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Summary

In this thesis, a full repertoire of model formulation, model analysis, numerical

analysis, sensitivity analysis and Bayesian method for parameter identification are

presented, that seek to describe faithfully the temporal dynamics of GEF–Rho–

Myosin signalling pathway as observed experimentally. The thesis is based on rig-

orous mathematical and numerical analysis to provide robust models and numerical

results that exhibit the temporal dynamics as observed in experiments. We also

explore the effect of spatial inhomogeneity on two of the models formulated. The

modelling is based on experimental observations, and therefore three different math-

ematical models are formulated from first principles depending on the constitutive

laws for the interaction between chemical species, entailing that new mathematical

models are obtained. Detailed mathematical analysis of the stability of uniform

steady states using nullcline theory, linear stability theory and sign pattern analysis

is carried out, to characterise mathematically the key temporal dynamics of stabil-

ity, oscillations, excitability and bistability as observed in experiments. Numerical

bifurcation analysis using Matcont and numerical simulations carried using MAT-

LAB illustrate theoretical analytical results through parameter variations for the

key temporal dynamics. Rigorous sensitivity analysis provides a powerful tool for

investigating the effects of parameter variations through local and global sensitivity.
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In particular, we use local sensitivity theory to characterise the limit cycle behaviour

of an oscillatory dynamical system in terms of parameter variations and therefore,

the thesis provides premises to characterise or study amplitude and period sensitiv-

ity to parameter variations. A full Bayesian approach is applied to the model for the

identification of parameters that best-fits the model to experimental results. There-

fore, the thesis provides a new framework for incorporating prior knowledge about

parameters, which results in obtaining full probability distribution for parameters.

Finally, the thesis explores and studies the spatially extended version on the ODE

models. We analyse the existence of Turing instability for some parameter values.

This proof-of-concept set premises to extend the temporal models to include spatial

variations in the form of coupled bulk-surface reaction-diffusion systems through

compartmentalisation of the spatial domain.
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Chapter 1

Introduction

1.1 Biological motivation

Cell migration plays a very crucial role in the development and maintenance of mul-

ticellular organisms. Many processes in the body require the migration of cells, i.e.

wound healing, germ cell migration during embryonic development and angiogen-

esis. The migrating cell is highly polarised with complex regulatory pathways that

spatially and temporally integrate its components (Drubin and Nelson, 1996; Ridley

et al., 2003; Guilluy et al., 2011). In the polarisation process, the cellular symmetry

is broken, causing the cell to have a well defined front and back. This process might

be spontaneous or caused by external stimuli (Andrew and Insall, 2007; Graessl

et al., 2017; Cusseddu et al., 2018). Failure of cells to migrate may lead to many

effects like ineffective wound repair. Cell migration also drives disease progression

in cancer, mental retardation, atherosclerosis, metastasis of tumours and arthritis

(Ridley et al., 2003). Therefore, understanding and controlling cell migration will

have major clinical impacts.

Cell migration is a cyclic multi-step process. This process consists of: Actin poly-

merization dependent pseudopod protrusion at the leading edge of the cell; integrin-

mediated adhesion to extracellular matrix (ECM); contact-dependent ECM cleavage

by cell surface proteases; actomyosin-mediated contraction of the cell body which

increases longitudinal tension; and rear retraction and translocation of the cell body

(Ridley et al., 2003; Friedl and Alexander, 2011; Wolf et al., 2013). Cells migrate in
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several different ways depending on their environment. The environment includes

ECM composition, interactions with other cells, and the chemical stimuli (Ridley,

2015). Migration occurs either as single cells or groups of cells (Friedl et al., 2012).

For all types of cell migration, Rho GTPases play a key role, but the relative con-

tribution of each Rho GTPase depends on the environment, cell type and nature

of migration (Ridley, 2015). Rho GTPases were first identified to have key roles in

cell migration around 1995 (Ridley et al., 1995). In this thesis we study the activity

dynamics of Ras homolog gene family member A, also called RhoA (hence Rho)

linked to cellular contractility. Rho GTPases have been identified to play a key role

in cell migration, particularly Rho plays a key role in cellular contractility. In the

next section, we discuss the contributions of Rho GTPases to cell migration.

1.1.1 The role of Rho GTPases

The Rho family of small GTPases are key regulators of several cellular processes.

These processes include cytoskeleton organisation, cell adhesion, migration, polarity

and division (Etienne-Manneville and Hall, 2002; Jaffe and Hall, 2005; Heasman and

Ridley, 2008; Yi et al., 2016). There are 20 Rho GTPase genes in humans, but the

best studied Rho GTPases are Rho, Rac and Cdc42, which are the most highly

conserved Rho family members across eukaryotic species, being found in plants,

fungi and animals (Boureux et al., 2006). During cell migration, Rac and Cdc42

mostly concentrate their activities at the cell front and control the protrusive actin

network. Rho, on the other hand, is mostly active at the rear and regulates focal

adhesion dynamics, stress fibre assembly and cellular contractility (Ohashi et al.,

2017; Wu et al., 2012; Mayor and Carmona-Fontaine, 2010). See Figure 1.1 (Wu

et al., 2012), for roles of GTPases in cell migration. The figure shows a migrating

cell and contributions of Rho, Cdc42 and Rho to the migration.

RhoA is a small GTPase protein of Rho family, that exists in guanosine diphosphate

(GDP)-bound (inactive) and the guanosine triphosphate (GTP)-bound (active) con-

formal states. The Rho family members act as molecular switches, cycling between

active and inactive conformal states. The cycling is mediated by guanine nucleotide

exchange factors (GEFs) and GTPase-activating proteins (GAPs) (Raftopoulou and

Hall, 2004). GEFs activate Rho while GAPs inactivate them. Both active and inact-
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Figure 1.1: Roles of Rho GTPases; Rho, Rac and Cdc42 in cell migration.

ive conformal states of Rho GTPases reside on the cell membrane, but sometimes the

inactive molecule is found in the cell cytosol attached to guanosine nucleotide disso-

ciation inhibitor (GDI). They prevent Rho GTPases’ association with cell membrane

(DerMardirossian and Bokoch, 2005; Garcia-Mata et al., 2011; Hodge and Ridley,

2016).

Figure 1.2 shows cycling of GTPases between the active and inactive conformal

states. While GAPs inactivates RhoA by enhancing the intrinsic GTP-hydrolysis

activity. Some RhoA family members are GTPase deficient and hence bind GTP

constitutively, but little is known about their regulation. The figure also shows the

positive feedback loop between GEF and GTPases, which shows that Rho GTPases

increase their activities by activating their activators. The inactive GTPases are

also attached to the GDI which prevents them from attaching to the cell membrane.

We discuss some of the roles of Rho GTPases in relation to cell migration:

Lamellipodia-driven cell migration. The plasma membrane extension in lamellipo-

dia is predominantly driven by Rac induced actin polymerisation, and there-

fore local Rac activation is sufficient for cell to migrate in vivo (Montell et al.,

2012; Faroudi et al., 2010). For effective cell migration, the protrusions have

to be limited to one part of the cell membrane (Ridley, 2015).
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Figure 1.2: Rho GTPase dynamics. Rho GTPases cycle between active and inactive states.

Both active and inactive conformal states reside on the cell membrane, but sometimes the inactive

molecule is found in the cell cytosol attached to GDI.

RhoA and Cdc42 contribute to lamellipodia extension (Machacek et al., 2009;

Heasman et al., 2010). RhoA is activated at the front of lamellipodium (Heas-

man et al., 2010), it is thought that it activates formins which nucleates actin

filaments at the leading edge of the lamellipodium but this is yet to be proved

(Ridley, 2015). Cdc42 contributes to establishing cell migratory polarity and

migratory persistence. It can localise Rac activity through multiple potentially

synergistic pathways (Etienne-Manneville, 2004). Feedback loops involving

Rho/Rho-associated protein kinase (ROCK) and actomyosin contractility are

believed to turn off lamellipodia in other regions of the cell, and therefore

reducing RhoA or ROCK activity can lead to multiple or larger lamellipodia

formation (Vega et al., 2011).

Filopodia and cell migration. Cdc42 is the best characterised Rho GTPase involved

in filopodium formation, they act predominantly through formins (Kühn and

Geyer, 2014). Several other Rho GTPases can induce filopodia formation

under different conditions and contexts, examples are shown in (Bornschlögl,

2013; Fan and Mellor, 2012; Gad et al., 2012).

Filopodia are implicated in directed cell migration and neuronal guidance

(Moshfegh et al., 2014). They can also mediate initial cell–cell contact when

epithelial cells move towards each other (Khurana and George, 2011), and are
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observed in the leading cells during angiogenesis (Wakayama et al., 2015). Re-

cent studies have shown that filopodia are important for both lamellipodium-

driven and bleb-driven migration in vivo, see examples discussed (Mayor and

Theveneau, 2013; Boer et al., 2015).

Blebbing and cell migration. Bleb-based migration is driven by cortical actomy-

osin contractility, and is associated with RhoA/ROCK signalling (Charras and

Paluch, 2008). Bleb-based migration is rarely observed in 2D culture condi-

tions, but is frequently observed in vivo and in confined environments or on

low-adhesion 3D systems in vitro (Ridley, 2015). In vivo, cells can transform

quickly between bleb-based migration and filopodium-based migration. This

reflects their adaptation to variation in the ECM structure, for example as

shown in Row et al. (2011).

Collective cell migration. Many cells migrate collectively during development.

They include epithelial cells, endothelial cells and neural crest cells (Etienne-

Manneville, 2014). This is driven by lamellipodia and filopodia in the leading

cell and their suppression on all the rest of the follower cells (Cai et al., 2014).

Besides Rho GTPases, the other contributors to cellular migration are Myosins,

composed of Myosin-IIA and MYO9B. Therefore, in the next section we discuss the

role of Myosin to cellular migration, particularly in relation to cellular contractility.

1.1.2 The role of Myosin in cell migration

Myosins are a large family of structurally diverse molecular motors (Togo and Stein-

hardt, 2004). In this thesis, our focus is on Myosin-IIA and Myosin-9b (MYO9B).

These two myosins inhibit Rho activities. Myosin-IIA inhibit GEF-H1 activities

(Nalbant et al., 2009), thereby inhibiting RhoA, while MYO9B is a GAP for RhoA

(see Figure 1.2) (Hanley et al., 2010; Kong et al., 2015; Yi et al., 2016).

The role of Myosin-IIA in cell migration

Non muscle Myosin-II is composed of three distinct isoforms, referred to as Myosin-

IIA, Myosin-IIB and Myosin-IIC (Simons et al., 1991; Togo and Steinhardt, 2004;

Even-Ram et al., 2007). They have distinct roles in cell contractility, cytokinesis
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and locomotion. However, the specific contribution of each of the isoforms is not

yet classified. Myosin-II contains pairs of myosin heavy chains (MHCs), regulatory

myosin light chains (MLCs), and essential MLCs that assemble into bipolar filaments

with actin-stimulated ATPase activity (Lee et al., 2010). Myosin-IIA is associated

with Rho kinase-dependent functions (Sandquist et al., 2006). Myosin-II has been

shown to bind and inhibit the Dbi family GEFs (these are GEFs characterised by

the presence of a Dbi homology (DH) catalytic domain, followed by an adjacent

pleckstrin homology (PH) domain) (Lee et al., 2010). The study in there shows

that binding to GEFs required the assembly of Myosin-II into filaments and actin-

stimulated ATPase activity. Binding to Myosin-II suppressed GEF activity and

accordingly inhibition of Myosin-II ATPase activity caused the release of GEFs and

hence activating RhoA.

Rho GTPases regulate Myosin-II through multiple pathways (Somlyo and Somlyo,

2000), for example ROCK activates Myosin-II and increase contractility whereas

Rac1 and its effector PAK negatively regulate Myosin-II and decrease contractility

(Lee et al., 2010). We have described Myosin-II in general, however in this thesis

we only consider Myosin-IIA which is used in experiments (Graessl et al., 2017).

The role of Myosin-9b in cell migration

Mammalian class IX myosins consist of MYO9A and MYO9B, they are single-

headed molecular motors which contain a Rho-specific GAP domain in the tail

region. MYO9B is predominantly expressed in the immune system (Wirth et al.,

1996). Therefore, it contributes to the regulation of rapid cell shape changes and

motility, this is paramount for host defence. MYO9B has been shown to turn off

RhoA in vitro and therefore this Rho GAP, MYO9B is required for spatially co-

ordinated membrane protrusions and retractions, the elementary events underlying

shape changes and directional motility (Hanley et al., 2010).

We have seen that Rho GTPases are activated by GEFs, in particular GEF-H1

is a candidate molecule for cellular contractility, it activates RhoA (Rho) as well

as being inhibited Myosin-IIA. In the next subsection, we therefore discuss on the

contribution of GEF-H1 to cellular contractility.
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1.1.3 Guanine nucleotide exchange factor-H1 (GEF-H1)

There are several GEFs in the human genome. They are encoded into two distinct

gene families, called the Dbi and the DOCK families (Rossman et al., 2005; Meller

et al., 2005). The Dbi family is characterised by the presence of a Dbi homology

(DH) catalytic domain, followed by an adjacent pleckstrin homology (PH) domain

(Rossman et al., 2005).

GEF-H1 belongs to the Dbi family of GEFs. They activate RhoA by phosphoryla-

tion and they promote the exchange of GTP for GDP. The studies in Rossman

et al. (2005); Nalbant et al. (2009) found that RhoA is activated at the leading

edge of motile cells by an unknown mechanism to control stress fibres assembly,

contractility and focal adhesion dynamics. RhoA is activated by the microtubule-

associated guanine nucleotide exchange factor GEF-H1 when they are released from

microtubules to initiate RhoA/Rho kinase/Myosin light chain signalling pathway.

This pathway controls cellular contractility. GEF-H1 has also been shown to be a

component in tight junctions, and hence its importance in the integrity of cell to

cell adhesions (Benais-Pont et al., 2003; Nalbant et al., 2009).

GEF-H1 activates RhoA when they are in active form, in their inactive form, GEF-

H1 are bound to microtubules, and the microtubule disassembly results in their

activation hence leading to the activation of RhoA. Catalytic activity of GEF-H1 is

negatively regulated when bound to microtubules (Ren et al., 1998; Krendel et al.,

2002) and therefore microtubule depolymerisation mediates cellular contractility.

Regulation of GEF-H1 is a complex process involving a multitude of phosphorylation

on the activating and inactivating sites, several kinases have been shown to inhibit

GEF-H1 by phophorylating its inhibitory sites. GEF-H1 is inhibited by Myosin-IIA

and in turn activated by RhoA. From Lee et al. (2010), it is revealed that Myosin

regulates multiple Dbi family members through direct binding, which controls their

activity and localisation in migrating cells.
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1.2 Experimental observations and results

In this section, we describe the experimental observations carried out in the labor-

atories of our collaborators from the University of Duisburg-Essen (UDE) and Max

Planck Institute of Molecular Physiology (MPI). These results are presented in

Graessl et al. (2017) and Kamps et al. (2019). Their experimental set up focuses on

the role of Rho in regulating contraction in adherent cells by simultaneous imaging

of endogenous Rho activity and Myosin-II dynamics.

First to investigate the casual link between Rho and GEF-H1, a light pulse was used

to uncage a chemical dimerizer which is covalently linked to a plasma membrane

anchor. This technique is used to induce targeting of Escherichia coli dihydrofolate

reductase (eDHFR) fusion proteins of Rho to plasma membrane and then use Total

Internal Reflection Fluorescence (TIRF) microscopy to measure how plasma mem-

brane targeting of these eDHFR fusion proteins affect Rho activity. In this analysis,

it was observed that GEF-H1 was co-recruited together with Rho constructs and the

Rho activity sensor, which demonstrates the existence of a clear casual link between

Rho activity and GEF-H1 membrane localisation. This means that local increase

in Rho activity leads to increased plasma membrane recruitment of GEF-H1.

To investigate the mechanism of Rho self-inhibition, actin and Myosin were hy-

pothesised to be potential candidates which act as platforms to recruit inhibitors

due to their significant delays. Indeed there exists a strong spatio-temporal cross-

correlation between Rho activity and localisation of inactive mutants of the actin-

associated Rho-specific GAP, Myo9b. Using those mutants, they observed signi-

ficant delays in the plasma membrane association of the GAPs after Rho activity

peaks, suggesting that they act downstream of Rho activity. Based on these exper-

imental observations and the known interaction activity with Myosin-IIA (Nalbant

et al., 2009; Lee et al., 2010), it was hypothesised that GEF, Rho and Myosin self

reorganise to form an activator-inhibitor network as shown in Figure 1.3. The figure

shows basic interactions of GEF, Rho and Myosin. In this set up, Rho recruits

both its activator (GEF), and its inhibitor (Myosin). For the model formulation in

Chapter 2, we consider both active and inactive molecules of GEF-H1, RhoA and

Myosin.
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Figure 1.3: An activator-inhibitor network for RhoA-Myosin signaling pathway. Red represents

activation of Myosin by RhoA, green represents inhibition of RhoA activity by myosin and blue

represents RhoA positive feedback loop through GEF-H1.

1.3 Review of mathematical models of activator-

inhibitor type

This section focusses on the review of mathematical models composed of positive

and slow negative feedback mechanism which are characterised by the excitable

dynamics. It was shown that an excitable medium is composed of a component

that regulates its activities by recruiting both its activator and inhibitor. Such

systems when coupled spatially via diffusion can generate propagating wave fronts

of excited signal activity (Iglesias and Devreotes, 2012). Activator provides positive

feedback loop while the inhibitor provides negative feedback loop. We will review

some models that exhibit these dynamics.

Local contractile forces are generated by the cells to probe and react to changes in

mechanical properties of their environments, it has been revealed that those con-

tractile forces are regulated by Rho/Myosin-based signal networks (Graessl et al.,

2017). These networks can generate excitable system dynamics via a combination

of positive and negative feedback mechanism. In Graessl et al. (2017), it was found

that a combination of Rho self-amplification through GEF-H1 and Myosin inhibi-

tion leads to pulsatile and cell contraction dynamics. This is the characteristic of an

excitable medium which is composed of a component that regulates its activities by
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recruiting both its activator and an inhibitor (Murray, 2002; Iglesias and Devreotes,

2012).

In multicellular organisms, cell migration involves coordinated cell protrusions and

contraction (Burnette et al., 2011). There have been several studies which show

that an excitable signaling network controls cellular protrusion (Xiong et al., 2010;

Yang et al., 2015; van Haastert et al., 2017; Miao et al., 2017; Barnhart et al.,

2017). However, the role of excitability in controlling cellular contractions is still

not clear (Graessl et al., 2017). It has been suggested that Rho is the key candidate

in spatio-temporal regulation of the signaling pathway that drives cellular contractil-

ity (Graessl et al., 2017). The study here-in suggests an existence of an activator-

inhibitor network that is coupled to matrix elasticity to control cell contraction

dynamics; in this network Rho amplifies its activity via a positive feedback loop

through the GEF-H1, this module is coupled to a negative feedback loop composed

of MYO9B or Myosin-IIA (collectively called Myosin) associated Rho inhibition as

shown in Figure 1.3. The experimental results of this signalling network show spon-

taneous emergence of pulses and propagating waves of RhoA(Rho) activity (Graessl

et al., 2017; Kamps et al., 2019). Furthermore it has been shown that the dynamics

of this network are regulated by the associated regulators (GEF-H1). It was also

shown that reactions involving GEF-H1 occur more rapidly than Myosin activation

which occurs with delay of between 3–40 seconds. Therefore these Myosin activities

provide a slow negative feedback. The analysis of GEF–Rho–Myosin signalling net-

work and experimental results showed that the GEF activity and also interaction

between GEF-H1 and GTP RhoA are key for generating Rho activity dynamics

(Graessl et al., 2017), this confirms that the GEF-H1 parameters are responsible for

having Rho observed dynamics.

Since many years ago, ordinary differential equations (ODEs) have been used in

physical and life sciences to describe the temporal dynamics of a dynamical system

(Murray, 2002, 2003; Edelstein-Keshet, 1988). There have been several research

that used ODEs to model regulatory networks, An example can be found in Tyson

et al. (2001, 2003). Differential equations provide a convenient way of expressing

the meaning of molecular wiring diagram in a computer readable form (Bray, 1995;

Csikász-Nagy et al., 2006). This method has been used in many areas to create
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mathematical models of cell eukaryotic cycle (Novak and Tyson, 1993, 1995; Gonze

and Goldbeter, 2001). An example can be found in Tyson et al. (2003) about the

activator-inhibitor model network that was used to describe a response element R

that auto-catalytically amplifies itself by phosphorylating an enzyme, E and it also

inhibits itself by activating its inhibitor, X. This model shows an activator-inhibitor

system equivalent to GEF–Rho–Myosin signalling pathway.

An activator-inhibitor system may exhibit wave generation when coupled spatially

(Ryan et al., 2012; Inagaki and Katsuno, 2017). The activator-inhibitor system

when coupled spatially belongs to the class of reaction-diffusion models (Murray,

2002, 2003). These models may generate spatial patterns under certain conditions,

in which a steady state which is locally stable in the absence of diffusion becomes

unstable when diffusion is added. This phenomenon is called diffusion-driven in-

stability or Turing instability (Turing, 1952; Murray, 2003). Models that explain

wave generation (spatial and temporal) involve an activator-inhibitor mechanism.

This concept is driven by a combination of auto-catalytic positive and slow neg-

ative feedback mechanism. However, the details of molecular network controlling

such networks are unclear (Ryan et al., 2012; Allard and Mogilner, 2013; Graziano

and Weiner, 2014; Inagaki and Katsuno, 2017). Wave generation results when a

system having local excitable dynamics is coupled spatially. Excitability results

from a steady state in which small perturbations decay but perturbations which are

larger than a threshold result in a larger excursion but later return to the steady

state indirectly (Allard and Mogilner, 2013). In excitability, increasing the replen-

ishment of an inhibitor further increases the steady state of an activator above the

threshold and this causes the system to be in oscillatory region. Further increasing

perturbation beyond the threshold converges the system to another steady state.

This implies the system is in a bistable region and the steady state to which it goes

to depends on the perturbation. This is illustrated in Figure 1.4.

FitzHugh-Nagumo model is a classic model of excitable dynamics that derives from

self-amplifying positive feedback loop coupled to a delayed negative feedback loop,

in which an activator and inhibitor diffuse over the leading edge of the cell membrane

(FitzHugh, 1961, 1969).
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(a) (b)

(c) (d)

Figure 1.4: Schematic representation of an activator-inhibitor dynamics. The type of behaviour

achieved depends on parameters and also the threshold. The blue curves represent the behaviour

of the solutions for different scenarios.

The activity dynamics of cell migration is controlled by complex signalling net-

works of interacting species. This network that control migration displays a num-

ber of behaviours such as oscillations and cortical wave propagation (excitability)

(Devreotes and Horwitz, 2015). Previous studies suggested that the cross-talk

between Rho GTPases can control their activity dynamics (Machacek et al., 2009;

Guilluy et al., 2011), and several migration dynamics. For example, the mutual

antagonism between Rac and Rho has been observed in many cell types (Huang

et al., 2014; Byrne et al., 2016; Holmes and Edelstein-Keshet, 2016) and accounts

for cell contraction and polarization (Holmes et al., 2017). In Byrne et al. (2016) it
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was suggested that the bistability of Rho-Rac network translates into bistability of

actin dynamics and cell migration. However, Graessl et al. (2017) has showed that

the Rho activity was never preceded by neither Rac nor Cdc42 and therefore did not

trigger Rho activity pulses. This shows that Rho activity dynamics (in relation to

cellular contractility) are not dependent on mutual antagonism with other GTPases.

Holmes et al. (2017) focussed on Rho-Rac antagonism and its influence on the extra-

cellular matrix. Three models were constructed based on experimental observations

by Park et al. (2016). The difference between the models stem from different biolo-

gical assumptions used and the type of feedback as discussed below; first the general

model is divided in two subsystems one responsible for bistability and the subsystem

responsible for negative feedback so as to achieve experimentally observed coexist-

ence, bistable and oscillatory lamellipodia dynamics (Influence of ECM is modelled

using lamellipodia dynamics).

Model 1: It assumes that ECM is the source of bistability, and GTPases dynamics

is the source of negative feedback that drives oscillations observed in some

cells. This model predicts experimental observations (when GTPases are con-

served) but was rejected since oscillations are possible when GTPases operate

on smaller time scales. This is not biologically plausible.

Model 2: It is adjusted so that bistability results from GTPases dynamics, and

ECM signalling provides slow negative feedback. The model also assumes

that GTPases are abundant. This system behaves as a toggle switch studied

in (Gardner et al., 2000; Tyson et al., 2003). This model was not considered

good due to the high sensitivity of the strength of Rac activation which is not

consistent with biological data.

Model 3: It is a modification of Model 2 by dropping the fact that GTPases are

abundant and instead assume that GTPases are conserved (Edelstein-Keshet

et al., 2013; Holmes and Edelstein-Keshet, 2016). This model agrees with

experimental observations with suitable range of parameters. This study sug-

gests that conservation of GTPases dynamics plays a key role in signalling

dynamics as also shown in other studies (Mori et al., 2008, 2011; Holmes

and Edelstein-Keshet, 2016). It was assumed in Holmes and Edelstein-Keshet
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(2016) that the total GTPase concentration is conserved since its activation

and inactivation happens in order of seconds compared to the gene expression

which occurs in time scales of hours.

An activator-inhibitor network can make cell plasma membrane and its cortex act

as an excitable medium (Bement et al., 2015; Barnhart et al., 2017; Miao et al.,

2017), this excitable behaviour can account for the spontaneous migration of cells

(Iglesias and Devreotes, 2012).

Barnhart et al. (2017) considered mechanical and biochemical interactions among

adhesions, actin, VASP and cell membrane. They formulated a model (activator-

inhibitor reaction-diffusion type model) consisting of local positive feedback (actin

branching), global negative feedback (protrusion dependent membrane tension )

and local negative feedback (adhesion dependent depletion of VASP). Their model

predicts the existence of travelling waves of actin dynamics. It was shown that ex-

citable waves were dependent on local positive feedback and local negative feedback.

In principle, it has been shown that combining positive feedback and slow negative

feedback produces excitable dynamics (Allard and Mogilner, 2013).

Miao et al. (2017) also considered an activator-inhibitor reaction diffusion model

which is coupled to a polarization model, the activator-inhibitor consist of three

interacting species; the first two species are mutually inhibitory and provide a pos-

itive feedback loop and this loop initiates a slow negative feedback loop through the

third species. Their model shows that altering the threshold of an excitable network

changes cell migratory modes. It has also been shown in others (Huang et al., 2013;

Xiong et al., 2010; Shi et al., 2013) that changing the threshold alters wave dynamics

which leads to distinct pattern behaviour in a cell.

Bement et al. (2015) used an activator-inhibitor reaction-diffusion model to show

that Rho signalling and F-actin assembly makes cell cortex an excitable medium.

In their model Rho activates itself by activating the RhoGEF, Ect2 which forms a

positive feedback loop while F-actin dependent Rho inhibition forms slow negative

feedback. Their model shows propagating waves, which undergo self annihilation

on collision suggesting the existence of excitable dynamics (Allard and Mogilner,

2013). In their model, Rho was suggested to be a good candidate for an activator as
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Rho GTPases have been shown to indirectly activate themselves forming a positive

feedback loop (Goryachev and Pokhilko, 2008).

Cusseddu et al. (2018) considered a spatial model for the Rho-GTPase cycle between

active and inactive form. This model was described in three-dimensional domains.

In this work a conceptual one-dimensional model first proposed by Mori et al. (2008)

was extended to a bulk-surface setting, in which membrane and cytosolic activit-

ies were naturally linked to the surface and bulk of the geometric domain. The

non-linearity of the reaction term generates propagation of the membrane-bound

GTPase, related to the initial conditions and geometric shape, while the interplay

with cytosolic component eventually halts the spreading, leading to two well defined

regions respectively characterised by high and low concentration of protein.

The work in Bement et al. (2015); Barnhart et al. (2017); Miao et al. (2017) fo-

cuses on the study of excitable dynamics in relation to cellular protrusion dynamics.

However, this thesis focuses on the study of activator-inhibitor signalling network

in relation to cell contractility dynamics.

Similarly to the models reviewed here, this thesis focuses also on studying the GEF–

Rho–Myosin network that organises itself to form activator-inhibitor network. The

system of interaction described to explore GEF–Rho–Myosin dynamics is similar to

the one applied to the activator-inhibitor model network that was initially described

and studied in Tyson et al. (2003). Originally this model was used to describe a

response element R that auto-catalytically amplifies itself by phosphorylating an

enzyme, E and it also inhibits itself by activating its inhibitor, X. As observed

experimentally the activator-inhibitor signal network described in Tyson et al. (2003)

is equivalent to the GEF-H1–RhoA–Myosin dynamics. This model lacks GTPases

conservation as discussed by Mori et al. (2008, 2011); Holmes and Edelstein-Keshet

(2016); Holmes et al. (2017). We draw insight from the activator-inhibitor system

in Tyson et al. (2003) for the formulation of GEF–Rho– Myosin models, but our

model is derived from first principles based on experiments (Graessl et al., 2017). It

is shown experimentally (Graessl et al., 2017) that the Rho activity dynamics are

mediated by the expression levels of the positive feedback mediator, GEF-H1. It was

also shown that if on assumption that GEF-H1 does not act as a feedback mediator
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and instead consider it as the background GEF activity (constitutive activation)

or other Rho GEFs, then there would be no excitability, hence it has an opposing

effect when its concentration is increased. This shows that the model dynamics

are determined by the feedback mediator through GEF-H1 and not through the

background GEF activity (Graessl et al., 2017).

1.4 Thesis outline

The focus of this thesis is to study from first principles the temporal Rho activity dy-

namics linked to cellular contractility based on experimental observations. Different

mathematical models were formulated from first principles to describe GEF–Rho–

Myosin interaction and then validated through a rigorous Bayesian approach. Hence,

the thesis is structured as follows: In Chapter 2 we formulate from first principles

a set of mathematical models based on different biological assumptions and their

mathematical translations. The main assumption is the use of law of mass action

or enzymatic activity to translate the GEF-H1 activity and the quasi-equilibrium

approximation on GEF-H1 or Rho activities. Chapter 3 explores the asymptotic

behaviour of the models formulated in Chapter 2, in order to understand their long

term behaviour. Therefore, motivated by the experimental observation that this

network manifests distinct dynamic states depending on the expression level of the

positive feedback mediator GEF-H1, the stability analysis of the equilibrium state

is investigated with respect to the GEF total concentration, GT . Also motivated by

the experimental observation that the system exhibit periodic pulses, we used sign

pattern analysis and nullcline theory to study the existence of periodic solutions

arising from Hopf bifurcations in the ODE models formulated. These results are

complemented by detailed numerical bifurcation analysis of the models with respect

to GT . In Chapter 4 we investigate the model sensitivity to parameter variations.

Two approaches are described, first the local sensitivity method is described which

seeks to determine the influence of parameters on the oscillatory dynamics and the

global method is thereafter described to determine the influence of parameters in

a global sense. Chapter 5 explores numerical simulations of the models formulated

in Chapter 2. First the region within which the three models exhibit excitable dy-
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namics is identified, and then the variation of response amplitude of Rho activity

dynamics with respect to GT obtained and lastly we plot the phase planes and

temporal profiles of Rho and Myosin to illustrate the theoretical findings of the

mathematical analysis in Chapter 2. In Chapter 6 we present a detailed comparison

of results corresponding to all the three models. This is done with respect to their

formulation, asymptotic behaviour, and how sensitive they are to parameter vari-

ations and the numerical simulation results. In Chapter 7 we formulate a model with

perturbation from experimental observations, which is used to fit the unknown kin-

etics. The Bayesian approach to parameter identification is described and applied to

the model to approximate the parameters which satisfy the perturbation kinetics as

well the oscillatory dynamics with only varying GEF total concentration. Chapter 8

explores th effect of spatial inhomogeneity on the models formulated in Chapter 2,

we present the mathematical analysis for the existence of diffusion-driven instabil-

ity and illustrate the mathematical analysis with numerical simulations. Chapter 9

concludes the thesis with some possible extensions of the study contained in this

thesis. The study in this thesis follows the schematic representation shown in Fig-

ure 1.5. This forms a cyclic loop. We formulate models based on experimental data,

these models are analysed and then linked back to the data, through the Bayesian

parameter identification.
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Figure 1.5: A schematic representation of the thesis structure. The focus of the thesis presents

a novel approach to data-driven mathematical modelling whereby experimental observations are

translated into mathematical models which in turn are rigorously analysed. Model analysis is

followed by sensitivity analysis which includes local and global sensitivity analysis. Finally, to fit

models back to data, parameter identification is carried out through a Bayesian approach that

allows us to reject models that do not fit or describe the data very well and to select the model

that best-fit experimental observations.
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Chapter 2

Model formulation of Rho-Myosin

temporal dynamics

2.1 Introduction

This chapter focusses on the formulation of mathematical models that represent the

GEF–Rho–Myosin network to describe the temporal Rho activity dynamics linked

to cellular contractility. The models formulated are broadly categorised into two,

depending on how the GEF activities are interpreted mathematically. Detailed bio-

logical and mathematical assumptions used in formulating the models are described

in each section. Given the experimental observations as depicted in Figure 1.3,

we embark on formulating from first principles a set of three mathematical mod-

els based on different biological assumptions. These assumptions are: first, GEF

activities are translated using the Michaelis-Menten kinetics based on the work in

Tyson et al. (2003) and then this is modified and hence translated using the law of

mass action based on experimental observations (Kamps et al., 2019). The other

major assumption is the quasi-steady state approximation on either GEF activity

or the Rho activity. In each case Goldbeter-Koshland (Goldbeter and Koshland,

1981) function is derived to implicitly define, respectively, GEF or Rho activities.

To model reaction rates, we used the law of mass action, Michaelis-Menten kinetics

and the Hill function. These laws are introduced and described in Appendix A.
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2.2 Model formulation

In Appendix A, the general theory underpinning different biological assumptions

and their mathematical translations has been introduced, which will be used in

the following sections to develop from first principles a set of three mathematical

models based on experimental observations (Graessl et al., 2017; Kamps et al., 2019).

It was suggested that coupled positive and negative feedback loops form essential

signal transduction motifs in cellular signalling systems (Kim et al., 2007). It is

also known that positive feedback induces a switch-like behaviour and bistability

(Ferrell Jr, 2002; Tyson et al., 2003), and that negative feedback suppresses noise

effects (Tyson et al., 2003; Stelling et al., 2004). We derive a model of positive

and negative feedback systems (Hartwell et al., 1999; Tyson et al., 2003; Kamps

et al., 2019), which represents the GEF-H1–Rho–Myosin signalling pathway linked

to cellular contractility (Graessl et al., 2017).

The modelling assumptions are simplified by requiring that all the underlying bio-

chemical reactions are integrated into three main modules. We define a module as

a discrete entity whose function is separable from those of others (Hartwell et al.,

1999). These modules represent the activities of Rho module and the regulators of

positive and negative feedback which act on the Rho module. The positive feedback

module represents the activities of GEF-H1 (which activates Rho) while the neg-

ative feedback module represents the activities of Myosin (comprising Myosin-IIA

and the actin associated GAPs such as MYO9B (Graessl et al., 2017; Kamps et al.,

2019)), that acts to inhibit Rho activities.

The three modules considered are summarised in Figure 1.3 in Chapter 1 such that

1. Rho module represents Rho or RhoA activities

2. Myosin module represents either Myosin-IIA or MYO9B activities

3. GEF module represents GEF-H1 activities.

Recent experimental observations (Graessl et al., 2017; Kamps et al., 2019) have

shown that Rho-Myosin network can be represented by an activator-inhibitor reg-

ulatory network as shown in Figure 1.3. Within this set-up, Rho up-regulates its

activity through a positive feedback loop mediated by GEF-H1. Up-regulation of
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Rho GTPases through a positive feedback mechanism has also been shown in (Med-

ina et al., 2013). This formed a basis for mathematical models described in Mori

et al. (2008); Rätz and Röger (2012); Cusseddu et al. (2018). The activator-inhibitor

type of network has been described and studied for example in Tyson et al. (2003),

where they described the interaction of three species X, Y, Z. In their framework, it

is assumed that the interacting species are in plenty and therefore no conservation

of mass. Our modelling framework draws inspiration from this work for the formu-

lation of GEF-H1–Rho–Myosin models based on experimental work (Graessl et al.,

2017; Kamps et al., 2019). The activation and inhibition of Rho module is based on

GEF and GAP activities which are implemented via constant functions or via the

GEF and Myosin modules.

