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Abstract

This thesis begins with the description of a tractable model for tumour growth. The

unique feature of this model is that we pass through the thin rim limit. We derive the

sharp interface weak form and finite element scheme. We discuss the mesh smoothing

techniques used in the implementation of the sharp interface finite element scheme. We

then introduce an unfitted finite element scheme, and a sharp interface finite element

scheme in R3. We also write the model in the diffuse interface paradigm, along with the

associated weak form. We prove the existence and uniqueness of the solution to the diffuse

interface version of the model, and prove convergence of the diffuse interface finite element

method. We conclude this thesis with a number of simulations in R2 and R3. Here, we

present rates of convergence, and also investigate the effect of parameter spaces on the

morphology of the tumour. A biologically motivated investigation is made, and a brief

comparison with in vivo tumours is presented.
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Chapter 1

Introduction

The two most notable reasons for mathematically modelling cancer are to predict the

behaviour, and to gain insights into the mechanisms at play; thus the field has great

potential for research. The study of tissue growth, in particular the growth of a tumour, is

a complex problem, and has attracted the interest of mathematicians, for example [13, 34].

They have been able to apply a range of techniques to the problem, from game theory [71]

to Bayesian calibration [57].

Predicting a particular tumour’s behaviour has obvious medical uses, and if more

advanced models are analysed then the field has the potential to be highly useful to on-

cologists. An accurate model could be used not only to predict the growth, and thus

the potential malignancy, of a given tumour, but also to test treatments. For example,

the model could predict the minimum drug treatment that would see a reduction in size.

Further research could also allow the surgeon to debulk (or remove part of the tumour)

in silico. The model would then give an indication of the tumour’s response. Predicting

various growth behaviours, such as the formation of blood vessels (angiogenesis) and in-

vasion or spreading (metastases), would also be an important tool in treating a tumour.

Although this work is a far cry from these applications, it represents, along with many

others, a step towards these goals.

The mathematical modelling of tumours can help us to understand the mechanisms

that underpin their behaviour, and to gain insights into the complex systems that govern

them. Given a model of sufficient fidelity, a mathematician is able to investigate a wide

range of parameter dependent behaviours. As an example, mathematical modelling has
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helped to quantify the effects of nutrient availability on the stability of tumour morphol-

ogy, see page 235 of [34] and some of the references contained within. In this work, they

show that what might seem an intuitive approach to treating a tumour, namely starving

it of nutrients, can actually lead to increased instability and invasiveness.

In this thesis we physically model the tumour, deriving a model for tumour growth

based on mechanical laws (as opposed to biological or chemical processes - although some

of these have mechanical effects that are included, for example cell-cell adhesion). This

thesis considers the tumour as a continuum, rather than a collection of discrete cells

undergoing stochastic or deterministic behaviour. The literature has a number of examples

of continuum tumour growth models, with some of the earliest tumour growth models

stretching back as far as the 1970s, see [54, 55]. These are sharp interface approaches,

in which the boundary between the interior and exterior of the tumour is given by a

hypersurface. There are also a number of diffuse interface approaches, see for instance

[32, 50]. The model studied in this thesis considers a region of necrotic (dead) cells,

surrounded by a thin rim of viable live cells on the tumour’s boundary. This is a sharp

interface model. The next section gives an overview of the derivation of the model.

1.1 The model

The model investigated is one of the simplest mathematical descriptions of tumour growth

(or, more generally, multicellular tissue, or a bacterial population). The goal is not bi-

ological realism, but rather to clarify and fully investigate the properties of this model.

Additional complexity could then (in future work) be added as required.

In Figure 1.1 we see the set up, in which Γ(t) is a closed surface or curve, with interior

Ω(t), both in Rd. We denote by n the outward unit normal to Γ(t). Here Ω(t) represents

the tumour interior, and Γ(t) represents the tumour boundary.
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n

Rd

Γ(t)
Ω(t)

Figure 1.1: Closed surface or curve Γ(t), with interior Ω(t), both in Rd. We denote by
n the outward unit normal to Γ(t). Here Ω(t) represents the tumour interior, and Γ(t)
represents the tumour boundary.

The model is given by

∆u = 1, in Ω(t), (Ma)

∇u · n+
u

α
= Q, on Γ(t), (Mb)

V =
u

α
+ βκ, on Γ(t), (Mc)

with α, β,Q ∈ R, where α, β,Q > 0. Here V denotes the normal velocity of the boundary

Γ(t), κ denotes the mean curvature, taken negative for a sphere, and u corresponds to the

tissue pressure.

1.1.1 Derivation of the model

In this section we derive the model (M) that is considered in this thesis. The derivation

is taken directly from Section 2 of [47]. The model corresponds to a distinguished limit of

the following dimensionless formulation (here we elaborate, with some minor differences,

on analysis briefly outlined in [48]). We have

∂n
∂t +∇ · (vn) = (kb(c)− kd(c))n, ∂m

∂t +∇ · (vm) = kd(c)n− ελm,

n+m = 1,

ε2∇ · (D(n)∇c) = K(c)n, v = −∇p/µ(n; ε),

 (1.1.2)

wherein n and m are the volume fractions of live and dead cells, c is the nutrient concen-

tration, kb and kd are the cellular birth and death rates (the former being an increasing

function of c and the latter a decreasing one), ελ specifies the (slow) degradation rate

of the necrotic material, K(c)/ε2 expresses the nutrient consumption rate, which will be
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taken to be large, D(n) is the nutrient diffusivity (nutrient transport can be treated as

quasi-steady), v is the velocity field (the two phases being treated as a single continuum),

p is the pressure (i.e. Darcy’s law is adopted as the constitutive assumption, in keeping

with many existing models) and µ(n; ε) is proportional to the tissue viscosity; ε is a small

parameter.

The system (1.1.2) is taken to hold in a finite domain Ω(t), with boundary Γ(t) and

dimensionless boundary conditions (recall the sign convention being such that κ < 0 for a

sphere)

c = 1, p = −ε2γ(n)κ, qn = v · n, on Γ(t), (1.1.3)

where ε2γ(n) expresses cell-cell adhesion, κ is the mean curvature of Γ(t), n is its unit

outward normal, and qn its normal velocity. Since we shall be concerned with what is in

effect the large time behaviour, initial conditions are not important, though

n(x, 0) = 1, in Ω(0),

would represent a plausible assumption.

In addition to the powers of ε already introduced in (1.1.2) - (1.1.3), the final condition

that leads to the distinguished limit in question involves

µ(n; ε) ∼ µ0(n), for n = O(1), n > 0, µ(0; ε) ∼ εµ1, as ε→ 0, (1.1.4)

for constant µ1, associated with the physically reasonable assumption that the necrotic

material is much less viscous than living tissue.

We now derive the asymptotic structure of the problem in the limit ε → 0, which

comprises two regions, namely a boundary layer around the tissue edge in which the living

cells are concentrated and a necrotic core. The former is governed by a one dimensional

travelling wave balance, described next; the latter generates, on matching to the former,

the moving boundary problem that is the subject of the rest of this thesis.

The boundary layer scalings are as follows

ν = εζ, v · n = εVn, qn = εQn, p = ε2P, and t = ε−1T,
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with ν denoting the outward normal distance from Γ(T ); the tangential velocity compo-

nents are of O(ε2) but are not needed in the sequel. Thus to leading order

d

dζ
(Wnn) = (kb(c)− kd(c))n,

d

dζ
(Wnm) = kd(c)n,

n+m = 1, (1.1.5)

d

dζ

(
D(n)

dc

dζ

)
= K(c)n, Vn = − 1

µ0(n)

dP

dζ
,

in ζ < 0 with

c = 1, P = −γ(n)κ, Wn = 0, on ζ = 0, (1.1.6)

where Wn = Vn − Qn; we note that the leading order solution depends only on ζ, so

that ordinary derivative notation is indeed appropriate, and P decouples, the remaining

system being independent of the constitutive assumption and depending on Vn and Qn

only through Wn. It follows from (1.1.6) that (1.1.5) implies

dWn

dζ
= kb(1)− kd(1), m

dWn

dζ
= kd(1), at ζ = 0,

so that

n = 1− kd(1)

kb(1)
, m =

kd(1)

kb(1)
, at ζ = 0,

and (1.1.6) in consequence involves the constant

γ0 = γ

(
1− kd(1)

kb(1)

)
,

which serves as a surface tension parameter in what follows.

As ζ → −∞ we have

n→ 0, m→ 1, c→ c∞, and Wn → −Q, (1.1.7)

where the positive constants c∞ and Q are to be determined as part of the solution to

(1.1.5) - (1.1.7); Q plays a crucial role in what follows, providing a surface source of

material that constrasts with the volumetric sink λ. To complete the matching we must

turn to the pressure P ; the assumption (1.1.4) implies a non-uniformity here, but it is a
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consequence of P decoupling that

Vn ∼ −
1

µ(n; ε)

dP

dζ
,

holds uniformly in the boundary layer regions (it will be clear that there is an ad hoc flavour

to this statement, but it can readily be fully justified in the sense of formal asymptotics).

In consequence

P ∼ εµ1(Q−Qn)ζ+Qn

∫ 0

ζ

(
µ(n(ζ ′); ε)− εµ1

)
dζ ′+

∫ 0

ζ

(
µ(n(ζ ′); ε)Wn(ζ ′) + εµ1Q

)
dζ ′−γ0κ

applies, with (1.1.5) implying that Wn(ζ) satisfies

dWn

dζ
= kb(c)n.

Hence as ζ → −∞, ε→ 0 with ζ = O(1/ε),

P ∼ εµ1(Q−Qn)ζ + aQn − b− γ0κ, (1.1.8)

for positive constants

a ≡
∫ 0

−∞
µ0(n(ζ)) dζ, b ≡ −

∫ 0

−∞
µ0(n(ζ))Wn(ζ) dζ.

We can now turn to the necrotic core region, wherein n is exponentially small in ε, so

(1.1.2) reduces in Ω(t) at leading order to, on setting v = εV ,

∇ · V = −λ, V = −∇P/µ1, (1.1.9)

with m = 1 and

∆c = 0. (1.1.10)

The boundary conditions on (1.1.9) - (1.1.10) result from matching to (1.1.7) - (1.1.8)

(i.e. by the usual matching arguments from singular perturbation theory, (1.1.2) does not
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apply to the core). Thus (1.1.9) is subject on Γ(t) to

Vn = Qn −Q, P = aQn − b− γ0κ, (1.1.11)

while (1.1.7) - (1.1.10) simply give c = c∞; note that the first term on the right hand side

of (1.1.8) gives the matching condition

n · ∇P = µ1Vn,

which is automatically satisfied given (1.1.9), (1.1.11). Finally we obtain, on translating

P by b, the moving boundary problem

∆P = λµ1, in Ω(t), (1.1.12)

Qn = Q− 1

µ1
∇P · n, P = aQn − γ0κ, on Γ(t).

For a = γ0 = Q = 0 this is the classical Hele-Shaw reverse (negative) squeeze film problem

(see, for example, [59]), which is ill posed. The a term corresponds to kinetic undercooling

regularisation, and γ0 to a surface energy regularising (compare with [58], for example, for

a discussion of such regularisations in the Hele-Shaw context); both are stabilising, but

for small enough values (1.1.12) will be susceptible to fingering instabilities. The surface

source term Q is novel, making (1.1.12) distinct from previous Hele-Shaw formulations;

since the instabilities are associated with shrinking fluid domains (due to λµ1 > 0), it

might be expected to play a stabilising role, though the linear stability analysis in Section

3 of [47] quantifies the extent to which this intuition is misleading.

Setting the cell-cell adhesion coefficient γ0 = 0, P = u, a = α, Qn = V and scaling

such that µ1 = λ = 1 yields

∆u = 1, in Ω(t), (1.1.13a)

∇u · n+
u

α
= Q, on Γ(t), (1.1.13b)

V =
u

α
, on Γ(t), (1.1.13c)

with t being reinstated as the time variable, in place of (and equivalent to) T above. For
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numerical purposes we add an artificial curvature regularisation term to the velocity law

(1.1.13c), yielding the model (M).

1.1.2 Comparison with existing models

There are a number of models of vascular tumour growth in the literature, for example

[2, 11, 17, 25, 34]. In these examples the tumour has an internal vasculature, or blood

vessel network, in order to supply nutrients. The model considered in this thesis, however,

assumes an avascular tumour. This means that the tumour has not developed a blood

vessel network.

In avascular tumour models cell movement (as opposed to the movement of the tumour

via growth) is often incorporated by modelling a combination of chemotaxis [66], diffusion

[26], and convection [19, 36, 61, 62]. In the derivation of our model, we consider convection.

The model that we consider is more tractable than many found in the literature, for

example [19, 26, 33, 51, 54, 55, 61]. Two-component mixture models of tumour cells

and healthy cells are considered in [33, 51]; these models take the form of Cahn-Hilliard

type diffuse interface models in which the interfacial region between the tumour and the

healthy cells has a non-zero thickness. In [33] both Darcy and Stokes constitutive laws are

considered, allowing the tumour to be modelled as a highly viscous fluid moving through

a porous medium; nutrient density is modelled using a diffusion equation, giving rise to

chemotaxis (the movement of cells along chemical gradients). In [51] a Cahn-Hilliard-Darcy

model is considered that models chemotaxis and active transport. A formally matched

asymptotic expansion is performed, yielding a sharp interface model.

The constitutive law in [21] combines the stress-strain relation of linear-elasticity with

a growth term. This differs from our constitutive law, in which we use Darcy flow to

simulate the tumour as a liquid in a porous medium. In [21] the authors choose this

constitutive law in order to investigate the effects of mechanical stress on the growth of

the tumour. They, as in other models (for example [61]), assume the nutrients are diffusing

into the tumour. In doing this, they are able to describe the stresses and strains in terms

of the nutrient density. We do not model nutrient diffusion due to the thin rim limit (there

is also no need to model the diffusion of any trace nutrients in the necrotic core).

In [54] the author considers a radially symmetric tumour, and focuses on the diffusion of
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nutrients and waste products in order to model tumour growth patterns. The geometrically

constrained model in [54] is extended in [55] to a model in which, among other things,

the geometric constraints are dropped; here surface tension is taken to be proportional

to the mean curvature, and Darcy’s law is adopted. In this model, the authors simulate

nutrient diffusion within the tumour. This allows them to consider both live and necrotic

cells, the birth and death of which lead to internal pressure differentials. Although there

are similarities, this is significantly different from our model, in which we consider only

necrotic cells inside the tumour, and do not model nutrient diffusion.

In [19] the authors consider a single nutrient sharp interface model with two growth

inhibitors; one external to the tumour, for example an anti-cancer drug or immune re-

sponse, and one internal to the tumour, for example a by product of the degradation of

necrotic cells. The diffusion of the nutrient is considered, and the nutrient density on the

boundary is taken proportional to the curvature. Although we do not consider anti-cancer

drugs or immune responses, a simplified proxy to these could be modelled by reducing the

size of our nutrient term.

As previously mentioned, [26] models the movement of the cells through diffusion. In

this paper a continuum model is developed in which live, quiescent, and necrotic cells

are modelled. Similar to our model, there is a generic nutrient/growth factor term. The

model in [26] differs from our model in that it is orientated towards an in vivo setting, in

which the external medium is modelled allowing for a nutrient supply from the underlying

tissue. We do not model the external medium.

The model derivation in [61] has a number of similarities to our derivation. Both

models assume a continuum of living and dead cells (albeit with our living cells confined

to the thin rim). Both models have a generic nutrient term. In [61] the authors model

the nutrient diffusion into the tumour interior via Fick’s laws, whereas our model passes

through the thin rim limit, meaning that the nutrients do not diffuse into the tumour

interior. This also means that the authors of [61] require a velocity field in the interior

of the tumour in order to model the mixing of the two cell types. Since we only have

necrotic cells in the interior of the tumour, we only need a velocity field on the boundary

of the tumour. The biggest difference is that the model in [61] is restricted to a radially

symmetric geometry; a restriction that we do not have.
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1.2 Approaches

1.2.1 Sharp interface approach

We consider two sharp interface approaches (also called parametric approaches), one in

which the mesh on the interior of the tumour is fitted to the nodes on the boundary mesh,

and one in which the two meshes are independent. This second approach is called the

unfitted approach. In Chapter 4 numerical simulations are presented for both approaches.

We take Γ(t) as either a closed curve in R2 or a closed surface in R3, and in both cases

the free boundary, Γ(t), is parametrised by a function x : M × [0, T )→ Rd, where M is a

suitable manifold. We can then describe geometric quantities in terms of x. In R2, using

the short hand x := x(ρ), the unit normal is given by

n :=
x⊥ρ
|xρ|

,

(note that this depends upon the orientation of x) and the mean curvature is given by

(recalling that κ is taken negative for a sphere)

κn :=
1

|xρ|

(
xρ
|xρ|

)
ρ

. (1.2.1)

Here xρ is the derivative with respect to ρ, and x⊥ρ denotes a counter-clockwise rotation

by π
2 . A number of techniques for simulating forced mean curvature flow have been

introduced, for example in [40]. Another approach was presented in [9], which includes

mesh smoothing via a tangential velocity. This was then extended in [43], allowing a

convergence result to be proved.

In order to construct a finite element scheme we approximate Γ(tn) by a collection of

linear simplexes, denoted by T hΓ . The union of the closure of these simplexes (denoted by

Γnh) will be the approximation to Γ(tn). These will be line segments in R2 and triangles

in R3. Here we have partitioned the time interval [0, T ] into N + 1 equidistant steps:

0 = t0 < t1 < . . . < tN−1 < tN = T , with ∆t := ti − ti−1 denoting the uniform time step

size.

When constructing a finite element scheme, we triangulate the interior of Γnh with a

conformal collection of simplexes of one dimension higher than those of Γnh (so triangles
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in R2, and tetrahedrons in R3). We denote this collection of simplexes by T hΩ , the union

of the closure of the simplexes is denoted by Ωn
h, and the triangulation is chosen such

that the vertices and elements of Γnh coincide with the vertices and faces of the elements

that make up the boundary of Ωn
h. This ensures that, if Γnh approximates Γ(tn), then Ωn

h

approximates Ω(tn). Although at each time step the mesh for Ωn
h depends only on Γnh

(not on Ωn−1
h ), we will use a number of techniques that allow us to derive the mesh for

Ωn
h from the mesh for Ωn−1

h as much as possible. We must ensure that as Γnh evolves, the

fitted mesh for Ωn
h evolves with it, maintaining good mesh properties throughout.

Unfitted sharp interface approach in R2

Similar to the fitted sharp interface approach discussed in Section 1.2.1, the unfitted sharp

interface approach, in R2, approximates Γ(tn) by a collection of straight line segments,

denoted by T hΓ . This piecewise linear approximation to Γ(tn) is denoted Γnh. Unlike the

fitted approach, we embed Ω(t) in a larger domain D. This domain is independent of

Γnh, however it is chosen large enough to contain Γnh for n = 0, . . . , N . We triangulate D

by a conforming triangular mesh, denoted by T hD . Importantly T hD is independent of T hΓ ,

so as Γnh evolves T hD retains its original mesh properties, and thus no mesh smoothing is

required on T hD .

In order to construct the finite element method for the elliptic PDE on the bulk that is

present in our model, we split the triangles of T hD into the classes interior, exterior, and

cut, using algorithms found in [68]. Here, in most cases, the interior triangles are those

fully within Γnh, the exteroir triangles are those fully outside Γnh, and the cut triangles are

those for which the intersection with Γnh is non-empty. This is followed by the definition of

an approximation to Γnh on D, denoted by Γ̃nh; the interior of Γ̃nh is our approximation to

Ω(t). We then carefully define the integrals of the finite element method, paying particular

attention to the interaction between Γnh and D. This definition is inspired by [8].

Although the meshes T hΓ and T hD are independent, in practice we adapt the mesh for D

by refining in the interior of Γnh, and coarsening in the exterior. Due to the complexity of

the programming task, we have restricted our implementation to R2, however the unfitted

sharp interface approach can be generalised to R3 (see, for example, [8]).
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1.2.2 Diffuse interface approach

In the diffuse interface approach (also called the phase field approach) we approximate

Γ(t) by a diffuse interface Γε(t) of width Cε, where C is a positive constant. Γ(t) is

approximated by the zero level set of a phase field function ϕ : D × [0, T ] → R, where

D ⊂ Rd is a bounded domain that contains Γε(t), ∀t ∈ [0, T ]. In general, the phase field

function takes values of approximately 1 inside Γε(t), and approximately −1 outside Γε(t).

These values correspond to the minima of a homogeneous energy function; traditionally

the energy functions are either the double well or the double obstacle energy [15, 27, 37].

We will consider only the double obstacle energy, since this enforces that ϕ ∈ [−1, 1],

with ϕ = 1 inside Γε(t) and ϕ = −1 outside Γε(t). Additionally we have that the diffuse

interface is defined by

Γε(t) := { x ∈ D | |ϕ(x, t)| < 1 } .

When constructing the finite element scheme we ensure that D contains the set

{
x ∈ Rd

∣∣∣ ϕnh(x) > −1 for some n = 0, . . . , N
}
,

where ϕnh is a piecewise linear approximation of ϕ(tn). We triangulate D by a conforming

collection of simplexes (as before, triangles in R2, tetrahedrons in R3). We must ensure

that the mesh is sufficiently refined across the diffuse interface in order to fully resolve

it. Since we also solve an elliptic PDE when ϕnh > −1, we must also ensure that the

mesh is sufficiently refined in this region. Resolving the entirety of D to this degree is

computationally wasteful; we instead adaptively refine the mesh to achieve this level of

resolution when ϕnh > −1, and coarsen the mesh as much as possible when ϕnh = −1. This

greatly improves the simulation’s run time.

We solve an elliptic PDE with Robin boundary conditions by using the results in [1, 64]

to write a diffuse interface approximation of the PDE and boundary conditions in D. This

is achieved by using two weight functions, δ(ϕ), ζ(ϕ) : R → R. The weight function δ(ϕ)

approximates the boundary conditions, and is defined such that it is large and positive in

the interfacial region, but zero elsewhere. The weight function ζ(ϕ) imposes the geometry

of Ω(t), it is defined such that ζ(ϕ) = 1 if ϕ = 1 (inside Γε(t)), and ζ(ϕ) = 0 if ϕ = −1

(outside Γε(t)). Both ζ(ϕ) and δ(ϕ) are zero outside the interfacial region, meaning that
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the weighted PDE is degenerate. We closely follow the results in [39] in order to treat the

degeneracy when proving a convergence result.

1.2.3 Other approaches

There are many other approaches that we do not consider in this thesis. We mention a

few, namely graph and level set.

In the graph approach, Γ(t) ⊂ Rn+1 is written as a graph over some base domain

D ⊂ Rn such that

Γ(t) = { (x, φ(x, t)) | x ∈ D }

where φ : D× [0, T )→ R is the height function. Here D is to be found, along with φ. This

approach is not used as it is somewhat restrictive; there are many situations when Γ(t) is

not a graph, even after smoothly evolving from an initial state that is a graph.

The level set approach is similar to the diffuse interface approach, in that Γ(t) is tracked

by the zero level set of a function. Let ρ : D × [0,∞) → R be an auxiliary function, and

set

Γ(t) = { x ∈ D | ρ(x, t) = 0 } .

Intrinsic to this approach is the notion of an interior and exterior to Γ(t), denoted by the

positive and negative regions of ρ.

1.2.4 Comparison of approaches

The approaches described above can be grouped into either implicit or explicit approaches.

Implicit approaches (sometimes called front capturing), carry the information needed to

reconstruct Γ(t), as opposed to Γ(t) itself. Often Γ(t) is reconstructed (or approximated)

by computing the zero level set of a function. The level set approach and diffuse interface

approach are examples of implicit approaches.

A major advantage of implicit approaches is their natural handling of changes in topol-

ogy, for example pinching off and merging. Merging occurs when Γ(t) intersects with itself,

and joins at the point of intersection to change the topology of Ω(t) (for example two pre-

viously independent circles merging, see Figure 4.17); pinching off is the opposite of this.

Being able to model topology change is important to us, as many parameter values cause
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a topology change in a relatively short amount of time. Additionally, the concept of the

interior and exterior of Γ(t) is intrinsic to implicit approaches, which is advantageous in

our setting. A disadvantage of these approaches, however, is that the problem gains an-

other dimension in space (from d to d + 1), so the efficiency is greatly decreased. The

diffuse interface approach introduces an additional parameter, ε, which is proportional to

the interfacial region’s width. This can be both an advantage and disadvantage; in some

models ε might arise quite naturally, and relate to a physical quantity. For example in

tissue growth it might relate to a region of mixing between two competing cell types. In

our case we want ε small, as we are approximating a model that naturally has a sharp

interface. When using the diffuse interface approach, and coupling a quantity on the bulk

to the evolution of Γε(t), we have a major limitation: we cannot resolve the gradient of

the quantity on Γε(t). This can be quite restrictive, and we have to be careful to avoid

this when formulating our diffuse interface model; we discuss this in more detail in Section

4.2.3.

The sharp interface and graph approaches are examples of explicit approaches. Explicit

approaches (sometimes called front tracking) are characterised by directly following Γ(t)

as it evolves; no reconstruction is required.

A disadvantage of explicit approaches is that there is no intrinsic handling of topological

changes. However recent advances, see [18], allow the robust detection of collisions, as

well as performing topological change. Although the sharp interface approach is less

efficient than the graph approach, it is significantly more efficient than the diffuse interface

approach; we solve a system of parabolic equations in d space dimensions, as opposed to

the d+1 space dimensions of the diffuse interface approach. The sharp interface approach

has a unique problem when simulating a free boundary: the meshes for Γnh and Ωn
h. As

the free boundary evolves, the mesh will quickly become degraded. There have been

many recent advances that tackle this problem, for example [42, 43] introduce powerful

algorithms to help maintain the quality of the mesh. Additionally, the mesh generation

software GMSH (see [52]) allows us to recreate the mesh if needed. The unfitted sharp

interface approach only suffers from this problem on the mesh for Γnh, not on the mesh for

D.
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1.3 Thesis overview

In Chapter 2 we consider the sharp interface approach. We first consider the case where

Γ(t) is an evolving closed curve in R2; we introduce a weak formulation of the problem

which we then use to derive a finite element approximation. Next, the implementation of

mesh smoothing techniques is discussed, and then an unfitted finite element approximation

is considered. Lastly, we introduce a finite element approximation for the case where Γ(t)

is an evolving closed hypersurface in R3.

In Chapter 3 we restrict ourselves to R2. We first transform the model into the diffuse

interface paradigm, regularise it, and present the associated weak form. We then perform

some analysis in order to prove the existence and uniqueness of the solution. This is

followed by the presentation of a finite element scheme, on which we then perform some

numerical analysis. This first consists of an existence and uniqueness result for the finite

element scheme, followed by a convergence result.

In Chapter 4, the numerical simulations are presented (in both R2 and R3). Be-

fore presenting these, we first introduce an alternate formulation of the model. We then

present a diffuse interface weak form and finite element scheme without the regularisation

introduced in Chapter 3. This is followed by a summary of the techniques used in the

implementations. The simulations are first run with the restriction of a radially symmetric

geometry. These show the accuracy of the finite element schemes, and present the exper-

imental order of convergence in the sharp interface case. Numerical convergence of the

radius in R3 is presented, as the mesh size and time step are reduced. Next we investigate

the morphological stability of the radially symmetric geometry in the sharp interface case.

We follow this by presenting some numerical simulations that investigate the parameters

of the model; in particular we fix Q and vary α against β. This is done in R2 and R3. This

investigation shows a strong agreement between all of the finite element schemes presented

in this thesis. There are also a number of images of in vivo tumours included (in both R2

and R3).

Chapter 5 concludes this thesis with an overview of the analytical results and numerical

simulations presented in this thesis, and a discussion of possible future directions.
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Sharp interface approaches

In this chapter we study the model (M) using a sharp interface approach (also called a

parametric approach). In this approach we explicitly represent Γ(t) by parametrising it

by a function x over I := R/(2πZ).

We introduce both fitted and unfitted approaches. In the fitted case we are able to

explicitly define the set Ω(t) using x, so we can solve (Ma) coupled with (Mb) over Ω(t)

using standard techniques. The unfitted case requires careful consideration with regard

to the interaction between the mesh for Γ(t) and the mesh for D, where Ω(t) ⊂ D.

In the fitted approach the difficulty arises with maintaining the quality of the finite

element meshes. Since Γ(t) (and thus Ω(t)) is evolving over time, the mesh generated for

Γ(0) may not be appropriate for future times. Although we can naively update the mesh

for Γ(t) by using the computed velocity, this is likely lead to an uneven distribution of

mesh points. For this reason we introduce a weak form and finite element method for

(Mc) that includes mesh smoothing.

The evolution of the mesh for Ω(t) is more complex. Since our model does not define

a velocity on Ω(t), we do not have the opportunity to attempt a naive mesh updating

procedure. For this reason, when implementing the finite element scheme, we consider a

number of mesh smoothing techniques.

The issue with mesh smoothing is a unique disadvantage of the sharp interface ap-

proach when compared to the diffuse interface approach. A second disadvantage is that

the sharp interface approach also does not have a natural handling of topology change (al-

though recently advances, for example [18], allow the implementation of topology change).
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This is the converse of the diffuse interface approach, in which topology change is handled

smoothly and naturally. The biggest advantage of the sharp interface approach is the

speed of execution. This is followed by stability for a large range of the parameters α, β,

and Q.

The chapter is organised as follows: we focus first, in Sections 2.1 - 2.4, on the case

where Γ(t) is an evolving closed curve in R2. In Section 2.1 we introduce a weak formulation

of (M) which we then use in Section 2.2 to derive a finite element approximation of (M).

The implementation of mesh smoothing techniques is discussed in Section 2.3 and in

Section 2.4 an unfitted finite element approximation of (M) is considered. We conclude

with Section 2.5, in which we introduce a finite element approximation of (M) for the case

where Γ(t) is an evolving closed hypersurface in R3.

2.1 Derivation of a weak formulation of (M) in R2

We first present a weak formulation of (Ma) and (Mb). Multiplying (Ma) by a test function

φ ∈ H1(Ω(t)) and integrating over Ω(t) yields

−
∫

Ω(t)
∇u · ∇φ dv +

∫
Γ(t)
∇u · nφ ds =

∫
Ω(t)

φ dv

noting (Mb) then gives

∫
Ω(t)
∇u · ∇φ dv +

1

α

∫
Γ(t)

uφds+

∫
Ω(t)

φ dv =

∫
Γ(t)

Qφ ds, ∀φ ∈ H1(Ω(t)). (2.1.1)

We now present a weak formulation of (Mc) for the case where Γ(t) is an evolving

closed curve in R2. There are a number of weak formulations for curve shortening flow, for

example those introduced in [9, 40, 43]. The formulation in [40] results in the motion of Γ(t)

being purely in the normal direction which may lead to the accumulation of mesh points in

numerical simulations, while the formulation in [9] include an artificial tangential motion

that equidistributes the mesh points of the associated finite element approximations. We

chose to adopt the weak formulation derived in [43], it also includes an artificial tangential

motion and is presented together with a proof of convergence of the associated finite
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element approximation. The main idea for the formulation of curve shortening flow (and

its high dimensional counterpart, mean curvature flow) in [43] is to use special solutions

to the harmonic map heat flow in order to reparametrise the equations of motion. The

reparametrisation by the harmonic map heat flow gives rise to tangential motions that

can be exploited, from a numerical point of view, to yield a favourable redistribution of

the mesh points. In [5] the convergence result of the finite element approximation of the

curve shortening flow equation in [43] was extended to a coupled system comprising of

forced curve shortening flow, with the forcing being a function of the solution of a reaction

diffusion equation that holds on the evolving curve Γ(t).

The derivation of the reparametrised mean curvature flow and curve shortening flow

in [43] consists of two main steps. We outline the two steps in the case of curve shortening

flow below, after first introducing some necessary notation. We then introduce forcing.

We introduce the parametrisation x(·, t) : I → R2, recalling that I := R/(2πZ) is the

periodic interval. Associated with this parametrisation is the unit tangent and the unit

normal to Γ(t), given respectively by

τ = xs =
xρ
|xρ|

, and n = τ⊥. (2.1.2)

Here s is the arclength parameter on Γ(t), (·)⊥ denotes a counter-clockwise rotation by

π
2 and ρ ∈ I. The relationship xss = κn gives rise to the following formulation of curve

shortening flow,

xt = xss =
1

|xρ|

(
xρ
|xρ|

)
ρ

. (2.1.3)

On recalling (1.2.1) we see that taking the scalar product of (2.1.3) with n yields V = κ.

The first step presented in [43] involves reparametrising x by x̂(t) = x(ψ(t)−1) where

ψ(t) is the solution to the harmonic map heat flow, see Section 2.3 in [43], with constant

diffusion coefficient ω > 0. This yields the following reparametrised evolution equation of

the curve shortening flow, see (2.16) in [43],

x̂t = |x̂ρ|−2x̂ρρ − |x̂ρ|−4x̂ρ · x̂ρρx̂ρ +
1

ω
|x̂ρ|−4x̂ρ · x̂ρρx̂ρ

=
1

|x̂ρ|

(
x̂ρ
|x̂ρ|

)
ρ

+
1

ω
|x̂ρ|−4x̂ρ · x̂ρρx̂ρ. (2.1.4)
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The additional term on the right hand side of (2.1.4) produces the tangential motion of

the reparametrised flow, with the inverse diffusion constant determining the time scale on

which these motions take place.

In their second step the authors split the time derivative, x̂t into weighted parts. Noting

that

1

|x̂ρ|

(
x̂ρ
|x̂ρ|

)
ρ

· τ = 0 and |x̂ρ|−4x̂ρ · x̂ρρx̂ρ · n = 0

we have

1

|x̂ρ|

(
x̂ρ
|x̂ρ|

)
ρ

= n⊗n 1

|x̂ρ|

(
x̂ρ
|x̂ρ|

)
ρ

= n⊗n
(
|x̂ρ|−2x̂ρρ − |x̂ρ|−4x̂ρ · x̂ρρx̂ρ

)
= n⊗n|x̂ρ|−2x̂ρρ

and

0 = τ ⊗ τ 1

|x̂ρ|

(
x̂ρ
|x̂ρ|

)
ρ

= τ ⊗ τ
(
|x̂ρ|−2x̂ρρ − |x̂ρ|−4x̂ρ · x̂ρρx̂ρ

)
⇒ |x̂ρ|−4x̂ρ · x̂ρρx̂ρ = τ ⊗ τ |x̂ρ|−4x̂ρ · x̂ρρx̂ρ = τ ⊗ τ |x̂ρ|−2x̂ρρ.

