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UNIVERSITY OF SUSSEX

Anna Elizabeth Webb, Doctor of Philosophy

Robust quantum logic for trapped ion quantum computers

This thesis describes experimental work on implementing single and two qubit gates in
171Yb+ ions using methods suitable for a large scale quantum computer. By combining
a magnetic field gradient with microwave and radiofrequency radiation, the spin and mo-
tional states of the ions are coupled which allows multi-qubit operations to be performed,
as well as providing individual addressing of ions in frequency space. A dressed state qubit
is used which exhibits an increase of over two orders of magnitude in the coherence time
for a qubit that it is sensitive to the magnetic field gradient. Using this system, single
qubit gates are characterised using the technique of randomised benchmarking, resulting
in a measured average error per gate of 9(3)× 10−4 .

A new type of two qubit gate is experimentally demonstrated, which in comparison to a
standard two qubit gate shows significantly increased resilience to two major sources of gate
infidelity: heating of the motional mode of the ions during gate operations, and incorrectly
set gate field frequencies. These types of errors are expected to become increasingly
important with the move towards quantum processors with large numbers of qubits. Using
this same technique, a two qubit gate is also demonstrated at a higher initial temperature
with a significantly improved fidelity compared to standard methods.

These gate techniques are used to demonstrate work towards implementing position-
dependent quantum logic, a method which could remove the correlation between the num-
ber of ions and the number of gate fields required in a large scale quantum computing
architecture. A method to move the dressed state qubit through a magnetic field gradient
while preserving quantum information is demonstrated, as well as a method to optimise
the phase of a two qubit gate of unknown phase in order to implement a CNOT logic gate.
This provides a path forwards to demonstrating a CNOT gate using position-dependent
quantum logic.
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Chapter 1

Introduction

1.1 Quantum computing

The development of fast electronic computing over the past 50 years has had a profound

influence on the modern world, and the development of quantum computing could make

a similar impact. The beginning of the history of quantum simulation and computing is

often attributed to a talk given by Richard Feynman in 1982, during which he noted in

his inimitable style [1]

... nature isn’t classical, dammit, and if you want to make a simulation of

nature, you’d better make it quantum mechanical, and by golly it’s a wonderful

problem, because it doesn’t look so easy.

The need for a controllable quantum system in order to accurately simulate a quantum

mechanical world can be understood by considering a system of n spins. If these spins

behaved classically, while there are 2n possible states, only one state is occupied at any time

so an n bit register would be large enough to store information about this system. However,

since these n spins behave quantum mechanically, the phenomenon of superposition means

the system can occupy all 2n states simultaneously, so 2n complex numbers are needed

to describe it. By adding one further element to the system, the amount of information

necessary in order to describe it doubles. This exponential increase in required information

storage often makes it necessary to make approximations when simulating large quantum

systems with classical computers.

The idea of a quantum simulator designed to emulate a specific quantum system was

extended by Deutsch to a universal quantum computer that could simulate any physical,

realisable system by programming an arbitrary unitary evolution [2]. Quantum algorithms

were then developed with direct applications, such as Shor’s algorithm for factorising large

1
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numbers [3] and Grover’s algorithm for searching large unsorted data sets [4]. This range

of possibilities, including both simulations and other applications, make the construction

of a universal computer of immense interest to not only the scientific community, but to

the wider field of technology and industry.

The basic component of a universal quantum computer capable of running these types

of algorithms is the quantum bit, or ‘qubit’. This is analogous to the bit in a classical com-

puter, which can be in state 0 or 1. However, the qubit can instead occupy a superposition

of both states simultaneously, with a state expressed as

|ψ〉 = α |0〉+ β |1〉 (1.1)

where α and β are complex coefficients with |α|2 + |β|2 = 1. This ability to occupy both

states simultaneously, as well as the possibility for entangling multiple qubits, is key to

the speed up achievable in a quantum computer.

Quantum algorithms can be performed on a set of qubits by performing a sequence

of quantum gates. It has been shown that all operations can be decomposed into a set

of universal quantum gates which includes multiple gates acting on a single qubit, and

one acting on two qubits. Gates can be expressed as unitary operators. For example,

a typical single qubit gate is the Pauli-X gate, which is is described by the operator

σx = |0〉 〈1|+ |1〉 〈0|. The two qubit gate that forms a part of this set must be capable of

producing an entangled state. A commonly used two qubit gate is the CNOT gate, with

unitary operator

UCNOT = |00〉 〈00|+ |01〉 〈01|+ |10〉 〈11|+ |11〉 〈10| . (1.2)

The effect of this gate is to swap the state of the second (‘target’) qubit state if the first

(‘control’) qubit state is 1. By applying the CNOT gate to two qubits with initial states

(|0〉 + |1〉)/
√

2 for the control qubit and |0〉 for the target qubit, a maximally entangled

Bell state is produced of the form (|00〉+ |11〉)/
√

2. In this thesis, a two qubit geometric

phase gate is used, where ions state-selectively pick up phases, allowing for production

of an entangled state. This can be transformed into the CNOT gate using single qubit

rotations.

With a universal set of gates, it is possible to perform any quantum algorithm. For

all physical implementations of these gates, however, error will be incurred at some level

during a gate operation due to noise and decoherence. Quantum error correction codes can
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be used overcome this problem, which use additional resources to compensate for these

errors. In order for this error correction to be possible, gates must be performed with

errors below the ‘fault-tolerant’ threshold. Some proposals, such as the ‘surface code’

[5], have thresholds as high as a 1% error per gate. However, the additional resources

required are strongly dependent on the error per gate magnitude, so to perform useful

computations, errors well below this 1% threshold are needed.

1.2 Trapped ions for quantum computing

In 2000, DiVincenzo identified a set of conditions for building a physical quantum com-

puter. These are known as the DiVincenzo criteria [6] and can be summarised as

1. A scalable physical system with well-characterized qubits.

2. The ability to initialise the state of the qubits to a simple fiducial state, such as

|00...〉.

3. Long relevant decoherence times, much longer than the gate operation time.

4. A ‘universal’ set of quantum gates.

5. A qubit-specific measurement capability.

Although they may not all ultimately be required, these criteria act as a guideline for

assessing which physical systems could feasibly be used for constructing a quantum com-

puter.

Research is ongoing into multiple candidate systems for implementing a scalable quan-

tum computer, such as neutral atoms [7], superconducting circuits [8], and trapped atomic

ions [9]. Trapped ions are a mature field of research and amongst the most promising

platforms for constructing a quantum computer. One key advantage of using ions is the

fundamentally unchanging nature of an atomic species, so that ions are identical wherever

and whenever they are trapped. Laser cooling allows ions to form crystals due to their

mutual Coulomb repulsion, and the internal states of a single ion can be used as a qubit.

Qubit states can be initialised and measured using optical pumping and state-selective flu-

orescence, fulfilling criteria 2 and 5, which will be described in chapter 2. Ions are trapped

in high vacuum environments, which means the ions are extremely well isolated from the

environment and very long coherence times have been demonstrated [10], meeting criteria

3.

In order to perform a universal set of quantum gates (criteria 4), a qubit stored in the

internal states of a single ion can be manipulated using electromagnetic radiation, either
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laser or radiofrequency (RF) / microwave. Different single qubit gates can be performed

by applying radiation with a specified frequency, phase and amplitude for the correct

period of time. For quantum gates involving more than one ion, a coupling between the

internal states of separate ions is required. This can be achieved using the collective

motional mode that multiple ions exhibit when confined in a single harmonic trap. The

first theoretical proposal for a trapped ion two qubit entangling gate was by Cirac and

Zoller [9], and this method was first experimentally demonstrated on two ions some years

later [11] alongside another two qubit entangling gate [12]. This gate, however, required

cooling the ions to the ground state of motion, which, although achievable [13], is a large

experimental overhead. This requirement was relaxed by the theoretical development of

geometric phase gates by Mølmer and Sørensen [14, 15] and Milburn [16] which work

independently of the initial motional mode of the ions. Both single and two qubit gates

have now been demonstrated to high fidelity, with errors below fault-tolerant thresholds

[17, 18, 19]. Trapped ions have therefore been shown to meet the criteria to be used as

the building blocks for a quantum computer. However, the largest remaining challenge is

to find a method to move from proof of principle experiments on small numbers of ions,

to a large scale quantum computer.

1.3 Long-wavelength radiation quantum logic

There are two types of qubits used with trapped ions: optical qubits, or ground state

qubits. Optical qubits are those with electronic transitions between states, typically with

transition wavelengths in the visible or near visible regime, which in an alkali-like ion is

normally an S ↔ D transition. These present two main problems. The first is the typically

short lifetime of the excited state, which places a limit on achievable gate fidelities. The

second is the stringent requirement for the linewidth of the laser, which can limit the

coherence time. Ground state qubits instead make use of two states from the electronic

ground state as the qubit, for example two states from the electronic hyperfine ground

state in an odd isotope with non-zero nuclear spin. These types of qubits have transitions

in the GHz regime, with effectively infinite lifetimes. This makes ground state qubits

more suitable for storing quantum information and performing quantum operations. A

hyperfine qubit in the ground state of the ion 171Yb+ is used in this work.

In order to perform multi-qubit operations, the shared motional mode of multiple ions

is used as the intermediary mode, called the ‘bus’ mode. A coupling is then required

between the internal spin states of each ion and the shared motional state, in order to
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perform operations on the internal state of one ion which are dependent on the internal

state of a different ion. This coupling is traditionally achieved using the photon momentum

of the radiation used to perform the gate. The strength of this coupling is characterised

by the Lamb-Dicke parameter, which is given by η = z0|~k| cos θ where z0 is the position

spread of the ground state wavefunction of the ion, given by z0 =
√

~/2mνz, νz is the

trap frequency, m is the mass of the ion, ~k is the wavevector of the incoming radiation,

and θ is the angle between the wavevector and the motional mode being considered. For

optical wavelengths, this Lamb-Dicke parameter is typically around 0.1. However, since

the wavevector ~k depends inversely on the wavelength of the radiation, this parameter

becomes very small for microwave radiation, with typical values of around 10−6. In order

to circumvent this problem, Raman transitions have typically been used for multi-qubit

operations. A third state is employed to act as an intermediary in coupling the qubit

states, with transitions in the optical regime. This allows for a sufficient Lamb-Dicke

parameter to make multi-qubit operations possible. Ions can be individually addressed by

deflecting tightly focussed laser beams onto single ions [20]. Various laser-driven methods

have been used to demonstrate high fidelity two qubit entanglement [18] and entanglement

of 14 ions [21].

However, despite the successes of laser driven quantum logic, it presents challenges

in the context of a large scale quantum computer. The experimental control required

is high, with the need for many lasers with highly stable beam pointing and amplitude,

careful alignment, and tightly focussed beams. Furthermore, there is a fundamental limit

to the fidelity of operations due to inelastic Raman scattering, which involves off-resonant

scattering from the third state [22].

The use of microwaves instead for driving quantum logic presents many advantages

for a trapped ion architecture suitable for scaling up to large numbers of ions. Low noise

microwave sources are commercially available, with easily controllable phase, frequency

and amplitude. They also overcome the limit to high fidelity of Raman scattering, since

no third state is required during coherent manipulation. Since hyperfine qubits exhibit

transition frequencies in the GHz regime, single qubit gates can be driven straightforwardly

with resonant long-wavelength radiation. There are two challenges, however, which must

be overcome in order to use microwaves for quantum logic. The first is the ability to

overcome the small Lamb-Dicke parameters resulting from the use of microwaves in order

to couple spin and motion to perform multi-qubit gates. The second is the need for a

method to individually address ions to be able to perform quantum gates selectively.
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In 2001, Mintert and Wunderlich proposed a scheme which uses static magnetic field

gradients to overcome both of these problems [23]. This scheme takes away the dependence

of the Lamb-Dicke parameter on the wavelength of the driving radiation, and instead

the effective Lamb-Dicke parameter is dependent on the magnitude of the magnetic field

gradient. This therefore allows a universal set of quantum gates to be performed solely

with long-wavelength radiation and a magnetic field gradient, removing the need for lasers

during coherent manipulation. The position dependent Zeeman splitting of the hyperfine

qubits also allows ions to be individually addressed in frequency, rather than spatially as

in the case of lasers. Microwaves can then be broadcast to large areas, without the need for

any alignment to individual ions. This method for spin-motion coupling and individual

addressing was first demonstrated by Johanning et al. [24], and a two qubit gate was

first demonstrated in 2012 [25]. This method involving static magnetic field gradients and

long-wavelength radiation is the basis for the work in this thesis.

There are, however, challenges involved in using this scheme. One of these is the ne-

cessity for using hyperfine states with different magnetic moments, which have an energy

splitting which is dependent on the magnetic field. This means that the qubit is suscep-

tible to decoherence resulting from magnetic field noise, which significantly reduces the

coherence time. This can be mitigated to a certain extent by shielding from magnetic field

noise [26]. The method employed in this thesis, though, is a scheme proposed by Timoney

et al. [27], where by dressing the magnetic field sensitive states with radiation, states can

be produced which retain the sensitivity to magnetic fields which allows for coupling of the

spin and motional states, but exhibit longer coherence times. Using these dressed states,

our laboratory has demonstrated a two qubit entangling gate with a fidelity of 0.985(12)

using long-wavelength radiation [28]. Remaining challenges include the experimental task

of generating high magnetic field gradients and microwave powers to perform faster gates,

which is non-trivial.

An alternative scheme was proposed by Ospelkaus et al. [29], which uses near-field

long-wavelength radiation, and relies on the resultant near field oscillating magnetic field

gradient to couple the internal and motional states of the ions. This scheme has been used

to demonstrate quantum logic to high fidelity [30], and benefits from some of the same

advantages as the static gradient scheme over the use of lasers. However, this scheme also

presents some challenges. The gradient produced by oscillating near-field radiation scales

as around d−2 [31], which means that ions should be closer to the trap surface in order

to produce higher effective Lamb-Dicke parameters. However, since heating rate scales as
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approximately d−4 [32], this produces a higher heating rate, which induces error on multi-

qubit operations. This method also does not incorporate natural individual addressability,

but requires more complex methods in order to prevent cross talk between neighbouring

ions [33, 34]. Finally, in order to perform gates on multiple ions in parallel, microwave

voltages must be applied to many electrodes simultaneously.

1.4 Scalable architecture

In a large scale architecture capable of performing useful algorithms, like Shor’s or Grover’s

algorithm, thousands or even more ions will be required, with quantum operations being

performed on each ion. Quantum error correction involves encoding one logical qubit on

to many physical qubits, with the number of physical qubits required highly dependent on

the gate error. For example, using Shor’s algorithm with surface code error correction to

factorise a 2000 bit number, and assuming an error per gate of 0.1%, 4000 logical qubits

are required which correlates to 220× 106 physical qubits [5].

Many proof of principle experiments, including the work in this thesis, have been per-

formed in macroscopic ion traps, with multiple ions trapped in a single harmonic potential.

However, there is a limit to the number of ions which can successfully be manipulated in a

single ion trap. This is largely due to spectral crowding. As the number of ions grows, the

frequency spacing of the motional modes decreases. This means that off-resonant coupling

to undesired modes can occur when performing multi-qubit operations, which induces de-

coherence and gate error. This error can be reduced by driving gate operations at a lower

power, but this comes at a cost in terms of gate speed. For laser based quantum com-

puting, there is the additional challenge of reduced spacing between ions when multiple

ions are trapped in a single confining potential, making individual addressing with beams

more challenging.

To overcome this problem, the ‘quantum charge-coupled device’ was proposed by

Kielpinski et al. [35]. In this approach, ions are trapped in several separate confine-

ment regions on the surface of a microfabricated ion trap. Different regions correspond

to different operations, such as ion storage for memory, ion manipulation for quantum

gates, and state detection. To perform algorithms, ions are shuttled between these sepa-

rate regions. This allows the number of ions in any trapping region to be kept low, while

maintaining the ability to perform quantum operations on many ions.

One of the major challenges of this approach in the context of high numbers of ions

is the correlation between the number of ions and the number of radiation fields required,
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whether using lasers or long-wavelength radiation. For thousands of ions, similar num-

bers of radiation fields would be required. Weidt et al. [28] recently proposed a scheme

to overcome this problem using long-wavelength radiation and static gradients, replacing

gate radiation fields for each individual ion with a smaller number of global radiation fields

applied to all ions. Ions are shuttled between different regions, and only interact with the

radiation fields that correspond to the operation for that region. This is possible using

locally generated static magnetic field gradients in each region, and a qubit with a transi-

tion frequency that is dependent on the magnetic field. In a field gradient, this transition

frequency is position dependent, so it is possible to ensure that ions only interact with

specific fields by controlling the position of the ion. This method of position-dependent

quantum logic crucially removes the dependence of the number of radiation fields on the

number of ions in the architecture.

These approaches can be incorporated into a modular approach for constructing a

quantum computer, in which individual stand-alone modules can be connected to reach the

desired size. In order for modules to operate together, we require a method for connecting

them. One such method is photonic interconnects, where remote entanglement between

ions in different modules is achieved using a probabilistic interaction through photons [36,

37], although this can involve a slow interaction rate. An alternative approach is to use fast

ion transport to connect individual modules. This method is part of the proposed blueprint

for a long-wavelength radiation trapped ion quantum computer by Lekitsch et al. [38]. In

this architecture, individual modules are composed of 1296 microfabricated X-junction ion

traps, and ions are shuttled to different zones in the X-junction for different operations.

Separate modules are then precisely aligned by mounting on precision machined steel

frames and using XYZ piezo actuators. This allows ions to be directly shuttled between

modules in order to perform operations on large numbers of ions. This proposal for a

modular quantum computer is the framework for the research within our group.

1.5 Thesis focus and structure

The focus of this thesis is to demonstrate quantum logic gates which are suitable for use

in a scalable architecture. The hyperfine ground state of the ion 171Yb+ is used as a qubit,

placed in a static magnetic field gradient in order to perform multi-qubit operations using

long-wavelength radiation. The work is motivated by the concept for a scalable quantum

computer proposed by Weidt et al. [28] to use global radiation fields for quantum logic,

as part of the blueprint for a quantum computer proposed by Lekistch et al. [38].
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The technique of randomised benchmarking is used to measure the single qubit gate

fidelity on the dressed state qubit, a qubit which makes high fidelity operations possible

using long-wavelength radiation in static magnetic fields. I then demonstrate a novel two

qubit gate which protects against multiple error sources. This gate could be used in laser

or long-wavelength based implementations, and is particularly suitable for realistic exper-

imental environments in a large scale quantum computer, which may become noisier and

less stable. In particular, these gates protect against errors due to heating of the ions,

which is likely to become increasingly important in scalable architectures where micro-

fabricated ion traps are used with higher heating rates due to the smaller ion-electrode

distance. I finally present work towards demonstrating the principle of position-dependent

quantum logic for a scalable quantum computing architecture, where qubits are moved be-

tween positions to perform different gates. The outline of the chapters is presented below.

Chapter 2 summarises the background to using trapped ions as qubits, including

the method used to trap ions, as well as methods used to photo-ionise, Doppler cool,

initialise, and detect. I also present the theory behind using microwaves for both single

and multi-qubit operations.

Chapter 3 presents the experimental setup used for work in this thesis, as well as

initial experiments including basic qubit manipulation, state preparation and detection,

and driving motional sidebands of the ion transition using long-wavelength radiation.

Chapter 4 explains the theory behind dressed states, and shows an experimental

demonstration of their preparation and detection, as well as a measurement of the coher-

ence time and lifetime. There is also a discussion of the possible sources of decoherence.

Chapter 5 presents the results of a randomised benchmarking experiment used to

measure the error of single qubit gates performed on the dressed state qubit, and analyses

the dominant sources of infidelity contributing to this overall error.

Chapter 6 begins with a presentation of the theory behind a two qubit Mølmer-

Sørensen gate using long-wavelength radiation, and an experimental demonstration of

this. I then build upon this to explain the theory behind a new gate technique, multi-

tone Mølmer-Sørensen gates, which protect against multiple errors include heating and

some gate frequency errors. I experimentally demonstrate the robustness of this technique

against these two different error sources.

Chapter 7 summarises work towards demonstrating a key component of the scalable

architecture proposed by Weidt et al. Ions are moved between two positions in a magnetic

field gradient while preserving qubit information, and a method is presented that allows
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characterisation of the phase of two qubit gates in order to implement a CNOT gate.

Chapter 8 concludes the work in this thesis, summarising results and presenting an

outlook for future experiments.



Chapter 2

Ytterbium ions as qubits

2.1 Introduction

In this chapter, I give an overview to the use of trapped 171Yb+ ions as qubits. I first

describe the method used for trapping ions, and the motion and heating of multiple ions in

an ion trap. I then describe ionisation, cooling, preparation, and detection of the 171Yb+

ions used in this thesis. I show that the hyperfine ground state of 171Yb+ can be used

as a qubit, using microwave and radiofrequency radiation for manipulation of the qubit

and to implement single qubit gates. Finally, I show that by combining long-wavelength

radiation with a magnetic field gradient, the spin and motional states of the ion are coupled

allowing multi-qubit operations to be performed, analogously to when using lasers for qubit

manipulation.

2.2 Trapped ion background

2.2.1 Ion traps

Earnshaw’s theorem states that a charged particle cannot be confined in three dimensions

using static electric fields. This is a direct consequence of Gauss’ law, which states that

in free space the divergence of the electric field should equal zero. A confining poten-

tial in three dimensions would equate to a negative divergence. There are two common

trapping methods used to circumvent this problem: Penning traps and Paul traps. Pen-

ning traps make use of a combination of static electric and magnetic fields to achieve

three-dimensional confinement. In this work, a type of Paul trap is used, which uses a

combination of static and oscillating electric fields to trap ions.

A schematic of a linear Paul trap is shown in figure 2.1(a), consisting of four elongated

11



12

Figure 2.1: a) Schematic of a linear ion trap. The four elongated electrodes have RF
potentials of amplitude VRF applied as indicated, and the two endcaps are held at static
voltages VDC. The z-axis, along which ions are trapped, is indicated by the blue dashed
line. b) The ion’s motion in the x and y directions. Intrinsic micromotion is observed,
as the superposition of a small oscillation at the trap RF frequency ΩRF with the slower
radial secular frequency νr.

electrodes. This is an RF quadrupole ion trap, which achieves confinement in the x − y

plane using oscillating electric fields. A potential of the form VRF cos (ΩRFt) is applied

to two diagonally opposite electrodes, and the same potential but with a phase offset of

π is applied to the remaining two electrodes. An ion that is initially offset from the RF

minimum will feel a confining force towards the centre. As the fields invert phase, the

force will become anti-confining, but will be of a lesser magnitude as the ion is closer to

the centre. The net effect over many cycles is a confining potential. The form of the

instantaneous potential created by these RF fields is

φRF(x, y, t) = ηRFVRF

(
x2 − y2

2d2
r

)
cos (ΩRFt) (2.1)

where ηRF is a geometric factor which is equal to one for perfect hyperbolic electrodes,

and dr is the distance from the centre of the trap to the RF electrodes.

In order to confine the ion in the third dimension, a static potential is applied to two

‘endcap’ electrodes. This gives a potential of the form

φDC(x, y, z, t) = ηDCVDC

(
2z2 − (x2 + y2)

2d2
z

)
(2.2)

where ηDC is again a geometrical factor and dz is the distance from the centre of the trap

to the endcap electrodes.

Using these potentials, it is possible to find the ion motion using the equation for the
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force on the ion, ~F = −e~∇V . In the z direction, this gives an equation of motion

∂2z

∂t2
= −2eηDCVDC

md2
z

z. (2.3)

This is the equation of motion for a harmonic oscillator with frequency

νz =

√
2eηDCVDC

md2
z

. (2.4)

This frequency is known as the axial secular frequency, and defines the motion of the ion

in the z-direction, which is that of a quantized harmonic oscillator. In order to control

the secular frequency for a given ion trap, the applied DC voltages should therefore be

adjusted.

For motion in the x direction, the equation of motion is

∂2x

∂t2
= − e

m

(
ηRFVRF

d2
r

cos (ΩRFt)−
ηDCVDC

d2
z

)
x. (2.5)

By making the substitutions

q =
2eηRFVRF

mΩ2
RFd

2
r

a = −4eηDCVDC

mΩ2
RFd

2
z

(2.6)

this becomes a standard Matthieu differential equation. Solving in the limit q � 1 and

a� q, it can be shown that the motion takes the approximate form [39, 40]

x(t) = x0 cos (νrt)
(

1 +
q

2
cos (ΩRFt)

)
(2.7)

where

νr =
ΩRF

2

√
q2

2
− 2ν2

z

Ω2
RF

. (2.8)

This is the radial secular frequency. An equivalent solution can be found in the y-direction

and, for a perfectly symmetric system, the radial secular frequency should have the same

value in both the x and the y directions. From equation 2.7, it can be seen that there

are two superimposed frequencies of motion in the radial direction, at νr and ΩRF. For

stable trapping, the condition ΩRF/νr ≥ 2
√

2/0.9 ≈ 3.14 must be met [41]. This type of

stable motion is shown in figure 2.1(b), and the fast oscillations are known as the intrinsic

micromotion. If νr � ΩRF, the fast rotating term can be ignored and the system is

simply a harmonic oscillator. Any stray constant force causes a displacement of the ion’s
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motion so that the average position is no longer at the RF nil. In this case, the magnitude

of the fast oscillations becomes larger, and this is known as excess micromotion and is

problematic for high fidelity quantum operations. Stray electric fields can cause this effect

by displacing the ion, so must be compensated for.

2.2.2 Quantised normal modes

The above derivation considered a single ion in an ion trap. However, when multiple ions

are trapped, as well as the harmonic potential from the trap there is also a force due to

Coulomb repulsion between ions. Generally, parameters are set so that νz � νr. This

means that multiple ions will form a linear string along the z-axis, and that it is a good

approximation to consider axial and radial motion separately. In this work, axial motion

will be used for work involving motional states. The ion-spacing along the z axis can

be calculated by considering the balance of forces due to the trapping potential and the

Coulomb repulsion. The total potential generalised to multiple ions is [42]

V =
N∑
i=1

1

2
mν2

zzi(t) +
N∑
i 6=j

e2

8πε0|zi(t)− zj(t)|
. (2.9)

The equilibrium position of the ions can be calculated by finding the minimum in the

potential for each ion. This is done by equating the differential of the potential with

respect to each ion position to zero, so that ∂V/∂zi = 0. For the case of two ions, this

results in a pair of coupled equations, which can be solved to give an ion-ion spacing of

∆z =

(
e2

2πε0mν2
z

)1/3

. (2.10)

The spacing of ions can therefore be controlled by adjusting the axial secular frequency,

with a higher secular frequency reducing the spacing within the ion string.

The motion of N ions trapped in a linear chain can be described by N normal modes

along each of the three axes. This allows us to write the displacement of the nth ion in a

chain from its equilibrium position as

~rn =
∑

l={x,y,z}

N∑
j=1

~qlS
l
j,nz

0
l,j(al,j + a†l,j) (2.11)

where the first sum is a sum over the principal axes and the second is a sum over the

normal modes. The operators al,j and a†l,j are the ladder operators for normal mode j

in direction l, and z0
l,j is the extent of the ground state wavefunction of a normal mode,
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Figure 2.2: Depiction of the two normal modes of motion for two ions trapped in a
harmonic potential, where graphs show the displacement z(t) from each ion’s equilibrium
position over time. Left: The centre of mass (COM) mode where both ions oscillate in
phase and with equal frequency, νz, and amplitude around their respective equilibrium
positions. Right: The stretch mode, where ions move out of phase at a higher frequency
equal to

√
3νz. This mode is sometimes called the ‘breathing mode’.

given by z0
l,j =

√
~/2mνl,j , where νl,j is the frequency of that mode. The vector ~ql is the

unit vector along the principal axis l. The term of the normal mode matrix Slj,n describes

the motion of the nth ion for mode j in the l direction. This is normalised such that∑
n

(
Slj,n

)2
= 1 [42].

For a single ion, there is one motional mode along each principal axis, the centre of mass

(COM) mode. For two ions, there are equivalently two modes in each direction. In the

axial direction, these are the COM and the stretch mode, with normal mode coordinates

Sz11 = Sz12 = 1√
2

and Sz21 = −Sz21 = 1√
2

respectively. The COM mode exhibits motion

with both ions moving in phase at the same amplitude and trap frequency ν1 = νz. In

the stretch mode, ions move out of phase with the same amplitude at a higher frequency,

ν2 =
√

3νz. These two modes are depicted in figure 2.2. In the radial directions x and y,

the normal coordinates are the same as for the two modes in the z direction, and represent

the COM and the rocking modes.

2.2.3 Ion heating

The mean motional phonon number n̄ of a trapped ion will increase at a constant rate

of ˙̄n, usually measured in phonons per second, known as the heating rate. This can be a

major source of infidelity for multi-qubit gates, since it causes decoherence of the motional
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mode which is used during these types of operations. A low heating rate is therefore

desirable. The underlying mechanism behind heating is not fully understood, since the

experimentally observed scaling of heating rate with trap distance of around ˙̄n ∝ d−4

[32] does not fit with a uniform noise model [32]. This heating is therefore classified as

‘anomalous heating’, and is thought to derive from noise on the surface of the electrodes,

such as fluctuating electric patch potentials [43]. Factors such as electrical noise from

electrode voltage sources also affect the heating rate, and significant work on reducing

noise on the experimental system used in this work has previously led to a reduction in

the measured heating rate [44].

The heating rate can be written in terms of the spectral density of the electric field

noise SE(νz) at the ion’s position, and for the COM mode is given by [45]

˙̄nC(νz) =
e2

4m~νz
SE(νz). (2.12)

Previous experiments have indicated that SE(νz) ∝ ν−1
z [46], which allows an independent

parameter to be calculated, νzSE(νz), from a measured heating rate. This allows heating

rates to be extrapolated at different secular frequencies, and gives a dependence of heating

rate on secular frequency of ˙̄n ∝ ν−2
z . This is a reasonable assumption, although it should

be noted that this is only an approximation, and some measurements have given different

scalings of SE(νz) with νz (for example [47]).

For the COM mode, since both ions move in phase, a uniform electric field can excite

the motional mode and therefore cause heating. However, for the stretch mode (and higher

order modes in the case of more ions), only a differential field (i.e. a field gradient) can

excite the motion of the ions. While equation 2.12 is true for the stretch mode as well as

the COM mode, the spectral noise density for these field gradient terms differs from that

for uniform field noise. The heating rate for the stretch mode can be expressed in terms

of the scaled spectral noise density for the COM mode νzSE(νz) as [48]

˙̄nS(νS) =
e2

4m~ν2
s

νzSE(νz)

d2
r

∆z2

=
e2

4m~ν10/3
s

νzSE(νz)

d2
r

(
3e2

2πε0m

)2/3 (2.13)

where we have used νs =
√

3νz, dr is the distance to the nearest electrode, and ∆z is

the ion spacing which has been substituted in from equation 2.10. However, this equation

is an approximation, since it assumes a scaling of the noise spectrum with the inverse
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Figure 2.3: Relevant energy levels within ytterbium for photoionisation. While a single
stage process could be used to promote an electron directly from the ground state 1S0 to
the continuum, a two stage process is used, which allows for isotope selectivity.

of frequency, and also assumes that noise is uncorrelated. In order to obtain more ac-

curate heating rates, they should be measured directly for the COM and stretch modes

individually, as will be described in section 4.3.3.

2.3 Ytterbium

There are various elements that have suitable properties to be used for trapping ions,

based on a series of considerations. These include the commercial availability of lasers that

address the ion’s atomic transition energies, and the availability of the relevant isotopes.

In this thesis, ytterbium ions are used. In particular, the odd isotope 171Yb+ is trapped,

where the internal states are split in energy by the hyperfine interaction in the presence of a

magnetic field. This produces hyperfine levels which can be used for a qubit transition. In

this section, the trapping and cooling of 171Yb+ will be discussed, as well as the hyperfine

ground state energy levels which are used as the qubit subspace.

2.3.1 Photo-ionisation

In order to trap an ytterbium ion, neutral ytterbium is injected into the trapping position

by a thermal beam from an atomic oven. The ionisation energy of ytterbium is 6.25 eV

which corresponds to a wavelength of 198 nm. While ionisation could be achieved using

a single laser at this UV wavelength, a multi-photon process is used instead. Primarily,

this allows for isotope selective trapping. Furthermore, deep UV lasers are more difficult
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to obtain and hazardous to operate, and the higher energy photons mean they are more

likely to cause charge build up on electrodes. This would cause stray electric fields at the

ion position, resulting in excess micromotion.

First, a 399 nm laser is used to promote a valence electron from 1S0 to 1P1, as shown in

figure 2.3. The exact frequency of this transition is isotope dependent [49]. A second laser

is then needed with wavelength below 394 nm to promote this electron to the continuum.

In this experiment, a laser of wavelength 369 nm is available due to its use for Doppler

cooling of the ion (as discussed in the next section), so this is used for the final step. An

ion is therefore trapped when both lasers are focussed onto the trapping position while a

current is being passed through the atomic ovens to generate a thermal beam of neutral

ytterbium atoms.

2.3.2 Doppler cooling

Doppler cooling of the ion is achieved by addressing the energy transition with a laser

slightly ‘red’ detuned from the resonant transition, so at a lower frequency than the reso-

nant frequency. This means that there is an asymmetry in absorption of photons, as the

ion is more likely to absorb photons when it is moving towards the laser source than away

from it, due to the Doppler shift. This results in a net force on the ion opposing motion,

and thus lowers the kinetic energy. The trapping potential provides the required restoring

force.

Doppler cooling is performed on the transition 2S1/2, F = 1 ↔2 P1/2, F = 0 using

a single red detuned 369 nm laser. However, this is not a closed cycle so microwave

fields and two extra lasers are required, as illustrated in figure 2.4. Once excited to the

2P1/2, F = 0 state by the 369 nm laser, population decays to the 2S1/2, F = 1 state at a

rate of Γ/2π = 19.6 MHz. Off-resonant excitation can occur, resulting in excitation to the

state 2P1/2, F = 1, which then decays to 2S1/2, F = 0. Population can be transferred back

to 2S1/2, F = 1 using a microwave field at the hyperfine splitting, 12.6 GHz.

0.5% of the time, population in 2P1/2 decays to 2D3/2. A 935 nm laser is resonant with

the transition 2D3/2 ↔3 [3/2]1/2, from where it decays back to 2S1/2. In the experimental

setup used in this thesis, the 935 nm laser is at high power and broadened over the hyperfine

transitions in 2D3/2 and 3[3/2]1/2, although it is possible to instead add sidebands to the

laser light. Occasionally, on the order of once a day, a background collision results in the

transition 2D3/2 ↔2 D5/2, which then decays to 2F7/2. A 638 nm laser is used to excite

the transition 2F7/2 ↔1 [5/2]5/2, from where it decays back to 2D3/2 or 2D5/2. Since
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Figure 2.4: Relevant energy levels in 171Yb+ showing the transitions used to form a closed
Doppler cooling cycle. The thick coloured lines indicate transitions driven by lasers, with
the thick grey line showing a microwave transition. The dashed lines are the decay channels
possible from each level.

background collisions do not happen regularly, the 638 nm laser can be slowly scanned

over the hyperfine levels.

Spontaneous emission of photons during Doppler cooling results in a limit in the min-

imum energy achievable, which is given by ~Γ/2, where Γ = 19.6 MHz is the natural

linewidth of the cooling transition 2S1/2 ↔2 P1/2. This gives a Doppler temperature limit

of [50]

T =
~Γ

2kB
(2.14)

which in this case is equal to 471µK. From this temperature, a minimum mean phonon

number of the quantised motion of the harmonic oscillator can be found. After Doppler

cooling, the ion occupies a thermal distribution of motional states, and the density matrix

describing this is

ρth =

∞∑
n=1

pn |n〉 〈n| (2.15)

where |n〉 are the quantised motional harmonic oscillator states, and pn is the probability

of being in motional state |n〉. This probability is given by a Boltzmann distribution, with

pn =
1

1 + n̄

(
n̄

1 + n̄

)n
(2.16)

where n̄ is the average phonon number. From the Doppler temperature limit, the average
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phonon number can be calculated as

n̄ =
kBT

~νl
(2.17)

where νl is the frequency of the motional mode of interest. In practice, this Doppler

temperature limit is generally not reached after Doppler cooling of the ion, for example

due to mis-set cooling parameters and the Zeeman structure in the 2S1/2 manifold.

2.3.3 State preparation and detection

In order to use 171Yb+ as a qubit, a method is required to initialise the ion in a known

state, and to distinguish between different states. The ion is prepared in state 2S1/2, F = 0

by optical pumping. The frequency of the 369 nm laser used for Doppler cooling is shifted

so that it is resonant with the transition 2S1/2, F = 1↔2 P1/2, F = 1. From 2P1/2, F = 1,

the only allowed decay is to the state 2S1/2, F = 0, and there is no laser resonant with any

transitions from this energy level. By application of this shifted 369 nm laser for a period of

time, all of the population is therefore transferred into the 2S1/2, F = 0 state. This process

can be achieved with high fidelity since off-resonant excitation from the 2S1/2, F = 0 state

is small.

