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Abstract  

Bacillus thuringiensis produces a range of toxins that include both the insecticidal Cry 

toxins, non-insecticidal, non-haemolytic, and Parasporins. The latter exhibits cytocidal 

activity to some cancer cell lines. Parasporins 3 or Cry41Aa is cytocidal to human hepatic 

HepG2 cell lines. It contains the five conserved sequence blocks found in many 

insecticidal 3-domain Cry toxins and is also believed to possess the same 3-domain 

structure. In addition, it has an extra loop in its domain II as well as an additional ricin 

domain at its C-terminus. studies on insecticidal Cry toxins have implicated domain II 

loops in the specificity of a toxin to target a particular cell. In this study the specificity of 

Cry41Aa towards HepG2 cell lines was investigated. Bioinformatic tools were used to 

predict domain II loops of Cry41Aa. A number of mutants were created to investigate its 

specificity. Loop exchange mutants between loop 3 Cry41Aa and Cry loop 3 of 

insecticidal were created but did not result in a proteolytically stable protein. Domain II 

hybrids of Cry41Aa and insecticidal Cry toxins were created but these did not result in a 

proteolytic stable protein. Finally, residue substitutions with alanine in loop 1,3, and the 

extra loop resulted in stable activated toxins. loop 1 mutants retained toxicity. The extra 

loop mutant lost toxicity towards HepG2 cell lines. A number of Loop 3 mutants were 

made. Recombinant, Y514A and W511F retained toxicity towards HepG2 cells. 

Recombinant W511A and several recombinants at position 509 including F509A did not 

exert toxicity as confirmed by cell viability assays. Despite the lack of toxicity, membrane 

damage assays and western blots on HepG2 incubated with F509A revealed the likely 

presence of pores and phosphorylation of p38. Cell electrophysiology tools were applied 

to investigate the effect that nontoxic recombinant F509A on artificial and cell 
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membrane. Cry41Aa induced the formation of stable pores, cell membrane damage and 

subsequent cell death. F509A induced the formation of unstable pores and did not 

compromise the integrity of cell membrane. The study Findings indicated that Cry41Aa 

is likely to have a similar mode of action as insecticidal Cry toxins. 
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1.0 Introduction 

Cancer is a global disease that can strike anyone despite the age, race or gender. Current 

treatment includes the use of chemotherapy, radiation, and surgery, but each is limited 

in its ability to completely eradicate cancer of the body. Chemotherapy produces an 

initially good response; however persistent cycles and the non-specificity of drugs used 

result in chemo-resistance and peripheral toxicity. The application of radiotherapy to 

treat cancer has been limited by the unpredictable deleterious effect that it has on 

normal cells. The surgical removal of tumour cells can not completely remove metastatic 

cells which usually cause a relapse of the disease (Mathew and Verma, 2009). It becomes 

increasingly clear that in order to successfully treat cancer a specific targeted treatment 

with permanent effects and minimal damage to healthy cells is required.  

The term ‘magic bullet’ was first coined by Paul Ehrlich to describe toxic compounds that 

bind to cell receptors. He theorised that toxic compounds or drugs can interact with 

intended cell structures targeting and attacking pathogens but remaining harmless to 

healthy tissue.   Ehrlich’s research on treatment of infectious diseases with drugs derived 

from the German dye industry indicated that targeting receptors of pathogens absent 

in the host cells resulted severe effect in patients (Strebhardt and  

Ullrich, 2008).  Current cancer treatments include targeting of tumour associated 

antigens and carbohydrate antigens expressed by cancer cells by toxins derived from 

plants and bacteria. Commonly used bacterial toxins include Pseudomonas exotoxins, 

anthrax, and diphtheria toxin. These are incorporated to a selective ligand which results 

in chimeric immunotoxin proteins to target cancer cells. Immunotoxin proteins are not 

yet the ‘magic bullet’ as they have been found to target healthy cells that express target 
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receptors even at low levels making them nonspecific. They also induce an immune 

response in human and there is the need for immunosuppressant agents to reduce this 

response (Mathew and Verma, 2009).  

 

 Ohba et al. (2009) introduced Bt cancer killing parasporins as candidates in the race to 

finding the ‘magic bullet’ and the cure for cancer (Ohba et al., 2009). Parasporins were 

first highlighted by Mizuki and colleagues (Mizuki et al., 1999; Mizuki et al., 2000; Ohba 

et al., 2009; Kitada et al., 2005). Bt  is part of the Bacillaceae family  (Pigott and Ellar, 

2007). They are pathogenic bacteria known to produce toxin molecules that target 

specific host organisms.  

 

Mizuki et al. (1999) claimed that parasporal inclusions of parasporins are different to 

other Bt toxins in the way that these Bt toxins are non hemolytic, non-insecticidal and 

exhibit cytocidal activity on some cancer cells lines (Mizuki et al.,1999). There are 

presently six different parasporin groups, namely PS1, PS2, PS3, PS4, PS5, PS6 (Kitada et 

al., 2005;  Yamashita et al, 2009;  Mizuki et al., 1999;  Mizuki et al., 2000). 

 

 This study uses molecular biology techniques to clone, express, characterise and study 

the parasporin 3 (PS3) or Cry41Aa/Cry41Ab a Bt toxin found in Bt crystal inclusions which 

were reported to have cytocidal activity on some cancer cell lines (Yamashita et al., 

2005). In doing so this study investigated Yamashita et al. (2005) claim that Cry41Aa has 
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cytocidal activity on cancer cells with the aim to understand and locate regions 

responsible for Cry41Aa specificity towards certain cancer lines.   

 

1.1 The Bt Bacterium  

Bt is found almost everywhere and is capable of surviving in a number of different 

environments and habitats such as soil, dust of storage containers, and leaves. It has 55 

different flagellar serotypes and eight non flagellar biotypes (Schnepf et al., 1998). It is 

a gram-positive bacterium that belong to the Bacillus cereus group which includes 

Bacillus. cereus, Bacillus. anthracis, Bacillus. mycoides, Bacillus. pseudomycoides, and 

Bacillus. weihenstephanensi. (de Maagd et al., 2005;  Xu et al., 2014).  Bt is a spore 

forming entomopathogenic bacteria that produces toxic parasporal inclusions. It stands 

out from the other Bacillus species by its ability to produce these parasporal inclusions 

or crystals during sporulation (Xu et al., 2014;  Bravo et al., 2011). However, during the 

vegetative growth phase, some Bt strains excrete soluble non-crystal vegetative 

insecticidal proteins (Vip). Vip Bt producing group are relatively small compared to Bt 

that from parasporal inclusion (Bravo et al., 2007).  

 

The crystalline inclusion of Bt contains protein protoxins that are either Cry (for crystal) 

and also known as δ -endotoxin or Cyt (for cytotoxic) proteins (Nagamatsu et al., 2010; 

de Maagd et al., 2003; Crickmore et al., 1998). The term ‘Cry toxin’ is defined as a Bt 

derived toxin that can induce a toxic effect on a target organism. Any other protein(s) 

with noticeable sequence similarity is also termed a Cry toxin. The type and number of 
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the different protoxins in a given inclusion defines the toxicity profile of a Bt strain 

(Pigott and Ellar, 2007).  

 

The diversity of Bt toxins within a strain is possible due to the fact that most of the genes 

encoding them are found on plasmids as part of structures that include transposable 

elements. Plasmids hold about 10-20% of the genetic makeup of Bt genomes, where 

many toxic genes are expressed as part of an operon (Baum and Malvar, 2005). Bt carries 

out a number of different molecular mechanisms that allows expression of toxin during 

its stationary phase of growth (Schnepf et al., 1998, de Maagd et al., 2003). Schnepf et 

al. (1998) describe the toxin as folds of domains that have been recombined to give a 

novel toxin. The toxins exhibit similar mode of action as mammalian toxins giving weight 

to the theory that all Bt toxins originated from a common evolutionary ancestor. 

 

 The toxins are found within parasporal crystalline inclusions. There are no definitive 

answers as to why Bt would invest energy producing these inclusions, but there are a 

number of possible reasons. It is thought that in a nutrient limited environment, Bt 

ensures access to future nutrients by undergoing sporulation and producing crystal 

inclusion that would kill the host insect, providing plenty of nutrients.  it is thought that 

the size and insolubility of parasporal inclusions in neutral pH stops them being leached 

away from the soil (de Maagd et al., 2003) 
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There are four Vip families that are toxins secreted into the medium during the 

vegetative stage of a Bt life cycle (Crickmore et al., 2018). These were discovered when 

Bt and B. cereus cultures were screened and found to produce protein toxins that were 

not crystals.  Warren et al. (1998) describe Vip 1 and 2 as binary proteins (A+B types) 

that have toxicity towards coleopteran insects (Warren et al., 1998; de Maagd et al., 

2003). They both possess the N-terminal signal sequence for secretion and are needed 

together to be active against some coleopteran larvae inducing a binary effect. A 

possible mode of action is thought to involve Vip2 as the cytotoxic A domain and Vip 1 

as the receptor binding B domain.  Vip3 is known to target the insect order of  some 

lepidopterans whilst the targets of Vip 4 are still elusive (de Maagd et al., 2003). Vips are 

thought to cause cell death through different modes of action. Vip 1 is moved to the cell 

cytoplasm via Vip 2, there it enables ADP-ribosylation of actin. Vip 3 has been observed 

to cause pores in the planar lipid bilayers of target cells (de Maagd et al., 2003).  

 

1.2 Bt toxins  

The group encompasses the 3-domain Cry toxins, the binary toxins of Bacillus. 

sphaericus, and the ETX/MTX toxins. These share a certain degree of homology 

suggesting that they have a common evolutionary origin (de Maagd et al., 2003). The 

largest category in the group is the 3-domain toxins (Crickmore et al., 2018). Amino acid 

sequence homology has identified more than 300 Bt toxins holotypes which have been 

organised into 73 cry and 3 cyt families (Xu et al., 2014). cyt toxins share little sequence 

homology with cry toxins. The term ‘Cyt toxin’ is defined as ‘Bt derived toxin(s) that 
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exhibits hemolytic activity and other any protein(s) with obvious sequence similarity are 

termed as such (Schnepf et al., 1998).  

 

A nomenclature that classified Cry crystals based on their amino acid sequence 

homology and Bt host range was first proposed by Höfte and Whitely in 1989 (Höfte and 

Whiteley, 1989). It was later revised by Crickmore et al. (1998). The Bacillus thuringiensis 

Toxin Nomenclature Committee classifies Bt toxins on a four-rank system. Toxins are 

given a primary rank such as cry1, cry2, then a secondary rank such as cry1A, cry2A, then 

a tertiary rank such as cry1Aa, cry1Ab and quaternary rank such as cry1Aa1 or cry1Aa2. 

The classification indicates that identified Bt toxins sequences respectively share less 

than 45%, 78%, 95% and ≤100% pairwise identity (Crickmore et al., 1998; Crickmore et 

al., 2018).   

 

Cry toxins have shown toxicity to specific insect orders that include Lepidoptera 

(butterflies and moths), Diptera (flies and mosquitoes) and Coleoptera (beetles and 

weevils); with recent additions of insect orders that include  Hymenoptera, Orthoptera, 

Hemiptera, Isoptera, Mallophaga, Thisanoptera, as well as nematodes and mites (Xu et 

al., 2014; Nagamatsu et al., 2010; Pigott and Ellar, 2007). Cyt proteins are cytotoxic to 

vertebrate and invertebrate cells, as well as being haemolytic in vitro whilst exhibiting 

some insecticidal activity in vivo (Mizuki et al., 1999). Figure 1 lists Bt toxins according 

to their primary rank (Adang et al., 2014). 
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Figure 1 List of Bt Cry toxins based on their primary rank.  
The largest Cry toxins is the 3-domain family shown in blue. The Bin family shown in pink and the ETX/MTX2 family 
are shown in orange. Other colours indicate unrelated Cry toxins that have not been classified into current family 
groups. Parasporins are in red font. Taken from Adang et al. (2014). 
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The Cyt toxins are made by mosquitiocidal Bacillus. sphaericus strain and organised into 

four families (Crickmore et al., 2018;  de Maagd et al., 2003). In vitro studies have shown 

Cyt toxins to be cytotoxic to a number of different vertebrate cell lines that include 

erythrocytes (Bravo et al., 2007;  Soberón et al., 2013). In vivo studies showed that Cyt 

toxins are mostly toxic to dipteran insects whilst some exhibit toxicity to coleopteran 

species (Soberón et al., 2013).  Cyt toxins have a single domain made up of three-layer 

alpha-beta proteins with a distinctive fold. Studies have indicated that Cyt toxins play a 

role in the toxicity of Bt Cry toxins by exerting a synergistic effect to overcome Cry 

mosquitocidal resistance (Bravo et al., 2007; Crickmore et al., 1995; Soberón et al., 2013) 

 Cyt toxins are activated in the susceptible insect gut and result in a 25  KDa protease 

resistant core. Contrary to Cry toxins which are thought to interact or bind to midgut 

epithelium cell, Cyt are thought to act on the saturated membrane lipids. Two models 

have been proposed to explain their mode of action. A pore formation model where Cyt 

toxins bind to cell membranes and initiate the formation of cation-selective channels in 

membrane vesicles that subsequently results in colloid-osmotic lysis of the cell. In the 

detergent effect model, Cyt toxins are thought to aggregate non-specifically on the 

surface of the lipid bilayer that results in the disarrangement of cell membrane and 

eventual cell death. Structure of Cyt toxins has shown that they exhibit similar topology 

with a single domain made up of two outer layers of helix hairpins that coil around α-

sheets (Soberón et al., 2013).  

 

With the exception of parasporins, Cry proteins are not known to be harmful to 

vertebrate or  plants cells (Nagamatsu et al., 2010). For many decades, commercialised 
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pesticide Bt spore sprays have been used safely to control agricultural pests (de Maagd 

et al., 2003). Other species such as israelensis exhibit mosquitocidal activity and are used 

to control disease vectors such as mosquitoes and blackflies. In addition, research on 

Cry expressing transgenic plants has led to their commercialised use (de Maagd et al., 

2003). 

 

The other remaining subgroups within the Bt toxin group include the binary and MTX 

group which are mentioned briefly. The binary (Bin) toxins are found in crystals that 

contain two separate proteins known as Bin A and Bin B which are homologous to each 

other and both are required for the recombinant production of toxins in E. coli. They are 

similar to Cry toxins in that they require solubilisation and activation by protease in the 

insect midgut.  Binary toxins are toxic to western corn rootworm.  Cry34 and Cry35 are 

both required in order to cause a toxic effect on target cells and it’s requirement for two 

components, that has referred these toxins as binary insecticidal crystal proteins (de 

Maagd et al., 2003). Their molecular structure and mode of action is still unclear, but 

they are thought to cause pores in the target insect gut (Adang et al., 2014).  

 

The MTX Cry family are found in Bacillus. sphaericus strains and are toxic to some 

mosquito species, those made by Bt, demonstrate toxicity to some lepidopterna and 

coleoptern species (de Maagd et al., 2003) . There are 11 members of the MTX Cry family 

and they share homology to the cyt toxin of Pseudomonas aeruginosa, the epsilon toxin 

of Clostridium perfringens, alpha-toxin of Clostridium septicum and aerolysin of 

Aeromonas hydrophila (de Maagd et al., 2003).    
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The Mtx toxin group are also pore forming toxins and includes two toxins: Mtx2 and 

Mtx3. Both are related to each other and are distantly related to other Bt crystal 

proteins. Of the two, Mtx 2 demonstrates more amino acid diversity allowing it to 

change its toxicity between different mosquitos’ species (de Maagd et al, 2003) Figure 

2 summaries the protein toxins produced by Bt and illustrates their classification 

according to sequence homology between them. Figure 3 shows the insect orders 

susceptible to Bt δ endotoxins (Palma et al., 2014).   
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Figure 2 Classification of parasporin toxins produced by Bt 

Figure summarises the parasporin toxins produced by Bt. These are classified according to sequence homology to other protein toxins produced by Bt. The Cry proteins are comprised of 
phylogenetically different families: insecticidal 3-domain, other 3-domain Cry toxins, Bin, and ETX/MTX2.
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Figure 3 Diversity of hosts and Bt toxins organised based on target specificity  
Figure illustrates both Cry and Cyt Bt δ endotoxins and type of insect orders that they kill. The toxins are grouped 
according to target specificity. Taken from Palma et al. 2014.  
 
 
 

1.2.1 3-domain Cry toxins  

Cry toxins belonging to the three-domain Cry toxin family, demonstrate differences in their 

amino acid sequences but they all share a conserved three-domain structure. The 3-domain 

toxins are described as pore forming toxins that can kill insect orders Lepidoptera, 

Diptera, Coleoptera, Hymenopters, and some nematodes. The protoxins have a usual 

length of ˜ 130  KDa or the smaller size of  ˜ 70  KDa (de Maagd et al., 2003). These 

smaller  3-domain protoxins do not have an extended C-terminal region(Schnepf et al., 

1998).  

 

There are four theories that hypothesise Cry mode of action, these will be discussed in 

section 2.4. It is generally accepted that 3-domain toxins are proteolytically activated by 
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proteases in the midgut of insects; the crystalline protoxin is solubilised in alkaline 

conditions allowing cleavage of the N- and C-terminal by gut proteases that results in an 

active protease resistant core of ˜60 KDa. The active toxin binds to the brush-border 

membrane of the insect gut epithelium. It can do so by the affinity it has for receptors 

present on the membrane of target cells, which also defines the specificity that Cry 

toxins exhibit to insect orders. Once bound, part of the toxin forms ion channels and 

aggregates in such a way that causes formation of larger pores within the membrane.  

Osmotic imbalance causes the cells to swell and subsequently lysis. Within min the 

insect stops feeding and eventually dies (Baum and Malvar, 2005, Nagamatsu et al., 

2010;  Katayama et al., 2005;  Mizuki et al.,  1999;  Ohba et al., 2009; Schnepf et al., 

1998). 

 

The 3-domain Cry toxins are composed of three distinctive domains, domain I, II, and III. 

Each of the three domains is thought to play a role in the mode of action of Cry toxins. 

Multiple-sequence alignments of different Cry toxins have highlighted the existence of 

five conserved blocks located in the active toxic core of the protoxins which 

encompasses the three domains. These blocks are typically found in the active toxin post 

activation by midgut proteases (Höfte and Whiteley, 1989) and are thought to play an 

important role in toxin stability and function and are located in the N-terminal of the 

larger protoxins ˜130   KDa (Pigott and Ellar, 2007).  In addition to the five conserved 

blocks, there are three more conserved block sequences away from the active core and 

towards the C-terminal end of the protoxin (Schnepf et al., 1998). The C-terminal of the 

protoxin is thought to be involved in crystal formation and contains conserved blocks 

6,7, and 8 as shown in figure 5 page 29. 
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Domain I contains conserved block 1 and is thought to take part in pore formation and 

exhibits similarities to other pore forming toxins. Li et al. (1991) first described domain 

I of Cry3Aa as an α-bundle, where amphipathic helices (bigger than 30 Å) surround a 

central helix (Li et al., 1991). The helices are well charged with polar, and hydrophobic 

residues that seem to aim towards the central helix. The polar residues are present in 

interhelical spaces as hydrogen bonds or as part of salt bridges. These characteristics 

and the resemblance to the pore forming domain of colicin (an antibiotic released by 

bacteria to kill other bacteria of the same species) has proposed domain I as a key factor 

of pore formation in Cry toxins (Pigott and Ellar, 2007).  

 

Domain II is thought to interact with insect gut receptors and demonstrates similar 

properties to carbohydrate binding proteins. Three antiparallel β sheets are bundled to 

form a β-prism.  The conserved block 2 is partly found in domain I and in the first β sheet 

of domain II.  Two of the β sheets are made of four strands in a Greek key motif. The 

third is located against domain I and arranged in a similar Greek key motif with shorter 

stands.  

 

Of the three domains, domain II exhibits the biggest structural diversity particularly the 

apex loops which differ in length, structure, and sequence. Exposed loops 1,2,3, and α8 

have been identified as regions that affect the specificity of Cry toxins and modifications 

here have been known to alter the toxin’s ability to interact and kill target insects (Bravo 

et al., 2013). In addition to this, the length of β strands also vary from one Cry toxins to 

another. It is this diversity that is thought to determine toxin specificity. There appears 
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to be a structural similarity between domain II and other β prism proteins such as plant 

lectins, vitelline, Maclura pomifera agglutinin etc, which are known to have binding 

properties. Likenesses to complementary determining region of  immunoglobulins, 

studies have also supported the theory that domain II loops are involved in receptor 

recognition  (Pigott and Ellar, 2007). 

 

Domain III is thought to be involved in receptor binding and pore formation and is similar 

to carbohydrate binding protein domains. Ithas  a β-sandwich structure that contains 

conserved blocks 3, 4, and 5 in one of its three buried stands (de Maagd et al., 2003; 

Schnepf et al., 1998; Nagamatsu et al., 2010). Two long loops appear to reach out and 

interact with domain I.  Domain III demonstrates less diversity compared to the other 

two domains (Pigott and Ellar, 2007).  It is thought that domains II and III are involved in 

receptor binding and specificity (Lee et al., 1996; Pigott and Ellar, 2007).   

 

X-ray crystallography has helped to reveal the crystal structure of  the following Cry 

toxins Cry1Aa, Cry1Ac, Cry2Aa, Cry3Aa, Cry3Bb, Cry4Aa, Cry4Ba, Cry5Ba, and Cry8Ea (Li 

et al., 1991; Grochulski et al., 1995; Morse et al., 2001;  Galitsky et al., 2001;  Boonserm 

et al., 2006;  Guo et al., 2009;  Hui et al., 2012; Boonserm et al., 2005). The toxins share 

the 3-domain structure but differ in amino acid sequence and insect specificity. Figure 4 

illustrates examples of the 3-domain structure of Cry toxins (Pigott and Ellar, 2007). 

Figure 5 illustrates the five sequence blocks typical of 3-domain toxins which were first 

described by Höfte and Whiteley (1989), as well as the remaining three sequence blocks 

later added by Schnepf et al. (1998). Upon treatment with protease, conserved blocks 
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6-8 are usually lost leaving a protease resistant core with the five conserved blocks  

(Schnepf et al., 1998; Höfte and Whiteley, 1989; Palma et al., 2014).   

 

 

  

 

 

 

 

 

 

 

 

Figure 4 Crystal structure of 3-domain Cry toxins. 
Figure shows the crystal structure of 3-domian toxins: Cry1Aa, Cry2Aa, Cry3Aa and Cry4Ba. Domain I is shown in red, 
domain II is shown in green, and domain III is shown in blue. Taken from Pigott and Ellar et al. 2007.  
 
 
 



29 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 conserved sequence block of 3-domain toxins. 
Figure illustrates the 5 conserved sequence blocks of 3-domain toxins of Cry1A in green and the later 3 sequence 
blocks in red. Upon treatment with trypsin enzyme blocks 6 to 8 are degraded leaving a protease resistant core of ˜60 
KDa. Adapted and taken from Palma et al. (2014)  

 

 

 

The number of different insecticidal proteins produced by Bt indicates  that their  genes are 

affected by  selective evolutionary pressures that lead to the development of a wide range 

of Bt targets (Pigott and Ellar, 2007). Bioinformatic investigations have revealed that each 

one of the 3-domains may be evolved at a different rate and therefore affect target 

specificity (Bravo, 1997). 
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1.2.2 Parasporins  

The number of Bt strains with no known insecticidal activity far outnumbers insecticidal 

Bt strains (Yasutake et al., 2005; Uemori et al., 2005; Mizuki et al., 1999; Ohba et al., 

2009; Schnepf et al., 1998; Nagamatsu et al., 2010; Kitada et al., 2005). This finding 

prompted a review of Bt toxin action against a range of invertebrate and vertebrate cell 

lines. For the first time,  Mizuki et al. (1999) reported a non-insecticidal parasporal 

inclusion,  isolated from a Bt strain,  that is cytocidal to human cancer cells (Mizuki et 

al., 1999; Ohba et al., 2009). Research has since discovered a number of different Bt 

proteins with a range of cytotoxicity against mammalian cell lines (Ohba et al., 2009).  

 

This has led to a new category of Bt toxins known as the parasporins which are 

genealogically heterogeneous to Cry proteins. The Committee of Parasporins 

Classification and Nomenclature was formed and classified parasporins into six families: 

PS1, PS2, PS3, PS4, PS5, and PS6 (Ohba et al., 2009; Chikawa et al., 2008; Okumura et 

al., 2010). Similar to the ranking of Cry toxins, parasporins were ranked according to 

their primary amino acid sequence and given a four rank name according to the level of 

sequence identity to known toxins as summarised in table 2 (Crickmore et al., 1998).  

 

They were purified from independent Bt strains and isolated from soil in Japan taken 

from Hiroshima, Fukuoka, and Tokyo (Kitada et al., 2005) as well India (Poornima et al., 

2010), the Caribbean islands (Gonzalez et al., 2011), and Malaysia (Nadarajah et al., 

2006). Parasporins differ from Cry and Cyt proteins, as they do not exhibit any 

insecticidal activity. Despite being non-haemolytic, they are  cytotoxic to some 
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mammalian cell lines (Yasutake et al., 2005; Katayama et al., 2005; Ohba et al., 2009; 

Kitada et al., 2005).  

 

Parasporins share low but significant sequence similarity with other Cry toxins (Ohba et 

al., 2009). They resemble Cry proteins in that they all require proteolytic processing. The 

activated form of Cry proteins have about 600 amino acids and some have the 3-domain 

structure (Nagamatsu et al., 2010). 

 

 Research has indicated that parasporins differ in their cytotoxicity mechanism and type 

of target cells. Katayama et al. (2005) argue that parasporins differ in their mode of 

action to Cry proteins. They propose that PS1 is not a membrane binding protein. 

Membrane binding protein usually cause irreversible permeability of ions in the 

membrane that lead to depolarization and change in membrane potential which 

subsequently results in cell death. Instead, they propose that PS1 induces Ca2+ influx in 

cells without a change in membrane potential. This increase disrupts Ca2+ homeostasis 

or other cell pathways that subsequently lead to apoptosis as a result of a drop in cellular 

protein and DNA synthesis (Yamashita et al., 2005; Kitada et al., 2005). In other words, 

it is not a pore forming toxin.  

 

Mizuki et al. (2000) argue that cytotoxicity mechanisms of Parasporins are not fully 

understood and it is uncertain if cell death is caused by induced apoptosis alone. Uemori 

et al. (2009) confirmed the ability of PS1 to discriminate between healthy uterine 

smooth cells and uterus cervix cancer cells. Furthermore, the general characteristic of 
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parasporins of having specificity for cancer cells lead to proposing them as a potential 

‘magic bullet’ in treating cancer (Ohba et al., 2009).   

 

Concerns regarding Bt specificity are a current debate. Uncertainties regarding Bt toxin 

synergism, efficiency and selectivity are being observed in their application as pest 

controls agents (Then, 2010). Mizuki et al. (2000) argue that Bt toxins are also cytocidal 

to normal mammalian cells line, highlighting the need for refinement of their specificity 

in order to reduce the potential danger. Yamashita et al. (2005) also observed ‘low 

toxicity’ to four non-cancerous human cell line by Cry41A proteins. The cytocidal activity 

of parasporin toxins varies in range and intensity, as well as the range of target cells. For 

example, PS4 is preferentially toxic to leukaemia T cells, however it shows low toxicity 

to normal T cells, whilst exhibiting no toxicity at all to uterus cervix cancer cells (Saitoh 

et al., 2006) 

 

1.2.3. Parasporin 1 /Cry31Aa1  

Parasporin 1 or Cry31Aa1 shares less than 25% sequence identity with Bt toxins, 

however,  it does contain the five conserved blocks typical of 3-domain Cry toxins 

(Mizuki et al., 2000). The crystal structure was resolved at 1.76 Å resolution and was 

revealed to have a 3-domain structure typical of most insecticidal Cry toxins. An N-

terminal region similar to Cry2Aa was also detected (Katayama et al., 2005; Kitada et al., 

2005; Akiba and Okumura, 2016).  
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Upon proteolytsis two active polypeptides of 15 and 56kDs were formed and were toxic 

towards HeLa, HL60, MOLT-4 and HepG2 cell lines (Katayama et al., 2007). An alternative 

mode of action has been proposed for Cry31Aa1 where interactions with Hela cells is 

thought to induce an apoptotic signalling pathway that causes a rapid influx of Ca2+. Cell 

viability decreased progressively and morphological indicators of cytopathology such as 

cell swelling were observed 8-10 h post incubation with Cry31Aa1 despite a dose of 10 

µg/mL. The cell membrane remains intact and no change in cell permeability was 

observed (Katayama et al., 2007). This is quite unusual for parasporins as membrane 

permeability is often observed with other parasporins (Ohba et al., 2009; Yamashita et 

al., 2005).  

 

In Cry31Aa1 susceptible cells the membranes were impermeable to DNA binding dye 

molecules and the cells remained polarized. Furthermore, no cytosolic markers such as 

LDH were observed even after 4 h of incubation with Cry31Aa1. However, within min, 

intracellular calcium probe fura-2 detected a sudden rise in intercellular Ca2+. It is 

thought that Ca2+ was depleted from the extracellular space as investigation with low 

Ca2+ levels correlated with reduced toxicity (Katayama et al., 2007). A number of Ca2+ 

influx inhibitors were applied to investigate if they affect Ca2+ levels and thus toxicity of 

Cry31Aa1.  Only suramin which inhibits G protein coupled receptors (GPCR) affected 

Ca2+ levels. Elevated levels of caspase 3 and PARP cleavage in treated cells were 

indicative of an activated apoptotic signalling where DNA and protein synthesis were 

prevented.  
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The findings led to the proposal that Cry31Aa1 causes cytotoxicity by the activation of 

GPCR, calcium influx and apoptosis due to ineffective calcium homeostasis without any 

form of pore formation (Katayama et al., 2007).  

 

Contrary to this, is a study by Narvaez et al. (2014) where they argue that parasporin 

1Aa2 or Cry31Aa2 has 94% sequence identity with Cry31Aa1 and has been observed to 

form pores in artificial membranes. In addition, it was found to induce calcium 

oscillations despite the lack of extracellular calcium and normal cell line HEK 293 (Gabriel 

Narvaez et al., 2014). It was suggested that Cry31Aa1 and Cry31Aa2 have the potential 

to form pores as evident with the formation of ion channels in artificial membranes.  

 

In response to this, further studies investigated the occurrence of an additional N-

terminal region which locks domain I and  stops it from forming pores (Akiba and 

Okumura, 2016; Akiba et al., 2005). Katayama et al. (2011) carried out an investigation 

in search of the receptor for Cry31Aa1 and discovered beclin-1 a tumour suppressor 

protein. Anti-beclin-1 antibody repressed toxin binding and toxicity. It was patented and  

reported as a receptor for Cry31Aa in Hela cell lines (Katayama et al., 2011).   

 

1.2.4. Parasporin 2 /Cry46Aa 

Parasporin 2 or Cry46Aa1 is a very toxic protein and shares very little amino acid identify 

with Cry toxins. The crystal structure of the activated protein was resolved and revealed 

an elongated form of 115 x 30 x 29 Å. Structurally it is similar to the ETX/MTX2 Cry family 
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and protein in the Toxin_10 family as well as hydralysin (Akiba et al., 2009; Xu et al., 

2014).  

 

It was mainly tested on HepG2, but also has shown toxicity to a number of different 

cancer cell lines such as MOLT-4, and Jurkat (Kitada et al.,  2006). In addition to being 

tested on cancer cell lines, it was also investigated for its effects on cancer tumour slices 

from differentiated hepatocellular carcinoma and colon cancer.  It was found to cause 

cell swelling in non -neoplastic cancerous cells (Kitada et al.,  2006; Ito Akio et al.,  2004).  

 

Kitada et al. (2006) demonstrated the toxin interaction through a number of 

experiments. Immunofluorescence visualised the plasma membrane of HepG2 cells 

where Cry46Aa1 caused cell swelling, blebbing and the breakdown of organelles and 

cytoskeleton. The release of LDH and PI staining cell demonstrated the instant damage 

to the cell membrane. This was confirmed by osmoprorective PEGs analysis which 

measured Cry46Aa1 induced pores with a diameter of 3nm (Kitada et al., 2006).  

 

In addition to pore formation, Cry46Aa1 was found to induce caspase activation and 

DNA degeneration in HepG2 cells. Further investigation by Ito Akio et al. (2009) and 

others indicated that Cry46Aa maintained cytotoxicity even after the application of a 

caspase inhibitor and suggested that its main mode of action is by pore formation (Ito 

Akio et al., 2004; Akiba et al., 2009). 
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Interactions with lipid rafts in HepG2 cells required GPI-anchored proteins for 

oligomerization and toxicity (Akiba et al., 2009; Okumura et al., 2011). Its structural 

resemblance to proteins that possess additional β trefoil motif in the head domain and 

aerolysin type β pore forming toxins gives weight to Cry46Aa1 being a pore forming toxin 

(Akiba et al., 2009; Sher et al., 2005).    

 

1.2.3 Parasporin 3 / Cry41Aa, Cry41Ab  

Parasporal inclusions were isolated from Bt strain A1462, parasporal inclusions were 

successfully solubilised in alkaline conditions, and two 88   KDa proteins were recovered. 

The proteins were respectively named Cry41Aa (PS3Aa) and Cry41Ab (PS3Ab).  

 

They were treated with proteinase K and analysed on SDS PAGE gel where each revealed 

a 64 KDa major protein and a minor 80   KDa protein.  The proteolytically active proteins 

were cytocidal activity against HepG2 (hepatocyte cancer) and HL60 (myeloid leukaemia 

cancer) cells. The two proteins were respectively named Cry41Aa and Cry41Ab.  

 

The proteins were expressed from three genes ORF1, OFR2, OFR3. ORF1Aa and OFR1Ab 

proteins are similar in weight and show 87% identity. ORF2Aa and ORF2Ab are 88% 

homologous and of analogous weight. OFR3Aa and ORF3Ab have 99% sequence 

homology and are of similar weight.  There were no transcriptional terminator 

sequences between ORF1 and ORF2 or ORF2 and OFR3.  
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OFR2 contained the five conserved block regions common to three domain Cry toxins, 

and ORF3 contained conserved Cry block regions 6, 7, and 8 also found in some 

insecticidal Cry toxins.  The N-terminal amino acid sequences of the proteolytically 

resistant purified 64 KDa proteins were found in ORF2Aa and ORF2Ab. The C terminal 

sequence of both ORF2’s resembles the Clostridium botulinum hemagglutinin HA-33 

sequence. 

 

 Yamashita et al. (2005) attempted to express the proteins using only ORF2 genes but 

observed that Bt could not form parasporal inclusion. This suggests that the expression 

of ORF3 may have a role in protein conformation and/ or packaging. It is important to 

note that alkali only treated proteins were cytocidal and proteolytic activation of both 

Cry41Aa and Cry41Ab was required for their characteristic toxicity towards HepG2 and 

HL60 cancer cell line.  

 

The study further suggests that Cry41Aa and Cry41Ab may have a specific receptor on 

susceptible cancer cells. The findings from cytotoxicity assay and microscope 

observations suggest that both Cry41Aa and Cry41ab kill slowly and are both likely to 

have a 3d-Cry structure common to some insecticidal Cry toxins (Yamashita et al., 2005).  

 

Yamashita et al. (2005) screened 1744 Bt parasporal protein against 124 human cell 

lines, of those Cry41Aa was toxic to HL60 and HepG2 cell lines. The EC50 for HepG2 cell 

was 1.86 µg/mL (2.4 µM/ml) and 1.25 µg/mL (1.6 µM/ml) for HL60 cell lines. Cell viability 

and membrane damage assay have suggested that Cry41Aa is more toxic than Cry41Ab 
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as indicated by the dramatic decrease in cell viability and an increase of LDH efflux.  In 

addition to MTT viability cell assay trypan blue staining highlighted morphological 

changes of the cells during their 24-h incubation with Cry41Aa and Ab toxins. Cells were 

observed to swell within the first hour followed by membrane damage in the hours that 

followed, as shown in figure 6 (Yamashita et al., 2005). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 1 The list of mammalian cell lines tested against proteinase K activated Cry41Aa and Cry41Ab. 
 MTT cell viability assay was applied post a 24-h incubation with toxins.  Data for HL60 and HepG2 cell lines highlighted 
in red. Taken and adapted from Yamashita et al.2005.  

 

 
 

list of mammalian cell lines tested against proteinase K 
activated Cry41Aa and Cry41Ab. 

 

 
 
Cell 

 
 
Origin 

 
  
EC50(μg/mL)  

  
 

Cry41Ab 
 
  

Cry41Aa 
 
  

Human        
    MOLT-4  Leukemic T cell  >10  >10  
    Jurkat  Leukemic T cell  >10  >10  
    HL60  Myeloid leukaemia  1.32  1.25  
    HeLa  Uterus cervix cancer  >10  >10  
    TCS  Uterus cervix cancer  >10  >10  
    Sawano  Uterus cancer  >10  >10  
    HepG2  Hepatocyte cancer  2.80  1.86  

    A549  Lung cancer  >10  >10  
    CACO-2  Colon cancer  >10  >10  
    T cell  Normal T cell  >10  >10  
    UtSMC  Normal uterus  >10  >10  
    HC  Normal hepatocyte  >10  >10  
    MRC-5  Normal lung  >10  >10  
Simian        
    Vero  African green monkey kidney  >10  >10  
    COS-7 African green monkey kidney  >10  >10  
Murine        
    NIH3T3-3  Mouse embryo  >10  >10  
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Figure 6 Morphological changes of HepG2 cells post incubation with Cry41Aa. 
Microscope images were taken of Trypan Blue stained HepG2 cell line after incubation with Cry41Aa and Cry41Ab at 
1 h and 24-h post-treatment. Adapted from Yamashita et al. (2005).  

  

 

The Cry41Aa gene was expressed by Krishnan, 2013 (Krishnan, 2013). Primers were 

designed to amplify the split toxin as ORF2 and ORF3. ORF2 encodes the active toxin 

with the five conserved Cry blocks typical of 3-domain Cry toxins, as well the N terminal 

and C-terminal region located within the ricin domain of the toxin as shown in figure 7.  

 

ORF3 encodes the remaining conserved Cry block 6,7, and 8. These are usually lost after 

protease treatment but are thought to play a role in crystal formation and the packaging 

of protoxin in Bt cell (Krishnan et al., 2017). In addition to the ORFs restriction sites for 

BamHI, Xhol, and Xbal were also subcloned into Bt shuttle vector pSVP27A. expression 

is driven by a strong Bt cyt1Aa promoter (Crickmore and Ellar, 1992). 
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The vector was introduced into Bt4D7 to express cry41Aa. Upon treatment with 

proteinase K Cry41Aa is cleaved at position 60 after an alanine which is necessary for 

the toxicity of Cry41Aa (Yamashita et al.,2005) However, N-terminal sequence analysis 

has indicated that trypsin cleaved Cry41Aa at position 63 after an arginine (Souissi, 2018, 

Krishnan et al., 2017). 

 

 
Figure 7 Amino acid sequence of Cry41Aa protoxin encoded by ORF2 and ORF3 
Figure shows the amino acid sequence for split toxin Cry41Aa as encoded by ORF2 and 3. The conserved Cry block are 
underlined in red. The N-terminal is underlined in black. The exta loop distinctive to Cry41Aa is underlined in dashed 
lines. The C-terminal/ricin domain are double underlined. Domain I is highlighted in grey, domain II in yellow and 
domain III in blue.  

 

1.2.4 Parasporin 4/ Cry45Aa1 

Okumura et al. (2008)  first described Cry45Aa1 as a pore forming parasporin that 

exhibits toxicity towards CACO-2, Sawano and MOLT-4 cells (Okumura et al., 2008). 

 It shares little homology to Cry toxins and does not have the five conserved blocks 

typical of 3-domain toxins. Structurally it is similar to aerolysin type β pore forming 
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toxins as a consequence of the high level of β structures as measured by CD spectrum. 

It has a low identity to other β pore forming toxins such as the α toxin from C.septicum, 

epsilon from C. perfringens, and aerolysin from A. hydrophila (Okumura et al., 2011).   

 

In MOLT-4 cell assay, cells demonstrated cytopathic characteristics within 10 min of 

incubation with Cry45Aa1; the nucleus fragmented within the hour, and cells completely 

erupted after a 24-h period. Membrane damage assay detected the formation of large 

pores that allowed the passage of 70  KDa dextrans and LDH efflux (Okumura et al., 

2011). 

 

Okumura et al. (2013) discovered additional proteins produced by the same A1470 Bt 

strain, the protein PS 2Aa2 which are almost identical to PS2 (differ by 4 amino acids) 

was observed to kill MOLT-4 cells with an EC50 of 0.47 µg/mL. Interestingly, Bt produced 

activated Cry45Aa1 was more toxic (EC50 = 0.13 µg/mL) than the recombinant activated 

Cry45Aa1 protein (Okumura et al., 2011;  Saitoh et al., 2006).  

 

Further investigations on Cry45Aa1 showed that it was activated in acidic conditions and 

was cleaved by pepsin. This alternative activation did not just  increase toxicity of the 

protein, but it was reported to yield more proteins than through typical alkali conditions 

(Okumura et al., 2008;  Okumura et al., 2014). 
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 Further investigation by Okumura saw the application of Cry45Aa in mice trials. Here, 

the ability of Cry45Aa to remain stable in low acidic conditions was exploited. It was 

assumed that the acidic conditions and the presence of pepsin in the digestive system 

of mice would solubilise and activate Cry45Aa1 which was administered orally. The study 

concluded that protoxin Cry45Aa1 was indeed activated in the digestive tract of mice 

and impaired kidney function (Okumura et al., 2014).  

 

1.2.5 Parasporin 5 /Cry64Aa1 

This toxin was first described by Ekino et al. (2014) as a parasporin with some sequence 

identity to Bt Cry toxins and aerolysin type β pore forming toxins. It is 34 KDa protoxin 

and was cleaved by proteinase K at the C-terminal to produce a 30   KDa toxin. It exhibits 

cytotoxicity to MOLT-4 (EC50 = 0.1µg/mL), HepG2, TCS, Hela, Sawano and two monkey 

kidney cell line COS7 and Vero. MOLT-4 cells were observed to swell within an hour of 

incubation with the toxin (Ekino et al., 2014). 

 

1.2.6 Parasporin 6/Cry63Aa  

Cry63Aa is cytotoxic protein with a protoxin of 84 KDa Which upon proteolytic 

processing produced two core resistant cores of 14 and 59 KDa. These were found to be 

active against HeLa and HepG2 cells. Structurally, the protoxin N-terminal shares 

identity with Parasporin 1, however this is lost during protease treatment. The resulting 

protein core shares 56% sequence identity with Cry2A toxin and in particular the region 

with the five conserve blocks of Cry toxins (Nagamatsu et al., 2010).  
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Table 2: Parasporin groups and their characteristics. 
Human cell line origins: Jurkat (leukemic T-cell), HepG2 (liver cancer), Sawano (cervical cancer resistant to cisplatin treatment), MOLT-4 (acute lymphoblasic leukaemia), HL-60 (myeloid- granulocyte precursor in bone marrow- leukaemia), CACO-2 
(epithelial colorectal adenocarcinoma cells), UtSMC (normal uterus smooth muscle cells), TCS (uterus cervix cancer).Adapted from Kitada et al. 2005 and Domanska, 2016  ( Akiba et al., 2009; Kitada et al., 2006; Ohba et al., 2009; Saitoh et al., 2006; 
Yamashita et al., 2005; Mizuki et al., 1999; Mizuki et al., 2000; Kitada et al., 2005; Gonzalez et al., 2011; Ammons et al., 2016; Ekino et al., 2014)

Summary of Parasporin members and their toxins 
 

 PS1/Cry31Aa1 PS2/Cry 46Aa1 PS3/ Cry41Aa1 
Cry41Ab1 

PS 4/ Cry45Aa1 PS 5/ Cry64Aa1 PS 6/Cry63Aa1 

Protoxin (KDa ) 81 37 88 31 33.8 84 

Toxin (KDa ) 15 and 56 heterodimer 30 64 27 29.8 14 and 59  

In vitro activated 
by 

Trypsin Proteinase K  Proteinase K  Proteinase K  Proteinase K  Trypsin  

Proteolytic 
activity site 

Two sites in N-terminal  N and C-terminal  N-terminal and possibility 
in C terminal 

C-terminal C-terminal N-terminal 

Cell death Ca2+ influx Cytolysis Unknown-potential pore 
formation  

unknown Unknown-potential β pore 
forming toxins 

Unknown-potential 
pore formation  

Receptors Belclin 1 GPI-Proteins unknown unknown unknown unknown 

Structural 
homology to Cry 
toxins 

Crystal structure resolved to 
reveal homology to 3- domain 
Cry structure and  

Crystal structure resolved to 
reveal homology to aerolysin 
type β pore forming toxins 

Potentially has a 3-
domain structure  

Potentially similar to aerolysin type β 
pore forming toxins  

Potentially similar to aerolysin 
type β pore forming toxins  

Potentially has a 3-
domain structure 

Conserved Cry 
block 

five conserved Cry blocks 
detected in 56 KDa -low 
homology in block 3 

No homology five conserved Cry blocks 
detected in 64 KDa  

No homology No homology five conserved Cry 
blocks detected in 
59 KDa  

Sequence 
homology to Cry 
toxins 

Low, less than 25% Low less than 25% and other 
pore forming toxins 
41% sequence identity with 
hydralysin from Ch. viridissima 
 

Low, less than 30%  
34% sequence identity 
with Cry3Ba ricin type 
domain detected 

Low, less than 30% and other pore 
forming toxins 

Homology to ETX/MTX2 56.4% homology to 
3-domain toxins 

Susceptible 
cancer lines 
(EC50µg/mL) 

HeLa (0.12), HL-60 (0.32), 
MOLT-4 (2.2), HepG2 (3).  

Jurkat (0.015), HepG2 (0.023), 
Sawano (0.041), MOLT-4 
(0.044),  
HL-60 (0.066).  