Here ⊗ is the tensor product. Thus (2.1.4) can be reformulated as

x̂t = n⊗ n|x̂ρ|−2x̂ρρ +
1

ω
τ ⊗ τ |x̂ρ|−2x̂ρρ.

Since τ ⊗ τ = Id− n⊗ n, where Id is the identity matrix, we conclude that

x̂t =

(
n⊗ n+

1

ω
(Id− n⊗ n)

)
|x̂ρ|−2x̂ρρ.

Noting that (
n⊗ n+

1

ω
(Id− n⊗ n)

)−1

= (ωId+ (1− ω)n⊗ n)

we obtain the reparametrised curve shortening flow

(ωId+ (1− ω)n⊗ n) x̂t = |x̂ρ|−2x̂ρρ.

For forced curve shortening flow, V = κ+ f , (2.1.3) is replaced by

xt =
1

|xρ|

(
xρ
|xρ|

)
ρ

+ f(x)n.
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Using the techniques outlined above, the evolution equation for reparametrised forced

curve shortening flow takes the form

(ωId+ (1− ω)n⊗ n) x̂t = (|x̂ρ|−2x̂ρρ + f(x̂)n).

Thus we obtain the following reparametrisation for the velocity law V = βκ+ 1
αu,

(ωId+ (1− ω)n⊗ n) x̂t =

(
β|x̂ρ|−2x̂ρρ +

u(x̂)

α
n

)
. (2.1.5)

For simplicity of notation we now set x̂ = x. Multiplying (2.1.5) by a test function

ξ ∈ [H1(I)]2 as well as by the density function |xρ|2, integrating over I, and applying

integration by parts yields

∫
I
|xρ|2(ωxt + (1− ω)(xt · n)n) · ξdρ+ β

∫
I

xρ · ξρ dθ =
1

α

∫
I
|xρ|2u(x)n · ξdρ. (2.1.6)

Combining (2.1.1) and (2.1.6) we arrive at the following problem.

Problem PSI Given an initial closed curve Γ(0) ∈ R2 and ω ∈ (0, 1], find (u,x) such that

for all t ∈ (0, T ),

∫
Ω(t)
∇u · ∇φ dv +

1

α

∫
Γ(t)

uφds+

∫
Ω(t)

φ dv =

∫
Γ(t)

Qφds, ∀φ ∈ H1(Ω(t)) (2.1.7)

and for all ξ ∈ H1(I),

∫
I
|xρ|2(ωxt + (1− ω)(xt · n)n) · ξ dρ+ β

∫
I

xρ · ξρ dθ =
1

α

∫
I
|xρ|2u(x)n · ξ dρ, (2.1.8)

where Γ(t) is parametrised by x(ρ, t), and Ω(t) is the interior of Γ(t).

Remark

We note that the above problem is strongly coupled, as Γ(t) is parametrised by x, which

is a function over I, and thus the domain of the integrals in (2.1.7) depends upon the

solution of (2.1.8).
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2.2 Finite element scheme

We now introduce a finite element approximation of PSI . We partition the time interval

[0, T ] into N + 1 steps: 0 = t0 < t1 < . . . < tN−1 < tN = T . These are evenly spaced, so

that ∆t = ti+1 − ti. We introduce the decomposition I = ∪Jj=1σj , where σj := (ρj−1, ρj).

We define Wh(I) := [Vh(I)]2 where

Vh(I) :=
{
ρh ∈ C0(I)

∣∣ ρh|σj is affine for j = 1, . . . , J
}
,

and we set Ih : C(I) → Vh to be the standard Lagrange interpolation operator such that

(Ihη)(ρj) = η(ρj), j = 1, . . . , J . In addition we define the local interpolation operator

Ihj := Ih|σj for j = 1, . . . , J , and we define the discrete inner product (·, ·)h by

(η1, η2)h :=
J∑
j=1

∫
σj

Ihj (η1 η2),

where and ηi are piecewise continuous functions on the partition ∪Jj=1σj of I. We define

the standard L2(I) inner product by (·, ·).

Let Xn
h ∈ Wh(I) parametrise a closed polyhedral curve, denoted by Γnh. This will be

an approximation to Γ(tn). We assign to an element Xn
h ∈ Wh(I) a piecewise constant

discrete unit tangent and normal by

τnh =
Xn
h,ρ

|Xn
h,ρ|

, and nnh = (τnh )⊥, on σj , j = 1, . . . , J. (2.2.1)

We denote the collection of straight line segments that constitute Γnh by T hΓ := {ψnj }Jj=1,

where for simplicity of notation we write T hΓ as opposed to T hΓnh .

We denote the interior of Γnh by Ωn
h and we triangulate it with a conforming mesh

that we denote by T hΩ := {µnl }Ll=1, where again, for simplicity of notation, we write T hΩ as

opposed to T hΩnh . Here T hΩ is a family of disjoint open triangles with vertices {pni }Ii=1 and

Ω
n
h := ∪Ll=1µ

n
l . The mesh T hΩ is such that the nodes and edges that make up the boundary

of Ωn
h coincide with the nodes and edges of T hΓ , this set up can be seen in Figure 2.1.
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Figure 2.1: Two illustrations of the fitted meshes with T hΩ in blue and T hΓ in red.

We define the finite element space

Sh(Ωn
h) :=

{
φh ∈ C0(Ω

n
h)
∣∣∣ φh|µ is linear ∀µ ∈ T hΩ

}

and we let Îh : C0(Ω
n
h) → Sh(Ωn

h) denote the interpolation operator onto Sh(Ωn
h), such

that (Îhη)(pi) = η(pi), i = 1, . . . , I.

Following [5], a finite element scheme for the weak form PSI , is given by the coupled

system

Problem PhSI For ω ∈ (0, 1], given X0
h = Ihx(·, 0) ∈ Wh(I), for n = 0, . . . , N − 1, find

{unh,X
n+1
h } ∈ Sh(Ωn

h)×Wh(I) such that

∫
Ωnh

∇unh ·∇φh dv+
1

α

∫
Γnh

Îh (unhφh) ds+

∫
Ωnh

φh dv = Q

∫
Γnh

φh ds, ∀φh ∈ Sh(Ωn
h), (2.2.2)

and

(
|Xn

h,ρ|2
(
ωDtX

n+1
h + (1− ω)(DtX

n+1
h · nnh)nnh

)
, ξh

)h
+ β(Xn+1

h,ρ , ξh,ρ)

=
1

α

(
|Xn

h,ρ|2unh(Xn
h )nnh, ξh

)h
, ∀ξh ∈Wh(I). (2.2.3)

Here DtX
n+1
h :=

Xn+1
h −Xn

h
∆t , Γnh is given by Xn

h (I), and Ωn
h is the interior of Γnh.

Recall that the parameter ω controls the amount of mesh smoothing, such that the

smaller the value of ω the greater the amount of mesh smoothing. Evolution via curve

shortening flow, such that the right hand side of (2.2.3) is set to zero, can be seen, with

different values of ω, in Figure 2.2. As ω → 0, the spacing of the nodes improves.
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Since this only smooths the mesh T hΓ , additional mesh smoothing methods are required

for T hΩ . These will be discussed in Section 2.3.

Figure 2.2: Evolution via mean curvature at t = 0.8, with the initial condition on the left.
Middle left: ω = 0.1. Middle right: ω = 0.01. Right: ω = 0.001.

2.3 Fitted mesh smoothing

As Γnh is evolving in time, we need to implement a number of techniques in order to

maintain well structured meshes for both Γnh (denoted by T hΓ ) and Ωn
h (denoted by T hΩ )

throughout the simulation. This is of importance to T hΓ , but of even higher importance to

T hΩ . Not smoothing T hΓ will lead to a suboptimal arrangement of vertices. Not smoothing

T hΩ will (within a very short time frame) lead to the nodes of T hΩ that are fitted to T hΓ

moving such that T hΩ has stretched and overlapping elements, thus making it unusable.

If we use the intrinsic mesh smoothing present in (2.2.3) for ω sufficiently small, then

T hΓ will remain smooth for [0, T ]. There are then two approaches open to us in order to

deal with T hΩ : generate an entirely new mesh at each time step, or try and improve the

mesh at time step n in order to yield an improved mesh at time step n+ 1. Generating an

entirely new mesh at each time step is not feasible, as the computational time to generate

a new mesh and integrate it into the running program is too high. That leaves us with

improving the mesh at time step n in order to yield an improved mesh at time step n+ 1.

In order to smooth T hΩ we first, in Section 2.3.1, describe a simple technique for gen-

erating a velocity field on T hΩ ; this velocity field is denoted by W n
h . This technique gives

a small amount of mesh smoothing when applied to the nodes of T hΩ , however it does not

“see” the nodes of T hΩ , so it is unable to provide intelligent smoothing.

In Section 2.3.2 we introduce Algorithm 1 from [42], which provides intelligent smooth-

ing of T hΩ . Since this approach smooths both the nodes of T hΩ and of T hΓ , it is unnecessary
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to take ω < 1, and so we set ω = 1. We present Algorithm 1 from [42] simplified to our

particular set up; the algorithm takes W n
h as an input.

After large deformations T hΩ may have a significantly reduced quality. If this is the

case, then we use the re-meshing software GMSH [52], introduced in Section 2.3.3, to

construct an entirely new mesh.

2.3.1 Harmonic extension method

We first present a simple technique for generating a velocity field on Ωn
h such that, if we

move the nodes of T hΩ and T hΓ with this velocity field, then we will achieve a reasonable

level of mesh smoothing. Note that our model does not prescribe a velocity on Ωn
h, so we

are free to define this velocity. Note also that this technique works well with the inherent

mesh smoothing in (2.2.3) which acts upon T hΓ .

The velocity field that we generate is denoted by W n
h , with W n

h |Γnh equivalent to the

velocity DtX
n
h of Γnh. We then move the nodes of T hΩ by the velocity W n

h . We calculate

W n
h by solving a standard finite element approximation to


∆w = 0, in Ω(t),

w = v, on Γ(t),

(2.3.1)

where v is the velocity of Γ(t). Note that v is not necessarily normal to Γ(t), as it can

have an additional tangential component.

A simple example with a growing circle can be seen in Figure 2.3. Note that the mesh

grows smoothly with Γnh.
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Figure 2.3: Evolution via an outward normal velocity, with mesh smoothing via the har-
monic extension method detailed in Section 2.3.1. Left: t = 0. Right: t = 10.

2.3.2 DeTurck method

In [42] a general approach is introduced to obtain numerical schemes with good mesh

properties for evolving submanifolds with boundaries. The approach is based on a variant

of the so-called DeTurck trick whereby the authors apply the harmonic map heat flow on

manifolds with boundaries. They assume that the submanifold Ω(t) is given as the image

of a time-dependent embedding s : M× [0, T ) → ∪t∈[0,T )Ω(t) × {t} of some reference

manifoldM with boundary ∂M such that ∂Ω(t) = s(∂M, t). Here we adopt the notation

s rather than x, which is used in [42], to avoid confusion with the notation introduced

in Section 2.1. The time-dependent embedding s(t) is reparametrised by the solution

ψ : M × [0, T ) → M to the harmonic map heat flow on the reference manifold. We

define ŝ(t) := s(ψ(t)−1), with the inverse of the embedding ŝ denoted by ŷ(t) := ŝ(t)−1,

see Figure 2.4, in which our particular set up in R2 is shown with the reference manifold

M taken to be the half sphere in R3, denoted by H. In the discrete setting it transpires

that the discrete embeddings corresponding to ŝ(t) can be totally gotten rid of and the

resulting numerical scheme is written in terms of Y n
h , which is an approximation to ŷ(t).

Throughout this thesis we refer to the approach in [42] as the DeTurck method.
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H

R3

Ω(t)

Γ(t)

R2

ŷ(t) = ŝ(t)−1

s(t)

ŝ(t) = s(ψ(t)−1)ψ(t)

Figure 2.4: Schematic of the reparametrization of the time-dependent embedding s(t) by
the solution ψ(t) of the harmonic map heat flow.

In Section 3.2.1 of [42] the authors present an algorithm for the computation of the

numerical scheme for this DeTurck reparametrization. Below we write out the simplified

form of this algorithm for our particular set up of a simply connected domain Ωn
h ⊂ R2,

with the boundary given by a closed curve Γnh and the reference manifold, H, being the

half sphere in R3. The reason that the reference manifold must be in R3 even though Ω(t)

is in R2 is because the reference manifold must have a totally geodesic boundary. Since

geodesics in an Euclidean space are straight lines, there is no bounded domain in R2 that

has a smooth totally geodesic boundary, and can thus be used as a reference manifold.

Since the algorithm in [42] requires a velocity for the nodes of Ωn
h, we use the harmonic

extension method, detailed in Section 2.3.1, to extend the velocity, DtX
n
h , of Γnh to a

velocity W n
h ∈ [Sh(Ωn

h)]2 that is defined on Ωn
h.

Following [42], for the simplified set up of Ω ⊂ R2, we assume that the reference

manifold H is approximated by a piecewise linear polyhedral manifold, denoted Hh :=

∪π∈T hH π ⊂ R3, where T hH is an admissible triangulation consisting of non-degenerate tri-

angles. The finite element space Sh(Hh) is defined by

Sh(Hh) :=
{
ηh ∈ C0(Hh)

∣∣∣ ηh|π is a linear polynomial ∀π ∈ T hH
}
.

We seek approximations Ω
n
h := ∪Ll=1µ

n
l with Ωn

h = Ŝnh (Hh), for some Ŝnh ∈ [Sh(Hh)]2.

Here the map Ŝnh is supposed to be a homeomorphism of Hh onto Ωn
h, with the inverse

Ŷ n
h := (Ŝnh )−1 ∈ [Sh(Ωn

h)]3. Since the triangles of T hΩ are affine to the standard simplex in

R2, the only remnant of the embedding is that the vertices of the mesh T hΩ have position

vectors into R3.
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We define

S0
h(Ωn

h) :=
{
φh ∈ Sh(Ωn

h)
∣∣ φh|Γnh = 0

}
.

We use the notation ⊗ for the tensor product.

As noted in [42], a natural way to define the discrete embeddings Ŝn+1
h would be

Ŝn+1
h := Zn+1

h (Ŝnh ), where Zn+1
h is the update of the mesh for Ωn

h to a mesh for Ωn+1
h ,

and is given in Algorithm 1. Since Ŷ n+1
h := (Ŝn+1

h )−1, this would imply that Ŷ n+1
h :=

(Ŝnh )−1((Zn+1
h )−1), and thus Ŷ n+1

h := Ŷ n
h ((Zn+1

h )−1). Thus the map Ŝnh can be totally

gotten rid of for all time steps n ≥ 1, resulting in Algorithm 1.
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Algorithm 1 This algorithm corresponds to Algorithm 1 in [42]. Let ω̄ ∈ (0,∞). Given
Ω0
h ⊂ R2, with Ŝ0

h ∈ [Sh(Hh)]2, set Ŷ 0
h := (Ŝ0

h)−1 ∈ [Sh(Ω0
h)]3. For n = 0, . . . , N − 1,

perform this algorithm.

1: for j = 1, 2 do

2: Find ζn,jh ∈ Sh(Ωn
h) such that

∫
Ωnh

ζn,jh φh dv = −
∫

Ωnh

∇Ŷ n,j
h · ∇φh dv, ∀φh ∈ Sh(Ωn

h).

3: Find ζn,3h ∈ S0
h(Ωn

h) such that

∫
Ωnh

ζn,3h φh dv = −
∫

Ωnh

∇Ŷ n,3
h · ∇φh dv, ∀φh ∈ S0

h(Ωn
h).

4: Define IΩnh
as the identity map on Ωn

h. We also define Ĥn
h by

Ĥn
h := (∇Ŷ n

h )T∇Ŷ n
h .

5: Define T nh on vertex ρj ∈ T hΓ by

T nh (ρj) :=
tnh(σj) + tnh(σj+1)∣∣tnh(σj) + tnh(σj+1)

∣∣ ⊗ tnh(σj) + tnh(σj+1)∣∣tnh(σj) + tnh(σj+1)
∣∣ ,

where σj , σj+1 ∈ T hΓ and σj , σj+1 are adjacent to vertex ρj . Here tnh(σ) is a unit tangent

vector to σ, where all tangent vectors are chosen such that tnh(σj) · tnh(σj+1) ≥ 0.

6: Define ζ̃nh on vertex ρj ∈ T hΩ by

ζ̃nh := PH(Ŷ n
h (ρj))ζ

n
h (ρj),

where PH(Ŷ n
h (ρj)) is the tangential projection onto the tangent space of H at the point

Ŷ n
h (ρj).
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7: Solve for Zn+1
h ∈ [Sh(Ωn

h)]2, where

∫
Ωnh

 1

∆t
Ih(Zn+1

h ·ϕh) +
1

ω̄

2∑
i=1

3∑
j=1

((Ĥn
h )−1∇Ŷ n

h,j)iIh(ζ̃n,jh ϕih)

 dx

=

∫
Ωnh

(
Ih(W n

h ·ϕh) +
1

∆t
Ih(IΩnh

·ϕh)

)
dx, ∀ϕh ∈ [S0

h(Ωn
h)]2,

and

∫
Γnh

 1

∆t
Ih(Zn+1

h · ηh) +
1

ω̄

2∑
i=1

3∑
j=1

((Ĥn
h )−1∇Ŷ n

h,j)iIh(ζ̃n,jh (T nh ηh)i)

 dx

=

∫
Γnh

(
Ih(W n

h · ηh) +
1

∆t
Ih(IΩnh

· ηh)

)
dx, ∀ηh ∈ [Sh(Γnh)]2.

8: Let Ωn+1
h := Zn+1

h (Ωn
h) (where we are mapping the mesh itself).

9: Let Ŷ n+1
h := Ŷ n

h

(
(Zn+1

h )−1
)

.

Note that the projection T nh onto the tangent space of Γnh is introduced in [42] for

stability reasons.

Remark As noted in [42], an important feature of the scheme is that it is not necessary

to compute the inverse of Zn+1
h , since the components of the map Ŷ n

h with respect to the

Lagrange basis on Ωn
h are given by the position vectors of the vertices of Hh, which are

constant. Therefore Ŷ n
h is described by a component vector which is independent of n.

However, the map Ŷ n
h changes in time, since the finite element basis changes when Ωn

h is

updated.

We note that the parameter ω̄ > 0 in Algorithm 1 is the inverse of the diffusion coeffi-

cient in the harmonic map heat flow. It corresponds to having differing time scales for the

reparametrisation and for the evolution of the surface, and is important in applications

where the submanifold Γ(t) moves very fast and the time scale ω̄, on which the redistri-

bution of the mesh nodes takes place, has to be very small.

For the simple evolution of a circle, similar to the one presented in Figure 2.3, the mesh

smoothing obtained using the DeTurck method is virtually identical to the one obtained
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using the harmonic extension method. If, however, we prescribe a normal velocity of

V := 2 sin(3t), (2.3.2)

to a circle (so that the radius is oscillating), then the harmonic extension method slowly

degrades, while the DeTurck method does not. This is demonstrated in Figures 2.5 and

2.6. The simulation is run with an initial circle of radius 1.0, and from t = 0 to t = 100.

In Figure 2.5 we see a comparison of coarse meshes at t = 0 and at t = 100. In Figure 2.6

we see a graph that shows the degradation of T hΩ over time. The mesh quality is measured

by

q := max
µ∈T hΩ

H(µ)

h(µ)
, (2.3.3)

where H(µ) is the length of µ’s longest edge, and h(µ) is the length of µ’s shortest edge.

A comparison with and without the DeTurck method can also be seen in Figure 4.7,

with the initial condition given by Figure 4.6. We can also see an example with ω̄ = 0.1

in Figure 4.8.

Figure 2.5: Snapshots of a single quadrant of T hΩ , showing the difference in mesh quality
between the harmonic extension method, and the DeTurck method. The left image is the
initial condition. The center image is taken at t = 100, and shows the mesh under the
harmonic extension method (Section 2.3.1). The right image is also taken at t = 100, and
shows the mesh under the DeTurck method (Section 2.3.2). The evolution of the circle is
given by the outward normal velocity (2.3.2). The DeTurck method appears significantly
more effective.
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Figure 2.6: Graph showing the difference in mesh quality between the harmonic extension
method (Section 2.3.1), and the DeTurck method (Section 2.3.2), measured by (2.3.3). A
quality of q = 1.0 is ideal (this corresponds to a mesh consisting of equilateral triangles),
and higher values imply a worse mesh. The evolution of the circle is given by the outward
normal velocity (2.3.2). The simulation was run from t = 0 until t = 100, and at t = 0
we had h := maxµ∈T hΩ

H(µ) ≈ 0.05 and ∆t = 10−2. We can see that the DeTurck method
maintains the quality of the initial mesh, while the harmonic extension method degrades
as time goes by. The quality oscillates with the velocity (2.3.2) (and thus with the radius
of the circle).

2.3.3 Re-meshing via GMSH

Despite the effectiveness of the DeTurck method, a large deformation can leave the mesh in

an irreparable state. When such a state arises, we employ the re-meshing software GMSH

[52]. We use T hΓ as an input to GMSH. The mesh T hΩ is then rebuilt by GMSH. Figure

2.7 shows an example mesh created by GMSH, next to a mesh created by ALBERTA for

comparison.

Since the re-meshing procedure is computationally expensive, we only perform it when

q := max
µ∈T hΩ

H(µ)

h(µ)
≥ tol := 5.

If tol is chosen too high, then the mesh degrades to a point where it is negatively impacting

the accuracy of the solution. If it is chosen too small then the re-meshing happens too

often, and the computational time increases drastically.

When using this technique with the DeTurck method, care must be taken to redefine

Y n
h (defined in Section 2.3.2) on the new mesh.
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Remark We stress that re-meshing is only strictly necessary for large deformations, al-

though we choose to re-mesh more often, in order to maintain the quality of the mesh.

Figure 2.7: Comparison of a coarse mesh created by ALBERTA (left) and a coarse mesh
created by GMSH (right).

2.4 Unfitted finite element approximation of (M) in R2

This section introduces an unfitted finite element approximation of (M), restricted to R2.

We follow the techniques given in [8], with help from [6, 7, 41].

Let Γnh be defined as in Section 2.2 such that it is a closed polyhedral curve, parametrised

by a piecewise linear function Xn
h . We introduce a domain D ⊂ R2 such that Γnh ⊂ D

for n = 0, . . . , N . We triangulate D by a family of conforming disjoint open triangles,

T hD := {πl}Ll=1, with vertices {pm}Mm=1. Thus we have D := ∪Ll=1πl. We denote the inte-

rior of Γnh by (Ωn
h)+ and the exterior by (Ωn

h)− and we assume that Γnh crosses any one

triangle edge at most twice and each triangle contains at most one edge that is crossed

twice.

We split the triangles of T hD into the mutually exclusive classes interior, exterior, and

cut. For the majority of triangles, the interior triangles are those that lie fully within

(Ωn
h)+, the exterior triangles are those that lie fully inside (Ωn

h)−, and the cut triangles

are those for which the intersection with Γnh is non empty. This is illustrated in Figure

2.8, where Γnh is denoted by the black line, with (Ωn
h)+ to its left, the interior triangles

are blue, the exterior triangles are green, and the cut triangles are red. There are some
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triangles that are intersected by Γnh that are not included in the class of cut triangles,

these triangles are ones in which Γnh only intersects one side of the triangle, see the left

hand image in Figure 2.9. Such triangles are classed as interior if the two sides that are

not intersected by Γnh lie in (Ωn
h)+ and exterior otherwise.

Figure 2.8: This figure displays an illustration of the unfitted finite element mesh T hD . Γnh
is the bold black line, with (Ωn

h)+ to its left, the interior triangles are in blue, the exterior
triangles are in green, and the cut triangles are in red.

In each cut triangle, π, we approximate Γnh by a chord, [r1, r2]. Here the ri are two

intersections between Γnh and the boundary of π. In the event of there being more than

two intersections, we choose the chord to be the one that joins the points of intersection on

the two sides that are cut only once by Γnh, see the centre and right hand images in Figure

2.9. We denote the approximation of Γnh given by these chords by Γ̃nh, and the region that

lies in the interior of Γ̃nh by (Ω̃n
h)+, see Figure 2.10.

π

Γnh

π

[r1, r2]

Γnh

π

[r1, r2]

Γnh

Figure 2.9: The left hand image is an example of an element, π, that is intersected by Γnh
but is not classified as cut. The centre and right hand images display different possibilities
for Γnh (in green) intersecting π ∈ T hD (in black), and the choice of [r1, r2] (in red).
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(Ω̃n
h)+

Γn
h

Γ̃n
h

Figure 2.10: This image displays an illustration of Γnh (in green) overlaid by Γ̃nh (in red),
and (Ω̃n

h)+ (blue region).

Algorithms that allow quick and efficient splitting of the domain into interior, exterior,

and cut elements are taken directly from [68]. They are copied out here for completeness in

Algorithms 2 - 6. Note that Algorithm 6 is a modified version of the algorithm in [68], as it

includes a reclassification of triangles that are cut on only one side as interior or exterior.

This algorithm is modified because in [68] they do not consider integrals over the interface

Γnh when computing the bulk quantities. For the purpose of these algorithms, we have

constructed T hD as a hierarchical mesh with L levels, denoted T hD,0, . . . , T hD,L. Here T hD,0 is

the top level mesh, and T hD,L is the bottom level mesh, so that TD = T hD,L. The triangles

of mesh T hD,l are refined either zero or one times to give the mesh T hD,l+1. Triangles in the

mesh T hD,L are called leaf triangles. We start with Algorithm 2, which detects if a given

triangle is intersected by a given line segment. This is used in Algorithms 3 and 4, which

mark all triangles that are intersected by Γnh as cut. We then use Algorithm 5 to mark all

exterior triangles. Finally we use Algorithm 6 to mark all triangles that are neither cut

nor exterior as interior and then to reassign the cut triangles that are cut on one side

only as either interior or exterior.
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Algorithm 2 This algorithm detects if a triangle is intersected by a line segment. The
triangle is denoted π, and has edges e1, e2 and e3. The line segment is denoted L, and
has end points q1 and q2. The algorithm returns true if there is an intersection, false
otherwise.

1: for i = 1, 2 do

2: if qi ∈ π then

3: Return true

4: for i = 1, 2, 3 do

5: if L intersects ei then

6: Return true

7: Return false

Algorithm 3 Hierachical search to mark all triangles intersected by Γnh as cut. The set
of triangles at the top level of the heirachical mesh T hD is denoted by T hD,0.

1: for σ ∈ T hΓ do

2: for π ∈ T hD,0 do

3: Algorithm 4 (σ, π)

Algorithm 4 Hierachical search to mark all children of a given triangle that are intersected
by σ ∈ T hΓ as cut if they are leaf triangles. Here π ∈ T hD,l for some mesh level l, where
0 ≤ l ≤ L.

1: if l = L then

2: Mark π as cut

3: for πi child of π do

4: if Algorithm 2 (σ, πi) then

5: Algorithm 4 (σ, πi)
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Algorithm 5 Mark all triangles that are outside Γnh as exterior. Γnh must not intersect
triangles on ∂D, the boundary of D. The algorithm needs the cut triangles to be marked,
using Algorithm 3.

1: Mark all triangles in T hD as clear

2: Mark all triangles on ∂D as exterior, and put them in currentFront

3: while currentFront is not empty do

4: for π ∈ currentFront do

5: for πi neighbour of π do

6: if πi is clear, and is not cut then

7: Put πi in newFront

8: Mark πi as exterior

9: Let currentFront = newFront

10: Clear newFront

Algorithm 6 Mark all triangles that are neither cut nor exterior as interior. Mark
triangles that are cut on one side only as either interior or exterior. Here #Cut(π) is
the number of edges of π that are cut by Γnh.

1: for π ∈ T hD do

2: if π is neither cut nor exterior then

3: Set π as interior

4: if π is cut and #Cut(π) = 1 then

5: if the edges of π that are not cut belong to (Ωn
h)+ then

6: Set π as interior

7: else

8: Set π as exterior

We propose the following unfitted finite element approximation of (M)

Problem PhSIU For ω ∈ (0, 1], given X0
h = Ihx0 ∈ Wh(I), for n = 0, . . . , N − 1, find

{unh,X
n+1
h } ∈ Sh(D)×Wh(I) such that

(∇unh,∇φh)(Ω̃nh)+ +
1

α
(unh, φh)h

Γ̃nh
+ (1, φh)(Ω̃nh)+ = (Q,φh)h

Γ̃nh
, ∀φh ∈ Sh(D), (2.4.1)
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and

(
|Xn

h,ρ|2
(
ωDtX

n+1
h + (1− ω)(DtX

n+1
h · nnh)nnh

)
, ξh

)h
+ β(Xn+1

h,ρ , ξh,ρ)

=
1

α

(
|Xn

h,ρ|2unh(Xn
h )nnh, ξh

)h
, ∀ξh ∈Wh(I). (2.4.2)

Here DtX
n+1
h :=

Xn+1
h −Xn

h
∆t , Γnh is given by Xn

h (I), and the inner products (·, ·)(Ω̃nh)+ and

(·, ·)h
Γ̃nh

are defined below.

In (2.4.2) we need to sample unh at point q ∈ π ∈ T hD with barycentric coordinates

b(q), where the ith coordinate of b is given by bi(q). In order to do this, we take

unh(q) =

3∑
i=1

bi(q)unh(pi).

Here pi is the vertex of π that corresponds to the barycentric coordinate bi(q).

We define the inner product over Γ̃nh by

(ηh, ζh)h
Γ̃nh

:=
1

2

∑
π∈T h,cutD

|r1 − r2|
2∑
l=1

ηh(rl)ζh(rl), ∀ηh, ζh ∈ Sh(D),

where T h,cutD is the set of π ∈ T hD where π is cut, and the ri correspond to the given π.

In order to define (·, ·)(Ω̃nh)+ we introduce the weight function F(πl), for πl ∈ T hD . If πl is

interior then F(πl) = 1, and if πl is exterior, then F(πl) = 0. If, however, πl is cut, we

take F(πl) as the fraction of πl that lies inside (Ω̃n
h)+. We now define the inner products

over (Ω̃n
h)+ by

(∇unh,∇φh)(Ω̃nh)+ =
L∑
l=1

∫
πl

F(πl)∇unh ·∇φh dx, and (1, φh)(Ω̃nh)+ :=
L∑
l=1

∫
πl

F(πl)φh dx.

2.5 Fitted sharp interface finite element scheme in R3

First, we partition the time interval [0, T ] into N + 1 steps: 0 = t0 < t1 < . . . < tN−1 <

tN = T . We assume that these are evenly spaced, so that ∆t := ti+1 − ti. Let Γnh be

a closed polyhedral surface, consisting of triangles, parametrised by Xn
h : Γn−1

h → R3.
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In a slight abuse of notation, we denote this collection of triangles by T hΓ := {ηnj }Jj=1

(where, as before, we write T hΓ as opposed to T hΓnh). The initial surface, Γ0
h, is a polyhedral

approximation to Γ(0). We define

Yh(Γn−1
h ) :=

{
ξh ∈ C0(Γn−1

h ,R3)
∣∣∣ ξh|ηnj is affine ∀ηnj ∈ T hΓ

}
.

As in Section 2.2, we mesh the interior of Γnh, denoted by Ωn
h, with a conforming mesh,

this time consisting of tetrahedrons. In a slight abuse of notation, this mesh is denoted

by T hΩ := {µnl }Ll=1 (where, as before, we write T hΩ as opposed to T hΩnh), where the µnl are

tetrahedrons, with vertices {pni }Ii=1. Thus we have Ωn
h := ∪Ll=1µ

n
l , and Ωn

h is such that the

edge nodes are fitted to the corresponding nodes in Γnh.

We define the tangential gradient of a function f , which is differential in an open

neighbourhood of Γ, by ∇Γf := ∇f − (n · ∇f)n. From Lemma 2.4 in [40], we see that

∇Γf(x) only depends on the values of f on Γ ∩ U , where U ⊂ R3 is a neighbourhood of

x.

Following [37], a sharp interface finite element scheme for (M), in R3, with initial

condition Γ0
h, is given by

Problem PhSIR3 Given Γ0
h and the identity function X0

h ∈ Yh(Γ0
h), then for n = 0, . . . , N ,

find {unh,X
n+1
h } ∈ Sh(Ωn

h)× Yh(Γnh) such that

∫
Ωnh

∇unh · ∇φh dv +
1

α

∫
Γnh

Ih (unhφh) ds+

∫
Ωnh

φh dv = Q

∫
Γnh

φh ds, ∀φh ∈ Sh(Ωn
h),

(2.5.1)

(where Γnh is given by Xn
h (Γn−1

h ), and Ωn
h is the interior of Γnh) and

∫
Γnh

DtX
n+1
h · ξh ds+ β

∫
Γnh

∇Γnh
Xn+1
h · ∇Γnh

ξh ds =
1

α

∫
Γnh

unhn
n
h · ξh ds, ∀ξh ∈ Yh(Γnh).

(2.5.2)

Here DtX
n+1
h :=

Xn+1
h −Xn

h
∆t and, following [37],

∇Γnh
Xn+1
h · ∇Γnh

ξh =

3∑
i=1

∇Γnh
Xn+1
h,i · ∇Γnh

ξh,i,
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where Xn+1
h,i and ξh,i denote the ith component of Xn+1

h and ξh, respectively. We note

that for n ≥ 1, Xn
h ∈ Yh(Γn−1

h ) and we abuse notation by also denoting the identity

function on Γnh as Xn
h for n ≥ 0.

