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Abstract

Land is constantly changing because of natural and anthropogenic factors. One of the grand

challenges facing humanity is the loss of biodiversity, caused by land change, which may a�ect

ecosystem functioning. Attributes of land change, e.g. magnitude, time span, sequence or

frequency, can be quanti�ed reliably from remotely-sensed satellite data. Up to now, it was not

clear how attributes of past land changes, e.g. those preceding biodiversity sampling, continue

to in�uence local biodiversity across geographic regions and taxonomic groups. This thesis

investigates the varying impacts of multiple attributes of land change on biodiversity globally

by analysing links between broad-scale data on local biodiversity measures – calculated from

the global PREDICTS database - and time series of di�erent remotely-sensed satellite data from

the period of 1984 to 2015. Overall past land changes were found to impact local biodiversity

more than present di�erences on land, however with considerable variability among taxonomic

groups. Abrupt land changes of greater magnitude, that occurred more recently, reduced local

biodiversity measures more, although biodiversity recovered as time passed. Furthermore, impacts

of past land change varied depending on trajectories of land-cover types, a�ecting national and

global biodiversity projections. While biodiversity change, quanti�ed from time series of North



American breeding bird surveys was correlated with, but not explained by, landscape-wide land

changes, the frequency and magnitude of past, instead of concomitant, land changes was more

important in explaining biodiversity change. These results indicate that global indicators of the

impacts of land change on local biodiversity need to consider lasting in�uences of the past as

ignoring them would result in incomplete assessments of biodiversity change. Remote sensing

can assist in quantifying biologically-relevant attributes of land change in space and time, and

such attributes should be incorporated into global assessments and projections of biodiversity

change.
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1

Chapter1

General introduction

History, as well as life itself, is

complicated; neither life nor history

is an enterprise for those who seek

simplicity and consistency

Diamond (2005)

1.1 Introduction

The loss of biodiversity is of increasing concern worldwide because of its value to

humankind. Biodiversity, the variability of organisms and the ecological complexes they

are part of (CBD and Secretariat of the Convention on Biological Diversity, 2014), is

constantly changing, with the number of extant species in many taxonomic groups –

such as birds (Jetz et al., 2012) or mammals (Upham et al., 2019) – varying in space and

time. However current global extinction rates have been estimated to be 100 to 1000

times higher than natural background rates (Pimm et al., 2014), resulting in the Earth

loosing most of its megafauna and many other species (Sandom et al., 2014; Ceballos

et al., 2017; Hallmann et al., 2017), including those endemic to islands (Blackburn et al.,

2004) or with certain ecological traits (Fritz et al., 2009). Increasingly humankind realizes

that further losses of biodiversity would be detrimental, either because of its intrinsic

value or because of the realization that ecosystem functions and services are essential

for human and economic wellbeing (Cardinale et al., 2012; Mace, 2014). For instance

it has been shown that the loss of biodiversity – particularly at local scales – may be
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correlated with a loss of ecosystem functions and services (Albrecht et al., 2014; Oliver

et al., 2015a; Hautier et al., 2015; Isbell et al., 2015). There are multiple pressures on

biodiversity globally (Butchart et al., 2010; Ste�en et al., 2015), but establishing links

between biodiversity loss and those pressures is often challenging (Cardinale et al., 2018;

De Palma et al., 2018).

Box 1.1 Definitions

This thesis follows the de�nitions by Lambin and Geist (2006), who de�ne land

cover as the conditions of the Earth’s land surface including abiotic and biotic

structures. In contrast land use has been de�ned as the purposes to which humans

exploit and manipulate land cover (Lambin and Geist, 2006). Satellite-based remote

sensing is capable (see 1.1.1) of monitoring land-surface conditions, i. e. land cover,

but is usually unable to identify land use per se. Land use and land cover often form

a coupled human-environmental land system (Lambin and Geist, 2006; Turner

et al., 2007) and as a unifying framework the term land change recognizes that

changes in land-use and/or land-cover can often not be separated (Turner et al.,

2007; Lambin and Geist, 2006).

Land change – de�ned as change in land use and/or land cover caused by natural

or anthropogenic factors (Box 1.1, Lambin et al., 2003; Turner et al., 2007; Song et al.,

2018) – is among the main drivers of biodiversity loss across scales. Among 8,688 species

listed in the International Union for Conservation of Nature (IUCN) Red List, 62.2% of

species globally are threatened with extinction because of agricultural activities and

34.7% by urban development (Maxwell et al., 2016). Across biomes, vertebrate richness

(Brum et al., 2013; Kehoe et al., 2017b) and distribution (Di Marco and Santini, 2015)

can best be explained by the occurrence of anthropogenically altered land. Broad-scale

syntheses found di�erences in land use and/or land cover to impact local biodiversity

globally (Gibson et al., 2011; Murphy and Romanuk, 2014; Newbold et al., 2014, 2015;

Alroy, 2017) with local species richness estimated to be reduced by 13% globally relative to

undisturbed primary vegetation (Newbold et al., 2015), increasingly exceeding planetary

boundaries (Newbold et al., 2016a). Impacts of land change are furthermore dependent

on functional traits of species (Newbold et al., 2013; Jung et al., 2017) with species of

large body size (Newbold et al., 2013, 2015) or narrow range (Newbold et al., 2018) being
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particularly a�ected. However, these broad-scale syntheses primarily investigated the

impacts of spatial di�erences in land-use/land-cover at the time of biodiversity sampling

(Gibson et al., 2011; Murphy and Romanuk, 2014; Newbold et al., 2015; Alroy, 2017). Land

changes that occurred before biodiversity sampling are often ignored, despite published

evidence of their impacts on local biodiversity.

Past land changes continue to in�uence local biodiversity (Foster et al., 2003). These

in�uences are detectable in altered soil biodiversity (Jakovac et al., 2016; Wood et al.,

2017), vegetation growth (Fraterrigo et al., 2006) or species composition (Bellemare

et al., 2002; Ewers et al., 2013; Jakovac et al., 2016). After a land change, biodiversity

can recover (Chazdon, 2003) depending on key attributes of land change (see 1.1.3 for

further detail) such as magnitude or time passed (Martin et al., 2013; Fu et al., 2017; Jones

et al., 2018). However previous evidence on lasting impacts of past land change is not

consistent, reporting either losses (Moreno-Mateos et al., 2017; Jones et al., 2018), mixed

changes (Svensson et al., 2012; Thom and Seidl, 2016) or increases (Fu et al., 2017) in

local biodiversity measures [predominantly species richness]. Furthermore, these studies

investigated only a single attribute of land change, e. g. time passed, while those that

assessed multiple attributes (Shackelford et al., 2017) surprisingly found most attributes

to be not important in explaining di�erences in biodiversity.

Overall there remain several gaps in our knowledge of how land change a�ects

local biodiversity: Importantly (i) most previous broad-scale syntheses only coarsely

- if at all - considered land changes in the past (Alkemade et al., 2009; Murphy and

Romanuk, 2014; Newbold et al., 2015) and corresponding lasting e�ects (see 1.1.3) on

local biodiversity (Dullinger et al., 2013; Hylander and Ehrlén, 2013); (ii) past land change

has often been inferred from anecdotal, non-replicable information – i. e. encoded as

“secondary vegetation” (Hudson et al., 2014) or “abandoned agriculture” (Gibson et al.,

2011) – or land use/land-cover data from extrapolated estimates (Hurtt et al., 2011),

impeding external validation and quanti�cation of land change attributes; and (iii) many

previous studies investigating impacts of past land change on biodiversity focussed on

speci�c geographic regions (Bellemare et al., 2002; Ewers et al., 2013; Cousins et al., 2015),

taxonomic groups (Hermy and Verheyen, 2007; Perring et al., 2018) or single biodiversity

measure such as species richness (Martin et al., 2013; Fu et al., 2017), which has been

shown to be problematic (Su et al., 2004; Hillebrand et al., 2018), rather than providing
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a comparative and comprehensive assessment globally. Here I will address these gaps

by investigating if and how local biodiversity di�ers because of past land changes –

quanti�ed by satellite-based remote sensing (Figure 1.1) – and what attributes might

drive these di�erences in biodiversity measures.

1.1.1 Land change in the Anthropocene

Land is always changing. Change can happen because of a variety of factors that vary

across spatial and temporal scales (Lambin et al., 2003; Kennedy et al., 2014). Some natural

events such as �ooding, storms or plant diseases alter land cover infrequently (Turner

et al., 1998), while others – such as repeated droughts or frequent wild�res – can de�ne

and shape entire ecoregions. Such is the case for the North American Midwest or South

African Fynbos ecoregions which are characterized by frequent wild�res (Westerling

et al., 2006; Kelly and Brotons, 2017). In rare instances natural factors can change entire

biomes. The Sahara desert, covered by forests and savanna grasslands until 18,000 years

B.P., has lost most of its natural vegetation because of changes in precipitation cycles

(Hamilton, 1981). Yet, those extensive natural land changes are dwarfed by the pervasive

impacts humans have on the Earth’s surface and there is an increasing realization that any

characterization of terrestrial biomes is incomplete without acknowledging the in�uence

of humans (Ellis and Ramankutty, 2008; Kehoe et al., 2017b).

Humankind continues to shape the land (Ellis, 2011; Ellis et al., 2013b) with human-

driven land changes occurring since 10,000 years B.P (Ellis et al., 2013b). Evidence of

agricultural activities from ancient civilizations are noticeable even in the most remote

places such as the Amazon basin (McMichael et al., 2017). Europe, once predominantly

covered by forests, has lost most natural vegetation in the Middle Ages and early Renais-

sance (Kaplan et al., 2009), resulting in the human-dominated landscapes of the present.

Land changes in those landscapes occur frequently (Kleyer et al., 2007), with the dominant

land cover alternating between grass-, crop- and shrub-covered land (Kleyer et al., 2007;

Manning et al., 2009). The temporal acceleration of anthropogenic factors altering the

Earth surface (Ste�en et al., 2015) have led researchers to declare a new geological epoch,

the “Anthropocene”, varyingly dated to have started as early as 3000 years B.P. or as late

as the 20th century (Ellis et al., 2013a).

Most of the knowledge of pre-20th century land change is derived from soil cores,
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historic texts, archaeological evidence or photographs and drawings (Klein Goldewijk

et al., 2011, 2016). While these sources remain the best and often only data available,

reconstructions of past land change rely on multiple assumptions (Klein Goldewijk and

Verburg, 2013) and, when projected in space and time, can often be very di�erent from

independent soil-core based land cover reconstructions (Kaplan et al., 2017). For more

recent time periods and as an alternative to reconstructed land change, satellite-based

remote sensing directly measures the conditions of the Earth’s land surface (Box 1).

Figure 1.1: Temporal coverage of biodiversity (green) and remote sensing (grey) datasets used in
this thesis. Legacy Landsat missions (1-3) are shown for completeness only.

Through technological advances humans have created a global spaceborne Earth

observation system. The �rst satellite missions were used exclusively for military intelli-

gence or weather observations. Since the mid-1970s satellite missions (Figure 1.1), such

as Landsat or later the Terra & Aqua satellites with the Moderate Resolution Imaging

Spectroradiometer (MODIS) sensor, were speci�cally designed to repeatedly photograph

the Earth on a global scale (Schaaf et al., 2002; Zhang et al., 2006; Kennedy et al., 2014).

These satellites carry highly sensitive sensors that measure the spectral re�ectance from

solar insolation. The near-infrared spectrum (Figure 1.2a) has been recognized to be

particularly useful for monitoring the photosynthetic activity of vegetation and can be

quanti�ed through “vegetation indices” (Tucker, 1979; Tucker et al., 1981; Pettorelli et al.,

2005; Jiang et al., 2008). Di�erences in the dynamics of vegetation indices (Figure 1.2b-c)

can be used to identify land change globally.
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Figure 1.2: (a) Schematic of how di�erences in spectral re�ectances assist distinguishing leaf
colour. (b) Map (Centre longitude: 0.165°, latitude: 50.778°) shows an annual maximum value
composite (MVC) for 2018 of the Enhanced Vegetation Index (EVI) as calculated from the Landsat
8 mission. (c) Monthly MVC time series of three example sites (black points highlighted in c) of
known land cover (cultivated land, forest, semi-natural grassland).

Land change can be monitored using satellite-based remote sensing. A change on land

can occur as either ‘conversion’ or ‘modi�cation’, where the former is usually understood

as “complete replacement of one land-cover type by another” – i. e. deforestation – while

the latter are “subtle changes” – i. e. agricultural intensi�cation – that a�ect the character

of a land cover (Lambin et al., 2003; Lambin and Geist, 2006). Spatial estimates of the

Earth’s land cover are commonly derived through a classi�cation of remotely-sensed

spectral re�ectances (DeFries and Townshend, 1994; Hansen et al., 2000; Di-Gregorio,

2005). However, these spatial estimates could often not be temporally compared because

of classi�cation biases and thematic inconsistencies (Verburg et al., 2011; Estes et al., 2018)

and – until recently – little progress has been made to quantify land change globally. Novel

algorithms and processing frameworks have been developed to quantify land change from

temporal dynamics of spectral re�ectances measuring photosynthetic activity (Figure

1.2c, Lhermitte et al., 2011; Gómez et al., 2016; Zhu, 2017). With increasing availability

and accessibility of satellite data (Wulder et al., 2016) and computational power (Gorelick

et al., 2017) land changes have been quanti�ed globally (Hansen et al., 2013; Pekel et al.,

2016; Li et al., 2018; Song et al., 2018), creating new opportunities to assess impacts of

land change on biodiversity.
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1.1.2 The impacts of past land change on local biodiversity

Figure 1.3: Schematic how a biodiversity re-

sponse variable (red) can be estimated using en-

vironmental predictors (blue) in space and time.

Adapted from Ferrier et al. (2017).

Land changes can have immediate and/or

delayed impacts on local biodiversity.

They can act as disturbance a�ecting the

stability of an ecosystem (Pimm, 1984;

Sche�er and Carpenter, 2003), causing an

immediate reduction in the number of

species and individuals (Nimmo et al., 2015;

Ratajczak et al., 2018). In addition, land

changes can have delayed impacts on local

biodiversity that persist for decades (Mar-

tin et al., 2013; Moreno-Mateos et al., 2017)

or centuries (Vegas-Vilarrúbia et al., 2011;

McMichael et al., 2017). Previous studies

that investigated lasting in�uences of past

land change – varyingly described as “land-

use history” or “landscape history” (Belle-

mare et al., 2002; Foster et al., 2003; Ewers et al., 2013) or “management legacies” (Perring

et al., 2016) – on biodiversity explained these in�uences through a number of mechanisms

(Figure 1.4, Table 1.1).

Several terms have been proposed to explain lasting impacts of past land change on

local biodiversity (Table 1.1). The term “extinction debt” describes the delayed extinction

of species following a loss of habitat (Balmford, 1996; Kuussaari et al., 2009; Wearn et al.,

2012) and for many vertebrate species an extinction debt is usually “paid o�” – e. g. the

time until local population is fully extinct – over a few years up to a century depending

on the initial population size and species functional traits (Halley et al., 2016). Similarly,

local biodiversity can also be in�uenced by an “immigration credit“, that is the delayed

immigration of species from regional source populations after land change (Jackson and

Sax, 2010; Hylander and Ehrlén, 2013). Many species populations retain an “ecological

memory” (Peterson, 2002; Bengtsson et al., 2003; Ogle et al., 2015) of past land changes,

reducing population growth and a�ecting species �tness and survival in subsequent



8 1.1 Introduction

Figure 1.4: Number of publications investigating terms and descriptions referring to biotic
lag e�ects as queried from Web of ScienceTM (WOS). A WOS search was conducted on the 5th

January 2019 limited to the Environmental sciences and ecological literature between 1900 and
2019 including as search topic “land-use histor*” (yellow), “extinction debt*” (green), “lag e�ect*”
(orange), “carry*over e�ect*” (red), “ecological memory e�ect*” (blue) and “immigration credit*”
(purple).

years as “carry over” e�ect (Harrison et al., 2011). Collectively those terms can broadly

be described as “biotic lag” e�ects (Table 1.1), which are lasting or lagged e�ects of

past changes in environmental factors that continue to in�uence present biodiversity.

Knowledge about lasting impacts of land change can assist in planning management

interventions (Standish et al., 2014) and should be considered in broad-scale biodiversity

models.

Most existing regional and global assessments, models and scenarios of biodiversity

(e. g. those included in the Intergovernmental Science-Policy Platform on Biodiversity

and Ecosystem Services (IPBES) assessments, Alkemade et al., 2009; Pereira et al., 2010;

Newbold et al., 2015) ignore lasting impacts of past land change. These assessments

usually consider only concurrent di�erences in land-use/land-cover (Figure 1.3) and may
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therefore partially misrepresent biodiversity change. Delayed impacts of past land change

may accumulate together with other drivers – such as climate change or species invasions

– of biodiversity change (Essl et al., 2015a,b) potentially increasing the number of future

species extinctions (Dullinger et al., 2013). To mediate the ongoing loss of biodiversity

(Mace et al., 2018), robust estimates of the lasting impacts of land change on biodiversity

need to be derived.

Table 1.1: Common terms and descriptions referring to lasting impacts of environmental changes
on biodiversity

Term Description Reference

Land-use
history

“Observed abiotic and biotic properties
that are caused by past land use”

(Foster et al., 2003; Per-
ring et al., 2016)

Extinction debt “The number of species committed to
delayed extinction following a forcing
event”

(Tilman et al., 1994; Ku-
ussaari et al., 2009)

Immigration
credit

“The number of species committed to de-
layed immigration following a forcing
event”

(Jackson and Sax, 2010)

Ecological mem-
ory

“The degree to which an ecological pro-
cess is shaped by past modi�cations of
the landscape, biotic and abiotic factors.”

(Padisak, 1992; Peterson,
2002; Bengtsson et al.,
2003; Ogle et al., 2015)

Carry-over
e�ect

“Situation in which an individual’s previ-
ous history and experience explains their
current performance in a given situation”

(Harrison et al., 2011;
O’Connor et al., 2014)

Biotic lag Term summarizing the observed di�er-
ence in biodiversity caused by lasting
or lagged e�ects of past environmental
changes

(De Palma et al., 2018)
and this thesis

1.1.3 Linking satellite-based remotely-sensed land change with

local biodiversity

Remote sensing data can be useful for biodiversity models. Remotely-sensed land-surface

conditions have been used to describe the biophysical state of species habitats (Kerr

and Ostrovsky, 2003), identify critical life-history periods (Pettorelli et al., 2005), map

species distributions (He et al., 2015) or as a proxy for predicting biodiversity patterns

(Rowhani et al., 2008; Rocchini et al., 2015; Hobi et al., 2017). However, uncertainties

remain in the usability of remote sensing data for di�erent measures of biodiversity
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(Oldeland et al., 2010), for taxonomic groups – where biodiversity measures are sometimes

poorly correlated with photosynthetic activity (Adler et al., 2011) or spectral dissimilarity

(Schmidtlein and Fassnacht, 2017) – or for many, previously unassessed geographic

regions. Especially the temporal domain (Figure 1.2b-c), including land change per se,

is often ignored (Kennedy et al., 2014). New frameworks are needed to establish links

between remotely-sensed land change and local biodiversity.

Land change can be characterized by key attributes that may have varying impacts on

local biodiversity (Figure 1.5a). Watson et al. (2014) provided a conceptual framework that

distinguishes between four attributes of land change: (1) The magnitude of land-change

events, (2) the frequency of land-change events over time, (3) the time span since a land

change occurred, and (4) the temporal sequence of land use and/or land cover categories

(Figure 1.5a). Ecological theory, experiments and simulations demonstrated that local

biodiversity can be a�ected by these attributes (Figure 1.5b). Land changes of larger

magnitude are expected to a�ect biodiversity more (Sche�er et al., 2001; Dornelas, 2010;

Svensson et al., 2012; Ratajczak et al., 2018) and – by removing poor dispersing (Tilman

et al., 1997) and specialist species (Christensen et al., 2018) – potentially reducing the

stability of species assemblages (Sche�er et al., 2001; Oliver et al., 2015a; Hautier et al.,

2015). In many regions of the world, land changes vary in frequency (Kleyer et al., 2007)

impacting local biodiversity (Valtonen et al., 2013; Lawson et al., 2015), especially if

those impacts accumulate in a short period of time (Essl et al., 2015a; Ratajczak et al.,

2018). Biodiversity measures can often recover to reference levels (i. e. a temporal or

spatial baseline) following land change, depending on the time passed (Chazdon, 2003;

Laurance et al., 2011; Martin et al., 2013). Lastly, and commonly investigated, is the

temporal sequence of land use and/or land cover types (Harding et al., 1998; Chazdon,

2003; Foster et al., 2003), where local biodiversity tends to be more altered at sites with

past anthropogenic use. However, the impact of these four attributes of land change on

local biodiversity has rarely been comparatively assessed globally and across taxonomic

groups.

1.1.4 Thesis aims and structure

The overall aim of my thesis is to investigate how local biodiversity is impacted by land

changes globally and whether those impacts vary with attributes of land change (Figure
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Figure 1.5: (a) Conceptual framework – inspired by Watson et al. (2014) – how sites can di�er
by attributes of land change, namely (1) magnitude, (2) frequency, (3) time span and (4) sequence.
Dashed lines indicate the start of biodiversity sampling with the y-axis representing an envi-
ronmental predictor such as the Enhanced Vegetation Index (EVI). (b) Assumed response of
biodiversity to varying land change attributes with x-axis indicating the strength of e�ect in units
of each individual attribute.

1.5). I do so by linking satellite-based remotely-sensed estimates of land change with

measures of local biodiversity globally (Figure 1.6). The four main analytical chapters

(Chapter 2-5) of this thesis each address multiple of the four outlined attributes of land

change (Figure 1.6). They each serve as independent articles that have either been

published, submitted or are in principle suitable for submission to an academic journal.

Chapter two assesses whether considering past land-surface conditions in the six

years before biodiversity sampling can assist in explaining di�erences in local biodiversity.

I developed an analytical framework that captures all di�erences between time series of

remotely-sensed land-surface conditions – such as land changes with varying magnitude

or inter-annual frequency – in a single metric, which was then linked with di�erences in

species assemblage composition across taxonomic and functional groups globally.

The third chapter focusses on how abrupt land changes – characterized by shifts in
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Figure 1.6: Schematic outline of the four approaches (Chapter 2-5) linking local biodiversity with
remotely-sensed land change data, with lines and icons representing di�erences in intra-annual
land dynamics (Chapter 2), an abrupt land change of large magnitude (Chapter 3), di�erent land-
cover sequences (Chapter 4) and correlating temporal change in land and biodiversity observed
at the same sites (Chapter 5). Numbers in circles at the bottom left (1-4) indicate which attributes
of land change from Watson et al. (2014) are considered in each approach (see Figure 1.5a), while
logos indicate the biodiversity data used (PREDICTS or United States BBS data).

magnitude or trend and varying time passed – continue to in�uence local biodiversity.

I assembled time series of Landsat imagery globally (Figure 1.1a) and subjected them

to a change-detection algorithm to detect abrupt land changes. A hierarchical analysis

was conducted to assess if and how strongly local biodiversity di�ers between sites with

and without a land change in the past. The assumption is that local biodiversity is more

a�ected by abrupt land changes of greater magnitude that occurred more recently.

In chapter four I investigated how local biodiversity di�ers between sites with varying

land-cover sequences of land cover change as derived from a global, temporally consistent

land-cover product for the years 1992 to 2015. The assumption is that local biodiversity is

higher at sites with a past land-cover change compared to those without, if the preceding

land cover was less anthropogenically modi�ed. In addition, this chapter investigates

how past land-cover sequences can in�uence global and national biodiversity projections

and argues for including estimates of past land change in biodiversity projections.

In contrast to previous chapters, in the �fth chapter I investigate if local biodiversity

change can be linked to landscape-wide land changes. Estimates of bird diversity change

from repeated breeding bird surveys (BBS data, Figure 1.1) were correlated with estimates

of preceding and concurrent land change at the landscape scale quanti�ed from time

series of Landsat imagery. I furthermore investigate whether the explanatory power of

landscape-wide land changes on bird diversity change varies in space, time and across

functional groups of bird species. The assumption is that bird diversity declines more in

landscapes with a greater proportion of land changes.
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The thesis concludes with the sixth chapter, which provides a synthesis of the pre-

sented work, discusses all �ndings in relation to previous studies, and mentions short-

comings and promising directions for future research.
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Chapter2

Local species assemblages are

influenced more by past than current

dissimilarities in photosynthetic

activity

Most land on Earth has been changed by humans and past changes of land can have

lasting in�uences on current species assemblages. Yet few globally representative studies

explicitly consider such in�uences even though auxiliary data, such as from remote

sensing, are readily available. Time series of satellite-derived data have been commonly

used to quantify di�erences in land-surface conditions such as vegetation cover, which

will among other things be in�uenced by anthropogenic land conversions and modi�ca-

tions. Here we quantify di�erences in current and past (up to �ve years before sampling)

vegetation cover, and assess whether such di�erences di�erentially in�uence taxonomic

and functional groups of species assemblages between spatial pairs of sites. Speci�-

cally, we correlated between-site dissimilarity in photosynthetic activity of vegetation

(the Enhanced Vegetation Index) with the corresponding dissimilarity in local species

assemblage composition from a global database using a common metric for both, the

Bray-Curtis index. We found that dissimilarity in species assemblage composition was

on average more in�uenced by dissimilarity in past than current photosynthetic activity,

and that the in�uence of past dissimilarity increased when longer time periods were

considered. Responses to past dissimilarity in photosynthetic activity also di�ered among
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taxonomic groups (plants, invertebrates, amphibians, reptiles, birds and mammals), with

reptiles being among the most in�uenced by more dissimilar past photosynthetic activity.

