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Summary 

 

The metabolic pathway for oxidative phosphorylation has remained a reliable target for the 

development of novel fungicides. The reliance on single target site fungicides within this pathway 

has increased the selection pressure for point mutations within a number of key complexes, 

including the cytochrome bc1 complex. The alternative oxidase (AOX) provides an alternative 

route for respiration, introducing a mechanism by which selection pressure and pathogenicity can 

be increased. In particular, the fungal pathogen Septoria tritici has developed a highly fungicide 

resistant strain. The design and synthesis of inhibitors targeting the fungal AOX, or the AOX and 

the cytochrome bc1 complex, represents a new class of fungicides improving crop yield outcomes. 

Investigation into the AOX found in S. tritici (StAOX), led to new techniques to fully characterise 

and overexpress the protein in a haem deficient Escherichia coli strain, which has then been 

compared to that of the well-studied protozoan AOX, Trypanosoma brucei brucei (TAO). The 

enzymatic activity of StAOX was found to be significantly lower in comparison to AOXs from 

other species, but responded dramatically to the nucleotide regulators, GMP and IMP. The 

purified protein has also been shown to be sensitive to its lipid environment with full enzymatic 

recovery following re-introduction into a lipid membrane.  

The natural quinol analogue, ascofuranone, displays selectivity towards the AOX and was 

selected for further design and lead modification. Several ascofuranone derivatives were 

synthesised according to a new synthetic route. A variety of new methods were utilised to analyse 

the inhibitors providing IC50, KD, thermodynamic and cytotoxicity data. Two of the newly 

synthesised compounds provided selectivity for TAO over the cytochrome bc1 complex, but failed 

to show selectivity to the StAOX. In vitro data suggests a single phenylalanine residue restricts 

inhibitor’s tail length to within an 8-carbon chain length, supported by an in-silico docking screen.  
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Chapter 1: Introduction 
 

 

1.1  Phytopathogenic Fungicides 
 

The use of fungicides to control foliar crop disease, can be dated back to the nineteenth century, 

following the widespread infection of Phytophthora infestans (Potato Blight). Potato blight 

caused widespread famine and fatalities across the majority of Western Europe. Subsequently, 

the first fungicide, known as the Bordeaux mixture, was discovered by Millardet. It had been used 

for a number of years to treat powdery mildew (Plasmopara viticola) on grapevines; and after 

Millardet noticed the similarities between the two fungi, it was found it could be used against 

potato blight. This discovery1, albeit too late, coincided with the creation of plant pathology and 

stressed the importance of understanding the target of fungicides. 

Today, the Bordeaux mixture is still used as a fungicide treatment2; consisting of a 1% solution 

of copper sulfate (CuSO4) and slaked lime (Ca(OH)2), with a 1:1 ratio for both of these inorganic 

salts. The effective concentration of Cu2+ ions produces its fungistatic activity by inhibiting a 

broad spectrum of molecular targets including transport carriers and biologically important 

enzymes. The multi-site activity and lack of specificity for copper fungicides presents a number 

of toxic effects for the environment3,4, aquatic life5, plants6, animals7 and humans8. The 

accumulation of elemental copper residues following a fungicide treatment also poses concern for 

the long-term use of inorganic fungicides3,9. The European Union has therefore regulated10 its use 

to reduce environmental damage and the probable health implications.  

 

 

Figure 1 – Classical Multi Target Site Fungicides 
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Since the original discovery of the Bordeaux mixture, a number of multi target site fungicides 

(Figure 1) have been used to treat phytopathogenic fungal diseases. Chlorothalonil is one such 

fungicide with a broad spectrum of activity against both resistant (QoI and DMI) and non-resistant 

fungal species. The mode of action of chlorothalonil occurs through its reaction with thiol rich 

enzymes such as glutathione-S-transferase (GST) and glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH)11. Chlorothalonil acts as an alkylating agent, reacting with thiol groups 

through a nucleophilic aromatic substitution (SNAr) reaction, forming conjugated chlorothalonil-

thiol derivatives12. This action depletes the cellular reserves of GST and GAPDH limiting the 

fungal cells ability to detoxify xenobiotic species and generate ATP through glycolysis, 

respectively.  

The use of chlorothalonil has raised concerns following the discovery of non-target toxic effects 

on environmental organisms; including, aquatic life13–15 and soil bacteria16,17. However, the risks 

posed by chlorothalonil on both of these organisms is diminished, due to its inherent 

physicochemical properties. The low water solubility (0.81 g/kg18) and high adherence to soil19 

prevents any considerable accumulation in water systems, and therefore within aquatic species. 

Recent discoveries of chlorothalonil degrading bacteria20–23 show a breakdown of the compound 

once adsorbed to the soil surface reducing leftover treatment residues. Furthermore, soil samples 

containing chlorothalonil demonstrate a half-life of <9 days24 following spraying under laboratory 

conditions. Human toxicity reports suggest genotoxic and carcinogenic properties when assessed 

against in vitro human lymphoma cells25 and animal studies26 but the EFSA peer reviewed study27 

highlights inadequacies with the data obtained for these studies including the use of 2-60 times 

the  residue concentrations found in the field28. Nevertheless; the EU commission has decided not 

to renew the approval for chlorothalonil as a phytopathogenic fungicide, eliminating a powerful 

tool for the treatment of resistant and non-resistant fungal species.  

 

Figure 2 - Most Commonly used Demethylation Inhibitors (DMIs) Fungicides 
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To overcome possible ecological and non-target toxicity, modern fungicides exhibit single-site 

inhibition. The demethylation inhibitors (DMIs) are a class of fungicides that disrupt the 

biosynthesis of ergosterol an essential component of the fungal cell membrane11. More 

specifically; the inhibition of lanosterol 14α-demethylase, a protein from the cytochrome P450 

family, is responsible for an essential step in the biosynthetic ergosterol pathway. The triazole 

family of compounds display high selectivity to this enzyme and represent the most commonly 

used fungicides in the UK and globally29. Tebuconazole, Epoxiconazole and Propiconazole29 

(Figure 2) represent the majority of the market share within the triazole class, helping to control 

fungal pathogens affecting cereals30, rice31, vegetable and fruits32. The relatively low cost and 

effectiveness against a broad spectrum of fungal species has led to extensive use of this fungicide 

class. Unfortunately, this extensive use has led to an increase of triazole resistant fungal strains33, 

limiting their ability to solely control plant diseases.  

In recent years, the most significant discoveries for the treatment of phytopathogenic fungicides 

has arisen from the inhibition of fungal respiration34,35. The inhibition of energy production and 

oxidative phosphorylation remains a key target for current and future fungicide design, due to the 

high energy demands required for successful spore germination and host penetration for 

phytopathogenic fungi32. The strobilurins represent the largest and most commonly used 

fungicides within this group (Figure 6). Much like the triazoles, the strobilurins offer broad 

spectrum control against fungal pathogens but provide a much higher efficacy36. The lower use 

rates, yield and grain quality improvements offer a number of advantages over the older triazole 

fungicides but their specificity to single target site has resulted in the establishment of highly 

resistant fungal strains37–39.  

The succinate dehydrogenase inhibitors, SDHIs, are another class of fungicides that inhibit the 

respiration of phytopathogenic fungi (Figure 5). The use of the SDHI inhibitors has grown in 

recent years following the emergence of resistant fungal strains to both triazole and strobilurin 

fungicides37–40. In a similar manner to the strobilurins, the SDHI inhibitors offer a single site of 

action posing a potential opportunity for the selection pressure for resistant fungal species. The 

eradication of fungal pathogens with multiple respiratory inhibitors introduces a novel treatment 

for economically important crops, increasing the efficacy of fungicide treatments and manages 

the threat of emerging resistance41. Scientists are therefore focussing efforts towards 

understanding the fungal respiratory chain and the mechanism by which both of these groups of 

respiratory fungicides exhibit their mode of action.  
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1.2  Fungal Respiration  
 

The metabolism and respiration of phytopathogenic fungi is well adapted to the survival within 

host systems, utilising abundant (in planta) or sometimes limiting nutrient resources (prior to host 

invasion)42. The use of a carbon source is vital to a fungal species survival within a host to initiate 

respiration and generate ATP for the cell42.  Preferentially glucose is used as a carbon source 

which is converted into two pyruvate, two NADH and two ATP molecules via the metabolic 

process known as glycolysis43. Under aerobic conditions pyruvate enters the mitochondrial matrix 

where it is decarboxylated into acetyl coenzyme A (acetyl-coA) by pyruvate dehydrogenase; 

linking the glycolytic pathway with the cyclical metabolic pathway of the Citric acid cycle (TCA). 

The citric acid cycle is a key metabolic pathway responsible for the generation of important 

precursors for amino acid synthesis, as well as NADH and succinate that feed into the electron 

transport chain. The full cycle consumes one molecule of acetyl-CoA generating three NADH, 

one FADH2, two CO2 and one GTP molecule, through a series of enzymatic reactions. The 

regulation of the citric acid cycle occurs through feedback inhibition37–40 through a build-up of 

intermediates such as NADH, inhibiting crucial enzymes for TCA turnover. 

The availability of glucose within the plant host and through fungal reserves, plays a significant 

role in the turnover of the TCA cycle for fungi44, resulting in less productive mycelium growth. 

In fact, the combination of all three elements of fungal metabolism are required for ATP 

demanding processes such as host penetration and spore germination42. One glucose molecule 

provides a theoretical maximum yield of 38 equivalents of ATP which involves glycolysis, TCA 

cycle and oxidative phosphorylation. However, observed yields are closer to 30 ATP equivalents 

due to inefficiencies with oxidative phosphorylation37–40. The significance of the electron 

transport within the yield of ATP is that without oxidative phosphorylation, glycolysis only 

provides 2 molecules of ATP per glucose molecule. The inhibition of the electron transport chain, 

through the design of fungicides targeted to the respiratory chain, could therefore be detrimental 

to fungal respiration. 
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Figure 3 - A Fungal-like Electron Transport Chain (ETC) with all its components. Crystal Structures of Complex I from Yarrowia lipolytica (PDB ID: 6GCS), Complex 

II from porcine heart (PDB ID: 1ZOY), Complex III from chicken (PDB ID: 3H1L), Complex IV from yeast (PDB ID: 6GIQ), ATP synthase from yeast (PDB ID: 

2WPD), AOX from Trypanosoma brucei brucei (PDB ID: 3W54) and NDI from yeast (PDB code: 4G9K). AOX refers to the alternative oxidase, NDI refers to the 

external NADH dehydrogenase. UQ refers to the ubiquinone pool. Each complex and enzymatic function is described in Section 1.3. 
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1.3  Oxidative Phosphorylation via the Electron Transport Chain  
 

The mitochondria are the main site for oxidative phosphorylation for fungi and most eukaryotic 

life forms and contains the electron transport chain (ETC). The majority of ATP production within 

the fungal cell occurs through the ETC. The classical ETC consists of 5 multi-enzyme complexes, 

isoprenoid charge carriers (Ubiquinone and Ubiquinol) (Figure 4) and cytochrome c. Electrons 

enter the ETC via NADH from glycolysis and the TCA cycle, passing through Complex 1 

whereby its transferred to quinone. Quinone is also reduced by Complex II, passing the electrons 

to Complex III which transfers its electrons to cytochrome c. Cytochrome c passes electrons to 

Complex IV which catalyses the reduction of O2 to H2O. This process effectively shuttles protons 

across the inner mitochondrial membrane from the matrix into the intermembrane space (IMS), 

thus creating a proton electrochemical potential gradient. This potential is used to drive the ATP 

synthase in the forward direction phosphorylating ADP to ATP, generating energy for the fungal 

cell. An overview of this process is summarised in Figure 3.  

 

 Complex I 

 

NADH dehydrogenase or Complex I is the first respiratory complex in the ETC, catalysing the 

oxidation of NADH produced by the TCA cycle and sparingly from β-oxidation of fatty acids. 

The redox reaction proceeds following the binding of NADH to the matrix side of the protein, at 

which point it is oxidised by the flavin mononucleotide (FMN) to NAD+. A series of FeS clusters 

transfer electrons from NADH to reduce a bound ubiquinone to ubiquinol. The electron transfer 

reaction is coupled with the translocation of four protons45–47 across the inner mitochondrial 

membrane and contributing to the chemiosmotic potential.  

 

Figure 4 - Structure of the Isoprenoid charge carriers, Quinone and Quinol, which are concentrated 

within the inner mitochondrial membrane. 
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NADH + 4H+
Matrix + Q  →  NAD++ QH2 + 4H+

IMS 

 

Complex I is the largest of the mitochondrial membrane proteins at around 1MDa with an L- 

shaped structure, consisting of membrane bound domain and a mitochondrial matrix dendritic 

hydrophilic arm48. The total number of subunits for the protein complex is species dependent but 

all share a core of 14 central subunits. Assessment of the Complex I found in fungi48–50 have 

shown a total number of subunits between 35 and 37. High resolution X-Ray crystal structures51,52 

of Complex I have also revealed previously debated positions of the quinone reduction site which 

may allow for the design of novel inhibitors. 

There are very few reported inhibitors of Complex I for the control of phytopathogenic fungi 

mostly due to the poorly understood mechanism of inhibition. Pyrimidine fungicides have 

recently53 been designated by the fungicide resistance action committee (FRAC) to inhibit 

complex I, with pyrazole-MET1 like tolfenpyrad54 remaining the only commercialised fungicide 

with this mode of action. Ongoing research55–57 is focussed on adaptation of diflumetorim 

derivatives to treat a wider range of fungal rusts diseases. Since there are very few research groups 

investigating Complex I inhibitors for their potential as fungicides, the protein complex offers a 

unique mode of action to introduce a new class of fungicides. 

 

 Succinate dehydrogenase (Complex II) 

 

Succinate dehydrogenase or Complex II is unique, in that it is both present in the citric acid cycle 

and the ETC, catalysing the oxidation of succinate to fumarate. After oxidation, a transfer of 

electrons to bound ubiquinone occurs and in contrast to other respiratory complexes does not 

translocate protons across the membrane.  X ray crystallographic examination58,59 along with EPR 

studies60,61  demonstrate the stepwise removal of protons and electrons from the quinone molecule 

and successfully identify the precise quinone binding sites. A detailed mechanism for the 

mechanism of catalysis has been reviewed by Iverson et al62 but can be summarised as follows:  

 

Succinate + Q  → Fumarate + QH
2
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The structure of succinate dehydrogenases display high conservation across all species for two of 

the four subunits which are encoded by nuclear DNA63,64. Two of the complex II subunits extend 

into the matrix side of the mitochondrial membrane (SdhA and SdhB) and contain the main 

catalytic groups of the flavin (FAD) and three FeS clusters (2Fe-2S, 3Fe-4S and 4Fe4S). The two 

other subunits (SdhC and SdhD) span the membrane and contain the sites for quinone binding 

and b-type haem. Succinate binds to the SdhA subunit and transfers protons and electrons to 

reduce FAD to FADH2. The electrons transfer between the FeS centres in subunit SdhB and onto 

the b-type haem, reducing a bound ubiquinone molecule.  

The SDHI family of fungicides target Complex II by binding to the ubiquinone site within the 

trans membranous domain of the complex, confirmed by X-ray crystallographic studies65–67. The 

majority of SDHI inhibitors share common chemical structures that allow for a high affinity to 

the ubiquinone binding site. The central amide moiety within the chemical structures shown in 

Figure 5, is essential for hydrogen bonding to Y130, W224 and indirectly S83 (S. tritici 

numbering) within the quinone binding site of Complex II. These residues are highly conserved 

across species since they are directly involved in the binding of ubiquinone61,68,69. The head group 

(attached to the carbonyl of the amide bond), by which the compounds family classification is 

derived, binds deeper into the polar cleft of the binding site than the substrate ubiquinone. The 

rest of the compound lies within the hydrophobic region of the cavity representing a large 

diversity in chemical structures.  

Figure 5 - SDHI Fungicides used to Treat a Spectrum of Fungal Species 
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 Cytochrome bc1 complex (Complex III) 

 

The cytochrome bc1 complex catalyses the oxidation of quinol transferring electrons onto 

cytochrome c concomitantly translocating four protons across the mitochondrial membrane. Its 

structural similarity across all species including prokaryotic systems allow for direct comparisons 

between structures. The cytochrome bc1 complex contains a catalytic core consisting of three 

transmembrane subunits, the central unit of these is the membrane spanning cytochrome b 

homodimer subunit. The cytochrome b subunit contains two b-type hemes (bL and bH) adjacent to 

the two quinol binding sites, one site being responsible for the oxidation of quinol (Qo) and the 

other for the reduction of quinone or semiquinone to quinol, known as the Qi site. Each 

cytochrome b subunit is attached to a subunit either containing the cofactor cytochrome c or the 

Rieske-type iron sulfur cluster (2Fe-2S). These two subunits extend into the intermembrane space 

(IMS) which is the location under normal physiological conditions of the water-soluble 

cytochrome c.     

 

QH
2
  +  2 cytochrome c (Fe3+)  +  2H+

Matrix   →  Q  +  2 cytochrome c (Fe2+)  +  4H+
IMS 

 

The above equation summarises the reaction catalysed by Complex III but a detailed mechanism, 

known as the protonmotive Q cycle, for the oxidation of quinol was established by Mitchell70,71 

and later updated by others72–74. The updated Q cycle determines the oxidation of quinol at the Qo 

site followed by the transfer of two electrons along two separate pathways within the protein 

complex. The first route follows along through the subunit containing the Rieske-type iron sulfur 

cluster (2Fe-2S) and through the subunit containing the c-type heme towards the soluble 

cytochrome c molecule. The second route sees the electron pass through the cytochrome b subunit 

and hemes at bL and bH and through to a semiquinone at the Qi binding site. The interaction of 

common inhibitors associated with the Qi site have provided confirmation75,76 of the Q cycle 

model along with EPR studies77,78 and oxidant induced reduction79 of the b-cytochromes.  

Fungicides that target respiration via the cytochrome bc1 complex can be categorised into two 

groups as classified by FRAC53: the quinone outside inhibitors (QoIs) and quinone inside 

inhibitors (QiIs). The QoI fungicide class is well established and represents the strobilurin 

compounds along with more recent discoveries that share the same Qo ubiquinol binding site80,81. 

The newly discovered fungicides which inhibit the Qi site offer an alternative binding site within 

Complex III and therefore treat QoI resistant fungal species. A selection of fungicides from each 

group are shown in Figure 6. 
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Figure 6 - A selection of Fungicides and Inhibitors of the fungal cytochrome bc1 complex (Complex 

III). Strobilurins Azoxystrobin and Trifloxystrobin represent the Qo fungicides with a common methoxy 

acrylate like binding motif. Famoxadone and Fenamidone provide a representation of recent Qo 

Fungicide discoveries. Amectotradin is the sole commercial fungicide contributing to the QoSI class. 

Stigmatellin and Ascochlorin provide examples of inhibitors with a ‘distal’ binding mode. Qi Fungicides 

include Cyazofamid, Amisulbrom and Fenpicoxamid. Antimycin A is a well-established Qi site inhibitor. 
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Binding of the QoI inhibitors to the Qo site within the cytochrome b subunit occurs in a unique 

position in the bifurcated binding cavity. Strobilurins bind in what is known as the ‘proximal’ 

domain which does not affect the redox properties or mobility of Rieske iron sulfur cluster82,83. 

Alternatively, benzoquinone-like inhibitors such as Ascochlorin84, Stigmatellin37–40 and the 

fungicide Amectotradin82 bind at the ‘distal’ position, directly interacting with the Rieske iron 

and stabilise this subunit to the protein.  

The toxophore for the strobilurins is the methoxy acrylate group or chemically related derivatives. 

Binding of the methoxy acrylate group occurs adjacent to the fully conserved PEWY sequence 

(P270, E271, W272 and Y273) loop in the cytochrome b subunit (Figure 7). The carbonyl group 

on the toxophore is essential for inhibitor binding with hydrogen bonding to the amide bond of 

E271 as shown in solved bovine crystal structures. Within the adjacent pocket formed in between 

the rings of F128 and Y132 sits the ether group of the methoxy acrylate group. Whilst π-stacking 

interactions stabilise the intermediate ring which is present in the Azoxystrobin structure. The 

binding of azoxystrobin within this position allows for continued motility of the Rieske-iron 

containing subunit.  

 

 

The development of three resistant strains of fungal species considerably hampers the binding of 

the QoIs to the cytochrome b subunit and quinol binding site. Field isolates containing the amino 

Figure 7 – Azoxystrobin binding position within the Qo binding site of the cytochrome bc1 complex 

(PDB code: 3L71), highlighting its proximity to the conserved PEWY amino acid sequence. The pocket 

formed by residues F128 and Y132 houses the methoxy acrylate toxophore common to QoIs.  
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acid substitutions G143A39,85,86, F129L87,88 and G173R89,90 confer complete or partial resistance, 

respectively. As shown in Figure 8, the most prevalent G143A mutation sterically hinders the 

binding of the methoxy acrylate toxophore within the Qo binding site. Fungal species that contain 

any combination of these amino acid mutations is broad, with wide spread field identifications of 

the G143A mutation in S. tritici91,92, Venturia inaequalis86, Magnaporthe oryzae93 and Botrytis 

cinerea39. The fitness cost of the G143A mutation is minor with only 87% remaining of the 

original activity of cytochrome bc1 complex allowing for adoption to a wide range of fungal 

pathogens94.  

 

        

The reduced sensitivity of fungicides binding to the ‘proximal’ position within the Qo binding site 

severely limits fungal pathogen treatment. Fungicides binding in the ‘distal’ position of the Qo 

binding site such as the natural fungicides stigmatellin, ascochlorin and amectotradin are 

unaffected by the G143A mutation82,95–97. Stigmatellin and amectotradin are therefore sometimes 

referred to as QoSI inhibitors due to their differential binding at the Qo site of the cytochrome bc1 

complex. Famoxadone and Fenamidone fall somewhere in between the ‘distal’ and ‘proximal’ 

position with their point of contact within the fully conserved PEWY sequence of residues 

between the Y132 and P270 amino acid residue (Figure 9). These two relatively new QoIs display 

reduced sensitivity to the G143A resistant fungal species98 and therefore offer little in the way of 

treating resistant fungal diseases. 

 

Figure 8 - Azoxystrobin bound within the Qo binding site of the cytochrome bc1 complex (PDB code 

3L71) with the wildtype complex and G143 residue highlighted (A) and the Qo resistant G143A strain 

with the alanine mutation highlighted (B).  
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Figure 9 – The different binding modes of fungicide classes that inhibit the Qo site of the cytochrome bc1 

complex (PDB IDs:3H1L,3L71, 1PPJ and 3L74). The position of each fungicide within the Qo site is displayed in 

relation to the Rieske Iron Sulfur Protein (ISP) and heme bL. The binding of Azoxystrobin is described to be 

within a ‘distal’ position (A), stigmatellin and ascochlorin bind in a ‘proximal’ position (B) and famoxadone binds 

between these two positions (C). The combination of the binding modes (D) shows overlap for each fungicide 

binding mode. The residues that make up the fully conserved PEWY sequence are displayed.  
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Binding of the QiIs occurs at the Qi site in close proximity to the bH heme and preventing the 

reduction of quinone or semiquinone at this binding site. Only three commercial fungicides make 

up this new group of Complex III inhibitors, namely cyazofamid, amisulbrom and the recently 

registered, fenpicoxamid. Since a common toxophore between these fungicides does not exist, all 

of the QiIs bind with unique binding positions within the Qi bind site. Cyazofamid and 

amisulbrom have very little information regarding exact binding positions within the Qi site. 

Nevertheless; conclusions have been made by Li et al99, with only two hydrogen binding 

possibilities possible between D229 and the nitrile or imidazole ring (sulfoxide in amisulbrom). 

Fenpicoxamid, in a similar manner to that of cyazofamid and amisulbrom has only had its binding 

mode elucidated by docking studies. Young et al35 propose a model by which UK-2A (the major 

metabolite of fenpicoxamid) binds to D229 via pyridyl atom adjacent to the dilactone ring via a 

salt bridge. The binding mode of Antimycin A (Classical Qi Inhibitor) shows a similarity with 

that of UK-2A with a deeper binding position that that of cyazofamid or amisulbrom (Figure 10). 

Since the introduction of the QiIs there only remains one amino acid substitution that may pose a 

threat to inhibitor binding, the G37V mutation. This mutation has been shown to impart resistance 

to Antimycin A but to date has only been isolated under laboratory conditions for Saccharomyces 

cerevisae100,101. It therefore remains that QiI or QoSI fungicide classes show no resistance in field 

but since they offer specific mechanisms of action, resistance may follow with overuse. 

 

Figure 10 – The binding mode of Antimycin A within the Qi active site for the cytochrome bc1 complex 

(PDB ID: 1PPJ) with the H-bonding interaction between D229 and the amide of Antimycin A 

highlighted. The G37V mutation conferring resistance to Qi fungicides is also displayed and the 

proximity of Antimycin A to the catalytically essential heme bL.  
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 Complex IV 

 

Complex IV or cytochrome c oxidase represents the terminal oxidase in the ETC, catalysing the 

oxidation of cytochrome c whilst translocating four protons across the membrane. This process is 

coupled with the reduction of O2 to H2O, completing the cellular respiration process. The enzyme 

contains eleven subunits in S. cerevisiae102 with four catalytic subunits containing two copper 

redox active centres, CuA and CuB, and two hemes, heme a and heme a3.  

 

4 cytochrome c (Fe2+)  +  8 H+
Matrix  +  O2   →  4 cytochrome c (Fe3+)  +  2H2O  +  4 H+

IMS 

 

The solution of the high-resolution X-ray structure of Complex IV has allowed for the elucidation 

of the detailed mechanism103 by which the above reaction is catalysed. The initiation of the 

reaction mechanism occurs through the binding of the cytochrome c near to the CuA redox active 

site and transfers electrons to the CuA and on to heme a. The electrons are then transferred along 

to the O2 reduction site formed between heme a3 and CuB at which point O2 is rapidly reduced 

with homolytic cleavage. The heme a3 is oxidised to a Fe4+=O complex with one oxygen atom 

receiving one electron from CuB and a second oxygen atom receiving an electron and proton from 

an adjacent tyrosyl radical resulting in the generation of hydroxide ion. A further electron received 

from another cytochrome c molecule is passed through to the CuB – heme a3 centre converting the 

hydroxide ion into a water molecule. Another electron is passed down through from one more 

cytochrome c molecule reducing the aforementioned Fe4+=O complex into a hydroxide and thus 

completing the cycle. Currently there are no reported fungicides that inhibit via Complex IV; but 

typical inhibitors include cyanide and nitric oxide, with a general mode of action by binding to 

the site of cytochrome c oxidation or to the copper active sites, respectively. 

 

 ATP Synthase 

 

The ATP Synthase is an integral mitochondrial enzyme complex responsible for utilising the 

chemiosmotic electrochemical potential, generated by complex I, III and IV, and producing 

energy for the cell in the form of ATP. The overall reaction can be summarised as below: 

 

ADP  +  Pi  +   H+
IMS   →  ATP  +   H+

Matrix  +   H2O 
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The structure of the ATP synthase is consistent between all species consisting of two main 

functional domains: the membrane integrated hydrophobic subunit, Fo, and the hydrophilic region 

located within the IMS, F1. The F1 domain is responsible for the catalytic function of the enzyme 

where ADP and Pi form ATP and consists of five separate subunits, α, β, γ, δ, ε in a 3:3:1:1:1 

ratio, respectively. The three α subunits and three β subunits form a spherical structure with the γ 

subunit acting as central stalk. The central stalk formed by the γ subunit link the F1 domain with 

the membrane spanning Fo domain with the help of the ε subunit. These subunits make up the 

rotation rotor mechanism for the utilisation of the chemiosmotic potential. The Fo domain is 

formed from three separate subunits, a, b, c, d and F6, with a cylinder consisting of ten c subunits 

connected to one a and two b subunits. 

The detailed mechanism by which the chemiosmotic potential is used to create ATP has been 

extensively studied in a number of reviews104–106. Briefly, the high concentration of protons 

formed within the IMS flow across the membrane via Fo domain allowing the cylinder of 

alternating c subunits to rotate. The tight attachment of the cylinder with the γ- stalk of the F1 

domain, facilitates its rotation, altering the conformational structure of the nucleotide binding 

sites on the β subunits, leading to the release of tightly bound ATP. 

There remains very little information on fungicides that target the ATP synthase since its 

inhibition poses considerable toxicity to non-target organisms. Nevertheless; the mode of action 

of previously unknown organotin complexes (fentin acetate, hydroxide and chloride) has been 

reclassified by FRAC53. The binding mechanism of the organotin fungicides has yet to be 

identified and therefore remains enigmatic. Ultimately, the banning of fentin derivatives for 

agricultural use by the European Union due to their toxicity to mammals107, precludes them from 

future fungicide design and treatments. 

 

1.4  Alternative Oxidase (AOX) and its Function between Species 
 

The alternative oxidase (AOX) offers an alternative route to the classical ETC for respiration. The 

AOX is located on the matrix side of the inner mitochondrial membrane and catalyses the 

oxidation of quinol to quinone whilst reducing O2 to H2O108
. The bypassing of electron transfer 

by AOX occurs before the cytochrome bc1 complex and Complex IV; but importantly, the AOX’s 

activity does not involve the translocation of protons across the gradient. Respiration via the AOX 

is therefore less energy efficient since its does not contribute to the chemiosmotic  electrochemical 

potential109.  
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The AOX is found ubiquitously in the plant kingdom110 and also in a variety of fungi111–114, 

protists115–117 and some animals118. Its absence from humans offers a unique fungicide target 

reducing potential non-target toxic side effects. The physiological role of the AOX differs 

depending on the species but in general its role as oxygen scavenger and reducing reactive oxygen 

species can be attributed to all AOXs109.  

The role of the AOX in both thermogenic and non-thermogenic plants is well described, where it 

responds to a range of stress responses and environmental conditions. Within certain thermogenic 

plant species such as Sauromatum guttatum119 and Arum maculatum120, a high concentration and 

activity of AOX was found within the spadices or flowering organs during periods of raised 

temperature. The rise of temperature is utilised by the plant to volatise primary amines for the 

attraction of insects or other pollinators120,121. The rise in temperature occurs following the switch 

from the traditional cytochrome pathway towards the AOX. Since the AOX is non-protonmotive 

and is therefore not coupled to the generation of ATP, the excess energy is released as heat within 

the thermogenic tissue121. In non-thermogenic plants the role of the AOX can be diverse mediating 

changes in temperature and light intensity122–124, drought125–127, oxidative stress128–131 and to plant 

hormones132–134. Ultimately, the AOX serves a role to regulate energy metabolism following times 

of biotic and abiotic stress conditions135. The turnover of the AOX allows the generation of Krebs 

cycle intermediates during times of limiting nutrient availability but at the sacrifice of reduced 

ATP generation. Studies carried out on Arabidopsis thaliana also suggest AOX knockout mutants 

hinder growth and exhibit an increase in reactive oxygen species (ROS) 136,137. It’s clear in 

thermogenic plants the AOX serves a role in both protection against ROS and optimising 

respiratory metabolism under stress conditions.  

More recently the AOX has been shown to be present in the animal kingdom; with the mollusc 

Artica islandica, lugworm Arenicola marina, arthropod millipede Euryurus leachii and the 

chordate sea squirt Ciona intestinalis expressing the AOX118. The role of the AOX within these 

animal species is thought to allow the species to survive conditions in which the normal 

cytochrome pathway is inhibited. For example, in the lugworm A. marina the AOX may act as 

alternative route for respiration when oxygen is limiting and the species utilises hydrogen sulfide 

as respiratory substrate138. The mollusc Arctica islandica often lives at the bottom of the sea floor 

with a mixture of high and low oxygen concentrations. The AOX within this system acts to 

regulate the generation of high amounts of ROS when excess levels of oxygen are present, 

yielding an oxyregulating species139. In a similar manner to that of the lugworm A. marina, the 

role of the AOX in C. intestinalis provides an opportunity to continue respiration following the 

presence of high concentrations of sulfide. In fact, C. intestinalis contains an enzyme required to 

derive energy from sulfide by oxidising it to thiosulfate via the respiratory chain140. This route is 
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unavailable at high sulfide concentrations and therefore the AOX provides the route for electrons 

to be passed onto O2 and hence continue respiration141,142.  

In some parasites (T. brucei117, Cryptosporidium parvum143 and Acanthamoeba castelanii116,144) 

AOX performs an integral role in respiration as it acts as the terminal oxidase and therefore 

offering a potential drug target145,146. The bloodstream form of TAO utilises the AOX as its only 

terminal oxidase within the mitochondrial electron transport chain. Bloodstream forms of T. 

brucei rely on the blood glucose as their sole source of energy and therefore cannot utilise the 

majority of their mitochondrial activity. The glucose is metabolised to pyruvate via glycolysis 

allowing for the generation of some ATP and the operation of the Krebs cycle. The NADH/NAD+ 

ratio is also mediated through the reoxidation of glycolysis through reducing equivalents by 

glycerol kinase.  Research by the Clayton lab115 has shown that the AOX is vital in these 

circumstances and offers double the ATP generation in comparison to a AOX inhibited energy 

metabolism.  

The physiological role of the AOX within fungi follows that of plants with an emphasis on the 

AOX as a rescue system under stress conditions, but dispensable for normal energy 

metabolism114,147,148. AOX is often induced following the use of typical fungicides which inhibit 

the cytochrome dependent respiratory complexes110,115,149,150. The induction of the AOX may play 

role in pathogenesis for phytopathogenic fungi whilst nutrients are limiting. For example, the 

fungus responsible for witches’ broom disease in cacao, Moniliophthora perniciosa, offers a role 

for the AOX in the switch between the biotrophic and necrotrophic growth stages within the 

plant151. It also doubles up as a protective mechanism to the negate the plant’s host defence 

systems following the release of high concentrations of nitric oxide151. Further in vitro studies on 

Ustilago maydis114, Fusarium graminearum152, Sclerotinia sclerotiorum153  and V. Inaequalis154 

showed an increased upregulation of the fungal AOX following the use of the common 

cytochrome bc1 complex inhibitor, azoxystrobin. The first in planta study for the role of the fungal 

AOX by Köller et al111 provides evidence for the upregulation of the AOX following treatment 

with azoxystrobin. The role for the fungal AOX still requires research but existing studies have 

demonstrated similarities to AOXs found in other species.  

