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SUMMARY

The aim of this thesis focuses on addressing several open questions in cell biology

by using different mathematical approaches and numerical analysis methods to study the

evolution of distinct protein families in various cellular phenomena, such as cell polarisa-

tion and cytoskeleton remodelling. Our approaches are based on conservation laws and

compartmentalisation of proteins within appropriate geometrical subdomains representing

different cellular structures, such as the cell membrane and cytosol.

The Rho GTPase are proteins responsible of coordinating the cell polarisation response,

which is a biological process involving a huge number of different proteins and intricate net-

works of biochemical reactions. Rho GTPases localise their activity in specific cell regions

where they interact with the cell cytoskeleton. Reducing the biological assumptions to a

minimal level of complexity, we will present a simple qualitative model for cell polarisation

in which proteins cycle between cell membrane and cytosol in an active and inactive form.

This is described through a bulk-surface system of two reaction-diffusion equations coupled

by the boundary condition. The model supports pattern formation and we will confirm
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this claim by using both mathematical analysis and simulations. The bulk-surface finite

element method is presented and used to solve the model on different geometries.

Secondly, we will present a mathematical model for keratin intermediate filament dy-

namics in resting cells. This model, characterised by a quantitative approach, is a data-

driven extension of a pre-existing model, initially introduced by Portet et al. (PlosONE,

2015). We will discuss the new assumptions and modelling ideas, and compare the solution

of our model to the experimental data. Part of the biological impact of our model relies

in its ability to estimate the amount of assembled and disassembled keratin material as a

function of space and time, consistent with the biological model proposed by Windoffer et

al. (Journal of Cell Biology, 2011).

In the last part we will introduce a second mathematical model for keratin spatio-

temporal dynamics in non-resting cells. In this case, the model is derived on two- and

three-dimensional geometries and accounts for a more detailed description of the processes

involved in the keratin cytoskeleton remodelling process. The evolution of three different

forms of keratin is modelled by a system composed of one reaction-diffusion equation

and two reaction-advection-diffusion equations. Keratin kinetics are also described by

the boundary conditions, which are posed both at the cell membrane and at the nuclear

envelope. In solving the model, we will use the Streamline Upwind Petrov Galerkin method,

as described in the text. In conclusion, in view of a future estimation of biologically relevant

parameters, a simulation is presented, showing consistency of our mathematical model with

the biological model proposed by Windoffer et al. (Journal of Cell Biology, 2011).

In summary, this thesis presents methods and techniques for data-driven modelling

supported by rigorous mathematical analysis and novel numerical methods and simulations.

Our approach involving the use of quantitative methods serves as a blue-print for how to

study the synergy interplay between mathematics and its applications to experimental

sciences.
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Chapter 1

Introduction

Mathematics has often been a powerful tool in addressing answers to complex biological

questions. Historically, there are excellent examples of this, for instance Michaelis and Men-

ten (1913) proposed a fundamental mathematical model for enzymatic reactions, Hodgkin

and Huxley (1952) were awarded with the Nobel prize for their mathematical model de-

scribing the action potential in function of the ion channels at the cellular membrane,

Turing (1952) published “The Chemical Basis of Morphogenesis”, a pioneering work on

pattern formation based on a system of two reaction-diffusion equations, Luria and Del-

brück (1943) revealed important insights about bacteria resistance from viruses by coupling

experiments to mathematical models (see also Möbius and Laan (2015)) and crucial ad-

vances in evolutionary biology have been made thanks to mathematical support (see for

example Shou et al. (2015); Servedio et al. (2014)). Currently, one evergreen field for ap-

plied mathematicians (and modellers in general) is cell biology, which is the study of the

cell and its structures, essential subject for the understanding of higher scale components

such as tissues and organs. From the modellers’ point of view, cell biology is a very het-

erogeneous field and an immense source of open questions, in which an interdisciplinary

approach is often fundamental (regarding this, see for example the editorial by Madzvamuse

and Lubkin (2016) about an international 6-months research programme joined by both

modellers and experimentalists).

This thesis proposes different mathematical modelling approaches to open questions in

cell biology, resulting from three years of research within the InCeM network, which was

a Marie Skłodowska-Curie Innovative Training Network funded by the EU’s framework

programme HORIZON 2020. The main goal of our network was to study and understand

mechanisms related to single cell migration through an interdisciplinary approach, with

a combination of different projects involving both theoretical and experimental methods.
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Hence this thesis comes out as one part of a bigger project and it is the conclusion of

a scientific work in which the support and the many discussions with experimentalists,

internal and external to InCeM, played a fundamental role. As we will discuss in this

introduction, cell migration is a very complex process, which involves a huge number of

biological players. Despite the fact that great advances in science have been made in this

field, many questions are still open, especially on the role and behaviour of all the biological

entities involved. Thus, the thesis is focused in getting better insights into the biology of

the cell, discussing on different, and apparently distant, intracellular phenomena. Even

though cell migration is never explicitly considered throughout this thesis, in a certain

sense, our work can be thought as the result of a divide et impera strategy, in which sub-

problems are tackled with the aim of getting some more biological knowledge, inspired by

the complexity of the bigger picture in the context of cell migration.

Besides the intrinsic complexity of cell biology processes, often modellers have to face

with a second type of complexity, which arises from the mathematical description of the

biological phenomena. Indeed, when many variables are considered to be fundamental, the

resulting mathematical model might be very hard to analyse and understand. In particular,

this discussion motivates the work presented in Chapter 2, in which a conceptual model

with minimal assumptions is able to show cell polarisation response, which is a biological

process involving a huge number of molecules and proteins. Another form of complexity

involved in the modelling process might emerge when dealing with experimental data. In

Chapter 3 we will present a data-driven model for keratin network dynamics. In that

case, a fundamental step is the understanding of the technical difficulties involved in the

data collection, which might compromise the data quality. As we will see, mathematical

modelling is not only a tool to propose and validate biological assumptions but it can be

also a suitable approach to fill the gaps in the available data.

Before proceeding further in the modelling aspects, we now give a description of the

biological processes and structures we have studied in the thesis.

1.1 A biological background

The purpose of this section is to guide the reader into the general picture in which the

modelled biological structures are placed and interact. Since the three main chapters

of this thesis (Chapters 2, 3 and 4) are always accompanied by an exhaustive biological

introduction, here we will not go too much into the details. Instead, we propose a general

description which also highlights the role of each biological player in the cell migration
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Figure 1.1: A schematic representation of the different cyclic phases of cell migration. The mi-
grating cell needs to achieve a very complex coordination between biochemical signalling pathways
and mechanical forces. Fundamental coordinators of the biochemical processes are the Rho GT-
Pase proteins (see Section 1.1.5), which direct the remodelling of the cell cytoskeleton (see Section
1.1.2), responsible of the mechanics behind the migration.

process. In particular, we start by giving a brief introduction to cell migration, followed by a

description of the cytoskeleton with particular emphasis on keratin intermediate filaments.

Brief references to cell adhesions and Rho GTPase proteins will also be given.

1.1.1 Cell migration

Cell migration is a fundamental aspect of all living organisms, which accompanies them

since their initial formation. Indeed, during embryonic development, morphogenesis, which

is the process driving the shape of growing tissues and organs, is highly dependent on cell

migration (Davies, 2013). As well, this phenomenon characterises natural processes such

as renewal of tissues, wound healing, immunoresponse, but also pathological processes such

as cancer, vascular diseases, osteoporosis (Ridley et al., 2003; Ridley, 2015; De Pascalis and

Etienne-Manneville, 2017). Hence, a more complete understanding of cell migration can

lead to fundamental scientific and medical discoveries. Different modes of migrations have

been identified, depending on the cell type, tissues and environment (Vicente-Manzanares,

2005; DeSimone and Horwitz, 2014). Without going too much into details, the classical

model of a single cell migration in two-dimensions is generally described with four different

steps: 1) the cell forms protrusions in the direction of migration, a necessary process for

sensing the environment and apply traction forces; 2) the protrusions are stabilised through

attachment to the substrate; 3) the cell contracts forward and 4) the adhesions at the tail

of the migrating cell are finally disassembled (Mitchison and Cramer, 1996; Ridley, 2001).

These four steps are repeated cyclically during migration, see Figure 1.1. Each one of them

involves a huge number of proteins and cellular structures, such as the three cytoskeleton

components (actin filaments, microtubules, intermediate filaments), cell adhesions, myosin
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Figure 1.2: The keratin cytoskeleton in a single hepatocellular carcinoma-derived PLC cell. Image
adapted from Portet et al. (2015).

proteins and proteins of the Rho-GTPase family. Since all these components are strictly

interlinked, the cell needs to coordinate an impressive amount of biochemical reactions and

mechanical forces which permit the movement (Trepat et al., 2012).

1.1.2 The cytoskeleton

The cytoskeleton is a structure responsible of the internal organisation of the cell and

provides the fundamental mechanical support to carry out essential cellular functions, such

as cell division and cell migration (Fletcher and Mullins, 2010). It is composed of complex

filament networks of three major classes: microfilaments or actin filaments, microtubules

and intermediate filaments. During cell migration the cytoskeleton is continuously remod-

elled to permit protrusion formation and application of traction forces. In this process

actin filaments are continuously assembled at the leading edge and these push the mem-

brane forward. Actin filaments form stress fibres, which are anchored to the cell-substrate

adhesions and aligned in the direction of the migration (Pollard and Borisy, 2003). Con-

traction forces are generated by the association of actin with another protein called myosin

(Mitchison and Cramer, 1996; Pollard and Cooper, 2009). The microtubules are filaments

composed of tubulin and are main players in cell division (Iwasa and Marshall, 2016) and
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fundamental regulators of cell migration, in which they take part with intracellular pro-

tein transport and regulation of cell adhesions (Watanabe et al., 2005; Etienne-Manneville,

2013). Both actin filaments and microtubules are polarised structures, which is a neces-

sary property for intracellular transport and directed cell migration. On the other hand,

intermediate filaments are the non polar components of the cytoskeleton and the proteins

composing their structure differ depending on the cell type. In epithelial cells, intermedi-

ate filaments are composed of keratins. A brief description on their role in migration, and

more generally in cells, is given in the following section.

1.1.3 Keratin intermediate filaments

Intermediate filaments (IFs) constitute a network of filaments and bundles which extends

all over the cell cytoplasm, enveloping the nucleus in a protective cage. A major role

recognised to the IFs is the reinforcement of the cell structure and organisation of the cell

into tissues (Etienne-Manneville, 2018). In epithelial cells, keratin IFs cover an essential role

in regulating the cell stiffness and the integrity of the epithelial tissue. Indeed, mutations

of keratins have been reported to cause more than 60 different pathological disorders and

diseases, characterised by cell and tissue fragility (Irvine and McLean, 1999; Toivola et al.,

2015). A classical example of this is a group of genetic diseases called epidermolysis bullosa,

which causes easy blistering and erosion of the skin after minor mechanical traumas such

as rubbing (Omary et al., 2004; Coulombe et al., 2009). Another important medical aspect

of keratins is that they are excellent biomarkers in neoplastic diseases (Omary et al., 2004;

Pan et al., 2013).

Keratin filaments and bundles form a highly dynamic viscoelastic network subject to

continuously renewal and reorganisation (Windoffer et al., 2011; Etienne-Manneville, 2018).

Apart from its viscoelastic properties, the network is characterised by a remarkable ability

to resist to mechanical stress and deformation (Ramms et al., 2013; Jacob et al., 2018). A

picture of the keratin cytoskeleton is proposed in Figure 1.2.

Unlike actin filaments and microtubules, whose role in cell migration is well recognised,

the role of intermediate filaments still needs a more complete understanding. In particular,

it varies remarkably depending on the intermediate filament protein types, but also on the

cell type and the mode of migration (Leduc and Etienne-Manneville, 2015). Hence, the

relationship between IFs and migration might appear contradictory if one wants to find a

general answer. Restricting the discussion to solely keratins does not help in identifying a

unique response. Indeed, keratins are a very large family composed of 54 functional keratin
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Figure 1.3: A schematic diagram illustrating cell-substrate adhesions: focal adhesions are an-
choring sites for actin bundles, while keratin cytoskeleton attaches to the cell membrane through
the hemidesmosomes.

genes and their effect on migration strongly differs for specific keratins and type of cells. For

instance, keratinocytes lacking keratin IFs show increased invasive properties (Seltmann

et al., 2013), while keratin K19 has been shown to promote invasion of hepatocellular

carcinomas (Etienne-Manneville, 2018).

For more biological details, we refer to Chapter 3 and 4, where we will present two

different mathematical models for keratin spatio-temporal dynamics.

1.1.4 Cell adhesions

Cell adhesions to the extracellular matrix (ECM) are mainly mediated by integrin recept-

ors, which are transmembrane proteins responsible of creating a physical link between the

cell cytoskeleton to the ECM, as well as sensing the extracellular environment. They have

a mechanical role in regulating the force transmission across the cell membrane and they

also have a biochemical role in transmitting inside-out and outside-in signals describing the

location and the environment, which is a necessary aspect for cell migration (Harburger

and Calderwood, 2009; Tsuruta et al., 2011). Focal adhesions are complexes composed

of a huge number of proteins, for example paxillin, vinculin, talin, known for binding

actin filaments (Geiger et al., 2009). They are essential in cell migration, being robust

mechanical-dependent anchoring points for the actin-myosin system. Moreover focal ad-

hesions control the migration, possibly refraining it (Zaidel-Bar et al., 2003, 2004). A

second type of adhesion structures in keratinocyte cells are the hemidesmosomes, which

are known for binding the keratin filament network (Tsuruta et al., 2011; Seltmann et al.,

2013; Nahidiazar et al., 2015). They also play an essential role in maintaining the integrity

of the tissues (Tsuruta et al., 2011). See also Figure 1.3.
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1.1.5 Cell polarisation and Rho GTPases

While stationary cells are characterised by a radially symmetrical organisation of the in-

ternal processes and distribution of molecules and proteins, migrating cells are generally

characterised by strong asymmetries. This is observed for instance in keratinocytes, which

are epithelial cells (Yam et al., 2007). Directed cell migration is an activity in which the cell

has defined its own front and rear. In these regions the local processes are very different,

in order to permit the cell to move in a specific direction. This cellular asymmetry is a

particular cell polarisation response and is the result of complex networks of biochemical

reactions, which are also responsible of the cytoskeleton remodelling (Iden and Collard,

2008; Hanna and El-Sibai, 2013; Ladoux et al., 2016).

Main protagonists of the cell polarisation process are proteins of the Rho GTPase

family (GTP stands for guanosine triphosphate), which activate different cellular responses

depending on the stimulus. In cell migration, for example, Rho GTPases are fundamental

regulators of the actin network and cell adhesions (Ridley, 2001; Ridley et al., 2003; Ridley,

2015). Among this family, Cdc42, Rac and Rho are the most representative components.

During migration the first two are mainly active at the leading edge, while Rho mediates

the cellular processes also at the rear of the cell (Sadok and Marshall, 2014; Fritz and

Pertz, 2016), see also Figure 1.4.

Rho GTPase proteins are molecular switches that cycle between an active (GTP-bound)

and an inactive (GDP-bound) state. This cycling is regulated by specific biological factors.

Activation is governed by the activity of GEFs, which are guanine nucleotide exchange

factors that convert GDP into GTP. In turn, GAPs stimulate the reverse transformation of

GTP in GDP, thus regulating the GTPase inactivation (Ridley et al., 2003; Fritz and Pertz,

2016). Interestingly, a switching occurs also in the cellular space, because of the activity

of Rho-specific guanine nucleotide dissociation inhibitors called GDIs, which prevent Rho

GTPases to bind to the cell membrane. In particular, they bind to inactive GTPases,

sequestering them in the cytosol and preventing their activation by GEFs (DerMardirossian

and Bokoch, 2005; Boulter and Garcia-Mata, 2010; Garcia-Mata et al., 2011; Hodge and

Ridley, 2016). Hence, inactive GTPases are found both on the membrane and in the

cytosol, while active GTPases are generally present only at the cell membrane. A graphical

summary is proposed in Figure 1.4(c). These biological features will be the starting point

for the derivation of a mathematical model which will be presented in Chapter 2.
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Figure 1.4: Rho GTPase activity localises in specific regions of the cell, as depicted and described
in these images. (a) RhoA activity in a migrating HeLa cell from Nalbant et al. (2009); (b) A
screenshot of Cdc42 activity in a MEF cell from a supplementary video attached to the paper by
Machacek et al. (2009). In both these images, red colour indicates the highest activity level, blue
colour the lowest level; (c) A schematic diagram: Rho GTPases cycle between an active (GTP-
bound) and inactive (GDP-bound) form. Spatial movement between cell membrane and cytosol
is regulated by the GDI action. Figure (a) is republished with permission of American Society
for Cell Biology, Copyright (2009); permission conveyed through Copyright Clearance Center, Inc.
Figure (b) is adapted by permission from Springer Nature Customer Service Centre GmbH: Springer
Nature, Copyright (2009).

1.2 Mathematical modelling

When modelling interactions and reactions between proteins, one is often interested in

studying the evolution of their corresponding concentrations. A typical approach relies on

the derivation of a system of differential equations. If the interest is focused purely on the

temporal evolution of a substance, ordinary differential equations are often used. This is

well described in a useful (and very successful) review of different common scenarios of

regulatory and signalling pathways in cells, published by Tyson et al. (2003). Classical

kinetic reaction models are also briefly described in Appendix A.3 of this thesis.

On the other hand, when one is interested in studying concentrations in a broader

environment, such as the cell, which is a spatially heterogeneous environment, systems

of partial differential equations are often adopted (classical examples can be found in the

textbooks by Murray (2003) and Edelstein-Keshet (2005)). These equations are often

derived by physical laws as discussed in the following section.

1.2.1 Conservation laws

Conservation laws are broadly employed in modelling the spatio-temporal evolution of

some biological quantities. Given a certain substance U , whose concentration in a domain
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⌦ ⇢ Rd is described by a smooth function u : ⌦ ! R, the equation

@u

@t
(x, t) = �r · J(x, t, u) + f(x, t, u), x 2 ⌦, t > 0, (1.1)

follows from conservation laws. In words, if the substance U is subject to a flow J(x, t, u)

and the function f(x, t, u) describes its production (or depletion), then the temporal vari-

ation of u at a given point x 2 ⌦ is the sum of both spatial effects (in terms of the

divergence of its flow J) and local effects (described by the function f). Hence, if a model

can be stated in this form, the main efforts are then directed in the identification of a

proper expression for the flow J and the reaction function f . A common choice for purely

diffusive substances, for example cytoplasmic proteins, is the use of the Fick’s law :

J(x, t, u) = �Du(x, t, u)ru(x, t), with Du > 0, (1.2)

whose principle states that if the substance is heterogeneously distributed, i.e. if there is

a nonzero gradient of u, then a flow is generated, and the substance U starts moving from

regions with higher concentrations to regions with lower concentrations, proportionally to

the gradient (Okubo and Levin, 2001). Du is generally called the diffusion coefficient and

in many biological situations, depending on the environment and substance properties, is

assumed to be a positive constant (Milo and Phillips, 2015). If this is the case, then

equation (1.1) takes the form

@u

@t
(x, t) = Du�u+ f(x, t, u), x 2 ⌦, t > 0, (1.3)

which is the well-known reaction-diffusion equation. However one can consider also the

following expression for the flow

J(x, t, u) = �Duru(x, t) + u(x, t)v(x, t), (1.4)

where Du is a positive constant and v : ⌦⇥ [0,1) ! R2 is a vector field describing a flow

in which the substance is moving. This new expression adds the term uv to the Fick’s part

�Duru, and it can be understood by thinking about some certain substance thrown into

a river, which is both diffusing and subject to the river current. The equation (1.1) takes

the form
@u

@t
(x, t) = Du�u�r · (uv) + f(x, t, u), x 2 ⌦, t > 0, (1.5)
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which is known as reaction-advection-diffusion equation.

As we will see, conservation laws constitute the starting point for the derivation of the

mathematical models presented in this thesis. In the next section we will introduce another

modelling idea which will be adopted in the discrimination between proteins confined in

different cellular structures, such as the cell membrane and cytosol.

1.2.2 Protein compartmentalisation and the bulk-surface models

The plasma membrane of a cell does not only constitute its external boundary, but it is

a very dynamic and crowded environment. It hosts a huge number of molecular activit-

ies and is responsible of many cellular processes such as signal and energy transduction,

intercellular interactions, cell adhesions, regulation of intra- and extra-cellular transport.

In many cases, some form of proteins live only on the membrane, for example receptor

transmembrane proteins (Iwasa and Marshall, 2016). Therefore, when modelling biolo-

gical processes involving membrane-bound proteins it could be necessary to consider this

aspect by compartmentalising cytosolic and membrane-bound proteins. An elegant math-

ematical approach relies on the fact that the ratio between membrane thickness and cell

diameter is around 1:500 (Milo and Phillips, 2015). This allows, with a reasonable good

level of approximation, to describe the cell membrane with a two-dimensional closed sur-

face �, which envelops a three-dimensional volume ⌦, representing the cell interior. In

this way, the concentration of membrane-bound proteins can be represented by a function

v : � ! R, whose spatial transport is restricted to solely tangential movements. On the

other hand, cytosolic proteins are defined over the three-dimensional space ⌦ and their

concentration can be described as a function u : ⌦ ! R. Since membrane-bound proteins

are spatially confined over the cell membrane, interactions between the two forms u and

v can only occur over the surface � (see also Figure 1.4). These can be included into the

model through the boundary condition for the bulk component u and in a reaction function

of the equation for v.

Coupled bulk-surface models are generally described by systems of differential equations

representing bulk and surface interacting variables. Nowadays, this modelling approach is

receiving an increasing attention by the mathematicians and modellers in general, as it

easily finds applications in many different scientific areas. Cell biology is only one of the

many (and several examples are given in Chapter 2) but, for example, coupled bulk-surface

models have been used in modelling crystal growth (Kwon and Derby, 2001), surfactant

dynamics (Fernández et al., 2016) and monument degradation due to marble sulphation
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(Bonetti et al., 2019).

1.3 Research questions and thesis outline

Besides this introduction, the thesis is composed of three main and self-contained chapters,

adequately supported by three appendixes, and a conclusive discussion. In this section we

will introduce the research questions underpinning this thesis and the modelling ideas used

during our investigation.

1.3.1 A coupled bulk-surface model for cell polarisation

As previously briefly introduced, when dealing with networks of biochemical reactions, one

might end up with very complex mathematical models. In particular, this is surely the risk

if one wants to model cell polarisation driven by Rho GTPase activity, since interactions

between different GTPase types, which involve activations, inactivations, inhibitions, pos-

itive and negative feedbacks and spatial movements are many and intricate (Guilluy et al.,

2011). Thus, a reasonable question is whether it is possible to model cell polarisation with

manageable mathematical tools, which allow the analysis and understanding of the model.

In order to answer this question, a necessary thinking path requires the identification of

a minimal number of fundamental features shared by the GTPase proteins, with a con-

sequent reduction of the number of mathematical variables and functions appearing in the

equations. However, would this be helpful for a biologist? The identification of all the

interactions between different GTPase forms is clearly a necessary step in the understand-

ing of the signalling network pathways leading to cell polarisation. However are all these

interactions equally important? Is there a predominant one? In a certain sense, potentially

this modelling approach could provide a reading key of this complex network, which would

help the biologists in the understanding of the main paths in the biochemical network.

Following these questions, in Chapter 2, a three-dimensional mathematical model de-

scribing cell polarisation is presented. The model generalises to a bulk-surface setting the

well-known wave pinning model, which was initially proposed by Mori et al. (2008) as one

of the simplest possible models for cell polarisation. Its derivation follows from the ap-

plication of conservation laws and includes the spatial compartmentalisation, between cell

membrane and cytosol, of two different forms of Rho GTPase protein. The result is a sys-

tem composed of one surface reaction-diffusion equation and one bulk diffusion equation,

coupled by the boundary condition for the bulk component. Two types of mathematical

analysis are applied in order to describe the general behaviour of the model, and simula-
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tions will be presented in order to show the polarisation process on different geometries.

We remark that the main part of this chapter was published recently in Cusseddu et al.

(2018).

1.3.2 Spatio-temporal dynamics of the keratin network in one dimension

The work introduced in the above section represents an example of qualitative mathem-

atical model. However, the understanding of biological processes has always also required

measurements, which express substances and observations in terms of real numbers. This

is the aim of the paper by Moch et al. (2013), in which the authors measured the dynamics

of the keratin cytoskeleton in resting cells, through experimental work and the support of

image analysis and mathematical tools. However, a mathematical model was needed for

completing the work on the assembly/disassembly cycle of the keratin network. Indeed,

the benefits coming from a mathematical model relies in its ability to predict the dynamics

of interest continuously in time, while experimental data represent a description at some

given time points (which are often not so many). Hence, based on the same experimental

measurements by Moch et al. (2013), Portet et al. (2015) proposed a mathematical model

in the form of two reaction-diffusion equations with an advective term, resulting from a

selection of different plausible scenarios. In this work, keratin material is considered in two

forms (soluble and insoluble) and, since circular symmetry is a reasonable assumption in

resting cells, the model is posed on a spatial interval. Curiously, the two approaches (the

experimental one by Moch et al. (2013) and mathematical by Portet et al. (2015)) showed

discrepancies in their results. Indeed, among 36 different scenarios proposed by Portet

et al. (2015), the ones in which the data were used the most did not classify between the

first positions of the model selection. How can this be explained?

This question will be addressed in Chapter 3. Indeed, following the discussions from

Portet et al. (2015), we investigate the reasons of such discrepancy, by extending their

mathematical model, but keeping the model in its original form (a system of two reaction-

diffusion equations with an advective term). In our work we propose new modelling ideas

and new biological assumptions on the experimental data in order to overcome the technical

limitations affecting the measurements. As we will show, part of the biological relevance

of our model relies in its ability to estimate the keratin spatio-temporal turnover dynamics

during the network remodelling process. As well, our results support the biological model

which was proposed by Windoffer et al. (2011).

This work is the direct result of a collaboration within the InCeM network. In par-
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ticular, the biological assumptions on the experimental data are the result of different

discussions with Reinhard Windoffer, Rudolf Leube and Nadieh Kuijpers from RWTH

Aachen University.

1.3.3 A multidimensional model for the spatio-temporal dynamics of the

keratin network

The assembly of the keratin network passes through different steps. Among these steps are

nucleation of keratin particles from elementary subunits, integration of keratin filaments

into the network and lateral association of keratin subunits into pre-existing filaments

(Windoffer et al., 2011). In describing the assembly of the keratin filaments, the model

proposed in Chapter 3 does not keep track of these different processes. In a sense, that

approach is supported by the fact that separate experimental measurements for each single

process are hard to obtain. Thus, one of the motivations for developing the work presented

in Chapter 4 was the understanding of each one of the assembly steps. How can we

identify the different phases characterising the network remodelling? In order to address

this question, we categorise keratin material into three different forms (soluble, precursors,

network) and introduce new kinetic functions. In this sense, Chapter 4 can be seen as a

refinement of the work presented in Chapter 3.

A second fundamental question to be answered regards how polarisation and different

cell shapes affect the keratin network remodelling and vice versa. As described in Section

1.1, this is particularly of interest in the context of cell migration, where the cell changes

its shape and it is characterised by strong asymmetries (Kirfel and Herzog, 2004), like the

polarisation response described in Chapter 2. In this case, the model proposed in Chapter

3 can not provide an answer, as it is only valid for resting cells. Hence, since circular

symmetry assumption can no longer be applied, an extension to two- or three-dimensional

spatial geometries is needed.

Finally, in Chapter 4 we present a second model for keratin spatio-temporal dynamics,

which is characterised by a detailed description of the keratin processes and it is applicable

in the case of different cell shapes. The presence of the nucleus is taken into account,

constituting a hole inside the two- or three-dimensional domain. Boundary conditions are

applied at the cell membrane and nucleus surface, and describe kinetic processes of the

network remodelling. Lastly, we will present the numerical method used to solve the model

which is based on the Streamline Upwind Petrov Galerkin method (Brooks and Hughes,

1982).
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Also this work results from a collaboration within the InCeM network. In particular

the biological assumptions of the model were discussed with Anne Pora, Nadieh Kuijpers,

Reinhard Windoffer and Rudolf Leube from RWTH Aachen University.

In conclusion, in this section we have outlined the biological processes considered and

analysed in the thesis. Recent studies prove evidence of existing connections between these

processes and the next section is devoted to presenting these results.

1.4 The biological connections: keratins, GTPases and focal

adhesions

The work of this thesis is devoted to the modelling of different cellular mechanisms involved

in cell migration. Besides the ones outlined in Section 1.3, in Appendix C we include a

modelling hint describing the evolution of the focal adhesions shape. From the biological

point of view, the involvement of Rho GTPases, keratin dynamics and cell adhesions in

cell migration was described throughout Section 1.1.

However legitimate questions might be on how cell polarisation and keratin filaments

link together, what role have cell adhesions in the keratin dynamics or, more generally,

which kind of links exist between the biological processes and structures considered in this

thesis. These questions are currently a research subject for the biologists and, in partic-

ular, the role of keratin filaments in polarisation and cell migration is still not clear (see

Section 1.1.3). Biological answers to these questions are then far from being exhaustive.

However, as we will see, several studies have focused on the identification of the relation-

ships between Rho GTPases, keratin network and cell adhesions. Therefore, this section

is aimed at presenting these works, which highlight links between the different biological

entities considered in this thesis.

It is known that cytoskeleton, GTPases and focal adhesions are strictly connected.

In particular, Cdc42 and Rac are known to regulate actin polymerisation at the leading

edge of the migrating cells. Rac and Rho are also involved in the regulation of the focal

adhesions (Ridley et al., 2003; Sadok and Marshall, 2014). Activation of Rho is regulated

by microtubules, that release GEF factors (Chang et al., 2008). Microtubules have also

been shown to grow towards focal adhesions and establish a contact with them (Rafiq

et al., 2018).

The role of intermediate filaments is, however, not so clear and this could possibly
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Figure 1.5: A sketched summary of biological connections (see Section 1.4): activation of Rho-
GTPase is possible thanks to GEF factors. Solo is a GEF known to bind to keratin intermediate
filaments (KIF) (Fujiwara et al., 2016). Focal adhesions (FAs) might be involved in the formation
of keratin particles (Windoffer et al., 2006; Moch et al., 2016), which are filament precursors. The
hemidesmosomes (HD) are anchoring points for the keratin cytoskeleton.

be due also to the differences between the IF type-specific properties. Keratin network

remodelling is mediated by the actin system, which is believed to be the main player,

responsible for the transport of these intermediate filaments (Kölsch et al., 2009; Moch

et al., 2016), even though the biological mechanism is still poorly understood. Also a

microtubule-mediated transport has been studied, but this accounts for a very small and

negligible percentage of keratin particles (Liovic et al., 2003; Wöll et al., 2005). Despite

the fact that in vivo experiments on epithelial cells show that the interaction between focal

adhesions and keratin filaments is a transient and rare event (Leube et al., 2015), in the

literature a spatial correlation between focal adhesions and nucleation of keratin filaments

has been repeatedly noted and proposed (Windoffer et al., 2006, 2011; Moch et al., 2016).

Bordeleau et al. (2012) studied the effects of keratin filaments (constituted of K8/K18

keratins) on Rho GTPase activity and actin cytoskeleton. They show that, in hepatic

epithelial cells, Rho GTPase activity is strongly influenced by the presence of keratin IFs.

In particular, by comparing cells with an intact keratin cytoskeleton with keratin-lacking

cells, it resulted that the expression of the protein Rho is much higher in the second case.

However it also resulted that the Rho GTPase activity is much diminished in absence of

keratin cytoskeleton, hence lack of keratin is suggested to damage Rho activation. Further-

more they analysed the actin cytoskeleton which, consistently with the results regarding

Rho activity, it resulted altered in keratin-lacking cells.

Interestingly, on other cell lines, Fujiwara et al. (2016) identify a relationship between

the same keratin filaments as in Bordeleau et al. (2012) (i.e. constituted of K8/K18 ker-

atins) and Solo, which is a GEF targeting a Rho protein called RhoA. They suggest that

Solo binds to keratin filaments through at least three binding sites and it is required for
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the formation of a well organised keratin network. They also confirm that Rho activity is

noticeably decreased in cells lacking keratin filaments. In particular, keratin suppression

leads to a significant reduction of the number of force-induced actin stress fibres. In their

study, Fujiwara et al. (2016) focused their attention in highlighting the interplay between

Solo, RhoA, keratin cytoskeleton and actin fibres and its importance in the biomechanical

cell response, which is fundamental for cell migration. On the other side, Jiu et al. (2017)

studied interactions between intermediate filament and actin cytoskeletons in fibroblasts,

where the IFs are constituted of vimentin, revealing how vimentin cytoskeleton mediates

the assembly of actin stress fibres. In particular, the depletion of vimentin promotes the

activity of RhoA through microtubule-associated GEFs, with the consequent increasing of

the cell contractility.

In conclusion, in this section we have presented some results which are fundamental

in describing the biological interconnections between the chapters of this thesis and give a

bigger picture of these biological processes, which are also summarised in Figure 1.5. In

the following sections we will introduce the notation and some standard results which will

be used throughout the thesis.

1.5 Mathematical notation and background

For a better clarity in reading this thesis, in this section we first introduce the mathematical

notation and definitions which will be used in the following chapters. Secondly, we present

a summary of differential geometry elements, which are employed for the description of the

spatio-temporal evolution of proteins at the cell membrane in Chapter 2.

1.5.1 Notation and definitions

We now briefly define some analysis concepts which will be used in this thesis. For more

details we refer to the classical textbooks by Evans (2010) and Brezis (2010).

Definition 1.5.1 (Locally Lipschitz). A function f : Rd ! Rn is said to be locally Lipschitz

if it is Lipschitz for all compact subsets in Rd, i.e. if 8 K ⇢ Rd, K compact, there exists a

constant L = L(K) such that

kf(x)� f(y)kRn  L kx� ykRd

for all x,y 2 K.
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Definition 1.5.2 (Locally integrable). Let ⌦ be an open subset of Rd and u : ⌦ ! R a

Lebesgue measurable function. Hence, if for all compact subsets K of ⌦

Z

K

|u| dx < 1,

then u is said to be locally integrable. The set of all locally integrable functions on ⌦ is

defined:

L1
loc(⌦) :=

�
u : ⌦ ! R such that u 2 L1(K), 8K ✓ ⌦, K compact

 
.

Definition 1.5.3 (Weak derivative). Let ⌦ be an open subset of Rd, u, v 2 L1
loc
(⌦) and

↵ = (↵1, . . . ,↵d) a multi index in Nd with |↵| =
P

d

j=1 ↵j . If

Z

⌦
uD↵' dx = (�1)|↵|

Z

⌦
v' dx, 8' 2 C1

0 (⌦),

then v is called ↵-th weak derivative of u and is written D↵u = v.

Definition 1.5.4 (Sobolev space). For 1  p  1 and k 2 N, the space

W k

p (⌦) :=
n
u 2 Lp(⌦) such that D↵u 2 Lp(⌦), 8↵ 2 Nd, |↵|  k

o

is called Sobolev space. For p = 2 and k = 1 the Sobolev space is denoted by H1(⌦).

Definition 1.5.5. Let X be a Banach space with norm || · ||X . We will often consider the

following space

L2([0, T ];X) :=

(
u : [0, T ] ! X s.t.

Z
T

0
||u||2X dt < 1

)
,

which is known as the Bochner space (Roubíček, 2013).

1.5.2 Some elements of differential geometry

In this section we briefly introduce some elements of differential geometry which will be

used in Chapter 2. For more details we refer to the work by Dziuk and Elliott (2013) or

the textbook by Do Carmo (1976).

Definition 1.5.6. � ⇢ Rd+1 is a Ck-hypersurface for k 2 N[ {1} if 8x0 2 � there exists

an open set U⇢Rd+1 and a function � : U ! R such that:

• x0 2 U ,
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• � 2 Ck(U) and r�(x) 6= 0 for x 2 � \ U ,

• � \ U = {x 2 U | �(x) = 0}.

Definition 1.5.7. The tangent space to a hypersurface � at a point x 2 � is so defined:

Tx� = {⌧ 2 Rd+1 such that 9� : (�", ") ! Rd+1 differentiable, �((�", ")) ⇢ �,

�(0) = x and � 0(0) = ⌧}.

Remark 1.5.1. Since for ⌧ 2 Tx� the following holds

r�(x) · ⌧ = r�(�(0)) · � 0(0) =
@

@⇠

�����
⇠=0

�(�(⇠)) = 0,

as �(x) = 0, 8x 2 � and �(⇠) 2 �, 8⇠ 2 (�", "), the tangent space to � at x is orthogonal

to r�(x), so it can also been written as:

Tx� = {⌧ 2 Rd+1 | r�(x) · ⌧ = 0}.

For this reason we can write the orthogonal unit vectors ⌫ at x 2 � as:

⌫(x) =
r�(x)
|r�(x)| or ⌫(x) = � r�(x)

|r�(x)| , (1.6)

depending on the direction (outgoing or ingoing) with respect to the surface.

Definition 1.5.8. Consider x 2 �, where � is a C1-hypersurface in Rd+1 and let f : � ! R

be a differentiable function at x. The tangential gradient of f at x is defined as:

r�f(x) := rf̄(x)�
�
rf̄(x) · ⌫(x)

�
⌫(x), (1.7)

where r is the classical gradient and f̄ a smooth extension of f to an (d+ 1)-dimensional

neighbourhood U of � such that f̄(x) = f(x) for every x 2 �.

Remark 1.5.2. From (1.7) with (1.6) it follows that r�f(x) 2 Tx�.

For a better understanding of the following definition it is useful to write the i-th

component of the tangential gradient:

Dif(x) = Dif̄(x)�
�
rf̄(x) · ⌫(x)

�
⌫i(x), i = 1, ..., d+ 1.

Definition 1.5.9. The Laplace-Beltrami operator is defined as the tangential divergence
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of the tangential gradient, that is:

��f(x) := r� ·r�f(x) =
d+1X

i=1

DiDif(x). (1.8)

We are now ready to present some useful results.

Theorem 1.5.1 (Integration by parts). Let � be a hypersurface in Rd+1 with smooth

boundary @�. Let µ be an orthogonal vector to @� and tangent to � and f a function

C1(�̄). Then Z

�
r�f ds =

Z

�
fH⌫ ds+

Z

@�
fµ dS

where H(x) = r� · ⌫(x) is the mean curvature of � in x.

Theorem 1.5.2 (Divergence theorem). Under the same hypothesis of Theorem 1.5.1, for

every vector valued function ⇠ : Rd+1 ! Rd+1 the following holds:

Z

�
r� · ⇠ ds =

Z

�
⇠ · ⌫H ds+

Z

@�
⇠ · µ dS.

Using this last theorem, one can easily prove:

Theorem 1.5.3 (Green’s formula). Under the same hypothesis of Theorem (1.5.1), for

every function g 2 C2(�̄) the following result holds:

Z

�
r�f ·r�g ds = �

Z

�
f��g ds+

Z

@�
fr�g · µ dS. (1.9)

In particular, it is immediate to prove the following.

Corollary 1.5.1. If @� = ;, from (1.9) it follows that

Z

�
��g ds = 0

for every function g 2 C2(�).

Proof. Consider f = 1 in Theorem 1.5.3.

1.5.3 Numerical methods and simulations

The mathematical models presented in Chapter 2 and 4 are numerically solved by using

finite element methods, which are explained in detail in each chapter. We have implemented

these methods by developing a code in Python 2.7, with the support of FEniCS, which is an
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open source finite element software package for solving partial differential equations (Alnæs

et al., 2015). In the thesis, the models are tested on different geometries. The simplest

ones, with the corresponding meshes, were created using the FEniCS mesh generator mshr

(Alnæs et al., 2015), while the software Gmsh (Geuzaine and Remacle, 2009) has been

used for more complex geometries.
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Chapter 2

A coupled bulk-surface model for cell

polarisation

2.1 Introduction

Cell polarity is a complex process by which cells lose symmetry. However, its precise

definition is still not clear (Frankel, 2018). Polarity appears in single-cell organisms and

multi-cell tissues. Many common basic polarisation mechanisms are shared and adapted

by many different kinds of cells (Nelson, 2003). Roughly speaking, by breaking symmetry,

cells define their front and rear and this process is characterised and driven by molecu-

lar chemical processes. Cell polarity is mediated and coordinated by a huge number of

molecules and proteins and their interactions (Drubin and Nelson, 1996; Guilluy et al.,

2011). The polarisation process, which can be caused by some external stimuli or can be

spontaneous (Andrew and Insall, 2007; Graessl et al., 2017), is necessary for many cel-

lular activities, such as morphogenesis, and directed cell migration (Ladoux et al., 2016;

St Johnston and Ahringer, 2010). Studies have identified the main drivers of this phe-

nomenon in the Rho family small guanosine triphosphate (GTP)-binding proteins (Rho

GTPases). They behave like molecular switches, cycling between active (GTP-bound) and

inactive forms (GDP-bound). Activation and inactivation are regulated by guanine nuc-

leotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Moreover, the

inactive Rho GTPases are sequestered in the cytosol by guanine nucleotide dissociation in-

hibitors (GDIs), that prevent the association of Rho GTPases with the plasma membrane

(DerMardirossian and Bokoch, 2005; Hodge and Ridley, 2016). Among the Rho GTPase

family, RhoA, Rac and Cdc42 are the most well known representatives in initiating the

polarisation of migrating cells (Etienne-Manneville, 2008; Ridley et al., 2003; Sadok and
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Marshall, 2014). During cell migration, Rac and Cdc42 tend to concentrate their activities

at the front, controlling the protrusive actin network, while RhoA is mostly active at the

rear and regulates large focal adhesions and stress fibres (Mayor and Carmona-Fontaine,

2010; Ohashi et al., 2017). Microtubules and intermediate filaments are also involved in

the process, for example binding the RhoA-effectors GEF-H1 and Solo (Chang et al., 2008;

Fujiwara et al., 2016).

