the population of healthy cell in this organ

is denoted by A(t). These cells are assumed to follow logistic growth with the pro-

liferation rate r (day−1) and the carrying capacity N in the absence of infection or

autoimmune response, as is common in models of viral dynamics [52, 175]. At the

same time, one should be mindful of the fact that different functional forms of the

growth of healthy cells can also have an effect on autoimmune dynamics, as has been

shown by Iwami et al. [52, 53].

During a viral infection, some number of healthy cells become infected by free

virus particles, at which point they move to the compartment of infected cells,

denoted by F (t). After a certain period of time, these infected cells will be producing

virions, or free virus particles, V (t) at a rate k (day−1), and the rate of natural

clearance of virions is denoted by c (day−1). These virions then go on to infect

other as yet uninfected cells at a rate β (cell−1 day−1), which is an effective rate

incorporating time constants associated with various biological processes, such as

the movement of virions, cell entry, and an eclipse phase, during which the cells are

infected but are not yet recognised as such by the immune system [28, 95, 32].

In terms of immune dynamics, T cell response originates in the lymph nodes.

Stimulation of naïve T cells results in their proliferation, differentiation into acti-

vated T cells, and subsequent migration to the infected tissue. Once activated, T

cells bearing the CD8+ receptor become cytotoxic T cells that are able to destroy

infected cells, whereas if they have a CD4+ receptor, they turn into helper T cells
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[1, 113]. Tregs perform an important role of suppressing the autoreactive T cells,

and are a part of CD4+ T cell population [176, 177, 178]. Since in this chapter

I am trying to understand self and non-self discrimination mechanisms of the im-

mune response, I consider two populations of naïve CD8+ T cells that respond to

self-antigens and foreign antigens, while focusing on one population of CD4+ T cells

representing regulatory T cells. Kim et al. [113] have considered a situation where

each population of naïve T cells is maintained at a certain level supported by home-

ostasis in the absence of infection. Burroughs et al. [179, 55] and Segel et al. [45]

in their models have instead considered a constant influx of new T cells from the

thymus. In this model, for simplicity, I consider a single population of naïve T cells

which includes Tregs, foreign-reactive and self-reactive T cells, and, similarly to ear-

lier work, the population of these naïve T cells is assumed to be maintained at a

certain level by homeostasis [76, 52, 53, 175]. It is thus assumed that in the absence

of infection, these cells are produced at a constant rate λin (cell day−1), and they die

at a rate din (day−1). Once activated, these cells differentiate into either regulatory

T cells, whose main role is the control of immune response against self- and foreign

antigens [1, 60], as well as prevention of autoimmune disease [60, 54, 51, 180], or

effector cells that are able to eliminate infected cells. We denote by α the rate at

which naïve T cells (Tin) are activated, and for simplicity we assume that all types

of T cells have the same activation rate. Since Tin includes different kinds of naïve T

cells, it is assumed that a constant proportion p1 of them will develop into regulatory

T cells Treg, and a proportion p2 will become normal activated T cells Tnor that are

able to recognise infected cells expressing foreign antigen and destroy these cells at

rate µF (cell−1 day−1). The remaining proportion (1−p1−p2) of T cells will become

autoreactive cells Taut with a lower threshold for activation by healthy cells, hence,

they will be destroying both infected and healthy cells at rate µa (cell−1 day−1).
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Figure 3.1: A schematic diagram of immune response to an infection. Blue circles indicate
host cells (uninfected and infected cells), red circles denote different T cells (naïve, reg-
ulatory, normal activated, and autoreactive T cells), yellow circle shows cytokines (inter-
leukin 2), and grey indicates virus particles (virions). Single arrow-headed and bar-headed
lines indicate, respectively, production/proliferation and destroying of one cell population
from/by another. Double arrows indicate natural clearance.

Unlike the work by Blyuss and Nicholson [76, 77], [55] and [113] have not explicitly

modelled the production of autoreactive T cells from normal activated T cells, and

in the present model I also do not include this feature, as the model already accounts

for the influx of each population of T cells directly to the tissue.

Similarly to other models of autoimmune dynamics [55, 179, 181], regulatory

T cells in our model are assumed to have their own homeostatic mechanism, and

they are assumed to be produced at constant rate λr (cell day−1) and die at rate dr
(day−1). One of the main effects of regulatory T cells is to suppress the proliferation

of autoreactive T cells. Part of this suppression occurs through the inhibition of

interleukin 2 (IL-2) by T cells [182, 183]. Moreover, there is evidence for both cell-

to-cell inhibition, and soluble mediators such as IL-10 and TNF-β [179, 55, 58, 113].

There is some experimental evidence suggesting that the suppression by Tregs is

antigen-specific [184, 185, 186], which implies that Tregs are able to discriminate

between T cells responding to self-antigens and T cells responding to foreign antigen

[60]. León et al. [48] and Carneiro et al. [187] have proposed a model that considers

antigen-specific suppression by Tregs, thus endowing Tregs with a mechanism for
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self/non-self discrimination. Baecher-Allan et al. [188] have proposed a model for

the T cell receptor (TCR) signal strength, where Tregs suppress the activation of

autoreactive T cells, while the T cells reactive to foreign antigen are refractory to the

suppression. Thus, in this chapter I only consider direct suppression of autoreactive

T cells by Tregs, which is assumed to occur at rate δ (cell−1 day−1), and, unlike the

work by Burroughs et al. [55] and Kim et al. [113], I am assuming Tregs do not

suppress the normal activated T cells Tnor. Among various cytokines involved in the

process of immune response, a particularly important role is played by IL-2, to be

denoted by I(t), which is an essential factor in the growth of T cells. Whilst this

cytokine promotes the growth of both regulatory and effector T cells, regulatory T

cells do not secrete IL-2 [1, 55, 179]. Therefore, in this model I assume that Tnor
and Taut produce IL-2 at rates σ1 (day−1) and σ2 (day−1). On the other hand,

whilst regulatory T cells do not produce IL-2, similar to other T cells they need this

cytokine for their activation and proliferation [189, 190]. Thus, I assume that IL-2

promotes proliferation of Treg, Tnor and Taut at rates ρ1 (cell−1 day−1), ρ2 (cell−1

day−1) and ρ3 (cell−1 day−1), respectively. Although it is also possible to include in

the model inhibition of IL-2 by T cells [179, 190], our analysis shows that this would

not qualitatively change the behaviour of the model.

With the above assumptions, the model for dynamics of immune response to a

viral infection with account for Tregs, T cells with different activation thresholds
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and IL-2, as illustrated in Fig. 3.1, takes the form

dA

dt
= rA

(
1− A

N

)
− βAV − µaTautA,

dF

dt
= βAV − dFF − µFTnorF − µaTautF,

dTin
dt

= λin − dinTin − αTinF,

dTreg
dt

= λr − drTreg + p1αTinF + ρ1ITreg,

dTnor
dt

= p2αTinF − dnTnor + ρ2ITnor,

dTaut
dt

= (1− p1 − p2)αTinF − daTaut − δTregTaut + ρ3ITaut,

dI

dt
= σ1Tnor + σ2Taut − diI,

dV

dt
= kF − cV,

(3.1)

with 0 ≤ p1 + p2 ≤ 1. Introducing non-dimensional variables

t̂ = rt, A = NÂ, F = NF̂ , Tin = λin
din

T̂in, Treg = λin
din

T̂reg,

Tnor = λin
din

T̂nor, Taut = λin
din

T̂aut, I = λin
din

Î , V = NV̂ ,

yields a rescaled model
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dA

dt
= A (1− A)− βAV − µaTautA,

dF

dt
= βAV − dFF − µFTnorF − µaTautF,

dTin
dt

= din (1− Tin)− αTinF,

dTreg
dt

= λr − drTreg + p1αTinF + ρ1ITreg,

dTnor
dt

= p2αTinF − dnTnor + ρ2ITnor,

dTaut
dt

= (1− p1 − p2)αTinF − daTaut − δTregTaut + ρ3ITaut,

dI

dt
= σ1Tnor + σ2Taut − diI,

dV

dt
= kF − cV,

(3.2)

where

β̂ = βN

r
, µ̂a = µaλin

rdin
, d̂F = dF

r
, µ̂F = µFλin

rdin
, d̂in = din

r
,

α̂ = αN

r
, λ̂r = λrdin

λinr
, d̂n = dn

r
, d̂a = da

r
, ρ̂i = ρiλin

rdin
, i = 1, 2, 3,

δ̂ = δλin
rdin

, σ̂1 = σ1

r
, σ̂2 = σ2

r
, d̂i = di

r
, k̂ = k

r
, ĉ = c

r
, d̂r = dr

r
,

and all hats in variables and parameters have been dropped for simplicity of notation.

The model (3.2) is clearly well-posed, i.e. its solutions remain non-negative for t ≥ 0

for any non-negative initial conditions.

3.3 Steady states and their stability

As a first step in the analysis of model (3.2), I look at its steady states

S∗ =
(
A∗, F ∗, T ∗in, T

∗
reg, T

∗
nor, T

∗
aut, I

∗, V ∗
)
,

that can be found by equating to zero the right-hand sides of equations (3.2) and

solving the resulting system of algebraic equations. High dimensionality of the sys-

tem (3.2) results in a large number of possible steady states, so I now systematically
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study all of them. First, I consider a situation where at a steady state, there is no

free virus population, i.e. V ∗ = 0, which immediately implies F ∗ = 0 and T ∗in = 1.

In this case there are four possible steady states depending on whether T ∗nor and T ∗aut
are each equal to zero or being positive. If T ∗nor = T ∗aut = 0, there are two steady

states

S∗1 =
(

0, 0, 1, λr
dr
, 0, 0, 0, 0

)
, S∗2 =

(
1, 0, 1, λr

dr
, 0, 0, 0, 0

)
,

of which S∗1 is always unstable, and S∗2 is stable if cdF−kβ > 0, unstable if cdF−kβ <

0, and undergoes a steady-state bifurcation at cdF − kβ = 0. For T ∗nor 6= 0 and

T ∗aut = 0, we again have two steady states

S∗3 =
(

0, 0, 1, λrρ2

ρ2dr − ρ1dn
,
didn
σ1ρ2

, 0, dn
ρ2
, 0
)
,

S∗4 =
(

1, 0, 1, λrρ2

ρ2dr − ρ1dn
,
didn
σ1ρ2

, 0, dn
ρ2
, 0
)
,

but they are both unstable for any values of parameters.

In the case when T ∗nor = 0 and T ∗aut 6= 0, we have steady states S∗5 and S∗6 ,

S∗5 =
0, 0, 1, T ∗reg, 0,

di
(
da + δT ∗reg

)
ρ3σ2

,
da + δT ∗reg

ρ3
, 0
 ,

S∗6 =
1−

µadi
(
da + δT ∗reg

)
ρ3σ2

, 0, 1, T ∗reg, 0,
di
(
da + δT ∗reg

)
ρ3σ2

,
da + δT ∗reg

ρ3
, 0
 ,

where

T ∗reg =
drρ3 − ρ1da ±

√
(drρ3 − ρ1da)2 − 4ρ1δλrρ3

2ρ1δ
.

The steady state S∗5 (respectively, S∗6) is stable if the following conditions hold

P <
da + δT ∗reg

ρ3
<
dn
ρ2
, δρ1

(
T ∗reg

)2
> λrρ3,

ρ3λ
2
r + ρ3diλrT

∗
reg − ρ3dida

(
T ∗reg

)2
− δ(ρ1da + ρ3di)

(
T ∗reg

)3
− ρ1δ

2
(
T ∗reg

)4
> 0,
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where

P =



σ2

µadi
, for S∗5 ,

σ2 (βk − cdF )
µadi (c+ βk) , for S∗6 .

This steady state undergoes a steady-state bifurcation if

da + δT ∗reg
ρ3

= P, or
da + δT ∗reg

ρ3
= dn
ρ2
, or δρ1

(
T ∗reg

)2
= λrρ3,

and a Hopf bifurcation if

P <
da + δT ∗reg

ρ3
<
dn
ρ2
, δρ1

(
T ∗reg

)2
> λrρ3,

ρ3λ
2
r + ρ3diλrT

∗
reg − ρ3dida

(
T ∗reg

)2
− δ(ρ1da + ρ3di)

(
T ∗reg

)3
− ρ1δ

2
(
T ∗reg

)4
= 0.

The steady state with T ∗nor 6= 0 and T ∗aut 6= 0 only exists for a particular combi-

nation of parameters, namely, when

δρ2
2λr = (ρ3dn − ρ2da)(ρ2dr − ρ1dn),

and is always unstable.

When V ∗ 6= 0, all other state variables are also non-zero. In this case, the steady
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state S∗7 has T ∗nor and T ∗aut satisfying the following system of equations

αcµaρ2σ2(βk + c)(T ∗aut)2T ∗nor + αcρ2(βkµaσ1 + cµFσ2 + cµaσ1)T ∗aut(T ∗nor)2

−(αβckdidnµa + β2k2dinρ2σ2 + αβckρ2σ2 − αc2dFρ2σ2 + αc2didnµa)T ∗aut
T ∗nor + αcdidinµap2(βk + c)T ∗aut + αc2µFρ2σ1(Tnor)3 − (β2k2dinρ2σ1

+αβckρ2σ1 − αc2dFρ2σ1 + αc2didnµF )(T ∗nor)2 + di(αc2dinµFp2

+β2k2dindn + αβckdn − αc2dFdn)T ∗nor − αcdidinp2(cdF − kβ) = 0,

p2ρ1ρ3σ2
2(T ∗aut)3 + σ2(−δdip1ρ2 + p1ρ1ρ2σ2 + p2ρ1ρ2σ2 + 2p2ρ1ρ3σ1

−ρ1ρ2σ2)(T ∗aut)2T ∗nor − dip2σ2(daρ1 + drρ3)(T ∗aut)2 + σ1(−δdip1ρ2

+2p1ρ1ρ2σ2 + 2p2ρ1ρ2σ2 + p2ρ1ρ3σ1 − 2ρ1ρ2σ2)T ∗aut(T ∗nor)2 + di(δdidnp1

−dap2ρ1σ1 − dnp1ρ1σ2 − dnp2ρ1σ2 − drp1ρ2σ2 − drp2ρ2σ2 − drp2ρ3σ1

+dnρ1σ2 + drρ2σ2)T ∗autT ∗nor + p2di
2(δλr + dadr)T ∗aut + (1− p1 − p2)T ∗nor[

−ρ1ρ2σ1
2(T ∗nor)2 + diσ1(dnρ1 + drρ2)T ∗nor − di2dndr

]
= 0,

with the rest of state variables being given by

I∗ = σ1T
∗
nor + σ2T

∗
aut

di
, A∗ = c (dF + µFT

∗
nor + µaT

∗
aut)

kβ
, V ∗ = 1− A∗ − µaT ∗aut

β
,

F ∗ = cV ∗

k
, T ∗in = din

din + αF ∗
, T ∗reg = λr + p1αT

∗
inF

∗

dr − ρ1I∗
.

It does not prove possible to analyse stability of this steady state analytically, hence,

one has to resort to numerical calculations.

Remark. Inclusion of a term corresponding to production of autoreactive T cells

directly from normal activated T cells in a manner similar to Blyuss and Nicholson

[76, 77] would make the steady states S∗3 and S∗4 infeasible, while having no major

effect on stability of other steady states. Hence, it suffices to consider the above

model without explicitly modelling the transition from Tnor to Taut.

3.4 Numerical stability analysis and simulations

To investigate various dynamical scenarios that can be exhibited by the model,

I now perform a comprehensive numerical analysis of stability of different steady
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states and identify their possible bifurcations using MATLAB routine ode45 with

the absolute and relative tolerances set to 1e-13. Analytical results from the previous

section suggest that the disease-free steady state S∗2 is stable when kβ < cdF , and

unstable when kβ > cdF . As will be shown below, there are some major differences

in dynamics between these two parameter combinations, hence, I will analyse them

separately. Since there are significant differences in the reported values of many of

the model parameters, and some of them have not yet been properly measured, I fix

the baseline values as given in Table 1, and perform a sweep of parameter space to

identify the effects of varying these parameters. Since prior to the start of infection,

the numbers of infected cells, normal activated T cells, and the amount of IL-2 are

all equal to zero, the initial condition for the model is taken to be

(A(0), F (0), Tin(0), Treg(0), Tnor(0), Taut(0), I(0), V (0)) = (0.9, 0, 0.8, 0.7, 0, 0, 0, 0.4),

(3.3)

Table 3.1: Table of parameters

Parameter Value Definition
β 3 Infection rate
µa 20 The rate of killing of uninfected cells by autoreactive T cells
dF 1.1 Natural death rate of infected cells
µF 6 The rate of killing of infected cells by the normal T cells
din 1 Growth rate of naïve T cells
α 0.4 Rate of activation of naïve T cells by infected cells
λr 3 Growth rate of regulatory T cells
dr 0.4 Natural death rate of regulatory T cells
p1 0.4 Rate of conversion of naïve T cells into regulatory T cells
p2 0.4 Rate of conversion of naïve T cells into normal T cells
ρ1 10 Proliferation rate of regulatory T cells by interleukin 2 (IL-2)
ρ2 0.8 Proliferation rate of normal T cells by interleukin-2 (IL-2)
ρ3 2 Proliferation rate of autoreactive T cells by interleukin 2 (IL-2)
dn 1 Natural death rate of normal T cells
da 0.001 Natural death rate of autoreactive T cells
δ 0.002 Rate of clearance of autoreactive T cells by regulatory T cells
σ1 0.15 Rate of production of interleukin-2 (IL-2) by normal T cells
σ2 0.2 Rate of production of interleukin-2 (IL-2) by autoreactive T cells
di 0.6 Natural clearance rate of IL-2
k 2 Rate of production of free virus
c 6 Natural clearance rate of free virus

which indicates the presence of some number of free virus particles. Here the initial

values of A(0) and Tin(0) are chosen randomly, with the only requirement that they
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do not exceed unity, in light of the fact that I am considering a non-dimensionalised

model. For analysis of basins of attraction, the values of Treg(0) and V (0) will be

varied.

Figure 3.2 illustrates how system dynamics is affected by the parameters. Since

the condition kβ < cdF holds, the disease-free steady state S∗2 is always stable.

Figure 3.2: Regions of feasibility and stability of the steady states S∗5 and S∗6 with pa-
rameter values from Table 1. Black and red curves indicate the boundaries of feasibility
and the steady-state bifurcation, whereas dashed lines (blue/brown) show the boundaries
of Hopf bifurcation of the steady states S∗5 and S∗6 , respectively, with ‘fH’ indicating the
fold-Hopf bifurcation. The first digit of the index refers to S∗5 , while the second corre-
sponds to S∗6 , and they indicate that in that parameter region the respective steady state
is unfeasible (index is ‘0’), stable (index is ‘1’), unstable via Hopf bifurcation with a peri-
odic orbit around this steady state (index is ‘2’), or unstable via a steady-state bifurcation
(index is ‘3’). In all plots, the condition kβ < cdF holds, so the disease-free steady state
S∗2 is also stable.

However, the system can also have two other biologically feasible steady states S∗5
and S∗6 , which only exist, provided regulatory T cells do not grow too rapidly and do

not clear autoreactive T cells too quickly. In the case where autoreactive T cells are

very effective in killing infected cells (i.e. for higher µa), or when they are producing

IL-2 at a slow rate (smaller σ2), only the steady state S∗5 is feasible, which has the

zero population of host cells A, while the steady state S∗6 with A > 0 can only

exist when µa is relatively low (or σ2 is high), and S∗5 is unstable. Provided the

steady states S∗5 and S∗6 are feasible, decreasing the growth rate λr of regulatory T

cells results in a supercritical Hopf bifurcation, which gives rise to stable periodic

solutions around these steady states. Since the steady state S∗5 is characterised by

A = 0, both regimes where this steady state is stable, or unstable with oscillations

around it, biologically correspond to a situation where the host cells are dead. On

the other hand, a periodic solution around S∗6 corresponds to a proper autoimmune
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response, whereby the infection is cleared, but the immune system still exhibits

endogenous oscillations, as illustrated in Fig. 3.4(a)-(b). At the intersection of the

lines of Hopf bifurcation and the steady-state bifurcation, one has the fold-Hopf (also

known as zero-Hopf or saddle-node Hopf) bifurcation [191]. Importantly, the steady

states S∗5 and S∗6 can only exist if the rate ρ3 at which IL-2 promotes proliferation

of autoreactive T cells is sufficiently high, and this minimum value of the rate ρ3

increases linearly with the rate ρ1 at which IL-2 promotes proliferation of regulatory

T cells. Once feasible, the steady states S∗5 and S∗6 are stable for smaller values of

ρ3 and then undergo Hopf bifurcation, when ρ3 is sufficiently increased.

Figure 3.3: Regions of bi-stability with parameter values from Table 1 and initial condition
(3.3). (a), (b) λr = 2.5, µa = 5, with µF = 10 (black), µF = 20 (blue), µF = 30 (red).
The system exhibits autoimmune response to the right of the surface in (a) and below the
curves in (b), while to the left of the surface in (a) and above the curves in (b) it tends
to a stable disease-free steady state S∗2 . (c), (d) ρ1 = 30, ρ3 = 8. The system exhibits
autoimmune response inside the region bounded by the surfaces in (c), or by the curves
in (d), and outside it tends to a stable disease-free steady state S∗2 .
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Since for all parameter combinations in Fig. 3.2 the steady state S∗2 is stable,

this means that the system can exhibit bi-stability between steady states and/or

periodic solutions. To investigate this in more detail, I choose parameter values in

the ‘32’ region in Fig. 3.2, where periodic oscillations around the steady state S∗6
are possible. While previous works on multi-stability in models of autoimmunity

focussed mainly on identifying parameter regions associated with bi-stability [192,

82, 193], the structure of basins of attraction associated with different dynamical

states has remained largely unexplored. To analyse basins of attraction in our model,

due to high dimensionality of the phase space, I fix initial conditions for all state

variables, and consider different initial amounts of free virus V (0) and regulatory

T cells Treg(0), as illustrated in Fig. 3.3. Biologically, this corresponds to varying

the initial level of infection, as well as the initial state of the immune system, which

can be primed by previous exposures to other pathogens. This Figure shows that

if the initial number of regulatory T cells is sufficiently high, the system is able

to successfully eliminate infection without any lasting consequences, settling on a

stable disease-free steady state.

Figure 3.4: Simulation of the model (3.2) with parameter values from Table 1, except
for λr = 2.5, µa = 5, µF = 10, and the initial condition (3.3). (a), (b) V (0) = 10,
Treg(0) = 100, the system exhibits periodic behaviour around S∗6 , i.e. clearance of infection
followed by the onset of autoimmune response. (c), (d) V (0) = 10, Treg(0) = 150, the
model converges to a stable disease-free steady state S∗2 .

Interestingly, for very small initial amounts of free virus, a higher amount of reg-

ulatory T cells is required to clear the infection. For lower values of Treg(0), the
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system exhibits stable periodic oscillations around the steady state S∗6 , which bio-

logically represents the regime of autoimmune response. One can also observe that

the minimum value of Treg(0) needed to achieve a disease-free steady state reduces

with increasing the rate µF at which normal T cells are able to kill infected cells.

Figure 3.4 illustrates temporary evolution of the system in the regime of bi-stability

between a stable disease-free steady state and a periodic solution, corresponding to

autoimmunity. The dynamics of regulatory T cells (not shown in this figure) mimics

that of autoreactive T cells.

Figure 3.5: Regions of feasibility and stability of the steady states S∗5 , S∗6 , and S∗7 with
parameter values from Table 1. Black and magenta curves indicates the boundaries of
feasibility for S∗5/S∗6 and S∗7 , dashed curves are the boundaries of Hopf bifurcation for
S∗5/S

∗
6 (blue/brown) or S∗7 (purple), and dotted lines are the boundaries of the steady-

state bifurcation of S∗5 (red) and S∗6 (green), with ‘fH’ indicating the location of the
fold-Hopf bifurcation. The first digit of the index refers to S∗5 , the second corresponds to
S∗6 , and the third corresponds to S∗7 . These indices indicate that in that parameter region
the respective steady state is unfeasible (index is ‘0’), stable (index is ‘1’), unstable via
Hopf bifurcation with a periodic orbit around this steady state (index is ‘2’), or unstable
via a steady-state bifurcation (index is ‘3’). In all plots, the condition kβ > cdF holds, so
the disease-free steady state S∗2 is unstable.

Next, I consider a situation described by the combination of parameters satisfying

kβ > cdF , so the disease-free steady state S∗2 is unstable, and the system can only

have steady states S∗5 , S∗6 , and S∗7 . Figure 3.5 shows how feasibility and stability

of these steady states depend on parameters. Naturally, this figure is identical to

Fig. 3.2 in terms of indicating stability and bifurcations of the steady states S∗5 and

S∗6 . One should note that unlike the case considered earlier, now for sufficiently high
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rate σ2 of production of IL-2, or sufficiently small rate µa at which autoreactive T

cells are killing infected cells, the steady state S∗6 can also undergo a steady-state

bifurcation due to the fact that the condition kβ > cdF holds. Beyond this stability

boundary, i.e. for very high values of σ2 or very small values of µa, both steady

states S∗5 and S∗6 are unstable, and the system settles either on the steady state S∗7 ,

or an a periodic solution around this steady state. In the parameter region, where

only the steady state S∗7 is feasible, this steady state can only be unstable, giving

rise to stable periodic oscillations, for sufficiently small values of δ or λr, whereas

for higher values of those parameters this steady state is stable.

Figure 3.6 demonstrates the basins of attraction of the steady states S∗5 , S∗6 and

S∗7 , as well as periodic solutions around them. As it has already been mentioned,

this is the first time when basins of attraction for different steady states and peri-

odic solutions are identified in a model of cytokine-mediated immune response and

autoimmunity. Figure (a) shows that if the initial amount of free virus is sufficiently

small, the system will converge to S∗7 for any value of Treg(0). For higher values of

V (0), the system exhibits bi-stability, where for smaller initial numbers of regulatory

T cells Treg(0) it converges to the stable steady state S∗5 corresponding to the death

of susceptible organ cells, while for higher values of Treg(0), the system settles on

the stable steady state S∗7 . While the critical value of Treg(0) at which the transition

between the two steady state takes place initially increases with V (0), eventually

it settles on some steady level, so that for higher initial amounts of free virus, this

critical value no longer depends on V (0). Figure (b) illustrates a qualitatively simi-

lar behaviour for higher rates of production of IL-2 and clearance of autoreactive T

cells, in which case there is a bi-stability between S∗6 and S∗7 , but with the difference

that there is also a small region for small values of Treg(0) and intermediate values

of V (0), where the system also converges to S∗7 . Figures (c) and (d) illustrate bi-

stability between a periodic solution around S∗7 and either the stable steady state

S∗6 , or a periodic solution around this steady state.
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Figure 3.6: Regions of bi-stability in the system (3.2) with the initial condition (3.3),
parameter values from Table 1, and β = 4, k = 2.1. (a) δ = 0.002, σ2 = 0.2, (b)
δ = 0.0024, σ2 = 0.5, (c) δ = 0.0017, σ2 = 0.42, (d) δ = 0.0024, σ2 = 0.7. Green, blue and
yellow are the basins of attraction of the steady states S∗5 , S∗6 , and S∗7 , respectively. Grey
and pink are the basins of attraction of periodic solutions around S∗6 and S∗7 , respectively.

Numerical simulations in Figs. 3.7, 3.8, 3.9, and 3.10 show the dynamics of

the model in the case when kβ > cdF for the same parameter values but different

initial conditions, thus illustrating various bi-stability scenarios shown in Fig. 3.6, in

which crosses indicate the values of specific initial conditions used for simulations.

Figure 3.7 demonstrates how for sufficiently small initial number of regulatory T

cells the infection can result in the death of organ cells, in which case the system

approaches a stable steady state S∗5 . On the other hand, for a higher number of

Tregs, the system goes to a stable steady state S∗7 which represents a persistent

(chronic) infection. In this case, one observes some kind of balance maintained with
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the help of regulatory T cells: while the immune system is not able to clear the

infection, at the same time it prevents infection from destroying the organ cells.

Figure 3.7: Numerical solution of the model (3.2) with the initial condition (3.3), pa-
rameter values from Table 1, and β = 4, k = 2.1, δ = 0.002, σ2 = 0.2. In (a) and (b)
V (0) = 10 and Treg(0) = 25. The model converges to the S∗5 . In (c) and (d) V (0) = 10 and
Treg(0) = 45. The model converges to the S∗7 . The dynamic of Treg has a same behaviour
as Taut.

Figure 3.8 illustrates a similar behaviour, where bi-stability takes place between

the steady states S∗6 and S∗7 . In this case, for a smaller number of regulatory T

cells, the system favours the regime of normal clearance of infection, where after

the initial growth, the numbers of infected cells and activated T cells responding

to foreign antigen go to zero. For higher numbers of regulatory T cells, the system

again approaches a stable steady state S∗7 describing a persistent infection. This is a

really interesting and counter-intuitive result, which suggests that whilst regulatory

T cells play a major role in reducing autoimmune response during normal disease

clearance, when they are present in high numbers, the are actually promoting the

persistence of infection.
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Figure 3.8: Numerical solution of the model (3.2) with the initial condition (3.3), param-
eter values from Table 1, and β = 4, k = 2.1, δ = 0.0024, σ2 = 0.5. (a), (b) V (0) = 10,
Treg(0) = 80. The system converges to S∗6 . (c), (d) V (0) = 10, Treg(0) = 130. The system
converges to S∗7 . The dynamics of Treg is the same as Taut.

Figure 3.9 illustrates a regime of bi-stability between periodic solutions around

the steady states S∗6 and S∗7 . Similarly to the case of stable disease-free steady state

considered earlier, the periodic solution around S∗6 biologically corresponds to the

regime of autoimmune response, where upon clearance of the initial infection, the

immune systems maintains endogenous oscillations, in which the growth of autore-

active T cells results in the destruction of some healthy organ cells, after which the

number of autoreactive T cells decreases, and the organ cells recover.

One should note that since these oscillations take place around the steady state

S∗6 , the mean concentration of organ cells is much lower than what it was before the

infection. In the case of periodic oscillations around the steady state S∗7 , initially one

observes a similar behaviour in terms of rapid growth of infected cells, followed by an

expansion in the population of activated T cells recognising foreign antigen, but after

the number of infected cells decreases, rather than go to zero, it settles on periodic

oscillations around some small positive level. This suggests that the infection is

not cleared, but rather than being chronic, there are intervals of quiescence where

the level of infection is very small, followed by regular intervals of rapid growth of

infection and autoreactive T cells, which causes significant reduction in the number

of uninfected organ cells. After this infection is significantly reduced by the activated

T cells, the cycle repeats.
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Figure 3.9: Numerical solution of the model (3.2) with the initial condition (3.3), param-
eter values from Table 1, and β = 4, k = 2.1, δ = 0.0017, σ2 = 0.42. (a), (b) V (0) = 0.3,
Treg(0) = 600. This system exhibits periodic oscillations around S∗6 , i.e. an autoimmune
response. (c), (d) V (0) = 9, Treg(0) = 600. The system exhibits periodic oscillations
around S∗7 . The dynamics of Treg is the same as Taut.

Finally, Figure 3.10 demonstrates a situation where the system has a bi-stability

between a stable steady state S∗6 and a periodic solution around S∗7 . The differ-

ence from the previous case is that instead of autoimmune regime, the system can

now successfully clear the infection, without having any subsequent oscillations. Al-

though the infection itself is cleared, it leaves an imprint on the dynamics in the

form of a reduced number of organ cells and a non-zero number of autoreactive T

cells.

3.5 Discussion

In this chapter I have developed and studied a model of immune response to a

viral infection, with an emphasis on the role of cytokine mediating T cell activity,

and T cells having different activation thresholds. Stability analysis of the model’s

steady states has allowed us to identify regimes with different dynamical behaviour

depending on system parameters. When the product of infection rate and the rate

of production of new virus particles is smaller than the product of the rates of viral

clearance and death of infected cells, the immune system is able to successfully
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clear the infection without further consequences for either the host organ cells, or

the immune system. In this case, the system settles on a stable disease-free steady

state, characterised by the absence of infected cells and free virus, as well as zero

amount of normal or autoreactive T cells. Another biologically feasible steady state

that can exist in some parameter regimes is the state that also has no infected cells

or free virus, but maintains non-zero levels of activated T cells. We have derived

analytical conditions for steady-state and Hopf bifurcations of this state. When the

disease-free steady state is unstable, the model also possesses a steady state with all

cell populations being positive, which biologically corresponds to a state of chronic

infection.