 

1.5  AOX Regulation 
 

The regulation of the AOX through allosteric ligands has long been accounted for within plant 

species108,155 and more recently through fungi and amoeba156,157. A post-translational 

mechanism108 by which the AOX is regulated supports its role as a rescue mechanism and 

provides a biological switch by which its activity can be regulated.  
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Regulation of the plant AOX occurs through the α-keto acid, pyruvate, which binds to a terminal 

cysteine residue to form a thiohemiacetal functional group155. The site of the cysteine-pyruvate 

interaction is known as the Cys1 and is present on the N-terminus of the plant AOX. Furthermore, 

the presence of another cysteine, Cys2, was thought to confirm sensitivity to pyruvate due to its 

high conservation throughout the plant kingdom. Plant AOXs with and without these cysteine 

residues in their structure demonstrated differential sensitivity to pyruvate158, disproving the 

original hypothesis. Indeed, a further motif confirming the activation of plants by pyruvate 

required the presence of an ENV/QDC amino acid motif. Plant species containing the ENV motif 

are said to be sensitive to pyruvate whereas species with the QDC motif are insensitive159. 

Stimulation by allosteric compounds occurs through a different mechanism in fungi160,161 and the 

protist A. castelanii157,162. Since fungi contain neither of the regulatory cysteines, stimulation by 

pyruvate does not occur163. The fungal AOXs, Pichia stipitis and Neurospora crassa164 instead 

show a regulation through the addition of ADP, AMP and GMP nucleotides with GMP being 

essential for AOX activity. The binding site for nucleotide stimulation is suggested to be 

approximately 40 amino acids long creating a loop for activation161.  This activation by GMP is 

also found in A. castelanii the addition of which resulting in over 2.5 times the baseline activity 

when stimulated with GMP (1.5 mM).  The exact binding site for purine nucleotides is yet to be 

determined as by which the activity is increased within fungal or amoeba species.  

 

1.6  AOX Structure and its Catalytic Mechanism 
 

The recent elucidation of the AOX crystal structure from T. brucei (TAO) with a resolution of 2.3 

Å,165 confirms previous models130,166 suggesting the AOX is a monotopic diiron carboxylate 

protein. The TAO crystal structure indicates that a dimeric structure is found with each monomer 

consisting of six long and four short α helices. The diiron active site is contained within a four-

helix bundle comprising of helices α2, α3, α5 and α6. On one side of the protein at the membrane 

binding interface, a high conservation of hydrophobic residues extends from α1 and α4 helices 

allowing for monotopic interaction with the phospholipid membrane. The crystal structure165 

displays a bound inhibitor, colletochlorin B, within the quinol binding site between α1 and α4 

helices (Figure 11).  
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The diiron core active site is ligated by four glutamate residues (E123, E162, E213 and E266) and 

in close proximity to two histidine residues (H165 and H269), all fully conserved throughout all 

AOX species. A single hydroxo bridge between the two iron atoms completes the structure of the 

active site and the residues that make up the primary ligation sphere (Figure 12). Unusually the 

AOX displays histidine residues in a position too far away to coordinate with the diiron centre in 

contrast to other diiron proteins such as MMO167, RNR168 and rubrerythrin169. The presence of an 

amino acid chain (W65, N161, D265 and W247) similar to the proton coupled electron transport 

network (PCET) found in RNR170 is proposed to fulfil the same role in the AOX. The amino acid 

chain runs from the diiron core towards the matrix side of the protein providing a route for proton 

and electron transfer from molecular O2. 

 

 

 

 

Figure 11 - Crystal Structure for TAO (PDB code: 3W54) with colletochlorin B bound within the 

hydrophobic cavity. Helices labelled (α1-6) with the corresponding monomer labelled (α1*-6*).  
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Along with the crystal structure determined with colletochlorin B (PDB code:3W54) two more 

crystal structures with an ascofuranone derivative (PDB code: 3VVA) and no inhibitor (PDB 

code: 3VV9) were crystallised at 2.59 Å and 2.85 Å, respectively165. The generation of a range of 

crystal structures provides a detailed view of the structural conformation for the hydrophobic 

cavity and the binding site for quinol. The proposed quinol binding site is lined with a number of 

highly conserved residues with the residues R96, R118 and T219 thought to be involved in quinol 

binding171. A bottle neck formed by two leucine residues (L122 and L212) within the quinol 

binding site may help to direct the substrate into the correct position172. However, the diversity 

between amino acid residues within the hydrophobic cavity of AOX species may question the 

importance of those particular residues. The structural diversity within the hydrophobic cavity 

may determine differences in both inhibitor sensitivity and enzyme kinetics171.  

The mechanism by which quinol oxidation occurs has been proposed by Young et al173,174, using 

similarities to that of other diiron proteins RNR and MMO (Figure 13).  The proposed mechanism 

proceeds with binding of oxygen to form a superoxo species with the diiron core (Fe-O-O*) 

following the transfer of one electron from one iron atom to O2 resulting in a divalent Fe2+/Fe3+ 

system. This superoxo species is then reduced to the hydroperoxo species (FE-O-OH) following 

hydrogen extraction of an adjacent tyrosine (Y220) to form a tyrosine radical. The iron core then 

undergoes a rearrangement to form the divalent peroxo species with a loss of water and through 

to a diamond core which has been predicted in MMO and RNR di-iron proteins. The diamond 

Figure 12 - Primary ligation sphere displaying the fully conserved residues bridged by a hydroxo 

group from the crystal structure of TAO (3W54) 
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core is oxidised with a proton and electron donated from the W247 amino acid which is the final 

residue in the PCET network. The final step sees the step wise transfer of two electrons from 

quinol returning the di-iron core to its diferrous state. The remaining electrons and protons from 

the oxidation of quinol, quench the W247 and Y220 radicals, completing the reaction mechanism 

with loss of water.  

 

 

1.7  Resistance Mechanisms in Fungi and the role of the AOX 
 

There are an increasing amount of highly resistant fungal species affecting our most economically 

important crops and considerably reducing the efficacy of fungicide classes175. Studies33,176 with 

a number of common fungicides have implicated a number of mechanisms by which resistance 

occurs in phytopathogenic fungicides. Understanding the mechanisms by which resistance occurs 

helps to focus future fungicide design and disease management protocols. 

Figure 13 - Catalytic AOX Mechanism proposed by Young et al172,173 
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 Alterations in the Fungicide Target Site 

 

Mutations in the target site is the primary mechanism which has been implicated in the resistance 

of fungal species to QoIs, SDHIs and azoles. QoI fungicides lose sensitivity in particular to 

mutations within the cytochrome b subunit which prevent fungicide binding to their target site. 

As mentioned previously, the most notable mutations within this category include the G143A, 

F129L and G137R which are present in a number of fungal strains38,39,41,86–90,93,177. The increased 

usage of the SDHI fungicides has led to the development of mutation within the QP site of the 

SdhB subunit. The major mutation conferring resistance is H227Y which has now been found in 

a number of field isolates but has yet to be fully established. The triazole family of fungicides 

confers resistance33 within the CYP51 enzyme with the greatest number of mutations occurring 

within S. tritici fungal strains40. Contrary to resistant strains within other target sites, the CYP51 

enzyme has previously selected for double mutant strains, Y137F-S542T, however, new triazole 

compounds have eliminated its prevalence40. 

 

 Overexpression of Target Protein/Enzyme 

 

The overexpression of the fungicide target site has only been observed within the target for DMI 

fungicides with documented resistance from this mechanism for S. tritici40, V. inaequalis178 and 

Monilinia fructicola179 fungal species. Overexpression of the target protein results in a decreased 

sensitivity of the azole fungicides and therefore a higher threshold for lethal cellular 

concentrations. Changes in the promoter region of the CYP51 gene through an insertion of tandem 

repeats or transposable elements, facilitates the overexpression of the target enzyme.  

 

 Efflux Transporters 

 

The removal of lethal concentrations of fungicide within plant pathogens through the 

overexpression of efflux transporters has been reported for both QoIs180,181 and DMIs182–184.  For 

both fungicide classes the same family of efflux transporters are responsible for removing 

inhibitors out of the cell, namely the ABC transporters. In S. tritici181, the AtrB gene encodes for 

the ATB transporter involved in QoI sensitivity. Often resistant fungal strains also contain 

cytochrome b mutations complicating the specific contribution from each mechanism. Deising et 

al180 confirmed  efflux transporters as a resistance mechanism through the combination of efflux 

inhibitors and QoI fungicides, which restored resistant fungal strains sensitivity to fungicides. The 
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resistance to DMIs was seen in B. cinerea182 with the ABC transporter, encoded by BcatrD, 

overexpressed in azole insensitive fungal species. Mutations removing the BcatrD gene, showed 

an increased sensitivity to azole fungicides. 

 

 Alternative Respiration via the AOX 

 

Alternative respiration via the AOX has been implicated as a possible resistance mechanism with 

its induction following the use of single site-specific fungicides. The inhibition of the classical 

cytochrome pathway from QoIs results in respiration via the AOX albeit with lower energy 

efficiency185. Since mitochondrial DNA mutates at a faster rate than nuclear DNA186, the 

opportunity for the selection of mutations within the cytochrome b gene is high. Furthermore, the 

ability for fungal cells to survive with only Complex I and the AOX functioning demonstrates a 

viable mechanism for resistance149.  

The upregulation of the alternative oxidase following the application of QoI fungicides has been 

most commonly seen within S. tritici fungal strains185,187–189. Field isolates obtained by Miguez et 

al185 demonstrated the ability of resistant fungal strains to switch metabolic activity to an AOX 

pathway following QoI treatment. This protection via the AOX provides continued growth within 

the host; and therefore, opportunity for mutation selection. This study is supported by O2 assays 

for S. tritici mitochondria whereby continued oxygen consumption is apparent following the 

inhibition of the cytochrome pathway with Antimycin A and Azoxystrobin 187,188.  

Further in vitro studies on fungal pathogens such as S. sclerotiorum, Magnaporthe grisea, 

Microdochium nivale, U. maydis and M. perniciosa provide further evidence of the role of the 

AOX following QoI treatment. Consistently the use of Azoxystrobin induced AOX gene 

expression during mycelial growth of the fungus. This latent respiration is inhibited by the AOX 

specific inhibitor SHAM, confirming the alternative respiratory pathway. AOX gene deletion 

studies for Ustilago maydis114 showed full inhibition of fungal cells to cytochrome inhibitors for 

AOX deficient mutants. Whereas continued growth was seen in the presence of these respiratory 

inhibitors with the AOX gene included. Thomazella et al151 provides further evidence of 

alternative respiration via the AOX as a resistance mechanism. The use of Azoxystrobin 

prevented the switch from biotrophic to necrotrophic growth but a combination of an AOX 

specific inhibitor and Azoxystrobin halted growth in all instances and growth phases.  

Rebuttals to the influence of AOX in pathogenicity and resistance have highlighted two problems 

with alternative respiration as mechanism189,190. Firstly, the energy efficiency of the AOX 

respiratory pathway is 40% lower than that of the cytochrome pathway. Fungal pathogens require 
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large amounts of energy during spore germination and host penetration to successfully establish 

growth within a plant system.  Secondly, the plant’s natural antioxidant defence systems 

(flavones) interfere with the induction of the AOX gene and therefore AOX influence would not 

be seen in planta.  

Current research suggests that energy requirements are in fact much lower during latent periods 

of fungal pathogen growth114,189. Furthermore; the influence of the AOX as a rescue mechanism 

during periods of oxidative stress and fungal survival is a beneficial trade off to lower energy 

efficiency. Research suggesting that fungal survival via AOX respiration is valid has been shown 

in a number of studies114,149,185,187–189. In planta studies111,153,185 as well as a mechanism by which 

the fungal AOX is activated by purine nucleotides160,161, disproves the flavone hypothesis. 

Nevertheless; the establishment of the AOX as a primary resistance mechanism requires further 

evaluation to confirm previous studies.  

 

1.8  AOX Inhibitors  
 

The first inhibitors of the AOX were discovered by Umbach and Siedow191 and their use is still 

seen in research today as they are relatively inexpensive (Figure 14). Salicylic hydroxamic acid 

(SHAM) is still considered a specific inhibitor of AOX within the ETC despite inhibition of 

cellular tyrosinase, peroxidases192,193 and urease activity194. Historical studies on the inhibitory 

effect of SHAM on Arabidopsis thaliana and Arum maculatum suggest a high inhibitory effect 

with a magnitude of inhibition in the μM range. A more recent study shows the inhibitory effect 

of SHAM varies depending the species of AOX171 but still requires a high dose response. The 

gallates (Figure 14) offered improved inhibitory effect over SHAM for the Trypanosoma brucei 

brucei AOX (TAO) with the addition of the hydrophobic tail moiety195,196.   

 

Figure 14 - Classical AOX Inhibitors 
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The establishment of TAO as potential therapeutic drug target for the treatment of African 

trypanosomiasis146, led to the discovery of number of natural products conferring sensitivity to 

the AOX. Ascofuranone, a natural metabolite from Acremonium sclerotigenum197, has exhibited 

a selectivity to the AOX with 0.13 nM IC50 values for TAO198 and a much larger dose required 

for the cytochrome bc1 complex at 16 μM199. Ascofuranone has shown trypanosidal activity for 

both in vitro198,200,201 and in vivo202–204 studies offering a suitable candidate for lead modification. 

The addition of glycerol increased the activity of these compounds by inhibiting the glycerol 

production pathway. Two structurally similar natural derivatives, colletochlorin B and 

ascochlorin (Figure 15), also exhibit AOX activity but without selectivity to the alternative or 

cytochrome dependent pathway199.  

 

 

Identification of a pharmacophore for ascofuranone and its inhibition of TAO was carried out by 

Saimoto et al198. A series of inhibitors were synthesised demonstrating the importance of 

functional groups within the head group for potent trypanocidal inhibition. Recent work200,201 by 

the Ward group has further expanded on drug design by Shiba et al198 to elucidate more chemical 

structure requirement for TAO inhibition. The work by both groups contradicts each other with 

uncertainty surrounding important features of the aromatic head group of ascofuranone like 

derivatives. Unfortunately, sensitivity to AOX inhibitors is not universal across all species171 and 

therefore further work is required to elucidate structural features required for different species of 

AOX. 

 

Figure 15 - Natural products exhibiting AOX efficacy extracted from the fungus Acremonium 

sclerotigenum. 
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1.9  Concluding Remarks 
 

The regulation or banning of multi-target site fungicides, due to their inherent non-target organism 

toxicity3,9,16,17, has considerably reduced the number of effective fungicides available to treat 

phytopathogenic fungi. Typically, the design of new classes of fungicides has focussed on 

targeting the specific multi-enzyme complexes within the fungal ETC, effectively reducing ATP 

synthesis and respiration. This selective design has produced some of the most economically 

important classes of fungicides (QoI and SDHIs) whilst offering low non-target toxicity. However, 

a simple mutation within the fungicide binding site of these respiratory complexes can reduce the 

sensitivity or render the fungicide completely insensitive; thereby increasing the selection 

pressure for this mutation38,39,41,86–90,93,177. To my knowledge there are no fungicides described in 

the literature, or in use commercially, that target multiple sites of inhibition within the 

mitochondrial respiratory chain to reduce the opportunity for development of resistant fungal 

species. The treatment of fungicide resistant phytopathogenic fungi through the use of multiple 

target site fungicides has been encouraged by FRAC205 and provides farmers with an effective 

treatment for crops with low risk of resistance. 

Septoria tritici devastates wheat crops within Europe and the UK206,207 and leads to the extensive 

use of fungicide treatments208 leading to the development of resistant strains to important 

fungicide classes183,206,209–211. Alternative respiration via the AOX has been implicated185,187–189 as 

a causal mechanism for resistance development for S. tritici as highlighted in Section 1.7.4. 

Furthermore; studies have shown that the upregulation of the AOX occurs following the treatment 

with QoI fungicides185,187–189 with AOX inhibition providing potentiating effects when used in 

combination with azoxystrobin151–154.  

Strategies and research efforts towards inhibition of the AOX has focussed on the causative agent 

for African sleeping sickness, Trypanosoma brucei brucei (TAO). The design of these inhibitors 

has been led by the structure of TAO; and therefore, any alterations to improve inhibitory activity 

may not translate to the fungal AOX. The published literature on fungal AOXs in general is 

limited and there remains only a few studies185,187,188 on the AOX found in Septoria tritici 

(StAOX); however there are no published protocols on the isolation, purification and enzyme 

kinetics of StAOX. The design of inhibitors targeting either the AOX selectively; or targeting 

both AOX and cytochrome bc1 complex, has furthermore, yet to be explored. This presents an 

area for research within the disciplines of both biochemistry and organic chemistry to investigate 

the StAOX enzyme and novel inhibitors in order to assess the viability of a new class of 

phytopathogenic fungicides.   
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1.10  Research Objectives 
 

Overall aims of the project are: 

 

1. To provide a full characterisation of StAOX assessing its viability as a potential resistance 

mechanism and fungicide target. 

 

2. Full characterisation also offers the opportunity to assess a previously unstudied AOX 

protein and elucidate any interspecies similarities/differences with respect to its structure, 

enzymatic activity and regulation. 

 

3. To design and synthesise compounds that demonstrate either: AOX inhibitory activity; 

cytochrome bc1 complex inhibition; or a combination of both. 

 

4. The design of chemically and structurally distinct inhibitors as a basis for probing the 

shape and size of the quinol binding site for the AOX and the two quinol/quinone binding 

sites in the cytochrome bc1 complex. 

 

5. To investigate the binding and inhibition profiles of the natural products colletochlorin 

B, ascochlorin and ascofuranone from A. sclerotigenum; to better understand why 

ascofuranone shows AOX selectivity. 

 

6. To investigate the sensitivity of established and newly synthesised AOX inhibitors on 

StAOX and the cytochrome bc1 complex. 

 

7. Establish new assay techniques to differentiate between structurally similar compounds 

to direct synthetic routes for fungicide discovery. 

 

8. Identify unique amino acid residues or structural features that will guide selectivity 

between the cytochrome bc1 complex and StAOX. 
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Chapter 2: Materials and Methods 
 

 

2.1  pET Vector System 
 

A number of plasmids were created using Novagen’s pET-15b vector system to facilitate 

transformation and overexpression of alternative oxidases in E. coli, as host cells. The pET-15b 

vector encodes for a Twin-Strep tag, ampicillin resistance and induction by the addition of IPTG. 

The heme deficient E. coli strain FN102 was used as a host cell for transformation. 

 

2.2  E. coli Grow-Up 
 

 Competency 

 

The E. coli (FN102) cells were grown on L-agar plates containing ALA (50 μg/mL) and 

kanamycin (100 μg/mL). A single colony was selected from this plate and used to inoculate Luria 

Broth containing ALA (50 μg/mL) and kanamycin (100 μg/mL) and incubated on a benchtop 

orbital shaker at 37 °C, 180 rpm for 4 hours. Following incubation, the E. coli culture was 

centrifuged at 1000 x g at 4 °C for 5 min. The supernatant was discarded and the pelleted cells 

were resuspended in CaCl2 (5 mL, 0.1M) and left on ice for 20 min. The centrifugation was then 

repeated with the resulting pellet resuspended to a volume of 500 μl with glycerol (15%) and 

CaCl2 (0.075M). The competent cells were then aliquoted into 50 μl samples for transformation 

and stored at -80 °C. 

 

 Transformation 

 

Two 50 μl aliquots of competent FN102 cells were placed on ice and 3 μl (100 ng/μl) of the pET 

vector plasmid was added to one sample and 3 μl of water was added to the other, to act as a 

control. The samples were placed on ice for 15 min followed by a heat shock at 42 °C for 2 min. 

The cells were placed on ice for a further two minutes and then made up to 1 mL with luria broth. 

The cultures were grown for 1 hr on an orbital shaker at 180 rpm and 37 °C. After growing for 1 

hr, the cells were concentrated by centrifugation at 5000 x g for 1 min and plated onto sterile agar 

plates incubated with ampicillin (100 μg.mL-1), kanamycin (100 μg.mL-1) and ALA (50 μg.mL-



30 

 

 

1). The plates were left to grow overnight in a 37 °C incubator and the following day stored at 4 

°C. 

 E. coli Growth 

 

Table 1  

K-Broth Composition /L 

Substance Weight/ g 

Tryptone 10.0 

Yeast Extract 5.0 

Casamino Acids 5.0 

K2HPO4 10.4 

KH2PO4 3.0 

Sodium Citrate 0.74 

Ammonium Sulfate 2.5 

Note. K-broth prepared in advance of experiments with milli-Q water and was sterilised via autoclave. 

 

Table 2  

1000x Metal Mix Composition / 10 mL 

Substance Weight/ g 

MgSO4.7H2O 0.50 

FeSO4.7H2O 0.25 

FeCl3 0.25 

Note. Metal mix was prepared in milli-Q water and filter sterilised using Cole-Parmer 0.2 μm pore air filters.  

 

From a fresh transformation plate, a single colony was used to inoculate sterile L-broth (10 mL) 

supplemented with Ampicillin (100 μg.mL-1), Kanamycin (100 μg.mL-1) and ALA (50 μg.mL-1) 

and left to grow overnight at 180 rpm and 37 °C in an orbital shaker. Following overnight growth, 

two 1 mL aliquots were taken from the L-broth culture and used to inoculate two starter culture 

flasks containing K-Broth (Table 1, 50 mL) supplemented with Ampicillin (100 μg.mL-1), 

Kanamycin (100 μg.mL-1), ALA (50 μg.mL-1), Metal Mix (50 μl, Table 2) and Glucose (0.2% 

w/v). The starter cultures were left to grow at 225 rpm and 37 °C until the OD600 was 

approximately 0.6. The cells were then isolated by centrifugation for 10 minutes at 3000 x g, after 
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which the media was exchanged with K-Broth (50 mL) supplemented with Ampicillin (100 

μg.mL-1), Kanamycin (100 μg.mL-1), ALA (50 μg.mL-1), Metal Mix (50 μl) and Glucose (0.2% 

w/v) in order to remove the ALA from the sample. The media exchange was repeated after further 

centrifugation with a final resuspension of both samples into K-broth (5 mL) yielding a 

concentrated inoculum. This concentrated inoculum was then used to inoculate four Erlenmeyer 

flasks containing K-Broth (1L) supplemented with Carbenicilin (100 μg.mL-1), Kanamycin (100 

μg.mL-1), Metal Mix (50 μl) and Glucose (0.2% w/v) to 0.01 OD600. The cultures were incubated 

at 30 °C and 180 rpm until the OD600 measured 0.6, at which point induction was carried out with 

IPTG (25 μM) added to each flask. The cultures were left to incubate overnight and were 

harvested the following morning. 

 

 Harvest 

 

After approximately 13 hours of growth, cells were harvested by centrifugation at 7000 x g for 

15 minutes and the supernatant was discarded. The pellets were combined (wet weight approx. 

20 g) and resuspended in buffer at 4°C (MOPS 65 mM, pH 7.5 at 23 °C, protease inhibitor tablet 

(Roche) and MgSO4 (1 mM)). The cells were disrupted using a constant system by passing it 

through two times at 30 kPa and unbroken cells were removed by centrifugation (15 minutes at 

7000 x g).  The supernatant was isolated and ultra-centrifugation (210,000 x g for 1 hr) was carried 

out to collect membrane fragments containing overexpressed alternative oxidase. The membrane 

pellets were resuspended in buffer (MOPS 65 mM, pH 7.5 at 23°C, 20 mL) and flash frozen in 

liquid nitrogen to be stored at -80 °C. 

 

2.3  Purification 
 

 Solubilisation and Elution 

 

A membrane sample (20 mL) was thawed on ice from a -80 °C stock and solubilised with 

solubilisation buffer (20 mL, MOPS (32 mM), glycerol (20%), MgSO4 (200 mM), Octyl-

glucoside (1.4%), pH 7.5 at 23 °C for 1 hour. The sample was then centrifuged at 210,000 x g for 

30 minutes to remove all un-solubilised protein. The Streptactin column was equilibrated with 

Wash Buffer (2x Column volumes) at 2 mL.min-1. The AKTA Prime was prepared by washing 

lines A and B with water, elution buffer and then washing buffer. The supernatant collected from 

centrifugation was filtered through a 0.2 μm filter before loading on to a Streptactin column at 2 
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mL.min-1. The column was then transferred to the AKTA prime plus FPLC and washed with 

Wash buffer at 0.5 mL.min-1 until the absorbance at 280 nm reached baseline. The column was 

then washed with elution buffer at 0.5 mL.min-1 and the fractions containing protein were 

collected and combined. The Streptactin column was regenerated with regeneration buffer (Table 

4) until the beads turn from colourless to red. The beads were then washed with AP buffer (pH 

10.5 at 23 °C) until the colour turned backed to an off white before further washing with AP buffer 

(pH 7.5 at 23 °C) and stored at 4°C. 

Table 3  

All Purpose (AP) Buffer Composition 

AP Buffer (1 L) Weight/ g 

MgSO4 (50 mM) 12.33 

NaCl (160 mM) 9.35 

MOPS (26 mM) 2.43 

Glycerol (20% v/v) 252 

Note. Buffer adjusted with using a dilute KOH solution up to pH 7.5 and stored at -4 °C. 

 

Wash Buffer: 

AP buffer + 0.042% DDM (Detergent is AOX dependent) 

 

Elution Buffer: 

AP Buffer + 0.042% DDM (Detergent is AOX dependent) + Desthiobiotin (2.5 mM) 

 

Table 4  

Regeneration Buffer Composition/ 500 mL 

Substance Weight/ g 

Tris-HCl (20 mM) 1.21 

NaCl (150 mM) 4.68 

HABA (1 mM) 0.12 

Note. Buffer was prepared with Milli-Q water and filtered using Merck Steritop vacuum filtration units (0.2 μm 

pore size). The pH of the regeneration buffer was not adjusted.  
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 Protein Precipitation 

 

For purified protein samples that consisted of a low protein concentration, samples required 

precipitation to achieve the required 15 μg necessary for running an SDS-page analysis. A volume 

of acetone pertaining to 4 times the volume required to yield 150 μg of purified protein was added 

to the sample. The sample was then stored at -20 °C for 24 h and then centrifuged for 10 min at 

10,000 x g. The supernatant was discarded and the purified protein pellet was left at room 

temperature for 30 min to ensure any remaining acetone had evaporated. Resuspension of the 

sample was achieved with the addition of 1x loading dye (Table 5) to the correct protein 

concentration (1.5 μg/mL).  

 

2.4  Protein Estimation 
 

An estimation of protein concentration in both membrane and purified AOX samples was 

analysed using a Bio-Rad Protein Assay kit. As described in the Bio-Rad Protein Assay, a series 

of BSA concentration standards (2, 4, 6, 8 and 10 μg.mL-1) were prepared in triplicate, in order to 

generate a standard curve, by which unknown protein concentration samples could be measured. 

Unknown protein samples were diluted appropriately (10:1 dilution for E. coli membrane and rat 

liver mitochondria samples and 1:1 dilution for purified protein samples) and additions of 1-4 μl 

were added in triplicate to 200 μL (96-well plates) or 1 mL (cuvette assay) of dye mix (deionised 

water 4:1 Dye Reagent Concentrate). The samples were all mixed vigorously and measured at 

595 nm by spectrophotometry. The standard curve for the series of BSA standards was plotted 

and using the cubic function for the curve, the protein estimation for the unknown samples were 

determined.  

 

2.5  Rat Liver Mitochondria Preparation 
 

Rat liver mitochondria samples were harvested from wistar rats following euthanasia via cervical 

dislocation and CO2 asphyxiation. The liver was dissected and transferred into buffer (30 mM 

MOPS, 1 mM EGTA, 250 mM sucrose, 0.1% (w/v) BSA, 3.5 mM L-cysteine at pH 7.4). The 

liver was then homogenised with 10 passes through a large gap homogeniser followed by 10 

passes through a small gap homogeniser. The resultant liquid was filtered through muslin cloth 

and the filtrate was centrifuged at 1000 x g for 10 min. The supernatant was isolated and 

centrifuged again at 10,000 x g for 10 minutes, with the resultant pellet resuspended in wash 
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buffer (30 mM MOPS, 1 mM EGTA, 250 mM sucrose and 0.1% (w/v) BSA at pH 7.4). A final 

centrifugation was performed at 10,000 x g for 10 minutes and the final pellet was resuspended 

in wash buffer. All mitochondrial rat liver preparations were kindly carried out by Alicia Rosell-

Hidalgo. 

 

2.6  Proteoliposome Preparation 
 

Incorporation of the AOX into proteoliposomes was kindly carried out by Dr. Alice Copsey 

according to the methodology outlined by Jones et al212.  

 

2.7  Gels 
 

Table 5  

General Use Reagents for SDS page and Western Blot analysis 

Name Contents 

Loading Dye x2 Tris-HCl (0.1 M, pH 6.8) 

EDTA (10 mM) 

SDS (2% w/v) 

Glycerol (5% w/v) 

Bromophenol-blue (0.05% w/v) 

Running Buffer Tris-HCl (0.25 M pH 8.3) 

SDS (1% w/v) 

Glycine (1.9 M) 

TBST NaCl (1.4 M) 

Tris-HCl (200 mM pH 7.4) 

Tween 20 (1% w/v) 

Transfer Buffer Glycine (2 M) 

Tris-HCl (250 mM) 

Blot Rinse Tris-HCl pH 7.2 

EDTA (5 mM) 

Block Milk Powder (5%) 

BSA (3%) 
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 Sample Preparation 

 

To prepare samples for gel electrophoresis, E. coli membrane samples were diluted to afford 150 

μg in 50 μl of water. Purified AOX samples were diluted in a similar manner but required 

concentration via acetone precipitation. The 50 μl sample solutions were then further diluted up 

to 100μl with loading dye (Table 5) and denatured on a hot block at 90°C for 3 minutes.  

 

 Gel Preparation 

 

Gels for electrophoresis were cast using Bio-Rad Mini-PROTEAN® Tetra Handcast systems, 

providing 10 cm x 8 cm x 1 mm gels. For each gel, one glass spacer plate and one short spacer 

plate were assembled in the casting frames and attached to the casting stand with watertight 

gaskets. The resolving gel was prepared as outlined in Table 6 with the addition of TEMED (10 

μl) as the final component. To ensure correct filling of the resolving gel, the level at which the 

bottom of the 10 well or 15 well combs reached was marked. The combs were removed and the 

resolving gel was filled to the mark, with the remaining volume filled by propanol. The gels were 

left to set in an incubator at 37 °C for 1hr, after which the propanol was drained and the top of the 

gel was washed with water. The stacking gel was prepared as outlined in Table 7, once again with 

the final addition of TEMED (10 μl). The stacking gel was layered on top of the resolving gel 

with the inclusion of the desired 10 well or 15 well combs. The gel was incubated once again at 

37 °C and left to set for 1 hour. The gels were kept in running buffer at 4 °C and used when 

needed. 

 

Table 6 

Resolving Gel Composition for the Preparation of Two Gels 

Substance Volume/mL 

H2O 5.94 

Resolving Buffer (1.5 M Tris pH 8.8) 3.75 

SDS (10%) 0.15 

Acrylamide 5.00 

APS 0.15 

TEMED 0.01 

 



36 

 

 

Table 7   

Stacking Gel Composition for the Preparation of Two Gels 

Substance Volume/mL 

H2O 2.825 

Stacking Buffer 1.250 

SDS 0.050 

Acrylamide 0.825 

APS 0.050 

TEMED 0.010 

 

 

 Electrophoresis and Coomassie Gel Preparation 

 

Two gels were attached to the Bio-Rad Electrophoresis Cassette with each lane void filled with 

running buffer. The prepared gel samples were loaded with 10 μl in each lane representing 15 μg 

of protein and with one lane containing the Bio-Rad protein standard ladder (3μl). The cassette 

was submerged in the electrophoresis cell, with the marked volume of running buffer pertaining 

to the number of gels. The gels were run at 150 V for approximately 45 min or until the dye front 

reached the bottom of the gel. Both of the gels were then removed from the cell and cassette, with 

one of these gels placed in a gel staining tray with Gel Code blue staining solution (20 mL). The 

gel was left to in the stain for 45 min on a rocking table after which the stain was removed and 

the gel was left in deionised water (20 mL) overnight.  

 

 Western Blot Analysis 

 

The other gel removed from the electrophoresis cell was used for Western Blot Analysis. The gel 

was placed within a semi-dry transfer stack consisting of two pre-soaked 3 mm blotting filter pads 

and nitrocellulose membrane. The layer was assembled on the anode of the semi-dry transfer 

equipment with one blotting filter pad, followed by the nitrocellulose, gel and finally another 

blotting filter pad. The cathode was placed on top of the transfer stack and the transfer was run at 

20 V for 20 minutes.  

The nitrocellulose was then removed from the transfer stack and placed in a clean staining tray 

and stained with ponceau solution (10 mL). The ponceau stain was removed and the nitrocellulose 



37 

 

 

was washed with deionised water to reveal and confirm the presence of transferred protein bands. 

The nitrocellulose was then de-stained with 1x TBST solution and placed in 20 mL of block 

solution to be agitated for 1 hr. The block was drained from the nitrocellulose and either 

submerged in block (25 mL, Table 5) with addition of the primary AOA antibody (10 μl); or 

submerged in the Twin-Strep antibody solution (Twin-Strep antibody 1:1000 dilution in BSA 

(3%) and milk powder (5%)). The nitrocellulose was left agitating for 1hr for both antibodies and 

then washed three times for 10 minutes with 1xTBST (10 mL). The Twin-Strep antibody 

nitrocellulose film could be taken forward; whereas a secondary AOA antibody (10 μl) was added 

to the other film and left agitating for 1hr, followed by three washes with 1x TBST for 10 minutes. 

For each antibody used, the final wash with blot rinse (20 mL) was carried out for 15 min.  

 

 Detection 

 

Detection was performed using the GE healthcare chemiluminescence kit to prepare the detection 

mixture consisting of a 1:1 ratio of both kit solutions. The nitrocellulose film was exposed to the 

detection mixture (2 mL) for 1 minute and then placed within a contained sheet of saran wrap, 

ensuring a smooth surface on top of the nitrocellulose. The nitrocellulose is fixated to an exposure 

cassette and transferred to a dark room. With only the safelight for illumination, X-ray film 

(Fujifilm Super RX Medical) was removed from its packaging with a corner cut to determine 

correct orientation after processing. The film is placed in the exposure cassette and left for the 

desired exposure time (30 s - 5 min) to expose the film to the nitrocellulose membrane. The film 

is removed and developed in a Konika SRX-101A X-ray developer. The film is removed and the 

lanes and protein standards are marked on the exposed film.  

 

2.8  Analytical Techniques 
 

 O2 Respirometry  

 

All oxygen consumption assays were performed on an Oroboros Oxygraph-2K with the packaged 

software. The measurement of AOX activity within E. coli membranes was performed in MOPS 

buffer (65 mM, pH 7.5 (unless stated)) at 25 °C and the addition of substrates with Hamilton 

micro syringes. The Oroboros Oxygraph-2K was calibrated with deionised water (100%) and 

sodium dithionite (0%).  
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 Spectrophotometric Plate Assay 

 

Plate assays were carried out using a Thermo Fisher Scientific Multiskan FC Microplate 

Photometer and packaged software using 96-well microplates. The microplate reader was set to: 

the wavelength corresponding to the substrate measured (Table 8); with 1 min shaking before 

assay readings and 2 secs between readings; and with readings performed every 5 seconds for 10 

minutes. The Microplate reader software package performed both blank subtraction and kinetic 

reduction analysis for unknown samples.   

