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required coursework for the degree of Bachelor of Science in Biomedical Science which 

was awarded by the University of Sussex.  

The initial DIY microscope was produced as part of the 3rd Year Research Project, and 
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Summary 

This MPhil thesis is the result of some time working with the Raspberry Pi, a cheap, credit-

card sized computer. This has been used in this project to offer teachers new opportunities 

and methods to study a curious microscopic organism, the tardigrade, and a more common 

animal, found everywhere- the ant. Through these short, education based experiments, I 

have attempted to identify how this hardware could be used in schools to boost cross-

curricular teaching and to enhance the work that can be carried out in a school setting, 

while sticking to a very tight budget. The entire project has been accomplished for less than 

£200 and has incorporated a wide range of external sensors that provide real, useful data 

for studying the effect of environment on the behaviour of animals.  

This thesis takes the reader through a history of the technology and gives an introduction to 

the equipment and programmes used throughout, before applying this to two very practical 

studies which attempt to utilise the hardware to advance our knowledge of animal 

behaviour.  

It is, to my knowledge, the first time a Raspberry Pi has been used in ant behavioural 

studies, and provides schools and colleges ideas on how to utilise this equipment to look at 

animals in new ways.  

Paper arising from this thesis 

Kent, H.R and Bacon, J.P. (2016). Microsco-pi: a novel and inexpensive way of merging 

biology and IT. School Science Review 98 (363). pp. 75-82. ISSN 0036-6811 (Attached as 

Appendix 1) 
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Preface 

 
This thesis has evolved over time, initially being an extension of my undergraduate project 

looking at tardigrade behaviour in changing conditions, into what is really a look at how 

cheap technology is applicable to studying biological processes as a whole, partly as a result 

of my emerging interest in the social insects. 

As a result, the writing style is quite different to that of a traditional MPhil. It has been 

written in a similar style to that found in School Science Review, an educational journal 

aimed at school science teachers. My hope is that the material within this thesis will be 

written in a way that is easily accessible to people who are not specialists in biology or 

computer science and makes it possible for school staff and students to be able to follow 

along. 

Furthermore, due to the time I had off, some of the material within is no longer up-to-date. 

As is the case with science and technology, everything is constantly changing, and so some 

of the software and hardware discussed in this thesis has since been updated. Where 

possible, I have made a note of this, but having said that, the methods discussed in this 

paper are still usable. My hope is that someone will be able to use newer versions of the 

software to improve upon the project and make it even more useful for the teaching of 

biology and computer science to students. 

Finally then, I’d just like to say a huge thank you once again to everyone who has been 

involved in this project, and I hope you find some way to apply what you have read about 

within to your own study or work. 
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Chapter 1 Introduction and Background 

 
Interdisciplinary research has led to breakthroughs in all sorts of different issues facing the 

world today. From problems surrounding climate change to international health crises, teams 

made up of people with skills from a wide range of backgrounds are leading the way to solving 

some of the biggest challenges that we currently face.  

However, while we know that interdisciplinary work is vital, it is not a skill that is really taught 

in the British schooling system. Subjects are generally taught in isolation, with very little 

overlap, outside of the statutory requirements to focus on core skills in English, Maths, Science 

and ICT. Even in the Higher Education system, there has recently been a decrease in the 

number of students studying for a joint degree course (HESA, 2018). Some Universities are 

taking steps to enhance the opportunities for students to study modules outside of their 

chosen subject, such as the “Sussex Choice” programme at the University of Sussex allowing 

students to pick electives from a wide range of subjects (University of Sussex, 2018). 

There are ample opportunities to bridge the gap between subjects in schools and colleges, but 

so often this does not happen due to demands on teachers time, lack of confidence from 

teaching staff and the lack of a sharing culture in the school (Savage, 2011). There of course 

are also budget constraints to consider, and this is becoming a more pressing issue all the time 

(BBC 2018a, BBC 2018b). This thesis aims to suggest how schools and colleges can use simple, 

off-the-shelf hardware to increase cross-curricular teaching, to give staff practical advice in the 

production and development of suitable practical experiments and to see how the same 

hardware can be adapted to investigate a wide range of living organisms around us in a variety 

of situations.  
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When setting out on this journey, I had 2 overarching aims: 

1. To bring together accessible hardware and technology to allow interdisciplinary 

teaching in a school environment and to produce new ideas for a classroom 

environment that was delivered in a way that is accessible to someone with a non-

technical background, like myself.  

2. To develop hands-on practical sessions that: 

a. Introduced the Raspberry Pi based microscope into a classroom using possibly 

unfamiliar, yet extremely interesting, organisms and further develop the 

microscopy aspects of this project. 

b. Used the hardware to develop a new tool, namely an automated insect tracker 

which could be used to teach aspects of behavioural biology in a classroom 

setting; showing the versatility of the hardware purchased for this project.  

I have come into this project as a technology enthusiast, with very limited computer science 

experience, having done very little coding since my GCSEs. However, I have managed to 

develop the software in here teaching myself using guides available on the internet.  

With this in mind, this thesis has been written in an easily accessible style, with the aim of 

being simple to understand for many people, from students through to teaching staff to allow 

them to put this into practice at home or in the classroom.  

This introductory chapter will briefly describe the history of the Raspberry Pi, a cheap and 

accessible computer, and the brains behind the project. It will then look at how the Pi has been 

used in scientific research around the world, across a range of disciplines. After that, I will give 

a snapshot overview of how scientific equipment is changing with new developments in 

technology, before finally looking at the animals involved in this study.  
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Part 1: The Raspberry Pi  

 
The Raspberry Pi was born out of conversations about how few students applying to study 

computer science at university actually had any experience with coding. A group of computer 

scientists at the University of Cambridge identified several barriers to young people coding, 

including the cost of computers and a fear of breaking the computer. In 2006, they started to 

design a small, cheap computer system that would remove some of these barriers and 

encourage a new generation of enthusiastic programmers. This computer became the 

Raspberry Pi (Figure 1.1). The designers then went on to set up the Raspberry Pi Foundation. 

The Raspberry Pi Foundation is the UK-based charity responsible for the design, production 

and marketing of the Raspberry Pi computer, and the Foundation aims to see cheap, 

programmable systems revolutionise how young people interact with computers.  

 

 

 

 

 

 

Figure 1.1: The Raspberry Pi 2 Model B board on the left (Multicherry, 2015) and the Raspberry 
Pi Zero board on the right (SimonWaldherr, 2018) with some key components highlighted. 
Images licensed under the Creative Commons Attribution-Share Alike 4.0 International license. 

 

Since 2008, the Raspberry Pi Foundation has produced a range of computers aimed at 

encouraging people of all ages to get actively involved with coding and electrics. The Raspberry 

Pi was first released to the public on “Raspberry Pi Day” (the 29th February 2012) and in the 6 

years since the initial release, a number of different models have been released. There are 2 
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key models used throughout this project; the Raspberry Pi 2 Model B and the Raspberry Pi 

Zero Version 1.3 (shown above in Figure 1.1). 

The Pi Zero is about a third of the size of the original Raspberry Pi. This size allows the 

Raspberry Pi to be integrated into even smaller projects. Figure 1.2 gives a sense of scale of the 

hardware.  

 

 
Figure 1.2: The Raspberry Pi Zero 
measures 6.5cm across and 3.5cm tall 
(Halfacree, 2015)  
Image licensed under the Creative 
Commons Attribution-Share Alike 2.0 
Generic license. 
 

 

Unlike conventional computer hardware where everything is sealed in a plastic case, the 

Raspberry Pi board comes completely exposed, and the open nature of the Pi really 

encourages the user to just have a go, knowing that if anything goes badly wrong, they simply 

have to format the memory card to get the Pi back to its original state. 

The Raspberry Pi is intended to be cheap enough for young people to be able to afford. The Pi 

Model 2 costs around £30, whereas the Pi Zero can be purchased for £4. Additional equipment 

is required, including microSD cards, microUSB power supplies, HDMI cables and USB mice and 

keyboards, but these are things that are easy to obtain and that most homes and schools will 

likely have some available, or starter kits can be purchased containing everything needed. 

Unlike more common personal computers, the Raspberry Pi does not run the Windows 

operating system. Instead, the Raspberry Pi runs on Linux, an operating system that has been 

around since the early 1990’s (Torvalds and Diamond, 2001). One of Linux’s defining features is 

that it is a free, open-source package, which means anyone is able to modify and improve 

https://upload.wikimedia.org/wikipedia/commons/8/83/Raspberry_Pi_Zero_(23021815320).png
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upon its features, unlike the locked down and proprietary Windows and Mac OS systems from 

Microsoft and Apple Inc. respectively. As a result, there are lots of ‘variants’ of Linux, including 

Ubuntu, Debian and Fedora, amongst many others.  

Although not widely used on home computers, Linux is used for industrial and research 

purposes across many sectors. It is also very popular on mobile devices, as the Linux Kernel is 

the backbone of Google’s Android operating system (Hoffman, 2014). Linux is also used on 

many set-top boxes, in smart TVs, in micro-controllers and a range of other hardware. In 

recent years Linux has become better known, with companies such as Ubuntu working hard to 

promote Linux and even large computer manufacturers such as Dell are now starting to offer 

desktop computers and laptops with Linux pre-installed as opposed to Windows (Dell, 2016). 