Figure 3.10: Numerical simulation of the model (3.2) with the initial condition (3.3),
parameter values from Table 1, and β = 4, k = 2.1, δ = 0.0024, σ2 = 0.7. (a), (b)
V (0) = 0.05, Treg(0) = 300. The system converges to S∗6 . (c), (d) V (0) = 9, Treg(0) = 300.
The system exhibits periodic oscillations around S∗7 . The dynamics of Treg is the same as
Taut.

To investigate how the system behaves in different parameter regimes, I have

solved it numerically, paying particular attention to cases where more than one

steady state can be feasible. This has allowed us to identify regions of multi-stability,

where for the same parameter values, depending on the initial conditions the sys-

tem can approach either two distinct steady states, or a steady state and a periodic

solution. In the case where the disease-free steady state is stable, such a regime

has a very important potential clinical significance, as effectively it suggests that
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whether or not a given patient is able to clear the infection or will go on to develop

autoimmunity depends not only on the rate of performance of their immune sys-

tem, but also on the magnitude of viral challenge they experience and the amount

of regulatory T cells they have before the infection. Numerical simulations for the

autoimmune regime illustrate how initial infection leads to a rapid growth in the

number of infected cells, resulting in the growth of populations of normal and au-

toreactive T cells, which clear the infection, but on a longer time-scale the system

exhibits sustained periodic oscillations that can be associated with periods of re-

lapses and remission, characteristic for many autoimmune diseases. For the case

where the disease-free steady state is unstable, the bi-stability can occur between

an autoimmune steady state and a chronic state, or a period orbit around the latter.

A number of earlier models have looked into bi-stability in the immune dynamics,

and the model analysed in this chapter provides further clues regarding the impor-

tant role played by cytokines in controlling the dynamics of immune response. In

the regime of bi-stability, I have discovered that the initial state of the immune

system, and the initial viral load determine the course and outcome of the immune

response, a result that would be interesting to test in an experimental setting.

There are several directions in which the model presented in this chapter could

be extended to make it more realistic. One possibility is to include in the model

other potentially relevant aspects of immune system dynamics, such as antibodies

and memory T cells [194, 195], or the effects of T cells on secretion of IL-2 [179].

This is particularly important from the perspective that clinically the onset of au-

toimmune disease is often taking place on a much longer scale than the timescale of

a regular immune response to a viral infection, so memory T cells can be expected

to play a more substantial role. Another aspect that is particularly relevant for our

model is the fact that activation thresholds can themselves change during the process

of immune response, hence, one could explicitly include the dynamics of activation

thresholds as an extra component of the model [63, 66, 67, 68]. To account for the

fact that immune response is a very complex multi-factor process, it is important to

investigate the effects of stochasticity on the dynamics of immune response. There-

fore, in the next chapter I analyse the effects of stochasticity on the dynamics of the

model 3.2. Many viruses are known to have a non-negligible lag phase in their virus
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cycle, which includes such processes as virus attachment, cell penetration and un-

coating, virus assembly, maturation, and release of new virions. All these processes

result in the delay in production and release of new virus particles, thus having an

impact on the dynamics of immune response and potential onset and development of

autoimmune disease. Mathematically, the lag phase can be represented using time

delays in the relevant terms of the model, and the available data on lag phase for

viruses associated with triggering or exacerbating autoimmune diseases can be used

to validate the model. Thus in Chapter 5 I study the dynamics of immune response

with particular emphasis on the role of time delays and the effects of T cells on

secretion of IL-2.

61



Chapter 4

Stochastic effects in autoimmune

dynamics

This chapter is based on the publication F. Fatehi, S.N. Kyrychko, A. Ross, Y.N.

Kyrychko, K.B. Blyuss, Stochastic effects in autoimmune dynamics, Front. Physiol.

9, 45, 2018.

In this chapter I propose and analyse a stochastic model of immune response

to a viral infection and subsequent autoimmunity, with account for the populations

of T cells with different activation thresholds, regulatory T cells, and cytokines. I

show analytically and numerically how stochasticity can result in sustained oscilla-

tions around deterministically stable steady states, and I also investigate stochastic

dynamics in the regime of bi-stability. These results provide a possible explanation

for experimentally observed variations in the progression of autoimmune disease.

Computations of the variance of stochastic fluctuations provide practically impor-

tant insights into how the size of these fluctuations depends on various biological

parameters, and this also gives a headway for comparison with experimental data

on variation in the observed numbers of T cells and organ cells affected by infec-

tion. In the next section starting with a system of ordinary differential equations,

I apply the methodology of continuous-time Markov chains (CTMC) to derive a

Kolmogorov, or chemical master equation, describing the dynamics of a probability

distribution of finding the system in a particular state. To make further analytical

and numerical progress, I derive an Itô stochastic differential equation, whose so-

lutions provide similar stochastic paths to those of the CTMC models. This then
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allows me to numerically study the stationary multivariate probability distributions

for the states in the model, explore stochastic amplification, determine how the

magnitude of stochastic fluctuations around deterministic steady states depends on

various parameters, and investigate the effects of initial conditions on the outcome

in the case of bi-stability between different dynamical states. These results suggest

that the experimentally observed variation in the progression of autoimmune dis-

ease can be attributed to stochastic amplification, and they also provide insights

into how the variance of fluctuations depends on parameters, which can guide new

laboratory experiments.

4.1 Methods

4.1.1 Continuous-time Markov chain model of immune dy-

namics

In Chapter 3 I introduced and analysed a deterministic model for autoimmune dy-

namics with account for the populations of T cells with different activation thresh-

olds and cytokines. The analysis showed that depending on parameters and initial

conditions, the model can support the regimes of normal disease clearance, where

an initial infection is cleared without further consequences for immune dynamics,

chronic infection characterised by a persistent presence of infected cells in the body,

the state of autoimmune behaviour where after clearance of initial infection, the im-

mune system supports stable endogenous oscillations in the number of autoreactive

T cells, which can be interpreted in the clinical practice of autoimmune disease as

periods of relapses and remissions, and the state where this steady state is stable.

In this chapter unlike the model (3.1), I consider the situation where the process of

producing virions by infected cells is quite fast, hence, I do not explicitly incorporate

a separate compartment for free virus. Therefore, the new deterministic model for

immune response to a viral infection, as illustrated in a diagram shown in Fig. 4.1,

has the form
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dA

dt
= rA

(
1− A

N

)
− βAF − µaTautA,

dF

dt
= βAF − dFF − µFTnorF − µaTautF,

dTin
dt

= λin − dinTin − αTinF,

dTreg
dt

= λr − drTreg + p1αTinF + ρ1ITreg,

dTnor
dt

= p2αTinF − dnTnor + ρ2ITnor,

dTaut
dt

= (1− p1 − p2)αTinF − daTaut − δTregTaut + ρ3ITaut,

dI

dt
= σ1Tnor + σ2Taut − diI,

(4.1)

Figure 4.1: A schematic diagram of immune response to infection. Blue indicates host
cells (susceptible and infected), red denotes T cells (naïve, regulatory, normal activated,
and autoreactive), yellow shows cytokines (interleukin-2).

As a first step in the analysis of stochastic effects in immune dynamics, I con-

struct a CTMC model based on the ODE model (4.1) using the methodology devel-

oped earlier in the context of modelling stochastic effects in epidemic and immuno-

logical models [196, 197, 88]. To this end, I introduce variables X1(t), . . . , X7(t) ∈

{0, 1, 2, . . .} as discrete random variables representing the number of uninfected cells,
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infected cells, naïve T cells, regulatory T cells, normal activated T cells, autoreactive

T cells, and interleukin-2 at time t, respectively. Let the initial condition be fixed

as

X0 = (X1(0), . . . , X7(0)) = (n10, n20, n30, n40, n50, n60, n70).

The probability of finding the system in the state n = (n1, n2, n3, n4, n5, n6, n7) with

ni ∈ {0, 1, 2, ...} at time t we denote as

P (n, t) = Prob{X(t) = n|X(0) = X0}.

Let ∆t be sufficiently small such that ∆Xi(t) = Xi(t + ∆t) −Xi(t), and the prob-

ability of ∆Xi(t) /∈ {−1, 0, 1} is o(∆t) for 1 ≤ i ≤ 7. The CTMC can then be

formulated as a birth and death process in each of the variables [196]. The infinites-

imal transition probabilities corresponding to Fig. 4.1 are as follows,
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Prob(∆X = i|X = n) =



q1∆t+ o(∆t), i = (1, 0, 0, 0, 0, 0, 0),

q2∆t+ o(∆t), i = (−1, 0, 0, 0, 0, 0, 0),

q3∆t+ o(∆t), i = (−1, 1, 0, 0, 0, 0, 0),

q4∆t+ o(∆t), i = (0, 0, 1, 0, 0, 0, 0),

q5∆t+ o(∆t), i = (0, 0,−1, 0, 0, 0, 0),

q6∆t+ o(∆t), i = (0, 0,−1, 0, 1, 0, 0),

q7∆t+ o(∆t), i = (0, 0,−1, 0, 1, 0, 0),

q8∆t+ o(∆t), i = (0, 0,−1, 0, 0, 1, 0),

q9∆t+ o(∆t), i = (0,−1, 0, 0, 0, 0, 0),

q10∆t+ o(∆t), i = (0, 0, 0, 1, 0, 0, 0),

q11∆t+ o(∆t), i = (0, 0, 0,−1, 0, 0, 0),

q12∆t+ o(∆t), i = (0, 0, 0, 0, 1, 0, 0),

q13∆t+ o(∆t), i = (0, 0, 0, 0,−1, 0, 0),

q14∆t+ o(∆t), i = (0, 0, 0, 0, 0, 1, 0),

q15∆t+ o(∆t), i = (0, 0, 0, 0, 0,−1, 0),

q16∆t+ o(∆t), i = (0, 0, 0, 0, 0, 0, 1),

q17∆t+ o(∆t), i = (0, 0, 0, 0, 0, 0,−1),

1−
17∑
i=1

qi∆t+ o(∆t), i = (0, 0, 0, 0, 0, 0, 0),

o(∆t), otherwise,

(4.2)

where

q1 = b1n1 + b2n
2
1, q2 = d1n1 + d2n

2
1 + µan1n6, q3 = βn1n2, q4 = λin,

q5 = dinn3, q6 = p1αn2n3, q7 = p2αn2n3, q8 = (1− p1 − p2)αn2n3,

q9 = (dF + µFn5 + µan6)n2, q10 = λr + ρ1n4n7, q11 = drn4, q12 = ρ2n5n7,

q13 = dnn5, q14 = ρ3n6n7, q15 = (da + δn4)n6, q16 = σ1n5 + σ2n6, q17 = din7.
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Here, b1n1 + b2n
2
1 and d1n1 + d2n

2
1 are natural birth and death rates for uninfected

cells with b1 − d1 = r and d2 − b2 = r/N [196]. In this model for the numerical

simulations I used b2 = 0.

The probabilities P (n, t) satisfy the following master equation (forward Kol-

mogorov equation) as ∆t→ 0 [198, 199, 91].

dP (n, t)
dt

={(ε−1 − 1)q1 + (ε+
1 − 1)q2 + (ε+

1 ε
−
2 − 1)q3 + (ε−3 − 1)q4 + (ε+

3 − 1)q5

+ (ε+
3 ε
−
4 − 1)q6 + (ε+

3 ε
−
5 − 1)q7 + (ε+

3 ε
−
6 − 1)q8 + (ε+

2 − 1)q9

+ (ε−4 − 1)q10 + (ε+
4 − 1)q11 + (ε−5 − 1)q12 + (ε+

5 − 1)q13 + (ε−6 − 1)q14

+ (ε+
6 − 1)q15 + (ε−7 − 1)q16 + (ε+

7 − 1)q17}P (n, t). (4.3)

where the operators ε±i are defined as follows,

ε±i f(n1, n2, n3, n4, n5, n6, n7, t) = f(n1, ..., ni ± 1, ..., n7, t), for each 1 ≤ i ≤ 7,

and if ni < 0 for any 1 ≤ i ≤ 7, then P (n, t) = 0.

By solving this master equation, one can find the probability density function for

this model. However, since this is a high-dimensional difference-differential equation,

solving it is a very challenging task. Normally, the number of events occurring in

a small time step in the CTMC model is extremely large, hence using the CTMC

model for plotting stochastic trajectories is computationally intensive [200]. A much

more computationally efficient approach is to use chemical Langevin equations [201,

202], also known as Itô stochastic differential equation (SDE) models, which provide

similar sample paths to those of the CTMC models [200]. While both Itô and

Stratonovich interpretations of stochastic calculus can be applied [203], in biological

applications Itô formulation is more frequently used due to its non-anticipatory

nature and a closer connection to numerical implementation [204, 205, 196].

4.1.2 Stochastic differential equation model

To derive Itô SDE model, let Y(t) = (Y1(t), Y2(t), Y3(t), Y4(t), Y5(t), Y6(t), Y7(t)) be

a continuous random vector for the sizes of various cell compartments at time t.
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Table 4.1: Possible state changes ∆Y during a small time interval ∆t

i (∆Y)Ti Probability Pi∆t
1 (1, 0, 0, 0, 0, 0, 0) (b1Y1 + b2Y1

2)∆t
2 (−1, 0, 0, 0, 0, 0, 0) (d1Y1 + d2Y1

2 + µaY6Y1)∆t
3 (−1, 1, 0, 0, 0, 0, 0) βY1Y2∆t
4 (0, 0, 1, 0, 0, 0, 0) λin∆t
5 (0, 0,−1, 0, 0, 0, 0) dinY3∆t
6 (0, 0,−1, 1, 0, 0, 0) p1αY3Y2∆t
7 (0, 0,−1, 0, 1, 0, 0) p2αY3Y2∆t
8 (0, 0,−1, 0, 0, 1, 0) (1− p1 − p2)αY3Y2∆t
9 (0,−1, 0, 0, 0, 0, 0) (dF + µFY5 + µaY6)Y2∆t
10 (0, 0, 0, 1, 0, 0, 0) (λr + ρ1Y7Y4)∆t
11 (0, 0, 0,−1, 0, 0, 0) drY4∆t
12 (0, 0, 0, 0, 1, 0, 0) ρ2Y7Y5∆t
13 (0, 0, 0, 0,−1, 0, 0) dnY5∆t
14 (0, 0, 0, 0, 0, 1, 0) ρ3Y7Y6∆t
15 (0, 0, 0, 0, 0,−1, 0) (da + δY4)Y6∆t
16 (0, 0, 0, 0, 0, 0, 1) (σ1Y5 + σ2Y6)∆t
17 (0, 0, 0, 0, 0, 0,−1) diY7∆t
18 (0, 0, 0, 0, 0, 0, 0) 1−

17∑
i=1

Pi∆t

Similar to the CTMC model, I assume that ∆t is small enough so that during

this time interval at most one change can occur in state variables. These changes

together with their probabilities are listed in Table 4.1 [205], which is again based

on Fig. 4.1 and transitions in the CTMC model (4.2). Using this table of possible

state changes, one can compute the expectation vector and covariance matrix of ∆Y

for sufficiently small ∆t [200, 206]. The expectation vector to order ∆t is given by

E(∆Y) ≈
17∑
i=1

Pi(∆Y)i∆t = µ∆t,

where

µ =



P1 − P2 − P3

P3 − P9

P4 − P5 − P6 − P7 − P8

P6 + P10 − P11

P7 + P12 − P13

P8 + P14 − P15

P16 − P17



68



is the drift vector, which has the same form as the right-hand side of the deterministic

model (4.1). The covariance matrix is obtained by keeping terms of order ∆t only,

i.e.

cov(∆Y) = E
[
(∆Y)(∆Y)T

]
− E [∆Y] (E [∆Y])T ≈ E

[
(∆Y)(∆Y)T

]

=
17∑
i=1

Pi(∆Y)i(∆Yi)T∆t = Σ∆t,

where

Σ =



P1 + P2 + P3 −P3 0 0 0 0 0

−P3 P3 + P9 0 0 0 0 0

0 0 P4 + P5 + P6 + P7 + P8 −P6 −P7 −P8 0

0 0 −P6 P6 + P10 + P11 0 0 0

0 0 −P7 0 P7 + P12 + P13 0 0

0 0 −P8 0 0 P8 + P14 + P15 0

0 0 0 0 0 0 P16 + P17



is a 7 × 7 covariance matrix. To derive Itô SDE model, I need to find a diffusion

matrix H defined according to HHT = Σ. Although this matrix is not unique,

different forms of this matrix give equivalent systems [205, 206].

If one rewrites the covariance matrix Σ in the form

Σ =


U 0 0

0 W 0

0 0 Z

 ,

with

U =

P1 + P2 + P3 −P3

−P3 P3 + P9

 , Z = P16 + P17,

and

W =



P4 + P5 + P6 + P7 + P8 −P6 −P7 −P8

−P6 P6 + P10 + P11 0 0

−P7 0 P7 + P12 + P13 0

−P8 0 0 P8 + P14 + P15


,
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we can define three matrices H1, H2 and H3 as follows,

H1 =


√
P1 + P2 −

√
P3 0

0
√
P3

√
P9

 , H3 =
√
P16 + P17,

H2 =



√
P4 + P5 −

√
P6 −

√
P7 −

√
P8 0 0 0

0
√
P6 0 0

√
P10 + P11 0 0

0 0
√
P7 0 0

√
P12 + P13 0

0 0 0
√
P8 0 0

√
P14 + P15


.

Now if we consider

H =


H1 0 0

0 H2 0

0 0 H3

 ,

then HHT = Σ, where H is a 7× 11 matrix. The Itô SDE model now has the form


dY(t) = µdt+HdW(t),

Y(0) = (A(0), F (0), Tin(0), Treg(0), Tnor(0), Taut(0), I(0))T ,
(4.4)

and W(t) = [W1(t),W2(t), ...,W11(t)]T is a vector of eleven independent Wiener

processes [205].

In order to make further analytical progress, I find an approximate probability

density function for the model (4.4) as given by an approximate solution of the

master equation [205, 199]. Let P (Y, t) be the probability density function of the

model (4.4). Then P (Y, t) satisfies the following Fokker-Planck equation [205, 207]

which is an approximation of the master equation



∂P (Y, t)
∂t

= −
7∑
i=1

∂

∂yi
[µiP (Y, t)] + 1

2

7∑
i=1

7∑
j=1

∂2

∂yi∂yj
[ΣijP (Y, t)] ,

P (Y, 0) = δ7(Y−Y0).

By solving this PDE, one can find the probability density function of our model,

but since this equation is high-dimensional and linear, solving it analytically is

impossible. Hence, I use another approach, a so-called system size expansion or
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van Kampen’s Ω-expansion [199], which is a method for constructing a continuous

approximation to a discrete stochastic model [88, 89], which allows one to study

stochastic fluctuations around deterministic attractors [208].

4.1.3 System size expansion

In order to apply the van Kampen’s approach, I consider fluctuations within a

systematic expansion of the master equation for a large system size Ω. Specifically,

one can write each ni(t) as a deterministic part of order Ω plus a fluctuation of order

Ω1/2 as follows,

ni(t) = Ωxi(t) + Ω1/2ζi(t), i = 1, . . . , 7, (4.5)

where xi(t) and ζi(t) are two continuous variables, and Ωxi(t) = E[ni(t)]. The

probability density P (n, t) satisfying the master equation (4.3) is now represented

by the probability density Π(ζ, t), i.e. Π(ζ, t) = P (n, t) = P
(
Ωx + Ω1/2ζ, t

)
, which

implies
dP (n, t)

dt
= ∂Π

∂t
−

7∑
i=1

Ω1/2dxi
dt

∂Π
∂ζi

. (4.6)

To expand the master equation (4.3) in a power series in Ω − 1/2, I use the following

expansion for the step operators

ε±i = 1± Ω−1/2 ∂

∂ζi
+ 1

2Ω−1 ∂
2

∂ζ2
i

± · · · . (4.7)

Therefore

ε+
i ε
−
j =

(
1 + Ω − 1/2 ∂

∂ζi
+ 1

2Ω−1 ∂
2

∂ζ2
i

+ · · ·
)(

1− Ω − 1/2 ∂

∂ζj
+ 1

2Ω−1 ∂
2

∂ζ2
j

− · · ·
)

= 1 + Ω − 1/2

(
∂

∂ζi
− ∂

∂ζj

)
+ Ω−1

(
1
2
∂2

∂ζ2
i

− ∂2

∂ζi∂ζj
+ 1

2
∂2

∂ζ2
j

)
+ · · · , (4.8)

for 1 ≤ i, j ≤ 7. One can simplify qi’s as follows,

q1 = b1n1 + b2n1
2 = b1

(
Ωx1 + Ω1/2ζ1

)
+ b2

(
Ω2x2

1 + Ωζ2
1 + 2Ω3/2x1ζ1

)
= b1

(
Ωx1 + Ω1/2ζ1

)
+ b2Ω︸︷︷︸

b̃2

(
Ωx2

1 + ζ2
1 + 2Ω1/2x1ζ1

)

= b̃2ζ
2
1 +

(
b1ζ1 + 2b̃2x1ζ1

)
Ω1/2 +

(
b1x1 + b̃2x

2
1

)
Ω,
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q2 = d1n1 + d2n1
2 + µan6n1

= d1
(
Ωx1 + Ω1/2ζ1

)
+ d2

(
Ω2x2

1 + Ωζ2
1 + 2Ω3/2x1ζ1

)
+ µa

(
Ωx1 + Ω1/2ζ1

) (
Ωx6 + Ω1/2ζ6

)
= d1

(
Ωx1 + Ω1/2ζ1

)
+ d2Ω︸︷︷︸

d̃2

(
Ωx2

1 + ζ2
1 + 2Ω1/2x1ζ1

)
+ µaΩ︸︷︷︸

µ̃a

(
Ω1/2x1 + ζ1

) (
Ω1/2x6 + ζ6

)

= d1
(
Ωx1 + Ω1/2ζ1

)
+ d̃2

(
Ωx2

1 + ζ2
1 + 2Ω1/2x1ζ1

)
+ µ̃a

(
Ωx1x6 + Ω1/2x1ζ6 + Ω1/2x6ζ1 + ζ1ζ6

)
= µ̃aζ1ζ6 +

(
d1ζ1 + 2d̃2x1ζ1 + µ̃ax1ζ6 + µ̃ax6ζ1

)
Ω1/2 +

(
d1x1 + d̃2x

2
1 + µ̃ax1x6

)
Ω,

q3 = βn1n2 = β
(
Ωx1 + Ω1/2ζ1

) (
Ωx2 + Ω1/2ζ2

)
= βΩ︸︷︷︸

β̃

(
Ω1/2x1 + ζ1

) (
Ω1/2x2 + ζ2

)

= β̃
(
Ωx1x2 + Ω1/2x1ζ2 + Ω1/2x2ζ1 + ζ1ζ2

)
= β̃ζ1ζ2 +

(
β̃x1ζ2 + β̃x2ζ1

)
Ω1/2 + β̃x1x2Ω,

q4 = λin = λin
Ω︸︷︷︸
λ̃in

Ω = λ̃inΩ,

q5 = dinn3 = din
(
Ωx3 + Ω1/2ζ3

)
= dinζ3Ω1/2 + dinx3Ω,

In a similar way we can easily show

q6 = p1α̃ζ2ζ3 + (p1α̃x2ζ3 + p1α̃x3ζ2) Ω1/2 + p1α̃x2x3Ω,

q7 = p2α̃ζ2ζ3 + (p2α̃x2ζ3 + p2α̃x3ζ2) Ω1/2 + p2α̃x2x3Ω,

q8 = (1− p1 − p2)
[
α̃ζ2ζ3 + α̃x2ζ3 + α̃x3ζ2Ω1/2 + α̃x2x3Ω

]
,

q9 = (µ̃F ζ2ζ5 + µ̃aζ2ζ6) + (dF + µ̃Fx2ζ5 + µ̃Fx5ζ2 + µ̃ax2ζ6 + µ̃ax6ζ2) Ω1/2

+ (dFx2 + µ̃Fx2x5 + µ̃ax2x6) Ω,

q10 = ρ̃1ζ4ζ7 + (ρ̃1x4ζ7 + ρ̃1x7ζ4) Ω1/2 +
(
λ̃r + ρ̃1x4x7

)
Ω,
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q11 = drζ4Ω1/2 + drx4Ω,

q12 = ρ̃2ζ5ζ7 + (ρ̃2x5ζ7 + ρ̃2x7ζ5) Ω1/2 + ρ̃2x5x7Ω,

q13 = dnζ5Ω1/2 + dnx5Ω,

q14 = ρ̃3ζ6ζ7 + (ρ̃3x6ζ7 + ρ̃3x7ζ6) Ω1/2 + ρ̃3x6x7Ω,

q15 = δ̃ζ4ζ6 +
(
daζ6 + δ̃x4ζ6 + δ̃x6ζ4

)
Ω1/2 +

(
dax6 + δ̃x4x6

)
Ω,

q16 = (σ1ζ5 + σ2ζ6) Ω1/2 + (σ1x5 + σ2x6)Ω,

q17 = diζ7Ω1/2 + dix5Ω,

where

µF = µ̃F
Ω , α = α̃

Ω , δ = δ̃

Ω , ρi = ρ̃i
Ω , i = 1, 2, 3, λr = λ̃rΩ.

If we substitute equations (4.6), (4.7), (4.8), and qi’s in the master equation

(4.3), it is clear that on the right side we have terms of order Ω1/2, Ω0, and Ω − n/2, for

n ∈ N, but on the left side we have just terms of order Ω1/2 and Ω0. To derive a linear

Fokker-Planck equation I ignore those terms of order Ω − n/2, for n ∈ N. Therefore, I

substitute the following expansions

ε±i − 1 = ±Ω − 1/2 ∂

∂ζi
+ 1

2Ω−1 ∂
2

∂ζ2
i

,

ε+
i ε
−
j − 1 = Ω − 1/2

(
∂

∂ζi
− ∂

∂ζj

)
+ Ω−1

(
1
2
∂2

∂ζ2
i

− ∂2

∂ζi∂ζj
+ 1

2
∂2

∂ζ2
j

)
,

for 1 ≤ i, j ≤ 7, and in qi’s I do not consider constant terms (terms of order Ω0).
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It is clear that terms of order Ω1/2 are proportional to ∂Π
∂ζi

for i = 1, 2, ..., 7. Now if

we consider terms of order Ω1/2 we would have

−Ω1/2dx1

dt

∂Π
∂ζ1

=
(
−Ω−1/2 ∂

∂ζ1

) [(
b1x1 + b̃2x

2
1

)
Ω
]

Π +
(

Ω − 1/2 ∂

∂ζ1

) [
β̃x1x2Ω

]
Π

+
(

Ω−1/2 ∂

∂ζ1

) [(
d1x1 + d̃2x

2
1 + µ̃ax1x6

)
Ω
]

Π,

−Ω1/2dx2

dt

∂Π
∂ζ2

=
(
−Ω − 1/2 ∂

∂ζ2

) [
β̃x1x2Ω

]
Π

+
(

Ω − 1/2 ∂

∂ζ2

)
[(dFx2 + µ̃Fx2x5 + µ̃ax2x6) Ω] Π,

−Ω1/2dx3

dt

∂Π
∂ζ3

=
(
−Ω − 1/2 ∂

∂ζ3

) [
λ̃inΩ

]
Π +

(
Ω − 1/2 ∂

∂ζ3

)
[dinx3Ω] Π

+
(

Ω − 1/2 ∂

∂ζ3

)
[p1α̃x2x3Ω] Π +

(
Ω − 1/2 ∂

∂ζ3

)
[p2α̃x2x3Ω] Π

+
(

Ω − 1/2 ∂

∂ζ3

)
[(1− p1 − p2)α̃x2x3Ω] Π,

−Ω1/2dx4

dt

∂Π
∂ζ4

=
(
−Ω − 1/2 ∂

∂ζ4

)
[p1α̃x2x3Ω] Π +

(
−Ω − 1/2 ∂

∂ζ4

) [(
λ̃r + ρ̃1x4x7

)
Ω
]

Π

+
(

Ω − 1/2 ∂

∂ζ4

)
[drx4Ω] Π,

−Ω1/2dx5

dt

∂Π
∂ζ5

=
(
−Ω − 1/2 ∂

∂ζ5

)
[p2α̃x2x3Ω] Π +

(
−Ω − 1/2 ∂

∂ζ5

)
[ρ̃2x5x7Ω] Π

−
(

Ω − 1/2 ∂

∂ζ5

)
[dnx5Ω] Π,

−Ω1/2dx6

dt

∂Π
∂ζ6

=
(
−Ω − 1/2 ∂

∂ζ6

)
[(1− p1 − p2)α̃x2x3Ω] Π +

(
−Ω − 1/2 ∂

∂ζ6

)
[ρ̃3x6x7Ω] Π

+
(

Ω − 1/2 ∂

∂ζ6

) [(
dax6 + δ̃x4x6

)
Ω
]

Π,

−Ω1/2dx7

dt

∂Π
∂ζ7

=
(
−Ω − 1/2 ∂

∂ζ7

)
[(σ1x5 + σ2x6)Ω] Π +

(
Ω − 1/2 ∂

∂ζ7

)
[dix5Ω] Π.
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Thus we derive a deterministic model for the macroscopic behaviour as follows,

dx1

dt
= b1x1 + b̃2x

2
1 − d1x1 − d̃2x

2
1 − β̃x1x2 − µ̃ax1x6,

dx2

dt
= β̃x1x2 − dFx2 − µ̃Fx2x5 − µ̃ax2x6,

dx3

dt
= λ̃in − dinx3 − α̃x2x3,

dx4

dt
= λ̃r − drx4 + p1α̃x2x3 + ρ̃1x4x7,

dx5

dt
= p2α̃x2x3 − dnx5 + ρ̃2x5x7,

dx6

dt
= (1− p1 − p2)α̃x2x3 − dax6 − δ̃x4x6 + ρ̃3x6x7,

dx7

dt
= σ1x5 + σ2x6 − dix7.

(4.9)

Model (4.9) has been analysed in Chapter 3, and it can have at most four bi-

ologically feasible steady states. The first one, a disease-free steady state, is given

by

S∗1 =
(
b1 − d1

d̃2 − b̃2
, 0, λ̃in

din
,
λ̃r
dr
, 0, 0, 0

)
,

and it is stable if dF > β̃. The second and third steady states can be found as

S∗2 =
0, 0, λ̃in

din
, x∗4, 0,

di
(
da + δ̃x∗4

)
ρ̃3σ2

,
da + δ̃x∗4

ρ̃3

 ,
and

S∗3 =
 ρ̃3σ2(b1 − d1)− µ̃adi

(
da + δ̃x∗4

)
ρ̃3σ2

(
d̃2 − b̃2

) , 0, λ̃in
din

, x∗4, 0,
di
(
da + δ̃x∗4

)
ρ̃3σ2

,
da + δ̃x∗4

ρ̃3

 ,
where x∗4 satisfies the following quadratic equation

ρ̃1δ̃ (x∗4)2 + (ρ̃1da − ρ̃3dr)x∗4 + ρ̃3λ̃r = 0. (4.10)

These steady states are stable, provided

σ2

µ̃adi
K <

da + δ̃x∗4
ρ̃3

<
dn
ρ̃2
, δ̃ρ̃1(x∗4)2 > λ̃rρ̃3,

ρ̃3λ̃
2
r + ρ̃3diλ̃rx

∗
4 − ρ̃3dida(x∗4)2 − δ̃(ρ̃1da + ρ̃3di)(x∗4)3 − ρ̃1δ̃

2(x∗4)4 > 0,
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where K = 1 for S∗2 , and K =
(
β̃ − dF

)
/
(
1 + β̃

)
for S∗3 . Biologically, the steady

state S∗2 represents the death of organ cells, while S∗3 corresponds to an autoimmune

regime.

The last steady state S∗4 has all of its components positive and corresponds to

the state of chronic infection.

