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Abstract

The Standard Model (SM) of particle physics provides no explanation of the light-

ness of the Higgs particle found at the Large Hardron Collider (LHC) in 2012 compared

to the natural scale of its mass, the Planck scale. This problem leads to the study of

the class of physics models known as composite Higgs models, where the Higgs boson

is considered to be a bound state of a new strongly interacting gauge theory. In this

type of models, elementary particles have to couple with this composite state in order

to gain masses. The dependence on the composite partners of the top quark, known

as the top-partners, of Higgs production through gluon fusion has been studied. There

it was found that, due to a subtle cancellation between the contribution of the top

and that of the top partners, it is not possible to infer the top-partner mass from that

process. However, there has been a study on the Higgs plus jet production from gluon

fusion in a model with a top and an additional top partner. In that case, the transverse

momentum distribution of the Higgs boson showed a depenence on the top-partner

mass and coupling.

In this thesis we extend that study by considering Higgs production with a jet

in explicit composite Higgs models, which has never been considered before in the

literature. In particular, we consider composite Higgs models where the right handed

top quark tR was considered to be a composite state of a strong interacting sector

containing either one or two top-partner multiplets. We then study Higgs production

in association with a jet in these models, and in particular we examine thoroughly the

impact of increasing number of the top partner multiplets.

The models studied in our work were categorised according to the representation

of the top partners and the way the standard model left-handed doublet is embedded

in the representations of the symmetry of the strong sector. In the case where there

is only one top partner multiplet in the models, we derived the explicit forms of the

Yukawa couplings of the top quark and the top partners, and the CP-odd couplings

that are present as a result of having a bound state tR. In the case where there are

two top partners multiplets, we discussed the behaviour of the Yukawas and the masses
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of the top partners as a function of the input parameters of the models. Numerical

values of the masses, Yukawa couplings, and CP-odd couplings were calculated for

both cases, and these values were input in a numerical programme to calculate the

transverse momentum distribution of the Higgs. Various deviations from the Standard

Model behaviour appear. They are typically model dependent, and have been studied

on a case-by-case basis. In particular, we have discussed the difference between models

with one and two top-partners.
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Chapter 1

Introduction

After the discovery, and the experimental tests, of the electro-magnetic and weak forces,

two of the four fundamental forces, attempts has been made in order to describe these

two forces by one theory, namely, the electroweak theory. In the Standard Model

(SM) of particle physics, the electroweak theory is described by the symmetry of the

SU(2)L × U(1)Y gauge group [1–3]. This symmetry is spontaneously broken to give

rise to the U(1)QED electromagnetic gauge interaction at low energy. The structure of

the Higgs Lagrangian in the SM is similar to case where, in the theory, we consider

the U(1) gauge theory which is spontaneously broken to give mass to a massive gauge

boson, namely the Abelian Higgs model [4]. In both models there exist a multiplet of

scalar fields φ (the Higgs field) with a Lagrangian

L ⊃ (Dµφ)† (Dµφ)− V
(
φ†φ
)
, (1.1)

where the Higgs potential V (φ†φ) is given by

V (φ†φ) = µ2φ†φ+ λ
(
φ†φ
)2
, (1.2)

with λ > 0. For the Abelian Higgs model, φ is a complex scalar field, i.e.

φ =
1√
2

(φ1 + iφ2) , (1.3)

and

Dµ = ∂µ + iqAµ , (1.4)

where Aµ is used to denote the gauge field associated with the U(1) symmetry. From

Eq (1.2), if µ2 > 0, the vacuum expectation value (VEV) of the field, which corresponds

to the location of the minimum of the potential, is given by 〈0 |φ| 0〉 = 〈φ〉0 = 0. In
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this case, the VEV of φ will be invariant under the symmetry of the model. In the case

µ2 < 0, however, the potential in Eq. (1.2) has a continuous set of degenerate minima

corresponding to the VEVs satisfying

√
〈φ†φ〉0 =

√
−µ2

2λ
≡ v√

2
. (1.5)

Any of such VEVs is not invariant under the symmetry in the theory, i.e. U(1) for

the Abelian Higgs model. On the other hand, the Lagrangian of the Abelian Higgs

model is invariant under the U(1) symmetry. This situation is known as spontaneous

breaking of the symmetry (U(1) in this case). An important idea, closely related to

the spontaneous symmetry breaking, is incorporated in the SM, and the Abelian Higgs

model. This is the Higgs mechanism, whose purpose is to describe how gauge bosons

are given masses after the spontaneous breaking of the symmetries in the theory. If

we multiply the U(1) generator, which can be taken as an identity matrix, on any of

the VEVs in Eq. (1.5), the result is not zero. The group generators of the theory that

cannot annihilate the VEV, such as this case, are referred to as broken generators. Let

us know choose a particular VEV, for instance v/
√

2. Fluctuations around this VEV

that can be expressed as

φ (x) =
1√
2

[v + ρ (x)] eiθ(x)/v , (1.6)

where θ (x) would be a massless scalar field, known as the Nambu-Goldstone boson

(NGB) or Goldstone boson [5, 6]. Now consider the Goldstone theorem which states

that for each of broken group generators of a spontaneously broken continuous global

symmetry, there exist a massless Goldstone boson in the theory [7]. If U(1) were a

global symmetry, θ (x) would be a physical Goldstone boson. However, in the Abelian

Higgs model, the U(1) is a gauge symmetry, and this is not a physical symmetry, but

can then be removed from the theory by applying to φ (x) a gauge transformation of

the form [4]

φ (x)→ e−iθ(x)/vφ (x) =
1√
2

[v + ρ (x)] ,

Aµ (x)→ Aµ (x) +
1

qv
∂µθ (x) = A′µ .

(1.7)

Substituting the φ (x) given in Eq. (1.7) into Eq. (1.1), the Aµ (x) obtains a mass given

by

mA = qv . (1.8)
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The last equation is the core of the Higgs mechanism: the gauge fields associated to

each of the spontaneously broken gauge group generators become massive.

While the Abelian Higgs model is regarded as a model where the important features

of a particle physics model can be studied, it cannot be considered as a physical theory

that can be used to describe electroweak interactions, since the group structure is not

large enough to give masses to all of the known electromagnetic and weak gauge fields.

Then, in the SM, the group structure is enlarged to SU(2)L×U(1)Y as described above.

In the SM, φ is an SU(2)L doublet of scalar fields, i.e.

φ =
1√
2

(
φ1 + iφ2

φ3 + iφ4

)
(1.9)

and

Dµ = ∂µ − i
g′0
2
Bµy − i

g0

2
W a
µσ

a (1.10)

where Bµ andW a
µ are the gauge fields associated with the U(1)Y generator y and SU(2)L

generators, which is taken to be the Pauli matrices σa, respectively. The doublet in

Eq. (1.9) has an infinite number of degenerate VEV. For concreteness, we can consider

one particular VEV given by

〈φ〉0 =

(
0
v√
2

)
. (1.11)

Similar to the VEV given in Eq. (1.5), the VEV in Eq. (1.11) is not invariant under

SU(2)L×U(1)Y symmetry of the SM models, while the Lagrangian of the model is still

invariant under these symmetries. The symmetry of the SM model is then said to be

spontaneously broken. The generators of the SM, σa and y, can be traded to the new

set of the generators (σ1, σ2, K,Q), where

K =
σ3 − y

2
=

(
0 0

0 −1

)
, Q =

σ3 + y

2
=

(
1 0

0 0

)
. (1.12)
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Applying this set of the generators to the SM VEV in Eq. (1.11), one would obtain that

σ1〈φ〉0 =

(
0 1

1 0

)(
0
v√
2

)
=

(
v√
2

0

)
6= 0

σ2〈φ〉0 =

(
0 −i
i 0

)(
0
v√
2

)
=

(
−iv√

2

0

)
6= 0

K〈φ〉0 =

(
0 0

0 −1

)(
0
v√
2

)
=

(
− v√

2

0

)
6= 0

Q〈φ〉0 =

(
1 0

0 0

)(
0
v√
2

)
=

(
0

0

)
.

(1.13)

Among the new set of generators, three of them do not annihilate the vacuum. The

generators of a symmetry that possess this property are known as broken generators.

From Eq. (1.13), the broken generators can be defined by Tα, for α = 1, 2, 3, where

T 1 =
σ1

2
, T 2 =

σ2

2
, T 3 =

K

2
. (1.14)

For each of the broken generators, those that do not annihilate the vacuum, there exists

an associated massless scalar Goldstone field. These fields, denoted as θα (x), can be

parametrised as fluctuation around the VEV as follows

φ (x) = exp

(
iθα (x)Tα

v

)(
0

v+ρ(x)√
2

)
(1.15)

where ρ (x) is used here to denote the SM Higgs field, and σα denotes the broken

generators in Eq. (1.13). If the SU(2)L × U(1)Y were a global symmetry, instead

of being a gauge symmetry as appears in the SM, θα (x) would have been physical

Goldstone fields. In the SM, however, they can be removed from theory by applying

to φ (x) given in Eq. (1.15) a gauge transformation, known as the unitary gauge [8, 9],

with the action

φ (x)→ exp

(
−iθα (x)Tα

v

)
φ (x) =

(
0

v+ρ(x)√
2

)
. (1.16)

Substituting Eq. (1.16) into Eq. (1.1), we find that the SM gauge fields are given by

W−
µ ≡

W 1
µ + iW 2

µ√
2

, W−
µ ≡

W 1
µ − iW 2

µ√
2

Zµ ≡
−g′0Bµ + g0W

3
µ√

g2
0 + g′0

2
, Aµ ≡

g0Bµ + g′0W
3
µ√

g2
0 + g′0

2

(1.17)
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and the masses of the fields are

mρ =
√
−2µ2, mW =

g0v

2
, mZ =

g0v

2

√
1 +

(
g′0
g0

)2

. (1.18)

The Standard Model (SM) of particle physics has been successful in describing the

particle with 125 GeV mass found at the Large Hadron Collider (LHC) in 2012. The

LHC performed proton-proton collisions with centre-of-mass energies of 7 and 8 TeV,

and a resonance with a mass of about 125 GeV was declared [10, 11]. This particle

provided an excellent candidate for the SM Higgs particle. The properties of this

particle have been tested and, so far, significant deviations from the SM properties of

this Higgs particle have not been found. Despite this success, the SM does not seem to

be able to provide sensible answers to many questions that our observations propose.

One example is the so-called hierarchy problem, whose solution is the main topic of this

thesis. The main issue is that the SM does not provide an explanation why the SM

Higgs has a light mass compared to its natural scale, which is the Planck mass (of the

order of 1019 GeV). Solutions to this problem lead to new models for particle physics.

It is inevitable that theory with fundamental scalar fields, such as the SM, is affected

by quadratic divergences associated with the scalar fields. These divergences could

eventually lead to fine-tuning problems when some parameters of the model have to

be adjusted. In order to see where difficulties arise, suppose in a theory there exists a

fundamental energy scale κ and a dimensionsless bare coupling g0. The quantity κ is

considered to be of the same order as the Planck mass. Suppose further that in the

theory, for a scalar field, there exist a dimensionless bare mass µ0, defined as the ratio

of the bare mass m0 of the scalar field and κ [12]

µ0 =
m0

κ
. (1.19)

If this scalar field receives a self-energy correction, arising from e.g. loops of fermions,

then it is possible to write its renormalised mass m2 as [12]

m2 = m2
0 + ∆m2 = m2

0 + κ2g2
0 , (1.20)

where ∆m2 denotes the self-energy correction. From Eq. (1.19), it is then easy to solve

for µ2
0 from Eq. (1.20), and we obtain [12]

µ2
0 =

m2
0

κ2
=
m2

κ2
− g2

0. (1.21)
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As m is one of the physical properties of the theory, it is expected to be stale against

variations of g0 and µ0 for a theory to occur naturally as described above. With κ of

order 1019 GeV, if m is a light mass of order 1 GeV, then it is required that

µ2
0 = −g2

0

(
1− 10−38

)
. (1.22)

The equation above means that µ2
0 must be adjusted to the 38th decimal place, otherwise

m will be of order 1019 GeV. Hence, quadratic divergences in the scalar particle masses

can lead to unnatural adjustment of the parameters in the theory. In natural theories,

the dimensionless ratios between the free parameters should appear with values of order

1, and the free parameters should not be fine-tuned. Moreover, in natural theories, the

observable properties should be stable under the variation of the fundamental param-

eters [12]. One of the main issues of the hierarchy problem is the natuaralness of the

model considered to describe the force in nature.

Two particularly interesting scenarios were proposed for solving the problems above.

One of them is supersymmetry, on which a huge amount of work has been carried out in

terms of its search strategies and implications [13–15]. In this model, supersymmetric

partners with a different spin are introduced for any SM particle. Supersymmetry is

in fact the symmetry that constrains the couplings in such a way that cancellation of

quadratic divergences occurring in the calculation of the Higgs mass occurs between

loops of a SM particle and that of its supersymmetric partner.

The other is the composite Higgs [16–18] which instead of being an elementary

particle as the Higgs in the SM, the Higgs particle is now a composite state arising

from the strongly interacting sector in the theory. The composite Higgs model is the

kind of model we have studied in this thesis. The composite Higgs models are based on

two aspects. One is that the Higgs is a pseudo Nambu-Goldstone boson arising from

the spontaneous breaking of a global symmetry [19]. Because of this nature, the Higgs

has no potential at tree level. As a result, the Higgs potential, and hence the EWSB,

must occur via loops of particles. The other is partial compositeness, where quarks and

leptons acquire their masses via a linear mixing with a composite sector. This type of

mixing results in the breaking of the global symmetry of the strong sector, since the

mixings will be invariant under the SM electroweak group, but not under the global

symmetry of the composite sector. The Higgs potential can then arise from loops of

both SM particles, and composite fermions emerging from the strong sector. Since the

top coupling to the Higgs is the strongest among the couplings of SM particles with

the Higgs, the top quark and its composite states, known as the top partners, give the
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most significant contribution to the Higgs potential. The existence of top partners is

expected to have influences on the properties of the top quark, and can therefore be a

viable way to probe the compositeness of the Higgs particle.

However, searching for top-partners is a difficult task. Direct searches for top part-

ners can be carried out via pair production pp→ T T̄ and single production pp→ T+X.

However, this type of searches will be highly model dependent since the search strategy

and limits rely heavily on the knowledge of the decay modes of the top partners. For

top partner searches focusing on some decay channels such as T → W+b, T → Zt

and T → ht, some experimental bounds can be applied. However, these bounds will

weaken if other decay channels are proved to be possible [20, 21]. Moreover, this type

of searches suffers from the presence of background processes with large cross sections.

Indirect searches, on the other hand, lead to a complementary approach since they do

not depend on how the top-partner decay modes. Some dependency on top partner

masses is expected in some physical processes. For instance, top partners contribute

through loops to the Higgs total cross section. Unfortunately, due to a very stingent

low energy theorem [22], their contribution cannot be disentangled from that of the top

quark. It has been pointed out recently that [23], in Higgs plus one jet, on the other

hand, the transverse momentum pT distribution of the Higgs (or the associated jet) can

depend on the top partner masses and therefore can be used as a tool to search for top

partners.

In this thesis, we will deal with composite scenarios where the right-handed top

quark is assumed to be a totally composite state rather than an elementary particle as in

the SM. In these models the top partners are also categorised in different representations

of the group symmetry. We concentrate on two models and in each of the models, we

will study the case where we have either one or two top-partner multiplets.

In chapter 2, we will give an overview of the basic principles behind the construction

of composite Higgs models, and explore some important features. Also, we will discuss

a simple model where the basic properties of a composite Higgs model can be learned

and then discuss the procedure for extending the group structure of the model to the

one we studied in the rest of the thesis.

In chapter 3 we describe the models arising from top partner multiplets transforming

in the fourplet and singlet representations of the group SO(4), which were developed

in Ref. [24]. Instead of dealing with only one top partner case as generally done in

previous works, in this thesis we will explain how to deal both with scenarios with one



14

top-partner multiplet and two top-partner multiplets. We will also explore the effect

of a term emerging as a result of having a totally composite right-handed top partner

and explain how it eventually leads to CP-odd Yukawa couplings [24, 25]. As a novel

result, we have computed the analytical form of the Yukawa couplings in the case of one

top partner, in both models. In the cases where we have two top partner multiplets,

these formulae cannot be derived, and instead, we show how the mass spectrum and

couplings change when we vary the parameters in the models. All these analyses are

presented in chapter 3

In chapter 4, we provide numerical predictions for Higgs plus one additional jet at

the LHC. First, we discuss about previous studies showing that, due to low energy

cancelation the single Higgs production pp→ h is not a possible choice for probing the

mass of the top partner. We then discuss how the pT distribution computed from the

production pp → Higgs plus a high-pT jet can show sensitivity to the mass of the top

partner, following the strategy of [23]. With this knowledge, we introduce the variable,

closely related to the pT distribution, that we will use as a tool to probe the dependence

on the mass of the top partner, and hence on the compositeness of the Higgs boson.

We then present numerical results for both the cases where, in the theory, there are one

and two top partner multiplets. The chapter ends with a discussion on the significance

of the results.

In the final chapter, we present some conclusion, and some considerations for further

studies.
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Chapter 2

Background Knowledge

2.1 Composite Higgs Models

Since the Higgs field plays such an important role in the breaking of electroweak sym-

metry, understanding the origin of this particle is an essential task. A strong motivation

for the study of theories where the Higgs boson is a composite state comes from the

lack of explanation for the lightness of the Higgs in the SM, where the Higgs field is

an elementary particle. In fact, it is known that a very effective way to have a light

scalar boson in a theory is to identify it as a pseudo Nambu Goldstone boson (pNGB)

of a broken global symmetry. Such mechanism, for instance, explains the smallness

of the masses of the pions compared to the characteristic confinement scale of QCD

ΛQCD ∼ 200 MeV. Similarly, if we want to allow the Higgs to be formed this way, a

new strongly interacting sector, i.e. a new strong force needs to be included in the the-

ory [26]. The very same strong sector is responsible, through the Higgs mechanism, for

the masses of the vector bosons. QCD cannot be a good candidate for such a theory,

because it will lead to masses of the vector bosons of the order of ΛQCD, hence too small

compared to what we observe in nature. It was pointed out that if the composite Higgs

boson emerges as pNGB resulting from the breaking of a global symmetry of the strong

sector, its mass can be naturally light [17, 27]. This is the main benefit of composite

Higgs models. Since the Higgs behaves effectively as an elementary particle at the EW

scale, such theories automatically satisfy the electroweak precision tests.

As stated in the Introduction, a theory which is invariant under a symmetry, but

whose vacuum state, or equivalently the vacuum expectation value of a scalar field, is not

invariant is referred to as being spontaneously broken. It is known from the Goldstone
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theorem that if a continuous global symmetry is spontaneously broken so as to leave

a smaller symmetry group, there exits a massless Goldstone boson for each broken

generator. Under the larger symmetry group, the corresponding scalar Goldstone fields

transform non-linearly and, as a result, have no potential.

Let us consider the field θ(x) corresponding to a NGB. This field transforms non-

linearly as follows [29]

θ → θ + χ, (2.1)

where θ is used to denote a NGB and χ represents the parameter of this “shift” trans-

formation. If we want to introduce a potential V (θ) to the theory, this potential needs

to be symmetric under the field shift in Eq. (2.1). Polynomial terms θn, e.g. a mass or

a self coupling of θ are forbidden. Also, an interaction term between NGB and gauge

fields θAA, where Aµ denotes the gauge fields, cannot be written down. The transfor-

mation in Eq. (2.1) only allows the derivative interactions in the form of ∂µθ attached

to other conserved current [29]. Hence, at tree-level we cannot construct a potential for

NGBs.

Nambu Goldstone bosons can become pNGBs if the symmetry in the model is broken

explicitly as well as spontaneously [4,29,30]. For a pNGB, a potential can be developed,

and having the Higgs boson as a pNGB can lead to many interesting features, some of

which will be discussed in this section.

There are three main parts required to construct a composite Higgs model. The first

main part is the strong sector which, as briefly described above, will give rise to the Higgs

as its bound state. The strong sector must be constructed from a fundamental theory

with a confinement scale ΛUV � TeV, so EW physics is insensitive to it. The other is

an extra elementary sector containing all particles that are not composite states of the

strong sector at the TeV scale. These fields that do not possess the composite nature

that the fields from the strong sector have are referred to as elementary fields. Actually,

these fields are SM fields appearing in the composite Higgs models with one exception,

the right handed top quark, which, in the models we studied, can be considered a

totally composite state of the strong sector. These will also be referred to as external

fields as they are external to the strong sector. This weakly-coupled sector contains the

SM gauge group and its particle content, apart from the Higgs. However, interaction

terms between those particles and the Higgs, which give rise to the Yukawa couplings,

are not included at this stage since there is no Higgs yet. Note that the SM vector

bosons are required to be described by elementary gauge fields only. This requirement
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means that the whole theory, including the strong sector, must respect the SM gauge

symmetry, i.e. the strong sector symmetry group G must contain, apart from an SU(3)c,

one SU(2)L × U(1)Y subgroup. The Wµ and Bµ fields from the elementary sector can

be gauged with the latter subgroup resulting in one communication channel between

the elementary and the composite sector. This communication channel is the last part

required to construct a composite Higgs models.

The introduction of a composite Higgs boson could be understood from the following

arguments. We first assume that there exists a strongly interacting sector with a global

symmetry group G broken to a subgroup H1 at a scale f . This implies that there

are n = dim(G) − dim(H1) Goldstone bosons, one for each broken generator of the

group. Then, if the subgroup H0 ⊂ G is gauged by external vectors bosons, and

n0 = dim(H0) − dim(H) of all the Goldstone bosons are eaten to give mass to n0

vector bosons, then the remaining n − n0 are pNGBs, and the unbroken gauge group

is H = H0 ∩H1. Among the vector bosons associated with the gauge group H0 are the

SM electroweak gauge fields, and, for simplicity, it is possible to consider H0 as the SM

electroweak group [17].