In order to detect the state of the ion, the 369 nm laser is used to distinguish between

ions in state 2S1/2, F = 0 and 2S1/2, F = 1. The laser is set to the resonant frequency of

the 2S1/2, F = 1 ↔2 P1/2, F = 0 transition. After excitation to the state 2P1/2, F = 0,

the population can only decay to 2S1/2, F = 1, where it can be excited again. This is

therefore a closed cycle, so when the ion is in state 2S1/2, F = 1 it will scatter multiple

photons. However, when it is in state 2S1/2, F = 0, there is no resonant light so the ion

will not scatter photons. The measurement process therefore involves application of the

369 nm laser light for a period of time, during which photons are collected. By counting

these photons, it is possible to distinguish between the two sub-manifolds 2S1/2, F = 0

and 2S1/2, F = 1. The limit to the fidelity of this detection process is largely due to off-

resonant excitation of the laser light causing excitation from 2S1/2, F = 1 to 2P1/2, F = 1,

since the laser is only detuned from this transition by 2.1 GHz. From this state it can

decay to 2S1/2, F = 0, and so will not scatter photons.
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2.3.4 Hyperfine ground state

The internal electronic states of the hyperfine ground state of the 171Yb+ ion are used as

a qubit. There are four states in this manifold, which for simplicity will be labelled as:

2S1/2, F = 0,mF = 0→ |0〉

2S1/2, F = 1,mF = −1→ |−1〉

2S1/2, F = 1,mF = 0→
∣∣0′〉

2S1/2, F = 1,mF = +1→ |+1〉

(2.18)

during this thesis. If there is no magnetic field applied, the three F = 1 states are degen-

erate, and the splitting between the F = 0 and F = 1 states is ωhf/2π = 12.6428121 GHz

[51]. When an offset magnetic field is applied, the three F = 1 states are split in frequency

by the Zeeman effect. The transition frequencies can be derived from the Breit-Rabi for-

mula [52]. Defining the frequencies as ω+ for |0′〉 ↔ |+1〉, ω− for |−1〉 ↔ |0′〉, and ω0 for

|0〉 ↔ |0′〉, as depicted in figure 2.5, we have

ω+ =
ωhf

2

1 +
gJµBB

~ωhf
−

√
1 +

(
gJµBB

~ωhf

)2


ω− = −ωhf

2

1− gJµBB

~ωhf
−

√
1 +

(
gJµBB

~ωhf

)2


ω0′ = ωhf

√
1 +

(
gJµBB

~ωhf

)2

(2.19)

where gJ is the Landé g factor which is gJ = 2, µB is the Bohr magneton, and B is the

magnitude of the applied magnetic field. In small B fields, the value of gFµBB/~ωhf is

small, so it can be approximated that the frequency of the |0〉 ↔ |±1〉 transitions vary

linearly with the applied magnetic field. However, while the frequency splitting due to the

second order Zeeman shift is small, it is experimentally significant. An offset magnetic field

of approximately 10 G is typically applied in our experimental setup, giving frequencies

ω+/2π ≈ −ω−/2π ≈ 14 MHz, and (ω0′ − ωhf)/2π = 31 kHz.

2.4 Trapped ion hyperfine qubits

The hyperfine ground state manifold of the 171Yb+ qubit, as discussed in section 2.3.4,

can be used to form a qubit. Transitions between qubit states could be driven by a pair

of Raman beams, but in this case the transition is driven directly using long-wavelength
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Figure 2.5: Hyperfine ground state of the 171Yb+ ion (not to scale). The grey arrow
labelled ωhf shows the energy transition in zero B field, when the F = 1 states are ener-
getically degenerate. The black arrows indicate the energy transitions when the F = 1
states are separated due to Zeeman splitting.
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radiation resonant with the hyperfine splitting. Single qubit gates using this method are

discussed in section 2.4.1. In order to drive multi-qubit operations, however, the long-

wavelength radiation must be combined with a magnetic field gradient in order to achieve

the required coupling between spin and motional states of the ion. This is discussed in

section 2.4.2, where first a derivation for spin-motion coupling using lasers is presented,

and then it is shown that the use of microwaves and magnetic field gradients is analogous

to this. The derivations in this section in general follow Randall [53].

2.4.1 Single qubit operations

A trapped ion can be used as a qubit by defining two of the internal states as the qubit

states |↓〉 and |↑〉. In this work, these qubit states are defined within the hyperfine manifold

2S1/2 of the 171Yb+ ion. The Hamiltonian describing these energy levels is

H0 =
~ω0

2
(|↑〉 〈↑| − |↓〉 〈↓|) (2.20)

where ω0 is the frequency describing the energy splitting of the |↓〉 and |↑〉 states. When

electromagnetic radiation is applied to the ion, the interaction is described by a magnetic

dipole coupling. The Hamiltonian describing the interaction is

HI = ~µ. ~B (2.21)

where ~µ is the magnetic moment, and ~B is the applied magnetic field. This magnetic field

can be written as

~B =
~B0

2

(
ei(ωt−

~k.~r−φ) + e−i(ωt−
~k.~r−φ)

)
(2.22)

where ω, ~k and φ are the frequency, wavevector and phase of the applied radiation respec-

tively, and ~r is the position of the ion. When the applied radiation is near the resonant

frequency of the hyperfine qubit (in the case of |0〉 ↔ |±1〉, for example, this is around

12.6 GHz), the magnetic dipole approximation can be made. Since the wavelength of this

applied radiation is much larger than the spatial extent of the ion’s waveform, we can ap-

proximate ei
~k.~r ≈ 1. Then, rewriting the Hamiltonian HI in terms of its matrix elements

and using the fact that 〈↓| ~µ. ~B0 |↑〉 = 〈↑| ~µ. ~B0 |↓〉, we can write

HI =
~Ω0

2
(|↑〉 〈↓|+ |↓〉 〈↑|)

(
ei(ωt−φ) + e−i(ωt−φ)

)
(2.23)
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where we have defined the Rabi frequency Ω0 = 〈↓| ~µ. ~B0 |↑〉 /~. We can then transform

to the interaction picture with respect to the Hamiltonian describing the internal energy

states H0 using the relation H ′I = eiH0t/~HIe
−iH0t/~, which gives the interaction Hamilto-

nian

H ′I =
~Ω0

2

(
|↑〉 〈↓| eiω0t + |↓〉 〈↑| e−ω0t

) (
ei(ωt−φ) + e−i(ωt−φ)

)
. (2.24)

This Hamiltonian contains terms rotating at ω0 + ω and δ = ω − ω0. Since ω0 + ω � δ,

we can disregard these fast terms, making the rotating wave approximation, which gives

the Hamiltonian

H ′I =
~Ω0

2

(
|↑〉 〈↓| e−i(δt−φ) + |↓〉 〈↑| ei(δt−φ)

)
. (2.25)

This Hamiltonian describes population transfer between the |↓〉 and |↑〉 states. In order to

understand the behaviour of ion population over time, the equivalent unitary operator can

be found by substituting this Hamiltonian into the time-dependent Schrödinger equation,

i~ ∂
∂t |ψ〉 = H ′I |ψ〉. This results in two coupled first order differential equations. These

can be solved with the appropriate boundary conditions for each state, giving a unitary

matrix of the form

U(δ,Ω0, φ, t) =

eiδt[cos (Ωδt/2)− iδ
Ωδ

sin (Ωδt/2)] − iΩ0
Ωδ
eiδt/2e−iφ sin (Ωδt/2)

− iΩ0
Ωδ
e−iδt/2eiφ sin (Ωδt/2) e−iδt[cos (Ωδt/2) + iδ

Ωδ
sin (Ωδt/2)]


(2.26)

where Ωδ =
√

Ω2
0 + δ2. If the applied radiation is set to resonance with the transition, so

that δ = 0, this simplifies to

U(Ω0, φ, t) =

 cos (Ω0t/2) −ie−iφ sin (Ω0t/2)

−ieiφ sin (Ω0t/2) cos (Ω0t/2)

 . (2.27)

It can be seen that by correctly setting the parameters, different single qubit rotations in

the x and y bases can be performed. For example,

U

(
Ω0, 0,

π

Ω0

)
=

 0 −i

−i 0

 = −iσx (2.28)

and

U

(
Ω0,

π

2
,
π

Ω0

)
=

0 −1

1 0

 = −iσy (2.29)

where σx and σy are the Pauli matrices.

Using this unitary, the probability for an ion interacting with applied radiation to be
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in state |↑〉 after it has been initialised in |↓〉 can be calculated. For an arbitrary Rabi

frequency Ω0, time t and detuning δ, this is

P↑(Ω0, t, δ) =
Ω2

0

Ω2
0 + δ2

sin2

(√
Ω2

0 + δ2t

2

)
. (2.30)

There are two simplifications of this probability function which correspond to commonly

performed experiments. The first is for the case of applying a pulse of fixed time t = π/Ω0

with a varying detuning δ. The probability function then becomes

P↑(δ,Ω0) =
π2

4
sinc2

(√
Ω2

0 + δ2π

2Ω0

)
. (2.31)

The width of the peak depends on the Rabi frequency of the applied radiation, as illus-

trated in figure 2.6. This type of varying detuning experiment can be performed in order

to accurately obtain the frequency of a transition. The other simplification of interest is

that for a varying time t and fixed detuning δ = 0. This gives

P↑(t,Ω0) = sin2

(
Ω0t

2

)
. (2.32)

In this case, oscillations between the two states are seen at frequency Ω0. This type of

experiment is used to find the exact Rabi frequency of applied radiation. When resonant

radiation is applied for a time t = π/Ω0, full population transfer to the state |↑〉 is achieved,

and this is called a π pulse. When resonant radiation is applied for half this time, so

t = π/2Ω0, a superposition of the two states of the form (|↓〉 + eiφ |↑〉)/
√

2 is created,

where φ depends on the phase of the radiation. This is known as a π/2 pulse.

2.4.2 Multi-qubit operations

In order to perform multi-qubit operations, a method for changing the internal state of

one ion dependent on the internal state of another is required. This is achieved through

the shared motional mode of the ion string, described in section 2.2.2, which is referred

to as the ‘bus’ mode. To use this shared mode for communication between ions, it is

necessary for there to be a coupling between the internal and motional states of each ion.

This coupling can be produced using lasers, as outlined in the first part of this section,

where the momentum of the optical photon is large enough to alter the motional state

while causing a transition between internal states. However, when using long-wavelength

radiation, the photon momentum is much smaller, making the coupling strength using this
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Figure 2.6: Probability of ion being in state |↑〉 after initialising in |↓〉 and applying a pulse
of radiation at detuning δ for time t = π/Ω, shown for two different Rabi frequencies,
Ω = Ω0 and Ω = Ω0/3. The width of the sinc2 peak is defined by the Rabi frequency, so
lower Rabi frequencies can be used to more accurately characterise a transition frequency.

method vanishingly small. A method has been developed to overcome this problem by

combining long-wavelength radiation with a static or an oscillating magnetic field gradient

[23, 29], which allows for an analogous coupling between spin and motional states. The

static magnetic field gradient scheme is used in this thesis, and this method is outlined in

the second part of this section.

Coupling spin and motion using lasers

In the previous section, the magnetic dipole approximation was made to ignore the effect

of the photon momentum of long-wavelength radiation. Here, we consider the second term

in the expansion of ei
~k.~r which, for optical radiation, is essential for describing the coupling

between spin and motion necessary for multi-qubit operations. The following derivation

uses the labelling of states |↓〉 ≡ |0′〉 and |↑〉 ≡ |+1〉, but it can be generalised to other

pairs of states.

The Hamiltonian describing an ion with internal energy states defined, as before, as

|↑〉 and |↓〉, confined in a harmonic potential with secular frequency νz can be written as

the sum of two terms

H0 = HB +Hm. (2.33)

HB describes the internal energy levels of an ion in a constant magnetic field. Ignoring

second order Zeeman effects, this energy splitting can be written as

HB =
~ω0

2
(|↑〉 〈↑| − |↓〉 〈↓|) + µBB |↑〉 〈↑| (2.34)
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where B is the magnetic field strength, µB = e~/2me is the Bohr magneton, and the

frequency splitting can be written as ωB = ω0 +µBB/~. Hm describes the motional state

of the ion, and is written as

Hm = ~νza†a (2.35)

where a† and a are the raising and lowering operators for the axial motional mode of trap

frequency νz. Without the magnetic dipole approximation, which was made in the previous

section to describe interactions with radiation close to the frequency of the hyperfine qubit,

the full Hamiltonian to describe the interaction with radiation is given by

HI =
~Ω0

2
(|↑〉 〈↓|+ |↓〉 〈↑|)

(
ei(ωt−kz−φ) + e−i(ωt−kz−φ)

)
. (2.36)

This describes the interaction with a wave propagating along the trap axis, in the z-

direction, so that ~k.~r = kz, where k = |~k|. The ion position can be expanded in terms of

the ladder operators, z = z0(a + a†), where z0 is the position spread of the ground state

wavefunction of the ion, given by z0 =
√
~/2mνz, where m is the mass of the ion. The

Lamb-Dicke parameter is the ratio of the spread of the ion’s ground state wavefunction to

the wavelength of the incoming radiation, defined as

η = kz0 = k

√
~

2mνz
. (2.37)

This allows us to write kz = η(a+ a†). Moving to the interaction picture with respect to

H0 gives an interaction Hamiltonian

H ′I =
~Ω0

2

(
|↑〉 〈↓| ei(ωB−ω)teiφeiη(ae−iνzt+a†eiνzt) +H.c.

)
. (2.38)

As the ion is cooled, the Lamb-Dicke regime is reached where the following criterion applies

η2(2n+ 1)� 1. (2.39)

Within this regime, sidebands that result from terms higher than the first order in the

expansion of equation 2.38 around eiη(ae−iνzt+a†eiνzt) can be ignored. The zeroth order is

given by

Hc =
~Ω0

2

(
|↑〉 〈↓| e−i(δct−φ) + |↓〉 〈↑| ei(δct−φ)

)
(2.40)

where δc is the detuning from the carrier transition. This Hamiltonian is identical to

equation 2.25, and describes population transfer between states |↓〉 and |↑〉 with no effect
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on the motional states |n〉. In order to resolve individual sidebands, Ω0 � νz must be

satisfied. In that case, the two first order terms can be written independently as

Hr =
i~ηΩ0

2

(
e−iδrteiφa |↑〉 〈↓|+ eiδrte−iφa† |↓〉 〈↑|

)
(2.41)

and

Hb =
i~ηΩ0

2

(
e−iδbteiφa† |↑〉 〈↓|+ eiδbte−iφa |↓〉 〈↑|

)
. (2.42)

These are known as the red and blue sideband transitions respectively. The detunings are

defined as δr = ω − (ωB − νz) and δb = ω − (ωB + νz). The red sideband acts to remove

a phonon while exciting the internal state of the ion, whereas for the blue sideband a

phonon is added when the internal state of the ion is excited. The magnitude of the Rabi

frequencies of the coupling to the red and blue motional sidebands is dependent on η, with

Ωr =
√
nηΩ0 (2.43)

and

Ωb =
√
n+ 1ηΩ0 (2.44)

respectively. It is therefore important to have a sufficiently large value of η for a strong

sideband coupling rate. For a transition frequency of 12.6 GHz and an axial trap fre-

quency of νz/2π = 460 kHz (approximately the secular frequency used for experimental

demonstration of two qubit operations in chapter 6), the Lamb-Dicke parameter is only

2.1×10−6. Optical radiation can instead be used, which gives a significantly larger Lamb-

Dicke parameter on the order of 0.1 due to the shorter wavelength, by use of a two photon

Raman process. However, an alternative method for coupling which does not depend on

the wavelength of the driving radiation is presented in the next section.

Coupling spin and motion using a magnetic field gradient

In order to achieve a sufficient level of coupling between the ions’ internal and motional

states for multi-qubit operations, a static magnetic field gradient can be used in conjunc-

tion with long-wavelength radiation [23]. This will be shown in the following derivation,

which again follows Randall [53]. The magnetic field at the ion’s position can then be

written as

B(z) = B0 +
∂B

∂z
z = B0 +

∂B

∂z
z0(a+ a†), (2.45)
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Figure 2.7: Schematic of coupling between spin and motion using a magnetic field gradient.
The effect of the addition of a gradient is to cause a displacement in the harmonic oscillator
describing the motional states of |↑〉. This corresponds to a displacement of 2z0ηeff in ion
equilibrium position, along with a constant energy offset of −~νzη2

eff .

where we have expressed the ion position in terms of the ground state position and the

ladder operators, z = z0(a+ a†). The Hamiltonian describing the state of the ion is again

given by H = HB +Hm, where HB describes the internal energy states and Hm describes

the motional states. The first term is the same as in the previous section and is

HB =
~ω0

2
(|↑〉 〈↑| − |↓〉 〈↓|) + µBB |↑〉 〈↑| . (2.46)

The motional Hamiltonian, however, now incorporates a term that is dependent on the

magnetic field gradient, and is given by

Hm = µB
∂B

∂z
z0(a+ a†) |↑〉 〈↑|+ ~νza†a. (2.47)

The second term in this Hamiltonian describes a normal harmonic oscillator, but the first

term of Hm shows an intrinsic coupling between the internal and motional states of the

ion. We can rewrite this motional Hamiltonian as the sum of the matrix elements for the

two spin states

Hm = H↓m |↓〉 〈↓|+H↑m |↑〉 〈↑| . (2.48)
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The motional Hamiltonian acting on the state |↓〉 reduces to that for a harmonic oscillator

with eigenstates |n〉, and is given by

H↓m = 〈↓|Hm |↓〉 = ~νza†a. (2.49)

It therefore remains unaffected by the gradient. However, for the state |↑〉, the extra term

dependent on the gradient remains, and the Hamiltonian is

H↑m = 〈↑|Hm |↑〉 = µB
∂B

∂z
z0(a+ a†) + ~νza†a. (2.50)

In order to simplify this expression, we can define a new parameter

ηeff =
µB
~νz

∂B

∂z
z0, (2.51)

as well as new ladder operators,

b = a+ ηeff

b† = a† + ηeff .
(2.52)

The Hamiltonian can then be re-expressed as

H↑m = ~νzb†b− ~νzη2
eff . (2.53)

This is another harmonic oscillator Hamiltonian but with a constant energy offset of

−~νzη2
eff . There is a new position basis for the states of this shifted harmonic oscillator,

where

z′ = z0(b† + b) = z + 2z0ηeff . (2.54)

The state |↑〉 therefore experiences a harmonic oscillator with a shift in position basis and

a corresponding constant energy offset. A schematic of this effect is shown in figure 2.7.

The eigenstates of this displaced harmonic oscillator system are the Fock states |n′〉, which

can be written in terms of the original harmonic oscillator states as displaced Fock states,

|n′〉 = D(−ηeff) |n〉. The overall effect of the field gradient is therefore to state-dependently

cause a displacement of the harmonic oscillator.

In order to understand the effect of radiation on the ion, it is useful to define a basis

where the states share harmonic oscillator states. This is possible using ‘polaron’ states,



31

where the internal energy states incorporate the displacement. These are

|↓p〉 |np〉 = |↓〉 |n〉

|↑p〉 |np〉 = e−ηeff(a†−a) |↑〉 |n〉 .
(2.55)

These states cannot be expressed separably in the original basis. The corresponding ladder

operators are

a(†)
p = a(†) |↓〉 〈↓|+ b(†) |↑〉 〈↑| = a(†) + ηeff |↑〉 〈↑| . (2.56)

For long-wavelength radiation applied near the resonant frequency of the hyperfine

transition, the magnetic dipole approximation can again be made to ignore the effect of

the term eikz. The Hamiltonian for the interaction with applied radiation is then

HLW =
~Ω0

2

(
|↑〉 〈↓| ei(ωt−φ) + |↑〉 〈↓| e−i(ωt−φ)

)
(2.57)

which can be written in the polaron state basis as

HLW =
~Ω0

2

(
eηeff(a†p−ap) |↑p〉 〈↓p|+ e−ηeff(a†p−ap) |↓p〉 〈↑p|

)(
ei(ωt−φ) + e−i(ωt−φ)

)
. (2.58)

As before, we will go into the interaction picture with respect to the Hamiltonian describing

the internal energy states H0 and use the rotating wave approximation to ignore fast

rotating terms, giving

H ′LW =
~Ω0

2

(
ei(ωB−ω)teiφeηeff(a†peiνzt−ape−iνzt) |↑p〉 〈↓p|+H.c.

)
(2.59)

where ωB = ω0+µBB0/~−νzη2
eff is the qubit transition frequency. This Hamiltonian takes

exactly the same form as equation 2.38, which describes the coupling between internal and

motional states using laser radiation, with ηeff replacing η. We can therefore consider ηeff

as the effective Lamb-Dicke parameter, determining the strength of the coupling between

the internal and the motional states. However, in this case the parameter is not dependent

on the wavelength of the radiation, but is instead given by

ηeff =
µB√

2~mν3
z

∂B

∂z
. (2.60)

The effective Lamb-Dicke parameter, and therefore the strength of the coupling, can there-

fore be increased by using a larger magnetic field gradient, and by operating at lower

secular frequencies.
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In the same way as in section 2.4.2, the Lamb-Dicke regime is defined as where η2
effnp �

1. We can then expand this Hamiltonian to first order to give carrier and sideband terms:

Hc =
~Ω0

2

(
e−iδcteiφ |↑p〉 〈↓p|+ eiδcte−iφ |↓p〉 〈↑p|

)
Hr = −~ηeffΩ0

2

(
e−iδrteiφap |↑p〉 〈↓p|+ eiδrte−iφa†p |↓p〉 〈↑p|

)
Hb =

~ηeffΩ0

2

(
e−iδbteiφa†p |↑p〉 〈↓p|+ eiδrte−iφap |↓p〉 〈↑p|

)
.

(2.61)

Similarly, the red and blue sideband transitions allow for a change in internal energy state

coupled to a change in motional state. There is a phase difference from equations 2.41 and

2.42, where the spin motion coupling is achieved through photon momentum using optical

fields, but this can be compensated for if necessary by changing the phase of the driving

fields. For a gradient of 24.5 T/m (as used experimentally in this work) and a secular

frequency of 460 kHz, the effective Lamb-Dicke parameter is approximately 0.006 - much

larger than that achieved through photon momentum coupling. This is sufficiently large

to perform multi-qubit operations, and forms the basis of the multi-qubit work presented

in this thesis. From here on, the effective Lamb-Dicke parameter described in equation

2.60 will be relabelled as ηeff ⇒ η.

This theory of spin-motion coupling with a magnetic field gradient can be generalised

to multiple ions in a trap. In this case, there are multiple normal modes as described in

section 2.2.2, and the sidebands can be addressed individually providing Ω0 � |νk−νk±1|,

where νk is the frequency of each mode. Furthermore, the effective Lamb-Dicke parameter

for ion j and mode k becomes

ηjk =
SjkµB
~νk

∂B

∂z
z0k (2.62)

where Sjk is the normal mode coefficient. For two ions, there are two normal modes: the

COM mode at νz and the stretch mode at
√

3νz. The normal mode coefficient for the

COM mode is Sz11 = Sz12 = 1/
√

2, and for the stretch it is Sz21 = −Sz22 = −1/
√

2.

There is also an extra term which comes from expanding the motional Hamiltonian

for multiple ions. As well as individual energy shifts on each ion, there are terms which

express collective pairwise energy shifts. This Hamiltonian for ions i and j is

Hss = −
N∑
i 6=j

~Jij(|↑i〉 〈↑i| × |↑j〉 〈↑j |) (2.63)

where

Jij =
N∑
k=1

νkηikηjk. (2.64)
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Figure 2.8: Schematic of the frequency splitting of the hyperfine states of two ions in a
magnetic field gradient, ignoring second order Zeeman effects, where ∆z is the spacing
between the ions.

There is therefore an implicit spin-spin coupling between ions, which can be used for

conditional logic operations, which has been demonstrated experimentally [25]. However,

for the gradient used in this work, the strength of the coupling is low and therefore the

gate time is longer than the decoherence time of the qubit. This limits the gate fidelity,

so this particular gate scheme is not suitable for two qubit logic operations in our system.

This type of coupling does not affect the gate we implement, demonstrated in chapter 6.

2.4.3 Individual addressing

When using lasers for coherent operations it is necessary to individually address ions

spatially. This places strict requirements on the lasers beam, such as on the beam waist

and the beam pointing stability. Microwaves cannot individually address ions spatially

due to the longer wavelength. However, when placed in a magnetic field gradient, the

frequency splitting of the ion transitions becomes position-dependent. Ignoring the second

order Zeeman shift, the frequency of the transition |0〉 ↔ |+1〉 for ion i at position zi is

ωi = ω0 +
µB
~

(
B0 + zi

∂B

∂z

)
(2.65)

which gives a frequency difference of

∆ω =
µB
~
∂B

∂z
∆z (2.66)
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where ∆z is the splitting between the ions, given for two ions by equation 2.10. This

is shown in figure 2.8. It is therefore possible to individually address all ions with long-

wavelength radiation, since ions are individually addressed in frequency space. The cross

talk defines how well ions can be individually addressed, and is given by the amount of

population transferred in a neighbouring ion after a pulse of duration t on a given ion.

This can be calculated from equation 2.31, and taking the time average of this gives

Cij =
Ω2

0

2(Ω2
0 + ∆ω2)

≈ Ω2
0

2∆ω2
. (2.67)

There is therefore a trade-off between the Rabi frequency and the level of of cross talk.

A higher Rabi frequency is generally desirable to perform faster quantum operations and

lessen the effects of decoherence, but this may result in higher levels of cross talk. This

can be reduced by the use of pulse shaping, or by increasing the magnetic field gradient

in order to create a larger frequency splitting between ions.

The second order Zeeman shift has been ignored in this analysis, since the frequencies

of the |0〉 ↔ |±1〉 transitions are dominated by the first order term. However, this second

order is significant for the transition |0〉 ↔ |0′〉 (known as the clock transition), as it allows

for individual addressing of this transition also. In a typical field of 10 G, the frequency

splitting between clock transitions for two ions is typically on the order of 10 kHz. Again,

there is a trade-off between the Rabi frequency of the transition and the cross talk, with a

higher limitation placed on this transition due to the smaller frequency splitting. However,

the frequency splitting is sufficient to allow for accurate individual addressing of ions.



Chapter 3

Experimental setup and initial

experiments

In this chapter, the experimental setup used for the work in this thesis is described. The

core of the experiment consists of a macroscopic ion trap in an ultra-high vacuum system,

with access for the necessary lasers, microwaves and RF radiation. This experimental setup

builds on the work of multiple PhD students, and various aspects have been described in

detail elsewhere, as referenced. More in depth discussion is provided where adaptations or

improvements have been made. Various initial experiments are then presented which form

the basis of work throughout this thesis, demonstrating much of the theory described in

chapter 2.

3.1 Ion trap

3.1.1 Macroscopic ion trap

This work uses a macroscopic linear blade Paul trap, a variation of the theory described in

2.2.1, and a schematic of this trap is shown in figure 3.1. Further information on the design

of this trap can be found in [54]. The trap consists of four blades made of stainless steel with

a 50µm gold coating. RF voltage is applied to two of the four blades, and provides radial

confinement in the x − y plane. Static DC voltages are applied to the other two blades.

Each of these DC blades is segmented into three electrodes, and the two outer electrodes

on each blade act as endcaps to provide confinement along the z-axis. There are also three

cylindrical compensation rods, two of which are electrically connected, and along with the

centre electrodes on the DC blades these allow for movement of the ion in the x−y plane.

This is necessary to ensure that the ions sit along the RF nil line, which ensures there is no

35
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Figure 3.1: A schematic of the macroscopic linear Paul trap used in this work. The
trap consists of four blade electrodes and three compensation rods (omitted in the right
diagram for clarity). RF voltage is applied to two of the blades. DC voltages are applied
to the other two blades, which are each segmented into three electrodes, as well as to the
compensation rods. The ion-electrode distances are dr = 310(10)µm and dz ≈ 500µm.
Figure adapted with permission from [53].

excess micromotion present which can cause problems for high fidelity operations. One of

the endcaps is unintentionally electrically connected to a compensation rod, but this is not

problematic given the number of electrodes available. The distance to the endcaps in the

z direction is dz ≈ 500µm, and the nearest ion-electrode distance is dr = 310(10)µm. The

relatively large dimensions of the trap have two consequences: low heating rates compared

with surface traps, and small amounts of scattering of 369 nm Doppler cooling laser. This

low scattering rate helps with ion readout, and reduces the possibility of the photoelectric

effect producing patch charges on electrodes, which can produce increased micromotion.

Using typical electrode voltages, the change in ion position with voltage was simulated

to be 17.8 nm/mV for the electrode that had the largest effect on the ion position. An

atomic oven enriched with > 95%171Yb is used to produce a thermal beam of neutral Yb

atoms for trapping, requiring a current of 6.2 A.

3.1.2 DC and RF voltages

DC voltages are applied to the trap using a highly stable low noise voltage supply which

is controlled by a PC control programme via USB (Stahl BS series, HV40-16, 16 channel).

The maximum output voltage of each channel is 40 V. The DC voltages then pass through

a low-pass filter designed by Dr David Murgia [40], a schematic of which is shown in figure

3.2. This filter has a cut-off frequency of 30.5 Hz, below mains frequency, and uses SMA

input connections. A box was designed to sit directly on the vacuum system, with the
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Figure 3.2: Schematic of the filter for the DC voltages which are applied to the trap
electrodes. This a low pass filter with a cut-off frequency of 30.5 Hz.

filter output connected to the DC feedthroughs to the vacuum system via a routing PCB.

The trapping RF is supplied by a signal generator (HP8640) and amplified by 47 dB

(NP Technologies NP-541). A helical resonator then impedance matches this signal to the

ion trap and provides further amplification of the voltage. This high Q factor resonator

allows higher voltages to be applied and also filters out noise at unwanted frequencies.

When attached to the ion trap, the resonator was measured to have a Q factor of Q =

200(20) at a resonant frequency of 19.212 MHz. This allows the applied RF voltage to be

found using the equation Vac = κ
√

2PQ where P is the RF power applied to the ion trap,

κ = (L/C)1/4, and L and C are the inductance and capacitance of the ion trap resonator

system respectively. This has been measured experimentally as κ = 13(1) [55]. For the

work presented in this thesis, 1.6 W of RF power is typically applied, giving an RF voltage

of Vac ≈ 330 V.

3.1.3 Magnetic field gradient

When using long-wavelength radiation, a magnetic field gradient is required in order to

generate the spin-motion coupling needed for two qubit gates, as explained in section 2.4.2.

While a large magnetic field gradient is required, it is also important that the absolute

magnetic field is low, as high magnetic fields can have undesired effects such as reducing

detection fidelity, and increased second order zeeman shifts which lead to higher sensitivity

of the |0〉 ↔ |0′〉 transition to magnetic field fluctuations. This is achieved through the

use of permanent samarium cobalt (SmCo) rare earth magnets retrofitted to the ion trap,

as shown in figure 3.3. The north poles of each pair of magnets face each other to achieve

a high gradient that is well approximated as linear at the ion position, and a low absolute

magnetic field. Magnets are partially coated with three layers (nickel, copper, and nickel)

in order to reduce outgassing during the baking procedure, but this has been found to

lower the gradient produced. Further information of the magnet design can be found in
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Figure 3.3: Diagram (left) of the trap with magnets (shown in purple) positioned either
side to produce a magnetic field gradient. Two magnets of different size are positioned
either side of the trap, to ensure that the required magnetic field gradient along the z-axis
as well as a low magnetic field offset is produced. A photo of the magnets fitted onto the
trap is shown on the right. Figure reproduced with permission from [53].

[56]. These magnets produce a gradient of ∂B/∂z = 24.5(1) T/m.

Although the absolute magnetic field should theoretically be low at the ion position,

magnets are only coarsely aligned so an undesired offset field occurs. Additional permanent

magnets are positioned outside the vacuum system to reduce this. Three pairs of Helmholtz

coils are also used outside the vacuum system, one aligned along each spatial axis. Each

coil has 185 turns of 1.08 mm copper wire. A current within the range 1-2 A is required

to achieve an offset field of approximately 10 G.

3.1.4 Vacuum system

The ion trap is housed in an ultra-high vacuum environment, at around 10−11 Torr. Fur-

ther details of the vacuum system can be found in [57]. Feedthroughs allow for 50 DC

and 1 RF connection to the ion trap and 6 DC connections to atomic ovens. Ultra high

vacuum is maintained using an ion pump (Varian StarCell 9191145) and measured using

an ion gauge (Varian 9715015). The vacuum system is placed inside a Faraday cage which

is not in use due to adverse temperature effects when it is fully closed.

3.2 Optical setup

3.2.1 Lasers

Although microwave and RF radiation is used for coherent manipulation of the ion, three

lasers are required for Doppler cooling (369 nm, 935 nm, 638 nm) and one for photoionisa-
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tion (399 nm). The 369 nm laser used for cooling, preparation and detection of the ion is

an MSquared Ti:Sapphire laser (SOLSTIS CW). This produces light at 739 nm, which is

then frequency doubled to around 1.5 W of 369 nm using a bow tie cavity with a second

harmonic generation crystal (ECD-X). The other three of these lasers (the 935 nm, 638 nm

and 399 nm) are home built external cavity diode lasers (ECDL), as described in [58]. In

order to scan the hyperfine transitions described in section 2.3.4, a modulation frequency

of approximately 1 Hz is applied simultaneously to the diode current and the piezo voltage

of the 638 nm laser.

A schematic of the optical layout is shown in figure 3.4. Optical fibres are used to pass

lasers through the walls of the Faraday cage and to decouple the pointing stability through

the vacuum system from the lasers themselves. Outside of the cage, the beam paths of the

935 nm, 399 nm and 638 nm are similar. They pass through an optical isolator, followed

by a beam picker which diverts some light to the wavemeter, and steering mirrors for

coupling into an optical fibre. The 369 nm beam path is more complex. The beam passes

first through a double pass acousto-optical modulator (AOM) setup, which allows light

to be turned on and off on the timescale of less than 1µs, and to control the frequency

and the power of the light using an analogue output from the experimental computer

FPGA. The AOM (Isomet 1206C-833) is driven by an RF signal between 100 MHz and

130 MHz (Isomet AOM driver) which is added to the laser frequency. In order to achieve

full extinction of light, a switch (Mini-circuits ZASW-2-50DR+) is placed after the AOM

driver since it was found that the AOM driver internal switch did not fully block the RF

signal. After the AOM setup, the beam passes through an EOM (Qubig EO-T1055M3,

driven by Qubig E2.13I3) which adds sidebands at approximately 1 GHz. The light is

coupled into the optical fibre.

Once inside the Faraday cage, the lasers are directed to the ion trap through two

viewports on the vacuum system. The 935 nm and 638 nm beams are overlapped using a

cold mirror (Thorlabs M254C45) which, when placed at 45o, transmits light of wavelength

& 700 nm and reflects light of a lower wavelength. The overlap is finely adjusted using a

lens in an x-y translation stage in the 638 nm beam path before this cold mirror. Both

beams are then positioned on the ion using a lens in an x-y-z translation stage fitted with

digital micrometers.

The 369 nm laser passes through a polarising beam splitter (Eksma 430-1157) after the

fibre output which only transmits horizontally polarised light. This transforms polarisation

fluctuations and drifts from the fibre into amplitude fluctuations and drifts. After steering
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mirrors, the beam then passes through a 50:50 beam splitter (Eksma 355-1105). One of

the outputs of the beamsplitter is sent to a photodiode through a 369 nm bandpass filter

which minimises the effect on the photodiode measurement of background light. The

signal from the photodiode is used to monitor the power of the laser when the AOM is set

to high power, and to stabilise the power of the laser beam when the AOM is set to low

laser power using a digital PID circuit in LabVIEW which alters the RF power sent to the

AOM (setup designed by Dr Tomas Navickas and Tom Crane). During experiments, the

399 nm beam is blocked at the fibre output using an adjustable iris, but when trapping it

is overlapped with the 369 nm beam. This is achieved using a bandpass filter (Semrock

FF01-3701/36-25) with centre frequency 370 nm and bandwidth 36 nm, which allows the

369 nm light through and reflects the 399 nm light. These beams pass through a half and

a quarter waveplate to control the polarisation and finally through a lens in an x-y-z

translation stage with digital micrometers to focus the beam on the ion.