Terms of order Ω0 give the following Fokker-Planck equation

∂Π
∂t

=− b1
∂(ζ1Π)
∂ζ1

− 2b̃2x1
∂(ζ1Π)
∂ζ1

+ d1
∂(ζ1Π)
∂ζ1

+ 2d̃2x1
∂(ζ1Π)
∂ζ1

+ µ̃ax1
∂(ζ6Π)
∂ζ1

+ µ̃ax6
∂(ζ1Π)
∂ζ1

+ β̃x1
∂(ζ2Π)
∂ζ1

+ β̃x2
∂(ζ1Π)
∂ζ1

− β̃x1
∂(ζ2Π)
∂ζ2

− β̃x2
∂(ζ1Π)
∂ζ2

+ dF
∂(ζ2Π)
∂ζ2

+ µ̃Fx2
∂(ζ5Π)
∂ζ2

+ µ̃Fx5
∂(ζ2Π)
∂ζ2

+ µ̃ax2
∂(ζ6Π)
∂ζ2

+ µ̃ax6
∂(ζ2Π)
∂ζ2

+ din
∂(ζ3Π)
∂ζ3

+ p1α̃x2
∂(ζ3Π)
∂ζ3

+ p1α̃x3
∂(ζ2Π)
∂ζ3

+ p2α̃x2
∂(ζ3Π)
∂ζ3

+ p2α̃x3
∂(ζ2Π)
∂ζ3

+ (1− p1 − p2)α̃x2
∂(ζ3Π)
∂ζ3

+ (1− p1 − p2)α̃x3
∂(ζ2Π)
∂ζ3

− p1α̃x2
∂(ζ3Π)
∂ζ4

− p1α̃x3
∂(ζ2Π)
∂ζ4

− ρ̃1x4
∂(ζ7Π)
∂ζ4

− ρ̃1x7
∂(ζ4Π)
∂ζ4

+ dr
∂(ζ4Π)
∂ζ4

− p2α̃x2
∂(ζ3Π)
∂ζ5

− p2α̃x3
∂(ζ2Π)
∂ζ5

− ρ̃2x5
∂(ζ7Π)
∂ζ5

− ρ̃2x7
∂(ζ5Π)
∂ζ5

+ dn
∂(ζ5Π)
∂ζ5

− (1− p1 − p2)α̃x2
∂(ζ3Π)
∂ζ6

− (1− p1 − p2)α̃x3
∂(ζ2Π)
∂ζ6

− ρ̃3x6
∂(ζ7Π)
∂ζ6

− ρ̃3x7
∂(ζ6Π)
∂ζ6

+ da
∂(ζ6Π)
∂ζ6

+ δ̃x4
∂(ζ6Π)
∂ζ6

+ δ̃x6
∂(ζ4Π)
∂ζ6

− σ1
∂(ζ5Π)
∂ζ7

− σ2
∂(ζ6Π)
∂ζ7

+ di
∂(ζ7Π)
∂ζ7

+ 1
2b1x1

∂2Π
∂ζ2

1
+ 1

2 b̃2x
2
1
∂2Π
∂ζ2

1
+ 1

2d1x1
∂2Π
∂ζ2

1
+ 1

2 d̃2x
2
1
∂2Π
∂ζ2

1

+ 1
2 µ̃ax1x6

∂2Π
∂ζ2

1
+ 1

2 β̃x1x2
∂2Π
∂ζ2

1
+ 1

2 β̃x1x2
∂2Π
∂ζ2

2
+ 1

2dFx2
∂2Π
∂ζ2

2
+ 1

2 µ̃Fx2x5
∂2Π
∂ζ2

2

+ 1
2 µ̃ax2x6

∂2Π
∂ζ2

2
+ 1

2 λ̃in
∂2Π
∂ζ2

3
+ 1

2dinx3
∂2Π
∂ζ2

3
+ 1

2p1α̃x2x3
∂2Π
∂ζ2

3
+ 1

2p2α̃x2x3
∂2Π
∂ζ2

3

+ 1
2(1− p1 − p2)α̃x2x3

∂2Π
∂ζ2

3
+ 1

2p1α̃x2x3
∂2Π
∂ζ2

4
+ 1

2 λ̃r
∂2Π
∂ζ2

4
+ 1

2 ρ̃1x4x7
∂2Π
∂ζ2

4

+ 1
2drx4

∂2Π
∂ζ2

4
+ 1

2p2α̃x2x3
∂2Π
∂ζ2

5
+ 1

2 ρ̃2x5x7
∂2Π
∂ζ2

5
+ 1

2dnx5
∂2Π
∂ζ2

5
+ 1

2 ρ̃3x6x7
∂2Π
∂ζ2

6

+ 1
2(1− p1 − p2)α̃x2x3

∂2Π
∂ζ2

6
+ 1

2dax6
∂2Π
∂ζ2

6
+ 1

2 δ̃x4x6
∂2Π
∂ζ2

6
+ 1

2σ1x5
∂2Π
∂ζ2

7

+ 1
2σ2x6

∂2Π
∂ζ2

7
+ 1

2dix7
∂2Π
∂ζ2

7
− β̃x1x2

∂2Π
∂ζ1∂ζ2

− p1α̃x2x3
∂2Π
∂ζ3∂ζ4

− p2α̃x2x3
∂2Π
∂ζ3∂ζ5

− (1− p1 − p2)α̃x2x3
∂2Π
∂ζ3∂ζ6

.
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If we gather it, it would be as follows,

∂Π
∂t

= −
[ (
b1 + 2b̃2x1 − d1 − 2d̃2x1 − µ̃ax6 − β̃x2

) ∂(ζ1Π)
∂ζ1

− β̃x1
∂(ζ2Π)
∂ζ1

− µ̃ax1
∂(ζ6Π)
∂ζ1

+ β̃x2
∂(ζ1Π)
∂ζ2

+
(
β̃x1 − dF − µ̃Fx5 − µ̃ax6

) ∂(ζ2Π)
∂ζ2

− µ̃Fx2
∂(ζ5Π)
∂ζ2

− µ̃ax2
∂(ζ6Π)
∂ζ2

− α̃x3
∂(ζ2Π)
∂ζ3

− (din + α̃x2) ∂(ζ3Π)
∂ζ3

+ p1α̃x3
∂(ζ2Π)
∂ζ4

+ p1α̃x2
∂(ζ3Π)
∂ζ4

+ (ρ̃1x7 − dr)
∂(ζ4Π)
∂ζ4

+ ρ̃1x4
∂(ζ7Π)
∂ζ4

+ p2α̃x3
∂(ζ2Π)
∂ζ5

+ p2α̃x2
∂(ζ3Π)
∂ζ5

+ (ρ̃2x7 − dn) ∂(ζ5Π)
∂ζ5

+ ρ̃2x5
∂(ζ7Π)
∂ζ5

+ (1− p1 − p2)α̃x3
∂(ζ2Π)
∂ζ6

+ (1− p1 − p2)α̃x2
∂(ζ3Π)
∂ζ6

− δ̃x6
∂(ζ4Π)
∂ζ6

+
(
ρ̃3x7 − da − δ̃

)
x4
∂(ζ6Π)
∂ζ6

+ ρ̃3x6
∂(ζ7Π)
∂ζ6

+

σ1
∂(ζ5Π)
∂ζ7

+ σ2
∂(ζ6Π)
∂ζ7

− di
∂(ζ7Π)
∂ζ7

]

+1
2

{(
b1x1 + b̃2x

2
1 + d1x1 + d̃2x

2
1 + β̃x1x2 + µ̃ax1x6

) ∂2Π
∂ζ2

1
− 2β̃x1x2

∂2Π
∂ζ1∂ζ2

+
(
β̃x1x2 + dFx2 + µ̃Fx2x5 + µ̃ax2x6

) ∂2Π
∂ζ2

2
+
(
λ̃in + dinx3 + α̃x2x3

) ∂2Π
∂ζ2

3

− 2p1α̃x2x3
∂2Π
∂ζ3∂ζ4

− 2p2α̃x2x3
∂2Π
∂ζ3∂ζ5

− 2(1− p1 − p2)α̃x2x3
∂2Π
∂ζ3∂ζ6

+
(
λ̃r + drx4 + p1α̃x2x3 + ρ̃1x4x7

) ∂2Π
∂ζ2

4
+ (p2α̃x2x3 + dnx5 + ρ̃2x5x7) ∂

2Π
∂ζ2

5

+
[
(1− p1 − p2)α̃x2x3 + dax6 + δ̃x4x6 + ρ̃3x6x7

] ∂2Π
∂ζ2

6

+ (σ1x5 + σ2x6 + dix7) ∂
2Π
∂ζ2

7

}
.

Therefore, at the next order, stochastic fluctuations are determined by linear

stochastic processes, hence, this is known as a linear noise approximation [199,

209]. The dynamics of these fluctuations is described by the following Fokker-Planck

equation
∂Π(ζ, t)
∂t

= −
∑
i,j

Aij
∂

∂ζi
(ζjΠ) + 1

2
∑
i,j

Bij
∂2Π
∂ζi∂ζj

, (4.11)

where A is the Jacobian matrix of system (4.9)
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A =



A11 −β̃x1 0 0 0 −µ̃ax1 0

β̃x2 A22 0 0 −µ̃Fx2 −µ̃ax2 0

0 −α̃x3 −din − α̃x2 0 0 0 0

0 p1α̃x3 p1α̃x2 ρ̃1x7 − dr 0 0 ρ̃1x4

0 p2α̃x3 p2α̃x2 0 ρ̃2x7 − dn 0 ρ̃2x5

0 p3α̃x3 p3α̃x2 −δ̃x6 0 ρ̃3x7 − da − δ̃x4 ρ̃3x6

0 0 0 0 σ1 σ2 −di



,

with A11 = b1 + 2b̃2x1 − d1 − 2d̃2x1 − µ̃ax6 − β̃x2, A22 = β̃x1 − dF − µ̃Fx5 − µ̃ax6

and p3 = 1− p1 − p2, and B is a 7× 7 symmetric matrix given by

Bij =



b1x1 + b̃2x
2
1 + d1x1 + d̃2x

2
1 + β̃x1x2 + µ̃ax1x6, if (i, j) = (1, 1),

β̃x1x2 + dFx2 + µ̃Fx2x5 + µ̃ax2x6, if (i, j) = (2, 2),

λ̃in + dinx3 + α̃x2x3, if (i, j) = (3, 3),

λ̃r + drx4 + p1α̃x2x3 + ρ̃1x4x7, if (i, j) = (4, 4),

p2α̃x2x3 + dnx5 + ρ̃2x5x7, if (i, j) = (5, 5),

(1− p1 − p2)α̃x2x3 + dax6 + δ̃x4x6 + ρ̃3x6x7, if (i, j) = (6, 6),

σ1x5 + σ2x6 + dix7, if (i, j) = (7, 7),

−β̃x1x2, if (i, j) = (1, 2) or (2, 1),

−p1α̃x2x3, if (i, j) = (3, 4) or (4, 3),

−p2α̃x2x3, if (i, j) = (3, 5) or (5, 3),

−(1− p1 − p2)α̃x2x3, if (i, j) = (3, 6) or (6, 3),

0, otherwise.

Since the Fokker-Planck equation (4.11) has constant coefficients and Dirac delta

initial condition, the probability density Π(ζ, t) is Gaussian [199], and hence, just

the first two moments are enough to characterise it [210, 211]. Due to the way

the system size expansion was introduced in (4.5), the mean values of fluctuations

for all variables are zero, i.e. 〈ζi(t)〉 = 0 for all 1 ≤ i ≤ 7, while the covariance

matrix Ξ with Ξij = 〈ζi(t)ζj(t)〉 − 〈ζi(t)〉〈ζj(t)〉 = 〈ζi(t)ζj(t)〉 satisfies the following
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equation [199, 211]

∂tΞ = AΞ + ΞAT +B, (4.12)

where AT is the transpose of A.

We are mainly interested in the dynamics of fluctuations when the oscillations of

the deterministic model have died out, and the system is in a stationary state, i.e.

the fluctuations take place around the steady states [208]. If the model (4.9) tends

to a steady state as t→∞, then in the equation (4.11) one can substitute the values

of xi’s with the corresponding constant components of that steady state to study the

fluctuations around it, as described by the linear Fokker-Planck equation. At any

steady state, the covariance matrix Ξ is independent of time, and the fluctuations

are described by a Gaussian distribution with the zero mean and the stationary

covariance satisfying the equation

AΞ + ΞAT +B = 0.

In order to be able to relate the results of this analysis to simulations, it is conve-

nient to express the covariance matrix in terms of actual numbers of cells in each

compartment, rather than deviations from stationary values. To this end, I instead

use the covariance matrix C defined as Cij = 〈(ni−〈ni〉)(nj−〈nj〉)〉, which, in light

of the relation Cij = ΩΞij, satisfies the following Lyapunov equation [211]

AC + CAT + ΩB = 0. (4.13)

This equation can be solved numerically for each of the stable steady states to

determine the variance of fluctuations around that steady state depending on system

parameters.

4.2 Results

To simulate the dynamics of the model, I solve the system (4.4) numerically in

MATLAB using the Euler-Maruyama method [196] with parameter values given in

79



Table 4.2, and Ω = 1000. The initial condition is chosen to be of the form

(x1(0), x2(0), x3(0), x4(0), x5(0), x6(0), x7(0)) = (18, 2, 7.2, 6.3, 0, 0, 0), (4.14)

which corresponds to a small number of host cells being initially infected.

Table 4.2: Table of parameters

Parameter value Parameter value
b1 2.5 dr 0.8
b̃2 0 p1 0.4
d1 0.5 ρ̃1 10/9

d̃2 0.1 p2 0.4
β̃ 0.1 dn 2
µ̃a 40/9 ρ̃2 4/45

dF 2.2 da 0.002
µ̃F 4/3 δ̃ 1/4500

λ̃in 18 ρ̃3 2/9
din 2 σ1 0.3
α̃ 0.04 σ2 0.4
λ̃r 108 di 1.2

Figure 4.2 shows the results of 20000 simulations with the initial condition (4.14)

and σ2 = 1. In the deterministic model (4.9), for σ2 = 1 both steady states S∗1
(disease-free) and S∗3 (autoimmune state) are stable, but with the initial condi-

tion (4.14) the system is in the basin of attraction of S∗3 . In the stochastic model,

the majority of trajectories also enter the attraction region of S∗3 , but a small pro-

portion of them went into the basin of attraction of S∗1 . This figure illustrates a

single stochastic path around S∗1 , and a single stochastic path around S∗3 , together

with the deterministic trajectory. These individual solutions indicate that whilst

deterministically, the system exhibits decaying oscillations around S∗3 , the same be-

haviour is observed in the stochastic simulations only upon taking an average of a

very large number of simulations. At the same time, individual realisations exhibit

sustained stochastic oscillations in a manner similar to that observed in models of

stochastic amplification in epidemics [91, 92]. Figure 4.2 also illustrates the size of

areas of one standard deviation from the mean for trajectories in the basins of at-

traction S∗1 and S∗3 , in which individual stochastic trajectories may exhibit stochastic

oscillations [212, 90].
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Figure 4.2: Numerical simulation of the model (4.4) with parameter values from Table 4.2,
σ2 = 1, and the initial condition (4.14). Red curves are two sample paths that have entered
the basins of attraction of S∗1 or S∗3 , black curve is the deterministic trajectory from (4.1),
and the shaded areas indicate the regions of one standard deviation from the mean.

Figures 4.3 (a) and (b) show temporal evolution of the probability distribution in

the case of bi-stability between the steady states S∗1 and S∗3 , as illustrated in Fig. 4.2.

They indicate that after some initial transient, the system reaches a stationary

bimodal normal distribution. The width of the probability distribution around each

stable steady state, as described by its variance or standard deviation, gives the size

of fluctuations around this steady state observed in individual stochastic realisations,

as is shown in Fig. 4.2. Similar behaviour has been observed in stochastic realisations

of other deterministic models with bi-stability [213, 214, 215]. For the parameter

values given in Table 4.2, the deterministic system exhibits a bi-stability between

S∗1 and S∗2 , and with the initial condition

(x1(0), x2(0), x3(0), x4(0), x5(0), x6(0), x7(0)) = (18, 9, 7.2, 6.3, 0, 0, 0), (4.15)

it is in the basin of attraction of S∗2 . Due to stochasticity, the stationary probability
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distribution in this case is also bimodal, with the majority of solutions being dis-

tributed around S∗2 , and a very small number being centred around S∗1 , as can be

seen in Figs. 4.3 (c) and (d). Increasing the system size Ω is known to result in the

bimodal distribution becoming unimodal due to the size of fluctuations scaling as

Ω−1/2 [200], which results in a reduced variability in trajectories [216, 215], and the

same conclusion holds for the system (4.4).

Figure 4.3: Probability distribution of solutions out of 20000 simulations. (a) and (b)
with parameters from Table 4.2, but σ2 = 1 and the initial condition (4.14). (c) and
(d) with parameters from Table 4.2 and the initial condition (4.15). In (a) and (c), the
probability histogram is fit to a bimodal normal distribution at different times. (b) and
(d) illustrate stationary joint probability histograms.

To gain better insights into the role of initial conditions, in Fig. 4.4 I fix all

parameter values, and vary initial numbers of infected cells and regulatory T cells.

For the parameter combination illustrated in Fig. 4.4 (a), the deterministic model

exhibits a bi-stability between a stable disease-free steady state S∗1 and a periodic

oscillation around the state S∗3 , which biologically corresponds to an autoimmune

regime. In the deterministic case, the black boundary provides a clear separation
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of the basins of attraction of these two dynamical states, in a manner similar to

that investigated recently in the context of within-cell dynamics of RNA interfer-

ence [217].

Figure 4.4: Probability of solution entering and staying in the basin of attraction of the
disease-free steady state S∗1 in the bi-stability regime with A(0) = 18000 and Tin(0) = 7200.
Black curves are the boundaries between different basins of attraction in the deterministic
model. (a) With parameter values from Table 4.2, λ̃r = 45 and µ̃a = 10/9, in the region
below the black curve, the deterministic model exhibits a periodic solution around S∗3 , and
above this curve is the deterministic basin of attraction of S∗1 . (b) With parameter values
from Table 4.2, area below the black curve is the basin of attraction of S∗2 , and above it
is again the basin of attraction of S∗1 .

For stochastic simulations, the colour indicates the probability of the solution going

to a disease-free state S∗1 , and it shows that even in the case where deterministically

the system is in the basin of attraction of one of the states, there is a non-zero

probability that it will actually end up at another state, with this probability varying

smoothly across the deterministic basin boundary. This figure suggests that if the

initial number of infected cells is sufficiently small, or if the number of regulatory

T cells is sufficiently large, the system tends to clear the infection and approach

the disease-free state. On the contrary, for higher numbers of infected cells and

lower numbers of regulatory cells, autoimmune regime appears to be a more likely

outcome. Qualitatively similar behaviour is observed for another combination of

parameters illustrated in Fig. 4.4 (b), in which case the deterministic system has a

bi-stability between a disease-free steady state S∗1 , and a state S∗2 which represents

the death of host cells.
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Figure 4.5: Variance of the number of regulatory T cells Treg with parameter values from
Table 4.2. Coloured regions indicate areas in respective parameter planes in which the
autoimmune steady state S∗3 is deterministically stable.

In order to understand how biological parameters affect the size of fluctuations

around steady states, in Fig. 4.5 I explore several parameter planes by first identify-

ing parameter regions where the deterministic system has a stable steady state S∗3 ,

and then for each combination of parameters inside these regions, I use the Bartels-

Stewart method [218, 219] to numerically solve the Lyapunov equation (4.13) and

compute the variance in the number of regulatory T cell when the deterministic

model is at the steady state S∗3 . One should note that in this method the variance

goes to infinity as one approaches a bifurcation. Therefore, this method can only be

used when a steady state is stable, and we are not close to bifurcation boundaries.

The value of variance gives the square of the magnitude of oscillations observed in

individual stochastic realisations. One should note that getting closer to the deter-

ministic boundary of stability of S∗3 increases the stochastic variance of fluctuations

around this steady state. The reason for this is that closer parameters are to the de-
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terministic stability boundary, the less stable is the steady state, hence the larger is

the amplitude of stochastic oscillations around it. Moreover, the variance increases

with the rate of production of IL-2 by autoreactive T cells and the rate at which

regulatory T cells suppress autoreactive T cells; it decreases with the higher rate of

production of regulatory T cells, and it appears to not depend on the rate at which

autoreactive T cells destroy infected cells, or on the infection rate.

4.3 Discussion

In this chapter I have analysed stochastic aspects of immune response against a

viral infection with account for the populations of T cells with different activation

thresholds, as well as cytokines mediating T cell activity. The CTMC model has

provided an exact master equation, for which I applied a van Kampen’s expansions

to derive a linear Fokker-Planck equation that characterises fluctuations around the

deterministic solutions. We have also explored actual stochastic trajectories of the

system by deriving an SDE model and solving it numerically.

One biologically important aspect I have looked at is the influence of stochasticity

on the dynamics of the system in the case where deterministically it exhibits a bi-

stability between either two steady states, or a steady state and a periodic solution.

In such a situation, bi-stability in the deterministic version of the model translates in

the stochastic case into a stationary bimodal distribution for the probability density.

To obtain further insights into details of how stochasticity affects bi-stability, I have

investigated how for the fixed parameter values time evolution of the system changes

depending on the initial numbers of the regulatory T cells and infected cells.

Our analysis reinforces the need to distinguish mean dynamics from individuals

realisations: where in the deterministic case the system can approach a stable steady

state (which represents mean behaviour of a very large number of simulations), in-

dividual realisations can exhibit sustained stochastic oscillations around that steady

state, as we have seen in numerical simulations. Since in the clinical or laboratory

setting one is usually dealing with single measurements of some specific biological

quantities rather than their averaged values, the stochastic oscillations exhibited

by our model may quite well explain observed variability in the measured levels of
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infection or T cell populations. To better understand the magnitude of stochas-

tic fluctuations around the deterministic steady states, I have solved the Lyapunov

equation, which has provided us with a quantitative information on the dependence

of variance of fluctuations on system parameters.

There are several directions in which the work presented in this chapter can be

extended. Whilst I have used numerical simulations to compute the probability of

attraction to a given steady state in the case of bi-stability, one could approach the

same problem theoretically from the perspective of computing extinction probability

within the framework of the CTMC model [200, 220]. The van Kampen’s system

size expansion could yield an expression for the power spectrum, which allows one

to compute the peak frequency and amplification [208, 221, 222, 91]. From a prac-

tical perspective, future work could focus on validating theoretical results presented

in this chapter using experimental measurements of the progress of autoimmune

disease in animal hosts, with experimental autoimmune uveoretinitis (EAU), an au-

toimmune inflammation in the eyes, being one interesting possibility. In one such

recent experiment, all animals were genetically identical C57BL/6 mice, but once

the EAU was induced in them through inoculation, the autoimmune disease then

progressed at slightly different rates [223, 94], and the measured variability in the

numbers of infected cells and T cell responses could be compared to theoretical

estimates of the variance as predicted by our model. From a clinical perspective,

comparison of variance in the measured populations of different cells with the model

conclusions will facilitate an efficient parameter identification and provide a set of

prognostic criteria for the progress of autoimmunity, which can be used for risk

stratification and assessment of patients with autoimmune disease. In terms of fun-

damental immunology, the model can be made more realistic by including additional

effects, such as the control of IL-2 secretion by regulatory T cells [179], or the time

delays associated with the processes of infection and mounting the immune response

[224, 154, 113]. Therefore, in the next Chapter I present a time-delayed model which

focuses on these features of the immune response.
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Chapter 5

Effects of viral and cytokine delays

on dynamics of autoimmunity

This chapter is based on the publication F. Fatehi, Y.N. Kyrychko, K.B. Blyuss,

Effects of viral and cytokine delays on dynamics of autoimmunity, Mathematics, 6,

66, 2018.

In this chapter I study an extension of the model (4.1) with particular focus on

the role of time delays associated with the processes of infection and mounting the

immune response, as well as an inhibiting effect of regulatory T cells on secretion

of IL-2. In order to achieve this goal, first I introduce a time-delayed model and

discuss its basic properties. Then, I propose a systematic analysis of all steady

states, including conditions for their feasibility and stability, which allows us to

identify parameter regions associated with different types of immune behaviour,

such as, normal clearance of infection, chronic infection, and autoimmune dynamics.

Later, a bifurcation analysis of the model and demonstration of various types of

behaviour that the system exhibits depending on parameters and initial conditions

are presented , which includes identification of attraction basins of various states.

5.1 Model derivation

In this chapter I consider a model illustrated in a diagram shown in Fig. 5.1, which

is an extension of the model (4.1). I include in the model suppression of IL-2 by

regulatory T cells at rate δ2, in a manner similar to Burroughs et al. [179]. Moreover,
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whilst the production of new virus particles by infected cells is assumed to be fast,

I explicitly include in the model time delay τ1 associated with the actual process of

infection, which includes multiple stages of the eclipse phase of viral life cycle, such

as virus attachment, cell penetration and uncoating [224, 154]. I also include the

time delay τ2 associated with stimulation and proliferation of T cells by IL-2, and

for simplicity I assume this time delay is the same for all types of T cells, and the

time delay τ3 between antigen encounter and resulting T cell expansion [113].

Figure 5.1: A schematic diagram of immune response to infection. Blue indicates host
cells (susceptible and infected), red denotes different T cells (naïve, regulatory, normal
activated, and autoreactive T cells), yellow shows cytokines (interleukin 2). τi inside each
of the subnetworks shows the time delay associated with that process.
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With the above assumptions, the complete model takes the form

dA

dt
= rA

(
1− A

N

)
− βAF − µaTautA,

dF

dt
= βA (t− τ1)F (t− τ1)− dFF − µFTnorF − µaTautF,

dTin
dt

= λin − dinTin − αTinF,

dTreg
dt

= λr − drTreg + p1αTin (t− τ3)F (t− τ3) + ρ1I (t− τ2)Treg (t− τ2) ,

dTnor
dt

= p2αTin (t− τ3)F (t− τ3)− dnTnor + ρ2I (t− τ2)Tnor (t− τ2) ,

dTaut
dt

= (1− p1 − p2)αTin (t− τ3)F (t− τ3)− daTaut − δ1TregTaut

+ρ3I (t− τ2)Taut (t− τ2) ,

dI

dt
= σ1Tnor + σ2Taut − δ2TregI − diI.

Introducing non-dimensional variables

T = rt, A = NÂ, F = NF̂ , Tin = λin
din

T̂in, Treg = λin
din

T̂reg,

Tnor = λin
din

T̂nor, Taut = λin
din

T̂aut, I = λin
din

Î ,

where

β̂ = βN

r
, µ̂a = µaλin

rdin
, d̂F = dF

r
, µ̂F = µFλin

rdin
, d̂in = din

r
, α̂ = αN

r
,

λ̂r = λrdin
λinr

, d̂r = dr
r
, d̂n = dn

r
, d̂a = da

r
, ρ̂i = ρiλin

rdin
, i = 1, 2, 3,

δ̂1 = δ1λin
rdin

, δ̂2 = δ2λin
rdin

, σ̂1 = σ1

r
, σ̂2 = σ2

r
, d̂i = di

r
,

yields a rescaled model
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dA

dT
= A (1− A)− βAF − µaTautA,

dF

dT
= βA (T − τ1)F (T − τ1)− dFF − µFTnorF − µaTautF,

dTin
dT

= din (1− Tin)− αTinF,

dTreg
dT

= λr − drTreg + p1αTin (T − τ3)F (T − τ3) + ρ1I (T − τ2)Treg (T − τ2) ,

dTnor
dT

= p2αTin (T − τ3)F (T − τ3)− dnTnor + ρ2I (T − τ2)Tnor (T − τ2) ,

dTaut
dT

= (1− p1 − p2)αTin (T − τ3)F (T − τ3)− daTaut − δ1TregTaut

+ρ3I (T − τ2)Taut (T − τ2) ,

dI

dT
= σ1Tnor + σ2Taut − δ2TregI − diI,

(5.1)

where all hats in variables and parameters have been dropped for simplicity of

notation, and all parameters are assumed to be positive. It is easy to show that

this system is well-posed, i.e. solutions with non-negative initial conditions remain

non-negative for all t ≥ 0.

As a first step in the analysis of model (5.1), I look at its steady states

S∗ =
(
A∗, F ∗, T ∗in, T

∗
reg, T

∗
nor, T

∗
aut, I

∗
)
,

that can be found by equating to zero the right-hand sides of equations (5.1) and

solving the resulting system of algebraic equations, deferring the discussion of con-

ditionally stable steady states to Section 5.2. First, I consider a situation where

there are no infected cells at a steady state, i.e. F ∗ = 0, which immediately implies

T ∗in = 1. In this case there are four possible combinations of steady states depending

on whether T ∗nor and T ∗aut are each equal to zero or positive. If T ∗nor = T ∗aut = 0, there

are two steady states

S∗1 =
(

0, 0, 1, λr
dr
, 0, 0, 0

)
, S∗2 =

(
1, 0, 1, λr

dr
, 0, 0, 0

)
,

of which S∗1 is always unstable, and S∗2 is a disease-free conditionally stable steady
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state, i.e. its stability depends on the values of parameters.

For T ∗nor 6= 0 and T ∗aut = 0, we again have two steady states

S∗3 =
(

0, 0, 1, λrρ2

ρ2dr − ρ1dn
, T ∗nor, 0,

dn
ρ2

)
, S∗4 =

(
1, 0, 1, λrρ2

ρ2dr − ρ1dn
, T ∗nor, 0,

dn
ρ2

)
,

where T ∗nor = dn (λrδ2ρ2 + didrρ2 − didnρ1)
ρ2σ1(ρ2dr − ρ1dn) , but they are both unstable for any

values of parameters. In the case when T ∗nor = 0 and T ∗aut 6= 0, we have two further

steady states S∗5 and S∗6 ,

S∗5 =
0, 0, 1, T ∗reg, 0,

(
di + δ2T

∗
reg

) (
da + δ1T

∗
reg

)
ρ3σ2

,
da + δ1T

∗
reg

ρ3

 ,

S∗6 =
A∗, 0, 1, T ∗reg, 0,

(
di + δ2T

∗
reg

) (
da + δ1T

∗
reg

)
ρ3σ2

,
da + δ1T

∗
reg

ρ3

 ,

where A∗ = 1−
µa
(
di + δ2T

∗
reg

) (
da + δ1T

∗
reg

)
ρ3σ2

, and

T ∗reg =
drρ3 − ρ1da ±

√
(drρ3 − ρ1da)2 − 4ρ1δ1λrρ3

2ρ1δ
.

The steady state S∗5 has A∗ = 0, which implies the death of host cells, whereas

the steady state S∗6 corresponds to an autoimmune regime. The steady state S∗7
with T ∗nor 6= 0 and T ∗aut 6= 0 exists only for a particular combination of parameters,

namely, when

δ1ρ
2
2λr = (ρ3dn − ρ2da)(ρ2dr − ρ1dn),

and is always unstable. Finally, when F ∗ 6= 0, the system (5.1) can have a steady

state S∗8 with all of its components being positive, but it does not appear possible

to find a closed form expression for this state.

In summary, besides the unconditionally unstable steady states, i.e. steady states

that are unstable for any values of parameters, the model (5.1) has at most four

conditionally stable steady states: the disease-free steady state S∗2 , the steady state

with the death of host cells S∗5 , the autoimmune steady state S∗6 , and the persistent

or chronic steady state S∗8 . This implies that the new model has the same steady
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states as the model (3.2).

5.2 Stability analysis of the steady states

5.2.1 Stability analysis of the disease-free steady state

Linearising the system (5.1) near the disease-free steady state S∗2 yields the following

equation for characteristic roots λ

λ+ dF − βe−λτ1 = 0. (5.2)

If dF < β, the above equation always has a real positive root for any value τ1 ≥ 0,

implying that the disease-free steady state is always unstable for any value of the

time delays. If, however, the condition dF > β holds, the disease-free steady state

is stable for τ1 = 0. To find out whether it can lose stability for τ1 > 0, I look for

solutions of equation (5.2) in the form λ = iω. Separating real and imaginary parts

yields
dF = β cos(ωτ1),

ω = −β sin(ωτ1).

Squaring and adding these two equations gives the following equation for potential

Hopf frequency ω

ω2 + d2
F − β2 = 0.

