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Abstract: Among various environmental factors associated with triggering or exacerbating
autoimmune response, an important role is played by infections. A breakdown of immune tolerance
as a byproduct of immune response against these infections is one of the major causes of autoimmune
disease. In this paper we analyse the dynamics of immune response with particular emphasis on the
role of time delays characterising the infection and the immune response, as well as on interactions
between different types of T cells and cytokines that mediate their behaviour. Stability analysis of the
model provides insights into how different model parameters affect the dynamics. Numerical stability
analysis and simulations are performed to identify basins of attraction of different dynamical states,
and to illustrate the behaviour of the model in different regimes.
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1. Introduction

The main role of the immune system is to effectively protect its host against pathogens by
identifying and destroying pathogen-infected cells. In most cases, this is achieved by T cells that upon
encountering a foreign antigen presented on antigen-presenting cells (APCs) undergo clonal
expansion and then eliminate cells presenting this antigen [1, 2]. In order for this immune response to
be successful, it is essential for T cells to be able to discriminate between cells presenting self- and
foreign antigens, so that T cells would exhibit tolerance towards self-antigens, which is known as
self-tolerance. The breakdown of self-tolerance, i.e. a failure of self/non-self discrimination, results in
a pathological immune response known as autoimmune disease, whereby T cells are attacking host’s
own healthy cells. Regulatory T cells (Tregs) play a major role in mitigating this process by limiting
such immune response [3–5].

In order to facilitate effective diagnosis and treatment of autoimmune disease, it is crucial to identify
possible causes of its onset and development. Autoimmunity is a very complex phenomenon, and
a large number of different internal and external contributing factors have been identified that are
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involved in facilitating autoimmune response, including age and genetic predisposition, as well as
various environmental triggers, such as previous immune challenge and exposure to pathogens. While
intrinsic factors may determine the degree to which an individual patient may be prone to developing
an autoimmune response, it is usually the external factors, most often, infections that are necessary
to actually trigger the onset of autoimmunity [6–8]. Over the years, a number of pathogens have
been identified that appear to be very strongly associated with specific autoimmune diseases, such as
Epstein-Barr virus associated with rheumatoid arthritis, multiple sclerosis (MS), autoimmune thyroid
disease, and systemic lupus erythematosus (SLE) [9,10], the Coxsackie viruses associated with type-1
diabetes [11, 12], and HSV-1 virus associated with autoimmune stromal keratitis [13, 14]. Similarly,
gut microbiota is known to play an important role in gut and systemic autoimmune diseases, and it
has been very recently shown that translocation of a gut bacterium E. gallinarium into liver and other
tissues in mice and humans results in triggering autoimmune response [15]. A number of different
mechanisms have been identified that explain the dynamics of onset of pathogen-induced autoimmune
disease [16,17], including bystander activation [18], epitope spreading, cryptic antigen, and molecular
mimicry [17, 19, 20], with the latter being most relevant for autoimmune diseases caused by viral
infections [17, 18, 21].

Despite the complexity of the immune system, over the years a number of mathematical models
have been proposed that studied various aspects of immune dynamics and autoimmunity.
Compartmental models have proved very successful at capturing various aspects of immune
dynamics, including “burstiness” of the viral process (mostly, new virus particles are released through
lysis of virus-infected cells), as well as the effects of treatment [22–25]. In fact, a number of such
models have been very effective at modelling the dynamics of specific viral infections, such as
influenza A [26–28], HIV [29, 30], hepatitis B [31], hepatitis C [32–34], and they have been very
accurately parameterised using available clinical data. In the context of autoimmunity, some of the
early models analysed interactions between effector and regulatory T cells, focusing on T cell
vaccination but without explicitly identifying origins of autoimmune response [35]. In another version
of that model, it was shown that autoimmunity can actually arise as a result of interaction between
regulatory and autoreactive T cells, with the autoimmunity being defined as a dynamical state of
above-threshold oscillations in the number of autoreactive cells [36,37]. Iwami et al. [38,39] analysed
a mathematical model for autoimmune diseases, which explicitly includes virus population and its
interactions with the immune system. Interestingly, they have shown that a functional form (linear or
density-dependent) for the term representing the growth of target cells has an effect on the type of
immune dynamics exhibited by the model. Although that model was able to produce sustained
periodic oscillations that can be interpreted as a manifestation of autoimmune response, it was not
able to also capture a regime of normal clearance of a viral infection. León et al. [40–42] and
Carneiro et al. [43] have analysed more advanced models of immune dynamics that included different
types of T cells, focusing on the suppressive role of regulatory T cells in controlling autoimmune
response. Wodarz and Jansen [44] have analysed autoimmunity in the context of viral cancer by
including viral infections indirectly through an increased rate of uptake of self-antigen by APCs. An
overview of various recent mathematical models of immune dynamics, with particular emphasis on
modelling the onset and development of autoimmune disease, can be found in a special issue on
“Theories and modeling of autoimmunity” [45].
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Due to a very significant role being played by the regulatory T cells in maintaining self-tolerance and
controlling autoimmune response [46–48], a number of papers have looked at modelling the dynamics
of regulatory T cells in the specific context of autoimmunity. Alexander and Wahl [49] have studied
interactions between regulatory T cells with professional APCs and effector cells for the purpose of
controlling immune response. Both this model, and the models analysed by Burroughs et al. [50,
51], have represented Tregs as a separate compartment in the model to investigate how Tregs are
activated by autoantigens, and how they in their turn suppress the activity of autoreactive T cells.
Another interesting modelling approach stems from the idea that the same T cells can perform a number
of distinct immune functions by virtue of having different or tunable activation thresholds, which
allows them to adjust their response to stimulation by autoantigens. This modelling framework was
originally proposed in theoretical studies of peripheral and central T cell activation [52–54], and it
was later shown how the need for tunable activation thresholds in T cells can be derived directly from
the first principles of signal detection theory [55]. Subsequent murine and human experiments have
validated the feasibility of this methodology by demonstrating that activation thresholds of T cells do
change dynamically during T cell circulation [56–60]. Altan-Bonnet and Germain [61] have analysed
differences in activation and response thresholds that are dependent on the activation state of the T
cells, while van den Berg and Rand [62] and Scherer et al. [63] have investigated stochastic tuning
of activation thresholds. Carneiro et al. [43] have compared alternative origins of self-tolerance as
mediated by tuning of activation thresholds, as well as the control of proliferation of autoreactive T
lymphocytes by the regulatory T cells.