Unlike the scheme in R2 (given by PhSI), the scheme in R3 has no intrinsic mesh

smoothing on T hΓ . This is in contrast to the approach introduced in [43], in which there

is an intrinsic mesh smoothing on T hΓ . We did not implement this scheme due to the

additional programming complexity.



Chapter 3

Applied and numerical analysis of

a diffuse interface model

This chapter concerns itself with the diffuse interface approach. In this approach, we

approximate Γ(t) by a diffuse interface of width Cε, where C is a positive constant. Here

we choose ε > 0 as small as needed, thus allowing us to resolve Γ(t) to the desired accuracy.

Doing this comes at the price of a finer mesh (and associated smaller time step). In order

to define the diffuse interface, we introduce a phase field variable ϕ(x, t) : D× [0, T ]→ R,

such that ϕ = 1 inside the interface, ϕ = −1 outside the interface, and ϕ varies smoothly

over the interface (note that we consider a double obstacle potential, defined later). As ϕ

evolves we keep track of its zero level set; this is our approximation of Γ(t). We write the

diffuse interfacial region as

Γε(t) := { x ∈ D | |ϕ(x, t)| < 1 } ,

where D ⊂ R2 is a bounded domain, large enough to contain Γε(t), for all t ∈ [0, T ], with

outward unit normal ν.
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ν

Cε

D

ϕ = 1

ϕ = −1

Figure 3.1: The diffuse interfacial region Γε(t) in D, with outward unit normal ν. Here
Γ(t) is approximated by the zero level set of ϕ.

The diffuse interface approaches has a number of advantages over the sharp interface

approach used in Chapter 2, the most notable being a natural and smooth handling of

topology change. Although recent advances, for example [18], allow us to perform topol-

ogy changes on a fitted mesh, these can be challenging to implement, and they are not

integrated naturally into the model. We also do not need to maintain an evolving mesh.

These two advantages (topology change and mesh simplicity) mean that the numerical

simulations are able to run for significantly longer times. The diffuse interface approach

also has a few disadvantages that the sharp interface approach does not, the biggest of

which is execution time. The introduction of the phase field variable ϕ increases the di-

mension of the problem by one, which has a large impact on the simulation’s execution

time. By representing Γ(t) as a diffuse interface, the approach also loses some accuracy.

This can be offset, at the cost of execution time, by taking ε smaller. The diffuse inter-

face approach is also less able to simulate more extreme values of α and β. For example,

taking α smaller in the diffuse interface paradigm requires us to take ε smaller, causing

us to reduce h and ∆t, and thus increasing the execution time.

This chapter starts, in Section 3.1, by writing (M) in the diffuse interface paradigm,

the resulting diffuse interface model is then regularised in time in order to establish the

analytical results in the subsequent sections of the chapter. In Sections 3.2 and 3.3 we

respectively show the existence and uniqueness of the solution to the weak formulation of

the regularised diffuse interface model. We then present a finite element approximation
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of the model in Section 3.4, and in Section 3.5 we show the existence and uniqueness of a

solution to the finite element approximation. We follow this with a convergence result.

Throughout this chapter, we use the notation Ck(D) to denote functions that are k

times continuously differentiable over D and Ck0 (D) to denote functions that are k times

continuously differentiable over D and have compact support.

3.1 Diffuse interface formulation

The diffuse interface approach is different to the sharp interface approach, as we deal with

Γ(t) and Ω(t) implicitly; thus, the model (M) must be altered to account for this.

The velocity law (Mc) is mean curvature flow with a forcing term. This means that

we can approximate it, as per the techniques in [37], with the Allen-Cahn equation. Using

the double obstacle potential [15],

W (s) :=
1

2
(1− s2) + I[−1,1](s),

where

I[−1,1](s) :=


∞, for |s| > 1,

0, for |s| ≤ 1,

yields the Allen-Cahn equation

εϕt − βε∆ϕ−
β

ε
W ′(ϕ) =

πu

4α
, in D × (0, T ), (3.1.1)

which we supplement with the homogeneous Neumann boundary conditions

∇ϕ · ν = 0, on ∂D × (0, T ). (3.1.2)

We consider the sub-differential of ∂I[−1,1](s) to interpret W ′(s) as

W ′(s) =


(−∞, 1], if s = −1,

−s, if |s| < 1,

[−1,∞), if s = 1.
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In (3.1.1) u is the solution to (3.1.4) or (3.1.6) (both diffuse interface approximations

to (Ma) with (Mb), given later) and the factor of π
4 on the right hand side of (3.1.1)

is chosen such that as ε → 0 we recover the sharp interface equation (Mc). In [67] the

authors show, in the case of a smooth evolution of the forced mean curvature flow, that

the Hausdorff distance between the zero level set of ϕ and the interface of the flow is of

order O(ε2).

We note that since we are using the double obstacle energy we have ϕ ∈ [−1, 1], and

|ϕ| < 1 only in the diffuse interfacial region Γε(t).

To construct the initial condition ϕ(x, 0) = ϕ0(x), we first define a distance function

from x to Γ(0), denoted by dΓ(x). This is such that it is positive for x inside Γ(0), and

negative outside. We now define the initial condition by

ϕ(x, 0) = ϕ0(x) :=


1, if dΓ(x) ≥ επ

2 ,

sin(dΓ(x)
ε ), if − επ

2 < dΓ(x) < επ
2 ,

−1, if dΓ(x) ≤ − επ
2 .

(3.1.3)

This initial condition corresponds to a diffuse interface of width επ, and its zero level set

coincides with Γ(0). This is constructed to have a sinusoidal profile, as the double obstacle

energy naturally leads to ϕ taking this profile.

For a diffuse interface approximation of (Ma) with (Mb) we follow the techniques

described in [1, 64] to obtain

−∇(ζ(ϕ)∇u) +
1

αε
δ(ϕ)u = −ζ(ϕ) +

Q

ε
δ(ϕ), in D × (0, T ), (3.1.4)

ζ(ϕ)∇u · ν = 0, on ∂D × (0, T ) (3.1.5)

where

ζ(s) :=
1 + s

2
, and δ(s) :=

2

π
(1− s2).

We note that since ϕ ≡ −1 in the region exterior to the diffuse interfacial region, Γε(t), and

ϕ ≡ 1 in the region in the interior of Γε(t), it follows that ζ(ϕ) ≡ 1 in the interior region

and ζ(ϕ) ≡ 0 in the exterior region. Similarly as |ϕ| < 1 only in the diffuse interfacial

region it follows that δ(ϕ) ≡ 0 outside this region and hence we can view the terms in
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(3.1.4) that contain δ(ϕ) as an approximation to the Robin boundary conditions. The

convergence, as ε → 0, of (3.1.4) to (Ma) with boundary condition (Mb) is proved in

[1, 64].

To aid the analysis in Sections 3.2 and 3.3, and the numerical analysis results in

Section 3.5, we regularise (3.1.4) by introducing the time derivative of u (this aids as we

use Theorem 3.2.1, given later, which requires bounds on the time derivative of u). This

yields the following regularised diffuse interface model

ε2ut −∇(ζ(ϕ)∇u) +
1

αε
δ(ϕ)u = −ζ(ϕ) +

Q

ε
δ(ϕ), in D × (0, T ). (3.1.6)

Here, for simplicity of presentation, in an abuse of notation, we denote the solution of

this regularised diffuse interface model by u. We compliment (3.1.6) with the Neumann

boundary condition (3.1.5), and the initial condition

u(x, 0) = u0(x), in D. (3.1.7)

To determine the natural choice for the initial data, u0, we note that in the region exterior

to the diffuse interface, where ϕ = −1, there should be no contribution from u. Thus,

setting u0(x) ≡ 0 would be a good way to approximate this.

Remark We introduce the ε2ut regularisation in the diffuse interface model purely for

analytical purposes, however, using formally matched asymptotic expansions, as ε→ 0 we

expect to recover (Ma) with boundary condition (Mb) from (3.1.6).

The weak formulation for (3.1.1) coupled with (3.1.6), together with the associated

boundary and initial conditions (3.1.2), (3.1.3), (3.1.5), and (3.1.7) is given by

Problem PDI Find (ϕ, u) ∈ X1 ×X2, ϕ(t) ∈ K(D), such that ϕ and u satisfy the initial

conditions (3.1.3) and (3.1.7) respectively and, for all t ∈ (0, T ),

∫
D
ϕt(ρ− ϕ) dx + β

∫
D
∇ϕ · ∇(ρ− ϕ) dx− β

ε2

∫
D
ϕ(ρ− ϕ) dx

≥ Cw
αε

∫
D
u(ρ− ϕ) dx, ∀ρ ∈ K(D), (3.1.8)
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and

ε2

∫
D
utφ dx +

∫
D
ζ(ϕ)∇u · ∇φ dx+

1

αε

∫
D
δ(ϕ)uφdx

=
1

ε

∫
D
δ(ϕ)Qφdx−

∫
D
ζ(ϕ)φ dx, ∀φ ∈ H1(D), (3.1.9)

where

K(D) :=
{
ρ ∈ H1(D)

∣∣ |ρ| ≤ 1 in D
}
,

X1 :=
{
φ ∈ L∞(0, T ;L∞(D))

∣∣ ∇φ ∈ L2(0, T ;H1(D) ∩ L∞(D)), φt ∈ L2(0, T ;H1(D))
}
,

and

X2 := H1(0, T ;L2(D)) ∩ L2(0, T ;H1(D)).

3.2 Existence of a solution to PDI for D ⊂ R2

In this section we restrict D ⊂ R2 and show the existence of a solution to the regularised

system PDI . This section is inspired by [38]; we closely follow many of the proofs therein.

The plan of this section is as follows. We first regularise the system by a parameter

γ > 0 to yield PDIγ . This regularisation is performed for a number of reasons. It first

removes the degeneracy in the coefficients of (3.1.6), by introducing regularised versions

of the weight functions ζ and δ. Secondly, the complex nature of (3.1.1) is reduced to

a standard parabolic equation. The first step in the proof is to show the existence of a

solution (ϕγ , uγ) to a regularised system, PDIγ , introduced later. We then derive bounds

on ϕγ and uγ , which allow us to show that the solution (ϕγ , uγ) is unique, and that ϕγ

converges to ϕ and uγ converges to u as γ → 0, where (ϕ, u) solve PDI .

Definitions

We assume, in Sections 3.2 and 3.3, that D is a bounded convex domain, whose boundary

∂D ∈ C3.

We take 0 < ε ≤ 1 as fixed and we introduce a regularising parameter γ ∈ R, such

that 0 < γ ≤ ε. We define the functions δγ(s), ζγ(s) and χεγ(s) such that

γ ≤ δγ(s) ≤ C, and
γ

2
≤ ζγ(s) ≤ C?, for s ∈ R, (3.2.1)
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δγ(s) :=
2

π
((1 + 2γ)2 − s2), if |s| ≤ 1 + γ, (3.2.2)

ζγ(s) :=
1

2
(1 + 2γ + s), if |s| ≤ 1 + γ, (3.2.3)

and

χεγ(s) :=



β
ε s+ Cw

α max
(
αQ, ‖u0‖L∞(D)

)
, for s ≥ 1 + γ,

0, for s ∈ [−1, 1],

β
ε s− ‖u0‖L∞(D) − C?t

ε2
for s ≤ −1− γ.

(3.2.4)

We fill in the gaps in χεγ by letting it be continuous and monotone over (1, 1 + γ)∪ (−1−

γ,−1). We assume that the initial data is such that

‖u0‖L∞(D) ≤ C, |ϕ0| ≤ 1, and ‖ϕ0‖H2(D) ≤ C. (3.2.5)

We now present a regularised version of (3.1.1) and (3.1.6) together with the associated

boundary and initial conditions (3.1.2), (3.1.3), (3.1.5), and (3.1.7).

Problem PDIγ Find (uγ , ϕγ) such that

εϕγ,t − βε∆ϕγ −
β

ε
ϕγ + χεγ(ϕγ)− Cw

α
uγ = 0, in D × (0, T ), (3.2.6)

∇ϕγ · ν = 0, on ∂D × (0, T ), (3.2.7)

ϕγ(x, 0) = ϕ0, in D, (3.2.8)

ε2uγ,t −∇ · (ζγ(ϕγ)∇uγ) +
1

αε
δγ(ϕγ)uγ =

Q

ε
δγ(ϕγ)− ζγ(ϕγ), in D × (0, T ), (3.2.9)

∇uγ · ν = 0, on ∂D × (0, T ),

(3.2.10)

uγ(x, 0) = u0, in D. (3.2.11)

For use later on we note that multiplying (3.2.6) by a smooth test function ρ, integrating

over D, using integration by parts, and noting (3.2.7) yields

ε

∫
D
ϕγ,tρdx+ βε

∫
D
∇ϕγ · ∇ρ dx− β

ε

∫
D
ϕγρdx+

∫
D
χεγ(ϕγ)ρ dx =

Cw
α

∫
D
uγρ dx,

(3.2.12)

and similarly multiplying (3.2.9) by a smooth test function φ, integrating over D, using
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integration by parts, and noting (3.2.10) yields

ε2

∫
D
uγ,tφ dx+

∫
D
ζγ(ϕγ)∇uγ · ∇φ dx+

1

ε

∫
D
δγ(ϕγ)

(uγ
α
−Q

)
φ dx = −

∫
D
ζγ(ϕγ)φ dx.

(3.2.13)

Theorem 3.2.1 Let X, B and Y be Banach spaces with X ↪→ B ↪→ Y , the injection

X ↪→ B being compact. Assume that the sequence (fk)k∈N is bounded in Lp(0, T ;X) ∩

W s,r(0, T ;Y ), where s > 0 if r ≥ p and where s > 1/r − 1/p if r ≤ p. Then there exists a

subsequence (fkj )j∈N, which converges in Lp(0, T ;B) and in C(0, T ;B) if p =∞.

Proof. See Corollary 5, Section 8 in [70].

Theorem 3.2.2 There exists a solution (uγ , ϕγ) to the system PDIγ .

Proof. This proof follows the proof of Theorem 2.2 in [38].

We use the Leray-Schauder theorem (see, for example, [53], Theorem 11.3). Define

X := L2(0, T ;L2(D))× L2(0, T ;L2(D)),

and

F := X→ X, F (ϕ, u) = (ψ, v),

where (ψ, v) solve an uncoupled linear version of system PDIγ , namely

εψt − βε∆ψ −
β

ε
ψ =

Cw
α
u− χεγ(ϕ), in D × (0, T ), (3.2.14)

ε2vt −∇ · (ζγ(ϕ)∇v) +
1

α
vδγ(ϕ) = −ζγ(ϕ) +Qδγ(ϕ), in D × (0, T ), (3.2.15)

with boundary conditions

∇v · ν = ∇ψ · ν = 0, on ∂D × (0, T ), (3.2.16)

and initial conditions

v(x, 0) = u0, and ψ(x, 0) = ϕ0, in D. (3.2.17)

Note that if ψ = ϕ and v = u (i.e. F has a fixed point), then we recover the system PDIγ .
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We want to show that F is a compact mapping. By standard parabolic theory (and the

properties of δγ , ζγ , and χεγ), we infer that F is well defined and compact. The compactness

follows from Theorem 3.2.1, with p = r = 2, s = 1, X = H1(D), Y = (H1(D))′ and

B = L2(D), since, for every sequence (ϕn, un) that is bounded in X, the corresponding

solutions (ψn, vn) = F (ϕn, un) are bounded in L2(0, T ;H1(D)), with (ψn,t, vn,t) bounded

in L2(0, T ; (H1(D))′). This means that the image (under F ) of a bounded sequence has a

convergent subsequence, and thus F is compact. The notation (H1(D))′ denotes the dual

space of H1(D). Finally, we want to show that there exists a constant C such that

‖(ϕ, u)‖2X :=

∫ T

0

(
‖ϕ‖2L2(D) + ‖u‖2L2(D)

)
dt ≤ C,

holds on the set { (ϕ, u) ∈ X | (ϕ, u) = σF (ϕ, u) for some σ ∈ [0, 1] }.

If we take (3.2.15), multiply it by v, and integrate over D, we achieve

ε2

2

d

dt
‖v‖2L2(D) ≤

∣∣∣∣∫
D
ζγ(ϕ)v dx

∣∣∣∣+Q

∣∣∣∣∫
D
δγ(ϕ)v dx

∣∣∣∣ ≤ C + C‖v‖2L2(D),

where we used Young’s inequality. Following this with Gronwall’s inequality we have, since

σ ≤ 1 and u = σv,

sup
t∈[0,T ]

‖u‖2L2(D) ≤ sup
t∈[0,T ]

‖v‖2L2(D) ≤ C(γ, ε,D, T ).

Similarly for (3.2.14), we multiply by ψ and integrate over D to obtain

ε

2

d

dt
‖ψ‖2L2(D) ≤

β

ε
‖ψ‖2L2(D) +

Cw
α

∣∣∣∣∫
D
uψ dx

∣∣∣∣+

∣∣∣∣∫
D
χεγ(ϕ)ψ dx

∣∣∣∣ .
Since (u, ϕ) ∈ X (and χεγ(ϕ) ≤ C+C|ϕ|), we have χεγ(ϕ) ∈ L2(0, T ;L2(D)). Using Young’s

inequality followed by Gronwall’s inequality we conclude that

sup
t∈[0,T ]

‖ϕ‖2L2(D) ≤ sup
t∈[0,T ]

‖ψ‖2L2(D) ≤ C(γ, ε,D, T ).

We infer from this that, by the Leray-Schauder theorem, F has a fixed point (ϕ, u) ∈ X,

which is a weak solution to system PDIγ .
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The following lemma, Lemma 3.2.3, along with Lemmas 3.2.4 and 3.2.5, will be used

to show uniqueness of the solution (uγ , ϕγ) (see Theorem 3.2.6). Lemmas 3.2.3 and 3.2.4

will then also be used in Lemma 3.2.7 in order to establish a number of stability bounds.

These, along with Theorem 3.2.1, give us the convergence results (3.2.36) - (3.2.44), from

which it follows that a subsequence of (uγ , ϕγ) converges to (u, ϕ) as γ → 0.

Lemma 3.2.3 We have

− ‖u0‖L∞(D) −
C?t

ε2
≤ uγ ≤ max

(
αQ, ‖u0‖L∞(D)

)
, ∀t ∈ (0, T ). (3.2.18)

Proof. This proof uses the techniques used in the proof of Lemma 2.3 in [38].

We show the upper bound first. Setting φ = u+
γ := max(0, uγ − k) in (3.2.13), where

k := max
(
αQ, ‖u0‖L∞(D)

)
, yields

ε2

2

d

dt
‖u+

γ ‖2L2(D) + ‖ [ζγ(ϕγ)]
1
2 ∇u+

γ ‖2L2(D) +
1

αε
‖ [δγ(ϕγ)]

1
2 u+

γ ‖2L2(D)

=
1

ε

(
Q− k

α

)∫
D
u+
γ δγ(ϕγ) dx−

∫
D
u+
γ ζγ(ϕγ) dx ≤ 0.

Integrating over (0, t) yields

ε2

2
‖u+

γ ‖2L2(D) ≤
ε

2
‖u+(x, 0)‖2L2(D) = 0,

and thus uγ ≤ k = max
(
αQ, ‖u0‖L∞(D)

)
.

We now show the lower bound. Setting φ = u−γ := min(0, uγ + C?

ε2
t + ‖u0‖L∞(D)) in

(3.2.13) gives

ε2

∫
D
uγ,tu

−
γ dx+ ‖ [ζγ(ϕγ)]

1
2 ∇u−γ ‖2L2(D) +

1

αε
‖ [δγ(ϕγ)]

1
2 u−γ ‖2L2(D)

≤ 1

ε

(
C?

ε2α
t+

1

α
‖u0‖L∞(D) +Q

)∫
D
u−γ δγ(ϕγ) dx−

∫
D
ζγ(ϕγ)u−γ dx,

and thus, using (3.2.1),

ε2

∫
D
uγ,tu

−
γ dx ≤ 1

ε

(
C?

ε2α
t+

1

α
‖u0‖L∞(D) +Q

)∫
D
u−γ δγ(ϕγ) dx−

∫
D
ζγ(ϕγ)u−γ dx

≤ γ

ε

(
C?

ε2α
t+

1

α
‖u0‖L∞(D) +Q

)∫
D
u−γ dx− C?

∫
D
u−γ dx,



Chapter 3 69

which we re-arrange to give

ε2

2

d

dt

∫
D

(u−γ )2 dx =

∫
D

(
ε2uγ,tu

−
γ + C?u−γ

)
dx

≤ γ

ε

(
C?

ε2α
t+

1

α
‖u0‖L∞(D) +Q

)∫
D
u−γ dx ≤ 0.

Integrating over (0, t) yields

ε2

2
‖u−γ ‖2L2(D) ≤

ε2

2
‖u−0 ‖

2
L2(D) = 0,

and thus uγ ≥ −‖u0‖L∞(D) − C?t
ε2

.

Lemma 3.2.4 We have

|ϕγ | ≤ 1 + γ, (3.2.19)

and ∫ T

0

(
‖ϕγ‖pW 2,p(D)

+ ‖ϕγ,t‖pLp(D)

)
dt ≤ C, for 1 ≤ p <∞. (3.2.20)

Proof. This proof follows the proof of Lemma 2.4 in [38].

We first show that ϕγ ≤ 1 + γ. Setting ρ = ϕ+
γ := max(0, ϕγ − 1− γ) in (3.2.12) and

noting (3.2.4) and (3.2.18), we obtain

ε

2

d

dt
‖ϕ+

γ ‖2L2(D) + βε‖∇ϕ+
γ ‖2L2(D) +

∫
D
χεγ(ϕγ)ϕ+

γ dx

=
β

ε

∫
D
ϕγϕ

+
γ dx+

Cw
α

∫
D
uγϕ

+
γ dx

≤
∫
D

(
β

ε
ϕγ +

Cw
α

max
(
αQ, ‖u0‖L∞(D)

))
ϕ+
γ dx

=

∫
D
χεγ(ϕγ)ϕ+

γ dx.

Where in the final step we use the fact that if ϕγ < 1 + γ then ϕ+
γ = 0.

We now integrate over time. Recalling the initial condition (3.2.8), in which |ϕ0| ≤ 1,

we have

‖ϕ+
γ ‖2L2(D) = 0, for t ≥ 0,

and hence ϕγ ≤ 1 + γ. Now setting ρ = ϕ−γ := min(0, ϕγ + 1 + γ) in (3.2.12), we argue
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similarly to show that ϕγ ≥ −1− γ, and thus |ϕγ | < 1 + γ.

In order to prove the second result, we define

Fγ := εϕγ,t − βε∆ϕγ =
β

ε
ϕγ − χεγ(ϕγ) +

Cw
α
uγ . (3.2.21)

Since |ϕγ | ≤ 1 + γ, γ ≤ ε ≤ 1, recalling (3.2.4), we have |χεγ(ϕγ)| ≤ C for t ∈ [0, T ]. Using

this together with (3.2.18) and (3.2.19) we conclude that

|Fγ | ≤ C, in D × (0, T ). (3.2.22)

Recalling (3.2.5), by parabolic Lp-theory (the result is proved for Dirichlet boundary

conditions in Theorem 9.1 of [63], where a remark is made at the end of Chapter 4,

Section 9, stating that an analogous result holds for Neumann boundary conditions) we

have the result;

∫ T

0

(
‖ϕγ‖pW 2,p(D)

+ ‖ϕγ,t‖pLp(D)

)
dt ≤ C(ε, p, ‖ϕ0‖H2(D)), for 1 ≤ p <∞.

Remark We require the result with p > 2 at the end of Lemma 3.2.7, see (3.2.35), in

order to bound ‖∇ϕγ‖L∞(D).

Lemma 3.2.5 We have

uγ ∈ L2(0, T ;W 1,∞(D)). (3.2.23)

Proof. This proof follows the result that is outlined at the end of the proof of Theorem

2.2 in [38]. From the proof of Theorem 3.2.2 we have that ϕγ , uγ ∈ L2(0, T ;H1(D)),

this combined with (3.2.18) yields that Cwuγ/α − χεγ(ϕγ) ∈ L2(0, T ;H1(D)), and from

parabolic theory (see Theorem 9.1 in [63]), we conclude ϕγ,t ∈ L2(0, T ;H1(D)) and ϕγ ∈

L∞(0, T ;H2(D)) ∩ L2(0, T ;H3(D)). Finally noting (3.2.20), and using parabolic theory,

we have uγ ∈ L2(0, T ;H3(D)) and the desired result follows since H3(D) ↪→W 1,∞(D).

We note that, as mentioned in the proof of Lemma 3.2.4, the parabolic theory result is

proved for Dirichlet boundary conditions in Theorem 9.1 of [63] where a remark is made
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at the end of Chapter 4, Section 9, stating that an analogous result holds for Neumann

boundary conditions.

Theorem 3.2.6 The solution (uγ , ϕγ) to system PDIγ is unique.

Proof. We let the pairs (uγ,1, ϕγ,1) and (uγ,2, ϕγ,2) be solutions to system PDIγ . Let

v := uγ,1 − uγ,2 and ψ := ϕγ,1 − ϕγ,2. We aim to show that v = ψ = 0, for all t ∈ [0, T ).

We set uγ = uγ,1, ϕγ = ϕγ,1, and ρ = ψ in (3.2.12) and then uγ = uγ,2, ϕγ = ϕγ,2, and

ρ = ψ in (3.2.12), we then subtract the resulting equations. Similarly we set uγ = uγ,1,

ϕγ = ϕγ,1, and φ = v in (3.2.13) and then uγ = uγ,2, ϕγ = ϕγ,2, and φ = v in (3.2.13), we

then subtract the resulting equations.

Adding these two resulting equations, we arrive at

ε

2

d

dt

(
‖ψ‖2L2(D) + ε‖v‖2L2(D)

)
+ βε‖∇ψ‖2L2(D) + ‖ [ζγ(ϕγ,1)]

1
2 ∇v‖2L2(D)

+
1

αε
‖ [δγ(ϕγ,1)]

1
2 v‖2L2(D) +

∫
D

(χεγ(ϕγ,1)− χεγ(ϕγ,2))ψ dx

=
β

ε
‖ψ‖2L2(D) +

(
Cw
α
− 1

2

)∫
D
ψv dx− 1

2

∫
D
ψ∇uγ,2 · ∇v dx

− 2Q

επ

∫
D
ψv(ϕγ,1 + ϕγ,2) dx+

2

επα

∫
D
ψvuγ,2(ϕγ,1 + ϕγ,2) dx.

We note that (3.2.1) gives ζγ ≥ γ
2 , and that the monotonicity of χεγ gives (χεγ(ϕγ,1) −

χεγ(ϕγ,2))ψ ≥ 0. Using these facts, together with Young’s inequality, Hölder’s inequality

and Lemmas 3.2.3 and 3.2.4, we arrive at

ε

2

d

dt

(
‖ψ‖2L2(D) + ε‖v‖2L2(D)

)
+ βε‖∇ψ‖2L2(D) +

γ

2
‖∇v‖2L2(D) +

1

αε
‖ [δγ(ϕγ,1)]

1
2 v‖2L2(D)

≤ C‖ψ‖2L2(D) + C‖v‖2L2(D) +
1

2
‖∇uγ,2‖L∞(D)‖ψ‖L2(D)‖∇v‖L2(D)

≤ C

(
1 +

1

γ
‖∇uγ,2‖2L∞(D)

)
‖ψ‖2L2(D) + C‖v‖2L2(D) +

γ

4
‖∇v‖2L2(D)

and thus

ε

2

d

dt

(
‖ψ‖2L2(D) + ε‖v‖2L2(D)

)
+βε‖∇ψ‖2L2(D) +

γ

4
‖∇v‖2L2(D) +

1

αε
‖ [δγ(ϕγ,1)]

1
2 v‖2L2(D)

≤ C

(
1 +

1

γ
‖∇uγ,2‖2L∞(D)

)
‖ψ‖2L2(D) + C‖v‖2L2(D).

We now use Gronwall’s inequality together with (3.2.23) and the fact that ψ(x, 0) = 0 and
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v(x, 0) = 0, to conclude that ψ = v = 0, for all t ∈ [0, T ).

The following lemma gives the bounds required to show the convergence, as γ → 0, of

a subsequence of (uγ , ϕγ) to functions (u, ϕ) that we show satisfy PDI .

Lemma 3.2.7 We have

sup
t∈[0,T ]

‖∇uγ‖2L2(D) + sup
t∈[0,T ]

‖ [ζγ(ϕγ)]
1
2 ∇uγ‖2L2(D) + sup

t∈[0,T ]
‖ϕγ,t‖2L2(D)

+

∫ T

0

(
‖uγ,t‖2L2(D) + ‖ [ζγ(ϕγ)]

1
2 D2uγ‖2L2(D)

+
1

ε
‖ [δγ(ϕγ)]

1
2 ∇uγ‖2L2(D) + ‖∇ϕγ,t‖2L2(D)

)
dt ≤ C,

uniformly in γ.

Proof. This proof follows the proof of Lemma 2.5 in [38].

Noting that

ε2

2

d

dt
‖∇uγ‖2L2(D) = ε2

∫
D
∇uγ · ∇uγ,t dx,

and using (3.2.9) and (3.2.10), we have

ε2

2

d

dt
‖∇uγ‖2L2(D) =

∫
D
∇uγ · ∇ (∇ · (ζγ(ϕγ)∇uγ)) dx︸ ︷︷ ︸

(1)

− 1

αε

∫
D
∇uγ · ∇(δγ(ϕγ)uγ) dx︸ ︷︷ ︸

(2)

+

∫
D

∆uγζγ(ϕγ) dx︸ ︷︷ ︸
(3)

+
Q

ε

∫
D
∇uγ · ∇δγ(ϕγ) dx︸ ︷︷ ︸

(4)

.

We consider the terms (1) - (4) individually, starting by splitting term (1) into two terms

(1) = −
2∑

i,k=1

∫
D
uγ,xk,xi(ζγ(ϕγ)uγ,xk)xi dx︸ ︷︷ ︸

(11)

+
2∑

i,k=1

∫
∂D

uγ,xi(ζγ(ϕγ)uγ,xk)xiνk dx︸ ︷︷ ︸
(12)

.

The subscripts of xi or xk denote differentiation with respect to the ith or kth coordinate.

Bounding (11) first, we recall the definition of Fγ , (3.2.21), and the bound on it given in
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(3.2.22). Using this, we compute

(11) = −
∫
D
ζγ(ϕγ)|D2uγ |2 dx− 1

2

2∑
i,k=1

∫
D
uγ,xk,xiϕγ,xiuxk dx

= −‖ [ζγ(ϕγ)]
1
2 D2uγ‖2L2(D) −

1

4

2∑
i=1

∫
D
ϕγ,xi(|∇uγ |2)xi dx

= −‖ [ζγ(ϕγ)]
1
2 D2uγ‖2L2(D) +

1

4

∫
D

∆ϕγ |∇uγ |2 dx

= −‖ [ζγ(ϕγ)]
1
2 D2uγ‖2L2(D) +

1

4β

∫
D
ϕγ,t|∇uγ |2 dx− 1

4εβ

∫
D
Fγ |∇uγ |2 dx

≤ −‖ [ζγ(ϕγ)]
1
2 D2uγ‖2L2(D) +

1

4β

∫
D
ϕγ,t|∇uγ |2 dx+ C‖∇uγ‖2L2(D).

Now considering (12), in order to investigate the boundary integral, we will choose a

counter-clockwise arc-length parametrisation of ∂D, denoted by σ : [0, L] → ∂D. This is

such that σ(0) = σ(L). For s ∈ [0, L], we let

τ (s) := σ′(s), and ν(s) := (τ2(s),−τ1(s))

be a unit tangent and the outward unit normal to ∂D at the point σ(s). Recall the Frenet

formulae

d

ds
τ (s) = κ(s)ν(s), and

d

ds
ν(s) = −κ(s)τ (s), (3.2.24)

where κ(s) is the curvature of ∂D at σ(s) with respect to ν. Since D is convex, we have

κ ≤ 0. We also introduce the short hand

fτ := ∇f · τ , and fν := ∇f · ν.

Differentiating (3.2.10) in the τ direction and noting (3.2.24) gives

2∑
i,k=1

uγ,xi,xkνkτi = κuγ,τ . (3.2.25)

Using this, and noting both

2∑
k=1

uγ,xkνk = uγ,ν = 0 and ∇uγ = uγ,νν + uγ,ττ = uγ,ττ , we
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have

(12) =
1

2

2∑
i,k=1

∫
∂D

uγ,xiϕγ,xiuγ,xkνk dx+

2∑
i,k=1

∫
∂D

uγ,xiζγ(ϕγ)uγ,xi,xkνk dx

=
2∑

i,k=1

∫
∂D

ζγ(ϕγ)uγ,τuγ,xi,xkνkτi dx =

∫
∂D

ζγ(ϕγ)(uγ,τ )2κdx ≤ 0.

Combining the bounds for (11) and (12), we have

(1) ≤ −‖ [ζγ(ϕγ)]
1
2 D2uγ‖2L2(D) +

1

4β

∫
D
ϕγ,t|∇uγ |2 dx+ C‖∇uγ‖2L2(D).

For term (2) we use the bound on the L∞ norms of uγ and ϕγ , along with Young’s

inequality, to compute

(2) = − 1

αε
‖ [δγ(ϕγ)]

1
2 ∇uγ‖2L2(D) −

1

αε

∫
D
∇δγ(ϕγ) · ∇uγuγ dx

= − 1

αε
‖ [δγ(ϕγ)]

1
2 ∇uγ‖2L2(D) +

4

επα

∫
D
ϕγuγ∇ϕγ · ∇uγ dx

≤ C − 1

αε
‖ [δγ(ϕγ)]

1
2 ∇uγ‖2L2(D) + C‖∇uγ‖2L2(D) + C‖∇ϕγ‖2L2(D).

Upon noting that we have ζγ ≤ C, we bound term (3) by an application of Young’s

inequality,

(3) ≤ C +
1

2
‖ [ζγ(ϕγ)]

1
2 D2uγ‖2L2(D).