In 2017, Microsoft allowed a version of Ubuntu to be released as an app on its store for 

Windows 10 devices, meaning you can now run Ubuntu within Windows like any other 

programme (Microsoft, 2017). 

The Raspberry Pi Foundation released a specifically produced distribution, called Raspbian, 

based on Debian, one of the most popular versions of Linux (Raspbian, 2018). However, the Pi 

can run a range of other Linux distributions, such as Ubuntu, XMBC, RiscOS and more, and 

even a special version of Windows 10 made especially for the Raspberry Pi (Microsoft, 2018).  

Due to its open nature and easily available hardware, the Raspberry Pi is often used in projects 

that link the physical and digital worlds, and is the ideal tool to be used to teach young 

students about how to programme and interact with computers. 

The Pi is able to interface with all sorts of external hardware. The Raspberry Pi boards have 

some exposed pins on their surface, called the General Purposes Input/Output (GPIO) pins 

(highlighted in Figure 1.1). These pins allow for a huge variety of external hardware to be wired 

up to the Pi, such as thermometers, buttons, buzzers, LEDs, motors, servos and many more 
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inputs and outputs. The GPIO pins come pre-attached to most Raspberry Pi models (excluding 

the Pi Zero/Zero W, where the user can easily add them onto the board if they require them).  

The GPIO pins can also be used to interface with ‘HATs’. A ‘HAT’ (Hardware Attached on Top) is 

a small board (generally the same size as the Raspbery Pi) which contains all the necessary 

hardware to carry out a specific function. For example, a Display Hat will have all the hardware 

to power a small screen and send the video feed. The HAT boards simply connect to the Pi by 

being placed onto the GPIO pins (see Figure 1.3).  

 

Figure 1.3: The Sense 
HAT (described later in 
this chapter) is seen 
sitting on top of the 
Raspberry Pi board 
(Adafruit, 2018a). 

 

 

Also important for the project described here, the Raspberry Pi boards can all be connected to 

camera modules. The Pi Foundation (and third parties) have produced cameras specifically 

designed for the Raspberry Pi; these are discussed further in Chapter 2.  

Although the Raspberry Pi was initially intended to be used to promote computer science to 

students, it is also extremely popular amongst hobbyists. In just over 18 months, a million units 

were manufactured in the UK, with the Raspberry Pi Foundation estimating about a quarter 

were in the hands of children, with the vast majority being purchased by adult hobbyists, many 

of whom were experiencing computer science for the very first time themselves.  

4 years after the Pi was launched, the Foundation announced 8 million units had been sold 

(Raspberry Pi Foundation, 2016), and just over 6 months later, the ten-millionth unit was sold. 

In 2017, the fourteenth million board was sold (Beta News, 2017), with over ten million of 

GPIO connection 

Sense HAT 

Raspberry Pi Board 
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these having been produced in the UK (Wales Online, 2017). The boards have been used in a 

wide variety of projects, from DIY video game arcade cabinets, to high altitude ballooning. 

Raspberry Pi in Education 

 
The Pi is a brilliant tool for teaching coding. The Pi supports Python, a cross-platform coding 

language which is really quick to pick up and is well suited to beginners. This is the language 

that has been used to create the microscope user interface and tracking applications in this 

project, which are detailed in Chapter 2.  

The Pi also runs Scratch (MIT, 2002), an interactive drag and drop programming environment 

which is commonly used by younger students. It is very simple to use, and the user slots 

instructions together like a jigsaw to give the programme a function (Figure 1.4). Crucially, 

Scratch is available for free, and projects can be viewed directly from the Scratch website.  

Figure 1.4: Scratch user interface. The blocks in the left pane are the instructions given to the 
programme, and the window in the upper right shows a live image of the current programme. 
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The BlueJ Java development environment (BlueJ, 2018) also comes preinstalled, another cross-

platform programme for developing Java applications. BlueJ is used to teach first-year 

Computer Science undergraduates at the University of Sussex.  

In summary the Rapsberry Pi is an ideal tool for use in the classroom (and at home for keen 

students) for a whole range of ages, right from primary school through to university.  

In 2015/2016, the Raspberry Pi Foundation ran competitions in schools across Britain to 

develop programmes for the Raspberry Pi (Astro Pi, 2018). UK astronaut, Major Tim Peake, 

took some Raspberry Pis to the International Space Station (ISS) with him to gather data. The 

winning students received data back from the ISS to interpret. These programmes took 

advantage of the Sense HAT (Figure 1.3 and 1.5), a HAT produced for this competition. The 

Sense HAT contains an LED matrix to give visual feedback to the user, buttons, a joystick, a 

gyroscope, a magnetometer, a barometer and a thermometer, meaning a wide range of data 

could be collected quickly, and there were plenty of inputs and visual feedback for the 

astronauts, allowing them to interact with the software.  

 

Figure 1.5: The Raspberry PI Sense 
HAT. The 8x8 LED grid can be 
programmed to flash all sorts of 
colours and the joystick can be seen 
in the bottom right. The other 
sensors can be seen to the right of 
the LED matrix, above the joystick. 
The connection to the board is 
provided by the GPIO connector at 
the top (The Pi Hut 2018a).  

 

 

 

GPIO connector 

8x8 LED grid Sensors Joystick 
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One of the winning entries was a programme that attempted to detect the presence of crew 

by monitoring the humidity in the air of the room. Another programme logged orientation, 

temperature and pressure data from the ISS and visualised it in Minecraft (a popular video 

game). Some of the other winners came up with some software that took pictures from the 

ISS, which were later be run through some more software to monitor the health of Earth’s 

vegetation. All of these programmes have been released free to the public so others can see 

how they work. 

There was such a wide range of entries for this competition because the Raspberry Pi has 

become very popular with schools. They are cheap to purchase, easy to backup and restore 

and simple for school IT technicians to work with. Google donated 15,000 units to schools 

across the UK in 2013 in a bid to increase coding lessons on the Raspberry Pi in classrooms 

(Raspberry Pi Foundation, 2013a). 

It has been noted that Britain faces a digital skills shortage (Ecorys UK, 2016), and the new 

computer science curricula aim to address this (AQA, 2016). Coding is becoming more 

prominent in the new syllabus and there is a real push for developing these digital skills, from 

the primary level through to the Higher Education sector. Even the BBC have been involved 

with increasing digital literacy and released the micro:bit in 2016, a small computer that was 

given to all Year 7s in the country (and made available to the public to buy), with the aim to 

encourage more students to take up computer science and develop these key skills (BBC, 

2016).  

However, it is not just at primary and secondary schools that this skills shortage is being 

addressed. Recognising the shortfall in students training in engineering and computer science 

fields, the government provided funding to plug the gap. In September 2016 the University of 

Sussex launched a new Masters degree, MSc Robotics and Autonomous Systems, which is 
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teaching students from a non-computer science background about small computers, such as 

the Raspberry Pi, and how they can be used to interface with the real world (University of 

Sussex 2016a; University of Sussex, 2016b). This new course has been supported by funding 

from the Higher Education Funding Council for England.   

Other universities have also appreciated the importance of the Raspberry Pi. In 2013, the 

University of Southampton announced that they had produced a supercomputer using 64 

Raspberry Pi boards connected to each other, in an attempt to teach students about the 

principles of supercomputer design and computation (University of Southampton, 2018).  

The Pi is also being used in training the next generation of life scientists. In 2013, Barker and 

colleagues wrote a paper which described the “4273π Bioinformatics for Biologists” course run 

at the University of St. Andrews (Barker et al., 2013). This highly innovative course used a 

specially produced version of the Raspberry Pi operating system (which has been released 

freely by the authors) to teach basic principles of bioinformatics to students. By using the 

Raspberry Pi and giving each student administrator access, students are able to learn about 

software installation, basic coding and networking principles. These are essential skills for 

anyone considering a career in bioinformatics, and the University benefits from the low outlay 

and limited risk of damage to expensive hardware.  

Raspberry Pi as a Research Tool 

 
The popularity of the Raspberry Pi has also led to its use in a wide range of published research 

across multiple disciplines, either as the focal point of the project, or used to innovate current 

methodology.  

The Raspberry Pi has been used to help study life in the oceans, for example as part of a 

system to record acoustics underwater in Brazil (Caldas-Morgan, Alvarez-Rosario and 

Rodrigues Padovese, 2015). While not as power efficient as commercially available underwater 
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recorders, the Pi showed promise with its low entry price, ease of use and the way that it could 

be customised to suit the researchers’ needs. 

This is not the only published paper which utilised the Raspberry Pi to study marine biology. In 

2014, the Raspberry Pi was used as the controller for an underwater stereo camera trap 

(Williams et al., 2014). This paper described how the Raspberry Pi was used to monitor the 

environment and to automatically trigger image capture when animals were present in the 

field of view. Two cameras were synchronised up to allow the researchers to study 3D spatial 

positioning and gain other details from the subjects’ behaviour. This project was designed to 

be open source so that other researchers could use the design to study marine populations. 