Furthermore, we found that assemblages dominated by smaller and more vegetation-

dependent species tended to be more in�uenced by dissimilarity in past photosynthetic

activity than prey-dependent species. Overall, our results have implications for studies

that investigate species responses to current environmental changes and highlight the

importance of past changes continuing to in�uence local species assemblage composi-

tion. We demonstrate how local species assemblages and satellite-derived data can be

linked and provide suggestions for future studies on how to assess the in�uence of past

environmental changes on biodiversity.

2.1 Introduction

Throughout the Earth’s history, land has changed constantly by a combination of natural

and anthropogenic forces. Palaeontological evidence indicates that humans have trans-

formed approximately 75% of the land at least once (Ellis et al., 2010; Ellis, 2011), with

changes in many land-surface conditions, such as vegetation cover, accelerating since

the beginning of the industrial revolution (Lambin and Geist, 2006; Ste�en et al., 2015).

Changes in vegetation cover may be caused by climatic factors, such as CO2 fertilization

or altered precipitation patterns (Zhu et al., 2016), or anthropogenically caused land

conversions, such as deforestation, re- and a�orestation (Dupont et al., 2003; Hansen

et al., 2013; Müller et al., 2014) or land modi�cations, such as degradation, intensi�cation

(Gibbs and Salmon, 2015; Ru�n et al., 2015) or a return to less intensive forms of land

use (Zomer et al., 2016). Over time, these changes have shaped both land and species

assemblages in complex ways (Foster et al., 2003; Watson et al., 2014; Perring et al., 2016).

Most global meta-analyses investigating the in�uence of di�erences in vegetation

cover on species assemblages have assumed that any di�erence in vegetation cover at the

time of biodiversity sampling is the dominant in�uence (Stein et al., 2014; Newbold et al.,

2014, 2015; Alroy, 2017). However, this assumption might be incorrect as assemblages can

be heavily in�uenced by legacy e�ects of past changes in vegetation cover (Foster et al.,

2003; Watson et al., 2014; Ogle et al., 2015; Perring et al., 2016). For the recent past (e. g. ,

up to �ve years prior to biodiversity sampling), ecological memory or carry-over e�ects,

i. e. the capacity of past events to in�uence current and future ecological assemblages
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(Harrison et al., 2011; O’Connor et al., 2014; Ogle et al., 2015), have been proposed as

mechanisms that shape species assemblages. These e�ects can arise through site-speci�c

environmental factors, for instance altered conditions because of agricultural practices

(Perring et al., 2016, 2018) or di�erent sequences and successional recovery from changes

in past vegetation cover (Johnson and Miyanishi, 2008; Walker et al., 2010; Watson et al.,

2014). No detailed global analysis to date has explicitly considered the in�uence of both

current and past di�erences in vegetation cover on current species assemblages.

While some di�erences in species assemblages can be traced back to changes in

vegetation cover in the late quaternary (Vegas-Vilarrúbia et al., 2011; McMichael et al.,

2017), there is some evidence that changes in vegetation cover in the more recent past

can in�uence plant (Jakovac et al., 2016), invertebrate (Valtonen et al., 2013) or vertebrate

assemblages (Newton et al., 2014; Cole et al., 2015; Graham et al., 2017). However, this

has — to our knowledge — not been assessed comparatively across multiple taxonomic

groups. Furthermore, it is likely that species with speci�c traits, such as certain body

size and/or trophic level, may be di�erentially a�ected by past changes in vegetation

cover because of di�erences in their metabolic rate (for animals), longevity or dispersal

abilities (Sutherland et al., 2000; Brown et al., 2004; Speakman, 2005; Thomson et al.,

2011; De Palma et al., 2015). Depending on the type and magnitude of a past changes in

vegetation cover (as a proxy for changes in land-surface conditions) plant assemblages

can either be dominated by small, fast sprouting or taller, nutrient-demanding species

(Jakovac et al., 2016; Perring et al., 2018). Until now, our understanding of the in�uence

of past di�erences in vegetation cover on species assemblages has been limited to case

studies that focused on speci�c regions or certain taxonomic and functional groups.

However, a recently published globally representative dataset on species assemblages of

broad taxonomic coverage (Hudson et al., 2017) and globally available satellite-derived

data enable us to consider explicitly both current and past di�erences in land-surface

conditions.

Satellite-derived data can provide internally consistent estimates of how land di�ers

across time and space (Pettorelli et al., 2005; Kennedy et al., 2014). Land-surface con-

ditions such as photosynthetic activity of vegetation can be quanti�ed using spectral

indicators from satellite-derived data (Gamon et al., 1995; Zhang et al., 2006). Changes in

photosynthetic activity of vegetation can be related to both climatic (Fensholt et al., 2012;
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Zhu et al., 2016) and anthropogenic factors such as land conversions and modi�cations

(Lambin et al., 2003; Müller et al., 2014). Subtle di�erences in vegetation dynamics (as

measured by various satellite-derived vegetation indices), such as faster greening rate or

di�ering seasonal amplitude, between years have been used to characterize land change

(Lambin and Strahler, 1994; Linderman et al., 2005; Lupo et al., 2007). Recent studies have

used such di�erences to identify changes in land use such as pasture use intensity (Ru�n

et al., 2015), fallow periods in croplands (Estel et al., 2015; Tong et al., 2017), small-scale

deforestation (DeVries et al., 2015) and broad scale land degradation and intensi�cation

(de Jong et al., 2011; Müller et al., 2014). Dissimilarity metrics describing the entirety of

recent land history (e. g. including both di�erences in land use and land cover as well as

climatic and site-speci�c factors) can be calculated between spatial pairs of time series

as the overall dissimilarity in photosynthetic activity (Linderman et al., 2005; Lhermitte

et al., 2011). Increasingly such methods have been linked to dissimilarity in local species

assemblage composition (Rowhani et al., 2008; Goetz et al., 2014; Nieto et al., 2015; Hobi

et al., 2017), however few studies have explicitly distinguished between current and past

dissimilarity in photosynthetic activity.

Here we use a time series dissimilarity metric (the Bray-Curtis index) to quantify

dissimilarity in a land-surface condition, e.g. photosynthetic activity of vegetation, among

spatial pairs of sites in the Projecting Responses of Ecological Diversity In Changing

Terrestrial Systems (PREDICTS) dataset (Hudson et al., 2017). We explicitly distinguish

between dissimilarity in current and past photosynthetic activity (BCEVI), de�ned here as

the �ve years prior to the ‘current’ year, and assess how they in�uence compositional

dissimilarity (BCBiodiversity) between species assemblages among paired sites. This pairwise

comparison approach allows us to investigate (i) the overall in�uence of past relative to

current dissimilarity in photosynthetic activity on species assemblages where we hypoth-

esize that the in�uence of past dissimilarity increases with longer past periods considered.

Furthermore, we investigate (ii) whether di�erent taxonomic groups respond di�erently

to past dissimilarity in photosynthetic activity, and (iii) if species with particular func-

tional characteristics, i. e. , those that are smaller and/or more vegetation-dependent, are

more a�ected by past dissimilarity in photosynthetic activity than others.
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2.2 Data and Methods

2.2.1 Remotely-sensed data

A temporal pro�le of spectral re�ectance values was derived from the Moderate Resolution

Imaging Spectroradiometer (MODIS) sensor on board NASA’s Terra and Aqua satellites.

Since the year 2000, MODIS has provided continuous spectral data of medium-scale

resolution (nominal ~500 m resolution) with high temporal revisit rates (a global image

collection is taken every day) (Schaaf et al., 2002). We used the Bidirectional Re�ectance

Distribution Function and Albedo (BRDF) product (MCD43A4.005), which aggregates the

highest quality daily spectral re�ectance values into 8-day composites of seven spectral

bands (Schaaf et al., 2002). Google Earth EngineTM was used to download and process

temporal pro�les of all spectral bands for each site (Gorelick et al., 2017). We calculated a

spectral index measuring photosynthetic activity (the two-band Enhanced Vegetation

Index – EVI; Jiang et al. (2008)), which is based on a ratio between the near-infrared (nir,

841-876 nm) and red (620-670 nm) spectral band EV I = 2.5 ∗ (nir−red)
(nir+2.4∗red+1) . We used

the EVI as it has been designed to reduce atmospheric contamination and not to saturate

in high biomass regions such as tropical rainforests (Huete et al., 2002; Jiang et al., 2008).

We applied the following pre-processing steps (also see �owchart in Appendix Figure

A.2.1) to the nir and red BRDF bands individually to �ll missing observations and �lter

out extreme data points.

First, we detected and removed extreme outliers in the BRDF data that may have

been introduced by cloud shadows, atmospheric haze, inversion errors or sensor failures.

We calculated the absolute di�erence of all values from the median relative to the total

median absolute deviation (MAD) of all values (Leys et al., 2013). Pixels which were

more than a conservative threshold of two units deviation (but see Leys et al., 2013)

away from the MAD as well as greater than 99% of all other di�erence values were set

to missing. This data-de�ned threshold removed only the most extreme outliers and

retained �uctuations that are within the bounds of median conditions. We chose this

procedure rather than using the MODIS BRDF quality data set (stored in the separate

MCD43A2.005 product) to maintain the maximum number of observations assuming that

bad quality inversions of the BRDF product are �ltered and smoothed out by subsequent
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pre-processing steps.

Second, we interpolated missing values using a Kalman �lter, a smoother for estimat-

ing missing data points based on preceding data (Kalman, 1960). Previous studies have

shown that Kalman �lters perform well in �lling gaps in BRDF time-series especially

in data-poor regions (Samain et al., 2008). The best model for the Kalman �lter for a

given time-series was estimated using the “forecast” R package (“auto-arima” function) by

selecting the model with the lowest Akaike Information Criterion (AIC) (Hyndman and

Khandakar, 2008). We only interpolated consecutive gaps≤ 40 days (i. e. �ve consecutive

8-day BRDF composites) as longer interpolations would reduce our ability to detect

short-term changes in photosynthetic activity. We excluded all time-series from further

analyses with more than 50% remaining missing data (average proportion of missing data

= 6.32 ± 10.31%) in the time period considered (see Appendix Figure A.2.2).

Lastly, we applied a Savitzky-Golay �lter (�lter length = 5, “signal” R-package) to

reduce the amount of random noise remaining in the time series, but retain small abrupt

changes that might occur (Joensson and Eklundh, 2004). The Savitzky-Golay �lter per-

forms well relative to other smoothing techniques in removing noise (Kandasamy et al.,

2013). Our pre-processing steps aimed to remove in�uential outliers and random noise

from each time series, but we cannot rule out that some non-informative noise has re-

mained in the time series. From these pre-processed BRDF data we calculated the EVI for

each 8-day composite (Jiang et al., 2008).

2.2.2 Species assemblage data

We used data on species’ abundance within local-scale assemblages from the PREDICTS

database (Hudson et al., 2017, downloaded on 3 February 2016, see A.2.1), which is the

largest global database investigating anthropogenic impacts on terrestrial species as-

semblages to date. The PREDICTS database has collated local-scale species assemblage

records from the published literature (henceforth “sources”) comparing observations

among at least two localities (henceforth “sites”) with di�ering land use or related pres-

sures. Sources in the PREDICTS database having multiple sampling methodologies and

taxonomic groups were split accordingly into di�erent “studies”. Wherever sampling

e�ort di�ered among sites within a study, we followed the approach of Newbold et al.

(2014) and adjusted abundance values assuming that recorded abundance increase lin-
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early with e�ort. Each study was assigned to one of six higher taxonomic groups based

on the sampled species identity (Plants, Invertebrates, Amphibians, Reptiles, Birds and

Mammals). We grouped plants and invertebrates into single individual groups as there

were insu�cient data to divide them into smaller groups (e. g. , functional divisions such

as �ying vs ground-living insects). Studies of fungi were dropped from the analyses

because of insu�cient data.

Of the 25224 sites with abundance data, we removed 6109 sites because their sampling

durations spanned more than a year or because the start of biodiversity sampling di�ered

by more than three months among sites within a study. This was done to avoid seasonal

e�ects confounding any link between species assemblage composition and remote-sensing

derived estimates. Furthermore, we removed 10248 sites from studies that sampled

biodiversity before the 18th of February 2006 to ensure MODIS data availability for at

least �ve years prior to biodiversity sampling. We chose to use a �ve-year period to allow

su�cient MODIS coverage (since year 2000) for the majority of studies in the PREDICTS

database (median biodiversity sampling start date = 2007-07-17). In total 8867 sites were

suitable to be linked with MODIS remote-sensing data.

The spatial extent of biodiversity sampling at PREDICTS sites typically di�ers from

the resolution of MODIS data. We used the Maximum Linear Extent (MLE) information

within the PREDICTS database, which summarises the spatial extent of sampling within

a study in metres (Hudson et al., 2017). Sites from a few studies had large MLE (up to 40

km) and after visual exploration, we decided to keep only those sites that were within

the 99% quantile of all MLE values (MLE < Q99 = 3000 m, removing 249 sites). Some

studies had missing MLE information (25% of all studies with abundance data, 728 sites),

where no MLE estimate could be obtained during the PREDICTS data curation (Hudson

et al., 2017). We �lled missing MLE information with the average MLE estimate of each

taxonomic group with corresponding sampling method, and any remaining missing MLE,

for which no other combination of taxonomic group and sampling method had MLE

estimates, with the average MLE for each taxonomic group. We tested the robustness of

this assumption by removing 25% of the existing MLE estimates at random and found

interpolated MLE values to be reasonably accurate (r = 0.73, p < 0.001). We used the

centre coordinates for the rest of the sites (mean MLE ± SD = 256.52 m ± 437.93 m) as

their spatial extent roughly matched the nominal spatial resolution of the MODIS data
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(~500 m).

We excluded studies from our analyses where all study sites fell within a single

MODIS grid cell, to suit our hierarchical statistical approach (see below). Some sites

within a study could fall into the same MODIS grid cell, therefore for all further analyses

we randomly selected one site per study per grid cell 100 times (See section 2.2.4 below

for description of permutation procedure and Appendix Figure A.2.3 for a schematic),

resulting in 100 di�erent subsets that we used for all further analyses. Our �nal dataset

included data from 198 studies with 4053 sites per permutation and model covering all

major continents (except Antarctica) and most taxonomic groups (Figure 2.1).

Figure 2.1: (a) Locations of 198 species assemblage studies (centroid of each study) coloured by
taxonomic group. (b) Diagram of the modelling approach to investigate in�uences of current
and past dissimilarity in photosynthetic activity on species assemblages. The Bray-Curtis index
(BCEVI) was calculated between pairs (blue arrows) of remote-sensing time series (black solid
lines) and of species assemblages (BCBiodiversity) collected at paired sites. Independent statistical
models were constructed for both current (i - black) and past BCEVI of varying length (ii - orange)
and their model e�ects compared (iii – Estimated �xed e�ects).
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2.2.3 Species trait compilation

A species’ size and trophic level are two of the most basic traits for understanding di�er-

ences in species assemblage structure (Speakman, 2005; Terborgh, 2015). We classi�ed

studies into size and trophic bins based on a simple majority: small (>0-9 g animal body

mass or > 0-9 cm plant height), medium (10 – 99 g or 10-99 cm) or large species (≥ 100 g

or ≥ 100 cm), or predominantly herbivore, omnivore, carnivore or detritivore species,

by estimating the dominant number of species (simple sum of measurement) within a

study. Studies with species of predominantly unknown size or trophic level were removed

from the analysis. We thus classi�ed entire studies to the dominant bins as each study’s

methodology would likely constrain the average size of animals or plants that can be

observed. Data on average adult body mass (in g) were collected for mammals (Jones et al.,

2009) and birds (Myhrvold et al., 2015), while for plants we used height (in cm) data from

the TRY database (Kattge et al., 2011). The estimates of species trophic levels originate

from Kissling et al. (2014), Wilman et al. (2014) and other sources of the literature for

invertebrates (obtained from Laura Bentley, Imperial College London, UK). For species

for which size or trophic level data were unavailable, we used the genus-wide average

for size and the most common trophic level (at least 95% of all species with data within

a genus). We excluded studies (N=8) from further analyses where no clear majority of

species (> 50%) could be assigned to one of the bins (Appendix Figure A.2.4), leaving a

total of 65 studies with size information and 130 studies with trophic information.

2.2.4 Analysis - Pairwise dissimilarity

We linked dissimilarity in photosynthetic activity of vegetation with compositional

dissimilarity in species assemblages globally. Speci�cally, we examined the di�erential

in�uence of “current” (yr0, as the 365 days prior to species assemblage sampling) and “past”

(yri, the i years prior to the current year, where i = 1, .., 5) dissimilarity in photosynthetic

activity between spatial pairs of sites (Figure 2.1b, Appendix Figure A.2.3). We separately

considered past periods of increasing lengths (in years, so yr1, yr1:2, yr1:3, yr1:4, yr1:5). For

example, if species assemblage sampling was conducted from the 1st of April until the

15th of July 2008, yr0 was the 365 days prior to 1st of April 2008, i. e. 1st April 2007 – 31th

March 2008, and past i years as the period (number of full years i) before April 1st 2007.
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We used the pairwise Bray-Curtis (BC) index, frequently used in community ecology

studies, as a metric to quantify dissimilarity in species assemblage composition between

sites (Bray and Curtis, 1957; Faith et al., 1987; Su et al., 2004). We also considered the

binary version of the BC index, the Sørensen similarity index, to assess whether our

results are robust to metric choice. The BC index is a modi�ed Manhattan distance, where

the summed distances between values are standardised by the summed values of each site,

thus quantifying pairwise dissimilarity from 0 (completely similar) to 1 (entirely di�erent).

We used the BC index to measure compositional dissimilarity in local species assemblages

(BCBiodiversity) between sites within a PREDICTS study. We also applied the BC index to the

EVI time series (BCEVI) to characterize the dissimilarity between sites in (inter- and intra-

annual) vegetation dynamics measured through a proxy representing photosynthetic

activity of vegetation in current (yr0) and past years (yri,where i = 1, .., 5), which to our

knowledge is the �rst time the BC index has been applied to assess dissimilarity between

remotely-sensed time series.

The BC index is calculated between two pairs of sites with PREDICTS species assem-

blage records or two EVI time-series from sites x and y as follows:

BCxy = (∑n
k=1 |xk − yk|)

(∑n
k=1 xk + ∑n

k=1 yk)

For species assemblages, x and y are the abundances of observed species (n = total number

of species) at both sites (non-occurring species were assumed to be absent and set to

zero), while for the EVI time series x and y are observed EVI values on the same date (n =

total number of dates) in the time series at both sites. The BCEVI was calculated on either

single or multiple years (yri,where i = 1, .., 5) of EVI time series (Figure 2.1b, Appendix

Figure A.2.3).

Compared to other metrics quantifying dissimilarity between time-series based on

remotely-sensed data (Lhermitte et al., 2011) the BCEVI index has the advantages of

(a) taking the actual spectral values as well as distance between them into account,

meaning it can be compared between di�erent land-cover types, and (b) using the same

method for assessing dissimilarity between species assemblages and between remote-

sensing observations. In remote-sensing terms, for any vegetation index (such as EVI),

the BCEVI index can be interpreted as a measure of absolute di�erences between two

sites in the amount and timing of photosynthetic activity scaled by the total amount of
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photosynthetic activity available. By calculating the BCEVI index on temporal pro�les of

EVI measurements, we incorporate all di�erences in EVI between two sites into a single

dissimilarity metric. No further scaling has been done as range and unit of the BCEVI

index values were identical for current and past BCEVI.

2.2.5 Analysis - Statistical modelling

The aim of the statistical modelling is to estimate the in�uence of current and past BCEVI

on the BCBiodiversity (Figure 2.1b). For di�erent time periods (0-5 years) we estimated this

in�uence using separate models rather than an interaction term as current and past BCEVI

were highly collinear (Random permutation pick: Pearson’s r > 0.9, df = 4046, p < 0.001).

A hierarchical modelling approach using generalized linear mixed models (GLMMs) with

Gaussian link function was used to �t models of current and past BCEVI independently for

each time period, taxonomic group, size and trophic bins. GLMMs account for di�ering

sampling methodologies among the PREDICTS studies, by including the “study” as a

random intercept in all models. We also allowed the e�ect of current and past BCEVI to

vary for each study by incorporating it as a random slope. From each model, we obtained

the �xed e�ects (estimated slope) of the predicted BCBiodiversity per unit of current and

past BCEVI.

As we are primarily interested in the in�uence of past BCEVI (of di�erent periods)

on di�erences in BCBiodiversity, we incorporated the in�uence of current BCEVI by trans-

forming the average past BCEVI e�ects (across all permutations) relative to current e�ects
Past

(Current−1) . The resulting ratio describes whether the explicit in�uence of past BCEVI

on BCBiodiversity is larger (> 0) or smaller (< 0) than the in�uence of current BCEVI (Figure

2.2). The precision estimates (predicted standard errors) of the e�ect of past BCEVI were

also transformed relative to the precision estimates of current BCEVI
(Imprecisionpast)

(Imprecisioncurrent) .

This helps to visually assess the added imprecision after accounting for the imprecision

already present in current BCEVI.

Estimating pairwise comparisons in any regression model would imply substan-

tial pseudo-replication. To account for this, we took the subdiagonal of 100 permuted

site-by-site matrices (Appendix Figure A.2.3) to construct the GLMMs of 100 separate

permutations. This ensures that for each �tted GLMM, our pairwise comparisons are

mutually independent subsets (Longacre et al., 2005; Newbold et al., 2016b). Fixed e�ects
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Figure 2.2: Shows the estimated in�uence of current (black) and past (orange; assessed over the
past �ve years) BCEVI on di�erences in species assemblages (N = 198 studies). Rugs show the
distribution of values from a single randomly selected permutation. The di�erence between the
slopes (arrow) is the relative in�uence (as ratio) shown in Figures 2.3 - 2.6. Shading shows the
predicted standard error.

and standard errors for both current and past BCEVI were averaged across all permuta-

tions. Furthermore, for each model we calculated a marginal and conditional pseudo

R2 (Nakagawa and Schielzeth, 2013) and signi�cance estimate (Halekoh and Højsgaard,

2014), and averaged them across all permutations. As for the �xed e�ects and precision

estimates, the di�erences in explained marginal variance of past BCEVI were assessed

relative to the explained marginal variance of current BCEVI.

All analyses were performed in R (R Core Team, 2018, ver 3.2.2) using lme4 (Bolker

et al., 2009; Bates et al., 2015, ver. 1.10) for modelling, and vegan (Oksanen et al., 2015,

ver. 2.2.3) for the BC calculation of species assemblages data. The processed MODIS

data and R-code for the analyses are available on GitHub (https://github.com/Martin-

Jung/PastLandSurfaceConditions). Supplementary �gures and tables can be found in the

Appendix A.2.1�. .

https://github.com/Martin-Jung/PastLandSurfaceConditions
https://github.com/Martin-Jung/PastLandSurfaceConditions
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2.3 Results

The compositional dissimilarity of species assemblages (BCBiodiversity) increased with

between-site dissimilarity in current and past photosynthetic activity (BCEVI; current:

β = 0.289, βSE = 0.063, p < 0.001; past yr1:5: β = 0.334, βSE = 0.07, p < 0.001; Figure

2.2, Appendix Figure A.2.5). When the in�uence of past BCEVI was assessed relative

to current BCEVI, the BCBiodiversity between sites was more pronounced – although the

imprecision also increased – when longer time periods (of up to �ve years) of past BCEVI

were considered (Figure 2.3). Furthermore, the consideration of past BCEVI calculated up

to �ve years prior to current BCEVI increased the relative explained marginal variance by

16.7% (Appendix Table A.2.1). We ensured that the BC index was robust with regards to

varying time period lengths (Appendix Figure A.2.6), spatial autocorrelation (Appendix

Figure A.2.7) and other temporal and geographic biases (Appendix Figure A.2.8). Similar

results were found by using a di�erent metric of species assemblage composition, the

Sørensen similarity index, that does not require species abundance estimates (Appendix

Figure A.2.9).

The in�uence of past BCEVI on species assemblages was found to vary among taxo-

nomic groups and time periods considered (Figure 2.4). Dissimilarity in plant, invertebrate,

reptilian and bird assemblage composition increased with increasing BCEVI of the past

two to �ve years. In contrast, the in�uence of past BCEVI on mammalian assemblages was

greatest for the �rst two years relative to the in�uence of current BCEVI but decreased

when longer periods of three to �ve years of past BCEVI were considered. Meanwhile,

amphibian assemblages were more in�uenced by current than past BCEVI between sites

(Figure 2.4). The in�uence of past BCEVI di�ered with respect to body size (Figure 2.5).