A particularly important role in the immune dynamics, and more specifically, in the performance
of T cells, is played by cytokines. Activated T cells produce growth cytokines (primarily,
interleukin-2, IL-2), and expression of IL-2 receptor by these T cells triggers cytokine-driven
proliferation [64, 65], characterised by a certain quorum threshold [66, 67]. Importantly, whereas IL-2
appears to be essential for proliferation of regulatory T cells [68], these T cells do not actually
produce IL-2 even upon activation [68, 69]. It has been suggested that regulatory T cells may control
these thresholds by inhibiting IL-2 secretion [70]. Burroughs et al. [50, 51, 66] have considered the
case where pathogen-induced autoimmunity arises through the mechanism of bystander activation,
and the model they developed analyses interactions between T cells and IL-2. In a very recent paper,
Oliveira et al. [71] have shown how a competition between T cells for IL-2 in response to a
pathogenic infection can result in the depletion of the pool of autoreactive T cells, thus suppressing
autoimmune response.

One of the fundamental features of the immune dynamics is the fact that various processes
associated with the development of infection, as well as with mounting the appropriate immune
response, are characterised by time delays, which can be non-negligible, and thus have to be properly
accounted for in mathematical models [72–75]. In the specific context of viral infections, earlier
mathematical models of influenza, HIV and HCV have highlighted the importance of including viral
lag phase in the analysis of interactions between viruses and the immune system [24, 25, 27, 28]. This
lag phase of the virus life cycle includes an eclipse phase consisting of virus attachment, cell
penetration and uncoating, and a latent phase, which includes virus assembly, maturation and release
of new virions. Precise measurements of different stages of virus life cycle have been performed for
several viruses that have been associated with triggering or exacerbating autoimmune disease [9–14].
All of these processes result in a delayed production and release of virions, as well as in the delay
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between a cell becoming infectious and the time it becomes recognised as an infected cell by the
cytotoxic T lymphocytes (CTLs) [76]. Hence, it is essential to correctly account for this in models of
pathogen-induced autoimmunity. Other time delays involved include a delay between infection and
developing immune response [74, 77–80], as well as the delay associated with the process of
stimulation of T cells by the IL-2 cytokine and their subsequent proliferation. Kim et al. [70] have
developed and analysed a very detailed model of immune regulation that includes various time delays
associated with proliferation and stimulation of different types of T cells.

Focusing on molecular mimicry as the primary mechanism of virus-induced autoimmune
response, Blyuss and Nicholson [81, 82] have developed a mathematical model that explicitly
includes both a viral population, and two types of T cells with different activation thresholds. This
model allows for a possibility of viral infection and autoimmune response occurring in different
organs of the host. Besides normal clearance of a viral infection, and a state of chronic infection, the
model also exhibits an autoimmune state characterised by stable endogenous oscillations of cell
populations, which are reminiscent of relapses and remissions that are observed in clinical
manifestations of uveitis, autoimmune thyroid disease, and MS [83–85]. One limitation of that model
is that oscillations can only be observed in the presence of non-zero viral population and infected
cells, while clinical observations suggest that autoimmunity is more often observed after the clearance
of the initial viral infection. Fatehi et al. [86] have shown that this limitation can be overcome by
including in the model IL-2 and regulatory T cells, which provides a more realistic representation of
immune dynamics. Importantly, this modified model also exhibits multi-stability, where for the same
values of parameters, the initial state of the immune system and the level of infection determine which
of the dynamic scenarios will be realised, i.e. whether the infection will just be cleared without any
lasting consequences, or the resulting breakdown of immune tolerance will lead to autoimmunity.
Under a simplifying assumption of fast release of virions, which eliminates the need for a separate
compartment representing free virus, Fatehi et al. [87] have analysed the effects of time delays in the
model, and also investigated the role of regulatory T cells in suppressing the expression of IL-2.
Fatehi et al. [88] have looked at the same simplified model from the perspective of stochastic
dynamics. Their results provide a characterisation of basins of attraction of different dynamical states
under the influence of stochasticity, as well as the dependence of the variance of stochastic
oscillations around deterministically stable steady states on system parameters. This latter result is
particularly relevant for analysis and interpretation of experimental observations, which show that
there are noticeable differences in the progress of autoimmune disease even in apparently identical
situations, such as two eyes of the same mouse, or a population of genetically identical mice [89, 90].

In this paper we study the effects of the above-mentioned viral lag phase, as well as time delays
associated with different aspects of the immune response, on the onset and development of
autoimmunity, using the framework of T cells with tunable activation thresholds. In the next section,
we derive the model and identify its steady states. Analytical conditions for stability and bifurcations
of different steady states are derived in Section 3. Section 4 contains the results of numerical stability
analysis, including identifying basins of attraction of various dynamical states, as well as numerical
simulations of the model, which illustrate its behaviour in different dynamical regimes. The paper
concludes in Section 5 with a discussion of results and open problems.
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2. Model derivation

To analyse the dynamics of immune response to a viral infection and subsequent breakdown of
immune tolerance, we consider a full model presented earlier in Fatehi et al. [86], as illustrated in
Figure 1, in which we now also include time delays. In this model it is assumed that in the absence of
infection, healthy host cells, whose number is denoted by A(t), grow logistically with the linear growth
rate r and the carrying capacity N. Upon encountering free virus particles, whose population is denoted
by V(t), after some time delay τ1 they become infected cells F(t) at rate β. From a biological point
of view, the time delay τ1 models the eclipse phase, i.e. it represents the cumulative duration of the
processes of viral attachment and entry into host cell, as well as subsequent uncoating inside the cell.

After this time τ1, the cell containing virus can be identified by CTL cells [76]. Even after a cell
has been infected, it takes some time before it is able to produce new virus particles [91], hence, we
include a time delay τ4 to represent the latent phase, associated with the processes of virus assembly,
maturation and release of new virions. Together, the time delays τ1 and τ4 represent the
above-mentioned lag phase of the viral life cycle.

Figure 1. A diagram of the model of immune response to an infection. Blue circles
indicate host cells (uninfected and infected cells), red circles denote different T cells
(naı̈ve, regulatory, normal activated, and autoreactive T cells), yellow circle show cytokines
(interleukin-2), and grey indicates virus particles (virions). τi inside each of the subnetworks
indicates the time delay in the respective process.

