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Abstract

Single crystal blades used in turbine bladed disks of modern gas turbine engines

exhibit material anisotropy. The crystal orientations of blades in a bladed disk

are usually different. The static and dynamic response of a mistuned bladed disk

with a blade to blade variation in crystal orientations differs significantly from the

tuned structure where all blades are identical. Based on detailed study of the avail-

able literature on mistuned bladed disk, a gap in knowledge on the effects of blade

anisotropy orientation on static deformation and forced response of bladed disk was

identified, since there are no studies for bladed disk mistuned by material anisotropy

based on high-fidelity finite element models.

In the first part of this study, the effects of blade material anisotropy orientation

on non-linear static deformation of the mistuned bladed disk are thoroughly investi-

gated. Moreover, sensitivity and uncertainty analyses for non-linear static deforma-

tion are performed to quantify the effects of scattering in blade crystal orientation.

A method based on Sobol indices, hitherto unused in the analysis of mistuned bladed

disk, is introduced for global sensitivity analysis with respect to blade anisotropy

angles.

The usefulness of polynomial chaos expansion as an efficient method for uncertainty

analysis of mistuned blade disk is demonstrated. For mistuned bladed disk, with nu-

merous design parameters in the form of blade anisotropy angles, the following two

strategies are proposed to address the “curse of dimensionality” problem associated

with uncertainty analysis: (i) reduce the dimension of the random space by screening

the anisotropy angles based on their rank order of importance obtained from sensi-

tivity analysis, (ii) by using gradient values, in addition to function evaluations, to

calculate the coefficients in the polynomial chaos expansion.

Due to manufacturing errors, the contact geometry of blades at fir-tree root and

shrouds will be different from the design geometry. The effects of variation in crystal

orientation on non-linear static deformation of a tuned bladed disk is investigated

for different variants of fir-tree root and shroud geometry.
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In the second part of this study, the effects of blade material anisotropy orientation

on the linear forced response of mistuned bladed disks are investigated. Considering

blade anisotropy angles as random design parameters, uncertainty in forced response

of mistuned bladed disk is quantified using gradient-based polynomial chaos expan-

sion. Further, the crystal orientations of blades are optimised in order to achieve a

reduction in the maximum forced response amplitude of a mistuned bladed disk.
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Chapter 1

Introduction

Gas turbine engines used to propel modern aircraft are phenomenally complex ma-

chines. Thanks to innovations in the field of material science, fluid and solid me-

chanics and new capabilities in the field of manufacturing, design, and testing, the

efficiency of the gas turbine engine has improved significantly. The three main fac-

tors that directly contribute to the overall efficiency of a gas turbine are the pressure

rise achieved by the compressor, the temperature of the gas as it enters the turbine

and the combustor efficiency [1].

The turbine entry temperature has risen from 10000C in the gas turbine engines op-

erated in the 1940s to approximately 17000C in those that are currently in service.

In addition to efficient cooling, the use of new materials that retain its mechanical

properties at very high temperature has contributed to the significant increase in

turbine entry temperature over the years. The essential properties required for a

material to operate at very high temperature are creep resistance, thermal fatigue

strength, and oxidation resistance. Single crystal nickel alloy blade with superior

metallurgical properties in all directions was developed by Pratt and Whitney follow-

ing their success in the development and implementation of directionally solidified

blades in the 1960s [2]. These blades were first used in Pratt and Whitney F100

engines that propelled the F-15 and F-16 military aircraft and later in Pratt and

Whitney JT-9D engine that powered Boeing 767 and Airbus A310. Today single

crystal blades are widely used by all gas turbine engine manufacturers including

Rolls Royce and General Electric.

1
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The casting process of single crystal blades is based on directional solidification of

the molten metal. Due to certain randomness in the solidification process, it is

impossible to manufacture blades with identical crystal orientation. The crystal

anisotropy orientation of the blade influences its mechanical properties, and there-

fore, in a bladed disk the variation in anisotropy orientation between blades results

in mistuning of the bladed disk. Due to mistuning, each blade in the bladed disk

will deform differently to centrifugal and gas pressure loads acting on the bladed

disk.

For a mistuned bladed disk, a significant difference in displacements and stresses

between individual blades in a bladed disk is possible. In order to improve the ef-

ficiency of gas turbine engines, the clearance between the blades and the turbine

casing must be minimised to reduce blade tip leakage. Modern gas-turbine engines

use an abradable material seal or honeycomb structure in the outer lining which

facilitates the formation of a groove by allowing the blade tip to rub into the mate-

rial during the initial running of the engine. Even though this technique has proved

to be effective in minimizing the radial gap, there are two main concerns associ-

ated with it: (i) the possibility of the abradable material sticking to the blades,

thereby, inducing turbulence in gas flow, and (ii) the phenomenon of blade wear

due to friction between blades and abradable material [3]. However, for a mistuned

bladed disk with significant scatter in blade mechanical properties, each blade will

have marginally different radial displacement which then precludes the possibility

of creating an optimal gap. In this case, the blade with the largest radial displace-

ment will determine the amount of abradable material removed, thereby, creating

a suboptimal tip-casing gap for other blades in the bladed disk. To minimise the

amount of abradable material removed and to maintain an optimal tip-casing gap

for all blades, there is a need to quantify the scatter in static deformation of the

mistuned bladed disk due to scattering in the crystal orientation of the blades.

Dovetail root joints (Fig. 1.1a) are commonly used to secure compressor blades to

disk, and fir–tree root joints (Fig. 1.1b) are widely used for turbine blades in gas

turbines. These joints form a critical region from the point of service life of the

bladed disk as higher stress gradients near the edges of the contact could initiate

crack growth when the structure is subjected to high frequency-small amplitude
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aerodynamic loads. Random errors in manufacturing process introduce variability

in the geometry of the blade root and the disk slots. Due to the variability in

blade and disk geometry within the tolerance limits, the contact areas at root could

be higher or lower than that of the design geometry. This variation in contact

area affects the magnitude of contact pressure, and therefore, the contact stresses

at the bladed disk root joint. The analysis of bladed disk joints is essential to

understand the failure mechanisms involved and to ensure that the life of the joint

does not limit the life of the bladed disk. For single crystal blades, the variation in

contact pressure at fir–tree roots due to the combined effect of scattering in material

anisotropy orientation and variation in root geometry is investigated.

Figure 1.1: Schematic diagram of (a) dovetail joint and (b) fir–tree root joint.

It is well known that a mistuned bladed disk can have drastically higher forced

response levels compared to the corresponding tuned bladed disk. The stress levels

and vibration amplitude of mistuned bladed disk can be highly sensitive to even

small variations in the material properties of the blades within the manufacturing

tolerance limits. In order to avoid premature failure of the blades due to higher

stress levels resulting from the amplified response of the mistuned structure, it is

essential to study the forced response of the bladed disks considering the scattering

in anisotropy orientation of the blades.

The overall aim of this research is to perform efficient uncertainty and sensitivity

analysis of static and dynamic response of bladed disk structures used in gas-turbine

engines considering the crystal orientation of the single crystal blades as random

design parameters. Further, the effects of manufacturing variations in the geometry

of the bladed disk joints on static deformation of the structure are also investigated.
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Finally, the possibility of optimising the blade anisotropy angles in order to minimise

the amplification of forced response arising from blade-to-blade variations in crystal

orientation is investigated.

1.1 Uncertainty analysis

The uncertainty associated with dynamics of structures is classified into two cate-

gories:

(i) Aleatory uncertainties - they are due to random variations in material properties

and boundary conditions, inaccuracies associated with manufacturing and assembly

techniques. In modelling and simulation, this could transfer into parameter un-

certainties which require some of the input parameters to be treated as stochastic

variables. Random variations in the mechanical properties of dynamic systems can

also be due to gradual wear and tear or due to inherent scatter in material prop-

erties [4]. For example, blades in a bladed disk are not identical due to random

errors in manufacturing and due to uneven wear and tear of blades while in oper-

ation. This class of uncertainties can be defined in the probabilistic framework as

the associated randomness is often unbiased. Therefore, with the help of numer-

ous experiments, it is possible to obtain the statistical and probability measures for

aleatory uncertainties [5].

(ii) Epistemic uncertainties or systematic uncertainties - they are due to inaccuracies

and simplifying assumptions in modelling. Numerical errors, model errors and model

discrepancies are some of the factors that contribute to epistemic uncertainties. The

uncertainties in this class are not readily amenable to probabilistic analysis as they

are often biased [5].

Parameter uncertainty results in uncertainty in static and forced response of bladed

disks. In order to ensure system safety, it is essential that the uncertainty in the

response of bladed disks to centrifugal and gas pressure loads experienced at all

operating conditions within the flight envelope is accounted in the design. Tradi-

tionally, uncertainty analysis using computational models has relied on repeated

analysis of the model based on random sampling of the input parameter space, the
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Monte Carlo Simulation (MCS) technique. While this is the most straightforward

approach for uncertainty analysis and provide accurate estimates of the variation in

system response, the convergence obtained using this method is a function of the

square root of the number of model evaluations. Therefore, for realistic high–fidelity

finite element (FE) models of the bladed disk, cost of uncertainty analysis using the

MCS is often prohibitive. The prime mover of research on more sophisticated and

efficient approaches for uncertainty has been the computational cost incurred due

to slow convergence of the MCS.

Surrogate modelling

Surrogate models provide a close approximation to FE model and are inexpensive to

evaluate. Surrogate models are used as an approach to address the high computa-

tional cost of uncertainty analysis based on the MCS of high-fidelity computational

models. Following are some of the approaches used to construct surrogate mod-

els: (i) polynomial regression (ii) polynomial chaos (iii) kriging and (iv) supervised

learning methods such as Random Forest (RF), support vector machines and artifi-

cial neural networks. Two of the above approaches for surrogate modelling namely

polynomial chaos and random forest algorithm will be discussed in detail in this

section.

Random Forest

The structure of the input parameter space is one of the deciding factors in the

choice of surrogate models. When the input parameter space is n dimensional real

space, the choice of polynomial chaos or kriging is recommended. For situations

when the input parameter set includes both categorical‡ and continuous variables

RF[6] is a viable option. RF is a predictive model constituted by an ensemble of

binary regression trees. A regression tree divides the input parameter space into

distinct and non-overlapping regions where the dependent variable is approximated

by a constant value. The input-output data obtained from FE model realisations

are randomly partitioned into a training set and test set. In order to train the RF
‡Categorical variable takes one of a limited number of possible values assigning each observation

to a particular category.
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model, each regression tree in the ensemble is trained on a random subset of the

training data where the subset is obtained by random sampling with replacement.

The predictions from individual regression trees are then aggregated by averaging.

This so–called bagging∗ procedure significantly reduces the variance in prediction

associated with individual regression trees. The performance of the RF model is

validated using data in the test set. RF methods have been applied with varying

degree of success to regression and classification problems arising in different fields

ranging from turbulence modelling [7] to medical prognosis [8].

Polynomial chaos expansion

Polynomial chaos expansion allows representing an arbitrary random variable as a

function of another random variable or a set of random variables, for which the dis-

tribution is known, in the form of a polynomial expansion [9]. Therefore, the main

feature of polynomial chaos expansion, introduced by Wiener [10], is the decomposi-

tion of the stochastic response of a system into a linear combination of deterministic

and stochastic components:

y =M(XXX) =
∞∑
j=0

cjψj(ξξξ) (1.1)

where y is the model output such as displacements at a node on a FE model, M

is the computational model and XXX is a vector of input parameters, some of which

are stochastic variables and others are deterministic. The stochastic component in

the PCE is constituted by the orthogonal polynomial basis, ψj(ξξξ) : j = {0, . . . ,∞},

that are functions of random variables, ξξξ ⊂ {ξ1, . . . , ξn}, with known probability

distribution and the deterministic components are the coefficients, cj, in the ex-

pansion. The polynomial bases are orthogonal with respect to the joint probability

density function of the random variables. The original polynomial chaos proposed

by Weiner is based on Hermite polynomials in terms of Gaussian random variables.

Cameron and Martin [11] proved that Weiner’s Hermite polynomial chaos approxi-

mation of any function that is square integrable has convergence in the L2† sense.
∗Bagging or bootstrap aggregating is based on random sampling with replacement which allows

generating new training sets of size s′ from the original training set of size s. The model is fitted
for each of the new training set and are combined by averaging the output of each model.

†L2 norm of a function f(x) is defined as |f(x)|2 ≡
∫
|f(x)|2dx
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This result implies that a second order random process, meaning that the variance

of the process is bounded, can be expanded as a Hermite polynomial chaos[12]. The

computational cost associated with constructing a PCE is associated with the cal-

culation of coefficients in the expansion. The different approaches used to calculate

coefficients in the PCE are classified into two: (i) intrusive and (ii) non-intrusive.

(i) Intrusive - The approach uses Galerkin projection of PCE on the governing

equations which in most cases are differential equation describing the response of

the structure under load to obtain a system of equations of the form[9]

〈M(y(t), x), ψk〉 = 0 for k = 0, . . . , P (1.2)

whereM(y(t), x) is the simulation model that solves the governing differential equa-

tion to obtain the response y as a function of space and/or time. When the governing

equations are not complicated, it is possible to derive the expression for the inner

product in Eqn. (1.2) analytically after approximating y as a polynomial chaos

expansion of order p, i.e. y =
P∑
j=0

cjψj. Thus P + 1 differential equations can be

obtained which must be solved for P + 1 unknown expansion coefficients in PCE

where P = (n + p)!/n!p!, n being the number of random variables and p the or-

der of the polynomial basis. The solution of the modified set of equations requires

modification of existing solver or a new program that solves the new set of p + 1

differential equations. The practical difficulty associated with modifying FE solvers

has limited the use of intrusive methods.

(ii) Non-intrusive - Contrary to intrusive method, non-intrusive methods treat the

solver as a black-box. The different non-intrusive methods used to calculate the

unknown coefficients in PCE are:

(1) Method of least squares: The idea behind the method of least squares, as used

in model parameter estimation, is to minimise the sum of squares of the deviation

of the approximation from results obtained by numerical or physical experiments.

Applying this method to calculate the coefficients in PCE requires N evaluations

of the computational model based on the sampling of the input parameter space.

This provides us a set of data points of random input parameters, {ξξξi}Ni=0 and

corresponding model output, {yi}Ni=0 where the coefficients in expansion can then
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be obtained:

min
ccc∈R(P+1)

‖ΨΨΨ(ξξξ)ccc− yyy‖2 (1.3)

where, ΨΨΨ = {ψ0, . . . , ψP} is the orthogonal polynomial basis set, P +1 is the number

of unknown coefficients in the expansion; ccc = {c0, . . . , cP}T and yyy = {y0, . . . , yN}T

are the vector of unknown coefficients and of function values obtained from N num-

ber of FE model evaluations respectively. The optimal solution for the problem

is obtained as c∗ = (ΦTΦ)−1ΦTyyy, provided (ΦTΦ)−1 is invertible. The number of

terms in a PCE of order p that approximates a multivariate function of n random

parameters is given by the formula (n + p)!/n!p!. As the dimension of the random

space increases, the number of terms in PCE increases at a rate faster than that of

exponential growth, and therefore, results in the so-called curse of dimensionality

problem. One approach to address this issue is to use the gradient of the multivariate

function w.r.t input parameters in creating the approximation[13]. This approach

will be discussed at length in the following chapter. For the problem of creating

PCE to approximate a multivariate function with many random variables, special

sampling approaches can also be used to reduce the computational cost [14].

(2) Stochastic collocation: The coefficients for PCE are calculated such that the

approximation error is reduced to zero at sample points chosen based on the sampling

of the input parameter space. The approximation at chosen points in the input

parameter space can be reduced to zero by equating the predicted value of the

dependent variable to its value at those points in the stochastic space obtained from

FE evaluations. A set of N linear algebraic equations are obtained from N FE

evaluations which can be solved to obtain the unknown coefficients, ccc in the PCE:

[Ψ(ξξξ)]N×(P+1) {ccc}(P+1) − {yyy}N = 0 (1.4)

where, P + 1 is the number of unknown coefficients in the expansion, Ψ(ξξξi) is the

orthogonal polynomial basis, and ξξξi ∈ {ξξξ1, . . . , ξξξN} is the vector of design parameters

obtained by sampling the input parameter space.

(3) Spectral projection: This method calculates the expansion coefficients in PCE

approximation by imposing the requirement that the approximation error, (y −
p∑
j=0

cjψj) is orthogonal to the span of polynomial basis [15, 16]. Since the polyno-

mial basis in the expansion are orthogonal, the coefficients in the expansion can be
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obtained from the expression below:〈
(y −

p∑
j=0

cjψj), ψk
〉

= 0⇒ cj = 〈y, ψj〉 =
∫
Ω

yψjρ(ξξξ)dx (1.5)

The integrals in Eqn. (1.5) can be evaluated using Monte Carlo method or using

quadrature rules.

1.2 Sensitivity analysis

There are several reasons for performing sensitivity analysis one of which is to iden-

tify factors or groups of factors that contribute to uncertainty in model output [17].

Sensitivity analysis is not a replacement for uncertainty analysis but rather com-

plements it and is often used to reduce the computational cost associated with the

latter by reducing the dimensionality of the problem. The methods available for sen-

sitivity analysis are broadly classified into two (i) Local Sensitivity Analysis (LSA)

and (ii) Global Sensitivity Analysis (GSA).

(i) Local Sensitivity Analysis (LSA) - Local sensitivity analysis essentially

involves the computation of the derivatives of the model response function w.r.t

the input parameters. For a structural component constituting a machine, the

derivative of its response under loading with respect to a design parameter gives

information on how design changes affect the static and vibration response

of the structure about the design point at which the derivative is evaluated.

Consider the governing equation of motion for a m degrees of freedom (D.O.F)

linear system in the descretized form:

KKK(rrr,xxx)uuu=PPP (1.6)

where KKK is the global stiffness matrix, uuu and PPP are the m-dimensional displace-

ment and load vector respectively, rrr is the vector of stochastic input parameters

and xxx is the vector of deterministic variables that defines the system in the m

dimensional state-space. The above finite element (FE) equation can be solved

to obtain the state variable uuu. The system response function V (rrr,xxx) is defined

as a function of uuu:

V (rrr,xxx) = F (uuu(rrr,xxx),xxx) (1.7)



10

The objective of LSA is to obtain the derivative, or sensitivity, of V w.r.t the

stochastic input parameters as below,

dV

drrr = dF

duuu
duuu
drrr (1.8)

To evaluate the sensitivity of response function from Eqn. (1.8), when uuu is not

defined explicitly as a function of rrr, following methods can be used [18]:

(1.) Finite difference method: This method is based on Taylor series expansion

of the output function. It is comparatively easy to implement but often

results in high computational cost and low accuracy of the sensitivity

values. Based on the forward–difference method, the sensitivity of system

response V w.r.t design parameter ri is:

∇iV (rrr,xxx) = (V (rrr + ∆rrr,xxx)− V (rrr,xxx))
∆ri

+O(∆ri) (1.9)

where V (rrr + ∆rrr,xxx) = F (u(rrr + ∆rrr,xxx),xxx), ∆rrr = {0, . . . ,∆ri, . . . , 0} and the

truncation error is of the order O(∆ri). Here the displacement vector,

u(rrr + ∆rrr,xxx) can be obtained by solving the following descritized equation

using an FE solver:

KKK(rrr + ∆rrr,xxx)u(r + ∆rrr) = PPP (1.10)

Therefore, for each parameter in r, the sensitivity analysis using finite

difference requires one FE model evaluation. For n dimensional random

space of design parameters, the total number of FE evaluations is n + 1

which makes the method computationally expensive.

(2.) Direct differentiation method: To calculate sensitivity using the direct

differentiation method, the first step is to evaluate the derivative duuu
drrr , for

which we differentiate Eqn. (1.6) with respect to each parameter in the

input parameter set:
dKKK
dri

uuu + KKK duuu
dri

= dPPP
dri

(1.11)

which can be rearranged to the form

KKK duuu
dri

= dPPP
dri
− dKKK
dri

uuu for i = 1, 2, . . . , n (1.12)
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where n is the number of random parameters in the input parameter set

w.r.t which the sensitivities are calculated. Note that the above equation

is of the similar form as Eqn. (1.6), and therefore, solved for duuu
dri

with

little additional cost once the KKK−1 matrix is obtained as a by–product

of solving Eqn. (1.6). This process must be repeated for each of the

n random parameters. Once all the components in the vector duuu
drrr are

obtained, the sensitivities for the response function V can be calculated

from Eqn. (1.8).

(3.) Semi-analytical method: The semi-analytical method combines the finite

difference method and the direct differentiation method in an attempt to

find a trade-off between the ease of implementation of the former and the

accuracy and efficiency of the latter. In this method, the derivatives, dK
drrr

and dP
drrr are calculated using the finite difference method and the sensitiv-

ities are calculated using the direct differentiation method.

(ii) Global sensitivity analysis (GSA) - A sensitivity analysis method must

preferably be able to take into account the interaction effects among input

uncertainties and provide an estimate for the influence of input parameters

irrespective of the linearity or additivity properties of the model [17]. LSA

does not account for interaction effects of input parameters and is performed

at a chosen design point in the domain of variation of the input parameter.

Therefore, in many cases, LSA does not provide sufficient information regard-

ing the effect of variations in design parameters on system response over the

whole domain of possible design parameter variations. GSA can be classified

into following two groups [19, 20]: (i) regression based methods such as Pear-

son or Spearman correlation coefficient which is suitable for linear (Pearson)

or monotonic (Spearman) models and, (ii) variance based techniques such as

Fourier Amplitude Sensitivity Analysis (FAST) [21] and Sobol’ indices [22].

Among the two classes of methods, variance–based methods have both the

attributes mentioned above required of an ideal sensitivity analysis method.

The idea of variance decomposition methods is to partition the output variance

into contributions from each of the input parameters. Variance decomposition

based methods are useful to identify the subset of the input parameters that
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contribute significantly to output variance [23]. This information can also be

used to reduce the dimensionality of the input parameter space, and therefore,

the computational cost of uncertainty analysis.

1.3 Survey of existing literature

A considerable amount of research exists that investigates the deformation of bladed

disk structures under static and dynamic loading conditions. It is almost impossible

to mention all the works that have been done to date though every effort has been

taken to include those relevant to the present study.

In this section an attempt is made to collect and review relevant works that can be

found in the open literature on the following four topics:

i. Analysis of the deformation of the fir–tree root joints and the effects of variations

in fir–tree geometry on deformation of bladed disks.

ii. Effects of crystal orientation on mechanical properties of single crystal blades.

iii. Uncertainty and sensitivity analysis of mechanical systems focussing on gas

turbine engines.

iv. Intentional mistuning of the bladed disk.

1.3.1 Analysis of the deformation of fir–tree root joints

In a bladed disk assembly, the blade–disk joint constitutes the most critical load

path, and therefore, a detailed analysis of the stresses in the region close to disk

slot is necessary for the lifetime certification of gas turbine disk [24]. Several studies

that investigate the deformation and stresses at blade–disk joints are available in the

literature for both dovetail and fir–tree joints [25–31]. There are also several studies

investigating the effects of fir–tree geometry on stresses developed in the turbine

disk. Meguid et al. [24] studied the effect of variation in certain key geometric

features of the fir–tree, such as the number of teeth, flank angle and flank length,

on von Mises stresses at disk slot. Different studies exist in the literature that

optimises the fir-tree joint geometry in order to reduce the stresses developed in the
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joint [8, 32–35].

Due to the inherent randomness in the manufacturing process, it is impossible to

eliminate the variability in the geometry of the blade root and the disk slots. While

the geometry of fir-tree root joint in the design geometry of bladed disks is often

optimised for minimum stresses in the vicinity of the joint, the deviations from de-

sign geometry result in a suboptimal contact area between blade and disk. This

variation in contact area affects the magnitude of contact pressure, and therefore,

the contact stresses at the bladed disk root joint. Zboinski [36], while investigating

the effects of deviation in fir–tree root joints of bladed disks under static load, found

that manufacturing deviations can significantly change the contact stresses and con-

cluded that neglecting the deviations in geometry can result in erroneous estimation

of the contact stresses on fir–tree joints. Deshpande et al. [37] addressed the is-

sue of variation in geometry of fir–tree tooth by parametrising the geometry using

parametric CAD models. Qin et al.[38] studied the effect of geometry mismatch

in fir–tree joints on the natural frequency of blade by varying the surfaces where

contact or gap exists. From the survey of existing literature, it is evident that small

manufacturing variations in the fir–tree geometry can have significant influence on

the static deformation and stresses of bladed disk.

1.3.2 Effects of crystal orientation on mechanical properties

of single crystal blades

The nickel–based alloy blades in high–pressure turbine stages of modern gas tur-

bine engines are often monocrystalline, and the crystallographic orientation of the

monocrystal relative to the blade geometry influences the mechanical properties of

the blades [39–42]. The scatter in crystal orientations due to inaccuracies in the

casting process of single crystal blades results in the scatter in material properties

of the blades. For designing a robust bladed disk, it is vital to quantify the effects

of uncertainty in crystal orientations on deformation of the structure under different

operational loads. For a mistuned bladed disk, with scattering in blade properties

due to unavoidable inaccuracies in casting, a significant difference in displacements

and stresses between individual blades in a bladed disk is possible.
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McKay and Maier [42] studied the influence of crystal orientation on the stress

rupture properties of nickel-based superalloy single crystals. They reported that

crystals oriented in a region just a few degrees off the crystal lattice direction [001]†

exhibited inferior stress rupture properties compared to those of crystals aligned

approximately with [001] axis (see Fig.1.2). The influence of anisotropy orientation

on stress rupture life was found to be higher at elevated temperature. Arakere and

Swanson [39] developed a fatigue failure criteria for single crystal blades and pro-

posed a fatigue life equation for turbine blades subjected to low cycle fatigue (LCF).