Species assemblages that were dominated by small- (> 0-9 g body mass) and medium-

sized (10-99 g) mammals were more in�uenced by di�erences in BCEVI over the past

one to three years, while the in�uence on assemblages dominated by larger (≥ 100 g)

mammals increased with longer time periods. Compared to assemblages dominated

by medium-sized birds, assemblages of large bird species were up to �ve times more

in�uenced by past relative to current BCEVI. For plant assemblages with available in-

formation on size, we found that assemblages dominated by medium-sized plants were

more in�uenced by past BCEVI compared to those assemblages dominated by larger plant
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Figure 2.3: Overall in�uence on species assemblage composition of past BCEVI relative to current
BCEVI, estimated individually for past periods of di�ering length (yr1 to yr1:5, representing 1 year
and up to 5 years current BCEVI). The predicted e�ects and their precision (standard error) of past
BCEVI (yr1:5) on dissimilarity in species assemblages were transformed relative to the e�ects and
precision of current BCEVI (yr0). Note that error bars indicate the predicted precision of di�erences
in past BCEVI relative to the precision of di�erences in current BCEVI. Positive values indicate
that di�erences in past BCEVI lead to greater di�erences in species assemblages than di�erences
in current BCEVI.

species (Figure 2.5). Di�erences among trophic levels were also seen in the in�uence

of past BCEVI on BCBiodiversity and increased with longer time periods considered (Figure

2.6). Species assemblages dominated by omnivorous and herbivorous assemblages were

more in�uenced by past BCEVI of even one year relative to the in�uence of current BCEVI,

while detritivores assemblages were only more in�uenced by past BCEVI if periods of the

past three years were considered (Figure 2.6). In contrast, studies with predominantly

carnivorous species were more in�uenced by current BCEVI and showed no overall trend

with longer time periods of past BCEVI considered (Figure 2.6).

2.4 Discussion

The main aim of this study was to investigate if between-site dissimilarity in current and

past photosynthetic activity of vegetation (BCEVI) can predict compositional dissimilarity

in sites’ species assemblages (BCBiodiversity). In contrast to previous PREDICTS-based
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Figure 2.4: In�uence of past BCEVI on species assemblage composition across di�erent taxonomic
groups. Visualized as relative in�uence of past BCEVI compared to current BCEVI as described in
Figure 2.3. The number of studies and contributing sites (N | NSites) is indicated for each group.

studies that used discrete measures of current land use and land-use intensity (New-

bold et al., 2015, 2016b), we used a continuous measure of between-site dissimilarity

in remotely-sensed photosynthetic activity that summarises (inter- and intra-annual)

vegetation dynamics in a single metric (the BCEVI). We explicitly di�erentiated between

current (the full year prior to species assemblage sampling) and past BCEVI (periods of

up to �ve years before current) that could have in�uenced compositional dissimilarity

in species assemblages. Similar to previous studies using the same dataset to analyse

compositional di�erences with respect to land use (Newbold et al., 2016b), we found

that sites with more di�erent current BCEVI also had more di�erent species assemblages

(Figure 2.2, Appendix Figure 2.5). However, the BCEVI calculated over �ve years prior

to biodiversity sampling had, on average, an even greater in�uence on between-site

dissimilarity in species assemblage composition compared to current BCEVI (Figure 2.3).

This pattern was consistent across most taxonomic (Figure 2.4) and functional groups

(Figure 2.5 and 2.6). Here we discuss potential causes and implications of the observed

patterns as well as factors that can a�ect the BCEVI.



29 2.4 Discussion

Figure 2.5: In�uence of past BCEVI on species assemblages (N = 65) of predominantly small (> 0 -
9), medium (10 - 99) and large sized animals and plants (≥ 100). Available size was measured as
adult body mass (in g) for all birds (blue) and mammals (red) and height for plants (green, in cm).
Within each study all species were binned into one size group and the study categorized based on
which size group is predominant across all sites. The bar chart shows the number of studies that
contributed to each taxonomic group and body size bin. Visualized as relative in�uence of past
BCEVI compared to current BCEVI as described in Figure 2.3 and methods.

2.4.1 Potential drivers of dissimilarities in photosynthetic

activity

Dissimilarities in photosynthetic activity can be caused by many natural (Fensholt et al.,

2012; Zhu et al., 2016) and/or anthropogenic factors (Lambin and Geist, 2006; Turner

et al., 2007). The latter were likely the dominant cause of current di�erences between

sites in our analyses, given that the PREDICTS database includes only studies of mostly

small geographic extent with a di�erence in current human land use or land-use intensity

(Hudson et al., 2017), however climatic factors likely in�uence the BCEVI as well. Dis-

similarity metrics of photosynthetic activity can be considered a coarse approximation

of overall di�erences in land use and land cover as well as in climatic and other abiotic

factors between sites (Linderman et al., 2005; Lupo et al., 2007; Lhermitte et al., 2011).

Past studies have linked di�erences in vegetation dynamics with the use intensity of
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Figure 2.6: In�uence of past BCEVI on trophic bins across studies (N = 130). Within each study
all species were categorized as one trophic level and the study categorized based on which level
is predominant across all sites. Colours indicate the in�uence of current and past BCEVI for
autotroph plants (light green, N=28), herbivores (dark green, N=49), omnivores (yellow, N= 29),
carnivores (red, N=13) and detritivores (brown, N=9). Visualized as relative in�uence of past
BCEVI compared to current BCEVI as described in Figure 2.3.

agriculture (Estel et al., 2015; Tong et al., 2017), land-cover change such as deforestation

events (Lambin and Strahler, 1994; DeVries et al., 2015), or land degradation and intensi�-

cation (de Jong et al., 2011; Mueller et al., 2014). The BCEVI, similar to other metrics used

to monitor remotely-sensed vegetation dynamics (Linderman et al., 2005; Rowhani et al.,

2008; Lhermitte et al., 2011), quanti�es dissimilarity in photosynthetic activity across

di�erent types of land cover, by exploiting both distance between time series (the absolute

di�erence in EVI data) and amount (area under the time series) of photosynthetic activity.

Besides di�erences in land use and land cover, dissimilarity metrics such as the BCEVI

will also be a�ected by climatic di�erences in precipitation and radiation (Fensholt et al.,

2012; Zhu et al., 2016), soil properties (Ahmed et al., 2017) or plant species composition

(He et al., 2009). The BCEVI thus quanti�es dissimilarity in vegetation dynamics caused

by both natural and anthropogenic factors a�ecting EVI time-series.

However, some natural and anthropogenic factors cannot be directly quanti�ed from

remotely-sensed time series (Peres et al., 2006; Turner et al., 2007) and the BCEVI is
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limited to those aspects that a�ect photosynthetic activity of vegetation. Furthermore,

because of the way the BCEVI is calculated, it can only represent overall dissimilarity in

photosynthetic activity but cannot be used to infer directionality or timing of change

(vegetation regrowth or loss, disturbances such as �res, etc.). By using entire periods (i. e.

�ve full years, instead of the �fth year) it is not possible to disentangle overall dissimilarity

and any ‘change’ in photosynthetic activity per se (cf. Linderman et al., 2005). Calculating

the BCEVI index on longer time periods did not a�ect the possible range of observed

values (Appendix Figure A.2.6), however it likely enhances our ability to capture aspects

of past variability in vegetation dynamics caused by either natural and/or anthropogenic

drivers. We recommend that future studies evaluate the performance of the BCEVI relative

to other time-series dissimilarity metrics.

2.4.2 In�uences of current and past dissimilarities in

photosynthetic activity on biodiversity

Our results suggest that species assemblage composition was consistently more dissimilar

between sites with greater current dissimilarity in photosynthetic activity of vegetation

(as quanti�ed by the BCEVI) (Figure 2.2, Appendix Figure 2.5). This is in line with previous

studies that have correlated some measurement of dissimilarity in current ‘environmen-

tal heterogeneity’ with compositional dissimilarity in species assemblage composition

(Buckley and Jetz, 2008; He et al., 2009; Newbold et al., 2016b). However species assem-

blages might also be explicitly in�uenced by past dissimilarity in photosynthetic activity

(Johnson and Miyanishi, 2008; Watson et al., 2014; Ogle et al., 2015; Perring et al., 2016).

Di�erences in past BCEVI were on average more correlated with dissimilarity in

species assemblages than di�erences in current BCEVI (Figure 2.2-2.3). This could indicate

that past dissimilarity in photosynthetic activity continues to have a lasting in�uence

or memory e�ect on species assemblages (Ogle et al., 2015), especially as the e�ect

generally increased as longer periods of past BCEVI were considered (Figure 2.3), therefore

increasing the likelihood that past changes in photosynthetic activity of vegetation have

been captured. Longer periods of past BCEVI also increased the explained marginal

variance (Appendix Table A.2.1), although most of the variance was already explained by

di�erences in study identity (thus by sampling methods and local factors). The marginal

variance explained was modest, but comparable to other broad-scale studies using the
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same species assemblage dataset (Newbold et al., 2014; De Palma et al., 2015; Jung et al.,

2017). It is a limitation that we used data from a wide variety of sources (Hudson et al.,

2017), which were typically not designed to study lag or memory e�ects of past changes

in land-surface conditions such as photosynthetic activity. At many of the sites in our

analyses inter-annual photosynthetic activity could have remained relatively stable during

the past �ve years, which would reduce our ability to di�erentiate any e�ects of past

BCEVI. Similarly, any dissimilarity in photosynthetic activity among pairs of sites could

have been even greater before the monitoring period of MODIS (since year 2000), which

we were unable to quantify using these data.

Notably, species assemblages of some taxonomic groups were more dissimilar in

composition than others if past dissimilarity in photosynthetic activity was considered

(Figure 2.4). The in�uence of past BCEVI on reptilian species assemblages was large (~35%

more di�erent than current) even for the relatively short period of �ve years (Figure 2.4).

Potentially many of the sites of the reptilian studies have been subjected to relatively

recent changes in photosynthetic activity of vegetation prior to species assemblage

sampling. Indeed, in one of the studies, Woinarski et al. (2009) explicitly suggested an

in�uence of past �res and varying grazing intensity on reptilian species assemblages.

In contrast, we found that amphibian species assemblages were less in�uenced by past

compared to current BCEVI, despite being more in�uenced by current BCEVI than all

other taxonomic groups (Appendix Figure 2.5). An explanation could be that most

compositional di�erences between amphibian assemblages that are attributable to past

dissimilarities in photosynthetic activity are already explained by current dissimilarity

in BCEVI. It may be that amphibian assemblages are more in�uenced by factors other

than past photosynthetic activity (such as microclimatic conditions). Disentangling broad

taxonomic groups into functional groups may assist in highlighting speci�c responses to

past dissimilarities in photosynthetic activity.

Di�erences in functional traits can in�uence species responses to dissimilarity in

photosynthetic activity (Newbold et al., 2013; De Palma et al., 2015) and we expect that on

average smaller species would be more a�ected by recent dissimilarity in photosynthetic

activity (a few years before sampling). Our results con�rm this assumption as species

assemblages with predominantly small- or medium-sized plants, birds and mammals

were relatively more in�uenced by past BCEVI over two to three years prior to sampling
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than by current BCEVI (Figure 2.5). Smaller species tend to live shorter lives and disperse

less far than larger species (Brown et al., 2004; Thomson et al., 2011; Stevens et al., 2014),

which might make them more susceptible to dissimilarity in photosynthetic activity

shortly before sampling (Watson et al., 2014). Similar to previous studies (Jakovac et al.,

2016) we showed that smaller plant species were more in�uenced by past dissimilarity

in photosynthetic activity over up to �ve years prior to sampling as quanti�ed by the

BCEVI (Figure 2.5). For assemblages dominated by larger plants we did not detect such

an in�uence and it is likely that the considered period (�ve years) was too short to

show measurable in�uences. Overall our results indicate that assemblages dominated by

smaller species might have been more in�uenced by past dissimilarity in photosynthetic

activity, possibly because of carry-over or ecological memory e�ects (Harrison et al., 2011;

Ogle et al., 2015). Other functional traits, such as generation time or dispersal capability

(Watson et al., 2014), as well as better coverage of existing traits for underrepresented

taxonomic groups could assist in further disentangling these in�uences especially given

the large uncertainty across most in�uences (Figure 2.5).

The response of species assemblages to dissimilarities in past photosynthetic activity

also di�ered between trophic bins. Except for carnivores, species assemblage composition

of all trophic bins were on average more in�uenced by longer periods of past rather

than by current dissimilarity in photosynthetic activity, as measured by BCEVI (Figure

2.6). Yet we found noticeable lags in the observed in�uence of past BCEVI with varying

time periods. Relative to the in�uence of current BCEVI, the in�uence of past BCEVI was

larger for assemblages dominated by autotrophs, herbivores, omnivores and detritivores

(Figure 2.6). Notably, detritivores were more correlated with past BCEVI only if past

periods of three to four years were considered. This supports previous studies which

have shown that plant-dependant species are highly sensitive to variability in current

and past photosynthetic activity as quanti�ed by remote sensing (Pettorelli et al., 2006;

Newton et al., 2014). In contrast, we found predominantly carnivorous assemblages to

be less in�uenced by past BCEVI compared to current BCEVI regardless of the considered

time period. Possibly, carnivore abundance was more in�uenced by contemporary prey

density (Terborgh, 2015) than past dissimilarity in photosynthetic activity (Figure 2.6).

Because of a lack of data for carnivores and herbivores co-occurring at the same site, we

were unable to investigate such interactions.
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2.5 Study implications and conclusions

Knowledge about past dissimilarities in land-surface conditions, such as photosynthetic

activity of vegetation, and their in�uence on species assemblages is important for both

the design of ecological studies and interpretation of dissimilarities in current composi-

tion of species assemblages. We found that sites with more dissimilar past than current

photosynthetic activity (as quanti�ed by the BCEVI) were more strongly correlated with

compositional dissimilarity in local species assemblages among spatial pairs of nearby

sites. Ignoring such past in�uences can lead to biased biodiversity estimates by not

accounting for extinction debts or immigration credits still to be paid (see Tilman et al.,

1994) or lasting ecological memory and carry-over e�ects because of higher variability in

past photosynthetic activity (Rowhani et al., 2008; Cole et al., 2015; Ogle et al., 2015). We

suggest that future broad scale studies investigating biodiversity responses to environmen-

tal changes should explicitly consider legacy e�ects that in�uence species assemblages in

a study area and we demonstrate how remote sensing can help to quantify such e�ects

globally. Our approach could be extended to incorporate di�erences in the vegetation

dynamics of the surrounding landscape. There is some evidence that landscape-wide

temporal di�erences in photosynthetic activity can a�ect species assemblage composition

(Manning et al., 2009; Fernández et al., 2016). In conclusion, we have demonstrated that

compositional dissimilarity of species assemblages, of various taxonomic and functional

groups, are not only in�uenced by dissimilarity in current photosynthetic activity, but

also by dissimilarity in past photosynthetic activity over the last �ve years. Future studies

should investigate the in�uence of disturbance events and directionality of changes in

photosynthetic activity for more than �ve years before local biodiversity sampling.

2.6 Data availability

Extracted MODIS data and pairwise biodiversity permutations are available on GitHub.

A 2016 snapshot of the PREDICTS database has been openly released earlier

(doi:10.5519/0066354).

http://dx.doi.org/10.5519/0066354
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Chapter3

Impacts of past abrupt land change

on local biodiversity globally

Abrupt land change, such as deforestation or agricultural intensi�cation, is a key driver

of biodiversity change. Following abrupt land change, local biodiversity often continues

to be in�uenced through biotic lag e�ects. However, understanding of how terrestrial

biodiversity is impacted by past abrupt land changes is incomplete. By combining

geographically- and taxonomically-broad data on local biodiversity with quantitative

estimates of abrupt land change detected within time series of satellite imagery from

1982 to 2015, here we show that abrupt land change in the past continues to in�uence

current species assemblages globally. Species richness and abundance were reduced by

4.2% and 2%, respectively, and assemblage composition was altered at sites with an abrupt

land change compared to unchanged sites, although impacts di�ered among taxonomic

groups. Biodiversity recovered to levels comparable to unchanged sites after >10 years.

Ignoring delayed impacts of abrupt land changes likely results in incomplete assessments

of biodiversity change.

3.1 Introduction

Natural and anthropogenic processes change the terrestrial surface of the Earth (Ellis

et al., 2013b; Song et al., 2018), which have been shown to impact biodiversity (Newbold

et al., 2015; Jung et al., 2018) and ecosystem services (Isbell et al., 2015). Previous studies

have found that current di�erences in land-surface conditions reduce local biodiversity

globally (Gibson et al., 2011; Newbold et al., 2015). However, these studies often ignore
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the impacts of past land change (Foster et al., 2003; Watson et al., 2014). Simulations

and experiments have demonstrated that land changes of greater magnitude have larger

impacts on the number of species and individuals (Dornelas, 2010; Hautier et al., 2015;

Santini et al., 2017). Yet, few studies have quanti�ed the impacts of land change in the

past on local biodiversity globally.

Local biodiversity continues to be in�uenced by past land change through biotic

lags. Biotic lags – including ecological processes such as extinction debt (Tilman et al.,

1994; Kuussaari et al., 2009; Halley et al., 2016), colonization credit (Hylander and Ehrlén,

2013) and ecological memory e�ects (Ogle et al., 2015) – negatively a�ect the number

of species and individuals present within local assemblages (Halley et al., 2016; Jung

et al., 2018; Perring et al., 2018), and potentially reduce assemblage resilience (Oliver

et al., 2015a; Hautier et al., 2015; Nimmo et al., 2015). The impacts of land change on

species assemblages through biotic lag depend on species’ abilities to persist (Turner

et al., 1998) and recover (Martin et al., 2013; Fu et al., 2017; Moreno-Mateos et al., 2017).

Most previous global studies (Supp and Ernest, 2014; Fu et al., 2017; Moreno-Mateos

et al., 2017; Shackelford et al., 2017) investigating abrupt land changes in the past have

used descriptive study-speci�c categories of “land changes”, e. g. wild �re, �ooding or

cultivation, thus hindering comparisons among studies, and preventing predictions. To

assess the impacts of abrupt land change on local biodiversity more generally, comparable

quantitative measures of “land change” are needed.

The availability of time series of satellite imagery enables the detection and quan-

ti�cation of land changes globally (Kennedy et al., 2014; Song et al., 2018). Land change

can be de�ned as abrupt shifts in intra- and inter-annual dynamics of remotely-sensed

photosynthetic activity quanti�ed through vegetation indices (Linderman et al., 2005;

Pettorelli et al., 2005). Abrupt shifts in magnitude (Kennedy et al., 2012; Watson et al.,

2014; DeVries et al., 2015) and/or trend (de Jong et al., 2013) of photosynthetic activity, and

the time passed since such shifts (Potter et al., 2003; Kennedy et al., 2012) are three key

attributes of land change (Watson et al., 2014). Several algorithms have been developed to

detect abrupt land change (Zhu, 2017) and measure these attributes. However, attributes

of remotely-sensed abrupt land change have never before been used to assess biotic lags

in local biodiversity.

Here we investigate the impacts of abrupt land change in the past – de�ned as the
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single largest shift in magnitude and/or trend of photosynthetic activity (Verbesselt et al.,

2010a; de Jong et al., 2013; Song et al., 2018) – on local biodiversity globally. We used

data on local biodiversity of unprecedented geographic and taxonomic coverage from the

Projecting Response of Ecological Diversity in Changing Terrestrial Systems (PREDICTS)

database (Hudson et al., 2017). At each site, where local biodiversity was sampled, we

assessed time series of high spatial resolution (nominal ~30m) Landsat satellite imagery

from 1982-2015 for the presence of an abrupt land change (Figure 3.1a) and, where

detected, we quanti�ed key attributes, i. e. , shifts in magnitude, trend and time passed.

Using hierarchical analyses, we compared four measures of local biodiversity (species

richness, total abundance, evenness and species turnover) between paired sites (5,563

sites with and 10,102 without an abrupt land change) from 377 studies (Figure 3.1b). We

expect that abrupt land changes with larger shifts in magnitude and trend have greater

impacts on local biodiversity through biotic lag e�ects and that with more time passed

local biodiversity can recover from the impacts of abrupt land change.
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Figure 3.1: Examples and distribution of sites with and without abrupt land change. (a) Remotely-
sensed time series of monthly Enhanced Vegetation Index (EVI; green points) at an unchanged
site; a site with an abrupt shift in magnitude, i. e. , loss in EVI; and a site with a shift in EVI
trend, i. e. , an increase in annual EVI. Linear (black lines) and seasonal (dark green lines) �ts of
the change detection algorithm (Verbesselt et al., 2010a) are shown. (b) Location of 5,563 sites
from 377 studies in the PREDICTS database with an abrupt land change in the monitoring period
(since 1982) of the Landsat 4-8 missions. Colours indicate sites with abrupt land change that had
a magnitude gain (+) or loss (-) and/or trend increase (+) or decrease (-); (magnitude | trend). For
ease of viewing, the location of 10,102 sites without an abrupt land change has been omitted.
Latitudinal distribution of sites with an abrupt land change and time passed between abrupt land
change and biodiversity sampling (in years, mean and standard deviation shown in red) by 25°
latitudinal bands. Map shown in Eckert IV equal-area projection.
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3.2 Methods

3.2.1 Biodiversity data

We used data from the Projecting Responses of Ecological Diversity In Changing Terres-

trial Systems (PREDICTS) database (Hudson et al., 2017), which includes species’ presence

and abundance data from ‘studies’ with at least two spatially-explicit ‘sites’, information

on the date of sampling, and local land use and/or land-use intensity (Hudson et al.,

2017). We simpli�ed the original PREDICTS land use and land-use intensity informa-

tion (Hudson et al., 2014, 2017) by allocating each site to one of three broad land-use

categories: primary vegetation (PV, i. e. primary [non-] forest), secondary vegetation

(SV, i. e. mature, intermediate, young and indeterminate age secondary vegetation) or

human-dominated vegetation (HDV, i. e. plantation forest, cropland, pasture, urban).

Studies were grouped into eight broad taxonomic groups based on the sampled taxa:

plants, fungi, ground dwelling invertebrates (e. g. , soil-fauna, snails, beetles), �ying

invertebrates (e. g. , butter�ies, bees, dragon�ies), amphibians, reptiles, birds or mammals.

We assessed four measures of local biodiversity that complement each other and have

previously been shown to be sensitive to abrupt land change (Supp and Ernest, 2014;

Santini et al., 2017). For each site in the PREDICTS database, we calculated within-sample

species richness and, where data on abundance were available, log10 total abundance of

individuals, adjusted by sampling e�ort following Newbold et al. (2014). After visual

inspection, we removed one outlier study (a study of soil biomass, ID =

DL1_2012__CalvinoCancela) from further analyses because of very large abundance

estimates (> 3× 10 6 individuals). As a measure of assemblage evenness, we calculated

the arcsine square root transformed probability of an interspeci�c encounter (PIE), which

quanti�es the probability of two individuals randomly chosen from an assemblage repre-

senting di�erent species (Hurlbert, 1971). As a measure of turnover in species assemblage

composition within studies, we calculated the Sørensen similarity index among spatial

pairs of sites within each study and land-use category (Magurran, 2004).

Species assemblages were sampled at various spatial extents de�ned by each study’s

sampling method and land use. Following the PREDICTS data curation protocol we

assumed the allocated land use to be dominant within the reported sampling extent
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(maximum linear extent [MLE], in meters) of each site (Hudson et al., 2014, 2017). For

studies without reported MLE (4779 sites, 18.3% of all sites), we used either the mean

MLE for each taxonomic group and corresponding sampling method, e. g. , mist netting,

pitfall trapping, or the mean MLE within the same taxonomic group. To test whether

these interpolated MLEs are consistent among taxonomic groups and sampling method,

we randomly removed 25% of the reported MLEs and found the interpolated MLEs to be

reasonably correlated (Pearson’s r = 0.73, p < 0.001). We included all studies with a MLE

< 3000m (98.3% of all sites), approximately 100 times the nominal resolution (~30m) of

the remotely-sensed data used in this study, and removed four studies with sites located

in water (rivers, coastal areas or ponds), identi�ed by intersecting all sites with a global

permanent water surface mask (Pekel et al., 2016), as a precaution as sites within these

studies likely have low positional accuracy. To spatially link species assemblage with

remote sensing data, we calculated a rectangular bu�er with MLE as radius (MLEmean=

412.1 m ± 1,661.82m SD) around each site’s coordinates as the smallest area that fully

captures all grid cells of varying sampling units (e. g. , point counts, line transects).

3.2.2 Remote sensing data

We used land-surface re�ectance products derived from the sensors of the Landsat 4

(1982 – 1993), 5 (1984 - 2012), 7 (1999 – ongoing), and 8 (2013 – ongoing) missions

available within Google Earth Engine (GEE) (Gorelick et al., 2017), based on raw United

States Geological Service Landsat Collection images (Tier 1) to calculate the Enhanced

Vegetation Index (EVI, as two-band version Jiang et al. (2008)) as a proxy of photosynthetic

activity. We masked all cloud-covered grid cells (~30m nominal resolution) using the

cloud-detection output in the ‘cfMask’ band (Zhu and Woodcock, 2012) and removed

occasional snow- and water-covered grid cells, i. e. those with negative EVI values. All

data preparation and extraction were performed within GEE (Gorelick et al., 2017).

For each Landsat image and PREDICTS site we calculated the mean EVI within the

rectangular bu�er (ȳ) and extracted time series of all EVI values. We removed outliers

introduced by satellite sensor errors, missed cloud shadows or bad quality estimates by

calculating the absolute di�erence of all ȳ values from the median absolute deviation

(MAD) per EVI time series (Leys et al., 2013). EVI values more than a conservative

threshold of two units of deviation away from the MAD or in the top 1% of all MAD
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estimates were set to NA (Leys et al., 2013). Time series of EVI data were temporally

aggregated to monthly maximum value composites to ensure equal intervals between

data points and to reduce the amount of noise and missing data. Because of the ongoing

consolidation of the global Landsat archive (Wulder et al., 2016), there can be periods of

consecutively missing data, particularly before the launch of Landsat 7 in 1999 (Appendix

Figure A.3.1a). To remove gaps of ≥ 5 years of consecutively missing data, which might

a�ect the precision of land change attribute calculations, we identi�ed and then truncated

time series to include only the years from 1999 onwards in subsequent analyses (see

Appendix Figure A.3.1b). In total 25,656 sites had suitable EVI time series, with an

average 18.83 (± 6.7 SD) years duration containing on average 1.82 years (± 1.57 SD) of

consecutively missing data.

