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ABSTRACT PHD THESIS

MATTEO PERUGINI

My PhD thesis contains a couple of results I obtained under the supervision of my advisor
Filippo Cagnetti, during the past three years of my studies. In particular, I present two results
about rigidity of perimeter inequality under symmetrization techniques. The first result, presented
in Chapter 3, provides the characterization of rigidity for equality cases for the perimeter inequality
under spherical symmetrization; whereas in Chapter 4 I will study the rigidity of equality cases
for the Steiner’s inequality for the anisotropic perimeter.
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“The mathematical sciences particularly exhibit order symmetry and limitations; and
these are the greatest forms of the beautiful.”

Aristotle
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Chapter 1

Introduction

The aim of this thesis is the study of perimeter inequalities under symmetrisation. In
particular, we are interested in the understanding of rigidity, that is, the situation in
which the only extremals of the inequality are symmetric sets.

We start by studying rigidity for the perimeter inequality under spherical symmetrisa-
tion. This is the subject of Chapter 3. After that, in Chapter 4 we consider the rigidity
problem for Steiner’s inequality for the anisotropic perimeter. These results are collected

in [12] and [35], respectively.

1.1 State of the art

Perimeter inequalities under symmetrisation have been studied by many authors, see for
instance [30, 31] and the references therein. The study of rigidity for such inequalities
can have important applications and can lead, for instance, to show that minimisers of
variational problems (or solutions of PDEs) are symmetric.

Indeed for instance, Ennio De Giorgi in his proof of the Isoperimetric Inequality, using
Steiner’s inequality (see (1.1.2)) showed that the minimum for the Isoperimetric prob-
lem is a convex set. After De Giorgi, an important contribution in the understanding of
rigidity for Steiner’s inequality was given by Chlebik, Cianchi, and Fusco. In the sem-
inal paper [14], the authors give sufficient conditions for rigidity. After that, this result
was extended to the case of higher codimensions in [3], where a quantitative version of
Steiner’s inequality is also given. Finally, necessary and sufficient conditions for rigidity
(in codimension 1) are given in [11], in the case where the distribution function is a Spe-
cial Function of Bounded Variation with locally finite jump set. In the Gaussian setting,

where the analogous of Steiner’s inequality is given by Ehrhard’s inequality (see [17, Sec-
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tion 4.1]), necessary and sufficient conditions for rigidity are given in [10], by making use

of the notion of essential connectedness.

1.1.1 Basic notions on sets of finite perimeter

For every r > 0 and = € R"™, we denote by B(xz,r) the open ball of R” with radius r
centred at z. In the special case x = 0, we set B(r) := B(0,r). Let n,k € N, and § > 0.
The k-dimensional Hausdorff measure of step ¢ of a set £ C R" is defined as

HE(E) := inf Z wkdl&() ,
F 2
FeF
where F is a countable covering of E by sets F© C R" such that diam(F) < 4§, and
wy = L¥(B(1)) (where B(1) is the unitary open ball in R¥). The k-dimensional Hausdorff

measure of I/ is then

HE(E) == sup HE(E) = lim HY(E).
§>0 6—0t

Let E C R™ be a measurable set, and let ¢ € [0,1]. We denote by E® the set of points of

density ¢ of F, given by

E® .— {x R fim L EN B, p)) :t}_

p—0t wWp P

The essential boundary of F is then defined as
O°FE :=E\ (EW U EO),

Moreover, if A C R" is any Borel set, we define the perimeter of F relative to A as the

extended real number given by
P(E; A) :=H"10°EN A) € [0,00].

We then define the perimeter of E as P(FE) := P(E;R™). When E is a set with smooth
boundary, it turns out that 0°F = OF, and the perimeter of F agrees with the usual notion
of (n — 1)-surface dimensional measure of OE. If P(E) < oo, it is possible to define the
reduced boundary 0* E of E. This has the property that 9*E C 0°E, H" 1 (0°E\0*E) = 0
and is such that for every x € 0*F there exists the measure theoretic outer unit normal

vE(z) to E at z (see Section 2).

1.1.2 Steiner’s inequality

Let us now recall how Steiner symmetrisation is defined. We decompose R™, n > 2, as the

Cartesian product R"~! x R, denoting by p : R — R®! and q : R” — R the "horizontal"
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and "vertical" projections respectively, so that =z = (pz,qx), px = (z1,...,2p—-1), and
qz = z, for every x € R”. Given a function v : R"~! — [0, 00|, we say that a set F C R"

is v-distributed if, denoting by E, its vertical section with respect to z € R®~!, that is
E,:={tcR: (z,t) € E}, zeR" Y
we have that
v(z) = HY(E,), for H" lae zeR" L

Among all v-distributed sets, we denote by F[v] the only one that is symmetric by reflection

with respect to {qz = 0}, and whose vertical sections are segments, that is

Flo] = {:c cR": |qz| < ”(‘2’37) } (1.1.1)

If E is a v-distributed set, we define the Steiner symmetral E® of E as E® := F[v]. Note
that, F[v] is a Lebesgue measurable set, as shown in [21, Theorem 2.3]. Furthermore,
by Fubini Theorem, Steiner symmetrisation preserves the volume. That is, if E is a v-
distributed set of finite volume, then H"(E) = H"(F[v]). A very important fact is that
Steiner symmetrisation acts monotonically on the perimeter. More precisely, Steiner’s

inequality holds true: if E is a v-distributed set then
P(E;G xR) > P(F[v];G xR) for every Borel set G ¢ R"™1. (1.1.2)

The next two results give the minimal regularity assumptions needed to study inequal-

ity (1.1.2) (see [14, Lemma 3.1] and [11, Proposition 3.2] respectively).

Lemma 1.1.1. (Chlebik, Cianchi and Fusco) Let E be a v-distributed set of finite peri-
meter in R™, for some measurable function v : R"~1 — [0,00]. Then, one and only one of

the following two possibilities is satisfied:

i) v(z') = oo for H" t-a.e. 2’ € R"! and F[v] is H"-equivalent to R™;

i) v(z') < oo for H" t-a.e. 2’ € R"1, H"(F[v]) < 0o, and v € BV (R"1),

where BV (R"™1) denotes the space of functions of bounded variation in R"~! (see Sec-

tion 2).

Lemma 1.1.2. Let v: R"™! — [0,00) be measurable. Then, we have 0 < H"(F[v]) < oo

and P(F[v]) < oo if and only if

ve BV(R"™™), and H"'({v>0}) < . (1.1.3)
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1.1.3 Rigidity for Steiner’s inequality

Given v as in (1.1.3) we set:
M(v) ={E C R": E is v-distributed and P(FE) = P(F[v])}. (1.1.4)

We say that rigidity holds true for Steiner’s inequality if the only elements of M(v) are

(H™-equivalent to) vertical translations of F'[v], namely:
EecM(w) <= H'EA(F[v]+te,)) =0 forsometeR, (RS)

where A stands for the symmetric difference between sets, and ey, . .., e, are the elements
of the canonical basis of R".

A natural step in order to understand when (RS) holds true, is to study the set M(v).
The characterization of equality cases in (1.1.2) was first addressed by Ennio De Giorgi in

[19], where he showed that any set E € M(v) is such that
E. is H!-equivalent to a segment, for H" l-a.e. z € R" !, (1.1.5)

(see also [32, Theorem 14.4]). After that, further information about M (v) was given by
by Chlebik, Cianchi and Fusco (see [14, Theorem 1.1]). The study of equality cases in
Steiner’s inequality was then resumed by Cagnetti, Colombo, De Philippis and Maggi in
[11], where the authors give a complete characterization of elements of M(v) (see Theorem
1.1.4 below). In order to explain their result, let us observe that any v-distributed set F
satisfying (1.1.5) is uniquely determined by the barycenter function bgp : R"~! — R,
defined as:

ﬁ S, tdH (t) if 0 < w(z) < o0

be(z) = (1.1.6)

0, otherwise.

In general, bg may fail to be a BV, or even an Llloc function, even if E is a set of finite
perimeter (see [11, Remark 3.5]). The optimal regularity for bg, when E satisfies (1.1.5),
is given by the following result (see [11, Theorem 1.7]).

Theorem 1.1.3. Let v be as in (1.1.3), and let E be a v-distributed set of finite perimeter
satisfying (1.1.5). Then,

bs = l{y=s1 be € GBV(R"™),

for every & > 0 such that {v > &} is a set of finite perimeter. Moreover, by is approzimately

differentiable H" 1-a.e. on R, and for every Borel set G C {vV > 0} the following



coarea formula holds:

/ H2(G N0 by > t))dt — / Vhg|dH " + / bE]dH™2 + | Dbs|* (Q),
R ¢ GNSy

(1.1.7)

where |Dbg|T is the Borel measure on R"™1 defined by

Db (G DU|(C) = sup IDBs(@), G C R

- i,
Here GBYV is the space of functions of generalized bounded variation, vV and v” are the
approximate limsup and approximate liminf of v respectively, [bg]| := b}, — b} is the jump
of bg, and D¢ is the Cantor part of the distributional derivative Dbs of bs (for more
details see Chapter 2). Starting from this result, the authors were able to establish a
formula for the perimeter of E in terms of v and bg (see [11, Corollary 3.3]). With this
formula at hands, as shown in the next result (see [11, Theorem 1.9]), they managed
to fully characterize the equality cases in Steiner’s perimeter inequality. Below, we set

Tar(s) := max{—M,min{M, s}} for every s € R.

Theorem 1.1.4. Letv be as in (1.1.3), and let E be a v-distributed set of finite perimeter.
Then, E € M(v) if and only if

E. is H'-equivalent to a segment, for H" ‘-a.e. z € R" (1.1.8)
Vbg(2) =0, for H" '-a.e. z € R"1, (1.1.9)

2[bg] < [v], H" *-a.e. on {v" >0}, (1.1.10)

D¢ (raa (b)) (G) = /G s eapy TP (1.1.11)

for every bounded Borel set G C R" ! and M > 0, and for H'-a.e. § > 0, where
f Rt — [—1/2,1/2] is a Borel function. In particular, if E € M(v) then

2|Dg| T (G) < |D|(G), for every Borel set G C R, (1.1.12)
and, if K is a concentration set for Dv and G is a Borel subset of {v" > 0}, then

/ H' (G N 0bg > t})dt = / [bpldH" 2 4+ |D%ge| T (G N K). (1.1.13)
R G

meE NSy

Theorem 1.1.3 and Theorem 1.1.4 play a key role in the study of rigidity. Indeed, (RS)

holds true if and only if the following condition is satisfied:

Ec M) <= bgisH" ' -a.e. constant on {v > 0}. (1.1.14)
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Based on the previous results, the authors proved several rigidity results, depending of
the regularity assumptions on v (see [11, Theorems 1.11-1-30]). In particular, a complete
characterization of rigidity is given when v is a special function of bounded variation with

locally finite jump set (see [11, Theorem 1.29]).

1.2 Rigidity for the perimeter inequality under spherical

symmetrisation

The spherical symmetrisation is a useful tool to understand the symmetry properties of
solutions of certain PDEs and variational problems, when the radial symmetry has been
ruled out. This turns out to be helpful also because some well established techniques,
as for instance the moving plane method [38, 26], rely on convexity properties of the
domain which fail, for example, when one deals with annuli. Indeed, in many applications
minimisers of variational problems and solutions of PDEs turn out to be foliated Schwarz
symmetric. Roughly speaking, a function u : R®™ — R is foliated Schwarz symmetric if one
can find a direction p € S*~! (here S"~! := 9B(1)) such that u only depends on |x| and
on the polar angle o = arccos(Z - p) (here Z := z/|x|, |z| is the modulus of z and & - p is
the scalar product between & and p), and u is non increasing with respect to . We direct

the interested reader to [4, 5, 6, 40] and the references therein for more information.

1.2.1 Spherical Symmetrisation

To the best of our knowledge, the spherical symmetrisation was first introduced by Pdlya
in [36], in the case n = 2 and in the smooth setting. Let n > 2. Given a set £ C R™ and

r > 0, we define the spherical slice E, of E with respect to 0B(r) as
E,:==ENO0oB(r)={x€9dB(r):x € E}.

Let v : (0,00) — [0,00) be a measurable function. We say that E is spherically v-
distributed if
v(r) = HHE,), for H-a.e. r € (0, 00). (1.2.1)

Note that, in order v to be an admissible distribution, one needs
v(r) < H" Y IB(r)) = nw,r" ! for H'-a.e. r > 0. (1.2.2)
For every z,y € S"~!, the geodesic distance between = and y is given by

distgn—1(x,y) := arccos(z - y).
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Let » >0, p € S*!, and $ € [0,7] be fixed. The open geodesic ball (or spherical cap) of

centre rp and radius [ is the set
Bgs(rp) := {z € 0B(r) : distgn-1(2,p) < B}.

The (n — 1)-dimensional Hausdorff measure of Bg(rp) can be explicitly calculated, and is
given by
B
H (B (rp)) = (n— 1)wn_1r"" / (sin7)"2 dr.
0

The expression above shows that the function 8 — H" }(Bg(rp)) is strictly increasing
from [0, 7] to [0,nw,r""1]. Therefore, if v : (0,00) — [0,00) is a measurable function
satisfying (1.2.2), and E C R"™ is a spherically v-distributed set, there exists only one

measurable function «, : (0, 00) — [0, 7] satisfying
v(r) = 1" (Ba, ) (re1)) for H'-a.e. r € (0,00). (1.2.3)

Among all the spherically v-distributed sets of R™, we denote by F;, the one whose spherical

slices are open geodesic balls centred at the positive e; axis., i.e.
F,:={z e R"\ {0} : distgn-1(2,€1) < ap(|z|)},

see Figure 1.2.1. Given any spherically v-distributed set E, we refer to F,, as the spherical
symmetral of E. As mentioned for the Steiner symmetrisation (see [21, Theorem 2.3]),
also for the spherical symmetrisation it can be proved that F, is a Lebesgue measurable

set.

1.2.2 Perimeter inequality under spherical symmetrisation

If x € 0*F, it will be convenient to decompose v¥(x) as
VB (2) = VB (x) + VE (2),

where v (z) := (vF(z) - )& and Vf(m) are the radial and tangential component of v (z)
along dB(|z]), respectively. We will also use the diffeomorphism ® : (0,00) x S*~1 — R%
defined as

O(r,w) :=rw for every (r,w) € (0,00) x S"71,

where R} := R™\ {0}. Our first result shows that the spherical symmetrisation decreases
the perimeter, and gives some necessary conditions for equality cases. In our analysis
we require the set F, (or, equivalently, any spherically v-distributed set) to have finite

volume. This is not restrictive. Indeed, if F}, has finite perimeter but infinite volume,



z3 z3

z3 3

o (1)

Figure 1.2.1: A pictorial idea of the spherical symmetral F, of a spherically v-distributed

set F, in the case n = 3.

we can consider the complement R™ \ F,, which, by the relative isoperimetric inequality,
has finite volume. This change corresponds to considering the complementary distribution

function r — w,r™ — v(r), and the spherical symmetrisation with respect to the axis —ej.

Theorem 1.2.1. Let v: (0,00) — [0,00) be a measurable function satisfying (1.2.2), and
let E C R™ be a spherically v-distributed set of finite perimeter and finite volume. Then,

v € BV(0,00). Moreover, F, is a set of finite perimeter and
P(F,;®(B x S" 1)) < P(E;®(B x S"1)), (1.2.4)

for every Borel set B C (0, 00).
Finally, if P(E) = P(F,), then for H'-a.e. 1 € {0 < oy < m}:

(a) E, is H" '-equivalent to a spherical cap and H"2(0*(E,)A(0*E),) = 0;

(b) the functions x — vF(x) - & and x — |l/f|(1‘) are constant H" %-a.e. in (0*E),.
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The result above shows that the perimeter inequality holds on a local level, provided
one considers sets of the type ®(B x S*~!), with B C (0,00) Borel. Inequality (1.2.4) is
very well known in the literature. In the special case n = 2, a short proof was given by
Pélya [36]. In the general n-dimensional case with B = (0,00) a sketch of the proof is
given in [34, Theorem 6.2] (see also [33]). As mentioned by Morgan and Pratelli in [34],
certain parts of the proof of (1.2.4) follow the general lines of analogous results in the
context of Steiner symmetrisation (see, for instance, [14, Lemma 3.4], [3, Theorem 1.1}).
There are, however, non trivial technical difficulties that arise when one deals with the
spherical case. For this reason, we give a detailed proof of Theorem 1.2.1. The tools we

develop to show this result will also be useful in the study of rigidity.

We start by introducing radial and tangential components of a Radon measure, see
Section 3.1.1. Since we are dealing with a symmetrisation of codimension n—1, we need to
pay attention to some delicate effects that are not usually observed when the codimension

is 1 (as, for instance, in [14]). Indeed, a crucial role is played by the measure Ag given by:

(B ;:/ v (x) dH" (), 1.2.5
E( ) 8*Em<I>(B><S"*1)ﬁ{uf:0}$ Y (x) (x) ( )

for every Borel set B C (0,00). When n = 2, it turns out that Ag is singular with respect
to the Lebesgue measure in (0,00). However, for n > 2 it may happen that Ag contains
a non trivial absolutely continuous part, see Remark 3.1.9. This requires some extra care
while proving inequality (1.2.4). A similar phenomenon has already been observed in [3], in
the study of the Steiner symmetrisation of codimension higher than 1. Higher codimension

effects play an important role also in the study of rigidity, as explained below.

1.2.3 Rigidity in the spherical setting

Given v : (0,00) — [0, c0) measurable, satisfying (1.2.2), and such that F, is a set of finite

perimeter and finite volume, we define N'(v) as the class of extremals of (1.2.4):
N (v) :={E C R": E is spherically v- distributed and P(E) = P(F,)}.

Note that, by definition of F,,, and by the invariance of the perimeter under rigid trans-
formations, every time we apply a rotation to F, we obtain a set that belongs to N (v),
ie.:

N@w)D{E CR": H"(EA(RF,))=0 for some R € SO(n)},

where SO(n) is the set of rotations in R™. We would like to understand when also the

opposite inclusion is satisfied, that is, when the class of extremals of (1.2.4) is just given
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by rotated copies of F,,. We will say that rigidity holds true for inequality (1.2.4) if

N@w)={FE CR": H*(EA(RF,)) =0 for some R € SO(n)}. (R)
In order to explain which conditions we should expect in order (R) to be true, let us first
give some examples.

Figure 1.2.2 shows a set £ € N(v) that cannot be obtained by applying a single

rotation to F,. This is due to the fact that the set {0 < «, < 7} is disconnected by

Z2 x2

Figure 1.2.2: Rigidity (R) fails, since the set {0 < «,, < 7} is disconnected.

a point 7 satisfying o, (7) = 0. Similar counterexamples can be provided also by using
points belonging to the set {a, = m}. One possibility to avoid such a situation could be
to request the set {0 < o, < 7} to be an interval. However, as Figure 1.2.3 shows, this
condition depends on the representative chosen for «,, while the perimeters of the sets £
and F), don’t. Indeed, in the previous example one can modify «, just at the point 7, in

such a way that {0 < a,, < 7} becomes an interval. Nevertheless, rigidity still fails.

To formulate a condition which is independent on the chosen representative, we con-
sider the approximate liminf and the approximate limsup of a,, which we denote by o) and
o/, respectively (see Section 2). These two functions are defined at every point r € (0, 00)
and satisfy o/} < /. In addition, they do not depend on the representative chosen for
ay, and o) = ay = o, H'-a.e. in (0,00). The condition that we will impose is then the

following:

{0 < a) <o <7} is an interval. (1.2.6)

One can check that in the example given in Figure 1.2.3 this condition fails, since o) (7) =

ay(7) = 0.

Let us show that, even imposing (1.2.6), rigidity can still be violated. In the example
given in Figure 1.2.4, there is some radius 7 € {0 < o) < o] < 7} such that the boundary

of F, contains a non trivial subset of B(T). In this way, it is possible to rotate a proper
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x2 x2

Figure 1.2.3: Modifying the function «, given in Figure 1.2.2 at the point 7, we can make

sure that {0 < o, < 7} is an interval. However, rigitidy still fails.

subset of F, around the origin, without affecting the perimeter. Note that at each point
of the set 0* F, N OB(F) the exterior normal v is parallel to the radial direction. To rule

out the situation described in Figure 1.2.4, we will impose the following condition:
H L ({z € O*F, : yﬁ”v(x) =0and|z] € {0<a) <a) <m})=0. (1.2.7)

Note that, from Theorem 1.2.1 and identity (1.2.3), it follows that in general we only
have a, € BViyc(0,00). However, it turns out that (1.2.7) is equivalent to ask that

Qay € Wﬁx} (0, 00), see Proposition 3.3.3.

9 Z2

Figure 1.2.4: An example in which rigidity fails. In this case, the tangential part of 0*F),
gives a non trivial contribution to P(F,). This allows to slide a proper subset of F}, around

the origin, without modifying the perimeter.

Our main result shows that the two conditions above give a complete characterisation

of rigidity for inequality (1.2.4) (below, Z stands for the interior of the set Z).

Theorem 1.2.2. Let v : (0,00) — [0,00) be a measurable function satisfying (1.2.2) such
that F, is a set of finite perimeter and finite volume, and let o, be defined by (1.2.3).

Then, the following two statements are equivalent:
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(i) (R) holds true;
(i) {0 < al) <y <7} is a (possibly unbounded) interval Z, and o, € VVI})’Cl (1).

Let us point out that, although similar results in the context of Steiner and Ehrhard’s
inequalities already appeared in [11, 10], the proof of Theorem 1.2.2 cannot simply use
previous ideas, especially in the implication (i) = (ii). We cannot rely, as in [11], on
a general formula for the perimeter of sets E satisfying equality in (1.2.4). Instead, we
exhibit explicit counterexamples to rigidity, whenever one of the assumptions in (ii) fails.
This requires a careful analysis of the transformations that one can apply to the set F,,,
without modifying its perimeter. This turns out to be non trivial, especially if one assumes
oy to have a non zero Cantor part (see Proposition 3.5.4).

Also the proof of the implication (ii) == (i) presents some difficulties. In the context of
Steiner symmetrisation, the analogous of (ii) = (i) has been proved in [14, Theorem 1.3]
and [3, Theorem 1.2], for codimension 1 and generic codimension, respectively. In the
spherical setting, this implication has already been stated in [34, Theorem 6.2], but a
rigorous proof of this fact turns out to be more delicate than one would expect, and relies

in the following result.

Lemma 1.2.3. Let v : (0,00) — [0,00) be a measurable function satisfying (1.2.2) such
that F, is a set of finite perimeter and finite volume. Let E C R™ be a spherically v-
distributed set, and let I C (0,+00) be a Borel set. Assume that

H ! ({2 e 0Ena(I x 8" 1 yfi(2) = 0}) = 0. (1.2.8)

Then,
H ! ({o e 0 F,n (I x ")yt (2) = 0}) = 0. (1.2.9)

Viceversa, let (1.2.9) be satisfied, and suppose that P(E; ®(IxS" 1)) = P(F,; ®(IxS"1)).
Then, (1.2.8) holds true.

A direct proof of Lemma 1.2.3 does not seem to be obvious, due to the fact that, as
pointed out above, the measure Ag defined in (1.2.5) can have an absolutely continuous
part when n > 2. In the context of Steiner symmetrisation of higher codimension, the
analogous of Lemma 1.2.3 (see [3, Proposition 3.6]) is proved using the fact that the result
holds true in codimension 1, see [14, Proposition 4.2]. For this reason, we consider the
following (codimension 1) circular symmetrisation, which was introduced by Pélya in the

case n = 3 [36].
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1.2.4 Circular symmetrisation

Let us choose an ordered pair of orthogonal directions in R", which we will assume to

be (e1,e2). In the following, for each x = (z1,...,2,) € R", we will write x = (z12,2'),
where 112 = (71,72) € R? and 2’ = (23,...,7,) € R" 2. When x5 # 0, we will write
#12 := x12/|r12|. For each given 2/ € R"2, we denote by I, the bi-dimensional plane
defined by

I = {r = (v19,2') e RZx R"?: 2’ =2/}

Given a set £ C R" and (r,2') € (0,00) x R""2, we define the circular slice E, ) of E

with respect to OB ((0,2'),7) NIL,, as
Eip.y:={re€E:2' =2 and a3+ 22 =2}

Let ¢ : (0,00) x R""2 — [0,00) be a measurable function. We say that E is circularly

(-distributed if
lr,2') = ’Hl(E(T,Z/)), for H" a.e. (r,2') € (0,00) x R"72,
If £ is a circular distribution, then we have
((r,2) <HY (0B ((0,2)),r) NTI,/) = 27r (1.2.10)

for H" l-ae. (r,2') € (0,00) x R*"2. Among all the sets in R” that are circularly /-
distributed, we denote by F’ the one whose circular slices are open circumference arcs

centred at the positive e; axis. That is, we set
1
Ft = {(LU12,$/) € R"\ {x12 = 0} : distg1 (Z12,€1) < 2—5(7“, a:’)} .
T
In the following, we introduce the diffeomorphism ®15 : (0,00) xR*"2xS! — R\ {215 = 0}
given by

Pio(r, 2’ w) = (rw, z’) for every (r,2’,w) € (0,00) x R"2 x S,

Moreover, for every x € O*E we write v¥(z) = (vf(z), vE(2)), where vl (z) = (vF (z), v ()

and vE(z) = W¥(x),...,vE(z)). Then, we further decompose vf(z) as

vis(2) = sy (2) + vig (),

where v | () := (VP () - #12)%12 and l/lEzH(l‘) = v (z) — v | (z). We can now state the

analogous of Theorem 1.2.1.
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Theorem 1.2.4. Let £ : (0,00) x R"™2 — [0,00) be a measurable function satisfying
(1.2.10), and let E C R™ be a circularly (-distributed set of finite perimeter and finite

volume. Then, £ € BVioe((0,00) x R"™2). Moreover, F* is a set of finite perimeter and
P(F% ®15(B x SY)) < P(E; ®15(B x SY)), (1.2.11)

for every Borel set B C (0,00) x R"2,

Finally, if P(E) = P(FY), then for H" '-a.e. (r,2') € (0,00) x R"~2:
(a) By is H-equivalent to a circumference arc and 0" (E(r,zr)) = (0" E)(r,21);
(b) the functions x — vF(x) - 19 and x |1/F2”|(a:) are constant in (0" E) . .1).

Let us mention that, in the smooth setting and in the case n = 3, inequality (1.2.11)

was proved by Pélya. We can now state the analogous of Lemma 1.2.3.

Lemma 1.2.5. Let £ : (0,00) x R"2 — [0, 00) be a measurable function satisfying (1.2.10)
such that F* is a set of finite perimeter and finite volume. Let E C R™ be a circularly

(-distributed set, and let I C (0,00) x R"™2 be a Borel set. Assume that

H ! ({r e Bno( xs') : vl (2) =0}) =0. (1.2.12)
Then,

H ! ({z e 0 F N oI x 8" vfy(x) = 0}) = 0. (1.2.13)

Viceversa, let (1.2.13) be satisfied, and suppose that P(E;®(I x S')) = P(F* &(I x SY)).
Then, (1.2.12) holds true.

Once Lemma 1.2.5 is established, we can show Lemma 1.2.3 through a slicing argument.
Finally, the proof of (ii) = (i) is concluded by showing that, if E satisfies equality in
(1.2.4), the function associating to every r € (0,00) the center of E, (see (3.4.1)) is I/Vlloc1

and, ultimately, constant (see Section 3.4).

1.3 Rigidity for the anisotropic perimeter inequality under

Steiner symmetrisation

The second problem we address concerns the Steiner inequality for the anisotropic peri-

meter (see Chapter 4).
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1.3.1 Anisotropic perimeter

Let us start by recalling some basic notions. A function ¢ : R” — [0,00) is said to be

1-homogeneous if

6(z) = |z|¢ (’i') Vo e RE (1.3.1)
If ¢ is 1-homogeneous, then we say that it is coercive if there exists ¢ > 0 such that

¢(x) > c|x| VreR" (1.3.2)
In the following, we will assume that

K c R" is open, bounded, convexr and contains the origin. (1.3.3)

Given K as in (1.3.3), one can define a one-homogeneous, convex and coercive function

oK : R" —[0,00) in this way:

o (x) :=supf{r-y: yeK}. (1.3.4)

Figure 1.3.1: Note that y is the point such that we have ¢x () = x -y. The length of the
segment in bolt equals ¢x (I%) Therefore, the line passing through y orthogonal to the

vector x represents the hyperplane {y eER": y- % =g (%) }

||

By homogeneity, convexity of ¢x is equivalent to subadditivity (see for instance [32, Re-

mark 20.2]), namely
Or (21 +22) < Ok (21) + K (22), Vai,zo € R (1.3.5)

Let us notice that there is a one to one correspondence between open, bounded and convex

sets K containing the origin and one-homogeneous, convex and coercive functions ¢ : R —



16

[0,00). Indeed, given a one-homogeneous, convex and coercive function ¢ : R" — [0, 00),
then the set

K= (] {z€eR": 2-w<¢w)}, (1.3.6)

wesn—1
satisfies (1.3.3), and is such that

¢(x) =sup{z-y:y e K} = dpx(x),

where ¢ is given by (1.3.4). Let E C R" be a set of finite perimeter and let G C R™ be
a Borel set. Then, we observe that, the relative perimeter of E with respect to G can be

written as

P(E:G) = /8 @) @),

Analogously, given K C R"™ as in (1.3.3), we define the relative anisotropic perimeter of

FE with respect to G as

Px(E:G) = / e (VP (@) dH" ().

o*ENG

We define the anisotropic perimeter (with respect to K) Pk (FE) of E as Pk (E;R™). Ob-
serve that in the special case ¢x(z) = |z|, this notion of perimeter agrees with the
one above of Euclidean perimeter. Note that, in general, ¢x is not a norm, unless
oK (z) = ¢ (—x) for every x € R™.

In the applications, the anisotropic perimeter can be used to describe the surface tension
in the study of equilibrium configurations of solid crystals with sufficiently small grains
[29, 43, 45], and represents the basic model for surface energies in phase transitions [27].
These applications motivate the study of the the Wulff problem (or anisotropic isoperi-

metric problem):
inf{ i (WP (2))dH () : E C R, H'(E) = H”(K)} | (1.3.7)
O*E

This name comes from the russian crystallographer Wulff, who was the first one to study
(1.3.7) and who first conjectured that K is the unique (modulo translations and scalings)

minimizer of (1.3.7) (see [45]). Indeed the anisotropic perimeter inequality holds true:
Pr(K) < Pg(E) for every E C R™ with H"(F) = H"(K), (1.3.8)

with equality if and only if H"(KA(E + z)) = 0 for some x € R". The proof of the
uniqueness was then given by Taylor (see [43]) and later, with a different method, by
Fonseca and Miiller (see [23]). We usually refer to K as the Wulff shape for the surface

tension ¢ .
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1.3.2 Steiner’s inequality for the anisotropic perimeter

Note that the analogous of inequality (1.1.2) for the anisotropic perimeter in general fails.

Indeed, choose K as in (1.3.3) such that

inf H"(KA(K" +2)) > 0,

where K* denotes the Steiner symmetral of K. Then, by (1.3.8), we have that
PK<K) < PK(KS)

Let us give a simple example of the above inequality in dimension 2. Let K and K*® be as

in Figure 1.3.2. Then, on can see that
PK(K) =8<10= PK(KS),

see Figure 4.3.1. The above considerations show that, for an inequality as in (1.1.2) to
hold true in the anisotropic setting, one should at least consider the perimeter Pxs with
respect to the Steiner symmetral K¢ of K. Our first result gives the Steiner’s inequality for
the anisotropic perimeter. Let us mention that this result was already proved by Cianchi

and Fusco in [16, Theorem 2.8].