Similarly, for term (4), we have

(4) ≤ Q

2
‖∇uγ‖2L2(D) +

Q

2ε2
‖∇δγ(ϕγ)‖2L2(D) ≤ C‖∇uγ‖

2
L2(D) + C‖∇ϕγ‖2L2(D).

Combining the above bounds for (1) - (4) yields

ε2

2

d

dt
‖∇uγ‖2L2(D)+

1

2
‖ [ζγ(ϕγ)]

1
2 D2uγ‖2L2(D) +

1

αε
‖ [δγ(ϕγ)]

1
2 ∇uγ‖2L2(D) (3.2.26)

≤ C + C‖∇uγ‖2L2(D) + C‖∇ϕγ‖2L2(D) +
1

4β

∫
D
ϕγ,t|∇uγ |2 dx.
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Setting φ = uγ,t in (3.2.13) gives

ε2‖uγ,t‖2L2(D) +

∫
D
ζγ(ϕγ)∇uγ · ∇uγ,t dx+

1

αε

∫
D
δγ(ϕγ)uγuγ,t dx

=
Q

ε

∫
D
δγ(ϕγ)uγ,t dx−

∫
D
ζγ(ϕγ)uγ,t dx.

Once again using that ‖uγ‖L∞(D) ≤ C, ‖δγ(ϕγ)‖L∞(D) ≤ C, and ‖ζγ(ϕγ)‖L∞(D) ≤ C,

Young’s inequality gives us

ε2‖uγ,t‖2L2(D) ≤ C +
ε2

2
‖uγ,t‖2L2(D) −

1

2

∫
D
ζγ(ϕγ)

d

dt
|∇uγ |2 dx.

so that

ε2

2
‖uγ,t‖2L2(D) ≤ C +

1

4

∫
D
ϕγ,t|∇uγ |2 dx− 1

2

d

dt

∫
D
ζγ(ϕγ)|∇uγ |2 dx,

and thus

ε2

2
‖uγ,t‖2L2(D) +

1

2

d

dt
‖ [ζγ(ϕγ)]

1
2 ∇uγ‖2L2(D) ≤ C +

1

4

∫
D
ϕγ,t|∇uγ |2 dx.

Combining this with (3.2.26) yields

ε2

2
‖uγ,t‖2L2(D)+

1

2

d

dt
‖ [ζγ(ϕγ)]

1
2 ∇uγ‖2L2(D) +

ε2

2

d

dt
‖∇uγ‖2L2(D) +

1

2
‖ [ζγ(ϕγ)]

1
2 D2uγ‖2L2(D)

+
1

αε
‖ [δγ(ϕγ)]

1
2 ∇uγ‖2L2(D)

≤ C + C‖∇uγ‖2L2(D) + C‖∇ϕγ‖2L2(D) + (
1

4β
+

1

4
)

∫
D
ϕγ,t|∇uγ |2 dx.

(3.2.27)

We now differentiate (3.2.6) with respect to t, multiply by ϕγ,t, and integrate over D

to obtain

ε

2

d

dt
‖ϕγ,t‖2L2(D) + βε‖∇ϕγ,t‖2L2(D) +

∫
D

(χεγ)′(ϕγ)|ϕγ,t|2 dx

≤ C‖ϕγ,t‖2L2(D) +
Cw
α

∫
D
|uγ,tϕγ,t|dx.
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The fact that (χεγ)′(ϕγ) ≥ 0, along with Young’s inequality, gives

ε

2

d

dt
‖ϕγ,t‖2L2(D) + βε‖∇ϕγ,t‖2L2(D) ≤ C‖ϕγ,t‖

2
L2(D) +

ε2

4
‖uγ,t‖2L2(D).

We add the above equation to (3.2.27),

ε

2

d

dt
‖ϕγ,t‖2L2(D)+

1

2

d

dt
‖ [ζγ(ϕγ)]

1
2 ∇uγ‖2L2(D) +

ε2

2

d

dt
‖∇uγ‖2L2(D) +

ε2

4
‖uγ,t‖2L2(D)

+
1

2
‖ [ζγ(ϕγ)]

1
2 D2uγ‖2L2(D) +

1

αε
‖ [δγ(ϕγ)]

1
2 ∇uγ‖2L2(D) + βε‖∇ϕγ,t‖2L2(D)

≤ C + C‖ϕγ,t‖2L2(D) + C‖∇uγ‖2L2(D) + C‖∇ϕγ‖2L2(D)

+ (
1

4β
+

1

4
)

∫
D
ϕγ,t|∇uγ |2 dx. (3.2.28)

We now derive a bound for the last term in (3.2.28). Using (3.2.9), we write

ε2

2

d

dt
‖ϕγ |∇uγ |‖2L2(D) = ε2

∫
D
ϕγϕγ,t|∇uγ |2 dx+ ε2

∫
D
ϕ2
γ∇uγ · ∇uγ,t dx

= ε2

∫
D
ϕγϕγ,t|∇uγ |2 dx− 1

αε

∫
D
ϕ2
γ∇uγ · ∇(δγ(ϕγ)uγ) dx︸ ︷︷ ︸

(1)

+

∫
D
ϕ2
γ∇uγ · ∇(−ζγ(ϕγ) +

Q

ε
δγ(ϕγ)) dx︸ ︷︷ ︸

(2)

+

∫
D
ϕ2
γ∇uγ · ∇(∇ · (ζγ(ϕγ)∇uγ)) dx︸ ︷︷ ︸

(3)

.

Bounding each of these terms individually, we start with (1), and use Young’s inequality

along with the bounds on the L∞ norms of uγ and ϕγ to yield

(1) = − 1

αε

∫
D
ϕ2
γ

(
δγ(ϕγ)|∇uγ |2 −

4

π
uγϕγ∇ϕγ · ∇uγ

)
dx

≤ C‖∇uγ‖2L2(D) + C‖∇ϕγ‖2L2(D). (3.2.29)

Term (2) is similar,

(2) =

∫
D
ϕ2
γ∇uγ ·

(
−1

2
∇ϕγ −

4Q

επ
ϕγ∇ϕγ

)
dx

≤ C‖∇uγ‖2L2(D) + C‖∇ϕγ‖2L2(D). (3.2.30)
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We split term (3) into three terms

(3) = −
2∑

i,k=1

∫
D

(ϕ2
γ)xkuγ,xi(ζγ(ϕγ)uγ,xk)xi dx︸ ︷︷ ︸

(31)

−
2∑

i,k=1

∫
D
ϕ2
γuγ,xi,xk(ζγ(ϕγ)uγ,xk)xi dx︸ ︷︷ ︸

(32)

+
2∑

i,k=1

∫
∂D

ϕ2
γuγ,xi(ζγ(ϕγ)uγ,xk)xiνk dx︸ ︷︷ ︸

(33)

.

Starting with (31), we use Young’s inequality, with a ∈ R, a > 0, which will be determined

later, to give (using the bound on the L∞ norm of ϕγ)

(31) = −
2∑

i,k=1

∫
D
ϕγϕγ,xkuγ,xiϕγ,xiuγ,xk dx− 2

2∑
i,k=1

∫
D
ϕγϕγ,xkuγ,xiuγ,xk,xiζγ(ϕγ) dx

≤ C
∫
D
|∇ϕγ |2|∇uγ |2 dx+ C

∫
D
|∇ϕγ ||∇uγ ||D2uγ |ζγ(ϕγ) dx

≤ C
∫
D
|∇ϕγ |2|∇uγ |2 dx+ a‖ [ζγ(ϕγ)]

1
2 D2uγ‖2L2(D).

For term (32), we use (3.2.21) and the bounds on the L∞ norms of Fγ and ϕγ to obtain

(32) = −
∫
D
ϕ2
γζγ(ϕγ)|D2uγ |2 dx− 1

2

2∑
i,k=1

∫
D
ϕ2
γuγ,xi,xkuγ,xkϕγ,xi dx

≤ −1

4

2∑
i=1

∫
D
ϕ2
γ(|∇uγ |2)xiϕγ,xi dx

≤ C
∫
D
|ϕγ ||∇ϕγ |2|∇uγ |2 dx+

1

4

∫
D
ϕ2
γ |∇uγ |2∆ϕγ dx

≤ C
∫
D
|∇ϕγ |2|∇uγ |2 dx+

1

4β

∫
D
ϕ2
γ |∇uγ |2ϕγ,t dx− 1

4βε

∫
D
ϕ2
γFγ |∇uγ |2 dx

≤ C
∫
D
|∇ϕγ |2|∇uγ |2 dx+ C

∫
D
|ζγ(ϕγ)|∇uγ |2| |ϕγ,t|dx+ C‖∇uγ‖2L2(D).

For term (33) we use the fact that κ ≤ 0, (3.2.10), and (3.2.25), to estimate that

(33) =
1

2

2∑
i,k=1

∫
∂D

ϕ2
γuγ,xiϕγ,xiuγ,xkνk dx+

2∑
i,k=1

∫
∂D

ϕ2
γuγ,xiζγ(ϕγ)uγ,xk,xiνk dx

=
2∑

i,k=1

∫
∂D

ϕ2
γζγ(ϕγ)uγ,xk,xiuγ,τνkτi dx

=

∫
∂D

ϕ2
γζγ(ϕγ)(uγ,τ )2κdx ≤ 0.
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Combining the bounds (31) - (33) gives

(3) ≤ C

∫
D
|∇ϕγ |2|∇uγ |2 dx+ a‖ [ζγ(ϕγ)]

1
2 D2uγ‖2L2(D)

+ C‖∇uγ‖2L2(D) + C

∫
D
|ζγ(ϕγ)|∇uγ |2| |ϕγ,t| dx,

while combining the bounds for (1) - (3) gives

ε2

2

d

dt
‖ϕγ |∇uγ |‖2L2(D) ≤ C‖∇ϕγ‖2L2(D) + C‖∇uγ‖2L2(D) + a‖ [ζγ(ϕγ)]

1
2 D2uγ‖2L2(D)

+ C

∫
D
|∇ϕγ |2|∇uγ |2 dx+ C

∫
D
ζγ(ϕγ)|∇uγ |2 |ϕγ,t| dx

+ ε2

∫
D
ϕγϕγ,t|∇uγ |2 dx. (3.2.31)

Note that if ã := (1 + 2γ), then

ϕγ = 2ζγ(ϕγ)− ã.

Substituting this into the last term of (3.2.31) yields

ε2

2

d

dt
‖ϕγ |∇uγ |‖2L2(D) ≤ C‖∇ϕγ‖2L2(D) + C‖∇uγ‖2L2(D) + a‖ [ζγ(ϕγ)]

1
2 D2uγ‖2L2(D)

+ C

∫
D
|∇ϕγ |2|∇uγ |2 dx+ C

∫
D
ζγ(ϕγ)|∇uγ |2 |ϕγ,t| dx

− ε2ã

∫
D
ϕγ,t|∇uγ |2 dx. (3.2.32)

Dividing (3.2.32) by β̃, where β̃ := 1
1

4β
+ 1

4

, and multiplying (3.2.28) by ε2ã, we add these

equations to yield

ε2

2β̃

d

dt
‖ϕγ |∇uγ |‖2L2(D)+

ε3ã

2

d

dt
‖ϕγ,t‖2L2(D) +

ε2ã

2

d

dt
‖ [ζγ(ϕγ)]

1
2 ∇uγ‖2L2(D) +

ε4ã

2

d

dt
‖∇uγ‖2L2(D)

+
ε4ã

4
‖uγ,t‖2L2(D) +

3ε2ã

4
‖ [ζγ(ϕγ)]

1
2 D2uγ‖2L2(D)

+
εã

α
‖ [δγ(ϕγ)]

1
2 ∇uγ‖2L2(D) + βε3ã‖∇ϕγ,t‖2L2(D)

≤ C + C‖ϕγ,t‖2L2(D) + C‖∇ϕγ‖2L2(D) + C‖∇uγ‖2L2(D)

+ C

∫
D
|∇ϕγ |2|∇uγ |2 dx+ C

∫
D
ζγ(ϕγ)|∇uγ |2 |ϕγ,t| dx. (3.2.33)

where we have chosen a = ε2ãβ̃
4 . In order to bound the last term in (3.2.33) we use the
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fact that, in R2, ‖f‖L2(D) ≤ C‖f‖W 1,1(D). Thus, using the bound on the L∞ norm of ϕγ ,

we have

∫
D
ζγ(ϕγ)|∇uγ |2 |ϕγ,t|dx ≤ C‖ϕγ,t‖L2(D)‖ζγ(ϕγ)|∇uγ |2‖L2(D)

≤ C‖ϕγ,t‖L2(D)‖ζγ(ϕγ)|∇uγ |2‖W 1,1(D)

≤ C‖ϕγ,t‖L2(D)

∫
D
ζγ(ϕγ)|∇uγ |2 dx

+ C‖ϕγ,t‖L2(D)

∫
D
|∇ϕγ ||∇uγ |2 dx

+ C‖ϕγ,t‖L2(D)

∫
D
ζγ(ϕγ)|∇uγ ||D2uγ |dx

≤ C
(

1 + ‖ϕγ,t‖2L2(D) + ‖∇ϕγ‖2L∞(D)

)
‖∇uγ‖2L2(D)

+
ε2ã

8
‖ [ζγ(ϕγ)]

1
2 D2uγ‖2L2(D).

Using this, we write (3.2.33) as

ε2

2β̃

d

dt
‖ϕγ |∇uγ |‖2L2(D)+

ε3ã

2

d

dt
‖ϕγ,t‖2L2(D) +

ε2ã

2

d

dt
‖ [ζγ(ϕγ)]

1
2 ∇uγ‖2L2(D) +

ε4ã

2

d

dt
‖∇uγ‖2L2(D)

+
ε4ã

4
‖uγ,t‖2L2(D) +

5ε2ã

8
‖ [ζγ(ϕγ)]

1
2 D2uγ‖2L2(D)

+
εã

α
‖ [δγ(ϕγ)]

1
2 ∇uγ‖2L2(D) + βε3ã‖∇ϕγ,t‖2L2(D)

≤ C + C
(

1 + ‖ϕγ,t‖2L2(D) + ‖∇ϕγ‖2L∞(D)

)
‖∇uγ‖2L2(D)

+ C‖ϕγ,t‖2L2(D) + C‖∇ϕγ‖2L2(D). (3.2.34)

Since W 2,p(D) ↪→ C1(D) (where p > 2), Lemma 3.2.4 gives that

∫ T

0

(
1 + ‖ϕγ,t‖2L2(D) + ‖∇ϕγ‖2L∞(D)

)
dt ≤ C (3.2.35)

uniformly with respect to γ. We use Gronwall’s inequality on (3.2.34) to yield the required

result.

By Theorem 3.2.1, with p = r = 2, s = 1, X = H2(D), Y = B = H1(D), Theorem

3.2.1 with p = r = 2, s = 1, X = H1(D), Y = B = L2(D), and Lemmas 3.2.3, 3.2.4, and
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3.2.7, there exist subsequences, with γ → 0 (after re-indexing), such that

ϕγ ⇀ ϕ? in L2(0, T ;H2(D)), (3.2.36)

ϕγ,t ⇀ ϕ?t in L2(0, T ;H1(D)), (3.2.37)

ϕγ → ϕ? in L2(0, T ;H1(D)), (3.2.38)

∇uγ ⇀ ∇u? in L2(0, T ; [L2(D)]2), (3.2.39)

uγ,t ⇀ u?t in L2(0, T ;L2(D)), (3.2.40)

uγ → u? in L2(0, T ;L2(D)). (3.2.41)

Combining (3.2.36) with Agmon’s inequality, [46], ‖f‖C0(D) ≤ ‖f‖
1
2

L2(D)
‖f‖

1
2

H2(D)
, we have

ϕγ → ϕ? in L2(0, T ;C0(D)), (3.2.42)

ζγ(ϕγ)→ ζ(ϕ?) in L2(0, T ;C0(D)). (3.2.43)

Noting from (3.2.2) that as γ → 0,

|δγ(ϕγ)− δ(ϕ?)| ≤ 8γ

π
|1 + γ|+ 2

π
|ϕ? − ϕγ ||ϕ? + ϕγ | → 0

we conclude that

δγ(ϕγ)→ δ(ϕ?) in L2(0, T ;C0(D)). (3.2.44)

Convergences (3.2.42) and (3.2.41), together with (3.2.8) and (3.2.11), imply that

ϕ?(x, 0) = ϕ0, and u?(x, 0) = u0,

while Lemmas 3.2.3, 3.2.4 and 3.2.7 imply that |ϕ?| ≤ 1,

ϕ? ∈ L2(0, T ;H2(D) ∩W 1,∞(D)), ϕ?t ∈ L2(0, T ;H1(D)), (3.2.45)

u? ∈ L∞(0, T ;H1(D)) ∩H1(0, T ;L2(D)). (3.2.46)
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and, since in the limit as γ → 0 we have C? = 1, we write

−‖u0‖L∞(D) −
t

ε2
≤ u? ≤ max

(
αQ, ‖u0‖L∞(D)

)
, ∀t ∈ (0, T ).

Theorem 3.2.8 We have that ϕ? and u? solve the following system, for almost every

t ∈ (0, T ), and for all ρ ∈ K(D),

∫
D
ϕ?t (ρ− ϕ?) dx+ β

∫
D
∇ϕ? · ∇(ρ− ϕ?) dx− β

ε2

∫
D
ϕ?(ρ− ϕ?) dx (3.2.47)

− Cw
αε

∫
D
u?(ρ− ϕ?) dx ≥ 0,

and for all φ ∈ H1(D),

ε2

∫
D
u?tφ dx+

∫
D
ζ(ϕ?)∇u? · ∇φ dx+

1

αε

∫
D
δ(ϕ?)u?φ dx (3.2.48)

=
Q

ε

∫
D
δ(ϕ?)φ dx−

∫
D
ζ(ϕ?)φ dx.

Proof. This proof follows arguments made on page 1336 of [38].

We multiply (3.2.6) by ρ− ϕγ , where ρ ∈ K(D). Integrating this over D yields

ε

∫
D
ϕγ,t(ρ− ϕγ) dx+ βε

∫
D
∇ϕγ · ∇(ρ− ϕγ) dx− β

ε

∫
D
ϕγ(ρ− ϕγ) dx

− Cw
α

∫
D
uγ(ρ− ϕγ) dx = −

∫
D
χεγ(ϕγ)(ρ− ϕγ) dx

= −
∫
D

(χεγ(ρ)− χεγ(ϕγ))(ρ− ϕγ) dx ≥ 0, (3.2.49)

where we have used that χεγ(ρ) = 0 and χεγ is non-decreasing. Using (3.2.37), (3.2.38), and

(3.2.41), (3.2.49) converges to (3.2.47) as γ → 0 for almost every t ∈ (0, T ).

Using (3.2.39) - (3.2.41), (3.2.43), (3.2.44), and (3.2.13), we see that u? solves (3.2.48).

Corollary 3.2.8.1 There exist solutions ϕ and u to the weak form PDI . These solutions

are such that

|ϕ| ≤ 1, ϕ ∈ L2(0, T ;H2(D) ∩W 1,∞(D)), ϕt ∈ L2(0, T ;H1(D)), (3.2.50)
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− ‖u0‖L∞(D) −
t

ε2
≤ u ≤ max

(
αQ, ‖u0‖L∞(D)

)
, ∀t ∈ (0, T ), (3.2.51)

and

u ∈ L∞(0, T ;H1(D)) ∩H1(0, T ;L2(D)). (3.2.52)

Proof. Theorem 3.2.2 gives us the existence of (ϕγ , uγ), Theorem 3.2.6 gives us uniqueness,

and Theorem 3.2.8 tells us that (ϕγ , uγ) → (ϕ?, u?) as γ → 0, where (ϕ?, u?) solve the

system (3.2.47) with (3.2.48). The rest of the corollary follows from (3.2.45) and (3.2.46).

3.3 Uniqueness of a solution to PDI for D ⊂ R2

In this section we restrict D ⊂ R2 and show that the solution (u, ϕ) to the regularised

system PDI is unique. Recall that we assume, in Sections 3.2 and 3.3, that D is a bounded

convex domain, whose boundary ∂D ∈ C3.

In order to prove uniqueness we assume additional regularity on ϕ,

∆ϕ ∈ L1(0, T ;L∞(D)). (3.3.1)

We also assume additional regularity on u, namely

∇u ∈ L∞(0, T ;L∞(D)). (3.3.2)

We let ϕ1 and ϕ2 be solutions to (3.1.8), and let ψ := ϕ1 − ϕ2. Similarly, we let u1

and u2 be solutions to (3.1.9) and define w := u1 − u2. We also let

ϕ̄ :=
ϕ1 + ϕ2

2
, ζ̄(ϕ1, ϕ2) :=

ζ(ϕ1) + ζ(ϕ2)

2
, and δ̄(ϕ1, ϕ2) :=

δ(ϕ1) + δ(ϕ2)

2
.

The uniqueness result is presented later in Theorem 3.3.3, after we establish a result in

Lemma 3.3.2. In the first stage of the proof of Theorem 3.3.3, see (3.3.12), we see that we

need to bound

∫
D
ψw dx. To this end we introduce a function v that solves the backwards

degenerate parabolic equation over the time interval (0, t0),

− ε2vt −∇ · (ζ̄(ϕ1, ϕ2)∇v) +
1

αε
δ̄(ϕ1, ϕ2)v = ψ, in D, (3.3.3)



Chapter 3 83

with v(x, t0) = 0 in D, and ζ̄(ϕ1, ϕ2)∇v · ν = 0 on ∂D.

The reason that we take v to be the solution of the above backwards degenerate

parabolic equation is because later on, in Lemma 3.3.2, we multiply (3.3.3) by w, inte-

grate over D × (0, t0), and use integration by parts, with respect to t, on the first term.

This then enables us to use (3.1.9) with u = u1 and ϕ = ϕ1, and with u = u2 and ϕ = ϕ2,

to bound

∫ t0

0

∫
D
ψw dx dt by norms of ψ.

The following lemma is the first step in bounding

∫ t0

0

∫
D
ψw dxdt, in particular we

use its result in the proof of Lemma 3.3.2.

Lemma 3.3.1 There exists a unique v solving (3.3.3), and we have

sup
t∈[0,t0]

‖v‖2L2(D) ≤ C
∫ t0

0
‖ψ‖2L2(D) dt, (3.3.4)

and

sup
t∈[0,t0]

‖∇v‖2L2(D) ≤ C
∫ t0

0
‖ψ‖2H1(D) dt. (3.3.5)

Proof. This proof follows the techniques in the proof of Lemma 3.3 and arguments of

equation (3.6) in Theorem 3.1 in [38].

In order to conveniently prove the existence and uniqueness of v (this is convenient as

it allows us to directly follow the techniques used in Section 3.2), we formulate (3.3.3) as

an (equivalent) forward equation. This is given by

ε2vt −∇ · (ζ̄(ϕ1, ϕ2)∇v) +
1

αε
δ̄(ϕ1, ϕ2)v = ψ, in D × (0, t0), (3.3.6)

with v(x, 0) = 0 in D and ζ̄(ϕ1, ϕ2)∇v · ν = 0 on ∂D. Here we abuse notation in writing

v, ϕ, and ψ for v(t0 − t), ϕ(t0 − t), and ψ(t0 − t).

We show uniqueness first, using a simple energy argument. Let w̃ := v1 − v2 where v1

and v2 are solutions to (3.3.6). Subtracting (3.3.6) with v = v2 from (3.3.6) with v = v1,

multiplying by w̃ and integrating over D, we have

ε2

2

d

dt
‖w̃‖2L2(D) + ‖

[
ζ̄(ϕ1, ϕ2)

] 1
2 ∇w̃‖2L2(D) +

1

αε
‖
[
δ̄(ϕ1, ϕ2)

] 1
2 w̃‖2L2(D) = 0,

after integrating over (0, t0) and recalling that v(x, 0) = 0, it follows that w̃ = 0, and thus
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v1 = v2.

To show existence we regularise (3.3.6) with γ ∈ R, γ ∈ (0, 1]. The regularised system

is then

ε2vγt −∇ · ((ζ̄(ϕ1, ϕ2) + γ)∇vγ) +
1

α
(ε−1δ̄(ϕ1, ϕ2) + γ)vγ = ψ, on D × (0, t0), (3.3.7)

with vγ(x, 0) = 0 and ∇vγ · ν = 0 on ∂D. Since this is a parabolic equation with non-

degenerate coefficients, we have existence and uniqueness of vγ for some time (0, t0) (see,

for example, Theorem 5.3 in [63]).

We want to take γ → 0 in order to show the existence of a solution to (3.3.3). First we

derive an estimate in the L2 norm by multiplying (3.3.7) by vγ , integrating over D, using

Hölder’s inequality, and then using Gronwall’s inequality, to give

sup
t∈[0,t0]

‖vγ‖2L2(D) ≤ C
∫ t0

0
‖ψ‖2L2(D) dt. (3.3.8)

We now want an estimate in the H1 norm. Using (3.3.7), we calculate that

ε2

2

d

dt
‖∇vγ‖2L2(D) = ε2

∫
D
∇vγ · ∇vγt dx

=

∫
D
∇vγ · ∇ψ dx︸ ︷︷ ︸

(1)

+

∫
D
∇vγ · ∇(∇ · ((ζ̄(ϕ1, ϕ2) + γ)∇vγ)) dx︸ ︷︷ ︸

(2)

− 1

α

∫
D
∇vγ · ∇

(
(ε−1δ̄(ϕ1, ϕ2) + γ)vγ

)
dx︸ ︷︷ ︸

(3)

.

Considering each term individually, we start with (1) and use Hölder’s inequality to obtain

(1) ≤ ‖∇vγ‖L2(D)‖∇ψ‖L2(D) ≤ ‖vγ‖H1(D)‖ψ‖H1(D).

We split term (2) into two integrals, which we bound separately

(2) ≤ −
2∑

i,k=1

∫
D
vγxi,xk((ζ̄(ϕ1, ϕ2) + γ)vγxk)xi dx︸ ︷︷ ︸

(21)

+

2∑
i,k=1

∫
∂D

vγxi((ζ̄(ϕ1, ϕ2) + γ)vγxk)xiνk dx︸ ︷︷ ︸
(22)

.
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We bound (21) as follows, noting that ∇ϕ · ν = 0 on ∂D,

(21) = −‖
[
(ζ̄(ϕ1, ϕ2) + γ)

] 1
2 D2vγ‖2L2(D) −

2∑
i,k=1

∫
D
vγxi,xk(ζ̄(ϕ1, ϕ2))xiv

γ
xk

dx

= −‖
[
(ζ̄(ϕ1, ϕ2) + γ)

] 1
2 D2vγ‖2L2(D) −

1

2

2∑
i=1

∫
D

(|∇vγ |2)xi(ζ̄(ϕ1, ϕ2))xi dx

= −‖
[
(ζ̄(ϕ1, ϕ2) + γ)

] 1
2 D2vγ‖2L2(D) +

1

2

∫
D
|∇vγ |2∆ζ̄(ϕ1, ϕ2) dx

≤ −‖
[
(ζ̄(ϕ1, ϕ2) + γ)

] 1
2 D2vγ‖2L2(D) + C‖∆ζ̄(ϕ1, ϕ2)‖L∞(D)‖∇vγ‖2L2(D)

≤ −‖
[
(ζ̄(ϕ1, ϕ2) + γ)

] 1
2 D2vγ‖2L2(D) + C‖∆ϕ̄‖L∞(D)‖∇vγ‖2L2(D).

For term (22) we use (3.2.25), the fact that ∇vγ · ν = 0 on ∂D, and that κ ≤ 0 (since D

is convex), to yield

(22) =

2∑
i,k=1

∫
∂D

vγxi(ζ̄(ϕ1, ϕ2))xiv
γ
xk
νk dx+

2∑
i,k=1

∫
∂D

vγxi(ζ̄(ϕ1, ϕ2) + γ)vγxk,xiνk dx

=
2∑

i,k=1

∫
∂D

vγτ (ζ̄(ϕ1, ϕ2) + γ)vγxk,xiνkτi dx

=

∫
∂D

(vγτ )2(ζ̄(ϕ1, ϕ2) + γ)κdx ≤ 0.

Combining (21) and (22), we have

(2) ≤ −‖
[
(ζ̄(ϕ1, ϕ2) + γ)

] 1
2 D2vγ‖2L2(D) + C‖∆ϕ̄‖L∞(D)‖∇vγ‖2L2(D).
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We bound (3) similarly to (21),

(3) = − 1

α
‖
[
(ε−1δ̄(ϕ1, ϕ2) + γ)

] 1
2 ∇vγ‖2L2(D) +

4

πεα

∫
D
vγ∇vγ · (ϕ̄∇ϕ̄) dx

≤ − 1

α
‖
[
(ε−1δ̄(ϕ1, ϕ2) + γ)

] 1
2 ∇vγ‖2L2(D) +

2

πεα

∫
D
∇((vγ)2) · (ϕ̄∇ϕ̄) dx

≤ − 1

α
‖
[
(ε−1δ̄(ϕ1, ϕ2) + γ)

] 1
2 ∇vγ‖2L2(D) −

2

πεα

∫
D

(vγ)2|∇ϕ̄|2 dx

− 2

πεα

∫
D

(vγ)2ϕ̄∆ϕ̄dx+
2

πεα

∫
∂D

(vγ)2ϕ̄∇ϕ̄ · ν dx

≤ − 1

α
‖
[
(ε−1δ̄(ϕ1, ϕ2) + γ)

] 1
2 ∇vγ‖2L2(D) + C‖∆ϕ̄‖L∞(D)‖vγ‖2L2(D)

+ C‖vγ‖2L4(D)‖∇ϕ̄‖
2
L4(D)

≤ − 1

α
‖
[
(ε−1δ̄(ϕ1, ϕ2) + γ)

] 1
2 ∇vγ‖2L2(D) + C‖∆ϕ̄‖L∞(D)‖vγ‖2L2(D)

+ C‖vγ‖2H1(D)‖∇ϕ̄‖
2
H1(D).

Combining (1), (2), and (3), we have

ε2

2

d

dt
‖∇vγ‖2L2(D) + ‖

[
(ζ̄(ϕ1, ϕ2) + γ)

] 1
2 D2vγ‖2L2(D) +

1

α
‖
[
(ε−1δ̄(ϕ1, ϕ2) + γ)

] 1
2 ∇vγ‖2L2(D)

≤ C‖vγ‖H1(D)‖ψ‖H1(D) + C‖∆ϕ̄‖L∞(D)‖vγ‖2H1(D)

+ C‖vγ‖2H1(D)‖∇ϕ̄‖
2
H1(D).

Using (3.3.1), (3.3.8), noting from (3.2.50) that ϕ̄ ∈ L2(0, T ;H2(D)), and using a Gronwall

argument, we have

sup
t∈[0,t0]

‖∇vγ‖2L2(D) ≤ C
∫ t0

0
‖ψ‖2H1(D) dt, (3.3.9)

and we have

∫ t0

0

(
‖
[
(ζ̄(ϕ1, ϕ2) + γ)

] 1
2 D2vγ‖2L2(D) +

1

α
‖
[
(ε−1δ̄(ϕ1, ϕ2) + γ)

] 1
2 ∇vγ‖2L2(D)

)
dt ≤ C,

(3.3.10)

uniformly with respect to γ.

We now need a bound on

∫ t0

0
‖vγt ‖2L2(D) dt. This follows from (3.3.7) and (3.3.10), and

noting that

∫ t0

0
‖∇(ζ̄(ϕ1, ϕ2) + γ) · ∇vγ‖2L2(D) dt =

1

2

∫ t0

0
‖∇ϕ̄ · ∇vγ‖2L2(D) dt ≤ C.
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The solution v is now obtained by a simple convergence argument, similar to the one

in the proof of Theorem 3.2.8.

We obtain (3.3.4) and (3.3.5) from (3.3.8), (3.3.9), and the weak lower semi-continuity

of the norm.

We now bound

∫ t0

0

∫
D
ψw dx dt. This bound will then be used in the proof of the

uniqueness result, Theorem 3.3.3.

Lemma 3.3.2 We have

∫ t0

0

∫
D
ψw dx dt ≤ εαβ

2Cw

∫ t0

0
‖∇ψ‖2L2(D) dt+ C

∫ t0

0
‖ψ‖2L2(D) dt,

for ψ := ϕ1 − ϕ2 and w := u1 − u2, where (ϕ1, u1) and (ϕ2, u2) are solutions to (PDI).

Proof. This proof follows arguments made in the proof of Theorem 3.1 of [38].

Multiplying (3.3.3) by w and integrating over D and then (0, t0) yields

∫ t0

0

∫
D
ψw dxdt = −ε2

∫ t0

0

∫
D
vtw dx dt+

∫ t0

0

∫
D
ζ̄(ϕ1, ϕ2)∇v · ∇w dxdt

+
1

αε

∫ t0

0

∫
D
δ̄(ϕ1, ϕ2)vw dxdt

= ε2

∫ t0

0

∫
D
vwt dx dt+

∫ t0

0

∫
D
ζ̄(ϕ1, ϕ2)∇v · ∇w dxdt

+
1

αε

∫ t0

0

∫
D
δ̄(ϕ1, ϕ2)vw dxdt,

since w(x, 0) = v(x, t0) = 0. We now substitute in (3.1.9), with u = u1 and ϕ = ϕ1, and

with u = u2 and ϕ = ϕ2. This yields

∫ t0

0

∫
D
ψw dx dt =

Q

ε

∫ t0

0

∫
D

(δ(ϕ1)− δ(ϕ2))v dxdt+

∫ t0

0

∫
D

(ζ(ϕ2)− ζ(ϕ1))v dx dt

+
1

2αε

∫ t0

0

∫
D
v(δ(ϕ2)− δ(ϕ1))(u1 + u2) dxdt (3.3.11)

+
1

2

∫ t0

0

∫
D

(ζ(ϕ2)− ζ(ϕ1))∇v · ∇(u1 + u2) dxdt.