3.2.3 Abrupt land change detection

To identify the presence of abrupt land change and its attributes in EVI time series, we

used the Breaks For Additive Season and Trend (BFAST) algorithm (Verbesselt et al., 2010b)

modi�ed to work with missing data and optimized to �nd the single most in�uential

abrupt land change in a time series (de Jong et al., 2013). BFAST accurately detects abrupt

land changes (Verbesselt et al., 2010a; DeVries et al., 2015) by using a multiple regression

model to estimate both trend and seasonal components of a time series (de Jong et al.,

2013): ȳt = αs + βst + ∑k
p=1 γp sin(2πpt

h
+ δp) + εt, where ȳt is the mean EVI at time t,

s the segment in the time series, αs the intercept, β the slope (i. e. , trend), p and k the

order of the seasonal term (k = 2), γ the amplitude, δ the phase and ε the residual error.

The expected frequency to detect an abrupt land change in a time series is determined

by h and, following previous studies (Verbesselt et al., 2010a,b), was set as the ratio of

the number of data points per year (12 months) to the total length of the individual

time series (in months). Whenever the inclusion of the seasonal component caused the

model to fail to converge (17% of all �tted models), we removed the seasonal component

by time series decomposition (‘stlplus’ package, Hafen (2016)) prior to �tting BFAST

with a trend component only. BFAST detects abrupt land change when model residuals

depart signi�cantly (p < 0.05) from a statistical boundary (Zeileis, 2005). To test for

signi�cant departure we used two complementary approaches (Zeileis, 2005; Verbesselt

et al., 2010a,b) using �rst, a moving sum of residuals (MOSUM) test within the monitoring
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period (determined by h) and second, an information-theoretic approach, the Bayesian

Information criterion (BIC). All BFAST models were �tted using the ‘bfast’ package (ver.

1.5.7, Verbesselt et al. (2010a)) in R (ver. 3.5, R Core Team (2018)).

For the single most in�uential abrupt land change detected in each time series, we

calculated the relative shift in magnitude as the immediate change in EVI [ (ŷj−ŷj−1)
|ŷj−1| ,

where ŷj is the �rst monthly estimate of ŷ predicted by the BFAST model after an abrupt

land change has been identi�ed and ŷj−1 the predicted estimate one month before], the

di�erence in linear trend as increase/decrease in EVI before and after the abrupt land

change (βafter − βbefore, where βafter and βbefore are the predicted linear trends in EVI

from the BFAST model, before and after the abrupt land change), and the time passed

(in months, tn − tj) between the date of the abrupt land change (tj) and the start of

biodiversity sampling (tn). Attributes of abrupt land change were grouped into bins as

follows (Appendix Figure A.3.2 and Table A.3.1): for shifts in magnitude (> 50%, > 25%

and ≤ 50%, and ≤ 25% EVI loss or gain, Appendix Figure A.3.2a), for shifts in trend (0.01,

0.05, and > 0.05 lower or higher EVI trend change, Appendix Figure A.3.2b) and time

passed (<5, 5-10, and >10 years ago, Appendix Figure A.3.2c). The three attributes of

abrupt land change were only marginally correlated among each other (mean Pearson’s

|r| < 0.07, Appendix Figure A.3.3). Sites without an abrupt land change detected by BFAST

are referred to as “unchanged” sites (0) and all studies containing only unchanged sites

(10,196 sites of 262 studies) were excluded from further analyses.

3.2.4 Statistical analyses

We built hierarchical models comparing biodiversity measures between paired sites with

and without an abrupt land change in the past. Hierarchical generalized linear mixed

e�ects (LME) models were �tted separately for species richness (using a Poisson error

distribution), total abundance, and the PIE (using a Gaussian error distribution). For

models of species richness we included an observation-level random e�ect (i. e. , site ID)

to account for overdispersion (Harrison, 2015). For each LME model we compared several

candidate random-e�ect structures by �tting null models with combinations of di�erent

random intercepts and random slopes to determine the structure with the lowest overall

Aikake Information Criterion (AIC). Random e�ects always included the study ID to

account for study-level di�erences in sampling methods, optionally a spatial block ID in
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which sites were located, the site’s land-use category (PV, SV, HDV), the presence of an

abrupt land change (yes|no), as well as the studies climatic zone (tropical, arid, temperate

or continental climate) according to the Koeppen Geiger classi�cation (Peel et al., 2007).

Whenever a climatic zone could not be determined (for instance on small islands), we

attributed studies to a zone based on latitude and a site’s terrestrial biome (1369 sites).

The most parsimonious random-e�ect structure by AIC was identical among response

variables and included – besides the study ID – the spatial block and land-use category

as random intercept as well as the presence of an abrupt land change as random slope.

We included the binned attributes of abrupt land change, e. g. shifts in magnitude, trend,

and time passed, as �xed e�ects in our models with the unchanged sites (0) as paired

reference comparison. Separate models were �tted for each taxonomic group using the

direction (positive or negative) of magnitude and trend shifts because of limited data

availability. Full LME models were tested for signi�cant di�erences (p < 0.05) from a

null model using likelihood ratio tests, while signi�cant di�erences between bins were

approximated by Wald statistics (Bates et al., 2015). To compare impacts of a shift in

magnitude against shift in trend, we assessed the di�erence in Akaike’s Information

criterion (AIC), a di�erence of ∆AIC <7 commonly indicates little improvement in model

�t, and calculated ordinary Pearson correlation coe�cients between their e�ects as

models were otherwise not comparable because of equal �xed structures. All models

were �tted using the ‘lme4’ package (ver. 1.1-14 in R ver. 3.5, Bates et al. (2015); R Core

Team (2018)). Supplementary �gures and tables can be found in the Appendix A.3.1�. .

To estimate di�erences in species assemblage composition we calculated the mean

compositional similarity (as quanti�ed by the Sørensen similarity index) between all

pairs of sites with and without an abrupt land change in the same study and land-

use category. To visualize the mean similarity for each land change attribute bin, we

performed hierarchical complete-linkage clustering (‘hclust’ function in R) on Manhattan

distances between estimates of compositional similarity transformed relative to the mean

di�erence between pairs of unchanged sites.

3.3 Results

Local biodiversity measures are lower at sites with an abrupt land change in the past.

Sites at which an abrupt land change was observed contained on average 4.2% fewer
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Figure 3.2: Local biodiversity impacts varied with attributes of abrupt land change. Di�erences
in three measures of local biodiversity, (a,b) species richness, (c,d) total abundance, and (e,f) the
probability of interspeci�c encounter (PIE) at sites with an abrupt land change (squares, diamonds)
relative to unchanged sites (0, black points). (a,c,e) Estimates are given separately for shifts in
magnitude (squares; > 50%, > 25% to ≤ 50%, and ≤ 25% EVI loss [− − − to −, coloured red
to orange] or gain [+ + + to +, blue to light blue], Appendix Figure A.3.2a) or in EVI trend
(diamonds; from − − − to + + + for negative to positive trend di�erences, Appendix Figure
A.3.2b). (b,d,f) Impacts on biodiversity measures of time passed between an abrupt land change
(gain/increase [+] or loss/decrease [−] in EVI shift in magnitude [squares] or trend [diamonds])
and sampling of biodiversity. Separate models were �tted for shifts in magnitude and in trend
relative to unchanged sites (points). Error bars show �tted standard errors and asterisks statistical
signi�cance (* p < 0.05, ** p < 0.01, *** < 0.001) from the hierarchical models. For number of sites
and studies for each bin and biodiversity measure see Appendix Figure A.3.4 and Table A.3.1

species (SE: 1.3%, χ2 = 10.27, df = 3, p < 0.01), 2% fewer individuals (SE: 1.3%; χ2 = 72.9,

df = 3, p < 0.001), and species assemblages were 1% less even (SE: 0.6%; χ2 = 42.79, df =

3, p < 0.001) compared to unchanged sites (Figure 2). Sites with larger abrupt shifts in

magnitude and trend had fewer species and individuals than unchanged sites regardless

of direction of abrupt land change (Figure 3.2a,c). Sites with > 50% loss or gain in EVI

had on average 18% (SE: 6.4%) or 9% (SE: 3.2%) fewer species, and 10% (SE: 5%) or 5%

(SE: 3%) fewer individuals than unchanged sites (Figure 3.2a,c). Compared to unchanged

sites, species assemblages were less even at sites with larger abrupt losses in EVI, but

not at sites with larger gains in EVI (Figure 3.2e). We found similar impacts of shifts in
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magnitude and trend on species richness (∆AIC = 3.22, Pearson’s r between impacts =

0.71), abundance (∆AIC = 2.64, r = 0.61), and evenness (∆AIC = 5.66, r = 0.98).

Biodiversity can recover after an abrupt land change depending on the time passed. We

hypothesize that with more time passed local biodiversity recovers to levels comparable

to unchanged sites. In line with our expectation we found that sites with an abrupt

land change up to �ve years before biodiversity sampling had on average 6.6% fewer

species (SE: 1.8%), 3% fewer individuals (SE: 1.8%) and were 2% less even (SE: 0.1%) than

unchanged sites (Figure 3.2b,d,f). After more than 10 years had passed, biodiversity

measures were comparable to unchanged sites (Figure 3.2b,d,f), except for local species

richness at sites with positive shifts in magnitude or trend (-4%; Figure 3.2b). Overall,

we found similar impacts of shifts in magnitude and trend and varying time passed for

species richness (∆AIC = 2.85, Pearson’s r between impacts r = 0.66), abundance (∆AIC

= 2.46, r = 0.42), and evenness (∆AIC = 3.03, r = 0.65).

Abrupt land change a�ects the composition of species assemblages. Species assem-

blages at sites with larger abrupt shifts in magnitude were less similar in composition

to unchanged sites (Figure 3.3a, c). Especially sites with a shift in magnitude of > 50%

EVI loss or gain were on average less similar (-0.12 / -0.03, respectively) in assemblage

composition to unchanged sites (Figure 3.3a). Furthermore, the composition of species

assemblages was most dissimilar to unchanged sites if an abrupt land change occurred

less than �ve years ago (Figure 3.3b,d). After more than �ve years had passed between

an abrupt land change and biodiversity sampling, species assemblages were on average

more similar in composition (0.04 / 0.001 for loss and gain in EVI, respectively) to un-

changed sites (Figure 3.3b). The composition of species assemblages was on average more

similar among sites of comparable shifts in magnitude or with time passed (diagonals

in Figure 3.3a,b) relative to unchanged sites. The impacts of abrupt shifts in magnitude

were broadly comparable to shifts in trends although negative shifts in trend impacted

assemblage composition more (Appendix Figure A.3.5).

Impacts of abrupt land changes in the past varied among taxonomic groups. Sites

with a positive shift in magnitude had signi�cantly fewer species of plant (9.7%), bird

(4.2%), ground dwelling invertebrate (6.4%), and reptile (10.4%) compared to unchanged

sites (Figure 3.4a). Particularly sites with a negative shift in trend had signi�cantly fewer

species of plant (8.2%, Figure 3.4a) and fungi (29.6%), and fewer individuals of fungi (17.8%,
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Figure 3.4b) compared to unchanged sites. The number of individuals and assemblage

evenness was overall lower at sites with an abrupt land change compared to unchanged

sites, although amphibian and mammal abundance as well as evenness of �ying insects

was higher at sites with an abrupt land change (Figure 3.4b,c). For most taxonomic

groups, except fungi and reptiles, there was little di�erence between the impacts of shifts

in magnitude or trend on biodiversity measures (Figure 3.4).

Figure 3.3: Reduced compositional similarity between sites with and without an abrupt land
change. Mean similarity in species assemblage composition (Sørensen similarity index) calculated
between pairs of sites within the same study and land-use category without (0) and with an abrupt
land change of (a, c) varying shifts in magnitude, or (b, d) loss or gain in EVI (− and +) and
time passed between abrupt land change and biodiversity sampling (axis labels as in Figure 3.2).
Colours indicate whether similarity of species assemblages was on average greater (purple) or
smaller (brown) relative to unchanged sites. Numbers (in a,b) indicate the total number of studies
for which pairwise comparisons between sites could be made. All estimates are transformed
relative to the compositional similarity between pairs of sites without a land change (0 − 0).
(c,d) Dendrograms show hierarchical clustering of all pairwise similarities based on the average
Manhattan distance between pairs of sites; sites with more similar assemblage composition are in
branches of closer proximity.
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Figure 3.4: Abrupt land change a�ects taxonomic groups di�erently. Di�erence in (a) species
richness, (b) total abundance, and (c) assemblage evenness for taxonomic groups (plants, fungi,
ground dwelling invertebrates, �ying invertebrates, amphibians, reptiles, birds, and mammals)
between sites with and without an abrupt land change. Separate models were �tted for taxonomic
groups comparing sites with shifts in magnitude (squares) and trend di�erences (diamonds)
where colours indicate negative (red) and positive (blue) direction and sites without abrupt land
change (black points, grey line). Error bars show standard errors and asterisks indicate statistical
signi�cance (* p < 0.05, ** p < 0.01, *** < 0.001). Numbers give the number of studies included per
taxonomic group.

3.4 Discussion

We found species assemblages to be negatively impacted by past abrupt land change.

Larger changes on land caused greater reductions in local biodiversity (Figure 3.2a-c)

regardless of whether shifts in magnitude or trend of photosynthetic activity (EVI) were

positive or negative, suggesting general impacts of past abrupt land change on biodiversity

(Dornelas, 2010; Hautier et al., 2015) likely caused by biotic lag e�ects (Hylander and
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Ehrlén, 2013; Ogle et al., 2015; Jung et al., 2018). Abrupt land changes with large (>50%)

losses or gains in EVI have caused immediate and time-delayed local extinctions (Krauss

et al., 2010; Halley et al., 2016; Wood et al., 2017), and reduced the abundance and

dominance of persisting species (Figure 3.2b-c), which may ultimately a�ect ecosystem

functioning (Hautier et al., 2015; Isbell et al., 2015). Previous studies predicted assemblage

evenness to increase with change magnitude (Svensson et al., 2012), however our results

demonstrate this to be only the case for positive changes in photosynthetic activity (i. e.

a gain or positive trend shift in EVI). Abrupt land changes can alter the composition of

species assemblages with early colonizing and non-native species often outperforming or

replacing many persisting species (Fraterrigo et al., 2006; Turner, 2010; Jauni et al., 2015),

which could explain the observed impacts on species assemblage evenness (Figure 3.2c)

and compositional similarity (Figure 3.3).

The recovery from abrupt land change is of important concern for biodiversity con-

servation (Chazdon, 2003). We found biodiversity measures to be lower (Figure 3.2b,d,f)

and the composition of species assemblages altered more compared to unchanged sites

(Figure 3.3b,d) if an abrupt land change occurred relatively recently (< 5 years). An

explanation could be that some, disturbance sensitive, species are immediately lost from

local assemblages because of an abrupt land change (Devictor et al., 2008; Supp and

Ernest, 2014). However local biodiversity can recover from an abrupt land change with

biodiversity measures being comparable to unchanged sites after >10 years (Martin et al.,

2013; Moreno-Mateos et al., 2017), although local species richness did not recover at sites

where EVI had increased (Figure 3.2b). Land changes causing an abrupt positive shift

could be related to increase or sudden cessation of anthropogenic use intensity (Eastman

et al., 2013; Müller et al., 2014), which may have caused further local species loss (Tilman

et al., 1994; Balmford, 1996; Hylander and Ehrlén, 2013). Nevertheless, the time passed

since an abrupt land change occurred can be a poor predictor of biodiversity recovery as

land trajectories are often highly unpredictable (Norden et al., 2015) or include multiple

land changes (Watson et al., 2014). We suggest future analyses to consider how additional

attributes, such as trajectories or frequency of land change (Watson et al., 2014), in�uence

local biodiversity recovery.

A number of other factors mediate the response of local biodiversity to land change

(Arroyo-Rodríguez et al., 2017). Previous studies demonstrated local biodiversity to
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recover quicker from an abrupt land change with a greater availability of undisturbed

land in the wider landscape (Turner, 1989; Chase, 2003; Shackelford et al., 2017). In

addition, site-speci�c factors and a long history of human modi�cation can mediate

the impacts of abrupt land change on local biodiversity (Ellis, 2015; Jung et al., 2017),

especially since the majority of sites in the PREDICTS database are in regions that have

long been subjected to human in�uence (Newbold et al., 2016a; Hudson et al., 2017). It is

likely that some species – those particularly sensitive to land changes – have been lost

from local assemblages long before the availability of Landsat data (< 1982) and we expect

the found impacts of abrupt land change on biodiversity to be conservative (Mihoub

et al., 2017). Land changes can also be characterized by attributes not considered in this

study, such as frequency and sequence (Watson et al., 2014), which have been shown

to in�uence local biodiversity (Tiemann et al., 2015; Wood et al., 2017), which can be

helpful as for many types of land change – such as harvests, grazing or fallow period

cycles (Kleyer et al., 2007; Ray and Foley, 2013) – shifts of magnitude and trend are often

very similar. Future studies should evaluate the in�uence of di�ering land sequences and

frequencies of land change on local biodiversity.

What drives abrupt land change events? Abrupt land change, identi�ed by shifts

in magnitude and/or trend of photosynthetic activity, can be caused by anthropogenic

deforestation (DeVries et al., 2015), land intensi�cation (Fensholt et al., 2012; Müller

et al., 2014), or degradation (Tian et al., 2015; Aguiar et al., 2017). In this study we

did not separate between natural and anthropogenic drivers of abrupt land change

and changes in photosynthetic activity can also be caused by rainfall-driven anomalies

(Papagiannopoulou et al., 2017) or changing nitrogen deposition and CO2 fertilization

(Zhu et al., 2016). Most PREDICTS sites are modi�ed by humans (Newbold et al., 2016a;

Hudson et al., 2017) and it is therefore likely that most detected land changes were caused

by humans. Future studies should attempt to distinguish and disentangle the impacts of

natural and anthropogenic abrupt land changes (Curtis et al., 2018).

Detecting and quantifying abrupt land changes is challenging. Here we focussed on

detecting abrupt land change as shifts in magnitude or trend (Verbesselt et al., 2010a), but

not all land change is abrupt (Vogelmann et al., 2012) or – such as understory thinning

and selective logging – can be detected in time series of remotely-sensed photosynthetic

activity (Asner, 2005; Peres et al., 2006). Similar to previous studies we assessed only the
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impacts of the single largest shift in magnitude or trend (de Jong et al., 2013; Song et al.,

2018), while di�erent sequences of land change may also a�ect local biodiversity (Watson

et al., 2014). Future studies quantifying abrupt land change globally could bene�t from

better access to, or fusion of, available satellite data to reach higher temporal and spectral

resolution (Reiche et al., 2015; Wulder et al., 2016).

In conclusion, we demonstrate that compared to unchanged sites local biodiversity is

considerably reduced because of abrupt land changes in the past, potentially a�ecting the

stability and functioning of ecosystems (Hautier et al., 2015). Ignoring delayed biodiversity

responses to abrupt land change means that contemporary biodiversity changes, loss

and recovery, are underestimated (Kuussaari et al., 2009; Essl et al., 2015a). Conservation

practitioners need to consider the impacts of biotic lag e�ects to ensure global and

regional assessments (e. g. those by the Intergovernmental Science-Policy Platform on

Biodiversity and Ecosystem Services [IPBES]) fully capture biodiversity change (Essl et al.,

2015a). Remote sensing can assist in quantifying attributes of abrupt land change over

large spatial and temporal scales. Our analytical framework can be expanded to assess

spatial prioritization of habitat restoration plans or to support scenario-based modelling

(Ewers et al., 2009) to predict the impacts of abrupt land change on local biodiversity.

3.5 Data and code availability

The PREDICTS biodiversity data are publicly available in the Natural History Museum

Data Portal (doi:10.5519/0066354, Hudson et al. (2017)). All remote sensing data are

accessible via Google Earth Engine (https://earthengine.google.com/) (Gorelick et al., 2017)

and pre-processed time series will be deposited on GitHub (https://github.com/Martin-

Jung/PastDisturbance) on publication.Data and code to reproduce the results will be made

available in a GitHub repository (https://github.com/Martin-Jung/PastDisturbance) on

publication.

http://dx.doi.org/10.5519/0066354
https://earthengine.google.com/
https://github.com/Martin-Jung/PastDisturbance
https://github.com/Martin-Jung/PastDisturbance
https://github.com/Martin-Jung/PastDisturbance
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Chapter4

Incorporating land-cover changes

between 1992 and 2015 into

biodiversity projections

Changes in global land cover are important factors that determine past and present

biodiversity projections. It has been proposed that attributes of land-cover change, such

as the time passed or the sequence in land cover – i. e. from forest to agriculture –

likely a�ect local biodiversity di�erently. Additionally, attributes of land-cover change

may have lasting impacts on local biodiversity and thus need to be considered while

assessing biodiversity change. Yet, the impacts of attributes of past land-cover change on

local biodiversity have not been fully determined globally and most existing biodiversity

projections remain largely uninformed of past land-cover change. Here, we combine time

series of annual land cover from the period 1992 to 2015 with data of local biodiversity

globally. Using hierarchical models comparing sites with and without a land-cover

change in the past, we ask whether biodiversity di�erences vary with the time passed

or the sequence after a land-cover change occurred and how this a�ects global and

national biodiversity projections. Overall, we found local biodiversity to be consistently

lower in sites with a past land-cover change. However, with increasing time passed

after land-cover change local biodiversity recovered to levels comparable to unchanged

sites. Furthermore, depending on the land-cover sequence, we observed either increases

or decreases in local biodiversity and we demonstrated how a consideration of past

land-cover change a�ects global and national biodiversity projections, especially so in
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tropical and economically developing countries. Our �ndings suggest that most global

and national biodiversity projections overestimate biodiversity change and that lasting

in�uences of past land-cover change need to be taken into account.

4.1 Introduction

The terrestrial surface of the Earth is shaped by natural and anthropogenic processes

(Foley et al., 2005). The outcomes of these processes alter soil, plant and human structures,

which collectively de�ne terrestrial land cover (Di-Gregorio, 2005; Lambin and Geist, 2006).

Land cover – quanti�ed as either continuous or categorical estimate of the Earth’s land

surface conditions – is commonly derived from remotely-sensed spectral measurements

with many studies having mapped the distribution of land-cover categories globally

(DeFries and Townshend, 1994; Hansen et al., 2000; Tuanmu and Jetz, 2014; Grekousis

et al., 2015). Knowledge of land-cover change is important to help understand and create

future projections and scenarios of biodiversity change (Harfoot et al., 2014; Titeux

et al., 2016; Kehoe et al., 2017a). Yet only few temporally consistent estimates of land-

cover change, with exception of vegetation (Hansen et al., 2013; Song et al., 2018) or

water-covered areas (Pekel et al., 2016), are publicly available at the global scale.

Quantifying change in remotely-sensed land cover is challenging. For continuous rep-

resentations of land cover, remotely-sensed changes are commonly detected by exploiting

di�erences in timing, amplitude and direction of remotely-sensed spectral measure-

ments (Coppin et al., 2004; Lhermitte et al., 2011; Zhu, 2017). There have been initial

attempts to incorporate land-cover changes detected from these di�erences into categori-

cal land-cover maps (Zhu and Woodcock, 2014; Hermosilla et al., 2018), but the majority

of land-cover maps remain uninformed of preceding land cover. Quantifying temporal

change in categorical representations of land cover has been problematic because of

inconsistencies in thematic resolution that lead to unrealistic estimates of land-cover

change (Verburg et al., 2011; Cardille and Fortin, 2016; Abercrombie and Friedl, 2016).

A new generation of temporally consistent time series of land cover (ESA CCI, 2017;

Hermosilla et al., 2018; Nowosad et al., 2019; Sulla-Menashe et al., 2019) are beginning

to emerge that allow the investigation of land-cover change globally and its impacts on

biodiversity.
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Biodiversity is impacted by past and current di�erences in land cover (Newbold et al.,

2015, 2016a; Jung et al., 2018). Local species richness has been estimated to be up to

31% lower globally in the most anthropogenically-modi�ed land compared to “primary

vegetation” sites (Newbold et al., 2015). However most previous global studies have

considered only di�erences in land use and/or land cover at the time of biodiversity

sampling (Gibson et al., 2011; Murphy and Romanuk, 2014; Newbold et al., 2015), thus

ignoring lasting in�uences of past changes in land cover. There is evidence that the

occurrence and abundance of species is not only determined by di�erences in current but

also past land cover (Chapter 3) through so called ‘biotic lag’ e�ects, such as ecological

memory e�ects (Ogle et al., 2015) or extinction debts (Kuussaari et al., 2009). The impacts

of past land-cover change on biodiversity likely depend on certain attributes such as

magnitude and time passed since land-cover change (Chapter 3, Martin et al., 2013;

Watson et al., 2014; Fu et al., 2017) or the sequences of land-cover (Watson et al., 2014;

Nowosad et al., 2019).

Land-cover change causes varying sequences of land cover (Nowosad et al., 2019),

which often have di�ering impacts on local biodiversity (Foster et al., 2003). Bremer and

Farley (2010) reported an average loss of species richness globally for land changing from

grass- or shrubland to forest cover, but not for land changing from secondary vegetation

to forest cover. Meanwhile, biodiversity in secondary vegetation has been shown to

recover more quickly if land was previously covered by grassland rather than agriculture

(Dyer, 2010), although among taxonomic groups, especially plant diversity, abundance

and growth have been shown to be in�uenced by lasting in�uences of an agricultural past

(Chazdon, 2003; Fraterrigo et al., 2006; De Frenne et al., 2011; Perring et al., 2018). Other

studies have highlighted the lasting e�ect that changes in forest (Gonzalez et al., 2016)

or wetland cover (Halstead et al., 2014) might have on biodiversity. While these studies

suggest that land-cover sequences need to be considered for explaining di�erences in

local biodiversity, little is known about the in�uence of land-cover sequences across

taxonomic groups and at global and national scales, which could a�ect projections of

biodiversity.