Table 8   

Spectrophotometric Parameters for Substrate Analysis 

Substrate Wavelength/ nm Extinction coefficient 

NADH 340 6200 

Cytochrome c 550 18500 

DCPIP 600 19100 

Q2H2 278 17000 

 

 High Resolution Spectrophotometric Assay 

 

High resolution spectrophotometry was performed using a Cary 400 UV spectrophotometer with 

the associated kinetics package software. Absorbance measurements required the use of a quartz 

cuvette with a 1 cm path length. The spectrophotometer was set to the correct wavelength for the 

substrate and blanked against the biological buffer. The auto-oxidation rate was analysed by 

addition of the substrate before activity analysis. The purified AOX activity was measured by 

calculating the absorbance change over time.  

 

2.9  ITC Assay 
 

Purified protein samples were dialysed using Thermo Fisher dialysis cassettes (MW cut off = 20 

kDa) in elution buffer for a minimum of 4 h at 4 °C. Inhibitor stock solutions were made up in 

DMSO and diluted so that the final concentration of DMSO was equal to 4% and corresponded 

to the desired compound concentration. At the moment before ITC measurements were carried 

out, a volume of DMSO equal to 4% was added to purified protein samples, minimising any 

protein degradation. ITC experiments were conducted in a Malvern MicroCal PEAQ-ITC with 

packaged software for binding isotherm and thermodynamic quantity generation.  
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2.10  Molecular Modelling Software and Crystal Structures 
 

A combination of three molecular modelling software packages (PyMol v2.2213 and Maestro 

v11.5214 by Schrödinger and MOE by Chemical Computing Group215) were utilised for both 

protein visualisation and ligand docking. Ligand/inhibitor docking was primarily carried out on 

Maestro using the GLIDE plugin216 and scoring function. AOX proteins without a solved crystal 

structure were modelled using SWISS-MODEL automated homology server217. All crystal 

structures were obtained from the RCSB Protein Data Bank218 with Table 9 outlining the PDB 

structure entry and crystal structure details.  

 

Table 9  

Protein database crystal structures utilised for modelling analysis 

PDB code Description 

3W54 TAO with colletochlorin B bound (2.3 Å) 

3VVA TAO with ascofuranone derivative bound (2.6 Å) 

3VV9 TAO no inhibitor (2.9 Å) 

3H1L Cytochrome bc1 complex (chicken) with ascochlorin bound 

(3.2 Å) 

3L71 Cytochrome bc1 complex (chicken) with azoxystrobin bound 

(2.84 Å) 

1PPJ Cytochrome bc1 complex (chicken) with stigmatellin and 

antimycin A bound (2.1 Å) 

3L74 Cytochrome bc1 complex (chicken) with famoxadone bound 

(2.76 Å) 
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2.11  Chemical Synthesis 
 

General Technical Procedures: 

All chemicals and solvents were obtained from commercial suppliers, Sigma Aldrich or Fischer 

Scientific. The thin layer chromatography (TLC) analyses were performed using silica gel 

(Merck-Millipore 20x20 cm aluminium backed, thickness: 0.2 mm) or amine functionalised glass 

backed plates (Silicycle 250 μm) which were cut to the appropriate size. TLC compound detection 

was achieved under UV light (253 and 366 nm) or with one of the listed TLC dips outlined in 

Table 10. Column chromatography was carried out with glass columns of various sizes with silica 

gel (Fischer Scientific, pore size 60 Å) or amine functionalised silica (Sigma Aldrich 40-75 μm 

particle size). All 1H and 13C NMR were recorded on a Varian NMR 7600-AS spectrometer at 

400 MHz and 101 MHz or 600 MHz and 151 MHz, respectively. NMR readings are reported in 

ppm on the δ scale relative to the internal TMS standard.  

 

Table 10 - TLC Stains 

TLC Stain Composition Notes/Uses 

Potassium Permanganate Potassium permanganate (1.5 g) 

Potassium carbonate (10 g) 

10% Sodium hydroxide (1.25 mL) 

Water (200 mL) 

 

General use. 

Compound spots 

develop as white or 

yellow spots. 

Iodine A few iodine crystals in silica gel 

 

 

Used for the detection 

of compounds that do 

not show under UV 

light. 

Ninhydrin Ninhydrin (1.5 g) 

Acetic acid (3 mL) 

n-butanol (100 mL) 

 

Amines show up as 

purple spots. 

Ceric Ammonium Molybdate Ceric ammonium sulfate (4 g) 

Ammonium molybdate (10 g) 

Conc. sulfuric acid (40 mL)  

Water (360 mL) 

 

General use: 

Useful for alcohols 

Compounds develop 

as blue spots after 

heating. 

2,4-DNP 2,4-Dinitrophenylhydrazine (12 g) 

Conc. sulfuric acid (60 mL) 

Water (80 mL) 

95% Ethanol (200 mL) 

 

Detects the presence 

of aldehydes 
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General procedure for alkyl coupling/tail addition for colletochlorin and ascofuranone like 

derivatives: 

To each solution of 3-chloro-4,6-dihydroxy-2-methylbenzaldehyde (1 equiv) in dry methanol (1-

5 mL), alkyl bromide (0.8-1.2 equiv) and CaCl2.2H2O (0.6-0.8 equiv) were added. The reaction 

was kept under an inert atmosphere at 0 °C and stirred for 30 min. Potassium hydroxide (1M 

solution in dry methanol) was added to the reaction vessel and was left to slowly warm to room 

temperature overnight. The reaction was quenched with a brine solution, concentrated in vacuo 

and extracted with ethyl acetate (2 x 50 mL). The organic extract was dried with MgSO4, filtered 

and purified by preparative TLC or column chromatography using solvents Petroleum ether (40-

60)/EtOAc (95/5 – 8/2) with TEA as a supplement to the eluent.  

 

General procedure for the allylic oxidation of geranyl, prenyl and neryl protected alcohols: 

To a nitrogen flushed round bottomed flask, protected geranyl, prenyl or neryl alcohol (1 equiv) 

was added to a solution of selenium oxide (0.1 equiv), salicylic acid (0.1 equiv) and tert-butyl 

hydroperoxide (70% solution in water, 10-30 mL). The solution was left to react at room for 24 h 

at room temperature (alcohol) or 37 °C for 48 h (aldehyde). The resultant reaction mixture was 

diluted with toluene (100 mL) and reduced to half of its volume under vacuum. The remaining 

organic layer was washed with a concentrated NaOH solution (2M) to remove selenium by-

products and filtered through a celite pad. The final organic filtrate was concentrated under vacuo 

and purified by column chromatography (Petroleum ether (40-60) 7:3 EtOAc) yielding the 

alcohol and aldehyde as pale-yellow oils.  

 

General procedure for reductive amination of allylic aldehydes: 

To a flame dried round-bottomed flask, an allylic aldehyde (1 equiv) was added along with the 

functionalised aniline (1.1 equiv) and dichloroethane (20-120 mL). The solution was stirred for 

30 min at room temperature after which glacial acetic acid (1.2 equiv) was added to the reaction 

mixture. The reaction mixture was left to stir for a further 30 min followed by the addition of 

sodium triacetoxyborohydride (1.4 equiv) and left to stir overnight at 30 °C. The reaction was 

then quenched with a saturated solution of NaHCO3 (20 mL), extracted with EtOAc (3 x 75 mL) 

and dried with MgSO4 to yield a crude product. The crude product was then purified by column 

chromatography (CHCl3 95:5 MeOH or CHCl3: MeOH: NH3, 97:2:1) to yield the desired product.  
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General procedure for acetate deprotection: 

To a round bottomed flask, acetate protected functionalised aniline (1 equiv) was dissolved in 

methanol (5-30 mL). Potassium carbonate (3 Equiv) was dissolved in water (1-5 mL) and slowly 

added to the reaction flask. The reaction mixture was left to stir overnight, after which the reaction 

was quenched with water (10-40 mL). The mixture was then concentrated in vacuo, extracted 

with DCM (3 x 40 mL), washed with brine (100 mL), dried and the solvent removed under 

reduced pressure. The crude product was purified by column chromatography (CHCl3:MeOH 

95:5 or 80:10:1 NH3) to yield a yellow crystalline solid.  

 

 

2,4-Dihydroxy-6-methylbenzaldehyde219 (1) 

 

 

 

Phosphorus oxychloride (2 mL, 21.4 mmol) was added slowly to DMF (10 mL) in a salt-ice bath 

(~-2 °C) with rapid stirring over 30 min and left for 1.5 h. 3,5-Dihydroxytoluene (2.063 g, 16.6 

mmol) was dissolved in DMF (5 mL) and slowly added to the reaction mixture. The reaction flask 

was warmed to room temperature and left to stir overnight. The mixture was then cooled under 

an ice bath (~3 °C), with ice water (25 mL) and NaOH (~25 mL, 20% sol) slowly added until pH 

9 was reached. The reaction mixture was heated to 110°C and refluxed for 45 min. Following 

heating, the flask was allowed to cool to room temperature followed by further cooling in a salt-

ice bath (~-2 °C). Acidification was achieved through the slow addition of a 20% solution of HCl 

(~15 mL) until pH 3 and a white precipitate formed. An off-white powder was isolated following 

drying and filtration steps (1.605 g, 64%). 1H NMR (400 MHz, Methanol-d4): δ 9.96 (s, 1H, 

CHO), 6.11 (d, 0.8 Hz, 1H, Ar-H), 6.00 (d, J = 2.3 Hz, 1H, Ar-H), 2.39 (s, 3H, Ar-CH3); 13C NMR 

(101 MHz, Methanol-d4): δ 192.9, 166.1, 165.8, 144.9, 112.6, 110.4, 100.1, 17.0; MS (ESI) m/z: 

150.850 (M-) 
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3-Chloro-4,6-dihydroxy-2-methylbenzaldehyde220 (2) 

 

 

 

Sulfuryl chloride (0.5 mL, 6.00mmol) was added dropwise into a stirred solution of 2,4– 

dihydroxy-6-methylbenzaldehyde (0.829 g, 5.45 mmol) dissolved in anhydrous ether (50 mL) 

within an ice-salt bath (~-2 °C). The reaction was kept at this temperature and left to stir for 3 h 

or until the starting material was no longer present when assessed by TLC. The reaction mixture 

was quenched with NaHCO3, washed with brine and then water followed by extraction of the 

aqueous layer with ethyl acetate (3 x 75 mL). The combined organic extracts were dried with 

MgSO4 and concentrated in vacuo. Purification of the final product was achieved by column 

chromatography (Petroleum ether (40-60) 8:2 EtOAc) and yielded a white solid (0.489g, 48%). 

1H NMR (400 MHz, Methanol-d4) δ 10.04 (s, 1H, CHO), 6.19 (s, 1H, Ar-H), 4.76 (s, 1H, Ar-OH) 

2.51 (s, 3H, Ar-CH3). 13C NMR (101 MHz, Methanol-d4) δ 193.6, 163.9, 161.0, 141.40, 100.74, 

13.34. MS (EI) m/z: 184.750 (M-). 

 

(E)-3-Chloro-5-(3,7-dimethylocta-2,6-dien-1-yl)-4,6-dihydroxy-2-methylbenzaldehyde 

(Colletochlorin B)221 (3) 

 

 

Following the general procedure for alkyl coupling starting from 3-chloro-4,6-dihydroxy-2-

methylbenzaldehyde (0.149 g, 0.79 mmol), geranyl bromide (0.13 mL, 0.63 mmol), methanol (0.5 

mL) and KOH solution (0.105 g in 2 mL of MeOH). Compound 3 was isolated by column 
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chromatography (Petroleum ether (40-60) 95:5 EtOAc) as a white solid (0.111 g, 55%). 1H NMR 

(400 MHz, Chloroform-d) δ 12.62 (s, 1H, Ar-OH), 10.07 (s, 1H, CHO), 6.36 (s, 1H, Ar-OH), 

5.15 (tq, J = 7.1, 1.3 Hz, 1H, C=CH), 4.98 (tq, J = 8.4, 1.5 Hz, 1H, C=CH), 3.36 – 3.30 (m, 2H, 

CH2), 2.53 (s, 3H, Ar-CH3), 2.02 – 1.95 (m, 2H, CH2), 1.95 – 1.88 (m, 2H, CH2), 1.72 (d, J = 1.3 

Hz, 3H, CH3), 1.60 – 1.56 (m, 3H, CH3), 1.50 (d, J = 1.2 Hz, 3H, CH3). 13C NMR (101 MHz, 

Chloroform-d) δ 193.3, 162.2, 156.5, 137.6, 137.0, 131.5, 124.2, 120.7, 114.4, 113.6, 113.3, 39.8, 

26.59, 25.66, 22.01, 17.67, 16.18, 14.44. MS (EI) m/z: 323.00 (M+) 

 

3-Chloro-4,6-dihydroxy-2-methyl-5-(3-methylbut-2-en-1-yl)benzaldehyde (Colletochlorin 

D)221 (4) 

 

Following the general procedure for alkyl coupling starting from 3-chloro-4,6-dihydroxy-2-

methylbenzaldehyde (0.200 g, 1.07 mmol), 3,3 dimethyl allyl bromide (0.15 mL, 0.85 mmol), 

methanol (3 mL), CaCl2.2H2O (0.093 g, 0.64 mmol) and KOH solution (0.111 g, 1.98 mmol). 

The final compound was isolated by column chromatography (Petroleum ether (40-60) 95:5 

EtOAc) as white crystalline solid (26 mg, 12%).  1H NMR (400 MHz, Chloroform-d) δ 12.61 (s, 

1H, Ar-OH), 10.06 (s, 1H, CHO), 6.36 (s, 1H, Ar-OH), 5.15 (t, J = 7.3 Hz, 1H, C=CH), 3.31 (d, 

J = 7.2 Hz, 2H, CH2), 2.52 (s, 3H, Ar-CH3), 1.72 (s, 3H, CH3), 1.62 (s, 3H, CH3). 13C NMR (101 

MHz, Chloroform-d) δ 193.3, 162.1, 156.3, 137.6, 133.3, 120.9, 114.4, 113.6, 113.2, 29.7, 25.8, 

22.1, 17.8, 14.4. MS (ES) m/z: 253.90 (M-) 

 

(±)-1-Bromo-3,7-dimethyloctane (5) 

 

 

(±)-3,7-Dimethyl octanol (1 mL, 5.23 mmol) and tetrabromomethane (1.959 g, 5.75 mmol) were 

placed into a 3-necked flask and flushed with nitrogen. Anhydrous dichloromethane (10 mL) was 

then added to the flask at 0 °C and stirred for 20 min. Triphenylphosphine (1.536 g, 5.75 mmol) 
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was then dissolved in anhydrous DCM (10 mL) and slowly added to the reaction mixture over the 

course of 30 min. The reaction was left to stir for 5 h at room temperature. The reaction was 

stopped and concentrated under reduced pressure. To the concentrated oil, petroleum ether (40-

60) was added until a precipitate was seen. The crude product was the take forward without further 

purification (1.102 g, 95%). 

 

2,2,2-Trifluoro-N-(6-hydroxyhexyl)acetamide (6) 

 

 

 

To a solution of 6-aminohexanol (0.760 g, 6.49 mmol) in dichloromethane (10 mL), ethyl 

trifluoroacetate (0.85 mL, 7.14 mmol) was added slowly. The mixture was left to stir at room 

temperature overnight and then concentrated in vacuo. The flask was then placed in an ice bath 

until a crude white crystalline solid formed (1.191 g, 86%), the product was taken forward to the 

next step without further purification. Crude 1H and 13C NMR with amide peak at ppm 157.5. 

 

N-(6-Bromohexyl)-2,2,2-trifluoroacetamide (7) 

 

 

Compound 6 (1.050 g, 4.92 mmol) was placed in an oven dried round bottomed flask. The flask 

was purged with nitrogen, cooled to 0 °C and compound 6 was dissolved in dry dichloromethane 

(40 mL). To the flask kept at 0°C, CBr4 (3.258 g, 9.85 mmol) and triphenylphosphine (2.21 g, 

9.64 mmol) were added. The reaction mixture was left to stir at 0 °C for 4 h and quenched with 

NaHCO3 (30 mL). The organic layer was separated, concentrated in vacuo and washed through a 

short silica pad. The crude product was used without further purification yielding a brown oil 

(1.259 g, 93%). 
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6-((7-Nitrobenzo[c][1,2,5]oxadiazol-4-yl)amino)hexan-1-ol222 (8) 

 

 

 

To a solution of 6-aminohexanol (0.287 g, 2.45 mmol) in 0.3M NaHCO3 (aq) (0.302 g, 3.43 

mmol), NBD-Cl (0.477 g, 2.45 mmol) was added along with methanol (20 mL). The reaction was 

then left to stir overnight at room temperature. The solvent was reduced under reduced pressure 

and purified by column chromatography (Petroleum ether (40-60) 6:4 EtOAc) yielding an orange 

powder (0.386 g, 56%). 1H NMR (600 MHz, Methanol-d4) δ 8.50 (d, J = 8.8 Hz, 1H, Ar-H), 6.32 

(d, J = 8.9 Hz, 1H, Ar-H), 3.55 (t, J = 6.5 Hz, 2H, CH2), 3.51 (s, 1H, NH), 1.78 (m, J = 6.9 Hz, 

2H,CH2), 1.55 (q, J = 6.8 Hz, 2H, CH2), 1.52 – 1.40 (m, 4H, CH2-CH2). 13C NMR (151 MHz, 

Methanol-d4) δ 137.2, 98.1, 61.4, 43.3, 32.1, 27.8, 26.5, 25.2. MS (EI) m/z: 278.950 (M-) 

 

N-(6-Bromohexyl)-7-nitrobenzo[c][1,2,5]oxadiazol-4-amine (9) 

 

 

Compound 8 (0.050 g, 0.18 mmol) was placed in an oven dried round bottomed flask and purged 

with nitrogen. Anhydrous dichloromethane (10 mL) was added to the round bottomed flask to 

dissolve compound 8 under ice bath cooling (0 °C). To the flask, CBr4 (0.111 g, 0.36 mmol) and 

PPh3 (0.114 g, 0.36 mmol) were added. The reaction mixture was left to stir overnight at room 

temperature. The reaction mixture was then quenched with NaHCO3 (30 mL) and extracted with 

EtOAc (2 x 50 mL) and concentrated in vacuo. The resultant oil was dissolved in DCM and 

filtered through a short silica gel column, yielding a crude yellow oil which was take forward 

without further purification (0.067 g, 98%). 
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(2E,6E)-8-Hydroxy-3,7-dimethylocta-2,6-dien-1-yl acetate223 (10) 

 

 

 

Prepared according to the general procedure for allylic oxidation, starting with geranyl acetate 

(10 mL, 46.3 mmol), selenium oxide (2.51 g, 23.2 mmol), DCM (150 mL) and t-BuOOH (12.5 

mL, 92.6 mmol), yielding a pale-yellow oil (4.301 g, 44%). 1H NMR (600 MHz, Chloroform-d) 

δ 5.45 – 5.23 (m, 2H, C=CH), 4.57 (d, J = 7.1 Hz, 2H, COOCH2), 3.98 (d, J = 1.4 Hz, 2H, 

CH2OH), 2.21 – 2.12 (m, 2H, CH2), 2.12 – 2.05 (m, 2H, CH2), 2.04 (s, 3H, CH3COO), 1.78 – 1.61 

(m, 6H, CH3); 13C NMR (151 MHz, Chloroform-d) δ 171.2, 141.7, 135.2, 125.2, 118.6, 68.8, 

61.4, 39.0, 25.6, 21.0, 16.4, 13.6. MS (ES) m/z: 235.00 (M+Na+) 

 

(2E,6E)-3,7-Dimethyl-8-oxoocta-2,6-dien-1-yl acetate223 (11) 

 

 

 

 

According to the general procedure for allylic oxidation, compound 11 was prepared with geranyl 

acetate (2.5 mL, 11.6 mmol), selenium oxide (0.131 g, 1.18 mmol), tert-butylhydroperoxide (3 

mL, 23.2 mmol) and DCM (50 mL), yielding a pale-yellow oil (1.186 g, 49%). 1H NMR (600 

MHz, Chloroform-d) δ 9.30 (s, 1H, CHO), 6.38 (tq, J = 7.3, 1.4 Hz, 1H, CH=C), 5.30 (tq, J = 7.2, 

1.4 Hz, 1H, CH=C), 4.50 (d, J = 7.1 Hz, 2H, COOCH2), 2.45 – 2.36 (m, 2H, CH2), 2.15 (t, J = 

7.6 Hz, 2H, CH2), 1.96 (s, 3H, CH3COO), 1.70-1.61 (m, 6H, CH3). 13C NMR (151 MHz, 

Chloroform-d) δ 195.5, 170.9, 153.5, 140.3, 139.5, 119.5, 61.1, 37.6, 26.9, 20.7, 16.3, 9.1. MS 

(ES) m/z: 233.00 (M+Na+) 
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(2E,6E)-8-Bromo-3,7-dimethylocta-2,6-dien-1-yl acetate (12) 

 

 

 

 

 

To a solution of compound 11 (1.573 g, 7.41 mmol) in dry diethyl ether (60 mL), phosphorus 

tribromide (0.7 mL, 9.63 mmol) was added dropwise at 0 °C. The reaction was left to react for 

1hr, after which the reaction was quenched with ice cold water (50 mL), diluted with EtOAc (75 

mL) and washed with a saturated NaHCO3 solution (50 mL). The organic layer is separated, dried 

with MgSO4 and then concentrated under reduced pressure. A crude brown oil was isolated 

without further purification (1.640 g, 80%). 

 

(E)-3-Methyl-4-oxobut-2-en-1-yl acetate (13) 

 

 

 

 

Following the general procedure for allylic oxidation, compound 13 was prepared, starting with 

3,3-dimethylallyl acetate (10 mL, 71.4 mmol), selenium dioxide (0.788 g, 7.14 mmol), salicylic 

acid (1.003 g, 7.14 mmol), tert-BuOOH (10 mL) and DCM (150 mL). Compound 13 was isolated 

as pale-yellow oil (4.237 g, 38%). 1H NMR (600 MHz, Chloroform-d) δ 9.35 (s, 1H, CHO), 6.42 

(t, J = 6.0 Hz, 1H, C=CH), 4.81 (d, J = 6.0 Hz, 2H, COOCH2), 2.02 (s, 3H, CH3COO), 1.70 (s, 

3H, CH3); 13C NMR (151 MHz, Chloroform-d) δ 194.2, 170.7, 145.9, 140.3, 60.8, 20.6, 9.3. MS 

(ES) m/z: 165.06 (M+) 
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(2Z,6E)-8-Hydroxy-3,7-dimethylocta-2,6-dien-1-yl acetate (14) 

 

 

Compound 14 was prepared according to the general procedure for allylic oxidation, starting with 

neryl acetate (20 mL, 93.2 mmol), selenium dioxide (1.027 g, 9.32 mmol), salicylic acid (1.295 

g, 9.32 mmol), tert-BuOOH (30 mL) and DCM (80 mL). A colourless oil was isolated (11.234 g, 

56%). 1H NMR (600 MHz, Chloroform-d) δ 5.34 - 5.30 (m, 1H, CH=C), 5.28 (td, J = 7.2, 1.6 Hz, 

1H, CH=C), 4.49 (dd, J = 7.2, 1.1 Hz, 2H, COOCH2), 3.90 (s, 2H, CH2OH), 2.28 (s, 1H, OH), 

2.08 (d, J = 3.4 Hz, 4H, CH2), 1.97 (s, 3H, CH3COO), 1.70 (s, 3H, CH3), 1.59 (s, 3H, CH3). 13C 

NMR (151 MHz, Chloroform-d) δ 171.2, 141.9, 135.5, 124.5, 119.4, 68.4, 61.1, 31.7, 25.9, 23.29, 

20.9, 13.5. MS (ES) m/z: 234.950 (M+Na+) 

 

(2Z,6E)-8-Bromo-3,7-dimethylocta-2,6-dien-1-yl acetate (15) 

 

 

 

 

Compound 14 (2.502 g, 11.8 mmol) was placed in a nitrogen purged, flame dried round bottom 

flask and dissolved in dry diethyl ether (30 mL). The solution was stirred and kept at 0 °C whilst 

phosphorus tribromide (0.52 mL, 7.07 mmol) was added dropwise to the flask. The reaction was 

left to stir for 1 hr and was then quenched with cold water (30 mL) followed by NaHCO3 (40 mL). 

The mixture was diluted with EtOAc (50 mL), separated and dried with MgSO4. The organic 

solvent was removed under reduced pressure to yield a crude oil which was used without further 

purification (2.014 g, 62%). 

 



50 

 

 

(2E,6E)-8-(3-Chloro-5-formyl-2,6-dihydroxy-4-methylphenyl)-3,7-dimethylocta-2,6-dien-

1-yl acetate (16) 

 

 

 

Compound 16 was prepared according to the general procedure for alkyl coupling, using 

compound 2 (0.306 g, 1.60 mmol), alkyl bromide 12 (0.528 g, 1.92 mmol), methanol (12 mL). 

CaCl2.2H2O (0.140 g, 0.96 mmol) and a KOH solution (0.194 g, 3.2 mmol). The crude product 

was purified by pTLC (Petroleum ether (40-60):EtOAc:TEA, 79:20:1) yielding a pale-yellow oil 

(121mg, 20%). 1H NMR (400 MHz, Chloroform-d) δ: 12.50 (s, 1H, Ar-OH), 10.07 (s, 1H, CHO), 

6.27 (s, 1H, Ar-OH), 5.49 (tq, J = 7.1, 1.3 Hz, 1H, CH=C), 5.28 (tq, J = 7.1, 1.3 Hz, 1H, CH=C), 

4.50 (d, J = 7.0 Hz, 2H, COOCH2), 4.42 (s, 2H, CH2), 2.55 (s, 3H, Ar-CH3), 2.16 (q, J = 7.3 Hz, 

2H, CH2), 2.04 (dd, J = 9.0, 6.2 Hz, 2H, CH2), 1.98 (s, 3H, CH3COO), 1.66 (d, J = 1.4 Hz, 6H, 

CH3); 13C NMR (101 MHz, Chloroform-d) δ 193.2, 171.1, 164.5, 161.3, 141.4, 140.5, 129.9, 

128.9, 118.9, 115.4, 113.4, 99.4, 74.9, 61.3, 38.8, 25.8, 21.1, 16.4, 14.6, 13.7. LC-MS (ESI) m/z: 

379.00 (M-), 90% purity, retention time 23.0 min. 

 

3-Chloro-4,6-dihydroxy-5-((2E,6E)-8-hydroxy-2,6-dimethylocta-2,6-dien-1-yl)-2-

methylbenzaldehyde (17) 

 

 

 

Compound 17 was prepared according to the general procedure for alkyl coupling, using 

compound 2 (1.003 g, 5.35 mmol), alkyl bromide 12 (1.069 g, 3.88 mmol), methanol (8 mL), 
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CaCl2.2H2O (0.473 g, 3.21 mmol) and a KOH solution (0.539 g, 10.7 mmol). The crude product 

was purified by pTLC (Petroleum ether (40-60) 6:4 EtOAc) and recrystallised from 

Hexane/CHCl3 yielding colourless crystals (58 mg, 4%). 1H NMR (400 MHz, Chloroform-d) δ 

12.66 (s, 1H, Ar-OH), 10.08 (s, 1H, CHO), 5.29 (tq, J = 6.9, 1.4 Hz, 1H, CH=C), 5.09 (tq, J = 

7.0, 1.4 Hz, 1H, CH=C), 4.09 (d, J = 6.9 Hz, 2H, CH2), 3.35 – 3.30 (m, 2H, CH2), 2.55 (s, 3H, 

Ar-CH3), 2.09 (dd, J = 9.4, 4.7 Hz, 2H, CH2), 2.09 (t, J = 7.1 Hz, 2H, CH2), 1.56 (s, 6H, CH3). 

13C NMR (101 MHz, Chloroform-d) δ 193.3, 162.3, 157.7, 139.0, 138.4, 133.1, 125.4, 123.9, 

113.5, 112.5, 59.5, 39.1, 32.4, 25.7, 16.1, 15.9, 14.5. MS (ESI) m/z: 337.00 (M-); 91% purity, 

retention time 19.4 min. 

 

(2Z,6E)-8-(3-Chloro-5-formyl-2,6-dihydroxy-4-methylphenyl)-3,7-dimethylocta-2,6-dien-1-

yl acetate (18) 

 

 

 

Compound 18 was prepared according to the general procedure for alkyl coupling, starting from 

compound 2 (0.5032 g, 2.68 mmol), alkyl bromide 15 (0.910 g, 3.22 mmol), CaCl2.2H2O (0.275 

g, 1.88 mmol), KOH solution (0.300 g, 5.36 mmol) and methanol (8 mL). The final product was 

purified utilising pTLC (Petroleum ether (40-60) 98:2 EtOAc) yielding a pale-yellow oil (47 mg, 

5%). 1H NMR (400 MHz, Chloroform-d) δ 12.64 (s, 1H, Ar-OH), 10.09 (s, 1H, CHO), 6.68 (s, 

1H, Ar-OH), 5.27 (t, J = 7.2 Hz, 1H, CH=C), 5.08 – 4.91 (m, 1H, CH=C), 4.45 (dd, J = 7.2, 1.1 

Hz, 2H, COOCH2), 3.30 (s, 2H, CH2), 2.56 (s, 3H, Ar-CH3), 2.03 (d, J = 2.5 Hz, 4H, CH2), 1.99 

(s, 3H,CH3COO), 1.71 – 1.65 (m, 3H, CH3), 1.58 (d, J = 1.6 Hz, 3H,CH3); 13C NMR (151 MHz, 

Chloroform-d) δ 192.3, 170.4, 161.4, 156.2, 141.1, 137.2, 132.4, 123.0, 118.3, 112.4, 111.6, 60.5, 

36.2, 30.3, 25.3, 20.1, 15.3, 13.5, 13.1. MS (ESI) m/z: 379.00 (M-); 60% purity, retention time 

23.01 min. 
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3-Chloro-4,6-dihydroxy-5-((2E,6Z)-8-hydroxy-2,6-dimethylocta-2,6-dien-1-yl)-2-

methylbenzaldehyde (19) 

 

 

 

Compound 19 was prepared according to the general scheme for alkyl coupling, with compound 

2 (1.083 g, 5.77 mmol), alkyl bromide 15 (1.973 g, 6.93 mmol), CaCl2.2H2O (0.696 g, 4.74 

mmol), KOH solution (0.643 g, 11.5 mmol) and methanol (10 mL). The final product was isolated 

via pTLC (Petroleum ether (40-60):EtOAc:TEA,79:20:1) yielding a colourless oil (0.148 g, 

7%).1H NMR (400 MHz, Chloroform-d) δ 12.64 (s, 1H, Ar-OH), 10.08 (s, 1H, CHO), 6.70 (s, 

1H, Ar-OH), 5.27 (td, J = 8.6, 1.5 Hz, 1H, CH=C), 5.01 (td, J = 5.7, 1.6 Hz, 1H, CH=C), 4.44 

(dd, J = 7.2, 1.1 Hz, 2H, COOCH2), 3.30 (s, 2H, CH2), 2.55 (s, 3H, Ar-CH3), 2.17 (d, J =  4.3 Hz, 

2H, CH2), 2.09 (t, J = 6.8 Hz, 2H, CH2) 1.67 (q, J = 1.1 Hz, 3H, CH3), 1.57 (d, J = 1.4 Hz, 3H, 

CH3), 1.19 (d, J = 1.9 Hz, 1H, OH).13C NMR (101 MHz, Chloroform-d) δ 193.3, 162.5, 157.2, 

142.2, 138.2, 133.4, 124.0, 119.3, 113.5, 113.3, 112.6, 61.5, 32.16, 32.0, 26.3, 23.5, 21.1, 16.3. 

MS (ESI) m/z: 337.00 (M-) 100% purity, retention time 19.4 min. 

 

(2E,6E)-8-((2-Chloro-4-cyanophenyl)amino)-3,7-dimethylocta-2,6-dien-1-yl acetate (20) 

 

 

 

According to the general procedure for reductive amination, compound 20 was prepared starting 

with allylic aldehyde 11 (0.494 g, 2.35 mmol), 4-amino-3-chlorobenzonitrile (0.435 g, 2.82 
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mmol), acetic acid (0.16 mL, 2.82 mmol), sodium triacetoxyborohydride (0.692 g, 3.27 mmol) 

and DCE (25 mL). Purification was carried out by column chromatography (CHCl3:MeOH, 95:5) 

to yield a brown solid (0.610 g, 75%). 1H NMR (400 MHz, Chloroform-d) δ 7.46 (d, J = 1.9 Hz, 

2H, Ar-H), 7.27 (dd, J = 8.4, 1.9 Hz, 2H, Ar-H), 6.68 (d, J = 8.4 Hz, 2H, Ar-H), 5.89 (s,1H, NH) 

5.34 – 5.23 (m, 2H, CH=C), 4.52 (d, J = 7.0 Hz, 2H, COOCH2 ), 3.93 (s, 2H, CH2NH ), 2.15 - 

2.10 (m, 2H, CH2), 2.05 – 2.01 (m, 2H, CH2), 1.98 (s, 3H, CH3COO), 1.62 (dd, J = 16.6, 1.4 Hz, 

6H, CH3); 13C NMR (151 MHz, Acetone-d6) δ 170.1, 148.7, 141.1, 132.9, 131.9, 123.3, 119.0, 

118.5, 115.1, 99.0, 67.3, 60.6, 39.0, 29.4, 25.6, 19.9, 15.5, 12.8. MS (ES) m/z: 348.600 (M+) 

 

3-Chloro-4-(((2E,6E)-8-hydroxy-2,6-dimethylocta-2,6-dien-1-yl)amino)benzonitrile (21) 

 

 

 

Compound 21 was prepared according to the general scheme for acetate deprotection, starting 

with compound 20 (0.610 g, 1.76 mmol), potassium carbonate (0.730 g, 5.28 mmol), water (3 

mL) and methanol (5 mL). Purification was carried out with column chromatography 

(CHCl3:MeOH:NH3(aq), 80:10:1) to yield a crystalline yellow solid (0.377 g, 70%). 1H NMR 

(600 MHz, Acetone-d6) δ 7.60 (d, J = 1.9 Hz, 2H, Ar-H), 7.39 (dd, J = 8.5, 1.9 Hz, 2H, Ar-H), 

6.95 (d, J = 8.5 Hz, 2H, Ar-H), 5.89 (s, 1H, NH), 5.42 – 5.32 (m, 2H, CH=C), 4.06 (d, J = 6.7 Hz, 

2H, CH2OH), 3.90 (s, 2H, CH2NH), 2.86 (s, 1H, OH), 2.18 – 2.09 (m, 2H, CH2), 2.02 (dd, J = 

9.1, 6.3 Hz, 2H, CH2), 1.68 – 1.54 (m, 6H, CH3). 13C NMR (151 MHz, Acetone-d6) δ 170.1, 148.7, 

132.9, 131.9, 125.3, 123.7, 118.5, 117.2, 115.1, 112.1, 99.0, 67.5, 58.3, 39.1, 25.8, 15.3, 12.8. MS 

(ES) m/z: 305.00 (M+) 
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2-(((2E,6E)-8-Acetoxy-2,6-dimethylocta-2,6-dien-1-yl)amino)-4-chlorobenzoic acid (22) 

 

 

According to the general scheme for reductive amination, compound 22 was prepared starting 

with allylic aldehyde 11 (2.618 g, 12.5 mmol), 2-amino-4-chlorobenzoic acid (2.160 g, 12.6 

mmol), acetic acid (0.9 mL, 15.0 mmol) and sodium triacetoxyborohydride (3.814 g, 17.9 mmol). 