Using Hölder’s inequality and the bounds on the L∞ norms for u and ϕ given in (3.2.50)
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and (3.2.51) we have, after using (3.3.2),

∫ t0

0

∫
D
ψw dxdt ≤ C

∫ t0

0
‖v‖L2(D)‖ψ‖L2(D) dt

+ C‖∇(u1 + u2)‖L∞(D)

∫ t0

0
‖∇v‖L2(D)‖ψ‖L2(D) dt

≤ C

∫ t0

0
‖v‖L2(D)‖ψ‖L2(D) dt︸ ︷︷ ︸

(1)

+C

∫ t0

0
‖∇v‖L2(D)‖ψ‖L2(D) dt︸ ︷︷ ︸

(2)

.

Starting with term (1) we calculate, using (3.3.4) and Hölder’s inequality, that

(1) ≤
(∫ t0

0
‖ψ‖2L2(D) dt

) 1
2
(∫ t0

0
‖v‖2L2(D) dt

) 1
2

≤ C
(∫ t0

0
‖ψ‖2L2(D) dt

) 1
2

(
sup
t∈[0,t0]

‖v‖2L2(D)

) 1
2

≤ C
(∫ t0

0
‖ψ‖2L2(D) dt

) 1
2
(∫ t0

0
‖ψ‖2L2(D) dt

) 1
2

≤ C
∫ t0

0
‖ψ‖2L2(D) dt.

In order to bound (2) we use (3.3.5), and Young’s inequality with a ∈ R, a > 0, where

a is then chosen as a = εαβ
2CCw

. Thus

(2) ≤ Ca sup
t∈[0,t0]

‖∇v‖2L2(D) + C

∫ t0

0
‖ψ‖2L2(D) dt

≤ Ca
∫ t0

0
‖ψ‖2H1(D) dt+ C

∫ t0

0
‖ψ‖2L2(D) dt

≤ εαβ

2Cw

∫ t0

0
‖ψ‖2H1(D) dt+ C

∫ t0

0
‖ψ‖2L2(D) dt.

Combining the bounds for (1) and (2) yields the desired result.

We now prove the main result of this section.

Theorem 3.3.3 If ϕ and u solve the weak form PDI , then ϕ and u are unique. Here (and

throughout this section) ψ := ϕ1 − ϕ2 and w := u1 − u2, where (ϕ1, u1) and (ϕ2, u2) are

solutions to (PDI).

Proof. This proof follows arguments made in the proof of Theorem 3.1 of [38].
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Starting with (3.1.8), we first set ρ = ϕ2 in the inequality for ϕ1, and set ρ = ϕ1 in

the inequality for ϕ2. Then we add the resulting inequalities for ϕ1 and ϕ2, yielding

1

2

d

dt
‖ψ‖2L2(D) + β‖∇ψ‖2L2(D) ≤

β

ε2
‖ψ‖2L2(D) +

Cw
εα

∫
D
wψ dx. (3.3.12)

Integrating over (0, t0) and using Lemma 3.3.2 gives (since ψ(x, 0) = 0)

1

2
‖ψ(x, t0)‖2L2(D) + β

∫ t0

0
‖∇ψ‖2L2(D) dt ≤ C

∫ t0

0
‖ψ‖2L2(D) dt+

β

2

∫ t0

0
‖∇ψ‖2L2(D) dt.

Rearranging, we have

‖ψ(x, t0)‖2L2(D) ≤ C
∫ t0

0
‖ψ‖2L2(D) dt.

Using Gronwall’s inequality, and the fact that ψ(x, 0) = 0, we have ψ = 0, and thus

ϕ1 = ϕ2, ∀t ∈ [0, t0].

Now considering (3.1.9), we test both the u1 and u2 equations with φ = w. We then

subtract the two resulting equations, giving

ε2

2

d

dt
‖w‖2L2(D) +

∫
D

(ζ(ϕ1)∇u1 − ζ(ϕ2)∇u2) · ∇w dx+
1

αε

∫
D

(δ(ϕ1)u1 − δ(ϕ2)u2)w dx

=

∫
D

(ζ(ϕ2)− ζ(ϕ1))w dx+
Q

ε

∫
D

(δ(ϕ1)− δ(ϕ2))w dx

= −1

2

∫
D
ψw dx− 2Q

πε

∫
D
ψ(ϕ1 + ϕ2)w dx = 0,

where ψ = 0 is given by the first part of this proof. Again using ψ = 0, we have

∫
D

(ζ(ϕ1)∇u1−ζ(ϕ2)∇u2) · ∇w dx

=

∫
D

((ζ(ϕ1)− ζ(ϕ2))∇u1 + ζ(ϕ2)(∇u1 −∇u2)) · ∇w dx

=
1

2

∫
D
ψ∇u1 · ∇w dx+ ‖ [ζ(ϕ2)]

1
2 ∇w‖2L2(D) ≥ 0,

and

∫
D

(δ(ϕ1)u1 − δ(ϕ2)u2)w dx =

∫
D

((δ(ϕ1)− δ(ϕ2))u1 + δ(ϕ2)(u1 − u2))w dx

= − 2

π

∫
D
ψ(ϕ1 + ϕ2)u1w dx+ ‖ [δ(ϕ2)]

1
2 w‖2L2(D) ≥ 0.
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Hence, by Gronwall’s inequality,

‖w(x, t)‖2L2(D) ≤ C‖w(x, 0)‖2L2(D) = 0,

as w(x, 0) = 0. Thus w = 0, and so u1 = u2, ∀t ∈ [0, t0].

3.4 Finite element scheme

We partition the time interval [0, T ] into N + 1 time steps: 0 = t0 < t1 < . . . < tN−1 <

tN = T . These time steps are evenly spaced, so that ∆t := ti+1 − ti for i = 0, . . . , N − 1.

We assume that D is bounded and polygonal. Let {T hD}h>0 be a family of conforming

partitions of D into disjoint open simplices σ, with hσ := diam(σ) and h := maxσ∈T hD
hσ,

so that D = ∪σ∈T hDσ. We denote the outward unit normal to ∂D by ν. This set up can

be seen in Figure 3.2.

Cε

D

ϕnh = 1

ϕnh = −1

ν

Figure 3.2: The polyhedral domain D. Here ν is the outward unit normal to ∂D, the
boundary of D.

We define the spaces

Uh(D) :=
{
φh ∈ C0(D)

∣∣∣ φh|σ is linear ∀σ ∈ T hD
}
,

and

Kh(D) := { ρh ∈ Uh(D) | |ρh| ≤ 1 } .

Let I be the set of nodes of T hD , with |I| = I, and let {qi}i∈I be the coordinates of

these nodes. Let {φi}i∈I be the standard basis functions for Uh(D). We denote by
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Ih : C0(D) → Uh(D) the Lagrange interpolation operator onto Uh(D). For simplicity of

notation we extend Ih to encompass Ih : C0(D) → Kh(D) the Lagrange interpolation

operator onto Kh(D).

We assume that T hD is of non-negative type, see [31], such that

∫
σ
∇φi · ∇φj dx ≤ 0, for i 6= j,∀σ ∈ T hD . (3.4.1)

In addition, for the convergence results presented in Theorems 3.5.6 and 3.5.10, and the

lemmas presented in Section 3.5.2, we assume that the family of partitions {T hD}h>0 is

quasi-uniform, see Definition 4.4.13 in [16].

For the initial conditions, we take

ϕ0
h := Ihϕ0, in D, (3.4.2)

and

u0
h := Ihu0, in D. (3.4.3)

Note that, by (3.2.5), it follows that

‖u0
h‖L∞(D) ≤ C, (3.4.4)

where the positive constant C does not depend on ∆t, n, or h. We write Dtϕ
n+1
h :=

ϕn+1
h −ϕnh

∆t and Dtu
n+1
h :=

un+1
h −unh

∆t .

A finite element scheme for the weak form PDI , with initial conditions (3.4.2) and

(3.4.3), is given by the coupled system

Problem PhDI Given initial conditions (3.4.2) and (3.4.3), for n = 0, . . . , N − 1, find

{un+1
h , ϕn+1

h } ∈ Uh(D)×Kh(D) such that

ε2

∫
D
Ih
(
Dtu

n+1
h φh

)
dx+

∫
D
ζ(ϕn+1

h )∇un+1
h · ∇φh dx+

1

αε

∫
D
Ih
(
δ(ϕn+1

h )un+1
h φh

)
dx

=
Q

ε

∫
D
Ih
(
δ(ϕn+1

h )φh
)

dx−
∫
D
Ih
(
ζ(ϕn+1

h )φh
)

dx, ∀φh ∈ Uh(D),

(3.4.5)
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and

∫
D
Ih
(
Dtϕ

n+1
h (ρh − ϕn+1

h )
)

dx+ β

∫
D
∇ϕn+1

h · ∇(ρh − ϕn+1
h ) dx

− β

ε2

∫
D
Ih
(
ϕnh(ρh − ϕn+1

h )
)

dx ≥ Cw
αε

∫
D
Ih
(
unh(ρh − ϕn+1

h )
)

dx, ∀ρh ∈ Kh(D).

(3.4.6)

In order to solve (3.4.6) we use the projected SOR algorithm given in Chapter 9 of

[44].

Algorithm 7 This algorithm numerically solves the system given by (3.4.6) with initial
guess x0. Here A is the I × I square matrix given by the first two terms in (3.4.6) with
components ai,j , and xk and b are vectors of length I with components xki and bi. Here
xk corresponds to ϕn+1

h , and b is given by the final two terms in (3.4.6). The algorithm
takes as input a maximum number of loops, loops, and the tolerance, tol.

1: for k = 0 to loops do

2: for i = 1 . . . I do

3: Set x
k+ 1

2
i :=

bi−
∑i−1
j=1 aijx

k+ 1
2

j −
∑I
j=i+1 aijx

k
j

aii

4: Project xk+1
i := min(max(−1,x

k+ 1
2

i ), 1)

5: if ‖xk+1 − xk‖ < tol then

6: Return xk+1

3.5 Numerical analysis

This section is split in two. We first show the existence and uniqueness of a solution to

the finite element scheme PhDI . We then show the convergence (as h→ 0) of the solution

to the finite element scheme PhDI .

Throughout Section 3.5 we liberally use the standard inequality

‖vh‖2L2(D) ≤ ‖vh‖
2
L2
h(D) ≤ C‖vh‖

2
L2(D), (3.5.1)

where

‖vh‖2L2
h(D) :=

∫
D
Ih(v2

h) dx.

Here vh ∈ Uh.
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3.5.1 Existence and uniqueness of the finite element scheme

Theorem 3.5.1 For n = 0, . . . , N − 1 there exists a unique pair of solutions un+1
h and

ϕn+1
h to the coupled finite element scheme PhDI .

Proof. We argue by induction over n. Clearly, by (3.4.2) and (3.4.3), the base case n = 0

is satisfied. Assuming that there exists a unique pair of solutions unh and ϕnh, we show that

there exists a unique pair of solutions un+1
h and ϕn+1

h .

Starting with ϕn+1
h , we follow [10]. There exists a unique ϕn+1

h ∈ Kh(D) solving (3.4.6),

since this is the Euler-Lagrange variational inequality of the strictly convex minimization

problem,

min
zh∈Kh(D)

{
εβ

2
‖∇zh‖2L2(D) +

ε

2∆t
‖Ih(zh − ϕnh)‖2L2(D) −

∫
D
Ih

(
β

ε
ϕnhzh +

Cw
α
unhzh

)
dx

}
.

We will now consider un+1
h . We note that (3.4.5) is a linear system, Ax = b, for matrix

A and vectors x and b. If we set b = 0, then we need only show that x = 0. Setting

b = 0 in (3.4.5), we have

ε2

∆t

∫
D
Ih
(
un+1
h φh

)
dx+

∫
D
ζ(ϕn+1

h )∇un+1
h · ∇φh dx+

1

αε

∫
D
Ih
(
δ(ϕn+1

h )un+1
h φh

)
dx = 0.

We now let φh = un+1
h , to yield

ε2

∆t
‖un+1

h ‖2L2
h(D) + ‖

[
ζ(ϕn+1

h )
] 1

2 ∇un+1
h ‖2L2(D) +

1

αε
‖
[
δ(ϕn+1

h )
] 1

2 un+1
h ‖2L2

h(D) = 0,

which then implies, noting (3.5.1), that un+1
h = 0 almost everywhere.

3.5.2 Convergence of the finite element scheme

In this section, which is adapted from [39], we prove the convergence of the solution of

the finite element scheme PhDI as h → 0. Here we fix ε, and assume that ∆t ≤ Ch2. All

limits are taken as h→ 0 (and thus ∆t→ 0). All positive constants C do not depend on

h or ∆t.

The convergence result given in this section only holds if D ⊂ R2, however the stability

bounds hold if D ⊂ Rd, for d ≥ 2.
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Definition 3.5.1 Extension of discrete functions to be continuous in time. For t ∈

(tn, tn+1], we define

ϕh(t) :=
t− tn

∆t
ϕn+1
h +

tn+1 − t
∆t

ϕnh, (3.5.2)

ϕ+
h (t) := ϕn+1

h , ϕ−h (t) := ϕnh, (3.5.3)

and

uh(t) :=
t− tn

∆t
un+1
h +

tn+1 − t
∆t

unh, (3.5.4)

u+
h (t) := un+1

h , u−h (t) := unh. (3.5.5)

Rewriting (3.4.6) and (3.4.5) using the above notation gives, for t ∈ (tn, tn+1),

∫
D
Ih
(
ϕh,t(t)(ρh − ϕ+

h (t))
)

dx+ β

∫
D
∇ϕ+

h (t) · ∇(ρh − ϕ+
h (t)) dx

− β

ε2

∫
D
Ih
(
ϕ−h (t)(ρh − ϕ+

h (t))
)

dx ≥ Cw
αε

∫
D
Ih
(
u−h (t)(ρh − ϕ+

h (t))
)

dx, ∀ρh ∈ Kh(D),

(3.5.6)

and

ε2

∫
D
Ih (uh,t(t)φh) dx+

∫
D
ζ(ϕ+

h (t))∇u+
h (t) · ∇φh dx+

1

αε

∫
D
Ih
(
δ(ϕ+

h (t))u+
h (t)φh

)
dx

=
Q

ε

∫
D
Ih
(
δ(ϕ+

h (t))φh
)

dx−
∫
D
Ih
(
ζ(ϕ+

h (t))φh
)

dx, ∀φh ∈ Uh(D).

(3.5.7)

This arguments in this section are split into two main steps. In the first step we show

the convergence of ϕh, and in the second we show the convergence of uh, both as h→ 0.

We begin, in Lemma 3.5.2, by proving a bound on ‖un+1
h ‖L∞(D). This is then used in

Lemmas 3.5.3 and 3.5.4 order to prove a number of bounds on ϕh and uh, respectively.

The results of Lemma 3.5.4 allow us to prove a bound on uh,t in Lemma 3.5.5. Collectively,

Lemmas 3.5.2 - 3.5.5, along with Theorem 3.2.1, give us the convergence results 3.5.18 -

3.5.25, which are required in Theorem 3.5.6 to prove the convergence of ϕh.

In the second part of this section, we use the results of Lemmas 3.5.2 - 3.5.5 in order to

prove a convergence result for δ(ϕh)uh, see Lemma 3.5.7. This is used when showing the

convergence of uh. We then show a convergence result for ζ(ϕh)uh in Lemma 3.5.8. This
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is used in Lemma 3.5.9, where we identify F , which is the limit of ζ(ϕ+
h )∇u+

h as h → 0.

Using the results from Lemmas 3.5.7, and 3.5.9 in Theorem 3.5.10, we are able to show

the convergence of uh.

Lemma 3.5.2 If un+1
h is the solution to (3.4.5), then for j ∈ I we have

−‖u0
h‖L∞(D) −

n∆t

ε2
≤ un+1

j ≤ max
(
αQ, ‖u0

h‖L∞(D)

)
,

where the un+1
j are the components of un+1

h , so that

un+1
h =

∑
j∈I

un+1
j φj , for n = −1, . . . , N − 1,

for the linear basis functions φj . Recall that (3.4.4) gives us that ‖u0
h‖L∞(D) ≤ C.

Proof. This proof follows the proof of Lemma 4.1 in [39].

We will use an induction argument, starting with the maximum bound. Assume that

unj0 ≤ max
(
αQ, ‖u0

h‖L∞(D)

)
. If the maximum occurs when |ϕn+1

j0
| = 1 (where the ϕn+1

j

are the components of ϕn+1
h ) then setting un+1

j0
:= maxj∈I u

n+1
j and testing (3.4.5) with

φh = φj0 (where φj0 is the linear basis function associated with un+1
j0

) yields

ε2

∆t
(un+1
j0
− unj0)

∫
D
φj0 dx+

∑
σ∈T hD

∑
i∈I

un+1
i ∇φi|σ · ∇φj0 |σ

∫
σ
ζ(ϕn+1

h )dx

= −ζ(ϕn+1
j0

)

∫
D
φj0 dx ≤ 0.

Since T hD is of non-negative type, noting (3.4.1) we have

∑
σ∈T hD

∑
i∈I

un+1
i ∇φi|σ · ∇φj0 |σ ≥

∑
σ∈T hD

un+1
j0

∑
i∈I
∇φi|σ · ∇φj0 |σ. (3.5.8)

Since
∑
i∈I

φi = 1 in D, it follows that
∑
σ∈T hD

un+1
j0

∑
i∈I
∇φi|σ · ∇φj0 |σ = 0, and hence we have

un+1
j0
≤ unj0 ≤ max

(
αQ, ‖u0

h‖L∞(D)

)
.

If the maximum occurs when |ϕn+1
j0
| < 1 then using (3.5.8), and testing (3.4.5) with
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φh = φj0 , we have

ε2

∆t
(un+1
j0
− unj0)

∫
D
φj0 dx ≤

(
−ζ(ϕn+1

j0
) + δ(ϕn+1

j0
)
1

ε
(Q−

un+1
j0

α
)

)∫
D
φj0 dx

≤ δ(ϕn+1
j0

)
1

ε
(Q−

un+1
j0

α
)

∫
D
φj0 dx.

If un+1
j0

> max
(
αQ, ‖u0

h‖L∞(D)

)
, then we have un+1

j0
< unj0 ≤ max

(
αQ, ‖u0

h‖L∞(D)

)
. This

is a contradiction, and thus un+1
j0
≤ max

(
αQ, ‖u0

h‖L∞(D)

)
.

For the minimum bound, we will again use an induction argument. Assume that

unj0 ≥ −
n∆t
ε2
− ‖u0

h‖L∞(D). If the minimum occurs when |ϕn+1
j0
| < 1 then, letting un+1

j0
:=

minj∈I u
n+1
j and testing (3.4.5) with φh = φj0 , we have

ε2

∆t
(un+1
j0
− unj0)

∫
D
φj0 dx ≥

(
−ζ(ϕn+1

j0
) + δ(ϕn+1

j0
)
1

ε
(Q−

un+1
j0

α
)

)∫
D
φj0 dx,

where we used a similar argument to (3.5.8). If un+1
j0
≥ 0, then clearly un+1

j0
≥ − (n+1)∆t

ε2
−

‖u0
h‖L∞(D). This means that we need only consider un+1

j0
< 0, which implies that Q −

un+1
j0
α > 0. Thus

ε2

∆t
(un+1
j0
− unj0)

∫
D
φj0 dx ≥ −ζ(ϕn+1

j0
)

∫
D
φj0 dx ≥ −

∫
D
φj0 dx,

and hence we have

un+1
j0
≥ −(n+ 1)∆t

ε2
+ u0

j0 ≥ −
(n+ 1)∆t

ε2
− ‖u0

h‖L∞(D).

If the minimum occurs when |ϕn+1
j0
| = 1, then we test (3.4.5) with φh = φj0 , and use

a similar argument to (3.5.8), to yield

ε2

∆t
(un+1
j0
− unj0)

∫
D
φj0 dx ≥ −ζ(ϕn+1

j0
)

∫
D
φj0 dx. (3.5.9)

If ϕn+1
j0

= −1, then ζ(ϕn+1
j0

) = 0, and so

un+1
j0
≥ unj0 ≥ −

n∆t

ε2
− ‖u0

h‖L∞(D) ≥ −
(n+ 1)∆t

ε2
− ‖u0

h‖L∞(D).

If ϕn+1
j0

= 1, then ζ(ϕn+1
j0

) = 1. Arguing by contradiction, we assume that un+1
j0

<
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− (n+1)∆t
ε2

− ‖u0
h‖L∞(D). Since unj0 ≥ −

n∆t
ε2
− ‖u0

h‖L∞(D), using (3.5.9) we have

−
∫
D
φj0 dx =

ε2

∆t

(
−(n+ 1)∆t

ε2
+
n∆t

ε2

)∫
D
φj0 dx > −

∫
D
φj0 dx,

which is a contradiction, so un+1
j0
≥ − (n+1)∆t

ε2
− ‖u0

h‖L∞(D).

The result given in Lemma 3.5.2 now enables us to prove the bounds on ϕh and uh

given in the following two lemmas.

Lemma 3.5.3 We have that

sup
t∈[0,T ]

‖∇ϕh‖2L2(D) +

∫ T

0
‖ϕh,t‖2L2(D) dt ≤ C, (3.5.10)

and ∫ T

0
‖∇(ϕ+

h − ϕ
−
h )‖2L2(D) dt ≤ C∆t. (3.5.11)

Proof. This proof follows the proof of Lemma 4.1 in [39].

We show (3.5.10) first, and use this to show (3.5.11). First, test (3.4.6) with ρh = ϕnh ∈

Kh(D), re-arrange, and use (3.5.1) to achieve

∆t‖
ϕn+1
h − ϕnh

∆t
‖2L2

h(D) +
β

2

(
‖∇ϕn+1

h ‖2L2(D) − ‖∇ϕ
n
h‖2L2(D)

)
+
β

2
‖∇(ϕn+1

h − ϕnh)‖2L2(D)

+
β

2ε2

(
‖ϕnh‖2L2

h(D) − ‖ϕ
n+1
h ‖2L2

h(D)

)
+
β∆t2

2ε2
‖
ϕn+1
h − ϕnh

∆t
‖2L2

h(D)

≤ Cw
∆t

εα

∫
D
Ih

(
unh
ϕn+1
h − ϕnh

∆t

)
dx.

Here we have used that

a(a− b) =
1

2
a2 − 1

2
b2 +

1

2
(a− b)2. (3.5.12)
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Removing terms on the left hand side, we have

∆t‖
ϕn+1
h − ϕnh

∆t
‖2L2

h(D) +
β

2

(
‖∇ϕn+1

h ‖2L2(D) − ‖∇ϕ
n
h‖2L2(D)

)
+

β

2ε2

(
‖ϕnh‖2L2

h(D) − ‖ϕ
n+1
h ‖2L2

h(D)

)
≤ Cw

∆t

εα

∫
D
Ih

(
unh
ϕn+1
h − ϕnh

∆t

)
dx.

We use Young’s inequality with γ ∈ R, γ > 0, on the right hand side to give

∆t‖
ϕn+1
h − ϕnh

∆t
‖2L2

h(D) +
β

2

(
‖∇ϕn+1

h ‖2L2(D) − ‖∇ϕ
n
h‖2L2(D)

)
+

β

2ε2

(
‖ϕnh‖2L2

h(D) − ‖ϕ
n+1
h ‖2L2

h(D)

)
≤C∆t

(
γ‖unh‖2L2

h(D) +
1

γ
‖
ϕn+1
h − ϕnh

∆t
‖2L2

h(D)

)
.

We now, by choosing γ = 2C, move the last term on to the left hand side. Summing over

n = 0, . . . , N − 1 and noting (3.5.1) and Lemma 3.5.2 yields (3.5.10).

In order to show (3.5.11), we consider the inverse estimate, see [30],

∆t‖∇(ϕn+1
h − ϕnh)‖2L2(D) ≤ Ch

−2∆t‖ϕn+1
h − ϕnh‖2L2(D) ≤ Ch

−2(∆t)3‖
ϕn+1
h − ϕnh

∆t
‖2L2(D).

Summing the above inequality for n = 0, . . . , N − 1 and noting (3.5.10) yields

∫ T

0
‖∇(ϕ+

h − ϕ
−
h )‖2L2(D) dt ≤ C∆t2

h2

∫ T

0
‖
ϕ+
h − ϕ

−
h

∆t
‖2L2(D) dt ≤ C∆t,

by the properties of ϕ+
h and ϕ−h .

Lemma 3.5.4 We have

sup
t∈[0,T ]

‖uh(t)‖2L2(D) ≤ C, (3.5.13)

∫ T

0

(
‖
[
ζ(ϕ+

h )
] 1

2 ∇u+
h ‖

2
L2(D) +

1

αε
‖
[
δ(ϕ+

h )
] 1

2 u+
h ‖

2
L2(D)

)
dt ≤ C, (3.5.14)

and ∫ T

0
‖u+

h − u
−
h ‖

2
L2(D) dt ≤ C∆t. (3.5.15)



Chapter 3 99

Proof. This proof follows the proof of Lemma 4.1 in [39].

The bound (3.5.13) follows directly from Lemma 3.5.2. For (3.5.14) and (3.5.15), test

(3.4.5) with φh = ∆tun+1
h , and note (3.5.12), to obtain

ε2

2
‖un+1

h − unh‖2L2
h(D) +

ε2

2

(
‖un+1

h ‖2L2
h(D) − ‖u

n
h‖2L2

h(D)

)
+ ∆t‖

[
ζ(ϕn+1

h )
] 1

2 ∇un+1
h ‖2L2(D) +

∆t

αε
‖
[
δ(ϕn+1

h )
] 1

2 un+1
h ‖2L2

h(D)

= −∆t

∫
D
Ih
(
ζ(ϕn+1

h )un+1
h

)
dx+

Q∆t

ε

∫
D
Ih
(
δ(ϕn+1

h )un+1
h

)
dx.

Summing over n = 0, . . . , N − 1 and recalling Lemma 3.5.2 gives

ε2

2

N−1∑
n=0

‖un+1
h − unh‖2L2

h(D) +
ε2

2
‖uNh ‖2L2

h(D) + ∆t

N−1∑
n=0

‖
[
ζ(ϕn+1

h )
] 1

2 ∇un+1
h ‖2L2(D)

+ ∆t

N−1∑
n=0

1

αε
‖
[
δ(ϕn+1

h )
] 1

2 un+1
h ‖2L2

h(D)

≤ C
N−1∑
n=0

∆t+
ε2

2
‖u0

h‖2L2
h(D). (3.5.16)

By the properties of uh, u+
h , and u−h , the last two terms on the left hand side of (3.5.16)

give us (3.5.14); while considering the first term on the left hand side of (3.5.16), and

multiplying through by ∆t, gives us (3.5.15).

We are now able, with the results of Lemma 3.5.4, to show a bound on uh,t.

Lemma 3.5.5 We have ∫ T

0
‖uh,t‖2(H1(D))′ dt ≤ C.

Proof. This proof follows the proof of Lemma 4.2 in [39].

Let ψ ∈ H1(D) be arbitrary, and let Jhψ ∈ Uh(D) be its L2-projection such that

∫
D
vhψ dx =

∫
D
Ih (vhJhψ) dx, ∀vh ∈ Uh(D).

Testing (3.4.5) with φh = Jhψ and noting that

ε2(
un+1
h − unh

∆t
, ψ)((H1)′,H1) := ε2

∫
D
uh,tψ dx = ε2

∫
D
Ih (uh,tJhψ) dx,
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yields,

ε2(
un+1
h − unh

∆t
, ψ)((H1)′,H1) = −

∫
D
ζ(ϕn+1

h )∇un+1
h · ∇(Jhψ) dx−

∫
D
Ih
(
ζ(ϕn+1

h )Jhψ
)

dx

− 1

αε

∫
D
Ih
(
δ(ϕn+1

h )un+1
h Jhψ

)
dx+

Q

ε

∫
D
Ih
(
δ(ϕn+1

h )Jhψ
)

dx.

It can be shown that ‖Jhψ‖H1(D) ≤ C‖ψ‖H1(D), ∀ψ ∈ H1(D) (see, for example, [4]).

Using this fact, as well as the bounds on the L∞ norms of δ(ϕn+1
h ), ζ(ϕn+1

h ), and un+1
h ,

we have the following for all ψ ∈ H1(D), and for (tn, tn+1),

ε2(
un+1
h − unh

∆t
, ψ)((H1)′,H1) ≤ C‖

[
ζ(ϕn+1

h )
] 1

2 ∇un+1
h ‖L2(D)‖∇(Jhψ)‖L2(D) + C‖ψ‖L2(D)

≤ C
(

1 + ‖
[
ζ(ϕn+1

h )
] 1

2 ∇un+1
h ‖L2(D)

)
‖ψ‖H1(D). (3.5.17)

We conclude that, for t ∈ (tn, tn+1),

‖
un+1
h − unh

∆t
‖(H1(D))′ ≤ C + C‖

[
ζ(ϕn+1

h )
] 1

2 ∇un+1
h ‖L2(D).

Squaring, multiplying by ∆t, and summing from n = 0, . . . , N−1 yields, in light of Lemma

3.5.4, the required result.

From Lemmas 3.5.2 - 3.5.5 (and recalling Theorem 3.2.1, with p = r = 2, s = 1,

X = H1(D) and Y = B = L2(D)) we have (after possibly re-indexing from subsequences),
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as h→ 0,

ϕh, ϕ
−
h , ϕ

+
h ⇀ ϕ in L2(0, T ;H1(D)), (3.5.18)

ϕh,t ⇀ ϕt in L2(0, T ;L2(D)), (3.5.19)

ϕh, ϕ
−
h , ϕ

+
h → ϕ in L2(0, T ;L2(D)), (3.5.20)

ζ(ϕh), ζ(ϕ−h ), ζ(ϕ+
h )→ ζ(ϕ) in L2(0, T ;L2(D)), (3.5.21)

δ(ϕh), δ(ϕ−h ), δ(ϕ+
h ) ⇀ δ(ϕ) in L2(0, T ;L2(D)), (3.5.22)

uh, u
−
h , u

+
h
∗
⇀ u in L∞(D × (0, T )), (3.5.23)

uh,t ⇀ ut in L2(0, T ; (H1(D))′), (3.5.24)

ζ(ϕ+
h )∇u+

h ⇀ F in L2(0, T ; [L2(D)]2). (3.5.25)

Here (3.5.25) follows directly from (3.5.14) and the bound on the L∞ norm of ζ(ϕ+
h ). The

function F will be identified later, see Lemma 3.5.9.

Theorem 3.5.6 For D ⊂ R2, the functions ϕ and u in (3.5.18) - (3.5.24) satisfy, for

almost every t ∈ (0, T ),

∫
D
ϕt(ρ− ϕ) dx+ β

∫
D
∇ϕ · ∇(ρ− ϕ) dx− β

ε2

∫
D
ϕ(ρ− ϕ) dx

≥ Cw
αε

∫
D
u(ρ− ϕ) dx, ∀ρ ∈ K(D).

Proof. This proof follows the proof of Theorem 1 in [39].

Multiply (3.5.6) by an arbitrary ψ ∈ C∞0 (0, T ), ψ ≥ 0, and integrate over t ∈ (0, T ),

∫ T

0
ψ

∫
D
Ih
(
ϕh,t(ρh − ϕ+

h )
)

dxdt+ β

∫ T

0
ψ

∫
D
∇ϕ+

h · ∇ρh dx dt

− β

ε2

∫ T

0
ψ

∫
D
Ih
(
ϕ−h (ρh − ϕ+

h )
)

dxdt− Cw
εα

∫ T

0
ψ

∫
D
Ih
(
u−h (ρh − ϕ+

h )
)

dxdt

≥ β
∫ T

0
ψ

∫
D
|∇ϕ+

h |
2 dxdt.

Let ρ ∈ K(D), there exists a sequence ρh ∈ Kh(D) such that ρh → ρ in H1(D) as

h→ 0. We use the well known inequality, see [30],

∣∣∣∣∫
D
ηχdx−

∫
D
Ih (ηχ) dx

∣∣∣∣ ≤ Ch‖∇η‖L2(D)‖χ‖L2(D), for η, χ ∈ Uh(D). (3.5.26)



Chapter 3 102

We also consider (3.5.18) - (3.5.20) and (3.5.23), and use the weak lower semi-continuity

of the L2 norm (which gives that ‖∇ϕ‖2L2(D) ≤ lim infh→0 ‖∇ϕ+
h ‖

2
L2(D)), to yield

∫ T

0
ψ

∫
D
ϕt(ρ− ϕ) dxdt+ β

∫ T

0
ψ

∫
D
∇ϕ · ∇ρ dxdt− β

ε2

∫ T

0
ψ

∫
D
ϕ(ρ− ϕ) dxdt

− Cw
αε

∫ T

0
ψ

∫
D
u(ρ− ϕ) dxdt ≥ β

∫ T

0
ψ

∫
D
|∇ϕ|2 dxdt,

as h→ 0. Since ψ ≥ 0 is arbitrary, this gives us the required result.

The convergence result given in the following lemma is used directly when proving the

convergence result in Theorem 3.5.10.

Lemma 3.5.7 For D ⊂ R2, we have δ(ϕ)u ∈ L2(0, T ;H1(D)) and (after possibly re-

indexing from subsequences), as h→ 0,

δ(ϕh)uh → δ(ϕ)u in L2(0, T ;L2(D)). (3.5.27)

Proof. This proof follows the proof of Lemma 4.3 in [39].

We first obtain a bound on δ(ϕh)uh in L2(0, T ;H1(D)) and then we obtain a bound

on (δ(ϕh)uh)t in L2(0, T ; (W 1,q(D))′), q > 2. Combining these bounds and using Theorem

3.2.1 will then yield the desired result. To bound ‖∇(δ(ϕh)uh)‖2L2(D) we first note that

from Lemma 3.5.3 we have ‖∇δ(ϕh)‖2L2(D) ≤ C, and thus

‖∇(δ(ϕh)uh)‖2L2(D) ≤ C‖∇δ(ϕh)‖2L2(D)‖uh‖
2
L∞(D) + C

∫
D
δ(ϕh)2|∇uh|2 dx

≤ C + C

∫
D
δ(ϕh)2|∇uh|2 dx.