In recent years, Rho GTPases and cell polarisation have attracted the attention of

many modellers (Goryachev and Leda, 2017; Rappel and Edelstein-Keshet, 2017). Marée

et al. (2006) were able to simulate polarisation on a two-dimensional domain, in which

the crosstalk between RhoA, Rac and Cdc42 in their active and inactive forms could

generate the expected patterns. However, despite the fact that good computational results

were obtained, a rigorous mathematical analysis of the biochemical system comprising

six partial differential equations (PDEs), remained out of reach (Edelstein-Keshet et al.,

2013), until two years later, when Mori et al. (2008) proposed a significant mathematical

simplification of this modelling framework for cell polarisation, which became very popular

and can be considered as the starting point of our study. The work in Mori et al. (2008)

focused on a conceptual minimal model of a single Rho GTPase and its switch between

active and inactive forms, in which activation was supported by a positive feedback of

the active GTPase in its own activation (see Figure 2.1 for a schematic representation).

Their model consisted of the following pair of reaction-diffusion equations posed on a one

Figure 2.1: The minimal GTPase circuit with positive feedback for the activation (Mori et al.,
2008; Altschuler et al., 2008). Active GTPase is bounded to the membrane, while inactive GTPase
has also a cytosolic form.

dimensional domain

@a

@t
= Da

@2a

@2x
+ f(a, b), x 2 (0, L), t > 0, (2.1)

@b

@t
= Db

@2b

@2x
� f(a, b), x 2 (0, L), t > 0, (2.2)
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with

f(a, b) =
⇣
k0 +

�a2

K2 + a2

⌘
b� �a, (2.3)

and boundary conditions

@a

@x
=
@b

@x
= 0, x = 0, L, t > 0, (2.4)

where a(x, t) and b(x, t) denote the active and inactive forms, respectively. Here, k0 rep-

resents the basal rate of activation and � is the rate of inactivation. The maximal rate for

the positive feedback is indicated by � and K is the parameter representing the quantity

of a needed to achieve a feedback-induced activation rate of �/2 in the reaction.

The mathematical model was based on three key properties: (1) a large difference in

diffusivities between active and inactive forms (Da/Db ⌧ 1); (2) conservation in time of

the total mass
R
L

0 (a+ b)dx; and (3) bistability in the reaction term f(a, b) with respect to

a. Bistable reaction-diffusion equations are known to produce travelling waves for certain

initial conditions (Fife and McLeod, 1977). In this work (Mori et al., 2008), a local narrow

peak of active GTPase was able to generate a travelling wave of active GTPase which is

eventually stopped due to the interplay with the inactive GTPase, where conservation of

total mass and fast cytosolic diffusion were key ingredients. An asymptotic analysis of

the model, known as wave pinning (WP) phenomena, was later carried out in Mori et al.

(2011).

Over the years, the need for a mathematical understanding of cell polarity led to the

reduction of different mathematical models of polarisation to minimal conceptual models,

revealing different underlying mechanisms, not necessarily based on wave pinning. Some

of them, however, share common features, for example positive feedback is still the key

to achieve cell polarity in the work by Altschuler et al. (2008), in which a system com-

posed of one ordinary and one partial differential equation (ODE-PDE system) and one

stochastic model are proposed for the interactions between an active and inactive GTPase

component. Reaction-diffusion systems have also been used by Otsuji et al. (2007). They

derive conceptual models of two components based on mass conservation and difference

in diffusivity, which they show to be fundamental properties to achieve polarisation. In

addition, Goryachev and Pokhilko (2008) proposed a reaction-diffusion model for Cdc42

clustering in budding yeast, which was based on the Turing pattern formation mechanism.

In Jilkine and Edelstein-Keshet (2011) and Edelstein-Keshet et al. (2013) some of these

models are described and compared.
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An important biological aspect of cell polarisation is the compartmentalisation of the

membrane-bound and cytosolic proteins, which has inspired several works: Novak et al.

(2007) presented a computational approach for three-dimensional modelling of Rac proteins

cycling between cell membrane and cytosol, using reaction-diffusion equations. In a more

recent paper, (Xu and Jilkine, 2018), a one-dimensional model for Cdc42 and its GEFs in

budding yeast is proposed. The cytosolic components purely diffuse over the line domain

while slow membrane diffusion motivates the use of ordinary differential equations (ODEs)

to model the membrane-bound species at the two ends. Interactions between the two occur

through the flux conditions of the cytosolic components and the ODE reactions. A three-

dimensional bulk-surface model showing Turing pattern formation is proposed in Rätz and

Röger (2014). The GDI-bound inactive GTPase diffuses freely in the cell interior (the bulk)

and, through an appropriate coupling boundary condition, it binds to the cell membrane

(surface of the domain), on which its membrane-bound counterpart interacts with the

active form. These latter two species were both modelled by reaction-diffusion equations.

Another three-dimensional bulk-surface model is also proposed by Spill et al. (2016). This

model is more detailed as all the three GTPases Cdc42, Rac, RhoA (in the cytosolic,

membrane-bound active and membrane-bound inactive forms) and phosphatidylinositols

(PIPs) are taken into account. The model results in a system of twelve reaction-diffusion

equations.

The wave pinning model has seen its bulk-surface extension in two works (Ramirez

et al., 2015; Giese et al., 2015) and more recently in Diegmiller et al. (2018). The first

one by Ramirez et al. (2015) adapts the WP model to GTPases in dendritic spines in

neurons. The cytosolic GTPase is assumed spatially homogeneous, while the membrane-

bound active form is subject to a surface reaction-diffusion equation. The interesting

result is that the pinning mechanism can be induced only by the geometry of the domain:

the smaller the neck of the spine, the easier is the confinement of the active GTPase.

Confinement is also facilitated by higher diffusion, which however is in contrast with other

models for cell polarisation based on slow membrane diffusivity. The second work, by

Giese et al. (2015), presents a natural extension of the wave pinning model in the bulk-

surface setting (see the following equations (2.15)-(2.17)), where the molecular interactions

between the bulk and surface chemical components are mediated through an appropriate

coupling boundary condition on the surface. In their work they investigate the role of

shape, internal organelles and inhomogeneities in polarisation processes. Diegmiller et al.

(2018) have recently presented a three-dimensional analysis of the steady state of the wave
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pinning model in the bulk-surface setting on a sphere. They were able to show pattern

formation in the surface component, after having shown analytically that spatial variation

of the bulk component is negligible.

Inspired by these previous works, we study the extension of the wave pinning model in

more general three-dimensional stationary convex and non-convex domains. Indeed in the

work by Ramirez et al. (2015) the geometry naturally reduces the model to a single one-

dimensional reaction-diffusion equation and the cytosolic component is assumed constant,

while in Giese et al. (2015) the results are entirely two-dimensional. Finally the work

by Diegmiller et al. (2018) reveals very important insights, however it is restricted to a

sphere and indeed spherical symmetry is very conveniently used. The novelty of our work

lies in that we mathematically quantify the role of the three-dimensional geometry in the

wave pinning process, yielding new insights into this minimal model for wave pinning. For

simplicity throughout the paper, we will refer to the reformulated WP model as the bulk-

surface wave pinning (BSWP) model. Our work was recently published by the Journal of

Theoretical Biology (Cusseddu et al., 2018). In this chapter we report it with a higher

level of details and new results obtained post-publication are also included.

We present new three-dimensional results on regular and irregular geometries, exhib-

iting the wave pinning process on complex domains. A key part of our study involves

the numerical simulation of the BSWP model in three-dimensional geometries using a re-

cently developed bulk-surface finite element method (BS-FEM) (Dziuk and Elliott, 2013;

Elliott and Ranner, 2013; MacDonald et al., 2016a; Madzvamuse and Chung, 2016a,b;

Madzvamuse et al., 2015). This numerical framework allows to compute the solutions of

the BSWP model on complex convex and non-convex geometries.

To put into context our computational framework with respect to the current-state-of-

the-art, throughout this paper we confirm previous works based on the wave pinning model

(2.1)-(2.3) and show analogies with our results. For example, we show the evolution of the

solutions of the model at very large times which display interesting spatial effects. Our

results reveal that certain geometries induce a metastable behaviour of the model, in which

the apparently stable active patch undergoes a very slow shifting on the surface towards

more rounded areas of the domain. This was also shown in previous published results for the

two-dimensional wave pinning model presented by Vanderlei et al. (2011). In addition, the

BSWP model shows competition between active regions, as recently shown in the classical

WP model (Chiou et al., 2018). We also show how the geometry of the domain plays a

crucial role in the pattern formation for the special case of spatial homogeneous initial
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conditions. This was interestingly reported in the two-dimensional case by Giese et al.

(2015). Hence, our work through mathematical and numerical analysis, aims to extend

the current knowledge of the wave pinning model to realistic three-dimensional settings

and to provide some understanding of the influence of the geometry on the polarisation

mechanism.

The structure of this chapter is therefore as follows: In Section 2.2 the model is derived

and presented in its complete form together with the parameters. Existence and uniqueness

of the solution is proved in Section 2.3, whereas its fundamental properties are shown and

discussed in Section 2.4. A nondimensional version of the BSWP model is obtained in

Section 2.6, which is later used to explain the polarisation mechanism in Section 2.7 by

applying an asymptotic analysis on a simple geometry. In Section 2.8 we present the

parameter regions for bistability and polarisation. Analysis of the steady states for the

well-mixed system provide a bistability region, whereas spatial effects were studied using

the local perturbation analysis (LPA) (Holmes, 2014; Holmes et al., 2015). This latter tool

is able to identify parameter spaces in which a local and narrow perturbation of the spatially

homogeneous slow-diffusing component can generate spatial effects on the system. In our

work we present a novel application of the LPA in a bulk-surface setting, which provides a

natural way to investigate the effect of the ratio between surface area and bulk volume on

the system. In Section 2.9 we present the bulk-surface finite element method (BS-FEM)

(MacDonald et al., 2016a; Madzvamuse and Chung, 2016b), used to simulate the model on

various geometries. Numerical results are then presented in Section 2.10 to confirm and

validate theoretical findings. These also highlight the importance of the geometry on the

model evolution, which suggested a new series of simulations on more complex domains

presented in the following section 2.11.

A summary of the main results and a discussion follow in Section 2.13, with suggestions

on future extensions and applications of the BSWP model.

2.2 Derivation of the bulk-surface wave pinning model

The model is derived for a single stationary cell (studies on migrating cells are deferred to

future work) whose shape is described by a smooth closed surface � ⇢ R3, hence with no

boundary, which encloses a bulk geometry ⌦ ⇢ R3 such that � = @⌦. In biological terms,

� represents the cell membrane and ⌦ the cell interior. The considered time interval is

[0, T ] for a given constant T > 0. In the next sections we will derive the model equations

for the two forms of proteins and discuss the kinetics coupling them.
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(a) (b)

Figure 2.2: (a) A three-dimensional domain ⌦ representing the cell. (b) Activation of the bulk
species occurs through the boundary conditions and propagates over the surface � of the domain.

We recall that even if GTPases tend to stay on the cell membrane, it is possible to

observe them in the cytosol, binded to GDI proteins. In particular, GDIs bind predom-

inantly inactive GTPases, sequestering them in the cytosol (Hodge and Ridley, 2016). In

turn, active GTPases are very rare in the cytosol, therefore in the cell interior we will only

consider the presence of inactive species.

2.2.1 Bulk component

Let us first focus only on protein distribution in the cell interior and let

b : ⌦̄⇥ [0, T ] ! R (2.5)

represent the concentration of the inactive GTPase, measured in mol µm�3. In the fol-

lowing we will always suppose b 2 C(⌦ ⇥ [0, T ]) \ C2,1(⌦ ⇥ (0, T ]) \ C1,0(⌦ ⇥ (0, T ]),

where Ck,h indicates the set of functions k times continuously differentiable in space and

h times in time. Let us now consider V as an arbitrary subset of ⌦. If we assume there

is no intracellular production of GTPase, by the conservation law the variation of b in the

region V is equal to the net flow rate crossing the boundary @V , represented by the flux

jb : ⌦⇥ [0, T ] ! R3. This can be expressed in mathematical terms as follows:

d

dt

Z

V

b dx = �
Z

@V

jb · nV ds, (2.6)

where nV : @V ! R3 is the outgoing orthogonal unit vector to @V at each point. Taking

the temporal derivative inside the integral and using the divergence theorem on the right
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hand side term we obtain:

Z

V

@b

@t
dx = �

Z

V

r · jb dx. (2.7)

Given the arbitrarity of the domain V , from the previous equation we deduce

@b

@t
= �r · jb, 8x 2 ⌦. (2.8)

As a final step, we use the Fick’s law to describe the flow jb (see Section 1.2.1), so that

jb = �Dbrb. (2.9)

If we then assume the coefficient Db to be constant in time over ⌦, we finally obtain:

@b

@t
= Db�b, x 2 ⌦, (2.10)

where the constant Db represents the diffusion coefficient and has unit dimension µm2 s�1.

We then impose a flux boundary condition:

�Dbn ·rb = q, on �, (2.11)

where n is now the outgoing orthogonal unit vector to � and q : � ! R is the net outgoing

flux of b at the cell membrane. We will model q in the next sections, taking into account

the basic activation/inactivation mechanism for GTPase proteins.

2.2.2 Surface component

In the previous section we have derived the equation for spatio-temporal distribution of

the inactive GTPase in the interior of the cell. Here we want to do the same for the active

form on the closed surface �, whose concentration, in mol µm�2, is defined by the function

a : �⇥ [0, T ] ! R, (2.12)

assumed to belong to C(� ⇥ [0, T ]) \ C2,1(� ⇥ (0, T ]). As in the previous section we will

start from a conservation law and use some general concepts from differential geometry of

curves and surfaces, summarised in Section 1.5.2 of the introduction of this thesis. Let us

consider an arbitrary portion S of the surface �. Then the variation of the concentration

in S is given by the difference between the amount of internal production of a, represented
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by a function f , that we assume to depend on both a and b, and the amount of outgoing

proteins, subject to a flux ja : �⇥ [0, T ] ! R3. In mathematical terms this is written as

d

dt

Z

S

a ds = �
Z

@S

ja · µS dS +

Z

S

f(a, b) ds, (2.13)

where µS : @S ! R3 is the outgoing orthogonal unit vector to @S tangent to S. As the

normal component of the flux to � is cancelled by the dot product, we can consider the

flux ja to be just a tangent vector to �. The divergence theorem on surfaces (Theorem

1.5.2, Section 1.5.2) applied to the first term of the right hand side of (2.13) states:

�
Z

@S

ja · µS ds = �
Z

S

r� · ja ds�
Z

S

ja · ⌫SH ds,

where r� is the tangential gradient (see (1.7) in Section 1.5.2), ⌫S : S ! R3 is the

outgoing orthogonal unit vector to S and H = r� · ⌫ is the mean curvature of �. As

we are considering only tangential fluxes to �, ja · ⌫S = 0, and from (2.13), taking the

derivative inside the integral, we have

Z

S

@a

@t
ds = �

Z

S

⇣
r� · ja � f(a, b)

⌘
ds.

Given that S is an arbitrary domain, the above yields:

@a

@t
= �r� · ja + f(a, b), x 2 �.

We use Fick’s law to model the flow as described in Section 1.2.1. In this case, however,

as we are considering the flow to be tangent to �, we need to take the tangential component

of the gradient of a, which means

ja = �Dar�a.

We assume the diffusivity parameter Da to be constant with unit dimension of µm2 s�1.

We finally obtain the following reaction-diffusion equation for a on �:

@a

@t
= Da��a+ f(a, b), x 2 �. (2.14)

The Laplace-Beltrami operator �� is defined in (1.8), Section 1.5.2. Lastly, it is clear that

since the curve � has no boundary, as itself is the boundary of a domain, no boundary

conditions for a are required.
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2.2.3 Kinetics: the GTPase cycle

We first simplify the interconversion between a and b (protein activation and inactivation)

on the cell membrane with a very simple chemical reaction represented by the following

scheme:

B A
kba

kab
,

where kab and kba are kinetic parameters associated to the velocity of the reaction. In order

to derive some kinetic equations we make use of the Law of mass action, which states that

the rate of a reaction is directly proportional to the concentration of its reagents, see also

Appendix A.3. Hence, the kinetic evolution of a is described by the following ordinary

differential equation:
@a

@t
= kbab� kaba.

Furthermore, as we explained in the introduction of this chapter, the active GTPase

induces an increasing of GEF activity. Recalling that GEFs are factors that enhance the

activation of proteins, this reaction is so described:

B A

GEF

.

In a sense, the positive feedback can be simplified stating that the active form of the protein

promotes its own production. Therefore, it follows the complete kinetic diagram

B A
kba

kab
.

The GTPase “self-activation” can be seen as a type of cooperative kinetic reaction, reactions

generally described by the Hill function, see Appendix A.3 for more details. In short, still

referring to the Appendix A.3, a can be seen as the active substrate in the production of

other a. Defining kba = !k0 and kab = �, with k0 and � having unit dimension s�1 and !

unit dimension µm, this new reaction is incorporated into the previous ODE as follows:

da

dt
= !

✓
k0 +

�an

Kn + an

◆
b� �a,

where �a
n

Kn+an
is the Hill function of exponent n > 1. Following Rätz and Röger (2012) we

have introduced the parameter ! := |⌦|/|�| which is the ratio between bulk volume and
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surface area; it characterises the geometric effects in the reaction function and can be seen

as a parameter describing the protein binding to the cell membrane. The unit dimension

of ! is needed to reduce the dimensionality of the bulk protein to the two-dimensional

surface, where activation occurs. For a fixed volume, ! is maximal when ⌦ is spherical, so

activation is enhanced in resting cells which generally have, at least in two-dimensions, a

rounded shape (Kozlov and Mogilner, 2007). Hence, we define the kinetic function f(a, b)

of eq. (2.14) as

f(a, b) := !

✓
k0 +

�an

Kn + an

◆
b� �a.

As in Mori et al. (2008) we set the Hill coefficient n = 2. It must be noted that other

choices for n > 1 have been studied (Holmes and Edelstein-Keshet, 2016; Diegmiller et al.,

2018).

On the other side, since no kinetics occur in the interior of the cell, where the only

bulk component b is present, one key property of the model is that the reactions for the

bulk species are directly incorporated into the boundary condition (2.11). Indeed, we

describe the outgoing flux q = q(a, b) of b at the cell membrane as the variation of the bulk

component due to activation and inactivation of the GTPase at the cell membrane, i.e.

�Dbn ·rb = f(a, b).

We are now ready to present the complete spatio-temporal model in the next section. We

will later show in Section 2.4 that with the GTPase kinetics incorporated in the boundary

condition for b, the spatio-temporal model still preserves the total amount of a and b.

2.2.4 The bulk-surface wave pinning (BSWP) model

As a result of the previous sections, the bulk-surface wave pinning model reads

@b

@t
= Db�b, x 2 ⌦, t 2 (0, T ], (2.15)

�Db(n ·rb) = f(a, b), x 2 �, t 2 (0, T ], (2.16)
@a

@t
= Da��a+ f(a, b), x 2 �, t 2 (0, T ], (2.17)

with reaction function

f(a, b) = !
⇣
k0 +

�a2

K2 + a2

⌘
b� �a, (2.18)
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Param. Value/Unit Description
a mol µm�2 concentration of active GTPase
b mol µm�3 concentration of inactive GTPase
Da 0.1 µm2 s�1 diffusion coefficient of a
Db 10 µm2 s�1 diffusion coefficient of b
k0 0.067 s�1 basal activation rate
� 1 s�1 deactivation rate
� 1 s�1 feedback activation rate
K 1 mol µm�2 saturation parameter
n 2 Hill coefficient
! µm volume to surface ratio membrane binding parameter

Table 2.1: Parameters used in the bulk-surface model; the diffusion coefficients are taken as in
Postma et al. (2004), and the kinetic parameter values as in Mori et al. (2008).

coupled with initial conditions

b(x, 0) = bin(x), x 2 ⌦, (2.19)

a(x, 0) = ain(x), x 2 �, (2.20)

where b 2 C(⌦⇥ [0, T ])\C2,1(⌦⇥(0, T ])\C1,0(⌦⇥(0, T ]) and a 2 C(�⇥ [0, T ])\C2,1(�⇥

(0, T ]). All the parameters are listed in Table 2.1.

2.3 Existence and uniqueness of the solution to the BSWP

model

The existence and uniqueness of classical solutions to general bulk-surface systems of ar-

bitrary number of reaction-diffusion equations was proved by Sharma and Morgan (2016).

For convenience the two components version of their result (one on the surface and one in

the bulk) is stated in the following.

Theorem 2.3.1. (Sharma and Morgan, 2016) Let ⌦ ⇢ Rd (d � 2) be a bounded domain

with a smooth boundary @⌦ = � of class C2+� with � > 0. We consider the system

@u

@t
= D⌦�u+H(u), x 2 ⌦, t 2 (0, T ), (2.21)

@v

@t
= D���v + F (u, v), x 2 �, t 2 (0, T ), (2.22)

D⌦ru · n = G(u, v), x 2 �, t 2 (0, T ), (2.23)

u = u0 � 0, x 2 ⌦, t = 0, (2.24)

v = v0 � 0, x 2 �, t = 0, (2.25)
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with D⌦, D� > 0, the functions H : R ! R, F,G : R ⇥ R ! R are locally Lipschitz

(Definition 1.5.1) and satisfy the quasi-positivity condition:

H(0) � 0, (2.26)

F (x, 0) � 0, 8x > 0, (2.27)

G(0, y) � 0, 8y > 0. (2.28)

Let the initial conditions (2.24)-(2.25) satisfy

u0 2 W 2
p (⌦), v0 2 W 2

p (�), p > d, (2.29)

D⌦ru0 · n = G(u0, v0), x 2 � (compatibility condition). (2.30)

Furthermore, if the following conditions hold: 8x, y � 0

9↵,�, � > 0 : �F (x, y) +G(x, y)  ↵(x+ y + 1) and H(x)  �(x+ 1), (2.31)

9KG > 0 : G(x, y)  Kg(x+ y + 1), (2.32)

9l 2 N and KF > 0 : F (x, y)  KF (x+ y + 1)l, (2.33)

then the system admits a unique non negative global solution (u, v).

Proof. See (Sharma and Morgan, 2016).

We recall (u, v) is said to be a solution of (2.21)-(2.25) if and only if u 2 C(⌦⇥[0, T )])\

C1,0(⌦ ⇥ (0, T )) \ C2,1(⌦ ⇥ (0, T )) and v 2 C(� ⇥ [0, T )]) \ C2,1(� ⇥ (0, T )) satisfy the

equations of the system. Ck,h is the notation used to indicate the set constituted of all

the functions which are k times differentiable in x and h times in t and W k
p is the Sobolev

space (see Definition 1.5.4, Section 1.5.1).

Using this result, we are able to prove the following theorem regarding the bulk-surface

wave pinning model (2.15)-(2.18).

Theorem 2.3.2. The BSWP model (2.15)-(2.18) admits a unique and non-negative clas-

sical solution (b, a) at any time t > 0, for any non-negative initial condition satisfying

(2.29)-(2.30)

Proof. It is enough to show that the bulk-surface wave pinning model (2.15)-(2.18) satisfies

the assumptions of Theorem 2.3.1, where in our case H(b) = 0 and F (a, b) = �G(a, b) =



34

f(a, b). We first note that, since

rf(a, b) =

0

@
@f

@a

@f

@b

1

A =

0

@ 2!�K2 ab

(K2+a2)4 � �

!
⇣
k0 + � a

2

K2+a2

⌘

1

A ,

both @f

@a
(a, b) and @f

@b
(a, b) exist and are bounded in any compact set K ⇢ R2. This

guarantees f to be locally Lipschitz. The quasi-positivity conditions (2.26)-(2.28) are

then satisfied as

G(a, 0) = �f(a, 0) = �a > 0, for a > 0

and

F (0, b) = f(0, b) = !k0b > 0, for b > 0.

The condition (2.31) is satisfied as 8a, b � 0

�F (a, b) +G(a, b) = (� � 1)f(a, b)  ↵(a+ b+ 1)

is true for � = 1 and 8↵ > 0. Condition (2.32) can be verified by taking KG = �, indeed

G(a, b) = �a� !

✓
k0 +

�a2

K2 + a2

◆
b < �a < �(a+ b+ 1)

8a, b � 0. Condition (2.33) is also satisfied as 8a, b � 0.

F (a, b) = !

✓
k0 +

�a2

K2 + a2

◆
b� �a  ! (k0 + �) b < KF (a+ b+ 1)l,

just by taking KF = ! (k0 + �) and l = 1. Therefore by Theorem 2.3.1, the BSWP

model (2.15)-(2.18) admits a unique solution (b, a) for any non negative initial conditions

satisfying (2.29)-(2.30).

2.4 Fundamental properties of the BSWP model

As it will be clear from Section 2.7, the polarisation behaviour of the BSWP model (2.15)-

(2.18) is mainly based on the following three main properties.

1. Conservation of total species. The total amount of proteins cycling between cell

membrane and cytosol is maintained constant at all times by the bulk-surface wave

pinning model, i.e.
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Proposition 2.4.1. Let a and b be solutions of (2.15)-(2.17). Then

M(t) :=

Z

⌦
b(x, t) dx+

Z

�
a(x, t) ds = M0, 8t � 0, (2.34)

where M0 2 R represents the initial total amount of active and inactive GTPase,

defined by the initial conditions (2.19)-(2.20):

M0 :=

Z

⌦
bin(x) dx+

Z

�
ain(x) ds. (2.35)

Proof. We show that M 0(t) = 0. Differentiating (2.34) we get

M 0(t) =

Z

⌦

@b

@t
(x, t) dx+

Z

�

@a

@t
(x, t) ds,

which, from (2.15) and (2.17), results in

M 0(t) =

Z

⌦
Db�b dx+

Z

�
(Da��a+ f(a, b)) ds.

Using the divergence theorem and the zero-integral property of the Laplace-Beltrami

operator on surfaces with no boundary (see Corollary 1.5.1 in Section 1.5.2, we obtain

M 0(t) =

Z

�
Db (n ·rb) ds+

Z

�
f(a, b) ds.

The conclusion follows by using the boundary condition (2.16).

We remark that in the proof we never make use of the explicit expression of f(a, b).

Indeed, Proposition 2.4.1 can be seen as a corollary to the following (more general)

result.

Theorem 2.4.1. Let us consider the following bulk-surface reaction-diffusion system

composed of n⌦ � 1 bulk equation and n� � 1 surface equations

@ui
@t

= Di�ui + hi(u1, . . . , un⌦), x 2 ⌦, t 2 (0, T ], (2.36)

@vj
@t

= dj��vi + fj(u1, . . . , un⌦ , v1, . . . , vn�), x 2 �, t 2 (0, T ], (2.37)

Dirui · n = gi(u1, . . . , un⌦ , v1, . . . , vn�), x 2 �, t 2 (0, T ], (2.38)

ui = u0i , x 2 ⌦, t = 0, (2.39)

vj = v0j , x 2 �, t = 0, (2.40)
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for i = 1, . . . , n⌦ and j = 1, . . . , n�, with u0
i
2 L1(⌦), v0

j
2 L1(�) given. If the

following conditions are satisfied

Z

⌦

n⌦X

i=1

hi dx = 0, (2.41)

Z

�

0

@
n�X

j=1

fj +
n⌦X

i=1

gi

1

A ds = 0, (2.42)

then the solution (u1, . . . , un⌦ , v1, . . . , vn�) of the above system satisfies

M(t) :=
n⌦X

i=1

Z

⌦
ui dx+

n�X

j=1

Z

�
vj ds = M0, 8t � 0, (2.43)

where

M0 :=
n⌦X

i=1

Z

⌦
u0i dx+

n�X

j=1

Z

�
v0j ds (2.44)

is defined by the initial conditions (2.39)-(2.40).

Proof. In order to prove the theorem, we extend the steps of the proof of Proposition

2.4.1. We start by differentiating M(t) from (2.43):

M 0(t) =
n⌦X

i=1

Z

⌦

@ui
@t

dx+
n�X

j=1

Z

�

@vj
@t

ds,

which, applying (2.36)-(2.37), is equivalent to

M 0(t) =
n⌦X

i=1

Z

⌦
(Di�ui + hi) dx+

n�X

j=1

Z

�
(dj��vi + fj) ds.

Using the divergence theorem and the zero-integral property of the Laplace-Beltrami

operator on surfaces with no boundary (Corollary 1.5.1, Section 1.5.2), we obtain

M 0(t) =
n⌦X

i=1

Z

�
Dirui · n ds+

n�X

j=1

Z

�
fj ds,

where the integrals in ⌦ of the bulk reactions hi disappear, due to (2.41). Applying

the boundary conditions (2.38) and bringing the sum inside the integrals, we have

M 0(t) =

Z

�

n⌦X

i=1

gi ds+
Z

�

n�X

j=1

fj ds,

which is zero due to condition (2.42). The theorem is then proved.
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2. Difference in diffusivities. As protein diffusion over the membrane is known to occur

much slower than in the cytosol, we consider Da ⌧ Db (Postma et al., 2004; Milo

and Phillips, 2015).

3. Bistability. The following proposition holds

Proposition 2.4.2. (Mori et al., 2011) Let f be defined by (2.18). Then for every

positive fixed value b > 0, the equation f(a, b) = 0 always admits at least one solution

a = a⇤(b) > 0. Moreover, if

8k0 < �, (2.45)

there exist two positive values b1 and b2 such that if b 2 (b1, b2), the function f(a, b)

has three zeros 0 < a1(b) < a2(b) < a3(b) and

@f

@a
(a1(b), b) < 0,

@f

@a
(a2(b), b) > 0,

@f

@a
(a3(b), b) < 0. (2.46)

Proof. From (2.18) we have

f(a, b) = !

✓
k0 +

�a2

K2 + a2

◆
b� �a = !k0b+ !�b

a2

K2 + a2
� �a

=
1

K2 + a2
�
!k0b

�
K2 + a2

�
+ !�ba2 � �a

�
K2 + a2

��

=
�

K2 + a2

✓
�a3 +

!(k0 + �)

�
ba2 �K2a+

!k0K2

�
b

◆

=
�K3

K2 + a2

✓
�
⇣ a

K

⌘3
+
!(k0 + �)

�K
b
⇣ a

K

⌘2
�
⇣ a

K

⌘
+
!k0
�K

b

◆
,

where the last step is done in order to simplify the calculations. Since �K
3

K2+a2
> 0,

defining

d1 := d1(b) = D1b > 0, D1 := !(k0 + �)/(�K) > 0, (2.47)

d2 := d2(b) = D2b > 0, D2 := !k0/(�K) > 0, (2.48)

we just have to study the roots of the cubic polynomial:

pb(a/K) := �
⇣ a

K

⌘3
+ d1

⇣ a

K

⌘2
�
⇣ a

K

⌘
+ d2.

However since division by K is just a scaling which does not change the qualitative
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nature of pb it is enough to study the function

pb(a) := �a3 + d1a
2 � a+ d2. (2.49)

For the moment we consider b as a real positive parameter and we search for solutions

a = a(b). In particular we are interested in positive real roots. It is important to

remark that for every b > 0 the newly defined constants d1 and d2 are real and

positive. By a simple observation of the function pb, which is a cubic polynomial, we

find out that at least one real root exists. The first statement of the proposition is

then proved by observing that pb(0) > 0 and lima!+1 pb(a) < 0.

The Descartes’ rule of signs tells us more: pb(a) has either only one positive real

root or three positive real roots. Using the Descartes criterion as well on pb(�a), we

notice that no negative real roots are possible. Then the possibilities are restricted

just to two different cases: either pb admits three positive real roots or it has only

one positive real root and two complex. For a general cubic polynomial of the form:

p(x) = x3 + a2x2 + a1x + a0 we can define the quantity �p

3 := 18a2a1a0 � 4a32a0 +

a22a
2
1 � 4a31 � 27a20, for which we have three different cases:

• �p

3 > 0: p(x) has three distinct real roots;

• �p

3 = 0: p(x) has two real roots, one with multiplicity 2;

• �p

3 < 0: p(x) has only one real root.

For more details see for example Irving (2004). We can then apply this method to

the polynomial qb(a) := �pb(a) = a3 � d1a2 + a� d2, as it has the same roots of pb

and study the sign of �3 = 18d1d2 � 4d31d2 + d21 � 4 � 27d22, finding conditions on

b for which we have �3 > 0 (or = 0, or < 0). The function �3 depends on b and,

using (2.47)-(2.48), it can be written as:

�3(b) = 18D1D2b
2 � 4D3

1D2b
4 +D2

1b
2 � 4� 27D2

2b
2

= �4D3
1D2b

4 + (18D1D2 +D2
1 � 27D2

2)b
2 � 4. (2.50)

Before proceeding, let us notice some facts:

- �3(b) is a continuous function well defined for any b 2 (�1,1). In particular

it is a forth degree polynomial and an even function (see Figure 2.3).
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(a) (b)

Figure 2.3: (a) The function �3(b) for the parameter values in Table 2.1 and ! = 1. (b) Plots of
the function fb(a) = f(a, b̄) for three different fixed values for b̄ and parameters given in Table 2.1
with ! = 1: the orange line for b̄ < b1; the green line for b̄ = b1+b2

2 ; the yellow line for b̄ > b2. The
values b1, b2 define the range of b for which f(a, b) admits three different zeros (a(b), b).

- �3(0) = �4 < 0. Then, if �3(b) does not have any real roots, �3(b) < 0, 8b 2 R

and the function pb(a) has only one real root, which is positive.

- as �3(b) is a symmetric function, if a positive real root b⇤ exists, also �b⇤ is a

root. However, we must recall that we are interested only in positive values of

b.

- By the Fundamental Theorem of Algebra, �3(b) admits up to 4 real roots

counted with multiplicity. As a consequence of this and of the previous consid-

erations, we have that no more than two positive real roots b1 < b2 are possible.

If this is the case, we will have:

– If 0  b < b1 or b > b2, �3(b) < 0 and the function pb(a) has only one real

(and positive) root and two complex.

– If b = b1 or b = b2, �3(b) = 0 and the function pb(a) has two real roots,

both positive, but one has multiplicity 2.

– If b1 < b < b2, �3(b) > 0 and the function pb(a) has three real roots, all

positive.

In the new variable t := b2, the function �3(t) = �4D3
1D2t2 + (18D1D2 + D2

1 �
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27D2
2)t� 4 describes a parabola, with zeros given by:

t1,2 =
�(18D1D2 +D2

1 � 27D2
2)±

p
(18D1D2 +D2

1 � 27D2
2)

2 � 64D3
1D2

�8D3
1D2

=
(18D1D2 +D2

1 � 27D2
2)⌥

p
(18D1D2 +D2

1 � 27D2
2)

2 � 64D3
1D2

8D3
1D2

. (2.51)

Depending on the sign of (18D1D2 +D2
1 � 27D2

2)
2 � 64D3

1D2, the zeros of �3(t) (i)

can be real and distincts (t1 < t2), or (ii) real but equals (t1 = t2) or (iii) complex.

With respect to b the values we are interested in, if t1, t2 exist in R+, are

b1 =
p
t1 and b2 =

p
t2. (2.52)

Let us consider the three cases with their respective subcases:

(i) If (18D1D2 +D2
1 � 27D2

2)
2 � 64D3

1D2 > 0 we can have two diffent situations:

(a) If 18D1D2 +D2
1 � 27D2

2 < 0 then t1 < t2 < 0 (as �64D3
1D2 < 0) and from

(2.52) we deduce that b1, b2 are complex numbers. This implies that �3(b)

has no real roots and �3(b) < 0, 8b 2 R. So, 8b 2 R+, pb(a) = 0 admits

only one real solution a⇤ = a⇤(b) (which is positive).

(b) If 18D1D2+D2
1 � 27D2

2 > 0 then 0 < t1 < t2 and we deduce that b1 < b2 2

R+. Moreover, as previously discussed:

(b1) If t 2 (t1, t2), �3(t) > 0. It implies �3(b) > 0, 8b 2 (b1, b2): for these

values of b, pb(a) = 0 admits three different real (and positive) solutions

a1 = a1(b), a2 = a2(b), a3 = a3(b).

(b2) If t = t1 (or t = t2), �3(t) = 0. It implies �3(b) = 0, for b = b1 (or

b = b2): it is a limit case and for these values of b, pb(a) = 0 admits

two different real (and positive) solutions a1 = a1(b), a2 = a2(b), one

with multiplicity 2.

(b3) If t < t1 (or t > t2), �3(t) < 0. It implies �3(b) < 0, for b < b1

(or b > b2): for these values of b, pb(a) = 0 admits only one real (and

positive) solution a⇤ = a⇤(b).

(ii) If (18D1D2 + D2
1 � 27D2

2)
2 � 64D3

1D2 = 0 then t1 = t2 with two different

possibilities:

(a) If 18D1D2 + D2
1 � 27D2

2 < 0 then t1 = t2 < 0 and we deduce that b1, b2

are complex numbers. This implies that �3(b) < 0, 8b 2 R and pb(a) = 0
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admits just one real (and positive) solution a⇤ = a⇤(b), 8b 2 R+.

(b) If 18D1D2+D2
1 � 27D2

2 > 0 then 0 < t1 = t2 and we deduce that b1 = b2 2

R+. This implies that �3(b) < 0, for 8b 6= b1 then pb(a) = 0 admits only

one real (and positive) solution a⇤ = a⇤(b). However, for b = b1 = b2 then

�3(b) = 0: only for this value of b, pb(a) admits two different (positive)

real roots a1 = a1(b1), a2 = a2(b1), one with multiplicity 2.

(iii) If (18D1D2 + D2
1 � 27D2

2)
2 � 64D3

1D2 < 0 then �3(t) has two complex roots

t1, t2, and we deduce that the roots b1, b2 of �3(b) are also complex numbers.

This implies that �3(b) < 0 8b 2 R+: pb(a) = 0 admits just one real (positive)

solution a⇤ = a⇤(b), 8b 2 R+.

Therefore, under the conditions:

(18D1D2 +D2
1 � 27D2

2)
2 � 64D3

1D2 > 0, (2.53)

18D1D2 +D2
1 � 27D2

2, > 0, (2.54)

three different solutions (a1(b), b), (a2(b), b), (a3(b), b) exist in R+ ⇥ R+ for every

b 2 (
p
t1,

p
t2), with D1, D2, t1 and t2 defined in (2.47), (2.48) and (2.51),

Condition (2.54) can be written more explicitly:

18D1D2 +D2
1 � 27D2

2

=

✓
!

�K

◆2 �
18(k0 + �)k0 + (k0 + �)2 � 27k20

�

=

✓
!

�K

◆2 �
18k20 + 18�k0 + k20 + �2 + 2�k0 � 27k20

�

=

✓
!

�K

◆2 �
�2 + 20�k0 � 8k20

�
> 0,

that is satisfied for
⇣

�

k0

⌘2
+ 20

⇣
�

k0

⌘
� 8 > 0, i.e. if � > (6

p
3� 10)k0.

Also condition (2.53) can be simplified, indeed with some algebraic calculations it

can be proven

(18D1D2 +D2
1 � 27D2

2)
2 � 64D3

1D2 = (D1 � 9D2)
3(D1 �D2),

so (2.53) is equivalent to

(D1 � 9D2)(D1 �D2) > 0,
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and due to the fact that D1 �D2 = !(k0 + �)/(�K) � !k0/(�K) = !�/(�K) > 0,

this condition reduces to

(D1 � 9D2) =
!(k0 + �)

�K
� 9

!k0
�K

=
!

�K
(� � 8k0) > 0,

which is satisfied if and only if � > 8k0. In particular this condition implies � >

(6
p
3� 10)k0, therefore the second step of the proposition is satisfied.

For completeness, some limit cases can occur: two solutions can merge together on

the same one if � � 8k0 and b =
p
t1 or b =

p
t2.

It now remains to prove (2.46). But this follows by observing that f(0, b) > 0 and

lima!1 f(a, b) = �1 and applying continuity arguments.

Condition (2.45) represents and highlights the important role of the feedback-induced

activation rate in the model, while we will refer to (2.46) as the bistability condition.