Purification was carried by column chromatography (CHCl3 95:5 MeOH) yielding brown semi-

solid (1.463 g, 32%). 1H NMR (600 MHz, Acetone-d6) δ 7.88 (dd, J = 8.5, 2.6 Hz, 2H, Ar-H), 

6.72 (d, J = 9.9 Hz, 2H, Ar-H), 6.56 (d, J = 8.5 Hz, 2H, Ar-H), 5.43 (t, J = 7.2 Hz, 1H, CH=C), 

5.31 (t, J = 7.0 Hz, 1H, CH=C), 4.52 (d, J = 7.0 Hz, 2H, CH2COO), 3.86 – 3.79 (m, 1H, NH), 

3.25 (q, J = 7.2 Hz, 2H, CH2NH), 2.20 (q, J = 7.4 Hz, 2H, CH2),  2.07 (t, J = 7.4 Hz 2H, CH2), 

2.01 – 1.90 (m, 3H, CH3COO) 1.76 – 1.61 (m, 3H, CH3), 1.27 (t, J = 7.2 Hz, 3H, CH3); 13C NMR 

(151 MHz, Acetone-d6) δ 169.0, 140.9, 140.3, 133.5, 133.4, 125.2, 119.3, 114.3, 114.0, 111.2, 

110.4, 60.5, 49.8, 38.9, 37.0, 25.7, 21.1, 19.9, 13.7. MS (ES) m/z: 362.750 (M-) 

 

4-Chloro-2-(((2E,6E)-8-hydroxy-2,6-dimethylocta-2,6-dien-1-yl)amino)benzoic acid (23) 

 

 

Compound 23 was prepared according to the general scheme for acetate deprotection, using 

compound 22 (2.061 g, 5.62 mmol), potassium carbonate (3.161 g, 20.5 mmol), methanol (60 

mL) and water (20 mL). Following column chromatography (CHCl3 95:5 MeOH) yielding a off 

white semi-solid (0.214 g, 12%). 1H NMR (400 MHz, Acetone-d6) δ 7.77 (dd, J = 8.5, 3.4 Hz, 

2H, Ar-H), 6.52 (d, J = 9.9 Hz, 2H, Ar-H), 6.37 (d, J = 8.1 Hz, 2H, Ar-H), 5.39 – 5.17 (m, 2H, 
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CH=C), 4.87 – 4.41 (m, 1H, NH), 3.98 – 3.90 (m, 1H, OH), 3.77 (d, J = 1.3 Hz, 2H, CH2OH), 

3.08 (q, J = 7.1 Hz, 2H, CH2NH), 2.11 – 1.95 (m, 2H, CH2), 1.91 – 1.85 (m, 2H, CH2), 1.55 – 

1.44 (m, 3H, CH3), 1.36 – 0.83 (m, 3H,CH3); 13C NMR (101 MHz, Acetone-d6) δ 152.0, 139.6, 

133.8, 126.2 125.3, 123.8, 113.9 , 110.1, 67.5, 58.3, 39.2, 39.1, 37.0, 25.8, 15.3, 13.7, 12.8. MS 

(ES) m/z: 321.850 (M-). 

 

(E)-2-((4-Acetoxy-2-methylbut-2-en-1-yl)amino)-4-chlorobenzoic acid (24) 

 

 

 

 

Compound 24 was prepared according to the general scheme for reductive amination, starting 

with allylic aldehyde 13 (2.469 g, 15.8 mmol), 2-amino-4-chlorobenzoic acid (2.460 g, 14.3 

mmol), glacial acetic acid (1.1 mL, 19.0 mmol), sodium triacetoxyborohydride (4.067 g, 22.1 

mmol) and DCE (60 mL). Purification was carried out by column chromatography (CHCl3 95:5 

MeOH with AcOH (1%)) yielding a yellow semi-solid (2.030 g, 50%). %). 1H NMR (600 MHz, 

Acetone-d6) δ 8.26 (s, 1H, COOH), 7.89 (d, J = 8.5 Hz, 1H, Ar-H), 6.86 (d, J = 2.1 Hz, 1H, Ar-

H), 6.69 (d, J = 2.0 Hz, 1H, Ar-H), 5.56 (tq, J = 5.9, 1.4 Hz, 1H, CH=C), 4.61 (dd, J = 6.9, 1.2 

Hz, 2H, COOCH2), 3.90 (d, J = 5.1 Hz, 2H, CH2NH), 1.95 (s, 3H, CH3COO), 1.81 – 1.75 (m, 3H, 

CH3); 13C NMR (151 MHz, Acetone-d6) δ 170.1, 140.2, 137.4, 133.5, 133.2, 119.4, 115.4, 115.1, 

114.6, 111.1, 60.2, 49.1, 19.9, 13.9. MS (ES) m/z: 297.950 (M+). 
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(E)-4-((2-Chloro-4-cyanophenyl)amino)-3-methylbut-2-en-1-yl acetate (25) 

 

 

 

According to the general scheme for reductive amination, compound 25 was synthesised, starting 

with allylic aldehyde 13 (2.020 g, 12.9 mmol), 4-amino-chlorobenzonitrile (1.943 g, 12.7 mmol), 

glacial acetic acid (0.9 mL, 15.5 mmol), sodium triacetoxyborohydride (4.470 g, 21.1 mmol) and 

DCE (60 mL). The crude product was purified by column chromatography (CHCl3 95:5 MeOH) 

yielding a yellow crystalline solid (1.202 g, 33%).  1H NMR (600 MHz, Acetone-d6) δ 7.59 (dd, 

J = 5.4, 1.9 Hz, 2H, Ar-H), 7.38 (dd, J = 8.5, 1.9 Hz, 2H, Ar-H), 6.94 (d, J = 8.5 Hz, 2H, Ar-H), 

5.87 (s, 1H, NH), 5.55 (tq, J = 5.9, 1.5 Hz, 1H, CH=C), 4.12 (d, J = 6.4 Hz, 2H, CH2COO), 3.89 

(d, J = 6.1 Hz, 2H, CH2NH), 3.64 (s, 1H), 1.67 – 1.64 (m, 3H, CH3COO), 1.41 – 1.07 (m, 3H, 

CH3); 13C NMR (151 MHz, Acetone-d6) δ 148.7, 132.9, 132.2, 131.9, 125.9, 118.9, 118.6, 117.3, 

115.1, 111.4, 99.0, 58.1, 49.4, 13.6. MS (ES) m/z: 277.750 (M-). 

 

(E)-3-Chloro-4-((4-hydroxy-2-methylbut-2-en-1-yl)amino)benzonitrile (26) 

 

 

 

 

Compound 26 was prepared according to the general procedure for acetate deprotection, starting 

with compound 25 (0.621 g, 2.23 mmol), potassium carbonate (0.934 g, 6.68 mmol), methanol 

(20 mL) and water (2 mL). Purification of the crude product was achieved by column 

chromatography (CHCl3:MeOH:NH3(aq), 80:10:1) yielding a pale yellow semi-solid (0.121 g, 

23%).  1H NMR (600 MHz, Acetone-d6) δ 7.59 (dd, J = 5.4, 1.9 Hz, 2H, Ar-H), 7.38 (dd, J = 8.5, 
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1.9 Hz, 2H, Ar-H), 6.94 (d, J = 8.5 Hz, 2H, Ar-H), 5.87 (s, 1H, NH), 5.55 (tq, J = 5.9, 1.5 Hz, 1H, 

CH=C), 4.12 (d, J = 6.4 Hz, 2H, COOCH2), 3.89 (d, J = 6.1 Hz, 2H, CH2NH), 2.85 (s, 1H, OH), 

1.67 – 1.64 (m, 3H, CH3); 13C NMR (151 MHz, Acetone-d6) δ 149.7, 132.9, 132.2, 131.9, 125.9, 

118.6, 115.1, 111.4, 99.0, 58.1, 49.4, 13.6. MS (ES) m/z: 236.700 (M+). 
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Chapter 3: The Characterisation of StAOX 
 

 

3.1  Introduction 
 

The phytopathogenic fungus Septoria tritici is the most prevalent fungal pathogen in the UK and 

Europe207, devastating the yield of the second most globally important crop224, common wheat 

(Triticum aestivum). S. tritici is the causal agent of Septoria tritici blotch (STB), with 

documented206 yield losses of 30-50% to untreated wheat cultivars. Within the UK specifically, 

typical yield losses for susceptible wheat varieties average to around 20% of a typical harvest, 

without fungicide treatment or crop management207,225. Any reduction in the UK or global crop 

production efficiency, will hamper the FAO226 and peer reviewed estimates227,228 for future food 

demands, which is stated227,229 to increase by 60-110% by 2050.  

 

The primary infection of wheat by S. tritici is initiated through the spread of airborne 

pycnidiospores230 or ascospores231, produced from the pseudothecia or fungal fruiting bodies, 

contacting the leaf surface. After contact with the leaf surface, the ascospores germinate and 

switch to hyphal growth, penetrating the wheat host via the stomata232,233. The nutrient source and 

growth of the hyphae within the intracellular structure of the plant remains enigmatic234, with no 

Figure 16 - Septoria tritici Fungal Life Cycle and Pathogenesis of Wheat Plants241.  
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generation of fungal feeding structures; metabolic changes of the host; or development of visible 

symptoms232–235. This period of growth is commonly referred to as the latent or biotrophic 

phase236. The symbioses between the fungi and the plant occurs through attenuation of the plants 

immune system, preventing host recognition or any fungal apoptosis237,238. This relationship 

between the host and fungal pathogen presents a challenging identification and treatment strategy 

for infected crop fields. 

Following the latent period and substantial hyphae growth, the development of pycnidia is 

initiated239: with visible symptoms including lesions and necrotic areas forming on the leaf 

surface. The development of these symptoms characterises the transition from biotrophic to 

necrotrophic growth, with the secretion of cell wall degrading enzymes240; and thus, the collapse 

of host cells. The release of nutrients following cell death, provides fuel for the increase in fungal 

biomass and formation of mature pycnidia43. Pycnidiospores develop from mature pycnidia, in 

order to spread the infection within the plant or to adjacent plant foliage, thereby completing the 

fungal life cycle (Figure 16)241. The dissemination of these spores is aided by rainfall242,243, with 

optimum conditions244 for growth between 15-20°C, making the UK an ideal climate for the 

spread of STB. 

The treatment of STB can be achieved through a number of classes of fungicides with varying 

modes of action. As mentioned in Chapter 1, the respiration and oxidative phosphorylation of S. 

tritici is often inhibited with the use of compounds which target the mitochondrial enzymes 

Complex II (SDHIs)245,246 or Complex III (QoIs)247–249. The targeting of fungal respiration is used 

as a preventative application and provides mostly fungistatic efficacy80,245, with only a few 

respiratory inhibitors250 providing fungicidal and curative properties. Once the appearance of 

lesions on the leaf are presented, and the necrotic phase precedes, the use of respiratory inhibitors 

fails to rescue the infected plant251,252. The de-methylation inhibitor (DMI) class of fungicides 

target an enzyme in the biosynthesis of ergosterol, which is essential for fungal cell wall integrity. 

This group of inhibitors offer curative properties at an early necrotrophic stage253, due to their 

effective translocation and xylemic distribution throughout the leaf. The treatment of STB can 

still be effectively treated with both of these common classes of compounds but their specific 

single site of action has led to the selection of resistant S. tritici strains40,85,177,208,210,211. 

The evolution of resistant strains consistently stems from a target site mutation in response to 

single site inhibitors37,39,98,183. The role of the S. tritici alternative oxidase (StAOX) in this process, 

and pathogenicity, has yet to be fully established. Work by Miguez et al185 provides evidence to 

suggest that the StAOX reduces the sensitivity of traditional QoI fungicides following infection. 

Alternative respiration187,188 could facilitate the survival of resistant fungal strains during the 
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biotrophic or latent stage of growth when ATP demands are considerably reduced. Further 

evidence to prove these studies in vitro or in planta have yet to be undertaken for S. tritici. 

To investigate the function and role of StAOX, a full characterisation of the enzyme and its 

specific activity is required. Since a protocol specific to fungal AOXs has yet to be determined, a 

methodology adapted from the well-studied Trypanosoma brucei brucei (TAO) provides a useful 

template. Isolated and membrane bound TAO protein will also be used as a tool for comparison 

when evaluating StAOX. This chapter outlines: homology modelling and sequence alignments 

for AOX species; the optimisation for the expression and purification of StAOX within an E. coli 

membrane; the regulation of StAOX via allosteric ligands; and a newly designed liposome 

preparation for the purified fungal AOX. 

 

3.2  Sequence Alignment 
 

The amino acid sequence for StAOX contains 342 residues with Blast analysis showing a 

sequence similarity of 41% with that of TAO and between 55-70% for the AOXs of over 70 

fungal species. The mitochondrial targeting sequence for StAOX was identified using the Mito 

Prot algorithm254 and consisted of 61 amino acids at the N-terminus of the protein, representing 

18 % of the total number of amino acids for the protein.  In comparison, TAO has a targeting 

sequence of only 24 amino acids (7%), and following application of the algorithm across AOX 

fungal species a large variation was seen, ranging from 25-64 amino acids. Figure 17 shows a 

multiple sequence alignment using Clustal Omega highlighting targeting regions, as well as 

important structural features between a series of fungal AOXs and TAO.  

The multiple sequence alignment in Figure 17 shows a high conservation between StAOX and 

other fungal AOXs as well as with TAO. The glutamic acid (TAO numbering: E123, E162, E213 

and E266) and histidine residues (TAO numbering: H165 and H269) responsible for ligating to 

the iron core are highly conserved throughout all AOX species (Figure 17). The residues that 

make up the proposed proton-coupled electron transport (PCET) network (TAO numbering: W65, 

N161, W247 and D265) and were fully conserved apart from W65 which is found to be a tyrosine 

residue (StAOX numbering: Y85) in StAOX. The catalytically important tyrosine residue (TAO 

numbering: Y220) was also found to be conserved across all species.   

 



 

 

 

6
1

 

 

Figure 17 - Multiple Sequence Alignment between fungal AOXs in comparison to TAO. Accession codes as follows: TAO =Q26710; StAOX = F9XCX9; C. auris = 

A0A0L0NPQ3; C. albicans = O93853; G. graminis = J3P8W0; B. fuckeliana = Q8NJ59; A. niger = O74180; N. crassa =Q01355; V. inaequalis = Q9P429; B. graminis = 

Q8X1N9; F. graminearum = K3W1T7. Residues responsible for: Iron ligation = ●; PCET = . [ = start of the N-terminus sequence following leader sequence removal. 
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3.3  Homology Modelling 
 

The results of the multiple sequence alignment identified that StAOX shared a number of 

catalytically important residues with full conservation across both TAO and fungal AOX species. 

However, the blast analysis also identified only 41% conservation between the entire protein 

sequences of these two AOX species. To understand how these similarities and differences 

correlate to the overall structure of both the StAOX protein, and its hydrophobic cavity, a detailed 

assessment via molecular modelling was required. The solution of the TAO crystal structure to 

within a resolution of 2.3 Å with colletochlorin B bound165, allows for detailed assessment of the 

enzyme. A crystal structure for StAOX, or for any fungal AOX, remains unsolved; and therefore, 

required the generation of a homology model via SWISS Model software217 for the analysis of its 

structure.     

Figure 18 presents an overview and side by side comparison of the TAO and StAOX structures. 

Figure 18A and B demonstrated that the surface and overall profile of the proteins was largely 

the same, suggesting that the overall structure of the AOX protein is unaffected by the 59% of 

non-conserved amino acid residues. Figure 18C and D provided further analysis of the secondary 

structure of the protein, and supported the molecular surface results, demonstrating that the 

position and orientation of the helices (α1-6) that make up the AOX protein are comparable 

between TAO and StAOX. The four-helix bundle (α2, 3, 5 and 6) that surrounds the diiron core, 

characteristic of diiron proteins, is also consistent between StAOX and TAO. The final 

comparisons made between TAO and StAOX (Figure 18E and F) are ones relating to the PCET 

network (TAO numbering: W65, N161, W247 and D265; StAOX numbering: Y85, N183, W270, 

D289), which is critical for catalysis in the O2 reduction pathway. As stated in the multiple 

sequence alignment the only point difference between the two proteins is the presence of a 

tyrosine residue (Y85) in StAOX in place of a tryptophan residue (W65) in TAO. 

A more detailed analysis of the active sites of both TAO and StAOX are displayed in Figure 19, 

highlighting the residues in close proximity to the diiron core and at the quinol head group binding 

site. The residues that make up the primary ligation sphere (TAO numbering: E123, E162, E213, 

E266, H165 and H269) along with the tyrosine (TAO numbering: Y220) that is involved in the 

catalytic mechanism are in the same orientation between TAO and StAOX. The residues 

responsible for binding to the quinol head group (TAO numbering: R93, R118 and T219), and 

the leucine residues (TAO numbering: L122 and L212) introducing a bottle- neck within the 

quinol binding site, are orientated in consistent manner across both proteins. This suggests that 

the 3D dimensional shape of the active site is consistent across both proteins. However, the 

cysteine residue (C119 in TAO) in close to proximity to the primary ligation sphere (Figure 19A) 

and catalytically important residues are not conserved in StAOX protein (Figure 19B) which 
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contains an aspartic acid residue (D141). How this aspartic acid residue affects the structure of 

the active site can only be confirmed through determination of the StAOX crystal structure.  

 

Figure 18 - Overview of Structural Differences between the TAO crystal structure (PDB code: 3W54) and the 

StAOX Homology model generated from SWISS model with the AOX inhibitor, colletochlorin B, bound. A = 

Surface model of TAO; B= Surface model of StAOX; C= Ribbon view of TAO with colletochlorin B bound; D= 

Ribbon view of TAO with colletochlorin B bound; E= Detailed view of TAO the PCET network and diiron active 

site; F= Detailed view of StAOX PCET network and diiron active site.  
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Figure 19 - Active sites of both TAO and StAOX with colletochlorin B bound, highlighting full 

conservation of important residues within the TAO (A) and StAOX (B) apart from the C119 residue in 

TAO and D141 residue in StAOX. 
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3.4  Overexpression and Optimisation of recombinant S. tritici and T. brucei 

AOX 

 

The transformation and overexpression of recombinant TAO and StAOX in the FN102 E. coli 

strain was achieved according to the methodology outlined in Section 2.2. Initial results indicated 

a substantial difference in yields between TAO and StAOX E. coli membrane cultures, with 

average wet weights from a 4x 1L growth of 34 g and 22 g respectively. To investigate any 

significant differences between the size of the protein or level expression, a Coomassie and 

Western Blot analysis were carried out using the His-Tagged antibody (Figure 20). From the 

Western Gel analysis in Figure 20A, a clear difference in intensity can be seen between both 

bands. Since the same concentration of membrane was loaded from each sample (15 μg), the 

difference in intensity can be correlated to an increase in AOX expression.   

 

 

To determine whether the low expression and yield of StAOX protein was the result of either, the 

overexpression and E. coli growth experimental conditions, or a result of the activity or structure 

of StAOX, a thorough optimisation process was required. The variables influencing StAOX 

expression and activity including: structure (His or Twin-Strep Tag with and without leader 

sequence), biological buffer, inducer concentration (IPTG) and incubation temperature were 

investigated. 

 

Figure 20 - Western Blot analysis (A) and Coomassie Gel (B) displaying TAO vs StAOX membrane 

samples. Sample lanes from Left to Right: 1 = TAO, 2 = StAOX each loaded with 15μg. Western Blot 

detected using His Tagged Antibody. 
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 Structural Alterations 

 

It was important to investigate the variables that influence protein folding such as changes to the 

StAOX amino acid sequence and thus structure. The removal of the mitochondrial targeting 

sequence has been found212 to improve the specific activity of TAO and the incorporation of a 

Twin- Strep tag showed an improvement in purification efficiency. The creation of a new bacterial 

plasmid incorporating the Twin-Strep tag and without the mitochondrial targeting sequence was 

used to compare expression and specific activity of StAOX to that of the original His tagged 

plasmid (Table 11). 

 

Table 11  

Investigation into Structural Alterations to the StAOX protein 

StAOX Purification Tag 

Leader Sequence Cleavage 

Length 

Specific Activity/ 

nmol of O2 mg-1. min-1 

His-Tag - 15.6 ± 0.6 

Twin-Strep Tag Δ61 23.6 ± 1.2 

Note. All assays performed in Tris buffer (pH 7.5, 50mM) with the addition of KCN (1 mM) and NADH (1.25 mM) 

and with measurements carried out on an Oroboros O2-k Respirometer. Sequence cleavage length determined using 

the Mito Prot algorithm254. 

 

 Buffer Influence 

 

The buffering capacity, ionic strength and ability to complex with metal ions are important factors 

to consider when selecting the correct buffer. The first use of a biological buffer occurs during 

harvest of E. coli membranes and resuspension in Tris buffer (pH~ 7.5) and is present during 

disruption, centrifugation, assay and storage. The use of a Good’s buffer255, MOPS, and its effect 

on the specific activity of StAOX following a successful harvest was analysed. MOPS buffer was 

selected due to its effective pH range within typical biological conditions (pH 6.5-7.9) and 

suitability for redox studies due to its lack of chelation to metal centres256. 

Figure 21 presents the specific activity of StAOX following harvest in MOPS and Tris, with 

comparable assay conditions in each corresponding buffer. An approximate two-fold increase in 

specific activity between a MOPS and Tris harvest is determined when assayed in MOPS. The 
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activity of the Tris harvest can also be enhanced following measurements in MOPS assay, 

suggesting the dilution of Tris buffer during assay measurements rescues StAOX activity.  

 

To investigate the effect of the buffer change on the stability of the StAOX membranes; specific 

activities were also assessed following incubation of the samples over 24 hours for a series of 

typical temperatures. Figure 22 displays the specific activity for StAOX samples following 

storage at both 4 °C and -20 °C in either MOPS or Tris buffer as well as under both buffer assay 

conditions. Following storage at 4 °C and 20 °C the MOPS harvest samples consistently retained 

the most activity when assayed in the same buffer and the overall baseline activity was 

significantly higher than Tris. In contrast, when measurements were performed in Tris buffer and 

the E. coli membranes were harvested in Tris, the StAOX activity was diminished. Furthermore; 

assay measurements performed in MOPS buffer rescued the activity lost after a Tris harvest and 

provided an increase in baseline activity after storage at -20 °C. These results are important to 

consider when performing inhibition studies, as the measured activity should correlate to a dose 

response rather than deterioration of the StAOX protein.  

 

 

Figure 21 - The influence of Buffer on the Specific Activity of StAOX membrane samples. All assays 

performed at 25 °C in the appropriate buffer (2 ml) with the addition of KCN (1 mM) and the substrate, 

NADH (1.25 mM), to initiate AOX turnover. 
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 IPTG Concentration 

 

The effect of the concentration of the protein expression inducer, IPTG, was investigated to 

determine whether the lack expression was a consequence of insufficient sugar concentration to 

transcribe the lac operon operator. The effect of differential concentrations of IPTG was evaluated 

by wet weight, western blot and enzyme specific activity. Figure 23 provides an overview for the 

influence of IPTG concentration on the specific activity and wet weight yield for a given StAOX 

E. coli expression. The wet weight per litre of broth was largely unaffected by the concentration 

of IPTG but the enzymatic activity was shown to be maximised at 300 μM.  

 

Figure 22 – Stability of enzymatic activity of StAOX E. coli membrane samples following 24 hr storage 

at 4 °C and -20 °C under both Buffer Harvest and Assay Conditions. All assays performed with the 

appropriate buffer at pH 7.5 (2 ml), KCN (1 mM) and NADH (1.25 mM).  Baseline activities (nmol of O2 

min-1.mg-1) prior to storage: Tris Harvest with Tris Assay = 8.38 and MOPS Assay = 14.08; MOPS 

Harvest with Tris Assay = 14.28 and MOPS Assay = 32.26.  
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The western blot analysis (Figure 24) showed a slight increase in expression for the 300 μM band, 

in accordance with the increase in enzymatic activity, but still remained lower respectively than 

that of TAO. It was clear that a small advantage may be gained from using an IPTG concentration 

of 300 μM, but not significant enough to produce comparable expression to that of TAO.  

 

 

Figure 24 - Western Blot Analysis displaying IPTG Concentration Screen. Sample lanes from Left to 

Right: 1= 25 μM, 2 = 75 μM; 3 = 100 μM; 4 = 200 μM; 5 = 300 μM; 6= 400 μM; 7 = 500 μM. Loaded 

with 15 μg of protein and detected using the Twin-Strep antibody. 

Figure 23 - Effect of IPTG on StAOX Expression. Wet weight of E. coli membrane /L of broth (Red) 

and Specific O2 Activity (Green) 
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 Incubation Temperature 

 

The incubation temperature for batch E. coli membrane preparations has a significant influence 

on the protein quality and biomass production. An increase in post induction temperature was 

used to investigate any promotion in E. coli cell growth or overall protein expression. As shown 

in Table 12; a post induction temperature rise provided a boost in wet weight combined with an 

increase in enzymatic activity.  

 

Table 12 

Effect of temperature on the specific activity and yield of a typical StAOX overexpression preparation 

Temperature Wet Weight/ g 
Specific Activity/  

nmol of O2 min-1. mg-1 

30 °C 7.29 25.57 ± 0.52 

37 °C 7.63 30.53 ± 1.17 

Note. All assays performed in MOPS (65 mM, pH 7.5) with the addition of KCN (1 mM) and NADH (1.25 mM). 

When carrying out the E. coli membrane preparation methodology outlined in Section 2.2, incubation temperature 

was increased following AOX induction with IPTG (300 μM).  

 

 

 Final StAOX Yield and Activity Comparisons 

 

The optimisation of the experimental conditions and structural alterations for the overexpression 

of the StAOX E. coli membrane protocol, demonstrated an improvement in both wet weight yield 

and specific activity of the protein. The yield of StAOX E. coli membrane samples was increased 

by 45% and the enzymatic activity was effectively doubled as shown in Table 13. Comparisons 

were also made to both protozoan (TAO) and plant (SgAOX) AOX species, highlighting a 

significant difference in specific activity between the enzymes. StAOX turnover only is only 9.6% 

of the plant activity and 21% of the protozoan activity. Since the expression protocol was 

optimised through the alteration of a series of parameters, it could be suggested that the low AOX 

turnover is characteristic of the protein itself. However, the bacterial E. coli membrane system is 

far removed from the native StAOX membrane found in the mitochondria of fungi. It should 

therefore be noted that further optimisation of the expression of StAOX may improve this baseline 

activity further. 
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Table 13 

Measured Specific Activity and Wet Weight Yields for E. coli Membrane preparations 

AOX Preparation Wet Weight/ g 

Specific Activity/ 

nmol of O2 min-1.mg-1 

StAOX - Original 22 ± 0.5 15.6 ± 0.6 

StAOX - Optimised 32 ± 0.7 32.6 ± 0.1 

TAO 34 ± 0.2 685 ± 9.4 

SgAOX N/A 313 ± 18* 

Note. *Unpublished data carried out by Fei Xu. All assays performed in MOPS (65 mM, pH 7.5) with the addition 

of KCN (1 mM) and NADH (1.25 mM) except for the original StAOX preparation which was carried out in Tris 

buffer (50 mM, pH 7.5). Stated values are the average of 3 isolations ± standard deviation. 

 

 

3.5  Regulation of StAOX 
 

 

 Screening of Classical Regulators 

 

Since the baseline enzymatic activity could not be improved through optimisation of the 

overexpression protocol, it could be that the StAOX is activated and regulated through a stress 

response pathway, to increase its biological activity when required. Our understanding of the plant 

AOX shows a regulation through the use of the α-keto acid, pyruvate, providing an activation 

through an allosteric ligand. As mentioned earlier, StAOX does not contain either the QDC/ENV 

motifs or regulatory cysteines to provide a site for activation through pyruvate; but it is yet to be 

reported as to whether StAOX responds to allosteric ligands at an alternative binding site. To 

investigate potential regulation, a series of classical regulators were investigated by measuring 

the specific activity of StAOX in E. coli membrane samples. 
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Figure 25 shows the response of the specific activity of the StAOX when incubated with a range 

of purine nucleotides and keto-acids. The lack of regulation from pyruvate was confirmed 

supporting the hypothesis that both the ENV/QDC motif and the regulatory cysteines are required 

for activation. Incubation with GMP (1.5mM) and IMP (1.5mM) showed a dramatic increase in 

specific activity for oxygen, with 4 times the basal rate for both nucleotides. However, the 

structurally related AMP (1.5mM) showed a similar, yet significantly smaller activation of 

StAOX (2.5 times fold change), suggesting a structural property or biosynthetic pathway unique 

to both GMP or IMP is important for activation. These results corroborate with previous work by 

Siedow et al164 suggesting the fungal AOX is activated by nucleotides, however the activation 

was found to be smaller in the literature.  

 

Further assessment of the GMP activator was also carried out to ascertain the maximal 

concentration for effective StAOX stimulation. The maximum concentration correlating to a 

maximum fold change in activity was 7 mM of GMP (Figure 26). 

 

 

Figure 25 – Influence of Classical Regulators on the Specific Activity of StAOX as measured by fold 

change. All regulators were used at a concentration of 1.5 mM. Regulators were added after KCN 

(1mM) and NADH (1.25 mM) additions against StAOX E. coli membrane samples in MOPS buffer 

(65mM, pH 7.5). Baseline activity for StAOX E. coli membrane samples = 30.21 ± 0.8 nmol of O2 mg-

1.min-1. 
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 In silico evaluation of regulator binding sites 

 

The discovery that StAOX is activated by purine nucleotides allowed for an in-silico assessment 

of potential binding sites for the activation of the enzyme. Using MOE and Maestro molecular 

modelling software, a suitable site for nucleotide binding was found on the matrix side of the 

protein surface, as well as at the dimer interface. Docking of the GMP and IMP molecules within 

the monomer and dimer binding sites generated docking scores that correlate to a requirement for 

millimolar concentration of the purine nuceltoides (Table 14). The nucleotide AMP was also 

docked in the same monomer site with a lower docking to score to that of GMP and IMP (Table 

14) which correlated to the activation data shown in Figure 25. 

 

 

 

 

 

 

Figure 26 - Titration of GMP on StAOX E. coli membrane samples to determine the maximum 

concentration for activation. All assays carried out in MOPS buffer (65 mM, pH 7.5), KCN (1 mM) 

and NADH (1.25 mM). Baseline Activity for StAOX = 32. 08 ± 0.3 nmol of O2 mg-1.min-1.  
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Table 14  

Purine Nucleotide Docking Scores to the StAOX Homology Model 

Purine Nucleotide  

Docking Score (S) 

Monomer Dimer 

GMP -7.08 -6.56 

IMP -6.94 -6.21 

AMP -6.71 -5.67 

Note. StAOX structure energy minimised according to Maestro and MOE molecular modelling software guidelines.  

 

Using GMP as an example, an overview of the interaction at both monomer and dimer binding 

sites for purine nucleotides is displayed in Figure 27. Figure 27A and B display the GMP binding 

position on the matrix side of the StAOX surface model for the monomer and dimer, respectively. 

Further analysis of the StAOX helices show that the monomer binding site (Figure 27C) is 

created by both α3 and α6 helices whereas the dimer binding position (Figure 27D) is created at 

the dimer interface between α3 and α3*. To provide further context as to the position of the GMP 

binding sites on the StAOX structure; Figure 27D and E provides a view of GMP binding in 

relation to the diiron active site and PCET network for both sites. Figure 28 highlights the 

residues potentially responsible for the interactions at these binding sites, with hydrogen bonds at 

residues P83, E179, T176 and K292 for the monomer binding site and hydrogen bonds with the 

E179 on α3 helix and the E175 on α3* helix. The interactions with the purine nucleotides are 

clearly reduced in the dimer position which are highlighted by the lower docking scores in Table 

14.  

It is, however, important to note that the site mapping results obtained from the analysis of the 

StAOX homology model is preliminary and purely theoretical. Mutagenesis studies of the key 

residues P83, E179, T176 and K292 at the monomer binding site would be required to confirm 

the presence of this binding site. Equally the stabilisation of a dimeric conformation of the 

enzyme, together with a nucleotide binding site between each StAOX monomer, would require 

investigation through circular dichroism. However, careful analysis of both the TAO (protozoa) 

and SgAOX (plant) amino acid sequence aligned with the StAOX protein, highlight the absence 

of the residues implicated in the monomer binding site. For example, the TAO protein does not 

contain the E179 or K292 residues. Similarly, the SgAOX sequence displays a lack of 

conservation for residues P83, T176 and K292 within the StAOX monomer nucleotide binding 

site. Since neither of these enzymes respond to nucleotide activation (unpublished data), this 

analysis supports the site mapping data and docking results from MOE and Maestro software. 
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Figure 27 - Docking results on the StAOX homology model for the allosteric ligand, GMP, including 

colletochlorin B bound, the PCET network and the iron ligation sphere. I. A= Surface model for 

monomer bound GMP; B= Surface model for Dimer interface binding; C= Ribbon Representation of 

GMP bound monomer; D= Ribbon representation of GMP bound at Dimer Interface; E= GMP location 

in regards to the PCET network; F= GMP binding at the dimer interface with the PCET network 

highlighted. 
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Figure 28 - Binding modes of GMP on the StAOX homology model at both monomer (A) and dimer (B) 

sites. All H-bond interactions with residues that make up the respective GMP binding sites are 

represented by the yellow dotted lines. 
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3.6  Purification of TAO  
 

In order to evaluate an isolated inhibition and binding interaction between the AOX protein and 

the compounds synthesised in Chapter 4, a purified AOX protein sample was required. The only 

established protocol for purification of the AOX protein is that from TAO; and therefore, it would 

be beneficial to purify the TAO protein to act as a comparison to that of any purified StAOX 

samples. Although the results for inhibiting the TAO protein may not correlate directly with 

StAOX protein it will still help to clarify the binding site differences outlined in Section.   