Further, using FE stress analysis and the fatigue life equation, they studied the ef-

fects of variation in the primary and secondary orientation on fatigue life at critical

locations of the blade. More investigations on the influence of crystal orientation

on thermomechanical and fatigue behaviour of single-crystal alloys are available in

the literature [43–50]. Weiss et al.[51] investigated the effects of crystal orientation

on LCF and creep damage based lifetime of monocrystal blades using probabilistic

finite element analysis based on Monte-Carlo-Simulation (MCS) techniques.

Few investigations on the effects of blade material anisotropy orientations on the

static and dynamic response of the blades are available in the literature. Kaneko

[52], Manetti et al.[53], and Wen et al.[54] investigated the effects of variation in

crystal orientation on natural frequencies of blades. In his study, Kaneko [52] used a

simplified geometry to model the blade, and the results indicated that the variations

in three orientation angles, defining the crystal orientation, has different effects on

natural frequencies of the blade. He observed that an increase in primary angle,

α (Fig. 1.2), results in (i) an increase in natural frequency in the lower vibration

modes and for bending modes along the blade height and (ii) a decrease in natural

frequency for torsion modes. Further, he reported that the variation in secondary

angle, ζ, does not affect natural frequency of lower vibration modes and is significant

only for bending modes along the blade chord. Wen et al. [54], while investigating

the influence of crystal orientation on vibration characteristics of turbine blades ob-

served similar behaviour. They observed that the effect of the secondary angle on

lower mode frequencies is negligible when the primary axis is aligned with the blade
†Miller indices for a direction in the cubic lattice is represented as [u v w] where u, v, w are

projections of the direction vector on the cell edges represented as [100], [010] and [001] respectively.
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Figure 1.2: Crystal anisotropy angles for single crystal blades.

geometry axis. Also, the primary angle was found to have a significant influence

on lower mode frequencies whereas the secondary angle influenced the higher mode

frequencies. Kaneko et al. [55] studied the sensitivity of frequency response of mis-

tuned bladed disk with respect to anisotropy axis orientation. Sensitivity derivatives

of the blade alone natural frequency with respect to elastic constants and crystal

angles were obtained through finite element analysis and response surface for blade

natural frequency was generated using sensitivity derivatives. Monte Carlo simula-

tion using the surrogate model was used for frequency response analysis to obtain

statistical characteristics of vibration response with respect to variation of material

constant and crystal angles. Using the same methodology, Kaneko et al. [56] studied

the effect of mistuning due to scattering in material constants and crystal angle on

resonant response and random response of bladed disk. Savage [57] investigated the

effects of crystal orientation on elastic stresses in single crystal blades. He observed

that for a primary angle of 10◦, depending on the location of the primary axis in

the plane normal to that axis, the stress at turbine blade root was found to vary

between 9.7% and -19%. Fang and Li [58] studied the dynamic response properties
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of single crystal blades for two different orientation of crystal axis under different

rotor speeds. Zhang et al. [59] investigated the effect of crystal orientation on the

mechanical response of turbine blades using a non-linear FE model. Further, they

created a surrogate model with which they optimised the crystal orientation of the

blade with respect to shear stress and displacement at critical blade locations.

1.3.3 Uncertainty and sensitivity analysis

Uncertainty analysis (UA) often requires numerous evaluations of computational

models based on the sampling of input parameter space. The computational cost

of UA using conventional Monte Carlo methods are prohibitive when using high–

fidelity FE models. Therefore, in order to perform UA, the use of computationally

inexpensive surrogate models that can closely approximate the FE model is impera-

tive. The structure of the input parameter space is one of the deciding factors in the

choice of surrogate models. For situations when the input parameter set includes

both categorical and continuous variables, random forest (RF)[6] is a viable option.

RF is constituted by an ensemble of regression trees which are peace-wise continuous

models. Regression trees partition the input parameter space into smaller regions

where the output function can be approximated by simple models. The approximate

value of the function in the input parameter space is obtained by combining the out-

put of individual regression trees by averaging. Ling and Templeton [60] investigated

the use of three different data-driven algorithms including RF and support vector

machines [61] to identify regions in a fluid flow where the inaccuracy of Reynolds

Averaged Navier Stokes (RANS) models are high. They concluded that data–driven

algorithms provided a substantial improvement over conventional error detection

methods and showed the performance of RF based model to be superior in detect-

ing flow regions of high RANS simulation error compared to the other algorithms

used. Trehan et al. [62] used RF–based regression to model the error introduced by

reduced order models of parametrised dynamical systems. The possibility of using

data-driven algorithms such as RF for uncertainty analysis to avoid MCS and using

high-fidelity FE models has not been explored rigorously in the existing literature.

Polynomial chaos expansion (PCE) based surrogate models have been studied ex-

tensively because of its usefulness in quantifying uncertainty in dynamic systems
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[63, 64]. The main feature of PCE is the decomposition of stochastic function into a

linear combination of deterministic and stochastic components. The computational

effort in obtaining PCE is associated with the calculation of coefficients in the ex-

pansion based on numerous evaluations of the deterministic computational model.

Panunzio et al. [65] used PCE to study the effects of uncertainty in the tip-casing

gap on non-linear normal modes of turbine blades. Considering the modal stiffness

of blades as random variables, Sinha [66] obtained the statistics of forced response

for mistuned bladed disks using PCE.

Local sensitivity analysis cannot efficiently capture the higher order interaction be-

tween different input parameters if it exists in the model. Therefore, for sensitivity

analysis of non-linear, non-additive models global sensitivity analysis (GSA) is rec-

ommended [67]. The objective of GSA is to quantify the variation in system output

with respect to variations in input parameters over the entire domain of variation.

There is a subclass of GSA methods known as variance decomposition. The idea

behind variance decomposition methods is to partition the output variance into con-

tributions from each of the input parameters. The variance decomposition method

includes methods such as Fourier Amplitude Sensitivity Analysis and Sobol’ indices

[22]. Kala and Vales [67] used Sobol indices to study the influence of initial ge-

ometric imperfections and residual stresses on lateral-torsional buckling resistance

of I-beams. To reduce the computational cost involved in calculating Sobol in-

dices using conventional Monte Carlo Simulation (MCS), they used a polynomial

approximation of the output. Hesse et al. [19] used Sobol indices to identify impor-

tant design parameters that influence the maximum deformation of an automotive

structure in order to reduce the complexity involved in designing the structure for

crashworthiness. They used a response surface approximation based on support vec-

tor machines to reduce the computational cost involved in calculating Sobol indices

using MCS. Sudret [68] derived expressions for calculation of Sobol indices analyti-

cally from the expansion coefficients of PCE. While performing uncertainty analysis

of a coupled flow-thermo-mechanical model of a low–pressure turbine rotor of gas

turbine engines, Antinori et al. [69] used Sobol indices to reduce the dimensionality

of the input parameter space by identifying most influential design parameters in

the secondary air system of the aircraft engine.
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The uncertainty and sensitivity analysis of bladed disk structures can be grouped

into the following three categories: (i) uncertainty and sensitivity analysis of the

linear mistuned bladed disks, (ii) uncertainty and sensitivity analysis of the non-

linear mistuned bladed disks, and (iii) uncertainty and sensitivity analysis of the

non-linear tuned bladed disks. A literature review for each of the three categories

of uncertainty and sensitivity analysis of bladed disk is presented here.

(i.) Uncertainty and sensitivity analysis of linear mistuned bladed disks: One of

the first investigations focussing on the statistics of forced response for the

mistuned bladed disk is by Griffin and Hoosac [70]. Wei and Pierre [71] stud-

ied the response of nearly cyclically symmetric assemblies of mono-coupled

single-mode blades. The effects of random mistuning on the forced response

of bladed disk was investigated using a statistical study of the forced response

considering the modal properties of blades as random variables. The inves-

tigation on the parameter sensitivity of the forced response of bladed disk

showed that, while for tuned systems the maximum amplitude across the

assembly steadily decreases as the coupling between blades increases, for mis-

tuned systems, the amplitude peaks in weak coupling zone before reducing as

the coupling strength increases.

Statistical analysis using FE based reduced order models (ROM) of the mis-

tuned bladed disk is a popular approach. Avalos and Mignolet [72] studied

the effect of variability in blade–disk interface properties on the forced re-

sponse of bladed disks using Monte Carlo simulation. A blade-interface-disk

model was developed by combining substructuring with local modelling of

the interface. They randomised interface mass and stiffness matrices using

non-parametric stochastic modelling. It was observed that the combination of

mistuning resulting from scattering in blade–disk interface characteristics and

blade natural frequencies gives higher amplitude factors compared to that

obtained due to scatter in blade natural frequency alone. Beck et al. [73]

studied statistics of the mistuned response of Integrally Bladed Rotor (IBR).

A reduced order model using component mode synthesis was used in Monte

Carlo simulation to obtain the distribution of mistuning response. Two dif-

ferent methods namely nominal method and geometric method were used to
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simulate mistuning. While the nominal method alters the modal stiffness but

not mode shapes, the geometric method perturbs both frequency and mode

shapes. Statistics of mistuned forced response was obtained at three different

frequency ranges using 1000 IBRs, each investigated using the nominal and

geometric method. They concluded that the accuracy of the nominal method

decreases for higher frequencies. Myhre et al. [74] investigated the effect

of blade–to–blade coupling and rotation speed on maximum amplitude of a

mistuned bladed disk. He obtained statistics for maximum amplitude using

Monte Carlo simualtion of a ROM.

Joshi and Epureanu [75] studied statistical effects of damping variability on

the steady–state response of an IBR. A generalized component mode mistun-

ing method was developed to capture damping variability. Mistuning due to

damping was simulated as scatter in structural damping coefficients amongst

the blades. Scattering in blade amplification factor was computed using MCS

of numerous random damping patterns. D’Souza and Epureanu [76] used

component mode mistuning model to study uncertainty in forced response

of multi–stage bladed disks. Mistuning was simulated as scatter in stiffness

among each sector of a stage with each stage mistuned differently from the

adjacent stage. To investigate the effects of mistuning a reduced order model

of the two–stage rotor with a different number of blades was analysed for

numerous mistuning patterns of each stage. It was found that an increase

in mistuning level increased the amplification factor of the multi–stage sys-

tem. Laxalde and Pierre [77] proposed a stochastic reduced order modelling

technique for the uncertainty analysis of multi–stage mistuned bladed disk.

Vishwakarma and Sinha [78] used a high–fidelity reduced order model to ob-

tain the statistics for normalised maximum amplitude of the forced response of

bladed disk with geometric mistuning. Peiyi and Li [79] investigated the effect

of design parameters defining blade–to–blade coupling and strength of mis-

tuning on natural frequency of bladed disk using a lumped parameter model.

They concluded that the vibration amplification can be reduced by choosing

an optimum coupling strength and mistuning strength.

Sinha [66] estimated forced response statistics of the bladed disk correspond-
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ing to random scatter in blade stiffness using PCE. He introduced mistun-

ing in the model using random deviations in blade stiffness. The amplitude

of steady–state response was expanded using PCE. A set of linear algebraic

equations was formed using a non-intrusive method which was then solved for

deterministic PCE coefficients. Tan et al. [80] studied forced response sen-

sitivity to mistuning introduced by perturbing mass matrix. Sine and cosine

functions of different harmonics were used as shape functions to generate a re-

sponse surface for maximum blade amplitude as a function of blade mistuning

using known values of response amplitudes and their first and second order

sensitivities.

Hohl et al. [81] used reduced order modelling which combines component

mode synthesis and wave–based sub-structuring in Monte Carlo simulations.

Mistuning was introduced by varying fixed interface blade frequencies. Wave–

based sub-structuring reduces the number of coupling degrees of freedom of

the substructures. An optimisation procedure based on maximum amplitude

was developed to find the best and the worst case blade patterns. Bah et al.

[82] used a stochastic reduced basis method, which approximates the response

of bladed disk using stochastic basis vectors, for statistical analysis of the

forced response of mistuned bladed disks. They introduced mistuning as vari-

ation in the stiffness matrix. Liao et al. [83] determined maximum amplitude

with respect to different mistuning patterns by formulating an optimisation

problem. Two lumped parameter models of the bladed disk with 2 DOF and

3 DOF per sector with mass and stiffness mistuning was studied. A hybrid

approach using Genetic Algorithm and Sequential Quadratic Programming al-

gorithm was used to solve the optimisation problem. Raeisi and Ziaei-Rad [84]

obtained the worst mistuning pattern in terms of forced response amplification

by combining artificial neural network and genetic algorithm.

Bhartiya and Sinha [85] used a reduced order model based on modified modal

domain analysis which relies on proper orthogonal decomposition and allows

modelling of the mistuned bladed disk in the presence of simultaneous varia-

tions in mass and stiffness matrices. Mistuning patterns were generated from

random permutations of blades in an integrally bladed disk. Using the reduced
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order model, they investigated the effect of mistuning due to variation in blade

frequencies alone and due to simultaneous variation in blade frequency and

mode shapes on forced response of the bladed disk. Rahimi and Ziaei-Rad

[86] studied uncertainty in forced response of the mistuned bladed disk by

representing it based on a relationship between the tuned and mistuned sys-

tem. Genetic Algorithm was used to solve an optimisation problem to find

the worst-case response of bladed-disk assembly. A lumped mass model of the

bladed disk with 2 DOF per sector was used to study the effect of intentional

mistuning and rearrangement of blades on maximum amplitude response.

Yuan et al. [87] proposed a computationally efficient stochastic analysis of

bladed disk. The method addressed the limitation of the MCS that it cannot

yield small failure probabilities with a reasonable number of sample evalua-

tions. Subset simulation technique was used to reduce the number of evalua-

tions required to compute small failure probabilities using MCS. A stochastic

analysis was performed on the lumped parameter model of the bladed disk to

obtain the probability density function of maximum amplitude due to stiffness

mistuning. Bhartiya and Sinha [88] studied the statistics of forced response

amplitude and natural frequency of multi–stage rotor with geometric mistun-

ing. A reduced order model (ROM) using tuned modes from finite element

sector analysis was developed for a multi–stage rotor. The thickness of the

blade was varied to introduce geometric mistuning. Monte Carlo simulation

using ROM was performed to obtain the statistics of natural frequency and

forced response with respect to numerous random permutations of the mis-

tuning pattern.

Yuan et al. [89] proposed a novel hybrid Neumann expansion method for

stochastic analysis of the bladed disk. The Neumann expansion coupled with

matrix factorization was used to circumvent the requirement for direct inver-

sion of uncertain dynamic stiffness matrix in stochastic finite element method

which incurs a high computational cost. The stochastic analysis was per-

formed to model uncertainty in frequency response due to perturbation in the

mass or stiffness matrix. Nikolic, Petrov and Ewins [90] studied the effective-

ness of large mistuning (LM) concept in reducing the forced response of the
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bladed disk. Statistics of forced response for mistuned patterns, drawn ran-

domly from a uniform distribution, was obtained using MCS. Several carefully

chosen mistuning patterns based on LM concept was studied for their sensi-

tivity to small unavoidable random mistuning. An improvement in maximum

forced response robustness was obtained using LM patterns.

Chan and Ewins [91] proposed a procedure to estimate the probability of

extreme vibration levels, i.e. rare probability events, due to mistuning. Opti-

misation based on the conjugate gradient method was used to find the max-

imum response and associated worst mistuning pattern. The probability of

encountering forced response beyond a threshold value was evaluated using im-

portance sampling. The number of experiments required to evaluate extreme

vibrations levels was reduced to a fraction of that used by direct MCS. Cazen-

ove et al. [92] used the one-step-at-a-time method, i.e., for each numerical

experiment only one input parameter is perturbed to study the forced re-

sponse of mistuned bladed disk. The sensitivity of forced response to Young’s

modulus, modal damping ratio and aeroelastic coefficients were investigated.

To introduce geometry mistuning a fringe projection 3D scanner was used to

scan the geometry of an industrial bladed disk. In order to reduce a large

number of response computations needed for sensitivity analysis a ROM was

used.

(ii.) Uncertainty and sensitivity analysis of non-linear mistuned bladed disks: Cha

and Sinha [93] studied the statistical characteristics of a frictionally damped,

mistuned bladed disk when subjected to white noise and narrowband exci-

tations. They proposed an analytical method to calculate the variance in

the response of friction damped bladed disk subjected to random excitation.

Equivalent linearization method which is an approximation to replace nonlin-

ear terms by linear ones that minimise the error between the two methods was

used. Random scatter in blade stiffness was used to introduce mistuning in

the model. Two types of friction dampers were modelled; (a) due to the blade

to ground contact and (b) due to the blade to blade contact. For white noise

excitation, it was observed that mistuning does not affect the response signifi-

cantly for the blade to blade damper models compared to the blade to ground
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damper models. Capiez-Lernout et al. [94] developed a mean computational

model of the tuned bladed disk using FEM accounting for nonlinearity due to

large displacements. Non-linear reduced order model (NL-ROM) of the tuned

structure was obtained using proper orthogonal decomposition method. Mis-

tuning was introduced by replacing operators of mean NL-ROM with random

operators whose probability distribution is obtained using the maximum en-

tropy principle. The modified model was used to perform MCS and to obtain

uncertainty in the response of the integrally bladed disk.

(iii.) Uncertainty and sensitivity analysis of non-linear tuned bladed disks: Petrov

[95] derived expressions for first and second order sensitivity coefficients of

forced response, of strongly nonlinear structures, from the nonlinear multi–

harmonic equation of motion. For the forced response, a set of coupled non-

linear equations was solved simultaneously using Newton-Raphson iteration.

General expressions for sensitivity with respect to parameters of nonlinear in-

teraction forces at contact interfaces, such as friction coefficient, interference

and clearance values and stiffness coefficients were derived. Also, expressions

for sensitivity with respect to variation in linear components in the structure

such as mass, stiffness and damping values were derived in addition to those

for variation with respect to excitation frequency and excitation forces.

The analytically derived expression allowed the efficient computation of sensi-

tivity coefficients. Further reduction in the computational cost was achieved

because the Jacobian matrices required for the calculation of sensitivity coef-

ficients could be obtained as a by-product of the Newton Raphson iteration

procedure. The study on the sensitivity of forced response of bladed disk with

friction interface at shroud contact showed that forced response become sen-

sitive to interference value and friction coefficient in the vicinity of resonance

peak with sensitivity coefficients with respect to interference value being sig-

nificantly higher. A similar study to elucidate the effect of under-platform

damper parameters, such as damper mass, friction coefficient and damper

location on forced response vibration showed that the sensitivity to these pa-

rameters is most evident near resonance peak. Also, the sensitivity of forced

response with respect to damper mass was found to be higher than for damper
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radius and friction coefficient.

In Ref.[96], Petrov studied the sensitivity of the steady–state limit cycle oscil-

lations (LCO), the flutter of the bladed disk, with respect to friction interface

parameters such as friction coefficient, tangential stiffness and static normal

load. Reduced order modelling using condensation of the degree of freedom

was used to reduce the size of the LCO model. Analytical expressions for

the sensitivity of limit cycle amplitude and frequency were obtained, thereby

allowing sensitivity coefficients to be obtained without significant additional

computational cost. It was found that the LCO amplitude and frequency

of a tuned bladed disk are sensitive to variation in fluttering mode damp-

ing factor and friction coefficient at contact interfaces. In Ref. [97], he ob-

tained statistical characteristics of forced response of bladed disk with friction

damping. First and second–order Taylor series approximations of response,

in terms of local sensitivity values, were used to obtain the response statis-

tics. The method allows estimation of the mean and standard deviation of re-

sponse when these statistical characteristics are available for input parameters

whereas when probability density function of input parameters are available,

the method allows calculation of response PDF.

1.3.4 Intentional mistuning of the bladed disk

A turbine bladed disk will experience travelling wave excitation due to a finite

number of flow distortions occurring upstream or downstream of the bladed disk. If

there is P number of flow distortions, then the rotating bladed disk will experience

a travelling wave excitation with wave number or spatial frequency of P times the

rotational speed of the turbine which is referred as P engine order (EO) excitation.

For a tuned bladed disk, in the absence of any non-linear effects, the forced response

to these excitations are also a travelling wave with the same spatial frequency as

that of the forcing wave. Therefore, all blades follow the same vibration cycle under

travelling wave excitation but with a constant phase difference between adjacent

blades, determined by the EO, resulting in nodal diameters (NDs) with zero modal

deflections across the diameter of the disk. Hence a travelling wave excitation of

P EO will result in a P nodal diameter structural mode shape with a maximum
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number of nodal diameter equal to half the number of blades in the bladed disk.

In a mistuned bladed disk, due to distortion of the mode shapes and splitting of

the natural frequency, the response of the bladed disk to travelling wave excitations

are no longer a single travelling wave but can be represented as a superposition of

travelling waves with different EOs. Mistuning produces coupling between tuned

modes that are in the vicinity of the tuned mode that is directly excited. The

higher the number of modes that participate in the mistuned response, the higher

the amplification of the response can be. Therefore, intentional mistuning aims

to reduce the possibility of blade-to-blade interaction, by moving the frequency of

adjacent blades apart, in order to reduce the amplification due to random mistuning

[98].

Griffin and Hoosac [70] investigated a scheme of blade mistuning where identical

high–frequency blades and identical low–frequency blades were arranged alterna-

tively in slots around the disk. They found that the scatter in vibration amplitude

reduced while using the proposed scheme compared to randomly mistuned bladed

disk. Castanier and Pierre [99] investigated the combined effects of intentional and

random mistuning on forced response vibration of the bladed disk. They introduced

intentional mistuning in the bladed disk by varying blade stiffness in harmonic pat-

terns. It was concluded that for certain intentional mistuning patterns the maximum

forced response obtained is significantly smaller than that of tuned bladed disk. Con-

sidering the forced response of the bladed disk, Petrov et al. [100] formulated the

problem of finding the best and worst mistuning pattern as a combinatorial optimi-

sation problem. In order to reduce the computational cost involved in optimisation

using a genetic algorithm, a gradient–based polynomial response surface for max-

imum displacement was used. Several studies have reported the tendency of the

forced response amplitude to exhibit a peak at a small value of mistuning as the

mistuning strength is increased. Based on this idea, Nikolic et al. [90] investigated

the idea of intentional mistuning using blades with larger mistuning strength to limit

the amplification of forced response due to mistuning. For an axial turbine IBR,

Beirow et al. [101] investigated the potential of intentional mistuning for reducing

the forced response due to low engine order excitations. Martel et al. [98] investi-

gated the beneficial effects of using intentional mistuning on the forced response of
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IBR when the damping is predominantly due to aerodynamic effects.

1.4 Objectives and scope of the work

The present study focuses on the static and dynamic response of bladed disks struc-

tures considering the effects of random variations in the design due to deviations

resulting from inherent randomness in the manufacturing processes. The effects of

variations in the design of bladed disks with single crystal blades due to the following

two aspects are investigated:

(1.) The variations in design geometry of fir–tree root joints due to deviations within

the manufacturing tolerance.

(2.) The variations in material anisotropy orientation of single crystal blades due to

inherent randomness in the casting process of such blades.

A thorough review of the existing literature reveals that, while there are few pub-

lished results that provide an account of the effects of variations in material anisotropy

orientation on the static and dynamic response of individual blades, no effort has

been made to understand the effects of crystal anisotropy orientation on the response

of mistuned bladed disks. For the case of tuned bladed disks, as it is clear from the

literature review, there is a gap in knowledge on the effects of variations in material

anisotropy on static response of bladed disks when the deviations in fir–tree root

joint geometry are also accounted.

As far as the analysis of any engineering structure is concerned the uncertainty in

the response of the structure might result from the uncertainty in design parameters

or due to lack of sufficient knowledge about the operational conditions. In this

study uncertainty and sensitivity analysis is performed to quantify the effects of

uncertainty in design parameters on the response of bladed disks and to obtain a

rank order of importance of the design parameters in terms of their influence on the

response of the structure.

Uncertainty analysis for realistic high–fidelity FE models of the bladed disk using

conventional Monte Carlo method is computationally intensive. Therefore, the use-

fulness of carefully chosen, computationally inexpensive surrogates of FE models for
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uncertainty quantification is investigated. The structure of the parameter space is

an important factor that concerns the choice of the surrogate model. In this study

two different surrogate models are used:

(i.) Random forest - when the input parameter set is a combination of continuous

and categorical variables.

(ii.) Polynomial chaos expansion - when all the input parameters are continuous

variables.

Local and global sensitivity analysis for deformation of bladed disks w.r.t material

anisotropy orientation of single crystal blades is performed. In order to calculate the

local sensitivity of static deformation of bladed disk with respect to blade anisotropy

angles, the sensitivity function implemented in CalculiX [102] FE solver is used. The

global sensitivity, namely Sobol indices, are calculated efficiently after obtaining

PCE for blade deformation using ChaosPy [103], which is a Python module for

uncertainty analysis.

1.4.1 Project objectives

The following objectives define the scope of the present study:

i. Sensitivity and uncertainty analysis for static deformation of tuned bladed disks

with friction joints and randomness in blade material anisotropy orientation

with due account for some possible variations in fir–tree root joint geometry.

ii. Sensitivity and uncertainty analysis for static deformation of mistuned bladed

disks with random material anisotropy orientations for the following two cases:

(i) linear bladed disk and (ii) non-linear bladed disks with friction joints between

blades and disk.

iii. Sensitivity and uncertainty analysis for the forced response of mistuned linear

bladed disks with bonded contacts at shroud and blade–disk interface.

The forced response analysis of the bladed disk and the related local sensitivity

analysis with respect to blade anisotropy angles is performed using an in-house

code, named ContaDyn. For uncertainty and sensitivity analysis of anisotropy mis-

tuned bladed disk, a code, named ChaoStat, was developed to integrate different



28

tools including the FE solver CalculiX, the Python module for uncertainty analysis

ChaosPy, and the in-house code for forced response analysis ContaDyn.