To guide decision making, projections of global and national biodiversity change

are often useful to inform policy (Pereira et al., 2010; Visconti et al., 2016). Biodiversity

projections can be used to create scenarios of biodiversity change in response to pressures
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such as land change (Newbold et al., 2015, 2016a; Titeux et al., 2016), which can inform

science-policy platforms (Harfoot et al., 2014; Visconti et al., 2016; Purvis et al., 2018)

like the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES).

However most existing biodiversity projections ignore lasting e�ects of past land-cover

change. This is especially problematic for tropical, developing nations, where much land

has been converted from forest to agriculture or pasture covered land in recent decades

(Curtis et al., 2018) and that are recognized as global biodiversity hotspots (Brooks et al.,

2002; Laurance et al., 2014). Under a business-as-usual scenario of future biodiversity

change, especially less economically developed countries will su�er the greatest losses in

local biodiversity (Newbold et al., 2015; Visconti et al., 2016), however these projections

might – depending on attributes of land-cover change – over- or underestimate impacts

on biodiversity.

The overall aim of this study is to investigate (i) how local biodiversity is impacted

by a land-cover change in the past as derived from a global remotely-sensed land cover

product, (ii) if impacts on local biodiversity di�er with attributes of land-cover change

such as di�ering sequences of land cover or time passed (Watson et al., 2014), and (iii)

how particularly di�ering sequences of land cover a�ect global and national biodiversity

projections. Overall, this study adds to our knowledge of how attributes of land-cover

change a�ect local biodiversity and demonstrates how these attributes can be incorporated

into global and national biodiversity projections.

4.2 Methods

4.2.1 Species assemblage data

The local biodiversity data were derived from a snapshot (obtained Feb 2016) of the

Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (PREDICTS)

database which collated data on species’ presence and abundance at sampled ‘sites’ from

published ‘studies’ (Hudson et al., 2017). Each PREDICTS site has associated spatial

coordinates – usually obtained from the text or author of a published study – and a

record of when and how long biodiversity sampling took place. Species assemblages

in the PREDICTS database were sampled at various sampling extents (maximum linear

extent, MLE) which are de�ned by methodology and taxonomic group (Hudson et al.,
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2014). To link local biodiversity with remotely-sensed land cover data (see 4.2.2), we used

the spatial coordinates of all sites provided by the PREDICTS database as for the majority

of sites, the MLE is fully contained (median MLE = 40 ± 56.49 MAD) within the used

grid cell size (~300m, see methods 4.2.2).

Similar to previous analyses using the same data (e. g. Chapter 2 in this thesis), we

calculated several biodiversity measures including the total number of species, individ-

uals and the species assemblage evenness at the site level. We calculated local species

richness and – where data on species abundance was available – the total abundance

for each PREDICTS site. For those studies in PREDICTS with di�ering sampling e�ort

among sites we corrected measures of total abundance by assuming that total abundance

increases linearly with sampling e�ort (Newbold et al., 2014, 2015). As a measure of

assemblage evenness, we calculated the probability of an interspeci�c encounter (PIE),

which quanti�es the probability of two individuals randomly chosen from an assemblage

representing di�erent species (Hurlbert, 1971).

4.2.2 Annual land cover data

We used estimates of land cover (LC) from a global dataset produced by the Euro-

pean Space Agency Climate Change Initiative (ESA CCI, 2017, ver. 2.0.7 obtained from

http://maps.elie.ucl.ac.be/CCI ). The ESA LC product quanti�es global land cover annually

from 1992 to 2015 with a spatial resolution of ~300m (ESA CCI, 2017) and a thematic

resolution of 22 land-cover categories (75.38% global accuracy, ESA CCI, 2017) at two

di�erent hierarchies (level 1 and 2), that follow the Land Cover Classi�cation System

(LCCS, Di-Gregorio, 2005) of the United Nations Food and Agriculture Organization.

Compared to many existing LC products (Grekousis et al., 2015), we used the ESA LC

product because of its comparably long availability (1992 to 2015) and ability to detect

land-cover changes (ESA CCI, 2017). However the change detection algorithm in the ESA

LC product does not come without caveats as only land-cover changes persistent over

at least two years – in contrast to "short-lived" land changes (Lambin and Geist, 2006)

– are detected. Furthermore abrupt land-cover changes (such as forest to agriculture)

tend to be better captured than gradual land changes (ESA CCI, 2017) and in the years

2014 and 2015 only changes in forest cover could be reliably detected (ESA CCI, 2017).

Despite these caveats, estimates of land-cover change from the ESA LC product have

http://maps.elie.ucl.ac.be/CCI
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good agreement with other, independently developed, land-cover change products (Li

et al., 2018).

For this study, we extracted for each PREDICTS site the land-cover sequence from

the ESA LC product (Figure 4.1c-d). Before extracting these sequences, we reclassi�ed

the original ESA LC level 2 categories (22 categories based on the LCCS) to the level

1 hierarchy (10 LC categories, namely: forest, shrubland, grassland, sparse vegetation,

agriculture, urban, bare area, wetland, water, and other) to reduce inaccuracies caused by

misclassi�cations and because temporal changes between ESA LC level 2 categories can

be poorly captured (ESA CCI, 2017). PREDICTS sites where the extracted ESA LC level 1

categories indicated “water” or “other” (such as snow and ice) at the start of biodiversity

sampling were removed from further analyses (N = 262 sites). In this study we focussed

only on sequences of land cover with a single land-cover change before biodiversity

sampling as two or more land-cover changes were rarely observed globally (Figure 4.1a)

and did only occur at two PREDICTS sites, which were excluded from further analyses.

Supplementary �gures and tables can be found in the Appendix A.4.1�. .

4.2.3 Analyses

The statistical analysis for this study had two main aims. First, we aimed to quantify

whether biodiversity measures were di�erent at sites with a past land-cover change com-

pared to sites without any land-cover change in the period 1992 to the start of biodiversity

sampling. To do so, we �tted generalized linear mixed e�ects models (GLMMs) using

Poisson distributed errors for species richness and a Gaussian error distribution for total

abundance (log10 transformed) and the probability of an interspeci�c encounter (PIE,

asin-squareroot transformed). Following previous studies (Newbold et al., 2015; Jung

et al., 2017) all models included the study identity and a spatial block of sampling design

and additionally the ESA LC category at the time of biodiversity sampling as random in-

tercept. We �tted separate GLMMs to assess the di�erence in local biodiversity measures

between sites with and without (i) a past land-cover change overall, (ii) a categorical

representation of the time passed since a land-cover change occurred (unchanged, i. e.

0 years, or ≤ 5, 5 − 10, >10 years), (iii) distinguishing sites with and without a past

land-cover change by their land-cover sequence, for which we �tted separate GLMMs for

each ESA LC category at the time of biodiversity sampling using the extracted sequence
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Figure 4.1: (a) Global map depicting the grid cells of the ESA LC product that had≥ 1 land-cover
change (red) in the period 1992 to 2015. Inset maps focus – from left to right – on the deforestation
in the eastern Amazon basin, expanding soy plantations in Paraguay as well as shrubland loss in
south east Australia. Map is projected in an equal-area Mollweide projection (b) Mean proportion
(in %) of land with a land-cover change (red) in the period 1992 to 2015 averaged per 1° of latitude.
(c) Example land cover maps of the past and at the time of biodiversity sampling for a single
study. Black symbols indicate sites with (diamond) and without (circle) land-cover change. (d)
Flow diagram showing the sequence of land cover of all PREDICTS sites with a past land-cover
change. Colours as in c.

of land-cover (those with at least 10 sites to ensure robustness of coe�cients) categories

as �xed e�ect (Figure 4.1b). Lastly (iv) we �tted a GLMM using the ESA LC categories at

the time of biodiversity sampling and as interacting covariate, human population density

data from the global human settlement (GHS) project (Pesaresi et al., 2013, 2016) as coarse

proxy for anthropogenic use. We used data from the GHS project as it is available at a

spatial (~250m) and temporal (1975-2015) resolution that matches the resolution of the

ESA LC data. All GLMMs were �tted using the ‘lme4’ package (ver. 1.1-18-1, Bates et al.,

2015) in R (ver. 3.5, R Core Team, 2018).

Second, we constructed global and national projections of biodiversity. We used

the model described above (iv) to project the mean coe�cients of local biodiversity

onto the global ESA LC map for the year 2015 only, which we resampled to ~3 x 3

km spatial resolution by assigning the most dominant (‘modal’) LC value to each grid
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cell. All predicted biodiversity estimates were transformed relative to the predicted

biodiversity estimates of a ‘forest’ site with zero human population density in the year

2015 (Newbold et al., 2015). Biodiversity sampling in the majority of PREDICTS sites

(96.2%) occurred between 2000 and 2013 and from the ESA LC maps of the years 2000

and 2015 we constructed a new global map for the year 2015 with each grid cell set to a

unique categorical code of the sequence of land-cover (using Cantor’s pairing function).

For each separate model (see iii above) and unique sequence of land-cover categories a

new spatial projection was created for those grid cells with the respective sequence. We

then added (to the mean coe�cients) those separate spatial projections to the projection

of the global mean di�erence in local biodiversity for the year 2015 (see above), thus

“updating” the projected di�erence in only those grid cells where a past land-cover change

has occurred (see Appendix Figure A.4.1 for a schematic). Some land-cover sequences

were not available among PREDICTS sites and here we used the global average impact

(see model i) in place of no better data available. Because of data limitations, we were also

not able to investigate the impact of interactions between land-cover sequences and time

passed on local biodiversity. Globally each grid cell has a di�erent baseline level of local

biodiversity – e. g. deserts being less species richness than shrublands – and we followed

Newbold et al. (2015) by weighting all grid cells using either a normalized global layer

of terrestrial vertebrate diversity (summed range-of-occurrence maps for bird, mammal

and amphibian species, Birdlife International, 2015; IUCN, 2016) for species richness or

a layer of global photosynthetic activity (average photosynthetic activity as measured

by MODIS NDVI in the period 2000-2015) for total abundance and assemblage evenness

(Newbold et al., 2015).

Global biodiversity projections were visualized in a way that emphasises model uncer-

tainty by supressing predicted biodiversity estimates with large uncertainty (Correll et al.,

2018). We re�tted the GLMM models using the ‘mgcv’ package (ver. 1.8-24, Wood, 2011)

because of it’s ability to obtain estimates of prediction uncertainty for hierarchical models.

For each grid cell we predicted the standard error from the Bayesian posterior covariance

matrix of the ‘mgcv’ model (Wood, 2011) and used it to calculate the absolute error in

the predicted di�erence of local biodiversity (known as mean absolute error or MAE).

To use the MAE for visual suppression of uncertain projected biodiversity estimates,

we excluded the 1% lowest and highest MAE estimates and furthermore normalized
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( (MAE−min(MAE))
(max(MAE)−min(MAE)) ) the MAE globally. To assess whether accounting for past land-

cover sequences a�ects national biodiversity projections, we calculated the area-weighted

relative mean di�erence in biodiversity at the national scale compared to a spatial projec-

tion where past land-cover changes are not taken into account (xSequence−xwithout

|xwithout|
, where x

is the mean area-weighted predicted national di�erence in biodiversity). We di�erentiated

countries into groups of high (black), middle (orange) or low (blue) income (according to

http://data.un.org) and assessed di�erences between those groups using ordinary analysis

of variance (ANOVA) tests.

4.3 Results

Across all sites in the PREDICTS database, 1326 sites had a single land-cover change in the

years before biodiversity sampling compared to 13696 sites without any change (number

of studies: 238). The greatest number of PREDICTS sites with a past land-cover change

were forest covered (552), followed by agriculture (442) and urban covered (126) sites

(Appendix Figure A.4.2). Overall, sites with a past land-cover change had on average 5.3%

(± 0.01 SE, p < 0.001) fewer species, 6.1% (± 0.03 SE, p < 0.001) fewer individuals and were

1.1% (± 0.01 SE, p = 0.217) less even compared to a site without a past land-cover change.

With increasing time passed after a land-cover change occurred, local species richness

and total abundance recovered to levels comparable to unchanged sites (Figure 4.2). If

a land-cover change occurred in the �ve years before biodiversity sampling, sites had

on average 5.6% (± 0.01 SE, p < 0.001) fewer species and 8.5% (± 0.04 SE, p < 0.05) fewer

individuals than sites without a land-cover change in the past. Compared to unchanged

sites, assemblage evenness was not signi�cantly di�erent (1.6% ± 0.01 SE, ns) for sites

with a land-cover change less than 5 years ago but was signi�cantly lower (4.4% ± 0.01,

p < 0.01) after 5 to 10 years had passed.

http://data.un.org
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Figure 4.2: Di�erence in local biodiversity mea-

sures between sites without (0) and sites with a

past land-cover change that occurred ≤ 5 years,

> 5-10 or over 10 years ago. The error bars show

the predicted standard error and stars (*) indi-

cate whether the di�erence was statistically sig-

ni�cant (p < 0.05). The total number of sites is

indicated.

Local biodiversity varied between sites

with and without a past land-cover change

depending on past land-cover sequences

(Figure 4.3). The number of species (11.4%

± 4 SE) and individuals (13.4% ± 12.9 SE)

of forest sites was lower if the site had

been shrub covered before biodiversity

sampling compared to forest sites with-

out a land-cover change in the past (Fig-

ure 4.3a), while the number of species was

higher (17.4% ± 5.51 SE) if the preced-

ing land cover had been grassland. More

species (10.83% ± 5.51 SE) and individuals

(26.1%± 15.1 SE) were found in previously

forest covered sites compared to shrubland

sites without a past land-cover change (Fig-

ure 4.3b). The number of species and in-

dividuals in agricultural sites was lower if

the preceding land cover was forest (8.81%

± 2.1 SE for species and 6.93% ± 6.9 SE

for individuals) or shrubland (23.93%± 3.9

SE and 35.8% ± 18.4 SE) compared to sites

without a land-cover change in the past (Figure 4.3e). Sites with urban land cover had in

most cases higher number of species, individuals and assemblage evenness (up to 80.2%

± 30 SE for abundance in agriculture, Figure 4.3f) compared to urban sites without a past

land-cover change, with only species assemblages in previously agricultural sites being

less even (Figure 4.3f).

Local biodiversity varied globally with land cover in the year 2015 as estimated from

spatial projections (Figure 4.4a). Predicted biodiversity estimates across grid cells had a

range from 41% to 0% fewer species, 10% to 13.3% fewer individuals and 30.3% to 46.1%

less even assemblages. Globally projected di�erences in species richness had considerable

uncertainty ranging between ± 0.1% and ± 29% MAE in the most extreme cases (grid
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cells with over 5.5% MAE occurred in less than 1% of all land grid cells). Informed by past

land-cover sequences (Figure 4.3), we found the predicted number of species to be up to

17.1% lower or 20.1% higher than those predicted estimates that do not take sequences

of past land cover into account (Appendix Figure A.4.3). This is especially the case for

locations in the Amazon and Gran Chaco (Figure 4.1b), where after – accounting for

land-cover change between 2000 and 2015 – high losses of species are expected (Figure

4.4b). Projections were created using human population density as covariate and we

found that a greater human population density increased species richness in sparse

vegetation, agriculture and urban covered sites relative to forest covered grid cells, while

total abundance increased with human population density across all land-cover categories

Figure 4.3: Di�erence in local biodiversity measures between sites with varying sequences of
land cover relative to sites without any past land-cover change (dotted line) in the period 1992 to
biodiversity sampling start. Separate models were �tted for each biodiversity measure and land
cover at the time of biodiversity sampling as indicated by colour and abbreviation, namely forest
(F, a), shrubland (Sh, b), grassland (G, c), sparse vegetation (SV, d), agriculture (A, e) and urban (U,
f). Abbreviations on the x-axis show the di�erence in local biodiversity (SR = Species richness,
LA = Total abundance, PIE = Species assemblage evenness). Number of sites contributing to each
�tted land-cover sequence are indicated. The error bars show the predicted standard error and
stars (*) indicate whether the di�erence is statistically signi�cant (p < 0.05).



62 4.3 Results

relative to forest covered grid cells (Appendix Figure A.4.4).

Figure 4.4: (a) Global projection of the di�erence in local species richness with land cover –
relative to a forest site with zero human population – and informed by land-cover sequences in
the past. Projected biodiversity estimates are visualized relative to their uncertainty (normalized
mean absolute error (MAE) from the predicted di�erence), where values of higher uncertainty
are visually suppressed in hue. Most extreme values (lowest 1% and highest 1% percentile) were
excluded from the visualization and are displayed as inland white colour. (b) shows examples
(as in Figure 4.1) how projections of local species richness loss di�er because of prediction
uncertainties and land-cover sequences. Map is displayed in a global equal-area Mollweide
projection and aggregated to ~3km2 resolution for this visualization. Predicted di�erence and
uncertainty (unweighted) are in Appendix Figure A.4.3 individually.

Land cover changes continue to in�uence predicted biodiversity estimates at the

national scale. On average 4.04% ± 3.73 SD of land across all countries had a land-

cover change relative to their total land area in the period from 2000 to 2015. Singapore

with 31.7%, Malawi with 17.7% and Paraguay with 16.4% had the highest proportion

of land with a land-cover change in the period 2000 to 2015 (Appendix Figure A.4.5).

Although there were no signi�cant di�erences in the proportion of land with a land-cover

change among countries (F2,201=0.477, p=0.621, Appendix Figure A.4.5), considering

past land-cover change a�ected biodiversity more in tropical, lower-income countries

(Figure 4.5, Appendix Figure A.4.6-A.4.7). The area-weighted di�erence in projected

national biodiversity estimates – relative to a projection that did not account for land-

cover sequences – was signi�cantly lower in low income countries for species richness
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(F2,200=9.131, p<0.001, Figure 4.5), total abundance (F2,198=13.48, p<0.001, Figure A.4.6)

and evenness (F2,198=6.644, p<0.01, Appendix Figure A.4.7).

Figure 4.5: Area-weighted relative di�erence – compared to a projection where past land-cover
sequences were not considered – in mean national species richness (SR) from 2000 to 2015. Points
represent the country-wide average in SR (area-weighted) with the size of the points scaled with
land area (small to large). Colours indicate whether countries are considered high (black), middle
(orange) or low (blue) income. Outlier countries and overall averages per income group (horizontal
lines) are indicated. Inset map shows the relative di�erence in SR from low (red) to high (blue) per
country. Plots for total abundance and assemblage evenness are broadly comparable (Appendix
Figure A.4.6 - A.4.7).

4.4 Discussion

Biodiversity is expected to di�er with attributes of past land-cover change (Watson

et al., 2014). We found local biodiversity at sites with a past land-cover change to be

on average lower than at sites without any land-cover change in the period 1992 to

biodiversity sampling start. Local biodiversity recovered to levels comparable to sites

without land-cover change after more than ten years had passed (Figure 4.2). These

results are in line with a previous study on the same biodiversity dataset that found

abrupt land changes to consistently reduce local biodiversity (Chapter 3 in this thesis).
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We furthermore found that the impacts of land-cover change on biodiversity varied with

di�erent sequences of past land cover (Figure 4.3) and that these impacts a�ect global

(Figure 4.4) and national (Figure 4.5) biodiversity projections. We discuss how our results

relate to those of previous studies and make recommendations how to incorporate lasting

in�uences of past land-cover change into biodiversity projections.

4.4.1 The in�uence of land-cover sequences on biodiversity

Depending on the sequence of land cover, local biodiversity measures were considerably

altered after a land-cover change. Forest covered sites, that were previously covered by

agriculture, had about the same number of species and individuals as forest covered sites

without a land-cover change in the period 1992 to biodiversity sampling start (Figure

4.3a), which contrasts with �ndings of previous studies investigating the impacts of an

agriculture to forest transition on local biodiversity (Bellemare et al., 2002; Hermy and

Verheyen, 2007; Dyer, 2010). It could be that many of the reference forest-covered sites

had an agricultural history long before 1992 – which we were unable to quantify using

the ESA LC product – potentially weakening the impacts of land-cover change as local

biodiversity has already been noticably altered before the start of satellite-based earth

observation (Ellis et al., 2010; McMichael et al., 2017). A previous meta-analysis has

shown that forests, which were previously covered by shrublands had on average lower

species richness (Bremer and Farley, 2010) and we found similar results with previously

shrub covered sites, having on average 11% fewer species and 14% fewer individuals

(Figure 4.3a). In contrast, previously forest covered shrubland sites had on average 11%

more species and 26% more individuals than a shrubland site without a past land-cover

change (Figure 4.3b). Likely these sites still support a high number of species typical at

low vegetation height and structural complexity (Chazdon et al., 2016).

In more anthropogenically altered land cover, a past land-cover change caused varying

“biotic lag” e�ects (Figure 4.3e-f). Urban sites with a past land-cover change had a higher

number of species and individuals than sites without land-cover change (Figure 4.3f). It

could be that local biodiversity in these sites is in�ated because of pending extinction

debts and thus these sites likely have further extinctions of (native) species in the future

(Tilman et al., 1994; Kuussaari et al., 2009; Hylander and Ehrlén, 2013). This is supported

by a previous global synthesis that found preceding land cover together with city age
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to be one of the best predictors of (native) bird and plant occurrence in urban areas

(Aronson et al., 2014). However, similar e�ects could not be observed for agricultural sites

previously covered by forest or shrubland, where the number of species and individuals

was on average lower compared to an agricultural site without a past land-cover change

(Figure 4.3e). One possible explanation could be that this pattern is mostly driven by

(pollinating) invertebrates, which compose 64.8% of all previously forest or shrub covered

agricultural sites in our dataset. Pollinating invertebrates have previously been shown to

have higher numbers of species and individuals in agricultural land compared to forests

(Winfree et al., 2009). It should be mentioned that many of our �ndings could be rather

imprecise given the low number of sites with a past land-cover change (Appendix Figure

A.4.2), which prevented us from robustly assessing the impact of land-cover sequences

across taxonomic or functional groups (Jung et al., 2018) or in interactions with other

attributes of land-cover change such as time passed (Figure 4.2). Nevertheless, this is to

our knowledge the �rst comprehensive and comparative assessment of the impacts of

past land-cover sequences on local biodiversity measures.

The consideration of past land-cover change can also a�ect global and national biodi-

versity projections (Figure 4.4 & 4.5). Notably only 4.04% of the terrestrial land surface

globally had a land-cover change in the period 1992 to 2015 occurring predominantly in

the global south (Figure 4.1). Previous studies that analysed the spatial distribution and

drivers of land-cover change (Curtis et al., 2018; Nowosad et al., 2019) found the expan-

sion of agriculture and pasture to be the most likely cause of land-cover change in those

areas (Phalan et al., 2013), which are often globally irreplaceable for biodiversity (Brooks

et al., 2002; Laurance et al., 2014; Pimm et al., 2014). Comparing national biodiversity

projections with and without a consideration of past land-cover change, we �nd that a

consideration of land-cover sequences led to even lower predicted national biodiversity

estimates in most, but especially so in tropical and low-income countries (Figure 4.5,

Appendix Figure A.4.6-A.4.7). In those countries anthropogenically caused land-cover

change is commonly linked to attempts to close yield-gaps in agricultural production

(Mueller et al., 2012) or increase the output of export commodities (Byerlee et al., 2014;

Meyfroidt et al., 2018). Our results indicated that not accounting for lagged e�ects of past

land-cover change can cause an over- and/or underestimation of biodiversity change in

global projections.
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4.4.2 Model and land cover data uncertainties in biodiversity

projections

There are several factors that need to be considered when our results are compared to

those of previous studies (Newbold et al., 2015). The PREDICTS database was set up to

compare biodiversity measures between sites of varying land-use and land-use intensity

as derived from study descriptions (Newbold et al., 2015; Hudson et al., 2017), while

this study used remotely-sensed estimates of land cover. Land use and land cover are

intertwined in a land system (Lambin and Geist, 2006; Turner et al., 2007), however not

all di�erences between two PREDICTS sites can likely be explained by land cover (and

human population density, Appendix Figure A.4.3) alone. Di�erences in impacts can occur

because of inaccuracies in characterizing land cover (ESA CCI, 2017), scale mismatches

(Estes et al., 2018) or local factors that mediate biodiversity responses to di�erences in

land cover (Jung et al., 2017). Furthermore because of sampling size limitations, we were

not able to incorporate other attributes of land-cover change that could be important in

determining di�erences in local biodiversity measures (Watson et al., 2014), such as the

frequency (Watson et al., 2014; Gri�ths et al., 2015) or magnitude of land-cover change

(Chapter 3 in this thesis). Future studies should attempt to incorporate interactions

between attributes of land-cover change into biodiversity projections, pending greater

biodiversity and land-cover data availability.