Then, there are two basic requirements for the Higgs boson to be a pNGB, living on

the coset G/H1, in a composite Higgs model [17]. First, it must be possible to embed

the SM electroweak group GSM = SU(2)L × U(1)Y in H1, G → H1 ⊃ GSM [17, 26].

Second, at least one SU(2)L doublet must be contained in the coset G/H1, so that it

is possible to identify this with the Higgs doublet [17, 26]. If these requirements are

met, a composite pNGB Higgs can then develop its mass and potential from loop of SM

fermions and gauge bosons. At tree level, it cannot develop its potential as result of

the non-linear Goldstone symmetry acting on it, and GSM is broken radiatively rather

than at tree level.

One interesting feature that arises when the Higgs is a pNGB is the vacuum mis-

alignment which explains how the Higgs can behave effectively as an elementary particle

in this type of models [16, 26–28]. This mechanism can be understood as follows. The

field ~Φ(x) corresponding to the pNGBs is a member of the coset G/H1, and as such can

be represented in terms of the transformation in the direction of the broken generators

T k as

~Φ(x) = eiθ
k(x)Tk ~F , (2.2)

where the pNGB fields are denoted by θk(x), ~Φ(x) denotes the field operators of the the-

ory and ~F is known as the reference vacuum field configuration. For a global symmetry
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G with the generators

{TA} = {Tα, T k} , (2.3)

where Tα and T k denotes the unbroken and broken generators respectively, the reference

vacuum field must be selected so that it can satisfy the conditions

Tα ~F = 0, T k ~F 6= 0. (2.4)

We can identify, among θk(x), the four real components of the Higgs doublet. The non-

vanishing VEV of this Higgs field, arising from the loop-induced potential, can then

break GSM as in the SM. The VEV
〈
θk
〉

can be considered as the “angle” by which the

vacuum is misaligned with respect to ~F . The projection of ~F on the GSM controls all

the effects of EWSB, such as the masses of SM particles. This projection is equivalent

to set the EWSB scale to v = f sin
〈
θk
〉
. The actual value of

〈
θk
〉

is different in each of

the models, depending on the details of the composite sector, but it can be determined

by minimising the potential of the pNGBs in the model. For a composite Higgs model,

we can define the ξ parameter as [26]

ξ =
v2

f 2
= sin2

〈
θk
〉
. (2.5)

For a fixed value of v, the composite sector can be decoupled from the low-energy physics

by sending the global symmetry breaking scale f to infinity. This is corresponding to

the limit ξ → 0, in which all the other bound states decouple from the theory except

the Goldstone boson Higgs. For ξ → 0, the theory reduces to SM, and the composite

Higgs that remains in the theory becomes effectively elementary. The quantity ξ is the

only adjustable parameter in composite Higgs models that controls all the departure

from the standard Higgs model, and all the experimental confirmations of the SM can

be recovered by setting ξ to a very small value. This could happen at the cost of

fine-tuning.

We note here that in the case where the global symmetry is spontaneously broken

without explicit breaking in the theory, the Higgs VEV cannot be the source of EWSB.

In this case, when the global symmetry is only spontaneously broken, the θk(x) are

exact NGB. In this case, their potential cannot be formed and
〈
θk
〉

are arbitrary [26].

The
〈
θk
〉

can technically be removed from the theory by a suitable field redefinition

that induces the transformation ~Φ → exp
[
−i
〈
θk
〉
T k
]
~Φ. This is equivalent to setting〈

θk
〉

= 0. Hence, the VEV cannot be responsible for the EWSB.

On the other hand, when there is a small explicit breaking of the global symmetry

in the theory, the θk(x) are now pNGB, and their VEVs are not arbitrary. In fact,
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their VEVs are now observable, since it is no longer possible to set them to zero by

an exact symmetry transformation. As as upshot, this approximate global symmetry,

i.e. the symmetry which is spontaneously broken as well as explicitly broken, is said to

be “non-linearly realised”, in the sense that the transformations related to the broken

generators act non-linearly on the Goldstone fields [26]. This is the point which we will

illustrate later when we talk about models related to our study.

Having mentioned that the global symmetry can be spontaneously broken by the

vacuum state, we note here that if the global symmetry G is to be broken explicitly,

this must occur via other methods. One is by gauging the SM electroweak group, and

the other is the mixing between the SM fermion fields and the fields of strong sector.

The latter is known as partial compositeness, and results in the masses of the fermion

fields. These mechanisms responsible for global symmetry breaking will be mentioned

throughout the rest of this thesis.

The composite Higgs models can be classified according to the symmetries involved

in each model. In our work, we will consider only models where the strongly interacting

sector has a global symmetry G = SO(5) × U(1)X broken down to H1 = SO(4) ×
U(1)X [17]. For illustrative purpose on how these models work, we will start discussing

a very simple model known as the Abelian Higgs model. This model is not a physical

one in a sense that we cannot embed GSM in the subgroupH1, but it is a model in which

the basic aspects of a composite Higgs model can be studied. Then, we will proceed

to study the model with a global symmetry SO(5) broken to SO(4). The structure of

the models studied in our work shares similar features with the Callan-Coleman-Wess-

Zumino (CCWZ) model [31,32].

The Abelian Higgs model

In this simple model, we consider a Lagrangian for a triplet ~Φ of real scalar fields [26]

LS =
1

2
∂µ~Φ

T∂µ~Φ− g2
∗
8

(
~ΦT ~Φ− f 2

)2

. (2.6)

This Lagrangian is an example of a strongly-interacting composite sector. In this model,

the Lagrangian is invariant under SO(3) transformations, which act on the triplet ~Φ as

follows [26]

~Φ→ g · ~Φ, g = eiα
ATA ∈ SO(3) (2.7)
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where SO(3) generators obey the relation Tr[TATB] = δAB. These operators can be

chosen to be TA = {Tα, T k}

Tα =
1√
2


0 −i 0

i 0 0

0 0 0

 , T k = { 1√
2


0 0 i

0 0 0

i 0 0

 ,
1√
2


0 0 0

0 0 −i
0 i 0

} (2.8)

where k = 1, 2. A non vanishing VEV of the field ~Φ spontaneously break SO(3) to

SO(2) subgroup of rotations around
〈
~Φ
〉

. From the conditions in Eq. (2.4) and the

basis given in (2.8), the representative vacuum ~F is selected for this model as

~F =


0

0

f

 (2.9)

where f is derived from
〈
~ΦT
〉〈

~Φ
〉

= f 2. In order to study the fluctuations around the

vacuum, a field redefinition must be performed on the three components of ~Φ to trade

them for one radial coordinate σ and two Goldstone boson field hk that describe the

fluctuation around the broken generators. This is in analogy with Eq. (2.2), and we

obtain

~Φ = ei
√

2
f
hk(x)Tk


0

0

f + σ (x)

 (2.10)

where the normalisation factor has been selected to obtain a canonical kinetic term

for hk. The exponential matrix exp
(
i
√

2
f
hk (x)T k

)
in the expression above is space-

time dependent and known in general as the σ-Goldstone matrix U . For any G → H1

symmetry breaking (G = SO(3) and H1 = SO(2) for the case at hand), this matrix

U can be defined, and it will be present very often in composite Higgs models. The

Goldstone matrix, computed in this SO(3)→ SO(2) case and in general, is given by

U = ei
√

2
f
hkTk =

[
I − (1− cos h

f
)
~h~hT

h2 sin h
f

~h
h

− sin h
f

~hT

h
cos h

f

]
. (2.11)

where

~h =

[
h1

h2

]
, (2.12)

h =
√
~hT~h, and I denotes 2 × 2 unit matrix. We can define U in this form for any

SO(N) → SO(N − 1) symmetry breaking as long as the broken N − 1 generators are
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chosen to have one non-vanishing entry in the last line and column. With Eq. (2.11),

the field redefinition can be written as

~Φ = (f + σ)

[
sin h

f

~h
h

cos h
f
.

]
(2.13)

Substituting this expression back into the Lagrangian Eq. (2.6), we find

L =
1

2
∂µσ∂

µσ − (g∗f)2

2
σ2 − g2

∗f

2
σ3 − g2

∗
8
σ4

+
1

2

(
1 +

σ

f

)2 [
f 2

h2
sin2 h

f
∂µ~h

T∂µ~h+
f 2

4h4

(
h2

f 2
− sin2 h

f

)
∂µh

2∂µh2

]
.

(2.14)

From this equation, we find that the field σ has a mass

m∗ = g∗f. (2.15)

The σ particle is generally referred to as a resonance, as is any particle that emerges

from the composite sector aside from the Goldstone bosons. The mass m∗ is effectively

the confinement scale of the strong sector. Also from Eq. (2.14), after inspecting the

symmetry of this Lagrangian, we can recognise the presence of an SO(2) group, since

~h forms a doublet and transforms as [26]

~h→ eiασ2~h. (2.16)

The example of SO(2) symmetry is referred to as linearly realised, since it acts in a

linear and homogenous way on the field variables. From ~h, we can define a complex

field H given by

H =
h1 − ih2√

2
. (2.17)

This is identified with the Higgs field with unit charge under the group SO(2) =

U(1). The linearly realised SO(2) group induces an SO(3) rotation along the unbroken

generator Tα, as follows:

~h→ eiασ2~h⇔ ~Φ→ ei
√

2αTα~Φ , (2.18)

since the SO(2) invariance follows from one of the symmetries of the original La-

grangian. From Eq. (2.14), one would expect an identical symmetry involving the

broken generators T k. In fact, there also exist the Goldstone field transformations that

induce rotations of ~Φ along the broken generators

~h→ ~h+ h cot
h

f
~α +

(
f

h
− cot

h

f

)(
~αT~h

) ~h
f
,

m
~Φ→ iαkT

k~Φ .

(2.19)
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The correspondence between these transformations arises in the same way as in the

unbroken SO(2) case. This correspondence ensures that they are symmetries of the

Lagrangian in Eq. (2.14), which we can also verify with a direct calculation. The

broken transformations above act non-linearly on the Goldstone field variable h. This

is different from those associated with the unbroken subgroup. Hence, they are referred

to as “non-linearly realised”. According to the form of the transformations, one would

also find that the zero field configuration is transformed into one with constant ~h field,

i.e. ~0 → f~α. This means that for any field configuration, e.g. the one defining the

generic vacuum
〈
~h
〉

, there exists a transformation that changes it into the trivial

vacuum
〈
~h
〉

= 0. This implies, as explained above, that the VEV of the composite

Higgs has no physical effect unless an explicit breaking of the symmetry is introduced

into the theory.

The last part that we need in order to fully construct the Abelian Higgs model is

the U(1) gauge field. This field can be introduced into the model by simply gauging

the unbroken U(1) subgroup, namely by promoting ordinary derivatives into covariant

derivative in the Lagrangian with

∂µ~Φ→ Dµ
~Φ =

(
∂µ − i

√
2eAµT

α
)
~Φ , (2.20)

where Aµ is a U(1) gauge field with canonical kinetic term. Aµ is a field residing in the

elementary sector, so its couplings with ~Φ are the elementary/composite interactions

we discussed previously. The gauging of Aµ leads to the explicit breaking of SO(3) to

SO(2), since it selects only one generator out of three. As a result, the composite Higgs

becomes a pNGB. Having introduced the gauging of U(1), it is now possible to write

down the Abelian composite Higgs theory. We must first replace in Eq. (2.14)

∂µ~h→ Dµ
~h = (∂µ − ieAµσ2)~h . (2.21)

In term of the complex field notation defined in Eq. (2.17), we can define the covariant

derivative for H [26]

DµH = ∂µH − ieAµH (2.22)

and the term involving the Higgs in the Lagrangian Eq. (2.14) becomes

1

2

(
1 +

σ

f

)2
[
f 2

|H|2
sin2

√
2|H|
f

DµH
†DµH +

f 2

4|H|4

(
2
|H|2

f 2
− sin2

√
2|H|
f

)
(∂µ|H|2)2

]
,

(2.23)
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where the part involving σ field in the Lagrangian remains unchanged. In Eq. (2.23),

|H| is defined by

|H| =
√
H†H . (2.24)

Now as the global symmetry is broken explicitly, the Higgs potential can be formed. It

still vanishes in the tree level Lagrangian, but it can be radiatively constructed from

the loops of the gauge bosons. We note that the loops of the fermions can similarly

lead to formation of the Higgs potential. Eventually, this potential gives the composite

Higgs field a VEV, which is now an observable and can be responsible for the breaking

of the U(1) symmetry. Setting the Higgs to its VEV,

H → 〈H〉 ≡ V√
2
, (2.25)

we obtain from the first term in the square bracket of Eq. (2.23), a mass for the gauge

field given by [26]

mA = ef sin
V

f
≡ ev . (2.26)

In this expression, the scale v of the U(1) symmetry would have been defined as simply

the Higgs VEV in the elementary Abelian Higgs model. In this model, however, the

symmetry breaking scale is provided by the projection of the vacuum configuration, the

feature of the model described as vacuum misalignment above. So, the relation between

v and the Higgs VEV in this Abelian Higgs model is

v = f sin
V

f
=⇒ ξ =

v2

f 2
= sin2 V

f
. (2.27)

The minimal composite Higgs model

We now discuss the model where the SO(5) global symmetry group is broken to SO(4).

In this case, the group structure can be enlarged, so that GSM is contained in the

unbroken group. In addition, the structure of symmetry breaking implies there exist

four real NGBs that transform as a 4 of SO(4). Under SU(2)L, which is embedded in

SO(4), these bosons will transform as a complex doublet H, and can be identified as

the composite Higgs.

SO(4) can be shown to be isomorphic to SU(2)L × SU(2)R [17]. This can be seen

as follow. Suppose there exist a real vector ~Π in the 4 of SO(4), whose components are

in one-to-one correspondence with a 2× 2 pseudo-real matrix Σ elements, i.e.

Σ =
1√
2

(
iσβΠβ + I2Π4

)
=

1√
2
σ̄jΠ

j . (2.28)
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In this expression, β = 1, 2, 3, σβ are Pauli matrices and

σ̄j = {iσβ, I2} . (2.29)

with the following normalisation, completeness, and reality condition

Tr
[
σ̄†j σ̄k

]
= 2δjk ,

4∑
j=1

(
σ̄†j

)
a

b

(σ̄j)c
d = 2δdaδ

b
c ,

(σ̄j)
∗ = σ2σ̄jσ2 , σ̄jσ̄

†
k − σ̄kσ̄

†
j = 2σ̄jσ̄

†
k − 2δjkI2 .

(2.30)

From the relations in Eq. (2.30), Σ is seen to be pseudo-real, i.e. it obeys [26]

Σ∗ = σ2Σσ2. (2.31)

The action of the chiral group SU(2)L×SU(2)R on Σ is a matrix multiplication of the

form [26]

Σ→ gLΣg†R, (2.32)

which preserves the pseudo-reality condition in Eq. (2.31). So, it can be said that a

matrix Σ offers a consistent representation of SU(2)L × SU(2)R. This matrix is then

noticed as a pseudo real bidoublet (2,2). If the local isomorphism between SO(4) and

SU(2)L×SU(2)R exists, an infinitesimal chiral transformation on Σ will have the same

effect as an SO(4) rotation has on the ~Π. This follows since

Tr
[
Σ†Σ

]
= |~Π|2. (2.33)

The trace is invariant under the matrix transformation in Eq. (2.32), and this means

that the norm of ~Π is not changed by the chiral transformations. The arguments

above demonstrate that any chiral transformation must be an element of SO(4) since

it contains the most general norm-preserving infinitesimal transformation of a four-

component vector. So, the SO(4) algebra contains the SU(2)L × SU(2)R one. But,

aside from the full SO(4) algebra, no sub-algebra with the same dimensionality of the

original one is found. Thus, it is proven that the isomorphism among the two groups

exits. We can then take SU(2)L part as the SM left-handed gauge group.

Having mentioned the isomorphism of SO(4) and SU(2)L × SU(2)R, it is worth

mentioning that SU(2)L × SU(2)R is an approximate symmetry of the SM. The SM

model Higgs potential V (H†H) is invariant under this symmetry which can be seen if

we write the Higgs doublet H as

H =

[
h1 + ih2

h3 + ih4 ,

]
, (2.34)
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where hi, with i = 1, . . . , 4, are real fields. However, the Higgs VEV

H =

(
0
v√
2

)
(2.35)

breaks SU(2)L × SU(2)R → SU(2)V ' SO(3). This symmetry breaking can also be

appreciated by considering the SM Higgs in the sigma-model scenario. More details

about this particular scenario can be found in Ref. [29]. In this scenario, the Higgs

doublet is parametrised in term of the matrix

Σ =

√
2

v
(H̃H) , (2.36)

where

H̃ = −iσ2H
∗. (2.37)

The SM model Higgs potential is invariant under SU(2)L × SU(2)R if the matrix Σ

transforms under this symmetry as Σ→ ULΣU †R, where UL,R denotes the transformation

under SU(2)L,R. In the unitary gauge, i.e. in Eq. (2.35), the vacuum expectation value

of Σ = I2. Under SU(2)L × SU(2)R, it transforms as [29]

〈Σ〉 =
〈
ULΣU †R

〉
=
〈
ULI2U

†
R

〉
= ULU

†
R . (2.38)

The 〈Σ〉 will correspond to I2 if UL = UR, i.e. SU(2)L × SU(2)R is broken to SU(2)V .

Furthermore, if the Yukawa coupling is written as

LYuk =
(
t̄L b̄L

)
yΣ

(
tR

bR

)
, (2.39)

where y is the Yukawa coupling between the SM particles and the Higgs, then this term

transforms under SU(2)L × SU(2)R as(
t̄L b̄L

)
U †LyULΣU †RUR

(
tR

bR

)
=
(
t̄L b̄L

)
U †LyULΣ

(
tR

bR

)
, (2.40)

where y is the matrix of top-bottom Yukawa couplings. This term will be invariant

under SU(2)L × SU(2)R under the assumption that the top quark Yukawa coupling is

the same as the bottom Yukawa coupling, so that y is now proportional to the identity.

However, it is known that this is not the case in the SM.

In the fundamental representation, SO(5) generators acting on 5 are given by

(T aL,R)IJ = − i
2

[
1

2
εabc

(
δbIδ

c
J − δbJδcI

)
± δaI δ4

J − δaJδ4
I

]
,

T kIJ = − i√
2

(
δkI δ

5
J − δkJδ5

I

)
,

(2.41)
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where T aL,R, a = 1, 2, 3, are the SO(4) ' SU(2)L × SU(2)R unbroken generators, T kIJ ,

k = 1, . . . , 4, are the broken generators of the coset SO(5)/SO(4) [24]. The indices I

and J run from 1 to 5. Note that it is also possible to use the notation Tα for the

unbroken generators, where α = 1, . . . , 6. The unbroken generators T aL and T aR can be

identified as those of the SU(2)L and SU(2)R subgroups respectively. They thus satisfy

the commutation relation

[T aL,R, T
b
L,R] = iεabcT cL,R. (2.42)

When we consider fermions in the theory, we can extend the structure of the group

to G = SO(5)×U(1)X broken down to H1 = SO(4)×U(1)X . The U(1)X was included,

so that the correct hypercharge can be reproduced for these fermions. It is then possible

to embed the SM electroweak group SU(2)L×U(1)Y into H1 = SO(4)×U(1)X , hence

satisfying one of the requirements above. The hypercharge is then given by Y =

T 3R + X, where T 3R is the third SU(2)R generator [17, 24]. Notice that if we do not

extend the group structure, the hypercharge would have been given by Y = T 3R.

The Lagrangian describing the composite sector in this model is again given in

Eq. (2.6), where ~Φ is now a 5 of SO(5). Similar to the Abelian Higgs model, one can

parametrise the components of ~Φ as fluctuation along the broken generators as

~Φ = ei
√

2
f
hk(x)Tk

[
~0

f + σ

]
= (f + σ)

[
sin h

f

~h
h

cos h
f

]
(2.43)

where σ is again a resonance field and ~h represents the four NGBs associated to each of

the broken generators. Writing the generators in the form given in Eq. (2.41), we can

describe the four pNGBs using the σ-Goldstone matrix defined in Eq. (2.11), which is

applicable in general to SO(N)→ SO(N −1). The expression in Eq. (2.43) was in fact

derived from this definition of U . Under g ∈ SO(5), the transformation of this matrix

U is given by [24]

U → g · U · h†
(
g, hk (x)

)
, (2.44)

where

h†
(
g, hk (x)

)
= h =

(
h4 0

0 1

)
(2.45)

with h4 ∈ SO(4). This means that the matrix U transforms non-linearly under SO(5)

rotations.

Substituting Eq. (2.43) in the full composite sector Lagrangian, we again obtain

Eq. (2.14). The symmetry involved in the resulting is very similar to the Abelian Higgs
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model. The SO(4) group is now linearly realised as a rotation of ~h. This corresponds

to the rotation of ~Φ along the unbroken generators of SO(4), i.e.

~h→ eiααt
α ⇔ ~Φ→ eiααT

α

, (2.46)

which is immediately verified by noticing that the rotation of ~h in Eq. (2.43) induced

the rotation of ~Φ under SO(4) of the first 4 × 4 block. The pNGB fourplet can be

written as

~h =


h1

h2

h3

h4

 =
1√
2


−i
(
hu − h†u

)
hu + h†u

i
(
hd − h†d

)
hd + h†d

 . (2.47)

From Eq. (2.47), the composite Higgs doublet in this model is given by

H =

(
hu

hd

)
. (2.48)

The full Lagrangian in this model also has the other symmetry involving the four non-

linearly realised unbroken generators T k, and their infinitesimal action on ~h is the same

as in the Eq. (2.19).