The methods and tools developed in this study can be used in an industrial setting

to determine the most influential angles defining the crystal orientation of a single

crystal blade. From the manufacturing point of view, this information can be used

to set tighter tolerance values for the most influential crystal anisotropy angles

identified. This will result in subsequent reduction in uncertainty of static and

dynamic response of the bladed disk under operating conditions.



Chapter 2

Methodology of analysis

The mathematical formulation for static and dynamic analysis of bladed disk struc-

tures and calculation of the sensitivities of blade deformation w.r.t material anisotropy

orientations are presented in this chapter. For computationally efficient uncertainty

and global sensitivity analysis using high–fidelity FE simulation models of bladed

disks, surrogate models are used. The mathematical formulation for (i) random

forest and (ii) polynomial chaos expansion based surrogate models are presented. A

theoretical formulation for a sensitivity based method for estimation of the proba-

bility density function of the stochastic response of a bladed disk is also presented

in this chapter.

2.1 Modelling of anisotropy-mistuned bladed disks

A single crystal blade made of nickel alloy has a face-centred cubic crystal structure,

and due to the symmetry of the crystal structure, the elastic constants are constant

along three principal crystallographic directions namely [100], [010] and [001] shown

in Fig. 1.2. Therefore, in this study, the single crystal blades in the bladed disk are

modelled as orthotropic materials.

2.1.1 Non-linear static analysis

Fig. 3.1 shows a realistic bladed disk model with 75 blades. The orientation of the

crystal coordinate system is defined with respect to the blade geometry coordinate

29
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system by three Euler angles, α, β and ζ as shown in Fig.1.2. These angles are

obtained from the manufacturer of the blades and are defined as below:

• α - The angle between crystallographic direction [001] and Z–axis. Its is also

called the primary angle and is always positive.

• β - The angle between crystallographic direction [100] and X–axis or angle

between crystallographic direction [010] and X–axis depending on whichever

is smaller. It is also called the secondary angle and is always positive.

• ζ - The angle of rotation defining the orientation of crystallographic direction

[001] with respect to the Z–axis.

The elastic stress–strain relationship for orthotropic materials is given by Eq.(2.1)

{εεε} = [SSS]{σσσ} (2.1)

where, σσσ and εεε are stress tensor and strain tensor in the crystal coordinate system,

and the material compliance matrix [SSS], expressed in the crystal coordinate system

as:

[S][S][S] =



S11 S12 S13 0 0 0

S12 S22 S23 0 0 0

S13 S23 S33 0 0 0

0 0 0 S44 0 0

0 0 0 0 S55 0

0 0 0 0 0 S66



(2.2)

where, Sij is the element of the compliance matrix in the crystal coordinate system.

For orthotropic material, S11 = S22 = S33 = 1/E, S12 = S12 = S23 = −ν/E, and

S44 = S55 = S66 = 1/G, where ν is Poisson’s ratio, E is Young’s modulus and

G is shear modulus. The compliance matrix for orthotropic material with cubic

symmetric is identical to that for isotropic material except that, for orthotropic

material, the ratio E/(2µ(1 + ν)) 6= 1.

In order to perform FE analysis of a bladed disk, the stress-strain relationship

(Eq.2.1) has to be transformed to a global CS. The coordinate transformation for
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stress and strain tensor in crystal coordinate system to stress and strain tensor in

global CS is given by Eq.(2.3) and Eq.(2.4) respectively

{σσσ′} = [TTT]{σσσ}[TTT]T = [T̄̄T̄T]{σσσ} (2.3)

{εεε′} = [TTT]{εεε}[TTT]T = [T̄̄T̄T]{εεε} (2.4)

where, σσσ′, εεε′ are stress and strain tensors in global CS, and

[T][T][T] =


l1 l2 l3

m1 m2 m3

n1 n2 n3

 (2.5)

and

[T̄][T̄][T̄] =



l21 l22 l23 2l2l3 2l1l3 2l1l2
m2

1 m2
2 m2

3 2m2m3 2m1m3 2m1m2

n2
1 n2

2 n2
3 2n2n3 2n1n3 2n1n2

m1n1 m2n2 m3n3 m2n3 + n2m3 m1n3 +m3n1 m1n2 + n3m1

l1m1 l2m2 l3m3 l2n3 + n2l3 l1n3 + n1l3 l1n2 + n1l2

l1n1 l2n2 l3m3 l2m3 + l3m2 l1m3 + l3m1 l1m2 +m1l2


(2.6)

are transformation matrices formed from direction cosines, li,mi and ni, between

blade anisotropy CS and global CS, while allowing for orientation of blade stacking

axis in the bladed disk. From Eqs.(2.1), (2.3) and (2.4), the compliance matrix in

global CS could be written as in Eq.(2.7)

[SSS′] = [T̄TT][SSS][T̄TT]−1 (2.7)

Similarly, the elasticity matrix in global CS is given by Eq.(2.8)

[EEE′] = [T̄TT][EEE][T̄TT]−1 (2.8)

where, EEE is the elasticity matrix in crystal CS. For non-linear static problem, the

solution is obtained by solving the governing equation of the bladed disk:

KKK(ξξξj)xxx + FFFnln(xxx) = PPP, j = 1, . . . , NB (2.9)

where, ξξξj = {αj, βj, ζj} is the vector of anisotropy angles defining the orientation of

the crystallographic axis of jth blade in the bladed disk, NB is the number of blades
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in the bladed disk, FFFnln(xxx) is the vector of non-linear internal forces due to the non-

linear contact interactions and the geometric non-linearity, PPP is the vector of static

external forces and the global stiffness matrix, KKK of the bladed disk is obtained by

assembling the element stiffness matrices kkke:

kkke =
∫
V e

BBBTEEE′(ξξξj)BBB dV e, e = 1, . . . , Nel, j = 1, . . . , NB (2.10)

where, BBB is the strain-displacement matrix , V e is the element volume and Nel is

the total number of elements and NB is the number of blades in the bladed disk.

Eqn. (2.9) is solved using Newton-Raphson iteration method:

xxxk+1 = xxxk + JJJ (KKKxxxk + FFFnln(xxxk)−PPP) (2.11)

where JJJ =
(
KKK + ∂FFFnln

∂xxx

)
is the Jacobian of Eq.(2.9) and xxxk, xxxk+1 are the approximate

solutions obtained at kth and (k + 1)th iteration respectively. The iterative pro-

cess terminates when the solution reaches sufficient accuracy, ε; for example, when

||xxxk+1 − xxxk|| < ε.

2.1.2 Sensitivity of static displacement to anisotropy orien-

tation

The equation for displacement sensitivity corresponding to jth blade anisotropy is

obtained by differentiating Eq.(2.9) with respect to vector of anisotropy angles, ξξξj:

∂KKK
∂ξξξj

xxx + KKK ∂xxx
∂ξξξj

+ ∂FFFnln
∂xxx

∂xxx
∂ξξξj

= 0 (2.12)

rearranging terms in Eq.(2.12):(
KKK + ∂FFFnln

∂xxx

)
∂xxx
∂ξξξj

= JJJ ∂xxx
∂ξξξj

= −∂KKK
∂ξξξj

xxx∗, j = 1, . . . , NB (2.13)

where xxx∗ is solution vector obtained by solving Eq.(2.9), ∂xxx/∂ξξξj is the required

sensitivities and NB is the total number of blades in the bladed disk.

The sensitivities of the element stiffness matrix w.r.t crystal orientation is calculated

by differentiating Eq.(2.10)

∂kkke

∂ξξξj
=
∫
V e

BBBT ∂EEE′

∂ξξξj
BBB dV e (2.14)
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where ∂EEE′/∂ξξξj, the derivative of the elasticity matrix with respect to anisotropy

angles of jth blade is obtained as:

∂EEE′

∂ξξξj
= ∂T̄TT
∂ξξξj

EEET̄TTT + T̄TTEEE∂T̄TTT

∂ξξξj
(2.15)

The sensitivities of element stiffness matrix, kkke, is assembled using standard FE

assembling procedure to obtain the sensitivities of global stiffness matrix, ∂KKK/∂ξξξj,

in the right hand side of Eq.(2.13).

The Jacobian matrix, JJJ in Eq.(2.13) is evaluated while solving Eq.(2.9), and hence,

the computational cost involved in calculation of sensitivities is kept to minimum.

2.1.3 Sensitivity of stresses to anisotropy orientation

In order to obtain the sensitivity of stresses with respect to blade anisotropy angles

of a mistuned bladed disk, we begin by calculating the sensitivity of strain from the

expression:
∂εεε

∂ξξξj
= BBB ∂x

∂ξξξj
(2.16)

where, εεε is the vector of strain components, ξξξj is the vector of anisotropy angles

of jth blade, BBB is the strain-displacement matrix and ∂x/∂ξξξj is the sensitivity of

displacements which is obtained by solving Eqn. (2.13).

From constitutive law, we have the expression for stresses as:

σσσ = EEE′εεε (2.17)

where, σσσ = {σxx, σyy, σzz, τxy, τyz, τzx}T is the vector of stress components and EEE′ is

the elasticity matrix in the global CS.

Differentiating Eqn. (2.17) and substituting Eqn. (2.16) for the sensitivity of strain

components, we obtain the expression for the sensitivity of stresses:

∂σσσ

∂ξξξj
= EEE′BBB ∂x

∂ξξξj
(2.18)

When the stress components are known, von Mises stress can be calculated from

the expression:

σV =
√

(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6(τ 2
xy + τ 2

yz + τ 2
zx)

2 (2.19)
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The sensitivity of von Mises stresses with respect to jth blade anisotropy angles is

obtained by differentiating Eqn. (2.19):

2σV
∂σV
∂ξξξj

= (σxx − σyy)(
∂σxx
∂ξξξj

− ∂σyy
∂ξξξj

) + (σyy − σzz)(
∂σyy
∂ξξξj
− ∂σzz

∂ξξξj
)+

(σzz − σxx)(
∂σzz
∂ξξξj
− ∂σxx

∂ξξξj
) + 6(τxy

∂τxy
∂ξξξj

+ τyz
∂τyz
∂ξξξj

+ τzx
∂τzx
∂ξξξj

)
(2.20)

2.1.4 Sensitivity of forced response for anisotropy mistuned

bladed disk

The mathematical formulation for forced response analysis and its sensitivity to

blade anisotropy angles of a mistuned bladed disk with linear bonded contacts is pre-

sented in this section. In order to investigate the effects of blade material anisotropy

orientation on the forced response of mistuned bladed disk, the analysis is restricted

to bladed disks with linear bonded contacts at fir–tree roots and shrouds. For un-

certainty and sensitivity analysis of forced response, the choice of bladed disks with

linear bonded contacts is justified for the following two reasons:

1. The bladed disk with bonded contacts at joints has higher stiffness compared

to the case when the joints are modelled using friction contact elements. For

such a system, due to the absence of additional damping provided by friction

joints, the effects of variation in the crystal orientation of blades on the forced

response will be higher compared to that of the non-linear bladed disk. There-

fore the analysis of linear bladed disk provides a conservative estimate of the

effects of anisotropy mistuning on the forced response.

2. The computational cost associated with forced response analysis of bladed

disk with linear bonded contacts at fir–tree root and shrouds is comparatively

low while considering the corresponding cost for a bladed disk with non-linear

friction contacts.

In order to calculate the local sensitivity of the forced response of a multi-degree-

of-freedom system, the derivatives of eigenvalues and mode shapes with respect to

the anisotropy angles have to be calculated. The eigenvalue problem of the multi-

degree-of-freedom dynamic systems is formed for the whole anisotropy mistuned
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bladed disk in the form:

KKKφφφj = λjMMMφφφj (2.21)

where j denotes the mode number, and the stiffness matrix denoted as KKK, the eigen-

value λj and the mode shape φφφj, are dependent on the anisotropy axis orientation,

but the mass matrix MMM is not. By differentiating Eqn. (2.21) with respect to the

vector of anisotropy angles of a blade, ξξξ, and considering mass normalised mode

shapes, the sensitivity of the eigenvalues for a multi-degree-of-freedom dynamic sys-

tem results in [104]:
∂λj
∂ξξξ

= φφφTj
∂KKK
∂ξξξ
φφφj (2.22)

The derivative of the stiffness matrix in Eqn. (2.22) is calculated by the numerical

scheme of finite differences described in detail in [105].

The calculation of the sensitivity of mode shapes with respect to the anisotropy pa-

rameters is carried out using an enhanced method presented in [105]. The derivative

of the eigenvectors are expressed by a series expansion formula that accounts for the

terms that are not included in the expansion:

∂φφφj
∂ξξξ

=
m∑
k=1

djkφφφk + rrrj (2.23)

where djk are the coefficients of the series expansion and can be expressed as;

djk =


λj−λ0

(λk−λj)(λk−λ0)φφφ
T
k fffj if k 6= j

− φTkφ
T
kφ
T
k fffj

λk−λ0
if k = j

(2.24)

and the residual term, rrrj, can be calculated by solving the system of linear equations:

(KKK− λ0MMM)rrrj = fffj (2.25)

The term fffj introduced in Eqns. (2.24) and (2.25) can be calculated as:

fffj = −
(
∂KKK
∂ξξξ
− ∂λj

∂ξξξ
MMM
)
φφφj (2.26)

The reference frequency, λ0, used in Eqns. 2.25 and 2.24 is obtained for each mode

shape as:

λ0 = λj + λj−1

2 (2.27)
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The equation of motion for a mistuned structure under harmonic excitation, fff(t) =

Feiωt, when the forced response, x(t) = Xeiωt, is also harmonic takes the form:[
K + iωD− ω2M

]
X = F (2.28)

For the engine order excitation by k-th excitation harmonic, the phase shift between

neighbouring sectors is equal to eiδk, where δ = 2π/NB and NB is the total number

of blades in the bladed disk, and the force vector for the whole structure takes the

following form:

F =
{
FS, eiδkFS, . . . , eiδk(NB−1)FS

}T
(2.29)

where FS is the distribution of the complex amplitude of excitation load over one

sector of the bladed disk. The amplitude, X, of forced response of the structure can

be calculated when the modal characteristics are known:

XXX =
r∑
j=1

φTj FFF

(1 + iηj)ω2
j − ω2φj =

r∑
j=1

ajφj (2.30)

where r is the number of mode shapes retained for the forced response analysis, ηj
is the modal damping factor for jth mode, ωj is the jth natural frequency and φj

is the corresponding mode shape of the mistuned bladed disk. Using Eqn. (2.30),

the blade amplitudes can be calculated for any set of nodes selected from the whole

structure, thereby significantly reducing the computational time by selection of set

nodes of interest from the whole finite element model of the bladed disk. This set

of selected nodes usually contains several hundred or thousand degrees of freedom

(DOF) while the whole FE model can contain millions of DOF.

Differentiating Eqn. (2.30) with respect to anisotropy angles we obtain the expres-

sion for the sensitivity of the amplitude of forced response:

X ′X ′X ′ =
r∑
j=1

a′jφj + ajφ
′
j (2.31)

where the prime symbol indicates the derivative, ∂/∂ξξξ, and the derivative of the

modal expansion coefficient can be obtained from the expression below:

a′j =
FTφ′j

(1 + iηj)ω2
j − ω2 −

FTφj
[
(1 + iη′j)ω2

j + 2(1 + iηj)ωjω′j
]

[
(1 + iηj)ω2

j − ω2
]2 (2.32)

where φ′j = ∂φj/∂ξξξ is the derivative of mode shape φj with respect to the vector of

anisotropy angle ξξξ.
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2.2 Uncertainty analysis

As an alternative for computationally inefficient uncertainty analysis using Monte

Carlo simulations of high–fidelity FE models of bladed disks, effective surrogates for

FE models are used in this study. The following two surrogate models are used to

obtain the statistical characteristics for bladed disks: (i) Random Forest and (ii)

Polynomial Chaos Expansion.

2.2.1 Random Forest

The computational cost associated with uncertainty analysis of bladed disks could

be significantly reduced by using computationally inexpensive surrogate models that

can closely approximate the FE model. In this section, the idea behind random for-

est based surrogate model is explained. A random forest is a collection of randomised

regression trees. Each regression tree consists of a series of criteria, about the input

parameters, that split the input parameter space into subregions. The function anal-

ysed is then approximated by a constant value within each sub-domain. Therefore,

the regression tree could be thought of as a piecewise constant regression model.

Splitting the domain into sub-domains

The idea of regression tree approximation can be illustrated using a simple example.

Let us consider a function of two variables, y(x1, x2). In order to approximate this

function in the domain 0 ≤ x1 ≤ 6, 0 ≤ x2 ≤ 4, we need to know the the criteria for

splitting the domain into sub-domains (also referred as “nodes” of a decision tree)

and also the constant value of approximation (node constant) for each sub-domain.

In each sub-domain, the value of approximation is equal to the mean or median

of the function evaluations within the considered domain depending on the chosen

criteria of splitting the domain. For an example case, when the sub-domains and

the function approximation within each sub-domain is given by Eqn. (2.33), the
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regression tree approximation of the function y can be visualised as in Fig. 2.1.

y(x1, x2) ≈



28 x1 ≤ 4, x2 ≤ 2

55 x1 ≤ 4, x2 > 2

18 4 < x1 ≤ 5

12 x1 > 5

(2.33)

Figure 2.1: Regression tree: a piecewise constant regression model

Note that each of the four sub-domains, shown in Fig. 2.1, can be further split by

specifying additional splitting criteria depending on the number of function evalua-

tions, for example, FE model realisations, available within a particular sub-domain.

The minimum number of function evaluations required for further splitting a sub-

domain is two. By increasing the minimum number of function evaluations required

for further splitting, the number of splits in a regression tree, and therefore the

number of sub-domains, can be reduced.

The two popular splitting criteria used to build regression trees are minimising the

mean square error (MSE) and minimising the mean absolute error (MAE). Based

on the MSE criterion the error of approximation associated with a sub-domain in
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the decision tree is the average of the squared differences between the function

evaluations within the node and the node constant. The node constant in this case

is the mean of the function evaluations associated with the node. If {xi, yi} : i ∈Mt

represent the set of values of independent variables and the corresponding value of

function evaluations associated with node t, the mean square error of the node is

[106]:

mse(t) = 1
nt

∑
i∈Mt

(yi − ȳ)2 (2.34)

where, Mt is the set of function evaluations within the considered node or sub-

domain, nt is the number of function evaluations at node t, yi is the value of function

corresponding to ith values of the independent variables represented by vector xi, ȳ

is the mean of all values obtained from the function evaluation for node t. To split

a node in the regression tree into two daughter nodes, splitting rule is chosen such

that the weighted average of the error in the resulting nodes is minimum. In other

words, the splitting rule that minimises the error mse(s, t) of the split s is chosen,

where

mse(s, t) = ntL
nt
mse(tL) + ntR

nt
mse(tR) (2.35)

where ntL and ntR are the number of model realisations that are associated to the

left and right daughter nodes respectively. This is equivalent to maximising the

reduction in error, ∆mse(s, t), in the tree after the splitting, where

∆mse(s, t) = mse(t)−mse(s, t) (2.36)

Building a regression tree based on MAE criterion requires that the mean absolute

deviation at all nodes be reduced to the minimum. The value of the node constant

that minimises the mean absolute error of the node, for the set of function evalua-

tions {xi, yi} within the node, is given by the median of the response variables in

the set. Given the set of function evaluations, {xi, yi} : i ∈ Mt within node t, the

mean absolute deviation of the node is:

mae(t) = 1
nt

∑
i∈Mt

|(yi − ŷ)| (2.37)

where, Mt is the set of function evaluations within the considered node or sub-

domain, nt is the number of function evaluations at node t, yi is the value of function

corresponding to ith values of the independent variables represented by vector xi, ŷ
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is the median of the function evaluations in the set Mt. The mean absolute error

(mae) of a split s is:

mae(s, t) = ntL
nt
mae(tL) + ntR

nt
mae(tR) (2.38)

For the case of MAE criterion, the best split at a node is the one among the set of

all possible splits which maximises the reduction in the mean absolute error in the

tree after the split obtained as:

∆mae(s, t) = mae(t)−mae(s, t) (2.39)

Training and test sets

In order to build the regression tree model and to test the accuracy of the model

obtained, the function evaluations represented by the set, {xi, yi} : i ∈ M , are

divided into the following two subsets: (i) training set represented as {xi, yi} : i ∈

Mtr and (ii) test set represented as {xi, yi} : i ∈ Mte, where the vector xi is the

ith values of independent variables, yi is the value of function corresponding to xi,

M is the complete set of function evaluations available, Mtr is the set of function

evaluations to which the regression tree model is fitted, and Mte is the set of function

evaluations on which accuracy of prediction of the regression tree model is tested.

The application of a regression tree model is limited because these models often

suffer from high variance[107] and overfitting∗. The primary reason for the high

variance is the hierarchical nature of the process where an error in the higher nodes

of the tree affects all the nodes below it. By averaging the regression estimate of an

ensemble of regression trees, RF algorithm mitigates high variance and overfitting

associated with the individual regression trees, and thereby, improve the predictive

accuracy of the surrogate model. For the present study we use scikit-learn [108]

which is a Python library that integrates several state-of-the-art machine learning

algorithms. The main steps involved in the RF algorithm is shown in Fig.2.2. The

user defines the number of regression trees in the ensemble and the minimum number

of function evaluations, associated with a particular node, required to split that
∗The regression model is considered to be an overfit when it corresponds closely to a particular

training data, and therefore to the noise associated with that set of data, thereby failing to model
the underlying variation. Thus overfitting reduces the accuracy of prediction of the model for new
data sets and therefore affects the generality of the model.
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node. Each regression tree in the RF model is trained using a bootstrap sample

of the FE evaluations. In order to further randomise the regression trees, the best

split is obtained, using MSE or MAE criteria, by considering a random subset of

the design variables. The binary split of a node results in two daughter nodes which

are further split until the minimum number of sample evaluations at the node is less

than the value specified by the user.

2.2.2 Polynomial chaos expansion.

The idea behind PCE is to project the stochastic output y(ξξξ) in the n-dimensional

random space spanned by orthogonal polynomial basis ψi(ξξξ) which are functions of

the n-dimensional random variable ξξξ = {ξ1, ξ2, . . . , ξn}. The output function, which

can be displacement, stress or modal characteristics like natural frequency, could be

expanded using PCE as shown in Eq.(2.40)

y(ξξξ) =
∞∑
i=0

ciψi(ξξξ) (2.40)

where ci are unknown coefficients in the expansion that need to be evaluated. For

practical reasons, the series in Eq.(2.40) could be truncated by limiting the order of

polynomials in the basis terms to m, resulting in a truncated PCE given by Eq.(2.41)

y(ξξξ) ≈ yPCE(ξξξ) =
P∑
i=0

ciψi(ξξξ) (2.41)

where, P + 1 = (n+m)!/n!m!, n being the number of random variables, and m

the order of the PCE. The orthogonality of the basis function with respect to the

probability distribution of the random variables is imposed by requiring the inner

product of the basis functions to satisfy Eq.(2.42):

〈ψr(ξξξ), ψs(ξξξ)〉 =
∫
Ω

ψr(ξξξ)ψs(ξξξ)dµ(ξξξ) = γδrs (2.42)

where, γ = 1 for orthonormal basis functions and a constant for orthogonal basis

functions, δrs is the Kronecker delta, and dµ(ξξξ) is the probability measure in the

n-dimensional random space. It is given by Eq.(2.43) for statistically independent

random variables

dµ(ξξξ) = ρ1(ξ1)ρ2(ξ2) . . . ρn(ξn)dξ1dξ2 . . . dξn (2.43)
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where, ρn is the probability density function of ξn. The choice of basis functions in

Eq.(2.40) is based on the probability distribution of the random variables. Table 2.1

provides the choice of polynomial basis for some commonly used probability distri-

butions of the random variables. For one dimensional problem, the orthogonal basis

polynomials can be calculated easily using a method known as discretized Stielt-

jes’ method which uses a three terms recurrence formula [109]. For a multivariate

output function, the polynomial basis functions are obtained as tensor products of

corresponding univariate cases. For example, if Ψ1 = {1, ξ1, ξ
2
1 − 1} are first three

orthogonal basis terms in the PCE of a univariate function of random variable ξ1

having normal distribution and Ψ2 = {1, ξ2, ξ
2
2 − 0.3333} are the corresponding or-

thogonal polynomials in PCE of a univariate function of random variable ξ2 with

uniform distribution, then the tensor product of Ψ1 and Ψ2 is obtained as:

Ψ1 ⊗Ψ2 =


1 ξ2 ξ2

2 − 0.3333

ξ1 ξ1ξ2 ξ1(ξ2
2 − 0.3333)

(ξ2
1 − 1) (ξ2

1 − 1)ξ2 (ξ2
1 − 1)(ξ2

2 − 0.3333)

 (2.44)

Table 2.1: Choice of basis functions

Distribution Polynomial Basis terms

Normal Hermite ψ0 = 1, ψ1 = ξ, ψ2 = ξ2 − 1,

N (0, 1) ψ3 = ξ3 − 3ξ,

ψ4 = ξ4 − 6ξ2 + 3

Uniform Legendre ψ0 = 1, ψ1 = ξ,

U(−1, 1) ψ2 = ξ2 − 0.3333,

ψ3 = ξ3 − 0.6ξ,

ψ4 = ξ4 − 0.8571ξ2 + 0.08571,

Exponential Laguerre ψ0 = 1, ψ1 = ξ − 1,

ψ2 = ξ2 − 4ξ + 2,

ψ3 = ξ3 − 9ξ2 + 18ξ − 6,

ψ4 = ξ4 − 16ξ3 + 72ξ2 − 96ξ + 24

There are different methods available for calculating the unknown coefficients in

PCE, such as the point collocation method and the least square regression method.
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Point collocation method is based on reducing the error in approximation of stochas-

tic to zero at selected points, called collocation points, in the n-dimensional random

space. The condition that the residual vanishes at the set of sample points of ran-

dom variables, ξξξ1, . . . , ξξξN , provides a set of N linear algebraic equations in ci,

i ∈ {0, 1 . . . , P}. When the number of realisations of the exact model is greater

than the number of coefficients in Eq.(2.40), then the system of linear equations is

overdetermined and is solved using the least squares approach.