Remotely characterizing land-use and/or land-cover at global extents is challenging

(Verburg et al., 2011; Kuemmerle et al., 2013). In this study we used time series (period

1992-2015) of remotely-sensed land cover instead of the modelled estimates (1500-2100) of

land use and land cover (Hurtt et al., 2011; Klein Goldewijk et al., 2016) used by previous

studies (Newbold et al., 2015, 2016b; De Palma et al., 2017). Most of the terrestrial land

surface has been altered by humans long before the availability of Earth observation

data (Ellis et al., 2010) and modelled estimates of land-use change are often the only

available data at global scales. However, these estimates are only available at coarse

spatial resolution (~10 km2 at the equator) and are dependent on model assumptions and

accompanied uncertainties (Gaillard et al., 2010; Klein Goldewijk and Verburg, 2013), with

previous independent validations having shown that they can misrepresent pre-industrial

land use substantially (Kaplan et al., 2017). Remotely-sensed land-cover products, despite
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classi�cation errors and thematic di�erences that can a�ect subsequent analyses (Sexton

et al., 2016; Estes et al., 2018), remain some of the best directly measured estimates of

global land cover, but not land use. Promising case studies have quanti�ed proxies of land

use for agricultural (Estel et al., 2015), pasture (Ru�n et al., 2015) or forest use intensity

(P�ugmacher et al., 2012) from time series of remotely-sensed data at the regional scale.

We suggest that in order to improve future biodiversity models and projections, new time

series of remotely-sensed proxies of land use need to be developed at the global scale.

4.4.3 Conclusion

This study investigated the impacts of past land-cover change – di�erentiated by attributes

such as time passed or the sequence of land cover – on local biodiversity. We found

local biodiversity to be signi�cantly reduced shortly after a land-cover change but being

able to recover with longer time passed (Figure 4.2). Depending on the sequence of past

land cover, local biodiversity either increased or decreased compared to sites without a

land-cover change (Figure 4.3). If those lasting in�uences of past land-cover change are

ignored in global and national biodiversity projections, we �nd that those projections can

considerably misrepresent projected biodiversity change, especially so in tropical and

low-income countries (Figure 4.4 - 4.5). There are several ways to improve biodiversity

projections beyond of what has been presented in this study. We emphasize the need

to consider interactions between attributes of land-cover change such as between the

time passed (Figure 4.2) and land-cover sequences (Figure 4.3), which might a�ect the

estimated impacts on biodiversity given evidence from previous studies (Chazdon, 2003;

Martin et al., 2013). The impacts of land-cover change could furthermore be estimated

using before and after biodiversity measures (De Palma et al., 2018) and time series of

land cover could be useful to identify sites for resurveying local biodiversity (see �gure

6.1 in discussion) or to establish links with time series of biodiversity measures (Dornelas

et al., 2018). Overall, our study highlights the usefulness of remotely-sensed time series

of land cover for biodiversity projections and models, particularly in quantifying lasting

impacts of past land cover change.
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Chapter5

Landscape-wide land changes

correlate with, but rarely explain

local bird diversity change

There is an ongoing debate whether biodiversity at local scales is changing and what

might drive these changes. Land changes are suspected to impact local biodiversity

change. However, there is little evidence across spatial and temporal scales and for

multiple functional groups of species, thus limiting our understanding of the drivers of

local biodiversity change. Here we investigate whether landscape-wide land changes,

opposed to those at the local scale, are driving local bird diversity change. We link time

series of 34 years of breeding bird survey (BBS) data (1984-2017) at 2745 routes across

the continental United States of America with remotely-sensed satellite imagery (~30m

resolution) from the Landsat missions. Speci�cally, we assessed for each year what

proportion of the landscape surrounding the BBS routes had a land change – de�ned as

abrupt shift in magnitude or trend of photosynthetic activity as detected by the Breaks

for Additive Seasonal and Trend (BFAST) algorithm – and tested whether large propor-

tions of concurrent or preceding landscape-wide land changes explain changes in bird

diversity, quanti�ed as either geometric mean of relative abundance (GM) or progressive

Bray-Curtis index (pBC). We found that the GM was negatively and the pBC positively

correlated with a large proportion of land changes in the wider landscape. Furthermore,

the consideration of preceding – instead of concurrent – landscape-wide land changes

explained on average more variation in bird diversity change. Overall, landscape-wide
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land changes failed to explain most of the variation in local bird diversity change for

most BBS routes regardless if bird diversity change is di�erentiated by functional groups

or geographic regions. This study is one of the �rst studies attempting to link land and

biodiversity change. It highlights the in�uence of preceding and concurrent land change

on biodiversity and makes suggestions for promising directions of future research.

5.1 Introduction

Ongoing human alteration of the Earth surface causes changes in biodiversity across

scales (Gibson et al., 2011; Murphy and Romanuk, 2014; Newbold et al., 2015). Globally,

about 32% of all known vertebrate species show decreasing population sizes and range

contractions (Ceballos et al., 2017; WWF, 2018) with reported species extinction rates

being several times higher than expected naturally (Brooks et al., 2002; Pimm et al., 2014).

Yet, any change in biodiversity is scale and measure dependent (Sax and Gaines, 2003;

Chase and Knight, 2013) and, perhaps surprisingly, there is still a debate whether local –

opposed to global – biodiversity is truly changing (Thomas, 2013; McGill et al., 2014).

A number of global meta-analyses demonstrated that some biodiversity measures,

notably species richness, have not changed at the local scale (Vellend et al., 2013, 2017;

Dornelas et al., 2014). However, these results have been questioned, particularly on

whether the data are spatially and temporally biased (Gonzalez et al., 2016) or if sites

with and without land change were di�erentiated (Cardinale et al., 2018). This raises the

question whether changes on land can explain changes in local biodiversity measures

across space and time.

Present di�erences on land in�uence local biodiversity globally. Previous studies

found local biodiversity to be consistently reduced at sites with more intensively used

land (Murphy and Romanuk, 2014; Newbold et al., 2015; Alroy, 2017), where on average

13.6% fewer species and 10.7% fewer individuals were observed compared to undisturbed

"primary vegetation" (Newbold et al., 2015). However, these analyses relied on spatial

comparisons of local biodiversity and therefore do not capture temporal biodiversity

change per se. In addition, they ignored the in�uence of past land changes (Perring et al.,

2018; Jung et al., 2018) and did not consider landscape-wide land changes, which can

in�uence local biodiversity (Tscharntke et al., 2012; Turner et al., 2016; Miguet et al.,
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2016).

Local biodiversity is in�uenced by the variability of resources, such as food or nesting

material, or through ecological processes, such as migration or fear of predation, at

the landscape scale (Hanski and Ovaskainen, 2000; Chase, 2003; Turner et al., 2016;

Fernández et al., 2016). However these in�uences are not static and landscapes are

constantly changing because of natural and anthropogenic factors (Pickett and White,

1985; Manning et al., 2009; Turner et al., 2016). Previous studies have shown that landscape-

wide land changes may have a lasting in�uence on local biodiversity through ‘biotic

lag’ e�ects (Metzger et al., 2009; Ewers et al., 2013). Yet, most studies focussed on small

geographic regions and changes in forest cover (Rittenhouse et al., 2010) and did not

investigate general impacts of landscape-wide land changes on local biodiversity across

spatio-temporal scales. A lack of data on local biodiversity and landscape-wide land

change has so far prevented comparative assessments (De Palma et al., 2018).

Increasing availability of satellite imagery enables to quantify land change at broad

spatial and temporal scales (Kennedy et al., 2014; Pasquarella et al., 2016). Long-running

satellite missions, such as Landsat, provide one of the best sources to monitor land-surface

conditions (Kennedy et al., 2014; Vogelmann et al., 2016; Hermosilla et al., 2018; Song

et al., 2018). Time series of land-surface conditions, such as photosynthetic activity, can

measure intra- and inter-annual vegetation dynamics (Pettorelli et al., 2005; Fisher et al.,

2006) and speci�c algorithms have been developed to detect land changes as changes

in photosynthetic activity (Verbesselt et al., 2010b; Zhu, 2017). Land changes can be

di�erentiated by attributes (Watson et al., 2014), such as abrupt shifts in magnitude,

causing an immediate loss or gain of vegetation (DeVries et al., 2015), or shifts in trend,

causing either greening or browning over time (de Jong et al., 2013; Müller et al., 2014).

These attributes can be robustly quanti�ed at the landscape scale and linked to changes

in local biodiversity.

Birds are one of the best surveyed taxonomic groups globally. Local biodiversity

change quanti�ed from repeated breeding bird surveys (BBS) has been widely studied

(Harrison et al., 2014; Pardieck et al., 2018). Previous studies have shown that changes in

bird diversity are dependent on the speci�c biodiversity measure considered (Schipper

et al., 2016; Jarzyna and Jetz, 2017) and are often non-linear (Gutzwiller et al., 2015;

Barnagaud et al., 2017). Bird diversity change also varied spatially (Harrison et al., 2014;
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Jarzyna and Jetz, 2017) with many birds of particular functional traits, such as migratory

or grassland dependent species, declining in developed countries (Fewster et al., 2000;

Sanderson et al., 2006; Stanton et al., 2018). Land changes are most likely a driving factor

of these declines (Harrison et al., 2014, 2016), and yet most previous studies using BBS

data investigated only spatial correlations between remotely-sensed attributes of land

change and local bird diversity (Rowhani et al., 2008; Goetz et al., 2014; Hobi et al., 2017).

Notably Rittenhouse et al. (2010) found bird assemblage composition to be altered in

landscapes with more “disturbed forests”, which they assessed using remotely-sensed

time series. However, to our knowledge, no previous study has investigated whether

landscape-wide land changes correlate with and explain changes in local bird diversity.

Consequently, this study hypothesizes that (i) changes in local bird diversity are driven

by landscape-wide land changes depending on their attributes, (ii) local bird diversity

change can best be explained by past land changes, and that (iii) the explanatory power

of landscape-wide land changes on local bird diversity change varies across geographic

regions and functional groups of bird species. We combine 34 years (1984–2017) of annual

BBS records collected at sites across the continental United States of America with time

series of medium-high resolution (nominal ~30m) satellite imagery from the Landsat

missions. Using Breaks for Additive Seasonal and Trend (BFAST), a generic change

detection algorithm, we detect abrupt shifts in magnitude (immediate gain or loss in

photosynthetic activity) and trend (greening or browning) of photosynthetic activity in

the landscape surrounding each BBS route. Non-linear spatio-temporal models were used

to correlate the proportion of changing land in the wider landscape with changes in local

bird diversity.

5.2 Methods

5.2.1 Bird diversity time-series preparation

Time series of local bird count records (1984 – 2017) were obtained from the North

American Breeding Bird Survey (BBS, available from https://www.pwrc.usgs.gov/bbs/,

Pardieck et al., 2018) dataset. Bird counts were conducted annually during the breeding

season (April to August with > 83.3% sampled in June) along approximately 39.4km long

roadside survey routes and usually follow a standard protocol that involves �fty 3min

https://www.pwrc.usgs.gov/bbs/
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stops at evenly spaced intervals (approximately 0.8km) (Ralph et al., 1995). At each 3min

stop, volunteer observers record the number and identity of every bird species seen or

heard within approximately 400m distance from the route. For our analyses we only

included routes that followed the standard BBS protocol of �fty randomly selected stops

(94.4% of all routes) and had at least ten years of sampling between 1984 and 2017, as

many BBS routes were not sampled every year (mean proportion of missing years =

19.7%). The period from 1984 to 2017 was chosen to align to the availability of satellite

data (but see 5.2.2). We removed routes from the analyses with non-acceptable weather

conditions according to BBS standards (Ralph et al., 1995) and excluded all nocturnal,

crepuscular and aquatic species from the analysis as they are not well sampled by BBS

methods (Gutzwiller et al., 2015; Jarzyna and Jetz, 2017). All partially identi�ed species

(e.g. “sp.”), hybrids and species with unclear taxonomy (e. g. “A x B”) were removed from

further analyses. In total, time-series from 2745 routes (out of 5248 in the entire BBS

dataset) had suitable data for further analyses.

We calculated two di�erent biodiversity measures commonly applied to BBS data.

First, we calculated the geometric mean of relative abundance (GM), which quanti�es

relative changes in both abundance and evenness (Buckland et al., 2011, 2017; Harrison

et al., 2014). The GM for the year y is de�ned as GMy = exp( 1
S

∑S
i=1 log( Aiy+1

Aiy0 +1)), where

S quanti�es the total number of species with i being an individual species, Aiy the

abundance of species i in year y. The GM is una�ected by species detectability as it is

based on within-species abundance trends, however it cannot be quanti�ed for absent

species and is unable to re�ect changes in assemblage composition (Buckland et al., 2011).

We added a constant (1) to all abundance values before calculating the annual GM to

account for the species being absent in some years. The �rst four years of BBS data (1984

– 1987) were used to de�ne the baseline years y0 (calculated from the median number

of individuals for each observed species) and to align the analyses with the baseline

years used in the land change detection (but see Methods 5.2.3). Whenever no BBS was

conducted in the years between 1984 and 1987 on a given route, we used the �rst year

of available BBS data to de�ne the baseline year y0. Second, as measure of changes in

assemblage composition, we calculated the progressive Bray-Curtis index (pBC, Bray

and Curtis, 1957; Rittenhouse et al., 2010) as the di�erence in composition between a

baseline and all following years of sampled bird assemblages (Rittenhouse et al., 2010).
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The pBC is de�ned as = 1 −∑S
i=1

|Aiy−Aiy0 |
(Aiy+Aiy0 ) , where Aiy is the abundance of species i

in year y and Aiy0 the estimated abundance in the baseline y0 (de�ned as for the GM,

calculated from the median number of individuals for each observed species).

5.2.2 Time series of annual photosynthetic activity at the

landscape scale

Following previous studies, we de�ne the “landscape” as the 19.7km radius bu�er around

the centroid of each BBS route because it fully encompasses the majority of BBS routes

and approximates the median natal dispersal distance of North American bird species

(Sutherland et al., 2000; Pidgeon et al., 2007; Albright et al., 2011). Grid cells with per-

manent open water, ice or snow cover were excluded using a land mask derived from

the 2011 National Land Cover Database (NLCD) land-cover map at ~30m resolution

(Homer et al., 2015). In addition, BBS routes with less than 50% land area (N = 18)

within the surrounding landscape were excluded from further analyses, assuming that in

those routes breeding birds are less in�uenced by landscape-wide changes in terrestrial

photosynthetic activity.

To quantify land changes in the landscape surrounding each BBS route, we used

imagery from the Landsat 4, 5, 7 and 8 satellites (1984 to 2017, ~30m nominal resolution)

supplied by the United States Geological Service (USGS) available through Google Earth

Engine (Gorelick et al., 2017). All Landsat images were radiometrically (Chander et al.,

2009) and atmospherically calibrated to surface re�ectances (Masek et al., 2006). For

each surface re�ectance image, we masked out non-land grid cells, including clouds

and cloud shadows as identi�ed by the ‘cFMask’ algorithm (Zhu and Woodcock, 2012),

areas permanently covered with water (> 90% water occurrence probability in the period

1984 – 2016, Pekel et al., 2016). A spectral index of photosynthetic activity (the two-

band enhanced vegetation index (EVI), Jiang et al., 2008) was calculated for each surface

re�ectance image. We composited all EVI data up to three months before the Summer

solstice (20th of March to 20th June of each year) into a single annual image (1984, 1985,

..., 2017) that retains the greenest (95% percentile) EVI value. We used three months of

EVI data to capture the greening onset in annual vegetation dynamics (Appendix Figure

A.5.1), a period that can assist in distinguishing between land cover types (Pettorelli

et al., 2005; Fisher et al., 2006; Zhang et al., 2006) and that matches the sampling period
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during which most BBS were conducted (March to June). All data pre-processing and

compositing was done using the Google Earth Engine platform (Gorelick et al., 2017).

A lack of clear-sky images in certain years can lead to missing data for parts of

the bu�ered BBS routes. Routes with more than 50% missing data (N = 2) over the

period from 1984 to 2017 were excluded from further analyses assuming that the Landsat

satellites have missed most land changes (median proportion of missing data = 1.06% ±

1.54 median absolute deviation [MAD], Appendix Figure A.5.2).

Figure 5.1: (a) Schematic how landscape-wide land changes are quanti�ed in a hypothetical BBS
route. For each grid cell within the landscape (bu�ered circle around the BBS route) time series of
annual March-June EVI were tested for a single or multiple land changes (see Methods 5.2.3). If
a land change has been detected, we determined the position of all shifts in magnitude (abrupt
loss in [“red”] or gain [“blue”]) or trends (greening [“dark green”] or browning [“brown”]) of
photosynthetic activity (as measured by the EVI). (b) Changes in local bird diversity (as quanti�ed
by the GM and pBC) relative to a baseline year y0 (highlighted in red) for an example BBS route.
(c) Summarised proportion of all grid cells within the landscape with either a shift in magnitude
or trend in EVI (colours as in a) per year. Map shown in the Albers equal area conic projection
(NAD83).

5.2.3 Detection of landscape-wide land changes as changes in

annual photosynthetic activity

Landscape-wide land changes were quanti�ed as the proportion of grid cells showing a

shift in magnitude or trend of photosynthetic activity (Figure 5.1a). Among all algorithms
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proposed to detect changes in remotely-sensed time series (Zhu, 2017), we relied on

the generalized �uctuation framework originally developed for econometrics (Bai and

Perron, 2003; Zeileis, 2005), later adapted for remote sensing as the Breaks for Additive

Seasonal and Trend (BFAST) algorithm (Verbesselt et al., 2010b). For each annual EVI time

series, we tested for single or multiple structural breaks in linear trend using a recursive

Moving Sum of Residuals (Rec-MOSUM) test over each four year window period (Zeileis,

2005). A statistically signi�cant (p < 0.05) structural change test indicates whether at

least a single structural break exists, in which case we iteratively �tted segmented linear

regression models over the entire time series. The optimal number and position of all

structural breaks were detected by minimizing both the Bayesian Information Criterion

(BIC) and residual sum of squares (RSS) of the segmented regression models (Zeileis, 2005;

Verbesselt et al., 2010b). The framework requires a gap-free time series (“strucchange”

package in R, ver. 1.5-1) and similar to previous studies we �lled missing data using linear

interpolation between adjacent years (Verbesselt et al., 2010b).

Per grid cell and year, we di�erentiated all detected land change events as either

abrupt shifts in magnitude or trend (Figure 5.1). Shifts in magnitude were quanti�ed using

the predicted EVI data (from the segmented linear regression model) before and after the

detected change date (EV IAfter − EV IBefore) and categorized as either immediate loss

or gain in photosynthetic activity in a given year if negative or positive, respectively. For

shifts in trend, we assessed for each year whether the linear trend in annual EVI was

signi�cantly (p < 0.05) increasing (‘greening’), decreasing (‘browning’) or �at (‘stable’).

Similarly, for time series with non-signi�cant structural change tests, we �tted simple

linear regression models to test whether the overall trend in EVI (across all 34 years)

signi�cantly increased or decreased.

For each BBS route and year (Figure 5.1c), we summarized the amount of land that had

either an abrupt shift in magnitude (loss or gain in EVI) or trend (greening or browning).

Because the total land area di�ered among BBS routes, we calculated proportions relative

to the total land area (see Methods 5.2.2). The change detection algorithm relies on a

moving window (four years) and thus no land changes could be detected in the �rst (1984

- 1987) and last four (2014 - 2017) years of each EVI time series. In case a land change

occurred within these years, the algorithm would set the date to the latest, respectively

earliest, year possible (e. g. 1987 and 2014) causing an in�ated number of incorrectly dated
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land change events at the start and end of each time series. We therefore considered the

�rst four years as ‘baseline’ (year0) and the last four as ‘overhang’ and removed them

from further analyses.

5.2.4 Additional predictors and bird trait data

At continental scales, bird diversity at BBS routes has been shown to be in�uenced by a

number of environmental variables (Rowhani et al., 2008; Goetz et al., 2014; Hobi et al.,

2017; Barnagaud et al., 2017). For a coarse measure of overall vegetation activity (Rowhani

et al., 2008; Hobi et al., 2017), we calculated the mean EVI across all 34 years of annual

Landsat composites per bu�ered BBS route (see Methods 5.2.2). Previous studies have

shown that the number of bird species varies with elevation (Jarzyna and Jetz, 2017)

and we extracted the mean elevation of the bu�ered BBS route from the global GMTED

(~1km resolution) product (Danielson and Gesch, 2011). Precipitation-driven anomalies

have been shown to a�ect the number and abundance of bird species (Barnagaud et al.,

2017). We used the Standardized Precipitation-Evapotranspiration Index (SPEI), which

quanti�es anomalies relative to the conditions observed in a moving window before

a given month (Vicente-Serrano et al., 2010, 2012). For each BBS route we extracted

the monthly SPEI from SPEIbase (ver. 2.5, http://spei.csic.es, Vicente-Serrano et al.,

2010) calculated on a climatology from 1901 to 2015 and over a moving window of three

months from January to March of each year (Vicente-Serrano et al., 2010), thus capturing

precipitation anomalies in the winter months.

Similar to previous studies we used four functional trait groups – nesting status, mi-

gratory behaviour, habitat guild and body mass – to di�erentiate all bird species (Schipper

et al., 2016; Barnagaud et al., 2017). Data on nesting (ground or canopy) and migratory

behaviour (resident, short-distance and neotropical migrants) were obtained from Al-

bright et al. (2011), while data on bird species habitat guilds (e. g. woodland, shrubland,

grassland and urban birds) were extracted from the USGS website https://www.mbr-

pwrc.usgs.gov/bbs/guild/guildlst.html. The mean body mass (bm, measured in g) for

all bird species was extracted from the Amniote database (Myhrvold et al., 2015) and

grouped into terciles of all estimates, e. g. small, medium and large birds (bm < 33%, bm

≥ 33% & bm < 66%, bm ≥ 66%). For species without trait estimates, we �lled the missing

data with the most common (mode) trait within the same bird genus, provided more

http://spei.csic.es
https://www.mbr-pwrc.usgs.gov/bbs/guild/guildlst.html
https://www.mbr-pwrc.usgs.gov/bbs/guild/guildlst.html
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than 50% of all species within that genus had existing body mass estimates or identical

categorical trait. For each BBS route and trait group we calculated separate GM estimates,

but only for routes with at least 10 years of data and at least 3 di�erent species within a

trait group.

5.2.5 Spatio-temporal models

The aim of the statistical analyses was to investigate whether changes in local bird

diversity (measured by GM and pBC) and landscape-wide land changes are correlated. To

do so we relied on generalized additive regression models (GAMs), which are commonly

used to model species population trends (Fewster et al., 2000) and can handle complex

non-linear, spatio-temporal and hierarchical datasets (Kneib et al., 2009; Wood, 2011). All

considered variables were included as thin-plate smooth (�xed to 4 residual degrees of

freedom to prevent over�tting) in the GAMs and we applied a smoothing penalization

for variable selection (Wood, 2008, mgcv parameter: select = TRUE). The approximate

signi�cance of non-linear model terms was assessed using an approach by Wood (2013).

All GAMs were �tted using the ‘mgcv’ package (Wood, 2011, ver. 1.8-24) in R (R Core

Team, 2018, ver. 3.5.0).

We distinguished between four groups of variables to be included as thin-plate

smooths in the full GAM. (1) As “local” factors (flocal) we considered the mean EVI,

elevation and, for each year, the SPEI. (2) For landscape-wide land changes (flandscape),

we included for each year the proportion (arcsine square root transformed) of abrupt

shifts in magnitude (immediate loss and gain in EVI) and trend (browning or greening)

in the landscape (Figure 5.1c). (3) Incorporating spatial autocorrelation into regression

models can improve predictive power (Kneib et al., 2009; Dornelas et al., 2012), especially

when local biodiversity was surveyed over large scales such as the continental U.S. .

We followed an approach by Kneib et al. and included the spatial coordinates (fspatial) of

each BBS route using a non-linear smooth surface function g(xNorthing, xEasting) with

a tensor product P-spline (Kneib et al., 2009). Northing and easting coordinates were

obtained by projecting the centroid of each bu�ered BBS route to an Albers equal area

conic projection (NAD83). (4) For comparing biodiversity measures among BBS routes,

species detectability or misidenti�cation by di�erent BBS observers has to be accounted

for (Sauer et al., 1994; Harris et al., 2018). We included the BBS route ID (fobs) as random
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intercept in all models, therefore estimating the e�ect of flocal, flandscape and fspatial on local

biodiversity measures (GM and pBC) across all BBS routes. We acknowledge that using

the route ID does not fully account for di�erences in observer abilities (there can be

multiple observers for a single route), but previous studies found limited in�uence of

varying observers over large scales (Jarzyna and Jetz, 2017; Barnagaud et al., 2017). All

biodiversity time series were detrended by including time (year) as linear predictor to

avoid spurious correlations. To account for temporal autocorrelation, we included an

autoregressive error structure (AR1), which we parametrized by visually assessing the

autocorrelation function of the full model residuals at lag 1 (ρ = 0.5).

We tested if past (e. g. the years before a BBS) landscape-wide land changes continued

to in�uence bird diversity change in subsequent years. A ‘lagged’ correlation between

two time series is commonly known as “Granger causality”, where one “time series

xt contains information in past terms that helps the prediction of yt“ (Granger, 1969).

We followed an approach by Papagiannopoulou et al. (2017) and assessed the relative

improvement in explanatory power of models including preceding instead of concurrent

land changes. Preceding land changes with abrupt shifts in magnitude (loss or gain

in EVI) of up to �ve years were included either individually, thus adding estimates for

the preceding year i = 1, ..., 5 only; or cumulatively, where aggregated estimates for

the preceding years 1 : i were included in the model (Jung et al., 2018). The relative

improvement in explanatory power was assessed using out-of-bag (OOB) coe�cients

of determination (R2). To do so we split all time series into training and test datasets

(50/50) 100 times at random. All models included the flocal and fspatial variables to account

for variation not directly attributable to landscape-wide land changes.