In terms of immune dynamics, in light of the fact that autoimmune response can develop in the
absence of B cells [92], and experimental evidence suggesting that antibodies play a secondary role
in autoimmune dynamics compared to T cells [93], in our model we focus primarily on the T cell
dynamics. We assume that in the absence of infection, there is some number of naı̈ve (inactivated)
T cells Tin(t), which is maintained in a homeostasis, which is represented by a constant production at
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rate λin and constant degradation at rate din. It is worth noting that the functional form representing
homeostasis can also play an important role in controlling immune dynamics [38, 39]. Similarly, the
population of regulatory T cells Treg(t), which are responsible for suppression of autoreactive T cells
at rate δ, is also maintained at a homeostasis [94]. Upon receiving stimulation from mature antigen-
presenting cells, which is represented in the model indirectly through interactions between naı̈ve T
cells and infected cells happening at rate α, the naı̈ve T cells expand, and, after some time delay τ3,
a proportion p1 of them differentiate into further regulatory T cells, a proportion p2 become normal
activated T cells Tnor(t), and the remaining proportion (1− p1− p2) become autoreactive T cells Taut(t).
While normal activated T cells are responsible for eliminating infected T cells at rate µF , autoreactive
T cells are assumed to have a lower activation threshold, which results in them destroying not only
infected cells, but also healthy host cells at rate µa. This happens due to a cross-reactivity between
some of the epitopes in foreign and self-antigens.

Dynamics of immune response, and, in particular, proliferation and activity of T cells are known to
be affected by a number of different cytokines, with a particularly important role being played by IL-2,
represented in the model by the variable I(t). While IL-2 enhances the proliferation of all types of T
cells, it is only secreted by the activated T cells, but not by the regulatory T cells [1, 4]. Hence, in the
model we consider that proliferation of T cells Treg, Tnor and Taut is enhanced by IL-2 I(t) at rates ρ1,
ρ2 and ρ3, respectively, and this process is characterised by a time delay τ2, while IL-2 is produced by
Tnor and Taut at rates σ1 and σ2. Although regulatory T cells are suppressing the expression of IL-2
by other T cells [3, 66], we have recently shown that this does not have a major effect on the dynamics
compared to other contributions, such as the suppressive effect of regulatory T cells on autoreactive T
cells [87].

With the above assumptions, the complete model for immune response takes the form

dA
dt

= rA
(
1 −

A
N

)
− βAV − µaTautA,

dF
dt

= βA(t − τ1)V(t − τ1) − dF F − µFTnorF − µaTautF,
dTin

dt
= λin − dinTin − αTinF,

dTreg

dt
= λr − drTreg + p1αTin(t − τ3)F(t − τ3) + ρ1I(t − τ2)Treg(t − τ2),

dTnor

dt
= p2αTin(t − τ3)F(t − τ3) − dnTnor + ρ2I(t − τ2)Tnor(t − τ2),

dTaut

dt
= (1 − p1 − p2)αTin(t − τ3)F(t − τ3) − daTaut − δTregTaut + ρ3I(t − τ2)Taut(t − τ2),

dI
dt

= σ1Tnor + σ2Taut − diI,
dV
dt

= kF(t − τ4) − cV,

(2.1)

where 0 ≤ p1 + p2 ≤ 1. Introducing non-dimensional variables

T = rt, A = NA, F = NF, Tin =
λin

din
Tin, Treg =

λin

din
Treg,

Tnor =
λin

din
Tnor, Taut =

λin

din
Taut, I =

λin

din
I, V = NV,
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this model is modified into

dA
dT

= A (1 − A) − βAV − µaTautA,

dF
dT

= βA (T − τ1) V (T − τ1) − dF F − µFTnorF − µaTautF,

dTin

dT
= din (1 − Tin) − αTinF,

dTreg

dT
= λr − drTreg + p1αTin (T − τ3) F (T − τ3) + ρ1I (T − τ2) Treg (T − τ2) ,

dTnor

dT
= p2αTin (T − τ3) F (T − τ3) − dnTnor + ρ2I (T − τ2) Tnor (T − τ2) ,

dTaut

dT
= (1 − p1 − p2)αTin (T − τ3) F (T − τ3) − daTaut − δTregTaut

+ρ3I (T − τ2) Taut (T − τ2) ,

dI
dT

= σ1Tnor + σ2Taut − diI,

dV
dT

= kF (T − τ4) − cV,

(2.2)

where

β̂ =
βN
r
, µ̂a =

µaλin

rdin
, d̂F =

dF

r
, µ̂F =

µFλin

rdin
, d̂in =

din

r
, α̂ =

αN
r
,

λ̂r =
λrdin

λinr
, d̂r =

dr

r
, ρ̂i =

ρiλin

rdin
, i = 1, 2, 3, d̂n =

dn

r
, d̂a =

da

r
, δ̂ =

δλin

rdin
,

σ̂1 =
σ1

r
, σ̂2 =

σ2

r
, d̂i =

di

r
, k̂ =

k
r
, ĉ =

c
r
, τ̂i = rτi, i = 1, 2, 3, 4.

and, to simplify the notation, the hats have been dropped in all variables and parameters. This model
has been found to have at most eight biologically feasible steady states [86], of which four are always
unstable, and the other four can be stable or unstable depending on the values of parameters. The first
of these is the disease-free steady state that exists for any parameter values, and is given by

S ∗1 =

(
1, 0, 1,

λr

dr
, 0, 0, 0, 0

)
.

Next, we have two steady states with Tnor = 0 and Taut , 0,

S ∗2 =

0, 0, 1,T ∗reg, 0,
di

(
da + δT ∗reg

)
ρ3σ2

,
da + δT ∗reg

ρ3
, 0

 ,
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and

S ∗3 =

1 − µadi

(
da + δT ∗reg

)
ρ3σ2

, 0, 1,T ∗reg, 0,
di

(
da + δT ∗reg

)
ρ3σ2

,
da + δT ∗reg

ρ3
, 0

 ,
where T ∗reg satisfies the following quadratic equation:

T ∗reg =
drρ3 − ρ1da ±

√(
drρ3 − ρ1da

)2
− 4ρ1δλrρ3

2ρ1δ
.