2.2.3 Gradient-based polynomial chaos expansion.

The number of terms in PCE increases factorially as the dimension of random space

increases, increasing the computational cost. This problem is often referred to in

the literature as the “curse of dimensionality”. In order to address this problem,

gradient values can be used for evaluating the unknown coefficients in polynomial

chaos expansion [13]. For an n-dimensional random space, the number of linearly

independent equations obtained by including gradient values is (1 + n) times the

number of FE evaluations where n is the number of random variables. Therefore,

the minimum number of model realisations required to obtain the coefficients in a

polynomial approximation is reduced by a factor of (1 + n)−1. The gradient values

of output function evaluated at sample points are used to determine the coefficients:



ψ0(ξξξ1) ψ1(ξξξ1) . . . ψP (ξξξ1)

w1
∂ψ0(ξξξ1)
∂ξ1

w1
∂ψ1(ξξξ1)
∂ξ1

. . . w1
∂ψP (ξξξ1)
∂ξ1

...

w1
∂ψ0(ξξξ1)
∂ξn

w1
∂ψ1(ξξξ1)
∂ξn

. . . w1
∂ψP (ξξξ1)
∂ξn

ψ0(ξξξ2) ψ1(ξξξ2) . . . ψP (ξξξ2)

w1
∂ψ0(ξξξ2)
∂ξ1

w1
∂ψ1(ξξξ2)
∂ξ1

. . . w1
∂ψP (ξξξ2)
∂ξ1

...

ψ0(ξξξN) ψ1(ξξξN) . . . ψP (ξξξN)
...

w1
∂ψ0(ξξξN )
∂ξn

w1
∂ψ1(ξξξN )
∂ξn

. . . w1
∂ψP (ξξξN )
∂ξn



·



c0

c1

...

cP


=



y(ξξξ1)

w2
∂y(ξξξ1)
∂ξ1

...

w2
∂y(ξξξ1)
∂ξn

y(ξξξ2)

w2
∂y(ξξξ2)
∂ξ1

...

y(ξξξN)
...

w2
∂y(ξξξN )
∂ξn



(2.45)
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where, ψ0(ξξξ1), ψ1(ξξξ1), . . . , ψP (ξξξ1) are basis functions evaluated at first set of sample

values of the random variables ξξξ1; w1 and w2 are weight coefficient which allows

setting the relative importance between function evaluations and its gradients in

building the PCE approximation; c0, c1, . . . , cP are deterministic coefficients in the

polynomial expansion, and y(ξξξ1), . . . , y(ξξξN) are function evaluations obtained at

sample points ξξξ1, . . . , ξξξn. ∂y(ξξξi)/∂ξj represents the derivative of the function w.r.t

jth random variable evaluated for ith set of sample values of the random variables.

The weight coefficients, w1 and w2, are used to weight the importance of the infor-

mation about the function and its derivatives. They can be chosen to obtain faster

convergence of PCE-based statistical characteristics. When the value of weight co-

efficients are equal, i.e. w1 = w2, the system of linear algebraic equations remain

unmodified and can be solved for unknown coefficients in the expansion as in the

conventional least squares minimization approach. It is also possible to choose the

value of the two weight coefficients such that w1 6= w2.

Statistical characteristics from polynomial chaos expansion.

Due to the orthogonality of shape functions ψj(ξξξ) in PCE as defined by Eqn. 2.42,

the first and second order moments of multivariate orthonormal polynomials are

E [ψj(ξξξ)] =


1 j = 0

0 j 6= 0
(2.46)

and

E [ψj(ξξξ)ψk(ξξξ)] =


1 j = k

0 j 6= k

(2.47)

respectively.

From polynomial chaos expansion approximation for the function y(ξξξ), the statistical

characteristics of the function, i.e. the first and second moment, can be obtained

analytically. From the definitions:

E
[
yPCE(ξξξ)

]
= E

[
P∑
i=0

ciψi(ξξξ)
]

(2.48)
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and

Var
[
yPCE(ξξξ)

]
= Var

[
P∑
i=0

ciψi(ξξξ)
]

= E

( P∑
i=0

ciψi(ξξξ)− E
[
P∑
i=0

ciψi(ξξξ)
])2 (2.49)

Substituting Eqn.2.46 in Eqn.2.48, we get the expression for the mean value of the

function as

E
[
yPCE(ξξξ)

]
= c0 (2.50)

Substituting Eqn.2.50 and Eqn.2.47 in Eqn.2.49, the expression for variance of the

function can be obtained as

Var
[
yPCE(ξξξ)

]
=E

( P∑
i=0

ciψi(ξξξ)− c0

)2 = E
[
P∑
i=1

c2
iψ

2
i (ξξξ)

]
=

P∑
i=1

c2
iE
[
ψi(ξξξ)2

]
=

P∑
i=1

c2
i

(2.51)

The mth order PCE approximation of the variance of y(ξξξ), approaches Var [y(ξξξ)] as

m→∞.

2.3 Global sensitivity analysis

The analysis of variance representation allows decomposition of stochastic output

f(ξξξ) into summands of increasing dimensions[22]:

y = f(ξξξ) =f0 +
n∑
i=1

fi(ξi) +
∑

1≤i<j≤n
fi,j(ξi, ξj) + · · ·+ f1,...,n(ξ1, . . . , ξn) (2.52)

where n is the total number of random input parameters.

Such decomposition of the function allows the decomposition of the variance of y in

the form:

D =
n∑
i=1

Di +
∑

1≤i<j≤n
Dij + · · ·+

∑
1≤i<···<is≤n

Di1,...,is + · · ·+D1,2,...,n (2.53)

where,

Di1,...,is =
∫

Ωξk
f 2
i1,...,is(ξk)

∏
k=i1,...,is

ρξk(ξk)dξk for k = i1, . . . , is (2.54)

where ρξk is the probability density function of ξk and Ωξk is the support of ξk.

The support of a continuous random variable is the interval in which its probability

density function is positive. Here, Di = var(E[y|ξi]) is the first order partial variance
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and Dij = var(E[y|ξi, ξj])−Di −Dj is the second order partial variance and so on.

The first order partial variance Di can be understood as the reduction in variance

of y when the random variable ξi is assigned a fixed value. Therefore, first order

partial variance w.r.t an input parameter gives the individual contribution of that

parameter to output variance. The second order partial variance Dij measures the

contribution to output variance due to interaction between ξi and ξj. The Sobol’

sensitivity indices [22] are obtained by normalizing the partial variance by total

variance D:

Si1,...,is = Di1,...,is

D
(2.55)

Si1,...,is is a measure of the contribution to the total variance due to the uncertainty

in value of the set of design parameters {ξi1 , . . . , ξis}. From eqn. (2.53) and eqn.

(2.55), the sensitivity indices satisfy the condition
n∑
i=1

Si +
∑

1≤i<j≤n
Sij + · · ·+ S1,2,...,n = 1 (2.56)

The total order Sobol’ indices STi are defined as the sum of all Sobol’ indices, starting

from first order to the maximum order, that involves the input parameter i. For

example for n = 3, the total order Sobol’ index for the first parameter is given by

ST1 = S1 + S12 + S13 + S123 = 1− S2 − S3 (2.57)

The total order Sobol’ indices can be used to rank the parameters in the order of

their importance. Considering the extreme cases: (i) when STi = 0: it means that

the uncertainty in parameter i does not contribute to the uncertainty in system

response and (ii) when STi = 1: it implies that the uncertainty in output is solely

due to the uncertainty in parameter i.

The Sobol’ indices are traditionally calculated using MCS which is computationally

intensive. PC-based method for calculation of Sobol’ indices was proposed [68] as

an alternative to using MCS. Consider the stochastic function f(ξξξ) is approximated

by a PCE:

f(ξξξ) ≈ fPCE(ξξξ) =
P−1∑
j=0

cjψj(ξξξ) =
∑
ηηη∈Nm

cηηηψηηη(ξξξ) (2.58)
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Table 2.2: Polynomial basis constituting a 3rd order PCE of a bivariate function

and its corresponding multi-index notation

j ηηη ψj ≡ ψηηη

0 [0, 0] ψ0 = 1

1 [1, 0] ψ1 = ξ1

2 [0, 1] ψ2 = ξ2

3 [2, 0] ψ3 = (ξ2
1 − 1)/

√
2

4 [1, 1] ψ4 = ξ1ξ2

5 [0, 2] ψ5 = (ξ2
2 − 1)/

√
2

6 [3, 0] ψ6 = (ξ3
1 − 3ξ1)/

√
6

7 [2, 1] ψ7 = (ξ2
1 − 1)ξ2/

√
2

8 [1, 2] ψ8 = (ξ2
2 − 1)ξ1/

√
2

9 [0, 3] ψ9 = (ξ3
2 − 3ξ2)/

√
6

where, ηηη = {η1, . . . , ηn} : η1 ≥ 0,
M∑
i=1

ηi ≤ p is multi-indices defining the multivariate

basis polynomial as product of univariate polynomials:

ψj ≡ ψηηη(ξξξ) =
n∏
i=1

Pηi(ξi) (2.59)

where, Pηi is a univariate polynomial.

The indicial representation of multivariate polynomials is illustrated with an exam-

ple. Consider a 3rd order PCE of a stochastic function of two random variables ξ1

and ξ2 having normal distribution. The basis functions of the PCE for this case,

obtained as a product of univariate Hermite polynomials are given in Table 2.2 along

with its corresponding multi-index notation η.

For PCE approximation of f(ξξξ) given by eqn. (2.58), the PC-based Sobol’ indices

are defined as [68]:

SPCEi1,...,is =
∑

ηηη∈Li1,...,is

c2
ηηηE
[
ψ2
ηηη

]
/DPCE (2.60)

where Li1,...,is = {ηηη ∈ Nn : ηk 6= 0 ⇐⇒ k ∈ (i1, . . . , is)} is the set of multi-indices

depending exactly on the subset of variables {i1, . . . , is} and DPCE is the variance

of the stochastic function calculated from PCE:
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DPCE =
P−1∑
j=1

c2
jE
[
ψ2
ηηη

]
(2.61)

Therefore, once the PCE approximation is obtained, the sensitivity indices can be

calculated analytically by selecting the coefficients in the expansion based on the

dependency of each basis polynomial which is then square-summed and normalised

as shown in Eqn. (2.60).

2.4 An analytical expression for the probability

distribution of stochastic response of bladed

disk

In Sections 2.2.1 and 2.2.2, methodologies for two different surrogate models that

can approximate the deformation of bladed disk with respect to variation in blade

anisotropy angles were presented. The use of polynomial chaos expansion based

surrogate models allows fast and efficient estimation of the statistical characteristics

of the probability distribution of blade deformation for the known probability dis-

tribution of the design parameters. However, the full description of the stochastic

response of bladed disk can only be provided by the probability density functions.

In this section, a methodology for determination of the probability density function

for the deformation of bladed disk in terms of the sensitivity and known statistical

characteristics of the design parameters is developed.

The strategy employed here to obtain the probability distribution functions of the

stochastic response of blades in the bladed disk with respect to a known probability

distribution of blade anisotropy angles can be described in the following three steps

[100]:

1 A sensitivity based approximation for the response of the bladed disk to vari-

ation in blade anisotropy angles is obtained.

2 Based on the approximated response, a constraint for the anisotropy angle is

derived such that the response of the structure does not exceed a pre-defined

value.
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3 The probability distribution functions for the blade response level is derived

analytically based on known PDFs of the blade anisotropy angles after im-

posing the constraints for the anisotropy angle obtained from the previous

step.

Let us now consider the approach in detail. The stochastic response of bladed disk

can be approximated in many cases as a linear combination of the blade anisotropy

angles and the corresponding sensitivity value for bladed response with respect to

those angles:

a(ξξξ) ≈ a0 +
N∑
j=1

sαj(αj − µα) + sβj(βj − µβ) + sζj(ζj − µζ) (2.62)

where, a(ξξξ) is the stochastic response of a blade as a function of ξξξ, which the

vector of blade anisotropy angles of N blades in the bladed disk; a0 is the blade

response corresponding to mean value of anisotropy angles obtained from finite

element analysis of the bladed disk; sαj , sβj and sζj are the sensitivities of blade

response to angles α, β and ζ respectively of the jth blade; µα, µβ and µζ are the

mean values of anisotropy angles α, β and ζ respectively.

From Eqn. (2.62), the expression for anisotropy angle α1 of the first blade such that

the response of the blade does not exceed a specified value, ε takes the form:

α1(ε) = µα +
ε− a0 −

N∑
j=2

sαj (αj − µα)−
N∑
j=1

sβj (βj − µβ)−
N∑
j=1

sζj (ζj − µζ)
 /sα1

(2.63)

For the case of blade anisotropy angles, it is assumed that each blade anisotropy

angle is stochastically independent. Therefore, the probability that the stochastic

response of bladed disk does not exceed the value ε can be written as:

P (a(ξξξ) < ε) =
∫ ∞
−∞,a<ε

pα(α1) . . . pβ(β1) . . . pζ(ζ1) . . . pζ(ζN)dα1 . . . dβ1 . . . dζ1 . . . dζN
(2.64)

where, pα, pβ and pζ are the known probability distribution functions of anisotropy

angles α, β and ζ respectively.

Based on the above restriction for α1, Eqn. (2.64), defining the probability of
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stochastic response not exceeding ε can be written in the following form:

P (ε) =
∫ ∞
−∞

pζ(ζN)· · ·
∫ α1(ε,α2,...,ζN )

−∞
pα(α1)dα1 . . . dζN for sα1 > 0

P (ε) =
∫ ∞
−∞

pζ(ζN)· · ·
∫ ∞
α1(ε,α2,...,ζN )

pα(α1)dα1 . . . dζN for sα1 < 0
(2.65)

The probability distribution functions for the stochastic response can be obtained

from Eqn. (2.65) as

p(ε) = |sα1 |−1
∫ ∞
−∞

pζ(ζN)· · ·
∫ ∞
−∞

pα(α1(ε, α2, . . . , ζN))dα2 . . . dζN (2.66)

where, sα1 is the value of sensitivity of the considered static displacement or forced

response amplitude of the bladed disk with respect to the anisotropy angle α of the

first blade. For a given bladed disk model, the value of sα1 will vary depending on

the considered stochastic response of the bladed disk.

For the case of tuned bladed disk, the number of blade anisotropy angles which

are random is limited to three, and therefore, the expression for pdf of stochastic

response, given by Eqn. (2.66), can be evaluated analytically depending on the

choice of the probability distribution of the anisotropy angles.

For example, assuming the following distribution of anisotropy angles:

α ∼ Normal(µ1, σ1)

β ∼ Uniform(µ2 −
√

3σ2, µ2 +
√

3σ2)

ζ ∼Weibull(η, θ, τ)

For a tuned bladed disk with three random anisotropy angles, the expression for

anisotropy angle α1, such that the blade response does not exceed ε can be obtained

from Eqn. (2.63):

α1(ε, β1, ζ1) = µ1 + (ε− a0 − s2(β − µ2)− s3(ζ − µ3)) /s1 (2.67)

where µ1, µ2 and µ3 are the mean values of the distribution of anisotropy angles α,

β and ζ respectively and s1, s2 and s3 are sensitivities of blade response to those

anisotropy angles. The expression for probability density function (PDF) of blade
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response can be obtained by evaluating the following integral:

p(ε) =|s1|−1
∫ −∞
−∞

pζ(ζ1)
∫ µ2+

√
3σ2

µ2−
√

3σ2
pβ(β1)pα(α1(ε, β1, ζ1))dβ1dζ1

= 1
|s1|

∫ ∞
−∞




0 ζ < τ

η(ζ−τ)η−1e
−( ζ−τ

θ )η
θη

else


[√

3s1

12σ̃2

(
erf
(
a0 − ε+

√
3σ̃2 + s3(ζ − µ3)√
2σ1s1

)

−erf
(
a0 − ε−

√
3σ̃2 + s3(ζ − µ3)√
2σ1s1

))]
dζ

(2.68)

where σ̃2 = σ2s2. The integral in Eqn.2.68 must be evaluated numerically to obtain

the required PDF for blade response with respect to the assumed probability distri-

bution of the three anisotropy angles of the tuned bladed disk. Note that depending

on the probability distribution of anisotropy angles, the required probability distri-

bution of the blade response can be obtained analytically or semi-analytically. For

example, consider the following distribution of anisotropy angles:

α ∼ Normal(µ1, σ1)

β ∼ Uniform(µ2 −
√

3σ2, µ2 +
√

3σ2)

ζ ∼ Uniform(µ3 −
√

3σ3, µ3 +
√

3σ3)

The expression for PDF can be obtained completely analytically:

p(ε) =|s1|−1
∫ µ3+

√
3σ3

µ3−
√

3σ3
pζ(ζ1)

∫ µ2+
√

3σ2

µ2−
√

3σ2
pβ(β1)pα(α1(ε, β1, ζ1))dβ1dζ1

= 1
|s1|

∫ l2

l1





0 ζ < µ3 −
√

3σ3

√
3/6σ3 ζ < µ3 +

√
3σ3

0 else


[√

3s1

12σ̃2

(
erf
(
a0 − ε+

√
3σ̃2 + s3(ζ − µ3)√
2σ1s1

)

−erf
(
a0 − ε−

√
3σ̃2 + s3(ζ − µ3)√
2σ1s1

))]
dζ

(2.69)

where, σ̃2 = σ2s2, l1 = µ3 −
√

3σ3, and l2 = µ3 +
√

3σ3. The integral in Eqn.(2.69)

can be evaluated analytically which is not shown here for brevity. The expressions

for PDF given by Eqn. (2.68) and (2.69) are obtained by integrating the normal

distribution defining the angle α, over −∞ to∞. In reality the range of variation of

the anisotropy angles is restricted within the limits specified by the manufacturer of

the blades. Such restriction of the angle can introduce some error in the analytical
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PDF, the magnitude of which will depend on the value of mean and standard devi-

ation of the normal distribution. For the present study, the area under the normal

distribution that lies outside the range of variation of the anisotropy angle α is less

than 5% of the total area under the normal distribution. Therefore, for the present

study, the error introduced due to specifying finite range for the variation of angle

α is neglected.



Chapter 3

Finite element modelling

Single crystal blades exhibit material anisotropy and the orientation of the crystal

anisotropy axis influence the response of the bladed disk to mechanical loads. Due

to manufacturing tolerances, each blade in a bladed disk will differ from another in

terms of the crystal orientation, and therefore, induce mistuning in the bladed disks.

In order to investigate the effects of scatter in crystal anisotropy orientation of single

crystal blades on static and dynamic response of bladed disks, realistic high–fidelity

finite element models of the bladed disk are used. All finite element models used

in the present study are provided by MTU Aero Engines AG. Using finite element

models, sensitivity and uncertainty analysis are performed to quantify the effect

of variation in blade anisotropy orientation on static and dynamic response of the

bladed disk.

Finite tolerance in manufacturing results in small variations in fir–tree root and

shroud geometry of blades. Depending on the manufacturing tolerance condition

of blade root and disk slot, the area and position of contact between blade and

disk could vary. Similarly depending on the manufacturing tolerance of shroud, the

shroud-to-shroud contact region between adjacent blades could also vary from blade

to blade. To investigate the effects of root and shroud geometry variations on non-

linear static deformation, finite element models of bladed disk sector geometry with

different fir–tree root and shroud contact regions are analysed.

In this chapter, detailed descriptions of various finite element models of bladed disks

54
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used to study the current set of problems are presented. This chapter is laid out

in the following fashion. Firstly, different finite element models of bladed disk used

for computation are presented. Further, the details of the finite element boundary

conditions used are described.

3.1 Finite element model of bladed disk

Considering blade material anisotropy angles as stochastic design parameters, uncer-

tainty and sensitivity analysis for the response of the bladed disk has been performed

using finite element models of a realistic bladed disk. The full model of the bladed

disk with 75 blades attached to the disk is shown in Fig. 3.1. The blades are at-

tached to disk using fir–tree root joints and are connected through shrouds. The disk

is modelled as an isotropic material, and the blades are modelled as an orthotropic

material.

Figure 3.1: Model of the full bladed disk

The finite element model of the full bladed disk with 0.5 million nodes is shown in
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the Fig.3.2. Ten-node tetrahedral elements are used in the finite element model.

The total number of contact elements used to model the blade to disk fir–tree root

contacts are 17475 and to model blade to blade shroud contacts are 3075.

Figure 3.2: A section of the finite element model of the bladed disk.

Sector models of bladed disks are used to study the effects of variations in fir–

tree root and shroud geometry on static deformation of the tuned bladed disk. By

using sector models with cyclic symmetry constraints applied, the computational

cost involved in finite element analysis can be significantly reduced when tuned

bladed disk is analysed. Two different sector geometries of the bladed disk are used.

Fig.3.3(a) shows the finite element mesh of blade sector model used to investigate

the effect of fir–tree root and shroud geometry variations. The finite element model

of the bladed disk sector has 128071 nodes. The number of friction contact elements

used to model the root joints, and shroud joints are 2160 and 141 respectively. A

coarser finite element model of the bladed disk sector geometry with only 6874 nodes

is used to study the influence of blade material anisotropy orientation on the natural

frequency of the tuned bladed disk. This model is shown in Fig. 3.3(b).



57

(a) (b)

Figure 3.3: Finite element model of the bladed disk sector having (a) 128071 nodes

and (b) 6874 nodes.

3.2 Finite element model constraints and bound-

ary conditions

The blade-to-disk fir–tree root joints and blade-to-blade shroud joints are modelled

as either linear bonded contacts or as non-linear friction contacts. The bonded

contacts are defined based on multipoint constraints (MPCs), and friction contacts

are defined as surface-to-surface penalty contacts. For fir–tree root the patches

of contact elements on blade root and disk slot are shown in Fig. 3.4(a) and (b)

respectively.

In order, to investigate the effect of crystal anisotropy mistuning, full bladed disk

model is used. The degrees of freedom of nodes on the rim of the bladed disk, shown

in Fig.3.5(a), is constrained in the axial and tangential direction in order to model
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a

Blade upper fir-tree contact

Blade lower fir-tree contact

b

Disk upper fir-tree contact

Disk lower fir-tree contact

Figure 3.4: Contact patches on right-hand side of (a) blade root and (b) disk slot.
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the effect of neighbouring bladed disks. For analysis of tuned bladed disk, the sector

models of bladed disk are used, and cyclic symmetric constraints are applied on all

nodes on either side of the bladed disk sector model shown in Fig.3.5(b).

Finite element analysis is performed using CalculiX [102] which is an open source

finite element analysis package used in both academic and industrial settings.

(a) (b)

Figure 3.5: Figure showing (a) nodes on the rim of the bladed disk where axial and

tangential DOF are constrained, and (b) nodes where cyclic symmetry constraints

are applied.
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3.3 Integration of the FE solver with tools for un-

certainty analysis and optimisation

3.3.1 The framework for uncertainty and global sensitivity

analysis

The uncertainty in the crystal orientation of the blades will result in uncertainty

in the static and dynamic response of a bladed disk. When the probability density

function of anisotropy angles, defining the crystal orientation of blades are available,

uncertainty and sensitivity analysis can be performed to quantify the scattering in

the response of the bladed disk. In order to perform uncertainty and sensitivity

analysis, a Python code namely ChaoStat was developed the author. The code

allows seamless integration of different tools used for FE analysis, forced response

analysis, and for building polynomial chaos approximation.

A schematic diagram illustrating different tools used by ChaoStat, the specific func-

tion of each of those tools, and the flow of control within ChaoStat is shown in Fig.

3.6(a). A brief description of the different tools used in ChaoStat is given below:

1. ChaosPy [103] – An open source tool used for designing methods for uncer-

tainty analysis using polynomial chaos expansion and Monte Carlo methods.

The tool is available as a Python module for installation. Within ChaoStat

code, the tool is used for sampling the input parameter space based on the

user-defined probability distribution of individual blade anisotropy angles, for

generating orthogonal basis functions for PCE, and to calculate the statisti-

cal characteristics of blade response as well as the global sensitivity indices

of blade anisotropy angles. As part of this work, the capability to use gra-

dient values of functions for calculating the coefficients in polynomial chaos

approximation was developed using the standard ChaosPy module.

2. CalculiX [102] – An open source FE package used for building, solving and

post–processing finite element models. CalculiX package includes the FE

solver, CalculiX CrunchiX, and the graphical interface CalculiX GraphiX.

Within ChaoStat, CalculiX is used for linear and non-linear static analysis,
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modal analysis, and local sensitivity analysis of static deformation and modal

properties of the bladed disk with respect to blade anisotropy angles [105].

3. ContaDyn – An in–house code developed as part of the current project [110].

The code is used for forced response analysis of complex structures with con-

tact non-linearities using harmonic balance method and a novel approach for

condensation of DOF for high-fidelity FE models [111]. Within ChaoStat,

ContaDyn is used for forced response analysis and to obtain the local sensi-

tivity of forced response amplitude [95] of the bladed disk with respect to the

crystal orientation of blades.

4. SciPy – SciPy is a collection of mathematical algorithms, arranged as different

sub–packages, available to a Python programmer [112]. Within ChaoStat, the

SciPy package for linear algebra named scipy-linalg is used for solving a system

of linear equations.