Lastly, we assessed the explanatory power of each group of variables (flocal, fspatial,

flandscape) spatio-temporally and for birds grouped by functional traits. To do so we �tted

several GAMs using the GM (log-transformed) or pBC as response variable with a gaussian

log-link distribution. We �rst �tted a “full” GAM including all variables, followed by

separate GAMs where groups of variables (flocal, fspatial, flandscape) were explicitly excluded

from the model. Models for both GM and pBC converged well (Appendix Figure A.5.3-

A.5.4), although the largest changes in pBC were generally poorly predicted by the

models (Appendix Figure A.5.4). The explanatory power of all models was assessed by

calculating the R2 of each model. The group of variables (flocal, fspatial, flandscape) explaining
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the most variation was then identi�ed from the largest reduction (partial R2, relative

to the full model) in R2 (Papagiannopoulou et al., 2017). We assessed patterns of the

most important group of variables spatially and in relation to robust linear trends in

biodiversity measures (�tted using the MASS package, ver. 7.3-49, Venables and Ripley,

2002). Lastly, we investigated if the explanatory power of landscape-wide land changes

(flandscape) varied with either bird species being di�erentiated by functional trait groups (see

5.2.4) or with BBS routes grouped by U.S. ecoregions (Level 1, Omernik, 1987), which we

derived by intersecting the centroid of each bu�ered BBS route with the U.S. ecoregions

layer. For each functional trait group, we �tted two separate GAMs either including

or excluding all flandscape variables before calculating the di�erence in R2 attributable to

flandscape variables. For U.S. ecoregions we assessed the contribution of flandscape variables

to the total R2 on overall GM change. Supplementary �gures and tables can be found in

the Appendix A.5.1�. .

5.3 Results

Both local bird diversity and landscapes have changed across the continental USA. Across

all BBS routes the geometric mean of relative abundances (GM) increased by 0.01% ±

0.002 standard error (SE) per year (mean �rst derivative) in the �rst two decades from

1984 to 2005, after which annual decreases of 0.01% ± 0.003 SE were observed (Appendix

Figure A.5.5a). The compositional similarity of bird assemblages (pBC) decreased by

0.006% ± 0.001 SE per year (Appendix Figure A.5.5b). Landscapes surrounding each

BBS route had on average 6% ± 6.42 SD (range 0.02% – 78.96%) of land experiencing at

least one land change in the period 1984 to 2017 (Appendix Figure A.5.6). Over the same

period a decrease in landscape-wide land changes were observed (mean robust linear

trend = -0.00015 ± 0.0198 SD, range -0.545 to 0.112) but with large spatial variability

(Appendix Figure A.5.7). Across all BBS routes the mean proportion of land experiencing

a land change with an abrupt shift in magnitude (loss or gain in EVI) �uctuated strongly

(Appendix Figure A.5.8a), while shifts in trend showed an inverse hump-shaped pattern

for greening and a continuous decrease for browning (Appendix Figure A.5.8b). Shifts in

magnitude or trend were little correlated among each other (Appendix Figure A.5.9) and

across ecoregions (Appendix Figure A.5.10).

Bird diversity change is correlated with landscape-wide land changes. The GM
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Figure 5.2: Partial e�ects of landscape-wide land changes (proportion of landscape) per unit of
change in (a) the geometric mean of relative abundance (GM) and (b) the progressive Bray-Curtis
index (pBC). Colours indicate either abrupt shifts in magnitude with losses (red lines) or gains
(blue) in EVI or trend with greening (green) or browning (brown) land. Error margins show the
estimated standard error of the partial e�ect (grey shading) and rugs the observed proportion
of landscape-wide land changes across all BBS routes. Flat lines without error margins indicate
that the term was penalized out during model �tting and thus had no e�ect on the biodiversity
measure.

signi�cantly decreased (F4 = 10.8, p < 0.001) in years with a large proportion of

landscape-wide abrupt gains of EVI (Figure 5.2a, blue line). More landscape-wide abrupt

losses of EVI led to a signi�cant decrease in GM (F4 = 6.44, p = 0.001), but only after

~10% of the landscape had abrupt losses in a given year (Figure 5.2a, red line). The GM

also decreased with more land in the landscape browning (F4 = 37.89, p = 0.057), while

a high proportion of greening land in the landscape had no e�ect (F4 = 0, p = 0.529) on

changes in GM (Figure 5.2a). The pBC signi�cantly increased with a large proportion of
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landscape-wide abrupt losses (F4 = 8.25, p < 0.001) or gains (F4 = 0.614, p = 0.1) in

EVI (Figure 5.2b). The pBC also increased with a large proportion of browning (F4 =

13.81, p = 0.038) or greening land (F4 = 74.25, p = 0.005) in the wider landscape

(Figure 5.2b).

Local factors strongly in�uence local bird biodiversity change. The GM signi�cantly

increased (F4 = 1789.06, p < 0.001, Appendix Figure A.5.11a) and the pBC signi�cantly

decreased (F4 = 1923.71, p < 0.001, Appendix Figure A.5.11b) at BBS routes of high

mean elevation. GM signi�cantly increased (F4 = 291.05, p < 0.001) in landscapes with

overall low photosynthetic activity (EVI < 0.4) but decreased in landscapes with high

photosynthetic activity; a pattern that was reversed for pBC (Appendix Figure A.5.11).

Years of abnormal precipitation between January and March had no e�ect on GM or pBC

change (Appendix Figure A.5.11).

Land changes in one year continued to in�uence local bird diversity in subsequent

years. The mean explanatory power (out-of-bag [OOB] R2) of abrupt shifts in magnitude in

concurrent years (Lag 0, Figure 5.3) was 0.03 (0.047 cumulatively) for GM and 0.126 (0.122)

for pBC. A consideration of abrupt shifts in magnitude in preceding years explained

modestly more variation than those in concurrent years (Figure 5.3). The individual

inclusion of one to �ve preceding years of abrupt shifts in magnitude explained similar

amounts of variation (mean OOB R2 = 0.031) in GM, whereas for pBC only preceding

abrupt shifts in magnitude more than three years ago increased explanatory power

(mean OOB R2 = 0.129, Figure 5.3). Considering cumulatively preceding abrupt shifts

in magnitude increased the mean explanatory power for both GM and pBC (Figure 5.3),

although for pBC the relative improvement in explanatory power was highest at three

cumulatively included preceding years (mean OOB R2 of year three = 0.128).

We assessed whether the explanatory power of all variables varied spatially (Figure

5.4a,c) and for linear trends of bird diversity change (Figure 5.4b,d). The full model

including all variables explained 64.7% of the total variation of changes in GM (69.3%

for pBC), with most of the variation explained by unknown di�erences among BBS

routes (partial R2 of fobs = 58.5%. for GM and 39.8% for pBC). Of all variables considered,

landscape-wide land changes were the most important predictor of GM change for 34.83%

of BBS routes (partial R2 range 0 – 54%, Figure 5.4a) and for pBC in 46.6% of BBS routes

(partial R2 range 0 – 7%, Figure 5.4c). Incidentally, landscape-wide land changes were the
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Figure 5.3: Preceding landscape-wide land changes of one to �ve years improve predictions of
GM and pBC. Bird diversity time series for all BBS routes were randomly split (100 times) into
training and test datasets and the explanatory power (R2) was assessed relative to a model that
only included concurrent abrupt shifts in magnitude (gain or loss of EVI) averaged across all
random subsets. Symbols di�erentiate between two types of model structures, where past land
changes were either added individually (circles) or aggregated cumulatively (triangles). Error bars
show the standard deviation of the out-of-bag (OOB) R2 values.

best predictor for some of the greatest changes (increase/decrease per year) in local bird

diversity measures (Figure 5.4b,d).

The explanatory power of landscape-wide land changes on changes in GM di�ered

among bird species of varying functional traits and across ecoregions (Figure 5.4, Ap-

pendix Figure A.5.12). On average landscape-wide land changes did not explain (mean

partial R2 = -.02 ± 0.09 SD) changes in GM for birds of varying trait groups (Figure

5.5a). Similar to spatial patterns of the most important group of variables (Figure 5.4),

landscape-wide land changes were only important for a subset of BBS routes (Figure 5.5a,

blue outliers) in which they explained up to 71.9% of the total R2. For many BBS routes

however the inclusion of landscape-wide land changes did not increase but decreased

the R2 for explaining changes in GM (Figure 5.5a, red outliers). A visual exploration
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Figure 5.4: Most important group of variables explaining changes in the (a) GM and (c) pBC at
2745 BBS routes across the United States of America. Point sizes in (a,c) indicate larger partial R2

of the most important variable group. Colours indicate which of the considered variable groups,
flocal (red), flandscape (blue) or fspatial (green), explained most of the variation (greatest partial R2)
in the full model. (b,d) Partial R2 of the most important variable group averaged per increase or
decrease (robust linear trend per year) in GM or pBC.

could not identify any spatial patterns in these outlier BBS routes and there were also no

distinguishable di�erences between ecoregions (Figure 5.5b) and especially in Southern

Semi-Arid Highlands landscape-wide land changes did not increase the explained varia-

tion in GM change, despite the on average large proportion of browning land (Appendix

Figure A.5.10).

5.4 Discussion

The aim of this study was to investigate whether land changes (as measured by abrupt

shifts in magnitude or trend of photosynthetic activity) in the landscapes surrounding the

U.S. breeding bird survey (BBS) routes are correlated with changes in local bird diversity.
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Figure 5.5: (a) Partial R2 of landscape-wide land changes (di�erence in explanatory power after
excluding flandscape variables) for explaining changes in GM grouped by functional trait group.
Shown is the distribution (grey), median and 50% quantile (black) for each response variable. Red
and blue points indicate outliers (1% smallest / biggest partial R2 values). (b) Shows the absolute
partial R2 of landscape-wide land changes in explaining trends in GM grouped by U.S. ecoregions.
Coloured depending on whether landscape-wide land changes increased (blue) or decreased (red)
overall R2. Black points and error bars show the mean and standard error of the mean.

We found that a greater proportion of landscape-wide abrupt shifts in magnitude was

correlated with a decrease of the geometric mean of relative abundances (GM, Buckland

et al., 2011) and an increase in the progressive Bray-Curtis index (pBC, Rittenhouse et al.,

2010). A greater proportion of browning land was correlated with a decrease in GM and

an increase in pBC, while more greening land increased pBC only (Figure 5.2). Con�rming

previous studies, some local factors (e. g. mean elevation and photosynthetic activity)

in�uenced local bird diversity change. Changes in GM and pBC were not only in�uenced

by concurrent abrupt shifts in magnitude, but also by individual and cumulative e�ects of

preceding land changes (Figure 5.3). On average, landscape-wide land changes had high

explanatory power (R2 > 0.1) only for a few selected routes without any clear pattern in

space (Figure 5.4), across trait groups (Figure 5.5a) or ecoregions (Figure 5.5b). We discuss

how these results link to previous studies of local biodiversity change and landscape

ecology.
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5.4.1 Landscape-wide land changes as drivers of biodiversity

change

Land changes have previously been linked to local biodiversity change (Brooks et al.,

2002; Ewers et al., 2013; Cousins et al., 2015). Like previous studies at the local scale

(Chapter 3 in this thesis), we found local biodiversity measures to be more a�ected by

larger abrupt shifts in magnitude at the landscape scale (Figure 5.2). A greater proportion

of abrupt shifts in magnitude and trend (for ‘browning’) in the wider landscape were

associated with a signi�cant decline in the GM (Figure 5.2a), potentially indicating local

bird population collapse as fewer individuals across species are observed (Loh et al., 2005;

Buckland et al., 2011). Meanwhile more abrupt shifts in magnitude and trend in the wider

landscape increased the pBC (Figure 5.2b). Because we found the GM to decline with a

greater proportion of landscape-wide land changes, it is likely that the changes in pBC

are caused by an increase in species richness, a pattern shown before for the BBS data

(Schipper et al., 2016). Previous studies found compositional changes in bird assemblages

to be particularly associated with changes in the occurrence of rare and specialist species,

leading to a “homogenization” of assemblages (McKinney and Lockwood, 1999; Olden,

2006; Newbold et al., 2018). It could be that landscape-wide land changes increase the

heterogeneity of resources and bird habitats available, thus allowing a greater number of

bird species, but fewer individuals overall, to thrive (Holt, 2009; Stein et al., 2014), for

instance through increased competition (Randall Hughes et al., 2007).

Changes in GM and pBC di�ered with local environmental gradients (Appendix

Figure A.5.11). Consistent with previous studies (Lomolino, 2001; Jarzyna and Jetz, 2017),

the GM increased at BBS routes of high elevation (Appendix Figure A.5.11a), indicating

that bird species increasingly utilize high elevation regions, likely because of climate

change. Those species appear to be di�erent from the species previously inhabiting BBS

routes at high elevations, given the strong negative e�ect of elevation on pBC (Appendix

Figure A.5.11b). Furthermore, we found changes in GM to decrease and “�atten” in BBS

routes with high average photosynthetic activity (EVI > 0.4, Appendix Figure A.5.11a),

in contrast to the pBC, which increased in BBS routes of high photosynthetic activity

(Appendix Figure Appendix Figure A.5.11b). This is in line with previous studies that

demonstrated that BBS routes with high average photosynthetic activity have fewer bird
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individuals (Barnagaud et al., 2017) but higher number of bird species (Rowhani et al.,

2008; Goetz et al., 2014), which could drive changes in pBC. Similar to previous studies

(Barnagaud et al., 2017), we found no strong e�ect of precipitation anomalies prior to a

BBS on GM or pBC (Appendix Figure A.5.11).

5.4.2 Lag e�ects of preceding land changes

Land changes can have immediate and delayed impacts on local biodiversity (Kuussaari

et al., 2009; Hylander and Ehrlén, 2013). Theory suggests that – single and cumulative –

preceding land changes are correlated with larger changes in local biodiversity (Sche�er

et al., 2001; Andersen et al., 2009; Watson et al., 2014; Ratajczak et al., 2018). We demon-

strated that considering preceding landscape-wide land changes helps explain local GM

and pBC change (Figure 5.3). Increasing explanatory power of individual preceding years

could be linked to an average “ecological memory” e�ect for birds, particularly for the

4th and 5th year prior and changes in pBC (Figure 5.3), and is similar to what has been

shown for plant species (Ogle et al., 2015). The impacts of cumulative preceding land

changes depended on their duration (Essl et al., 2015a) and frequency (Watson et al., 2014;

Ratajczak et al., 2018) and a recent study found that considering cumulative preceding

– relative to concurrent – di�erences in land-surface conditions explained more varia-

tion in local species assemblage composition (Jung et al., 2018). Similarly, we �nd that

a consideration of cumulative periods of preceding land changes assists in explaining

di�erences in local biodiversity (Figure 5.3). Preceding land changes may have a�ected

the resources available to birds thus directly in�uencing their �tness and persistence in

subsequent years (Holt, 2009; Harrison et al., 2011; Ogle et al., 2015).

Our understanding of “lagged” e�ects of land change on biodiversity change are still

in their infancy. The majority of previous studies investigated climatic in�uences on

richness and abundance change (Albright et al., 2011; Lindström et al., 2013; Valtonen

et al., 2013; Martay et al., 2017), but little is known about the in�uence of past land change.

Rittenhouse et al. (2012) investigated di�erences in the proportion of landscape-wide land

cover on bird diversity, but only used bi-annual, thematically non-consistent estimates of

land cover. Other studies investigated the link between preceding land change and local

biodiversity (Chapter 2-3 in this thesis, Jung et al., 2018), but only for spatial di�erences

in local biodiversity rather than biodiversity change per se, which might mask lasting
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impacts (França et al., 2016; De Palma et al., 2018). We show that a consideration of

preceding land change explains biodiversity change better than concurrent land change

(Figure 5.3), indicating a general biotic lag towards land change for bird diversity. Future

studies could bene�t from analysing impacts of preceding land change on both mean and

variance of biodiversity change (Leung et al., 2017; Christensen et al., 2018) as well as

considering varying sequences of remotely-sensed land change (Watson et al., 2014).

5.4.3 Variability in explanatory power in space and functional

traits

Quantifying local biodiversity change and identifying drivers of these changes is not

trivial (Dornelas et al., 2012; Cardinale et al., 2018). Drivers of local biodiversity change

are often unknown or cannot be reliably quanti�ed (Hallmann et al., 2017). In an attempt

to forecast local bird richness change, Harris et al. (2018) parametrized models with and

without (‘naïve’) including remotely-sensed photosynthetic activity and climatic data.

Surprisingly, they found naïve models to predict changes in bird richness better than those

models including such variables, which they attributed to a lack of abrupt biodiversity

changes. Opposed to bird richness, which has been found to be stable or increase in

the BBS data (Schipper et al., 2016), we found GM and pBC to decline (Appendix Figure

A.5.5), but it is unclear what is driving those changes.

Bird biodiversity can be constrained by “thresholds” of land-surface conditions – such

as vegetation availability – in the wider landscape (Andersen et al., 2009; Gutzwiller et al.,

2015). A global review of threshold responses towards landscape-wide land changes

suggests, that bird diversity is most a�ected if more than 27.9% of the landscape is

changing (Melo et al., 2018). With exception of a few BBS routes (Figure 5.4, Appendix

Figure A.5.6), the average proportion of land changes within landscapes was only 6%

(Appendix Figure A.5.6-A.5.7 & A.5.10), which could explain why flandscape variables in our

models explained on average little variation in bird diversity change and were important

in a few BBS routes only (Figure 5.4). However, it could also be that impacts of landscape-

wide land changes on bird diversity are poorly generalizable and depend on local context

and functional traits of bird species.

Changes in local bird diversity di�er by functional trait groups (Appendix Figure
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A.5.12, Jarzyna and Jetz, 2017; Barnagaud et al., 2017). Yet, the explanatory power of

landscape-wide land changes on bird diversity change did not vary by functional groups

of traits (Figure 5.5a). Many birds are migratory and as such are a�ected by human

persecution and climatic anomalies on their migration paths (Sanderson et al., 2006;

Tottrup et al., 2012). Although we did not �nd any di�erence in explanatory power

between migratory and non-migratory birds (Figure 5.5a), our analysis only considered

land changes in bird breeding grounds with the location of wintering grounds being

unknown. A distinction into habitat guilds also did not assist in identifying di�erences

in explanatory power (Figure 5.5a), which is surprising given the di�erence in trend

between for instance woodland and grassland birds (Appendix Figure A.5.12). It could

be that land changes speci�c to certain bird habitats, e. g. changes in vegetation height

(Goetz et al., 2014), are a better predictor of bird diversity change.

In this study we investigated the in�uence of landscape-wide, rather than local, land

changes on biodiversity change. Landscapes surrounding the BBS routes are constantly

changing (Appendix Figure A.5.6-A.5.7) and such changes are expected to in�uence local

biodiversity (Manning et al., 2009; Turner et al., 2016; Seppelt et al., 2016). However, the

processes in�uencing local biodiversity at the landscape scale are di�cult to quantify

(Chase, 2003), dependent on spatial scale (Miguet et al., 2016) and local context (elevation,

terrain, climatology). Regular natural disturbances – such as wild �res – can occur in

many U.S. ecoregions (Morgan et al., 2001), but there were only marginal di�erences in

the explanatory power of landscape-wide land changes among U.S. ecoregions (Figure

5.5b). Possibly bird diversity change is primarily driven by land changes not detectable in

annual remotely-sensed photosynthetic activity and requires di�erent remotely-sensed

information (Zhu and Woodcock, 2014; Goetz et al., 2014). Overall, for most BBS routes,

the drivers explaining local bird diversity change remain unknown (Figure 5.4-5.5) and

we suggest future studies to consider alternative attributes of remotely-sensed land

change at the landscape-scale (Watson et al., 2014) or other spatio-temporal variables not

quanti�able from optical remote sensing.

5.4.4 Conclusion

Overall our results indicate that landscape-wide land changes are correlated with (Figure

5.2) but did on average not explain bird diversity change across spatial scales (Figure 5.4),
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functional groups (Figure 5.5a) and ecoregions (Figure 5.5b). Preceding land changes

assisted in explaining changes in bird diversity (Figure 5.3), highlighting the importance

of biotic lag e�ects. We demonstrate that measures of biodiversity change are correlated

with remotely-sensed landscape-wide land changes and highlight the need to better

understand drivers of biodiversity change. Future studies investigating biodiversity

change should consider changes in other remotely-sensed variables or variables not

quanti�able through remote sensing (e. g. pesticide use, human persecution, etc.). We

furthermore suggest that more research is needed on scale-dependent e�ects (local vs

landscape changes) of biodiversity change.
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Chapter6

General discussion and synthesis

6.1 Summary of main �ndings

The overarching goal of this thesis was to investigate how local biodiversity is impacted

by land changes in the past and whether those impacts vary with key attributes of land

change (e. g. magnitude, frequency, time passed or sequence), across taxonomic groups,

and geographic regions. I found past di�erences in land-surface conditions to be more

important in explaining local species assemblage composition than current di�erences

(Chapter 2). After an abrupt land change and depending on attributes of land change,

local species richness and total abundance were reduced, and assemblage composition

altered (Chapter 3) but were often able to recover to levels comparable to unchanged

sites. Using the same biodiversity data, I found local biodiversity measures to decrease

following past land-cover change and that attributes of land-cover change in�uence local,

national and global biodiversity estimates di�erently (Chapter 4). Chapters 2-4 assessed

whether past land changes are correlated with spatial di�erences in local biodiversity at

one point in time, however the impacts on biodiversity change per se were not assessed.

The results in chapter 5 indicated that past and concurrent landscape-wide land changes

are correlated with but explain on average little variation in local bird diversity change.

Overall these results demonstrate the pervasive impacts land changes can have on local

biodiversity globally. In the following I discuss the implications of these results and

directions for future research.
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6.2 Applications and limitations of �ndings

In this thesis, I attempted to establish links between local biodiversity data (Projecting

Responses of Ecological Diversity In Changing Terrestrial Systems [PREDICTS] – Hud-

son et al. (2017); United States Breeding Bird Survey [BBS] – Pardieck et al. (2018)) and

estimates of land change quanti�ed from remotely-sensed satellite data globally (Figure

1.1). This allowed me to address three important knowledge gaps.

First, most previous broad-scale studies only considered super�cially – if at all –

land changes in the past (Alkemade et al., 2009; Murphy and Romanuk, 2014; Newbold

et al., 2015) and corresponding biotic lag e�ects on local biodiversity (Dullinger et al.,

2013; Hylander and Ehrlén, 2013). Throughout the thesis and regardless of how past

land changes were quanti�ed (Chapter 2-5), I discovered a consistent pattern that land

changes in the past on average in�uenced local biodiversity measures and altered species

assemblage composition, often more so than concurrent di�erences of land-surface

conditions (Chapter 2 & 5). This implies – not surprisingly given existing evidence of

lasting in�uences of past land change on biodiversity (Foster et al., 2003; Ewers et al.,

2013; Perring et al., 2016) – that previous broad-scales syntheses (Murphy and Romanuk,

2014; Newbold et al., 2015; Alroy, 2017) likely underestimated the impacts of land change

on local biodiversity.

The second main gap this thesis addressed is the explicit consideration of attributes of

land change. Land changes can be diverse and di�cult to quantify and compare (Kleyer

et al., 2007). Theoretical frameworks, such as the one developed by Watson et al. (2014),

distinguish land changes by a set of key attributes (e. g. magnitude, frequency, time

passed or sequence) with clear ecological relevance. Local biodiversity measures were

considerably reduced following land changes with large magnitude (Chapter 3 & 5), e. g.

clear cutting of forested land or urbanization, which can act as disturbance (Sche�er

et al., 2001; Sche�er and Carpenter, 2003) reducing ecosystem stability (Pimm, 1984;

Hautier et al., 2015) and local biodiversity in concurrent and future years. In addition,

the cumulative frequency of land changes (Chapter 2 & 5) can also in�uence biodiversity

change, which – together with magnitude impacts – can be applied to improve predictions

of biodiversity change (Ewers et al., 2009, 2013) and to establish linear and non-linear

thresholds after which biodiversity change tends to accelerate (van der Hoek et al., 2013;
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Gutzwiller et al., 2015). Moreover, the results indicate that local biodiversity measures

can – on average – recover to levels comparable of unchanged sites (Chapter 3 & 4),

which is an important �nding given that biodiversity recovery from past land changes is

of major biodiversity conservation concern globally, especially as more and more land is

secondary vegetation (Chazdon, 2003; Jones et al., 2018). Lastly, this thesis found that

impacts of past land-cover change di�ered depending on the sequence of land cover

(Chapter 4), extending our knowledge on these impacts relative to previous studies that

investigated only speci�c land-cover sequences or were based on very few estimates

(Foster et al., 2003; Bremer and Farley, 2010; Watson et al., 2014).

Third, the in�uence of past land change on local biodiversity was previously unknown

across geographic regions, taxonomic groups and biodiversity measures. I demonstrate

how remotely-sensed estimates of land change can be robustly linked to local biodiversity

data. Some attributes of land change, e. g. time passed (Martin et al., 2013; Fu et al.,

2017) and magnitude (Shackelford et al., 2017), have been investigated previously in

broad-scale syntheses. However, those studies lacked the taxonomic and geographic

breadth, had small sample sizes – 14 studies in the case of Shackelford et al. (2017) –

and were predominantly based on species richness only, which can be a misleading

measure of biodiversity (Su et al., 2004; Hillebrand et al., 2018). The results in this thesis

demonstrate that past land changes continue to in�uence local biodiversity globally

and across multiple taxonomic groups and measures of local biodiversity (Chapter 2-5).

Furthermore, by using satellite-based instead of study-derived estimates of land change,

the results presented in this thesis can easily be veri�ed, repeated or build on by future

studies.

6.2.1 Limitations of the presented results

This thesis relies exclusively on a remote-sensing based characterization of land change.