For t ∈ (tn, tn+1)

δ(ϕh) ≤ δ(ϕn+1
h ) + C|ϕn+1

h − ϕnh|,

we square both sides to yield

δ(ϕh)2 ≤ Cδ(ϕn+1
h )2 + C|ϕn+1

h − ϕnh|2.
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We also note that

|∇uh|2 ≤ C|∇un+1
h |2 + C|∇(un+1

h − unh)|2.

Using the previous two inequalities and the bound on the L∞ norm of δh(ϕn+1
h ), for

t ∈ (tn, tn+1), we have

∫
D
δ(ϕh)2|∇uh|2 dx ≤ C

∫
D
δ(ϕn+1

h )2|∇uh|2 dx+ C

∫
D
|ϕn+1
h − ϕnh|2|∇uh|2 dx

≤ C
∫
D
δ(ϕn+1

h )2|∇un+1
h |2 dx+ C

∫
D
δ(ϕn+1

h )2|∇(un+1
h − unh)|2 dx

+ C

∫
D
|ϕn+1
h − ϕnh|2|∇uh|2 dx

≤ C‖
[
δ(ϕn+1

h )
] 1

2 ∇un+1
h ‖2L2(D) + Ch−2‖un+1

h − unh‖2L2(D)

+ Ch−2‖uh‖2L∞(D)‖ϕ
n+1
h − ϕnh‖2L2(D),

where we have applied Hölder’s inequality and, noting that we are restricting ourselves to

D ⊂ R2, the inverse estimate, see [30],

‖∇uh‖Lp(D) ≤ Ch−1‖uh‖Lp(D), (3.5.28)

for p = 2 and p = ∞. Summing over n and multiplying by ∆t yields, in light of the

properties of u+
h , u−h , ϕ+

h , and ϕ−h ,

∫ T

0

∫
D
δ(ϕh)2|∇uh|2 dx dt ≤ C

∫ T

0
‖
[
ζ(ϕ+

h )
] 1

2 ∇u+
h ‖

2
L2(D) dt+ Ch−2

∫ T

0
‖u+

h − u
−
h ‖

2
L2(D) dt

+ Ch−2

∫ T

0
‖ϕ+

h − ϕ
−
h ‖

2
L2(D) dt

≤ C + Ch−2∆t ≤ C,

where we used the fact that δ(ϕ+
h ) = 2

π (1− (ϕ+
h )2) = 2

π (1 + ϕ+
h )(1− ϕ+

h ) ≤ Cζ(ϕ+
h ), and

bounds from Lemmas 3.5.3 and 3.5.4.

Fix q > 2, we now bound

∫ T

0
‖(δ(ϕh)uh)t‖(W 1,q(D))′ dt. (3.5.29)
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Let ψ ∈W 1,q(D) be arbitrary. Then for t ∈ (tn, tn+1) we have

((δ(ϕh)uh)t, ψ)((W 1,q)′,W 1,q) =

∫
D

(δ(ϕh)uh)tψ dx

≤ C

∣∣∣∣∫
D
ϕhϕh,tuhψ dx

∣∣∣∣+ C

∣∣∣∣∫
D
δ(ϕh)uh,tψ dx

∣∣∣∣
≤ C‖ψ‖L2(D)‖ϕh,t‖L2(D) + ‖uh,t‖(H1(D))′‖ψδ(ϕh)‖H1(D)

≤ C‖ψ‖L2(D)‖ϕh,t‖L2(D)

+ ‖uh,t‖(H1(D))′
(
‖ψ‖H1(D) + ‖ψ‖L∞(D)‖δ(ϕh)‖H1(D)

)
≤ C‖ψ‖W 1,q(D)

(
‖ϕh,t‖L2(D) + ‖uh,t‖(H1(D))′

+ ‖uh,t‖(H1(D))′‖ϕh‖H1(D)

)
.

Using bounds from Lemmas 3.5.3 and 3.5.5, and the continuous embedding W 1,q(D) ↪→

C0(D), we deduce a bound on (3.5.29). This, combined with the bound ‖∇(δ(ϕh)uh)‖2L2(D) ≤

C and Theorem 3.2.1, with p = r = 2, s = 1, X = H1(D), Y = (W 1,q(D))′, and

B = L2(D) yields the required result.

The convergence result given in the following lemma is not used directly in Theorem

3.5.10, however it is used in the subsequent lemma, Lemma 3.5.9, in which we identify F .

Lemma 3.5.8 For D ⊂ R2 we have, after possibly re-indexing from sub-sequences, as

h→ 0,

ζ(ϕh)uh → ζ(ϕ)u in L2(0, T ;L2(D)). (3.5.30)

Proof. This proof follows the proof of Lemma 4.3 in [39].

Similar to the proof of Lemma 3.5.7 we first obtain a bound on ζ(ϕh)uh in L2(0, T ;H1(D))

and then we obtain a bound on (ζ(ϕh)uh)t in L2(0, T ; (W 1,q(D))′). Combining these

bounds and using Theorem 3.2.1 will then yield the desired result. Following a similar

argument to the one in the proof of Lemma 3.5.7 we have, using the inverse estimate



Chapter 3 105

(3.5.28), Hölder’s inequality, and Lemma 3.5.2, for t ∈ (tn, tn+1),

‖∇(ζ(ϕh)uh)‖2L2(D) ≤ C‖∇ϕh‖
2
L2(D)‖uh‖

2
L∞(D) + C

∫
D
ζ(ϕh)2|∇uh|2 dx

≤ C‖∇ϕh‖2L2(D) + C

∫
D
ζ(ϕn+1

h )|∇uh|2 dx

+ C

∫
D
|∇uh|2|ϕn+1

h − ϕnh|2 dx

≤ C‖∇ϕh‖2L2(D) + C

∫
D
ζ(ϕn+1

h )|∇un+1
h |2 dx

+ C

∫
D
ζ(ϕn+1

h )|∇(un+1
h − unh)|2 dx

+ C

∫
D
|∇uh|2|ϕn+1

h − ϕnh|2 dx

≤ C‖∇ϕh‖2L2(D) + C‖
[
ζ(ϕn+1

h )
] 1

2 ∇un+1
h ‖2L2(D) + Ch−2‖un+1

h − unh‖L2(D)

+ C‖∇uh‖2L∞(D)‖ϕ
n+1
h − ϕnh‖2L2(D)

≤ C‖∇ϕh‖2L2(D) + C‖
[
ζ(ϕn+1

h )
] 1

2 ∇un+1
h ‖2L2(D) + Ch−2‖un+1

h − unh‖L2(D)

+ Ch−2‖ϕn+1
h − ϕnh‖2L2(D).

Multiplying by ∆t, summing over n, and using results from Lemmas 3.5.3 and 3.5.4, yields

∫ T

0
‖∇(ζ(ϕh)uh)‖2L2(D) dt ≤ C

∫ T

0
‖∇ϕh‖2L2(D) dt+ C

∫ T

0
‖
[
ζ(ϕ+

h )
] 1

2 ∇u+
h ‖

2
L2(D) dt

+ Ch−2

∫ T

0
‖u+

h − u
−
h ‖L2(D) dt

+ Ch−2

∫ T

0
‖ϕ+

h − ϕ
−
h ‖

2
L2(D) dt

≤ C + Ch−2∆t ≤ C. (3.5.31)

Fix q > 2. Now we bound

∫ T

0
‖(ζ(ϕh)uh)t‖(W 1,q(D))′ dt. (3.5.32)
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Let ψ ∈W 1,q(D) be arbitrary, then for t ∈ (tn, tn+1) we have

((ζ(ϕh)uh)t, ψ)((W 1,q)′,W 1,q) =

∫
D

(ζ(ϕh)uh)tψ dx

=

∫
D

(ζ(ϕh))tuhψ dx+

∫
D
ζ(ϕh)uh,tψ dx

≤ C‖ϕh,t‖L2(D)‖ψ‖L2(D) + C‖uh,t‖(H1(D))′‖ζ(ϕh)ψ‖H1(D)

≤ C‖ϕh,t‖L2(D)‖ψ‖L2(D)

+ C‖uh,t‖(H1(D))′(‖ψ‖H1(D) + ‖ψ‖L∞(D)‖ζ(ϕh)‖H1(D))

≤ C‖ψ‖W 1,q(D)

(
‖ϕh,t‖L2(D) + ‖uh,t‖(H1(D))′

+ ‖uh,t‖(H1(D))′‖ϕh‖H1(D)

)
,

where we used Hölder’s inequality and Lemma 3.5.2. Using Lemmas 3.5.3 and 3.5.5, and

the continuous embedding W 1,q(D) ↪→ C0(D), we deduce the bound on (3.5.32). This,

along with the bound ‖∇(ζhuh)‖2L2(D) ≤ C, gives us (3.5.30) by Theorem 3.2.1, with

p = r = 2, s = 1, X = H1(D), Y = (W 1,q(D))′ and B = L2(D).

In order to identify F , we define the set

U := { (x, t) ∈ D × (0, T ) | ζ(ϕ(x, t)) > 0 } .

By the convergence result (3.5.23) we see that u belongs to L∞(D × (0, T )). Regularity

theory for parabolic variational inequalities (see [49]) gives us

ϕ ∈ Lp(0, T ;W 2,p(D)), and ϕt ∈ Lp(0, T ;Lp(D)), ∀p <∞.

Thus, by standard embedding results, ϕ ∈ C0(D × (0, T )). This tells us that the set U is

open.

Lemma 3.5.9 ForD ⊂ R2, the F in (3.5.25) satisfies F = χ(U)ζ(ϕ)∇u almost everywhere

in D × (0, T ), where χ(U) is the characteristic function of U .

Proof. This proof follows the proof of Lemma 4.4 in [39].
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In order to identify F on U we show that (ζ(ϕ)2u)xi ∈ L2(0, T ;L2(D)) and

(ζ(ϕ)2u)xi = ζ(ϕ)uϕxi + Fiζ(ϕ). (3.5.33)

By Lemma 3.5.8 we have ζ(ϕh)uh → ζ(ϕ)u in L2(0, T ;L2(D)), so that (noting (3.5.21))

∫ T

0

∫
D
ζ(ϕ)2uψxi dxdt = lim

h→0

∫ T

0

∫
D
ζ(ϕh)2uhψxi dx dt, ∀ψ ∈ C∞0 (D × (0, T )).

Using integration by parts on the right hand side integral we have

∫ T

0

∫
D
ζ(ϕh)2uhψxi dxdt = −

∫ T

0

∫
D
ζ(ϕh)2uh,xiψ dx dt−

∫ T

0

∫
D

(ζ(ϕh)2)xiuhψ dx dt

= −
∫ T

0

∫
D
ζ(ϕh)(ζ(ϕh)uh,xi)ψ dxdt

−
∫ T

0

∫
D
ζ(ϕh)uhϕh,xiψ dx dt.

Since ζ(ϕh)uh → ζ(ϕ)u in L2(0, T ;L2(D)) (by (3.5.30)), the dominated convergence the-

orem implies that ζ(ϕh)uhψ → ζ(ϕ)uψ in L2(0, T ;L2(D)). Using this, and ∇ϕh ⇀ ∇ϕ in

L2(0, T ; [L2(D)]2) from (3.5.18), we have

∫ T

0

∫
D
ζ(ϕh)uhϕh,xiψ dxdt→

∫ T

0

∫
D
ζ(ϕ)uϕxiψ dx dt, ∀ψ ∈ C∞0 (D × (0, T )).

By (3.5.25) and (3.5.21) we have

∫ T

0

∫
D
ζ(ϕh)(ζ(ϕh)uh,xi)ψ dx dt→

∫ T

0

∫
D
ζ(ϕ)Fiψ dx dt, ∀ψ ∈ C∞0 (D × (0, T )).

Thus, as ψ is arbitrary, we have (3.5.33) almost everywhere.

We now identify F on U . Let ψ ∈ C∞0 (U) be arbitrary. Using integration by parts we

have

−
∫
U
uxiψ dx =

∫
U
uψxi dx =

∫
U
ζ(ϕ)2u

1

ζ(ϕ)2
ψxi dx

= −
∫
U

(ζ(ϕ)2u)xi
ψ

ζ(ϕ)2
dx+

∫
U

1

ζ(ϕ)
uϕxiψ dx.
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Substituting in (3.5.33), we have

−
∫
U
uxiψ dx = −

∫
U
Fi

1

ζ(ϕ)
ψ dx.

Since ψ is arbitrary, this gives us that uxiζ(ϕ) = Fi almost everywhere on U .

It remains to identify F on U c, where U c := D × (0, T )\U . Let ψ ∈ C∞0 (D × (0, T ))

be arbitrary. We use that 1− χ(U) = 0 on U to give

∣∣∣∣∫
Uc
ζ(ϕ+

h )u+
h,xi

ψ dxdt

∣∣∣∣ =

∣∣∣∣∫ T

0

∫
D
ζ(ϕ+

h )u+
h,xi

(1− χ(U))ψ dx dt

∣∣∣∣
≤
(∫ T

0

∫
D
ζ(ϕ+

h )|∇u+
h |

2 dxdt

) 1
2
(∫ T

0

∫
D
ζ(ϕ+

h )(1− χ(U))2ψ2 dx dt

) 1
2

. (3.5.34)

We know from (3.5.14) that

(∫ T

0

∫
D
ζ(ϕ+

h )|∇u+
h |

2 dxdt

) 1
2

≤ C.

Considering the second term on the right hand side of (3.5.34), we use the fact that

ζ(ϕ)(1 − χ(U)) = 0 almost everywhere in D × (0, T ), along with (3.5.21), to see that, as

h→ 0,

(∫ T

0

∫
D
ζ(ϕ+

h )(1− χ(U))2ψ2 dxdt

) 1
2

→
(∫ T

0

∫
D
ζ(ϕ)(1− χ(U))2ψ2 dxdt

) 1
2

= 0.

Thus, from (3.5.34), we have

∫
Uc
ζ(ϕ+

h )u+
h,xi

ψ dxdt→ 0, as h→ 0.

Recalling (3.5.25), we have

∫ T

0

∫
D
ζ(ϕ+

h )u+
h,xi

ψ dx dt→
∫ T

0

∫
D
Fiψ dx dt.

We conclude that Fi = 0 almost everywhere in U c .

Lemma 3.5.9 and (3.5.25) give us, as h → 0 (after possibly re-indexing from subse-
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quences)

ζ(ϕ+
h )∇u+

h ⇀ χ(U)ζ(ϕ)∇u in L2(0, T ; [L2(D)]2). (3.5.35)

Theorem 3.5.10 For D ⊂ R2, the functions ϕ and u in (3.5.18) - (3.5.24), (3.5.27), and

(3.5.35) satisfy

ε2

∫ T

0
ψ(ut, φ)((H1)′,H1) dt+

∫
{ ζ(ϕ)>0 }

ψζ(ϕ)∇u · ∇φ dxdt (3.5.36)

+
1

αε

∫ T

0
ψ

∫
D
δ(ϕ)uφdx dt =

Q

ε

∫ T

0
ψ

∫
D
δ(ϕ)φdxdt−

∫ T

0
ψ

∫
D
ζ(ϕ)φdx dt,

for arbitrary φ ∈ H1(D) and ψ ∈ C∞0 (0, T ).

Proof. This proof follows arguments made on page 16 of [39].

Multiply (3.5.7) by ψ ∈ C∞0 (0, T ), and integrate over t, to yield

ε2

∫ T

0
ψ

∫
D
Ih (uh,tφh) dx dt︸ ︷︷ ︸

(1)

+

∫ T

0
ψ

∫
D
ζ(ϕ+

h )∇u+
h · ∇φh dxdt︸ ︷︷ ︸

(2)

+
1

αε

∫ T

0
ψ

∫
D
Ih
(
δ(ϕ+

h )u+
h φh

)
dxdt︸ ︷︷ ︸

(3)

=
Q

ε

∫ T

0
ψ

∫
D
Ih
(
δ(ϕ+

h )φh
)

dx dt︸ ︷︷ ︸
(4)

−
∫ T

0
ψ

∫
D
Ih
(
ζ(ϕ+

h )φh
)

dx dt︸ ︷︷ ︸
(5)

. (3.5.37)

We consider the convergence of the integrals in (3.5.37), as h→ 0, to the corresponding

terms in (3.5.36). For φ ∈ H1(D) there exists a sequence φh ∈ Uh(D) such that φh → φ

in H1(D). For integrals (1), (3), (4), and (5) we use (3.5.26). For integral (1), we use

(3.5.24). For integral (2) we use (3.5.35). For integral (3) we use (3.5.27). For integral (4)

we use (3.5.22). For integral (5) we use (3.5.21). This yields the required result.
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Numerical simulations

In this chapter we first reformulate and regularise (1.1.13a) - (1.1.13c) to obtain an alter-

native model, (M̃), to (M). We present finite element approximations of these alternative

models, and also a finite element approximation of a diffuse interface approximation to

(M) that does not include the regularising ε2ut term introduced in Chapter 3. We follow

this with a summary of the implementations of the different finite element schemes. We

then present a number of numerical simulations obtained from these finite element approx-

imations, together with the finite element approximations of (M) introduced in Chapter

2.

We begin the numerical simulations by testing the accuracy of the numerical schemes,

we do this by considering a radially symmetric geometry, which enables us to compute

analytic solutions of (M). At the start of Section 4.4 we present a number of graphs in

which we compare the analytic radius with the computed radius, and compare the profile

of the analytic solution u with the numerical solution uh, computed with sharp interface

and diffuse interface finite element schemes, where appropriate. This is done in both R2

and R3. We then, in Section 4.4.1, use the analytic solution to compute the experimental

order of convergence for the sharp interface finite element approximations of (M). We

then show some radially symmetric simulations in R3 in Section 4.4.2.

The next section, Section 4.4.3, shows that for small enough γ the effect of the regu-

larising term γ∇u · n (that is introduced in (M̃)) is negligible.

In Section 4.4.4, we investigate the effect of the parameters on the morphological

stability of the geometries arising in the radially symmetric sharp interface simulations of
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(M). In particular we investigate in which parameter regimes spheroids become unstable

and lose their radial symmetry.

In Section 4.5 we present simulations in R2. In Sections 4.5.1 - 4.5.3, we fix Q = 1.0

and investigate the relationship between α and β. In particular we consider the parameter

spaces α < β, α > β, and α, β � 1.0. The simulations presented include a number of

complex initial geometries, comparisons between the alternate formulations of the model,

and formally setting α = 0. The section concludes with the presentation of a number of

in vivo tumours.

In the final section, Section 4.6, we present simulations in R3. In these simulations we

restrict ourselves to the original model (M). Similar to in Section 4.5, we start by fixing

Q = 1.25 in order to investigate the relationship between α and β. In particular, Sections

4.6.1 and 4.6.2 investigate the cases α > β and α, β � 1.0. We do not investigate β > α,

as we found that, similar to in R2, our simulations tend to a spherical steady state with

a small radius. Section 4.6 includes a comparison between the sharp interface and diffuse

interface schemes, run with a number of different initial geometries. The section concludes

with the presentation of a number of in vivo tumours.

Throughout this chapter we use uh to mean both uh := {unh}Nn=0, and uh := unh for

some n. We use a similar notation for Xh, ϕh, Γh, and Ωh. For a function f that is

continuous in time we write fn := f(tn).

4.1 Alternate formulation of the model

In Section 1.1 we derive the system (1.1.13a) - (1.1.13c), which we then regularise to yield

(M). We now arrange (1.1.13a) - (1.1.13c) in a different way and then regularise as before,

in order to obtain an alternative formulation.

Our reason for considering this alternative formulation is that it enables us to set

α = 0, which is clearly not possible for (M).

For the alternative formulation we take (1.1.13c) as the boundary condition for (1.1.13a),

and substitute (1.1.13c) into (1.1.13b) to yield a velocity law for Γ(t). Then for ease of

computation, we regularise the boundary condition (1.1.13c) with a γ∇u · n term, where

γ ∈ R taken small and positive. This is done in order to maintain Robin boundary

conditions, so that only a minor modification of the computer program for the original



Chapter 4 112

formulation is necessary. In addition we regularise the velocity law with a βκ term. This

results in the following model

∆u = 1, in Ω(t), (M̃a)

γ∇u · n+ u = αV, on Γ(t), (M̃b)

V = Q−∇u · n+ βκ, on Γ(t). (M̃c)

In Section 4.4.3 we computationally show that for γ ≤ 10−4 the Robin boundary regu-

larisation has a negligible effect, and we found computationally that we need α . 0.01 in

order for the evolution to be stable.

Following Sections 2.1 and 2.2, the weak form for (M̃) and the corresponding finite

element approximation are given by:

Problem P̃SI Given an initial closed curve Γ(0) ∈ R2 and ω ∈ (0, 1], find (u,x) such

that, for all t ∈ (0, T ),

∫
Ω(t)
∇u · ∇φ dv+

1

γ

∫
Γ(t)

uφds+

∫
Ω(t)

φ dv =
α

γ

∫
Γ(t)

xt ·nφ ds, ∀φ ∈ H1(Ω(t)), (4.1.2)

and, for all ξ ∈ H1(I),

∫
I

|xρ|2 (ωxt + (1− ω)(xt · n)n) · ξ dθ+β

∫
I

xρ · ξρ dθ =

∫
I

|xρ|2 (Q−∇u(x) · n)n · ξ dθ.

(4.1.3)

Here Γ(t) is parametrised by x(I, t), and Ω(t) is the interior of Γ(t).

Problem P̃hSI For ω ∈ (0, 1], given X0
h = Ihx(·, 0) ∈ Wh(I), with X−1

h := X0
h, for

n = 0, . . . , N − 1, find {unh,X
n+1
h } ∈ Sh(Ωn

h)×Wh(I) such that, for all φh ∈ Sh(Ωn
h),

∫
Ωnh

∇unh · ∇φh dv +
1

γ

∫
Γnh

Îh (unhφh) ds+

∫
Ωnh

φh dv =
α

γ

(
|Xn

h,ρ|DtX
n
h · nnh, φh

)h
, (4.1.4)
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and

(
|Xn

h,ρ|2
(
ωDtX

n+1
h + (1− ω)(DtX

n+1
h · nnh)nnh

)
, ξh

)h
+ β(Xn+1

h,ρ , ξh,ρ)

=
1

α

(
|Xn

h,ρ|2(Q−∇unh(Xn
h ) · nnh)nnh, ξh

)h
, ∀ξh ∈Wh(I).

(4.1.5)

Here DtX
n+1
h :=

Xn+1
h −Xn

h
∆t (and similarly for DtX

n
h ), Γnh is given by Xn

h (I), Ωn
h is the

interior of Γnh, and ∇unh(Xn
h )|σj , for j = 1, . . . , J , is piecewise constant for σj ∈ T hΓ , with

∇unh(Xn
h )|σj = ∇unh|µl , for j = 1, . . . , J,

where µl is the element in T hΩ that has the line joining Xn
j−1 and Xn

j as one of its edges.

4.2 Diffuse interface without regularisation

In Chapter 3 we introduce a diffuse interface approximation of (M) that is regularised in

time by ε2ut. We also present a finite element scheme for this model. We now introduce

an unregularised diffuse interface weak form and finite element scheme that we will use to

obtain the simulations presented in this chapter.

4.2.1 Weak form

Using the notation in Section 3.1, we have that the weak formulation for (3.1.1) coupled

with (3.1.4), with initial condition (3.1.3), is given by

Problem P̃DI Given initial condition (3.1.3) for ϕ0 ∈ K(D), find (ϕ, u), with ϕ(t) ∈

K(D), such that, for all t ∈ (0, T ),

∫
D
ζ(ϕ)∇u · ∇φ dx+

1

αε

∫
D
δ(ϕ)uφ dx =

Q

ε

∫
D
δ(ϕ)φ dx−

∫
D
ζ(ϕ)φ dx, ∀φ ∈ H1(D),

(4.2.1)

and, for all ρ ∈ K(D),

∫
D
εϕt(ρ− ϕ) dx+ βε

∫
D
∇ϕ · ∇(ρ− ϕ) dx− β

ε

∫
D
ϕ(ρ− ϕ) dx ≥ π

4α

∫
D
u(ρ− ϕ) dx.

(4.2.2)
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4.2.2 Finite element scheme

Similar to Section 3.4, we write a finite element scheme for the weak form P̃DI , with initial

data (3.4.2), in the following form

Problem P̃hDI Given an approximation ϕ0
h = Ihϕ0 ∈ Kh(D), for n = 0, . . . , N − 1, find

{unh, ϕ
n+1
h } ∈ Uh(D)×Kh(D) such that

∫
D
ζ(ϕnh)∇unh · ∇φh dx+

1

αε

∫
D
Ih (δ(ϕnh)unhφh) dx

=
Q

ε

∫
D
Ih (δ(ϕnh)φh) dx−

∫
D
Ih (ζ(ϕnh)φh) dx, ∀φh ∈ Uh(D),

(4.2.3)

and, for all ρh ∈ Kh(D),

ε

∫
D
Ih
(
Dtϕ

n+1
h (ρh − ϕn+1

h )
)

dx+ βε

∫
D
∇ϕn+1

h · ∇(ρh − ϕn+1
h ) dx

− β

ε

∫
D
Ih
(
ϕnh(ρh − ϕn+1

h )
)

dx ≥ π

4α

∫
D
Ih
(
unh(ρh − ϕn+1

h )
)

dx. (4.2.4)

Here, as in Chapter 3,

Uh(D) :=
{
φh ∈ C0(D)

∣∣∣ φh|σ is linear ∀σ ∈ T hD
}
,

Kh(D) := { ρh ∈ Uh(D) | |ρh| ≤ 1 } ,

Ih : C0(D)→ Uh(D) is the Lagrange interpolation operator onto Uh(D), and for simplicity

of notation we extend Ih to encompass Ih : C0(D)→ Kh(D), the Lagrange interpolation

operator onto Kh(D).

In order to solve (4.2.4) we employ the projected SOR algorithm given in Algorithm

7.
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4.2.3 Diffuse interface approximation to (M̃)

A natural diffuse interface approximation to the velocity law (M̃c) would take the form

∫
D
εϕt(ρ− ϕ) dx+ βε

∫
D
∇ϕ · ∇(ρ− ϕ) dx− β

ε

∫
D
ϕ(ρ− ϕ) dx

≥ π

4

∫
D

(Q−∇u · nϕ)(ρ− ϕ) dx. (4.2.5)

where nϕ =
∇ϕ
|∇ϕ|

. Coupling (4.2.5) to a diffuse interface interface approximation to (Ma)

with boundary condition (Mb) (for example (4.2.1)) yields a diffuse interface approxima-

tion to (M̃). When we implemented a finite element approximation of this diffuse interface

approximation to (M̃), we found that the numerical solutions that we obtained (in a ra-

dially symmetric setting) compared badly with the corresponding analytical solutions of

(M̃c). We believe that this was not due to the finite element approximation, but is instead

a limitation of the diffuse interface approximation that we used. In particular, we be-

lieve that although the diffuse interface approximation approximates the solution u well,

it has difficulties approximating ∇u correctly within the interfacial region. Our reasoning

for this can be seen in Figure 4.1, where the numerical approximation uh is displayed

alongside the analytical solution u. Here we have taken a radially symmetric setting in

which Ω(t) ⊂ R2 is a disk, centred at the origin with radius R(t), and u is expressed in

polar coordinates with u(r, θ) = u(r). The figure shows a plot of u(r) (blue line) together

with uh(r) restricted to the positive x-axis (red line), at t = 0.8. The vertical black lines

denote the diffuse interfacial region. From these plots we see that although uh is close to

u, towards the right hand edge of the diffuse interfacial region ∇uh diverges significantly

from ∇u. Since ∇u appears in the velocity law for (M̃), an alternative diffuse interface

approximation for this model is required, however we do not suggest one here.
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Figure 4.1: Comparison of the analytic solution u(r) (blue line) and the diffuse interface
approximation uh(r) (red line). The x-axis is the radius, r. The edges of the diffuse inter-
facial region are denoted by two black lines. The diffuse interfacial region is of approximate
width 0.3, centred at r = 2.0.

4.3 Summary of the implementations

In this section we present a summary of the techniques used in the implementations of

the finite element schemes that are used in the remainder of the chapter. We begin with

the sharp interface scheme, in which we discuss the mesh smoothing, and refinement and

coarsening scheme. We then turn our attention to the unfitted sharp interface scheme,

where we discuss the mesh adaptivity used. We finally discuss the mesh adaptivity used

in the diffuse interface case.

All finite element schemes are implemented in the programming language c, using the

finite element toolbox ALBERTA [69]. The output files are visualised in Paraview [3].

4.3.1 Sharp interface

With regard to the finite element schemes introduced in Sections 2.2 and 4.1, maintaining a

high quality mesh throughout the simulation is important. For this reason, when working

in R2, we choose to use the DeTurck method, described in Section 2.3.2, with ω̄ = 1. This

is coupled with the refinement and coarsening scheme suggested in [42], in which we seek
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to refine element µn ∈ T hΩ if

|µn| ≥ 1.5|µ0|,

and seek to coarsen element µn ∈ T hΩ if

|µn| ≤ 0.5|µ0|,

where µ0 ∈ T hΩ at t = 0, |µn| is the element area, and |µ0| is the mean area of all elements

at time t = 0. We use ALBERTA’s built in scheme for refining and coarsening.

We then, in R2, couple this mesh maintenance algorithm with the re-meshing software

GMSH, described in Section 2.3.3. We perform re-meshes sparingly, waiting until q ≥ 5,

where q is defined in (2.3.3). This allows the simulation to continue until it reaches a

self intersection. Note that re-meshing is not required until a large transformation has

occurred, however we re-mesh more often than is strictly necessary in order to maintain

the accuracy of the solution.

With regard to the finite element scheme introduced in Section 2.5, when working in

R3, we did not implement the DeTurck method described in Section 2.3.2. This is because

it would require a reference manifold in R4, and ALBERTA does not allow dimensions

above R3. We also did not implement re-meshing via GMSH, due to the complexity

of the programming task. In order to maintain a reasonable mesh for a short time we

implemented the simpler harmonic extension method, described in Section 2.3.1.

4.3.2 Unfitted sharp interface scheme

The unfitted sharp interface scheme PhSIU does not require any mesh smoothing on T hD . We

implemented an identical refining and coarsening algorithm to that of the sharp interface

scheme, described in Section 4.3.1, on the mesh T hΓ (with the only difference that we

consider the length of the element, rather than the element area). In order to keep the

execution time low, and the accuracy high, we ensure that the simplexes of the mesh T hD

that are either inside Γnh or cut by Γnh are refined a set number of times, whilst simplexes

that are entirely outside of Γnh are coarsened as much as possible. In all unfitted sharp

interface simulations we take ω = 1.
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4.3.3 Diffuse interface

Similar to the unfitted sharp interface scheme, the diffuse interface finite element scheme

P̃hDI does not need smoothing on the mesh T hD . However, in order to keep the execution

time low, and the accuracy high, the mesh is adaptively refined and coarsened so that it

is well refined when ϕnh > −1, and coarse otherwise.

When computing radially symmetric simulations, we use the symmetry of the system,

of the initial conditions, and of D, to reduce the computation space to either a quadrant

in R2, or an octant in R3.

4.4 Radially symmetric simulations

In this section we consider a radially symmetric geometry for Γ(t). Thus, we set Γ(t) ⊂ Rd

to be an d dimensional sphere, centred at the origin. We denote by R = R(t) the radius

of the sphere, and we express u in polar coordinates such that u(r, θ) = u(r). We now

derive an analytic solution, starting by solving for u using (Ma) and (Mb). This gives

u(r) =
1

2d
r2 + αQ− α

d
R− 1

2d
R2, (4.4.1)

which means that (Mc) simplifies to

R′(t) = − dβ
2R

+
1

α
u(r) = Q− dβ

2R
− 1

d
R, (4.4.2)

with initial condition R(0) := R0. Note that if we solve (M̃) in a similar way, then we get

a different expression for u, but the value of R′ (and thus R) remains unchanged at time

t (for γ = 0).

In Figure 4.2 we consider d = 2, and plot the radius for the sharp interface scheme PhSI

(blue line) together with the radius for the diffuse interface scheme P̃hDI (obtained from the

zero level set of ϕh, red line) and the radius for the unfitted sharp interface scheme PhSIU

(green line). These are compared to the radius given by the analytic equation (4.4.2)

(calculated numerically, dashed yellow line). In this example we set the initial radius

R0 = 1.5, Q = 1.5 and α = β = 1.0. The diffuse interface solution was obtained with
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ε = 0.09, ∆t = 5 × 10−7, h = 0.0048 and dofs ≈ 1.7 × 105, the fitted sharp interface

scheme with ∆t = 5 × 10−4, h = 0.0046 and dofs ≈ 5.3 × 105, and the unfitted sharp

interface scheme with ∆t = 10−4, h = 0.00057 and dofs = 1.3 × 105, where dofs is the

number of degrees of freedom.

In Figure 4.2 we also plot the function uh, for both the sharp interface and diffuse

interface schemes, against u (here u solves (4.4.1), and is extended beyond Ω(t) by an

extension of the formula). Once again, we use blue for the sharp interface scheme, red

for the diffuse interface scheme, green for the unfitted sharp interface scheme, and dashed

yellow for the analytical solution. This is plotted at t = 0.5. We see a good agreement

between the two schemes.

In Figure 4.3 we display the influence of ε on the diffuse interface solution. We

set d = 2, and plot the radius (top image) and the solution uh (bottom image) ob-

tained from the diffuse interface scheme using ε = 0.39, 0.27, 0.19, 0.09, and 0.049, h ≈

0.028, 0.020, 0.014, 0.0098, and 0.0049, ∆t = 9× 10−5, 6× 10−5, 2× 10−5, 10−5, and 10−6,

and dofs ≈ 9.2 × 103, 1.5 × 104, 2.9 × 104, 4.6 × 104, and 1.7 × 105. From this figure we

see the convergence of the radius and the solution uh, to their analytical counterparts, as

ε→ 0.