3.3.2 The framework for optimisation

The amplification of forced response of a mistuned bladed disk, in comparison to

that of a tuned bladed disk with same blade crystal orientations, can be reduced by

optimising the crystal orientation of blades in the bladed disk. In order to perform

the optimisation of the blade anisotropy angles, a Python code was developed to

integrate an open source optimisation framework namely OpenMDAO [113] to the

FE solver CalculiX and the forced response analysis tool ContaDyn. In order to

convert the modal analysis results of CalculiX to the input format of ContaDyn, a

code developed by Adam Koscso [105] was used. A schematic diagram illustrating

different tools used in the code for optimisation of blade anisotropy angles, the

specific function of each of those tools, and the flow of control within the code is

shown in Fig. 3.6(b).
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(a)

(b)

Figure 3.6: Schematic diagram showing the framework for (a) uncertainty and global

sensitivity analysis, and for (b) optimisation of the blade anisotropy angles.



Chapter 4

Sensitivity of static deformation to

blade anisotropy orientations

In this chapter, the methods discussed in Chapter 2 for obtaining local sensitivity of

displacements (Eqn. 2.13) and stresses (Eqn. 2.18, 2.20) and for global sensitivity

(Eqn. 2.55) are applied to static deformation of anisotropy mistuned bladed disk

under centrifugal loading. To study the effects of blade material anisotropy mis-

tuning on static displacements and stresses, bladed disk with linear and non-linear

contacts at fir–tree root and shroud interfaces are analysed. Mistuning is introduced

by sampling the material anisotropy angles, α, β and ζ, of each blade of the bladed

disk randomly from the realistic statistical distribution for these angles provided

by the manufacturer. An example of the realistic distribution of blade anisotropy

angles for all blades in the mistuned bladed disk is shown in Fig. 4.1. In the figure,

the angles for α, β and ζ are normalized by the maximum value of those angles in

the considered pattern.

4.1 Deformation of a mistuned bladed disk

In order to investigate the effects of blade anisotropy mistuning on static defor-

mation of the bladed disk under centrifugal loading, corresponding to a realistic

rotational speed specified by the manufacturer, both linear and non–linear mod-

els are analysed. While non–linear model has friction contacts at fir–tree root and

63
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Figure 4.1: Distribution of the normalised anisotropy angles of all blades for an

example mistuning pattern.

shroud interfaces, for a linear model these interfaces are modelled as bonded con-

tact. For the mistuning pattern shown in Fig. 4.1 the variation in normalised axial,

circumferential and radial displacements at blade tip node of all blades in the bladed

disk is shown in Fig. 4.2(a), (b) and (c) respectively for linear and non-linear bladed

disk. The value of displacement and the local sensitivity of displacement presented

in this chapter are normalised with respect to the maximum radial displacement

value for the non-linear tuned bladed disk with crystal orientation aligned with

blade geometry. For the mistuning pattern studied, the variation in displacements

along axial, circumferential and radial direction are 12%, 14% and 2.5%. In com-

parison with the variation of displacement for non-linear bladed disk, it is observed

that the scatter in displacement for the linear bladed disk is larger with respective

values for axial, circumferential and radial displacement being 18%, 33% and 5%.

Note that for the linear bladed disk model, each blade is connected to its adjacent

blade through bonded contact at shroud and therefore, results in a stiffer connection

between blades. Therefore, in the case of linear bladed disk, the structure is com-

paratively more sensitive to variation in blade anisotropy orientation of blades. The

magnitude of blade displacements for the non-linear bladed disk is higher compared

to that of the linear bladed disk given the same mistuning pattern which substan-
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tiates the argument that bonded contacts at interfaces increases the stiffness of the

structure. In the case of a bladed disk with friction contact interfaces at shrouds,

the friction interface reduces the effect of variation in anisotropy angles of a blade

on the deformation of other blades.

(a)

(b)

(c)
Figure 4.2: Displacements at blade tip node of all blades in (a) radial (b) circum-

ferential and (c) axial direction in a mistuned bladed disk
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For a sample mistuning pattern, the normalized displacements of the bladed disk

along axial, tangential and radial directions are shown in Figs. 4.3(a), (b) and (c)

respectively for a blade tip node. The displacement values are normalized with

respect to the value of radial displacement at the considered node for the case of a

tuned bladed disk with the blade anisotropy axis aligned with the blade geometry

axis. By comparing the axial displacement of different blades, it can be observed

that, due to mistuning, there is a difference in displacements from blade to blade.

In order to highlight the small variation in axial displacements between blades,

a zoomed view of several blades in the bladed disk is shown in the inset in Fig.

4.3(a). Compared to the differences in blade displacements along the axial direction

between different blades in the bladed disk, the difference in displacements along the

tangential direction and radial direction is not easily discernible from Fig. 4.3(b)

and (c).
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(a)

(b)

(c)

Figure 4.3: Figure showing (a) axial, (b) circumferential and (c) radial displacement

of a mistuned bladed disk.
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4.2 Local sensitivity analysis

In this section, based on local sensitivity analysis, the influence of crystal orientation

of blades on displacements and stresses in a mistuned bladed disk with (i) linear

bonded contacts and (ii) non-linear friction contacts at blade roots and shrouds are

investigated.

Local sensitivity analysis is used to quantify the effect of small variations in blade

anisotropy angles on deformation of the bladed disk. Therefore, based on local

sensitivity analysis, it is possible to identify the most important anisotropy angles

concerning their influence on the deformation of the structure. Further, while per-

forming the uncertainty analysis, this information can be used to reduce the dimen-

sionality of the problem by ignoring the anisotropy angles that are less influential.

Depending on the method used for uncertainty analysis, such a reduction in dimen-

sionality of the problem will allow us to reduce the computational cost significantly.

For non-linear mistuned bladed disk, Fig. 4.4(a), (b) and (c) shows the sensitivity

of the axial component of displacements due to anisotropy angles α, β and ζ of

blade number 1 respectively. The value of displacement sensitivities presented in

this section is normalised with respect to the maximum radial displacement value

for the non-linear tuned bladed disk. While a small variation in material anisotropy

angles of blade number 1 influences the displacements of adjacent blades apart from

blade 1 itself, it has no significant influence on the displacement of blades located

farther from blade 1 and also on displacements of the disk. While a positive value

of displacement sensitivity indicates that the displacement increases with a small

change in the anisotropy angle, a negative value indicates that the displacement

decreases with a small change in anisotropy angle.

The location of maximum sensitivity of displacement, with respect to blade anisotropy

angles, along the blade will vary depending on the considered anisotropy angle. For

example, the sensitivity of axial displacement to anisotropy angle α is maximum at

the leading edge around mid-span. Note that the maximum sensitivity with respect

to anisotropy angle β is at blade root and shrouds. Fig. 4.5(a), (b) and (c) shows

the sensitivity of tangential displacement with respect to blade anisotropy angles

α, β and ζ of blade number 1. The negative values for sensitivity indicate that



69

(a)

(b)

(c)

Figure 4.4: Local sensitivity of axial displacement of a mistuned bladed disk w.r.t

anisotropy angles (a) α, (b) β and (c) ζ of blade number 1.
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(a)

(b)

(c)

Figure 4.5: Local sensitivity of tangential displacement of a mistuned bladed disk

w.r.t anisotropy angles (a) α, (b) β and (c) ζ of blade number 1.
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the tangential displacement towards the shroud region of the blade decreases for a

small change in anisotropy angles. Fig. 4.6(a), (b) and (c) shows the sensitivity of

radial displacement to the three blade anisotropy angles of blade number 1. For the

considered mistuning pattern, and in general, the displacements along the radial

direction, is most sensitive to anisotropy angle α. By analysing many mistuning

patterns, it was inferred that the magnitude of sensitivity for radial displacement

with respect to anisotropy angle α is an order of magnitude higher than that with

respect to angle ζ.

A comparison of the sensitivity analysis of bladed disk with linear bonded contact

and non–linear friction contacts at fir–tree root and shrouds gives valuable infor-

mation on how the presence of friction joints affects the uncertainty in blade defor-

mation due to scattering in crystal orientation. For tuned linear bladed disk, with

anisotropy axis aligned with blade geometry axis, Fig. 4.7(a), (b) and (c) shows the

sensitivity of displacements at blade tip of blade number 1 with respect to anisotropy

angles α, β, and ζ of all blades in the bladed disk. A similar plot for the mistuned

bladed disk with linear bonded contacts at blade-to-disk and blade-to-blade interface

is shown in Fig. 4.8. Even though mistuning has significantly changed the influence

of individual blade anisotropy angles, especially of those blades positioned close to

the considered blade, the maximum value of displacement sensitivity is comparable

to that of the tuned case. This is particularly noticeable for the case of sensitivity

to anisotropy angle β and ζ. For a non-linear mistuned bladed disk, Fig. 4.9(a),

(b), and (c) shows the normalised sensitivity of blade displacements at a selected

node on blade number 1 to anisotropy angles α, β, and ζ of all blades. It was al-

ready mentioned in Section 4.1 that in the presence of friction joints, the effect of

anisotropy angle of a specified blade on displacements of adjacent blades decreases.

A comparison of Fig. 4.8(b) and Fig. 4.9(b), for the case of anisotropy angle β, and

Fig. 4.8(c) and Fig. 4.9(c), for angle ζ, shows that the number of blade anisotropy

angles with a high value of sensitivity has considerably reduced for the non-linear

mistuned bladed disk. In comparison with that of linear mistuned bladed disk, the

sensitivity of axial and tangential displacement to ζ has increased significantly. On

the contrary, there is noticeable decrease in sensitivity of displacements with respect

to beta for non-linear bladed disk compared to the linear bladed disk.
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(a)

(b)

(c)

Figure 4.6: Local sensitivity of radial displacement of a mistuned bladed disk w.r.t

anisotropy angles (a) α, (b) β and (c) ζ of blade number 1.
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It should be borne in mind that the local sensitivity results indicate the magnitude

of variation in displacements that would result from a small change in the anisotropy

angles about the considered point in the domain of variation. Therefore, the sensi-

tivity values can vary slightly for different mistuning patterns of blade anisotropy

angles analysed. For an example case of anisotropy mistuning, Fig. 4.10 (a), (b),

and (c) shows the sensitivity of normal stresses σXX , σY Y , and σZZ at a chosen node

on fir–tree root of blade number 1 with respect to angle α, β, and ζ respectively.

Similarly, the sensitivity of shear stresses is shown in Fig. 4.11(a), (b) and (c). The

value of sensitivity for stresses is normalised with respect to maximum normal stress

along the radial direction, σZZ , for non-linear tuned bladed disk. It is evident from

(a)

(b)

(c)

Figure 4.7: Sensitivity of displacements at blade tip of blade number 1 to anisotropy

angles (a) α (b) β and (c) ζ for tuned linear bladed disk
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the plots that, unlike the case for displacements, the stresses on a particular blade

is significantly influenced by the anisotropy angles of that blade alone. Similar to

that observed for radial displacement, the influence of anisotropy angle ζ on stresses

is significantly small compared to the influence of α and β. When the sensitivity of

normal and shear stress components at any location of the bladed disk is known, the

sensitivity of von Mises stress at that location can be evaluated. For the considered

node on the fir-tree root of blade 1, the sensitivity of von Mises stress to anisotropy

angle is shown in Fig. 4.12.

From the analysis of several mistuning patterns, it was inferred that, while consid-

(a)

(b)

(c)

Figure 4.8: Sensitivity of blade tip displacements of blade number 1 to anisotropy

angle (a) α (b) β and (c) ζ for a mistuned linear bladed disk
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ering the displacement of a blade in the bladed disk, the influence of anisotropy

angles of that blade and other blades adjacent to it is predominant. Based on lo-

cal sensitivity analysis, it can be inferred that the variation in blade displacement

along radial direction with respect to the anisotropy angles α and β are higher as

compared to anisotropy angle ζ. While considering static deformation, the variation

in radial displacement is of primary concern as it dictates the blade tip-casing gap,

and therefore, directly influence the efficiency of the gas-turbine.

(a)

(b)

(c)

Figure 4.9: Sensitivity of blade tip displacements of blade number 1 to anisotropy

angle (a) α (b) β and (c) ζ of all blades in a mistuned non-linear bladed disk
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(a)

(b)

(c)

Figure 4.10: Sensitivity of normal stresses at blade root of blade number 1 to

anisotropy angle (a) α (b) β and (c) ζ of all blades in a mistuned non-linear bladed

disk
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(a)

(b)

(c)
Figure 4.11: Sensitivity of shear stresses at blade root of blade number 1 to angle

(a) α (b) β and (c) ζ of all blades in a mistuned non-linear bladed disk

Figure 4.12: Sensitivity of von Mises stress at blade root of blade number 1 to

anisotropy angles of all blades in a mistuned non-linear bladed disk
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4.3 Global sensitivity analysis

One of the main aims of sensitivity analysis is to obtain a rank order of importance

of the design parameters in terms of their influence on the response of the structure.

Local sensitivity analysis results presented in Section 4.2 is based on the evaluation

of gradient of blade displacements and stresses at chosen points in the domain of

variation of the blade anisotropy angles. Therefore, the relative importance of the

three anisotropy angles cannot be confirmed based on the results obtained from

local sensitivity analysis. In this section, global sensitivity analysis based on Sobol

indices is presented for blade anisotropy angles. While studying the displacements

or stresses of a mistuned bladed disk, considering blade material anisotropy angles

as random design parameters, Sobol index for a blade anisotropy angle indicates the

contribution of that anisotropy angle to the variance of the displacements or stresses.

As discussed in detail in Chapter 2, Sobol indices are obtained from coefficients of

polynomial chaos approximation from Eqn. 2.60 and 2.61. A detailed discussion

Figure 4.13: A mistuned bladed disk showing the 30 blades for which the anisotropy

angles are considered as random variables.



79

of the accuracy of polynomial chaos approximation obtained for static deformation

of the mistuned bladed disk is presented in Chapter 6. Since Sobol indices are

calculated using the polynomial chaos approximation, most of the computational

effort involved is spent on constructing the approximate model.

As an example, the influence of blade anisotropy angles on variation in displace-

ments at tip node of blade number 1 is investigated. Sobol indices are calculated

from polynomial chaos approximation of the blade displacements for the consid-

ered node in the mistuned non-linear bladed disk. In the previous section, based

on local sensitivity analysis, it was inferred that the effect of anisotropy angles of

blades located farther from the considered blade has negligible influence on the blade

displacements. Therefore, to build polynomial chaos approximation, the dimension-

ality of the design space is reduced by including anisotropy angles of only 30 blades,

adjacent to and including blade number one as shown in Fig. 4.13, are considered

as random variables.

Fig. 4.14(a), (b) and (c) show the first order and total Sobol indices, for anisotropy

angles α, β and ζ respectively of thirty adjacent blades, affecting the axial displace-

ment of the considered node. While first order index is a measure of the contribution,

to variance of displacement, of individual blade anisotropy angles considered alone,

the total order index accounts for the interaction of the considered blade anisotropy

angles in the bladed disk. Therefore, the total order index of a blade anisotropy

angle is always higher than its first order index. For a given anisotropy angle, the

difference between total order index and first order index is a measure of the con-

tribution to variance of blade displacement resulting from the interaction between

the angle with other anisotropy angles. It is evident from Figure 4.14(c), that about

50% of the variance in axial displacement of the considered node on blade one is due

to anisotropy angle ζ. In the same figure, the small difference in magnitude of first

order index from total order index for blade number one suggests that the uncer-

tainty in anisotropy angle ζ of blade at position one has a predominant effect on the

uncertainty of axial displacement on that blade. Note that this is in contradiction

to the results obtained from local sensitivity analysis (see Fig. 4.9) which indicates

that the axial displacement is significantly more sensitive to anisotropy angle α of

blade number 1 and 75 compared to angle ζ of those blades . Figure 4.14(a) shows
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that the contribution to axial displacement variance of the considered node on blade

1 from anisotropy angle α of that blade is mostly due to the interaction of the angle

with other anisotropy angles. This is evident from the significant difference in the

first order and total order Sobol indices for that angle of blade one. The contribution

of anisotropy angle β of the considered 30 blades to variance in axial displacement

of the considered node amounts to less than 5% of the total variance.

For the case of tangential displacement at blade tip of blade at position one, Fig.

4.15(a), (b) and (c) shows the Sobol indices for the anisotropy angles of the 30

adjacent blades to blade 1. The contribution of blade anisotropy angles α and ζ

(a)

(b)

(c)
Figure 4.14: Sobol index for axial displacement w.r.t angle (a) α (b) β and ζ.
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(a)

(b)

(c)
Figure 4.15: Sobol index for tangential displacement w.r.t angle (a) α (b) β and ζ.

of blade 1 to variance in tip displacements of that blade is slightly more than 50%

of the total variance. From Fig. 4.16(a), (b) and (c), the value of Sobol index

for radial displacement corresponding to angle α1 is approximately 0.55, to angle

β is 0.037, and to angle ζ1 is 0.18. The values suggest that the most significant

contribution to variance in radial displacement is due to uncertainty in anisotropy

angle α of blade 1, followed by, that of angle ζ. This is again in contradiction to

what was inferred from the local sensitivity analysis results shown in Fig. 4.9. The

Sobol indices corresponding to all the three displacement component shows that the

contribution of anisotropy angle β to the variance of displacement is an order of

magnitude smaller compared to that of α and ζ. For the manufacturing of single
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crystal blades, the results obtained from local and global sensitivity analysis suggest

that a strict tolerance value for anisotropy angle α is beneficial on two accounts.

Primarily, a reduction in the range of scattering of angle α will result in subsequent

reduction in uncertainty in the static displacement of the bladed disk. Further, the

effect of angle ζ on displacement is significantly higher when the value of angle α is

higher. Therefore, by reducing the mean value of scattering in angle α with tighter

tolerance value, the uncertainty in static displacements resulting from scattering in

angle ζ can be reduced.

(a)

(b)

(c)

Figure 4.16: Sobol index for radial displacement w.r.t angle (a) α (b) β and ζ.



Chapter 5

Analysis of static deformation

considering variations in root

geometry and anisotropy

orientation

The blades of a gas turbine engine are secured to the disk using fir–tree joints and are

connected through shrouds. Due to tolerances in manufacturing, the geometry of the

fir–tree joint and the shroud joint will differ from the design geometry. Due to such

small variations in the contact geometry, the area of contact will also differ from that

of the design geometry. For a given centrifugal loading, depending on the contact

area at fir–tree root and at shroud, contact pressure and contact stresses at joints will

be higher or lower than that experienced by the design geometry. In this chapter, the

effects of variation in bladed disk fir–tree root and shroud geometry on non–linear

static deformation of a tuned blade disk are investigated. Moreover, for different

root and shroud geometry variants of the tuned bladed disk, the effects of crystal

orientation of blades are also investigated. To minimise the high computational cost

associated with the analysis of the non-linear model, bladed disk sector models are

used for this analysis with cyclic symmetric constraints applied. Friction contacts

at fir–tree and shroud joints are modelled based on the surface–to–surface penalty

contact method.

83
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To study the effects of variations in the fir-tree root and shroud joints on static

deformation, the following nine different geometry variants are analysed:

i Nominal : The design geometry with contact area on all surfaces, two each at

upper and lower fir-tree (see Fig. 5.1(a)), and four contact areas at shrouds.

ii Max–1 : A variant of the design geometry having maximum material on both

disk slot and blade fir-tree root as shown in Fig. 5.1(b). This variant also has

a maximum contact area at all four shroud contact regions.

iii Max–2 : This is a geometry variant similar to Max–1 at fir–tree root joints but

with shrouds having minimum contact area at all four shroud contact regions.

iv Min–1 : A variant of the design geometry with minimum material on both

disk slot and blade fir-tree root as shown in Fig. 5.1(c). This variant has

minimum contact at shrouds.

v Min–2 : This is a geometry variant similar to Min–1 at fir–tree root joints

but with a maximum area of contact at the shrouds.

vi Upper : This variant of the design geometry has fir-tree root contacts at the

two upper fir–tree surfaces as shown in Fig.5.1 (d). For this variant, and the

three variants described below, the shrouds contact regions are the same as

that of the Nominal geometry.

vii Lower : A variant of the design geometry with fir–tree root contacts at lower

fir-tree surfaces alone as shown in Fig. 5.1(e).

viii Asym–A and Asym–B : These are two different variants of the design geometry

with asymmetric root geometry contacts as shown in Fig. 5.1(f) and 5.1(g)

respectively.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 5.1: Schematic diagram of fir–tree root joint for (a) Nominal, (b) Max-1 and

Max-2, (c) Min-1 and Min-2, (d) Upper, (e) Lower, (f) Asym-A and (g) Asym-B

root geometry variants.

5.1 Effects of root geometry variations.

To study the effects of manufacturing tolerance of root geometry on non-linear

deformation of the tuned bladed disks, blade sector models with similar FE meshes
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but different root and shroud geometries were investigated. Figure 5.2 shows an

example of the radial displacement of blades for the Nominal and Asym-A geometry.

The figure shows that there is a noticeable difference in displacements, especially

near the blade tip region. For the nine different geometry variants studied, Table

5.1 shows the values of maximum blade displacements under static centrifugal load.

The centrifugal load is calculated based on a realistic rotational speed for a gas

turbine bladed disk obtained from the industry. The displacements of all variants

are normalised by the maximum radial displacement value of the Nominal geometry.

From the Table, it is clear that a maximum deviation of 14.0%, from Nominal

geometry, is possible for the maximum resultant displacement. The magnitude of

the displacement is the highest in the radial direction, followed by that along the

axial direction. Under same centrifugal loading, the Lower geometry variant has

the largest radial deformation which can be attributed to a reduction in stiffness

due to an increase in the effective length of the blade as the contact is restricted to

lower fir–tree surfaces for this variant. The magnitude of the tangential component

of displacement is the smallest for all geometry variants analysed except for the

Asym-B variant.

Table 5.1: Variation in normalised maximum blade displacements

Root Normalised maximum blade displacements

geometry

variants Radial Tangential Axial Resultant % change

Nominal 1.000 0.398 0.623 1.205 0.000

Max–1 1.006 0.406 0.675 1.198 -0.581

Max–2 1.016 0.455 0.627 1.227 1.826

Min–1 1.021 0.483 0.685 1.239 2.822

Min–2 1.021 0.477 0.638 1.251 3.817

Upper 1.023 0.431 0.598 1.202 -0.249

Lower 1.045 0.546 0.648 1.288 6.888

Asym-A 1.004 0.157 0.686 1.174 -2.573

Asym-B 1.094 0.656 0.648 1.374 14.024

The variation in fir–tree root and shroud geometry will influence the contact pressure
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and therefore friction contact stresses at the blade–disk root joint and at shroud

joints. The deviations from the Nominal geometry can result in higher or lower

contact pressure at fir–tree root surfaces compared to that of the design geometry

depending on the actual area of contact. Fig. 5.3(a) and (b) shows the variation in

normalised contact pressure at lower fir–tree surfaces for Nominal geometry. The

contact pressure values are normalised by the value of average contact pressure

at upper–left surface of fir–tree root for Nominal geometry. The value of contact

pressure, and therefore contact stresses, are significantly higher towards the edges of

the contact region due to high stress concentration at the edges of the fir–tree root

geometry. Since the contact area is smaller at lower surfaces of the fir–tree root (see

Fig. 5.1), the maximum contact pressure at lower surfaces are significantly higher

compared to that of upper.

For the case of Max–1 geometry variant, Fig. 5.4(a) to (d) shows the distribution

of contact pressure at lower and upper surfaces of the fir–tree. For both upper

and lower fir–tree surfaces, the contact pressure at the edges are significantly higher

(a) (b)

Figure 5.2: Radial displacement of blade sector for (a) Nominal and (b) Asym-A

geometry variant.
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compared to that over the interior of the surface. The resulting stress concentration

is detrimental for the life of the blade as it could result in fretting wear under different

operational loads experienced by the bladed disk. When the geometry variations

within manufacturing tolerance of blade root and disk geometries result in restriction

of contacts to the lower fir–tree surfaces alone, as in the Lower geometry variant, the

maximum contact pressure increases significantly as shown in Fig. 5.5(a) and (b).

For the two asymmetric geometry variants analysed, the contacts between fir–tree

root and disk slot are restricted to two surfaces, one each on the left and right side of

the fir–tree. Fig. 5.6(a) and (b) shows the distribution of contact pressure at lower

fir–tree contact surfaces for Asym–A and Asym–B variant respectively. For Asym–A,

even though contact exists on the upper–left surface of fir–tree, since the contact is

restricted to the lower surface on the right side of fir–tree, the peak contact pressure

is comparable to that for the Lower geometry variant.

From the above analysis of variations in static displacements of the bladed disk and

contact pressure at fir–tree root joints, it is evident that the small variations in the

geometry of contact regions, even though within the tolerance limits, could result

in often undesirable variations in contact pressure at fir–tree joints of the structure.

Therefore, in order to ensure that the life of the bladed disk is not limited by the

(a) (b)

Figure 5.3: Contact pressure for geometry Nominal on (a) lower-left and (b) lower-

right fir-tree surfaces normalized w.r.t average contact pressure on upper-left surface.



89

life of the fir–tree joint, it is essential to account for the effect of variations in the

geometry on static deformation of the bladed disk.

(a) (b)

(c) (d)

Figure 5.4: Contact pressure for geometry Max–1 on (a) upper-left, (b) upper-right,

(c) lower-left, and (d) lower-right fir-tree surfaces normalized w.r.t average contact

pressure on upper-left surface of Nominal geometry.
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(a) (b)

Figure 5.5: Contact pressure for geometry Lower on (a) lower-left and (b) lower-

right fir-tree surfaces normalized w.r.t average contact pressure on upper-left surface

of Nominal geometry.

(a) (b)

Figure 5.6: Contact pressure on the lower fir–tree surface for (a) Asym–A and (b)

Asym–B geometry variant normalized w.r.t average contact pressure on upper-left

surface of Nominal geometry.
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5.2 Effects of variation in material anisotropy ori-

entation.