The steady state S ∗2 has A = 0, which implies the death of host cells, whereas the steady state S ∗3
corresponds to an autoimmune regime. Finally, the system (2.2) can have a chronic steady state S ∗4,
characterised by all of its components being positive, but it does not prove possible to find a closed
form expression for this state.

3. Stability analysis of the steady states

Linearising the system (2.2) near the disease-free steady state S ∗1 shows that this steady state is
stable if all roots λ of the following equation have negative real part

λ2 + (c + dF) λ + cdF − kβe−λτ = 0, (3.1)

where τ = τ1 + τ4. If cdF < kβ, the above equation always has a real positive root for any value of
τ ≥ 0, implying that the disease-free steady state is always unstable for any value of the time delays.
If, however, the condition cdF > kβ holds, the disease-free steady state is stable for τ = 0. To find
out whether it can lose stability for τ > 0, we look for solutions of equation (3.1) in the form λ = iω.
Separating real and imaginary parts yields

−ω2 + cdF = kβ cos(ωτ),

(c + dF) = kβ sin(ωτ).

Squaring and adding these two equations gives the following equation for potential Hopf frequency ω

z2 + (c2 + d2
F)z + c2d2

F − k2β2 = 0, where z = ω2.

Since cdF > kβ, this equation does not have positive roots for z, suggesting that there can be no roots
of the form λ = iω of the equation (3.1). This implies that in the case cdF > kβ the disease-free steady
state S ∗1 is stable for all values of the time delay τ ≥ 0.

The steady state S ∗2 is stable if
σ2

µadi
<

da + δT ∗reg

ρ3
<

dn

ρ2
, (3.2)

and all roots of the following equation have negative real part

∆(τ2, λ) = p2(λ)e−2λτ2 + p1(λ)e−λτ2 + p0(λ) = 0, (3.3)
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where

p2(λ) =
ρ1

(
da + δT ∗reg

)2

ρ3
(λ + 2di) ,

p1(λ) = −

(
da + δT ∗reg

)
ρ3

(ρ1 + ρ3)λ2 +

[
ρ1

(
da + di + δT ∗reg

)
+ ρ3(2di + dr)

]
λ

+ di(ρ1da + 2drρ3)

,
p0(λ) =λ3 +

(
di + dr + da + δT ∗reg

)
λ2 +

[
(di + dr)

(
da + δT ∗reg

)
+ didr

]
λ

+ didr

(
da + δT ∗reg

)
.

For τ2 = 0, this steady state is stable if T ∗reg satisfies (3.2), and the following conditions hold

δρ1

(
T ∗reg

)2
> λrρ3,

ρ3λ
2
r + ρ3diλrT ∗reg − ρ3dida

(
T ∗reg

)2
− δ(ρ1da + ρ3di)

(
T ∗reg

)3
− ρ1δ

2
(
T ∗reg

)4
> 0.

(3.4)

To investigate whether stability can be lost for τ2 > 0, we use an iterative procedure described in [95,96]
to determine a function F(ω), whose roots give the Hopf frequency associated with purely imaginary
roots of equation (3.3). Substituting λ = iω into equation (3.3), we define ∆(1)(τ2, λ) as

∆(1)(τ2, λ) = p0(iω)∆(τ2, iω) − p2(iω)e−2iωτ2∆(τ2, iω) = p(1)
0 (iω) + p(1)

1 (iω)e−iωτ2 ,

where

p(1)
0 (iω) =

∣∣∣p0(iω)
∣∣∣2 −∣∣∣p2(iω)

∣∣∣2 ,
p(1)

1 (iω) =p0(iω)p1(iω) − p1(iω)p2(iω).

If we define

F(ω) =
∣∣∣∣p(1)

0 (iω)
∣∣∣∣2 −∣∣∣∣p(1)

1 (iω)
∣∣∣∣2 ,

then ∆(τ2, iω) = 0, whenever ω is a root of F(ω) = 0. The function F(ω) has the explicit form

F(ω) = ω12 + a10ω
10 + a8ω

8 + a6ω
6 + a4ω

4 + a2ω
2 + a0,

with

a0 = d4
i (I∗)4 (

2ρ1ρ3I∗ − ρ3dr
)2 (

2ρ1ρ3I∗ + daρ1 + 3drρ3
) δρ1

(
T ∗reg

)2
− ρ3λr

T ∗reg

 ,
and

I∗ =
da + δT ∗reg

ρ3
.
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Introducing s = ω2, the equation F(ω) = 0 can be equivalently rewritten as follows,

h(s) = s6 + a10s5 + a8s4 + a6s3 + a4s2 + a2s + a0 = 0. (3.5)

Without loss of generality, suppose that equation (3.5) has six distinct positive roots denoted by s1, s2,
... , s6, which means that the equation F(ω) = 0 has six positive roots

ωi =
√

si, i = 1, 2, ..., 6.

Substituting λk = iωk into equation (3.3) gives

τ
j
k =

1
ωk

arctan

 ωk

(
(ρ1 + ρ3)ω4

k + f2ω
2
k + f0

)(
diρ3 − drρ1 − ρ

2
3I∗

)
ω4

k + g2ω
2
k + g0

 + jπ

 , k = 1, 2, ..., 6, j = 0, 1, 2, ...,

where

f2 = − ρ2
1ρ3

(
I∗
)2

+ diρ3(ρ1 + ρ3)I∗ + diρ1(di − da) + ρ3(2d2
i + d2

r ),

f0 = − di

[
2ρ2

1ρ
2
3(I∗)3 + ρ1ρ

2
3(I∗)2[2diρ1 + ρ3(dr + 4di) − daρ1]

+ ρ3I∗[ρ1(didr − dadr − dadi) − d2
rρ3] − didr(daρ1 + 2drρ3)

]
,

g2 =ρ2
1ρ

2
3(I∗)3 − diρ1ρ3(I∗)2(ρ1 + ρ3) + ρ3I∗

[
ρ1(dadi − d2

i − didr) − ρ3(2d2
i + d2

r )
]

+ dad2
i ρ1 + dadidrρ1 − d2

i drρ1 + did2
rρ3,

g0 =d2
i ρ3I∗

(
2ρ1I∗ − dr

) (
daρ1 + 2drρ3

)
.