Theorem 1.3.1. Let K C R" be as (1.3.3), let K* be its Steiner symmetral, and let v as
in (1.1.3). Then, for every E C R™ v-distributed we have

Pgs(E;G x R) > Pgs(F[v]; G x R)  for every Borel set G C R L, (AS)

F

B

A C E G
o o
K K*®

H

D

Figure 1.3.2: An example in which Pg(K) < Pg(K?®). The coordinates of the vertices
are A = (—1,0), B = (0,1), C' = (1,0), D = (0,—-3), E = (—1,0), F = (0,2), G = (1,0),
H = (0,-2).
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1.3.3 Rigidity for the Steiner’s inequality for the anisotropic perimeter

Given v as in (1.1.3), and K C R" satisfying (1.3.3) we denote by
Mpgs(v) :={FE C R": E is v-distributed and Pgs(E) = Pgs(F[v])}, (1.3.9)

the family of sets achieving equality in (AS). In this context, we say that rigidity holds

true for (AS) if the only elements of Mgs(v) are vertical translations of F'[v], namely

E e Mgs(v) <= H'(EA(F[v]+te,)) =0 for somet € R. (RSA)

E
‘VaB (0,1)

(1,0)

0,-1)

c l 7
v
Figure 1.3.3: Suppose that 0 < 8 < w/4. By definition of ¢ s, one can check that the

length of the segment in bolt equals ¢rs(vhy) = dxs(vEp) = cos(B). As a consequence,

we have Pgs(E) = Pgs(E®), even if bl = tan 8 # 0.

As done for the study of (RS), let us first characterize the cases of equality (AS). We
start by observing that the characterization of equality cases given in Theorem 1.1.4 fails
when we deal with the anisotropic perimeter. In particular, let us show with an example
in dimension 2, that condition (1.1.9) fails to be necessary. Let K* E, and E® be as in
Figure 1.3.3. Observe that, although 0 = tan(8) # 0 we have Pgs(F) = Pgs(E®), if
0 < 8 < m/4. Indeed, in this case

Prcs(E) = drcs (vip)H' (AB) + b (vEp)H' (CD) + s (Vi) h + dxcs (VEp)h

= 2h + 2cos(B)H' (AB) = 2h + 2COS(B)COSZ(6) = 2h + 2l = Pgs(E®).
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Interestingly, if 7/4 < < m/2 one can see that Pg(E) > P (E?®).

We will see that this simple example carries some important features of the general case.
In order to characterize Mgs(v) we start by proving a formula that allows to calculate
Pg(F) in terms of by and v whenever E is a v-distributed set satisfying (1.1.5) (see
Corollary 4.4.11). After that, we need to carefully study under which conditions equality
holds true in (1.3.5), see Proposition 4.1.22.

Before stating our results, let us give some definitions. If K C R" is as in (1.3.3), we

define the gauge function ¢j : R™ — [0, 00) as

¢k (x) :==sup{z -y : ¢x(y) <1} (1.3.10)

It turns out that ¢J is one-homogeneous, convex and coercive on R" (see Proposition
4.1.4). Let now zg € 0K and let 0¢7 (xo) denote the sub-differential of ¢J, at zo (see

Definition 4.1.8). We define the positive cone generated by 0¢¥ (xo), as
Ci (o) :={ \y: y € 9% (o), A > 0}, (1.3.11)

see Figure 1.3.4. Let us also mention that, if ; is an R™-valued Radon measure R" 1,
we denote by |u|x the anisotropic total variation of p (with respect to K), see Definition
4.1.11.

Crea ((0,1))
0%+ ((0,1))

(0,1) 09715 ((0,1))

KS
(=1,0) (1,0)

0,-1)

Figure 1.3.4: On the left K* and a pictorial idea of the sub-differential 0¢7}-.((0,1)) and
of C((0,1)).

Next result is the anisotropic version of Theorem 1.1.4.
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Theorem 1.3.2. Let v be as in (1.1.3), let K C R"™ satisfy (1.3.3), and let E be a
v-distributed set of finite perimeter. Then, E € Mps(v) if and only if

i) for H" '-a.e. x € R" 1 we have that E, is H'-equivalent to a segment;

ii) for H" -a.e. x € {v > 0} there exists z(x) € OK® s.t.
1
{(—2Vv(x) +tVbg(z), 1) tte -1, 1]} C Cks(2(x)); (1.3.12)

iii) for H" %-a.e. x € {v" > 0} we have that

[v](2)

2 9

[bE](z) < (1.3.13)

iv) There exists a Borel function g : R"~! — R such that

De(arbs)(G) = g(x)d|(D/2,0)| s (),

/Gﬂ{v>6}<1>m{|bE<M}(1)

for every Borel set G C R" !, every M > 0, and H'-a.e. § > 0. Moreover, g
satisfies the following property: for |Dv|-a.e. x € {v" > 0} there exists z(z) € OK
s.t.

{h(z) +tg(x): t € [-1,1]} C Cks(z(x)), (1.3.14)

where

 —dD%)/2
h(z) = J1(D0/2,0) s (x), (1.3.15)

is defined as the derivative of —D /2 with respect to the anisotropic total variation

|(D/2,0)| ks in the sense of Radon measures.

Remark 1.3.3. Let us mention that the above result extend a previous one obtained by

Cianchi and Fusco (see [16, Theorem 2.9]).

In Figure 1.3.5 we give a pictorial idea of condition (1.3.12) for the example of Figure

1.3.3.

An important consequence of Theorem 1.3.2) is the following.
Proposition 1.3.4. Let v be as in (1.1.3) and let K C R™ satisfy (1.3.3). Then,

M(v) C Mgs(v).
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Ces ((0,1))

(=b',0) o (b',0)

Figure 1.3.5: A pictorial idea of condition (1.3.12), for the example given in Figure 1.3.3.
As long as 0 < 8 < m/4, we have that £ € Mgs(v). Note that since v is constant, then

v =0.

Therefore, to study the rigidity problem in the anisotropic setting, it is crucial to
understand when the opposite inclusion Mgs(v) C M(v) holds true. To this aim, given

K C R" asin (1.3.3) and y € R", we set
Zg (y) ={2€ 0K : ye Ck(2)}. (1.3.16)

Note that 0 # Zx (y) = 2Kk (\y) for ever y € R™ and for every A > 0 (see for instance
relation (4.1.24) in Lemma 4.1.24). The following two conditions will play an important

role in the understanding of rigidity.
R1: Vy € R?, for H" l-ae. o € {v >0}, and V2 € Zgs ((—%Vu(w), 1)),

<—;Vv(x), 1) tyeCks(z) = y=2A (—;Vv(a:), 1) ,  for some A € [-1,1].

R2: Vy € R", for |[D]|-a.e. z € {v" > 0}, and Vz € Zks (h(x)),
hz)ty € Cks(z2) = y=Ah(x) for some X\ € [—1,1],

where h has been defined in (1.3.15). Next result shows the importance of condition R1
and R2.

Theorem 1.3.5. Let v be as in (1.1.3) and let K C R™ be as in (1.3.3). In addition,
let us assume that R1 and R2 hold true. Then, Mgs(v) C M(v). As an immediate

consequence, (RS) and (RSA) are equivalent.
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Remark 1.3.6. The above result can be seen as a generalization of [16, Theorem 2.10).

To check whether conditions R1, R2 hold true might be difficult in general. Thus, in
the last section of Chapter 4, we prove a result that provides necessary and sufficient
conditions for R1 and R2 to hold true (see Proposition 4.6.1 and also Lemma 4.6.3). As

a consequence, we have the following results.

Cs((0,1))

\ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ¢ KD 9675 ((0,1))

l/F[v](Z, t)

Fv]

Figure 1.3.6: A pictorial idea of a situation where v and K*® (the same one used in Figure

1.3.4) satisfy the assumptions of Corollary 1.3.7.

Corollary 1.3.7. Let v be as in (1.1.3) and let K C R™ be as in (1.3.3). Moreover,
assume that for H" 1-a.e. z € {v > 0}, and for |Dv|-a.e. z € {v"\ > 0} there emists

z € O*K® such that vFlV! (z, %v(z)) =vE*(z). Then, conditions R1, R2 hold true.
A pictorial idea of the assumptions of the above Corollary can be found in Figure 1.3.6.

Corollary 1.3.8. Let v be as in (1.1.3) and let K C R"™ be as in (1.3.3). In addition,
assume that K* has C' boundary. Then, conditions R1, R2 hold true.

Let us notice that, given any K C R" that satisfies (1.3.3), Corollary 1.3.7, and in particu-
lar Lemma 4.6.3 ensure the existence of v defined as in (1.1.3), such that Mgs(v) C M(v)
(see Remark 4.6.4). It would be actually interesting checking whether conditions R1 and
R2 are also necessary in order to get Mgs(v) C M(v). This seems quite a delicate
problem, and for this reason it could be an interesting topic for some possible future

discussions.



23

Chapter 2

Basic notions of Geometric

Measure Theory

In this chapter we introduce some tools from Geometric Measure Theory. The interested
reader can find more details in the monographs [2, 25, 32, 39]. Note that part of the
notations we will use, has been already presented across the Introduction. For the seek of
simplicity, we briefly restate it in the next lines, in such a way that the reader can easily

access to them. For n € N, we denote with S”~! the unit sphere of R, i.e.
sl = {z e R": |z| =1},

and we set R := R™\ {0}. For every z € R{j, we write & := z/|z| for the radial versor of
x. We denote by e, ..., e, the canonical basis in R", and for every x,y € R", x -y stands
for the standard scalar product in R™ between z and y. For every r > 0 and = € R",
we denote by B(x,r) the open ball of R with radius r centred at x. In the special case
x = 0, we set B(r) := B(0,r). For every x,y € R", x -y stands for the standard scalar
product in R™ between z and y. We denote the (n — 1)-dimensional ball in R"~! of center

z € R" 1 and radius r > 0 as
D,, = {nER”_l D n — 2] <r}.

For z € R™ and v € S, we will denote by Hj , and H,, the closed half-spaces whose

boundaries are orthogonal to v:
H;:V = {yeR” : (y—x)-Z/ZO}, H,, = {yGR” : (y—x)-l/g()}. (2.0.1)

If 1 < k < n, we denote by H* the k-dimensional Hausdorff measure in R™. If {Enp}hen

is a sequence of Lebesgue measurable sets in R™ with finite volume, and £ C R" is also
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measurable with finite volume, we say that {Ep, }pen converges to E as h — oo, and write
E, — E, if H"(ERbAE) — 0 as h — oo. In the following, we will denote by xg the

characteristic function of a measurable set £ C R".

2.0.1 Density points

Let E C R" be a Lebesgue measurable set and let x € R™. The upper and lower n-

dimensional densities of E at z are defined as

0%(E,z) := limsup HUEN Bl r)) ; 0.(E,z) := liminf HY(EN B(z,r))

)
0+ wp ™ r—0t wp ™

respectively. It turns out that = — 0*(F,z) and x — 60.(F,x) are Borel functions that

agree H™-a.e. on R". Therefore, the n-dimensional density of E at x

O(E,z):= lim AUENB(,n))

)
r—0+t Wp T

is defined for H"-a.e. x € R™, and = — O(FE, x) is a Borel function on R™. Given t € [0, 1],

we set

EW .= {z e R": 0(E,z) = t}.

By the Lebesgue differentiation theorem, the pair {E(©, EMY is a partition of R”, up to
a H™-negligible set. The set 9°E := R™ \ (E(®) U EM) is called the essential boundary of
E.

2.0.2 Rectifiable sets

Let 1 <k <mn, keN. If A, B C R" are Borel sets we say that A C,x B if H¥(B\ A) =0,
and A =4 B if H¥(AAB) = 0, where A denotes the symmetric difference of sets. Let
M C R™ be a Borel set. We say that M is countably H*-rectifiable if there exist Lipschitz
functions fj : R¥ — R" (h € N) such that M Cyx Upen fr(R¥). Moreover, we say that
M s locally H"-rectifiable if is countably H*-rectifiable and H*(M N K) < oo for every
compact set X C R", or, equivalently, if H*_.M is a Radon measure on R”. Given a

R™-valued Radon measure p on R", we define its total variation |u| as

| (£2) = sup {/Rn o(x) - du(z) : p € C(;R™), || < 1} , VQCR" open. (2.0.2)

If we consider a generic Borel set B C R™ then

|p|(B) = inf {|u|(Q) : B C Q, Q@ C R" open set}.
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Let © be a Radon measure on R", let 1 < p < oo and m > 1 with m € N. The vector
space LP(R™, 1; R™) is defined as

LP(R", ;i;R™) = {f :R™ — R™: f is u-measurable, / | fIPdu < oo} ,
R

equipped with the norm

1
£l o (mr sy = (/Rn IfI”dM)p )
If p = oo then L>®(R™, u; R™) is defined as

L®R™", ;R™) = {f : R" - R™: f is yu-measurable, supessg. f < 0o},
where
supessgn [ :=1inf {¢ > 0: p({|f| > ¢}) =0}.
We equip this space with the norm
| f1| oo (R7 yusrmy = supessgn f-

We say that f € LT (R™, u;R™), 1 < p < oo if f € LP(C,p; R™) for every compact set
C CR™

Remark 2.0.1. Let y1 be a Radon measure on R™ and let f € L} (R™, u; R™) with m > 1,

loc

m € N. Then, we define a R™-valued Radon measure on R™ by setting

fu(B) = /B f(x)du(x) Y Borel set B C R™.

Its total variation is then defined as

|fu|(B) = / |f(z)|du(z) ¥ Borel set B C R™.
B
For more details see [32, Example 4.6, Remark 4.8].

A Lebesgue measurable set £ C R" is said of locally finite perimeter in R™ if there exists

a R"-valued Radon measure pp, called the Gauss—Green measure of E, such that

/ V(x)dx = / o(z)dpg(z), Vo € CLR™).
E R™

The relative perimeter of E in A C R" is then defined by setting P(E;A) := |ug|(A)
for any Borel set A C R™. The perimeter of E is then defined as P(E) := P(E;R"). If
P(FE) < oo, we say that F is a set of finite perimeter in R™. The reduced boundary of E is
the set 0*F of those z € R™ such that

d B
HE ) = lim M exists and belongs to S" !,

E = ——(x
vi(w) = dlpg r=0t |pp|(B(z, 7))
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Where dd\Z gl indicates the derivative of pug with respect its total variation |ug| in the sense
of Radon measure. The Borel function v¥ : 9*E — S"! is called the measure-theoretic
outer unit normal to E. If E is a set of locally finite perimeter, it is possible to show that
O*E is a locally H" !-rectifiable set in R” [32, Corollary 16.1], with pup = v* H" 1L O*E,
and
[ Vewdr= [ p@rP@ @), vee ClRY,
E O*E

where C!(R") denotes the class of C! functions in R™ with compact support. Thus,
P(E;A) = H" (AN O*E) for every Borel set A C R™. If E is a set of locally finite

perimeter, it turns out that

*E c EVY? c 9°F.

Moreover, Federer’s theorem holds true (see [2, Theorem 3.61] and [32, Theorem 16.2]):
H Y OE\ O'FE) =0,

thus implying that the essential boundary 9°E of E is locally H" !-rectifiable in R™.

2.0.3 General facts about measurable functions

Let f : R® — R be a Lebesgue measurable function. We define the approzimate upper

limit fV(x) and the approxvimate lower limit f"(x) of f at x € R™ as

M) =mf{teR:ze{f>1}0}, (2.0.3)

f(x) = sup {t eR:ze{f< t}(o)} . (2.0.4)

We observe that f¥ and f” are Borel functions that are defined at every point of R", with
values in R U {£o0}. Moreover, if f; : R" — R and f : R” — R are measurable functions
satisfying f; = fo H"-a.e. on R", then f) = fy and f{ = f§ everywhere on R™. We

define the approximate discontinuity set Sy of f as
Sp={f"<f"}

Note that, by the above considerations, it follows that H™(Sf) = 0. Although f" and fV
may take infinite values on Sy, the difference fY(z) — f"(z) is well defined in R U {00}
for every x € Sy. Then, we can define the approzimate jump [f] of f as the Borel function
[f] : R™ — [0, o0] given by

i) = M=), ifxe Sy,

[f(z) =
0, if 2 € R™\ 5.
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The approximate average of f is the Borel function

) fv(ﬂﬁ)';f/\(f'?)7 if 2 € R\ {f" = —o0, f¥ = 400},
0, ifz € {f"=—o0,fY=+o00}

It also holds the following limit relation

Jl@)= lim 7af(e) = lim )l e (2.0.5)

M—o0 2 ’
that we want to be true for every Lebesgue measurable function f : R™ — R, where, here

and in the rest of the work,
a(8) = max{—M,min{M, s}}, s€RU{+oo}. (2.0.6)

By definition, 1) is equivalently defined as

M s> M
T™(S) = s —M<s<M
-M s<-M

and the following properties can be easily proved

Tz (s2) > Tar(s1) Y sg > s1, provided M > 0. (2.0.7)

T, (S) > g, (S) YV My > M; > 0, provided s > 0. (2.0.8)

T, (S) < g, () V' My > M; > 0, provided s < 0. (2.0.9)

(Tary, — Tany ) (S2) > (Tary, — 7oy ) (S1) V sy > s1, provided My > My > 0. (2.0.10)
T, (82) — Tan, (81) > Tar, (S2) — Tar, (S1) YV My > My > 0, provided so > s1.  (2.0.11)

The validity of the limit relation (2.0.5) can be easily checked noticing that

i (fY) + e (f)
5 :

() =1u(f), ()Y = (fY), Tm(f)(z) = Vr € R™.

Using these above definitions, the validity of the following properties can be easily deduced.

For every Lebesgue measurable function f : R™ — R and for every ¢t € R we have that

{fIY <t} ={-t< MY {fY <t} (2.0.12)
{fV<tyc{f<t}® c{fvV<t}, (2.0.13)
(">t c{f>t}W c{f >t} (2.0.14)

Furthermore, if f,g: R™ — R are Lebesgue measurable functions and f = g H™-a.e. on a

Borel set F, then

@) =g"(@), f@)=g"(), [fl2)=1g), VeeBW. (2.0.15)



28

Let A C R" be a Lebesgue measurable set. We say that ¢t € RU{£o00} is the approximate

limit of f at x with respect to A, and write ¢t = aplim(f, A, z), if

0({lf —t>e}n4z) =0,  ve>0, (teR), (2.0.16)
0<{f<M}ﬂA;x) =0, VM >0,  (t=-+o00), (2.0.17)
0({f > -M}n4;z) =0, VM >0, (t=-o00). (2.0.18)

We say that x € Sy is a jump point of f if there exists v € S"~! such that

fv(x) = aphm(fv H;:w $) > f/\(SL‘) = aphm(fa Hz_,w :E) .

If this is the case, we say that v(x) := v is the approximate jump direction of f at x.
If we denote by J; the set of approximate jump points of f, we have that J; C Sy and
ve:Jp — S"1is a Borel function.

Consider f : R® — R Lebesgue measurable, then we say that f is approzimately

differentiable at « € S§ provided f"(z) = f¥(z) € R if there exists £ € R" such that
aplim(g, R",z) = 0,

where g(y) = (f(y) — f(z) —€-(y—x))/|y — | for y € R™\ {x}. If this is the case, then £ is
uniquely determined, we set £ = V f(x), and call V f(z) the approzimate differential of f
at x. The localization property (2.0.15) holds true also for the approximate differentials,
namely if g, f : R™ — R are Lebesgue measurable functions, f = g H"-a.e. on a Borel set

E, and f is approximately differentiable H"-a.e. on F, then so it is ¢ H™a.e. on E with

Vf(z)=Vg(z), for H"-a.e. x € E. (2.0.19)

2.0.4 Functions of bounded variation

Let f: R™ — R be a Lebesgue measurable function, and let 2 C R™ be open. We define

the total variation of f in  as
|IDfI(Q) = sup{/ f(x)divT(z)dx: T € CHOQ;R),|T| < 1} ,
Q

where C1(Q;R") is the set of C'! functions from € to R” with compact support. We also
denote by C.(£2;R™) the class of all continuous functions from  to R™. Analogously, for
any k € N, the class of k times continuously differentiable functions from €2 to R™ is denoted
by C*(€;R™). We say that f belongs to the space of functions of bounded variations,
f € BV(Q), if IDf|(R) < oo and f € L'(Q2). Moreover, we say that f € BVj.(Q) if
f € BV(§Y) for every open set £ compactly contained in . Therefore, if f € BVj,c(R"™)
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the distributional derivative D f of f is an R"-valued Radon measure. In particular, E is
a set of locally finite perimeter if and only if xg € BVioo(R™). If f € BVj,(R™), one can
write the Radon—Nykodim decomposition of D f with respect to H" as Df = D*f 4+ D*f,
where D?® f and ‘H" are mutually singular, and where D®f < ‘H". We denote the density of
D f with respect to H" by Vf, so that V f € L'(;R") with D%f = V f dH". Moreover,
for a.e. x € R", V f(x) is the approximate differential of f at x. If f € BVj,.(R"™), then Sy
is countably "~ !-rectifiable. Moreover, we have H"~1(S;\ J;) = 0, [f] € L}, (H" 1L Jy),

and the R"-valued Radon measure D7 f defined as
Dif =[flvsdH" Ly,

is called the jump part of Df. If we set D¢f = D*f — DI f, we have that Df = D°f +
Dif 4+ D¢f. The R"-valued Radon measure D°f is called the Cantorian part of Df, and
it is such that |D°f|(M) = 0 for every M C R™ which is o-finite with respect to H" .
In the special case n = 1, if (a,b) C R is an open (possibly unbounded) interval, every

f € BV((a,b)) can be written as
f=f"+F+r (2.0.20)

where f € W11(Q), f/ is a jump function (i.e. Df = DIf) and f¢ is a Cantor function
(i.e. Df = D°f), see [2, Corollary 3.33]. Moreover, if f/ = 0 (or, more in general, if f is a
good representative, see [2, Theorem 3.28]), the total variation of Df can be obtained as
N
|IDf|(a,b) = sup {Z |f(iz1) — f(x)|ra<zi <z < ...<zN < b} , (2.0.21)
i=1
where the supremum runs over all N € N, and all the possible partitions of (a,b) with
a<x1<x3<...<xy <b. Inthe one dimensional setting, we will often write f’ instead
of Vf. Let us recall some useful properties we will need on the next sections (see [11,

Lemma 2.2, Lemma 2.3] for further details).

Lemma 2.0.2. Ifv € BV(R"™), then |D|({v" = 0}) = 0. In particular, if f = g H"-a.e.
on a Borel set E C R", then D¢f L EM) = Degl_ EMW),

Lemma 2.0.3. If f,g € BV(R"), E is a set of finite perimeter and f = 1gg, then

Vf=1gVg, H"™- a.e. on R", (2.0.22)
D¢f = DegL EW, (2.0.23)

S;nEW =8, nEW. (2.0.24)
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A Lebesgue measurable function f : R™ — R, it’s called of generalized bounded variation
on R", shortly f € GBV(R") if and only if 7a/(u) € BVj,.(R" 1) for every M > 0
(where 7p/(s) has been defined in the previous subsection). It is interesting to notice that
the structure theory of BV-functions holds true for GBV-functions too. Indeed, given
f € GBV(R"), then, (see [2, Theorem 4.34]) {f > t} is a set of finite perimeter too
for H'-a.e. t € R, f is approximately differentiable H#"-a.e. on R", Sy is countably

H"Lrectifiable and H"!-equivalent to J + and the usual coarea formula takes the form

[ PUs > syt = [ (Vflan+ [ (fianet v D),
R G GNSy

for every Borel set G C R", where |D¢f| denotes the Borel measure on R" defined as

IDfI(G) = Jim [D(ra (FI(G) = sup [D(ar)(f)I(G), (2.0.25)
o M>0

whenever G is a Borel set in R™.
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Chapter 3

Rigidity of equality cases for the

spherical perimeter inequality

3.1 Setting of the problem and preliminary results

In this section we give the notation for the chapter, and we introduce some results that
will be extensively used later. For every x,y € S*~!, the geodesic distance between x and
y is given by

distgn—1(x,y) := arccos(z - y).
We recall that the geodesic distance satisfies the triangle inequality:
distgn—1(x,y) < distgn-1(z, 2) + distgn-1(2, y) for every z,y,z € S"7L.

Let r > 0, p € S" ! and 8 € [0, 7] be fixed. The open geodesic ball of centre rp and radius
5 is the set
Bgs(rp) := {x € 0B(r) : distgn-1(Z,p) < B}.

Note in the extreme cases f = 0 and 8 = 7 we have By(rp) = 0 and B, (rp) = 9B(r) \
{—=rp}, respectively. Accordingly, the geodesic sphere of centre rp and radius § is the

boundary of Bg(rp), which is given by
Ss(rp) :={z € 0B(r) : distgn-1(Z,p) = B}.

The (n — 1)-dimensional Hausdorff measure of a geodesic ball and the (n — 2)-dimensional

Hausdorff measure of a geodesic sphere are given by

H N (Bg(rp)) = (n — Dwp_1r™ /6(sin "2 dr, (3.1.1)
0

H"2(Sp(rp)) = (n — Vw,_17" (sin B)" 2. (3.1.2)
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Let E C R™ be a measurable set. For every r > 0, we define the spherical slice of radius
r of E as the set
E,:=EN0B(r)={zx€0dB(r):x € E}.

Let v : (0,00) — [0,00) be a Lebesgue measurable function, and let E C R™ be a measur-

able set in R™. We say that F is spherically v-distributed if
v(r) = H"YE,), for H-a.e. r € (0, 00).

If F is spherically v-distributed, we can define the function

_ulr) _ HNE)

pn—1 ypn—1 ’

for every r € (0, 00). (3.1.3)
Note that H" 1 (B,) = H" 1(S"!) = nwy, so that
0 < &(r) < nwn, for every r € (0, 00). (3.1.4)
From (3.1.1), it follows that the function F : [0, 7] — [0, nwy,] given by
F(B) := H" 1 (Bg(e1)) is strictly increasing and smoothly invertible in (0, nw,). (3.1.5)

Therefore, if v : (0,00) — [0,00) is measurable, thanks to (3.1.4), there exists a unique

function a, : (0,00) — [0, 7] such that
&o(r) = ’H"_I(Bav(r) (e1)) for every r € (0, 00). (3.1.6)

Among all the spherically v-distributed sets of R™, we denote by F;, the one whose spherical

slices are open all geodesic balls centred in the at the positive e; axis., i.e.
F, :={z e Ry : distgn—1(Z, 1) < ay(|z])}, (3.1.7)

where vy, is defined by (3.1.3) and (3.1.6), and R = R™\ {0}. Next proposition is a special

case of the Coarea formula (see [2, Theorem 2.93]).

Proposition 3.1.1. Let E be a set of finite perimeter in R™ and let g : R™ — [0, 00] be a

Borel function. Then,

[ o@pf @) = [Far [ g an )

Proof. The result follows by applying [2, Remark 2.94] with N =n—1, M =n, k =1,
and f(x) = |z|. O

We will also need the following result (see [2, Lemma 2.35]).
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Lemma 3.1.2. Let B C R"™ be a Borel set and let pp, o : B — R, h € N be summable

Borel functions such that |pp| < || for every h. Then

su dxr = su / dr 3,
/Bhpsoh Hp{z 9 }

heH

where the supremum ranges over all finite sets H C N and all finite partitions Ay, h € H
of B in Borel sets.

3.1.1 Normal and tangential components of functions and measures
For every ¢ € C.(Rf;R™), we decompose ¢ as ¢ = ¢ + ¢, where
p1(x) = (p(z) - 2)2 and o) (z) :==p(x) — pL(z)

are the radial and tangential components of ¢, respectively. If ¢ € CI(Rf; R™), div)e(z)

stands for the tangential divergence of ¢ at x along the sphere 0B(|z|):
divjp(z) := divp(z) — (Ve(x)Z) - 2. (3.1.8)
The following lemma gives some useful identities that will be needed later.

Lemma 3.1.3. Let ¢ € CL(RE;R™). Then, for every x € R} one has

divp (z) = (Ve(2)2) - & + (p(x) - 2) , (3.1.9)

div (x) = div) ey (z). (3.1.10)

Remark 3.1.4. Let p € CH(RZ;R™). Recalling that ¢ = o, + @\, combining (3.1.9) and
(3.1.10) 4t follows that

n—1

divp(a) = (Vo(w)2) -3+ (pla) ) "= + divigy(e) Vo € B,
Proof. First of all, note that
YV (p(x) - 2) = (Vo(a) 2 + ’:U1|g0(33). (3.1.11)
Indeed,
V(@) - 8) = (Vo) s+ 2200 (a) = (V@) + —p)(a)

|z]

where I represents the identity in R™, and & ® Z is the usual tensor product of & with

itself (so that I — 2 ® 2 is the orthogonal projection on the tangent plane to S*~! at £).
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Thanks to (3.1.11), we have

divp, (z) = div ((¢(z) - 2)2) = V (p(2) - 2) - & + (p(2) - T) dive

= |(Vel@) 2+ @) -2+ (ole) - 8) 1
= (Ve(@)2) - &+ (ple) - 8) "

which proves (3.1.9). Note now that, by definition (3.1.8), it follows that
divp(z) = divje(z) + (Ve(z)2) - 2. (3.1.12)
On the other hand, from (3.1.9)

divp(x) = dive)(z) + divep, (7)

= divey(2) + (Vo(@)2) - 2 + (p() - ) ”[,1

Comparing last identity with (3.1.12) we obtain that for every ¢ € C}(R%;R")

n—1

divjp(z) = divey(z) + (¢(x) - T) 2]

Applying the last identity to the function ¢ we obtain (3.1.10). O

If p1 is an R"-valued Radon measure on Ry, we will write u = p; + |, where p1; and

p are the R"-valued Radon measures on Ry such that

/(p'd“l:/ pLdp, and /‘P'dﬂH:/ Pl dp,
Rg Ry RY R

for every o € C.(Rf;R"). Note that z; and p are well defined by Riesz Theorem (see,
for instance, [2, Theorem 1.54]). In the special case p = D f, with f € BVoc(Rp), we will
shorten the notation writing D) f and D, f in place of (Df) and (Df)1, respectively.
In particular, if f = xp and £ C R" is a set of finite perimeter, by De Giorgi structure

theorem we have
Dixg =vFdH" 'L O'E and Dyxg = v dH" ' LI"E. (3.1.13)

Next lemma gives some useful identities concerning the radial and tangential compon-

ents of the gradient of a BVj, function.

Lemma 3.1.5. Let f € BVio(Rf). Then,

I
I8

0

go(x) : dD”f = — /R" f(ac) le”(pH(x) dl’, (3.1.14)

pla)-dDLf == [ 1) (Vo(a)3) 2o = [ f@)

n
0

for every ¢ € CL(RE; R™).
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Proof. Let ¢ € C(Rg;R™). By definition of Dy f and thanks to (3.1.10) we have

/ p(x) - dD|f = / o|(x)-dDf
/ divey(z) f(z) dx = _/Rg div) ) (z) f(x) d,

and this shows (3.1.14). Similarly, by definition of D, f

| #@ -dpif= [ o) -dDf =~ | divei(@)f(z)do.

0 Rg Rg

Thanks to (3.1.9), identity (3.1.15) follows. O
An immediate consequence of identity (3.1.14) is the following.

Corollary 3.1.6. Let f € BVio(Rf) and let Q@ CC Rf be open and bounded. Then,
Dy ] (@) = sup {/R £(@) divygy(@)dz : o € CHOLR™, @]l pm(azm < 1} .

3.1.2 Sets of finite perimeter on S"!

We will follow here the notation of [7]. For more details, we direct the interested reader
to [39].