Under an SU(2)R rotation, the Higgs doublet mixes with its conjugate Hc = iσ2H
∗,

and (H,Hc) is a bidoublet under SU(2)L × SU(2)R.

If we now consider the unitary gauge where the components of the Higgs doublet

are given by

hu = 0, hd ≡
h√
2

=
〈h〉+ ρ√

2
, (2.49)

where ρ is the canonically normalised physical Higgs field and 〈h〉 is the VEV of the

Higgs field, the matrix U is simplified, and can be written as [24,33]

U =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 cos h
f

sin h
f

0 0 0 − sin h
f

cos h
f


. (2.50)

This form of U will be used in the construction of the models we studied.

As an example, we now discuss the case in which also the fermions transform ac-

cording to the 4 of SO(4). The complex components of the fermionic field fourplet ψi
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can be related to the elements of a generic 2× 2 matrix via

Ψ =
1√
2

(
ψ4 + iσβψ

β
)

=
1√
2
σ̄jψ

j . (2.51)

This matrix Ψ transform in the (2,2) representation shown in Eq. (2.32). It can

be referred as a complex bidoublet (2,2)c since it does not obey the pseudo-reality

condition. The two columns of Ψ form two doublets with opposite T 3R charge ±1/2

under the SU(2)L × U(1)Y subgroup

Ψ =
1√
2

[
ψ4 + iψ3 ψ2 + iψ1

−ψ2 + iψ1 ψ4 − iψ3

]
≡ (Ψ−,Ψ+) . (2.52)

The fourplet components can be written in terms of the up and down components of

the two doublets Ψu,d
± as [26]

~ψ =
1√
2

{
−iΨu

+ − iΨd
−,Ψ

u
+ −Ψd

−, iΨ
d
+ − iΨu

−,Ψ
d
+ + Ψu

−
}T

. (2.53)

We now discuss the kinetic Lagrangian of the pNGB and the SM gauge fields, intro-

ducing parameters that will be used later. The SO(5)-invariant kinetic Lagrangian for

the pNGBs is given by

Lσ =
f 2

4
d̂kµd̂

kµ , (2.54)

where iU †∂µU = d̂kµT
k + Êα

µT
α, where T k are given in Eq. (2.41), and Tα are again the

unbroken SO(4) generators. Similar to the Abelian Higgs model, the electroweak gauge

group can be introduced into the theory by a gauging procedure. The electroweak group

of the SM can be gauged via promotion of the ordinary derivatives to covariant ones,

∂µ → Dµ = ∂µ − ig0W
a
µT

a
L − ig′0BµT

3
R, and addition of the kinetic terms for the gauge

fields. Here, T aL/R denote the generators of SU(2)L/R, and g0 and g′0 are approximate

SM gauge couplings. The SM gauge fields’ and pNGBs’ kinetic terms are given by

Lσ = −1

4
W aL
µνW

aLµν − 1

4
BµνB

µν +
f 2

4
dkµd

kµ , (2.55)

where Āµ = iU †DµU = dkµT
k + Eα

µT
α are the gauged versions of the relation given in

terms of d̂kµ and Êα
µ , and W aL

µν and Bµν are the field strength tensors for the SU(2)L

and U(1)Y gauge fields respectively. Under SO(5), Āµ transforms as

Āµ → Ā(h)
µ = h

(
Āµ + i∂µ

)
h† , (2.56)

which gives rise to a shift term ih∂µh
† living in the SO(4) subalgebra. If we now

introduce the notation dµ = dkµT
k and Eµ = Eα

µT
α, and consider their transformation
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properties under SO(5)

dµ → hdµh
†,

Eµ → h (Eµ + i∂µ)h† ,
(2.57)

it can be seen that the shift term is carried only by Eµ. Since the dynamical gauge fields

belong to the SO(4) subalgebra, as can be seen when we defined the Āµ, we consider

the 4 representation of SO(4) instead of the 5 of SO(5), and the full form of the dkµ

and Eα
µ are given, in this representation, by

dkµ =
√

2

(
sinh/f

h
− 1

f

) ~h.∇µ
~h

h2
hk −

√
2

sinh/f

h
∇µh

k ,

ELa
µ = ALaµ − 4i

sin2 (h/2f)

h2
~hT taL∇µ

~h ,

ERa
µ = ARaµ − 4i

sin2 (h/2f)

h2
~hT taR∇µ

~h ,

(2.58)

where ∇µ
~h is the covariant derivative of the h field

∇µ
~h =

(
∂µ − iALµ,ataL + iARµ,at

a
R

)
~h , (2.59)

and
ALµ,a = {g0W

1
µ , g0W

2
µ , g0W

3
µ} ,

ARµ,a = {0, 0, g′0Bµ} .
(2.60)

In this definition, we used the 4× 4 form of SU(2)L× SU(2)R generators taL,R given by

T aL =

[
taL 0

0 0

]
, T aR =

[
taR 0

0 0

]
. (2.61)

In this 4 representation, we obtain the transformations

dkµ → (h4)kl d
l
µ,

Eµ ≡ Eα
µ t
α → h4 (Eµ + i∂µ)h†4 ,

(2.62)

in which dkµ transforms linearly and Eµ takes into account the shift. In these transfor-

mations, the 4× 4 form of the SO(4) generators tα, defined in the same way as taL,R in

Eq. (2.61), is used.

Gauging the SM electroweak group results in an explicit breaking of SO(5), and the

Higgs potential is generated through loop corrections. This leads to the spontaneous

breaking of the EW group, and gives rise to the mass of SM gauge fields. In addition

to the Higgs and EW bosons, the theory also describes the resonance σ with mass

m∗ = g∗f . (2.63)
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From Eq. (2.14) we read the part involving the Higgs doublet H

f 2

2|H|2
sin2

√
2|H|
f

DµH
†DµH +

f 2

8|H|4

(
2
|H|2

f 2
− sin2

√
2|H|
f

)(
∂µ|H|2

)2
, (2.64)

where in this expression we used the standard form of the Higgs covariant derivative

DµH =

(
∂µ − ig0W

α
µ

σα
2
− ig′0Bµ

I

2

)
H . (2.65)

We can now explore the implications of Eq. (2.64). One way to tackle this is to compute

this expression in the unitary gauge defined in Eq. (2.49). The Higgs part of the

Lagrangian now becomes

1

2
(∂µρ)2 +

g2

4
f 2 sin2 〈h〉+ ρ

f

(
|W |2 +

1

2c2
w

Z2

)
, (2.66)

where W and Z denote the SM mass and charge eigenstate fields and cw denotes the

cosine of the weak mixing angle defined by tan θw =
g′0
g0

. Now in the expression of this

Lagrangian, the mass of the SM W bosons are given by

mW = cwmZ =
gf

2
sin
〈h〉
f

=
gv

2
. (2.67)

From the expression above, we obtain the relation between 〈h〉 and the EWSB scale

v = 246 GeV:

ξ =
v2

f 2
= sin2 ε , (2.68)

where ε = 〈h〉 /f . This equation is in analogy to the Abelian Higgs model [4]. We

note again in this case that v is not defined as the composie Higgs VEV, but rather

it is related to it and the parameter f . Apart from the vector boson masses, we can

also extract an infinite set of interactions involving two gauge bosons and an arbitrary

number of Higgs field by Taylor-expanding the Lagrangian around ρ = 0. The first few

terms of this expression are

g2v2

4

(
|W |2 +

1

2c2
w

Z2

)[
2
√

1− ξ ρ
f

+ (1− 2ξ)
ρ2

v2
− 4

3
ξ
√

1− ξ ρ
3

v3
+ . . .

]
(2.69)

where 〈h〉 and f were traded for the EWSB scale v and ξ. From this expression, we

see that the single Higgs and double Higgs vertices are modified with respect to the

SM and higher dimensional vertices with more Higgs fields emerge. In the limit ξ → 0

which occurs where f →∞, for a fixed value of v, the couplings reach their SM forms

and the higher dimensional interactions are suppressed. The disappearance of the new
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effects means that the composite Higgs then becomes the elementary SM Higgs. We

could also inspect the implication of Eq. (2.64) by expanding it for large f . From the

full expression, terms up to dimension 6 are found to be [26]

DµH
†DµH − 2

3f 2
|H|2DµH

†DµH +
1

6f 2
∂µ(H†H)∂µ(H†H) + . . . . (2.70)

One could notice that the first term is just the kinetic term of the SM Higgs, and in

the limit f → ∞ this will be the only relevant term. This result also illustrates that

the composite Higgs reduces to the elementary SM for small ξ. If we consider a model

with a generic G → H symmetry breaking, what we find out might be different since in

this situation there will be more Goldstone bosons than just one Higgs doublet. The

model might not approach the SM model when f is sent to infinity, but rather a theory

with an extended Higgs sector.
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Chapter 3

Top-partners in explicit

composite-Higgs models

The models we studied in our work correspond to the case where the Higgs iss the pNGB

of a strong sector with a global symmmetry SO(5) × U(1)X , which is spontaneously

broken to SO(4) × U(1)X at the scale f . In the model construction, there is also

an explicit breaking of this SO(5) × U(1)X group as described below. The models

structure were previously studied in ref. [24]. In our work, we also extend their analysis

by including an additional top partner multiplet in each of the models in section 3.2,

and show how the mass and Yukawa coupling of each of the top partners, in this

scenario, vary as functions of the fundamental parameters of the models in section 3.5.

Furthermore, in both one and two top partner cases, we also study the CP-odd couplings

which arise in the fourplet models. In one top partner case, we derive the analytical

form of these CP-odd couplings, whereas in the two top partner case, we again discuss

how these couplings vary as functions of the fundamental parameters of the models. All

the SM fields are considered to be elementary, except for the right-handed top quark

tR. In these models, tR is a totally composite bound state of the stong sector, and

is also considered to be a singlet of the multiplet of the unbroken SO(4) subgroup.

Assumptions about the SM gauge fields, Wµ and Bµ, and the elementary left-handed

doublet qL = (tL, bL) are also made. SM electroweak boson couplings arise from gauging

the SM subgroup of the global symmetry of the strong sector as described above. From

the partial compositeness, it is also assumed that the elementary left-handed doublet

qL couples linearly to the strong sector, as follows

L = y
(
Q
)
i
Oi + h.c. , (3.1)
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where Qi is used to denote the embeddings of qL in SO(5)× U(1)X multiplets, and Oi

represents an operator of the strong sector. The operator Oi consists of combinations of

top partners in representations of SO(4), whose explicit form will be given in Eq. (3.5),

and the σ-Goldstone boson matrix U [24, 34]. Hence, Oi can be decomposed into

various representation of SO(4). As Oi contains the top partner fields, the coupling in

the form given in Eq. (3.1) gives rise to the couplings between the SM fields and the

top partner. The SM fermions can also obtain their masses as a result of including this

type of mixing in the theory.Considering the definition of U in Eq. (2.11), it can be

seen that the form of U in a given model depends on the representation of ~h . In the

SO(5) × U(1)X spontaneously broken to SO(4) × U(1)X at hand, the representation

of ~h is given in Eq. (2.47), which is related to H in Eq. (2.48). If we consider the

component of the doublet H in unitary gauge, given in Eq. (2.49), it can be seen that

this leads to the form of U described in Eq. (2.50). Since, Oi is consisted of U , this

means that Oi is also dependent on the representation of H. If no additional external

states are introduced, the elementary quark doublet qL cannot completely fill a SO(5)

multiplet, and the coupling is not invariant under SO(5). The mixing in the form given

in Eq. (3.1) then gives rise to the explicit breaking of SO(5). In our work, we considered

only the third generation quark of the SM and the relevant field when we consider the

elementary-composite mixing terms. The operators Oi were considered to be in either

the 52/3 or 142/3 representations of SO(5) × U(1)X . In order to generate the mass of

the top after EWSB, the U(1)X charge of the operators Oi must be the same as that of

the right-handed top quark tR. In the low energy theory, the terms in Eq. (3.1) must

be equivalent to qLHtR, and hence can give rise to the mass of the top.

The structure of the top-partner effective field theory (EFT) used in our work is

based on the standard CCWZ model [31, 32]. In particular, we use the matrix U in

unitary gauge, as written in Eq. (2.50), and the dµ symbol constructed out of U and

its derivative. In the model we study, the top-partner multiplet Ψ transforms in the

12/3 and 42/3 representations of SO(4), and we constructed operators Oi in SO(5)

representations consisting of Ψ and the matrix U , as outlined above. The embedding
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Qi of the SM doublet will be in 52/3 and 142/3 of SO(5)× U(1)X . These are given by

Q5
L =

1√
2



ibL

bL

itL

−tL
0


, Q14

L =



0 0 0 0 ibL

0 0 0 0 bL

0 0 0 0 itL

0 0 0 0 −tL
ibL bL itL −tL 0


, (3.2)

where Q5
L and Q14

L denote the embedding in 5 and 14 respectively. The right-handed

top quark can be written in the 5 representation of SO(5) as

t1R =
(

0 0 0 0 tR

)T
. (3.3)

The top-partner multiplet can also be written in the 5 of SO(5) as

Ψ4 =
1√
2



iB − iX5/3

B +X5/3

iT + iX2/3

−T +X2/3

0


,Ψ1 =



0

0

0

0

T


. (3.4)

With these forms of the top partner multiplets, the operator Oi can be written as

O5 = UΨ , O14 = UΨUT , (3.5)

where O5 and O14 denote the operators in the 5 and 14 representations of SO(5)

respectively. In these expressions, Ψ denoted the top partner multiplets in the 1 and

4, as written in Eq. (3.4). When the SM quarks are embedded as shown in Eq. (3.2)

and Eq. (3.3), the hypercharge of the qL doublet is fixed to Y = 1/6, and that of the

right-handed top quark is fixed to Y = X = 2/3. It is worth mentioning that the

U(1)X charges of all the fermion fields described above are fixed by the hypercharge of

the right-handed top. The top partners in the 4 decompose into two SU(2)L doublets:

(T,B) which have the same quantum numbers as the SM doublet, and an exotic doublet

(X5/3, X2/3) where X2/3 has the same charge as the top quark and X5/3 is a state of

exotic charge 5/3.

After decomposing Oi, in both 5 and 14 representations, under the unbroken SO(4),

we obtain 52/3 = 42/3+12/3 and 142/3 = 42/3+12/3+92/3 respectively. The embedding

of the SM doublet in Eq. (3.2), the right-handed top quark in Eq. (3.3), the top partner
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multiplets in Eq. (3.4) and the operators constructed from the top partner multiplets

in Eq. (3.5) are all written in representations of SO(5). Moreover, the mixing in the

form shown in Eq. (3.1) constructed out of these objects will be invariant under SO(5).

This means that without including the 9 in the theory, it is still possible to construct a

SO(5) invariant Lagrangians. Studying of the 92/3 is beyond the scope of our project,

and hence, will not be considered anywhere in this thesis.

It is important to emphasise that the model employed in our work is a simplified one

which only catches the important features of top-partner states relevant for phenomeno-

logical purposes as outlined in [24]. These are not complete concrete realisations and

the structure of these models is not sufficient to allow one to make a calculable Higgs

potential or to determine the fine-tuning for the model. This is because the models do

not possess states and couplings necessary for the calculation of the Higgs potential.

Because of these reasons we will assume that the mass of the Higgs in our models is

the same as its observed value and lower levels of fine-tuning is implied by a lower

mass for top-partners. However, it is still possible to calculate the top quark mass from

the mixing between the SM top quark and top partners. This mass value will be a

constraint on the parameters in our models. The structure of the models can, in fact,

be improved [24]. More details about how to improve the structure of the models can

be found in ref. [24], but in our work we deal with the minimal models only.

New composite resonances of different spin are expected to appear in composite

Higgs models with masses near the compositeness scale which is defined in our work as

m∗ [24,35]. It is possible to integrate out from the effective field theory the states above

this mass scale m∗ if its value is sufficiently large. Nevertheless, we still need to include

top-partners in our theory in order to achieve a natural EWSB. So, it is assumed that

the lightest top-partners masses are below m∗, and cannot be integrated out. It our

works, more than one top partner is allowed in contrast to the general approach where

only one top partner lies below the scale m∗. Having more than one top partner in

the theory would allow additional cascade of decays and changes in the relationship

between the top-partner masses, couplings and the compositeness scale f .

The effective field theory in this work is constructed in the same way as in [24].

Depending on the SM doublet embeddings Qi and whether the top-partners transform

in the 1 or 4 of SO(4), we considered four cases in this work: M45, M414, M15 and

M114.
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3.1 One top-partner multiplet

In this section, we consider the situation where we have one set of top-partner multiplets

for each of the models described before.

The M45 model. For the case where the embedding of SM left-hand doublet is in the

5 of SO(5) and a top-partner multiplet transforms in the 4 of SO(4), after integrating

out the states heavier than m∗, the relevant effective Lagrangian for the SM particles

and the top-partner is given by

LM45 = iq̄L��DqL + it̄R��DtR + iΨ̄4
��DΨ4 −MΨΨ̄4Ψ4 + ic1Ψ̄4

Rdµγ
µtR

+yfQ̄5
LUΨ4

R + yfc2Q̄
5
LUt

1
R + h.c.

(3.6)

In the expression above, we used the standard notation ��D = γµD
µ, where the Dirac

gamma matrices obey the Clifford algebra

{γµ, γν} ≡ γµγν + γνγµ = 2gµν (3.7)

and the covariant derivatives associated with the SM gauge group are given by

DµqL =
(
∂µ − ig0W

aL
µ T aL − ig′0BµT

3R − igSGµ

)
qL

DµtR =

(
∂µ − i

2

3
g′0BµT

3R − igSGµ

)
tR

DµΨ =

(
∂µ − i

2

3
g′0BµT

3R − igSGµ

)
Ψ

(3.8)

where gS is the SU(3)c gauge coupling. The top-partners form a colour triplet under

SU(3)c, so we included the gluon field Gµ in its associated covariant derivative. We

note that in the Eq. (3.6), the c1,2 are expected to be the order 1 coefficients, and y

is the coupling mixing the elementary states with those from the strong sectors. The

coupling proportional to c1, mixing the totally composite tR and the top-partner, is

entirely generated by the strong sector and not mediated by the y coupling. Because

of its nature, this term would have been suppressed if we consider the case of partial

tR compositeness, where in this situation tR is not entirely generated from the strong

sector. This term contains couplings involving the top quark, SM gauge fields and the

top-partners [24].

The independent parameters in this model are f, c1, y and the top-partner mass

scale MΨ. The parameter c2 is used to fix the mass of the top quark to ∼ 173 GeV.

As mentioned earlier in this section, a calculable Higgs potential cannot be constructed
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for the models considered in this work and, as a result, it is not possible to investigate

the relation between the Higgs mass and any of the parameters listed above. Hence,

the mass of the Higgs does not eliminate any of the independent parameters.

We can write the mass matrix for the top and top-partners in the unitary gauge as
t̄L

T̄L

X̄2/3,L


T 
−yfc2√

2
sin h

f
y
2
f(1 + cos h

f
) y

2
f(1− cos h

f
)

0 −MΨ 0

0 0 −MΨ




tR

TR

X2/3,R

 . (3.9)

Expanding the Higgs field h around its expectation value in the same way as in

Eq. (2.49), we can write the mass matrix for the top and top-partners and its interaction

with the Higgs field as
t̄L

T̄L

X̄2/3,L


T 
−yfc2√

2
sε

y
2
f(1 + cε)

y
2
f(1− cε)

0 −MΨ 0

0 0 −MΨ




tR

TR

X2/3,R



+


t̄L

T̄L

X̄2/3L


T

ρ


−yc2√

2
cε −y

2
sε

y
2
sε

0 0 0

0 0 0




tR

TR

X2/3,R

 ,

(3.10)

where ρ denotes the canonical Higgs field, sε = sin 〈h〉
f

and cε = cos 〈h〉
f

. In Eq. (3.10),

the first part is the matrix that will give rise to the masses of the top and the top

partner, so we will refer to it as the mass matrix. The second part containing ρ will

give rise to the interaction between the top, the top partner and the Higgs, so we will

refer to this part as the interaction part.

Ignoring the interaction part for now, the mass matrix can be reduced by an or-

thogonal rotation of the form
t

T

X2/3

→ 1

N


N 0 0

0 1 + cε 1− cε
0 −1 + cε 1 + cε




t

T

X2/3

 , (3.11)

where N =
√

2 + 2 cos2 ε =
√

2 + 2c2
ε and we are left with a matrix containing a mixing

between just one linear combination of the top-partner states and the qL, while the

orthogonal combination is then decoupled from the qL and any other state. These

combining states are given in terms of the original states as

T ′ =
1

N

[
(1 + cε)T + (1− cε)X2/3

]
,

X ′2/3 =
1

N

[
(1 + cε)X2/3 − (1− cε)T

]
.

(3.12)
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With the new states defined by Eq. (3.12), the resulting mass matrix reads
t̄L

T̄ ′L

X̄ ′2/3,L


T 
−yfc2√

2
sε

y
2
f
√

3 + c2ε 0

0 −MΨ 0

0 0 −MΨ




tR

T ′R

X ′2/3,R

 , (3.13)

where X ′2/3 is not mixing with the top-quark and any other states in the mass matrix.