The investigation on local and global sensitivity of static deformation of the non-

linear bladed disk to blade material anisotropy orientation was presented in Chapter

4. It was concluded that the variation in the crystal orientation of the blades will

affect the static response of the bladed disk. It is expected that effects of blade

anisotropy orientation will be different for different fir–tree root and shroud geometry

variants. This study aims to quantify the effects of blade material anisotropy angles

on static displacements and contact pressure at fir–tree roots of single crystal blades

for different variants of the contact geometry. Moreover an investigation on the

variation of local sensitivity of displacements to anisotropy angles with respect to

different orientation of the crystal axis is also undertaken. In this study non-linear

models of the bladed disk with friction joints at blade–disk interface and at shrouds

are investigated.

From results obtained for local and global sensitivity analysis, it was concluded

that the blade displacements along radial direction are significantly influenced by

the primary anisotropy angle α, followed by ζ and β. To study local sensitivity at

different crystal orientations, the orientation of the blade anisotropy axis is varied

by varying the primary anisotropy angle α keeping the two other angles constant

at the mean value obtained from their respective probability distribution. First we

consider the variation in blade tip displacements along axial, tangential and radial

directions with respect to the orientation of crystal axis as plotted in Fig. 5.7(a),

(b) and (c) respectively. In Figure 5.7 to 5.10, the X-axis represents the angle α

normalised w.r.t the maximum permissible value of that angle. In this section, the

blade displacements and its sensitivity values presented are normalised with respect

to the maximum radial displacement for nominal geometry with friction joints and

crystal axis aligned with geometry axis. The effect of blade material anisotropy

orientation on axial displacement is higher compared to that for tangential and

radial displacement. Note that while axial and radial displacements at blade tip for

all geometry variants decreases as the blade material anisotropy axis moves away
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from the blade geometry axis, the tangential displacement shows only small variation

for most geometry variants.

(a)

(b)

(c)

Figure 5.7: Variation in normalised blade tip displacement along (a) axial (b) tan-

gential and (c) radial direction w.r.t orientation of the crystal defined by anisotropy

angle α.
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Considering local sensitivity, we know that the sensitivity of displacements to blade

anisotropy angles vary for different orientations of the crystal. To study the variation

(a)

(b)

(c)

Figure 5.8: Variation in sensitivity to angle ζ for (a) axial, (b) tangential and (c)

radial displacement w.r.t orientation of the crystal defined by anisotropy angle α.
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in sensitivity of the blade displacements, local sensitivity values are calculated at dif-

ferent crystal orientations obtained by varying the primary anisotropy angle α. Fig.

5.8(a), (b) and (c) shows the variation in local sensitivity of blade tip displacements

along the axial, tangential and radial direction to angle ζ for different orientations

of the anisotropy axis. The sensitivity values are normalised with respect to the

maximum radial displacement of the Nominal geometry for the case when crystal

axis is aligned with the blade geometry axis. While a positive value of the displace-

ment sensitivity indicates that a small change in the value of the anisotropy angle

increases the displacement, the negative value for sensitivity means a decrease in the

displacement. From Fig. 5.8(a) to (c), it is clear that the local sensitivity of blade

tip displacements to angle ζ increases as the anisotropy axis inclines away from the

blade geometry axis. This is intuitive from the definition of anisotropy angles (see

Fig. 1.2). As the value of α increases, the blade material anisotropy axis inclines

away from the blade geometry axis, and therefore, any variation in angle ζ changes

the orientation of the anisotropy axis significantly. Finally, note that for any given

orientation, the sensitivity of radial displacement with respect to angle ζ is an order

of magnitude smaller compared to that of axial and tangential displacement.

The variation in axial, tangential and radial displacement sensitivity to anisotropy

angle β for different orientations of the anisotropy axis is shown in Fig. 5.9 (a),

(b) and (c) respectively. Note that for most of the geometry variants analysed, the

change in displacement sensitivity with respect to angle β is small compared to that

of angle ζ. For any given orientation of the blade anisotropy axis, the magnitude

of tangential displacement sensitivity with respect to angles β and ζ is an order of

magnitude higher than that of axial and radial displacement sensitivity. The magni-

tude of tangential displacement for most of the variants are smaller compared to the

values for axial and radial displacements (see Table. 5.1). Therefore, even though

the sensitivity of tangential displacement with respect to β is comparatively higher,

the effect of scattering in that angle on the resultant displacement of the bladed disk

will not be significant. For Nominal geometry, this proposition is validated by the

value of Sobol indices for anisotropy angle β presented in Chapter 4.

The variation in local sensitivity of displacement to primary angle α with respect

to variation in crystal orientation is plotted in Fig. 5.10(a), (b) and (c), for axial,
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tangential, and radial displacement respectively. Based on a comparison of the val-

ues of local sensitivity of displacements to α for different crystal orientations with

corresponding values for angle ζ and β (see Fig. 5.8 and 5.9), it can be inferred

that the blade displacements are significantly more sensitive to primary anisotropy

angle α compared to angle β and ζ. For all the root and shroud geometry variants

analysed, the sensitivity of axial displacement with respect to α decreases mono-

tonically as anisotropy axis inclines away from the blade geometry axis. On the

contrary, the sensitivity of radial displacement increases consistently. The negative

value of sensitivity suggests that the axial and radial displacement decreases with

a small change in anisotropy angle alpha whereas tangential displacement for the

considered node can increase or decrease depending on the orientation of the crystal.

The change in blade anisotropy orientation affects the deformation of the bladed

disk, and therefore, can change the contact conditions at blade–disk interface, i.e.

from gap to contact and vice-versa. A comparison of Fig. 5.11(a) and (b) for Asym–

A shows a small increase in the contact area as indicated by an increase in the

contact area with a positive value of contact pressure.

Considering the variation in contact pressure on fir–tree root surfaces with respect

to crystal orientation, Tables 5.2 and 5.3 gives the normalised maximum contact

pressure and average contact pressure for different root and shroud geometry variants

analysed. The normalisation factor is the average contact pressure at upper–left

fir–tree surface for Nominal geometry when blade anisotropy orientation is aligned

with blade geometry axis. Maximum and average value of contact pressure at right

and left side of fir–tree are obtained for different crystal orientations obtained by

varying α. The inclination of anisotropy axis to blade geometry axis is increased

by increasing the anisotropy angle, α, keeping the angles β and ζ constant. The

average contact pressure for a given side of the fir–tree geometry is calculated as

the mean of contact pressures obtained for all finite element nodes, with non-zero

contact pressure, on upper and lower contact surfaces of that side. Among the

different geometry variants studied, the variation in maximum and average contact

pressure with the orientation of blade anisotropy axis is relatively high for the two

variants with asymmetric fir-tree geometry.



96

For example, for Asym–B geometry the average contact pressure on the right side

of the fir–tree root increases by 1.4%. Since the crystal orientation of the blade

influences the deformation of the bladed disk, the contact area at joints can also

(a)

(b)

(c)

Figure 5.9: Variation in sensitivity to angle β for (a) axial, (b) tangential and (c)

radial displacement w.r.t orientation of the crystal defined by anisotropy angle α.
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vary with crystal orientation. A comparison of Fig. 5.11(a) and (b), showing contact

pressure on right side of upper fir–tree of Asym–A geometry variant shows a small

(a)

(b)

(c)

Figure 5.10: Variation in sensitivity to angle α (a) axial, (b) tangential and (c)

radial displacement w.r.t orientation of the crystal defined by anisotropy angle α.
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increase in the contact area as anisotropy angle increases from α = X to α = 9×X.

The increase in contact area has resulted in a decrease in maximum contact pressure

on the surface by 4.3%.
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(a)

(b)

Figure 5.11: Normalised contact pressure on fir–tree upper right surface of Asym–A

geometry variant for (a) α = X, (b) α = 9 ×X, where X is the reference value of

α. In the coordinate system for bladed disk, X is the axial, Y is the tangential, and

Z is the radial direction.
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5.3 Statistical analysis using Random Forest based

surrogate model

It is evident from the analysis presented in Section 5.2 that the effect of blade crystal

orientation can influence the static deformation of a bladed disk with non–linear

friction joints between blade and disk and at shrouds. From the analysis of different

fir–tree root geometry variants, it can be inferred that the crystal orientation of the

blade influences the contact pressure at fir–tree root in varying degree for different

geometries analysed. Random forest (RF) based surrogate model is used to quantify

the uncertainty in contact pressure at fir–tree root joints disk while accounting for

the uncertainty in crystal orientation and possible variations in contact geometry.

A categorical variable is used to determine whether the blade root surfaces are

in contact or out of contact with the corresponding disk surfaces, the continuous

variables are the three anisotropy angles. The input parameters for this model will

include four categorical variables and three continuous variables. The probability

distribution function for the anisotropy angles used for this analysis are normal

distribution for primary anisotropy angle α, uniform distribution for angle β, and

Weibull distribution for angle ζ.

In order to build the RF-based surrogate model, FE model evaluations are obtained

corresponding to random samples of the three anisotropy angles from the realistic

probability distribution for these angles provided by the manufacturer. Sobol sam-

pling sequence is used to obtain the samples of anisotropy angle α, β and ζ. The

contact pressure values obtained from model evaluations are divided into training

set and test set in the proportion 9:1. For the present study the non-linear FE

model evaluations are computationally expensive and therefore a relatively high ra-

tio of the training set to test set is used to build the RF model. The ratio of 9:1

for the training set to test set allows the majority of the model evaluations to be

used for constructing the surrogate model. The total number FE model evaluations

obtained is 180 which include 20 number of FE model evaluations of Nominal, Up-

per and Lower geometry variants each and 60 number of FE model evaluations of

Asym-A and Asym-B models. From the results of our previous analysis for varia-
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tion in contact pressure with respect to the crystal orientation of blades, presented

in Table (5.2) and (5.3), it is evident that the variation in average and maximum

contact pressure is comparatively high for the two models with asymmetric fir–tree

geometry. Therefore to capture the higher variation in contact pressure for those

two geometry variants, a higher number of FE model evaluations for those variants

are obtained compared to that for the other three variants.

The residual error in predicted values for normalised average contact pressure on the

left side and right side of the fir–tree root surface is shown in Fig. 5.12(a) and (b).

The residual error is calculated as the difference between the RF model predicted

value and the actual value obtained using the FE model evaluation. The values of

predicted average contact pressure and the corresponding residual are normalised

with respect to the value of average contact pressure for Nominal geometry for the

case when the material anisotropy axis is aligned with the blade geometry axis.

The maximum error in prediction for average contact pressure on left and right

side of fir–tree contact surfaces is less than 6.5% of the predicted value for all root

geometry variants analysed. The figure shows that the predicted values for the

contact pressure forms cluster where each of the clusters corresponds to different

root geometry variant. Similarly, Fig. 5.13(a) and (b) shows the residual error in the

prediction of maximum contact pressure on the left and right side contact surfaces

of fir–tree root geometry respectively. The RF-based surrogate model predicts the

maximum contact pressure at fir–tree root surfaces with a maximum percentage

error of 7.0%.

The accuracy of the surrogate model can also be estimated using the normalised

mean squared error which is defined as the ratio of the difference in the variance of

predicted value from mean squared error to variance of predicted value:

R2 = (V ar(y)−MSE(y))/V ar(y) (5.1)

where, V ar(y) =
n∑
i=1

(y(i) − ȳ)2/n; ȳ being the mean of the predicted value, y(i) is

the ith predicted value, and MSE(y) is the mean square error of RF model. For the

case when R2 = 1, the model captures the variation in response variable perfectly.

For the present RF model, the value of error estimates for the training set and

test set are shown in Table 5.4. The error estimate indicates that the RF model
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can sufficiently capture the variation in average and maximum contact pressure at

fir–tree root joints w.r.t variation in root geometry and blade material anisotropy

angles.

Table 5.4: Error estimates for RF model

Contact Error estimate (1-R2)

surface Training set Test set

Maximum Left side 0.003 0.017

contact pressure Right side 0.005 0.013

Average Left side 0.001 0.009

contact pressure Right side 0.001 0.008

For Monte Carlo simulations using FE model and RF based surrogate model, the

convergence of mean and STD of normalised average contact pressure on left side

contact of the fir-tree root joint for Asym-B variant is shown in Fig.5.14(a). The

mean value of average contact pressure obtained using the surrogate model converges

faster compared to that obtained using the FE model based Monte Carlo simulation.

Fig.5.14(b) shows the convergence of mean and STD of normalised maximum contact

pressure for both RF surrogate model and for MCS using FE analysis. For both

maximum and average contact pressure, the accuracy of mean values obtained using

the surrogate model is good whereas the accuracy of STD can only be considered

as acceptable for the case shown.

The normalised mean and STD for average contact pressure w.r.t variation in

anisotropy angles are calculated for different root geometry variants using the RF

model. Table 5.5 gives the value of mean and STD for average contact pressure on

left and right side of fir–tree for different root geometry variants. The values for

average contact pressure is normalised with respect to the average contact pressure

at the left fir–tree root for nominal geometry variant with blade anisotropy axis

aligned with blade geometry axis. As indicated by the value of STD, the variation

in average contact pressure is significant for the two geometries with asymmetric

contacts. For a given geometry variant, the effective reduction in simulation time

is calculated as the difference between simulation time required for as many Monte
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Carlo evaluations required to obtain a unit place convergence for the mean value

and the total simulation time, required for the number of model evaluation of that

geometry variant, to build the RF model. The convergence of statistical mean ob-

tained from MCS is slow for the two variants with asymmetric contact geometry

(see Fig.5.14 for the case of Asym-B), and therefore, the savings in computational

time obtained by using surrogate models is significant for those two variants.

(a)

(b)

Figure 5.12: Residual error in RF model prediction of normalised average contact

pressure on (a) left side and (b) right side of the fir–tree.
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(a)

(b)

Figure 5.13: Residual error in prediction of normalised maximum contact pressure

for (a) on left side and (b) on right side of the fir–tree.
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(a)

(b)

Figure 5.14: Convergence of normalised mean and STD of (a) average contact pres-

sure and (b) maximum contact pressure on left side of fir–tree joint for Asym-B

variant.
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Chapter 6

Uncertainty analysis for static

deformation of mistuned bladed

disks

From the sensitivity analysis for static deformation of the mistuned bladed disk with

respect to crystal orientation presented in Chapter 4, it is evident that displacements

and stresses are sensitive to the orientation of the blade crystal. Uncertainty analy-

sis presented in this chapter aims is to quantify the scattering in static deformation

of mistuned bladed disk considering the scattering in blade crystal orientation. The

statistics for blade displacements and stresses for the mistuned bladed disk is pre-

sented. The statistical mean and standard deviation are obtained from Eqn. 2.50

and 2.51 presented in Chapter 2, based on gradient-based polynomial chaos expan-

sion. The values obtained from polynomial chaos expansion for statistical mean and

standard deviation are compared with values obtained from conventional Monte

Carlo simulation.

6.1 Scatter in deformation due to randomness in

the crystal orientation of blades

In order to obtain an estimate for the range of scattering in blade displacements and

stresses, a sample of 250 different mistuning patterns was obtained from the known

109
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probability distribution of the blade anisotropy angles. Based on the analysis of the

mistuning patterns, for linear and non-linear bladed disk, the range of variation in

blade tip displacement, considering all the 75 blades is shown in Table 6.1. The value

of static displacements are normalised with respect to the maximum value of radial

displacement for a non-linear tuned bladed disk with blade anisotropy axis aligned

with blade geometry axis. Comparing the range of variation in displacements for

linear and non-linear bladed disk, it is evident that the effect of material anisotropy

mistuning creates significantly high scatter in the absence of friction joints. In

Chapter 4, based on local sensitivity analysis we concluded that friction interfaces

at fir–tree root and shrouds tend to localize the influence of blade crystal orientation

of a blade in the bladed disk to its immediately adjacent blades. The smaller range

of variation in displacements for non-linear bladed disk further substantiates this

argument. The percentage variation in displacement components along the axial

and circumferential direction is higher compared to that along the radial direction.

The scattering also influences similar to displacements, the stresses generated in the

structure in blade anisotropy angles. The stresses at fir–tree root of a bladed disk is

of particular interest as the life of the joint usually becomes critical in determining

the life of the bladed disk. As an example case, for a non-linear model of the bladed

disk, the range of variation in von Mises stresses at a selected node position on

blade root of all the 75 blades due to scattering in blade anisotropy orientations was

calculated. Based on 250 different mistuning patterns analysed it was found that

the maximum variation in von Mises stresses considering all blades is 28%.

It can be inferred from the analysis of several mistuning patterns that there are

noticeable variations in the static deformation of a bladed disk under centrifugal

loading when the scattering of the crystal orientation of blades are considered. In

order to account for this variation in the design of a gas turbine, it is required to

quantify the uncertainty in static deformation of the bladed disk.
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Table 6.1: Variation in normalised blade tip displacement in mistuned bladed disk

FE model Percentage

type variation

Displacement non- non-

linear linear linear linear

Axial Maximum 0.5002 0.5220 59.4 16.7

Minimum 0.2713 0.4412

Circumferential Maximum 0.2285 0.4172 71.3 18.6

Minimum 0.1084 0.3460

Radial Maximum 0.8325 0.9907 7.0 3.1

Minimum 0.7762 0.9609

6.2 Uncertainty analysis using polynomial chaos

expansion

While analysing high–fidelity FE models of the bladed disk with non-linear friction

contacts, conventional Monte Carlo simulation approach for uncertainty analysis is

prohibitive due to high computational cost. The possibility of using polynomial

chaos expansion to perform uncertainty analysis of mistuned bladed disk is explored

in this section. The computational cost associated with constructing the polynomial

chaos approximation is depended on the number of FE model evaluations required

for calculation of coefficients in the expansion. The higher the number of random

variables, the higher the number of model evaluations required and, therefore higher

the associated computational cost. The number of terms in the expansion increases

factorially with an increase in the dimension of the design parameter space. For

a mistuned bladed disk with 75 blades and each blade having three anisotropy

angles, the number of terms in the polynomial chaos expansion of order two is

25651. Therefore, a three-fold strategy is used to reduce the computational cost

associated with the building of the surrogate model which are listed below.

1. Use gradient values of functions with respect to design parameters, along with

function evaluations to calculate the unknown coefficients in the expansion.
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2. Use a truncation scheme that excludes the interaction terms between design

variables in the polynomial chaos expansion.

3. Reduce the dimension of the design parameter space based on insights gained

from sensitivity analysis.

For uncertainty analysis of static deformation of a bladed disk presented in this

section, the statistical characteristics for deformation of blade number one are cal-

culated as a representative case. The gradient-based polynomial chaos expansion

method used for uncertainty analysis can be used to obtain the statistical charac-

teristics for deformation at any chosen location in the bladed disk. For a mistuned

bladed disk, in order to quantify the scattering in displacements and stresses of

blade number 1, the variation in the crystal orientation of nine blades shown in

Fig. 6.1, are considered which constitutes a total of 27 anisotropy angles as random

variables. While studying the variation in blade tip displacements of blade number

1, the choice of these nine blades is justified based on the local sensitivity analysis

results presented in Chapter 4 which suggests that only a few blades in the im-

mediate neighbourhood of the considered blade have a significant influence on the

displacements and stresses.

The PCE obtained for deformation of the bladed disk is compared for the two

cases, when coefficients of expansion are obtained from (i) function evaluation alone

and, (ii) function evaluations together with gradient values. The author uses the

term “gradPCE” to refer to polynomial chaos expansions when the expansion co-

efficients are evaluated from gradient values as well as function values at sample

points whereas PCE will refer to polynomial chaos expansion when the coefficients

are evaluated based on function values alone. The sampling of input parameter

space is based on Sobol sequence which was found to be useful in the exploration

of multidimensional space [114]. The anisotropy angles α, β and ζ of all blades in

the bladed disk are assumed to have a Normal, Uniform and Uniform probability

distribution respectively. The range of variation of the three anisotropy angles are

the same as that provided by the manufacturer of the blades and are not revealed

to comply with the confidentiality agreement.
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Figure 6.1: Geometry of bladed disk showing the considered 9 blades with random

anisotropy angles.

6.2.1 Analysis of the linear bladed disk.

As a first step, for a linear bladed disk, considering only the first two anisotropy

angles of blade number as random variables the accuracy of 2nd order polynomial

chaos expansion in approximating blade displacements is investigated. The original

variation in displacements is obtained from FE analysis of bladed disks by varying

the anisotropy angles α and β of blade number 1 keeping ζ constant. For a mis-

tuned bladed disk, polynomial chaos approximation for variation in axial, tangential

and radial component of displacements at node A (see Fig.6.1) with respect to the

anisotropy angle α and β of blade number one is shown in Fig. 6.2(a), (b), and (c)

respectively. The expansion coefficients in PCE and gradPCE are calculated from

ten and six FE model evaluations respectively. It is clear that the gradient-based PC

expansion provides a reasonable approximation over the realistic domain of variation

of anisotropy angle α and β considered here. The variations obtained for axial and

radial displacement shows that displacements are more sensitive to anisotropy angle

α over the entire domain. Note that while the radial displacement is maximum for

α equal to zero, i.e. when the blade anisotropy axis is aligned with the geometric

axis.

To further investigate the usefulness of PC-based surrogate model, considering a

more realistic case when the anisotropy angles of 9 blades, shown in Fig. 6.1, are

considered as random variables, the statistical characteristics of bladed tip displace-
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ments at blade one are obtained based on truncated PCE and gradPCE. In order

to obtain the expansion coefficients in PCE and gradPCE a least squares regres-

sion method (see Eqn. 2.45) is used with values of weight coefficients w1 = w2 = 1.

Table 6.2 compares the values for mean and STD of blade tip displacements for blade

(a) (b)

(c)

Figure 6.2: PCE and gradPCE approximations for (a) axial, (b) tangential and (c)

radial displacement at blade tip of blade number one.
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number 1 obtained using PCE and gradPCE to the corresponding Monte Carlo es-

timates based on 2850 evaluations of the linear bladed disk model. For the linear

bladed disk analysed, increasing the degree of PC expansion from 2 to 3 provides

no improvement in the statistics obtained using gradPCE. For the case of PCE, in-

creasing the degree of PC expansion deteriorate the accuracy of statistics obtained.

This behaviour could be explained by considering the ratio of a number of function

evaluations to the number of expansion coefficients, referred to as oversampling ratio

(OSR) by Hosder et al.[115]. Compared to an oversampling ratio of approximately

two used for PCE of degree 2, OSR of nearly one is used for PCE of degree 3. The

more accurate statistics from the former case, confirms the observation made by

Hosder et al. regarding better statistical characteristics obtained from PCE using

an OSR of value two.

For any given order of PC expansion, the expansion can be further truncated by

ignoring the interaction terms between random variables. Even though such a trun-

cation of the PC expansion can considerably reduce the computational cost involved

in constructing the surrogate model it is possible that the accuracy of the approx-

imation is compromised. For PC expansion of order two, the effect of truncation

on the accuracy of the approximation is investigated by comparing the statistics for

displacements obtained from full and truncated PC expansion with Monte Carlo

estimates. Table 6.3 compares the statistics of displacements obtained using PCE

of degree two with full basis set and the truncated basis set to results obtained

using MCS. For the problem studied, accurate statistics can be obtained by using

a truncated basis set at a computational time as low as one-third of that required

when using a full basis set.

For building the gradPCE based surrogate models, additional computational effort is

spent in calculating the gradient values of displacements. When the computational

time for FE analysis is smaller than that required for calculating gradient values,

as is the case for linear bladed disks, the advantage of using a fewer numbers of

model evaluations for the gradPCE method is offset by the additional time required

for calculating gradient values. Therefore, for linear bladed disk models, gradPCE

offers no reduction in computational cost compared to PCE.
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6.2.2 Analysis of the non-linear bladed disk.

Non-linear bladed disk models with friction contacts at blade–disk and shroud inter-

faces are solved iteratively using Newton–Raphson iteration procedure, and hence,

the computational cost required for analysis of non-linear models are significantly

higher than those required for linear models. Therefore the use of surrogate models

that can replace high–fidelity computational models is particularly advantageous.

As a representative case, the statistical mean and standard deviation for displace-

ments at blade tip node of blade number one is calculated for a mistuned bladed

disk considering anisotropy angles of the nine blades, shown in Fig. 6.1, as ran-

dom parameters. In Table 6.4, a comparison of the mean and standard deviation

of displacements obtained from 2nd order truncated PCE and gradPCE with val-

ues obtained from Monte Carlo simulation using 250 FE evaluations is presented.

While the mean and standard deviation obtained using PCE and gradPCE from

105 FE realisations shows close correspondence with Monte Carlo estimates, the

corresponding values obtain using 60 realisations differ, especially when using PCE.

The smaller number of model evaluations required using gradPCE compared to PCE

results in a reduction in the computational cost involved in calculating statistics.

Fig. 6.3 shows the convergence of standard deviation for displacements at node

A (see Fig.6.1), obtained from PCE and gradPCE, with respect to the number of

non-linear bladed disk models evaluated to obtain the coefficients in the expansion.

The proposed gradPCE method is shown to achieve fast convergence for STD of dis-

placements with respect to model evaluations for non-linear bladed disks analysed.

Therefore, it reduces the computational cost for calculating displacement statistics

for non-linear bladed disks from 271 hrs (105 model evaluations required for PCE)

to 185 hrs (60 model evaluations).