HL-60 (1.25),  
HepG2 (1.86).  

CACO-2 (0.12), Sawano (0.24), MOLT-
4 (0.47), TCS (0.71), HL-60 (0.72), 
HepG2 (1.9)  

MOLT-4 (0.075), HepG2 (0.049), 
TCS (0.046), Hela (0.80), COS7 
(0.045), Vero (0.050), Sawano 
(0.065) 

HeoG2 (2.3). Hela 
(7.2) 

Susceptible 
normal cell line 
 (EC50µg/mL) 

low to modest activity against 
lung cells.  
Less than 10 µg/mL towards 
UtSMC cells  

T cells (0.148),  
Less than 10 µg/mL towards  
Hepatocytes  

Less than10      µg/mL 
towards T cells  
Less than 10 µg/mL 
towards Hepatocytes.  

Substantial activity against T cells of 
native and recombinant PS-4. 
Recombinant PS-4 also cytotoxic to 
UtSMC.  

Less than 10   µg/mL towards 
human embryonic lung fibroblast, 
uterus, and hepatocyte 

Unknown  



44 
 
 

 

1.3 Mode of action of Bt toxins  

The vast number of Cry toxins, the type, number of target cells as well as receptors has 

led to a number of theories on how Cry toxins are able to target, interact and kill 

particular organisms or cell lines.  

 

Research has attempted to uncover the mode of action of Bt toxins and there is currently 

more than one theory on how the toxins are able to be toxic. Initially the general 

consensus accepted the model proposed by Knowles and Ellar. It was founded on studies 

carried out on 3-domain Cry toxins and their effect on lepidopteran larvae. They 

postulated that pathogenic bacteria usually exert cytolysis through pore formation and 

proposed the colloid-osmotic model (Knowles and Ellar, 1987).  

 

In this model the insect must first ingest the Bt crystal which is then solubilised in the 

alkaline environment of the insect’s digestive system. A study by Angus, (1954) 

highlighted the need for alkaline conditions as pre-requisite for solubilisation (Angus, 

1954). The findings were later supported by observations made by Du et al. (1994) 

where only insects with digestive juice capable of crystal solubilisation were susceptible 

to Cry toxins (Du et al., 1994;  Jurat-Fuentes and Crickmore, 2017). 

 

 Once solubilised the protoxin is cleaved by digestive proteases and results in protease 

resistant cores. This activated form binds to and interacts with specific receptors in the 
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gut border membrane. In vitro studies by Wolfersberger et al. (1984) demonstrated the 

correlation between binding and toxicity by using brush boarder membrane vesicles 

(BBMV). Early studies of Cry1Ba and BBMV from the susceptible Pieris brassicae found 

that Cry1Ba would specifically bind to insect BBMV and would not bind to rat intestine 

BBMV (Wolfersberger, 1984; Wolfersberger et al., 1987). Post toxin-receptor interaction 

the toxin undergoes oligomerization.  

 

A study by Gϋereca and Bravo, (1999) demonstrated that oligomerization of monomeric 

Cry toxins requires interaction with cell membrane (Gϋereca and Bravo, 1999). The 

events that follow have divided scientists and is the subject of a number of theories. In 

the colloid osmotic model, the toxin inserts itself into the membrane and as a 

consequence causes nonspecific pores in the membrane of the target cell. The presence 

of the pore induces changes in membrane potential, ion balance, influx of water, cell 

swelling, colloid-osmotic lysis of gut cells and eventual larval death (Knowles and Dow, 

1993, Knowles and Ellar, 1987). There are several mode of action models that have since 

taken into consideration newly found data on receptors toxin complexes as well as the 

revealed crystal structure of Cry toxins.   

 

1.3.1 The Bravo model  

The Bravo model is founded on the osmotic -lysis model by Knowles and Ellar, (1987). 

Bravo et al. (2004) investigated the binding of Cry1Ab to two different receptors, 

aminopeptidase N (APN) and cadherin-like protein (Bt-R1 in Manduca sexta).  
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The model suggests that Cry1A toxin binds sequentially to these receptors in order to 

cause toxicity. It details the different monomeric changes that the Cry1A protein 

undergoes in order to cause toxicity.  

 

The model addresses the first monomeric change where crystal Cry1A is solubilised to a 

130 KDa protoxin. It is followed by a second monomeric change when it is activated and 

cleaved into a ˜60 KDa protease resistant protein. The third monomeric change takes 

place after active Cry1A binds to Bt-R1 receptors and then to APN receptors on the 

membrane of midgut cells of insects to create a toxin-receptor complex. The fourth 

monomeric change takes place as the toxin forms a pre-pore oligomeric structure that 

inserts itself into the membrane and subsequently creates lytic pores (Bravo et al.,  

2004).   

 

This mode of action is based on findings from the co-immunoprecipitation investigation 

where it was demonstrated that Cry1Ab binds first to Bt-R1 and then APN. As a 

consequence of this binding, membrane-associated proteases cleave the α-helix 1 of 

domain I and expose a hydrophobic surface that subsequently leads to the 

oligomerization of Cry1Ab into pre-pore structures. 

 

 Experimental data by Soberón et al. (2007) demonstrated the formation of oligomeric 

structures by Cry1Ab and Cry1Ac mutant which lack the α-helix region. These mutants 
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exhibited in vivo toxicity in resistant insects with a mutated cadherin gene. Furthermore, 

the oligomeric state of Cry1Ab-Bt-R1 complex greatly increased binding affinity to APN 

which guides oligomers into the lipid rafts and enables insertion and the formation of 

tetrameric pores (Bravo et al., 2004; Soberón et al., 2007; Soberon et al., 2009; Bravo 

and Soberón, 2008). Figure 8 summarises and illustrates the pore forming mode of 

action of the Bravo model 

 

Figure 8 The two models for the mode of action of Bt Cry toxins.  
Cry crystal is solubilised and activated by proteases. The active toxin binds to receptor in steps 1-3.   The top model 
4-6 illustrates the Bravo model. Binding induces the cleavage of a-helix. The monomers undergo oligomerization and 
bind to GPI-anchored receptor (Bt-R1). It induces membrane insertion, and pore formation. The lower diagram 4a-5a 
illustrated the signalling model by Zhang et al. (2005) It suggests a mode of action by an adenylyl cyclase/ protein 
kinase A signalling pathway. Image taken from Bravo et al. (2008). 
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1.3.2 The Ping Pong model 

Similar to the Bravo model, and other mode of action models, the ping pong model 

agrees that Cry crystals must first undergo solubilisation, followed by protease 

treatment where the protoxin is cleaved resulting in a protease resistant core. 

In the case of Cry1Ab the active ˜60  KDa core encompasses the typical Cry 3-domain 

structure (Pardo-López et al., 2013). Pacheco et al. (2009) proposed the ping pong model 

where loop 3 of domain II Cry1Ab differentially participates in the binding of both Bt-R1 

and APN receptors depending on the oligomeric state of the toxin.  

 

Data from toxin overlay binding assay confirmed that amino acids from loop 3 in domain 

II interact with both receptors and that multi binding interactions take place which 

involves both receptors. ELISA binding assays suggested that loop 3 first binds to the 

high abundance low affinity APN receptor site followed by binding to the high affinity 

low abundance Bt-R1 receptor also known as a cadherin receptor (Pardo-López et al., 

2013). 

 

Previous research in the cadherin interaction with loops of domain II revealed the 

involvement of loops α8, 2, and 3 (Gomez et al., 2002; Gómez et al., 2003; Gomez et al., 

2006). Loop2 was found to act as the cognate binding epitope to the CR7 region of 

cadherin, in addition, loop α8 and 2 also interacted with region CR11 of cadherin. Loop 

3 was thought to bind to the CR12 region of cadherin receptor (Gomez et al., 2006; 
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Gomez et al., 2003). Pacheco et al. (2013) confirmed loop 3 binding to CR12 region after 

monomeric mutants of Cry1Ab loop 3 were affected in their ability to bind to CR12 

fragments of Bt-R1 but did affect interactions with APN receptor. Pacheco et al. (2013) 

also suggested that binding to high affinity Bt-R1 requires the participation of other 

domain II regions, e.g. loops 2 and α8. Once bound, the Bt-R1 loop 3 complex induced 

the cleavage of α-helix 1 to form an oligomer that increased binding affinity to APN via 

β16-22 of domain III. Whilst bound to Bt-R1 via loop 3 a Bt-R1-Cry1Ab-APN complex is 

created. However, it is APN that the facilitates oligomer insertion into the membrane. 

Figure 9 summarises the ‘ping pong’ model as proposed for Cry1Ab mode of action. 

 

 

Figure 9 The ‘ping pong’ model for Cry1Ab mode of action.  
Cry1Ab protoxin is activated with proteases. The monomeric toxin binds first to low affinity ALP or APN receptors via loop 3. This is 
followed by further binding to high affinity cadherin or Bt-R1. The N-terminal is cleaved and toxin monomers oligomerize into pre-
pore structures that bind APN or ALP to induce pore formation. Figure taken from Pardo-López et al. (2013). 
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91.3.3 The Zhang model 

The Zhang model is an alternative model that is based on the adenylyl cyclase (AC) 

protein kinase A (PKA) signalling pathway (Zhang et al., 2005). Zhang et al. (2005) argue 

that the toxic events take place as a consequence of the signalling pathways and not a 

result of pore formation.  

 

Once the crystal is solubilised and activated, the monomeric Cry1Ab binds specifically to 

Bt-R1 receptors. This would induce a signalling pathway where oligomers do not form 

lytic pores (Zhang et al., 2005). The model is summarised in the lower part of diagram 7.  

 

The research was carried out using undifferentiated ovarian cells of the cabbage looper 

Trichoplusiani which does not express cadherin Bt-R1 receptors. The cell line known as 

S5 was engineered to express Bt-R1 driven by an insect action promoter in a nonlytic 

insect expression vector. The receptor was expressed as a membrane protein and 

localised to the cytoplasmic membrane of cell as confirmed by immunofluorescent 

staining using anti-BT-R1 antibody. Western blot experiments concluded that the 

monomeric form of the toxin was taken into the membranes expressing Bt-R1 receptors.  

 

The uptake of monomeric toxin was fast and steady in contrast to oligomeric form of 

Cry1Ab which was not detected by either Bt-R1 expressing cells or other non-susceptible 

cells. In a dose dependent experiment oligomeric toxin was detected 15min post 

incubation in Bt-R1 expressing S5 cells and did not exert a toxic effect.  
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Zhang et al. (2005) concluded that it is the monomeric from that binds to Bt-R1 to exert 

toxicity in susceptible cells (Zhang et al., 2005). Zhang et al. (2006) proposed that this 

binding triggers a G protein-coupled receptor (GPCR) which in turn activates the AC/PKA 

pathway. extracellular ligand activation of GPCR causes a conformational change on the 

intercellular region of the membrane. The Gαs subunit switches GDP to GTP which in turn 

disconnects from the complex and binds instead to AC. AC induces the rise of a second 

messenger cAMP in the cytoplasm of susceptible cell that triggers PKA. 

 

 There was evidence of raised cAMP and PKA levels in susceptible cells. A decrease in 

toxicity levels was observed with the application of Gαs and AC inhibitors. Toxicity was 

completely abolished with the addition of EDTA pre-incubation with toxin. Loss of 

toxicity was not due to loss of binding as observed from western blots experiments but 

as a consequence of Mg2+ depletion. Toxicity was re-established with the addition of 

magnesium salt. Zhang et al. (2006) claimed that Mg2+ is critical to events that follow 

binding of monomer toxins to membranes of susceptible cells and that receptor-toxin 

interaction and pore formation are not enough to explain Cry1Ab mode of action (Zhang 

et al., 2006). 

 

A summary of the Zhang model is illustrated in figure 10.  This claim was supported by 

research carried out in modified Cry1 toxins that lacked the N-terminal ending including 

helix α-1, where cadherin interactions were skipped and did not take place. Despite this 

resistant insects with a defective cadherin gene were killed (Soberón et al., 2007).   
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Other studies have criticized the experimental data on which the Zhang model is based 

on. They claim that the S5 cell line does not represent the true nature of a susceptible 

insect’s midgut. Furthermore, EDTA amount used by Zhang et al. (2006) would not 

chelate all MgCl2 that would be present in an insect medium where low pH level would 

affect ion chelating by EDTA and EGTA. (Vachon et al., 2012; Soberón et al., 2007).   

 

 

Figure 10 The mode of action of Bt toxin according to the Zhang model. 
It implicates AC/PKA signalling pathway. It states that monomeric form of the toxin is required in binding to 
cadherin receptor. The binding induces coupled G protein which in turn activates adenylyl cyclase and a raise in 
cytoplasmic cAMP. cAMP levels activate kinase A which phosphorylates target proteins resulting the disruption of 
channels and eventual cell death. Figure taken from Zhang et al. (2006)  
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1.3.4 The Jurat-Fuentes interpretation 

The Jurat-Fuente, (2006) interpretation combines both the Bravo and Zhang models. It 

suggests that both pore formation and signalling pathway play a role in mode of action 

of Bt toxins and the presence of one does not eliminate the other.  

 

Jurat-Fuentes and Adang, based their alternative interpretation on Cry1Ac research 

carried out in the susceptible Heliothis virescens larvae. Previous research identified a 

number of receptors for Cry1Ac in H.virescens (Jurat-Fuentes and Adang, 2006, Jurat-

Fuentes and Adang, 2004). These included HevCaLP, HvALP, actin receptors and 

intracellular phosphatases. A gene knock out of the cadherin like HevCaLP receptor was 

found to cause resistance in certain insect strains and was implicated in the toxin mode 

of action (Gahan et al., 2001).  

 

HvALP is a GPI-anchored alkaline phosphatase receptor which was found at low levels in 

resistant H.virescens strains that exhibited reduced alkaline activity phosphatase in 

brush boarder membrane proteins (Jurat-Fuentes and Adang, 2004). Additional 

receptors were also implicated, the discovery of more receptors such as actin in BBMV 

proteome of M .sexta and H. virescens  (Krishnamoorthy et al., 2007; McNall and Adang, 

2003) and intracellular phosphatases (Jurat-Fuentes and Adang, 2006) has led to the 

proposal of two modes of action by Cry toxins.  
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In the first model, Cry1Ac binds to cadherin like HevCaLP, the binding causes a 

conformational change. Post oligomerization, the toxin binds to the HvALP receptor 

which subsequently results in pore formation in lipid rafts of the membrane. The 

presence of the pore creates an osmotic shock that eventually results in the cell death.  

 

The second model speculates that toxin binding to HevCaLP does not just induce pore 

formation but that it also activated signalling pathway regulated by intracellular 

phosphatases. This in turn activated the apoptotic pathway (Jurat-Fuentes and Adang, 

2006). Lilien and Balsamo. (2005) implicated the cytoskeleton protein actin in cadherin 

interactions. Jurat-Fuentas.  (2007) suggest that it binds to cadherin via its cytosolic 

domain which is aided by tyrosine phosphatases. It is also possible that actin binds to 

oligomerized toxin to induce the signalling pathway (Jurat-Fuentes and Adang, 2007., 

Lilien and Balsamo., 2005). The mode of action of Cry1Ac in H. virescens as interpreted 

by Jurat-Fuentas. (2007) is summarised in figure 11.  
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Figure 11 The proposed mode of action of Cry1Ac in H. virescens. 
 Once the crystal is solubilised and activated through protease, it binds to HevCaLP. The oligomerized toxins binds to 
second receptor HvALP the leads to membrane insertion and subsequent pore formation and cell death. Alternatively, 
the second model proposes that toxin bound to cadherin induces interactions between actin and cadherin that 
activate a signalling pathway. Taken from Jurat-Fuentes and Adang et al. (2006)  

 

 

1.4 Specificity of Bt toxins 

The topic of specificity in Bt toxins goes hand in hand with Bt toxin mode of action. A 

number of studies have implicated the structure of Bt toxins with their specificity to 

target particular insects (de Maagdet al., 2003; Jez, 2017; Moar et al., 2017).  

 

Adang et al. (2014) summarised the mode of action of 3-domain toxins where domain II 

and III interact with the midgut epithelial cell of insects whilst domain I was responsible 

for membrane insertion and subsequent pore formation (Adang et al., 2014). However 

in a recent review it was argued that there is not sufficient evidence which directly links 
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toxin structure and its specificity towards a target (Jurat-Fuentes and Crickmore, 2017). 

A review  by Palma et al. (2014) provided support to this notion where it stated that that 

Cry toxins can exhibit toxicity against a range of taxonomically diverse insects, and Cry 

toxins with a diversity in domain II and III  can still  target the same insect (Palma et al., 

2014; Palma and Berry, 2016). Jurat-Fuentes and Crickmore (2017) , argue that toxin 

structure alone is a poor indicator of specificity and that host factors may also play a role 

in determining specificity (Jurat-Fuentes and Crickmore, 2017). Previous studies on 

insects that demonstrate toxin resistance concluded that they are able to do this as a 

result of alternations to the receptor binding site on host cell, and  emphasising the 

specificity of toxins to target insect (Bravo and Soberón, 2008).  

 

Jurat-Fuentes and Crickmore, (2017) further speculate that parasporins or Cry toxin 

which exhibit toxicity to certain cancer cell lines may have insect targets that are yet to 

be discovered (Jurat-Fuentes and Crickmore, 2017; Krishnan et al., 2017). The authors 

defined specificity ‘as the condition of Cry proteins being toxic to a particular insect’ and 

propose that there are seven levels of specificity determinates (Jurat-Fuentes and 

Crickmore, 2017).  Figure 12 summaries the seven levels in the mode of action of Cry 

insecticidal proteins that determine toxin specificity.  Level I address an insect’s ability 

to access or come across a Bt crystal as the first level of determining specificity. The 

crystal form of the toxin limits the range of insects that can access it e.g. sap feeding 

hemipterans. Bt is also limited by the type of environments that it can successful inhabit. 
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For example, Bt do not usually colonize plant leave surfaces and insects that live there 

are unlikely to encounter Bt or its crystal.  

 

Parasporins which exhibit specificity to certain cancer cell lines are not thought to have 

evolved this specificity. Instead Jurat-Fuentes and Crickmore, (2017) suggest that 

parasporins may have undiscovered insect targets. This would not be unusual as 

previous Cry toxins have shown specificity to more one species in an insect order as is 

the case for 6 of 68 Cry toxin families (Jurat-Fuentes and Crickmore, 2017). 

 

Level II of specificity is the ability of a host to solubilise the Bt crystal. Early studies on 

crystal solubilisation confirmed that Bt crystals require alkaline pH conditions and 

insects which lack such a digestive environment were unaffected by Bt. Further 

investigation confirmed that previously non-susceptible insects were affected by pre-

solubilised Bt crystals (Angus, 1954; Du and Nickerson, 1996; Du et al., 1994).  

 

Specificity level III addresses toxin processing and the stability of protease cleaved Bt 

toxins. Once solubilised the protoxin is available to digestive juices in the insect gut. 

There digestive proteases cleaved the protein until a protease resistant protein(s) core 

remains. The speed and efficacy of processing determines a toxins level of toxicity 

towards an insect.   
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Specificity level IV requires that the active toxin remain available and stable in insect gut 

juices. Although the active protease core is not further processed by a given protease it 

is not protected from further processing by others e.g. elastase (Choristoneura 

fumiferana) or hexamerins (H. armigera) have both reduced toxicity in susceptible Cry1A 

insects by sequestering the active toxin.   

 

Specificity level V address the task of crossing the peritrophic matrix which protects 

epithelium cells of the insect gut. The layer is made of chitin and glycosylated proteins. 

Some Cry toxin domains recognise and interact with glycosylic residues which stall and 

hinder the intoxication process. It has also been observed that the type of glycosylated 

protein and their arrangement differ in insect’s species, making this a determining factor 

for the specificity to a particular target insect.  

 

The specificity level VI examines a toxin’s ability to recognise, bind and interact with 

insect cell receptor (Jurat-Fuentes and Crickmore, 2017). Previous studies in specificity 

have addressed receptor-toxin interaction as the Key determining factor of a toxin’s 

specificity towards an insect. Studies have identified Cry toxin receptors that include 

protein and glycolipids (de Maagd et al., 2001; Gomez et al., 2007; Vachon et al., 2012; 

Bravo et al., 2007). The specificity of parasporins to certain cancer cell line is not well 

understood, it is thought that parasporins recognise carbohydrate structures shared 

with the susceptible cancer cell line but which are absent in normal healthy cells (Jurat-

Fuentes and Crickmore, 2017). Studies carried out in Cry1Ab have shown that this 
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insecticidal Cry toxin is cytocidal to human embryonic kidney cell line 293. The authors 

suggest that it is not only parasporins that can interact with mammalian cell lines, but 

new specificity is emerging on typical insecticidal Cry toxins as research widens the range 

and type of cells being tested against Cry toxins (Mesnage et al., 2013). 

 

The final specificity level VII addresses events that follow toxin-receptor binding. The 

ability to bind does not necessarily guarantee pore formation and to induce a toxic 

effect.  Studies have shown high binding affinity in low susceptible insects. Different cells 

can have different responses to membrane insertion that do not always end in lysis of 

cell. In addition to this cells can activate different intracellular signalling pathways with 

different defensive response to toxicity (Jurat-Fuentes and Crickmore, 2017).   
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Figure 12 The flow chart diagram of the seven steps of the mode of action of Cry toxins and the determining 
specificity factors.   
Figure depicts factors that play a role in determining host specificity. Transgenic Bt crops produce soluble Cry toxins 
and thus are excluded from the first two specificity determinants. Taken from Jurat-Fuentes and Crickmore, (2017) 
(Jurat-Fuentes and Crickmore, 2017). 
 

 

 

1.4.1 Domain II loops in Cry toxins 

A number of studies have implicated domain II loops in specificity and initial binding of 

Cry toxins (Dean et al., 1996; Pacheco et al., 2009; Abdul-Rauf and Ellar, 1999; Pardo-

Lopez et al., 2009; Abdullah and Dean, 2004; Lu et al., 1994).  
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Pacheco et al. (2009) demonstrated that mutations in domain II loops affect binding to 

the cadherin (Bt -R1) and aminopeptidase-N (APN) receptors in the lepidopteran 

Manduca sexta. The study suggested that both receptors interact differently to different 

oligomeric states of the Cry1Ab toxin. Domain II exposed loop regions were probed and 

mutations in loop 3 were found to severely affected its insecticidal activity in both 

monomeric and oligomeric states of the activated toxin. Pacheco et al. (2009) proposed 

a ping pong binding mechanism to explain the toxin activity and its dependency on loop 

3 of domain II.  

 

Toxin overlay binding analysis of loop 3 regions of Cry1Ab indicated that it has 

hydrophobic profile. Furthermore, single double and combination substitution in this 

region revealed that this region is involved in interaction with both Bt -R1 and APN 

receptors as binding to both receptors was significantly reduced in mutants. More 

analysis suggested that the Cry1Ab mode of action may involve multiple binding 

interactions with both receptor molecules. Both receptors are present at different 

concentrations with APN at a higher concentration in M. sexta mid gut.  

 

Initially a 65 KDa proteolytic active monomer binds to APN through loop 3 of domain II. 

This bound monomer goes on to bind to high affinity Bt -R1 receptor through loops 2, α-

8, and 3 of domain II creating an oligomer. Mutants of loop 3 were noted to significantly 

affect oligomeric binding to Bt -R1. The resulting oligomeric structure has binding affinity 

to APN through domain III regions but continues to be bound to Bt -R1 through loop 3. 
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The interactions result in a Bt -R1 -Cry1Ab-APN complex. The specific role of this complex 

is unclear, but the study observed that loop 3 mutants affect toxicity of Cry1Ab 

oligomers and thus implicated the complex in toxicity. It further suggested that loop 3 

can induce structural changes prompted by APN and it is involved in membrane insertion 

of Cry1Ab oligomer.  

 

Previous research on loop 3 have also suggested that it binds to CR12 region of cadherin 

receptors in H.virescens and B. mori (Xie et al., 2005; Atsumi et al., 2008; Pacheco et al., 

2009).  Rajamohan et al. (1996) carried out alanine substitution on Cry1Ab, which is toxic 

to M. sexta and H. virescens. Two mutants F440A, and G439A were noted to have 

reduced toxicity and binding analysis on brush boarder membrane vesicles from insect 

gut membranes implied that this reduction in toxicity is due to loss in the initial binding 

by as much as 3.5 times less than wild type Cry1Ab.  

 

Alanine substitutions made to hydrophobic residues 440 AAGA443 in loop 3 of Cry1Aa also 

resulted in reduced toxicity to B. mori and M. sexta due to a decrease in initial binding 

to vesicles from insect midgut. The study proposed that residues of loop 3 of both 

Cry1Ab and Cry1Aa ascertain hydrophobic interactions with receptor molecules; and it 

is the hydrophobic nature of these residues that affected the initial binding to receptor. 

To investigate further, an alanine cassette was created in the loop 3 region of Cry1Aa 

and resulted in the deletion of hydrophobic residues in the loop 3 region. This lead to a  
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reduction of binding affinity (Kcom) by 15 times to B. mori and 9 times to M. sexta, 

implicating the loop 3 region in initial binding to receptor (Rajamohan et al., 1996c).  

 

Alanine substitutions of the predicted loop 3 of Cry1C residues indicated that single 

point mutations S438F and G439A eliminated most or all toxicity and binding to S. 

littoralis and A. aegypti. The mutants expressed a stable proteolytic resistant protein 

similar to that produced by insect gut juices, and thus the loss of toxicity was not thought 

to be due to protein mis-folding (Abdul-Rauf and Ellar, 1999).  Cry4Aa is toxic to B. mori 

and M. sexta.  Studies which investigated the effects of alanine substitutions in loop 3 

in Cry41Aa concluded that mutants T512A and Y513A have a reduced toxicity to 

susceptible insects (Howlader et al., 2010; Howlader et al., 2009). 

 

In a study carried out in Cry1Aa to investigate the hydrophobic nature of loops in domain 

II, it was questioned whether hydrophobic profiles of loop residues were conserved in 

Cry toxins or necessary for initial binding to the Bt -R1 cadherin receptor. Seven mutants 

of loop 3 of Cry1Aa were created, and none exhibited a reduction in receptor-binding 

affinity. Five recombinants out of the seven produced 75% mortality rate in third instar 

B. mori within 72 h of ingesting recombinant toxins. One recombinant (439EPPA442) 

caused a 35% mortality rate, whilst recombinant 439TLRT442 was completely non-toxic 

with zero morality at both 48 and 72 h post ingestion of the recombinant. The study 

concluded that the critical residues are not required for binding. However, the study 

emphasised the natural flexibility of loops of Cry1Aa and the possibility that mutants 
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may change conformation to present hydrophobic profiles to the cadherin receptor and 

thus averted a reduction in receptor binding affinity (Fujii et al., 2013).  

 

Fujii et al. (2013) speculated that the natural flexibility of loop allowed for multipoint 

attachments by exposing hydrophobic profiles to receptors, without the need for 

specially conserved amino acid sequence in the loop region. Furthermore, the study 

suggested that larger conformational flexibility of loops involved in binding allowed for 

a larger available fraction of loop conformation compatible with toxin-receptor complex 

formation. This may explain their observations whereby some of loop 3 mutants 

exhibited higher binding efficiency by up to 42 times.  
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2.0 Objectives  

A number of studies have suggested that the loops of domain II are involved in initial 

binding and specificity of Cry toxins. This study aims to identify domain II loop regions of 

Cry41Aa in order to investigate the specificity that it has towards HepG2 cancer cell lines.   

Cry41Aa is one of the least studied parasporins. Little is known about what gives rise to 

its specificity towards some mammalian cancer cell lines. This study will apply functional 

and structural approaches that have been typically used to study insecticidal Cry toxins, 

in order to unravel Cry41Aa specificity. Bioinformatic tools and findings from previous 

research on insecticidal Cry toxins will server to identify and narrow down Cry41Aa gene 

regions corresponding to domain II loops regions. Once identified the domain II loops 

will undergo the following mutagenesis approaches: (I) a loop exchange between 

cytocidal Cry41Aa and an insecticidal Cry toxin. (II) the production of hybrids as a result 

of domain swapping between Cry41Aa and other insecticidal Cry toxins. (III) the creation 

of Cry41Aa loop mutants via residue substitutions. The above approaches will contribute 

to building a picture of Cry41Aa specificity and identify key gene regions or residues that 

are significant to its specificity.  

 

The long-term project outcomes of this study aim to contribute to the current discussion 

on the safe application of Cry toxins as biopesticides and the discovery that Cry toxins 

can and do interact with vertebrate cell lines. Findings from this study may reveal 

alternative or unknown HepG2 receptors targeted by Cry41Aa. Any further information 
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learnt on the specificity of Cry41Aa can be used to assess its potential contribution to 

the pharmaceutical industry and drug design in the fight against cancer.   

 

The long-term project outcomes of this study aim to contributes to the current 

discussion on the safe application of Cry toxins as biopesticides and the discovery that 

Cry toxins can and do interact with vertebrate cell lines. Findings from this study may 

reveal alternative or unknown HepG2 receptors targeted by Cry41Aa. Any further 

information learnt on the specificity of Cry41Aa can be used to assess its potential 

contribution to the pharmaceutical industry and drug design in the fight against cancer.   
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3.0 Material and Methods  

3.1 Materials  

3.1.1 Bacteria Strains and Plasmids 

Genomic DNA of A1462 Bt strain was used as a DNA template to amplify Cry41A operon 

(Yamashita et al., 2005). DNA inserts were ligated into pBluescript or E.coli/ Bt shuttle 

vector pSVP27A (Crickmore et al., 1994). B. thuringiensis/Escherichia coli shuttle vector 

(Bt-shuttle vector) pSVP27A is characterised by its ability to replicate in both E.coli and 

Bt (Liu et al., 2009). It has a promoter and a selective marker DNA sequence that can 

function in Bt.  

 

In this study the Bt-shuttle vector pSVP27A was modified from vector pSV2 which is 

partly derived from pBR322 vector (Crickmore and Ellar, 1992; Crickmore et al., 1994). 

E. coli JM109 strain was transformed with plasmid to establish constructs. Other 

plasmids include pGEM which is high-copy-number vectors containing T7 and SP6 RNA 

polymerase promoters flanking a multiple cloning region within the α-peptide coding 

region of the enzyme β-galactosidase.  A list of host bacterial strains is presented in table 

3. Table 4 lists the buffers used in this study. Table 5 lists the regents and kits employed 

in this study.  
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Bacteria Host List 

Bacterial strain  Description  Bacterial host   

JM109 high efficiency 
transformation 
strain used for 
routine cloning 

E. coli   

GM2163 dam-/dcm- 

chloramphenicol 
resistant strain used 
to obtain non-
methylated dna for 
transformation of 
Bt4D7 

E. coli   

Bt4D7 crystal minus 
derivative of bt 
subspecies kurstaki, 
obtained from the 
bacillus genetic 
stock centre 

Bt 

 

Table 3 lists the bacterial strains used in this stud 
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3.1.2 Buffers and Solutions 

 

Table 4 Lists buffers used in study  
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3.1.3 Reagents, kits, enzymes, plasticware 

Table 5 lists the reagents, kits, enzymes and plasticware used in study. 
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3.1.3. Cell lines   

HepG2, human hepatocyte carcinoma cell line was purchased from ECACC, Salisbury, 

UK. HeLa, lymphoblastoid (GM12878, IB4) and Burkitt's lymphoma (MUTU1, BL31) cells 

were gifts from Dr Michelle West (University of Sussex, UK). HL-60 cell line was a gift 

from Dr Helen Stewart (University of Sussex, UK). Another batch of HL-60 cells was 

purchased from ECACC, Salisbury, UK. Cell lines used in electrophysiology experiments 

were provided by Prof Jean-Louis Schwartz (University of Montreal, Canada). 

 

3.1.4 Storage of biological material  

Bacterial strains were storage in LB with 15% glycerol at - 80°C.  Once defrosted bacteria 

were stored on agar plates at 4°C. Toxins were stored at - 20°C. Cancer cells were kept 

in liquid nitrogen at - 197°C, once defrosted for use they stored at - 80°C in complete 

medium with 10% glycerol.  

 

3.2 Methods  

The steps and experimental procedures taken to create Cry41Aa constructs are 

summarised in figure 13.  

 

3.2.1 Agarose Gel Electrophoresis 

All Agarose gels and DNA samples analysed by agarose gels in this study were prepared 

as followed unless otherwise indicated.  1% DNA agarose gel was made by weighting   
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0.3 g of agarose and added to 30 mL of TBE x1 and heated until all dissolved. A 1.5 µL of 

GEL RED dye was added and the solution was allowed to cool and solidify. A 1µL of 

purified product was added to 9µL of water, 2 µL of loading buffer was added to mixture 

and a total volume of 12 µL for each sample was loaded onto gel. A 1 Kb DNA ladder 

(New England Biolabs) was ran on gel at 120v in TBE buffer to make appropriate DNA 

band size comparisons. The bands of amplified products were visualised under 

ultraviolet light.  

 

3.2.2 Amplification of Cry41Aa Operon and other DNAs via PCR 

Genomic DNA of A1462 Bt strain was used as a template to amplify ORF2 and ORF3 

(Krishnan, 2013). OFR2 of Cry41Aa was cloned into pBluescript SK2+ plasmid to create 

pBS41Aa. A BamHI restriction site at the 5’ end and an XhoI site at the 3’ end flanks the 

gene. The restriction enzymes allow for subcloning of ORF2 into pSVP2741Aa. The PCR 

amplification was carried out using high fidelity polymerase in the presence of dNTPs.  

The protocol for the PCR was as follows: initial denature was carried out at 94°C for 15s, 

the annealing temperature was 50°C for 30s, extension was carried out 68°C for 5 min 

with a final extension at 72°C for 7 min. This was repeated for 30 cycles. The PCR reaction 

was set up as follows: 0.5 µL of 100 µg/mL of each primer, 25 µL of high-fidelity PCR 

master mix (Roche), 0.5 µL of template DNA obtained from pBS41Aa plasmid, 2.5 µL of 

PCR nucleotide mix, and 23.5 µL of water. Amplified products then visualised using 1% 

agarose gel. All constructs were created using this protocol with occasional adjustments 
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to extension time and annealing temperatures. Primer are listed for each construct in 

the results chapter 5,6, and 7. 

 

3.2.3 PCR Product gel purification 

QIAquick PCR Purification Kit (QIAGEN) was used to purify PCR products according to 

manufactures recommendations. PCR products were run on agarose gel. The bands 

were visualised and excised. 600 µL of QG buffer was added and placed in a 60°C water 

bath until agarose gel solubilised. 200 µL of isopropanol was added and the solution was 

thoroughly mixed.  5x volume of chaotropic buffer PB is added to 1x volume of PCR 

product and mixed. QIAquick spin column is placed in 2 mL collection tube. The sample 

was added to column and spun for 1 min at 13,000rpm; this step binds DNA onto the 

membrane in the column. The flow through was discarded and column placed back in 

the same collection tube. A total of 750 µL of PE buffer was added to column and spun 

for 1 min. Second round of flow through is now discarded. Column is placed back on 

collection tube and further centrifuged for 1 min. Final round of flow through was 

discarded. The column is placed in a new 1.5 mL eppendorf tube. A total of 10 µL of EB 

buffer (10 mM Tris-Cl, pH 8.5) was added to centre of membrane and allowed to stand 

for 1min to maximise product recovery. Then it was centrifuged for 1 min. Each purified 

PCR product was collected and ran on 1% agarose gel.   
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3.2.4 DNA ligation  

All purified linear DNAs were ligated overnight at room temperature. This will allow the 

linear DNA to become a circular one, and thus a plasmid that can be introduced into host 

bacteria. Further ligations were carried out where two separated linear DNAs were 

ligated together to form a plasmid 

- PCR product was setup to self-ligate as follows: 8.5 µL of purified DNA, 1 µL of 

ligase buffer, 0.5 µL of T4 ligase enzyme.  All ligations were incubated overnight 

at room temperature. 

- Gel Purified fragments (2.5kb/7.8kb) were ligated overnight as follows:  1 μL of 

pSVP2741Aa 7.8kb fragment (ORF3), 3 μL of insert DNA 2.5kb fragment (ORF2), 

0.5 μL ligase enzyme, 1 μL of ligase buffer, and 4.5 μL of distilled water were 

mixed and incubated overnight at room temperature.  

 

3.2.5 DNA digestion  

- Removal of methylated DNA  

DpnI enzyme was used to remove methylated DNA prior to transformation with 

bacterial cells. A total of 1 μL of DpnI was added to 45 μL of PCR product. This 

mixture was incubated for 1 h at 37C.  

- Double digest and Isolation of ORF2 (2.5kb fragment) and ORF3 (7.8kb fragment) 

0.5 μL of BamH enzyme, 0.5 μL of Xhol enzyme, 2 μL of DNA, 1 μL of buffer2, and 

6μL of distilled water were mixed and incubated for 1 h in a 37⁰C water bath. 
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The mixture was then loaded and run on an agarose gel, where desired bands 

were visualised under UV light and excised.  

- HaeIII enzyme was applied to digest plasmids and confirm whether DNAs were 

desired constructs. Digestion tube contained: 1 μL of DNA, 7.5 μL of dH2O, 1 μL 

of Buffer C, 0.5 μl of HaeIII enzyme. Tube was incubated for a minimum of 30 

min at 37°C. Experimental restriction banding patterns were compared with the 

pattern predicted by the NEB web cutter.  

 

3.2.6 DNA desalting 

The salt was removed from DNA samples in preparation for Bt transformations. A 0.1M 

of glucose in 1% agarose gel was made as follows: 0.54g of glucose, 0.30g of agarose, 

and 30mL of distilled water were mixed and heated. The solution was aliquoted into 

eppendorf tubes and allowed to solidify. To desalt, 20-30µL of DNA was added to set 

agarose and allowed to sit for 30mins.  

 

3.2.7 Bacterial transformation 

A 100 mL broth solution of bacterial strain was incubated until OD600 0.4. sample 

centrifuged in SLA1500 at 10 rpm for 10 min. The pellet was washed several times in 

cold dH2O and finally aliquoted into 50 µL volumes.  A 1µL of DNA was added the mixture 

and transferred to electroporation cuvettes. Gene pulser was set to 1.8Kv, 200ohms, 25 

µF.  The mixture was plated onto ampicillin (100 µg/mL) treated LB agar plates and 

incubated overnight at 37°C.   



76 
 
 

 

 

3.2.8 Bacterial Plasmid Miniprep using QIAprep Spin Miniprep Kit Protocol 

An eppendorf tube with bacteria in 250 µL of buffer P1 was prepared. A total of 250 µL 

of buffer P2 was added, followed by, 350 µL of neutralising buffer N3. The mixture was 

centrifuged, and supernatant transferred to column. This was spun and flow through 

was discarded. A total of 500 µL of PB buffer was added to bound DNA and spun followed 

by and 750 µL of PE buffer. The DNA was eluted with 50 µL of EB buffer.  

 

3.2.9 Rapid Size Screen (RSS) 

RSS solution was prepared as detailed in section 3.1.2. Individual colonies were pick 

suspended in 25 µL of RSS solution. The samples were spun, and supernatant was loaded 

onto 1 % agarose gel.  Colonies with potential mutants were selected for further 

analysis.  

 

3.2.10 Protein harvesting  

After 3days of incubation at 30 ⁰C, Bt cells were analysed under a light microscope (Leica 

DMLS). The cells were harvested once spores and crystals were observed. Cells were 

scraped from agar plates and suspended in 30 mL of cold distilled water. The cells were 

lysed by repeated sonication at 150 Watt (four cycles of 1 min) on ice. The pellet was 

collected by centrifugation at 12,000 x g for 10 min at 4 °C and re-suspended in 1 mL of 

distilled water.  
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3.2.11 Protein analysis using SDS-PAGE 

Protein gels for this project were set up as follows unless otherwise indicated. RGB, SGB 

and 2x SDS loading buffers were made according to section 3.1.2.  Reducing SDS/ME was 

made up of 95 µL of x2 SDS buffer and 5 µL of 2.5 % reducing β-Mercaptoethanol (ME). 

A total of 10 µL of protein sample was added to 10 µL of reducing SDS/ME and boiled 

for 3- 4min. The samples were spun and loaded onto SDS PAGE gel at 120 v for 30 min. 

Gel stain was made according to section 3.1.2. The gel was stained for 20 min and later 

treated with gel destain. Molecular masses of proteins were estimated by comparison 

with molecular standard protein marker (new England Biolabs).  

 

3.2.12 Solubilisation and activation of Protein  

Crude protein was spun, and pellet resuspended in carbonate buffer. Protein crystals 

were solubilised in 5x volume of carbonate buffers made according to section 3.1.2. One 

µL of   0.1 M of DTT was added to 20 µL of sample giving a final concentration of 5 mM 

of DTT. The mixture was incubated for an hour in 37 ⁰C water bath. The samples were, 

spun and supernatant retained. Solubilised sample were analysed on protein gels. A 

total of 10 mg/mL of trypsin solution in carbonate was used for activation at the ratio of 

1:10 (v/v) enzyme to supernatant and incubated in a 37 °C water bath for 1 h. Complete 

mini EDTA-free protease inhibitor was later added to stop further proteolysis. 
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3.2.13 Dialysis of Protein 

Dialysis is designed to eliminate small molecular weight substances that might interfere 

with a subsequent step in the experimental procedure. It also used when large 

molecules such as proteins require different buffer environment for an experimental 

step (Glick and Pasternak, 1998). Here it was carried out in preparation for protein 

purification with AKTA –FPLC. The protein was dialysed against 1L volume of different 

Tris concentrations of pH 8.  The protein was first dialysed against 1 L of 10mM Tris was 

made by dissolving 1.2 g of Tris-HCL solute in 1 L of water and pH adjusted with 

hydrochloric acid (HCL). The solubilised protein was loaded into a 350 µL volume 

capacity microanalysis button and covered with dialysis tubing which retains proteins 

with a molecular weight of 12,000KDa and above.  

 

Large scale dialysis was carried out with 50mM Tris made by dissolving 6.0 g of Tris –HCL 

solute in 1 L of water. The solubilised protein was loaded into a 5mL capacity dialysis 

tube which retains proteins with a molecular weight of 12,000KDa and above. All 

samples were dialysed overnight in cold room gently stirred by magnetic stirrers.   

 

3.2.14 Protein Purification  

- Ion Exchange chromatography  

Solubilised dialysed protein toxin was purified using AKTA FPLC according to 

manufacture protocol.  The following cold solutions were prepared and filtered 

overnight in cold room.  One litre solution of 50mM Tris pH 8 was made by 6.0 g 
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of Tris-HCL solute in 1 L of water and split into two 500 mL flaks.  A 500 mL of 1M 

sodium chloride in Tris was made by dissolving 30 g of NaCl in 500 mL of 50 mM 

Tris. A 500 mL of water and a 500 mL of 50 mM Tris were also prepared.  A Millex 

GP micro-pore filter of 0.22 µM/ml was used to filter protein sample as it was 

injected. This was transferred to an anion exchange column Resource Q 

(amersham pharmacia biotech, UK). The toxin was eluted with an increasing 

linear gradient of NaCl in Tris at a flow rate of 1 mL/min. Fractions were collected 

and analysed on protein gels.   

 

- Gel filtration 

One mL of the solubilised trypsin treated protein was loaded to a Sephacryl S-

200 High Resolution (Amersham) gel filtration (15 mL) column. The activated 

recombinant protein eluted with 50 mM sodium carbonate (pH 10.5).  Fractions 

collected and quantified using BioRad kit. Fractions were also analysed on 7.5 % 

SDS-PAGE gels. 

 

3.2.15 Protein concentration  

Protein concentration was determined by the Bradford method (Bradford, 1976) using 

a Bio-Rad Protein Assay Kit (Bio-Rad) with BSA as the standard. Coomassie Brilliant Blue 

G-250 was added to a protein solution, which in acidic conditions binds to basic amino 

acids and can be measured at 595 nm with a spectrophotometer. The mixture was 
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incubated for 5 - 10 min at room temperature before measurement. Concentration of 

the unknown sample was determined by comparing its absorbance value against a 

plotted BSA standard curve. The standard curve showed near linear response 

(R2=0.9975) over 0 - 1 mg/mL BSA concentration range. 

 

SDS PAGE gel was also used to estimate protein concentration. Protein samples were 

loaded onto gel and the band intensities were compared against each other. The 

samples were diluted or concentrated by Vivaspin 20 centrifugal concentrator MWCO 

100 kDa until bands appeared to be the same intensity.   Further analysis of band density 

was carried out by BIO Rad software programme which measure band density and 

compares it to a control band density. It also estimates the molecular weigh of proteins 

against a protein marker in the same gel. Three such gels were analysed in this manner 

and average results are listed in results chapter 6.  

 

3.2.16 Microscopy  

Cell viability observation and post-treatment monitoring of swelling were carried under 

Nikon Eclipse TS100 inverted microscope. 

 

3.2.17 Cell culture conditions  

The cells were maintained under the conditions recommended by the supplier. For 

adherent cells, culture medium DMEM with high glucose (4.5 g/L) was supplemented 
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with 10 % FCS, and with 1 % PSG (100 U/mL penicillin, 100 μg/mL streptomycin, 292 

μg/mL L-glutamine). Suspension cells were cultured in RPMI 1640 supplemented with 

10 % FCS and 1 % PSG. For the culture of BL31 cells, RPMI 1640 was additionally 

supplemented with sodium pyruvate (100 nM) and 1-thioglycerol (100 nM).  

 

The cells were cultured in sterile polystyrene 75 cm2 flasks (Nunc) in standard cell culture 

conditions (37 °C and 5 % CO2 humidified air). Medium was changed twice a week. When 

adherent cells reached confluency (between 70-80 %) they were washed with DPBS and 

detached by trypsinization (trypsin/EDTA containing 0.05 % trypsin and 0.53 mM EDTA) 

at 37 °C for 5 - 10 min. This was followed by centrifugation (100 - 200 x g for 5 min). 