3.2.2 Frequency stabilisation

In order to effectively and repeatably Doppler cool, prepare, and detect the ion, the

frequency of the 369 nm laser needs to be stabilised. For the majority of the work in this

thesis, a three stage lock is used, which is described in detail in [59]. A 780 nm laser

beam (Moglabs, Cateye External Cavity Diode Laser) passes through a Rubidium cell

and, using saturation absorption spectroscopy, is locked to the 52S1/2 ↔ 52P3/2 transition

of the Rubidium vapour. The 780 nm beam is then directed through a cavity, the length

of which is locked to this stabilised laser. The 739 nm beam passes through and is locked

to the same cavity. An AOM is used in the beam path for the 780 nm light allowing the

frequency of the 780 nm, and therefore the 739 nm, to be fine tuned. For later work, shown

in chapter 7, a new locking setup was used, installed by Dr. Tomas Navickas [59]. The

739 nm is locked directly to a low-drift passive cavity of length approximately 10 cm. The

cavity is isolated in a vacuum system with acoustic shielding and temperature stabilised.

The 935 nm laser is locked using the wavemeter, which supplies the wavelength of the

laser to the LabVIEW experimental control program. This then generates feedback to the

piezo of the 935 nm laser using the experimental computer FPGA. This protects against

slow drifts in the frequency which cause preparation and detection to become less effective.

Other lasers are left unstabilised, since they are not used for sensitive operations and are

generally only used for short periods of time over which stability is not an issue.
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Figure 3.5: Schematic of the imaging setup designed to reduce the magnification of the
ions on to the CCD camera (not to scale). A removable mirror allows the photon path to
be directed either to the PMT or the CCD camera for detection.

3.2.3 Imaging

In order to detect an ion, 369 nm light scattered by the ion is collected and magnified by

a series of lenses, which is then detected either by a CCD camera (Andor iXon Ultra) or

a photomultiplier tube (PMT, Hamamatsu H8259-01). Typically, the camera is used for

aligning lasers to the ion position and trapping ions, and the PMT is used for collection

of photons during experiments. For a single ion, the method of counting photons on the

PMT gives good contrast between when the ion is dark and when the ion is bright. When

measuring two ions, however, there are various limitations on the effectiveness of using

the PMT for detection. There is significant overlap in the distributions in the number

of photons counted for one ion bright or two ions bright during a detection event, as

discussed in section 3.4.2, which significantly reduces the detection fidelity. The extent

of this overlap is affected by any drifts in laser frequency or power. Furthermore, using

a PMT it is only possible to distinguish three cases: no ions bright, one ion bright, or

both ions bright. It is therefore desirable to use the camera instead to detect during

experiments involving two ions. This means that instead of detecting two ions together,

two single ions are effectively being detected simultaneously, assuming there is little cross

talk, which reduces the problem of overlap in number of photons collected. It also allows

the possibility of distinguishing four experimental results: {d, d}, {b, d}, {d, b} and {b, b},

where b represents bright and d represents dark.

In order to provide the ability to detect on the camera, the imaging setup described

in detail in [60] was altered to provide lower magnification. The original magnification

of the setup was Mtot = 35.1 [55], which resulted in ions imaged onto a large number of

pixels. For optimal efficiency of camera detection, the photons scattered from an ion should

instead be focussed primarily onto one pixel, to maximise the signal to noise ratio. The
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imaging setup consists of a triplet and a doublet lens positioned in a lens tube to reduce

background light, and is shown in figure 3.5. The triplet lens is positioned 23.5 mm from

the ion and provides a magnification of Mtr = −17.5, resulting in an image at 549.7 mm.

This is the result of a simulation [60], since the thin lens approximation does not hold for

the triplet lens.

The total required magnification of the system, Mtot = MtrMd, can be calculated by

finding the ratio between the diffraction limit of the triplet lens (1.13µm) and the pixel

size of the camera (8µm × 8µm). This gives a total magnification Mtot ≈ 7, giving a

required doublet magnification of Md = −0.4. Given the length constraint between the

ion image from the triplet and the CCD/PMT, we can define stot = sdi − sdo where stot

is the total length, sdi is the distance to the image and sdo is the distance to the object.

The image and object distance of the doublet can then be calculated using

Md =
sdi
sdo

(3.1)

which gives sdo = −455.5 mm and sdi = 172.3 mm. Using the thin lens approximation

fd =

(
1

−sdo
+

1

sdi

)−1

(3.2)

we find the required focal length of the doublet to be 125 mm. For a doublet consisting of

two lens with focal lengths f1 and f2 placed in close proximity, the focal length is given

by

fd =

(
1

f1
+

1

f2

)−1

. (3.3)

We use two lenses of focal length 250 mm (Thorlabs LA1461-A) to give the required focal

length.

The lens tube is placed in an x-y-z translation stage with digital micrometers. At the

ion image position after the triplet, two variable slits (Thorlabs VA100C) are placed at

right angles which can be used to block light scatter from electrodes, allowing for individual

control in the x and y direction. The end of the imaging tube is connected by bellows (to

allow for free movement of the triplet lens) to a cage cube. This cage cube allows easy

access for removing and repeatably replacing a mirror, used to swap between use of the

camera and the PMT. With no mirror in place, the light from the ion continues to the

camera, and with the mirror in place it is reflected by 90o to the PMT. A 369 nm bandpass

filter is placed directly in front of both the camera and the PMT. There is an additional

adjustable iris in front of the PMT to block scatter and background light. For experiments
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Figure 3.6: Schematic of the setup used to broadcast RF and microwave radiation to the
ion. To generate the required microwaves, RF frequencies are mixed with a microwave
signal from the VSG. Two DDS boards are in use for the microwave setup, although the
majority of coherent manipulation is done using the AWG. The RF setup uses only the
AWG to generate the required frequencies.

in this thesis, PMT detection is used, but work is ongoing to introduce camera detection

for ion readout.

3.3 Microwave and radiofrequency generation

Microwave and radiofrequency (RF) radiation is required to drive transitions within the

2S1/2 manifold of the 171Yb+ ion. The setup for generating this radiation has been de-

scribed in detail in [53], but various adjustments have been made which will be described

here. A schematic of the setup is shown in figure 3.6. For both microwave and RF ra-

diation, multiple frequency tones are required to address various transitions within the

hyperfine manifold simultaneously. Multiple ions require further frequencies since the

magnetic field gradient means that the Zeeman splitting of the hyperfine states differs

between ions, as described in section 2.4.3.

3.3.1 Microwave generation

Microwave fields with controllable frequency, phase and amplitude are generated by using

a controllable RF source and mixing with a fixed microwave signal. Initially, this RF was

produced using Analog Devices AD9959 evaluation boards. These are four channel direct

digital synthesis (DDS) boards that, with a clock input of 25 MHz, can produce frequencies

of up to 500 MHz with a maximum amplitude of 700 mVpp. The frequency, phase and am-

plitude are all controllable from the experimental computer. Further details of this setup

can be found in [61], although an adjustment has been made to communicate directly be-
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tween the computer and the boards via USB, rather than through an Arduino. Each board

produces four signals, each of which is then amplified by +18 dB (Mini-Circuits ZFL-750+)

and passed through a switch (Mini-Circuits ZASWA-2-50DR+) which is controlled using

a TTL signal from the FPGA controlled by the experimental computer. The four fre-

quencies are combined using a four way combiner (Mini Circuits ZMSC-4-3+). There are

two boards in use for the microwave setup, producing 8 individually controllable channels,

with a switch placed after the two combiners to switch between boards.

To replace some of these frequencies, one channel of a two channel arbitrary waveform

generator (AWG) is used (Keysight M8190A 12 GSa/s). Using this advanced AWG allows

an unlimited number of frequency tones to be produced, all with controllable amplitude

and phase. It also allows for more complex waveforms to be generated, incorporating

features such as pulse amplitude shaping and time-varying frequencies. Generating and

uploading these complex and often long waveforms to the AWG can be computationally

intense and therefore time-consuming. It is important that this process is as fast as possible

as the waveforms need to be updated dynamically between each step of the experimental

sequence. A separate dedicated AWG computer is therefore used, which communicates

with the main experimental computer via ethernet. The waveform samples are calculated

using C++ Accelerated Massive Parallelism (C++AMP) which runs on a graphics (GPU)

card. The AWG control system was implemented by Adam Lawrence and is fully described

in [62]. The maximum memory per AWG channel is 2 GSa. The waveforms are uploaded

to the AWG via a PCIe interface, which allows the entire memory to be uploaded in

seconds, if it is already stored in the computer memory. At present, the AWG runs at

500 MSa/s, a sample rate high enough for the microwave signals to be produced (which

are typically 100 MHz-150 MHz). Using this sample rate gives a total playtime per channel

of approximately 4 s. This is sufficient for current experiments, but in order to minimise

use of memory and time for generation and upload of waveforms in the future, sequencing

can be used. This allows multiple segments to be stored in the AWG memory, which can

be labelled and individually triggered. Furthermore, this AWG offers the possibility of

infinite playtime via streaming. The waveform can be split into multiple segments and

used as a ring buffer- as soon as the AWG moves onto the next segment, the previous one

is updated. The bandwidth of this is limited by waveform generation and upload time.

The AWG is currently used for most coherent manipulation during the experimen-

tal sequence, while DDS channels are still used for Doppler cooling in the experimental

sequence and between experiments. The transition from DDS to AWG should soon be
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complete so that the AWG produces all microwave frequencies with no need for the DDS

boards. The AWG is clocked at 10 MHz, and triggered using a TTL output from the

experimental computer FPGA. A switch is used to alternate between the AWG and DDS

boards.

The microwave signal at approximately 12.6 GHz is produced using a vector signal

generator (VSG, Keysight E8267D) at power 16 dBm, and the RF signal is combined with

this using the internal mixer of the VSG. The microwave frequency is set to be 100 MHz

below the resonant frequency of the hyperfine microwave transition in no magnetic field.

Only the positive sidebands produced by the mixer and this signal are used, which means

that the negative sidebands and the carrier frequency are far off resonant from the transi-

tions being addressed. These are filtered out with a custom passband filter (A1 Microwave

WQ18) with a narrow frequency band, before passing through a final switch (AMC SWN-

218-2DT). The signal is amplified by +32 dB (Microwave Amps AM25-12-13-30-33) (use

of the VSG, which is capable of producing higher powers than previous microwave sources,

has eliminated the need for a pre-amplifying stage before this amplifier). The signal then

passes through a circulator, which ensures that any reflections are dissipated into a 50 Ω

resistive load rather than reflected back to the amplifiers, which could cause damage. The

signal is finally sent to a microwave horn (Flann Microwave 18240-10) which emits hori-

zontally polarised radiation. This is positioned at 45o to the z-axis and is rotated by 45o in

order to contain σ−, σ+, and π components. This positioning is fine-tuned by optimising

the Rabi frequencies of the ion transitions.

3.3.2 RF generation

RF frequencies can be directly generated since the frequencies are low enough to not

require mixing. Two further DDS boards were previously used for this, and for the initial

two qubit gate experiments shown in chapter 6 an AWG (Agilent 33522A) was used.

However, the RF radiation is now solely produced by the second channel of the AWG

used as part of the microwave setup (M8190A). As with the microwaves, this allows for

an unlimited number of individually controllable frequency tones to be produced, with

complex waveform manipulation. A switch is placed after the AWG output, and the

signal is then split two ways (Mini-Circuits ZFSC-2-1-S+) and passed through two +43 dB

amplifiers (Mini-Circuits LZY-22X+). A high power combiner (Werlatone D1635-102)

recombines these two amplified signals, and the resultant signal is sent to an RF coil (3

turns, wire diameter 3.55 mm, radius 51 mm) placed outside the vacuum window through
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Figure 3.7: Picture of two trapped ions taken on the CCD camera.

which the ion is imaged.

3.4 Initial experiments

3.4.1 Trapping

All lasers are aligned to the centre of the ion trap with powers of approximately 50µW

for the 369 nm, 200µW for the 399 nm, 1 mW for the 638 nm, and 6 mW for the 935 nm.

The 935 nm laser power is high since this laser power broadens over the transitions in

the 2D3/2 and 3[3/2]1/2 manifolds. Microwaves are also turned on to address the 2S1/2

hyperfine manifold. A current of 6.2 A is run through the atomic ovens to produce a beam

of neutral ytterbium atoms, and ions are usually trapped within a timescale of minutes. A

picture of two trapped ions from the CCD camera is shown in figure 3.7. When trapped,

the axial and radial secular frequencies of the ions can be measured by applying an RF field

through the RF coil and scanning the frequency. When resonant with a secular frequency,

the RF field will excite the motion of the ions, and this excitation can be observed on the

camera or in the fluorescence on the PMT when precise measurement is needed.

3.4.2 Cooling, state preparation, and state detection

For most experimental sequences, there are four main steps. First, the ions are Doppler

cooled. Secondly, the ions are initialised by preparing in state |00〉. Following this, some

coherent manipulation generally takes place. This consists of pulses of RF and microwave

radiation, and varies depending on what type of experiment is being performed. Finally,

the state of the ions is detected. Whilst the coherent manipulation varies between exper-

iments, the cooling, preparation and detection steps are the same for each experiment.

These will therefore be described in this section. A schematic which summarises the

experimental requirements for each step is shown in figure 3.8.

The AOM allows for extinction of the laser, as well as for fast control of the frequency
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Figure 3.8: Schematic of the settings required for each step of the experimental sequence.
When the AOM is off, the laser is blocked. When the AOM is on, the frequency can
be adjusted between two levels: red detuned from the resonant frequency of the cooling
transition, or at this resonant frequency. The laser can also be set to two power levels,
high or low. The EOM and microwaves can also be controlled during the experimental
sequence. During coherent manipulation, a combination of microwaves and RF pulses may
be used, depending on the specific experiment being performed.
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and power. The frequency is set so that the AOM can switch between two frequencies: the

resonant frequency for the 2S1/2, F = 1↔2 P1/2, F = 0 transition, or 12 MHz red detuned

from this frequency. The laser power is set to switch between approximately 2.6µW, which

is near the saturation intensity of the transition, and 50µW. Doppler cooling of the ion

is performed at low power, and red detuned from resonance by approximately 12 MHz.

State preparation is performed by optically pumping the ion to the state 2S1/2, F =

0 ≡ |0〉, as described in section 2.3.3. A sideband 2.1 GHz from the carrier is added to

the 369 nm laser frequency using the EOM, which makes it resonant with the 2S1/2, F =

1 ↔2 P1/2, F = 1 transition. From 2P1/2, F = 1, the ion can only decay to 2S1/2, F = 0,

and there is no laser resonant with any transitions from this energy level. Within µs’s,

population is pumped to this state.

For state detection, the laser is turned on with the AOM set to low power and at the

resonant frequency, and the number of photons on the PMT is counted. When population

is in the 2S1/2, F = 1 manifold, the laser is resonant with a cycling transition so the ion

will scatter photons and fluoresce, and therefore record a ‘bright’ result. When the ion

is in the state 2S1/2, F = 0, there is no resonant laser so the ion will not scatter photons

and will record a ‘dark’ result. When the ion is in the ‘dark’ state, some photons are still

counted due to scatter of 369 nm light from the trap electrodes. A threshold number of

photons between the bright and dark states can therefore be determined, and the hyperfine

states distinguished using this threshold.

The limit to the effectiveness of this method of detecting the ion’s state is the off-

resonant coupling of the 369 nm laser to other levels in both 2S1/2 and 2P1/2. In particular,

the laser is only detuned by approximately 2.1 GHz from the 2S1/2, F = 1↔2 P1/2, F = 1

transition. The likelihood of this off-resonant coupling occurring increases over time, which

places a limit on the detection time. However, since the imaging setup only collects a small

proportion of scattered photons, with a collection efficiency measured of 0.1% [55], a longer

detection time is desirable to decrease the chance of collecting no photons when the ion is

in the bright state. There is therefore a tradeoff in the detection time between the need to

collect enough photons to properly distinguish the states, and the off-resonant coupling of

the laser to other transitions. A specially designed detection setup was shown by Noek et

al. [63] to increase the collection efficiency to 10%, which allows for an increased detection

fidelity.

The combined error due to imperfect preparation and detection of the ion is known

as the SPAM (state preparation and measurement) error. In order to determine this
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Figure 3.9: Top: state detection measurement for a single ion, where the ion is prepared
in the dark state |0〉 and measured, and then a microwave pulse transfers the population
to the bright state |0′〉 and it is measured. Each measurement consists of 1000 repetitions,
and this allows the mean number of photons collected to be calculated for each state.
A threshold of t1 = 2 gives a state detection fidelity of 0.970. Bottom: State detection
measurement for two ions. Three measurements are taken, to distinguish between the
cases no ions bright, one ion bright, and both ions bright. Considerable overlap can be
seen between the histograms for one and two ions bright. Thresholds of t1 = 2 and t2 = 14
give a state detection fidelity of 0.879.
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error and to determine the threshold between bright and dark measurements, a state

detection measurement is performed. For a single ion, this involves two measurements.

The ion is first prepared into the state |0〉, and measured. Then, after being prepared in

|0〉, a microwave pulse is used to transfer population to |0′〉, and this is measured. Each

measurement is repeated multiple times (typically 1000 or more), and this allows statistics

for the number of photons collected in each case to be gathered. A typical measurement for

a single ion is shown in figure 3.9. The resultant measurement should display Poissonian

statistics, so that a histogram with mean photon number µ can be fitted in each case.

For a threshold t1, a dark measurement is classified as one where n ≤ t1, where n is

the number of photons collected. If n > t1, this is classified as a bright measurement.

From this threshold, the state detection measurement can be used to write a matrix that

describes the measurement probabilities (b or d) in terms of the true state probabilities

(|↓〉 ≡2 S1/2, F = 0 or |↑〉 ≡2 S1/2, F = 1):

P (b)

P (d)

 =

P (b| ↑) P (b| ↓)

P (d| ↑) P (d| ↓)

P (↑)

P (↓)

 (3.4)

The value of the threshold t1 is chosen to maximise the mean of the diagonal elements of

this 2 × 2 matrix. An experimental data set with measured probabilities P (b) and P (d)

can then be multiplied by the inverse of this matrix in order to normalise out SPAM errors

and calculate the true probabilities of states |↑〉 and |↓〉.

For two ions, there are four possible experimental results: {↓, ↓}, {↑, ↓}, {↓, ↑}, {↑, ↑}.

However, using the PMT it is only possible to distinguish between three cases, since {↑, ↓}

and {↓, ↑} should scatter the same number of photons and therefore record the same result.

Similarly as for a single ion, a state detection measurement is taken, with the result shown

in figure 3.9. The results of three measurements are recorded: the ions both prepared in

|0〉, a microwave pulse to transfer the population in one ion to |0′〉, and a microwave pulse

on both ions to transfer population to |0′〉. This allows two threshold numbers of photons

to be determined, t1 and t2, where t1 is the threshold between no ions bright and one

ion bright, and t2 is the threshold between one ion bright and two ions bright. From the

experimental result, it can be seen that there is a large overlap between the histograms

for one ion bright and two ions bright. This reduces the detection fidelity by a significant

amount. This overlap is also sensitive to drifts in laser power or frequency, so it is necessary

to take more frequent state detection measurements to ensure that SPAM error is being

accurately normalised out. The same method is used for this error normalisation as for a
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single ion, where the inverse of the experimentally determined 3×3 matrix which describes

the measured probabilities in terms of the real probabilities is used.

3.5 Coherent manipulation

3.5.1 Rabi oscillations

As described in section 2.4.1, transitions within the hyperfine manifold of the ion can be

performed by applying radiation at the resonant frequency. By scanning the frequency of

the applied radiation and measuring the population at each step, it is possible to determine

the exact frequency of a transition, as shown in figure 3.10. An ion is cooled and prepared

in state |0〉. A pulse of microwave radiation of around 12.6 GHz is applied on the transition

|0〉 ↔ |0′〉, after which the state of the ion is detected. The data is normalised using the

method described in section 3.4.2, and a fit of equation 2.31 is shown in figure 3.10. This

‘clock’ transition is insensitive to the magnetic field to first order. The frequency shift of

approximately 29 kHz from the frequency of the transition at zero field, ωhf/2π, is due to

the second order Zeeman shift.

A Rabi oscillation on this transition is also shown in figure 3.10. After the ion is cooled

and prepared in state |0〉, a pulse of microwave radiation is applied for increasing pulse

lengths, after which the population is measured. The frequency of this oscillation depends

on the magnetic field amplitude of the applied oscillating field. No decay in amplitude is

seen due to the insensitivity of the transition to magnetic field noise to first order.

3.5.2 Experimental stabilisation

Unlike the states composing the clock transition shown in figure 3.10, the states |−1〉 and

|+1〉 are dependent on magnetic field strength to first order. Any change in the magnetic

field at the ion position therefore causes a significant change in the transition frequency

involving these states. This change in magnetic field strength can result from a change

in ambient magnetic field in the environment, or, since there is a magnetic field gradient

present in this setup, a change in ion position. As described in section 3.1.1, a change in

voltage on one of the trap DC electrodes can cause a change in position of the ion along the

z-axis of 17.8 nm/mV. In the magnetic field gradient used in this setup, this corresponds

to a change in frequency of approximately 25 Hz/mV for the insensitive clock transition

|0〉 ↔ |0′〉, and 6.26 kHz/mV for the sensitive transition |0〉 ↔ |+1〉.

In order to perform high fidelity quantum operations, it is essential that frequencies are
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Figure 3.10: Top: Population in 2S1/2, F = 1 after a pulse of microwave radiation of
length π/Ω is applied around the frequency of the transition |0〉 ↔ |0′〉, where Ω is the
Rabi frequency. Each point is the result of 300 repetitions, and SPAM error is normalised
out using a state detection measurement, as described in 3.4.2. The fit is a fit of equation
2.31 and gives a centre frequency of (ω−ωhf )/2π = 28.675(3) kHz, where ω is the resonant
frequency of the transition and ωhf is the frequency of the transition at zero magnetic field.
Bottom: A Rabi oscillation on the same transition, where the microwave radiation set to
the resonant frequency ω. Each point is a result of 1000 repetitions, and again the data is
normalised. A fit of equation 2.32 gives a Rabi frequency of Ω/2π = 679.0(4) Hz. Figure
reproduced with permission from [53].
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Figure 3.11: Left: The magnetic field stabilisation sequence is calibrated so that a mi-
crowave pulse on the transition |0〉 ↔ |+1〉 should give the result P (F = 1) = 0.5, as
indicated by the red point. If the result is between 0.4 and 0.6, shown by the grey dashed
lines, the main experiment proceeds. Right: Frequency of the transition |0〉 ↔ |+1〉 as a
function of the current in a small coil used for feedback for magnetic field stabilisation.
The frequency change is calculated with respect to the frequency at 0 mA through the
coil.

accurately known, and any drift in frequency generally induces error. We therefore stabilise

the frequency by running an auxiliary experimental sequence between experimental steps.

During this auxiliary experimental sequence, a microwave pulse of 110µs is applied on

the transition |0〉 ↔ |+1〉 of an ion. The frequency of this pulse is chosen so that it

should give a result of P (F = 1) = 0.5, as shown in figure 3.11. The measured probability

P (F = 1) is used to calculate an error signal, which allows feedback to be applied to

the current in a small coil situated approximately 30 cm from the ion on the z-axis. This

adjusts the magnetic field strength at the ion, and moves the |0〉 ↔ |+1〉 transition by

106 kHz/A. If the measured result is between P (F = 1) = 0.4 and P (F = 1) = 0.6, the

main experiment proceeds, but if outside of this range the auxiliary sequence is run again

to compensate further. Using these limits, the |0〉 ↔ |+1〉 transition is stabilised for slow

drifts to within approximately 1 kHz, which corresponds to a stability of approximately

5 Hz on the |0〉 ↔ |0′〉 transition and a magnetic field stability of 0.7 mG. If more than

one ion is trapped, this auxiliary sequence is performed on a single ion, as it is assumed

that any change in B field is primarily a uniform change across the ion string, and the

difference between ions in feedback from the coil is negligible. By compensating for long

term drifts in frequency on one ion, we are therefore stabilising the B field across the whole

ion string. Typically over a day the current can drift by on order 100 mA, although this

varies depending on the experimental environment.

A Rabi oscillation on the transition |0〉 ↔ |+1〉 is shown in figure 3.12, with and without
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Figure 3.12: Left: Rabi oscillations with no stabilisation quickly decay, as shown here.
An exponential decay is not a good fit to this type of decay, which is dependent on slow
drift of magnetic field. Right: With the stabilisation sequence, the Rabi oscillations last
for longer. The amplitude decay is due to dephasing caused by higher frequency magnetic
field noise, and an exponential fit gives a decay time of 6.4(6) ms.

magnetic field stabilisation. It can be seen that without stabilisation the oscillations

quickly decay, whereas with magnetic field stabilisation the oscillations continue for over

double the time. However, a clear exponential decay in amplitude is still displayed, unlike

for the clock transition in figure 3.10. This is due to dephasing caused by fast magnetic

field noise, which is not compensated for by the stabilisation method. An exponential fit

to this Rabi oscillation gives a decay time of 6.4(6) ms.

We have also experimentally observed that the fluorescence of the ion can drift over

long experiments, which alters the numbers of photons scattered during state detection.

This is particularly problematic for two ions, since the threshold between one and two

ions bright is sensitive to any change in ion fluorescence. Although there are many factors

which could cause this change, it is assumed to be primarily associated with a change in

the frequency of the cooling 369 nm laser due to an imperfect frequency lock. A change

in the beam power of the 369 nm laser is discounted as a cause, since it would result in

a change in the maximum photon counts observed when the frequency of the laser was

scanned over the resonant transition, which is not observed. Drifts in polarisation of the

369 nm beam from the optical fibre are eliminated through the use of a polarising beam

splitter after the fibre. A change in the frequency of the repump 935 nm laser could also

cause a change in fluorescence, but since this is locked on the wavemeter and a high laser

power is applied to the ion this is assumed to be negligible. We therefore compensate for

changes in fluorescence by altering the frequency applied to the AOM for the 369 nm laser.

An auxiliary sequence is run between experimental steps, at the same time as the magnetic
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Figure 3.13: Plot of the average photons counted on the PMT scattered from the ion
during Doppler cooling against the AOM frequency. The measured photon counts are
used to feed back to the AOM frequency during an auxiliary sequence to stabilise the ion
fluorescence. A second order polynomial is fitted to the data.

field stabilisation sequence. The photons counts during Doppler cooling are measured, and

feedback is sent to the set frequency of the AOM. The dependence of photon counts on

AOM frequency is shown in figure 3.13. If the measurement is ±2 from the set value,

the experiment proceeds, but if it is outside of this range then the auxiliary sequence is

performed again. Typically, the AOM frequency changes by a maximum of 2 MHz over a

period of 1 hour.

3.5.3 Individual addressing

As described in section 2.4.3, an advantage of applying a magnetic field gradient to multi-

ple ions is that the frequency of the transitions becomes position dependent, and therefore

ions can be individually addressed in frequency space while long-wavelength radiation is

broadcast to all ions. This is demonstrated for two ions in figure 3.14, with ion-ion sep-

aration of ∆z = 6.1µm at secular frequency νz ≈ 428 kHz. A π-pulse on the |0〉 ↔ |+1〉

transition for each ion at Rabi frequency 2.5 kHz is shown, with separation of approxi-

mately 2 MHz. The cross talk for these parameters can be calculated from equation 2.67

as 7× 10−9, which could be further reduced by lowering the Rabi frequency.

3.5.4 Microwave sidebands

As described in section 2.4.2, microwave and radiofrequency can be used in conjunction

with a magnetic field gradient to couple spin and motional states. This is demonstrated in

figure 3.15, where two ions are prepared in state |00〉 and a microwave pulse is applied for
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Figure 3.14: Resonant frequencies for the |0〉 ↔ |+1〉 transitions for two ions separated
by approximately 2 MHz, showing the individual addressing capabilities that are a direct
consequence of using a magnetic field gradient.

200µs. The frequency is scanned over five transitions - the carrier, and the red and blue

sidebands for both the COM and the stretch modes. The COM and stretch mode sidebands

are separated from the carrier transition by νz and
√

3νz respectively, where νz/2π =

265 kHz. There is an additional Stark shift which reduces the frequency separation from the

carrier by 9 kHz for the COM mode and 4 kHz for the stretch mode. The coupling strength

to the sidebands is defined by the magnitude of the effective Lamb-Dicke parameter, which

for the COM mode is |η1| = 0.009 and for the stretch mode is |η2| = 0.004.

3.5.5 Measuring ion temperature

As described in section 2.4.2, after Doppler cooling the ion occupies a thermal distribution

of states described by the density matrix in equation 2.15. The average phonon number n̄

of this thermal distribution can be measured by applying radiation resonant with either

the red or blue sideband. At typical temperatures achieved after Doppler cooling, where

n̄� 1, the red and blue sidebands exhibit a nearly identical response to resonant driving

radiation, since Ωn,n−1 =
√
nηΩ0 ≈ Ωn,n+1 =

√
n+ 1ηΩ0. For the red sideband, the

probability to transfer from n to n− 1 when driving the sideband resonantly is

Pn,n−1(t) =
1

2
− 1

2
cos Ωn,n−1t. (3.5)
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Figure 3.15: Microwave driven motional sidebands for two ions on transition |0〉 ↔ |+1〉.
Probability for an ion to be in F = 1 after a microwave pulse of 200µs is plotted against
the detuning from the carrier transition. Two sidebands are seen corresponding to the
COM mode at νz/2π = 265 kHz and the stretch mode at

√
3νz/2π = 459 kHz. The orange

line plots the carrier envelope with the sideband terms, and the black line plots the fine
structure resulting from the applied pulse time and Rabi frequency, which is randomly
sampled by data points. Figure reproduced with permission from [53].

Assuming a thermal state ρth, the probability to make a transition on the red sideband is

then

Prsb(t) =
∞∑
n=0

pnPn,n−1(t). (3.6)

where the probabilities pn are given by pn = 1
1+n̄

(
n̄

1+n̄

)n
. This therefore allows us to

determine the value of n̄ by measuring the response of the red (or blue) sideband to

driving radiation at increasing times and fitting this probability distribution.

The result of an experiment of this type is shown in figure 3.16. Two ions are initialised

in state |00〉 and microwave radiation is applied on the red sideband on the transition

|0〉 ↔ |+1〉 of one ion. A stretch mode sideband is used, at secular frequency
√

3νz/2π =

461 kHz. The Rabi frequency of the driving radiation is measured as Ω0/2π = 57 kHz by

addressing the |0〉 ↔ |+1〉 transition resonantly. A fit to the sideband then gives a mean

motional mode of n̄ = 53(4). This is above the Doppler cooling limit of n̄ = 37, probably

due to imperfectly set experimental cooling parameters. This could also be due to an

increased linewidth from power broadening of the laser and the Zeeman structure of the

2S1/2 manifold.
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Figure 3.16: Probability of an ion being in F = 1 after the stretch mode red sideband on
the transition |0〉 ↔ |+1〉 is driven resonantly. Assuming a thermal distribution, a fit of
equation 3.6 to the data gives a mean motional mode of n̄ = 53(4).



Chapter 4

Dressed states

4.1 Introduction

As shown in section 2.4.2, it is possible to use long-wavelength radiation to drive multi-

qubit operations by combining it with a magnetic field gradient. However, this method

involves the use of magnetic field sensitive states, which have a low coherence time due

to the first order sensitivity to magnetic field noise, as shown in section 3.5.2. In this

chapter, I explain and demonstrate a method to overcome this problem by dressing the

qubit manifold with microwave radiation, as first described by Timoney et al. [27], in

order to produce a qubit state that has a long coherence time but retains its sensitivity to

the magnetic field. By pairing one of these dressed states with a state which is insensitive

to the magnetic field to first order, we have a qubit which is ideal for performing quantum

logic using long-wavelength radiation.

4.2 Dressed states

In this section, I will discuss the theory behind the dressed state basis, and explain and

demonstrate a method for preparing and detecting this qubit. I will then present mea-

surements of the lifetime and coherence time of the qubit, and discuss potential sources

of decoherence. I will finish by showing that this qubit is compatible with performing

multi-qubit operations in a static magnetic field gradient using long-wavelength radiation.

4.2.1 Dressed state basis

The hyperfine manifold of 171Yb+ in an offset magnetic field consists of four states: two

states which are insensitive to first order to magnetic fields, |0〉 and |0′〉, and two states

60



61

which are sensitive to first order to magnetic fields, |+1〉 and |−1〉. These sensitive states

dephase quickly in a magnetic field due to magnetic field noise, as can be seen in figure 3.12.

By dressing two of the sensitive transitions with electromagnetic radiation, it is possible

to produce a state which retains sensitivity to magnetic field gradients but is robust to

magnetic field noise. This will be demonstrated here by using radiation to address the

microwave transitions |0〉 ↔ |+1〉 and |0〉 ↔ |−1〉, but the theory also applies to a system

where the radiofrequency transitions |0′〉 ↔ |+1〉 and |0′〉 ↔ |−1〉 are addressed.

The Hamiltonian describing the energy levels of the states |0〉, |−1〉 and |+1〉 is given

by

H0 = −~ω0 |0〉 〈0|+ ~ω+ |+1〉 〈+1| − ~ω− |−1〉 〈−1| (4.1)

where ω− = ω+ + ∆ωz and ∆ωz is the second order Zeeman shift, and we have defined

energy levels with respect to the energy of the state |0′〉. Two microwave fields are applied

continually to the transitions |0〉 ↔ |+1〉 and |0〉 ↔ |−1〉, which produces the Hamiltonian

Hµw =
~Ω+

2
(ei(ω0+ω++δ+)te−iφ+ |0〉 〈+1|+H.c.)+

~Ω−
2

(ei(ω0−ω−+δ−)te−iφ− |0〉 〈−1|+H.c.).

(4.2)

Transforming to the interaction picture with respect to the Hamiltonian H0 and making

the rotating wave approximation gives the interaction Hamiltonian

H ′µw =
~Ω+

2
(eiδ+te−iφ+ |0〉 〈+1|+H.c.) +

~Ω−
2

(eiδ−te−iφ− |0〉 〈−1|+H.c.). (4.3)

By assuming that there is no detuning for either transition so that δ+ = δ− = 0, the

dressing Rabi frequencies are set to be equal so that Ω+ = Ω− = Ωµw, and the phases are

set to be φ+ = φ− = 0, this Hamiltonian reduces to

H ′µw =
~Ωµw

2
(|0〉 〈+1|+ |0〉 〈−1|+ |+1〉 〈0|+ |−1〉 〈0|). (4.4)

There are three eigenstates of this Hamiltonian, which are superpositions of the bare states

|D〉 =
1√
2

(|+1〉 − |−1〉)

|u〉 =
1

2
|+1〉+

1

2
|−1〉+

1√
2
|0〉

|d〉 =
1

2
|+1〉+

1

2
|−1〉 − 1√

2
|0〉 .

(4.5)
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Figure 4.1: Left: Schematic of the energy levels in the 171Yb+ hyperfine manifold with
microwave fields (indicated by red arrows) dressing the transitions |0〉 ↔ |±1〉 with Rabi
frequency Ωµw. Right: Energy states in the resultant dressed state basis, where the three
dressed states |u〉, |D〉, and |d〉 are separated in energy by Ωµw/

√
2.

We can then re-express the dressing Hamiltonian H ′µw in terms of these eigenstates, as

H ′µw =
~Ωµw√

2
(|u〉 〈u| − |d〉 〈d|). (4.6)

From this Hamiltonian, it can be seen that the energies of these three dressed states

are εD = 0, εu =
~Ωµw√

2
and εd = −~Ωµw√

2
, as shown in figure 4.1. The energies of the states

|u〉 and |d〉 depend on the Rabi frequency of the microwave dressing fields Ωµw, while the

energy of the state |D〉 is independent of Ωµw.

We now look at the effect of noise on this dressed state system. Noise on the magnetic

field sensitive bare states can be written as

Hnoise = µB∆B(t)(|+1〉 〈+1| − |−1〉 〈−1|). (4.7)

Qubits involving the bare states |+1〉 and |−1〉 therefore quickly dephase under the influ-

ence of this noise. Expressing this noise Hamiltonian in terms of the dressed states, we

obtain

Hnoise =
µB∆B(t)√

2
(|u〉 〈D|+ |d〉 〈D|+H.c.). (4.8)

From this it can be seen that the effect of noise is to drive population between states |D〉,

and |u〉 and |d〉. Considering noise at a frequency ωf , so that ∆B(t) = Bf cos (ωf t+ φf ),
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we can transform equation 4.8 to the interaction picture with respect to the dressing

Hamiltonian equation 4.6. By making the rotating wave approximation that µBBf/~ �

Ωµw/
√

2, the noise Hamiltonian becomes

H ′noise =
µBBf

2
√

2
(|u〉 〈D| e−i(ωf−

Ωµw√
2

)t
+ |d〉 〈D| ei(ωf−

Ωµw√
2

)t
+H.c.). (4.9)

From this Hamiltonian, it can be seen that noise at and around the dressed state splitting

frequency Ωµw/
√

2 drives population between the dressed states, whereas noise at other

frequencies has no effect. The effect of magnetic field noise is therefore suppressed, since

only noise at this specific frequency determined by the power of the dressing microwaves

has an effect. Assuming a noise spectrum of ∼ 1/f , where the amplitude of the noise

decreases with frequency, it is desirable to set higher dressing field Rabi frequencies. Since

the energies of states |u〉 and |d〉 depend on this Rabi frequency, noise on Ωµw causes

dephasing of these states. However, the energy of state |D〉 is independent of this Rabi

frequency, so it is well-protected against both magnetic field noise and Rabi frequency

noise. We therefore pair the state |D〉 with the insensitive state |0′〉, which is not involved

in the dressed state interaction, as a qubit which is well-protected against noise. In order

to use the states |u〉 and |d〉, potentially to form a qutrit, it should be ensured that the

Rabi frequency of the dressing fields is stabilised.