This method allowed the researchers to obtain good images of the local wildlife without 

scaring them away by triggering the flash unnecessarily, or by using a remote control vehicle, 

which also often lead to animals fleeing. In addition, this set-up could be deployed in a range 

of locations easily and with limited interference to the local environment.  

The Raspberry Pi is very popular with researchers studying animals in environments where 

traditional hardware would make it either very expensive to run studies, or where it would not 

be feasible to consider such research. The Zoological Society of London (ZSL), a leading charity 

dedicated to the research and conservation of wildlife with a strong outreach and educational 

focus, has been involved heavily with the Raspberry Pi and has utilised the small computer for 

a range of purposes, specifically studying animals in extreme environmental conditions.  

In a report published on the Raspberry Pi Blog in 2013, ZSL described a novel set-up which 

utilised a Raspberry Pi as a processing unit for a satellite connected camera which could 

monitor the activity of deep-water animals in marine protected areas (Raspberry Pi 

Foundation, 2013b). This project was a collaboration with DIY science enthusiasts from around 

the UK, in which the Pi was part of a system which captured images underwater (at a depth of 

around 50m) and sent them via satellite to the researchers. This system was relatively 
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inexpensive, customisable and utilised parts that could easily be replaced were anything to fail 

(Fletcher, 2013).  

ZSL were also involved in another project in which the cameras were placed in the Artic and 

used to monitor penguin populations (Figure 1.6a). In this project, images were uploaded to a 

website, and members of the public were invited to participate in the research and identify 

eggs and chicks in the images sent via satellite. This project shows the versatility of the 

Raspberry Pi, and the range of environments it can be used in. Again, the Pi’s low power 

consumption and cost made it a suitable research tool (Raspberry Pi Foundation, 2014).  

Finally, the Raspberry Pi Zero was used in a project with ZSL and The Arribada Initiative in 2017 

(Raspberry Pi, 2017). In this project, a Raspberry Pi Zero and camera were used to create a 

camera tag that could be placed on Green Sea turtles and the footage could later be viewed 

(Figure 1.6b).  

Figure 1.6: Usage of the Raspberry Pi in research and conservation projects. (a) The Penguin 
observation set up; the Pi is on the pole on the right of the image; (b) Raspberry Pi camera tag 
on sea turtle (images provided by Alasdair Davies). 

 

Raspberry Pi computers have also been used to study bioinformatics. Generally, when people 

think about studying and comparing gene sequences, they assume expensive supercomputers 

are used to provide the computing power necessary for this type of work. However in 2015 a 

Raspberry Pi was used to compare the protein-coding gene content of Chlamydia trachomatis 

(the bacteria that causes chlamydia infections in humans and can lead to trachoma) and 

Protochlamydia amoebophila (an endosymbiont of amoeba), showing that these cheap 

b a 
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computers are perfectly capable of running the required software for such a comparison 

(Robson and Barker, 2015). This paper also highlights the possibility of using the Raspberry Pi 

as a tool in rural and under developed areas to study or teach bioinformatics.  

OpenSesame (Mathôt, Schreij and Theeuwes, 2012) is an open-source tool used to produce 

graphical experiments. OpenSesame has been used in a wide range of experiments across 

multiple disciplines, from psychology to economics. In 2013, Mathôt delivered a talk in which 

he described getting OpenSesame to run on a Raspberry Pi (Mathôt, 2013). This would allow 

students and researchers to very quickly and easily design and run experiments using cheap 

and accessible hardware, which is great for educational purposes and for encouraging more 

people to study these subjects at all levels. 

The above examples show how widely the Raspberry Pi is being used, from primary to tertiary 

education and from individual hobbyists, right through to some of the world’s leading charities 

and multi-disciplinary research projects. The Raspberry Pi has been an unprecedented success, 

and is the perfect tool to encourage a fusion of traditional life science and computer science in 

a school environment. 

Part 2: The Microscope 

 
Microscopes are some of the simplest tools that biologists use to investigate the world around 

us. Since their (disputed) invention by Janssen in the late 1500s, microscopes have led to the 

discovery of cells, microorganisms and details of cellular function that were just not possible to 

discover before their invention.  

Microscopy is one of the simpler techniques available to schools and colleges, but it is often 

underutilised (if ever used at all). In a survey I conducted it was found that out of 100 

respondents, only about two-thirds had actually ever used a microscope in school, and of 

those, the vast majority had only used a microscope to observe pre-prepared slides of dead 

plant material, and had not seen living organisms. Another survey I conducted of 130 first-year 
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life science students at the University of Sussex, showed a similar trend. Only 28% of students 

had ever seen living organisms under a microscope before coming to university (Kent and 

Bacon, 2016).  

This led to conversations about why this was the case, and more curiously, why were so many 

people applying to study the Life Sciences at Sussex (including Biology, Zoology, Neuroscience, 

Medicine,  Ecology and Conservation), yet had never used one of the most well established 

historical techniques to observe living organisms? 

In 2013, a report was released which examined how well resourced primary and secondary 

schools are for effectively teaching science practicals (SCORE, 2013). Only 60% of respondents 

said that they had enough light microscopes in working order to do group work. Not only that, 

over half of teachers reported that they did not feel they had adequate funding to effectively 

teach practical science. 

This project aimed to address these points. I wanted to produce a high quality, but low cost 

digital microscope which teachers could easily use to study living organisms in a classroom or 

field environment. The low cost could allow for multiple microscopes to be produced at a 

fraction of the price of conventional light microscopes, and remove some of the costs of 

maintenance and upkeep, as all parts could be produced or repaired in a school’s workshop or 

classroom.  

The original idea for this microscope came from a DIY guide from the online community, 

Instructables (Yoshinok, 2013). This guide described how to build a simple microscope   

(Figure 1.7) which uses a smartphone and a lens from a laser pointer to magnify samples.  
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Figure 1.7: Yoshino's DIY microscope 

(Yoshinok, 2013).  
Image licened under the Creative Commons Non-

Commercial-Share Alike 4.0 license 

 

 

 

 

 

 

Although this microscope could not replace a light microscope, the magnification achievable is  

sufficient to clearly see onion cells and multicellular microscopic animals such as tardigrades 

and nematode worms, while providing students the chance to get hands on with the 

production of their own lab equipment. The portability of this equipment also opens up brand 

new opportunities to spend time outside in the field, looking at nature in a new way, without 

risk to expensive equipment. 

When looking at the smartphone microscope, it was clear that there was the potential to also 

utilise other popular hardware (such as the Raspberry Pi) to open up a range of educational 

opportunities, and offered a great chance to explore interdisciplinary lessons.  

The Raspberry Pi can be programmed by the user to capture footage over a defined time 

period, as a response to an external stimulus or wirelessly over a network. Furthermore, 

footage and images can be uploaded quickly and easily to a remote storage site, such as 

Dropbox, for distribution and back up. 

The low cost is also a factor to consider. The Raspberry Pi and all the equipment needed to 

produce a digital microscope costs far less than most smartphones but can be more versatile. 

The whole set up also costs far less than the standard teaching microscope, and by following 
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simple online instructions, the hardware can be reutilised for a wide range of purposes, so it 

can be a very worthwhile investment for a forward thinking school or college. 

Currently we are at the start of a revolution in how research groups and teaching institutions 

are producing their own equipment, using technology like the Raspberry Pi and 3D printing. 

This whole area is known as ‘Open Hardware’, where people are able to use modern 

technology to easily produce their own equipment (examples shown in Figure 1.8), such as 

desktop centrifuges (CopabX, 2013) DIY pipettes (BadenLab, 2014), realistic anatomy teaching 

tools (Kanagasuntheram et al., 2019) and more. For a more comprehensive overview of this 

new area of exciting possibilities, see Chagas and Baden’s article in the PLoS One collection, 

Open Source Toolkit: Hardware (2015) or Pearce’s book, Open-Source Lab: How to Build Your 

Own Hardware and Reduce Research Costs (2013).  

Open hardware has the advantage of being more flexible than the commercially purchased 

option and can easily be repaired or improved upon in-house, but has the drawback of taking 

time and research to build, as well as the need for the required tools. 

Open hardware, like the microscope described in subsequent chapters in this thesis, provides 

opportunities not only for schools, but also for people in more remote or developing locations. 

Freely available designs on the internet mean that important tools for teaching and for 

healthcare can be made in situ, as opposed to relying on expensive hardware which may be 

prohibitively expensive to buy. A more thorough introduction to the hardware of the 

Raspberry Pi, and the software used in this project will be covered in Chapter 2. 
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Figure 1.8: Teaching and research tools developed using modern production methods; (a) DIY 
Centrifuge (CopabX, 2013), (b) DIY pipette (BadenLab, 2014) and (c) 3D printed anatomy 
teaching equipment (Kanagasuntheram et al., 2019). 
Image (a) licensed by the Creative Commons Non-commercial Share Alike 4.0 license. 
Image (b) licensed by the Creative Commons Attribution Share Alike 3.0 license. 
 