This allows us to find
τ∗ = τ0

k0
= min

1≤k≤6
{τ0

k}, ω0 = ωk0 ,

as the first time delay for which the roots of the characteristic equation (3.3) cross the imaginary axis.
To determine whether the steady state S ∗2 actually undergoes a Hopf bifurcation at τ2 = τ∗, we have to
compute the sign of dRe[λ(τ∗)]/dτ2. For τ2 = τ∗, λ(τ∗) = iω0, and we also define s0 = ω2

0.

Lemma 3.1. Suppose h′(s0) , 0 and p(1)
0 (iω0) , 0. Then the following transversality condition holds

sgn

 d Re(λ)
d τ2

∣∣∣∣∣∣
τ2=τ∗

 = sgn[p(1)
0 (iω0)h′(s0)].

Proof. Considering p j(iω0) = x j(ω0) + iy j(ω0) for j = 0, 1, 2, we have

p(1)
0 (iω0) =x2

0 + y2
0 − x2

2 − y2
2,

p(1)
1 (iω0) =(x0x1 + y0y1 − x1x2 − y1y2) + (x0y1 + x2y1 − x1y0 − x1y2)i,

where all x j and y j are expressed in terms of system parameters and steady state values of the variables.
Substituting these expressions into ∆(τ2, iω0) = 0 and ∆(1)(τ2, iω0) = 0, and then separating real and
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imaginary parts gives
x2 cos(2ω0τ

∗) + y2 sin(2ω0τ
∗) + x1 cos(ω0τ

∗) + y1 sin(ω0τ
∗) = −x0,

y2 cos(2ω0τ
∗) − x2 sin(2ω0τ

∗) + y1 cos(ω0τ
∗) − x1 sin(ω0τ

∗) = −y0,

(x0x1 + y0y1 − x1x2 − y1y2) cos(ω0τ
∗) + (x0y1 + x2y1 − x1y0 − x1y2) sin(ω0τ

∗) = −p(1)
0 (iω0),

(x0y1 + x2y1 − x1y0 − x1y2) cos(ω0τ
∗) − (x0x1 + y0y1 − x1x2 − y1y2) sin(ω0τ

∗) = 0.

Solving this system of equations provides the values of sin(ω0τ
∗), cos(ω0τ

∗), sin(2ω0τ
∗), and

cos(2ω0τ
∗). Taking the derivative of equation (3.3) with respect to τ2, one finds(

d λ
d τ2

)−1

=
p′2(λ)e−2λτ2 + p′1(λ)e−λτ2 + p′0(λ)
λ
(
2p2(λ)e−2λτ2 + p1(λ)e−λτ2

) −
τ2

λ
.

Hence, d Re(λ)
d τ2

∣∣∣∣∣∣
τ2=τ∗


−1

= Re

 p′2(λ)e−2λτ2 + p′1(λ)e−λτ2 + p′0(λ)
λ
(
2p2(λ)e−2λτ2 + p1(λ)e−λτ2

) 
τ2=τ∗

− Re
{
τ2

λ

}
τ2=τ∗

= Re

 p′2(iω0)e−2iω0τ2 + p′1(iω0)e−iω0τ2 + p′0(iω0)
iω0

(
2p2(iω0)e−2iω0τ2 + p1(iω0)e−iω0τ2

) 
=

1
ω0

Im

 p′2(iω0)e−2iω0τ2 + p′1(iω0)e−iω0τ2 + p′0(iω0)
2p2(iω0)e−2iω0τ2 + p1(iω0)e−iω0τ2


=

1
Λω0

[
− x2x′2 − y2y′2 + x0x′0 + y0y′0 + (x2y′1 − y2x′1 + x0y′1 − x′1y0) sin(ω0τ

∗)

+ (x0x′1 + y0y′1 − x′1x2 − y′1y2) cos(ω0τ
∗) + (x2y′0 − x′0y2 + x0y′2 − x′2y0) sin(2ω0τ

∗)

+ (x0x′2 + y0y′2 − x′0x2 − y′0y2) cos(2ω0τ
∗)
]
,

where
Λ =

∣∣∣2p2(iω0)e−2iω0τ2 + p1(iω0)e−iω0τ2
∣∣∣2 .

Substituting the values of sin(ω0τ
∗), cos(ω0τ

∗), sin(2ω0τ
∗), and cos(2ω0τ

∗) found earlier gives d Re(λ)
d τ2

∣∣∣∣∣∣
τ2=τ∗


−1

=
1

Λω0

F′(ω0)

2 p(1)
0 (iω0)

=
h′(s0)

Λ p(1)
0 (iω0)

.

Therefore,

sgn

 d Re(λ)
d τ2

∣∣∣∣∣∣
τ2=τ∗

 = sgn


 d Re(λ)

d τ2

∣∣∣∣∣∣
τ2=τ∗


−1

 = sgn

 h′(s0)

Λ p(1)
0 (iω0)

 = sgn[p(1)
0 (iω0)h′(s0)],

which completes the proof. �

We can now formulate the main result concerning stability of the steady state S ∗2.
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Theorem 3.2. Suppose the value of T ∗reg for S ∗2 satisfies conditions (3.2) and (3.4). If equation (3.5)
has at least one positive root s0 with h′(s0) , 0, and p(1)

0 (iω0) , 0, then the steady state S ∗2 is stable for
0 ≤ τ2 < τ

∗, unstable for τ2 > τ
∗, and undergoes a Hopf bifurcation at τ2 = τ∗.

Stability analysis for the steady state S ∗3 is very similar, and it shows that this steady state is stable
if

σ2
(
βk − cdF

)
µadi

(
c + βk

) <
da + δT ∗reg

ρ3
<

dn

ρ2
,

and all the roots of equation (3.3) have a negative real part. The analysis then proceeds in exactly the
same way, and since the value of T ∗reg is the same for S ∗2 and S ∗3, hence, the conclusion of Theorem 3.2
also holds for S ∗3.

4. Numerical stability analysis and simulations

To explore how various parameters affect stability of different steady states, as well as the overall
dynamics of the model, we perform numerical stability analysis and simulations using baseline values
of model parameters, as given in Table 1. It is clear that for this choice of parameters, the condition
cdF − kβ > 0 holds, implying that the disease-free steady state S ∗1 is stable, the steady states S ∗2 and S ∗3
can be either stable or unstable, while the chronic steady state S ∗4 is not biologically feasible. Later,
we will also investigate what happens in the case when cdF − kβ < 0, for which the disease-free steady
state S ∗1 is unstable.