4.2.2 Manipulation of the dressed state qubit

In the original proposal for use of dressed states in 171Yb+ by Timoney et al. [27], a

radiofrequency field which couples all three of the F = 1 states was used to manipulate

the dressed states. In this method, the coupling strength between the states is determined

by the phase of the RF field, which places a limit on the achievable Rabi frequency, and

only σy couplings are possible. Webster et al. [64] developed a method which exploited the

second order Zeeman shift ∆ωz to allow arbitrary single qubit rotations to be performed

with axes defined by the phase of the radiofrequency field. This method will be described

and used in this work.

In order to manipulate the qubit, a radiofrequency field is applied near resonance with

the |0′〉 ↔ |−1〉 or the |0′〉 ↔ |+1〉 transition. These two transitions are separated in

frequency by the second order Zeeman shift, ∆ωz. By defining δrf as the detuning from

the |0′〉 ↔ |+1〉 transition, we can write the Hamiltonian describing the radiofrequency
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field’s interaction with the bare states as

Hrf =
~Ωrf

2
(|+1〉

〈
0′
∣∣ e−iδrf teiφrf + |−1〉

〈
0′
∣∣ ei(δrf−∆ωz)te−iφrf +H.c.) (4.10)

where we have simplified the Hamiltonian by setting the dressing field phases as φ+ =

φ− = 0. By re-expressing this in terms of the dressed states and transforming to the

interaction picture with respect to the dressing Hamiltonian, equation 4.6, this becomes

Hrf =
~Ωrf

2
√

2
[|D〉

〈
0′
∣∣ (e−iδrf teiφrf − ei(δrf−∆ωz)te−iφrf )

1√
2
|u〉
〈
0′
∣∣ (e−i(δrf−Ωµw√

2
)t
eiφrf + e

i(δrf−∆ωz+
Ωµw√

2
)t
e−iφrf )

1√
2
|d〉
〈
0′
∣∣ (e−i(δrf+ Ωµw√

2
)t
eiφrf + e

i(δrf−∆ωz−
Ωµw√

2
)t
e−iφrf ) +H.c.].

(4.11)

This corresponds to six separate transitions, two to each of the dressed states. The separa-

tion into two transitions for each dressed state is a result of the second order Zeeman shift

∆ωz, and corresponds either to connecting to the dressed state via the |0′〉 ↔ |+1〉 or the

|0′〉 ↔ |−1〉 transition. In order to address only one transition, it should be ensured that

the Rabi frequency of the addressing radiation is much less than the frequency splittings,

both the second order Zeeman shift, Ωrf � ∆ωz, and the dressed state splitting defined by

the microwave Rabi frequency, Ωrf � Ωµw/
√

2. In this case, all off-resonant terms can be

disregarded. In order to separably address all transitions, it should also be ensured that

the Rabi frequency of the dressing fields and the second order Zeeman shift do not cause

overlaps in state frequencies. For example, in the case that ∆ωz ≈ Ωµw/
√

2, transitions

to |u〉 and |D〉 are overlapped.

If we set δrf = 0 and assume that the Rabi frequency is low enough that all other

off-resonant transitions can be ignored, the Hamiltonian becomes

Hrf =
~Ωrf

2
√

2
(|D〉

〈
0′
∣∣ eiφrf +

∣∣0′〉 〈D| e−iφrf ). (4.12)

The states |0′〉 and |D〉 therefore form a qubit where single qubit rotations can be per-

formed around an arbitrary axis defined by the phase of the applied RF field, and with a

Rabi frequency defined by the power of the RF field as ΩD = Ωrf/
√

2. For the states |u〉

and |d〉, the Rabi frequency is Ωud = Ωrf/2.
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Figure 4.2: Schematic demonstrating a simple method to prepare and detect dressed
states, from [65]. This method is an experimental simplification of previous methods, and
uses states which are insensitive to magnetic field noise, reducing decoherence.

4.2.3 Preparation and detection

In the original proposal [27], a partial stimulated Raman adiabatic passage (STIRAP)

process was used to prepare and detect the dressed state qubit. A new method was

demonstrated by Randall et al. [65] which eliminated the need for STIRAP. The advan-

tages of this new method are primarily the experimental simplification provided, and the

use of only states which are insensitive to magnetic field noise to first order, reducing de-

coherence. This method is described and demonstrated here, and is the primary method

used for preparation and detection of the dressed state qubit in this thesis.

The method used to prepare and detect the dressed state qubit is summarised in the

schematic in figure 4.2. After an ion is prepared in state |0〉, a clock π pulse is used to

transfer population to the state |0′〉. Since this is outside of the dressed state subspace,

the dressing fields can be instantaneously turned on without affecting the ion population.

This prepares the dressed state qubit.

In order to measure the resultant population after any manipulation of this qubit has

been completed, the microwave dressing fields are instantaneously turned off and a final

clock π pulse on the transition |0′〉 ↔ |0〉 is performed. This transfers population from

the qubit state |0′〉 to |0〉. Any population that was in the qubit state |0′〉 is mapped to

|0〉. Any population in the dressed state manifold {|−1〉 , |0〉 , |−1〉} will be mapped to the

F = 1 manifold {|−1〉 , |0′〉 , |−1〉}. The normal detection method can then be used to

distinguish between the F = 0 and F = 1 states, with the qubit state |0′〉 resulting in a

dark measurement and the qubit state |D〉 resulting in a bright measurement. This is a

simple experimental method for measuring the population within the dressed state qubit

which relies on a single microwave field applied to an insensitive transition. This method

can be extended to distinguish between other dressed states by using a series of pulses, as

described in [65].
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Figure 4.3: Top: Experimental preparation of all dressed states, with the dressed state
corresponding to each peak and frequency separations labelled. Dressing fields of Rabi
frequency Ωµw/2π = 28.68 kHz and an RF pulse of time 365µs with frequency around the
|0′〉 ↔ |±1〉 were applied. The second order Zeeman shift was measured as ∆ωz/2π =
28.68 kHz. The theory curve is a result of a numerical simulation of the dressing and RF
Hamiltonians. Bottom: Rabi oscillations on the transition |0′〉 ↔ |D〉, via the state |+1〉.
The fit of the theory curve gives a Rabi frequency of ΩD/2π = 0.5258(4) kHz. Data and
fits reproduced with permission from [53].
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This method of preparation and manipulation of the dressed state qubit has been

demonstrated experimentally, as shown in figure 4.3. A single ion is used where the

second order Zeeman shift is measured to be ∆ωz/2π = 28.68 kHz. The ion was prepared

in state |0〉 and a single π pulse was used to transfer population to |0′〉. The dressing fields

were turned on with a measured Rabi frequency of Ωµw/2π = 28.68 kHz. An RF field was

applied with frequency around |0〉 ↔ |±1〉, for the experimentally measured time of a π

pulse on the transition |0′〉 ↔ |D〉, 365µs. This accounts for the lower peak heights for

states |u〉 and |d〉, since the Rabi frequency is different so this time does not correspond to

a full π pulse. After this RF pulse, the dressing fields were turned off and a final π pulse on

the transition |0〉 ↔ |0′〉 was performed. By repeating the experiment while scanning the

applied RF field frequency, the population spectrum can be measured, as shown in figure

4.3. Six distinguishable peaks can clearly be seen, with frequency separations labelled for

clarity. A Rabi flop on the transition |0′〉 ↔ |D〉 is also shown. The frequency of the

RF radiation was set to the measured value for the |0′〉 ↔ |D〉 transition via the |+1〉

state. The time of the pulse was increased for each experimental step, and the result

is shown in figure 4.3, where a theory curve has been fitted giving a Rabi frequency of

ΩD/2π = 0.5258(4) kHz. No decay is seen over this time period, in marked contrast with

the flop on |0〉 ↔ |+1〉 shown in section 3.5.2.

The method described above is a simple and fast method to map populations from

the dressed state qubit to the bare states which does not require the use of magnetic field

sensitive states with short coherence times. However, it cannot be used when mapping

of both the population and phase of the dressed state qubit is required. This may be

necessary, for example, for information storage in an insensitive qubit during ion shuttling.

Methods for high fidelity mapping have been developed by Randall et al. [66], and one

such method will be described and demonstrated in chapter 7.

4.2.4 T1 and T2 measurements

To demonstrate the increased robustness to the adverse effects from magnetic field noise

of the dressed states, a lifetime (T1) and coherence time (T2) measurement are performed.

The lifetime is a measure of the rate at which population leaks from the measured state

to other states in the qubit, while the decoherence time is a measure of the rate of loss of

coherence in a qubit. Magnetic field noise around the dressed state separation frequency

Ωµw/
√

2 causes population transfer between the dressed states, which limits the lifetime.

The coherence time can be limited by noise on the Rabi frequency and the detuning of the
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Figure 4.4: Lifetime measurement for the state |D〉. A π pulse on the transition |0′〉 ↔ |D〉
is followed by a variable length delay and a final π pulse to transfer population back to
|0′〉. Using the detection method, the population should therefore be measured in F = 0,
but depolarising from the state |D〉 to other states during the delay time reduces this
probability. An exponential fit decaying to 1/3 gives a lifetime T1 = 0.25(1) s.

dressing fields, as well as the second order sensitivity to magnetic field noise of the state

|0′〉 and imperfectly set parameters, as discussed in the next section.

In order to measure the lifetime, the state |D〉 is prepared as in the previous section,

using a π pulse on the state |0′〉. A variable delay time is then introduced, during which

the dressing fields remain constant, followed by a final π pulse to transfer population

back to |0′〉. The qubit is then measured using the method demonstrated in the previous

section. By stepping the delay time, a decay is observed in the population measured

in F = 0 due to population transfer between the dressed states caused by noise at the

splitting frequency, Ωµw/
√

2. This is experimentally demonstrated in figure 4.4, where a

π pulse of time 945µs was used and a delay of up to 260 ms performed, with dressing field

Rabi frequencies of approximately Ωµw = 17 kHz. There are three dressed states, so an

exponential decay to 1/3 is fitted to the measurements, giving a lifetime of T1 = 0.25(1) s.

A Ramsey measurement is used to determine the coherence time. Once the qubit is

prepared in |0′〉, the dressing fields are turned on and a π/2 pulse is performed to transfer

half of the population to |D〉, so that a superposition 1√
2
(|0′〉 + eiφ |D〉) is prepared. A

delay is then introduced, during which the dressing fields remain on. Halfway through
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Figure 4.5: Top: Ramsey measurements on the dressed state qubit |0′〉 ↔ |D〉 for delay
times 0 ms and 200 ms. A π/2 pulse is applied on the qubit transition with phase φ = 0,
followed by a delay and a final π/2 pulse with phase φ. A spin echo pulse is applied
halfway through the delay time. Decoherence during the delay reduces the amplitude of
the resultant fringe, as can be clearly seen for the two delay times shown above. The
amplitude decays to 2/3, shown by the dashed grey line. Bottom: Fitted Ramsey fringe
amplitudes for different delay times. A fit of an exponential decay gives a coherence time
of T2 = 0.31(1) s.
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the delay, a spin echo pulse is performed, which consists of a π pulse with fixed phase on

the transition |0′〉 ↔ |D〉. After the delay is complete, a second π/2 pulse on the qubit

transition is performed, the phase of which is stepped relative to the initial π/2 pulse. This

results in a sinusoidal fringe, which for a ‘perfect’ Ramsey measurement with no dephasing

has an amplitude of one. However, the effect of dephasing during the delay is to reduce

this amplitude. The spin echo pulse removes the effect of slow drifts, so this observed

decay in amplitude is due to noise faster than half of the delay time. The fitted fringes

for delay times 0 ms and 200 ms are shown in figure 4.5, where a π/2 pulse of time 473µs

was used with dressing field Rabi frequencies of approximately 17 kHz. Since depolarising

is also occurring during this time, the probability measured in the F = 1 manifold decays

exponentially to approximately 2/3. The amplitude fits of Ramsey fringes with multiple

delay times is also shown in figure 4.5. A fit of an exponential decay function gives a

coherence time of T2 = 0.31(1) s. This is almost two orders of magnitude higher than the

decoherence time of 6.4(6) ms on the magnetic field sensitive state |0〉 ↔ |+1〉 shown in

chapter 3. Since the decoherence time is approximately the same as the T1 time, it is

likely that depolarising is the dominant and therefore limiting process.

Both of these results are lower than the previously measured value of T1 ≈ T2 ≈ 0.65 s

[53]. Further investigation is required to determine the cause of this decrease, which could

be a result of higher levels of noise on the DC electrodes from an alteration in the filtering

setup. Due to this variation, the lifetime and decoherence time for each experiment in

subsequent chapters will be stated.

4.2.5 Decoherence of the dressed state qubit

When parameters are correctly set, dressed states protect well against magnetic field noise,

as shown in section 4.2.1. However, if parameters are incorrect, the sensitivity to noise

begins to increase, which will cause dephasing of superpositions of the qubit and decrease

the T2 time. In particular, if the Rabi frequencies of the dressing fields are mismatched,

so that Ω+ 6= Ω−, a considerable increase in sensitivity to noise is seen. If the dressing

Rabi frequencies are mismatched but the detunings are correct so that δ+ = δ− = 0, the

dressing Hamiltonian from equation 4.3 can be simplified to

Hµw =
~
2

(Ω+ |0〉 〈+1|+ Ω− |0〉 〈−1|+ Ω+ |+1〉 〈0|+ Ω− |−1〉 〈0|). (4.13)
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The eigenstates of this Hamiltonian are then

|D〉 =
1√

Ω2
+ + Ω2

−

(Ω− |+1〉 − Ω+ |−1〉)

|u〉 =
1√
2

 Ω+√
Ω2

+ + Ω2
−

|+1〉+
Ω−√

Ω2
+ + Ω2

−

|−1〉+ |0〉


|d〉 =

1√
2

 Ω+√
Ω2

+ + Ω2
−

|+1〉+
Ω−√

Ω2
+ + Ω2

−

|−1〉 − |0〉

 ,

(4.14)

which reduce to the eigenstates in equation 4.5 for the case where Ω+ = Ω− = Ωµw. The

energy for the eigenstate |D〉 remains at the same value as the |0′〉 energy, but energies

for the eigenstates |u〉 and |d〉 are ±~
2

√
Ω2

+ + Ω2
−. By re-expressing the noise Hamiltonian

in equation 4.7 as a function of these eigenstates, we can understand the effect of noise in

this case. The noise Hamiltonian becomes

Hnoise =
µB∆B(t)√

2

[
2Ω+Ω−

Ω2
+ + Ω2

−
(|u〉 〈D|+ |d〉 〈D|+ |D〉 〈u|+ |D〉 〈d|)

+
Ω2

+ − Ω2
−√

2(Ω2
+ + Ω2

−)
(|u〉 〈u|+ |d〉 〈d|+ |u〉 〈d|+ |d〉 〈u| − 2 |D〉 〈D|)

]
.

(4.15)

If Rabi frequencies are matched, the effect of the noise is therefore to drive transitions

between the dressed states as before, so that only noise resonant with this frequency

splitting has an effect. However, in the case of a mismatch, there is a term |D〉 〈D|

which is dependent on the magnitude of this mismatch. The energy shift for the bare

states resulting from a change in magnetic field can be calculated as | 〈±1|Hnoise |±1〉 | =

µB∆B(t), which is the sensitivity to noise. We can define a fractional sensitivity for the

dressed states with mismatched Rabi frequencies compared to the bare states as

| 〈D|Hnoise |D〉 |
| 〈±1|Hnoise |±1〉 |

=
|Ω2

+ − Ω2
−|

|Ω2
+ + Ω2

−|
. (4.16)

By defining the average dressing field Rabi frequency as Ωµw = (Ω+ + Ω−)/2 and the

difference as ∆Ωµw = Ω+ −Ω−, this fractional sensitivity can be expressed in the limit of

small mismatches as |∆Ωµw|/Ωµw. We therefore see a linear increase in sensitivity with

the proportional mis-set of the dressing fields. Similarly, the states |u〉 and |d〉 become

sensitive to magnetic field noise, but the sensitivity is a factor of two less than for the

state |D〉.

In order to ensure that the dressing field powers are matched to a high degree of
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Figure 4.6: Results of an experiment to finely match dressing field powers to ensure
minimum sensitivity to magnetic field noise. A Ramsey measurement with a fixed delay
time of 50 ms and fixed phase on both π/2 pulses of φ = 0 is applied (with a spin echo
pulse halfway through the delay), which should result in a measurement of F = 0. The
power of the |0〉 ↔ |−1〉 dressing field is scanned relative to the power of the |0〉 ↔ |+1〉
dressing field. When the Rabi frequencies are mismatched, sensitivity to magnetic field
noise increases, so the probability of measuring F = 1 also increases due to decoherence
during the delay. A linear fit to |∆Ωµw|/Ωµw enables the matched dressing field powers
to be found, with an error of approximately 0.1% in fractional power.
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accuracy to avoid decoherence resulting from magnetic field noise, an experimental method

using a Ramsey experiment is used to calibrate them. After preparing an ion in state |0′〉,

a π/2 pulse on the transition |0′〉 ↔ |D〉 is performed. A 50 ms delay is then implemented,

with the dressing fields remaining on. Halfway through this delay, a π spin echo pulse

on the transition |0′〉 ↔ |D〉 is performed to eradicate the effect of slow frequency noise.

Finally, a π/2 pulse with the same phase as the initial π/2 pulse is performed. In the

case of no decoherence, the measurement should yield a result where all population is in

the |0′〉 state, so that F = 0 is measured. However, in the presence of decoherence the

probability of measuring F = 1 increases. By stepping the power of one dressing field

relative to the other, a minimum in the measurement should be observed, corresponding

to where the powers are well matched and there is therefore little decoherence. This type

of experiment is demonstrated in figure 4.6, where the probability P (F = 1) is plotted

against the fractional Rabi frequency error |∆Ωµw|/Ωµw, with Ωµw ≈ 17 kHz. A linear fit

to this data allows the optimal power to be found, with an error of approximately 0.1%

in the fractional detuning. Over the course of a day, dressing field Rabi frequencies have

been measured to change by up to 1%, leading to a 1% sensitivity compared to the bare

states. These Rabi frequencies are therefore generally calibrated up to twice a day.

The detunings of the dressing fields can also be incorrect, but numerical simulations

have shown that this effect is smaller than for a dressing field Rabi frequency mis-set. For

the case where the detuning is equal for the two dressing fields, or equal and opposite, there

is no change in sensitivity of |D〉. There is a quadratic dependence on the proportional

detuning (|δ|/Ωµw)2 for a detuning on only one dressing field [53]. As discussed in section

3.5.2, the experimental method used to stabilise the magnetic field keeps the sensitive

transitions to within approximately 1 kHz, and repeated measurements of the |0〉 ↔ |+1〉

transition frequency over the course of several hours have confirmed this. A change of 1 kHz

would lead to a fractional sensitivity of 0.25% compared to the bare states, assuming

typical dressing field Rabi frequencies of 20 kHz. An additional feature of the qubit is

that it is insensitive to first order to drifts in the absolute magnetic field. This type of

drift would cause the detuning of the dressing fields to be equal and opposite, so that

δ+ = −δ− = δ. In such a system, the detuning of the transition |0′〉 ↔ |D〉 from the

transition frequency |0′〉 ↔ |+1〉 is equal to δ, which is equivalent to the original RF

frequency. We therefore find that the RF field is still resonant with |0′〉 ↔ |D〉, although

there is a small reduction in the Rabi frequency of this applied RF field.

Decoherence of the qubit {|0′〉 , |D〉} can also occur due to the second order sensitivity
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of the |0′〉 state to magnetic field noise. The Hamiltonian for noise on the state |0′〉 can

be written approximately as

Hnoise =
4µ2

B

~ωhf
B0∆B(t)

∣∣0′〉 〈0′∣∣ (4.17)

where B0 is the offset magnetic field applied to the ion. The fractional sensitivity with

respect to the bare states can be written as

| 〈0′|Hnoise |0′〉 |
| 〈±1|Hnoise |±1〉 |

=
4µBB0

~ωhf
(4.18)

which, for a typical offset magnetic field of 10 G, is equal to approximately 2 × 10−4.

Dephasing due to the second order sensitivity of |0′〉 is therefore a small effect at the

magnetic fields used in this experimental setup.

4.2.6 Multi-qubit dressed state operations

The dressed state transition frequency is determined by the transition frequency of |0′〉 ↔

|±1〉, and is therefore magnetic field dependent to first order. In a static magnetic field

gradient, the transition frequency becomes position dependent, and so dressed states can

be used for multi-qubit operations using long-wavelength radiation, as described in 2.4.2.

The Hamiltonian describing a four level system corresponding to the hyperfine ground

state of 171Yb+ in a magnetic field gradient is

H0 = HB +Hm

HB = ~ω+ |+1〉 〈+1| − ~ω− |−1〉 〈−1| − ~ω0 |0〉 〈0|

Hm = ~νzησz(a+ a†) + ~νza†a

(4.19)

where we have defined the zero energy as the energy of the state |0′〉, and σz is the Pauli

matrix, σz = |+1〉 〈+1|− |−1〉 〈−1|. The effect of the magnetic field gradient is to displace

the harmonic oscillator for the states |+1〉 and |−1〉 in opposite directions, with polaron

states

|0p〉 |np〉 = |0〉 |n〉∣∣0′p〉 |np〉 =
∣∣0′〉 |n〉

|+1p〉 |np〉 = e−η(a†−a) |+1〉 |n〉

|−1p〉 |np〉 = eη(a†−a) |−1〉 |n〉 .

(4.20)
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The corresponding polaron ladder operators are given by a
(†)
p = a(†) + ησz. Dressed states

in a magnetic field gradient can then be described in the same way as in the absence of a

gradient, except using these polaron spin and motional states.

Using these definitions, the Hamiltonian for an RF field in the interaction picture with

respect to H0 can be written in the polaron basis as

H ′rf =
~Ωrf

2

(
|+1p〉

〈
0′p
∣∣ e−iδrf teiφrfeη(ã†p−ãp) + |−1p〉

〈
0′p
∣∣ ei(δrf+∆ωz)te−iφrfe−η(ã†p−ãp) +H.c.

)
(4.21)

where we have defined ãp = ape
−iνzt. This can be written in the dressed basis, similarly

to section 4.2.2, after the polaron transformation as

Hrf =
~Ωrf

2
√

2

(
|D〉

〈
0′
∣∣ (e−iδrf teiφrfeη(ã†p−ãp) − ei(δrf−∆ωz)te−iφrfe−η(ã†p−ãp)

)
1√
2
|u〉
〈
0′
∣∣ (e−i(δrf−Ωµw√

2
)t
eiφrfeη(ã†p−ãp) + e

i(δrf−∆ωz+
Ωµw√

2
)t
e−iφrfe−η(ã†p−ãp)

)
1√
2
|d〉
〈
0′
∣∣ (e−i(δrf+ Ωµw√

2
)t
eiφrfeη(ã†p−ãp) + e

i(δrf−∆ωz−
Ωµw√

2
)t
e−iφrfe−η(ã†p−ãp)

)
+H.c.

)
.

(4.22)

The zeroth order term is the Hamiltonian for transitions on the carrier dressed states, and

is identical to equation 4.11. The first order terms are the terms for the red and blue

sidebands, given by

Hr
rf = −~ηΩrf

2
√

2

(
|D〉

〈
0′
∣∣ (e−iδrteiφrfa− ei(δr−∆ωz)te−iφrfa†

)
1√
2
|u〉
〈
0′
∣∣ (e−i(δr−Ωµw√

2
)t
eiφrfa+ e

i(δr−∆ωz+
Ωµw√

2
)t
e−iφrfa†

)
1√
2
|d〉
〈
0′
∣∣ (e−i(δr+ Ωµw√

2
)t
eiφrfa+ e

i(δr−∆ωz−
Ωµw√

2
)t
e−iφrfa†

)
+H.c.

) (4.23)

and

Hb
rf =

~ηΩrf

2
√

2

(
|D〉

〈
0′
∣∣ (e−iδbteiφrfa† − ei(δb−∆ωz)te−iφrfa

)
1√
2
|u〉
〈
0′
∣∣ (e−i(δb−Ωµw√

2
)t
eiφrfa† + e

i(δb−∆ωz+
Ωµw√

2
)t
e−iφrfa

)
1√
2
|d〉
〈
0′
∣∣ (e−i(δb+

Ωµw√
2

)t
eiφrfa† + e

i(δb−∆ωz−
Ωµw√

2
)t
e−iφrfa

)
+H.c.

)
.

(4.24)

There are therefore six red and six blue sidebands, corresponding to the sidebands for

the six transitions shown in figure 4.3. Due to the energy ordering of the states, the red

sideband for the dressed state transitions via |0′〉 ↔ |−1〉 involves the addition of a phonon

to the motional state, rather than the removal of a phonon. Likewise, for the blue sideband
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these transitions correspond to a removal rather than an addition of a phonon.

The presence of these sidebands for dressed states in a magnetic field gradient shows

that dressed states are suitable for implementing multi-qubit quantum logic using long-

wavelength radiation, by providing a long coherence time as well as allowing spin-motion

coupling. As in the case of bare states, ions can be individually addressed in frequency

space due to the position dependence of the frequency of the transition |0′〉 ↔ |±1〉 in a

magnetic field gradient.

4.3 Sideband cooling

In section 2.3.2, the limits of Doppler cooling were discussed. In order to reach ion tem-

peratures below this limit, a sideband cooling process can be used, which involves reducing

the motional state of an ion by making transitions on the red sideband. Low ion tem-

peratures are useful for multi-qubit operations as described in the following chapter since,

although the operation does not depend on the initial ion temperature, the sensitivity

to incorrectly set parameters greatly increases with higher ion temperatures. This side-

band cooling technique has been used to cool an ion to the ground state of vibration with

probability up to 99.9% [67]. Sideband cooling can be achieved with long-wavelength radi-

ation [44] using either bare states or dressed states, as discussed in the next section. The

method of sideband thermometry to measure the mean motional mode of the ion is then

demonstrated. This method requires the long coherence time provided by dressed states

to accurately measure the temperature, and can also be used to measure heating rates.

4.3.1 Sideband cooling process

As has been demonstrated, using long-wavelength radiation coupled with a magnetic field

gradient, it is possible to couple the spin and motional states of an ion, and spectrally re-

solve the sidebands. This makes it possible to implement sideband cooling, which involves

two processes. First, a spectrally resolvable red sideband is driven to transfer population

from the motional state |n〉 to state |n− 1〉. Second, a fast dissipative ‘repump’ process

is required to transfer the spin state back to the original without affecting the motional

state.

The first of these steps can be implemented on the red sideband of a bare state, for

example |0〉 ↔ |+1〉, or of a dressed state, |0′〉 ↔ |D〉. Using bare states is experimentally

simpler, but there is a limit to achievable temperatures due to the short decoherence

time, which reduces the effectiveness of transferring population for each sideband cooling
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pulse. Using the dressed state |0′〉 ↔ |D〉 provides the possibility of achieving lower ion

temperatures, but requires more RF and microwave fields and pulses.

In either case, the pulse times are generated using Python code (written by Andrea

Rodriguez) which calculates the transition time for |n〉 → |n− 1〉 for consecutive de-

creasing values of n from nmax to n = 1. The number of pulses determines the value

nmax from which these transition times start. For each value of n, the transition time is

tn = π/
√
nηΩ0, where Ω0 is the carrier transition Rabi frequency.

The repump is performed using the same optical pumping process used to prepare the

ion in state |0〉. The 369 nm laser with modulation of approximately 2 GHz is applied to

the ion for 6µs. This is resonant with the transition 2S1/2, F = 1 →2 P1/2, F = 1, from

where it can decay to 2S1/2, F = 0, which is the desired spin state. Since the population

can also decay to 2S1/2, F = 1, there is some photon scatter before the desired spin state is

reached. This photon scatter imparts recoil energy to the ion, which effectively heats the

ion and places a limit on the achievable ground state occupation. For 6µs of radiation,

this scatter is found to be on average 3 photons using the rate equations (code written by

Dr Simon Webster), which corresponds to an increase in mean motional mode number of

∆nrecoil ≈ 0.006.

When using dressed states for cooling, additional steps are required in the repump

process. After each pulse on the red sideband, the dressing fields are turned off and a

pulse on the transition |0′〉 ↔ |0〉 is performed, to transfer the population in |D〉 into the

F = 1 subspace. This ensures that the repump process is only applied to the population

which made a spin state transition, thereby limiting photon scatter. After the repump,

another clock π pulse is performed on |0′〉 ↔ |0〉 and the dressing fields are turned on

again for the next red sideband pulse. This additional complexity increases the repump

time by twice the time required for a clock π pulse.

4.3.2 Measuring temperature

A method for measuring the temperature after Doppler cooling was discussed in section

3.5.5. However, this method assumed a high value of n̄, so that Ωn,n+1 ≈ Ωn,n−1, where

the sideband Rabi frequencies are given by Ωn,n+1 =
√
n+ 1ηΩ0 and Ωn,n−1 =

√
nηΩ0.

For ion temperatures with n̄ < 1, sideband thermometry is a more accurate method for

measuring the temperature. As before, we assume a thermal state occupation of the ion
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motional modes, with the probability for occupying each state |n〉 given by

pn =
1

n̄+ 1

(
n̄

n̄+ 1

)n
. (4.25)

Assuming a resonant interaction, so that δr = δb = 0, the probability to make a transition

on each sideband is then given by

P ↑rsb(t) =

∞∑
n=0

pnP
↑
n,n−1(t)

P ↑bsb(t) =
∞∑
n=0

pnP
↑
n,n+1(t)

(4.26)

where the transition probability for each value of n is given by

P ↑n,n−1(t) =
1

2
(1− cos (Ωn,n−1t))

P ↑n,n+1(t) =
1

2
(1− cos (Ωn,n+1t)).

(4.27)

Using these transition probabilities and occupation probabilities, it can be shown [13] that

P ↑rsb(t) =
n̄

n̄+ 1
P ↑bsb(t). (4.28)

By defining the ratio between the two sidebands amplitudes as R = P ↑rsb(t)/P
↑
bsb(t), we

can therefore calculate the mean motional state as

n̄ =
R

1−R
. (4.29)

By applying a pulse of radiation resonantly to each sideband that maximises the sideband

height, the mean occupational number can therefore be measured. This measurement

should be performed in the dressed state qubit, since the long coherence time means that

the sideband heights can be more accurately measured.

An experiment of this type is shown in figure 4.7, where both sideband cooling and

spectroscopy was performed on the dressed state |0〉 ↔ |D〉. Dressing fields of Rabi

frequency Ωµw/2π = 32 kHz were applied to each ion, and the axial trap frequency was

measured to be νz/2π = 426.7(1) kHz. The temperature after 4 ms of Doppler cooling was

measured as n̄ = 65(5), after which 500 sideband pulses were applied, with time totalling

71 ms. The carrier Rabi frequency was measured as ΩD/2π = 61.2 kHz by applying an RF

pulse with equal and opposite detunings to the transitions |0′〉 ↔ |±1〉. Since Ωµw � ∆ωz,
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Figure 4.7: Sideband scans on the red and blue sideband of the dressed state |D〉, using an
RF pulse on the transition |0′〉 ↔ |D〉 for a time 1270µs, after sideband cooling for 71 ms.
The ratio of the sideband heights allows the mean occupation of the motional mode to
be found, giving n̄ = 0.13(4) or equivalently a ground state occupation of p0 = 0.88(7).
Figure from [44].

where the second order Zeeman shift is measured as ∆ωz/2π = 34 kHz, the ion oscillates

between the states |0′〉 and 1√
2
(|+1〉+ eiφ |−1〉) at frequency

√
2Ωrf . The Rabi frequency

on the state |D〉 can be then be calculated from ΩD = Ωrf/
√

2. Due to the additional

complexity of the dressed states, the mean occupational number was calculated using a

numerical simulation (written by Dr Joe Randall [53]), shown by the solid lines in figure

4.7. The resulting curves from integrating over the Hamiltonian for different values n in

initial state |0′, n〉 were assigned weights pn. These were then fitted to the experimental

data to give a mean phonon number of n̄ = 0.13(4), corresponding to a ground state

occupation of p0 = 0.88(7). The limit to the lowest possible mean phonon number for the

ion is dephasing of the red sideband transition, off-resonant excitation to the carrier, and

heating of the motional mode.

The shared motional mode of two ions can similarly be sideband cooled by applying

pulses to the red sideband of one of the ions for performing multi-qubit operations. In this

case, there are two different possible modes to cool - the COM mode νz and the stretch

mode νs =
√

3νz.

4.3.3 Measuring heating rates

Using sideband thermometry, heating rates can also be measured. The ion is sideband

cooled and, before the temperature is measured, a delay is added to the sequence. After
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Figure 4.8: Heating rate for a single ion, measured by introducing a variable delay time
between sideband cooling and measuring the temperature of the ion. Heating during this
delay time causes an increase in n̄, allowing a heating rate to be measured using a linear
fit, giving n̄ = 41(7) s−1 for a secular frequency of 426.7(1) kHz. Figure from [44].

this delay, both sidebands are scanned so that n̄ can be calculated. During this delay, the

ion is heating at a rate of ˙̄n, so by varying the length of this delay time, the heating rate

can be measured. Data for a single ion is shown in figure 4.8, using the same parameters

as for the cooling demonstrated in section 4.3.2. By using a linear fit, a heating rate of

n̄ = 41(7) s−1 is calculated for the mode with secular frequency 426.7(1) kHz.

This method can also be applied to measure the heating rate of the COM and stretch

mode for two ions. Due to the lower heating rate of the stretch mode, no significant increase

in phonon number was observed for delays up to approximately 100 ms. This allowed a

limit of 1 s−1 to be placed on the heating rate of the stretch mode at 461 kHz. This is

lower than previously measured heating rates, which is attributed to the replacement of

the electrode DC voltage supply from a home-built supply to a commercial supply.



Chapter 5

Randomised benchmarking of

single qubit gates

5.1 Introduction

For a large scale quantum processor, quantum logic gates with an infidelity below the

fault tolerant threshold for quantum error correction are required. The usefulness of

a gate must therefore be determined with a method that can measure the error in a

realistic computational scenario. Quantum process tomography (QPT) [68, 69] can be

used in order to fully characterise a quantum gate, where measurements are performed on

a set of input states to fully reconstruct the process matrix. However, this method has

various limitations. Primarily, the gate error is generally very small, and therefore hard

to measure. Error due to state preparation and detection (SPAM) is often larger than the

gate error, so will dominate the measurement process.

Randomised benchmarking is an alternative method for measuring gate fidelity pro-

posed by Knill et al. [70] which has since been widely used experimentally (for example

[71, 72, 17]). It involves performing multiple sequences of randomly chosen computational

gates and measuring the accumulated error. Using long sequences of gates gives an ac-

cumulated error much larger than the error on a single gate, which is therefore easier to

measure. From the correlation between sequence length and average error it is possible

to extract the average error for a single computational gate. This method also gives a

more realistic error estimate, since it involves long sequences of gates with unknown ini-

tial states such as would be involved in computations, and does not rely on accurate state

preparation and measurement.

There are, however, limitations to the randomised benchmarking approach, and varia-

81
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tions of the standard randomised benchmarking technique have been proposed to overcome

them. It is only possible to extract an average error per gate using randomised bench-

marking, and not to diagnose errors on specific quantum gates. Interleaved benchmarking

can be used to overcome this issue by interleaving the gate of interest with random gates

[73]. An extension of this technique uses interleaved benchmarking sequences for opti-

misation of specific quantum gates [74]. The largest problem, however, that randomised

benchmarking faces is insensitivity to coherent errors. Coherent errors depend on the

specific sequences, and the worst case error that can occur is important for certifying gate

errors below the fault-tolerant threshold. Randomised benchmarking measures the aver-

age error, and the best bound that can be placed on the worst case error without further

information on the noise in the system is the square root of the average error. A variation

on the randomised benchmarking protocol can be used to estimate the coherence of the

noise in the system [75]. Techniques also exist which allow for tailoring coherent noise into

stochastic noise, so worst case errors are equivalent to the average error directly measured

using randomised benchmarking [76]. An alternative technique is to instead use gate set

tomography [77]. This technique uses specifically designed pulse sequences which amplify

different errors rather than random sequences. The selection of periodic sequences ensures

that at least one sequence gives the worst-case for every coherent error, and therefore

allows for optimisation of gates and stricter certification of gates below the fault-tolerant

threshold.