The notion of set of finite perimeter can also be given in a natural way for subsets
of the sphere S"~! (and, more in general, if r > 0, for dB(r)). Let A C S*! be an
H"!-measurable set. We will say that A is a set of finite perimeter if there exists an

(n — 2)-currents T € R,,_2(R™) with supp7 C S"~! and
T = 0[A],
with the property that
My (T) = MO[A]LU) < >

for every U CC R™. Denoting by ur the total variation measure of T' = 9[A], by the Riesz
representation theorem it follows that there exists a pp-measurable function v : S*~1 —

T,S" ! such that |v(z)| = 1 for ur-a.e. x and

[ divje@ dnrta) = [ el@)-vi@) dur(),

for every smooth vector field with ¢ = ¢. If A C S"~1 is a set of finite perimeter on the

sphere, the reduced boundary 9* A is the set of points € S"~! such that the limit

vA(

1
x) := lim 7/ viz)d
)= pr(B(z, ) JB(,p) )y
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exists, v4(x) € T,S*!, and v*(x) = 1. The De Giorgi structure theorem holds true also

for sets of finite perimeter on the sphere. In particular, 9* A is countably (n—2)-rectifiable,
pr = H* 2L 9* A, and

/A divp(z) dH"™ (z) = /8  ol@) v (@) ar () (3.1.16)
for every smooth vector field with ¢ = . The isoperimetric inequality on the sphere
states that, if 3 € (0,7) and A C S"~! is a set of finite perimeter on "~ with H"~1(A) =
H"1(Bg(e1)), then (see [41])

H"2(0*Bg(e1)) < H"2(9*A). (3.1.17)
The next theorem is a version of a result by Vol’pert (see [44]).

Theorem 3.1.7. Let v : (0,00) — [0,00) be a measurable function satisfying (1.2.2), and
let E C R™ be a spherically v-distributed set of finite perimeter and finite volume. Then,
there exists a Borel set Gg C {a, > 0} with H({a, > 0} \ Gg) = 0, such that

(i) for everyr € Gg:

(ia) E, is a set of finite perimeter in 0B(r);

(ib) H"2(0*(E,)A(0*E),) = 0;

(ii) for everyr € GgN{0 < oy < m}:

(iia) \l/f(rwﬂ >0,

(iib) Vﬁg(rw) = VET(rw)|u”E(rw)|,
for H" 2-a.e. w € S"! such that rw € 0*(E,) N (0*E),.

Proof. The result follows applying [39, Theorem 28.5] with f(z) = |z|, and recalling the

definition of slicing of a current (see [39, Definition 28.4]). O
We now make some important remarks about Theorem 3.1.7.
Remark 3.1.8. Thanks to property (ib), we have
0" (Ey) =yn—2 (0°E), for every r € Gg.

Therefore, whenever r € Gg we will often write 0* E, instead of 0*(E,) or (0*E),, without

any risk of ambiguity. Moreover, for every r € Gg we will also use the notation

pe(r) = H""%(0*E,).
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Remark 3.1.9. In dimension n = 2, the theorem above implies that, if r € G N {0 <
0 < 7}, then 0*(E,) = (0*E), and

|1/|]|E(rw)| >0 for every w € S! such that rw € (9*E),. (3.1.18)
Let now \g be the measure defined in (1.2.5):
Ae(B) = /{)*qu)(BXSl)m{ylEo} &-vE(x)dHY(z)  for every Borel set B C (0, 00).
If B C Gg, then by (3.1.18)

Me(B)| < HNO"EN®(Gp x S') N {yf =0}) =0,

so that Ap(B) = 0. As a consequence, \g is singular with respect to the Lebesgue measure
in (0,00). If n > 2 this conclusion is in general false (unless one chooses E = F,, see
Remark 3.1.10 below), and it may happen that A\g has a non trivial absolutely continuous

part.

Remark 3.1.10. Ifn > 2, but we consider the special case E = F,, Theorem 3.1.7 gives
much more information than the one we can obtain for a generic set of finite perimeter.
Indeed, let R € SO(n) be any rotation that keeps fized the ey axis. By definition of F,,
and thanks to [32, Exercise 15.10], we have that if x € O*F,, then Rx € 0*F, and

V{“ (Rx) = RV{” (x) and Vf”(RCC) =Rv " (x).
Therefore, applying Theorem 3.1.7 to F, we infer that
(j) for everyr € Gp,:
(ja) (Fy)r is a spherical cap;
(jb) O (Fy)r = (0" Fo)r;
(7j) for everyr € G, N {0 < oy < 7}:

(jia) lv|"(rw)| > 0,

(3jb) vi* (rw) = v (rw) iy (rw)),

for every w € S"7! such that rw € N(9*Fy), N O*(F,),.
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Therefore,
H'(By) =0, (3.1.19)

where

By = {r € (0, +00) : 3w € §" " such that rw € 9*F, and v (rw) = 0}.

Moreover, repeating the argument used in Remark 3.1.9 one obtains that
H O F, N ®(Gr, xS HN {V{” =0}) = 0.

Thus, the measure Ap, defined in (1.2.5) is purely singular with respect to the Lebesgue

measure in (0,00).

3.2 Properties of v and &,

In this section we discuss several properties of the functions v and &,. We start by showing
that, if £ C R™ is a set of finite perimeter and volume, then v € BV (0,000). Next lemma

gives one of the implications of Theorem 1.2.1.

Lemma 3.2.1. Let v be as in Theorem 1.2.1, and let E C R™ be a spherically v-

distributed set of finite perimeter and finite volume. Then, v € BV (0,00). Moreover,
& € BVioc(0,00) and

J) e apa) = [ vl apoxe(e) (3:2.1)
for every bounded Borel function 1 : (0,00) — R. As a consequence,
r"HDE|(B) < |Dixp|(®(B x S"71), (3.2.2)
for every Borel set B C (0,00). In particular, " 'DE, is a bounded Radon measure on
(0,00).
Proof. We divide the proof into steps.
Step 1: We show that v € BV(0,00). First of all, note that v € L(0, o), since
1]l 21 0.00) = / r) dr = / dr /83 2) dH" () = H'(E) < oo,

Let now ¢ € CL(0,00) with || < 1. Applying formula (3.1.9) to the radial function

¥ (|z|)&, we obtain that for every x € Rj

div (0((a1)2) = [V (W(1e)2) ] -2+ [o(lal)2 - "
= )T ® 2T x [-ied -2 x n-l
= [(Wlha @+ wlla) =) 8] -2+ wilal "

-1

= ¢/ (2l) + ¥ (lz) " E

(3.2.3)
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Thus,
, n—1 . .
L[t + wlle) ™2 xu@)de = [ div (601 ) xuo) de
Rn |x| Rn
= [ ()& dDx@) = = [ (la])@-dDixs(a).
R” R
so that
L ¥/ lalxs(e) do (3:2.4)
R

n—1 .
[ e xpe)do— [ @l d- dDixs().
Rn |[,U‘ Rn
By Coarea formula, the integral in the left hand side can be written as

/}Rnw’(lﬂc\)xE(a;)algc:/00o drw'(r)/aB(r) o) dH™( / ¢ (r)o(r)dr.  (3.2.5)

Combining (3.2.4) and (3.2.5) we find that

/ ¥(r)dDu(r)

/ (Ja))™ XE( ) da +/ Y(|x|) & - dDyxgr(z). (3.2.6)
1
< / wﬂx!)—m(x) da +/ ¢(’HZD7XE($) dz + P(E)
B(1) |z| R\ B(1) |z|
1
<n(n =D, [ P2 dp+ (n = 1IE| + P(E)
0
= nwy, + (n — 1)|E| + P(E) < oc.
Taking the supremum over i) we obtain that
| Dv|(0, 00) < o0,
so that v € BV(0, c0).

Step 2: We conclude the proof. Since the function r — 1/(r"~!) is smooth and locally
bounded in (0, c0), we also have that £,(r) € BVj(0,00). Moreover, recalling that v(r) =
"1, (r), by the chain rule in BV (see [2, Example 3.97])

Dv = (n—1)r"2&,(r) dr + "' D€, = (n — 1)@dr +r"1Dg,. (3.2.7)
T
Let now ¢ € C1(0,00). From the previous identity it follows that
/ b(r) dDu(r / b(r (r) dr +/ ()" dDE, (r)

/ “YOB(r)N E) dr+/ r)r"tdDE, (1)
= [ e k() da+ [ vy dDe o).
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Combining the previous identity and (3.2.6),

/ P(r)yr"tdDE, (1) / Y(|z)) 2 -dDxg, for every ¢ € C1(0o0).

By approximation, the identity above is true also when 9 is a bounded Borel function,
and this gives (3.2.1).
If B C (0,00) is open, thanks to (3.2.1) we have that for every ¢ € C.(B) with |[¢| <1

[ vy ane, o) = [ (al)ddDixe < (D1l ®(B x 8)
B D(BxSn—1)
Taking the supremum over all such v gives

" DE,|(B) < |Dyxe|(®(B x S™1))  for every open set B C (0,00).

By approximation, the inequality above holds true for every Borel set, and this shows

inequality (3.2.2). O
Next lemma gives an important property of the measure r"~1DE,.

Lemma 3.2.2. Let v be as in Theorem 1.2.1, and let E C R™ be a spherically v-distributed

set of finite perimeter and finite volume. Then

("1DE)(B) = / & - v (2) dH" ) (2) (3.2.8)

a*Emé(BxSnfl)m{uE:O}

: BovE@)
I . vy @] )

for every Borel set B C (0,400).
Moreover, r""1D¢, L G, = r" 1 dr and for H'-a.e. 7 € Gp, N {0 < a,, < 7}
& v (@)
|V|| ()] ’
Proof. Let B C (0,+00) be a Borel set. Then, choosing 1) = xp in (3.2.1), and recalling
(3.1.13),

T”_lfg(r) = H"_Q(SQU(T) (re1)) for every x € S, ()(re1).

(r" D¢, (B) = /O " xB(r)r"tdDé,(r)

-/ 3D xp(o) = | & VP (@) dH (a)
(BxSn—1) 9*En®d(BxSn—1)

= & vF(x) dH " () + & vP (x) dH (z)
& EN®(BxSn—1)n{vF=0} & EN®(BxSn—1)n{vF#0}

= . ( ) dH"(z —i—/dr/* xVE()denz()

6*Eﬂ<I>(B><S”—1)ﬁ{V|“E:O} ) {v P £0} |1/” ()]

where in the last equality we have used the Coarea formula.
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Let us now prove the second part of the statement. If one chooses E = F),, thanks to

Remark 3.1.10 we have

AL Fy
r" D&, L Gp, = / s (x)dH"_2(:n) drGr,
(07 Fy)r Ny #0} |V””(x)|

. F
_ -v"(x)
=H""%(Sq, (m(re1)) "
(Sa, ) (re1)) ()
I
In particular,

" IDE, LG, = " (r) dr L G,.

Moreover, since ¢/ (r) = 0 Hl-a.e. in {a = 0} U {a = 7}, we obtain that for H!-a.e.
r € (0,00)

&ev(x)

() = HVR(S, (o (Te))
¢'(r) (Sa, () (re1)) @)

, for every x € S, () (re1).

We now prove an auxiliary inequality that will be useful later.

Proposition 3.2.3. Let v be as in Theorem 1.2.1, and suppose that there exists a spher-
ically v-distributed set E C R™ of finite perimeter and finite volume. Then, F, is a set of

finite perimeter in R™. Moreover, for every Borel set B C (0, +00)

P(Fy; ®(B x §"7)) <"1 [D&,| (B) + | Dyxr, | ((B x 8"71), (3.2.9)

Proof. The proof is based on the arguments of [14, Lemma 3.5] and [3, Lemma 3.3]. Thanks
to Lemma 3.2.1, v € BV(0,00). Let {v;}jen C C(0,00) be a sequence of non-negative
functions such that v; — v Hl-a.e. in (0,00) and |Dv;| = |Dv|. For every j € N, we
denote by F,; C R" the set defined by (3.1.7), with v; in place of v. Let now Q C (0, 00)
be open, and let ¢ € CH(®(Q x S*~1);R") with el oo (@(@xsn-1ymn) < 1. Thanks to

Remark 3.1.4, we have

J

/ Xr, () divp(z)dr = / Xr,. () diV”goH(:z:)d:U (3.2.10)
®(QxSn—1) J B(QxSn—1)

A\ LA n—1 R
+A(stnl)XFuj (z) (Ve(x) x)-g:der[I)(QXsnl)Xij (z) " (¢(z) - 2) de.

In the following, it will be convenient to introduce the function Vj : (0,00) — R given by

Vi(r) = / o(x) - zdH" Hz) = T”fl/ o(rw) - wdH" 1 (w),
Bay, () (re1) Bavj(r)(el)

where a,,; : (0,7) — [0, 7] is defined by (3.1.6), with v; in place of v. We divide the proof

into several steps.
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Step 1: We show that V} is Lipschitz continuous with compact support. Indeed,
supp V; C A(supp ¢) := {r € (0,+00) : (suppp) N IB(r) # 0}.

Moreover, for every 71,72 € (0, 00),

[Vi(r1) — Vj(r2)| < /B [ o(rw) - w — 15 Yo(raw) - w| dH™ (W)
Oé'uj (”"1) €1
+ ?"3_1 / o(row) -wd?—l”_l(w) - / p(row) - wd?—l"_l(w)
Bavj (Tl)(el) Bavj (r2)(el)
< cfry — | + rg—l/ o (raw) - w| dH™ ()
B Gy@N\B_ ~ (e1)
vl viiT2

<clry —ral + 757 €y, (r1) — &, (r2)] < clry — 7,

where we used the fact that &,; is compactly supported in (0, c0) (since v; is), and 71 and

72 are such that oy, (71) = max{ay, (1), @, (r2)} and a,, (72) := min{ay, (r1), ay, (12) }-

Step 2: We show that a, is H!'-a.e. differentiable and that
V}/(T) =(n— 1)7""_2/ p(rw) -wd’;‘—[”_l(w)
Bavj (r)(el)
4! (a;_(r) / o(rw) - w d’H“(w)) (3.2.11)
! Savj (r) (61)
4l / (Vo(rw)w) - wdH" " (w),
Bauj (r) (61)

for H'-a.e. r > 0. Let us set A; := {0 < ay; < 7}. Since v; € C2(0,00), from (3.1.5) it

follows that o, € C'(A;). Moreover, for every r € A;

d o ()
Vi(r) = . (T”l/ T dp o(rw) 'wdH"2(w)>

" 0 Sp(e1)
=(n— 1)1“"_2/ o(rw) - wdH" (w) + ! (a;,(r)/ o(rw) - w d’H”_2(w)>

Bay; (1) ’ Say; (r)(€1)
Qy, (1)
+ 1“"71/ " dp (Vo(rw)w) - wdH" ?(w)
0 Sp(e1)

= (n—1)r"2 / o(rw) - wdH" H(w) + " <a;,(r) / o(rw) - w d’H"2(w)>
Bavj (r) (61) ! Socvj (r) (61)
4l / (Vo(rw)w) - wdH" 1 (w).
Baj(r) (61)
This shows (3.2.11) whenever r € A;. Note now that
Vi(r)=0 for every r € Int({avj =0}),

Vj(r) = 7“"_1/ ) o(rw) - wd’H”_l(w) for every r € Int({aw; = 7}),
Sn—



43

where Int(-) stands for the interior of a set. Since oy, (r) = 0 for every r € Int({aw, =
0}) U Int({ew,; = 7}), using the identities above one can see that (3.2.11) holds true for

Hla.e. r > 0.
Step 3: We show that

n—1

Lo xm, @) (V@) ddos [, (@) T (0l@) - 2) do
(QxSn—1) (QxSn—1) ||

/ drr™™ 1( Q. 7')/ @(rw)-wdH"_Q(w))
! savj(r)(el)

Integrating (3.2.11), thanks to the classical divergence theorem applied in €2, and recalling

that V; has compact support, we obtain
0=(n-— 1)/ dr 7"”_2/ o(rw) - wdH" (W)
Q Bav (r)(el)

—I—/ dr ! (oz;,j(r)/ o(rw) -wd%”_Q(w))
Q Sozvj(r)(el)

+/ drr"_l/ (Vo(rw)w) - wdH" 1 (w)
Q ay (7‘)( 1)

— [ e, @) (@) 8) do
(QxSn-1) ||

—i—/ drr™™ 1( Q. 7“)/ go(rw)~wd7-l"2(w))
! Savj(r)(el)
t [ @) (Ve@)8) - dds,
d(QxSn—1) J
which gives the claim.

Step 4: we prove that

/ X, (@) divp(a)de < [ Dg, | (Asupp @) + [ H2(S0, ), (3:2:12)
o(Qxsn—1) Q j

where A(supp ) C (0, 00) is the compact set defined in Step 1. Thanks to Step 3, (3.2.10)

can be written as
Lo @dive@)de = [y (@) divjpy(a) do
B(QxSn—1) J d(QxSn—1) J

— [ drt oz;)j(r) o(rw) - wdH" 2 (w) ). (3.2.13)
Jtrr (0 L )

We now estimate the right hand side of the expression above. Thanks to (3.1.6) and

arguing as in Step 2 we have that

5{,], (r) = a;j (7’)7-["72(8%]_“)(61)) for H'-a.e. r € (0,00).
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Therefore,

—/ dr ™1 <a;,(r)/ o(rw) ~wd7—[”_2(w)>
Q / savj (r)(el)

< / el
~ JA(supp )

_ / n—1 g;j(r)]dr =|'pg,
SUPP‘P

Let us now focus on the second integral in the right hand side of (3.2.13). Applying the

ol ()| H"2(Sa, () (e1)) (3.2.14)

(A(supp ¢)).

divergence theorem (3.1.16) with A = B, (,y(re1), and denoting by v.(z) the exterior
J

unit normal to S, (,)(re1), we have
J

/ ( )le”gDH dl’—/d’l”/ le”(p”(l‘) d?‘lnil(l‘)
<I>(Q><S”*1) P

av (r) (re1)
_/dT/ ( (pH ) V*( den 2 /dY’Hn 2 o ( )(7‘61)) (3.2.15)
a (r 7‘61
Combining (3.2.13), (3.2.14), and (3.2.15), we obtain (3.2.12).

Step 5: We show that F, is a set of finite perimeter. Note that xr, — xr, H"-a.e.
in R", and a,; — « H'-a.e. in (0,00). Note also that, from our choice of the sequence

{vj}jen and thanks to (3.2.7), it follows that
r”fl\D&,j\ STl De| as j — oo.

Therefore, taking the limsup as j — oo in (3.2.12), and using the fact that A(supp ¢) is

compact,

/ XF, (x) div p(x)dz = lim sup / XrF, (z)dive(z)dx
B(QxSn—1) (QxSn—1) J

j—00

< hmsup‘ e 1D§UJ (A(supp gp))+limsup/ 7—["_2(Savj(,,)(rel)) dr

J—00 J]—00

< |r'pg,

(A(supp ¢)) +/ H2( (Say(r)(re1)) dr<‘ Ipe, (D

o+ [ W B

< | 1Dg| (@) + P(B; @@ x 871,

where we also used the isoperimetric inequality in the sphere (see (3.1.17)) and the Coarea
formula. Taking the supremum of the above inequality over all functions ¢ € CH(®(Q x

Sn—l);Rn) with HQOIILoo((p(stnfl);Rn) < 1, we obtain

P(Fy; ®(Q x §"71) < [~ D&,| () + P(B; ®(Q x §"71)).

Thanks to (3.2.2) we have

P(F; ®(Q x 8" 1)) < 2P(E; P(F,; ®(2 x S"1))) < o0,
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since E is a set of finite perimeter by assummption. Since {2 was arbitrary, this shows

that F), is a set of locally finite perimeter.

Step 6: We conclude. Let Q2 C (0,00) be open, and let ¢ € CH(®(Q x S*~1); R") with
¢l Loo (@(@xsn-1);rn) < 1. Combining (3.2.10), Step 3, and (3.2.14), we have that for every
jeEN

(AMsuppo)+ | Xi, (@) divy ) () dar

7 P(Qxsn-1)

/ XF,. (z)dive(z)de < ’r”lefvj
P(OxSn—1)

Taking the limsup as j7 — oo and thanks to Corollary 3.1.6,

/ X, () div p(z)dr < ‘r”_lDva (A(supp p)) +/ X, () divyg)(z) dx
B(QxSn—1) B(QxSn—1

)
(A(supp ©)) + | D)X, |(2(Q x S™71)),

< | 'pg,

where we also used the fact that A(supp ¢) is compact.

Taking the supremum over all ¢ € C1(®(2 x S*~1); R") with @l Lo (@(@xsn—1)mm) < 1,

P(Fy; ®(Q x §"71) < |71 Dg,

() + [Dyxr, [(@(2 x S*71), (3.2.16)

which shows (3.2.9) when B is an open set. Let now B C (0,00) be a Borel set. From
(3.2.16) it follows that

P(Fy; ®(B x §"71)) < [r"71Dg, [ (Q) + P(B; ®(Q x 8" 1)),

for any open set Q C (0,00) with B C Q. Taking the infimum of the above inequality
over all open sets 2 C (0,00) with B C €2, we obtain inequality (3.2.9) when B is a Borel
set. O

3.3 Proof of Theorem 1.2.1

In this section we prove Theorem 1.2.1, and state some important auxiliary results.

Proof of Theorem 1.2.1. We will adapt the arguments of the proof of [3, Theorem 1.1].
Let Gp, be the set associated with F, given by Theorem 3.1.7. We start by proving
(1.2.4). We will first prove the inequality when B C (0,00) \ GF,, and then in the case
B C Gp,. The case of a general Borel set B C (0,00) then follows by decomposing B as
B = (B\Gr,)U(BNGF,).
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Step 1: We prove inequality (1.2.4) when B C (0,00) \ Gf,. First observe that, thanks
to Proposition 3.1.1 and (3.1.13),

(@(B x5"1)) =

Dy, / v (@) @) = [ W0 R
8* FyN®(BxSn—1) B

. WO F) i = | W@ RN =0, (331)
Bn{0<aw} BN({0<ow \GF,)

where we used the fact that B C (0,00) \ G, and H'({0 < a,} \ Gg,) = 0. Therefore,
thanks to Proposition 3.2.3

P(Fy; ®(B x ")) <"1 [Dg,[ (B) + | Dyxm,| (®(B x 8"71)

= "1 |D¢,| (B) < P(E;®(B x S™1)), (3.3.2)

where in the last inequality we used (3.2.2).

Step 2: We prove inequality (1.2.4) when B C Gf,. We divide this part of the proof into

further substeps.

Step 2a: we prove that

P(E:®(B x S™)) > P(E:; &(B x §" 1)0{1/”—0}—1-/\/ r) + g%( (3.3.3)

where ¢ : (0,00) — R and pg : (0,00) — [0,00) are defined as

o &-vP(x) n—2,. an r) = 2 (G r
g(r) = /B*WB(T) SFG T e plr) = WO ENOB())

for H'-a.e. 7 € (0,00), respectively. We have

P(E;®(B xS" 1))
= P(E;®(B xS" ) n{yf =0}) + P(E; ®(B x S" ) n{yf #0})

= P(B;®(BxS" ) n{yf =0}) + / ( - }d?—l”_l(x)
O*EN®(BxS"~1)N{y; E£0

= P(EB;®(B xS") n{y = 0}) +/ dr/*EﬂaB (r) !vEl(w)!

& vE(z)\?
= P(EB;®(B xS" ) n{yf =0}) +/ dr/a*EmaB )J1+ (W) dH" (),

where in the last equality we used the fact that

dH" % (z)

L= WER 4 P = @)+ PP
Defining the function f : R — [0, 00) as

f(t) == V1+2,
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we obtain
P(E;®(B x S" 1))
5. B
= P(B;®(B xS" ) n{yf =0}) +/ dr/a*EmaB f <|y(l()|)> dH" ().

Observing that f is strictly convex, (3.3.3) follows applying Jensen’s inequality.

Step 2b: We show that

Ao+ i ar
< P(EB;®(BxS" ) n{yf =0}) + /B \/[P%(r) + g2(r) dr. (3.3.4)

Let {Ap}ren be a finite partition of Borel sets of B. Note that, for each h € N, we

have A;, € B C Gpf,. Therefore, thanks to Lemma 3.2.2, for every h € N we have
" IDE, L Ay = e dr L A, and

whrnflfé (r)dr = whrnfldD&,(r)
Ap Ap,

= wy, & - vE (x) dH" 1 (2)
a*Emé(Athnfl)m{uf:O}

+ dr / w,
Ap (0" E)rn{v#0}

- wn & - v () dH( +/ wp g(r) dr. (3.3.5)
6*Eﬂ¢(Ah><S"*1)ﬁ{Vf:0}

We will now use the fact that, by duality, we can write
V1+1t2 =sup {wht +4/1— w%} for every t € R, (3.3.6)
h

where {wy, }, is a countable dense set in (—1,1). Then, thanks to (3.3.5)

Z/ (wm“" e (r) +pe(r )M) dr

heH

= /8 wp & - v (@) dH" ()

heH Emcb(Athnlm{u =0}

+Z/ whg ) +pE(r )\/1—70;21)657’
< Z/ 12 - o2 ()| dH" " (2)

her Y 0T EN®(Ap xS”*l)ﬂ{uE:O}

+Z/pE ( (2)4-@)(17“

heH

< Y (PE xS YN GF = o)) + [ i)y [1+ 5 ar

heH h pE(T)

— P(B;®(B x ") 0 {vf = 0}) + /B JPA(r) + g2 (r)dr
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where we applied identity (3.3.6) with ¢t = g(r)/pg(r), and we also used the fact that
pe(r) = 0 for Hl-ae. r ¢ {0 < a, < 7}, thanks to Volper’'t theorem. Applying
Lemma 3.1.2 to the functions
g )
() =pe(r) | w, +4/1—w? ],
entr) =) (w7 1y
we obtain (3.3.4).

Step 2c: We conclude the proof of Step 2. In the special case ' = F,,, thanks to Vol’pert

Theorem and Lemma 3.2.2 we have

P(Fy;®(B xS H) =H"YHo*F,n®(B x "1
/ 1
Br{0<a,<r} J8* (Fy)r |1/|f”(x)\

dH"2(z)dr

F,

2
— / 1+ Vg (z) dH" " (x)dr
Bn{0<ay<m} JO*(Fy)r ’V” "(2)]

VPR, () + (g () 2dr (3.3.7)

/Bﬂ{0<av<7r}
Using the isoperimetric inequality (3.1.17) together with (3.3.4) and (3.3.3) we then have,

P(F0(B x5 ) < [ s VP () + (rm=1e(r))2dr

< P(B;®(B x S {vf = 0}) + /B L) + g2(r)dr

< P(E:®(B x 8" 1)),
from which we conclude.

Step 3: We conclude the proof of the theorem. Suppose P(E) = P(F,). Then, in
particular, all the inequalities in Step 2 hold true as equalities. At the end of Step 2¢) we

used the fact that, by the isoperimetric inequality (3.1.17), we have
pr,(r) <pp(r)  for H'ae re{0<a, <m}.

If the above becomes an equality, this means that for H'-a.e. r € {0 < a,, < 7} the slice

E, is a spherical cap. Finally, the fact that for H'-a.e. r € {0 < a,, < 7} we have
H"2(8*(E,)A(O*E),) =0

follows from Vol’pert Theorem 3.1.7, and this shows (a).
Let us now prove (b). If P(E) = P(F),), the Jensen’s inequality at the end of Step 2b,

for the strictly convex function

f(t) == V1+2,
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becomes an equality. This implies that for H'-a.e. 7 € {0 < o, < 7} the function

& vF(x)

T @)

is H"2-a.e. constant in O*E,. Since, for " %-a.e. x € O*E,, we have
L= [y ()] + (& - vF(2))?,

this implies that

@R
—wr T P

is H"2-a.e. constant in 0*E,. Therefore, the two functions

A

z— vE(z) - 2 and T — \l/f (x)

are constant H" 2-a.e. in (0*E),.

O

The previous result allows us to prove a useful proposition (see also [3, Proposi-

tion 3.4]).

Proposition 3.3.1. Let v : (0,00) — [0,00) be a measurable function satisfying (1.2.2)
such that F, is a set of finite perimeter and finite volume, let E be a spherically v-

distributed set of finite perimeter, and let f : (0,00) — [0,00] be a Borel function. Then,

. flah @)
= /O T FERRE) + (g ()2 dr + /0 7 F)r D (1), (3.3.8)

Moreover, in the special case E = F,,, equality holds true.

Proof. To prove the proposition it is enough to consider the case in which f = xp, with
B C (0,00) Borel set.

First, suppose B C (0,00) \ Gf,. Thanks to Lemma 3.2.2, in this case we have £ =0
in B and |[r" 1D, |(B) = |[r"1D%¢,|(B). Then, from (3.2.2) it follows that

|, xs(lal) d @) = PUE; (B x 5"1) = |Doxel(®(B x ")
> D) = D) = [ sy D0

= [Txaonim) + g R+ [T xarta o),

where we also used the fact that pg = 0 H'-a.e. in B, since

HYEND(B x S™ 1)) g/ dr d?-l"_l(x):/ o(r) dr =0,
v=0 E, {v=0}
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Let us now assume B C Gf,. In this case, by Lemma 3.2.2 we have [r" "1 D¢, |(B) = 0.
Then, thanks to (3.3.3) and (3.3.4) we obtain

| xs(lal) d @) = P(E;@(B x 5")
> P(E;0(B x S 1) n {uf = 0)) + /B D2 (r) + g2(r)dr
> /B Pb(r) + (el ()2 dr

= [ xn)pb0) + 2 dr+ [T xa D ),

so that (3.3.8) follows.
Consider now the case E = F,,. If B C GF,, recalling again that by Lemma 3.2.2 we
have |[r"1D%¢,|(B) = 0, thanks to (3.3.7) we obtain

|, xolle) a7 ) = P(Es @(B x 8"7) = [ /i () + (e ) dr
= [ xny ) + P+ [ st D ).

If, instead, B C (0,00) \ GE,, then & = 0 in B and |[r" 1D, |(B) = |[r""1D%¢,|(B).
Therefore, thanks to (3.3.2),

/8*F xs(|z]) dH" "} (2) = P(F;; (B x S"71)) <"1 D&|(B) = "' D*¢,|(B)

= [ xatph ) + G0 dr + [ el D o).
O
An important consequence of the above proposition is a formula for the perimeter of F,.

Corollary 3.3.2. Let v : (0,00) — [0,00) be a measurable function satisfying (1.2.2) such

that F, is a set of finite perimeter and finite volume. Then

P(F,;®(B x S" 1) / \/va (rn=1¢! (r))2 dr +/ LD, (r). (3.3.9)
We conclude this section with two important results, that will be used later.

Proposition 3.3.3. Let v : (0,00) — [0,00) be a measurable function satisfying (1.2.2)
such that F, is a set of finite perimeter and finite volume, and let I C (0,+00) be an open

set. Then the following three statements are equivalent:

(i) H=t ({z e 0By n (I x "1 s pf* () = 0}) = 0;

(i) & € WisH(I);



51

(iii) P(F,; ®(B x S*~1)) =0 for every Borel set B C I, such that H'(B) = 0.

Remark 3.3.4. Note that the equivalence (iii) <= (i) holds true also if I is a Borel set.
To show this, we only need to prove that (i) = (iii), since the opposite implication is
given by repeating Step 3 of the proof of Proposition 3.5.3. Suppose (i) is satisfied. Then
from (3.2.8) we have r"~1D¢&, LT = r"=Y¢! L I. Therefore, thanks to (3.3.9)

P(Fy;®(B x S" 1) = / \/p%% (r) + (rm=1&(r))2dr  for every Borel set B C I,
B
which implies (iii).
Proof. We divide the proof into three steps.

Step 1: (i) = (ii). Recall that, by Lemma 3.2.1, §, € BVio(I). If (i) is satisfied, from
(3.2.8) we have r"~1D¢, L I = "~ 1¢ L I, which implies (ii).

Step 2: (ii) = (iii). This implication follows from formula (3.3.9).
Step 3: (iii) = (i) (note that we will not use the fact that I is open). Assume (iii) holds

true. Then,

L ({x cO*F,N (I)(I X Snfl) . yf?*Fv(x) = 0}) < P(a*Fy; (I)((BO N I) > Snfl)) =0,

where we used the fact that H!(Bg) = 0, thanks to (3.1.19). O

We can now prove Lemma 1.2.3. In the proof, we will rely on Theorem 1.2.4 and

Lemma 1.2.5, that we will prove in Section 3.6.