Since dF > β, this equation does not have real roots for ω, suggesting that there

can be no roots of the form λ = iω of the characteristic equation (5.2). This implies

that in the case dF > β the disease-free steady state S∗2 is stable for all values of the

time delay τ1 ≥ 0.
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5.2.2 Stability analysis of the death, autoimmune and chronic

steady states

The steady state S∗5 (respectively, S∗6) is stable if

P <
da + δ1T

∗
reg

ρ3
<
dn
ρ2
, (5.3)

and all roots of the following equation have negative real part

∆(τ2, λ) = p2(λ)e−2λτ2 + p1(λ)e−λτ2 + p0(λ) = 0, (5.4)

where

p2(λ) =
ρ1
(
da + δ1T

∗
reg

)2

ρ3

(
λ+ 2di + δ2T

∗
reg

)
,

p1(λ) =−

(
da + δ1T

∗
reg

)
ρ3

{
(ρ1 + ρ3)λ2

+
[
ρ1
(
di + da + δ1T

∗
reg

)
+ ρ3

(
dr + 2di + 2δ2T

∗
reg

)]
λ

+ di(ρ1da + 2drρ3) + δ2T
∗
reg

(
−ρ1δ1T

∗
reg + 2drρ3

)}
,

p0(λ) = (λ+ dr)
(
λ+ di + δ2T

∗
reg

) (
λ+ da + δ1T

∗
reg

)
,

and

P =



σ2

µa
(
di + δ2T ∗reg

) , for S∗5 ,

σ2 (β − dF )
µa (1 + β)

(
di + δ2T ∗reg

) , for S∗6 .

This steady state undergoes a steady-state bifurcation if

da + δ1T
∗
reg

ρ3
= P, or

da + δ1T
∗
reg

ρ3
= dn
ρ2
, or δ1ρ1

(
T ∗reg

)2
= λrρ3. (5.5)

For τ2 = 0 these steady states are stable if T ∗reg satisfies (5.3) and

δ1ρ1
(
T ∗reg

)2
> λrρ3,

a5
(
T ∗reg

)5
+ a4

(
T ∗reg

)4
+ a3

(
T ∗reg

)3
+ a2

(
T ∗reg

)2
+ a1T

∗
reg + a0 > 0,

(5.6)
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where

a5 = −δ1δ2(δ1ρ1 − δ2ρ1 + δ2ρ3),

a4 = daδ2(δ2ρ2 − δ1ρ1 − δ2ρ3)− diδ1(δ1ρ1 − δ2ρ1 + 2δ2ρ3),

a3 = −diδ1(daρ1 + diρ3) + dadiδ2(ρ1 − 2ρ3) + λrδ2(δ1ρ1 + δ2ρ3),

a2 = −dad2
i ρ3 + λrδ2(daρ1 + 2diρ3), a1 = λrρ3(d2

i + δ2λr), a0 = diρ3λ
2
r.

To investigate whether stability can be lost for τ2 > 0, I use an iterative procedure

described in [225, 226] to determine a function F (ω), whose roots give the Hopf

frequency associated with purely imaginary roots of equation (5.4). Substituting

λ = iω into equation (5.4), I define ∆(1)(τ2, λ) as

∆(1)(τ2, λ) = p0(iω)∆(τ2, iω)− p2(iω)e−2iωτ2∆(τ2, iω) = p
(1)
0 (iω) + p

(1)
1 (iω)e−iωτ2 ,

where

p
(1)
0 (iω) =|p0(iω)|2 − |p2(iω)|2,

p
(1)
1 (iω) =p0(iω)p1(iω)− p1(iω)p2(iω),

and the bar denotes the complex conjugate. If we define

F (ω) =
∣∣∣p(1)

0 (iω)
∣∣∣2 − ∣∣∣p(1)

1 (iω)
∣∣∣2,

then ∆(τ2, iω) = 0 whenever ω is a root of F (ω) = 0. The function F (ω) has the

explicit form

F (ω) = ω12 + b10ω
10 + b8ω

8 + b6ω
6 + b4ω

4 + b2ω
2 + b0,
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with

b0 =

(
δ1da + T ∗reg

)4

ρ34

(
di + δ2T

∗
reg

) (
2T ∗regδ1ρ1 + daρ1 − drρ3

)
[ (
di + δ2T

∗
reg

)
(daρ1 + 3drρ3) + 2diρ1

(
da + δ1T

∗
reg

) ]
[
ρ1
(
da + δ1T

∗
reg

) (
2di + δ2T

∗
reg

)
− drρ3

(
di + δ2T

∗
reg

) ]2
.

The explicit formulae for other coefficients of F (ω) can be found in Appendix A.

Introducing s = ω2, the equation F (ω) = 0 can be equivalently rewritten as follows,

h(s) = s6 + b10s
5 + b8s

4 + b6s
3 + b4s

2 + b2s+ b0 = 0. (5.7)

Without loss of generality, suppose that equation (5.7) has six distinct positive roots

denoted by s1, s2, ... , s6, which means that the equation F (ω) = 0 has six positive

roots

ωi = √si, i = 1, 2, ..., 6.

Substituting λk = iωk into equation (5.4) gives

τk,j = 1
ωk

arctan
 ωk ((ρ1 + ρ3)ω4

k + f2ω
2
k + f0)(

ρ3Z − drρ1 − ρ2
3I
∗ − ρ1δ2T ∗reg

)
ω4
k + g2ω2

k + g0

+ jπ

 ,
for k = 1, 2, ..., 6, j = 0, 1, 2, ..., where

f0 =− ρ1
2ρ3

2I∗3Z − ρ1ρ3 (2ρ1 + 3ρ3) I∗2Z2 + ρ1ρ3T
∗
reg (−δ1ρ1 + 3δ2ρ1 + δ2ρ3) I∗2Z

− T ∗reg
2δ2

2ρ1
2ρ3I

∗2 − T ∗regδ1ρ1ρ3I
∗Z2 + drρ3

(
−δ1ρ1T

∗
reg + drρ3

)
I∗Z

+ dr
(
−T ∗regδ1ρ1 + 2drρ3

)
Z2,

f2 =− ρ1
2ρ3I

∗2 + ρ3
2I∗Z + (ρ1 + 2ρ3)Z2 + ρ1T

∗
reg (δ1 − δ2)Z

− dr
(
T ∗regδ2ρ1 − drρ3

)
,

g0 =ρ1
2ρ3

2I∗3
(
2Z2 − 3T ∗regδ2Z + T ∗reg

2δ2
2
)

+ ρ1ρ3
(
−2T ∗regδ1ρ1 + 3drρ3

)
I∗2Z2

+ ρ1ρ3δ2T
∗
reg

(
T ∗regδ1ρ1 − drρ3

)
I∗2Z + drρ3

(
T ∗regδ1ρ1 − 2drρ3

)
I∗Z2,

g2 =ρ3I
∗
(
ρ1

2ρ3I
∗2 − ρ1

2I∗Z − 2ρ3Z
2 − T ∗regδ1ρ1Z − dr2ρ3

)
− ρ1

(
dr + δ1T

∗
reg

)
Z2

+ dr
(
−T ∗regδ1ρ1 + T ∗regδ2ρ1 + drρ3

)
Z,
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and

I∗ =
da + δ1T

∗
reg

ρ3
, Z = di + δ2T

∗
reg.

This allows us to find

τ ∗ = τk0,0 = min
1≤k≤6

{τk,0}, ω0 = ωk0 ,

as the first time delay for which the roots of the characteristic equation (5.4) cross

the imaginary axis. To determine whether these steady states actually undergo a

Hopf bifurcation at τ2 = τ ∗, we have to compute the sign of dRe[λ(τ ∗)]/dτ2. For

τ = τ ∗, λ(τ ∗) = iω0, and I also define s0 = ω2
0.

Lemma 5.1. Suppose h′(s0) 6= 0 and p(1)
0 (iω0) 6= 0. Then the following transversal-

ity condition holds

sgn
{
dRe(λ)
d τ2

∣∣∣∣∣
τ2=τ∗

}
= sgn[p(1)

0 (iω0)h′(s0)].

Proof. Considering pj(iω0) = xj(ω0) + iyj(ω0) for j = 0, 1, 2, we have

p
(1)
0 (iω0) =x2

0 + y2
0 − x2

2 − y2
2,

p
(1)
1 (iω0) =(x0x1 + y0y1 − x1x2 − y1y2) + (x0y1 + x2y1 − x1y0 − x1y2)i,

where all xj and yj are expressed in terms of system parameters and steady state

values of the variables. Substituting these expressions into ∆(τ2, iω0) = 0 and

∆(1)(τ2, iω0) = 0, and then separating real and imaginary parts gives



x2 cos(2ω0τ
∗) + y2 sin(2ω0τ

∗) + x1 cos(ω0τ
∗) + y1 sin(ω0τ

∗) = −x0,

y2 cos(2ω0τ
∗)− x2 sin(2ω0τ

∗) + y1 cos(ω0τ
∗)− x1 sin(ω0τ

∗) = −y0,

(x0x1 + y0y1 − x1x2 − y1y2) cos(ω0τ
∗) + (x0y1 + x2y1 − x1y0 − x1y2) sin(ω0τ

∗)

= −x2
0 − y2

0 + x2
2 + y2

2,

(x0y1 + x2y1 − x1y0 − x1y2) cos(ω0τ
∗)− (x0x1 + y0y1 − x1x2 − y1y2) sin(ω0τ

∗) = 0.

Solving this system of equations provides the values of sin(ω0τ
∗), cos(ω0τ

∗),

sin(2ω0τ
∗), and cos(2ω0τ

∗). Taking the derivative of equation (5.4) with respect to
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τ2, one finds

(
d λ

d τ2

)−1

= p′2(λ)e−2λτ2 + p′1(λ)e−λτ2 + p′0(λ)
λ (2p2(λ)e−2λτ2 + p1(λ)e−λτ2) − τ2

λ
.

Hence,

(
dRe(λ)
d τ2

∣∣∣∣∣
τ2=τ∗

)−1

= Re
{
p′2(λ)e−2λτ2 + p′1(λ)e−λτ2 + p′0(λ)
λ (2p2(λ)e−2λτ2 + p1(λ)e−λτ2)

}
τ2=τ∗

− Re
{
τ2

λ

}
τ2=τ∗

= Re
{
p′2(iω0)e−2iω0τ2 + p′1(iω0)e−iω0τ2 + p′0(iω0)
iω0 (2p2(iω0)e−2iω0τ2 + p1(iω0)e−iω0τ2)

}

= 1
ω0

Im
{
p′2(iω0)e−2iω0τ2 + p′1(iω0)e−iω0τ2 + p′0(iω0)

2p2(iω0)e−2iω0τ2 + p1(iω0)e−iω0τ2

}

= 1
Λω0

[
− x2x

′
2 − y2y

′
2 + x0x

′
0 + y0y

′
0 + (x2y

′
1 − y2x

′
1 + x0y

′
1 − x′1y0) sin(ω0τ

∗)

+ (x0x
′
1 + y0y

′
1 − x′1x2 − y′1y2) cos(ω0τ

∗)

+ (x2y
′
0 − x′0y2 + x0y

′
2 − x′2y0) sin(2ω0τ

∗)

+ (x0x
′
2 + y0y

′
2 − x′0x2 − y′0y2) cos(2ω0τ

∗)
]
,

where

Λ =
∣∣∣2p2(iω0)e−2iω0τ2 + p1(iω0)e−iω0τ2

∣∣∣2 .
Substituting the values of sin(ω0τ

∗), cos(ω0τ
∗), sin(2ω0τ

∗), and cos(2ω0τ
∗) found

earlier gives

(
dRe(λ)
d τ2

∣∣∣∣∣
τ2=τ∗

)−1

= 1
Λω0

F ′(ω0)
2 p(1)

0 (iω0)
= h′(s0)

Λ p(1)
0 (iω0)

.

Therefore

sgn
{
dRe(λ)
d τ2

∣∣∣∣∣
τ2=τ∗

}
= sgn


(
dRe(λ)
d τ2

∣∣∣∣∣
τ2=τ∗

)−1
 = sgn

{
h′(s0)

Λ p(1)
0 (iω0)

}

= sgn[p(1)
0 (iω0)h′(s0)],

which completes the proof.

We can now formulate the main result concerning stability of the steady states

S∗5 and S∗6 .
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Theorem 5.2. Suppose the value of T ∗reg satisfies conditions (5.3) and (5.6). If

equation (5.7) has at least one positive root s0, and p(1)
0 (iω0)h′(s0) > 0 with ω0 =

√
s0, then the steady state S∗5 (respectively, S∗6) is stable for 0 ≤ τ2 < τ ∗, unstable

for τ2 > τ ∗, and undergoes a Hopf bifurcation at τ2 = τ ∗.

Since T ∗reg satisfies conditions (5.3) and (5.6), the steady state S∗5/S∗6 is stable

for τ2 = 0. Lemma 5.1 then ensures that τ ∗ is the first positive value of the time

delay τ2, for which the roots of the characteristic equation (5.4) cross the imaginary

axis with positive speed. Hence, the steady state S∗5/S∗6 is stable for 0 ≤ τ2 < τ ∗,

unstable for τ2 > τ ∗, and undergoes a Hopf bifurcation at τ2 = τ ∗.

Remark 5.3. A similar result can be formulated for a (reverse) supercritical Hopf

bifurcation of the steady state S∗5/S∗6 at some higher value of τ2.

The only remaining steady state is the persistent (chronic) equilibrium S∗8 with

all of its components being positive. Since it did not prove possible to find a closed

form expression for this steady state, its stability also has to be studied numerically.

5.3 Numerical stability analysis and simulations

To investigate the role of different parameters in the dynamics of model (5.1), in this

section I perform a detailed numerical bifurcation analysis and simulations of this

model. Stability of different steady states is determined numerically by computing

the largest real part of the characteristic eigenvalues, which is achieved by using

a pseudospectral method implemented in a traceDDE suite in MATLAB, which is

a tool for robust analysis and solving characteristic equations for delay differential

equations [227].
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Table 5.1: Table of parameter values

Parameter Value Parameter Value
β 1 ρ3 2
µa 20 dn 1
dF 1.1 da 0.001
µF 6 δ1 0.0025
din 1 δ2 0.001
α 0.4 σ1 0.15
λr 3 σ2 0.33
dr 0.4 di 0.6
p1 0.4 τ1 1.4
p2 0.4 τ2 0.6
ρ1 10 τ3 0.6
ρ2 0.8

Analytical results from the previous section suggest that at β = dF , the disease-

free steady state S∗2 undergoes a transcritical bifurcation. For β < dF , the disease-

free steady state S∗2 is stable, and the chronic steady state is infeasible. On the

contrary, when β > dF , the disease-free steady state S∗2 is unstable, and in this case

it makes sense to investigate stability of the chronic steady state. Therefore, these

two cases are considered separately, and as a first step I fix the baseline values as

given in Table 5.1. For this choice of parameters, we have dF − β > 0, implying

that S∗2 is always stable, and Figure 5.2 illustrates how the stability of S∗5 and S∗6

is affected by parameters. This figure indicates that the steady states S∗5 and S∗6

are only biologically feasible if the regulatory T cells do not grow too rapidly and

do not clear autoreactive T cells too quickly. Importantly, Figure 5.2 shows that

the value of the rate δ2 of clearance of IL-2 by regulatory T cells does not have

any effect on the thresholds of λr and δ1, where the steady states S∗5 and S∗6 lose

their feasibility. Moreover, if λr and δ1 are small, then increasing the rate δ2 at

which Tregs inhibit the production of IL-2 makes S∗6 become unfeasible, resulting in

a stable steady state S∗5 , which has the zero population of host cells A. On the other

hand, the steady state S∗6 associated with autoimmune responses is favoured for

higher values of δ1 and λr. In the case stable periodic solutions around these steady

states, increasing δ2 results in the disappearance of oscillations and stabilisation of

the associated steady state. At the intersection of the lines of Hopf bifurcation and

the steady-state bifurcation, as determined by Theorem 5.2 and conditions (5.5),

one has the co-dimension two fold-Hopf (also known as zero-Hopf or saddle-node
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Hopf) bifurcation [191].

Figure 5.2: Regions of feasibility and stability of the steady states S∗5 and S∗6 with parame-
ter values from Table 5.1, but in (b) µa = 10. Black and red curves indicate the boundaries
of feasibility and the steady-state bifurcation, whereas dashed lines (blue/brown) show the
boundaries of Hopf bifurcation of the steady states S∗5 and S∗6 , respectively, with ‘fH’ indi-
cating the fold-Hopf bifurcation. The first digit of the index refers to S∗5 , while the second
corresponds to S∗6 , and they indicate that in that parameter region the respective steady
state is unfeasible (index is ‘0’), stable (index is ‘1’), unstable via Hopf bifurcation with
a periodic solution around this steady state (index is ‘2’), or unstable via a steady-state
bifurcation (index is ‘3’). In all plots, the condition β < dF holds, so the disease-free
steady state S∗2 is also stable.

Since our earlier analysis showed that stability of the steady states S∗5/S∗6 is

affected by the time delay τ2, in Fig. 5.3 I consider stability of these equilibria

depending on τ2 and the rate δ2. For the steady state S∗5 , if the effect of IL-2 on

promoting proliferation of T cells is fast (i.e. τ2 is small), there is a large range

of δ2, starting with some very low values, for which S∗5 is stable. Increasing the

time delay τ2 results in the Hopf bifurcation of this steady state as described in

Theorem 5.2. One should note that for intermediate values of δ2, the steady state

S∗5 undergoes stability switches, whereby increasing the delay τ2 further results in

a subcritical Hopf bifurcation, which stabilises S∗5 , but after some number of such

stability switches eventually the steady state S∗5 is unstable. For higher still values

of δ2, the steady state S∗5 remains stable for an entire range of τ2 values, and the

only way to lose its stability is via a steady state bifurcation as given by (5.5).

In the case of autoimmune steady state S∗6 , the situation is somewhat different in
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that increasing δ2 beyond some critical values makes this steady state biologically

infeasible. At the same time, for an entire range of δ2 values where it is feasible, this

steady state exhibits a single loss of stability through a Hopf bifurcation for some

critical value of the time delay τ2, in agreement with Theorem 5.2.

Figure 5.3: Stability of the steady states S∗5 (a), and S∗6 (b) with parameter values from
Table 5.1. White area shows the region where the steady state S∗6 is infeasible. Colour code
denotes max[Re(λ)] for the steady states when they are feasible. In all plots the condition
dF > β holds, so the disease-free steady state S∗2 is stable. Basins of attraction of different
steady states depending on the initial conditions (c), with other initial conditions specified
in (5.8), and parameter values from Table 5.1, except for τ2 = 18. Cyan and pink areas
are the basins of attraction of S∗2 and S∗6 , respectively.

As mentioned earlier, for parameter values used in Fig. 5.3, the disease-free

steady state S∗2 is stable. Hence, the system exhibits a bi-stability between a disease-

free state and either stable steady states S∗5/S∗6 , or periodic solutions around these

steady states. To investigate this bi-stability, I choose parameter values as in Ta-

ble 5.1 except for τ2 = 18, which corresponds to a stable steady state S∗6 , and I fix

initial conditions for state variables as follows,

(A(s), Tin(s), Tnor(s), Taut(s), I(s)) = (0.9, 0.8, 0, 0, 0), s ∈ [−τmax, 0], (5.8)

and τmax = max{τ1, τ2, τ3}, except for initial amounts of infected cells and regulatory

T cells that are allowed to vary with a constant history. Figure 5.3(c) illustrates

the bi-stability between S∗2 and S∗6 in terms of their basins of attraction. It is

worth noting that recently significant research in approximation theory and meshless

interpolation has focused on developing techniques for detection and analysis of

attraction basins [228, 229, 230, 231, 232, 233]. Figure 5.3(c) suggests that for very

large initial amounts of regulatory T cells, the system converges to the disease-free

steady state. It also indicates that if the initial amount of infected cells is very small

101



or is bigger than some specific value, then the infection will be cleared.

Interestingly, increasing the initial amount of the regulatory T cells results in a

larger range of initial amounts of infection, for which the system tends to a stable

autoimmune state S∗6 . In Fig. 5.3(b) I discovered that increasing τ2 makes the

autoimmune steady state S∗6 undergo a Hopf bifurcation, in which case the system

will exhibit a bi-stability between stable S∗2 and a periodic solution around S∗6 . Our

numerical investigation suggests that the shape of basins of attraction in this case

is qualitatively similar to that shown in Fig. 5.3(c), with the basin of attraction of

the stable steady state S∗6 being replaced by the basin of attraction of the periodic

solution around this steady state.

Figure 5.4 shows temporary evolution of the system (5.1) in the regime of bi-

stability between a stable disease-free steady state and a stable autoimmune steady

state S∗6 (similar pattern of behaviour is exhibited in the case of bi-stability between

S∗2 and S∗5). It also illustrates how the system develops a periodic solution around the

steady state S∗6 for a higher value of τ2. Periodic oscillations around the steady state

S∗6 biologically correspond to a genuine autoimmune state: after the initial infection

is cleared, the system exhibits sustained endogenous oscillations, characterised by

periods of significant reduction in the number of organ cells through a negative action

of autoreactive T cells, separated by periods of quiescence. This type of behaviour is

often observed in clinical manifestations of autoimmune disease [77, 78, 79, 80]. This

result has substantial biological significance as effectively it suggests that even for

the same kinetic parameters of immune response, the ultimate state of the system,

which can be either a successful clearance of infection without lasting consequences,

or progression to autoimmunity, also depends on the strength of the initial infection

and of the initial state of the immune system, as represented by the initial number

of regulatory T cells.
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Figure 5.4: Numerical solutions of the model with parameters values from Table 5.1,
except for τ2 = 18. (a) and (b) Stable disease-free steady state S∗2 for F (0) = 0.18, and
Treg(0) = 100. (c) and (d) Transient oscillations settling on a stable steady state S∗6 for
F (0) = 0.18, and Treg(0) = 10. (e) and (f) Autoimmune dynamics represented by periodic
oscillations around the steady state S∗6 for τ2 = 32, F (0) = 0.18, and Treg(0) = 10.

Next I consider a situation where β > dF , so the disease-free steady state is

unstable, and the system can have three steady states S∗5 , S∗6 and S∗8 . Our earlier

results [234] suggest that in the case where regulatory T cells do not inhibit the

production of IL-2, i.e. for δ2 = 0, the steady state S∗6 is stable. Figure 5.5 shows

regions of feasibility and stability of these steady states depending on δ2 and τ2 in

this case. One observes that S∗5 and S∗6 , whose stability boundaries are determined

by Theorem 5.2, exhibit the same behaviour as in Fig. 5.3, namely, for S∗5 increasing

τ2 causes multiple stability switches for smaller values of δ2, and the steady state is

unstable for very small δ2 and stable for large δ2; in contrast, S∗5 exhibits a single loss

of stability via Hopf bifurcation at some critical value of the time delay τ2, which

itself increases with δ2.
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Figure 5.5: Stability of S∗5 (a), S∗6 (b), and S∗8 (c), with parameter values from Table 5.1,
except for β = 1.4 and σ2 = 1, so that β > dF . White area shows the region where the
steady state is infeasible. Colour code denotes max[Re(λ)] for each steady states when it
is feasible. (d) Summary of stability results. Green indicates the region where S∗6 and S∗8
are stable, and S∗5 is unstable, whereas red is the area where S∗5 and S∗8 are stable, and
S∗6 is infeasible. Yellow is where S∗8 is stable, S∗5 is unstable, and S∗6 is infeasible. Purple
shows the region where S∗6 is stable, but S∗5 and S∗8 are unstable. Blue and cyan indicate
the regions where S∗5 and S∗6 are unstable, but S∗8 is stable or unstable, respectively.

Behaviour of S∗8 is similar to that of S∗5 in that there are multiple stability switches

for increasing value of τ2 and small to intermediate values of δ2, while for high values

of δ2, the chronic steady state S∗8 is stable for all values of τ2. Figure 5.5(d) divides

the δ2-τ2 plane into different regions based on feasibility and stability of these steady

states and shows that increasing δ2 makes the autoimmune steady state S∗6 infeasible.

In other regions, the system can exhibit a bi-stability between a stable steady state

S∗8 and either a stable steady state S∗5 , or a periodic solution around S∗5 .
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Figure 5.6: Bi-stability analysis of the steady states S∗5 , S∗6 , and S∗8 with the same param-
eter values as in Fig. 5.5, except for (a) δ2 = 0.1, (b) δ2 = 0.02, and the initial condition
(5.8) with a constant history for the initial amount of Tregs and infected cells. Yellow
indicates the basin of attraction of the chronic steady state S∗8 , purple is the basin of
attraction of periodic solutions around S∗8 . Red and pink are the basins of attraction of
the steady states S∗5 and S∗6 , respectively.

Figure 5.6 illustrates the basins of attraction of the steady states S∗5 , S∗6 and S∗8 , as

well as periodic solutions around S∗8 . Figure 5.6 (a) shows the basins of attraction of

the steady states S∗5 and S∗8 and demonstrates that if the initial number of regulatory

T cells or infected cells is sufficiently high, or the initial amount of infected cells is

very low, the immune response neither eliminates infection nor clears autoreactive T

cells, and the system approaches the stable steady state S∗5 . Figure 5.6(b) illustrates

bi-stability between the stable steady state S∗6 and a periodic solution around S∗8 ,

and has a different behaviour to than shown in Fig. 5.6(a). This figure suggests that

for a specific range of F (0) the system converges to a stable autoimmune state S∗6
for all values of Treg(0). However, if the initial number of infected cells is very high

or very low, the system instead develops a periodic solution around the steady state

S∗8 associated with chronic infection.
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Figure 5.7: Numerical solutions of the model with same parameters values as Fig. 5.6
(b). (a) and (b) Stable steady state S∗6 for F (0) = 0.002 and Treg(0) = 200. (c) and (d)
Periodic oscillations around the steady state S∗8 for F (0) = 0.001 and Treg(0) = 200. (e)
and (f) Transient oscillations settling on a stable steady state S∗8 for τ2 = 25, F (0) = 0.001
and Treg(0) = 200.

Figure 5.7 illustrates a regime of bi-stability between a stable steady state S∗6
and a periodic solution around S∗8 for combinations of initial conditions indicated by

crossed in Fig. 5.6(b). It also illustrates how the system develops a stable solution

around the steady state S∗8 for a higher value of τ2. This figure shows that by

increasing the initial number of infected cells the behaviour of the system changes,

as it then approaches the autoimmune steady state S∗6 . Interestingly, one can observe

that for high values of F (0) the system can eliminate the infection, but it cannot

clear the autoreactive T cells, in which case the system converges to S∗6 . On the

other hand, for a smaller number of infected cells the system develops a periodic

solution around the endemic steady state.

Figure 5.8 shows how the stability of the chronic infection steady state S∗8 changes

with respect to time delays. Figure 5.8(a) indicates that for small values of τ2 (i.e.

when the influence of IL-2 on proliferation of T cells is occurring quite rapidly),
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the steady state S∗8 is stable, and increasing the time delay τ1 associated with viral

eclipse phase does not have an effect on its stability. At the same time, if τ2 exceeds

some specific value, by increasing τ1 the chronic steady state switches between being

stable or unstable. Figure 5.8 (b) demonstrates a different behaviour, suggesting

that for each value of τ1, there is small range of τ3 values where S∗8 is stable, but for

smaller and larger values of τ3 it is unstable. For intermediate values of the eclipse

phase delay τ1, there is an additional narrow range of τ3 values where S∗8 is stable.

Figure 5.8(c) illustrates that for very small, respectively very large, values of τ3, the

chronic infection steady state is stable, respectively unstable for any value of τ2; for

intermediate values of τ3, this steady state undergoes a finite number of stability

switches for increasing values of τ2 and eventually becomes unstable.

Figure 5.8: Colour code denotes max[Re(λ)] for the endemic steady state S∗8 depending on
different time delays, with the parameter values taken from Table 5.1, except for β = 1.4,
σ2 = 1, and δ2 = 0.04.

It should be noted Fig. 5.8 shows that unlike τ1 and τ2, once the steady state

S∗8 loses stability via Hopf bifurcation due to increasing τ3, it cannot regain stability

for higher values of τ3.

5.4 Discussion

In this chapter I have developed and analysed a time-delayed model of immune

response to a viral infection, which accounts for T cells with different activation

thresholds, a cytokine mediating T cell proliferation, as well as regulatory T cells.

Particular attention is payed to the dual suppressive role of regulatory T cells in

terms of reducing the amount of autoreactive T cells, and also inhibiting IL-2. To

achieve better biological realism of the model, I have explicitly included time delays
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associated with the eclipse phase of the virus life cycle, stimulation/proliferation of

T cells by IL-2, and suppression of IL-2 by regulatory T cells. Depending on the

values of parameters, the system can have four steady states: the disease-free state,

the state characterised by the death of host cells, the autoimmune state, and a state

of chronic infection. We have established conditions for stability and steady-state

or Hopf bifurcations of these steady states in terms of system parameters.

In the case when the natural death rate of infected cells exceeds the infection

rate, the immune system is able to clear the infection, and the disease-fee steady

state is stable. In this regime, the system can also support the autoimmune steady

state or the steady state with the death of host cells, either of which can be stable,

or give rise to a periodic solution emerging via Hopf bifurcation. In the opposite

case, when the natural death rate of infected cells is smaller than the infection rate,

the disease-fee steady state is unstable, but it is possible to have a bi-stability be-

tween the other three steady states or periodic solutions around them. To better

understand bi-stability between different dynamical regimes, I have used numerical

simulations to identify basins of attraction of different steady states and periodic

solutions depending on the initial level of infection and the initial number of regu-

latory T cells. The fact that for the same parameter values the system can exhibit

bi-stability between a disease-free steady state and an autoimmune state, repre-

sented by sustained periodic oscillations following the clearance of infection, is very

important from a clinical point of view, as effectively it suggests that the progress

and eventual outcome of viral infection is also determined by the strength of infec-

tion and the initial state of the immune system. One counter-intuitive observation

is that in the case of bi-stability with a disease-free steady state, for higher initial

numbers of regulatory T cells, the autoimmune steady state is actually stable for

a wider range of initial levels of infection. In this regime of bi-stability, increasing

the time delay associated with the positive impact of IL-2 on proliferation of T cells

results in the loss of stability of autoimmune steady state and emergence of autoim-

mune dynamics, characterised by stable periodic oscillations. On the contrary, in

the case where the disease-free steady state is unstable, increasing this time delay

results in stabilisation of the chronic infection.

There are several directions in which the work presented in this chapter can
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be extended. One direction is exploration of the contributions from other compo-

nents of immune response, more specifically, antibodies to the onset and progress

of autoimmunity [194, 195]. Whilst this model has focused on one specific growth

cytokine IL-2, a number of other cytokines, such as IL-7 [235], TNF-β and IL-10

[58], are known to significantly affect homeostasis and proliferation of different types

of T cells, as well as mediate their efficiency in eliminating the infection. Including

these immune mediators explicitly in the model can provide further significant in-

sights into the dynamics of immune response, as has been recently demonstrated on

the example of a detailed model of immune response to hepatitis B [236]. Another

biologically relevant and mathematically challenging problem is the investigation of

the interplay between stochasticity, which is known to be an intrinsic feature of im-

mune response [22, 189], and effects of time delays associated with various aspects

of immune dynamics. Hence, In the next Chapter I investigate stochastic effects in

a time-delayed model for autoimmunity.
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Chapter 6

Stochastic dynamics in a

time-delayed model for

autoimmunity

This chapter is based on the publication F. Fatehi, Y.N. Kyrychko, K.B. Blyuss,

Stochastic dynamics in a time-delayed model for autoimmunity, 2019, submitted.

In this chapter I discuss stochastic effects in a time-delayed model for autoim-

munity which allows us to investigate the role of stochastic effects in facilitating

possible oscillatory dynamics in a deterministic model. Starting with a delay differ-

ential equations system, I use the discrete stochastic simulation method to derive

a delay chemical master equation (DCME) which illustrates the probability den-

sity function of the model. To do stochastic simulations I derive an Itô SDDE

model which provides similar trajectories to delay stochastic simulation algorithms

(DSSAs), but faster. As follows, I apply the linear noise approximation (LNA)

methodology to find the magnitude of stochastic fluctuations around stable deter-

ministic steady states. This method also provides insights into how the coherence

of stochastic oscillations around deterministically stable steady states depends on

parameters.
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6.1 Stochastic model: a delayed chemical master

equation

In order to understand how stochasticity interacts with time-delayed effects in

immune dynamics, I use the model (5.1), but in this chapter I assume that suppres-

sion of IL-2 by regulatory T cells is negligible (δ2 = 0) [237] because adding this

parameter does not change the dynamical behaviour of the model and increasing

this parameter is not effective in controlling of autoimmune response. The diagram

of the model is shown in Fig. 6.1 and it has the form

dA

dt
= rA

(
1− A

N

)
− βAF − µaTautA,

dF

dt
= βA(t− τ1)F (t− τ1)− dFF − µFTnorF − µaTautF,

dTin
dt

= λin − dinTin − αTinF,

dTreg
dt

= λr − drTreg + p1αTin(t− τ3)F (t− τ3) + ρ1I(t− τ2)Treg(t− τ2),

dTnor
dt

= p2αTin(t− τ3)F (t− τ3)− dnTnor + ρ2I(t− τ2)Tnor(t− τ2),

dTaut
dt

= (1− p1 − p2)αTin(t− τ3)F (t− τ3)− daTaut − δTregTaut + ρ3I(t− τ2)Taut(t− τ2),

dI

dt
= σ1Tnor + σ2Taut − diI.