Despite these limitations, in this chapter we implement the technique of randomised

benchmarking, since it is an experimentally simple and widely used (and therefore compa-

rable) measure of the average gate infidelity. It may however be interesting to investigate

the implementation of alternative methods to gain additional knowledge of the sources of

error. As demonstrated in chapter 4, the dressed state qubit {|0′〉 , |D〉} is useful for imple-

menting quantum logic using long-wavelength radiation, since it exhibits long coherence

times as well as a sensitivity to a magnetic field gradient, allowing for multi-qubit oper-

ations. I demonstrate randomised benchmarking of single qubit gates using this dressed

state qubit. I begin by describing the randomised benchmarking protocol and experimen-

tal implementation. I then present the experimentally measured result and analyse the

sources of error.
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5.2 Randomised benchmarking protocol

A randomised benchmarking experiment consists of measuring the outcome of a sequence

of L random gates, and comparing this result to the expected outcome. From this com-

parison, an accumulated error can be calculated, which is larger and therefore easier to

measure than the error on a single gate. The accumulated error depends on the specific

sequence performed, so multiple different randomised sequences of the same length are

used to give an average error. A relatively small number of random sequences is required

to converge to the average error over all sequences. By repeating this process for different

values of L, it is possible to distinguish between the error due to single qubit gates and

the error due to SPAM. The average error per gate can then be calculated.

The exact method used here to implement randomising benchmarking closely follows

the method used by Dr Thomas Harty [17], which is a minor modification from the original

proposal [70]. The randomised benchmarking protocol is as follows. For a sequence length

L, randomly choose a sequence of L computational gates, chosen from the set of π/2

pulses around the {±x,±y} axes. Repeat this Ng times to generate Ng sequences of

computational gates. For each of these sequences, randomise Nr times by inserting a π

pulse from the set {±x,±y,±z, I} before each π/2 pulse. This choice of pairs of π and

π/2 pulses ensures that the error is of order one times the computational gate error. This

produces NrNg sequences of randomised computational gates. For each sequence, calculate

the expected outcome for a system free from experimental error, and choose randomly one

of the two operators from the set of π/2 pulses {±x,±y,±z} which will bring the ion back

into an eigenstate of σz for measurement. Append a final randomisation π pulse from

the set {±x,±y,±z, I}. The code to generate these sequences was written by Dr Simon

Webster. Each of these NrNg sequences is implemented experimentally Ne times, and the

error calculated by comparing the experimental result to the expected result. The average

error for sequence length L is then calculated from this set of errors. This experimental

process is illustrated in figure 5.1.

This process is repeated for different values of L. In the original proposal [70], the

protocol to generate a set of randomised sequences was followed for the largest value of

L and truncated for shorter sequence lengths. Here, as in [17], this process is repeated

independently for increasing values of L computational gates. This should have no effect on

the outcome. Once the average error for each length of sequence L has been experimentally
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Figure 5.1: An illustration of the randomised benchmarking experimental protocol. Each
sequence consists of L randomised computational gates, followed by a π/2 pulse to bring
the qubit state back to the z-basis for measurement and a final randomisation π pulse.
For each value of L, there are NgNr sequences resulting from Ng sets of computational
gates interleaved with Nr randomisation pulses.

measured, this set of data can then be fitted to the model

eL =
1

2
− 1

2
(1− 2espam)(1− 2egate)

L, (5.1)

allowing the error due to imperfect state preparation and measurement, espam, and the

error per randomised computational gate, egate, to be extracted.

5.3 Experimental implementation

The qubit used in this implementation is comprised of the dressed states {|0′〉 , |D〉}, as

explained in chapter 4. The method described in section 4.2.3 is used for preparation and

readout of the dressed state qubit. After initialisation in |0〉, a π pulse on the clock transi-

tion transfers ion population to |0′〉. The dressing fields are instantaneously turned on at

a Rabi frequency of Ωµw/2π = 20.7 kHz. Once all manipulation of the qubit is complete,

the dressing fields are turned off and a final clock π pulse transfers any population in |0′〉

back to |0〉. Population in the state |0′〉 therefore results in a F = 0 dark measurement,

and population in |D〉 gives an F = 1 bright measurement. The qubit transition frequency

and π time were approximately measured using experiments like those shown in figure 4.3.

In order to accurately measure the frequency of the |0′〉 ↔ |D〉 transition, a Ramsey

experiment was used. A π/2 pulse of time t = π/2ΩD, where ΩD is the Rabi frequency of

the RF field on the |0′〉 ↔ |D〉 transition, is applied with frequency ω and phase φ = 0. A

delay of 10 ms is performed, after which a second π/2 pulse with the same frequency and

phase is applied. By stepping the frequency ω around the resonant frequency, Ramsey

fringes are measured, with the centre fringe produced around the |0′〉 ↔ |D〉 transition.
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This allows the transition frequency to be accurately measured. A Ramsey experiment

with a delay is used instead of a low power π pulse since it gives a higher resolution of

the frequency for a given time. The full width at half maximum for a π pulse applied

around the resonant frequency is given by approximately ∆f ≈ 0.8/tπ, where tπ is the

time of the π pulse, as can be calculated from equation 2.31. For a Ramsey fringe, the

full width at half maximum is given by ∆f = 1/2T , where T is the delay time [41]. This

therefore provides greater resolution of the frequency for a fixed interaction time. The

frequency was scanned in steps of 2 Hz, and a fit to the resultant peak gave a frequency

of ωD = 12349.176(1) kHz.

In many previous implementations of randomised benchmarking, π pulses were im-

plemented as two π/2 pulses, since square pulses were used with constant amplitude

[70, 72, 17]. However, our pulses use a sin2 ramp in amplitude at the beginning and end

of the pulse. This is used to counteract the effect of off-resonant coupling of the gate field

to unwanted transitions outside of the qubit subspace, which incurs infidelity. This will

be discussed in greater depth in section 5.5.1. The pulse shaping time used is a significant

proportion of the overall gate time, which means that the time for two π/2 pulses is sig-

nificantly longer than the time for a π pulse. We therefore implemented π and π/2 pulses

as distinct operations.

A pulse shaping time of 100µs for the ramp at the beginning and end of the pulse

was used. This pulse-shaping time was experimentally measured to sufficiently reduce

off-resonant coupling error, and this measurement will be discussed in section 5.5.1. In

order to accurately measure the time for a π pulse, the frequency was set to the measured

transition frequency and 21 π pulses of time t were performed consecutively, which should

result in ion population in state |D〉. The time of the applied pulse was varied, and

the resultant peak was centred around the correct π time, tπ. Similarly, to accurately

measure the time for a π/2 pulse tπ/2, 34 consecutive π/2 pulses were performed, which

should result in ion population in state |D〉. In both cases, the pulse time was stepped in

increments of 1µs. An example of this experiment for π/2 pulses is shown in figure 5.2.

The Rabi frequency of the RF field was ΩD = 592 Hz, and the measured pulse times were

tπ = 943.0(5)µs and tπ/2 = 523.0(5)µs.

Between implementing each set of sequences, these routines for measuring the fre-

quency and pulse times were repeated to ensure the transition frequency was being effec-

tively stabilised, and to identify and compensate for any change in the unstabilised pulse

time. A change in pulse length was measured of 2µs for a π pulse and 1µs for a π/2 pulse,
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Figure 5.2: Result of an experiment to determine the pulse area of a π/2 pulse. 34 π/2
pulses with a pulse shaping ramp time of 100µs are applied to the qubit, and the π/2
pulse time is stepped. Measuring the population in F = 1 allows a pulse time of 523µs
to be determined. The solid line is a result of a numerical simulation of the full dressed
state system.

or equivalently 0.2% of the total pulse length in both cases.

For each value of L, Ng = 5 and Nr = 5 were used to give a total of 25 randomised

sequences. Each sequence was repeated Ne = 100 times experimentally. Gates around

the {±x,±y} axes were implemented by setting the phase of the applied RF radiation.

Identity pulses were implemented using a delay of the same time as a computational gate.

To perform a σz gate, an identity pulse was used followed by a change of frame for all sub-

sequent pulses. Between implementing each sequence, the magnetic field and fluorescence

were monitored and compensated for to ensure stability, as explained in section 3.5.2.

5.4 Result

Figure 5.3 shows the result of randomised benchmarking of the qubit {|0′〉 , |D〉}. The

pale grey data points show the result of NgNr = 25 sequences performed for each se-

quence length L. Each point shows the average error over Ne = 100 experimental repeats.

Since the model used, given in equation 5.1, takes into account SPAM error, the usual

method of normalising out error by matrix inversion, as described in section 3.4.2, is not

used. Instead, a threshold is used to discriminate between the F = 0 and F = 1 states.
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Figure 5.3: Randomised benchmarking of the {|0′〉 , |D〉} qubit, giving an error per gate
of 9(3)× 10−4. Black data points are the average of the measured error probability on 25
randomised sequences of length L, and results of these individual sequences are shown in
grey. The blue line shows the fit of the model given in equation 5.1 to the experimental
data.

This threshold was measured to be 1 photon, where results of ≤ 1 were recorded as a

a dark measurement and > 1 a bright measurement. The same error per gate result is

obtained within error if matrix inversion is used. The black data points are the mean

error probability for each value of L, given by the mean of the individual sequence results.

The error bar indicates the standard deviation of the data set. The solid blue line is the

fit from equation 5.1. The SPAM error given by the fit is espam = 5(20) × 10−3, which

agrees with a state detection measurement fidelity taken at the time of the randomised

benchmarking implementation of 1.8× 10−2. The error per gate is egate = 9(3)× 10−4, or

equivalently a fidelity of 0.9991(3).

5.5 Sources of error

We now look at the dominant sources of error contributing towards the experimentally

measured error per gate.

5.5.1 Off-resonant coupling

When we calculated the Hamiltonian for making single qubit rotations in the dressed

system in section 4.2.2, we made the assumption that the Rabi frequency of the RF field
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Figure 5.4: Error from off-resonant coupling as a function of pulse shaping time. Experi-
mental points are the average of 36 sequences of L = 40 randomised computational gates,
averaged to error per individual gate. The Rabi frequency gives a square shaped pulse π
time of approximately 845µs. The dashed line shows the result of a numerical simulation
of 20 randomly chosen pairs of π and π/2 pulses from the gate sets used to generate the
benchmarking sequences for an approximate guide, although this is not a full model of the
experiment.
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was much less than the frequency splittings to the other dressed states, so that other

dressed state transitions could be ignored. This corresponds to two assumptions. The

first is that ΩD � ∆ωz, where ωz is the second order Zeeman shift which defines the

splitting between the two |0′〉 ↔ |D〉 transitions. The second is that ΩD � Ωµw/
√

2,

where Ωµw/
√

2 is the separation in frequency between the transition |0′〉 ↔ |D〉 and

the transitions |0′〉 ↔ |u〉 and |0′〉 ↔ |d〉, which is defined by the Rabi frequency of

the dressing fields Ωµw. However, in this implementation these frequency splittings are

∆ωz/2π = 24.65 kHz and Ωµw/
√

2 = 14.6 kHz. This therefore places a stringent condition

on the Rabi frequency ΩD. In the case that ΩD is not low enough, the RF field off-

resonantly couples to other dressed state transitions outside of the qubit subspace, causing

unwanted excitations and therefore a significant error.

In order to reduce this error and therefore alleviate the limit on ΩD, pulse shaping

is used. By ramping the pulse amplitude at the beginning and end of the pulse using a

sin2 shape with envelope time tr, much of the off-resonant excitation can be eliminated.

The pulse shaping ramp time tr must be sufficient to fulfil the condition for adiabaticity,

which is that ∆2 � |dΩ(t)/dt| [78], where ∆ is the frequency separation to the nearest off-

resonant transition which is on order 10 kHz. This does, however, increase the overall pulse

time in order to keep the pulse area constant. For a pulse ramp of the form ΩD sin2 (πt/2tr)

between times t = 0 and t = tr, the pulse area is given by half the equivalent area for a

square pulse of amplitude ΩD over this ramp time. This means that for a π pulse, the

pulse length increases to tπ = t0π + tr , and for a π/2 pulse to tπ/2 = t0π/2 + tr, where t0π

and t0π/2 are the pulse lengths with no pulse shaping. This means that other errors such as

depolarisation and parameter drift, which are discussed in the following sections, become

increasingly important.

For the Rabi frequency used in this experiment of ΩD = 592 Hz, a pulse ramp time

of tr = 100µs at the beginning and end of the pulse was found to be sufficient to largely

eliminate off-resonant effects. This was determined by experimentally measuring the error

per gate for different pulse shaping times at this Rabi frequency, using 36 sequences of

40 randomised computational gates. For each pulse shaping ramp time, the overall pulse

length was optimised using methods discussed in 5.3. The resultant data points are shown

in figure 5.4. In this figure is also the result of a full dressed state simulation incorporating

off-resonant effects, using the same Rabi frequency. The dashed line shows the average

infidelity for a set of 20 pairs of π and π/2 pulses, randomly chosen from the set used to

generate the randomised sequences. This simulation does not emulate exactly the experi-
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Figure 5.5: Simulation of 20 randomly chosen pairs of π and π/2 pulses for a varied Rabi
frequency. The error per gate due to off-resonant coupling is plotted against the total time
for a π and π/2 pulse for three different pulse shaping times. The vertical grey dashed
line marks where the experimental data was taken with a 100µs ramp time, showing that
an improvement at this gate time would be possible with a longer pulse ramp time. This
improvement for longer pulse ramp times becomes even more significant for faster gates.

mental process, but since the full set of experimental sequences was too computationally

intense this result is shown for an approximate reference instead. At low pulse shaping

times, when there is a high level of off-resonant coupling, there is a larger uncertainty on

the result of the simulation due to oscillatory effects which depend on the exact timing

of the gates and detunings of the off-resonant transitions. The cause of the discrepancy

for the data point at a pulse shaping time of 200µs is unknown, although at longer pulse

times we do expect some sources of error to become worse. This simulation indicates that

at a pulse shaping time of 100µs there is an infidelity of 2.7 × 10−4, although this is an

approximation due to the difficulty of simulating the full system for longer sequences.

In order to investigate the limit to the effectiveness of pulse shaping, a simulation at

the experimental parameters used above for different pulse shaping times was performed

for varied Rabi frequency. The results of this simulation are shown in figure 5.5, where

the error per gate due to off-resonant coupling is plotted against the total time for a π and

a π/2 pulse, tπ + tπ/2. For any pulse shaping ramp time, there is a limit to the minimum

achievable gate time, since tπ/2 ≥ 2tr must be true in order to perform a full π/2 pulse,

or equivalently t0π/2 ≥ tr. It can be seen that there is a trade-off between total time and

off-resonant coupling error, with longer times leading to lower errors. The grey dashed line
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Figure 5.6: Simulation of the same 20 randomly chosen pairs of π and π/2 pulses as in
figure 5.5, for a varied Rabi frequency with a pulse shaping time of 200µs. The simulation
is performed with microwave Rabi frequencies ten times the value used for the experimen-
tal implementation, to show the possible reduction of off-resonant coupling error. The
simulation is shown for two different values of second order Zeeman shift, with the higher
value resulting in even larger reduction of off-resonant coupling error. The grey dashed
line shows the result for the current experimental parameters for reference, with lower
microwave Rabi frequencies and a second order Zeeman shift of ∆ωz = 25 kHz.

is plotted at the experimental gate time implemented, where a 100µs ramp time was used,

suggesting that a longer pulse-shaping time could have reduced the off-resonant coupling

error.

Figure 5.6 shows the result of the same simulation with dressing fields at ten times the

Rabi frequency, so that Ωµw/
√

2 = 146 kHz. The ability to produce Rabi frequencies of ten

times the current limit corresponds to one hundred times the currently available power,

so would require a significant experimental upgrade. A pulse shaping time of 200µs is

used, since there is little difference in error between different pulse shaping times at these

parameters. The simulation was performed for two different values for the second order

Zeeman shift: ∆ωz = 25 kHz, as in the current experimental setup, and ∆ωz = 50 kHz.

The grey dashed line shows the result of the simulation shown in figure 5.5 of the current

experimental parameters, Ωµw/
√

2 = 14.6 kHz and ∆ωz = 25 kHz, for reference. Higher

dressing field Rabi frequencies and second order Zeeman shifts can clearly be seen to

reduce the error significantly, as expected. However, there is a limit to how high the

second order Zeeman shift can be since high absolute magnetic fields can cause problems,

such as reduced detection fidelity and increased dephasing of the clock qubit due to higher

second order sensitivity. Use of Blackman shaped pulses [66] instead of sin2 shaped pulses
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was found to have little effect on the error.

5.5.2 Frequency mis-set

If the frequency of the transition |0′〉 ↔ |D〉 is incorrectly set, either due to a systematic

mis-set or an undetected change in parameters, an error is induced on gates. To first order,

the frequency of the |0′〉 ↔ |D〉 transition is insensitive to magnetic field drifts. However,

second order effects can cause transition frequency error. There are several mechanisms

leading to magnetic field fluctuations, some of which are unique to our magnetic gradient

system. In addition to fluctuations in the ambient magnetic field environment of the trap,

ion movement in the magnetic field gradient causes a change of transition frequency. The

magnetic field at the ion position is experimentally stabilised, using an auxiliary sequence

which involves measuring the frequency of the |0〉 ↔ |+1〉 transition, as described in

section 3.5.2. This stabilises the |0〉 ↔ |0′〉 transition to within 5 Hz, so a stability of

approximately 2.5 Hz can be assumed on the |0′〉 ↔ |D〉 transition frequency.

In order to simulate the effect of a frequency mis-set, the unitary matrix describing

single qubit gate rotations in a two level system is used, which is given by

U(δ,Ω0, φ, t) =

eiδt[cos (Ωδt/2)− iδ
Ωδ

sin (Ωδt/2)] − iΩ0
Ωδ
eiδt/2e−iφ sin (Ωδt/2)

− iΩ0
Ωδ
e−iδt/2eiφ sin (Ωδt/2) e−iδt[cos (Ωδt/2) + iδ

Ωδ
sin (Ωδt/2)]


(5.2)

from section 2.4.1, where Ωδ =
√

Ω2
0 + δ2. A set of 36 sequences of L = 40 randomised

computational gates is simulated, corresponding to Nr = 6 and Ng = 6. The average

error per gate over this set of sequences is represented by the solid line in figure 5.7. The

equivalent experimental process for the same set of randomised sequences of gates was

performed, and the resulting average error per gate is shown by the data points in figure

5.7. A clear frequency offset was seen between simulation and the experimental nominal

zero detuning, which was identified by the Ramsey frequency measurement. A fit of the

data to the simulated result gave this offset as 2.7 Hz.

This systematic misset could be the result of imperfect measurement processes. The

Ramsey detuning scan used to measure the transition frequency does not take into account

any AC Stark effects caused by the applied RF field of Rabi frequency ΩD. Although AC

Stark shifts associated with the dressed states connected to |0′〉 via |+1〉 cancel out due

to symmetry, there is still an AC Stark shift associated with the dressed states connected
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to |0′〉 via |−1〉. This is given by

∆ω|0′〉↔|D〉 = −
Ω2
D

2∆ωz
−

Ω2
ud

4(∆ωz − (Ωµw/
√

2))
−

Ω2
ud

4(∆ωz + (Ωµw/
√

2))

= −
Ω2
D

2

(
1

∆ωz
+

1

8(∆ωz − (Ωµw/
√

2))
+

1

8(∆ωz + (Ωµw/
√

2))

) (5.3)

where ∆ωz is the second order Zeeman shift, Ωµw is the Rabi frequency of the dressing

fields, and Ωud is the Rabi frequency of the dressed states |u〉 and |d〉, which is given

by Ωud = ΩD/
√

2. For the experimental parameters used here, this gives a Stark shift

of approximately −10 Hz. The reason for the discrepancy between the calculated AC

Stark shift and the measured frequency offset is unknown, although four level dressed

state simulations which incorporate effects of off-resonant coupling, pulse shaping, and

AC Stark shifts show similar low frequency offsets.

As well as constant frequency mis-sets, faster frequency fluctuations cause gate error,

but the timescale of these fluctuations is not easy to measure. The effect of these errors is

a random sampling of the average error per gate shown in figure 5.7, which could be the

reason for the clear rounding of the data around the zero detuning in this graph. Since the

auxiliary sequence stabilises the transition to within 2.5 Hz, it will be assumed that this

is the magnitude of the fluctuations. With a systematic offset of 2.7 Hz, the linear nature

of the gate infidelity with detuning mis-set means that a random sampling of magnitude

2.5 Hz around this systematic offset averages to the gate error at 2.7 Hz. This gives a

theoretical error of 2.4× 10−4.

5.5.3 Pulse area mis-set

An offset in the pulse area for π pulses or π/2 pulses will also cause gate error. This

offset could be due to a systematically mis-set pulse time or Rabi frequency resulting from

imperfect calibration. It could also be a result of an undetected change in experimental

parameters over time. Calibration measurements showing a maximum drift of 2µs on the

pulse time of the π pulse between each set of sequences corresponds to a pulse area drift

of approximately 0.002. As with frequency fluctuations, the timescale of Rabi frequency

noise is not known, but it will be assumed that the dominant error results from a slow

change. Faster noise will be assumed to be a secondary effect, as in [71, 31].

Figure 5.8 shows the simulated effect of a pulse area mis-set in a two level system,

with error per gate averaged after 36 sequences of 40 randomised gates plotted against

the fractional pulse area error. The simulation is performed using the unitary matrix
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Figure 5.7: Error per randomised computational gate for a frequency detuning. The solid
line is the result of a simulation of 36 sequences of length L = 40 in a two level qubit.
The data points are the experimentally measured average error per gate from the same
set of sequences. A clear offset is seen for the experimental data from the nominal 0 Hz
detuning, and a fit to the simulated results gives this offset as 2.7 Hz.

describing single qubit rotations, as in section 5.5.2. A fractional drift in pulse area

as observed in calibration measurements would correspond to an error of approximately

1.7 × 10−4. This is the same magnitude as the error due to the systematic frequency

mis-set.

5.5.4 Dephasing and depolarising

The dressed state qubit should be well protected against magnetic field noise. However, as

discussed in section 4.2.5, dephasing and depolarising of the qubit can occur as a result of

imperfectly set parameters, second order sensitivity to magnetic fields, and frequency noise

at the dressed state splitting Ωµw/
√

2. This dephasing and depolarising can be modelled

using a master equation of the form

d

dt
ρ = −i[H, ρ] + L(ρ), (5.4)

where H is the Hamiltonian of the single qubit gate acting on the ion, ρ is the density

operator describing the ion’s state, and the Lindblad operator is of the form

L(ρ) = −1

2

∑
m

(C†mCmρ+ ρC†mCm) +
∑
m

CmρC
†
m. (5.5)
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Figure 5.8: Error per gate for a fractional pulse area offset. The solid line is a result of a
simulation of 36 sequences of length L = 40.

The operators Cm depend on the noise source being considered.

Dephasing becomes problematic when the detunings and the Rabi frequencies of the

dressing fields are set incorrectly. Its effect can be described by the operator:

C =

√
Γ

2
(|D〉 〈D| −

∣∣0′〉 〈0′∣∣) (5.6)

where Γ = 1/T2 and T2 is the coherence time. At the time of the randomised benchmarking

experiment, this was measured as approximately T2 = 600 ms. This model, however, is

a simplification of the decoherence process. A simple estimate from the ratio of the

gate time to the coherence time would give an error per gate of 2.3 × 10−3, but this

is an over-estimate. The error resulting from dephasing in a randomised benchmarking

sequence is hard to estimate (both using a master equation and a simple estimate), since

the noise frequency spectrum causing this dephasing is not known. For low frequency

noise, which is likely to be a large contributory factor to the dephasing of the qubit, the

effect of randomised pulses is to partially refocus the qubit since noise is correlated between

pulses. We have therefore not made a numerical estimate, but will assume this error is

non-negligible.

Depolarising is caused by magnetic field noise resonant with the frequency splitting of

the dressed states. During this experiment, the lifetime was measured as T1 = 2.6 s [53].

Both the T1 and T2 times are longer than the more recent measurements shown in section
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4.2.4. For depolarising there are 6 relevant operators corresponding to σx, σy and σz type

interactions which drive population between |D〉 and {|u〉 , |d〉} [53]:

C1 =

√
γ1

6
(|u〉 〈D|+ |D〉 〈u|)

C2 =

√
γ1

6
(|d〉 〈D|+ |D〉 〈d|)

C3 =

√
γ1

6
(i |u〉 〈D| − i |D〉 〈u|)

C4 =

√
γ1

6
(i |d〉 〈D| − i |D〉 〈d|)

C5 =

√
γ2

6
(|u〉 〈u| − |D〉 〈D|)

C6 =

√
γ2

6
(|d〉 〈d| − |D〉 〈D|)

(5.7)

The σz type interactions shown in C5 and C6 are caused by fluctuations in the relative

energies of the dressed state energies, for example by fluctuations in the dressing field

Rabi frequency which defines the splitting between |D〉 and {|u〉 , |d〉}. We can ignore this

effect, assuming that the most significant error is caused by resonant magnetic field noise

driving population transfer between states, and therefore set γ1 = 1/T1 where T1 is the

lifetime and γ2 = 0.

In order to estimate the effect this depolarising will have on a single qubit computa-

tional gate, we simulate the effect of the depolarising terms on states with no Hamiltonian

acting over the time for approximately 100 randomised computational gates (i.e. 100 π

and π/2 pulses) . This is shown by the solid lines in figure 5.9 for the states |D〉 (blue)

and 1√
2
(|0′〉 + |D〉) (orange). We can estimate the effect on a single gate by calculating

the error on the state |D〉 during the time for a single gate and halving, since over a

randomised sequence we can assume that each qubit state is occupied for approximately

half the time. This gives an error of approximately 1.9× 10−4.

5.6 Conclusion

Randomised benchmarking of the dressed state qubit {|0′〉 , |D〉} has allowed an error

of 9(3) × 10−4 to be measured, which is an order of magnitude below a fault-tolerant

threshold of 1 × 10−2 [5]. A summary of the error estimations from each of the sources

discussed above is shown in table 5.1. These errors are in general approximations due to

the difficulty of modelling the exact system and understanding the sources of error fully,

but these estimates give the right order of magnitude for the measured error. The error
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Figure 5.9: Depolarisation of the states |D〉 and 1√
2
(|0′〉 + |D〉) over the time for 100

randomised computational gates, as a result of population being driven from the qubit
subspace {|0′〉 , |D〉} to the other dressed states {|u〉 , |d〉}.

Error source Error approximation

Off-resonant coupling 2.7× 10−4

Frequency mis-set 2.4× 10−4

Pulse area mis-set 1.7× 10−4

Depolarisation 1.9× 10−4

Total 8.7× 10−4

Table 5.1: Summary of the error approximations calculated for each error source considered
above.

due to dephasing is also likely to be non-negligible, although a numerical estimate cannot

be made without information on the frequency spectrum causing the dephasing.

A large contribution to this total error results from the systematic frequency mis-set

experimentally measured in figure 5.7. Further work to determine this frequency offset

more exactly could reduce this error, through use of randomised benchmarking sequences

to calibrate the qubit transition frequency initially. Driving faster gates would also reduce

sensitivity to an incorrectly set frequency, either resulting from this systematic mis-set

or an undetected change in parameters. The error resulting from depolarisation would

also decrease if gate times become shorter. More advanced randomised benchmarking

techniques can also be used to determine and optimise for major sources of error [74].

The limit, however, to the speed of gates is due to the off-resonant coupling error.

Analysis in section 5.5.1 suggests that by using a higher pulse shaping time, it would be

possible to drive faster gates while maintaining the same off-resonant coupling error at

current experimental parameters. However, in order to reduce the off-resonant coupling

infidelity to significantly lower than the current value, simulations indicate that lower Rabi
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frequencies resulting in longer pulse times will be required. Increasing the Rabi frequency

of the dressing fields and the second order Zeeman shift would relax these limitations

allowing faster gates, which will be an important step forward for reducing the overall

error of single qubit gates performed on this qubit.

An alternative to using the dressed state qubit would be to use the clock qubit

{|0〉 , |0′〉} for single qubit gates, since sensitivity to magnetic field gradients is not re-

quired for single qubit operations. The information stored in the clock qubit could then

be mapped to the dressed state basis for multi-qubit operations [66]. A method for this

mapping will be described in the next chapter. The current experimental setup does not

allow for use of the clock qubit for single qubit gates, since it is not possible to control

the phase of the microwave fields, which are generated by mixing a phase-controllable RF

signal with a microwave frequency of unknown phase. However, an improvement to the

microwave setup could make this possible, for example by using a high frequency AWG, or

by frequency doubling or quadrupling a lower frequency phase-controllable source. Use of

this clock qubit would help alleviate the error caused by off-resonant coupling. For multi-

ple ions in a trap, the nearest transition would be defined by the difference in second order

Zeeman shifts for multiple ions, which is on the order of 10 kHz. There is still therefore a

limit on the achievable Rabi frequency in order to keep cross talk to a minimum. However,

for small numbers of ions in a confining potential, there are fewer off-resonant transitions

than for the dressed state qubit, which can off-resonantly couple to the states |D〉, |u〉 and

|d〉. The clock qubit also exhibits a considerably longer lifetime, so the infidelity resulting

from depolarising will become negligible at the level of error discussed here.



Chapter 6

Robust two qubit gates

6.1 Introduction

In order to implement universal quantum computation, a two ion entangling gate is re-

quired as well as a set of single qubit gates, which were demonstrated in the previous

chapter. Two qubit gates have been demonstrated on pairs of trapped ions with high

fidelity using optical fields [18, 19], and long-wavelength radiation gates are demonstrat-

ing increasing fidelities [28, 30]. However, maintaining these fidelities while scaling to a

large quantum computer will require gates that are more robust. Many proposed trapped

ion architectures require ions to be trapped close to the surface of a microfabricated chip

[35, 36, 38, 79]. This could result in increased gate infidelities due to heating and dephasing

of the ions’ motion caused by voltage fluctuations in the electrodes of the chip [80], since

the heating rate scales unforgivingly with d−4, where d is the ion-electrode distance [32].

Additionally, it is likely that parameters will slowly change, either from position to posi-

tion on the chip or due to drift over time. This problem is exacerbated at higher values of

the initial mean excitation of the motional mode, n̄, which, for example, could be induced

by heating during ion shuttling processes required in many architectures [35, 36, 38]. A

quantum computer will therefore require gate operations that are both high fidelity and

resilient to imperfect experimental environments.

The Mølmer-Sørensen (MS) gate [14, 15] is a widely used geometric phase gate where

states are driven in circular trajectories in phase space and state dependently pick up a

phase. The resilience to infidelity caused by heating on these gates can be improved by

performing multiple smaller circles in phase space. However, this has an adverse effect

on the gate time, which scales as the number of circles completed. As in the previous

chapter, many sources of infidelity become increasingly important over longer gate times,

99
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such as parameter drift and dephasing/depolarising. Hayes et al. experimentally demon-

strated a similar technique as a method of reducing the effect of a ‘symmetric’ detuning

error [81], such as caused by a drift in trap frequency. Recent theoretical work [82] has

proposed a novel method to protect against errors due to heating and symmetric detuning

errors by tracing out more complicated paths in phase space. In this chapter, I experi-

mentally demonstrate these new Multi-Tone Mølmer-Sørensen (MTMS) gates, and show

their resilience to heating and symmetric detuning errors by comparing to standard MS

gates. Sections 6.2-6.4 present a standard two qubit Mølmer-Sørensen gate and the dom-

inant error sources causing infidelity. In section 6.5, I introduce MTMS gates and show

theoretically and experimentally how they mitigate many of these sources of gate infidelity.

6.2 Spin-motion entanglement in a single ion

In order to understand the Mølmer-Sørensen interaction for two ions, it is useful first to

derive the entanglement of the spin and motion for a single ion as this is the driving

mechanism for two ion entanglement. As shown in section 2.4.2, red and blue sideband

interactions with the ion driven by long-wavelength radiation have the following Hamilto-

nians:

Hr = −~ηΩ0

2
(σ+ae

−iδrteiφr + σ−a
†eiδrte−iφr) (6.1)

Hb =
~ηΩ0

2
(σ+a

†e−iδbteiφb + σ−ae
iδbte−iφb) (6.2)

where η is the effective Lamb-Dicke parameter, Ω0 is the carrier Rabi frequency, δr and δb

are the detunings from the red and blue sidebands, and φr and φb are the phases of the

fields applied to the red and blue sidebands.

A Mølmer-Sørensen interaction involves off-resonantly driving both the red and blue

sidebands of an ion, with equal and opposite detuning so that δr = −δb = δ. This gives a

Hamiltonian

HMS =
~ηΩ0

2
[eiδta†(σ+e

iφb − σ−e−iφr)− e−iδta(σ+e
iφr − σ−e−iφb)]. (6.3)

We can define spin and motional phases

φs =
1

2
(φr + φb)

φm =
1

2
(φr − φb)

(6.4)
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which allows us to factorise the Hamiltonian into spin and motional parts

HMS = − i~ηΩ0

2
Sφ[eiδta†e−φm − e−iδtaeiφm ], (6.5)

where we have defined the Mølmer-Sørensen spin operator

Sφ = i(σ+e
iφs − σ−e−iφs). (6.6)

This spin operator has eigenstates that are superpositions of the basis states, |←φ〉 =

1√
2
(|↓〉+ieiφs |↑〉) and |→φ〉 = 1√

2
(|↓〉−ieiφs |↑〉) and so can be written as Sφ = |←φ〉 〈←φ|−

|→φ〉 〈→φ|.

This Mølmer-Sørensen Hamiltonian is time-dependent, and in order to understand the

evolution of states in time we can use the Magnus expansion. This is a method used to

find an approximation of the time-dependent Schrödinger equation that is unitary to any

order, described in [83]. The Magnus expansion allows the unitary operator to be written

as

U(t, t0) = exp

{[∑
k

Ok

]}
. (6.7)

The first term of this expansion can be calculated as

O1 = − i
~

∫ t

0
dt′H(t′)

= Sφ(α(t)a† − α∗(t)a),

(6.8)

where we have defined

α(t) =
iηΩ0

2δ
e−iφm(eiδt − 1). (6.9)

The second term in the Magnus expansion is given by

O2 = − 1

2~2

∫ t

0

∫ t′

0
dt′′dt′[H(t′), H(t′′)]

= iS2
φχ(t),

(6.10)

where we have defined

χ(t) =
η2Ω2

4δ2
(δt− sin δt). (6.11)

In this case, the Magnus expansion gives an exact solution since all higher order terms

are equal to zero. Third order terms and above involve nested commutators, such as

[H(t), [H(t′), H(t′′)]], which are all equal to zero.
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Figure 6.1: States |←φ〉 and |→φ〉 are driven in circles in phase space in opposite directions,
as indicated by the blue and red lines, plotted here for an ion starting in motional state
|n = 0〉, which is equivalent to the coherent state with α = 0. When the states are
removed from the origin, the spin and motional states of the ion are entangled. At times
τ = 2πq/δ, the circles in phase space close and there is no spin-motion entanglement. The
states acquire a phase equal to twice the area of the circles in phase space, which for the
single ion case is global but for two ion entanglement is crucial.

The time evolution unitary operator can then be written as:

UMS(t) = exp
{

(Sφ(α(t)a† − α∗(t)a))
}

exp
{

(iχ(t)S2
φ)
}

= eiχ(t)(|←φ〉 〈←φ|D(α(t)) + |→φ〉 〈→φ|D(−α(t)))

(6.12)

where D(α(t)) = eα(t)a†−α∗(t)a is the displacement operator.

From this unitary, we can see that a spin dependent force is exerted on the ions, with

states |←φ〉 and |→φ〉 being displaced in opposite senses. The form of α(t) (equation 6.9)

shows that the states move in a circular trajectory in phase space, moving with radius

R = ηΩ0

2δ around centre C± = ± iηΩ0

2δ e
−iφm . This is shown in figure 6.1, a phase space plot

of the real and imaginary parts of α(t), where states |←φ〉 and |→φ〉 move in circles in

opposite directions. At times τ = 2πq/δ the states return to the origin and the circles

close, where q is an integer defining the number of circles performed. However, despite

returning to their initial motional state, the states have acquired a phase. This is known

as the geometric phase, and is given by χ(τ) = q2πR2, which is equal to twice the area of

the circle(s) completed in phase space. For the single ion case, this phase is global and so

can be disregarded, but it becomes crucial for two ion entanglement.
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Entanglement between the spin and motional states of the ion can be generated by

preparing it in a superposition of the spin eigenstates, such as |↓〉 = 1√
2
(|←φ〉 + |→φ〉).