In Nalbant et al. (2009), it is shown that Rho is activated by the microtubule

associated guanine nucleotide exchange factor (GEF-H1), when they are released

from the microtubules to initiate Rho/ROCK/Myosin light chain signalling pathway

that controls cellular contractility. In turn, regulation of GEF-H1 activity is a

complex process involving a multitude of phosphorylation on the activating and

inactivating sites. There are several kinases which have been shown to inhibit GEF-

H1 activities by phosphorylation of its inhibitory sites (Lee et al., 2010). They

show that Myosin-II binds to GEF to suppress GEF activities, the binding required

Myosin-II assembly into filaments and actin stimulated ATPase activity. They, in

turn, showed that inhibition of Myosin-II ATPase activity caused the release of GEFs

and in turn activation of Rho. We therefore postulate that GEF-H1 is inhibited by

Myosin and in turn activated by Rho.

MYO9B has been shown to turn off RhoA in vitro (Hanley et al., 2010). Mammalian

class IX myosins consist of MYO9A and MYO9B, they are single headed molecular

motors containing a Rho specific GAP domain in the tail region. Therefore this

motorised Rho GAP is a candidate signal molecule for regulating rapid cell shape

changes and motility for the host defence. They are predominantly expressed in the

immune system.

The basic interactions of GEF-H1, RhoA and Myosin are summarised in Figure

1.3. This takes the form of an activator-inhibitor system. The activator is RhoA,
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while inhibitor is Myosin (Myosin-IIA and MYO9B), collectively called Myosin,

whose activities occur with time delay, ∆t of between 3-40 seconds (Graessl et al.,

2017; Kamps et al., 2019). GEF-H1 provides a positive feedback loop for RhoA self

amplification. In this work we do not consider a delay differential equation. The

ODE models formulated accounts for the delay by using slower time scales in the

Myosin activities. In Figure 2.1 an explicit reaction for each molecule is considered.

The models will follow the structure in Figure 2.1, which represents the interaction

of the active and inactive molecules of GEF, Rho and Myosin. Myosin inhibits Rho

GGT T --GG
GEF-H1c

GG

k3 k4Ep(R,M)
GG

GEF-H1m

k0

k1

RRT T --RR
Rhoinactive Rho

K2’k2

MMT T --MM
Myosinc

MM
k5

k6

k7

MM
Myosinm

RR
Rhoactive

Figure 2.1: Flow diagram representing the interaction between active and inactive molecules of

GEF-H1, RhoA and Myosin. Ep(R,M) represents the steady state approximation of GEF-H1.

via two processes:

• Myosin-IIA inhibits Rho by inactivating GEF-H1 activities (Lee et al., 2010),

• It may inhibit Rho activities directly via MYO9B GAP (Hanley et al., 2010).

We consider the following species:

• GEF-H1 is composed of GEF-H1c in the cytosol and GEF-H1m in the cortex

plasma-membrane. The active part GEF-H1m is denoted by G. The total
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concentration is constant such that

GEF-H1c(t) + GEF-H1m(t) = GT = const.

The state variable G(t) denotes the concentration of GEF-H1m at time t in

the models.

• RhoA is composed of RhoAa active (in cortex plasma-membrane) and RhoAi

inactive (cytosol + cortex). The inactive RhoAi in the cortex is quickly replen-

ished from the cytosolic pool and we therefore have both RhoAa and RhoAi

in the cell cortex. The total concentration is constant such that

RhoAa(t) + RhoAi(t) = RT = const.

The state variable R(t) : denotes the concentration of RhoAa at time t

• Myosin is composed of Myosin-IIA and MYO9B and we first consider just

Myosin. There are Myosinc (inactive) in cytosol and Myosinm (active) in

cortex plasma-membrane. The total concentration is constant such that

Myosinc(t) + Myosinm(t) = MT = const.

The state variable M(t) denotes the concentration of Myosinm at time t in the

models.

Using the conservation of mass, the general model is of the form:

dG

dt
= f1(G,R,M),

dR

dt
= f2(G,R,M),

dM

dt
= f3(G,R,M).

The explicit definition of the functions f1, f2 and f3 are determined by different

assumptions used hence resulting into different mathematical models being formu-

lated. To this end we consider two main categories of models depending on how

GEF module activities are interpreted. This interpreted via enzymatic activity

(Michaelis-Menten kinetics) or the law of mass action. In the next section, we first

consider two models in which GEF activities are translated using Michaelis-Menten

kinetics.
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In Chapters 1-7, we only consider the ODE models, which represent the temporal

activities of GEF, Rho and Myosin, and not spatially extended model. However,

in Chapter 8, we formulate and analyse the spatially extended version of the ODE

models. The ODE models are used to approximate kinetic dynamics that represent

behaviour at a particular point of the cell body, from the experimental data. The

data is obtained by dividing the cell body into several frames of reference and ob-

servations are recorded for each frame and then averaged over the whole cell body.

This experimental data shows temporal evolutions of GEF, Rho and Myosin aver-

aged over the whole cell body and averaged for all the cell population (35 to 68

cells), which is used to fit the ODE model in Chapter 7. However other data is also

available for spatial distributions of GEF, Rho and Myosin that will be used in the

analysis of spatially extended model (Graessl et al., 2017; Kamps et al., 2019).

Due to lack of precise mechanism on how different reactions occur, different as-

sumptions are considered such as binding and enzymatic activity. Furthermore we

also consider different translations for enzymatic activity such as Michaelis-Menten

kinetics or Hill function, hence resulting in different mathematical models (GRM-1,

GRM-2 and GRM-3). In the analysis we then study similarities and differences

between the models.

2.3 Enzymatic activity and quasi-equilibrium as-

sumption on GEF module

In the previous section, we have introduced the general principles and assumptions

underlying the models to be formulated. In this section we consider only the models

in which the GEF activities are translated via Michaelis-Menten kinetics. The main

assumptions considered for these models are;

1. Michaelis-Menten kinetics on GEF module,

2. Quasi-equilibrium assumption on GEF module, and

3. Activities of Myosin-IIA and MYO9B are combined together and collectively re-

ferred to as Myosin, which inhibits both Rho and GEF as shown in Figure 2.1.
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The models formulated in this section are respectively referred to as: GRM-1 and

GRM-2.

2.3.1 Formulation of model GRM-1

First, we formulate the mathematical models describing the temporal dynamics

of the three species, G(t), R(t) and M(t) by using the enzyme kinetics on GEF-

H1 (Rowlands et al., 1988; Sakumura et al., 2005). For this model, the biological

assumptions are translated using the following assumptions.

1. GEF activation by Rho and its inhibition by Myosin are modelled using Michaelis-

Menten kinetics.

2. The activation of Rho by GEF and its inhibition by Myosin are modelled using

the law of mass action, while the constitutive activity of Rho (self activation

and deactivation of Rho) are modelled by using a Hill function with n = 2, to

describe kinetics with saturation. This approach is similar to the one used in

(Simon et al., 2013) to model the signalling between Abr (GEF) and RhoA.

In this work, it was shown that n ≥ 2 is necessary for the system to exhibit

bistability.

3. The activation of Myosin by Rho, and its constitutive activation and inhibition

are all modelled by the law of mass action.

Therefore, the time-evolution of G(t), R(t) and M(t) are described by the following

system of ordinary differential equations

dG

dt
=

k3R (GT −G)

Kg3 + (GT −G)︸ ︷︷ ︸
Activation of GEF by Rho

− k4M G

Kg4 +G︸ ︷︷ ︸
Inhibition of GEF by myosin,

(2.1a)

dR

dt
= αG (RT −R)︸ ︷︷ ︸

Rho Activation by GEF

+
k1 (RT −R)2

K2
r1 + (RT −R)2︸ ︷︷ ︸

Rho baseline activation

− k′
2MR︸ ︷︷ ︸

Rho Inhibition by myosin

− k2R
2

K2
r2 +R2︸ ︷︷ ︸

Rho baseline inhibition,

(2.1b)

dM

dt
= k5R (MT −M)︸ ︷︷ ︸

Myosin activation by Rho

+ k7 (MT −M)︸ ︷︷ ︸
myosin baseline activation

− k6M︸︷︷︸
myosin decay.

(2.1c)
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In the above equations, α, k1, k2, k′
2, k3, k4, k5, k6 and k7, are positive reaction

rates while Kg3, Kg4, Kr1 and Kr2 are Michaelis-Menten constants which are also

positive, and GT , RT , MT are, respectively, the total concentrations of GEF, Rho

and Myosin. It has been shown experimentally that Myosin activation occurs with

a time delay of about 3-40 seconds with respect to RhoA and GEF-H1 activities

(Graessl et al., 2017; Kamps et al., 2019). That means that RhoA and GEF-H1

activities are much faster than Myosin activities, and we therefore assume a fast

pre-equilibrium on GEF module. With this effect, we may assume a quasi-steady

state approximation of GEF-H1 reaction. This is mathematically written by setting

Equation (2.1a) equal to 0:

0 =
k3R (GT −G)

Kg3 + (GT −G)
− k4M G

Kg4 +G
. (2.2)

To simplify calculations we work with the non-dimensional form corresponding to

(2.2) where we let u = k3R, v = k4M, J = Kg3/GT , K = Kg4/GT and g = G/GT .

Substituting this in (2.2) we have

(v − u)g2 − (v − u+ vJ + uK)g + uK = 0. (2.3)

This quadratic equation has two roots given by

g =
2uK

v − u+ vJ + uK ±
√

(v − u+ vJ + uK)2 − 4(v − u)uK
. (2.4)

We require a biophysically feasible root, that satisfies 0 < g < 1. We show that the

root with a negative sign is either negative or if it is positive, then it is such that

g > 1. Since all the other parameters in Equation (2.3) are positive, we consider

signs of v − u.

If v − u ≤ 0, it can be easily seen by using Descartes’ rules of sign on (2.3), that

there exist exactly 1 positive and 1 negative real root. The positive real root

is given by (2.7).

If v − u > 0, it can be easily seen using Descartes’ rule of sign that (2.3) has two

real roots or two complex conjugates. We are only interested in real roots. We

show that if two real roots exist, then

2uK

v − u+ vJ + uK −
√
(v − u+ vJ + uK)2 − 4(v − u)uK

> 1. (2.5)
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Assume by contradiction that it is less than 1, we get

2uK

v − u+ vJ + uK −
√
(v − u+ vJ + uK)2 − 4(v − u)uK

< 1,

this is equivalent to

2uK < v − u+ vJ + uK −
√

(v − u+ vJ + uK)2 − 4(v − u)uK.

Simplifying this inequality, we obtain

√
(v − u+ vJ + uK)2 − 4(v − u)uK < v − u+ vJ − uK.

Squaring both sides and simplify we have

(vJ + uK)2 < (vJ − uK)2,

which is not possible since the parameters are positive, and therefore inequality

(2.5) holds. Similarly, consider the second root

2uK

v − u+ vJ + uK +
√

(v − u+ vJ + uK)2 − 4(v − u)uK
. (2.6)

Following similar procedure as before we obtain

(vJ − uK)2 < (vJ + uK)2.

Therefore, the only physically meaningful root which satisfies 0 < g < 1 is:

g =
2uK

v − u+ vJ + uK +
√
(v − u+ vJ + uK)2 − 4(v − u)uK

. (2.7)

The solution is the known Goldbeter-Koshland function (Goldbeter and Koshland,

1981) that represents the steady state fraction of G namely G∗/GT and denoted

Ep(·), which is given by:

G∗

GT

= Ep (k3R, k4M, Kg3/GT , Kg4/GT ) , (2.8)

where in non-dimensional form

EP (u, v, J,K) =
2uK

v − u+ vJ + uK +
√

(v − u+ vJ + uK)2 − 4(v − u)uK
. (2.9)
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Therefore, we obtain the dimensional model

dR

dt
= αGTEp (k3R, k4M, Kg3/GT , Kg4/GT ) (RT −R) +

k1 (RT −R)2

K2
r1 + (RT −R)2

− k′
2MR− k2R

2

K2
r2 +R2

,

(2.10a)
dM

dt
= k5R (MT −M)− k6M + k7 (MT −M) , (2.10b)

where Ep (k3R, k4M, Kg3/GT , Kg4/GT ) is given in equation (2.9).

In equation (2.10a), the parameter αGT can be aggregated in such a way that one can

define k0 = αGT where the parameter k0 is the maximum rate of activation of R(t) by

G(t). Hence, the new system of ordinary differential equations for Equation (2.10),

which is referred to as model GRM-1 can be stated as:

dR

dt
= k0Ep (k3R, k4M, Kg3/GT , Kg4/GT ) (RT −R) +

k1 (RT −R)2

K2
r1 + (RT −R)2

− k′
2MR− k2R

2

K2
r2 +R2

,

(2.11a)

dM

dt
= k5R (MT −M)− k6M + k7 (MT −M) , (2.11b)

with initial conditions

R(t0) = R0 and M(t0) = M0, (2.12)

and positive constant parameters.

Mathematical analysis of this model will be provided in Chapter 3. In the next

subsection, we describe the formulation of model GRM-2. The parameters of model

GRM-1 and their corresponding units are shown in Table 2.1.

2.3.2 Formulation of model GRM-2

In the previous subsection, we have formulated model GRM-1, in this section we

describe the formulation of model GRM-2. The following assumptions are used to

formulate model GRM-2.

1. GEF activation by Rho and its inhibition by Myosin are modelled using Michaelis-

Menten kinetics similar to model GRM-1.



29

2. The activation of Rho by GEF and its self inhibition are modelled by Michaelis-

Menten kinetics, which is different from model GRM-1 in which they are mod-

elled by the law of mass action. Similarly its self activation and inhibition by

Myosin are modelled by the law of mass action, different from model GRM-1

in which these reactions are modelled by a Hill function.

3. The activation of Myosin by Rho is modelled by Michaelis-Menten kinetics, dif-

ferent from model GRM-1 in which this reaction was modelled by mass action.

Myosin self activation and inhibition are modelled by the law of mass action

which is similar to model GRM-1.

Therefore the temporal dynamics of the three species are governed by the following
system of ordinary differential equations:

dG

dt
=

k3R (GT −G)

Kg3 + (GT −G)︸ ︷︷ ︸
Activation of GEF by Rho

− k4M G

Kg4 +G︸ ︷︷ ︸
Inhibition of GEF by myosin,

(2.13a)

dR

dt
=αG

(RT −R)

Kr0 + (RT −R)︸ ︷︷ ︸
Rho Activation by GEF

+ k1(RT −R)︸ ︷︷ ︸
Rho baseline activation

− k′2MR︸ ︷︷ ︸
Rho Inhibition by myosin

− k2R

Kr2 +R︸ ︷︷ ︸
Rho baseline inhibition,

(2.13b)
dM

dt
=

k5R(MT −M)

Km5 +MT −M︸ ︷︷ ︸
Myosin activation by Rho

+ k7 (MT −M)︸ ︷︷ ︸
myosin baseline activation

− k6M︸︷︷︸
myosin decay.

(2.13c)

Equations (2.13) are defined for positive constant parameters and bounded positive

initial conditions defined by;

G(t0) = G0, R(t0) = R0 and M(t0) = M0. (2.14)

By quasi-steady state assumption on GEF-H1, the system of three ordinary differ-

ential equations (2.13) simplifies to a system of two ordinary differential equations

given by

dR

dt
= αGTEp (k3R, k4M, Kg3/GT , Kg4/GT )

(RT −R)

Kr0 + (RT −R)
+ k1(RT −R)

− k2R

Kr2 +R
− k′

2MR,

(2.15a)
dM

dt
=

k5R(MT −M)

Km5 + (MT −M)
− k6M + k7(MT −M), (2.15b)
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where Ep (k3R, k4M, Kg3/GT , Kg4/GT ) is given in Equation (2.9). If we let k0 =

αGT , then system (2.15) reduces to what we refer to as model GRM-2 defined by;

dR

dt
= k0Ep (k3R, k4M, Kg3/GT , Kg4/GT )

(RT −R)

Kr0 + (RT −R)
+ k1(RT −R)

− k2R

Kr2 +R
− k′

2MR,

(2.16a)

dM

dt
=

k5R(MT −M)

Km5 + (MT −M)
− k6M + k7(MT −M), (2.16b)

with initial conditions

R(t0) = R0 and M(t0) = M0, (2.17)

where 0 ≤ R(t0) ≤ RT and 0 ≤ M(t0) ≤ MT . Model parameters and their corres-

ponding units are listed in Table 2.1.

In summary, models GRM-1 and GRM-2 have been formulated from first principles

based on the experimental work in Graessl et al. (2017), and following the modelling

approach of an activator-inhibitor network described in Tyson et al. (2003). The

main assumptions for these models are Michaelis-Menten kinetics and quasi-steady

state approximation for GEF activities. The other reactions from Rho and Myosin

modules were represented using different mathematical assumptions (Mass action,

Michaelis-Menten kinetics and Hill function). These two models were refined, based

on the experimental work in Kamps et al. (2019), which led to the formulation of a

new model in the following section, referred to as GRM-3.

2.4 Mass action on GEF-H1 activity and quasi-

equilibrium assumption on Rho module

In the previous section, we have derived two models in which the main assumptions

were the use of Michaelis-Menten kinetics and the quasi-steady state approxima-

tion on the GEF module. These assumptions were modified based on the experi-

mental work in Max Planck Institute of Molecular Physiology and the University of

Duisburg-Essen (Kamps et al., 2019). The two main underlying assumptions in this

model are:
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(i) GEF module is translated via the law mass action

(ii) The quasi-steady-state approximation is assumed on the Rho module.

These assumptions are different from the ones used to formulate the first two models

(GRM-1 and GRM-2), in which we assumed enzymatic activity on the GEF module

implementation. The quasi-steady-state approximation was also assumed on the

GEF module. Therefore, for this model, consider the wiring diagram in Figure 2.2.

The definition of variables and mass conservation are considered as in the case of

previous models. To formulate the model, we consider the following set of points;

1. The formation of stable complex between active Rho and GEF-H1 (Medina et al.,

2013; Kamps et al., 2019) would imply non-enzymatic activity on the activa-

tion of GEF-H1 by Rho. Activation of GEF module by Rho activity is based

on a direct protein interaction and therefore this is implemented via mass ac-

tion. Similarly, the mechanism of GEF inhibition by Myosin module is based

on direct binding of the two components and therefore also implemented via

mass action (Graessl et al., 2017; Kamps et al., 2019).

2. The Rho activity module is based on enzymatically conversion between the active

and inactive states, and therefore this will be implemented via Michaelis-

Menten kinetics.

3. The activation of Myosin module by Rho activity is based on a multi-step en-

zymatic cascade. This process involves several kinases, phosphatase or actin

polymerisation regulation. This will be implemented via Hill type equation.

3. Experimental analysis (Graessl et al., 2017; Kamps et al., 2019) shows that amp-

lification of Rho occurs very rapidly and much faster than the activation of

Myosins which occurs with a time delay of about 3 seconds for MYO9B,

and a delay of about 30 to 40 seconds for Myosin-IIA. Therefore a fast pre-

equilibrium is assumed on Rho amplification. From this Rho activity module

which is based on enzymatic conversion between active and inactive states

is implemented using Goldbeter-Koshland function (Goldbeter and Koshland,

1981).
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Figure 2.2: Interaction of GEF-H1, RhoA (Rho) and Myosin together with their inactive mo-

lecules. Quasi steady state approximation is assumed on the Rho module.

Based on interactions presented in Figure 2.2 and assuming the conservation of mass

for each population, the evolution of G, R and M is governed by

dG

dt
= k3R(GT −G)︸ ︷︷ ︸

Activation of GEF by Rho

− k4MG︸ ︷︷ ︸
Inhibition of GEF by myosin

− k
′

4G︸︷︷︸
GEF decay,

(2.18a)

dR

dt
=

k0G(RT −R)

Kr0 + (RT −R)︸ ︷︷ ︸
Rho Activation by GEF

+
k1(RT −R)

Kr1 + (RT −R)︸ ︷︷ ︸
Rho baseline activation

− k
′
2MR

K
′
r2 +R︸ ︷︷ ︸

Rho Inhibition by myosin

− k2R

Kr2 +R︸ ︷︷ ︸
Rho baseline inhibition,

(2.18b)
dM

dt
=

k5R(MT −M)n

Kn
m5 + (MT −M)n︸ ︷︷ ︸

Myosin activation by Rho

+
k7(MT −M)

Km7 + (MT −M)︸ ︷︷ ︸
myosin baseline activation

− k6M

Km6 +M︸ ︷︷ ︸
myosin decay.

(2.18c)

Equations (2.18) are defined for positive parameter values and with initial conditions

G(t0) = G0, R(t0) = R0 and M(t0) = M0. (2.19)

For model GRM-3, we only consider Myosin-IIA which inhibits Rho through GEF-

H1. From Equation (2.18), since we do not consider MYO9B, we have that k
′
2 = 0.

We also do not consider background GEF activity, therefore k
′
4 = 0. Therefore, from
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system (2.18), we obtain;
dG

dt
=k3R(GT −G)− k4MG, (2.20a)

dR

dt
=

k0G(RT −R)

Kr0 + (RT −R)
+

k1(RT −R)

Kr1 + (RT −R)
− k2R

Kr2 +R
, (2.20b)

dM

dt
=

k5R(MT −M)n

Kn
m5 + (MT −M)n

+
k7(MT −M)

Km7 + (MT −M)
− k6M

Km6 +M
. (2.20c)

Considering fast pre-equilibrium of R on system (2.20). Since there is no precise

mechanism on how background GEFs activate Rho, we can assume they activ-

ate Rho in a similar way to GEF-H1, and thus, we have that Kr0 = Kr1. This

assumption helps us to derive the Goldbeter-Koshland function. Therefore from

Equation (2.20b) we have:
(k0G+ k1)(RT −R)

Kr0 + (RT −R)
− k2R

Kr2 +R
= 0. (2.21)

To simplify calculations, we work with the non-dimensional expression of (2.21) by

letting

u = k0G+ k1, v = k2, J = Kr0/RT , K = Kr2/RT and r = R∗/RT ,

then Equation (2.21) reduces to
u(1− r)

J + (1− r)
− v r

K + r
= 0. (2.22)

Simplifying (2.22) we obtain a quadratic equation of the form;

(v − u)r2 − (v − u+ uK + vJ)︸ ︷︷ ︸
Φ

r + uK = 0. (2.23)

The solution to (2.23) is given by

r =
Φ±

√
Φ2 − 4(v − u)uK

2(v − u)
=

2uK

Φ±
√

Φ2 − 4(v − u)uK
. (2.24)

Since u ≥ 0 and K ≥ 0, from Equation (2.23) the only biologically feasible solution

is given by

EP (u, v, J,K) =
2uK

Φ +
√
Φ2 − 4(v − u)uK

. (2.25)

Therefore, model equations (2.20) reduce to
dG

dt
=k3RTEP

(
k0G+ k1, k2,

Kr0

RT

,
Kr2

RT

)
(GT −G)− k4MG, (2.26a)

dM

dt
=
k5R(G,M)(MT −M)n

Kn
m5 + (MT −M)n

+
k7(MT −M)

Km7 + (MT −M)
− k6M

Km6 +M
. (2.26b)

The asymptotic analysis of this model is provided in Chapter 3, model parameters

and their corresponding units are listed in Table 2.1.
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MODEL GRM-1

Parameters GT k3 k4 Kg3 Kg4 k1 k2 k′
2

Units M s−1 s−1 M M M−1s−1 M−1s−1 M−1s−1

Parameters RT Kr1 Kr2 k0 MT k5 k6 k7

Units M M M s−1 M M−1s−1 s−1 s−1

MODEL GRM-2

Parameters GT k3 k4 Kg3 Kg4 k1 k2 k′
2

Units M s−1 s−1 M M s−1 M s−1 M−1s−1

Parameters RT Kr0 Kr2 k0 MT k5 k6 k7 Km5

Units M M M Ms−1 M s−1 s−1 s−1 M

MODEL GRM-3

Parameters GT k3 k4 k0 Kr0 k1 Kr1 k2

Units M M−1 s−1 Ms−1 s−1 M−1 Ms−1 M M s−1

Parameters Kr2 RT MT k5 Km5 k6 Km6 k7 Km7

Units M M M s−1 M Ms−1 M Ms−1 M

Table 2.1: Table of parameters for models GRM-1, GRM-2 and GRM-3 together with their

corresponding units. M represents units of concentration while s time.

2.5 Conclusion

In this chapter, we have derived from first principles a set of three mathematical

models that represent the temporal GEF–Rho–Myosin signalling pathway, to de-

scribe the Rho activity dynamics linked to cellular contractility, based on the ex-

perimental observations (Graessl et al., 2017; Kamps et al., 2019). The models were

broadly categorised into two classes, depending on the mathematical translation of

the GEF activities. The first two models, which we called GRM-1 and GRM-2, were

derived based on the assumption that the GEF activation and inhibition follows en-

zymatic activity and also the quasi-steady state approximation on the GEF module.

The derivation of these models was motivated and guided by the activator-inhibitor

network in the work of Tyson et al. (2003).

The third model, GRM-3 was a refinement of the first two models based on the

experimental results in Kamps et al. (2019), with the assumption that activation



35

of GEF and its inhibition follow the normal binding and the quasi-steady state

approximation of the Rho module in order to derive the equivalent of the Goldbeter-

Koshland function (Goldbeter and Koshland, 1981). The detailed comparison of

these models from their underlying mathematical assumptions will be presented in

Chapter 6. In the next chapter, we explore the asymptotic behaviour of the models

formulated in this chapter, in order to understand their long term behaviour. The

analysis is motivated by the experimental observations in Graessl et al. (2017);

Kamps et al. (2019) which show that this network manifests distinct dynamical

states depending on the expression level of the positive feedback mediator GEF-H1.

This motivates us to investigate the stability of equilibrium states of the model as

GT varies.
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Chapter 3

Mathematical analysis of temporal

models

3.1 Introduction

In the previous chapter, we have derived a set of three mathematical models of

ODE type to describe the temporal dynamics of GEF–Rho–Myosin network. In this

chapter, we first prove the positive invariance of the formulated models, by requiring

that the total concentrations of GEF, Rho and Myosin are conserved. We also study

the asymptotic behaviour of those models, in order to understand their long term

behaviour. Motivated by the experimental observation that this network manifests

distinct dynamic states depending on the expression level of the positive feedback

mediator GEF-H1, the stability analysis of the equilibrium state is investigated with

respect to the GEF total concentration, GT . Also motivated by the experimental

observation that the system exhibits periodic pulses. We use sign pattern analysis to

study the existence of Hopf bifurcation points at some GT values, and hence periodic

solutions. We use nullcline configuration to explore the type of configurations for

which the ODE models exhibit different dynamics. These results are complemented

by detailed numerical bifurcation analysis of the models with respect to bifurcation

parameter, GT . We only consider the qualitative analysis and numerical bifurcation

analysis of the models. The illustration of these results are presented in Chapter 5.

The three models introduced in Chapter 2 describe species namely R and M inter-
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acting such that

dR

dt
= f(R,M), (3.1a)

dM

dt
= g(R,M). (3.1b)

We remark here that R represents the variable R in models GRM-1 and GRM-

2, while it represents the variable G in Model GRM-3. Since here the analysis is

general for the three models, we use generic variables R to refer to the first variable

in models GRM-1, GRM-2 and GRM-3, while M refers to the second variable.

Before investigating asymptotic behaviour of the models, we first prove the existence,

uniqueness of solutions of models and the positive invariance of the flow of the

systems defining models GRM-1, GRM-2 and GRM-3.

3.2 Preliminary properties

In this section, we prove the positive invariance of the three models GRM-1 (2.11),

GRM-2 (2.16) and GRM-3 (2.26).

Theorem 3.2.1. The set

S = {(R,M) ∈ R2
+ : 0 ≤ R ≤ RT , 0 ≤ M ≤ MT}. (3.2)

is compact positively invariant with respect to the flow of systems (2.11), (2.16) and

(2.26).

Proof. By using Bony–Brezis theorem (Redheffer, 1972), it is sufficient to check

that the vector field induced by the system is either tangent or entering S on the

boundary of S defined in Equation (3.2). In other words, the vector field does not

allow the flow outside the domain. We therefore check the flow field close to the

boundaries, R = 0, R = RT , M = 0 and M = MT as illustrated in Figure 3.1.

Let R = RT , it can be easily seen from equations (2.11a), (2.16a) and (2.26a) that

lim
R→RT

dR

dt
≤ 0,

therefore R is non-increasing. Hence the flow is into S. Similarly, along the boundary

R = 0, we have

lim
R→0

dR

dt
≥ 0,
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hence R is non-decreasing, and the flow is into the domain.

Along the boundary M = MT , it can be seen from equations (2.11b), (2.16b) and

(2.26b) that

lim
M→MT

dM

dt
≤ 0,

therefore M is non-increasing, and the flow is into the invariant set S. Similarly,

along the boundary M = 0,

lim
M→0

dM

dt
≥ 0,

and therefore the flow is into the domain S. The proof has been illustrated in

Figure 3.1.

Figure 3.1: The flow of solutions when approaching the boundary of the invariant set S.

The functions f and g are the right-hand-side terms defined in models (2.11), (2.16)

and (2.26). Systems are considered with non-negative initial conditions with 0 ≤

R(t0) ≤ RT and 0 ≤ M(t0) ≤ MT . The solutions to systems defined in models

GRM-1, GRM-2 and GRM-3 considered with non-negative initial conditions exist

and are unique, since the vector field (f, g) ∈ C∞(S), where S = {(R,M) ∈ R2
+ :

0 ≤ R ≤ RT , 0 ≤ M ≤ MT}. Furthermore, the planar systems defined in models

GRM-1, GRM-2 and GRM-3 have bounded solutions as proved in Theorem 3.2.1.
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3.3 Asymptotic behaviour analysis

We have proved that the set (3.2) is positively invariant with respect to the flow of

the systems defining models GRM-1 (2.11), GRM-2 (2.16) and GRM-3 (2.26). In

this section, we analyse the asymptotic behaviour of the three models. This will

entail the use of sign matrix of the Jacobian matrix that will be derived later in this

section.

Motivated by the experimental results about the dynamics of GEF–Rho–Myosin

network (Graessl et al., 2017; Kamps et al., 2019), we investigate the asymptotic

behaviour of model equations (2.11), (2.16) and (2.26) at different expression levels

of GEF-H1. Therefore we describe conditions of stability of the steady state with

respect to the parameter of interest, GT , which represents the total concentration of

GEF-H1. To achieve this, we combine two approaches: sign pattern analysis of the

Jacobian matrices as well as the local shape of the nature of nullcline configuration

at the point of intersection.

A steady state (R∗, M∗) of (3.1) satisfies the equation

f(R∗, M∗) = g(R∗, M∗) = 0,

and the curves defined as

f(R,M) = 0, (3.3a)

g(R,M) = 0, (3.3b)

are called R- and M -nullclines respectively.

To analyse stability of Equation (3.1), we linearise it around the steady state to

obtain:  d(R−R∗)
dt

d(M−M∗)
dt

 = J

 R−R∗

M −M∗

 , (3.4)

where J is the Jacobian matrix evaluated at (R∗, M∗) and is given by

J =

fR fM

gR gM


(R∗,M∗)

, (3.5)

with subscripts R and M denoting partial derivatives ∂
∂R

and ∂
∂M

respectively. For the

analysis, we shall consider the sign pattern corresponding to the Jacobian matrices

that will be derived in the next subsection.
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3.3.1 Jacobian matrices of the models

In this subsection we derive the Jacobian matrix of the three models. Model GRM-1

(2.11) has the Jacobian matrix, denoted J1 which is given by:

J1 =

fR fM

gR gM

 , (3.6)

where

fR = k0 [Ep,r(RT −R)− Ep]− k′
2M − 2 k2K

2
r2

(K2
r2 +R2)

2 − 2 k1K
2
r1

(K2
r1 + (RT −R)2)

2 ,

fM = k0Ep,m (RT −R)− k′
2R,

gR = k5(MT −M) ≥ 0,

gM = −k5R− k6 − k7 < 0,

with

Ep,r =
2k3K [A−RAr]

A2
, Ar =

∂A

∂R
,

Ep,m =
−2k3KRAm

A2
, Am =

∂A

∂M
,

Φ = k4M − k3R + k4MJ + k3RK, J = Kg3/GT , K = Kg4/GT ,

A = Φ+
√
Z, Z = Φ2 − 4(k4M − k3R)k3RK.

Model GRM-2 (2.16) has the Jacobian matrix, evaluated at the steady state, denoted

J2 which is given by:

J2 =

fR fM

gR gM

 , (3.7)

where

fR = k0

[
Ep,r

(RT −R)

Kr0 + (RT −R)
− Ep

Kr0

(Kr0 + (RT −R))2

]
− k1Kr1

(Kr1RT −R)2

− k2Kr2

(Kr2 +R)2
− k′

2K
′
r2M

(K ′
r2 +R)2

,

fM = k0Ep,m
(RT −R)

Kr0 + (RT −R)
− k′

2R

K ′
r2 +R

,

gR =
k5(MT −M)

Km5+(MT−M)

≥ 0,

gM =
−k5Km5R

(Km5+MT−M)2
− k6Km6

(Km6 +M)2
− k7Km7

(Km7 +MT −M)2
< 0,
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with

Ep,r =
2k3K [A−RAr]

A2
, Ar =

∂A

∂R
,

Ep,m =
−2k3KRAm

A2
, Am =

∂A

∂M
,

Φ = k4M − k3R + k4MJ + k3RK,

J = Kg3/GT , K = Kg4/GT ,

A = Φ+
√
Z, Z = Φ2 − 4(k4M − k3R)k3RK.

Before calculating the Jacobian matrix of model GRM-3 (2.26), we find ∂R(G,M)
∂G

and
∂R(G,M)

∂M
denoted, respectively, as Rg and Rm. In order to simplify calculations, we

define the following quantities:

Φ = k2 − (k0G+ k1) + k2J + (k0G+ k1)K, J = Kr0/RT , K = Kr2/RT ,

Φg = −k0 + k0K and Φm = 0.

Z = Φ2 − 4(k2 − (k0G+ k1))(k0G+ k1)K,

Zg = 2ΦΦg − 4 [−k0(k0G+ k1) + k0(k2 − (k0G+ k1))]K and Zm = 0.

A = Φ+
√
Z, Ag = Φg +

Zg

2
√
Z

and Am = 0.

R(G,M) =
2RT (k0G+ k1)K

A
.

Finally, we get

Rg =
2RTK [k0A− Ag(k0G+ k1)]

A2
and Rm = 0.

Therefore, model system (2.26) has the Jacobian matrix, denoted J3 given by:

J3 =

fR fM

gR gM

 , (3.8)
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where

fR = k3 [Rg(GT −G)−R]− k4M,

fM = −k4G < 0,

gR =
k5Rg(MT −M)n

Kn
m5 + (MT −M)n

,

gM =
−k5 nKn

m5R(MT −M)n−1

(Kn
m5 + (MT −M)n)2

− k6Km6

(Km6 +M)2
− k7Km7

(Km7 +MT −M)2
< 0.

3.3.2 Sign pattern analysis

We consider sign pattern of the Jacobian matrices for the analysis. Sign pattern

analysis explores the possibility of having periodic solutions arising from Hopf bi-

furcation, just by analysing if the sign matrix of the corresponding Jacobian matrix

admits the refined inertia

Hn = {(0, n, 0, 0), (0, n− 2, 0, 2), (2, n− 2, 0, 0)}.