Adherent cells were dispersed by banging and re-suspension in fresh medium. Cells 

were counted and split depending on the desired seeding ratio.  

 

For electrophysiology experiments HepG2 cells were cultured in DMEM and low glucose 

(1 g/L). HeLa cells were cultured in MEM. Both mediums were supplemented with 10 % 

FCS and 1 % PS. Media were buffered with 25 mM Hepes and cultured in the absence of 

CO2 in non-coated 60 mm plastic dishes. 

 

3.2.18 Cell assays  

Fluorescent cell assays were carried out in 96-well plates. Each well was loaded with 90 

μl of cell suspension at a density of 5,000 or 22,500 cells per well (equivalent to 5.5 x 

104 or 25 x 104 cells/mL) in complete DMEM (DMEM supplemented with FCS and PSG) 
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and incubated overnight under standard cell culture conditions. After incubation, 10 μl 

of toxin was added to each well. control wells contained 90μl of cell suspension and 10 

μl of the appropriate buffer were set up. The following control buffers were used: for 

gel filtered toxin - 25 mM tris-HCL, 150 mM NaCl (pH 7.4), for ÄKTA purified toxin - PBS 

(7.4 pH). For background fluorescent control 100μl of cell culture medium was loaded 

into well. An additional control containing 90 μl of medium and 10 μl of toxin was also 

loaded into well. Generally, each treatment was tested in triplicate (three technical 

replicates). The viability of the cells was measured using CellTiter-Blue, usually after 24 

h of treatment. For CellTiter-Blue assays cell density and incubation time with the 

reagent were optimised for each cell line. Twenty μl of the reagent was added at the 

end of toxin exposure period and the reading was taken after additional 2 h (end-point 

method). Fluorescence was measured with a green filter with excitation wavelength at 

525 nm and emission wavelength range of 580-640 nm.  

 

CellTox-Green assays were used for evaluation of cytotoxicity by measuring changes in 

membrane permeability. For CellTox-Green assays ‘Express, No-Step Addition at Seeding 

Method’ was selected. In brief: to 5 mL of cell suspension 10 μl of CellTox Green dye was 

added and then 90 μl of the mixture was dispensed into each well and allowed to adhere 

overnight. The next day each well was loaded with 10 μl of toxin. Fluorescence was 

measured before toxin addition and at regular 30 min time-points post-toxin addition 

using a blue filter with excitation wavelength at 490 nm and emission wavelength range 

of 510-570 nm.  CellTox-Green values before toxin addition were subtracted from the 
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readings after treatment in that same well. Background fluorescent signals were 

subtracted from each well. 

 

3.2.19 Statistical analysis 

Results were expressed as means ± SEM for each experimental triplicate. To establish 

Cry41Aa and Y514A LC50 in HepG2 cells statistical analysis was carried out using SPSS 

software version 22.0, Probit Regression analysis (IBM, 2013). Dose response curves 

were claculated using nonlinear regression analysis and the equation ‘Dose response 

Stimulation, log (agonist)vs. response-variable slope’ in GraphPad prism version 7 for 

windows, GraphPad software, La Jolla California, USA, www.graphpad.com. 

 

3.2.20 Planar lipid bilayer 

A lipid mixture was created that contained phosphatidylethanolamine (PE), 

phosphatidylcholine (PC) and cholesterol (Avanti Polar Lipids) in a ratio of 7:2:1 (w/w). 

first, lipids were dried with N2 to evaporate chloroform and then dissolved in n-decane, 

at a final concentration of 20 μg/mL. 1 mL of KCl buffer (150 mM KCl, 1 mM CaCl2, 10 

mM Hepes, pH 7.5) was added to each of the artificially made disposable chambers. A 

250 μm diameter hole present at the junction of both chambers was painted with the 

lipid mixture using a blunt end glass pipette. However, only the central area of ˜ 100 μm 

in diameter created a functional bilayer. Chambers were connected to electrodes 

through conducting agar bridges and located inside a Faraday cage to decrease electrical 

interference. Voltage was applied to the cis chamber (trans chamber was grounded).  

http://www.graphpad.com/
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Membrane activity was recorded for 30 min before toxin(s) was added. Capacitance of 

the membrane was between 180 - 200 pF and the painted membranes remained stable 

for a couple of hours. Cry41Aa and F509A were dosed at a concentration between 4-8 

μg/mL, the current was recorded at different applied voltages. At the end of each of the 

three experiments, concentration of KCl in the cis chamber was increased to 450 mM to 

test if the pore was more cation or anion selective.  

 

All experiments were performed at room temperature. Voltage was applied using 

Axopatch – 1D (Molecular Devices). Detected current was recorded and amplified by the 

same instrument and converted into a digital signal with Axon Digidata 1440A 

(Molecular Devices). Currents were filtered at 5 kHz and digitized at 50 kHz. Recordings 

were analysed using pCLAMP 10.5 (Molecular Devices). Conductance was measured by 

recording 20 to 25 current jumps for each voltage and averaged. Currents were plotted 

versus applied voltages (I/V curves) and the data points were fitted by linear regression. 

Conductance (G) was read from the slope of each I/V curve regression line. Probability 

of channel opening was evaluated from recordings by digital analysis of the distribution 

of all current values and plotted for each voltage as a histogram using pCLAMP 10.5 

software. 
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3.2.21 Patch clamping   

A day  before the experiments, cells were seeded at a low density on 24 mm circular 

glass coverslips inside 35 mm dishes, prior to patching, cells were washed three times 

with buffer and mounted inside a coverslip holder that was fitted to the stage of an 

inverted microscope (IMT-2, Olympus). 1 mL of either NaCl (140 mM NaCl, 5 mM KCl, 

1.1 mM MgCl2, 1.1 mM CaCl2, 10 mM Hepes, pH 7.4) or KCl buffer (140 mM KCl, 1.1 mM 

MgCl2, 0.1 mM EGTA, 10 mM Hepes, pH 7.4) was added.  

 

Pipettes were prepared using a Narishige glass capillary puller in a two-step heating 

process that required two types of pipettes. The borosilicate LG16 (Warner Instruments) 

for some of the single channel recording and soda lime 200 (Kimble Chase) for single 

channel and whole cell recordings. The heater was set to 84/77 for borosilicate and 

84/74 for soda lime pipettes.  

 

The following steps were used in patch clamp experiments: cell attached, whole cell, 

inside out. Pipettes were mounted inside a holder attached to an automatic 

micromanipulator. Ag/AgCl pellets created an electrical connection between the pipette 

and the amplifier. The bath solution was grounded. In some experiments, the pipette 

was first filled with buffer, followed by toxin(s) addition on top to allow slow diffusion 

towards the tip of the pipette. In other experiments, the toxin(s) was added straight to 

the bath. The filled pipettes had the resistance of about 4 MΩ and the resistance of the 
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seal was in the range of 2 - 10 GΩ. A voltage of -20 or -40 mV was applied to facilitate 

the transition from the attached cell into the whole cell mode.  

 

Currents were launched as a set of seventeen 1 s depolarizing potential steps from −20 

to 140 mV (10 mV increments). Current values between 0.95 – 1 s were analysed at each 

voltage, counting from the launch of each recording. Values were corrected for the 

averaged baseline current measured just prior to the applied potential. Current – 

voltage curves in the whole cell experiments were generated from each data set for each 

time point and conductance was calculated from the slope of regression line of each I/V 

curve.  

 

In the single channel experiments, with excised patches conductance was calculated as 

described for PLB experiments using the slopes of the I/V curves. The following equation 

was used for cell attached mode: G=I/(V-Vr) to correct for the intracellular voltage, were 

Vr is a reversal potential. After plotting data points, Vr was calculated from the 

intersection of the voltage axis with the linear regression at zero current.  

 

All experiments were performed at room temperature. Voltage was applied using 

Axopatch – 1D (Molecular Devices). Detected current was amplified and converted into 

a digital signal with Axon Digidata 1550 (Molecular Devices). Currents were filtered at 
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10 kHz and digitized at 50 kHz. Recordings were analysed using pCLAMP 10.6 (Molecular 

Devices). 

 

3.2.22. Western blots  

Cells were seeded in 6, 12, 24-well plates. the cells were lysed with RIPA, NP-40 (1 mL of 

lysis buffer per 2.8 x 107 cells) or 1.5% NOG (1 mL of lysis buffer per 2 x 107 cells). Each 

lysis buffer contained protease inhibitors: Complete protease inhibitor mixture, 1 mM 

EGTA, 1 mM EDTA and phosphatase inhibitors: 2 mM sodium orthovanadate and 1 μM 

microcystin. HepG2 cells were seeded at the density of 25 x 104 cells/mL in 6 well-plates 

(75 x 104 cells/dish). Sodium arsenite was added once cells reached >70% confluency. 

They were then incubated for 15-30 min with buffer, or toxins followed by 2 washes 

with DPBS. Complete cells were scraped, spun at low speed (200 x g) and supernatant 

was discarded. Pellet containing complete cells was re-suspended in 100 μl of NP-40 

with protease and phosphatase inhibitors (1 mL of lysis buffer per 7.5 x 106 cells). 

Samples were vortexed for 10 s, left on ice shaking for 20 min and spun at 16,873 x g for 

15-30 min at 4°C. Supernatant was collected and diluted protein concentration was 

assayed by Bradford.  

 

For a p-p38 western blot 5-30μg of protein were loaded per well. The proteins were 

resolved on SDS-PAGE gels. The gel was drenched in dry blot buffer and proteins were 

transferred to a nitrocellulose membrane (HyBond ECL or Bio-Rad, pore size 0.45 μm) 
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via a Bio-Rad Trans-Blot Semi-Dry Transfer Cell system. The membrane was washed with 

PBS and blocked with PBS containing 0.02% Tween-20 (PBS-T) and 3% BSA for 1-3 h at 

room temperature. Further membrane washes with PBS-T.  

 

Probing was done overnight at 4°C by incubating the membranes with rocking in a fresh 

blocking solution containing 3% BSA and primary antibody diluted in PBS-T (1:1000 

dilution for antibodies against total and phosphorylated ERK and p38; 1:50000 dilution 

for anti-CD59 antibody). In pCREB and N-cadherin western blots both blocking and 

incubation with primary antibody (1 μg/mL final) was done using 5% non-fat dry milk 

instead of BSA. Post overnight incubation, the membranes were washed 3 x 10 min with 

PBS-T, followed by 1 h incubation with an appropriate horseradish peroxidase-

conjugated secondary antibody diluted 1:2000 in PBS-T containing 5% non-fat dried 

skimmed milk. lastly, the membranes were washed again (3 x 10 min, PBS-T) and 

saturated in chemiluminescent detection solution and exposed to X-ray film (FUJI 

medical X-ray film). 

 

The following antibodies were acquired: Rabbit monoclonal antibody against phospho-

p38 (Thr180+Tyr182) and rabbit polyclonal antibodies against phospho-ERK, total p38 

and total ERK were from Cell Signalling Technology (9215S, 9101S, 9212 and 9102 

respectively). Second vial of rabbit monoclonal antibody against phospho-p38 

(Thr180+Tyr182) was obtained from Thermo Fisher Scientific (MA5 15182). The 
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following primary antibodies were purchased from Abcam: rabbit monoclonal against 

CD59 (ab126777).  
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 Design 

Mutagenesis 

 

Decide on mutagenesis, such as deletion, substitution, or creating a hybrid. 
Mutagenesis took place in domain II loops of Cry41Aa, located in ORF2 of pBS41Aa   
Design primers for mutagenesis. 
Prepare template and PCR mix; optimize annealing temperature for PCR.  
Run PCR products on 1% agarose gel, excise, and purify product. Allow linear DNA to self-ligate overnight at room temperature. 

 Transformation 
with E. coli   

 

Ligation mixuture are introduced into E. coli   and plated onto 100µg/ml ampicillin plates. 
Colonies were picked and incubated in LB with ampicillin.  
Plasmids were extracted using mini prep extraction kit  

 Confirmation of 
mutagenesis in 

E. coli 
expression 

vector 

 

Plasmids undergo a Hae III digest and fragments are visualised on 1%agarose gel 
NEB cutter software provides Hae III digestion profile for each mutant plasmid. These were compared against gels of plasmid Hae III 
digests. Mutant plasmids were further confirmed by sequencing. 

 Creating Bt 
expression 

vector 

 pBS41Aa lacks ORF3 of Cry41Aa required for packaging and crystal formation. Mutant OFR2 were isolated and taken into a Bt 
expression vector pSVP2741Aa. 
Two double digests were carried out (i) BamHI and XhoI double digest to isolate mutant ORF2 fragment (2.5kb) from Blue Script.  

(ii)  a BamHI and XhoI double digest to isolate ORF3 from pSVP2741Aa. This is 7.8kb fragment. All fragments were visualised, excised 
and purified from agarose gel.  
The liner DNAs were ligated overnight to form construct.  

 Transformation 
with E. coli   

 

Ligation mixture were introduced into E. coli   and plated onto 100 µg/ml ampicillin and 5 µg/ml chloramphenicol agar plates. 
Colonies harbouring potential mutants are picked and incubated in LB with antibiotics. 
Plasmids were extracted by mini prep kit and subjected to further analysis  

 Confirmation of 
mutagenesis in 
Bt expression 

vector 

 

Hae III digests profiles on potential construct revealed potential candidates on 1.5% agarose gel. 
Sequencing analysis confirmed desired construct.  

 Transformation 
with E. coli   

 

Constructs in Bt shuttle vector was introduced into E. coli   GM2163 to remove methylated DNA. Transformation was plated onto 100 
µg/ml ampicillin agar plates.  Colonies were picked and incubated in LB with antibiotics. Mini preps were carried out to isolate 
plasmids. Hae III digest were carried out on recovered plasmids and run against control DNAs on 1.5% agarose gel.  
Constructs were confirmed by Hae III digests. 
Construct were ready for transformation with Bt4D7. 

 Transformation 
with Bt4D7 

 The DNA is desalted to improve rate of successful Bt transformation. 
Mutant constructs in Bt shuttle vector were introduced with Bt4D7 and plated out in 5 µg/ml chloramphenicol agar plates for 
overnight incubation at 30˚C. Colonies were picked and incubated in LB with 5 µg/ml chloramphenicol.  The plasmids were extracted 
with mini prep kit for further analysis. The remaining LB with colony was plated out in 5 µg/ml chloramphenicol agar plates for 3 days 
at 30˚C. 

 Confirmation of 
Bt crystals and 
mutant DNA 

 Extracted plasmids were first visualised in agarose gel to confirm that DNA was obtained from Bt cells.  
The plasmids were introduced into E. coli and plated on agar prepared with 100 µg/ml ampicillin and 5 µg/ml chloramphenicol and 
incubated overnight at 37 ˚C. Cell lawn was scraped, and DNA was extracted with mini pre-kit. Hae III digests confirmed that DNA 
which was introduced with Bt4D7 is the same one that was extracted from Bt4D7. Hae III digest were not carried out directly in Bt 
recovered plasmids as the presence of native plasmids digest profile would make HaeII digest profile of construct difficult to 
interpret. 
Light microscope observations confirmed the presence of crystals and spore from Bt after 3days of incubation. 
Bt cells were harvested and crystals were characterised 

Figure 13 Methods schematic diagram  
Schematic diagram of the steps, and experimental procedures taken to create Cry41Aa constructs 
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4.0 Bioinformatic analysis of Cry41Aa  

4.1 Introduction 

To study the function and structure of Cry proteins bioinformatic tools were used, which 

resulted in a growing nomenclature system that hosts over 300 Cry proteins (Crickmore 

et al., 2018).  

 

Key characteristics have been revealed, for instance many Cry proteins have five 

conserved sequence blocks (Höfte and Whiteley, 1989). In addition, molecular modelling 

has shown that Cry proteins with this feature tends to have a similar 3domain fold 

(Adang, et al., 2017; de Maagd et al., 2003; Pardo-López,2013; Soberón and Bravo, 

2013).  

 

Cry proteins tend to have high occurrence of homologous genes, however, the active 

form of the Cry protein tends to be active against a limited number of targets (Schnepf 

et al., 1998; Crickmore et al ., 2013; de Maagdet al., 2003; Bravo, 1997). Research studies 

have taken advantage of the specificity of Cry proteins and their ability to target certain 

insect orders to commercially explore their application as bio-pesticides.  The ability of 

Cry toxin to recognise and to bind to different types of cells is a determinant of its 

specificity.  
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Studies on the adaptive evolution of Cry proteins have revealed potential positive 

selection for certain residues and positions that increase the diversity of specificity of 

Cry toxins. It was suggested that this increase on the type of target cell allowed Cry 

toxins to be active against a wider range of hosts where spores can germinate, ensuring 

their continued existence in the environment and their ability to overcome resistant 

adaptations of hosts (Wu et al. , 2007; de Maagdet al., 2003).  

 

A study by Mizuki et al. (1999) attempted to address the high rate of occurrence of Cry 

proteins without a known insect target cell. As a consequence, this class of Cry protein 

were named parasporins and allocated Cry protein names. Parasporins are non-

haemolytic but active against certain cancer cell lines (Kitada et al., 2005; Mizuki et al., 

1999; Ohba, Mizuki and Uemori, 2009; Mizuki et al., 2000; Akiba et al., 2009; Yamashita 

et al. 2005).  

 

Among the parasporins,  parasporin 3 and 5 are the least studied (Nagamatsu et al., 

2010; Yamashita et al., 2005). Yamashita et al. (2005) first reported Cry41Aa also known 

as parasporin 3 as a 3-domain Cry protein of Bt that has cytocidal activity on myeloid 

leukaemia (HL60) and liver cancer (HepG2) cell lines. Molecular modelling suggests it 

has a secondary structure that is closely associated with the typical 3-domain structure 

of many insecticidal Cry proteins.  
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Cry41Aa is expressed from two open reading frames ORF2 and ORF3. Sequence 

alignments of ORF2 against protein sequences of revealed Cry structures has shown that 

the protein sequence of Cry41Aa encompasses the five conserved characteristic of 

insect targeting Cry proteins. Furthermore, ORF3 was found to contain conserved block 

6, 7 and 8 which are also present  in some larger insecticidal Cry proteins  (Yamashita, 

2005; Kitada et al., 2005; Yamashita et al., 2005; Nagamatsu et al., 2010). Despite these 

similarities, Cry41Aa has no known insect target and its ability to identify, interact and 

kill HL60 and HepG2 cell lines points to a novel specificity not seen before in typical 3-

domain Cry toxins (Kitada et al., 2005;  Ohba et al., 2009).  

 

Receptor recognition and binding specificity in 3-domain Cry proteins are usually 

associated with domain II (de Maagd et al., 2001; Crickmore et al., 1998; de Maagd et 

al., 2003). It has been noted that domain I which is associated with membrane insertion 

and pore formation is highly conserved, allowing the majority of genetic divergence to 

occur elsewhere (Boonserm et al., 2005; Schnepf et al., 1998; Bravo., 1997). Another 

study has shown that mutations carried out in domain I resulted in reduced or total loss 

of toxicity (Saraswathy and Kumar., 2004).  

 

Domain II is where much divergence occurs as it is associated with receptor recognition 

and binding specificity, and therefore its diversity within Cry proteins allows for a diverse 

range of target cells (Wu et al., 2007). This is particularly true of the exposed loops 

typical of domain II, where loops 1, 2, and 3 vary in length and amino acid sequence  
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(Schnepf et al., 1998; Smedley and Ellar, 1996; Tuntitippawan et al., 2005; Adang, 

Crickmore and Jurat-Fuentes, 2014). Cross resistance by target cells is a consequence of  

high sequence homology of the loops in domain II among three domain Cry proteins 

which can bind to the same binding sites in midgut brush border (Adang, Crickmore and 

Jurat-Fuentes, 2014). A number of studies have identified residue positions in loop 

regions of domain II and domain III that are positively selected for, and mutagenesis  

resulted in loss or reduced toxicity (Wu et al., 2007; Herrero et al., 2004). 

 

Other studies have investigated Cry toxin specificity and its improved specificity to target 

cell. These studies were also geared at the introduction of new specificity by addition to 

pre-existing one which resulted  in the creation of novel toxins with the consequence of 

a quicker killing response (Wu et al., 2000; Abdullah et al., 2003; Pardo-López et al., 

2009; Dean. H and Sylvis L, 2006). 

 

Pardo et al. (2009) carried out mutagenesis of loop2 and 3 on Cry1Ab to improve its 

insecticidal activity. It was discovered that these loops have important interactions with 

cadherin like transmembrane proteins CADR 11 and 12 binding sites and that the loops 

are critical for receptor interactions. Site mutagenesis on domain II loops of Cry3Aa and 

Cry1Ab, were reported to have a 10-fold increase toxicity of Cry3Aa towards its target 

insect Tenebrio molitor, and a 34-fold increase toxicity towards Lymantria dispar by 

Cry1Ab (Wu et al., 2000).  
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Studies on domain II loops of Cry4Ba have shown that deletions and substitutions have 

resulted in a novel toxicity against Culex mosquitoes (Abdullah et al., 2003). It is also 

possible to eliminate native toxicity and introduce novel activity against another target 

insect as illustrated by complete removal of Cry1Aa’s activity to caterpillar larvae (Dean 

and Sylvis., 2006) and to introduce toxicity to Culex pipiens by replacing Cry1Aa’s native 

loop1 and 2 with loop regions of Cry4Ba (Tuntitippawan et al., 2005; Abdullah et al., 

2003; Dean. H and Sylvis L, 2006)  

 

Early studies on loop 3 of domain II have implicated its role in target specificity, receptor 

recognition, and binding. Hussain et al. (1996) proposed that loop 3 residues have 

hydrophobic interactions with receptor and mutations in this loop can affect the toxins 

ability to bind. Indeed, Fujii et al. (2012) carried out research on conserved amino acids 

of Cry1Aa. The 30 amino acid loop that covers all its binding loops were substituted with 

hydrophobic residues and resulted with an increase in binding affinity towards cadherin 

BT-R1 receptor (Hussain et al., 1996; Fujii et al., 2012).   

 

Pacheco et al. (2009) demonstrated that mutations in domain II loops affect binding to 

the cadherin (Bt -R1) and aminopeptidase-N (APN) receptors in the lepidopteran 

Manduca sexta. These studies point at the implication of loop 3 of Cry1Ab in its mode 

of action. Mutations in loop 3 of Cry1Ab were found to severely affect the toxin’s 

insecticidal activity in both monomeric and oligomeric states of the activated toxin. A  

“ping pong” binding mechanism to explain the toxin activity and its dependency on loop 
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3 of domain II was proposed (Pacheco et al., 2009). Such studies have highlighted the 

important role of domain II loops in the specificity of 3-domain Cry proteins.  

 

In order to gain an understanding of the specificity that Cry41Aa has towards HL60 and 

HepG2 cell lines it is vital to explore the secondary structure of domain II loops In this 

study comparisons were made between the predicted Cry41Aa secondary structure and 

that of resolved 3-domain Cry protein structures. Bioinformatic tools were employed to 

carry out the comparative analysis. 

 

4.2 Identification of the putative loops of domain II in Cry41Aa using 

bioinformatic tools 

Information gathered from protein sequence and structure is often used to explore 

protein function. Sequence homology between proteins can suggest similar functions of 

proteins particularly if they share putative homologous regions and similar structural 

arrangements. Bioinformatic software uses a wide range of data gathered from known 

protein sequences and structures to present a model summary of an unknown protein 

sequence.  

 

Information on protein sequence, structure, and function is ample.  Some bioinformatics 

tools collate data to trace evolutionary patterns of proteins in an attempt to improve 

the understanding of protein function. Naturally, proteins diverge; domain swapping, 
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matching or mixing is another way of obtaining novel function. Bioinformatic tools aid 

to make sense of the vast array of information and collates it in a form so that it may 

predict protein function.  

 

Scientists have employed computer programmes to assist with the comparisons and 

analysis of patterns and evolutionary relationships between biological sequences. 

Clustal is one of the bioinformatic tools that is comprised of computer programs for 

multiple sequence alignment of sequences. Protein, DNA, or RNA sequences can be 

aligned against a query or unknown sequence and depending on the algorithm; a 

sequence homology is detected and a phylogenic analysis is carried out to assess the 

links between the query sequence and that of known sequences. Multiple alignments 

are used to find diagnostic patterns to characterise protein families and determine 

homology between new sequences and existing families of sequences; in order to 

predict the secondary and tertiary structures of new proteins. Its takes advantage of the 

fact that homologous sequences are evolutionarily related.  

 

The programme builds a multiple alignment progressively by a series of pairwise 

alignments, following the branching order in a phylogenetic tree.  There are many 

versions of Clustal, operating systems and tools. It has evolved and progressed from its 

early 1988 version by Des Higgins. This study has applied ClustalW, the third version of 

a series of Clustal software. This version has sequence weighting, position-specific gap 

penalties and the automatic choice of a suitable residue comparison matrix at each stage 
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in the multiple alignment as well as more sensitive programming algorithm (Thompson 

et al., 1994; Chenna et al., 2003). 

 

However, the accuracy and reliability of this output information varies from one tool to 

another (Whisstock and Lesk, 2003). Bioinformatics tools have narrowed down regions 

involved in specificity, receptor recognition, and binding by analysing  unresolved Cry 

protein sequences against resolved Cry protein structure in attempt to understand Cry 

toxin mode of action (Li et al., 1991). In an attempt to understand, which regions of 

Cry41Aa are responsible for its activity against HepG2, bioinformatics tools were 

employed as a starting guide in an effort to locate sequence(s) responsible for its 

specificity towards HepG2.  

 

Clustal alignment analysis was applied to narrow potential loop regions in protein 

sequence of Cry41Aa. The protein sequences of resolved 3-domain Cry structures listed 

in table 6 were used in bioinformatics analysis of Cry41Aa protein sequence to identify 

its domain II loops.  
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Table 6 List of resolved domain II loops 
 Table lists loops 1, 2, and 3 of domain II of the protein sequences of resolved structures of Cry proteins used for 
alignment against Cry41Aa.  
 

 

 

The following is a list of crystal resolved Cry toxins: Cry1Aa (Grochulski et al., 1995), 

Cry1Ac (Evdokimov et al., 2014), Cry2Aa (Morse et al., 2001), Cry3Aa (Li et al., 1991),  

Cry3Bb (Galitsky et al., 2001),  Cry4Aa (Boonserm et al., 2006), Cry4Ba (Boonserm et al., 

2005), and Cry8Ea (Guo et al., 2009).   An alignment of Cry41Aa against these Cry 

structures was carried out to locate putative loop region of domain II associated with 

specificity and shown in  figure 14 a and 14 b (Likitvivatanavong et al., 2009; Adang et 

al., 2014; Crickmore et al., 1998).  The beta-trefoil domain of Cry41Aa was deleted from 

List of resolved domain II loops 

 
 
 
Cry 
toxin 
name 

 
Domain II loop sequences 

Loop 1 Loop 2 Loop 3 

Cry1Aa  

311RG312 

 

368RIILGSGPNNQE379 

 

435TMLSQAAGAVYTLRAPT451 

Cry1Ac  

311RG312 

 

369RPFNIGINNQQ379 

 

438SGFSNSSVS446 

Cry2Aa  

322NIGGLPG328 

 

378LDSGTDREGVA388 

 

440RPLHYNQIRNIESPGTPGGAR461 

Cry3Aa  

356PGYYNDS363 

 

420PS421 

 

489MQGSR493 

Cry3Bb  

349PGYFGKDS356 

 

412WPNGK416 

 

484MQDRRG489 

Cry4Aa  

371KAQTTPNNF379 

 

460AGSGQITYD468 

 

508SIPATYKTQ516 

Cry4Ba  

330TI331 

 

410SNITPTPEG418 

 

455YN456 
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the sequence before alignment as it has earlier been demonstrated that its removal has 

no impact to susceptible cell line (Krishnan, 2013). The alignment has highlighted the 

similarities between Cry41Aa and 3- domain Cry toxins. The alignment has been 

significantly narrowed down regions of putative loops of domain II in Cry41Aa where it 

aligned against known putative domain II loop of resolved Cry sequences.  

 

The alignment was further analysed by Box shade where amino acids that are the same 

or similar are highlighted, increasing the confidence of predications made about 

Cry41Aa. From this, similar or identical amino acids are likely to have similar structural 

roles, and thus provide evidence of analogous structural role of Cry41Aa sequences as 

those of the resolved Cry sequences. The alignment highlights the distinctive extra loop 

not found in other 3-domain Cry proteins as noted in Figure 14 a and 14 b. It also 

indicates the poor alignment of Cry41Aa loop2 against the resolved Cry sequences when 

compared to how well loop1 and loop 3 of Cry41Aa align with loop 1 and loop 2 of 

resolved Cry sequences.  Further tools were employed to identify the domain II putative 

loops of Cry41Aa.  
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Figure 14a ClustalW alignment analysis of Cry41Aa 
Clustal alignment analysis of Cry41Aa against the protein sequences of revealed crystal structures of Cry2Aa, Cry3Aa, 
Cry3Bb, Cry4Aa, Cry4Ba, and Cry8Ea. Box shade secondary structure analysis highlights identical amino acids in black 
and similar amino acids in grey. A unique sequence distinctive only to Cry41Aa known as the extra loop is highlighted 
in pink named the extra loop of Cry41Aa with the following sequence 261NVSDYSRYPWTQYNQSGGFSYREAKGEYRGT291 
. Loop1 is boxed in red for the known Cry toxins, and highlighted in red for predicted loop1 of Cry41A with the 
following sequence 384SITS387 . Loop2 is boxed in yellow for known Cry toxins, and highlighted in yellow for predicted 
loop2 of Cry41Aa with the following sequence  416QNTSYTRIDRP426 . Loop 3 is boxed in blue for the known Cry proteins, 
and highlighted in turquoise for predicted loop 3 of Cry41Aa with following sequence 503VRDNCPFAWPGYKQL517 . 
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Figure 14b Analysis of Cry41Aa by ClustalW alignment and Box shade  
ClustalW alignment analysis of Cry41Aa against the protein sequences of revealed crystal structures of Cry2Aa, 
Cry3Aa, Cry3Bb, Cry4Aa, Cry4Ba, and Cry8Ea. Box shade secondary structure analysis highlights identical amino acids 
in black and similar amino acids in grey. For all Cry proteins listed, Loop1 is highlighted in red, Loop2 is highlighted in 
yellow, loop 3 is highlighted in blue. β sheets are highlighted in green.  

 

 

PSIRED web server predicted the secondary structure of Cry41Aa, where sequences 

are predicted as β- strands, α- helixes, or coils and given a level of confidence as the 

accuracy of its predication as shown in figure 15, and 16.  The PSIRED protein structure 
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predication server incorporates three key programmes that predict secondary 

structures of globular and membrane bound proteins. In addition to secondary protein 

structure analysis, it incorporates the GenTHEADER program which recognises protein 

folds as well as the MEMSAT 2 program which predicts structure and topology of 

transmembrane proteins (McGuffin et al., 1999). 

 

The overall secondary protein is predicted to be highly helical in particular domain I. The 

analysis complements findings from the other bioinformatics tool and suggested that 

the three putative loops of domain II of Cry41Aa are found as coils structures. Loop 1 is 

predicated to sit in a coil between two β-sheets and is made up of four amino acids. Out 

of the three domain II loops, loop1 has the highest confidence score that is predicted 

loop structure is more likely. Loop 2 is the least confident predication of the three loop 

regions. It is made up of 11 amino acids found in a coil region made up of 31 amino acid.  

β-sheets here have the furthest proximity from loop region compared to the other two 

predicated loop regions.  Loop 3 is predicated with a good level of confidence.  It is made 

up of 15 amino acids flagged up by two β-sheets immediately either side of it. It is 

predicated to be in coil conformation made of a total of 17 amino acids that include the 

15 amino acids that make up loop 3 detailed in figure 15. The extra loop is flagged by 

helical structures either side.  

 

Figure 16 summarises the secondary structure of PSIPRED analysis. The three loops were 

mapped out onto the ClustalW alignment including the β-sheets that fall either side of 
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the three predicted putative of Cry41Aa as well these of the resolved 3-domain Cry 

proteins.  
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Figure 15 PSIRED webserver secondary structure image prediction of Cry41Aa based on amino acid sequence. 
Loop1 is underlined in red, loop2 underlined in yellow, and loop 3 underlined in blue. The extra loop distinctive to 
Cry41Aa is underlined in pink (Jones, 1999; Buchan et al., 2013). 
 
 

 

 

 

 

Figure 16 PSIRED webserver secondary structure image prediction of Cry41Aa structure based on amino acid 
sequence. 
Helical amino acids are highlighted in dark grey. β-sheets are highlighted in light grey.   Loop1 is boxed in red, loop2 
in yellow, loop 3 in blue. The extra loop distinctive to Cry41Aa is boxed in pink  
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X-ray crystallography remains the main method for the determination of protein 

structure, however it is time consuming and it is successful only when specific conditions 

for growing crystals are optimised. Thus, the main method to predict protein structure   

takes advantage of  computational homology modelling which  can  predict  the 

secondary     structure  of  a protein from  its  sequence (Shokry et al., 2018).   

 

Protein modelling servers SWISS-MODEL and the Protein Homology / 

analogY Recognition Engine V 2.0 or PHYRE2 were used to analyse the secondary 

structure of Cry41Aa. The PSIPRED analysis predicted the secondary structure based on 

the protein sequence of Cry41Aa highlighting  helixes, coils and β sheet strands in 

Cry41Aa with a score of confidence. Of the three loops, loop1 aligned better than any of 

the other loops predicted in the alignment.  

 

Many homology-modelling methods involve template selection, target template 

alignment, model building, and evaluation of the model as steps in their modelling 

approach. The named processes are repeated and reassessed until a model structure is 

created. The SWISS-MODEL server is based on the rigid fragment assembly approach, 

where the framework of the unknown protein is calculated on the basis of the family of 

homologous proteins, or an appropriate subgroup (Schwede et al., 2000; Schwede et al., 

2003). The program then aligns fragments of the known protein structures of high 

sequence homology with the unknown. This alignment provides a basis for building the 

model’s the structure. The server implements four main steps: template superposition, 
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target-template alignment, model building and energy minimization. In brief, the server 

first makes a template selection by searching a template library database. Quality 

indicators such as empirical force field energy removes low matching templates.  An 

alignment is then created. A local pair-wise alignment of the target sequence to the main 

template structure is calculated and a root mean square differences (RMSD) between 

pairs of homologous structures score can be obtained.  A model of the unknown protein 

sequence is built using information from the averaged backbone atom positions of 

templates. Loops are built based on scoring schemes, that consider field energy, steric 

hindrance and interactions such as hydrogen bond formations. The model is complete 

once energy minimization is carried out. In this final step, parts of the model with 

conformational errors are detected. Empirical force fields are used by the SWISS-MODEL 

server to regularise the built model (Biasini et al., 2014; Schwede et al., 2000; Schwede 

et al., 2003). 

 

The Protein Homology / analogY Recognition Engine V 2.0 or PHYRE2 is also a protein 

homology modelling server. It applies homology modelling principles to build a model 

of an unknown protein sequence. It is based on the understanding that the structure of 

proteins is conserved in evolution and that a model of an unknown protein can be made 

from its sequence based on related known protein sequences or templates (Kelley et al., 

2009; Kelley et al., 2015). The server applies four main stages to create a model. The 

server first scans the unknown protein sequence against a protein database where it 

gathers homologous sequences that have at least 20 % sequence identity with the query 
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sequence to build a multiple sequence alignment using the HHblits algorithm method. 

The resulting alignment is then assessed in PSIPRED a software that predicts the 

presence of α-helices, β-strands and coils with an accuracy of 75–80% (McGuffin et al., 

1999). It assesses both the predicted secondary structure and the alignment. HMMs 

output proceeds to create the backbone of the model. This is followed by loop modelling 

and finally side chain placement before a model is presented (Kelley et al., 2009; Kelley 

et al., 2015). 

 

Two protein-modelling servers SWISS-MODEL and PHYRE2 were applied to predict the 

secondary and tertiary structures of Cry41Aa.  Assisted by UCF chimera software to 

visualise the structures.  SWISS-MODEL generates 3D models for proteins using a 

template library in order to put together complete structural models matching Cry1Aa 

as the closest homologue at the time of the analysis. (Biasini et al., 2014). 

 

The SWISS-MODEL server created a model of Cry41Aa using its ‘first approach mode’ 

(Biasini et al., 2014). Here the sequence of Cry41Aa was screened against a number of 

suitable templates obtained from the ExPDB library. The automated modelling system 

then produced a model against a template that shares at least 25 % sequence identity 

with Cry41Aa. A number of insecticidal templates were identified against the sequence 

of Cry41Aa, however the template with the highest percentage of sequence identity was 

that of Cry1Aa with a 34 % sequence identity with Cry41Aa. it has a Global Model Quality 

Estimation (GMQE) score of 0.48. The GMQE is usually a number between 0 and 1 that 
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represents the accuracy of the alignment, template and built model. The higher the 

score the more reliable the alignment and thus the model built (Waterhouse et al., 

2018). Figure 17 illustrates the SWISS-MODEL model of Cry41Aa. Similar to insecticidal 

Cry1Aa the SWISS-MODEL modelled Cry41Aa has a domain I is made up of -helixes and 

domain II is a β-sheets sandwich both typical of 3 domain insecticidal Cry protein. 

Domain III is made up of β-sheets and a network of exposed loops, however Cry41Aa 

differs as it has a distinctive partial - helical extra loop (shown in pink, figure 17) that 

appears to protrude away from the main structure. Here, loop1 is short and tucked 

under, loop2 and loop 3 appear to extend out from the main structure. The model and 

Cry1Aa template were superimposed and were calculated to have an RMSD value of 0.7.  

 

PHYRE2  server applies template based homology modelling and fold recognition 

methods to predict secondary and tertiary structures to produce a PDB file for 

visualisation and analysis (Kelley et al., 2015) . The bioinformatic PHYRE2 tool has 

analysed the Cry41Aa sequence. It modelled 68% of the Cry41Aa sequence with 100% 

confidence. Furthermore, it suggested that the resolved crystal structure of Cry3Aa is 

the optimum structural template despite sharing 32% sequence identity with Cry41Aa 

sequence.  

 

The PHYRE2 server has modelled Cry41Aa to be structurally similar to insecticidal 3-

domin Cry protein such as Cry3Aa in figure 18. Domain I has the typical -helices of 
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insecticidal Cry proteins. Domain II is made up of β-sheets sandwhich that appears to be 

in a looser confromation to that seen in Cry3Aa. Similarly, domain III of Cry41Aa is made 

up of β-sheets and a network of exposed loops. Here, the extra loop  appears to be closer 

to the main structure and it is not helical but rather in a coil formation. Loop1 and loop 

2 appear to be positionally similar to those of Cry3Aa. when the model was 

superimposed onto the Cry3Aa template is had a RMSD value of 0.6.  
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    Cry1Aa                                  RMSD=0.7      SWISS-MODEL Cry41Aa

                              

Figure 17 SWISS-MODEL visulaised Cry41Aa structure.  
On the left is the 3D structure of crystallography resolved Cry1Aa shown in light grey. Loop1 is shown in red, loop2 in yellow, and loop 3 in blue. On thr right is the SWISS-MODEL generated 
predictaed strructure of Cry41Aa shown in dark grey. Loop1 is shown in red, loop2 in yellow, loop 3 in blue, and the extra loop exclusive to Cry41Aa in pink.                                       
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CRY3Aa           RMSD=0.6      PHYRE2 Cry41Aa 

                                             

Figure 18 UCF chimeria visulaised Cry41Aa structure.  

On the left is the 3D structure of crystallography resolved Cry3Aa shown in light grey. Loop1 is shown in red, loop2 in yellow, and loop 3 in blue. On thr right is the Phyre 2 generated predictaed 
strructure of Cry41Aa shown in dark grey. Loop1 is shown in red, loop2 in yellow, loop 3 in blue, and the extra loop exclusive to Cry41Aa in pin
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The servers created similar but different models of Cry41Aa. The servers applied slightly 

different algorithms and programmes to analysis Cry41Aa sequence and resulted in each 

server’s use of a different template. It worth analysing how different or similar the 

models are when each server applies the same template when analysing the Cry41Aa 

sequence. Thus, SWISS-MODEL analysed Cry41Aa sequence using Cry3Aa as template 

instead of Cry1Aa its highest scoring homologue. PHYRE2 analysed Cry41Aa sequence 

using Cry1Aa as a template instead of Cry3Aa. The two models were superimposed onto 

each relevant template and an RMSD value for each model was calculated as shown in 

figure 19.  

 

SWISS-MODEL server created a new model of Cry41Aa. the most obvious change was 

observed in the extra loop that changed from its previous helical formation when Cry1Aa 

was template to a coil. The model and template were superimposed, and the RMSD was 

calculated as 1.5. The structure appears less compacted than the Cry41Aa model created 

with Cry1Aa as a template. The loops of domain II appear to project away from the main 

structure. The PHYRE2 server also created a new model of Cry41Aa based on the Cry1Aa 

template. The model and template were superimposed and the RMSD was calculated as 

1.3.  The model appears to be very similar to that made by SWISS-MODEL based on the 

same Cry1Aa template.  

 

The RMSD values for each one of the four models made by both servers were compared. 

Both RMSD values for the given templates were above one (PHYRE2=1.3, SWISS-MODEL 
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=1.5), indicating that the models share little similarities to templates. The original 

templates chosen by the servers had RMSD scores closer to zero an indication that the 

similarities to those templates are greater. The lowest RMSD score was 0.6 by PHYRE2 

server modelling Cry41Aa on the Cry3Aa template. This result indicates that this model 

shares the most similarities with its template and is thus the better model of Cry41Aa.    
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Figure 19 UCF chimeria visulaised  structure of the two Cry41Aa models based on diffrent templates.  

The superimposed models of Cry41Aa. In gold is the Cry41Aa model as predicted by SWISS_MODEL server based on Cry3Aa template. In light pink in the Cry41Aa model as predicted by PHYRE2 
server based on Cry1Aa template . Loop1 is shown in red, loop2 in yellow, and loop 3 in blue and the extra loop exclusive to Cry41Aa in pink.
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4.3 Discussion 

Bioinformatic tools have highlighted similarities between Cry41Aa and the typical 3-

domain insecticidal Cry toxins. It is thought to have a typical 3-domain structure as 

originally suggested by Yamashita et al. (2005).  

 

Studies have highlighted two key points regarding the specificity of 3-domain Cry toxins. 

Firstly, domain II and its exposed loops are directly implicated in interactions with target 

receptors as well as being the region where most genetic variation is observed in 3-

domain toxins. Secondly, the diversity that allows Cry toxins to have such a narrow 

specificity as is the case with Cry41Aa. research has suggested that receptors can 

recognise activated Cry toxins from more than one region of the protein.  For example, 

monomeric Cry1Ab toxin is thought to bind to ALPs and APNs through loop 3 of Domain 

II and β16 of Domain III (Pacheco et al., 2009, Arenas et al., 2010). This is very different 

to the oligomeric form of Cry1Ab which interacts with ALP and APN through loop 2 of 

Domain II. In addition, studies have also suggested that Cry1Ab binds cadherin receptors 

through interactions with loop 2 and loop 3 and α8 of Domain II (Gomez et al., 2003, 

Gomez et al., 2006).  Thus, it is important to explore regions associated with toxin 

specificity and the determinant of the toxin ability to interact with one cell type and not 

others. 
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The combined findings from the bioinformatics tools employed here, suggest that 

Cry41Aa has a 3-domain structure, with domain I, II and III maintaining the typical 3-

domian arrangement of   and β sheets observed in insecticidal Cry toxins. ClustalW 

alignments and box shade analysis of Cry41Aa against protein sequences of resolved 

crystals structure of 3-domain Cry toxins have narrowed down the regions where the 

three loops of domain II Cry41Aa may occur. PSIPRED web server further analysed these 

regions predicting with a level of confidence to the location of β-sheets which typically 

fall either side of a loop.  

 

Modelling tools in combination with the sequence analysis tools were able to model the 

putative exposed loops in the domain II region of Cry41Aa.  Bioinformatics has suggested 

the following sequence for loop1 384SITS387, loop2, 416QNTSYTRIDRP426 and loop 3 

503VRDNCPFAWPGYKQL517 as the exposed loops of domain II in Cry41Aa. Homology 

modelling is a consistent  trustworthy method to predict the 3-domain structure of a 

protein however it  is not without  errors; despite this even very inaccurate models  are 

useful due to  some aspects of function that is  predicted from key  structural features 

(Mahadeva Swamy et al., 2014).  

 

It has been argued that the diversity observed for some Cry toxins is due the variation 

of its domain II sequence. This domain has typically shown more variation compared 

with the other two domains.  It is also argued that is this  variation which  is implicated 

in specificity and initial binding of Cry toxins (Dean et al., 1996, Pacheco et al., 2009, 
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Abdul-Rauf and Ellar, 1999, Pardo-Lopez et al., 2009, Abdullah and Dean, 2004, Lu et al., 

1994). Therefore, it was not surprising that both protein modelling servers were able to 

model domain I well. Cry toxins share high amino acid sequence identity and similar 

tertiary structures (Lucena et al., 2014). Previous research which used phylogenetic 

trees to study the domains of Cry toxins suggest that of the three domains, domain I is 

the most conserved. Genetic variation is likely to exist in the other two domains, 

particularly at the three exposed loops of domain II, which are thought to be critical sites 

for receptor recognition and binding. Thus genetic alterations in domain II loop region 

can dramatically affect the specificity of a 3-domain Cry toxin (Bravo et al., 2018).   