A representation of the level set of f(a, b) will be shown in Figure 2.4 in Section 2.7.

2.5 Convergence towards a steady state for a limit case

If we impose ! = 0 (or equivalently k0 = � = 0), then system (2.15)-(2.16) reads

@b

@t
= Db�b, x 2 ⌦, t 2 (0, T ], (2.55)

�Db(n ·rb) = ��a, x 2 �, t 2 (0, T ], (2.56)
@a

@t
= Da��a� �a, x 2 �, t 2 (0, T ]. (2.57)

This represents the limit case in which the system is not able to activate the bulk component

and shows only inactivation of the membrane-bound protein. In this case, it is easy to

describe the long-time behaviour of the system. Therefore, in the following, we will show

the convergence of the solution (a, b) to a steady state (a, b). We first note that since (2.57)

does not depend on b, we can analyse this equation independent of the bulk variable. Let

us first multiply both sides of (2.57) by a and integrate in �. We get

Z

�
a
@a

@t
ds = Da

Z

�
a��a ds�

Z

�
�a2 ds, (2.58)
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where the first term can be rewritten as

Z

�
a
@a

@t
ds =

1

2

Z

�

@a2

@t
ds =

1

2

d
dt

Z

�
a2 ds =

1

2

d
dt

kak2
L2(�) ,

and the second term, by using Theorem 1.5.3, is

Da

Z

�
a��a ds = �Da

Z

�
r�a ·r�a ds = �Da kr�ak2L2(�) .

Hence (2.58) is equivalent to

1

2

d
dt

kak2
L2(�) = �Da kr�ak2L2(�) � � kak2

L2(�) .

Thus, it must be
d
dt

kak2
L2(�) + 2� kak2

L2(�)  0,

i.e.
d
dt

⇣
e2�t kak2

L2(�)

⌘
 0,

from which we get

e2�t ka(x, t)k2
L2(�)  ka(x, 0)k2

L2(�) .

This finally leads to the convergence estimate

0  ka(x, t)k
L2(�)  ka(x, 0)k

L2(�) e
��t. (2.59)

Therefore the L2(�)�norm of the solution a tends exponentially to zero, which implies

that a tends to zero almost everywhere on �, i.e.

a = 0 a.e. in �. (2.60)

Regarding the bulk component b, since we want to consider the large-time behaviour, we

introduce the new time variable ⌧ = "t for an arbitrary small parameter " > 0. Therefore

(2.55) can be written as

"
@b

@⌧
= Db�b, x 2 ⌦, t 2 (0, T ].

Sending " to zero, a tends to the steady state (2.60) and the evolution of the bulk component
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tends to be described by the system

�b = 0, x 2 ⌦, t 2 (0, T ],

� n ·rb = 0, a.e. x 2 �, t 2 (0, T ],

which is the Laplace equation coupled with homogeneous Neumann condition, i.e b tends

to a spatial uniform profile. Finally, using the conservation of total mass (2.34) we get

b =
1

|⌦|M0,

since a = 0 almost everywhere.

2.6 Non-dimensionalisation

Let A and B be some dimensional concentration quantities with [A] =mol µm�(d�1), and

[B] =mol µm�d where d is the dimension of the domain. Let L be a typical length in the

cell ([L] = µm), representing for example its radius, and T a temporal quantity ([T ] =s).

Then we can define the nondimensional variables

â = a/A, b̂ = b/B, t̂ = t/T, x̂ = x/L.

Using the chain rule in the derivation we have

@

@t
=

1

T

@

@ t̂
, r =

1

L
r̂, � =

1

L2
�̂.

Therefore, from (2.15)-(2.18), we obtain

B

T

@b̂

@ t̂
= Db

B

L2
�̂b̂, x 2 ⌦̂,

A

T

@â

@ t̂
= Da

A

L2
�̂�â+ f(Aâ,Bb̂), x 2 @⌦̂,

�Db

B

L
(n ·rb̂) = f(Aâ,Bb̂), x 2 @⌦̂,

f(Aâ,Bb̂) =
⇣
k0 +

�â2
�
K

A

�2
+ â2

⌘
!Bb̂� �Aâ.

We now set K̂ = K/A so we can write

f(Aâ,Bb̂) = �A


!B

�A

✓
k0 +

�â2

K̂2 + â2

◆
b̂� â

�
.
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In the system we get

@b̂

@ t̂
=

DbT

L2
�̂b̂, x 2 ⌦̂,

1

T

@â

@ t̂
=

Da

L2
�̂�â+ �


!B

�A

✓
k0 +

�â2

K̂2 + â2

◆
b̂� â

�
, x 2 @⌦̂,

�(n · r̂b̂) =
AL

DbB
�


!B

�A

✓
k0 +

�â2

K̂2 + â2

◆
b̂� â

�
, x 2 @⌦̂,

As in Mori et al. (2011), we consider

L =

s
Db

�

i.e. L is approximately the length that the diffusing protein b covers in its biochemical

activation time scale. With this choice, using the parameters in Table 2.1 we have L =

10µm. We also define A = K and B = K/L, so A and B are related to the quantity

K, which represents the concentration of active component needed to reach half of the

maximal activation rate induced by the positive feedback. For the time scaling we use

T =
1

�

r
Db

Da

=
Lp
�Da

.

This choice is particularly convenient for the analysis of the model at different time scales in

Section 2.7. For comparison with the previous works, we remark that the same expressions

for L and T were used in Mori et al. (2011). Finally we get

@b̂

@ t̂
=

r
Db

Da

�̂b̂, x 2 ⌦̂,

���

r
Da

Db

@â

@ t̂
= ���

Da

Db

�̂�â+ ���

✓
k̂0 +

�̂â2

1 + â2

◆
b̂� â

�
, x 2 @⌦̂,

�(n · r̂b̂) =

✓
k̂0 +

�̂â2

1 + â2

◆
b̂� â, x 2 @⌦̂,

where

k̂0 =
!B

�A
k0 =

!p
�Db

k0 and �̂ =
!B

�A
� =

!p
�Db

�.
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Since one of the main assumption of the model is that a diffuses much slower than b, we

set

"2 =
Da

Db

⌧ 1.

Finally, dropping all the hats, the nondimensional BSWP model is described by the fol-

lowing system

"
@b

@t
= �b, x 2 ⌦, (2.61)

�(n ·rb) = f (a, b), x 2 �, (2.62)

"
@a

@t
= "2��a+ f(a, b), x 2 �, (2.63)

with

f(a, b) :=

✓
k0 +

�a2

1 + a2

◆
b� a, (2.64)

2.7 Asymptotic analysis on a disk

The basic mechanisms of the BSWP model (2.15)-(2.18) can be understood through an

asymptotic analysis which is here presented in order to highlight the main steps of the

spatio-temporal evolution of certain classes of initial conditions. Since the core of the

analysis is based on the crucial difference of protein diffusivity between cell membrane and

cytosol, a convenient setting to stress this relationship is the use of the nondimensional

version of the BSWP model, given in (2.61)-(2.64).

Provided condition (2.45) is satisfied, for b within a certain range (b1, b2), the function

f(a, b) has three distinct and positive roots a1(b) < a2(b) < a3(b) and (2.46) is satisfied, i.e.

a1(b) and a3(b) are stable steady states for the ordinary differential equation corresponding

to (2.63) considered with zero diffusion. Bistable reaction-diffusion equations are known

to produce travelling wave solutions (Fife and McLeod, 1977) and this is a crucial aspect

of the wave pinning mechanism. Figure 2.4 shows the zero level set of z = f(a, b), which

represents the nullcline of the ordinary differential equation (2.63) with zero diffusion.

We consider initial conditions of the following type

bin(x) = b0 2 (b1, b2), x 2 ⌦, (2.65)

ain(x) = ag + ap(x), x 2 �, (2.66)



47

Figure 2.4: The solutions (a, b) solving f(a, b) = 0 as defined in (2.64) with parameters k0 = 0.05
and � = 0.79 (these values are obtained using the parameters from Table 2.1 in the nondimension-
alisation process).

where ag 2
⇥
0, a2(b0)

�
and ap is a continuous function over � such that, given

�p :=
�
x 2 � : ap(x) + ag > a2(b0)

 
,

0 < |�p| ⌧ |�| and

Z

�p

ap dx ⌧
Z

�
ain dx.

In biological terms, the above relations describe that initially the inactive cytosolic protein

is spatially uniform, while the initial concentration of active protein is less than the value

a2(b0) in most of its domain except for tiny regions in which the mass exceeding a2(b0) is

negligible. In the simulations we have represented ap with very narrow Gaussian functions.

We consider a flat cell ⌦ = {(x, y) : x2 + y2 < r2, r > 0} which, being a simple

circular domain, makes the exposition clearer. We are also interested in a single peak

for a, which means �p is connected, in other words, ain(x) = a2(b0) has two solutions

x. In our exposition we next show that the evolution of a is strongly characterised by

different time scales with the development of well defined spatial patterns and formation

of boundary layers in which the solution drastically passes from one “stable” state to the

other (the inverted commas are used because these states actually depend on b, which is

also subject to evolution). This corresponds to a sudden large variation of the gradient

of a in very small regions, which is otherwise negligible elsewhere. Therefore our analysis

will make use of a spatial rescaling around these more critical areas. A typical strategy for

studying this class of equations is presented in Rubinstein and Sternberg (1992), where a
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Figure 2.5: Numerical solutions of the BSWP model (2.61)-(2.64) with "2 = 0.001 on a disc at
different time steps. The parameter " plays a crucial role in sharpening the fronts of the solution
a, see Mori et al. (2011). Smaller values of " result in a clearer effect of the BSWP mechanism.
On the top row we plot the solution a (red line) over the circle at different time steps, whereas the
horizontal dashed lines indicate the three solutions a1, a2, a3 of f

�
a, b
�
= 0, where b = 1

|⌦|
R
⌦ b dx

and a1 < a2 < a3. On the bottom row we plot the solution b inside the disk. It is important to
note the scale values for b: at every time step, b is approximately spatially constant. (a) (top) A
narrow Gaussian function is summed over a spatially homogeneous initial condition. In most of
its domain a is initially smaller than a2, except for the Gaussian peak. We use the centre of the
peak as reference for the polar coordinate system. (bottom) The initial condition for b is spatially
homogeneous. (b) (top) Attraction of a towards the values a1 and a3 is well visible: the peak
grows towards a3, while the rest of the solution tends to the lower value a1. (bottom) Depletion
of b starts from the boundary of the disc at around ✓ = 0. (c) (top) At time t = 100 a overlaps
a1 and a3 in most of the domain except in the two very small areas where the transition between
the two states occurs very sharply. In addition, the peak of a has visibly increased its width, as
propagation has started. (bottom) b is depleted in correspondence of the sharp moving fronts of
active GTPase. (d) The steady states for a and b. b has reached its critical value and there is no
more source of GTPase available for a, which therefore is pinned in an almost piece-wise constant
shape. Details of the numerical methods and tools used for the simulation will be given in Section
2.9.

mass conserved reaction-diffusion equation with a double-well potential is studied through

multiple temporal rescaling and matched asymptotic analysis. Our analysis is described

in four steps (see also Figure 2.5) as outlined below, and it follows the asymptotic analysis

done by Mori et al. (2011) for the unidimensional model (2.1)-(2.3), which we have re-

adapted to the BSWP model (2.15)-(2.18) thanks to the circular geometry.

(a) At the initial time, a evolves into a well defined profile with two fronts: over �p it is

attracted by a3(b), while on the rest of the domain it is attracted by a1(b). On the

other hand, b is approximately spatially homogeneous. We study this evolution over

the zoomed time scale ⌧ = t/".

(b) In the intermediate time scale t we observe the movement of the fronts in the a profile,
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in particular we are interested in the expansion of the high concentration peak. In

order to achieve this, we need to show that

• The speed of the propagating fronts is strictly related to the sign of the function

defined by

I(b) :=

Z
a3(b)

a1(b)
f(⇠, b)d⇠, b 2 (b1, b2). (2.67)

• I(b) is an increasing function in (b1, b2) and there exists bc 2 (b1, b2) such that

I(bc) = 0.

(c) The propagation of a coincides with the depletion of b, which is always approximately

spatially homogeneous (note the color scale in Fig 2.5 bottom).

(d) Under particular conditions on the initial concentrations, the propagation stops before

the whole boundary is activated. This occurs when b has decreased to its critical value

bc.

We are now in a position to discuss the steps (a)-(d) in more detail.

Step a) We first study the initial evolution of the system (2.61)-(2.64) by introducing

the fast time scale ⌧ = t/". Temporal rescaling results in the following coupled bulk-surface

system

@b

@⌧
= �b, x 2 ⌦,

@a

@⌧
= "2��a+ f(a, b), x 2 �,

�(n ·rb) = f (a, b) x 2 �.

Looking for solutions of the form a = a0 + a1"+ a2"2 + · · · and b = b0 + b1"+ a2"2 + · · ·

we find, at the leading order

@b0
@⌧

= �b0, x 2 ⌦,

@a0
@⌧

= f(a0, b0), x 2 �,

�n ·rb0 = f(a0, b0), x 2 �.

The equation for a0 is an ordinary differential equation and, at each x, the solution will

tend to the stable stationary point a3(b) for x 2 �p or a1(b) elsewhere: at the end of this

time scale we will have @a0
@⌧

⇡ 0. This means that over �, f(a0, b0) ⇡ 0.
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The equation for b0 is the heat equation with Neumann boundary conditions that will

become approximately homogeneous at the end of the time scale. Then b0(x, ⌧) will tend

to reach a spatially homogeneous profile over the domain ⌦.

Step b) In the intermediate time scale t, we again look for solutions of the form

a = a0 + a1"+ a2"2 + · · · and b = b0 + b1"+ a2"2 + · · · . At the leading order we have

�b0 = 0, x 2 ⌦,

f(a0, b0) = 0, x 2 �,

�n ·rb0 = f(a0, b0), x 2 �.

We see that the flux condition is actually �n · rb0 = 0, consistently with the Laplace

equation in ⌦. b0(x, t) is now at equilibrium all over the domain. On the other hand,

a0(x, t) remains at its low and high values, either a1(b) or a3(b). This is valid far from the

two front layers where the solution passes from a1 to a3 and vice versa. Our goal is to see

if these front layers move in time over the boundary �. We take advantage of the circular

geometry of the domain and re-write the model (2.61)-(2.64) in polar coordinates

"
@b

@t
=
@2b

@⇢2
+

1

⇢

@b

@⇢
+

1

⇢2
@2b

@✓2
, ⇢ 2 (0, r), ✓ 2 (�⇡,⇡],

"
@a

@t
=
"2

r2
@2a

@✓2
+ f(a, b), ⇢ = r, ✓ 2 (�⇡,⇡],

�@b
@⇢

= f(a, b), ⇢ = r, ✓ 2 (�⇡,⇡],

where r is the radius of the disk. In this coordinate system it becomes easier to define the

positions of the front layers. Indeed, an angle ✓ is enough to uniquely identify a point on

�. Let us set ✓ = 0 at the centre of the boundary subset �p, so that there exist a value

✓1 < ⇡ such that �p = (�✓1, ✓1), see also Figure 2.5a (top and bottom).

The positions of the two fronts of a are therefore initially defined by �✓1 and ✓1 and

our goal is to show that these positions can change in time subject to (2.61)-(2.64). We

will consider ✓1(t), which is initially small. We define the variable

'1(t) :=
✓ � ✓1(t)

"
,

such that

lim
"!0

'1 =

8
><

>:

+1 if ✓ > ✓1

�1 if ✓ < ✓1
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and

lim
'1!�1

a('1) = a3(b), lim
'1!+1

a('1) = a1(b),

i.e. the wave front connects the high and low plateau values of a. We remark that for

✓ < 0 the situation reverses: the solution is close to a1(b) for values of ✓ < �✓1 and to a3(b)

for ✓ > �✓1. More generally, the periodicity of the two-dimensional domain requires an

even number of fronts in (�⇡,⇡], which was not necessary in previous works on the wave

pinning mechanism. The equation for a in the new coordinate â('1(t), t) = a
⇣
✓�✓1(t)

"
, t
⌘

is

"
dâ

dt
� ✓01(t)

@â

@'1
=

1

r2
@2â

@'2
1

+ f(â, b), '1 2 (�1,+1).

The term ✓01(t) in the left hand side of the above equation describes the speed of the front,

which we want now to investigate. Using again asymptotic expansion â =
P

âi"i we get,

at the leading order

1

r2
@2â0
@'2

1

+ ✓01(t)
@â0
@'1

+ f(â0, b) = 0, '1 2 (�1,+1).

Multiplying the above by @â0
@'1

and integrating in '1 2 (�1,1) leads to

1

2r2

Z +1

�1

@

@'1

✓
@â0
@'1

◆2

d'1 + ✓01(t)

Z +1

�1

✓
@â0
@'1

◆2

d'1 +

Z +1

�1
f(â0, b0)

@â0
@'1

d'1 = 0.

The first integral is zero

1

2r2

Z +1

�1

@

@'1

✓
@â0
@'1

◆2

d'1 =
1

2r2

✓
@â0
@'1

◆2 ���
'1=+1

'1=�1
= 0,

since â0 is constant at the limits of '1. Applying a change of variable s = â0('1, t) the

last integral can be written as

Z +1

�1
f(â0, b̄0)

@â0
@'1

d'1 = �
Z

a3(b̄0)

a1(b̄0)
f(⇠, b̄0) d⇠.

Hence, finally the following equality holds

✓01(t) =

R
a3(b̄0)
a1(b̄0)

f(⇠, b̄0) d⇠
R +1
�1

⇣
@â0
@'1

⌘2
d'1

. (2.68)

As
R +1
�1

⇣
@â0
@'1

⌘2
d'1 > 0, the previous equality gives us an important information about
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the speed of the front, which moves with the same sign of the function

I(b) =

Z
a3(b)

a1(b)
f(s, b) ds, (2.69)

which is represented in Figure 2.6.

Figure 2.6: The integral I(b) =
R a3(b)
a1(b)

f(s, b)ds with f defined in (2.64) and parameter values in
Table 2.1. I(b) increases in [b1, b2] and has one zero bc ⇡ 2.28, obtained by numerical estimation.
The speed of the propagation of a is related to a decreasing of the bulk component and stops when
b reaches the critical value bc.

We remark that I(b) is an increasing function, since

I 0(b) = f(a3(b), b)a
0
3(b)� f(a1(b), b)a

0
1(b) +

Z
a3(b)

a1(b)

@f(a, b)

@b
da

=

Z
a3(b)

a1(b)

✓
k0 +

�a2

1 + a2

◆
da > 0

given that a1(b) < a3(b) and the parameters k0 and � are positive. The existence of a

critical value bc such that I(bc) = 0 can be proven by showing that, for some " > 0,

I(b1+") < 0 and I(b2�") > 0, where b1 and b2 are the extremal values for the existence of

three zeros a(b) of f(a, b). In fact when b = b1 or b = b2 the function f(a, b) has only two

roots, i.e. between the roots it is either entirely negative or entirely positive. If b = b1 � "

or b = b2 + " then the integral is infinite. However as I(b) is an increasing function, by

continuity it follows that I(b1 + ") < 0 and I(b2 � ") > 0. This shows the existence of the

critical value bc and, by (2.68), follows that a increases its high concentration region for

b > bc.

Step c) We now prove that if ✓1 increases, i.e. the high concentration peak for a
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expands its width, then the quantity b decreases all over the domain. Since a1 and a3 are

not constant, in principle propagation of a does not necessarily imply an increment of its

overall amount (which, by conservation of total mass (2.34) would have implied depletion

of b). Therefore, we start rewriting (2.34) in terms of the asymptotic expansion as

M0 =

Z

⌦
b0 dx+

Z

�
a0 ds+O(").

At the previous step we have seen that b0 is spatially homogeneously distributed and a0 is

approximately a3(b0) if |✓| < ✓1 or a1(b0) otherwise. Therefore we can rewrite the previous

equation as

⇡r2b0(t) + 2✓1(t)r a3(b0) + 2r (⇡ � ✓1(t)) a1(b0) +O(") = M0. (2.70)

Discarding terms O(") and differentiating (2.70) with respect to t results in

⇡r2b00(t)+2r✓01(t)a3(b0)+2r✓1(t)a
0
3(b0)b

0
0(t)+2r(⇡� ✓1(t))a01(b0)b00(t)� 2r✓01(t)a1(b0) = 0,

from which, rearranging the terms, leads to

b00(t) = �2
a3(b0)� a1(b0)

⇡r2 + 2✓1(t)r a03(b0) + 2r (⇡ � ✓1(t)) a01(b0)
✓01(t)r. (2.71)

We now prove that the denominator in (2.71) is positive. Let us differentiate with

respect to b the equation f(ai(b), b) = 0 for i = 1 and 3

0 =
d

db
f(ai(b), b) = a0i(b)

@f

@a

���
(a,b)=(ai(b),b)

+
@f

@b

���
(a,b)=(ai(b),b)

. (2.72)

From which we get

a0i(b) = �
✓
@f

@a

���
(a,b)=(ai(b),b)

◆�1 @f

@b

���
(a,b)=(ai(b),b)

. (2.73)

We recall that the bistability condition (2.46) requires @f

@a

���
(a,b)=(ai(b),b)

6= 0 and this is also

clear from (2.72), since @f

@b
> 0, 8a. Hence, using (2.46) in (2.73), we conclude that

a01(b) > 0, and a03(b) > 0. (2.74)

From (2.74), it is now clear the positiveness of the denominator in (2.71), while the sign of

the numerator of (2.71) is the opposite of the sign of ✓01(t): if ✓01(t) > 0 then b00(t) < 0 and
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vice versa. This finally proves that the propagation of active GTPase a over the boundary

is related to a decreasing of the bulk component b.

Step d) In order to achieve polarisation, the propagation of a needs to stop, i.e. at a

certain time t̄, ✓01(t̄) = 0 and this happens when b(t) reaches the critical value bc. Therefore,

ignoring terms of order O(") we have

M0 = ⇡r2bc + 2✓1(t̄)r a3(bc) + 2r(⇡ � ✓1(t̄))a1(bc).

We rewrite it in the form

M0 = ⇡r2bc + 2r✓1(t̄)
�
a3(bc)� a1(bc)

�
+ 2⇡r a1(bc).

Since we require 0 < ✓1 < ⇡ then

M0 < ⇡r2bc + 2⇡r
�
a3(bc)� a1(bc)

�
+ 2⇡r a1(bc) = ⇡r2bc + 2⇡r a3(bc)

and

M0 > ⇡r2bc + 2⇡r a1(bc).

We therefore have found a condition on M0 equivalent to the classical wave pinning model

(Mori et al., 2011). To have pinning we need to take an initial value b0 > bc and a0 such

that

m1 < M0 < m2, (2.75)

where the quantity m1 := ⇡r2bc + 2⇡r a1(bc) represents the total mass at the equilibrium

with the lowest active GTPase, while the quantity m3 := ⇡r2bc + 2⇡r a3(bc) represents

the total mass at the equilibrium where the whole membrane has been activated, with no

pinning taking place. In order to have a heterogeneous steady state for a, i.e. obtain a

pinned active GTPase propagation state, the total amount M0 of GTPase should not be

neither too low nor too high.

2.8 Bistability and polarisation

In this section we are interested in mapping parameter regions for all possible different

behaviours of the two- and three-dimensional BSWP model (2.15)-(2.18) in order to get

some insights on the role of geometry. Indeed, depending on the parameters, the model

is able to generate different responses, for example it supports spatial homogeneous solu-
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tions. We will start from this point, analysing the role of the reactions in the system.

In a second step, we will use an approximated nonlinear analysis in order to identify the

spatial responses of the BSWP model with respect to small perturbations of the boundary

component from the spatially homogeneous state. We remark that the following analysis

is basically independent of the spatial dimension.

2.8.1 Well mixed model

Integrating equation (2.15) in ⌦ and applying the divergence theorem with (2.16), we get

Z

⌦

@b

@t
dx = �

Z

�
f(a, b) ds.

Since we want to consider spatial homogeneous solutions (bg, ag), this corresponds to

@bg
@t

Z

⌦
1 dx = �f(ag, bg)

Z

�
1 ds,

from which, dividing by
R
� 1 ds, we obtain

!
dbg
dt

= �f(ag, bg). (2.76)

Here ! = |⌦|/|�| appears as a consequence of the difference in dimensionality between bulk

and surface, while in Section 2.2.3 it was introduced in the function f(a, b) as a binding

parameter for the Rho GTPase proteins. We also recall that !, having unit length, makes

the above equation dimensionally consistent (see also Table 2.1).

Equation (2.76) coupled to
dag
dt

= f(ag, bg), (2.77)

constitutes the so-called well mixed system, which we aim to study in this section. We

note that in (2.76)-(2.77) the following quantity is conserved

ag(t)

!
+ bg(t) =

ag(0)

!
+ bg(0),

which can be interpreted as a scaled total concentration. Indeed, it follows from (2.34)

that

M0 =

Z

�
a(x, t) ds+

Z

⌦
b(x, t) dx = |�|ag(t) + |⌦|bg(t) = |⌦|

✓
ag(t)

!
+ bg(t)

◆
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and the analysis of (2.76)-(2.77) reduces to the single equation

dag
dt

= f
⇣
ag,m0 �

ag
!

⌘
, (2.78)

where m0 := M0
|⌦| . From the study of the steady states, f

�
ag,m0 � ag

!

�
= 0 is a third

degree polynomial in ag and, by the Descartes’ rule of signs, it can be shown that it has

either one or three positive real roots. Therefore, from the negativity of the leading order

coefficient, it follows that there exists either a single stable steady state or 3 steady states

where the outer two are stable. Bistability corresponds to the co-existence of high and low

GTPase activities at the cell membrane. When only a single steady state is possible, then

the well mixed model admits only one response between low and high activities.

The responses of the model for different values of the parameters m0 and � are shown in

Figure 2.7, where the bistability region is indicated by the blue color, while the remaining

region (white and red areas) indicates existence of a unique steady state for (2.78).

2.8.2 Local perturbation analysis

Local perturbation analysis (LPA) is a convenient tool that can be very useful in under-

standing how a local perturbation might affect some classes of reaction-diffusion systems

with fast and slow components. We refer to (Holmes, 2014; Holmes et al., 2015; Holmes

and Edelstein-Keshet, 2016) for more details and the LPA. The basic idea is the following:

let system (2.15)-(2.18) possess a spatially homogeneous profile (bg(t), ag(t)) and apply a

narrow and well localised perturbation to the slow-diffusive component a, such as the one

defined by equation (2.66). Based on the fact that we have a fast and a slow variable

(Db >> Da) we consider the limits Db ! 1 and Da ! 0. In this case, (2.15)-(2.16) tend

to

�b = 0, x 2 ⌦,

n ·rb = 0, x 2 �,

and b maintains a global spatial uniform profile bg(t). On the other hand a(x, t) initially

has a global spatial uniform profile ag in most of the cell membrane, except in the narrow

area where the perturbation ap is applied. Considering the limit Da ! 0, the equation

for a (2.17) reduces to an ODE. The perturbation ap does not influence through diffusion

the baseline level ag and, given its small mass, it does neither substantially influence b.

In these terms it is possible to consider ap(t) and ag(t) as different entities to obtain the
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following ODE system

dap
dt

= f (ap, bg) , (2.79)

dag
dt

= f (ag, bg) , (2.80)

!
dbg
dt

= �f (ag, bg) . (2.81)

It can be easily shown using conservation that the above system can be reduced to the

following system

dap
dt

= f
⇣
ap,m0 �

ag
!

⌘
, (2.82)

dag
dt

= f
⇣
ag,m0 �

ag
!

⌘
. (2.83)

The above ODE system indicates that steady states for ap might differ from the steady

states for ag. Indeed, we interpret this case as the polarisation response: the perturbation

has affected the system and two states on the boundary are simultaneously present, with

a localised high activity and low activity elsewhere. Using this analysis and numerical

calculations, we obtain the polarisation region in the parameter plane m0�, which is shown

by the coloured areas (red and blue regions) in Figure 2.7.

We have calculated the bistability and the polarisation regions for different values of

!, obtaining qualitatively identical results. However, the regions increase their sizes with

decreasing !. For the three-dimensional case, for a given volume |⌦|, max� ! = r/3 where

r is the radius of the sphere enclosing that volume. Therefore, having a fixed volume,

the more the surface increases, the smaller ! becomes. This is an interesting result which

suggests that changes in shapes and increases in the cell surface relative to its volume

enhance the possibility of achieving polarisation. Indeed a key feature of cell migration is

the change in cell shape (Reig et al., 2014).

In Holmes and Edelstein-Keshet (2016) the same analysis was done for the model (2.1)-

(2.3) where a and b are defined on the same unidimensional spatial domain. They derive

a well mixed and LPA system which is a special case of our models (2.76)-(2.77) and

(2.79)-(2.81) when ! = 1. They initially use a sharp switch approximation for the reaction

(2.18) (passing to the limit as n ! 1) in order to be able to calculate the steady states

analytically. Then they numerically calculate the bistability and polarisation regions for

(2.18) with n = 4. Our results, when n = 2, are totally in line with their work and suggests

that the bulk-surface framework maintains and extends the features of the original wave
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pinning model (2.1)-(2.2).

Figure 2.7: Bistability (blue) and polarity (red and blue) regions for different values of the
parameter ! = |⌦|/|�|. On the x-axis we vary the total mass per unit volume m0 = M0/|⌦|.
On the y-axis the activation rate � of Rho-GTPase positive feedback is varied. The blue region
defines the parameter region in which all the possible responses (uniform high activity, uniform
low activity or polarisation) can take place. Note that for small values of the positive-feedback
rate � no polarisation is possible and the stronger the feedback, the bigger can be the total initial
concentration. From left to right: ! = 1 µm, which can be generated taking ⌦ as a sphere of
radius 3 µm; ! = 1.6 µm which correspond to the choice of a sphere of radius of 5 µm, as in
Mori et al. (2008); ! = 0.42 µm which corresponds to a non-spherical domain having a surface
4 times bigger than the one of a sphere of radius 5 µm but with same volume. While we show
qualitatively similar results, we also highlight the role of !: it represents the ratio between volume
and surface area of the cell and, on domains of the same volume, ! is smaller in the ones having
larger surfaces. The figure shows that decrements of ! cause enlargements in the bistability and
polarisation areas. Although the three figures look almost the same, note the differences in the
horizontal scales representing the amount of m0.

2.9 The bulk-surface finite element method

Next, we present the bulk-surface finite element method (BS-FEM) (see for example

Madzvamuse and Chung (2016b)) which we adopt to solve the BSWP model (2.15)-(2.18).

The basic idea is to describe the model numerically by systems of linear equations, which

are easy to solve. In order to do this, we first restate the BSWP model in a weaker formu-

lation, then in a second step we discretise the spatial and temporal domains. This allows

us to finally derive the systems of linear equations.

2.9.1 Weak formulation

The weak formulation of the BSWP model (2.15)-(2.18) is obtained by testing equations

(2.17) and (2.15) respectively by any function w 2 H1(�) and v 2 H1(⌦), as follows:

Z

�
ȧw ds = Da

Z

�
��a w ds+

Z

�
f(a, b)w ds,

Z

⌦
ḃv dx = Db

Z

⌦
�b v dx,

where we have used the dot notation to indicate the temporal derivative. Applying the

divergence theorem (see also Theorem 1.5.3 in Section 1.5.2) to the above equations we
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obtain:

Z

�
ȧw ds+Da

Z

�
r�a ·r�w ds =

Z

�
f(a, b)w ds,

Z

⌦
ḃv dx+Db

Z

⌦
rb ·rv dx = Db

Z

�
n ·rbv ds.

Lastly, using the boundary condition (2.16) in the equation for b, we obtain the weak

formulation of the BSWP model (2.15)-(2.18), which reads: find

a 2 L2([0, T ];H1(�)) \ L1([0, T ]⇥ �)

with ȧ 2 L2([0, T ];H�1(�)) and

b 2 L2([0, T ];H1(⌦)) \ L1([0, T ]⇥ ⌦)

with ḃ 2 L2([0, T ];H�1(⌦)) such that

Z

�
ȧw ds+Da

Z

�
r�a ·r�w ds =

Z

�
f(a, b)w ds, (2.84)

Z

⌦
ḃv dx+Db

Z

⌦
rb ·rv dx = �

Z

�
g(a)b v ds+

Z

�
�a v ds, (2.85)

8w 2 H1(�) and 8v 2 H1(⌦) and such that (2.19)-(2.20) are satisfied. For future con-

venience, in equation (2.85) we have introduced the function g(a) := !
⇣
k0 +

�a
2

K2+a2

⌘
. We

remind that the spaces H1 and L2(0, T ;H1) are defined in Section 1.5.1, while H�1 is the

dual space of H1 (for definition and theory see for example the textbook Evans (2010)).

2.9.2 Spatial discretisation

We consider a closed polyhedral approximation ⌦h of ⌦ and define a mesh over it, i.e.

we find a suitable set Th = {T1, ..., TNT } such that ⌦h =
S

NT
i=1 Ti, where each Ti is a

tetrahedron, such that for any i 6= j we have
�
T i \

�
T j = ; and if Ti \ Tj 6= ; then the

intersection is either a common face, side or vertex of the two elements. As well, we

approximate � with �h := @⌦h. A natural mesh Sh for �h can be easily deduced from

the bulk mesh Th. Indeed, the boundary of ⌦h is discretised by the external faces of some

tetrahedra of Th. These faces, which are triangles, compose Sh. We indicate with Nh the

number of vertices in the mesh Th and with N̂h the number of vertices in Sh. The definition

of the two meshes Th and Sh and their compatibility is a crucial point for the bulk-surface

finite element method.
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Let now P1(D) be the space of first degree polynomials over a set D ⇢ Rd and we

define the following function spaces

Vh(⌦h) :=
�
v : ⌦h ! R : v 2 C0(⌦h), v|T 2 P1(T ), 8T 2 Th

 
,

Wh(�h) :=
�
w : �h ! R : w 2 C0(�h), w|S 2 P1(S), 8S 2 Sh

 
,

which are subsets, respectively, of H1(⌦h) and H1(�h). A semi-discrete finite element

formulation can be obtained by restricting the search space of the solutions from H1(⌦h)

and H1(�h) to their representatives in the subsets Vh(⌦h) and Wh(�h). For the FEM

theory we refer to the textbooks by Thomée (1997) and Quarteroni and Valli (2008).

Hence, the semi-discrete weak formulation reads: find ah 2 L2([0, T ];Wh(�h)) with

ȧh 2 L2([0, T ];Wh(�h)) and bh 2 L2([0, T ];Vh(⌦h)) with ḃ 2 L2([0, T ];Vh(⌦h)) such that

Z

�h

ȧhwh ds+Da

Z

�h

r�ah ·r�wh ds =
Z

�h

f(ah, bh)wh ds, (2.86)
Z

⌦h

ḃhvh dx+Db

Z

⌦h

rbh ·rvh dx = �
Z

�h

g(ah)bh vh ds+
Z

�h

�ah vh ds, (2.87)

8wh 2 Wh(�h) and 8vh 2 Vh(⌦h) and such that ah, bh satisfy

ah(x, 0) = ain,h(x), x 2 �h, (2.88)

bh(x, 0) = bin,h(x), x 2 ⌦h, (2.89)

where ain,h(x) 2 Wh(�h) and bin,h(x) 2 Vh(⌦h) are approximations respectively of ain(x) 2

H1(�) and bin(x) 2 H1(⌦), as given in (2.19)-(2.20). A remark on how to approximate

the initial conditions is given at the end of the section.

A basis for Wh(�h) is the set of the hat functions  i 2 Wh(�h) with the property

that  i(xj) = �i,j for any vertex xj of Sh and 8i, j = 1, . . . , N̂h, where �i,j indicates the

Kronecker delta (�i,j = 1 if i = j, zero otherwise). As well, we denote with '1, . . . ,'Nh

the hat functions on Th, which generate a basis of Vh(⌦h). Therefore we seek solutions of

the form

ah(x, t) =
N̂hX

j=1

aj(t) j(x), with aj(t) := ah(xj , t), j = 1, . . . , N̂h, (2.90)

bh(x, t) =
NhX

j=1

bj(t)'j(x), with bj(t) := bh(xj , t), j = 1, . . . , Nh. (2.91)

In terms of the basis functions, (2.86)-(2.87) are equivalent to the following two ODE
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systems

N̂hX

j=1

ȧj

Z

�h

 j i ds+Da

N̂hX

j=1

aj

Z

�h

r� j ·r� i ds =
Z

�h

f(ah, bh) i ds,

i = 1, . . . , N̂h

(2.92)

NhX

j=1

ḃj

Z

⌦h

'j'i dx+Db

NhX

j=1

bj

Z

⌦h

r'j ·r'i dx = �
NhX

j=1

bj

Z

�h

g(ah)'j'i ds

+
N̂hX

j=1

aj

Z

�h

� j'i ds, i = 1, . . . , Nh

(2.93)

which we write in compact form as follows:

M�hȧ+DaK�ha = F (a, b), (2.94)

M⌦h ḃ+DbK⌦hb+G(a)b = �Ha, (2.95)

where

a = (aj(t))j=1,...,N̂h
, b = (bj(t))j=1,...,Nh

, M�h =

✓Z

�h

 j i ds
◆

i,j=1,...,N̂h

,

K�h =

✓Z

�h

r� j ·r� i ds
◆

i,j=1,...,N̂h

, F (a, b) =

✓Z

�h

f(ah, bh) i ds
◆

i=1,...,N̂h

,

M⌦h =

✓Z

⌦h

'j'i dx
◆

i,j=1,...,Nh

, K⌦h =

✓Z

⌦h

r'j ·r'i dx
◆

i,j=1,...,Nh

,

G(a) =

✓Z

�h

g(ah)'j'i ds
◆

i,j=1,...,N̂h

and H =

✓Z

�h

 j'i ds
◆

i=1,...,Nh

j=1,...,N̂h

.

The approximation of the initial conditions in the discrete spaces Wh(�h) and Vh(⌦h)

requires the definition of the coefficients of ain,h(x) and bin,h(x) over all the vertices of the

mesh. One possible way of solving this problem is by linear interpolation over the mesh

of the continuous initial conditions (2.19)-(2.20), i.e. the coefficients a0
i
, b0

i
of the linear

combinations

ain,h(x) =
N̂hX

i=1

a0i i(x) and bin,h(x) =
NhX

i=1

b0i'i(x).

are given by

a0i = ain(xi), i = 1, . . . , N̂h, (2.96)

b0i = bin(xi), i = 1, . . . , Nh. (2.97)
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Before proceeding further in the numerical approximation of the BSWP model, we

show the following conservation property of the semi-discrete system (2.94)-(2.95).

Theorem 2.9.1. The semi-discrete system (2.94)-(2.95) conserves the initial total mass,

i.e.

Z

⌦h

bh(x, t) dx+
Z

�h

ah(x, t) ds =
Z

⌦h

bin,h(x) dx+
Z

�h

ain,h(x) ds, 8t 2 (0, T ]. (2.98)

Proof. The proof takes advantage of the following basis functions property

N̂hX

i=1

 i(x) = 1 and
NhX

i=1

'i(x) = 1, (2.99)

from which, by summing equation (2.92) over the index i = 1, . . . , N̂h, we get

N̂hX

j=1

Z

�h

ȧj j ds =
Z

�h

f(ah, bh) ds.

We observe that the integral relative to the diffusion term has disappeared since
P

i
r� i =

r� (
P

i
 i) = r1 = 0. In the same way, summing (2.93) over i = 1, . . . , Nh we obtain

NhX

j=1

Z

⌦h

ḃj'j dx = �
NhX

j=1

bj

Z

�h

g(ah)'j ds+
N̂hX

j=1

aj

Z

�h

� j ds.

Taking the time derivatives outside the integrals and using (2.90)-(2.91), the above equa-

tions can be written as

d
dt

Z

�h

ah ds =
Z

�h

f(ah, bh) ds,

d
dt

Z

⌦h

bh dx = �
Z

�h

f(ah, bh) ds.

And summing these last two, we get

d
dt

✓Z

�h

ah(x, t) ds+
Z

⌦h

bh(x, t) dx
◆

= 0,

which implies (2.98), concluding the proof.

Remark 2.9.1. Theorem 2.9.1 holds for any function f(a, b) in L1(�h).
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2.9.3 Temporal discretisation

We discretise the time interval [0, T ] uniformly with Nt 2 N time points, corresponding to

choosing a time step ⌧h = T

Nt
. We define

tn = tn�1 + ⌧h, or equivalently tn = n⌧h, n = 1, · · · , Nt,

with t0 = 0. We will indicate the solutions at discrete time tn with an
h

and bn
h

and

the corresponding coefficient vectors with an and bn. These are initialised by setting

a0 =
⇣
a01, . . . , a

0
N̂h

⌘
and b0 =

⇣
b01, . . . , b

0
Nh

⌘
, whose elements are defined by (2.96)-(2.97).