Part 3: The Animals 

 
The digital microscope was originally designed to be used to study tardigrades, microscopic 

ecdyzosoans that are well known for their ability to survive extreme conditions. However, due 

to the flexibility of the hardware, it was later adapted to study ants and their behaviour in 

response to environmental stimuli.  

Tardigrades 

 
Tardigrades are fascinating microscopic animals. There is a long history of research into 

tardigrades, stretching back to the 1700’s. There has been some disagreement (referred to in 

Kinchin, 1994) as to who originally discovered the tardigrade, but their discovery is most 

frequently attributed to Goeze, a German pastor who translated and revised Bonnet’s book, 

Traite de’Insectology (Bonnet, 1773). While producing this translation, Goeze saw a small 8 

legged creature, which he named “kleiner Wasserbär“ (little water bear). The first illustration 

(Figure 1.9) of the tardigrade comes from Goeze’s translation of Bonnet’s book.  

 

Figure 1.9: Goeze’s illustration of 
“kleiner Wasserbär“.  
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A few years later, Spallanzani coined the term ‘Tardigrada’ (slow stepper) (Bordenstein, 2017). 

Since then, over 1150 species have been identified (Degma, Bertolani and Guidetti, 2018; 

Degma, Bertolani and Guidetti, no date). Species can be identified through a range of 

morphological clues and keys (Morgan and King, 1976) or now, more commonly through DNA 

sequencing (Cesari et al., 2009). The tardigrades are generally grouped into three classes; the 

Eutardigrada, the Heterotardigrada and the Mesotardigrada (although it is worth pointing out 

that there are no known extant members of the Mesotardigrada). 

Morphologically tardigrades are very distinctive animals (Figure 1.10). They have 4 pairs of 

limbs, with distal claws. The number, shape, length and width of claws are useful for 

identifying the species. The rear limbs seem to move less, but are used to grip onto substrates. 

The head of the organism contains the eyespots (although this varies by species) and the 

feeding apparatus, which can also be used to help identify species. 

 
Figure 1.10: A photograph of a tardigrade 
(Hypsibius dujardini) captured on a DLSR down a 
microscope at 200x magnification. In this image, 
the limbs, eyespots, feeding apparatus and 
digested food are all clearly visible.  

 

 

Tardigrades, like insects, crustaceans and nematode worms, are members of the Ecdysozoa, a 

superphylum which incorporates many phyla including the arthropods (Telford et al., 2008). 

Like other ecdysozoans, tardigrades grow by shedding their cuticle, a process called ecdysis 

(Figure 1.11). Tardigrades deposit their eggs into these cuticles, which act as protective 

environments (Figure 1.12). Some species of tardigrades have ‘plates’ on their dorsal cuticle, 

while others do not (Figure 1.13). 
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Figure 1.11: A close up of a cuticle 
showing the details of the claws. 
(Specious Reasons, 2012). 
Image licensed under Creative 
Commons Attribution-Non-
commercial 2.0 license. 

 

 

Figure 1.12: Darkfield image 
showing tardigrade egg clutch 
within the shed cuticle of a 
tardigrade. This individual laid 14 
eggs in one clutch.  
(Image provided by Mach, 2019). 

 

 

 

 

Figure 1.13:  On the left, an 

“armored” or “plated” tardigrade of 

the genus Echiniscus (Mach, 2002). 

On the right, Acutuncus antarcticus, 

the Antarctic tardigrade (Tsujimoto, 

Imura and Kanda, 2016). 

 

 

 

Not only morphologically, but genetically, tardigrades are very interesting organisms. A recent 

paper (Smith et al., 2016) compares molecular identities of the segments of a range of 

arthropods, and concludes that tardigrades appear to be homologous to just the head region 

of arthropods, and suggests that tardigrades lost several hox genes early on in their 

development.  

Furthermore, tardigrades are eutelic organisms (Kinchin, 1994). This means that mature 

tardigrades have a fixed number of cells (dependant on species). At one point, Sydney Brenner 
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considered using tardigrades as a model organism for his research into cell division/death, 

before choosing the nematode worm instead (Gabriel et al., 2007). 

There has been some controversy about the genetic makeup of tardigrades. A paper was 

published which suggested that Hypsibius dujardini, one of the most well studied tardigrades, 

showed a very large percentage of foreign DNA, derived from a range of organisms, including 

plants, fungi and bacteria, taken up via a process known as horizontal gene transfer. This 

foreign acquired DNA made up approximately one-sixth of the tardigrades genome (Boothby 

et al., 2015). 

However, this was soon refuted, when another paper suggested that the effects of horizontal 

gene transfer in tardigrades were very minimal, and in fact, the results of Boothby et al. were 

probably due to contamination from ingested organisms. Their draft genome of H. dujardini 

suggested that only 1-2% of the genes were incorporated as a result of horizontal gene 

transfer (Koutsovoulos et al., 2016). 

Research into the DNA repair mechanisms of tardigrades have also revealed some unexpected 

discoveries. Tardigrades show rapid DNA repair in response to UVC radiation and that when in 

the anhydrobiotic state, DNA damage was effectively prevented from accumulating (Horikawa 

et al., 2013).  Furthermore, Hashimoto et al. (2016) showed that a protein unique to 

tardigrades (Dsup) is actually able to protect cultured human cells from X-Ray induced DNA 

damage. It is thought that Dsup could be the first of many discoveries yet to be made from 

studying the genome of the tardigrade that could have a role in protecting DNA.  As a result of 

their rapid and reliable DNA repair mechanism and their unique proteins that confer additional 

protection against all sorts of damage, tardigrades are some of the hardiest creatures known 

to exist; they are able to endure almost any environmental condition. 

The tardigrades’ most well-known ability is being able to survive dehydration, via 

anhydrobiosis. Rebecchi et al. published a review about how anhydriobiosis impacts 
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tardigrades with respect to extreme conditions (2007). Subsequently, Welnicz et al. (2011) 

produced a review of the last decade of research into anhydrobiosis.  

When in this ametabolic state, known as the tun form, tardigrades are able to survive extreme 

conditions. There are differing theories about how the tardigrade is able to survive such 

conditions, and there appears to be some divergence within the species. Some tardigrades 

produce a disaccharide, trehalose, which is a protective substance that helps prevent 

dehydration damage when they move into their tun form in a controlled manner. However, 

trehalose was not found to be produced in experiments on several other species of tardigrade 

(Hengherr et al., 2008). 

Pigon and Weglarska (1955) showed that a tardigrade in an anhydrobiotic state showed 

dramatically reduced oxygen consumption. Beisser et al. (2012) used Gas Chromatography–

Mass Spectrometry (GC-MS) to identify some of the changes in metabolites in the active and 

anhydrobiotic states of the tardigrade (shown in Figure 1.14). 

 

 
Figure 1.14: A Scanning Electron 
Micrograph of the active (left) and 
tun (right) state of the tardigrade 
Milnesium tardigradum. These two 
states are not shown to scale (Beisser 
et al., 2012). 

 

Tardigrades are able to survive high levels of radiation (Horikawa et al., 2006). It was shown 

that they could survive high doses of gamma and ionising radiation, although doses above 

1000Gy made the animals sterile. To put this in human context, 1Gy would cause radiation 

sickness, whereas 1000Gy would lead to death within the hour (MedLine Plus, 2018). 

Another extreme survival technique possessed by tardigrades is their ability to survive high 

pressure. Seki and Toyoshima found that, in their tun state, two different species of 
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tardigrades (one from the Heterotardigrada and one from the Eutardigrada) were able to 

survive being subjected to 600MPa of pressure, about 6 times that found at the Mariana 

Trench, the deepest point of the ocean, around 7 miles down (Seki and Toyoshima, 1998). 

In addition, tardigrades are able to survive extreme temperatures. Many tardigrades species 

survive when exposed to temperatures above 80°C, and one species was shown to even 

survive temperatures in excess of 100°C (Hengherr et al., 2009). Freezing also does not seem 

to affect them. Sømme and Meier (1995) showed that frozen tardigrades could be successfully 

rehydrated after 8 years of being frozen. In 2015, a team from Japan thawed a sample of 

Antarctic moss that had been kept in storage for 30 years, and were able to get a tardigrade to 

successfully reproduce after recovering from the freezing and thawing process (Tsujimoto, 

Imura and Kanda, 2016).   

One of the most amazing observations however is that tardigrades are able to survive being 

exposed to the vacuum of space and on return to Earth they were healthy and able to 

reproduce (Jönsson et al., 2008). Until recently, tardigrades were the only living thing known 

to be able to survive this extreme environment, but some species of algae have subsequently 

been shown to survive exposure to space on the outside of the International Space Station 

(Fraunhofer, 2017). 

Tardigrades have a very interesting life cycle, especially because of their ability to utilize 

cryptobiosis. Suzuki (2003) reared a culture of Milnesium tardigradum, and monitored their 

growth and reproductive rates. The longest living individual had a life span of 58 days. 