For an ion prepared in the motional ground state |↓〉 |n = 0〉, the state evolves with time

t as

|ψ(t)〉 =
1√
2

(|←φ〉 |α(t)〉+ |→φ〉 |−α(t)〉). (6.13)

The two states move in opposite circular trajectories in phase space, as shown in figure 6.1.

When the motional states are separated in phase space, there is entanglement between

the spin and motional states, and at times τ the states return to the origin. Importantly,

the displacement and phases are not dependent on the ion’s initial motional state. While

shown above for the initial motional state |n = 0〉, this can be extended to any initial

motional state, and spin eigenstates will still move in circles in phase space and return to

the same initial state.

6.3 Two ion entanglement

This entanglement between the spin and motional states of a single ion is crucial for the

entanglement of the spin states of two ions. Instead of applying detuned fields to the

sidebands of a single ion, we apply them to both ions simultaneously, and the result is

an interaction where phase is acquired spin-dependently, thus allowing the possibility of

entanglement.

6.3.1 Theory

We can generalise the Mølmer-Sørensen interaction to two ions, so that we have a Hamil-

tonian of the form

HMS = H1
MS +H2

MS. (6.14)

Assuming that the detuning δ and the Rabi frequency Ω0 is the same for both ions, and

that we are only interacting with a single mode, we can write the Hamiltonians for each

ion, i, as

H i
MS = − i~ηiΩ0

2
Sφi(a

†eiδte−iφmi − ae−iδteiφmi). (6.15)

For two ions, there are two motional modes that may be used- the centre of mass (COM)

mode and the stretch mode, as described in 2.2.2. For the COM mode, the effective

Lamb-Dicke parameters for each ion are η1 = η2 = ηc, and for the stretch mode they are

η1 = −η2 = ηs. Following the same procedure as for the single ion case, we can find the
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effect of this time-dependent Hamiltonian by using the Magnus expansion to express it as

a unitary operator. The first order term, O1, is separable since it only involves first order

Hamiltonian terms in the integral, so can be expressed simply as the sum of the terms

given by equation 6.8 for each ion, with

αi(t) =
iηiΩ0

2δ
e−iφmi(eiδt − 1). (6.16)

The second order term, however, contains the commutator [HMS(t′), HMS(t′′)], so there

are cross terms between the two ions. The second term, given for the single ion case by

equation 6.10, becomes

O2 =
2∑

i,j=1

iχij(t)SφiSφj , (6.17)

and we can define

χij(t) =
ηiηjΩ

2
0

4δ2
(δt cos (∆φmij)− sin (∆φmij)− sin (δt−∆φmij)) (6.18)

where ∆φmij = φmi − φmj . The time evolution unitary can then be written as

UMS(t) = exp

{(
2∑
i=1

Sφi(αi(t)a
† − α∗i (t)a)

)}
exp


− 2∑

i,j=1

iχij(t)SφiSφj

. (6.19)

By setting the phases φs1 = φs2 = φm1 = φm2 = 0, we can write this as

UMS(t) =e−i(χ11+χ22+χ12+χ21)D(α1 + α2) |←←〉 〈←←|

+e−i(χ11+χ22+χ12+χ21)D(−α1 − α2) |→→〉 〈→→|

+e−i(χ11+χ22−χ12−χ21)D(α1 − α2) |←→〉 〈←→|

+e−i(χ11+χ22−χ12−χ21)D(−α1 + α2) |→←〉 〈→←|

(6.20)

where, for simplicity of notation, we have dropped the time dependence of χij(t) and

αi(t) For the COM mode, since η1 = η2, we find χ11 = χ22 = χ12 = χ21 = χc and

α1 = α2 = αc. This means that the displacements for |←→〉 and |→←〉 cancel out, while

|←←〉 and |→→〉 are displaced by 2αc(t). For the stretch mode, since η1 = −η2, we find

χ11 = χ22 = −χ12 = −χ21 = χs and α1 = −α2 = αs. This means that the opposite to the

COM case is true – the displacements cancel for |←←〉 and |→→〉, and |←→〉 and |→←〉

are displaced by 2αs(t). In both cases, a relative phase of 4χ(t) is accumulated between

the sets of states, where χ(t) is χs(t) or χc(t) depending on the mode being used. It is
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this geometric phase that allows entanglement to be produced.

If ions are prepared in state |↓↓〉 |n = 0〉 ≡ 1√
2
(|←←〉+|→→〉+|←→〉+|→←〉) |n = 0〉,

then, for COM mode entanglement, our state evolves in time as

|ψc(t)〉 =e−4iχc(t) |←←〉 |2αc(t)〉

+e−4iχc(t) |→→〉 |−2αc(t)〉

+ |←→〉 |n = 0〉

+ |→←〉 |n = 0〉 ,

(6.21)

and for the stretch mode

|ψs(t)〉 = |←←〉 |n = 0〉

+ |→→〉 |n = 0〉

+e−4iχs(t) |←→〉 |2αs(t)〉

+e−4iχs(t) |→←〉 |−2αs(t)〉 .

(6.22)

As for the single ion case, full circles in phase space are completed when α(τ) = 0 at

times τ = 2πq/δ, where q is an integer which defines the number of complete circles per-

formed. At these times, there is no residual entanglement between the spin and motional

modes. In order to create a maximally entangled state, we need to ensure the relative

phase acquired 4χ(τ) is equal to π/2. This can be achieved by setting

δ = ±2
√
qηΩ0. (6.23)

By setting the detuning appropriately, it is therefore possible to generate maximally en-

tangled states.

For an ion initialised in spin state |↓↓〉 but in a thermal state with mean number n̄

rather than in the ground state |n = 0〉, the density matrix can be used to understand the

evolution of state probabilities. This can be defined as

ρth(t) =

∞∑
n=0

pn |ψn(t)〉 〈ψn(t)| , (6.24)

where the thermal coefficients are defined as pn = (1/(1 + n̄))(n̄/(1 + n̄))n and the state

|ψn(t)〉 is

|ψn(t)〉 = e4iχ(t)(|←←〉+ |→→〉) |n〉+ |←→〉D(2α(t)) |n〉+ |→←〉D(−2α(t)) |n〉 . (6.25)



106

We are using α(t) and χ(t) to represent either the COM or stretch mode functions, since

the following analysis is equivalent for both. The reduced density matrix is found by

tracing over the motional states. This describes only the spin degree of freedom, and is

given by

ρ
(s)
th (t) =

∞∑
m=0

〈m| ρth(t) |m〉 . (6.26)

This reduced density matrix can be used to find expressions for the evolution of the

probabilities of the states |↑↑〉, |↓↓〉, |↓↑〉 and |↑↓〉:

P (↑↑) =
1

8
(3 + e−16|α(t)|2(n̄+ 1

2
) − 4 cos (4χ(t))e−4|α(t)|2(n̄+ 1

2
)), (6.27)

P (↓↓) =
1

8
(3 + e−16|α(t)|2(n̄+ 1

2
) + 4 cos (4χ(t))e−4|α(t)|2(n̄+ 1

2
)), (6.28)

P (↑↓) = P (↓↑) =
1

8
(1− e−16|α(t)|2(n̄+ 1

2
)). (6.29)

At the gate time τ , when α(τ) = 0, the spin state of the ion should be entirely composed

of the states |↑↑〉 and |↓↓〉.

To find the fidelity of the state produced at the gate time τ , we can calculate the

overlap with the ideal Bell state, given by |ψφ〉 = 1√
2
(|↓↓〉+ eiφ |↑↑〉). This gives

FBell = 〈ψφ| ρ |ψφ〉 =
1

2
(ρ↑↑,↑↑ + ρ↓↓,↓↓ + eiφρ↓↓,↑↑ + e−iφρ↑↑,↓↓) (6.30)

where ρ↑↑,↑↑ = P (↑↑) is given in equation 6.27 and ρ↓↓,↓↓ = P (↓↓) is given in equation

6.28. The specific phase φ of the Bell state is usually unimportant as it can be corrected

for using single qubit rotations. By calculating the relevant density matrix elements for

the Bell state |ψ〉 = (|↓↓〉 + i |↑↑〉)/
√

2, we can use equation 6.30 to find the theoretical

fidelity as a function of time, given by

FBell =
1

8
(3 + e−16|α(t)|2(n̄+ 1

2
) + 4 sin (4χ(t))e−4|α(t)|2(n̄+ 1

2
)) (6.31)

which gives a fidelity FBell = 1 at the gate time τ , indicating a maximally entangled

two qubit state. While this method has been demonstrated here for two ions, it can be

generalised to higher numbers of ions.

6.3.2 Measuring the fidelity

The fidelity of a two qubit gate can be characterised by measuring the overlap of the

final state with a Bell state, as defined in equation 6.30. The first two terms, ρ↓↓,↓↓ and
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ρ↑↑,↑↑, can be found by simply measuring the populations of the ions after a gate pulse,

allowing the probability P (↓↓) + P (↑↑) to be calculated. In order to find the off-diagonal

elements of the density matrix, we perform a parity measurement. A π/2 pulse is applied

to both ions simultaneously with the same phase, so that each ion experiences a rotation

R(π/2, φp), where φp is the phase of the pulse. We then define the parity as

Π = P (↑↑) + P (↓↓)− P (↑↓)− P (↓↑)

= 2|ρ↑↓,↓↑| cos (φ↑↓,↓↑)− 2|ρ↑↑,↓↓| cos (φ↑↑,↓↓ + 2φp).
(6.32)

where |ρ↑↓,↓↑| and |ρ↑↑,↓↓| are the amplitudes of the complex matrix elements, and φ↑↓,↓↑

and φ↑↑,↓↓ are the arguments. By scanning the phase of the parity pulse φp, we find that

the parity oscillates at a rate 2φp, and therefore by fitting a cosine function to the resultant

measurement, we can find the value of |ρ↑↑,↓↓|. Taking the average of the population and

parity measurement gives us the total fidelity.

6.3.3 Two ion entanglement using the dressed state qubit

As discussed in chapter 4, the dressed state qubit can be used to reduce the susceptibility

of a qubit to magnetic field noise while maintaining the sensitivity to magnetic fields which

allows for coupling between spin and motional states. We therefore use a dressed state

qubit to perform two ion entanglement, using the pair of states {|0′〉 , |D〉} as the qubit so

that for the derivation shown above |↓〉 ≡ |0′〉 and |↑〉 ≡ |D〉. The gate Rabi frequency Ω0

is given by Ω0 = ΩD = Ωrf/
√

2. The different transition frequencies of the two ions in the

magnetic field gradient mean that four distinct gate fields are required, corresponding to

two for each ion.

Due to the nature of our dressed state qubit, when performing an MS gate there is an

AC Stark shift present that does not exist in a two level system. AC Stark effects resulting

from the gate fields on the dressed states connected to |0′〉 via |+1〉 are cancelled out due

to symmetry. However, AC Stark shifts on the dressed states connected to |0′〉 via |−1〉
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result in a shift in the qubit transition frequency ω0′↔D. This is given by

∆ω0′↔D =
Ω2

D

2

(
1

−∆ωz + νz
+

1

−∆ωz − νz

)
+

Ω2
ud

4

(
1

−∆ωz + νz − Ωµw/
√

2
+

1

−∆ωz + νz + Ωµw/
√

2

+
1

−∆ωz − νz − Ωµw/
√

2
+

1

−∆ωz − νz + Ωµw/
√

2

)

≈ 3Ω2
0∆ωz
2ν2
z

(6.33)

where ∆ωz is the second order Zeeman shift, Ωµw is the dressing field Rabi frequency,

Ωud = ΩD/
√

2 is the Rabi frequency of the |0′〉 ↔ |u〉 and |0′〉 ↔ |d〉 transitions, and we

have made the approximations |δ0 + νz| ≈ |νz| and |νz| � ΩD,Ωµw. This Stark shift can

be compensated for by shifting the frequencies of the gate fields to δb = −δ + ∆ω0′↔D

and δr = δ + ∆ω0′↔D so that they are symmetric around the Stark shifted carriers. The

AC Stark shifts are different for each ion due to the different values of the second order

Zeeman shift.

6.3.4 Experimental demonstration

We demonstrate a long-wavelength driven two qubit gate using the dressed state qubit, as

presented in [28]. The stretch mode of the two ions was used with a frequency of νs/2π =

459.34(1) kHz, and the ions were sideband cooled using microwave radiation on the |0〉 to

|+1〉 red sideband transition to cool the ion to n̄ ≈ 0.14. The ions were prepared in the

state |0′0′〉 by first optically pumping to |00〉 and then using π pulses on the clock transition

|0〉 ↔ |0′〉 for each ion. Microwave dressing fields of Rabi frequency Ωµw1/2π = 20.5 kHz

and Ωµw2/2π = 21.6 kHz were applied to the |0〉 ↔ |−1〉 and |0〉 ↔ |+1〉 transitions for

each ion respectively. The dressing field Rabi frequencies for each ion are set to different

values in order to suppress the spin-spin coupling due to the static magnetic field gradient

which drives population between |DD〉 and (|ud〉+ |du〉)/
√

2 [53], therefore causing error.

The qubit transition frequency |0′〉 ↔ |D〉 was measured using a π pulse of 2 ms, and the

gate power was set to Ω0/2π = 45.4 kHz. The gate time was 2.7 ms and the gate pulse

was ramped over a time of 10µs at the beginning and the end of the gate pulse with a

sin2 shape. The measured evolution of the states over twice the gate time is shown in

figure 6.2, where solid lines show the theoretical evolution of the population probabilities

P (0′0′), P (DD), and P (0′D)+P (D0′). Good agreement is seen between the experimental

data and the theory curves, with a small deviation at the end of the time scan which may
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Figure 6.2: Single loop Mølmer-Sørensen gate performed in the dressed state basis, with
stretch mode frequency ν/2π =459.34(1) kHz, gate field Rabi frequency Ω0/2π =45.4 kHz
and gate time τ =2.7 ms. A gate time scan is shown (top) where solid lines show theoretical
population probabilities P (0′0′) (red), P (DD) (blue), and P (0′D)+P (D0′) (black). A par-
ity oscillation at the gate time is shown (bottom) with fitted amplitude P=0.972(17). The
parity oscillation and a separate population measurement give a fidelity FBell =0.985(12).
Figure from [28]
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be due to an incorrectly set AC Stark shift or a drift of gate parameters. The population

at the gate time was measured to be P (0′0′)+P (DD)=0.997(8) using 1300 repetitions. A

parity curve is shown below the population time scan, and a fit to this gives P = 0.972(17).

These two measurements give a gate fidelity of FBell = 0.985(12). The sources of error

contributing to the infidelity will be discussed in the next section.

6.4 Gate errors

Two qubit gates are subject to various sources of errors which limit the fidelity. These

errors can be classed into two broad categories: errors that are due to the fundamental

nature of the system (such as heating and depolarisation), and errors due to experimental

mis-set, drift or noise (such as detuning mis-set). In order to optimise gate parameters,

all these errors must be taken into account. The error budget for the gate experimentally

demonstrated in the previous section is shown in table 6.1. This budget agrees within

experimental error to the measured infidelity. In this section, I will explain these leading

error terms, as well as errors that arise from parameter mis-set.

Source Infidelity (10−2)

Motional heating 0.96

Depolarisation 0.27

Carrier coupling < 10−4

Kerr coupling 0.08

Total 1.31

Table 6.1: Error budget for the experimental implementation of the MS gate shown in
figure 6.2.

6.4.1 Heating

Although there is no entanglement between spin and motional states at the end of the

gate operation, heating of the motional mode during the gate process while the spin and

motional states are entangled induces error. In order to understand the effect of this

heating, we can model the evolution of the density matrix using a Master equation [14].

This approach was used for studying the effects of depolarising on single qubit gates in

section 5.5.4. The Master equation is

d

dt
ρ = −i[HMS, ρ] + L(ρ) (6.34)
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where the Lindbladian L(ρ) is of the form

L(ρ) = −1

2

∑
m

(C†mCmρ+ ρC†mCm) +
∑
m

CmρC
†
m. (6.35)

For heating, the Lindblad operators are C1 =
√

˙̄na and C2 =
√

˙̄na†, where ˙̄n is the heating

rate in quanta per second. Moving to the interaction picture with respect to the gate

Hamiltonian HMS so that heating is the only interaction, we find that the operators C1

and C2 transform as

C̃1 =
√

˙̄n(a− iα∗(t)Sφ) (6.36)

C̃2 =
√

˙̄n(a† + iα(t)Sφ) (6.37)

which is a formal representation of the fact that heating during the gate operation affects

the qubit states. These expressions can be substituted into the Master equation, and

by tracing over the motional states we find an equation for the elements of the reduced

density matrix

ρ̇Mφ,M
′
φ
(t) = − ˙̄n|α(t)|2(Mφ −M ′φ)2ρMφ,M

′
φ
(t) (6.38)

where Mφ and M ′φ are the eigenvalues corresponding to SφρMφ,M
′
φ
(t) and ρMφ,M

′
φ
(t)Sφ

respectively. Substituting in the expression for α(t) and integrating gives the reduced

density matrix at the gate time τ

ρMφ,M
′
φ
(τ) = ρMφ,M

′
φ
(0) exp

{(
− ˙̄n

(Mφ −M ′φ)2

8q
τ

)}
. (6.39)

In this interaction picture, the density matrix is ideally constant and the exponential term

represents the detrimental effect of heating. We can then move back to the lab frame where

we find that this heating effect causes elements of the gate density matrix to decohere at

different rates, depending on the Sφ eigenvalues. Finding the fidelity at the gate time

using the expression in equation 6.30 gives an infidelity due to heating of

εheating = 1− 1

8
(3 + 4e

− ˙̄nτ
2q + e

− 2 ˙̄nτ
q ) (6.40)

which, for small infidelities, approximates as

εheating =
4 ˙̄nτ

q
. (6.41)
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Increasing the number of loops q can therefore reduce the infidelity caused by heating.

However, the gate time increases with
√
q so other errors will become increasingly impor-

tant.

6.4.2 Dephasing and depolarising

Following the approach taken in section 5.5.4 for the dephasing and depolarising of the

dressed state qubit, we can model this process using a Master equation. Measurements

of the lifetime and coherence time at the time of the two qubit gate implementation gave

equal results of approximately T1 ≈ T2 ≈ 0.65 s. This suggests that the dominant process

is depolarising, where population is driven between |D〉 and {|u〉 , |d〉}. This effect has

been simulated by Dr J. Randall [53], taking the worst case scenario by preparing the two

ions in a Bell state and simulating the effect of the depolarising noise terms over the gate

time. An exponential decay analytical expression was found to fit the results well, giving

εdepolarisation = (1− F0)(1− e−
γ0τ
T1 ), (6.42)

where T1 is the lifetime of the qubit, measured as T1 = 0.63(4) s , and F0 = 0.2778 and

γ0 = 0.92 were found to give good agreement on timescales similar to the gate time.

Reducing the gate time τ is therefore the only way to decrease the depolarising error for

a fixed lifetime T1.

6.4.3 Off-resonant coupling

We have assumed so far that gate fields only interact with the sideband they are addressing.

This is a good approximation in the limit Ω0 � ν where Ω0 is the Rabi frequency of the

gate fields and ν is the secular frequency of the motional mode used for the gate, and so

is approximately the frequency splitting between the gate fields and the carrier transition.

However, as Ω0 becomes larger, the off-resonant excitation also increases. Since higher

gate power to drive faster gates is generally desirable, this effect becomes important. The

excitation caused by the gate fields interacting with off-resonant transitions is oscillatory

in behaviour at a frequency equal to the detuning from the carrier, ν + δ. This behaviour

is coherent, so if the gate time is set at a multiple of the oscillation period we should

not see any adverse effects on the gate fidelity. However, such time accuracy is difficult to

obtain. Furthermore, in our dressed state system, we have multiple concurrent off-resonant

excitations, and finding a time which minimises all oscillations would be challenging.

We therefore see the introduction of an infidelity given approximately by Ω2/∆2 [14].
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This can be understood from equation 2.30, where the amplitude of the oscillations is

given by Ω2/(Ω2 + ∆2), which for Ω� ∆ can be approximated as Ω2/∆2. For the dressed

state system, there are six off-resonant carrier excitations due to the six dressed states.

For the two |D〉 excitations, the Rabi frequency is given by ΩD = Ω0 and for the |u〉

and |d〉 terms the Rabi frequency is Ωud = Ω0/
√

2. We can approximate that all of the

dressed states are detuned from the gate fields by the secular frequency ν, since δ � ν

and Ωµw/
√

2� ν. We therefore have a total error term of

εc ≈ 2
Ω2

D

ν2
+ 4

Ω2
ud

ν2
=

4Ω2
0

ν2
. (6.43)

This error term becomes large as the gate Rabi frequency Ω0 becomes comparable to the

motional mode frequency ν.

This error can be significantly reduced, however, by introducing pulse shaping [84],

where instead of instantaneously turning the gate fields on or off, the RF field amplitude

is ramped up or down at the beginning and end of the gate pulse over a time tramp using a

sin2 shape, as in section 5.5.1. This is demonstrated in figure 6.3, a two level simulation of

a two qubit gate at secular frequency ν/2π = 460 kHz of total time 3.4 ms, which includes

off-resonant coupling to the carrier. For the case where there is no pulse shaping, the

population P (↑↓) + P (↓↑) oscillates and, depending on the exact timing of the gate, the

average error would be approximately 2.5%. However, with a ramp time of 10µs, which is

a fraction of 0.3% of the total gate time, this source of error is almost completely removed.

Figure 6.4 shows the fidelity as a function of the Rabi frequency, when the Rabi

frequency is expressed as a proportion of the secular frequency (i.e. the detuning between

the gate field and the off-resonant carrier excitation transition). The secular frequency

is again 460 kHz. Two qubit gate simulations are shown with pulse shaping times 0µs

and 10µs. In general, the limit Ω0/ν ≤ 0.1 is imposed, which is equivalent to keeping

the off-resonant coupling error to on the order of 10−4 or less, which makes the error

negligible in this implementation. Longer ramp times are not used since they would affect

the character of the gate as they become significant compared to the gate time.

6.4.4 Symmetric detuning

A gate error is induced if the magnitude of the detuning from the sideband for each ion is

incorrect, so that δr = δ + ∆ and δb = −δ −∆, where δ = 2
√
qηΩ is the correct detuning

and ∆ is a small detuning mis-set. This symmetric detuning would typically be the same

for both ions by ensuring that the frequency splitting between the two gate fields is the
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Figure 6.3: Off-resonant coupling to a carrier transition for a two level system is simulated
for a two qubit gate driven at Ω0 ≈ 0.08ν, where ν/2π = 460 kHz. The error in the final
20µs is shown. The blue line shows the gate with no pulse-shaping, and the error can be
seen to oscillate between around 0 and 5%. The orange line shows a gate with a 10µs
ramp time at the beginning and end of the gate, and it can be seen that the error ramps
down to approximately zero as the populations adiabatically follow the ramped pulse.
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Figure 6.4: The fidelity of a gate is simulated with off-resonant coupling to a carrier
transition with increasing ratio Ω/ν, where ν/2π = 460 kHz. The blue line is a gate with
no pulse shaping, and it can be seen that the fidelity (averaged over 2 oscillations) quickly
decreases. The orange line is with a 10µs ramp time, which can be seen to protect against
this error.



115

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

0.75

0.80

0.85

0.90

0.95

1.00

Δ/δ

F
id
el
ity

n=0, Simulation

n=10, Simulation

n=0, Analytical

n=10, Analytical

Figure 6.5: The fidelity with a symmetric detuning mis-set ∆ is simulated and shown by
solid lines for n̄ = 0 (blue) and n̄ = 10 (orange). The analytical approximations are also
shown for both initial mean motional states by dashed lines, with good agreement seen
at low values of ∆/δ. A high increase in sensitivity to symmetric detuning is seen for the
higher value of n̄.

same for each ion. This kind of error can occur if the parameters are initially mis-set due

to an incorrect measurement of the secular frequency, or if there is an undetected change

in secular frequency over time (for example due to a drift in the voltage of the trapping

DC electrodes).

This mis-set in detuning means that loops in phase space do not completely close,

leaving residual entanglement between the spin and motional states of the ion at the end

of the gate operation. Furthermore, the accumulated phase is no longer equal to π/2, the

phase required to generate a maximally entangled state. Starting from equation 6.31 for

the fidelity of a two qubit gate, we can find an analytical expression for the error caused

by a symmetric detuning mis-set ∆ by expanding around the fidelity F = 1. This gives

ε∆ =
2q(2n̄+ 1) + 1

4
π2

(
∆

δ

)2

(6.44)

up to O(∆2).

Numerical simulations of gate infidelity as a function of fractional symmetric detuning

mis-set at initial mean motional states n̄ = 0 and n̄ = 10 are shown in figure 6.5 (solid

lines). The fidelity of the detuned state is calculated with respect to the Bell state produced

at zero detuning, to account for any unknown change in phase of the entangled state.

The asymmetry seen for higher positive fractional detunings shows the introduction of

third order and higher terms not included in equation 6.44. A significant increase in
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sensitivity is seen with higher n̄. This makes performing gates at higher initial mean

motional states, such as those achieved after Doppler cooling, challenging due to the high

sensitivity to parameter mis-set. This therefore means that near ground state cooling is

generally required to reach high fidelities. The analytical approximations from equation

6.44 are also shown (dashed lines), showing good agreement at low fractional symmetric

detunings.

6.4.5 Asymmetric detuning

Gate infidelity can also be caused by an asymmetric frequency mis-set, so that δr = δ+∆a

and δb = −δ + ∆a. This type of mis-set causes the gate fields to be asymmetrically

positioned around the carrier transition, and can be a result of an undetected change in

the qubit transition frequency on either ion, |0′〉 ↔ |D〉. It can also be caused by an

incorrectly set AC Stark shift. AC Stark shifts are calculated from equation 6.33, but if

either the gate powers are incorrectly measured or there is an undetected change in the gate

power, an asymmetric detuning is introduced. This type of detuning can be independent

for each ion. Due to the difficulty in obtaining an analytical expression for this type of

detuning error, we study its effects using numerical simulation as shown in figure 6.6. The

blue line shows the simulation results at n̄ = 0 for an equal asymmetric detuning on both

ions such that ∆1 = ∆2 = ∆a. The orange line instead is for an asymmetric detuning on

only one ion, so that ∆1 = ∆a and ∆2 = 0, and shows decreased sensitivity compared to

the case where both ions are detuned. The green line is a simulation for ∆1 = ∆2 = ∆a

at n̄ = 10, and, similarly to the symmetric detuning, we see an increase in sensitivity with

increased initial motional mode of the ion. Although n̄ = 10 is still below the Doppler

cooling limit, higher values of n̄ take a long time to simulate due to the large number of

motional states required to form an effectively complete Hilbert space.

6.4.6 Rabi frequency mis-set

Gate infidelity can result from an incorrect gate Rabi frequency, so that for the two ions

Ω1 = Ω2 = Ω0 + ∆Ω. In this case, full circles are still completed in phase space, as

α(τ) = 0. However, the phase accumulated during the gate will be incorrect. We can find

an expression for the error caused by this as before by expanding the fidelity around F = 1
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Figure 6.6: Results of a numerical simulation for an asymmetric detuning mis-set ∆a on
the two qubit gate, with fidelity plotted against ∆a as a fraction of the gate detuning δ.
At n̄ = 0, we consider two cases: an equal asymmetric detuning on both ions (blue), and
an asymmetric detuning on only one ion (orange), which exhibits a lower sensitivity. A
simulation at n̄ = 10 is also shown (green), which shows a higher sensitivty to asymmetric
detuning.

[85]. Using equation 6.31, we can write the fidelity at the gate time, where α(τ) = 0, as

F =
1

2
(1 + sin (

π

2
−∆φ))

≈ 1− 1

4
∆φ2

(6.45)

where ∆φ is the error in the acquired phase from the ideal value of π/2, and the approxi-

mation is for small values of ∆φ. The error can then be written as

ε∆Ω ≈
π2

4

(
∆Ω

Ω0

)2

. (6.46)

There is therefore no dependence on n̄, and the overall sensitivity is lower than the sensi-

tivity to symmetric detuning errors.

We can also calculate what happens during the gate when the Rabi frequencies are

mismatched, so that Ω1 6= Ω2. Gate parameters are set using the average value of Rabi

frequency, so that Ω0 = 1
2(Ω1 + Ω2), and we define ∆Ω12 = 1

2(Ω1 − Ω2). In this case,

ions experience different magnitude forces, and the displacements are not equal since

α1(t) 6= α2(t). This means that all four two ion states move in circles, since displacement

is not completely cancelled, as can be seen from equation 6.20. All of these circles close at

the gate time, but the relative phase acquired is imperfect. The phase acquired by each
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of the four states can be calculated, using

χij(τ) =
π

8

ΩiΩj

Ω2
0

. (6.47)

For the COM mode, the two states which would normally be displaced, |←←〉 and |→→〉,

acquire a phase of

φ = χ11(τ) + χ22(τ) + χ12(τ) + χ21(τ)

=
π

8

(Ω1 + Ω2)2

Ω2
0

=
π

2
.

(6.48)

However, the states |←→〉 and |→←〉, which for perfect experimental parameters would

remain stationary, also acquire a phase. This is given by

∆φ = χ11(τ) + χ22(τ)− χ12(τ)− χ21(τ)

=
π

8

(Ω1 − Ω2)2

Ω2
0

=
π

2

(
∆Ω12

Ω0

)2

.
(6.49)

There is therefore an error in the acquired relative phase of −∆φ. Using equation 6.45,

the error can be written as

εΩ1 6=Ω2 =
π2

16

(
∆Ω12

Ω0

)4

. (6.50)

This error is the same for the stretch mode. The fractional dependence is two orders of

magnitude smaller than for error for a Rabi frequency offset on both ions given in equation

6.46, so this error is negligible.

6.4.7 Kerr effect

The non-linear form of the Coulomb repulsion between ions leads to a small inherent

anharmonicity in any motional modes that involve relative motion between the ions, such

as the stretch mode. This means that the frequency of the mode is dependent on ion

separation, and leads to a coupling between modes. The axial stretch mode we use for

the gate is then coupled to the radial rocking mode. The form of this coupling is given by

[86, 87]

Hkerr = ~Kasa†sara†r (6.51)

where as and ar are the ladder operators for the stretch and rocking modes respectively,

and the coupling constant is given by

K = −νs
2

(
1 +

ν2
s

4ν2
r − ν2

s

)(
νz
νr

)(
2~νz
α2mc2

) 1
3

(6.52)
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Figure 6.7: Infidelity due to Kerr coupling of the stretch mode used for the gate to
the radial modes, plotted against the frequency of the COM mode νz for radial modes
νxy = 1 MHz and νxy = 2 MHz, and initial phonon state of the stretch mode n̄ = 0 and
n̄ = 5.

where νz is the axial trap frequency, νs =
√

3νz is the stretch mode frequency, νr =√
ν2
⊥ − ν2

z is the rocking mode frequency, ν⊥ is the radial mode frequency (either νx or

νy), and α is the fine structure constant. There is therefore a modification of the stretch

mode frequency as a function of the number of phonons in the rocking mode, given by

Knr where nr is the initial mean occupation of the radial motional mode, and this leads to

a symmetric detuning error. For a thermal occupation of the radial mode, this fluctuation

of the symmetric detuning varies between experiments. The error can be calculated by

substituting the variance of the thermal occupation number Var(n̄r) = n̄r(2n̄r + 1) into

the equation for symmetric detuning, giving an error [85]

εkerr = K2n̄r(2n̄r + 1)

(
π2

δ2

)(
1 + 2q(1 + 2n̄s)

4

)
. (6.53)

Since there are two radial modes in the x and y direction with approximately the same

frequency, the total error is 2εkerr.

This error is plotted in figure 6.7 for different values of the radial frequency νxy and

initial average axial phonon mode occupancy n̄s. It can be seen that the error is most

effectively reduced by increasing the radial mode frequency. A lower initial value of n̄s

also reduces the Kerr error.
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6.4.8 Other errors

Whilst there are other errors which may affect the gate, they are negligible in our system

compared to the errors discussed above. For example, there is an additional error term

from the spin-spin coupling due to the magnetic field gradient which drives population

between |DD〉 and (|ud〉 + |du〉)/
√

2 [53]. However, this effect can be made off-resonant

by setting the dressing field Rabi frequency, which defines the splitting between |D〉 and

{|u〉 , |d〉}, to different values for each ion. A splitting of ∆Ω = 1 kHz is enough to suppress

the error so that it is negligible compared to other errors. Other errors which are often

significant for implementations of the Mølmer-Sørensen gate include deviations from the

Lamb-Dicke regime and coupling to spectator modes [14]. However, due to the small value

of the Lamb-Dicke parameter in our implementation, these errors are unimportant. Fur-

thermore, approximations in the dressed state picture leads to extra error terms, discussed

in [88], but these were also found to be negligible in this case.

6.5 Multi-tone two ion entanglement

While gate errors can be small in perfect experimental conditions, it is likely that when

moving to large scale quantum computing architectures they will become increasingly

important. In particular, heating is likely to become increasingly important due to the

smaller ion-electrode distances typical of the microfabricated ion traps used in many archi-

tectures [35, 36, 38, 79]. Realistic experimental environments are also likely to be noisier

and less stable [89, 90], and gate parameters may slowly change over time or across the

surface of the chip. Robust gates that can reach and maintain high fidelities in large scale

quantum computing architectures are therefore required. Haddadfarshi et al. [82] showed

that by using multi-tone Mølmer-Sørensen (MTMS) gates, it was possible to reduce the

effect of heating on the gate. In collaboration with Sam Collingbourne and Dr Florian

Mintert [91], we found that the same method also protected against symmetric detuning

errors, discussed for a standard MS gate in section 6.4.4. Here, I summarise Haddadfarshi

et al.’s work and show how this also provides protection against symmetric detuning errors,

and demonstrate both protection against heating and symmetric detuning experimentally.

I also discuss how this method can be used to mitigate the effects of off-resonant coupling

and Kerr coupling errors.
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6.5.1 Two ion entanglement

In this method, the single field used to address each sideband in standard MS gates

is replaced by N fields at detunings δk = kδ with powers Ωk = ckΩ0, as depicted in

the energy level diagram in figure 6.8. By choosing optimal values of ck, a maximally

entangled state is created while providing protection against multiple sources of error.

The Mølmer-Sørensen Hamiltonian in equation 6.15 can be generalised to multiple tones.

The two ion Mølmer-Sørensen Hamiltonian for N tones is

HN
MS =

N∑
k=1

H1,k
MS +H2,k

MS, (6.54)

where the Hamiltonian for ion i and each tone k is

H i,k
MS =

i~ηiΩk

2
Sφi(a

†eikδte−iφmi − ae−ikδteiφmi). (6.55)

In order to evaluate the time dependence of the Hamiltonian, the Magnus expansion can

be used as for a standard MS gate. The first term is separable for ion i and tone k, so

can be generalised from equation 6.8, expressed as the sum of terms for each ion and each

tone as

O1 =
∑
i,k

Sφi(αik(t)a
† − α∗ik(t)a) (6.56)

with

αik(t) =
iηiΩk

2kδ
e−iφmi(eikδt − 1). (6.57)

The second term, however, contains cross terms due to the commutator so is not separable

for each ion. It can be written as a sum over ions i, j and tones m, k as

O2 =
∑
i,j,m,k

iχijmk(t)SφiSφj . (6.58)

The expression for χijmk(t) differs in the cases m 6= k and m = k. Simplifying these

expressions by setting φmi = φmj = 0 gives

χijmk(t) =
ηiηjΩmΩk

4δ2

(
1

k(m− k)
sin (δ(m− k)t)− 1

mk
sin (δmt)

)
(6.59)

for m 6= k, and

χijkk(t) =
ηiηjΩ

2
k

4k2δ2
(kδt− sin (kδt)) (6.60)
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for m = k. The time evolution unitary operator is therefore

UMS(t) = exp

∑
i,k

Sφi(αik(t)a
† − α∗ik(t)a)

 exp

− ∑
i,j,m,k

iχijmk(t)SφiSφj

 . (6.61)

This is the same unitary as for the single tone case discussed in section 6.3.1, but gener-

alised over multiple tones with

αi(t)⇒
N∑
k=1

αik(t) (6.62)

and

χij(t)⇒
N∑

m,k=1

χijmk(t). (6.63)

As before, gates are completed at time τ = 2π/δ when αi(τ) = 0, and states will accumu-

late a relative phase, shown for the COM mode in equation 6.21 and the stretch mode in

equation 6.22. The amplitudes of the gate tones should be set so that the magnitude of

this accumulated phase is π/2 in order to create a maximally entangled state. For both

COM and stretch mode, a relative phase of 4χ(τ) is acquired, where χ(τ) is either 4χc(τ)

or 4χs(τ). To find this relative phase for the multiple tone gate, we can drop the ion

subscripts i, j and write

χ(τ) =
N∑

m,k=1

χmk(τ). (6.64)

We find that χmk(τ) = 0 for m 6= k, so that

χ(τ) =
η2Ω2

0π

2δ2

n∑
k=1

c2
k

k
=
π

8

n∑
k=1

c2
k

k
(6.65)

where the magnitude of η depends on the mode used and we have substituted Ωk = ckΩ0.