We use a predictor-corrector finite difference method to approximate the time-derivatives

(see for example MacDonald et al. (2016a)). To calculate the solution of (2.94)-(2.95) at

each time point, we follow the steps outlined below.

1. We predict a solution ãn for the surface component using the IMEX method (IMplicit

diffusion, EXplicit reaction), solving the following system of linear equations:

(M� + ⌧hDaK�) ã
n = M�a

n�1 + ⌧hF (an�1, bn�1). (2.100)

2. We calculate the solution bn using Crank-Nicolson time discretisation and the pre-

dicted solution ãn

✓
M⌦ +

1

2
⌧hDbK⌦ +

1

2
⌧hG(ãn)

◆
bn

=

✓
M⌦ � 1

2
⌧hDbK⌦ � 1

2
⌧hG(an�1)

◆
bn�1 +

1

2
⌧h�Hãn +

1

2
⌧h�Han�1. (2.101)

3. Using the predicted ãn and bn, we correct the predicted solution for ãn using the

Crank-Nicolson scheme

✓
M� +

1

2
⌧hDaK�

◆
an = M�a

n�1 � 1

2
⌧hDaK�ã

n +
1

2
⌧hF (ãn, bn) +

1

2
⌧hF (an�1, bn�1).

(2.102)

This method is based on the resolution, at each time step, of three different systems

of linear equations, obtained from the finite element discretisation in space and finite

difference discretisation in time. It is worth to mention that the method is second order

accurate in time (Quarteroni et al., 2010; MacDonald et al., 2016a), and moreover the

following property holds.
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Proposition 2.9.1. The numerical method (2.100)-(2.102) is conservative, i.e.

Z

⌦h

bh(x, t
n) dx+

Z

�h

ah(x, t
n) ds =

Z

⌦h

bh(x, 0) dx+

Z

�h

ah(x, 0) ds,

for all n = 1, ..., Nt.

Proof. Similarly to the proof of Theorem 2.9.1, we take advantage of the basis functions

property (2.99). Let us now consider the system (2.101) in its extended form

NhX

j=1

bnj

Z

⌦h

'j'i dx+
1

2
⌧hDb

NhX

j=1

bnj

Z

⌦h

r'j ·r'i dx

+
1

2
⌧h

NhX

j=1

bnj

Z

�h

g(ãnh)'j 'i ds =
NhX

j=1

bn�1
j

Z

⌦h

'j'i dx

�1

2
⌧hDb

NhX

j=1

bn�1
j

Z

⌦h

r'j ·r'i dx� 1

2
⌧h

NhX

j=1

bn�1
j

Z

�h

g(an�1
h

)'j 'i ds

+
1

2
⌧h�

N̂hX

j=1

ãnj

Z

�h

 j 'i ds+
1

2
⌧h�

N̂hX

j=1

an�1
j

Z

�h

 j 'i ds, i = 1, . . . , Nh.

Summing this expression over the index i we get

NhX

j=1

bnj

Z

⌦h

'j dx+
1

2
⌧h

NhX

j=1

bnj

Z

�h

g(ãnh)'j ds =
NhX

j=1

bn�1
j

Z

⌦h

'j dx

�1

2
⌧h

NhX

j=1

bn�1
j

Z

�h

g(an�1
h

)'j ds+
1

2
⌧h�

N̂hX

j=1

ãnj

Z

�h

 j ds+
1

2
⌧h�

N̂hX

j=1

an�1
j

Z

�h

 j ds.

For convenience the above equation can be written as follows

Z

⌦h

bnh dx =

Z

⌦h

bn�1
h

dx� 1

2
⌧h

Z

�h

f(ãnh, b
n

h) ds� 1

2
⌧h

Z

�h

f(an�1
h

, bn�1
h

) ds. (2.103)

The system (2.102) in its extended form is

N̂hX

j=1

anj

Z

�h

 j i ds+
1

2
⌧hDa

N̂hX

j=1

anj

Z

�h

r� j ·r� i ds =
N̂hX

j=1

ãn�1
j

Z

�h

 j i ds

�1

2
⌧hDa

N̂hX

j=1

ãnj

Z

�h

r� j ·r� i ds+
1

2
⌧h

Z

�h

f(ãnh, b
n

h) i ds

+
1

2
⌧h

Z

�h

f(an�1
h

, bn�1
h

) i ds, i = 1, . . . , N̂h.
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Summing over i = 1, . . . , N̂h we get

N̂hX

j=1

anj

Z

�h

 j ds =
N̂hX

j=1

ãn�1
j

Z

�h

 j ds+
1

2
⌧h

Z

�h

f(ãnh, b
n

h) ds+
1

2
⌧h

Z

�h

f(an�1
h

, bn�1
h

) ds

or, equivalently,

Z

�h

anh ds =
Z

�h

ãn�1
h

ds+
1

2
⌧h

Z

�h

f(ãnh, b
n

h) ds+
1

2
⌧h

Z

�h

f(an�1
h

, bn�1
h

) ds. (2.104)

We want to show that
R
⌦h

bn
h

dx+
R
�h

an
h

ds is constant for every n. From (2.103) and

(2.104) follows that

Z

⌦h

bnh dx+

Z

�h

anh ds =
Z

⌦h

bn�1
h

dx+

Z

�h

an�1
h

ds,

from which, iterating, we finally obtain

Z

⌦h

bnh dx+

Z

�h

anh ds =
Z

⌦h

b0h dx+

Z

�h

a0h ds,

which concludes the proof.

We remark that, following the above steps, one could prove conservation of total mass

also for other temporal approximations, for example the same holds if Euler backward

method is used for approximating equations (2.94)-(2.95).

2.10 Results

In this section we present some simulations on three different domains: a sphere, a capsule

and a complex domain, caricature of a polarised fibroblast cell. In all the simulations

except for the last one, we set the initial conditions as follows: referring to Proposition

2.4.2, the bulk component is spatially homogeneous with value

b0 = b2 � "b(b2 � b1), (2.105)

with "b < 1 such that b0 > bc, where bc is the only zero of I(b) in (2.67). For the surface

component, we superimpose a narrow Gaussian function with magnitude ap = (a2 + a3)/2

on a spatially homogeneous profile ag = (a1 + a2)/2, where a1, a2, a3 are the solutions of
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Figure 2.8: Numerical simulations of the BSWP model (2.15)-(2.18) on a sphere: The active
form of Rho GTPase a propagating from a "stimulating" initial condition (2.66) over a sphere.
The numerical solution reaches a stable configuration after about 100 seconds. See text for further
details.

f(a, b0) = 0, i.e.

ain = ag + ap exp

✓
�(x� x0)2 + (y � y0)2 + (z � z0)2

�2

◆
(2.106)

where (x0, y0, z0) is the centre of the perturbation. In case of two perturbation peaks with

centres (x0, y0, z0) and (x1, y1, z1), we impose the following initial condition

ain = ag + ap exp

✓
�(x� x0)2 + (y � y0)2 + (z � z0)2

�2

◆

+ ap exp

✓
�(x� x1)2 + (y � y1)2 + (z � z1)2

�2

◆
. (2.107)

The following simulations present a variety of choices for the parameters "b, �2 as well as

for the centre of the perturbations. Despite the fact that these parameters clearly play a

role in the localisation and extension of the active patch, the behaviour of the model is

generally characterised by propagation, pinning and stabilisation for a biologically relevant

time. Here we show a selection of our most significant results, which are later extended in

next section 2.11 for long times in other geometries.
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Figure 2.9: Variation in time of the total mass of active (left) and inactive (right) GTPases of
the numerical solution shown in Figure 2.8. The initial decrease in the mass of a is due to the
attraction of the solution towards the smaller value a1(b) in most of its domain. Consequently we
observe an initial increase of the mass of b. The mass of a starts increasing with the spreading
of its activity over the surface, which reduces the mass of b. After about 100 seconds the two
components approach the equilibrium in mass.

2.10.1 Sphere

Our first three-dimensional geometry on which we solve the BSWP model (2.15)-(2.18) is

the sphere which is the simplest possible three-dimensional shape. We consider a radius

of 5µm, which is the radius used in the simulations of the WP model (Mori et al., 2008).

We set "b = 0.154 in (2.105) and �2 = 0.5µm2 in (2.106). The perturbation of the

homogeneous state is strong enough to trigger polarisation: from this small region, a

propagative activation is started in all directions. This will be finally pinned in about 100

seconds, resulting in a stable active area. In Figure 2.8 we show the evolution of a and in

Figure 2.9 the temporal evolution of the masses of a and b which become constants when

the propagation gets pinned.

2.10.2 Capsule

As a second example, we compute numerical solutions of the BSWP model (2.15)-(2.18) on

a capsule composed of a cylinder of radius 5 µm and height 4 µm and two spherical caps at

its extremities. The results shown in Figure 2.10 are obtained for the parameter "b = 0.006

in (2.105) and �2 = 0.2µm2 in (2.106). A very small value of "b is chosen in order to have an

initial total quantity of b very close to its possible maximal value b2, which corresponds to

a higher amount of the available source for the activation. The small value for �2 narrows

the initial activated area, but it is still big enough to maintain the ability to propagate. As

expected, the initial condition triggers the activation process, which apparently reaches the

steady state in about 120 seconds, see Figure 2.10. Eventually, we compute and observe

the behaviour of the numerical solutions for very long times and notice that the activated

region is moving very slowly from its “apparent" steady state, towards one of the caps of
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the capsule, which is finally covered in more than 3 hours. Vanderlei et al. (2011) showed

the same property for the classical wave pinning model (2.1)-(2.3): on two-dimensional

geometries the active concentration at its “steady state" has the tendency to move very

slowly towards more rounded regions of the domain. It is interesting to note that in our

case, the slow motion requires a much bigger time, which in Vanderlei et al was of only

around 200 seconds. This behaviour is also observed influencing the mechanics of cell

migration in a model based on the wave pinning mechanisms proposed by Camley et al.

(2017).

Figure 2.10: Numerical simulations of the BSWP model (2.15)-(2.18) on a capsule. The solution
a is here reported at several time steps: a small area in the lateral side of the capsule is activated,
causing the activation of the entire lateral section which reaches its maximal size after around 120
seconds. Eventually, after a very long time, the activated area moves towards one of the spherical
caps of the domain.

2.10.3 Polarised cell shape

Next, we consider a more complex geometry whose shape mimics that of a polarised cell in

vitro, see Figure 2.11. The domain has a volume of 538 µm3 and surface area of 911 µm2,

almost three times more than the surface area of a sphere with the same volume. The

front of the domain presents some protrusions with five tips. We set "b = 0.154 in (2.105)

and �2 = 0.5 in (2.107). In Figure 2.12 we activate one external tip and one internal

tip, while in Figure 2.13 activation starts from the external tips. Both perturbations are

strong enough to trigger the polarisation process, which starts with the enlargement of the

polarity patches. In the first simulation shown in Figure 2.12, in about four minutes the

two activated spots merge together into a unique stable active region which enlarges over

the whole front of the domain and gets pinned in about 10 minutes.
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Figure 2.11: The surface of a polarised cell shaped domain. The domain has been discretised
with 5362 tetrahedrons which induced a surface discretisation with 3044 triangles.

Figure 2.12: Numerical simulation of the BSWP model (2.15)-(2.18) on a more complex domain,
caricature of a polarised cell. The numerical results show the solution a at different stages of
the polarisation process: a small area in two of the five tips of the domain is activated and this
generates two propagating fronts which merge together in about 4 minutes. The activated area
stabilises covering the whole front of the domain in about 10 minutes. A video illustrating the
wave pinning process is provided in the supplementary material of Cusseddu et al. (2018)

In the second simulation shown in Figure 2.13, the cell needs a much longer time to

stabilise as it has to deal with two polarity patches, for which a competitive behaviour is

observed. Initially, propagation occurs normally with two different enlarging areas. After

about five minutes one active region inverts its behaviour and starts disappearing. This

leads to a winning tip, which continues enlarging on its side, until final stabilisation. The

competitive behaviour was shown and investigated by Chiou et al. (2018) for the classical

wave pinning model and Figure 2.13 confirms this feature also for the bulk-surface extension

(2.15)-(2.18). Further investigations are left for future work.
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Figure 2.13: Numerical simulation of the BSWP model (2.15)-(2.18) on a domain mimicking a
polarised cell. In this simulation the external tips are activated. Two active waves are generated
and start propagating on the surface. After about 5 minutes the competition effects between the
two active patches start being visible, and one active region (left tip) starts reducing its size, until
it disappears completely. Disappearing and stabilisation of the remaining active area occur after
more than 30 minutes. Competition in two-dimensional wave pinning model was very recently
investigated in Chiou et al. (2018).

In all previous simulations, we have used suitable initial conditions in the form of

perturbations of the spatially homogeneous profile of a. This has been shown to be enough

to give rise to polarisation, in the numerical results, as well as for the asymptotic and

local perturbation analysis. However, similar perturbations can be induced by perturbing

the reaction (2.18). Indeed, in most of the papers simulating the WP model, polarisation

was initiated from a stimulus included in the reaction function, rather than a stimulus in

the initial conditions, which were, in turn, spatially homogeneous. Following this latter

approach, the BSWP model is given by equations (2.15)-(2.18) with reaction

f(a, b) = !
⇣
k0 +

�a2

K2 + a2

⌘
b� �a+ !ksb, x 2 �. (2.108)

where ks = ks(x, t) is an arbitrary function, generally non-negative until a certain time ts

and zero afterwards (Mori et al., 2008). Appropriate choices of ks can lead to the formation

of local peaks in the solutions, which trigger the propagation of a over the surface. An

interesting result of the two-dimensional BSWP model (2.15)-(2.18) was its ability to self

polarise from homogeneous initial conditions in asymmetric geometries when a spatially
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homogeneous stimulus was applied in an initial time interval [0, ts] (Giese et al., 2015).

In Figure 2.14 we present the same experiment on our three-dimensional domain in which

we apply a homogeneous stimulus of 0.03 s�1 for 20 seconds. This induces a rapid local

activation of the ellipsoidal volume on the top of the cell, with noticiable effects within

the first 5 seconds. The high a concentration starts increasing and sharpening the fronts,

and successively it spreads towards the rear of the domain. Our simulation confirms the

interesting geometry-induced self-polarisation ability also for the three-dimensional case.

Figure 2.14: Numerical simulation of the BSWP model (2.15)-(2.16) and (2.17) with reaction
kinetics (2.108) on a domain mimicking a polarised cell. We apply a constant stimulus ks(x, t) =
0.03 s�1 until time tS=20 s which induces an activation at the level of the nucleus-shaped volume.
From here, a wave starts, covering the whole rear. In about 20 minutes the BSWP model has
reached its steady state, with the rear having high levels of active GTPase.

In the next section we present a second series of numerical results on different geomet-

ries, which were not previously included in our article (Cusseddu et al., 2018). These are

part of an ongoing project focused on the understanding of the long-time behaviour of the

surface solution a of (2.15)-(2.18) and, in particular, of the slow-motion of the active patch

in function of the domain geometry.
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(a) (b) (c) (d) (e)

Figure 2.15: The computational meshes over the domains ⌦ considered in this section. (a) a
capsule composed of a cylinder of radius R = 5 and bases centered, respectively in (0, 0, 0) and
(0, 0, 4). At the ends of the cylinder are placed two half spheres of same radius R = 5; (b) a
club-shaped domain composed of a truncated cone with bases centred in (0, 0, 0) and (0, 0, 8)
and basal radii, respectively, R1 = 3 and R2 = 1. This geometry is completed by two half spheres
of same radii R1, R2 at its ends; (c) a uneven dumbbell-shaped domain composed of the union
of a cylinder of radius Rc = 2 and bases centered in (0, 0, 0) and (0, 10, 0) and two sphere at its
ends, centered in (0,�2, 0) and (0, 11, 0) and radius, respectively RS = 4 and Rs = 3; (d) this
domain is composed of the union of three cylinders connecting two spheres: the main cylinder, of
radius R1 = 0.5 has bases centered in (0, 0, 0) and (0, 0, 8), while the other two have both radius
R2 = R3 = 0.3 and the two bases are respectively centered in (1, 0, 0), (1, 0, 8) and in (�1, 0, 0),
(�1, 0, 8). The smallest sphere has radius Rs = 2 and center (0, 0, 0), the biggest one has radius
RS = 4 and center in (0, 0, 8); (e) a steering wheel-shaped domain, composed of a torus and a
cylinder. The torus is centered in (0, 0, 0), its tube has radius r = 1 and the distance between the
center of the torus and the center of the tube is R = 4.5. The cylinder has radius r = 1 and bases
centered in (0,�4, 0) and (0, 8, 0). All the quantities reported in this caption have unit dimension
µm.

2.11 The effects of the domain shape on the BSWP model

The simulations reported in the previous section highlight the fact that the geometry of

the domain has a strong impact on the evolution of the BSWP model (2.15)-(2.18). This is

particularly evident in the domain mimicking a polarised cell (in particular see figures 2.13

and 2.14). As well, the simulation reported in Figure 2.10 shows an interesting long-time

behaviour. The active patch, which appears to be stable for a substantially long time, at

least for all the biologically relevant time (in the figure for at least 750 seconds), undergoes

towards a slow transition, attracted by one of the capsule caps.

A deeper investigation on the effects of the geometry on the patterning of the BSWP

model is definitely an attractive future goal of this work. Currently this constitutes a work

in progress and, without claiming completeness, in the following we present some interesting

preliminary results of the model on different geometries, which are shown, together with

the corresponding spatial meshes, in Figure 2.15. The BSWP model (2.15)-(2.18) is tested

for different initial conditions of the surface component a, while for the bulk component b

we keep considering the homogeneous profile (2.105) with "b = 0.001.
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2.11.1 Capsule

In Section 2.10.2 the BSWP model (2.15)-(2.18) was tested on the capsule (Figure 2.15a)

with initial conditions (2.105)-(2.106), where activation started from a small peak localised

on the lateral surface of the domain. Keeping the same homogeneous initial condition for

b we have simulated the model for three different initial spatial profile of the surface

component a.

A circular high activity over the lateral surface is imposed through the initial condition

ain(x) =

8
>><

>>:

ag + ap exp

 
�

⇣p
(z�z0)2+y2�R

⌘2

�2

!
, if x > 0,

ag, otherwise.

(2.109)

The result of the simulation is shown in Figure 2.16. The impact of the geometry is evident

from the images: the propagation is mainly directed towards the internal area of the initial

circle, which gets very quickly activated, but the propagation outside the circle occurs

much slower. Indeed the boundary of the final configuration appears as a small expansion,

mainly towards the two caps, of the initial ring. Interestingly the final configuration shown

in Figure 2.16 is very similar to the solution at 750 seconds shown in Figure 2.10.

Figure 2.16: Numerical simulation of the BSWP model (2.15)-(2.18) on a capsule with initial
condition given in (2.109) with z0 = 2µm, R = 4µm, �2 = 0.21µm2. The solution is shown from
two different point of view: the first line offers a view from the top of the x axis, while in the
second line the view is from the top of the y axis (see Cartesian axes on the left side of the image).

Figure 2.17 shows the evolution of the BSWP model (2.15)-(2.18) subject to the fol-

lowing initial condition for a:

ain(x) = ag + ap exp

✓
�(z � z0)2

�2

◆
. (2.110)

This is visualised as a ring across the capsule length. The model shows a very interesting

behaviour as the ring quickly expands its width, reaching an apparently stable profile which

lasts for a reasonable long time (compare solution at time 35 and 304 seconds). However

the apparent stability is eventually lost at around 550 seconds: the ring breaks and the
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active region moves towards the lateral surface, reaching a very similar configuration as in

the previous case (Figure 2.16).

Figure 2.17: Numerical simulation of the BSWP model (2.15)-(2.18) on a capsule with initial
condition given in (2.110) with z0 = 2µm, R = 4µm, �2 = 0.15µm2. The solution is shown from
two different point of view: the first line offers a view from the bottom of the x axis, while in the
second line the view is from the top of the x axis (see Cartesian axes on the left side of the image).

The last simulation of the BSWP model (2.15)-(2.18) on the capsule is shown in Figure

2.18 and describes the evolution of the model subject to the following initial condition:

ain(x) = ag + ap exp

0

B@�

⇣p
(z � z0)2 + y2 �R

⌘2

�2

1

CA (2.111)

This function is the symmetrical version of (2.109) with respect to the plane x = 0. For

R large enough the two circles intersect, creating two X-shaped crosses. In this way, the

initial condition (2.111) can be seen as a high-activity curve enveloping the capsule. It

is interesting to observe how the two circles break (first line of Figure 2.18), while the

two X-shaped crosses are able to propagate, eventually stabilising over two opposite active

patches at the capsule lateral surface (second line of Figure 2.18). Also in this case, at

the final time the configuration is the very similar to the one in the previous simulations

(Figures 2.16-2.17), with the only difference that for this last initial condition two different

patches, symmetrical with respect to the plane y = 0, are formed.

Figure 2.18: Numerical simulation of the BSWP model (2.15)-(2.18) on a capsule with initial
condition given in (2.111) with z0 = 2µm, R = 5µm, �2 = 0.21µm2. The solution is shown from
two different point of view: the first line offers a view from the bottom of the x axis, while in the
second line the view is from the bottom of the y axis (see Cartesian axes on the left side of the
image).
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2.11.2 Dumbbell-shaped domain

The BSWP model (2.15)-(2.18) is tested on the dumbbell-shaped domain shown in Figure

2.15c for three different initial conditions. Since in the capsule simulation of Figure 2.10

the active path moves towards one of the caps, a natural question regards under which

criterium one cap is preferred to the other one. Given the symmetry of the problem, this

could be related to the mesh used by the bulk-surface finite element method. Hence, in

order to get better insights about attractive regions, we use an asymmetrical dumbbell-

shaped domain having one sphere bigger than the other one.

First we propose to use the following initial condition

ain(x) = ag + ap exp

✓
�(x� x0)2 + (y � y0)2 + (z � z0)2

�2

◆
, (2.112)

and playing with the perturbation center (x0, y0, z0) we activate either the small sphere

(Figure 2.19, top row) or the big sphere (Figure 2.19, bottom row). As shown in the

figures, both spheres appear to be stable regions for the active patch, which in the final

configuration is localised over the initially perturbed sphere. Therefore in order to see

Figure 2.19: Two different numerical simulations of the BSWP model (2.15)-(2.18) on a dumbbell-
shaped domain with initial conditions given in (2.112) with �2 = 0.2µm2. On the first row the
homogeneous profile for a is perturbed over the small sphere ((x0, y0, z0) = (0, 14, 0), while on the
second row the perturbation is imposed over the biggest sphere ((x0, y0, z0) = (0,�6, 0)).

which one of the two spheres is more “attractive”, we initially impose a perturbation over

the cylinder, equidistant from the two spheres, with the function

ain(x) = ag + ap exp

✓
�(y � y0)2

�2

◆
. (2.113)

The corresponding simulation is shown in Figure 2.20: the active ring imposed by (2.113)

quickly expands propagating over the entire cylinder surface. After around 50 seconds

the solution a appears to be stable. However this configuration does not hold for all the

time. Slowly the active patch starts moving towards the small sphere, which is completely

activated by the end of the simulation. The final configuration is very similar to the one
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presented in Figure 2.21 (top).

Figure 2.20: Numerical simulation of the BSWP model (2.15)-(2.18) on a dumbbell-shaped
domain with initial condition given in (2.112) with y0 = 5.0µm and �2 = 0.2µm2. The homogeneous
profile is perturbed locally in the cylinder, equidistantly from the two spheres.

2.11.3 Club-shaped domain

In this section the simulations over the dumbbell are replicated over a club-shaped domain

in order to further test our findings. The initial perturbation is localised at one end of the

domain. The two different cases are considered and shown over the two rows of Figure

2.21. As expected, consistently with the simulations in Figure 2.19, in both cases the initial

condition triggers a propagation which stabilises at the perturbed ends.

Figure 2.21: Two numerical simulations of the BSWP model (2.15)-(2.18) on a club-shaped
domain. On the first row the homogeneous profile for a is perturbed at the smaller tip of
the domain, while on the second row the perturbation is applied at the top of the big half
sphere. The initial condition imposed in the first simulation (first row) is ain(x) = ag +

ap exp
⇣
�x2+y2

�2

⌘
1(x){z>h/2}, while on the second simulation (second row) the initial condition

is ain(x) = ag + ap exp
⇣
�x2+y2

�2

⌘
1(x){z<h/2}. In both cases we set �2 = 0.21µm2 and h = 8µm.

Again, to evaluate if the spherical ends of the domain are more attractive, we perturb

the central region using initial conditions of the following form:

ain(x) = ag + ap exp

✓
�(z � z0)2

�2

◆
, (2.114)

which is visualised as a ring over the cone. Figure 2.22 describe the model evolution for

two different positions of the ring. Interestingly the qualitative aspect of the evolution is

the same in both cases. Even when the ring is much closer to the biggest half sphere, the

active patch is attracted by the smallest sphere.
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Figure 2.22: Two different numerical simulations of the BSWP model (2.15)-(2.18) on a club
-shaped domain. On the first row the initial condition is (2.114) with z0 = 4µm and �2 = 0.2µm2,
i.e. the ring is placed at the half-length of the cone.

Nevertheless, the smallest tip of the domain is not always the most attractive one, as

the simulation in Figure 2.23 shows. In this case the initial condition was (2.112) with

(x0, y0, z0) = (0, 2, 4) and �2 = 0.2, which corresponds to a small activity peak localised

on the lateral surface of the cone. In this case the perturbation evolves into a lateral patch

apparently stable for more than 300 seconds. At 650 seconds the movement of patch is

noticeable and at the last time the biggest end of the domain is finally covered.

Figure 2.23: Numerical simulation of the BSWP model (2.15)-(2.18) on a club-shaped domain
with initial condition (2.114) and (x0, y0, z0) = (0, 2, 4) and �2 = 0.2µm2.

2.11.4 Three cylinders connecting two spheres

The same behaviour is also observed when solving the model in the more complex domain

of Figure 2.15d. For a small initial activity peak localised on the tip of a spherical end

of the domain, a propagates over the perturbed sphere and finally stabilises covering it.

When the perturbation is applied at the small sphere the high-activity region reaches also

the three cylinders, covering them. For a perturbation over the big sphere, this extends

for around half of the sphere surface. The numerical results are shown in Figure 2.24.

We now apply the ring-type initial condition (2.114) with z0 = 3 µm, and �2 = 0.3 µm2,

which localises the perturbation transversally over the three cylinders. The formed active

patch is again attracted by the small sphere at the end of the domain, and this is covered

in a relatively short time (in about 600 seconds). See Figure 2.25 for the results.

Figure 2.26 shows another interesting evolution of the BSWP model (2.15)-(2.18) from

a different initial condition. This is given in form of (2.113) with y0 = 0 and �2 = 0.3 µm2.



78

Figure 2.24: Two numerical simulations of the BSWP model (2.15)-(2.18) on a complex domain
evolving from initial conditions (2.112) with (x0, y0, z0) = (0, 0, 12) (first row) or (x0, y0, z0) =
(0, 0,�2) (second row), and �2 = 0.2µm2.

The perturbation crosses the whole domain in a longitudinal ring fashion. This triggers

a propagation resulting in a total coverage of the small sphere and a successive breakage

of the ring in the biggest sphere, as was observed also in Figure 2.18. The solution at the

final time shows a clearly asymmetrical profile.

Figure 2.25: Numerical simulation of the BSWP model (2.15)-(2.18) on a complex domain with
initial condition given in (2.114) with z0 = 3 µ, and �2 = 0.3 µm2.

Figure 2.26: Numerical simulation of the BSWP model (2.15)-(2.18) on a complex domain with
initial condition given (2.113) with y0 = 0 and �2 = 0.3 µm2. The solution is visualised from two
different point of view, as indicated in both rows by the Cartesian axes.

2.11.5 Steering wheel

Finally, the last investigation is made on the torus-cylinder domain of Figure 2.15e. In one

case, shown in Figure 2.27, a competitive behaviour is again observed. The initial condition,

given by (2.113) with y0 = 0 µm and �2 = 0.3 µm2, visually reminds three rings over the

tubes. As expected they all expand and very quickly reach a more stable configuration.

However, eventually a is depleted from the central cylinder, with a consequent expansion
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of the other two active surfaces on the torus. A similar behaviour was already observed in

the simulation of Figure 2.13.

Figure 2.27: Numerical simulation of the BSWP model (2.15)-(2.18) on the geometry of Figure
2.15e with initial condition given by (2.113) with y0 = 0 µm and �2 = 0.3 µm2.

In the last two simulations we present the evolution of the BSWP model (2.15)-(2.18)

where the initial conditions are perturbations of the homogeneous spatial profile localised

only on the central cylinder. In one case, shown in Figure 2.28, the initial condition is

given by

ain(x) = ag + ap exp

✓
�x2 + y2

�2

◆
, (2.115)

with �2 = 0.2 µm2. This can be described as a circular peak localised at the centre of the

cylinder, on both faces of the domain. In the second case, shown in Figure 2.29, the initial

condition is given by

ain(x) =

8
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>:

ag + ap exp
⇣
� y
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�2

⌘
, if |x| < 1.5 µm,

ag, otherwise,
(2.116)

with �2 = 0.2 µm2, which describes a single ring across the cylinder. These simulations are

interesting because despite the fact that a reaches a similar apparently stable configuration

in both cases, in which the whole cylinder is activated, in the second case the active patch

finally breaks out of the cylinder and starts propagating over the torus.

Figure 2.28: Numerical simulation of the BSWP model (2.15)-(2.18) with initial condition given
by (2.115) with �2 = 0.2 µm2.
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Figure 2.29: Numerical simulation of the BSWP model (2.15)-(2.18) with initial condition given
by (2.116) with �2 = 0.2 µm2.

2.12 Some preliminary results for the BSWP model in evolving

domains

A future extension of the work presented in this Chapter regards the study of the model

(2.15)-(2.20) in a migrating cell. In this case, the cell membrane needs to be represented

by an evolving surface �(t) ⇢ R3 and the cell interior by an evolving volume ⌦(t) ⇢ R3,

for t 2 [0, T ]. Hence, the position x of a point on �(t) or in ⌦(t) is defined by

dx
dt

= v(x, t), t 2 (0, T ],

x(0) = x0 2 {�0,⌦0},

where ⌦(0) = ⌦0 and �(0) = �0 represent the initial shape of the cell and v 2 C1(V ⇥[0, T ])

is the velocity of the cell. Furthermore we assume the existence of a bounded open set

V ⇢ R3 such that ⌦(t) ⇢ V for all t 2 [0, T ].

In this case, the derivation of the biochemical model (2.15)-(2.20) presented in Section

2.2 needs to be modified in order to take into account the non-stationarity of the domain.

In particular we make use of the following theorems.

Theorem 2.12.1 (Reynold’s transport theorem). Let ⌦(t) be an open set in R3 with

boundary �(t) 2 C1([0, T ]) . Hence, if f 2 C1(⌦(t)⇥ [0, T ]), it holds

d
dt

Z

⌦(t)
f dx =

Z

⌦(t)
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@f

@t
+r · (fv)

◆
dx. (2.117)

A similar result holds for surfaces, as follows:

Theorem 2.12.2. If g 2 C1(�(t)⇥ [0, T ]), it holds

d
dt

Z

�(t)
g ds =

Z

�(t)

✓
@g

@t
+ v ·rg + gr� · v

◆
ds. (2.118)

For more details about Theorem 2.12.1 we refer to the textbook by DiBenedetto (2010)

or Temam et al. (2003), while for Theorem 2.12.2 we refer to Dziuk and Elliott (2007,
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2013). Hence, using the above theorems, the adaptation of the steps followed in Section

2.2 to the new context is straightforward and the new model reads:

@b

@t
+r · (bv) = Db�b, x 2 ⌦(t), t 2 (0, T ], (2.119)

�Db(n ·rb) = f(a, b), x 2 �(t), t 2 (0, T ], (2.120)
@a

@t
+ v ·ra+ ar� · v = Da��a+ f(a, b), x 2 �(t), t 2 (0, T ], (2.121)

coupled with initial conditions

b(x, 0) = bin(x), x 2 ⌦0, (2.122)

a(x, 0) = ain(x), x 2 �0, (2.123)

and f defined in (2.18).

As in Section 2.4, we can find an equivalent of Proposition 2.4.1 regarding the conser-

vation of the initial total mass, as follows.

Proposition 2.12.1. Let a and b be solutions of (2.119)-(2.123). Then

M(t) :=

Z

⌦(t)
b(x, t) dx+

Z

�(t)
a(x, t) ds = M0, 8t � 0, (2.124)

where

M0 :=

Z

⌦(0)
bin(x) dx+

Z

�(0)
ain(x) ds. (2.125)

Proof. We follow the same steps as in Proposition (2.4.1). Differentiating (2.124) and using

Theorem 2.12.1 and 2.12.2, we get

M 0(t) =

Z

⌦(t)

✓
@b

@t
(x, t) +r · (bv)

◆
dx+

Z

�(t)

✓
@a

@t
(x, t) + ar� · v + v ·ra

◆
ds,

which, from (2.119) and (2.121), results in

M 0(t) =

Z

⌦(t)
Db�b dx+

Z

�(t)
(Da��a+ f(a, b)) ds.

Now applying the divergence theorem to the bulk integral and the boundary condition

(2.120), together with Corollary 1.5.1 for the Laplace-Beltrami term for the surface integral,

we get M 0(t) = 0, which proves the proposition.

In view of future extensions, since Rho GTPase proteins are key players in cell polarisa-

tion and cell motility (see Section 1.1.5), we expect to model the cell velocity v as a function
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of the active GTPase a, as done for example by Vanderlei et al. (2011) and Camley et al.

(2017). This should be accompanied by the extension of the bulk-surface finite element

method of Section 2.9 to evolving domains. Many works have been already devoted to

numerical methods for these kinds of problems (see, for example Elliott et al. (2012), Mac-

Donald et al. (2016b), MacKenzie et al. (2016), Madzvamuse and Chung (2016b), Tuncer

and Madzvamuse (2017)).

2.13 Conclusion

In this chapter, we have presented a three-dimensional extension of the wave pinning

model in a bulk-surface setting, in which membrane-bound GTPase and cytosolic GTPase

are spatially localised and their interactions occur on the cell surface. The model describes

cell polarisation through a minimal circuit of GTPase switching between active and inactive

forms as well as between the membrane and the cytosol. In our work, we were able to show

many analogies to the classical wave pinning model (Mori et al., 2008, 2011; Vanderlei et al.,

2011) not previously shown in three-dimensional domains.

In this framework, the bulk-surface wave pinning (BSWP) model (2.15)-(2.18) main-

tains the three key properties (conservation of total mass, different diffusivities and bista-

bility of the reaction) which are necessary to achieve polarisation. This phenomenon is

achieved by patterning in the distribution of the active GTPase, characterised by the

presence of high and low concentration regions over the surface of the domain. Different

techniques and methods have been used to get a good understanding of the behaviour of the

model. By employing asymptotic analysis, in Section 2.7 we show how a local perturbation

of homogeneous initial conditions for a can trigger a propagation of the high level of active

GTPase over the cell membrane. Effects of the geometry and parameters mapping have

been investigated in Section 2.8, where we have highlighted how polarisation behaviour

is more probable in complex domains. This has been done by using local perturbation

analysis which allows a reduction of the bulk-surface PDE system to a system composed of

three ordinary differential equations. Finally, using the bulk-surface finite element method,

presented in Section 2.9 and 2.11, we computed numerical solutions of the BSWP model

on different domains. An interesting result has been obtained over a capsule-shaped do-

main, where the long time behaviour of the model shows another common property of the

classical wave pinning model (Vanderlei et al., 2011): the high active concentration region

moves very slowly from its apparent stable steady state towards more rounded areas, until

it covers one of the spherical caps of the capsule. This behaviour was also confirmed by a
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series of simulations on different geometries, shown in Section 2.11.

Simulations have been done also on a more complex geometry mimicking a polarised

cell-like shape. We showed competition between different highly active areas, as previously

reported for the classical wave pinning mechanism (Chiou et al., 2018). In addition, we

show how geometry plays a crucial role on the spontaneous polarisation in our three-

dimensional BSWP model, as reported in the two-dimensional case by Giese et al. (2015).

In the latter case, the asymmetric geometry of the domain plays a crucial role in enhancing

GTPase activation. Indeed, activation was induced by a spatial homogeneous stimulus, but

its effects appear well localised in specific areas of the surface.

Positive feedback, known to be a biological feature of Rho GTPases (Graessl et al.,

2017), has been confirmed as a key player in the new formulation of the model. It is rep-

resented by the Hill function in (2.18), but studies involving other nonlinear choices would

be of great interest. Identification of Rho GTPase feedback is an extremely interesting

task and hopefully coordinated efforts between biologists and mathematicians can lead the

way to a more complete understanding of cell polarisation and migration.

We expect the BSWP model (2.15)-(2.18) to be a starting point for a more complete

work, in which the biochemical mechanisms shown above are coupled with mechanical

properties of the cell, such as membrane tension and migration. Indeed, in real cells,

GTPase concentration would lead to shape changes, through cytoskeleton interactions.

In light of this, an extension of the model on evolving domains was introduced in Section

2.12. The classical wave pinning model has been already coupled to mechanistic models for

membrane tension (Wang et al., 2017) and cell migration (Vanderlei et al., 2011; Camley

et al., 2017). In these latter works the migrating cell, instead of keeping a straight direction,

was turning over one side. This corresponds to the slow motion of the polarised area, as

discussed in the Section 2.10.2. In view of this and taking into account the influence of

the geometry of the domain, it can be of interest to extend these results and investigate

how the bulk-surface approach influences the mechanical properties. Indeed, as reported in

Figure 2.10, the slow motion appears to be slower with respect to the one reported in the

literature (Vanderlei et al., 2011) and, in a reasonable amount of time, the turning effect

might not affect too much the model. As well, the effects of the geometry shown by the

local perturbation analysis (Section 2.8) might play an important role on evolving domains

describing more accurately migrating cells, in which the parameter ! = |⌦|/|�| is subject

to changes in time. However, efforts should also be concentrated on the investigation of the

effects of the surface curvature over the BSWP model (2.15)-(2.18). This is well motivated
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by the simulations presented in Section 2.11. One could start this investigation from the

reduced model proposed by Diegmiller et al. (2018), in which, given the high diffusivity of

the bulk component, the inactive component b is assumed spatially uniform. In this way,

the BSWP model is reduced to the single surface equation for the active component a and

the analysis can be substantially simplified.

Lastly, another interesting extension of this study is whether it is possible to achieve

similar mechanisms in a bulk-surface model with three species, when membrane recruitment

of cytosolic GTPase is taken into account. This idea of GTPase model has been presented

by Rätz and Röger (2014), but the polarisation mechanisms were Turing-type. In our case

surface components would have same diffusivity, hence it is crucial to define a suitable

membrane-binding function able to overcome this issue.
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Chapter 3

Spatio-temporal dynamics of the

keratin network in one dimension

3.1 Introduction

The aim of this chapter is to derive, analyse and simulate an experimentally-driven predict-

ive mathematical model describing the spatio-temporal dynamics of the keratin network

in epithelial cells. This network spans the whole cell interior, providing mechanical sup-

port to the cell, and protects the nucleus through a dense filamentous cage. Its dynamical

behaviour shows a very interesting balance between assembly and disassembly phenomena

and a continuous inward flow of proteins towards the nucleus of the cell.

Our model substantially extends the ideas of a simpler model previously proposed by

Portet et al. (2015). A research visit at the Institute of Molecular and Cellular Anatomy

of the RWTH Aachen University has been a fundamental step towards the development of

the new model, since we had the opportunity to reinterpret the biological data previously

used in the work by Portet et al. With new data-based modelling assumptions, plus

some relaxation of the hypothesis, our new approach is able to describe the experimental

measurements more accurately, predicting the spatio-temporal assembly and disassembly

rates as well as regions of sources and sinks of keratin material, supporting the biological

model proposed by Windoffer et al. (2011).

The chapter is then organised as follows: first, a brief introduction regarding the bio-

logical process of the keratin network remodelling in cells is presented, followed by a quick

overview of the related mathematical modelling approaches proposed in the last 15 years;

still within the introduction, we describe the work done by Portet et al. (2015) and their

model, since this is necessary for a complete understanding of our extensions, which are
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later presented in Section 3.2; our work permits us to obtain a new model, dependent on

multiple parameters, which are finally estimated by an optimisation algorithm in Section

3.3; in the numerical results, shown in Section 3.4, we compare our solution to the exper-

imental data and to the previous solution by Portet et al. As well we focus our attention

on the optimal kinetics for keratin turnover. A discussion of the results and possible future

directions follows in the conclusive section.