Proof of Lemma 1.2.3. We divide the proof into steps.

Step 1: We show that (1.2.8) = (1.2.9). Suppose (1.2.8) is satisfied. Then, from (3.2.8)
we have r"1D¢, L T = r"~1¢/ L I. Thanks to (3.3.9), this implies that

P(Fy;®(B xS" 1) = / \/p%U(r) + (rm=1E ()2 dr. for every Borel set B C 1.
B
In particular, condition (iii) of Proposition 3.3.3 is satisfied. Then, (1.2.9) follows from
Remark 3.3.4.

Step 2: We show that if P(E;®(I x S* 1)) = P(F,; ®(I x S*1)), then (1.2.9) implies

(1.2.8). To this aim, we first prove an auxiliary result.

Step 2a: We show that if F' C R" is a set of finite perimeter such that (F), is a spherical

cap for H'-a.e. > 0, and

H ! ({z e 0Fna xs") () =0}) =0, (3.3.10)
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then H"~1(B7) = 0 for every j = 2,...,n, where
B i={x e PF &I x ") : v} (2) = 0} .

Here, the vector I/E” is defined in the following way. Let j € {2,...,n}, and let VE be the
orthogonal projection of vF on the bi-dimensional plane generated by e; and e;. In this

plane, we consider the following orthonormal basis {Z1;, Z1;}:

7—2 times n—j times
N 1 —— ——
x1j272 2($1,0,...,0,(l)j,0,...,0),
Ty + @5
and
J—2 times n—j times
1 —N— ——

flj = 7(—JI]‘,0,...,0,$1, 0,...,0),
,/:E%—FIJZ

where 77 is directed along the radial direction, and Z; is parallel to the tangential
direction. To show the claim, first of all note that, by Vol'pert Theorem 3.1.7, for H!-a.e.

r > 0 we have
(Bj)r = {.%' € 0*F, N (I)(I X Sn_l) : yf’"(;p) Iy = 0} .

up to an H" 2-negligible set. Since (B7), is a spherical cap, we have H" 2((B7),) = 0.
Then, thanks to (3.3.10),

H (B =1 (B {z e 0 Fno( x 8" :vf () £ 0})
1
= dr/ = r)—— dH"%(z) = 0.
i o, Xy

Step 2b: We conclude. Let E' := E, and let E? be set obtained by applying to F
the circular symmetrisation with respect to (ej,e2). Then, for j = 3,...,n, we define
iteratively the set E7 as the circular symmetral of E/~! with respect to (e1,ej). Note
that, since H'-a.e. spherical section of E is a spherical cap, we have E® = F,. Therefore,

thanks to the perimeter inequality (1.2.11) under circular symmetrisation, we have
P(Fy;®(I xS 1)) = P(E" 1 ®(I xS"™ 1) =... = P(E;®(I xS"™1)).

Moreover, for j = 3,...,n, we define I; ;== ®(I x S" 1) N {z; = 0} N {2y > 0}. It is not
difficult to check that

O(I x S" 1) =®;(I; xSY) forj=3,...,n.
Then, applying Lemma 1.2.5 to F,, and E"~!, we obtain that

H ! ({96 €FE" NPy p_i(Ino1 xS : y52111)||(a:) - O}) =0,
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which, in turns, implies
H ! ({reo B 0@ a(la x 8 v (@) = 0}) =0,

Applying iteratively this argument to E"~2, ..., E, we conclude. ]

3.4 Proof of Theorem 1.2.2: (ii) = (i)

Before giving the proof of the implication (ii) = (i) of Theorem 1.2.2, it will be convenient
to introduce some useful notation. Let v and Z = {0 < a) < a) < 7} be as in the
statement of Theorem 1.2.2. By assumption, Z is an interval and «, € VVI})CI(I ) where, to
ease the notation, we set [ := 7. Let now E be a spherically v-distributed set of finite

perimeter. We define the average direction of E as the map dg : I — S™! given by

1
' S— / BAH™ V(z), ifrelnGp,
dp(r) == wWn—1(sin o (1))~ 1r . (3.4.1)

el otherwise in I,

where Gg C (0,00) is the set given by Theorem 3.1.7. To ease our calculations, it will

also be convenient to introduce the barycentre function by : I — R™ of E as

1
Tn_l/ BAH™\(z), ifrelnGp,

bE(T) = T
el otherwise in 1.

The importance of the functions dg and bg is given by the following lemma.

Lemma 3.4.1. Let v be as in Theorem 1.2.2, let I C (0,00) be an open interval, and let
E be a spherically v-distributed set of finite perimeter such that E, is H"'-equivalent to

a spherical cap for H'-a.e. r € I. Then,
EN®(I xS =yn {x € &I x S" 1) : distgn-1(#,dg(|z]) < au(|z])}.
Moreover,
be(r) = wa_1(sin ay ()" tdg(r) for Hl-a.e. r € I. (3.4.2)

Proof. Let us immediately observe that (3.4.2) follows by construction of dg and bg. By
assumption, for H'-a.e. r € I, there exists w(r) € $"! such that E, = B, (y(rw(r)). We
are left to show that

w(r) =dg(r) for Hl-a.e. r € I. (3.4.3)
Note that for H'-a.e. r € I we have E, = B, (rw(r)) and "B, = S, () (rw(r)).

Therefore, for H'-a.e. r € I

ay(r)
/ 2AH () = / ds 2 dH"2(x), (3.4.4)
0 S(r(r)

T
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where using the symmetry of the geodesic sphere

/S 2 dH"2(z) = w(r) / (@ - w(r)) dH" () (3.4.5)
s r(r) S5 (r)
=w(r)r COS(B)H"_Q(Sg(rw(T))).

Recalling the definition of dg, identity (3.4.3) follows.
0

Remark 3.4.2. Let us point out that here we are using the term barycentre in a slightly

imprecise way. Indeed, for a given r € I N GE, the geometric barycentre of E, is given by

1 w1, 1 -
anfl(Er) /Txd/H l(x) - &,(T)T’nﬁl /Tde l(m)
T 1

= AR M () = ——bp(r).
= gy BT ) = sbetr)

Nevertheless, we will still keep this terminology, since bg turns out to be very useful for

our analysis.
We are now ready to prove the implication (ii) = (i) of Theorem 1.2.2.

Proof of Theorem 1.2.2: (ii) = (7). Suppose (ii) is satisfied, and let E € N (v). We are
going to show that there exists a rotation R € SO(n) such that H"(EA(RF,)) = 0. We

now divide the proof into steps.

Step 1: First of all, we observe that

H ({zeoEno@ xs) f (@) =0}) =0.
Indeed, since o, € VVli)C1 (1), thanks to Proposition 3.3.3 we have

H ™ ({o e 0 F,n (I x ") 1 yfo(2) = 0}) = 0.

Since E € N (v), applying Lemma 1.2.3 the claim follows.
Step 2: We show that bg € V[/licl (I;R™) and

1

- vE(x
bolr) = Ly

T dH" 2 (). 3.4.6
Jorsrotpsn WG (34

Indeed, let ¢ € CL(I) be arbitrary, and let i € {1,...,n}. By definition of bg

/(bE) r)dr = //EﬂdB(r) =t Mdﬁ*lnil(x)w/(r)dr
V' (|2])xe(x) de.

D(IxSm1) \wI"



95

Note now that

div (e ) = v ()
Indeed, recalling (3.2.3),
: Zi A\ Ti \ o, Ti . N
div (e ) = w(la)V (55 -2+ 5 divt(ahe)
e; nT; . . T; , n—1 o x
= wllah (155 — e ) -2+ 1o (#/eD)+ (i) ") = ()

Therefore,

feenyswar= [ div (liahe) x(e) dr
= s a2 - ADXE ()

Ixsn-1y |z|"
x;

Y(lzl) & - 0P (2)dH" " ().

o End(Ixsn—1) |z|?
Thanks to Step 1 we then obtain

[ w1y yar = [ “p(lal) @ - (@)dH" a)
1

0" EN{vP 0y (Ixsn-1) |2]”

P(x)

1 T-v
= [ Y(r)— V it dH" 2 () | dr,
/1 @ EnpEzy V()]

so that (3.4.6) follows.
Step 3: We show that

oS iy (1)

be(r) = (n—1)al(r) bp(r) for H'-a.e. r € I. (3.4.7)

sin a, ()

Since E € N(v), from Theorem 1.2.4 we know that for H!-a.e. r € I the spherical slice

E, is a spherical cap. Then, thanks to Lemma 3.4.1
E. =B, (rde(r)) and (0"E), =Sy, (rde(r)) for Hl-a.e. r € I.

Still thanks to Theorem 1.2.4, we know that for H!'-a.e. » € I the functions z — v¥(x) - &

and x — |V|]|E (z) are constant H" 2-a.e. in (0*E),, say
vE(z)-#=a(r) and |Vﬁ9|(x) = c(r), for H'-a.e. r € 1,

for some measurable functions a : I — (—1,1) and ¢ : I — (0, 1]. Therefore, recalling the
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definition of dg together with (3.4.4)-(3.4.5) we obtain

1 B
Vp(r) = — 2V e
(0" E)rn{v#0} ‘VH ()|

xdH"2(z)
Say () (rde(r))

= cos(a (M)YH" ™ Sa, ) (rdp (1))di(r)

= 1 Z(:))Hn_z(sav(r) (rdg(r))) cos(ay(r))de(r). (3.4.8)

Note now that from Step 1 and (3.2.8) it follows that for H!-a.e. r € I

Il
Bl
q‘@

—~
=’

N~—
\v

=1 () = & vE(@) 0ina,
0= fomoiy P )
alr)

= S H" 2 (Sa, () (rdp(r))).
Plugging last identity into (3.4.8) and using (3.4.2), we obtain

bE(T)
Wn—1(sin a (1)1

bip(r) = &,(r) cos(ay(r))de(r) = &,(r) cos(ay(r))

cos o, (1)

= (n = Day(r) b(r),

sin au, ()

where we used the fact that, thanks to (3.1.1) and (3.1.3),

&,(r) = (n — Dwy_1(sin ay (1) 2al, (1) for H'-a.e. r e I.

(2

Step 4: We conclude. First of all, note that from From (3.4.2) and Step 2 it follows that
dp € VVlicl(I, S"=1). Then, thanks to Step 3, for H'-a.e. r € I

r oy 4 be(r) _ () d 1
wn-1dp(r) = {(smav(r)) }  (sina,(r))n1 +oa(r >d7' {(sinav(r))”—l}
= (n—1)al(r cos ay(r) r r __nzl cos ay (1)), (1) | =
—( 1)“NM%UW%”+%”[@m%mw( (e r)] =0,

for H'-a.e. r € I. This shows that dg is H'-a.e. constant in I. Therefore, EN®(I x S*~1)

can be obtained by applying a rotation to F, N ®(I x S*~1). O

3.5 Proof of Theorem 1.2.2: (i) = (ii)

We start by showing that the fact that {0 < o < ¥ < 7} is an interval is a necessary

condition for rigidity.

Proposition 3.5.1. Let v : (0,00) — [0,00) be a measurable function satisfying (1.2.2),
such that F, is a set of finite perimeter and finite volume, and let o, be defined by (1.2.3).
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Suppose that the set {0 < o™ < oY < 7} is not an interval. That is, suppose that there

exists T € {a" =0} U{a" =7} such that
0,/ )N{0<a<a’ <7} #0 and (F,00)N{0 < <a¥ <7} #£0.
Then, rigidity fails. More precisely, setting Ey = F, N B(F) and Eq := F, \ B(F), we have
Ey U (REy) € N(v) for every R € SO(n).
Before giving the proof of Proposition 3.5.1 we need the following lemma.

Lemma 3.5.2. Let v : (0,00) — [0,00) be a measurable function satisfying (1.2.2), such
that F, is a set of finite perimeter and finite volume. Let v, be defined by (1.2.3), and let
7> 0. Then,

(0" Fo)7 =pn—1 Bay @ (Te1) \ Bap ) (Te1).
Proof. We divide the proof in two steps.

Step 1: We show that
(0°Fo)r C Bay () (Te1) \ Bag ) (Ter).
To this aim, it will be enough to show that
al (F) < distgn-1(2,e1) < o (T) for every x € (0" Fy)7. (3.5.1)
Let us first prove that
distgn-1(Z,e1) < @,/ (7) for every x € (0" Fy)7 (3.5.2)

Note that (3.5.2) is trivial if a;/(7) = m. For this reason, we will assume a,/ () < 7. Note

now that (3.5.2) follows if we prove that
x€dBF) and distgo-i1(#,e1) > al(F) = azeF. (3.5.3)
Let now x € 9B(T), and suppose that there exists § > 0 such that
distgn—1(%,e1) = o) (T) + 6.

Let now p > 0 be so small that

N

distgn—1(9, %) < for every y € B(z,p).
By triangle inequality for the geodesic distance we have, in particular, that

)
) (F) + 6 = distgn-1(2, e1) < distgn-1(£,9) + distgn-1(9, e1) < B + distgn—1(9, 1),
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so that

8
distgn-1(g,e1) > a, (F) + 3 for every y € B(z,p). (3.5.4)

Thanks to the inequality above, by definition of F;,, we have
_ no v 0 . . _
F,nB(x,p) Cqy e R" oy (T) + 3 < distgn-1(9,€1) < ay(lyl) ¢ N B(z,p).
Therefore, for every p € (0,p)

T+p
H™(Fy N B(z, p)) = / HY(F, N Bz, p) N 0B(r)) dr

T—p

T+p
< [ Xasar @ MR (FL 0 Bla,p) 1 0B(r) dr
T—p

= H" Y (F, N B(x,p) NOB(r)) dr.
(F—prp)N{au>ay (7)+5/2}

Note now that, for p small enough, there exists C' = C(7) > 0 such that
B(z,p) NOB(r) C Be,(r) for every r € (T — p,7 + p).
Therefore,
(PN Blap) < [ H*!(Be,(ri)) dr

(F—p+p)N{aw>ay (7)+5/2}

Cp
=(n— l)wn,l/ rn_l/ (sinT)" 2 drdr
(F—pF+p){aw>ay/ (F)+6/2} 0

Cp
<(n—1)wp_1 2 dr dr

rnfl /
(T—pT+p){aw>a (T)+6/2} 0

= w1 O L F 4 B T IHY (7 — p, T+ p) 0 {aw > @V (F) + 8/2)).

Thus, recalling the definition of ) (T),

H™(F, 0 B(z, p))

lim
p—0+ W "
Wy O™ 1 HE (T — p, 7+ p) N {ay, > )l (F) +0/2})

=0,

— + —\n—1 l.

Wn, (T P) pi}(I)1Jr p

which gives (3.5.3) and, in turn, (3.5.2). By similar arguments, one can prove that
r€dBF) and distgn-i1(Z,e1) < ) (F) = xeFW,

which implies that

al(F) < distgn-1(2, e1) for every x € (0" F,).

The above inequality, together with (3.5.2), shows (3.5.1).
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Step 2: We conclude. Thanks to Corollary 3.3.2,
H' (0" Fo)r) = H'HO"F, NOB(T)) = P(F,; 0B(r)) =7""1(&)(T) — €)(7))
=0 (F) = o"(7) = H" " (Baym (Ter)) — H" ' (Bay(r) (Ter))
= """ (Baym)(7e1) \ Baym (Fer))
Since, by Step 1,
(0" Fy)r C Bay ) (Ter) \ Bag ) (Ter),

we have

(0" Fy)7 =31 Bay ) (Te1) \ Bapr)(Ter) =gn—1 Bay @) (Te1) \ Bap ) (Ter).

We can now give the proof of Proposition 3.5.1.

Proof of Proposition 3.5.1. Note that, since B(T) is open and E N B(F) = F, N B(F), we

have
EONB®F) = (EnBFE)Y = (F,nBF)Y = EYNB(F) for every t € [0,1].
From this, it follows that
0*EN B(F) = 0*F, N B(7). (3.5.5)

Similarly, we obtain

9*E\ B(r) = 0*(RF,)\ B(F) = (RO*F,) \ (RB(7)) = R(9*F,\ B{)). (3.5.6)

Thus, thanks to (3.5.5) and (3.5.6)

P(E)=H"Y0"ENBF) +H" Y (0*ENOB(F) + H" 1 (0*E \ B(F))
— WO F, N BE) + W O EN0B(r) + H (RO'F,\ BD)

=H"YO*F, N B(F) + H" Y (9*ENOB(F) + H" L (0*F, \ B(T)).
Therefore, in order to conclude the proof we only need to show that
H Y O*EN B(F)) = H" Y(0*F, N B(F)). (3.5.7)
Without any loss of generality, we will assume that
ay (T) = aplim(f,(0,7),7),  0=a,(r) = aplim(f, (7, ), 7). (3.5.8)

Let now Ep, Fs, and R be as in the statement. We divide the proof of (3.5.7) into steps.
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Step 1: We show that
(G*E)F C Ba}{(?) (761) U {R(Fel)}.

To this aim, it will be enough to prove that
distgn-1(2,e1) < )/ (F) for every x € (0" E)s. (3.5.9)

If ) (T) = 7 inequality (3.5.9) is obvious, so we will assume that o)/ () < 7.

Step la: We show that
r €0B(F) and distgn1(Z,e1) > )/ (F) = =x¢€ Eio).
Indeed, let x € OB(T), and suppose that there exists 6 > 0 such that
distgn-1(Z,e1) = o,/ () + 6.
By repeating the argument used to show (3.5.4), we can choose 7 > 0 so small that
distgn—1(g,e1) > a, (F) + g for every y € B(z,p).

By definition of E7, we then have

EinNB(z,p) = F,NB(T) N B(z,p)

C {y €R": |y| <7 and o, (F) + g < distgn-1(g,e1) < av(|y|)} N B(z,p).

Therefore, for every p € (0,7), by repeating the calculations done in Step 1 of Lemma 3.5.2,

we obtain

1

p—0t+ Wy p"

H"(Er 0 B(z, p))

— lim /f H* N (F, N B(x, p) N OB(r)) dr
T—p
(F +ﬁ)n_1 lim ;L[l((F — p7?) n {a?) > al\J/(F) + 5/2}>
Wn p—0+ p

=0,
where we used (3.5.8).

Step 1b: We show that
OB(F) \ {R(Fe1)} C (REy)".

Indeed, let x € OB(T), and suppose that 7 := distgn—1(&, Rey) > 0. We are going to prove
that z € (RE2)(?). By repeating the argument used to show (3.5.4), we can choose 7 > 0

so small that

distgn-1(g, Rey) >

N3

for every y € B(x,p).
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Then,
(RE) N B(z,7) = (R(F,\ B{T)) N B(a,7)
Cyr {y € R": |y| > 7 and g < distgn-1(7, Re1) < av(|y])} N B(z,p).
For p small enough, there exists C' = C(7) > 0 such that
B(x,p) N0B(r) C Be,(rt) for every r € (T — p, 7 + p).
Therefore, for every p € (0,p),

H™((RE2) N B(x, p)) < / H (B, (r2)) dr
(F o) {aw>n/2}

Cp
=(n— 1)wn,1/ 7“"_1/ (sin7)" 2 drdr
77 +p){aw>n/2} 0

= W, 1 O LT 4+ 0)" " T HY (7, T+ p) N {aw > 1/2)).

From this, thanks to (3.5.8), we obtain

H"((RE3) N B(x, p))

lim
p—0t Wnpn
n—1 l((m =
S %(?4_ p)n—l lim H ((Ta T+ p) N {av > 77/2}) —0.
Wn, p—0F P

Step 1c: We conclude the proof of Step 1. By definition of F, from Step 1la and Step 1b
it follows that

{z € OB(F) : distgn-1 (2, 1) > oY (F)}\ {Re1} € B\ N (REy)© = BO).
Therefore,

(0*E), C OB(T)\ ({z € OB(F) : distgn-1 (2, e1) > oV (F)} \ {Re1})

= Ba}]/(?) (?61) U {Rel}.

Step 2: We show (3.5.7), concluding the proof. Thanks to Step 1 and Lemma 3.5.2 we

have
P(E;0B(r)) = " {(0"ENOB(T)) = H" L (9"E)r) < H"' (Bay(r)(Fer))
= H"Y(9*F,NdB(F)) = P(F,;0B(F)) < P(E;dB(7)),
where we also used (1.2.4) with B = {7}. O

We now show that, if the jump part D’cy, of Da, is non zero, rigidity fails.
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Proposition 3.5.3. Let v : (0,00) — [0,00) be a measurable function satisfying (1.2.2)
such that F, is a set of finite perimeter and finite volume, and let o, be defined by (1.2.3).
Suppose that o, has a jump at some point T > 0. Then, rigidity fails. More precisely,
setting Fy := F, N B(F) and Ey := F, \ B(T), we have

Ei U (REQ) S N(U),
for every R € SO(n) such that
0 < distgn—1(Re1,e1) < May (F) — o (F))  for some X € (0,1). (3.5.10)

Proof. Let R € SO(n), A € (0,1), and £ € R" be as in the statement, and set w := Re;.

Arguing as in the proof of Proposition 3.5.1 we have:
P(E)=H""Y0"F,N B(F)) + H" Y(O*ENdB(F)) + H" (0" F, \ B(7)).
Therefore, in order to conclude the proof we only need to show that
H" N O*ENIB(F)) = H" (0" F, N OB(7)). (3.5.11)
Without any loss of generality, we will assume that
o, (F) = aplim(f, (0,7),7), ol (F) = aplim(f, (7, 00), 7). (3.5.12)
We now proceed by steps.
Step 1: We show that
(0*E)r C Boy () (Ter) \ Ban() (Tw). (3.5.13)
To show (3.5.13), it is enough to prove that for every x € (0*E)r we have
distgn-1(2,e1) < o/ (F) for every x € (0" E)r, (3.5.14)

and

distgn-1(#,w) > al (7) for every x € (0" E)r. (3.5.15)

We will only show (3.5.14), since (3.5.15) can be obtained in a similar way. Note that
(3.5.14) is automatically satisfied if o/ (T) = 7, so we will assume o/ (F) < 7.

By arguing as in Step la of the proof of Proposition 3.5.1 we obtain
2 €dB(F) and distgi1(2,e1) > aV(F) = aze B (3.5.16)
Let us now prove that

£ €dB(F) and distgi-1(2,e1) > a)(F) = x€ (REy)WO. (3.5.17)
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Let z € 0B(7), and suppose that there exists 6 > 0 such that

distgn—1(Z,€1) = o,/ (F) + 6.

v
Thanks to the argument we used to show (3.5.4), we can choose p > 0 so small that
: " Vi L 0 _
distgn-1(g,e1) > a, (F) + B for every y € B(z,p).
Therefore, for every y € B(z,p) we have
Vi L0 X . N .
a, (T) + 3 < distgn-1(7, €1) < distgn—1(7, w) + distgn—1(w, €1)
< distgn—1 (9, w) + Moy (F) — ol (T)).

Since 7 is a jump point for a,, we have /() > a/'(F), and the above inequality implies

that
. P V(= Ay 1 O A (= Ay 1 O Ay o 0
distgn-1(g,w) > (1 — N, (F) + Ao, (F) + 5> (1 = XN)a, (F) + Ao, (F) + 5= @ (7) + 3
for every € B(x,p). Then, by definition of Fs,
(RE») N B(,p) = (R(F,\ B{)) N B(x,7)
5
Com {y ER™ - Jy] > 7 and a)(7) + § < disten1(5,) < ocv(\y])} A B(x,7).

As already observed in the previous proofs, for p small enough there exists C = C(7) > 0
such that

B(x,p) NOB(r) C Be,(r) for every r € (T — p,7 + p).

Therefore, for every p € (0,p) sufficiently small

H™((RE») N B(x, p)) < / HY (B, (r)) dr
(7)o > (7)+/2)
Cp

=(n— 1)wn_1/ r"fl/ (sin 7')"72 drdr
(7,7 +p){aw>al (F)+6/2} 0

= w1 C" LT+ D) T HY (7, T+ p) N o > 0 (F) +6/2)).

From this, thanks to (3.5.12), we obtain

lim

p—0~+ W p™

CenaC Ty HUET ) D o > 0l () +6/2)
= Wi, PO+ P ’

which shows (3.5.17). This, together with (3.5.16), implies (3.5.14). As already mentioned,

(3.5.15) can be proved in a similar way, and therefore (3.5.13) follows.
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Step 2: We conclude. From (3.5.10) it follows that
Ba@(?) (7&1) C BO‘L/(F) (761).
Therefore, thanks to (3.5.13) and Lemma 3.5.2

P(B;0B(7)) = K"~ (0" ENOB(T)) = H" " (07 E)r) < H" ™! (Bay(r) (Ter) \ Bog ) (7))

=v"(7) — v"(F) = P(F,; 0B(7)) < P(E;0B(7)),

where we also used (1.2.4) with B = {7}. Then, (3.5.11) follows from the last chain of

inequalities. O

We conclude this section showing that, if D¢, # 0, rigidity fails.

Proposition 3.5.4. Let v : (0,00) — [0,00) be a measurable function satisfying (1.2.2)
such that F, is a set of finite perimeter and finite volume, and let cv, be defined by (1.2.3).
Suppose that D a, # 0. Then, rigidity fails.

Proof. We are going to construct a spherically v-distributed set E € N (v) that cannot be
obtained by applying a single rotation to F, (see (3.5.20) below).
First of all, let us note that it is not restrictive to assume that «,, is purely Cantorian.

Indeed, by (2.0.20) one can decompose «,, into
ap = a® +al + af, (3.5.18)

where o € I/Vli)c1 (0,00), ad is a purely jump function, and af is purely Cantorian. Thanks
to (3.5.18), in the general case when «, # af, the proof can be repeated by applying our
argument just to the Cantorian part of of «,. Therefore, from now on we will assume

that

Da, = Da,.

Thanks to Proposition 3.5.1, we can also assume that {0 < o < Y < 7} is an interval
(otherwise there is nothing to prove, since rigidity fails). Moreover, since «,, is continuous,

there exist a,b > 0, with a < b, such that I := (a,b) CC {0 < a” < a¥ < 7} and
0<ay(r)<m for every r € I. (3.5.19)

Since D, # 0, it is not restrictive to assume |Da,|(I) > 0. For each v € (—m,7), we
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define R, € SO(n) in the following way:

T T1COS7Y — Tgsin-y

x9 1 siny + x2 cosvy
Rv 3 | — z3

Tn Tn

That is, R, is a counterclockwise rotation of the angle v in the plane (x,z2). Let now

fix A € (0,1), and define 3 : (0,00) — (—m,7) as

0 if r € (0,a),
B(r) == AMay(r) — ap(a)) if r € [a, b],
Mo (b) — ap(a)) if r € (b, 00).

We set
E = {.TU eR™: diStSnfl(.’i',Rﬁ(‘xDel) < qu\)/(|.%")} (3.5.20)

Clearly, E cannot be obtained by applying a single rotation to F,. Let us show that
E € N(v), so that rigidity fails. We proceed by steps.

Step 1: We construct a sequence of functions v* : I — [0, 00) satisfying the following
properties:

(a) klim k(1) = ap(r) for Hl-ae. r € I;
—00

(b) D&, = DIE, for every k € N;

(¢) lim P(Fr;®(I x S" 1)) = P(F,; ®(I x S*71)).

k—o0

First of all note that, by (3.1.5) and by the chain rule in BV (see, [2, Theorem 3.96]), it
follows that &, is purely Cantorian, where &, is given by (3.1.3). Moreover, from (2.0.21)

and from the fact that &, is continuous, we have

N—1
|DE&y| (1) = sup{z [€v(rig1) —&u(ri)]ta<ri <rg<...<ry < b},

i=1
where the supremum runs over N € N and over all rq,...,ry with a < ri < ry <
. < ry < b. Therefore, for every k € N there exist Ny € N and r’f,...,rf{, with
a<ri<rk <. . <rk <bsuch that

Ni—1

ID&NI) < Y [€u(riy) — &) +
i=1

IS
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and

1
]rf+1—rf]<E for every i =1,..., N — 1.

Without any loss of generality, we can assume that the partitions are increasing in k. That

is, we will assume that

{r’f,...,ré“vk}c{rlfﬂ,..., ;“V:}rl} for every k € N.

Define now, for every k € N,

ng )(1"), (3.5.21)

z’ 7,+1

where we set 75 := a and rﬁ“\,ﬁl :=0b. Let us now set
oF(r) == € (r) for every r € I and for every k € N,
and note that, by definition, £€¥ = &,x. Since &, is continuous, we have that
Jlim. b (r)y = &,(r) for #'-a.e. r e I. (3.5.22)

Recalling (3.1.5) and (3.1.6), last relation implies property (a). Moreover, from (3.5.21)
we have (b).
Let us now show (c). Thanks to (3.5.19) and (3.5.22), we have

kli_>rn ppr(r) =prR, (1) for H'-a.e. r € I. (3.5.23)
Moreover,
DI Z [€0(rin) = &)l (3.5.24)
Nj—1
= |&(rF) = &u(@)] + [&(b) — &)+ D [€u(rfin) — &)
i=1
Since

Ny —

1
[D&|(1) = - < Z (rfe1) = &0 < [D&I(D),

using (3.5.24) and the fact that &, is continuous we obtain

Nj—1

D&l = Jim 3 l6() —lrh)] = Jm |DE(D), (3.5.25)

Thanks to [2, Theorem 3.23], up to subsequences ¢ weakly* converges in BV (I) to &,.
Since, in addition, (3.5.25) holds true, we can apply [2, Proposition 1.80] to the sequence
of measures {|DEF|}ren. Therefore, recalling that DEF = D3¢k and D¢, = D¢, we have

Jim [ rd gt (r) = tim [ mdDell) = [ mdpelw) = [ mdpe)).
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Then, from Corollary 3.3.2
lim P(F,.:®(I x S 1)) = lim (/ka(r) dr+/rn—1d|D8§{j\(r))
k—o0 k—oo \J1 7 I
= (/va(r) dr+/r"1d]D5§,,](r)> = P(F,; ®(I x S" 1)),
I I

where we also used (3.5.23).

Step 2: For each k € N, we construct a spherically v*-distributed set E¥ such that
P(E*; ®(I x S" 1)) = P(F; ®(I x S™71)).

From (3.1.5) and (3.1.6) it follows that a,» = F~!(&F) € BV(I), and

Ny,
auk(r) = Zav(rf)x[rk . )(r) (3.5.26)
i=0

i i1

Therefore, for each k € N we have that Da,x = D7k, and the jump set of a, is a finite

set. More precisely,

Davk = Z(av(rf) - av(rf—l))(sr’?v
i=1

where §, denotes the Dirac delta measure concentrated at r. Let A € (0,1) be fixed, and

define the set Ef C ®(I x S"7!) as
B = [Fe 0 (Br) \ B(a)| U [Ryay (o4 -auay Fur 0 (BO)\ BG1)]
Thanks to Proposition 3.5.3, we have that
P(EYN; (I x S"7 1)) = P(Fe; ®(I x S*71)).
Define now E§ C ®(I x S*71) as
E§ = (Bf N B(r$) U [Ry(a, (r4)-a, oty (BT \ BOS))] -
Applying again Proposition 3.5.3, we have
P(EY: ®(I x S"™Y)) = P(E¥; ®(I x S"™1)) = P(F,r; ®(I x S™71)).