Hn was introduced by Bodine et al. (2012) and it corresponds to the transition

of eigenvalues as the pair of them with negative real part crosses the imaginary

axis to have positive real part. It is therefore used to investigate the existence

of periodic solutions as a parameter is varied. If a matrix allows Hn as a certain

parameter varies, then there is a Hopf bifurcation at some value of the parameter

and hence the possibility of linearly stable periodic solutions. We use this method for

the analysis since the method does not involve quantitative analysis of the Jacobian

matrix, but only signs of the corresponding entries of the Jacobian matrix. We make

use of concepts, definitions and theorems regarding sign pattern analysis which are

described in Appendix B and are necessary for a complete understanding of this

section. The linear stability of the steady state (R∗, M∗) is determined by the

eigenvalues of its Jacobian matrix evaluated at the steady state. The solution may

approach this steady state (when all eigenvalues have negative real part), oscillate

around it, or move away from it (Culos et al., 2016). We study the asymptotic

behaviour of models GRM-1 (2.11), GRM-2 (2.16) and GRM-3 (2.26) by considering

the sign pattern of their respective Jacobian matrices evaluated at the equilibrium

points.
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2× 2 sign pattern

It can be easily seen from Jacobian matrices (3.6), (3.7) and (3.8) that,

• fR is not sign-definite.

• fM is not sign-definite for models GRM-1 and GRM-2, but fM < 0 for model

GRM-3.

• gM < 0 for all the three models and gR > 0 for models GRM-1 and GRM-2,

while it is not sign definite for model GRM-3.

Therefore, the Jacobian matrices Ji, with i ∈ {1, 2, 3} have the sign pattern given

by:

J =

~ ~
~ −

 , (3.9)

where ~ represents −, + or 0 depending on the sign of the corresponding term.

Recall the following theorem with regard to 2× 2 sign patterns:

Theorem 3.3.1. There is no 2 × 2 sign pattern that require H2. The sign pattern

(sign pattern similar to) + −

+ −

 ,

is the only sign pattern that allows H2, since it is spectrally arbitrary 1 (Drew et al.,

2000; Bodine et al., 2012).

We have seen that Jacobian matrices have sign pattern in the form of Equation (3.9).

We know that gR > 0 for models GRM-1 and GRM-2, and also GRM-3 might have

gR > 0. We also know that fM < 0 for model GRM-3, this case is also possible for

models GRM-1 and GRM-2. From this observation we therefore have the following

particular case:

Theorem 3.3.2. Provided that fM < 0 and gR > 0, for the systems (2.11), (2.16)

and (2.26), we have the following:

i) If fR ≤ 0, there exists an equilibrium point that is locally asymptotically stable

and there is no possibility of periodic solutions.
1Matrix that allows all possible refined inertias
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ii) Otherwise if fR > 0 then the periodic solutions are possible and a Hopf bifurc-

ation occurs at some parameter values.

Proof. Assume that fM < 0 and gR > 0.

Case 1 fR ≤ 0. The sign matrix takes the form

J =

	 −

+ −

 .

From this it can be easily seen that tr(Ji) < 0 and det(Ji) > 0. Therefore, the

only possible refined inertia is (0, 2, 0, 0), and the equilibrium point is locally

asymptotically state is stable by Theorem B.1.4.

Case 2 fR > 0. The sign matrix takes the form

J =

+ −

+ −

 .

By Theorem 3.3.1, it allows

H2 = {(0, 2, 0, 0), (0, 0, 0, 2), (2, 0, 0, 0)},

and therefore, there is a possibility of periodic solutions arising from a Hopf

bifurcation at some parameter values.

Due to magnitude restrictions (the terms in the Jacobian matrices are related, i.e.

at least two terms depend on at least one common parameter), we cannot fully

conclude on the asymptotic behaviour of the systems. Therefore the sign pattern

analysis results will be combined with the nullcline configuration in the geometric

approach to analyse the stability with respect to the parameter GT . This allows

full characterisation of model stability with respect to the parameter of interest.

Therefore, in the following subsection, we analyse the qualitative intersections of

the nullclines at the steady state. We refer to this approach as the Geometric

approach.
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3.3.3 Geometric approach to stability analysis

In the previous subsection we found some conditions for which models GRM-1,

GRM-2 and GRM-3 may exhibit periodic solutions. These conditions are fR > 0,

fM < 0 and gR > 0.

To investigate the local stability of equilibrium we consider the local configuration

of the nullcline at the intersection point defining the given equilibrium. We use the

approach presented in Murray (2002), about the local configuration at the point

of intersection of the two nullclines as GT changes. In this case the qualitative

behaviours of the solution can be deduced from a gross geometric study of nullclines,

(Murray, 2002). For the three planar systems (2.11), (2.16) and (2.26) considered,

the intersection of the nullclines might take one of the following forms depicted in

Figure 3.2 as GT is varied. The use of parameter GT here is biologically motivated

since it has been observed in experiments that GEF–Rho–Myosin network shows

distinct dynamics depending on the expression levels of GEF-H1 (Graessl et al., 2017;

Kamps et al., 2019). Since the solutions are bounded in S then, we have at least one

equilibrium in S. In Figure 3.2 the possible configurations at the equilibrium point

are listed. All the possible nullcline intersections of the three models are locally

similar to the configurations presented in Figure 3.2. From Figure 3.2 as GT varies

we observe 1 or 3 equilibrium points, R-nullclines depend on GT and behave as cubic

curves for the three models. For models GRM-1 and GRM-2, M -nullcline do not

depend on GT .

The equilibria Ei, i = 1, · · · , 9 in Figure 3.2 can be classified according to the local

configuration of both nullclines at the point of intersection such that we have three

different types grouped as:

E1 ∼ E3 ∼ E4 ∼ E6 ∼ E7, E2 ∼ E9 andE5 ∼ E8.

There exist only 3 different types of local configurations. Therefore, we will only

analyse the local configurations at the steady states E1, E2 and E5.

The nature of the steady state can be summarised in a theorem as follows:

Theorem 3.3.3. The stability of the steady states Ei, for i = 1, . . . , 9 defined in

Figure 3.2 of models GRM-1 (2.11), GRM-2 (2.16) and GRM-3 (2.26) if they exist
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(a) Global asymptotic stabil-

ity

(b) (i) Stable limit cycle + un-

stable spiral (node) OR (ii)

G.A.S. spiral (node)

(c) Global asymptotic stabil-

ity

(d) Bistability (L.A.S. + saddle

+ L.A.S.)

(e) L.A.S. + saddle + unstable

(with or without limit cycle) or

L.A.S. + saddle+ L.A.S. (with or

without limit cycle)

Figure 3.2: Qualitative forms of nullcline intersection for Models GRM-1, (2.11), GRM-2, (2.16)

and GRM-3, (2.26) as parameter GT varies. Figure 3.2(e) is a special case of 3.2(d), in which the

equilibrium point E9 may be L.A.S as E6 or unstable

.

can be categorised as follows:

Case 1 Unique equilibrium point

i) Any equilibrium in the form of E1, (Figure 3.2(a) similarly to E3, Figure

3.2(c)) is globally asymptotically stable (G.A.S).

ii) For the case of equilibrium in the form of E2, Figure 3.2(b), det(J) > 0

and we have the following possibilities:

• If tr(J) < 0, E2 is globally asymptotically stable;
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• If tr(J) > 0, we have an unstable node for tr(J)2 > 4 det(J) or

an unstable spiral for tr(J)2 < 4 det(J). In both cases, there exits

a stable limit cycle, by Poincaré-Bendixson Theorem (Jordan and

Smith, 1999).

Case 2 Three equilibrium points

i) For the case of E4, E5 and E6, Figure 3.2(d) we have, respectively, locally

asymptotically stable (L.A.S), a saddle point and L.A.S.

ii) For the case of E7, E8 and E9, Figure 3.2(e) we have, respectively, L.A.S,

saddle point and L.A.S (there exists a possibility of a limit cycle centred

at E9), or L.A.S., saddle point and unstable (there exists possibility of a

limit cycle centred at E9).

Proof. The functions fR, fM , gR and gM are evaluated at the point of interest Ei.

(a) Steady state E1

At the steady state E1, the shape of the nullclines is shown in Figure 3.2(a).

First we have

df = fRdR + fMdM and dg = gRdR + gMdM.

On the R-nullcline f(R,M) = 0, we have

df = fRdR + fMdM = 0,

and therefore get
dM

dR

∣∣∣∣
f=0

= − fR
fM

. (3.10)

Similarly along the M -nullcline g(R,M) = 0, we have

dM

dR

∣∣∣∣
g=0

= − gR
gM

. (3.11)

At the point E1, we have that,

dM

dR

∣∣∣∣
f=0

<
dM

dR

∣∣∣∣
g=0

.

Equivalently,

− fR
fM

< − gR
gM

.
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This simplifies to
fR
fM

>
gR
gM

. (3.12)

We first find signs of entries of the Jacobian matrix. At E1,

dM

dR

∣∣∣∣
f=0

= − fR
fM

< 0,

therefore, fR and fM have the same sign. As we move parallel to the R–axis

through the point of intersection E1, we observe that f(R,M) changes from

positive to negative. This means f(R,M) decreases and therefore, fR < 0

which implies fM < 0.

Similarly, at E1,
dM

dR

∣∣∣∣
g=0

= − gR
gM

> 0,

therefore, gR and gM have opposite signs. As we move parallel to the M -axis

through the point of intersection E1, we observe that g(R,M) changes from

positive to negative. This means g(R,M) decreases and therefore, gM < 0

which implies that gR > 0. From the above we can write the sign pattern of

the Jacobian matrix around the steady state E1 and is given by

JE1 =

− −

+ −

 . (3.13)

From (3.13), the trace of the Jacobian matrix is such that tr J(E1) < 0.

Back to equation (3.12) and since fM and gM are both negative, we have that

fR gM > gR fM

and therefore it follows that at E1

det J(E1) = fR gM − gR fM > 0, (3.14)

trJ(E1) = fR + gM < 0. (3.15)

Conditions (3.14) and (3.15) are sufficient for stability, and, therefore, E1

is L.A.S. Furthermore, the sign pattern JE1 from (3.13) does not allow H2

(Bodine et al., 2012; Culos et al., 2016); therefore, a Hopf bifurcation leading

to periodic solutions is not possible. There is no limit cycle centred at the

equilibrium E1.
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In the case of E1, the equilibrium is unique and L.A.S. (Figure 3.2(a)), if

there is no limit cycle, the global asymptotic stability of the equilibrium can

be concluded by invoking Poincaré-Bendixson theorem (Jordan and Smith,

1999). Hence, E1 is globally asymptotically stable (G.A.S).

At E3, nullclines exhibit the same local configuration as at E1 (Figure 3.2(c)).

Then a similar analysis can be carried out for equilibrium E3. When the

equilibrium E3 exists, it is unique and L.A.S. and there is no limit cycle.

Therefore, E3 is G.A.S. At E4 and E6, the nullclines exhibit the same local

configuration as that at E1 (see Figure 3.2(d)). Hence, conclusions drawn for

E1 hold for E4 and E6: E4 and E6 are L.A.S. and there is no limit cycle neither

centred at E4 nor at E6. Moreover, the equilibria E4 and E6 co-exist with E5.

The nature of the stability of E5 is investigated later.

In Figure 3.2(e), equilibrium E7 co-exits with E8 and E9. At E7, the nullcline

exhibit the same local configurations as that at E1, therefore equilibrium of

the form E7 is L.A.S. and there is no limit cycle centred there. The nature of

stability of E8 and E9 will be investigated later.

(b) Steady state E2

To analyse the steady state E2 we will consider Figure 3.2(b). At the point

E2 we have that
dM

dR

∣∣∣∣
f=0

<
dM

dR

∣∣∣∣
g=0

.

Equivalently

− fR
fM

< − gR
gM

.

This simplifies to
fR
fM

>
gR
gM

. (3.16)

We also find the signs of entries of the corresponding Jacobian matrix. At E2,

dM

dR

∣∣∣∣
f=0

= − fR
fM

> 0,

therefore, fR and fM have opposite signs. As we move parallel to the R-axis

through the point of intersection E2, we observe that f(R,M) changes from

negative to positive. This means f(R,M) increases and therefore, fR > 0,
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this implies that fM < 0. Similarly at E2,

dM

dR

∣∣∣∣
g=0

= − gR
gM

> 0,

therefore gR and gM have opposite signs. As we move parallel to the M -axis

through the point of intersection E2, we observe that g(R,M) changes from

positive to negative. This means g(R,M) decreases and therefore gM < 0,

which implies that gR > 0. From the above we can write the sign pattern of

the Jacobian matrix around the steady state E2 which is given by

JE2 =

+ −

+ −

 . (3.17)

From (3.17), we find that the trace of the Jacobian matrix is such that tr J(E2)

is not sign definite. Back to equation (3.16) and since fM and gM are both

negative, we have that

fR gM > gR fM ,

and therefore it follows that at E2

det J(E2) = fR gM − gR fM > 0. (3.18)

From the sign pattern analysis, this sign matrix allows H2 and therefore, it is

possible to have a limit cycle and therefore, there is a possibility of linearly

stable periodic solutions arising from a Hopf bifurcation (Bodine et al., 2012)

as a parameter is varied. Summing up, for E2, we can have:

(i) if fR + gM > 0, E2 is an unstable (node or spiral). By the Poincaré-

Bendixon criterion, as E2 is a unique equilibrium point, there exists a

stable limit cycle (Jordan and Smith, 1999).

(ii) if fR + gM < 0, E2 is L.A.S. If there is no limit cycle, as E2 is unique, by

the Poincaré-Bendixon criterion, E2 is G.A.S.

At E9 (Figure 3.2(e)), nullclines exhibit the same local configuration as that

at E2 and therefore conclusions of E2 can be drawn for E9, which co-exists

with E7 and E8. Therefore for E9 we might have:

• If fR + gM > 0 then E9 is unstable with or without a limit cycle centred

at E9.
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• If fR + gM < 0 then E9 is L.A.S. and there is possibility of a limit cycle

centred at E9.

(c) Steady state E5

To analyse the nature of steady state E5 we will consider Figure 3.2(d) and

what happens locally around the intersection point E5. At the point E5 we

have that
dM

dR

∣∣∣∣
f=0

>
dM

dR

∣∣∣∣
g=0

.

Equivalently,

− fR
fM

> − gR
gM

.

This simplifies to
fR
fM

<
gR
gM

. (3.19)

At E5,
dM

dR

∣∣∣∣
f=0

= − fR
fM

> 0,

therefore fR and fM have the opposite signs. As we move parallel to the R-

axis through the point of intersection E5, observe that f(R,M) changes from

negative to positive. This means f(R,M) increases and therefore fR > 0.

This implies that fM < 0. Similarly at E5,

dM

dR

∣∣∣∣
g=0

= − gR
gM

> 0,

therefore gR and gM have opposite signs. As we move parallel to the M -axis

through the point of intersection E5, we observe that g(R,M) changes from

positive to negative. This means g(R,M) decreases and therefore gM < 0.

This implies also that gR > 0. From the above we can write the sign pattern

of the Jacobian matrix around the steady state E5 which is given by

JE5 =

+ −

+ −

 . (3.20)

From (3.20), we find that the trace of the Jacobian matrix is such that tr J(E5)

is not sign definite. Back to equation (3.19) and since fM and gM are both

negative, we have that

fR gM < gR fM ,
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and therefore, at E5

det J(E5) = fR gM − gR fM < 0. (3.21)

The steady state E5 is a saddle point. A closed path cannot surround a region

containing only a saddle (Jordan and Smith, 1999), and therefore no possibility

for existence of a limit cycle.

The same local configuration occurs at E8 (Figure 3.2(e)); therefore when they

exist, E5 and E8 are saddle points.

In situations as in Figures 3.2(a) and 3.2(c), systems (2.11), (2.16) and (2.26) have

a unique equilibrium that is globally asymptotically stable. In Figure 3.2(b), if

fR > −gM (trace is positive), then there exists a linearly stable limit cycle. If

fR < −gM (trace is negative), the unique equilibrium E2 can be G.A.S. or L.A.S.

and there exists a limit cycle centred around E2. Therefore from Theorem 3.3.2,

the conditions for the existence of periodic solution can now be refined to have the

extra conditions that; fR > 0, fR + gM > 0 and det(J) > 0. The last condition,

det(J) > 0 excludes the possibility of having a limit cycle centred at a saddle point,

which has the same sign matrix (3.17) as the equilibrium in the form of E2.

In Figure 3.2(d), when the three steady states E4, E5 and E6 exist: E4 and E6 are

always L.A.S. (and no limit cycle exists) and E5 is always a saddle point; there is

a bistability (two stable steady states). In situations as in Figure 3.2(e), when the

steady states E7, E8 and E9 exist; E7 is always L.A.S. and there is no limit cycle

centred at E7. E8 is always a saddle point and E9 could be unstable (with or without

a limit cycle centred at E9) or could be L.A.S. and surrounded by a limit cycle or

not.

All the three models have the Jacobian matrix with the same sign pattern. Models

GRM-1 and GRM-2 admit all the nullcline configurations in Figure 3.2. Their

dynamics are qualitatively similar as GT varies. The dynamics transition from

Figure 3.2(c) 7→ 3.2(b) 7→ 3.2(a) 7→ 3.2(e) and then to 3.2(d). On the other hand,

model GRM-3 only admits three of the nullcline configurations in Figure 3.2. As

GT varies, the dynamics transition from Figure 3.2(a) 7→ 3.2(b) and then to 3.2(c).

For biologically relevant parameters, model GRM-3 only exhibits one equilibrium.
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We verified that model GRM-3 can also exhibit three equilibrium points with other

parameter values, however we do not study this based on experimental observations.

These transitions are verified from the bifurcation analysis results in the next section.

In this section we have considered qualitative stability analysis of the steady states

of models GRM-1, GRM-2 and GRM-3, using the sign pattern analysis and the

qualitative shape of nullcline configuration at the point of intersection. We have

found out that all the models may exhibit periodic solutions arising from Hopf

bifurcations for some parameter values. Models GRM-1 and GRM-2 may exhibit

bistable dynamics for some parameter ranges. From the theoretical analysis, we

summarised the results in two theorems, 3.3.2 and 3.3.3. These theoretical findings

are complemented by numerical bifurcation analysis in the next section. Illustration

of these results are provided in Chapter 5 where we provide both the temporal

dynamics and phase planes describing the dynamics.

3.4 Bifurcation analysis

In the previous section, we presented theoretical analysis of the nature of the steady

states of all the three models derived in Chapter 2. In this section we carry out

numerical bifurcation analysis of all the models to complement the theoretical find-

ings in the previous section. Throughout this section, we shall consider GT as our

bifurcation parameter.

The numerical bifurcation analysis provides a summary of the effect of the total

concentration GT on the value, the number and nature of the equilibrium points.

The numerical bifurcation analysis is carried out with parameter values listed in

Table 3.1. From the bifurcation analysis, the bifurcation values (values at which

the models exhibit a change in their dynamics) of the bifurcation parameter GT are

obtained. Table 3.1 shows parameter values of the three models used for numerical

bifurcation analysis.

The numerical bifurcation analysis was carried out using Matcont (Holmes et al.,

2015; Dhooge et al., 2003, 2008). This is a MATLAB based software for interact-

ive study of dynamical systems (Simon et al., 2013). It allows the computation of
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Parameters Model GRM-1 Model GRM-2 Model GRM-3

k0 4 4 1

k1 0.45 0.1 0.2

k2 1 1 0.5

k′
2 1 1 NA

k3 1 1 1

k4 1 1 0.65

k5 0.022 0.035 0.15

k6 0.01 0.01 0.1

k7 0.001 0.001 0.025

Kr0 NA 1 0.051

Kr1 0.05 NA 0.051

Kr2 0.05 1 0.05

Kr2′ NA NA NA

Km5 NA 1 0.5

Km6 NA NA 0.75

Km7 NA NA 0.75

Kg3 0.3 0.15 NA

Kg4 0.2 0.1 NA

Table 3.1: Parameter values used for simulations and bifurcation analysis. Parameter values are

taken from Tyson et al. (2003) and some of them adjusted to illustrate the qualitative dynamics

hypothesised.

For total concentrations: RT = MT = 1 (NA refers to Not Applicable).

equilibrium solutions of the ODEs and their continuation with respect to the bifurc-

ation parameter. It is able to detect bifurcation points such as; Hopf bifurcations,

branching points and saddle-node bifurcations. For all the models, we take the total

concentration of GEF-H1 (GT ) as a bifurcation parameter (this choice is biologically

motivated). It was shown experimentally that the system dynamics changes with

respect to different expression levels of the feedback mediator (Graessl et al., 2017;

Kamps et al., 2019).

For all the bifurcation diagrams, we label; HB: Hopf bifurcation, LP: Fold bifurca-
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tion. Bifurcation analysis of the models will be carried out separately. We can also

consider other parameters for bifurcation analysis, here we only considered GT and

also k1. k1 is the parameter associated with the Rho constitutive activation, which

represents the activity related to Rho activation by other background GEFs outside

GEF-H1–RhoA–Myosin network.

3.4.1 Bifurcation analysis of model GRM-1

Bifurcation analysis of model GRM-1 was carried out with parameter values listed

in the Table 3.1. One-parameter bifurcation diagrams were obtained by taking GT

the bifurcation parameter, they represent the value of equilibria of Rho and Myosin

as GT varies as shown in Figures 3.3(a) and 3.3(b). As the parameter GT varies,

the following observations are made:

1. 0 < GT < 0.348546 similar to 0.894942 < GT < 8.115115: situation as in

Figure 3.2(a), a unique equilibrium which is G.A.S. (stable regime).

2. 0.348546 < GT < 0.894942: situation as in Figure 3.2(b), there is a unique

equilibrium which is unstable and a stable limit cycle (oscillatory regime).

3. 8.115115 < GT < 8.822280: situation as in Figure 3.2(e) the model exhibit

three equilibrium points; unstable, a saddle point and L.A.S.

4. 8.822280 < GT : situation as in Figure 3.2(d), two L.A.S equilibria and a

saddle point (bistable regime).

a two-parameter bifurcation diagram was obtained by considering GEF concentra-

tion, GT and k1. This defines a region of plane where the model exhibit different

dynamics as shown in Figure 3.3(c). The following regions are defined:

1. The red region is characterised by unstable steady state (node or spiral). The

steady state is unique and therefore there exits a stable periodic obit (limit

cycle). This region corresponds to red dashed lines in 3.3(a) and 3.3(b).

2. The uncoloured region in Figure 3.3(c) is characterised by the steady state

which is unique and L.A.S., and therefore globally asymptotically stable.

3. The yellow region in Figure 3.3(c) is characterised by three steady states, two
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locally asymptotically stable, separated by a saddle. The saddle acts as a

switch which determines to which steady state the system converges to. This

region is called the bistable region.

The results are summarised in Figure 3.3 and the bifurcation parameters listed in

Table 3.2.

(a) (b) (c)

Figure 3.3: Bifurcation diagrams corresponding to model GRM-1. Figures 3.3(a) and 3.3(b)

represent the value of equilibria of Rho and Myosin as GT varies. Blue line represents the steady

state values of Rho and Myosin in the stable region, red dashed line represents their values in the

unstable region, yellow dashed line denotes their values at a saddle point while green dotted curve

shows the maximum and minimum values of the resulting limit cycle. Hopf bifurcation points are

labelled HB while fold bifurcations labelled LP. Figure 3.3(c) shows two-parameter bifurcation

diagram. Red region shows the unstable region characterised by the stable periodic solutions,

yellow region represents bistable region while uncoloured region represents the the region within

which the steady state is stable.

Considering Figure 3.3(c), the following observations emerge: For k1 < 0.0338, the

steady state is always stable as GT varies and no changes in its stability. The equi-

librium point is unique and L.A.S., and therefore, G.A.S. For 0.0338 ≤ k1 ≤ 0.2332,

model GRM-1 shows two distinct asymptotic behaviour (oscillatory and stable) as

GT varies. For small GT values, the steady state is unstable characterised by peri-

odic solutions, increasing GT changes the steady state to stable. For 0.2332 < k1 <

0.7116, model GRM-1 has three distinct asymptotic behaviours, which can be char-

acterised as follows: For small GT values, the steady state is stable, which becomes

unstable, characterised by periodic solutions as GT increases. This steady state be-

comes stable again and further increase in GT gives rise to three equilibrium points.
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Lastly for k1 > 0.7176, the model shows only two distinct asymptotic behaviour

(stable and bistable regimes) as GT is varied. This model has a narrow region char-

acterised by periodic solutions. Bifurcation points are listed in Table 3.2, together

with their corresponding Rho and Myosin values.

Bifurcation points

HB HB HB LP

GT 0.348546 0.894942 8.822280 8.115115

Rho 0.429348 0.086142 0.676311 0.651325

Myosin 0.510899 0.224513 0.613584 0.605198

Table 3.2: Hopf bifurcation (HB) and Turning point/Limit point (LP) parameter values for

model GRM-1.

3.4.2 Bifurcation analysis of model GRM-2

Bifurcation analysis of model GRM-2 was carried out in a similar way, using the

parameter values listed in the Table 3.1, and GT and k1 are bifurcation parameters.

Bifurcation analysis results are shown in Figure 3.4. As GT varies, the following

observations can be deduced from Figures 3.4(a) and 3.4(b):

1. 0 < GT < 0.320114 similar to 1.715645 < GT < 18.097355: situation as in

Figure 3.2(a), a unique equilibrium which is G.A.S. (stable regime).

2. 0.320114 < GT < 1.715645: situation as in Figure 3.2(b), there is a unique

equilibrium which is unstable and a stable limit cycle (oscillatory regime).

3. 18.097355 < GT < 19.679276: situation as in Figure 3.2(e), three equilibrium

points; unstable, a saddle point and one L.A.S.

4. 19.679276 < GT : situation as in Figure 3.2(d), two L.A.S equilibria and a

saddle point (bistable regime).

a two-parameter bifurcation diagram was obtained by considering GEF concentra-

tion and Rho constant activation parameter defined by k1. This defines a region

of the plane where the model exhibit different dynamics as shown in Figure 3.4(c).

The following regions are defined:
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1. The red region in Figure 3.4(c) is characterised by unstable steady state (node

or spiral). The steady state is unique and therefore there exits a stable periodic

obit (limit cycle). This region corresponds to red dashed lines in Figures 3.4(a)

and 3.4(b).

2. The uncoloured region shown in Figure 3.4(c) is characterised by the steady

state which is unique and stable, and therefore globally asymptotically stable.

3. The yellow region in Figure 3.4(c) is characterised by three steady states, two

locally asymptotically stable with a saddle. The saddle acts as a switch which

determines to which steady states the system converges to. This region is

called the bistable region.

The results are summarised in Figure 3.4 and the bifurcation parameters listed in

Table 3.3. For suitable values of k1, Model GRM-2 shows similar qualitative

(a) (b) (c)

Figure 3.4: Bifurcation diagrams corresponding to model GRM-2. Figures 3.4(a) and 3.4(b)

respectively represent the value of equilibria of Rho and Myosin as GT varies. Blue represents the

steady state values of RhoA and Myosin in the stable region, red dashed line represents their values

in the unstable region, yellow dashed line denotes their values at a saddle point while green dotted

curve shows the maximum and minimum values of the resulting limit cycle. Hopf bifurcation

points are labelled HB while fold bifurcations labelled LP. Figure 3.4(c) shows two-parameter

bifurcation diagram. Red region shows the unstable region characterised by a limit cycle, yellow

region represents bistable region while uncoloured region represents the stable region.

dynamics to model GRM-1. Both of them show similar asymptotic behaviour as GT

is varied.
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Bifurcation points

HB HB HB LP

GT 0.320114 1.715645 19.679276 18.097355

Rho 0.394477 0.159106 0.688598 0.675676

Myosin 0.505957 0.299459 0.654055 0.649213

Table 3.3: Hopf bifurcation (HB) and Turning point/Limit point (LP) parameter values for

Model GRM-2.

3.4.3 Bifurcation analysis of model GRM-3

Bifurcation analysis of model GRM-3 was carried out with parameters values shown

in Table 3.1. The study is focussed on the analysis of Rho activity dynamics. For

model GRM-3, the Rho activity is defined implicitly, by R(G,M) and therefore we

shall derive its bifurcation diagram from GEF and Myosin bifurcation diagrams.

One-parameter bifurcation diagrams were obtained by taking GT the bifurcation

parameter, they represent the value of equilibria of Rho and Myosin as GT varies,

as shown in Figures 3.5(a) and 3.5(b). As GT varies, the following can be deduced:

1. GT < 0.451118 similar to 0.537857 < GT : situation as in Figure 3.2(a) or

Figure 3.2(c), a unique equilibrium state which is G.A.S. (stable regime).

2. 0.451118 < GT < 0.537857: situation as in Figure 3.2(b), there is a unique

equilibrium state which is unstable and therefore existence of a stable limit

cycle (oscillatory regime).

Two parameter bifurcation diagram was derived from one parameter diagrams by

considering GT and k1. This defines a region of the plane where the model exhibits

different dynamics as shown in Figure 3.5(c). The following regions are defined;

1. The red region is characterised by an unstable steady state (node or spiral).

The steady state is unique, and, therefore, there exits a linearly stable periodic

obit (limit cycle). This region corresponds to red dotted lines in Figures 3.5(a)

and 3.5(b).

2. The uncoloured region is characterised by the steady state which is unique

and stable, and, therefore, globally asymptotically stable.
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The results are summarised in Figure 3.5 and the bifurcation parameters listed in

Table 3.4.

(a) (b) (c)

Figure 3.5: Bifurcation diagrams corresponding to model GRM-3 (2.26). GT is the bifurcation

parameter. In Figure 3.5(a) HB are Hopf bifurcation points, red dotted line represents respectively

values of Rho and Myosin in the unstable region while blue line represent their values in the stable

region. Green dotted line represents the maximum and minimum values of Rho and Myosin in

the oscillatory regime. Figure 3.5(c) represents two-parameter bifurcation diagram, bifurcation

parameters are GT and k1. Red region is the unstable region.

Bifurcation points

HB HB

GT 0.451118 0.537857

Rho 0.223149 0.315769

Myosin 0.306405 0.625217

Table 3.4: Hopf bifurcation (HB) parameter values for model GRM-3.

3.5 Conclusion

In this chapter we performed the mathematical analysis of all the three mathem-

atical models formulated in Chapter 2. The asymptotic behaviour of the models

were analysed for different GT values. The qualitative stability of the steady states

of all the three models was analysed using sign pattern analysis, as well as geomet-

ric approach where the nullcline configuration was studied with respect to changes

on the total GEF concentration, GT . From these results, we were able to charac-

terise the kind of configuration associated with stable steady states, and also the
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configurations that admit periodic solutions. Based on experimental observations

that GEF–Rho–Myosin network admit periodic pulses for intermediate expression

levels of GEF-H1 (Graessl et al., 2017; Kamps et al., 2019). We also found that all

the three models exhibit periodic solutions for some parameter values. In addition,

models GRM-1 and GRM-2 have bistable regimes. It has also been shown in other

published work (Cusseddu et al., 2018), that models with positive feedback may

exhibit bistable dynamics for some parameter values.

To complement the qualitative analysis, we conducted bifurcation analysis of all the

models. We investigated the change in model dynamics as GT varies. The use of

this parameter is justified as it has been observed experimental observations (Graessl

et al., 2017; Kamps et al., 2019).

To summarise, models GRM-1 and GRM-2 show similar qualitative dynamics for

suitable range of parameters; as GT varies, they exhibit up to three distinct asymp-

totic behaviours (stable, oscillatory and bistable). On the other hand, model GRM-3

has only two distinct dynamic regimes. The change of dynamic behaviour of model

GRM-3 corresponds to the change in distinct states of GEF–Rho–Myosin at different

expression levels of GEF-H1 (Graessl et al., 2017; Kamps et al., 2019) and therefore,

this model agrees qualitatively to the experimental results. Detailed comparison of

mathematical analysis of all the models will be presented in Chapter 6.

In the next chapter, we want to investigate the response of all the models to para-

meter variations. This will be categorised into two: local sensitivity analysis which

enables us to study the effect of parameter variations on oscillatory dynamics. There-

after we will consider global sensitivity analysis. The findings of this chapter can

help identify crucial parameters whose variations affect system dynamics.
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Chapter 4

Sensitivity analysis

4.1 Introduction

In Chapter 3, we studied the asymptotic behaviour of the mathematical models,

where we observed that the characteristic dynamics of the mathematical models

are qualitatively similar to the experimentally observed dynamics of the biological

network of GEF, Rho and Myosin interaction. Asymptotic theory does not tell us

how these models will respond to variations in parameters, and therefore, due to

the uncertainty of input factors associated with measurements, in this chapter we

are interested to study how models respond parameter variations. We carry out the

analysis in two parts: first, the local sensitivity is used to analyse the dependency

of periodic dynamics (period and amplitude) on the parameter variations. This will

be used to investigate how the amplitude and period change due to variations in the

parameters. The global sensitivity analysis will be performed to analyse the effect

of parameter variations to the model output in general.

The general features of a model system are well understood, but problems do arise

if there exist some uncertainties in the input parameters. The inputs of a model are

not always known with sufficient degree of certainty. This uncertainty in the input

may be caused by natural variations, as well as errors or uncertainties associated

with measurements (Ekström, 2005). The main reason for sensitivity analysis is to

assess the variation in the model output derived from the variation in the input

factors. The sensitivity analysis (SA) is defined according to Saltelli et al. (2000);
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Ekström (2005) as the ”study of how the variation in the model output can be

apportioned qualitatively or quantitatively to different sources of variation and how

the given model depends upon the information fed into it.” The sensitivity analysis

aims at determining how sensitive the output is to changes in the input factors. This

may include model parameters and/or initial conditions. In this thesis we study the

sensitivity of the models with respect to the model parameters, but not to initial

conditions.

Sensitivity measure can be computed numerically by finding the partial derivative

of the output function to the input factors, and by performing multiple simulations

varying input parameters around the base value (nominal parameter), this enables

to find the local impact of the input factors to the model output. Therefore, these

methods are called Local sensitivity analysis methods (Ekström, 2005).

4.2 Local sensitivity analysis

In this section, we provide the local sensitivity analysis of all the models, we use local

sensitivity analysis to characterise the limit cycle behaviour of an oscillatory dynam-

ical system in terms of parameter variations, and therefore, it provides a premise to

characterise or study amplitude and period sensitivity to parameter variations.

Sensitivity analysis provides a useful tool to investigate effect of variation of para-

meters and/or initial conditions on model dynamics (Lu and Yue, 2011; Zak et al.,

2005). This may include system output and derived functions (Lu and Yue, 2011),

which are respectively called output sensitivity and objective sensitivity (Lu and Yue,

2011; Varma et al., 2005). The local sensitivity analysis is used to investigate the

how the model output is affected by parameter variations around base parameter

values called the nominal parameter values.

The methods commonly used to compute local sensitivities are: direct differential

method (DDM), Green’s function method and finite difference method (Lu and Yue,

2011). DDM is the most widely used since it provides a complete information on

each sensitivity index as a function of the independent variable (Lu and Yue, 2010).

For an oscillating dynamical system, the local sensitivity analysis can be used to
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characterise the effect of parameter variation on the amplitude, period, and phase

of a limit cycle. So the purpose of this work is to determine the parameter variations

and how they affect oscillations in GEF–Rho–Myosin dynamics.

Oscillations are one of the most important non-linear behaviour widely observed in

living cells. They are characterised by their amplitudes, phase and period. Areas

where oscillatory behaviours are observed include cell division, circadian rhythms

and also cell signalling pathways (Goldbeter, 1995; Kruse and Jülicher, 2005; Das

et al., 2012). Oscillations can be crucial for biological functions like circadian

rhythms (Bagheri et al., 2006), but in some cases they may not have a biological

function, but simply reflect the dynamic properties of a system (Hu and Yuan, 2006;

Yue et al., 2008). Consider a general ordinary differential equation model given by:

ẋ(t) = f (x(t), p) , x(t0) = x0, (4.1)

where x ∈ Rms is the vector of dependent variables and p ∈ Rmp are the parameters

of the model. The model depends on the variables themselves and the parameters.