The inclusion of either the His or Twin Strep tag on the N-terminus of the AOX protein provided 

a means for facile purification for the T. brucei species. The purification for TAO was performed 

according to the published257–259 methodology outlined in Section 2.3: with the use of either 

TALON® beads for the His-tagged protein; or the high affinity Strep-Tactin® beads for the Strep-

tagged proteins. Previous studies for TAO257,259 found that the optimal conditions required the use 

of Octyl Gallate (1.4%) for the solubilisation of the protein, and the use of a low concentration of 

DDM (0.042%) to provide stability for the eluted protein. The purified protein was analysed by 

measuring its enzymatic activity (Table 15), in regards to its substrate quinol, as well as using 

Western Blot Analysis (Figure 29). 

 

 

 

Figure 29 - Western blot analysis (A) and Coomassie gel (B) for TAO membrane and pure protein. 

Sample lanes: 1= TAO membrane; 2 = TAO pure. Western blot analysis analysed using the AOA1 

antibody. Each lane loaded with 15 μg of protein.  
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Table 15  

Purified TAO Specific Activity and the Effect of the Purification Tag 

Purified TAO sample Specific Activity/ μmol of Q2H2 mg-1. min-1 

TAO- His 17 ± 0.7† 

TAO- Twin-Strep 79.4 ± 6.3 

Note. †His-tagged protein contains the full StAOX sequence and the Twin-Strep protein is without the mitochondrial 

targeting sequence (Δ61). All assays performed spectrophotometrically measuring at 278 nm in MOPS (65 mM, pH 

7.5) and with the addition of Q2H2 (150 μM). 

 

3.7  Purification of StAOX 
 

Since the isolation and purification of StAOX is yet to be determined in the published literature 

to date; the established purification protocol for TAO required modification to accommodate the 

fungal AOX. The net charge on the Δ61 Twin-Strep StAOX protein differs in comparison to that 

of the Twin-Strep TAO protein, with isoelectric points of 6.67 and 8.42, respectively. It was 

unclear what role the charge on the protein will have following solubilisation and elution, it wass 

therefore important to investigate the influence of varying conditions and detergents on both 

recovery and enzymatic activity. The incorporation of either a His or Twin Strep tag provided a 

means of separation in a similar manner to that of TAO. The StAOX E. coli membrane samples 

without the leader sequence (Δ61) and the Twin-Strep tag were taken forward through purification 

optimising steps, in the expectation that a similar improvement in yield and specific activity, could 

be achieved as reported by Jones et al260.  

 

 Solubilisation 

 

The most critical stage for purification of membrane bound proteins occurs upon solubilisation of 

the target enzyme away from its natural lipid environment. The use of mild detergents ensures 

sufficient disruption of the lipid membrane to cleave the desired protein and lipids into stabilising 

micelles. The strength and concentration of the detergent play a significant role in the amount of 

lipid and protein incorporated into the final detergent micelle, and the subsequent stability of the 

membrane protein. Therefore, a range of detergents containing both positively and negatively 

charged moieties were analysed and both protein recovery and enzymatic activity were 

determined.   
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Table 16  

Solubilisation Buffer Screening for StAOX 

Detergent Protein Recovery/ mg 
Specific Activity/ μmol of 

Q2H2 mg-1. min-1 

Dodecyl Maltoside (DDM) 1.25 0.002 

Octyl glucoside (OG) 0.33 0.0031 

FC12 3.32 0.04 

UDAO 0.05 - 

MEGA-9 0.04 - 

Note. All assays performed spectrophotometrically measuring at 278 nm in MOPS (65 mM, pH 7.5) and with the 

addition of Q2H2 (150 μM). 

 

The Western analysis in Figure 30 shows that the detergents DDM, OG and FC12 provide good 

solubilisation with only trace quantities present in the unsolubilised fraction. However, from 

Western blot analysis, a clear distinction between the detergents could not be made, and therefore 

a focus on the highest protein recovery and enzymatic activity were assessed. It is clear from 

Table 16, that FC-12 provided the best solubilisation, with the highest protein recovery and 

specific activity for the substrate quinol. 

 

Figure 30 - Western blot analysis investigating the optimal deteregnt for StAOX solubilisation. Sample 

Lanes: 1 = DDM sol.; 2 = DDM pellet; 3= OG sol.; 4 = OG pellet; 5 = FC-12 sol.; 6 = FC-12 pellet; 7 = 

UDAO sol.; 8 = UDAO pellet; 9 = MEGA-9 sol.; 10= MEGA-9 pellet. Western blot analysed using a 

Twin-Strep antibody. All sample lanes loaded with 15 μg of protein. 
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The salt concentration present in the solubilisation buffer can affect both the solvation sphere 

surrounding the protein-lipid micelles, as well as stabilising the charge on the protein in solution. 

The effect of a range of NaCl concentrations were assessed in similar manner as the detergent 

screen with both enzymatic activity and protein recovery assessed in Figure 31. The data 

presented in Figure 31 shows that maximal enzymatic activity was achieved at a salt 

concentration of 200 mM with the second highest protein recovery. Western Blot Analysis 

(Figure 33A) was also carried out to identify the highest specific AOX concentration within the 

solubilised StAOX sample. A concentration of 500 mM displayed the highest concentration of 

AOX, however, since this optimisation investigation was concerned with maximising enzymatic 

activity a salt concentration of 200 mM was taken forward to further optimisation steps.  

 

 

To understand the effect of pH on the enzymatic activity and effective solubilisation of the StAOX 

protein, a series of MOPS buffers containing FC-12 (2%) and NaCl (200 mM) were prepared. 

The specific activity and protein recovery data shown in Figure 31, along with the Western Blot 

Analysis (Figure 33B), supported the use of a pH close to biological conditions (pH 7.5). 

 

Figure 31 - Effect of Salt concentration on the Specific activity (Blue) and Protein recovery (Red) on 

solubilised StAOX. Specific activity assays performed spectrophotometrically measuring at 278 nm in 

MOPS (65 mM, pH 7.5) and with the addition of Q2H2 (150 μM). 
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Figure 32 - Effect of pH on the Specific Activity (Blue) and Protein Recovery (Red) on solubilised 

StAOX. Specific activity assays performed spectrophotometrically measuring at 278 nm in MOPS (65 

mM, pH 7.5) and with the addition of Q2H2 (150 μM). 

Figure 33 - Western blot analysis investigating the influence of Salt Concentration (A) and pH (B) on 

solubilised StAOX protein. Samples lanes A: 1 = 200 mM MgSO4; 2 = 100 mM NaCl; 3 = 200 mM NaCl; 

4 = 300 mM; NaCl 5 = 400 mM NaCl; 6 = 500 mM NaCl. B: 1 = MES pH 6; 2 = MOPS pH 6.5; 3 = 

MOPS pH 7; 4 = MOPS pH 7.5; 5 = MOPS pH 7.9. Analysis carried out using the Twin-Strep antibody. 
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As described earlier, the extent to which the lipid membrane is disrupted and incorporated into a 

protein-lipid micelle is dependent on the detergent concentration. A series of detergent 

concentrations were analysed according to both specific enzymatic activity and protein recovery 

in a similar manner to previous optimisations as shown in Figure 34. Western Blot Analysis 

(Figure 35) demonstrated good solubilisation across all detergent concentrations, however the 

increase in enzymatic activity and protein recovery favoured the use of a 2% FC-12 detergent 

concentration. 

 

Figure 35 - Western Blot analysis for solubilised StAOX protein and the influence of FC-12 

concentration on StAOX recovery. Samples lanes: 1 = 0.1%; 2 = 0.2%; 3 = 0.4%; 4 = 1%; 5 = 2%. 

Analysis performed using Twin- Strep antibody and with samples lanes loaded with 15 μg. 

Figure 34 - Effect of detergent concentration on the Specific Activity (Blue) and Protein Recovery 

(Red) on solubilised StAOX. Specific activity assays performed spectrophotometrically measuring at 

278 nm in MOPS (65 mM, pH 7.5) and with the addition of Q2H2 (150 μM). 
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 Elution  

 

The best solubilisation buffer conditions for StAOX were taken forward, and acted as a 

comparison when establishing the optimal stabilising elution detergent. The concentration of the 

elution detergent was reduced by ten-fold, as a high concentration was no longer required to 

disrupt lipid membranes. The stabilising effect of the elution detergent and buffer, ensure the 

correct folding of membrane proteins within a detergent micelle; and therefore, the elution 

detergent required screening in the same manner as solubilisation.  

Table 17  

Specific Activity in Response to Different Elution Buffer Conditions 

Detergent 

Protein Recovery (mg) 

DDM FC12 

DDM 0.04 0.05 

OG 0.003 0.012 

FC-12 0.33 0.40 

UDAO 0.005 - 

MEGA -9 0.07 - 

Note. Specific activity assays were performed spectrophotometrically measuring at 278 nm in MOPS (65 mM, pH 

7.5) and with the addition of Q2H2 (150 μM). 

 

Analysis by Western blot (Figure 36) showed that following solubilisation and purification, an 

elution buffer containing either FC12 or DDM provides the highest StAOX concentration. The 

estimation of the protein recovery listed in Table 17 supported this analysis.  
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 Final Optimised Purified StAOX Conditions  

 

Following extensive optimisation of the conditions for purifying StAOX, it was found that the 

purified protein still exhibited a low specific activity and recovery weight in comparison to TAO. 

However, purification of the His-tagged protein demonstrated a considerable increase in specific 

activity in comparison to the Twin-Strep tag protein (Table 18). It could be suggested that either 

the loss of the leader sequence or difference in purification Tag was responsible for the loss in 

activity. However, it may also be the case that the StAOX is more reliant on the lipid membrane 

to exhibit high quinol oxidation. 

Table 18   

Purified StAOX Specific Activity and the Effect of the Purification Fusion tag. 

Purified StAOX Sample Specific Activity/ μmol of Q2H2 mg-1. min-1 

StAOX - His 0.450 ± 0.025 

StAOX – Twin- Strep (Δ61) 0.0242 ± 0.002 

Note. Specific activity assays were performed spectrophotometrically measuring at 278 nm in MOPS (65 mM, pH 

7.5) and with the addition of Q2H2 (150 μM). 

Figure 36 - Western Blot analysis investigating a series of elution detergents under both DDM and 

FC-12 solubilisation conditions for StAOX. Analysed using the Twin- Strep antibody. Samples loaded 

with 10 μl of purified StAOX protein sample.  
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3.8  Proteoliposome Incorporation 
 

The assessment of enzymatic activity of purified StAOX was further evaluated in a self-assembled 

artificial membrane system, known as a proteoliposome, complete with a quinone reduction cycle. 

This artificial membrane system mimics the natural lipid environment for membrane bound 

proteins, as well as facilitating the use of the native substrate for the AOX, Q10, which due its 

hydrophobicity, prevents its use with purified protein samples. In contrast to the E. coli membrane 

samples, the concentration of the substrate can be determined, allowing for the measurement of 

precise enzyme kinetics such as Km and Vmax constants. The proteoliposomes were prepared 

according to a modified protocol by Jones et al212, incorporating solubilised Twin-Strep StAOX, 

an external NADH dehydrogenase (NDI) and the natural isoprenoid substrate quinone (Q10). 

Figure 37 provides an overview of the proteoliposome system and quinone reduction cycle.  

 

The reduction cycle was initiated with the addition of NADH (1.25 mM) and StAOX activity was 

indirectly measured spectrophotometrically by measuring NADH consumption at 340 nm. The 

inclusion of an excess of NDI within the liposome system, ensured the AOX was rate limiting 

and that in fact the measured NADH reduction was equal to quinol oxidation through the AOX. 

The incorporation of the purified StAOX within the proteoliposome system was kindly carried 

out by Dr. Alice Copsey. Table 19 outlines the enzymatic activity for the Twin- Strep StAOX 

protein under both the detergent and lipid environment. A significant increase in enzymatic 

activity was measured following incorporation of the purified StAOX sample into the 

proteoliposome with over 3 orders of magnitude increase in activity. The data obtained provides 

an indication that StAOX is sensitive to either its lipid environment or the substrate that used.  

Figure 37 - A = Overview of Quinone reduction cycle in the Proteoliposome system. B = 

Representation of Proteoliposome Lipid Bilayer (Image from http://lipolife.co.uk). 

http://lipolife.co.uk/
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Table 19.  

Specific Activity for purified StAOX protein in Different Lipid/Detergent Environments 

Detergent/ Lipid Environment for Pure StAOX 

Specific Activity 

(μmol of Quinol mg. min-1) 

Solubilised (FC-12) 0.0242 ± 0.020 

Proteoliposome bound 81.5 ± 2.35 

Note. Specific activity assays were performed spectrophotometrically measuring at 278 nm in MOPS (65 mM, pH 

7.5) and with the addition of Q2H2 (150 μM). 

 

 

3.9  Conclusions 
 

The literature supporting the role of StAOX in pathogenesis and in the development of resistance 

fungal strains is limited, but there is however a large number of studies on the fungal AOXs from 

other species. The intra species Blast analysis was used to corroborate these findings and present 

a role for similar phytopathogenic fungal AOXs. The Blast analysis of the StAOX amino acid 

sequence showed an average similarity of around 60% with over 75 fungal species suggesting a 

similar tertiary structure and phylogenetic relationship. The highly conserved residues necessary 

to chelate to the iron centre and residues that make up the PCET network are fully conserved, 

apart from the amino acid residue W65 in TAO and Y85 in StAOX. The influence of this residue 

on O2 reduction catalytic mechanism and PCET remains enigmatic, and therefore will require 

investigation through future mutagenesis studies. However, the difference in specific activity 

between TAO and StAOX in regards to O2 consumption suggests it may influence AOX turnover.  

The residues in close proximity to the diiron active site are also conserved between AOX species 

except for the C119 in TAO which is replaced by a D141 as shown in Figure 38A. In fact, this 

residue is not conserved between the fungal AOXs or TAO and its effect on the structure or 

enzymatic activity has yet to be determined.  

The sequences for TAO and the fungal AOXs differ at the entrance to the hydrophobic cavity, 

presenting the opportunity for differential binding poses for the isoprenoid tail of the natural 

substrate. More specifically, the phenylalanine residue, F212, located in StAOX is highly 

conserved throughout fungal species but is not present in TAO. The significance of these residues 

on the overall structure of StAOX and binding of quinol, became clearer following homology 

modelling and comparisons to that of the crystal structure for TAO (Figure 38B). 
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Figure 38 - StAOX binding site with docked quinol substrate (Q2) displaying differences in the active 

site with the presence of the D141 residue (A) and the presence of the F212 residue at the opening to 

the quinol binding site (B). 
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The homology model and structure of StAOX is predicted from the crystal structure for TAO 

(PDB code: 3W54) and can therefore only be used as a guide in regards to internal distances and 

exact residue locations. The high conservation of important residues surrounding the diiron core 

and hydrophobic cavity residues, however, allows reasonable presumptions to be made. For 

instance, the F212 residue that is located at the entrance to the hydrophobic cavity clearly reduces 

the size and entrance for the quinol substrate (Figure 38B). Also, the D141 residue is in close 

proximity to the diiron core to influence the binding and affinity for the quinol substrate (Figure 

38A). Overall the structure of StAOX is similar to that of TAO with a 4-helix bundle surrounding 

a diiron core and membrane bound helices adjacent to the entrance to the active site. 

Initial attempts for the overexpression of StAOX highlighted a significant reduction in expression 

and yield in comparison to TAO. Specific activity measurements also revealed an enzymatic 

activity considerably lower than that of TAO and the plant species, S. guttatum. It was therefore 

important to optimise the protocol for the fungal AOX to boost total yield and expression. An 

increase in the concentration of the inducing reagent, IPTG, from 25μM to 300μM saw a 

negligible increase in the expression and total yield, but provided a 50% increase in enzymatic 

activity. The influence of a higher post induction temperature of 37°C provided an expected 

increase in total cell yield and expression of StAOX, matching the reported optimal growth 

conditions of E. coli. The removal of the mitochondrial targeting sequence and inclusion of the 

smaller Twin-Strep tag once again failed to dramatically enhance the specific activity or 

expression. Since the optimisation failed to increase expression and total wet weight of cells it 

could be suggested that the protein itself is responsible for the lack of improvement. The haem 

deficient E. coli strain is heavily dependent on the AOX for growth following induction, and since 

the specific activity of StAOX is low, the opportunity for hindered respiration and cell death is 

high. The diminishing returns from further optimisation of the expression protocol for StAOX 

prevented an investigation of additional variables; and therefore, an increase in batch size would 

suffice and yield the desired increase in total protein. 

In contrast to these findings, the introduction of the MOPS buffer provided both an increase in 

specific activity, and reduction in a loss of activity following sample storage. The improvement 

of stability and function of StAOX could be attributed to the temperature dependence of Tris and 

MOPS buffers to pH. The temperature dependence to pH can be represented by the relationship 

ΔpKa/ΔT, the value of which is -0.028 for Tris buffer and 0.015 for MOPS. In practicality, this 

represents a fluctuation of pH for a Tris buffer from pH = 7.5 at 25 °C to pH = 8.76 at -20 °C, 

whereas for MOPS buffer the pH at -20 °C is only 6.8, representing only half the change in pH. 

The results of this buffer change were seen in TAO membrane samples as well, suggesting that 

the performance of other species of AOX benefit from smaller pH swings. 
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Following optimisation, the baseline activity of StAOX was still shown to be lower than that of 

AOXs from other species and still raised questions as to its importance within a bioenergetic 

system. The regulation of StAOX through the nucleotides GMP, IMP and AMP, suggests there is 

a mechanism for a biological switch to enhance the normal physiological activity of the enzyme 

when required. The conditions in which this would occur could be when the use of QoI fungicides 

interrupt the ETC within the mitochondria or following attack from the host plant defence systems 

occurring during the latent phase of growth. Such a suggestion would make sense from an 

evolutionary perspective, since an AOX with high baseline activity would negate the function of 

the cytochrome bc1 complex and disrupt proton pumping, and ATP generation, due to an overly 

oxidised quinone pool. It would also follow an analogous role to that of the AOX in plants, which 

is highly regulated through the generation of the keto acid, pyruvate. 

Using the site mapping algorithm on both Maestro and MOE molecular modelling software, a site 

for allosteric ligand binding was discovered spanning across both of the monomers and at the 

dimer interface on the matrix side of the protein. The docking of GMP, IMP and AMP onto the 

mapping surface identified the monomer and dimer binding sites outlined in Section 3.5.2 . The 

proximity of the monomer purine nucleotide binding site to the PCET network suggests it could 

play a role in aiding the transfer of protons and electrons from molecular O2 to oxidise quinol. 

However, this hypothesis is purely theoretical and would require extensive mutagenesis and 

photochemical studies170 around the GMP binding site to ensure its validity. In contrast, the 

suggested purine nucleotide binding site at the dimer interface may offer a conformational 

alteration of the StAOX enzyme to enhance the enzyme turnover. Once again, further studies 

using circular dichroism (CD) will be required to support the theory of altered conformation of 

the protein following purine nucleotide binding. 

Figure 39 - Residue interactions between GMP and the StAOX homology model at both Monomer and 

Dimer Binding sites. 
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A detailed view of the suggested residues responsible for binding to the purine nucleotide 

molecule, GMP, can be shown in Figure 39. At the monomer binding site (Figure 39A) the E179, 

K292 and P83 residues allow for hydrogen bonding to both the guanosine nucleotide and 

phosphate group of the GMP molecule. A further hydrogen bond interaction can be seen between 

the hydroxyl group on the pentose sugar ring with the backbone of residue T176. The dimer 

binding site (Figure 39B) displays fewer hydrogen bond interactions but binds to both the E179 

and P83 residues found in the monomer binding site. The differences in the number of residues 

interacting with the purine nucleotide is reflected in the docking scores presented in Section 3.5.2 

Docking of the purine nucleotide, AMP, generated a lower score across both sites in comparison 

to that of both IMP and GMP, which correlates to the lower activation of StAOX shown in Figure 

25. However; to fully investigate the interaction between purine nucleotides and StAOX, purified 

StAOX protein was necessary to clarify whether the activation found in E. coli membrane samples 

was through a direct or indirect mechanism.  

An attempt was made to purify the StAOX protein to evaluate its enzyme kinetics, with and 

without purine nucleotide activation; as well as to assess direct interactions or inhibtion with 

fungicide candidates synthesised in Chapter 4.   Purification of StAOX was achieved for both 

the His and Twin-Strep tagged proteins but highlighted a clear disadvantage following the 

introduction of the new vector, containing the Δ61- StAOX sequence and Twin-Strep fusion tag. 

The His-tagged protein exhibited a 20-fold increase in specific activity in comparison to the Twin 

Strep tagged protein as shown in Table 20. The addition of the new Twin-Strep tag was shown 

in unpublished studies to improve the purification of TAO upon binding to the Strep-tactin® 

column and subsequent recovery. The addition of this tag as shown in Table 20 has no negative 

consequences on the specific activity of TAO and is therefore unlikely to be responsible for the 

reduction in StAOX activity. The removal of the StAOX mitochondrial targeting sequence 

represents a loss of 18% from the full-length sequence, reducing the isoelectric point to 6.67. In 

comparison, the isoelectric point and net charge of the TAO protein is largely unaffected from 

removal of the targeting sequence representing just 7% of the protein. It is therefore important to 

note that the restricted length StAOX protein may have an influence on the purified protein 

activity and its stabilisation within the lipid-detergent micelle. 
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Table 20  

Differences in Specific Activity and pI following AOX Purification 

Enzyme 

Specific Activity 

(μmol of Quinol mg-1. min-1) Isoelectric Point (pI)* 

His Twin-Strep His Twin-Strep† 

TAO 17.3 ± 0.7  79.4 ± 6.3 8.80 8.42 

StAOX 0.450 ± 0.025 0.0242 ± 0.002 8.47 6.67 

Note. *Calculated using Kozlowski, L.P., 2016. IPC–isoelectric point calculator. Biology direct, 11(1), p.55.  

http://isoelectric.org/,† Includes the removal of the mitochondrial targeting sequence. Restriction length TAO = 

Δ24, StAOX = Δ60 

 

 

Nevertheless; the solubilisation for the Twin-Strep tagged StAOX protein was taken forward and 

optimised to achieve the highest activity and protein recovery. The zwitterionic detergent, FC-12, 

provided the best protein recovery and stabilisation following solubilisation. StAOX was also 

sensitive to the percentage of FC-12 utilised and benefited from the highest concentration of 

detergent (2% w/v). The salt conditions were altered to affect the solvation sphere surrounding 

the protein micelle as well as to stabilise charges on the protein. The investigation of the highly 

kosmotropic salt MgSO4 used for TAO purification was analysed along with a titration of the 

weakly kosmotropic salt NaCl. The negative charge on the AOX protein showed an improved 

specific activity following the use of 200 mM NaCl. The pH of the protein was expectedly highest 

at physiological conditions (pH=7.5) and the effect of altering the charge on the protein at pH 6 

did not improve enzymatic activity. The elution buffer was found to stabilise the protein at a 10-

fold reduction in comparison to the solubilisation concentration. The optimisation of these 

conditions failed to improve the StAOX enzymatic activity to any significant degree, suggesting 

the StAOX is far more sensitive to the stabilising presence of a natural lipid membrane in 

comparison to TAO and the plant AOX. 

The development of a new technique by Jones et al260 provided the opportunity to reconstitute the 

purified StAOX protein within an artificial membrane known as a proteoliposome. The 

establishment of an artificial quinone:quinol redox cycle in vitro was afforded through the 

inclusion of the monotopic external dehydrogenase, NDI. The enzymatic activity of StAOX was 

dramatically increased from 0.024 to 81.5 μmol of Q2H2 min-1.mg-1, confirming an increased 

sensitivity to the stabilising effect of a lipid membrane.  

The distinct characteristics and differences between AOX species are highlighted in this chapter, 

especially between the parasite and fungal species. The biological roles of these two proteins are 

http://isoelectric.org/
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very different and this reflects on their structure and enzymatic activity. The StAOX is not 

necessary under normal physiological conditions as has been highlighted by studies on a similar 

fungal AOX Ustilago Maydis114. The role of StAOX in planta requires considerable investigation, 

but for the analysis of novel fungicide candidates, in vitro testing is sufficient. The corroborating 

data with similar phytopathogenic fungal AOXs supports StAOX role in pathogenesis and 

resistance management and presents a novel target for fungicide development. 
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Chapter 4: Synthesis of Novel AOX and cytochrome bc1 

complex Inhibitors 

 

 

4.1  Introduction 

 

The natural products ascochlorin, colletochlorin B and ascofuranone (Figure 40), isolated from 

the fungus Acremonium sclerotigenum, offer potential as lead compounds for the inhibition of 

both the AOX and cytochrome bc1 complex. In particular, ascofuranone has been shown199  to 

substantially increase the selectivity between these two mitochondrial enzymes. Ascochlorin and 

Colletochlorin B, on the other hand, have shown199 little to no selectivity between the AOX and 

the cytochrome bc1 complex. However; selectivity alone between these complexes does not 

suffice for the identification of a lead fungicide compound. It is therefore important to highlight 

work carried out by Young et al259 confirming the fungicidal activity of ascochlorin and 

colletochlorin B against wild-type and QoI resistant (G143A) fungal strains. Moreover, the use of 

an AOX specific inhibitor has been shown to potentiate Qo inhibitors efficacy in vitro114,151–153 

and in planta261; and therefore, presents a unique mode of action for a class of fungicides. The 

synthetic route for ascofuranone and ascochlorin, however, is low yielding and requires a number 

of transformative steps. The necessity to improve on this synthetic route and design a new route 

for a large library of compounds was apparent.  

 

Figure 40 - Natural Products with AOX and Cytochrome bc1 Complex Efficacy 
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The methodology for the total synthesis of ascofuranone and colletochlorin derivatives, was  

described by both Mori et al262–264 and Joullie et al220,265,266 in the mid-80s. The routes taken by 

both research groups offered significantly different synthetic schemes for ascofuranone, 

ascochlorin and colletochlorin B derivatives. The principal difference in the Mori synthesis is the 

alkyl coupling to the cyclohexadiene, followed by the mild oxidation of the head group with N-

chlorosuccinimide (NCS) and dehydrochlorination with the strong base 1,8-diazabicyclo 

[5.4.0]undec-7-ene (DBU) (Figure 41). The alkyl coupling transformation occurs under harsh 

conditions of t-BuLi as the base with step yield of 67%264. This coupling step tolerated alkyl 

halides such as geranyl bromide, for the synthesis of colletochlorin B, or with the protected ketone 

furanone alkyl halide, for the synthesis of ascofuranone263. Conversely; for unprotected functional 

groups, the alkyl coupling with t-BuLi, demonstrated by Mori et al262–264 would suffer from 

unwanted side product formation.  

 

The synthetic route proposed by Joullie et al220,265,267, affords the natural products of ascochlorin, 

ascofuranone and colletochlorin B, with the alkyl coupling step performed under milder 

conditions (Figure 42). The appropriate alkyl bromide is coupled to the hexa-substituted benzene 

ring (head group) directly with a potassium hydroxide solution. The advantage of this second 

route was the tolerance to a wide range of possible alkyl bromide derivatives without the 

formation of unwanted side products.  

 

Figure 41 – Abbreviated Synthetic Route for Colletochlorin B and Ascofuranone as developed by Mori 

et al 257-259. 
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Saimoto et al268 further improved on the synthesis for ascofuranone and colletochlorin derivatives 

taking features from both synthetic routes (Figure 43). The protection of the alcohol and aldehyde 

functional groups on the head group of ascofuranone allows for the tolerance of the harsh 

conditions in using tert-BuLi alkyl coupling. The alkyl coupling achieved a yield of 62% but the 

following steps to remove the protecting groups on the final compound, significantly reduced the 

total yield for the final inhibitor268. In order to improve the synthetic efficiency of the reaction, 

work by the same research group221 adapted the original coupling step from Joullie et al220,266,267 

to improve the overall yield of colletochlorin and ascofuranone derivatives. The addition of CaCl2 

along with a potassium hydroxide solution and under a nitrogen atmosphere, improved the yield 

of the final alkyl coupling to 35% for ascofuranone, reducing ether side product formation and 

potential alkyl halide elimination. This methodology improved the total yield in comparison to 

all previous synthetic routes and tolerated most alkyl bromide derivatives. This route has been 

favoured for the generation a library of inhibitors for TAO, the target for the treatment of African 

sleeping sickness.  

 

Previous work on the design and synthesis of novel AOX inhibitors has focussed on the 

Trypanosoma brucei brucei species198,200. Since there are structural differences between StAOX 

and TAO binding sites, the previous pharmacophore evaluation198 can only be used as a reference. 

Synthesising and testing a series of novel compounds may shed light on the differences between 

the inhibitor binding sites of both the AOX species; and between the AOX and cytochrome bc1 

complex. To improve outcomes for the selection of a possible fungicidal candidate, design 

features to improve selectivity and binding energy have to be considered. The modelling of the 

Figure 42 - Abbreviated Synthetic Route for colletochlorin D as developed by Joullie et al261-263. 
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AOX/cytochrome bc1 complex structures, and inhibitor binding sites, would provide an outline 

for rational inhibitor design. Since the natural product ascofuranone has shown selectivity towards 

AOX84, it would be pertinent to understand the discriminating features the inhibitor possesses for 

one enzyme over the other. Furthermore, a selective inhibitory effect for AOX will improve the 

outcomes for a future fungicide active ingredient and reduce the chances of cytotoxicity. As 

mentioned earlier; the natural products ascochlorin and colletochlorin B show259 efficacy against 

a resistant strain of S. tritici in vitro. The design of inhibitors to match the binding orientations 

exhibited by these two compounds, would also provide structural features required to navigate 

common amino acid mutations in resistant fungal species.  

 

 

 

Figure 43 - Synthetic route for Ascofuranone as developed by Saimoto et al264. Experimental conditions: 

a = SeO2, EtOH, reflux, 54%; b = 2-methyl-3-butyn-2-ol, n-BuLi, THF, -50 °C, 68%; c = i) t-BuCOCl, 

DMAP, pyridine, CHCl3, 0 °C, 97% ii) AgBF4, toluene, 80 °C, 63%; d = NaOMe, MeOH, 25 °C; e = 

CBr4, (n-C8H17)3P, Et2O, 0 °C; f = compound 2, CaCl2, KOH, MeOH, 0 °C. 
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4.2  Designing Novel Inhibitors 

 

A critical evaluation of the binding sites for both the AOX and the cytochrome bc1 complex, was 

required to focus the design and synthesis towards novel inhibitors. The differences between AOX 

species was considered between the most well characterised AOX protein (TAO) and StAOX. 

For the evaluation of a potential fungicide, a comparison was made between the cytochrome bc1 

complex and StAOX. The crystal structure for TAO (PDB code: 3W54), cytochrome bc1 complex 

(PDB code: 3H1L) and the homology model for StAOX, created by SWISS model, facilitated the 

evaluation of the binding sites of each enzyme. All molecular modelling was carried out using 

Maestro software package. 

 

  Interspecies Differentiation of AOX Inhibitor Binding Sites 

 

A detailed assessment of the binding residues, in close proximity to the tail group, between the 

StAOX homology model and TAO crystal structure can be shown in Figure 44. The entrance to 

the hydrophobic cavity is significantly different in StAOX in comparison to TAO as can be seen 

by the surface model presented in Figure 44A and B. The entrance to the StAOX hydrophobic 

cavity is dramatically hindered by the presence of the F212 residue which is not conserved in the 

TAO structure. Although the presence of the F212 residue limits potential fungicide candidates 

through steric hinderance to within an 8-carbon chain length away from the active site, this residue 

also provides a unique binding opportunity with either π stacking or cation-π interactions at the 

terminus of the inhibitor tail. 

Below the terminal isoprene on the docked colletochlorin B molecule we can see two hydrophilic 

residues in the TAO structure (Figure 44E), namely T186 and S182, which provides the 

opportunity for multiple hydrogen bond interactions. In contrast, the StAOX (Figure 1F) does not 

contain these residues but contains A208 and M204 which could be an interesting point of contrast 

when evaluating binding enthalpies. The targeting of these hydrophilic residues present in the 

TAO structure may provide a point of selectivity and validate the homology model. The A208 

residue in StAOX also provides a potential opportunity for selectivity between the AOX species; 

by simply reducing the space occupied in comparison to the T186 residue in TAO. Above the 

terminal carbon of colletochlorin B we can only see only a few residue differences between TAO 

and StAOX. The position of the two phenylalanine residues (F193 and F216) provide an 

opportunity for selectivity due to differences in their orientation and their potential for inhibitor 

interactions. 
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Figure 44 - Inhibitor Binding Site Comparisons between the TAO crystal structure (PDB code: 3W54) 

and the StAOX homology model.  A surface model of the hydrophobic cavity with colletochlorin B bound 

highlights the restriction of the hydrophobic cavity for StAOX (B) in comparison to that of TAO (A). 

The differences in residues above the hydrophobic inhibitor binding site are displayed for TAO (C) and 

StAOX (D), as well as the residues below the inhibitor binding site for TAO (E) and StAOX (F). A final 

comparison is made between TAO (G) and StAOX (H). 
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 Binding Site Differences between the AOX and Cytochrome bc1 complex 

 

A detailed assessment of the differential binding residues, between StAOX and the cytochrome 

bc1 complex, was not necessary for rational inhibitor design but Figure 45 explores the receptor 

surface differences between the AOX and the cytochrome bc1 complex and provides a general 

overview as to the shape of the binding cavities. Figure 45 shows the space above and below a 

typical 8 carbon chain quinol analogue, such as colletochlorin B and ascochlorin, is restricted in 

the Qo site in comparison to the StAOX species. This presents an opportunity for selective design 

for novel AOX inhibitors, due to unfavourable steric effects following an inhibitor/enzyme 

binding event. The presence of a large functionalised aromatic ring on the terminal end of the 

colletochlorin B would present both the opportunity for π-stacking interactions within the AOX, 

as well as, preventing binding to the Qo site. Equally, a large bulky tail moiety or a cis orientated 

terminal alkene would sufficiently alter the structure of an inhibitor to prevent binding. From 

Figure 45 it is clear the terminal ketone on ascochlorin comes into close contact with α helix 1 

and could potentially hydrogen bond with the peptide chain. The extra carbon length on 

ascofuranone could prevent binding to the Qo site by clashing with α helix 1 and could provide a 

route to gain selectivity.  

The Qi site cavity of the cytochrome bc1 complex is distinctively shorter than both the AOX and 

Qo sites; and therefore, opens fully to the lipid environment after an inhibitor chain length of 

approximately 8 carbon lengths binds. The opening to the Qi site is much larger than that of the 

Qo site and would still be susceptible to inhibition following the introduction of bulky tail 

moieties, and would therefore, require differentiation through head group manipulation. 

ascochlorin binds to the Qi site in a similar fashion to the Qo site with the terminal ketone in close 

proximity to alpha helix 2. The proximity of α helix 2 may prevent favourable binding of the 

longer ascofuranone inhibitor due to steric hinderance; but this requires further investigation. In 

comparison to the cytochrome bc1 complex, StAOX possesses a narrow binding cavity up until 

the terminal carbon of the bound colletochlorin B (Figure 45). The space above and below this 

terminal carbon is sufficient to allow for the binding of a functionalised colletochlorin B inhibitor. 