Note that, since R, is associative with respect to v (that is, we have R, R,, = Ry, 1+,),

we can write E} as

B = [Fe 0 (BOUD\ B@)] U [Baa, () -ayay For 0 (BEH\ B())]

U Ry -autan(For 0 (BO)\ B
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Iterating this procedure Nj times, we obtain that
P(EF; ®(I x S"™ 1)) = P(F; ®(I x S™71)),
where

By = Ef, ={z € ®(I xS"): distga—1 (2, R, (a)—or i (a))€1) < e (|z])}. (3.5.27)

Step 3: We show that EF —» Ein (I x S*~1), for some spherically v-distributed set E
such that

P(E;®(I x S"™1)) = P(F,; ®(I x S"1)).
From (3.5.26) and (3.5.22) it follows that

lim o (1) = ay(r) for Hl-a.e. r € I.

k—o0

Therefore, from (3.5.27) we have E¥ — E (in (®(I x S*1))), where E is the spherically
v-distributed set in ®(I x S~ 1) given by
E:={z € ®(I x S"") : distgn—1(2, R(an(Js])—av(a)€1) < @w(]z])}. (3.5.28)

Then, by the lower semicontinuity of the perimeter with respect to the L' convergence
(see, for instance, [32, Proposition 12.15]):

P(E;®(I xS" 1)) < Jim. P(E*;®(I x S™1))

lim P(F;®(I x S"7Y)) = P(Fy; ®(I x S 1))

k—o0

< P(E;®(I x S"71)),

where we also used (1.2.4).

Step 4: We conclude. Let E be given by (3.5.20). Then, E is spherically v-distributed
and satisfies
E =yn (F, N (B(a))) U [EN (BB)\ B(@)| U [ Ry (5)-aw(a) (B \ (BO))]

where E is defined in (3.5.28). By repeating the arguments used in the proof of Proposi-
tion 3.5.1, and using the fact that ®(I x S*~!) = B(b) \ B(a), one can see that

P(E) = P(E; B(a)) + P(E;8B(a)) + P(E; B(b) \ B(a))
+ P(E;0B(b)) + P(E;R™\ B(b))
= P(F,; B(a)) + P(E;0B(a)) + P(E; B(b) \ B(a))
+ P(E;0B(b)) + P(F,;R™\ B(b))
= P(Fy; B(a)) + P(E;0B(a)) + P(Fy; B(b) \ B(a))
+ P(E;0B(b)) + P(F,;R™\ B(b)),
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where we also used Step 3 and the invariance of the perimeter under rotations. Since ay,

is continuous, an argument similar to the one used to prove (3.5.13) shows that
P(E;0B(a)) = P(E;0B(b)) = 0.

Therefore,

P(E)= P(F,;B(a)) + P(F,; B(b) \ B(a)) + P(F,;R"\ B(b)) = P(F,).

We can now give the proof of the implication (i) = (ii) of Theorem 1.2.2.

Proof of Theorem 1.2.2: (i) = (ii). To show the implication, it suffices to combine Pro-

position 3.5.1, Proposition 3.5.3, and Proposition 3.5.4. O

3.6 Circular symmetrisation

In this section we sketch the proofs Theorem 1.2.4 and Lemma 1.2.5. We will only give here
the important details, since in most cases they follow the lines of the proofs of Section 3.1,
Section 3.2, and Section 3.3.

We start with some notation which, together with that one already given in the Intro-
duction, will be extensively used in this section. Let (r,2') € (0,00) x R*72, 5 € [0, 7],

and let p € S'. The circular arc of centre (rp,2’) and radius f3 is the set
Bs(rp,2') := {x € 0B((0,2'),r) N 1L,/ : distg1 (&12,7p) < B},

If £ : (0,00) x R"2 — [0,00) is a measurable function satisfying (1.2.10), we define
ol : (0,00) x R*2 — [0, 7] and £° : (0,00) x R"2 — [0, 27] as

1
of = 27%(7", ') and 56(747 a') = %E(Tv a') = 2056(73 z').

Note that in this case the relation between of and £¢ is linear. If 4 is an R™-valued Radon
measure on R™ \ {x12 = 0}, we will write p = 1121 + pi19), where pio; and 12y are the

R"™-valued Radon measures on R™ \ {z12 = 0} such that

/ @ dua; = Y121 - du,
R \{z12=0} R\ {z12=0}

and

/ @ - dpg| Z/ P12 - dp,
R7\{z12=0} R™\{z12=0}

for every ¢ € C.(R™\ {12 = 0}; R™). The next two results are the analogous of Proposi-

tion 3.1.1 and Vol'pert Theorem 3.1.7, respectively.
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Proposition 3.6.1. Let E be a set of finite perimeter in R™ and let g : R™ — [0, 00] be a

Borel function. Then,

| @iy @lan@) = [ arad [ gla) i (w).
O*E (O,OO)XRW’72 (8*E)(’r,z,)

Proof. In this case, the result follows applying [2, Remark 2.94] with N =n —1, M = n,
k=n—1,and f(z) = (|r12],2). O

Theorem 3.6.2. Let £ : (0,00) x R"™2 — [0,00) be a measurable function satisfying
(1.2.10), and let E C R™ be an circularly (-distributed set of finite perimeter and finite
volume. Then, there exists a Borel set G% C {af > 0} with H" }({a’ > 0} \ G%) = 0,
such that

(i) for every (r,2') € G%:

(ia) B4y is a set of finite perimeter in 0B, (0,2") N Ty ;

(Zb) 8*(E(r,m/)) = (a*E)(T,x’);
(ii) for every (r,x') € G%N{0 < ot < 7}:

(iia) \VlEQ”(rw,a?/)\ > 0;

(iib) Vg”(rw,x’) = VE<r,z’>(rw,x’)|y1E2H(rw,x')|,
for every w € St such that (rw,z’) € 0* (Egan) = (0°E) r.ar-

Proof. The statement follows applying the results of [25, Section 2.5], where slicing of

codimension higher than one for currents are defined. O

Remark 3.6.3. Note that, if (r,2') € GY%, conditions (iia) and (iib) are satisfied for
every w € S' such that (rw,2') € 0*(E(.4n) = (0*E) 4. This is due to the fact that
the circular symmetrisation has codimension 1. Such property failed, in general, for the

spherical symmetrisation (see Remark 3.1.9).

Remark 3.6.4. An argument similar to that one used in Remark 3.1.9 shows that
H' 0" E N ®12(Gh x S1) N {vfy = 0}) = 0.

As a consequence, the measure )\% defined as:

)\EE(B) = / 219 - VE(x) d?-[l(x),

a*Em<1>12(Bxsl)m{ulE2”:0}
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for every Borel set B C (0,00) x R"2, is singular with respect to the Lebesque measure

in (0,00) x R*72,
We are now ready to state the analogous of Lemma 3.2.1.

Lemma 3.6.5. Let £ : (0,00) xR" "2 — [0, 00) be a measurable function satisfying (1.2.10),
and let E C R™ be an circularly (-distributed set of finite perimeter and finite volume.
Then, £ € BVioe((0,00) x R"™2). Moreover, ¢ € BVioe((0,00) x R"™2) and
/ U(ra')rdD€ (ra') = | Ullarel, ') 212 - dDpo. xi (),
(0,00) xR —2 R7\{z12=0}

for every bounded Borel function 1 : (0,00) x R"™2 — R, where D,£¢ denotes the r-

component of the R"'-valued Radon measure DE'. As a consequence,
rD£"|(B) < |D1a1 xe|(®12(B x SY)),

for every Borel set B C (0,00) x R"™2. In particular, rD.£" is a bounded Radon measure
on (0,00) x R"2. Finally,
Dat(B) = [ vE(w) A1 (a),
B*Eﬁ‘Plg(BXSI)

for every Borel set B C (0,00) x R"2,

Remark 3.6.6. Unlike what happened when we were considering the spherical symmet-
risation, now the function £ might fail to be in BV ((0,00) x R""2). Indeed, in Step 1 of
the proof of Lemma 3.2.1 we used the fact that for r bounded we are in a bounded set.

This is not true in the context of circular symmetrisation.

Next lemma, which is related to Lemma 3.2.2, will show the advantage of considering

a symmetrisation of codimension 1.

Lemma 3.6.7. Let £ : (0,00) xR" ™2 — [0, 00) be a measurable function satisfying (1.2.10),
and let E C R™ be an circularly (-distributed set of finite perimeter and finite volume. Then
(r dD,€")(B) = / B1 - V2 () M ()
B*Eﬁ(ﬁlg(BXSl)ﬂ{l/lEm':O}
.@12 . l/E (.T)

+/ drdx'/ = 2 AdH  (x).
B (0% B) pn v 70} |15 (@)]

for every Borel set B C (0,00) x R"™2. Moreover,

o - vE (z
€)= | 12 V2AE) o,

(0% )y (vE, 20} Vo) (2))]
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for H' 1-a.e. (r,2') € (0,00) x R"2, where (€)' denotes the approzimate differential of

&8 with respect to . Similarly,

Dt :/ vE (x) dH™ (2
( ) 8*Eﬁ¢12(BXSl)ﬁ{V1E2H:0} ( ) ( )

E
+/ drda:'/ Vgi(x)d%o(az).
B (6*E)(r,m/)ﬂ{t/f2“#0} |V12H(x)‘

for every Borel set B C (0,00) x R""2, and

E
Vol(r, a') :/ Vgi(:z)dﬂo(x),
(8*E)(r,z’)m{V1EgH7é0} ’V12||(x)‘
for H* t-a.e. (r,2') € (0,00) x R"2, where V£ denotes the approzimate gradient of ¢

with respect to x'.

The following two results should be compared to Proposition 3.2.3 and Proposition 3.3.1,

respectively.

Proposition 3.6.8. Let £ : (0,00) x R"™2 — [0,00) be a measurable function satisfying
(1.2.10), and suppose that there exists an circularly (-distributed set E C R™ be of finite
perimeter and finite volume. Then, F is a set of finite perimeter in R™. Moreover, for

every Borel set B C (0, +00) x R?2

P(F';®15(B x §1)) < |Dy|(B) + 1| D,€'[(B) + | Dygyxr, | (@12(B x S1)).

Proposition 3.6.9. Let £ : (0,00) x R"™2 — [0,00) be a measurable function satisfying
(1.2.10) such that F* is a set of finite perimeter and finite volume, let E C R™ be an
circularly (-distributed set of finite perimeter, and let f : (0,00) x R"™2 — [0,00] be a

Borel function. Then,
| el o) @ @)
o*E

> || £ )P ) + (rDyE(r, )2 + [V, ) 2 dir o’
(0,00) xR —2

+ f(r,a’)rd| D (r,2") + f(r,2")d| D) (r, 2).
(0,00)xR"—2 (0,00) X R7—2

Moreover, in the special case E = F*, equality holds true.

A straightforward consequence of the previous result is the following formula for the

perimeter of F*.

Corollary 3.6.10. Let £ : (0,00) x R""2 — [0,00) be a measurable function satisfying
(1.2.10) such that F* is a set of finite perimeter and finite volume. Then

P(F% ®5(B x SY))

= [ Pha) + (D€ () + [Vorllr, a2 dr da’ + rD3E|(B) + |DtI(B).
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Next lemma relies on the fact that the circular symmetrisation has codimension 1. The

proof can be obtained by repeating the argument used in the proof of [14, Lemma 4.1].

Lemma 3.6.11. Let £ : (0,00) x R"2 — [0,00) be a measurable function satisfying
(1.2.10), let E C R™ be an circularly ¢-distributed set of finite perimeter and finite volume,
and let A C (0,+00) x R"2 be a Borel set. Then,

H* ({o € "B : v () = 0} N @15(A x §1)) = 0.
if and only if
P(E;®12(B xSY)) =0  for every Borel set B C A with H" Y(B) = 0.

The previous propositions can be proved with the same arguments used to show Pro-

position 3.3.3.

Proposition 3.6.12. Let £ : (0,00) x R"2 — [0,00) be a measurable function satisfying
(1.2.10) such that F* is a set of finite perimeter and finite volume, and let Q C (0, +00) x

R"=2 be an open set. Then the following three statements are equivalent:
(i) H* ' ({z € 0 PE N @15(Q x 8Y) 12 (2) = 0}) = 0;
(ii) £ € Wiie () and £ € Wiy (€);
(iii) P(F% ®13(B x S')) = 0 for every Borel set B C §Q, such that H"~1(B) = 0.

Once all the results above are established, Lemma 1.2.5 can be shown by using the

same arguments as in the proof of [14, Proposition 4.2].
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Chapter 4

Rigidity of equality cases for the
Steiner anisotropic perimeter

inequality

In this chapter, we will present in detail all the results obtained about rigidity for the

Steiner’s inequality for the anisotropic perimeter.

4.1 Setting of the problems and preliminary results

We recall in here, few results that will be useful later on for the proof of (AS) (for more
details see [14, Section 2 and 3]). Let us start with a version of a result by Vol'pert (see

[14, Theorem GJ).

Theorem 4.1.1. Let v € BV(R"!) such that H" 1({v > 0}) < co. Let E C R" be a

v-distributed set of finite perimeter. Then, we have for L 1-a.e. z € R*1,

E, has finite perimeter in R; (4.1.1)
(0°E), = (0"E), = 0" (E,) = 0°(E.); (4.1.2)
q(uE(z,t)) # 0 for every t such that (z,t) € 0" F; (4.1.3)

In particular, there exists a Borel set Gy C {v > 0} such that L '({v > 0} \ Gg) =0
and (4.1.1)-(4.1.3) are satisfied for every z € Gg.
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The next result is a version of the Coarea formula for rectifiable sets (see [14, Theorem

F)).

Theorem 4.1.2. Let E be a set of finite perimeter in R™ and let g : R™ — [0, +00] be any

Borel function. Then,

/*Eg(x)lq(v (2)|dH"( /Rn 1dz/ . g(z,y)dH (). (4.1.4)

Lastly, next result is a version of [14, Lemma 3.2].

Lemma 4.1.3. Let v € BV(R"™Y) such that H" '({v > 0}) < co. Let E C R" be a
v-distributed set of finite perimeter. Then, for L' 1-a.e. z € {v > 0}

Ov / vE(z,y) 0 .

—(2) = — — T dH (y), i=1,...,n—1,

oz; ) @B). 1aWF(z,))| ®)
In particular by (4.1.2) and the above relation, we get for L -a.e. z € {v >0}

1 dv _ ’/z‘F[v](z Y) 0 . %
587:51;(2)_ de (v), i=1,...,n—1,yc (0°F[2])..

4.1.1 Properties of the surface tension ¢y

Let us start recalling some basic facts about the surface tension ¢g. First of all, let us
sum up some known properties of the gauge function in the following result, that can be

easily deduced from [32, Proposition 20.10].

Proposition 4.1.4. Consider K C R" as in (1.5.3). Consider ¢ , ¢} : R™ — [0,00) the
corresponding surface tension and gauge function defined in (1.3.4), (1.3.10) respectively.
Then the following properties hold true.

i) The function ¢y is one-homogeneous, conver and coercive on R"™ and there exist

positive constants ¢ and C' such that

clz| < ¢k (z) < Clz|, Vz eR",

C_ ()_ C7

it) The so called Fenchel inequality holds true i.e.
z-y < Ok(x)¢r(y), Vo,yeR" (4.1.5)

iii) The gauge function ¢} provides a new characterization for the Wulff shape K i.e.

K={zeR": ¢)(x) < 1},



76

from which we can immediately derive that

¢ (r) =sup{z-y: oy (z) <1},

¢ (r) = (¢F)" (2)-

w) If x € 0*K andy € S"™1, then equality holds in (4.1.5) if and only if y = v (x); in
particular

Pr(K) = n|K]. (4.1.6)

Remark 4.1.5. By (i) of Proposition 4.1.4 we have that E is a set of locally finite peri-

meter if and only if E is a set of locally finite anisotropic perimeter i.e. Pr(E;C) < 0o

for every C C R™ compact set.

(=1,1) (1, 1)

(-1,-1) (1,-1)

Figure 4.1.1: A two dimensional example of K*® and its dual (K*)*.

Remark 4.1.6. Thanks to iii) of the above proposition we have
K*={x eR": ¢g(z) <1},
from which together with (1.3.10) gives
o)(z) =sup{z-y: ye K} VzeR"™
For a pictorial idea of K and K* see for instance Figure 4.1.1. Furthermore, observe that

¢x(r)=1 VaeIK", (4.1.7)
Px(x) =1 Vae oK. (4.1.8)
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Remark 4.1.7. Let us consider K C R™ as in (1.5.3). According to Proposition 4.1.4,
i17) another way to define the Wulff shape K is

K = P (2¢;{ N {$n+1 = 1}) )

where E¢,*K is the epigraph of ¢7, in R and p : R*tt — R™ corresponds to the horizontal

projection. By the one-homogeneity of ¢ we get that

brc(tz) =tz (;2) — tox(x) Vo€ R\ {0}, ¥t > 0. (4.1.9)

By (4.1.9), we get for every constant A > 0 that
MK =1p (24)} N {fL'n-i-l = )\}) .

Another thing we would like to observe is that given x,y € R™ with x € AK andy € (AK)€,
(for some X\ > 0) then ¢ (x) < ¢5 (y). Naturally, these considerations hold true for K*

and ¢ too.

Definition 4.1.8 (Sub-differential). Let ¢ : R™ — [0, 00] be a convex function. Let us fix

xo € R™ and consider all vectors yy € R™ such that
¢(2) > d(x0) +yo - (2 —x0) Vze€ER" (4.1.10)

The set of all vectors yg satisfying the above property is called sub-differential of ¢ at xg
and we indicate it by Op(zo).

Keeping in mind Definition 1.3.11 we have the following Remarks.

Remark 4.1.9. For every xo € R", the sub-differential d¢(xo) is a closed and convez set
of R™ (see [37] chapter 5). From this, it can be proved that, given x € 0K, also Cy(x) is
a convex set of R", where C(z) is defined as in (1.3.11).

Remark 4.1.10. Let ¢ : R™ — [0, 00] be a convex function. It is a well known result about
convez functions that, ¢ is differentiable in xo € R™ if and only if 0¢(xg) consists of only

one element. In that situation, we call Vp(xg) is the only element in the sub-differential

0p (o).

Definition 4.1.11. Fiz an integer m > 1 and let K C R™ be as in (1.3.3). Given
a R"-valued Radon measure i on R™ and a generic Borel set F' C R™, we define the

O -anisotropic total variation of  on F' as

lic(F) = [ x (ij(:c)) dlul ().
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Remark 4.1.12. By condition i) in Proposition 4.1.4 we have that

i (F) = [ xc (@) dle) < € [ ) = Clul(F).

Analogously,

1
(F) = [Ldnle) < ¢ [ on (@) diul@) = 3 lulic(F).
F d|p| c
Thus, |plk << |p| and |p| < |plk-
Remark 4.1.13. Given f € GBV(R" '), motivated by (2.0.25), for every Borel set

G c R™ ! we define

(D, 0)|x(G) = lim_[(D*(7ar(f),0)|x(G) = sup [(D*(7ar)(f), O)I(G).  (4.1.11)
—Too M>0

Lemma 4.1.14. Fiz an integer m > 1 and let K C R™ be as in (1.3.3). Let (up)nen and

i be R™-valued Radon measures on R™. Let us assume that
7’) Hh = Ky
i) |pnl(R™) = [p|(R™) and |p[(R™) < oco.

Then,

|l = |l (4.1.12)

Proof. Let us first observe that, thanks to [32, Proposition 4.30] we immediately get

RS (4.1.13)

Moreover, given f € CO(R™), if we consider the Radon measures defined as fj, and fu
Vh €N, then

fun = fu, (4.1.14)

| fun|(R™) = [ful(R™), | fu] < occ. (4.1.15)

Indeed, Vg € CY(R™; R"), noticing that gf € CY(R™; R™) and having in mind assumption

i) we get

tm [ g@)f(@) - dun(@) = [ gla)f(@) - dutz).

h—o0 JRm
This proves (4.1.14). Whereas, thanks to Remark 2.0.1 and having in mind assumption

i1) we get

lim [ [ f(x)[d|pn|(z) =/ |f (@)l d|pl(2) < [|f[] oo )|l (R™) < oo
R R

h—o00
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This proves (4.1.15). In order to prove relation (4.1.12), by definition we have to prove
that

h—o0 JRm

. dup, m
i [ e@on (2@ ) dunl@) = [ ewon (5@ dul@). veect@).
(4.1.16)

Let us fix p € C2(R™) and let us write p = T — ¢~ with ¢*, ¢~ >0, so that

[ oo (G2 i) = [ o @ (G225 dll@) (@107

_/m ()¢K< ())d’MhKIE)—I—H.

Thanks to relations (4.1.14) and (4.1.15) with first f = ¢ and then f = ¢~ and thanks

to Reshetniak result [32, Proposition 20.12] we get that

1= [ @ (@ ) du@). Jim1r= [ @ (@) diel@),
(4.1.18)

Thus, thanks to (4.1.18), passing to the limit as h — oo in both sides of relation (4.1.17)

we prove (4.1.12). This concludes the proof. O

The following Lemma is the anisotropic version of [2, Definition 1.4 (b)].

Lemma 4.1.15. Fiz an integer m > 1 and let K C R"™ be as in (1.3.3). Given a R™-valued

Radon measure p on R™ we have

||k (G) = sup {Z oK (p : (Gh)hen pairwise disjoint, UGh = G} , VG CR™ Borel,
heN h

(4.1.19)

where Gy, are bounded Borel sets.

Proof. Thanks to Jensen Inequality and 1-homogeneity of ¢ we get

ox (1(Gh)) = o ( L mm)dmm) < il (Gh),

so using that G, NGy = 0 Vh # k
|l (G) = |ulx (UnGh) = D |ulk(Gr) = > ok (1(Gh))
heN heN
Taking the sup on the right hand side we proved that |u|x(G) is greater or equal than the
right hand side of relation (4.1.19). We are then left to prove that

|1l x (G) < sup {Z o (1(Gh)) + (Ghr)pen pairwise disjoint, UGh = G} )
heN h
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Let G C R™ be a bounded Borel set. Let us consider the function

@) = Jhola) € L= (R ).

For each i € {1,...,n} we also have

) = G5 @) € LB ),

where p = (u1, ..., tn). Consider Vi € a sequence of step functions { f;  }nen such that
||fh,i — fz‘||Loo(Rm,|m) —0 ash— occ.

As a consequence, we have || fr — fl[zoo@®m ;) — 0 as b — oo. Fix € > 0, then there

exists h(e) > 0 such that

Ifn = fllpoo@®m jurny <€ Vh> h(e).

Since for each i € {1,...,n} the function f; is simple, there exists n(h) € N and a finite
pairwise disjoint partition {GZ}k:L...,n(h) of G such that f;, is constant |u|-a.e. in G%,
Vk € {1,...,n(h)}, namely Jap € R" s.t. fu(z) = apy for |ulae. x € G, VE €
{1,...,n(h)}. Let € > 0 and let, then thanks to the one-homogeneity and subadditivity

we get

n(h) n(h)
o Gt dll(a) = 32 [ o el o) = 3 e Can) G
G =17 GL

n(h)

:§¢K (sns(@D) = X o (/ @ dlul(a >>
(
(

2:2(}31)¢K(M )+Z

K

L s@du@ + [ Gt - (a:))d|u\(m)>
n(h

/sz( ) dpl (2 >+Z¢K (/ x)—f(x))d\u\(m)>
( S (fn = 1) dlnl )
K
e (s — 1) dlu|

SZQSK(;LG" +cz/ (@) = f(@)] dlul(x)

IN

K

n(h)
> 0
k=1
n(h)
> 0
k=1

f)dlu

n(h)

< z ox ((GP)) +eC Y |ul(Gh)

—Z¢K(u 0) +eClul(G)  Vh>h(e),
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Figure 4.1.2: A pictorial idea of the e- ball property.

where C' := sup,cgn—1 ¢x(w). So we proved that Ve > 0 Fh(e) > 0, n(h) € N and
{Gg}k:h_,,n(h) s.t. Vh > h(e) the following holds

n(h)

[ s (Gi(a)) dinl(a) < 3 oxc (w(G1)) +€Clul(@)
k=1

< sup {Z O (1L(Gh)) : (Gr)ren pairwise disjoint, UGh = G}
heN h

+ e Clpl(G).

Taking the limit as h — 400 in the left hand side, by Lebesgue dominated theorem we

get

|tk (G) < sup { Z O (1(Gh)) : (Gh)hen pairwise disjoint, UGh = G}
heN h

+eClpl(G).

By the arbitrariness of € > 0 we conclude for G bounded. Thanks to standard considera-

tions we can extend the result also for G unbounded. O

Definition 4.1.16 (Hausdorff distance). Let A, B C R". We define the Hausdorff distance

between A and B as
disty (A, B) := max {sup d(x, B); sup d(z, A)} ,
€A x€B
where d(-, A) denotes the Euclidean distance from A.
Definition 4.1.17 (e-ball property). Let € > 0. We say that an open bounded set Q@ C R™
satisfies the e-ball property if for any point x € 9Q 3 a unit vector d, € S*1 s.t.

B(x — edy,€) C Q,

B(x + edg,e) CR™\ Q.
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Roughly speaking, a set satisfies the e-ball property if it is possible to roll two tangent
balls, one in the interior and the other one in the exterior part of €2 (see for instance figure

4.1.2).

Definition 4.1.18. Let S C R” be non-empty. We say that S is a C1' hypersurface if
for every point x € S, there exists an open neighbourhood D of x, an open set  of R"™1,
and a continuously differentiable bijection ¢ : E — D NS with ¢ and its gradient Vo both

Lipschitz continuous, and Jyp >0 on E.

Given K C R™ as in (1.3.3), we will now prove few more properties about the surface
tension ¢g. In particular, the main result we present is Proposition 4.1.22 that gives a

characterization of the cases of additivity for the function ¢g.

Lemma 4.1.19. Let K C R"™ be as in (1.5.3), and let y1,y2 € R™. Then, the following

are equivalent:
(i) ¢x(y1) + Ox(y2) = o (Y1 + y2);
(ii) 3z € OK s.t. ¢ (y1) =y1- 2 and ¢k (y2) = y2 - 2.
Proof. Assume (7i) is satisfied. Then,
Oxc(y1 +y2) = max[(y1 +y2) - 2] 2 2+ (h1 +42) = O (y1) + dxc(v2),
which gives (7). Let now (i) be satisfied and suppose, by contradiction, that
3z suchthat ¢x(y1)=y1-z and éx(ya) =y2 - 2. (4.1.20)
Let z1, 29, 23 € OK be such that ¢x(y1) = y1 - 21 and ¢ (y2) = y2 - 22, and
b (y1 +y2) = (Y1 + y2) - 23.
Then,
y1-23<y1- 2 and Y2 - 23 < Y2 - 2o

Note that, in particular, from (4.1.20) we have that at least one of the above inequalities

is strict. Thus,

bx (y1 +y2) < o (y1) + dx(y2),

which is impossible. ]
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Lemma 4.1.20. Let K C R" be as in (1.3.3) and consider ¢x the associated surface

tension. Let yo € R™ and let xo € OK. Then,

Yo
bx (yo)

where, we recall, ¢} (xo) is the sub differential of ¢} (zo).

¢r(Yo) =yo-T0 = € 09 (o),

Proof. We divide the proof into two steps, each for every implications.

Step 1 Suppose
Yo
oK (Y0)

Then, since by (4.1.7) we have ¢7 (z9) = 1, we deduce that for every z € R”

€ ¢ (wo)-

Yo Yo

05 (2) > O (x0) + (z—mg) =1+ “(z — ).
ic(2) 2 dclro) ¢k (40) ( o) 9K (Y0) ( °)
In particular, if z € 0K we have ¢ (z) = 1, and therefore
1>1+ Y0 (2 — mp), for every z € 0K,
Px (Yo)

so that yo - ©g > yo - z for every z € K. Thus, ¢x(y0) = yo - xo.

Step 2 Assume that ¢x(yo) = yo - ©o. Then, by the Fenchel inequality, for every z € R”

we have
* z " Az =2
Sr(Yo)dk(2) > yo-2 = ¢k(z)=> s =  Pi(z)>1+ Yo - ( 0)'
Yo - Lo Yo - To
Recalling that ¢7 (z9) = 1, we conclude. 0

Remark 4.1.21. Let us observe that, given yo € R™ and xg € OK then

or(yo) =yo-z0 <= yo € Ck(xo),

where C%(xg) has been defined in 1.3.11. Indeed, by the Lemma above and Definition
1.3.11, we immediately derive that if ¢x(yo) = yo - zo then yo/Px(yo) € OPi(xo) that
implies yo € Cy(xo). Whereas, if yo € Cj (o) then there exists X = A(yo) > 0 such that
Yo € 0¢%(x0) i.e.

Ox(z) > 14+ Ayo - (2 — x0) VzeR"
In particular, if we choose z € 0K we get
AYo - To > Ayo - 2 VzedK,

that implies ¢x (yo) = Yo - To.
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As a direct consequence of Lemmas 4.1.19 and 4.1.20 we get the following proposition.

Proposition 4.1.22. Let K C R" be as in (1.3.3), and let y1,y2 € R™. Then, the

following are equivalent:

(1) o (Y1) + Ok (y2) = Or (Y1 + 12);
(ii) 3z € OK s.t. ¢ (y1) =1 -2 and ¢ (y2) = y2 - 2,
(ii) 3z € OK s.t. %,#@2) € 0¢%(2).

Remark 4.1.23. By Definition 1.3.11 condition (iit) in the above Proposition is equivalent

to say that
z € 0K st y1,y2 € Ci(2). (4.1.21)

As noticed in Remark 4.1.9, C}(Z) is a convex set and so condition (4.1.21) is equivalent

to say that
Jz2e€ 0K st {dyp+(1—=XNy2: A€ [0,1]} C Cx(2). (4.1.22)

Lemma 4.1.24. Let K C R™ be as in (1.3.3) and consider ¢ the associated surface

tension. Let xg € OK then,

or(y) =1  Vy€ ddk(zo). (4.1.23)
Moreover,
U 00k (z) =oK™ (4.1.24)
0K
Proof. We divide the proof in two steps.

Step 1 In this first part we prove (4.1.23). Let y € 0¢j(xo). By definition of sub-

differential, we have that
P (z) > 1+y- (2 —z0) VzeR™

So, choosing z = 0 we get that y-zo > 1. Observe that y € 0¢}(z¢) implies y € C} (o) so
that, by the above Remark is equivalent to say ¢x(y) = y-xo. So, ¢x(y) =y-zo > 1. At
the same time, the fact that ¢k (y) =y - ¢ is equivalent to say that y/¢x (y) € ¢} (o).
By the convexity property of the sub-differential of a convex function (see Remark 4.1.9),

we have \y € 0¢}.(zo) for every A € [1/¢k(y), 1], namely

P (z) 21+ Ay - (z—m) VzeR", VAe[l/ox(y),1].
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Note that choosing z = 0 we get A > 1/¢x(y), while choosing z = 2zy we get, thanks
to 1-homogeneity of ¢7, that A < 1/¢k(y). Thus, we deduce that 1/¢x(y) = 1. This
concludes the proof of the first step.

Step 2 In the last step we prove (4.1.24). Thanks to step 1 and Remark 4.1.6 we have
that

U 00k (z) COK™.
z€OK

We are left to prove the other inclusion. Let y € 0K™*. By properties of convex sets there
exists v(y) € S"~! such that K* C H 0 (see relations (2.0.1). So, Vz € H, ., »andin

particular V z € K* we have

z-v(y) <y-v(y),

that implies, recalling Remark 4.1.6 that ¢} (v(y)) = v(y) - y. Thus, thanks to Lemma
4.1.20, recalling that ¢ (y) = 1 we get

Gw) =vly) Yy o ¢;<< /) )= AU IV W 4 ) N

¢k (v (y)) Kk (®) ¢k (v (y))
v(y) < [ v)
=__\ P ERACYE
R I ¢K< ()
Since v(y) /95 (v(y)) € 0K we conclude. O
Ces ((0,1))
86735 ((0,1) 1.1 1)
(K*)*

(—1,-1) (1,-1)

Figure 4.1.3: A pictorial idea of condition (4.1.24) with respect to the Wulff shape K*
presented in Figure 4.1.1. Indeed, according to Lemma 4.1.24 and (4.1.28), we see that
0¢%:((0,1)) is a convex subset of the boundary of (K*®)*. The fact that d¢}.((0,1))
actually contains the point (0, 1) is just a consequence of the specific Wulff shape considered

in the example.