3.1.1 Biology of the spatio-temporal dynamics of the keratin network

The cytoskeleton is a structure responsible of the internal organisation of the cell and

provides the fundamental support to carry out essential cellular functions, such as cell

division or cell movement (Fletcher and Mullins, 2010). It is composed of complex filament

networks of three major classes: microtubules, microfilaments and intermediate filaments

(IFs). The latter is the most diverse, as it is constituted by several different proteins,

whose expression depends on the cell type. Indeed, based on their amino-acid sequence,

IF proteins are grouped in different types (Herrmann et al., 2007; Leduc and Etienne-

Manneville, 2015):

• Type I : acidic keratins;

• Type II : basic keratins;

• Type III : vimentin, desmin, glial fibrillary acidic protein (GFAP) and others;

• Type IV : neurofilaments, ↵-internexin;

• Type V : nuclear lamins;

• Type VI : synemin, nestin and others.

In epithelial cells IFs are typically composed of keratin polypeptides (Windoffer et al.,

2004), i.e. intermediate filaments of type I and type II. At the molecular level, all IF

proteins share a similar structure that is composed of a central ↵-helical rod domain flaked

by non-↵-helical N- and C- terminal ends (head and tail of the protein) (Herrmann et al.,

2007). In vitro experiments have described the formation of keratin filaments, see for

example (Lichtenstern et al., 2012).

In cells, keratins are generally observed in the form of filaments or bundles constituting

a network, which spans the whole cytoplasm and takes particular care of protecting the

nucleus through a nuclear cage (Windoffer et al., 2011; Moch et al., 2013) (see Figure

3.1) This network is highly dynamic (Strnad et al., 2002; Leube et al., 2011; Windoffer
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Figure 3.1: The keratin network organisation in a resting cell. The green curve approximately
indicates the cell boundary. Human HaCaT B10 keratinocyte grown on a circular fibronectin island.
HaCaT B10 cells producing fluorescent human keratin 5 were described in (Moch et al., 2013).
They were seeded on fibronectin islands (1800 µm2) and imaged after one day with a spinning
disc confocal microscope as described (Tee et al., 2015). Picture taken by Nadieh Kuijpers at the
Mechanobiology Institute of the National University of Singapore.

et al., 2011; Snider and Omary, 2014) and is constantly subject to a readaptation process

to support the viscoelastic nature of epithelial cells, facilitating several cellular activities,

such as cell migration (Leduc and Etienne-Manneville, 2015; Leube et al., 2015) (see Figure

4.1 in the next Chapter).

Remodelling of the network is made possible by the existence of a rapid diffusive soluble

pool of keratins which is the source for the formation of new filaments and thickening of the

existing ones (Windoffer et al., 2004). On the other side, the amount of overall filamentous

keratin constitutes the insoluble pool, whose partial disassembly replenishes the soluble

pool, in a way that the total amount of keratin is conserved over time. The complete

keratin cycle was biologically described by Windoffer et al. (2011) and it is illustrated

in Figure 3.2. At the cell periphery, apparently in proximity of focal adhesions which

are protein complexes responsible of the cell-substrate adhesion, keratin is nucleated from

the soluble. This assembly process creates precursors which are transported towards the

keratin network while they elongate to form filaments. Once they reach the network they

get integrated, either by becoming a new filament of the meshwork, or bundling with other

filaments. This process is nicely highlighted in the videos included in the supplementary

material of the paper by Windoffer et al. (2004). Around the nuclear cage, disassembly of

the existing filaments is observed. This is a fundamental part of the keratin cycle, as it

balances the assembly of new filaments.

We will come back to the biology behind of the keratin cycle in the next chapter,
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Figure 3.2: An adaptation of the keratin cycle as presented in Windoffer et al. (2011). N indicates
nucleation, E elongation, I integration, D disassembly. Insoluble keratin particles appear mainly
around focal adhesions from nucleation of its soluble form. While being transported towards the
nucleus these form elongated filaments which are finally integrated into network through integration
or bundling. It is important to note also that thickening of filaments happens through lateral
aggregation of soluble particles on already formed filaments or bundles. Soluble keratins originate
from disassembly of the keratin network, particularly around the nucleus.

where a more detailed description will be needed for the derivation of a new model in

multi-dimensions.

3.1.2 A brief introduction of the mathematical modelling of IFs

In the years, the spatio-temporal organisation of intermediate filament network has been

object of several data-driven mathematical models. In (Portet et al., 2003; Beil et al.,

2009) the keratin network is built up from soluble pool, whose evolution is governed by a

reaction-diffusion equation, and filaments grow according to stochastic laws in the presence

of enough soluble. Keratin filaments organisation has also been modelled with Brownian

motion in (Kim et al., 2010). In order to investigate the assembly kinetics of intermediate

filaments, a common approach has been the proposal of different model scenarios: for in

vitro experiments, ordinary differential equations (ODEs) have been used in support of

the biological analysis of the kinetics of vimentin (Kirmse et al., 2007; Portet et al., 2009)

and keratin filaments assembly (Portet, 2013; Martin et al., 2015) and, in (Mücke et al.,

2016), Monte Carlo simulations are used in studying the kinetics of different intermediate

filaments families, including keratins. Portet and Arino (2009) studied the in vivo assembly

of IFs by proposing different ODE models. ODEs have also been used in describing the

assembly-disassembly cycle of keratin (Sun et al., 2014, 2017).

A partial differential equations (PDEs) model describing keratin spatio-temporal evol-

ution was proposed in the paper by Portet et al. (2015). In the following section we will

present the main ideas and results of this latter reference, since this will be a necessary

introduction for a complete understanding of the work presented in this thesis.
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a) b)

Figure 3.3: The basis of the model by Portet et al. (2015): (a) A cross section of the two-
dimensional cell is the one-dimensional domain of the model. Data over the line of [�L,L] are
shown in Figure 3.4a; (b) Keratin cycles between a soluble (S) and insoluble (I) form. In terms
of the biological model presented in Figure 3.2, assembly involves nucleation, filament elongation
and lateral aggregation.

3.1.3 The model by Portet et al. (2015)

While migration requires cells to break their internal symmetry leading to an anisotropic

shape, with a well defined front and rear, resting cells have generally a roundish shape and

the nucleus is placed around their centre. Indeed, when cells are non-polarised, a reason-

able assumption for many protein families is that their internal distribution is circularly

symmetric. Therefore the analysis of the two-dimensional spatio-temporal evolution of the

keratin network can be reduced to a one-dimensional analysis over a cell line. Portet et al.

(2015) developed a mathematical model for keratin dynamics, based on experimental data

from the work of Moch et al. (2013). Fluorescence intensity of fluorescent protein-labelled

keratins was measured for 50 cells at 24 hours and for 84 cells at 48 hours after seeding.

Actual protein concentration is then assumed proportional to fluorescence intensity. In

their work, in order to compare data over the different cells, Moch et al. (2013) mapped

each cell shape to a unit disc, as described in (Mohl et al., 2012). Therefore, one of the

fundamental assumptions in the work by Portet et al. is that the spatio-temporal distribu-

tion of keratin essentially follows a radial evolution, so that a one-dimensional model was

considered enough to describe the spatial assembly-disassembly dynamics of the keratin

material (see also Figure 3.3). In that paper, keratin was classified in soluble (S) and

insoluble (I) form, and the respective spatio-temporal concentrations are modelled by the

following system of partial differential equations

@I

@t
=
@

@x

✓
DI

@I

@x
+ s(x)v(x)I

◆
+ a(S)� d(I), t > 24h, x 2 [�L,L], (3.1)

@S

@t
=DS

@2S

@x2
� a(S) + d(I), t > 24h, x 2 [�L,L], (3.2)
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coupled with zero-flux boundary conditions:

DI

@I

@x
+ s(x)v(x)I = 0, t > 24h, x = �L, and x = L, (3.3)

DS

@S

@x
= 0, t > 24h, x = �L, and x = L, (3.4)

and initial conditions:

I(x, 24h) = I24(x), x 2 [�L,L], (3.5)

S(x, 24h) = S24(x), x 2 [�L,L]. (3.6)

Equation (3.1) models the evolution of insoluble keratin I, subject to a convective term

svI, which describes the tendency of filamentous keratin to move always towards the

centre of the cell. A small amount of diffusion DI
@
2
I

@x2 was also assumed as a regularisation

process. The function v(x) represents the magnitude of the speed, while s(x) is a smooth

approximation of the sign function such that the material is always transported towards

the point x = 0 and it is so defined:

s(x) =
2

1 + e�x
� 1. (3.7)

The kinetics between insoluble and soluble keratin are described by the functions a(S) and

d(I), representing, respectively, assembly and disassembly. In turn, the evolution of the

soluble S is described by the reaction-diffusion equation (3.2), where DS � DI .

The boundary conditions (3.3)-(3.4) describe impermeability of the plasma membrane

for the keratin material. In equation (3.5) the initial condition I24(x) is the smooth ap-

proximation of the biological measurements at the initial time 24h, as shown in Figure

3.6a, while S24(x) is a proportion of I24(x), given that the quantity of soluble keratin in

epithelial cells is estimated to be the 5% of the total keratin material, i.e.

S24(x) = (0.05/0.95)I24(x). (3.8)

The cell radius L is 22.5 µm.

Since little is known about the assembly and disassembly dynamics of keratin in cells,

Portet et al. proposed a collection of biologically and biochemically relevant hypotheses

on the shape of the reaction functions, as well as for the speed profile for insoluble keratin.

Data on keratin speed, reported in Figure 3.4b, were calculated in Moch et al. (2013)
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(a) Concentration of insoluble keratin (b) Speed of insoluble keratin

Figure 3.4: Experimental data of keratin concentration and speed at the initial and final time
over a cross section of the cell. The speed was calculated from data in Moch et al. (2013).

Figure 3.5: The collection of different possibilities in the mathematical modelling by Portet et al.
(2015): the function v of (3.1) can be variable in space (based on estimations by Moch et al.
(2013)), with the same magnitude in the whole cytosol (and dropping to zero at the nucleus) or
zero everywhere (v ⌘ 0); the kinetics can be of linear (mass action) type or of nonlinear (Michaelis
Menten) type; the kinetic rate coefficients can be constant or variable in space. In the latter
case the profile shapes are over-imposed (two different profiles for the disassembly, one for the
assembly). In the biological model presented by Windoffer et al. (2011), nucleation is observed at
the cell peripheries and disassembly around the nucleus, so spatial dependency of keratin cycle was
suggested.

with a computational algorithm based on the variation, between consecutive frames, of

the fluorescence at each image pixel. As a result, a combination of all the hypothesis (see

Figure 3.5), led to 36 different mathematical models. Using an optimisation algorithm,

later described in Section 3.3, for each model two to four kinetic parameters were estimated

by comparing the solutions of each model to a smooth approximation of the data at the

final time 48h, see Figure 3.6. A comparison of all the 36 scenarios was done using the

Aikake information criterium, which is a model selection algorithm that takes into account

distance from data and number of parameters (Johnson and Omland, 2004). Hence, the

resulting best model reads:

@I

@t
=
@

@x

✓
DI

@I

@x
+ svI

◆
+

kassS

KS + S
� kdis(x)I

KI + I
, t > 24h, x 2 (�L,L), (3.9)

@S

@t
=DS

@2S

@x2
� kassS

KS + S
+

kdis(x)I

KI + I
, t > 24h, x 2 (�L,L), (3.10)
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(a) I24(x) as in (3.5) (b) I48(x)

Figure 3.6: Smoothing the raw data. Explicit definition of the functions is given in Appendix
B.1.

(a) Speed v (b) Kinetic rate coefficients (c) Solution of the best model

Figure 3.7: The functions from the best model selected among 36 different scenarios in (Portet
et al., 2015). The magnitude of the function v is the average of the values reported in Figure 3.4.
For an explicit expression of these functions see equations (B.1) and (B.2) in Appendix B.1

coupled with the boundary and initial conditions (3.3)-(3.6). The constants kass,KS and

KI have been optimised to fit the solution to the data. In turn kdis, shown in Figure

3.7b, resulted to be space-dependent with an imposed shape, but where its maximal value

kmax

dis
:= maxx{kdis(x)} was optimised. The magnitude of the speed, v, is shown in Figure

3.7a. The solution I of this model, named Ip15(x, t) for convenience, is represented in

Figure 3.7c.

3.2 Extending the model by Portet et al.

In Portet et al. (2015) different plausible model scenarios for keratin evolution were pro-

posed and, after a comparison with data, a best one was selected, which is described by

(3.9)-(3.10) with boundary conditions (3.3)-(3.4). This model is able to describe the ker-

atin cycle, where the spatial dependency of the kinetics is convincing at the biological

level: the disassembly rate coefficient appears to be localised around the nucleus, while
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homogeneity in the assembly coefficient rate is also realistic, since this does not cover only

nucleation at the cell peripheries but also lateral aggregation of soluble in the filaments, as

observed in Miller et al. (1991) and Kölsch et al. (2010). However, in their final discussion

an interesting point was made on the reason why scenarios which mostly relied on data

were not ranked among the first positions. They proposed a potential explanation for this,

which is related to the possibility that noise present in the measurements might negatively

influence the parameter estimation. This question is also the starting point of our work,

leading to a sequence of new questions:

• For which reasons are data affected by the noise?

• How does the noise influence the data?

• Can we bypass the problems caused by the noise using biological assumptions?

• How well can we estimate the data?

In the following sections we will address all of these questions, which will take us towards

a process of “data remodelling”, basing our approach on experimental observations.

3.2.1 A comment about the experimental data

Circular symmetry is first of all a biological assumption for resting cells, as their shape is

mostly isotropic and many classes of proteins spread radially among the whole cytosol due

to motor protein transport along microtubules. In cases of particular events such as migra-

tion, or more specifically with polarisation, the internal symmetry is broken and the cell

finds its own front-rear (or left-right) directionality, as we discuss for the GTPase proteins

in Chapter 2. However, in practice, when dealing with real biological measurements, it is

clearly impossible to expect equal values among all the cell radii or a perfect circularity of

the resting cell shape. The data presented in Figure 3.4 are an average, among the same

radius, between all the cells analysed in the work by Moch et al. (2013). In the absence of

polarity, with circular symmetry, all diameters should be more or less equivalent, therefore

random rotations of the cells in the averaging process should not have a big impact on the

protein distribution profile. However, observing the cells reported in Moch et al. (2013), it

is clear that there exist particular configurations such that the data on the interval [�L, 0)

might be very different from the (0, L] interval, for certain cross-sections. Indeed, the data

for the speed and as well for the concentrations of keratin shown in Figure 3.4 are only

“qualitatively symmetric”. We bypass this issue by symmetrising the raw data, i.e. all the



94

data are transformed as follows

symmetrised_data(x) =
data(x) + data(�x)

2
. (3.11)

As a consequence, the function I24h describing the initial condition for the distribution of

insoluble keratin is adapted such that

I(x, t0) =
I24(x) + I24(�x)

2
, x 2 [�L,L] (3.12)

where I24(x), originally from the paper by Portet et al. (2015), is described in equation

(B.1). The same is done for the final profile at 48 hours. In the same way, the soluble

distribution is also symmetrised according to the following expression:

S(x, t0) =
0.05

0.95

✓
I24(x) + I24(�x)

2

◆
, x 2 [�L,L]. (3.13)

3.2.2 Remodelling the data for the keratin speed

Space dependency. In Figure 3.4b, representing the data for the speed, it is clear the

presence of two peaks: apparently the inward movement of keratin initially increases its

speed from the cell peripheries towards the interior, until a distance at which it changes its

behaviour and starts decreasing. The second part is supported by biological motivations,

as crowding effects in the area surrounding the nucleus might play a role in slowing down

the transport. Also, radial decreasing in keratin speed was observed in other works, see

for example measurements by Wöll et al. (2005). However, the existence of the two peaks,

and especially the reason of the initial increase in the speed from the cell boundary, is not

very clear. Following a research visit to the Institute of Molecular and Cellular Anatomy of

the RWTH Aachen University and a discussion with Prof. Reinhard Windoffer and Prof.

Rudolf Leube, we understood that this behaviour might be related to a limitation in the

image analyses. Indeed, the small thickness of the cell peripheries can result in difficulties

in tracking the weak keratin fluorescence, resulting in underestimation of the speed in the

most peripheral regions of the cytoplasm. Therefore we make a conjecture on the speed,

proposing a monotonicity in the velocity trend, over the whole cytosol.

The speed is now “remodelled” to match the new conjecture as follows. We ignore the

data around the boundaries of the domain and we change theses values, keeping the trend

of the more reliable data after the peak. For simplicity, let us consider only the half-left

interval [�L, 0] and let M be the maximum value of the speed v on the half-interval,
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Figure 3.8: The remodelled speed: the original data from figure 3.4b are first symmetrised as in
(3.11) (blue colour) and then transformed according to equation (3.14) (red colour).

corresponding to the measurement at the N -th point. Then, the first N � 1 values of the

new speed v⇤ are calculated as follows:

v⇤(N � i) =M + (M � v(N + i)), i = 1, . . . , N � 1. (3.14)

Symmetrically, the last N � 1 values of the half-right interval [0, L] are similarly modified.

The “remodelling” process is applied to the symmetrised speed profiles at 24 and 48 hours

as shown in Figure 3.8.

Another difficulty in experimental measurements is correlated to the presence of the

nucleus. Around this area, which corresponds approximately to the interval [�7.5µm, 7.5µm]

contained in [�L,L] (L = 22.5µm), it is a challenge to control the noise in the data. The

presence of the nucleus is a strong obstacle to the keratin movement. At least at x = 0,

circular symmetry assumption requires that the speed is zero and that its magnitude has

an even profile. We propose a smooth approximation of the “re-modelled” data with 4th de-

gree polynomials such that, as a consequence of the circular symmetry, only two coefficients

are non-zero, as follows:

v24h(x) = a244 x4 + a242 x2, (3.15)

v48h(x) = a484 x4 + a482 x2. (3.16)

The speed profiles v24h and v48h are plotted in Figure 3.9 and their coefficients reported
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Figure 3.9: The remodelled smooth speed: v24h and v48h as in (3.15)-(3.16) with coefficients
a244 = �3.36⇥ 10�5, a242 = 5.527⇥ 10�2, a484 = �3.71⇥ 10�5 and a482 = 3.6⇥ 10�2. These values
have been found heuristically, imposing the polynomials to pass through two representative data
points. The red lines indicate the “remodelled” speed as in (3.14).

in the corresponding caption.

Time dependency. The difference in data at 24 and 48 hours highlights the fact that

the speed of keratin changes over time. In particular, the speed at 48 hours appears to

have substantially decreased from its initial values. In the absence of further data, it is

reasonable to define the speed at any intermediate time as a linear interpolation of v24h(x)

and v48h(x), as defined in equations (3.15)-(3.16). Therefore we have:

v(x, t) = v24h(x) +
v48h(x)� v24h(x)

t0
(t� t0), t 2 [24h, 48h] (3.17)

for all x 2 [�L,L].

3.2.3 Reaction kinetics for assembly and disassembly

According to Michaelis Menten’s theory, the maximal speed of transformation of a substrate

into a product, due to enzymatic activity, is related to the initial concentration of the

enzyme, from which it depends linearly. In particular, the maximal speed of reaction,

achievable at saturation, is given by the product between the initial concentration of the

enzyme and formation rate of the product (for more details see Appendix A.3). Therefore,

assuming spatial dependent Michaelis Menten kinetics for the keratin turnover entails the

assumption that these processes are coordinated by some particular enzymatic proteins,

whose distribution or efficiency can vary radially in the cell. The functions kass(x) and
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kdis(x) represent the maximal rates potentially achievable by the assembly and disassembly

processes. A possible interpretation for them is to represent the quantity, at each point,

of these unknown enzymes responsible for the turnover. Alternatively, another possibility

is to assume the enzymes are uniformly distributed in the cell, but their efficiency to be

strictly dependent on their spatial location. In all cases, it is important to understand that

since the maximal rates are the asymptotical values of the reactions only when there is

saturation of the substrate (which is the soluble pool for the assembly process and insoluble

for disassembly), in the non saturation case, the reactions depend also on the substrate,

which has a heterogeneous distribution over [�L,L]. Therefore, for example, a high value

of kass(x) might not necessarily imply a strong formation of insoluble pool, which can be

the case if the soluble concentration is very low at that point.

In the work by Portet et al. (2015), kass and kdis were constrained over imposed shapes

based on biological motivations. The benefit of this choice is that only few parameters

were subject to the optimisation process. However, it would be interesting to estimate

the spatial efficiency of the kinetics with less constraints. Keeping the Michalis Menten

assumption for the assembly and disassembly, in the following we will present a new idea

for representing these coefficients.

Space dependency. We chose to describe the space dependency of these rates by

continuous piecewise linear functions. These will be determined in order for the solution

of our model system to best fit experimental data within an optimal control framework.

The basic idea of our approach is to give enough freedom to the model, optimising, with a

minimum number of parameters, functions that are now able to show a “non-trivial” shape.

Here, the specific structure of the piecewise functions are only detailed for the assembly

rate kass(x). A similar derivation suffices for the disassembly rate kdis(x). We use the

overline to indicate the purely spatial dependent kinetic functions at time t = 24h. The

spatial domain [�L,L] is partitioned into 6 main sub-intervals such that kass(x) is a linear

function on each of them. The partitions occur at the points xass
i

with i = 0, . . . , 6 such

as xass
i

 xass
i+1, where we set xass5 = �xass1 , xass4 = �xass2 and xass3 = 0 in order to have a

symmetric profile. Extremity points are xass0 = �L and xass6 = L.

To have a smooth profile, at each transition xass
i

with i = 1, . . . , 5, a cubic polynomial

defined on [xass
i

� "i, xassi
+ "i) is employed as a mollifier. In the numerical resolution of

the model the value "i is chosen as

"i = min

⇢
xass
i

� xass
i�1

3
,
xass
i+1 � xass

i

3
, 0.5

�
.
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Hence, kass(x) takes the form:

kass(x) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

yass0 +
y
ass
1 �y

ass
0

xass
1 +L

(x+ L), if x 2 [�L, xass1 � "1),

P3
j=0 p

ass,l

j
xj , if x 2 [xass

l
� "l, xassl

+ "l),

yass
l

+
y
ass
l+1�y

ass
l

xass
l+1�xass

l
(x� xass

l
), if x 2 [xass

l
+ "l, xassl+1 � "l+1), for l = 1, . . . , 4,

P3
j=0 p

ass,l+1
j

xj , if x 2 [xass
l+1 � "l+1, xassl+1 + "l+1),

yass5 +
y
ass
6 �y

ass
5

L�xass
5

(x� xass5 ), if x 2 [xass5 + "5, L],

(3.18)

where the values of the coefficients pass,i
j

, with j = 0, . . . , 3, of the polynomial defined on

[xass
i

� "i, xassi
+ "i), are determined in order that kass(x) is a C1�continuous function on

[�L,L]. Hence, the values of the coefficients pass,i
j

, for j = 0, . . . , 3, are the solutions of

the following linear system:

3X

l=0

pass,i
l

(xassi � "i)
l = yassi�1 +

yass
i

� yass
i�1

xass
i

� xass
i�1

(xassi � "i � xassi�1),

3X

l=0

pass,i
l

(xassi + "i)
l = yassi+1 +

yass
i

� yass
i+1

xass
i

� xass
i+1

(xassi + "i � xassi+1),

3X

l=0

lpass,i
l

(xassi � "i)
l�1 =

yass
i

� yass
i�1

xass
i

� xass
i�1

,

3X

l=0

lpass,i
l

(xassi + "i)
l�1 =

yass
i

� yass
i+1

xass
i

� xass
i+1

.

Furthermore, to have a symmetric profile, the following requirements have to be satisfied:

yass6 = yass0 , yass5 = yass1 and yass4 = yass2 .

To explicitly determine kass(x), the position of 7 points needs to be characterised (see

Figure 3.10), hence kass(x) depends on the 6 parameters:

yass0 , xass1 , yass1 , xass2 , yass2 , yass3 .

Similarly, kdis(x) is determined by 6 other parameters

ydis0 , xdis1 , ydis1 , xdis2 , ydis2 , ydis3 .

used in (3.18).

Our approach follows a relaxation of the original hypothesis by Portet et al. (2015),
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x0 = �L x1 x2 x3 = 0 x4 x5 x6 = L

Figure 3.10: Optimisation process of the linear piecewise assembly and disassembly rate coeffi-
cients, kass(x) and kdis(x), respectively. Every point is free to move up and down, while the points
with abscissa x1 and x2 and those with abscissa x4 and x5 are also free to move in the left and/or
right directions, constrained by their existence domains given by [�L, 0] and [0, L], respectively.

as the continuous piecewise linear choice for the reaction rate coefficients is one of the

simplest generalisation of the ones used by Portet et al. Indeed the optimised functions of

Figure 3.7b are a particular case of our more general case, see also Figure 3.10. Now, the

values of these 12 parameters, plus the Michaelis Menten constants KS and KI have to be

estimated using an optimisation algorithm to obtain the solution of the system that best

represents experimental observations.

Time dependency. In contrast to the case of the speed, for which we have data at

24 and 48 hours, we do not have any information about the temporal evolution of the

assembly and disassembly coefficients kass and kdis. A deceleration of the entire keratin

cycle was observed by Moch et al. (2013). It might be reasonable to assume the cell being

able to regulate transport and turnover in a balanced way, meaning that the decreasing of

the directed transport speed over time might be related to a decreasing of cellular activities

responsible of the keratin turnover and vice versa. Therefore, in order to get some insights

about the time dependency of the keratin turnover, we focus our attention on the available

data regarding the speed. In particular, it is interesting to note how speed profiles at 24

and 48 hours are qualitatively equivalent. Indeed, it is possible to find an approximate

constant of proportionality between the early and late profiles satisfying

Data48h(x) ⇡ CsData24h(x), x 2 [�L,L], (3.19)

where a good approximation for Cs appears to be 0.5 (see Figure 3.11). Assuming a

similar relationship holds for the turnover processes, we can therefore define the following
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Figure 3.11: The profile of the speed at 48 hours is approximatively half of the profile calculated
at 24 hours, equation (3.19) hence Cs = 0.5.

time-dependent function

↵(t) :=

✓
1� t� 24

48

◆
, t 2 [24h, 48h], (3.20)

for which we have the spatio-temporal kinetic coefficients given by

kass(x, t) = ↵(t)kass(x), x 2 [�L,L], t 2 [24h, 48h], (3.21)

kdis(x, t) = ↵(t)kdis(x), x 2 [�L,L], t 2 [24h, 48h], (3.22)

where we recall kass(x) and kdis(x) are the kinetic coefficient rates at time t = 24h.

3.2.4 Conservation of keratin mass

Summarising all the above modelling assumptions, the new model now reads as follows:

@I

@t
=
@

@x

✓
DI

@I

@x
+ sv(x, t)I

◆
+

kass(x, t)S

KS + S
� kdis(x, t)I

KI + I
, (3.23)

@S

@t
=DS

@2S

@x2
� kass(x, t)S

KS + S
+

kdis(x, t)I

KI + I
, (3.24)
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for t > 24h and x 2 [�L,L], with boundary conditions

DI

@I

@x
+ sv(x, t)I = 0, t > 24h, x = �L, and x = L, (3.25)

DS

@S

@x
= 0, t > 24h, x = �L, and x = L, (3.26)

and initial conditions (3.12)-(3.13), where v(x, t) is given in (3.17) and kass(x, t) and

kdis(x, t) as in (3.21)-(3.22). We make use of (x, t) to empathise the spatio-temporal de-

pendency of directed transport and kinetics. The model conserves the initial concentration

of keratin in both soluble and insoluble form, as stated by the following proposition.

Proposition 3.2.1. Let I and S be solution of (3.23)-(3.26) with initial conditions defined

in (3.5)-(3.6). Then

KTOT (t) :=

Z
L

�L

(I(x, t) + S(x, t)) dx = K24, 8t > 24h, (3.27)

where K24 > 0 is defined by the initial conditions (3.5)-(3.6) as follows

K24 :=

Z
L

�L

(I24(x) + S24(x)) dx.

Proof. We show that K 0
TOT

(t) = 0. Differentiating (3.27) we have

K 0
TOT (t) =

Z
L

�L

@

@t
(I(x, t) + S(x, t)) dx,

from which, using (3.23)-(3.24) we get

K 0
TOT (t) =

Z
L

�L

✓
@

@x

✓
DI

@I

@x
+ sv(x, t)I

◆
+DS

@2S

@x2

◆
dx

and integrating we finally get:

K 0
TOT (t) = DI

@I

@x
(L, t) + s(L)v(L, t)I(L, t) +DS

@S

@x
(L, t)

�DI

@I

@x
(�L, t)� s(L)v(�L, t)I(�L, t)�DS

@S

@x
(�L, t).

The conclusion follows from the boundary conditions (3.25)-(3.26).

A fundamental property used in the proof of the above proposition is that the sum of

the two reaction functions is zero. Indeed, one could go beyond the particular expression

of the reactions, as indicated by the following result.
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Theorem 3.2.1. Let us consider the following reaction-diffusion system

@ui
@t

=
@

@x

✓
Di

@ui
@x

+ ciui

◆
+ fi(u1, . . . , un), t � 0, x 2 (a, b), (3.28)

ui = u0i , t = 0, x = [a, b], (3.29)

Di

@ui
@x

+ ciui = 0, t � 0, x = a, b, (3.30)

where a, b 2 R (and a < b), n 2 N, T > 0 and ci 2 C1,0([a, b] ⇥ [0, T ]), u0
i
2 L1([a, b]) are

given for i = 1, . . . , n. If the following condition on the reaction functions fi holds

Z
b

a

nX

i=1

fi dx = 0, (3.31)

then the solution (u1, . . . , un) of the above system satisfies

K(t) :=

Z
b

a

nX

i=1

ui(x, t) dx =

Z
b

a

nX

i=1

u0i (x) dx, 8t 2 [0, T ].

Proof. It is a straightforward extension of the proof of Proposition 3.2.1.

3.3 Parameters estimation

The solution (I, S) of (3.23)-(3.26) with initial conditions (3.12)-(3.13) depends on p, which

is the vector of the unknown parameters:

p =
h
yass0 , xass1 , yass1 , xass2 , yass2 , yass3 ,KS , y

dis

0 , xdis1 , ydis1 , xdis2 , ydis2 , ydis3 ,KI

i
. (3.32)

Note that p belongs to a particular sample space P ⇢ R14 defined by

P :=
n
p 2 R14 : 0  yassi , ydisi  Mk, �L < xass1 < xass2 < 0,

�L < xdis1 < xdis2 < 0, 0  KS ,KI  MK

o (3.33)

for some fixed values Mk and MK > 0, set in order to impose boundedness of all the

parameters. The idea of the optimisation method is to first solve the model (3.23)-(3.26)

for some initial values of the parameters p and to calculate the objective function

E(p) =
NxX

i=0

[I(xi, 48h,p)� I48(xi)]
2 , (3.34)
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(a) (b)

Figure 3.12: The solutions I(x, t) and S(x, t) of the model (3.23)-(3.26) with initial conditions
(3.12)-(3.13) at time 48 hours. (a) The insoluble distribution I(x, 48h) (red colour) and the data
I48(x) (dark grey); (b) The soluble distribution S(x, 48h).

where x0, . . . , xNx are the sampling points discretising the interval [�L,L] and, we recall,

I48(·) is a smooth approximation of the data. The final goal is to find a vector p̂ of optimal

parameters such that

E(p̂) = min
p2P

E(p).

For this purpose a genetic algorithm is applied. For more details on this method, see

Appendix B.2. As in Portet et al. (2015), we use the Matlab solver pdepe to calculate the

solution of (3.23)-(3.26), setting Nx = 200. The model is then solved iteratively in parallel

for different families of vectors of parameters. The process ends either when a vector p̂

such that

E(p̂) < ", with " > 0 (3.35)

is found or when no improvements occur after a certain maximal number of iterations.

3.4 Numerical results

The results of the optimisation process are presented in four subsections. First we will

present the profile of soluble and insoluble keratin at 48 hours; in the following subsection

we show the optimal kass and kdis and the kinetics are discussed; the temporal evolution

of the solutions is presented in the third subsection, while in the final one we will compare

our solution to the previous one by Portet et al.
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3.4.1 Optimal solution: the keratin distribution at late time

The solution to the new proposed model (3.23)-(3.26) with the new optimised spatio-

temporal profiles for speed and kinetics is shown in Figure 3.12a. The solution I(x, t)

appears to fit quite well the representation of the data I48(x) over the whole section of the

interval representing the cytosol, while it detaches around the nucleus, which is located

approximately in [�7.5µm, 7.5µm]. However, as already discussed in Section 3.2.2, the

presence of the nucleus prevents accurate imaging of keratin concentration and relative

measurements in this region. Therefore, around this area, data might not be completely

reliable. The cell peripheries, for |x| > 20µm, are denoted by the second strongest max-

imal error. This will be clearer from Figure 3.17b, later presented in Section 3.4.4. It is

important to remark also that these regions are the most critical areas with more accurate

biological imaging data. Indeed this was one of the reasons for re-modelling the data of

the speed of the keratin.

The concentration S(x, t) at the final time 48 hours is shown in Figure 3.12b. As we

would expect, since disassembly is mainly observed around the nuclear cage, soluble keratin

is maximal at zero and it decays smoothly moving away from the centre of the domain.

The difference between central and peripheral concentration is not very strong: at the

cell boundary the concentration of soluble is around 70% of the concentration at the cell

centre. It is also interesting to note that the initial ratio between soluble and insoluble pool

(see equation (3.8)) is approximately maintained. A biological hypothesis is that the total

soluble keratin constitutes a percentage of approximately the 5% of the total intracellular

keratin (Chou et al., 1993; Portet et al., 2015). Indeed, approximating integrals with the

well known trapezoidal rule as

STOT (t) =

Z
L

�L

S(x, t)dx ⇡
NxX

i=1

S(xi, t) + S(xi�1, t)

2
h,

ITOT (t) =

Z
L

�L

I(x, t)dx ⇡
NxX

i=1

I(xi, t) + I(xi�1, t)

2
h,

where h is the spatial step, i.e. h = xi � xi�1 for i = 1, . . . , Nx, we have

STOT (48h)

ITOT (48h)
⇡ 1571.05

22908.73
⇡ 0.0686 (3.36)

while the initial proportion is 0.05/0.95 = 0.0526 (see equation (3.13)).
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Figure 3.13: The optimal functions kass(x, t) and kdis(x, t) for assembly and disassembly at time
24 hours. We have yass0 = 33.6481 µM/min, xass

1 = �21.0220 µm, yass1 = 943.5277 µM/min,
xass
2 = �11.4869 µm, yass2 = 1118.9 µM/min, yass3 = 1290.6 µM/min, ydis0 = 616.7243 µM/min,

xdis
1 = �21.5918 µm, ydis1 = 717.5766 µM/min, xdis

2 = �20.0086 µm, ydis2 = 483.3821 µM/min,
ydis3 = 745.8448 µM/min. The saturation constants for the assembly and disassembly are KS =
227.4028 µM and KI = 976.07 µM.

3.4.2 Optimal assembly and disassembly rates

The optimal kinetic rates for the assembly and disassembly of keratin are shown in Figure

3.13. We recall that these have been obtained among the class of continuous piecewise

linear functions using a genetic algorithm as described in Section 3.3 and Appendix B.2.

The shapes of kass(x, t) and kdis(x, t) share common features. In both cases the maximal

value is achieved at zero and the rates decrease approximately linearly as |x| increases.

Only around the boundaries the linearity is broken with a huge drop of the assembly rate

and an oscillation for the disassembly. The rates decrease linearly over time, halving at 48

hours their initial value (as shown in Figure 3.13).

The optimal Michaelis Menten constants KS = 227.4028 µM and KI = 976.07 µM

define the concentration of proteins, respectively S and I, needed to reach half of the

maximal reaction rate, respectively for assembly and disassembly. It is interesting to note

that at any point of the interval these values are reached. This happens at all the times,

as it can be checked in the Figure 3.15 of the following section. Therefore our model never

reaches saturation effects in the turnover.

Since there is an inward movement of material but no accumulation happening at the

cell centre, we expect the central region to have predominance of disassembled material

with assembly characterising the cell peripheries. It is therefore interesting to check how the
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(a) 24 hours (b) 48 hours

Figure 3.14: Source and sink regions of keratin insoluble material calculated from the optimised
model. The function, representing the net assembled material, is given in equation (3.37).

turnover changes from being mainly assembly to disassembly. Knowing the concentration

of S soluble and I insoluble keratin, the rates kass(x, t), kdis(x, t) and the Michaelis Menten

constants KS and KI , it is possible to calculate the net assembled material at each point.

Let us consider the function

SS(x, t) =
kass(x, t)S(x, t)

KS + S(x, t)
� kdis(x, t)I(x, t)

KI + I(x, t)
, (3.37)

which is positive when kass(x,t)S(x,t)
KS+S(x,t) > kdis(x,t)I(x,t)

KI+I(x,t) , i.e. when more insoluble pool is pro-

duced than depleted. The plots of the function (3.37) are shown in Figure 3.14 at 24 and

48 hours. These graphs are very close to the sources and sinks data reported in Moch et al.

(2013) and in Portet et al. (2015), confirming the location of the assembly-disassembly

regions. The insoluble material is predominantly assembled at the cell peripheries, trans-

ported towards the nucleus, which we recall is approximately represented by the interval

[�7.5, 7.5], and disassembled in the surrounding areas, where the network is more pre-

dominant. This is in a total agreement with the biological model by Windoffer et al.

(2011). As well, it is interesting to note that at the cell centre the net assembled material

is approximately zero.

What can we say about the biology of the kinetic coefficients kass and kdis? We have

shown that assembly areas might not necessarily coincide with higher values of kass, and

the same is valid for kdis. However, in order to entirely clarify the role of kass and kdis

is necessary, first of all, their biological identification. This step requires a good under-

standing of the cellular mechanisms, currently widely unknown, behind the assembly and

disassembly processes and cannot probably be achieved by solely mathematical tools.
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Figure 3.15: The spatio-temporal evolution of the solutions I(x, t) (left) and S(x, t) (right). We
have selected 5 different non-equidistant time-steps.

3.4.3 Temporal behaviour of the solutions

We observe that both solutions I and S vary very quickly in the first hour, tending to

an apparent profile shape stabilisation. In Figure 3.15 the spatio-temporal evolution of

I and S is shown at different times: the transition from the initial condition occurs very

quickly and in less than one hour the solutions have reached a profile, which remains

qualitatively equivalent for all the remaining time steps. In order to have a quantitative

idea of this behaviour, we have calculated the L2-norm, over [�L,L], of the difference

between solutions at consecutive time steps, i.e. the functions

⌧I(t
n+1) := kI(x, tn+1)� I(x, tn)kL2([�L,L]),

⌧S(t
n+1) := kS(x, tn+1)� S(x, tn)kL2([�L,L]),

which are numerically approximated by

⌧I,h(t
n+1) =

vuut
NxX

i=1

(I(xi, tn+1)� I(xi, tn))
2 + (I(xi�1, tn+1)� I(xi�1, tn))

2

2
h, (3.38)

⌧S,h(t
n+1) =

vuut
NxX

i=1

(S(xi, tn+1)� S(xi, tn))
2 + (S(xi�1, tn+1)� S(xi�1, tn))

2

2
h, (3.39)

and are plotted in Figure 3.16. In the absence of other restrictions, such as fitting at

intermediate time steps, the model is able to immediately find optimal concentration dis-

tributions able to balance transport and turnover of keratin in an almost stable way. The

successive transition towards the data profile then occurs very slowly.
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Figure 3.16: The functions defined in (3.38)-(3.39) are plotted in a logarithmic scale which best
shows the model behaviour. After a strong jump in the initial times, the variation occurs very
slowly.

3.4.4 Comparison with the work by Portet et al.

In order to understand if the new model (3.23)-(3.26) provides a closer approximation of the

data with respect to the previous work by Portet et al. (2015) we compare the two solutions

by quantifying the error with respect to the data profile I48(x) at 48 hours. For convenience,

let Ip15(x, t) be the solution of the model (3.9)-(3.10) with boundary conditions (3.5)-(3.6)

and optimal parameters as in Portet et al. (2015). Let Inew(x, t) be the solution of (3.24)-

(3.25) with optimal parameters as in Figure 3.13. In Figure 3.17a the two solutions are

plotted together with the data. It is possible to observe how the new model produces a

more accurate solution especially in the intervals representing the cytosolic areas, where it

almost overlaps the data. As well, the behaviour of the model changes and the oscillations

from the previous model by Portet et al. (2015) have disappeared.

In Figure 3.17b a graph indicating the error at each point x is plotted, represented by

a vertical line. The regions in which the error of the new model is greater than the one

by Portet et al. are minimal and indeed it mainly relies below the previous error. The

maximal value is achieved at the point x = 0 and in its neighbourhood the error has a

maximal area.

To quantify the improvement of the results we can compare the values of the objective

functions:

Ep15 :=
NxX

i=0

[Ip15(xi, 48h)� I48(xi)]
2 = 348549.6071, (3.40)

Enew :=
NxX

i=0

[Inew(xi, 48h)� I48(xi)]
2 = 53322.7994. (3.41)

This confirms that the new model has strongly improved the fitting to the data, reducing
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the error to more than half of its original by Portet et al. (2015).

The Akaike information criterion (Burnham and Anderson, 2002) was a method used

in Portet et al. (2015) to compare the different 36 scenarios and to select the best one.