If the solution of Equation (4.1) exists, then the sensitivity matrix is defined by:

S(t) =

(
∂x

∂p

)
(x(t,p0),p0)

= {sij} , (4.2)

where p0 defines the nominal parameter values. To find the sensitivity matrix (4.2),

differentiate Equation (4.1) with respect to parameter, p, which gives;

∂ẋ

∂p
=

∂

∂p
(f(x,p)) ,

∂

∂t

(
∂x

∂p

)
︸ ︷︷ ︸

S

=
∂f

∂x︸︷︷︸
A(t,p0)

· ∂x

∂p︸︷︷︸
S

+
∂f

∂p︸︷︷︸
B(t,p0)

,
(4.3)

which can be written more compactly as

Ṡ = A(t,p0)S+B(t,p0), (4.4)

S(t0,p0) = S0.

Equations (4.1) and (4.4) can be solved simultaneously to obtain the sensitivity

matrix S given initial conditions x(t0) = x0, nominal parameter values p(t0) = p0,

and initial sensitivity, S(t0) = S0. Initial sensitivity to the initial conditions is taken
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as 1 (Zak et al., 2005). In this thesis we only consider sensitivity to parameters, thus

S0 = [0]. For an ODE system with convergent steady state, the direct differential

method (DDM) solution is also convergent, which can be used to interpret the

sensitivity analysis results in the case stable steady states. The aim of this work

is to characterise the limit cycle of the ODE system (4.1) including amplitude and

period in terms of the dependency on the parameters.

For a system of differential equations that is periodic in time with period τ , we have:

x(t+ τ) = x(t). (4.5)

From (4.5), it is possible to express each of the state variables of x(t) expanded in

Fourier series, (Tomovic and Vukobratovic, 1972; Larter, 1983; Zak et al., 2005; Lu

and Yue, 2010) and we obtain:

xi(t) =
∞∑
n=0

[
ani

cos
2nπt

τ
+ bni

sin
2nπt

τ

]
. (4.6)

Fourier coefficients ani
and bni

are functions of parameters. We assume that the

period of oscillation is dependent on at least one parameter and its sensitivity, Sτ

may be defined as:

Sτ =

[
∂τ

∂p1
, · · · , ∂τ

∂pmp

]
. (4.7)

Sτ contains individual sensitivity parameters and is a vector independent of time.

From Equation (4.6) and using the fact that τ depends on p, the sensitivity matrix

may be defined as (details of derivation can be found in Appendix C):

S = − t

τ
f Sτ + Sc. (4.8)

Sc represents
[
∂xi

∂pj

]
τ

evaluated at a constant period, it is periodic in time and is an

ms × mp matrix called Cleaned-out sensitivity matrix (Tomovic and Vukobratovic,

1972). It captures how parameter variations affect the shape of trajectory when

period is constant (Zak et al., 2005; Lu and Yue, 2010, 2011).

From Equation (4.8) when f 6= 0 and Sτ 6= 0, then the first term will grow unbounded

as time increases and it will become the dominant term, and therefore, at higher

time points, we have

S ≈ − t

τ
f Sτ .
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We thereafter make use of singular value decomposition method (SVD) as described

in (Zak et al., 2005; Lu and Yue, 2011) to calculate period sensitivities. The descrip-

tion of SVD method and how it is applied to the state sensitivity matrix is described

in the Appendix C. Applying SVD method to the state sensitivity matrix (4.8) and

using Theorem C.1.2, we obtain the period sensitivity given by the formula

Sτ ≈ − τ

ϕ2 t
fT S̃1, (4.9)

where the term S̃1 = σ1 u1 v
T
1 is the largest SVD term of the state sensitivity mat-

rix S. The cleaned-out sensitivity can be approximated using the sum of all the

remaining SVD terms, i.e.

Sc ≈
r∑

i=2

S̃i, where S̃i = σi ui v
T
i . (4.10)

To obtain amplitude sensitivity, we first define amplitude as

Ami = xi(tmaxi)− xi(tmini), (4.11)

where tmaxi and tmini are the time points where the local maximum and minimum

occurs within the period. Amplitude sensitivity can be defined from Equation (4.11).

Using the cleaned-out sensitivity, we can use the fact that at the local extrema of xi,

fi = 0, and therefore, from Equation (4.8) we have that Si = Sci and thus amplitude

sensitivity is calculated using the formula

SAmi
= Sci(tmaxi)− Sci(tmini). (4.12)

4.2.1 Local sensitivity results for models GRM-1, GRM-2

and GRM-3

The local sensitivity results for all the models are presented. These include the state

sensitivity matrices, both in the stable and oscillatory regimes, followed by period

and amplitude sensitivity results. The sensitivity matrix S is obtained by DDM

approach to obtain the time profile of its components. S is then decomposed by

SVD at each time point to obtain all the singular values and their corresponding

SVD terms. In the models GRM-1, GRM-2 and GRM-3, the sensitivity matrix has

rank r = 2.
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Local sensitivity results for model GRM-1

Model GRM-1(2.11) is solved simultaneously with the corresponding sensitivity

equation defined by Equation (4.4). We use parameter values GT = 1 and GT = 0.5

for oscillatory and stable regimes, respectively. The other parameter values are fixed

as shown in Table 3.1. Results for simulations are shown in Figures 4.1 and 4.2.

(a) Sensitivity of R to parameters in the

stable region

(b) Sensitivity of R to parameters in the os-

cillatory regime

(c) Sensitivity of M to parameters in the

stable region

(d) Sensitivity of M to parameters in the

oscillatory region

Figure 4.1: Local sensitivity profile for model GRM-1, the parameter value for GT is selected

to have either steady state or oscillatory region, other parameters are fixed as in the Table 3.1.

The sensitivity matrix is bounded in the stable regime, but unbounded in the case of oscillatory

dynamics.

The sensitivity profiles behaves differently in the two regimes (stable and oscillat-

ory). In the oscillatory region the sensitivity matrix is unbounded as shown in

Figures 4.1(b) and 4.1(d). This unbounded behaviour is similar to that illustrated

by Equation (4.8). It is also shown (Lu and Yue, 2011; Zak et al., 2005) that the
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sensitivity values for limit cycle oscillatory systems are periodic and unbounded.

Since in the oscillatory regime, the sensitivity matrix is unbounded, SVD method

was used to determine the period and amplitude sensitivities.

First the parameter sensitivities in the case of stable regime are shown in Figure 4.2.

Since we are interested in ranking the parameters depending on their respective

sensitivity indices, we normalise their sensitivity values between [−1, 1]. It can be

shown that the most sensitive parameters are: k2 and k4 which have a negative

effect to the output, together with k3 which has a positive effect. This means

that infinitesimal increase in k3 increases the steady state value while infinitesimal

increase in either k2 or k4 decreases the steady state value. The parameters Kr1,

Kr2, GT and k7 have almost no influence or very little influence on the steady state

values of both Rho and Myosin.

Figure 4.2: Local sensitivity results in the stable region and at time, t = 2000 for model GRM-1.

Figure 4.3 shows the correlations between parameter sensitivity to Rho and Myosin

steady state values. Most values are distributed along the diagonal, thus these para-

meters affect both Rho and Myosin steady state values in the same way. Parameters

k5 and k6 lie off the diagonal and hence their effects on Rho and Myosin steady states

are different. k5 has a positive effect to the Rho steady state value, but has a neg-

ative influence on Myosin steady state, while k6 has an opposing influence with

reference to k5.
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Figure 4.3: Correlations between parameters sensitivity to Rho and Myosin steady state values.

Period sensitivity results

SVD method was applied to the state sensitivity matrix in the oscillatory regime,

and the period sensitivity profile obtained. The time series of period sensitivity

is convergent and therefore, at large time points, we get the period sensitivity to

parameters as shown in Figure 4.4. The period sensitivity is bounded and converges

as time increases, as shown in Figure 4.4(a). At higher time points, fixed values are

obtained from where we can extract the period sensitivity as shown in Figure 4.4(b).

It is shown that the period is highly sensitive to k3 and k4. An increase in k3 increases

(a) (b)

Figure 4.4: Period sensitivity shown for model GRM-1

the period of oscillation while k4 has the opposite effect. The period is least affected

by Kr1 and k7. The oscillatory dynamics are highly sensitive to GT than the steady

state values of Rho and Myosin.
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Cleaned-out and amplitude sensitivities

The period sensitivity is obtained using the largest singular value term, and then

the cleaned-out sensitivity obtained using Equation (4.10), which is used to cal-

culate the amplitude sensitivity from Equation (4.12). The cleaned-out sensitivity

is bounded and periodic, while its corresponding state sensitivity is unbounded. In

Figure 4.5(a), we show the plot of the cleaned-out sensitivity for only two parameters

to illustrate its behaviour (periodic and bounded).

The results for amplitude sensitivity are shown in Figure 4.5(b). Several parameters

affect the Rho and Myosin amplitudes differently. For example the Rho amplitude

is highly sensitive to k0 while Myosin amplitude is high sensitive to Kr2, k3 and

k4. The parameter k3 has a positive influence on Myosin amplitude while it has a

negative influence on Rho amplitude.

(a) (b)

Figure 4.5: Figure 4.5(a) shows cleaned-out sensitivity and the corresponding state sensitiv-

ity while 4.5(b) shows Rho and Myosin amplitude sensitivities. The cleaned-out sensitivites are

periodic and bounded while their corresponding state sensitivities are unbounded.

For a model system, the sensitivity information taken from different features may be

different. Figure 4.6 shows the comparison of parameters between Rho and Myosin

amplitude sensitivities, and also between period and amplitude sensitivities.

The parameters are not listed alongside diagonal meaning the sensitivity rankings

are different when interpreted using different features. From Figure 4.6(a), some
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(a) (b)

Figure 4.6: Figure 4.6(a) shows correlations between Rho amplitude sensitivity and Myosin

amplitude sensitivity, while 4.6(b) shows correlations between period sensitivity and Rho and

amplitude sensitivities.

parameters have larger influence on Rho amplitude than Myosin amplitude, such

as k0; some have larger influence on Myosin amplitude, such as k3 and k4 and oth-

ers such as Kr2 have larger influence on both Rho and Myosin amplitude. From

Figure 4.6(b), some parameters have lager influence on Rho amplitude than period,

others have more influence on period while other parameters influence Rho amp-

litude and period in the same way. For example, the parameter, Kr2 has larger

influence on both Rho amplitude and period; some parameters such as k0 and k2

have larger influence on Rho amplitude while some such as k3, k4 and k5 have larger

influence on the period than Rho amplitude. Considering Myosin amplitude and

period sensitivities, most parameters lie alongside the main diagonal and therefore

the ranking of most parameters is fairly similar. Other parameters such as k5 and

k6 have larger influence on the period, than Myosin amplitude.

For oscillatory dynamics, the identification of crucial parameters may depend on the

feature used. Therefore, it is crucial that various features of an oscillator must be

investigated in order to understand the system behaviour. The sensitivity to period

is taken with more credit (Lu and Yue, 2010).

Local sensitivity results for model GRM-2

The local sensitivity analytical results for model GRM-2 are similar to those for

model GRM-1. Equation (2.16) is solved simultaneously with the corresponding
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sensitivity equation defined by Equation (4.4). The results are presented in Figures

4.7 and 4.8 which show local sensitivity results for model GRM-2 around the nominal

parameter values. The parameters GT = 0.4 and GT = 0.25 were used for oscillatory

and stable regimes respectively. The sensitivity profiles behave differently between

the two regimes (stable and oscillatory) as also shown for model GRM-1. In the

oscillatory regime, the sensitivity matrix is unbounded, and grows linearly with

time, but it is bounded in the stable regime.

(a) Sensitivity of R to paraneters in the

stable region

(b) Sensitivity of R to paraneters in the os-

cillatory regime

(c) Sensitivity of M to paraneters in the

stable region

(d) Sensitivity of M to paraneters in the os-

cillatory region

Figure 4.7: Local sensitivity profile for model GRM-2, the parameter value for GT is selected

to have either steady state or oscillatory region, other parameters are fixed as shown in Table 3.1.

The sensitivity matrix is bounded in the stable regime, but unbounded in the oscillatory regime.

In the stable regime, the steady state sensitivity to parameters is obtained and

results shown in Figure 4.8. The steady state sensitivity is calculated from the

results shown in Figures 4.7(a) and 4.7(c). The sensitivity values are normalised for
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easier comparison. From Figure 4.8 both Rho and Myosin steady state values are

highly sensitive to parameters k3, k4 and k0. Some parameters have an opposite effect

to Rho and Myosin steady states, for example k5, Km5 and k6. Other parameters

like k1, GT and k7 have very little influence on both steady state values of Rho and

Myosin.

Figure 4.8: Local sensitivity results in the stable region and at time, t = 2000 for model GRM-2.

These results are calculated from the results shown in Figures 4.7(a) and 4.7(c).

Figure 4.9 shows the correlations between parameter sensitivity to Rho and Myosin

values. Most values are distributed along the diagonal, thus these parameters affect

both Rho and Myosin in the same way. Parameters k5, Km5 and k6 lie off the

diagonal and hence their effect on Rho and Myosin steady state values are different.

Figure 4.9: Correlations between parameters sensitivity to Rho and Myosin.
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Period sensitivity

The singular value decomposition was applied to the state sensitivity matrix in

the oscillatory regime. This enables the determination of period sensitivity from

Equation (4.9). The period sensitivity time series is convergent, and therefore at

higher time values, the sensitivity of period to parameters is calculated and results

are as shown in Figure 4.10. The period is highly sensitive to k3, k4, GT and k5.

An infinitesimal increase in k3 increases the period of oscillation while k4 has the

opposite effect. Similarly an infinitesimal increase in GT increases the period. The

parameter GT has little effect on the steady state values of Rho and Myosin, but it

greatly influences its oscillatory behaviour. k7 has very little influence on the period.

(a) (b)

Figure 4.10: Period sensitivity results for model GRM-2

Cleaned-out and amplitude sensitivities

Similarly to model GRM-1, cleaned-out sensitivity is obtained and then the sens-

itivity amplitude to parameters calculated. The cleaned-out sensitivity is bounded

and periodic, while its corresponding state sensitivity is unbounded. Figure 4.11(a)

shows the cleaned-out sensitivity for only two parameters to illustrate the beha-

viour. Figure 4.11(b) shows sensitivity of amplitude to parameters. Similarly to

model GRM-1, several parameters affect the Rho and Myosin amplitude differently.

Figure 4.12 shows the correlation of parameters between Rho and Myosin amplitude

sensitivities, and also between period sensitivity and amplitudes sensitivities.

From Figure 4.12(a), we observe that some parameters such as k0 and Kr0 have larger
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(a) (b)

Figure 4.11: Figure 4.11(a) shows cleaned-out sensitivity and the corresponding state sensitivity

while 4.11(b) shows Rho and Myosin amplitude sensitivities.

(a) (b)

Figure 4.12: Figure 4.12(a) shows correlations between Rho amplitude sensitivity and Myosin

amplitude sensitivity, while 4.12(b) shows correlations between period sensitivity and Rho and

amplitude sensitivities.

influence on Rho amplitude than Myosin amplitude; some such as GT have larger

influence on Myosin amplitude; while others such as k3 and k4 have larger influence

on both Rho and Myosin amplitudes. In Figure 4.12(b), parameters k3 and k4 have

larger influence on both Rho amplitude and period; other parameters such as k0

and Kr0 have larger influence on Rho amplitude while some such as GT and k5 have

larger influence on the period than Rho amplitude. Comparing Myosin amplitude

and period sensitivity, most parameters lie alongside the main diagonal and therefore
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the ranking of most parameters is fairly similar when considering Myosin amplitude

and period; other parameters such as k5 has larger influence on the period, than

Myosin amplitude, while Kg4 has larger influence on Myosin amplitude than period.

Local sensitivity results for model GRM-3

The method for model GRM-3 analysis follows similar procedure to that of models

GRM-1 and GRM-2. Equation (2.26) is solved simultaneously with the correspond-

ing sensitivity equation and results are presented in Figures 4.13 and 4.14. They

show local sensitivity results for model GRM-3 around the nominal parameter val-

ues. Parameters GT = 0.4595 and GT = 0.2 were used for oscillatory and stable

regimes respectively. The behaviour of sensitivity time series is similar to that of

models GRM-1 and GRM-2.

In the stable regime, the steady state sensitivity to parameters is calculated from

the results shown in Figures 4.7(a) and 4.13(c) and results shown in Figure 4.14.

The sensitivity values are normalised. Both GEF and Myosin steady state values

are highly sensitive to parameters k3, k4 and k0. Some parameters have an opposite

effect to GEF and Myosin steady states, for example k5, Km5, k6 and k7. Other

parameters like k1, GT and k7 have very little effect on both steady state values.

Figure 4.15 shows the correlations between parameter sensitivity to GEF and Myosin

values. It is observed that most parameters influence GEF and Myosin differently.

Some parameters, such as k2, k6 and k1 have larger influence on both GEF and

Myosin steady state values; others such as GT have larger influence on GEF steady

state value while Km6 and k7 have larger influence on Myosin steady state value.

Period sensitivity

The sensitivity of period to parameters is obtained by using the SVD method on

the state sensitivity matrix in the oscillatory regime. The period sensitivity time

series is convergent, and therefore at higher time values, the sensitivity of period

to parameters is calculated and results are as shown in Figure 4.16. The period is

highly sensitive to k2, k1 and k0 in the decreasing order of their influence. The effect

of parameter GT is more pronounced for the period than on the steady state values.

Kr0 and Km5 have very little influence on the period.
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(a) Sensitivity of G to parameters in the

stable region

(b) Sensitivity of G to parameters in the os-

cillatory regime

(c) Sensitivity of M to parameters in the

stable region

(d) Sensitivity of M to parameters in the

oscillatory region

Figure 4.13: Local sensitivity profile for model GRM-3, the parameter value for GT is selected

to have either steady state or oscillatory region, other parameters are fixed as in the Table 3.1.

The sensitivity matrix is bounded in the stable regime, but unbounded in the case of oscillatory

dynamics.

Cleaned-out and amplitude sensitivities

Similarly to models GRM-1 and GRM-2, cleaned-out sensitivity is obtained and

then the amplitude sensitivity to parameters calculated. The cleaned-out sensitiv-

ity is bounded and periodic, while its corresponding state sensitivity is unbounded.

Figure 4.17(a) shows the cleaned-out sensitivity for only two parameters, while amp-

litude sensitivity results are shown in Figure 4.11(b). Both GEF and Myosin amp-

litudes are highly sensitive to GT , and thus it affects more the oscillatory dynamics

than the steady state values. Except the parameters GT , k0 and k2, the rest of the

parameters have very little influence on the period and some of them have opposing

effect on the amplitudes.
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Figure 4.14: Local sensitivity results in the stable region and at time, t = 2000 for model GRM-2.

Figure 4.15: Correlations between parameter sensitivity to GEF and Myosin.

(a) (b)

Figure 4.16: Period sensitivity shown for model GRM-3.

Figure 4.18 shows the correlation of parameters between Rho and Myosin amplitude

sensitivities, and also between period sensitivity and amplitudes sensitivities. In
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(a) (b)

Figure 4.17: Figure 4.17(a) shows cleaned-out sensitivity and the corresponding state sensitivity

while 4.17(b) shows GEF and Myosin amplitude sensitivities.

(a) (b)

Figure 4.18: Figure 4.18(a) shows correlations between Rho amplitude sensitivity and Myosin

amplitude sensitivity, while 4.18(b) shows correlations between period sensitivity and Rho and

amplitude sensitivities.

Figure 4.18(a), parameters lie alongside the diagonal and therefore, parameters affect

GEF and Myosin amplitudes in the same way. In Figure 4.18(b), the parameters

k2, k0 and k4 have larger influence on both GEF amplitude and period; others such

as GT have larger influence on GEF amplitude while some such as k1T and k6 have

larger influence on the period than Rho amplitude. The same effect is observed

when comparing period and Myosin amplitude.

The local sensitivity analysis provides the influence of each parameter around the
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selected nominal parameter value, and therefore its effect is local. This method

is very useful to analyse the influence of different parameters on the limit cycle

dynamics. We have seen that different features of an oscillatory dynamics may

provide different raking of parameters. Comparison of local sensitivity for all the

models will be provided in Chapter 6. Local sensitivity analysis is combined with

global sensitivity analysis which is presented in the next section.

4.3 Global sensitivity analysis

To find out which input factors are more important in determining the uncertainty

in the output of a model, the local techniques are not suitable in this case and

therefore the global sensitivity analysis methods are recommended. Most of these

methods are implemented using Monte Carlo simulations, and therefore, are called

Sampling-based methods (Ekström, 2005).

For sampling-based methods, it is recommended that the starting point is to first

examine the scatter plots. With these plots, non-linearities, non-monotonicity and

correlation between input factors may be determined.

(i) For linear relationships between the input factor and the output, the following

methods would perform well:

• Pearson product moment correlation coefficient (CC),

• Partial Correlation Coefficients (PCC),

• Standardized Regression Coefficients (SRC).

(ii) For non-linear but monotonic relationships, the following methods perform well:

• Spearman Rank Correlation Coefficient (RCC),

• Partial Rank Correlation Coefficients (PRCC),

• Standardized Rank Regression Coefficients (SRRC).

(iii) For non-linear non-monotonic relationships, the recommended methods are

based on decomposition of variance, and the examples include:

• Sobol’ method,
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• Jansen’s alternative,

• Fourier Amplitude Sensitivity Test (FAST),

• Extended Fourier Amplitude Sensitivity Test (eFAST),

The global sensitivity analysis is conducted using the Extended Fourier amplitude

test (eFAST) technique. eFAST belongs to the class of variance based methods.

Since the models we consider show change of dynamics when a parameter changes,

we expect non-monotonic behaviour. That is why we resort to the use of variance

based methods, in particular the eFAST method. This method has proven to be one

of the most reliable methods among the variance-based techniques (Saltelli et al.,

2004; Marino et al., 2008; Gao et al., 2016), although it is computationally expensive

(Tarantola et al., 2006; Ratto et al., 2007).

Sampling-based methods for sensitivity analysis are computed on the basis of map-

ping between the input-output relationship generated by the Monte Carlo simulation

and they evaluate the effect of a factor Xi while other factors are also allowed to

vary (Ekström, 2005). Monte Carlo simulation is based on performing many model

simulations where the model inputs are selected probabilistically. The results ob-

tained may be used in testing model variations with respect to variation in the

parameters (Marino et al., 2008). Variance-based methods quantify the amount of

variance that each input factor Xi contributes with on the unconditional variance of

the output V (Y), (Ekström, 2005). The variance based techniques aim to rank the

input factors according to the variance that is lost. The measure of the sensitivity

of Y to Xi is defined by the formula;

si =
V (E [Y|Xi])

V (Y)
. (4.13)

The ratio (4.13) was named first order sensitivity by Sobol, (Sobol, 1993), which only

measures effect of the main contribution of each parameter on the output variance

and does not take into account interaction between the input factors. The sum of

all order effects that a factor accounts for is called total effect (Homma and Saltelli,

1996; Saltelli et al., 1999). Therefore for an input Xj, the total sensitivity index sTj

is the sum of all indices measure relating to Xj.
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4.3.1 Extended Fourier amplitude test (eFAST)

eFAST method was developed by Saltelli et al. (1999, 2000) as an improvement of

the Fourier amplitude test (FAST) method which was developed by Cukier et al.

(1975). It is a variance based method. The technique uses a periodic sampling

method together with Fourier transformation to partition the whole variance of

the model output and quantify the degree to which variation in each input factor

accounts for the output variance (Gao et al., 2016).

A periodic sampling approach is used to generate a search curve in the parameter

space and partitioning is implemented by assigning the periodic sample of each

parameter with a distinct frequency. Then a Fourier transformation is applied to

the model output to measure how strongly a factor’s frequency propagates from

the input to the output, i.e., the variance contribution of the factor to the whole

variance of the output (Saltelli and Bolado, 1998; Saltelli et al., 1999; Marino et al.,

2008; Gao et al., 2016).

We make use of the dummy parameter to determine the significance of first and total

order indices. This approach has been in existence in literature and was applied in

the context of eFAST (Marino et al., 2008). eFAST produces small but non-zero

indices even for parameters to which the model is independent. So the parameters

with total-order sensitivity index less than or equal to that of dummy parameter are

considered not significantly different from zero and hence not significant. The full

description of eFAST method is presented in Appendix C.2.

4.3.2 Sensitivity analysis results with eFAST method

The sensitivity analysis by eFAST was performed using the parameter values listed in

Table 4.1. The table also gives the range of parameters within which the sensitivity

is performed. Due to lack of prior knowledge about the parameter distributions, a

uniform distribution is assumed for each parameter. The range of parameters is also

arbitrary, and large enough to cover all the possible dynamics. The simulations are

run in MATLAB based on the code given in Ekström (2005); Marino et al. (2008).

We use the sample size, NS = 250 and the re-sampling, NR = 3, and for all the

models, we obtain the first order and total order sensitivities, and plot bar graph of
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the same.

Parameters whose sensitivity indices are less or equal to the dummy variable are

considered not sensitive, and hence do not affect the output. We also note that

eFAST method produces positive sensitivity indices, and does not tell whether a

parameter increases or decreases the output. Extra analysis should be performed

if one wants to determine the effect of a particular parameter. The analysis here

only seeks to identify the parameters which most affect the output, but not how

they affect, and so we will not determine if a parameter increases or decreases the

output.

Parameters
Model GRM-1 Model GRM-2 Model GRM-3

Range Baseline Range Baseline Range Baseline

k0 [0.001, 150] 4 [0.001, 150] 4 [0.001, 150] 1

k1 [0.001, 150] 0.45 [0.001, 150] 0.1 [0.001, 150] 0.2

k2 [0.001, 150] 1 [0.001, 150] 1 [0.001, 150] 0.5

k′
2 [0.001, 150] 1 [0.001, 150] 1 NA NA

k3 [0.1, 20] 1 [0.1, 20] 1 [0.1, 20] 1

k4 [0.1, 20] 1 [0.1, 20] 1 [0.1, 20] 0.65

k5 [0.0001, 15] 0.022 [0.0001, 15] 0.035 [0.0001, 15] 0.15

k6 [0.0001, 15] 0.01 [0.0001, 15] 0.01 [0.0001, 15] 0.1

k7 [0.0001, 10] 0.001 [0.0001, 15] 0.001 [0.0001, 15] 0.025

Kr0 NA NA [0.001, 50] 1 [0.001, 50] 0.051

Kr1 [0.001, 50] 0.05 NA NA [0.001, 50] 0.051

Kr2 [0.001, 10] 0.05 [0.001, 10] 1 [0.001, 10] 0.05

Km5 NA NA [0.01, 5] 1 [0.01, 5] 0.5

Km6 NA NA NA NA [0.01, 5] 0.75

Km7 NA NA NA NA [0.01, 20] 0.75

Kg3 [0.01, 10] 0.3 [0.01, 10] 0.15 NA NA

Kg4 [0.01, 10] 0.2 [0.01, 10] 0.1 NA NA

GT [0.001, 50] 5 [0.0001, 50] 12 [0.001, 50] 12

Table 4.1: Parameter ranges and base values for models GRM-1, GRM-2 and GRM-3. NA refers

for Not Applicable.
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Global sensitivity results for model GRM-1

Model GRM-1 has 15 parameters together with the dummy variable. Therefore the

total number of simulations performed is 15 × 250 × 3. The re-sampling ensures

that no parameter is sampled more than once. First and total order sensitivity

indices are obtained, and results presented as shown in Figure 4.19. Figures 4.19(a)

and 4.19(b) show first and total sensitivity indices for model GRM-1 computed with

eFAST method. si only gives the effect of an input factor to the output but does not

put into consideration the interaction with other input factors while sTi
which is the

total order index, considers interaction with other parameters. From Figure 4.19,

(a) si (b) sTi

Figure 4.19: First and total order sensitivity indices for model GRM-1, parameter values in

Table 4.1 are used.

the Rho output is mostly affected by k′
2, k0, k3. They are ranked high by both si or

sTi
. The interaction of parameter impacts more on the Rho output, since sTi

> si.

Similarly k6 and k7 affect the Rho output. The parameters k1, Kr1, k2, Kr2, GT

and k5 are not significantly different from dummy and therefore considered not

significant. The most sensitive parameters that affect Myosin output are k6, k7 and

k′
2. The rest of the parameters have the sensitivity index almost equal to the dummy

parameter, hence not significant. Comparing si and sTi
, it can be concluded that

the most influence is due to parameter interaction.
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Global sensitivity results for model GRM-2

Model GRM-2 has a total of 16 parameters including the dummy variable, which

makes the total number of simulation 16 × 250 × 3. The sensitivity indices are

obtained and represented on a bar plot as shown in Figure 4.20. Figures 4.20(a)

and 4.20(b) show first and total sensitivity indices for model GRM-2 computed with

eFAST method. From Figure 4.20, the Rho output is largely affected by k1, k′
2,

(a) si (b) sTi

Figure 4.20: First and total order sensitivity indices for model GRM-2, parameter values in

Table 4.1 are used.

Kg3, k2 and GT . The interaction of parameter impacts more on the Rho output,

for example parameters such as, kg3 and GT are ranked low when considering first

order sensitivity, but their ranking increases more by considering total order sensit-

ivity. Other parameters such as k6 and Km6 are ranked 6 and 5 respectively from si,

their significance reduces to 10 and 9 respectively when we consider parameter in-

teractions. The rest of other parameters are not significantly different from dummy

and therefore considered not significant. The most sensitive parameters that affect

Myosin output are k6 and k7, the other significant parameters are k5, Km5 and Kg3.

The rest of the parameters are ranked below the dummy variable, hence not signi-

ficant. Comparing si and sTi
, it can be concluded that the most influence is due to

parameter interaction.
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Global sensitivity results for model GRM-3

Model GRM-3 has a total of 15 parameters considered for sensitivity analysis. First

and total order sensitivity indices are obtained and results presented using a bar plot

as shown in Figure 4.21. Figures 4.21(a) and 4.21(b) show first and total sensitivity

indices for model GRM-3 computed with eFAST method. si only gives the effect of

an input factor to the output but does not put into consideration the interaction with

other input factors while sTi
which is the total order index considers interaction with

other parameters. From Figure 4.21, the Rho output is mostly affected by GT , k3

(a) si (b) sTi

Figure 4.21: First and total order sensitivity indices for model GRM-3, parameter values in

Table 4.1 are used.

and k4. They are ranked high by both si and sTi
. Km6 also affects the Rho output,

the rest of parameters are considered not significant as their sensitivity indices are

almost equal to the sensitivity index of the dummy parameter. The interaction of

parameter impacts more on the Rho output, since sTi
> si. Similarly k6 and k7 affect

the Rho output. Myosin output is greatly affected by the variations in k6, Km6, k7

and Km7. The rest of the parameters have the sensitivity index almost equal to the

dummy parameter, hence not significant. Comparing si and sTi
, it can be concluded

that the most influence is due to parameter interaction.
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4.3.3 Conclusion

In this chapter, we considered sensitivity of model output to parameters. First the

local sensitivity analysis was carried out, which considered how model output is

affected by an infinitesimal increase of a parameter from the nominal parameter

value. With local analysis, we were able to analyse the parameter sensitivity, cat-

egorised into two regimes (stable and oscillatory). The oscillatory behaviour is one

of the integral behaviour to be investigated in GEF–Rho–Myosin dynamic network.

We were able to analyse period, and amplitude sensitivity to parameters. Differ-

ent models are sensitive to different parameters. The comparison of models will be

presented in Chapter 6. In summary, for all the models k3 and k4 stand out almost

in every aspect as one of the most sensitive parameters.

We also carried out global sensitivity analysis using eFAST method. This is a

variance based method that ranks the sensitivity of parameters depending on the

variance that is lost. In general k6, k7, k3, GT stand out as some of the most influ-

ential parameters. The comparison between different models will be discussed in

Chapter 6. It has been shown for all the models that the two variables are largely

influenced by different parameters; for example in model GRM-1, the two most

sensitive parameters that affect Rho are k′
2 and k0 while for Myosin, they are k6 and

k7. For model GRM-2, Rho is largely affected by k1 and k′
2 while k6 and k7 largely

affects Myosin. For model GRM-3, GT , k3 and k4 largely affects GEF while k6,

Km6 and Km7 largely affects Myosin. The parameters k6 and k7 are associated with

Myosin module, while k3 and GT are associated with the GEF module. Therefore,

the results show that the system is more sensitive to the mechanisms which alter

positive and negative feedback regulators of Rho, than those mechanisms which

alter Rho module components. We also see that in general, the ranking of para-

meter sensitivity is fairly similar for all the models and therefore the response of

GEF–Rho–Myosin system is independent on the model structure.

In the next chapter, we consider some numerical simulations relating to all the mod-

els. The chapter contains the study of the excitable dynamics and identification of

excitability region for all the models. We also characterise Rho amplitude depend-

ency on the parameter, GT , and lastly we present time series of the molecules to
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illustrate mathematical results presented in Chapter 3.
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Chapter 5

Numerical simulations

5.1 Introduction

In Chapter 4, we studied the model response to parameter variations, in particular,

we used local sensitivity analysis to examine the period and amplitude change with

respect to parameter variations. In this chapter, we perform numerical simulations

corresponding to all the three models formulated in Chapter 2. We first provide the

phase-planes and temporal long term behaviours of the ODE models for different

GEF concentrations (GT ), which illustrate the theoretical predictions in Chapter 3.

We then investigate the Rho excitability as observed experimentally (Graessl et al.,

2017) and identify the excitability region for all the three models. We also study

Rho response amplitude dependency on the positive feedback mediator, GEF-H1,

and also the trigger threshold that provides the maximum Rho amplitude. It was

observed experimentally that Rho response amplitude increases until intermediate

GEF concentration (Graessl et al., 2017).

5.2 Phase-planes and temporal analysis

We first illustrate different regime behaviour which were theoretically predicted in

Chapter 3, we choose characteristic values of GT and plot the phase-planes and

temporal profiles for the variables. This is done for each model. In this case, we

provide the phase-plane and temporal profile of excitability. The explicit study of
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excitability region will be studied in the next section.

• In a phase-plane diagram the R− and M−nullclines (respectively G− and

M−nullcline for model GRM-3), the direction fields, and one or two solutions

are plotted.

• In the t−domain, the temporal evolution of the solutions is presented.

All the numerical simulations are carried out with parameter values listed in Table

3.1, unless stated otherwise. The simulations are done in MATLAB package using

ode23 (Shampine and Reichelt, 1997).

5.2.1 Phase-planes and temporal analysis for model GRM-1

The bifurcation diagram in Figure 3.3 shows that as GT increases, R slowly decreases

and then at high values of GT , the model has up to three steady states, two of

which are stable, separated by an unstable (saddle) steady state. These results

are illustrated by the phase-plane diagrams and temporal evolutions in Figures 5.1

and 5.2, respectively. Figure 5.1 shows different phase-planes for model GRM-1

corresponding to different GEF-H1 concentrations (as illustrated in Figure 3.3).

The phase-plane diagrams also illustrate the theoretical analysis results in Figure 3.2.

The phase-planes describes four dynamic regimes as GT varies. The local intersection

of the nullclines resembles the theoretically predicted shapes in Figure 3.2. In the

phase-planes, R-nullcline has three branches. The middle branch is unstable, while

two outer branches are stable, when the intersection occurs at the outer branches,

the steady state is stable, while intersection at the middle branch implies unstable

steady state, which can either be a node, spiral or a saddle depending on the local

qualitative configuration at the intersection. The phase-plane illustrates that at

small GT , then we have an intersection, characterised by a stable equilibrium. As GT

increases, the system changes to oscillatory dynamics, which bifurcates to excitable

dynamics and lastly at higher GT values, the model is characterised by bistable

dynamics.