This feature is not consistent with both the Qo and Qi binding sites and therefore provides a point 

of difference for synthesising a selective bc1 complex inhibitor.  
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Figure 45 - Binding sites of the cytochrome bc1 complex with ascochlorin at Qo and Qi Binding Sites 

(PDB Code: 3H1L) and the homology model for StAOX with colletochlorin B bound. 



101 

 

 

 

 Chemical Structure Templates for Novel Fungicide Candidates 

 

4.2.3.1 Investigating the Size of the Hydrophobic Cavity 

 

To investigate the differences between the size of the opening to the hydrophobic cavity for TAO 

and StAOX, a freely rotatable tail linker, along with a large or small terminal functional group, 

would need to be synthesised. The chemical structures shown in Figure 46, demonstrate 

significant differences between their size and electronegativity. The 7-nitrobenz-2-oxa-1,3-

diazole (NBD) group offers high electron density as well as considerable size. Through analysis 

of the crystal structure of TAO in Section 4.2.1, it can be expected that the NBD group could be 

accommodated within the large opening to the inhibitor binding site. In contrast, the StAOX 

homology model suggested a highly hindered opening to the inhibitor binding site and would 

therefore fail to accommodate the NBD group. This point of difference should be reflected in each 

respective inhibitor assay, with a reduced potency expected for the NBD inhibitor (Figure 46) 

against the StAOX protein, due to the proposed steric effects of the F212 residue (Figure 44).   

 

 

The trifluoroacetamide group shown in Figure 46 affords a significantly smaller but equally 

electron dense group to the freely rotatable saturated linker. This compound should bind equally 

as well to both the TAO and StAOX structures and would therefore act as a comparison to the 

large NBD compound.  

 

 

 

Figure 46 - Chemical Structure Template for investigating the size of the opening to the AOX 

hydrophobic cavity. 
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4.2.3.2 Investigating the Space Above and Below the Hydrophobic Cavity Entrance 

 

The two commercially available E/Z diastereoisomers, neryl and geranyl acetate, present the 

opportunity to synthesise the compounds shown in Figure 47. The significant deviation in the 

direction of the terminal acetate or hydroxyl functional group, allows for the assessment of 

potential hydrogen bonding interactions to residues T186 and S182 within the TAO structure, as 

highlighted in Figure 44. The compounds may also help to confirm the steric influence of the 

F212 residue within the StAOX structure, with the Z - isomer affording the opportunity to avoid 

this residue and bind in a more favourable conformation.  

 

As described in Section 4.2.2, the Qo and Qi binding sites of the cytochrome bc1 complex exhibit 

a narrow binding site for prospective inhibitors within an 8 carbon chain length. The protected 

and deprotected Z isomer shown in Figure 47 should help to confirm this evaluation through 

inhibition data, with the straight chain E isomers acting as respective comparative compounds. If 

in fact the Z isomer binds favourably to the AOX versus the cytochrome bc1 complex, then the 

potential for the generation of future fungicidal compounds exhibiting a specificity to the AOX 

would follow on from this chemical structure template.  

 

 

Figure 47 – Acetate protected and deprotected diasteroeisomers in order to investigate the opening to the 

hydrophobic cavity. 
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4.2.3.3 Investigating potential Hydrogen Bond Interactions and Length of Binding Sites 

 

To help identify potential hydrogen and halide bond interactions within the cytochrome bc1 

complex, TAO and StAOX, a chemical template allowing for a series of hydrophilic groups was 

required. As previously discussed, the lead compounds of ascofuranone and ascochlorin 

demonstrate a differential sensitivity between the AOX and the cytochrome bc1 complex; and 

therefore, the chemical template should include features from both of these compounds. The 

carbon chain length of ascochlorin is noticeably shorter than that of ascofuranone but both share 

hydrogen bond acceptors at the terminal tail moiety. These features are included in the template 

show in Figure 48, with the inclusion of hydrogen bond acceptors at the terminal moiety and 

varying carbon chain length, with either the prenyl or geranyl starting materials.  

 

From the structure analysis in Section 4.2.1, the geranyl length compounds should be 

accommodated into the TAO inhibitor binding site and potentially interact with T186 and S182 

residues. However, due to the presence of the F212 residue within the StAOX homology model 

blocking the entrance to the binding site, the geranyl length inhibitor may not bind preferentially 

within the binding site. The shorter length compounds utilising the prenyl starting material should, 

however, bind within the StAOX hydrophobic cavity, providing more data to confirm validity of 

the homology model.  

The compounds in Figure 48 may also present an opportunity for selectivity between the 

cytochrome bc1 complex and the AOX. It could be suggested that the lower inhibition exhibited 

by ascofuranone is a product of the carbon chain length of the compound, effectively preventing 

the favourable binding within either the Qo or Qi binding sites of the cytochrome bc1 complex. It 

is also apparent that both colletochlorin B and ascochlorin are shorter than ascofuranone but also 

exhibit potent inhibition of the cytochrome bc1 complex. The compounds synthesised according 

to the chemical structure template in Figure 48 should therefore provide evidence to prove this 

hypothesis.  

Figure 48 - Chemical template for ascochlorin and ascofuranone like fungicide candidates 



104 

 

 

 

4.3  General Reaction Scheme for Natural Products and Analogues 

 

 Optimisation and Establishment of a General Reaction Scheme 

 

The first step of the general reaction Scheme 1 involves the formylation of orcinol via the 

Vilsmeier-Haack reaction. This formylation step was carried out according to the protocol 

established by Xie et al219; but required modifications to achieve a suitable yield to carry forward. 

The original methodology suggested a yield of 93%219, but after several attempts a maximum 

yield of 43% was achieved. The critical step in the Vilsmeier-Haack reaction occurs when the 

iminium salt is formed from the addition of POCl3 to DMF. By increasing the time for this salt to 

form, and maintaining a slow addition of POCl3, the overall reaction yield was enhanced from 

43% to 62%. Furthermore; increasing the equivalents of POCl3 to orcinol from 1.1 to 1.3, 

improved the final yield by ensuring the iminium salt was in excess. The formylated product (1) 

of this reaction is weakly soluble in DMF and precipitates out upon the acidification process, 

aided by an excess of water; nevertheless, it was found that a significant yield could be extracted 

from the remaining filtrate. These modifications provided a new experimental protocol with an 

improved yield of 64%, which was suitable to be taken forward to the chlorination step; albeit 

lower than the yield found in the literature.  

Scheme 1 - General Reaction Scheme for colletochlorin derivatives. Experimental conditions: a = 

POCl3, DMF, 16 h, -2 – 110 °C, 64%; b = SO2Cl2, Diethyl ether, -2 °C, 3 h, 48%; c = Br-R, 

CaCl2.2H2O, KOH, MeOH, 0 °C, 14 h, compound 3 = 55% and compound 4 = 12%. 
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The chlorination step was adapted from syntheses described by Moore et al269 and Safaryn et al220 

with a final yield of 48%. The formylated phenol (1) is chlorinated by sulfuryl chloride but 

requires precise addition of the correct stoichiometry in order to reduce unwanted side products. 

Early attempts with diluted SO2Cl2 resulted in an incomplete reaction and a very challenging 

purification. The starting material and final chlorinated product (2) have a very similar Rf value 

(0.68 and 0.62 in light petroleum 8:2 EtOAc) when assessed by TLC in most solvent conditions. 

To aid the purification of the crude product, the equivalents of sulfuryl chloride were lowered 

from 1.3 to 1.1. This ensured that the amount of SO2Cl2 was sufficiently high enough to run the 

reaction to completion, but low enough in order to avoid over chlorination on both aromatic 

protons. The addition of neat sulfuryl chloride, in a dropwise fashion to a salt bath cooled reaction 

vessel, reduced the reaction time from 8 hours to as low as 2 hours to yield a mixture of the both 

the di-chlorinated and mono-chlorinated (2) products, which were separated by column 

chromatography.  

The final coupling step between the alkyl chain and the aromatic head group (2) required precise 

optimisation of a number of conditions in order to achieve suitable yields. The proposed 

mechanism by which compound 2 couples to the alkyl chain, is shown in Figure 49. The reaction 

proceeds with the formation of a potassium salt upon addition of one equivalent of potassium 

hydroxide dissolved in dry methanol. The potassium salt stabilises the deprotonated aromatic 

intermediate, leaving a weak nucleophile to attack the brominated alkyl chain. The rate 

determining step in this mechanism is mediated by the concentration of both the aromatic 

nucleophile and the alkyl halide with second order kinetics. The major product is this reaction is 

favourable towards the meta position (in regards to the formyl group) but the two minor side 

products can be attributed to ether formation, owing to the stability of the aromatic resonance 

structures.  

The first route attempted based on a report from Chiarello et al270 required isolation of the 

potassium salt of compound 2 to selectively add the isoprenoid chain at the nucleophilic position 

between the two hydroxyl moieties. The isolation of the aforementioned salt was unsuccessful 

following several attempts, which can be attributed to a number of factors. One of the factors 

resulting in the experimental failure, was the difficulty in isolating the aromatic salt from 

methanol azeotropically. The salt did not precipitate out, and therefore, could not be isolated. This 

aromatic salt can be formed around the most acidic proton or through one of the hydroxyl moieties 

but will only form under sufficiently strong alkali conditions.  Forming this aromatic salt in situ 

would alleviate these problems as well as ensuring no water comes into contact with this 

intermediate. It was therefore concluded that an alternative method would be used to reduce the 

opportunity of incomplete or unsuccessful reactions.  
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The methodology proposed by Haga et al271 for the final coupling step in the synthesis of 

ascofuranone provided a facile route to alkyl coupling to compound 2; without the need to isolate 

the salt intermediate. This method also introduced CaCl2, which may act as desiccant or Lewis 

acid, to help improve the yield and success of the reaction. Once again, the reaction was found to 

initially require extremely dry conditions and starting materials to limit the formation of water-

halogen complexes which have been shown to disrupt typical SN2 reactions272. Initial experiments 

successfully isolated the natural product colletochlorin B (3) with an overall percentage yield of 

between 30-40%. The low yield for this final step was attributed to a mixture of two factors: the 

first was due to unreacted starting material; and the second was due to product loss in the aqueous 

layer following extraction. To reduce the amount of unreacted starting materials, the effective 

concentration of potassium hydroxide was increased by increasing the molar equivalents and 

decreasing the total methanol volume. To improve extraction of the final product from the 

aqueous layer, the methanol/water layer was concentrated in vacuo after quenching the reaction. 

This step removed the remaining methanol from the reaction; and would therefore, reduce the 

opportunity for product loss within the aqueous layer. The final coupling step total yield, for 

colletochlorin B (3) and colletochlorin D (4), were improved to 55% from 30% and to 45% from 

20%, respectively.  

 

Figure 49 - Tail Addition Mechanism of Colletochlorin B and its Derivatives 



107 

 

 

 

4.4  Saturated Tail Synthetic Route 

 

 Synthetic route for Functionalised Saturated Inhibitors 

 

It has yet to be reported as to whether the double bonds found in the aforementioned natural 

products have any significant influence in binding to StAOX; or for that matter, improve 

selectivity towards any specific enzyme in the respiratory chain. To investigate this inhibitor 

property a proposed reaction scheme for saturated natural product derivatives was created, which 

can be shown in Scheme 2. This synthetic route benefits from the abundance of a variety of cheap 

starting materials with different chemical and binding properties. Since the natural product 

derivatives have a carbon chain length of between 8-10, and pharmacophore profiling by Saimoto 

et al198 showed an optimal range between 9-10; the shorter 6 carbon chain linker of 6-amino 

hexanol was selected to allow for further functionalisation to reach the final desired chain length. 

The strong nucleophilic nature of the terminal amine group of 6-aminohexanol allows for 

straightforward preparation of secondary amines, when reacted with aryl halides or esters, without 

the need for hydroxyl protection. The use of a polar protic solvent, such as methanol, will further 

attenuate the nucleophilicity the hydroxyl group and therefore reduce the possibility of unwanted 

ether formation. The hydroxyl group can then be brominated via the Appel reaction to be taken 

forward to the final coupling step outlined in Scheme 1.  
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The bromination reaction of various alcohols was utilized throughout all synthetic routes, often 

with small amounts of starting material; therefore, it was important to understand the specific 

reaction mechanisms and troubleshoot the common problems encountered before synthesising 

new saturated natural products. The saturated analogue for colletochlorin B was attempted several 

times through the bromination of 3,7-dimethyl-1-octanol followed by the final coupling step 

outlined in Scheme 2. The bromination of 3,7 dimethyl-1-octanol was first attempted using the 

common brominating reagent phosphorus tribromide (PBr3) in diethyl ether; but it proved to be 

largely unsuccessful. The PBr3 reaction proceeds with the formation of a phosphorus ester 

followed by an SN2 substitution around the saturated primary alcohol. The lack of success in this 

Scheme 2 - Synthetic route for functionalised saturated colletochlorin derivatives. Experimental 

conditions: a = CF3CO2Et, DCM, 25 °C, 12 h, 86%; b = NaHCO3 (0.3M), NBD-Cl, MeOH, 25 °C, 12 h, 

56%; c = CBr4, PPh3, 0 °C, 4 h, compound 7 = 93% and compound 9 = 98%; d = KOH (aq) (1M), 

CaCl2.2H2O, MeOH, compound 2, 0 °C, 12 h. 
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particular reaction was not immediately attributed to either step of the reaction mechanism 

outright; therefore, an alternative route for bromination was assessed. 

 

The Appel reaction, using triphenyl phosphine (PPh3) and carbon tetrabromide (CBr4), occurs 

through a similar reaction mechanism to PBr3. The major differences between the two reactions 

include the deprotonation of the alcohol forming an alkoxide, followed by a displacement of the 

bromide to form a PPh3 intermediate. A methodology adapted from Asghari et al273 in which two 

equivalents of CBr4 and PPh3 were used for each equivalent of free alcohol proved successful, 

with a quantitative yield of the alkyl halide. Since the SN2 substitution mechanism is consistent 

between both the Appel reaction and the PBr3 reaction, it could be assumed that the bromination 

with PBr3 was failing to activate the saturated alcohol and provide a suitable leaving group. This 

hypothesis seems unlikely as this primary alcohol is not sterically hindered to any considerable 

degree. The PBr3 reaction was repeated with the polar aprotic solvent DMF and the alkyl halide 

was formed albeit with a lower than quantitative yield. It could be postulated, that the failure to 

brominate the alkyl halide with PBr3 was due to the choice of solvent, rather than a mechanistic 

hinderance of the reagent. Nevertheless; bromination via the Appel reaction was favoured over 

the PBr3 reaction for all saturated alkyl tail groups, due to its quantitative yield; ease of 

purification; and tolerance to common solvent systems. 

 

 

 

 

 

Scheme 3 - Bromination of 3,7-dimethyl-1-octanol with PBr3 or the Appel reaction. 
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 Saturated Alkyl Halides Synthesis and Tail Addition Coupling 

 

As previously described; synthesising an inhibitor that probes the size of the hydrophobic cavity, 

as well as the possible inhibitor/enzyme interactions, should provide in vitro data to support and 

validate the StAOX and TAO homology models. The fluorescent probe 7-nitrobenz-2-oxa-1,3-

diazole (NBD) contains both a large conjugated ring system, providing potential π stacking 

interactions; and a terminal nitro group with two hydrogen bond acceptors. The NBD moiety has 

also been utilised extensively in microscopy and spectroscopy,222,273,274 owing to its fluorescent 

properties in the visible spectrum.275,276 Accordingly, efforts were made to incorporate this moiety 

into our emerging series of inhibitors. 

 

The arylation of 6-aminohexanol with NBD was carried out with minor modifications according 

to the procedure by Watanabe222 with an overall yield of 56% (Scheme 4). The yield of this initial 

arylation step, albeit modest, was considered a success. Fortunately, the NBD moiety contains a 

strong electron withdrawing group para to the aromatic halogen, which helps to stabilise the 

charged aromatic intermediate and leads to the loss of the halide group to reintroduce aromaticity. 

The bromination step of the NBD alcohol was achieved via the Appel reaction in DCM with a 

quantitative yield, which was then taken forward without further purification to the final tail 

addition step. The final coupling step for the brominated NBD alkyl chain was achieved, 

following many unsuccessful attempts, but failed to yield a sufficient amount to fully characterise 

the final compound.  

   

Scheme 4 - The arylation of 6-aminohexanol to yield the NBD-functionalised saturated tail (8) 

Scheme 5 – Secondary amine preparation of 6-aminohexanol to include the trifluoroamide moiety (6) 
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The second moiety that was introduced to the saturated tail was the smaller, but highly 

electronegative, trifluoroacetyl group. The trifluoro group is often included in pharmaceuticals as 

a classical bioisostere to methyl groups due to its metabolic inertness, high electronegativity and 

its small size277,278. The amine protection was achieved with an 86% yield at room temperature by 

a straightforward procedure which involved dissolving the 6-aminohexanol in a suitable solvent 

with a slow addition of ethyl trifluoroacetate (Scheme 5). The final product (5) was then carried 

forward without further purification and was brominated via the Appel reaction with an overall 

yield of 93%. The trifluoroacetamide group is susceptible to hydrolysis under relatively mild 

conditions; and therefore, requires careful coupling under the conditions of the final alkylation 

step. The trifluoroacetamide group was successfully coupled to the head group but suffered from 

the same issue as the NBD coupling; namely, a difficult purification. The trifluoro amide group 

may have been cleaved in this final coupling step due to the high pH (9-10) conditions; but the 

initial low temperature of the reaction should have prevented the occurrence of this side reaction. 

The final compound could not be fully characterised or included as part of any inhibitor analysis 

due to the low final yield and insufficient purity. 

The lack of success with the saturated tail synthesis route outlined Scheme 2 could be solely 

attributed to the final alkyl coupling step and could not be improved by altering the reaction 

conditions. It could therefore be assumed that the reason for the failure of the final coupling step 

was an inherent property of the functionalised saturated alkyl chain, which may favour the 

elimination of the alkyl halide, or the nucleophilic nature of the new amine group affecting the 

alkyl coupling mechanism. However, a new synthetic route involving the coupling of an 

unsaturated tail with a secondary amine would need to be developed to investigate these 

hypotheses.  

 

4.5  Unsaturated Tail Functionalisation 

 

 Synthetic Route for Functionalised Unsaturated Alcohols 

 

The initial studies into the synthesis of novel saturated alkyl inhibitors highlighted some issues 

with isolation of the final compound. The final coupling could be affected by either the saturated 

nature of the chain or the terminal amine introduced. It was therefore important to investigate 

these possible issues, as well as derive a new synthetic route for compounds with greater similarity 

to the natural products. The synthetic route outlined in Scheme 6 follows the functionalisation of 

geranyl acetate via an allylic oxidation followed by a reductive amination to yield a functionalised 
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isoprene. The functionalised isoprene can then be deprotected and brominated to allow for 

coupling to the head group of colletochlorin B. 

 

 Allylic Oxidation 

 

The initial step of Scheme 3 involves the functionalisation of geranyl acetate to produce the 

terminal aldehyde necessary for reductive amination, which was achieved through an allylic 

oxidation (Scheme 7). The allylic oxidation of geranyl acetate with selenium oxide (SeO2) 

required careful consideration for most of the reaction parameters; but also, for the removal of the 

toxic selenium by-products. The allylic alcohol and aldehyde are the two major products formed 

in this oxidation and the yield for each of these products was improved by altering both the 

Scheme 6 - Synthetic Route for Functionalised Unsaturated Alcohols. Experimental conditions: a = 

SeO2, t-BuOOH, Salicylic acid, 37 °C, 48 h, compound 11 = 49% and compound 13 = 38%; b = 

NaBH(OAc)3, AcOH, DCE, H2N-R, 25 °C, 13 h, compound 20  = 75%, compound 22 = 70%, compound 

24 = 50% and compound 25 = 33%; c = K2CO3, MeOH, 25 °C, 12 h, compound 21 = 70%, compound 23 

= 12% and compound 26 = 23%; d = PBr3, THF, 25 °C, 12 h; e = KOH, MeOH, CaCl2.2H2O, compound 

2.    
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temperature, and the selenium oxide equivalents. The reaction mechanism for the allylic oxidation 

of geranyl acetate, proceeds with the ene type reaction of selenium oxide followed by 2,3-

sigmatropic rearrangement279. The decomposition of the selenium intermediate produces the 

allylic alcohol and further oxidation will then form an allylic aldehyde.  

Scheme 7 - Allylic oxidation via the Sharpless Procedure for prenyl, geranyl and neryl acetate. 

Experimental yields: compound 10 = 44%; compound 11 = 49%; compound 13 = 38%; compound 14 = 

56%). Experimental conditions: alcohol 25 °C and 24 h; aldehyde 37 °C and 48 h.  
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The first oxidation methodology was adapted from Jackson et al280, it involved stoichiometric 

equivalents of selenium dioxide and was carried out under reflux and dry conditions. The crude 

product contained a mixture of allylic oxidation products as well as insoluble selenium oxide by 

products, which were subsequently filtered through a Celite pad. The filtrate containing the 

mixture of crude products was then purified by column chromatography isolating the aldehyde in 

49% yield. The ease of the removal of the toxic selenium by products was facile by this 

methodology, which eliminated any contamination of the final product. Ultimately, the high 

temperature conditions and stoichiometric equivalents of SeO2 led to a number of oxidation 

products around both of the isoprenes; resulting in a challenging purification. The difficulty in 

purifying the target compound via this method, led to a large variability in final yield and therefore 

required altering. 

It was clear that a reduction in the amount of SeO2 used would benefit both the purification and 

reduce the amount unwanted side products formed. The Sharpless procedure223 uses tert-

hydroperoxide, in order to re-oxidise the reduced selenium compounds, along with catalytic 

amounts of SeO2. The Sharpless procedure tolerated milder conditions and produced cleaner 

products with reliable yields. Under these milder conditions the dominant product was the allylic 

alcohol, which was subsequently isolated and utilised for other reactions, or treated with 

manganese dioxide to form the aldehyde. The new procedure isolated the allylic alcohol with a 

yield of 55% of which 83% was successfully converted to the aldehyde following treatment with 

MnO2. Through further optimisation of this procedure; it was found that the MnO2 step was 

unnecessary, and that the ratio of alcohol to aldehyde could be skewed in the desired direction. 

By increasing the temperature to 37 °C and leaving the reaction to run to completion over 48 h, 

the aldehyde was the dominant product with a yield of 52%. If the allylic alcohol was desired, 

then the reaction was kept under the milder Sharpless conditions with a yield of 55%. The 

purification of the crude product under both of these conditions was straightforward, owing to the 

milder conditions and reduced SeO2 equivalents. The removal of the toxic selenium by products 

through this method was achieved through several washings with a 1M NaOH solution and 

followed by filtration through a celite pad. The tert-butylhydroperoxide was found to be difficult 

to remove through the method described by Sharpless et al223 but the addition of several washing 

steps, and the dilution with toluene as a solvent, removed all but trace amounts of the starting 

material. This allylic oxidation methodology was applied to both neryl and prenyl acetates with 

similar reaction profiles and yields.  
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 Reductive Amination and Acetate Deprotection 

 

The generation of an aldehyde group on the terminal end of the unsaturated chain, provided the 

opportunity of carbonyl conversion through to an amine by reductive amination. Interconversion 

through this method affords a wide range of commercially available amines with varying chemical 

functionalities. One such group is 2-amino-4-chlorobenzoic acid, which provides an opportunity 

to investigate potential π stacking, halogen and hydrogen bond interactions around the entrance 

to the hydrophobic cavity of both TAO and StAOX. To further investigate the effect of chain 

length on selectivity to potential fungicides, the reductive amination was carried out on both 

prenyl and geranyl acetate aldehydes (Scheme 8).   

 

 

The method employed was adapted from Gao et al281 using sodium triacetoxyborohydride as the 

mild and selective reducing agent, with acetic acid as a catalyst. The reaction proceeds with the 

formation of a hemiacetal which dehydrates to form the imine intermediate. The NaBH(OAc)3 

will then selectively reduce the imine to form the alkylated amine. This procedure formed the 

desired product for both the geranyl (22) and prenyl (24) alkyl chains but presented a new problem 

upon purification. The product formed contains both acidic and basic properties as well as a high 

polarity, which offered a challenging separation under normal phase column chromatography. To 

improve separation of the starting materials and final products, both silica type and solvent 

conditions were tested. The use of either TEA or ammonia did not improve separation of the final 

product nor did the use of the amine functionalised silica, which usually improves the typical 

purification of amines or highly polar molecules. Nevertheless; the separation of the crude product 

was best achieved with normal phase silica with a mixture of chloroform and methanol affording 

both geranyl (22) and prenyl (24) amines in yields of 34% and 28%, respectively. 

Scheme 8 - Reductive amination of prenyl (13) and geranyl acetate (11) to yield the chlorinated 

benzoic acid derivatives (24) in 50% and (22) in 70%, respectively. 



116 

 

 

 

 

The reductive amination with the 4-amino-3-chloro benzonitrile group introduced a strong 

hydrogen bond acceptor group to investigate the relevance of the T186 residue for inhibitor 

binding with TAO (Scheme 9). The procedure was carried out in a similar manner set out for the 

benzoic acid above but encountered similar purifications issues. The use of acetic acid helped to 

dissolve the compound prior to column chromatography and was incorporated in the eluent 

system, which alleviated the issues with the compound precipitating in the column. An alternative 

method for purification was attempted through the slow addition of a copper sulfate solution. The 

desired product contains a secondary amine which should complex with the copper ions more 

readily than primary amines. However, this purification attempt failed and the final yield for the 

prenyl (25) and geranyl benzonitrile (20) derivatives remained at 33% and 75%, respectively.  

Using a concentrated potassium hydroxide solution, acetate deprotection was achieved for 

compounds 20, 22, and 25. The deprotection for the benzonitrile and benzoic acid derivatives 

produced the free alcohols in varying yields (12-70%). The benzonitrile derivatives (21) suffered 

from similar issues as with the reductive amination step, with a loss in yield following 

purification. The eluent system was altered again for column chromatography with the addition 

of ammonia and a higher ratio of methanol (80:10:1, CHCl3:MeOH:NH3). The improved eluent 

system yielded prenyl (26) and geranyl (21) alcohol benzonitrile derivatives in 23% and 70%, 

respectively. The addition of ammonia could not be utilised in the eluent system for the 

purification of the geranyl (23) or prenyl benzoic acid derivatives, owing to its acidic nature. The 

isolation of the geranyl benzoic acid alcohol (23) was achieved with only 12% overall yield but 

the prenyl benzoic acid alcohol could not be isolated owing to the difficult purification.  

 

Scheme 9 - Reductive amination of prenyl (13) and geranyl (11) to yield the benzonitrile group 

derivatives (25) in 33% and (20) in 75%, respectively. 
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 Unsaturated Alkyl Coupling 

 

The procedure to carry out the tail addition of the unsaturated chains was unmodified and carried 

out according to the final step in the general reaction Scheme 1. The functionalised unsaturated 

chains provided a useful insight into the differences in the tail addition kinetics between 

functionalised and non-functionalised and saturated and unsaturated alkyl chains.    

 

The allylic oxidation of neryl, prenyl and geranyl acetates provided a number of structural 

analogues; presenting interesting points of comparison to their natural derivatives. Figure 50 

shows the two isomeric equivalents used to probe the AOX and complex III binding cavities. The 

neryl acetate oxidation presents a terminal Z-isomer; effectively directing the acetate group 

perpendicular to the rest of the chain. This structural property will effectively explore the space 

above and below the entrance to the hydrophobic cavity. The homology model for StAOX 

suggests restricted access to the active site in comparison to TAO and therefore the Z isomer 

should explore the validity of this model. Similarly, the Qo binding site of the bc1 complex has a 

narrow opening to the inhibitor binding site; and therefore, the Z-isomer should show some 

selectivity to the AOX.  

The Z-isomer inhibitor was prepared according to the final tail addition step outlined in scheme 1 

with a yield of 8%. The low initial yield for this step can be attributed to both the synthesis of 

unwanted side products and difficulties in purification. As previously described, the mechanism 

of the tail addition leads to the O-alkylation of the aromatic phenol groups. The opportunity for 

these unwanted side products to form was less apparent with the synthesis of the natural product 

derivatives and was therefore ignored during the optimisation process. Removal of these side 

products required altering the purification solvent system to include TEA and required isolation 

by preparative TLC. The basic conditions of this reaction also led to the formation of the 

deprotected Z -isomer, which was ultimately more attractive, as it could be used in future inhibitor 

assays as a comparison. The allylic oxidation of geranyl acetate affords the geranyl acetate 

alcohol, in a similar manner to its stereoisomer, which was subsequently brominated and used for 

Figure 50 - Brominated tails for alkyl coupling. E-isomer (12) and Z (14). 
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alkyl coupling step. The synthesis of the E-isomer presented the same issues as was seen with the 

Z-isomer but was isolated in much higher yields, with 20% for the final alkyl coupling step. The 

basic conditions of the reaction also produced the deprotected analogue of the full compound to 

provide further basis for comparison. 

The amine functionalised tails produced in Scheme 6, failed to provide sufficient quantities of 

starting material to attempt an alkyl coupling. The low yields prevented any analysis, and means 

of comparison, between saturated and unsaturated amine functionalised alkyl coupling. It also 

prevented further structural insights into the proportionality between: the length of the alkyl chain; 

and selectivity between respiratory enzymes.   

 

4.6  Conclusions 

 

It was clear that the established routes for the natural compound derivatives required optimisation 

to achieve suitable yields and to create a platform for novel inhibitor synthesis. The improved 

yields for the first two steps of Scheme 1, affording the common head group, proved to be 

important since it was often used in high quantities and throughout all novel reaction schemes. 

The final coupling step was found to be the most problematic due to the synthesis of unwanted 

side products and the sensitivity to reaction conditions. Nevertheless; improvements were made 

through the use of CaCl2 as a Lewis acid, effectively activating the alkyl halide and reducing the 

activation energy of the rate determining step of the reaction. It was also improved through the 

minor alterations of reactant equivalents; solvent volume; purification techniques; and the 

reaction temperature. However, the improvements made for the natural products could not be 

applied and reproduced in the novel synthetic routes.  

Figure 51 - Allylic stabilisation of the rate determining step of the tail addition mechanism. 
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It could be hypothesised that the lack of success with the coupling of saturated alkyl chains to the 

Colletochlorin B head group was mainly due to mechanistic factors. The optimised tail addition 

step outlined in Scheme 1 produced yields of up to 55% but the saturated tail addition failed to 

provide a product yield of over 1%. The key step in the tail addition mechanism involves the 

attack on the electrophile by the aromatic anion. This attack briefly forms a stable intermediate 

followed by deprotonation and a restoration of the aromaticity within the benzene ring. The rate 

determining step within the tail addition mechanism is the attack on the electrophile which briefly 

forms a transition state between the vacating halogen and incoming nucleophile. As shown in 

Figure 51, the allylic system helps to stabilise this transition state and may offer an explanation 

as to why the saturated tail synthesis failed to yield suitable quantities of the final compounds 

according to Scheme 2. 

The successful synthesis of the unsaturated tail derivatives, shown in Figure 52, supports the 

hypothesis that the ability for the alkyl chains to stabilise the rate determining transition state, 

lowers the activation energy of the tail addition reaction. Since the activation energy for the rate 

determining step is lower, the reaction will favour the formation of the desired unsaturated alkyl 

product. The final tail addition step afforded the compounds shown in Figure 52 in yields of 

approximately 30%, a substantial increase from the final tail addition step for functionalised 

saturated alkyl chains in Scheme 2. This data is supported by studies investigating the reactivity 

of allylic systems and their activation towards SN2 mechanised reactions282,283. The synthesis of 

these unsaturated inhibitors also provided a useful comparison for the tail addition reaction 

mechanism, but will also explore the unique binding site characteristics of each enzyme outlined 

in Section 4.2  

Figure 52 - Synthesised Derivatives of Natural Fungicides 
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The synthetic route for a series of functionalised unsaturated compounds outlined in Scheme 6 

failed to yield sufficient quantities of the alkyl halide starting material. The fundamental reason 

for the lower yield taken forward on each step in Scheme 6 was due to the strong binding of both 

the polar products and starting materials to the silica gel, hampering purification efforts. Efforts 

to change the solvent system and type of silica gel used did not successfully improve the final 

yield for any step up to the free alcohol. Since the final alkyl coupling step is also often completed 

in low yields, a high amount of alkyl halide was required to fully characterise and isolate the final 

fungicide candidate. Therefore, Scheme 6 did not yield any potential fungicide candidates to take 

forward to inhibition studies in Chapter 5. 

The synthesis of amine functionalised unsaturated alkyl chains would have further supported the 

theory that the saturated nature of the compounds in Scheme 2, inhibited the progress of the tail 

addition rather than the terminal amine group. Furthermore, the reductive amination step Scheme 

6 would have expanded the possible tail moieties due to the abundance of commercially available 

starting materials. Nevertheless, progress has been made for future development of colletochlorin 

B derivatives through established coupling techniques and with the common natural product head 

group.   
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Chapter 5: Inhibition of the AOX and cytochrome bc1 

complex 
 

 

5.1  Introduction 
 

The discovery and identification of novel phytopathogenic fungicides relies on accurate assaying 

techniques to effectively discriminate between structurally similar compounds and their inhibition 

of a target enzyme. Traditionally, the evaluation of fungicides within the agrochemical industry 

focussed on random screening via an in planta284 or in vitro assay systems. As described by 

Clarke/Delaney285, Tice286 and others287–289, chemical properties such as lipophilicity, pKa, 

molecular weight and solubility, can influence the efficacy of a fungicide within these systems; 

and therefore, may not represent an increased binding affinity to the desired target. It is important 

to consider the efficacy of a fungicide across a broad spectrum of assay techniques; from binding 

affinity (KD) for a purified target to a whole system pot trial screen. The use of advanced in silico 

docking and QSARs can support the biological data, effectively reducing the capital and resource 

costs, along with the number of fungicide candidates required for evaluation.  

 

 

Figure 53 - Notable strobilurin fungicides candidates along with the lead compound strobilurin A and 

final compound azoxystrobin. 
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The notable cytochrome bc1 complex fungicide, Azoxystrobin, required the synthesis of over 

1400 compounds290 prior to selection as a commercial product. Strobilurin A, the lead compound, 

proved ineffective following screening through in planta studies but showed efficacy during 

fungal plate assays. It was later found291 that the (Z)-olefinic bond adjacent to the methoxy 

acrylate group shown in Figure 53 was subject to photodegradation and volatility, and its 

replacement with an ortho substituted benzene ring (Compound 27) reduced this volatility. A 

further reduction in photolytic degradation of the compound was improved by introducing the 

diphenyl ether as an alternative to the remaining olefinic bond linking the two benzene rings and 

enhancing membrane permeability80,290,291. Through trial and error, a large number of fungicide 

candidates (Compounds 27-30 in Figure 53) were investigated to improve systemic distribution 

and mobility within plants, before the final compound, Azoxystrobin, was selected. 