(6.1)
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Figure 6.1: A diagram of immune response to an infection. Blue circles indicate host
cells (uninfected and infected cells), red circles denote different T cells (naïve, regulatory,
normal activated, and autoreactive T cells), yellow circle show cytokines (interleukin-2).
τi’s inside each of the subnetworks indicate the time delay in the respective processes.

To develop a stochastic version of this model, we introduce variables X1(t), . . . ,

X7(t) ∈ {0, 1, 2, . . .} as discrete random variables representing, respectively, the

numbers of uninfected cells, infected cells, naïve T cells, regulatory T cells, normal

activated T cells, autoreactive T cells, and interleukin 2 (IL-2) at time t, with

the initial condition X(t) = ϕ(t) for t ∈ [−τ, 0], where τ = max{τ1, τ2, τ3}. It is

assumed that all these cells interact within some fixed volume Ω. The state change

vector characterising each specific interaction between different cells Rj is denoted

by vj, and its propensity function is given by aj(X(t)) in any given state X(t) =

(X1(t), X2(t), . . . , X7(t)). The propensity functions corresponding to interactions

and transitions illustrated in Fig. 6.1 are given by [114, 117]
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aj(X) =



b1X1(t) + b2

ΩX1(t)2, v1 = (1, 0, 0, 0, 0, 0, 0),

X1(t)
(
d1 + d2

ΩX1(t) + µa
Ω X6(t)

)
, v2 = (−1, 0, 0, 0, 0, 0, 0),

β

ΩX1(t− τ1)X2(t− τ1), v3 = (−1, 1, 0, 0, 0, 0, 0),

X2(t)
(
dF + µF

Ω X5(t) + µa
Ω X6(t)

)
, v4 = (0,−1, 0, 0, 0, 0, 0),

λinΩ, v5 = (0, 0, 1, 0, 0, 0, 0),

dinX3(t), v6 = (0, 0,−1, 0, 0, 0, 0),

p1
α

ΩX2(t− τ3)X3(t− τ3), v7 = (0, 0,−1, 1, 0, 0, 0),

p2
α

ΩX2(t− τ3)X3(t− τ3), v8 = (0, 0,−1, 0, 1, 0, 0),

(1− p1 − p2)αΩX2(t− τ3)X3(t− τ3), v9 = (0, 0,−1, 0, 0, 1, 0),

λrΩ, v10 = (0, 0, 0, 1, 0, 0, 0),

ρ1

ΩX4(t− τ2)X7(t− τ2), v11 = (0, 0, 0, 1, 0, 0, 0),

drX4(t), v12 = (0, 0, 0,−1, 0, 0, 0),

ρ2

ΩX5(t− τ2)X7(t− τ2), v13 = (0, 0, 0, 0, 1, 0, 0),

dnX5(t), v14 = (0, 0, 0, 0,−1, 0, 0),

ρ3

ΩX6(t− τ2)X7(t− τ2), v15 = (0, 0, 0, 0, 0, 1, 0),

X6(t)
(
da + δ

ΩX4(t)
)
, v16 = (0, 0, 0, 0, 0,−1, 0),

σ1X5(t) + σ2X6(t), v17 = (0, 0, 0, 0, 0, 0, 1),

diX7(t), v18 = (0, 0, 0, 0, 0, 0,−1),

(6.2)

where b1X1(t) + b2X1(t)2 and d1X1(t) + d2X1(t)2 are natural birth and death rates

for uninfected cells at time t with b1 − d1 = r and d2 − b2 = r

N
[196, 189]. In this

model for numerical simulations I used b2 = 0. Although vectors v10 and v11 show
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the same change in state variables, it is important to explicitly separate them, since

one of them happens with a time delay [114].

In order to derive the delay chemical master equation (DCME), one has to care-

fully account for delayed transitions/interactions. A convenient approach for han-

dling time-delayed interactions has been proposed by Barrio et al. [115] in the con-

text of an exact delay stochastic simulations algorithms. This methodology, when

applied to chemical reactions (and for our model, individual cell populations can

be interpreted and chemical reactants, and interactions between them as reaction),

divides all reactions into three types: non-delayed reactions, non-consuming delayed

reactions, and consuming delayed reactions. The distinction is that in consuming

reactions, the reactants of an unfinished reaction cannot participate in a new reac-

tion, On the other hand, in non-consuming reactions, the reactants of an unfinished

reaction can participate in another reaction [115, 116]. This then translates into

when the associated update of the state of the system takes place, and what the

corresponding state change vector is. In non-delayed and delayed non-consuming

reactions, there is a single time point where the update of the system happens both

for original reactants and the resulting products - it happens either immediately

in the case of non-delayed reactions, or, respectively, after the end of delay for de-

layed non-consuming reactions. In contrast, for delayed consuming reactions, there

are two update points: original reactants are updated at the initiation of reaction,

while the products are updated at the end of time delay. Based on the deterministic

model (6.1), the stimulation and proliferation of activated T cells with a positive

growth signal (IL-2) is a non-consuming reaction. In contrast, activation of naïve

T cells, and production of infected cells from uninfected cells are consuming delay

reactions. Therefore, the state change vector for these reactions should be split into

two vectors, with one of them indicating the state change in the absence of delays,

and the other one showing the state change of products which occurs with a delay

[120].

If we denote the probability of finding the system in the state n = (n1, n2, n3, n4,

n5, n6, n7) with ni ∈ {0, 1, 2, ...} at time t by

P (n, t) = Prob{X(t) = n|ϕ(t)}.
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it then satisfies the following DCME [114, 115, 120]

∂P (n, t)
∂t

=
{

(ε−1 − 1)a1(n) + (ε+
1 − 1)

[
a2(n) + a3(n)

]
+ (ε+

2 − 1)a4(n)

+(ε−3 − 1)a5(n) + (ε+
3 − 1)

[
a6(n) + a7(n) + a8(n) + a9(n)

]
+ (ε−4 − 1)a10(n)

+(ε+
4 − 1)a12(n) + (ε+

5 − 1)a14(n) + (ε+
6 − 1)a16(n) + (ε−7 − 1)a17(n)

+(ε+
7 − 1)a18(n)

}
P (n, t) +

∑
m∈I(n)

[
a3(m)(ε−2 − 1)P (n, t;m, t− τ1)

]

+
∑

m∈I(n)

[{
a11(m)(ε−4 − 1) + a13(m)(ε−5 − 1) + a15(m)(ε−6 − 1)

}
P (n, t;m, t− τ2)

]

+
∑

m∈I(n)

[{
a7(m)(ε−4 − 1) + a8(m)(ε−5 − 1) + a9(m)(ε−6 − 1)

}
P (n, t;m, t− τ3)

]
,

(6.3)

where I(n) is the set of all possible system states in the past, from which the state

n is able to follow via a chain of transitions, an operator ε±i is defined as follows,

ε±i f(n1, n2, n3, n4, n5, n6, n7, t) = f(n1, ..., ni ± 1, ..., n7, t), for each 1 ≤ i ≤ 7,

and if ni < 0 for any 1 ≤ i ≤ 7, then P (n, t) = 0.

To simulate the above model, one can use delay stochastic simulation algorithms

(DSSA), which describe the evolution of this delay discrete process over time, and

also solve the DCME (6.3) to obtain the probability density function of the model.

However, the discrete stochastic simulation methods are very computationally ex-

pensive [121, 201, 122], and solving the DCME is also a very challenging task. To

deal with this problem, we will use delay chemical Langevin equation models which

are more computationally efficient [122], and since we want to derive a continuous

approximation of a delay discrete stochastic model, in which the jump probability is

proportional to the number of available cells before the jump, it is better to use the

Itô formulation [199]. Therefore, we will use Itô stochastic delay differential equa-

tion (SDDE) models which are based on the Langevin approach when the propensity
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functions associated with the reactions are relatively large [121].

6.2 Itô SDDE model

To derive a computationally convenient form of SDDE, we will proceed in several

steps. First, we will follow the methodology of Tian et al. [121] to obtain one possible

formulation of SDDE directly from the DCME. Then we will use an approach similar

to that of Allen et al. [206] for non-delayed stochastic equations to prove that another

formulation of the SDDE is possible, which is equivalent both in distribution, and

in sample paths. This is an important result as it addresses an issue mentioned in

Tian et al. [121], where two different formulations of an SDDE gave slightly different

results. Finally, we will formulate an equivalent but simplified form of SDDE and

apply to our model.

As a starting point, drawing an analogy between cell interactions and chemical

reactions, we consider a system of N molecular species S = {S1, . . . , SN}, whose

state at time t is described by a vector X(t) = (X1(t), . . . , XN(t)), and these species

react through reactions {R1, . . . , Rm}. Each reaction Rj is characterised by a state

change vector vj = (v1j, v2j, . . . , vNj)T , and the associated propensity function aj.

As mentioned earlier, non-delayed and delayed non-consuming reactions have a sin-

gle update vector v, whereas for delayed consuming reactions, vrj and vpj are the

update vectors for reactants at the start of reaction, and for products at the end of

the time delay associated with reaction Rj, respectively, so vrj +vpj = vj. Assuming

the first m1 reactions to be non-delayed, the reactions m1 + 1 to m2 to be delayed

non-consuming reactions with corresponding time delays τm1+1, . . . , τm2 , and the

rest to be consuming delayed reactions with time delays τm2+1, . . . , τm, the DCME

accounting for all non-consuming and consuming reactions is then given by [120]
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∂

∂t
P (X, t) =−

m1∑
j=1

aj(X)P (X, t) +
m1∑
j=1

aj(X− vj)P (X− vj, t)

−
m2∑

j=m1+1

∑
Xi∈I(X)

aj(Xi)P (X, t;Xi, t− τj)

+
m2∑

j=m1+1

∑
Xi∈I(X)

aj(Xi)P (X− vj, t;Xi, t− τj)

−
m∑

j=m2+1

∑
Xi∈I(X)

aj(Xi)P (X, t;Xi, t− τj)

+
m∑

j=m2+1

∑
Xi∈I(X)

aj(Xi)P (X− vpj , t;Xi, t− τj)

−
m∑

j=m2+1
aj(X)P (X, t) +

m∑
j=m2+1

aj(X− vrj)P (X− vj, t), (6.4)

where I(X) is the set of all possible system states in the past, from which the given

state X can follow via a chain of reactions. Applying the same method as in Tian

et al. [121], the corresponding SDDE model which faithfully represents the intrinsic

noise associated with all those delayed reaction, has the form

dX =
m1∑
j=1

vjaj(X(t))dt+
m2∑

j=m1+1
vjaj(X(t− τj))dt

+
m∑

j=m2+1
vrjaj(X(t))dt+

m∑
j=m2+1

vpjaj(X(t− τj))dt

+
m1∑
j=1

vj
√
aj(X(t))dWj(t) +

m2∑
j=m1+1

vj
√
aj(X(t− τj))dWj(t)

+
m∑

j=m2+1
vrj
√
aj(X(t))dWj(t) +

m∑
j=m2+1

vpj
√
aj(X(t− τj))dWj−m2+m(t)

=f (X(t),X(t− τm1+1), . . . ,X(t− τm)) dt+HdW(t), (6.5)

where W(t) = (W1(t),W2(t), . . . ,W2m−m2) is a vector of independent Wiener pro-

cesses, and H =
(
H1 H2 H3 H4

)
is a N × (2m−m2) matrix which

H1 =



v11

√
a1(X(t)) v12

√
a2(X(t)) · · · v1m1

√
am1(X(t))

v21

√
a1(X(t)) v22

√
a2(X(t)) · · · v2m1

√
am1(X(t))

... ... . . . ...

vN1

√
a1(X(t)) vN2

√
a2(X(t)) · · · vNm1

√
am1(X(t))


N×m1

,
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H2 =



v1(m1+1)

√
am1+1(X(t− τm1+1)) · · · v1m2

√
am2(X(t− τm2))

v2(m1+1)

√
am1+1(X(t− τm1+1)) · · · v2m2

√
am2(X(t− τm2))

... . . . ...

vN(m1+1)

√
am1+1(X(t− τm1+1)) · · · vNm2

√
am2(X(t− τm2))


N×(m2−m1)

,

H3 =



vr1(m2+1)

√
am2+1(X(t)) vr1(m2+2)

√
am2+2(X(t)) · · · vr1m

√
am(X(t))

vr2(m2+1)

√
am2+1(X(t)) vr2(m2+2)

√
am2+2(X(t)) · · · vr2m

√
am(X(t))

... ... . . . ...

vrN(m2+1)

√
am2+1(X(t)) vrN(m2+2)

√
am2+2(X(t)) · · · vrNm

√
am(X(t))


N×(m−m2)

,

H4 =



vp1(m2+1)

√
am2+1(X(t− τm2+1)) · · · vp1m

√
am(X(t− τm))

vp2(m2+1)

√
am2+1(X(t− τm2+1)) · · · vp2m

√
am(X(t− τm))

... . . . ...

vpN(m2+1)

√
am2+1(X(t− τm2+1)) · · · vpNm

√
am(X(t− τm))


N×(m−m2)

.

Tian et al. [121] have also considered an alternative formulation of the model in the

form

dX∗(t) =f (X∗(t),X∗(t− τ1), . . . ,X∗(t− τr), t) dt

+G (X∗(t),X∗(t− τ1), . . . ,X∗(t− τr), t) dW∗(t), (6.6)

where X∗(t) = [X∗1 (t), X∗2 (t), . . . , X∗N(t)]T , W∗(t) = [W ∗
1 (t),W ∗

2 (t), . . . ,W ∗
N(t)]T ,

with W ∗
j , 1 ≤ j ≤ N , being independent Wiener processes, and G being an N ×N

symmetric positive semidefinite matrices related to H through an N ×N matrix V ,

where V = HHT and G = V
1/2, which also implies V = GGT . For convenience, we

have also renumbered time delays from τm1+1 to τm into τ1 to τr. By considering a

particular example of a model for gene regulatory networks, Tian et al. have shown

using 10000 simulations that there is little difference between means and variances

of the above two stochastic models, while also noting that “more work is needed

to compare the difference between the two types of the Langevin approach” [121].
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To address this problem, we will now extend the methodology used by Allen et al.

[206] for systems without delays to show that the above two models are actually

equivalent in the sense that their solutions have the same probability distribution,

as well as the same sample path solutions.

To show that systems (6.5) and (6.6) are equivalent in distribution, i.e. their so-

lutions have the same probability distribution, it suffice to show that the probability

density function for both of these systems satisfies the same forward Kolmogorov or

Fokker-Planck equation. This is established by the following result, which generalises

earlier work in [128, 238] to the case of multiple time delays and multi-dimensional

stochastic system.

Theorem 6.1. Consider the following Itô SDDE model

dXi(t) =fi (X(t),X(t− τ1), . . . ,X(t− τr), t) dt

+
m∑
j=1

gij (X(t),X(t− τ1), . . . ,X(t− τr), t) dW j(t),

where W j(t) are independent Wiener processes, and

fi : RN × RN × · · · × RN︸ ︷︷ ︸
(r+1)-times

×R→ R, gij : RN × Rn × · · · × RN︸ ︷︷ ︸
(r+1)-times

×R→ R,

for every 1 ≤ i ≤ N and 1 ≤ j ≤ m, with the initial condition X(t) = ϕ(t) for

t ∈ [−τ, 0], where τ = max{τ1, . . . , τr}. The corresponding delay Fokker-Planck

equation has the form

∂

∂t
P (x, t | ϕ) =

−
N∑
i=1

∂

∂xi

∫
· · ·

∫
︸ ︷︷ ︸

r

fi(x,xτ1 , . . . ,xτr , t)P (x, t; xτ1 , t− τ1; . . . ; xτr , t− τr | ϕ)dV

+ 1
2
∑
i,j

∂2

∂xi∂xj

∫
· · ·

∫
︸ ︷︷ ︸

r

(
GGT

)
ij
P (x, t; xτ1 , t− τ1; . . . ; xτr , t− τr | ϕ)dV,

where dV = dxτ1dxτ2 . . . dxτr , and G is an n ×m matrix with Gij = gij(x,xτ1 , . . . ,

xτr , t), for every 1 ≤ i ≤ N and 1 ≤ j ≤ m.
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Proof. Let us consider the joint probability density

P (x, t;x′, t′;xτ1 , t
′ − τ1; . . . ;xτr , t′ − τr | ϕ) =

〈
δ
(
x−X(t)

)
δ
(
x′ −X(t′)

) r∏
k=1

δ
(
xτk −X(t′ − τk)

)〉

for t ≥ t′, where 〈. . .〉 denotes ensemble average, and δ(·) is the Dirac delta function.

Expressing the single time-point probability density P (x, t | ϕ) through the con-

ditional probability density and utilising the generalized Kramers-Moyal expansion

[128, 238] yields the following PDE

∂

∂t
P (x, t | ϕ) =

∞∑
υ=1

∑
j1,j2,...,jυ

(−∂)υ
∂xj1 . . . ∂xjυ

∫
· · ·

∫
︸ ︷︷ ︸

r

D
(υ)
j1...jυP (x, t;xτ1 , t− τ1; . . . ;xτr , t− τr | ϕ)dV,

where dV = dxτ1dxτ2 . . . dxτr , and D
(υ)
j1...jυ(·) are given by

D
(υ)
j1...jυ(x,xτ1 , . . . ,xτr , t) =

lim
h→0

1
h

∫ υ∏
k=1

(yjk − xjk)

υ! P (y, t+ h | x, t;xτ1 , t− τ1; . . . ;xτr , t− τr;ϕ)dy.

Since we are working with an Itô SDDE, it is possible to reformulate the problem

in the form of Langevin equation similar to the case of Markov process [128]. If we

then rewrite coefficients D(υ)
j1...jυ in the form

D
(υ)
j1...jυ(x,xτ1 , . . . ,xτr , t) =

lim
h→0

1
h

〈
υ∏
k=1

(
Xjk(t+ h)−Xjk(t)

)〉
υ!

∣∣∣∣∣∣∣∣∣
X(t)=x,X(t−τ1)=xτ1 ,...,X(t−τr)=xτr

, (6.7)

we can use the time-discrete version of the SDDE model [128, 238] to obtain the

following expressions for these coefficients

D
(1)
i (x,xτ1 , . . . ,xτr , t) = fi(x,xτ1 , . . . ,xτr , t),

D
(2)
ij (x,xτ1 , . . . ,xτr , t) = 1

2

m∑
k=1

gik(x,xτ1 , . . . ,xτr , t)gjk(x,xτ1 , . . . ,xτr , t),

D
(υ)
j1...jυ(x,xτ1 , . . . ,xτr , t) = 0, for every υ ≥ 3,

which completes the proof.
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Due to the relation V = GGT = HHT , Theorem 6.1 implies that solutions to

(6.5) and (6.6) do indeed have the same probability distribution. Using a minor

modification of methodology of Allen et al. [206], it is straightforward to show that

a sample path solution of one of these systems is also a sample path of the second

one, i.e. given a Wiener trajectoryW(t) with the sample path solutionX(t) to (6.5),

there exist a Wiener trajectoryW∗(t) with the sample path solutionX∗(t) = X(t) to

(6.6), and vice versa (see Appendix B for details). Taken together, these two results

confirm the systems (6.5) and (6.6) are indeed equivalent both in distribution, and in

sample paths. Effectively, this means that the dynamics of model (6.5) is equivalent

to the dynamics of any other similar model (6.6) which has the same function f, and

as long as GGT = V . The importance of this result is that since normally there is a

larger number of reactions involved, by allowing one to replace an N × (2m −m2)

matrix by an N ×N matrix with 2m−m2 � N , this equivalence can significantly

reduce computational complexity of the resulting SDDE model.

Now that the equivalence of systems (6.5) and (6.6) has been established, let us

present an alternative approach for finding the function f(X(t),X(t− τ1), . . . ,X(t−

τr)) and the matrixH, such thatHHT = V , which is similar to the method presented

earlier in [189, 205] for systems without time delays. Using again the terminology

of chemical reactions, let Y(t) = (Y1(t), Y2(t), . . . , YN(t)) be a vector of continuous

random variables representing the amounts of molecular species at time t.
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Table 6.1: State changes ∆Y in a small time interval ∆t

i (∆Y)i Probability Pi∆t
1 v1 a1(Y)∆t
... ... ...
m1 vm1 am1(Y)∆t
m1 + 1 vm1+1 am1+1(Y)∆t
... ... ...
m2 vm2 am2(Y)∆t
m2 + 1 vrm2+1 am2+1(Y)∆t
... ... ...
m vrm am(Y)∆t
m+ 1 vpm2+1 am2+1(Y)∆t
... ... ...
2m−m2 vpm am(Y)∆t

2m−m2 + 1 0 1−
2m−m2∑
i=1

Pi∆t

As before, it is assumed that these species are well-mixed and interact in such as way

that the first m1 reactions are non-delayed, reactions m1 + 1 to m2 are delayed non-

consuming reactions, and the remaining reactions are delayed consuming reactions.

We assume that ∆t is small enough, so that during this time interval at most one

change can occur in state variables as represented by the state change vectors, and

if it is a consuming delay reaction, then we split its state change vector into two

vectors in a similar way to how it was done for the DCME (6.4). These state changes

together with corresponding probabilities are listed in Table 6.1. Using this table

of possible state changes, one can compute the expectation vector and covariance

matrix of ∆Y for sufficiently small ∆t.

The expectation vector to order ∆t is given by

E(∆Y) ≈
2m−m2∑
i=1

Pi(∆Y)i∆t = f (Y(t),Y(t− τm1+1), . . . ,Y(t− τm)) ∆t = µ∆t,
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and the covariance matrix is obtained by only keeping terms of order ∆t, i.e.

cov(∆Y) = E
[
(∆Y)(∆Y)T

]
− E [∆Y] (E [∆Y])T ≈ E

[
(∆Y)(∆Y)T

]
=

2m−m2∑
i=1

Pi(∆Y)i(∆Yi)T∆t = Σ∆t,

where it can be easily shown that replacing X with Y in the matrix H in (6.5) would

give HHT = Σ.

In summary, to derive a SDDE model for a discrete delay process with delays

{τ1, τ2, . . . , τr}, first we have to find the possible state changes table, then we have to

find the expectation vector µ which is called the drift vector, and covariance matrix

Σ also known as the diffusion matrix, from which we will find an N ×N matrix H

satisfying HHT = Σ. One should note that the order of the entries in the table of

state changes is irrelevant, since all entries come with their respective probabilities.

Moreover, if any two (or more) entries have the same vectors representing a state

change, these entries can be combined into one, with the associated probability being

the sum of individual probabilities of those entries. This would reduce the size of

the tables of state changes, but would not affect the drift vector of the diffusion

matrix. The resulting Itô SDDE model has the form


dY(t) = µdt+HdW(t),

Y(t) = ϕ(t) for t ∈ [−τ, 0],
(6.8)

where τ = max{τ1, . . . , τr}, and W(t) is an N -dimensional vector of independent

Wiener processes.
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Table 6.2: Possible state changes ∆Y during a small time interval ∆t

i (∆Y)Ti Probability Pi∆t

1 (1, 0, 0, 0, 0, 0, 0)
(
b1Y1(t) + b2

ΩY1(t)2
)

∆t

2 (−1, 0, 0, 0, 0, 0, 0)
(
d1Y1(t) + d2

Ω Y1(t)2 + µa
Ω Y6(t)Y1(t) + β

ΩY1(t)Y2(t)
)

∆t

3 (0, 1, 0, 0, 0, 0, 0) β

ΩY1(t− τ1)Y2(t− τ1)∆t

4 (0,−1, 0, 0, 0, 0, 0)
[
dF + µF

Ω Y5(t) + µa
Ω Y6(t)

]
Y2(t)∆t

5 (0, 0, 1, 0, 0, 0, 0) λinΩ∆t

6 (0, 0,−1, 0, 0, 0, 0)
[
dinY3(t) + α

ΩY3(t)Y2(t)
]

∆t

7 (0, 0, 0, 1, 0, 0, 0) p1
α

ΩY3(t− τ3)Y2(t− τ3)∆t

8 (0, 0, 0, 0, 1, 0, 0) p2
α

ΩY3(t− τ3)Y2(t− τ3)∆t

9 (0, 0, 0, 0, 0, 1, 0) (1− p1 − p2)αΩY3(t− τ3)Y2(t− τ3)∆t

10 (0, 0, 0, 1, 0, 0, 0) λrΩ∆t

11 (0, 0, 0, 1, 0, 0, 0) ρ1

Ω Y7(t− τ2)Y4(t− τ2)∆t

12 (0, 0, 0,−1, 0, 0, 0) drY4(t)∆t

13 (0, 0, 0, 0, 1, 0, 0) ρ2

Ω Y7(t− τ2)Y5(t− τ2)∆t

14 (0, 0, 0, 0,−1, 0, 0) dnY5(t)∆t

15 (0, 0, 0, 0, 0, 1, 0) ρ3

Ω Y7(t− τ2)Y6(t− τ2)∆t

16 (0, 0, 0, 0, 0,−1, 0)
[
da + δ

ΩY4(t)
]
Y6(t)∆t

17 (0, 0, 0, 0, 0, 0, 1) [σ1Y5(t) + σ2Y6(t)] ∆t

18 (0, 0, 0, 0, 0, 0,−1) diY7(t)∆t

19 (0, 0, 0, 0, 0, 0, 0) 1−
18∑
i=1

Pi∆t

Using the above method, we can now derive an SDDE model associated with the

model (6.2). Let Y(t) = (Y1(t), Y2(t), Y3(t), Y4(t), Y5(t), Y6(t), Y7(t)) be a continuous

random vector for the sizes of various cell compartments at time t, and ∆t be small

enough so that during this time interval at most one change can occur in state

variables. These changes together with their probabilities are listed in Table 6.2.

Using this table of possible state changes, one can compute the expectation vector

and covariance matrix of ∆Y for sufficiently small ∆t.
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The expectation vector to order ∆t is now given by

E(∆Y) ≈
18∑
i=1

Pi(∆Y)i∆t = µ∆t,

where

µ =



P1 − P2

P3 − P4

P5 − P6

P7 + P10 + P11 − P12

P8 + P13 − P14

P9 + P15 − P16

P17 − P18


is the drift vector, which is identical to the right-hand side of the deterministic model

(6.1). The covariance matrix is obtained by only keeping terms of order ∆t, i.e.

cov(∆Y) ≈
18∑
i=1

Pi(∆Y)i(∆Yi)T∆t = Σ∆t,

where

Σ =



P1 + P2 0 0 0 0 0 0

0 P3 + P4 0 0 0 0 0

0 0 P5 + P6 0 0 0 0

0 0 0 P7 + P10 + P11 + P12 0 0 0

0 0 0 0 P8 + P13 + P14 0 0

0 0 0 0 0 P9 + P15 + P16 0

0 0 0 0 0 0 P17 + P18



is a 7 × 7 diffusion matrix. Since Σ is a diagonal matrix, the matrix H is also a

diagonal matrix with Hii =
√

Σii for 1 ≤ i ≤ 7. The Itô SDDE model thus has the

form 
dY(t) = µdt+HdW(t),

Y(t) = ϕ(t) for t ∈ [−τ, 0],
(6.9)

where τ = max{τ1, τ2, τ3}, and W(t) = [W1(t),W2(t), . . . ,W7(t)]T is a vector of

seven independent Wiener processes, and ϕ(t) is the vector of initial conditions.

This form of SDDE is amenable to direct numerical simulations, which will be
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performed in Section 6.4 to illustrate various dynamical behaviours of the model.

6.3 System size expansion and fluctuations

In principle, one could try to find an approximate probability density function for

the above model (6.9) as a solution of the Fokker-Planck equation derived as an ap-

proximation of the master equation [205, 207]. However, since this equation would

be a linear high-dimensional PDE, solving it analytically is impossible. Therefore,

we will instead use a so-called system size expansion, or van Kampen’s expansion

[199], of the DCME to construct a continuous approximation for discrete stochas-

tic models [88, 89, 122]. This will allow us to decompose the time evolution of

each cell population into deterministic and stochastic components, thus providing a

methodology for analytically studying fluctuations around deterministic attractors

[122, 129].

In order to apply the system size expansion to the DCME (6.3), we consider each

ni to be of order Ω, with fluctuations of order Ω1/2, which can be written as follows,

ni(t) = Ωxi(t) + Ω1/2ξi(t), i = 1, 2, . . . , 7,

where xi(t) are determined by the deterministic rate equations, and ξi(t) describe

random fluctuations around the deterministic solution. Similarly, for delayed vari-

ables we write

mi = Ωxi(t− τj) + Ω1/2ηi(t), i = 1, . . . , 7, j = 1, 2, 3,

where the index j is chosen depending on the delayed reaction being considered. For

example, if it is the reaction of production of infected cells from uninfected cells,

then mi = Ωxi(t− τ1) + Ω1/2ηi(t), i = 1, 2, . . . , 7.

The probability distributions P (n, t) and P (n, t;m, t − τj) can be written as

functions of ξ, i.e.

P (n, t) = P (Ωx + Ω1/2ξ, t) = Π(ξ, t),

P (n, t;m, t− τj) = Π(ξ, t;η, t− τj), j = 1, 2, 3,
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which implies
dP (n, t)

dt
= ∂Π

∂t
−

7∑
i=1

Ω1/2dxi
dt

∂Π
∂ξi

. (6.10)

To expand the master equation in a power series in Ω−1/2, we use the following

expansions for step operators ε±i

ε±i = 1± Ω−1/2 ∂

∂ξi
+ 1

2Ω−1 ∂
2

∂ξ2
i

± · · · . (6.11)

Similar expansions can be obtained for propensity functions ai. For non-delayed

reactions we have

a1(n) = b2ξ
2
1 + (b1ξ1 + 2b2x1ξ1)Ω1/2 +

(
b1x1 + b2x

2
1

)
Ω,

a2(n) + a3(n) =d2ξ
2
1 + µaξ1ξ6 + βξ1ξ2 + (d1ξ1 + 2d2x1ξ1 + µax1ξ6 + µax6ξ1

+ βx1ξ2 + βx2ξ1)Ω1/2 +
(
d1x1 + d2x

2
1 + µax1x6 + βx1x2

)
Ω,

a4(n) =µF ξ2ξ5 + µaξ2ξ6 + (dF ξ2 + µFx2ξ5 + µFx5ξ2 + µax2ξ6 + µax6ξ2)Ω1/2

+ (dFx2 + µFx2x5 + µax2x6)Ω,

a5(n) = λinΩ, a10(n) = λrΩ, a12(n) = drξ4Ω1/2 + drx4Ω,

a14(n) = dnξ5Ω1/2 + dnx5Ω,

a6(n) + a7(n) + a8(n) + a9(n) =αξ2ξ3 + (dinξ3 + αx2ξ3 + αx3ξ2)Ω1/2

+ (dinx3 + αx2x3)Ω,

a16(n) = δξ4ξ6 + (daξ6 + δx4ξ6 + δx6ξ4)Ω1/2 + (dax6 + δx4x6)Ω,
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a17(n) = (σ1ξ5 + σ2ξ6)Ω1/2 + (σ1x5 + σ2x6)Ω, a18(n) = diξ7Ω1/2 + dix7Ω.