In Figure 4.4 we consider d = 3, and plot similarly to Figure 4.2 (omitting the unfitted

sharp interface scheme, as this was not implemented in R3). In this example we set the

initial radius R0 = 1.0, the diffuse interface solution was obtained with ε = 0.1, h = 0.014,

∆t = 5× 10−6, dofs = 8.2× 105, and the sharp interface with ∆t = 1.0× 10−5, h = 0.06,

dofs = 1.5 × 104. We choose Q = 1.666(≈ 5
3) and α = β = 1.0. As in Figure 4.2 we

also plot uh, from both the sharp interface and diffuse interface schemes, against u (once

again u solves (4.4.1), and is extended beyond Ω(t) by an extension of the formula). This

is plotted at t = 0.3. Again, we see a good agreement between the two schemes.
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Figure 4.2: Top plot: comparison of the radius, in R2, computed using the sharp interface
scheme PhSI (blue line), diffuse interface scheme P̃hDI (red line) and the unfitted sharp
interface scheme PhSIU (green line), with the analytical radius from (4.4.2) (dashed yellow
line, computed numerically). Bottom plot: comparison of uh from the sharp interface
scheme (blue line), from the diffuse interface scheme (red line), and from the unfitted
sharp interface scheme, with the extended analytic solution u from (4.4.1) (dashed yellow
line), taken at t = 0.5. In both plots the blue line is behind the dashed yellow and solid
green lines. The diffuse interface solution was obtained with ε = 0.09, ∆t = 5 × 10−7,
h = 0.0048 and dofs ≈ 1.7 × 105, the fitted sharp interface scheme with ∆t = 5 × 10−4,
h = 0.0046 and dofs ≈ 5.3× 105 and the unfitted sharp interface scheme with ∆t = 10−4,
h = 0.00057 and dofs = 1.3× 105.
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Figure 4.3: Top plot: comparison of the radius, in R2, computed using the diffuse in-
terface scheme P̃hDI and the analytical radius from (4.4.2) (dashed yellow line, computed
numerically). Bottom plot: comparison of uh from the diffuse interface scheme with the
extended analytic solution u from (4.4.1) (dashed yellow line), taken at t = 0.1. Here
we take ε = 0.39, 0.27, 0.19, 0.09, and 0.049, h ≈ 0.028, 0.020, 0.014, 0.0098, and 0.0049,
∆t = 9× 10−5, 6× 10−5, 2× 10−5, 10−5, and 10−6, and dofs ≈ 9.2× 103, 1.5× 104, 2.9×
104, 4.6× 104, and 1.7× 105.
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Figure 4.4: Top plot: comparison of the radius, in R3, computed using the sharp interface
scheme PhSIR3 (blue line) and diffuse interface scheme P̃hDI (red line), with the analytical
radius from (4.4.2) (dashed yellow line, computed numerically). Bottom plot: comparison
of uh from the sharp interface scheme (blue line), from the diffuse interface scheme (red
line), and with the extended analytic solution u from (4.4.1) (dashed yellow line), taken
at t = 0.3. For the diffuse interface scheme we choose ε = 0.1, h = 0.014, ∆t = 5× 10−6,
dofs = 8.2×105, and for the sharp interface scheme we choose ∆t = 1.0×10−5, h = 0.06,
dofs = 1.5× 104.

4.4.1 Sharp interface experimental order of convergence

Using the analytic solution to (4.4.1), and the numerically computed solution to (4.4.2),

we compute the experimental orders of convergence for the sharp interface scheme PhSI .

This is done with both ω = 1 and ω = 10−3. For each of these choices of ω, we smooth

the bulk mesh with either the harmonic extension method, detailed in Section 2.3.1, or

with the DeTurck method, detailed in Section 2.3.2.

We perform these simulations for both a uniform, and a non-uniform mesh. We addi-
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tionally present experimental orders of convergence for the unfitted sharp interface scheme

PhSIU (for ω = 1 since the mesh is uniform) with a uniform mesh.

Throughout the simulations in this section we take α = 1.0, β = 0.5, Q = 1.5, T = 2.0,

and the initial radius R0 = 1.5. The values of ∆t and h chosen are shown in the respective

tables. In all cases h is the maximum over all time steps; in the case of the unfitted

sharp interface scheme it is the mesh size for D (although the mesh size for Γnh is reduced

accordingly).

Uniform mesh

When constructing the uniform mesh, we choose

X0
h(q) = 1.5(cos(q), sin(q)), (4.4.3)

for vertex q of the mesh for Γ0
h. This leads to the mesh shown in Figure 4.5.

Figure 4.5: Uniform mesh, with Γ0
h given by (4.4.3).

Table 4.1 shows the errors and Table 4.2 shows the experimental order of convergence

for the sharp interface scheme PhSI , with ω = 1, and the DeTurck method. Table 4.3

shows the errors and Table 4.4 shows the experimental order of convergence for the sharp

interface scheme PhSI , with ω = 10−3, and the DeTurck method. Table 4.5 shows the

errors and Table 4.6 shows the experimental order of convergence for the sharp interface

scheme PhSI , with ω = 1, and the harmonic extension method. Table 4.7 shows the errors

and Table 4.8 shows the experimental order of convergence for the sharp interface scheme
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PhSI , with ω = 10−3, and the harmonic extension method. Table 4.9 shows the errors and

Table 4.10 shows the experimental order of convergence for the unfitted sharp interface

scheme PhSIU , with ω = 1, and the DeTurck method. We use the L∞ in time norm when

dealing with the unfitted sharp interface scheme.

We use the L2 in time norm for the computations regarding the sharp interface scheme

PhSI . This is because it captures the effect of the mesh improving (whereas the L∞ in time

norm may have the largest error near to t = 0 when the mesh is at its least uniform). Since

the mesh in this section is uniform, the improvement of the mesh has very little effect,

however we choose the L2 norm for consistency with the results regarding the non-uniform

mesh given in Section 4.4.1. The experimental order of convergence in the H1 norms of Ωn
h

and I are approximately 2, while the L2 norms of Ωn
h and I tend to give an experimental

order convergence of approximately 2 or greater.

We see, by comparing Table 4.2 with Table 4.4, that we have almost identical exper-

imental orders of convergence for ω = 1 and ω = 10−3 when using the DeTurck scheme.

This is due to the initial mesh being uniformly distributed, and so the boundary mesh

cannot be significantly improved by taking smaller ω. Thus, as the circle grows we only

have the effect of the DeTurck method, which is identical in these two cases. We have a

similar effect when comparing Tables 4.6 and 4.8 (in which ω = 1 or ω = 10−3, respec-

tively, and we use the harmonic extension method). Again, the boundary mesh cannot be

significantly improved by taking smaller ω.

We see only very slightly improved experimental orders of convergence for Table 4.2,

in which we take ω = 1 and use the DeTurck method, compared to Table 4.6, in which we

again take ω = 1 and this time use the harmonic extension method. This is because the

initial mesh is uniform, and so the small amounts of improvement that can be done to the

mesh can be carried out equally well by the DeTurck method as by the harmonic extension

method. This is also reflected in results for ω = 10−3, when comparing the experimental

orders of convergence for the DeTurck method (Table 4.4) with the harmonic extension

method (Table 4.8), since they are almost identical.

With regard to the errors themselves, we see a similar effect as reported for the ex-

perimental orders of convergence. There is a slight improvement for ω = 1 compared to

ω = 10−3 when considering the DeTurck method, and identical results when comparing
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ω = 1 with ω = 10−3 and the harmonic extension method. Similarly the results are almost

identical when comparing the DeTurck method with the harmonic extension method.

The experimental orders of convergence for the unfitted sharp interface scheme PhSIU

shown in Table 4.10 improve slightly upon the results for the sharp interface scheme PhSI

for all but the L2 norm on X. With regard to the errors, when comparing them for similar

values of h and ∆t, we see that the errors in the H1 norms on u and X for the unfitted

sharp interface scheme are much smaller than the corresponding fitted errors, and that an

experimental order of convergence of approximately 4 is seen for the errors for uh in L2

over Ωn
h.

h ∆t L2(u,Ωn
h) H1(u,Ωn

h) L2(X, I) H1(X, I)

4.60E-01 7.40E-03 3.06E-04 4.09E-02 2.84E-05 3.48E-02

2.38E-01 3.90E-03 2.68E-05 1.04E-02 2.50E-06 8.63E-03

1.22E-01 2.00E-03 2.75E-06 2.62E-03 2.95E-07 2.16E-03

6.16E-02 1.00E-03 3.57E-07 6.58E-04 4.86E-08 5.40E-04

3.09E-02 5.20E-02 6.37E-08 1.63E-04 1.11E-09 1.34E-04

Table 4.1: Errors for the given norms, solving the sharp interface scheme PhSI with ω = 1,
and the DeTurck method. With Γ0

h given by (4.4.3). Here L2(v, U) for function v and set

U denotes the norm ∆t
∑N

n=0 ||vnh − v(tn)||2L2(U), and H1(v, U) for function v and set U

denotes the norm ∆t
∑N

n=0 |vnh − v(tn)|2H1(U).

h ∆t L2(u,Ωn
h) H1(u,Ωn

h) L2(X, I) H1(X, I)

4.60E-01 7.40E-03

2.38E-01 3.90E-03 3.69 2.08 3.69 2.12

1.22E-01 2.00E-03 3.39 2.06 3.19 2.07

6.16E-02 1.00E-03 2.99 2.03 2.64 2.03

3.09E-02 5.20E-02 2.50 2.03 2.14 2.02

Table 4.2: Experimental order of convergence for the given norms, solving the sharp
interface scheme PhSI with ω = 1, and the DeTurck method. With Γ0

h given by (4.4.3).
Here L2(v, U) for function v and set U denotes the experimental orders of convergence for
the norm ∆t

∑N
n=0 ||vnh − v(tn)||2L2(U), and H1(v, U) for function v and set U denotes the

experimental orders of convergence for the norm ∆t
∑N

n=0 |vnh − v(tn)|2H1(U).
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h ∆t L2(u,Ωn
h) H1(u,Ωn

h) L2(X, I) H1(X, I)

4.59E-01 7.40E-03 2.98E-04 4.08E-02 2.83E-05 3.48E-02

2.38E-01 3.90E-03 2.66E-05 1.04E-02 2.49E-06 8.63E-03

1.22E-01 2.00E-03 2.74E-06 2.62E-03 2.95E-07 2.16E-03

6.16E-02 1.00E-03 3.56E-07 6.58E-04 4.85E-08 5.40E-04

3.09E-02 5.20E-04 6.42E-08 1.64E-04 1.12E-08 1.35E-04

Table 4.3: Errors for the given norms, solving the sharp interface scheme PhSI with ω =
10−3, and the DeTurck method. With Γ0

h given by (4.4.3). Here L2(v, U) for function v

and set U denotes the norm ∆t
∑N

n=0 ||vnh − v(tn)||2L2(U), and H1(v, U) for function v and

set U denotes the norm ∆t
∑N

n=0 |vnh − v(tn)|2H1(U).

h ∆t L2(u,Ωn
h) H1(u,Ωn

h) L2(X, I) H1(X, I)

4.59E-01 7.40E-03

2.38E-01 3.90E-03 3.68 2.08 3.71 2.12

1.22E-01 2.00E-03 3.39 2.06 3.19 2.07

6.16E-02 1.00E-03 2.99 2.03 2.64 2.03

3.09E-02 5.20E-04 2.49 2.01 2.13 2.01

Table 4.4: Experimental order of convergence for the given norms, solving the sharp
interface scheme PhSI with ω = 10−3, and the DeTurck method. With Γ0

h given by (4.4.3).
Here L2(v, U) for function v and set U denotes the experimental orders of convergence for
the norm ∆t

∑N
n=0 ||vnh − v(tn)||2L2(U), and H1(v, U) for function v and set U denotes the

experimental orders of convergence for the norm ∆t
∑N

n=0 |vnh − v(tn)|2H1(U).

h ∆t L2(u,Ωn
h) H1(u,Ωn

h) L2(X, I) H1(X, I)

4.70E-01 7.40E-03 3.23E-04 4.10E-02 2.94E-05 3.47E-02

2.40E-01 3.90E-03 2.73E-05 1.04E-02 2.55E-06 8.63E-03

1.22E-01 2.00E-03 2.77E-06 2.62E-03 2.98E-07 2.16E-03

6.11E-02 1.00E-03 3.57E-07 6.57E-04 4.88E-08 5.39E-04

3.06E-02 5.20E-04 6.44E-08 1.64E-04 1.12E-08 1.35E-04

Table 4.5: Errors for the given norms, solving the sharp interface scheme PhSI with ω = 1,
and the harmonic extension method. With Γ0

h given by (4.4.3). Here L2(v, U) for function

v and set U denotes the norm ∆t
∑N

n=0 ||vnh − v(tn)||2L2(U), and H1(v, U) for function v

and set U denotes the norm ∆t
∑N

n=0 T |vnh − v(tn)|2H1(U).
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h ∆t L2(u,Ωn
h) H1(u,Ωn

h) L2(X, I) H1(X, I)

4.70E-01 7.40E-03

2.40E-01 3.90E-03 3.69 2.04 3.65 2.08

1.22E-01 2.00E-03 3.35 2.02 3.15 2.03

6.11E-02 1.00E-03 2.98 2.01 2.63 2.01

3.06E-02 5.20E-04 2.48 2.01 2.13 2.01

Table 4.6: Experimental order of convergence for the given norms, solving the sharp
interface scheme PhSI with ω = 1, and the harmonic extension method. With Γ0

h given
by (4.4.3). Here L2(v, U) for function v and set U denotes the experimental orders of
convergence for the norm ∆t

∑N
n=0 ||vnh − v(tn)||2L2(U), and H1(v, U) for function v and set

U denotes the experimental orders of convergence for the norm ∆t
∑N

n=0 |vnh−v(tn)|2H1(U).

h ∆t L2(u,Ωn
h) H1(u,Ωn

h) L2(X, I) H1(X, I)

4.68E-01 7.40E-03 3.23E-04 4.09E-02 2.95E-05 3.47E-02

2.40E-01 3.90E-03 2.73E-05 1.04E-02 2.55E-06 8.63E-03

1.21E-01 2.00E-03 2.77E-06 2.62E-03 2.98E-07 2.16E-03

6.11E-02 1.00E-03 3.57E-07 6.57E-04 4.88E-08 5.39E-04

3.06E-02 5.20E-04 6.44E-08 1.64E-04 1.12E-08 1.35E-04

Table 4.7: Errors for the given norms, solving the sharp interface scheme PhSI with ω =
10−3, and the harmonic extension method. With Γ0

h given by (4.4.3). Here L2(v, U)

for function v and set U denotes the norm ∆t
∑N

n=0 ||vnh − v(tn)||2L2(U), and H1(v, U) for

function v and set U denotes the norm ∆t
∑N

n=0 |vnh − v(tn)|2H1(U).

h ∆t L2(u,Ωn
h) H1(u,Ωn

h) L2(X, I) H1(X, I)

4.68E-01 7.40E-03

2.40E-01 3.90E-03 3.70 2.05 3.66 2.08

1.21E-01 2.00E-03 3.36 2.02 3.15 2.04

6.11E-02 1.00E-03 2.98 2.01 2.63 2.02

3.06E-02 5.20E-04 2.48 2.01 2.13 2.01

Table 4.8: Experimental order of convergence for the given norms, solving the sharp
interface scheme PhSI with ω = 10−3, and the harmonic extension method. With Γ0

h given
by (4.4.3). Here L2(v, U) for function v and set U denotes the experimental orders of
convergence for the norm ∆t

∑N
n=0 ||vnh − v(tn)||2L2(U), and H1(v, U) for function v and set

U denotes the experimental orders of convergence for the norm ∆t
∑N

n=0 |vnh−v(tn)|2H1(U).
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h ∆t L2(u,Ωn
h) H1(u,Ωn

h) L2(X, I) H1(X, I)

1.33E-01 1.30E-03 1.86E-06 1.76E-04 1.83E-06 2.53E-06

9.38E-02 9.40E-04 4.78E-07 8.46E-05 9.61E-07 1.13E-06

6.63E-02 6.60E-04 1.29E-07 4.04E-05 4.74E-07 5.18E-07

4.69E-02 4.70E-04 3.11E-08 1.94E-05 2.41E-07 2.51E-07

3.31E-02 3.30E-04 7.48E-09 9.41E-06 1.19E-07 1.21E-07

Table 4.9: Errors for the given norms, solving the unfitted sharp interface scheme PhSIU
with ω = 1. With Γ0

h given by (4.4.3). Here L2(v, U) for function v and set U denotes
the norm supn=0,...,N ||vnh −v(tn)||2L2(U), and H1(v, U) for function v and set U denotes the

norm supn=0,...,N |vnh − v(tn)|2H1(U).

h ∆t L2(u,Ωn
h) H1(u,Ωn

h) L2(X, I) H1(X, I)

1.33E-01 1.30E-03

9.38E-02 9.40E-04 3.91 2.11 1.87 2.31

6.63E-02 6.60E-04 3.79 2.13 2.04 2.26

4.69E-02 4.70E-04 4.10 2.12 1.96 2.08

3.31E-02 3.30E-04 4.11 2.09 2.04 2.10

Table 4.10: Experimental order of convergence for the given norms, solving the unfit-
ted sharp interface scheme PhSIU with ω = 1. With Γ0

h given by (4.4.3). Here L2(v, U)
for function v and set U denotes the experimental orders of convergence for the norm
supn=0,...,N ||vnh − v(tn)||2L2(U), and H1(v, U) for function v and set U denotes the experi-

mental orders of convergence for the norm supn=0,...,N |vnh − v(tn)|2H1(U).

Non-uniform mesh

When constructing the non-uniform mesh, we choose

X0
h(q) = 1.5(cos(q + 0.9(q3 − q)), sin(q + 0.9(q3 − q))), (4.4.4)

for vertex q of the mesh for Γ0
h. This leads to the mesh shown in Figure 4.6.
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Figure 4.6: Non-uniform mesh, with Γ0
h given by (4.4.4).

Table 4.11 shows the errors and Table 4.12 shows the experimental order of convergence

for the sharp interface scheme PhSI , with ω = 1, and the DeTurck method. Table 4.13

shows the errors and Table 4.14 shows the experimental order of convergence for the sharp

interface scheme PhSI , with ω = 10−3, and the DeTurck method. Table 4.15 shows the

errors and Table 4.16 shows the experimental order of convergence for the sharp interface

scheme PhSI , with ω = 1, and the harmonic extension method. Table 4.17 shows the errors

and Table 4.18 shows the experimental order of convergence for the sharp interface scheme

PhSI , with ω = 10−3, and the harmonic extension method. In all cases the experimental

orders of convergence for the H1 errors (both in Ωn
h and I) are very similar to ones seen

for the uniform initial mesh, yielding values of approximately 2. The experimental orders

of convergence for the L2 errors (both in Ωn
h and I) are slightly better than those for the

uniform initial mesh, yielding values of 2 or greater.

It is not clear from tables 4.11 - 4.16 which mesh smoothing yields the best errors, since

the difference between the errors is very small. It is also not clear because the errors at the

start of the simulation, for small t, compound as t grows towards T . For this reason it is

often the mesh smoothing technique that yields the quickest mesh smoothing (as opposed

to the best mesh at time T ) that also yields the best error values. Choosing ω = 10−3 (as

opposed to ω = 1) gives better errors for the L2 norm of Xh, this is as expected, since

smaller values of ω lead to greater amounts of mesh smoothing. However, with ω = 10−3,

the DeTurck mesh smoothing yields worse errors for the L2 norm of Xh than the harmonic

extension method. This may be because the DeTurck method aims to improve the bulk
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mesh as well as the boundary mesh; the optimum transformation to improve the boundary

mesh may not be optimal when also considering the bulk mesh. The DeTurck method

does not appear to improve the value of h significantly between Tables 4.11 and 4.15, and

Tables 4.13 and 4.17 (here we compare tables with identical values of ω, as the mesh size

is often greatest on the boundary, and thus is significantly different for different values

of ω). This appears to be because, as discussed in [42], the DeTurck method aims to

transform the triangles on the bulk mesh to triangles of a similar shape to those on the

reference mesh, regardless of triangle size. This means that although the meshes generated

by the DeTurck method have greatly improved meshes with regard to thin and distorted

triangles, the value of h is not always significantly improved. This can be offset by the

refinement and coarsening scheme introduced in [42], also detailed in Section 4.3.1; this

scheme was not included in this section, as it has a significant effect on the value of h for a

short time, thus causing issues with the experimental orders of convergence. The L2 error

for uh is best for the DeTurck scheme with ω = 10−3; this agrees with what we would

expect from the meshes shown in Figure 4.7. We stress again that the difference between

the errors for different mesh smoothing techniques is very small; they are all of the same

order, and often differ only after the first significant figure.

In Figure 4.7 we see the meshes at t = 20, under the four different mesh smoothing

techniques discussed in this section. In order to reduce the time taken to improve the

mesh, we can reduce ω̄ (the timescale parameter for the DeTurck method) to ω̄ = 0.1.

This yields the mesh shown in Figure 4.8 at time t = 0.1; note how it is almost identical

to the image in Figure 4.7 with the DeTurck method and ω = 1 at t = 20. In order to run

this simulation, we had to significantly reduce ∆t, thus greatly increasing the execution

time. We use ω̄ = 1 for the simulations in Sections 4.4 and 4.5 (as opposed to a smaller

value for ω̄) since the mesh smoothing given by ω̄ is sufficient for our purposes, and allows

for a much greater value of ∆t.

It appears from Figure 4.7 that taking ω < 1 speeds up the mesh smoothing given by

the DeTurck method. We see a similar effect for ω̄ < 1 in Figure 4.8. This is an advantage

if the initial mesh is significantly sub-optimal, for example that in Figure 4.6. However, the

simulations in the remainder of this chapter begin with a “good” mesh. Experimentally

we find that our simulations evolve at such a speed that the DeTurck method is able to
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maintain the mesh quality with ω = ω̄ = 1; we do not need the additional speeding up

given by taking either ω < 1 or ω̄ < 1.

Figure 4.7: Left: the DeTurck method with ω = 1. Center left: the DeTurck method with
ω = 10−3. Center right: the harmonic extension method with ω = 1. Right: the harmonic
extension method with ω = 10−3. All at t = 20.

Figure 4.8: DeTurck method with ω = 1, ω̄ = 0.1 (recall that ω̄ is the timescale parameter
for the DeTurck method). Taken at t = 0.1.

h ∆t L2(u,Ωn
h) H1(u,Ωn

h) L2(X, I) H1(X, I)

1.02E+00 7.40E-03 2.69E-03 1.03E-01 4.38E-04 1.13E-01

5.52E-01 3.90E-03 2.22E-04 2.90E-02 2.89E-05 2.82E-02

2.88E-01 2.00E-03 1.74E-05 7.63E-03 2.02E-06 7.06E-03

1.47E-01 1.00E-03 1.46E-06 1.95E-03 1.66E-07 1.77E-03

7.39E-02 5.20E-04 1.57E-07 4.89E-04 1.98E-08 4.42E-04

Table 4.11: Errors for the given norms, solving the sharp interface scheme PhSI with ω = 1,
and the DeTurck method. With Γ0

h given by (4.4.4). Here L2(v, U) for function v and set

U denotes the norm ∆t
∑N

n=0 ||vnh − v(tn)||2L2(U), and H1(v, U) for function v and set U

denotes the norm ∆t
∑N

n=0 |vnh − v(tn)|2H1(U).
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h ∆t L2(u,Ωn
h) H1(u,Ωn

h) L2(X, I) H1(X, I)

1.02E+00 7.40E-03

5.52E-01 3.90E-03 4.03 2.05 4.40 2.25

2.88E-01 2.00E-03 3.91 2.05 4.08 2.12

1.47E-01 1.00E-03 3.67 2.03 3.71 2.05

7.39E-02 5.20E-04 3.26 2.02 3.10 2.02

Table 4.12: Experimental order of convergence for the given norms, solving the sharp
interface scheme PhSI with ω = 1, and the DeTurck method. With Γ0

h given by (4.4.4).
Here L2(v, U) for function v and set U denotes the experimental orders of convergence for
the norm ∆t

∑N
n=0 ||vnh − v(tn)||2L2(U), and H1(v, U) for function v and set U denotes the

experimental orders of convergence for the norm ∆t
∑N

n=0 |vnh − v(tn)|2H1(U).

h ∆t L2(u,Ωn
h) H1(u,Ωn

h) L2(X, I) H1(X, I)

7.85E-01 7.40E-03 1.63E-03 8.27E-02 3.10E-04 9.01E-02

4.81E-01 3.90E-03 1.65E-04 2.59E-02 2.29E-05 2.54E-02

2.69E-01 2.00E-03 1.49E-05 7.29E-03 1.73E-06 6.78E-03

1.42E-01 1.00E-03 1.35E-06 1.92E-03 1.50E-07 1.74E-03

7.30E-02 5.20E-04 1.51E-07 4.87E-04 1.88E-08 4.40E-04

Table 4.13: Errors for the given norms, solving the sharp interface scheme PhSI with
ω = 10−3, and the DeTurck method. With Γ0

h given by (4.4.4). Here L2(v, U) for function

v and set U denotes the norm ∆t
∑N

n=0 ||vnh − v(tn)||2L2(U), and H1(v, U) for function v

and set U denotes the norm ∆t
∑N

n=0 |vnh − v(tn)|2H1(U).

h ∆t L2(u,Ωn
h) H1(u,Ωn

h) L2(X, I) H1(X, I)

7.85E-01 7.40E-03

4.81E-01 3.90E-03 4.68 2.37 5.33 2.58

2.69E-01 2.00E-03 4.12 2.18 4.43 2.27

1.42E-01 1.00E-03 3.77 2.10 3.84 2.13

7.30E-02 5.20E-04 3.29 2.05 3.11 2.07

Table 4.14: Experimental order of convergence for the given norms, solving the sharp
interface scheme PhSI with ω = 10−3, and the DeTurck method. With Γ0

h given by (4.4.4).
Here L2(v, U) for function v and set U denotes the experimental orders of convergence for
the norm ∆t

∑N
n=0 ||vnh − v(tn)||2L2(U), and H1(v, U) for function v and set U denotes the

experimental orders of convergence for the norm ∆t
∑N

n=0 |vnh − v(tn)|2H1(U).
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h ∆t L2(u,Ωn
h) H1(u,Ωn

h) L2(X, I) H1(X, I)

7.85E-01 7.40E-03 1.63E-03 8.27E-02 3.10E-04 9.01E-02

4.81E-01 3.90E-03 1.65E-04 2.59E-02 2.29E-05 2.54E-02

2.69E-01 2.00E-03 1.49E-05 7.29E-03 1.73E-06 6.78E-03

1.42E-01 1.00E-03 1.35E-06 1.92E-03 1.50E-07 1.74E-03

7.30E-02 5.20E-04 1.51E-07 4.87E-04 1.88E-08 4.40E-04

Table 4.15: Errors for the given norms, solving the sharp interface scheme PhSI with ω = 1,
and the harmonic extension method. With Γ0

h given by (4.4.4). Here L2(v, U) for function

v and set U denotes the norm ∆t
∑N

n=0 ||vnh − v(tn)||2L2(U), and H1(v, U) for function v

and set U denotes the norm ∆t
∑N

n=0 |vnh − v(tn)|2H1(U).

h ∆t L2(u,Ωn
h) H1(u,Ωn

h) L2(X, I) H1(X, I)

7.85E-01 7.40E-03

4.81E-01 3.90E-03 4.68 2.37 5.33 2.58

2.69E-01 2.00E-03 4.12 2.18 4.43 2.27

1.42E-01 1.00E-03 3.77 2.10 3.84 2.13

7.30E-02 5.20E-04 3.29 2.05 3.11 2.07

Table 4.16: Experimental order of convergence for the given norms, solving the sharp
interface scheme PhSI with ω = 1, and the harmonic extension method. With Γ0

h given
by (4.4.4). Here L2(v, U) for function v and set U denotes the experimental orders of
convergence for the norm ∆t

∑N
n=0 ||vnh − v(tn)||2L2(U), and H1(v, U) for function v and set

U denotes the experimental orders of convergence for the norm ∆t
∑N

n=0 |vnh−v(tn)|2H1(U).

h ∆t L2(u,Ωn
h) H1(u,Ωn

h) L2(X, I) H1(X, I)

8.18E-01 7.40E-03 2.22E-03 9.68E-02 2.56E-04 9.06E-02

4.85E-01 3.90E-03 1.96E-04 2.77E-02 1.98E-05 2.55E-02

2.69E-01 2.00E-03 1.65E-05 7.46E-03 1.56E-06 6.78E-03

1.42E-01 1.00E-03 1.45E-06 1.93E-03 1.43E-07 1.74E-03

7.29E-02 5.20E-04 1.58E-07 4.88E-04 1.88E-08 4.40E-04

Table 4.17: Errors for the given norms, solving the sharp interface scheme PhSI with
ω = 10−3, and the harmonic extension method. With Γ0

h given by (4.4.4). Here L2(v, U)

for function v and set U denotes the norm ∆t
∑N

n=0 ||vnh − v(tn)||2L2(U), and H1(v, U) for

function v and set U denotes the norm ∆t
∑N

n=0 |vnh − v(tn)|2H1(U).
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h ∆t L2(u,Ωn
h) H1(u,Ωn

h) L2(X, I) H1(X, I)

8.18E-01 7.40E-03

4.85E-01 3.90E-03 4.64 2.40 4.90 2.43

2.69E-01 2.00E-03 4.21 2.23 4.32 2.25

1.42E-01 1.00E-03 3.81 2.11 3.74 2.12

7.29E-02 5.20E-04 3.32 2.06 3.04 2.06

Table 4.18: Experimental order of convergence for the given norms, solving the sharp
interface scheme PhSI with ω = 10−3, and the harmonic extension method. With Γ0

h given
by (4.4.4). Here L2(v, U) for function v and set U denotes the experimental orders of
convergence for the norm ∆t

∑N
n=0 ||vnh − v(tn)||2L2(U), and H1(v, U) for function v and set

U denotes the experimental orders of convergence for the norm ∆t
∑N

n=0 |vnh−v(tn)|2H1(U).

4.4.2 Comparison of the radius in R3

In this section we compare the radii of spheres in R3, evolving under the sharp interface

scheme PhSIR3 in Figure 4.9, and the diffuse interface scheme P̃hDI in Figure 4.10. We take

a number of values of h in order to see how it affects the error. We chose α = β = 1.0,

Q = 1.66, and the initial radius R0 = 1.0. In the sharp interface simulations we take

h ≈ 0.45, 0.35, and 0.21, we take ∆t = 5×10−3, 2.5×10−3, and 1.25×10−3, and the number

of degrees of freedom dofs are dofs ≈ 3.9 × 103, 1.5 × 104, and 6.3 × 104. In the diffuse

interface simulations we take ε = 0.151, 0.125, and 0.1 for the values h ≈ 0.027, 0.024, and

0.014, ∆t = 5× 10−5, 10−5, and 5× 10−6, and the number of degrees of freedom dofs, at

t = 0, are dofs ≈ 1.1× 105, 2.6× 105, and 8.2× 105.



Chapter 4 135

Figure 4.9: Top plot: comparison of the radius, in R3, computed using the sharp interface
scheme PhSIR3 , with varying values of h, and the analytical radius (dashed red line). Center
plot: the error |R − Rh| for different values of h. Bottom plot: Comparison of uh from
the sharp interface scheme, with the extended analytical solution u (dashed red), taken
at t = 0.3. We take h ≈ 0.45, 0.35, and 0.21, we take ∆t = 5 × 10−3, 2.5 × 10−3, and
1.25 × 10−3, and the number of degrees of freedom dofs are dofs ≈ 3.9 × 103, 1.5 × 104,
and 6.3× 104.



Chapter 4 136

Figure 4.10: Top plot: comparison of the radius, in R3, computed using the diffuse interface
scheme P̃hDI , with varying values of h, and the analytical radius (dashed red line). Center
plot: the error |R−Rh| for different values of h. Bottom plot: comparison of uh from the
diffuse interface scheme, with the extended analytical solution u (dashed red line), taken
at t = 0.3. We take ε = 0.151, 0.125, and 0.1 for the values h ≈ 0.027, 0.024, and 0.014,
∆t = 5× 10−5, 10−5, and 5× 10−6, and the number of degrees of freedom dofs, at t = 0,
are dofs ≈ 1.1× 105, 2.6× 105, and 8.2× 105.
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4.4.3 Effect of the regularisation parameter γ in (M̃)

In (M̃b), γ∇u · n was introduced in order to give both formulations of the model Robin

boundary conditions. The effect of adding this term is not clear, although for a small γ

we show the effect to be negligible. In order to investigate this we consider the radially

symmetric case, and compute the error. We consider the steady state with R0 = R(t) =

2.0. This corresponds to β = 1.0 andQ = 1.5, and we choose α = 0.01,∆t = 10−4, T = 1.0,

and h ≈ 0.03.

The results of the simulations are displayed in Table 4.19. We can see that for γ ≤ 10−4

there is a negligible change in the error. For this reason we take γ = 10−5 for all other

simulations. It is interesting to note that the error only changes in the L2(0, T ;L2(Ωn
h))

norm. This is because, in the stationary radially symmetric case, changing γ only serves to

translate u to u+c for some constant c (so the gradient remains unchanged). Importantly,

the gradient only remains unaffected in this special case; we are not able to take γ large

if Ω(t) is not radially symmetric. The velocity law (M̃c) is only forced by the gradient of

u, so this is unaffected.

γ ‖uh − u‖L2(L2(Ωnh)) ‖uh − u‖L2(H1(Ωnh)) ‖Xh −X‖L2(L2(I)) ‖Xh −X‖L2(H1(I))

1 12.5048958 0.000106 0.00032 9.13E-05

10−1 0.1292175 0.000106 0.000332 0.000104

10−2 0.00175579 0.000106 0.000335 0.000106

10−3 0.00011647 0.000106 0.000336 0.000109

10−4 6.3455E-05 0.000106 0.000337 0.00011

10−5 5.9258E-05 0.000106 0.000337 0.00011

10−6 5.8849E-05 0.000106 0.000337 0.00011

Table 4.19: Comparison of errors for different values of γ when solving P̃hSI with h ≈
0.03 and ∆t = 10−4. Here ‖f‖L2(L2(U)) := ∆t

∑N
n=0 ‖fn‖2L2(U), and ‖f‖L2(H1(U)) :=

∆t
∑N

n=0 |fn|2H1(U) for a set U and function f .