From the block-diagonal form of this matrix, it is straightforward to diagonalise the

matrix using the method known as bi-unitary transformation, as done for instance

in [23]. This can be done by rotating this matrix on the right in a similar way that we

performed in Eq. (3.11) but with a mixing angle θR, i.e. with a matrix of the form

UR =


cos θR sin θR 0

− sin θR cos θR 0

0 0 1

 , (3.14)

and rotating on the left with a rotation matrix UL, characterised by a mixing angle θL,

defined by

UL =


cos θL sin θL 0

− sin θL cos θL 0

0 0 1

 . (3.15)

Note that these two rotating matrices have the same form. After performing these

rotations, the diagonal elements of the mass matrix will be identified as the physical

top quark mass mt and the physical mass of the remaining top partner MT . The off-

diagonal elements of the mass matrix will be set to zero, so that, given the masses mt

and MT , they will yield constraints on the parameters of the theory y, c2, f , MΨ. Since

this bi-unitary transformation will be applicable to the other models studied in our

work, it is important to emphasise how to define the rotation angles θL,R. Starting, for

example, from the matrix in Eq. (3.13), it is possible to write this matrix in the form

−

(
t̄L

T̄ ′L

)T (
m ∆

0 MΨ

)(
tR

T ′R

)
, (3.16)

where we ignore the contribution from fields that do not mix with any other states, e.g.

X ′2/3 in this case. Then, we can define a parameter η as the ratio of the off-diagonal

mixing term in the mass matrix before its diagonalisation, denoted in our work as ∆,

and the top-partner mass parameter MΨ, i.e. η = ∆
MΨ

. As an example, in this model

the η is defined as

η = −y
2

f

MΨ

√
3 + c2ε , (3.17)
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since

∆ = −y
2
f
√

3 + c2ε (3.18)

in this case. The rotating angle θR is then given in general by

θR =
1

2
arcsin

(
2MTmtη

M2
T −m2

t

)
. (3.19)

The relationship between the angle θR and the left-handed angle θL is given by

tan θL =
MT

mt

tan θR . (3.20)

Note that the method of diagonalising the mass matrix from the form in Eq. (3.10)

described above leaves the kinetic term invariant. After diagonalisation of the mass

matrix described above, the state X ′2/3 has mass MΨ, while the mass of the top-partner

T ′ is shifted from this value. Not only X ′2/3, but also X5/3 maintains its original mass

m5/3 = MΨ. This X5/3 state cannot mix with the other state due to its exotic charge

and, therefore, its mass value has to stay the same. So, the X2/3 and the exotic state

X5/3 are degenerate states. This property arises as a result of the pNGB nature of the

Higgs, and the composite nature of tR. If the tR were treated as a partially composite

state, the mass matrix would contain additional entries that could possibly result in

mixing between X2/3 and other states [24,33].

The interaction matrix of the Eq. (3.10) must then be rewritten in terms of the

mass eigentstates. The diagonal elements of this matrix give the Yukawa couplings of

the top and top partner. The off-diagonal terms give the couplings between the Higgs

and different top partner states. However, they are not relevant in our study, since they

will not be involved in the Higgs plus jet production process.

The M414 model. For the case where the embedding of SM left-hand doublet is

in the 14 of SO(5) and the top-partner multiplet transforms in the 4 of SO(4), the

relevant terms in the effective Lagrangian are

LM414 = iq̄L��DqL + it̄R��Dtr + iΨ̄4
��DΨ4 −MΨΨ̄4Ψ4 + ic1Ψ̄4

Rdµγ
µtR

+ yfTr
(
Q̄14
L UΨ4

RU
T
)

+ yfTr
(
Q̄14
L Ut

1
RU

T
)
. (3.21)

In Eq. (3.21), the composite states, the top-partners and tR, are embedded in an oper-

ator in the 14 of SO(5) when they are coupling with the SM doublet, and they are in

the 5 elsewhere. With the same particle content as in the M45 case, the mass matrix
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is similar to the one in Eq. (3.10) [24]
t̄L

T̄L

X̄2/3,L


T 
− c2yf

2
√

2
sin 2h

f
yf
2

(cos h
f

+ cos 2h
f

) yf
2

(cos h
f
− cos 2h

f
)

0 −MΨ 0

0 0 −MΨ




tR

TR

X2/3,R

 .

(3.22)

We can then expand the Higgs field around its VEV, and obtain
t̄L

T̄L

X̄2/3,L


T 
− c2yf

2
√

2
s2ε

yf
2

(cε + c2ε)
yf
2

(cε − c2ε)

0 −MΨ 0

0 0 −MΨ




tR

TR

X2/3,R



+


t̄L

T̄L

X̄2/3,L


T

ρ


− c2y√

2
c2ε −y

2
(sε + 2s2ε) −y

2
(sε − 2s2ε)

0 0 0

0 0 0




tR

TR

X2/3,R

 ,

(3.23)

where, in analogy to the M45 model, s2ε = sin 2〈h〉
f

, and c2ε = cos 2〈h〉
f

. Similar to the

M45 case, it is possible to rotate this matrix with the rotation of the form
t

T

X2/3

→ 1

N


N 0 0

0 cε + c2ε cε − c2ε

0 −cε + c2ε cε + c2ε




t

T

X2/3

 , (3.24)

where N =
√

2 + c2ε + c4ε, and c4ε = cos 4〈h〉
f

, so that in the part of the matrix con-

tributing to the mass only one combination of the top partners couples to the SM field

and the Higgs. We are left with the resulting mass matrix
t̄L

T̄ ′L

X̄ ′2/3,L


T 
−yfc2

2
√

2
s2ε

yf
2

√
2 + c2ε + c4ε 0

0 −MΨ 0

0 0 −MΨ




tR

T ′R

X ′2/3,R

 . (3.25)

In the same way as in M45, the X ′2/3R has decoupled. This state and X5/3 have the

same mass MΨ. The mass matrix in Eq. (3.25) can be diagonalised by the method of

bi-unitary transformation described previously and setting the off-diagonal elements to

zero. The interaction part of the matrix in Eq. (3.23) must then be rewritten in terms

of the mass eigenstates in order obtain the expressions for the Yukawa couplings.

The M15 model. In the case where the embedding of the SM left-handed doublet is

in the 5 of SO(5), and the top-partner is in the 1 of SO(4), the relevant parts of the
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effective Lagrangian are given by

LM15 = iq̄L��DqL + it̄R��DtR + iΨ̄1
��DΨ1 −MΨΨ̄1Ψ1

+ yfQ̄5
LUΨ1

R + yfc2Q̄
5
LUt

1
R + h.c. (3.26)

With a top-partner in the 1, we can have only one top-partner state T with identical

quantum numbers as tR. The term with c1 coefficient is now absent from this model.

It is possible to add this mixing term to Eq. (3.26), but this term could be removed

from the theory by a field redefinition. The mass matrix in this model takes a simpler

form than in the case where we have top-partners in the 4, and it reads [24](
t̄L

T̄L

)T (
−yfc2√

2
sin h

f
yf√

2
sin h

f

0 −MΨ

)(
tR

TR

)
. (3.27)

After expanding the Higgs field, this mass matrix becomes(
t̄L

T̄L

)T (
−yfc2√

2
sε

yf√
2
sε

0 −MΨ

)(
tR

TR

)
+

(
t̄L

T̄L

)T

ρ

(
−yc2√

2
cε

y√
2
cε

0 0

)(
tR

TR

)
. (3.28)

We can obtain the masses and Yukawa couplings of the top quark and the top partner

from this matrix by simply rotating it with the bi-unitary transformation, but now in

the 2× 2 form

UR =

(
cos θR sin θR

− sin θR cos θR

)
, (3.29)

and

UL =

(
cos θL sin θL

− sin θL cos θL

)
, (3.30)

and sending the off-diagonal elements of the mass part to zero. Again, writing the

interaction matrix in terms of the mass eigenstates gives the Yukawa couplings.

The M114 model. In the case where the SM left-handed doublet is embedded in the

14 of SO(5), and the top-partner transforms in the 1 of SO(4), the relevant effective

Lagrangian is

LM114 = iq̄L��DqL + it̄R��DtR + iΨ̄1
��DΨ1 −MΨΨ̄1Ψ1

+ yfTr
(
Q̄14
L UΨ1

RU
T
)

+ yfc2Tr
(
Q̄14
L Ut

1
RU

T
)

+ h.c. (3.31)
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Analogously to the M414 model, we have embedded the composite states in a 14 of

SO(5) when they couple to the SM doublet in the expression above. The mass matrix

takes a similar form to the one in Eq. (3.27) and is given by(
t̄L

T̄L

)T (
−yfc2

2
√

2
sin 2h

f
yf

2
√

2
sin 2h

f

0 −MΨ

)(
tR

TR

)
, (3.32)

which becomes(
t̄L

T̄L

)T (
−yfc2

2
√

2
s2ε

yf

2
√

2
s2ε

0 −MΨ

)(
tR

TR

)
+

(
t̄L

T̄L

)T

ρ

(
−yc2√

2
c2ε

y√
2
c2ε

0 −MΨ

)(
tR

TR

)
, (3.33)

after we expand the Higgs field around its VEV.

From the mass matrix of each of the models, one would expect that after expanding

h→ 〈h〉+ ρ and diagonalising them, the Higgs will have non-zero Yukawa couplings to

the top partners. It was found that this is the case, and we will show the result later

on in this thesis. Hence, top-partner loops will contribute to the gluon initiated Higgs

production, as well as that of the Higgs production in association with jets. We also

found that the X2/3 top partner decouples from the Higgs and the Yukawa coupling

of this state is zero. This follows from the form of the mass matrices in Eqs. (3.13)

and (3.25). This knowledge will be useful when we will repeat the analysis for the

situation where we have two top partner multiplets, since we will be able to decouple

the X2/3 states from the Higgs.

In this thesis, we want to investigate the impact of the existence of top-partner

multiplets on Higgs production, in particular we want to use the process pp→ h + jet

as a probe of the mass and coupling of top partners in specific composite Higgs models.

Similar analyses have been presented in Refs. [23, 36, 37]. In Ref. [23] studied the

sensitivity of pp→ h+ jet to the mass and coupling of a single top partner in a generic

composite Higgs model with f � v . Many of the techniques used in our work were

first exploited there. In Ref. [36], an analysis on pp → h + jet production with very

boosted Higgs and a jet with High pT was presented. In particular, the effect of CP-odd

couplings to the amplitudes for pp → h + jet were presented in that work as well. In

our work, we find that, in the models with top-partner multiplet transforming in the 4

representation of SO(4), described in this Chapter, there exist CP-odd couplings which

would result in similar effect on the amplitude of the production process. The detailed

procedure for deriving these couplings will be presented in Section 3.3. In Ref. [37], for

h + jet production, the boosted Higgs transverse momentum shape was studied as a
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mean to analyse the modification of the top Yukawa coupling which arises from mixing

with the top partner in both composite Higgs model and minimal supersymmetric SM

(MSSM). In these studies, the analyses were carried out using an EFT that encompassed

the common features of various models. In our study, however, we consider concrete

realisations of perturbative composite Higgs models. Furthermore, in section 3.2, we

extend previous studies by including an additional top partner multiplet in the model.

3.2 Two top partner multiplets

Adding one top-partner multiplet to the models can be done straightforwardly. In order

to keep the models simple, we assume that all the top partner multiplets couple to the

SM with the same strength and each of them would only have different influence on

the SM model due to its mass parameters. The top-partner multiplets are denoted by

Ψ4
i and Ψ1

i with their masses denoted by MΨi . The components of the multiplets are

labelled as T i, Bi, X i
2/3, X i

5/3, and T i.

For the M15 and M114 models, additional top-partner multiplets can be included

in the models in a simple way since we are dealing with top partners in the singlet

representaion. As an example to illustrate how to deal with this situation, the mass

matrices for these models when we have two top partner multiples are given by
t̄L

T̄ 1
L

T̄ 2
L


T 
−yfc2√

2
sε

yf√
2
sε

yf√
2
sε

0 −MΨ1 0

0 0 −MΨ2



tR

T 1
R

T 2
R

 (3.34)

for M15 and 
t̄L

T̄ 1
L

T̄ 2
L


T 
−yfc2

2
√

2
s2ε

yf

2
√

2
s2ε

yf

2
√

2
s2ε

0 −MΨ1 0

0 0 −MΨ2



tR

T 1
R

T 2
R

 (3.35)

for M114.

For the M45 and M414 models, the situation is very similar. The mass matrix for
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M45 with two top partner multiplets is

t̄L

T̄
′1
L

X̄ ′12/3,L

T̄
′2
L

X̄ ′22/3,L



T 

−yfc2√
2
sε

y
2
f(1 + cε)

y
2
f(1− cε) y

2
f(1 + cε)

y
2
f(1− cε)

0 −MΨ1 0 0 0

0 0 −MΨ1 0 0

0 0 0 −MΨ2 0

0 0 0 0 −MΨ2





tR

T
′1
R

X ′12/3,R

T
′2
R

X ′22/3,R


.

(3.36)

Similarly, the mass matrix for M414 reads

t̄L

T̄ ′1L

X̄ ′12/3,L

T̄ ′2L

X̄ ′22/3,L



T 

−yfc2√
2
sε

yf
2

(cε + c2ε)
yf
2

(cε − c2ε)
yf
2

(cε + c2ε)
yf
2

(cε − c2ε)

0 −MΨ1 0 0 0

0 0 −MΨ1 0 0

0 0 0 −MΨ2 0

0 0 0 0 −MΨ2





tR

T
′1
R

X ′12/3,R

T ′2R

X ′22/3,R


.

(3.37)

When additional top partner multiplets are included in the models where the top part-

ners are in the 4, one needs to rotate each (T i, X i
2/3) pair separately, so that from each

multiplet only one linear combination of top partner states couples to the top quark

and the Higgs. With two top-partner multiplets in each of the fourplet models, such

rotation can be done by the tranformations

t

T 1

X1
2/3

T 2

X2
2/3


→ 1

N



N 0 0 0 0

0 1 + cε 1− cε 0 0

0 −1 + cε 1 + cε 0 0

0 0 0 1 + cε 1− cε
0 0 0 −1 + cε 1 + cε





t

T 1

X1
2/3

T 2

X2
2/3


(3.38)

for M45 with N =
√

2 + 2 cos2 ε, and

t

T 1

X1
2/3

T 2

X2
2/3


→ 1

N



N 0 0 0 0

0 cε + c2ε cε − c2ε 0 0

0 −cε + c2ε cε + c2ε 0 0

0 0 0 cε + c2ε cε − c2ε

0 0 0 −cε + c2ε cε + c2ε





t

T 1

X1
2/3

T 2

X2
2/3


(3.39)

for M414 with N =
√

2 + c2ε + c4ε. It is important to note that one can decouple the

X2/3 states form the top quark and the Higgs irrespective of how many top partners
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there are in the models. Similar to the case where we have only one top partner

multiplet in the model, the mass matrices for the cases where there are two top partner

multiplets in the models can be written as

t̄L

T̄ ′1L

X̄ ′12/3,L

T̄ ′2L

X̄ ′22/3,L



T 

−yfc2√
2
sε

yf
2

√
3 + c2ε 0 yf

2

√
3 + c2ε 0

0 −MΨ1 0 0 0

0 0 −MΨ1 0 0

0 0 0 −MΨ2 0

0 0 0 0 −MΨ2





tR

T ′1R

X ′12/3,R

T ′2R

X ′22/3,R


(3.40)

for M45 and

t̄L

T̄ ′1L

X̄ ′12/3,L

T̄ ′2L

X̄ ′22/3,L



T 

−yfc2
2
√

2
s2ε

yf
2

√
2 + c2ε + c4ε 0 yf

2

√
2 + c2ε + c4ε 0

0 −MΨ1 0 0 0

0 0 −MΨ1 0 0

0 0 0 −MΨ2 0

0 0 0 0 −MΨ2





tR

T ′1R

X ′12/3,R

T ′2R

X ′22/3,R


(3.41)

for M414. We did not show the full form of the interaction parts of the mass matrices

in this discussion, but they can be worked out in the same way as we described in

the cases where we have only one top partner multiplet in the models. Even though,

it is not shown in this thesis, the top partners do not need to be in the same SO(4)

representation as each other, i.e. there can be one or more top partners in the singlet

and the fourplet representation in the same model.

3.3 The CP-odd Yukawa Coupling

We now discuss the effect of the terms with coefficient c1 in Eqs. (3.6) and (3.21).

Writing the dµ symbol in the unitary gauge, we find that the term ic1Ψ̄4
Rdµγ

µtR contains

the term [24]

ic1

[
X̄2/3,R − T̄R

] ��∂ρ
f
tR , (3.42)

which is a derivative coupling between the top partners and the Higgs boson. This

derivative coupling would result in a CP-odd Yukawa coupling, i.e. in the form of the

coupling between the Higgs and iψ̄γ5ψ, where ψ represents either the top or top part-

ners, plus couplings with higher order in the Higgs boson, and i ensures hermiticity.
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This term is P -odd and C-even, so CP-odd, as can be checked from any QFT text-

book [38]. This coupling scales as Im(c1). In the SM, the term ic1Ψ̄4
Rdµγ

µtR doesn’t

exist, and there exists only the coupling between the Higgs and ψ̄ψ, which is a CP-even

contribution.

The detail of this procedure will be explained in this thesis for the M45 model with

one top partner case only since it can be analogously applied to the M414 model, and

the case where we have more than one top partner multiplets in the theory. Starting

with the coupling in Eq. (3.42), we can perform an integration by parts on this term,

which results in

ic1

[
(X̄2/3)R − T̄R

] ��∂ρ
f
tR = −ic1∂µ

([
(X̄2/3)R − T̄R

]
γµtR

) ρ
f
. (3.43)

Then, the states must be rotated to the mass eigenstates. This amounts to performing

the following substitution in Eq. (3.42):

X2/3 =
1

N

[
T ′ (1− cε) +X ′2/3 (1 + cε)

]
,

T =
1

N

[
T ′ (1 + cε)−X ′2/3 (1− cε)

] (3.44)

where N =
√

2 + 2 cos2 ε for M45. This is simply the reverse of Eq. (3.12), which leaves

us with

ic1[(X̄2/3)R − T̄R]
��∂ρ

f
tR = −ic1∂µ

(
[(X̄ ′2/3)R − T̄ ′R

2cε
N

]γµtR

)
ρ

f
, . (3.45)

We then rotate the states tR and T ′R with the angle θR used in bi-unitary transfor-

mation which corresponds to performing the substitution

T ′R = cos θRT
′′
R + sin θRt

′′
R ,

tR = cos θRt
′′
R − sin θRT

′′
T ,

X ′2/3R = X ′′2/3R ,

(3.46)

where t′′R and T ′′R are the mass eigenstates of the right-handed top quark and top partner

respectively. We then arrive at

ic1[(X̄2/3)R − T̄R]
��∂ρ

f
tR = −ic1 cos θR sin θR

2cε
N
∂µ
(
T̄ ′′Rγ

µT ′′R − t̄′′Rγ
µt′′R
) ρ
f

+ . . . . (3.47)

The terms presented in this expression are the only terms relevant to the Higgs plus

jet production process studied in our work. In fact, the omitted terms involve mixing

between different mass eigenstates, hence they do not contribute to the amplitude for
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Higgs plus jet production. Note that the kinetic term is left invariant by this rotation.

Applying the product rule on the expression above, we obtain

ic1[(X̄2/3)R − T̄R]
��∂ρ

f
tR = −ic1 cos θR sin θR

2cε
N

((
∂µT̄ ′′R

)
γµT ′′R + T̄ ′′Rγ

µ (∂µT
′′
R)
) ρ
f

ic1 cos θR sin θR
2cε
N

((
∂µt̄′′R

)
γµt′′R + t̄′′Rγ

µ (∂µt
′′
R)
) ρ
f

+ . . . .

(3.48)

Now, consider Dirac equation of motion

(iγµ∂µ −m)ψ (x) = 0 . (3.49)

Multiplying 1−γ5

2
on both sides of Eq. (3.49), we obtain

1− γ5

2
(iγµ∂µ −m)ψ (x) =

(
iγµ
(

1 + γ5

2

)
∂µ −m

(
1− γ5

2

))
ψ (x)

= iγµ∂µψR (x)−mψL (x)

= 0

(3.50)

where above we used the expressions of the left and right handed fields

ψL =
1− γ5

2
ψ , ψR =

1 + γ5

2
ψ , (3.51)

and the relations among gamma matrices(
γ5
)†

= γ5{
γ5, γµ

}
= γ5γµ + γµγ5 = 0(
γ5
)2

= I4 .

(3.52)

From this, we obtain

iγµ∂µψR = mψL . (3.53)

For the conjugate transpose of Eq. (3.49)

− i
(
∂µψ

†) γ0γµ −mψ†γ0 = 0 (3.54)

multiplying this expression on 1+γ5

2
, we obtain

[
−i
(
∂µψ

†) γ0γµ −mψ†γ0
] 1 + γ5

2
= 0 . (3.55)

Then, using

ψ†L = ψ†
(

1− γ5

2

)
, ψ†R = ψ†

(
1 + γ5

2

)
, (3.56)



48

we obtain

−i
(
∂µψ

†)(1 + γ5

2

)
γ0γµ −mψ†

(
1− γ5

2

)
γ0 = −i

(
∂µψ

†
R

)
γ0γµ −mψ†Lγ

0 . (3.57)

So, we obtain

− i∂µψ̄Rγµ = mψ̄L . (3.58)

Using Eqs. (3.53) and (3.58) on Eq. (3.48) results in

ic1[(X̄2/3)R − T̄R]
��∂ρ

f
tR = −ic1 cos θR sin θR

2cε
N

(
iMT T̄ ′′LT

′′
R − iMTT

′′
RT
′′
L

) ρ
f

+ic1 cos θR sin θR
2cε
N

(
imtt̄′′Lt

′′
R − imtt

′′
Rt
′′
L

) ρ
f
.

(3.59)

Now, taking into account the hermitian conjugate term of this expression, we obtain

ic1[(X̄2/3)R − T̄R]
��∂ρ

f
tR + h.c. =

− (ic1 − ic∗1) cos θR sin θR
2cε
N

(
iMT T̄ ′′LT

′′
R − iMTT

′′
RT
′′
L

) ρ
f

+ (ic1 − ic∗1) cos θR sin θR
2cε
N

(
imtt̄′′Lt

′′
R − imtt

′′
Rt
′′
L

) ρ
f
.