However, in non-ideal conditions, with the ability to enter diapause, tardigrade life spans can 

be substantially increased. Because tardigrades in the wild generally have intermittent periods 

of activity, it is important for them to be able to reproduce quickly and to have large numbers 

of offspring per cycle, with a mean clutch size of 6.9 eggs in Suzuki’s study.  
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These unique abilities make tardigrades truly fascinating, and a brilliant animal to study as they 

bring together many different aspects of the school science curriculum. 

One of the most remarkable (and useful) things about tardigrades, considering their very 

unique biology, is the fact that they can be found almost anywhere. Although many papers 

make comments about finding tardigrades in extreme environments, they can be found very 

easily in pretty much any piece of moss, making them ideal for schools and colleges as they can 

be collected from the school grounds.  

After identifying a clear need to produce an inexpensive, DIY approach on limited classroom 

resources, and finding an ideal test species to study the effectiveness of the microscope, I then 

set about designing a practical investigation that could be carried out in a school classroom, 

and some possible extensions to this that would stretch and challenge learners. This work is 

described in Chapter 3. 

Ants 

 
After seeing how flexible the Raspberry Pi could be, I wondered if there were other animals 

that could be used to highlight its effectiveness in the classroom. While writing this thesis, I 

was based in the Laboratory of Apiculture and Social Insects, and decided ants could be an 

ideal test species. Ants are members of the Hymenoptera, an order containing the wasps, 

bees, sawflies and ants, within the phylum Arthropoda. Within the Hymenoptera, a wide 

variety of lifestyles are found, from solitary wasps to massive ant colonies. Some Hymenoptera 

are parasitic, such as the parasitoid wasp, Ampulex compressa (Herzner et al., 2013) while 

others are not. The wide range of lifestyles lead to some very interesting behavioural 

adaptations.  

Their physical strength relative to their size is well known by the general public, but probably 

vastly underestimated by many (Nguyen, Lilly and Castro, 2014). Students may be aware of the 
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fact that ants live in large colonies, and may have some idea about the reproductive role of the 

queen ant and the role of the worker ants (Figure 1.15).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.15: Lasius niger queen (centre), workers, larvae (left) and eggs (centre). (Pan 
Weterynarz, 2010).  
Image licensed under the Creative Commons Attribution-Share Alike 4.0 license. 

Within the colony usually only one individual will reproduce, the queen ant. However, this one 

ant can produce thousands (sometimes even millions) of offspring, and workers will care for 

the queen’s offspring and the queen herself. Workers will rear the brood by bringing food and 

water to the queen, and feed the larvae as they develop, but can be prevented from 

reproducing via the production of pheromones by the queen ant. This reproductive regulating 

pheromone was recently discovered in Lasius niger (Holman et al., 2010). The queen (and 

other workers) may also conduct policing (Kikuta and Tsuji, 1999; D'Ettorre, Heinze and 

Ratnieks, 2004; Trettin et al., 2011) and destroy eggs laid by worker ants.  

While in general only one ant in a colony can reproduce (a monogynous colony), this is not 

always the case.  Some species, such as Pachycondyla inversa and Pachycondyla villosa are 

polygynous, which means more than one mated queens found a nest collectively and are able 

to lay eggs (Kellner et al., 2007). 
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Some colonies do not have a queen ant in a traditional sense. In some queenless species, such 

as Dinoponera quadriceps, multiple individuals are capable of reproducing at the same time 

but the most dominant individual, the alpha (or gamergate), prevents the other workers from 

reproducing by displays of aggression, physically preventing egg laying or by eating eggs 

produced by other members of the colony (Monnin and Ratnieks, 2001). 

Because of this reproductive division of labour, ant colonies can be very large indeed. While 

some species will have colonies consisting of just tens of members, other species, like the 

highly invasive Argentine ant have “supercolonies” composed of millions of workers (Giraud, 

Pedersen and Keller, 2002). 

Ants have shown all sorts of interesting behaviours across a range of species. Ants have been 

shown to self-medicate (Bos et al., 2015), farm effectively (Ariniello, 1999), rear animals as a 

food source (Schneider et al., 2013), teach individuals the best route to a new nest site (Franks 

and Richardson, 2006) and take slaves (Gladstone, 1981). This range of behaviours make ants 

an ideal study subject to show the wide range of diversity, even in animals that many people 

often view as just being some sort of pest.  

One of the keys to ants’ ubiquity is their ability to navigate effectively. It is common knowledge 

that ants will follow each other to a food source. This ‘march’ has served as the inspiration for 

a range of scenes in movies or popular culture. Different ants utilise different methods for 

navigating effectively. Some ants rely on mental maps to navigate successfully, utilising a 

strategy called landmark guidance (Collett et al., 1992; Wehner, Michel and Antonsen, 1996; 

Narendra, Gourmaud and Zeil, 2013; Graham and Mangan, 2015). However, this visual 

memory is not perfect; it has been shown that some ants struggle to navigate at night, as 

visual guides are obviously harder to see in the dark (Narendra, Reid and Raderschall, 2013). 

Some ants (and other hymenoptera) utilise path integration (Müller and Wehner, 1988), 

another clever method used to allow foragers to go out and explore an area, yet return 
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directly to the nest. Path integration relies on internal clues to the ant, such as number of 

steps, and turns made to allow an ant to return directly to its starting point, regardless of the 

outward route. Path integration has been studied in the desert ant (Wehner, 2003), and also in 

the honeybee (Srinivasan, 2015), and a chapter summarising path integration in insects has 

been produced by Wehner and Srinivasan (2003). 

Finally, some ants, such as Themnothorax albipennis, have been shown to learn routes via a 

process known as tandem running (shown in Figure 1.16) in which a forager will return to its 

old nest and guide a nest mate to a new nest site (Franks and Richardson, 2006). This process 

is highly effective and is quickly reinforced by repeated trips.  

Research by Franklin et al. (2011) suggests that tandem running relies on visual, tactile and 

chemical cues, but that the ants are capable of both leading and following a run, even with 

visual impairments. Tandem running is thought to be the first time that a non-human animal 

has been observed formally teaching another member of its species.  

 

Figure 1.16: A ‘teacher’ ant and ‘student’ ant engaging in tandem 

running. The student (white paint) keeps in physical contact with 

the teacher ant (red paint) via the antennae (Franks and 

Richardson, 2006). 

 

However, ants’ navigational expertise is not based solely on their visual abilities or being 

taught a route. Ants also rely on chemical cues to help them navigate. Ants are known to 

deposit pheromones in response to their environment. Pheromones are generally fairly 

volatile chemicals that are released by an animal which cause or influence some sort of 

behaviour in another animal (generally of the same species). For example, ants may leave a 

deposition of pheromone having found a good food source or as a reaction to a threatening 

situation. 
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Ants deposit pheromones by dropping their gaster (the rear section of the abdomen) to the 

surface that they are walking on. In some species, such as Lasius niger, this is a very deliberate 

action, and by close observation, the ant can be seen to stop walking, and touch its gaster to 

the substrate (shown in Figure 1.17). In other species, particularly those with a stinger, the ant 

may leave a deposition by dragging the stinger along the floor. 

 

Figure 1.17: A Lasius niger ant drops its 
gaster to the surface to deposit 
pheromone. This image is a still from a 
Youtube video showing the distinctive 
physical action carried out by L. niger to 
deposit pheromone after finding a food 
source (Czaczkes, 2015). 

 

 

Many species of ants are known to deposit a pheromone trail on their return to the nest after 

finding food so that other foragers can be quickly recruited to the food source. Trail 

pheromones can act as a form of social memory, and subsequent foragers can utilise this social 

memory to reinforce behaviour, or switch their behaviour to act in a more effective and 

profitable way for the colony as a whole.  

However, while these trails can help guide individuals to a good food source, they can cause 

potential issues. The trail can be reinforced by repeated visits, and this could lead to a positive 

loop, producing a very strong attractive signal, regardless of the presence or absence of the 

originally attractive food source. This could runaway and become unsustainable, with ants not 

examining other potential options (this is known as an information cascade) but as trail 

pheromones are generally volatile chemicals (and therefore fairly short lived), this usually is 

not a problem (Giraldeau, Valone and Templeton, 2002). 
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Navigational behaviours based on trail pheromones are varied and have been studied in many 

papers. A concise review of trail pheromone and how it integrates into social colony behaviour 

was published by Czaczkes, Gruter and Ratnieks (2015). 

I was particularly curious about how ants could be used as a study species in secondary 

education to teach students about behavioural biology, and how to integrate some computer 

science skills into a biological context. For many children, ants are some of the first animals 

they encounter in their natural environment. Children are often curious about ants, and they 

are easily accessible to schools or colleges, with common species such as Lasius flavus (yellow 

meadow ants) and Lasius niger (black pavement ant) found in many habitats.  

When thinking about how best to demonstrate the use of this hardware with ants as a test 

species, a range of ideas, including Quick Response (QR) codes and microchipping ants, were 

initially considered.  

Previous insect tracking studies have revealed interesting trends in animal behaviour. For 

example, a paper by Mersch, Crespi and Keller (2013) used QR codes attached to individual 

ants (Figure 1.18a) to monitor the spatial and temporal distribution of a huge number of 

individuals and recorded over 9 million interactions over 41 days. These QR codes were 

detected by a camera attached to a computer able to decode the interactions in near real 

time. This study showed patterns in the behavioural roles of ants, and how these changed as 

they aged. 