The time series of Rho and Myosin for model GRM-1 are obtained for the corres-

ponding phase-planes in Figure 5.1. The results characterise various dynamics as

shown in Figure 5.2. The results illustrate the four dynamic regimes predicted for
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(a) E3−type (b) E2−type

(c) E1−type (d) E4−type + E5−type + E6−type

Figure 5.1: Phase-plane diagrams of Rho and Myosin corresponding to model GRM-1 for different

values of GT . The values of GT are 0.1, 0.6, 5 and 16 respectively.

model GRM-1. For suitable parameter values, the model exhibit up to 4 regimes

(stable, oscillatory, excitable and bistable) by changing GEF-H1 total concentration

(GT ). For small values of GT , the model has a unique steady state, which is stable

(Figures 5.1(a) and 5.2(a)). AS the value of GT increases, the stable steady state

becomes unstable, and since it is unique the model oscillates around this steady state

(see Figures 5.1(b) and 5.2(b)). Increasing GT further results in the transformation

of the steady state back to stable, in this case an excitable steady state (see Figures

5.1(c) and 5.2(c)). At higher GT , the model has three equilibrium points, two are

stable, separated by a saddle (see Figures 5.1(d) and 5.2(d)). The saddle steady

state acts as a switch that determines to which steady state the models converges

to. Both steady states can be achieved by changing initial conditions. These nu-

merical simulation results support the theoretical findings and bifurcation analysis
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results in Chapter 3.

(a) (b)

(c) (d)

Figure 5.2: Numerical temporal evolution profiles of Rho and Myosin corresponding to model

GRM-1 for different values of GT . The values of GT are used as in Figure 5.1. The initial conditions

used for bistable regime (Figure 5.2(d)) are (0.1, 0.1) and (0.2, 0.4).

5.2.2 Phase-planes and temporal analysis for model GRM-2

Figure 5.3 shows different phase-planes corresponding to different values of GT .

The results illustrate theoretical predictions shown in Figure 3.4. As GT increases,

R slowly decreases and then at high values of GT , the model has three steady states

two of which are stable and separated by an unstable (saddle) steady state. It can

be noted that as GT varies, the M-nullcline remains fixed, as it is not affected by

GT . It is the R-nullcline that varies and brings different dynamic behaviours. These

characteristic phase-planes are locally equivalent to the qualitative phase-planes

described in Chapter 3.
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(a) E3−type (b) E2−type under case

(c) E1−type (d) E4−type + E5−type + E6−type

Figure 5.3: Phase-plane diagrams corresponding to Rho and Myosin for model GRM-2 for

different values of GT . The values of GT are respectively selected as 0.1, 1, 7, 20 and k1 = 0.2.

Figure 5.4 shows time series of Rho and Myosin for different values of GEF concen-

tration. For small value of GT , the model has a unique steady state which is globally

asymptotically stable (Figure 5.4(a)). As the value of GT increases, the steady state

becomes unstable and is unique, therefore the system overshoots and undershoots

between the upper and lower branches of R-nullcline in the oscillatory regime. An

increase in the value of GT makes the steady state stable, which is excitable, further

increase in GT makes the model to have three steady states. This is all illustrated

by the time series behaviour.

5.2.3 Phase-planes and temporal analysis for model GRM-3

Figure 5.5 shows phase-plane analysis (5.5(a)-5.5(c)) and their corresponding tem-

poral evolution results (5.5(d)-5.5(f)) for model GRM-3. The results illustrate vari-

ous dynamic regimes of model GRM-3 (stable, excitable and oscillatory). This model
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(a) (b)

(c) (d)

Figure 5.4: The time series of Rho and Myosin for model GRM-2. These are generated using the

parameter of corresponding phase-plane diagrams in Figure 5.3. In Figure 5.2(d) we used initial

conditions (0.1, 0.1) and (0.2, 0.4).

shows only three regimes by changing GEF total concentration. All of these regimes

are illustrated. We also note that the qualitative nullclines intersection are locally

similar to what was qualitatively described in Chapter 3. For small values of GT ,

the steady state is stable and unique, as GT increases, the steady state assumes

excitable behaviour, further increase in GT makes it unstable and hence periodic

solutions emerge.

5.3 Rho excitability

Excitability is defined according to Allard and Mogilner (2013) as, ”It results from

a steady state in which small perturbation decays but perturbations larger than a

threshold results in larger excursion but later returns to steady state indirectly.”

This is illustrated in Figure 1.4(b). It was shown that the activator-inhibitor system
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: Phase-plane diagrams(5.5(a)-5.5(c)) and their corresponding numerical solutions

(5.5(d)-5.5(f)) for model GRM-3 for different values of GT . The values are GT = 0.4 for stable,

GT = 0.57 for excitable and GT = 0.7 for oscillatory, k1 = 0.1.

can make cell plasma membrane and its cortex act as an excitable media (Bement

et al., 2015; Barnhart et al., 2017; Miao et al., 2017). This accounts for spontaneous

migration of cells (Iglesias and Devreotes, 2012). It was found that a combination of

Rho self-amplification through GEF-H1 and Myosin inhibition as shown in Figure

1.3 leads to pulsatile and cell contraction dynamics (Graessl et al., 2017). This is

the characteristic of an excitable medium which is composed of a component that

regulates its activities by recruiting both its activator and an inhibitor (Murray,

2002; Iglesias and Devreotes, 2012). The activator provides a positive feedback loop

while an inhibitor provides a slow negative feedback loop. The Hodgkin-Huxley

model (Hodgkin and Huxley, 1952) forms the basis for the study of excitability.

For some cells when the current/signal is too strong, the membrane potential goes

through a large excursion (Sneyd and Keener, 1998). Cells which exhibit such
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dynamics are said to be excitable.

Since GEF–Rho–Myosin tri-molecular interactions has been reduced to two species

model, we will use phase-plane analysis to describe excitability as shown in. For

some parameter values in the model, there is only one intersection of nullclines and

hence one steady state for all the models. The R-nullcline has three branches and

the M-nullcline is an increasing function. The intersection of the nullclines gives the

steady state of the model. When the intersection of R and M-nullclines happens at

the extreme branches of R-nullcline, then the steady state is stable but if the inter-

section happens at the middle branch, then the steady state is unstable. Consider

intersection of nullclines as shown in Figure 5.6, which is similar to Figure 3.2(a) in

Chapter 3. This is a typical shape of a nullcline characterised by excitable dynamics.

The threshold for excitability is represented by the green line. For any perturbation

below the threshold then the system decays. However if the perturbation is larger

than the threshold, then we experience a large excursion of R followed by decay to

the steady state.

Figure 5.6: The nullcline intersection characteristic of an excitable medium. Green line is the

threshold for which a large excursion is observed.

5.3.1 Excitability region for models GRM-1 and GRM-2

For models GRM-1 and GRM-2, it can be shown that as GT increase, the nullcline

configurations transition as shown in Figure 5.7. As GT varies, M -nullcline in Fig-

ure 3.2 remains fixed while R-nullcline moves as shown in Figure 5.7, it can be
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shown that excitability occurs at the values of GT between oscillatory and bistable

regimes as shown in Figure 5.8. It can be seen that models GRM-1 and GRM-2

GEF-H1 concentration

Figure 3.2(c) 7→ 3.2(b) 7→ 3.2(a) 7→ 3.2(d)

Figure 5.7: The transition of nullclines for models GRM-1 and GRM-2 as GEF-H1 concentration

varies.

have the same qualitative dynamics, they have a similar defined region within which

excitable dynamics occur. The dynamics transition from stable 7→ oscillatory 7→

excitable 7→ bistable. For parameter values in the green region (see Figure 5.8), if

a critical threshold is exceeded, the two models show excitable behaviour. This has

been illustrated in the first section, about phase-plane analysis and time series of

Rho dynamics.

(a) Model GRM-1 (b) Model GRM-2

Figure 5.8: The green coloured region is the excitability regime in two parameters GT and k1.

The yellow and red represents bistable and oscillatory regimes respectively

5.3.2 Excitability in model GRM-3

For model GRM-3, it can be shown that as GT increases, the nullcline configurations

transition as shown in Figure 5.9. As GT varies, both M -nullcline and G-nullcline

moves as shown, but the local configuration is equivalent to the configurations in

Figures 3.2(a), 3.2(b) and 3.2(c). The excitability occurs before oscillatory region.
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This model lacks a defined region within which excitable dynamics occur, and there-

fore, it is not easy to characterise the region within which excitable dynamics occur.

This is different from models GRM-1 and GRM-2 in which we can characterise the

region within which excitability occurs. The dynamics observed in model GRM-3

transition from stable 7→ excitable 7→ oscillatory 7→ stable.

GEF-H1 concentration

Figure 3.2(a) 7→ 3.2(b) 7→ 3.2(c)

Figure 5.9: The transition of nullclines for model GRM-3 as GEF-H1 concentration varies.

Summary of excitability

All the three models GRM-1, GRM-2 and GRM-3 exhibit excitable dynamics for

some parameter values. These parameters are such that the nullcline configuration

is similar to the configuration shown in Figure 3.2(a). All the three models have a

region within which excitable dynamics occurs. Comparison of excitability results

are presented in Chapter 6.

5.4 Rho response amplitude and trigger threshold

In this section, we present the basic characterisation of dynamic states that corres-

pond to pulsatile and excitable system dynamics. We present the results for the Rho

response amplitude for models GRM-1, GRM-2 and GRM-3. The model dynamics

are carried out focusing on the threshold dynamics for switching steady states, or

for obtaining the maximum response amplitude. We also investigate the frequency

of peaks in the oscillatory dynamics. It is observed experimentally (Graessl et al.,

2017; Kamps et al., 2019) that as GT increases, the frequency of oscillation reduces.

The Rho threshold denoted, ∆Rho is the perturbation from the steady state, which

we define as:

∆Rho = Rhoinitial − Rhoequilibrium.

We define the trigger threshold as the minimum ∆Rho that gives rise to the maximal

Rho amplitude. This formula is only valid in the case of stable steady state, oth-
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erwise in the case of unstable steady states, the system is oscillatory and therefore

maximum amplitude is obtained in the absence of trigger. We define Rho response

amplitude as,

Rhoamp = Rhomax − Rhomin −∆Rho. (5.1)

Equation (5.1) is used to calculate the Rho response amplitude and the critical

threshold (∆Rho) that generates maximal Rho amplitude. First the stable steady

state solutions of Rho and Myosin activities are obtained from simulations. The

steady state values are then used as starting points for perturbation analyses. Next

the activity of Rho response amplitude to perturbation is then calculated. The

critical threshold that generates maximal Rho amplitude response is also calculated.

5.4.1 Rho response amplitude and trigger threshold for model

GRM-1

First the excitability of Rho was analysed for fixed set of parameters, GT = 2.5 and

k1 = 0.5 and other parameters fixed as in Table 3.1. The dynamic response of Rho

activity is determined as shown in Figure 5.10(a). The dynamic response of Rho

was then analysed in all dynamic regimes (stable, oscillatory, excitable and bistable)

for GT , k1 parameter combinations. The results are as shown in Figures 5.10(b) and

5.10(c).

Figure 5.10 shows the results of Rho response amplitude and trigger threshold

analysis. In the excitable region, corresponding to Figure 5.10(a), if the critical

threshold ∆Rho = 0.075 is exceeded, the time series shows excitable behaviour.

This is characterised by rapid amplification to reach maximal Rho activity which

is followed by transient minimum and return to the steady state. The maximal

Rho activity amplitude for this set of parameter is 0.6725 and it occurs when the

threshold, ∆Rho = 0.1. It is also observed that the Rho response amplitude in-

creases by increasing the threshold until its maximum value, further increasing the

threshold leads to a decreases in the response amplitude. In the oscillatory regime,

maximal Rho amplitude was calculated in the absence of trigger, i.e. ∆Rho = 0, as

shown in Figure 5.10(b).

In the excitable regime, the trigger threshold increases slightly by increasing GT
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(a) (b) (c)

Figure 5.10: Figure 5.10(a) shows the dependency of Rho response amplitude on the perturba-

tion, ∆Rho for fixed parameter values in the excitable regime. 5.10(b) is the contour plot of trigger

thresholds to generate the maximal Rho response amplitude for each GT , k1 parameter combin-

ations. 5.10(c) is the contour plot of maximal Rho response amplitude for GT , k1 parameter

combinations.

for any value of k1 while in the stable and bistable regimes, the trigger threshold

increases by increasing GT or k1. In the bistable regime, we could calculate two

trigger thresholds, as well as two maximal Rho response amplitudes by switching

from lower to higher steady states of Rho activity, or switching from higher to lower.

The results here are shown when switching the activity of Rho to lower steady states

as it requires larger threshold. From Figure 5.10(c), for smaller GT values, the amp-

litude becomes larger with increasing GT . The maximal Rho amplitude is observed

in the oscillatory regime. Further increasing GT leads to a decrease in Rho response

amplitude. Figure 5.11 summarises the dynamic Rho response amplitude and the

corresponding trigger threshold. In general, for fixed value of k1 the Rho response

amplitude increases by increasing GT until the oscillatory regime. Further increas-

ing GT beyond the oscillatory regime decreases the response amplitude. On the

other hand, the trigger threshold increases by increasing GT , for any fixed k1. It can

also be observed that increase in k1 value increases trigger threshold, respectively

the response amplitude. These results can be compared to one parameter bifurca-

tion diagram Figure 3.3(a) to illustrate the threshold dynamics and Rho amplitude

dynamics for each regime. We also analysed the period and frequency of oscilla-

tion for model GRM-1. The results are shown in Figure 5.12. It is shown that

as GT increases in the oscillatory regime, the peak width increases, which implies
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(a) (b)

Figure 5.11: Rho response amplitude and trigger threshold for model GRM-1, for fixed values

of k1 and varying GT .

that peak frequency decreases as GT increases. A Similar observation was made in

experimental results (Graessl et al., 2017; Kamps et al., 2019), that the frequency

of oscillations decreases with increasing expression levels of the positive feedback

mediator, GEF-H1.

(a) (b)

Figure 5.12: Period and frequency of oscillations for model GRM-1 in the oscillatory regime.
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5.4.2 Rho response amplitude and trigger threshold for model

GRM-2

The analysis of model GRM-2, follows similarly to that of model GRM-1. In the

excitable regime, we the take the following parameter values GT = 5, k1 = 0.2 and fix

other parameters as in Table 3.1. The dynamic response of Rho activity is calculated

as shown in Figure 5.13(a). The Rho response amplitude and the trigger threshold

is then analysed in all dynamic regimes (stable, oscillatory, excitable and bistable)

for GT , k1 parameter combinations. The results are presented in Figure 5.13, which

shows the results of Rho response amplitude and the trigger threshold analysis.

In the excitable region, Figure 5.13(a), if the critical threshold of ∆Rho = 0.45

is exceeded, the time series shows excitable behaviour. Rho response amplitude

increases by increasing the trigger threshold. Further increase in threshold beyond

0.4750 decreases the response amplitude.

(a) (b) (c)

Figure 5.13: Figure 5.13(a) shows the dependency of Rho response amplitude on the perturba-

tion, ∆Rho for fixed parameter values in the excitable regime. 5.13(b) is the contour plot of trigger

thresholds to generate the maximal Rho response amplitude for each GT , k1 combinations. 5.13(c)

is the contour plot of maximal Rho response amplitude.

In the excitable regime, the trigger threshold increases slightly by increasing GT for

any value of k1, it is highest in the bistable regime. From Figure 5.13(c), for smaller

GT values, the amplitude becomes larger with increasing GT in the oscillatory and

excitable regimes and finally decreases in bistable regime. The results of response

amplitude as well as the trigger threshold are summarised in Figure 5.14 for fixed

k1 value. It is observed that amplitude increases and is maximal in the oscillatory
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regime and then finally decreases beyond this region. The trigger threshold on the

other hand increases and is maximal in the bistable regime. Beyond the oscillatory

region, it can be observed that increasing k1 values increases threshold, but decreases

the amplitude. These results are similar to observations made from model GRM-1.

(a) (b)

Figure 5.14: Rho response amplitude and trigger threshold for model GRM-2, for fixed values

of k1 and varying GT .

Similar to model GRM-1, the period and frequency of oscillations for model GRM-2

were analysed in oscillatory regime. The results are shown in Figure 5.15. In this

figure, as GT increases in the oscillatory regime, the peak width increases. which

implies that peak frequency decreases as GT increases. A similar observation was

made in experimental results in (Graessl et al., 2017; Kamps et al., 2019) and also

in model GRM-1.

5.4.3 Rho response amplitude and trigger threshold for model

GRM-3

Model GRM-3 was analysed in the same way. In the excitable regime, fixed set

of parameters GT = 0.4, k1 = 0.15 and other parameters fixed as in Table 3.1

were used and the dynamic response of Rho activity determined (see fig. 5.16(a)).

The Rho response amplitude together with the corresponding trigger threshold were

analysed in all dynamic regimes (stable, excitable and oscillatory). The results are
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(a) (b)

Figure 5.15: Period and frequency of oscillations for model GRM-2 in the oscillatory regime.

presented in Figure 5.16, which shows the results of Rho response amplitude and

trigger threshold analysis. In the excitable region, Figure 5.16(a), if the critical

threshold of ∆Rho = 0.15 is exceeded, the time series shows excitable behaviour

which is characterised by rapid amplification to reach maximal Rho activity, followed

by transient minimum and return to the steady state. In the excitable regime, a

maximal amplitude of 0.451 is achieved at a threshold ∆Rho = 0.225. An increase

in ∆Rho beyond this value further decreases the response amplitude.

(a) (b) (c)

Figure 5.16: Figure 5.16(a) shows the dependency of Rho response amplitude on the perturba-

tion, ∆Rho for fixed parameter values in the excitable regime. 5.16(b) is the contour plot of trigger

thresholds to generate the maximal Rho response amplitude for each GT , k1 combinations. 5.16(c)

is the contour plot of maximal Rho response amplitude.

In general, the trigger threshold decreases with increasing the value of GT , and
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vanishes in the oscillatory regime and further increases in the stable and bistable

regimes. From Figure 5.16(c), Rho response amplitude increases with increasing

GT . Maximum response is observed in the oscillatory regime and then finally de-

creases to zero in the second stable regime. Figure 5.16(a) summarises threshold

and response amplitude results for fixed values of k1. The results described the

same behaviour explained before. We also observe that increasing k1 increases Rho

response amplitude. On the other hand, increasing k1 decreases the threshold value.

Similar to models GRM-1, and GRM-2 the period and frequency of oscillation for

(a) (b)

Figure 5.17: Rho response amplitude and trigger threshold for model GRM-1, for fixed values

of k1 and varying GT .

model GRM-3 were analysed in the oscillatory regime, all other parameters are fixed

as shown in Table 3.1 while GT varies. The results are shown in Figure 5.18. In

Figure 5.12, as GT increases in the oscillatory regime, the peak width first decreases

and then finally increases until the Hopf bifurcation point. This implies that peak

frequency first increases before decreasing as GT increases. The experimental results

Graessl et al. (2017); Kamps et al. (2019) show a similar behaviour.

5.5 Conclusion

This chapter has summarised the numerical simulations to support the mathematical

analyses of all the models. We started by illustrating Rho dynamic behaviour using

phase-plane analysis and time series behaviour at different GT levels. Models GRM-1
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(a) (b)

Figure 5.18: Period and frequency of oscillations for model GRM-3 in the oscillatory regime.

and GRM-2 exhibit up to four regimes, while model GRM-3 has up to three regimes

when GT is varied. We then characterised the region within which excitability

occurs, for models GRM-1 and GRM-2, there is a definite region within which

the model shows excitable dynamics. This is different from model GRM-3 which

does not have a clear defined region. We also analysed the dynamic behaviour of

Rho response amplitude with GT and k1 parameter combinations, which has the

same behaviour observed experimentally (Graessl et al., 2017; Kamps et al., 2019).

It has also been shown that in the oscillatory region, increasing GT increases the

period of pulses and thus decreases the frequency. A similar observation was made

with experiments. Also in the oscillatory, Myosin peaks occurs with a time delay

compared to Rho or GEF. This happens for all the models. This is in agreement

with experimental observations that Myosin peaks occurs with a time delay of about

3-40 seconds (Graessl et al., 2017; Kamps et al., 2019). In the next chapter, we carry

out a global model comparison of all the models with an eye for model selection and

rejection.
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Chapter 6

An overall global comparison of all

models

6.1 Introduction

In this chapter, we present comparison of the results of all the three models. First

the model structure will be compared from Chapter 2, then mathematical analysis

will be compared followed by sensitivity analysis results and thereafter the numerical

simulation results. Models will be compared both qualitatively and quantitatively

where possible, outlining clearly similarities and differences between all the models.

6.2 Comparison of model formulation

Models GRM-1, GRM-2 and GRM-3 were formulated using different mathematical

assumptions. The main differences between models GRM-1 and GRM-2 to model

GRM-3 is the implementation of GEF module and the quasi-equilibrium assumption.

In models GRM-1 and GRM-2, the activities of GEF are implemented via enzymatic

activity and also the quasi-equilibrium assumption on GEF module, while in model

GRM-3, the activation and inhibition of GEF module is implemented using mass

action and also quasi-equilibrium assumption on Rho module. For easier comparison

of models, we re-state all the model equations here.
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Equations of model GRM-1

dR

dt
= k0Ep (k3R, k4M, Kg3/GT , Kg4/GT ) (RT −R) +

k1 (RT −R)2

K2
r1 + (RT −R)2

− k′
2MR− k2R

2

K2
r2 +R2

,

(6.1a)

dM

dt
= k5R (MT −M)− k6M + k7 (MT −M) . (6.1b)

Equations of model GRM-2

dR

dt
= k0Ep (k3R, k4M, Kg3/GT , Kg4/GT )

(RT −R)

Kr0 + (RT −R)
+ k1(RT −R)

− k2R

Kr2 +R
− k′

2MR,

(6.2a)

dM

dt
=

k5R(MT −M)

Km5 + (MT −M)
− k6M + k7(MT −M). (6.2b)

The Goldbeter-Koshland function Ep(k3R, k4M, Kg3/GT , Kg4/GT ) is the same for

both models, as defined in Equation (2.8).

Equations of model GRM-3

dG

dt
=k3RTEP

(
k0G+ k1, k2,

Kr0

RT

,
Kr2

RT

)
(GT −G)− k4MG, (6.3a)

dM

dt
=
k5R(G,M)(MT −M)n

Kn
m5 + (MT −M)n

+
k7(MT −M)

Km7 + (MT −M)
− k6M

Km6 +M
. (6.3b)

The Goldbeter-Koshland function is defined in Equation (2.9).

Table 6.1 contains model parameters, and their corresponding model terms for all

the models. These parameters do not include Michaelis constants as well as the con-

centrations of molecules, we only consider reaction rates. Some kinetic parameters

are absorbed into the Golbeter-Koshland function, the reaction part of these kinetic

parameters are not considered in comparison and hence written as G-K.

Models GRM-1 and GRM-2 describe the same reactions presented in Figure 2.1.

Since the precise mechanism is unknown for a given reaction, modelling hypotheses

(plausible assumptions) were made. We considered two models GRM-1 and GRM-2

whose differences stem from the mathematical form used to translate/represent each

reaction. Model GRM-3 describes the reactions presented in Figure 2.2.

The following is observed from Table 6.1:
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Parameters
Ezymatic activity on GEF-H1 Mass action on GEF-H1

Model GRM-1 Model GRM-2 Model GRM-3

k0 k0Ep (RT −R) k0EP
(RT−R)

Kr0+(RT−R)
G-K

k1
k1

(
RT−R

)2

K2
r1+

(
RT−R

)2 k1(RT −R) G-K

k2 − k2R2

K2
r2+R2 − k2R

Kr2+R
G-K

k′
2 −k′

2MR −k′
2MR NA

k3 G-K G-K R(G,M)(GT −G)

k4 G-K G-K −MG

k5 k5R(MT −M) k5R(MT−M)
Km5+(MT−M)

k5R(G,M)(MT−M)n

Kn
m5+(MT−M)n

k6 −k6M −k6M − k6M
Km6+M

k7 k7

(
MT −M

)
k7(MT −M) k7(MT−M)

Km7+(MT−M)

Table 6.1: Comparison between models. Reactions related to parameters k∗ can be found in

Figures 2.1 and 2.2. The general form of the function EP (R,M) is defined in equation (2.8) for

models GRM-1 and GRM-2 while it is defined in (2.9) for model GRM-3. G-K represents the

parameters absorbed into the Goldbeter-Koshland function and NA refers to Not Applicable.

1. First note that all kinetic parameters relating to Rho, are absorbed into the

Goldbeter-Koshland function for model GRM-3, while in models GRM-1 and

GRM-2, all reaction rates relating to GEF-H1 are also absorbed into the

Goldbeter-Koshland function. We will only consider reaction rates defined

explicitly for comparison purposes.

2. Consider the GEF-associated Rho activation, a reaction related to k0. This

reaction is represented by mass action for model GRM-1, while it is represented

by enzymatic activity for model GRM-2.

3. The self-activation of Rho, the reaction related to k1. This is described by

Hill type equation for model GRM-1, with Hill exponent 2, while the same

reaction is represented by the law of mass action for model GRM-2.

4. The self-inhibition of Rho, the reaction related to k2 is described by Hill type

equation for model GRM-1, with Hill exponent 2, while the same reaction is

described by enzymatic activity for model GRM-2.
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5. For model GRM-3, the reactions involving k0, k1 and k2 are absorbed into

the Goldbeter-Koshland function. This is one of the main differences between

model GRM-3 and models GRM-1 and GRM-2.

6. Myosin-associated Rho inhibition, reaction related to k′
2 is represented by mass

action for both models GRM-1 and GRM-2. For model GRM-3, we only

considered Myosin-IIA and therefore k′
2 = 0.

7. Consider the Rho associated GEF activation and Myosin associated GEF in-

hibition, reaction related to k3 and k4 respectively. These reactions are rep-

resented by mass action for model GRM-3, while they are absorbed into the

Goldbeter-Koshland function for models GRM-1 and GRM-2.

8. Rho-associated Myosin activation, reaction related to k5 is represented by

mass action for model GRM-1, while it is represented as an enzymatic activity

(Michaelis-Menten kinetics) for model GRM-2. The same reaction is repres-

ented by a Hill function for model GRM-3.

9. Myosin self-inhibition, reaction related to k6 is represented by mass action for

models GRM-1 and GRM-2, while it is represented by enzymatic activity for

model GRM-3.

10. Myosin self activation is also represented by mass action for models GRM-1

and GRM-2 while it is represented by enzymatic activity for model GRM-3.

Therefore models GRM-1 and GRM-2 are similar in reactions involving k′
2, k3, k4, k6

and k7. The rest of reactions involving k0, k1, k2 and k5 are different. By considering

only reactions that are not absorbed into the Goldbeter-Koshland function, then

model GRM-3 has no similar reaction to model GRM-1. This model is only similar

to model GRM-2 in the reaction related to k5 when the Hill exponent, n = 1.

6.3 Comparison of mathematical analysis results

In this section, mathematical analysis results for all the models are compared. First

the qualitative analysis results of the asymptotic behaviour are compared, followed

by the bifurcation analysis results. Models GRM-1 and GRM-2 have qualitatively
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similar dynamics, they admit all the nullcline configurations in Figure 3.2. The

theoretical dynamics are qualitatively similar as GT varies. As GT is varied, the

nullcline configurations transition from Figure 3.2(c) 7→ 3.2(b) 7→ 3.2(a) and then

to 3.2(d). These results on the other hand differ with theoretical results of model

GRM-3. This model only admits three of the nullcline configurations in Figure 3.2.

As GT varies, the dynamics transition from Figure 3.2(a) 7→ 3.2(b) and then to

3.2(c).

The same comparison is observed from bifurcation analysis results. As GT varies,

the dynamics transition from stable, oscillatory, stable and then bistability. This

is observed from their bifurcation diagrams 3.3 and 3.4. For small values of GT

the steady state is stable, the steady state becomes unstable when the value of GT

increases. For the unstable steady state, the solutions to the model are periodic.

Further increase in GT changes the stability of the steady state back to stable,

thereafter the models reaches a region characterised by three steady states in which

two are stable, separated by a saddle. The saddle acts as a switch which determines

to which steady state the model converges to. Models GRM-1 and GRM-2 have

three Hopf bifurcation points. Model GRM-3 behaves differently. For small values

of GT , the steady state is stable, as the value of GT increases, the steady state

becomes unstable characterised by periodic solutions arising from Hopf bifurcation.

Further increase in GT brings the system back to another region characterised by

stable steady states.

Inherent in these models is what is called excitability, as discussed in Chapter 5.

Models GRM-1 and GRM-2 have a region characterised by excitable dynamics,

which lies between the last two Hopf bifurcation points. Model GRM-3 has no clear

region for excitability defined. The difference between the behaviour of Models

GRM-1 and GRM-2, and model GRM-3 is attributed to the mathematical trans-

lation of GEF module, and the quasi-steady state assumption. In models GRM-1

and model GRM-2, enzymatic activity was used to translate the GEF activities,

while in model GRM-3, the law of mass action was used to describe GEF module.

The quasi-equilibrium kinetics are assumed on GEF module (models GRM-1 and

GRM-2) or on Rho module (model GRM-3).



112

6.4 Comparison of sensitivity analysis results

Sensitivity analysis results for all models are compared. We show comparisons for

the local and global sensitivity analyses.

6.4.1 Local sensitivity analysis

We first compare local sensitivity analysis for all the models. Table 6.2 shows the

model parameters, ranked from the most sensitive to the least. In general, for

models GRM-1 and GRM-2, we observe that common parameters which largely

influence the steady state values are k3, k4 and k0. The parameter k2 greatly affects

the steady state for model GRM-1 but not GRM-2. For model GRM-3, the most

sensitive parameter is GT which has larger influence on the GEF steady state value,

but not Myosin. The other parameters are k6 and k1. GT has very little effect on

the steady state values for models GRM-1 and GRM-2.

Table 6.3 shows comparison of parameters for all the models in terms of their rank-

ing. It has parameters ranked in terms of period sensitivity and Rho, GEF and

Myosin amplitudes. In terms of the period, k3 and k4 largely influence both models

GRM-1 and GRM-2; Kr2 largely influences model GRM-1 while GT largely influ-

ences model GRM-2. Parameters k2 and k1 are highly ranked in terms of period

sensitivity of model GRM-3. The period is highly sensitive to the following para-

meters; for model GRM-1, the 5 most sensitive parameters are; k3, k4, Kr2, k5 and

k6. For model GRM-2, the following parameters have the largest influence on the

period; k3, k4, GT , k5 and Kg3. The period of model GRM-3 is largely affected by

k2, k1, k0, k6 and Kr2. On the other hand, the following parameters affect Rho/GEF

amplitude: for model GRM-1, we have k0, k2, Kr2, k′
2 and Kg4. For model GRM-2,

we have k3, k4, k0, Kr0 and Kg3 while GT , k2, k0 k4 and k3 are the most sensitive

for model GRM-3.

6.4.2 Global sensitivity results

We compare global sensitivity analysis results for all the models. eFAST method

only provides the absolute values of sensitivity. Table 6.4 shows parameters for all

the models arranged in order of their sensitivity ranking, the ranking is based in total
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Model GRM-1 Model GRM-2 Model GRM-3

Rho Myosin Rho Myosin GEF Myosin

−k2 −k2 k3 k3 GT −k6

k3 k3 −k4 −k4 −k2 −Km6

−k4 −k4 k6 k0 k6 −k2

k0 k0 k0 Kg4 k1 k7

−Kg4 −Kg4 −k5 −k2 k3 k1

−Kg3 −Kg3 Kg4 −Kr0 −k4 Kr2

k1 k1 −k2 −Kg3 −Km6 −Km7

k6 −k′
2 Km5 k−′

2 −k7 k5

−k5 −k6 −Kr0 Kr2 Kr2 k0

−k′
2 k5 Kg3 −k6 Km7 GT

−GT −GT −k′
2 k5 k0 −k4

Kr2 Kr2 Kr2 −GT −k5 k3

−Kr1 −Kr1 −GT k1 Km5 −Km5

−k7 k7 k1 −Km5 −Kr0 −Kr0

−k7 +k7

Table 6.2: Comparison of ranking parameter sensitivity for all models in the case of stable regime.

sensitivity index, sTi
. The three models are largely affected by different parameters,

for example considering the variable Rho; Rho is largely affected by k′
2, k0, k3 and

k7 for model GRM-1, while affected by k1, k′
2, Kg3 and k2 for model GRM-2. For

model GRM-3, the corresponding variable GEF is largely affected by GT , k3, k4 and

Km6. We notice that Myosin is largely affected by same parameters, k6, k7 and k5 for

models GRM-1 and GRM-2. In general, different parameters are ranked differently

depending on the model under consideration or the variable considered. Parameters

which largely affect Rho (GEF) are different from those that largely affect Myosin.

This different in parameter rankings for different models may be due to differences

in the mathematical assumptions used in formulating the models.
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Model GRM-1 Model GRM-2 Model GRM-3

Period
Amplitude

Period
Amplitude

Period
Amplitude

Rho Myosin Rho Myosin GEF Myosin

k3 k0 −Kr2 k3 k3 GT k2 GT GT

−k4 −k2 k3 −k4 −k4 −k4 −k1 −k2 −k2

−Kr2 −Kr2 −k4 GT k0 k3 −k0 k0 k0

−k5 −k′
2 k0 −k5 −Kr0 −Kg4 −k6 −k4 −k4

−k6 −Kg4 −Kg3 −Kg3 −Kg3 −k1 −Kr2 k3 −Kr2

k2 −k3 −k1 −k1 −k2 −Kr2 −k3 −k5 k3

−Kg3 k4 −k′
2 Km5 Kg4 −k5 Km6 −Kr2 k5

−k1 GT k2 −Kr2 −k′
2 −Kg3 −GT −Kr0 −Kr0

−k′
2 −Kr1 GT −Kg4 Kr2 k2 k7 Km5 Km5

GT Kg3 −Kg4 Kr0 GT Km5 k4 k1 k6

k0 −k5 −k5 −k′
2 −k5 −Kr0 −Km7 k6 k1

−Kg4 k1 −k6 k2 Km5 −k′
2 k5 −Km6 −Km6

k7 −k6 −Kr1 k0 −k1 k6 −Km5 −k7 −k7

−Kr1 −k7 −k7 −k6 −k6 k0 −Kr0 Km7 Km7

k7 −k7 −k7

Table 6.3: Comparison of parameter sensitivity for all the models in the case of oscillatory

dynamics, the sign in front of the parameter indicates how a parameter affects the model output.

The parameters are ranked in terms of their sensitivity

6.5 Numerical simulation results

In this section, we compare numerical results of all the models, i.e. excitability, Rho

response amplitude and Phase-plane and temporal evolution of all the variables.

Excitability results

From Chapter 5, it was observed that models GRM-1 and GRM-2 have a defined

region associated with excitable dynamics. The excitability region for these models

lies between oscillatory and bistability regimes. This is contrary to model GRM-3

that does not have a clear region defined for excitable dynamics, and it also occurs

before the oscillatory regime. All these transition dynamics are dependent on the
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Model GRM-1 Model GRM-2 Model GRM-3

Rho Myosin Rho Myosin GEF Myosin

k′
2 k6 k1 k6 GT k6

k0 k7 k′
2 k7 k3 Km6

k3 k5 Kg3 k5 k4 Km7

k7 k′
2 k2 Km5 Km6 k5

k6 k0 GT Kg3 k6 Km5

Kg4 k4 Kr2 dummy Kr0 Kr2

k4 Kg4 k4 k′
2 Km7 k7

Kg3 k3 Kr0 k1 k5 k2

GT Kg3 k7 Kr2 Kr2 Kr0

k5 GT k6 k2 k7 k0

dummy k1 k0 Kg4 Km5 GT

Kr2 dummy k5 k0 k2 k4

Kr1 Kr1 Km5 GT dummy k1

k2 k2 dummy Kr0 k0 dummy

k1 Kr2 k3 k4 k1 k3

Kg4 k3

Table 6.4: Comparison of global parameter sensitivity results for all the models.

positive feedback mediator GEF-H1.

Rho response amplitude and critical threshold

We noted that models GRM-1 and GRM-2 have the same qualitative behaviour in

terms of trigger threshold and Rho response amplitude dynamics, similarly to peak

width and frequency. This differs from what is observed with model GRM-3. Models

GRM-1 and GRM-2 have four dynamic regimes, while model GRM-3 has only three

dynamic regimes. In general for all models, we observe that the amplitude increases

and finally decreases for higher values of GT . For models GRM-1 and GRM-2, in

general the trigger threshold is high in the bistable regime at high values of GT ,

while for model GRM-3, the critical threshold is high at low GT values.
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Regarding response amplitude and threshold analyses, we can also analyse the sta-

bility of the model in parameter combinations GT and k1, as shown in Figure 6.1. We

are able to characterise oscillatory regimes (blue region) for all the models. This also

supports the mathematical analyses in Chapter 3. Models GRM-1 and GRM-2 have

similar dynamics, model GRM-1 has a narrower region associated with oscillatory

dynamics than model GRM-2.