 

The search for Cry41Aa domain II loops began with a ClustralW alignment against 

resolved crystal Cry structures. This led to the predicted locations of loop 1, 2 and 3. It 

highlighted the distinction of the extra loop which did not align with any resolved Cry 

crystal structures.  The smallest of loops, loop 1 aligned well with resolved Cry 

structures, followed by loop 3. Loop 2 was also predicted but it aligned the least with 

resolved Cry structures.  PSIRED analysed the secondary structure of Cry41Aa. It 

indicated the location of β-sheets that fall either side of loop 1 and loop3, whose 

structures were predicted with high confidence. The secondary structure of loop 2 was 

predicted with low confidence and there were no immediate βsheets such as those 

observed for loop 1 and loop 3. Therefore, it was unclear where loop 2 began or where 

it ended. Due to this uncertainty, the study focused on the exploration of loop 1, 3 and 

the extra loop. The Cry41Aa was modelled by SWISS-MODEL and PHYRE2 servers. The 
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servers use different programmes and algorithms to build a model and therefore used 

different templates on which to base their Cry41Aa model.  Both servers used 

insecticidal 3-domain Cry toxins as templates. However, in both cases sequence 

percentage identity was less than 37 %.  The Cry41Aa models created by the servers 

indicated that Cry41Aa has 3-domain structure similar to insecticidal 3-domain Cry 

toxins. The extra loop was modelled to be helical by the SWISS_MODEL server whilst 

PHYRE2 modelled it as a coil.  Domain I and III of both models appear very similar, in 

particular the α helical bundle of domain I. Loop 2 of the SWISS-MODEL Cry41Aa model 

has modelled the sequence as partially β sheet. This is supports findings of low 

confidence in the loop 2 structure.   

 

The SWISS-MODEL server modelled Cry41Aa and matched it to Cry1Aa as its best 

homologue. When the model and Cry1Aa template were superimposed to calculate the 

RMSD it gave a value of 0.7.  The closer the RMSD value is zero the more similar the two 

structures are.  The SWISS-MODEL servers also calculated a GMQE score which is an 

estimate of the reliability of the alignment between a model and template. This model 

had a GMQE value of 0.48. The more reliable the estimate the closer the value to zero. 

Further analysis was carried out to calculate the QMEAN value of the model. This score 

indicates whether the model is comparable to experimental structures of similar size.  

The model had a QMEAN score of -4.0, which is consistent with a model of poor quality 

or low agreement with experimental structures of similar size. SWISS-MODEL server also 

modelled Cry41Aa based on Cry3Aa template. When the model was superimposed onto 
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the template the RMSD had a value of 1.5. This is indicative there is low similarity 

between this model and Cry3Aa.  

 

The PHYRE 2 server modelled Cry41Aa where it covered 68 % of the sequence with 100 

% confidence and modelled Cry41Aa to its nearest evolutionary fingerprint Cry3Aa. The 

model and template were superimposed and the RMSD was valued at 0.6. which is an 

improved RMSD score than that of the model by SWISS-MODEL server.  The PHYRE 2 

server modelled Cry41Aa on Cry1Aa the highest scoring homologue template used by 

SWISS-MODEL. It produces a model that did not differ greatly from that made by the 

SWISS-MODEL server. The model and Cry1Aa template were superimposed and the 

RMSD was valued at 1.3. RMSD value above one suggest low similarity between two 

structures.   

 

In order to analyse the models by both servers it was important to standardise the 

values. There are no general standards for analysing models made by different protein 

modelling servers as the values are based on each servers’ individual algorithms. 

However, a Q score is a value that considers the alignment length and the RMSD value. 

Q values above 0.4 indicate that the precision value for both the alignment and the 

RMSD are over 90 %. In order to analyse the models by both servers a Q score was 

calculated for each model. The SWISS-MODEL server modelled Cry41Aa with Cry1Aa as 

a template and had a Q score of 0.5, that is higher than the Q score of Cry41Aa with 

Cry3Aa as template which had a score of 0.3. The PHYRE2 server modelled Cry41Aa with 
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Cry3Aa as a template and had a Q score of 0.8. This is in contrast to the Q score of 

Cry41Aa model and Cry1Aa as a template which had the same score as the SWISS-

MODEL best homologue template score of 0.5.  

 

It is difficult to state which of the two servers provided the more accurate or more 

reliable model of Cry41Aa. The accuracy of a model can vary even within different 

regions of the same protein. It is usual that highly conserved regions are modelled with 

more accuracy than surface or loop regions. Generally, much of the error in modelling 

of unknown proteins comes from poor alignments with templates. Sequence similarities 

between a sequence and its template that have less than 40 % sequence identity tend 

to produce unreliable models. Both SWISS-MODEL and PHYRE2 have less than 37 % 

sequence identity with both Cry1Aa and Cry3Aa templates (Schwede et al., 2003; Rother 

et al., 2011). 

 

Research on the specificity of 3-domain Cry toxin has applied mutagenesis techniques 

as an approach to gain insight into what makes a region or even an amino acid from a 

toxin affect the toxin’s ability to interact with target receptors in such a way that it 

results in cell death.  

 

Studies on loop 2 and loop 3 of Cry1Aa suggested that these loops play key role in their 

specificity and toxicity towards Bombyx mori larvae. Here, a mutation in Y445C of loop 
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3 reduced binding to BtR175 receptor and a deletion of N372 amino acid also reduced 

binding and resulted in a lower morality rate. However, when the same amino acid was 

substituted with an alanine residue the recombinant toxin exhibited enhanced toxicity 

to Lymantria dispar in vitro (Atsumi et al., 2008, Rajamohan et al., 1996a, Lucena et al., 

2014). Further evidence from studies conducted on loop 3 of domain II of Cry1Aa has 

shown that substitutions between its native loop 3 with that of Cry4Aa resulted in an 

identical toxicity against Culex pipiens larvae (Abdullah et al., 2003). This approach may 

ultimately lead to the understanding of toxins specificity and shed light at least in part 

regarding its mode of action. This holds true particularly in the case of Cry41Aa where it 

has so far proved to have a narrow target cell (HL60 and HepG2) and is one of the least 

studied parasporins (Nagamatsu et al., 2010).  

 

Such studies have highlighted the important role that domain II plays in the specificity 

of toxins and that identification and manipulation of domain II loops can introduce 

specificity as well as reduce or increase binding affinity and thus the toxicity of a toxin. 

It is clear that in order to learn about the specificity of Cry41Aa, its domain II loops need 

to be identified and explored. Yamashita et al. (2005) described Cry41Aa as a cancer 

killing Cry toxin. It is important to shed light on the regions which are responsible for this 

specificity. This information can be used to assist in the long-term fight against cancer. 

Furthermore, for the safe application of Cry toxins as bio-pesticides since it is known 

that they are able to target and interact with vertebrate cells lines.  

 



125 
 
 

 

 
 

 

5.0 Production of Cry41Aa hybrids and 
their activity  

5.1 Introduction 

The 3-domain Cry toxins have loops at the base of domain II (Schnepf et al., 1998). In 

insecticidal Cry toxins, these are thought to recognise midgut receptors in target insects 

and bind irreversibly as a result of toxin insertion into the epithelia gut cell membrane 

resulting in subsequent pore formation and mortality (Pigott and Ellar, 2007; Smedley 

and Ellar, 1996; Rajamohan et al., 1996; Adang et al., 2014).  

 

Data from resolved crystal structures of Cry toxins has been used to shed light on the 

function and role of domain II loops (Li, Carroll and Ellar, 1991). Information from 

resolved crystal structures of insecticidal Cry toxins has pointed to some of the 

approaches used to investigate Cry toxins and their mode of action and thus in part their 

specificity. These approaches include: (i) domain swapping between different Cry toxins 

that result in recombinant or chimeric proteins with hybrid domains, (ii) domain II loop 

exchange between different Cry toxins that result in recombinant proteins with domain 

II loops from a different Cry toxin. 
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This chapter details the mutagenesis carried out to create domain II loop exchange 

mutants of Cry41Aa and Cry41Ab with loops of insecticidal Cry1Ac as identified from 

bioinformatic analysis seen in chapter 4. It also details the mutagenesis carried out to 

create hybrids of Cry41Aa with insecticidal Cry42Aa and Cry1Ie. The mutagenesis 

approaches are summarised in table 7. The first approach involves an exchange of 

loop(s) between an insecticidal Cry toxin and Cry41Aa. The second approach involved 

the creation of domain II hybrids made from both insecticidal Cry toxins and Cry41Aa.  

 

Table 7 Mutagenesis approaches used in this study. 
Table summarises the loop exchange and hybrid mutagenesis approaches employed to study Cry41Aa toxin specificity 
in this research.  
 

 

All initial mutagenesis took place in E. coli expression vectors, these plasmids were 

approximately 5 Kb in size. They contained an antibiotic resistant gene as well as the 

ORF of the gene in question. Introduction and amplification of mutagenesis in these 

small plasmids resulted in less errors compared to introduction and amplification of 

mutagenesis in the much larger (˜10 Kb) Bt expression vector.  

 
Mutagenesis approaches to study specificity of Cry41Aa 

 

Mutagenesis approach Toxin name Site of mutagenesis 

 
Loop exchange 

Cry41Aa 
Cry41Ab 
Cry1Ac 

 
Loop 3 

 
Domain hybrids 

 
Cry41Aa 
Cry42Aa 
Cry1Ie 

 
Hybrid ORF2 of Cry41Aa 
&Cry42Aa 
Hybrid ORF2 withCry1Ie 
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The presence of a mutant in a plasmid capable of expressing only in E. coli meant that 

additional steps were required in order to introduce the mutant in a plasmid that would 

express in a Bt host. Mutant (insert) DNA and Bt backbone fragments were isolated with 

a double enzyme digest and allowed to ligate in order to form a Bt expression vector 

capable of mutant protein expression in a Bt host. 

 

At each stage Hae III digest profiles and sequencing results confirmed the correct 

sequence of the mutant. This also meant that the mutant required confirmation after 

its introduction into a Bt shuttle vector.  It was important to confirm that the data 

collected on any expressed recombinant proteins was due to the intended mutagenesis. 

Thus, the plasmids were extracted from the Bt host. However, due to the presence of 

native Bt plasmids it was not possible to carry out Hae III directly on Bt extracted 

plasmids. A Hae III digest profile here would result in too many bands, rendering the 

profile illegible. Further E. coli transformations were carried out before Hae III 

digests/sequencing confirmed the correct sequence of mutagenesis in ORF of Cry gene 

from plasmids extracted out of Bt host. An overview of the key steps and check points 

of the mutagenesis are detailed in figure 20.
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Figure 20 Mutagenesis steps to create a mutant. An overview of the initial steps taken to create a mutant plasmid that can be expressed in a Bt host cell. The process begins with a PCR design 
and results in a mutant Bt shuttle vector. 
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For the purpose of this study, plasmids that acted as templates or where mutagenesis 

has been designed to take place, are referred to as wildtype. This is despite that fact that 

these plasmids are not strictly wildtype and do not exist in the natural genome of the Bt 

strain on which they originate from. Plasmids that have had alterations in their gene(s) 

because of the mutagenesis design are referred to as constructs.  

 

Cry41Aa and Cry41Ab were expressed from ORF2 and ORF3 genes. First, ORF2 of 

Cry41Aa was cloned into pBluescript SK2+ plasmid to create wildtype pBS41Aa. ORF2 of 

wildtype Cry41Aa is flanked by a BamHI 5’ and an XhoI enzyme restriction site at the 3’ 

end. It contains an ampicillin resistance gene as well as an E. coli   origin of replication 

as shown in figure 21. Similarly, Cry41Ab was also cloned into pBluescript SK2 to create 

wildtype pBS41Ab also shown in figure 21. All mutagenesis was initially carried out using 

wildtype pBS41Aa and pBS41Ab which acted as template DNA. Other plasmids were also 

used to create mutants of Cry41Aa and Cry41Ab these were introduced accordingly with 

each mutagenesis approach.   
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Figure 21 Schematic diagram of plasmids involved in insecticidal and cytocidal loop 3 exchange.  
 On the left wildtype plasmid pBS41Aa with ORF2 of Cry41Aa shown in blue. On the right is wildtype pBS41Ab with ORF2 of Cry41Ab shown in dark green. Ampicillin resistance genes 
shown in red and bacterial origin of replication in yellow. BamHI and XhoI restriction sites flank either side of OFR2.  
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Figure 22 Schematic diagram of pGemCry1Ac plasmid 
Wildtype pGemCry1Ac plasmid, with Cry1Ac ORF in orange, and an ampicillin resistance gene shown in red. Bacterial origin of replication shown in yellow. Restriction sites for BamHI 
and XbaI shown.  



132 
 
 

 

 
 

5.2 Cry41Aa loop exchange mutagenesis in loop 3 of domain II  

Mutagenesis via loop exchange has been employed to explore Cry toxin specificity. Several 

studies have engineered Bt Cry toxins by exchanging loop regions of domain II and thus 

introducing a new specificity to the recipient Cry toxin.  (Abdullah et al., 2003, Liu and 

Dean, 2006, Howlader et al., 2009, Pardo-Lopez et al., 2009).  

 

Cry toxins differ in their primary sequences and target specificities. The 3-domain 

structure of Cry toxins have a similar structure but can differ in their primary sequence 

and have different cell target specificities (Crickmore et al., 1998, Bravo et al., 2011). 

Their shared structural similarity has been taken to explore the three loops at the apex 

of domain II, and studies that have modified this region have resulted in novel 

specificities, potent toxicity, and changes to the stability of a toxin (Bravo et al., 2011, 

de Maag et al., 2001; Lucena et al., 2014; Pigott and Ellar., 2007; Bravo et al., 2011; Bravo 

et al., 2013; Nachimuthu and Polumetla Ananda., 2004; Florez et al., 2012) .  

 

In a study aimed to determine the role of domain II loops in the specificity of Cry1Ah and 

Cry1Ai, a loop exchange investigation was carried out.  Cry1Ah is toxic to Helicoverpa 

armigera but not toxic to Bombyx mori larvae. The closely related Cry1Ai is toxic against 

B. mori but is not active against H. armigera. A loop 2 and 3 exchange between these 

Cry toxins resulted in hybrid toxins with an enhanced toxicity, confirming that it is loops2 

and 3 of Cry1Ah that are responsible for receptor binding and toxicity to H. armigera 

(Zhou et al., 2017).  
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This part of the study aimed to introduce a new insecticidal specificity to Cry41Aa in an 

attempt to locate the regions responsible for its specificity towards the HepG2 cell line.  

 

Cry1Ac is an insecticidal 3-domain Cry toxin of ~130   KDa and has toxicity towards 

Manduca sexta and other lepidopteran insects (Alouf, Ladant and Popoff, 2015; Schnepf 

et al., 1998; de Maagd et al., 1999; de Maagd, Bravo and Crickmore, 2001; Crickmore et 

al., 1998). This insecticidal Cry toxin is not known to be toxic to vertebrate cell lines or 

HepG2. It has a typical 3-domain structure and the wildtype pGEMCry1Ac plasmid was 

readily available at the time of this study. Here, Cry1Ac acted as the negative control for 

Cry41Aa’s target cells HepG2. The mutagenesis design aimed to remove the loop 3 of 

both cytocidal Cry toxins (Cry41Aa and Cry41Ab) and replace it with loop 3 of insecticidal 

Cry1Ac.  If successfully expressed, the loop exchange mutants would be investigated for 

potential newly acquired specificities that they did not possess before, by testing on 

them on various mammalian cell lines. In other words, whether cytocidal Cry41Aa has 

acquired a new specificity as a consequence of the introduction of loop 3 from Cry1Ac 

and vice versa.   

 

The wildtype plasmid pGEMCry1Ac acts as template DNA in a PCR reaction designed to 

introduce loop 3 of Cry41Aa and Cry41Ab into Cry1Ac and replace its own loop 3.  The 

wild type pGEMCry1Ac is shown in figure 22. It contains a single ORF with conserved 

blocks 1 to 8 and has a BamHI 5’ site and three XbaI restriction sites together with an 

ampicillin resistant gene. The wildtype loop 3 of Cry1Ac is made up of seven residues 
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428SGFSNSS433. The primers were designed to amplify the entire plasmid except for loop 

3 of Cry1Ac, here the seven residues are replaced by loop 3 of Cry41Aa which is made 

up of fifteen residues 503VRDNCPFAWPGYKQL517. Figure 23 details the Primer design for 

the PCR reaction that introduced the loop 3 exchange mutagenesis approach. The new 

sequences are incorporated into the 5’ end of primers. Table 8 lists the primers used to 

create the constructs. 

 

Loop 3 primer list. 
 

Table 8 Loop 3 primer list.   
Table lists the primers used to create loop 3 exchange constructs. The sequence belonging to Cry41Aa is underlined 
in green. The sequence belonging to cry1Ac is underlined in orange.  

 

 

 

 

Template 
DNA 

 Primer 
name 

Oligonucleotide/ Primer sequence 5’-
PHO 

pBS41Aa  41Ac L3F 5’AGT AGT GTA AGT AGT CGT TTG TTA TTT GGT TG 3’ Yes 
 4111AcL3

R 
5’GTT ACT AAA GCC TGA AGG TTC AAA TTT AAT CCA AG 3’  
 

Yes 

 
pBS41Ab 

 41Ac L3F 5’AGT AGT GTA AGT AGT CGT TTG TTA TTT GGT TG 3’ Yes 
 41AcL3R 5’GTT ACT AAA GCC TGA AGG TTC AAA TTT AAT CCA AG 3’  

 
Yes 

 
pGEMCry1Ac 

 1Ac41L3F 5’TGGCCTGGTTATAAACAATTATAAGAGCTCCTATGTTCTC3’ Yes 
 1Ac41L3R 5’GGCGAAAGGGCAATTATCCCGTACACGAAACATTGAAACATG

G3’ 
Yes 
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Figure 23 PCR primer design for loop 3 substitution.    
ORF2 of Cry41Aa is shown in blue with loop 3 of Cry1Ac in orange. ORF3 of Cry41Ab is shown in green with loop 3 of Cry1AC in orange. ORF of Cry1Ac shown in orange with loop 3 of Cry41Aa in 
blue. 

Primer to introduce Cry1Ac loop3 

5’ 5’ 

3’ 3’ 

5’ 

 

5’ 

3’ 3’ 

PCR reaction 

 

  

Cry41Aa Cry1Ac Cry41Aa 

Cry41Ab Cry1Ac 
Cry41Ab 

Cry1Ac Cry41Aa 
Cry1Ac 

Primer to introduce Cry41Aa loop 3 

Primer to introduce Cry1Ac loop 3 
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The resulting linear DNA was gel purified, allowed to ligate overnight and introduced 

into E. coli and plated onto ampicillin LB agar plates. Potential colonies were picked and 

allowed to grow in ampicillin LB broth or re-streaked on ampicillin agar plates. A mini 

prep was carried out to isolate plasmids with potentially correct loop 3 exchange 

construct. To check for correct configuration of the construct, Hae III digests were 

carried out on both the wildtype pGEMCry1Ac plasmid and the pGEMCry1Ac41 loop 3 

constructs. This construct has the ORF of insecticidal Cry1Ac with loop 3 of Cry41Aa. The 

resulting Hae III digest profile of pGEM1Ac41loop3 was analysed by NEB cutter online 

software. The NEB cutter predicated 21 fragments as a result of a Hae III carried out in 

correct construct pGEMCry1Ac41loop3. It further predicted 20 fragments as a result of 

a Hae III carried out in the wildtype pGEMCry1Ac plasmid. Figure 24 shows the picture 

of the agarose gel analysis of the both Hae III digests. Table 9 lists the key fragments for 

both digests, which were identified in the gel picture of the Hae III digest of both 

wildtype and construct plasmid. The construct pGEMCry1Ac41loop3 has two distinct 

Hae III digest fragments 1035 bp and the 348 bp. The 289 and 285 bp bands appear as a 

doublet as shown in figure 24 and their absence in the wildtype pGEMCry1Ac lane is 

clear. The construct was then confirmed by sequencing analysis.  
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Hae III digest profile by NEB web  cutter 
 

 
Table 9 Hae III digest profile by NEB web  cutter 
Table lists the key fragements of the Hae III  digest profile for wiltype pGEMCry1Ac and the construct 
pGEMCry1Ac41loop3.  

 

 

 

 

 

 

 

 

 

 

Figure  24 Banding profie of construct in agrose gel 
Agarose 1.5% gel showing  DNA marker in lane 1. Hae III  digest banding profile for wildtype pGEMCry1Ac in lane 2 
and hybrid construct in lane 3.   

 

Hae III fragments  
 

Wildtype pGEMCry1Ac 
(bp) 

pGEMCry1Ac41loop3 Construct 
(bp) 

1 1542 1542 
2 1365 1035 
3 908 908 
4 654 654 
5 434 458 
6 289 434 
7 285 348 
8 279 289 
9 267 285 
10 174 279 
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Once confirmed, the construct pGEMCry1Ac was incubated in ampicillin LB for 3 days at 

37 ⁰C to express and produce the loop 3 exchange hybrid pGEMCry1Ac41loop3. The cells 

were then harvested and sonicated to collect the hybrid toxin for further analysis. Figure 

25 is the SDS PAGE gel picture of the crude hybrid crystals of pGEMCry1Ac41loop3. The 

crude crystals were characterised in a similar process as conditions used to characterise 

other 3-domain Cry toxins. The samples were solubilised in carbonate buffer pH 10.5 

and treated with trypsin 1 mg/mL. The resulting solubilised trypsin activated hybrid 

protein was visualised in SDS PAGE gel as shown in Figure 26. This trypsin stable hybrid 

was analysed in HepG2 cell assay to assess whether it had gained cytocidal activity as a 

consequence of the replacing of its wildtype loop with that of Cry41Aa.   

 

 

 

 

 

 

 

 
 
Figure 25 SDS-PAGE analysis showing crude sample for hybrid crystals.  
Lane 1 contained protein marker. Lane 2 contained wildtype Cry1Ac crude crystals harvested from E. coli   cells yellow 

arrow indicated ˜130 KDa band. Lane 3 contained crude crystals harvested from E. coli   cells containing the hybrid 

plasmid pGEMCry1Ac41loop3, yellow arrow indicating ˜130 KDa band.  5µL of parasporal inclusion protein samples 
were loaded in each lane.  

 

1                     2                    3  1                     2                    3  
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Figure 26 SDS-PAGE gel showing 65 KDa solubilised trypsin treated Cry1Ac41loop3.  
Lane 1 contained protein marker. Lane 2 contained a 65 KDa solubilised trypsin treated hybrid protein expressed from 
pGEM1Acloop3 plasmid in E. coli. Lanes 3, 4, and 5 contained. BSA concentrations range 1 mg/mL, 0.5 and 0.1 
respectively.  
 

 

 

Preliminary cell assays were carried out on the recombinant pGEM1Ac41loop3. The 

recombinant was incubated with HepG2 cell lines for 24 h , thereafter the cell viability 

was measured using CellTiter-Blue assay as shown in figure 27. It approximates the 

metabolic activity of cells using a fluorometric method. The resazurin dye is nontoxic but 

permeable to cells. Once it enters viable cells, it is reduced  to high fluorescent resorufin 

and the signal is measured to give an estimate of viable cells (O’Brien et al., 2000). 

Insecticidal wildtype Cry1Ac acted as a negative control and did not demonstrated any 

toxicity towards HepG2 cells. Cry1Ca acted as a control for 3-domain crystal proteins 

made in host Bt4D7. Wildtype Cry41Aa demonstrated toxicity to the HepG2 cell. It 

showed similar toxicity to etoposide which acted a positive control. Triton -X100 is a 

1                   2                       3                   4                5 
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detergent that permeabilises cell membranes and here it also acted as positive control. 

The protein concentrations were not optimised. The recombinant protein made by 

construct pGEM1Ac41loop3 did not gain toxicity to HepG2 cells.  

 

 

Figure 27   24hr CellTiter-Blue HepG2 cell viability assay of loop 3 mutant   
Graph of the fluorescent signal measurements from HepG2 cell line 24 h after toxin exposure. Cry1Ca act as negative 
controls. TX-100 and Etoposide act as positive controls. Approximately 100μg /mL of protein was added.  

 

 

Wildtype pBS41Aa and pBS41Ab were used as DNA templates for primers designed to 

remove native loop 3 from their domain II and introduce loop 3 of insecticidal Cry1Ac in 

its place via PCR as detailed in the loop exchange primer design, figure 23. The PCR 

products were gel purified and allowed to ligate over night at room temperature before 
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transformation into E. coli cells. The mixtures were plated onto ampicillin LB agar plates 

and were incubated overnight. Colonies with potential constructs pBS41Aaloop3 and 

pBS41Abloop3 were picked and allowed to incubate in ampicillin LB broth or re-streaked 

onto ampicillin LB agar plates for overnight incubation.  A mini prep was carried out to 

extract construct plasmids from E. coli cells. Hae III digests were carried out to 

authenticate the correct constructs.  The construct pBS41Aaloop3 was digested by the 

Hae III enzyme. The NEB web cutter predicted the fragment sizes, this digest profile is 

shown in table 10. Figure 28 shows the agarose gel analysis of pSB41Aaloop3 construct. 

It has the distinctive 684 bp fragment absent in the Hae III digest profile of wildtype 

pBS41Aa plasmid (wildtype not shown in the gel image).  

 

Similarly, pBS41Abloop3 construct was subjected to a Hae III digest. Table 11 lists the 

predicted Hae III digest profile for wildtype pBA41Ab and the pBA41Abloop construct. 

As suggested from the predicted fragment sizes it would be difficult to distinguish the 

wildtype apart from the construct. Figure 29 shows the agarose analysis of Hae III digest 

performed on plasmid mini prepped from colonies 2b, 1a, 1c, and 1e alongside the Hae 

III digest of wildtype pBS41Aa that acts as reference, but not a comparison, to construct 

pBA41Abloop3. Both constructs were later further confirmed by sequencing protocol. 

 

 

 



142 
 
 

 

 
 

Hae III digest profile by NEB web cutter. 

 
Table 10 Hae III digest profile by NEB web  cutter. 
Table lists the key fragements of the Hae III  digest profile for wiltype pBS41Aa  and the construct pBS414a1loop3  

 

 

 

 

 

 

 

 

 

 

Figure 28 banding profie of construct in agrose gel 
Agarose 1.5% gel showing  Hae III  digest banding profile for pBS41Aaloop3  in lane 1.  DNA marker in lane 2 
 

 

 

Hae III fragments  Wildtype pBS41Aa (bp) pBS41Aaloop3 Construct (bp) 

1 767 767 
2 629 684 
3 558 629 
4 549 549 
5 458 458 
6 434 434 
7 340 340 
8 306 306 
9 267 267 
10 254 254 

1                     2                     
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Hae III digest profile by NEB web cutter 

Table 11  Hae III digest profile by NEB web cutter  
lists the key fragements of the Hae III  digest profile for wiltype pBS41Aa  and the construct pBS414b1loop3   

 

 

 

 

 

 

 

 

 

Figure 29 Banding profie of construct in agrose gel. 
Agarose 1.5% gel showing  Hae III  digest banding profile for pBS41Aaloop3  in lane 2, 3, 5,6, control pBS41Aa in lane 
4. DNA marker in lane 1 

 

Hae III fragments  Wildtype pBS41Ab (bp) pBS41Abloop3 Construct (bp) 

1 1001 1106 

2 767 767 

3 629 629 

4 458 458 

5 436 436 

6 434 434 

7 378 378 

8 267 267 

9 254 254 

10 174 174 

1           2            3          4             5          

6     
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Both, pBS41Aaloop3 and pBS41Abloop3 construct plasmids lack a Bt origin of replication 

and cannot be expressed in Cry41Aa cells. Furthermore, the constructs lack the ORF3 

gene associated with crystal formation in Cry41Aa. Therefore, the loop 3 constructs 

required subcloning into a vector with a Bt origin of replication and Cry41Aa ORF3 gene 

in order to express the recombinant Bt crystal. For the purpose of this study, a Bt shuttle 

vector was used and referred to as wildtype pSVP2741Aa plasmid. pSVP2741Aa is a Bt 

expression vector ˜10 Kb in size.  

 

To create it, both OFR2 and ORF3 were cloned into the Bt shuttle vector pSVP27. The 

ORF2 gene was flanked by two restriction sites, a BamHI and XhoI site on either side of 

the gene. In the same manner the OFR2 in pBS41Aa/Ab was also flanked by the same 

restriction sites for BamHI and Xhol enzymes.  This allows for the subcloning of the 

mutant OFR2 from blue script plasmid into the Bt shuttle vector. Previous attempts to 

perform mutagenesis directly on the Bt expression vector pSVP2741Aa have proven 

difficult due to its large size (Krishnan., 2013). The ORF3 of Cry41Aa and Cry41Ab have 

99% sequence homology (Yamashita et al., 2005), for the purposed of this study the 

same ORF3 from Cry41Aa was used to express potential hybrids of both Cry41Aa and 

Cry41Ab. Figure 30 shows the schematic representation of wildtype pSVP2741Aa and 

pSVP2741Ab. Both Bt expression vectors have a strong Bt Cyt1Aa promoter that drives 

ORF2 and ORF3 expression in the acrystalliferous Bt 4D7 host strain. Furthermore, they 

contain ampicillin and chloramphenicol resistant genes that allow for selection for 

colonies of interest with potential correct constructs.  
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Figure 30 Schematic presentation of wildtype pSVP2741Aa and pSVP2741Ab.pSVP2741Aa (left) and pSVP2741Ab (right) with ampicillin resistant gene (red) and chloramphenicol resistance 
gene (brown), as well as bacterial origin of replication.  ORF2 of Cry41Aa shown in blue in pSVP2741Aa. ORF3 of pSVP2741Ab shown in green. ORF3 of Cry41Aa shown in both plasmids in blue.   
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The next step of the loop 3 mutagenesis was to introduce the mutated ORF2 from 

constructs pBS41Aaloop3 and pBS41Abloop3 into the larger pSVP2741Aa/Ab expression 

vector. The restriction enzymes BamHI and Xhol allow for subcloning of ORF2 into the 

pSVP2741Aa Bt expression vector.  

 

The constructs pBS41Aaloop3 and pBS41Abloop3 underwent a double digest by BamHI 

and XhoI. The linear DNA was run on an agarose gel and the 2.5Kb linear DNAs encoding 

loop 3 exchange ORF2 were cut out and the gel purified in preparation for ligation. 

Similarly, the wildtype pSVP2741Aa plasmid also underwent a double digest by BamHI 

and Xhol enzymes. The linear DNAs were also run on an agarose gel, and the 7.8 Kb 

linear DNA encoding OFR3 was cut out and the gel purified in preparation for ligation. 

The 2.5Kb linear DNAs from constructs were allowed to ligate overnight with 7.8kb 

backbone DNAs from Bt expression vector pSVP2741Aa. When correctly ligated these 

fragments form pSVP2741AaXhoI1Acloop3 (OFR2 of Cry41Aa with loop 3 of Cry1Ac) and 

pSVP2741AbXhoI1Acloop3 (ORF2 of Cry41Ab with loop 3 of Cry1Ac) constructs.  

 

E. coli cells were transformed with ligation mixtures and plated out on LB agar plates 

prepared with both 5   µg/mL chloramphenicol and 100   µg/mL ampicillin for overnight 

incubation at 37 ⁰C. Colonies harbouring the potential constructs were picked and 

incubated in antibiotic LB or streaked onto antibiotic LB agar plates.  
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Mimi preps were carried out to extract potential constructs from E. coli cells. These were 

subjected to Hae III digest to check for the correct loop 3 exchange constructs in Bt 

expression vectors.  

 

Table 12 lists the Hae III digest profiles for wildtype pSVP2741Aa and both loop 3 

exchange constructs. The agarose gel analysis of both constructs is shown in figure 31 

and 32.  Figure 31 is the agarose gel image of the Hae III digest of construct 

pSVP2741AaXhoI1Acloop3, here the distinct 684bp band is seen when compared to 

wildtype. This construct was further confirmed by sequencing.  

 

Figure 32 is the agarose gel image of the Hae III digest of construct 

pSVP2741AbXhoI1Acloop3 which has the distinct 1155bp band absent in wildtype 

pSVP2741Aa. The construct was further confirmed by sequencing. Once confirmed, both 

constructs were introduced into E. coli strain GM2163, which removes methyl groups 

from the DNA and facilitates transformation of the Bt 4D7 host and then plated out on 

antibiotic agar plates.   

 

The cells were scraped and mini prepped to extract the construct plasmids. Construct 

plasmids pSVP2741AaXhoI1Acloop3 and pSVP2741AbXhoI1Acloop3 were now ready for 

Bt4D7 transformation. The transformation mixtures were plated onto 5 µg/mL 

chloramphenicol prepared LB agar plates and were incubated overnight at 30⁰C. 
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Transformations with Bt are notoriously difficult and it took numerous attempts to 

introduce the Bt expression constructs to Bt cells.  

 

The colonies harbouring potential constructs were picked and incubated in 2-3mL of LB 

antibiotic broth for 2-3 h. The mixture was divided for the following usage. First it was 

poured and spread out in 5 µg/mL chloramphenicol plates and incubated for 3 days at 

30 ⁰C. The remaining mixture was centrifuged, and pellet was miniprepped to extract 

plasmids from Bt cells.   

 

Hae III digest profile by NEB web cutter 

 

Table 12  Hae III digest profile by NEB web cutter 
Table lists the key fragements of the Hae III  digest profile for wiltype pSVP2741Aa  and the constructs 
pSVP2741AaXhoI1Acloop3 and pSVP2741AbXhoI1Ac1loop3.  

Hae III  
fragments  

Wildtype 
pSVP2741Aa 
 (bp) 

pSVP2741AaXhoI1Acloop3 
 Construct (bp) 

pSVP2741AbXhoI1Acloop3 
Construct (bp) 

1 2469 2469 2469 

2 1895 1895 1895 

3 1007 1007 1155 

4 879 879 1045 

5 629 684 879 

6 598 629 629 

7 587 598 587 

8 558 587 458 

9 458 458 436 

10 434 434 434 

11 306 306 267 
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Figure 31 banding profie of construct in agrose gel 
Agarose 1.5% gel showing Hae III fragment sizes of hybrid pSVP2741AaXho1Acloop3. Lane 1 contained DNA marker, 
lane 2 wildtype pSVP2741Aa, lane 3 had hybrid pSVP2741AaXho1Acloop3. Lane 4 contained DNA marker.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32 banding profie of construct in agrose gel 
Agarose 1.5% gel image of Hae III digest of pSVP2741AbXho1Acloop3 hybrid. Lane 1 contained DNA marker, lane 2 
wildtype pSVP2741Aa and lane 3 contained pSVP2741AbXho1Acloop3 hybrid  

1             2             3           4                 

1                2    
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A Hae III digest was not be performed directly on Bt extracted plasmids as the mini prep 

mixture included both native Bt plasmids and the plasmid of interest. In order to 

eliminate native Bt plasmids from the mini prep mixture, a final transformation of E. coli   

cells was carried out and plated out on LB agar plates prepared with both 5 µg/mL 

chloramphenicol and 100 µg/mL ampicillin for overnight incubation at 37⁰C. Here the 

plate should only have E. coli cells that harbour the construct plasmids only. The 

bacterial lawn was scraped, and a mini prep was performed to extract the plasmids. A 

Hae III digest was carried out on these plasmids to confirm the integrity of the construct 

after Bt cells transformation.  

 

After 3 days, sample plates were analysed under a light microscope to check for the 

presence of crystals and spores. The presence of crystals and spores are signs that Bt 

cells have undergone the  sporulation  stage as a result of limited nutrition (Crickmore 

et al., 1998, de Maagd et al., 2003). Once confirmed the cells were harvested and 

sonicated to obtain hybrid crystals for characterisation. Crude crystals of loop 3 

exchange hybrids were analysed in SDS PAGE gels and compared to wildtype Cry41Aa 

and Cry41Ab crude samples, as shown in figure 33. SDS PAGE analysis indicated there is 

no obvious difference between wildtype Cry41Aa/Ab crystals and their loop 3 exchange 

hybrids.  
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Figure 33: SDS-PAGE gel showing crude samples of loop 3 exchange 
 Crude samples of loop 3 exchange hybrid crystals from constructs pSVP2741Aa XhoI1Acloop and pSVP2741Ab 
XhoI1Acloop. Lane contained crude Cry41Aa. Lane 2 crude recombinant pSVP2741Xho1Acloop3Aa. crude 
recombinant pSVP2741Xho1Acloop3Ab. Lane 4 contained crude Cry41Ab. Samples in lanes labelled respectively, each 

lane contained 5µL of parasporal inclusion protein. ORF2 is a ˜88 KDa band is indicated with yellow arrows. ORF3 is 

˜120 KDa band indicated with yellow arrow. 

 

 

All crystals were solubilised in carbonate buffer pH 10.5 and activated with trypsin (1 

µg/mL). Despite changing the conditions, it was not possible to activate loop 3 exchange.  

Proteins from the hybrids of Cry41Aa/Ab with loop 3 of Cry1Ac were not stable and 

degraded in the presence of the trypsin. This suggests that hybrids were structurally 

unstable due to the loop exchange which affected the stability of the hybrid.  

 

5.3 Cry41Aa ORF2 hybrids with other Cry genes 

In previous studies Cry toxin hybrids have been constructed in attempts to learn more 

about their specificity and exploit their toxicity (Crickmore et al., 1998; Dean et al., 1996; 

de Maagd et al., 2003). It usually involves the mutagenesis of loops by either deletion or 

1                2             3              4 

ORF3 

ORF2 
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substitution of residues (Adang, et al., 2014). Domain hybrids created by the deletion, 

addition, and or exchange of domains have played a key part in the improvement of 

known Cry bio pesticides as well as the creation of novel toxins. The removal, addition 

and exchange of Cry toxin domains has revealed information about the regions 

responsible for toxin specificity and toxicity. 

 

 In a study to improve toxicity towards sap sucking insects (Hemiptera), a 12 amino acid 

sequence peptide known to bind to the epithelial gut of pea aphid insects was added to 

the loops of the cytolytic toxin Cyt2Aa. This addition resulted in the improved binding 

and toxicity towards Acyrthosiphon pisum (pea aphid) and Myzus persicae (peach aphid) 

(Chougule et al., 2013; Bravo et al., 2013).  

 

Interactions of structural domains I, II, and III were investigated by the creation of 

chimeric proteins from domain I and III combinations of Cry1Ab, Cry1Ac, Cry1C, and 

Cry1E. The effects of the chimeric toxins were tested on Sf9 cells, a clonal isolate of S. 

frugiperda Sf21 cells commonly used in insect cell culture. Of the parental Cry toxins, 

only Cry1C was known to affect cell viability and membrane permeability. The study 

found that chimeric proteins with domain II of Cry1C showed activity against cells. 

Further investigation indicated that domain II from an active toxin is required for toxin 

stability but did not result in an active toxin capable of cell death. Pore size caused by 

chimeric toxins in the Sf9 cells membrane varied depending on which domain I was 

present in the chimeric toxin. The study suggested that pore properties are a direct 

result of interactions between domain I and domain II or III. It further speculates that it 
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is domain III which regulates the level of toxicity exhorted by chimeric toxins when a 

chimeric toxin made up of domain III from Cry1Ab and domain II and III from Cry1C was 

more toxic than the paternal Cry1C toxin (Rang et al., 1999).   

 

In a study to improve the biological control of pest insects Tecia solanivora (Lepidoptera: 

Gelechiidae), and Hypothenemus hampei (Coleoptera: Scolytidae), a hybrid toxin from 

toxic Cry strains was created by domain swapping between Cry1Ba and Cry1Ia. The 

resulting chimeric toxin had an improved toxicity when compared to the parental Cry 

toxin strains (López-Pazos et al., 2010) . In an attempt to apply this approach, Cry41Aa 

hybrids with Cry42Aa and Cry1Ie were designed.  

 

5.3.1 Cry41Aa ORF2 hybrid with Cry42Aa 

The gene for Cry42Aa was previously identified from the genome of Bacillus thuringensis 

A1462 (Krishnan, 2013). Little is known about Cry42Aa, except that it is very similar to 

Cry41Aa. It is a split toxin with two open reading frames, whereby ORF2 produces a 70 

KDa peptide and ORF3 produces a 120 KDa peptide.  

 

It is not clear whether the expression of Cry42Aa was silenced or if the protein produced 

from its expression led to an inactive toxin.  Previous experiments on Cry42Aa have 

shown that it solubilises in alkaline conditions. However, despite various attempts to 

activate the protoxin of Cry42Aa it was not possible to obtain a protease resistant core.  
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In an attempt to learn more about the specificity of Cry41Aa and also produce a stable 

active toxin from Cry42Aa a hybrid of Cry41Aa and Cry42Aa was designed as follows.      

A multiple sequence alignment was carried between the protein sequences of Cry41Aa 

and Cry42Aa as shown in figure 34.   

 

The construct design aimed to have a full length ORF2 made up of both cry41A and 

cry42Aa. This is to ensure that the five conserved of Cry toxins present in both cry41Aa 

and cry42Aa are complete and propagate protein folding of the hybrid crystal.   

 

Höfte and Whiteley, (1989) first described the five conserved blocks of 3-domain Cry 

toxins as sequences that encompass the Cry protein active core of domain I, II, and III. 

Schnepf et al. (1998) later described the remaining conserved blocks (Höfte and 

Whiteley, 1989; Crickmore et al., 1998). Conserved block 1 is situated in the central helix 

of domain I, block 2 is found at the domain I and domain II interface, and block 3 is 

located at the boundary between domains II and domain III. Block 4 is in the central β-

strand of domain III and block 5 is found at the end of domain III (Xu et al., 2014;  Palma 

et al., 2014).  
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CLUSTAL 2.1 multiple sequence alignment 

 

 

Cry41Aa         MNQNCNNNGYEVLNSGKGYCQPRYPFAQAPGSELQNMGYKEWMNMCTSGDPTVLGEG--Y 

Cry42Aa         MNQNYNNNGLEILDSG-GVCSPRYPLANAPGSELQNMGYKEWLEMCSIKGAETFADKSTL 

                **** **** *:*:** * *.****:*:**************::**:  .. .:.:     

 

Cry41Aa         SADVRDAVITSINIASYLLSVPFPPAGVAAGILGALLGLLWPTNTQAVWEAFMNTVEALI 

Cry42Aa         SAQSQEGLRTAITIALSLLSNLPGPFGYPAKLLSIIFPFLWPTNTQAQWEAFMKVVEELV 

                **: ::.: *:*.**  ***    * * .* :*. :: :******** *****:.** *: 

 

Cry41Aa         NQKLDEYARSKAISELNGLKNVLELYQDAADDWNENPGDLRNKNRVLTEFRNVNGHFENS 

Cry42Aa         DQKIETFARDQAIQRLRGIQDVISLYQRDAKNFNDYPTSEPIQRQLLSQFTATNTFIVGS 

                :**:: :**.:**..*.*:::*:.***  *.::*: * .   :.::*::*  .* .: .* 

 

Cry41Aa         MPSFAVRNFEVNLLPVYAEAANLHLLLLRDAVKFGEGWGMSTDPGAERDDMYRRLRSRTE 

Cry42Aa         MSLFRVGRHEVPLLTTFVQAANLHLLLLRDAIMFGESWGMCPVTVAGYQNDFN---NRIA 

                *. * * ..** **..:.:************: ***.***.. .  *  :: :.   .*                  

*. * * ..** **..:.:************: ***.***.. . 

 

Cry41Aa         IYTDHCVNTYNQGLQQAKSLQANVSDYSRYPWTQYNQSGGFSYREAKGEYRGTENWNLYN 

Cry42Aa         DYTDYSVSIYNQGLQKAKTLKANLRDYEKYPWARYYN----SSVGPEFAYGDMENWNLYN 

                 ***:.*. ******:**:*:**: **.:***::* :    *   .:  * . ******* 

 

Cry41Aa         AFRRDMTILVLDIIAQFPTYDPGLYSRPVKSELTREVYTDIRGTTWRSDANLNTIDAIEN 

Cry42Aa         NYRRDMTLMVLDLVALWPTYNPQQYPIAPKIQLTREIYTELRGNAG--NTKRPSMDAIDA 

                 :*****::***::* :***:*  *. .                 :*****::***::* :***:*  

*. . * :****:**::**.:   :::  ::***:  

 

Cry41Aa         RMVGSRQLQLFTWLTEMKFYIRNTGSITSYTHGDLMVGLEKKIRKTNDNDQWLPLEGQNT 

Cry42Aa         ELIPPP--RLFTWLESVDMHRWPT-SAGYYYYTFQNAGIKHRYKYTLDS-QTLTSSLRGA 

                .:: .   :***** .:.::   * *   * :    .*:::: : * *. * 

*. . :.:                .:: .   :***** .:.::   * *   * :    .*:::: : * *. * 

*. . :.: 

 

Cry41Aa         SYTRIDRPGIELGKNYWYYARTQQWFETRLLQLWANTDVLSLNAGTVGNEFWVRDVPDYR 

Cry42Aa         SGNNFNLVPAEETINRVQNQHGEGLYTFSFYRSGQ--SDPFLNIGTTADKPYVSTMNRIP 

                * ..::    *   *     : :  :   : :      .   ** **..:: :*  :     

 

Cry41Aa         NIYARSTRNHFIENHRLSWIKFEPVRDNCPFAWPGY--KQLSALLFGWTHNSVDLNNIIS 

Cry42Aa         -----VEGDQTQANHRLSWITGMVIPELSIPAFGHYNPTYISCAAEGWTHLSVERSNEIK 

                        ::   *******.   : : .  *:  *  . :*.   **** **: .* *. 

 

Cry41Aa         QYRITQIPAVKAYWNRGAFSVIRGPGSTGGNLVQLGTGG----EVSVKVRPEQTGS-DWY 

Cry42Aa         SDKITQIPAVKAFQLSNNASVVRGPGSTGGDLVQFSATSSGNKQLWIKVKPTTIALGRRF 

                . :*********:   .  **:********:***:.: .    :: :**:*   .    : 

 

Cry41Aa         RVRIRYAAGSRGRLNVKKYVSSIHASVTYDYNMTMSSSTQGTYNSFQYLDVYNFRLAEPE 

Cry42Aa         KVRIRYAAAANVTFTVQKCVTGVACWETATKSVTTTYSGTLTYNAFKYVDIFEIPANESE 

                :*******.:.  :.*:* *:.: .  *   .:* : *   ***:*:*:*::::   *.* 

 

Cry41Aa         FEVWLTNESGGPIWIDKIEFIPLSPIPELPVYPGTYQIVTALNNSSVVTSEEFCMGIGLT 

Cry42Aa         FSLEFLSTSGGPIYIDKIEFIPVNPIPEPPVPEGIYQIVTALNNSSVVDMDPGTWGT--- 

                *.: : . *****:********:.**** **  * *************  :    *     

 

Cry41Aa         TRCGVNLWSNNGNTLQKWRFVYNGDQNAFQIKSTPNEDLVLSGSNSGTSVTAETNQNRPN 

Cry42Aa         -RHNVHLWQNNNTNNQKWRFVYNSSQGAYQIRNLADENLVLTREGANVKVVSYQNNN-TA 

                 * .*:**.**... ********..*.*:**:. .:*:***: ..:...*.:  *:* .  