The propensity functions of delayed reactions can be obtained in a similar way:

a3(m) = βη1η2 +
(
βx1(t− τ1)η2 + βx2(t− τ1)η1

)
Ω1/2 + βx1(t− τ1)x2(t− τ1)Ω,

a7(m) =p1αη2η3 +
(
p1αx2(t− τ3)η3 + p1αx3(t− τ3)η2

)
Ω1/2

+ p1αx2(t− τ3)x3(t− τ3)Ω,

a8(m) =p2αη2η3 +
(
p2αx2(t− τ3)η3 + p2αx3(t− τ3)η2

)
Ω1/2

+ p2αx2(t− τ3)x3(t− τ3)Ω,

a9(m) =(1− p1 − p2)αη2η3 + (1− p1 − p2)
(
αx2(t− τ3)η3 + αx3(t− τ3)η2

)
Ω1/2

+ (1− p1 − p2)αx2(t− τ3)x3(t− τ3)Ω,

a11(m) = ρ1η4η7 +
(
ρ1x4(t− τ2)η7 + ρ1x7(t− τ2)η4

)
Ω1/2 + ρ1x4(t− τ2)x7(t− τ2)Ω,

a13(m) = ρ2η5η7 +
(
ρ2x5(t− τ2)η7 + ρ2x7(t− τ2)η5

)
Ω1/2 + ρ2x5(t− τ2)x7(t− τ2)Ω,

a15(m) = ρ3η6η7 +
(
ρ3x6(t− τ2)η7 + ρ3x7(t− τ2)η6

)
Ω1/2 + ρ3x6(t− τ2)x7(t− τ2)Ω.

Substituting expressions (6.10) and (6.11), together with the expansions for

propensity functions, into the DCME (6.3) shows that the left-hand side of the

equation only contains terms of the order Ω1/2 and Ω0, while the right-hand side

has terms of the order Ω1/2, Ω0, and Ω − n/2, for n ∈ N, and we will ignore the terms

of order Ω − n/2. To show how the process of substitution works, let us illustrate
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expansions for one non-delayed term of of the DCME (6.3)

(ε−1 − 1)a1(n)P (n, t) =(
−Ω−1/2 ∂

∂ξ1
+ 1

2Ω−1 ∂
2

∂ξ2
1

) [
(b1ξ1 + 2b2x1ξ1)Ω1/2 +

(
b1x1 + b2x

2
1

)
Ω
]
Π(ξ, t)

= −
(
b1x1 + b2x

2
1

)
Ω1/2∂Π(ξ, t)

∂ξ1
− ∂

∂ξ1

[
(b1ξ1 + 2b2x1ξ1)Π

]
Ω0

+ 1
2
(
b1x1 + b2x

2
1

) ∂2Π(ξ, t)
∂ξ2

1
Ω0.

and one delayed term

∑
m∈I(n)

[
a3(m)(ε−2 − 1)P (n, t;m, t− τ1)

]
=

∫
η

(
−Ω−1/2 ∂

∂ξ2
+ 1

2Ω−1 ∂
2

∂ξ2
2

) [(
βx1(t− τ1)η2 + βx2(t− τ1)η1

)
Ω1/2 + βx1(t− τ1)x2(t− τ1)Ω

]
Π(ξ, t;η, t− τ1)dη

= −βx1(t− τ1)x2(t− τ1)Ω1/2∂Π(ξ, t)
∂ξ2

− ∂

∂ξ2

∫
η

(
βx1(t− τ1)η2 + βx2(t− τ1)η1

)
Π(ξ, t;η, t− τ1)dηΩ0

+ 1
2βx1(t− τ1)x2(t− τ1)∂

2Π(ξ, t)
∂ξ2

2
Ω0.

with all other terms being computed in the same way. After substitution, collecting

terms of order Ω1/2 yields the following system of equations describing macroscopic
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behaviour of the model

dx1

dt
= b1x1 + b2x

2
1 − d1x1 − d2x

2
1 − βx1x2 − µax1x6,

dx2

dt
= βx1(t− τ1)x2(t− τ1)− dFx2 − µFx2x5 − µax2x6,

dx3

dt
= λin − dinx3 − αx2x3,

dx4

dt
= λr − drx4 + p1αx2(t− τ3)x3(t− τ3) + ρ1x4(t− τ2)x7(t− τ2),

dx5

dt
= p2αx2(t− τ3)x3(t− τ3)− dnx5 + ρ2x5(t− τ2)x7(t− τ2),

dx6

dt
= (1− p1 − p2)αx2(t− τ3)x3(t− τ3)− dax6 − δx4x6 + ρ3x6(t− τ2)x7(t− τ2),

dx7

dt
= σ1x5 + σ2x6 − dix7.

(6.12)

This model has been analysed earlier in Fatehi et al. [190, 236], who have shown that

it has at most four biologically feasible steady states. The first one, a disease-free

steady state, is given by

S∗1 =
(
b1 − d1

d2 − b2
, 0, λin

din
,
λr
dr
, 0, 0, 0

)
,

and it is stable if dF > β̃, irrespective of the values of time delays. The second and

third steady states can be found as

S∗2 =
(

0, 0, λin
din

, x∗4, 0,
di (da + δx∗4)

ρ3σ2
,
da + δx∗4

ρ3

)
,

and

S∗3 =
(
ρ3σ2(b1 − d1)− µadi (da + δx∗4)

ρ3σ2 (d2 − b2) , 0, λin
din

, x∗4, 0,
di (da + δx∗4)

ρ3σ2
,
da + δx∗4

ρ3

)
,

where x∗4 satisfies the following quadratic equation

ρ1δ (x∗4)2 + (ρ1da − ρ3dr)x∗4 + ρ3λr = 0. (6.13)
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These steady states are stable, provided

σ2

µadi
K <

da + δx∗4
ρ3

<
dn
ρ2
,

where K = 1 for S∗2 , and K = (β − dF )/(1 + β) for S∗3 , and the following equation

∆(τ2, λ) = p2(λ)e−2λτ2 + p1(λ)e−λτ2 + p0(λ) = 0, (6.14)

where

p2(λ) =ρ1 (da + δx∗4)2

ρ3
(λ+ 2di) ,

p1(λ) =− (da + δx∗4)
ρ3

(ρ1 + ρ3)λ2 + [ρ1 (da + δx∗4) + diρ1 + 2diρ3 + drρ3]λ

+ di(ρ1da + 2drρ3)

,
p0(λ) =λ3 + (di + dr + da + δx∗4)λ2 + [di (da + δx∗4) + dr (da + δx∗4) + didr]λ

+ didr (da + δx∗4) ,

only has roots with negative real part. Biologically, the steady state S∗2 represents

the death of host cells, while S∗3 corresponds to an autoimmune state. The final

steady state S∗4 has all of its components positive and corresponds to the state of

chronic infection.

At the next order, i.e. at order Ω0, we obtain the following linear delayed Fokker-

Planck equation, known as the linear noise approximation (LNA), that describes

stochastic fluctuations around the deterministic trajectory
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∂Π
∂t

= − ∂

∂ξ1

[
(b1ξ1 + 2b2x1ξ1 − d1ξ1 − 2d2x1ξ1 − µax1ξ6 − µax6ξ1 − βx1ξ2 − βx2ξ1)Π

]
− ∂

∂ξ2

[
− (dF ξ2 + µFx2ξ5 + µFx5ξ2 + µax2ξ6 + µax6ξ2)Π

]
− ∂

∂ξ2

∫
η

(
βx1(t− τ1)η2 + βx2(t− τ1)η1

)
Π(ξ, t;η, t− τ1)dη

− ∂

∂ξ3

[
− (dinξ3 + αx2ξ3 + αx3ξ2)Π

]
− ∂

∂ξ4
(−drξ4Π)

− ∂

∂ξ4

∫
η

(
ρ1x4(t− τ2)η7 + ρ1x7(t− τ2)η4

)
Π(ξ, t;η, t− τ2)dη

− ∂

∂ξ4

∫
η

(
p1αx2(t− τ3)η3 + p1αx3(t− τ3)η2

)
Π(ξ, t;η, t− τ3)dη

− ∂

∂ξ5
(−dnξ5Π)− ∂

∂ξ5

∫
η

(
ρ2x5(t− τ2)η7 + ρ2x7(t− τ2)η5

)
Π(ξ, t;η, t− τ2)dη

− ∂

∂ξ5

∫
η

(
p2αx2(t− τ3)η3 + p2αx3(t− τ3)η2

)
Π(ξ, t;η, t− τ3)dη

− ∂

∂ξ6

[
− (daξ6 + δx4ξ6 + δx6ξ4)Π

]
− ∂

∂ξ6

∫
η

(
ρ3x6(t− τ2)η7 + ρ3x7(t− τ2)η6

)
Π(ξ, t;η, t− τ2)dη

− ∂

∂ξ6

∫
η

(1− p1 − p2)
(
αx2(t− τ3)η3 + αx3(t− τ3)η2

)
Π(ξ, t;η, t− τ3)dη

− ∂

∂ξ7

[
(σ1ξ5 + σ2ξ6 − diξ7)Π

]
+ 1

2

{(
b1x1 + b2x

2
1 + d1x1 + d2x

2
1 + µax1x6 + βx1x2

) ∂2Π
∂ξ2

1

+
(
βx1(t− τ1)x2(t− τ1) + dFx2 + µFx2x5 + µax2x6

)∂2Π
∂ξ2

2
+ (λin + dinx3 + αx2x3) ∂

2Π
∂ξ2

3

+
(
λr + drx4 + p1αx2(t− τ3)x3(t− τ3) + ρ1x4(t− τ2)x7(t− τ2)

)∂2Π
∂ξ2

4

+
(
dnx5 + p2αx2(t− τ3)x3(t− τ3) + ρ2x5(t− τ2)x7(t− τ2)

)∂2Π
∂ξ2

5

+
(
dax6 + δx4x6 + (1− p1 − p2)αx2(t− τ3)x3(t− τ3) + ρ3x6(t− τ2)x7(t− τ2)

)∂2Π
∂ξ2

6

+ (σ1x5 + σ2x6 + dix7)∂
2Π
∂ξ2

7

}
.

Following Phillips et al. [122], we use the structure of this equation to derive a

system of equations that describes the delayed Langevin dynamics of fluctuations

around any deterministic steady states S∗ = (x∗1, x∗2, . . . , x∗7) of the model (6.12).

This system has the form
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ξ̇1 = (b1 + 2b2x
∗
1 − d1 − 2d2x

∗
1 − βx∗2 − µax∗6)ξ1 − βx∗1ξ2 − µax∗1ξ6 + ζ1,

ξ̇2 = βx∗2ξ1(t− τ1) + βx∗1ξ2(t− τ1)− (dF + µFx
∗
5 + µax

∗
6)ξ2 − µFx∗2ξ5 − µax∗2ξ6 + ζ2,

ξ̇3 = −αx∗3ξ2 − (din + αx∗2)ξ3 + ζ3,

ξ̇4 = −drξ4 + p1αx
∗
3ξ2(t− τ3) + p1αx

∗
2ξ3(t− τ3) + ρ1x

∗
7ξ4(t− τ2) + ρ1x

∗
4ξ7(t− τ2) + ζ4,

ξ̇5 = −dnξ5 + p2αx
∗
3ξ2(t− τ3) + p2αx

∗
2ξ3(t− τ3) + ρ2x

∗
7ξ5(t− τ2) + ρ2x

∗
5ξ7(t− τ2) + ζ5,

ξ̇6 = −δx∗6ξ4 − (da + δx∗4)ξ6 + (1− p1 − p2)αx∗3ξ2(t− τ3) + (1− p1 − p2)αx∗2ξ3(t− τ3)

+ρ3x
∗
7ξ6(t− τ2) + ρ3x

∗
6ξ7(t− τ2) + ζ6,

ξ̇7 = σ1ξ5 + σ2ξ6 − diξ7 + ζ7,

(6.15)

where ζ(t) = (ζ1(t), ζ2(t), . . . , ζ7(t)) is a vector of seven independent Gaussian white

noise variables with zero mean and the noise correlators given by

〈ζ1(t)ζ1(t′)〉 = (b1x
∗
1 + b2x

∗
1

2 + d1x
∗
1 + d2x

∗
1

2 + βx∗1x
∗
2 + µax

∗
1x
∗
6)δ(t− t′),

〈ζ2(t)ζ2(t′)〉 = (βx∗1x∗2 + dFx
∗
2 + µFx

∗
2x
∗
5 + µax

∗
2x
∗
6)δ(t− t′),

〈ζ3(t)ζ3(t′)〉 = (λin + dinx
∗
3 + αx∗2x

∗
3)δ(t− t′),

〈ζ4(t)ζ4(t′)〉 = (λr + drx
∗
4 + p1αx

∗
2x
∗
3 + ρ1x

∗
4x
∗
7)δ(t− t′),

〈ζ5(t)ζ5(t′)〉 = (p2αx
∗
2x
∗
3 + dnx

∗
5 + ρ2x

∗
5x
∗
7)δ(t− t′),

〈ζ6(t)ζ6(t′)〉 =
(
(1− p1 − p2)αx∗2x∗3 + dax

∗
6 + δx∗4x

∗
6 + ρ3x

∗
6x
∗
7

)
δ(t− t′),

〈ζ7(t)ζ7(t′)〉 = (σ1x
∗
5 + σ2x

∗
6 + dix

∗
7)δ(t− t′),

〈ζi(t)ζj(t′)〉 = 0, ∀ i 6= j.

Using a Fourier transformation of the model (6.15), one can find the power

spectral density (PSD) of the fluctuations, which can be used to determine the

variance and coherence of the stochastic oscillations. Fourier transform of the model

(6.15) gives

M(ω)ξ̃(ω) = ζ̃(ω),
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where M(ω) = iωI −M1 − e−iωτ1M2 − e−iωτ2M3 − e−iωτ3M4, and

M1 =



b1 + 2b2x
∗
1 − d1 − 2d2x

∗
1 − µax∗6 − βx∗2 −βx∗1 0 0 0 −µax∗1 0

0 −dF − µFx∗5 − µax∗6 0 0 −µFx∗2 µax
∗
2 0

0 −αx∗3 −din − αx∗2 0 0 0 0

0 0 0 −dr 0 0 0

0 0 0 0 −dn 0 0

0 0 0 −δx∗6 0 −da − δx∗4 0

0 0 0 0 σ1 σ2 −di



,

(M2)ij =



βx∗2, if (i, j) = (1, 2),

βx∗1, if (i, j) = (2, 2),

0, otherwise,

(M3)ij =



ρ1x
∗
7, if (i, j) = (4, 4),

ρ1x
∗
4, if (i, j) = (4, 7),

ρ2x
∗
7, if (i, j) = (5, 5),

ρ2x
∗
5, if (i, j) = (5, 7),

ρ3x
∗
7, if (i, j) = (6, 6),

ρ3x
∗
6, if (i, j) = (6, 7),

0, otherwise,

(M4)ij =



p1αx
∗
3, if (i, j) = (4, 2),

p1αx
∗
2, if (i, j) = (4, 3),

p2αx
∗
3, if (i, j) = (5, 2),

p2αx
∗
2, if (i, j) = (5, 3),

(1− p1 − p2)αx∗3, if (i, j) = (6, 2),

(1− p1 − p2)αx∗2, if (i, j) = (6, 3),

0, otherwise.

Using this formulation, it can be easily shows that in the case where the model

(6.12) converges to either of the steady states S∗2 or S∗3 , the power spectrum for the

number of regulatory T cells, Pr(ω), is given by

Pr(ω) = a4|L|2 + a6σ
2
2ρ

2
1x
∗
4

2 + a7ρ
2
1x
∗
4

2 |iω + da + δx∗4 − ρ3e
−iωτ2x∗7|

2

| det(D)|2 ,

where L = (iω + di) (iω + da + δx∗4 − ρ3e
−iωτ2x∗7)− ρ3σ2e

−iωτ2x∗6, and

D =



iω + dr − ρ1e
−iωτ2x∗7 0 −ρ1e

−iωτ2x∗4

δx∗6 iω + da + δx∗ − ρ3e
−iωτ2x∗7 −ρ3e

−iωτ2x∗7

0 −σ2 iω + di


,
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Figure 6.2: Coherence of stochastic oscillations c defined as the spectral power associated
with a range of frequencies around the peak Ap relative to the total area under the PSD
curve A0 [122, 91].

and similar results can be obtained the PSDs of other state variables.

Introducing the matrix of spectra S(ω) as Sij(ω) = 〈ξi(ω)ξj(ω)†〉 [122], we then

have

S(ω) = M(ω)−1
〈
ζ̃(ω)ζ̃(ω)†

〉(
M(ω)†

)−1
,

where 〈
ζ̃(ω)ζ̃(ω′)†

〉
= diag{a1, a2, . . . , a7}δ(ω + ω′),

and

ai =



b1x
∗
1 + b2x

∗
1

2 + d1x
∗
1 + d2x

∗
1

2 + βx∗1x
∗
2 + µax

∗
1x
∗
6, if i = 1,

βx∗1x
∗
2 + dFx

∗
2 + µFx

∗
2x
∗
5 + µax

∗
2x
∗
6, if i = 2,

λin + dinx
∗
3 + αx∗2x

∗
3, if i = 3,

λr + drx
∗
4 + p1αx

∗
2x
∗
3 + ρ1x

∗
4x
∗
7, if i = 4,

p2αx
∗
2x
∗
3 + dnx

∗
5 + ρ2x

∗
5x
∗
7, if i = 5,

(1− p1 − p2)αx∗2x∗3 + dax
∗
6 + δx∗4x

∗
6 + ρ3x

∗
6x
∗
7, if i = 6,

σ1x
∗
5 + σ2x

∗
6 + dix

∗
7, if i = 7.

At any steady state, the covariance matrix Ξ with Ξij = 〈ξi(t)ξj(t)〉−〈ξi(t)〉〈ξj(t)〉

= 〈ξi(t)ξj(t)〉 is independent of time, and is given by [130]

Ξ = 1
2π

+∞∫
−∞

S(ω)dω = 1
π

+∞∫
0

S(ω)dω. (6.16)
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To relate the results of this analysis to the outcome of direct numerical simulations

of the SDDE, it is instructive to express the covariance matrix in terms of actual

numbers of cells in each compartment, rather than deviations from stationary values.

This can be achieved by defining the covariance matrix C as Cij = 〈(ni−〈ni〉)(nj −

〈nj〉)〉, which is related to Ξ through Cij = ΩΞij. It is worth noting that when there

is no delay, as an alternative to numerical computation of matrices Ξ and C by

evaluation of the matrix of spectra S(ω) and its subsequent numerical integration,

one could also determine these matrices by solving the corresponding Lyapunov

equation [189, 211]. Either of those approaches allows one to compute the value of

variance of fluctuations around any steady state of the deterministic model.

In order to quantify how well-structured stochastic oscillations are around the

dominant spectral frequency for any of the relevant state variables, we can use the

notion of coherence [122, 130, 91]. Choosing a particular state variable X(t), we can

consider the power spectral density P (ω) of stochastic oscillations of this variable

around its steady state value X∗. The overall level of fluctuations can be measured

by the mean-square variance

A0 = lim
T→∞

∫ +T

−T
[X(t)−X∗]2 dt =

+∞∫
0

P (ω)dω.

Focusing on the particular interval of frequencies [ω1, ω2] around the peak frequency

in the distribution P (ω), as shown in Fig. 6.2, one can compute the quantity

Ap =
ω2∫
ω1

P (ω)dω,

and then define coherence of stochastic oscillations as c = Ap/A0 [122, 91].

6.4 Numerical stability analysis and simulations

In order to perform numerical simulations of the model (6.9), we use the strong

predictor-corrector method with the degree of implicitness in the drift coefficient

chosen to be equal to 1/7, since for this value the method has the largest stability

region [123, 124]. It has been previously shown [190, 237] that in the model (6.12),
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the disease-free steady state S∗1 undergoes a transcritical bifurcation at β = dF . For

β < dF , the disease-free steady state is stable, while the chronic infection steady state

S∗4 is infeasible. On the contrary, for β > dF , the disease-free steady state is unstable,

and in this case we can study the stability of the chronic infection steady state

[190, 237]. This qualitative distinction between different regimes suggests that it is

feasible to consider the two cases separately. First, we consider consider a situation

corresponding to the parameter regime β < dF , with the values of parameters given

in Table 6.3. The initial condition is chosen to be

(x1(s), x3(s), x4(s), x5(s), x6(s), x7(s)) = (18, 7.2, 6.3, 0, 0, 0), s ∈ [−τmax, 0],

(6.17)

and τmax = max{τ1, τ2, τ3}, except for the initial number of infected cells being

allowed to vary with a constant history between different simulations.

Table 6.3: Table of parameters

parameter value parameter value
b1 2.5 p2 0.4
b2 0 ρ1 20/9
d1 0.5 ρ2 8/45
d2 0.1 ρ3 4/9
β 0.1 dn 2
µa 40/9 da 0.002
dF 2.2 δ 2/4500
µF 4/3 σ1 0.3
λin 18 σ2 0.4
din 2 di 1.2
α 0.04 τ1 0.7
λr 54 τ2 0.5
dr 0.8 τ3 0.3
p1 0.4 Ω 1000

Figure 6.3 shows the result of 20000 simulations with the initial condition (6.17)

and x2(0) = 2 and µa = 2. In this case, in the deterministic model (6.12) the

steady states S∗1 and S∗3 are both stable, but based on the chosen initial condition,

the system is in the attraction basin of S∗3 . As can be seen from Fig. 6.3, in the

stochastic model (6.9), the majority of paths go into the basin of attraction of S∗3 ,

and a small proportion of them enter the basin of attraction of S∗1 . This figure

also shows single stochastic trajectories around S∗1 and S∗3 , as well as areas of one
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standard deviation from the mean in the basins of attraction of these steady states,

where trajectories show sustained stochastic oscillations [212, 90].

Figure 6.3: Numerical simulation of the model (6.9) with parameter values from Table 6.3,
with µa = 2, x2(0) = 2, and the initial condition (6.17). Red and blue curves represent
two sample trajectories that have entered the basins of attraction of steady states S∗3 and
S∗1 , respectively. Black curve is the deterministic trajectory of the model (6.12), and the
shaded areas indicate the regions of one standard deviation from the mean.

One observes that taking an average of a large number of simulations that enter

the basin of attraction of S∗3 would show a decaying oscillations around S∗3 , which

is similar to a deterministic trajectory, while single stochastic trajectories exhibit

sustained stochastic oscillations [92]. Furthermore, this figure also shows that al-

though deterministically the system is in the attraction basin of the autoimmune

steady state S∗3 , it is still possible for a small number of realisations to success-

fully clear the infection and reach a disease-free steady state, which corresponds

to a spontaneous recovery. It should be noted, however, that this only occurred in

around 1.5% of simulations, suggesting that while recovery from a pathogen-induced

autoimmune disease is theoretically possible, substantial caution would have to be

used when relying on this result in the clinical practice.

Figure 6.4(a) illustrates temporal evolution of the probability distribution for

the same set of parameters and initial condition as in Fig. 6.3. The bi-stability

between steady states S∗1 and S∗3 results in the system reaching a bimodal stationary

distribution after some initial transient, as shown in Fig. 6.4(b). Increase the value

of the rate µa, at which autoreactive T cells are destroying infected and healthy host
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cells, from 2 to 10/3 shift dynamical behaviour for the deterministic model (6.12) to

a regime of bi-stability between steady states S∗1 and S∗2 . In this case, with the same

initial condition (6.17) and x2(0) = 2.2, the system is in the basin of attraction of

S∗2 . Figures 6.4(c) and (d) show the evolution of the probability distribution, as well

as the final bimodal distribution in this case. One should note that since the size

of fluctuations around deterministic solutions scales as Ω − 1/2, increasing the size of

system Ω would result in these bimodal distributions becoming unimodal [189, 129].

Figure 6.4: Probability distribution of solutions out of 20000 simulations. (a) and (b)
with parameters from Table 6.3 except for µa = 2, and the initial condition (6.17) with
x2(0) = 2. (c) and (d) with parameters from Table 6.3 except for µa = 10/3, and the
initial condition (6.17) with x2(0) = 2.2. In (a) and (c), the probability histogram is fit
to a bimodal normal distribution at different times. (b) and (d) illustrate stationary joint
probability histograms.

Figure 6.5 highlights the main difference between deterministic and stochastic

models by illustrating how the coherence of stochastic oscillations changes in the
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region where S∗2 and S∗3 are deterministically stable, i.e. the deterministic solu-

tion exhibits damped oscillations that eventually reach a steady state. This figure

indicates that by increasing time delay τ2 associated with the effects of IL-2 on

proliferation of T cells, we approach the boundary of the Hopf bifurcation, and the

coherence also increases, while in the region where deterministically the model has a

periodic solution around these steady states, the value of coherence is equal to one.

Figure 6.5: Coherence of oscillations in the stability regions of S∗2 (a) and S∗3 (b) with
parameter values from Table 6.3, except for ρ3 = 2/3. Black curves show deterministic
boundaries of Hopf bifurcation for respective steady states. In the white region, the steady
state S∗2 is infeasible, in the blue region the steady state S∗3 is infeasible, and in the region
indicated by the black grid both steady states S∗2 and S∗3 are infeasible.

Using equation (6.16), we can determine the covariance matrix C, which pro-

vides the variance of individual state variables, when the deterministic model is at

one of its steady states. One should note that in this method the variance goes to

infinity as one approaches a bifurcation. Therefore, this method can only be ap-

plied when a steady state is stable, and we are not close to bifurcation boundaries.

Figure 6.6 illustrates how variance in the number of regulatory T cells Treg, as de-

termined by C4,4, varies with system parameters in the parameter regions where S∗3
is deterministically stable. One can observe that as one gets closer to the border

between the area, where S∗3 is stable, and the area, where the deterministic model

can have a periodic solution around S∗3 , the variance of stochastic oscillations in

Tregs increases. Moreover, this variance increases with the rate σ2 of production

of IL-2 by autoreactive T cells, as well as with the time delay τ2 associated with

simulation and proliferation of T cells by IL-2. In contrast, Figure 6.6(b) suggests
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that the variance of stochastic oscillations in Tregs is insensitive to changes in the

rate µa of destruction of infected and healthy host cells by autoreactive T cells.

Figure 6.6: Variance of the number of regulatory T cells with parameter values from Table
6.3, but µa = 2. Colored regions indicate areas in respective parameter planes where the
autoimmune steady state S∗3 is deterministically stable. Black grid area indicates the
region where S∗3 is infeasible, and in the white region it is feasible but unstable.

Now we consider a situation where β > dF , in which case deterministically

the disease-free steady state S∗1 is unstable, and we can investigate stability of the

chronic steady state S∗4 . Earlier results by Fatehi et al. [190, 237] indicate that for

parameter values from Table 6.3, but with δ = 8/15000, σ2 = 0.66 and β = 0.14,

the steady states S∗3 and S∗4 are both deterministically stable, and for the initial

condition (6.17) with x(2) = 0.6 and x(4) = 36, the model (6.12) is in the basin

of attraction of the chronic steady state S∗4 . Figure 6.7 shows the results of 20000

stochastic simulations with these parameter values and initial conditions. Since

deterministically S∗4 is stable, and the system is in its basin of attraction for the
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specific chosen initial conditions, the majority of stochastic trajectories also enter

the basin of attraction of S∗4 . Due to bi-stability, a proportion of these trajectories

(about 17.5%) go to S∗3 . Interestingly, Figure 6.7(a) indicates that although the

disease-free steady state is deterministically unstable, a less than two percent of

trajectories approach S∗1 and exhibit stochastic oscillations around it. The impact

of these trajectories can be observed in Fig. 6.7(b), which shows temporal evolution

of the probability distribution of the solutions. In this figure, initially one observes a

trimodal probability distribution, where the middle peak corresponds to trajectories

approaching S∗1 . Over time, this peak disappears, while the peak at S∗3 becomes

more pronounced. Since the proportion of trajectories going to S∗1 is very small,

and the amounts of healthy cells A in the steady states S∗4 and S∗1 are close, the

stationary probability distribution is effectively bimodal with peaks at S∗3 and S∗4 .

However, the presence of a small number of trajectories approaching the steady state

S∗1 results in a small reduction of the peak associated with the chronic steady state

S∗4 .

Figure 6.7: Numerical simulations (a) and probability distribution (b) out of 20000 sim-
ulations with parameter values from Table 6.3, except for δ = 8/15000, σ2 = 0.66 and
β = 0.14, and the initial condition (6.17) with x(2) = 0.6 and x(4) = 36. In (a) blue, red
and green are sample trajectories, which have entered the basins of attraction of S∗1 , S∗4
and S∗3 , respectively. Black curve is the deterministic trajectory of the model (6.12), and
the shaded areas indicate the regions of one standard deviation from the mean. In (b) the
probability histogram is fit to a multimodal normal distribution at different times.

Figure 6.8 illustrates how the coherence of stochastic oscillations around the

chronic steady state S∗4 changes with parameters. We observe that the general

trend is similar to that shown earlier in Fig. 6.5 for steady states S∗2/S∗3 in that
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approaching the deterministic boundary of the Hopf bifurcation results in the in-

crease of coherence, while increasing the rate δ at which regulatory T cells suppress

autoreactive T cells reduces the coherence of stochastic oscillations. When this rate

is very small, the chronic steady state S∗4 is infeasible, and once δ increases past

some minimum threshold, the steady state S∗4 becomes feasible but unstable, with

a deterministic periodic orbit around it, which corresponds to the maximum level

of coherence. Increasing δ further results in stabilisation of the steady state S∗4 and

a reduced coherence of stochastic oscillations around the stable steady state. It is

worth noting that there is a major difference in behaviour with regards to effects

of time delays. For the time delay τ2, associated with stimulation and proliferation

of T cells by IL-2, there are multiple stability switches in the stability of S∗4 for

intermediate values of δ, which leads to successive growth and reduction in the level

of coherence. In contrast, increasing time delay τ3, which characterises a lag in pro-

liferation and differentiation of naïve T cells, there is a single stability switch, with

coherence being low for small values of this time delay, then increasing all the way up

to the boundary of Hopf bifurcation, and being at its maximum value subsequently.

Figure 6.8: Coherence of oscillations in the region of stability of S∗4 with parameters from
Table 6.3, except for σ2 = 0.66 and β = 0.14. Black curves show the boundary of Hopf
bifurcation. The steady state S∗4 is infeasible in the region indicated with a black grid.

In Fig. 6.9 we illustrate how the variance in the number of regulatory T cells Treg
for the steady states S∗3 or S∗4 changes with parameters in the region where these

states are deterministically stable.
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Figure 6.9: Variance of the number of regulatory T cells with parameter values from Table
6.3 and β = 0.14, but in (e) and (f) ρ1 = 50/9. In the left (respectively, right) column,
coloured regions indicate areas of respective parameter planes where the autoimmune
(respectively, chronic) steady state S∗3 (respectively, S∗4) is deterministically stable, white
areas are regions where the steady state is feasible but unstable, and the black grid area
indicates the region where the steady state is infeasible.

One observes some notable differences in the behaviour of variance for these two
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steady states. For example, while for the steady state S∗3 the variance appears

to be almost completely independent on the rate µa, at which autoreative T cells

are destroying healthy host cells, for the steady state S∗4 the variance substantially

decreases with the increase of this rate. Also, due to the difference in that there is

a single loss of stability of S∗3 depending on the time delay τ2 compared to several

stability switches for S∗4 , one observes a monotonic increase of variance for increasing

values of τ2 for S∗3 , whereas in the case of S∗4 , periods of increased variance are

followed by periods of decreased variance until it settles on some steady level.

6.5 Discussion

In this chapter I have analysed stochastic aspects of immune response against a vi-

ral infection with account for T cells with different activation thresholds, regulatory

T cells, as well as the cytokine mediating T cell activity, while paying particular

attention to viral and cytokine delays. Using the framework of delayed chemical

reactions, I have carefully reinterpreted various transitions and interactions in the

model as discrete stochastic changes in the populations of state variables to derive a

delayed chemical master equation that describes the dynamics of the probability dis-

tribution of finding the system in a particular state. To make further progress, I used

the formalism of consuming and non-consuming delayed reactions to reformulate the

DCME as an SDDE. I have proven the equivalence between different formulations

of the resulting SDDE, which are identical in terms of probability distribution and

sample paths. Using this equivalence, I have proposed an alternative formulation of

the SDDE, which is much more amenable to direct numerical treatment. Applying

system size expansion to the exact DCME, I have derived a linear Langevin model

for our system that characterises stochastic fluctuations around deterministic trajec-

tories, and used this information to derive expressions for the variance of stochastic

fluctuations around deterministically stable steady states.