(3.60)

Now, noting that

i(c1 − c∗1) = 2Im (c1) , (3.61)

we then obtain

ic1[(X̄2/3)R − T̄R]
��∂ρ

f
tR + h.c. = 2Im (c1) cos θR sin θR

2cε
N

(
imtt̄′′Lt

′′
R − imtt

′′
Rt
′′
L

) ρ
f

−2Im (c1) cos θR sin θR
2cε
N

(
iMT T̄ ′′LT

′′
R − iMTT

′′
RT
′′
L

) ρ
f
.

(3.62)

Consider now the gamma matrices structure in this expression,

t̄′′Lt
′′
R = t′′†

1− γ5

2
γ0 1 + γ5

2
t′′ = t′′†γ0 1 + γ5

2
t′′ , (3.63)

and

t̄′′Rt
′′
L = t′′†

1 + γ5

2
γ0 1− γ5

2
t′′ = t′′†γ0 1− γ5

2
t′′ , (3.64)

we arrive at

t̄′′Lt
′′
R − t̄′′Rt′′L = t̄′′γ5t′′ . (3.65)

The same consideration can be applied to the top partner mass eigenstate. Eq. (3.62),

then gives

ic1[(X̄2/3)R − T̄R]
��∂ρ

f
tR + h.c. = 2Im (c1) cos θR sin θR

2cε
N

(
imtt̄′′γ

5t′′
ρ

f

)
−2Im (c1) cos θR sin θR

(
iMT T̄ ′′γ

5T ′′
)
.

(3.66)
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This is the CP-odd coupling that arrive as a result of the mixing between the right

handed top partner states and the right hand top in the fourplet models in our study.

We would like to denote here that there is an alternative method to derive this coupling,

that we present in appendix A. In that calculation, we make use of field redefinitions

and we obtain the same result as the one presented here.

Including the CP-odd couplings, the general effective Lagrangian for the top quark

tL,R and the top partner states with charge 2/3, which does not decouple from the top

quark, TL,R, can be written as

LEFT = Lkinetic −mtt̄t−mbb̄b−M j
T T̄jTj − κt

mt

v
t̄tρ− κb

mb

v
b̄bρ

+κjT
M j

T

v
T̄jTjρ+ iκ̃t

mt

v
t̄γ5tρ+ iκ̃jT

M j
T

v
T̄jγ5Tjρ ,

(3.67)

where j indicates the sum over the number of the top partner multiplets. Note that

in the equation above, t and T denote the mass eigenstates of the top quark and top

partner respectively. In the SM, the anomalous couplings κi will have the values κt = 1,

and κT = κ̃t,T = 0. The CP-odd couplings in the second line of the equation above will

be present only in the models with the top partner multiplets in the 4 representation,

i.e. M45 and M414, and they will be functions of Im(c1) and the mixing angles.

Electron and neutron Electric Dipole Moment experiments have put constraints on

the c1 parameter [25]. For the case where we include up to two top partner multiplets

in the models with the c1 parameter of these multiplet written as c1,1 and c1,2, the

EDM results in ref. [25] indicate that the imaginary part of the parameter must have

the value . 0.2. Since the CP-odd Higgs couplings are derived from these parameters,

this must also affect the possible value that we could impose on c1,1 and c1,2. Since

the purpose of our study does not involve with the effects of these parameters on the

EDMs, we took value of Re (c1,1), Re (c1,2), Im (c1,1) and Im (c1,2) to be less than 0.2 in

our study.

In section 3.4, we will discuss how the masses and Yukawa couplings respond to

the change of the input parameters in the cases where we have either one or two top

partner multiplets in all the four models.

3.4 Couplings for one top partner multiplet

In the case where there is only one top partner multiplet in the models, after expanding

the Higgs fields to its VEV and its physical field ρ, and diagonalising the mass matrix,
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we found the Yukawa couplings of the top and the top partner to have the analytical

forms

M15 : κt = cε cos2 θL ,

κT = cε sin2 θL ,

M114 : κt =
c2ε

cε
cos2 θL ,

κT =
c2ε

cε
sin2 θL ,

M45 : κt = cε

(
cos2 θR −

s2
ε

1 + c2
ε

(
cos2 θL − cos2 θR

))
,

κT = cε

(
sin2 θR −

s2
ε

1 + c2
ε

(
sin2 θL − sin2 θR

))
,

M414 : κt =

(
c2ε

cε
cos2 θR −

sε (s2ε + 2s4ε)

2 (c2
ε + c2

2ε)

(
cos2 θL − cos2 θR

))
,

κT =

(
c2ε

cε
sin2 θR −

sε (s2ε + 2s4ε)

2 (c2
ε + c2

2ε)

(
sin2 θL − sin2 θR

))
, (3.68)

where in the M45 and M414 models the κT values are those for the T field, since the

combinationX2/3 interacts with the Higgs field only with T , and hence this interaction is

not a Yukawa coupling contributing to Higgs plus jet production. As mentioned above,

the CP-odd κ̃ coefficients can be calculated from Eq. (3.43). Following the procedure

outline above, the couplings with Higgs derivative in Eq. (3.43) are thus re-cast into

CP-odd Yukawa couplings

M45 : κ̃t = −κ̃T =
4cεsε√
2 + 2c2

ε

Im(c1) sin θR cos θR ,

M414 : κ̃t = −κ̃T =
4sε(1− 2s2

ε)√
2 + c2ε + c4ε

Im(c1) sin θR cos θR , (3.69)

and couplings to higher powers of the Higgs field. Note that the mass of the bottom

quark is also generated via partial compositeness. However, the right-handed bottom

is not a totally composite state, unlike the right-handed top, and the mixing of the

bottom quark with the composite sector is much smaller. In each of the models, the

Yukawa coupling of the bottom quark is shifted by the same factors of cε or c2ε/cε as the

top quark, and we can make the assumption that the mixing angles with the composite

sector are negligible. So, the anomalous couplings of the bottom quark are κ5b = cε

and κ14b = c2ε
cε

for models with the top pratner in 5 and 14 representations respectively.

Since the CP-odd couplings are also proportional to the mixing with the composite

sector, we can assume that they are absent for the bottom quark.
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An important remark is now in order concerning which parameters one can fix in

each composite Higgs model. Inspecting on eq. (3.19), one could realises there are

restrictions on the values of the parameters in models that we can consider. In all of

the models considered in our work, for a fixed value of θR, if f is sent to ∞ while

the top partner mass MT is kept at a constant value, then it is implied that the value

of y must be sent to infinity in order to keep value of the top mass at the observed

value. A similar issue occurs when the value of MT is sent to infinity while the scale

f and the angle θR are kept at constant values. In this case, y must again be sent to

infinity. Moreover, it seems to be inevitable to sent y to infinity in the situation where

f and MT are both sent to infinity, while the ratio of f/MT is constant, so that the

mass of the top is kept at the correct value. From this argument, it seemed that y

must be sent to infinity in the case where one of the parameters in the model is sent

to infinity. In fact, y cannot simply be sent to infinity, because this would correspond

to a non-perturbative regime. Therefore, in this work, the perturbative range of y is

taken to be y < 3 [24]. From this constraint on y, the top-partner mass and the mixing

angles have to be constrained to have only certain values. In order to investigate these

constraints, it is useful to express the off-diagonal term ∆ in terms of a mixing angle.

Starting from the expression of one mixing angle, i.e. θL,R in terms of the other

cos2 θR =
M2

T cos2 θL
M2

T cos2 θL +m2
t sin2 θL

, cos2 θL =
m2
t cos2 θR

m2
t cos2 θR +M2

T sin2 θR
, (3.70)

we could derive the expression for ∆

∆ =
M2

T −m2
t√

m2
t cos2 θR +M2

T sin2 θR

sin (2θR)

2
=

M2
T −m2

t√
M2

T cos2 θL +m2
t sin2 θL

sin (2θL)

2
.

(3.71)

Due to the different scaling of ∆ in terms of v and f , the model parameters will be

restricted differently in the singlet and fourplet models. In the singlet model, ∆ scales

as yv. From this scaling and eq. (3.71), for the singlet models, y ∼ MT/v tan θL for

moderate mixing angle θL . π/4 and MT � mt. This means that θL, and hence θR

must have a very small value if MT is going to have a very large value. This is equivalent

to stating that a very heavy top partner will be decoupled from the theory, and this

feature occurs for all value of f . For fourplet models, the scaling of ∆ is given by

∆ ∼ yf . From this scaling, for moderate value of the mixing angle, if f is sufficiently

large, we could send the MT to a large value in the fourplet model without violating

the perturbativity bound. This discussion shows that it might not be possible to have
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a perturbative composite Higgs model from a simplified model by simply determining

the mixing angle and the mass of the top partner in the model.

From this discussion, we see that the top partner mass MT cannot be sent to infinity

by fixing all other parameter because the perturbativity bound forbids this to happen.

Within the perturbativity bounds, it is however possible to take the limit f → ∞. In

such limit, the Yukawa coupling derived in eq. (3.68) takes the form

M15,M114 : κt = cos2 θL, κT = sin2 θL

M45,M414 : κt = cos2 θR κT = sin2 θR
(3.72)

while all CP-odd Yukawa couplings derived in eq. (3.69) vanish.

3.5 Mass Spectrum for two top partner multiplets

In the case where there are two light top partner multiplets in each of the models, we will

only study the relationship among the fundamental parameters of the models, i.e. mass

parameters of the top partner multiplets, the decay constant f , and the couplings in

each of the models, to the physical top-partner masses and the Yukawa couplings instead

of trying to obtain analytical results in the same way we did for the one top partner

multiplet case. The parameters y, f,MΨ1,MΨ2 and c1 are taken as free parameters in

our analysis, while c2 is used to fix the mass of the top quark to 173 GeV.

The plot for the Yukawa couplings and masses of T 1 or T 2 as a function of the

heavier vector-like mass for MΨ1 = 1200 GeV, y = 1, and f = 600/1000 GeV are shown

in Figures 3.1 and 3.2. In each of the plots, the masses and couplings of a single top

partner are labelled T 1 only. They are plotted with the same values of y and f , and

MΨ = MΨ1 . We note here that, for the plots in this section, the cases labelled T 1 only

indicates the situation where there is only one top partner left in the theory, i.e. the

limit where any other top-partner is decoupled. Also, the label T 1 is used to indicate

the lighter top partner. From Figure 3.1, we can see that, in all the models except for

M414, when MΨ1 is similar to MΨ2 , the Yukawa coupling of the heavier top partner

can becomes larger than that of the lighter top partner. As the gap between the mass

parameters of the multiplets increases, the coupling to the Higgs of the heavier top

partner decreases and the Yukawa coupling of the lighter top partner is approaching

the value we expect to see when there is only one top partner present in the model.

For the models with fourplet top partner multiplets, in particular M45 model, there

is a large region in which the coupling of the heavier top partner dominates that of
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Figure 3.1: The Yukawa couplings for the two T 1 or T 2 top-partners as functions of

MΨ2 , for MΨ1 = 1200 GeV, y = 1, and f = 600/1000 GeV. The results presented in

’T 1 only’ case can be verified from Eqs. (3.68).
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Figure 3.2: The masses of the top-partners T 1 or T 2 as functions of MΨ2 , for MΨ1 =

1200 GeV, y = 1, and f = 600/1000 GeV.
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the lighter top partner. Notably, the Yukawa coupling of the lighter top partner can

be suppressed when there is a heavier top partner having the same charge but slightly

heavier mass.

From Fig. 3.2, we can see that, in the models M15 and M114, the vector-like mass

and the mass of the T 2 almost form mass degenerate states. Also, the behaviour of

MT is the same for f = 600 GeV and f = 1000 GeV scenarios for the singlet models,

since in these models the mass matrix is largely insensitive to f . In the models with

fourplet top partner multiplets, however, this behaviour could only be appreciated if

the mass of one of the top partners is much larger than the other. This is because the

mass matrix in these models is no longer insensitive to the scale f . Note that MΨ1,2 are

the masses of the X1,2
2/3 and X1,2

5/3 states, in the fourplet models, hence such states have

the same mass as T 2 for MΨ2 �MΨ1 .

In figure 3.3 aims at displaying the effect of the elementary-composite mixing pa-

rameter y on the physical masses and Yukawa couplings in the model M45 and M414

with MΨ1 = 1200 GeV and MΨ2 = 1300 GeV.
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Figure 3.3: The masses and Yukawa couplings of the two T top-partners from the M45

and M414 model as functions of the elementary-composite coupling y, for MΨ1 = 1200

GeV, MΨ2 = 1300 GeV, and f = 600/1000 GeV.

From this figure, one first notices that, at small values of y, the top-partner Yukawa

couplings approach zero, and their masses approach the multiplet mass parameters

MΨ1,2 . This behaviour arises because, in this limit, the top partners are gradually

decoupled from the top quark and the Higgs, while the mass of the top quark is kept

at the observed value by a large c2 coupling. When we increase the value of y, the

difference between T 1 and T 2 becomes more significant, the masses of the lighter top

partner is still close to MΨ1 while the mass of the heavier state is increased. As can

be seen from the left panel of this figure, the behaviour of the Yukawa couplings as y

varies is less trivial and shows strong dependence on the value of f .

In figure 3.4, we show the behaviour of the masses and Yukawa couplings as we vary

the value of the parameter f in the models M45 and M414 with MΨ1 = 1200 GeV and

MΨ2 = 1300 GeV. In this plot, we fixed the value of y to 1 and 3.
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Figure 3.4: The masses and Yukawa couplings of the two T top-partners from the M45

and M414 model as functions of the scale f , for MΨ1 = 1200 GeV, MΨ2 = 1300 GeV,

and y = 1, 3.

In this figure, we can see that as the value of f is increased one top partner effectively

remains light and decouples from the Higgs, while for the other its mass keep increasing

and its Yukawa coupling approaches those of a single top-partner. Note here that as

we increase the value of f , the ratio v/f becomes small. This indicates that more fine-

tuning will be required for the Higgs potential to reproduce the observed Higgs mass

and vacuum expectation value.

So far we have not discussed the top quark Yukawa coupling, which is expected to

deviate from what is expected in the SM. The top Yukawa coupling as a function of the

compositeness scale f for the four models is plotted in Figure 3.5. In this Figure, we set

MΨ = MΨ1 in the case where there is only one top-partner multiplet in the considered

model. Comparing to Figure 3.1, this plot gives a good representation of the case where

MΨ1 � MΨ2 . As can be observed from the figure, apart from small values of f , the

top quark anomalous Yukawa coupling do not depend largely on f because at large f

this anomalous coupling is dominated by the mixing angles between the top and the
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Figure 3.5: The Yukawa coupling of the top quark in each of the models as a function

of the scale f , for MΨ1 = 1200 GeV, MΨ2 = 1300 GeV, and y = 1, 3, for one top partner

(left) and two top partners (right).

top partners. The one top partner (the left panel of Fig. 3.5) and two top partner (the

right panel of Fig. 3.5) cases show similar dependence on y. For the singlet models

the y-dependence is much stronger than that of the fourplet models, with roughly 30%

suppression with respect to the SM for larger value of y. There are large deviations

from the standard model for low values of f , particularly in the singlet models. In

fact, the recent observation of associated Higgs production with a top quark pair by

ATLAS experiment [39] set the 2σ lower bound κt & 0.8, which puts the values with

y = 3 for the singlet models in both one and two top partner cases for the all value of

f shown in tension with data. Therefore, in the other plots in this section the value

of y is restricted to y = 1 when there is a comparison between the singlet and fourplet

models.

Last, we discuss the couplings of the top partners to the Higgs derivatives in M45

and M414 models, in the case where we have two top partners. These couplings come

from the following contribution to the effective Lagrangian

L ⊃− ic1,1T̄1dµγ
µtR − ic1,2T̄2dµγ

µtR + h.c.

=− i∂µρ
f
ψ̄Cψ + h.c. (3.73)

with

ψ =


tR

T 1
R

T 2
R

 and C =


0 0 0

c1,1 0 0

c1,2 0 0

 . (3.74)

In order to calculate the couplings between the quark and the Higgs derivatives in the

mass eigenbasis, the matrix C must be rotated by the rotations used to diagonalise
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the mass matrix. Hence in the mass eigenbasis, we write C̃ = OR(C − C†)OT
R, where

OR is the matrix used to diagonalise the right-handed fields of the mass matrix. We

can then use the equations of motion, or perform the field redefinition, in a similar

way to the case with one top partner multiplet to change the coupling between quark

and derivative of the Higgs Eq. (3.73) into CP-odd Yukawa couplings and couplings to

higher powers of the Higgs boson. For the CP-odd Yukawa couplings, we get:

M45 : κ̃t =
2cεsε√
2 + 2c2

ε

C̃11, κ̃T,1 =
2cεsε√
2 + 2c2

ε

C̃22, κ̃T,2 =
2cεsε√
2 + 2c2

ε

C̃33

M414 : κ̃t =
2sε(1− 2s2

ε)√
2 + c2ε + c4ε

C̃11, κ̃T,1 =
2sε(1− 2s2

ε)√
2 + c2ε + c4ε

C̃22, κ̃T,2 =
2sε(1− 2s2

ε)√
2 + c2ε + c4ε

C̃33.

(3.75)

Then, in Figures. 3.6 and 3.7, we show how the CP-odd couplings of the top and the

top partner, respectively, scale as a function of the input parameters. In these figures,

we are considering the scenario in which the determining parameters of the CP-odd

couplings are universal, i.e. Re (c1,1) = Im (c1,1) = Re (c1,2) = Im (c1,2) = c. Also, we

study the variation with the scale f for different values of y and c for the CP-odd top

Yukawa couplings and the variation with the multiplet mass parameters MΨ1,2 for y = 1

and two different values of f for the CP-odd top partner Yukawa couplings. We note

here that when one top partner mass is taken to be very heavy, the CP-odd coupling

of that top partner diminishes, and in this limit, the CP-odd couplings of the top and

the lighter top partner are equal and opposite, as in the case with one top partner. In
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Figure 3.6: The CP-odd Yukawa coupling of the top quark in the fourplet models as a

function of the scale f , for MΨ1 = 1200 GeV, MΨ2 = 1300 GeV, and for different values

of the parameters y and c.

order to compare with Figures 3.6, for one top partner case, we plotted Figures 3.8 to
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Figure 3.7: The CP-odd Yukawa couplings of the two T top-partners as functions of

the heavier vector-like mass, for MΨ1 = 1200 GeV, y = 1, c = 0.2 and f = 600/1000

GeV.

show how the CP-odd top-quark Yukawa coupling varies as a function of f for different

values of the parameters y and c.
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Figure 3.8: The CP-odd top-quark Yukawa coupling varies in the fourplet models in the

case where there is only one top-partner multiplet as a function of f , for MΨ1 = 1200

GeV, and for different values of the parameters y and c.
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Chapter 4

Top-partners in Higgs production

4.1 Higgs plus jet production process

In this section we compare the discovery potential of the total Higgs cross section,

and Higgs production plus one jet. In particular, we investigate the sensitivity of the

transverse momentum disgtribution of the Higgs to the masses of the top partners in

the composite-Higgs models considered so far.

4.1.1 Higgs production through gluon fusion

Gluon fusion is the main Higgs production mechanism at hadron colliders. This process

appears at one loop level in the minimally coupled theories. Since the SU(3)C QCD

symmetry is not broken, the gluon sits in a different gauge group than that of the Higgs

field and this process cannot appear at tree level. The Higgs is not charged under

SU(3)c and so does not couple to gluons. The main contributions to this mechanism

come from loops of the particles that couple strongly to the Higgs. The Higgs boson

couplings to the SM particles will be proportional to their masses. In the SM, the top

quark is the only particle to have significant effect in this process. In BSM theories,

however, additional coloured particles can also give significant contribution on this Higgs

production process. In composite-Higgs models, despite the presence of one or more

top partners, the total Higgs production cross-section has been shown to be essentially

independent of the masses of the top partners in the model.1 This low-energy effect

rendering the cross section insensitive to the mass spectrum of the top partners occurs

1An actual Born-level calculation shows in fact a small percent-level difference between the contri-

bution of top and top partners to the Higgs cross-section.
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because, in composite Higgs models, the Higgs is a pseudo Nambu-Goldstone boson.

The authors of ref. [40] studied the effect from the new coloured fermions, along

with other less significant effects, to gluon fusion Higgs production in composite Higgs

models by using the method of effective Lagrangians. In their study, they investigated

new physics effects to Higgs coupling from the higher dimensional operators made out

of the SM fields. These operators are

OH = ∂µ(H†H)∂µ(H†H), Oy = H†Hf̄LHfR, Og = H†HGµνG
µν . (4.1)

In particular, they showed that, in composite Higgs models, the gluon fusion production

rate of the composite Higgs depends on the decay constant f only, and is insensitive to

masses of new particles.

The same fact was illustrated in [22]. There it was shown with a different approach

that the contribution to gluon fusion Higgs production from the top partners is hard, if

not impossible to appreciated. For pp→ h, even though top-partners do contribute to

Higgs production through loops, it was shown that there is a low energy cancellation

that renders this process basically insensitive to the mass of the top-partners. Even

though the work in [22] was performed for a model with top partners in the 5, their

argument holds for all composite-Higgs models discussed in chapter 3. The low-energy

cancellation can be understood as follows. A generic contribution to the Lagrangian

from a model with heavy fermions is given in the physical mass basis by [22]

∆L =
∑

Mj(v)ψ̄jψj +
∑

Yijψ̄iψjH(x). (4.2)

At Born level, a fermion will give a contribution to the ggh production cross-section

given by [22]

σ̂gg→H =
α2
sm

2
H

576π

∣∣∣∣∣∑
j

Yjj
Mj

A1/2(τj)

∣∣∣∣∣
2

δ(ŝ−m2
H), (4.3)

where Yjj is the Yukawa coupling of fermion j of mass Mj to the Higgs boson, ŝ is

the partonic centre-of-mass energy squared, and A1/2(τj) is the following function of

τj = m2
H/(4M

2
j ):

A1/2(τ) = −2 [τ + (τ − 1)f(τ)] /τ 2 , f(τ) =


arcsin2

√
τ τ ≤ 1

−1

4

[
ln

1 +
√

1− τ−1

1−
√

1− τ−1

]2

τ > 1
.