 

Cry41Aa         QYWLIEEAGNGYVYLRSKGNPNLVLDVAGTSTANGTNIILWNYNGSTNQKFKLSMNYNVT 

Cry42Aa         QYWIIEDAGNEYVYLKSKADPSRVLDVTGSSTQNGTNIQVWSNYGTLNQKFKLVKL---- 

                ***:**:*** ****:**.:*. ****:*:** ***** :*.  *: ******        

 

Cry41Aa         KAREAVQALFSNPTTLQLKVTDHHVNQVARLVECIADQIHPKEKMCLLDQVKLAKRLSRE 

Extra Loop Extra Loop 

Loop1 Loop1 

Loop2 

Loop3 Loop3 

Ricin domain Ricin domain 
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Cry42Aa         ------------------------------------------------------------ 

                                                                             

 

Cry41Aa         RNLLNYGDFESSDWVGTDGWNVSTNVYTVADNPIFKDHYLNMPSANNPILSDKIFPTYAY 

Cry42Aa         ------------------------------------------------------------ 

                                                                             

 

Cry41Aa         QKVEESRLKPYTRYIVRGFVGSSKDLEILVARYDKEVHKRMNVPNDIIPTSPCTGEPVSQ 

Cry42Aa         ------------------------------------------------------------ 

                                                                             

 

Cry41Aa         PTPYPVMPSNTMPQDMWCNPCGNGYQTAAGMMVQSTGMMCQDPHEFKFHIDIGELDMERN 

Cry42Aa         ------------------------------------------------------------ 

                                                                             

 

Cry41Aa         LGIWIGFKVGTTEGMATLDNIEVVEVGPLTGDALTRMQKRETKWKQKLTEKRMKIEKAVQ 

Cry42Aa         ------------------------------------------------------------ 

                                                                             

 

Cry41Aa         IARDAIQTLFTCPNQSCLQSAITLQNILRAEKLVQKIPYVYNQFLQGVLSAVPGEAYAYD 

Cry42Aa         ------------------------------------------------------------ 

                                                                             

 

Cry41Aa         IFQQLSDAVATARALYNQRNVLNNGDFSAGLSNWNGTEGADVQQIGNASVLVISDWSASL 

Cry42Aa         ------------------------------------------------------------ 

                                                                             

 

Cry41Aa         SQHVYVKPEHSYLLRVTARKEGSGEGYVTISDGTEENTETLKFMVGEETTGATMSTIRSN 

Cry42Aa         ------------------------------------------------------------ 

                                                                             

 

Cry41Aa         IRERYNERNMATPDPDAYGGTNGYASNQNMVNYSSENYGMSAHSGNNNMNYQSESFGSKP 

Cry42Aa         ------------------------------------------------------------ 

                                                                             

 

Cry41Aa         YGDGNSMINGSSNNYEANGYPGNNNINDQSENYGANAYSSNNMNYQSESSGFTPYGDENN 

Cry42Aa         ------------------------------------------------------------ 

                                                                             

 

Cry41Aa         MTNYPSNNYEMNPYSSDMNMSMNRGSDCGCGCSANAYPGGNMMMNNYSSSTYEMNTYPSS 

Cry42Aa         ------------------------------------------------------------ 

                                                                             

 

Cry41Aa         TNMTNHQGMGCGCHYSTNEYPMIEENIPDFSGYVTKTVEIFPETNRVCIEIGETAGTFMV 

Cry42Aa         ------------------------------------------------------------ 

                                                                             

 

Cry41Aa         ESIELIRMDCE 

Cry42Aa         ----------- 

 
 
 
 
Figure 34 Alignment of Cry41Aa and Cry42Aa 
The clustal W alignment of the protein sequences of Cry41Aa and Cry42Aa. The conserved blocks of both proteins are underlined and in 
colour font as follows: conserved block 1 in red, conserved block 2 in orange, conserved block 3 in green, conserved block 4 in pink, conserved 
block 5 in blue, (only Cry41Aa) conserved block 6 in grey, conserved block 7 in purple, conserved block 8 in brown. Domain II of Cry41Aa are 
highlighted as follows: Loop1 in red, loop 2 in yellow, loop 3 in navy and extra loop in pink. The ricin domain is highlighted in teal.  
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The five conserved blocks of 3-domain toxins are usually found in the proteolytic active 

core post activation. Domain I is associated with pore formation and is comprised of 

conserved block 1 and part of conserved block 2.  Domain II is associated with specificity; 

it is comprised in part of conserved block 2 and conserved block 3. Domain III is 

associated with binding and receptor recognition. It is usually comprised in part of 

conserved block 3, and the whole of conserved block 4 and 5 (Palm a et al., 2014).  

 

The construct was designed to contain conserved blocks 1 and 2 from Cry42Aa and 

conserved blocks 3, 4, and 5 from Cry41Aa. Cry42Aa and Cry41Aa share homology in the 

domain I region. Introducing this homologous region from Cry42Aa into Cry41Aa will 

indicate if this region of Cry42Aa is functionally active.  Conserved block 3, 4, and 5 from 

Cry41Aa, where less homology between the Cry42Aa and Cry41Aa is observed, ensures 

the presence of regions associated with specificity in insecticidal 3-domain toxins. Their 

inclusion also aims to maintain in part the structural integrity of Cry41Aa.  

 

The hybrid was initially made by using primers to amplify conserved block region for 

blocks 3, 4, and 5 from the pBS41Aa plasmid (figure 21) used as template DNA in chapter 

5.1 In addition to this, the construct also had an ampicillin resistant gene and an E. coli 

origin of replication. Similarly, the conserved blocks 1 and 2 of Cry42Aa were amplified 

using primers for the DNA fragment from pSVP2742Aa template DNA. The primers are 

listed in the table 13 below. The two linear DNAs were run on an agarose, cut out and 

the gel was purified. The fragments were allowed to ligate overnight before an E. coli. 
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Transformation. The ligations formed a compete ORF2 that was made up in part from 

Cry42Aa (block1 and 2) and Cry41Aa (blocks 3, 4, and 5).  

 

Figure 35 is the schematic representation of the pBS41Aa_Cry42Aa construct. ORF2 is a 

hybrid gene that is flanked on either side by BamHI and XhoI restriction sites and allows 

for subcloning of the hybrid gene into a Bt shuttle vector at a later stage. The 

transformation mixture was incubated overnight on 100 µg/mL ampicillin prepared LB 

plates at 37⁰C. If correctly ligated, it would create the pSVP2741Aa_Cry42Aa construct. 

Colonies that potentially harboured the construct were picked and incubated in 

antibiotic LB broth for 2-3 h. The samples were centrifuged and resuspended the pellet 

underwent a mini prep to extract plasmids from the bacterial cells.  

 

PCR primer list to create construct 
 

 
 
 
 
 
 
 
 
 
 
 

Table 13 PCR primer list to create construct  
 lists the PCR primers to create hybrid construct Cry41-42Aa  

 

Template DNA Primer 
name 

Oligonucleotide/ Primer sequence 5’-
PHO 

pBS41Aa CP41AaF 5’ GATCCGGGACTTTATAGTAGGC3’ No 
CP41AaR 5’TGACAATCCTCCATTCCATTTG3’  

 
No 

pSVP2741_Nhe CPCry42F 5’ATGAATCAAAATTATAACAACAATGG3’ Yes 
CPCry42R 5’ATATGTTGGCCATAACGCAAC3’ 

 
Yes 
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Figure 37 schematic presentations of hybrid construct. 
 pSVP2741Aa_Cry42Aa with ampicillin resistant gene (red) and chloramphenicol resistance gene (brown), as well as 
bacterial origin of replication.  OFR2 is hybrid gene made up of both Cry41Aa and Cry42Aa. ORF3 of Cry41Aa is shown 
in blue.   
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Colonies with potential construct were picked and incubated in antibiotic LB broth for 

2-3 h. The mixture was centrifuged, and pellet resuspended for extraction of plasmids. 

A mini prep was performed to extract potential constructs from bacterial cells. These 

were subjected to Hae III digests and analysed in agarose gel. The NEB web cutter 

website has predicted the fragment sizes for both the wildtype pSVP2741Aa and 

correctly ligated construct pSVP2741Aa_Cry42Aa. The information is detailed in table 

15.  

 

Figure 38 is the gel picture of the different Hae III carried out at different stages of the 

pSVP2741Aa_Cry42Aa construct. First the construct was confirmed after Hae III was 

performed in plasmids extracted from E. coli JM109. The distinctive 959bp and 759bp 

bands were observed.  

 

Once sequencing data had confirmed the construct, it was introduced into E. coli 

GM2163 in preparation for transformation of Bt4D7. Bt4D7 transformants were plated 

out on 5 µg/mL chloramphenicol LB agar plates and incubated overnight 30⁰C. Bt 

colonies were picked and incubated in 3mLs of antibiotic LB broth for 2-3 h. The mixture 

was divided, 2mLs was distributed between 5 µg/mL chloramphenicol LB agar plates for 

a 3-day incubation period at 30⁰C. The remaining 1 mL was centrifuged down, and the 

pellet was resuspended in water to extract the construct from Bt cells.  
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Mini preps carried out in Bt4D7 would simultaneously extract native Bt plasmids. Hae III 

performed on such a sample would produce many fragments making the digest profile 

for the construct difficult to confirm. Therefore, the miniprep from Bt cells was 

introduced into E. coli JM109 and incubated overnight in 5 µg/mL chloramphenicol and 

100 µg/mL ampicillin LB agar prepared plates. The lawn should only have the construct 

pSVP2741Aa_Cry42Aa. The cells were scraped off and miniprepped to prepare the 

extracted plasmids with a Hae III digest.  The outcome of the Bt profile of the 

pSVP2741Aa_Cry42Aa construct was consistent and confirmed the integrity of the 

construct. After 3-day incubations samples of the Bt agar plates were analysed under 

the light microscope for crystals and spores. 

 

 Hae III digest profile by NEB web  cutter 

Table 15 Hae III digest profile by NEB web  cutter 
 lists the key fragements of the Hae III  digest profile for wiltype pSVP2741Aa  and the construct pSVP2741Aa_Cry42Aa   

 

Hae III  
fragments  

Wildtype pSVP2741Aa 
(bp) 

pSVP2741Aa_Cry42Aa Construct (bp) 

1 2469 2469 

2 1895 1895 

3 1007 959 

4 879 879 

5 629 601 

6 598 587 

7 587 558 

8 558 458 

9 458 434 

10 434 332 

11 306 306 
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Figure 38 banding profie of construct in agarose gel 
Agrose 1.5% gel picture of Hae III digest profile of construct pSVP2741Aa-42Aa. All lanes labelled with contents. Lane contained DNA 
marker Wildtype pSVP2741Aa acts as control in lane 2 1 . Lane 3 contained JM109 E. coli   strain is where the construct is first 
confirmed, before it was introduced into GM2163 (lane 4) to remove any methylated DNA and later extracted in preparation for 
transformations with Bt4D7. The construct was lastly introduced into JM109 after mini prep from Bt cells to confirm integrity of the 
construct as shown in lane 5. 

 

Microscopic observations of samples taken from Bt4D7 expressing the 

SVP2741Aa_Cry42Aa plasmid confirmed the presence of crystals. The samples were 

harvested and prepared for characterisation. Crude samples of the hybrid crystals were 

analysed on SDS PAGE gel. The hybrid expresses both the ~120 KDa (ORF3) and ~80 KDa 

(ORF2) proteins as seen in the control wildtype sample as shown in figure 39 and was 

indistinguishable from crude wildtype Cry41Aa.  

 

1       2       3        4        5 
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Figure 39 banding profie of construct in agrose gel  
SDS-PAGE of crude pSVP2741Aa_Cry42Aa hybrid protein of different volumes 5,2, and 3 µL respectively in lane 2,3, and 4.. Protein 
marker in lane 1. Control crude Cry41Aa in lane 5.   All lanes are labelled with contents and volumes.    

 

The hybrid crystal was solubilised in sodium carbonate pH10.5 and digested with trypsin 

(1 mg/mL). A soluble form of the hybrid SVP2741Aa_Cry42Aa protein was obtained and 

evident in the SDS PAGE gel image shown in figure 40. However, despite changing the 

experimental conditions, it was not possible to obtain a stable protease resistant hybrid 

protein. The solubilised hybrid is shown in lane 3 where DTT and carbonate have worked 

together to solubilise the hybrid crystal.  A protein thought to be ORF2 and known to 

have an approximate size of 88 KDa was seen and indicated by a yellow arrow.  

 

Furthermore, an upper band, thought to be ORF3, known to have an approximate size 

of 120 KDa was also observed and indicated by a yellow arrow. The same band was 

observed in carbonate and DTT treated control samples of Cry41Aa in lanes 2 and 4.     

1        2          3        4        5 

ORF3 

ORF2 
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However, no proteins were observed for hybrid samples incubated with trypsin as 

indicated by lane 7. Lane 6 was loaded with trypsin treated Cry41Aa. Here a protease 

resistant protein was observed about ˜80 KDa or slightly less. the shift in size was 

indicated by a red arrow.  

 

Figure 40 SDS PAGE gel showing pSVP2741Aa-42Aa hybrid protein in various characterisation conditions.  
Lane 1was loaded with 5µL of hybrid protein in 50mM carbonate buffer at 10.5pH. Lane 2 was loaded control wildtype 
Cry41Aa protein in 50mM carbonate buffer at 10.5pH and 0.01mM DTT. Lane 3 was loaded with 5µL hybrid protein 
in 50mM carbonate buffer at 10.5pH and 0.01mM DTT. Lane 4 was loaded with 5µL of control wildtype Cry41Aa 
protein in 50mM carbonate buffer at 10.5pH and 0.01mM DTT. Lane 5 was loaded with 5µL of hybrid in 0.1 µg/mL 
trypsin in 50mM carbonate buffer at 10.5pH and 0.01mM DTT. Lane 6 was loaded with control wildtype Cry41Aa 
protein in 0.1 µg/mL trypsin in 50mM carbonate buffer at 10.5pH. lane 7was loaded with 5µL of hybrid protein in 0.1 
µg/mL trypsin in 50mM carbonate buffer at 10.5pH. yellow arrows indicated ORF2 and ORF3 in control Cry41Aa and 
solubilised and DTT treated hybrid sample. Red arrow indicated protease resistant core of Cry41Aa 
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5.3.2 Cry41Aa ORF2 hybrid with Cry1Ie 

Cry1Ie is an insecticidal three domain toxin with a protoxin of ~81 KDa. It lacks the C-

terminal conserved block 6-8 present in 130 KDa full-length three domain Cry toxins 

(Song et al. 2003). Its specificity has been altered through manipulations that include 

domain II substitution with Cry1Aa resulting in a stable toxin with a new toxicity towards 

Spodoptera exigua (de Maagd et al., 2000).  

 

A pGEM plasmid with the 2160bp ORF gene was created (figure 41). George, 2011 

successfully expressed the Cry1Ie protein which was partially solubilised at pH 11. 

Protease treatment resulted into a ~55 KDa protease resistant core (George, 2011). In 

an attempt to understand Cry41Aa specificity, a hybrid with Cry1Ie was designed and 

constructed.  

 

A sequence alignment was carried out and a suitable region for hybrid formation was 

determined (figure 41).  A region of homology was found, primers were designed to 

amplify conserved block 2, 3, 4, and 5 from Cry1Ie and conserved block 1 from Cry41Aa. 

As previously mentioned, conserved block 1 and part of conserved block 2 are usually 

found in domain I which is associated with pore formation. Whilst the remaining part of 

conserved block 2 and part of conserved block 3 make up domain II which is associated 

with specificity, binding and receptor recognition. Domain III also associated with 

binding and pore formation includes part of conserved block 3 and both conserved 

blocks 4 and 5 (Palma et al., 2014).  
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In other word this hybrid retained domain I of Cry41Aa, with the intention to investigate 

it for its ability to exert a toxicity via pore formation. The previous Cry42Aa hybrid did 

not result in a protease resistant core, perhaps the mutagenesis was too drastic and 

affected the structural stability of the hybrid. The Cry1Ie hybrid has a large section which 

comes from Cry1Ie, with the aim that this provides structural stability in the hybrid.   

 

Table 16 below lists the primers used to construct the hybrid. The presence of native 

Cry41Aa conserved blocks 2, 3, 4 and 5 may ensure better structural stability and thus 

increase the likelihood that a protease resistant core is obtained post trypsin treatment.  

 

PCR primer list to create construct 

Table 16 PCR primer list to create construct  
 lists PCR primers used to create construct pGEMCry1Ie_Cry41Aa 

 

 

Template DNA Primer name Oligonucleotide/ Primer sequence 5’-
PHO 

pBS41Aa 41Aa Hybrid F 5’ ATGAATCAAAATTGTAAGTAATAACAATGG3’ Yes 
41Aa Hybrid R1 5’ATGTAGATTCGCAGCTTCTGC3’  

 
Yes 

pGEMCry1Ie 1Ie HybridF1 5’ATGAATCAAAATTATAACAACAATGG3’ No 
1Ie HybridR1 5’AAGTTACCTCCATCTCTTTTATTATTAAGATACC3’ 

 
No 
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Figure 41 schematic representation of pGemCry1Ie plasmid. 
Wildtype pGemCry1Ie plasmid, with Cry1Ie ORF in light blue, and an ampicillin resistance gene shown in red. Bacterial 
origin of replication shown in yellow. Restriction sites not shown for this plasmid 
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Extra Loop  Extra Loop  

Loop 1 Loop 1 

Loop 2 Loop 2 

Loop 3 Loop 3 

CLUSTAL 2.1 multiple sequence alignment 

 

Cry41Aa         MNQNCNNNGYEVLNSGKGYCQPRYPFAQAPGSELQNMGYKEWMNMCTSGDPTVLGEGYSA 

cry1Ie          MKLKNPDKHQSLSSNAKVDKIATDSLKNETDIELKNINHEDFLRMSEHESIDPFVSASTI 

                *: :  ::  .: ...*    .  .: : .. **:*:.:::::.*.   .   : .. :  

 

Cry41Aa         DVRDAVITSINIASYLLSVPFPPAGVAAGILGALLGLLWPTNTQAVWEAFMNTVEALINQ 

cry1Ie          QTGIGIAG-----KILGTLGVPFAGQIASLYSFILGELWPK-GKSQWEIFMEHVEELIDQ 

                :.  .:       . * :: .* **  *.: . :** ***.  :: ** **: ** **:* 

 

Cry41Aa         KLDEYARSKAISELNGLKNVLELYQDAADDWNENPGDLRNKNRVLTEFRNVNGHFENSMP 

cry1Ie          KISTYARNIALADLKGLGDALAVYHESLESWIKNRNNARATSVVKSQYIALELLFVQKLP 

                *:. ***. *:::*:** :.* :*::: :.* :* .: * .. * :::  ::  * :.:* 

 

Cry41Aa         SFAVRNFEVNLLPVYAEAANLHLLLLRDAVKFGEGWGMSTDPGAERDDMYRRLRSRTEIY 

cry1Ie          SFAVSGEEVPLLPIYAQAANLHLLLLRDASVFGKEWGLSNSQ---ISTFYNRQVERTSDY 

                **** . ** ***:**:************  **: **:*..     . :*.*  .**. *                

**** . ** ***:**:************  **: **:*..     . :*.*  .**. * 

  

Cry41Aa         TDHCVNTYNQGLQQAKSLQANVSDYSRYPWTQYNQSGGFSYREAKGEYRGTENWNLYNAF 

cry1Ie          SDHCVKWYSTGLNNLRGTNA-------------------------------ESWVRYNQF 

                :****: *. **:: :. :*                               *.*  ** * 

 

Cry41Aa         RRDMTILVLDIIAQFPTYDPGLYSRPVKSELTREVYTDIRGTTWRSDANLNTIDAIENRM 

cry1Ie          RKDMTLMVLDLIALFPSYDTLVYPIKTTSQLTREVYTDAIGTVHPNASFASTTWYNNNAP 

                *:***::***:** **:**. :*.  ..*:********  **.  . :  .*    :*   

 

Cry41Aa         VGSRQLQLFT---WLTEMKFYIRNTGSITSYTHGDLMVGLEKKIRKTNDNDQWLPLEGQN 

cry1Ie          SFSAIESAVVRNPHLLDFLEQVTIYSLLSRWSNTQYMNMWGGHRLEFRTIGGVLNTSTQG 

                  *    ..    * ::   :   . :: ::: : *     :  : .  .  *  . *.                  

*    ..    * ::   :   . :: ::: : *     :  : .  .  *  . *. 

 

Cry41Aa         TSYTRIDRPGIELGKNYWYYARTQQWFETRLLQLWANTDVLSLNAGTVGNEFWVRDVPDY 

cry1Ie          STNTSINPVTLPFTSRDVYRTESLAGLNLFLTQPVNGVPRVDFHWKFATLPIAS-DNFYY 

                :: * *:   : : ..  * :.:   ::  * *   ..  :.::   .   :   *   * 

 

Cry41Aa         RNIYARSTRNHFIENHRLSWIKFEP-----VRDNCPFAWPGYKQLSALLFGWTHNSVDLN 

cry1Ie          LGYAGVGTQLQDSENELPPETTGQPNYESYSHRLSHIGLISASHVKALVYSWTHRSADRT 

                 .  . .*: :  **.  .  . :*      :  . :.  . .::.**::.***.*.* . 

 

Cry41Aa         NIISQYRITQIPAVKAYWNRGAFSVIRGPGSTGGNLVQLG-TGGEVSVKVRPEQTGSDWY 

cry1Ie          NTIEPNSITQIPLVKAFNLSSGAAVVRGPGFTGGDILRRTNTGTFGDIRVNINPPFAQRY 

                * *.   ***** ***:   .. :*:**** ***::::   **   .::*. : . :: * 

 

Cry41Aa         RVRIRYAAGSRGRLNVKKYVSSIHASVTYDYNMTMSSSTQGTYNSFQYLDVYNFRLAEPE 

cry1Ie          RVRIRYASTTDLQFHTSINGKAINQGNFSATMNRGEDLDYKTFRTVGFTTPFSFSDVQST 

                *******: :  :::..   .:*: .         ..    *:.:. :   :.*  .:.  

 

Cry41Aa         FEVWLTNESGG-PIWIDKIEFIPLSPIPELPVYPGTYQIVTALNNSSVVTSEEFCMGIGL 

cry1Ie          FTIGAWNFSSGNEVYIDRIEFVPVEVT-----YEAEYDFEKAQEKVTALFTSTNPRGLKT 

                * :   * *.*  ::**:***:*:.       * . *:: .* :: :.: :.    *:   

 

Cry41Aa         TTRCGVNLWSNNGNTLQKWRFVYNGDQNAFQIKSTPNEDLVLSGSNSGTSVTAETNQNRP 

cry1Ie          DVKDYHIDQVSNLVESLSDEFYLDEKRELFEIVKYAKQIHIERNM--------------- 

                 .:       .*     . .*  : .:: *:* . .::  :  .                 

 

Cry41Aa         NQYWLIEEAGNGYVYLRSKGNPNLVLDVAGTSTANGTNIILWNYNGSTNQKFKLS 

cry1Ie          ------------------------------------------------------- 

Figure 41 Protein sequence alignment of Cry41Aa and Cry1Ie.  
 Clustal W alignment of the protein sequences of Cry41Aa and Cry1Ie.  
conserved blocks of both proteins are underlined and in colour font as follows: conserved block 1 in red, conserved block 2 in orange, 
conserved block 3 in green, conserved block 4 in pink, conserved block 5 in blue. For Cry41Aa, domain II of Cry41Aa are highlighted 
as follows: Loop1 in red, loop 2 in yellow, loop 3 in navy and extra loop in pink. The ricin domain is highlighted in teal.  
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The wildtype pGEM Cry1Ie (figure 41)   and wildtype BS41Aa (figure 21) plasmids were 

used as templates to amplify fragments of each Cry toxin to construct 

pGEMCry1Ie_Cry41Aa plasmid (figure 43). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 43 Schematic representation of hybrid plasmid. 
Construct plasmid pGemCry1Ie_Cry41Aa with hybrid ORF that is made up of Cry41Aa and Cry1Ie shown in dark and light blue. 
Ampicillin resistance gene shown in red. Bacterial origin of replication shown in yellow. No Restriction sites shown for this plasmid.  

 

 

The linear PCR products were run on agarose gel, cut out and gel purified and allowed 

to ligate overnight. The ligation mixture was introduced into E. coli GM2163 and plated 

onto ampicillin (100 µg/mL) LB agar plates. The plates were incubated overnight at 37˚C. 
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Six colonies were picked and incubated in ampicillin LB broth for 2-3 h. A Hae III digest 

was carried out on the recovered plasmids from the six colonies and visualised on 

agarose gel as shown in figure 44.  NEB web cutter software predicted the Hae III digest 

profiles for both the wildtype and construct as listed in table 17. 

 
 

Hae III digest profile by NEB web  cutter 

Table 17 Hae III digest profile by NEB web  cutter 
 lists the key fragements of the Hae III  digest profile for wiltype pGEMCry1Ie  and the construct pGEMCry1Ie_Cry41Aa  

 

 

The construct pGEM Cry1Ie_Cry41Aa plasmid had the distinctive 2192bp and 500bp 

bands which are absent in wildtype pGEMCry1Ie. Figure 39 is the picture of agarose gel 

analysis of the Hae III digested plasmids extracted from E. coli cells.  Colony 1 shows 

distinctive 2192 bp and 500 bp bands.   

 

Hae III  
fragments  

Wildtype pGEMCry1Ie (bp) pGEMCry1Ie_Cry41Aa Construct 
(bp) 

1 2238 2192 

2 654 654 

3 485 500 

4 458 458 

5 434 434 

6 289 289 

7 279 279 

8 267 267 

9 174 174 

10 142 142 

11 102 102 
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Figure 44 Banding profie of construct in agrose gel 
Agarose gel showing Hae III digest profile for plasmids extracted from six bacterial colonies respectively loaded onto lanes 2,3,4,6, 
7 and 8. Lane 5 contained wildtype Cry1Ie.  All lanes labelled with contents.   

 

The construct was grown in antibiotic LB broth overnight and harvested for the hybrid 

crystal. The hybrid was subjected to various sodium carbonate and protease conditions 

in an attempt to obtain a soluble protein. Microscopic observations confirmed the 

presence of crystal and crude (also referred to as total sample) samples were analysed 

in SDS-PAGE as shown in figure 45.  

 

Previous Cry1Ie investigations by George et al. (2011) indicated that Cry1Ie partially 

solubilised and resulted in a ˜55 KDa core post protease treatment. George et al. (2011) 

carried out the solubilisation and activation of Cry1Ie in one step. In brief, a volume of 

crude Cry1Ie was centrifuged and superannuant discarded, the pellet was dispersed in 

  1       2         3          4       5       6          7        8 
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a volume of carbonate, trypsin in carbonate was added and the sample allowed to 

incubate for 1 h. Contrary to this Cry41Aa is solubilised and activated in two separate 

steps to get the best yield of activated toxin. Crude Cry41Aa was solubilised in carbonate 

for 1 h. The sample was centrifuged, and supernatant retained. The solubilised sample 

was then activated with trypsin and incubated for a further hour.  

 

To address both methods Cry1Ie_41Aa hybrid was processed using both. The one step 

solubilisation and activation of crude total hybrid samples are shown in lanes 2 to 5. The 

two-step solubilisation and activation of hybrid Cry1Ie are shown in lane 6 to 10. Crude, 

samples in lanes 2, 3, and 4 exhibit the major band with a molecular weight of ˜81 KDa 

and are indicated with a yellow arrow. There is no evidence of 55 KDa activated core in 

trypsin treated crude samples in lanes 4 and 5.  

 

In comparison, lanes 6 was loaded with solubilised only supernatant hybrid and lane 10 

was loaded with   solubilised and trypsin treated supernatant hybrid, and both did not 

show any protein bands. Previous observations by George et al., (2011) of poor Cry1Ie 

solubilisation, suggested that this may also be the case for the hybrid.  Additionally, it is 

likely that the hybrid was not stable in trypsin. Despite altering the carbonate pH and 

trypsin concentration, a solubilised hybrid capable of resulting in a trypsin resistant core 

was not obtained.    
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Figure 45 SDS-PAGE gel of hybrid pGEMCry1Ie_Cry41Aa.  
All lanes labelled with content.  Lane 1 contained protein marker. Lane2 was loaded with 5µL of crude hybrid in 50mM 
carbonate buffer at 11pH. Lane 3 was loaded with 5µL crude hybrid in 50mM carbonate buffer at 10.5pH and 0.01mM 
DTT. Lane 4 was loaded with 5µL of crude hybrid in 0.1 µg/mL trypsin in 50mM carbonate buffer at 11pH and 0.01mM 
DTT. Lane 5 was loaded with 5µL of crude hybrid in 1 µg/mL trypsin in 50mM carbonate buffer at 11pH and 0.01mM 
DTT. Lane 6 was loaded with 5µL of supernatant hybrid in 50mM carbonate buffer at 11pH. Lane 7was loaded with 
5µL supernatant hybrid in 50mM carbonate buffer at 10.5pH and 0.01mM DTT. Lane 8 was loaded with 5µL of 
supernatant hybrid in 0.1 µg/mL trypsin in 50mM carbonate buffer at 11pH and 0.01mM DTT. Lane 9 was loaded with 
5µL of supernatant hybrid in 0.1 µg/mL trypsin in 50mM carbonate buffer at 11pH and 0.01mM DTT. Lane 10 was 
loaded with 5µL of supernatant hybrid in 10 µg/mL trypsin in 50mM carbonate buffer at 11pH and 0.01mM DTT. 
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5.4 Discussion  

The application and creation of Cry hybrids has been used to enhance toxicity, create 

new specificity and elucidate modes of action (Abdullah and Dean, 2004; Abdullah et al., 

2003; Pardo-López et al., 2009; Dean. H and Sylvis L, 2006; Dean et al., 1996). Currently 

there is more than one model to explain the mode of action of Cry toxins (Vachon et al., 

2012, Pardo-Lopez et al., 2013) However, all theories on the mode of action agree that 

specific binding must take place before toxicity can commence (Likitvivatanavong et al., 

2009).  

 

Mutagenesis has been applied to investigate the role that specific regions of a given 

protein play in its mode of action. For insecticidal 3-domain toxins, the assembly of 

hybrids has mainly centred on domain swapping. This led to the creation of novel toxins 

with a wider target spectrum or a significant increase in toxicity to the target cell 

compared to that of the wildtype (Pardo-López et al., 2009). 

 

Initially the research plan was to carry out a Cry41Aa loop 3 exchange that would result 

in the removal of the wildtype loop 3 and the introduction of the insecticidal loop 3.  It 

was thought that this exchange may result firstly in a loss of specificity towards HepG2 

by Cry41Aa and or secondly a gain of specificity towards another insect cell.  Abdulla et 

al.  (2004) employed a similar experimental design when loops 1 and 2 of Cry4Ba (toxic 

to Anopheles and Aedes) were deleted and replaced with loops 1 and 2 of Cry4Aa (toxic 

to Culex). Despite the production of proteotically stable hybrids proteins, they did not 
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exhibit any toxicity towards susceptible insects (Abdullah and Dean, 2004). Mutagenesis 

of Cry4Ba involved the introduction of loop 3 of Cry4Aa; this resulted in a hybrid that 

not only gained toxicity to Culex but exhibited greater toxicity than wildtype Cry4Ba to 

Ades ageypti. It has been suggested that the natural evolutionary mechanism can act on 

Cry toxins and subsequently  generate new specificities (Bravo, 1997; de Maagd et al., 

2001; Wu et al., 2007).  

 

The synthetic creation of hybrids via mutagenesis  can be seen as mirroring natural 

selection in Cry proteins (Caramori et al., 1991). For example, Cry1Ab, Cry1Ac, Cry1Ba 

and Cry1Ea have little or no toxicity towards Spodopetera exigua, but they gained 

toxicity after swapping native domain III with domain III of Cry1Ca which targets this 

insect. Furthermore, the Cry1Ab hybrid has a significantly higher toxicity towards S. 

exigua compared to Cry1Ca (de Maagd et al., 2000).  

 

In another study by Abdullah et al. (2003) the loops of domain II Cry1Aa (toxic to 

lepidopteran) were designed to resemble mutants of Cry4Ba and the resulting Cry1Aa 

hybrid gained toxicity towards Culex pipiens larvae. Such findings suggest that the 

domain II loop can alter the specificity of a given toxin (Dean and Sylvis ., 2006).  

 

Unfortunately, attempts to make hybrids with Cry41Aa did not result in the generation 

of trypsin resistant protein cores, the hybrids were often unable to solubilise well and 

or were not stable in trypsin. Previous studies have highlighted the possibility that 

hybrids are susceptible to additional cleavage by host bacterial proteases (Abdullah and 
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Dean, 2004). This may explain the sudden absence of the hybrid protein when analysed 

in SDS PAGE gels. This finding suggests that Cry41Aa is sensitive to the slightest of 

structural changes. It seems that any subtle changes on the DNA of Cry41Aa appear to 

translate into significant structural changes. 

 

It is not known if Cry41Aa is toxic to other vertebrate or insecticidal cell lines. Without a 

protease resistant protein, it is difficult to shed further light on Cry41Aa specificity. At 

this stage. The findings suggest that mutagenesis on Cry41Aa by loop exchange or 

creation of hybrids was too drastic change and its structure too compromised. In a study 

carried out to investigate the effects of loop exchange between native domain II loops 

of Cry4Aa, it was revealed that exchange between loop 1 and 3 decreased toxicity to 

Culex but did not abolish toxicity in bioassay trails. However, a loop 2 exchanges 

eradicated toxicity completely and led to the proposal that it is loop 2 of Cry4Aa that is 

essential for mosquitocidal activity (Howlader et al., 2009).  

 

A study by Masson et al. (1994) proposed that N terminal regions do not affect 

specificity, after it was observed that N terminal exchange between Cry1Ac and Cry1Ea 

did not introduced novel specificity. The Cry41Aa_Cry1Ie hybrid did introduce an N 

terminal region of Cry1Ie to Cry41Aa. Unfortunately, the resulting hybrid was unstable 

in both sodium carbonate and protease conditions. Indeed, the only successful hybrid 

made was the solubilised trypsin treated pGEM1Acloop3 hybrid. Indeed, the only 

successful hybrid made was the solubilised trypsin treated pGEM1Acloop3 hybrid. This 

hybrid was made up of insecticidal Cry1Ac with loop 3 of Cry41Aa.  Once solubilised and 
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activated it resulted in a protein resistant core of ~ 65 KDa. Preliminary cell assay analysis 

was carried out on HepG2 cells with pGEM1Acloop3 hybrid to determine if it gained 

cytocidal activity. Observations indicated that the hybrid was not toxic to HepG2 cells. 

However, a study conducted both in vivo and in vitro cultured insect cell lines and 

dissociated midgut epithelial cells has concluded that hybrids can exhibit different 

toxicity which is dependent on bioassay systems in place (Masson et al., 1994). To shed 

light on the specificity of Cry41Aa a different mutagenesis approach was required in 

order to obtain a stable recombinant protein.   
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6.0. Production, purification, and 
characterisation of Cry41Aa loop 
mutants 

6.1 Introduction  

Amino acid substitutions were used to probe the mechanism of action of Cry insecticidal 

toxins (Dean et al., 1996). The theory that domain I is attracted to negatively charged 

membrane surfaces was researched in the early nineties.  The surface residues of 

exposed loops of Cry1Ab in domain I were substituted and the study concluded that a 

positively charged residue such as arginine or a neutral residue such as alanine had a 

stronger membrane insertion than the negatively charged aspartic acid wildtype residue 

(Dean et al., 1996).  

 

Alanine substitutions were made in domain II loops, in a study by Wu et al. (1996) which 

explored the toxicity of Cry3Aa and its ability to bind to receptor gut epithelia receptors 

of Tenebrio molitor beetle larvae. Alanine substitutions in loop I and loop 3 of domain II 

indicated a reduced binding affinity and toxin stability. However, a block of alanine 

substitution made in loop 3 despite having a lower binding affinity resulted in a higher 

toxicity compared to wildtype Cry3Aa. This was noted to be due to the mutants ability 

to have an increased membrane insertion compared to that of the wildtype (Wu and 

Dean, 1996).  
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A study by Garcia-Robles et al. (2012) explored the specificity and binding of insecticidal 

Cry3Aa towards the Colorado potato beetle.  Site directed mutagenesis was carried out 

in loop 1 of Cry3Aa.  The mutagenesis carried out corresponds to a previously identified 

ADAM metalloprotease recognition motif thought to take part in membrane associated 

proteolysis and toxicity in the Colorado potato beetle.  The study concluded that 

interactions with ADAM through the Cry3Aa recognition motif led to Cry3Aa proteolysis, 

and that this is vital for Cry3Aa toxic action in target insect. 

 

Further studies were carried out in nCry3Aa that investigated the receptor recognition 

and binding of Cry3Aa by T. molitor. One study introduced an alanine substitution in 

loop1 and 2 where a loss of toxicity was observed potentially due to reduced receptor 

binding. However, a loop 3 block alanine substitution resulted in an increase in toxicity 

due irreversible binding where the toxin is thought to insert itself in the membrane of 

target cells (Wu and Dean, 1996, Nachimuthu and Polumetla Ananda, 2004).  

 

Rajamohan et al. (1996) explored the effects of alanine substitutions on loop 2 and 3 of 

Cry1Ab, which resulted in the loss of toxicity to Manduca sexta and H. virescens as 

consequence of reduced binding affinity to BBMV (Rajamohan et al., 1996a; Rajamohan 

et al., 1996c; Nachimuthu and Polumetla Ananda, 2004). This was later supported by 

findings that suggested that loops 8 and 2 of Cry1Ab interact with M. Sexta Bt-R1 

receptor. (Gomez et al., 2003).  
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In this study, domain II loops 1, 3, and the extra loop from Cry41Aa underwent residue 

substitutions in the quest to understand its specificity towards mammalian HepG2 cell 

line. This mutagenesis approach involved the substitution of specific residues (i.e. amino 

acid substitutions) in domain II loops of Cry41Aa. The residue substitutions on domain II 

loops of Cry41Aa took place in residues of the loop sequences as identified in chapter 4. 

 

 Substitutions on the three loops of Cry41Aa were carried out in concurrence with one 

another so that each mutagenesis could provide information that would go on to build 

a picture of which residues and possibly how Cry41Aa is able to target HepG2 cell.   

 

Bioinformatics has predicted with confidence the sequences that make up loop1 and 

loop 3 of Cry41Aa. It had highlighted the uniqueness of the extra loop in category of 3-

domain Cry toxins and predicted it to have a secondary structure that is mostly made up 

of strands. Previous attempts to delete all or some of the extra loop have resulted in 

unstable recombinant proteins (Krishnan et al., 2017). 

 

 Studies that explore insecticidal 3-domain Cry toxins have typically investigated the 

exposed loops of domain II. The literature has highlighted the importance of these loops 

in the toxin’s ability to bind to and interact with target cells. The sequences of loop1 and 

loop 3 of Cry41Aa have been predicted as follows.  

 

Loop1 is a short four-residue sequence: 384SITS387. As it is the shortest loop being 

investigated it allows for several residue substitutions in attempt to collate as much 
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information possible on the specificity of Cry41Aa. Loop 3 of insecticidal 3-domain Cry 

proteins has been directly implicated in the mode of action of 3-domain toxins (Pacheco 

et al., 2009). Loop 3 of Cry41Aa is predicted to be 15 residues long sequence: 

503VRDNCPFAWPGYKQL517. Previous attempts to exploit loop 3 to create hybrids did not 

result in protease resistant protein (chapter 5.2), substitutions here can aid to narrow 

down sequences or residues that play a key role in Cry41Aa ability to target HepG2 cells.   

The three loops selected for investigation are shown in figure 46. The side chains of the 

residues chosen for substitution are shown for each loop of domain II in Cry41Aa.  

Since little is known about Cry41Aa it is difficult to hypothesise the effect of mutagenesis 

on toxicity which may improve, reduce or get completely knocked out.  

 

This section details how domain II loop constructs were designed and made. These were 

made using the general steps as outlined in introductory figure 20, chapter 5.1. All 

constructs have a PCR design that is specific to the mutation made. A small plasmid such 

as the wildtype pBS41Aa was commonly used as a DNA template for the PCR reaction. 

The wildtype plasmid contains ORF2 of Cry41Aa that is flanked by restriction sites 

(BamHI and XhoI) as well as an ampicillin resistance gene (figure 21).  

 

The PCR design is shown and details each construct’s design. From then on, all construct 

proceeded through similar lab procedures and check points. All linear PCR products are 

excised from agarose gels, purified and allowed to ligate overnight. The ligation mixture 

was introduced into an E. coli strain (usually JM109). The transformation mixture was 

poured onto ampicillin LB agar plates for overnight incubation at 37 ⁰C. Surviving 
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colonies were picked and grown either in antibiotic LB for 2-3 h or by re-streaking onto 

antibiotic LB agar plates for overnight incubation. Mini preps were carried out to extract 

potential constructs from bacterial cells. These underwent Hae III digests and gel images 

of the banding profile were compared to predicted NEB web software Hae III profiles. 

 

 Once the constructs were confirmed by Hae III digest profiles and sequencing, the 

mutant ORF2 was subcloned into a Bt expression vector. This step involved a double 

digest by BamH and XhoI enzymes on both the construct and the Bt shuttle vector 

(pSVP2741Aa figure 28). The fragments were allowed to ligate overnight to form the 

final Bt expression construct. A series of mini preps, Hae III digests and sequencing took 

place to confirm the constructs and their integrity, as they undergo a number of various 

strains E. coli and Bt4D7 bacterial transformations.   

 

This section shows in detail one or two constructs as examples of the processes and 

checkpoints that all Cry41Aa domain II loops constructs were subject to it also shows 

evidence of the recombinant proteins produced as a result of the mutagenesis carried 

out in loops of Cry41Aa, and their preparation for cell assays. The chapter begins with 

mutagenesis carried out on loop 1 of Cry41Aa. Followed by mutagenesis in the extra 

loop of Cry41Aa, and finally in loop 3 of Cry41Aa.
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Figure 46 UCF chimeria visualised putative loops of Cry41Aa on which mutagenesis was carried out. 
 Loop1 shown in red and has the sequence 384SITS387 , all four residues underwent substitutions. Loop 3 shown in green and has the sequence 503VRDNCPFAWPGYKQL517   the three hydrophobic residues which were 
substituted are shown in loop 3 F509 (red), W511 (blue), and Y514 (purple). extra loop is shown in pink and has the sequence 261NVSDYSRYPWTQYNQSGGFSYREAKGEYRGT291. Substitutions in 280SYRE283 were carried out 
on the extra loop.  

Loop1 

Extra Loop 

Loop3 
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6.2.1 Establishing optimum solubilisation and activation conditions  

The optimum solubilisation and activation conditions for wildtype Cry41Aa were 

investigated and later set as testing standard for all loop recombinants. Bt cells were 

harvested, crystals were analysed and visualised on SDS PAGE gel. In this study, 

bioinformatic analysis of Cry41Aa has revealed that it has a similar structure to 

insecticidal 3-domain Cry toxins known to have separate ORF or more than one ORF for 

crystallisation. These split genes encode products that resemble the C-terminal half and 

the N-terminal half of 135  KDa or larger than 60  KDa toxins (Adalat et al., 2017, Bietlot 

et al., 1990). Cry41Aa is known to have ORF2 and ORF3 thought to be responsible for an 

˜80   KDa and ˜120  KDa protoxin respectively. Yamashita et al. (2005) has argued that 

both ORF2 and ORF3 are necessary to encode and crystallise the cytotoxic crystal and 

that previous attempts to produce Cry41Aa crystals without ORF3 did not result in 

crystal formation (Yamashita et al., 2005, Krishnan, 2013). 

 

All 3-domain Cry toxins have distinct  globular domains, domain I, II and III  are  known 

to produce protoxins of ˜65 or ˜135  KDa where the highly conserved C-terminal aids to 

crystallise the protoxin by forming intermolecular disulfide bonds and non-covalent 

interactions which stabilise the crystal structure (Adalat et al., 2017). Once ingested the 

alkaline insect gut provides the reducing environment to dissociate the cross-links bonds 

effectively solubilising the crystal. The soluble protoxin is  subsequently processed by 

insect gut proteases (Bravo et al., 2007). An in vitro setup was established to mimic the 

pH and protease conditions present in an insect gut in order to solubilise and activate 
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Cry41Aa and its mutants. Previous studies have observed proteolysis of endotoxins as a 

result of native bacterial proteasese released during the in vitro solubisation stage , the 

Cry41Aa crystals and its mutants were thus washed with 1M sodium chloride to remove 

absorbed bactrial proteases (Zalunin et al., 2004).  

 

The harvested Cry41Aa crystals and its crystal mutants were solubilised in sodium 

carbonate pH 10.5. The reducing agent 2-mercaptoethanol and dithiothreitol (DTT) was 

also added to disrupt the disulfide bonds. Crude total sample of Cry41Aa crystals were 

exposed to different carbonate and trypsin conditions and incubated for 1h in a 37˚C 

water bath.  