This criterion puts in relation the error as in (3.40)-(3.41), the number Nx of compared

points and the number Np of estimated parameters as follows:

AIC = Nx ln

✓
E
Nx

◆
+ 2Np.

When the number of estimated parameters is bigger than about Nx/40, then it is convenient

to introduce the corrected Aikake number (Sugiura, 1978; Hurvich and Tsai, 1989; Burnham

and Anderson, 2002), defined as

AICc = Nx ln

✓
E
Nx

◆
+ 2Np

✓
Nx

Nx �Np � 1

◆
.

AICc includes a further penalisation to models with many parameters to fit. Indeed it can

also be written as

AICc = AIC + 2Np

✓
Np + 1

Nx �Np � 1

◆
.

Two models with different errors and number of estimated parameters are then compared

by their AIC numbers and the one having a lower value is selected as the best one. For

the two models we have

AICp15 = 200 ln

✓
348549.6071

200

◆
+ 2 · 4 ⇡ 1500.64, (3.42)

AICnew = 200 ln

✓
53322.7994

200

◆
+ 2 · 14+2 · 14

✓
14 + 1

200� 14� 1

◆
⇡ 1147.43, (3.43)

where the corrected Aikake number is used for the new model (since Np > Nx/40). Since

AICnew < AICp15, also the Aikake criterion selects the new model as the best one, in spite

the fact that the new model has more parameters to fit (14 versus the original 4 by Portet

et al.).

3.5 Conclusion

In this chapter we have presented an extension to a pre-existing model for keratin spatio-

temporal dynamics previously developed by Portet et al. (2015). Four main questions

regarding the data were posed in the introduction to our work. From the understanding

of the first three, regarding methods used and difficulties faced in data collection, we were
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(a) (b)

Figure 3.17: Comparison with the model by Portet et al. (2015). Red colour is used to represent
the solution and error of the new model, while green colour is used for the model by Portet et al.
(2015). (a) The solutions of the two models compared to the data; (b) Errors with respect to the
data. Each vertical line represents the distance between the solution and the data in the point x,
i.e. the function E(x) =

��I48(x)� I(x, 48h)
��, where I48(x) represents the data and I(x, 48h) is the

solution of the model.

able to introduce new features in the model. These were derived directly from biological

observations and measurements, in collaboration with the biology group directed by Prof.

Rudolf Leube, during a research visit at the Institute of Molecular and Cellular Anatomy

of the RWTH Aachen University. We were able to substantially modify the pre-existing

model. First, the measurements of the speed were reshaped in the most noisy regions,

which appear to be the cell peripheries and the nucleus. We have also taken into account

the temporal dependency of the keratin transport and turnover. As well, since important

protagonists in the keratin cycle in cells are the (unknown) turnover kinetics, we proposed

a new way to identify and estimate their spatial profile. Finally we could address the last

question posed in the introduction of this work, regarding errors in the approximation of

the data, by applying the same genetic algorithm used by Portet et al. in fitting the model

to the experimental measurements. We were able to find an optimal solution which well

describes the data, especially in the cytosolic area. We have also analysed the kinetics and

we were able to confirm the biological keratin cycle proposed by Windoffer et al. (2011):

cell peripheries are source regions for filamentous keratin, while sinks of material occurs

in the regions surrounding the nucleus. Lastly, we have compared our model to the one

developed by Portet et al. (2015). In our case, the error with respect to the data is less

than half of the previous one. This confirms that the whole set of assumptions, combined

with a less constrained spatial shape of the reaction coefficients, provide a better biological

description of the phenomenon.

Now that all the parameters are estimated, it would be very interesting to test other



111

cases of keratin distribution in other cell lines and check whether our model is able to

predict their final configuration. This might be a starting point for a possible future work.

As well, we could possibly apply this approach to other intermediate filaments to test

possible common properties in their spatio-temporal dynamics.

It is also important to remark that the derivation of this model was driven by data

recorded at two different time points. The first one is used as the initial condition, the

second one for the parameters estimation. Data taken at another time would more probably

prevent our model to evolve very quickly towards a more stable configuration, similar to the

final one. Indeed, it would be interesting to see what really happens at an intermediate

time and how the model would react to new data and if it could predict the new data

profile. As well, with more data, the temporal dependency of the transport and turnover

might not result in a linear evolution law.

In the next chapter we will present a new model for keratin dynamics in which radial

symmetry is no longer an applicable assumption. This will require an extension to a more

appropriate two-dimensional spatial setting.
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Chapter 4

A multidimensional model for the

spatio-temporal dynamics of the

keratin network

4.1 Introduction

In the previous chapter we have introduced the main ideas of the biological model of keratin

network remodelling (Kölsch et al., 2010; Windoffer et al., 2011) which was represented

in Figure 3.2. These ideas were the base for the development of a one-dimensional math-

ematical model by Portet et al. (2015), for which we have proposed an extension. The

cellular symmetry assumption, leading to the model derivation in a one-dimensional spa-

tial domain, is generally valid for resting cells. However, in general, cells are subject to

many different stimuli which cause internal reorganisation and changes in shape. This is

observed, for example, in processes such as cell migration: see network distribution in the

migrating cell in Figure 4.1 and compare with the resting cell in Figure 3.1 of Chapter

3. Therefore, if we want to model the keratin distribution in general cases, a two- or

three-dimensional spatial domain is necessary. In doing so, we decided simply not extend

the one-dimensional mathematical model from the previous chapter, but to derive a more

detailed one, first by extending the keratin classification to three different components:

soluble, precursors and network, whereas in the previous chapter precursors and network

were both considered as insoluble. In this way it is possible to distinguish different kin-

etics such as the nucleation and the network formation, which were previously considered

together. Another novelty of this new work is that processes occurring close to the cell

and nucleus membrane are included into the model through the boundary conditions.
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Figure 4.1: The keratin network organisation in a migrating cell. The green curve approximately
indicates the cell boundary the two arrows the direction of migration. Migrating human foreskin
keratinocyte synthesising fluorescent human keratin 5. Primary keratinocytes were obtained from
CELLSYSTEMS (Troisdorf, Germany) and were transfected with an expression construct encoding
a human keratin 5-enhanced yellow fluorescent protein chimera (Moch et al., 2013). Fluorescence
was recorded with a confocal laser scanning microscope (LSM 710, Zeiss, Jena, Germany) two days
after transfection. Picture taken by Nadieh Kuijpers at the Institute of Molecular and Cellular
Anatomy (MOCA), RWTH Aachen University.

The chapter is therefore organised as follows: the derivation of the model is presented

in Section 4.2. The biology of the keratin proteins accompanies and drives the derivation

process. First we derive a purely kinetic model, in which we take into account relevant

reactions between the three considered forms of keratins. In a successive subsection, the

keratin spatial flow is introduced and, using mass conservation laws, three spatio-temporal

reaction-advection-diffusion equations are derived. Boundary conditions are imposed at

the cell membrane and at the nucleus membrane, and describe the process of nucleation of

precursors, network formation and network disassembly. In Section 4.3 conservation of total

mass and non-negativity of the solutions is proved for the model. Section 4.4 is entirely

dedicated to the numerical method used to solve the model. The Streamline Upwind

Petrov Galerkin (SUPG) finite element method is applied to discretise the equations in

space, while discretion in time uses the IMEX finite differences scheme. Finally in Section

4.5 we present the results of a simulation over a simple geometry, which are consistent with

the biological model by Windoffer et al. (2011). Since our mathematical model describes a

general modelling framework, which can be modified by including further biological aspects

of the keratin network remodelling, in the conclusive Section 4.6 we present several possible

extensions and indicate future directions which can be taken from this project.
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4.2 Derivation of the model driven by biological assumptions

4.2.1 Spatial domain: the cell

Figure 4.2: The cytosolic space is represented by the domain ⌦, whose boundaries are the cell
membrane �m and the nucleus envelope �n. The nucleus ⌦N is excluded from the domain.

Let ⌦N be an open, bounded subset of Rd (d = 2, 3), representing the nucleus of the cell.

Its boundary denoted by �n := @⌦N represents the nuclear envelope, which is a membrane

composed of phospholipid bilayers (Karp, 2010). Let ⌦ be another open, bounded subset

of Rd (d = 2, 3), representing the cytosolic volume of the cell, such that ⌦ \ ⌦N = ; and

⌦ \ ⌦N = �n. Its boundary @⌦ is the union of two disjoint closed curves (d = 2, surfaces

for d = 3): the nuclear envelope �n and �m := @⌦ \ �n, representing the cell membrane.

We will always refer to �m as the cell membrane and to �n as the nucleus membrane. A

graphical description is represented in Figure 4.2.

4.2.2 Model variables: the keratin forms

Keratin material is found in cells in three different forms: the most predominant constitutes

the network; a second form is constituted by the soluble pool, as we discussed in the

previous chapter; the last one, which we will refer to as precursors, is the less present

form and it is constituted by insoluble keratin in the form of small particles, squiggles,

small filaments (Kölsch et al., 2010; Windoffer et al., 2011). The concentration of these

three forms is indicated by the functions N,S, P : ⌦ ! R.

As a result of discussions with the biologists Anne Pora, Nadieh Kuijpers, Prof. Rudolf

Leube and Prof. Reinhard Windoffer from the Institute of Molecular and Cellular Anatomy

of RWTH Aachen University, a biological characterisation of these three forms is proposed,

based on their biochemical and morphological properties. This is illustrated in Table 4.1.

With respect to the one-dimensional model of the previous chapter, the insoluble keratin

I is now considered in two forms (P and N).

Categorisation of keratins in these three forms for the in vivo analysis was firstly pro-



115

posed in Portet et al. (2004). Later, this has been the base for the ODE models analysed

by Sun et al. (2014, 2017). While these works were purely focused on the kinetics, in the

following we aim to describe the evolution of the keratin concentrations subject to both

transport and kinetic effects.

biochemical
features

morphological
features

modes of
assembly

S soluble diameter < ULF diameter lateral growth
P insoluble filaments with two free ends longitudinal and lateral growth
N insoluble no free hands lateral growth

Table 4.1: Categorisation of keratin material in cells. ULF is acronym for unit length filament,
which is the filament basic building block (obtained by purely lateral assembly of tetramers), the
starting point for longitudinal elongation (Hémonnot et al., 2015; Martin et al., 2015; Deek et al.,
2016)

Figure 4.3: Intermediate filaments subunits: the filaments are composed by a longitudinal an-
nihilation of polymers, which are constituted of laterally associated non-polar tetramers made of
two dimers associated in a anti-parallel fashion (Etienne-Manneville, 2018).

.

4.2.3 Temporal variation: kinetics between the three forms

In this section we will describe in detail how we model keratin changes between its three

forms S, P and N . In order to give a clearer picture of the intermediate filament (IF) family,

which include keratins (see Section 3.1.1), in the following lines we briefly introduce the

main concepts of the IF structure (Robert et al., 2016; Etienne-Manneville, 2018). As

introduced in Chapter 3 and shown in Figure 4.3, the IF subunit structure is composed

of a central ↵-helical rod domain that is flanked by two non ↵-helical N-terminal and C-

terminal end domains. The lateral association of two monomers defines a polar coiled-coil

dimer. Among the soluble keratin molecules are the tetramers, which are constituted of

two dimers associated laterally in an anti-parallel fashion, thus tetramers are non-polar IF

subunits. Lateral association of tetramers constitutes a mini-filament which, in the case

of keratin, has a length of about 60 nm (Kayser et al., 2012). The anti-parallel lateral

association of dimers is the reason why intermediate filaments have no polarity, and this is

one of the main differences with respect to the other cytoskeletal proteins. The principal

assembly subunits for keratin IFs are non-polar heteropolymers composed of keratins of

type I (acidic) and type II (basic) (Lichtenstern et al., 2012; Kayser et al., 2012; Bray
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Figure 4.4: Interactions between soluble keratin, precursors and network.

et al., 2015). An important step in the assembly process is the longitudinal association of

these “mini-filament” structures in order to create elongated filaments (Köster et al., 2015;

Robert et al., 2016).

In vitro studies have been able to characterise the assembly dynamics of different inter-

mediate filament proteins (Herrmann et al., 2007; Chernyatina et al., 2015; Robert et al.,

2016), often with the help of mathematical models (Kirmse et al., 2007; Portet et al., 2009;

Portet, 2013; Mücke et al., 2016). However, in cells the IF assembly process is not so clear

(Jacob et al., 2018). Indeed, the in vitro assembly is independent from other proteins or

cofactors, i.e. the IF proteins are able to self-assemble, but in cells this process is most

probably regulated by some cofactors (Chernyatina et al., 2015). Moreover, disassembly of

filaments is a process coordinated by the cell, but this does not occur in in vitro experiments

where the filaments, once they are assembled, reach a very stable configuration. Indeed,

the IF network is a highly dynamic structure in cells (Windoffer et al., 2004, 2011; Leube

et al., 2011). Its remodelling is regulated according to specific needs and cell activities,

such as adhesion or migration (Leduc and Etienne-Manneville, 2015; Etienne-Manneville,

2018; Robert et al., 2016). In the following, based on the works by Kölsch et al. (2010) and

Windoffer et al. (2011), we model each one of the interactions between the three forms of

keratin, which are schematically reported in Figure 4.4.

Nucleation With this term we mean one of the ways in which keratin assemblies from its

soluble form. In particular we assume nucleation is a process mainly conducted by lateral

association of keratin subunits. Following the above introduction, nucleation is modelled

as an enzymatic reaction which transforms S into P . It constitutes a part of the assembly

process described for the one-dimensional model (3.23)-(3.26) in Chapter 3. Consistently,

nucleation is therefore modelled with the Michaelis Menten law. The interconversion of S
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Figure 4.5: We assume keratin filament elongation occurs through end-to-end longitudinal at-
tachment of precursors.

into P is described by the function

fSP (S) :=
kSPS

KSP + S
(4.1)

such that the temporal variation of S and P purely due to nucleation is described by the

system

@S

@t
(x, t) = �fSP (S(x, t)),

@P

@t
(x, t) = fSP (S(x, t)).

Elongation and bundling. Elongation is the longitudinal association of keratin units

which increases the length of a filament (Windoffer et al., 2011). We simplify the model by

assuming this process occurs only between different forms of precursors, as shown in Figure

4.5. Hence, a precursor can elongate only by the attachment at one end of new keratin

particles, previously formed by lateral association of soluble keratins. This means that we

are considering elongation as an internal process to precursors, which has no impact in

terms of concentrations. Indeed, the total concentration of two neighbour precursors does

not change whether they longitudinally attach together or not. Therefore, elongation will

be neglected in the model.

Bundling is the lateral association of two filaments of the network resulting in a single

bundle (Windoffer et al., 2011). Using similar motivations as for elongation, we can neglect

bundling, as it does not change the keratin concentration of the merging filaments.

Integration. Keratin free filaments are continuously transported towards the cell nucleus,

getting integrated into the keratin network. Clearly a necessary condition for this to occur

is the presence of the network at the integration points. Therefore we choose one of the
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simplest description of such kinetics using the law of mass action (see Appendix A.3),

which states that the reaction rate is proportional to the concentration of the reagents.

We obtain the following function

fPN (P,N) := kPNPN (4.2)

such that, the temporal variation of P and N purely due to integration is given by

@P

@t
(x, t) = �fPN (P (x, t), N(x, t)),

@N

@t
(x, t) = fPN (P (x, t), N(x, t)).

Disassembly. As discussed in the previous chapter of this thesis, in cells a soluble pool

of keratin is always present, due to the balance between assembly (nucleation and lateral

association) and disassembly of filaments and bundles. To model this process we keep the

same assumptions from the unidimensional model of Chapter 3, treating the disassembly

of the network as a Michaelis Menten reaction with the function

fNS(N) :=
kNSN

KNS +N
(4.3)

such that, the temporal variation of S and N purely due to integration is described by

@S

@t
(x, t) = fNS(N(x, t)),

@N

@t
(x, t) = �fNS(N(x, t)).

Lateral association. A big part of the keratin network remodelling is constituted by

lateral exchange of subunits (Miller et al., 1991). This is predominant in the keratin cycle

and represents soluble keratin S getting integrated into the network N , without passing

through the nucleation-elongation-integration steps. As for the integration function, S can

be transformed into N only in the presence of network, therefore we model this phenomenon

again using the Law of Mass Action, with the function

fSN (S,N) := kSNSN (4.4)
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such that, the temporal variation of S and N purely due to lateral association is

@S

@t
(x, t) = �fSN (S(x, t), N(x, t)),

@N

@t
(x, t) = fSN (S(x, t), N(x, t)).

The full kinetic model

Finally, the spatial-independent (or well-mixed) model is described by the following system

of ordinary differential equations:

dS

dt
= fNS(N)� fSP (S)� fSN (S,N), (4.5)

dP

dt
= fSP (S)� fPN (P,N), (4.6)

dN

dt
= fPN (P,N) + fSN (S,N)� fNS(N), (4.7)

with the reaction functions defined by equations (4.1)-(4.24). It is easy to verify the

following proposition.

Proposition 4.2.1. The model (4.5)-(4.7) coupled with the initial conditions

S(0) = S0 > 0

P (0) = P0 � 0

N(0) = N0 > 0

satisfies

S(t) + P (t) +N(t) = S0 + P0 +N0. (4.8)

Proof. It is sufficient to show that

d

dt
(S + P +N) = 0, 8t > 0.

This is straightforward, by summing the three ODEs (4.5)-(4.7).

In particular it follows that one variable can be expressed in terms of the other two and

the initial given quantity S0 +P0 +N0, i.e. the ODE system (4.5)-(4.7) can be reduced to

a system of two differential and one algebraic equation.
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4.2.4 Spatial variation: transport and movement of keratin

Soluble. The keratin soluble pool is subject to diffusion, probably due to its small size

and solubility in the cytoplasm (Windoffer et al., 2011). In this way material obtained

from network disassembly reaches the cell periphery where it can be assembled again.

Measurements for diffusivity have been published in Kölsch et al. (2010), with the diffusion

coefficient estimated to be around 52.8 ± 4.8 µm2 per minute. Therefore, in our model,

we assume the soluble moves subject to Fick’s law (see also Section 2.2.1), i.e. its flux is

given by

JS(x, t, S) := DSrS, (4.9)

where DS is the constant diffusion coefficient.

Precursors and network. Insoluble keratin appears to be mainly subject to a directed

transport towards the cell nucleus. Continuous transport of keratin appears to be predom-

inantly linked to the actin cytoskeleton (Kölsch et al., 2009, 2010; Windoffer et al., 2011;

Leduc and Etienne-Manneville, 2015), however a small percentage of microtubule-related

transport has also been observed. In the latter case, this seems to be mainly characterised

by fast granular particles which move peripherally in a discontinuous manner (Liovic et al.,

2003; Windoffer et al., 2011; Kim et al., 2015).

Despite all this, the biological mechanisms behind keratin transport are still largely

unknown and are currently subject of research studies. Therefore we suggest to model the

speed of transport from data as done in the previous chapter for the one-dimensional case.

It is important to note that the available data, obtained through methods for measuring

keratin flow based on fluorescence intensity, are currently unable to make an automatic

distinction between insoluble keratin in the form of precursors and insoluble keratin in

the form of network. New image analysis methods are producing satisfactory results in

tracking single keratin filaments (Kotsur et al., 2017), so in the future it might be possible

to have distinct data for precursors and network.

In terms of the model we assume a small amount of diffusion is also involved in the

insoluble keratin transport. This accounts for the tendency of the network to expand over

the whole cytoskeleton. This choice has also a mathematical regularisation consequence.

The precursors and network fluxes are therefore given by

JP (x, t, P ) := DPrP � vP (x, t)P, (4.10)

JN (x, t, N) := DNrN � vN (x, t)N, (4.11)
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where DP and DN are constants representing diffusion coefficients and are such that

DP , DN ⌧ DS . The vector functions vP , vN are the velocity fields for precursors and

network respectively, which we expect to vary in space and time, as discussed in Chapter

3. In particular we have r · vP 6= 0 and r · vN , 6= 0. As done for the one-dimensional

model, when comparing to the experimental data, we expect to use a smooth approxima-

tion, therefore in general we will consider continuous fields vP , vN 2 C1(⌦).

4.2.5 Anchorages for the keratin network

Hemidesmosomes are transmembrane multiprotein complexes responsible of the epithelial

cell adhesions at the extracellular matrix (Jones et al., 1998; Walko et al., 2015). Desmo-

somes, in turn, are different multiprotein complexes responsible for cell to cell adhesions

(Garrod and Chidgey, 2008; Delva et al., 2009). For our work it is important to highlight

the fact that both structures are known to create a complex with the intermediate fila-

ments, so these can be seen as anchoring points for the keratin cytoskeletal filaments at

the cell membrane (Windoffer et al., 2011; Osmani and Labouesse, 2015).

4.2.6 A remark on the time-space dependency of the kinetic parameters

In Chapter 3 a spatio-temporal dependency for the kinetic coefficients for assembly and

disassembly was hypothesised and those spatial profiles approximated by continuous linear

piecewise functions. We achieved a good matching between model solution and exper-

imental data as well as consistency in the assembly and disassembly regions comparing

with the biological model proposed in literature. Therefore it is natural to ask whether

the coefficients kSP , kPN , kNS and kSN of the new proposed reaction functions (4.1)-(4.4)

should vary in time and space.

In the last 10-15 years a possible link between keratin nucleation and focal adhesions,

which are protein complexes responsible of cell-substrate adhesions, has been proposed.

This hypothesis follows from several experimental observations in which nucleation and

focal adhesions seem to colocalise (Windoffer et al., 2006, 2011; Moch et al., 2016), but

this still needs to be entirely understood from a biological and biochemical point of view

(Leube et al., 2015). Therefore one would expect kSP (4.1) to change its value in the

cell, with a maximum achieved around the focal adhesions. Inspired by this, as a added-

value project of this work on keratin, in Appendix C a simple model for the shape of the

focal adhesions is presented. Also the disassembly coefficient kNS (4.3), as we have seen

in Chapter 3 is expected to vary in space, while spatial dependency in kPN (integration,
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(4.2)) and kSN (lateral association, (4.4)), is potentially implicitly included in the functions

as they both depend on the local concentration of the network N .

For simplicity, the modelling of the spatio-temporal dependency of the coefficients kSP ,

kPN , kNS and kSN is not included in this thesis and will be left such extensions for future

work. For the moment we will only assume kSP , kPN , kNS and kSN are generic positive

functions depending on space and time. The same holds for the modelling of the insoluble

keratin transport flow, which is only assumed to be compressible (non divergence-free).

4.2.7 The equations of the model in the cytosol

Let K = K(x, t) 2 C(⌦⇥ [0, T ]) \ C2,1(⌦⇥ (0, T ]) \ C1,0(⌦⇥ (0, T ]) be the concentration

of keratin in one of its three forms (S, P or N) and Kc = Kc(x, t) the concentration of

any other of the remaining forms. Since all the three forms are moving in the cytosol, K

is subject to a flux J(x, t,K), which we assume to be continuously differentiable. As well,

due to its kinetics, K is both produced and depleted, depending on its concentration and

the interactions with the other components Kc. Let PK(x, t,K,Kc) and DK(x, t,K,Kc) be

the functions quantifying the local amount of K respectively produced and depleted in x

at time t. Hence, by conservation laws (see Section 1.2.1 in Chapter 1 and Section 2.2.1 in

Chapter 2), the evolution of K is described by the following equation:

@K
@t

(x, t) = �r · JK(x, t,K) + PK(x, t,K,Kc)�DK(x, t,K,Kc), 8x 2 ⌦, t 2 [t0, tf ],

with K 2 {S, P,N} and Kc 2 {S, P,N} \ K.

The above equation represents a general expression describing the spatio-temporal evol-

ution of each one of the three forms S, P and N . The fluxes JS(x, t, S), JP (x, t, P ),

JN (x, t, N) have been described in equations (4.9)-(4.11), while the difference between

production PK and depletion DK is described for S, P and N in system (4.5)-(4.7) with

the reaction functions given in (4.1)-(4.4). Finally we propose the following full model for
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the cytosolic spatio-temporal dynamics of keratin in cells:

@S

@t|{z}
soluble

temporal
variation

= r · (DSrS)| {z }
diffusion

+ fNS(N)| {z }
disassembly

� fSP (S)| {z }
nucleation

� fSN (S,N)| {z }
lateral association

, (4.12)

@P

@t|{z}
soluble

temporal
variation

= r ·
�
DPrP � PvP (x,t)

�
| {z }

transport of P

+ fSP (S)| {z }
nucleation

� fPN (P,N)| {z }
integration

, (4.13)

@N

@t|{z}
network
temporal
variation

= r ·
�
DNrN �NvN (x,t)

�
| {z }

transport of N

+ fPN (P,N)| {z }
integration

+ fSN (S,N)| {z }
lateral association

� fNS(N)| {z }
disassembly

, (4.14)

for x 2 ⌦ and t 2 (0, T ]. The initial conditions for the model are given by

S(x, 0) = S0(x), x 2 ⌦, (4.15)

P (x, 0) = P0(x), x 2 ⌦, (4.16)

N(x, 0) = N0(x), x 2 ⌦, (4.17)

where S0, P0, N0 are smooth functions representing the spatial distribution of the keratin

material at the first experimental observation. Hence, these functions should be modelled

from biological data.

4.2.8 Boundary conditions at the cell membrane and nucleus surface

In order to close the system it is necessary to describe the behaviour of S, P and N both

at the cell membrane and nucleus envelope. Inspired by modelling ideas for the GTPases

in Chapter 2, we couple the protein kinetics to the boundary conditions. Therefore at the

membranes the interconversion between the three forms of keratin is described as a flux

of each one of the three components. At the cell membrane, we impose the following flux

conditions:

DSrS · n = �fSP (S)� gSN (S), x 2 �m, (4.18)

(DPrP � PvP ) · n = fSP (S), x 2 �m, (4.19)

(DNrN �NvN ) · n = gSN (S), x 2 �m, (4.20)
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while at the nucleus surface we impose

DSrS · n = fNS(N), x 2 �n, (4.21)

(DPrP � PvP ) · n = 0, x 2 �n, (4.22)

(DNrN �NvN ) · n = �fNS(N), x 2 �n. (4.23)

The boundary condition (4.19) describes nucleation occurring at the cell membrane. For

example, as previously stated, since focal adhesions were hypothesised to be involved in

the keratin nucleation, this boundary condition could be potentially used to test this

hypothesis. The boundary condition (4.20) describes formation of the network at the cell

membrane, which can be related to the presence of hemidesmosomes and desmosomes.

This last reaction is modelled, like nucleation, by the Michaelis Menten function of the

soluble pool, as follows:

gSN (S) :=
kSN,�S

KSN,� + S
. (4.24)

As a consequence of discussions in Section 4.2.5, a spatial dependency of kS,N,� is expected.

Moreover, it is important to highlight the fact that, unlike fSN (4.4), the function gSN does

not depend on the concentration of N . Equation (4.18) provides the source of material for

nucleation and network formation.

At the nucleus surface we impose zero flux of keratin precursors, as we assume these

are all integrated before reaching the nucleus, while the boundary conditions (4.21) and

(4.23) represent disassembly of the keratin network.

Table 4.2 summarises all the variables and parameters used in our model, indicating

their dimensional units.

4.3 Basic properties of the model

4.3.1 Conservation of the total mass

The purely kinetic model (4.5)-(4.7) had the property to conserve the total initial keratin

concentration (Proposition 4.2.1). This property is conserved in the spatial extension, as

stated in the following:

Proposition 4.3.1. Let S, P and N be solutions of (4.12)-(4.23). Then

M(t) :=

Z

⌦
(S(x, t) + P (x, t) +N(x, t)) dx = M0, 8t � 0 (4.25)
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Param. Unit Description
⌦ µmd (d = 2, 3) cell interior
�m µmd�1 cell membrane
�n µmd�1 nucleus envelope
S, P,N µM keratin soluble, precursors, network
kSP µM min�1 nucleation coefficient (eq. (4.1))
KSP µM saturation parameter for nucleation (eq. (4.1))
kPN µM�1 min�1 integration coefficient (eq. (4.2))
kNS µM min�1 disassembly coefficient (eq. (4.3))
KNS µM saturation parameter for disassembly (eq. (4.3))
kSN µM�1 min�1 lateral association coefficient (eq. (4.4))
kNS,� µM�1 min�1 network formation coefficient at �m (eq. (4.24))
KNS,� µM saturation parameter for network formation at �m (eq. (4.24))
DS µm2 min�1 soluble diffusion coefficient
DP µm2 min�1 precursors diffusion coefficient
DN µm2 min�1 network diffusion coefficient
vP µm min�1 precursors velocity field
vN µm min�1 network velocity field

Table 4.2: Coefficients and parameters of the keratin model (4.12)-(4.23).

where M0 2 R is defined by the initial conditions (4.15)-(4.17)

M0 :=

Z

⌦
(S0(x) + P0(x) +N0(x)) dx. (4.26)

Proof. We show that M 0(t) = 0 for any t. We have

M 0(t) =
d

dt

Z

⌦
(S(x, t) + P (x, t) +N(x, t)) dx

=

Z

⌦

@S

@t
(x, t) dx+

Z

⌦

@P

@t
(x, t) dx+

Z

⌦

@N

@t
(x, t) dx,

and using equations (4.12)-(4.14),

M 0(t) =

Z

⌦
(r · (DSrS) + fNS(N)� fSP (S)� fSN (S,N)) dx

+

Z

⌦

�
r ·
�
DPrP � PvP (x,t)

�
+ fSP (S)� fPN (P,N)

�
dx

+

Z

⌦

�
r ·
�
DNrN �NvN (x,t)

�
+ fPN (P,N) + fSN (S,N)� fNS(N)

�
dx

=

Z

⌦
r · (DSrS) dx+

Z

⌦
r ·
�
DPrP � PvP (x,t)

�
dx

+

Z

⌦
r ·
�
DNrN �NvN (x,t)

�
dx
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=

Z

�m

n · (DSrS) ds+
Z

�m

n ·
�
DPrP � PvP (x,t)

�
ds

+

Z

�m

n ·
�
DNrN �NvN (x,t)

�
ds+

Z

�n

n · (DSrS) ds

+

Z

�n

n ·
�
DPrP � PvP (x,t)

�
ds+

Z

�n

n ·
�
DNrN �NvN (x,t)

�
ds

where in the last equality we have used the divergence theorem. Finally, applying the

boundary conditions (4.18)-(4.23) the proposition is proved.

As done in the previous chapters, also in this case the conservation of total mass can

be extended to more general systems, as indicated by the following result.

Theorem 4.3.1. Let us consider the following system composed of N⌦ � 1 reaction-

advection-diffusion equations

@ui
@t

= r · (Dirui + uici) + fi(u1, . . . , uN⌦), x 2 ⌦, t 2 (0, T ], (4.27)

ui = u0i , x 2 ⌦, t = 0, (4.28)

(Dirui + uici) · n = gi(u1, . . . , uN⌦), x 2 �m, t 2 (0, T ], (4.29)

(Dirui + uici) · n = hi(u1, . . . , uN⌦), x 2 �n, t 2 (0, T ], (4.30)

for i = 1, . . . , N⌦, and ci 2 C1,0(⌦⇥[0, T ]), u0
i
2 L1(⌦) are given. If the following condition

holds
N⌦X

i=1

✓Z

⌦
fi dx+

Z

�m

gi ds+
Z

�n

hi ds
◆

= 0, (4.31)

then the solution (u1, . . . , un) of the above system satisfies

K(t) :=
N⌦X

i=1

Z

⌦
ui dx = K0, 8t � 0, (4.32)

where

K0 :=
N⌦X

i=1

Z

⌦
u0i dx

is defined by the initial conditions.

Proof. Following the same steps of the proof of Proposition 4.3.1, we show that K(t) is
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constant for all t 2 [0, T ]. Differentiating (4.32) we get

K 0(t) =
N⌦X

i=1

Z

⌦

@ui
@t

dx

=
N⌦X

i=1

Z

⌦
(r · (Dirui + uici) + fi(u1, . . . , un)) dx

=
N⌦X

i=1

Z

�m

(Dirui + uici) · n ds+
N⌦X

i=1

Z

�n

(Dirui + uici) · n ds

+
N⌦X

i=1

Z

⌦
fi(u1, . . . , un) dx.

Applying the boundary conditions (4.29)-(4.30) we finally get

M 0(t) =
N⌦X

i=1

Z

�m

gi ds+
N⌦X

i=1

Z

�n

hi ds+
N⌦X

i=1

Z

⌦
fi dx, (4.33)

which is zero due to condition (4.31).

Remark 4.3.1. The model (4.12)-(4.23) represents a particular case of Theorem 4.3.1, in

which
N⌦X

i=1

fi =
N⌦X

i=1

gi =
N⌦X

i=1

hi = 0.

4.3.2 Non-negativity of the solutions

Let us rewrite system (4.12)-(4.14) in compact form as follow

ut = D�u� Jv(u) + f(u) x 2 ⌦ and t 2 (0, T ], (4.34)

where u = (S, P,N)T , D = diag(DS , DP , DN ), �u := (�S,�P,�N)T , Jv(u) := (0,r ·

PvP ,r ·NvN )T , and

f(u) =

0

BBB@

fNS(N)� fSP (S)� fSN (S,N)

fSP (S)� fPN(P,N)

fPN (P,N) + fSN (S,N)� fNS(N)

1

CCCA
.

Definition 4.3.1. Let ⌃ = {(u1, u2, u3) : u1, u2, u3 � 0} be the positive octant in the

three dimensional space. If for any u0 = (S0, P0, N0) 2 ⌃ the solution u(x, t) of (4.34)

remains in ⌃ for any time t, then we say ⌃ is invariant under the system (4.34).

The following holds:
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Theorem 4.3.2. The set

⌃ = {(u1, u2, u3) : u1, u2, u3 � 0} (4.35)

is invariant for the system (4.34).

u2

u3

u1

nS

nN

nP
⌃P

⌃S

⌃N

Figure 4.6: The set ⌃ as defined in (4.35).

Proof. Let us denote with ⌃S , ⌃P and ⌃N the three faces of ⌃, i.e.

⌃S = {(0, u2, u3) : u2, u3 � 0},

⌃P = {(u1, 0, u3) : u1, u3 � 0},

⌃N = {(u1, u2, 0) : u1, u2 � 0},

as in Figure 4.6. We will study the behaviour of the system at each one of them showing

that, starting from initial conditions within ⌃, the solutions of the system (4.34) cannot

cross any of these faces.

Following standard techniques (see for example Chapter 6 of Logan (2007)), we will

proceed by contradiction assuming ⌃ is not invariant.

(⌃S) We assume the existence of an isolated point (x0, t0) 2 ⌦⇥(0, T ] such that S(x0, t0) =

0 and S(x, t) > 0, 8x 2 ⌦ and t < t0. This means that t0 is the first time at which

S = 0 at a point x0 2 ⌦.



129

Since the region ⌃ is (by assumption) not invariant, we can assume that

@S(x0, t0)

@t
< 0. (4.36)

We note that the function s(x) := S(x, t0) has a minimum in x0, which implies

rs(x0) = 0 and that the matrix

HS(x0, t0) =

0

@
@
2
S

@x2 (x0, t0)
@
2
S

@x@y
(x0, t0)

@
2
S

@y@x
(x0, t0)

@
2
S

@y2
(x0, t0)

1

A

is symmetric positive semi-definite. If we now multiply system (4.34) at the point

(x0, t0) by nS = (�1, 0, 0), which is the outward orthogonal unit vector to ⌃S (see

Figure 4.6), we get:

@S

@t
(x0, t0) = DS�S(x0, t0) + fNS(N(x0, t0))� fSP (S(x0, t0))� fSN (S(x0, t0))

(4.37)

which hides a contradiction. Indeed, the right-hand side is non negative as it is the

sum of non negative terms: DS�S(x0, t0) = DS

⇣
@
2
S

@x2 (x0, t0) +
@
2
S

@y2
(x0, t0)

⌘
� 0 for

the minimum properties (DS is also positive), and

fNS(N(x0, t0))� fSP (S(x0, t0))� fSN (S(x0, t0), N(x0, t0))

= fNS(N(x0, t0))� fSP (0)� fSN (0, N(x0, t0)) =
kNSN

KNS +N
� 0.

On the other hand the left-hand side of (4.37) is negative by inequality (4.36). Hence,

at least at the face ⌃S , the non invariance assumption led to a contradiction: as long

as N remains on the positive side of ⌃N , the solution S never gets negative values

at any point of ⌦.

(⌃P ) Following the previous analysis from step ⌃S , let (x1, t1) 2 ⌦ be an isolated point

such that P (x1, t1) = 0 and

P (x, t) > 0, 8x 2 ⌦ and t < t1. (4.38)

By assumption the region ⌃ is (by assumption) non-invariant,

@P (x1, t1)

@t
< 0. (4.39)
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For the same reasons as before it is now trivial to see that rP (x1, t1) = 0.

If we now multiply the system (4.34) at the point (x1, t1) by nP = (0,�1, 0), which

is the outward orthogonal unit vector to ⌃P , we get:

@P

@t
(x1, t1) = DP�P (x1, t1)�r · (PvP ) (x1, t1)

+fSP (S(x1, t1))� fPN (P (x1, t1), N(x1, t1)).

Again we encounter a contradiction: DP�P (x1, t1) � 0 for the minimum properties

(and DP � 0), P (x1, t1)r·vP = 0 as P (x1, t1) = 0 by hypothesis, vP ·rP (x1, t1) = 0

as x1 is a minimum for p(x) = P (x, t1) and

fSP (S(x1, t1))� fPN (P (x1, t1), N(x1, t1)) = fSP (S(x1, t1))� fPN (0, N(x1, t1))

=
kSPS(x1, t1)

KSP + S(x1, t1)
� 0.

As the right-hand side is non-negative and the left-hand side negative, also at ⌃P we

obtain a contradiction. It remains to check if non invariance is true at the face ⌃N .

(⌃N ) This case can be studied in a similar fashion to the previous ones, except for the fact

that we need to check the non-negativity of the net reaction for N at an isolated

point (x2, t2) 2 ⌦ such that N(x2, t2) = 0 and satisfying the equivalent conditions

to (4.38)-(4.39). We have:

fPN (P (x2, t2), N(x2, t2)) + fSN (S(x2, t2), N(x2, t2))� fNS(N(x2, t2))

= fPN (P (x2, t2), 0) + fSN (S(x2, t2), 0)� fNS(0) = 0.

This would lead to another contradiction following the same steps as those of the

system at ⌃P .

This shows that the solutions of system (4.34) corresponding to initial conditions in ⌃

cannot pass through any of the three faces of ⌃, proving ⌃ to be an invariant set for the

system.

4.4 The numerical method

We propose to solve the model system (4.12)-(4.23) numerically by using a combination

of finite differences and finite element method. In order to do so, we first present the
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weak formulation of system (4.12)-(4.23). This formulation will be discretised in space by

using the finite element method and in time by using a finite difference scheme. Since the

dominance of the directed transport over the diffusion for the network and precursors might

create some unphysical oscillations when applying the standard finite element method, a

variation of the form, known as the Streamline Upwind Petrov Galerkin (SUPG) method,

will be adopted (Brooks and Hughes, 1982). The finite difference scheme used for the

discretisation in time is an implicit-explicit (IMEX) scheme which considers the transport

terms implicitly in time and the reaction terms explicitly (Ruuth, 1995). As it will be

clearer in Section 4.4.4, IMEX solves the problem of the nonlinearities in the reaction

functions. However, nonlinearities remain from the boundary conditions. Hence, at the

end of this section we will discuss on how to solve this last step before having a completely

linear problem.

4.4.1 The weak formulation of the model

Let 'S , 'P , 'N be functions of H1(⌦). The weak formulation of model system (4.12)-

(4.23) is obtained by testing the equations (4.12)-(4.14) respectively with 'S , 'P , 'N as

follows:

Z

⌦

@S

@t
'S dx =

Z

⌦
r · (DSrS)'S dx+

Z

⌦
fNS(N)'S dx�

Z

⌦
fSP (S)'S dx

�
Z

⌦
fSN (S,N)'S dx,

Z

⌦

@P

@t
'P dx =

Z

⌦
r ·
�
DPrP � PvP

�
'P dx+

Z

⌦
fSP (S)'P dx�

Z

⌦
fPN (P,N)'P dx,

Z

⌦

@N

@t
'N dx =

Z

⌦
r ·
�
DNrN �NvN

�
'N dx+

Z

⌦
fPN (P,N)'N dx

+

Z

⌦
fSN (S,N)'N dx�

Z

⌦
fNS(N)'N dx.