(4.4)
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In the limit where the fermions participating in the loop are massive, we have A1/2(τ →
0) → 1. The contribution to ggh of fermions with a mass larger than the mass of the

Higgs is given by

δgHgg ∝
∑

Mj>mH

Yjj
Mj

(4.5)

where the sum is performed over states that are heavier than the Higgs. This contri-

bution can be rewritten as∑
j

Yjj
Mj

−
∑

Mj<mH

Yjj
Mj

= Tr(YM−1)−
∑

Mj<mH

Yjj
Mj

(4.6)

where M is a matrix whose eigenvalues are the masses of the fermions and Y incorpo-

rates the corresponding Yukawa couplings. Moreover, it can be shown [22] that

Tr(YM−1) =
∂ log(detM)

∂ 〈h〉
. (4.7)

The above representation of the sum in eq. (4.6) makes the calculation of the ggh

coupling more efficient, since there is no need to perform the calculation in the mass

eigenstates explicitly.

If we repeat the analysis of ref. [22] for our composite Higgs models we find that,

for the models M15 and M45, we have

∂ log(detM)

∂ 〈h〉
=

1

f
cot

(
〈h〉
f

)
=
cε
v
, (4.8)

whereas for the models M114 and M414 we obtain

∂ log(detM)

∂ 〈h〉
=

2

f
cot

(
2 〈h〉
f

)
=

c2ε

v cε
, (4.9)

which are independent of the masses and couplings of the top partners. For a single top

partner, the above results can be checked explictly by computing the Higgs partonic

cross section as in eq. (4.3) using the Yukawa couplings obtained from eq. (3.68).

Note that in ref. [22], the same analysis was performed on a composite Higgs model

where a top-partner multiplet is in the 5 of SO(5)×U(1)X . The form of the top partner

in this representation can be written in the same way as in Eq. (3.4). A field redefinition

of the composite quark

Ψ5 → U †Ψ5 , (4.10)

where U is defined in Eq. (2.50), was also performed to simplify the analysis. This

redefined field mixes with the elementary top quark, and the relevant terms in the

action are given by [22]

L = M5Ψ
5

RΨ5
L + λq q̄LPqU

†Ψ5
R + λtt̄RPtU

†Ψ5
L + Y f(Ψ

5

Rσ0)(σ†0Ψ5
L) + h.c. (4.11)
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where Pq and Pt are used to project out the components of the composite multiplet

with the quantum numbers of the left- and right-handed top quark respectively and the

standard vacuum configuration σ0 is defined as

σ0 =
(

0 0 0 0 1
)T

. (4.12)

From this equation, it is possible to derive the mass matrix for the top quark and the

top partners [22]

M =


0 λq(cos(〈h〉/f)+1)

2

λq(cos(〈h〉/f)+1)

2

iλq sin(〈h〉/f)√
2

−iλ∗t sin(〈h〉/f)√
2

M5 0 0
−iλ∗t sin(〈h〉/f)√

2
0 M5 0

λ∗t cos(〈h〉 /f) 0 0 M5 + Y f

 . (4.13)

In Eq. (4.13), we can see that there is no Higgs dependence in the composite sub-

block of the matrix which benefits from using the field redefinition in Eq. (4.10). This

property will be true in any basis because the determinant of a matrix will stay the

same under unitary transformations. Moreover, the composite part of the mass matrices

will be independent of the Higgs for each different charge species individually since

the generator of electric charge commutes with the matrix U . Using Eq. (4.6), the

contribution to Higgs coupling to gluons from the top quark and the top partners in

this model is found to be

∂ log(detM)

∂v
=

2

f
cot(

2 〈h〉
f

) (4.14)

for a light Higgs with mH � mt . In this model, the only fermion in loops with a

mass smaller that mH is the bottom quark, whose Yukawa coupling is not dependent

on the top-partner masses and couplings, since it does not couple to the top partners.

Hence,
∑

Mj<mH

Yjj
Mj

is not dependent on the masses and couplings of the top partners.

From the result calculated in Eq. (4.14), δgHgg from Eq. (4.5) will show no dependency

on the the top partner masses and couplings. So, the modification to the ggh effective

coupling in Eq. (4.3), calculated from this sample model shows no dependence on the

masses and coupling strength of the top partners. The same argument applies to the

results of the composite Higgs models studied in this thesis in Eqs. (4.8) and (4.9) as

well.

4.1.2 Higgs plus jet production

In contrast to single Higgs production, in the Higgs plus jet production process pp →
h + j, the cross section of this process will be dependent on the top partners’ masses.
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In fact, as shown in ref. [23], the low-energy theorem that renders the cross section

insensitive to the masses of the loop fermions does not hold any longer in pp→ h+ j.

At the lowest order, in this production process pT,h = pT,j. When the transverse

momentum pT of either the Higgs or the jet in the final states is large, it is not possible

to use the low-energy theorem assumption. In order to get a better idea of how this

comes about, we consider what happens when this pT takes high or low values. At

parton level, there are four processes contributing to pp→ h+ j:

gg → h+ g, gq → h+ q, q̂g → h+ q̂, qq̂ → h+ g . (4.15)

We now consider for instance gg → h+ g, but similar considerations hold for the other

subprocesses as well. The partonic cross section of gg → h+ g can be written in terms

of a sum over different gluon helicity configurations and fermions running in the loop

as [23]

σ̂gg→hg =
3

2

βH
16πŝ

α3
s

4πv2

∑
λj=±

∣∣∣∣∣∣
∑
fj

Mj
λ1λ2λ3

(
ŝ, t̂, û,mj, yj

)∣∣∣∣∣∣
2 , (4.16)

where βH is the final state velocity, λj are the helicities of the three gluons, and fj is the

indication of the different fermion species in the loop. The matrix elementMj
λ1λ2λ3

for

one fermion species with mass mf and Yukawa coupling y =
mf
v
κf running in the loop

will behave differently for different pT magnitude. Consider for instance, the amplitude

M+++ in the limit where pT � mf ,mH . In this limit, the amplitude will take the

form [23]

M+++ ∝
m2
fκf

pT

(
A0 + A1 ln

(
p2
T

m2
f

)
+ A2 ln2

(
p2
T

m2
f

))
, (4.17)

where A0, A1, A2 are combination of constants and mf -independent logarithms. It can

be seen from this expression that the matrix element shows dependencies on both the

mass and the coupling to the Higgs of the fermion running in the loop. For low pT

limit, the amplitude becomes

M+++ ∝ κfpT , (4.18)

where the dependence on fermion mass is absent. The expression in Eq. (4.18) is

proportional to what one would obtain for gg → h. If we consider the contributions

from a top quark with mass mt and Yukawa coupling mt
v
κt, and a top partner with mass

MT and Yukawa coupling MT

v
κT to the matrix element M+++, the low energy theorm

applies when the final states have low pT . If the transverse momentum of the final state

is increased to the range mt � pT �MT , however, the contributions from the top can
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be approximated to be in the high pT limit, i.e., the one shown in Eq. (4.17), while the

contribution from the top partner can be approximated to be in the low pT limit shown

in Eq. (4.18). In this kinemetic region, we then obtain

M+++ ∝
m2
tκt
pT

(
A0 + A1 ln

(
p2
T

m2
t

)
+ A2 ln2

(
p2
T

m2
t

))
+ κTpT , (4.19)

where the amplitude is only dependent on the top mass and the Yukawa couplings of

the top and the top partner. The amplitude will show dependence on the top partner

mass when the pT is increased further to the region pT � mt,mH ,mT . In this range of

the final state transverse momentum, the contributions from both the top and the top

partner will approximately be in the high-pT limit, and we obtain [23]

M+++ ∝
m2
tκt
pT

(
A0,t + A1,t ln

(
p2
T

m2
t

)
+ A2,t ln2

(
p2
T

m2
t

))
+
M2

TκT
pT

(
A0,T + A1,T ln

(
p2
T

M2
T

)
+ A2,T ln2

(
p2
T

M2
T

))
.

(4.20)

Even though, we show here only the approximated forms ofM+++ when pT is increased,

the other matrix elements Mj
λ1λ2λ3

show a similar behaviour for different values of

pT . Numerical analyses were carried out in ref [23] to confirm the behaviour of the

matrix elements, both at the parton level, and after including the effect of the parton

distribution function (PDF).

4.2 One top partner multiplet

Having discussed the four models in our work, and derived the Yukawa couplings of the

top quark and the top partners in each of the models in Eq. (3.68), we compute the pT

distributions for these models at the LHC with a centre-of-mass energy
√
s = 14 TeV.

In this computation, we set the top quark mass mt = 173.5 GeV, the bottom quark

mass mb = 4.65 GeV, and use MSTW2008NLO parton distribution function [41], cor-

responding to αs (MZ) = 0.12. The data used to produce the plots in this section was

obtained by interfacing the matrix elements of [42] contained in the program HERWIG

6.5 [43] with LHAPDF [41, 44, 45], using the PDF evolution toolkit HOPPET [46], to

obtain the transverse momentum distribution dσ
dpT

of a Higgs or a recoiling jet. The

code was originally developed by my supervisor and used for the first time in [23]. In

this thesis, the core of the code, which contains the details of the numerical integrations

needed to obtain dσ/dpT , was left untouched, and we have only modified the couplings
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to the fermions in the loops contributing to Higgs plus jet (see appendix B.1 for de-

tails). Note that this is not the only way to integrate the matrix elements of [42]. For

an example of an alternative implementation of the same calculation one could look at

the SusHi program [47]. In particular, for this thesis, only the couplings of the particles

involved in the process were modified and no edits to the main structure of the code

have been performed. For the case with one top parter, the couplings of the particles

are modified according to the relation

− κt
mt

v
t̄th− κT

MT

v
T̄Th− κb

mb

v
b̄bh . (4.21)

The lowest-order amplitude for Higgs plus jet is then computed using these couplings,

and convoluted with parton distribution functions to obtain dσ
dpT

. In particular, for the

case with one top partner, the couplings κt, κT , κb are automatically computed by the

program simply from the input values of the scale f , the mixing angle sin2 θL,R, and an

integer indicating one of the models. For the scenario with multiple top partners, the

number of quark participating in the computation, the masses and couplings of each

of the parton (bottom, top and top partners) are input from a file. More details on

the modification made to the code, and basic instructions to run it, can be found in

Appendix. B.1.

From the differential pT spectrum, we construct the integrated transverse momen-

tum distribution σ (pT > pcut
T ) defined as

σ
(
pT > pcut

T

)
=

∫
pcut
T

dpT
dσ

dpT
. (4.22)

The reason behind considering σ (pT > pcut
T ) is that, for large values of pT , we do not

have many events, so this observables aims at collecting as many events as possible.

With the above program, it would already be useful to analyse the difference between

the observable σ (pT > pcut
T ) in each of the models considered in chapter 3 and in the

SM as a mean to probe the compositeness of the Higgs. In our work, we studied instead

the efficiency ε(pT > pcut
T ) defined as the fraction of events for which the Higgs (or at

least one jet) has a transverse momentum larger than a given pT cut

ε(pT > pcut
T ) =

1

σ

∫
pcut
T

dpT
dσ

dpT
. (4.23)

The advantage of computing this quantity can be appreciated when two spectra are

different just by an overall factor due to different total cross section. Since no infor-

mation about the presence of top partners can be assessed when this difference occurs,
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it will be better to avoid this discrepancy by studying dicrepancy from the SM of the

efficiency rather than of the cross section in Eq. (4.22). More precisely, from the pT

distribution of the Higgs produced in each of the models, we studied εBSM(pT > pcut
T ),

defined as the fraction of the events for which the Higgs, generated in one of the models

studied in this work, has a transverse momentum larger than a given pcut
T . For the SM,

we similarly studied εSM(pT > pcut
T ), which is defined as the fraction of the events for

which the SM Higgs has a transverse momentum larger than a given pcut
T . We then

produce contour plots for δ(pcut
T ) defined as the deviation of the efficiency of the BSM

from that of the SM

δ(pcut
T ) ≡ εBSM(pT > pcut

T )

εSM(pT > pcut
T )
− 1 . (4.24)

These contour plos are computed in percentage, as a function of the top partner mass

MT and the compositeness scale f using Mathematica. We note here that in the SM

case, the value δ(pcut
T ) will be zero. Since in ref. [23], the case f � MT has already

been considered, in these contour plots, MT and f values are in the range that are not

excluded by current measurements, and there is no specific hierarchy between these

two parameters. In line with ref. [23], in the single top-partner case, we also fix the

value of the mixing angle between the top and the top partner. In particular, for

the contour plots of the singlet models, we fix the value of sin2 θL, whereas for those

of the fourplet models, we fix the value of sin2 θR. Different mixing angles are fixed

in the singlet and fourplet models because in the singlet model the Yukawa coupling

modification depends only on sin2 θL which becomes increasingly large with the top

partner mass according to Eq. (3.20). The contribution of the top gets smaller as the

value of f get larger, and the spectrum is dominated by the top-partner contribution.

For the fourplet models, on the other hand, the Yukawa coupling is largely dependent on

sin2 θR for large values of f . However, when the top-partner masses are increasing, for a

finite f , the Yukawa couplings contains a negative contribution proportional to sin2 θL

for the top partner and cos2 θL for the top quark. We would like to stress here that the

predictions presented in our work correspond to those presented in ref. [23] in the limit

f � v. We then decided to fix the same parameters in order to assess the impact of

choosing a finite value of f . This choice exposes us to problems with perturbativity of

the models. In fact, as discussed in section 3.4, fixing sin2 θL,R might not correspond to

any perturbative composite-Higgs model. In all the contour plots of δ(pcut
T ) for models

with a single top partner, we include lines corresponding to fixed values of y, so that the

region where y is in the perturbative regime can be clearly distinguished. Furthermore,
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the lower bound on κt mentioned in chapter 3 further constrains the value of mixing

angles in both singlets and fourplet models. This results in the fact that singlet models

with sin2 θL > 0.2 are in strong tension with data, so we have deviced not to show any

contour plots for those.

In Fig. 4.1, contour plots of δ(pcut
T ) for pcut

T = 200 GeV and sin2 θL = 0.1 are

shown for singlet models. Similarly, with sin2 θR = 0.1, the contour plots of δ(pcut
T ) are

presented in Fig. 4.3 for fourplet models and for the same value of pcut
T . The first thing
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Figure 4.1: The contour plots of δ(pcut
T ) with sin2 θL = 0.1 and pcut

T = 200 GeV for

each of the singlet models with only one top partner multiplet included in each of the

models. The solid lines indicates constant values of the coupling y. The region marked

by dashed white lines corresponds to the case where κt ≤ 0.8.

that can be observed from these figures is that the deviation from the SM is not large.

This arises from the fact that the spectrum of the integrated transverse momentum is

dominated by the lowest pT values, where the top still behaves as a heavy particle in

loops. The cancellation between top and top partner contribution still has an effect

in this range of pT , and results in this small deviation. Nevertheless, the difference

in the behaviour of the singlet (Fig. 4.1) and fourplet (Fig. 4.3) models can still be

noticed. For singlet models, when the values of MT is increased, the deviation from

the SM slightly increases. For fourplet models, as the value of f is increased, the SM

deviation increases. This behaviour appears because when the value of f is increased,

the negative contributions from the Yukawa coupling depending on sin2 θL and cos2 θL

are getting smaller. We denote here that, for M414, when the value of f is small, these
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Figure 4.2: The contour plots of δ(pcut
T ) with sin2 θL = 0.1 and pcut

T = 600 GeV for

each of the singlet models with only one top partner multiplet included in each of the

models. The corresponding values of y are shown by the solid lines. The region marked

by dashed white lines corresponds to the case where κt ≤ 0.8.

negative contributions dominate, which in turn results in negative interference between

the contribution of the top and the top partner. In both Figs. 4.1 and 4.3, and all

remaining contour plots in this section, we include the solid lines indicating the fixed

values of the parameter y, so that one can then determine if the corresponding choice of

parameters correspond to a perturbative composite Higgs model. Recall that the value

of y must fall in the range y < 3 due to the perturbativity requirement, it is possible to

observe that one cannot legitimately probe MT above 1600 GeV for singlet models. In

the fouplet models, however, the range of parameters chosen here results in predictions

that are almost always allowed by the perturbativity requirement.

Keeping the values of sin2 θL,R = 0.1 and increasing the value of pcut
T to 600 GeV, we

show the corresponding contour plots of δ(pcut
T ) as a function of MT and f in Figs. 4.2

and 4.4. In this case, The values of pT are high enough so that the cancellation between

the contribution of a top and a top-partner in loops are broken. This results in large

deviations from the SM for singlet models. For the fourplet models, we observe again

that the deviation decreases when the value of f is decreased. This is again because of

the fact that the negative contribution to the Yukawa couplings proportional to sin2 θL

and cos2 θL becomes more relevant for small values of f , and eventually vanishes when

f →∞. For M414 model, the most significant features can be noticed when one look
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Figure 4.3: The contour plots of δ(pcut
T ) with sin2 θR = 0.1 and pcut

T = 200 GeV for

each of the fourplet models with only one top partner multiplet included in each of the

models. The solid lines indicates constant values of the coupling y. No parameter space

on these plots corresponds to κt ≤ 0.8.

small value of f . In this range of f , a large negative interference between top and

top-partner contributions can be seen. Note that the contour plots show also a shaded

region that corresponds to κt < 0.8, to highlight a region in parameter space that is in

tension with current data for Higgs production in association with a top-antitop pair.

In order to have a full comparison with the results presented in [23], we should then

repeat the same analysis for sin2 θL,R = 0.4. Unfortunately, in the singlet models, if

sin2 θL = 0.4, it would result in the case that are not allowed by perturbative regime.

We are then left with the choice to consider only fourplet models with sin2 θR = 0.4.

With this value of sin2 θR, we show the contour plots with pcut
T = 200 GeV in Fig. 4.5.

In this case, we again observe a moderate deviation form the SM, which occurs from

the same reasons as the corresponding case where we set sin2 θR = 0.1. In addition,

since sin2 θR is set at a larger value, the negative contributions to the Yukawa couplings

due to cos2 θL and sin2 θL become less important. Then, for fourplet model, we increase

the value of pcut
T to 600 GeV while keeping the value of sin2 θR = 0.4, and show the

corresponding contour plots in Fig. 4.6. The larger value of the mixing angle, sin2 = 0.4

prevents the negative contributions to take over. So, the top quark in the loops gives the

contribution which is smaller than compared to the contribution from the top partner,

giving a sizeable deviation from the SM.
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Figure 4.4: The contour plots of δ(pcut
T ) with sin2 θR = 0.1 and pcut

T = 600 GeV for

each of the fourlet models with only one top partner multiplet included in each of the

models. The corresponding values of y are shown by the solid lines. No parameter

space on these plots corresponds to κt ≤ 0.8.

The next thing to consider is the CP-odd contributions induced by the couplings κ̃t

and κ̃T in Eq. (3.69), which exist only in the fourplet models. Since these contributions

cannot interfere with the SM, their contribution to δ(pcut
T ) is very small, at sub-percent

level for most of the choices of sin2 θR considered in our work. There is an exception

for sin2 = 0.4 with pcut
T = 600 GeV, for which the deviation from the SM is of a few

percent. We show the corresponding contour plots in Fig. 4.7.

We also consider an extra example in the singlet models, with sin2 θL = 0.025, in

order to have a better idea of the deviation one would expect from this type of models

for acceptable values of the parameters. With this value of sin2 θL, we show the contour

plots with pcut
T = 200 GeV in Fig. 4.8, and those with pcut

T = 600 GeV in Fig. 4.9. From

comparison between these figures, it can be observed again that by increasing the value

of pcut
T , the cancellation between the contribution from the top and top partner in the

loop is overcome, and hence in Fig. 4.9 the deviation from the SM is more significant.

In addition, we observe in both figures that the behaviour approaches that of the SM

when the value of the compositeness scale f is increased.

To summarise this section, with one top partner there exist a variety of deviations

from the SM, reflecting the different ways Yukawa couplings are modified according to

the fundamental parameter of each model. In particular, in the singlet models, the
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Figure 4.5: The contour plots of δ with sin2 θR = 0.4 and pcut
T = 200 GeV for each of

the fourplet models with only one top partner multiplet included in each of the models.

The corresponding values of y are shown by the solid lines. As shown by the dashed

white lines, all the points on these plots corresponds to κt ≤ 0.8.

deviations from the SM can be huge even from a mild mixing of right-handed fermions.

So, the parameters considered in these models will be the easiest to access through

Higgs production in association with a jet. For fourplet models, the analysis must

be carried on a case-by-case basis for each choice of the parameters because of non-

trivial cancellations between different contributions to the Yukawa couplings. From the

analysis presented in this section, it is promising though that one can expect to see

sizeable deviations from the SM for large mixings angle with high values of pcut
T .

4.3 Two top-partner multiplets

For the two top-partner case, we extend the analysis used in the case of one top partner

by considering a number of benchmark scenarios, obtained by fixing some of the fun-

damental parameters of the theory as described in section 3.5, instead of varying the

physical top partner mass MT and the scale f . In the first three scenarios, we consid-

ered the cases where the CP-odd couplings c1,1 and c1,2 are both set to zero. Then, in

the fourth scenario, the CP-odd couplings have non-zero values:

1. y = 1, MΨ1 = 1200 GeV, 1300 GeV < MΨ2 < 3000 GeV, f = 800 GeV (see

Figs. 3.2, 3.1).
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Figure 4.6: The contour plots for δ with sin2 θR = 0.4 and pcut
T = 600 GeV for each of

the fourplet models with only one top partner multiplet included in each of the models.