Table 1. Table of parameters.

Parameter Value Parameter Value
β 3 dn 1
µa 20 da 0.001
dF 1.1 δ 0.002
µF 6 σ1 0.15
din 1 σ2 0.2
α 0.4 di 0.6
λr 3 k 2
dr 0.4 c 6
p1 0.4 τ1 0.3
p2 0.4 τ2 0.6
ρ1 10 τ3 0.6
ρ2 0.8 τ4 1.2
ρ3 2

Since the model can potentially exhibit multi-stability, an important role is played by the initial
conditions. We have chosen the following initial condition

(A(0), F(0),Tin(0),Treg(0),Tnor(0),Taut(0), I(0),V(0)) = (0.9, 0, 0.8, 0.7, 0, 0, 0, 0.4), (4.1)

which biologically represents a situation at the start of viral infection, where there are still no infected
cells, and no activated T cells.
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Earlier analysis of the model without time delays [86] has indicated that increasing the rate ρ1, at
which IL-2 enhances proliferation of regulatory T cells, can affect stability of the steady states S ∗2 and
S ∗3. Figure 2 shows that increasing the time delay τ2, associated with this process of enhancement of
proliferation, results in the smaller stability region of the steady state S ∗2, associated with the death
of host cells. In contrast, stability of S ∗3 for small τ2 is unaffected by ρ1, but once τ2 exceeds some
threshold value, S ∗3 is stable for smaller values of τ2 and unstable for higher values of τ2, with a
Hopf bifurcation of S ∗3 occurring at some critical value of τ2, which increases with ρ1, as described
in Theorem 3.2. This Figure also suggests that if τ2 is sufficiently large, both steady states S ∗2 and S ∗3
are unstable. Importantly, one should note that if ρ1 is sufficiently high, neither of these steady states
are feasible, and the system only has a single stable disease-free steady state S ∗1. Interestingly, the
autoimmune state S ∗3 can only exist if ρ1 exceeds some minimum value, suggesting a rather counter-
intuitive result that within our model the onset of autoimmune dynamics relies, at least partially, on
the immune system functioning more effectively in terms of enhancing the proliferation of regulatory
T cells.

To explore the role played by the strength of infection and the state of the immune system prior to
infection in determining disease outcome, Figure 3 illustrates basins of attraction of different steady
states and periodic solutions of the model depending on the initial viral load V(0), and the initial
number of regulatory T cells Treg(0). This Figure was computed by numerically solving the system
(2.2) with the initial condition (4.1) for every combination of initial values of V(0) and Treg(0) until
t = 10000, and then identifying from the solution, which dynamical state the system had reached
by that point. Whereas time delay τ1, which represents the time it takes for infected cell to become
identifiable as such to CTLs, does not have an effect on feasibility or stability of the steady states S ∗1
and S ∗3, changing this time delay affects the shape of basins of attraction of these states.

Figure 2. Stability of the steady states S ∗2 (a) and S ∗3 (b) with parameter values from Table 1,
except for ρ3 = 3. White area shows the region where the respective steady state is infeasible.
Colour code denotes max[Re(λ)] for the steady states whenever they are feasible. In both
plots, cdF > kβ, so the disease-free steady state S ∗1 is stable.
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Figure 3. Basins of attraction of different dynamical states depending on V(0) and Treg(0),
with other initial conditions specified in (4.1). The parameter values are taken from Table 1,
except that in (a)-(b) µa = 9, and in (c)-(d) ρ1 = 18, ρ3 = 3. Cyan and pink indicate basins of
attraction of steady states S ∗1 and S ∗3, respectively. Green indicates a region where the system
exhibits a periodic solution around S ∗3.

On the other hand, τ3 and τ4 do not have significant effect on the shape of basins of attraction. We
can see that for negligibly small values of τ1, the system can converge to a stable steady state S ∗3 or
a periodic orbit around this steady state for an arbitrarily large initial viral load. As the delay τ1 is
increased, this results in making the basin of attraction of S ∗3, or periodic solution around it, bounded,
and for sufficiently high values of V(0) or Treg(0), the system approaches a stable disease-free steady
state S ∗1. One also observes that in this case the system converges to S ∗3 or a periodic orbit around it
for some intermediate values of Treg(0), while for very small or very large Treg(0) it converges instead
to S ∗1. We have earlier shown [86] that for every λr smaller that some threshold value, which ensures
the existence of steady states S ∗2/S

∗
3, there is some critical value of µa, so that for larger values of µa

there is a stable steady state S ∗3 or a stable periodic orbit around it, whereas for smaller values of µa

there is a stable steady state S ∗2 or a stable periodic orbit around it. At the same time, the shape of the
basins of attraction remains exactly the same as the one shown in Figure 3, with S ∗2 replacing S ∗3 if the
value of µa is reduced. Comparison of plots 3(a) and (c) indicates that increasing the rate ρ1 at which
IL-2 enhances the proliferation of Tregs results in a modification of basins of attraction, namely, for
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Figure 4. Numerical solution of the model (2.2) with parameter values from Table 1, except
for ρ1 = 18 and ρ3 = 3. (a) and (b) Stable steady state S ∗1 for τ2 = 18, V(0) = 0.35, and
Treg(0) = 180. (c) and (d) Periodic oscillations around the steady state S ∗3 for τ2 = 18,
V(0) = 0.35, and Treg(0) = 10. (e) and (f) Transient oscillations settling on a stable steady
state S ∗3 for τ2 = 13, V(0) = 0.35, and Treg(0) = 10.

higher ρ1, it is possible to have a stable disease-free steady state for arbitrarily small initial numbers of
regulatory T cells, while for smaller ρ1 this can only occur, provided Treg(0) exceeds some minimum
value. Figure 3(d) illustrates the fact that in our model, decreasing the level of infection, as quantified
by V(0), can actually result in the onset and/or exacerbation of autoimmune disease. Experimentally,
this result has been demonstrated in earlier studies of diabetes in NOD mice [1].