4.4.4 Diverging from radial symmetry: reducing invasion

Spheroid models are often used as a bridge between in vivo and in vitro tumours, for

example in [56], as they are relatively easy to cultivate in a laboratory [12, 14], and they

occur naturally in vivo, see for example Figure 4.11 and [34]. They are also useful as an
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intermediary between mathematical models and physical tumours [20], as the mathematics

can often be simplified to one space dimension. The diameter of the spheroids is limited by

the distance that nutrients are able to diffuse, often reaching a diameter of around 1−2mm

[14, 23], and page 25 of [34]. Research into spheroids is ongoing, as the applications

include, among others, drug testing [60] and photodynamic therapy (activating a drug

with a specific wavelength of light) [35]. Running simulations using our model, we see

that many non trivial geometries converge to a spheroid, for example Figure 4.12 shows a

rounded star shape converging to a circle. This section, however, investigates the converse

of this: spheroids becoming unstable and loosing their symmetry.

Figure 4.11: Two examples of slices of spheroids in vivo (outlined in red). The images
are taken from the database used in [22, 29]. There is more information on the database
in Section 4.5.4. The tumour type (both meningiomas), file number, and patient ID are
written above the images.

Figure 4.12: This figure shows a rounded star shape converging to a spheroid steady state.
Here we solve the sharp interface scheme PhSI , with Q = 1.0, β = 0.3, α = 1.0, h ≈ 0.075
and ∆t = 10−2. From left to right we have t = 0, 0.1, 1, and 10. The geometry does not
change significantly for t > 10. The initial geometry is formed by distorting a circle of
initial radius R0 = 1.0 in the normal direction by 0.2 sin(6θ), where θ is the polar angle.

Behaviour similar to that which we are trying to reproduce (instability in a spheroid,
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also called unstable budding) is seen in [24]. In this paper they discuss possible therapies

that would inhibit morphological instability (and thus reduce the chance of metastasis

and invasion). In particular, they provide evidence that morphological instability could

be suppressed in vivo by inducing a spatially homogeneous oxygen and nutrient supply.

Note that in our simulations the nutrient supply is homogeneous, so something else is

driving the instability, possibly the initial mesh.

We focus on choosing parameter values that cause the radially symmetric steady state

to become morphologically unstable. Figure 4.13 is an example of the eventual morphology

if we allow the tumour to continue evolving. In our model we can see from (4.4.2) that (for

fixed dimension d) Q and β determine the radius at which a steady state lies, and whether

the steady state is stable or unstable (when assuming that the solution is constrained to

radial symmetry); α has no effect on the radius of the steady state.

Figure 4.13: Solving the finite element scheme PhSI with α = 10−2, β = 0.5, Q = 1.5,
and initial radius R0 = 2.62. Taken at t = 0, 11, 16, and 21. We choose ∆t = 10−3 and
h ≈ 0.076. We can see that at t = 11 the radial symmetry begins to break.

The effect in Figure 4.13 is not caused by a lack of refinement in the mesh, as simu-

lations with α = 10−2, β = 0.5, and Q = 1.5 were run with h as small as 4 × 10−4, with

no change in the behaviour (∆t was reduced in proportion to h). We believe, instead,

that it is caused by the slight instabilities in the initial meshes. This instability has not

been replicated in the diffuse interface paradigm, as the diffuse nature of the interface

makes any differences in the mesh negligible. The nature of the diffuse interface ensures

a significantly “smoother” initial circle.

The times at which the solutions of the model diverge from a circle are given in Tables

4.20, 4.21, and 4.22, in which we fix α = 10−2, Q = 1.4, and β = 0.6, respectively. Here we

start each simulation at the radially symmetric stable steady state, the radius of which can

be found in Table 4.24 (recall that this depends only on β and Q, not α). The simulation
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is run until the L2(I) error of Xh is greater than 0.1. This is an effective proxy for telling

us when the radial symmetry is lost. The values of h for the initial meshes are given in

Table 4.23 (again, note that this depends only on the initial radius, which itself depends

only on β and Q, not α).

Our simulations show that lower values of β lead to greater instability, which makes

sense physically as the βκ term physically pertains to cell-cell adhesion, and if this is

reduced we would expect to see instabilities form in the tumour. Our simulations seem to

suggest that larger values of Q (the surface source nutrient term) also lead to instabilities.

Additionally we see that smaller values of α lead to instabilities. This agrees with [47],

since the authors note that α has a regularising effect.

β

0.4 0.5 0.6 0.7 0.8 0.9

Q 1.6 6.501 8.616 13.926 68.912 >100 >100

1.5 7.627 11.799 43.513 95.509 >100 >100

1.4 9.74 24.59 90.66 >100 >100 >100

1.3 15.663 82.154 >100 >100 >100

1.2 78.771 >100 >100 >100

1.1 >100 >100 >100

Table 4.20: Time at which the L2(I) error in Xh for the finite element scheme PhSI is first
greater than 0.1. Here α = 10−2, ∆t = 10−3, and the values of h can be found in Table
4.23. The initial shape is a circle, with initial radius given in Table 4.24. For entries of
> 100 the error did not diverge for t ∈ [0, 100]. We did not use GMSH. The blank entries
have no steady state.
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α

0.005 0.01 0.025 0.05

β 0.4 9.538 9.74 10.366 11.522

0.5 23.143 24.59 30.127 48.107

0.6 89.428 90.66 96.173 98.543

0.7 >100 >100 >100 >100

0.8 >100 >100 >100 >100

0.9 >100 >100 >100 >100

Table 4.21: Time at which the L2(I) error in Xh for the finite element scheme PhSI is first
greater than 0.1. Here Q = 1.4, ∆t = 10−3, and the values of h can be found in Table
4.23. The initial shape is a circle, with initial radius given in Table 4.24. Recall that R0

(and thus h) depends only on β and Q. For entries of > 100 the error did not diverge for
t ∈ [0, 100]. We did not use GMSH.

α

0.005 0.01 0.025 0.05

Q 1.6 13.53 13.926 15.21 17.821

1.5 38.857 43.513 66.409 70.972

1.4 89.428 90.66 96.173 98.543

1.3 >100 >100 >100 >100

1.2 >100 >100 >100 >100

1.1 >100 >100 >100 >100

Table 4.22: Time at which the L2(I) error in Xh for the finite element scheme PhSI is first
greater than 0.1. Here β = 0.6, ∆t = 10−3, and the values of h can be found in Table
4.23. The initial shape is a circle, with initial radius given in Table 4.24. Recall that R0

(and thus h) depends only on β and Q. For entries of > 100 the error did not diverge for
t ∈ [0, 100]. We did not use GMSH.



Chapter 4 142

β

0.4 0.5 0.6 0.7 0.8 0.9

Q 1.6 0.084 0.082 0.080 0.078 0.074 0.071

1.5 0.078 0.076 0.073 0.070 0.067 0.063

1.4 0.072 0.069 0.066 0.062 0.058 0.052

1.3 0.065 0.062 0.058 0.053 0.046

1.2 0.058 0.054 0.049 0.041

1.1 0.050 0.045 0.036

Table 4.23: This table shows the values of h (to 3 decimal places) for the initial meshes
used in the simulations of Section 4.4.4. The values of h are different for each initial radius,
as we generate the mesh by refining a triangulation of a circle a fixed number of times.
These initial radii can be found in Table 4.24. The blank entries have no steady state.

β

0.4 0.5 0.6 0.7 0.8 0.9

Q 1.6 2.93 2.85 2.77 2.68 2.58 2.47

1.5 2.70 2.62 2.52 2.42 2.31 2.17

1.4 2.48 2.38 2.27 2.15 2.00 1.80

1.3 2.24 2.13 2.00 1.84 1.60

1.2 2.00 1.86 1.69 1.40

1.1 1.74 1.56 1.20

Table 4.24: Here we show the radius of the radially symmetric stable steady state for the
given Q and β. These are shown to 2 decimal places. The blank entries have no steady
state.

4.5 Simulations in R2

In this section we restrict the simulations to R2. Sections 4.5.1 - 4.5.3 start by fixing

Q = 1.0 and investigating the relationship between α and β. We start with the parameter

space α < β, followed by α > β, and then α, β � 1. These investigations include

complex initial geometries, and the effect of taking α = 0. This section concludes with

the presentation of a number of in vivo tumours.
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4.5.1 The parameter space α < β

Our simulations show that for β & 0.3 the geometry tends to a radially symmetric steady

state, with the radius shrinking as β grows. This radius can be calculated by setting

R′(t) = 0 in (4.4.2). This holds for α ∈ [0.1, 1], and initial geometry given by an ellipse of

width 0.5 and height 1.0.

For the choice of β = 1.0 and α = 0.1, our simulations show Γh transforming from an

ellipse towards a circle, which then shrinks until it is too small for the mesh to resolve

it. The time at which the interface produced by the sharp interface scheme PhSI , with

h ≈ 0.03 and ∆t = 10−3, reached what visually looked like a point was t ≈ 0.4004, the

time at which the interfacial region produced by the diffuse interface scheme P̃hDI , with

ε = 0.075, h ≈ 0.06 and ∆t = 10−4 reached a similar geometry was t ≈ 0.4443, while

the time associated with the unfitted sharp interface scheme PhSIU , with h ≈ 0.05 and

∆t = 5 × 10−3 was t ≈ 0.43. The discrepancy between the sharp interface and diffuse

interface schemes is due to the fact that the imposed interfacial thickness in the diffuse

interface scheme means that it is only an approximation of mean curvature flow.

4.5.2 The parameter space α > β

We first investigate the parameter choice α > β with a simple initial geometry: an ellipse

of width 0.5 and height 1.0. We choose α = 1.0, β = 0.1, and Q = 1.0. We use the sharp

interface schemes PhSI and PhSIU , and the diffuse interface scheme P̃hDI . For the diffuse

interface scheme we choose ε = 0.075, ∆t = 10−4, and h ≈ 0.07. For the sharp interface

scheme we take ∆t = 10−3 and h ≈ 0.03. For the unfitted sharp interface scheme we take

∆t = 5 × 10−3 and h ≈ 0.05. The results of the simulations can be seen in Figure 4.14,

where we see very good agreement between the schemes.

Figure 4.15 extends Figure 4.14 in time, and displays the evolution of the diffuse

interface scheme. We see topological changes occurring beyond t = 45. Although from

a purely mathematical standpoint the model holds when “holes” such as those visible in

Figure 4.15 occur, this is not biologically realistic.
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Figure 4.14: Solution uh from the sharp interface scheme PhSI (top row) with h ≈ 0.03
and ∆t = 10−3 (top row), from the unfitted sharp interface scheme PhSIU with h ≈ 0.05
and ∆t = 5 × 10−3 (second row), and from the diffuse interface scheme P̃hDI , with ε =
0.075, h ≈ 0.07 and ∆t = 10−4 (third row). On the fourth row: a comparison between Xh

from the sharp interface scheme (in white), Xh from the unfitted sharp interface scheme
(in black), and ϕh from the diffuse interface scheme (in red and blue). The black line is
covered by the white line. With α = 1.0, β = 0.1, and Q = 1.0. Taken at t = 0, 15, 30,
and 45.
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Figure 4.15: ϕh from the diffuse interface scheme P̃hDI (red and blue, top row). Diffuse
interface solution uh (bottom row). Taken at t = 0, 25, 50, and 75, with α = 1.0, β = 0.1,
Q = 1.0 ε = 0.075, h ≈ 0.07, and ∆t = 10−4. This extends Figure 4.14 in time.

More complex initial geometries

In Figure 4.16 we display two results from simulations using the sharp interface scheme

PhSI , in which the initial geometries Γ0
h are chosen to reduce symmetry. We choose α = 1.0,

β = 0.1, Q = 1.0, ∆t = 10−3, and h ≈ 0.017. To create the initial geometries we perturb

a point Xh on an ellipse of width 0.5 and height 1.0 by a distance of either 0.2 sin(5θ) or

0.2 sin(6θ) in the direction Xh
|Xh| , where θ is the polar angle of Xh. We present the solutions

at t = 0, 14, 29, and 46. Beyond t = 46 we would see a change of topology due to merging.
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Figure 4.16: Two simulations (top row and bottom row) using the sharp interface scheme
PhSI with different initial geometries. The initial geometries are created by distorting an
ellipse of width 0.5 and height 1.0 in the Xh

|Xh| direction, by a distance of either 0.2 sin(5θ)

on the top row, or 0.2 sin(6θ) on the bottom row. We choose α = 1.0, β = 0.1, Q = 1.0,
∆t = 10−3, and h ≈ 0.017. The snapshots are at t = 0, 14, 29, and 46.

Colliding circles

Figure 4.17 displays a simulation of two circles colliding, using the diffuse interface scheme

P̃hDI with α = 1.0, β = 0.1, Q = 1.0, ε = 0.07, ∆t = 5 × 10−4, and h ≈ 0.03, taken at

t = 0, 1, 6, 20, 30, and 40. The initial geometry is given by two circles of radius 1.0, with

centres at (1.3, 0) and (−1.3, 0). As they evolve, the circles grow and merge. Recall that

the model is not biologically valid once “holes” have formed.
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Figure 4.17: Diffuse interface scheme P̃hDI , with α = 1.0, β = 0.1, Q = 1.0, ε = 0.07,
∆t = 5 × 10−4, and h ≈ 0.03, taken at t = 0, 1, 6, 20, 30, and 40. Rows one and two
represent ϕh at these times, while rows three and four represent uh at these times.

4.5.3 The parameter space α, β � 1.0

In Figure 4.18 we display the solutions of the sharp interface schemes PhSI and PhSIU , and

the solution of the diffuse interface scheme P̃hDI . These are taken at t = 0, 3, and 7. We

take α = 0.1, β = 0.1, and Q = 1.0; this is the smallest that we can feasibly take α for the

diffuse interface scheme, since reducing α forces us to reduce ε, which greatly increases

the computation time. For the sharp interface scheme we choose ∆t = 10−3 and h ≈ 0.03.

For the unfitted sharp interface scheme we choose ∆t = 10−3 and h ≈ 0.02. For the diffuse

interface scheme we take ε = 0.01, ∆t = 10−4, and h ≈ 0.02. We see a good agreement

between the schemes.
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Figure 4.19 extends Figure 4.18 in time. We see topological changes occur after t = 7.

Recall that the model is not biologically valid once “holes” have formed.

Figure 4.18: Solution uh from the sharp interface scheme PhSI with h ≈ 0.03,∆t = 10−3,
(top row), from the unfitted sharp interface scheme PhSIU with h ≈ 0.02,∆t = 10−3 (second
row), and from the diffuse interface scheme P̃hDI with ε = 0.01, h ≈ 0.02,∆t = 10−4 (third
row) at t = 0, 3, and 7. On the fourth row: a comparison between Xh from the sharp
interface scheme (in white), Xh from the unfitted sharp interface scheme (in black), and
ϕh from the diffuse interface scheme (in red and blue, fourth row). The black line is
covered by the white line. With α = 0.1, β = 0.1, and Q = 1.0.
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Figure 4.19: ϕh from the diffuse interface scheme P̃hDI (in red and blue) (top row). Diffuse
interface solution uh (bottom row). All taken at t = 0, 10, 20, and 24, with α = 0.1,
β = 0.1, Q = 1.0, ε = 0.01, ∆t = 10−4, and h ≈ 0.02. This extends Figure 4.18 in time.

More complex initial geometry

In Figure 4.20 we display two results using the sharp interface scheme PhSI , in which the

initial geometries match exactly those in Figure 4.16. We choose α = 0.1, β = 0.1, Q = 1.0,

∆t = 10−3, and h ≈ 0.017. We present the simulations at t = 0, 1, 5, and 7. Beyond t = 7

we see a change in topology. We can see that the initial geometry has much more of an

effect on the final geometry than in Figure 4.16, possibly due to a small α leading to less

stability.
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Figure 4.20: Two simulations (top row and bottom row) using the sharp interface scheme
PhSI , with different initial geometries. The initial geometries are created as described in
Section 4.5.2, with the top row generated by 0.2 sin(5θ) and the bottom row generated
by 0.2 sin(6θ). We choose α = 0.1, β = 0.1, Q = 1.0, ∆t = 10−3, and h ≈ 0.017. The
snapshots are taken at t = 0, 1, 5, and 7.

Sharp interface comparison with the alternate model

In this section we present a comparison between the sharp interface finite element schemes

for the original model, PhSI , and for the alternate model, P̃hSI . Experimentally we see that

the sharp interface scheme P̃hSI is unstable for α & 0.01. For this reason we choose α = 0.01,

along with β = 0.1, Q = 1.0, h ≈ 0.026, and ∆t = 10−3. The comparison is presented in

Figure 4.21. Note that our comparison is only concerned with the geometry, not the value

of uh, since (M̃) has different equations for u than (M). We see a good agreement.



Chapter 4 151

Figure 4.21: uh from the sharp interface schemes PhSI (first row) and P̃hSI (second row).
Comparison of Xh from each scheme (third row). Here PhSI is in red and P̃hSI is in blue.
The red line is almost entirely behind the blue line. We choose α = 0.01, β = 0.1, Q = 1.0,
h ≈ 0.026, and ∆t = 10−3. The initial geometry is an ellipse of width 0.5 and height 1.0.
The snapshots are taken at t = 0 and 5.

Setting α = 0

In this section we investigate the effect of formally setting α = 0. We see in [47] that α

has a regularising effect on the model.

It is only appropriate to take α = 0 in (M̃). We numerically approximate this with the

sharp interface scheme P̃hSI , choosing β = 0.1, Q = 1.0, ∆t = 10−3, and h ≈ 0.03, with an

ellipse of width 0.5 and height 1.0 for the initial geometry. The simulation can be seen in

Figure 4.22.
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Figure 4.22: We solve the sharp interface scheme P̃hSI with α = 0, β = 0.1, Q = 1.0,
∆t = 10−3, and h ≈ 0.03, with an ellipse of width 0.5 and height 1.0 for the initial
geometry. The snapshots are taken at t = 0, 2, 3, 4, and 5.

4.5.4 Example of tumours in vivo

This section includes a number of examples of tumours in vivo. These are included as

a counterpoint to the simulations given in the rest of Section 4.5. We include two sets

of tumour images: one set (in Figure 4.23) is visually similar to the parameter space

α ≥ β, investigated in Section 4.5.2, and one set (in Figure 4.24) is visually similar to the

parameter space α, β � 1.0, investigated in Section 4.5.3.

The database used was the same as in [22, 29], and contains 3064 slices of brain

tumours, taken from from 233 patients. This includes 708 meningiomas, 1426 gliomas,

and 930 pituitary tumours. The slices are T1-weighted contrast-enhanced MRI images,

which the authors of [22, 29] acquired from Nanfang Hospital, Guangzhou, China, and

General Hospital Tianjing Medical University, China, between 2005 and 2010. The slice

thickness is 6mm and the slice gap is 1mm. The tumour border was manually delineated

by three experienced radiologists. In Figures 4.23 and 4.24 the slice is displayed in grey

scale, while the tumour outline is shown in red. The type of each tumour, file number,

and patient ID is written above each image.

In Figure 4.23 there are four images that are similar in morphology to the simulations

in the parameter space α ≥ β, investigated in Section 4.5.2. In particular, the simulations

in Figure 4.14 appear to show a similar “budding” structure, with two larger regions

connected by a relatively long, thinner, strip.

Figure 4.24 displays four images that have a similar morphology to the the simula-

tions in the parameter space α, β � 1.0, investigated in Section 4.5.3. In particular, the

simulations in Figure 4.18 have a similar structure, in which two sides have “pinched in”.
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It is interesting to note that the tumours in Figure 4.23 and the tumours in Figure

4.24 are of different types. Figure 4.23 consists of gliomas, whilst Figure 4.24 consists

of pituitary tumours. This suggests that the different parameters spaces investigated in

Sections 4.5.2 and 4.5.1 might relate to different types of tumours.

This comparison has a caveat: the slices of the in vivo tumours are in R2, however

the tumours themselves are in R3. This is in contrast to the simulations, in which the

tumours are in R2 (and not slices from R3).

Figure 4.23: Slices of in vivo tumours from [22, 29]. The slice is shown in grey scale, while
the tumour is outlined in red. Above each image is the tumour type (in this case they
are all gliomas), the file number, and the patient ID. Each image is taken from a different
patient.
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Figure 4.24: Slices of in vivo tumours from [22, 29]. The slice is shown in grey scale, while
the tumour is outlined in red. Above each image is the tumour type (in this case they are
all pituitary tumours), the file number, and the patient ID. Each image is taken from a
different patient.

4.6 Simulations in R3

In this section we solve the three dimensional (in space) sharp interface scheme PhSIR3 and

the diffuse interface scheme P̃hDI (with D ⊂ R3). As in R2, we fix Q = 1.25 in order

to investigate the relationship between α and β. We take Q > 1 (in contrast to the

simulations in Section 4.5) as we computationally found that in three space dimensions

smaller Q leads to trivial solutions, where the tumour shrinks beyond resolution. When

taking α, β � 1.0, we do not use the diffuse interface scheme P̃hDI , since the smaller value

of α requires a smaller ε (and thus smaller h and ∆t). This in turn significantly increases

the execution time. This investigation of parameter spaces is followed by two examples of

in vivo tumours.
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4.6.1 The parameter space α > β

We choose α = 1.0, β = 0.1, Q = 1.25, and the initial geometry Γ0
h is given by the oblate

spheroid with equation x2

1.02 + y2

0.52 + z2

1.02 = 1. In the sharp interface case h ≈ 0.014 and

∆t = 5× 10−3.

Figure 4.25 shows Xh, the solution to the sharp interface scheme PhSIR3 , from three

different angles: looking down the x-axis, down the y-axis, and a cross section in the plane

z = 0. Figure 4.25 also shows the solution uh via a cross section in the plane z = 0. Note

that the morphology has many similarities with the two dimensional simulations. This is

particularly noticeable in the cross sections.

In Figure 4.26 we display the solution to the diffuse interface scheme P̃hDI (with identical

parameters to the ones used in the sharp interface results shown in Figure 4.25, apart from

ε = 0.1, h ≈ 0.04, and ∆t = 10−3). In Figure 4.26 we see the zero level set of ϕh looking

down the x-axis, down the y-axis, and a cross section in the plane z = 0. We also see a

cross section in the plane z = 0 displaying uh. The relatively large value of h (chosen to

reduce the simulation’s run time) is the most likely reason for the difference between the

sharp interface and phase field solutions for the pressure uh.



Chapter 4 156

Figure 4.25: Xh for the sharp interface scheme PhSIR3 , looking down the x-axis (first line),
looking down the y-axis (second line), cross section in the plane z = 0 (third line), and
uh in the plane z = 0 (fourth line). Taken at t = 0, 5, 10, and 15. The initial geometry

is an oblate spheroid with the equation x2

1.02 + y2

0.52 + z2

1.02 = 1. We take α = 1.0, β = 0.1,
Q = 1.25, h ≈ 0.014, and ∆t = 5× 10−3.
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Figure 4.26: The level set ϕh = 0 for the diffuse interface scheme P̃hDI , looking down the
x-axis (first line), looking down the y-axis (second line), cross section in the plane z = 0
(third line), and uh in the plane z = 0 (fourth line). Taken at t = 0, 5, 10, and 15. The

initial geometry is an oblate spheroid with the equation x2

1.02 + y2

0.52 + z2

1.02 = 1. We take
α = 1.0, β = 0.1, Q = 1.25, ε = 0.1, h ≈ 0.04, and ∆t = 10−3.

We also repeat the simulation shown in Figure 4.25 (solving the sharp interface scheme

PhSIR3 with α = 1.0, β = 0.1, and Q = 1.25) with a different initial geometry, given by

an oblate and prolate spheroid with the equation x2

1.02 + y2

0.52 + z2

1.52 = 1. The result of the

simulation can be seen in Figure 4.27.
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Figure 4.27: Xh for the sharp interface scheme PhSIR3 looking down the y-axis (first line),
looking down the z-axis (second line), cross section in the plane x = 0 (third line), and
uh in the plane x = 0 (fourth line). Taken at t = 0, 10, and 18. The initial geometry is

an oblate and prolate spheroid with the equation x2

1.02 + y2

0.52 + z2

1.52 = 1. We take α = 1.0,
β = 0.1, Q = 1.25, h ≈ 0.014, and ∆t = 5× 10−3.

Topological change

In Figure 4.28 we extend the simulations shown in Figure 4.26 in time. In order to run

these simulations in a reasonable time, we had to increase the mesh size to h ≈ 0.09. We

can see that topological change creates “holes” within the tumour. Recall that the model

is not biologically valid once these “holes” have formed.
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Figure 4.28: The level set ϕh = 0 for the diffuse interface scheme P̃hDI , displayed as a cross
section in the plane z = 0. Taken at t = 0, 15, 19, and 24. The parameters match Figure
4.26 (but with h increased to h ≈ 0.09).

4.6.2 The parameter space α, β � 1.0

In this section we investigate the parameter space α, β � 1.0. We take α = 0.1 and

β = 0.1. Due to the small α, we are only able to feasibly run the sharp interface scheme

PhSIR3 ; the execution time for the diffuse interface scheme P̃hDI is too great. This is because

a smaller α requires a smaller ε, which in turn requires greater h and smaller ∆t. We

take Q = 1.25, h ≈ 0.019, and ∆t = 5 × 10−3. In Figure 4.29 the initial geometry Γnh

is given by the oblate spheroid with equation x2

1.02 + y2

0.52 + z2

1.02 = 1.0, while in Figure

4.30 the initial geometry Γnh is given by the oblate and prolate spheroid with equation

x2

1.02 + y2

0.52 + z2

1.52 = 1.0.

Figure 4.29 shows Xh, the solution to the sharp interface scheme PhSIR3 , from three

different angles: looking down the x-axis, down the y-axis, and a cross section in the plane

y = 0. It also shows the solution uh via a cross section in the plane x = 0. Similarly,

Figure 4.30 shows Xh, the solution to sharp interface scheme PhSIR3 , from three different

angles: looking down the y-axis, down the z-axis, and a cross section in the plane x = 0.

It also shows the solution uh via a cross section in the plane y = 0.

In Figure 4.29 we see that the symmetry in the y direction is lost in the image taken

at t = 4.1 (this is particularly visible on the second line, looking down the y-axis). It

appears to reach a similar geometry to that in Figure 4.30 at t = 4.3. This may be related

to the effect discussed in Section 4.4.4, although it might be due to instability caused by

the relatively large values of h and ∆t.
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Figure 4.29: Xh for the sharp interface scheme PhSIR3 , looking down the x-axis (first line),
looking down the y-axis (second line), cross section in the plane y = 0 (third line), and
uh in the plane x = 0 (fourth line). Taken at t = 0, 1.4, 2.9, and 4.1. The initial geometry

is an oblate spheroid with the equation x2

1.02 + y2

0.52 + z2

1.02 = 1. With α = 0.1, β = 0.1,
Q = 1.25, h ≈ 0.019, and ∆t = 5× 10−3.
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Figure 4.30: Xh for the sharp interface scheme PhSIR3 , looking down the y-axis (first line),
looking down the z-axis (second line), cross section in the plane x = 0 (third line), and
uh in the plane y = 0 (fourth line). Taken at t = 0, 1.4, 2.9, and 4.3. The initial geometry

is an oblate and prolate spheroid with the equation x2

1.02 + y2

0.52 + z2

1.52 = 1 . With α = 0.1,
β = 0.1, Q = 1.25, h ≈ 0.019, and ∆t = 5× 10−3.

4.6.3 Example of tumours in vivo

In this section we present two in vivo tumours in R3. These are taken from the IRCAD

database, which contains the 3D CT-scans of 10 men and 10 women, 75% of which have

hepatic tumours (liver tumours). In Figure 4.31 we see two different tumours (one in row

one, and one in row two) from three different angles. The tumours are orientated so that

we see them looking down the x-axis, down the y-axis, and down the z-axis. They have

been scaled so that they are the same size.

We see “ridges” forming in both tumours, which bear some resemblance to the simu-

lations in Figures 4.29 and 4.30.
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Figure 4.31: Two hepatic tumours taken from the IRCAD database. The first tumour is
on the top row, and the second tumour is on the bottom row. We see each tumour looking
down the x-axis, down the y-axis, and down the z-axis.
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Conclusion

In this thesis we derive, numerically analyse, and simulate a mathematical model for

tumour growth. This model is tractable, which means that we are able to prove a number

of applied and numerical analysis results, as well as accurately and effectively compute

numerical solutions.

The model involves an evolving domain, the velocity law of which is coupled with an

equation in the bulk. This type of model can be adapted to a wide range of phenomena,

a few examples of which follow. Phase transitions often couple a parabolic equation with

mean curvature flow, see the Stefan problem [28]. There is ongoing research into the mod-

elling of cells, for example their internal chemistry [45], and motility [65]. The modelling

of cells often involves reaction diffusion equations coupled with a free boundary. These

types of equations are also employed when modelling diffusion induced grain boundary

motion [39], in which a mean curvature equation is coupled with a parabolic equation.

So, although this thesis is focussed on modelling tumour growth, the techniques can be

adapted to apply to a wide range of phenomena; however, there is the notable difference

that the examples presented here couple parabolic equations, whilst our model considers

an elliptic equation (although in the case of the diffuse interface applied and numerical

analysis, the elliptic equation is regularised by transforming it into a parabolic equation).

In order to numerically compute a solution to the model, a number of techniques are

employed. The programming complexity of these techniques is high, and the code itself

can be used and extended by future researchers.

A major hurdle that we overcame when implementing the sharp interface scheme was
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that of the mesh. As the domain evolves, both the boundary and bulk meshes have to

be maintained. In this thesis we combine a number of techniques to construct a practical

approach to this problem in R2 (which can be extended to R3), thus allowing us to con-

tinue the simulations until a topology change occurs (and thus the model loses biological

realism). Our solution was first to implement the technique introduced in [43]. Although

effective, this technique only smooths the boundary mesh T hΓ . We thus sought to smooth

the bulk mesh T hΩ , and so implemented the technique described in Algorithm 1 of [42].

This powerful algorithm allowed us to maintain high quality meshes for both T hΓ and T hΩ .

In the rare instance where the mesh became degraded beyond repair, we employed the

re-meshing software GMSH [52] to construct a new mesh for T hΩ . This combination of

techniques may be of particular interest when implementing simulations in future research

as it is effective, allowing the sharp interface simulations to run until a topology change

would occur.

The existence and uniqueness of the solution to the diffuse interface formulation of

the model is proved. This proof follows many of the techniques used in [38], in which

they prove the existence and uniqueness of a solution to a diffuse interface formulation

of a mean curvature equation, coupled with a parabolic equation restricted to the curve.

Since our model is a mean curvature equation coupled with a parabolic equation (in the

regularised diffuse interface case) on the bulk, we have had to make numerous changes to

the proof in order to adapt it to our model.

The proof of convergence of the diffuse interface finite element method follows many of

the techniques used in [39]. Similar to the existence and uniqueness proof, the paper that

we follow shows convergence of a diffuse interface formulation of a mean curvature equation

coupled with a parabolic equation restricted to the curve. We have made significant

changes to this in order to adapt it to our diffuse interface model.

5.1 Summary

We start by deriving a model (M) for tumour growth in Chapter 1. Although there are

significantly more complex models in the literature, see for example [34], the model that we

derive has the advantage of being highly tractable. It uses Darcy flow as its constitutive

assumption, and models forces such as the internal pressure and surface tension. The
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model is unique in that we pass to the thin rim limit. We conclude the derivation by

regularising the model.

The sharp interface approach is discussed in Chapter 2. We first consider the case

where Γ(t) is an evolving closed curve in R2; we introduce a weak formulation of the prob-

lem which we then use to derive a finite element approximation. Next, mesh smoothing

techniques are discussed, and then an unfitted finite element approximation is considered.

Lastly, we introduce a finite element approximation for the case where Γ(t) is an evolving

closed hypersurface in R3.

The following chapter, Chapter 3, introduces the diffuse interface approach. We first

write the model (M) in the diffuse interface paradigm; here we regularise the elliptic

equation in time with an ε2ut term, thus transforming it into a parabolic equation. This

is followed by the weak form for the diffuse interface version of the model. We then

prove the existence and uniqueness of a solution to this model. A finite element scheme

is presented, along with a proof of existence and uniqueness of a solution to it. We finally

prove a convergence result for the finite element scheme.

Finally, Chapter 4 presents numerical simulations for the finite element schemes given

in Chapters 2 and 4. The chapter starts with the introduction of an alternative formulation

of the model. We then introduce a diffuse interface approximation that does not include

the ε2ut regularisation term. We follow this with a summary of the techniques used in

the implementations of the finite element schemes. The simulations begin in the radially

symmetric paradigm. Since we can derive an analytic solution when restricted to radial

symmetry, we begin our numerical simulations by using this analytic solution to argue

for the accuracy of our finite element schemes. We then include a biologically focussed

investigation. Geometries without radial symmetry are then presented (in R2 and R3),

and we investigate the relationship between the parameters α and β (by fixing Q). We

conclude the sections on R2 and R3 with a small number of examples of tumours in vivo.

5.2 Future directions

We conclude this thesis with a number of possible future directions for research. This list

not exhaustive, but it represents many ideas that naturally follow from the work presented

in this thesis.



• Although we compare our simulations to a small selection of tumours in vivo, it

would be beneficial to deepen this comparison, as it would help to ground the model

in a biological setting. In particular, it would be beneficial to match the evolution

of tumours in vivo or in vitro to simulations in particular parameter spaces.

• The tumour model is intentionally tractable in order to allow a relatively large

amount of mathematical analysis to be carried out. A possible future direction

would be to extend the model. This extension could, for example, include physical

effects, chemical effects, or genetic effects. Ideally, this addition to the model would

allow for an extension of the applied and numerical analysis results given in this

thesis.

• The external medium is modelled very simply. This medium could be more closely

modelled, perhaps so as to induce an external physical pressure on the tumour.

• Implementing topological changes in the sharp interface case, perhaps using [18],

would be useful in verifying the topological changes in the diffuse interface case.
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