(a) Model GRM-1 (b) Model GRM-2 (c) Model GRM-3

Figure 6.1: Stability regions defined for models GRM-1, GRM-2 and GRM-3. Yellow coloured

region is characterised by stable solutions of Rho, and Myosin, while blue region is characterised

by periodic solutions.

Phase-planes and temporal analysis

Phase-planes and temporal analysis illustrate the mathematical analysis results.

Models GRM-1 and GRM-2 exhibit up to four regimes, for suitable parameter

ranges. Model GRM-1 and GRM-2 have similar qualitative dynamics. The be-

haviours of these models transition from stable, oscillatory, excitable and finally the

bistable regime. Model GRM-3 has up to three regimes when GT is varied while

other parameters are fixed. The dynamics transition from stable, excitable, oscil-

latory and back to stable. The differences in dynamic behaviours of models GRM-1

and GRM-2, from model GRM-3 may be attributed to how GEF module was imple-

mented in the two cases. The model formulation was through the positive feedback

mediator whose concentration alters the system dynamics.
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6.6 Conclusion

In this chapter, we have looked at the comparison of all the results corresponding

to the models. In general models GRM-1 and GRM-2 are qualitatively similar with

regard to their dynamics; as GT varies, the dynamics of these two models transition

from stable, oscillatory, excitability and then bistable regime. The dynamics of

these two models differ from that of model GRM-3, whose dynamics transition from

stable, excitable, oscillatory and then stable.

The difference of the qualitative results are due to how the GEF module was trans-

lated mathematically, and also the quasi-steady state assumption. In this thesis,

models GRM-1 and GRM-2 were refined based on experimental results (Kamps

et al., 2019), which resulted into model GRM-3. From here onwards, we reject mod-

els GRM-1 and GRM-2 and select only model GRM-3. This model will be used to

find the optimal parameters such that the model fits data in a statistical sense. Work

on rigorous model selection is omitted in this thesis, it will form the basis of our

future studies. In the previous chapters, we sort to study the qualitative agreement

between the mathematical models formulated and the experimental observations.

Therefore in Chapter 7, we seek to link model GRM-3 to experimental observations,

thus we seek to identify model parameters that satisfy the experimental observations.

We will therefore apply the Bayesian paradigm to model GRM-3 with perturbation

to estimate model parameters such that GRM-3 fits data in an optimal statistical

sense.
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Chapter 7

Parameter estimation and

Bayesian approach

7.1 Introduction

In this thesis, we first started by formulating mathematical models from first prin-

ciples, based on experimental observations (Graessl et al., 2017; Kamps et al., 2019).

The mathematical analysis shows that model GRM-3 has similar qualitative dynam-

ics to those observed in biological network. Therefore, in this chapter we identify

optimal model parameters such that model GRM-3 best-fits experimental observa-

tions in a statistical sense.

This chapter explores the parameter identification problem by using the Bayesian

approach in order for the model to fit to experimental data. Parameter estimation

is the problem where the information about parameters of the model are extrac-

ted from the experimental data (Tarantola, 2005). In this study, the model is in

the form of ODE for the GEF–Rho–Myosin network, whose parameters are the

coefficients of the model. The data is the experimental measurements of Rho and

Myosin responses to GEF-perturbation. The noise provides the experimental stand-

ard deviation. Parameter identification problem is referred to as an inverse problem,

whereby given experimental and model solutions, what are the optimal parameters

for the model to best-fit the data.
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There are two main approaches for parameter identification problems. The first

approach is the use of optimal control methods to find the best possible value for

parameters (Aster et al., 2018). In this approach the best possible parameter is

defined as one that minimises the distance from the model solution to the experi-

mental data. In general this problem is ill-posed and therefore a regularisation term

must be added and then the norm of parameter also minimised.

The second approach is the use of Bayesian methods, which consist of techniques

that make use of the Bayes’ theorem (Tarantola, 2005; Kaipio and Somersalo, 2006;

Stuart, 2010; Campillo-Funollet et al., 2019). Bayes’ theorem allows us to compute

the conditional probability of parameters given data, in terms of the conditional

probability of data given parameters. The amount of information obtained from

the probability distribution of parameters is very large compared to a single value

obtained from the optimal control methods. This probability distribution can also

give information about the uncertainty of parameters (Gutenkunst et al., 2007),

as well as model selection in the case where several models exist, and one needs

to find one which fits better to the experimental data (Vyshemirsky and Girolami,

2007). The method can also allow one to extract information about the correlations

of parameters, which may not be visible from one value computed with optimal

control methods (Sutton et al., 2016). The probability distribution can also suggest

a non-dimensionalised model to eliminate irrelevant parameters. The main drawback

of Bayesian method is its computational cost, but the use of paralellised algorithms

can help speed up the method. Given these advantages of Bayesian method over

optimal control methods, we applied it to identify parameters of GEF–Rho–Myosin

model such that the model best-fits experimental data.

Figure 7.1 shows a schematic representation of components that are needed for para-

meter identification problem. The mathematical model formulated, model GRM-3

is combined with biological data to approximate the parameters using the Bayesian

technique. The goal is to obtain the set of parameters that satisfy both the per-

turbation kinetics and oscillatory dynamics, by changing the bifurcation parameter,

GT , while the rest of the parameters remain fixed.

We aim to extract the parameters of the model using biological data. Model GRM-
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Figure 7.1: Schematic representation of parameter approximation procedure.

3 is more compatible to the experimental observations (Kamps et al., 2019), and

therefore it will be fitted to the data. In this chapter, we first describe the Bayesian

method for parameter identification, thereafter we describe the model with perturb-

ation and the biological data together with normalisation process and then apply

the method to the model.

NOTE: It must be noted that the content of this chapter was done in collaboration

with Dr Eduard Campillo-Funollet, who was Prof. Madzvamuse’s PhD student

at the University of Sussex. The work here follows closely his recently published

work in Campillo-Funollet et al. (2019). Eduard was in charge of the numerical

implementation of the fitting algorithm.

7.2 Bayesian approach to parameter identification

In this study, a Bayesian approach for parameter identification was applied to the

model of Rho-Myosin dynamics. This Bayesian approach provides a rigorous math-

ematical framework that allows the incorporation of the prior knowledge about

the uncertainty of the observation and also the prior knowledge of the parameters

(Campillo-Funollet et al., 2019). This results in the approximation of full probab-

ility distribution of the parameters given the data. The key idea in the Bayesian

approach to parameter identification is to represent our knowledge about a quantity

with a probability distribution. Typically, these quantities will be the parameters

of the mathematical model.
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Bayesian techniques have commonly been applied to parameter fitting in statistics

(Ma and Leijon, 2011; Fan and Mellor, 2012; Taghia et al., 2014; Ma et al., 2015).

Bayesian techniques are also used in many fields which are governed by partial dif-

ferential equations (Stuart, 2010; Campillo-Funollet et al., 2019). A recent example

has been the application of Bayesian technique to parameter identification of Tur-

ing systems on stationary and evolving domains (Campillo-Funollet et al., 2019).

Bayesian approach treats the model as a random variable with a probability distri-

bution. A prior distribution of model parameters is combined with data to obtain

the posterior distribution of parameters (Aster et al., 2018).

Consider the set of parameters p ∈ RK of the mathematical model. Let H : RK →

RN be the mapping that assigns to each parameter p the solution to the ODE

system evaluated at the observation time points. Let y ∈ RN be the experimental

measurement. We assume that y corresponds to a solution of the mathematical

model with some noise η, which is naturally modelled by means of some probability

distribution. Mathematically, we have;

y = H(p) + η. (7.1)

Equation (7.1) gives as the probability of observing data y given a parameter p; we

are interested in the reverse condition, the probability of a parameter p given that

we observe y. Bayes’ theorem can help us obtain this using the marginal distribution

for p. This marginal distribution represents the knowledge about the parameter,

called prior. The probability distribution of the parameter given the data is the

posterior denoted P(p|y). The posterior distribution encodes all the information

available about a parameter estimated.

To approximate the posterior distribution we use a parallel Markov Chain Monte

Carlo (MCMC) method, which generates a Markov Chain of samples distributed

as the posterior. The method is implemented to run in parallel using multiple

processors. The posterior distribution provides information not only about the best

parameter, but also about possible correlations between parameters, and credible

regions. In particular, when it is possible to make plausible assumptions on the

experimental noise, the method provides robust error bars for the parameters.
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Applying Bayes’ formula to Equation (7.1), we obtain;

πy(p) ∝ ρ(y −H(p))π0(p), (7.2)

where πy(p) denote the probability density function of the probability measure

P(p|y), π0(p) is the probability measure of the prior. The probability of data given

parameters has density ρ(y|p) := ρ(y−H(p)), which is referred to as the data like-

lihood. The constant of proportionality in Equation (7.2) depends only on the data

y. Equation (7.2) is in finite dimensional setting, this can be extended to infnite

dimensional setting by using Radon-Nikodym derivative (Stuart, 2010). We thus

obtain;

dPy

dP0

(p) ∝ exp(−ϕ((p); y)). (7.3)

The potential ϕ((p); y) corresponds to the negative log-likelihood. Equation (7.3)

generalises Bayes’ theorem to infinite dimensional setting. A useful approach to

extracting information from posterior distribution is to find a maximum posterior

estimator, or MAP estimator. This is a parameter set p which maximizes the

posterior probability density function πy(p) (Stuart, 2010), or alternatively produce

samples from posterior distribution, by using Markov Chain Monte Carlo methods.

In particular, we use Parallel Metropolis-Hastings method to sample from a posterior

distribution. The full description of Bayesian method and MCMC methods are

provided in Appendix D.

The implementation by Eduard Campillo Funollet was done in Python, using the

module Scipy (Johansson et al., 2014). I implemented the solver for the model

solution in Python, which was incorporated into the Bayesian method code. The

numerical results about fitting are provided in a later section. In the next section,

we first discuss the experimental data, and how it was normalised. The experimental

data was normalised, since the goal was to fit the model parameters to the shape

of response curves, rather than the values themselves. The model simulations were

also normalised in a similar fashion.
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7.3 Experimental data and the model with per-

turbation

The experimental data is in two forms: First, for small GT values in the stable

regime, a light is used to induce a perturbation of GEF-H1. The response of Rho

and respectively Myosin is then recorded against the corresponding GEF-H1 (per-

turbation). In this section, we describe the model with perturbation, and then the

normalisation of experimental data. The normalisation will be done for data in the

stable regime only (responses of Rho and Myosin to GEF perturbation), but not

in the oscillatory regime. In the oscillatory regime, we fit the scalar values, period

and time-shifts between GEF, Rho and Myosin, and therefore, there is no need to

normalise the period and time-shifts.

7.3.1 Formulation of model with perturbation

Model GRM-3 was modified to include GEF-H1 (perturbation). To experiment-

ally incorporate perturbation, Kamps et al. (2019) uses a light pulse to trigger a

perturbation of GEF-H1, based on a method provided in Chen et al. (2017). This

experimental set-up generates data of GEF perturbation as shown in Figures 7.2(b)

and 7.3(b). We observe from the data shown that GEF perturbation recruitment

follows single association kinetics, and therefore we mathematically model this as:

dGp,vis

dt
= kGP − kGPGp,vis. (7.4)

Equation (7.4) describes the observed recruitment of GEF-H1 perturbation, where

the constant kGP can be obtained by fitting this equation to the data shown in

Figures 7.2(b) and 7.3(b). We obtain two distinct kGP corresponding to GEF per-

turbation with respect to Rho and Myosin responses.

It is expected that GEF perturbation follows the same kinetics as the normal GEF-

H1. Therefore, GEF perturbation is inhibited by Myosin, and it also activates Rho

in the same way as normal GEF. Therefore, Equation (7.4) is modified by including

a term with Myosin inhibition, which leads to Equation (7.5) as shown

dGp,Active

dt
= kGP − kGPGp,Active − k4Gp,ActiveM. (7.5)
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Equation (7.5) describes the activity of GEF perturbation, which includes the in-

hibition by Myosin in the same way as normal GEF-H1 and it also activates Rho.

This perturbation activity is then added to the term that describes Rho activity,

with a perturbation strength denoted, Gpt as shown in Equation (7.6).

R(G,M) =RTEP

(
k0(G+GptGp,Active) + k1, k2,

Kr0

RT

,
Kr2

RT

)
. (7.6)

The full model with perturbation is then stated by the three ODEs of the form:

dG

dt
=k3R(G,M)(GT −G)− k4MG, (7.7a)

dM

dt
=
k5R(G,M)(MT −M)n

Kn
m5 + (MT −M)n

+
k7(MT −M)

Km7 + (MT −M)
− k6M

Km6 +M
, (7.7b)

dGp,Active

dt
=kGP − kGPGp,Active − k4Gp,ActiveM, (7.7c)

where R(G,M) is given in Equation (7.6). We remark that the values of Gpt and kGP ,

are dependent on the Rho response data, or Myosin response data, and therefore

they are different for each case. In the oscillatory regime, we consider the model

without perturbation, therefore Gpt = 0. This recovers the original model GRM-3,

that is used to analyse system dynamics.

Model Equations (7.7) quantitatively describe the perturbation, and can be used to

fit the unknown model parameters. We also remark that this does not affect the

mathematical analysis of the original model, as the unperturbed model is considered

for analysing the dynamics. The model we have described only fits the parameters

to the perturbation kinetics. The goal is to obtain parameters that provide predic-

tions about changes in dynamic state depending on the concentration of GEF-H1.

Therefore the perturbation kinetics will be combined with the oscillatory dynamics

data to approximate parameters that simultaneously satisfy the two regimes. In the

next section, we first describe the biological data and how it was normalised.

7.3.2 Normalisation of biological data and model simula-

tions

For the data and simulations to be compatible, both of them are normalised between

0 and 100%. We are only interested in fitting the qualitative dynamics and shape
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of response curves, and that is why both model simulations and the biological data

are normalised. The experimental data was normalised as follows:

Consider the raw fluorescence intensity (camera count) for a single cell given by

I (i)(t), i ∈ {1, · · · , N} at a time, t where N is the total cell population. The value

at t = 0 is given by I (i)(0). For simplicity we shall denote I (i)(0) as I
(i)
0 . The

percentage increase in the camera count of cell i from I
(i)
0 , at time t is given by:

I
(i)
%inc(t) =

100 I (i)(t)

I
(i)
0

− 100.

The raw camera count contains the background activity, which is defined as,

I
(i)
%inc,b =

1

N

N∑
i=1

I
(i)
%inc,c,t1 ,

where I (i)%inc,c,t1 is the first measurement, I (i)%inc(t1) for the control measurement without

GEF-H1 (control perturbation), i.e. the first measurement after photo activation.

The values were corrected by removing the background measurement to obtain

I
(i)
%inc,bc(t) =

 I
(i)
%inc(t), for t ≤ 0

I
(i)
%inc(t)− I

(i)
%inc,b(t), otherwise.

The background corrected values are then normalised to max = 100, i.e.

I (i)norm(t) =
100 I

(i)
%inc,bc(t)

max(I
(i)
%inc,bc(t))

.

From the normalised values, we can find the mean and standard deviation. The

mean of the normalised data is also normalised to maximum, 100. This normalised

mean, denoted I
(i)
norm, avg(t) and the corresponding standard deviation of the data

will be used in fitting the parameters. For each data set, and for each time point,

we compute the mean and standard deviation of the measurement. In each data

set, there are N different measurements for each time point, corresponding to the

cell population. The mean is the data to fit the model (y), and we assume that the

experimental standard deviation is a good approximation of the standard deviation

of the experimental noise η.

A plot of raw data (mean± standard deviation) is shown in Figures 7.2 and 7.3.

Figure 7.2(a) shows the percentage increase in Rho response corresponding to the
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percentage increase in GEF-H1 perturbation (Figure 7.2(b)), while Figure 7.3(a)

shows the percentage increase in Myosin response corresponding to the percentage

increase in GEF-H1 perturbation (Figure 7.3(b)).

(a) (b)

Figure 7.2: Figure 7.2(a) represents Rho response induced by GEF-H1 perturbation (Fig-

ure 7.2(b)).

(a) (b)

Figure 7.3: Figure 7.3(a) represents Myosin response induced by GEF-H1 perturbation (Fig-

ure 7.3(b)).

The second set of data describes the cross-correlation of each pair of GEF, Rho

and Myosin, which describes the dynamics in the oscillatory regime that is used

to fit the period and amplitude of the model to data. Due to the irregularity of

pulses in the experimental data, the cross-correlation and autocorrelation of peaks

are blurred after the main peak. Therefore after the main peak, little information
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may be provided by the cross-correlation data. It was therefore suggested that a

better way to represent information in the oscillatory regime is the use of time shifts

between variables and the pulse period. This is used to fit kinetics that satisfy the

oscillatory dynamics.

The period was determined by fast Fourier transform. To remove cells with irregular

periods from the analysis, only cells in which the main frequency has an amplitude

that is larger than 5% of the sum of all amplitudes was considered. The time shifts

were obtained as the maximum of the cross correlation curve for an individual cell.

The sign of the time shift is according to the text labels. These data is shown in

Table 7.3.

7.4 Numerical implementation of Bayesian algorithm

and results

The implementation was done in python, by Campillo-Funollet et al. (2019). The

following experimental prior was used for the parameters.

7.4.1 Description of prior

In total, there are 25 parameters in the system. 8 of them are known or given by

other parameters, hence we do not fit them to data. For the rest of the parameters,

we define the prior as a uniform distribution. The other parameters such as GT ,

Gpt, and kGP are split in order to characterise different regimes, and also to dif-

ferentiate between Rho response values from Myosin response data. For the terms

involving enzymatic activity, we use the following ratio k∗ = k′∗
KM

. The parameter

k∗ represents the reaction speed at saturation while k′
∗ represents the reaction speed

at negligible saturation as defined in Koshland Jr (2002) and is commonly referred

to as performance ratio of an enzyme (Koshland Jr, 2002). The prior of k′
∗ may be

found from experimental assumption and so will be used in fitting, and not k∗.

For the prior, we assume that the parameters are independent of each other. We

also impose, in the prior definition, a restriction on the parameters given by the

dynamics that the parameters exhibits in the reduced (G, M) model. To validate if
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parameters
Fitting Rho

perturbation response

Fitting Myosin

perturbation response

Fitting Rho and

Myosin oscillations

K ′
0 0.316049632 to 31.60496324

Kr0 0.0474609 to 47.4609

k1 0 (fixed)

Kr1 =Kr0

K ′
2 0.15 to 150

Kr2 0.01 to 10

k3 0.15 to 15

k4 0.015 to 15

K ′
5 0.0049943397 to 4.994339748

Km5 0.0030034 to 3.0034

K ′
6 0.0008444444444 to 2.666666667

Km6 0.05625 to 5.625

k7 0 (fixed)

Km7 Not relevant, since k7 = 0

GT 0.00142 to 1 0.1 to 20

Gpt 0.01 to 1 0.01 to 1 0 (fixed)

kGP data (fixed) data (fixed) Not relevant, since Gpt = 0

RT 0.443 (fixed)

MT 1.24 (fixed)

n 1 to 5

Table 7.1: Lower and upper bounds for prior.

a parameter exhibits the right dynamics, we vary GT from 0.0142 to 20, leaving the

rest of parameters fixed, and compute the steady state solution for each GT using

a continuation method. A parameter is valid if the dynamics at the steady state

are stable for small GT , and they become unstable at some point. The continuation

method for the fixed points is a predictor-corrector algorithm. The prediction step

is a linear approximation of the curve of steady states, whilst the correction step is

performed by means of a truncated Newton algorithm.

We have three different datasets; the first data set is for Rho response to GEF per-

turbation, the second dataset is for Myosin response to GEF perturbation, and the

third data set if for the period and time shits. In each data set for the perturbation
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response, there are different measurements corresponding to different cells, for each

time point. For each data set, and for each time point, we compute the mean and

standard deviation of the measurement. The normalised mean is the data to fit

the model (y), and we assume that the experimental standard deviation is a good

approximation of the standard deviation of the experimental noise η. A plot of nor-

malised data (mean± standard deviation) is shown in Figures 7.2 and 7.3. With the

assumption that the experimental noise η is Gaussian, the negative log-likelihood is

the squared distance between the data and the solution to the model, with weights

given by the standard deviation.

The posterior distribution does not provide what is considered a single solution.

However we can estimate the optimum parameter values that corresponds to the

largest values of the likelihood. This value which maximises log-likelihood is referred

to as the maximum posterior (MAP) value (Aster et al., 2018). The following values

in Table 7.2 were identified as the ones which maximise the likelihood, and therefore,

they are the best approximate values that best connects the model to the data. These

approximated parameter values are used to study model dynamics.

The parameters in Table 7.2 were used to generate the results, shown in Figures

7.4 and 7.5. The Rho response to GEF perturbation fits better at higher values,

where the model simulation lies within the range of experimental data as shown in

Figure 7.4(a). The model simulation corresponding to Myosin response fits better,

the model simulation lies within the data range at all time points, see Figure 7.5(a).

The fit is even better, for GEF perturbations, see Figures 7.4(b) and 7.5(b).

This provides the optimal parameter values that describe the experimental data.

Therefore the model represents the experimental data, with parameter values in

Table 7.2. We also investigate how well the model describes biological data, in the

oscillatory regime.

We further illustrated how the estimated parameters best fit to the experimental

data in the case of oscillatory dynamics. Figure 7.6 represents GEF, Rho and Myosin

in the oscillatory regime. The values are normalised between 0 and 100%. Based

on these values, we obtain the period and time shifts for oscillatory dynamics. The

period and time shifts are shown in Table 7.3. Model simulation using the approx-
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parameters
Fitting Rho

perturbation response

Fitting Myosin

perturbation response

Fitting Rho and

Myosin oscillations

K ′
0 2.0029821110183295

Kr0 0.37480474714530848

k1 0

Kr1 0.37480474714530848

K ′
2 2.0537442837103903

Kr2 0.093132809252206558

k3 1.3350504567204298

k4 1.9336450919021999

K ′
5 0.43171212210802096

Km5 0.026557314554939367

K ′
6 0.004848137676027436

Km6 0.47961927660495896

k7 0

Km7 Not relevant, since k7 = 0

GT 0.0098222719379802131 0.73099999999999987

Gpt 0.13825057594065401 0.100009699822926 0

kGP 0.078907890789078908 0.039703970397039705 Not relevant, since Gpt = 0

RT 0.443 (fixed)

MT 1.24 (fixed)

n 1.0818412088003961

Table 7.2: Best fit parameters from the Bayesian method.

imated parameter values produces period and time shifts that lie within the range

of biological data.

Period Rho shift after GEF Myosin shift after Rho

Data 248.324989 ± 90.128913 2.51470588 ± 5.57961797 39.4864865 ± 14.5055844

Model 240.1479 0 39.8027

Table 7.3: Period and time shifts in the oscillatory regime, using parameter values in Table 7.2.

We have already shown that the approximated parameter values satisfy experimental

data, both perturbation kinetics and oscillatory dynamics. In the next section, we

therefore, illustrate the dynamics of the model, by using parameters in Table 7.2

and plotting one and two parameter bifurcation diagrams.
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(a) (b)

Figure 7.4: Figure 7.4(a) represents Rho response induced by GEF-H1 perturbation (Fig-

ure 7.4(b)).

(a) (b)

Figure 7.5: Figure 7.5(a) represents Myosin response induced by GEF-H1 perturbation (Fig-

ure 7.5(b)).

7.5 Bifurcation analysis of model GRM-3 using

estimated parameter values

In this section, we perform bifurcation analysis of model GRM-3 with parameter

values listed in Table 7.2. The bifurcation parameter is GT , and we want to illus-

trate that we still obtain the same model dynamics as illustrated theoretically in

Chapter 3. Bifurcation analysis of model GRM-3 was carried out with approxim-

ated parameter values listed in Table 7.2. The Rho activity is defined implicitly by

R(G,M) in the form of Goldbeter-Koshland function and therefore we shall derive
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Figure 7.6: Normalised time series of GEF, Rho and Myosin, using parameter values in Table 7.2

to illustrate the behaviour in the oscillatory regime.

its bifurcation diagram from GEF and Myosin bifurcation diagrams. One parameter

bifurcation diagrams were obtained by taking GT as the bifurcation parameter, they

represent the value of equilibria of Rho and Myosin as GT varies, as shown in Figures

7.7(a) and 7.7(b). As GT varies, the following can be deduced:

1. GT < 0.605942 similar to 4.231679 < GT : Situation as in Figure 3.2(a) or

3.2(c), a unique equilibrium state which is G.A.S. (stable regime).

2. 0.605942 < GT < 4.231679: Situation as in Figure 3.2(b), there is a unique

equilibrium state which is unstable and therefore existence of a stable limit

cycle (oscillatory regime).

A two-parameter bifurcation diagram was derived from one parameter diagrams

by considering GEF concentration and Rho constant activation parameter defined

by k1. This defines a region of plane where the model exhibit different dynamics

as shown in Figure 7.7(c). We observe that the model exhibits all the dynamics

for small values of k1. At higher values of k1, the model show stable dynamics

everywhere, see Figure 7.7(c). The following regions are defined:

1. The red region is characterised by unstable steady state (node or spiral). The

steady state is unique and therefore there exits a stable periodic obit (limit

cycle). This region corresponds to red dashed lines in Figures 7.7(a) and

7.7(b).
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2. The uncoloured region is characterised by the steady state which is unique

and stable, and therefore globally asymptotically stable.

The results are summarised in Figure 7.7 and the bifurcation parameters listed in

Table 7.4.

(a) (b) (c)

Figure 7.7: Bifurcation diagrams corresponding to model equations (2.26). GT is the bifurc-

ation parameter. In Figure 7.7(a), HB are Hopf bifurcation points, red dashed line represents

respectively values of R and M in the unstable region while blue line represent their values in the

stable region. Green dotted line is the maximum and minimum values of Rho and Myosin in the

oscillatory regime. Figure 7.7(c) represents two-parameter bifurcation diagram, bifurcation para-

meters are GT and k1. The red region is the unstable region, where the model exhibits oscillatory

dynamics.

Bifurcation points

HB HB

GT 0.605942 4.231679

Rho 0.0312 0.468786

Myosin 0.0.2144 1.188030

Table 7.4: Hopf bifurcation (HB) parameter values for model GRM-3.

The Bifurcation analysis of the model produces results which are similar to those

observed experimentally (Kamps et al., 2019). For small values of GT , the model

shows stable dynamics of Rho activity. As values of GT increases, the dynamics

changes and periodic pulses of Rho activity are observed. These pulses disappear

again at higher GT values. This is similar to the dynamics of model GRM-3. It was
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also shown that the peak width of periodic pulses increases as the expression levels

of GEF increases (Graessl et al., 2017; Kamps et al., 2019). We also analysed period

and frequency of the oscillatory dynamics, results are shown in Figure 7.8. As GT

increases in the oscillatory regime, the peak width also increases, this implies that

the frequency of oscillations decreases. These results are in line with experimental

observations.

(a) (b)

Figure 7.8: Period and frequency of oscillations for model GRM-3 in the oscillatory regime, with

parameter values in Table 7.2.

7.6 Conclusion

In this chapter, we employed the full Bayesian parameter identification approach

to estimate model parameters from experimental data. This method allows the

incorporation of our knowledge about the parameters (prior) into the parameter

identification problem. First the model with perturbation was formulated from first

principles based on the experimental observations. This model is used to fit the

unknown parameters, but does not affect the model dynamics, as the dynamics

are analysed on the model without perturbation. The parameters approximated by

Bayesian algorithm are in the form of distribution, called the posterior distribution.

In this work, we approximated the parameters that maximises the log-likelihood,

that is the maximum posterior (MAP) value. We performed bifurcation analysis

with the approximated parameters, to illustrate that they satisfy experimental res-
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ults.

We also note that in this chapter, we only fitted to the shape of curves (biolo-

gical experimental data) and thus both experimental data and model solutions were

normalised between 0 to 100%. Therefore the approximated parameters represent

the qualitative dynamics of biological experimental data, but not the quantitative

results. The results in this chapter will be extended to analyse the posterior distri-

bution, and identify correlation between parameters and credible regions given 95%

confidence intervals, such work is beyond the scope of this thesis.
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Chapter 8

Mathematical formulation and

analysis of spatially

inhomogeneous models

This chapter explores the effect of spatial inhomogeneity to models GRM-1 (2.11),

GRM-2 (2.16) and GRM-3 (2.26), formulated in Chapter 2. We therefore formulate

and analyse spatially extended models. Mathematical analysis for the possibility

of Turing instability is performed in general, and then the results are illustrated

numerically using the kinetic equations corresponding to model GRM-3. Finally,

numerical simulations for the full reaction-diffusion models are presented for the

parameters corresponding to stable, excitable, oscillatory and bistable regimes, to

investigate the effect of adding diffusion to spatially homogeneous models in various

dynamics regimes corresponding to stable, oscillatory, excitable and bistable.

8.1 Mathematical formulation of spatial model

Consider the general model describing the reactions given by:

dR

dt
=f(R,M), (8.1a)

dM

dt
=g(R,M). (8.1b)
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System (8.1) represents the temporal activities of R and M corresponding to mod-

els GRM-1 (2.11), GRM-2 (2.16) and GRM-3 (2.26), which were formulated in

Chapter 2. The variable R represents Rho in models GRM-1 and GRM-2 and GEF

in model GRM-3. The variable M represents Myosin in the three models. It is

known that these molecules diffuse within the cell, and hence in this chapter we

consider both temporal and spatial activities, which lead to reaction-diffusion sys-

tem given as:

∂R

∂t
=f(R,M) +DR ∇2R, (8.2a)

∂M

∂t
=g(R,M) +DM ∇2M. (8.2b)

The functions f(R,M) and g(R,M) correspond to the right hand sides of the ODE

models in Chapter 2. The parameters DR and DM represent respectively the diffu-

sion coefficients of R and M . We define the Laplace operator ∇2 as;

∇2 =
n∑

i=1

∂2

∂x2
i

,

where n is the space dimension. The system (8.2) is defined on a spatial domain

which represents the cell. In this chapter, we describe the cell as 1-D domain such

that:

Ω = {x, 0 ≤ x ≤ L} ,

where L is the cell diameter.

We assume that the proteins (Rho, GEF and Myosin) do not leave or enter the cell,

and therefore system (8.2) is defined subject to no-flux boundary conditions, which

in 1-D are written as

∂R

∂x

∣∣∣∣
∂Ω

=
∂M

∂x

∣∣∣∣
∂Ω

= 0, (8.3)

where ∂Ω represents the cell boundary. We define initial conditions as:

R(x, 0) = R0 and M(x, 0) = M0, ∀x ∈ Ω. (8.4)
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8.2 Turing instability

We want to analyse system (8.2) for the existence of spatial patterns. These patterns

arise when the steady state which is stable in the absence of diffusion becomes

unstable to small perturbations in the presence of diffusion. This phenomenon is

called Turing instability or diffusion-driven instability (Turing, 1952; Murray, 2003).

Turing (1952) suggested that under certain conditions, chemical components can

react and diffuse in such a way that they produce spatial patterns. Sarfaraz and

Madzvamuse (2017) explored the bifurcation analysis of reaction-diffusion system

with Schnakenberg reaction kinetics. Their analysis relates the domain-size with

reaction-diffusion rates to the type of diffusion-driven instability (Turing, Hopf and

Transcritical type bifurcations).

8.2.1 Mathematical analysis

For the mathematical analysis, we adimensionalise time and space variables in the

system (8.2) by introducing a typical length scale L and setting t∗ = DR t
L2 , γ = L2

DR
,

d = DM

DR
and x∗ = x

L
. On dropping ∗, the new system becomes

∂R

∂t
=γf(R,M) +∇2R, (8.5a)

∂M

∂t
=γg(R,M) + d∇2M. (8.5b)

The adimensionalisation of t and x allows us to work with the ratio d and not the

diffusion coefficients DR and DM . Moreover, it also allows us to use the mathem-

atical analysis already presented in Chapter 3 for spatially homogeneous models, as

illustrated below. The reaction kinetics in this model are just a multiple of original

reaction kinetics f(R,M) and g(R,M) with the same positive scalar γ.

Therefore, we investigate the existence of Turing patterns in relation to the ratio

d. We present the analysis of system (8.5) subject to boundary conditions (8.3)

and initial condition (8.4) for the existence of Turing type instability, based on the

approach presented in Murray (2003). The reaction-diffusion system (8.5) exhibit

diffusion-driven instability if the homogeneous steady state is stable to small per-

turbations, in the absence of diffusion, but unstable to small spatial perturbations

in the presence of diffusion.
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We are interested in the positive steady state of (8.5) which is stable. This steady

state denoted Ei = (R∗,M∗), where Ei, i = 1, · · · , 9 is the steady state described in

Chapter 3, and it satisfies the algebraic equations

f(R∗,M∗) = 0 and g(R∗,M∗) = 0. (8.6)

In the absence of diffusion, this steady state must be linearly asymptotically stable.

The conditions of stability of the steady state of the homogeneous system were

derived in Chapter 3. These conditions are such that given the linearised system

ut = γAu, where A =

fR fM

gR gM

 , (8.7)

then the steady state is linearly stable if

trA = fR + gM < 0, |A| = fRgM − fMgR > 0. (8.8)

These two conditions are satisfied when nullclines are in the configurations shown

in Figure 8.1. Therefore, to investigate for Turing instability, we only consider a

steady state which is in the form of E1 or E2. The equilibrium E1 and E2 have

Jacobian matrices with the respective sign patterns of the form

JE1 =

− −

+ −

 and JE2 =

+ −

+ −

 . (8.9)

The steady state in the form of E2 is linearly stable if fR + gM < 0, otherwise it is

unstable.

The interest here is to find conditions under which a steady state that satisfies

condition (8.8) will loose its stability in the presence of diffusion. We now linearise

the full reaction-diffusion system (8.2) around the steady state Ei = (R∗,M∗). We

introduce new variable u = (u, v) which is slightly perturbed from the steady state.

That is u = R − R∗ and v = M −M∗, where u and v are very small. We therefore

substitute the perturbed variables u + R∗ and v + M∗ in (8.5) and expand using

Taylor’s series of two variables. We obtain the linearised system written as

ut = γAu+D∇2u, where A =

fR fM

gR gM

 , D =

1 0

0 d

 . (8.10)
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(a) (b)

Figure 8.1: Qualitative forms of nullcline intersection that may satisfy the above two conditions.

All the steady states in the form of E1 are linearly stable while the stability of E2 depends on the

trA.

To complete the linearisation of the reaction-diffusion system, we find the eigenfunc-

tions of the Laplace operator which satisfy the homogeneous Neumann boundary

conditions. Eigenfunctions of the Laplace operator on planar domains are well-

studied in the literature (Benedetto, 1996; Madzvamuse, 2000). The eigenfunctions

for the Laplace operator are found by solving an eigenvalue problem that satisfy the

given boundary conditions of (8.5). The eigenvalue problem takes the form

∇2ũ+ k2ũ = 0, (n · ∇)ũ = 0 on ∂Ω, (8.11)

where k is the eigenvalue of Laplace operator.

In this case, we solve the problem in 1-D, say if we have 0 ≤ x ≤ l. With this we

can easily solve the eigenvalue problem whose general solution is given by

ũ = a sin kx+ b cos kx.

Imposing the boundary conditions give the eigenvalue k = nπ/l and a = 0, which

give the solutions to the eigenvalue problem as

ũn(x) = cos(nπx/l), n ∈ N.

Since problem (8.10) is linear, we seek solutions of the form

u(x, t) =
∑
n

cnun(x, t), where un(x, t) = exp(λt)ũn(x). (8.12)
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The constants cn are determined by Fourier expansion of the initial conditions in

terms of ũn(x). Substitute this solution into (8.10), we get for each n

λun =γAun +D∇2un,

=γAun −D
(
nπ
l

)2
un.