The corresponding values of y are shown by the solid lines. As shown by the dashed

white lines, all points on these plots corresponds to κt ≤ 0.8.

2. 0.5 < y < 3, MΨ1 = 1200 GeV, MΨ2 = 1300 GeV, f = 800 GeV (see Fig. 3.3)

(fourplet models only).

3. y = 1, MΨ1 = 1200 GeV, MΨ2 = 1300 GeV, 800 GeV < f < 2000 GeV (see

Figs. 3.5, 3.4).

4. y = 2, MΨ1 = 1200 GeV, MΨ2 = 1300 GeV, 800 GeV < f < 1400 GeV, c1,1 =

c1,2 = 0.2i (see Figs. 3.6 and 3.7).

From all these scenarios, the deviation from SM δ (pcut
T ) are plotted as a function of

pcut
T , for the selected values of the parameters that are varied in these scenarios.

In benchmark 1, we investigate the impact of varying the mass parameter of the

top partner multiplet MΨ2 , from the case in which this parameter is quasi-degenerate

with the mass MΨ1 to the case which MΨ2 � MΨ1 , where the second top partner is

decoupled from the theory. In this scenario, the compositeness scale is set to the value

f = 800 GeV, which is an intermediate value between the two chosen in Figs. 3.1, 3.2.

From the data files computed in this scenario, we plot the deviation from the SM δ (pcut
T )

as a function of pcut
T in Figure 4.10, for selected values of MΨ2 (the solid curves). In the

same figure, we also include the plots for the case where there is only one top partner

in the model (the dashed curve), with the same value of y and MΨ = MΨ1 and f = 800
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Figure 4.7: The contour plots of the contribution to δ with sin2 θR = 0.4 and pcut
T = 600

GeV for each of the fourplet models with only one top partner multiplet included in

each of the models. In this figure, only the CP-odd Yukawa coupling is taken into

account. The corresponding values of y are shown by the solid lines. As shown by the

dashed white lines, all points on these plots corresponds to κt ≤ 0.8.

GeV. In this figure, we can see that there is an enhancement in the with respect to the

SM for singlet models, while there is a depletion, due to negative interference, for the

fourplet models. The dependence on MΨ2 is appreciable in all of the models, which is

in accordance with the behaviour of the Yukawa coupling shown in Fig. 3.1. As the

value of MΨ2 gets bigger the deviation approaches that with the single top partner,

since the heavier top-partner is decoupled from the models. This is also expected from

Figs. 3.1 and 3.2, where we can see that as the value of MΨ2 is increased the masses

and couplings of the lighter top partner tend to those of the models with only one top

partner multiplet.

In benchmark 2, we investigate the effect of varying the parameter y in models

with two top partner, occurring as a result of including two top partner multiplets

with similar masses, which is plotted as the solid curves in Fig. 4.11. Again, in the

same figure, we also include the corresponding curves for the same models with one top

partner only (the dashed curves) with MΨ = MΨ1 . Since the experimental constraint

κt > 0.8 forces the value of y to be less than one in singlet models, we presented in

Fig. 4.11 the results for fourplet models only, where y is allowed to take a larger value.

A variety of features are present in this case. For M45, the transverse momentum
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Figure 4.8: The contour plots of δ(pcut
T ) with sin2 θL = 0.025 and pcut

T = 200 GeV for the

singlet models with only one top partner multiplet included in each of the models. The

corresponding values of y are shown by the solid lines. The region marked by dashed

white lines corresponds to the case where κt ≤ 0.8.

distribution is suppressed in comparison to that of the SM because of a persistent

negative interference between the top and top-partner contributions, as can be seen

in Fig. 3.3. In M414, negative interference is only dominant when the value y is not

too large. When y and pcut
T are increased, the interference can become as large as the

contribution of the SM. So, in this range of parameters, the amplitude square of the

heavier top partner dominates, as can be understood from considering Eq. (4.18). This

results in the positive values of δ (pcut
T ) at large pcut

T .

In benchmark 3, we investigate the impact of varying the compositeness scale f in

the case where in the models there are two quasi-degenerate vector-like quarks (the

solid lines in Fig. 4.12) and where there is only a top partner with MΨ = MΨ1 in the

model (the dashed lines in Fig. 4.12). As shown in section 3.5, in this situation the

heavier top partner can have a larger anomalous Yukawa coupling than that of the

lighter top partner. For each of the models considered in our study, δ (pcut
T ) is plotted

as a function of pcut
T for some selected values of f . In the singlet models, the values

of the parameters considered in this benchmark lead to the SM deviation that are not

too big, and are largely independent of the f scale. This is what one would expect

from looking at the upper panel of Figs. 3.1, where there is a small different in Yukawa

coupling when varying the compositeness scale for singlet models. We would like to
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Figure 4.9: The contour plots of δ(pcut
T ) with sin2 θL = 0.025 and pcut

T = 600 GeV for the

singlet models with only one top partner multiplet included in each of the models. The

corresponding values of y are shown by the solid lines. The region marked by dashed

white lines corresponds to the case where κt ≤ 0.8.

denote that we also observe the same behaviour in the one top partner case as shown

in Figs. 4.1 and 4.2 for the singlet models. For the two top-partner case, the deviations

from the SM are approximately twice as large as that of the case where there is only

a single top partner in the models because the Yukawa couplings of both top partners

are close to the one top-partner case for the parameters selected here. For fourplets

models, the situation is more interesting since we observe negative deviations from the

SM results in both M45 and M414 models. This negative deviation can be understood

when one considers the negative values of the Yukawa couplings in the fourplet models

in Figs. 3.1. For M45 model, the deviation from the SM result is not large, but it is

strongly dependent on the compositeness scale, which can be inferred from considering

the left panel of Fig. 3.4. In this case, it can be seen that the deviation from the SM

reaches zero when the scale f is equal to the value of the mass parameter MΨ1 , before

becoming positive for larger f scale. A strong dependence on f can also be appreciated

in M414 because of the fact that for smaller value of the compositeness scale f the

negative anomalous Yukawa couplings are larger.

Lastly, benchmark 4 investigates the impact of the CP-odd contributions in the

models M45 and M414. As the case where we have one top partner in the models,

only the ratio between the CP-odd contribution and the SM result is plotted (the solid
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Figure 4.10: The distribution of δ(pcut
T ) computed from the data files generated with

the parameters in benchmark scenario 1 and the four models considered in section 3.5.
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Figure 4.11: The distribution of δ(pcut
T ) computed from the data files generated with the

parameters in benchmark scenario 2 and the fourplet models considered in section 3.5.
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Figure 4.12: The distribution of δ(pcut
T ) computed from the data files in benchmark

scenario 3 and the four models considered in section 3.5.



80

curves in Fig. 4.13), since there is no interference between the CP-odd terms and the SM

amplitude. In Fig. 4.13, we also include the plot for one top partner case for the same

value of y and MΨ = MΨ1 (the dashed curves in Fig. 4.13). For both of these models,
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Figure 4.13: The distribution of δ(pcut
T ) computed from the data files generated with the

parameters in benchmark scenario 4 and the fourplet models considered in section 3.5.

the expected deviation from the SM are less than 10%, which is rather small, for the

whole range of the considered values of pcut
T , with the deviations in M414 are slightly

larger than those of the M45. One remarkable feature one can see in Fig. 4.13 is that,

the deviations are roughly two times as big in the two top partner case compared to the

one top-partner case, which can also be appreciated from inspection on Fig. 3.7. This

is a peculiar feature that arises from the fact that the values of the masses parameters

MΨ1 and MΨ2 are very close in this benchmark scenario. If the value of the larger

mass (MΨ2 in this case) increases, the CP-odd Yukawa coupling of the lighter mass

(MΨ2 in this case) approaches that of the case with a single top partner. To better

understand this effect, one would need to observe how the CP-odd coupling vary with

the underlying parameters in the models as shown in Figs. 3.6 and 3.7, where the

CP-odd couplings in the case with two top-partner are significantly larger than in the

one top-partner case for the selected values of the parameters in Fig. 4.13.

To summarise, there is a variety of deviations from the SM in the pT spectrum of the

Higgs boson or a jet exhibited by models with two top partners. From the fact that the

deviation shows strong dependency on pcut
T , it is implied that a shape analysis of the pT

distribution is the best way to exclude large fractions of parameter space for composite

Higgs models. In order to make the most use of such analysis, it is required to develop

an appropriate model of the irreducible SM background to Higgs production, including
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detailed acceptance cuts and experimental systematic uncertainties for the Higgs decay

products. Though this is very interesting topic, it is beyond the scope of the work

carried out in this thesis.

We would like to mention here that there is yet any measurement on the δ (pcut
T ).

Instead, the information that one could gain from the current experimental data is that

of the dσ
dpT

distribution. The measurement cross section with PT > 200 GeV with an

integrated luminosity around 80 fb−1 at
√
s =13 TeV [48,49] seems to suggest at most

a deviation of 20%. So, it would be safe to exclude the results present in this chapter

where the percentage of δ (pcut
T ) was greater than 20%. However, we need to keep in

mind that the data of refs. [48, 49] correspond to Higgs decaying in two photons and

a pair of Z bosons. Our analysis only consider modifications to the production cross

section, and not to the Higgs decays. Therefore, any constraints from those data has

to be taken with a grain of salt.

The results presented in this chapter has been involved only with indirect searches

on top partner, as a complement to most of the results presented in literatures that

focus on the direct search for top partner (see for instance ref. [50] and some of the

references therein). As mentioned in Chapter 1, the direct searches for top partner

depends on the model used to determine the decay channels the search will be focussed

on, and knowledge on the background processes involved. On the other hand, in our

study, even though the investigation has been concentrated on specific models, the

methods discussed in this thesis should be applicable on a model independent basis.

In addition, the result presented here are carried out on a more concrete perturbative

composite-Higgs models than those studied in the literature, e.g. in Ref [23]. Including

a second top partner in each of the models also lead to a variety of deviations from the

SM, especially in the case of two quasi-degenerate top-partner masses.

We conclude with some very simplified arguments on the potential of increasing

luminosity in LHC experiments to exclude the models considered in this thesis. First,

in order to make use of our results, we need that at least one event could be detected. For

a physical process, the expected number of events can be calculated from the relation

σL = N , (4.25)

where σ is used to denote the total cross-section of the physical process, L denotes the

integrated luminosity and N denote the number of expected events. From this relation,
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we construct the significance parameter [51]

Significance =
S√
B
. (4.26)

where S is used to denote the expected number of signal events, which in our case, it

is the h + jet in the composite-Higgs scenario, and B is used to denote the expected

number of background, i.e. SM Higgs plus one jet and the corresponding irreducible

background. In Eq. (4.26), S is defined as

S =
(
σBSM(pcut

T )− σSM(pcut
T )
)
L (4.27)

where σBSM(pcut
T ) is the h + jet total cross section computed in our composite Higgs

scenario and σSM(pcut
T ) is the cross section of the Higgs plus jet production computed

in the SM. B is defined as

B = (σSM(pcut
T ) + σB(pcut

T )L ' σB(pcut
T )L . (4.28)

where σB(pcut
T ) denotes the cross section for all the processes that give an irreducible

background to Higgs production. Eq. (4.26) can used to determine the probability to

find the signal event of h + jet process from the populated background events in the

LHC. Focusing on the decay h → γγ, with an integrated luminosity of 3000 ab−1,

we obtain at most one event for pcut
T around 1 TeV. At the moment, the efficiency in

eq. (4.23) is not measured. Nevertheless, we can still ask what relative deviations from

the SM could be appreciated, using the integrated pT distribution. In particular, we

can consider the relative deviation with respect to the SM, as follows

δBSM(pcut
T ) ≡ σBSM(pcut

T )− σSM(pcut
T )√

σSM(pcut
T )

. (4.29)

In term of this quantity, the significance in Eq. (4.26) can be rewritten in the form

Significance = δBSM(pcut
T )

σSM(pcut
T )√

σB(pcut
T )

√
L . (4.30)

By convention, a given BSM scenario is excluded if the significance is bigger than 2.

This gives that, with an integrated luminosity L, we can probe values of δBSM(pcut
T )

as large as 2
√
σB/L/σSM. This depends crucially on the value of σB, which has to be

made as small as possible, but still much larger than σSM. Such an analysis requires

a detailed study of the backgrounds to Higgs production with appropriate acceptance

cuts, and is beyond the scope of the present thesis.
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Chapter 5

Conclusions

The purpose of this thesis is to investigate the effect of including one or two top-partner

multiplets in composite-Higgs models, where the Higgs boson is a bound state of a strong

sector rather than an elementary particle, to the distributions of transverse momentum

of the jet radiated in Higgs production in association with a jet. This study can lead

to an effective way to probing the compositness of the Higgs. If the pT distribution of

the jet (or Higgs) produced in the Higgs plus jet production shows sensitivity to the

top-partner masses, this is expected to be a good indication that the Higgs is not an

elementary particle, but instead a composite particle.

After the discussion on basic structure of a general composite Higgs model, including

how this particle occur out of the symmetry breaking pattern of the model, in chapter 2,

we then discuss, in chapter 3, the structure of the models studied in our work, and the

procedure to diagonalise the matrices and obtain the Yukawa couplings, both in the

generic case where there is only one top partner multiplet in the model and the case

where we include two top partner multiplets in the models. These models are based

on the work in ref. [24], where the top partner multiplets are categorised in either the

singlet or fourplet representation of SO(4) and the right-handed top quark is a totally

composite particle arising from the strong sector. From these models, we derive the

analytical formulae of the Yukawa couplings of the top and top partner in the situation

where we have one top partner multiplet in each of the models. These formulae are

expressed in terms of the mixing angles θL and θR used to diagonalise the mass matrices

in the theory. In contrast to the similar analysis presented in Ref. [23], we find that

in the singlet model the anomalous couplings of both the top and the top partner are

dependent on θL instead of θR, and in the fourplet models the anomalous couplings of

both types of the quarks are functions of both θL and θR. Also, as a result of assuming
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that the top partner is a totally composite quark, we find, in the fourplet models,

CP-odd Yukawa couplings for both top quark and top partner, and we compute their

analytical forms in terms of the mixing angles. For the case where there are two top

partner multiplets in the models, the fundamental parameters of the models are varied

to see how the masses and couplings to the Higgs of the top and top partners respond to

this change. Various features arise, the most intersting is the fact that, when the two top

partners have similar masses, the heavier top-partner can have a larger coupling to the

Higgs than the lighter top-partner. When the difference between the mass parameters

of the two top partner multiplets gets larger, the heavier top partner begins to decouple

from the Higgs.

After discussing the argument stated in ref. [23] that in the Higgs production in

association with one jet, the presence of a top partner induces deviation from the SM

in the transverse momentum distribution of either the Higgs or the jet, we then prove

this point in the situation where a single top partner multiplet in both representations is

included in the theory by presenting contours plots of the parameter δ(pcut
T ), related to

the integrated pT distribution down to a lower bound pcut
T , as a function of the physical

top partner mass MT and the compositeness scale f . The contours plots are presented

for different values of sin2 θR and pcut
T for the singlet models discussed in chapter 3 and

for different values of sin2 θL for the fourplet models discussed in the same chapter. It

is found that for the singlet models the deviation from the SM is huge, even for small

values of sin2 θR. Increasing the value of the pcut
T leads to a huge deviation from the SM

in these models. For the model with the top-partners in the 4, the difference from the

SM pT spectrum must be analysed on a case-to-case basis, with the highest values for

both sin2 θL and pcut
T giving the most promising deviation from the SM.

For the situation where we have two top partner multiplets in the models, we studied

the deviation from the SM as a function of pcut
T . We find a variety of deviations from

the SM, but the fact that all plots show strong dependence on pcut
T suggests that an

analysis on pT distribution gives promise to exclude large fractions of parameter space

for composite Higgs models.

We believe that a shape analysis of the Higgs transverse momentum spectrum is

the best observable to probe masses and couplings of top partners. Moreover, if one

normalises this quantity to the total cross section, it will be possible to disentangle

also the effect of the compositeness scale resulting in a trivial change in normalisa-

tion of the spectrum. Assessing whether this is feasible or not with present or future
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colliders requires a careful analysis of the ireducible background to Higgs production.

This is beyond the scope of this thesis, but opens the way to many interesting further

phenomenological studies.
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Appendix A

An alternative method for deriving

the CP-odd Higgs couplings

We would like to present an alternative method for deriving the CP-odd Higgs couplings

from the mixing in Eq. (3.42). The starting point of this procedure is to rotate the

T̄R and (X̄2/3)R states to the mass eigenstates with the rotations used to diagonalise

the mass matrix in each of the models. Substituting Eq. (3.44) on Eq. (3.42), we first

arrive at

ic1[(X̄2/3)R − T̄R]
��∂ρ

f
tR = ic1[(X̄ ′2/3)R − T̄ ′R

2cε
N

]
��∂ρ

f
tR . (A.1)

Using then Eq. (3.46), we are then left with

ic1[(X̄2/3)R − T̄R]
��∂ρ

f
tR = ic1 cos θR sin θR

2cε
N
T̄ ′′R

��∂ρ

f
T ′′R − ic1 cos θR sin θR

2cε
N
t̄′′R

��∂ρ

f
t′′R + . . . .

(A.2)

We show here only the relevant terms for the Higgs plus jet production since the other

terms will involve mixing between two different right-handed states and those cannot

participate in fermion loops contributing to the process. From this expression, we could

expect that these terms will interfere with all other terms in the theory that involve

only the same species of the right-handed fields. Before rotating to the eigenstates, the

terms in the original Lagrangian involving only the right-handed states are

ic1Ψ̄4
Rdµγ

µtR + it̄R��∂tR + iT̄R��∂TR + iX̄2/3R��∂X2/3R + h.c. (A.3)

The kinetic terms of all the right handed fields are invariant under the rotation to the

mass eigenstates, i.e.

it̄R��∂tR + iT̄R��∂TR + iX̄2/3R��∂X2/3R = it̄′′R��∂t
′′
R + iT̄ ′′R��∂T

′′
R + iX̄ ′′2/3R��∂X

′′
2/3R , (A.4)
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so their contributions can be handled straightforwardly. Let us consider ic1Ψ̄4
Rdµγ

µtR

and its hermitian conjugate term. Their contributions read(
ic1 − ic†1

)(
cos θR sin θR

2cε
N

(
T̄ ′′R

��∂ρ

f
T ′′R − t̄′′R

��∂ρ

f
t′′R

))
= 2 Im(c1)

(
cos θR sin θR

2cε
N

(
t̄′′R

��∂ρ

f
t′′R − T̄ ′′R

��∂ρ

f
T ′′R

))
.

(A.5)

Then, in order to analyse how the terms in Eq. (A.3) combine with one another we act

on the contribution in Eq. (A.5) with a field redefinition

t′′R → (1 +
c̃ρ

f
)t′′R , (A.6)

where c̃ is a complex constant to be defined. This leaves us with

2 Im(c1) cos θR sin θR
2cε
N

((
1 + c̃†

ρ

f

)
t̄′′R

��∂ρ

f

(
1 + c̃

ρ

f

)
t′′R − T̄ ′′R

��∂ρ

f
T ′′R

)
= 2 Im(c1) cos θR sin θR

2cε
N

(
t̄′′R

��∂ρ

f
t′′R − T̄ ′′R

��∂ρ

f
T ′′R

)
+ . . . ,

(A.7)

where we neglect higher order terms in ρ since only terms with single Higgs field con-

tribute to the Higgs production process in association with a jet. At the lowest power in

ρ, this field redefinition does not change any contributions from the terms in Eq. (A.5).

However, once this redefinition is applied on it̄′′R��∂t
′′
R, we obtain

it̄′′R��∂t
′′
R → i

(
t̄′′R +

c̃†ρ

f
t̄′′R

)
��∂

(
t′′R + c̃

ρ

f
t′′R

)
= it̄′′R��∂t

′′
R + it̄′′R��∂

(
c̃
ρ

f
t′′R

)
+ i

c̃†ρ

f
t̄′′R��∂t

′′
R +O

(
ρ2
)
.

(A.8)

From this expression, only the second and third terms could contribute to the Higgs

plus jet production process since they are the only terms containing a single Higgs

field. They are the only terms that can participate in the fermion loop of the process.

Unlike in Eq. (A.7), the terms with a single Higgs field contain either a factor of c̃ or

c̃†. Carrying out integration by parts on the second and third terms of the last line in

Eq. (A.8), we obtain

it̄′′R��∂

(
c̃
ρ

f
t′′R

)
+ i

c̃†ρ

f
t̄′′R��∂t

′′
R = −i (∂µt̄

′′
R) γµ

c̃ρ

f
t′′R − i

(
∂µ

(
c̃†ρ

f
t̄′′R

))
γµt′′R . (A.9)

If we then use the product rule on the second term of this expression, we obtain

− i (∂µt̄
′′
R) γµ

c̃ρ

f
t′′R − i (∂µt̄

′′
R)
c̃†ρ

f
γµt′′R − it̄′′R

c̃†��∂ρ

f
t′′R . (A.10)
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Then, if we set c̃ = −c̃†, we are left with only the −it̄′′R
c̃†�∂ρ
f
t′′R term. This term can

cancel the first term in the last line of the Eq. (A.7) by setting

c̃ = −c̃† = 4i Im(c1) cos θR sin θR
cε
N
. (A.11)

We use the same trick on the top partner field, i.e. with another field redefinition

T ′′R → (1 +
c̃2ρ

f
)T ′′R (A.12)

where c̃2 is a complex constant. If we go back to the Eq. (A.7), the effect of this field

redefinition on last expression in this equation is

2 Im(c1) cos θR sin θR
2cε
N

(
t̄′′R

��∂ρ

f
t′′R −

(
T̄ ′′R +

c̃†2ρ

f
T̄ ′′R

)
��∂ρ

f

(
T ′′R +

c̃2ρ

f
T ′′R

))
+ . . .