For researchers at Syngenta, the crystal structure, modelling software and established protocols 

for the isolation or purification of the cytochrome bc1 complex, were not available during the 

discovery of Azoxystrobin. In fact, a crystal structure of any membrane bound high or low 

molecular weight proteins had yet to be solved. Fortunately, the crystal structure of the bc1 

complex has now been solved for a number of typical inhibitors and modern fungicides by Berry 

et al292–294 allowing for a better understanding of the mechanism of fungicide binding. The use of 

physics-based membrane permeability calculations also highlights any differences in distribution 

and accumulation globally within the plant or within the fungal substructures.  The combination 

of these analyses along with measurement of the differences in binding affinity (KD) and IC50 

would have highlighted the reasons for lower efficacy during the lead modification process of the 

strobilurins. 

 

The selection of fungicides targeting the fungal AOX has yet to be established, but research into 

the development of a therapeutic drug for the treatment of African sleeping sickness, targeting 

the Trypanosoma brucei brucei AOX (TAO), has been investigated. The work by Saimoto et al198 

intends to establish a pharmacophore for TAO by screening a number of compounds against 

Figure 54 – Chemical structure of ascofuranone 
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rTAO E. coli membranes. The important structural features for a potent TAO inhibitor were 

hypothesised by obtaining IC50 data for a number of ascofuranone derivatives (Figure 54). The 

1-formyl group, 4 and 6-hydroxyl groups were suggested to interact directly with the enzyme, 

and the 2-methyl and 3-chloro groups providing conformational stability of the inhibitor (Figure 

55). The literature also suggests that the furanone ring is not essential for potent inhibition of 

TAO198.  

 

More recent studies by West et al200,201 have assayed compounds against purified rTAO, 

Trypanosoma brucei brucei parasites and against human hepatocellular carcinoma cells. The 

lipophilicity and multiparameter optimisation (MPO) score295 were also determined within these 

studies. The MPO score provides a quantitative value for the desirable physicochemical properties 

of prospective drugs as well as providing a measure of central nervous system enhancing the 

determination and selection of important inhibitor design features. In contrast to the studies by 

Saimoto198, the results obtained by West et al200,201 show that the 4-chloro and 3- methyl groups 

on ascofuranone confer high potency to rTAO. The removal of the 6-hydroxyl group did not have 

deleterious effects on potency, nor did substitution of the 1-formyl group with a nitrile group 

(Figure 55). A clear positive correlation between lipophilicity and rTAO inhibition was also seen 

Figure 55 - Molecular interactions of colletochlorin B within the TAO crystal structure (PDB code: 

3W54). Hydrogen bond interactions are highlighted by the purple arrows. 
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in these studies suggesting modifications to the structure of ascofuranone may not relate to 

improved binding but rather relates to an increased concentration within the rTAO purified lipid 

environment. Nevertheless, a more complete picture of inhibitor potency can be seen through the 

inclusion of a greater number of assay methods. 

An approach for isolated measurements of inhibitor/enzyme interactions can be achieved through 

the use of Isothermal Titration Calorimetry (ITC). ITC is often used in the pharmaceutical 

industry to assess drug/enzyme interactions296, protein-protein binding297 and enzyme kinetics298, 

providing label free binding affinities (KD) and full thermodynamic characterisation. The 

observed enthalpy change (ΔH) for molecular binding event is measured through the titration of 

a known inhibitor into a purified enzyme solution. The differential power, required to maintain a 

constant temperature between the sample cell and reference cell is measured. Following saturation 

of the enzyme binding sites with the known inhibitor, the differential power is equal to zero, 

allowing for the derivation of the binding enthalpy (ΔH), binding affinity (KD) and stoichiometry 

(n). It also allows for the derivation of the apparent thermodynamic constants for the Gibbs Free 

Energy (ΔG) and change in entropy (ΔS) according to the Gibbs Free Energy Equation (Equation 

1). For the assessment of novel inhibitors this provides information as to the strength and type of 

binding to its target. The interactions that predominate the magnitude of the binding enthalpy 

(ΔH) are hydrogen bonds and electrostatic interactions. The change in entropy (ΔS) for a binding 

event is often influenced by hydrophobic interactions but can also be affected by a change in 

conformation of the target enzyme. The utilisation of ITC as a secondary screen for candidate 

fungicides may provide further details to reduce conflicting information, as highlighted during 

the screen of anti-parasitic agents targeting TAO. 

 

∆G = ∆H -T∆S 

Equation 1. Gibbs Free Energy Equation. 

ΔG =Gibbs Free Energy, ΔH = Enthalpy Change of Reaction, T = Temperature and ΔS = Entropy 

Change of Reaction. 

 

As mentioned earlier, the recent solution of membrane bound crystal structures for mitochondrial 

respiratory enzyme presents opportunities for new in silico drug screening techniques. Homology 

modelling of enzyme-inhibitor interactions provides another method for quantitative, in silico 

screening for candidate fungicides. Previously, this type of screening would be unavailable for 

membrane bound proteins due to their notoriously difficult purification and stability in solution 

when attempting crystallisation. Fortunately, the crystal structure for the cytochrome bc1 complex 



125 

 

 

 

has been solved for a number of species and co-crystallised with a number of established 

fungicides. The crystal structure for the fungal AOX has yet to be solved, but a homology model 

derived from TAO provides a good approximation of the binding site structure.  

 

∆Gbind = Clipo-lipo ∑ f(rlr) + Chbond-neut-neut ∑ g(∆r)  h(∆α) + Chbond-neut-charged ∑ g(∆r) h(∆α) + 

Chbond-charged-charged ∑ g(∆r) h(∆α)+ Cmax-metal-ion ∑ f(rlm) + CrotbHrotb + Cpolar-phobVpolar-phob+ CcoulEcoul+ 

CvdWEvdW + solvation terms 

Equation 2 - GLIDE Docking Score Derivation 

 

Docking of inhibitors to these structures can be carried out by the GLIDE plugin for Maestro 

molecular modelling software. The software calculates a score for each docked compound 

according to an expanded ChemScore function (Equation 2). The equation takes into account a 

number of interactions for the enzyme-ligand complex including: lipophilicity (2nd term); ligand-

receptor hydrogen bonding (2nd, 3rd and 4th terms); metal atoms (5th term); rotatable bonds from 

carbon and hydrogen atoms (6th Term); and biophysical parameters such as coulombic forces and 

solvation factors. The magnitude of the docking score correlates to an improved binding energy 

with a visual aid of the possible binding poses of the ligand-enzyme complex. Using docking 

software may help to eliminate candidate fungicides that show a low docking score, but since the 

output is theoretical, it should only be used as supporting information rather than primary 

fungicide selection data. 

The combination of the aforementioned techniques has yet to be utilised for the discovery of an 

AOX targeting fungicide or for the evaluation of existing AOX inhibitors (Figure 56). This 

chapter will investigate the viability of these techniques and use them to screen both existing and 

newly synthesised (Figure 57) fungicide candidates.   
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Figure 56 - Established AOX Inhibitors 

Figure 57 - Newly synthesised fungicide candidates from Chapter 4. 
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5.2  Chemical properties of Synthesised and Natural Compounds 
 

The chemical properties of each compound (Table 21) were assessed in order to assess their 

viability as fungicide candidates and provide data for fungicide selection criteria. The common 

properties determined by Clarke/Delaney285 and Tice286 for candidate agrochemicals closely 

follows that of Lipinski’s rules299 and that of the MPO score295. The molecular weight (MW), 

lipophilicity (cLogP), acid dissociation constant (pKa), hydrogen bond donors (HBD) and total 

polar surface area (tPSA) were compared to that of well-established fungicide, Azoxystrobin. The 

limits for each parameter as characterised by Lipinski286,299 and others300,301 are: MW < 500 g.mol-

1; clogP < 6; pKa 4-10; HBD < 5; and tPSA < 140 Å.  

 

Table 21  

Physicochemical Properties of Established and Newly Synthesised Candidates Fungicides 

Inhibitor MW/ g.mol-1 cLogP pKa HBD tPSA/ Å 

Azoxystrobin 403.4 3.11 - 0 102.5 

SHAM 153.1 0.88 8.36 3 69.6 

Octyl Gallate 282.3 4.63 7.73 3 87.0 

Colletochlorin D 254.7 4.26 12.07 2 57.5 

Colletochlorin B 322.8 6.29 12.06 2 57.5 

Ascochlorin 404.9 6.08 12.05 2 74.6 

Ascofuranone 420.9 6.02 12.06 2 83.8 

Compound 16 380.9 5.45 12.04 2 83.8 

Compound 17 338.8 4.50 12.04 3 77.8 

Compound 18 380.9 5.45 12.04 2 83.8 

Compound 19 338.8 4.50 12.04 3 77.8 

Note. All structure property prediction and calculations were carried out using ChemDraw. 

 

The three most studied natural compounds colletochlorin B, ascochlorin and ascofuranone exhibit 

poor drug-like properties. In comparison, compounds 16-19 synthesised in Chapter 4 fail to meet 

drug likeness for only one category, acid dissociation constant (pKa). These compounds also show 

a reduced lipophilicity in comparison to that of colletochlorin B, ascochlorin and the lead 

compound ascofuranone. Compounds 16-19 predict physicochemical properties improving on the 

existing AOX inhibitors and are more closely aligned to that of azoxystrobin.   
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5.3  E. coli Membrane Assays 
 

The E. coli membrane samples obtained for the overexpression of AOX species, outlined in 

Materials and Methods section, provides a system by which AOX activity and inhibition can 

measured. The reaction pathway is initiated by the addition of an excess of NADH (1.25 mM), 

reducing quinone to quinol via Complex 1, which is then utilised by the AOX to reduce O2 to 

H2O. The quinone reduction cycle shown in Figure 58 provides a graphical representation of this 

reaction pathway within the FN102 E. coli membrane samples. Since the generation of one mol 

of quinol is equivalent to 1 mol of NADH consumed, the E. coli membrane system allows for the 

measurement of direct or indirect measurement of AOX activity. 

 

 

 

 O2 Respirometry Assay 

 

The Oroboros 2K respirometer allows for the direct measurement of AOX activity within the E. 

coli membrane samples, allowing for the generation of dose response curves for each AOX 

species. The data is analysed by non-linear regression providing an IC50 value as described in the 

Materials and Methods Section 2.8.1. Table 22 summarises the data obtained from the titration 

of known AOX inhibitors against both TAO and StAOX E. coli samples. For ease of comparison 

the raw IC50 data is converted into pIC50, a negative logarithm derivative. The data sets for each 

inhibitor and for each species are normalised according to the same AOX activity, providing an 

equal means of comparison.  The inclusion of the calculated lipophilicity (cLogP) provides 

context to the inhibitory effect shown by each inhibitor. 

Figure 58 - Quinone Reduction Cycle in FN102 E. coli membrane system. Complex 1 (PDB code: 6GCS)   



129 

 

 

 

Table 22  

Titration of known Inhibitors against TAO and StAOX E. coli membrane samples 

Inhibitor cLogP‡ 

pIC50
† 

TAO* StAOX 

SHAM 0.9 5.21 ± 0.19 4.19 ± 0.01 

Octyl Gallate 4.6 6.64 ± 0.01 7.07 ± 0.36 

Colletochlorin D 4.3 7.48 ± 0.05 7.51 ± 0.18 

Colletochlorin B 6.3 8.13 ± 0.05 9.16 ± 0.59 

Ascochlorin 6.1 8.16 ± 0.16 6.11 ± 0.21 

Ascofuranone 6.0 8.26 ± 0.33 8.86 ± 0.05 

Note. † Negative log concentration and standard deviation for 50% inhibition for TAO and StAOX E. coli 

membranes. * Data obtained by Dr. Luke Young259, ‡cLogP values calculated using ChemDraw software. All assays 

normalised to the same rate of AOX O2 reduction and carried out in MOPS (65 mM) with the addition of NADH 

(1.25 mM) and KCN (1 mM). 

 

The results in Table 22 demonstrates the range of potencies for the commonly used AOX 

inhibitors. The inhibition of both TAO and StAOX samples by SHAM is significantly weaker 

than other inhibitors, which is surprising given its continued use as a specific AOX inhibitor in 

the literature114,151–153,261. The reason for the lack of inhibition is unclear from initial IC50 data but 

the low lipophilicity may account for reduced concentration of inhibitor within the E. coli 

membrane. Octyl gallate shows a significantly improved inhibition in comparison to SHAM for 

both TAO and StAOX. The increase in inhibitory activity is coupled to an increase in lipophilicity 

allowing for the accumulation of inhibitor within the membrane. A graphical representation of 

the dose response curves for each compound is displayed in Figure 59. 

The natural quinol like derivatives of the colletochlorins, ascofuranone and ascochlorin provide 

an interesting picture in terms of inhibition. The increase in lipophilicity and carbon chain length 

from colletochlorin D to colletochlorin B provides an increase in potency by 2 orders of 

magnitude for TAO and an even greater increase for that of StAOX. The differences in inhibition 

between the two AOX species with colletochlorin B could not be attributed to differences in 

cLogP; and therefore, it may be suggested that a preferential binding is responsible. The opposite 

affect can be seen with the pIC50 values for ascochlorin with inhibition 3 orders lower in TAO vs 

StAOX. The data for ascofuranone suggests a similar binding and inhibition profile which 

highlights its importance as a universal AOX specific inhibitor and lead compound.  

Although IC50 measurements for TAO and StAOX using the Oroboros respirometer provides 

reliable and accurate results, the data acquisition is too time consuming to be employed for 
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extensive fungicide screening. Nevertheless; it has utility when comparing results to that of 

existing published inhibition results in the literature.  

 

 Spectrophotometric Plate Assay 

 

The use of a spectrophotometer with 96-well plate scanning capabilities, dramatically reduced the 

time taken to screen prospective fungicides. The assay technique can be applied to both 

recombinant E. coli membrane and purified AOX samples with the potential for process 

automation. AOX activity is measured indirectly through the consumption of NADH at 340 nM 

facilitating the generation of dose response data. StAOX samples required the addition of GMP 

(1.5 mM) to stimulate enzymatic turnover and generate measurable NADH reduction rates. 

Although the preparation E. coli membrane is carried out in a heme deficient E. coli strain, the 

addition of potassium cyanide ensures AOX activity is measured, by inhibiting any residual 

bacterial bd/bo activity. 

To validate this methodology and assess its accuracy in comparison to O2 assay method, the well-

established natural inhibitors were assessed according to pIC50. Table 23 displays the pIC50 results 

for StAOX E. coli membranes when titrated against known AOX inhibitors according to the 

methodology outlined in Materials Methods Section 2.8.2. A graphical representation of the dose 

response curves for each compound is displayed in Figure 60. 

Figure 59 - Normalised Dose Response Curves for Established Inhibitors against StAOX E. coli 

membranes via the O2 Respirometry Assay. SHAM (Turquoise), Ascochlorin (Green), Octyl Gallate 

(Orange), Colletochlorin D (Purple), Ascofuranone (Red) and Colletochlorin B (Blue). 
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Table 23  

Dose response and cLogP data for known AOX inhibitors against StAOX E. coli membranes. 

Inhibitor cLogP StAOX pIC50
† 

SHAM 0.9 4.36 ± 0.03 

Octyl Gallate 4.6 6.64 ± 0.02 

Colletochlorin D 4.3 7.04 ± 0.01 

Colletochlorin B 6.3 9.17 ± 0.40 

Ascochlorin 6.1 6.17 ± 0.03 

Ascofuranone 6.0 8.79 ± 0.15 

Note. † Negative log concentration and standard deviation for 50% inhibition for StAOX E. coli membranes. All 

assays carried out in MOPS (65 mM) with the addition of NADH (1.25 mM), GMP (1.5 mM) and KCN (1 mM). 

 

The pIC50 data obtained from the plate assay screen was shown to produce precise and comparable 

data to that of the O2 assay. One notable difference between the O2 assay and the plate assay, is 

the reduced standard deviation, and therefore accuracy, of the measurements when performed on 

the spectrophotometer. The repetition of the assay for known AOX inhibitors also confirms the 

conclusions made from the O2 assay. The IC50 for colletochlorin B in respect to StAOX is ten 

times higher than that of TAO. Ascochlorin also exhibits a diminished inhibitory effect in 

comparison to TAO; both of these results suggest there maybe structural binding site differences.  

Figure 60 – Normalised Dose Response Curves for Established Inhibitors against StAOX E. coli 

membranes. SHAM (Turquoise), Ascochlorin (Green), Octyl Gallate (Orange), Colletochlorin D 

(Purple), Ascofuranone (Red) and Colletochlorin B (Blue).  
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The plate assay protocol provides an efficient and repeatable process for the evaluation of the 

pIC50 for AOX inhibitors. It was therefore taken forward in order to evaluate the compounds 

designed and synthesised in Chapter 4 for the inhibition of the fungal AOX and/or cytochrome 

bc1 complex (Figure 61). Table 24 presents the data obtained following the evaluation of the 

aforementioned novel fungicide candidates against StAOX and TAO E. coli membranes. The 

inclusion of the assessment of TAO provides means for comparison between AOX species and 

between structurally different binding sites.  

The novel fungicide candidates, which have been synthesised and outlined in Chapter 4, show a 

significantly reduced efficacy against StAOX membrane samples in comparison to that of TAO. 

The absence of any correlation between lipophilicity and pIC50 suggests that the inhibition from 

each of the compounds is influenced by the binding interaction of the inhibitor. The introduction 

of the (Z)-olefinic bond had an improved inhibitory against StAOX effect when compared to both 

the free alcohols (compounds 17 and 19) but is removed when comparing the acetate protected 

compounds 16 and 18. A correlation between the introduction of the (Z)-olefinic bond or acetate 

protecting group and the inhibition of the StAOX enzyme was not discernible; and therefore, 

deductions have to be made for each compound individually.  

 

 

 

Figure 61 - Novel AOX and Cytochrome bc1 Complex Candidate Fungicides synthesised in Chapter 4. 
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Table 24  

Dose Response Data for the Inhibition of TAO and StAOX E. coli membranes with Novel Fungicide 

Candidates 

Inhibitor clogP 

pIC50
† 

TAO StAOX* 

Compound 16 5.4 5.07 ± 0.02 5.71 ± 0.03 

Compound 17 4.4 6.92 ± 0.03  4.95 ± 0.18 

Compound 18 5.4 6.05 ± 0.03 4.23 ± 0.10 

Compound 19 4.4 7.26 ± 0.01 5.40 ± 0.22 

Note. † Negative log concentration and standard deviation for 50% inhibition of StAOX and TAO E. coli 

membranes. * Inhibition carried out on stimulated specific activity of StAOX with GMP (1.5 mM). All assays 

performed in MOPS (65 mM) with additions of KCN (1 mM) and NADH (1.25 mM). 

 

The range of pIC50 values obtained from the measured inhibition of TAO E. coli membranes 

demonstrates an increased sensitivity to alterations of the length and 3D structure of the novel 

fungicide candidates. In a similar manner to that of StAOX a correlation between cLogP and pIC50 

suggest the increased inhibition is not a result of increased membrane concentration but rather a 

symptom of binding interactions. The addition of the acetate group to both compounds 17 and 19 

was deleterious to TAO inhibition. The opposite result was achieved following the introduction 

of the (Z)-olefinic bond in the terminal position of the tail group. The dose response curves to 

allow for derivation of pIC50 values are displayed in Figure 62 for TAO and Figure 63 for 

StAOX. 

Figure 62 - Dose Response Curves for TAO E. coli membranes. Compound 17 (Red), compound 18 

(Purple),  compound 19 (Green) and compound 16 (Blue) 
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5.4  Mitochondrial Succinate: Cytochrome c Oxidoreductase Assay 
 

The screening of candidate fungicides against whole mitochondria provides an opportunity to 

assess the inhibitory effect of each compound against both Complex II and Complex III enzymes. 

The isolation of mitochondria from rat liver, kindly carried out by Alicia Rosell-Hidalgo, also 

provides information as with respect to whether any non-target or cytotoxic issues occur. All 

preparations were carried out in accordance to the protocol outlined in Materials and Methods 

Section 2.5 and 2.8.2.  

 

Figure 63 - Dose response curve for StAOX E. coli membranes. Compound 17 (Red), compound 18 

(Purple), compound 19 (Green) and compound 16 (Blue). 

Figure 64 - Mitochondrial pathway for the Measurement of Complex II and III activity in Isolated 

Mitochondria 
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The initiation of the reaction pathway is achieved through the addition of succinate to trigger 

quinone reduction and yield the substrate for cytochrome bc1 complex, quinol. The reduction of 

cytochrome c is measured spectrophotometrically providing the enzymatic activity of complex 

III. An overview of the reaction pathway is summarised in Figure 64. 

Since the inhibition of Complex II would also see a reduction in the activity of Complex III it was 

important to perform a further assay to confirm inhibitor binding to complex III. The DCPIP assay 

allows for the measurement of Complex II activity following the reduction of DCPIP at 600 nM 

in the presence of antimycin A to inhibit cytochrome bc1 complex activity. The results of this 

assay showed no inhibition of Complex II for any of the newly synthesised compounds at double 

the IC50 concentration. These results confirmed that the inhibition of the cytochrome bc1 complex 

was due to a direct interaction with the enzyme. 

  

Table 25  

Dose Response Data for Candidate Fungicides against Rat Liver Mitochondria 

Inhibitor cLogP Complex II & III pIC50 

Compound 16 5.4 N.I. 

Compound 17 4.4 5.27 ± 0.27 

Compound 18 5.4 4.18 ± 0.05 

Compound 19 4.4 5.19 ± 0.01 

Note. Negative log concentration and standard deviation for 50% inhibition for cytochrome bc1 complex activity. 

All assays carried out in buffer outlined in Section 2.5 with the addition of cytochrome c (64 μM), ATP (1 mM) 

succinate (10 mM) and rotenone (1 μM). 

 

The data presented in Table 25 provides a strong indication that these novel fungicide candidates 

exhibit weak inhibition of both Complex II or III. The lack of any correlation between cLogP and 

pIC50 supports the suggestion that the inhibition is not wholly influenced by an increased 

accumulation of inhibitor concentration within the membrane. It can therefore be concluded that 

the introduction of an acetate protecting group has a deleterious effect on inhibition of both 

complex II and III mitochondrial enzymes. A 10-fold difference in inhibition can be seen between 

both compounds 17 and 19 and their acetate protected derivatives. The inclusion of this group 

increases the carbon chain length of the compound, and thus suggesting a prevention of favourable 

binding within the size restrictive Qo binding site in Complex III (highlighted in Chapter 4).  
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A graphical representation of the dose response curves for each compound is displayed in Figure 

65. The difference in inhibition between Compounds 17 and 19 suggests the presence of the (Z)- 

olefinic bond at the terminal end of the inhibitor structure does not severely curtail or enhance 

inhibition. The increase in inhibitory activity seen for compound 19 when analysing TAO data 

sets suggests its inclusion could provide a route for selectivity for the AOX. The intolerance for 

any of the novel fungicide structures suggests that selectivity can be achieved for AOX species.  

 

5.5  Purified Protein Assay (ITC) and Optimisation 
 

The pIC50 data obtained from the aforementioned techniques is useful as a primary screen for 

candidate fungicides but is not sufficiently sensitive for the selection of beneficial chemical 

properties. For example, the primary screen for rTAO membranes via the O2 assay measures the 

pIC50 for the three structurally dissimilar compounds colletochlorin B, ascochlorin and 

ascofuranone as 8.13, 8.16 and 8.26, respectively. The marginal differences between the efficacy 

of these compounds in comparison to a significant change in the chemical structure of the inhibitor 

tail group, hampers the selection and future design of new inhibitors. It is therefore important to 

discover the mechanism of inhibition and whether this is due to an increased binding affinity, 

increased concentration within the membrane or competition with the natural substrate. The use 

of ITC as secondary screen for candidate fungicides or AOX inhibitors should provide a clearer 

picture and improve selection outcomes.  

Figure 65 - Dose Response Curves for Novel Fungicide Candidates against Rat Liver Mitochondria. 
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Since the extensive optimisation for the purification of StAOX yielded a largely inactive protein, 

it can be assumed that the binding site lacked structural similarity to its natural form. The analysis 

of the binding affinity for inhibitors on a misfolded or conformationally altered protein, such as 

StAOX would not yield accurate or suitable data. The analysis of common inhibitors was 

therefore considered for rTAO purified protein for which an established and reliable purification 

protocol was possible. It was hoped that the development of a suitable protocol for rTAO could 

then be applied to StAOX in the future. However, the existing purification protocol for rTAO 

required adaptation to be suitable for ITC applications.  

 

 Buffer selection 

 

An analysis by ITC involves a precise measurement of the binding enthalpies that occur following 

a ligand-protein binding event. The sensitivity of this measurement requires precise buffer 

matching of both ligand and protein solutions. Any heat evolution from the dilution of chemical 

species not present in one of the solutions will fail to measure an accurate binding event. The use 

of Tris buffer in the purification of rTAO is unsuitable for ITC measurements since the enthalpy 

of reaction (ΔHr) obscures any heat evolved during ligand binding; due to proton cycling between 

the ligand-enzyme complex and the buffer. The selection of the correct buffer for purified rTAO 

must also present favourable properties for the correct pH and stabilisation of the protein as well 

as for ITC analysis. 

 

Table 26  

Properties for a Selection of Common Biological Buffers 

Buffer pKa
 pH Range ΔHr (kJmol-1)  d(pKa)/dT 

Tris 8.07 7.5-9.0 47.5 -0.028 

MOPS 7.18 6.5-7.9 21.1 -0.015 

Phosphate 7.19 5.8-8.0 -8, 3.6, 16.0 -0.003 

MES 6.27 5.5-6.7 14.8 -0.011 

HEPES 7.56 6.8-8.2 20.4 -0.014 

Note. All buffer properties described as stated from Ferreira et al256.   
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The enthalpy released following dilution (ΔHr) is more than halved by using any of the common 

buffers outlined in Table 26. From the initial selection, MES buffer appears to provide a 

significant reduction in evolved heat following an inhibitor-enzyme binding event, but was 

eliminated since the pH range would not be suitable for optimal TAO activity. HEPES buffer 

would equally suit ITC experiments, but due to its ability to form radical species with H2O2 it 

would not be suitable for redox studies that are often carried out with this protein302. Phosphate 

buffer displays the lowest temperature dependency (d(pKa)/dT) and enthalpy of dilution (ΔHr) 

of all the buffers, but introduces a more complex variable when it comes to controlling ionisation 

strength. MOPS was therefore examined as an alternative to Tris buffer and assessed to determine 

the stability of AOX protein within the buffer. The ionisation strength and pH were kept constant 

to ensure any activity differences were due to the buffer itself. 

The change of buffer from MOPS to Tris produced an enhanced activity for purified rTAO 

samples as shown in Figure 66. The reduction in the specific heat of dilution and temperature 

dependency favours the stability and specific activity of purified TAO with no deleterious effects. 

It was therefore taken forward as the buffer preference to be used for ITC measurements. 

 

 

 

Figure 66 – Specific Activity of purified rTAO in MOPS and Tris buffers. 
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 DMSO tolerance 

 

The natural inhibitors to be examined by ITC are not soluble in the water-based MOPS buffer 

solution and require the addition of DMSO to prevent precipitation. The precise matching of 

buffers is imperative when carrying out an ITC measurement, therefore the tolerance for the TAO 

protein to accept the harsh DMSO conditions was examined. The specific activity of rTAO 

provides a good approximation for the stability and correct conformation of the protein. 

As shown in Figure 67, a concentration of up to 2% DMSO is tolerated before a substantial loss 

in activity was observed. At 5% DMSO concentration only 64% of the original activity for rTAO 

was lost and therefore the balance between AOX stability and inhibitor solubility should be 

assessed for each compound. 

 

 

 

 

 

 

 

 

Figure 67 - Effect of DMSO Concentration on the Specific Activity for purified rTAO 
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 ITC results for TAO 

 

The known inhibitors colletochlorin B, ascochlorin and ascofuranone were selected for secondary 

screening with ITC, due to the close similarity between the compounds O2 assay pIC50 data, which 

failed to yield discriminatory evidence around the differences in chemical structure. The 

application of ITC is not suitable as a method of primary screening since the process is time 

consuming and requires trial and error to optimise the experimental conditions. It was therefore 

utilised to better understand the binding mechanism of these 3 inhibitors and gain knowledge of 

the TAO binding site.  

The titration was performed by preparing a dialysed rTAO protein solution with a 4% DMSO 

concentration. A high DMSO concentration was required since the precipitation of ascochlorin 

and ascofuranone was seen at lower concentrations within the loaded syringe. Inhibitors solutions 

were prepared from DMSO stock solutions and diluted with the appropriate volume of dialysis 

buffer, ensuring the concentration of DMSO remained the same in both protein and inhibitor 

solutions. 

The raw isotherm and binding plots for the interactions between rTAO and the known inhibitors 

are shown in Figure 68 and Figure 69. The stoichiometry (N) for each inhibitor-protein reaction 

is a third of what is to be expected for an AOX-inhibitor complex. The stoichiometry between an 

AOX and ligand interaction should be equal to 1 since there is only one binding cavity present 

for each AOX monomer. The stoichiometry data suggests three structurally similar TAO proteins 

with differing weights within each purification sample, highlighting an area of improvement for 

consistent protein purification. The raw data also suggests a unique binding event occurs 

following a titration of colletochlorin B. The raw isotherm plot in Figure 68B displays uneven 

and jagged spikes when approaching full saturation. This measurement may be due to a change 

in conformation of the protein or perhaps due to enzymatic conversion of the inhibitor. 
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Figure 68 - Raw Isotherm and Binding Plots for TAO against Ascofuranone (A) and Colletochlorin B 

(B) 
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Table 27  

Summary of ITC results for known inhibitors of rTAO 

Inhibitor Kd (nM) N 

Thermodynamic Parameters 

ΔHobs ΔGobs -TΔS 

Ascofuranone 49 ± 2 0.30 -64.4 ± 1.2 - 9.98 ± 0.03 54.4 ± 1.1 

Colletochlorin B 165 ± 40 0.32 -36.2 ± 4.7 -9.27 ± 0.2 26.9 ± 4.6 

Ascochlorin 132 ± 28 0.34 -41.9 ± 5.5 -8.76 ± 0.5 33.1 ± 5.0 

Note. All assays performed in dialysed buffer as described in Section 2.9.1 with a syringe concentration of 20-50 

μM and a purified protein sample in the cell with a concentration of 5 μM. All assays performed at 25 °C with 1 μl 

injection volume. 

 

 

Figure 69 - Raw Isotherm and Binding Plot for TAO against Ascochlorin. 
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The ITC results summarised in Table 27, shows the same rank order of inhibition that was seen 

with the pIC50 data from the O2 assay, with ascofuranone displaying the highest binding affinity 

(Kd) followed by ascochlorin and colletochlorin B (Figure 70). The binding affinity (Kd) supports 

and reinforces the pIC50 data obtained previously but the thermodynamic parameters provide a 

much clearer picture as to the mode of binding and interactions within the binding site. 

 

 

The change in observed enthalpy change (ΔHobs) represents the summation of H-bonding and 

electrostatic interactions. The large increase in magnitude of ΔHobs for ascofuranone in 

comparison to colletochlorin B is potentially the result of the inclusion of the furanone ring with 

both the ether and ketone group involved in binding with the TAO hydrophobic cavity. A similar, 

but more modest, increase from colletochlorin B to ascochlorin is possibly a result of the hydrogen 

bonding between the ketone and the TAO structure. The increase in the magnitude of the enthalpic 

interactions contributes to an increased binding affinity but consequentially increases the entropic 

term, -TΔS. The entropic term is often lowered by increasing hydrophobic interactions but can be 

increased by reducing the degrees of freedom for the inhibitor-protein complex. Ascofuranone 

and ascochlorin exhibit high undesirable entropic terms but due to an increase enthalpic value still 

result in a favourable Gibbs free energy (ΔGobs) for the molecular interaction. The combined 

binding curves in Figure 71 highlights the differences in both: binding enthalpy, represented by 

the height of the slope, and entropy change, represented by the slope of each curve303,304. 

Figure 70 - Known AOX inhibitors evaluated by ITC. 
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Initial studies for the titration of ascofuranone against rTAO demonstrated an unwanted 

endothermic reaction during each injection which may result in inaccurate isotherm curve fitting. 

This endothermic reaction could be due to a change in conformation of the protein precluding the 

binding event. An increase in the temperature at which the binding event is measured will 

decrease the entropic value according to the Gibbs Free Energy equation and increase the 

enthalpic term. This presented a drastically improved binding isotherm and more accurate curve 

fitting. Figure 72 displays the inhibition isotherms obtained when measuring the binding of 

ascofuranone with a purified rTAO sample at differing temperatures.  

 

 

 

 

 

Figure 71 – Normalised and Combined binding curves for Colletochlorin B, Ascochlorin and 

Ascofuranone. 
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Figure 72 - Raw Binding Isotherms Displaying the Titration of Ascofuranone on purified rTAO 

protein for both 25 °C and 30 °C. 
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5.6  In silico screening of Novel Fungicides 
 

The use of in silico screening can offer further confidence, and data supporting selection criteria, 

for lead modification and the selection of novel fungicides. This technique provides quantifiable 

and graphical representation of an inhibitor-enzyme binding event. For the measurement of 

docking scores, the crystal structures for both cytochrome bc1 complex and AOX proteins were 

required. The cytochrome bc1 complex has been solved with ascochlorin bound199(PDB code: 

3H1L)  and was used for the docking of established and new compounds. The crystal structure 

for StAOX has yet to be solved and therefore a homology model was generated using TAO as a 

model structure. The docking of compounds was carried out according to Materials and Methods 

Section 2.10 using GLIDE plugin for Maestro modelling software216. 

 

 TAO 

 

To provide comparative data and support findings made with previous assay techniques, new and 

established compounds were docked against the published TAO crystal structure bound with 

Colletochlorin B (PDB code: 3W54). The results summarised in Table 28 show that there is a 

significant increase in docking score for the established inhibitors of ascofuranone and 

ascochlorin in comparison to the newly synthesised fungicide candidates. The docking pose 

corresponding to each docking score is displayed in Figure 73. 