Considering von Mises stress at fir–tree root nodes of all blades in a mistuned bladed

disk blade, based on analysis of 250 different mistuning patterns, a maximum vari-

ation of 28% was obtained compared to the maximum variation of 18.6% obtained

for blade tip displacement along circumferential direction. For non-linear bladed

disk, considering the higher percentage variation in von Mises stress compared to

that obtained for displacements, the anisotropy angles of 30 blades are considered
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as random variables to obtain the statistical characteristics using full polynomial

chaos expansion of order 2. The 2nd order polynomial chaos expansion including

anisotropy angles of 30 blades as random variables has 4186 terms. The conver-

gence of mean and standard deviation of von Mises stress at fir–root node of blade

number 1 obtained from Monte Carlo simulation and 2nd order gradPCE is shown

in Figures 6.4(a) and (b) respectively. While the statistical mean of von Mises stress

obtained using gradPCE converges for 100 evaluations of the FE model, the con-

vergence for standard deviation is comparatively slow and requires more than 150

evaluations in order to converge to the value obtained using Monte Carlo simula-

tion. The coefficient of variation of von Mises stress, calculated as ratio of standard

deviation to mean value, expressed in percentage is 4.86% compared to 3.3% for

axial, 3.15% for tangential, and 0.5% for radial displacement at blade tip.

Figure 6.3: Normalised standard deviation of blade tip displacements for non-linear

bladed disk.
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(a)

(b)

Figure 6.4: Convergence of (a) mean and (b) standard deviation of von Mises stress.
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6.3 Analytically derived PDF using sensitivity-

based linear approximation

In Chapter 2, the methodology for an analytical derivation of probability density

function (PDF) of blade response using sensitivity based linear approximation was

presented. In this section, for a tuned bladed disk, PDF for static displacements

considering the uncertainty in the crystal orientation is obtained from Eqn. 2.68

and 2.69 presented in Chapter 2.

In a tuned bladed disk, the crystal orientation of all blades are identical and there-

fore, under centrifugal loading, all blades in the bladed disk will experience the same

deformation. Even for the theoretical case of a tuned bladed disk, different bladed

disks will deform differently when the uncertainty in crystal orientation is consid-

ered. The study aims to obtain the PDF of blade displacements with respect to

the assumed probability distribution of the three anisotropy angles of a blade. For

this analysis sector model of the bladed disk is used with linear bonded contacts at

fir–tree roots and shrouds. The PDF of displacement components are obtained for

two different sets of distribution of blade anisotropy angles shown in Table 6.5. The

limits of variation of anisotropy angles are obtained, from a sensitivity-based linear

approximation of the variation of blade displacements, such that a pre-defined value

of the displacement is not exceeded. In order to construct the linear approximation,

the displacements and its sensitivity to anisotropy angles are calculated at a chosen

point in the domain of variation of the anisotropy angles.

Table 6.5: Probability distribution of anisotropy angles.

Case Probability distribution Solution type

α β ζ Analytical Semi-analytical

1 Normal Uniform Uniform X

2 Normal Uniform Weibull X

In order to test the implementation of the analytical formulation for PDF in Maple,

for a test case, the analytical PDF for radial displacement was compared to PDFs

obtained from numerous function evaluations. The function evaluations are obtained
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from sensitivity-based linear approximation corresponding to 1000, 10000, 100000,

and 500000 samples of the anisotropy angles for the two different cases of the prob-

ability distribution for those angles. Fig. 6.5(b) and (a) shows a comparison of the

PDFs obtained from function evaluations to that obtained analytically for the two

different sets of distributions of anisotropy angles specified as in case – 1 and case

– 2 respectively. For the case when the PDF is determined fully analytically (Fig.

6.5b), a good comparison of the PDFs was obtained when the number of function

evaluations is of the order of 105. For the case when the PDF is determined using

a semi-analytical expression, the comparison with PDFs obtained through function

evaluations shows a small difference.

Analytical PDFs for blade displacements are obtained based on a linear approxi-

mation of the blade displacements, used to obtain the limits for anisotropy angles

over which their known PDFs are integrated, are constructed using one evaluation

of the FE model at a chosen point in the domain of variation. The quality of the

PDF obtained analytically will depend on the accuracy of the linear approximation

of blade displacements. Therefore the choice of the design point used to construct

the linear approximation is critical. For axial, radial, and tangential displacements,

the PDFs obtained semi-analytically using a linear approximation of displacements

for the different choices of value for anisotropy angles is shown in Fig. 6.6(a), (b)

and (c) respectively for case – 2. In order to validate the PDFs obtained from the

analytical expression, a comparison is made with the PDF of blade displacements

obtained numerically based on 5000 sample evaluations of the FE model. Among the

PDFs obtained using the analytical expression, the PDF obtained based on linear

approximation at the mean value of the anisotropy angles, represented as α0, β0 and

ζ0, gives a comparatively good approximation for axial displacement. In general,

the PDF obtained using analytical expression does not provide a good comparison

to that obtained numerically. This is true also for the case – 1, where the distribu-

tion of anisotropy angles allows a fully analytical derivation of the PDF for blade

displacements, as shown in Fig. 6.7(a), (b) and (c) for axial, radial, and tangential

displacement respectively. This suggests that a linear approximation is not suffi-

cient to model the variation in displacements of the bladed disk with respect to the

variation in anisotropy angles.
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The quality of the linear approximation could be improved by approximating the

displacements over a smaller domain of variation of the anisotropy angles. In order to

investigate this possibility, the original probability distribution of anisotropy angles

(a)

(b)

Figure 6.5: Comparison of PDF obtained analytically to those obtained from a linear

approximation when the anisotropy angles are distributed as defined for (a) case-2

and (b) case-1.
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α was modified by reducing the mean (α0) and standard deviation of the normal

distribution by a factor of 2. The uniform distribution defining anisotropy angle

β was modified by increasing the lower limit and decreasing the lower limit such

that the modified standard deviation of the distribution is one-third of the original

distribution. The probability distribution of the third anisotropy angle ζ was left

unmodified. For the modified distribution of anisotropy angles, the PDF of blade

displacement along the axial, tangential and radial direction is shown in Fig. 6.8(a),

(b) and (c) respectively. For the reduced range of variation of the anisotropy angles

α and β, the comparison of PDF obtained from the analytical expression with that

obtained from 5000 evaluations of FE model shows some improvement, especially

for the radial displacement. Further improvement could be achieved by using a

quadratic approximation of the displacements which will increase the complexity in

the derivation of the analytical expression.
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(a)

(b)

(c)

Figure 6.6: Comparison of PDFs obtained analytically to that obtained numeri-

cally based on FE model evaluations for (a) axial, (b) radial, and (c) tangential

displacement when the anisotropy angles have distribution as defined for case–2.
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(a)

(b)

(c)

Figure 6.7: Comparison of PDFs obtained analytically to that obtained numeri-

cally based on FE model evaluations for (a) axial, (b) radial, and (c) tangential

displacement when the anisotropy angles have distribution as defined for case–1.
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(a)

(b)

(c)
Figure 6.8: Comparison of analytically and numerically obtained PDFs for (a) axial,

(b) radial, and (c) tangential displacement when the PDF of anisotropy angles are

distributed as in case–2 but with reduced mean and standard deviation for angles

α and β compared to the original distribution.



Chapter 7

Forced response analysis of

mistuned bladed disks

A gas turbine bladed disk is not only subjected to centrifugal load but also experience

gas pressure loads. It is well known that the response of a mistuned bladed disk to

dynamic loading is significantly different from that of a corresponding tuned bladed

disk. The amplitude of the response of a mistuned bladed disk is usually higher than

that of a tuned bladed disk which is referred to as mistuning amplification. In this

chapter, the effect of blade anisotropy mistuning on the forced response of a bladed

disk is investigated in detail. Moreover, due to random variations in the crystal

orientation of the blades, the mistuning amplification could be significantly different

for different blade anisotropy mistuning patterns. Therefore, in order to ensure safe

operation of the gas turbine engine, it is essential to quantify the uncertainty in

forced response of the bladed disk.

The methodology developed for uncertainty analysis has been applied to the forced

response of a realistic bladed disk model. The FE model of the bladed disk is

shown in Fig.7.1. The blades are attached to disk using fir-tree root joints, and

the adjacent blades are also connected through shrouds. The contacts at root and

shroud are modelled as linear bonded contact. Following are the two types of bladed

disk models used in this study:

• Sector model of the bladed disk with cyclic symmetric constraints applied is

129
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used for modal analysis.

• Full model of the bladed disk for forced response analysis of mistuned bladed

disk.

In order to investigate the effects of scattering in blade anisotropy orientations on

modal characteristics, tuned bladed disk sector models are used. For analysis of

tuned bladed disk, the use of sector model reduces the computational cost signifi-

cantly. Excitation loads of unit magnitude are applied, in the X, Y and Z, direction

on the leading edge at midspan and at blade tip nodes, represented by circles in

Fig. 7.1. The damping of the structure is modelled as viscous damping. Due to

additional stiffness provided by the shrouds, the forced response of the bladed disk

usually peaks at a location between the mid-span of the blade and the blade tip.

Therefore, for this study, the forced response of a node, represented by squares in

Fig.7.1, located close to mid-span and towards trailing edge of the blade is chosen.

Figure 7.1: Finite element mesh of a section of the bladed disk model showing the

location of the excitation load applied and the node for which blade response is

obtained.
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7.1 Effects of scattering in anisotropy orientation

on modal properties and forced response

7.1.1 Effect of blade anisotropy orientation on modal prop-

erties.

The natural frequency and mode shapes of a single crystal blade will vary depending

on the orientation of the crystal. In order to avoid extreme vibration due to res-

onance, it is important to quantify the variation in natural frequency of the blade

with respect to blade anisotropy orientation. In this study, the effect of crystal ori-

entation on natural frequency of a bladed disk with bonded contacts at fir–tree root

joints and shrouds are investigated. Bonded contacts at blade roots and shrouds

are used for modal analysis as it simplifies the modelling process, and moreover,

the the mode shapes and natural frequencies of the bladed disk are relatively insen-

sitive to the presence of interfaces under normal operating conditions. and are In

order to quantify the uncertainty in natural frequency resulting from variations in

crystal orientation, modal analysis is performed using sector model of bladed disk

with cyclic symmetric constraints. For tuned bladed disk, with all blades having

the same crystal orientation, the sector model is used to reduce the computational

cost involved in uncertainty analysis using Monte Carlo simulation. The value of

natural frequencies presented in this study are normalised with respect to the nat-

ural frequency of the first mode family, corresponding to zero nodal diameter, for a

bladed disk with no shroud contact and the crystal orientation aligned with blade

geometry axis.

In a gas-turbine, flow distortions occur due to the presence of stator and rotor

blades present upstream or downstream of the flow. Such flow distortions result

in excitation of a bladed disk in the order of its rotational speed. For example,

for a bladed disk rotating at N r.p.m, M number of flow distortions will result in

an excitation of the frequency N ×M/60 Hz, which is also referred to as M engine

order (EO) excitation. In the case of a tuned bladed disk, M engine order excitation

can only excite a mode shape that has the same spatial frequency. A mode shape
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of spatial frequency M will result in M lines of zero modal deflections across the

diameter of the disk, and hence M nodal diameters. Therefore, for a tuned bladed

disk, M engine order excitation will excite a mode shape with M nodal diameters.

Based on 150 different mistuning patterns analysed, the mean and standard devi-

ation for natural frequencies are obtained. Different orientations are obtained by

sampling, from the realistic probability distribution of the anisotropy angles pro-

vided by the manufacturer, using Sobol sampling scheme. Anisotropy angle α is

assumed to have normal distribution whereas β and ζ are assumed to be uniformly

distributed. For the first 12 mode families, the variation in mean and STD of fre-

quencies as a function of nodal diameter is shown in Fig. 7.2. In the figure, the STD

of a particular frequency is indicated by the length of the error bar for that frequency.

For smaller nodal diameters, the coupling of disk mode and blade mode is significant

which results in an increase in the natural frequency with increase in nodal diameter.

As the number of nodal diameter increases, the disk becomes progressively stiffer

resulting in the disk modes becoming fully decoupled from blade modes. For any

mode family, the blade–dominant modes are indicated by the horizontal lines in the

frequency against nodal diameter plot.

In general, the influence of anisotropy orientation on the frequency of vibration of

the bladed disk is significant for higher modes. For the modes studied, the variation

in anisotropy angles can result in a coefficient of variation, defined as the ratio of

standard deviation to mean value, of the natural frequency of up to 2.1%.

7.1.2 Effect of blade anisotropy orientation on the forced

response.

The random variation in blade anisotropy angles will induce mistuning in the bladed

disk. The forced response of a mistuned bladed disk is usually very different from

that of the corresponding tuned bladed disk. There can be a significant increase in

the maximum forced response amplitude of a bladed disk due to mistuning. In a

mistuned bladed disk, the forced response amplitude of a certain blade can be higher

or lower than its response for corresponding tuned. Usually the forced response am-

plitude of most blades in a mistuned bladed disk is lower than the corresponding
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Figure 7.2: Variation in mean value and standard deviation of the frequency of

tuned bladed disk with respect to the nodal diameter.

amplitude for the tuned bladed disk, a few blades will experience significant increase

in the forced response amplitude. In order to study the effect of blade anisotropy

mistuning on the forced response, several mistuning patterns were investigated. The

effect of blade anisotropy mistuning on the forced response of the bladed disk is il-

lustrated using plots of the envelope of normalised blade amplitudes for five different

mistuning patterns of anisotropy angles. The mistuning patterns are obtained by

random sampling of the anisotropy angles from the probability distribution provided

by the manufacturer. Within a frequency range, the envelope of blade response is

obtained as the maximum forced response amplitude across all blades in the bladed

disk for the considered frequency. For the plots shown in Fig. 7.3, the value of forced

response amplitude is normalised w.r.t the maximum forced response amplitude of

the tuned blade disk in the considered frequency range.

Fig.7.3(a) shows the envelope of normalised blade response, for five different mis-

tuning patterns, corresponding to 8EO excitation of frequencies in the range of first

mode family, which is a disk-dominated mode (marked as ‘A’ in Fig. 7.2), along
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with the envelope of forced response for tuned bladed disk where all blade anisotropy

angles are aligned with blade geometry axis. Notice that for this particular case of

forced response, when the disk-dominant mode is excited, even though additional

resonance peaks appear, the forced response of mistuned bladed disk resemble that

of the tuned case. Moreover, the magnitude of the maximum forced response am-

plitude for the mistuned case is only marginally higher than that of the tuned case.

(a) (b)

(c) (d)

Figure 7.3: Envelope of forced response of bladed disk for 8EO excitation of frequen-

cies in the range of (a) 1rst mode family and (b) 2nd mode family; 35EO excitation

of frequencies in the range of (c) 1rst mode family and (d) 2nd mode family.

The effect of blade anisotropy mistuning on forced response due to excitation of

blade dominated modes are more pronounced. For 8EO excitation of frequencies

in the range of second mode family (marked as ‘B’ in Fig. 7.2), Fig. 7.3(b) shows

the envelope of forced response for different mistuning patterns and for the tuned
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case. The forced response for mistuned bladed disk has multiple resonances and

the magnitude of maximum response is noticeably higher than that for the tuned

case. The forced response of mistuned and tuned bladed disk for 35EO excitation

of frequencies in the range of first (marked as ‘C’ in Fig. 7.2) and second mode

family (marked as ‘D’ in Fig. 7.2) are shown in Fig. 7.3(c) and (d) respectively.

Note that, for 35EO excitation, the forced response amplification due to mistuning

is significantly higher for the excitation of frequencies in the range of first mode

family compared to that for the second mode family.

In order to investigate the effects of scattering in anisotropy angles on the forced

response of a mistuned bladed disk, several mistuning patterns are obtained using

pseudo-random sampling approach from the known probability distributions for the

three blade material anisotropy angles. For a mistuned bladed disk, three differ-

ent schemes for the set of blades with random anisotropy angles are studied: (i)

anisotropy angles of 30 blades, as shown in Fig. 7.4(a), are considered as a random

variable, (ii) anisotropy angles of every other blade, as shown in Fig. 7.4(b), are

considered as a random variable and (iii) anisotropy angles of all 75 blades, as shown

in Fig.7.4(c), are considered as a random variable.

(a) (b) (c)

Figure 7.4: A mistuned bladed disk showing (a) 30 blades having random anisotropy

angles, (b) 37 blades having random anisotropy angles, and (c) all 75 blades having

random anisotropy angles.

For 140 different mistuning patterns obtained by random sampling of anisotropy

angles of 30 blades in the bladed disk, the scatter in normalised maximum blade

amplitude due to 8EO and 35EO excitation of frequencies in the range of first mode
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family is plotted in Fig. 7.5(a) and (b) respectively. The values for maximum blade

displacements are normalised using corresponding value for a tuned bladed disk

with blade anisotropy axis aligned with the blade geometry axis. For frequencies in

the range of first mode family, 8EO and 35EO excite a disk-dominant mode and a

blade-dominant mode respectively (see Fig. 7.2). Therefore, the scattering in blade

anisotropy angles can be expected to have a larger influence on forced response

due to 35EO excitation compared to that due to 8EO. This is evident from the

comparison of the range of scattering in maximum blade amplitudes shown in Fig.

7.5(a) and (b).

From a comparison of Fig. 7.5(a) and (b) for 8EO and 35EO excitation, it is evi-

dent that when a blade-dominant mode is excited, the variation in anisotropy angles

of the selected 30 blades result in a different range of scattering in the maximum

response of the blades in the considered frequency range. This suggests that the

variation in anisotropy orientations of a blade significantly influence the forced re-

sponse of blades located adjacent to that blade and marginally influence the response

of blades located farther from that blade in the bladed disk. Similarly, the scatter

in normalised maximum blade displacements due to 8EO and 35EO excitation of

frequencies in the range of second mode family is shown in Figs. 7.5(c) and (d). For

frequencies in the range of second mode, 8EO and 35EO excite blade dominated

modes, and therefore, there is an appreciable difference in the range of scattering of

maximum forced response of blades due to scatter in blade anisotropy angles. For

the 30 blades, for which the anisotropy angles were obtained randomly, the scatter in

maximum blade displacement in the considered frequency range is higher compared

to that for the rest of the blades in the bladed disk.

For the three schemes used for obtaining different mistuning patterns, based on

140 different patterns analysed, mean and standard deviation of maximum blade

response are calculated. Statistics of maximum blade response for frequencies in

the range of first and second mode family due to 8EO and 35EO are shown in Fig.

7.6 and 7.7 respectively. Fig. 7.6(a), (b) and (c) show the mean and standard

deviation of maximum forced response, in the considered frequency range of first

and second mode family, for the three different choices of the set of blades with

random anisotropy angles. Similarly, Fig. 7.6(a), (b) and (c) show the mean and
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(a) (b)

(c) (d)

Figure 7.5: Scatter in maximum amplitude of blades in mistuned bladed disks for

excitation frequencies in the range of 1rst mode family due to (a) 8EO and (b) 35EO,

2nd mode family due to (c) 8EO and (d) 35EO considering 30 blade anisotropy angles

as random variables.

standard deviation of maximum forced response for frequencies in the range of first

and second mode family for 35EO excitation.

As explained before, for frequencies in the range of first mode family, 8EO excites

disk-dominant mode whereas for frequencies in the range of second mode family

blade-dominant modes are excited. For 35EO, excitation of frequencies in the range

of both first and second mode family results in the excitation of a blade-dominant

mode. In Figs. 7.6(a), (b) and (c), by comparing the standard deviation of maximum

blade response for blade dominated and disk dominated modes it is evident that
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when blade dominated modes are excited the standard deviation of the maximum

response of those blades, for which anisotropy angles are varied, is higher compared

to that for disk dominated mode. This further confirms the observation, made from

the envelope of blade response for different mistuning patterns, that the influence of

variation in blade anisotropy angles on the forced response of disk-dominant modes

is comparatively small.

As shown in Fig. 7.6(a) for most blades, among the 30 blades with random anisotropy

angles, the standard deviation for maximum blade response in the considered fre-

quency range is high compared to that of blades for which the anisotropy angles

are fixed. Again, this suggests that the variation in anisotropy angle of a blade has

a significant influence on the forced response of immediately adjacent blades and

only marginal influence on the forced response of blades positioned farther in the

bladed disk. Note from Figs. 7.7(c) that the standard deviation of maximum blade

response to 35EO is high, for most of the blades, when frequencies in the range of

first mode family are excited compared to that for those in the range of second mode

family. This is in contrast to what was observed for the case of 8EO excitation.

For the case when anisotropy angles of all 75 blades are considered as random pa-

rameters, based on the analysis of 900 different anisotropy mistuning patterns, the

histogram for normalised maximum forced response of bladed disk, known as ampli-

fication factor (AF), for forced response excitation frequencies in the range of first

and second mode family due 8EO and 35EO excitation was obtained. The normal-

ization is based on the maximum response of a tuned bladed disk, in the considered

frequency range, when the blade anisotropy angles are aligned with the blade stack-

ing axis. Fig. 7.8 shows the histogram for AF due to excitation of frequencies in

the range of first and second mode respectively for 8EO and 35EO. Comparing Fig.

7.8(a) and (b), it is clear that for most of the mistuning patterns analysed the max-

imum response corresponding to 8EO excitation is only marginally higher than that

of the tuned bladed disk when disk-dominant modes are excited. For frequencies in

the range of the second mode, both 8EO and 35EO excites blade-dominant modes.

For this case, the mean AF is considerably higher for 8EO excitation compared to

that for 35EO excitation as seen in Fig. 7.8(c) and (d). This suggests that when a

disk-dominant mode in a similar frequency range is excited, the effect of mistuning
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is critical for lower engine order excitations compared to that for higher engine order

excitations.

(a)

(b)

(c)

Figure 7.6: Mean and STD of normalised maximum amplitude of blade for 8EO

excitation of (a) 30 blades, (b) 37 blades and (b) all 75 blades having random

anisotropy angles.
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(a)

(b)

(c)

Figure 7.7: Mean and STD of normalised maximum amplitude of blade for 35EO

excitation for the case (a) 30 blades (b) 37 blades chosen alternatively and (c) all

75 blades having random anisotropy angles.
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(a) (b)

(c) (d)

Figure 7.8: Histogram for normalised maximum amplitude of bladed disk for 1rst

mode family due to (a) 8EO and (b) 35EO excitation, 2nd mode family due to (c)

8EO and (d) 35EO excitation.
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7.2 Uncertainty analysis using polynomial chaos

expansion

From the results presented in Section 7.1 for anisotropy mistuned bladed disk, it is

evident that the forced response of a bladed disk varies due to inevitable scatter-

ing in blade anisotropy angles. Therefore, considering the safe operation of the gas

turbine engine, it is essential to quantify the uncertainty in forced response of the

mistuned bladed disk. In this section, a thorough investigation of the usefulness of

polynomial chaos expansion (PCE) based surrogate model for uncertainty analysis

is presented. In particular, the statistical characteristics for the maximum forced re-

sponse amplitude of a mistuned bladed disk are obtained considering the anisotropy

angles of all blades, or a set of blades, as random variables. The bladed disk model

analysed for this study has linear bonded contacts at fir–tree root and shrouds.

For a bladed disk with 75 blades, the total number of anisotropy angles is 225. A

PCE of order 2 with 225 random variables will have 25651 terms, and therefore,the

same number of unknown coefficients. The computational cost associated with the

calculation of unknown coefficients, using FE model evaluations, for such a sur-

rogate model is prohibitive even if gradient values are used for the evaluation of

those coefficients in addition to using function evaluations. In order to reduce the

computational cost associated with constructing the surrogate model, we begin by

considering a scheme of the mistuned bladed disk where the anisotropy angles of

only 30 blades are considered as random variables (see Fig.7.4b). For the considered

scheme of the mistuned bladed disk, the statistical characteristics are obtained using

full and truncated polynomial chaos of order 2. While full PCE of order 2 contain

basis terms of all anisotropy angles and their combinations of up to order to 2, the

truncated PCE is obtained by excluding all basis terms in the expansion which are

a combination of two anisotropy angles. Therefore in PCE of order 2, if αi, βi and ζi
are anisotropy angles of the ith blade, then truncated PCE is obtained by excluding

basis terms of the form αiβj, αiζj and βiζj for both the cases of i = j and i 6= j. For

the present scheme of the mistuned bladed disk with anisotropy angles of 30 blade

considered as random variables, the full PCE and truncated PCE has 4186 and 181
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terms respectively.

In the mistuned bladed disk analysed, the crystal orientation of all the 75 blades

is different from one another. In order to obtain different mistuning patterns, the

blade anisotropy angles of the considered 30 blades were randomly sampled from

the assumed probability distribution of these angles which is normal distribution

for angle α and uniform distribution for the angles β and ζ. The convergence of

standard deviation of normalised maximum forced response amplitude is compared

to that obtained using Monte Carlo Simulation (MCS). The convergence of mean and

standard deviation of normalised maximum forced response amplitude obtained from

gradient-based PCE is investigated for different choice of weight coefficients used to

set additional weight for value of gradient evaluations over function evaluations or

vice-versa depending on the choice of the two weight coefficients w1 and w2 in Eqn.

(2.45). The following two cases are considered: (i) when the weight coefficient w1

and w2 are of different value, and (ii) when the value of the two weight coefficient

are chosen to be equal.

For 8EO excitation of frequencies in the range of first and second mode family, the

convergence of standard deviation for normalised maximum forced response is shown

in Fig. 7.9(a) and (b) respectively. As described in section 7.1, 8EO excitation of

the first mode family results in excitation of a disk-dominant mode. The variation in

maximum forced response amplitude is comparatively smaller when a disk-dominant

mode is excited. This is evident from the comparison of the converged value of

standard deviation for the maximum forced response due to 8EO excitation of first

and second mode family, where the latter value is around four times higher than

the former. As the EO increases, the disk becomes stiffer, and therefore the modes

excited by higher engine orders are predominantly blade dominated. Therefore 35EO

excitation of first mode family results in excitation of a blade-dominant mode. Fig.

7.9(c) shows the convergence of standard deviation for the maximum forced response

for this case.