Another study by Robinson et al. (2009) used miniature radio frequency identification (RFID) 

tags attached to ants (Figure 1.18b) to monitor the behaviour of the ants and their interactions 

with each other and potential nest sites. This study found that ants can select a new nest site 

without having to sample all of the potential new locations. As a result of choices made by 

individual ants, behaviour emerges at colony level.  
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Figure 1.18: (a) QR codes attached to the ants in the study by Mersch, Cerspi and Keller, 2013 
(Yong, 2013); and (b) T. albinpennis with a small RFID chip attached to its back (Robinson et al, 
2009). 
 

However, as interesting as replicating these studies would be, they are not feasible in a school 

setting. I did make some progress on getting the Raspberry Pi to identify QR codes, and 

designed a theoretical approach to studying ant behaviour using camera traps. The initial trial 

produced some positive indication that this could work, but this lost the educational focus 

somewhat (and relied on large tropical ants, such as Dinoponera quadriceps, shown in Figure 

1.19 below). While very interesting to study, D. quadriceps both bites and stings, and needs to 

be kept in warm and humid conditions, making it an unsuitable choice for use in schools. This 

work could be picked up again at a future time.  

 

Figure 1.19: Dinoponera quadriceps, a 
queenless species of ant native to Brazil, is 
about 5 – 10 times the size of most British 
ants. (Specimen FMNHINS0000050367 from 
antweb.org; Westrich, 2015) 

 

 

 

Instead, thinking about a straight forward approach that could be used in schools, I decided to 

focus on ant decision making in response to chemicals artificially applied to a controlled 

environment. The Raspberry Pi is used to observe an individual ant and track its motion when 

exposed to a chemical stimulus. I was curious to see if individual responses were similar across 

a b 
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a number of workers taken from a colony, and if I could establish a clean choice paradigm that 

could easily and reliably be used in the classroom. A more detailed description of the 

background research and the methodology, as well as the results, of this study can be found in 

Chapter 4.  

Finally, Chapter 5 contains a summary of the work completed, and highlights some possible 

directions to take to continue the work produced in this thesis.  
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Chapter 2 The Raspberry Pi and the DIY Microscope 
 

This project revolves around the Raspberry Pi, and how the flexibility of the hardware and the 

software can be applied to investigating animal behaviour. The Raspberry Pi is designed to be 

easily accessible to beginners (with no background in computer science), making it ideal for 

use in a teaching environment.  

To ensure that this would be as helpful as possible, during the drafting of these instructions, I 

approached a range of people from different backgrounds and asked for their feedback. 

Importantly, until my undergraduate project I had never used a Raspberry Pi for anything, and 

even in that project I only used the Raspberry Pi to take images over a 10 minute period and 

upload them to an online storage site. Therefore, I approached this project as an enthusiastic 

novice. I have used some of the feedback received to modify the steps within this chapter. 

User Group Prior Experience Observations 

Life Science Graduate - No computer science 
experience 
- Previously involved in animal 
observation studies 

- Was really interested in the 
prospect of using a small device 
that could be automated for 
monitoring subjects.  
- Felt instructions were at a 
suitable level. 

Charity Development Graduate - No computer science 
experience 
- No animal observation 
experience 

- Found initial draft of some of 
the instructions to be 
confusing; assumed some basic 
knowledge that wasn’t made 
clear.  

Computer Science Graduate - Degree in Computing for 
Digital Media 
- 2 years experience in software 
development 
- Never studied biological 
science beyond GCSE.  

- Felt that the original 
descriptions of some computing 
principles went too deep for 
the average user and didn’t 
make clear their benefits.  
- Found the overlap between 
computer science and biology 
interesting, especially from a 
marketing aspect.  
 

School Science Teacher Limited computer coding 
experience from GCSEs 

- Felt the instructions were at a 
suitable level in general.  
- Was unsure if students would 
follow them correctly. 
- Liked the format and style.  

Table 2.1: A table showing user groups consulted for the development of these instructions. 
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The Raspberry Pi Foundation has produced many different models of the Raspberry Pi board 

over the years. All of the boards run on the same operating system and keep ease of access at 

the core of their design, but there are differences in processing power, connectivity and the 

memory available to the user. The costs of the board also vary, from £4 for the Pi Zero up to 

around £30 for the more powerful models. The differences between the models available (as 

of August 2018) are shown in Table 2.2.  

This chapter will be split into 4 parts. The first will describe the general set up of the Raspberry 

Pi, showing the reader how to install the Operating System and the connected components. 

The second part will give an overview of some of the software which comes preinstalled on the 

Raspberry Pi and explains how to install additional programmes which have been used as part 

of this project. Some additional hardware has been used for the animal studies, and this will be 

discussed in the third part, before the final part briefly discusses the design and examples of 

use of the microscope itself.  
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Table 2.2: A table detailing the specifications of the key consumer variants of the Raspberry Pi computer as of August 2018. 

 

Model A A+ B B+  2 3B 3B+ Zero Zero W Zero WH 

Release Date February 2013 November 2014 February 2012 July 2014 February 2015 February 2016 February 2018 November 2015 

/ June 2016 

(Revision 1.3) 

February 2016 January 2018 

CPU 700 MHz ARM11 

ARM1176JZF-S  

700 MHz ARM11 

ARM1176JZF-S 

700 MHz ARM11 

ARM1176JZF-S  

700 MHz ARM11 

ARM1176JZF-S  

900 MHz 32-bit 

quad-core ARM 

Cortex-A7 

1.2 GHz 64-bit 

quad-core ARM 

Cortex-A53 

1.4GHz 64-bit 

quad-core ARM 

Cortex-A53 CPU 

1 GHz 

ARM1176JZF-S 

single-core 

1 GHz 

ARM1176JZF-S 

single-core 

1 GHz 

ARM1176JZF-S 

single-core 

RAM 256MB 512MB 256 / 512MB 512MB 1 GB 1 GB 1 GB 512 MB 512 MB 512 MB 

Connections − 1 x USB 2.0 

− 26 GPIO 

− HDMI 

− Composite 

Video 

− Camera 

(CSI) 

− Display (DSI) 

− Analog Audio 

3.5mm jack 

− SD card slot 

− 1 x USB 2.0 

− 40 GPIO 

− HDMI 

− Composite 

Video 

− Camera 

(CSI) 

− Display (DSI) 

− Analog Audio 

3.5mm jack 

− microSD 

card slot 

− 2x USB 2.0 

− 26 GPIO 

− HDMI 

− Composite 

Video 

− Camera 

(CSI) 

− Display (DSI) 

Analog Audio 

3.5mm jack 

− SD card slot 

− 4x USB 2.0 

− 40 GPIO 

− HDMI 

− Composite 

Video 

− Camera 

(CSI) 

− Display (DSI) 

− Analog Audio 

3.5mm jack 

− microSD 

card slot 

− 4 x USB 2.0 

− 40 GPIO 

− HDMI 

− Composite 

Video 

− Camera 

(CSI) 

− Display (DSI) 

− Analog Audio 

3.5mm jack 

− microSD 

card slot 

− 4 x USB 2.0 

− 40 GPIO 

− HDMI 

− Composite 

Video 

− Camera 

(CSI) 

− Display (DSI) 

− Analog Audio 

3.5mm jack 

− microSD 

card slot 

− 4 x USB 2.0 

− 40 GPIO 

− HDMI 

− Composite 

Video 

− Camera 

(CSI) 

− Display (DSI) 

− Analog Audio 

3.5mm jack 

− microSD 

card slot 

− 1x microUSB 

− Mini-HDMI 

microSD 

card slot 

− Camera 

Connector  

(only present 

on Revision 

1.3) 

− 1x microUSB 

− Mini-HDMI 

microSD 

card slot 

−  Camera 

Connector  

(only present 

on Revision 

1.3) 

 

 

− 1x microUSB 

− 40 GPIO 

− Mini-HDMI 

microSD 

card slot 

− Camera 

Connector  

 

 

 

On board Internet 

Connectivity 

− None − None − Ethernet Port − Ethernet Port − Ethernet − Ethernet 

− 802.11n 

Wireless 

− Bluetooth 4.1 

− Ethernet 

− 802.11ac 

Wireless 

− Bluetooth 4.1 

− None − 802.11n 

Wireless 

− Bluetooth 4.0 

− 802.11n 

Wireless 

− Bluetooth 4.0 

Cost at Launch 

(USD) 

− 25 − 20 − 35 − 35 − 35 − 35 − 35 − 5 − 10 − 18.25 
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Part 1 – Initial Set Up 

 
For the project, a Raspberry Pi Model 2 B was used, but the software was also tested successfully on 

a Raspberry Pi Zero. While the steps are generally the same for all versions of the Raspberry Pi, there 

may be some variations in positions of hardware connections or steps to use various peripherals.  

When a user buys a Raspberry Pi, they receive the board itself. The user needs to supply some 

additional hardware to get the Raspberry Pi functioning. These are detailed below in Box One.  