Numerical simulations of the model indicate an intricate interplay between bi-

stability and stochasticity. While deterministically the system can be in a basin of

attraction of one particular steady state for a chosen combination of parameters,

due to stochasticity it rather has a bi-modal probability density distribution, with
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a proportion of trajectories approaching another stable steady state. Moreover, we

have observed that in a small number of realisations, solutions trajectories may

exhibit oscillations around a disease-free steady state, which itself is unstable, sug-

gesting theoretical possibility of a spontaneous clearance of infection. Qualitatively

similar behaviour was observed in the case, where the disease-free steady state is

unstable, and the system possesses a feasible chronic steady state. The effect of time

delays consists in possibly destabilising some of the steady states, and in each case

the computations indicate that the variance of stochastic oscillations around deter-

ministically stable steady states increases as one approaches the stability boundary

from the stable side. We have also observed that some parameters may have al-

most no effect on the variance of oscillations around one steady state, while having

a significant effect on the variance of oscillations around another steady state for

all other values of parameters being the same. Increasing the rates of homeostatic

production of regulatory T cells λr or the rate of suppression of autoreactive T cells

by regulatory T cells δ results in the reduction of variance of oscillations.

An important practical observation concerns the difference between mean, or av-

eraged, dynamics and the behaviour of individual stochastic realisations [189]. Even

in the case when deterministically, or as a result of averaging of a large number of

simulations, the system can be settling on a stable steady state, individual reali-

sations can still exhibit sustained stochastic oscillations around that steady state.

Since the normal laboratory or clinical practice deals with single observations of

individual patients, this result suggests the importance of properly accounting for

stochastic effects when developing realistic models of immune dynamics. Numerical

simulations of the SDDE model have illustrated the behaviour of individual stochas-

tic trajectories, as well as the time evolution of the probability distribution of the

solutions.

There is a number of interesting potential extensions of this work. In terms of

more accurate representation of immune response, one could consider including in

the model the effects of regulatory T cells on controlling IL-2 secretion [190, 179],

as well as memory T cells [194, 195]. A related question to explore concern the role

of other cytokines, such as IL-7 [235], TNF-β and IL-10 [58], which are also known

to have a significant impact on proliferation of different T cells and mediating their
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efficiency in eliminating the infection. Including different cytokines can provide a

better insight into the dynamics of immune response, as has been recently shown in

a detailed model of immune response to hepatitis B [236]. Another relevant aspect

is the analysis of the dependence of basins of attraction of different dynamical states

on system parameters in the case of bi-stability, which highlights an important role

played by the initial state of the system in terms of initial level of infection, and

initial immune status [189]. Having computed the variance of stochastic oscilla-

tions depending on parameters, it should now be possible to compare these results

to experimental data on the progress and variation of autoimmune disease. One

possibility for such a comparison is provided by the recent work on experimental

autoimmune uveoretinitis (EAU), where it has been observed that in genetically

identical C57BL/6 mice, once the EAU was induced in them through inoculation,

the autoimmune disease then progressed at slightly different rates [223]. In this

respect, comparing theoretical estimates of the variance in this model with the mea-

sured variability in the numbers of T cells and infected cells could provide really

important insights and validation of the approach developed in this chapter.
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Chapter 7

Discussion

7.1 Summary

In this thesis, I have considered two deterministic models of immune response to

infection. The first model analysed the dynamics of a cytokine-mediated immune

response to hepatitis B, which takes into account various innate and adaptive im-

mune response, as well as cytokines. The second model studied immune response

to a viral infection with the possibility of onset and progress of autoimmunity, and

included different types of T cells and IL-2. Particular emphasis has been made on

stochastic properties of immune response dynamics, as well as on the roles of time

delays associated with various biological processes, such as viral replication and

mounting of immune response. The first chapter presented an overview of biological

aspects of the immune system, as well as earlier work and results on mathematical

modelling of various aspects of immune dynamics, in particular, immune response

to viral infections.

In Chapter 2, I presented and analysed a very comprehensive deterministic math-

ematical model of the dynamics of immune system during HBV infection, which ex-

plicitly accounts not only for innate and adaptive branches of immune response, but

also for different types of cytokines known to mediate these responses. I have ana-

lytically studied the stability and bifurcations of all the steady states, and showed

that this model has two conditionally stable steady states: a disease-free and an

endemic steady state. I have also studied the effects of two main types of drugs that

are routinely used to treat hepatitis B. Since analytical results indicate that stability
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of disease-free steady state depends on the product of the infection rate and the rate

of production of new virus particles, rather than on each of them individually, the

total treatment effectiveness is considered as the product of the effects of treatments.

This allows one to easily determine the critical drug efficacy. Numerical bifurcation

analysis of the steady states suggests that for any values of parameters, if the rate

of clearance of free viruses by antibodies is high enough, the immune system can

successfully clear the infection. It also indicates that increasing the values of param-

eters describing the contribution of IFN-α/β cannot by itself result in the clearance

of infection. In contrast, increasing the effect of IFN-γ can revert the system to a

stable disease-free state. Numerical simulations of treatment show that when the

total drug effectiveness is smaller than the critical value, it is possible to have a

case where the virus is also strong enough to withstand treatment, and in such a

case one has to analyse the distinct effects of treatments separately, rather than as

some cumulative characteristic. Our results indicate this can happen if the efficacy

of IFN-based therapy is not sufficient. We have also performed extensive numerical

simulations to illustrate different dynamical regimes that can be exhibited by the

model, and the impact of treatment on this dynamics.

In Chapter 3, a new mathematical model of cytokine-mediated autoimmunity

caused by a viral infection was developed. Since T cells play an important role

in the onset of autoimmunity, the model focused on four populations of T cells:

naïve T cells, regulatory T cells, normal activated T cells, and autoreactive T cells,

and it has also included cytokines mediating T cell activity. We have shown how

inclusion of regulatory T cells and the cytokine mediating T cell activity can lead

to the emergence of periodic oscillations in the model even when the amount of

free virus and the number of infected cells are equal zero, thus overcoming a lim-

itation of some earlier models of autoimmune dynamics. The model can exhibit

bi-stability, which can explain clinical observations suggesting that patients with

very similar parameters of immune response can have significantly different course

and outcome of the infection. Therefore, the new model provides a more realistic

representation of the immune response. This model has four conditionally stable

steady states: the disease-free steady state, the steady state characterised by the

death of host cells, the autoimmune steady state, and the persistent or chronic
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steady state. Moreover, it displays a bi-stability between different states, as well as

periodic solutions. I have found analytical boundaries of steady-state and Hopf bi-

furcations for all steady states except for the chronic steady state, for which stability

was studied numerically. I have explored how these stability boundaries depend on

different system parameters, and used numerical simulations to illustrate each of the

corresponding dynamical regimes. These figures indicates how bi-stability between

different dynamics is affected by the parameters.

The disease-free steady state is stable when the product of natural clearance rate

of free virus and natural death rate of infected cells exceeds the product of infection

rate and rate of production of free virus. This suggests that increasing speed and

effectiveness of treatment of infection can reduce the possibility of developing an

autoimmune reaction. In the case of bi-stability between a stable disease-free steady

state and an autoimmune response, we have observed that increasing the rate at

which normal activated T cells destroy infected cells does not directly affect the

stability of these two states, but the basin of attraction basin of the autoimmune

state decreases, and if this parameter is sufficiently large, that basin of attraction

can completely disappear.

Chapter 4 investigates the effects of stochasticity on the dynamics of pathogen-

induced autoimmunity. The CTMC formalism provides a chemical master equation,

which describes the exact probability distribution of finding the system in a partic-

ular state, however, solving this equation directly is not possible. Therefore, using

van Kampen’s approach I analysed how stochasticity can result in sustained periodic

oscillations around deterministically stable steady states, thus providing a possible

explanation of experimentally observed variation in the progression of autoimmune

disease. Moreover, this approach yields a Lyapunov equation, which determines the

variance of oscillations around deterministically stable steady state. Computation

of the magnitude of stochastic fluctuations from this equation can be used as a

guide for new laboratory experiments aimed at comparing theoretical predictions

with experimental data on variation in the observed numbers of T cells and organ

cells affected by infection.

Numerical simulations of the stochastic model indicate that in the case of bi-

stability between two steady states, the system reaches a stationary bimodal normal
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distribution, when deterministically the initial condition is in the basin of attraction

of one of these two states. These results show that when the autoimmune and

disease-free steady state are both stable, and deterministically the system is in

the basin of attraction of autoimmune state, due to stochastic oscillations a small

proportion of stochastic realisations would still end up in the basin of attraction of

the disease-free steady state, suggesting that in a clinical setting a patient can have

a chance not to develop an autoimmune disease, but rather successfully clear the

infection without any lasting consequences. We have also shown how probability of

this scenario changes depending on the initial conditions, and one can observe that

moving deeper into the basin of attraction of autoimmune state reduces the chance

of this happening. Therefore, in a stochastic model there is no clear separation

of the basins of attraction of deterministically stable steady states, but rather the

probability of finding the system in a particular steady states varies smoothly across

the deterministic boundary separating distinct basins of attraction.

In Chapter 5, I analysed the effects of time delays associated with the processes

of infection and developing the immune response, as well as the control of secretion

of IL-2 by Tregs, on the dynamics of autoimmunity. I have analytically studied the

characteristic equation associated with each steady state and proved that stability

of the disease-free steady state does not depend on the time delays, while for the

autoimmune and death of host cells steady states it depends only on the time de-

lay associated with simulation and proliferation of T cells by IL-2. Moreover, for

each of these steady states, I have analytically found a critical value of that time

delay, at which these steady states undergo a Hopf bifurcation. Numerical results

suggest that increasing the rate of clearance of IL-2 by Tregs, unlike increasing the

rate of clearance of autoreactive T cells by Tregs, is not effective in controlling of

autoimmune response. At the same time, increasing this parameter, the autoim-

mune steady state can be made biologically infeasible by stabilising the steady state

corresponding to the death of host cells.

An important observation from immunological studies suggests that reducing the

burden of infection can actually increase the incidence of some autoimmune diseases.

I have demonstrated that adding the lag phase of virus cycle dynamics to the model

shows exactly this dual role of infection, where increasing the level of infections can
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protect against the development of autoimmunity.

Chapter 6 is devoted to the analysis of stochastic effects in a time-delayed model

for autoimmunity. Using delay stochastic simulation algorithms is very computa-

tionally expensive, and solving the delay chemical master equation, which describes

the probability distribution of the model, is also a very challenging task. Hence, I de-

veloped a new methodology for deriving an Itô stochastic delay differential equation

from delay discrete stochastic models, which is more computationally efficient than

the previous method, while providing the same sample path trajectories. More-

over, I have used the linear noise approximation obtained through a system size

expansion of the delay chemical master equation to find the magnitude of stochas-

tic fluctuations around deterministic steady states, and to obtain insights into how

the coherence of stochastic oscillations around deterministically stable steady states

depends on system parameters.

We have observed that approaching the boundary of the Hopf bifurcation, the

coherence and variance of stochastic oscillations increase. In the case of bi-stability

between autoimmune and chronic steady states in the deterministic model, where

the disease-free steady state is unstable, it has been observed that a small proportion

of stochastic simulations will still enter the basin of attraction of the disease-free

steady state, and the stationary probability distribution is still given by a bimodal

distribution. However, one can observe the peak probability that is related to the

steady state of chronic infection will decrease slightly due to the presence of those

trajectories. This result highlights the importance of using stochastic rather than

deterministic models for studying complex biological processes, such as the dynamics

of immune response.

7.2 Future work

There are several directions in which the work presented in this thesis can be ex-

tended. In Chapter 2 I introduced an ODE model, but, as we know, the lag phase

for HBV, and the lag between infection and recruitment of CTLs are non-negligible.

Thus, including these as discrete or distributed time delays the model can provide a

more realistic representation of the immune response. Moreover, due to the stochas-
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tic nature of immune response, one can study this model as an individual-based

model and use the methods that have been presented in Chapters 4 and 6. Fur-

thermore, it is known that antibodies do not kill the virus particles directly, but

rather stick to them, creating a virus-antibody complex [35]. These complexes are

not stable forever and can experience some dissociation, hence, explicitly including

them into the model can provide better insights into the dynamics.

The model of autoimmunity presented in Chapter 3 can be extended in several

directions. An important question within the framework of T cells with tunable

activation thresholds concerns an observation that during the process of immune

response, activation thresholds themselves can also change [63, 66, 67], which can

have a major effect on the progress of immune dynamics. Embedding activation

thresholds as additional variables in a model similar to the one studied in that

Chapter would provide a more comprehensive and accurate representation of T cell

dynamics during immune response. Further realism can be added to the model by

including other aspects of immune system, such as antibodies and memory T cells

[194, 195]. Another aspect that is relevant for this model is the fact that besides

IL-2 there are other cytokines which are known to significantly affect homeostasis

and proliferation of different types of T cells, as well as mediate their efficiency in

eliminating the infection, such as IL-7 [235], TNF-β and IL-10 [58]. Including these

factors in the model can provide new insights into the dynamics of autoimmune

diseases.

The work presented in Chapter 6 from a practical perspective can be used for

comparing the computed variance of stochastic fluctuations to experimental data

on the progress and variation of autoimmune disease such as, the recent work on

experimental autoimmune uveoretinitis (EAU), where it has been observed that

there is a variation in the way disease develops in the individual eyes of the same

animals and also in genetically identical C57BL/6 mice [223, 94, 93]. Fitting this

model with experimental data can provide really important and valuable insights,

as well as a validation of the approach developed in this thesis.
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3ρ1ρ3
)
I∗2 + 4 dr2δ1δ2

(
2 da3δ2

3 +

12 da2diδ1δ2
2 + 12 dadi2δ1

2δ2 + 2 dadr2δ1
2δ2 + dadr

2δ2
3 + 2 di3δ1

3 + didr
2δ1

3 +

2 didr2δ1δ2
2
))
T ∗reg

5 +
(
− 2 δ2

2ρ1
2ρ3

2
(
δ1

2ρ1
2 + δ1δ2ρ1

2 + 3 δ1δ2ρ1ρ3 + 2 δ2
2ρ3

2
)
I∗6 −

2 ρ3δ2ρ1
(
2 da2δ1δ2

2ρ1
2 +da

2δ2
3ρ1ρ3 +9 dadiδ1

2δ2ρ1
2 +24 dadiδ1δ2

2ρ1ρ3 +12 dadrδ1
2δ2ρ1

2−

4 dadrδ2
3ρ3

2 +4 di2δ1
3ρ1

2 +8 di2δ1
2δ2ρ1

2 +33 di2δ1
2δ2ρ1ρ3 +9 didrδ1

3ρ1
2 +9 didrδ1

2δ2ρ1
2 +

2 didrδ1δ2
2ρ1

2 − 20 didrδ1δ2
2ρ3

2 − 4 dr2δ1
2δ2ρ1ρ3 − 6 dr2δ1δ2

2ρ1ρ3 − 4 dr2δ1δ2
2ρ3

2 +

dr
2δ2

3ρ1ρ3− 4 dr2δ2
3ρ3

2
)
I∗4 +

(
2 da3diδ1δ2

3ρ1
2 + 6 da2di

2δ1
2δ2

2ρ1
2 + 4 da2didrδ1δ2

3ρ1ρ3−

7 da2dr
2δ1

2δ2
2ρ1

2 − 2 da2dr
2δ1δ2

3ρ1
2 − 14 da2dr

2δ1δ2
3ρ1ρ3 − 8 da2dr

2δ2
4ρ3

2 +

2 dadi3δ1
3δ2ρ1

2 + 12 dadi2drδ1
2δ2

2ρ1ρ3 − 6 dadidr2δ1
3δ2ρ1

2 − 12 dadidr2δ1
2δ2

2ρ1
2 −

42 dadidr2δ1
2δ2

2ρ1ρ3 + 2 dadidr2δ1δ2
3ρ1

2 − 8 dadidr2δ1δ2
3ρ1ρ3 − 64 dadidr2δ1δ2

3ρ3
2 +

2 dadr3δ1
2δ2

2ρ1ρ3 + 8 dadr3δ1δ2
3ρ1ρ3 + 4 di3drδ1

3δ2ρ1ρ3−di2dr2δ1
4ρ1

2−6 di2dr2δ1
3δ2ρ1

2−

14 di2dr2δ1
3δ2ρ1ρ3 − 2 di2dr2δ1

2δ2
2ρ1

2 − 12 di2dr2δ1
2δ2

2ρ1ρ3 − 48 di2dr2δ1
2δ2

2ρ3
2 +
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10 didr3δ1
2δ2

2ρ1ρ3 + 12 didr3δ1δ2
3ρ1ρ3 − 5 dr4δ1

2δ2
2ρ3

2 − 4 dr4δ2
4ρ3

2
)
I∗2 + 2 dr2

(
da

4δ2
4 +

16 da3diδ1δ2
3 + 36 da2di

2δ1
2δ2

2 + 6 da2dr
2δ1

2δ2
2 + da

2dr
2δ2

4 + 16 dadi3δ1
3δ2 +

8 dadidr2δ1
3δ2 + 8 dadidr2δ1δ2

3 + di
4δ1

4 + di
2dr

2δ1
4 + 6 di2dr2δ1

2δ2
2
))
T ∗reg

4 +
(
−

2 δ2ρ1
2ρ3

2
(
daδ1δ2ρ1

2 + 2 daδ2
2ρ1ρ3 + 2 diδ1

2ρ1
2 + 5 diδ1δ2ρ1

2 + 14 diδ1δ2ρ1ρ3 +

2 diδ2
2ρ1ρ3 + 12 diδ2

2ρ3
2 − drδ1δ2ρ1ρ3 − 2 drδ2

2ρ1ρ3
)
I∗6 + 2 ρ3ρ1

(
2 da2diδ1δ2

2ρ1
2 −

2 da2diδ2
3ρ1ρ3 − 7 da2drδ1δ2

2ρ1
2 + 4 dadi2δ1

2δ2ρ1
2 + 2 dadi2δ1δ2

2ρ1
2 − 30 dadi2δ1δ2

2ρ1ρ3 −

15 dadidrδ1
2δ2ρ1

2−4 dadidrδ1δ2
2ρ1

2 +20 dadidrδ2
3ρ3

2 +8 dadr2δ1δ2
2ρ1ρ3 +4 dadr2δ2

3ρ3
2−

4 di3δ1
2δ2ρ1

2 − 20 di3δ1
2δ2ρ1ρ3 − 2 di2drδ1

3ρ1
2 − 12 di2drδ1

2δ2ρ1
2 − 7 di2drδ1δ2

2ρ1
2 +

36 di2drδ1δ2
2ρ3

2 +6 didr2δ1
2δ2ρ1ρ3 +20 didr2δ1δ2

2ρ1ρ3 +12 didr2δ1δ2
2ρ3

2−2 didr2δ2
3ρ1ρ3 +

20 didr2δ2
3ρ3

2 + 3 dr3δ1δ2
2ρ3

2 − 4 dr3δ2
3ρ3

2
)
I∗4 +

(
2 da3di

2δ1δ2
2ρ1

2 − 4 da3didrδ2
3ρ1ρ3 −

4 da3dr
2δ1δ2

2ρ1
2 − 4 da3dr

2δ2
3ρ1ρ3 + 2 da2di

3δ1
2δ2ρ1

2 − 12 da2di
2drδ1δ2

2ρ1ρ3 −

8 da2didr
2δ1

2δ2ρ1
2 − 6 da2didr

2δ1δ2
2ρ1

2 − 36 da2didr
2δ1δ2

2ρ1ρ3 − 4 da2didr
2δ2

3ρ1ρ3 −

32 da2didr
2δ2

3ρ3
2 − 2 da2dr

3δ1δ2
2ρ1ρ3 + 4 da2dr

3δ2
3ρ1ρ3 − 4 dadi3drδ1

2δ2ρ1ρ3 −

4 dadi2dr2δ1
3ρ1

2 − 12 dadi2dr2δ1
2δ2ρ1

2 − 36 dadi2dr2δ1
2δ2ρ1ρ3 + 2 dadi2dr2δ1δ2

2ρ1
2 −

24 dadi2dr2δ1δ2
2ρ1ρ3 − 96 dadi2dr2δ1δ2

2ρ3
2 − 8 dadidr3δ1

2δ2ρ1ρ3 + 20 dadidr3δ1δ2
2ρ1ρ3 −

4 dadidr3δ2
3ρ1ρ3− 10 dadr4δ1δ2

2ρ3
2− 2 di3dr2δ1

3ρ1
2− 4 di3dr2δ1

3ρ1ρ3− 2 di3dr2δ1
2δ2ρ1

2−

12 di3dr2δ1
2δ2ρ1ρ3 − 32 di3dr2δ1

2δ2ρ3
2 − 2 di2dr3δ1

3ρ1ρ3 + 8 di2dr3δ1
2δ2ρ1ρ3 +

12 di2dr3δ1δ2
2ρ1ρ3 − 10 didr4δ1

2δ2ρ3
2 − 16 didr4δ2

3ρ3
2
)
I∗2 + 8 dr2

(
da

4diδ2
3 +

6 da3di
2δ1δ2

2 + da
3dr

2δ1δ2
2 + 6 di3δ1

2δ2da
2 + 3 da2didr

2δ1
2δ2 + da

2didr
2δ2

3 + dadi
4δ1

3 +

dadi
2δ1

3dr
2 + 3 dadi2δ1dr

2δ2
2 + di

3δ1
2δ2dr

2
))
T ∗reg

3 +
(
2 δ2

2ρ1
4ρ3

4I∗8− ρ1
2ρ3

2
(
da

2δ2
2ρ1

2 +

6 dadiδ1δ2ρ1
2 + 18 dadiδ2

2ρ1ρ3 + 2 dadrδ2
2ρ1ρ3 + 4 di2δ1

2ρ1
2 + 16 di2δ1δ2ρ1

2 +

40 di2δ1δ2ρ1ρ3 +di
2δ2

2ρ1
2 +20 di2δ2

2ρ1ρ3 +52 di2δ2
2ρ3

2 +4 didrδ1δ2ρ1ρ3−18 didrδ2
2ρ1ρ3 +

5 dr2δ2
2ρ3

2
)
I∗6 + 2 ρ1ρ3

(
2 da3diδ2

2ρ1
2 − da3drδ2

2ρ1
2 + 12 da2di

2δ1δ2ρ1
2 + da

2di
2δ2

2ρ1
2 +

3 da2di
2δ2

2ρ1ρ3 − 5 da2didrδ1δ2ρ1
2 − 2 da2didrδ2

2ρ1
2 + 4 da2dr

2δ2
2ρ1ρ3 + 4 dadi3δ1

2ρ1
2 +

6 dadi3δ1δ2ρ1
2 − 12 dadi3δ1δ2ρ1ρ3 − 8 dadi2drδ1δ2ρ1

2 + dadi
2drδ2

2ρ1
2 + 36 dadi2drδ2

2ρ3
2 +

14 dadidr2δ1δ2ρ1ρ3 + 12 dadidr2δ2
2ρ3

2 + 3 dadr3δ2
2ρ3

2 − 4 di4δ1
2ρ1ρ3 − 4 di3drδ1

2ρ1
2 −

7 di3drδ1δ2ρ1
2 + 28 di3drδ1δ2ρ3

2 + 3 di2dr2δ1
2ρ1ρ3 + 22 di2dr2δ1δ2ρ1ρ3 + 12 di2dr2δ1δ2ρ3

2 +

3 di2dr2δ2
2ρ1ρ3 + 36 di2dr2δ2

2ρ3
2 + 9 didr3δ1δ2ρ3

2 − 12 didr3δ2
2ρ3

2
)
I∗4 +

(
−

da
4di

2δ2
2ρ1

2 − da4dr
2δ2

2ρ1
2 − 2 da3di

3δ1δ2ρ1
2 − 12 da3di

2drδ2
2ρ1ρ3 − 6 da3didr

2δ1δ2ρ1
2 −

10 da3didr
2δ2

2ρ1ρ3 − 2 da3dr
3δ2

2ρ1ρ3 − da2di
4δ1

2ρ1
2 − 20 da2di

3drδ1δ2ρ1ρ3 −

7 da2di
2dr

2δ1
2ρ1

2 − 6 da2di
2dr

2δ1δ2ρ1
2 − 30 da2di

2dr
2δ1δ2ρ1ρ3 − 2 da2di

2dr
2δ2

2ρ1
2 −

12 da2di
2dr

2δ2
2ρ1ρ3 − 48 da2di

2dr
2δ2

2ρ3
2 − 16 da2didr

3δ1δ2ρ1ρ3 + 10 da2didr
3δ2

2ρ1ρ3 −

5 da2dr
4δ2

2ρ3
2 − 4 dadi4drδ1

2ρ1ρ3 − 4 dadi3dr2δ1
2ρ1

2 − 10 dadi3dr2δ1
2ρ1ρ3 −

2 dadi3dr2δ1δ2ρ1
2 − 24 dadi3dr2δ1δ2ρ1ρ3 − 64 dadi3dr2δ1δ2ρ3

2 − 10 dadi2dr3δ1
2ρ1ρ3 +
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16 dadi2dr3δ1δ2ρ1ρ3 − 12 dadi2dr3δ2
2ρ1ρ3 − 20 dadidr4δ1δ2ρ3

2 − di4dr2δ1
2ρ1

2 −

4 di4dr2δ1
2ρ1ρ3 − 8 di4dr2δ1

2ρ3
2 + 2 di3dr3δ1

2ρ1ρ3 + 4 di3dr3δ1δ2ρ1ρ3 − 5 di2dr4δ1
2ρ3

2 −

24 di2dr4δ2
2ρ3

2
)
I∗2 + 2 dr2

(
6 da4di

2δ2
2 + da

4dr
2δ2

2 + 16 da3di
3δ1δ2 + 8 da3didr

2δ1δ2 +

6 da2di
4δ1

2 + 6 da2di
2dr

2δ1
2 + 6 da2di

2dr
2δ2

2 + 8 dadi3dr2δ1δ2 + di
4dr

2δ1
2
))
T ∗reg

2 +(
8 diδ2ρ1

4ρ3
4I∗8 − 4 diρ1

2ρ3
2
(
da

2δ2ρ1
2 + 2 dadiδ1ρ1

2 + 6 dadiδ2ρ1ρ3 + 3 dadrδ2ρ1ρ3 +

2 di2δ1ρ1
2 +4 di2δ1ρ1ρ3 +di2δ2ρ1

2 +8 di2δ2ρ1ρ3 +12 di2δ2ρ3
2 +2 didrδ1ρ1ρ3−6 didrδ2ρ1ρ3 +

3 dr2δ2ρ3
2
)
I∗6 + 2 diρ1ρ3

(
4 da3diδ2ρ1

2 + da
3drδ2ρ1

2 + 5 da2di
2δ1ρ1

2 + 3 da2di
2δ2ρ1

2 +

8 da2di
2δ2ρ1ρ3 + 5 da2didrδ1ρ1

2 − 4 da2didrδ2ρ1
2 + 8 da2dr

2δ2ρ1ρ3 + 4 dadi3δ1ρ1
2 −

2 dadi2drδ1ρ1
2 + 3 dadi2drδ2ρ1

2 + 28 dadi2drδ2ρ3
2 + 8 dadidr2δ1ρ1ρ3 + 12 dadidr2δ2ρ3

2 +

9 dadr3δ2ρ3
2 − 2 di3drδ1ρ1

2 + 8 di3drδ1ρ3
2 + 8 di2dr2δ1ρ1ρ3 + 4 di2dr2δ1ρ3

2 +

8 di2dr2δ2ρ1ρ3 + 28 di2dr2δ2ρ3
2 + 6 didr3δ1ρ3

2 − 12 didr3δ2ρ3
2
)
I∗4 − 2 di

(
da

4di
2δ2ρ1

2 +

da
4dr

2δ2ρ1
2 + da

3di
3δ1ρ1

2 + 6 da3di
2drδ2ρ1ρ3 + 3 da3didr

2δ1ρ1
2 + 4 da3didr

2δ2ρ1ρ3 +

4 da3dr
3δ2ρ1ρ3 +4 da2di

3drδ1ρ1ρ3 +da
2di

2dr
2δ1ρ1

2 +4 da2di
2dr

2δ1ρ1ρ3 +2 da2di
2dr

2δ2ρ1
2 +

6 da2di
2dr

2δ2ρ1ρ3+16 da2di
2dr

2δ2ρ3
2+7 da2didr

3δ1ρ1ρ3−4 da2didr
3δ2ρ1ρ3+5 da2dr

4δ2ρ3
2+

dadi
3dr

2δ1ρ1
2 + 4 dadi3dr2δ1ρ1ρ3 + 8 dadi3dr2δ1ρ3

2− 2 dadi2dr3δ1ρ1ρ3 + 6 dadi2dr3δ2ρ1ρ3 +

5 dadidr4δ1ρ3
2 + 8 di2dr4δ2ρ3

2
)
I∗2 + 4 dadidr2

(
2 da3di

2δ2 + da
3dr

2δ2 + 2 da2di
3δ1 +

2 da2didr
2δ1 + 2 dadi2dr2δ2 + di

3dr
2δ1
))
T ∗reg + 8 di2ρ1

4ρ3
4I∗8 − di2ρ1

2ρ3
2
(
5 da2ρ1

2 +

8 dadiρ1ρ3 + 12 dadrρ1ρ3 + 4 di2ρ1
2 + 16 di2ρ1ρ3 + 16 di2ρ3

2 − 8 didrρ1ρ3 + 8 dr2ρ3
2
)
I∗6 +

2 di2ρ1ρ3
(
da

3diρ1
2 + 3 da3drρ1

2 + 2 da2di
2ρ1

2 + 4 da2di
2ρ1ρ3− da2didrρ1

2 + 5 da2dr
2ρ1ρ3 +

2 dadi2drρ1
2 + 8 dadi2drρ3

2 + 4 dadidr2ρ3
2 + 6 dadr3ρ3

2 + 4 di2dr2ρ1ρ3 + 8 di2dr2ρ3
2 −

4 didr3ρ3
2
)
I∗4 − di2

(
da

4di
2ρ1

2 + 2 da4dr
2ρ1

2 + 4 da3di
2drρ1ρ3 + 2 da3didr

2ρ1ρ3 +

6 da3dr
3ρ1ρ3 + 2 da2di

2dr
2ρ1

2 + 4 da2di
2dr

2ρ1ρ3 + 8 da2di
2dr

2ρ3
2 − 2 da2didr

3ρ1ρ3 +

5 da2dr
4ρ3

2 + 4 dadi2dr3ρ1ρ3 + 4 di2dr4ρ3
2
)
I∗2 + 2 da2di

2dr
2
(
da

2di
2 + da

2dr
2 + di

2dr
2
)
.

b4 = T ∗reg
8δ1

4δ2
4 + 4 δ1

3δ2
3 (daδ2 + diδ1)T ∗reg7 +

(
− δ1

2δ2
2
(
2 δ1

2ρ1
2 + 2 δ1δ2ρ1

2 +

6 δ1δ2ρ1ρ3 + δ2
2ρ1

2 + 4 δ2
2ρ3

2
)
I∗2 + 2 δ1

2δ2
2
(
3 da2δ2

2 + 8 dadiδ1δ2 + 3 di2δ1
2 + 2 dr2δ1

2 +

2 dr2δ2
2
))
T ∗reg

6 +
(
− 2 δ1δ2

(
3 daδ1

2δ2ρ1
2 + 2 daδ1δ2

2ρ1
2 + 8 daδ1δ2

2ρ1ρ3 + 4 daδ2
3ρ3

2 +

diδ1
3ρ1

2 + 3 diδ1
2δ2ρ1

2 + 8 diδ1
2δ2ρ1ρ3 + diδ1δ2

2ρ1
2 + 2 diδ1δ2

2ρ1ρ3 + 8 diδ1δ2
2ρ3

2 −

drδ1
2δ2ρ1ρ3−2 drδ1δ2

2ρ1ρ3−2 drδ2
3ρ1ρ3

)
I∗2 +4 δ1δ2

(
da

3δ2
3 +6 da2diδ1δ2

2 +6 dadi2δ1
2δ2 +

4 dadr2δ1
2δ2 + 2 dadr2δ2

3 + di
3δ1

3 + 2 didr2δ1
3 + 4 didr2δ1δ2

2
))
T ∗reg

5 +
(
2 ρ3δ2ρ1

(
4 δ1

3ρ1
2 +

4 δ1
2δ2ρ1ρ3 − 2 δ1δ2

2ρ1
2 + 6 δ1δ2

2ρ1ρ3 + 4 δ1δ2
2ρ3

2 − δ2
3ρ1ρ3 + 4 δ2

3ρ3
2
)
Y 4 +

(
−

7 da2δ1
2δ2

2ρ1
2 − 2 da2δ1δ2

3ρ1
2 − 14 da2δ1δ2

3ρ1ρ3 − 4 da2δ2
4ρ3

2 − 6 dadiδ1
3δ2ρ1

2 −

12 dadiδ1
2δ2

2ρ1
2− 42 dadiδ1

2δ2
2ρ1ρ3 + 2 dadiδ1δ2

3ρ1
2− 8 dadiδ1δ2

3ρ1ρ3− 32 dadiδ1δ2
3ρ3

2 +

2 dadrδ1
2δ2

2ρ1ρ3 + 8 dadrδ1δ2
3ρ1ρ3 − di2δ1

4ρ1
2 − 6 di2δ1

3δ2ρ1
2 − 14 di2δ1

3δ2ρ1ρ3 −

2 di2δ1
2δ2

2ρ1
2−12 di2δ1

2δ2
2ρ1ρ3−24 di2δ1

2δ2
2ρ3

2 +10 didrδ1
2δ2

2ρ1ρ3 +12 didrδ1δ2
3ρ1ρ3−
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dr
2δ1