Applying the divergence theorem these are equivalent to:

Z

⌦

@S

@t
'S dx+

Z

⌦
DSrS ·r'S dx =

Z

�m

n · (DSrS)'S ds+
Z

�n

n · (DSrS)'S ds

+

Z

⌦
fNS(N)'S dx�

Z

⌦
fSP (S)'S dx�

Z

⌦
fSN (S,N)'S dx,
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Z

⌦

@P

@t
'P dx+

Z

⌦

�
DPrP � PvP

�
·r'P dx =

Z

�m

n ·
�
DPrP � PvP

�
'P ds

+

Z

�n

n ·
�
DPrP � PvP

�
'P ds+

Z

⌦
fSP (S)'P dx�

Z

⌦
fPN (P,N)'P dx,

Z

⌦

@N

@t
'N dx+

Z

⌦

�
DNrN �NvN

�
·r'N dx =

Z

�m

n ·
�
DNrN �NvN

�
'N ds

+

Z

�n

n ·
�
DNrN �NvN

�
'N ds+

Z

⌦
fPN (P,N)'N dx+

Z

⌦
fSN (S,N)'N dx

�
Z

⌦
fNS(N)'N dx.

Finally, applying the boundary conditions (4.18)-(4.23) and using the dot notation to

indicate the temporal derivative, the weak formulation of the model reads: find

S, P,N 2 L2([0, T ];H1(⌦)) \ L1([0, T ]⇥ ⌦) with Ṡ, Ṗ , Ṅ 2 L2([0, T ];H�1(⌦))

such that
Z

⌦
Ṡ'S dx+

Z

⌦
DSrS ·r'S dx+

Z

�m

(fSP (S) + gSN (S))'S ds�
Z

�n

fNS(N)'S ds

=

Z

⌦
fNS(N)'S dx�

Z

⌦
fSP (S)'S dx�

Z

⌦
fSN (S,N)'S dx,

Z

⌦
Ṗ'P dx+

Z

⌦

�
DPrP � PvP

�
·r'P dx�

Z

�m

fSP (S)'P ds

=

Z

⌦
fSP (S)'P dx�

Z

⌦
fPN (P,N)'P dx,

Z

⌦
Ṅ'N dx+

Z

⌦

�
DNrN �NvN

�
·r'N dx�

Z

�m

gSN (S)'N ds

+

Z

�n

fNS(N)'N ds =
Z

⌦
fPN (P,N)'N dx+

Z

⌦
fSN (S,N)'N dx

�
Z

⌦
fNS(N)'N dx,

8'S , 'P , 'N 2 H1(⌦), t 2 (0, T ] and such that (4.15)-(4.17) are satisfied. We remind that

the spaces H1 and L2([0, T ];H1) are defined in Section 1.5.1, while H�1 is the dual space

of H1 (for definition and theory see for example the textbook Evans (2010)).

4.4.2 Spatial discretisation

We solve the keratin model on an approximation ⌦h of the cell domain ⌦. Here, we consider

⌦ in R2. For the extension to three-dimensional domains see Section 2.9.2 of Chapter 2.
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We approximate the boundaries �m and �n with two interpolant closed polygonal curves

�m,h and �n,h. Then we further discretise ⌦h into the union of NT triangles, i.e. given a set

Th = {T1, . . . , TNT } we have ⌦h =
S

NT
i=1 Ti. The triangles share the following properties:

�
T i \

�
T j = ; for any couple Ti 6= Tj and if Ti \ Tj 6= ; then the intersection is either a

common vertex or a common edge. We consider the function space

Vh(⌦h) :=
�
vh : ⌦h ! R : vh 2 C0(⌦h), vh

��
T
2 P1(T ), 8T 2 Th

 
⇢ H1(⌦h) \ L1(⌦h),

composed of all the continuous functions which are linear over every element T of the mesh

Th. We use the subscript h to denote functions in Vh(⌦h). Let S0,h(x), P0,h(x), N0,h(x) be

functions in Vh(⌦h) representing the initial conditions (4.15)-(4.17). We keep for later the

description on how we select these functions. As well with vP,h and vN,h we represent ap-

proximations of vP and vN in Vh(⌦h)⇥Vh(⌦h). Hence the semi-discrete weak formulation

reads: find

Sh, Ph, Nh 2 L2([0, T ];Vh(⌦h)) with Ṡh, Ṗh, Ṅh 2 L2([0, T ];Vh(⌦h))

such that
Z

⌦h

Ṡh'S,h dx+

Z

⌦h

DSrSh ·r'S,h dx+

Z

�m,h

(fSP (Sh) + gSN (Sh))'S,h ds

�
Z

�n,h

fNS(Nh)'S,h ds =
Z

⌦
fNS(Nh)'S,h dx�

Z

⌦h

fSP (Sh)'S,h dx

�
Z

⌦h

fSN (Sh, Nh)'S,h dx,

(4.40)

Z

⌦h

Ṗh'P,h dx+

Z

⌦h

�
DPrPh � PhvP,h

�
·r'P,h dx�

Z

�m,h

fSP (Sh)'P,h ds

=

Z

⌦h

fSP (Sh)'P,h dx�
Z

⌦h

fPN (Ph, Nh)'P,h dx,
(4.41)

Z

⌦h

Ṅh'N,h dx+

Z

⌦h

�
DNrNh �NhvN,h

�
·r'N,h dx�

Z

�m,h

gSN (Sh)'N,h ds

+

Z

�n,h

fNS(Nh)'N,h ds =
Z

⌦h

fPN (Ph, Nh)'N,h dx+

Z

⌦h

fSN (Sh, Nh)'N,h dx

�
Z

⌦h

fNS(Nh)'N,h dx,

(4.42)
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8 'S,h, 'P,h, 'N,h 2 Vh(⌦h), t 2 (0, T ], and

Sh(x, 0) = S0,h, (4.43)

Ph(x, 0) = P0,h, (4.44)

Nh(x, 0) = N0,h. (4.45)

The set of continuous piecewise linear hat functions '1, . . . ,'Nh such that

'i(xj) = �i,j , 1  i, j  Nx,

where �i,j is the Kronecker delta (= 1 for i = j, zero otherwise), constitutes a basis for the

function space Vh(⌦h). Hence, since every element of Vh(⌦h) can be written as a linear

combination of '1, . . . ,'Nh , solving equations (4.40)-(4.42) is equivalent to find the 3Nh

time dependent coefficients S1(t), . . . , SNh(t), P1(t), . . . , PNh(t), N1(t), . . . , NNh(t) of the

unknown solutions Sh(x, t), Ph(x, t), Nh(x, t).

In particular, since the initial conditions S0,h(x), P0,h(x), N0,h(x) 2 Vh(⌦h) are also

linear combinations of the hat functions, one way of defining their coefficients is to take

the nodal values of the original functions S0(x), P0(x), N0(x) defined in (4.15)-(4.17), i.e.

S0,h(x) =
NhX

j=1

S0(xj)'j(x), P0,h(x) =
NhX

j=1

P0(xj)'j(x), N0,h(x) =
NhX

j=1

N0(xj)'j(x).

(4.46)

Therefore the problem (4.40)-(4.45) can be restated as follows: we aim to find S1(t), . . .,

SNh(t), P1(t), . . . , PNh(t), N1(t), . . . , NNh(t) such that

NhX

j=1

Ṡj

Z

⌦h

'j'i dx+
NhX

j=1

Sj

Z

⌦h

DSr'j ·r'i dx+

Z

�m,h

(fSP (Sh) + gSN (Sh))'i ds

�
Z

�n,h

fNS(Nh)'i ds =
Z

⌦
fNS(Nh)'i dx�

Z

⌦h

fSP (Sh)'i dx

�
Z

⌦h

fSN (Sh, Nh)'i dx, i = 1, . . . , Nh,

(4.47)
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NhX

j=1

Ṗj

Z

⌦h

'j'i dx+
NhX

j=1

Pj

Z

⌦h

�
DPr'j � 'jvP,h

�
·r'i dx�

Z

�m,h

fSP (Sh)'i ds

=

Z

⌦h

fSP (Sh)'i dx�
Z

⌦h

fPN (Ph, Nh)'i dx, i = 1, . . . , Nh,

(4.48)

NhX

j=1

Ṅj

Z

⌦h

'j'i dx+
NhX

j=1

Nj

Z

⌦h

�
DNr'j � 'jvN,h

�
·r'i dx�

Z

�m,h

gSN (Sh)'i ds

+

Z

�n,h

fNS(Nh)'i ds =
Z

⌦h

fPN (Ph, Nh)'i dx+

Z

⌦h

fSN (Sh, Nh)'i dx

�
Z

⌦h

fNS(Nh)'i dx, i = 1, . . . , Nh,

(4.49)

for t 2 (0, T ] and such that Sj(0) = S0(xj), Pj(0) = P0(xj), Nj(0) = N0(xj) for j =

1, . . . , Nh.

Before proceeding into discretising in time and solving nonlinearities we introduce a

variation of our method in the next section.

4.4.3 The Streamline Upwind Petrov Galerkin method

The standard Galerkin finite element method might fail in accuracy when solving a reaction-

advection-diffusion equation. Indeed, when advection dominates over diffusion, the numer-

ical solution can exhibit large oscillations around the exact solution. This is particularly

evident when the real solution presents boundary layers. A typical example of a steady

state one-dimensional advection-diffusion equation is generally used to show the equival-

ence between the standard Galerkin finite element method and the central finite difference

scheme u(xi+1)�u(xi�1)
xi+1�xi�1

in the approximation of the convective term u0(xi), which is gener-

ally not the best choice for transport problems (for the example and discussion see Brooks

and Hughes (1982), Johnson (1987) (Chapter 9) or Quarteroni and Valli (2008) (Chapter

8)). Indeed, since information propagate in one direction, for example in the direction of

the increasing x, u(xi�1) might contain more relevant information for the point xi than

u(xi+1). The finite element discretisation of the diffusion term u00(xi) is, in turn, equi-

valent to the second order centered finite difference scheme u(xi+1)�2u(xi)+u(xi�1)
h2 , where

h = xi � xi�1 is the homogeneous spatial discretisation step.

One possible way to prevent numerical oscillations is to perturb the system by adding

further diffusion in order to counterbalance the convective term and solve the model still us-
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ing the standard finite element method. Indeed, the upwind finite difference discretisation,

more suitable than the centered scheme, can be written as

u(xi)� u(xi�1)

h
=

u(xi+1)� u(xi�1)

2h
� h

2

u(xi+1)� 2u(xi) + u(xi�1)

h2
,

which shows that, in order to obtain the equivalent of the upwind finite difference scheme

when applying the standard Galerkin method, it is sufficient to add a diffusion term of

coefficient �h/2, generally called artificial diffusion. This choice results in a perturbation

of the original system and introduces unnecessary crosswind diffusion.

The Streamline Upwind Petrov Galerkin (SUPG) is a method, firstly proposed by

Brooks and Hughes (1982), which is able to add diffusion without changing the nature

of the equation. In particular, in two or three dimensions, the artificial diffusion is added

only in the flow direction defined by the convective term, hence this method is less over-

diffusive compared to simply adding diffusion in all directions. The method is based on

a variation of the weak formulation of the problem, achieved by using new test functions.

The idea is to replace 'P,h in (4.41) with

d'P,h = 'P,h + ⌧P,hvP,h ·r'P,h

and 'N,h in (4.42) with

]'N,h = 'N,h + ⌧N,hvN,h ·r'N,h,

where 'P,h and 'N,h still belong to Vh(⌦h). The gradients need to be understood in the dis-

tributional sense, therefore r'P,h and r'N,h exist over ⌦h and are discontinuous functions,

piecewise constants over the mesh elements. The coefficients ⌧P,h = ⌧P,h(vP,h, DP , hT ) and

⌧N,h = ⌧P,h(vN,h, DN , hT ) might also be spatial dependent over ⌦ and we consider these

to be discontinuous, elementwise constant, whose expression is a function of the speed,

diffusion and element size hT . Later in this section we will give an explicit expression for

these coefficients.

The equation for Sh remains the same as (4.40). For a clearer exposition we introduce

the following notation:

LS(S) := �r · (DSrS), FS(S,N) := fNS(N)� fSP (S)� fSN (S,N),

LP (P ) := �r ·
�
DPrP � PvP

�
, FP (S, P,N) := fSP (S)� fPN (P,N),

LN (N) := �r ·
�
DNrN �NvN

�
, FN (S, P,N) := fPN (P,N) + fSN (S,N)� fNS(N),
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so that the classical formulation (4.12)-(4.14) of our model can be written as:

Ṡ + LS(S) = FS(S,N), (4.50)

Ṗ + LP (P ) = FP (S, P,N), (4.51)

Ṅ + LN (N) = FN (S, P,N). (4.52)

Finally, the SUPG semi-discrete weak formulation reads: find

Sh, Ph, Nh 2 L2([0, T ];Vh(⌦h)) with Ṡh, Ṗh, Ṅh 2 L2([0, T ];Vh(⌦h))

such that
Z

⌦h

Ṡh'S,h dx+

Z

⌦h

DSrSh ·r'S,h dx+

Z

�m,h

(fSP (Sh) + gSN (Sh))'S,h ds

�
Z

�n,h

fNS(Nh)'S,h ds =
Z

⌦
fNS(Nh)'S,h dx�

Z

⌦h

fSP (Sh)'S,h dx

�
Z

⌦h

fSN (Sh, Nh)'S,h dx,

(4.53)

Z

⌦h

Ṗh'P,h dx+

Z

⌦h

�
DPrPh � PhvP,h

�
·r'P,h dx�

Z

�m,h

fSP (Sh)'P,h ds

+
X

Tk2Th

Z

Tk

⇣
Ṗh + LP (Ph)

⌘
(⌧P,hvP,h ·r'P,h) dx =

Z

⌦h

fSP (Sh)'P,h dx

�
Z

⌦h

fPN (Ph, Nh)'P,h dx+
X

Tk2Th

Z

Tk

FP (Sh, Ph, Nh) (⌧P,hvP,h ·r'P,h) dx,

(4.54)

Z

⌦h

Ṅh'N,h dx+

Z

⌦h

�
DNrNh �NhvN,h

�
·r'N,h dx�

Z

�m,h

gSN (Sh)'N,h ds

+

Z

�n,h

fNS(Nh)'N,h ds+
X

Tk2Th

Z

Tk

⇣
Ṅh + LN (Nh)

⌘
(⌧N,hvN,h ·r'N,h) dx

=

Z

⌦h

fPN (Ph, Nh)'N,h dx+

Z

⌦h

fSN (Sh, Nh)'N,h dx

�
Z

⌦h

fNS(Nh)'N,h dx+
X

Tk2Th

Z

Tk

FN (S, P,N) (⌧N,hvN,h ·r'N,h) dx,

(4.55)

for all 'S,h, 'P,h, 'N,h 2 Vh(⌦h).

We note that if Sh, Ph, Nh are solutions for the standard semi-discrete problem (4.40)-

(4.42) then they are also solutions for the SUPG semi-discrete problem (4.53)-(4.55). The
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equation for Sh (4.53) remains the same as (4.40). The equation for Ph (4.54) has now more

terms than (4.41), and it can be seen as the composition of two parts: the first one is the

standard Galerkin part (4.41), which is clearly satisfied; the second part is the summation

of elementwise integrals. The test functions ⌧P,hvP,h · r'P,h are discontinuous over ⌦h,

however they are linear over every element of the mesh. Therefore this second part can be

seen as a “elementwise weak formulation”, which still holds if P satisfies (4.51). The same

considerations are valid for equation (4.55) for the variable N .

We also remark that the diffusion terms r ·DPrPh and r ·DNrNh, present in LP and

LN , disappear in (4.54) and (4.55), since functions of Vh(⌦h) are continuous and piecewise

linear polynomials, hence have zero second derivatives (in weak sense).

The choice of the stabilisation parameter ⌧ is considered to be the major drawback

for the SUPG method, since many choices have been proposed but an optimal expression

is still unknown (Codina, 1998; Russo, 2006). However we will make use of a common

expression, for which we first need to introduce the following quantities. For every T 2 Th
we define:

vP,T (t) := max
x2T

||vP,h(t)||2, vN,T (t) := max
x2T

||vN,h(t)||2, (4.56)

and the local Péclet numbers:

PeP,T (t) :=
vP,T (t)hT

2DP

and PeN,T (t) :=
vN,T (t)hT

2DN

, (4.57)

where hT is the size of the element T , for example its major edge. Better results are

achieved by considering hT to be the element length in the convective flow direction (John

and Knobloch, 2007). In the end, we will use the following expression for the stabilisation

parameter (Codina, 1998):

⌧P,h(x, t)
���
x2T

=
↵
�
PeP,T (t)

�
hT

2vP,T (t)
and ⌧N,h(x, t)

���
x2T

=
↵
�
PeN,T (t)

�
hT

2vN,T (t)
, (4.58)

where

↵(x) = coth(x)� 1

x
.

This choice is nodally exact at least in some particular steady-state one-dimensional cases

(John and Knobloch, 2007).

To conclude, we report for convenience’s sake the semi-discrete model in terms of the

basis functions, which reads: find S1(t), . . ., SNh(t), P1(t), . . . , PNh(t), N1(t), . . . , NNh(t)
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such that

NhX

j=1

Ṡj

Z

⌦h

'j'i dx+
NhX

j=1

Sj

Z

⌦h

DSr'j ·r'i dx

+

Z

�m,h

(fSP (Sh) + gSN (Sh))'i ds�
Z

�n,h

fNS(Nh)'i ds

=

Z

⌦
fNS(Nh)'i dx�

Z

⌦h

fSP (Sh)'i dx

�
Z

⌦h

fSN (Sh, Nh)'i dx, i = 1, . . . , Nh,

(4.59)

NhX

j=1

Ṗj

0

@
Z

⌦h

'j'i dx+
X

Tk2Th

Z

Tk

⌧P,h'jvP,h ·r'i dx

1

A

+
NhX

j=1

Pj

Z

⌦h

�
DPr'j � 'jvP,h

�
·r'i dx

+
NhX

j=1

Pj

X

Tk2Th

Z

Tk

⌧P,hr · ('jvP,h) (vP,h ·r'i) dx

�
Z

�m,h

fSP (Sh)'i ds =
Z

⌦h

fSP (Sh)'i dx�
Z

⌦h

fPN (Ph, Nh)'i dx

+
X

Tk2Th

Z

Tk

⌧P,hfSP (Sh)vP,h ·r'i dx

�
X

Tk2Th

Z

Tk

⌧P,hfPN (Ph, Nh)vP,h ·r'i dx, i = 1, . . . , Nh,

(4.60)
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NhX

j=1

Ṅj

0

@
Z

⌦h

'j'i dx+
X

Tk2Th

Z

Tk

⌧N,h'jvN,h ·r'i dx

1

A

+
NhX

j=1

Nj

Z

⌦h

�
DNr'j � 'jvN,h

�
·r'i dx

+
NhX

j=1

Nj

X

Tk2Th

Z

Tk

⌧N,hr · ('jvN,h) (vN,h ·r'i) dx

�
Z

�m,h

gSN (Sh)'i ds+
Z

�n,h

fNS(Nh)'i ds

=

Z

⌦h

fPN (Ph, Nh)'i dx+

Z

⌦h

fSN (Sh, Nh)'i dx

�
Z

⌦h

fNS(Nh)'i dx+
X

Tk2Th

Z

Tk

⌧N,hfPN (Ph, Nh)vN,h ·r'i dx

+
X

Tk2Th

Z

Tk

⌧N,hfSN (Sh, Nh)vN,h ·r'i dx

�
X

Tk2Th

Z

Tk

⌧N,hfNS(Nh)vN,h ·r'i dx, i = 1, . . . , Nh.

(4.61)

for t 2 (0, T ] and such that Sj(0) = S0(xj), Pj(0) = P0(xj), Nj(0) = N0(xj) for j =

1, . . . , Nh.

In these last two sections, through spatial discretisation, we have approximated the

continuous model (4.12)-(4.23) with three ODE systems (one for each component). Before

proceeding in the temporal discretisation, we first show a result of the semi-discrete system.

Theorem 4.4.1. Let Sh, Ph, Nh be solutions of the semi-discrete SUPG problem (4.59)-

(4.61). Therefore, the following equality holds:

Z

⌦h

Sh(x, t) dx+

Z

⌦h

Ph(x, t) dx+

Z

⌦h

Nh(x, t) dx

=

Z

⌦h

S0,h(x) dx+

Z

⌦h

P0,h(x) dx+

Z

⌦h

N0,h(x) dx,
(4.62)

8t 2 [0, T ].

Proof. As in Chapter 2, we again take advantage of the fact that
P

Nh
i=1 'i(x) = 1 and

consequently
P

Nh
i=1r'i(x) = 0. Summing equation (4.59) over the index i = 1, . . . , Nh,

we get:

NhX

j=1

Ṡj

Z

⌦h

'j dx+

Z

�m,h

(fSP (Sh) + gSN (Sh)) ds�
Z

�n,h

fNS(Nh) ds

=

Z

⌦
fNS(Nh) dx�

Z

⌦h

fSP (Sh) dx�
Z

⌦h

fSN (Sh, Nh) dx.

(4.63)
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Applying the same operation for the equations (4.60) and (4.61), all the terms added by

the SUPG method disappear and we get:

NhX

j=1

Ṗj

Z

⌦h

'j dx�
Z

�m,h

fSP (Sh) ds

=

Z

⌦h

fSP (Sh) dx�
Z

⌦h

fPN (Ph, Nh) dx,

(4.64)

and similarly,

NhX

j=1

Ṅj

Z

⌦h

'j dx�
Z

�m,h

gSN (Sh) ds+
Z

�n,h

fNS(Nh) ds

=

Z

⌦h

fPN (Ph, Nh) dx+

Z

⌦h

fSN (Sh, Nh) dx�
Z

⌦h

fNS(Nh) dx.

(4.65)

If we now sum the three equations (4.63)-(4.65) we get:

NhX

j=1

Ṡj

Z

⌦h

'j dx+
NhX

j=1

Ṗj

Z

⌦h

'j dx+
NhX

j=1

Ṅj

Z

⌦h

'j dx = 0,

and, by (4.46), this is equivalent to

d
dt

✓Z

⌦h

Sh dx+

Z

⌦h

Ph dx+

Z

⌦h

Nh dx
◆

= 0,

which implies (4.62).

4.4.4 Temporal discretisation

In order to fully discretise our problem we set a number Nt of time points with the corres-

ponding time step ⌧h = T

Nt
. Let t0 = 0 and consider the sequence

tn = tn�1 + ⌧h, n = 1, . . . , Nt.

The aim is to find the solutions at every time point tn, defined at t0 by the initial conditions

(4.46). We will use the superscript n to indicate a function at the time t = tn, for example

Sn

h
= Sh(x, tn) or, in vectorial notation, Sn = [S1(tn), . . . , SNh(t

n)].

For the computation of the solution at the different time steps, the time derivatives

are first approximated by difference quotients. Then the IMEX method is applied, which

considers the spatial variations (4.9)-(4.11) implicitly and the reactions (4.5)-(4.7) expli-

citly in time (Ruuth, 1995). Hence the fully discrete problem reads: given S0
1 , . . . , S

0
Nh

,
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P 0
1 , . . . , P

0
Nh

, N0
1 , . . . , N

0
Nh

, for every n = 1, . . . , Nt find Sn
1 , . . . , S

n

Nh
, Pn

1 , . . . , P
n

Nh
, Nn

1 , . . . ,

Nn

Nh
such that:

1

⌧h

NhX

j=1

Sn

j

Z

⌦h

'j'i dx+
NhX

j=1

Sn

j

Z

⌦h

DSr'j ·r'i dx+

Z

�m,h

(fSP (S
n

h ) + gSN (Sn

h ))'i ds

�
Z

�n,h

fNS(N
n

h )'i ds =
1

⌧h

NhX

j=1

Sn�1
j

Z

⌦h

'j'i dx+

Z

⌦
fNS(N

n�1
h

)'i dx

�
Z

⌦h

fSP (S
n�1
h

)'i dx�
Z

⌦h

fSN (Sn�1
h

, Nn�1
h

)'i dx, i = 1, . . . , Nh,

(4.66)

1

⌧h

NhX

j=1

Pn

j

0

@
Z

⌦h

'j'i dx+
X

Tk2Th

Z

Tk

⌧nP,h'jv
n

P,h ·r'i dx

1

A

+
NhX

j=1

Pn

j

Z

⌦h

�
DPr'j � 'jv

n

P,h

�
·r'i dx

+
NhX

j=1

Pn

j

X

Tk2Th

Z

Tk

⌧nP,hr · ('jv
n

P,h)
�
vn

P,h ·r'i

�
dx�

Z

�m,h

fSP (S
n

h )'i ds

=
1

⌧h

NhX

j=1

Pn�1
j

0

@
Z

⌦h

'j'i dx+
X

Tk2Th

Z

Tk

⌧nP,h'jv
n

P,h ·r'i dx

1

A

+

Z

⌦h

fSP (S
n�1
h

)'i dx�
Z

⌦h

fPN (Pn�1
h

, Nn�1
h

)'i dx

+
X

Tk2Th

Z

Tk

⌧n�1
P,h

fSP (S
n�1
h

)vn�1
P,h

·r'i dx

�
X

Tk2Th

Z

Tk

⌧n�1
P,h

fPN (Pn�1
h

, Nn�1
h

)vn�1
P,h

·r'i dx, i = 1, . . . , Nh,

(4.67)
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1

⌧h

NhX

j=1

Nn

j

0

@
Z

⌦h

'j'i dx+
X

Tk2Th

Z

Tk

⌧nN,h'jv
n

N,h ·r'i dx

1

A

+
NhX

j=1

Nn

j

Z

⌦h

�
DNr'j � 'jv

n

N,h

�
·r'i dx

+
NhX

j=1

Nn

j

X

Tk2Th

Z

Tk

⌧nN,hr · ('jv
n

N,h)
�
vn

N,h ·r'i

�
dx

�
Z

�m,h

gSN (Sn

h )'i ds+
Z

�n,h

fNS(N
n

h )'i ds

=
1

⌧h

NhX

j=1

Nn�1
j

0

@
Z

⌦h

'j'i dx+
X

Tk2Th

Z

Tk

⌧nN,h'jv
n

N,h ·r'i dx

1

A

+

Z

⌦h

fPN (Pn�1
h

, Nn�1
h

)'i dx+

Z

⌦h

fSN (Sn�1
h

, Nn�1
h

)'i dx

�
Z

⌦h

fNS(N
n�1
h

)'i dx+
X

Tk2Th

Z

Tk

⌧n�1
N,h

fPN (Pn�1
h

, Nn�1
h

)vn�1
N,h

·r'i dx

+
X

Tk2Th

Z

Tk

⌧n�1
N,h

fSN (Sn�1
h

, Nn�1
h

)vn�1
N,h

·r'i dx

�
X

Tk2Th

Z

Tk

⌧n�1
N,h

fNS(N
n�1
h

)vn�1
N,h

·r'i dx, i = 1, . . . , Nh.

(4.68)

One property of the numerical method is that it inherits the conservation of total mass

from the continuous model (Proposition 4.3.1), as follows:

Proposition 4.4.1. Let Sn

h
, Pn

h
, Nn

h
be solutions of the fully discrete SUPG problem

(4.66)-(4.68) at the n�th time step tn. Therefore, for any n = 1, . . . , Nt, the following

equality holds:

Z

⌦h

Sn

h (x) dx+

Z

⌦h

Pn

h (x) dx+

Z

⌦h

Nn

h (x) dx

=

Z

⌦h

S0
h(x) dx+

Z

⌦h

P 0
h (x) dx+

Z

⌦h

N0
h(x) dx.

(4.69)

Proof. We follow the steps of the proof of Theorem 4.4.1. Hence, summing equation (4.66)

over the index i = 1, . . . , Nh, we get:

1

⌧h

NhX

j=1

Sn

j

Z

⌦h

'j dx+

Z

�m,h

(fSP (S
n

h ) + gSN (Sn

h )) ds�
Z

�n,h

fNS(N
n

h ) ds

=
1

⌧h

NhX

j=1

Sn�1
j

Z

⌦h

'j dx+

Z

⌦
fNS(N

n�1
h

) dx�
Z

⌦h

fSP (S
n�1
h

) dx

�
Z

⌦h

fSN (Sn�1
h

, Nn�1
h

) dx.

(4.70)
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Applying the same operation for the equations (4.67) and (4.68) all the terms added by

the SUPG method disappear and we get:

1

⌧h

NhX

j=1

Pn

j

Z

⌦h

'j dx�
Z

�m,h

fSP (S
n

h ) ds

=
1

⌧h

NhX

j=1

Pn�1
j

Z

⌦h

'j dx+

Z

⌦h

fSP (S
n�1
h

) dx�
Z

⌦h

fPN (Pn�1
h

, Nn�1
h

) dx,

(4.71)

and similarly,

1

⌧h

NhX

j=1

Nn

j

Z

⌦h

'j dx�
Z

�m,h

gSN (Sn

h ) ds+
Z

�n,h

fNS(N
n

h ) ds

=
1

⌧h

NhX

j=1

Nn�1
j

Z

⌦h

'j dx+

Z

⌦h

fPN (Pn�1
h

, Nn�1
h

) dx+

Z

⌦h

fSN (Sn�1
h

, Nn�1
h

) dx

�
Z

⌦h

fNS(N
n�1
h

) dx.

(4.72)

If we now sum the three equations (4.70)-(4.72) we get:

1

⌧h

NhX

j=1

Sn

j

Z

⌦h

'j dx+
1

⌧h

NhX

j=1

Pn

j

Z

⌦h

'j dx+
1

⌧h

NhX

j=1

Nn

j

Z

⌦h

'j dx

=
1

⌧h

NhX

j=1

Sn�1
j

Z

⌦h

'j dx+
1

⌧h

NhX

j=1

Pn�1
j

Z

⌦h

'j dx+
1

⌧h

NhX

j=1

Nn�1
j

Z

⌦h

'j dx,

and applying an iterative procedure over the index n

Z

⌦h

NhX

j=1

Sn

j 'j(x) dx+

Z

⌦h

NhX

j=1

Pn

j 'j(x) dx+

Z

⌦h

NhX

j=1

Nn

j 'j(x) dx

=

Z

⌦h

NhX

j=1

S0
j'j(x) dx+

Z

⌦h

NhX

j=1

P 0
j 'j(x) dx+

Z

⌦h

NhX

j=1

N0
j 'j(x) dx,

which is (4.69).

Applying the numerical method presented in this chapter to the more general reaction-

advection-diffusion system (4.27)-(4.30), the fully discrete problem reads as follows: for

every n = 1, . . . , Nt, given U0
k,1, . . . , U

0
k,Nh

, we aim to find the coefficients Un

k,1, . . . , U
n

k,Nh
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of the linear combinations

unk,h(x) =
NhX

j=1

Un

k,j'j(x) (4.73)

which approximate uk(x, tn). These coefficients are solutions the following systems

1

⌧h

NhX

j=1

Un

k,j

0

@
Z

⌦h

'j'i dx+
X

T2Th

Z

T

⌧nk,h'jv
n

k,h ·r'i dx

1

A

+
NhX

j=1

Un

k,j

Z
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�
Dkr'j � 'jv

n

k,h

�
·r'i dx
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NhX
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Un

k,j

X

T2Th

Z

T

⌧nk,hr · ('jv
n

k,h)
�
vn

k,h ·r'i

�
dx

�
Z

�m,h

gk(u
n

1,h, . . . , u
n

N⌦,h
)'i ds�

Z

�n,h

hk(u
n

1,h, . . . , u
n

N⌦,h
)'i ds

=
1

⌧h

NhX

j=1

Un�1
k,j

0

@
Z

⌦h

'j'i dx+
X

T2Th

Z

T

⌧nk,h'jv
n

k,h ·r'i dx

1

A

+

Z

⌦h

fk(u
n�1
1,h , . . . , un�1

N⌦,h
)'i dx

+
X

T2Th

Z

T

⌧n�1
k,h

fk(u
n�1
1,h , . . . , un�1

N⌦,h
)vn�1

k,h
·r'i dx,

for i = 1, . . . , Nh, and k = 1, . . . , N⌦,

(4.74)

where k is the index of the k-th component of system (4.27)-(4.30).

Hence, a generalisation of Proposition 4.4.1 is represented by the following result.

Theorem 4.4.2. Let us consider the fully discrete problem (4.74) and assume

N⌦X

k=1

Z

⌦h

fk dx = 0 (4.75)

and

N⌦X

k=1

 Z

�m,h

gk ds+
Z

�n,h

hk ds

!
= 0. (4.76)

Therefore, the solution (Un
1,1, . . . , U

n

1,Nh
, . . . , Un

N⌦,1
, . . . , Un

N⌦,Nh
) of (4.74) satisfies

K(tn) :=
N⌦X

k=1

Z

⌦h

unk,h(x) dx = K0, 8t � 0, (4.77)
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where un
k,h

(x) is defined in (4.73) and K0 by the initial condition, defined as follows

K0 :=
N⌦X

k=1

Z

⌦h

NhX

j=1

U0
k,j'j(x) dx.

Proof. Following the same ideas of the proof of Theorem 4.4.1 and Proposition 4.4.1, we

sum (4.74) over the index i = 1, . . . , Nh, to obtain

1

⌧h

NhX

j=1

Un

k,j

Z

⌦h

'j dx�
Z

�m,h

gk(u
n

1,h, . . . , u
n

N⌦,h
) ds�

Z

�n,h

hk(u
n

1,h, . . . , u
n

N⌦,h
) ds

=
1

⌧h

NhX

j=1

Un�1
k,j

Z

⌦h

'j dx+

Z

⌦h

fk(u
n�1
1,h , . . . , un�1

N⌦,h
) dx.

Using (4.73) and the superscript n to mean the dependency on (un1,h, . . . , u
n

N⌦,h
), we rewrite

the last equation as

1

⌧h

Z

⌦h

unk,h dx�
Z

�m,h

gnk ds�
Z

�n,h

hnk ds =
1

⌧h

Z

⌦h

un�1
k,h

dx+

Z

⌦h

fn�1
k

dx.

Summing over the index k = 1, . . . , N⌦, we get

1

⌧h

N⌦X

k=1

Z

⌦h

unk,h dx�
N⌦X

k=1

 Z

�m,h

gnk ds+
Z

�n,h

hnk ds

!

=
1

⌧h

N⌦X

k=1

Z

⌦h

un�1
k,h

dx+
N⌦X

k=1

Z

⌦h

fn�1
k

dx,

from which, applying (4.75) and (4.76), we obtain

N⌦X

k=1

Z

⌦h

unk,h dx =
N⌦X

k=1

Z

⌦h

un�1
k,h

dx

and iterating over n we get (4.77), which concludes the proof.
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4.4.5 Matrix form

Equations (4.66)-(4.68) can be written in a more compact matrix-vector form. First, we

introduce the functions

hSP (S) :=
kSP

KSP + S
, (4.78)

hNS(N) :=
kNS

KNS +N
, (4.79)

hSN (S) =
kSN,�

KSN,� + S
, (4.80)

so that, in reference to (4.1), (4.3) and (4.24), fSP (S) = hSP (S)S, fNS(N) = hNS(N)N

and gSN (S) = hSN (S)S.

Let Sn = [Sn
1 , . . . , S

n

Nh
], Pn = [Pn

1 , . . . , P
n

Nh
], Nn = [Nn

1 , . . . , N
n

Nh
]. Then equation

(4.66) can be written in the matrix-vector form as

✓
1

⌧h
M +DSK +HSP (S

n�1) +HSN (Sn�1)

◆
Sn �HNS(N

n�1)Nn

=
1

⌧h
MSn�1 + FNS(N

n�1)� FSP (S
n�1)� FSN (Sn�1,Nn�1).

Equation (4.67) is equivalent to

✓
1

⌧h
(M + cMn) +DPK � Jn

P + cJP
n

◆
Pn �HSN (Sn)Sn

=
1

⌧h
(M + cMn)Pn�1 + FSP (S

n�1)� FPN (Pn�1,Nn�1) + dFSP (S
n�1)

�[FPN (Pn�1,Nn�1).

Similarly, equation (4.68) is equivalent to

✓
1

⌧h
(M + fMn) +DNK � Jn

N + fJN
n

+HNS(N
n)

◆
Nn �HSN (Sn)Sn

=
1

⌧h
(M + fMn)Nn + FPN (Pn�1Nn�1) + FSN (Sn�1,Nn�1)� FNS(N

n�1)

+]FPN (Pn�1,Nn�1) + gFSN (Sn�1,Nn�1)� gFNS(N
n�1),
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where
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✓Z

⌦
'j'i dx

◆

i,j=1,...,Nh

,

cMn =

0

@
X

Tk2Th

Z

Tk

⌧nP,h'jv
n

P,h ·r'i dx

1

A

i,j=1,...,Nh

,

fMn =

0

@
X

Tk2Th

Z

Tk

⌧nN,h'jv
n

N,h ·r'i dx

1

A

i,j=1,...,Nh

,

K =

✓Z

⌦
r'j ·r'i dx

◆

i,j=1,...,Nh

,

Jn

P =

✓Z

⌦h

'jv
n

P,h ·r'i dx
◆

i,j=1,...,Nh

,

Jn

N =

✓Z

⌦h

'jv
n

N,h ·r'i dx
◆

i,j=1,...,Nh

,

cJP
n

=

0

@
X

Tk2Th

Z

Tk

⌧nP,hr · ('jv
n

P,h)
�
vn

P,h ·r'i

�
dx

1

A

i,j=1,...,Nh

,

fJN
n

=

0

@
X

Tk2Th

Z

Tk

⌧nN,hr · ('jv
n

N,h)
�
vn

N,h ·r'i

�
dx

1

A

i,j=1,...,Nh

,

HSP (S
n) =

 Z

�m,h

hSP (S
n

h )'j'i ds

!

i,j=1,...,Nh

,

HSN (Sn) =

 Z

�m,h

hSN (Sn

h )'j'i ds

!

i,j=1,...,Nh

,

HNS(N
n) =

 Z

�N,h

hNS(N
n

h )'j'i ds

!

i,j=1,...,Nh

,

FNS(N
n�1) =

✓Z

⌦
fNS(N

n�1
h

)'i dx
◆

i=1,...,Nh

,

FSP (P
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h
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dFSP (S
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Tk2Th
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n�1
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0
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)vn�1
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i=1,...,Nh
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gFNS(N
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0

@
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Tk

⌧n�1
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fNS(N
n�1
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)vn�1
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More compactly in block matrix form, defining

Un = [Sn

1 , . . . , S
n

Nh
, Pn

1 , . . . , P
n

Nh
, Nn

1 , . . . , N
n

Nh
],

we aim to solve the following system

✓
1

⌧h
Mn

0 + An

0 + At (U
n)

◆
Un =

1

⌧h
Mn

0U
n�1 + F

�
Un�1

�
, n = 1, . . . , Nt (4.81)

where

Mn

0 :=

2

6664

M 0 0

0 M + cMn 0

0 0 M + fMn

3

7775
, (4.82)

An

0 :=

2

6664

DSK 0 0

0 DPK � Jn

P
+ cJP

n

0

0 0 DNK � Jn

N
+ cJN

n

3

7775
, (4.83)

At(U
n) :=

2

6664

HSP (Sn) +HSN (Sn) 0 �HNS(Nn)

�HSN (Sn) 0 0

HSN (Sn) 0 HNS(Nn)

3

7775
, (4.84)
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F(Un�1) :=

2

6666664

FNS(Nn�1)� FSP (Sn�1)� FSN (Sn�1,Nn�1)

FSP (Sn�1)� FPN (Pn�1,Nn�1) + dFSP (Sn�1)� [FPN (Pn�1,Nn�1)

FPN (Pn�1Nn�1) + FSN (Sn�1,Nn�1)� FNS(Nn�1)

+]FPN (Pn�1,Nn�1) + gFSN (Sn�1,Nn�1)� gFNS(Nn�1)

3

7777775
,

(4.85)

and U0 =
h
S0
1 , . . . , S

0
Nh

, P 0
1 , . . . , P

0
Nh

, N0
1 , . . . , N

0
Nh

iT
is given by the initial conditions.

4.4.6 Numerical treatment of the non-linearities

The usage of the IMEX scheme (Ruuth, 1995) implies the implicit evaluation of the non-

linear boundary conditions (4.18)-(4.23). This causes the discrete system (4.81) to be

nonlinear. In particular, its nonlinearity is represented by the block matrix At(Un). To

bypass this issue, at every time point the system is iteratively solved in a linearised form

by applying a technique known as Picard’s method or fixed point iteration (Quarteroni

et al., 2010; Burden and Faires, 2011). The algorithmic approach is described as follows.

We first set a fixed tolerance " > 0 and a maximum number of iterations Nmax 2 N.

Knowing the solution Un�1 at the (n� 1)-th time step, we initialise the calculation of Un

with

Y0 = Un�1. (4.86)

Then for k = 1, . . . , Nmax we solve the following system in the unknown Yk:

✓
1

⌧h
M0 + A0 + At (Yk�1)

◆
Yk =

1

⌧h
M0U

n�1 + F
�
Un�1

�
. (4.87)

If the solution Yk satisfies

||Yk �Yk�1||1 < "

then we stop the iteration and set

Un = Yk, (4.88)

which represents the solution at the n-th time step.