Corollary 4.1.25. Let K C R™ be as in (1.3.3) and consider ¢ the associated surface

tension. Assume in addition that i € C*(R%). Then,

o (x) =Vog(r) -z and ¢ (Vok(r)) =1 Vz e R{. (4.1.25)
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Proof. Firstly, let us observe it is a well known fact that the first relation in (4.1.25) holds
true for every positive and 1-homogeneous function. So, we are left to prove the second
relation in (4.1.25). Let z € OK™. As we observed in the above Lemma, by properties of
convex sets there exists v(x) € S"~! such that K* C H ) and o5 (v(z)) =v(z) - x. By

Lemma 4.1.20, having in mind Remark 4.1.10 we have that

v(z)
oy =v(z) - r <+ —F—F— =Vog(x). 4.1.26
By the 1-homogeneity of ¢ it follows that
Vor(Ax) = Vog(x) V>0,V eRy, (4.1.27)
therefore ¢, (Vg (z)) =1 for all x € Rfj. This concludes the proof. O

Remark 4.1.26. Let K C R™ be as in (1.3.3), and consider v € 0K . Note that, thanks the

above results we can deduce the following equivalent characterization for the subdifferential

0¢7 (x), namely
0px () = {y EOK™: y- W = d) <|x]>} (4.1.28)

Indeed, thanks to Lemma 4.1.24 we know that 0¢j(x) C OK* so that ¢x(y) = 1.
Whereas, thanks to Lemma 4.1.20 we have that y € 0¢j(x) is equivalent to say that

1= ¢5% () (y) =y -z, from which, we get y - = = ¢ <‘x|)
The following two results will be used for the proof of Lemma 4.6.3.

Lemma 4.1.27. Let K C R™ be as in (1.5.3). Let x1,22 € OK and y € OK* be such
that y € 095 (x1) N 0Py (z2). Let us now assume that there exist yi,ys € 0¢% (x2), with
Y1 # Y # Y2, such that § = (1 — N)y1 + Ay for some X € (0,1). Then,

(1 — /\)y1 + A\yg € 8(]5}}(1‘1) Ve [0, 1]. (4.1.29)

Proof. Let us suppose by contradiction that there exists \ € [0,5\] such that § = (1 —
5\)y1 + S\yz ¢ 0¢7 (x1). By the Fenchel inequality (4.1.5) and (4.1.28) we get
. I
N N _ 4.1.30
' e =Y Tl o ¢K(1x1|> (4.1.30)
Recall that, by (1.3.6) applied to K* we have that
ﬂ {zeR": z-w< P(w)}.
wesSn—1

By relation (4.1.30) we have that the continuous linear function

PO = (1= N+ m) - 2> e ()
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for every A € (A, 1], but this is impossible since
{(1 =Ny + Ay2: A€ [0,1]} C 9 (z2) C K*.
This concludes the proof. O

Corollary 4.1.28. Let K C R"™ be as in (1.5.3). Let x € OK be such that the subdifferen-
tial of ¢} in x has only one point, namely 0¢j;(x) = {y}. Then, ¥V z € Zk(y), where Zx(y)
is defined in (1.3.16), and for every yi,y2 € Ci(2), if IX € [0,1] s.t. y = (1 —N)y1 + Ay,
then y1 = A1y, Y2 = oy for some A\, Ao > 0.

Proof. So, let us fix z € Zi(y) and y1,y2 € Cj(2) and let us assume that y = (1 —\)y; +
Ay2, for some A € [0,1]. By the convexity of C}(z) together with Lemma 4.1.20 and
Remark 4.1.21 we get that

(1= Ny1 + Ao
S (1= Ny1 + Ay2)

Therefore, thanks to Lemma 4.1.27, we have that

€ 0¢)(z) VYAe[0,1].

(1 —=XNy1 + Ayo
Gr (1= ANy1 + Aya)

but this is possible if and only if %, ¢Ky7é/2) = y. This concludes the proof. O

€ 9¢x(z) VA€[0,1],

We know introduce a technical result that will be used later on for the proof of the Steiner’s

inequality for the anisotropic perimeter.

R

s
ey K

Figure 4.1.4: A pictorial idea for Lemma 4.1.29.

Lemma 4.1.29. Let K C R" be as in (1.3.3) and let us consider K*, its Steiner sym-
metral. Then, for any two points x,y € R™ such that |x| < |y|, pxr = py the following

inequalities hold true

Pres (2) < Pes (y),
dxs(x) < dres (y).
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Proof. We divide the proof in two steps.

Step 1 Let us prove the first relation. Suppose by contradiction that
Prcs (x) > des(y) (4.1.31)
and consider the constant €, > 0 s.t. y € 0(,K°). By (4.1.31) we get
x € (eyT)c
By the symmetry of €, K® with respect to {z, = 0} we know that

y=(py,qy) € 0, K°, y_ = (py, —qy) € 0(e, K*),

while both = (pz,qx) and x_ = (px, —qz) are in (eyKS)C. We found two points y and
y— contained in €,K® whom segment that links them is not totally contained in e, K.

This is a contradiction to the convexity of €, K% and so we conclude that

Ples (%) < Ples (y)-

Step 2 In order to conclude the proof we want to apply the above argument to (K*)*.
It is sufficient to prove that if K* is symmetric with respect {z,, = 0} then (K*)* has
the same symmetric property. If K* is symmetric then, by relation (1.3.4) follows that
oK (pr,qr) = ¢k (px, —qx) for every x € R™. Thanks to this relation, and together with
the fact that ¢3 = {x € R" : ¢ (x) < 1} we immediately get that K* is symmetric with

respect {z, = 0}. This concludes the proof. O

We conclude this section recalling few more definitions and a couple of results very
well known in convex analysis. Such tools, will play a key role in the understanding of

(RSA).

Definition 4.1.30. Let C' C R" be a convex set. We say that x € C' is an extreme point
of C if and only if there is no way to express x as a convex combination (1 — \)y + Az

such that y,z € C' and 0 < A < 1, except by taking y = z = x.

Definition 4.1.31. Let C' C R" be a convex set. We say that x € C is an exposed point
of C' if and only if there exists an hyperplane of the form H,,, with v € S"=1, such that
C CH,, and CNHy,, = {z}.

v

Remark 4.1.32. If C C R" is a closed convex set, then by [37, Theorem 18.6], the set
of exposed points of C is dense in the set of extreme points of C, namely, every extreme

point is the limit of a sequence of exposed points.
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Let us now recall an useful result about the characterization of the exposed points of a

closed convex set (see for instance [37, Corollary 25.1.3]).

Lemma 4.1.33. Let C C R" be a non empty, closed, convex set, and let g : R™ — [0, 00)

be any 1-homogeneous, convex function, such that
C={zeR": z-y<g(y) VyeR"}

Then, z € C is an exposed point of C if and only if there exists a point y € R™ such that
g 1s differentiable at y and Vg(x) = z.

4.2 Characterization of the anisotropic total variation

In this section we will study some properties of the anisotropic total variation (see Defini-
tion 4.1.11), proving also a characterization Theorem (see 4.2.1). This result will be useful
to obtain a formula for the anisotropic perimeter of the subgraph and epigraph of a func-
tion of bounded variation. Such characterization result is already known in literature but
we decided to give a proof for the seek of completeness since we couldn’t find a precise

reference. The main result is the following.

Theorem 4.2.1. Let K C R" be as in (1.3.3). Let u be a R"-valued Radon measure on

R™ m >1, m € N. Then, we have

(@) =sup{ [ p(a)- du(e) : 0 € CHOURY), 0icle) <1} V2 R open
In order to prove Theorem 4.2.1 we need some intermediate results.

Lemma 4.2.2. Let {Kp},n CR", K CR" be such that Kj,, K are as in (1.3.3) Vh € N.

Assume moreover that

i) the sequence (Kp)pen is either of the form Ky C Kpy1 C K, or K C Ky C Kp,
Vh € N,

it) limp,_ 1 oo dist g (Kp, K) = 0.
Then, the sequence {¢k, } converges uniformly to ¢x in Sr—L,

Proof. Without loss of generality we can consider the case when Kj, C Kpy1 C K Vh € N.
For every x € S ! and h € N, let y(z) € 0K and y,(x) € K}, be such that ¢ (z) =
y(x) -z and ¢k, (x) = yp(x) - x, respectively. Then, since K, C K,

Sup, ¢k (z) — ¢x, ()| = sup - (y(x) — yn(2))].
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Note now that, by definition of yp,, we have —z - y(z) < —x -y Vy € 0K}. In particular,
choosing y = z(z) € 0K}, such that |y(z) — 2(z)| = dist(y(x), 0K},), we have
sup [ (z) — ¢r, (2)| < sup [z (y(z) — 2(2))] < dist(y(z), 0Kp) = disty (K, Kn),
zesn—1 zesn—1
where in the last equality we used the fact that K;, C K. Passing to the limit as h — 400

we conclude. O

Lemma 4.2.3. Let K C R" be as in (1.3.3). Then there exists a sequence { Kp}peny C R™
with Ky, as in (1.5.3) for every h € N, such that

i) Ky is CtY, Vh € N;
ZZ) KC"'CKthl C Ky, VYheN;
ii1) limp o disty (Kp, K) = 0.

Proof. We divide the proof in few steps. Take any € > 0 and let K. = ,cx B(z, €) denote
the e-neighbourhood of K.

Step 1 In this Step we want to prove that K. is convex, open, bounded and it contains
the origin. By construction, we need just to prove that it is convex. Consider two generic

points z1,x2 € K¢, let us show that
Ax1 + (1 — )\).’L’Q e K* Ve [0, 1]

Observe that, since x1, 9 € K, there exist ¢, co € K such that |21 —c1| < e and |z —ca| <

€. Thus,

Az + (1= Nzg = Aer + (21 — )] + (1 = N)[ea + (z2 — c2)]

= Acy + (1 — )\)62 + )\(:El — Cl) + (1 — )\)(CEQ — CQ).

Since Ac1 + (1 — Az € K and [A(z1 —¢1) + (1 — X) (22 — ¢2)| < € we conclude the proof
of step 1.

Step 2 In this step we are going to prove that K, satisfies the e-ball property. This is true
by construction. Indeed, since K. is as in (1.3.3), we can associate to it the function ¢, .
So, having in mind (1.3.6) we know that for every y € 0K, there exists v € S"~! and an
hyperplane Hy, () = {2 € R": 2-v = ¢k (v)} such that y € Hy, () and K. lies on one
side of Hy, () (this is because K. is a convex set). So, we can construct on the exterior
of K. a ball of whatever radius tangent to the hyperplane Hy, () in the point y. Let us
now consider z € K, such that |z — y| = € in particular, z € K. By construction we have

that B(z,€) C K¢ and this concludes the proof of step 2.
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Figure 4.2.1: A pictorial idea for the proof of Lemma 4.2.3.

Step 3 We have to prove that 0K, is an hypersurface C! regular. This result is a straight
forward consequence of [18, Theorem 1.8].
Step 4 We are left to prove that disty(U,cx B(z,€), K) < e. By definition of Hausdorff
distance we have that
disty (K., K) = max { sup d(y, K); sup d(y, Ke)}
yeK, yeK

= max {¢;0}.

To conclude the proof of the Lemma let us observe the following. Let us fix a decreasing
sequence of positive real numbers (ep)pen. We can construct the sequence (Kp)pen where
K; = K., is the e,-neighbourhood of K Vh € N. By all previous steps, the sequence

(Kh)nen satisfies ©),4i) and ii) of the Lemma and this concludes the proof. O

Proposition 4.2.4. Let K be as in (1.3.3) and let K* be its dual. Consider (K} )pen a
sequence as in (1.5.3), such that either Ky C K} | C K* or K* C K} | C K}, Yh € N.
Then, denoting with Kj, = (K})* we have

lim distg (K7, K*) =0 if and only if hlirf disty (Kp, K) = 0.
—+0o0

h—+o0
Proof. Let us assume that limj_, 4 distg (K, K*) = 0 and, without loss of generality,
that K* C K}, | C K}, Vh € N. We can apply immediately Lemma 4.2.2 to the sequence
{K} } ey to obtain that PKx uniformly converges to ¢i+. Consider the following quantity
disty (Kp, K) = max { sup d(z, K); sup d(x,Kh)} )
€Ky, €K
Now, by the way the Kj are constructed, and having in mind i) of Proposition 4.1.4, we

have

KhCKh_HC"'CK Vh € N.
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Figure 4.2.2: A pictorial idea for the proof of Proposition 4.2.4.

This fact immediately tells us that

sup d(z,K) = 0.
zeKp

Let us focus our attention now on sup,cy d(x, Kp), thus

sup d(z, Kp) = sup d(z, Kjp) = max d(z, Kp) < rrelgﬁ\x —ZK,|s

zeK x€OK z€
_ . ; * _ =l s _ =l
where zg, = {tz:t>0} NOJKy. By observing that ¢}, () = \th|¢Kh(th) = T,
and since |z| — |zk, | = |v — 2k, |, we get
1 * *
o el = (9, (@) — 9(@).
Thus,

hm |z — 2k, | = hrn |z K, | (qﬁ?{h(w) — qf}((az)) =0 VzeldK

h—+
thanks to the uniform convergence of ¢y, to ¢y This shows that {Kp} C R" converges

in Hausdorff distance to K. Since (K*)* = K, (K})* = K}, the proof is complete. O
We can now prove Theorem 4.2.1.

Proof. For the seek of clarity we decided to divide the proof in several steps.

Step 1 Assume Q2 C R" to be an open, bounded set. We start proving

/‘bK (dw >d|“|( >>Sup{/%0 ) - dp(z) : sOGCé(Q;R”)7¢?<(so)§1}.

Let us observe that by definition of ¢ we have

du
i) = [ qﬁK(d, ,( 0) dl(o) = [, (ye%% v g >) (@)
> [ o) G @) diula),
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where ¢ € CH(Q;R"), ¢%(p) < 1. Passing to the sup on the right hand side we conclude
the first step.

Step 2 We want to prove the reverse inequality, namely

() < sup{ [ ol@) - du(o) s o € CHOURY), i) <1},

In order to do so, we consider at first the case when ¢k is in addition C1(Rf). Recalling

relations (4.1.26), we have

(@) = [ o (i) dld(@) = [ one (@) - (o) diula)

Since Vo € CO(RP), the composition Vi (ﬁ(x)) is well defined moreover,

Vo (50()) € Ll i),
with 67 (Vo (194(x))) =1 for |ul-ae. z € Q. Recall that

DK (ng)K <|§,u|( ))) =1 implies Vog (|Z |( )> € 0K, for |u|-a.e. x € Q.

that means Vo (%(l’)) € L*°(Q, |p|; R™). By the fact that Q is a bounded set we have
that

Vor (gn()) € QR Vo> 1.

Let us call f := Vg (Idul) By [2, Remark 1.46] there exist a sequence (g), € C2(£; R™)
such that g, — f in LY(Q, |u|;R™). Since every function in C? can be uniformly approx-
imated by functions in C! we can suppose without loss of generality that the sequence

(gn)n € CL(Q;R™). Now we consider the sequence (§), € C2(€2;R") defined as

_ . gn(x)
gn(z) == o (on()) 1/ VheN.

By construction, up to a subsequence, we have that g, — f |ul-a.e. on Q and, thanks
to the term 1/h in the denominator, gs(z) € K, so that ¢% (gn(z)) < 1 for every h € N
and for |ul-a.e. x € . By the continuity of the functions gy, for every h € N there exists
A = A(h) > 0 such that 0 < A(h) < 1 and gp(z) € A(h)K for every x € Q. Again, using
the fact that C1(Q;R™) is dense in C2(£2; R"™) we can proceed as follow: let (€)nen be such
that e, > 0 for every h € N and ¢, — 0 for h — oo. For every h € N let f, € C}(Q;R")
be such that

sup | fu(r) — gn(x)| < en-
e



94

Since dist(O(A(h)K);0K) > 0 for every h € N, choosing €, small enough we get that
Vh € N fp(z) € K for every x € Q . Thus, by the Lebesgue dominated convergence

theorem

(@) = [ o (Gota )dw = [ Jim puta)- 5 ‘< 2)dlul(a)

= Jim [ o) @@ < s [ (o) G @)l
< _gmw o / Plo) - S @)lul(@).
#7 (P)<1

This concludes step 2.

Step 3 We want now to prove the statement for a generic ¢. Thus, thanks to Lemma
(4.2.3) consider {Kp}pen C R™ a sequence as in (1.3.3) with K}, € K11 C --- C K and
such that the sequence satisfies the assumptions of Lemma 4.2.2. Using Proposition 4.2.4
we can immediately deduce that ¢, uniformly converges to ¢ . Therefore, applying step
2 we get

dp
i (@) = [ o, () @) = s [ ota)- @l @)

oECL(QR™), d|pl
¥, (@51

dp

< s o) o @)

peCl(QRM), /O |1
b (P)<1

where we used the fact that ¢j;(p) <1 as a consequence of ¢ (¢) <1 and of K C K.

Now, thanks to the uniform convergence of the functions ¢, to ¢ we get

@ = | ¢K(d|ﬂ|)d|u|< =hgrf [ o () dlul@)
p [ o) g @dale)

LpeCl QR™)
5 (P)<1

This concludes the proof in the case 2 open and bounded. From standard considerations

about outer measures, the extension of this result for unbounded open set follows. O

The following result is the anisotropic version of [11, Lemma 3.7].
Lemma 4.2.5. If v and p are R™-valued Radon measure on R™, then
2|plk (G) < |p+ vk (G) + |p - v|k(G) (4.2.1)

for every Borel set G C R™.
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Proof. Fix a generic partition of G made by bounded Borel sets {G} };en, by subadditivity

we have

or (2u(Gi)) = o ((Gi) + v(Gi) + u(Gi) — v(Gi))
< ok ((n+v)(Gi)) + ér (1 — V) (Gi)) -

Thus,

>0 (2u(Gi)) < D [ox (1 +v)(G)) + dx (= v)(Ga))].-

€N 1eEN

Then thanks to Lemma 4.1.15 and passing to the sup in both sides we get

20K (G) < sup Y [ox ((n+v)(Gi) + ox (0 —v)(Gi))]

Gi}ieN
<sup Y o ((+v)(Gi)) + sup Y dx (1 —v)(Gr))
{Gi} ien {Gr} keN
= lp+ vk (G) +|p—v|k(G).
This concludes the proof. ]

Remark 4.2.6. Let puy, po be R™-valued Radon measures on R™. Let us observe that, by
(4.2.1) with p = py + p2 and v = py — pa we obtain

[+ polx < |palk + |2k (4.2.2)

On the other hand, let v1,v9 be R™-valued Radon measures on R™. Then, by the above

relation with puy = v1 + 2 and pe = —1v9 we get
|I/1+V2|KZ |V1|K—|—V2’K. (4.2.3)

Remark 4.2.7. In this Remark we discuss the equality case for relation (4.2.1). Let us

assume that
2ulk(Q) = |p+ vk (G) + |u — vk (G) V Borel set G C R™. (4.2.4)

We immediately observe that if |u|x (G) = 0 then |u+v|k(G) = |u—v|k(G) = [v|k(G) =0,
so that

vk < |pls

Thanks to Radon-Nykodym Theorem we know that 3g,h € Li, (R™, |u|x;R") s.t.

v=glulx and p=hlylk,
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thus,

pEv=(h+g)lplk.

Observing that

(@) = [ ox (Ghl@ )t vite) = [ on (20 ) i glto) i),

we can now rewrite (4.2.4) in the following way

[ 205 (@) dlulac(@) = [ oxc (8 + 9)(@)) dlnlsc(@) + | oxc (0= 9)@)) dllic(z).

By 1-homogeneity we have

[ 61 (20(@)) = b (1 + 9)(@)) = b (h = 9)(a) diplxc(x) =0 ¥G & R™ Borel,

By subadditivity we get

ox (2h()) — éx (h+9)(@)) — dxc (h—9)(@) <O |plx-a.e.a € R™,

thus,

o (2h(x)) = 6 ((h+ )()) + bk (h— 9)(2))  |ulx-a.c.w € R™, (4.2.5)

Thus condition (4.2.4) is equivalent to (4.2.5) that is equivalent to say, thanks to Propos-
ition 4.1.22, Remark 4.1.23 and relation (4.1.22) with y1 = h+ g and yo = h — g, that for
\nli-a.e.x € R J2(z) € OK s.t.

{h(z) +tg(x): t € [-1,1]} C Ck(2(x)). (4.2.6)

4.3 The Steiner’s inequality for the anisotropic perimeter

In this section we prove (AS), i.e. that the Steiner’s inequality for the anisotropic perimeter
holds true whenever we consider £ C R™ any set of finite perimeter and a Wulff shape
K?* defined as in (1.3.3) that is symmetric with respect the hyperplane {z, = 0}. The
strategy we will use, follows the ideas presented in [14]. Let £ C R™ be any set of finite
perimeter, consider B C R"~! any Borel set and let Gg and Ggs be the two sets given by
Theorem 4.1.1.

Let us start providing the details of the simple example shown in the Introduction (see

Figure 4.3.1), where Px(K) < Pg(K?®). Simple calculations show that



97

Cx ()

g9

Figure 4.2.3: In this picture we give a 2-dimensional representation of condition (4.2.6)

where h € C%(Z) and Z is a fixed point in the boundary of the Wulff shape K.

F
LK KS
K K YEF Yra
YAB YBo
\ : / \ /
A C E G
o O
K K*
/ \ VHE VGH
K K
YDa Ycp
H
D

Figure 4.3.1: An example in which Px(K) < Pg(K?®). The coordinates of the vertices
are A = (—1,0), B = (0,1), C' = (1,0), D = (0,-3), E = (—1,0), F = (0,2), G = (1,0),
H = (0,-2).

H'(AB) = H'(BC) = v2, H'(CD)=H'(DA) = V10,
HY(EF) = H'(FG) = H'(GH) = H'(HE) = V5,

where by H!(AB) for instance, we mean the length of the segment AB.
g (LY2 VR (V2 V2Y e (3VI0 VD VK__@ﬁ
ABT 202 )0 TBOT 120 2 cp=\"10 ' 10 )7 PAT 10 10 )°
e (Y5 VBN e ((2V5 VBN e (2V5 VBN e (295 W5
GH — 5’ 5 s HE — 5 5 EF — 5 ' 5 FG — 5 ' 5

Moreover, using relation (1.3.4) we get

V2

o (Vip) = ok (vho) = 5 O (VED) = dx(Vha) = T
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3\/5 s KS 2\/5
)

= ¢K(VJIE‘(F) = ok (Vpg) = —(—-

or o) = oxvie) = v

Therefore,

Pi(K) = | orc(v"(@)dH (z) = V2 (¢x (vhp) + ok (Vi) ) + VIO (61 (vEp) + éx (vEa))

O*K
=38,

PR(K?) = [ o™ @)dH () = V5 (xc(vki) + o vEG) + o i) + oxc(vhi))

o*Ks

= 10.
This shows that Px(K?®) > Px(K) and so (AS) fails to be true.

Remark 4.3.1. Let us observe that since K* is symmetric with respect to {x, = 0}, then

Vz € R™ we have that ¢ (pz, gx) = ¢x(pr, —qr).
First, we need the following intermediate result (see for instance [16, Lemma 5.3]).

Lemma 4.3.2 (Auxiliary anisotropic perimeter inequality). Let v as in (1.1.3) and let

K CR"™ be as in (1.3.3). Then, for every E C R™ v-distributed set we have
Pys(F[v]; B x R) < Ps(E; B x R) +|q(D1ppy)|(B x R) (4.3.1)
for every Borel set B C R" !, where

la(DLrg)|(B < B) = [ g @) ).
8" Flo]N(BxR)

Proof. The argument used in this proof follows the ideas of [14, Lemma 3.5]. Let {v;};en C
CH(R"1) be a sequence of non negative functions such that v — v L™ 1ae. in R*1,
Vo; = Dv and |Vu,|(R*™!) — |Dv|(R*1). Moreover, let us denote by F[vj] the set
v;-distributed constructed as explained in (1.1.1). Fix any open set @ C R""! and let
f=(f1,f2,.-, fn) € CL{XR,R"™). Then, thanks to the divergence theorem and standard

differentiation results we get

vj(2)/2 N1 afz df
1 — 1{ v;(2) v;i(2)\] Ov;
=35 fZ <Z7 2 )+fl (27_ ! ):| ]dZ
2 Jp(suppf) iZ Z 2 2 O;
Ofn
+ 1g, d
QxR F[ J] 8 z-
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Thus, calling g;(z) := % (fZ (p ,Uj(px ) + fi (p:n M)) fori=1,...,n— 1 and using

the Fenchel inequality (see ii) in Proposition 4.1.4) we get

/ Lpp,divfde S/ ¢ (91(2)s - -+, gn-1(2),0) (= Vv;(2),0 d2+/ 1F[v]}8fn
QxR p(suppf)

< /p - %dﬁgs < i <z, ”Jéz)) e fa <z, “Jé”) ,0> bics (—Vu;(2), 0)dz

If now we consider ¢J..(f) < 1, thanks also to the symmetric properties of the Wulff shape,

we deduce that

/ Lpp;)divfde < / ¢ (=Voi(a),0)da’ + [ Lpp,o— O g,
QxR p(suppf) QxR dn

Now let us observe that, by Lemma 4.1.14 applied to p, = (—Vv;,0) and g = (—Dv,0) we
get that |(—Vv;,0)|x = |(—Dwv,0)|x. Thus, since 1pp,) = 1pp £"-a.e. and p(supp(f))
is a compact subset of €2, we can take the limsup in both side of the above inequality as

J goes to infinity and, recalling [32, Proposition 4.26] we get

dDv of
1ppd d</ ( ’)dD ’+/1v"d
Joo trdtivide < [ e (=g @).0) Al & [ ey e

< [ one (=i @).0) diDul(@) + la(D1p1) (@ % B,

The last inequality holds whenever €2 C R™ is an open set and hence, we deduce that it
holds true also for any Borel set. Finally, using the characterization of the anisotropic

total variation (see Theorem 4.2.1) and [14, Lemma 3.1], we deduce that
dD'U / / n—1
/ ks ~diDv |( x'),0 ) d|Dv|(z") < Pgs(E; B x R) VB C R"™" Borel,

and this concludes the proof. O

We can now prove (AS).

Proof of Theorem 1.3.1. We divide the proof in two steps.

Step 1 Let us consider first B C (G Fp NG E), where Gpp,) and Gg are sets given by
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Theorem 4.1.1 for F[v] and E respectively. Then, by equation (4.1.4) we get

Pres(Fu]; (B x R) = Ors (v (2))dH" T (2)

S—

9* Flvjn(BxR)
_ brcs (WF(z ) g
B /de/(a*F la(vFll(z,y))| dH"(y)
= e y)
B /B dz /B*F <|q(VF[U](Z,y))|> dH (y)v (432)

(4.3.3)

where the last equality holds true thanks to the one-homogeneity of ¢gs. Thanks to

Lemma 4.1.3 we observe that,

I/F[’U](ij)) _ M(Z y)) F[v( y)) q(yF ( ))
P~ \OPITC  WPT [aPe)
o 181)( ) 1 av( ) (VFU](Z, )) *
_< 2 9z "7 201,y |q(WFI(, )))’ (2,y) € O°F[v]. (4.3.4)

Thanks to Theorem 4.1.1 we have that (0*E), = 0*E,. Calling N(z) = H°((0*E).), we

know that thanks to the isoperimetric inequality in R, N(z) > 2 for H" ! a.e. z € {v > 0}.

Thus,
, _ vFll(z,y))
Prs (F[’U], B x R) = /de/ (0 Flu]). gf)Ks <|q(yF[v](z’y>)’ dHO(y)
B 1 dv(z) 1 0v(2) 0
_/de/(*F[v] ¢KS( 2 axl Y 20z, 171>d7-[ (y)
B 10v(z ) 1 0v(z dv(z)
_/32¢Ks< 2 dx1 " 20w )d _/ bxe ( 3331 ”75£L‘n1’2)dz

_ Vi (Zvy)) 0 Vn 1( 7y))
- J, o </aE A o Tatob e o)

- J, N (J[aE ™ b, A s, )

dH°, 2) dz (4.3.5)

' (2,9)) vya(z,y) 2 0
/ dz/*Ez v <|q vE(z, ) Iq(vE(z,y))l’N(Z)> W
i i (29)) v 1(2,9)) 0
/ d /E <Iq vE(z,y) Iq(vE(z,y))l’1 )
. F(zy) v (,9) Az 9) ) 0
/ d /E (\q WEE ) lawE (z,9)] \Q(VE(%?U))Q W)

= Py+(E; B x R),

where in the first line we used (4.3.2), in the second line we used (4.3.4), from line 5 to
line 6 we used Jensen inequality, from line 6 to line 7 we used Lemma 4.1.29 and from line

7 to line 8 we used the symmetric properties of K®. This finishes the proof of the first



101

step.
Step 2 We consider B C (R”_l \ (G Fl) NG E)) Using Coarea formula we get,

[a(DLr|(B xB) = [ o M @)ar @) = [ HO(O" Flo))d
* Flo]N(BxR)

- HO(O" Flu)).)dz + HO(O F[u)).)dz = 0
Bn{v>0} B\{v>0}

where for the last equality we used that £7~!(B) = 0 together with H°((0* F[v]).) = 0 for
all z € B\ {v > 0}. Putting together this result with the auxiliary anisotropic perimeter

inequality (4.3.1) we obtain that
Py+(F[v]; B x R) < P+ (E; B x R).

This concludes the second step. The proof of (1.3.1) follows on splitting B into B N
(G F NG E) and B\ (G F NG E) and using step 1 and step 2 respectively. O

4.4 A formula for the anisotropic perimeter

Through all this section, given u € BVj,.(R"~1) we consider 7 := (Du, —£"~!) a R"-valued

Radon measure on R* 1.

Theorem 4.4.1. Let K C R" as in (1.5.3) and let u € BVj,.(R"™1), then
9|k (B) = |Dlsu|x(B xR) VB c R"! Borel.

Proof. Thanks to Theorem 4.2.1, the identity follows from a careful inspection of the proof
of [25, Theorem 1 (Section 1.5)]. It is important to notice that in the present situation

one should replace condition |¢| < 1 with ¢%(¢) < 1 with ¢ € CLH(R™; R"). O

. . . 2N
We recall now an important result concerning how to determine v>" i.e. the outer normal

to the reduced boundary of the subgraph of the function u. Recall that thanks to Radon-
Nykodym Theorem we have

Du = D% + DIy + D¢u.
With a little abuse of notation let us call D*u = D%u + Du, so that
Dy = D*ul_Z,

where,

d| Dyl
dLr1

Zu:{ZEEQ: (x):+oo}.
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Theorem 4.4.2. Let u € BV(Q) with Q C R"~! open and bounded, then

i) for |n|-a.e. x € Q\ J, we have

dn

— X :—VEMLU’U/.’B
(@) = =" (@),

it) for |n|-a.e. x € J, we have

dl( )= dD’u
d|n| d|Diul

(x), O) = (vu(x),0) = == (z,y) Vys.t. (z,y) € LY,

iii) for |n|-a.e. x € ((Q \ Ju)N {93 €Q: @ (z,uV(x)) = 0}) we have

dn ( dD )
—(z) = =—=—(x),0]) .
i = )
Proof. Statement (i) is proved in () of [25, Theorem 4, section 4.5]. Statement (ii) follows

by combining (i7) of [25, Theorem 4, section 4.5] with (i7) of [25, Theorem 3, section 4.5].