Table 28  

Docking scores for Inhibitors against TAO 

Inhibitor GLIDE Docking Score 

Colletochlorin B -8.538 

Ascofuranone -10.187 

Ascochlorin -10.150 

Compound 16 -8.352 

Compound 17 -8.604 

Compound 18 -8.508 

Compound 19 -8.542 

Note. All docking studies were carried out using GLIDE plugin for Maestro. The GLIDE scoring function (Equation 

2) generates a number corresponding to the strength of binding with more negative value suggesting stronger 

interaction within the inhibitor binding site. 
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Figure 73 - Docking poses against TAO (PDB code: 3W54) for Established AOX Inhibtors and novel 

fungicide candidates synthesised in Chapter 4. A = Ascofuranone, B= Ascochlorin, C= Compound 16, 

D= Compound 17, E= Compound 18, F= Compound 19. 
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 StAOX 

 

The docking of existing inhibitors and new fungicide candidates was carried out against a 

homology model generated by SWISS model software305. The model makes a prediction of the 

StAOX structure from both the StAOX amino acid sequence and the TAO crystal structure. It is 

therefore important to consider the results of the docking of new inhibitors will have reduced 

accuracy in comparison to results from a solved crystal structure. 

 

Table 29 

Established and New fungicide Candidates docked against the StAOX Homology Model. 

Inhibitor GLIDE Docking Score 

Colletochlorin B -8.717 

Ascochlorin N/A† 

Ascofuranone -6.370 

Compound 16 -6.897 

Compound 17 -5.580 

Compound 18 -5.563 

Compound 19 -5.738 

Note. All docking studies were carried out using GLIDE plugin for Maestro. The GLIDE scoring function (Equation 

2) generates a number corresponding to the strength of binding with more negative value suggesting stronger 

interaction within the inhibitor binding site. †Ascochlorin failed to bind within the StAOX inhibitor binding site. 

 

The results in Table 29 provide a clear indication that the docking scores for all inhibitors are 

considerably reduced in comparison to the scores obtained from the TAO crystal structure. The 

lack of a high-resolution crystal structure and the use of a homology model for StAOX may hinder 

the software’s ability to correctly process docking scores. Nevertheless, a clear pattern can be 

seen between the compounds allowing for the analysis of the correlation between experimental 

pIC50 data and docking score. The docking score for ascochlorin could not be obtained and the 

program failed to dock the compound within the StAOX binding site. Figure 74 shows the most 

favourable docking poses for each inhibitor.  
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Figure 74 - Docking poses against the StAOX homology model for Established AOX Inhibtors and novel 

fungicide candidates synthesised in Chapter 4. A = Ascofuranone, B= Ascochlorin, C= Compound 16, 

D= Compound 17, E= Compound 18, F= Compound 19. 
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A clear binding pattern can be seen when comparing both TAO and StAOX structures with all 

compounds overlaid in a single model (Figure 75). As previously stated in both Chapter 3 and 

Chapter 4, the F212 residue considerably reduces the size of the entrance to the hydrophobic 

cavity for StAOX. In Figure 75 it is apparent that the F212 residue significantly alters the binding 

position of the tail which corresponds to a lower docking score for each compound against StAOX 

in comparison to TAO.  

Figure 75 - Combined docking poses for established and novel fungicide candidates synthesised in 

Chapter 4. A = Combined docking poses against the TAO crystal structure (PDB code: 3W54). B= 

Combined docking poses against the StAOX homology model.  



151 

 

 

 

 Cytochrome bc1 complex 

 

The analysis of the cytochrome bc1 complex was carried out utilising the crystal structure from 

chicken bound with ascochlorin95. Performing the docking analysis with the structure from 

chicken allows for direct comparison from the pIC50 results from the rat liver since the Complex 

III structures are highly conserved among animal orthologues. The docking analysis was carried 

out on the Qo site and Qi site with established and newly synthesised fungicide candidates. 

 

Table 30 

The Docking Scores for Established Inhibitors and New Fungicide Candidates 

Inhibitor 

GLIDE Docking Score 

Qo Qi 

Ascochlorin -10.560 -8.634 

Colletochlorin B -9.217 -7.573 

Ascofuranone N/A N/A 

Compound 16 -9.495 -7.749 

Compound 17 -8.670 -8.560 

Compound 18 -9.108 -7.296 

Compound 19 -9.236 -8.564 

Note. All docking studies were carried out using GLIDE plugin for Maestro. The GLIDE scoring function 

(Equation 2) generates a number corresponding to the strength of binding with more negative value suggesting 

stronger interaction within the inhibitor binding site. 

 

The docking scores for ascofuranone could not be obtained as shown in Table 30, which is in 

accordance its poor inhibition of the cytochrome bc1 complex. The newly synthesised compounds 

show a higher docking score than that of TAO suggesting a higher affinity for the enzyme. Figure 

76 shows the possible docking poses for established and newly synthesised inhibitors for the Qo 

site of the cytochrome bc1 complex. The docking poses for the Qi site were not analysed since the 
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higher docking score values for the Qo site in general suggest a strong preference for binding over 

the Qi site.  

Figure 76 - Docking poses against the Qo site of the cytochrome bc1 complex (PDB code: 3H1L) for the 

Established AOX Inhibitors and newly synthesised fungicide candidates in Chapter 4. A = Ascofuranone, 

B= Ascochlorin, C= Compound 16, D= Compound 17, E= Compound 18, F= Compound 19. 

 



153 

 

 

 

5.7  Correlation between in silico and Experimental Data (QSAR Analysis) 
 

 TAO 

 

To determine whether the docking scores generated for each compound provide useful data for 

the efficacy of novel fungicides, a simple correlation was assessed between docking score and 

pIC50. The relationship between experimental pIC50 and calculated docking score shows a positive 

correlation with a P value of <0.04 and R2 value of 0.703. The results are significant and 

demonstrate the docking scores have value but do not precisely determine the efficacy of a novel 

fungicide. Figure 77 displays the relationship between the pIC50 data and GLIDE docking scores 

for TAO. 

 

 

 

 

 

 

 

 

Figure 77 - Relationship between experimental pIC50 data and in silico GLIDE docking score 
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 StAOX 

 

The same relationship was applied to the results obtained from docking of inhibitors against the 

homology model for StAOX. Once again, a positive correlation was seen but the high P value (P 

>0.05) and lower R2 value (0.643) demonstrate the results do not hold significance. The 

application of docking to a homology model rather than a solved crystal structure may prevent 

the docking software from predicting the correct inhibitor binding pose. Nevertheless; the 

graphical representation of the docked inhibitors demonstrates a significant resemblance to the 

docked inhibitors within the TAO crystal structure. Figure 78 displays the relationship between 

StAOX pIC50 and GLIDE docking score. 

 

 

 

 

 

 

 

 

Figure 78 - Relationship between experimental pIC50 data and in silico GLIDE docking score 
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 Cytochrome bc1 Complex 

 

The relationship between pIC50 and Glide docking score was again investigated for the 

cytochrome bc1 complex. The highest docking score between both the quinol/ quinone binding 

sites of the cytochrome bc1 complex (QO and Qi) was used since the preference to either docking 

score should correlate to a stronger binding affinity. The results are displayed in Figure 79, with 

a distinct lack of correlation displayed. The P value for the relationship was greater than 0.5 and 

an R2 value of 0.07. It is clear the experimental data significantly differs from the docking score 

suggesting a more complex interaction when a titration is performed within whole mitochondria.  

 

 

 

 

 

 

 

 

 

Figure 79 - Relationship between experimental pIC50 data and in silico GLIDE docking score 
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5.8  Conclusions 
 

The development and improvement of assay techniques was necessary to improve efforts to 

identify the key inhibitor structural features required for AOX or cytochrome bc1 complex 

selectivity. Important residues and structural features for each enzyme can then be inferred from 

these techniques. The newly synthesised fungicides, outlined in Chapter 4, display a close 

structural similarity and therefore require closer scrutiny to determine beneficial chemical 

features. The use of multiple screening methods, for the newly synthesised and established 

compounds, has shown utility for fungicide selection. 

The results from the O2 assay suggest that selectivity between AOX species can be achieved, with 

ascochlorin showing 100 times more efficacy for TAO in comparison to StAOX. In contrast 

colletochlorin B, ascofuranone and octyl gallate show an increased sensitivity towards StAOX. 

The inclusion of the lipophilicity data calculated from ChemDraw provided some clarity as to 

whether an increased concentration within the bacterial membrane was responsible for an increase 

in pIC50. The data for colletochlorin B and D, highlights the importance for including this 

chemical property when evaluating enzyme/drug targets within a biological membrane. 

Colletochlorin B possesses an extra hydrophobic isoprene which contributes very little towards 

the binding affinity for an enzyme. It could therefore be concluded that the increase potency 

exhibited by colletochlorin B is due to this increase in cLogP; however, further structural 

analogues would be required to confirm this. 

 

 

 

 

 

 

 

 

 

 

Figure 80 - Established Inhibitors of The AOX and cytochrome bc1 complex 
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The use of the O2 assay for the assessment of AOX inhibitors provides an accurate method for 

the analysis of potential inhibitors by monitoring substrate specific activity. However, for the 

screening of larger libraries of compounds, requiring biological and technical replicates, the O2 

assay is too time consuming. The magnitude of the standard deviation (SD) for each compound 

may present an issue when two structurally similar compounds are investigated. The SD for 

colletochlorin B against StAOX does not represent sufficient confidence to suggest it is much 

better than ascofuranone. As a primary screen the O2 assay may not provide the reliability and 

efficiency in comparison to the plate assay. 

The plate assay results corroborate with the data obtained from the O2 assay but with much lower 

SD, shorter processing time and opportunity for full automation. The combined accuracy and 

precision of this technique meant it was selected for the use against the structurally similar 

synthesised candidate fungicides. The plate assay results supported those from the O2 assay for 

the established inhibitors, confirming its use as a valid screening technique. The lower SD 

provides more confidence in results obtained; and therefore, suggestions can be made for the 

possible reasons for the difference in inhibitory activity, between compounds and AOX species.  

Ascochlorin displays a significant selectivity between StAOX and TAO presenting the 

opportunity to highlight the differences in amino acid residues at the entrance to the hydrophobic 

cavity. The in-silico docking for ascochlorin with TAO shows the potential hydrogen bonding 

interaction between the terminal ketone group and the backbone for the C-95 residue in TAO, 

highlighted in Figure 81. The StAOX amino acid sequence does not contain the C-95 residue but 

instead contains L-115. This leucine residue introduces a steric hinderance for the cyclohexanone 

ring of ascochlorin which may prevent binding in StAOX. A similarly located leucine (L-119) 

residue below L-115 may also introduce some steric hinderance to the cyclohexanone ring of 

ascochlorin. The use of ITC for StAOX and ascochlroin may have highlighted the drop in ΔHobs 

possibly following a loss in H-bonding interaction, but unfortunately the purified StAOX protein 

could not be isolated with good structural integrity.    
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Figure 81 – Docking results displaying the generated pose for Ascochlorin within the binding site of 

TAO (A) and the overlaid StAOX structure without TAO (B). The difference in distance away from the 

cyclohexanone ring of ascochlorin is displayed with a clear opportunity for steric hinderance within 

the StAOX model.  
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Another interesting result determined from the plate assay screen, showed a 10-fold increase in 

potency for colletochlorin B against StAOX in comparison to TAO. The F212 residue highlighted 

in Figure 81 may allow for beneficial hydrophobic interactions between itself and the terminal 

methyl groups on colletochlorin B. This would increase favourable entropy of the -TΔS term, 

within the Gibbs Free Energy equation relating to the ligand-enzyme binding event, and increase 

the binding affinity, KD. As mentioned previously, the theories relating to increased binding 

affinity requires the evidence from a number of assay techniques to confirm their validity. 

The evaluation of the newly synthesised fungicide candidates via the plate assay system, 

demonstrated an increased affinity for the TAO protein vs StAOX for all of the compounds. The 

variance was significantly reduced within the StAOX structure, suggesting the entrance to the 

hydrophobic cavity is restricted to either an increase in chain length or a drastic change in tail 

direction. The design of these newly synthesised inhibitors was intended to focus on investigating 

the space above and below the entrance to the hydrophobic cavity for StAOX. It is clear from 

these initial results that the hydrophobic binding site is in fact restricted, limiting the candidates 

for a selective StAOX inhibitor. It may also be the case that the newly synthesised inhibitors are 

binding in a different pose to that of colletochlorin B. Unfortunately, the lower sensitivity and 

limited differences in pIC50 for each new compound highlighted in Table 31, prevents further 

conclusions.  

 

Figure 82 - Fungicide candidates synthesised in Chapter 4. 
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The range of pIC50 data, obtained in the plate assay for the new compounds, displays an almost 

10-fold difference in inhibitory activity between each of the compounds displayed in Figure 82. 

The inclusion of the acetate protecting group significantly diminishes activity and therefore 

suggests a potential clash with an amino acid residue or with the secondary protein structure. The 

free hydroxyl groups on both compounds 17 and 19 demonstrate a significant improvement in 

inhibitory activity in comparisons to the acetate protected derivatives. This data suggests an 

increased binding affinity, which may be due to increased hydrogen bonding to the protein 

structure. However, in-silico modelling of the new synthesised compounds demonstrated very 

few differences in the orientation of these compounds within the TAO binding site.   

 

Table 31  

TAO Inhibition for Novel Fungicide Candidates and their Selectivity in comparison to Complex III. 

Inhibitor 

TAO Inhibition* 

pIC50 Selectivity Factor 

Ascofuranone 8.26 ± 0.33† 224 

Compound 16 5.07 ± 0.02 >1000 

Compound 17 6.92 ± 0.03  24 

Compound 18 6.05 ± 0.03 85 

Compound 19 7.26 ± 0.01 114 

Note. † Data obtained by Dr. Luke Young259. * Negative log concentration and standard deviation for 50% inhibition 

of TAO E. coli membranes. TAO assays performed in MOPS (65 mM) with additions of KCN (1 mM) and NADH 

(1.25 mM). Selectivity factor determined by dividing IC50 results for the rat liver mitochondria assay by the E. coli 

membrane results for TAO measured in Section 5.3.2 . 

 

The assessment of the novel compounds on rat liver mitochondria allowed an opportunity to 

evaluate the newly synthesised compounds against the cytochrome bc1 complex, Complex II and 

to assess the selectivity between the mitochondrial complexes and TAO. Table 31 introduces the 

selectivity factor, which is calculated by dividing the pIC50 obtained from inhibition of Complex 

III by the pIC50 data obtained for TAO E. coli membrane samples. Compound 19 demonstrates a 

clear selectivity to TAO suggesting that the Qo and Qi binding sites of Complex III have a lower 

tolerance and space requirements for the (Z)-isoprene on compound 19. However, the data in 

Table 31 indicates that ascofuranone still provides the highest selectivity for a TAO inhibitor in 

comparison to the newly synthesised compounds. The in-silico modelling for the cytochrome bc1 

complex suggests a much higher inhibition for the fungicide candidates. This suggests there are 

some discrepancies with either the experimental data or docking score generation.  
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The use of ITC provided further clarification on the interactions required for the binding of 

compounds within the AOX hydrophobic cavity. ITC requires purified protein samples with 

structural integrity and homogeneity, and therefore, its application using StAOX could not be 

achieved even following numerous optimisations in solubilisation as highlighted in Chapter 3. 

However; the opportunity to apply a TAO purification protocol in the future to StAOX, presents 

a useful tool for assessing structurally similar inhibitors. The independence of binding affinity to 

lipophilicity in an ITC measurement focusses the data to a binding event which emphasises the 

differences between colletochlorin B, ascochlorin and ascofuranone. Ascofuranone has greater 

affinity to TAO than the other inhibitors but this leads to a reduction in the degrees of freedom of 

the protein structure limiting its potential for a low binding affinity. In contrast colletochlorin B 

has a more entropically favourable interaction with low -TΔS value, but does not bind as strong 

within the hydrophobic cavity due to the lack hydrogen bonding atoms at the terminus of the tail. 

Ascochlroin lies in between these two extremes since only possesses one hydrogen bond acceptor 

within its tail structure. Figure 83 provides an overview of these thermodynamic parameters 

measured by ITC. 

Figure 83 - Thermodynamic Parameters for the Established Inhibitors against purified rTAO 

generated form the ITC measurements in Section 5.5.3. 
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The use of in-silico docking to support the experimental data provides a useful graphical 

representation of the binding event and can also offer design features for future fungicide 

candidates. The docking software positioned the head group of each inhibitor in the correct 

orientation for all of the enzyme models, which was confirmed when compared to the TAO crystal 

structure. As mentioned previously, the results are theoretical and therefore may be used a guide 

for synthesis rather than a determining factor. Whilst this screening technique demonstrated a 

positive correlation between pIC50 and docking score for both TAO and StAOX, the results for 

Complex III demonstrated that no such correlation existed for the cytochrome bc1 complex at all. 

Unfortunately, the data set for TAO was the only relationship which held significance, raising the 

question as to the validity of docking scores as a useful technique for screening purposes.  

It is however important to note that the docking of inhibitors against the target enzyme with 

molecular modelling software represents an isolated binding interaction. Whereas both the E. coli 

membrane samples and whole mitochondria comprise of a number of multi-enzymes complexes, 

molecular transporters and lipid membranes which may reduce or increase the efficacy of a 

particular inhibitor. The ITC assay provides a system with measurements as close to an isolated 

system as possible and the Kd values obtained for colletochlorin B, ascochlorin and ascofuranone 

do correlate to the docking scores obtained for TAO. However, a correlation with a sample of size 

of more than ten would provide a more conclusive assessment of the utility of these dosking score 

measurements. Aside from the docking score, the poses for each inhibitor demonstrated a 

similarity to that observed in the TAO crystal structure, with the head group overlaying exactly 

with that of the crystallised colletochlorin B molecule.  
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Chapter 6: Final Discussion and Concluding Remarks 
 

 

The key objectives set out in Section 1.10 were all investigated with varying degrees of success. 

The characterisation of StAOX demonstrated lower expression and specific activity in 

comparison to plant (SgAOX) and protozoan (TAO) AOX species. However, the stimulation of 

the StAOX with purine nucleotides provided a 4-fold increase in the baseline specific activity for 

the enzyme. The predicted structure of the StAOX was elucidated with major differences at the 

opening to the hydrophobic cavity which offered the potential for the design of species selective 

AOX inhibitors.  

A number of compounds were synthesised with design features based upon the StAOX homology 

model and through evaluation of the cytochrome bc1 complex binding sites (Qo and Qi). The 

binding profiles of the three well established AOX and cytochrome bc1 complex inhibitors, 

colleotchlorin B, ascofuranone and ascochlorin, was evaluated through a combination of 

molecular modelling and experimental data. These results highlighted the differences in inhibitor 

binding sites between the respiratory complexes which determines the selectivity for 

ascofuranone towards the AOX.  

The sensitivity of the well-established AOX inhibitors and newly synthesised compounds in 

Chapter 4 were assessed on TAO, StAOX and the cytochrome bc1 complex. The compounds 

demonstrated differing sensitivities to each respiratory complex, providing further data to lead 

future fungicide design. A number of new assay techniques were developed for the screening of 

novel fungicide candidates with the most promising results obtained from ITC. The identification 

of key amino acid residues and unique structural elements to each inhibitor binding site, was 

elucidated from the inhibitory studies. Once again, this provides data to help lead future fungicide 

design of both the StAOX and cytochrome bc1 complex enzymes.  

Overall, the aims set out at the start of the research project were achieved, however both a larger 

library of fungicide candidates, and an active purified StAOX protein, would have generated more 

data for the continued research into the synthesis of novel AOX and cytochrome bc1 complex 

fungicides. On reflection, the research project was an ambitious one, with research spread across 

both biochemistry and organic chemistry disciplines.  
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6.1  Enzyme Kinetics, Regulation and Potential Role of StAOX as a 

Fungicide Target 

 

 

To date only a few fungal AOXs have been studied to determine the similarities between AOX 

species; with regards to both amino acid conservation and regulation. However, there remains no 

published research on the full characterisation of StAOX, or its potential as a fungicide target to 

both:  potentiate existing fungicide treatments151–154; and to reduce the selection opportunity for 

future resistance fungal strains41. Chapter 3 of this thesis presented the optimisation and 

evaluation of overexpression, purification, enzymatic activity, regulation and structure of StAOX. 

Initial overexpression experiments revealed a significant difference in both overexpression and 

enzymatic activity of the StAOX, in comparison to both plant and protozoan AOX species 

(Section 3.4). Through the optimisation of multiple conditions and parameters, the enzymatic 

activity was effectively doubled, but still demonstrated only 5% of TAO activity and 10% of plant 

AOX activity with respect to O2 consumption rates. In contrast to these results, multiple sequence 

alignment analysis indicated that the primary ligation sphere and PCET network, which are vital 

for enzyme catalysis, were fully conserved between all AOXs. However, the terminal residue of 

the PCET network (W65 in TAO and Y85 in StAOX) was not conserved between TAO and 

StAOX, however its effect on the O2 catalytic proton-electron transfer remains enigmatic. Further 

structural analysis of StAOX, through homology modelling, revealed differences to a number of 

residues at the entrance to the hydrophobic cavity. These residues contribute to the reduction in 

enzymatic activity between StAOX and other AOX species. However, further mutagenesis 

studies would be required to confirm this. The final enzymatic activity for StAOX suggested a 

modest role for the enzyme in energy metabolism, whilst under normal physiological conditions, 

with a specific activity of 32.6 nmol of O2 mg-1.min-1, representing 5% and 10% of specific 

activity rates of protozoan and plants species, respectively. 

Previous findings162,306 of nucleotide regulation for fungal AOXs was confirmed through analysis 

of the StAOX activity. In particular the addition of the purine nucleotide, GMP, displayed an 

increase in enzymatic activity of 4 times the un-activated StAOX turnover. As mentioned 

previously in Section 3.9, the build-up of nucleotides such as GMP, AMP and IMP could act as 

allosteric ligands to upregulate AOX activity following periods of biotic stress162 or potentially 

from the use of fungicides that target the ETC. This hypothesis can be taken further when fully 

analysing the metabolic pathways to the synthesis and degradation of purine nucleotides. As 

shown in Figure 84, the enzymes responsible for a number of transformation steps between IMP, 

GMP and AMP are ATP dependent. A serious deficiency in ATP production or high concentration 
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of ADP, would suggest a poorly functioning ETC, since the majority of ATP for the cell is 

generated from this pathway. The build-up of purine nucleotides would then activate the fungal 

AOX to alleviate an over reduced quinol pool, reduce ROS and allow for continued ATP 

production through Complex I and the TCA cycle. 

 

Previous studies307,308, have also shown that the AOX gene is upregulated by the production of 

ROS, which increases following the inhibition of cytochrome dependent pathway. The activation 

of the AOX coupled with the upregulation of the AOX gene would offer a powerful response to 

inhibition of the ETC. The respiration of the fungal cell during these periods may be 

enhanced114,151–153,261 allowing for the selection of mutant respiratory complexes through the 

survival of fungal cells during when affected by fungicides that target the ETC. The AOX should 

therefore not be disregarded as a potential resistance mechanism or metabolic pathway for 

reducing fungicide sensitivity.  

The regulation by GMP and other purine nucleotides could not be confirmed by way of the 

purified StAOX, as the absorption wavelength for both the nucleotide and quinol/quinone clash 

(278 nm). It can therefore not be conclusively determined whether nucleotide activation occurs 

through a binding interaction with the protein itself or through another mechanism within the E. 

coli membrane. Although the binding sites outlined in Section 3.5.2 offer a possibility for 

interaction through dimer formation, conformational change and improvement of the PCET 

Figure 84 - Purine Nucleotide Metabolism with regulators of the AOX in bold. Abbreviations: AdSS, 

adenylosuccinate synthetase; ADSL, adenylosuccinate lyase; AMPD, adenylate deaminase; GS, GMP-

synthase; IDH, IMP-dehydrogenase; NDK, nucleoside diphosphate kinase; NMK, nucleoside mono-

phosphate kinase; 5’NT, 5′-nucleotidase. 
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mechanism after binding to the matrix side of the protein. The purified StAOX protein also did 

not respond to the same optimisation process as the membrane bound AOX protein. The 

enzymatic activity of the Δ61 Twin-Strep StAOX was dramatically reduced following removal 

the biological membrane which was ultimately rescued when reincorporated into the 

proteoliposome system. The His-tagged protein which contained the mature sequence did not 

exhibit the same reduction in enzymatic activity following solubilisation. As stated in Section 

3.9, the N-terminal region of the protein may be the necessary for correct protein conformation 

or may be involved in dimer formation as stated by Siedow et al306. 

 

6.2  Designing and Synthesising Fungicides for the AOX and Cytochrome 

bc1 complex 

 

The design of selective inhibitors for the StAOX and/or the cytochrome bc1 complex required the 

analysis of three sperate quinol binding sites, one for the AOX and two for the cytochomre bc1 

complex (Qo and Qi). Homology and crystal structure modelling assessed these sites, presenting 

opportunities for selectivity between AOX species and between AOX and the cytochrome bc1 

complex. The phenylalanine residue (F212) hindering the entrance to the hydrophobic cavity 

prevented the synthesis of long carbon chain inhibitors but two hydrophilic residues (S182 and 

T186) present in TAO provided an opportunity to explore AOX species selectivity. The binding 

sites of the cytochrome bc1 complex differed drastically but both retained narrow cavities within 

an 8-carbon chain length. The analysis of these binding sites, along with reported data for the 

selectivity of ascofuranone but not for ascochlorin, highlighted the importance of the tail moiety. 

The design of fungicides for both respiratory complexes therefore focussed on the tail moiety, 

with no alterations to the head group. 

The natural products and lead compounds, ascochlorin, colletochlorin B and ascofuranone, 

possess a number of undesirable properties (clogP > 5.6 and pKa >10)  for both agrochemical and 

drug design, according to Lipinski’s rules286,287,299. The lipophilicity of the compounds is an 

important chemical property to be altered if future efforts towards an effective fungicide were to 

be made. The functionalisation of the lipophilic tail allows a more desirable lipophilicity and 

selectivity between the respiratory complexes. Therefore, a modified synthetic route for the 

synthesis of colletochlorin B compounds was devised.  

The synthetic route to the natural compound colletochlorin B required a large amount of 

optimisation to improve the overall yield. Although the alkyl coupling was improved for 

colletochlorin B from 11% to 55%, the results did not translate to that of functionalised tails. In 
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fact, the final novel compounds 15 and 17 only managed to achieve yields of 20% and 5%, 

respectively. Furthermore; the coupling of both the saturated and unsaturated functionalised alkyl 

chains failed to couple at all. The challenging synthetic route prevented the synthesis of many of 

the intended fungicide candidates and therefore prevented clear structure elucidation in Chapter 

5. Nevertheless; the synthesis of four structurally related compounds (15-18) with similar 

hydrogen bond acceptors to that of ascofuranone, allowed for evaluation via various assay 

techniques.  

The potential to synthesise further compounds from the devised reaction Schemes outlined in 

Chapter 4, for both saturated and unsaturated tails, failed to yield a final compound. The 

synthesis of allylic functionalised aniline derivatives offered a facile route in theory to a library 

of compounds, due to the abundance of commercially available amines. Unfortunately, 

purification of the final compounds significantly reduced the final yields of each step leading up 

to the final alkyl coupling. The small quantities taken through to the alkyl step failed to couple to 

head group but the reasons for the failure remain unknown. Both the secondary amine functional 

group and the already low yielding alkyl coupling step may be responsible.  

 

6.3  Inhibition of the AOX and cytochrome bc1 complex  
 

The evaluation of the established AOX inhibitors against StAOX revealed a clear difference in 

sensitivity between the three most potent inhibitors (colletochlorin B, ascochlorin and 

ascofuranone). These results also emphasised the difference in inhibition between TAO and 

StAOX, presenting an opportunity for designing species selective inhibitors. The conclusions 

made in Chapters 3 and 4 from analysis of the StAOX and TAO structures through molecular 

modelling software, also supported by this data. Unfortunately, newly synthesised fungicide 

candidates (compounds 16-19) showed poor inhibition against StAOX. Evaluation of compounds 

16-19 against the cytochrome bc1 complex also demonstrated poor inhibition for all of these 

fungicide candidates. In contrast, compounds 19 and 17 demonstrated an increase sensitivity to 

TAO with compounds 16 and 19 offering selectivity factors of 1000 and 114, respectively. 

Although the design of these compounds was intended to offer new fungicide candidates, it 

follows that the newly synthesised compounds may offer more potential as drugs for the treatment 

of African sleeping sickness.  

The use of a secondary screen, through ITC, provided a novel methodology for assessing AOX 

inhibitors. This methodology was applied to TAO due to the stability and conformational integrity 

of the purified protein. However, screening fungicide candidates using ITC analysis could not be 

achieved for StAOX, due to low protein recovery and specific enzymatic activity. Efforts were 
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made to improve specific enzymatic activity and protein recovery through a number of 

optimisations steps in Chapter 3 but no significant improvement was seen. The thermodynamic 

quantities obtained from the ITC studies for TAO, however, identified ascofuranone as the 

strongest binder, with an increased number of H-bond interactions reflected in the increased 

enthalpic contribution to its overall infinity. Such results are important for leading future inhibitor 

design but its application to StAOX will require further optimisation of purification protocols.  

The use of in silico docking, for the evaluation of potential drug candidates, has been successful 

in supporting QSAR data for over 50 FDA approved pharmaceuticals309 and is growing as a drug 

screening technique310–312. However, its application towards the synthesis and design of novel 

agrochemicals has yet to be adopted. Its application for the assessment novel fungicide candidates 

was explored for TAO, StAOX and the cytochrome bc1 complex. The docking of compounds 

within the crystal structure provided a useful visual tool to understand binding interactions and 

focus future fungicide design. However; the correlation between pIC50 and docking scores did not 

show any statistical significance. It could be suggested that since the evaluation through in silico 

docking calculates an inhibitor/enzyme interaction directly, the relevance of pIC50 data, which is 

influenced by a number of external parameters, does not perfectly correlate. The ITC assay carried 

out on purified TAO samples provided an isolated system by which to assess enzyme/inhibitor 

interactions. The correlation between docking scores and Kd data was shown to be positive, 

however the sample of size of only 3 inhibitor/enzyme interactions precludes any conclusive 

validity to the in silico docking studies. Furthermore, the substantial research efforts described in 

the literature309–312 suggest that in silico docking does hold validity under the correct experimental 

conditions.   

 

6.4  Future Work 
 

The scope for future work extends across both biochemical and organic synthetic aspects of this 

research topic. The first area of research should be to investigate the influence of the location of 

purification tag on the StAOX protein and its effects on expression and purified enzymatic 

activity. The loss of the leader sequence and introduction of the Twin-Strep tag significantly 

improved the specific activity of the E. coli membrane samples, however the purified Twin-Strep 

tagged StAOX protein showed a 20 times lower specific activity in comparison to the His-tagged 

purified protein. The loss the leader sequence represented a significant change to the N-terminus 

for the StAOX protein and therefore it seems to be important for the conformation and activity of 

the solubilised protein. Including the leader sequence and the effect of moving the purification 

tag to the C-terminus should be analysed in order to improve the activity of the StAOX purified 
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protein. A stable and active purified protein may facilitate the use of StAOX in ITC measurements 

for both inhibitor studies and for the confirmation of GMP as an allosteric regulator. The 

measurement of the stoichiometry (n) would help to support the hypothesis of 3 binding sites per 

StAOX dimer molecule as suggested in Chapter 3. Measuring the KD, however, could offer 

utility through mutagenesis of the residues implicated in the GMP binding site which would see 

an increase or decrease in GMP binding affinity.   

The mixed results from the organic synthesis of candidate fungicides provides a large opportunity 

for work on new synthetic routes for ascofuranone or colletochlorin B derivatives. The alkyl 

coupling route did not allow for suitable yields following the transfer from the optimised 

colletochlorin B synthesis to the new functionalised tail derivatives. Scheme 10 offers an 

alternative route for the synthesis of a library of fungicides, which should improve the total yield 

of the final inhibitor compounds. Important differences in this synthetic route is omission of both 

the alcohol in the meta position to the formyl group and the formyl group itself. From docking 

studies in Chapter 5 and published drug design for TAO from West et al200,201 these groups have 

shown that the alcohol does not contribute to the efficacy and the formyl group can be replaced 

by other hydrogen bond acceptors. The first step of the proposed scheme involves the protection 

of the alcohol which can be achieved through the use of TBDMS-Cl in DCM. The generation of 

the nitrile group could be achieved by generating the Vilsmeier-Haack intermediate through 

POCl3 and DMF, followed by the addition of an ammonia solution and iodine to form the nitrile. 

Chlorinating the aromatic ring would be less problematic than the one afforded in Chapter 4, since 

di-substituted halogens can be formed at high equivalents of SO2Cl2 and high yields. An added 

benefit would be the possibility of utilising already synthesised isoprenoid alcohols and utilising 

palladium catalysts, outlined by Beller313 and Buchwald314,315, to afford an ether coupling to the 

Scheme 10 - Proposed scheme for the generation of candidate fungicides for the AOX or cytochrome 

bc1 complex. a = Pd (OAc)2, Cs2CO3, toluene, b or c = Buchwald4,5 
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head group in high yields. The introduction of an ether would also reduce lipophilicity and 

introduce a point of metabolism to ensure rapid degradation within non-target organisms.  

The evaluation of prospective fungicides was only evaluated on isolated enzymes and simple 

metabolic systems. It would therefore be pertinent to screen fungicides on both a whole cell fungal 

plate assay, with quantification of the effectiveness with of kill-zone measurements, and through 

in planta studies, with visual STB symptoms analysed. With both of these systems QoI, SDHI and 

DMI resistant fungal strains may be used to assess new fungicides sensitivity to these fungi. 

Ultimately, evaluating AOX inhibitors along with other traditional respiratory fungicide classes 

(QoI and SDHI) may elucidate the potentiating contribution when inhibiting the alternative 

pathway. Furthermore; it will allow for the understanding of how well these potential fungicides 

will travel within the plant. The use of phosphor image analysis, coupled with quantitative 

analysis of a radiolabelled inhibitor, allows for a comprehensive understanding of distribution of 

a fungicide within its target system284,316.  

It is also important to note both validation of the AOX as a resistance mechanism and role in 

potentiating existing fungicide formulations has not been confirmed, however, there remains large 

amounts of studies33,111,114,149,151–154,176,185,187–189,205 implicating its involvement. The generation of 

AOX knockout mutants and the effect on the growth, and its ability to adapt to fungicide stress, 

for S. tritici, would further confirm the role the enzyme plays in resistance and pathogenesis. 

Furthermore, the synthesis of a specfic StAOX inhibitor, and the evaluation of its efficacy 

combined with a commercial respiratory targeted fungicide, such as Azoxystrobin, may confirm 

support these suggested roles. It also creates a platform for a novel phytopathogenic fungicide 

class with lower risk of resistance and high efficacy, whilst delivering low non-target toxicity.  
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Appendix 

 

The following pages provide the raw LC-MS spectra for Compounds 16-19. 

 

All other 1H, 13C and LC-MS spectra are available on request as part of a supplementary data file. 
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