 

The samples were then analysed on an SDS PAGE gel as shown in figure 47. Initially both 

solubilisation and activation were carried out in a single 1 h incubation step. The gel 

indicates that there was no significant difference between the Cry41Aa crude control 

(crystals) sample and the Cry41Aa crystals that have been incubated with 50mM sodium 

carbonate pH 11, trypsin (2 mg/mL), and DTT (2.5mM). Both protoxins ORF3 (˜120 KDa 

protein) and ORF2 (˜80-88 KDa protein) are present in these conditions and indicated 

by yellow arrows in the gel.  It indicated that on this instant Cry41Aa crystals did not 

solubilise well and activation was also inadequate.  
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Yamashita et al, (2005) proposed that the proteinase K activated 64 KDa toxic protein is 

derived from the 88 KDa protoxin, and it is this 64  KDa peptide which is responsible for 

the cytocidal activity to HepG2 cell lines. The gel did not clearly show the activated ˜60 

KDa toxin. 

 

The characterisation protocol of Cry41Aa was adjusted to improve solubilisation and 

activation of the toxin. These were carried out in separate steps independent of one 

another in order to obtain first the solubilised protoxin and then to activate it with 

trypsin. This is the 2-step method. A number of conditions were tested. The pH levels, 

DTT and trypsin concentration were optimised.  Figure 48 is the SDS PAGE gel picture of 

solubilised activated Cry41Aa in various trypsin concentrations.  

 

Crude Cry41Aa was incubated for an hour in 50 mM sodium carbonate pH 10.5 with DTT 

in a water bath at 37˚C. The sample was then centrifuged, and the supernatant was 

retained. The solubilised Cry41Aa was activated by different concentrations of trypsin 

to establish the optimum concentration of trypsin for activation. The 1 mg/mL trypsin 

activated sample gave a clear ˜80 KDa or less major protein and an ˜60 KDa minor 

protein both indicated by yellow arrows in gel. These two proteins are thought to 

originate from the solubilised and activated ORF2 encoded crystal.  The 120 KDa protein 

(ORF3) is no longer detected in the trypsin activated gel lanes but is clearly noted in the 

carbonate-DTT solubilised sample prior to trypsin activation. Background proteins were 
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noticeably reduced compared to single step solubilisation activation gel picture (figure 

47).  

 

Therefore, all crystals including wildtype were solubilised and activated in a 2-step 

process that took 2 h. First the crude samples were incubated for an hour in 50mM 

sodium carbonate pH 10.5 and DTT (2.5mM) in a 37 ⁰C water bath. The samples were 

centrifuged, and supernatant retained.  Followed by the activation step followed where 

trypsin (1 mg/mL) was added and the samples were incubated for 1 h in a 37 ⁰C water 

bath.  This procedure was applied as standard to all mutant crystals as well as wildtype 

Cry41Aa crystal.  The activated form of the toxins was ready for further analysis.   
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Figure 47 7.5% SDS PAGE gel of crude total (crystal) Cry41Aa  

Cry41Aa was incubated for I h in a 37⁰C water bath in varying different pH, trypsin and DTT conditions. Lane 1 
contained protein marker. Lane 2 contained wildtype crude Cry41Aa in water. Lane 3 contained crude Cry41Aa 
treated with 2 mg/mL trypsin in carbonate. Lane 4 contained crude Cry41Aa incubated with carbonate pH 11. Lane 5 
contained crude Cry41Aa incubated with carbonate pH 11 and DTT. lane 6 contained crude Cry41Aa incubated with 
trypsin 2 mg/mL in carbonate and DTT.  All lanes labelled with content.  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 48 7.5% SDS PAGE gel of a solubilised Cry41Aa supernatant treated with different concentrations of trypsin 
in carbonate pH 10.5 and DTT (2.5mM). 
 lane 1 contained protein marker. Cry41Aa was activated by different trypsin in carbonate concentrations, 1 mg/mL 
(lane 2), 0.1 mg/mL (lane3, 0.01 (lane 4, 0.001 (lane5). Lane 6 contained solubilised Cry41Aa in carbonate pH 10.5 and 
DTT. 

1                  2                 3                         4                 5                6               

ORF2 protease 

resistant 

peptides  

ORF3 
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6.2.2 Assessment of Cry41Aa mutants and their effect on cell lines  

In an effort to investigate the specificity and toxicity of Cry41Aa towards HepG2 cells, a 

number of recombinants mutants from loop1, 3 and extra loop were created, and their 

cytotoxicity to a number of different human cell lines were investigated.  

 

Cell assay analysis carried out on HepG2 cells incubated with Cry41Aa and its 

recombinant toxins to establish the cytotoxicity of the activated proteins. Cell viability 

assay that measure metabolic activity of viable cells was applied to establish toxicity.  

Membrane permeability assay was applied to confirm nuclear membrane breakdown.  

Western blots analysis was applied to depicts the activation of p38 MAP kinase in toxin 

treated cells. This particular pathway is activated as a consequence of membrane 

damage by pores (Zhang et al., 2005,  Ratner et al., 2006). Finally, the presence and type 

of potential pores as a consequence of the effect of Cry41Aa and its loop recombinant 

was also addressed. All Cry41Aa  recombinant toxins were  characterised against 

Cry41Aa, these recombinants formed crystals which were harvested, solubilised and 

activated with trypsin in the same manner as Cry41Aa. Table 18 below summarises the 

constructs made to investigate the specificity of Cry41Aa to HepG2 cells. 
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Table 18  A  summary of  the constructs made to invetigate the specificty of Cry41Aa toxin. 
List of Contructs name along with details of ORFs, host bacterial cell, mutagensis, and whether they expressed proteins. The progression of expressed proteins from each constrcut through the 
stages of solublisation, trypsin activatiation, and toxicity on HepG2 cell lines.  
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6.3 Residue substitutions in loop 1 of Cry41Aa. 

Bioinformatics was used to predict loop1 of Cry41Aa. The native sequence 384SITS387 

underwent site directed mutagenesis with the aim of creating various mutants in an 

effort to understand Cry41Aa specificity towards HepG2 cells.  

 

 Four degenerate nucleotides were included in the forward primer to make three 

possible substitutions, making the number of possible mutant outcomes 34=81 as 

detailed in table 19. The pBS41Aa plasmid acted as template DNA. Once PCR products 

were purified and allowed to self-ligate, E. coli transformations were carried out.   

 

Table 20 lists the PCR primers for loop1 substitutions. Colonies with potential 

degenerate constructs were first identified by RSS. Bacterial colonies were picked and 

lysed 2% NaOH solution. The intact plasmids were separated on an agarose gel, large 

plasmids with insert travel slower than smaller plasmids no insert control (Law and 

Crickmore, 1997). In this instant loop1 mutant plasmids were the same size as wildtype 

BS41Aa and appeared to run equally when loaded in an agarose gel. Constructs that 

appeared similar to BS41Aa on RSS agarose gel were incubated overnight, centrifuged, 

pellet resuspended and mini prepped for further analysis. The extracted plasmids were 

subject to Hae III digests and were indistinguishable from wildtype Cry41Aa Hae III digest 

profile on an agarose gel. Constructs were confirmed by sequencing.  
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The mutant plasmids were introduced into Bt where the recombinant proteins were 

expressed. The resulting loop1 mutants’ proteins were CVSC, CLAC, and GLAC, their 

toxicity towards HepG2 was investigated.  

 

 

 

Table 19 PCR primer list to create constructs 
 primer design for the substitutions for each residue in loop1 of Cry41Aa following the introduction of degenerate 
codons. Native residues and codons are highlighted in red.  

 

primer list to create constructs 

 
Table 20 PCR primer list to create constructs 
 lists PCR primers used to create loop1 substitution construct 

 

 

6.3.1. Establishment of the cytotoxicity of loop1 Cry41Aa recombinants 

The predicted loop1 of Cry41Aa is a relatively short surface loop with the sequence 

384SITS387. Substitutes were made using degenerate nucleotides and successful 

Native residues OF CRY41AA LOOP1 
 
                                                                         5’     T        G        S       I      T      S      Y     T   3’ 
Codons      5’  ACG    GGT    AGC   ATT  ACT  AGC  TAT ACT  3’ 

Degenerate codons                                   BGC    BTT BCT BGC 

Outcomes  384 Serine:  AGC to BGC: Glycine, Cysteine, Arginine 
385Isoleucine ATT to BTT: Phenylalanine, Valine, 
Leucine 
386Threonine ACT to BCT: Alanine, Serine, Proline 
387Serine AGC to BGC: Glycine, Cysteine, Arginine 
 

Template DNA Primer name Oligonucleotide/ Primer sequence 5’-
PHO 

pBS41Aa JTLoop1F  5’ GGTBGCBTTBCTBGCTATACTCACGGTC 3’ Yes 

JTLoop1R  5’ GGTATTCCTTATATAAAATTTCATTTCTG 3’ Yes 
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recombinants were recovered. These recombinants were characterised against the 

wildtype Cry41Aa. Recombinants formed crystals that were harvested, solubilised and 

activated with trypsin in the same manner as Cry41Aa. The recombinants behaved 

similar to Cry41Aa and were indistinguishable on an SDS PAGE gel. Initial cell assay data 

indicated that all loop1 substitutes retained toxicity towards HepG2 cells. Since the 

mutant protein’s concentrations were not standardised, it was not possible to establish 

whether some mutants were significantly more or less toxic than Cry41Aa. It was clear 

that the loop1 substitutions did not knock out toxicity suggesting that this putative loop 

may not play a key role in the specificity or toxicity of Cry41Aa as shown in figure 49.   

 

 

Figure 49 CellTiter blue HepG2 cell assay of loop 1 mutants  
Figure shows % cell viability of HepG2 after a 24h incubation period with dialysed substitution mutants’ of loop1 
Cry41Aa. Protein concentrations were not standardised.  HepG2 cells seeded at density 25x104 cells/mL.  
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Loop1 recombinants did not reveal many details on the specificity of Cry41Aa, the 

distinctive extra loop was explored next  

 

 

6.4 Residue substitutions in extra loop of Cry41Aa. 

Homology protein structure prediction software highlighted the distinctive extra loop 

which is unique to Cry41Aa. Structurally, the loop appears to extend away from the main 

Cry41Aa structure according to SWISS-MODEL software predication; or it is tucked 

towards the main structure according to Phyre software (figure 46). It has the sequence 

261NVSDYSRYPWTQYNQSGGFSYREAKGEYRGT291.  

 

Previous work has shown that complete or  partial deletions on the loop did not result 

in a protease resistant core (Banani, 2013). A study by Howlader et al. (2009) created 

alanine substitutions in domain II loops 1, 2, and 3 of Cry4Aa. These mutants exhibited 

significant reduced toxicity to the susceptible Culex pipinen mosquito as well as 

highlighting loop 2 as a key loop in the role of receptor recognition (Howlader et al., 

2009).  Further investigation in loop 2 of Cry4Aa led to the creation of additional mutants 

in which multiple residues in loop 2 were replaced with alanine resulting in significant 

reduction in the level of mosquitocidal activity. The findings led to the speculation that   

the receptor binding site (S) of Cry4Aa is different from loops 1, 2, and 3 or that there 

may be multiple binding sites that work cooperatively for receptor binding. (Howlader 

et al., 2010). The role of the extra loop in Cry41Aa was investigated for specificity.  
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The sequence for the extra loop was analysed independently from the rest of the 

Cry41Aa sequence by PSIRED. The software data suggests that the extra loop has a 

secondary structure where residues 271TQY273 and 279FSYRE283 are sheets. An alanine 

substitution of residues 280SYRE283 was carried out. This substitution created an alanine 

cassette changing the native secondary structure of the extra loop from sheets to 

helixes. The PCR primers used are listed in table 21. The mutagenesis design is illustrated 

in figure 50.  

 

 PCR primer list to create construct 

 

Table 21 PCR primer list to create construct 
 Table lists PCR primers used to create extra loop substituation. 

 

 

The PCR product was purified and allowed to self-ligate overnight followed by a 

transformation into E. coli. The construct was processed in much the same way as that 

employed for all loop constructs.   Schematic diagram in figure 13 in methods 3.2 details 

the steps and process taken to obtain extra loop mutant protein.  

 

 

Template DNA Primer name Oligonucleotide/ Primer sequence 5’-
PHO 

pBS41Aa extra Loop JMF  5’ GCTGCAGCCAAAGGAGAGTACCG 3’ Yes 

extra Loop JMR  5’ GGCGGCAAAACCACCCGATTGATTATAC 3’ Yes 
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Figure 50 Schematic diagram of Primer design for Alanine substitution in extra loop of Cry41Aa. Substitution Residues and codon are highlighted in red in the native, primers and mutant sequence. 

Mutant extra loop: alanine substitutions 

N  V  S   D   Y    S   R   Y   P  W  T   Q   Y   N  Q   S  G   G   F   A  A   A   A   A   K   G    E    Y  R  G   T 

5’AAC  GTA  TCC  GAC  TAT  AGT  CGT  TAT  CCA  TGG  ACA  CAG  TAT  AAT  CAA  TCG  GGT  GGT  TTT  GCC  GCC  GCT  GCA  GCC   AAA  GGA  GAG  TAC  CGA  GGT  ACA 3’ 

Native extra loop sequence 

    N  V   S   D   Y   S   R   Y   P  W   T  Q   Y   N   Q   S   G   G   F   S   Y   R   E   A   K   G    E    Y  R  G   T  

5’AAC  GTA  TCC  GAC  TAT  AGT  CGT  TAT  CCA  TGG  ACA  CAG  TAT  AAT  CAA  TCG  GGT  GGT  TTT  AGC  TAC  CGT  GAA  GCC   AAA  GGA  GAG  TAC  CGA  GGT  ACA 3’ 



199 
 
 

 

 
 

Colonies with potential constructs were picked and grown in ampicillin LB broth for 2-3 

h. The suspensions were centrifuged, and pellet were mini prepped and to extract 

potential constructs. The potential constructs were profiled by Hae III digests. NEB web 

cutter software predicted the Hae III digest profiles of wildtype pBS41Aa as well as the 

extra loop construct.  

 

In preparation for subcloning into a Bt expression vector, the constructs in blue script 

plasmid and the Bt expression vector pSVP2741Aa underwent a double digest by BamHI 

and Xhol. In the constructs the mutant ORF2 2.5Kb fragments was isolated. In 

pSVP2741Aa the backbone 7.8Kb fragment with ORF3 was isolated. Once excised, and 

gel purified the linear fragments were allowed to ligate overnight before an E. coli JM109 

transformation.  

 

The transformation mixtures were plated on LB agar plates prepared with 5 µg/mL 

chloramphenicol and 100 µg/mL ampicillin for overnight incubation at 37 ⁰C. The 

pSVP2741Aa backbone fragment encodes ampicillin and chloramphenicol genes, 

correctly ligated constructs ensure bacterial cell survival.  The JM109 colonies were 

picked and incubated for 2-3 h in antibiotic LB broth. The suspension was centrifuged, 

and pellets resuspended for plasmid(s) extraction. 

 

 Hae III digests were performed on recovered mini preps. Table 22 lists the NEB web 

cutter predicted fragment sizes (bp) for the extra loop wildtype pSVP2741Aa.  
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Figure 51 is the gel picture of Hae III digest profile of wildtype pSVP2741Aa and the extra 

loop construct in Bt expression vector. The extra loop construct Hae III digest profile is 

indistinguishable from pSVP2741Aa.  

 

 Once confirmed by sequencing, the construct was introduced into E. coli strain GM2163 

in preparation for transformation with Bt4D7. This removed any methylated DNA. The 

integrity of the construct was checked as it proceeded through various bacterial 

transformations via Hae III digests profiles and sequencing.  

 

The construct was introduced into Bt4D7 to express recombinant crystals. The 

transformation mixture was incubated overnight on 5 µg/mL chloramphenicol LB agar 

plates at 30 ⁰C. Bt colonies were picked and incubated in 3mLs of antibiotic LB broth for 

2-3 h. The solution was centrifuged, and pellets were resuspended in order to extract 

the construct plasmids.  Mini preps from Bt cells would also include native Bt plasmids, 

therefore a Hae III digest to check the correct sequence of the construct cannot be 

carried directly on mini preps from Bt cells. The Bt mini preps were first introduced into 

E. coli and plated onto antibiotics LB agar plates. The lawn(s) of cells were scraped, 

resuspended and mini prepped for the construct. A Hae III digest was performed on the 

recovered plasmids.  
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After a 3-day incubation, Bt cells with extra loop construct were observed for crystals 

under a light microscope and thereafter harvested and characterised.   

 

Hae III digest profile by NEB web cutter 

 
Table 22  Hae III digest profile by NEB web cutter 
Table lists the key fragments of the Hae III  digest profile for wiltype pSVP2741Aa  and the extra loop construct in Bt 
expression vector   
 
 
 
 
 

 

 

 

 

 

 

 

Figure 51 Agarose 1% gel of Hae III digest profile of extra loop construct  
Lane was loaded with DNA 1kb marker. Lane 2 was loaded with wildtype Cry41Aa. Lane 3 and 4 were loaded with 
extra loop construct.  

Hae III  
fragments  

Wildtype pSVP2741Aa (bp) extra loop in Bt expression vector 
Construct (bp) 

1 2469 2469 
2 1895 1895 
3 1007 1007 
4 879 879 
5 629 629 
6 598 598 
7 587 587 
8 558 458 
9 458 434 
10 434 306 
11 306 267 
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The extra loop mutant was solubilised in carbonate buffer pH 10.5 and activated in 1 

mg/mL of carbonate trypsin. Two protease resistant proteins were observed. An ˜80   

KDa or slightly less as indicated with yellow arrows. A ˜60   KDa proteins was also 

observed but it was very faint. it is indicated in with a yellow arrow in the Cry41Aa 

control sample.  The extra loop recombinant was processed in both the 1 and 2 step 

method discussed in chapter 6.2.1. as indicated in the SDS PAGE gel the 2-step method 

was more efficient and a clear protease resistant protein in seen for recombinant in lane 

3 of figure 52. 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 52 SDS PAGE gel analysis of the extra loop recombinant protein against wildtype Cry41Aa protein. 
Lane 1 was loaded with protein marker. Lane 2 was loaded with 5µL of crude extra loop recombinant protein. Lane 3 
was loaded with 5µL of extra loop recombinant which was processed in the 2-step method. Lane 4 was loaded with 
5µL of extra loop recombinant protein processed in the 1 step method. Lane 5 was loaded with 5µL of wildtype 
Cry41Aa protein control.   
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The recombinant protein was gel purified and its concentration optimised against 

Cry41Aa and loop 3 recombinant proteins (chapter 6.4). A concentration range was 

made, and the extra loop recombinant was analysed for its effect on HepG2 cell lines. 

The final concentration of the extra loop recombinant in the well with HepG2 cells was 

0.197, 0.131, 0.0657, 0.0263, 0,013, 0.006, 0.002 µM/ml.   A gel picture of the protein 

concentration optimised activated extra loop recombinant protein (0.197 µM/mL) is 

shown in chapter 6.5.1. figure 73. HepG2 cell assay demonstrated that this mutant lost 

its toxicity towards HepG2 cells as indicated in figure 74 where the graph details a dose 

response of HepG2 treated with all recombinant proteins whose protein concentrations 

were optimised.  

 

6.5 Residue substitutions in loop 3 of Cry41Aa 

A combination of bioinformatic tools predicted loop 3 of Cry41Aa (chapter 4). 

Mutagenesis took place on three hydrophobic residues of loop 3 at positions F509, 

W511, and Y514 shown in figure 53.   

 

A number of studies have noted the likeness between the receptor binding loops of 

domain II and other known protein to protein epitopes. Protein to protein epitopes 

involve interactions between hydrophobic residues that able to bind tightly to receptors 

that are surrounded by hydrophobic or charged residues (Schnepf et al., 1998). In a 

study that examined the role of domain II, a number of alanine substitutions were made 

in loop 2 residues of 3-domain insecticidal CryIAb. The recombinant protein 
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demonstrated loss of toxicity to susceptible Manduca sexta and Heliothis virescens. The 

loss of toxicity directly correlated to reduced binding affinity for brush-border 

membrane vesicles (BBMV) prepared from susceptible insect midguts. The study 

proposed that 368RRP370 residues play a key role in toxin-receptor interactions and may 

even direct the toxin to receptor molecule. Further investigation in the same loop 

analysed the role of single hydrophobic aromatic Phenylalanine residue at position 371 

in the loop. A number of substitutions with hydrophilic, aliphatic residues with a small 

side chain were made. Observations indicated that irreversible binding and the toxicity 

of Cry1Ab to BBMV of M. sexta was significantly affect and the study concluded that a 

hydrophobic aromatic side-chain residue at position 371 was crucial for irreversible 

binding of Cry1Ab toxin to susceptible insect BBMV.   

 

Further investigations on the effect of residue substitution in loop of Cry1Ab revealed 

that alanine substitutions not only affected toxicity but also binding affinity to toxin to 

BBMV prepared from susceptible H. virescens midguts (Rajamohan et al., 1996b). 

Domain II loops of Cry1Aa toxins demonstrated that hydrophobic residues are critical 

for binding to BBMV of Bombyx mori midgut (Lu et al., 1994).   

 

Wu and Dean studied the effect of alanine substitutions in loop 1 and 3 of insecticidal 

Cry3Aa.  The recombinants were analysed for their toxicity to the susceptible Tenebrio 

molitor. Substitutions of tyrosine residues in loop1 resulted in a reduction in receptor 

binding. Unexpectedly, a block substitution in loop 3 residues to alanine resulted in a 

reduction in receptor binding while concurrently the recombinant toxin demonstrated 
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an increase in toxicity by 2.4-fold when compared to wildtype Cry3Aa. Comparative 

analysis of the loop 3 alanine substitution block mutant and wildtype Cry3Aa conclude 

that mutant demonstrated increased membrane insertion into the BBMV of T. mori and 

proposed that there is a direct correlation between toxicity and irreversible binding of 

this mutant to susceptible BBMV. The study concluded that loop1 and 3 of Cry3Aa are 

involved in receptor binding and loop 3 playing a key role in membrane insertion (Wu 

and Dean, 1996). 

 

Such studies have highlighted the importance of a hydrophobic residues in receptor 

recognition and irreversible binding to susceptible cells. In this study initial mutagenesis 

involved native hydrophobic, aromatic residues substitution with alanine at positions 

509, 511, and 514 to create three different mutants.   

 

 

 

6.3. Primer design for alanine substitutions at positions 509, 511, and 514 of loop 3 in 

Cry41Aa. 

 Initial mutagenesis aimed to create alanine substitution in position 509, 511, 514 of loop 

3 in domain II of Cry41Aa.  The three-loop 3 alanine substitution mutants F509A, W511A, 

and Y514A were made according to the primer design illustrated in figure 20 chapter 

5.1. The wildtype pBS41Aa plasmid (figure 21) acted as a template DNA to amplify loop 

3 of Cry41Aa. All three-substitution mutants F509A, W511A, and Y514A were made 

using pBS41Aa plasmid as a template as listed in table 23 and illustrated in figure 53.  
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The primers were designed so that each DNA fragment forms one half of loop 3. Once 

these linear PCR products were excised, gel purified and allowed to ligate, they formed 

a construct ready for introduction into E. coli. Correct ligation results in an MfeI 

restriction site introduced when codon change was introduced in the reverse primers.  

This silent mutation did not change native residue, a digest with MfeI was never carried 

out as Hae III digests and sequencing were sufficient in identifying constructs. The 

primer design is illustrated in figure 53 The constructs were introduced into E. coli   

JM109, and the mixture plated on 100 µg/mL ampicillin agar plates.  

 

 

PCR primer list used to create constructs 

 

Table 23 PCR primer list used to create constructs 
Table of primers used to introduce amino acid substitution into loop 3 of Cry41Aa. Substitution amino acids are 
highlighted in green. A codon change allowed the introduction of an MfeI restriction site in the PCR product.   

 

Substitution Forward Primer PCR product sequence 

F509 to  A 5’GCCCTGCCGCGTGGCCTG
G3’ 

5’GGATTAAATTTGAACCTATTAAATTTGAACCTGTACGGGAC
AATTGCCCTGCCGCGTGGCCTGG3’ 

W511 to  A 5’GCCCTTTCGCGGCGCCTG
GTTATAAA3’ 

5’GGATTAAATTTGAACCTATTAAATTTGAACCTGTACGGGAC
AATTGCCCTTTCGCGGCGCCTGGTTATAAAC3’ 

W511 to Y 5’GGATTAAATTTGAACCTATTAAATTTGAACCTGTACGGGAC
AATTGCCCTTTCGCGTATCCTGGTTATAAAC3’ 

W511 to F 5’GGATTAAATTTGAACCTATTAAATTTGAACCTGTACGGGAC
AATTGCCCTTTCGCGTTTCCTGGTTATAAAC3’ 

Y513 to A 5’GCCCTTTCGCGGCGCCTG
GTGCTAAACAATTAAGT3’ 

5’GGATTAAATTTGAACCTATTAAATTTGAACCTGTACGGGAC
AATTGCCCTTTCGCGTGGCCTGGTGCTAAACAATTAAGT3’ 

F509 to 
Degenerate  

 5’ 
GCCCTTNBGCGTGGCCTGG
3’  

5’GGATTAAATTTGAACCTATTAAATTTGAACCTGTACGGGAC
AATTGCCCTTNBGCGTGGCCTGGTTATAAA3’ 

Reverse 
Primer 

5’ATTGTCCCGTACAGGTTCAAATTTAATC3’ 

MfeI Restriction 
site    

5’ CATTG3’ 

 



207 
 
 

 

 
 

  

 

 

 

 

Figure 53 Schematic representation of primer design for alanine substitutions on loop 3 of Cry41Aa. 
Wildtype pBS41A acted as template DNA to create construct. The position of each amino acid destined for substitution 
is numbered and highlighted in red in the native sequence of the plasmid. A codon change at ‘T’ allows the 
introduction of an MfeI restriction site in the PCR products.  
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Colonies with potential constructs were picked and grown in ampicillin LB broth for 2-3 

h. The suspensions were centrifuged, and pellet were mini prepped and to extract 

potential constructs. The potential constructs were profiled by Hae III digests. NEB web 

cutter software predicted the Hae III digest profiles of wildtype pBS41Aa as well as the 

constructs. The Hae III profile of each mutant loop 3 varied dependents on the type of 

substitution made.  

 

The construct W511A is used here as an example to illustrate the steps and check points 

that all constructs undertook. Table 24 lists some the predicted Hae III fragments of 

construct W511 and wildtype pBS41Aa as calculated by NEB web cutter. 

 

Hae III digest profile by NEB web  cutter 

 

Table 24 Hae III digest profile by NEB web cutter 
 lists the key fragements of the Hae III  digest profile for wiltype pBS41Aa  and the construct W511A in blue script 

Hae III fragments  Wildtype pBS41Aa (bp) pBS41Aaloop3 Construct (bp) 

1 767 767 

2 629 705 

3 558 629 

4 549 549 

5 458 458 

6 434 434 

7 340 340 

8 306 306 

9 267 267 

10 254 254 
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Figure 54 is the gel picture of mutant W511A which had a distinctive 705bp band the 

wildtype pBS41Aa band 558bp was noticeably missing. The W511A as well as other loop 

3 constructs were first identified by Hae III digests performed on mini preps of plasmids 

extracted from E. coli   JM109 cells. The constructs were subsequently confirmed by 

sequencing before preparation for subcloning into a Bt shuttle vector.  

 

 

Figure 54 Banding profie of construct in agrose gel 
 Agarose 1.5% gel of Hae III digest of plasmids extracted from JM109 colonies a lane 1, colony b in lane 2 , and colony c in lane 5 . 
lane 3 contained wildtype pBS41AA. Lane 4 contained DNA marker.   All lanes labelled with content.   

 

 

In preparation for subcloning into a Bt expression vector, the constructs and the Bt 

expression vector pSVP2741Aa underwent a double digest by BamHI and Xhol. In the 

constructs the mutant ORF2 2.5Kb fragments was isolated. In pSVP2741Aa the backbone 

1                    2                  3                 4                 5 1                    2                  3                 4                 5 
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7.8Kb fragment with ORF3 was isolated. Once excised, and gel purified the linear 

fragments were allowed to ligate overnight before a transformation into E. coli   JM109. 

The transformation mixtures were plated on LB agar plates prepared with 5 µg/mL 

chloramphenicol and 100 µg/mL ampicillin for overnight incubation at 37⁰C.   

 

The pSVP2741Aa backbone fragment encodes ampicillin and chloramphenicol genes, 

correctly ligated constructs ensure bacterial cell survival.  The JM109 colonies were 

picked and incubated for 2-3 h in antibiotic LB broth. The suspension was centrifuged, 

and pellets resuspended for plasmid(s) extraction. Hae III digests were performed on 

recovered mini preps.  

 

Table 25 lists the NEB web cutter predicted fragment sizes (bp) for the construct W511A 

and wildtype pSVP2741Aa. Figure 55 is the gel picture of Hae III digest profile of wildtype 

pSVP2741Aa and the W511A construct in Bt expression vector. Colony 1 and 5 both 

show the distinct 705bp band of a Hae III digest profile on construct W511A. Once 

confirmed by sequencing, all constructs were introduced into E. coli   strain GM2163 in 

preparation for Bt4D7. Transformation.   

 

The integrity of all constructs was checked as they proceeded through various 

transformations. Figure 55 confirmed that the construct W511A of colony 1 and 5 were 

indeed the same construct that was recovered after GM2613 transformations.  All loop 

3 constructs were processed and checked in the same manner as construct W511A.  
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Hae III digest profile by NEB web  cutter 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 25 Hae III digest profile by NEB web cutter 
lists the key fragements of the Hae III  digest profile for wiltype pSVP2741Aa  and the construct W511A in Bt expression vector   

 

 

 

 

 

 

 

 

 

 

 

 
Figure 55 Banding profie of construct in agrose gel 
 Agarose 1.5%  gel of Hae III  digest performed on plasmids recoverd from  E. coli  strains JM109 and GM2163 colonies. Lane 1 
containe wildtype pSVP2741AA. Lane 2 DNA marker. Lane 3 conatined colony 1 extracted from JM109. Lane 4 conatined colony 1 
extracted from GM2163. Lane 5 conayined colony 5extracted from JM109. Lane 6 conatined coloy 5 extracted from GM2163.  
 All lanes labelled with contents  

 

Hae III  
fragments  

Wildtype pSVP2741Aa (bp) W511A in Bt expression vector 
Construct (bp) 

1 2469 2469 
2 1895 1895 
3 1007 1007 
4 879 879 
5 629 705 
6 598 629 
7 587 598 
8 558 587 
9 458 458 
10 434 434 
11 306 306 

1                2            3            4            5              

6 

1                2         3            4            5         6     

6 
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Sequencing confirmed all constructs were recovered from GM2163 cells. The constructs 

were introduced into Bt4D7 to express recombinant crystals. The transformation 

mixtures were incubated overnight on 5 µg/mL chloramphenicol LB agar plates at 30⁰C.   

Bt colonies were picked and incubated in 3mLs of antibiotic LB broth for 2-3 h.   

 

The 2mL solution were evenly distributed on 5 µg/mL chloramphenicol LB agar plates at 

30⁰C for a 3-day incubation. The remaining solution was centrifuged, and pellets were 

resuspended in order to extract the construct plasmids. The Bt mini preps were first 

introduced into E. coli and plated onto antibiotics LB agar plates. The lawn of cells was 

scraped, resuspended and mini prepped for the constructs. Hae III digest were 

performed on the recovered plasmids to check for the correct constructs.  

 

Figure 56 is the gel picture of various Hae III digests performed on construct W511A 

from where it was first created in JM109 cells to its GM2163 transformation to remove 

methylated DNA in order to introduce it with Bt cell where the recombinant crystal was 

expressed, to finally out of Bt cells and JM109 transform to confirm the integrity of 

construct W511A.  

 

All constructs were subject to Hae III digests and sequencing checks. After a 3-day 

incubation, samples were observed for crystals under a light microscope and thereafter 

harvested and characterised. 
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Figure 56 Banding profie of construct in agrose gel 
 1.5%agarose gel of various Hae III  digests performed on construct W511A as it journed to and out various  E. coli  and Bt cells.  Lane 
1 contanined DNA marker. Lane 2 conatined W511A extracted from JM109. Lane 3 conatined wiltype pSVP2741Aa. Lane  4 conatine 
W511A extraced from GM2163. Lane 5 conatined W511A extracted from JM109  post tranfromation with Bt4D7.    All lanes labelled 
with content.  

 

 

 

6.5.1 Characterisation and purification of alanine substitutes F509A, W511A, and 

Y514A 

Bt bacterial cells undergo a stationary phase during their cycle that is thought to be 

triggered by a shortage in nutrients. It is during this phase that protein molecules 

accumulate in the mother cell as crystal inclusions constitute 25% of the dry weight of 

the sporulated cells. Studies have indicated that much of the Bt cell’s energy is used for 

1             2             3           4          5 
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crystal and spore production which are physiological changes indicative of the stationary 

phase in the bacterium’s life cycle (Agaisse and Lereclus, 1995; Palma et al ., 2014). 

 

 Once the constructs were introduced into Bt4D7 and plated onto 5 µg/mL 

chloramphenicol agar, they were incubated for 3days at 30˚C.  Samples were observed 

under the light microscope to confirm the presence of crystals.  Electron microscopy 

images were taken of some mutant crystal and compared to wildtype Cry41Aa crystal 

made Bt4D7 strain.  It shows typical bipyramidal Bt crystals mixed with spores (figure 

57). The mutant crystals are indistinguishable from wildtype. 

 

 

 

 

 

 

 

 

 

 

 

Figure 57 Electron microscope images of Bt crystals taken after three days of incubation during the sporulation 
stage of Bacillus thuringiensis 4D7.  
Crystals and spore labelled accordingly indicated in green. Picture A=Cry41Aa (wildtype), B= F509A, C= W511A, D= 
Y514.  
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Cry41Aa wildtype and its recombinant were subjected to the two-step procedure. Figure 

58   is the SDS PAGE gel picture of crude wildtype Cry41Aa and F509A and W511A loop 

3 substitution recombinant crude samples. The blue box highlights the ˜120 KDa protein 

expressed by ORF3 gene. The yellow box highlights the ˜80-88 KDa recombinant protein 

expressed by ORF2 gene. All crystals made by the loop substitution mutants were 

observed under light microscope and then visualised in an SDS PAGE gel. All 

recombinant crude samples are comparatively indistinguishable from Cry41Aa crude 

crystals.  The loop substitute recombinants were solubilised and activated in the 

established 2 step process.  

 

 

Figure 58 7.5% SDS PAGE gel showing total crude sample of recombinant F509A and W511A of different volumes 
against crude wildtype Cry41Aa.   
The blue box highlights the 120  KDa recombinant protein expressed by ORF3 gene. The yellow box highlights the 80  
KDa recombinant protein expressed by ORF2 gene. All lanes labelled with content and volume (µL) 

 

1             2           3          4            5           6           7           8           
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Figure 59 shows the SDS PAGE gel analysis of the solubilised and activated F509A mutant 

and Cry41Aa.  The F509A mutant exhibited a faint band that represented ORF3 (˜120 

KDa) and an ORF2 (˜80-88 KDa ) in only the carbonate lane 3. Its equivalent wildtype 

Cry41Aa carbonate sample was quite faint but an ORF3 protein was apparent.  

 

Both Cry41Aa and F509A proteins showed better yield of activated toxins when 

solubilisation in carbonate and DTT as indicated by prominent bands that represented 

˜80-88  KDa protoxin protein 5 and 6. With the exception of sample in lane 3 there was 

an absence of the ˜120  KDa protein encoded by ORF3 in other samples in the gel.  

According to Yamashita et al. (2005) the ORF2 gene encodes the active toxin, thus the 

88 KDa proteins is activated by proteinase K to produce a protease resistant core of ˜64 

KDa. Here, Cry41Aa was activated by 1 mg/mL trypsin in carbonate and produced a 

prominent major protein of ˜80  KDa (or slightly less) as observed in lanes 2, 7, 8, 9, and 

10. The minor ˜60  KDa protein appeared fainter and although it was observed in gel it 

does not show well in picture.  

 

The smaller protein˜60 KDa is less concentrated than the bigger 80 KDa protein. The 

activated F509A mutant resulted in a major ˜80 KDa band as seen in lanes 8 and 10 of 

the gel picture.  The minor ˜60 KDa band was also present but very faint and clear in 

image. In Cry41Aa activated protein sample (lane 7 and 9) and of a similar concentration 
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to that of mutant F509A the minor protein is also very faint. Both F509A samples are 

shown in the lanes 9 and 10 of the gel picture.  Protease inhibitors were added post 

activation to reduce degradation of protein by native proteases.  

 

 

 

Figure 59 7.5% SDS PAGE gel of Cry41Aa and recombinant F509A in different conditions. 
Lane 1 is loaded with protein marker. Lane 2 is loaded with supernatant Cry41Aa after it was solubilised in carbonate 
pH 10.5and DTT (2.5mM).  Lane 3 was loaded with supernatant F509A after incubation in carbonate pH 10.5. Lane 4 
was loaded with supernatant Cry41Aa after incubation in carbonate pH 10.5. Lane 5 was loaded with supernatant 
Cry41Aa after it was solubilised in carbonate pH 10.5and DTT (2.5mM). Lane 6 was loaded with supernatant F509A 
after it was solubilised in carbonate pH 10.5and DTT (2.5mM). Lane 7 was loaded with activated Cry41Aa which was 
solubilised in carbonate pH 10.5. Lane 8 was loaded with activated F509A which was solubilised in carbonate pH 10.5. 
Lane 9 was loaded with activated Cry41Aa after it was solubilised in carbonate pH 10.5and DTT (2.5mM). Lane 10 was 
loaded with F509A after it was solubilised in carbonate pH 10.5and DTT (2.5mM).  

 

 

1                  2                 3               4                5            6                 7            8            
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6.5.3.  Purification of Cry41Aa loop substitute F509A, W511A and Y514A 

The activated forms of the recombinant toxins required purification. This step aimed to 

isolate the two peptides thought to be responsible for toxicity. The findings from this 

study have identified a major protein of ~ 80 KDa (or slightly less) and a minor protein 

of ~60 KDa.  

 

Anion exchange chromatography was employed to isolate each protein separately, so 

that each could be analysed for its toxicity towards HepG2 cell lines. The pI of Cry41Aa 

was calculated as 6.18 by compute pI/Mw Expasy tool.  Yamashita, et al. (2005) 

successfully separated individual peptides via anion exchange. Cry41Aa and its 

recombinants F509A, W511A, and Y514A were dialysed overnight against 10mM CAPS 

buffer at pH 10.4 in order to remove DTT and other low molecular weight contaminants. 

They were then eluted by increasing sodium chloride gradient from 0 to 1 M. The 

fractions were collected and visualised on SDS PAGE gels.  

 

Activated Cry41Aa was purified using AKTA to separate the two peptides (˜80 KDa and 

˜60 KDa) and visualised in SDS PAGE gels as shown in figure 60a. The toxin was eluted 

as a single peak (figure 60b), and the collected fractions always show traces of the minor 

60 KDa protein particularly once the fractions were concentrated in preparation for cell 

assays of toxins. In this study, it was not possible to individually isolate each of the 

protein in the wildtype toxin. However, Domanska, 2016 did manage to separate the ˜80  
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KDa protein and the ˜60  KDa peptides from each other by activating with proteinase K 

and concluded that both proteins were subject to  proteolytic activation and exhibit 

cytotoxicity to HepG2 cells (Domanska, 2016, Souissi, 2018).  

 

The recombinant toxins F509A, W511A, and Y514A were also AKTA purified and 

fractions collected as shown in figure 60-63. Similarly, to Cry41Aa gel images, the minor 

60 KDa protein band is not obvious in some SDS PAGE gels of the collected AKTA purified 

loop recombinants fractions, but they were quite evident once the sample were 

concentrated in preparation for cell assay investigations.  
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(a) 

Peak 

Concentration of eluted peptide 

 Low High 

(b) 

Figure 60 of AKTA purified fractions of activated Cry41Aa. 
 (a) SDS PAGE 7.5% gel of AKTA purified fractions of activated 
Cry41Aa. (b) AKTA elution profile of trypsin activated 
Cry41Aa.  Toxin was eluted in 10mM CAPS, pH 10.4 buffer as 
a single peak at  
~750mM sodium chloride 
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Peak 

(b) 

Figure 61 AKTA purified fractions of 
activated recombinant F509A 
(a) SDS PAGE 7.5% gel of AKTA purified 
fractions of activated recombinant F509A. 
(b) AKTA elution profile of trypsin activated 
recombinant F509A. Toxin was eluted in 
10mM CAPS, pH 10.4 buffer as a single peak 
at ~750mM sodium chloride. 
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(b) 

Figure 62 AKTA purified fractions of 
activated recombinant W511A 
(a) SDS PAGE 7.5% gel of AKTA purified 
fractions of activated recombinant W511A. 
(b) AKTA elution profile of trypsin activated 
recombinant W511A. Toxin was eluted in 
10mM CAPS, pH 10.4 buffer as a single peak 
at ~750mM sodium chloride. 

 

(b) 
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(a) 

Peak 

Figure 63 AKTA purified fractions of activated 

recombinant Y514A 

(a) SDS PAGE 7.5% gel of AKTA purified fractions of 

activated recombinant Y514A. (b) AKTA elution 

profile of trypsin activated recombinant Y415A. 

Toxin was eluted in 10mM CAPS, pH 10.4 buffer as a 

single peak at ~750mM sodium chloride 
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6.5.4. Establishing cytotoxicity of F509A, W511A, and Y514A recombinants proteins 

Preliminary experiments were carried to establish the cytotoxicity status of Cry41Aa 

toxin and its mutants towards HepG2 cell line.  Cell assays of HepG2 cell incubated with 

AKTA purified recombinant proteins were carried out. Figure 64 is the gel image of AKTA 

purified Cry41Aa, F509A, W511A, and Y514A. showing activted protein of ˜80  KDa of 

similar concentration Table 26 lists the spectroscopic analysis from  Braford protein 

assay carried out on preliminary AKTA purified Cry41Aa, F509A, W511a, and Y514A.    

 

 

 

 

 

 

 

 

Figure 64 SDS PAGE gel of purified recombinant samples used on HepG2 cell assay 
The protein concentration is optimised to approximately 100µg/mL. lane 1 was loaded with 5µL of Cry41Aa. lane 2 
loaded was loaded with 5µL of recombinant protein F509A. Lane 3 was loaded with 5µL of recombinant W511A. lane 
4 was loaded with 5µL of recombinant Y514A. the samples were used in HepG2 cell assay.  
 

 

 

 

 

https://en.wikipedia.org/wiki/Spectroscopy
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Protein concentration assay 
 

Toxin name  protein concentration  
(mg/mL)  

Cry41Aa 0.487 
F509A 0.463 
W511A 0.481 
Y514A 0.484 

 
Table 26 Protein concentration assay  
Table lists the spectroscopic analysis from  Braford protein assay carried out on preliminary AKTA purified Cry41Aa, 
F509A, W511A, and Y514A  

 

 

The toxins were incubated with HepG2 cell lines for 24 h, thereafter the cell viability was 

measured using CellTiter-Blue assay.  The assay estimates metabolic activity of cells 

using a fluorometric method. The resazurin dye is nontoxic but permeable to cells, once 

it enters viable cells it is reduced  to high fluorescent resorufin, the signal is measured 

to give an estimate of viable cells (O’Brien et al., 2000).  

 

CellTiter-Blue assay was added as an end point reagent of toxin-cell experiments and 

incubated for two hours.  Hela and HepG2 cells were seeded at different densities in a 

96 well plate at 22500 cells/well and 5000. Hela is a cancerous cell line that is not 

susceptible to  Cry41Aa and thus acted as  negative control to Cry41Aa susceptible 

HepG2 cell line (Yamashita., 2005). The Crickmore lab had previously carried out cell 

assays investigations on Cry41Aa and had used the 5000 cell/well density as a standard 

(Krishnan, 2013).  The higher cell density of 2x104 was used by Yamashita et al. (2005) 

and was used here to check the consistency of the toxicity of Cry41Aa. 

https://en.wikipedia.org/wiki/Spectroscopy
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 Cry1Ca is well characterised insecticidal 3-domain toxin which was expressed in Bt4D7 

strain in the same manner as Cry41Aa. HepG2 cells are not susceptible to Cry1Ca toxin 

and it therefore acts a negative control for 3-domain toxins made in the lab in Bt4D7. 

The HepG2 cell lines were incubated with buffer used to dialyse the recombinants as 

well as TX-100 (detergent that disrupts cell membrane) and etoposide (cytotoxin).  TX-

100 caused cell death by necrosis and etoposide by apoptosis.  These were used as 

positive controls for toxicity i.e. cell death.  

 

Figure 65 is the graphical presentation of a preliminary investigation on different cell 

densities of both HepG2 and Hela cells incubation with Cry41Aa (wildtype), the 

recombinant toxins F509A, W511A, and Y514A, as well as the positive cell death controls 

TX-100 and etoposide. At this stage the toxins were of similar concentration.  

 

The data indicated that Cry41Aa and its three loop 3 recombinant mutants F509A, 

W511A, and Y514A do not have any effect on cancerous HeLa cell at 22,500 cells per 

well. Unfortunately, a cell assay with HeLa cells at a lower density was not carried out. 

It cannot be stated that the loop 3 recombinant proteins or Cry41Aa are not toxic to 

Hela cells at a lower cell density. Cell assay studies have demonstrated that toxins can 

exert a different toxicity depending on cell densities used (Soberón et al., 2018).    
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The cell assay registered almost 0 % cell viability with TX-100 and a 75 % cell viability 

after etoposide incubation. This observation has highlighted the specificity of the 

Cry41Aa toxin and to an extent the specificity of its recombinants to HepG2 cells. 

 

The Y514A mutant has retained toxicity to HepG2 cells with a 20% cell viability in higher 

cell density compared to 40% in lower cell density.  Wildtype Cry41Aa toxins was also 

toxic to HepG2 cell lines but not as fatal as recombinant toxin Y514A with 38 % cell 

viability (higher cell density) and a 60 % cell viability in lower cell density. Microscopic 

observations of HepG2 cell lines in incubation separately with Cry41Aa and Y514A toxins 

indicated that Y514A induced immediate cellular swelling and appeared to be more 

potent than wildtype Cry41Aa. It was too soon at this stage to recognise Y514A as more 

potent compare to the wildtype Cry41Aa. The protein concentrations required 

optimisation and visualisation on an SDS PAGE gel first. A dose response experiment 

would also confirm if Y514A was indeed more toxic than wildtype Cry41Aa.  