Since we are interested in the non-trivial solutions, we determine the nature of

eigenvalues, which are the roots of characteristic polynomial

|γA−D
(
nπ
l

)2 − λI| = 0.

Using Equation (8.10), we therefore find the trace and determinant of the matrix

A′ = γA−D
(
nπ
l

)2
.

We have

A′ =

γfR −
(
nπ
l

)2
γfM

γgR γgM − d
(
nπ
l

)2
 . (8.13)

We can easily find that A′ has trace and determinant given by:

trA′ = γtrA−
(
nπ
l

)2
(1 + d), |A′| = γ2|A|+ d

(
nπ
l

)4 − γ
(
nπ
l

)2
(dfR + gM) . (8.14)

Therefore, we analyse linear stability by considering the trace and determinant. For

pattern formation, we expect the steady state to be unstable in the presence of

diffusion, that is Re(λ(n)) > 0 for some n 6= 0. Re(λ(n)) > 0 is only possible if we

either have

trA′ > 0 or |A′| < 0.

Recall that we required the steady state to be linearly stable in the absence of

diffusion, resulting in conditions (8.8). This implies that trA < 0 and therefore also

trA′ < 0 for all values of n. The only possibility left for Turing instability is that

|A′| < 0 for some n. Recall that |A| > 0 and therefore from Equation (8.14), the

only possibility for |A′| < 0 is when we have

dfR + gM > 0.

From the analysis, since fR + gM < 0 for stable steady state, we cannot have a

situation where d = 1. This implies that the activator and inhibitor must have
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different diffusion coefficients. Furthermore we must have that fR and gM have

opposite signs. This condition excludes equilibrium of the form E1 in Figure 3.2(a),

since in that case we have fR < 0 and gM < 0. Therefore, for the equilibrium in the

form of E1, we can never have Turing instability.

We are therefore only left to check for the existence of diffusion-driven instability

in the case of steady state in the form E2. Also from Equation (8.9), we have that

fR > 0 and gM < 0 for E2. Therefore dfR + gM > 0 is only possible when d > 1

meaning that the inhibitor must diffuse faster than the activator. Therefore, we

conclude that the system (8.2) can exhibit Turing patterns if the following conditions

are satisfied:

i) fR + gM < 0 and fRgM − gRfM > 0

ii) The steady is in the form of E2

iii) dfR + gM > 0 for some d > 1

iv) fR > 0.

We first find the minimum d that can allow Turing patterns to occur. To do this,

consider |A′| as a function say T ((nπ
l
)2). We therefore write

T ((nπ
l
)2) = γ2|A|+ d

(
nπ
l

)4 − γ
(
nπ
l

)2
(dfR + gM) . (8.15)

To find the minimum of (8.15), we differentiate and find the value of (nπ
l
)2 that

minimises it. Therefore at the minimum, we obtain:

(nπ
l
)2min =

γ(dfR + gM)

2d
. (8.16)

Using this value we get from (8.15)

Tmin = γ2

[
|A| − (dfR + gM)2

4d

]
. (8.17)

Equation (8.17) must also be negative to satisfy the conditions for Turing instability.

From this we can therefore calculate the critical d that will make Tmin < 0. We find

the critical d labelled dc that satisfy

|A| − (dfR + gM)2

4d
= 0.



143

Simplifying this we find that the critical value dc is the positive root of the quadratic

equation

d2f 2
R + 2d(2fMgR − fRgM) + g2M = 0. (8.18)

This critical value dc gives us the minimum value of d for diffusion-driven instability

to occur.

8.2.2 Numerical simulations

We illustrate Turing instability numerically, using reaction kinetics of model GRM-

3 (2.26). We first find parameters which give the steady state of the form E2.

Using this steady state, we compute the corresponding Jacobian matrix, and find

its determinant. From there we compute the critical value dc for Turing instability

to occur. We then compute the solution to the reaction-diffusion system with two

different values of d, one greater than dc and the second one less than dc. The

reaction-diffusion system (8.2) together with the boundary conditions (8.3) and given

initial conditions (8.4) is solved using MATLAB package pdepe.

Using parameter values in Table 3.1, and select GT = 0.5327 and k1 = 0.1206.

We obtain numerically the steady state in the form E2 given by (0.2140, 0.1983).

Figure 8.2 shows numerical simulation of model GRM-3 (2.26) with parameter val-

ues listed in Table 3.1. The solution converges to a homogeneous steady state

(0.2140, 0.1983).
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Figure 8.2: Numerical solution of the ODE model GRM-3 (2.26), with parameter values in

Table 3.1 with GT = 0.5327 and k1 = 0.1206.
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We obtain the Jacobian matrix, JE2 evaluated at the steady state (0.2140, 0.1983)

given as:

JE2 =

0.0066 −0.1391

0.0643 −0.0950

 . (8.19)

This Jacobian matrix has the sign matrix JE2 , negative trace and positive determ-

inant. It therefore satisfies conditions (8.8) which are necessary for investigation of

Turing instability. Using Equation (8.18), we obtain dc = 789.3031.

Figure 8.3 shows simulations corresponding to d = 100. The activator diffuses

slower than the inhibitor, but there are no Turing patterns which are formed, since

d < dc. With the initial condition of GEF and Myosin randomly selected around the

uniform steady state, no Turing patterns are observed, and the solution converges to

a uniform spatially homogeneous solution. We also compute the discrete L2 norms

of the errors at each time point as shown in Figure 8.3(c). The errors converge to

zero as time increases which means we converge to temporally stable solution.
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Figure 8.3: Numerical solution of the reaction-diffusion system (8.2) with reaction kinetics cor-

responding to model GRM-3. We use parameters in Table 3.1. We take GT = 0.5327, k1 = 0.1206

and d = 100. Figures 8.3(a) and 8.3(b) show respective solutions of GEF and Myosin in time and

space, where the colour code represents the concentrations of GEF and Myosin. 8.3(c) shows the

discrete L2 norms of the errors computed at each time point. There are no Turing patterns formed.

In the second case, we pick d = 1000 such that d > dc. The simulation results

are shown in Figure 8.4. As expected, spatial patterns emerges since conditions

for Turing instability are satisfied. The solutions of GEF and Myosin are shown in

Figures 8.4(a) and 8.4(b). The discrete L2 norms of the errors converge to zero (see
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Figure 8.4(c)) and therefore the patterns formed are stable in time. Figure 8.4(d)

shows spatial profile of patterns of GEF and Myosin in space at t = 999.8. For this

simulation, we also used initial random conditions around the steady state at each

spatial location x.

(a) (b)

(c) (d)

Figure 8.4: Numerical simulation of system (8.2) with reaction kinetics corresponding to model

GRM-3 and parameters in Table 3.1. We take GT = 0.5327, k1 = 0.1206 and d = 1000. Figures

8.4(a) and 8.4(b) respectively show solutions of Turing patterns of GEF and Myosin in time and

space, while 8.4(c) shows the discrete L2 norms of the errors computed at each time point. Initial

conditions are taken as random perturbations around uniform steady state. Turing patterns are

formed.

We have derived conditions necessary for diffusion-driven instability for a reaction-

diffusion system of two species. Using these conditions, we have shown that the

reaction kinetics defined in the system (2.26) are capable of generating Turing pat-

terns, given that the conditions for Turing instability are satisfied.

In the numerical simulations in Figures 8.3 and 8.4, we assumed that d > 1 to mean



146

that Myosin diffuses much faster than GEF. However, Myosin is known to diffuse

much slower than GEF and therefore we do not expect to get Turing patterns

with this two species model in the realistic biological case. In the next section

we perform numerical simulations of the full reaction-diffusion system in various

dynamical regimes corresponding to stable, oscillatory, excitable and bistable.

8.3 Numerical investigation of spatial models

In this section, we provide numerical solutions of the full reaction-diffusion model

with parameter values corresponding to different dynamical regimes (stable, excit-

able, bistable and oscillatory). The results will be as follows: using model GRM-3,

we provide numerical simulations corresponding to stable and oscillatory regimes.

Since this model lacks bistability, and also there is no clear region defined for ex-

citable dynamics, we also provide numerical simulations using the reaction terms

corresponding to model GRM-2 to show the effect of diffusion in various dynamical

regimes.

Table 8.1 summarises the different simulations carried out in the different regimes

with the parameter values, initial conditions and models used. For the numerical

simulations henceforth, we use biological diffusion coefficients of Rho (GEF) and

Myosin, given by DR = 0.28µm2/s and DM = 0.005µm2/s (Petrášek et al., 2008;

Weitzman, 2013).

8.3.1 Numerical simulations in the stable regime

We show numerical simulation results with parameter values corresponding to a

stable regime for models GRM-2 (2.16) and GRM-3 (2.26). Figure 8.5 shows nu-

merical solution results of system (8.2) with reaction kinetics corresponding to model

GRM-3, while Figure 8.6 shows the results with reaction kinetics corresponding to

model GRM-2. The parameter values and initial conditions used are as shown in

Table 8.1. In both scenarios, the solutions to the system (8.2) are spatially homo-

geneous. The L2 norms of errors converges to zeros, showing that the solutions are

stable in time.



147

Regime Model Parameter Initial conditions (R0,M0)

Stable
GRM-2, Figure 8.6 GT = 0.1, k1 = 0.2

random initial conditions
GRM-3, Figure 8.5 GT = 0.4, k1 = 0.1

Oscillatory
GRM-2, Figure 8.8 GT = 0.66, k1 = 0.1

(0.1747, 0.5158), 245 < x < 255

(0.95, 0.5), elsewhere

GRM-3, Figure 8.7 GT = 1, k1 = 0.2

(0.2, 0.2), 190 < x < 210

(0.3, 0.5), elsewhere

Excitable
GRM-2, Figures 8.9 and 8.10

GT = 7, k1 = 0.2

(0.33, 0.3093), 245 < x < 255

(0.1680, 0.3093), elsewhere

Bistable GT = 20, k1 = 0.2

(0.2, 0.4), x < 400

(0.4, 0.2), elsewhere

Table 8.1: Table showing different regimes in which we carry out numerical simulations, the

corresponding parameter values and initial condition used, the other parameter values used are

listed in Table 3.1. The table also gives reference to each figure showing numerical simulations.

(a) (b) (c)

Figure 8.5: Numerical solution of the reaction-diffusion system (8.2) with reaction kinetics cor-

responding to model GRM-3. We use parameters in Table 3.1 with GT = 0.4 and k1 = 0.1. We

use L = 200.

8.3.2 Numerical simulations in the oscillatory regime

Here we provide numerical simulation results for the system (8.2) with reaction

kinetics corresponding to models GRM-2 (2.16) in Figure 8.8 and GRM-3 (2.26)

in Figure 8.7 and parameter values selected in the oscillatory regime. The initial

conditions and parameter values used are as shown in Table 8.1. In both simulation

results, the solutions are periodic in time, which is illustrated by the discrete L2

norms of the errors shown in Figure 8.7(d) and Figure 8.8(d) respectively. For the

simulations, we used L = 500.
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(a) (b) (c)

Figure 8.6: Numerical solution of system (8.2) with reaction kinetics corresponding to model

GRM-2 and parameter values in Table 3.1 with GT = 0.1 and k1 = 0.2. L = 500.

(a) (b)

(c) (d)

Figure 8.7: Numerical simulation results for system (8.2) with reaction kinetics corresponding to

model GRM-3. Parameters are taken from Table 3.1, with GT = 0.66 and k1 = 0.1. Figures 8.7(a)

and 8.7(b) show respectively solutions of GEF and Myosin in time and space, while Figure 8.7(c)

shows the spatial profiles of GEF at different time points. Figure 8.7(d) shows the discrete L2

norms of the errors of GEF and Myosin at each time point. In Figure 8.7(c) the sequence of

colours starts from red indicating the spatial profile at the initial time and finishes with black for

the spatial profile at the final time.
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(a) (b)

(c) (d)

Figure 8.8: Numerical simulation results for system (8.2) with reaction kinetics corresponding

to model GRM-2 and parameter values in the Table 3.1 with GT = 1 and k1 = 0.2. Figures 8.8(a)

and 8.8(b) show respectively solutions of Rho and Myosin in time and space, while Figure 8.8(c)

shows the spatial behaviour of GEF at different time points. Figure 8.8(d) shows the L2 norm of

GEF and Myosin at each time point. Figure 8.8(c) shows the spatial profile of Rho at different

time points. The sequence of colours starts from red, indicating the spatial profile at the initial

time and finishes with black for the spatial profile at the final time.

8.3.3 Numerical simulations in the excitable regime

We next investigate the numerical solutions in the region characterised by excitable

dynamics. We used kinetic equation corresponding model GRM-2 and results are

shown in Figure 8.9. Parameter values used and initial conditions are as listed in

Table 8.1. In the small interval of x such that x ∈ (245, 255), we use initial conditions

such that the threshold for excitable dynamics is exceeded, and in the rest of the

interval we used the steady state values of the ODE system as the initial conditions.

A pulse is formed in the small region, and then it is propagated in the domain as

time increases. This is shown in Figures 8.9(a), 8.9(b) and 8.9(c). The discrete L2

norms of the errors forms a peak value and then vanishes as shown in Figure 8.9(d).
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The solutions are stable in time.

(a) (b)

(c) (d)

Figure 8.9: Numerical simulation results for system (8.2) with reaction kinetics corresponding

to model GRM-2 with excitable dynamics. Figure 8.9(c) shows the pulses of Rho at different time

points. The colour red indicates spatial profile at the initial time point while black shows the

spatial profile at the final time point.

8.3.4 Numerical simulations in the bistable regime

Lastly, Figure 8.10 shows numerical simulation results for the system (8.2) with

kinetic reaction terms corresponding to model GRM-2 with parameter values and

initial conditions as listed in Table 8.1. We observe travelling wave fronts moving

from right to left as shown in Figures 8.10(a), 8.10(b) and 8.10(c). For the numerical

simulation, we use the distance, L = 500. Diffusion induces a travelling wave from

one locally stable steady state of the ODE model to another, in a bistable region.

The solutions are stable in time as shown by the discrete L2 norms of the errors at

different time points in Figure 8.10(d).
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(a) (b)

(c) (d)

Figure 8.10: Numerical simulation results for system (8.2) with reaction kinetics corresponding

to model GRM-2 in bistable regime. In Figure 8.10(d), the red line shows the spatial behaviour at

t = 0. The sequence finishes in black which shows spatial profile at the final time point.

8.4 Conclusion

In this chapter we explored the effect of adding diffusion to the ODE models formu-

lated in Chapter 2. We first investigated the existence of Turing instability in the

spatially inhomogeneous models. Mathematical analysis were illustrated by numer-

ical simulations.

Then, we numerically investigated the effect of adding diffusion when the ODE

model dynamics lie in distinct dynamical regimes corresponding to stable, oscillat-

ory, excitability and bistable. In general we observe that for most of the parameters

selected, the temporal dynamics related to reaction kinetics are dominant over the

spatial dynamics induced by diffusion. In order to fully characterise the behaviour

of solution in various regimes, rigorous mathematical analysis needs to be done and

the parameter space characterised. In this chapter, we have not done the mathem-
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atical analysis for the emergence of travelling waves, we refer the interested reader

to some of the articles published (Keener, 1980; Jones, 1984; Tyson and Keener,

1988; Wang et al., 2008).

The choice of d used to illustrate Turing instability is not realistic biologically, since

Myosin diffuses much slower than GEF (Rho) (Petrášek et al., 2008; Weitzman,

2013). Model GRM-3 exhibits spatial patterns for a given set of parameters in the

stable region. Although the results are not biologically supported, this is because

our model does not take into account the inactive molecules that would enrich the

model to be of the form of long-range inhibition via activator-depletion provided by

the inactive molecules and short range negative feedback mechanism provided by

Myosin (Turing, 1952).
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Chapter 9

Conclusions

In the previous chapters, a conclusion was provided at the end of each chapter,

summarising the focus of that particular chapter, and the results. In this chapter, we

therefore focus on the overall conclusion of the thesis and some possible extensions.

9.1 Conclusion and Discussion

This thesis studies the full cycle of GEF–Rho–Myosin temporal dynamics linked to

cellular contractility from experimental observations, to formulation of mathemat-

ical models from first principles based on data and their analysis. Finally closing the

cycle is the rigorous sensitivity analysis and parameter estimation. Three models

were formulated from first principles based on the experimental data. The for-

mulation depended on different mathematical assumptions used to translate the

experimental observations. These models were referred to as: GRM-1, GRM-2 and

GRM-3. They are represented in the form of activator-inhibitor regulatory network.

The main assumptions of models GRM-1 and GRM-2 is the use of enzymatic activ-

ity to implement GEF reaction and quasi-equilibrium assumption on GEF module

while for model GRM-3, the main assumption is the use of the law of mass action

to implement GEF module and quasi-equilibrium assumption on Rho module.

Asymptotic analyses of models provides the range of parameter, GT for which the

models exhibit different type of dynamics. The use of GT was biologically motiv-

ated. Experimentally Rho activity dynamics change at different expression levels
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of the positive feedback mediator, GEF and therefore the total GEF concentration

becomes the bifurcation parameter. We characterised mathematically different dy-

namic states of each model, by use of nullcline theory, linear stability theory and

sign pattern analysis. Numerical bifurcation analysis was used to complement the-

oretical findings. These results were illustrated numerically and showed that the

models have the same nullcline configuration as the ones obtained through math-

ematical analysis. Models GRM-1 and GRM-2 exhibit the four dynamics (stable,

excitable, oscillatory and bistable) while model GRM-3 exhibit only three regimes

as the bifurcation parameter GT varies. These regimes were illustrated by plotting

the time evolution of Rho and Myosin and their corresponding phase-planes.

It was shown that model GRM-1 has the same qualitative behaviour to model GRM-

2, for suitable parameter ranges, both models exhibit up to four regimes (stable,

oscillatory, excitable and bistable). Their qualitative results differ from the results

of model GRM-3, which show up to three distinct dynamic regimes (stable, excitable,

oscillatory). We hypothesised that these differences come because of the way GEF

module was translated mathematically. Taking GT as bifurcation parameter, it has

been shown that models GRM-1 and GRM-2 exhibit bistability without hysteresis,

in which one of the limit points goes to infinity (Guidi and Goldbeter, 1997), the

change in the steady states is achieved by changing initial conditions.

Local and global sensitivity analysis were performed for all the models. Local sens-

itivity analysis allowed us to study amplitude and period sensitivities to parameters.

The period is largely affected by k3, k4 and Kr2 for model GRM-1; while k3, k4 and

GT for model GRM-2 and then k2, k1 and k0 for model GRM-3. For model GRM-3,

GT , k2, k0 and k4 commonly affects both GEF and Myosin amplitudes. The rank of

parameters for all the models is listed in Tables 6.2, 6.3 and 6.4. In general Rho and

Myosin amplitudes are sensitive to different parameters. In this thesis, the nominal

parameter set for local sensitivity analysis was selected arbitrarily such that the

model satisfies either stability condition or the limit cycle case, in future studies,

this could be taken as values estimated/obtained from experiments as a justifiable

nominal parameter set for analysis. We also have to incorporate the prior knowledge

about the parameters, to find the range for sensitivity analysis.
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Comparisons between models provides premises for critical model analysis and pos-

sible elimination or selection based on raw experimental data and also understanding

differences that may exist with certain mathematical assumptions. Model GRM-3

was refined from models GRM-1 and GRM-2, based on experimental observations.

This model was used in parameter estimation, using the biological data both in the

stable regime (Rho and Myosin responses to GEF perturbation) and the data in the

oscillatory regime. We employed the Bayesian method to define parameters which

link model GRM-3 to experimental data. This method allows the inclusion of prior

knowledge about the parameters. We then identified maximum posterior (MAP)

parameter that we used to verify the applicability of the model to experimental

data. With these MAP parameters, model GRM-3 exhibit the experimentally ob-

served dynamic regimes. The parallel Metropolis-Hastings method was used to speed

up the computations in the Bayesian method.

In Chapter 8, we explored effects of adding diffusion to the ODE models formulated.

We provided conditions for diffusion-driven instability and numerical simulations to

illustrate mathematical analysis. We later provided numerical simulations for the

full reaction-diffusion model for various dynamical regimes corresponding to stable,

oscillatory, excitable and bistable. The reaction-diffusion models formulated do not

produce realistic biological scenario of GEF–Rho–Myosin dynamics, since it does

not account for spatial inhomogeneity of inactive species corresponding to GEF,

Rho and Myosin.

9.2 Future work and possible extensions

There are several research strands this current research may be extended, which

include:

The modelling approach in this thesis considered only the interaction of Rho with

its positive and negative regulators, GEF and Myosin. However, it has been shown

that the cross-talk between small G-proteins (Cdc42, Rho and Rac) contribute to

cell polarity and motility (Marée et al., 2006; Jilkine et al., 2007; Marée et al., 2012).

Therefore in a future study, the models formulated in this thesis can be coupled to

include Rho GTPases’ interactions.
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The models derived in this thesis may be extended to include diffusion, in the form

of reaction-diffusion models, without compartmentalisation. This follows a similar

approach as the work done in Goryachev and Pokhilko (2008), where it is assumed

that all the molecules are in the same planar domain. Due to different regions within

which the molecules reside, the equations in the cytosol will be multiplied by the

scaling factor η = Vm/Vc, where Vm is the cortex volume and Vc is the volume of the

cytosol.

The other possible extension is the improved coupling of diffusion molecules with

compartmentalisation of the domain in a bulk-surface model type setting. Here we

shall couple a reaction diffusion in the cytosol (bulk) to the reaction-diffusion on the

membrane (surface) as in Rätz and Röger (2012, 2014) and recently published work

by Cusseddu et al. (2018). The flux condition and attachment and detachment law

can be incorporated as in Rätz and Röger (2012, 2014). The models formed will

be studied on various bulk-surface geometries. We can also study the presence of

propagating wave fronts in the case of parameters where the models exhibit excitable

dynamics.

The network dynamics of Rho-Myosin signalling pathways are modulated by the

expression levels of the associated regulators, and the elasticity of the ECM to con-

trol the cell contractility dynamics. In the work of Graessl et al. (2017), the pulses

of Rho activity were modulated by the mechanical properties of the surrounding

environment. It has also been shown that GEF-H1 is regulated by the microtu-

bules. Therefore in these models, we can introduce the microtubule assembly and

disassembly which regulate GEF-H1, and also introduce the ECM. The dynamic

properties of the resulting models will be studied and compared to experimental

observations.

It has also been shown experimentally that the Rho activities are affected by random

processes (Graessl et al., 2017; Kamps et al., 2019). These models can therefore be

extended to include random process, i.e. the stochastic differential equation system

will be formed, and analysed. The question is to determine compatibility between

the two models (PDE model and stochastic model) and experimental results.

In this thesis, we also studied the local sensitivity analysis, where the nominal
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parameter set was selected randomly to illustrate various regimes. This may be

extended to include several nominal parameter values. Statistical techniques may

be applied to the resulting sensitivity indexes to rank the parameters. This approach

may be equivalent to using global sensitivity analysis.
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Appendix A

Law of mass action, enzyme

kinetics and Hill function

In this appendix, we introduced the law of mass action, Michaelis-Menten kinetics

and the Hill function that are used in Chapter 2 to derive from first principles the

mathematical models to describe GEF-H1–Rho–Myosin signalling network.

A.1 Law of mass action

This is the fundamental law of chemical reactions. It describes the rate at which

chemicals whether large macromolecules or simple ions collide and interact to form

different products.

Suppose that two chemical compounds, say X and Y react upon collision to form

the a compound Z described by the formulation,

X + Y
k−→ Z. (A.1)

Let [X] [Y ] and [Z] denotes the concentration of the chemical compounds X, Y

and Z respectively, then the rate of reaction (A.1) is the rate of accumulation of

the product, i.e. d[Z]
dt

. This rate is the product of number of collisions per unit

time between the two reactants and the probability that a collision is sufficiently

energetic to overcome free energy of activation of the reaction. This number of

collisions per unit time is taken to be proportional to the product of [X] and [Y ]
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with a factor of proportionality (this factor of proportionality may depend upon the

geometrical shapes and sizes of reactant molecules or temperature of the mixture).

Mathematically, this law is expressed as,

d[Z]
dt

= k [X] [Y ] , (A.2)

where k is the rate constant of the reaction, it accounts for the probability that

the molecules are well oriented and have sufficient energy to react. The units of k

depend on the order of the reaction, this is a second order equation with the unit

being (concentration× Time)−1.

Now let us consider a more general case for an elementary reaction in which a

molecules of X react with b molecules of Y to produce c molecules of Z and d

molecules of D given by the formulation:

aX + bY
k−−→ cZ + dD. (A.3)

The mass action law provides that the rate, v = k [X]a [Y ]b and the order of this

reaction is a+ b. The unit of k is (concentration)−b−a+1 × (time)−1.

The evolution of different species is given by:

d[X]
dt

= −k(a) [X]a [Y ]b ,

d[Y ]
dt

= −k(b) [X]a [Y ]b ,

d[Z]
dt

= k(c) [X]a [Y ]b ,

d[D]
dt

= k(d) [X]a [Y ]b .

(A.4)

In general case for the reaction in which n molecules of X transformed, b molecules

are recovered at the end:

nX + · · · k−−→ bX + · · · ;

Then the evolution equation for the concentration of X is

d [X]

dt
= ηV, (A.5)

where η = b − n is called the stoichiometric coefficient and V = k [X]n [·]. The

sign of η depends on the global behaviour of the species i.e. η > 0 if globally the

species X is produced, and η < 0 if it is consumed globally.
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A.1.1 Systems of chemical reactions

We want to consider a system of coupled chemical reactions:

n11X1 + n21X2 + · · · k1−−→ b11X1 + b21X2 + · · · ,

n12X1 + n22X2 + · · · k2−−→ b12X1 + b22X2 + · · · ,
... ... ...

n1RX1 + n2RX2 + · · · kR−−→ b1RX1 + b2RX2 + · · · .

(A.6)

Here the evolution of a given compound Xi involved in R reactions is defined by

d [Xi]

dt
=

R∑
r=1

ηirVr = ηi1V1 + ηi2V2 + · · ·+ ηiRVR, (A.7)

where Vr is the rate of reaction r (r = 1, 2, · · ·R), Vr = krπi [Xi]
nir .

ηir = bir −nir is the stoichiometric coefficient of the compound Xi in the reaction r.

NB: Mass action law is limited and is not valid for all the reactions, for example

at high concentrations, doubling the concentrations of one reactant need not double

the overall reaction rate, and at extremely very low concentrations, it may not

be appropriate to present the concentration as a continuous variable (Keener and

Sneyd, 1998).

A.2 Michaelis-Menten kinetics

Michaelis-Menten kinetics results in the case where a reaction is catalysed by an

enzyme. ”Enzymes are proteins that help convert substrates into products, but

they remain unchanged in the reaction” (Keener and Sneyd, 1998).

In an enzyme-catalysed reaction, the enzyme binds itself to the substrate (one of

the reactants) to form an enzymes-substrate complex denoted ES. This formation

of complex leads to the formation of transition-state species, which then forms the

product. We denote an enzyme E, substrate S and V0 the initial rate of reaction,

and their concentrations given by [E] and [S] respectively. The curve expressing

the relationship between the [S] and V0 has a general shape for most enzymes, it

approaches a rectangular hyperbola. This curve can be expressed algebraically by
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Michaelis-Menten equation.

V0 =
Vmax [S]

Km + [S]
. (A.8)

This model that deviates from the law of mass action was first proposed by Michaelis

and Menten in 1913 (Johnson and Goody, 2011). They derived this equation by

using the basic hypothesis that the rate limiting step in an enzymatic reaction is

the breakdown of the ES complex into the product and free enzymes.

To derive Equation (A.8), we start from the formation and breakdown of enzyme-

substrate complex ES, with its concentration denoted [ES] i.e

E + S
k1

k−1

ES, (A.9)

ES
k2

k−2

E + P. (A.10)

We ignore the reverse reaction, P −→ ES, since early in the reaction, the concen-

tration of [P ] is negligible. Therefore the overall reaction reduces to:

E + S
k1

k−1

ES
k2−→ E + P. (A.11)

V0 is determined by the breakdown of ES to form product, this is determined by,

[ES]

V0 = k2 [ES] , (A.12)

where V0 is the initial rate of production of the product. We introduce another

term [E0] which represents the total concentration of the enzymes. Therefore the

unbound enzymes can be represented by:

[E] = [E0]− [ES] .

Now the rate of accumulation of ES is:

d [ES]

dt
= k1 [E] [S]− (k−1 + k2) [ES] , (A.13)

or equivalently

d [ES]

dt
= k1([E0]− [ES]) [S]− (k−1 + k2) [ES] . (A.14)

Enzymes are capable of processing the substrate very efficiently, and a steady-state is

soon reached in which the rate of formation of the enzyme-substrate complex equals
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the rate of its breakdown. Very little complex is present and it turns out over rapidly

but the concentration stays the same over time. Therefore according to the quasi-

steady-state approximation (Keener and Sneyd, 1998), then the rate of formation

of the enzyme-substrate complex equals its breakdown hence from equation (A.14)

we obtain

k1([E0]− [ES]) [S] = (k−1 + k2) [ES] . (A.15)

Solving for [ES] and dividing through by k1, we obtain

[ES] =
[E0] [S]

[S] + (k2 + k−1)/k1
. (A.16)

The term (k2+k−1)/k1 is the Michaelis constant denoted by KM . One interpretation

of KM is that it equals the concentration of substrate at which 50% of the enzyme

active sites are occupied by substrate, it has units of concentration (Tyson et al.,

2003).

[ES] =
[E0] [S]

[S] +KM

, (A.17)

using equation (A.12) in (A.17) we obtain

V0 =
k2 [E0] [S]

[S] +KM

, (A.18)

Now the maximum velocity occurs when the enzyme is saturated, Vmax can be defined

as k2 [E0]. Substituting this in (A.18) we get

V0 =
Vmax [S]

[S] +KM

. (A.19)

Equation (A.19) is the Michaelis-Menten kinetics, the rate equation for a one-

substrate enzyme-catalysed reaction.

A.3 Hill equation

Consider the case where the reaction velocity is not a simple hyperbolic curve as

predicted by Michaelis-Menten model, but rather follows the shape of a sigmoid

curve. This results from cooperative behaviour in which an enzyme can bind more

than one substrate, but the binding of one affects the binding of subsequent ones.

For the simplest case, consider the case where an enzyme can bind two substrate

molecules. It therefore can exist in one of the forms as a free molecule E, or as
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complex with one occupied centre ES or as complex with two occupied centres

denoted ESS. The reaction mechanism for this case is represented by;

E + S
k1

k−1

ES
k2−→ E + P,

S + ES
k3

k−3

ESS
k4−→ E + P.

Denote the concentrations of enzymes by s = [S], e = [E], c1 = [ES], c2 =

[ESS] and p = [P ] and also consider that the total amount of enzyme is conserved,

i.e c1 + c2 + e = e0. We use the law of mass action to write down rate equations for

the concentrations as:

ds

dt
= −k1se+ k−1c1 − k3sc1 + k−3c2, (A.21a)

dc1
dt

= k1se− (k−1 + k2)c1 − k3sc2 + (k4 + k−3)c2, (A.21b)
dc2
dt

= k3sc1 − (k4 + k−3)c2, (A.21c)
dp

dt
= k2c1 + k4c2. (A.21d)

(A.21e)

Due to the conservation of mass of enzyme concentration, we do not formulate an

equation for e, as this may be expressed in terms of c1 and c2. Using quasi-steady

state assumption on Equation (A.21b) and Equation (A.21c), we solve for c1 and c2

to obtain

c1 =
K2e0s

K1K2 +K2S + S2
, (A.22a)

c2 =
e0s

2

K1K2 +K2S + S2
, (A.22b)

with K1 =
k−1+k2

k1
and K2 =

k−3+k4
k3

.

Therefore, the reaction velocity, dp
dt

is given by

dp

dt
=

(K1k2 + k4s)e0s

K1K2 +K2s+ s2
. (A.23)

Consider one extreme case where it is assumed that the binding of the first substrate

molecule is slow but with one site bound, the binding of the second increases and

hence fast. This is modelled by letting k3 7→ ∞ and k2 7→ 0 while keeping k1k3 =
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constant (Keener and Sneyd, 1998). This case means K1 7→ ∞ and K2 7→ 0 while

K1K2 = constant.

Using these limits in the velocity reaction, Equation (A.23), we obtain the reaction

velocity

V =
Vmaxs

2

K2
h + s2

, K2
h = K1K2 and Vmax = k4e0. (A.24)

This can be generalised to the case where n substrate molecules can bind to the

enzyme, and hence there are n equilibrium constants Ki, i = 1, · · · , n. In the

limiting case where K1 7→ ∞ and Kn 7→ 0 while K1Kn = constant, we obtain

V =
Vmaxs

n

Kn
h + sn

, Kn
h =

n∏
i=1

Ki. (A.25)

Equation (A.25) is known as Hill equation. It is used to model reactions whose

detailed intermediate steps are not known but in which cooperativity is suspected.

The parameters n, Vmax and Kh are usually determined from the experimental data.
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Appendix B

Sign pattern and the stability

analysis

B.1 Introductory concepts about sign pattern

Definition B.1.1 (Sign pattern (Garnett et al., 2014; Culos et al., 2016)).

An n× n sign pattern is a matrix with entries in {+, −, 0}. For a real matrix J , J

is the sign pattern with each entry equal to the sign of the corresponding entry of J .

Definition B.1.2 (Equivalent sign patterns (Culos et al., 2016)). A sign

pattern J is equivalent to J ′, denoted by J ∼ J ′ if

(i) J = J ′T ,

(ii) Permutation similarity; J is obtained from J ′ by simultaneous row and column

permutations.

(iii) Signature similarity; J is obtained from J ′ by negating same set of rows and

columns.

(iv) Any combination of (i), (ii) or (iii).

Definition B.1.3 (Refined inertia (Kim et al., 2009)). The refined inertia of

an n × n real matrix J is an ordered 4-tuple ri(J) = (n+, n−, nz, 2np) where n+

is the number of eigenvalues with positive real part, n− is the number with negative

real part, nz number of zero eigenvalues and 2np the number of pure imaginary
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eigenvalues (all counted with multiplicities) and n+ + n− + nz + 2np = n.

The concept of refined inertia splits the number of zero eigenvalues from the number

of other eigenvalues on the imaginary axis, which allows the study of existence of

periodic solutions in a dynamical system. The sign pattern allows or requires a

certain property if respectively some or every realization of that sign pattern has

that property. We are interested in the refined inertia

Hn = {(0, n, 0, 0), (0, n− 2, 0, 2), (2, n− 2, 0, 0)}.

Hn which was introduced by (Bodine et al., 2012) corresponds to the transition of

eigenvalues as pair of eigenvalues with negative real part crosses the imaginary axis

to have positive real parts, and therefore it is used in investigating the existence of

periodic solutions as a parameter is varied. If a matrix has this property as certain

parameter changes then there is a Hopf bifurcation at some parameter value and

hence the possibility of linearly stable periodic solutions. A sign pattern is said to

be sign definite if the sign of the entries are not parameter dependent.

Theorem B.1.4 (Stability of sign matrix (Culos et al., 2016)). Let E be the

steady state value and p represent the parameter values, suppose that the Jacobian

matrix, J(p) is sign-definite at a positive steady state E with the corresponding sign

pattern J (p) then,

(i) if J (p) requires the refined inertia (0, n, 0, 0), then the steady state is linearly

stable for all p.

(ii) if J (p) does not allow Hn, then the model does not have periodic solutions

around the steady state arising from a Hopf bifurcation.

(iii) If the entries of J(p) have or have no magnitude restrictions and if the restricted

or unrestricted sign pattern allows Hn then the model gives rise to a Hopf

bifurcation at a certain parameter value.

Definition B.1.5 (Restricted sign pattern (Culos et al., 2016)). If there is

an algebraic relationship between some of the entries of a real matrix J , then these

are called magnitude restrictions on the entries of the matrix and the sign matrix J

is called a restricted sign pattern; otherwise it is unrestricted sign pattern.
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Definition B.1.6 (Superpattern (Bodine et al., 2012)). A sign pattern J ′ =

[a′ij] is a superpattern of J = [aij] if a′ij = aij ∀ aij 6= 0.