The de�nition of land change recognizes that land-use and/or land-cover cannot easily

be separated (Turner et al., 2007). For instance, the observed di�erences in land-surface

conditions in chapter 2 could be caused by changes in land use and/or land cover, with

the exact driver being unknown. Land change can be driven by natural – rather than

anthropogenic – factors and I did not attempt to identify the drivers of land change

(Curtis et al., 2018). However, it could be that land changes caused by natural factors –
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e. g. precipitation anomalies, �ooding, etc. – compared to anthropogenically caused land

changes – e. g. agricultural intensi�cation or urbanisation – have di�ering impacts on

local biodiversity.

Although remote sensing data has great potential as a predictor in biodiversity models

(Petrou et al., 2015; Lausch et al., 2016), there are temporal limits in data availability, par-

ticularly before the 1970s for satellite data and the 1910s for regional aerial photographs.

Since the temporal availability of satellite-based remote-sensing data limits the reference

baseline of this thesis, it is likely that some of the largest impacts on local biodiversity

globally, e. g. those anthropogenically-driven pressures responsible for reducing biodiver-

sity intactness globally (Newbold et al., 2016a), are likely being missed (Mihoub et al.,

2017), making our estimates conservative.

A lack of explanatory power – both exploratory and for prediction – increases un-

certainty. The results presented here consistently indicate that attributes of past land

change are correlated with spatial and temporal di�erences in local biodiversity (Chapter

2-5), however the amount of explained variance (R2) of past land changes is relatively

low (~1.4% in Chapter 2 or 5% to 12% in Chapter 5). This can be a limitation of the models

constructed particularly if they are used to predict local biodiversity responses in novel,

e. g. unsampled, geographic regions (Jung et al., 2017), where prediction uncertainty can

be quite large (Figure 4.4 in Chapter 4). However, the explained variance is similar to that

of other studies on the same dataset, typically lying between 2% and 11% for PREDICTS

data (Newbold et al., 2014; De Palma et al., 2015; Jung et al., 2017) or 2.5% to 5.4% (the

average R2) in ecological meta-analyses (Møller and Jennions, 2002). It is likely that this

is a general issue of broad-scale syntheses and future studies should consider investigat-

ing this further, for instance through independent validations and the development of

methodological improvements (see 6.4.1).

6.3 Broader implications

6.3.1 Impacts on ecosystem functioning

Why are impacts of past land change important to consider? A loss of local biodiversity

can lead to reduced ecosystem functions and services (Cardinale et al., 2012; Albrecht

et al., 2014; Oliver et al., 2015b), especially if functionally non-redundant species or large
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proportions of the original species assemblage are lost (Oliver et al., 2015a). The results

presented in this thesis indicate that local biodiversity measures were predominantly

reduced and/or altered after a past land change (Chapter 2-5) and it is likely that these

impacts a�ect ecosystem functioning and ultimately human wellbeing (Cardinale et al.,

2012). A previous study demonstrated that the biodiversity intactness index (BII) – an

index with direct links to ecosystem functioning – has been reduced across terrestrial

biomes because of di�erences in land use and/or land cover (Newbold et al., 2016a).

However, these global BII estimates do not incorporate lasting impacts of past land

changes and subsequent reductions in the BII may cause a “ecosystem service debt”

(Isbell et al., 2015). I found local biodiversity to be able to recover to levels comparable to

unchanged sites within a few years (Chapter 3-4), which implies that ecosystem functions

a�ected by land change might be able to recover relatively quickly.

6.3.2 Implications for conservation policy

Global biodiversity models are a useful tool for creating spatial and temporal projections

of biodiversity change (Pereira et al., 2010; Harfoot et al., 2014; Purvis et al., 2018).

Biodiversity projections can be used to predict plausible outcomes of policy interventions

and make recommendations how to mitigate the ongoing global biodiversity loss (Mace

et al., 2018). It has been argued that global projections of biodiversity change neglect

future land changes (Titeux et al., 2016), and in addition they also ignore lasting impacts

of past land changes. No regional or global assessment for the Intergovernmental Science-

Policy Platform on Biodiversity and Ecosystem Services (IPBES) currently considers

lasting in�uences of past land change on biodiversity. This thesis demonstrates that local

biodiversity is consistently in�uenced by past land change (Chapter 2-5) through biotic

lag e�ects and suggests that future, more accurate projections of biodiversity change

should incorporate lasting impacts of past land changes.

There are several key points that can serve as recommendations for future biodiversity

projections and policy outputs: The results presented show (i) how temporally explicit

land change estimates from remote sensing data can be robustly linked to local biodiversity

data on a global scale, thus providing an opportunity to incorporate these estimates into

existing modelling frameworks such as PREDICTS (Newbold et al., 2015, 2016a; Purvis

et al., 2018) or GLOBIO (Alkemade et al., 2009); (ii) that land changes in the past have
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lasting impacts on biodiversity globally and thus should be considered in biodiversity

projections. Policy-relevant indices – such as the biodiversity intactness index (Newbold

et al., 2016a; Purvis et al., 2018) – could be adapted so that lasting impacts of past land

changes are incorporated; (iii) The results presented show a number of approaches

for assessing land change that could be quanti�ed as spatial-temporal maps – i. e. the

dissimilarity in annual vegetation dynamics (Chapter 2) or the magnitude of abrupt land

changes (Chapter 3 & 5) – and potentially serve as remotely-sensed essential biodiversity

variables (RS-EBV), a group of biodiversity and policy relevant variables purely de�ned

from remote sensing (Skidmore et al., 2015; Lausch et al., 2016).

6.4 Recommendations for future research

6.4.1 Improving predictability of impacts of land change

Biodiversity models can be useful to quantify the global impacts of land change and create

predictive projections of future expected impacts (Purvis et al., 2018). The explained

variance of these models is not only an indicator for the strength of research �ndings, but

also important to consider for predictions, particularly so in novel environments (Yates

et al., 2018). Transferability is de�ned as the “capacity of a model to produce accurate

and precise predictions for a new set of predictors that di�er from those on which the

model was trained” (Yates et al., 2018). This is especially relevant if impacts of land

change on local biodiversity are projected globally across unsampled regions (Newbold

et al., 2015; Purvis et al., 2018), ignoring spatial and temporal biases in local biodiversity

databases (Martin et al., 2012; Hudson et al., 2014; Gonzalez et al., 2016). Future studies

should (i) investigate whether predicted impacts of land change are consistent in novel

environments (Yates et al., 2018). This can be achieved for instance by using independently

collected biodiversity data for comparison and validation (Jung et al., 2017), (ii) by seeking

ways to incorporate prediction uncertainty into biodiversity projections, similar to what

was done visually in chapter 4 of this thesis and (iii) investigate ways how hierarchical

models – particularly those used by PREDICTS (Purvis et al., 2018) – can be improved,

for instance by better accounting for di�erences in sampling methodology, e�ort and

spatial extent.



96 6.4 Recommendations for future research

6.4.2 Interactions between attributes of land change

The theoretical framework by Watson et al. (2014) distinguishes four attributes of land

change, however it does not consider interactions between those attributes. Given that

shifts in magnitude are common and vary in frequency for many agricultural landscapes

(Kleyer et al., 2007), it is likely that interacting attributes of land change impact local

biodiversity di�erently. Previous studies have hypothesized that impacts of land change of

large magnitude likely vary with time passed and a�ect biodiversity recovery (Shackelford

et al., 2017). Similarly, local biodiversity recovery with time passed might di�er depending

on the sequence in land-cover (Chazdon, 2003; Martin et al., 2013). The work presented in

this thesis used some of the most extensive, currently available local biodiversity datasets,

representing ~1% of all formally described species in the case of PREDICTS (Hudson et al.,

2017), and the longest timeseries, with over 34 years of continuous sampling, in the case

of the BBS (Pardieck et al., 2018, , Figure 1.1). Despite these taxonomically broad and

temporally long databases, data limitations made testing for interactive e�ects between

attributes of land change not feasible in the analyses. Future studies could (i) utilize

modelling approaches less dependent on minimal sample size, e. g. Bayesian hierarchical

models with informative priors (Iknayan et al., 2014) or (ii) collect additional biodiversity

(see 6.4.3) and remote sensing data (6.4.4). Depending on data availability, future studies

could attempt to combine the approaches presented in this thesis, i. e. to test for the

in�uence of shifts in magnitude across varying land-cover sequences and/or time passed,

which would further improve our understanding of the lasting impacts of land change.

6.4.3 Improving availability of biodiversity data

Quantifying the impacts of land change on local biodiversity remains a challenge. Most of

the work presented in this thesis (Chapter 2-4) inferred the impacts of past land change on

local biodiversity using matched spatial pairs of sites. While this approach is robust and

well established (Purvis et al., 2018), it misses biodiversity dynamics and can be misleading

if reference sites are not appropriate or a�ected by other unmeasured variables (França

et al., 2016; Jung et al., 2017; De Palma et al., 2018). Biodiversity time series, such as those

from long-term monitoring schemes such as the BBS (Pardieck et al., 2018) or global

databases (e. g. BioTime, Dornelas et al., 2018), can provide valuable alternatives to study
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the impacts of land change on local biodiversity. Observed impacts of land change on

local biodiversity over recent years might be conservative as the regional species pool in

many areas of the world was likely already depleted decades or centuries before local

biodiversity sampling and before satellite-based remote sensing data became available

(Newbold et al., 2016a; Mihoub et al., 2017). In addition, existing biodiversity time series

often underrepresent regions where contemporary drivers of biodiversity change are

most intense (Gonzalez et al., 2016; Cardinale et al., 2018). Overall there is a need to

improve both quality and quantity of biodiversity data suitable to test for the impacts of

land change.

To infer how land change impacts local biodiversity, speci�c sampling designs are

necessary (De Palma et al., 2018). The best way of assessing the impacts of land change

on biodiversity is a before-after-control-impact (BACI) study design (Cardinale et al.,

2018; De Palma et al., 2018). Data from multiple BACI studies could be used to quantify

the immediate di�erence in local biodiversity after land change (Ratajczak et al., 2018),

taking attributes of land change (Watson et al., 2014), site-speci�c local factors (Jung et al.,

2017) and variability among species assemblages (Dornelas et al., 2012; França et al., 2016)

into account. However, such BACI data are currently not readily available. A new phase

of the PREDICTS project (labelled PREDICTS-2) aims to systematically collect estimates

of local biodiversity before and after land change. Remote sensing data – either using

a land change detection algorithm (Chapter 3) or readily available land cover products

(Chapter 4) – can help to identify sites where land cover has or has not changed after

local biodiversity sampling (Figure 6.1). There is an opportunity to sample those sites

again – preferably using identical methods and observers – to obtain BACI estimates of

local biodiversity in response to land change (De Palma et al., 2018). Such data would

further improve our understanding of the impacts of land change on local biodiversity.

6.4.4 Improving availability of remotely-sensed estimates of

land change

The availability and accessibility of remote sensing data continues to improve. The move

of the global Landsat archive into the public domain in 2008 enabled unprecedented and

free access to satellite imagery (Wulder et al., 2016). Opposed to the early 1990s and

2000s, when mostly single satellite images were analysed in a time-consuming process,
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Figure 6.1: Remote sensing data can help identify areas suitable for resampling of local bio-
diversity. Combining sites from the PREDICTS project (Chapter 2-4) and time series of land
cover (ESA CCI, 2017), I assessed whether land cover has changed after biodiversity sampling
(a) PREDICTS sites (394 sites, 115 studies) with a land-cover change after biodiversity had been
sampled (average 5.57 ± 3.3 SD years) according to the ESA LC product (ESA CCI, 2017). Colours
and y-axis indicate the land cover at the time of biodiversity sampling. The x-axis shows the years
the site remained in a given land cover (mean estimate and standard deviation shown as dots and
error bars) before a land-cover change occurred. Numbers show the total number of sites. (b)
Example of a PREDICTS site which was forest-covered at the time of biodiversity sampling in
2003 but was converted to agriculture seven years later. (c) Flow diagram showing the land-cover
sequences observed for sites with a post-sampling land-cover change.

modern satellite-based remote sensing analyses increasingly utilize entire time series

of satellite imagery (Kennedy et al., 2014; Hermosilla et al., 2015). The development of

new land change detection (Coppin et al., 2004; Abercrombie and Friedl, 2016; Zhu, 2017)

and machine learning algorithms (Maxwell et al., 2018), and the rise of cloud processing

environments (Gorelick et al., 2017) have further supported the creation of temporally
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consistent remotely-sensed land cover products globally (ESA CCI, 2017; Hermosilla et al.,

2018; Sulla-Menashe et al., 2019). These developments have led some to declare that a

new area of land cover analysis has emerged, �ttingly called “Land cover 2.0” (Wulder

et al., 2018). It is highly likely that future investigations into the impacts of land change

on local biodiversity can rely on improved data and algorithm availability.

There are a number of promising avenues for future research linking biodiversity

and remotely-sensed land change data: More e�orts are needed to (i) create and utilize

remotely-sensed proxies of land-use change globally, piloted for instance for cropland

size (Fritz et al., 2015) and yield (Lobell et al., 2015), pasture grazing intensity (Ru�n

et al., 2015; Aguiar et al., 2017) or forest plantation rotations (le Maire et al., 2014); (ii)

clearly determine natural and anthropogenic drivers of land change, as has recently been

done for forests globally (Curtis et al., 2018), (iii) consider additional data to extend the

available time period – such as air borne historical photographs (Szabo and Hedl, 2011;

Cousins et al., 2015) or “legacy” satellite imagery predating the 1980s (e. g. Landsat 1-3,

Figure 1.1), which were not readily available at the time this thesis was conducted.

6.5 Concluding remarks

The impacts of land change on local biodiversity are complex and require looking beyond

current di�erences in land use and/or land cover. Frameworks such as the one developed

by Watson et al. (2014) are useful to incorporate attributes of land change into global

biodiversity models. The results presented here demonstrate that attributes of past land

change impact local biodiversity di�erently on a global scale and show how remote

sensing can be used to quantify spatio-temporal land change. Overall these results show

how new insights into local biodiversity patterns can be gained by combining existing

data sources.

We live in an age of unprecedented availability of data. This situation provides new

opportunities to detect and quantify links between remotely sensed land change and

biodiversity data. These opportunities could lead to improved and ultimately near real-

time predictions of biodiversity change following land change. However, while technology

and data-driven research may assist in providing further evidence and understanding of

environmental issues, the preservation of biodiversity is ultimately up to government
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interventions and societal actions. I hope that quantitative evidence – based on data

syntheses such as those presented in this thesis – will support decision making and that

the results of this thesis contribute towards biodiversity conservation.
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Figure A.2.1: Flow chart showing all pre-processing steps of the analysis for both remote sensing
and species assemblage data. Remote sensing data were derived from the MODIS Bidirectional
re�ectance distribution function (BRDF) MCD43A4 product (https://tinyurl.com/mcd43a4-v006)
and time series of the Enhanced Vegetation Index (EVI) were calculated for the analysis (see
methods 2.2). Species assemblage data originates from the Projecting Responses of Ecological
Diversity In Changing Terrestrial Systems project (PREDICTS, http://www.predicts.org.uk/). MLE
stands for the Maximum Linear Extent as de�ned by (Hudson et al., 2017).

https://tinyurl.com/mcd43a4-v006
http://www.predicts.org.uk/
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Figure A.2.2: Distribution of proportion of missing data (not interpolated) across all time series
used.

Figure A.2.3: Diagram of how the permutations of mutually independent pairwise comparisons
were generated. Black dots represent 9 theoretical sites of a study within MODIS grid cells of
which one site (S1 – S5) per grid cell was randomly selected. We then calculated two dissimilarity
matrices one matrix for the dissimilarity between species assemblages in that grid cell and all
other grid cells within the study, and the other matrix for the dissimilarity between time series
of the EVI of these grid cells. For the time series, the Bray-Curtis index was calculated between
the EVI values at each time step. For both species assemblages (symbols of varying number and
shape) and EVI time series, the obtained dissimilarity matrix was permuted and the sub-diagonal
taken for subsequent analysis.
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Figure A.2.4: The proportion of species that contributed to a study being classi�ed as either
predominantly inhabited by small, medium or large species. The dotted line is a visual aid to
assess simple majority (50%) indicating whether a study classi�cation is based on the majority of
species within an assemblage. The y-axis shows the number of studies with similar proportions
(note the di�erence in y-axis scale per taxonomic group).

Figure A.2.5: E�ect of di�erences in current BCEVI in the �rst year before biodiversity sampling
against their pairwise di�erences in species assemblages (BCBiodiversity). The number of studies
and contributing sites (N|NSites) is indicated for each taxonomic group.
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Figure A.2.6: Simulation of how the Bray-Curtis index (BCEVI) between two time series changes
with increasing time series length. Calculated on pairs of randomly generated time series for each
past period. Vertical dotted lines indicate periods of full past years of theoretical possible MODIS
measurements (46 each, increasing from 46 initially for current BCEVI). There is no overall bias
that the Bray-Curtis index increases with time series length (blue line shows a linear regression
�t; β < 0.0001, df = 229, p = 0.44).

Figure A.2.7: Di�erence in overall �t if studies with signi�cant residual correlation with spatial
distance (N=1) are removed. X-axis shows the current (0) and past periods (yr1-5), while the y-axis
shows the di�erence in e�ect relative to the e�ect of current BCEVI.
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Figure A.2.8: Investigation of potential broad-scale biases of the full model coe�cients (5-year
period). There is no bias in the permuted model e�ects with regards to (a) year of biodiversity
sampling, (b) spatial scale of sampling, (c) average sampling duration, or (d) average latitude of
study (grey shading indicates tropic belt).

Figure A.2.9: Overall in�uence of past periods of BCEVI on species assemblage composition as
in Figure 2.3, however shown for both Bray-Curtis index and as alternative the Sørensen index.
Axis labels as in Figure 2.3.
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Figure A.3.1: Average temporal distribution of Landsat data and an example times series of
Landsat data. (a) Distribution of available Enhanced Vegetation Index (EVI) data in years covered
by the Landsat missions. Points show the average monthly EVI data availability per year (0 to 12
months of data) across time series and PREDICTS sites grouped by 15° latitude bins. The size of
points indicates the mean data availability (0 to 100% with 100% having 12 months of available
data in a given year), while the colour shows the number of PREDICTS sites contributing to
the mean (as PREDICTS sites were sampled in varying years). (b) Example time series for one
PREDICTS site with a high proportion of missing data before 1999. In all analyses such time series
were truncated to the period from 1999 onwards (indicated by the dashed line).
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Figure A.3.2: Number of sites with abrupt land change per attribute. Number of sites (black
line) per attribute of abrupt land change with (a) the relative shift in magnitude, (b) the shift in
trend as di�erence in annual EVI trend, and (c) the time passed between abrupt land change and
biodiversity sampling. Background colours in (a) and (b) indicate the binning into six groups for
shifts in magnitude (> 50%, > 25% to ≤ 50%, and ≤ 25% EVI loss [−−− to −] or gain [+ + + to
+]), and in trend (0.01, 0.05, and > 0.05 annual negative [−−− to −] to positive [+ + + to +]
EVI trend di�erences). Gray lines in (c) delineate bins of time passed (≤ 5 years, > 5 and ≤ 10
years, and >10 years). Colours as in Figure 3.2.
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Table A.3.1: Number of PREDICTS sites and studies with an abrupt land change. Shown as either
a change in magnitude (columns) and/or change in trend (trend). Symbols as in Figure 3.2.

Shift in magnitude

- - - - - - 0 + + + + + + Total sites Studies

- - - 2 8 192 NA 73 26 22 323 57
- - 7 281 642 NA 497 158 53 1638 175
- 7 88 256 NA 231 154 53 789 184
0 NA NA NA 10102 NA NA NA 10102 358
+ 9 102 399 NA 410 205 49 1174 237
+ + 47 172 342 NA 465 254 86 1366 224S

h
i
f
t
i
n
t
r
e
n
d

+ + + 12 137 47 NA 34 12 31 273 56
Total sites 84 788 1878 10102 1710 809 294
Studies 34 135 246 358 263 171 83
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FigureA.3.3: Correlations between attributes of abrupt land change. Showing shifts in magnitude,
trend and time passed (see Methods). The lower facets show a point density plot, the upper facets
the Pearson correlation coe�cient between pairs of attributes and the diagonal a density plot.
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Figure A.3.4: Distribution of time passed between abrupt land changes and start of biodiversity
sampling. Shown for (a) shifts in magnitude, and (b) shift in trend bins. Colours as in Figure 3.2.
Black dots and error bars show the mean ± one standard deviation. Number of sampled sites per
bin are shown above each bin.
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Figure A.3.5: Mean similarity in species assemblage composition (Sørensen similarity index)
between pairs of sites with a shift in trend. Calculated as average similarity within the same
study and land-use category without (0) and with an abrupt land change with varying shifts
in EVI trend (a). Colours indicate whether similarity of species assemblages was on average
greater (purple) or smaller (brown) relative to unchanged sites. Symbols indicate positive (+ + +,
++, +) or negative (−−−, −−, −) shifts in trend of annual EVI (see Methods). Numbers in (a)
indicate the total number of studies for which pairwise comparisons between sites could be made.
(b) Dendrograms show hierarchical clustering of all pairwise similarities based on the average
Manhattan distance between pairs of sites; sites with more similar assemblage composition are in
branches of closer proximity.
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Figure A.4.1: Schematic on how spatial projections of a di�erence in biodiversity can be informed
by models of past land-cover sequences. (a) First a “baseline” spatial projection is created based
on the di�erence in local biodiversity measures between forest and agricultural sites (-20% in
local biodiversity). Knowing that past land cover in the bottom-right cell was forest covered, this
baseline spatial projection is then (b) updated based on the speci�c coe�cient (-5%) from the
models (Figure 4.3) for each land-cover sequence.
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Figure A.4.2: Total number of sites (log10 transformed) without (0) and with (1) a past land-cover
change. Colours indicate the land-cover category at the time of biodiversity sampling.
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Figure A.4.3: (a) Globally projected di�erence in species richness (%) – weighted by vertebrate
richness, see methods – relative to local species richness in forests with zero human population
density. (b) The predicted (unweighted) uncertainty in local species richness shown as mean
absolute error (MAE).
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Figure A.4.4: (a) Di�erence in the e�ect size (linear slope) of human population density on
species richness (SR), total abundance (LA) and assemblage evenness (PIE). All e�ects shown
relative to the e�ect of forest cover on local biodiversity, with values greater than 0 indicating
a linear increase of the response. Error bars show the estimated standard error. (b) Number of
PREDICTS sites per land-cover category and human population density (log10-transformed) from
the global human settlement product (Pesaresi et al., 2016).
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Figure A.4.5: Shows the proportion of land (in %) with a past land-cover change in the period
2000 to 2015 relative to the total land area. Size of the points is scaled with land area (small to
large). Colours indicate whether a country (data from data.un.org) is considered to have high
(black), middle (orange) or low (blue) income.

Figure A.4.6: As in Figure 4.5 but for total abundance (LA).

data.un.org
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Figure A.4.7: As in Figure 4.5 but for species assemblage evenness (PIE).
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Figure A.5.1: Annual Landsat composite for a single year (2018) and route (RTENO: 89020,
Routename: Wapato in the State of Washington) showing the month with the greenest EVI
value in the period 20th March to 20th June.
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Figure A.5.2: (a) Average proportion of missing Landsat data across years for all routes with the
median (1.06%) indicated (dotted line). (b) Map showing each BBS Route coloured by the average
proportion (%) of missing data across years.
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Figure A.5.3: Model diagnostics of the full model (see 5.2.5) for the geometric mean of relative
abundances (GM).
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Figure A.5.4: Model diagnostics of the full model (see 5.2.5) for the progressive Bray-Curtis index
(pBC).

Figure A.5.5: Average trend in the (a) GM and (b) the pBC over the considered monitoring period
(1984-2017) and across all 2745 BBS routes. Error margins show ± 1 standard error.
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Figure A.5.6: The centroids of all BBS routes (see methods) coloured by the total proportion of
the landscape that had at least one land change event in the period 1984 to 2017.

Figure A.5.7: Robust annual linear trends in the proportion of land with an abrupt shift in
magnitude (loss + gain) across all landscapes surrounding BBS routes. The most extreme estimate
(99% lower and upper limits) were excluded from this visualization (N = 56).
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Figure A.5.8: Average trend of land changes with abrupt shift in (a) magnitude or (b) shift in
trend as predicted by a GAM that includes a non-linear term for year only. Error bands show the
�tted standard error.
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Figure A.5.9: Pairwise correlation plot plot between the proportion of land changes with abrupt
shifts in magnitude (gains and losses in photosynthetic activity) and trend (greening and browning).
Text in upper triangle shows the Pearson correlation coe�cients.
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Figure A.5.10: Average proportion of landscape-wide land changes – shifts in magnitude, e. g.
abrupt losses and gains, and shift in trends, e. g. greening and browning – across 10 US ecoregions.
Error bars show the calculated standard deviation. Colours as in Appendix �gure A.5.8.
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Figure A.5.11: Estimated partial e�ect of flocal variables (see methods 5.2) on (a) GM and (b)
pBC. The Y-axis shows the annual change in GM or pBC for each unit of the flocal variables.
Photosynthetic activity is measured as average EVI across the entire landscape and time period
(1984-2017). SPEI stands for the Standardised Precipitation-Evapotranspiration Index (Vicente-
Serrano et al., 2010). Flat lines without uncertainty indicate that the term was penalized out
during the model �tting and therefore had no additive e�ect on the biodiversity measure. Error
margins show the estimated standard error of the partial e�ects.
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Figure A.5.12: Change in GM for bird species binned by functional groups of traits. Coloured
for better visual distinction only. Error ribbons show the predicted standard error.
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