Following the same steps of the proof of Proposition 4.4.1, one can show that at the

n-th time step, for every iteration k, the solutions of the system (4.87) still conserve the

total mass of the solutions at time tn�1. Hence, iterating over n, the total initial mass is

conserved by the linearised numerical method.
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Nh

Ph

Sh

Figure 4.7: The results of a simulation of the model (4.12)-(4.23) on a ring domain with outer
radius Rm = 5 and inner radius Rn = 2. The model was simulated for t 2 [0, 10] with time step
⌧h = 0.5⇥ 10�2. On each line is reported a solution: N on the first one, P on the middle one and
S on the last line. The solutions are shown at four different time steps t = 0, t = 1, t = 5, t = 10.
The mesh used for the simulation is well refined and it is shown in the initial condition for N .
The initial conditions (4.15)-(4.17) are S0 = 10, P0 = 0.0, N0 = 100. The diffusion coefficients are
DS = 30, DP = 1.1, DN = 1.8. The speed is so defined vP = vN = � vmax

Rm
x where vmax = 2.1.

The kinetic parameters are kSP = 1, KSP = 1, kSN,� = 50, KSN,� = 1, kSN = 0.1, KSN = 1,
kNS = 100, KNS = 1, kPN = 1, KPN = 1. It is important to remark that these values do not have
any biological relevance, since they have been heuristically set in order to balance the different
phenomena described by the model.
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4.5 Numerical simulations of the keratin model in a two-

dimensional domain

All the coefficients and parameters of the model (4.12)-(4.23) are summarised in Table 4.2.

It is clear that each one of them needs to be fine tuned with respect to all the others, but

the high number of parameters makes this process not easy (for example, assuming the

kinetic coefficients to be constant, we have 8 parameters only for the kinetics). The kinetic

parameters need to balance the transport phenomena, for example strong accumulation of

the keratin variable N at the outflow boundary �n needs to be prevented by the disassembly

process. In general, one expects all the parameters to work together in a harmonious way,

simulating the “dynamical equilibrium” of the keratin cycle. The question is then how to

obtain an optimal set of all these parameters. We know some of them from experiments,

like the transport-related ones (speed and soluble diffusion), but for the kinetics there

are not much information. Therefore a biologically relevant simulation cannot disregard a

parameter estimation or identification process, necessary to have everything working in a

reasonable way. However this part is not included in the thesis and is left for future work.

We refer the interested reader to works by Portet et al. (2015) and Campillo-Funollet et al.

(2019), where parameter estimation through Bayesian methods or optimal control methods

has been carried out.

In order to show a reasonable behaviour of the model we have heuristically set some

values for the parameters and the results of the corresponding simulation is shown in Figure

4.7. The parameters are able to keep a balance in the keratin cycle, eventually reaching

a steady state, however it is important to note that they do not have a real biological

meaning. As well, in the simulation, we use constant values for the kinetic coefficients, but

future work must be done in order to identify their spatio-temporal dependency, which is

suggested by the biology (Windoffer et al., 2011) and supported by the modelling work

presented in Chapter 3. Consistently with the constant kinetics, also the speeds vP and

vN are set constant in time. The speed fields are directed towards the point (0, 0), the

centre of the nucleus, and their magnitude increases linearly in space. More details are

reported in the caption of Figure 4.7. We can appreciate that after time t = 5 the model

reaches a stable configuration. This is clear from the L2-norms of the increments, i.e.

the L2-norms of the difference between consecutive solutions, reported in Figure 4.8, but

also from the temporal evolution of the mass of the three components in Figure 4.9. The

network, shown in the first line of plots, tends to distribute around the cell nucleus and

excessive accumulation of material at �n is prevented by the disassembly process. On
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(a) (b) (c) (d)

Figure 4.8: In (a) is reported the number of Picard iterations at each time point (in the
simulation we set Nmax = 50). In the other three images is reported the L2-norm of the dif-

ference between consecutive solutions: (a)
⇣R

⌦

�
N(x, tn)�N(x, tn�1)

�2 dx
⌘1/2

(network); (b)
⇣R

⌦

�
P (x, tn)� P (x, tn�1)

�2 dx
⌘1/2

(precursors); (c)
⇣R

⌦

�
S(x, tn)� S(x, tn�1)

�2 dx
⌘1/2

(sol-
uble). These results refer to the simulation shown in Figure 4.7.

the other side, the amount of network is continuously replenished by the integration of

precursors, lateral aggregation of soluble units and network formation at the boundary

�m. In turn the highest concentration of precursors is located in the vicinity of the cell

membrane, where they nucleate thanks to the boundary condition (4.19). The presence of

the network enhances the integration, resulting in lower concentrations of precursors far

away from �m. Lastly, the soluble pool, supported by the disassembly of the network, is

mainly formed at the nucleus membrane �n. It is consumed predominantly around �m

by nucleation of precursors and in the perinuclear region (the internal area close to �n),

where the strong presence of the network enhances lateral association, causing a drop in

soluble concentration. The number of Picard iterations at every time point is shown in

Figure 4.8a. It decreases in time, from a number of 6 iterations at the initial time to a

single iteration when the system is at the steady state. Indeed, only 1 Picard iteration

indicates that the system (4.87) was solved only once, i.e. the solution immediately satisfies

||Un �Un�1||1 < ".

This simulation shows the behaviour of the model on a two-dimensional geometry. We

have not included three-dimensional simulations, but these are possible. Indeed, we make

clear that the work presented in this chapter is valid for both cases.

4.6 Conclusion

In this chapter we have presented a mathematical model for simulating keratin spatio-

temporal dynamics in cells. The model is derived on two- and three-dimensional geometries,

based on the recent literature regarding keratin filaments assembly and keratin network

remodelling. An interesting aspect of the model are the boundary conditions, which have
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(a) (b) (c) (d)

Figure 4.9: The temporal evolution of the keratin masses: (a) the integral
R
⌦ N(x, t) dx; (b)R

⌦ P (x, t) dx; (c)
R
⌦ S(x, t) dx; (d) the total amount of keratin

R
⌦ (N(x, t) + P (x, t) + S(x, t)) dx.

These results refer to the simulation shown in Figure 4.7.

been imposed to satisfy specific keratin kinetics, i.e. nucleation, network formation and

disassembly. This is one of the main differences with respect to the one-dimensional model

presented in the previous chapter. Another difference is that in this new model three

forms of keratin are considered, which represent the three main steps of the biological

cycle of keratin in cells: a soluble pool S, precursors P and the network N . In Chapter 3

these three were grouped into two components: the same soluble pool S and the insoluble

keratin I. The categorisation used in this chapter results in a more interesting modelling

framework, as this allows to consider nucleation and lateral association independently,

while in Chapter 3 these two phenomena were grouped into the more general assembly

process. In order to solve the model we use the SUPG finite element method, which is

able to stabilise the numerical solution through a regularisation process with respect to

possible spurious oscillations due to the advection-dominated flows. Finally a simulation

on a two-dimensional spatial domain with “artificial” (non biologically relevant) parameters

is presented. Starting from uniform initial conditions, the model is able to show a relevant

behaviour, reaching a stable configuration in which the keratin network covers the whole

cell interior, surrounds the nucleus and is mainly concentrated in the nuclear peripheral

areas.

Given the high number of parameters playing a role in the model, a crucial step is their

estimation. For this it is necessary to optimise the parameters by comparing the solutions

of the model to the experimental data. Therefore for a future work we propose to use either

a genetic algorithm (see Appendix B.2), as done for the model in Chapter 3, or a Bayesian

approach, which is able to provide credible regions for the parameters (Campillo-Funollet

et al., 2019; Juma, 2019).

It is important to remark that the keratin model describes a general framework which

can be easily modified. For instance, one future goal is to understand the spatio-temporal

dependency of the nucleation process. As stated in the section dedicated to the derivation
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of the model, in the last years nucleation has been thought to be linked to special trans-

membrane protein complexes called focal adhesions. An interesting idea for future work is

to derive a profile for the time and space dependent nucleation coefficients depending on

the evolving focal adhesions. Inspired by this, in the Appendix C we present a first model

for shaping focal adhesions.

Along the same lines, another variation of the model could be done by modelling the

kinetic coefficient kSN,� of equation (4.24) as a function of the network anchorage points

such as hemidesmosomes and desmosomes. In particular, it would be interesting to do

these variations in a three-dimensional domain, where the base of the cell has many focal

adhesions and hemidesmosomes.

Once the parameters are estimated, it would also be interesting to understand how

these are affected by changes in cell shape. Indeed, a future goal is the investigation of

the model on non isotropic spatial domains. As well, another important extension to be

done is to test the model on evolving domains, for example during cell migration. Using

the conservation of mass on evolving domains (see for example DiBenedetto (2010)) the

equations for a migrating cell are:

@S

@t
+r · (SvC)| {z }

cell velocity

= r · (DSrS) + fNS(N)� fSP (S)� fSN (S,N),

@P

@t
+r · (PvC)| {z }

cell velocity

= r ·
�
DPrP � PvP (x,t)

�
+ fSP (S)� fPN (P,N),

@N

@t
+r · (NvC)| {z }

cell velocity

= r ·
�
DNrN �NvN (x,t)

�
+ fPN (P,N) + fSN (S,N)� fNS(N),

x 2 ⌦(t), t 2 (0, T ],

where each point of the closure of the domain is subject to the equation @

@t
x(t) = vC , vC

being the velocity field of the cell. The vector field vC describes the motion of every point

of the cell domain, see for example the cell in Figure 4.1. More generally this model can

also be studied for shape changing cells, even for the case without directed migration.

Finally, a very important advance in the modelling part would be to find dependencies

between optimal parameters and functions of the stationary cell model (4.12)-(4.23) and the

cell velocity vC , revealing therefore the coupling between biochemical and biomechanical

properties of the keratin network in cell migration.
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Chapter 5

Conclusion

In this thesis we have presented different mathematical approaches for modelling cellular

processes such as cell polarisation and keratin network remodelling. A qualitative approach

was applied in modelling cell polarisation, which resulted in the bulk-surface wave pinning

model presented in Chapter 2. Since cell polarisation is the result of an intricate network

of biochemical reactions involving a large number of biological entities, a detailed model

would have been mathematically intractable. Therefore, following the work done by Mori

et al. (2008), our modelling idea focused on the reduction of the biological assumptions

to a minimal level of complexity and a phenomenological representation of the processes.

This resulted in a model derivation based on only few fundamental features of the Rho

GTPases, which were common to all the members of this protein family. In particular, by

considering spatial compartmentalisation and bistable biochemical reactions, we obtain a

bulk-surface model describing a membrane-bound active and a cytosolic inactive GTPase,

which interact at the cell membrane and generate polarisation patterns.

On the other side, Chapter 3 is devoted to the description of a quantitative modelling

approach for investigating the dynamics of keratin filaments in resting cells. The model is

based on the experimental measurements by Moch et al. (2013) and aims at quantifying

the keratin assembly/disassembly cycle, by extending a previous mathematical model by

Portet et al. (2015). Our approach is strictly dependent on a new interpretation of the

experimental data, which are remodelled in order to overcome the technical difficulties

in getting the data from real cells. Complementing this with new modelling ideas, we

developed a model whose solutions accurately match experimental measurements. Fur-

thermore, our model is able to estimate the spatial location of the kinetic processes which

are involved in the cycle, showing consistency with the well-known biological model pro-

posed by Windoffer et al. (2011).
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Lastly, in Chapter 4 we set new basis for a more detailed understanding of the processes

involved in the keratin network remodelling. In order to do so, we consider three different

forms of keratin in cells and five type of interactions between them. The model is developed

in a perforated d-dimensional domain ⌦ with d = 2 or 3, where the nucleus of the cell,

excluded from the computational domain, constitutes an internal hole in ⌦. Through a

fabricated example, obtained by testing the model with “artificial” parameters, we showed

that our mathematical formulation is able to describe the qualitative behaviour of the

keratin cycle. However, since the model aims at quantifying the dynamics, in the future,

we expect to work on the parameter estimation by comparing the model solutions to

experimental data.

In this thesis we have tackled research questions of different nature, in the context of

cell migration, with appropriate mathematical tools and approaches. In Chapter 2 the

aim was to provide theoreticians with an easy tool for polarisation pattern formation and

the biologists with some hints for the understanding of fundamental reactions within

the complex GTPase biochemical network. Hence a qualitative approach was the most

convenient modelling strategy to adopt. The active GTPases, that in cell polarisation

tend to concentrate only in some specific areas of the cell membrane, are modelled by a

reaction-diffusion equation. The model builds on the fact that the action of GEFs, which

are factors responsible of GTPase activation, is stimulated by the same active GTPases.

This is a central aspect as it introduces nonlinarities in the reaction function: describing

it through a Hill function with exponent n = 2, the final equation for the evolution of the

active GTPase is of a bistable reaction-diffusion type. The positive feedback of the active

GTPase is crucial for the polarisation response in the previous works by Mori et al. (2008)

and Giese et al. (2015). Our work confirms that this property is maintained also on three-

dimensional geometries, where proteins are compartmentalised between cell membrane and

cytosol. The model was solved in several three-dimensional geometries and some of the

results inspired us to further investigate on the long-time behaviour of the solutions. In

particular, we set some starting points for studying the effects of geometry on the evolution

of the solutions. We will come back on this point in Section 5.1.

Of a different nature are, instead, the works on keratin dynamics, in which the primary

interest was the quantification of the kinetics involved in the filament and network form-

ation. Therefore a quantitative approach was needed, which in Chapter 3 was based on

the available experimental data. Moreover, this work was complemented by a reinterpret-

ation of the data agreed with the experimentalists. This allowed us a more consistent
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use of their measurements, with a consequent improvement in the modelling results. The

predictive potential of the model is its ability to localise in space and time the kinetic

coefficients, which allows the identification of the assembly and disassembly regions in the

keratin network cycle. Similar, but more detailed conclusions are expected also for the

model proposed in Chapter 4. Discussions about this point are postponed to future work,

which is presented in the following section.

5.1 Future work

Across this thesis are posed many new research questions, which we would like to summarise

in this conclusion.

5.1.1 A coupled bulk-surface model for cell polarisation

• The simulation shown in Figure 2.10 of Chapter 2 is well representative of the fact

that the polarisation pattern resulting from the BSWP model (2.15)-(2.18) is only

apparently stable. In the long time indeed, the active patch moves towards specific

regions of the domain very slowly. Several new numerical investigations are proposed

in Section 2.11, confirming this behaviour. Despite the fact that this occurs for

times which are beyond the biological relevance, an interesting extension of this work

regards the mathematical understanding of this behaviour: how does the surface

geometry affect the membrane-bound component?

• Future research should be devoted to the extension of the BSWP model (2.15)-(2.18)

to migrating cells. This has been introduced in Section 2.12, but needs further

investigation, especially in modelling the role of the Rho GTPases in the evolution

of the cell shape remodelling and migration. This would link the biochemistry to

a mechanical model for cell migration, where research challenges also include the

mathematical formulation for the evolution law of the migrating cells.

• It would be of interest to extend the BSWP model (2.15)-(2.18) to three components,

by including a membrane-bound inactive GTPase. Hence, which kind of binding

functions can generate a similar behaviour to the initial two components model?

Can we identify some parameter set?



159

5.1.2 Spatio-temporal dynamics of the keratin network in one dimension

• The model proposed in Chapter 3 is based on experimental data taken at 24 hours

and 48 hours after the cells are seeded. What happens in the between, for example at

36 hours? This is a question which can be easily addressed by using the mathematical

model (3.23)-(3.26). However it would be very interesting to test with data how close

our predictions are to experimental observations.

• Seeing from a different point of view the previous question, a useful and interesting

study would be to calibrate the model with respect to experimental data taken at

different time points. How are the optimised kinetic parameters affected by the

introduction of new data?

• The last question that we leave open with respect to Chapter 3 still relates to the

testing of the model with new experimental data. Indeed, it would be interesting to

check if other intermediate filaments proteins (such as vimentin for instance) can be

modelled within the same setting. If this is the case, how are the parameters of the

model affected by the change of the intermediate filament proteins?

5.1.3 A multidimensional model for the spatio-temporal dynamics of the

keratin network

• The study presented in Chapter 4 needs to be finalised by finding reasonable values

for the parameters. This can be done by comparing the model (4.12)-(4.23) to exper-

imental data. In the literature, many methods have been presented for this scope,

and the review paper by Ashyraliyev et al. (2009) highlights the most common ones.

In Chapter 3 we have used a genetic algorithm (Holland, 1992; Mitchell, 1998; Portet

et al., 2015) which is also briefly described in Appendix B.2. In this case, at the

end of the algorithm, each parameters finds a single best value. On the other hand,

Bayesian methods (Wilkinson, 2007; Stuart, 2010; Campillo-Funollet et al., 2019)

are able to estimate the probability distributions for the parameters, providing a set

of different possible values. As well, these methods are suitable when dealing with

data characterised by uncertainty, as they can generally counterbalance the experi-

mental noise in the measurements. However, a drawback of the Bayesian methods

is the computation cost, which is generally quite expensive. Hence, robust, stable

and efficient solvers must be developed if one is to exploit the powerful nature of the

Bayesian methods for partial differential equations.
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• A second point which needs to be addressed is related to the efficiency of the numer-

ical method, which requires highly detailed meshes. Indeed, it would be convenient

to refine the method in order to speed-up the simulations. This is particularly an

important step which needs to be done for a quicker parameter estimation over two-

or even three-dimensional domains.

• The model (4.12)-(4.23) provides a mathematical tool for studying the effects of

cell shape on keratin dynamics. This can be done by estimating the parameters

for different spatial domains, comparing the solutions of the model to experimental

data. From the other side, this goal can be experimentally supported by using

micropatterns of predefined shape, which are well-known biological tools employed

to constrict the cell to acquire a given configuration (Théry et al., 2006). Hence, by

coupling experiments and simulations, we expect to obtain new quantitative results

able to explain the relationship between cell shape and keratin dynamics.

5.1.4 Investigating the connections

Following the discussion in the Introduction, and especially in Section 1.4, it would be

very interesting to work on the relationships between keratin intermediate filaments, Rho

GTPases and cell adhesions in the context of cell migration. In particular possible research

projects could be:

• Once the parameters for the keratin model (4.12)-(4.23) are estimated, it would be

of interest to check how these are affected by cell migration. A starting point can be

the study of the model proposed in the conclusion of Chapter 4 (Section 4.6). One of

the questions to be answered would be: can we provide a quantitative study of the

keratin dynamics in the different cases?

• The keratin model (4.12)-(4.23) provides a framework for testing biological hypo-

theses. It would be interesting to test the effect of the focal adhesions in the nucle-

ation process, or include the presence of the hemidesmosomes. For testing the effects

of the focal adhesions we propose to use the simple FAs model presented in Appendix

C.

• In Section 1.4 we highlighted the role of keratin intermediate filaments in regulating

the RhoA activity. Hence it would be interesting to study a possible connection

between the BSWP model (2.15)-(2.18) and the keratin model (4.12)-(4.23). Con-

sistently with the work by Bordeleau et al. (2012), keratin effects could be included
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in the parameters k0 and � of the BSWP function (2.18).

In conclusion, we have presented some research ideas which could be addressed as a

continuation or extension to the work done in this thesis. However this list could be much

longer, confirming the fact that cell biology provides an incredible number of research

questions. In addressing many of them, a close collaboration between mathematicians

and experimentalists, supported by a continuous feedback between these two worlds, can

potentially be the key for many new interesting results.
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Appendix A

Enzymatic reactions

A.1 Law of mass action

Let us consider two chemical species A and B, called reagents, which interact together to

form a third specie C, called product. The reaction is described by the following diagram:

A+B
k!P,

where k is a proportionality constant associated to the reaction. One is generally interested

in studying the speed of this reaction. The law of mass action helps in this, as it states that

the product is formed at a rate proportional to the product of the reagent concentrations.

Hence the reaction can be easily translated into mathematics by the following system of

ordinary differential equations:

d[C]

dt
= k[A][B],

d[A]

dt
= �k[A][B],

d[B]

dt
= �k[A][B],

where, if X is a chemical specie, [X] indicates its concentration.

A.2 Michaelis Menten kinetics

In cells, most of the biochemical reactions are governed and catalysed by particular pro-

teins called enzymes, which act on other proteins called substrates. These kind of kinetic

reactions are called enzymatic reactions and the most famous type was proposed by Le-

onor Michaelis and Maud Menten in 1913. The Michalis Menten kinetic theory describes
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Figure A.1: A graphical representation of an enzymatic reaction: an enzyme E (in yellow colour)
forms a compound C (in transparent green) with a substrate protein S (in red). The bounded
substrate is transformed in a new protein P called product (in green) which is then released from
the binding site which becomes again available for other substrates.

the conversion of a substrate S into a product P , after its binding to an enzyme E. The

reaction is described by the following diagram

S + E
k1

�
k�1

C
k2!E + P,

where C indicates the enzyme-substrate compound. At the end of the reaction the product

P is released and the enzyme E is again available for other substrates. The Michaelis and

Menten theory is based on the quasi-steady state assumption which describes the fact that

the compound C gets to the equilibrium very fast. Applying this assumption to the system

of ODEs derived by applying the law of mass action, one gets the following expression for

the product formation rate:

V :=
d[P ]

dt
=

Vmax[S]

Km + [S]
. (A.1)

Km is the Michaelis Menten constant and represents the affinity of the substrate towards

the enzyme E and Vmax = k2E0 is a constant, where E0 = [E(0)] is the initial concentration

of enzymes. The plot of the function V = V ([S]), shown Figure A.2 for n = 1 (orange

colour), has a hyperbolic shape.

A.3 Cooperative kinetics

Not all the enzymes obey to the Michaelis Menten theory and many cases have been

noted whereby the plot of the reaction rate as a function of the substrate is sigmoidal.

This happens because many enzymes and substrates have a cooperative behaviour. In

1910 Archibald Hill showed that the binding of a substrate to one site of the enzyme can

affect the binding properties of another site on the same enzyme (Hill (1910); Nelson et al.

(2008); Smith (1983) (in the Michaelis Menten theory only one binding site per enzyme
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is assumed). This happens because, after the binding of a substrate, proteins can change

their shape, becoming more or less attractive for the same substrate. A protein showing

this behaviour is called allosteric protein. In particular Hill showed that haemoglobin

presents this feature in binding to oxygen and from his studies he came out with a general

approach for cooperative ligand1 binding to multisubunits proteins. For an enzyme E with

n binding sites we have the following sequence of reactions:

E + nS
k1

�
k�1

ES1 + (n� 1)S
k2

�
k�2

ES2 + (n� 2)S
k3

�
k�3

...
kn

�
k�n

ESn

k
0
n!ESn�1 + P,

where the product can be released also at an intermediate step:

ESi

k
0
i

�
k0�i

ESi�1 + P, for i = 1, ..., n� 1, with ES0 = E.

We simplify the sequence of reactions with the following:

E + nS
k1

�
k�1

ESn

k
0
1!E + P,

i.e. in the compound, the substrates occupy simultaneously n binding sites of the enzyme

and we assume no product is released at intermediate states. The associated ordinary

differential equations are:

d[E]

dt
= �k1[E][S]n + (k�1 + k01)[ESn], (A.2)

d[nS]

dt
= �k1[E][S]n + k�1[ESn], (A.3)

d[ESn]

dt
= k1[E][S]n � (k�1 + k01)[ESn], (A.4)

d[P ]

dt
= k2[ESn]. (A.5)

From the equations (A.2) and (A.4) follows the conservation equation

[E] + [ESn] = Etot = E0, (A.6)

that means there is conservation of the total binding sites. If, as in Michaelis Menten

theory, we assume that
d[ESn]

dt
= 0,

1a ligand is any kind of molecule, including proteins, that binds reversibly to another protein.
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then by using (A.6) in (A.4) to obtain [ESn], from (A.5) we have

V =
d[P ]

dt
=

Vmax[S]n

Kn + [S]n
(A.7)

where Vmax = k01E0 and K =
k�1+k

0
1

k1
. From experiments it has been shown that n does

not represent the number of binding sites, but the degree of interactions between them,

and the number of binding sites is the upper limit for n. The Hill coefficient determines

the cooperative behaviour in the reaction. It is important to note that in general n is

not necessarily an integer, but a positive real number. In Figure A.2 three cases are

represented: there is positive cooperative behaviour if n > 1, non cooperative if n = 1,

negative if n < 1. It is easy now to notice that Michaelis Menten equation (A.1) is just a

special case of (A.7), where the reaction is non cooperative (n = 1).

Figure A.2: The velocity V of enzymatic reactions as a function of the substrate concentration.
The image shows the function V as defined in eq. (A.7). Cooperative behaviour is defined by
the parameter n: n > 1 indicates positive cooperative behaviour, n = 1 non cooperative, n < 1
negative cooperative behaviour. All the three functions asymptotically tend to the value Vmax.
The constant K represents the concentration of substrate necessary for the reaction to reach half
of its speed.

For more details on the biochemistry we refer to the textbook of Nelson (2003) and for

the mathematical approach to the textbooks by Edelstein-Keshet (2005); Murray (2002).
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Appendix B

Spatio-temporal dynamics of keratin

in one dimension

B.1 The explicit functions for the one-dimensional model of

keratin

The initial condition I24(x) is defined from the experimental profile of the assembled keratin

material measured at 24 hours (Moch et al., 2013). The polynomial P (x) =
P8

i=0 pix
i for

which p8 = 5.441⇥10�8 µM

µm8 , p7 = 3.397⇥10�21 µM

µm7 , p6 = �5.379⇥10�5 µM

µm6 , p5 = �2.077⇥

10�18 µM

µm5 , p4 = 0.01062 µM

µm4 , p3 = 2.801⇥ 10�16 µM

µm3 , p2 = 0.4104 µM

µm2 , p1 = 1.4⇥ 10�14 µM
µm

and p0 = 506.5µM is a good approximation of the data. In order to satisfy the boundary

conditions defined in (3.3) the function is modified close to the boundaries as follows:

I24(x) =

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

c, x < a1 � ✏,

P (a1+✏)�c

4✏2 x2 + (✏�a1)(P (a1+✏)�c)
2✏2 x

+
(✏�a1)2P (a1+✏)+(3✏2+2a1✏�a

2
1)c

4✏2 , a1 � ✏  x < a1 + ✏,

P (x), a1 + ✏  x < a2 � ✏,

�P (a2�✏)�c+2✏D(a2�✏)
4✏2 x2

� (✏�a2)(P (a2�✏)�c)�2✏a2D(a2�✏)
2✏2 x

+
(3✏2+2a2✏�a

2
2)P (a2�✏)

4✏2

+
2✏(✏2�a

2
2)D(a2�✏)+(✏�a2)2c

4✏2 , a2 � ✏  x < a2 + ✏,

c, a2 + ✏  x,

(B.1)

with a1 = �21µm, a2 = �a1, ✏ = 1µm, c = 50µM and D(x) =
P8

i=1(9� i)pix8�i.

The approximation of the data after 48 hours of seeding Moch et al. (2013) is repres-
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ented by:

I48(x) = p1x
4 + p2x

3 + p3x
2 + p4x+ p5, (B.2)

where p1 = �0.003255 µM

µm4 , p2 = 2.61⇥ 10�17 µM

µm3 , p3 = 0.4899 µM

µm2 , p4 = 1.558⇥ 10�15 µM
µm

and p5 = 604.1µM .

Both I24 and I48 are reported in Figure 3.6 and were proposed in Portet et al. (2015).

Note that both I24 and I48 are very close to a even function.

B.1.1 The optimal speed and kinetic coefficients from Portet et al.

(2015)

The functions reported in Figures 3.7a-3.7b for the speed and kinetics of the model in

Portet et al. (2015) are:

v(x) = u(1� e�ax
2
), (B.3)

with u = 0.15µm/min and a = 0.05. The disassembly rate coefficient is described as

follows

kdis(x) =

8
>>>>>>>>><

>>>>>>>>>:

kbaseline + kmax 0  |x| < a3 � "

Ia3(x) a3 � "  |x| < a3 + "

kbaseline + kmax � kmax
x�a3
a4�a3

a3 + "  |x| < a4 � "

Ia4(x) a4 � "  |x| < a4 + "

kbaseline a4 + "  |x|  L

(B.4)

where kbaseline = 0.59988µM/min, kmax = 118.77524µM/min, a3 = 5µm, a4 = 18µm and

Ia3(x) and Ia4(x) are second degree polynomials whose coefficients are determined in order

to have kdis 2 C1([�L,L]). The assembly rate coefficient kass is spatially uniform with

value 562.914µM/min.

B.2 The Genetic Algorithm

The genetic algorithm is a well-known method (Holland, 1992; Mitchell, 1998), whose

ideas are based on the Darwinian evolution theory of natural selection and genetics. When

applying this algorithm to parameter estimation, a sequence of different generations of

parameters is created based on the “survival of the fittest” principle. In this appendix we

will briefly describe the basic ideas.
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Figure B.1: Genetic algorithm: creation of a new generation.

Starting from an initial population G0 of candidate parameters over a specified search

space X, the genetic algorithm iterates towards an optimal solution producing, at each

iteration k + 1, a new generation Gk+1 of individuals (parameter values) from the fittest

ones of the current generation Gk. By fittest we refer to the suitability of the parameters

with respect to the specified problem. The new generation Gk+1 inherits the best traits

from Gk as it is created in three possible ways: direct inclusion, crossover and mutation.

The first one represents the possibility of an individual to survive for more than one

generation, if fit enough; the second one is the creation of an individual by combination

of the traits of two parents from Gk; in the third one an individual from Gk is included in

the successive generation Gk+1 after a mutation of at least one trait.

We now describe the steps of the algorithm: assume we need to estimate d real values

p̂1, . . . , p̂d and let X be the d-dimensional search space, which we can imagine as the

Cartesian product of real intervals X = [a1, b1] ⇥ [a2, b2] ⇥ . . . ⇥ [ad, bd], with ai and

bi determined by a priori knowledge (for example non-negativity requires ai > 0). Let

f(p) = f(p1, . . . , pd) be the objective function which we want to minimise, for example as

in equation (3.34) of Chapter 3.

1. Let G0 be an initial population composed of m (even integer) candidate vectors

(individuals) p1
0, . . ., pm

0 2 X, each one composed of the d parameters we want to

estimate. This initialisation step can be a result of some a priori knowledge on the

behaviour of the objective function f or some random selection.

2. At the (k + 1)-th iteration of the algorithm, the objective function is evaluated for

every individual of the generation Gk. With this step a certain number of individuals

will be included in the next generation Gk+1. A possible method for the selection is

to introduce a probability function, such as (Dorsey and Mayer, 1995):

pi =
T (f(pi

k))P
m

j=1 T (f(pj
k))

, i = 1, . . . ,m, (B.5)

where T is a non-negative and strictly increasing function, which guarantees that
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each pi is well defined. Each individual pi
k will be directly included in Gk+1 with

probability 1� pm
i

. Therefore the less fit individuals will have a smaller probability

of survival to the new generation while better fit individuals will go through the

selection process with better chances.

3. This step regards the generation of a provisional m-dimensional set Hk. Each indi-

vidual p̃i
k 2 Hk is selected from Gk with probability (B.5) (it is possible to select

the same element multiple times).

4. Randomly select two individuals p̃i
k and p̃j

k from Hk and an integer ic  d. Set

⌘ 2 [0, 1] (crossover rate). With probability 1 � ⌘ (direct inclusion) we include p̃i
k

and p̃j
k in Gk+1, while with probability ⌘ both p̃i

k and p̃j
k are included in Gk+1

only after their ci-components are swapped. The individuals p̃i
k and p̃j

k are then

removed from Hk.

5. The previous step is repeated until Gk+1 has m individuals.

6. For each j-th component of pi
k+1 a scalar value ↵k+1

ij
is selected randomly in [aj , bj ].

Set � 2 (0, 1) (mutation rate). Therefore with probability � the j-th component of

pi
k+1 is replaced by ↵k+1

ij
, while with probability 1� � nothing occurs. This step is

repeated over all components of each vector of Gk+1.

7. The whole process (steps 2-6) is repeated until a certain number of generations have

been created without any improvement.
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Appendix C

A simple model for shaping focal

adhesion

C.1 The biological assumptions

Focal adhesions (FAs) are protein complexes used by the cell to anchor itself to the sub-

strate. Through attachment to actin stress fibres, the cell uses the FAs to apply traction

forces during migration. In particular, the evolution of focal adhesions is not only the res-

ult of biochemical reactions, but it is also characterised by a clear mechanical dependency.

Using fluorescence labelling techniques to target FA characteristic proteins such as paxillin

or vinculin, it is possible to visualize their shape. Mainly they appear as long and thin

ellipses. Focal adhesions are not stable but highly dynamic: in Figure C.1 we schematise

their life phases. In this section, we present a simple model for the evolution of a focal

adhesion shape, inspired by the works of Berginski et al. (2011) and Mohl et al. (2012),

to which we refer for more biological details. We simplify the FA life in the two following

steps:

1. FA forms at a certain point P1 and it starts elongating in only one direction, until

Figure C.1: Evolution of a focal adhesion: after appearing it starts elongating until maturation.
Then it starts disassembling from the other end, until final disappearing. Picture from Mohl
et al. (2012), reproduced with permission of COMPANY OF BIOLOGISTS LTD., Journal of Cell
Science.
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f1

f2

x0

y0

x

y

↵

Figure C.2: On the left, an ellipse with focal points f1, f2, centre C =(f2 + f1)/2 and semi minor

axis b > 0 and semi major axes a =
p
||f1 �C||2 + b2 =

r⇣
||f2�f1||

2

⌘2
+ b2. On the right, ellipse

with centre C = (x0, y0) and orientation ↵.

reaching the point P2. At the end of this step the length and size of the FA is

maximal;

2. FA starts the disassembly process in only one direction, from point P1 until disap-

pearing at the point P2.

During all their life time, FAs are characterised by a sliding speed. However, in order to

simplify the exposition, let us ignore for the moment this aspect. As well, we will assume

that a focal adhesion keeps always the same orientation ↵ during its whole lifetime. How-

ever, it is important to remark the fact that these last two assumptions are not restrictive

and, as it will be clearer at the end, the model will easily support extensions to sliding FAs

and orientation changes.

C.2 The model

An ellipse E is a set of all points P, such that the sum of the distances |PF1|, |PF2| to

two fixed points F1,F2, known as foci, is a constant value c. Let us denote with a = c

2 the

major semi-axis, such that the ellipse is given by

E(F1,F2, c) := {P such that ||P� F1||+ ||P� F2|| = 2a},

where || · || is the Euclidean norm. The minor semi-axis will be indicated with b. See Figure

C.2 for a graphical description.

It could be technically easier, in terms of comparison to real data, to avoid a description
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of the focal adhesion involving the foci, which might be hard to calculate. Thus, every

ellipse can be identified by the following parameters:

1. Centre C = (x0, y0);

2. Major semiaxis a and minor semi-axis b;

3. Orientation ↵, with indicates the anticlockwise angle between the horizontal line

y = y0 and the major semi-axis of the ellipse, see Figure C.2.

The distances ||F1 �C|| and ||F2 �C|| of the foci F1,F2 from the centre C are ||F1 �C|| =

||F2 �C|| =
p
a2 � b2. Hence the foci are:

F1 =

0

@ x0 +
p
a2 � b2 cos↵

y0 +
p
a2 � b2 sin↵

1

A and F2 =

0

@ x0 �
p
a2 � b2 cos↵

y0 �
p
a2 � b2 sin↵

1

A .

Let now ta be the appearing time and tf the disappearing time of the FA such that

0  ta < tf  T,

where t = 0 is the initial time and t = T is the final time imposed for the model. The cell

is represented as a two-dimensional domain ⌦ on the xy plane. In the following we define:

F1 : [0, T ] ! ⌦, F2 : [0, T ] ! ⌦, a : [0, T ] ! R+,

which represent, respectively, the position of the two evolving foci and the length of major

semi-axis of the ellipse. Furthermore, we define a function r : [0, T ] ! R+, such that:

r := a� ||F1 �C|| = a� ||F2 �C||,

as shown in Figure C.2. A focal adhesion is represented by a time evolving ellipse on the

xy plane:

FA(t) := {P such that ||P� F1(t)||+ ||P� F2(t)|| = 2a(t)}.

As well, it is necessary to impose that FA(t) ⇢ ⌦ at any time t 2 [0, T ].

Let now tm 2 (ta, tf ) be the time of the maximal expansion of the FA, which corresponds

to the instant separating the step 1 and 2 described in Section C.1. At this time the focal

points are

F1,M := F1(tm), and F2,M := F2(tm),
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and the semi-axis are

aM := a(tm), and bM := b(tm).

We also define rM := r(tm). A snapshot of the focal adhesion at this time is given by the

ellipse

FAM := {P such that ||P� F1,M ||+ ||P� F2,M || = 2aM}.

For the model we will assume that the configuration at the maximal expansion is known

and given in input.

Before the focal adhesion is formed, i.e. for t  ta, we set:

F1(t) = F2(t) = F1,M , and r(t) = 0,

so the focal adhesion does not exist.

Immediately after t = ta, the focal point F2(t) starts moving from F1,M until it reaches

the point F2,M at the time t = tm. The point F1(t), instead, does not move from F1,M .

During this interval of time, r(t) (and consequently also a(t)) increases until the maximal

value r(tm) = rM is reached, accordingly with the speed of F2(t). At t = tm the FA is

mature, F2 stops moving and the FA has reached its maximal size.

Immediately after, i.e. for t > tm, the disassembly process starts: the focal point

F1(t) moves away from F1,M on the same line and direction as previously done by F2(t)

over the time interval (ta, tm]. On the other hand, the second focal point remains fixed,

i.e. F2(t) = F2,M for t > tm. The value r(t) (and consequently also a(t)) decreases,

accordingly with the speed of the focal point F1(t). At the end of this interval of time,

when t = tf , F1(t) has reached the point F2,M and collapsed on F2(t), r(t) is finally zero

and the FA has been completely disassembled. The following equations translate this in

mathematical terms:

F1(t) = F1,M + g1(t)
⇣
F2,M � F1,M

⌘
, (C.1)

F2(t) = F1,M + g2(t)
⇣
F2,M � F1,M

⌘
, (C.2)

r(t) = g(t)rM , (C.3)

a(t) =
||F2(t)� F1(t)||

2
+ r(t) (C.4)

for some suitable functions g1(t), g2(t), g(t). In a first approach, inspired by the experi-

mental measurements by Berginski et al. (2011) and Mohl et al. (2012), we propose para-
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Figure C.3: Life of a focal adhesion, from formation at time ta = 1 until disappearing at time
tf = 21. It reaches the maximal size at time t = 11. In this example, we set C = (10, 10),
aM = 2.82, bM = 0.113, ↵ = ⇡/4. In this simulation we take into account also the sliding of the
FA (see Section C.3): a speed of 0.5 over the direction indicated by the vector (cos�, sin�) with
� = ↵ is imposed. With this particular choice of � the FA is sliding on the same direction of the
growth. The area of this focal adhesion is represented by the green line in Figure C.4 (left image).

bolic time-dependent functions

g(t) :=

8
><

>:

�4
(t�ta)(tf�t)
(tf�ta)2

, if t 2 [ta, tf ],

0, otherwise,
(C.5)

g1(t) :=

8
>>>>>>><

>>>>>>>:

0, t <
ta+tf

2 ,

1� g(t), t 2
h
ta+tf

2 , tf
i
,

1, t > tf ,

g2(t) :=

8
>>>>>>><

>>>>>>>:

0, t < ta,

g(t), t 2
h
ta,

ta+tf

2

i
,

1, t >
ta+tf

2 .

(C.6)

The maximal expansion time is then tm = (ta + tf )/2, so step 1 and step 2 of Section C.1

have exactly the same duration. The functions g(t), g1(t), g2(t) assume values between 0

and 1. In Figure C.3 is shown a simulation of the FA model is presented in Figure C.3

and in Figure C.4 we show the areas of different focal adhesions generated using different

parameters. A visual qualitative comparison is done by using data from Mohl et al. (2012).
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Figure C.4: Left image: areas of 4 simulated focal adhesions, with ta,1 = 1, tf,1 = 21, aM,1 =
2.82, bM,1 = 0.113, (corresponding to the focal adhesion in Figure C.3); ta,2 = 11, tf,2 =
33, aM,2 = 9.837, bM,2 = 0.123; ta,3 = 20, tf,3 = 43, aM,3 = 1.38, bM,3 = 0.23; ta,4 = 23, tf,4 =
60, aM,4 = 6.02, bM,4 = 0.20. Right image: experimental data from Mohl et al. (2012), reproduced
with permission of COMPANY OF BIOLOGISTS LTD., Journal of Cell Science.

C.3 Sliding of a focal adhesion

The sliding speed of a focal adhesion can be easily included in the model. If a sliding speed

v is known, the equations (C.1)-(C.2) can be modified as follows:

F1(t) = F1,M + g1(t)
⇣
F2,M � F1,M

⌘
+ vt, (C.7)

F2(t) = F1,M + g2(t)
⇣
F2,M � F1,M

⌘
+ vt. (C.8)

The speed can also be described in terms of an angle �, a direction + or -, and a magnitude

v > 0:

v = ±v

0

@ cos�

sin�

1

A .
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