In Figure 4 we demonstrate the regime of bi-stability indicated in Figure 3(d), where for the same
values of parameters, depending on the initial condition, the system either converges to a stable
disease-free steady state S ∗1, or approaches a periodic orbit around S ∗3. From a biological perspective,
this periodic solution represents an autoimmune state, where the initial infection has been
successfully cleared, but subsequently the immune system exhibits sustained endogenous oscillations
in the population of autoreactive T cells that can cause damage to the host cells. In clinical practice,
this oscillatory behaviour is associated with relapses/remissions that are characteristic for many
autoimmune diseases, such as autoimmune thyroid disease, uveitis, and MS [83–85]. This bi-stability
is very important from a practical point of view, as it highlights the fact that it is not only the kinetic
parameters of the immune response, but also the strength of the infection (as represented by the initial
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viral load), and the initial state of the immune system that determine which dynamical state the
system will evolve to. From a clinical perspective, this amount to distinguishing between a particular
patient being able to clear an infection without any lasting consequences, or proceeding to develop
autoimmune disease.

If all the parameters are kept constant, increasing the time delay τ2 associated wth IL-2-induced
proliferation of regulatory T cells can result in suppression of oscillations, so that the system would
settle on a stable steady state S ∗3.

Next, consider the case when cdF < kβ, which means that the disease-free steady state S ∗1 is
unstable, and the chronic steady state S ∗4 is feasible, and in this case, the steady states S ∗2 and S ∗3 can
also be stable. Figure 5 illustrates how the feasibility and stability of S ∗2, S ∗3, and S ∗4 depends on the
time delay τ2, and also on the parameter δ that characterises how strongly regulatory T cells suppress
autoreactive T cells. Regions of feasibility and stability S ∗2 and S ∗3, presented in Figures 5(a) and (b)
are qualitatively similar to regions of feasibility and stability of these steady states for the case where
the disease-free steady states is stable, as was shown earlier in Figures 2(a) and (b).

For the chronic steady state S ∗4, one observes that if the rate δ is sufficiently high, this steady state is
stable for any value of the time delay τ2. For smaller δ, the steady state S ∗4 undergoes a finite number
of stability switches as the time delay τ2 increases, and eventually it becomes unstable, as shown in
Figure 5(c). Figure 5(d) illustrates various regimes of multii-stability between different steady states
that can be observed in the model for cdF < kβ, i.e. when the disease-free steady state S ∗1 is unstable.
One observes that for a very small time delay τ2, there are two ranges of values of δ, for which either
both S ∗2 and S ∗4 are stable, or both S ∗3 and S ∗4 are stable. As τ2 increases, these ranges, where bi-
stability is observed, become narrower and eventually disappear, with only the chronic steady state S ∗4
remaining as the single stable steady state. For lower values of δ, the steady state S ∗4 is unstable through
a Hopf bifurcation, and for sufficiently small δ it is infeasible.

Figure 6 shows basins of attraction for different steady states that correspond to various stability
regions illustrated in Figure 5(d). In the case of sufficiently small rate δ of suppression of autoreactive
T cells by regulatory T cells, for intermediate initial viral loads the system converges to a steady state
S ∗2, corresponding to the death of host cells for any initial numbers of regulatory T cells, while for
smaller and higher viral loads, it would settle on a chronic steady state S ∗4.

For higher values of δ, the behaviour is very similar to that observed earlier in Figure 3(a) and (b),
i.e. for a negligibly small delay τ1, starting from some initial viral load, the system approaches a stable
chronic steady state S ∗4 for higher initial number of Tregs, and approaches an autoreactive steady state
S ∗3 for smaller initial number of Tregs, irrespective of the initial viral load. In this case, increasing the
delay τ1 results in making the basin of attraction of the steady state S ∗3 bounded, so that for sufficiently
small and sufficiently large initial viral loads, and for sufficiently high initial number of regulatory T
cells, the system approaches a stable chronic state S ∗4. Figure 8 illustrates the regime of bi-stability
shown in Figure 6(d), where for the same values of parameters and the same initial viral load, the
system either approaches the autoimmune steady state S ∗3 for smaller Treg(0), or tends to the chronic
steady state S ∗4 for higher Treg(0).

Since the stability of the steady states S ∗2 and S ∗3 is independent of the time delays τ1, τ3, and τ4, we
now illustrate in Figure 7 how these time delays, as well as τ2, affect stability of the chronic steady state
S ∗4, with the steady state being stable for sufficiently small values of all time delays. Figure 7(a) shows
what happens when the time delays τ2 and τ3 that are associated, respectively, with cytokine-mediated
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Figure 5. Feasibility and stability of the steady states S ∗2, S ∗3, and S ∗4 with parameter values
from Table 1, except for k = 2.1, β = 4, and σ2 = 0.33. (a), (b), and (c) correspond to S ∗2,
S ∗3, and S ∗4, respectively. White area indicates a region where the respective steady state is
infeasible. Colour code denotes max[Re(λ)] for each steady states whenever it is feasible.
In (d) green shows the region where S ∗3 and S ∗4 are stable, and S ∗2 is unstable; red indicates
the area where S ∗2 and S ∗4 are stable, and S ∗3 is infeasible; blue is where S ∗4 is stable, and S ∗2
and S ∗3 are, respectively, unstable and infeasible; purple shows the region where S ∗4 is stable,
and S ∗2 and S ∗3 are unstable; cyan and yellow indicate regions where S ∗3 is infeasible, S ∗2 is
unstable, and S ∗4 is, respectively, unstable or infeasible.

enhancement of T cell proliferation, and T cell expansion in response to foreign antigen, are fixed.
One observes that if new virus particles are produced by the infected cells sufficiently fast, i.e. the time
delay τ4 is small, the chronic steady state S ∗4 is stable for any value of the time delay τ1 associated with
the process of infection, provided other parameters ensure the feasibility of S ∗4. For higher values of
τ4, this steady state undergoes a finite number of stability switches as τ1 is increased, before becoming
unstable. Similar behaviour can be observed in Figure 7(d), which corresponds to a situation where τ1

and τ4 are fixed, while τ2 and τ3 are allowed to vary.

Figure 7(b) shows that for fixed τ1 and τ2, increasing just one of the time delays τ3 or τ4 results
in a destabilisation of the chronic state S ∗4, while for each τ1 there is a range of values of τ4 (roughly
centred around τ4 ≈ τ1), for which S ∗4 is stable. Finally, in the case where τ1 and τ3 are fixed, as shown
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Figure 6. Basins of attraction of the steady states S ∗2, S ∗3, and S ∗4, with the same parameter
values as in Figure 5, except for τ2 = 0.6, δ = 0.002 in (a)-(b), δ = 0.0024 in (c)-(d), τ1 = 0
in (a)-(c), and τ1 = 0.3 in (b)-(d). Yellow shows the basin of attraction of the chronic steady
state S ∗4, while red and pink indicate the basins of attraction of S ∗2 and S ∗3, respectively.

in Figure 7(c), S ∗4 is stable for any value of τ4 for sufficiently small τ2, and then it is stable for small τ4

and very large τ4, with a finite number of stability switches between those values.