 

Both F509A and W511A toxins were not toxic to HepG2 cell line, along with insecticidal 

Cry1Ca both these recombinants had no effect on the viability of HepG2 cells. Under the 

microscope, HepG2 cells appeared intact and viable. This loss of toxicity was evident. 

Thus, substitution in both recombinant toxins may have affected how they interact with 

HepG2 cells which resulted in the disrupted specificity or reducing cell-toxin(s) 

interactions. Alternatively, it is also possible that interactions did still occur but no longer 

led to cell death.  
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Figure 65 CellTiter-Blue 24h assay of loop 3 substitutions, F509A, W511A, and Y514A at 1.3 µM/ml on Hela (seeded at 22x104) and HepG2 (seeded at 5,000 and 22x104) cell lines at different cell 
densities. Cry1Ca act as negative controls. TX-100 and Etopside act as positive controls. 
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The effects of Cry41Aa and its loop 3 recombinant F509A were investigated for their 

effects on cell membrane damage with the use of cytotoxic markers such as CellTox-

Green cell assay kit. Cell membrane permeability can be determined when a small 

fluorescent DNA binding molecule permeates the damaged membrane and binds to the 

cell’s DNA. The fluorescent signal correlates to membrane damage and increases in a 

time-dependent manner.  

 

HepG2 cells were incubated for a period of 28 hrs and cytotoxicity was measured every 

half an hour for the first 3hrs and then every hour for the following 3hrs with reading at 

26hrs of incubation and a final reading at 28hrs of incubation. Figure 66 is the graphical 

representation of HepG2 cell membrane damage as a result of incubation with 

recombinant toxin F509A and wildtype Cry41Aa.   

 

CellTox green fluorescent signal increased proportionally as Cry41Aa incubation time 

with HepG2 cell line also increased. The fluorescent signal from HepG2 cells incubated 

with F509A remained very low even after 28hrs of incubation and is not different to 

readings from negative controls buffer and insecticidal Cry1Ca.  Low CellTox green 

fluorescent signals suggest that F509A did not induce HepG2 cell membrane damage 

and can be interpreted as lack of toxicity by F509A toxin. The echo findings from 

CellTiter-Blue analysis on F509A confirm that the single amino acid substitute mutant as 

nontoxic to HepG2 cell lines.  
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Figure 66 CellTox green assay 
Membrane damage assessments by CellTox green in HepG2 cells incubated over a 28hrs period. HepG2 cells were seeded at 25x104 cell/mL with CellTox-Green dye in a black 96-well plate. The 
next day the cells were incubated with Cry41Aa, F509A, Cry1Ca at 1.3 µM/ml concentration, lysis, or buffer. The fluorescent signal was measure at various time points post toxin addition. 
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HL-60 was reported as a susceptible cell line to Cry41Aa (Yamashita et al., 2005). In this 

study cell viability analysis has concluded that Cry41Aa as well as its loop mutant F509A, 

W511A, and Y514A, did not exhibit toxicity towards HL-60 cell lines (data not shown). 

The cytotoxicity of these mutants and Cry41Aa towards other human cell lines was 

investigated and the findings are presented in figure 67.    

 

Therapeutic drugs can readily induce apoptosis in both Burkitt’s lymphoma and non-

cancerous lymphoblastoid cells lines. Thus, investigating how Cry41Aa and its loop 3 

recombinants affect these cells lines can shed light on its specificity, particularly when 

compared to the susceptible HepG2 cell line. Cell viability was calculated in percentages 

relative to buffer values and determined by metabolic activity of viable cells. Table 27 

lists the cell lines tested.   

 

Figure 67 is a graphical representation of CellTiter Blue assay analysis of the cell lines 

listed in table 27 after a 24 h incubation with Cry41Aa F509A, W511A, and Y514A toxins. 

For statistical comparison of treatments in experiments, a Post-Hoc analysis applying a 

Bonferroni adjustment was carried out in SPSS. The cell line MUTU1 was not susceptible 

to any of the toxins tested. In the Y514A treatment of MUTU1 a high percentage of cell 

viability was recorded. It is likely that is due to human error during in the experimental 

procedure.  The Post-Hoc analysis did not find any significance to this value when 

compared with buffer only treatments.  
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BL31 cell line treatments with toxins and buffers indicated a decrease in the percentage 

of cell viability.  It is possible that the cell line was being affected by other factors such 

as contaminants or unfavourable buffer conditions. When a Post-Hoc statistical analysis 

was carried out there was no significant difference found between toxin treated BL31 

and buffer only treated cells. Microscope observations confirmed presence of detached 

and ruptured cells in buffer and toxin treated BL31 wells. The cell lines GM12878 and 

IB4 had a 100% cell viability relative to buffer after a 24 h period of incubation with the 

said toxins.  HepG2 cell lines were treated with toxins, only two toxins had a significant 

effect on percentage cell viability when compared to buffer only treated cells. Cry41Aa 

recorded 45 % cell viability and Y514A a 38 % cell viability after a 24h incubation period.  

 

List of mammalian cell lines 
 

 

 

 

 
 
Table 27 List of mammalian cell lines 
Table lists the cell lines used to investigate the cytotoxicity of Cry41Aa, F509A, W511A, and Y514A.  

Cell line Origin 

HepG2 Hepatocyte cancer 

Hela  Uterus cervix cancer 

Mutu1 Burkitt’s lymphoma (EBV positive) 

BL31 Burkitt’s lymphoma (EBV negative) 

IB4 Lymphoblastoid (B cells transfected with EBV 

GM12878 Lymphoblastoid (B cells transfected with EBV) 

HL-60 Acute myeloid leukaemia 
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Figure 67 CellTiter-Blue Assay of various cultured cell lines. 
The cells were seeded 24 h before the day of experiment at 25x104 cells/mL. Cells were treated with activated Cry41Aa and loop 3 recombinant at 1.3 µM/ml. Viability was measured as 
a metabolic activity of viable cells 24h h post-treatment. Bars with asterisks are significantly different from buffer only control cells (* p < 0.005, Post-Hoc comparison with Bonferroni 
correction).  
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The lack of toxicity by F509A and W511A highlighted the need to further investigate the 

type of residue and the position of these residues. Based on these findings the study 

carried out mutagenesis on residue substitutions in positions F509 and W511.  A number 

of degenerate substitutions were made in position F509, as well as two aromatic residue 

substitutions at position W511. 

 

6.6 Degenerate amino acid substitutions at positions 509 and 511 

The degenerate substitution at position 509 of Cry41Aa loop 3 was created using BS41Aa 

plasmid and the primers listed in table 28 below.  The PCR design for the degenerate 

substitution is detailed in figure 68 and could generate a number of substitution 

combinations. 

 

Mutagenesis carried out in loop 3 

Table 28 Mutagenesis carried out in loop 3 
Table of amino acid substitutions carried out in loop 3 of Cry41Aa. Amino acids changes are highlighted in green. 

 

Substituti
on 

Forward Primer PCR product sequence 

F509 to 
Degenerat
e  

 5’ GCCCTTNBGCGTGGCCTGG3’  5’GGATTAAATTTGAACCTATTAAATTTGAACCTGTACGGGAC
AATTGCCCTTNBGCGTGGCCTGGTTATAAA3’ 

W511 to F 
 

 
5’GCCCTTTCGCGTTTCCTGGTTATA
AAC3’                                                               

                                                 

5’GGATTAAATTTGAACCTATTAAATTTGAACCTGTACGGGAC
AATTGCCCTTTCGCGTTTCCTGGTTATAAAC3’ 
 

W511 to 
Y 

5’GCCCTTTCGCTATCCTGGATTATA
AAC3’ 

5’GGATTAAATTTGAACCTATTAAATTTGAACCTGTACGGGAC
AATTGCCCTTTCGCGTATCCTGGTTATAAAC3’ 

Reverse 
Primer 

5’ATTGTCCCGTACAGGTTCAAATTTAATC3’ 

MfeI 
Restriction 
site    

5’ CATTG3’ 
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 Figure 68 Schematic diagram of primer design for degenerate substitutions on loop 3 of Cry41Aa at position 509.  
 Wildtype pBS41A acted as template DNA to create construct. The position amino acid F509 destined for substitution 
is numbered and highlighted in red in the native sequence of the plasmid. A codon change at ‘T’ allows the 
introduction of an MfeI restriction site in the PCR products.  

 

The PCR product was gel purified and allowed to self-ligate overnight, before the first of 

many E. coli   transformations took place. The transformation mixture was placed on 

two 100 µg/mL ampicillin agar plates.  

 

Two strategies were applied to maximise the number of degenerate constructs. In the 

first strategy, individual colonies were picked from one ampicillin agar plate. A number 
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of Rapid Size Screens (RSS) of colonies as well as wildtype pBS41Aa were carried out, 

this gave a quick assessment of which colonies may have potential degenerate construct 

when compared on an agarose gel to wildtype pBS41Aa. Once the numbers of potential 

colonies were narrowed down, the colonies underwent a Hae III digest. 

 

 The Hae III digest profiles of some constructs were similar to that of wildtype pBS41Aa 

and were indistinguishable on gel from wildtype.  Thus, individual degenerate 

substitutions were confirmed by sequencing. Once identified a double digest with 

BamHI and Xhol was carried out to isolate the mutant OR2(s). These were ligated 

overnight with pSVP2741Aa back bone fragment 7.8kb that encode ORF3 to create 

constructs that can be expressed in Bt cells.  

 

The second strategy involved a mass scrape of colonies from the remaining plate. 1.5mL 

of distilled water was added to scrape any colonies, the solution was centrifuged, and 

the pellet was resuspended in distilled water followed by a double BamHI-XhoI digest to 

isolate the 2.5Kb fragments that encode the mutant ORF2(s). These were ligated over 

night with the 7.8kb backbone fragments of pSVP2741Aa plasmid to create a Bt 

expression vector before an E. coli transformation. At this stage the constructs undergo 

a process of selection by RSS. A construct with an RSS size that is identical on an agarose 

to wildtype pSVP2741Aa was selected for further analysis.  
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Figure 69 is the picture of agarose gel of RSS carried out in colonies with potential 

degenerate construct. Constructs are in Bt expression vector and were extracted from 

colonies 8 to 21. Of those colonies 10, 11, 12, 13, 14, 15, 16, 17, 20 and 21 showed an 

RSS size similar to wildtype pSVP2741Aa. 

 

 These were subject to Hae III digests and later confirmed by sequencing. Confirmed 

degenerate constructs in Bt expression vectors were introduced into E. coli GM2163 to 

remove methylated DNA, before a transformation with Bt4D7 where they incubate for 

3 days at 30˚C to allow for sporulation and production of crystals.  Constructs were 

extracted from Bt cells for a final transformation into E. coli cells. This final step involved 

further Hae III digests to confirm the integrity of constructs.  

 

Figure 70 is the gel picture of construct F509S and shows the Hae III digest profile of 

F509S where it was first identified and extracted from colony 4. The construct shares 

the same digest profile as wildtype pSVP2741Aa plasmid was hence it was in disguisable 

on gel. The construct was confirmed via sequencing.  The gel pictures confirmed the 

construct as it journeys through different bacterial host cells.   
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Figure 69 RSS analysis of colonies with potential construct 
Double deck 1% agarose gel showing RSS on colonies 8 to 21 harbouring degenerate substitution construct after mass 
scale ligation of 2.5kb fragments with 7.8kb backbone of pSVP2741Aa. Upper deck was loaded with colonies 8 to 14 
with Wildtype pSVP2741Aa labelled accordingly in the gel.  Lower deck was loaded with colonies 15 to 21 with 
pSVP2741Aa labelled in lane. Colonies with potential degenerate construct and similar sizes to wildtype are circled. 

 

 

 

 

 

 

 

 

 

Figure 70 Banding profie of construct in agrose gel 
Agarose 1.5% gel of Hae III digest profiles of construct F509S as the constructs are hosted by different E. coli   strains 
lane 1 contained control pSVP2741Aa. Lane 2 contained colony 4 extracted from JM109. Lane 3 contained construct 
F509S extracted from GM2163 prior to transformation with Bt4D7. Lane 4 contained construct F509Sa extracted from 
JM109 after extraction from Bt4D7. All lanes labelled with content. 

1               2                 3            4               5 
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The following loop 3 mutants were created F509A, F509Y, F509S, F509C, F509, W511A, 

W511Y, W511F, Y513A and their crystals were observed under light microscope. Figure 

71 is the electron microscope image of some recombinant crystals.  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 71 Electron microscope images of Bt crystals taken after three days of incubation during the sporulation 
stage of Bacillus thuringiensis 4D7.  
Crystals and spore labelled accordingly; some spores are circled in green. Picture A=F509L, B= F509W, C= F509S.  
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A mass production of all loop recombinant proteins was carried out. A total of 10 mLs of 

crude protein of each recombinant was made and solubilised in 50mM sodium 

carbonate pH 10.5 and DTT (2.5mM) in two 5mLs batches. After an hour in a 37˚C water 

bath and occasional vortex, the samples were centrifuged, and the supernatants were 

recovered. Figure 72 illustrates the SDS PAGE gel analysis of the efficacy of the mass 

production of loop recombinants protein. Once solubilised the samples were 

centrifuged to separate the protoxins in the supernatant from the pellet.   The absence 

of proteins in lanes 2 and 3 was suggestive of the efficacy of the mass solubilisation 

event. The solubilised recombinant F509L and F509Y proteins in lane 4 and 5 are 

indistinguishable from solubilised Cry41Aa in lane 1 and 4. All recombinant proteins 

were subject the same solubilisation, activation and purification procedure as wildtype 

Cry41Aa. Due to the large volume of proteins for purification the samples were purified 

by column gel filtration.  
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Figure 72 7.5% SDS PAGE of mass scale solubilisation of Cry41Aa, F509L and F509Y. 
 10mLs of crude protein of each recombinant was made and solubilised in 50mM sodium carbonate pH 10.5 and DTT 
(2.5mM) in two 5mLs batches in incubated in a 37˚C water bath for 1 h. Centrifugation separated pellets from 
supernatants, and both were analysed in SDS PAGE gel. Lane 1 was loaded with solubilised Cry41Aa in carbonate pH 
10.5and DTT (2.5mM). lane 2 was loaded with F509L pellet sample after supernatant was removed. Lane 3 was loaded 
with F509Y F509L pellet sample after supernatant was removed. Lane 4 was loaded with solubilised Cry41Aa in 
carbonate pH 10.5and DTT (2.5mM). lane 5 was loaded with was loaded with solubilised F509L in carbonate pH 
10.5and DTT (2.5mM). lane 6 was loaded with solubilised F509Y in carbonate pH 10.5and DTT (2.5mM). lane 7 was 
loaded with protein marker. 

 

A stock of 10 mg/mL of trypsin in 50mM sodium carbonate pH 10.5 was made and added 

to the supernatant samples to activate the recombinant toxins. This resulted in a final 

trypsin concentration of 1 mg/mL.  Activated recombinant toxins were removed from 

the 37˚C water bath and prepared for dialysis, purification and optimisation of the 

protein(s) concentration relative to each other. After activation by trypsin, protease 

inhibitors were added at end as it was confirmed that protease inhibitors significantly 

slow the rate of Cry41Aa  degradation at temperature above room temperature 

(Domanska, 2016).  Table 29 summarise the mutagenesis carried out in loop 3 of 

Cry41Aa.  

 

 

1                  2                 3               4                     5              6                 7          
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Mutagenesis carried out in loop 3 
 

Table 29 Mutagenesis carried out in loop 3 
Table of amino acid substitutions carried out in loop 3 of Cry41Aa. Native codons of amino acids target for 
mutagenesis are highlighted in green. 

 

 

 

6.6.1. Optimisation of recombinant proteins concentration 

In preparation for cell assay analysis, protease inhibitors were added to activate the 

toxins. The activated recombinant toxins were concentrated with viva spin tubes.  

 

A stock of each was made with a concentration of 150 µg/mL according to Braford 

protein assay. This is equivalent to 0.197 µM/ml. The stock samples were visualised on 

                                  

Type of substitutions 
Native residues of Cry41Aa loop 3 
   503V     R     D   N   C     P   F    A    W    P   G   Y    K    
Q   L 517 
5’GTA CGG GAT AAT TGC CCT  TTC GCG TGG CCT GGT TAT AAA 
CAA TTA 3’ 

1st 
mutagenesis  

Alanine                                               GCC        GCG              GCT 

 
2nd 
mutagenesis 

Degenerate at 
position 509 

                                               TNB 
                                               TAG 
                                               TTT 
                                               TGC 
                                               TCC 
                                           TCT 
                                               TAT 
                                               TAC 
                                               TTG 
                                               TGG 
                                               TGT 

 

3rd 
mutagenesis 

Phenylalanine/ 
Tryrosine at 
position 511  

                                                                  
                                                               TTT 
                                                               TAT 
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three SDS PAGE gels and analysed by Image Lab software. Figure 73 is the picture of one 

of the three SDS PAGE gels. All recombinants displayed both the major ˜80 KDa protein 

and the minor ˜60 KDa protein. The gel showed that the ˜80 KDa (slightly less) bands 

were of identical intensity across all recombinant mutants and wildtype Cry41Aa toxin. 

The 60 KDa bands have more variation in their intensity and hence it was not possible 

to separate the two proteins and optimise the minor band intensity across all 

recombinants. The recombinants were similar to Cry41Aa and were  indistinguishable 

on an SDS PAGE gel (figure 64), which suggest that they likely have a similar protein 

folding pattern (Krishnan et al., 2017).  

 

Image lab software was employed to analyse the band intensities and was able to 

calculate and quantify a band relative to a reference or a control band. The reference 

band was given a value of 1, other bands compared to it were given a value that was 

either higher or lower than 1. In this case the two reference bands are the major (~80 

KDa) and minor (~60 KDa) of Cry41Aa with a concentration of 150 µg/mL or 0.197 µM/ml 

as determined by Braford protein assay.    

 

Table 30 lists the values for band(s) densities for all activated recombinant toxins with a 

concentration of 150 µg/mL (or 0.197 µM/ml) relative to Cry41Aa bands of the same 

concentration.  The average values of the major bands were consistent and close to the 

Cry41Aa control band values.  The minor band(s) values showed slight variation 
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compared to its Cry41Aa minor control band. Hence, in this study it was not possible to 

separate the major and minor bands to calibrate the bands independently. The software 

also calculated the molecular weight of proteins based on information gathered against 

the protein marker of the same gel.  

 

Table 31 shows the average molecular weights of each activated recombinant toxin and 

Cry41Aa toxin. The results were consistent with the control activated Cry41Aa. In 

addition to the following 150 µg/mL ((or 0.197 µM/ml) concentration optimised 

recombinant toxins F509L, F509Y, F509A, Y514A, F509W, F509S, W511A, and extra loop.  

The recombinant toxin W511F was also made. The concentration of this recombinant 

was also optimised to a concentration of 150 µg/mL according to Bradford protein assay. 
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Figure 73 calibrated concentrations of activated recombinant toxins. 
SDS PAGE 7.5% gel of stock samples of 150 µg/mL (or 0.197 µM/ml) of activated recombinant toxins are labelled on the gel. Cry41Aa acts as the control sample.  All lanes labelled with content. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Marker          F509L       F509Y      F509A       Y514A          F509W       F509S      W511A   Cry41Aa     Extra loop 

80KDa 

60 

1                            2                        3                       4                        5                      6                       7                     8                      9                    10 
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Protein concentration analysis of SDS PAGE gel with recombinant toxins 
 
 

 
 
 
 
 
 
 
Table 30 Protein concentration analysis of SDS PAGE gel with recombinant toxins  
Image Lab quantification of band density of 150 µg/mL of activated recombinant toxins relative to Cry41Aa. 
 
 

Relative qualification of recombinant toxin concentration from SDS PAGE gel bands density against Cry41Aa (150µg/mL or 0.197 µM/ml) 
 

 
Recombinant toxin 

 
Upper major band density 

 
Lower minor band density 

Cry41Aa control reference 

(150µg/mL or 0.197 µM/ml) 
Gel 1 Gel2 Gel3 Average Gel 1 Gel2 Gel3 Average 
1 1 1 1 1 1 1 1 

F509A 0.627491 0.799602 1.005402 0.810831667 1.169772 0.786371 0.864311 0.940151333 
F509W 0.840239 1.335881 0.666376 0.947498667 0.660156 0.881126 0.724691 0.755324333 

F509L 0.946215 0.811198 0.811224 0.856212333 1.123384 0.934124 0.925462 0.994323333 
F509S 0.893227 0.665652 1.021243 0.860040667 1.341398 0.764116 0.844891 0.983468333 
F509Y 0.736255 1.420251 0.733981 0.963495667 1.272967 0.736255 1.123241 1.044154333 

W511A 1.272112 0.767586 0.772999 0.937565667 0.983826 1.180234 0.867586 1.010548667 
Y514A 0.636653 0.837145 1.121344 0.865047333 0.710095 0.725442 0.813021 0.649519333 

extra loop 0.992829 1.118322 0.404306 0.838485667 1.348998 0.803918 0.901101 1.018005667 
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Molecular weight analysis of SDS PAGE gel with recombinant toxins. 

 

 
Table 31 Molecular weight analysis of SDS PAGE gel with recombinant toxins. 
Image Lab quantification of molecular weight of 150 µg/mL (or 0.197 µM/ml) of activated Cry41Aa and recombinant toxins 

 

 
Relative qualification of recombinant toxin molecular weight (KDa) from SDS PAGE gel bands      

 
Recombinant toxin 

 
Upper major band KDa  

 
Lower minor band KDa  

 
Cry41Aa  

Gel 1 Gel2 Gel3 Average Gel 1 Gel2 Gel3 Average 
89.44272 82.50056 83.89433 85.2792 68.36135 63.29883 66.34767 66.0026 

F509A 86.3987 83.78 83.28477 84.4878 69.05066 65.01564 65.36828 66.4782 
F509W 86.06694 89.69982 83.58999 86.4523 67.67858 70.03068 66.17343 67.9609 
F509L 86.3987 88.21282 83.89633 86.1693 67.67858 68.82748 66.98848 67.8315 
F509S 85.40723 88.30491 85.44495 86.3857 66.33375 70.07084 67.39977 67.9348 
F509Y 86.3987 87.68822 85.82213 86.6364 65.22731 65.67911 68.64884 66.5184 
W511A 86.3987 84.46567 85.75809 85.5408 64.67858 65.32076 66.54944 65.5163 
Y514A 85.73645 82.51252 86.07237 84.7738 67.31151 65.67707 66.78228 66.5903 
extra loop 84.75258 81.02807 87.34107 84.3739 65.89144 63.48475 66.42312 65.2664 
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6.6.2. Dose response of HepG2 cells treated with Cry41Aa recombinant toxins   

A dose response analysis was carried out to assess the effects on cell viability after 

incubation with Cry41Aa and its recombinant mutants. The protein concentration of 

Cry41Aa and its mutants was optimised and visualised on SDS PAGE gel (figure 73) The 

concentration of the toxins in the medium of the 96 well plate was as follows 0.197, 

0.131, 0.0657, 0.0263, 0,013, 0.006, 0.002 µM/ml.   

 

Figure 74 is the graphical representation of the dose response CellTiter-Blue assay of 

HepG2 cell line incubated for 24 h with Cry41Aa as well as loop recombinant toxins. The 

following recombinant toxins F509A, F509L, F509S, F509W, F509Y, W511A, and the 

extra loop did not exhibit any cytotoxicity to HepG2 cells. This is based on CellTiter-Blue 

fluorescent assay where percentage cell viability is 100% relative to buffer regardless of 

toxin concentration.  For statistical comparison of treatments in dose response 

experiments a Post-Hoc analysis applying a Bonferroni adjustment was carried out in 

SPSS. 

 

Only Cry41Aa and the recombinant Y514A appear to be cytotoxic to HepG2 cell line.  

Here the fluorescent signal, indicative of the percentage of viable cells compared to 

that of buffer, was significantly less. In cells treated with the highest Y514A and 

Cry41Aa toxin concentrations (0.197 µM/ml) a significant reduction was noted in 

percentage of viable cells. Treatments with toxin concentration 0.197, 0.131, 0.0657, 
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0.0263 µM/ml of Cry41Aa and Y514A were statistically significantly when compared to 

treatments with buffer only cells.  Furthermore, microscope observations confirmed 

that swelling of cells was observed within the first 10 min of incubation with Cry41Aa 

and Y514A.   

 

Figure 75 illustrated a dose response curve for HepG2 cells treated with Cry41Aa and 

Y514A with the same concentration range (0.197 to 0.00263 µM/ml) for 24 h in order to 

estimate the half maximal lethal concentration (LC50) of both toxins. The LC50 values 

were determined by probit analysis using SPSS software. Cry41Aa had an LC50 value of 

0.061 µM/ml, and Y514A had an LC50 value of 0.048  µM/ml. Y514A appears to kill faster 

with clear indication of cell swelling within 10 min of exposure to toxin mutant. The Post-

Hoc analysis supports finding that the lower cell viability observed with recombinant 

Y514A treatment is significantly less when compared to treatments with Cry41Aa. This 

supports the theory that Y514A is likely more toxic than its wildtype Cry41Aa toxin. 
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Figure 74 Dose response effects of recombinant toxins on HepG2 cells using CellTiter-Blue assay.  
The cells were seeded 24 h before the day of experiment at 25x104 cells/mL. Cells were treated with activated Cry41Aa, loop 3 and extra loop recombinants of different concentrations. Viability 
was measured as a metabolic activity of viable cells. Reading was taken 24 h post treatment with recombinant proteins. Bars with asterisks are significantly different from buffer only control 
cells (* p < 0.005, Post-Hoc comparison with Bonferroni correction).  

0

20

40

60

80

100

120

140

Cry41Aa Y514A F509L F509W F509A F509S F509Y W511A Extra loop

%
 c

el
l v

ia
b

ili
ty

 (
re

al
ti

ve
 t

o
 b

u
ff

er
 t

re
at

ed
 c

el
ls

Cry41Aa loop mutants

Dose response of HepG2 cells treated with Recombinant toxins  

0.197 0.131 0.0657 0.0263 0.0131 0.00657 0.00263 µMol

* 
* 
* 

* 

* 
* 
* 
* 

µM/ml 



251 
 
 

 

 
 

 

 

Figure 75 Dose response curve for HepG2 cells treated with Cry41Aa and recombinant Y514A. 
 HepG2 cells were seeded at the density of 25x104 cells/mL.  The following day cells were incubated with different concentrations of Cry41Aa and the recombinant toxin Y514A.  Fluorescence was measured after 24 h 
using CellTitre-Blue. LC50 was calculated using SPSS probit software Cry41Aa EL50= 0.061 µM/ml, Y514A LC50= 0.048 µM/ml. 
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The W511Y mutant did not produce a protease resistant core, however activated 

recombinant W511F did form a protease resistant core. The mutant W511F was 

engineered to investigate the effects of phenylalanine residue on toxicity. The protein 

concentration of this mutant was not optimised at the same time as the other 

degenerate residue substitution loop mutants, its concentration was calculated using 

Bradford protein assay.  The effects of W511F on HepG2cell viability percentage were 

presented in graph as histograms in figure 76 after a 24 h incubation with W511F and 

relative to cell viability percentage in buffer. Recombinant toxin W511F was toxic to 

HepG2 cells. However, it is the protein concentration was not optimised with the 

cytotoxic Y514A and Cry41Aa on the same protein SDS PAGE gel.  

 

 
 
 
Figure 76 CellTiter blue assay of loop 3 recombinants   
24hr CellTiter-blue assay of loop 3 substitutions W511F on HepG2 (seeded at 5,000 and 22x104). TX-100 act as positive control.  

0

20

40

60

80

100

120

0.2 0.197 0.131 0.0657 0.039 0.0263 TX 0.01% Buffer

%
 c

el
l v

ia
b

ili
ty

 (
re

al
ti

ve
 t

o
 b

u
ff

er
 t

re
at

ed
 

ce
lls

W511F concentration (µM)

24hrs CellTiter-Blue assay of W511F mutant



253 
 
 

 

 
 

6.6.3. Western blot application to investigate p38 MAP kinase phosphorylation in 

HepG2 cell lines after incubation with mutant F509A  

The loop 3 recombinant F509A has not shown any cytotoxic characteristics towards 

HepG2 cells. The reason behind this lack of toxicity by this single alanine substitute is 

unknown. The substitution may have induced loss interactions with HepG2 cell. It also 

possible that interaction continues to take place, but it no longer exerts the same effect, 

and thus does not that result in cell death.  At the time of ligand blot experiments F509A 

was the only nontoxic mutant to have undergone two assays to assess its effects on 

HepG2 cells. CellTiter-Blue assay concluded that HepG2 cells were not affected after 

treatment with F509A. CellTox green assay indicated that nuclear membrane of HepG2 

cells remained intact after F509A treatment and there was no different to buffer only 

treated cells.   

 

HepG2 cellular response to F509A was investigated using ligand blotting and 

electrophysiology. It was carried out in an attempt to better understand the lack of 

toxicity of F509A and thus gaining a better understanding of the specificity of Cry41Aa. 

A cellular response by a target cell as a result of  pore formation toxin can vary but one 

the commonly employed mechanism is the phosphorylation of p38 mitogen- activated 

protein kinase (MAPK) (Ratner et al., 2006).  The MAPK protein family is made up of 

highly conserved serine-theronine kinases that are activated in response to extracellular 

stresses such as osmotic shock or DNA damage. One of the subgroups of the MAPK 

protein family is p38. When activated, p38 phosphorylates a number of proteins that 
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include cytokines, nuclear transcription factors and extra cellular receptors (Zarubin and 

Han, 2005).   

 

A number of Cry toxins have been found to activate p38 pathways. These include p38 

pathways induced by Cry5B toxin in C.elegans, as well as M. sexta and A.aegypti treated 

with Cry1Ab and Cry11Aa toxins (Cancino-Rodezno et al., 2010; Huffman et al., 2004; 

Porta et al., 2011). Domanska,  confirmed that Cry41Aa induces p38 MAP kinase 

phosphorylation in HepG2 cells  (Domanska, 2016). 

 

Western blotting was carried out to examine if non-cytotoxic loop 3 recombinant F509A 

induced phosphorylation of p38 in HepG2 cell.  Figure 77 shows a western blot prepared 

from HepG2 cell extract incubated with the different solutions. Sodium arsenite is a 

toxin known to induce p38 phosphorylation and is used here as a positive control, 

Cry1Ca an insecticidal 3-domain toxin is used as a negative control like the buffer. 

Cry41Aa is toxic to HepG2  (Krishnan et al., 2017), and loop 3 F509A mutant toxin which 

has so far not shown any signs of toxicity towards HepG2. CD59 is a loading control. It 

suggested that sodium arsenite, Cry41Aa and F509A all produced a signal for p38 MAP 

phosphorylation. 

 

 A positive signal for F509A is unexpected as cell viability from CellTiter-Blue assay and 

membrane damage by CellTox-Green cell assay concluded that F509A is not toxic to 
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HepG2 cell lines. It is possible that F509A interacts with HepG2 cells causing a signal, but 

it also possible that this interaction is insufficient or unstable and does not result in cell 

death. Krishnan et al. (2017)  had suggested that  Cry41Aa  has a similar mode of action 

to insecticidal 3 domain Cry toxins, and thus  may cause pore formation in the 

membranes of HepG2 cells causing a p38 signal activation (Krishnan et al., 2017). 

However, it is the stability, size, and the time period that these pores remain open that 

may dictate if the cells die or recover. Western blots of HeLa cells and HL60 incubated 

with the F509A and Cry41Aa were carried out. Western blots of Hela cells did not detect 

any p38 MAP kinase signal (data not shown). However western blots of HL60 cell 

extracts indicated that both Cry41Aa and its mutant F509A did induce p38 MAP kinase 

phosphorylation as shown in figure 78. This finding is not reflective of cell viability data 

which indicated that both Cry41Aa and its mutants were not toxic to HL60 cell lines.  

 

 

 

 

 

 

 

Figure 77 western blot analysis HepG2 cell extracts 
 Western blot of HepG2 cell extract treated with : Lane 1 sodium arsenite (0.5mM) lane 2 buffer, lane 3 Cry1Ac 
(15µg/mL),  lane 4 F509A (15µg/mL) , and lane 5 Cry41Aa (15µg/mL), cells were lysed in NP-40 15 min after toxin 
treartment. 10µg of protein were loaded in each lane and after SDS-PAGE proteins were subjected to western blot 
analysis fro the detection of phosophorlayted p38 and CD59 (loading control).  

1                2                 3             4                   5                              
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Figure 78 western blot analysis of HL60 cell extract 
western blot of HL60 cell extract treated with: Lane 1 sodium arsenite (0.5mM).  lane 2 Cry1Ac (15µg/mL).  lane 3  
buffer, lane 4 Cry41Aa (15µg/mL),  , and lane 5 F509A (15µg/mL),  cells were lysed in NP-40 15 min after toxin 
treartment. 10µg of protein were loaded in each lane and after SDS-PAGE proteins were subjected to western blot 
analysis fro the detection of phosophorlayted p38 and CD59 (loading control).  
 
 
 
 

6.6.4. Electrophysiology application to investigate the interactions between HepG2 

cell lines and the loop 3 recombinant F509A  

Electrophysiology was employed to study the formation and type and of pores in 

membranes. The following section explores the effects of Cry41Aa and F509A on whole 

cell patch clamping and on an artificial planar lipid bilayer (PLB) membrane. Whole cell 

patch clamping technique uses cells whilst PBL uses artificial membranes. The following 

cell assay work was carried out by Barbra Domanska under the supervision of Prof 

Michelle West, university of Sussex, UK. Electrophysiology work was carried out by 

Barbra Domanska and Eva Fortea under the supervision of Prof Jean-Louis Schwartz, 

university of Montreal,Canada. 
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6.6.5. Whole cell patch clamping  

Whole patch clamping is techniques discovered in 1976 used to study electrophysiology 

of membranes and ion channels (Neher and Sakmann, 1976).  The nature of the ion 

channel formed in excised membrane patches or intact membranes is discoverable 

when recordings of the current passing through the membrane are made. In essence, 

ion channels are pores defined by their ability to conduct a current. The easier a current 

pass through a pore the more efficient the pore or ion channel is.   In order to successful 

apply the patch clamp technique the membrane must first become electrically isolated 

from the external buffer by placing a glass pipette with electrolyte solution onto the 

membrane.  An electrode attached inside the pipette records current flow in the 

membrane, the signal is picked up by an amplifier and data recorded.  

 

Whole cell patch collects data on multiple channels on a given cell membrane. Here, the 

pipette sucks the intact cell membrane rapturing it but without disrupting contact 

between the outside of the cell membrane and rim of the pipette creating a seal. 

Eventually, the buffer in the pipette equilibrates with the cell cytoplasm.  Currents data 

on whole patch carried out on whole cells tend to be big due the abundant number of 

channels opening simultaneously. Although whole patch clamping can record 

macroscopic currents in whole cell membrane, it cannot give detail on the nature and 

type of pore present.   
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Whole cell patch clamping was used to study macroscopic currents in HepG2 cells during 

incubation with Cry41Aa and loop 3 recombinant F509A. Data was collected prior to 

toxin addition and every 5 min thereafter for 20 min post toxin addition. The resting 

membrane potential of hepatocytes ranges between -30 to -40mV as a consequence of 

high basal chloride conductance (Moule and McGivan, 1990). KCl buffer, which consisted 

of 140mM KCl, 1.1 mM MgCl2, 0.1mM EGTA, and 10mM HEPES, pH 7.4, was added to 

the pipette and a holding potential of -20mV was applied so it was close to the resting 

potential of HepG2 cell membrane. NaCl buffer was added to the bath as the 

extracellular solution. A set of 17 one second depolarising step potentials (from -20 to 

+140mV from a holding potential of -20mV) were applied to initiate currents.   

 

Figure 79 and 80 are graph representations of whole patch cell clamping on HepG2 cell 

membranes after exposure to cytotoxic Cry41Aa (figure 79) and its non-cytotoxic loop 3 

recombinant F509A respectively (figure 80). The experiment aimed to measure the 

current that is exerted as a result of ion channels or pores opening as a consequence of 

toxin activity inHepG2 membrane. Three whole cell patch experiments were carried out 

on each toxin in order to obtain a mean value as shown in figures 73 and 74.  It is clear 

that as the voltage increased current also increased in Cry41Aa treated HepG2 cells 

(figure 79). Significant current data is recorded for 15- and 20-min time points, however 

current increase as early as 10 min after toxin addition.  
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Figure 80 shows the effect of an electrical current on HepG2 cell membrane after 

exposure to F509A. It is clear that there is no elevated current recorded as a 

consequence of F509A toxin despite increased voltage and exposure time. The slight rise 

in current post a voltage of 70mV is due to the increase in voltage. This suggests that 

either F509A does not induce the significant opening of channels or that the effect is 

short lived rendering it unstable to have any significant effect on the membrane. This is 

consistent with permeability assay for F509A (cell Tox green, Figure 66 chapter 6.6.5) 

where results indicated that F509A had caused little damage to HepG2 cell membrane. 

This suggests inhibition of binding or ineffective pore formation by F509A. 
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Figure 79 whole cell patch recording from a time course experiment of HepG2 cell exposed to Cry41Aa.  
HepG2 cells were seeded at the density of 5x104 cells/mL on the glass coverslip inside the 35mm petri dish. The following day whole cell patch clamp data was recorded at 0, 5, 10, 15, and 20 
min after exposure with Cry41Aa (12µg/mL) as well as NaCl bath solution.  Currents were induced by 1 s lasting set of 17 depolarising potentials from -20 to 140mV form holding potential of -
20mV. Error bars indicate the standard error of the mean. The lines represent the mean currents from three different whole patch cell experiments 
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Figure 80 whole cell patch recording from a time course experiment of HepG2 cell exposed to F509A.  
HepG2 cells were seeded at the density of 5x104 cells/mL on the glass coverslip inside the 35mm petri dish. The following day whole cell patch clamp data was recorded at 0, 5, 10, 15, and 20 min after exposure with 
F509A (12µg/mL) as well as NaCl bath solution.  Currents were induced by 1 s set of 17 depolarising potentials from -20 to 140mV form holding potential of -20mV. Error bars indicate the standard error of the mean. 
The lines represent the mean currents from three different whole patch cell experiment
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6.6.6. Single channel activity in planar lipid bilayers 

Single channel activity can be investigated using an artificial planar lipid bilayer (PLB).  

An artificial phospholipids bilayer is prepared by using two identical aqueous solutions 

which represent the inner (inside the cell) and outer (outside the cell) regions of a 

membrane. This technique allows investigations to take place where the  buffer and lipid 

arrangements can easily be manipulated due to the simplicity of this cell membrane 

model (Mueller et al., 1963). In vertebrate cells, the membrane is made up of 

phosphatidylcholine (PC) which is present in the external side of the membrane, 

phosphatidylethanolamine or PE which is present in the internal cytoplasmic side of the 

membrane and cholesterol adds to the fluidity of the membrane.  

 

The experiment was set up as follows, two chambers known as cis and trans were 

separated by a lipid membrane which was pre-painted onto a plastic divider placed 

between the chamber. 1mL of buffer (150mM KCl, 1mM CaCl2, 10mM HEPES, pH 7.5) 

was equally distributed between both cis and trans chambers. Traces of any current 

were checked for 30min before any of the toxins were added to ensure absence of 

channel activity. The toxins Cry41Aa or F509A were added to the cis chamber and 

activity was recorded at different applied voltages.   

 

Three different experiments were carried out on both Cry41Aa and F509A.  Electrical 

conductance is the measure of the ease at which a current pass through and this 
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measure was calculated to indicate the presence and effectiveness of pores.   Figure 81 

illustrates examples of traces recorded in planar lipid bilayer after application of Cry41Aa 

and F509A at a positive voltage. Any trace above zero indicated the opening of a 

channel. There is an obvious steady trace for Cry41Aa indicating that pores are 

structurally intact and functionally efficient. This is in contrast to F509A trace which 

remains close to zero and is not consistent suggesting that pores here were fragile and 

unstable.   
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Figure 81 sample of a single channel trace recoding in planar lipid bilayer after toxin application at the positive voltage. 
 Single channel activity was recorded at +100mV (upper and lower traces) from PLB in KCl buffer after addition of Cry41Aa or F509A to the cis chamber. Records were filtered at 200Hz. The trace 
is representative of the three experiments   

 

 

 

 

Planar Lipid Bilayers Trace 

Cry41Aa (8µg/ml) at +100mV 

F509A (8µg/ml) at +100mV 
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 Approximately 20-25 current jumps were averaged for each experiment and analogous 

conductance values were grouped together. Data were plotted on a graph and a mean 

conductance within the group was read from a slope of linear regression.   

 

Figure 82 is a graphical representation of the three experiments for Cry41Aa and the 

calculated mean values deduced from the linear regression points on the graphs and 

were carried out to investigate single channel activity as a consequence of Cry41Aa 

toxin.  The data is consistent throughout the three experiments. A number of 

conductance values were recorded.  

 

There is an indication that the two lowest conductance values may relate to highest 

conductance value.  The two lowest conductance values roughly add up to the highest 

value.  For example, in experiment I, the two lowest conductance values are 91 and 

131pS which add up to the highest recorded conductance value of 220pS. It is possible 

that the lowest conductance values are due to two different channel populations that 

open and close independently, but when they are opened simultaneously, the highest 

conductance value is recorded. 

 

Figure 83 is a graphical representation of the results of three experiments and the 

calculated mean values deduced from the linear regression points on the graphs carried 

out to investigate single channel activity as a consequence of loop 3 recombinant F509A 
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toxin.  The conductance here is more diverse that for Cry41Aa. There are four different 

conductance values for each experiment suggesting the presence of more than one 

channel population.   

 

There are no obvious patterns linking low conductance values with high conductance 

values in the same experiment and experiment II has quite a high value of conductance 

of 470pS. This is almost double the conductance value of the experiment I and III and it 

is not clear whether the PLB in experiment II has twice as many pores. No rectification 

was observed for data collected on both Cry41Aa and F509A PLB experiments as 

conductance did not change with the application of different voltages.  

 

To investigate the type of ions that pass through the pore in i.e.  the selectivity of the 

pore, chemical conditions were changed in the cis chamber. The concentration of KCl 

was increased to 450mM to create a concentration gradient; current was measured 

after this change to calculate whether the pore is catatonic or ionic.  

 

The experiment was carried out thrice for each toxin. Figure 84 illustrates the selective 

conductance of the pores formed by Cry41Aa and F509A. Goldman-Hodgkin Katz 

potential equation was used to calculated the selectivity which states that ion 

permeability across a membrane is linked to reversal potential (Vr)(Goldman, 1943).  

The reversal potentials of Cry41Aa and F509A are calculated in table A and B of figure 
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84; Vr represents the potential at which there is no current passing through a pore.  Both 

Cry41Aa and F509A maintained similar pS range for channel conductance in 

asymmetrical in symmetrical chamber conditions. However, the reversal potential shifts 

to -10.97 mV (± 1 mV) for Cry41Aa and a similar shift of Vr is observed for F509A with -

11.5 mV (± 0.43 mV). This shift indicates that pores formed by Cry41Aa and F509A in the 

artificial PLB membrane tend to be more selective to cations.  A small PK+/PCl-   is also 

observed with both toxins where Cry41Aa has a PK+/PCl-    value of 2.47(± 0.23), and F509A 

has a PK+/PCl-    value of 2.86 (±1.92). The large standard of error calculated for F509A in 

its PK+/PCl-   value is due to the instability of the trace as a result of instability and fragility 

of pores formed by the loop 3 recombinant F509A. 
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Cry41Aa: PLB single channel current activity 
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Figure 82 single channel –voltage relationship for Cry41Aa in planar lipid bilayer.  

Current-voltage characteristics of single channel activity in 150/150 mM KCl (cis/trans) buffer (n=20-25) at different voltage after Cry41Aa (8µg/ml) was added to the cis chamber. Conductance was calculated (G=I/V) and 

data points fitted by linear regression. Experiment I: mean conductance values were deduced at the slopes of the linear regression on the data points as 91, 131, and 220pS. Experiment II: mean conductance values were 

deduced at the slopes of the linear regression on the data points as75, 115, and 193pS. Experiment III: mean conductance values were deduced at the slopes of the linear regression on the data points as 79, 122, and 196 

pS.  Data curtesy of Domanska, 2016 
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F509A: PLB single channel current activity 
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Figure 83 single channel –voltage relationship forF509A in planar lipid bilayer.  