We will give a proof of point iii). Let = €  and consider p > 0, then

111(Dg,p) = sup f(y) - dn(y)

[f1<1 Dq,p
F€CY(Dy,p,R™)

= @Epl (/Dz,p(fl(y)"”’fnl( ~dDu(y / fn(y dy>

F€CY(Dy,p,R™)

< s [ (AW faa) - dDu) + s Fuly)dy
|fI<1 Dz, IfI<1 Dz,p
F€CY(Dy,p,R™) feC(Dy,p,R™)

= |Dul(Dy.p) + L7 (Da,p)-
At the same time we get

W)= s [ f)-dn)

lf1<1
fECg(Dl'yﬂan)

> / (F1)s- -+ () - dDuly)
Dx,p

Z ‘Du|(D£B,p)v

where the last inequality is obtained passing to the sup in the right hand side. Putting

together these two inequalities we get
|Du|(Dy.p) < [n](Dsp) < |Du|(Dy,p) + L7 (Dyp). (4.4.1)

Let now z € Z and let p > 0. Then,

W(Dz,p) _ n(Dz.p) ’Du‘(Dz,p)
N(Dz,p)  [Dul(Dzp) [n|(Dzyp)
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Since

_ n(Da) ( dD%u )
1 2 = 0
0+ [Dul(Dyp)  \d|Deul (2),0),

we are left to prove that

lim 1Dul(Dzp) _ 1. (4.4.2)
p=0+ [1|(Dz,p)

Thanks to (4.4.1) we have

Dul(Day)  _ |Dul(Day) _ |Dul(Day)

< < = 1. (4.4.3)
|Dul(Dyp) + [Dapl = nl(Dzyp) ~ |Dul(Dy,p)

Recall that x € Z, so that

D
hm | z7.0|

——— = 0.
p—0+ |Dul(Dy, p)

Thus, we can calculate the following limit for the left hand side of (4.4.3)

|Dul(Dry) i
# 1Dul(Du) + [Dagl ~ 0+ 14 Pzl "~
p—0 z,p zpl P L+ .

By the above calculation and relation (4.4.3) we proved (4.4.2) and so we conclude the

proof. O

Proposition 4.4.3. Let u € BV,.(R"!) and let K C R"™ be as in (1.3.3). Then, for

every Borel set B C R"™! we have

Pr(S"% B x R) = /BW Ly O Vuta), )i (4.4.4)
dDiu "2
+ iju[u]($)¢K <_d\Dju\(x>’0> dH (I‘)

dD‘u
+ — x ,0) d|Dul(x),
[ o (e @-0) diDrul(@)

where Z, has been defined at the beginning of this Section.

Proof. Let us consider a generic Borel set B C R"!. Then, thanks to the De Giorgi

structure Theorem and Theorem 4.4.1 we get

Pre(®% B xR) = /6*2um(BxR) S ) )

/{Q*EUO(BXR) OK ( d|Dlss] (z) | d|D1su|()

~ [ o (—jf;(x)) dj|(x).
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Let us split the last integral in the following way

dn dn
[ox(-gr@)dn@=[ o (-Fw)diw @
dln B\(JuUZ) d|n
dn
H o (~5E@) dinlw) (1.4
BNJu |77
dn
+ [ ox (- 3E@) dil(@) (1.47)
BnZ dn
About the first integral on the right hand side we observe that
nR" N\ (J,U Z,) = (D%, —L" Y LR = (Vu, L") LR L,
Therefore, recalling Remark 2.0.1 we have
B:/V,—ld d / |Vu|?2 + 1dz ¥V Borel set B C R"™! UZ).
n(B) = | (Vu,—1)dz and [n|(B VIVl x orel se \ (JuU Z)

Thus,

i _ V@D o
/B\(JuUZ) 2 <_d|n|(x)> dln|(z) = /B\(JHUZ) P <\/m> \/md

= o (—Vu(x),1)d. (4.4.8)
B\(J,UZ)
Let us observe now that, thanks to (i7) of Theorem 4.4.2
nl Jy = (Dlu, =L L J, = (DIu,0)L J,.
Thus,

[n|(B) = |D?u|(B) V¥ Borel set B C J,.

Then,

fyo e (o) i) = [ on (=5 @0 b

dDu .
= oo, ¥ <_d‘Dju|(x)70> [u](z)dH"2(z).  (4.4.9)

A similar argument holds for the integral over B N Z,, so that
dn > / < dDy >
———(x) ) d|n|(z) = ———(x),0 ) d|Dul(x). 4.4.10
L, o (i@ dil) = [ ox (~ga@.0) doruie). (4410)
Combining equations (4.4.5), (4.4.8), (4.4.9) and (4.4.10) we conclude. O

Remark 4.4.4. We can also use the notation of the anisotropic total variation to obtain

a more compact formula for the perimeter,

P (% B xR) = /B¢K(—Vu(a:),1)da;+ [(=D7u,0)|(B) + |(—Du, 0)|  (B).



105

Remark 4.4.5. Note that, since ¥, = R" \ X%, we have 9*%, = 0*3% and v>u(x) =

—v>"(z) for H" '-a.e. x € 0*%,, and so
Pk (3u; B xR) = /BébK(VU(m),—l)dﬂer |(D7u,0)|x(B) + [(Du, 0)|x(B)

for every Borel set B C R"™1. Note that, although ¥, = R"\ X%, since ¢ is not a norm,
it might be that P (Xy; B X R) # Pr(X%; B x R). Indeed, let us consider the following

example.

(0,1)

(—1,0) (2,0)

0,-1)

Figure 4.4.1: Since this Wulff shape is not symmetric with respect to the origin we can

construct examples where Pg(3,; B x R) # Pg(X%; B x R).

Let us consider K C R? as shown in the figure above and let ¢ be its surface tension

defined as

o) = max{|pz|, |qz|}  if pr <0

max{2|pz|, |gz|} if pr > 0.

Let us consider as u € BVi,(R) the following function

u(e) = 2 ifx>0

1 ifz<O.

Then, fizing B = (—1,1) we have
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(0,2) o (0,2)

nuw

Figure 4.4.2: A pictorial idea of ¥*. Figure 4.4.3: A pictorial idea of ¥,,.

PK(EM B x R) = 1¢K((O7 _1)) + 1¢K((170)) + 1¢K((O’ _1)) =4,
Pr(E% B xR) :==1¢((0,1)) + 19k ((—1,0)) + 16x((0,1)) = 3.

Lemma 4.4.6. Let K C R" be as in (1.5.3). If ui,us € BVipe(R" 1) with u; < uz and
E =%, NX" has finite volume, then E is a set of locally finite perimeter in R™ and for

every Borel set B C R"!

PK(E;BXR):/  k(Vu(@),—Dde+ [ r(=Vus(z), )da
Bn{ui<u2} Bn{ui<us2}

(4.4.11)

+ 1 (vuy (), 0) (min(uf (2), u5 (2)) — uf (2)) dH" 2 (2)
BNJuy

+ O (Vs (2),0) (ug (2) — max(uh (2), u (2))) dH"7(2)
BN Juy

+ (D1, 0)|k (B N {ur < uz}) + |[(—Ds2,0)|k (B N {ur < uz})
Proof. We will follow the strategy of [11, Theorem 3.1]. By [32, Theorem 16.3], if Fi, F5
are sets of locally finite perimeter in R”, then
(PN By) =y (V00" B) U (Y noR) U (0" B0 o B0 (o™ = v},
(4.4.12)

Moreover, in the particular case of Fy C Fy, then v = vf2 H" L ae. on 0*F N O*F.
Let us observe that u; < wg implies ¥,, C ¥,, and that X2 = R" \ ¥,, implying

py,, = —Hsw2. We thus find
i = = H e on 075, NOTRY. (4.4.13)

By, (4.4.12) and (4.4.13), since E = ¥,, N X" we find

OE = (9%, 0 (52)D) U (975 0 (20y) V)
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Thanks to [25, Section 4.1.5] we know that ¥, and X"2 are sets of locally finite perimeter

in R” with
050 N (S5, x R) =g {x € R™ : i (pr) = qu}, (4.4.14)

S0 N (Suy X R) =1 {2 € R" : uf (p) < qu < u) (pz)} | (4.4.15)

20 N (S5, X R) =y {z € R : @i (pa) < qu}, (4.4.16)

20 0 (Suy X R) =1 {z € R™ : uy (pz) < gz}, (4.4.17)

(242)M' N (S5, X R) =1 {w € R : Ga(pz) > qu}, (4.4.18)

(=2)D N (S, X R) =yn-1 {z € R" : uh(pz) > quz} (4.4.19)

We now focus on the set 9*3,, N (X¥2)(M). Observe that,
P (S (%) 1 (B X R)) = P (Buys (5")V 0 (BN JE, N JE,) x R])
+ P (D3 (2%2) D N (BN, N JE,) x R))
+ Pic (S (2%2) 0 N [(B Ny N ) X R])
+ Pic (Suy; ()0 N [(BNJE, N ) X R])
Applying (4.4.14) to u; and (4.4.18) to ug we find
(078w N ()W) 0 (5, N T5,) X B) =g {(z00(2)) + 2 € (TG, N, ia(2) < iia(2)}
(4.4.20)
Applying (4.4.15) to u; and (4.4.18) to ug we obtain
(072, 0 (Z)D) 0 (T 1 J,) X R) (4.4.21)
=1 {(2,1) 1 2 € (Ju, NJL,), uf(2) <t <min(uy(z),u2(2))} .
Combining (4.4.15) to u; and (4.4.19) to uz we obtain
(20 N () M) O ((Juy N Juy) X R) (4.4.22)
=gn-1 {(2,8) 1 2 € (Juy N Juy), uf'(2) < t < min(uy (2),u5(2))} .
Finally, applying (4.4.14) to u; and (4.4.19) to ua we get
(20 N (=) W) A ((JE, N Jus) X R) (4.4.23)
=pn-1 {(2,11(2)) 2 € (Ji, N Juy), W (2) < up(2)}

Thus, thanks to Remark 4.4.5 and (4.4.20) we get

-/ -
8* %y N[(BNJG NJG, N{u1 <uz})xR]

[ (Vo) Do+ (D, 0) (B O 7 < ).
Bn{ui<us}

P (Eu1§ (Euz)(l) N [(B n Jil n Jg,z) x R (ZSK(*I/EM (x))d'}_[nfl(m)
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Using Fubini theorem and (4.4.21) we get

Prc (S (3)D N (BN Juy 0 JE,) X R])

Sr(—v" () A" (y)

/<9*Eu1 NI((Z42)MNBNJy, NJG, ) xR]

= | (=T () dH ()
{z€R™: pre BNy NI, , uf (pr)<qz<min(u) (pz),u2(pz))}

Pt n—1
uq ug

= dH" 2 / = (2 ) L aagr o (2 )1, ~ JdH(t
BAJu, 05, (Z) R(ZSK( v (Z )) {s>ur( )}(Z ) {s<m1n(u\1/(z),u2(z))}(z ) ()

_ dH"2(2) /R Ok (Vs (2); 0) L u (293 (2 L fpcmin(uy (o) (e} (2 AR (1)

BNJuy N,

= i (vuy (), 0) (min(uf (2), U2 (2)) — uf () dH">(2).

BNJuy NI,

Observe that we could have used uj or uy instead of uy since we are working in BN.J,,, NJg,.

For similar arguments, using (4.4.22) we get that

Pic (Suy; (") N [(B N oy 0 ) % R])

=/, O (vuy (2),0) (min(uy (2), uh (2)) — uf (2)) dH" 72 (2).
NJuy Nuy

Furthermore, thanks to (4.4.23) we deduce that 1~ (9", N (3%2)D 1 (J¢, N Ju,) x R]) =
0. Thus, we have that

Prc (S (2)D N [(BN TG, N Jug) X R]) = 0.

Therefore,

Prc (S (20 0 (B x R)) = /B iy O (V@) 1) (4.4.24)
* Jon, #% (uy (2),0) (min(uy (2), w5 (2)) — uf (2)) dH"7%(2)
+ [(D1, 0)[k (B N {ur < uz}). (4.4.25)

By symmetry, we got that

Py (2“2; (Su,)V N (B x R)) = /Bﬂ{171<{[2}¢K(_VU2($)7 1)dx (4.4.26)
+ B, O1c (Vuy (2),0) (u3 (2) — max(ug (2), uf (2))) dH"%(2)

+|(=D‘uz,0)|x (B N {u1 < uz}).

Putting together (4.4.24) and (4.4.26) we obtain the formula for Px(E; B x R). O
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We now extend Lemma 4.4.6 to the case of GBV functions.

Theorem 4.4.7. Let K C R" be as in (1.3.3). If ui,us € GBV(R" ) with u; < us and
E =3, NX" has finite volume, then E is a set of locally finite perimeter and for every
Borel set B C R"~!
Py (E:B x R) = / brc(Vuy (), —1)dz + brc(—Vua(x), 1)dz
Bﬂ{u1<u2} Bﬂ{ul<ug}

+ O (vuy (), 0) (min(uf (2),u5 (2)) — uf (2)) dH" 2 (2)
BNJuy

t L, 9K (—vuz(2),0) (ug (2) — max(uy (2), uf (2))) dH" () (4.4.27)

+ ](Dcul,O)\K(B N {u] < u}}) + |(_DCU2,O)‘K(B N {u~1 < ng}).

Proof. To prove (4.4.27) it suffices to consider the case where B is bounded since (4.4.27)
is an identity between Borel measures on R*~!. Given M > 0, let Ey; = Y (u) NE™ (u2),
Since 77 (u;) € BVjoe(R™™1) for every M > 0, i = 1,2, by Lemma 4.4.6 we find that Ej;
is a set of locally finite perimeter and that (4.4.11) holds true on Ej; with 737(u1) and
7ar(uz2) in place of u; and ug. To complete the proof of the theorem we are going to show

the following identities

Px(E;BxR)= lim Pg(Ey;B xR) (4.4.28)
M—+00
\% ,—1)dz = i \V ,—1)d
~/Bﬂ{u1<u2} (bK( U1(33) ) v Mifgoo Bn{ra (u1)<7ar(u2)} ¢K( TM(Ul)(H?) ) o
(4.4.29)
-V 1)de = i Y ,1)d
/Bm{“1<“2} (Z)K( 'UJ2($) Jda MLIEOO BN{tar(u1)<7ar(u2)} P TM(U2>($) )dz
(4.4.30)
(D1, 0[5 (B N {1y < ia}) = (4.4.31)
. dDC’TM(ul) )
lim . (.CC,O d| D pr(ur)|(x
M=+00 BN {rar(u1) <7 (u2)} o d|DCTM(U1)|( ) | w(w)|(z)
‘(—DCUQ, O)’K(B N {u] < ’1[2}) = (4.4.32)
. dDCTM(UQ)
lim ¢ (—:n,O)dDCT u2)|(x
M —+00 B{rar (u1)<mar (uz)} K d’DCTM(UQ”( ) ’ M( 2)|( )
[ o (21,0 (i (2, 2)) = i () a2 (2) = (4.4.33)
BNJu,
dD’
W o (g 0) im0 a0 () ) ) )

T (w1)
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[ b (21,00 () — max(uf 2)  (9) 4 2(2) = (1.4.3)
. dDI 7y (uz) v A v n—
A [ e (BT (,0) (rar(ua)(2) — max(rae(ua) 21 1) ) ).

T (u2)

Observe that by [2, Theorem 3.99] with f = 73 we have for i = 1,2

D (1ar(ui)) = Ljugjenry Ve £+ (T () = 7o () v, H' 2 L Sy + Ly <ny DCui
(4.4.35)
We divide the proof in few steps.
Step 1 (Jump part) By relations (2.0.7)-(2.0.10) and relation (4.4.35) we get that
{J.

ar(u) } M>0 18 @ monotone increasing family of sets whose union is Jy,;, i = 1,2. Moreover,

observing that

min (7p7(8); Tar(t)) = Tar (min(s; t)) Vs, teR

max (1ar(s); Tar(t)) = 7ar (max(s;t)) Vs, teR
and taking into account relation (2.0.10) we deduce that both

(min(7ar (u1)”(2), Tar(u2)" (2)) — 7as (u1)" (2)) ar>o,
(a1 (u2)" (2) — max(7as (u2)" (2), Tar (u1) Y (2))) >0
are increasing family of functions. Thus, the proof of (4.4.33) and (4.4.34) is completed.

Step 2 (Cantor part) Firstly, let us notice that by definition of approzimate average
(see Section 2) and relation (2.0.7)

{TM(ul) < TM(UQ)} = {rm(uy) — T (uy) > 0} U {rar(ub) — mar(uf) > 0} .

P e g

Thus, by relation (2.0.11) we deduce that {7as(u1) < Tar(u2)} ar>0 is a monotone increasing
family of sets whose union is {u; < ug}. Let us call Ay = {Tp(u1) < 7ar(uz2)} and

A = {u1 < uz}. By relation (2.0.25) and by the monotonicity of the sets {Ap}ars0 we

have that
Mligﬁoo |Du;| (BN {Apn}) = |Dui| (BN A) = M1—1>H—i}oo | D Tprus|[(BNA). (4.4.36)

Again by the monotonicity of the family of sets {As}ar>0 and by (4.4.35) we have
| D ;| (Anr) < |Dmarus|(Anr) < |DTagui|(A).
Thus, taking the limit for M — 400 in the above relation we obtain

|D;|(A) < liminf |Dmasu;|(Apr) < limsup |[Dmprug|(Apr) < [DCus|(A),
M—00 M—o0
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proving that

lim | Dmarui|(Anr) = |Dui|(A).

M —+o00

Analogously, having in mind Remark 4.1.13 we get that

(D%u1,0)|x(BNA) = lim |[(Darut, 0)|x (BN {Aw}),

M—+oc0

(—=D°us,0)| k(BN A) = lim |(—D°rasusz, 0)|x(B N {Au}).
M —+oc0

This concludes the proof for both (4.4.31) and (4.4.32).

Step 3 (Absolutely Continuos part) By (4.4.35) we get

/ e (Vras () (), —1)dar :/ e (Vur (2), —1) da
Bﬂ{‘l’]\/j(ul)<7']\/j(u2)} Bﬂ{TM(ul)<TM(u2)}ﬂ{|u1|<M}
+ oK (0,—1)dx
Bn{ra (u1)<rar (u2) }0{|ui|>M}
=1+ 13"

Notice that

112" = ¢x (0, ~1) L™ (B N {rar(ur) < 7ar(ua)} N {Jus| > M})

< o (0, =)L (BN {lur| > M}).

By the fact that {|ui| > M}r>0 is a decreasing family of sets whose intersection is

{Jui| = 400} we deduce that
lim |I37] = 0.
M—ro0

Since both {|u| < M}~ and {7ar(u1) < Tar(u2)} a0 are increasing family of sets, we

apply the monotone convergence theorem to get that

lim I{w:/ oK (Vui(z), —1) dz.
Bﬂ{u1<UQ}

M —oc0

An analogous argument can be used for relation (4.4.30) and so this concludes the proof

for both (4.4.29) and (4.4.30).

Step 4 (Perimeter functional part) Lastly, let us consider the family of sets Ey;, =

En{|xn| < My} where the sequence of real numbers { M}, }ren has been chosen s.t.

lim H" (BD N {laz| = My}) =0, H"H(@°EN{lqr| = My}) =0 VheN.

h—+o00

(4.4.37)
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Observe that the the existence of such a sequence { M}, } e is guaranteed by the fact that
|E| < oo and by the fact that H" 1L 0°F is a Radon measure. Thanks to the above two

relations and [32, Theorem 16.3] we have that

Py (Eap: B x R) = / e (v (2))dH" ™ ()

9°Ep, N(BXR)

-/, Orc (v (2)) A" ()
¢ Ear, N(BXR)N{|qz|<Mj}

/ O (vMn (2))dH" ! ().
EWN{|qa|=M }N(BxE)

Observing that,

/ Or (VM (2))dH" " (2) < CH"HEW n {|az| = My}),
EMN{|qz|=M;}N(BxR)

and considering the first relation in (4.4.37) we finally get

lim o (VEMn (2))dH"H(x) = P (FE; B x R).
h=r+00 Joe Epgy, N(BXR)N{|qz|<Mp}

This concludes the proof. ]

Lemma 4.4.8. If v € (BV N L*®)(R"}[0,00)), b € GBV(R"!) and we set u; =
b—(v/2) € GBV(R" 1), ug = b+ (v/2) € GBV(R™ 1) then for H" 2-a.e. x € J,NJy, we

have

dDIuy

if x € {[b] < [;] DUy = I/v} U{wy = -} then D7 () = —vp(z)  (4.4.38)
ifae {[b] > m vy = VU} then dcylngh (2) = +1p(z)  (4.4.39)
if x € {[b] < B] Dy = —I/U} U{vy =1y} then jgjzz‘(x) = +uvp(z)  (4.4.40)
ifoe {[b] > m - —uv} then ;'lgjzz(x) — u(z). (44.41)

Moreover,
if v e {[b] = %[v] HEVES VU} then x & Jy, (4.4.42)
if v € {[b] = %[v] Sy = —l/v} then x & Jy,. (4.4.43)

Proof. Firstly, let us notice that thanks to [32, Proposition 10.5] we already know that for

H"2-a.e. x € J, N Jy either we have

vy(2) = vp(x) or

vy(x) = —1p(x).
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ug(.r)
E
f f uy ()
| | E
| |
| |
I I
G I
| | ub (@)
| A | 2
()
: u2 x : ul(z)
77777 T———;<77777777777777> 7—~——-:-————m e i
: uf (z) : u ()
| |
Avy(z) =vp(z)  [b](z) > [v](z)/2 B:vy(z) =vp(z) [bl(z) > [v](z)/2
A A
| |
I I
| |
er |
E
: : uy (@)
| A |
: uy (@) : Y () E
| |
77777 T———z—o———————————f77> ——~——T———x—-0———————————7——>
:4|u¥<z> —
! u{\(ac) ! !
uY (@)
C:vy(z) =vp(x) [b](z) < [v](=)/2 D :vy(z) = —vp(z) [bl(z) < [v](z)/2
A A
I I
I I
I I
| uy () | uy ()
@) |
77777 T———;o——————————E—fff> ——~——T———; b — — — - — — - — - - — = >
| @) | u}/(z)
1 u x 1
' ! b ()
| ! E
uf (@)
ug (@)
E:vy(z) = —vp(z) [b)(z) > [v](z)/2 F:uvy(z) = —vp(z) [b](z) > [v](z)/2
Figure 4.4.4

Let us start by proving relation (4.4.38). In particular, using the definition of upper and

v

lower limits, we want to prove that when x € {[b] < [§] : vy = 1} (see figure 4.4.4 C)
then

(4.4.44)

As we said, we just need to verify if the definition of jump direction for the upper and
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lower limit is satisfied, namely if for every ¢ > 0 we have that

Lo ({yer: juy) — (- (3)" @ +6"@)| > e} N HE, N D)

=0.
p—+00 wn71pn71

(4.4.45)

Let us substitute in the numerator of (4.4.45) u; = b— 3 and observe that by the triangular

inequality we have that

{yerti b - 5+ (3) 0@ -¥@

2

;
C {y e R [b(y) — b (z)| + ’;(y) - (;)A €9

Consider now the following partition of A,

{y R [b(y) — b ()] > ;} NA= Ao, (4.4.46)
{y eR"1: |b(y) — b (2)| < ;} NA:=A_, (4.4.47)
{y eR™ 1 |b(y) — b (z)| = ;} NA:=A_. (4.4.48)

So, using the above partition we can estimate the quantity in the limit relation (4.4.45)

as follows
M ({y e R )~ (- 6)" @ +6' @) | > e N H, N Day)
wn—lpn_l
H = (ANHS_, ND.,) MU (AscNHF_, ND,,)
< T < T (4.4.49)
Wn—1p"" Wn—1Pp""
Hn—l <A<e N H;r,fyv N Dx,p) Hn—l (AZE N H;,fl/v N DI,P)
* w n—1 + n—1 :
n—1p Wn—1p
By relation (4.4.46) we have that
Ase C {y eR": |b(y) — V()| > ;} .
Thus,
’anl (A>€ m H;_—VU m D:Eap)
lim :
W ({y e R b(y) — b\ @)| > §Y N H L, N D)
< lim T =0, (4.4.50)
p—++o0 Wn—1p""

where the latter equality holds true by definition of b (z) having in mind that v, = v, by

assumption. Concerning A, we have that

> e~ oy) - 1) = 5

=3
13

Ac=fyer: rw-(3) @
clyer:[fw-(3) @
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Thus
-l (A<EﬂH+_l, nD,,)
lim ! i
H L (fy e R |2(y) — (D (@) > SYNHY_, ND,,
< lim § 2 2)n_1 ’ 5} 0 s, 0 D) =0. (4.4.51)
p—r+oo Wn—1pP

Thanks to the estimate (4.4.49), putting together (4.4.50) and (4.4.51) we get that (4.4.45)
holds true for every € > 0. To conclude we have to prove estimate (4.4.45) for u} (x) namely
we have to prove that

N ({yer:Juy) = (- (3" @ +6@)| > e} N H_, N D)

T =0 Ve>D0.
p—+oo Wp—1p""

In order to prove that, just use the same argument used for (4.4.45), noticing that H, _,, =

H}, = Hj,. To prove the remaining statements (4.4.39)-(4.4.41), it is sufficient to

T,Vp*
consider the same argument adopted for (4.4.45), considering in each case the right function

either § or b with which construct the partition A, and A..

Let us now prove relation (4.4.42). Let z € {[b] = 3[v] : 14, = 1} and let us consider the

functions by, u; € GBV(R" 1), k € N defined as

b(z), if z € H;Vb(w)

br(z) = uy (2) =

ui(2), ifzeH_, .

b(z) — £[b)(z), ifz€ HS

z,vp ()"

uy(z) — [b)(z), if z€ HS

z,vp ()"
Let us note that uy ;, = by—3v. Moreover, note that, by (z) = b"(z), b} (z) = b¥(z)—£[b](z)
and so [bg(z) = [b](2) — 1[b](2). In particular, we have that = € {[bs] < 1/2[v] : v, = 13}
Thus, by relations (4.4.38) and (4.4.44) applied to u; j, we get that

Y () = — 50" @) + D) = 50" (&) +1(a), (1.4.52)
uha() = —50" (&) + B () = 50" (&) + B (2) — 1 [b](x)
= 30" (@) + (@) + (1 - 11) B)(z) (4.4.53)

Moreover, by (2.0.3) and (2.0.4) we have that

nl tyND
uy(z) =inf{t € R: lim A Qe > 50 Dey) 0 (4.4.54)
p—07F wn—lpn_l
n—1 t D
= inf {t : lim AT (> }P ) =0 (4.4.55)
p—0+t wn—lpn_

n—1
LER: lim 2 ({“1”“<t}mD“’p):0} (4.4.56)

p—07F wp—1p" !

uf, k() = sup

— sup {t eR: lim L (<80 Dry) O} : (4.4.57)

p—07+ wWp—1p" !
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Observe that the sequence (uij)ken is non decreasing in k. Thus, we can deduce the

following inclusions Vk > 1

n—1 n—1
{tGR: lim H ({ul,k>t}ﬂDx,p) :0} - {tER: lim H ({U1>t}ﬁDI7p) :0}

p—0+ Wp—1p" p—0+ Wp—1p"
Hrt <t}nD Hr L <t}nD
teR: lim (s <80Day) _ ol Jyep: tim (<0 Duyp) _
p—07F Wp—1p" 1 p—07F Wp—1p" 1

Thanks to the above inclusions, having in mind definitions (4.4.54)-(4.4.57) together with
relations (4.4.52), (4.4.53) we get

1 1 1
50 @)+ 1@ + (1= 1) B) = uao) < 0 (o) < 0 () < wfele) = — 50" (@) + V')
Since —1vV(z) = —3v"\(z) — $[v](x), passing through the limit as k — +oo in the above

relation, we conclude that uf(z) = uy(z) and so = ¢ J,,. This concludes the proof of

(4.4.42). Using a similar argument as the one used for (4.4.42), we can prove (4.4.43). O

Remark 4.4.9. The cases where [b](z) =0 i.e. x € J,\ Jp can be seen as degenerate situ-
ations in Lemma 4.4.8 considering in those characterizations [b] = 0. A similar argument

can be applied to show that for H" 2-a.e. x € Jy\ J, we have vy, = vy, i = 1,2.

Remark 4.4.10. Let us introduce the following compact notation.

A=J,\ Jp,
1 1

B, = {JvﬂJb: vy =y, [b] < 2[1}]}, B; = {JvﬂJb: vy =y, [b] = 2[1}]},
1

B; = {JvﬂJb: vy = Up, [b] > 2[1}]},

1
Bl — {Jv Ay s vy =~y [B] < Q[U]}, B — {Jv Ay s vy = —vp, [B] = [v]},
1
Bg = {JvﬂJb D Vy = —Up, [b] > 2['0]},
C=Jy\ Jo.
Note that we have
6
LU%zAU(UBOUG (4.4.58)
=1

Moreover, following the argument explained in the proof of Lemma 4.4.8 we can prove the

following relations

ifre A then uf(z)= —%’UA({E) + b(z); uf () = —%vv(x) + b(z) (4.4.59)
ugy (x) = %vv(:c) + b(z); uh (z) = %fu/\(x) + b(x). (4.4.60)
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ift € BiUBy then wu(x)= —%UA(w) + b (z); up(z) = —%vv(x) +bY(z) (4.4.61)
Y (z) = %UV(Q;) 1Y (2); w)(z) = %M(x) L0 (2). (4.4.62)

ifr € By then wuy(x)= f%vv(av) +bY(2); up (x) = f%vA(:v) + b (z) (4.4.63)
w () = %Mm) F Y (2); u)(z) = %UA(x) + b\ (). (4.4.64)

ifv € ByUBs then wuf(x)= —%’UA(:L') +0Y(2); up(z) = —%vv(m) +b"N(x) (4.4.65)
) (z) = %UV(:C) b (2); uh(z) = %UA(x) FY(2).  (4.4.66)

ifv € Bg then wu(z)= —é’(}/\(.%') +0Y(z); up(x) = —%Uv(x) + 0" (x) (4.4.67)
uy (r) = %v/\(m) +bY(x); uh(x) = %vv(x) + b (). (4.4.68)

ifre C then wuy(x)= —%6(3}) +bY(2); up(x) = —%'f)(%‘) + b () (4.4.69)

W (z) = %@(;p) Y (2); uh(z) = %@(x) + (). (4.4.70)

Corollary 4.4.11. Ifv € (BV N L®)(R"1;]0,00)), b € GBV(R" ') and

W= Wlo, b — {x ER™: gz — b(pz)| < “(’2’”7) } , (4.4.71)

then u; = b — (v/2) € GBV(R" 1), ug = b+ (v/2) € GBV (R 1), W is a set of locally

finite perimeter with finite volume and for every Borel set B C R"™! we have

Pe(W;B x R) = /BO{M} bx (V (b - ;) ,—1) + oK (—v (b + ;) ,1) A (44.72)

* BNJ, min (Uv, (B} + [b] + max (B} — [b], 0))) dr(—v,0)dH" 2

(4.4.73)
i /8va min <”A’ max <0° Uk BD) dxc (v, 0) dH" 2 (4.4.74)
T snin) min (6], 9) (¢K (=14,0) + dxcs (1, 0)) dH" (4.4.75)
- ’(DC (b - ;> ’O> ’K (BN{o>0}) (4.4.76)
" ’<_Dc <b * ;) ’0) ‘K (BN{o>0}). (4.4.77)

Proof. The absolutely continuous part and the Cantor parts of the formula, namely rela-

tions (4.4.72), (4.4.76) and (4.4.77) are obtained directly by substitution of u; = b — v



118

and ug = b+ %v in the formula (4.4.27). To prove the jump parts of the formula i.e.
(4.4.73), (4.4.74) and (4.4.75) we have first to notice that (see (4.4.58))

6
Juy Udyy = Ly Uy =Jy \ b U (SN ) UJp\ Jy =AU (UBZ> ucC.
i=1
Thanks to this relation, we can rewrite the second and third line of the formula (4.4.27)

as

/BQ(JMUJuQ) ¢rc (Vuy (2),0) (min(uf (2),u5 (2)) — up'(2))

+ 01 (—vuy(2),0) (ug (2) — max(uf (2), uy (2))) dH" 2 (2)

:/ L(2) + I(2)dH" () = / L1(2) + L(z)dH"2(z)
BN(Juy UJuy) R
6
£3 [, 1+ BEHTE) + [ 1)+ REIHTE)

Using then Lemma 4.4.8, Remark 4.4.9 and Remark 4.4.10 we deduce relations (4.4.73),
(4.4.74) and (4.4.75). This concludes the proof. O

Corollary 4.4.12. Ifv as in (1.1.3), then

Pi(Fu]): G x R) = / X (—1v (v), —1> a4 bxc <—1v (v), 1) !
GN{v>0} 2 GN{v>0} 2
[ [l (=il 0)dHm2 + 2 ’ <—1D%, o) (@),
GnJy 2 K

Proof. The proof follows by applying Corollary 4.4.11 with u; = —3v and uy = %U. O

4.5 Characterization of equality cases for the anisotropic

perimeter inequality

This section is dedicated to the proof of Theorem 1.3.2. This proof is on the spirit of the
proof of Theorem 1.1.4 (see [11, Theorem 1.9]). We split the proof of Theorem 1.3.2 in

the necessary part and in the sufficient part.