 

Step 1 – Installing the Operating System 

 
The first step is to get the Operating System (OS). As mentioned in Chapter 1, the Raspberry Pi can 

run several variants of Linux. For this study, I chose to use Raspbian, the official operating system of 

the Raspberry Pi Foundation (Raspbian, 2018). This is based upon Debian, one of the most well 

known Linux variants, and carries across some of its conventions and software. I used Raspbian 

Jessie (2015-09-28) for this project.  

Please note that since the project was started a substantial update to Raspbian has been released, 

completely revamping the desktop’s graphics and appearance. Although nothing has changed too 

drastically in how the OS works, there may be some changes between steps given in this Chapter and 

how it now works. No software used in this project has been tested to work on the new OS version.  

Box One: Equipment List 

• Raspberry Pi Model 2 B 

• microUSB power cable (5v, 2.1a) 

• HDMI cable  

• HDMI capable monitor (or HDMI -> VGA adaptor / HDMI -> DVI adaptor) 

• USB Keyboard 

• USB mouse 

• USB Wi-Fi dongle (or Ethernet cable, not tested in this project) 

• microSD card (minimum 8GB, 32GB used here) 

• Official Raspberry Pi Camera Board 
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On most computers or laptops a consumer buys, the OS comes pre-installed and the user just has to 

go through a set-up process. However, with the Raspberry Pi, the user must download the OS from 

the Raspberry Pi website on another device before ‘flashing’ it to the memory card using a 

programme such as ‘Win32DiskImager’ (see Appendix 2). When an Operating System is ‘flashed’ to 

an SD card, it is written onto the card in a way that the hardware recognizes it to contain the 

instructions necessary for the hardware to work. The Raspberry Pi Foundation has produced guides 

for users of all the common platforms to flash the OS to a microSD card (Raspberry Pi Foundation, 

2018a). 

If the user prefers, pre-flashed microSD cards can be purchased at additional cost with the OS all 

ready to go, saving the end user time. Once the OS is on the microSD card, it can be inserted into the 

Raspberry Pi.  

Step 2 – Attach Peripherals 

 
Once the user has the OS ready, they can begin to hook up the cables to their ports on the board; 

the HDMI cable, the USB keyboard and mouse and the Wi-Fi dongle (or ethernet cable) all use 

standard connectors. The HDMI cable should be plugged into the monitor. If there is no HDMI 

connection on the user’s monitor, a HDMI to VGA or HDMI to DVI adaptor could be used.  

It is important to note that the Raspberry Pi can be used without a monitor attached (known as 

being ‘headless’) and the board can be controlled over the internet, opening up new possibilities for 

projects where having a monitor present is not possible or desirable (such as a security camera or as 

a motion detector), or to calibrate external sensors.  

Before the user connects the power cable, they should attach the camera to the Raspberry Pi. The 

camera port is labelled on the face of the board (on some models it is labelled CSI port). On the Pi 

that is used in this project, the camera port is located near to the Ethernet cable connection point 

(shown in Figure 2.1). The plastic can be gently prised upwards and the flexible ribbon cable can be 
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inserted. The silver connections on the camera cable should be inserted facing away from the 

Ethernet port and toward the HDMI port, with the blue indicator facing the 3.5mm audio out port. 

 

 

 

 

 

 

 

 

 

Figure 2.1: The Raspberry Pi with the camera connected, viewed from both sides (Raspberry Pi 

Foundation, 2018b). 

 

Step 3 – First Boot 

 
Once all the cables have been set in place and the microSD card has been inserted, the user can then 

attach the microUSB power cable, which will instantly cause the Pi to boot to its set-up window. 

After a few minutes of setting up, the Pi will show a desktop environment (Figure 2.2). This will look 

familiar to users of a Windows PC or an Apple Mac. Older versions of Raspbian do not default to a 

graphical environment, but instead boot straight into a terminal window, where the user interacts 

with the computer purely by code. 
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Figure 2.2: The Raspberry Pi desktop environment, showing the top taskbar, a cascading menu 

system on the left and an open Terminal Window on the right.1 

All the normal computer desktop features are present. Along the top of the interface is the task bar, 

featuring a drop-down menu bar, some shortcuts to installed programmes, windows to show 

currently opened programmes (in this example, the Terminal programme is opened) and at the far 

right there are some status symbols, including wireless connectivity, volume, current processor load, 

the time and finally a button to eject external media, such as USB drives.  

Step 4 – Getting Online 

There are several ways to connect the Pi to the internet depending on what the user has connected 

and the networks available. Connecting an Ethernet cable to the Raspberry Pi is the easiest way of 

connecting to a network. Alternatively, there is a Wi-Fi tool in the menu to connect the Pi to a local 

Wi-Fi network. On most home networks, it is as simple as connecting any device onto the Wi-Fi 

network.  

                                                           
1 Newer versions of the Operating System’s user interface (known as PIXEL) will look substantially different, but 
operate in the same way.  
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However, as this thesis is focused on using the Pi in an educational setting, there may be some 

difficulties. Sensibly, educational networks should be protected against unauthorised access, and 

often do not have publicly available Wi-Fi.  Connecting the Pi to a school or college’s Wi-Fi may 

require the support of the institution’s network administrator to allow the correct authorisations to 

ensure the safety of the students and staff (NEN, 2015). As an example, the University of Sussex has 

a Wi-Fi network which is available to students based on their University IT details. Helpfully, the 

university published a step-by-step guide to setting a Raspberry Pi up on their protected network 

(University Of Sussex, 2015).   

Step 5 – User Interaction 

 
One of the aims of this project was to give the user an easy way to interact with the computer which 

does not require using the keyboard or mouse. For this, the official Raspberry Pi 7 inch touchscreen 

monitor was used to give the user an interactive display, which comes in a DIY kit (shown in Figure 

2.3). The screen is compatible with all models of the Raspberry Pi (except for the Zero boards, as 

they lack the connector needed). It supports up to ten points of touch, and does not require a stylus 

for use. The software required for using the Pi touch screen comes is built into recent versions of the 

Raspbian OS, so no additional software is required to be installed. For this project, I also purchased a 

stand and case for the screen, but this is not essential. 

The board connects to the Raspberry Pi via a short flexible ribbon cable, similar to one used to 

connect a camera to the Raspberry Pi. This cable connects at the Display port (labelled DSI on older 

hardware), toward the bottom of the board, next to the microUSB power input. The DSI cable also 

connects to the LCD driver board on the touchscreen through the same connector. This cable carries 

both the video feed and the signal from the touch input. No HDMI cable is required in this set-up.  

 

 



39 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: The Raspberry Pi Touchscreen and the hardware required to connect it to the Raspberry 

Pi (The Pi Hut, 2018b). The figure shows the touchscreen, the LCD driver board, connection ribbon, 

screws and stand-offs for mounting the Raspberry Pi and 4 jumper cables to provide power.  

 

The screen itself can be powered several ways, depending on the user’s needs. The first option is to 

use ‘jumper cables’ (shown in Figure 2.3 above). These come included with the touchscreen kit and 

connect the Pi to the screen by making contacts with the GPIO pins from the Pi. Alternatively, the 

user can simply power the screen over microUSB from a second plug, or connect the screen and the 

Pi via a USB to microUSB cable and power both the screen and the Pi from the same power socket.  

In conclusion, although it may initially seem intimidating, setting up a Raspberry Pi is no harder than 

setting up any computer or tablet for the first time, and provides learning opportunities with regards 

to learning about how to install an Operating System.  

 

 

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwib74r9hMzSAhVBfxoKHSMlDjUQjRwIBw&url=https://thepihut.com/products/official-raspberry-pi-7-touchscreen-display&psig=AFQjCNGvbRMxswwMvga5pAYQOuVVlorQVA&ust=1489238784703642
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Part 2 – Software  

 
As previously mentioned, the Raspberry Pi runs on the Linux OS, specifically the Raspbian 

distribution. Many useful programmes come preinstalled as part of the OS, but some additional 

programmes are used in this project. The method of installing programmes on a Linux machine can 

be quite different to how a user may install programmes on a Windows PC or on a Mac.  

More recently, some of the more mainstream Linux distributions have included an App Store that 

functions just like the Windows App store or the Mac App store, allowing for simple downloads of 

new programmes. However, some programmes need to be installed by manually entering code into 

the terminal window, which may seem daunting to a new user. Although it sounds complex, it is 

fairly simple and gives the user a greater understanding of how the machine is working as well as an 

opportunity to try coding.   

Full documentation on the programmes described in this thesis can be found at their respective web 

pages; please see Appendix 2: Software Guides for more information. 

Key Vocabulary 

 
Before we look at the programmes that have been used as part of this project, we briefly need to 

look at the concept of ‘Directories’, ‘Root’, the ‘Pi account’ and the ‘Sudo’ command, and apply this 

to how the Raspberry Pi responds to instructions. Then we will briefly look at how Raspbian installs 

programmes in general (and how updates work) as these will be necessary for installing the software 

required for this project, before discussing the software used as part of this project. 