It is evident from Fig. 7.9(a), (b) and (c) that the convergence of standard deviation

obtained from PCE can be hastened by using a carefully chosen value for weight

coefficients. For the considered scheme of mistuning pattern with 90 anisotropy
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angles considered as random variables, the choice of a weight coefficient value of 5

considerably improves the rate of convergence compared to the case when no weight

coefficients are used, i.e. when w1 = w2 = 1.0. Similarly for the case when the value

of the two weight coefficients are equal, thus leaving the system of linear algebraic

equations unmodified. Fig. 7.10(a), (b) and (c) shows the convergence of standard

deviation of maximum forced response for the three different forced response exci-

tations cases studied. It is evident that the convergence of statistical characteristics

are faster when truncated PCE is used compared to the full PCE. As the value of

weight coefficient is increased, an optimum value of weight coefficient could be found

for which the accuracy of standard deviation obtained from PCE is in good com-

parison to that obtained from Monte Carlo simulation. Any further increase in the

value of weight coefficient will result in a deterioration of the accuracy of statistical

characteristics. For example, for the present case of 90 random anisotropy angles,

the two combinations of weight coefficient values that provide good convergence of

standard deviation are w1 = 5.0, w2 = 1.0 and w1 = 5.0, w2 = 5.0.

For the case when different values are chosen for w1 and w2, the convergence of mean

value of normalised maximum forced response of bladed disk for 8EO excitation of

frequencies in the range first and second mode family, and 35EO excitation of those

in the range of first mode family are shown in Fig. 7.11(a), (b) and (c) respec-

tively. Note that the variation in mean value with increasing FE model evaluations

is smaller compared to that for standard deviation. The accuracy of mean value ob-

tained from PCE approximation is good for most cases of truncated, and full PCE

studied for different values of weight coefficients studied. In general, this is true for

the case when the value of the two weight coefficients are equal as is indicated by

Fig. 7.12(a), (b) and (c) showing convergence of the mean value of maximum forced

response for three cases of forced response excitation studied.

For a more realistic case, when the anisotropy angles of all blades in the bladed

disk are considered as random variables, the number of terms in the full polynomial

chaos approximation of order 2 is 25651. In order to reduce the computational cost

associated with the evaluation of unknown coefficients in the expansion, truncated

polynomial chaos of order 2 is used to obtain the statistical characteristics. The

truncated polynomial chaos expansion, obtained by ignoring the interaction terms
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between random variables, contain 451 terms. Based on a trial and error approach,

a weight coefficient value of w1 = 10 and w2 = 1 was found to give a good conver-

gence for statistical characteristics for this case. For 8EO and 35EO excitation of

frequencies in the range of 1rst and 2nd mode family, a comparison of the mean and

standard deviation of the normalised maximum response of the bladed disk obtained

from PCE and MCS is provided in Table 7.1. The Monte Carlo estimates are ob-

tained using 500 evaluations of the FE model for random mistuning patterns of the

blade anisotropy angles. For the two different cases of EO excitation and frequency

ranges analysed, the value of mean and standard deviation obtained using PCE is

in good comparison with that obtained using the Monte Carlo method.
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(a)

(b)

(c)
Figure 7.9: Convergence of STD of maximum forced response with number of FE

model evaluations for 8EO excitation of frequencies in the range of (a) 1rst mode

family, (b) 2nd mode family; and (c) 35EO excitation of 1rst mode family for the

case when weight coefficients w1 and w2 are different.
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(a)

(b)

(c)
Figure 7.10: Convergence of STD of maximum forced response with number of FE

model evaluations for 8EO excitation of frequencies in the range of (a) 1rst mode

family, (b) 2nd mode family; and (c) 35EO excitation of 1rst mode family for the

case when weight coefficients w1 and w2 are equal.
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(a)

(b)

(c)
Figure 7.11: Convergence of mean of maximum forced response with number of FE

model evaluations for 8EO excitation of frequencies in the range of (a) 1rst mode

family, (b) 2nd mode family; and (c) 35EO excitation of 1rst mode family for the

case when weight coefficients w1 and w2 are different.
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(a)

(b)

(c)
Figure 7.12: Convergence of mean of maximum forced response with number of FE

model evaluations for 8EO excitation of frequencies in the range of (a) 1rst mode

family, (b) 2nd mode family; and (c) 35EO excitation of 1rst mode family for the

case when weight coefficients w1 and w2 are equal.
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7.3 Sensitivity of forced response to anisotropy

angles

From a manufacturing point of view, it is essential to know the rank order of im-

portance of anisotropy angles in terms of its contribution to uncertainty in forced

response of the bladed disk. This knowledge can be used to relax the manufacturing

tolerance values for those anisotropy angles that are less influential and to prescribe

tighter tolerance for anisotropic angles that contribute significantly to uncertainty

in forced response. In order to quantify the effects of variation in individual blade

anisotropy angles on the maximum forced response amplitude of mistuned bladed

disk with linear bonded contacts at fir–tree root and shrouds, sensitivity analysis is

performed. In addition to first order derivative based sensitivity, Sobol indices for

anisotropy angles relating to the maximum forced response of bladed disk are also

presented in this section.

In order to investigate the effects of scattering of the three different anisotropy angles

on uncertainty in the forced response, several mistuning patterns were generated by

obtaining the values of anisotropic angles of each blade in the bladed disk based on

the three schemes listed below.

• Scheme–1 :- α ∼ Normal(µ0, σ0); β = β0; ζ = ζ0

• Scheme–2 :- α = α0; β ∼ Uniform(a, b); ζ = ζ0

• Scheme–3 :- α = α0; β = β0; ζ ∼ Uniform(c, d)

where, α0, β0, and ζ0 are the mean values of the three anisotropy angles. While the

first scheme considers variation in anisotropy angle α while keeping β and ζ as a

constant, the second and third schemes are based on varying anisotropy angles β

and ζ respectively. From 150 different mistuning patterns obtained for each of the

above schemes, the standard deviation of maximum forced response amplitude of

bladed disk was calculated using Monte Carlo method. Fig. 7.13(a) and (b) shows

the convergence in normalised standard deviation of maximum forced response due

to eight engine order (8EO) excitation of frequencies in the range of first and second

mode family. The values of standard deviation for the maximum forced response of
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the mistuned system due to a particular engine order excitation in the considered

frequency range is normalised with respect to the corresponding value of maximum

forced response for a tuned system. The 8EO excitation of frequencies in the range

of first mode family results in excitation of disk-dominant modes. For the excitation

of disk-dominant modes, the value of standard deviation is smaller for all the three

schemes analysed when compared to the corresponding values for blade-dominant

modes, i.e. when frequencies in the range of second mode family are excited by 8EO.

For the excitation of the disk-dominant mode, contribution of anisotropy angle ζ

to uncertainty in maximum forced response is higher compared to that of α and ζ

as indicated by the higher value of standard deviation for Scheme–3. Fig. 7.13(c)

shows the convergence in the standard deviation of maximum forced response due to

35EO of first mode family which is a case of blade-dominant mode. For the maximum

forced response of the two cases of blade-dominant modes analysed (Fig. 7.13(b) and

(c)) the value of standard deviation are only marginally different between the three

different schemes. Therefore the relative importance of the three anisotropy angles

in terms of their contribution to uncertainty in forced response is not conclusive

from this analysis.

For an example case of blade anisotropy mistuning pattern, Fig. 7.14(a) shows the

normalised value of local sensitivity of maximum forced response to 35EO excitation

of frequencies in the range of first mode family. The 35EO excitation was chosen

because, while considering the first mode family, higher engine order excitations re-

sult in excitation of blade-dominant modes for which the effect of blade anisotropy

mistuning is significant compared to that for disk-dominant modes. For the con-

sidered case, blade number 53 has the maximum forced response in the considered

frequency range. From the figure, it is evident that the sensitivity of anisotropy

angles for many blades close to blade number 53 is significant, in particular, the

primary anisotropy angle α of those blades. The local sensitivity of forced response

to blade anisotropy angles considering 35EO excitation of frequencies in the range

of second mode family is shown in Fig.7.14(b). Similar to that observed for the

case of excitation of frequencies in the range of first mode family, anisotropy angles

of many blades located close to the blade experiencing maximum response, blade

number six, has high sensitivity values. From local sensitivity analysis, it could be
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inferred that the anisotropy angle α is significantly more influential on the maximum

forced response of bladed disk compared to angle β, and ζ.

The rank order of importance of anisotropy angles obtained from local sensitivity

analysis is not conclusive because it is based on gradient values evaluated at a par-

ticular sample point in the domain of variation of the anisotropy angles. Therefore,

global sensitivity analysis for forced response based on Sobol indices is performed.

The Sobol indices are obtained analytically from PCE coefficients which are calcu-

lated based on hundreds of evaluations of the FE model for different mistuning pat-

terns of blade anisotropy angles. In Fig. 7.15(a), Sobol indices of blade anisotropy

angles for maximum forced response corresponding to 35EO excitation of frequen-

cies in the range of first mode family is shown. Sobol indices for anisotropy angles

show that the contribution of anisotropy angle ζ to uncertainty in maximum forced

response is significantly higher compared to that of anisotropy angles β and ζ. Note

that the domain of variation of anisotropy angle ζ is largest, followed by β, and α.

Therefore, even though the gradient of the maximum forced response with respect

to α is higher than that for β and ζ, as indicated by local sensitivity values, since

Sobol indices account for variation of the anisotropy angles over its entire domain

of variation, the rank order of importance is different from that obtained using lo-

cal sensitivity analysis. Fig. 7.15(b) shows Sobol indices for anisotropy angles for

maximum forced response corresponding to 35EO excitation of frequencies in the

range of second mode family. Similar to that for the forced response excitation of

frequencies in the range of first mode family, the rank order of anisotropy angles in

terms of contribution to uncertainty in forced response is ζ, followed by β, and α.

The rank order of importance of the anisotropy angles is also dependent on the

parameters defining the probability distribution of those angles. To illustrate this

point, Sobol indices were calculated by samples of anisotropy angles from a modified

probability distribution of anisotropy angle α. The mean and standard deviation of

the original normal distribution was reduced by a factor of 2 and 3.5 respectively.

For the modified distribution of angle α, the Sobol indices of anisotropy angles for

the maximum forced response corresponding to 35EO excitation of frequencies in the

range of first and second mode family are shown in Fig.7.16(a) and (b) respectively.

For the considered cases, the Sobol indices of anisotropy angle α indicate that the
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(a)

(b)

(c)
Figure 7.13: Convergence of STD of maximum forced response for 8EO excitation

of frequencies in the range of (a) 1rst, (b) 2nd mode family, and (c) 35EO excitation

of frequencies in the range of 1rst mode family.
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contribution of that angle to uncertainty in maximum forced response is higher

compared to that due to angles β and ζ. This is in contrast to what was observed

while considering the original normal distribution of angle α. This contradiction

could be explained by considering the physical definition of the three anisotropy

angles. The contribution of anisotropy angle ζ, defining the rotation of the crystal

axis about the blade geometry axis, to uncertainty in forced response amplification is

smaller when the crystal axis is aligned closer to the blade geometry axis, indicated

(a)

(b)

Figure 7.14: (a) Normalised local sensitivity of maximum forced response amplitude

of the bladed disk corresponding to 35EO excitation of frequencies in the range of

(a) 1rst mode family and (b) 2nd mode family.
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by small values of angle α, compared to the case when it is aligned away from the

geometry axis as is the case for large values of angle α.

(a)

(b)

Figure 7.15: Sobol indices for maximum forced response amplitude of bladed disk

corresponding to 35EO excitation of frequencies in the range of (a) 1rst mode family

and (b) 2nd mode family.
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(a)

(b)

Figure 7.16: Sobol indices for normalised maximum amplitude of bladed disk cor-

responding to 35EO excitation of frequencies in the range of (a) 1rst mode and (b)

2nd mode family.
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7.4 Optimisation of blade anisotropy angles

For blade anisotropy mistuned bladed disk, to minimise the force response amplifica-

tion due to random mistuning of the bladed disk, the possibility of using intentional

mistuning is investigated. The problem of intentional mistuning of bladed disk is

formulated as an optimisation problem where the optimum value of the anisotropy

angles that minimise the forced response amplification is sought. The FE model of

the bladed disk with linear bonded contacts at fir–tree root and shrouds is used to

obtain an optimum value of the anisotropy angles of blades such that the maximum

forced response amplification of the bladed disk is minimised.

The performance of two different optimisation algorithms, namely NELDER-MEAD

simplex and Constrained Optimisation By Linear Approximation (COBYLA) is

compared. For the present study, the chosen objective function for the optimisa-

tion problem is the amplification factor (AF) for frequencies in the range of second

mode family due to 8EO excitation which is a blade-dominant mode, and therefore,

significantly influenced by the variation in blade anisotropy angles. From analy-

sis of the effects of crystal orientation on forced response of mistuned bladed disks

presented in the Section 7.1.2, it is evident that for excitation of blade-dominant

modes in the similar frequency range, lower engine order excitation results in sig-

nificantly high amplification of the forced response of bladed disk compared to that

for higher engine order excitations. Therefore, the forced response corresponding to

8EO excitation was chosen as objective function for the optimisation of anisotropy

angles.

From the manufacturing point of view, it is desirable to optimize the anisotropy

angles of only a few blades even though this makes the choice of the set of blades to

be optimized critical in achieving a significant reduction in amplification of the forced

response. For an example case of mistuning pattern, the anisotropy angles of five

blades are chosen as design parameters for optimisation. The choice of the position

of the five blades in the bladed disk is based on a trial and error approach. The idea

is to select at least one blade close to the location of the maximum response of the

bladed disk. As the results presented from local sensitivity analysis in Section 7.3

indicate, the anisotropy angles of the blade experiencing maximum forced response
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amplification and that of the adjacent blades has most significant influence on the

maximum forced response of the mistuned bladed disk. Figure 7.17(a) and (b) shows

the reduction in amplification of blade response, in the considered frequency range,

obtained using two different optimisation algorithms, namely Nelder-Mead simplex

and COBYLA. The chosen blades for which anisotropy angles are optimised are, for

this case, blade number 1, 15, 30, 45, and 60. For the case of mistuning pattern

analysed, it is evident that the optimisation using COBYLA is faster, in terms of

optimisation step, even though the optimised AF achieved using this method is

slightly higher than that obtained using NELDER-MEAD simplex method.

For two different initial blade anisotropy mistuning patterns, the variation in am-

plification factor (AF) and the location of maximum response of the bladed disk

against the optimisation step are shown in Fig. 7.18(a). For mistuning pattern A,

the maximum response in the considered frequency range occurs at blade number

46. For this case, the five blades whose anisotropy angles are chosen to be opti-

mized are blade number 1, 15, 30, 45 and 60. Similarly for pattern B, considering

that maximum response occurs at blade number 62, the five blades chosen are blade

number 6, 21, 36, 51 and 63. The percentage reduction in AF obtained is 21% and

7% for mistuning pattern A and B respectively. Note that for pattern A, the blade

experiencing the maximum response is the same for the first 26 optimisation steps

when a significant reduction in AF is achieved. For mistuning pattern A, the vari-

ation in blade anisotropy angle α and β, of each of the five blades is shown in Fig.

7.19(a) and (b) respectively. The variation in the third blade anisotropy angle ζ is

small compared to that of the two angles shown here. For three different random

mistuning patterns, Fig. 7.18(b) shows reduction AF when anisotropy angles of

every other blade from blade number 1 to 75 are optimized. For the three mistuning

patterns studied, reduction in AF of 16.8%, 13.9% and 14.2 % were obtained. The

number of optimisation steps required has increased significantly as the dimension

of the parameter space has increased from 15 for five blades to 114 when anisotropy

angles of every other blade are optimized.

From a practical design perspective, the possibility of reducing the maximum forced

response by optimising the anisotropy angles of a single blade in the bladed disk is

the most interesting. Fig. 7.20 shows the reduction in AF with subsequent opti-
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misation steps when anisotropy angles of blade number 46, which also experience

the maximum forced response amplification for the initial mistuning pattern, is op-

timised using NELDER-MEAD algorithm. For the mistuning pattern analysed the

(a)

(b)

Figure 7.17: Variation in maximum forced response amplitude of bladed disk with

optimisation of blade anisotropy angles of the chosen 5 blades using (a) NELDER-

MEAD and (b) COBYLA.
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(a)

(b)

Figure 7.18: Variation in normalised maximum forced response amplitude of bladed

disk with respect to optimisation of the blade anisotropy angles of the chosen (a) 5

blades and (b) 38 blades in the bladed disk.
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location of the blade with maximum amplitude does not changed until optimisation

step thirteen. This is clear from Fig. 7.21(a)–(d) which shows the forced response

amplitude of all blades in the bladed disk in the considered frequency range. In

the figure, the forced response of the blade experiencing maximum forced response

amplification is represented using a thicker line. For the considered initial mistun-

ing pattern, the reduction in the forced response amplification due to mistuning

(a)

(b)

Figure 7.19: Variation in normalised anisotropy angles (a) α, and (b) β of the chosen

five blades with respect to optimisation step.
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achieved by optimising the three anisotropy angles of a single blade is 38%.

The analysis presented in this section demonstrates the potential to reduce the forced

response amplification of mistuned bladed disk by optimising the blade anisotropy

angles of a few selected blades in the bladed disk. It is important to realise that the

optimum anisotropy angles obtained for forced response excitation of frequencies in

the range of a specific mode family, due to a particular engine order excitation, does

not guarantee an optimum forced response response for excitation of frequencies in

the range of other mode families or even for that of the same mode family but for

a different engine order excitation. While this does not limit the the potential gain

of optimising the blade anisotropy angles for forced response excitation for a chosen

frequency range and engine order, it requires a knowledge of the most critical modes

of the structure to make a good choice of the frequency range and engine order.

Figure 7.20: Variation in normalised maximum forced response amplitude of bladed

disk with respect to the optimisation of blade anisotropy angles of the chosen one

blade in the bladed disk.
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(a) Step 1 (b) Step 11

(c) Step 13 (d) Step 15

Figure 7.21: Variation in normalised forced response amplitude of blades with re-

spect to optimisation step number (a) one, (b) eleven, (c) thirteen, and (d) fifteen.



Chapter 8

Concluding remarks

In the present study, considering the scatter in crystal orientation of single crystal

blades used in gas turbine engines, uncertainty and sensitivity analysis has been

performed for static displacements and stresses, and maximum forced response am-

plitude of bladed disk using realistic, high–fidelity finite element models.

8.1 Summary of methodology development

The main contributions of the present study are summarized in the following points:

• For a bladed disk with friction contacts at root and shroud interfaces, un-

certainty analysis using conventional Monte Carlo simulations could be pro-

hibitively expensive. Therefore surrogate modelling based on polynomial chaos

expansion, that can closely approximate the FE model has been used in this

study. For mistuned bladed disks, with numerous design parameters that are

random variables, the use of polynomial chaos results in the so-called “curse of

dimensionality” problem. To address this issue, the use of gradients of function

values, in addition to function values itself, is proposed. It has been demon-

strated through the study of static deformation of the non-linear bladed disk

that a faster convergence in statistical characteristics can be obtained by us-

ing gradient enhanced polynomial chaos expansion compared to conventional

PCE.

• A methodology for global sensitivity analysis, hitherto unused in the analysis

165
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of mistuned bladed disk, has been introduced to investigate the contribution

of scattering in individual blade anisotropy angles on variance in the static and

dynamic response of bladed disk. The Sobol indices for blade anisotropy angles

are obtained analytically from deterministic coefficients in gradient enhanced

polynomial chaos expansion.

• For uncertainty analysis of non-linear static deformation of the bladed disk,

considering the manufacturing variations in root geometry and blade anisotropy

angles, a surrogate model based on random forest, is proposed for uncertainty

analysis. It has been demonstrated that the RF-based surrogate models can

predict the variations in average contact pressure at blade–disk interface ac-

curately, and therefore, can reduce the computational time required for uncer-

tainty analysis.

• Considering the blade anisotropy angles as random variables, with a known

probability distribution, analytical expressions for probability density func-

tion of the stochastic response of bladed disk, using sensitivity based linear

approximation, have been derived.

• The possibility of optimising the blade anisotropy angles to minimise the forced

response amplification due to anisotropy mistuning has been investigated for

the first time. It has been demonstrated that by optimising anisotropy angles

of only a few blades in the bladed disk, considerable reduction in the forced

response amplification can be achieved.

8.2 Summary of results from numerical studies

The conclusions drawn from the present study can be summarised into three groups

as follows:

(a) Effects of blade anisotropy mistuning on static deformation of the

mistuned bladed disk.

• Based on local and global sensitivity analysis, it can be concluded that the

crystal orientation of a blade influences the static deformation of that blade

and of immediately adjacent blades in the mistuned bladed disk. The effect



167

of crystal orientation of a blade on deformation of the blades positioned

farther from the considered blades is negligible, especially for bladed disk

with friction joints on roots and shrouds.

• Based on the analysis of numerous mistuning patterns, it has been con-

cluded that the scatter in blade anisotropy angles could result in signifi-

cant scatter in blade displacements under centrifugal loading. Among the

three components of displacements studied, scatter in axial and tangential

displacement has been found to be significant while that for radial dis-

placement is marginal. Based on studying the variation in von Mises stress

at fir–tree root of a blade in the bladed disk, for 250 different mistuning

patterns, a maximum variation of 28% has been obtained.

• Among the three anisotropy angles, defining the orientation of the crystal

axis with respect to blade geometry axis, local sensitivity analysis shows

that sensitivity of displacements and stresses to primary anisotropy angle

that define the semi-cone angle between crystal axis and blade geometry

axis is the highest. The results obtained from local and global sensitiv-

ity analysis contradict, especially regarding the importance of the third

anisotropy angle defining the rotation of the crystal axis about the blade

geometry axis. Global sensitivity analysis suggests that the contribution of

the third anisotropy angle to uncertainty of axial and radial displacement

of blades is significant.

• A comparison of the analytically derived PDF obtained using linear approx-

imation of static displacements of a tuned bladed disk with PDF obtained

numerically from FE model evaluations of numerous samples of crystal

orientations suggest that a linear approximation is inadequate to model

the variation of blade displacements in the original domain of variation of

anisotropy angles.

(b) Effects of blade anisotropy orientation and root geometry variation

on the static deformation of bladed disk.

• To understand the effects of root geometry variation on non-linear static

deformation of bladed disk, different root geometry variants were analysed.
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It was concluded that significant variation in contact pressure can result

from variation in root geometry within the manufacturing tolerance limits.

• The local sensitivity of blade displacements with respect to anisotropy an-

gles is different for different orientation of the anisotropy axis. It was found

that the sensitivity of displacements to the third anisotropy angle increases

monotonically for most root and shroud geometry variants when the pri-

mary anisotropy angle or the semi-cone angle between anisotropy axis and

geometry axis increases.

• The effects of blade anisotropy orientation on average and maximum con-

tact pressure at fir–tree root have been investigated for different root ge-

ometry variants. Based on the uncertainty and sensitivity analysis, it has

been concluded that the contact pressure on fir–tree root surfaces are more

sensitive to blade anisotropy orientation for some root geometry variants

compared to that for other variants analysed.

(c) Effects of blade anisotropy mistuning on forced response amplification

of bladed disk.

• For a mistuned bladed disk with bonded contacts at root and shroud in-

terfaces, the effect of blade anisotropy mistuning on forced response has

been investigated. Based on the analysis of numerous anisotropy mistuning

patterns it was concluded that the effects of blade anisotropy mistuning is

significant for forced response excitation of blade-dominant modes com-

pared to that for the excitation of disk-dominant modes.

• Sensitivity analysis using local and global sensitivity methods suggest that

while the maximum forced response of mistuned bladed disk shows high

sensitivity to primary anisotropy angle, the anisotropy angle defining the

rotation of the crystal axis about blade geometry axis contribute signifi-

cantly to the uncertainty in forced response.

• Based on a comparison of statistics obtained from gradient based polyno-

mial chaos expansion and Monte Carlo simulations, it can be concluded

that polynomial chaos expansion can provide accurate statistical charac-
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teristics for variation in maximum forced response of anisotropy mistuned

bladed disk. In the present study, the case of bladed disk with linear bonded

contacts was considered. Since the computational time required for modal

analysis and forced response analysis of linear models of bladed disk are

comparable to the time required to obtain gradient values for maximum

forced, the use of polynomial chaos does not provide any computational

gain. It is expected that the use of gradient based polynomial chaos ex-

pansion will result in significant gain in computational cost while analysing

bladed disk with non-linear friction contacts at interfaces.

• The possibility of optimising the blade anisotropy angles of few blades in

the mistuned bladed disk to minimise the forced response amplification

factor has been demonstrated. For a sample mistuning pattern analysed,

reduction in amplification factor of 38% has been achieved by optimising

the crystal orientation of a single blade in the mistuned bladed disk.

8.3 Further scope of research

The objectives set forward in Chapter 1, section 1.4 have been achieved by various

analyses undertaken and the results have been presented. Nonetheless, there is

ample scope for further research on topics related to anisotropy mistuned bladed

disk such as:

(a) The investigation of the effects of variation in blade crystal orientation and root

geometry on forced response remains to be investigated.

(b) The investigation of the effects of uncertainty in crystal orientation on forced

response of bladed disk considering non-linear friction contacts at fir–tree root

and shroud interfaces.

(c) A generalized approach for considering the effect of root geometry variation on

static and dynamic response of the bladed disk, such as using parametrization

of critical fir–tree geometry features, would be of great practical interest.

(d) For the tuned bladed disk, the analytical expressions obtained for calculating the

probability of blade response exceeding a critical value based on linear approxi-
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mation of the blade displacements are not sufficiently accurate. The derivation

of analytical expression gets more mathematically challenging when using higher

order approximation for blade displacements. Further research is necessary to

find simple mathematical models which can predict the variation in response of

bladed disk with respect to variation in blade anisotropy angles.
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