Theorem B.1.7 (Superpattern of sign patterns with negative diagonal

entries (Bodine et al., 2012)). If an n×n sign pattern J allows Hn and has all

the diagonal entries negative, then any superpattern of J allows Hn.

Since in this thesis, we study 2× 2 sign pattern, I illustrate these concepts and how

they can applied in an example of 3× 3 matrix.

Example B.1.1. The Jacobian matrix, Equation (B.1), where (g∗, r∗,m∗) is the

steady state value of Equation (B.2) does not allow H3 due to magnitude restrictions.

In particular, it only allows the refined inertia (0, 3, 0, 0).

J =


−a1r

∗ − a2m
∗ a1 − a1g

∗ −a2g
∗

b1 − b1r
∗ −b1g

∗ − b2m
∗ − b3 − b4 −b2r

∗

0 c1 − c1m
∗ −c1r

∗ − 1− c2

 . (B.1)

This Jacobian matrix corresponds to the model equations (B.2) below:

dg

dτ
= f1 = a1r(1− g)− a2m · g, (B.2a)

dr

dτ
= f2 = b1g(1− r)− b2m · r − b3r + b4(1− r), (B.2b)

dm

dτ
= f3 = c1r(1−m)−m+ c2(1−m). (B.2c)

Proof. The Jacobian matrix (B.1) is sign definite, since the sign of all entries are

not parameter dependent, therefore we let the sign pattern of (B.1) be given by:

S =


− + −

+ − −

0 + −

 . (B.3)

By applying transposition we find that S is equivalent to the sign pattern

ST =


− + 0

+ − +

− − −

 . (B.4)
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The sign pattern ST is a superpattern of the sign pattern

S ′ =


− + 0

0 − +

− 0 −

 . (B.5)

By (Garnett et al., 2014), S ′ requires and hence allows H3 and has all the diagonal

entries negative. Therefore, by Theorem B.1.7 we have that ST allows H3 and hence

also S allows H3. We show that the unrestricted sign pattern S does not require

H3, and therefore we just show that S is not sign non-singular. Without loss of

generality take a realization of (B.3) be given by:

S =


−a 1 −b

1 −c −d

0 1 −e

 , (B.6)

The determinant of S is

−a(ce+ d) + (e− d)

and hence the sign pattern S is sign singular and hence does not require H3. There-

fore the unrestricted sign pattern (B.3) allows H3. The possible refined inertia of

(B.6) is presented in Table B.1.

Refined inertia Values of b

(0, 3, 0, 0) 0 < b < 8

(0, 1, 0, 2) b = 8

(2, 1, 0, 0) 8 < b < ∞

Table B.1: Refined inertias of (B.6) with parameters a, c, d, e = 1

We are only left to check whether the sign pattern with magnitude restrictions as

in Equation (B.1) allows H3. If we consider magnitude restrictions then we find

(0, 3, 0, 0) as the only refined inertia of (B.1), which shows that the matrix has all

eigenvalues negative and therefore the steady state (g∗, r∗, m∗) is linearly stable for

all parameter values, by Theorem B.1.4.
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Appendix C

Local and global sensitivity

analysis

This appendix contains the derivation of equations used in the sensitivity analysis

in Chapter 4.

C.1 Local sensitivity analysis

Here we consider a general ordinary differential equation (ODE) model of the form:

ẋ(t) = f (x(t), p) , x(t0) = x0, (C.1)

where x ∈ Rms is the vector of dependent variables and p ∈ Rmp are the parameters

of the model. It is assumed in this case that the system of ODEs depend on the

variables themselves, as well as model parameters.

Assuming that the solution for ODE system (C.1) exists, the sensitivity matrix of

Equation (C.1) is the matrix denoted S(t). It describes how the parameter variations

around the nominal parameter space, p0 influences the variations in the model state

variables. The sensitivity matrix is defined by:

S(t) =

(
∂x

∂p

)
(x(t,p0),p0)

= {sij} . (C.2)

The simplest way to estimate sensitivities from Equation (C.2) is by finite differences
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(Zak et al., 2005). This method is computationally tedious and inaccurate since it

may lead to numerical instabilities (Zak et al., 2005).

Another approach to finding the sensitivity matrix (C.2) is by differentiating (C.1)

with respect to parameter, p. This gives

∂ẋ

∂p
=

∂

∂p
(f(x,p))

∂

∂t

(
∂x

∂p

)
︸ ︷︷ ︸

S

=
∂f

∂x︸︷︷︸
A(t,p0)

· ∂x

∂p︸︷︷︸
S

+
∂f

∂p︸︷︷︸
B(t,p0)

(C.3)

Therefore;

Ṡ = A(t,p0)S+B(t,p0), (C.4)

S(t0,p0) = S0.

We note that the initial sensitivity to parameters is always zero, unless we consider

sensitivity to initial conditions (Rozenwasser and Yusupov, 1999; Varma et al., 2005;

Lu and Yue, 2010).

Equations (C.1) and (C.4) can be solved simultaneously to obtain the sensitivity

matrix S given initial conditions x(t0) = x0, nominal parameter values p(t0) = p0,

and initial sensitivity, S(t0) = S0. This method is what is called the DDM. The DDM

is achieved by first obtaining the system Jacobian matrix A(t,p0) and parameter

Jacobian matrix B(t,p0). For an ODE system with convergent steady state, the

DDM solution is also convergent.

Now consider a system of differential equations that is periodic in time with period

τ , we have:

x(t+ τ) = x(t). (C.5)

From (C.5), it is possible to express each of the state variables of x(t) expanded in

Fourier series, (Tomovic and Vukobratovic, 1972; Larter, 1983; Zak et al., 2005; Lu

and Yue, 2010) and we obtain:

xi(t) =
∞∑
n=0

[
ani

cos
2nπt

τ
+ bni

sin
2nπt

τ

]
. (C.6)
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Fourier coefficients ani
and bni

are functions of parameters. Time derivative of state

variables can be obtained by differentiating equation (C.6). This gives:

ẋi(t) =
2π

τ

∞∑
n=0

[
−n ani

sin
2nπt

τ
+ n bni

cos
2nπt

τ

]
. (C.7)

Here we assume that the period of oscillation is dependent on at least one parameter

and its sensitivity, Sτ may be defined as:

Sτ =

[
∂τ

∂p1
, · · · , ∂τ

∂pmp

]
. (C.8)

Sτ contains individual sensitivity parameters and is a vector independent of time.

From equation (C.6) and using the fact that τ depends on p, the sensitivity, sij may

be calculated as:

sij =
∞∑
n=0

[
∂ani

∂pj
cos

2nπt

τ
+

∂bni

∂pj
sin

2nπt

τ

]

− 2 πt

τ 2
∂τ

∂pj

∞∑
n=0

[
−n ani

sin
2nπt

τ
+ n bni

cos
2nπt

τ

]
.

(C.9)

Using Equations (C.6) and (C.7), Equation (C.9) may be written as:

sij = − t

τ
sτjfi +

[
∂xi

∂pj

]
τ

.

In vector form, this is written as:

S = − t

τ
f Sτ + Sc. (C.10)

Sc is evaluated at constant period, it is periodic in time and is an ms × mp matrix

called Cleaned out sensitivity matrix (Tomovic and Vukobratovic, 1972). This matrix

captures how parameter variations affect the shape of trajectory when period is

constant (Zak et al., 2005; Lu and Yue, 2010, 2011).

From equation (C.10) it can be clearly seen that when f 6= 0 and Sτ 6= 0, then the

first term will grow unbounded as time increases and it will become the dominant

term.

There are different methods for calculating period sensitivities, among these meth-

ods include an algorithm based singular value decomposition (SVD) of the state

sensitivity matrix S. This method which can determine all the period sensitivities
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at ones and without concern about numerical stability (Zak et al., 2005) is based on

the fact that at large time point, the first term in (C.10) will dominate and therefore,

S ≈ − t

τ
f Sτ .

Based on this decomposition, a method which is based on singular value decompos-

ition (SVD) is proposed to determine all the period sensitivities (Lu and Yue, 2011;

Zak et al., 2005).

C.1.1 Singular value decomposition (SVD)

In this work we want to consider the SVD method for raw sensitivity matrix S(t) used

in (Zak et al., 2005; Lu and Yue, 2010, 2011), for determining period sensitivities.

Theorem C.1.1 (The singular value decomposition (Golub and Van Loan,

2012)). Suppose that A is a real m-by-n matrix. If there exist orthogonal matrices

U and V such that

U = [u1, · · · , um] ∈ Rm×m and V = [v1, · · · , vn] ∈ Rn×n,

then we have

UT AV = diag(σ1, · · · , σp) ∈ Rm×n p = min {m,n} ,

where

σ1 ≥ · · · ≥ σp ≥ 0.

If we define the Matrix Σ which is an m×n diagonal matrix of non-negative singular

values σi, i = 1, · · · , p, which are the square root of the eigenvalues of ATA, given

V is an n×n matrix whose columns are the unit eigenvectors of ATA while U is an

m×m matrix whose columns are the unit eigenvectors of AAT , then

A = UΣV T =
r∑

i=1

σiuiv
T
i . (C.11)

Equation (C.11) is the singular value decomposition of the matrix A. The matrices

U and V are called unitary matrices and the vectors which comprise them are

respectively called output and input vectors.



192

It can be easily seen from Theorem C.1.1 that

Avi = σiui.

The aim is to apply SVD to the state sensitivity matrix (C.10) and approximate

the period sensitivity to parameters. Since in equation (C.10), the state sensitivity

grows with time, at large time point, it will be dominated by the first tern on the

right hand side and the cleaned out sensitivity Sc becomes negligible (Zak et al.,

2005; Lu and Yue, 2011). We therefore use the following approximation:

S = − t

τ
f Sτ . (C.12)

For Equation (C.12) to be valid, it is required that both f 6= 0 and Sτ 6= 0. Due

to the periodicity of the system, the first condition is guaranteed, otherwise will be

in stable steady state. We also assume that the period is sensitive to at least one

parameter and this guarantees that all components of Sτ cannot simultaneously be

zero.

Therefore applying SVD to Equation (C.12) we have

S = UΣV T . (C.13)

From equation (C.12) we have:

STS = (− t

τ
f Sτ )

T (− t

τ
f Sτ )

=
t2

τ 2
ST
τ fT f Sτ

Let ϕ2 = fT f

Therefore

STS =
t2

τ 2
ϕ2 ST

τ Sτ .

(C.14)

Finding the eigenvalues we have that:

eig(STS) =
t2

τ 2
ϕ2 eig(ST

τ Sτ ). (C.15)
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When S is approximated as in Equation (C.12), it has only one non-zero singular

value. The non-zero eigenvalues of a matrix STS are equivalent to the eigenvalues

of SST , (Zak et al., 2005; Skogestad and Postlethwaite, 2000) and therefore the

non-zero eigenvalue of ST
τ Sτ is Sτ S

T
τ .

Note that when S has more than one eigenvalues, at large, t, the singular value σ1

will dominate other by several orders of magnitude (Lu and Yue, 2010).

Therefore we obtain the non-zero eigenvalue given by:

eig(STS) = λ =
t2

τ 2
ϕ2 Sτ S

T
τ . (C.16)

To find the eigenvector of STS we require that if v is the eigenvector of STS, then

we have that

STSv = λv. (C.17)

Using equations (C.14) and (C.16) in (C.17) we obtain;

t2

τ 2
ϕ2 Sτ S

T
τ v =

t2

τ 2
ϕ2 ST

τ Sτ v. (C.18)

Equation (C.18) hold for any value of v and therefore without loss of generalisation

we can assume it is a scalar multiple of Sτ and therefore we have that:

v = αSτ , α ∈ R \ {0} . (C.19)

From the above we observe that SVD of raw sensitivity matrix at large time points,

t will yield scalar multiple of Sτ as the input vector. We now have to determine the

magnitude of period sensitivities.

Since v has to be a unit vector (it is usually normalised), the arbitrary scalar will

be such that the resulting vector is a unit and therefore we have

α = ± 1√
ST
τ Sτ

. (C.20)

Substituting (C.20) into (C.19) we obtain an input vector corresponding to the

largest singular value as:

v = ± Sτ√
Sτ ST

τ

. (C.21)
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Using the singular value obtained in equation (C.16) we can obtain the magnitudes

of period sensitivities using the singular values given by

σ =
t

τ
ϕ
√
Sτ ST

τ , (C.22)

therefore from (C.21) and (C.22) we can obtain the period sensitivities as:

Sτ ≈ ±στ

ϕ t
v. (C.23)

Equation (C.23) provides only the relative sign of sensitivity components but not

the absolute signs and therefore a small perturbation to each parameter need to be

calibrated in order to determine if that parameter increases of decreases the period.

To solve this issue, an alternative formulation was given in (Lu and Yue, 2010) based

on the following Theorem.

Theorem C.1.2 (Lu and Yue (2010)). Consider

A =
r∑

i=1

σiuiv
T
i ,

denote S̃i = σi ui v
T
i (i = 1, 2, · · · , r), where S̃i are matrices of rank 1. At large time

t, the first term in (C.10) can be described by the first SVD term of S. That is

− t

τ
f Sτ = S̃1. (C.24)

Proof. The proof of Theorem C.1.2 can be found in (Lu and Yue, 2010). The idea

of the proof is to show that Sp = − t
τ
f Sτ is a matrix of rank 1 and its eigenvalue

is linearly increasing in time by multiples of period. The second part clarifies that

Sp = − t
τ
f Sτ is one of the SVD components of S.

Note that when f 6= 0 and also Sτ 6= 0, then Sp is a matrix of rank 1. Any of its

columns can be expressed as a linear of combination of all the remaining columns.

It has also one singular value, denoted as σp. Write the SVD for Sp

Sp = − t

τ
f Sτ = σpup v

T
p . (C.25)

At a time point say ti ∈ (0, τ ], then we have

− ti
τ
f(ti)S(ti)τ = σ(ti)pu(ti)p v(ti)

T
p . (C.26)
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After a number of periods, say k periods, we then have t = ti + k · τ, S(t) = ti and

Sτ (t) = Sτ (ti).

Therefore Sp can be described by:

− t

τ
f(t)S(t)τ = −ti + k · τ

τ
f(ti)S(ti)τ . (C.27)

Using Equation (C.26), Equation (C.27) can be written as

(1 + k · τ
ti
)σ(ti)pu(ti)p v(ti)

T
p . (C.28)

Equations (C.28) shows that after k periods, the singular value for Sp increases to

σp(t) = (1 + k · τ
ti
)σ(ti)p which is a linear increase to the number of periods (time).

Lastly, we shows that Sp is one of the SVD components of S. We know that Sp

contains information about period variations to parameter changes and increases

with fSτ after each period at all time points in a period. Sc represents the state

variations to parameter changes at constant period, and therefore its trajectory in

one period is exactly the same as in all other periods. This shows that Sp and Sc

are orthogonal components of S. From the SVD expansion theory, the terms S̃i are

orthogonal and this decomposition is unique. This concludes that Sp is one of the

S̃i.

We have also shown that the singular value of Sp increases with time scaled by

multiples of period while on the other hand, the singular values of Sc oscillate with

constant peak values in amplitude. We therefore have that at large time point t,

only σp will be the dominant singular value. That is σp = σ1 and Sp = S̃1. This

proves the theorem.

From Equation (C.24) and since f 6= 0, multiply both sides by fT and simplify to

obtain

Sτ ≈ − τ

ϕ2 t
fT S̃1, (C.29)

where the term S̃1 = σ1 u1 v
T
1 is the largest Singular value decomposition term of

the state sensitivity matrix S. Equation (C.29) is used to calculate the period sensit-

ivities together with their corresponding signs, depending on the effect of particular

parameter to the output.
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To obtain the cleaned out sensitivities, consider the SVD expansion of a matrix. If

r is the rank of a matrix S, we then have by (Golub and Van Loan, 2012) that:

S =
r∑

i=1

σiuiv
T
i . (C.30)

Define S̃i = σi ui v
T
i , therefore (C.30) can be written as:

S = S̃1 +
r∑

i=2

S̃i. (C.31)

Therefore from equations (C.10) and (C.31) we obtain cleaned-out sensitivity can

be approximated by the sum of all the remaining SVD terms, i.e.,

Sc ≈
r∑

i=2

S̃i. (C.32)

C.1.2 Amplitude sensitivity

The amplitude of an oscillation is the maximum displacement from the mean pos-

ition. This is proportional to the difference between the peaks (difference between

maximum and minimum values of the oscillatory trajectory).

For the purpose of sensitivity analysis, we define amplitude for each state as:

Ami = max(xi)−min(xi). (C.33)

Let us define tmaxi and tmini as the points where the local maximum and minimum

occurs within the period, then Equation (C.33) is written as:

Ami = xi(tmaxi)− xi(tmini). (C.34)

From Equation (C.34) we define amplitude sensitivity as:

SAmi
=

∂Ami

∂p
. (C.35)

Using Equation (C.34), this can be written as:
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SAmi
=

∂xi(tmaxi)

∂p
− ∂xi(tmini)

∂p
. (C.36)

Using equation (4.2) we get amplitude sensitivity given by:

SAmi
= Si(tmaxi)− Si(tmini). (C.37)

Having obtained the cleaned out sensitivity, we can use the fact that at the local

extrema of xi, fi = 0, and therefore from Equation (C.10) we have that Si = Sci.

From that we can therefore define amplitude sensitivity as:

SAmi
= Sci(tmaxi)− Sci(tmini). (C.38)

C.2 Variance based methods for sensitivity ana-

lysis

Consider p input parameters, X = (X1, X2, · · · , Xp), which are independent and

each one varying over its own probability density function. The output Y is defined

as

Y = f(X).

The variance based techniques aim to rank the input factors according to the vari-

ance that is lost. Assume that the true value x∗
i for a given input parameter Xi is

known. The conditional variance of Y given Xi = x∗
i is defined by

V (Y|Xi = x∗
i ), (C.39)

this is obtained by taking the variance over all input parameters except x∗
i .

In most cases, the true value x∗
i of each Xi, i = 1, 2, · · · p, is not known. Therefore,

in place of Equation (C.39), we use the average of the conditional variance for all

possible values Xi. That is, we evaluate

E(V (Y|Xi)). (C.40)

Since we want to find the variance of the conditional expectation, consider the

following property of variance

V (Y) = V (E [Y|Xi]) + E [V (Y|Xi)] . (C.41)
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Having the unconditional variance of output V (Y), variance of the conditional ex-

pectation is obtained from Equation (C.40) and Equation (C.41). This is defined

as:

vi = V (E [Y|Xi]), (C.42)

vi in (C.42) is sometimes called main effect (Ekström, 2005). It is used as a measure

of the sensitivity of Y to Xi. Equation (C.42) is normalised by V (Y) to obtain

si =
V (E [Y|Xi])

V (Y)
. (C.43)

The ratio (4.13) was named first order sensitivity by Sobol, (Sobol, 1993). This

index only measures the main effect contribution of each parameter on the output

variance and does not take into account interaction between the input factors.

In terms of conditional variances, the interaction of two orthogonal factors Xi and

Xj on the output Y is given by:

vij = V (E [Y|Xi, Xj])− V (E [Y|Xi])− V (E [Y|Xj]). (C.44)

The quantity V (E [Y|Xi, Xj]) which is known as the second-order effect describes

the joint effect of the pair (Xi, Xj) on the output. Higher order effects can be

obtained in a similar fashion.

The sum of all order effects that a factor accounts for is called total effect (Homma

and Saltelli, 1996; Saltelli et al., 1999). Therefore for an input Xj, the total sensitivity

index sTj
is the sum of all indices measure relating to Xj.

Therefore for a model with two, three and four input factors (p = 2, 3, 4), the total

sensitivity index for an input X2 would respectively be:

p = 2 implies sT2 = s2 + s21,

p = 3 implies sT2 = s2 + s21 + s23 + s213,

and

p = 4 implies sT2 = s2 + s21 + s23 + s24 + s213 + s214 + s234 + s2134.

The number of terms to be evaluated is 2p−1. All the variance-based method listed

above except FAST method can compute both si and sTi
.
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Here the input factor space Ωp is assumed to be p-dimensional hypercube (Ekström,

2005):

Ωp = (X| 0 ≤ Xi ≤ 1; i = 1, · · · , p).

The input factors are assumed to be orthogonal hence no correlation structure can

be induced by the input factors. The expected value of the output E(Y) can be

evaluated by the p-dimensional integral:

E(Y) =

∫
Ωp

f(X)p(X)dX =

∫
Ωp

f(X)dX, (C.45)

where p(X) is joint probability density function assumed to be uniform for each

input factor.

C.2.1 Extended Fourier amplitude test (eFAST)

eFAST method was developed by (Saltelli et al., 1999, 2000) as an improvement of

the Fourier amplitude test (FAST) method, which was developed by (Cukier et al.,

1975). It is a variance based method.

The technique uses a periodic sampling method together with Fourier transformation

to partition the whole variance of the model output and quantify the degree to which

variation in each input factor accounts for the output variance, (Gao et al., 2016).

A periodic sampling approach is used to generate a search curve in the parameter

space and partitioning is implemented by assigning the periodic sample of each

parameter with a distinct frequency. Then a Fourier transformation is applied to

the model output to measure how strongly a factor’s frequency propagates from

the input to the output, i.e., the variance contribution of the factor to the whole

variance of the output (Saltelli and Bolado, 1998; Saltelli et al., 1999; Marino et al.,

2008; Gao et al., 2016)

Fourier amplitude test (FAST)

FAST is sensitivity analysis method developed by (Cukier et al., 1975; Schaibly and

Shuler, 1973) and it was successfully applied to two sets of coupled non-linear chem-

ical rate equations. The main idea of FAST method is to convert the p-dimensional

integral equation (C.45) into a one dimensional equation (Weyl, 1938). In FAST
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method each input (uncertain) Xi is related to a frequency ωi and transformed as

xi(s) = Gi(sin(ωis)), (C.46)

where Gi is defined parametric equation which allows each input factor to be varied

in its range as we vary s. The parametric equation (C.46) defines a curve that

explores the whole input factor space Ωp.

The p-dimensional integral (C.45) can be estimated by integrating over the curve

(Saltelli et al., 2010; Ekström, 2005):

Ê(Y) =
1

2 π

∫ π

−π

f(s)ds, (C.47)

where

f(s) = f(G1(sin(ω1s)), G2(sin(ω2s)), · · · , Gk(sin(ωks))).

The output variance may be approximated by performing Fourier analysis as shown

below and using the fact that the expected value is given by the initial value of f :

V̂ FAST(Y) =
1

2 π

∫ π

−π

f2(s)ds− Ê2(Y),

≈
∞∑

j=−∞

(A2
j +B2

j )− (A2
0 +B2

0),

≈ 2
N∑
j=1

(A2
j +B2

j ).

(C.48)

The Fourier coefficients Aj and Bj are defined by:

Ai =
1

2 π

∫ π

−π

f(s) cos(js)ds,

Bj =
1

2 π

∫ π

−π

f(s) sin(js)ds.

(C.49)

The partial variances are finally calculated by:

V̂ FAST
i (Y) = 2

M∑
j=1

(A2
pwj +B2

pwj), (C.50)

where M is the maximum number of Fourier coefficients that may be retained in cal-

culating the partial variances without interferences between the assigned frequencies

and it is usually 4 or 6, (Ekström, 2005).



201

To approximate the Fourier coefficients for the partial variances, (McRae et al.,

1982) proposed the following expression:

Aj =

 0 if j is odd
1
N

(
y0 +

∑q
p=1(yp + y−p) cos(

πjp
N
)
)
, if j is even

Bj =

 0 if j is even
1
N

(∑q
p=1(yp − y−p) sin(

πjp
N
)
)
, if j is odd

(C.51)

where q = (N − 1)/2. In (Saltelli et al., 1999; Saltelli and Bolado, 1998; Saltelli

et al., 2004) a better transformation for Gi is recommended that could provide a

uniformly distributed samples for each input factor in the hypercube and is given

by:

xi(s) = Gi(sin(wis)) =
1

2
+

1

π
arcsin(sin(wis)). (C.52)

Saltelli proved in (Saltelli and Bolado, 1998) that the ratio V̂ FAST
i /V̂ FAST computed

with FAST method is equivalent to first order sensitivity indices proposed by So-

bol, (Sobol, 1993). This method does not calculate the total index and thus an

improvement was done to obtain eFAST method.

eFAST method is able to calculate the total order index by estimating the variance

in the complementary set V̂ FAST
ci which is done by assigning a frequency ωi for the

factor Xi very high and almost identical frequencies to the rest ω∼i very low. They

then compute the partial variance of the complementary set as:

V̂ FAST
ci = 2

M∑
j=1

(A2
∼j +B2

∼j). (C.53)

In FAST method, equation (C.52) always returns exactly the same factor in Ωp and

so in (Saltelli et al., 1999, 2000) a more flexible sampling scheme was introduced by

adding a random phase-shift φi. The new equation now becomes:

xi(s) = Gi(sin(wis)) =
1

2
+

1

π
arcsin(sin(wis+ φi)), (C.54)

and the curve is sampled over the interval (−π, π) due to symmetry. This idea of

generating many different curves in Ωp, doing dependent Fourier analysis over them

and finally finding their average is called re sampling.

In eFAST method, the computation cost to obtain all first and total indices are

k(2Mωmax)Nr, where Nr is the number of re samples.
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Appendix D

Bayesian method to parameter

identification

D.1 Introduction to Bayesian method

To introduce the Bayesian setting of the problem, let p ∈ RK be the set of para-

meters of the mathematical model. Let H : RK → RN be the mapping that assigns

to each parameter p the solution to the ODE system evaluated at the observation

time points. Let y ∈ RN be the experimental measurement. We assume that the

measurement y corresponds to a solution of the mathematical model perturbed by

some noise η, which is naturally modelled by means of some probability distribution.

Mathematically, we have:

y = H(p) + η, (D.1)

for a certain parameter p.

In terms of probability distributions, the parameter identification can be stated

as follows: (D.1) gives as the probability of observing y given a parameter p; we

are interested in the reverse condition, the probability of a parameter p given that

we observe y. The Bayes’ theorem characterizes the latter in terms of the former

together with the marginal distribution for p. This marginal distribution represents

the knowledge about the parameter, called a prior. The probability distribution of

the parameter given the data is the posterior denoted P(p|y).
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The prior encodes assumptions about the parameter such as positivity or bounds

and even more complex information, such as that the parameter exhibits certain

dynamics in a reduced system of equations and the range of parameter to be con-

sidered; while the posterior distribution encodes all the information available about

a parameter estimated.

To approximate the posterior distribution we use parallel Markov Chain Monte Carlo

(MCMC) method. The method generates a Markov Chain of samples distributed

as the posterior. The method is implemented to run in parallel using multiple

processors.

The posterior distribution provides information not only about the best parameter,

but also about possible correlations between parameters, and credible regions. In

particular, when it is possible to make plausible assumptions on the experimental

noise, the method provides robust error bars for the parameters.

In order to calculate the posterior probability, we shall apply Bayes’ formula to

(D.1). First consider the following definition:

Definition D.1.1. Consider the probability space (Ω,F ,P) and two sets A,B ∈ F

with P(A),P(B) > 0. We define the probability of A given B and that of B given A

by;

P(A|B) =
P(A ∩B)

P(B)
,

P(B|A) = P(A ∩B)

P(A)
.

Combining the two gives Bayes’ formula

P(A|B) =
P(B|A)
P(B)

P(A). (D.2)

Applying Bayes’ formula to (D.1). Let πy(p) denote the probability density function

of the probability measure P(p|y), then the probability density function of the prior

distribution is π0(p). If we assume that the noise η ∈ RN is a random variable

with density ρ, then the probability of data given parameters has density ρ(y|p) :=

ρ(y−H(p)), which is referred to as the data likelihood (Stuart, 2010). Therefore by

Bayes’ formula, we obtain

πy(p) =
ρ(y −H(p))π0(p)

W
, (D.3)
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where

W =

∫
RN

ρ(y −H(p))π0(p).

Thus

πy(p) ∝ ρ(y −H(p))π0(p), (D.4)

where in Equation (D.4), the constant of proportionality depends only on the data,

y.

Consider the Radon-Nikodym Theorem below:

Theorem D.1.2 (Radon–Nikodym Theorem (Stuart, 2010)). Let µ and ν be two

measures on the same measure space (Ω,F). µ � ν and ν is σ-finite then there

exists ν-measurable function f : Ω 7→ [0,∞] such that, for all ν-measurable sets

A ∈ F ,

µ(A) =

∫
A

f(x)dν(x).

The function f is known as the Radon–Nikodym derivative of µ with respect to ν,

which is written as
dµ

dν
(x) = f(x).

From Theorem D.1.2, (D.4) expresses the fact that the posterior measure, P(p|y) and

prior measure P0(p|y) are related through the Radon-Nikodym derivative (Stuart,

2010). Therefore denoting P(·|y) = Py(·) from the theorem we have

dPy

dP0

(p) ∝ ρ(y −H(p)). (D.5)

The right hand side of Equation (D.5) can be written as an exponential of a negative

potential ϕ((p); y) to obtain,

dPy

dP0

(p) ∝ exp(−ϕ((p); y)). (D.6)

The potential ϕ((p); y) corresponds to the negative log-likelihood. Equation (D.6)

generalises Bayes’ theorem to infinite dimensional setting, and thus Bayesian ap-

proach to parameter identification can be applied to infinite dimensional problems

using this formulation. This results can be summarised in the theorem below (Dashti

and Stuart, 2016)
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Theorem D.1.3 (Bayes’ Theorem). Assume that the potential ϕ : A × B 7→ R

is measurable with respect to the product measure P0 ×Q0, where Q0 is a probability

distribution and η is a realisation of Q0. Also assume that

W =

∫
A

exp(−ϕ((p); y))P0(dp) ≥ 0.

Then the posterior distribution, P(p|y) exists, and it is absolutely continuous with

respect to the prior distribution. Furthermore, Py � P0 and

dPy

dP0

(p) =
1

W
exp(−ϕ((p); y)).

Bayes’ theorem characterises the posterior probability distribution, which involves

determining the normalization constant, W . This process is expensive to evaluate.

Therefore in general it is not easy to get information from a posterior probability

measure in high dimensions. One useful approach to extracting information is to

find a maximum posteriori estimator, or MAP estimator. This is a parameter set p

which maximizes the posterior probability density function πy(p) (Stuart, 2010).

Another alternative is not to compute the posterior probability distribution, but

rather produce samples from it, by using Markov Chain Monte carlo methods.

D.2 Markov Chain Monte carlo methods (MCMC)

Markov Chain Monte carlo methods (MCMC) are a family of sampling methods

that can produce Markov chain with a given distribution (Norris, 1998). They are

used to sample from posterior distribution. Given a sufficient good number of such

samples, the solution of the Bayesian problem can be characterised. MCMC are

easily applied to linear and non linear problems, since they only depend on the

forward problem and the associated likelihood (Aster et al., 2018).

A Markov chain is a sequence of random variables, X0, X1, · · · , where the probability

distribution of Xn+1 depends solely on the previous value, Xn and not on the other

previous sequence values. That is,

P(Xn+1|X0, X1, · · · , Xn) = P(Xn+1|Xn).
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We consider time-invariant Markov chains so that the transition kernel is independ-

ent of n. That is

P(Xn+1, Xn) = P(Xn+1|Xn), is independent of n.

Not all Markov chains have a limiting distribution (Aster et al., 2018), here we are

interested in Markov chains that have a limiting distribution, πy(p) such that

lim
n→∞

P(Xn+1|Xn) = πy(p).

In general, for any multivariate model, suppose that q(x) and k(x,y) are the target

distribution and transition kernel respectively. q(x) is a limiting distribution if the

following local balance equation is satisfied;

q(x) k(x,y) = q(y) k(y,x). (D.7)

Equation (D.7) states that the rate of transition from from q(x) to q(y) equals the

rate from q(y) to q(x).

MCMC methods have the advantage of sampling from a probability measure only

known up to a normalizing constant (Stuart, 2010). They are robust but slow,

and the distribution of Markov chain converges to the target(posterior) distribution

under general conditions, but long chains are needed to obtain good approximations

(Norris, 1998; Campillo-Funollet et al., 2019). Metropolis-Hastings sampler will be

used to simulate Markov chain with a specified limiting or target distribution.

D.2.1 Metropolis-Hastings sampler

Metropolis-Hastings method produces samples from posterior distribution that tend

to densely sample its higher likelihood regions. With many of these samples, we can

characterise the posterior distribution.

In implementing Metropolis-Hastings method, first pick a proposal distribution,

which will facilitate random selection in the target distribution (posterior). These

samples are subjected to a likelihood based test.
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The proposal distribution selected cannot be implemented as transition kernel dir-

ectly since it does not satisfy the local balance equation (D.7). To overcome this a

ratio called the acceptance ratio is introduced such that

a(x,y) = min {1, s} , (D.8)

where

s =
q(y) k(y,x)

q(x) k(x,y)
. (D.9)

We therefore have that

a(y,x) = min
{
1, s−1

}
. (D.10)

The choice of the acceptance probability (acceptance ratio) a depends on the pro-

posal kernel in order to ensure that the Markov chain is reversible with respect

to the target probability. That is, the local balance equation (D.7) is satisfied.

This reversibility ensures that the Markov chain preserves the target (posterior)

probability. For simplicity, consider the proposal kernels that are symmetric, i.e.

k(y,x) = k(x,y). Applying this then Equation (D.9) simplifies to

s =
q(y)

q(x)
, (D.11)

and therefore

a(x,y) = min

{
1,

q(y)

q(x)

}
. (D.12)

Using the negative log likelihood, we have q(·) = exp(−ϕ(·)) in Equation (D.12), we

obtain;

a(x,y) = min {1, exp(ϕ(x)− ϕ(y))} . (D.13)

Therefore for standard Metropolis-Hastings method, we take a proposal kernel equal

to the prior distribution such that,

k(x, ·) = P0(·).

Together with the acceptance ratio defined in Equation (D.13). In a parameter

identification problem, evaluation of acceptance probability involves at least one

evaluation of the potential, ϕ and therefore one evaluation of the observation oper-

ator H, which makes this operation very expensive with regard to the computation

time. To overcome this problem, we used parallel Metropolis-Hastings algorithm

(Tjelmeland, 2004; Calderhead, 2014; Campillo-Funollet et al., 2019).
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The implementation of this method is credited to Eduard Campillo Funollet and

his published work in (Campillo-Funollet et al., 2019). The key idea behind parallel

Metropolis-Hastings algorithm is to generate an N -dimensional Markov chain such,

such that its distribution is N copies of the target distribution, which is the posterior

distribution. This is done such that the potential ϕ is evaluated in parallel. The

type of Metropolis-Hastings implemented in this work is known as the independence

sampler. Cotter et al. (Cotter et al., 2013) derived this and other proposal kernels

by discretising the Langevin-type stochastic differential equation.

The parallel Metropolis-Hastings is implemented as follows: Generate N new pro-

posals, x̄N
j=1 from the proposal kernel k(xk, x

j). Take x0 = xj and then evaluate the

potentials ϕ(xj), j = 1, · · ·N in parallel. The values of ϕ(xj) are used to compute

the acceptance probability for each proposal, by finding the stationary distribution

of a Markov chain with N + 1 states, given by the transition matrix

A(i, j) =

 1
N
a(xi, xj), if i 6= j,

1−
∑

j ̸=i A(i, j), if i = j.
(D.14)

We again sample N times from the stationary distribution to produce N new states.

The parallel Metropolis-Hastings method does not require modification of solver for

the model, and hence suited when the solver is already available, and then aim is

just to speed up the computations without modifying the solver, and it also works

well for problems with infinite dimensional parameters (Stuart, 2010; Dashti and

Stuart, 2016; Campillo-Funollet et al., 2019).

In this formulation, we can compute the likelihood, ϕ as a consequence of Equa-

tion (D.1), which allows us to incorporate information about the experimental noise.

In the cases where the likelihood cannot be computed, or when the distribution is

not known, one can resort to Approximate Bayesian methods (Ross et al., 2017).
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