4ρ1
2 − 2 dr2δ1

3δ2ρ1
2 − 6 dr2δ1

3δ2ρ1ρ3 − 3 dr2δ1
2δ2

2ρ1
2 − 2 dr2δ1

2δ2
2ρ1ρ3 −

10 dr2δ1
2δ2

2ρ3
2−2 dr2δ1δ2

3ρ1
2−6 dr2δ1δ2

3ρ1ρ3−8 dr2δ2
4ρ3

2
)
I∗2 +da4δ2

4 +16 da3diδ1δ2
3 +

36 da2di
2δ1

2δ2
2 + 24 da2dr

2δ1
2δ2

2 + 4 da2dr
2δ2

4 + 16 dadi3δ1
3δ2 + 32 dadidr2δ1

3δ2 +

32 dadidr2δ1δ2
3 + di

4δ1
4 + 4 di2dr2δ1

4 + 24 di2dr2δ1
2δ2

2 + dr
4δ1

4 + 4 dr4δ1
2δ2

2 +

dr
4δ2

4
)
T ∗reg

4 +
(
2 ρ3ρ1

(
10 daδ1

2δ2ρ1
2 − 2 daδ1δ2

2ρ1
2 + 8 daδ1δ2

2ρ1ρ3 + 4 daδ2
3ρ3

2 +

3 diδ1
3ρ1

2 + 3 diδ1
2δ2ρ1

2 + 6 diδ1
2δ2ρ1ρ3 − 2 diδ1δ2

2ρ1
2 + 20 diδ1δ2

2ρ1ρ3 + 12 diδ1δ2
2ρ3

2 −

2 diδ2
3ρ1ρ3 + 20 diδ2

3ρ3
2 + drδ1

3ρ1
2 − 2 drδ1

2δ2ρ1
2 − 5 drδ1δ2

2ρ1
2 + 3 drδ1δ2

2ρ3
2 −

4 drδ2
3ρ3

2
)
I∗4 +

(
− 4 da3δ1δ2

2ρ1
2 − 4 da3δ2

3ρ1ρ3 − 8 da2diδ1
2δ2ρ1

2 − 6 da2diδ1δ2
2ρ1

2 −

36 da2diδ1δ2
2ρ1ρ3 − 4 da2diδ2

3ρ1ρ3 − 16 da2diδ2
3ρ3

2 − 2 da2drδ1δ2
2ρ1ρ3 + 4 da2drδ2

3ρ1ρ3 −

4 dadi2δ1
3ρ1

2−12 dadi2δ1
2δ2ρ1

2−36 dadi2δ1
2δ2ρ1ρ3 +2 dadi2δ1δ2

2ρ1
2−24 dadi2δ1δ2

2ρ1ρ3−

48 dadi2δ1δ2
2ρ3

2 − 8 dadidrδ1
2δ2ρ1ρ3 + 20 dadidrδ1δ2

2ρ1ρ3 − 4 dadidrδ2
3ρ1ρ3 −

4 dadr2δ1
3ρ1

2− 4 dadr2δ1
2δ2ρ1

2− 16 dadr2δ1
2δ2ρ1ρ3− 4 dadr2δ1δ2

2ρ1
2− 4 dadr2δ1δ2

2ρ1ρ3−

20 dadr2δ1δ2
2ρ3

2 − 4 dadr2δ2
3ρ1ρ3 − 2 di3δ1

3ρ1
2 − 4 di3δ1

3ρ1ρ3 − 2 di3δ1
2δ2ρ1

2 −

12 di3δ1
2δ2ρ1ρ3 − 16 di3δ1

2δ2ρ3
2 − 2 di2drδ1

3ρ1ρ3 + 8 di2drδ1
2δ2ρ1ρ3 + 12 di2drδ1δ2

2ρ1ρ3 −

2 didr2δ1
3ρ1

2 − 4 didr2δ1
3ρ1ρ3 − 4 didr2δ1

2δ2ρ1
2 − 8 didr2δ1

2δ2ρ1ρ3 − 20 didr2δ1
2δ2ρ3

2 −

6 didr2δ1δ2
2ρ1

2 − 16 didr2δ1δ2
2ρ1ρ3 − 4 didr2δ2

3ρ1ρ3 − 32 didr2δ2
3ρ3

2 − 2 dr3δ1
3ρ1ρ3 +

4 dr3δ1
2δ2ρ1ρ3 + 2 dr3δ1δ2

2ρ1ρ3 + 4 dr3δ2
3ρ1ρ3

)
I∗2 + 4 da4diδ2

3 + 24 da3di
2δ1δ2

2 +

16 da3dr
2δ1δ2

2 + 24 di3δ1
2δ2da

2 + 48 da2didr
2δ1

2δ2 + 16 da2didr
2δ2

3 + 4 dadi4δ1
3 +

16 dadi2δ1
3dr

2+48 dadi2δ1dr
2δ2

2+4 dadr4δ1
3+8 dadr4δ1δ2

2+16 di3δ1
2δ2dr

2+8 didr4δ1
2δ2+

4 didr4δ2
3
)
T ∗reg

3 +
(
− ρ1

2ρ3
2
(
δ1

2ρ1
2 + 2 δ1δ2ρ1

2 + 6 δ1δ2ρ1ρ3 + δ2
2ρ1

2 + 2 δ2
2ρ1ρ3 +

5 δ2
2ρ3

2
)
I∗6+2 ρ3ρ1

(
8 da2δ1δ2ρ1

2−da2δ2
2ρ1

2+4 da2δ2
2ρ1ρ3+7 dadiδ1

2ρ1
2+2 dadiδ1δ2ρ1

2+

14 dadiδ1δ2ρ1ρ3 +2 dadiδ2
2ρ1

2 +12 dadiδ2
2ρ3

2 +3 dadrδ1
2ρ1

2−4 dadrδ1δ2ρ1
2−dadrδ2

2ρ1
2 +

3 dadrδ2
2ρ3

2 + 4 di2δ1
2ρ1

2 + 3 di2δ1
2ρ1ρ3 + 4 di2δ1δ2ρ1

2 + 22 di2δ1δ2ρ1ρ3 + 12 di2δ1δ2ρ3
2 +

di
2δ2

2ρ1
2 + 3 di2δ2

2ρ1ρ3 + 36 di2δ2
2ρ3

2 − didrδ1
2ρ1

2 − 7 didrδ1δ2ρ1
2 + 9 didrδ1δ2ρ3

2 −

2 didrδ2
2ρ1

2 − 12 didrδ2
2ρ3

2 + dr
2δ1

2ρ1ρ3 + 2 dr2δ1δ2ρ1ρ3 + 2 dr2δ1δ2ρ3
2 + 4 dr2δ2

2ρ1ρ3 +

3 dr2δ2
2ρ3

2
)
I∗4 +

(
− da4δ2

2ρ1
2 − 6 da3diδ1δ2ρ1

2 − 10 da3diδ2
2ρ1ρ3 − 2 da3drδ2

2ρ1ρ3 −

7 da2di
2δ1

2ρ1
2 − 6 da2di

2δ1δ2ρ1
2 − 30 da2di

2δ1δ2ρ1ρ3 − 2 da2di
2δ2

2ρ1
2 − 12 da2di

2δ2
2ρ1ρ3 −

24 da2di
2δ2

2ρ3
2−16 da2didrδ1δ2ρ1ρ3+10 da2didrδ2

2ρ1ρ3−6 da2dr
2δ1

2ρ1
2−2 da2dr

2δ1δ2ρ1
2−

14 da2dr
2δ1δ2ρ1ρ3 − 2 da2dr

2δ2
2ρ1

2 − 2 da2dr
2δ2

2ρ1ρ3 − 10 da2dr
2δ2

2ρ3
2 − 4 dadi3δ1

2ρ1
2 −

10 dadi3δ1
2ρ1ρ3−2 dadi3δ1δ2ρ1

2−24 dadi3δ1δ2ρ1ρ3−32 dadi3δ1δ2ρ3
2−10 dadi2drδ1

2ρ1ρ3 +

16 dadi2drδ1δ2ρ1ρ3 − 12 dadi2drδ2
2ρ1ρ3 − 4 dadidr2δ1

2ρ1
2 − 10 dadidr2δ1

2ρ1ρ3 −

6 dadidr2δ1δ2ρ1
2 − 16 dadidr2δ1δ2ρ1ρ3 − 40 dadidr2δ1δ2ρ3

2 − 10 dadidr2δ2
2ρ1ρ3 −

6 dadr3δ1
2ρ1ρ3 +8 dadr3δ1δ2ρ1ρ3−2 dadr3δ2

2ρ1ρ3−di4δ1
2ρ1

2−4 di4δ1
2ρ1ρ3−4 di4δ1

2ρ3
2 +

2 di3drδ1
2ρ1ρ3 + 4 di3drδ1δ2ρ1ρ3 − 3 di2dr2δ1

2ρ1
2 − 6 di2dr2δ1

2ρ1ρ3 − 10 di2dr2δ1
2ρ3

2 −
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6 di2dr2δ1δ2ρ1
2 − 14 di2dr2δ1δ2ρ1ρ3 − di2dr2δ2

2ρ1
2 − 12 di2dr2δ2

2ρ1ρ3 − 48 di2dr2δ2
2ρ3

2 +

2 didr3δ1
2ρ1ρ3 +10 didr3δ2

2ρ1ρ3−dr4δ1
2ρ3

2−5 dr4δ2
2ρ3

2
)
I∗2 +6 da4di

2δ2
2 +4 da4dr

2δ2
2 +

16 da3di
3δ1δ2 + 32 da3didr

2δ1δ2 + 6 da2di
4δ1

2 + 24 da2di
2dr

2δ1
2 + 24 da2di

2dr
2δ2

2 +

6 da2dr
4δ1

2 + 4 da2dr
4δ2

2 + 32 dadi3dr2δ1δ2 + 16 dadidr4δ1δ2 + 4 di4dr2δ1
2 + 4 di2dr4δ1

2 +

6 di2dr4δ2
2
)
T ∗reg

2 +
(
− 2 ρ1

2ρ3
2
(
daδ1ρ1

2 + 2 daδ2ρ1ρ3 + diδ1ρ1
2 + 2 diδ1ρ1ρ3 + 2 diδ2ρ1

2 +

6 diδ2ρ1ρ3 + 6 diδ2ρ3
2 + drδ1ρ1ρ3 − 2 drδ2ρ1ρ3

)
I∗6 + 2 ρ3ρ1

(
2 da3δ2ρ1

2 + 5 da2diδ1ρ1
2 +

da
2diδ2ρ1

2 + 8 da2diδ2ρ1ρ3 + 3 da2drδ1ρ1
2 − 2 da2drδ2ρ1

2 + 6 dadi2δ1ρ1
2 + 8 dadi2δ1ρ1ρ3 +

4 dadi2δ2ρ1
2 +12 dadi2δ2ρ3

2−2 dadidrδ1ρ1
2 +dadidrδ2ρ1

2 +9 dadidrδ2ρ3
2 +2 dadr2δ1ρ1ρ3 +

2 dadr2δ2ρ3
2 +3 di3δ1ρ1

2 +8 di3δ1ρ1ρ3 +4 di3δ1ρ3
2 +3 di3δ2ρ1

2 +8 di3δ2ρ1ρ3 +28 di3δ2ρ3
2−

di
2drδ1ρ1

2 + 6 di2drδ1ρ3
2 − 4 di2drδ2ρ1

2 − 12 di2drδ2ρ3
2 + 2 didr2δ1ρ1ρ3 + didr

2δ1ρ3
2 +

8 didr2δ2ρ1ρ3 +9 didr2δ2ρ3
2 +dr

3δ1ρ3
2−2 dr3δ2ρ3

2
)
I∗4 +

(
−2 da4diδ2ρ1

2−6 da3di
2δ1ρ1

2−

8 da3di
2δ2ρ1ρ3 − 8 da3didrδ2ρ1ρ3 − 4 da3dr

2δ1ρ1
2 − 4 da3dr

2δ2ρ1ρ3 − 2 da2di
3δ1ρ1

2 −

8 da2di
3δ1ρ1ρ3 − 4 da2di

3δ2ρ1
2 − 12 da2di

3δ2ρ1ρ3 − 16 da2di
3δ2ρ3

2 − 14 da2di
2drδ1ρ1ρ3 +

8 da2di
2drδ2ρ1ρ3−2 da2didr

2δ1ρ1
2−8 da2didr

2δ1ρ1ρ3−4 da2didr
2δ2ρ1

2−8 da2didr
2δ2ρ1ρ3−

20 da2didr
2δ2ρ3

2 − 6 da2dr
3δ1ρ1ρ3 + 4 da2dr

3δ2ρ1ρ3 − 2 dadi4δ1ρ1
2 − 8 dadi4δ1ρ1ρ3 −

8 dadi4δ1ρ3
2 + 4 dadi3drδ1ρ1ρ3 − 12 dadi3drδ2ρ1ρ3 − 6 dadi2dr2δ1ρ1

2 − 12 dadi2dr2δ1ρ1ρ3 −

20 dadi2dr2δ1ρ3
2 − 8 dadi2dr2δ2ρ1ρ3 + 4 dadidr3δ1ρ1ρ3 − 8 dadidr3δ2ρ1ρ3 − 2 dadr4δ1ρ3

2 −

2 di3dr2δ1ρ1
2 − 4 di3dr2δ1ρ1ρ3 − 2 di3dr2δ2ρ1

2 − 12 di3dr2δ2ρ1ρ3 − 32 di3dr2δ2ρ3
2 −

2 di2dr3δ1ρ1ρ3 +8 di2dr3δ2ρ1ρ3−10 didr4δ2ρ3
2
)
I∗2 +4 da4di

3δ2 +8 da4didr
2δ2 +4 da3di

4δ1 +

16 da3di
2dr

2δ1 + 4 da3dr
4δ1 + 16 da2di

3dr
2δ2 + 8 da2didr

4δ2 + 8 dadi4dr2δ1 + 8 dadi2dr4δ1 +

4 di3dr4δ2
)
T ∗reg+I∗8ρ1

4ρ3
4−ρ1

2ρ3
2
(
da

2ρ1
2+2 dadiρ1ρ3+2 dadrρ1ρ3+5 di2ρ1

2+12 di2ρ1ρ3+

8 di2ρ3
2−2 didrρ1ρ3+dr2ρ3

2
)
I∗6+2 ρ3ρ1

(
da

3diρ1
2+da3drρ1

2+3 da2di
2ρ1

2+5 da2di
2ρ1ρ3−

da
2didrρ1

2 +da2dr
2ρ1ρ3 +dadi3ρ1

2 +4 dadi3ρ3
2 +3 dadi2drρ1

2 +6 dadi2drρ3
2 +dadidr2ρ3

2 +

dadr
3ρ3

2+2 di4ρ1
2+4 di4ρ1ρ3+8 di4ρ3

2−di3drρ1
2−4 di3drρ3

2+5 di2dr2ρ1ρ3+6 di2dr2ρ3
2−

didr
3ρ3

2
)
I∗4+

(
−2 da4di

2ρ1
2−da4dr

2ρ1
2−2 da3di

3ρ1ρ3−6 da3di
2drρ1ρ3−2 da3didr

2ρ1ρ3−

2 da3dr
3ρ1ρ3− 2 da2di

4ρ1
2− 4 da2di

4ρ1ρ3− 4 da2di
4ρ3

2 + 2 da2di
3drρ1ρ3− 4 da2di

2dr
2ρ1

2−

6 da2di
2dr

2ρ1ρ3 − 10 da2di
2dr

2ρ3
2 + 2 da2didr

3ρ1ρ3 − da2dr
4ρ3

2 − 4 dadi4drρ1ρ3 −

2 dadi3dr2ρ1ρ3 − 6 dadi2dr3ρ1ρ3 − di4dr2ρ1
2 − 4 di4dr2ρ1ρ3 − 8 di4dr2ρ3

2 + 2 di3dr3ρ1ρ3 −

5 di2dr4ρ3
2
)
I∗2 + da

4di
4 + 4 da4di

2dr
2 + da

4dr
4 + 4 da2di

4dr
2 + 4 da2di

2dr
4 + di

4dr
4.

b6 = 2 δ1
2δ2

2
(
δ1

2 + δ2
2
)
T ∗reg

6 + 4 δ1δ2
(
2 daδ1

2δ2 + daδ2
3 + diδ1

3 + 2 diδ1δ2
2
)
T ∗reg

5 +
((
−

δ1
4ρ1

2 − 2 δ1
3δ2ρ1

2 − 6 δ1
3δ2ρ1ρ3 − 3 δ1

2δ2
2ρ1

2 − 2 δ1
2δ2

2ρ1ρ3 − 5 δ1
2δ2

2ρ3
2 − 2 δ1δ2

3ρ1
2 −

6 δ1δ2
3ρ1ρ3−4 δ2

4ρ3
2
)
I∗2 +12 da2δ1

2δ2
2 +2 da2δ2

4 +16 dadiδ1
3δ2 +16 dadiδ1δ2

3 +2 di2δ1
4 +

12 di2δ1
2δ2

2 + 2 dr2δ1
4 + 8 dr2δ1

2δ2
2 + 2 dr2δ2

4
)
T ∗reg

4 +
((
− 4 daδ1

3ρ1
2 − 4 daδ1

2δ2ρ1
2 −

16 daδ1
2δ2ρ1ρ3 − 4 daδ1δ2

2ρ1
2 − 4 daδ1δ2

2ρ1ρ3 − 10 daδ1δ2
2ρ3

2 − 4 daδ2
3ρ1ρ3 − 2 diδ1

3ρ1
2 −
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4 diδ1
3ρ1ρ3 − 4 diδ1

2δ2ρ1
2 − 8 diδ1

2δ2ρ1ρ3 − 10 diδ1
2δ2ρ3

2 − 6 diδ1δ2
2ρ1

2 − 16 diδ1δ2
2ρ1ρ3 −

4 diδ2
3ρ1ρ3− 16 diδ2

3ρ3
2− 2 drδ1

3ρ1ρ3 + 4 drδ1
2δ2ρ1ρ3 + 2 drδ1δ2

2ρ1ρ3 + 4 drδ2
3ρ1ρ3

)
I∗2 +

8 da3δ1δ2
2 + 24 da2diδ1

2δ2 + 8 da2diδ2
3 + 8 dadi2δ1

3 + 24 dadi2δ1δ2
2 + 8 dadr2δ1

3 +

16 dadr2δ1δ2
2 + 8 di3δ1

2δ2 + 16 didr2δ1
2δ2 + 8 didr2δ2

3
)
T ∗reg

3 +
(
2 ρ1ρ3

(
δ1

2ρ1
2 + δ1

2ρ1ρ3 +

4 δ1δ2ρ1
2 + 2 δ1δ2ρ1ρ3 + 2 δ1δ2ρ3

2 − δ2
2ρ1

2 + 4 δ2
2ρ1ρ3 + 3 δ2

2ρ3
2
)
I∗4 +

(
− 6 da2δ1

2ρ1
2 −

2 da2δ1δ2ρ1
2 − 14 da2δ1δ2ρ1ρ3 − 2 da2δ2

2ρ1
2 − 2 da2δ2

2ρ1ρ3 − 5 da2δ2
2ρ3

2 − 4 dadiδ1
2ρ1

2 −

10 dadiδ1
2ρ1ρ3 − 6 dadiδ1δ2ρ1

2 − 16 dadiδ1δ2ρ1ρ3 − 20 dadiδ1δ2ρ3
2 − 10 dadiδ2

2ρ1ρ3 −

6 dadrδ1
2ρ1ρ3 + 8 dadrδ1δ2ρ1ρ3 − 2 dadrδ2

2ρ1ρ3 − 3 di2δ1
2ρ1

2 − 6 di2δ1
2ρ1ρ3 − 5 di2δ1

2ρ3
2 −

6 di2δ1δ2ρ1
2 − 14 di2δ1δ2ρ1ρ3 − di2δ2

2ρ1
2 − 12 di2δ2

2ρ1ρ3 − 24 di2δ2
2ρ3

2 + 2 didrδ1
2ρ1ρ3 +

10 didrδ2
2ρ1ρ3 − 2 dr2δ1

2ρ1
2 − 2 dr2δ1

2ρ1ρ3 − 2 dr2δ1
2ρ3

2 − 2 dr2δ1δ2ρ1
2 − 6 dr2δ1δ2ρ1ρ3 −

dr
2δ2

2ρ1
2 − 2 dr2δ2

2ρ1ρ3 − 10 dr2δ2
2ρ3

2
)
I∗2 + 2 da4δ2

2 + 16 da3diδ1δ2 + 12 da2di
2δ1

2 +

12 da2di
2δ2

2 + 12 da2dr
2δ1

2 + 8 da2dr
2δ2

2 + 16 dadi3δ1δ2 + 32 dadidr2δ1δ2 + 2 di4δ1
2 +

8 di2dr2δ1
2 + 12 di2dr2δ2

2 + 2 dr4δ1
2 + 2 dr4δ2

2
)
T ∗reg

2 +
(
2 ρ1ρ3

(
2 daδ1ρ1

2 + 2 daδ1ρ1ρ3 +

2 daδ2ρ1
2 + 2 daδ2ρ3

2 + 3 diδ1ρ1
2 + 2 diδ1ρ1ρ3 + diδ1ρ3

2 + diδ2ρ1
2 + 8 diδ2ρ1ρ3 + 9 diδ2ρ3

2 +

drδ1ρ1
2 +drδ1ρ3

2−2 drδ2ρ1
2−2 drδ2ρ3

2
)
I∗4 +

(
−4 da3δ1ρ1

2−4 da3δ2ρ1ρ3−2 da2diδ1ρ1
2−

8 da2diδ1ρ1ρ3−4 da2diδ2ρ1
2−8 da2diδ2ρ1ρ3−10 da2diδ2ρ3

2−6 da2drδ1ρ1ρ3+4 da2drδ2ρ1ρ3−

6 dadi2δ1ρ1
2 − 12 dadi2δ1ρ1ρ3 − 10 dadi2δ1ρ3

2 − 8 dadi2δ2ρ1ρ3 + 4 dadidrδ1ρ1ρ3 −

8 dadidrδ2ρ1ρ3− 4 dadr2δ1ρ1
2− 4 dadr2δ1ρ1ρ3− 4 dadr2δ1ρ3

2− 4 dadr2δ2ρ1ρ3− 2 di3δ1ρ1
2−

4 di3δ1ρ1ρ3 − 2 di3δ2ρ1
2 − 12 di3δ2ρ1ρ3 − 16 di3δ2ρ3

2 − 2 di2drδ1ρ1ρ3 + 8 di2drδ2ρ1ρ3 −

2 didr2δ1ρ1
2 − 4 didr2δ1ρ1ρ3 − 2 didr2δ2ρ1

2 − 8 didr2δ2ρ1ρ3 − 20 didr2δ2ρ3
2 − 2 dr3δ1ρ1ρ3 +

4 dr3δ2ρ1ρ3
)
Y 2 + 4 da4diδ2 + 8 da3di

2δ1 + 8 da3dr
2δ1 + 8 da2di

3δ2 + 16 da2didr
2δ2 +

4 dadi4δ1 + 16 dadi2dr2δ1 + 4 dadr4δ1 + 8 di3dr2δ2 + 4 didr4δ2
)
T ∗reg − ρ1

2ρ3
2
(
ρ1 + ρ3

)2
I∗6 +

2 ρ1ρ3
(
da

2ρ1
2 + da

2ρ1ρ3 + dadiρ1
2 + dadiρ3

2 + dadrρ1
2 + dadrρ3

2 + 3 di2ρ1
2 + 5 di2ρ1ρ3 +

6 di2ρ3
2−didrρ1

2−didrρ3
2 +dr2ρ1ρ3 +dr2ρ3

2
)
Y 4 +

(
−da4ρ1

2−2 da3diρ1ρ3−2 da3drρ1ρ3−

4 da2di
2ρ1

2 − 6 da2di
2ρ1ρ3 − 5 da2di

2ρ3
2 + 2 da2didrρ1ρ3 − 2 da2dr

2ρ1
2 − 2 da2dr

2ρ1ρ3 −

2 da2dr
2ρ3

2 − 2 dadi3ρ1ρ3 − 6 dadi2drρ1ρ3 − 2 dadidr2ρ1ρ3 − 2 dadr3ρ1ρ3 − di4ρ1
2 −

4 di4ρ1ρ3−4 di4ρ3
2 +2 di3drρ1ρ3−2 di2dr2ρ1

2−6 di2dr2ρ1ρ3−10 di2dr2ρ3
2 +2 didr3ρ1ρ3−

dr
4ρ3

2
)
I∗2 + 2 da4di

2 + 2 da4dr
2 + 2 da2di

4 + 8 da2di
2dr

2 + 2 da2dr
4 + 2 di4dr2 + 2 di2dr4.

b8 =
(
δ1

4 + 4 δ1
2δ2

2 + δ2
4
)
T ∗reg

4 +
(
4 daδ1

3 + 8 daδ1δ2
2 + 8 diδ1

2δ2 + 4 diδ2
3
)
T ∗reg

3 +
((
−

2 δ1
2ρ1

2− 2 δ1
2ρ1ρ3− δ1

2ρ3
2− 2 δ1δ2ρ1

2− 6 δ1δ2ρ1ρ3− δ2
2ρ1

2− 2 δ2
2ρ1ρ3− 5 δ2

2ρ3
2
)
I∗2 +

6 da2δ1
2 + 4 da2δ2

2 + 16 dadiδ1δ2 + 4 di2δ1
2 + 6 di2δ2

2 + 4 dr2δ1
2 + 4 dr2δ2

2
)
T ∗reg

2 +
((
−

4 daδ1ρ1
2 − 4 daδ1ρ1ρ3 − 2 daδ1ρ3

2 − 4 daδ2ρ1ρ3 − 2 diδ1ρ1
2 − 4 diδ1ρ1ρ3 − 2 diδ2ρ1

2 −

8 diδ2ρ1ρ3 − 10 diδ2ρ3
2 − 2 drδ1ρ1ρ3 + 4 drδ2ρ1ρ3

)
I∗2 + 4 da3δ1 + 8 da2diδ2 + 8 dadi2δ1 +
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8 dadr2δ1 + 4 di3δ2 + 8 didr2δ2
)
T ∗reg + 2 ρ1ρ3

(
ρ1

2 + ρ3ρ1 + ρ3
2
)
I∗4 +

(
− 2 da2ρ1

2 −

2 da2ρ1ρ3−da2ρ3
2− 2 dadiρ1ρ3− 2 dadrρ1ρ3− 2 di2ρ1

2− 6 di2ρ1ρ3− 5 di2ρ3
2 + 2 didrρ1ρ3−

dr
2ρ1

2 − 2 dr2ρ1ρ3 − 2 dr2ρ3
2
)
I∗2 + da

4 + 4 da2di
2 + 4 da2dr

2 + di
4 + 4 di2dr2 + dr

4.

b10 =
(
2 δ1

2 + 2 δ2
2
)
T ∗reg

2 +
(
4 daδ1 + 4 diδ2

)
Treg∗ −

(
ρ1 + ρ3

)2
I∗2 + 2 da2 + 2 di2 + 2 dr2.
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Appendix B

Construction of equivalent SDDE

models

Using the method which is presented by Allen et al. [206] we show that in what

conditions two different SDDE systems are equivalent.

Consider the two following Itô SDDE systems

dX(t) =f (X(t),X(t− τ1), . . . ,X(t− τr), t) dt

+G (X(t),X(t− τ1), . . . ,X(t− τr), t) dW(t), (B.1)

and

dX∗(t) =f (X∗(t),X∗(t− τ1), . . . ,X∗(t− τr), t) dt

+B (X∗(t),X∗(t− τ1), . . . ,X∗(t− τr), t) dW∗(t), (B.2)

whereX(t) = [X1(t), X2(t), . . . , Xn(t)]T ,X∗(t) = [X∗1 (t), X∗2 (t), . . . , X∗n(t)]T ,W(t) =

[W1(t),W2(t), . . . ,Wm(t)]T , W∗(t) = [W ∗
1 (t),W ∗

2 (t), . . . ,W ∗
n(t)]T , also G and B are

related through the n× n matrix V , where V = GGT and B = V
1/2. Notice that V

and B are symmetric positive semidefinite matrices and V = BBT .

Finding the delay Fokker-Planck equation shows that solutions to (B.1) and

(B.2) have the same probability distribution. Moreover, a sample path solution of

one equation is also a sample path of the second one, i.e. given a Wiener trajectory

W(t) with the sample path solution X(t) to (B.1), there exist a Wiener trajectory
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W∗(t) with the sample path solution X∗(t) = X(t) to (B.2) and vice versa.

Now assume that a Wiener trajectory W(t) for 0 ≤ t ≤ T with the sample path

solution X(t) to (B.1) is given. Consider the following singular value decomposition

G(X(t),X(t− τ1), . . . ,X(t− τr), t) = G(t) = P (t)D(t)Q(t)

for 0 ≤ t ≤ T , where P (t) and Q(t) are orthogonal matrices of sizes n×n andm×m,

respectively, and D(t) is a n×m matrix with d ≤ n positive diagonal entries. since

V (t) = G(t)G(t)T = P (t)D(t)D(t)TP (t)T = (B(t))2,

then B(t) = P (t)
(
D(t)D(t)T

)1/2
P (t)T . The Wiener trajectory W∗(t) is defined as

W∗(t) =
t∫

0

P (s)
((
D(s)D(s)T

)1/2
)+
D(s)Q(s)dW(s) +

t∫
0

P (s)dW∗∗(s)

for 0 ≤ t ≤ T , where W∗∗(s) is a vector of length n with the first d entries equal

to zero and the next n − d entries independent Wiener processes, and (·)+ is the

pseudoinverse (If Σ is a n × m matrix with the only nonzero entries Σii for i =

1, 2, . . . , d, where d ≤ n ≤ m, then Σ+ is a m × n matrix with the only nonzero

entries (Σ+)ii = (Σii)−1 for i = 1, 2, . . . , d). It is clear that E(W∗(t)(W∗(t))T ) = tIn,

where In is the n × n identity matrix. Now if we substitute X(t) in the diffusion

term of (B.2), then

B(X(t),X(t−τ1), . . . ,X(t− τr), t)dW∗(t)

= B(t)
(
P (t)

((
D(t)D(t)T

)1/2
)+
D(t)Q(t)dW(t) + P (t)dW∗∗(t)

)
= G (X(t),X(t− τ1), . . . ,X(t− τr), t) dW(t).

Hence, X(t) is a sample path solution of (B.2).

Conversely, assume that a Wiener trajectory W∗(t) for 0 ≤ t ≤ T with the

sample path solution X∗(t) to (B.2) is given. Consider the following singular value

decomposition

G(X∗(t),X∗(t− τ1), . . . ,X∗(t− τr), t) = G(t) = P (t)D(t)Q(t)
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for 0 ≤ t ≤ T , where P (t) and Q(t) are orthogonal matrices of sizes n×n andm×m,

respectively, and D(t) is a n×m matrix with d ≤ n positive diagonal entries. The

Wiener trajectory W(t) is defined as

W(t) =
t∫

0

Q(s)TD(s)+
(
D(s)D(s)T

)1/2
P (s)TdW∗(s) +

t∫
0

Q(s)TdW∗∗∗(s)

for 0 ≤ t ≤ T , where W∗∗∗(s) is a vector of length m with the first d entries equal

to zero and the next m− d entries independent Wiener processes. In a similar way

we can show that X∗(t) is a sample solution of (B.1). Therefore, solutions to SDDE

systems (B.1) and (B.2) have the same probability distribution, and a sample path

solution of one system is a sample path solution of the other one, i.e. these two

systems are equivalent.
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