Imposing the condition 4χ(τ) = π/2 gives the condition on the gate tone amplitudes which

must be satisfied for generating maximally entangled states:

N∑
k=1

c2
k

k
= 1. (6.66)

This specifies the condition for entanglement, and in the following sections we will derive

further conditions on the gate tone amplitudes for maximising protection against heating

and symmetric detuning errors.
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Figure 6.8: (a) A diagram showing multiple gate tones driving the red and blue sideband
with a detuning of ∆r and ∆b respectively. (b) Phase space trajectories for one (red),
two (blue), and three (green) tone gates. For multi-tone gates, the average of the phase
space displacement over the duration of the gate is zero. As the number of tones increases
the trajectories become closer to circles around the origin, reducing the magnitude of
the displacement from the origin. Since it is this displacement which couples the qubit
states to motional decoherence, this reduces the effect of heating during the gate. Figure
(c) shows incomplete loops resulting from an incorrectly set gate detuning δ + ∆, which
causes error due to the residual entanglement between the spin and motional states of
the qubit and the incorrect phase accumulation. For the two and three tone gates, the
loops close to first order in ∆, as can be seen in the diagram, and the accumulated phase
becomes closer to that required for maximal entanglement, demonstrating the reduction
in sensitivity to symmetric detuning errors.
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6.5.2 Protection against heating

As discussed in section 6.4.1, decoherence of motional states due to heating during the

gate induces an error. This is characterised by the Master equation given in equation

6.34. Integrating this gives a general time dependence of an element of the reduced density

matrix

ρ̇Mx,M ′x(t) = − ˙̄n|α(t)|2(Mx −M ′x)2ρMx,M ′x(t). (6.67)

The heating is therefore characterised by the expression for α(t), which for MTMS gates

becomes a summation term α(t) =
∑N

k=1 αk(t). Haddadfarshi et al. showed that the error

due to heating is most effectively minimised by choosing coefficients such that 〈α(t)〉 = 0

and minimising 〈|α(t)|2〉 [82]. This can be understood by looking at the displacement

operator which characterises the heating error. For MTMS gates, we find

|α(t)|2 =

(
ηΩ0

2δ

)2
 n∑
j,k=1

ckcj
kj

cos ((j − k)δt)− 2
n∑
k=1

ck
k

cos (kδt)−

(
n∑
k=1

ck
k

)2
 . (6.68)

Substituting this into equation 6.67, integrating and evaluating at the gate time gives

ρMx,M ′x(τ) = ρMx,M ′x(0) exp


− ˙̄n(Mx −M ′x)2

 n∑
k=1

c2
k

k2
+

(
n∑
k=1

ck
k

)2
 τ

16

. (6.69)

Setting
∑N

k=1
ck
k = 0 is therefore the first condition for reducing the effect of heating on

the gate. The formula for the error is then the same as for a single tone gate, given in

equation 6.39, except the heating rate ˙̄n is replaced by an effective heating rate ˙̄neff , given

by

˙̄neff =
1

2

N∑
k=1

c2
k

k2
˙̄n. (6.70)

In order to minimise the error due to heating, this effective heating rate coefficient must

therefore be minimised. This gives a set of conditions for the coefficients that most effec-

tively protect against heating errors:

min

(
N∑
k=1

c2
k

k2

∣∣∣∣∣
N∑
k=1

c2
k

k
= 1,

N∑
k=1

ck
k

= 0

)
. (6.71)

This allows optimal coefficients to be found, and the resulting formulas are given in [82]

as

cj = 4
jb

1− jλ
(6.72)
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Figure 6.9: Gate fidelity simulation plotted against heating rate (in phonons s−1) for a
secular frequency of ν/2π = 460 kHz, detuning of δ0/2π = 292 Hz and single tone Rabi
frequency of Ω0/2π = 36 kHz. The gate time τ and first order detuning δ were kept
constant for each gate, and no other errors were incorporated in the simulation.

and

b = −1

4

 N∑
j=1

j

(1− jλ)2

− 1
2

(6.73)

where λ is the smallest root of the equation

N∑
j

(1− jλ)−1 = 0. (6.74)

From this, we can find the coefficients for N = {1, 2, 3} tones when the gate time τ and the

first order detuning δ is kept constant, which are shown in table 6.2. The resultant phase

Tones c1 c2 c3

1 1 0 0

2 − 1√
3
≈ −0.576 2√

3
≈ 1.152 0

3 −0.132 −0.719 1.474

Table 6.2: Amplitude coefficients for {N = 1, 2, 3} tone gates.

space trajectories from these multi-tone coefficients are shown in figure 6.8. At the end of

the gate, trajectories are closed and the phase picked up is that required for a maximally

entangled state, but the loops performed are more complicated than the simple circles

resulting from a single tone.

These coefficients give smaller effective heating rates than for a single tone gate. For
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N = 2 tones, we find

˙̄neff =
1

3
˙̄n ≈ 0.333 ˙̄n (6.75)

and for N = 3 tones

˙̄neff ≈ 0.193 ˙̄n. (6.76)

This effective heating rate can be substituted into the expression for the error due to

heating to give

εheating = 1− 1

8
(3 + 4e−

1
2

˙̄neffτ + e−2 ˙̄neffτ ). (6.77)

The effect of the multi-tone gates on heating can be understood qualitatively by looking

at the trajectories in phase space, as depicted in figure 6.8 for N = {1, 2, 3} tones. The

condition
∑N

k=1 ck/k = 0 means that the time average of the trajectory during the gate

is zero. Furthermore, the minimisation of the term
∑N

k=1 c
2
k/k

2 means that the average

magnitude of the displacement from the origin is minimised – as the number of tones

increases, the trajectories become more closely approximated by circles around the origin.

Since it is this displacement from the origin that couples the qubit states to motional

decoherence, this reduced magnitude demonstrates a reduction in sensitivity to heating.

Using the Lindblad equations, the effect of increased heating on the gate can be simu-

lated, as shown in figure 6.9. The fidelity was calculated from the overlap of the final state

with the Bell state created with zero heating. A significant improvement can be seen, with

the largest improvement seen in going from one to two tones. Simulations and analytical

expressions were found to agree exactly, as expected.

6.5.3 Protection again symmetric detuning errors

Using MTMS gates, it is also possible to protect against symmetric detuning mis-set errors

[91]. In the following, I show that the same conditions that minimise the heating error for

MTMS gates also maximise the protection against symmetric detuning errors. Assuming

a symmetric detuning of ∆r = ∆b = ∆, we can define the displacement term for ion i and

tone k at the gate time τ = 2π/δ as

αik(τ) =
iηickΩ0

2(kδ + ∆)
(ei

2π∆
δ − 1) (6.78)
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where we have set φm = 0. Expanding this term for small ∆ and summing over the tones

gives the expression

αi(τ) =
iηiΩ0

4

N∑
k=1

ck
k

∞∑
q=0,p=1

(i2π)p

p!nq

(
∆

δ

)p+q
. (6.79)

In order to minimise residual spin-motion entanglement, we should therefore impose the

condition
N∑
k=1

ck
k

= 0 (6.80)

which is the same condition as for the protection against heating. Calculating the magni-

tude of the geometric phase term at the gate time τ with a small symmetric detuning ∆

gives

χ(τ) =
N∑
m,k

ηiηjcmckΩ
2
0

4(kδ + ∆)

(
2π

δ
δmk −

sin (2π∆
δ )

mδ + ∆

)
. (6.81)

This can be expanded to first order in ∆, which gives

χ(τ) =
π

8
− π

8

 N∑
k=1

c2
k

k2
+

(
N∑
k=1

ck
k

)2
(∆

δ

)
. (6.82)

This results in an incorrect accumulated phase. We can calculate the infidelity by substi-

tuting these expressions for the displacement and accumulated phase into equation 6.31.

Up to second order in the detuning ∆, this gives an expression

ε∆ =
π2

2

∣∣∣∣∣
N∑
k=1

ck
k

∣∣∣∣∣
2 ∣∣∣∣∆δ

∣∣∣∣2 (2n̄+ 1) +
π2

16

 N∑
k=1

c2
k

k2
+

(
N∑
k=1

ck
k

)2
2(

∆

δ

)2

(6.83)

Since we have imposed the condition
∑

k ck/k = 0, we have eliminated any first order

dependence on the initial motional mode n̄ of the ions. In order to enhance protection

further, the term
∑

k c
2
k/k

2 should be minimised. This set of conditions for finding optimal

values of ck to reduce error due to symmetric detuning is identical to the conditions for

reducing error due to heating, so MTMS gates simultaneously protect against both effects.

Using the coefficients for two tones given in table 6.2, the expression for the symmetric

detuning error becomes

ε∆ =
1

36
π2

(
∆

δ

)2

' 0.028π2

(
∆

δ

)2

(6.84)
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Figure 6.10: Fidelity as a function of symmetric detuning ∆ as a proportion of the gate
detuning δ. The solid lines show the results of a numerical simulation at n̄ = 0 for one,
two and three tone gates. A large reduction in sensitivity to detuning error can be seen
by using multi-tone gates. The analytical expression, which is an approximation up to
O(∆2), is plotted for single and two tone gates in dashed lines.

and for three tones

ε∆ =
39− 12

√
3

1936
π2

(
∆

δ

)2

' 0.0094π2

(
∆

δ
.

)2

(6.85)

This shows a significant improvement over the single tone gate.

This improvement is shown for n̄ = 0 in figure 6.10. Solid lines show the result of

a numerical simulation for N = {1, 2, 3} tones, and dashed lines show the analytical

approximation which agrees well for low values of ∆/δ. A large improvement is seen

between N = 1 and N = 2 tones, with slightly further improvement from N = 2 to

N = 3 tones. Furthermore, figure 6.11 shows the significant improvement seen for higher

initial values of n̄. The analytical approximation for the fidelity is plotted for N = 1 and

N = 2 tones at an initial mean motional mode of n̄ = 20 and while the two tone gate

remains resilient to detuning errors, the single tone gate fidelity drops off very quickly.

This protection opens up the possibility of performing gates ‘hot’, i.e. at higher initial

values of n̄ achievable through only Doppler cooling.

6.5.4 Asymmetric detuning

Although we do not have an analytical expression for the error resulting from an asym-

metric detuning, a numerical simulation is shown in figure 6.12 where an equal asymmetric
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Figure 6.11: A demonstration of the effect of multi-tones at an initial value of n̄ = 20. The
lines are an approximation of the fidelity to lowest order in fractional symmetric detuning
error of ∆/δ. To this order, the two tone gate has no temperature dependence, so exhibits
the same robustness to detuning seen at n̄ = 0, whereas for the single tone case it can be
seen that the fidelity rapidly falls.

detuning ∆a is applied to each ion. At n̄ = 0, an improvement is seen between single and

two tone gates, although moving to three tones has a slightly detrimental effect. Dashed

lines show a simulation for one and two tones at an initial mean excitation of the motional

mode of n̄ = 10. At this higher value of n̄, the improvement becomes marginal. The

sensitivity to asymmetric detunings for two tone gates is therefore still dependent on the

starting temperature of the ions, unlike the symmetric detuning sensitivity. This may

place a limit on achievable fidelities at higher values of n̄.

6.5.5 Kerr coupling

Kerr coupling, as explained in section 6.4.7, induces infidelity due to a fluctuating sym-

metric detuning error caused by the axial stretch mode coupling to a radial mode which

has only been Doppler cooled. Since MTMS gates protect against symmetric detuning

errors, they therefore also protect against Kerr errors. The expression for the variance

of the trap frequency can be substituted into the symmetric detuning error equation for

MTMS gates, giving an error

εkerr = K2n̄r(2n̄r + 1)
( π

4δ

)2
(

N∑
k=1

c2
k

k2

)2

. (6.86)
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Figure 6.12: A numerical simulation of an equal asymmetric detuning error ∆ on both
ions is shown, with fidelity plotted against the detuning error ∆ as a proportion of the
gate detuning δ. At n̄ = 0 an improvement is seen between single and two tone gates,
although a slightly detrimental effect is seen in moving to three tones. At n̄ = 10, this
improvement becomes only marginal.

For two tones, this becomes

εkerr = 0.028K2n̄r(2n̄r + 1)
(π
δ

)2
(6.87)

and for three tones

εkerr = 0.0094K2n̄r(2n̄r + 1)
(π
δ

)2
. (6.88)

There is significant improvement from the single tone case, and no dependence on the

initial mean motional state of the stretch mode. This effect is shown in figure 6.13, where

all lines are plotted for a radial mode frequency of νxy = 1 MHz. This relaxes limits on

the secular frequency resulting from the Kerr coupling error. It also removes one of the

main limitations on using the stretch mode, which exhibits a lower heating rate than the

COM mode, for two qubit gates.

6.5.6 Off-resonant coupling

As discussed in section 6.4.3, off-resonant coupling from the gate fields to the carrier

transition and the other dressed states causes an error. Pulse shaping can eliminate this

to a certain extent, but a limit of approximately Ω/ν ≤ 0.1 is required to ensure this

error is negligible. In order to understand the effect of the two tone gate on off-resonant

coupling, we must consider the shape of the gate pulse. Since we have two frequencies
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Figure 6.13: Infidelity due to Kerr coupling plotted against the stretch mode secular
frequency νz for a radial mode frequency νxy = 1 MHz. The resilience to symmetric
detuning errors of the two tone gate means that the Kerr error is much lower, and there
is no dependence to lowest order in ∆ on the initial motional mode of the stretch mode n̄.

separated by δ, our signal is of the form

f(t) = Aeiωt +Bei(ω+δ)t

= eiωt(A+Beiδt).
(6.89)

Finding the amplitude modulation of this signal gives

|f(t)|2 = A2 +B2 + 2AB cos (δt). (6.90)

The two tone gate pulse is therefore sinusoidally modulated, as shown in figure 6.14. The

pulse reaches a peak power of
√

3Ω0 instantaneously at τ/2, and has a higher average

power during the gate. However, the natural sinusoidal modulation of the gate pulse is

ideal for mitigating the effect of off-resonant coupling. It provides extra protection when

compared with a short ramp and the beginning and end of the gate. Despite the higher

total power for two tones, the effect of off-resonant coupling is therefore smaller, as shown

in figure 6.15. Numerical simulations show the fidelity with an increasing ratio Ω0/ν,

where ν/2π = 460 kHz and both single and two tone gates have a pulse shaping time of

10µs at the beginning and end of the gate. There is a faster drop off in fidelity for the

single tone gate than for the two tone gate. Off-resonant coupling may in some cases place

a limit on the maximum Rabi frequency the gate can be driven at, and this limit could

be relaxed through the use of two tone gates.
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Figure 6.14: The pairs of gate fields for the two tone gate separated by the gate detuning
δ mean that the pulse is naturally sinusoidally shaped, at a frequency δ.
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Figure 6.15: The effect of off-resonant coupling in a two level system on the fidelity is
simulated. Despite the higher overall power, the infidelity due to off-resonant coupling is
lower for the two tone gate due to the natural sinusoidal pulse-shaping of the gate.
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6.6 Experimental implementation

Two tone gates were implemented in the dressed state basis in the qubit {|0′〉 , |D〉},

similarly to the standard MS gate demonstrated in section 6.3.4. The stretch mode of

the two ions was used, with a secular frequency of νs/2π = 461 kHz, and the ions were

sideband cooled before the gate to approximately n̄ ≈ 0.15. Ions were prepared in |0′0′〉

by first optically pumping to |00〉 and then applying a clock π pulse to both ions.

Since two tone gates use a higher peak power than a single tone gate at the same

gate time, as discussed in 6.5.6, it was necessary to perform a slower gate compared to

the demonstration of the standard MS gate in section 6.3.4, due to limitations in the RF

amplifying setup. The maximum gate Rabi frequency ΩD was determined by measuring

the RF Rabi frequency Ωrf at increasing RF powers, until we reached saturation in the

amplifiers. The value of Ωrf in each case was measured using a three level Rabi flop, as

described in 4.3.2. The RF field is set with equal and opposite detunings to the |0′〉 ↔ |±1〉

transitions, and the ion oscillates between the states |0′〉 and 1√
2
(|+1〉+ eiφ |−1〉) at a rate

√
2Ωrf . Once the maximum value of Ωrf was obtained, this allowed the maximum value of

ΩD to be determined as ΩD = Ωrf/
√

2. The peak gate power of
√

3Ω0 was then set to this

maximum value, giving a base gate Rabi frequency of Ω0/2π = 36 kHz. This corresponds

to a gate time of τ = 3.4 ms and a first order detuning of δ/2π = 292 Hz. Four gate

fields were applied per ion of power Ω1 = −Ω0/
√

3 and Ω2 = 2Ω0/
√

3 at detunings δ and

2δ respectively. During the implementation of the gate, an imbalance in the populations

of |0′0′〉 and |DD〉 at the gate time suggested that the power was lower than expected,

possibly due to non-linear behaviour in the amplifiers resulting from nearing saturation.

By optimising these populations, a factor was introduced to increase the amplitude of the

gate fields by up to 5%.

As discussed in section 6.3.3, the nature of the dressed state qubit means that there

is a non-zero AC Stark shift due to asymmetry of the gate fields around the dressed

states connected through |−1〉. For the single tone gate, this AC Stark shift was constant.

However, as shown in figure 6.14, the amplitude of the two tone gate field varies sinusoidally

over the gate time. The AC Stark shift therefore also varies. There is a maximum Stark

shift at t = τ/2 when the instantaneous Rabi frequency is Ω = Ω2 − Ω1 =
√

3Ω0 , and a

minimum at t = 0 and t = τ when the instantaneous Rabi frequency is Ω = Ω2 + Ω1 =

Ω0/
√

3. The AC Stark shifts are proportional to Ω2, and for each ion can be calculated

from equation 6.33. The frequencies of the gate fields are then sinusoidally varied between

the two values to compensate for the changing carrier frequency during the gate. The
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second order Zeeman shifts of the two ions were measured as 19.20 kHz and 30.05 kHz,

giving AC Stark shifts between approximately 60 Hz and 520 Hz for ion 1, and 90 Hz and

820 Hz for ion 2.

Two tone gates were compared with single tone gates by measuring the effect of heating

and symmetric detuning errors. Single tone gates of the same time τ and first order

detuning δ were used for comparison, in order to keep the effect of other errors such as

depolarisation constant. Other possible comparisons include keeping a constant maximum

gate power, or average gate power, and this is discussed in section 6.7.

6.6.1 Heating

In order to verify the resilience to heating of the two tone gates, artificial heating was

injected into the trap to increase the heating rate. Random noise with a flat amplitude

spectrum of bandwidth 20 kHz centred around the stretch mode secular frequency was

generated using code written in Python. This ensured it would only cause heating, and not

affect other aspects of gate performance, for example by reducing the coherence time. An

AWG (Agilent 33522A) was used to produce this noise signal. The signal was capacitively

coupled onto one of the DC endcap electrodes, bypassing the filter for that channel, and

triggered during the gate. The DC voltage was applied in the usual way for that electrode

through the filter. The amplitude of the signal was controlled to adjust the heating

rate. The heating rates were measured using the method described in 4.3.3. The ion was

sideband cooled to n̄ ≈ 0.15 on the red sideband of the |0〉 ↔ |+1〉 transition, and the

ion temperature was measured using sideband thermometry on the |0′〉 ↔ |D〉 sidebands.

A variable delay time was introduced before ion temperature measurement, allowing the

heating rate to be determined. The noise amplitude required to double the heating rate

was found to be consistent with the heating rate dependence on the power spectrum

discussed in section 2.2.3 of ˙̄n ∝ SE(ω), where SE(ω) is the power spectral density of the

noise.

At each heating rate, the single tone gate was first optimised by scanning the sym-

metric detuning of the gate fields at 2τ , since features are sharper at twice the gate time

making a frequency fit easier. Once the correct symmetric detuning had been determined,

fidelity population and parity measurements were performed for both single and two tone

gates. This symmetric detuning was optimised between fidelity measurements for different

heating rates. In order to account for any unknown change in the phase of the Bell state

produced with increased heating, the measured fidelity was multiplied by a factor cos ∆φ
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where ∆φ = φ − φ0, φ is the fitted phase of the parity measurement and φ0 is the fitted

phase for the parity measurement at no induced heating.

The data was analysed by a maximum likelihood method, developed by Adam Lawrence

[66, 62]. When we measure an outcome of an experiment, we observe three quantities, x0,

x1, and x2, which are the number of times we measure 0, 1 and 2 ions bright respectively.

The total number of measurements is n, so that x0+x1+x2 = n. Errors in the preparation

and the detection of ions mean that these measurements may not correspond to the true

probabilities of each state, given by p0, p1 and p2. Before experiments, we measure a state

detection histogram (as detailed in section 3.4.2), and this allows us to extract a linear

map p′i =
∑

j P (i|j)pj , where p′i is the probability of measuring outcome i, P (i|j) is the

probability of measuring outcome i given that the ion is actually in state j, and pj is the

true probability of the outcome j. For example, we find the probability of measuring one

ion bright to be p′1(p1, p2) = P (1|2)p2 + P (1|1)p1 + P (1|0)(1 − p1 − p2), where we only

need to use p1 and p2 since p0 + p1 + p2 = 1. We then use this map to obtain the true

probabilities by scaling the data using a log-likelihood function and maximising over p1

and p2 to find the most likely probabilities. The log-likelihood function is given by

fB = log

(
(n+ 1)(n+ 2)n!p′1(p1, p2)x1p′2(p1, p2)x2(1− p′1(p1, p2)− p′2(p1.p2)n−x1−x2

x1!x2!(n− x1 − x2)!

)
.

(6.91)

For the parity measurement, we can consider two measurements instead of three:

xeven = x0 + x2 and xodd = x1 so that xeven + xodd = n. Our log-likelihood function

then becomes

fB =
N∑
i=1

log

(
(n+ 1)n!p′odd(piodd)x

i
odd(1− p′odd(piodd))n−x

i
odd

xiodd!(n− xiodd)!

)
(6.92)

where N is the number of data points. In order to fit the parity curve, we can use the

expression for the parity Π = xeven − xodd = A0 + A cos (2φp + φ0) from equation 6.32 to

substitute piodd, so that p′odd is a function of the parity fit parameters A0, A and φ0. We

can then maximise the likelihood function over the parity parameters. This allows us to

obtain fits for the population and the parity, and thus find the overall fidelity.

The results of the experiment can be seen in figure 6.16. The fidelities have been

normalised to the fidelity of the single tone gate at no induced heating to account for

other errors. Solid lines show the result of a numerical simulation of the gate using the

Master equation with the appropriate heating Lindblad operators. Good agreement is

seen for the experimental data and the theoretical lines, showing a strong improvement
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Figure 6.16: Gate fidelity for single and two tone gates with increasing heating rate (in
phonons s−1). The gate time τ and first order detuning δ were kept constant between
each gate. Fidelities are normalised to the fidelity for the single tone gate at the lowest
heating rate. The solid lines show the result of a numerical simulation, which shows good
agreement with the experimental data. The dashed line is a numerical simulation for a
faster single tone gate at the peak Rabi frequency of the two tone gate.

in fidelity for the two tone gate compared to the single tone gate. The dashed line shows

the theoretical fidelity for a faster single tone gate, driven at the peak Rabi frequency of

the two tone gate. An improvement in protection against heating is still seen for the two

tone gate.

The fidelity of the single tone gate at no induced heating used as the normalisation

factor is 0.94(2). At the time of this implementation, the lifetime and coherence time

were measured to be approximately T1 ≈ T2 ≈ 0.4 s, and the heating rate with no induced

heating was measured as approximately 1 phonon s−1. This gives an error due to heating

and depolarising of approximately 1%. The remaining error of around 5% is thought

to be due to imperfect asymmetric detunings. This was largely uncompensated for to

accelerate the data taking process, and since high fidelities were not the main aim of

this demonstration. Although the two tone gate should provide some protection against

asymmetric detunings, as described in section 6.5.4 , the additional complexity that arises

from the time-varying AC Stark shift for two tone gates makes it more challenging to

correctly set the parameters. For example, compression in the amplifiers may have reduced

the instantaneous peak power from the expected value. Although this compression was

partially compensated for by increasing the gate tone amplitudes, this may have resulted in

an incorrect balance of gate tone amplitudes at δ and 2δ. Further optimisation should allow
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Figure 6.17: Gate fidelity for single and two tone gates with a symmetric detuning error.
The solid lines are the result of a numerical simulation. To account for experimental
parameter uncertainty, the symmetric detuning has been fitted to the data. The data has
been normalised to the fidelity at 0 Hz nominal detuning.

for better compensation of these asymmetric detunings. Furthermore, an amplifying setup

capable of producing higher power RF would reduce the effect of saturation on the gate

fields. This could also allow for faster gates, which would reduce the absolute sensitivity

of the gate error to an asymmetric detuning. The small contribution of heating to the

overall error is the reason that no measurable increase in fidelity is seen for the two tone

gate at no induced heating.

6.6.2 Symmetric detuning

Using the same gate parameters, the fidelity of two tone gates was measured up to a

symmetric detuning mis-set of 60 Hz, which corresponds to 20% of the total gate detuning.

Single tone gate fidelities were measured up to a symmetric detuning mis-set of 45 Hz for

comparison. As in the previous section, the symmetric detuning was first optimised by

scanning the symmetric detuning of the gate fields at 2τ . An offset was then added to the

gate fields from this nominal zero detuning. Once the fidelities had been measured, the

symmetric detuning offset of the data set was fitted using the single tone theory curve to

account for uncertainty in the absolute symmetric detuning. This results from uncertainty

in the initial setting of experimental parameters such as gate power, which can alter the

frequency scan used to determine the nominal zero. Again, the solid lines are the result

of a numerical simulation of the gate interaction, and data has been analysed using the
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maximum likelihood method. Data has been normalised to the single tone fidelity at the

nominal 0 Hz detuning, which was 0.96(2). This absolute fidelity agrees within error to

the absolute fidelity given in the previous section, and the error is similarly expected to

result from asymmetric detuning mis-sets which were not fully compensated for. As for the

heating, a clear consistency is seen between the theoretical curves and the experimental

data, demonstrating a significant improvement for the two tone case compared to the

single tone.

6.6.3 ‘Hot’ Gate

In these experiments, ions have been cooled to a near ground state occupation with a

mean initial excitation of the motional mode of approximately n̄ ≈ 0.15. Sideband cooling,

however, is a time-consuming process compared to Doppler cooling. For comparison, in

our experiment, sideband cooling takes 70 ms compared to only 0.7 ms for Doppler cooling.

Usually, the sensitivity to parameters of the single tone gates mean that performing a gate

at Doppler cooled temperatures results in very low fidelity. However, the elimination of

the n̄ dependence to first order of the symmetric detuning error for the MTMS two tone

gate means that it becomes possible to perform a higher fidelity gate after only Doppler

cooling.

The temperature of the ion after Doppler cooling was measured by driving one of

the sidebands and fitting the resultant curve with the expected response, as outlined in

section 3.5.5. This fit gives a value of n̄ = 53(4). Gate parameters were optimised for a

single tone gate after sideband cooling. The same gate was then implemented after only

Doppler cooling, and the fidelity measured using a population and parity measurement.

A single tone gate after only Doppler cooling resulted in a population measurement of

P (0′D) + P (D0′) = 0.729(17). A parity measurement is shown in figure 6.18, with an

amplitude fit of A = 0.28(9). This gives a total fidelity of F = 0.50(5). In comparison, the

two tone gate population measurement of 1000 runs gave a probability P (0′D)+P (D0′) =

0.892(7). A parity measurement is shown in figure 6.18, which gives an amplitude fit of

A = 0.81(2). This gives a total fidelity of F = 0.851(9), a significant improvement on

the single tone gate. The infidelity is expected to be largely due to asymmetric detuning

errors which remain sensitive to n̄, as shown in figure 6.12. As before, further optimisation

and higher power amplifiers to reduce saturation issues are expected to help increase this

fidelity.
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Figure 6.18: Parity curves shown for single (left) and two tone (right) gates where ions have
been Doppler cooled to an initial motional mode of n̄ = 53(4). A significant improvement
can be seen for the two tone case due to its resilience to parameter mis-set, giving an
amplitude fit of 0.81 compared to 0.28 for the single tone gate.

6.7 Conclusion

Multi-tone gates have been shown to provide significant protection against multiple er-

ror sources for a given gate time. This has been demonstrated experimentally for two

tone gates. Three tone gates could provide further protection against heating, although

improvement in protection against symmetric detuning is marginal, and there is a small

detrimental effect on protection against asymmetric detuning. For our system, the time-

varying AC Stark shift will become further complicated through the use of three tones,

making it unlikely to yield further improvements. However, three or more tones may be

useful in some implementations where protection against heating is critical.

After the work in this chapter was completed, the work of Shapira et al. came to

our attention [92]. This work also uses multi-tone gates to perform resilient gates, and

shows how they can be optimised for different experimental parameters. They optimise

for protection against gate timing errors, which results in coefficients for the two tone

gate of the form c1 = −c2, leading to cardioid shaped phase space trajectories. This

robustness to gate timing error can be eliminated to N − 1 leading orders in ∆τ/τ using

N tones, where ∆τ/τ is the fractional timing error, giving an error of the form (∆τ/τ)2N .

The same gate coefficients were found to minimise error due to off-resonant coupling to

the carrier transition. This set of gates was experimentally demonstrated using laser-

driven gates on the ion 88Sr+, including a gate demonstrated at a Doppler cooled ion

temperature of n̄ ≈ 10. Resilience to symmetric detuning errors is also discussed, as

has been demonstrated here. Multi-tone gates are therefore a flexible tool which can be

optimised for different sources of error to suit a particular system.

The protection demonstrated in this chapter comes at a cost in terms of resources,
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with a two tone gate exhibiting a peak power three times higher than the single tone

gate. However, even in the case where there is a limit in available power, MTMS gates

will always provide protection against heating – as can be seen in figure 6.16, the heating

infidelity is still lower when compared to a faster single tone gate driven at the peak power

of the two tone gate. In this case, the faster single tone gate is performed at a gate power of
√

3Ω0, and the gate time is given by τ/
√

3, where Ω0 and τ are the parameters for the two

tone gate. By approximating the heating infidelity from equation 6.77 as εheating = 4 ˙̄neffτ

for low errors, it can be seen that the two tone gate error is a factor of 1/
√

3 smaller than

the single tone error.

In many laser-based gate implementations, photon scattering is the dominant source

of error [18, 19], which would become worse for the higher power gate fields required for

the two tone gate at a given gate time. The average gate power is 5/3 times higher for

the two tone gate, giving 5/3 times more photon scattering. In these cases, MTMS gates

may not be suitable. However, infidelity due to heating is expected to get worse when

performed on microfabricated traps with higher heating rates [18]. A careful balancing of

error terms is therefore required to determine the suitability of MTMS gates for use in a

specific system.

As well as protection against heating, multi-tone gates have also been shown to provide

significant protection against errors due to symmetric detuning mis-sets. This will become

a particularly useful feature in large scale quantum computing architectures, where it is

likely that experimental environments may be noisier and less stable. Furthermore, this

has opened up the possibility of performing gates at at higher initial values of the mean

excitation of the motional state, such as can be achieved through only Doppler cooling.

This symmetric detuning resilience also protects against error due to Kerr coupling, thus

alleviating one of the main limitations in using the lower heating rate stretch mode for

performing two qubit gates. The natural pulse shaping of two tone gates also provides

some protection against off-resonant coupling, potentially allowing for faster gates to be

driven if off-resonant coupling is a limiting factor. Further protection against off-resonant

coupling can be achieved by optimising the coefficients for this error, as shown in the work

by Shapira et al. [92]. This protection against multiple error sources makes MTMS gates

a powerful tool for achieving high fidelity resilient two qubit gates in a large scale quantum

computing architecture.



Chapter 7

Towards position-dependent

quantum logic

7.1 Introduction

In this thesis, I have demonstrated the use of the dressed state qubit for performing high

fidelity arbitrary single qubit gates with long-wavelength radiation, and a robust technique

for performing two qubit gates particularly suitable for a large quantum computing archi-

tecture. These single and two qubit gate techniques have been demonstrated on one or two

ions. However, one of the biggest challenges in the construction of a quantum computer is

to integrate these quantum operations into a large scale architecture with high numbers

of ions. A significant aspect of this challenge is the correlation between the number of

physical qubits and the number of gate fields required, which could be either lasers or

long-wavelength radiation. Weidt et al. [28] proposed a method to remove this correlation

and replace the gate fields for each ion instead with global gate fields, by moving ions

between different positions in a magnetic field gradient. A ‘blueprint’ to incorporate this

idea into a modular design for a quantum computer was presented by Lekitsch et al. [38]

This forms the framework for the research in our group, and in this chapter I present work

towards demonstrating this key idea of position-dependent quantum logic with global gate

fields. In the next section I summarise the proposals presented in these two papers, and

in section 7.3 I describe how to implement a CNOT gate in our experimental system by

moving ions in global radiation fields. I then demonstrate key experimental requirements

for this demonstration: moving ions in a magnetic field gradient, preserving information

stored in the qubit during ion movement, and optimising the phase of the two qubit gate

in our system.

141
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Figure 7.1: Schematic demonstrating the principle for using a small number of global radi-
ation fields in order to implement quantum operations on many ions in parallel, therefore
removing the correlation between the number of ions and the number of requires gate
fields. Figure from [28].

7.2 Scalable architecture for quantum computing

A quantum computer capable of performing useful algorithms will require large numbers

of ions. For example, in order to factorise a 2000 bit number using Shor’s algorithm, and

assuming gates with an error of 0.1%, it is estimated that a total of 220×106 physical qubits

would be required because of the large overhead imposed by error correction [5]. Confining

such large numbers of ions in a single potential for quantum operations is not possible, so

most large scale architecture proposals use ion shuttling. Originally proposed by Kielpinski

et al. [35], this method involves moving ions on microfabricated traps between zones.

Different zones correspond to different operations, which include ion loading, quantum

gates, and state readout. This means that only small numbers of ions need to be trapped

in any single confining potential. However, there is still a limit to the number of ions

that can be trapped and shuttled on a single microchip, so most proposals use a modular

design. Individual modules are designed that can operate individually as a small quantum
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processor, and then a method is used to connect multiple modules to scale to larger

numbers of ions. In the proposal by Lekitsch et al., each module for example would

comprise 1296 X-junction surface ion traps fabricated on a single microchip, with two or

more ions trapped in each X-junction.

Individual modules could for example be connected using photonic interconnects, to

entangle a pair of ions held in two different modules, and then using this entanglement

to teleport qubit states between modules [36, 37]. It is, however, challenging to obtain

rates of high fidelity entangled pair generation that approach the speed at which gates can

be performed, creating a bottleneck that could severely limit the computation capacity

of such a device. Instead, Lekitsch et al. propose connecting modules by direct ion

transport between physically adjacent modules. Precise alignment of the surface of the

microfabricated ion traps is achieved by placing microchips on a precision machined steel

frame, and using XYZ piezo actuators for fine alignment. This allows ions to be directly

shuttled between modules, achieving a much faster rate of communication.

In many proposals the number of gate fields required, either lasers or microwaves, would

be equal or comparable to the number of physical qubits. As well as the high number of

gate field emitters this involves, a large problem is the alignment to individual ions. For

example, laser access from the edge of microchips does not scale linearly with the number

of ions that can be trapped on the surface of the microchip, making individual alignment

and keeping cross talk to a minimum more challenging with increasing microchip size. In

a proposal by Weidt et al., however, this correlation between gate fields and number of

ions is removed, and only a small number of gate fields are required. These gate fields

are long-wavelength radiation fields which are broadcast globally to the architecture using

a microwave horn and/ or RF emitters. Ions are shuttled between zones for different

operations. In each zone, a static magnetic field is produced using current carrying-wires

integrated into the chip structure. Local offset coils would also be included under chip in

each gate zone to adjust the magnetic field and compensate for variations across the surface

of the chip. By either adjusting the magnetic field offset using these coils, or moving the

ion in the static magnetic field gradient by applying a voltage to an electrode, the qubit

transition frequency of the ion, which is magnetic field dependent, can be controlled. In

different zones, the qubit transition frequencies can therefore be tuned in order to interact

with specific frequency fields in the global field that correspond to a specific gate. All other

frequencies in the global field will have no effect. This principle is demonstrated in the

schematic in figure 7.1, and is the key principle that I will work towards demonstrating in
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this chapter. Lasers are still required for ion loading, cooling, preparation, and detection.