Proof of Theorem 1.3.2: Necessary conditions. Let E € Mgs(v). This implies that all
inequalities in relation (4.3.5) must hold as equalities. In particular, by the latter of these
equalities we get that N(z) = 2 for H" l-a.e. z € R*! implying that E, is H!-equivalent
to a segment for H" !-a.e. z € R"! that is condition (1.1.8). As a consequence , by

Theorem 1.1.3, we have that by = lg,~5bp € GBV(R"™!) for every § > 0 such that
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{v > 6} is a set of finite perimeter in R"~!. Let us consider the same sets defined in [11,

page 1568] namely

I={0>0:{v<d}and {v >4} are sets of finite perimeter} , (4.5.1)

Js ={M >0: {bs < M} and {bs > —M} are sets of finite perimeter} . (4.5.2)

Let us observe that #!((0,00) \ I) = 0 since v € BV(R"!) and that H!((0,00) \ J5) =0
for every § € I, as for every § € I we have bs € GBV(R"!). Let us fix §,L € I and
M € Js and set

Ysom ={0 <v<L}n{lbg| <M} ={|bs] <M}n{éd <v<L},

so that Y57 ar is a set of finite perimeter. Since Tpsbs € (BV N L) (R™1), Iss o €

(BV N L>®)(R™"1) and 73/b5 = bs = bg on Y5.0,M, We set

bs,..m = 15, bE-

Note that bsz ar € (BV N L) (R™"1).
Step 1 In this step we are going to prove that for H" '-a.e. = € R" ! there exists
z(x) € OK such that

{(—;Vv(x) + tVbs 10t (@), 1) tel-1, 1]} C Cier(2(2)). (45.3)

Indeed, let us set vsrar = ls;, ,,v. Since vsrar,bsm € (BV N L>®)(R" 1), we can
apply Corollary 4.4.11 and Remark 4.3.1 to W = Wvs 1 ar,bs.1,1]. Moreover observe
that W[U&L’M, b(S,L,M] =FEnN (E(S,L,M X R) and thus

OE N (S5) 3y X R) = 0 Wlvspar, bs.ar) N (S5 4y % R),
and so, for every Borel set G C E((;L 2\ (Svs.par UShs 1y ) We find that

Pys(E; G x R) = Pgs(Wlvs.m, b5, 0,m); G X R)

= / OKcs ( (b6,L,M — U(S;M> ,1> + Pk (—V <ba,L,M + végM> ,1> dH™ !

+ ‘(DC <b5,L,M - vé’g’M) ﬂ)‘ (G) +‘< (béLM + 5];M) 70)‘ (G).
Ks Ks

We can use Lemma 2.0.3 applied with vs 1,y = Iy 1 a0 tO find that

_ n—1 n—1
Vs v =155, ,, Vv, H' -ae on R,
D* = DL x")
U67L7M - v 6LM7

1
S”é,L,M N z]c(S,I),,M = S” N z:((5,£,M'
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Thus,
Pi+(E;G x R) = /G brcs (v (bMM ~ ;’) ,1) ¥ s (—v <b57L7M n ;) ,1) dH!
+ ‘ (DC (bg’L’M — v) ,0)‘ (G) + ‘(—DC (bé,L,M + U) ,0) (G),
2 Ks 2 Ks

for every Borel set G C Z((;E’ 2\ (Svszar U Shsp ) By assumptions we are assuming
that E € Ms(v) and so for every Borel set G C R*~! we have that Pys(E;G x R) =
Pgs(F[v]; G x R). In particular, having in mind the formula for Pgs(F[v]; G X R) given

by Corollary 4.4.12, for every Borel set G C Eg}va (Svs.par U Sbs p ) We get

0= L¢KS (V (ba,L,M - g) ,1) + dxs (*V (bé,L,M + %) ,1) — 20K (fv (%) ,1) dH" !
(4.5.4)

(0 G~ )05 (s 3) O g0 2 (2 () ) g1 059

Let us notice that the first line in the above relation, namely (4.5.4) is greater or equal

to zero by the sub additivity of ¢x. Also the second line in the above relation, namely
(4.5.5), is greater or equal to zero thanks to Lemma 4.2.5 with pu = (—%DCU,O) and
v = (Ds,1,0m,0). Thus, we have that

0= [ owe (% (= 3)1) e (< (s 3) 1) 20 (- (5) 1)
(4.5.6)

o= (a0 ) 0) g1+ (- (s ) ) g1 2[5 () o) g0 s

Ks Ks

Let us observe that the relation (4.5.6) is satisfied if and only if H" !-a.e. in G we have

dKcs (V (b57L7M — ;) (x), 1) + s (—V (b(;,L,M + ;) (:U),l) = 2¢ ks (_sz(af),l) '

Thanks to Proposition 4.1.22 the condition above is satisfied if and only if for H" '-a.e. = € G,

Jz(x) € OK* s.t.

(V (bs,p,m — 3) (2),1) (=V (bs,,m + 3) (2),1)
¢rcs (V (bsr — 5) (2),1) ¢res (=V (bs.p,m + 5) (2),1

As we observed in Remark 4.1.23, and in particular using relation (4.1.22) with y; =

] € 0¢Fes(2).

(—%V(ac) + Vs, M, 1) and yo = (—%V(w) — Vbs,.Mm, 1) the condition above is equivalent

to say that for H" l-a.e. x € G, there exists z(z) € K® s.t.

{(—;V(x) +tVbs v, 1) cte -1, 1]} C Ci(2(2)). (4.5.8)

This concludes the first step.

Step 2 In this step we prove that there exist a Borel measurable function g5 1, s : R —

R”~1 such that

1
D5, 25 0 = G0, ‘2D°v
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We prove also an intermediate relation for (1.3.14). Indeed, let us rewrite relation (4.5.7)

as

v v
(D500l (@) = | (17 (bagar = 5 ) 0) @)+ | (=0 (Busar + 3 ) 0| 6.
KS KS
As already observed, by calling
D
n= <_27 0) )

vV = (ch5,L,M7 0)
the above equality can be written as
2|k (G) = [p+ vk (G) + | = vk (G).

Observe that we are in a case of equality in Lemma 4.2.5. Thus, by Remark 4.2.7, for
|Dvl-a.e. x € G we define

dD%bs 1, 01
d|(D/2,0)| s

—dD*v/2
d|(D/2,0)| s’

and we conclude that for |[D|-a.e. © € G there exists z(z) € 0K s.t.

h(zx) =

g&L,M(l') =

{h(@) +tgsrm(x) : t € [-1,1]} C O (2(2)). (4.5.9)

This concludes the second step.

Step 3 In this step we prove (1.3.13). We fix §, L € I and we define 35, = {0 <v < L},
bs.1, = 125,LbE and v5 1 = Iy v Since Ys 7, is a set of finite perimeter, it turns out that
bs., € GBV (R"!), while, by construction, vs 1, € (BVNL>®)(R"!). So, we can apply the
formula of Corollary 4.4.11 to the set Wvs 1, b5 z]. In particular, if G C ZS}JH(S’UMUSI,M),
then

PKS (E G x R PKs (W[v5 vaéL] G x R)

min (v, [bs,1] + max v — [bs,L) brcs (v, 0)dH 2 (4.5.10)
i (1 ([5] + sad o ([5] - st 0)))

. min (v/\, max ( bs.r] — [;])) brcs (v, 0)dH 2

+/ ; b s ,0) + s ,0 dan—2’
g " (P50 (05t 00+ 00,1, 0)

where we used the fact that, thanks to (2.0.15)
(1) _ vy Voo A oA _ (1)
Y51 N Susp =250 N S, v5p=v" wvsp=0", lvsgr] =[] VreXl;;.

Let us observe that, calling I the argument of the integral in relation (4.5.10) i.e.

I = min <vv, ([;} + [bs,2] + max (B] B [b&L]’O)))
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we have that

if  [bsr] =0 then I=v], (4.5.11)
i sl < %[v] then T =[v], (4.5.12)
if  [bsL] > %[v] then 1> [v]. (4.5.13)

Recall that

P+(F[o]; G x R) = /Gm (] bics (v, 0)dH™ 2.

Thus, since ¢gs > 0, imposing that Pgs(F[v];G x R) = Pgs(F;G x R) and having in
mind relations (4.5.11)-(4.5.13) we obtain that

min ([bs,1],7) =0, H" *-ae. in G N (Sp;,\Sv)

(4.5.14)

min (M, max (o, [bs.1] — [;D) —0, H"2ae. in GNS,
(4.5.15)

I = min (UV, (m + [bs.1] + max (m — [bs.L], 0))) = [u] H" %ae. in GNS,.
(4.5.16)

Since ¥ > ¢ > 0 in Eglz, from (4.5.14) it follows that Sy, , N Eglz Cyn—2 Sy. Moreover,

from (4.5.11), (4.5.12) together with (4.5.14) and (4.5.15) it follows that

[bs.0] < [1)2] H" 2ae €GN, (4.5.17)
By (2.0.15), [bs..] = [bg] on Eg}%. By taking the union of Eg’lz on §,L € I and by taking
(2.0.13), (2.0.14) into account we thus find that

[v]

br] < 5 H"2-a.e. on {v" >0} U {v" < oo}

Since, by [22, 4.5.9(3)] {vV = oo} is H" 2-negligible, we have proved (1.3.13).

Step 4 In this step we prove (1.3.12). Let 6,L € I and M € Js. Since bs v = bg
H" l-ae. on Ys5,m by (4.5.3) and by (2.0.19) we find that for Hrlae x € X5,0,M>
there exists z(z) € OK* s.t.

{(—;Vv(x) + tVbp(x), 1) te -1, 1]} C Cks(2(x))-

By taking a union first on M € Js and then on 6,L € I, we find that for H" '-a.e.

x € {v > 0}, there exists z(z) € K* s.t.

{(—;Vv(x) +tVbg(z), 1) tte[-1, 1]} C Cs(2(2)).



123

At the same time, by definition, by = 0 on {v = 0}. Thus, by (2.0.19), we have that
Vbg = 0 H" tae. on {v = 0} and so, we deduce that for H" t-a.e. © € R""! there

exists z(x) € OK*® s.t.

{(-3%@) +tVbE(a:),1> L te [—1,1]} C Cks(2(x))-

This concludes the proof of (1.3.12).
Step 5 In this step we prove (1.3.14). Let 6,L € I and M € Js. Since b5 m =

125,L,M7'Mbt57 by Lemma 2.0.3 we have
D .00 = D(Tarbs) L Zgle

Combining this fact with (4.5.9) we find that for every G C 2552,M? for |[D|-ae. v € G
there exists z(z) € 0K s.t.

{h(z) +tgsm(z) : t € [-1,1]} C Ok (2(x)),

where for [D|-a.e. x € G the functions g5 »s and h are given by

_ dD®(Tarbs) _ _ —dD%/2
9o, () = d|(Dv/2,0)] s’ hle) = d[(D/2,0)| s

Observe now that

U= 0= Ullbsl < M}V n{o > 630 n{o < £}®
Lel Lel

= ({lbs] < M}V {v > 53V) | {o < L}V
Lel

= {|bs] < M}V n{v > 63D N {Y < oo},

where in the last identity we used (2.0.13). Note that, as we pointed out at the end of step
3, H"2({v¥ = o0}) = 0, so the set {vV = oo} is negligible with respect to both |D¢7yb;|
and |D°v|. Thus, we proved that for every bounded Borel set G C {|bs| < M}V N {v >
5} for |DCvl-a.e. & € G there exists z(x) € OK s.t.

{h(z) +tgsm(z) : t € [-1,1]} C Cx(2(x)). (4.5.18)

Observe that for every M’ > M and § < § we have that 7a/bs = Tapbsy on {|bs| <

M} n{v>d}. So, by Lemma 2.0.3 we get that
D° (marbs) L {|bs| < M}V 1 {v > 63D = D¢ (rypbs) L {|bs| < M}V N {v > 530,

and therefore the function gs s actually does not depend on d, M. So taking into account

(4.5.18) we have that for |D|-a.e. x € G there exists z(z) € 0K s.t.

{h(z) +tg(x): t € [-1,1]} C Cx(z(x)). (4.5.19)
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Lastly, let us notice that
Tmbs = M1gs>ary — Mlgs<— iy + 1{ps|<mynfos>sy Tmbs,  on R™1
is an identity between BV functions. Thus, thanks to [2, Example 3.97] we find that
Drarbs = D (ragbs) L (G N {[bs] < MY (1 {o > 6}0)

i.e. the measure D°rybs is concentrated on {|bs] < M} N {v > 6}V, Therefore, we
deduce that for every bounded Borel set G C R"1, for |Dl-a.e. = € G N {|bs] <
M} N {v > 6} there exists z(z) € OK s.t.

{h(z) +tg(x): t € [-1,1]} C Ck(2(x)). (4.5.20)
O

Before entering into the details of the proof for the sufficient conditions part, we need a

couple of technical results.

Proposition 4.5.1. Let K C R" be as in (1.3.3)and let v be as in (1.1.3). Then, if E is
a v-distributed set of finite perimeter with sections E, as segments H" '-a.e on {v > 0}

we have that

Pr(E; {v" = 0} x R) = Pre(F[o]; {v" = 0} x R) = /{ gy VR 0)dH"2.

(4.5.21)

Proof. The proof of this result follows from a careful inspection of the proof of [11, Pro-

position 3.8], and for this reason is omitted. ]

Lemma 4.5.2. If v € (BV N L>®)(R" 1Y), b: R*! — R is such that Tyyb € (BV N

L>®) (R for a.e. M >0 and p is a R" '-valued Radon measure such that
Mlim | — Dmprb|(G) =0 for every bounded Borel set G C R" 1, (4.5.22)
—00
then,

[(D(b+v),0)|rs (G) < |(1n + D), 0)|xs(G)  for every bounded Borel set G ¢ R" L.
(4.5.23)

Proof. Let L > 0 such that |v| < L H" !-a.e. on R"7L If f € BV(R" 1), then

™mf =Ml — Ml an + 1< f € (BV N LO)R),
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for every M such that {f > M} and {f < —M?} are of finite perimeter and thus, by [2,
Theorem 3.96]

Dryf = D (LyneanS) = Lypeanm D°f = DFLA{If] < M};
in particular,
(D°Tar f,0)|xes = |(D£,0) [ ies L {If] < M} < (D, 0)] e (4.5.24)

From the equality 7a7(7a74+1(b) + v) = 7a7(b + v) and from (4.5.24) applied with f =

Ta+1(b) + v it follows that, for every Borel set G ¢ R* ™1

[(D(Tar (b + 1)), 0)| k= (G) = [(D(Tar (Tar+L (D) + ), 0)| k= (G)

< (D (Tar+1.(b) +v),0) | ks (G). (4.5.25)
Now observe that (4.5.22) implies that

lim | — (u — D°mab) |(G) =0 for every bounded Borel set G € R"™1. (4.5.26)

M—o0

Thanks to Remark 4.1.12 together with (4.5.22) and (4.5.26), for every bounded Borel set
G C R ! we get

lim | — (u— D°mab,0)| s (G) = lim |(u— Dmprb,0)|xs(G) = 0. (4.5.27)

M—ro0 ]\%—)oo
Since we can always write D¢ (rpsb) + D = (D¢ (tpb) — ) + (u+ D) by applying
relations (4.2.2) and (4.2.3) we obtain
| (1 + D, 0) |k (G) = | = (D (Tar4.2.b) = 11,0) [ (G) < [ (D (Tar4.2b) + D, 0) |k (G)
(4.5.28)

< [(D(Tar42b) = 11,0) [k (G) + | (1 + D, 0) [k (G).
(4.5.29)

So, by (4.5.27) we get
i [(D° (s (B) + 0. 0+ (@) = (1 + D0, 0] (G).
By (4.5.25) we get that

[(D(7a1 (b +0)), 0) |1+ (G) < [(p + D, 0)[ s (G).-

Lastly, by relation (4.1.11), we let M — oo and we conclude the proof. O
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Proof of Theorem 1.3.2: sufficient conditions. Let E be a v-distributed set of finite peri-
meter satisfying (1.1.5), (1.3.12), (1.3.13) and (1.3.14). Let I and J; be defined as
n (4.5.1) and (4.5.2). Let 6,S € I and let us set bss = liscpesibe = l{s<v<sybs-
Then, for every M € Js, we have b5 € (BV N L>®)(R" 1) and so we obtain that
Tmbss € (BV N L) (R"1). Let us consider the R" !-valued Radon measure psg on

R”~1 defined as

1
ws.s(G) = / g(x)d ’ (DCU,O)‘ ,
GN{s<v<SIIN{|bg|Y<co} 2 K

for every bounded Borel set G C R"~!, where g(z) is the function that appears in condition

(1.3.14), namely

1
D¢(711(bs))(G :/ d’(DC 0)‘ :
(701 (b5))(G) Gﬂ{|b5|<M}(1)m{v>6}(1)g(x) g Dv.0)|

Since Tarbss = lgy<syTambs, by Lemma 2.0.3 we have D(7arbss) = 1{U<S}<1)DC(7'Mb5)

and thus, for every Borel set G C R* 1,

lim |ps.5 — D°(Tabs,s)|(G) = lim |pss — D(marbs)|(G N {v < S}1)
M—o0 M—o0

< lim L x)|d|(Dv/2,0)| ks (x
M—o0 Jan{s<v<SIWN({|br|Y <oco \{|bp|<M}™®)

=0,

where the last equality follows from the fact that {|bg| < M }5\14)6 ; is an increasing family

of sets whose union is {|bg|" < co}. Thus, for every bounded Borel set G C R"~!, we get

(@)

Ks

(@) +|(D%ns - 5uss).0)

1
‘ <—Dc(b57s + 51}5,5), 0)

1
(G) < ‘(—ua,s - 2DCU57S70)
Ks Ks

1
#| (o = 50r050) | (©) = =D, 0 G, (1.5.30)
Ks

where the inequality in the first line comes from Lemma 4.5.2 applied to bs g — %U&S and
—bs,5 — 3vs,5 With v5g = L{5<v<sy?), (see in particular (4.5.23)), whereas the equality is a
consequence of Lemma 4.2.5 applied to the two Radon measures p5,5— %DCU&S and — s 5 —
%DCU&S together with Remark 4.2.7 having in mind (1.3.14). Since bs s € GBV(R"™1)
and vs g € (BV N L®)(R" 1), if W = Wvs s, bs,5], then we can compute Pgs(W;G x R)
for every Borel set G ¢ R*~! by Corollary 4.4.11. In particular, if G ¢ {0 < v < S}
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then by EN({d <v < S} xR)=WnN{d<v<S}xR), we find that

P+ (E;G x R) = P+ (W3 G x R) (4.5.31)
_ /G dico (v (bds _ ”‘;5 ) ,1) + s (—v <b5,5 + ”‘5;) ,1) AH"! (4.5.32)
i (5] (2] )
(4.5.33)
+ /GM min <vg3,max (0, [bs.s] — [”‘ﬂ)) drcs (g, 0)dH" 2 (4.5.34)
+/Gﬂ(Jb\Jv) min ([bs,s], ) (¢Ks(_yb,0) +¢Ks(yg,0)) dH" 2 (4.5.35)
+ ’(Dc (b@s - ”‘;S ) ,0) (@ (4.5.36)
+ ‘(DC <b5,s + ”“25> ,o> (@ (4.5.37)

We can also compute Py, (F[vss]; G x R). Taking also into account that Flv] N ({§ <
v< S} xR)=Fluss]N ({0 <v < S} xR) we obtain that

Pis(F[u]; G x R) = P+ (Flugs); G x R) = 2/G¢KS (_v (11525) 71> i3

dD¢ vs, S

GNJus o

Firstly, applying (2.0.19) to bg and (2.0.15) and v we get

Vbs s(z) = Vbg(x), for H" -ae. € {6 <v< S},

[v] = [vs.s], for H" 2-a.e. on {6 <v < S},

Putting together the above relations with the assumptions (1.3.12) and (1.3.13) we deduce
that, for H" l-a.e. 2 € {§ < v < S} there exists z(x) € IK® s.t.

{(—;Vv(x) +tVbg(z), 1) cte -1, 1]} C Cis(z(2)), (4.5.38)

2bs.5] = 2[br] < [v] = [vs.5], for H" 2-a.e. on {§ <v < S}, (4.5.39)

Thanks to Proposition 4.1.22 and Remark 4.1.23, condition (4.5.38) is equivalent to say

that we can rewrite (4.5.32) in the following way

/G Prce (V (ba,s -5 ) ,1> + G (—v (bé,s + 3 ) ,1) !
/G Orcs (V (bE - Z) ,1> + drs (—v (bE + ;’) ,1) A"
N 2/c ox <—v (g> ’1> dH" (4.5.40)
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Furthermore, substituting (4.5.39) into (4.5.33),(4.5.34) and (4.5.35), and using (4.5.30)
applied to (4.5.36) and (4.5.37), we find that

Pis(E; {6 < v < SYD x R) < P (F[v];: {6 < v < S}V x R), (4.5.41)

where, actually, equality holds thanks to (AS). Recalling that by [22, 69, 4.5.9(3)] we have
that H" 2 ({v¥ = 0o}) = 0, thanks to (2.0.14) it follows that

U {v < M} = {0V < oo} =n—2 R"L. (4.5.42)
Mel

By (2.0.14) if we consider the sequences d;, € I and S}, € I such that §, — 0 and S, — 0

as h — oo we get

vV >0} = U {6, <v" < S,
heN

So, by the above relation together with (4.5.41), and (4.5.42) we get that
Pres(E; {v" > 0} x R) < Pgs(F[v]; {v" > 0} x R).

By Proposition 4.5.1 Pgs(E; {v" = 0} xR) = Pgs(F[v]; {v" = 0} xR) and thus Pgs(E) =
Pyes(F[v]). This concludes the proof. O

4.6 Rigidity for the Steiner’s inequality for the anisotropic

perimeter

Let us start the section with the proof of Theorem 1.3.5.

(Proof of Theorem 1.3.5). By Theorem 1.1.4 we have to prove that conditions (1.1.9)-
(1.1.11) holds true. We divide the proof in few steps.

Step 1 In this step we prove that (1.1.9) holds true. Since E € Mgs(v), by Theorem
1.3.2 we have that condition (1.3.12) holds true, namely for H" t-a.e. € {v > 0} there

exists z(x) € OK*® s.t.
(—;Vv(x) + tVbp(2), 1) € Ci(2(z)) Ve [-1,1].

By condition R1 we have that for H" !-a.e. x € {v > 0} there exists z(z) € OK® s.t.
Vt € [—1,1] there exists A = A(¢,z) € [0, 1] such that

(tVbs(z),0) = A (—;Vv(x), 1) .

that implies Vbg = 0 for H" l-a.e. x € {v > 0}, that implies Vbr = 0 for H" l-a.e.

x e R L
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Step 2 In this step we prove that (1.1.11) holds true. Again, since E € Ms(v) we know
that condition (1.3.14) holds true, namely we know that for |D|-a.e. = € {v” > 0} there

exists z(x) € 0K s.t.
h(z) +tg(z) € Cx(2(x)), Vte[-1,1]. (4.6.1)

So, by condition R2 we know that for |[D|-a.e. € {v" > 0} there exists A = \(x) €
[—1,1] such that g(z) = Mhr(x). By definition of g(x) and h(z), for every Borel set G C

R 1 every M > 0, and H'-a.e. § > 0 we have

1
De(tar(bs))(G) = / g(x)d ‘ (Dcv, o)’ (z)
Gﬂ{|b5|<M}(1>ﬁ{v>5}<1> 2 K

ANa)h(z)d ‘ (1170@, o) ‘ (@)

2 K

/ _I\@)apcu().
GN{|bs| <M}V N{o>531) 2

/Gm{|b5|<M}(1>m{v>6}<1>

Since —A(z) € [—1/2,1/2] for |D|-a.e. = € {v" > 0}, we conclude the proof of step 2.
Step 3 In this step we prove that (1.1.12) and (1.1.13) holds true. By step 2 we
have that (1.1.11) holds true. By taking the total variation in (1.1.11) we find that
2| D¢(11(b5))|(G) < |D|(G) for every bounded Borel set G C R"~!. By passing to the
limit for M — 400 (in J5) and then § — 0 (in I) we prove (1.1.12). As observed in [11,
Remark 1.10], note that (1.1.13) is a consequence of (1.1.7), taking into account (1.1.9),
(1.1.11) and (1.1.12). This concludes the proof. O

Studying whether conditions R1 and R2 hold true leads us to the following result, that,
roughly speaking, provides a geometric characterization for those conditions to hold true.
In the following, given any set G C R"™ we denote by G its topological closure. Hav-
ing in mind definitions of exposed and extreme points (see Definitions 4.1.31 and 4.1.30

respectively), we can now prove the following Proposition.

Proposition 4.6.1. Let v be as in (1.1.3) and let K C R™ be as in (1.3.8). For H" *-a.e.
xz € {v >0} let us call v(z) = (—%Vu(w), 1). Then,

v(z)

R1 holds true <= ————— is an extreme point of (K*)* 4.6.2
o1 /(@) e (162

for H" L-a.e. z € {v >0}

h(x) ) .
R2 holds true <= —————— is an extreme point of (K3)* 4.6.3

for |D|-a.e. z € {v" >0},

where h has been defined in (1.3.15).



130

Proof. Let us prove that (4.6.2) holds true, then statement (4.6.3) follows using an identical
argument.

Step 1 Let us assume that R1 holds true and suppose by contradiction that there exist
G C {v > 0} such that H" }(G) > 0 and v(z)/¢xs(v(x)) is not an extreme point for

H" lae. x € G. In particular there exist y(z) # z(z) € (K%)* and A(z) € (0,1) such
that
v(z)

et (1= X(2)2(2) + M=) (y(z)).

By Lemma 4.1.27 this implies that

(1= X)z(z) + Ay(x) € 09fs(2) VYAE[0,1],Vz € Zks (M) '

In particular this implies that

(1= N (v(2))2(x) + Abrcs (v(2))y(w) € Cee(2) YA€ [0,1], V2 € Zico <¢K<(<)>>) !

(4.6.4)
where recall that Zgs (v(z)/drs(v(x))) = Zxs (v(z)). Since (4.6.4) holds true for H"~!-
a.e. * € G and H" 1(G) > 0, we contradicted our assumptions.

Step 2 Let us now assume that v(x)/¢s (v(x)) is an extreme point of (K$)* for H" -
a.e. x € {v > 0}, and suppose by contradiction that R1 is not verified, namely that there
exists y € R, and G C {v > 0} with H""1(G) > 0 such that, for H" l-a.e. = € G there

exists z € Zxs(v(x)) such that,
ifv(z) £y € Cxs(z) = y#v(x), foreveryAe|—1,1].
In particular, by convexity,
(1—=X) (v(z)+y)+ A(v(z) —y) € Cks(2), VYAe]0,1].

But this implies that the projection of this segment over d¢j.(z) contains in its relative

interior the point v(x)/¢Ks(v(z)), namely there exists A(z) € (0,1) such that

@) @A ) -
pyto7es) R Lm0 e R vy o e RS

Since (4.6.5) holds true for H" t-a.e. x € G and H" '(G) > 0 we contradicted our

assumptions. This concludes the proof. O
Lemma 4.6.2. Let K C R" be as in (1.5.3) and let us consider the following set:

Vico = {o (@) s 2 € 9K} (4.6.6)

Then, y is an exposed point of (K*%)* if and only if y = n/drs(n) for some n € Vis.
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Proof. This result is the direct consequence of Lemma 4.1.33 using g = qS’EKS) and observing

that 0¢%.(v) = v5" (2)/dxs (V5" (z)) for every = € 0" K*. O

Lemma 4.6.3. Let v be as in (1.1.3) and let K C R™ be as in (1.3.3). Moreover, assume
that for H" 1-a.e. z € {v > 0}, and for |D|-a.e. z € {v" > 0} there exists a sequence

(vn)hen C Vs such that

Il (z, ;U(z)) = lim . (4.6.7)

h——+o00

Then, conditions R1, R2 hold true.

Proof. By the positivity and continuity of the function ¢xs, together with the fact that
|vp| = 1 for every h € N, we know that condition (4.6.7) is equivalent to
p M (z, %v(z)) ‘
DK (uF[v} (z, %v(z))) ~ i Grcs (V)
Thus, by Remark 4.1.32,
vl (z, %U(Z))
dKcs (VF[U] (z, %v(z)))
By Theorem 4.4.2, together with the 1-homogeneity of ¢xs we know that

(—%Vu(z), 1) Zau (Zv %U(ZD

= for H" t-a.e. z e R™7,

bKcs ((_%VU(Z)7 1)) OKs (yF[v] (z, %v(z)))

Vp

is an extreme point of (K*%)*. (4.6.8)

and,

(h(z).0) V(= 500)
Pxs ((R(2),0))  $pe (VFM (z, %v(z)))
where we recall that

(h(2),0) = (W(@,o) and Pl (z ;v(z)) _ (— ddg:j'(z),o).

Therefore, thanks to the above relations together with condition (4.6.8) and Proposition

for |D|-a.e. z € {v" > 0},

4.6.1 we conclude. O

Proof of Corollary 1.3.7. Thanks to the above result, the proof of Corollary 1.3.7 follows

as a direct consequence. ]

Proof of Corollary 1.5.8. To prove Corollary 1.3.8 we have to notice that thanks to [28,
Corollary 3, Theorem 1)), every point in (K *®)* is an exposed point, so by Lemma 4.6.2 we
have that Vs coincides with S*~!. Therefore, the assumption of Corollary 1.3.7, namely
for H"l-a.e. z € {v > 0}, and for |D|-a.e. z € {v"\ > 0} there exists * € §*K* such

that ¥l (z, %v(z)) = v&°(2), is always verified. This concludes the proof. O
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Remark 4.6.4. Given any K C R™ as in (1.3.3), thanks to Corollary 1.3.7, it is possible
to construct simple examples of functions v defined as in (1.1.3) such that Mgs(v) C M(v)
(see for instance Figure 1.53.6). Indeed, let K C R™ be as (1.3.3) and let x € 0*K*®, with
q(z) > 0 such that q(v"(z)) > 0. Recall that such a point always exists. In fact, by
Theorem 4.1.1 applied to K*, we know that for H" '-a.e. z € p(K*), qw’’(z,t)) # 0
provided (z,t) € 0*K?®. Moreover, the fact that we chose q(x) > 0, by the convezity of
K*, implies that q(v’"(z)) > 0. Let us call w = p(v™" (x))/|p(v*" (z))| € R* ! and let
Q C H; NR"! be an open bounded set. Let us now consider the function v : Q — (0, +00)
defined as

By construction, such a function satisfies both (1.1.3) and the assumptions of Corollary

1.3.7. Therefore, Ms(v) C M(v).
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