Current-voltage characteristics of single channel activity in 150/150 mM KCl (cis/trans) buffer (n=20-25) at different voltage after F509A (8µg/ml) was added to the cis chamber. Conductance was calculated (G=I/V) and data points 

fitted by linear regression. Experiment I: mean conductance values were deduced at the slopes of the linear regression on the data points as 54, 96, 129, and 247pS. Experiment II: mean conductance values were deduced at the 

slopes of the linear regression on the data points as 114, 167, 272, and 470pS. Experiment III: mean conductance values were deduced at the slopes of the linear regression on the data points as 59, 105, 185, and 243pS. pS 
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Experiment for Cry41Aa 

 I II III Mean SEM 

Vr (mV) -10.5 -9.5 -12.9 10.97 1.0 

PK+/PCl- 2.53 2.25 2.93 2.48 0.23 

Experiment for F509A 

 I II III Mean SEM 
Vr (mV) -7.7 -14.0 -12.7 11.5 0.43 
PK+/PCl- 1.85 3.30 2.88 2.68 1.92 
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Figure 84 single channel current –voltage activity for Cry41Aa and F509A in planar bilayer asymmetric conditions for experiments I, II, and III.   
Selectivity (PK+/PCl-) and reversal potential (Vr) were calculated in PLB experiments I, II, and III for (A) Cry41Aa and F509A (B) in asymmetrical 450/150 mM KCl (cis/trans) conditions. Current-voltage 

characteristics of single channel activity in 450/150 mM KCl (cis/trans) buffer (n=20-25) at different voltage after toxin addition (F509A and Cry41Aa at 8µg/ml) was added to the cis chamber. Conductance 

was calculated (G=I/V) and data points fitted by linear regression.  (C) Mean conductance values for Cry41Aa were deduced at the slopes of the linear regression on the data points as 90, 113, and 206pS. (D) 

Mean conductance values for F509Awere deduced at the slopes of the linear regression on the data points as 55, 290, and 421pS. 
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6.7 Discussion 

Table 18 in chapter 6.2.2 summarises the constructs made via loop exchange, creation 

of hybrids with other Cry genes and loop residue substitution.  The following Cry41Aa 

mutants were successfully solubilised and activated. Loop 3 exchange mutant 

pGEM1Acloop3 (this is made up of the Cry1Ac gene with loop 3 of Cry41Aa). The 

following are all loop substitutions, in loop1 the mutants 384 CVSC 387, 384CLAC384, and 

384GLAC384 were made. In Loop 3 substitutions the following mutants were made F509A, 

F509W, F509L, F509S, F509Y, W511A, W511F, W511Y, Y514A; and finally, in the extra 

loop substitution mutant 280AAAA 283 was created.   

 

To explore the specificity of Cry41Aa and identify regions responsible a number of 

mutants were created as summarised in table 18.  Several studies have applied site 

directed mutagenesis to investigate Cry toxin specificity and have implicated domain II 

loop in receptor binding and toxin specificity.  In particular loops 8, loop1,2,and 3 of 

domain II are implicated in receptor binding and mutagenesis there can result in 

structural changes that affect the stability and susceptibility of the recombinant protein 

to protease such as trypsin  (Dean et al., 1996; Gómez et al., 2003; Lee et al., 1996, 

Schnepf et al., 1998; Tuntitippawan et al., 2005).   

 

Likitvivatanavong et al. (2009) investigated specific residues in loops 8, loop1, 2, and 3 

of Cry11Ba for binding.  The alanine residue substitutions in loops 8, loop1, and 3 

resulted in reduced toxicity by 80-100% towards Aedes aegypti and Culex fourth instar 
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larvae (Likitvivatanavong et al ., 2009). Specific residue in  8 of Cry1Ac were  substituted 

for alanine resulted in a  reduced binding affinity for BBMV and the purified receptor 

aminopeptidase N (APN) from both Lymantria dispar  and Manduca sexta and 

subsequent reduction in toxicity (Lee et al., 2001).  

 

Further studies on binding and toxicity were carried out which involved mutagenesis. 

The Cry1Ab residues of loop 3 (toxic to M. sexta and H. virescens) underwent alanine 

residue substitutions. The resulting mutants were stable in trypsin and insect gut juices 

and were thought to be structurally similar to wildtype. However, bioassay data 

revealed significant reduced toxicity and binding analysis of BBMV from both insect’s 

species. This loss and reduction of toxicity in some mutants may be due to the reduced 

initial binding.  

 

The study highlighted the role of hydrophobic residues where it was observed that 

alanine substitutions in loop 3 of Cry1Aa did exhibit reduce toxicity as a consequence of 

reduced initial binding of mutant toxins to Bombyx mori and M. sexta BBMV. The study 

implicated hydrophobic residues in loop 3 of both Cry1Ab and Cry1Aa in initial binding 

to receptor molecules that proceed to form hydrophobic interactions (Rajamohan et al., 

1996b).  

 

Mutants which successfully produced crystals were harvested and characterised against 

wildtype Cry41Aa. Schematic table 18 in lists all the mutants made from Cry41Aa 

including those which did not proceed to cell assay stages. The recombinants W511Y 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiSqIHl_LrbAhWFiKYKHSuHDIkQFggqMAA&url=https%3A%2F%2Fwww.frontiersin.org%2Farticles%2F10.3389%2Ffevo.2017.00115%2Ffull&usg=AOvVaw3yF9D5RMqlibCWdX0HYgkg
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and W511F were created and processed in the same manner as Cry41Aa and other loop 

recombinants. The recombinant W511Y was not stable in trypsin and no further action 

was taken. The W511F recombinant did result in two proteolytically stable proteins of 

~80 KDa and ~60 KDa ; however, its protein concentration was not optimised against the 

control Cry41Aa. Despite this, its toxicity and that of loop1 recombinants were assessed 

(see chapter 7) with the remaining loop mutants.  

 

Yamashita et al. (2005) solubilised the parasporal inclusions obtained from Bt strain 

A1462. A number of major peptides 180, 150, 120, and 100 KDa were observed; 

however, the most significant was the 88 KDa doublet. The study findings proposed that 

it was from this doublet that the 64 KDa cytotoxic peptide and the minor 80 KDa peptide 

were derived from protease treatment. They were able to successfully isolate each 

protein and observed that was indeed the 64 KDa peptide that is toxic to HepG2 cell line. 

In the present study Cry41Aa was solubilised in sodium carbonate and DTT. A protein of 

~ 80-88 KDa which is thought to be encoded by ORF2 was consistently observed with 

better dissociation when solubilised in the presence of DTT. A protein of ~ 120 KDa was 

thought to be encoded by ORF3. Upon treatment with trypsin, the solubilised Cry41Aa 

degrades to a protein of ~ 80  KDa (or slightly less as) well as protein of ~ 60  KDa 

(Krishnan et al., 2017).  ORF3 band was absent after trypsin activation. It is thought that 

this peptide lacks a protease resistant core and or is unstable in trypsin thus degrading 

completely upon toxin activation.  
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In this study, AKTA was applied in an attempt to isolate each activated protein after 

trypsin treatment. However, it was not possible to isolate the two peptides produced by 

each activated protein from Cry41Aa or any of its mutants. Thus, the main method of 

protein purification was through the use of gel resin filtration column which allowed 

purification of large volumes of activated protein.   

 

Previous attempts to express Cry41Aa without ORF3 resulted in an unstable protein  that 

did not solubilise well and could not be activated by proteases (Krishnan, 2013). The 

ORF3 of Cry41Aa has similarities with the C-terminal part of the larger 3-domain Cry 

toxins, a region known to be responsible for expression and crystallisation of toxins in 

Bt (de Maagd et al., 2003). This suggests that ORF3 gene may plays a role in the 

crystallisation and correct folding of the Cry41Aa crystals (Krishnan et al., 2017).  

 

All recombinants produced crystals which were indistinguishable from those made by 

Cry41Aa when observed under both light and electron microscopes.  In addition, the 

recombinants are indistinguishable from the wildtype Cry41Aa on an SDS PAGE gel. They 

were processed similarly to the wildtype and no observations were made about any 

differences in their response to conditions that would differentiate them from wildtype 

Cry41Aa. 

 

 F509C and W511Y were the only Cry41Aa loop 3 recombinant which produced crystals 

but failed to solubilise well and were degraded upon activation by trypsin. These 

recombinants may have a different folding conformation to Cry41Aa. The stability of 
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recombinant toxins may possibly be affected by the type of residue at a particular 

position with consequently could increase sensitivity to trypsin.  

 

The recombinant mutants of Cry41Aa had their concentration optimised in preparation 

for cell assay work.  This stage of the study was addressed by bringing together analysis 

data from different tools to combine and support findings. The Bradford protein assay 

was able to provide a numerical value of the protein concentrations. SDS PAGE gels 

revealed visually these numerical representations and showed how accurate the values 

were to their numerical representation. The image lab software allowed for the 

quantification of toxin concentration from SDS PAGE gel bands densities relative to a 

control bands density as well as quantifying the average molecular weight (KDa) of 

recombinants against a protein marker of the same SDS PAGE gels.   

 

From these data it was concluded that the recombinant toxins have a similar molecular 

weight to that of wildtype Cry41Aa. It has also confirmed that the stock 150 µg/mL 

concentration of each recombinant toxin was very close to the control band densities of 

Cry41Aa, where each of the reference bands have a value of 1 the recombinants show 

an average value of 0.9 to 0.8 when compared against the reference bands of three gels.  

This confirms that protein concentration of the stock samples for each recombinant 

were optimised and finalised as 150µg/mL, before proceeding to cell assay analysis.  

 

Initial mutagenesis of Cry41Aa loop 3 highlighted the residues at F509 and W511 and 

their potential to influence the specificity of Cry41Aa. Cell assays were carried out on 
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the three initial loop 3 recombinants F509A, W511A, and Y514A. CellTiter Blue assays 

indicated that both F509A and W511A did not exhibit toxicity towards HepG2 cell lines.  

However, Y514A retained toxicity and showed signs that it killed faster and more cells 

within the same given time compared to wildtype Cry41Aa. A dose response on HepG2 

cells treated with Cry41Aa and Y514A confirmed an EL50 for both toxins. Cry41Aa had an 

EL50 value of 0.061 µM/ml, and the recombinant Y514A had an EL50 value of 0.048 

µM/ml. This confirmed that Y514A is indeed a more potent toxin than wildtype Cry41Aa.  

 

The lack of toxicity by F509A was confirmed by cell assay with cytotoxic markers (Cell 

Tox Green) which binds nuclear material once the cell membrane has been damaged. 

Here, no significant cell membrane damage to HepG2 cells was recorded for mutant 

F509A. It was clear that alanine substitutions at position 509 had knocked out the 

toxicity, however it did not explain whether this loss of toxicity was due to loss of the 

wildtype residue as a result of the substitution or if the position of the residue formed 

an integral part of Cry41Aa’s specificity. Furthermore, it was not known whether the 

interaction between F509A and HepG2 cell membrane did occur but that this interaction 

no longer produced a toxic effect on the cell.  In the quest to better understand the 

specificity of Cry41Aa further amino acid substitutions were made at position 509 and 

511 of loop 3.  

 

None of the mutants created in position 509 were observed to have any toxicity to 

HepG2 cell lines. The mutant W511F was toxic to HepG2 cell lines. 
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The cytotoxicity of the initial three mutants F509A, W511A, and Y514a as well as 

wildtype Cry41Aa were tested on additional cell lines. BL31 showed only slight sensitivity 

to Y514A and Cry41Aa. Other cell lines did not show susceptibility to either Cry41Aa or 

Y514A.  

 

Assays on HL-60 indicated that trypsin activated Cry41Aa and its recombinants did not 

have a toxic effect on this cell line. This finding contradicts previous HL-60 toxicity data 

collected on proteinase K activated Cry41Aa by Yamashita et al. (2005). Therefore, 

experiments on Cry41Aa focused on the use of HepG2 cell lines instead of HL-60. 

Ongoing research on the toxicity of Cry41Aa confirmed its toxicity towards HL-60 cell 

lines only when activated by proteinase K (Souissi, 2018). These conflicting findings put 

forwards the argument that specificity may be influenced by how toxins are activated.  

 

Ongoing research on the toxicity of Cry41Aa confirmed its toxicity is observed towards 

HL-60 cell lines only when activated by proteinase K (Souissi, 2018). These conflicting 

findings put forwards the argument that specificity may be influenced by how toxins are 

activated. The cancerous Hela cell line was a negative control for Cry41Aa, however 

previous studies have shown that high dose of Cry41Aa can have a toxic effect on Hela 

cells (Yamashita et al., 2000). This postulation that Cry41Aa has the ability to from pores 

and may even bind non-specifically.  Low selectivity values for both Cry41Aa and F509A 

channels from electrophysiological analysis supports this notion and provides support 

to the theory that Cry toxins did not evolve with or alongside mammalian cells.   
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Electrophysiological technique and ligand blotting were used to study the effects of 

Cry41Aa and F509A on HepG2 cell membrane.  One of the responses by a target cell as 

a result of interactions with a pore forming toxin can be the phosphorylation of p38-

mitogen activated protein kinase (Zarubin, T. and Han, J. 2005).  

Western blots carried out on cell extracts after incubation with Cry41Aa and F509A 

indicated that both toxins induced a positive signal for p38 phosphorylation. 

Electrophysiological analysis indicated that Cry41Aa is a pore forming toxin which is 

potent at 0.5-1.05 µM/ml concentration for optimal pore formation effect. It forms  very 

stable membrane  pores with an opening probability of 1 (Domanska, 2016). 

Conductance of Cry41Aa range between 75-220 pS and the pore shows no rectification, 

but the pore seems to be voltage dependent and is slightly cationic selective (Rv: -10.96 

mV). 

 

Similarly, the loop 3 recombinant F509A is able to form pores in synthetic PLBs, however 

in contrast the pores are less stable and display different kinetics and opening 

probability. Conductance of F509A is in the range of 54- to 470. The selectivity of F509A 

is similar to Cry41Aa however standard error here is much larger (1.92) due to instability 

of the pore.  PLB pores formed by F509A are also slightly cationic, a characteristic 

observed in Cry1B, Cry1Ac, and Cry3A (Schwartz et al., 1997; Slatin et al., 1990; Walters 

et al., 1993) . 

 

In conclusion, F509A did not exhibit toxicity to HepG2 cell as evident by CellTiter blue 

data where cell viability percentage was no different to that of the buffer. In addition, 
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the membrane damage assays revealed that F509A did not cause significant cell 

membrane damage. These findings although supportive of F509A lack of toxicity to 

HepG2 cells did not explain the cause of this loss of toxicity.   

 

Western blots carried out on F509A indicated that it did induce phosphorylation of p38. 

From the results, it was evidence that F509A did indeed bind or interact with HepG2 

cells however the binding was ineffective or insufficient and did not result in cell death. 

Electrophysiological analysis supported this finding and confirmed that although F509A 

did form pores in the cell membrane these were unstable or were few in number.  

 

It is important to note that membrane damage by F509A was enough to induce a p38 

signal, similar to that observed with HL60 cells extract after incubated with F509A 

despite cell viability data indicating that F509A was not toxic to HL60 cell lines. 

Therefore, it is speculated that F509A binds to both HepG2 and HL60 cells. This binding 

leads to impaired pore formation in the cell membrane promoting phosphorylation of 

p38. It is possible that pores are repaired by cells or there are only few pores which do 

not induce toxicity, and thus not detectable in cell viability or membrane damage assays. 

F509A was one of loop 3 mutants created at position 509. All the mutants at this position 

did not exhibit toxicity to both HepG2 and HL60 cell lines. It is reasonable to suggest that 

like F509A, all the other mutants at this position may exhibit similar mode of action, by 

binding to cell in a manner that is ineffective and which results in unstable pore 

formation and thus lack of toxicity.  
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Phenylalanine was introduced at position W511 to explore whether the nature of the 

residue or its position could affect a toxin’s ability to be potent.   The recombinants 

W511F retained toxicity to HepG2 cells (figure 76 chapter 6.2.2). Further attempts to 

introduce more amino acid substitutions at position 511 resulted in mutant proteins that 

were proteolytically unstable.  Phenylalanine is an aromatic hydrophobic residue; these 

characteristics have been implicated in the toxicity of Cry toxins (Pardo-Lopez et al., 

2009; Vachon et al., 2012; Rajamohan et al., 1996b; Dean. and Sylvis, 2006). However, 

substitution with any aromatic hydrophobic residues does not guarantee a proteolytic 

resistant mutant protein as was seen with mutant W511Y which was unstable in trypsin.   
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7.0 General finding and Discussion 

7.1 Summary of findings 

This chapter will summarise the findings from the previous chapters and discuss 

their significance. It will conclude by evaluating the methods employed and the 

future work that can be done to continue exploring Cry41Aa and exploit its benefits .  

 

The 3-domain Cry toxins have been explored for their ability to kill certain insect 

orders.  Their narrow killing range emphasised their specificity to target cells and Bt 

based pesticides have been widely used. The 3-domain toxin specificity has been 

investigated in the quest to understand the mode of action of Cry toxins, create 

novel toxicities, and overcome resistance (Crickmore et al., 1998; de Maagd et al., 

2001; Bravo et al., 2011).  

 

Mizuki et al. (1999) investigated the parasporal inclusions from Bt cells that 

appeared to be non-insecticidal and did not display any biological activity, however 

they did display very specific cytotoxicity to some cancer lines (Mizuki et al., 1999; 

Mizuki et al., 2000). This unique category of Cry toxins was named parasporins and 

constitutes , parasporins 1,2,3,4,5, and 6 (Okumura et al., 2010).  Parasporin 3 or 

Cry41Aa was first reported by Yamashita et al. (2005) as a 3-domain Cry toxin with 
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cytotoxic properties that kills hepatic and cervical cancer cell lines (HepG2 and HL60). 

This very specific ability to identify and kill these two cancer cell lines raised the question 

about the mode of actin of Cry toxins.  

 

Cry41Aa shares the five conserved blocks typically found in insecticidal 3-domain Cry 

toxins. Yamashita et al. (2005) demonstrated that it also required in vitro solubilisation 

and activation similarly to insecticidal 3-domain Cry toxins in order to obtain the 

protease resistant cores known to be toxic to the cancer cell lines. It has a ricin domain 

which resembles the β-trefoil domain found in putative carbohydrate binding epitopes, 

however Krishnan, (2013) confirmed the ricin domain was not responsible for Cry41Aa’s 

specificity to HepG2 cell lines, as when it was removed, Cry41Aa retained cytotoxicity 

(Krishnan, 2013).  

 

Many studies on the specificity of Cry toxins have highlighted the exposed loops of 

domain II (de Maagd et al., 2001). Research findings show that it is domain II which is 

primarily responsible for receptor recognition and target cell specificity in 3-domain Cry 

toxins (Bravo et al., 2007; Crickmore et al., 1998; de Maagd et al., 2001; de Maagd et al., 

2003).  

 

Yamashita et al. (2005) argued that Cry41Aa may have a similar mode of action to a pore 

forming 3-domain insecticidal Cry toxin (Krishnan et al., 2017; Yamashita et al., 2005). 
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This comparison can be extended to question the extent of the similarity of Cry41Aa to 

insecticidal Cry toxins and how research on insecticidal 3-domain Cry toxins sheds light 

on the specificity of Cry41Aa. 

 

This thesis aimed to investigate the specificity of Cry41Aa to HepG2 cells through 

mutagenesis in domain II loops. It employed bioinformatic tools to narrow down and 

identify regions in Cry41Aa that were potentially associated with binding and receptor 

recognition.  Bioinformatic tools collated and compared data from insecticidal Cry 

proteins to predict sequences in domain II loops and model the secondary of Cry41Aa. 

The predicted domain II loops of Cry41Aa were then subjected to a number of 

mutagenesis approaches.  

 

First, a loop 3 exchange loop was created with loop 3 of insecticidal Cry1Ac. The resulting 

recombinant protein was unstable and did not result in a protease resistant protein. The 

Cry1Ac insecticidal recombinant with loop 3 of Cry41Aa did result in a stable protease 

protein. Cell assay analysis indicated that this mutant did not gain toxicity to HepG2 cell. 

Second, a number of hybrids of Cry41Aa OFR 2 were created with insecticidal 3 domain 

Cry toxins.  

 

Cry41Aa is a split toxin made up of ORF2 and ORF3.  The five conserved blocks that make 

up domain I, II, and III and are typically found in 3-domain insecticidal. Cry were 

identified in ORF2 of Cry41Aa.  A number of domain hybrids of Cry41Aa with insecticidal 
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Cry domains were created.  Unfortunately, none of the domain hybrids resulted in 

protease resistant proteins.  

 

Third, a number of substitutions in loop 1 and 3, the extra loop of Cry41Aa were created. 

In loop 1 a number of degenerate substitutions were created. This resulted in three 

protease resistant proteins which were assessed for their toxicity to HepG2 cells. The 

three mutants retained toxicity to HepG2 cells and were indistinguishable from wildtype 

Cry41Aa on an SDS PAGE gel.  

 

In loop 3 of Cry41Aa three initial substitutions were made in position F509, W511, and 

Y514. These aromatic residues were substituted with an alanine residue. All three 

mutants resulted in protease resistant proteins and their toxicity to HepG2 was 

analysed. The Y514A retained toxicity and HepG2 cell assays suggested that is more 

potent than wildtype Cry41Aa. The remaining F509A and W511A lost toxicity to HepG2 

cells. In an attempt to shed light on the specificity of Cry41Aa, the position of residues 

and type of residues were investigated further.  

 

A number of degenerate residue substitutions were made at position 509. All 

degenerate substitution mutants resulted in a protease resistant protein with the 

exception of F509C.  Two aromatic residue substitutions were created in position 511, 

W511F and W511Y. The W511Y mutant did not result in a protease resistant protein.  
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Substitutions in loop 3 resulted in 11 recombinant protease resistant proteins.  A 

multiple alanine substitution mutant was created in the extra loop of Cry41Aa.   

 

12 recombinant protease resistant proteins, including the extra loop mutant, were 

analysed and compared to wildtype Cry41Aa. Transmission electron microscopy 

revealed that 12 mutants produced crystals which were undisguisable from those made 

by Cry41Aa. SDS PAGE gels of solubilised, and trypsin activated recombinants confirmed 

that each of the 12 mutants resulted in two protease resistant proteins of ˜60 and ˜80 

KDa. These proteins were indistinguishable from those produced by activated wildtype 

Cry41Aa. Along with activated Cry41Aa, the 12 mutants were purified, and 

concentrations optimised in preparation for HepG2 cell assays.  

 

All mutants did not exhibit cytotoxicity to HepG2 cell lines with the exception of W511F 

and Y514A.  Membrane assay of the effect of F509A on HepG2 cells indicated that it did 

not damage cell membrane, however, western blots of the effects of F509A on HepG2 

cell lines indicated the activation of p38 MAPK signalling pathway. This is known to be 

activated in response to pore formation (Huffman et al., 2004).  

 

Electrophysiology analysis revealed that both F509A and Cry41Aa form pores in an 

artificial lipid bilayer. However, F509A formed unstable pores and did not result in 

significant membrane disruption. This was in contrast to Cry41Aa which produced stable 

pores which resulted in permanent damage to cell membrane and eventual cell lysis. 

The findings conclude that Cry41Aa is likely to have a 3-domain structure similar to that 
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of insecticidal is 3-domain Cry toxins. Residue substitutions have indicated that domain 

II loops of Cry41Aa, like domain II insecticidal toxins, play a role its specificity and ability 

to exert toxicity on susceptible cells.  

 

 Similar to insecticidal Cry toxin domain II loops of Cry41Aa can be explored to enhance 

toxicity as shown by the more potent mutant Y514A. Cry41Aa is thought to have a mode 

of action similar to insecticidal 3-domain toxins where it forms pores in the membrane 

of susceptible cells causing osmotic shock and the eventual lysis of cell (Krishnan et al., 

2017) .  

 

 

7.2 Discussion  

The research question in this study aimed to investigate the specificity of the Cry41Aa 

toxin by exploring its domain II loops.  The study began by collating literature on the 

domain II loops which had been identified from revealed crystal structures (Adang et al., 

2014; Xu et al., 2014). The study employed bioinformatic tools that used information 

from secondary and tertiary protein structures to propose a three-dimensional model 

of Cry41Aa. It predicted Cry41Aa to have a typical 3-domain globular structure (Krishnan 

et al., 2017). Furthermore, the exposed loops of domain II were predicted and aligned 

with loops from the revealed Cry crystal structures (Xu et al., 2014).   
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Previous studies on 3-domain Cry toxins have demonstrated toxin specificity by 

modifying identified specificity regions such as domain II loops to create novel toxins or 

increase effectiveness of a toxin.  (Pigott et al., 2008; Abdullah et al., 2003; Abdullah and 

Dean, 2004; Abdul-Rauf and Ellar, 1999).  

 

The first mutagenesis approach attempted to identify the loops responsible for the 

specificity of Cry41Aa by exchanging loop 3 of Cry41Aa with loop 3 from an insecticidal 

3-domain toxin and vice versa. Previous studies on loop exchange have introduced novel 

toxicities in known Cry toxins confirming that it is indeed these loop that are involved in 

the specificity of the toxin in question. A study by Abdulla et al, (2003) aimed to 

introduce Culex mosquito toxicity in Cry4Ba (toxic to Anopheles and Aedes) by 

exchanging loop regions with Cry4Aa into Cry4Ba. Loop 1 and 2 of Cry4Ba were deleted 

and replaced with loop 1 and 2 of Cry4Aa. These recombinants did not exhibit toxicity 

to susceptible insects. However, loop 3 insertion of Cry4Aa into Cry4Ba produced a 

recombinant that gained toxicity to Culex (Abdullah et al., 2003, Howlader et al., 2009).  

 

Further investigation by Abdulla and Dean, (2004) led to the creation of a Cry4Aa loop1 

exchange with loop1 of Cry19Aa. The mutant sustained toxicity to Culex (Cry4Aa) and 

gained toxicity to Anopheles and Aedes (susceptible to Cry19A). Collated observations 

of competition binding assay on this loop exchange mutant concluded that there was no 

difference in its ability to bind BBMV between less or more active recombinant toxins. 

The study proposed a model whereby nontoxic recombinants bind to BBMV surface 

receptors but do not induce toxicity. The model suggests that enhanced toxicity 
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recombinants are able to bind to unique and minor receptors that elicit toxicity 

(Abdullah and Dean, 2004).  

 

In a study by Zhou et al. (2017) the domain II loops of Cry1Ah (toxic to Helicoverpa 

armigera but not Bombyx mori larvae) were exchanged with domain II loops of Cry1Ai 

which is active against Bombyx mori larvae but not H. armigera.  This mutagenesis 

approach involved the introduction and exchange of domain II loops 2 and 3 between 

Cry1Ai and Cry1Ah.  

 

Zhou et al. (2017) intended to explore the extent that these loops are involved in the 

toxins’ specificity to their target insect cells. They observed that the Cry1Ai-h-loop 2-

exchange mutant, containing loop 2 from Cry1Ah, showed significant toxicity towards 

H. armigera, whilst the Cry1Ah-i-loop 2-exchange mutant containing loop 2 from Cry1Ai 

did not indicate any toxicity towards H. armigera. The loop 2 exchange in Cry1Ah caused 

loss of toxicity to its target insect H. armigera. Similarly, the introduction of loop 3 from 

Cry1Ai into Cry1Ah also induced the loss of toxicity to H. armigera but neither loop 2 or 

3 exchange allowed Cry1Ah to gain a new toxicity towards B. mori. Contrary to this, is 

that loop 2 exchange in Cry1Ai where the presence of both loops 2 and 3 of Cry1Ah 

allowed Cry1Ai to gain toxicity to H. armigera which was not exhibited earlier (Zhou et 

al., 2017).  

 

The recombinant Cry41Aa loop 3 of Cry1Ac and Cry41Ab loop 3 of Cry1Ac exchange 

mutants were not stable in trypsin and did not result in a proteolytic protease core.  The 
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insecticidal Cry1Ac loop 3 of Cry41Aa exchange did result in a proteolytic stable core, 

however, cell assays indicated that it did not gain toxicity to the HepG2 cell line. We did 

not assess whether this mutant lost its native toxicity to M. sexta or other known target 

lepidopteran insects as a result of replacing of its native loop 3 with that of Cry41Aa. 

However, the lack of proteolytic stable mutants of Cry41Aa led to the second 

mutagenesis approach. 

 

 Research has shown that domain swapping has led to new specificities and improved 

toxicities. In addition to the domain II loops, domain II and III have been implicated in 

specificity and receptor recognition (Lee et al., 1999; Bravo et al., 2007; de Maagd et al., 

1996; Dean et al., 1996; Gomez et al., 2006; Herrero et al., 2004). 

 

A study by de Maagd et al, (1996) carried out a study on domain I, II, and III of Cry1Ab 

and Cry1Ca, they created a number of hybrids by swapping domains from both toxins in 

an attempt to improve the toxicity towards Spodoptera exigua larvae. They observed 

that combinations of different domain I and II were unusually toxic when combined with 

domain III of Cry1Ca. This observation extended to domain I and II from other 3-domain 

Cry toxins Cry1Ac, Cry1Ba, Cry1Ea, or Cry1Fa as long as domain III came from Cry1Ca. It 

highlighted the role that domain III of Cry1Ca played on the toxicity and specificity that 

it has towards S. exigua (de Maagd et al., 1996).  

 

In the quest to understand its specificity towards HepG2 cell lines, hybrids of Cry1Ie and 

Cry42Aa were created with Cry41Aa. There is no record of domain swapping 
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mutagenesis being carried out in Cry41Aa. A similar study by Masson et al. (1994) 

created an exchange of non-homologous N terminal regions of Cry1Ac with Cry1Ea and 

determined that the N-terminal region of a toxin is not important in specificity. This 

study, conducted both in vivo and in vitro on cultured insect cells and dissociated midgut 

epithelial cells, concluded that hybrid toxins can exhibit different toxicity and that this is 

dependent on bioassay systems in place (Masson et al., 1994). Despite this, our current 

hybrid was designed to introduce a region of N terminus (domain I) of Cry41Aa into 

Cry1Ea. However, both Cry1Ie-Cry41Aa and Cry42Aa-Cry41Aa hybrids did not result in a 

protease resistant cores upon activation and thus could not be investigated for their 

toxicity on HepG2 cells.  

 

The third mutagenesis approach involved residue substitution and specifically alanine 

residue substitutions to probe the domain II exposed loops of Cry41Aa for specificity 

after failure to obtain protease resistant cores from previous mutagenesis approaches 

on Cry41Aa. Research has highlighted the role that hydrophobic residue substitutions of 

domain II loops play on the specificity and toxicity of 3-domain toxins. (Lee et al., 1999; 

Lee et al., 2001; Lu et al., 1994; Rajamohan et al., 1996c; Rajamohan et al., 1996b; Roh 

et al., 2009).  

 

In a recent review on the structure of Cry toxins, Xu et al. (2014) proposed an alternative 

classification system of Cry toxins based on toxin mode of action and structural 

relatedness. This study suggested that Bt toxins be categorised into 3-domain type α 

pore forming toxins, Cyt toxins type β-pore forming toxins and aerolysin type β pore 
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forming toxins (Xu et al., 2014). Its highlighted findings on the structurally diverse 

domain II Cry toxins and highlighted the presence of aromatic residues and their rich 

presence on the surface of domain II.  

  

The surface exposed aromatic rings have been implicated in binding to polysaccharides 

and are often found in carbohydrate-protein complexes.  Parasporin 2 (Cry46Aa1) has a 

number of aromatic residues on the surface and these may play a role binding. Although 

the effects of aromatic residues have been explored in insecticidal Cry toxins, parasporin 

have remained behind in this aspect. The presence of aromatic residues of the surface 

of toxins suggests that they may have specific interaction with susceptible cell 

membranes (Xu et al., 2014). 

 

 Studies suggest that hydrophobic residues may be responsible for interactions between 

the cell membranes of  target insect cells (Wu et al., 2000). Three hydrophobic residues 

were identified in loop 3 of Cry41Aa and were substituted with alanine F509A, W511A, 

and Y514A. All three resulted in protease resistant peptides that were purified and their 

toxicity to HepG2 was investigated.  

 

A 24 h CellTiter-Blue assay was applied to measure the percentage of HepG2 cell viability 

relative to the buffer. CellTox Green Cell Assay was used to assess HepG2 membrane 

damage caused by Cry41Aa and the nontoxic F509A. It was concluded that Cry41Aa 

caused pores in the membrane of HepG2 cells where the small green fluorescent 

molecule was able to bind to nuclear material. There was no record of any nuclear 
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binding of the dye molecule in cells incubated with F509A. These findings suggest that 

F509A did not cause any cell membrane damage even after 28 h of incubation with 

HepG2 cells.   

 

Cell assay data suggested that the Y514A mutant retained its toxicity to HepG2 cells.  

W511A was also not toxic to HepG2. These findings highlighted the need to clarify 

whether it was the type of residue or the position of the residue that lead to the loss of 

toxicity. This led to further mutagenesis at positions F509 and W511. 

 

A number of degenerate residues were introduced at position F509.and W511 The 

recombinants F509L, F509S, F50W, and F509Y were made, activated and purified.  An 

attempt to introduce W511Y and W511F residue substitutions were also made. Only the 

W511F mutant was proteolytically stable and initial cell assays indicated, that together 

with Y514A, they both retained the cytotoxic properties towards HepG2 cells. Apart 

from wildtype Cry41Aa, and mutants W511F and Y514A all other mutant did not exhibit 

cytotoxicity towards HepG2 cell lines.  

 

The loss of toxicity by F509A and W511A could be due to the loss of interaction with 

HepG2 cells or that interaction was insufficient or ineffective to cause cell death. Initially, 

western blots were carried out to assess phosphorylation of p38 and activation of the 

p38 MAP kinase pathway in Cry41Aa and nontoxic F509A. Brasseur et al. (2015) 

investigated the activation of apoptosis by Cry46Aa (Parasporin 2) and observed that 

Cry46Aa triggered this pathway by phosphorylation of p38  (Brasseur et al., 2015).  
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Western blots of Cry41Aa and mutant F509A revealed that both were found to induce 

p38 phosphorylation. These  finding suggest that the toxicity of Cry41Aa may be affected 

by the type of protease used to activate the toxin (Souissi, 2018). It is possible that pore 

formation by F509A is deficient or insufficient in number to cause cell death. Thus, the 

type of pore and its effectiveness was investigated by electrophysiology.   

 

Seven cell lines including HL60 were assayed for their viability after incubation with 

recombinant toxins. Cell assay data concluded that none of the mutants or wildtype 

Cry41Aa were toxic to cell lines. The HL60 cell line was previously reported by Yamashita 

et al. (2005) to be susceptible to Cry41Aa. In contrast, viability cell assay in this study did 

not support such a finding, however some studies has shown HL60 cell lines to be 

susceptible to Cry41Aa when activated by proteinase K as previously used by Yamashita 

(Souissi, 2018, Domanska, 2016).  

 

A dose response curve for the protein concentration optimised toxins was calculated 

and the EC50 values were determined by probit analysis using SPSS software. Cry41Aa 

had an EC50 value of 4.6 µg/mL, and the mutant Y514A had an EC50 value of 2.6 µg/mL. 

Y514A appeared to be a more potent toxin than Cry41Aa., killing HepG2 cells faster than 

wildtype Cry41Aa as indicated by microscope observations.  

 

A similar study by Wu et al. (2000) on residue substitutions in loop 1 of Cry31Aa also 

indicated mutants that showed higher toxicity in bioassays of three coleopteran Cry3Aa 

susceptible species. Here substitution of phenylalanine for tyrosine at positions 350 and 
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351 affected the dissociation of the toxin which gave rise to enhanced toxicity by 

mutants. This study proposed that hydrophobic side chains of loop1 residues interact 

with a target receptor.  It further speculated that increased toxicity in phenylalanine 

mutant substitutions with tyrosine was due to the presence of aromatic phenol rings 

and not the phenolic hydroxyl group of tyrosine.  The study suggested that aromatic 

residues are involved in hydrophobic interactions with receptors, implicating them in 

the binding affinity of the toxin to the target receptor. Y514A and W511F retained their 

toxicity towards HepG2. In mutant Y514A, the aromatic tyrosine residue was substituted 

with the small non-aromatic alanine residue, yet toxicity appeared higher. HepG2 cells 

were observed to swell and detach within 10 min of incubation with the mutant.  It is 

relevant to point out that the HepG2 receptors for Cry41Aa are as yet unknown.  

 

An attempt to visualise binding was carried using fluorescein isothiocyanate (FITC).  

Activated Cry41Aa and F509A were incubated with FITC and then washed with a buffer 

to remove excess FITC. HepG2 cells were briefly incubated with FITC labelled Cry41Aa 

and F509A and then washed to remove excess or unbound FITC labelled proteins. The 

cells were observed under a Zeiss Axiovert 200M microscope using FITC and bright-field 

channels in a wide-field configuration. Unfortunately, the fluorescence signal was very 

weak despite the obvious cytotoxic effects of Cry41Aa on Hep G2, there was an absence 

of fluorescence outlining the cell membrane. Attempts to visualise and measure binding 

include biotin labelling of Cry41Aa and tagging Cry41Aa with HA-tag. Both of these were 

unsuccessful in determining the binding of Cry41Aa to HepG2 cells (Domanska, 2016).  
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Electrophysiology was carried out to investigate if Cry41Aa and the nontoxic F509A form 

any pores.  Whole patch clamping carried out on HepG2 membranes indicated that 

Cry41Aa does cause pore formation. The pores open in sufficient numbers and are stable 

enough to cause toxicity and eventual cell death. It also concluded that if pores are 

formed as a result of HepG2 incubation with F509A, they are not stable enough or 

sufficient in number. It is possible that the cells are able to recover and a significant 

change in cell viability or membrane damage would not be observed. PLB single channel 

activity was applied to study the activity of Cry41Aa and F509A toxin on an artificial 

membrane.  It concluded that Cry41Aa forms stable pores that seem to be voltage 

dependent and are slightly cationic selective. Although F509A revealed similar findings, 

the standard error was much higher which indicated the pore type formed was unstable 

and had different kinetics and opening abilities.  Electrophysiology tests indicated that 

F509A causes pores which were not always stable or effective, hence their inability to 

induce toxicity.  

 

In this study, a more potent Y514A does not necessarily suggest higher binding affinity to 

HepG2. The mutant Y514A may induce more pores that are very stable and effective 

which may explain its higher toxicity when compared to the toxicity of wildtype Cry41Aa. 

However, without supportive electrophysiology evidence this stands as a speculation.  

These finding are supported by studies that have implicated aromatic residues in the 

domain II loop region in initial binding and specificity (Rajamohan et al., 1996c; Pacheco 

et al., 2009; Abdullah et al., 2003; Dean et al., 1996; Lu et al., 1994).  

 



296 
 
 

 

 
 

Howlader et al. (2010) probed the effect of alanine substitution in loop 3 of insecticidal 

Cry4Aa and observed a lower toxicity to fourth instar C. pipien mosquitoes in two 

mutants: T512A and Y513A. Cry41Aa loop 3 recombinant Y514A was more toxic than 

the wildtype. This may suggest that a particular residue position is not important to Cry 

toxins but rather the type of residue at that position. The W511F mutant was also toxic 

to HepG2 cells. It can be argued that the mutant has retained its toxicity due to the 

presence the aromatic ring of phenylalanine.   

 

A similar study by Wu et al. (2000) suggested that an increase in hydrophobic 

phenylalanine rings and or the  removal of the phenolic hydroxyl groups at some 

residues in loop binding regions can result in higher binding affinity and subsequently a 

higher toxicity (Wu et al., 2000).   

 

In addition to the loop 3 mutants, an extra loop alanine substitution was also created as 

well as degenerate residue substitutions in loop1 of Cry41Aa.  The protein concentration 

for all recombinant loop mutants was optimised with the exception of the following 

loop1 mutants and loop 3 W511F. Loop1 mutants retained cytotoxicity to HepG2 cells 

on initial cell assays. These degenerate residue mutants suggested that loop1 may not 

have a key role in the specificity of Cry41Aa was not probed further.  

 

The W511F was made after the protein optimisation of the loop 3 mutants and was not 

run on the same SDS PAGE gel at the same time as all investigated mutants. Despite this, 

measures were taken to apply the Bradford protein assay to measure its protein 
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concentration before cell assays with HepG2 cell lines. Observations revealed that 

W511F is toxic to HepG2 cell lines, but its toxicity level compared to wildtype Cry41Aa 

and the potent Y514A remain unknown. 

 

The extra loop is unique to Cry41Aa, previous attempts to obtain a protease resistant 

core of Cry41Aa,  where the extra loop was completely deleted or partially deleted, were 

unsuccessful (Banani, 2013; Krishnan, 2013; Krishnan et al., 2017). These findings have 

highlighted the key role that the extra loop may play in the structural integrity of the 

toxin.  All mutagenesis attempts so far have resulted in unstable recombinant proteins 

that degrade in the solubilisation or activation stage.   

 

An extra loop substitute was created, as a series of alanine substitutions were 

introduced to create an alanine cassette in the loop. It changed the native secondary 

structure of the extra loop from sheets to helices. The mutant was proteolytically stable 

and its concentration was optimised along with the other loop substitution mutants. Cell 

assays suggest that the extra loop mutant was not toxic to HepG2 cell lines. A clear and 

definite role for this distinctive loop is yet to be found, although its presence is critical 

for obtaining a protease resistant mutant.  

 

Studies on the type of protease used to activate Cry toxins can affect their specificity 

and toxicity. Studies on insecticidal Cry toxins revealed that specificity of a toxin is linked 

to the type of protease present in the insect gut. Haider et al. (1986) proposed that 

different proteases produce different protease resistant proteins depending of the 
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amino acid sequence of the toxin(s), and it is the different molecular weights of the 

activated toxins that can define their specificity. For example, Mizuki et al. (2000) 

demonstrated that Cry31Aa (parasporin 1) had a different specificity when activated by 

different proteases.  

 

The study demonstrated that Cry31Aa was toxic to cancer cell line MOLT-4 only when 

activated by Proteinase K or trypsin.  Activation by chymotrypsin resulted in proteolysis 

profiles which differ to those produced by Proteinase K and trypsin and the loss of 

toxicity towards MOLT-4 cell lines. (Mizuki et al, 2000).  

 

Other studies on the parasporins linking their cytotoxicity to their activation have 

emerged. Brasseur et al. (2015) demonstrated that Cry46Aa (parasporin 2) was cytocidal 

HepG2, MCF-7, KLE, Hec-1A, MDA-MB231 cell lines as well as PC-3 cells when activated 

with Proteinase K, but no cytotoxicity was observed when activated with trypsin. 

Yamashita et al. (2005) demonstrated that the toxic effect of Cry41Aa towards HepG2 

and HL-60 cell lines was dependent on activation by Proteinase K  (Yamashita et al, 

2005). Similar observations were made by Souissi (2018). Findings concluded that 

Cry41Aa, potentially a pore forming toxin, has a similar mode of action to insecticidal 3-

domain toxins (Krishnan et al., 2017).  

 

Recently, some studies emerged that question the safety and risk assessment of Cry 

toxin. The confirmed discovery of parasporins and their ability to interact with 

vertebrate cell lines is drawing attention to the risk assessment of Cry toxin. This 
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previously unreported ability to interact with mammalian cells has highlighted the need 

for better understanding of Cry toxin specificity and mode of action. Indeed Cry toxins 

were deemed safe due to their lack of persistence in the environment and narrow 

toxicity range (de Maagd et al., 2003).  

 

However, a report of transgenic plants expressing Cry toxin has concluded that non-

target herbivores and insect predators throughout the food chain can obtain plant Bt 

Cry toxin. These were traced as far as the third trophic level in some cases (Torres et al., 

2006). The study recognises that their findings are dependent on the amount of Bt 

transgenic plant eaten by a prey, and how much of this prey is available to and consumed 

by the predators. Torres et al. (2006) concluded that the persistence of plant Bt toxins 

in the food chain, is dependent on community structure and dynamics of crop pest 

insects and their predators, as well as the availability of alternative Bt free prey. 

Nevertheless, the study highlights the need for more field research and less reliance on 

laboratory research based on artificial conditions. 

 

Despite the number of studies dedicated to understanding Cry toxin mode of action and 

the driving factor for their evolutionary diversity, there is not t a consensus on either 

(Then, 2010). Cry toxins with preferential toxicity to cancer are already being 

investigated for their potential application as an alternative to the current cancer drugs.  
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In a study by Wong, et al. (2010) which studied the binding affinity of Bacillus 

thuringiensis 18 Toxin to CEM-SS cancer cell (leukaemia) line and whether it competes 

with commercially available anticancer drugs. The study concluded that there was no 

completion between Toxin 18 and other drugs tested, furthermore it suggested that 

Toxin 18 was likely to bind  to a different receptor on the surface of CEM-SS cell and thus 

is thought to have a different mode of action compared to the other drugs used in this 

study (Wong et al., 2010).  

 

There is a long history of the safe use of Bt and transgenic Bt crops to control agricultural 

and disease carrying pests. some studies have claimed that Bt can increase allergenic 

potential, or cause hematotoxic reactions, however upon closer investigation the claims 

did not stand up to scientific scrutiny (Koch et al., 2015).  

 

The supposed toxicity exhibited by Bt toxins in particular, to mammalian cells, is 

debatable and many have argued that the term ‘toxic’ is an unfitting definition for the 

effects observed when Bt interacts with mammalian cells. However, the interaction, and 

effects of interactions, are observed and thus require further investigation (Rubio-

Infante and Moreno-Fierros, 2016).   

 

There are still some avenues to explore from the Cry41Aa loop substitution mutants.  

Attempts to use fluorescent microscopy to visualise Cry41Aa or its mutants’ interactions 

with susceptible cancer cell lines proved futile. It is possible that only a small amount of 

Cry41Aa is needed to cause toxicity of that the receptor that it interacts with is present 
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in low concentrations in the cell membrane. It’s worth exploring the nature of the 

toxicity of mutants Y514A and W511F in a quest to better understand the specificity of 

Cry41Aa and to investigate its binding affinity compared to its mutants. A series of 

alanine substitutions, where substitution occurs in more than one position at the same 

time, was not created. For example, it is not known whether a mutant with alanine 

substitution in positions 509, 511, and 514 at the same time would still retain toxicity 

despite the presence of an alanine at position Y514. Furthermore, loop1 substitutes of 

only alanine would help to clarify the role that aromatic rings may play in the toxicity of 

Cry41Aa and whether it has hydrophobic interaction with HepG2 cell membranes.  

 

Future work should include activation of mutants by different proteases such as 

Proteinase K, and analysis whether these mutants demonstrate a different toxicity after 

activation with a different protease. Further work on electrophysiology analysis of 

Cry41Aa treated HL60 cell lines would reveal the characteristics of pores, if any are 

formed as was the case with F509A mutant. single channel electrophysiology can 

indicate the stability of pores, frequency, opening probability and duration of opening 

of pores formed by toxic mutant W511F, and Y514A. Future work should attempt to 

identify receptor(s) of Cry41Aa in susceptible cell lines in order to gain a better 

understanding its mode of action and how it can potentially contribute to the treatment 

of cancer.     
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