However, the requirements for the control over the stability of these laser beams is lower,

and the alignment of lasers is easier since, for example, a single laser beam can be used

across multiple readout zones.

7.3 Demonstration of global addressing in a macroscopic ion

trap

In this chapter, work towards demonstrating this principle of position-dependent quantum

logic in the macroscopic trap used in this thesis is presented. Two ions are trapped in

a magnetic field gradient, and moved between multiple positions to give different qubit

transition frequencies. The global gate fields consist of a single qubit gate pulse and a

two qubit gate pulse which are repeated alternately, as represented in figure 7.2. In this

schematic, the single qubit gate pulses are in general π/2 pulses around an axis in the

x− y plane or identity pulses, and can be different for each ion. The two qubit gate pulse

consists of a two qubit MS gate in one position, and identities in all other positions. Two

qubit gates require high RF gate field powers, so simultaneous two qubit gate fields in more

than one position would significantly reduce the available Rabi frequency for each gate in

this experimental setup, making gates slower. This is not an issue for single qubit gates,

which have much lower power requirements. Using these pulses, the ions will perform

different quantum gates depending on their position.

In this demonstration, the controlled NOT (CNOT) gate was chosen for implementa-

tion as a simple example of performing sequences of gates by moving ions in a magnetic

field gradient. The CNOT gate is of the form

UCNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (7.1)

The action of this gate is to swap the state of the ‘target’ qubit if the ‘control’ qubit

is in the state |1〉. This gate cannot be performed directly in our system, but can be

constructed from available single qubit and two qubit rotations.

Arbitrary single qubit rotations can be performed on the dressed state qubit, as has

been demonstrated in chapter 5. From the unitary in equation 2.26, we can write a rotation
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Figure 7.2: Schematic of the global gate fields used to demonstrate the principle of position-
dependent quantum logic. The first pulse consists of multiple parallel single qubit gates
performed at different RF frequencies corresponding to different positions, Pi. These are
either π/2 pulses around an arbitrary axis or identity operators, and can be different for
each ion. The second pulse consists of the fields required for a two qubit gate in one
position, and identity pulses in all other positions. These pulses are repeated alternately
in time.

of an angle θ around an axis in the x− y plane at angle φ from the x axis as

Rφ(θ) =

 cos ( θ2) −ie−iφ sin ( θ2)

−ieiφ sin ( θ2) cos ( θ2)

 . (7.2)

All gates used in this chapter will be rotations of angle θ = π/2. Rotations around the x

and y axes can be performed by setting the phase to φ = 0 and φ = π/2 respectively. As

in chapter 5, rotations around the z axis could be performed by adjusting the rotational

basis for all subsequent gates.

The two qubit gate available in our system is the multi-tone Mølmer-Sørensen (MTMS)

gate, as described and demonstrated in chapter 6. The MS gate interaction in an arbitrary

basis φ can be described at the gate time by the unitary [93]

UMS(φ) = exp

{(
iπ

4
σ1(φ)σ2(φ)

)}

=
1√
2


1 0 0 −ie−2iφ

0 1 −i 0

0 −i 1 0

−ie2iφ 0 0 1

 .

(7.3)
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Figure 7.3: Circuit diagram showing the required operations to implement a CNOT gate
using available gates in our system, where Rφ(π/2) represents a π/2 pulse around axis φ
and UMS(0) represents a two qubit gate in the basis φ = 0, or equivalently the x basis.
The two input states |ψC〉 and |ψT 〉 represent the control and target qubits respectively.

where, as for single qubit rotations, φ = 0 corresponds to an MS gate in the x basis, and

φ = π/2 in the y basis. By adjusting the phase of the applied gate fields, it is possible

to perform the gate in an arbitrary basis. We can then use this toolbox of single and two

qubit gates to construct the CNOT gate, using the sequence of gates [94]

UCNOT =
(
R−π

2

(π
2

)
⊗ I
)
·
(
Rπ

(π
2

)
⊗Rπ

(π
2

))
· UMS(φ = 0) ·

(
Rπ

2

(π
2

)
⊗ I
)

(7.4)

where I represents the identity matrix, Rφ(π/2) is a π/2 pulse around axis φ as defined in

equation 7.2, and UMS(φ = 0) is the MS gate around axis φ = 0 as defined in equation 7.3.

This is represented as a circuit diagram in figure 7.3. In order to perform this sequence of

gates using the technique described in the schematic in figure 7.2, the required single and

two qubit gate pulses are shown in figure 7.4. A CNOT gate can then be performing by

implementing one set of pulses with the ions in position one, followed by one set of pulses

with ions in position two. In order to implement this experimentally, a method is required

to move the ions in the magnetic field gradient, and to preserve the information stored in

the dressed state qubit during this ion movement. This will be described in sections 7.4

and 7.5. A method is also required to fully characterise the phase of the two qubit gate in

our system, in order to ensure that UMS(φ = 0) is performed. This is described in section

7.6.

7.4 Moving the ions in a magnetic field gradient

While a full scale architecture will require sophisticated shuttling capabilities, this demon-

stration only requires two positions to be used so a simpler method for moving the ions
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Figure 7.4: Schematic of the single and two qubit global gate pulses required for imple-
menting a CNOT gate across two positions, P1 and P2. The gates performed depend on
the ion position, and the blue area indicates the ion position required for each pulse to
generate the CNOT gate sequence.

can be used. Ions are moved in the static magnetic field gradient by using a switch to

alternate between two DC voltages (switch designed and built by Harry Godwin and Iain

Hunter). This was composed of two solid state relay switches (Vishay V01462AABTR)

controlled by TTL inputs. This switch was applied to an endcap electrode in order to

move the ion axially. The electrical low-pass filter for that channel, described in section

3.1.2, was disconnected, since it was found to cause significant damping in switching time.

The effect of the voltage change between the two DC channels on the transition fre-

quency of |0〉 ↔ |±1〉 was characterised, and the results are shown in figure 7.5. From this

linear fit, a change in frequency per volt was extracted of 1.836(5) MHz/V, which was used

to set the frequencies. From the static magnetic field gradient in the trap of 24.5(1) T/m,

this can be calculated as a position change of 5.25(2)µm/V. The separation in frequency

was chosen to minimise any effect of off-resonant coupling from the gate fields applied to

an ion in one position on the ion in another position. In particular, the gate fields required

for a two qubit gate must be taken into account, since at the secular frequency used in

this experiment, they are separated from the carrier transition frequency, determined by

the frequency of the transition |0′〉 ↔ |+1〉, by nearly 0.5 MHz. A frequency separation

of approximately 1 MHz was therefore chosen to be sufficient, corresponding to a voltage

change of ∆V = 0.55 V. A schematic of the resulting ion transition frequencies in the two

positions is shown in figure 7.6.

The response of the ion to the switch was characterised by measuring the frequency

of the |0〉 ↔ |+1〉 transition of one of the ions at different delay times after switching DC

voltages. The frequency of this transition is linearly dependent on magnetic field, and the
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Figure 7.5: Calibration measurement of the |0〉 ↔ |+1〉 transition frequency change result-
ing from a voltage change applied to one of the endcap electrodes. Error bars are smaller
than the data points. The linear fit gives a change in frequency of 1.836(5) MHz/V.

Figure 7.6: Schematic showing the two ion energy levels in two positions in the magnetic
field gradient. Frequencies are chosen to minimise off-resonant coupling from non-resonant
frequencies in the global gate fields.
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Figure 7.7: Graphs showing the frequency of the |0〉 ↔ |+1〉 transition at different delay
times after switching the voltage applied to an endcap electrode, therefore moving the ion
axially. Frequency changes are calculated with respect to the first measured point in each
graph. Left: Delay times from 0.2 ms to 1 ms. The dashed line shows the period during
which most of the ion movement happens, and the movement is too fast to accurately
measure the frequency. Errors are smaller than the data points at this scale. Right:
Delay times of up to 1.4 ms, to ensure the ion is fully stationary before any operations are
performed. This is a continuation of the graph on the left.

static magnetic field varies approximately linearly at the ion’s position. This frequency

measurement is therefore effectively a position measurement, tracking the movement of

the ions through the gradient. The results of this experiment are shown in figure 7.7,

where figure 7.7(a) is a measurement of the frequency over the entire switching time. On

this scale, the error bars on the measured frequency are smaller than the data points.

The dashed line between 0.6 ms and 0.8 ms represents the time period during which a

proper frequency measurement could not be taken due to fast movement of the ion. This

is therefore where most of the ion movement takes place, although the exact behaviour

is unknown. Figure 7.7(b) shows a finer time scan at the end of switching. It must be

ensured that the ion is stationary after switching before any coherent manipulation is

performed, as any resultant change in frequency from the ion moving during quantum

operations could affect the fidelity of both single and two qubit gates. A delay time of

1.4 ms was determined to be sufficient for the ion to be stationary within error.

An experiment was performed in order to measure any heating effect resulting from

movement of the ions. The two ions were sideband cooled on the red stretch mode sideband

of the |0〉 ↔ |+1〉 transition of one of the ions, with frequency 460 kHz. The ion stretch

mode temperature was measured as n̄ ≈ 0.4 using sideband spectroscopy on the |0′〉 ↔ |D〉

transition, as described in section 4.3, with a pulse time of 3 ms. To determine the effect of

ion movement, the ions were sideband cooled and, before the temperature was measured,
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Figure 7.8: A Ramsey experiment performed on the clock qubit. Blue data points represent
a Ramsey performed in one position, whereas orange show a Ramsey split across two
positions, with shuttling between each π/2 pulse.

were shuttled between the two positions 25 times, giving a total of 50 ion movements

of 1.4 ms. The experiment was also repeated where the ion remained stationary for the

equivalent 70 ms delay before temperature measurement. In both cases, no increase in

ion temperature was observed within error of 0.05 phonons. It can therefore be assumed

that the heating rate is under 0.001 phonons per shuttle, and therefore this method of ion

movement is sufficiently adiabatic to cause negligible stretch mode heating.

7.5 Mapping between dressed and clock qubits

Single and two qubit gates are performed in our system in the dressed state qubit. However,

the dressed state qubit does not lend itself easily to preserving qubit information during

ion movement, as the frequency of the dressing fields change as the ion moves through the

magnetic field gradient. Instead, the dressed state qubit is mapped onto the clock qubit

{|0〉 , |0′〉}, which has only a second order dependence on magnetic field.

A test was implemented to ensure that the clock qubit could be moved between posi-

tions without decoherence by performing a Ramsey experiment across two positions. An

ion was prepared in |0〉, and a π/2 pulse on the transition |0〉 ↔ |0′〉 of time 450µs with

phase φ = 0 was applied. The ion was then moved to position two, where a second π/2

pulse at the new transition frequency was applied with a varying phase. The second order

Zeeman shifts for the two positions are ∆ωz1 = 19.05 kHz and ∆ωz2 = 22.87 kHz. The

results of this experiment are shown in figure 7.8, where the results of a Ramsey experi-

ment performed in a single position are shown as well as split across two positions. The
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fit parameters for the Ramsey in one position give an amplitude of 0.97(1), and for two

positions an amplitude of 0.94(2). These amplitudes agree within error, showing that a

single movement causes no measurable decoherence on the clock qubit. A phase shift of

∆φ = −0.92(2) can be seen, which results from the change in transition frequency across

the two positions. The phase of the clock qubit in position two advances at a rate ∆(t)t

relative to the phase in position one, where ∆(t) is the instantaneous detuning of the

clock transition frequency from ∆ωz1. This reaches a maximum in position two when

∆(t) = ∆ωz2 − ∆ωz1. The phase shift could therefore be calculated by integrating the

expression ∆(t)t from time t = 0, which is the beginning of the initial π/2 pulse in position

one, to the time that the second π/2 pulse is implemented in position two. However, the

exact profile of ∆(t) is not known, since figure 7.7 is not a precise enough time profile.

The phase shift is expected to be of order of multiple 2π’s. An experimental measurement

can be used instead of a calculation in order to calibrate gate phases.

Since single and two qubit gates are performed in the dressed state basis, a method is

required to map the phase and populations of the dressed state qubit to the clock qubit.

The method used previously in this thesis for preparing the state |D〉 is not suitable, since

it only maps populations and phase information is lost, so a different technique is used

[66]. I use a simple method as proof of principle, however our group has also developed

high fidelity methods for this mapping [66]. To prepare the dressed state, the ion is first

prepared in the state |0〉, and both dressing fields are turned on with Rabi frequency Ωµw.

As in chapter 4, we can write the Hamiltonian for both dressing fields in the interaction

picture with respect to the bare state energy levels Hamiltonian as

H ′µw =
~Ωµw

2
(e−iφ+ |0〉 〈+1|+ e−iφ− |0〉 〈−1|+H.c.) (7.5)

where we have assumed that there is no detuning on either dressing field. By applying

dressing fields with phases φ+ = 0, φ− = π, this becomes

H ′µw =
~Ωµw

2
(|0〉 〈+1|+ |+1〉 〈0| − |0〉 〈−1| − |−1〉 〈0|). (7.6)

We can then write the Hamiltonian as

H ′µw =
~Ωµw√

2
(|0〉 〈D|+ |D〉 〈0|). (7.7)

It can therefore be seen that under the influence of these fields, an ion will oscillate between

states |0〉 and |D〉 at a frequency Ωµw/
√

2. A pulse of time t =
√

2π/Ωµw on initial state
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Figure 7.9: Demonstration of the method used for mapping between the clock qubit
{|0′〉 , |0〉} and the dressed state qubit {|0′〉 , |D〉}. Top: Rabi flop between the states |0〉
and |D〉 by constant application of the microwave dressing fields simultaneously on the
transitions |0〉 ↔ |+1〉 and |0〉 ↔ |−1〉. Bottom: Demonstration of mapping from the
state |0〉 into the state |D〉 using a π pulse on the two dressing fields, holding in that state
for 50µs, and mapping back to the state |0〉.
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|0〉 will produce the state |D〉. In order to hold the ion in this dressed state to perform

operations on the qubit {|0′〉 , |D〉}, the phase of the applied dressing fields should be

changed instantaneously to φ+ = φ− = 0, to give the Hamiltonian

H ′µw =
~Ωµw

2
(|0〉 〈+1|+ |+1〉 〈0|+ |0〉 〈−1|+ |−1〉 〈0|). (7.8)

The state |D〉 is an eigenstate of this Hamiltonian. After coherent manipulation of the

qubit is complete, an arbitrary state composed of |0′〉 and |D〉 will be formed. In order

to map this back to the clock qubit, the phase of the dressing fields is returned to φ+ =

0, φ− = π for a time t =
√

2π/Ωµw. Under the influence of the Hamiltonian in equation

7.7, the state |0′〉 will remain unaffected, and the population and phase in the state |D〉

will be transferred to the state |0〉. We therefore map the qubit {|0′〉 , |D〉} to the clock

qubit {|0′〉 , |0〉}.

This method for mapping has been demonstrated experimentally, shown in figure 7.9.

First, a Rabi oscillation between the states |0〉 and |D〉 is shown by simply holding the

microwave fields for increasing lengths of time. A fit of equation 2.32 gives a Rabi fre-

quency of approximately 20.1 kHz, which corresponds to a mapping time of 25µs. It was

then demonstrated that the qubit could be held in the dressed state, by instantaneously

swapping the phase of the dressing fields. A π pulse of time 25µs was applied, after which

the phase of the dressing field on the |0〉 ↔ |−1〉 transition was changed by π. This was

held for 50µs, after which the phase was returned to the initial phase, and a final π pulse

mapped the population back to |0〉.

Using this method for mapping between the dressed state qubit and the clock qubit, a

Ramsey experiment was performed on the states {|0′〉 , |D〉} split across the two positions,

which is shown in figure 7.10. The ion was prepared in the state |0′〉. The dressing

fields were turned on with phase φ+ = φ− = 0, and an RF π/2 pulse of time 460µs

was performed on the |0′〉 ↔ |D〉 transition with phase φ = 0, to form a superposition

of the two states. The phase of the dressing fields was then instantaneously changed to

φ+ = 0, φ− = π to map the qubit to the clock qubit. In this case, the mapping time was

21µs. The ion was then moved to position two, and mapped back into the dressed state

qubit using the same method. A second π/2 pulse was applied to the |0′〉 ↔ |D〉 transition

with a varying phase. The qubit was then mapped back to the clock qubit. A final clock

pulse on the transition |0〉 ↔ |0′〉 means that population in the state |D〉 is measured in

the F = 1 bright state, and population in the state |0′〉 measured in the F = 0 dark state.

This provides consistency with previous measurements of the dressed state qubit, but is
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Figure 7.10: Ramsey fringes on the dressed state qubit in one position, and split across
two positions by mapping into the clock qubit for ion movement between the two π/2
pulses.

not a necessary step for measurement. The resultant fringes are shown in figure 7.10. To

compare with the Ramsey split across two positions, a Ramsey experiment in the qubit

{|0′〉 , |D〉} is shown performed in one position. The fit gives an amplitude of 0.95(3) for

the Ramsey in one position and 0.98(1) for the Ramsey split across two positions. There is

therefore no loss in amplitude across two positions compared to the Ramsey fringe in one

position, showing the suitability of this method for maintaining phase coherence between

the dressed state qubit in two locations. A phase shift between the two results can be

seen, which can again be calibrated for experimentally.

An alternative approach to this method for mapping between the dressed state qubit

and the clock qubit is to use a rapid adiabatic passage method, which relies on adiabatically

bringing detuned dressing fields into resonance [28, 66]. This method is experimentally

simpler since it involves using only the dressing fields and the ion movement for mapping.

The Hamiltonian for the dressing fields in the interaction picture with respect to the bare

state energy levels is

H ′µw =
~Ωµw

2
(eiδ(t)t |0〉 〈+1|+ e−iδ(t)t |0〉 〈−1|+H.c.) (7.9)

where δ(t) is a time-varying detuning. By defining the Hamiltonian Hδ = ~δ(t)(|+1〉 〈+1|−

|−1〉 〈−1|), we can move into an interaction picture with respect to the detuning of the
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dressing fields, giving

H ′′µw = eiHδt/~(H ′µw −Hδ)e
−iHδt/~

=
~Ωµw

2
(|0〉 〈+1|+ |+1〉 〈0|+ |0〉 〈−1|+ |−1〉 〈0|)− ~δ(t)(|+1〉 〈+1| − |−1〉 〈−1|)

=
~
2


2δ(t) Ωµw 0

Ωµw 0 Ωµw

0 −Ωµw −2δ(t)


(7.10)

where the states are ordered {|−1〉 , |0〉 , |+1〉}. If the ion starts in an eigenstate and the

detuning δ(t) is varied slowly then the state of the qubit will adiabatically follow this. One

of these eigenstates is the normalised state of the form

|ψ〉 = (|+1〉+
2δ(t)

Ωµw
|0〉 − |−1〉). (7.11)

It can therefore be seen that, for δ � Ωµw, |0〉 is an eigenstate of this Hamiltonian.

However, as δ(t) → 0, the eigenstate becomes the dressed state |D〉 = (|+1〉 − |−1〉)
√

2.

This method of adiabatically varying the dressing field detuning has been demonstrated by

changing the frequency of the dressing fields [66]. However, it could also be implemented

by adiabatically moving the ion in the magnetic field gradient.

An experiment was performed to map the dressed state qubit between the two positions

by moving the ion through the static field gradient. The ion was prepared in state |0′〉,

and the four dressing fields corresponding to both position one and position two were

turned on instantaneously. A π/2 pulse on the transition |0′〉 ↔ |D〉 was implemented

in position one, and the ion was then moved to position two. A second π/2 pulse with

a varying phase was performed in position two on the transition |0′〉 ↔ |D〉, and the

resultant populations measured. If the movement of the ion corresponds to an adiabatic

change of the transition frequencies |0〉 ↔ |±1〉, the dressed state qubit should be mapped

from the state |D〉 in position one, to state |0〉 during movement, to state |D〉 in the second

position. The results of this experiment are shown in figure 7.11. A clear Ramsey fringe is

seen, showing that this simple method for mapping is working to some degree. However,

the amplitude of the fringe is 0.6. In order to improve this, the timing characteristics of the

switch should be more precisely characterised and controlled in order to ensure that the

condition for adiabaticity, which is that the change in the detuning δ(t) is slow compared

to the microwave Rabi frequency Ωµw, is fulfilled.
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Figure 7.11: Ramsey pulse sequence on the transition |0′〉 ↔ |D〉 split across two positions.
The qubit is mapped by moving the ions through a magnetic field gradient so that the
dressing fields are gradually swept away from or into resonance, depending whether the
ion is being mapped out of or into the dressed state qubit. The low amplitude is due
to the unoptimised timing behaviour of the switch, which does not result in an adiabatic
transfer.

7.6 Characterising the phase of a two qubit gate

As discussed in section 7.3, a CNOT gate can be constructed from single and two qubit

gates available in our system, using a sequence of gates defined in equation 7.4. The

phase of the two qubit gate should be set as UMS(φ = 0). In chapter 6, we do not fully

characterise the MS gate performed, instead calculating the fidelity with which a state of

form |0′0′〉+ e4iχ |DD〉 is formed from the initial state |0′0′〉. We therefore need a method

to fully understand the phases of the two qubit gate in our system.

A variable phase MS gate was defined in equation 7.3. However, in our implementation

of the MS gate, the phase of the gate is more complex due to the differential AC Stark

shifts on each ion. This effect is similar to the phase shift seen in the Ramsey split between

two positions in the previous section, although in that case the phase shift resulted from

the difference in transition frequencies between the two positions. In this case, it is the AC

Stark shifts causing the phase to advance at a rate faster than the qubit frequency. The

magnitude of these AC Stark shifts in relation to the gate time causes significant phase
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shifts, and the resultant gate unitary matrix is

UMS(φ1, φ2) = exp

{(
iπ

4
σ1(φ1)σ2(φ2)

)}

=
1√
2


1 0 0 −ie−i(φ1+φ2)

0 1 −ie−i(φ1−φ2) 0

0 −iei(φ1−φ2) 1 0

−iei(φ1+φ2) 0 0 1


(7.12)

where φ1 is the phase for ion 1 and φ2 is for ion 2. The phase of the resultant parity curve

on input state |0′0′〉 gives only partial information about the two qubit gate phases, since

it depends on the sum of the phases, but does not give information on the difference.

In order to extract full phase information, we can instead use the CNOT gate sequence.

We perform an experimental scan of the MTMS gate field phase embedded in the CNOT

sequence applied to an initial state |0′0′〉 by adding the same phase shift to both sets of

gate fields. This can be written as

UCNOT = (G(−π/2)⊗I)·(G(π)⊗G(π))·UMS(φ0+φ, φ0+∆φ+φ)·(G(π/2)⊗I).
∣∣0′0′〉 (7.13)

where φ is the phase shift added to both the gate fields, and we have defined φ1 = φ0 and

φ2 = φ0 + ∆φ. The resultant curves for different values of φ0 and ∆φ are shown in figure

7.12. It can be seen that different values of ∆φ give distinct results when measuring the

populations of |0′0′〉 and |0′D〉+ |D0′〉 for this type of scan. The probability of the states

|0′D〉 and |D0′〉 are plotted as a single probability due to the limits of detection using the

PMT. Figure 7.12(a) at φ = 0 shows the ideal case for implementing a CNOT. Similar

scans could be performed on alternative input states.

A scan of this type is experimentally demonstrated in figure 7.13. This experiment is

performed in one position. The phase of the single qubit gates are fixed to the values given

in equation 7.13, and the phase of the applied gate fields begins at φ = 0 and is stepped

by π/10. The two qubit gate is a two tone Mølmer-Sørensen gate, as described in the

previous chapter. Eight distinct gate fields are applied to the ions, with two per sideband.

The gate was performed at a stretch mode secular frequency of 461 kHz, with a base Rabi

frequency of Ω0 = 36 kHz giving a gate time of 3.4 ms. The gate was unoptimised and

of fidelity 0.88(3). The resultant fit gives values of φ0 = −0.36(2) and ∆φ = 1.02(3),

although the fit does not include the effect of the low fidelity. The effect of this on the

phase scan is not known and may depend on the source of the error, so ideally the gate
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Figure 7.12: Theoretical curves showing a scan of the phase of the gate fields applied
during the CNOT operation, shown for different values of φ0 and ∆φ. This method can
be used to extract phase information about a two qubit gate in an unknown basis, in order
to correctly set the phases to φ0 = ∆φ = 0 for implementing a CNOT gate.
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Figure 7.13: State probabilities for a scan of the gate fields applied to a two tone Mølmer-
Sørensen gate embedded in the sequence of gates required for implementing a CNOT. A
fit to the data gives φ0 = −0.36(2) and ∆φ = 1.02(3).

fidelity would be optimised to ensure that this effect is small. The measured phase offset

and phase difference can then be used to adjust the phase of the gate fields to ensure that

φ0 = ∆φ = 0, which is required for a CNOT gate.

Input state P (0′0′) P (0′D) P (D0′) P (DD)

|0′0′〉 1 0 0 0

|0′D〉 0 1 0 0

|D0′〉 0 0 0 1

|DD〉 0 0 1 0

Table 7.1: Theoretical result for a CNOT gate operating on the four classical input states.

Input state P (0′0′) P (0′D) + P (D0′) P (DD)

|0′0′〉 0.781(13) 0.150(12) 0.069(9)

|0′D〉 0.180(17) 0.795(20) 0.025(14)

|D0′〉 0.043(10) 0.038(18) 0.920(24)

|DD〉 0.039(10) 0.958(16) 0.004(15)

Table 7.2: Preliminary data for a CNOT gate operating on the four classical input states.

After optimising the phase of the two qubit gate using this method, we can now perform

a CNOT gate on a pair of ions. The CNOT was implemented on the four classical input

states, and the preliminary results are shown in table 7.2. Since only detection on the

PMT was available, it was not possible to distinguish between P (0′D) and P (D0′). The

theoretical results are shown in table 7.1 for comparison. The average of the probabilities

of recording the correct result for a given input state is 0.86(1), which is a maximum limit

to the fidelity since P (0′D) and P (D0′) are not measured separately. This is assumed

to be largely limited by the measured unoptimised two qubit gate fidelity of 0.88(3), and
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single qubit gate infidelities are assumed to be negligible.

7.7 Conclusion

In this chapter, I have demonstrated the basic operations which when combined will

demonstrate performing a CNOT gate using position-dependent quantum logic. I have

shown a method to move ions in a static magnetic field gradient, and to preserve the

quantum information stored in the qubit during movement. I have also demonstrated a

method to characterise a two qubit MS gate of unknown phase, in order to optimise the

phase of the gate for implementing a CNOT. Bringing these techniques together should

allow for a CNOT gate to be performed across two positions, using the method outlined

in section 7.3. The work presented here is a key step towards demonstrating the basic

principle of position-dependent quantum logic.



Chapter 8

Conclusion

In this thesis, I have demonstrated key experiments towards a large scale quantum com-

puting architecture based on trapped ion qubits. The average error on single qubit gates

driven by long-wavelength radiation on the dressed state qubit has been characterised

using the technique of randomised benchmarking. I have demonstrated a novel two qubit

gate technique suitable for performing high fidelity two qubit gates in the presence of noise,

which will become a particularly important property in a large scale architecture. I have

also presented work towards demonstrating the principle of position-dependent quantum

logic, an approach which would remove the correlation between the number of physical

qubits and the number of gate fields required to construct a quantum computer.

8.1 Summary

Chapter 2 describes the background to using the ion 171Yb+ as a qubit. I also show how

use of long-wavelength radiation combined with a static magnetic field gradient generates a

coupling between the spin and motional states of an ion which is analogous to the coupling

generated using the momentum of optical photons. In chapter 3, the experimental setup

used in this work is described, as well as initial experiments that underpin the later work in

this thesis. I then go on in chapter 4 to discuss the use of dressed states to protect against

magnetic field noise but retain sensitivity to magnetic fields in order to perform multi-

qubit operations with long-wavelength radiation. These dressed states have a coherence

time an order of magnitude longer than the coherence time of the bare states.

In chapter 5, I show the randomised benchmarking of single qubit gates using this

dressed state qubit. This yields an error per computational gate of 9(3) × 10−4. A

discussion of sources of error suggests that the largest contributions to infidelity are a

161
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systematic qubit transition frequency mis-set, and off-resonant coupling to transitions

outside of the qubit subspace. The off-resonant coupling places a stringent limit on Rabi

frequencies, and could be alleviated by increasing the second order Zeeman shift and the

microwave dressing Rabi frequencies.

In chapter 6, a new type of robust two qubit gate is demonstrated: the Multi-Tone

Mølmer-Sørensen gate. This technique provides a method to generate two qubit entan-

glement that is robust against multiple error sources. I discuss how these gates can si-

multaneously protect against infidelity due to heating and due to symmetric detuning

errors caused by an incorrect secular frequency. I also show how these gates can alleviate

restrictions placed on the use of the stretch mode for two qubit gates by Kerr coupling

to the radial modes, and reduce the effect of off-resonant coupling to the carrier. An ex-

perimental demonstration shows the expected protection against heating and symmetric

detuning errors by comparing two tone gates to a standard MS gate. This technique is

demonstrated using long-wavelength radiation, but is also suitable for laser based quan-

tum logic. These gates are expected to be particularly suitable for large scale architectures

where experimental environments may be noisier or less stable, and in particular where

error due to heating may become worse due to use of microfabricated ion traps with higher

heating rates.

Finally, in chapter 7, I demonstrate techniques towards implementing position-dependent

quantum logic, a key principle of a proposal for a scalable architecture by Weidt et al.

[28]. In this proposal, ions are moved between positions on the surface of the chip and, by

adjustment of local magnetic fields at each position, interact only with selected global ra-

diation fields. I outline a method to use position-dependent quantum logic to implement a

CNOT gate, and demonstrate important steps towards this goal. A technique for moving

the ions in the experimental setup is demonstrated which causes negligible heating of the

stretch mode. Mapping of the dressed state qubit to the clock qubit is also shown, in order

to preserve quantum information during ion movement. I present a method to characterise

the phase of an unknown two qubit gate, in order to optimise for a CNOT gate. This work

provides the necessary tools to demonstrate the principle of position-dependent quantum

logic.

8.2 Future work

The focus of future work in our group is to demonstrate key features of the architecture

proposed by Lekitsch et al. This includes designing and testing X-junction microfabricated
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ion traps suitable for use within a quantum computer module. Work is also ongoing into

generating high magnetic field gradients using current-carrying wires, since high magnetic

field gradients are necessary for increasing the effective Lamb-Dicke parameter and per-

forming faster two qubit gates. A module prototype is being designed to test the ability

to align microchips to high precision using piezo-actuators to allow direct shuttling of ions

between chips.

The macroscopic ion trap used in this work has an important role in working towards

the realisation of a large scale architecture as a test-bed for techniques required for co-

herent manipulation. Importantly, the work on position-dependent quantum logic can be

continued to demonstrate a high fidelity CNOT gate across two positions. This exper-

iment could be extended by adding further ion positions and gate fields, in order that

different gates could be implemented depending on the sequence of ion position chosen.

The technique could also be used to perform simple quantum circuits on higher numbers

of qubits.

A large challenge facing the use of position-dependent quantum logic is the possibility

of variations of Rabi frequency between different ion positions. Methods to protect against

this for single qubit gates involve using composite pulses to reduce the sensitivity of gates

to timing errors [66]. Methods to protect two qubit gates against incorrect Rabi frequencies

should be investigated, as well as techniques for protection against other error sources such

as asymmetric detuning. The possibility of combining MTMS gates with other robust gate

techniques (for example [81] and [95]) may offer further protection. Different methods to

perform faster high fidelity two qubit gates could also be investigated [96]. Alongside work

on developing the required module architecture, the demonstration of robust and scalable

coherent manipulation techniques provides a path forwards towards the construction of a

quantum computer.
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Nonlinear coupling of continuous variables at the single quantum level. Phys. Rev.

A, 77:040302, 2008.

[87] X. R. Nie, C. F. Roos, and D.F.V. James. Theory of cross phase modulation for the

vibrational modes of trapped ions. Physics Letters A, 373(4):422 – 425, 2009.

[88] G. Mikelsons, I. Cohen, A. Retzker, and M. B. Plenio. Universal set of gates for

microwave dressed-state quantum computing. New Journal of Physics, 17(5):053032,

2015.

[89] K. G. Johnson, J. D. Wong-Campos, A. Restelli, K. A. Landsman, B. Neyenhuis,

J. Mizrahi, and C. Monroe. Active stabilization of ion trap radiofrequency potentials.

Review of Scientific Instruments, 87(5):053110, 2016.



172

[90] N. D. Guise, S. D. Fallek, H. Hayden, C-S. Pai, C. Volin, K. R. Brown, J. T. Merrill,

A. W. Harter, J. M. Amini, L. M. Lust, K. Muldoon, D. Carlson, and J. Budach.

In-vacuum active electronics for microfabricated ion traps. Review of Scientific In-

struments, 85(6):063101, 2018/05/27 2014.

[91] S. Collingbourne. Entangling gates for quantum computation. Master’s thesis, Im-

perial College London, 2017.

[92] Y. Shapira, R. Shaniv, T. Manovitz, N. Akerman, and R. Ozeri. Robust entanglement

gates for trapped-ion qubits. Phys. Rev. Lett., 121:180502, 2018.

[93] E. A. Martinez, T. Monz, D. Nigg, P. Schindler, and R. Blatt. Compiling quan-

tum algorithms for architectures with multi-qubit gates. New Journal of Physics,

18(6):063029, 2016.

[94] D. Maslov. Basic circuit compilation techniques for an ion-trap quantum machine.

New Journal of Physics, 19(2):023035, 2017.

[95] T. Manovitz, A. Rotem, R. Shaniv, I. Cohen, Y. Shapira, N. Akerman, A. Retzker,

and R. Ozeri. Fast dynamical decoupling of the Mølmer-Sørensen entangling gate.

Phys. Rev. Lett., 119:220505, 2017.

[96] I. Cohen, S. Weidt, W. K. Hensinger, and A. Retzker. Multi-qubit gate with

trapped ions for microwave and laser-based implementation. New Journal of Physics,

17(4):043008, 2015.


	PhD Coversheet
	PhD Coversheet

	Webb, Anna Elizabeth
	List of Tables
	List of Figures
	Introduction
	Quantum computing
	Trapped ions for quantum computing
	Long-wavelength radiation quantum logic
	Scalable architecture
	Thesis focus and structure

	Ytterbium ions as qubits
	Introduction
	Trapped ion background
	Ion traps
	Quantised normal modes
	Ion heating

	Ytterbium
	Photo-ionisation
	Doppler cooling
	State preparation and detection
	Hyperfine ground state

	Trapped ion hyperfine qubits
	Single qubit operations
	Multi-qubit operations
	Individual addressing


	Experimental setup and initial experiments
	Ion trap
	Macroscopic ion trap
	DC and RF voltages
	Magnetic field gradient
	Vacuum system

	Optical setup
	Lasers
	Frequency stabilisation
	Imaging

	Microwave and radiofrequency generation
	Microwave generation
	RF generation

	Initial experiments
	Trapping
	Cooling, state preparation, and state detection

	Coherent manipulation
	Rabi oscillations
	Experimental stabilisation
	Individual addressing
	Microwave sidebands
	Measuring ion temperature


	Dressed states
	Introduction
	Dressed states
	Dressed state basis
	Manipulation of the dressed state qubit
	Preparation and detection
	T1 and T2 measurements
	Decoherence of the dressed state qubit
	Multi-qubit dressed state operations

	Sideband cooling
	Sideband cooling process
	Measuring temperature
	Measuring heating rates


	Randomised benchmarking of single qubit gates
	Introduction
	Randomised benchmarking protocol
	Experimental implementation
	Result
	Sources of error
	Off-resonant coupling
	Frequency mis-set
	Pulse area mis-set
	Dephasing and depolarising

	Conclusion

	Robust two qubit gates
	Introduction
	Spin-motion entanglement in a single ion
	Two ion entanglement
	Theory
	Measuring the fidelity
	Two ion entanglement using the dressed state qubit
	Experimental demonstration

	Gate errors
	Heating
	Dephasing and depolarising
	Off-resonant coupling
	Symmetric detuning
	Asymmetric detuning
	Rabi frequency mis-set
	Kerr effect
	Other errors

	Multi-tone two ion entanglement
	Two ion entanglement
	Protection against heating
	Protection again symmetric detuning errors
	Asymmetric detuning
	Kerr coupling
	Off-resonant coupling

	Experimental implementation
	Heating
	Symmetric detuning
	`Hot' Gate

	Conclusion

	Towards position-dependent quantum logic
	Introduction
	Scalable architecture for quantum computing
	Demonstration of global addressing in a macroscopic ion trap
	Moving the ions in a magnetic field gradient
	Mapping between dressed and clock qubits
	Characterising the phase of a two qubit gate
	Conclusion

	Conclusion
	Summary
	Future work

	Bibliography