Figure 8 demonstrates different dynamical regimes in the model based on Figure 6(d) and
Figure 7(b). Figures 8(a)–(b) show how the system approaches the autoimmune steady state S ∗3 for
initial conditions indicated by a star in the pink region in Figure 6(d). For the same parameter values
but a higher initial number of regulatory T cells, which corresponds to a star in the yellow region in
Figure 6(d), the system instead tends to a stable chronic steady state S ∗4, as shown in Figures 8(c)–(d).
In agreement with Figure 7(b), for the same values of parameters and initial conditions, increasing the
time delay τ3 leads to a destabilisation of the steady state S ∗4 and the emergence of stable periodic
oscillations around this steady state, as shown in Figures 8(e)–(f). This suggests that when the system
is experiencing a chronic infection, a time delay associated with the differentiation of T cells into
regulatory or activated T cells controls whether this chronic infection is characterised by some steady
levels of cell populations, or oscillations around these steady levels.
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Figure 7. Stability of the chronic steady state S ∗4 depending on time delays, with parameter
values as in Figure 5 and with δ = 0.0024. Colour code denotes max[Re(λ)].

5. Discussion

In this paper we have analysed a model of immune response to a viral infection, which includes T
cells with different activation thresholds, regulatory T cells and IL-2 cytokine. Since other types of T
cells are not included in the model, we consider a situation where that IL-2 is only produced by CTLs,
but it regulates the proliferation of both CTLs, and regulatory T cells. A particular emphasis has been
made on the role of time delays associated with the following four aspects of immune dynamics: a
lag between the time a cell becomes infected and the time it becomes recognised as infected by CTLs,
the time it takes for IL-2 to stimulate the proliferation of T cells, the time it takes for naı̈ve T cells
to differentiate into regulatory T cells or CTLs, and the time that is required for infected cells to start
releasing mature new virions.

Depending on the values of parameters, the model can have up to four biologically feasible steady
states that represent the disease-free state S ∗1, the steady state characterised by the death of host cells
S ∗2, the autoimmune steady state S ∗3, and the steady state of chronic infection S ∗4. Stability of the
disease-free steady state is completely determined by the difference between the product of the rate of
clearance of free virus with the death rate of infected cells, and the product of infection rate with the
rate of production of new virus particles, but is independent of any other parameters and any of the
time delays. In contrast, stability of the steady states S ∗2 and S ∗3 depends on the time delay τ2, and we
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Figure 8. Numerical solution of the model (2.2) with parameter values as in Figure 5, with
δ = 0.0024. (a) and (b) Stable steady state S ∗3 for V(0) = 0.5 and Treg(0) = 150. (c) and
(d) Stable steady state S ∗4 for V(0) = 0.5 and Treg(0) = 230. (e) and (f) Periodic oscillations
around the chronic steady state S ∗4 for τ3 = 30, V(0) = 0.5 and Treg(0) = 230.

have found analytical conditions for stability of these steady states in terms of τ2 and other parameters,
but importantly, other time delays have no effect on stability. When stability of the steady state S ∗3 is
lost through a Hopf bifurcation, this results in the emergence of sustained periodic oscillations around
this steady state, which can be interpreted as a proper autoimmune state, where after the clearance of
the primary infection, due to the breakdown of immune tolerance the immune system attacks host’s
own healthy cells, and the oscillations can be associated with periods of relapses and remission that are
characteristic for many autoimmune diseases. The analysis suggests that one possible reason for the
emergence of autoimmune state is an insufficiently strong effect of IL-2 on promoting the proliferation
of regulatory T cells, resulting in a destabilisation of the steady state S ∗3.

Of particular interest is the regime of bi-stability between different steady states and/or periodic
orbits, which indicates that even for the same values of parameters characterising the immune system
and the infection, the ultimate dynamical state is also determined by the initial conditions, which
include the initial viral load and the state of the immune system, such as the initial number of regulatory
T cells. This is a very important result for clinical observations, since effectively it suggests that
whether or not a given patient will successfully clear the infection, or will proceed to develop an
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autoimmune disease, is determined not only by how effective their immune system is, but also by the
state of their immune system at the time of infection. To better understand the dynamics of the model
in the bi-stable regime, we have explored how the shape of basins of attraction of different dynamical
states changes with parameters. Extensive numerical simulations show that although the time delay τ1

between the time a cell becomes infected, and the time it becomes recognised as such by the immune
system, does not have an effect on stability of the autoimmune steady state, it does, however, affect the
shape of basins of attraction. Furthermore, numerical computations of the basins of attractions have
shown another interesting result which suggests that reducing the initial viral load for the same level of
regulatory T cells can result in someone developing autoimmunity, where previously they would just
clear the infection without any further consequences. This result agrees with experimental observations
of the onset and progression of diabetes in NOD mice [1].

There are several directions in which the work presented in this paper could be developed further.
To account for the fact that immune response is a very complex multi-factor process, we have recently
investigated the effects of stochasticity on the dynamics of immune response [87]. Those results show
that while, on average, cell populations may exhibit decaying oscillations, stochastic amplification
can yield sustained stochastic oscillations in individual realisations, which has major implications for
analysis of clinical observations of immune response. It would be very insightful and practically
important to investigate how those results are affected by the time delays, such as those analysed in
this paper using deterministic models. From a mathematical perspective, this would require the
development and analysis of a stochastic delayed model of immune responses, which, to our
knowledge, has not yet been done. Another important question within the framework of T cells with
tunable activation thresholds concerns an observation that during the process of immune response,
activation thresholds themselves can also change [53, 61, 62], which can have a major effect on the
progress of immune dynamics. Embedding activation thresholds as additional variables in a model
similar to the one studied in this paper would provide a more comprehensive and accurate
representation of T cell dynamics during immune response. Further realism can be added to the
model by considering the effects of T cells on IL-2 secretion [66, 87], as well as including other
aspects of immune system, such as memory T cells [97, 98].
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