= 2 Im(c1) cos θR sin θR
2cε
N

(
t̄′′R

��∂ρ

f
t′′R − T̄ ′′R

��∂ρ

f
T ′′R

)
+ . . . ,

(A.13)

which, similarly to the field redefinition in Eq. (A.6), does not change the contribution

from the terms with one Higgs derivative. We can then perform this field redefinition

on iT̄ ′′R��∂T
′′
R in the same way we applied Eq. (A.6) to the it̄′′R��∂t

′′
R. In this case, however,

the terms involving one Higgs field emerging from the top partner kinetic will be able

to cancel out the second term in the last line of Eq. (A.13) only if we set

c̃2 = −c̃†2 = −4i Im(c1) cos θR sin θR
cε
N
. (A.14)

At the level of one Higgs field, the contributions from every terms in Eq. (A.3) cancel

each other out, and it might seem to be the case that the c1 parameter does not have

any effect on the Higgs plus jet production at hand. However, we must also perform the

field redefinitons in Eqs. (A.6) and (A.12) on the mass terms of the mass eigenstates.

For the top mass eigenstate, the effect of the field redefinition reads

mtt̄
′′
Lt
′′
R +mtt̄

′′
Rt
′′
L → mtt̄

′′
L(1 +

c̃ρ

f
)t′′R +mtt̄

′′
R(1 +

c̃†ρ

f
)t′′L

= mtt̄
′′
Lt
′′
R +mtt̄

′′
L

c̃ρ

f
t′′R +mtt̄

′′
Rt
′′
L +mtt̄

′′
R

c̃†ρ

f
t′′L ,

(A.15)

where the second and fourth terms are the contribution to the Higgs plus jet process.

If we again set c̃ = −c̃†, these two terms give

mtt̄
′′
L

c̃ρ

f
t′′R −mtt̄

′′
R

c̃ρ

f
t′′L . (A.16)
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If we consider the Gamma matrices structure of these terms then from mtt̄
′′
L
c̃ρ
f
t′′R, we

obtain

mtt̄
′′
L

c̃ρ

f
t′′R = mt

c̃ρ

f
t′′†

1− γ5

2
γ0 1 + γ5

2
t′′ = mt

c̃ρ

f
t′′†γ0 1 + γ5

2
t′′ , (A.17)

where above we used the definition of the left and right handed fields Eq. (3.51) and

the relations for the gamma matrices in Eq. (3.52). For mtt̄
′′
R
c̃ρ
f
t′′L, we similarly obtain

mtt̄
′′
R

c̃ρ

f
t′′L = mt

c̃ρ

f
t′′†

1 + γ5

2
γ0 1− γ5

2
t′′ = mt

c̃ρ

f
t′′†γ0 1− γ5

2
t′′ . (A.18)

The resulting contribution then becomes

mtt̄
′′
L

c̃ρ

f
t′′R −mtt̄

′′
R

c̃ρ

f
t′′L = mt

c̃ρ

f
t′′†γ0γ5t′′ (A.19)

and we arrive with the CP-odd coupling for the top quark that we want. We could

apply Eq. (A.12) to the mass term of the top partner eigenstate, and carry on with the

steps described above to extract the CP-odd couplings for the top partner. In the case

of the top partner, the coupling should have the opposite sign to the CP-odd coupling

derived from the top quark. This whole procedure works for the M414 model and in

the situation where we have an infinite number of top partner multiplets in the models.
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Appendix B

Computational Tools

We now discuss about the computational tools we used in our work. One is the Her-

wigjet program that we used to calculate the transverse momentum distribution of the

radiated jet and the integrated transverse momentum distribution σ (pT > pcut
T ) defined

in Eq. (4.22) [23]. The other is the PERL script we used to compute the ratio of efficien-

cies of the models studied in our work and the SM, i.e.
εBSM(pT>p

cut
T )

εSM(pT>p
cut
T )

. This PERL script

is used in our work in the case with one top partner only. The last one is Mathematica

codes that we used to make plots for the diviation of this distributions.

B.1 Herwigjet

Herwig is a Monte Carlo event generator written in the Fortran77 computing language.

It can be used to generate event samples of physics processes with their respective

properties, such as distributions of physical observables. In ref. [23], Herwig was in-

terfaced with a numerical integrator in order to produce the transverse momentum

in Higgs plus one jet events. The interface involves the packages HOPPET [46] and

LHAPDFF [41,44,45] that perform the convolution of tree-level matrix element squared

provided by Herwig with parton distribution functions. The program is modular, so in

our case we were able to include the effect of top partner multiplets without touching

its core structure. In particular, our high-level interface is such that for the cases where

we have one top partner multiplet in each of the models, the pT distribution of the

radiated jet and the integrated distribution defined in Eq. (4.22) are computed from

the programme by simply inputting the values of the scale f , the physical masses of

the top and of the top partner, the mixing angle of the right-handed fields sin2 θR and
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an integer corresponding to one of the models described in chapter 3.

We have seen that, in the case of multiple top partners, simple analytical expressions

are not practical. Therefore, we also modified the code so that arbitrary numbers of

top-partners masses and couplings can be read from a file, and directly taken into

account by the program to compute transverse momentum distributions.

In Herwig, there are only two main files that allow users to implement the pro-

gramme for their purposes: the main program h1jet.f90, and the helper FORTRAN

modules mass parameters.f90. The mass parameters.f90 file provide subroutines

used for calculating masses and Yukawa couplings of the particles involving in physical

processes. These subroutines are used by the file mass helper.f90 and hwhig helper.f

to compute the Higgs (or jet) transverse momentum distribution. The file

mass helper.f90 contains the matrix element squared and subroutines for numerical

integration. Some of these functions call subroutines from mass parameters.f90 to

have access to the couplings and masses of the particles involved. The hwhig helper.f

file contains the amplitude for Higgs plus one jet with an arbitrary number of fermions

running in loops. It also contains functions necessary for the subroutine constructed in

this file, such as function to calculate one loop scalar integrals. Some of the subroutines

from hwhig helper.f are called by functions in mass helper.f90. The h1jet.f90 file

is dedicated to computing the kinematics distributions, and input/output procedure.

This file also allows user to input specific parameters for the computation such as set-

ting renormalisation and factorisation scales, as well as parton distribution functions.

Users will be able to execute the program herwig via the executable file h1jet.

We will now discuss the modification we made to the file mass parameters.f90.

For the case where there is one top partner in each of the models studied in our work,

we set up the program, so that it implements analytical formulae for each model, as

well as the limit where the model should correspond to the SM. In order to achieve this,

we add the following statements

sthRsq = sthsq

cthRsq = one-sthRsq

tanthLsq = (mtp/mt)**2*sthRsq/cthRsq

cthLsq = one/(one+tanthLsq)

sthLsq = one-cthLsq

if (invfscale == zero) then

select case(model)
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case(M1_5, M1_14)

yt = yt*cthLsq

ytp = ytp*sthLsq

case(M4_5,M4_14)

yt = yt*cthRsq

ytp = ytp*sthRsq

case default

call wae_error(’set_mass_parameters’,’unrecognised model: ’,&

&intval=model)

end select

else

seps = vev*invfscale

ceps = sqrt(one-seps**2)

select case(model)

case(M1_5)

yt = yt*cthLsq*ceps

ytp = ytp*sthLsq*ceps

case(M1_14)

yt = yt*cthLsq*(two*ceps**2-one)/ceps

ytp = ytp*sthLsq*(two*ceps**2-one)/ceps

case(M4_5)

yt=yt*ceps*(cthRsq-seps**2/(one+ceps**2)*(cthLsq-cthRsq))

ytp=ytp*ceps*(sthRsq-seps**2/(one+ceps**2)*(sthLsq-sthRsq))

case(M4_14)

yt=yt*(cthRsq*(two*ceps**2-one)/ceps-&

&seps**2*ceps/(four*ceps**4-three*ceps**2+one)*&

&(8._dp*ceps**2-three)*(cthLsq-cthRsq))

ytp=ytp*(sthRsq*(two*ceps**2-one)/ceps-&

&seps**2*ceps/(four*ceps**4-three*ceps**2+one)*&

&(8._dp*ceps**2-three)*(sthLsq-sthRsq))

case default

call wae_error(’set_mass_parameters’,’unrecognised model: ’,&

&intval=model)

end select
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end if

In the statement above, invfscale is used to represent the value of f−1. If this param-

eter takes the value of zero, the analytical limit f →∞ is implemented, as can be seen

from the arguments in the first if statement above, i.e. if (invfscale == zero). If

invfscale is not set to zero, then the Yukawa couplings of the fermions are taken to

be those listed in Eq. (3.68). model is used to determined which of the models herwig-

jet must perform the computation with, which is done via select case(model). The

variables yt and ytp are used to denote the Yukawa couplings for the top quark and

top partner in the theory respectively. In the computation of the Yukawa couplings,

seps is used for the value of sε defined in Eq. (2.68) as can be seen from

seps = vev*invfscale

ceps = sqrt(one-seps**2)

where vev take the value of the EW scale v, and cε is defined in the second line of this

part of the code. The variables sthLsq, cthLsq, sthRsq and cthRsq are introduced

for storing the value of the sin2 θL, cos2 θL, sin2 θR and cos2 θR used in the bi-unitary

transformation respectively. The relationship defined in Eq. (3.20) between between θL

and θR is included in the code via

tanthLsq = (mtp/mt)**2*sthRsq/cthRsq

and this relation is linked to the definition of the cos2 θL via

cthLsq = one/(one+tanthLsq)

For the case where there is more than one top partner multiplet in the theory, the

program is modified in such a way that it could create arrays of masses and Yukawa

couplings to perform the calculation out of some input files that user feeds to it. For

this task, we created the following basic subroutine

subroutine read_top_partners(indev,nqmax)

integer, intent(in) :: indev, nqmax

!---------------------------

integer :: i

allocate(mass_array(nqmax),yukawa(nqmax))
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do i=1,nqmax

read(indev, *) mass_array(i), yukawa(i)

end do

close(indev)

end subroutine read_top_partners

This subroutine is then called via a simple if statement as follows

if (log_val_opt(’-in’)) then

indev = idev_open_opt(’-in’,status="old")

read(indev,*,iostat=ios) nqmax_eq, nqmax

! maximum number of quarks, including bottom and top

nqmax = min(int_val_opt(’-nqmax’, nqmax),nqmax)

call read_top_partners(indev, nqmax)

else if (mb == zero) then

allocate(mass_array(1),yukawa(1))

mass_array = (/mt/)

yukawa = (/yt/)

else if (mtp == zero) then

allocate(mass_array(2),yukawa(2))

mass_array = (/mt,mb/)

yukawa = (/yt,yb/)

else

allocate(mass_array(3),yukawa(3))

mass_array = (/mt,mb,mtp/)

! The inverse of fscale

if (log_val_opt(’-fscale’)) then

invfscale = one/dble_val_opt(’-fscale’,zero)

else
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invfscale = zero

end if

model = int_val_opt(’-model’,1)

call set_top_yukawa(model,mt, mtp, invfscale, yt,ytp)

yukawa = (/yt,yb,ytp/)

end if

In this subroutine, the main if statement allows a user to open an input file containing

numbers, masses, and Yukawa couplings of quarks via -in command-line option. It

then calls the subroutine read top partners to create arrays of mass and top Yukawa

couplings that herwigjet will use in the calculation for the case with more than one top

partner multiplet. If we want to perform the calculation in the case where there is one

top partner in the model, instead of feeding an input file to the programme, we can

provide the value of f , sin2 θR, mass of the top partner and the model name. We can

input to the programme, f scale via -fscale which the programme will automatically

convert to invfscale as can be seen from

if (log_val_opt(’-fscale’)) then

invfscale = one/dble_val_opt(’-fscale’,zero)

else

invfscale = zero

From this part of the code, if -fscale is not provided, invfscale will be set to zero,

i.e. the limit f →∞ will be computed. The value sin2 θR can be input by the user via

the command-line option -sthsq. The part

call set_top_yukawa(model,mt, mtp, invfscale, yt,ytp)

is used to call subroutine set top yukawa which will contain the if statement for de-

termining the form of the Yukawa couplings and the limit of the calculation for one top

partner case we describe above. This subroutine set top yukawa would also contain

the code to calculate the value of sin2 θL and the relevant trigonometric functions de-

scribed using Eq. (3.20). Notice that if a user does not specify the model to calculate

and the value of -fscale is not set, herwigjet will perform the computation for the

SM.
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The HERWIG code modified for our work can be exploited as described below. If

the code is obtained and properly set up on a machine, the user need to compile it by

executing

$ make

At the directory where HERWIG is installed, the program can be simply run by

$ ./h1jet

By executing this command the program will compute the transverse momentum dis-

tribution dσ/dpT and the cross section σ (pT > pcut
T ) of the pp → h + j process, in a

given bin of the transverse momentum of a jet or Higgs pT for the SM. Each of the

bins is specified by the minimum, medium value and maximum pT . The default units

of dσ/dpT and ε(pT > pcut
T ) are nb/GeV and nb respectively. In the version of HER-

WIG used in our work, this command is the most simple one, and there exist several

options to specify how the program generates the simulations. The simplest option to

the modify the command above is the choice of the maximum transverse momentum

which can be achieved, for example, with the command

$ ./h1jet -ptmax 4000

where -ptmax is the syntax used to denote the maximum value of the transverse momen-

tum, which is 4000 GeV in the example above. The c.m. energy used in the simulation

can be controlled by adding the syntax -roots, e.g.

$ ./h1jet -roots 14000

would result in the SM simulation with 14000 GeV. If this option is not specified, the

default value of the c.m. energy is 8000 GeV in our code. The output file can be

generated with the option -out. For example, if the user wants to produce an output

file named LHC14-SM.res for the SM computation with c.m. energy of 14 TeV, this

could be done with the command

$ ./h1jet -roots 14000 -out LHC14-SM.res

For the models discussed in our work, the user may be able to generate result files for

these models in two ways as outlined above. The first option is to input the values

of the physical parameters used in the models directly to the Herwigjet. The user

can generate the result files in this way only if they are restricted themself to models
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with one top partner. As mentioned above, the parameters that can be input are

the mixing angle sin2 θR, the compositeness scale f and mass of the top partner mT .

Before specifying these parameters, the user must indicate which of the composite Higgs

models the program will compute the result files for, via the number assigned for each

of the models considered in our work. The model selection can be done via the option

-model, and the numbers used to identify the models are 1,2,3 and 4 corresponding

to models M15, M114, M45 and M414 respectively. If the user does not specify the

model, then the default one is the SM. The mixing angle can be specified via the option

-sthsq. The scale f can be input into the computation via the option -fscale. The

value of mT can be specified in the computation via -mtp option. As an example of

how to use the options described above, the command to simulate pp→ h+ j in M45

with sin2 θR = 0.1, f = 600 GeV, mT = 1250 GeV at LHC with 14 TeV c.m. energy is

$ ./h1jet -roots 14000 -sthsq 0.1 -fscale 600 -mtp 1250 -model 3

-out LHC14-sth2_0.1-f_600-mtp1_1250.res

where LHC14-sth2 0.1-f 600-mtp1 250.res is the input file in this example. During

the writing of this thesis, CP-odd contributions have been also implemented, according

to the calculation in ref. [52]. The user then has also the option of taking into account

only the CP-odd Yukawa couplings given in Eq. (3.69) for generating the result files, by

adding the option -cpodd. Since the analytical forms of the CP-odd Yukawa couplings

in Eq. (3.69) also depend on the value of Im (c1), the value of the imaginary part of

the c1 parameter must also be provided via -imc1 after adding the option -cpodd.

For illustrative proposes, if the user wants to repeat the computation in the previous

example, with only the CP-odd Yukawa couplings taking into account, this can be done

with the command

$ ./h1jet -roots 14000 -sthsq 0.1 -fscale 600 -mtp 1250 -model 3

-out LHC14-sth2_0.1-f_600-mtp1_1250_cpodd.res -cpodd -imc1 0.2

where now LHC14-sth2 0.1-f 600-mtp1 1250 cpodd.res is the name of the output

file.

The second method for running the code is via an input file, a .txt file containing

the mass and Yukawa couplings of the particles that would be considered in the com-

putation. The advantage of running the code with this option is that the user can now

perform the simulation in either cases with a single top partner multiplet or cases of

more than one top partner multiplet. For an example of the input file that can be used
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to run the program with this option, suppose the user wants to run the simulation for

two top partners in any of the models discussed in chapter 3, the input file would be

similar to the following:

nqmax: 4

4.65 0.951459791218233 0

173.74257800960504 0.9639943661520481 -0.015766977146788846

1246.0955797523338 -0.00009836393686296971 0.00027684138704548936

1679.545946828568 -0.012347921454152677 0.015490135759743444

Above, the first line is the total number of the particles that the program will take

into account in the simulation. The information in the second line and the rest of the

file will be the masses of the particles in the first column following by the CP-even

Yukawa couplings and the CP-odd Yukawa couplings in the second and third columns

respectively. Each column is separated from the other one by the blank space. The

input file can be provided to the program via the option -in. If -in is used alone, the

computation would be carried out with the CP-even coupling, i.e. the second column

of the input file. The command that can be used to run the code will be, for instance,

./h1jet -roots 14000 -in M452tp_y1_M1200_f800.txt -out

pth-LHC14-HT_M452tp_y1_M1200_f800.res

where above M452tp y1 M1200 f800.txt is an input file, and the name of the output

file is pth-LHC14-HT M452tp y1 M1200 f800.res. Note that in the example above, the

computation was performed with the CP-even Yukawa couplings and the c.m. energy is

also specified. In fact, the user can perform the simulation with the CP-odd couplings,

the third column of the input file, by adding the option -cpodd. Here is an example:

If one wanted to perform the computation with CP-odd Yukawa coupling instead, the

command will be

./h1jet -roots 14000 -in M452tp_y1_M1200_f800.txt -out

pth-LHC14-HT_M452tp_y1_M1200_f800_cpodd.res -cpodd

where pth-LHC14-HT M452tp y1 M1200 f800 cpodd.res is the name of the output file.
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B.2 PERL

We used a PERL script to calculate the
εBSM(pT>p

cut
T )

εSM(pT>p
cut
T )

for the case where there is one top

partner in each of the four models studied in our work. Before using this script, data

files must be produced for varying values of the scale f , the top partner MT , sin2 θR

(sin2 θL) for the fourplet (singlet) models, along with the SM data file from herwigjet.

The script starts with the variable corresponding to pcut
T , which we defined here as

$ptmin. Then, we open the SM file, and store the value of σ (pT > pcut
T ) defined in

Eq. (4.22) for the corresponding value of pcut
T with

$smfile = ’pth-LHC14-HT-SM.res’;

open (IN,"<$smfile");

while ($line = <IN>) {

if ($line =~ /^\s+$ptmin/) {

@sm = split(’ ’,$line);

}

}

close(IN);

Here, we first search for the line in data file where the value of σ (pT > pcut
T ) correspond-

ing to pcut
T is located. We then split that line with space, and store the data in the array

@sm. We then used a similar code to search for the total cross section of the production

σ

open (IN,"<$smfile");

while ($line = <IN>) {

if ($line=~ /sigma0/){

@smn= split(’ ’,$line);

}

}

close(IN);

We can then use this style of code to store the values of σ and σ (pT > pcut
T ) for the

four composite Higgs model. Then, from the variable @sm, @smn, @bsm and @bsmn, we

compute the ratio
εBSM(pT>p

cut
T )

εSM(pT>p
cut
T )

for a data file. We can then define arrays to store this

value for a specific set of parameters: f , MT , sin2 θL,R and the name of the models,

which we can then loop over any pair of these arrays to generate the “table” of the
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ratio for each of the specific values of the other two parameters. In our work, we loop

over the compositeness scale f and MT for each of the sin2 θL,R and models.

B.3 Mathematica

We used a Mathematica code to make plots that illustrate the different in Higgs plus

jet production between the SM and our models.

Contour plots for δ(pcut
T )

One way to present δ(pcut
T ) defined in Eq. (4.24) is to make a contour plots of this variable

for each of the models for a value of sin2 θR with a value of pcut
T . The Mathematica code

that we used to plot the deviation δ(pcut
T ) works as follow. Suppose the ratio

εBSM(pT>p
cut
T )

εSM(pT>p
cut
T )

is calculated for each of the models over ranges of f scale and top partner mass MT ,

and this set of data is tabulated in a file for specific values of sin2 θR and pcut
T . We can

then import this file with the command

delta = Import["C:\\file.res", "Table"];

Here, the delta is used to store the table of the ratio of efficiency values. We then

create a set of coordinates for the contour plot of the data in this table. In our work,

we will define the coordinates as f in the range 600 GeV < f < 1200 GeV and MT in

1200 GeV < MT < 2200 GeV. This coordinate can be created by

coordinates =

CoordinateBoundsArray[{{600, 1200}, {1200, 2200}}, {50, 50}];

weher coordinates is used to store the coordinates. In the code above, we created

both coordinates with 50 increments. Then, we create the contour of δ(pcut
T ) by

dat = Table[0, {j, 13}, {k, 21}];

For[i = 1, i <= 13, i++,

For[j = 1, j <= 21, j++,

dat[[i, j]] = Flatten[{coordinates[[i, j]], (delta[[i, j]] - 1) 100}]

]

]

Then, we flatten the result with
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datt = Flatten[dat, 1]

so that it could be included in the argument of ListContourPlot. We then make the

contour plot using ListContourPlot directly out of datt.

Patches of Mathematica code have also been used to compute the masses and

Yukawa couplings in the case with two top partners.
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