Directories 

 

In a Linux based OS, folders are called directories. They are able to contain other directories (called a 

sub-directory) or files. The Root Directory houses all other directories on the system. The Root 

Directory is the only directory that is not a sub-directory, similar to the C Drive on a Windows PC.  



41 
 

 
 

The Root Directory is represented by ‘/’ when looking at a file’s location. A sub-directory follows the 

forward slash to describe the location of a file. For example, a file called ‘thesis.doc’ is in the 

Documents Directory of User’s main Directory. The User Directory is a sub-directory of the Root 

Directory.  This would be represented by:  /User/Documents/thesis.doc 

A user can freely move between directories using the ‘change directory’ command, cd, followed by 

a space. For example, if User was in their Documents Directory, they could move into their Photos 

Directory using the command: 

cd /User/Photos 

Root  

 

Root is the name of the account on a Linux-based machine that has access to all files and folders on a 

Linux machine and can make any edits that it chooses to (Raspberry Pi, 2018c). In that aspect, it is 

somewhat similar to a Windows administrator, which can make changes that other, less-privelidged 

users cannot. It is also known as the Superuser. 

Root is able to edit any file in the Operating System, including those that are absolutely critical for 

the hardware to work correctly. If a superuser accidentally edits the wrong file, they could 

completely destroy the system, which is why most user accounts should not be given Root privileges. 

Pi  

 

When the Raspbian OS installs, it creates a user account called Pi. Pi is the default account that is 

used in this project. If the user so chooses, they can create their own additional, personal user 

accounts for different users on the Raspberry Pi, as the Pi can be accessed by multiple users.  

Pi is not the Root account so has limited access to files on the computer, and can only edit files 

within its own user area, and therefore is protected from damaging the machine. However, this does 

limit the ability of the user Pi to install additional software or move files that may be needed. This 

can be overcome through the use of Sudo.  
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Sudo 

 

‘Sudo’ is a term that stands for ‘Super User Do’. By entering Sudo before a command, the account Pi 

can access files or make changes that it would not normally be able to.  

Entering Sudo effectively gives the user Pi all the privileges of the user Root, including the ability to 

install software, edit files outside of its own directory, and the ability to completely destroy the 

system by editing the wrong files.  

 The user Pi is automatically added to the ‘sudoers’ list on Raspbian when the OS sets up for the first 

time. Only users added to this list are able to access Root privileges by entering Sudo, otherwise any 

user could just type ‘sudo’ and then access anything on the machine. This is a neat balance between 

giving certain users necessary powers that have to be intentionally invoked, and protecting the 

system from users who may not know exactly what they are doing (very helpful in a school setting). 

If the Raspberry Pi owner wishes for other users to also be able to use Sudo, they can add additional 

users to the ‘Sudoers’ list.  

Installations  

 
As has been mentioned, some programmes need to be installed for the projects in this thesis. There 

are two different methods used to install different programmes used here, downloading software 

through the Advanced Package Tool and Git Cloning. 

The Advanced Package Tool (APT) 

 

As Raspbian is based on Debian it utilises the same conventions for installing software. Raspbian can 

use the Advanced Package Tool (APT) to install packages (software) (Raspberry Pi Foundation, 

2018d). In simple terms, Linux software packages are kept on servers, and these servers contain 

information about the software, the current version and how to install it. The Raspberry Pi will check 

these central lists and compare the information held on the server against the local information it 

holds about the software in its own memory. The user can instruct a machine to update its local 
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information with up-to-date information from the server by opening a terminal window and 

entering the command: 

sudo apt-get update 

Sometimes, this update command just finds out new information about where the programme is 

being hosted from. However, if the programme has been updated, the user can force the machine to 

download the newest version and upgrade the installed software. To carry out this operation, the 

user must enter the following command into the terminal:  

sudo apt-get upgrade 

In general, installing new programmes is very similar process. In the terminal window, the user 

types: 

sudo apt-get install name of programme 

In this case, the machine will search the database for a programme that matches the name entered, 

and if it is located, it will download and install the software.  

For example, to install ImageJ (a programme which will be discussed later) onto the Raspberry Pi, the 

user would enter: 

sudo apt-get install imagej 

The Raspberry Pi would search the list of packages, find the one called ‘imagej’ and begin the 

installation process. If the Raspberry Pi could not find a programme it would inform the user of an 

error. This is often the result of a simple spelling error or may be due to the programme having a 

different name on the database. 

After entering these commands, the programmes generally install themselves with little input from 

the user, but some programmes will need the user to confirm the installation or to press a key 
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during the installation process (for example when a programme might use a large amount of 

memory).  

Git Cloning 

 

This method clones a folder from a remote source and makes a local copy on your own Raspberry Pi. 

Some programmes are stored on GitHub, an online repository of programmes, and by using the 

command below, you can make local versions on the computer you are accessing. A terminal 

window is opened up, and the user enters the git clone command, followed by the location of the 

repository that the user wants to make a copy of: 

git clone https://(insert_the_website_that_you_are_cloning_from_here) 

This method is used to install the Dropbox Uploader programme used to transfer data from the Pi 

for analysis. 

Additional Software 

 
This project utilised four key programmes; ‘ImageJ’, ‘Dropbox Uploader’, ‘OpenCV’ and ‘Motion 

Track’. In addition to this, I developed a specific user interface for the Raspberry Pi microscope 

application. This section will walk through their installation and usage, with references to other 

guides which have been used to help set up the software.  

Image J 

 

ImageJ (Schneider, Rasband and Eliceiri, 2012) is an open source, free image analysis programme 

that is widely used in scientific research. It is written in Java, a cross-platform programming language 

that is available across Windows, Mac and Linux machines.  

As the programme is open-source, other people are able to develop additional features for the 

programme. These are known as ‘plugins’. These do not come bundled with the application by 

default, but can be downloaded and installed separately. The MTrackJ and Image Science plugins 
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were developed by Meijering, Dzyubachyk and Smal (2012). These plugins are used to track motion 

across a sequence of images.  

The MTrackJ plugin has been used in a wide range of research, including fluorescence microscopy 

(Downey et al., 2011), cytometry (De Vylder et al., 2011), and studying cell migration in ovarian 

cancer models (Moran-Jones, Brown and Samimi, 2015). It has also been used in undergraduate 

projects at the University of Sussex, where it has been used to study tardigrade leg coordination 

(Hall, personal communication) and nematode movement behaviour (Ray, personal 

communication).  

In this project I intended to use MTrackJ to track the motion of tardigrades under the DIY 

microscope, but due to time constraints and personal health issues, this part of the project was 

changed. It was however, shown to be successfully used to track tardigrades in changing 

temperatures as part of our School Science Review paper (Kent and Bacon, 2016). 

ImageJ has been compiled for Linux, so is available by opening a Terminal window on the Raspberry 

Pi and inserting the command: 

sudo apt-get install imagej 

Once the programme has installed, it should be found in the main taskbar menu under the ‘Graphics’ 

drop-down option.  

Once ImageJ is installed, the plugins also need to be downloaded from the Image Science website 

(Meijering, 2018). For MtrackJ to work correctly, the two plugin files (MTrackJ_.jar and 

imagescience.jar) need to be downloaded and saved to the ImageJ plugins folder (found at 

/home/pi/ImageJ/plugins). MTrackJ can be accessed under the ‘Plugins’ heading on the ImageJ 

menu bar. Selecting this from the menu bar will open a new pop-up box with a range of options for 

tracking subjects, as shown in Figure 2.4.  
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Figure 2.4: The ImageJ menu, with the MTrackJ plugin menu pop-up.  

Dropbox Uploader 

 

Dropbox is a popular online platform for storing and sharing work. Dropbox is an ideal tool to be 

used to collect, back up and share images and data collected by the Raspberry Pi. Andrea Fabrizi 

(2016) has developed the Dropbox Uploader tool. This allows a user to enter some commands into 

the terminal and upload files from the Pi directly to a Dropbox account which can be accessed from 

any device. This makes later analysis of data much easier to carry out, and saves the user from 

having to transfer data manually via USB memory sticks.  

Firstly, it is important to have a Dropbox account that is to be used for this purpose. Dropbox 

accounts are free to make and come with a generous amount of free storage. Additional storage 

space can be purchased if the user requires it.  

To install this programme, the user should open up the terminal window and enter the change 

directory command: 

cd 

When entered by itself, it brings the user back to the home directory, ensuring that the user is not 

still accessing another folder or file before making any changes.  
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Then the user should enter the following into the terminal window: 

sudo git clone https://github.com/andreafabrizi/Dropbox-Uploader.git 

Before hitting the ‘Enter’ Key, and then typing the ‘List command’: 

ls 

The List Command shows all the files or subdirectories contained within the user’s current directory. 

By entering the List Command here, the User should be able to see the files in this directory, one of 

which should be a subdirectory called ‘Dropbox-Uploader’. To enter this directory the user should 

enter: 

cd Dropbox-Uploader 

The user should now be in the subfolder called ‘Dropbox-Uploader’. To see all the folders and files in 

the Dropbox-Uploader file, the user should enter the List Command again: 

ls 

There should be a file called ‘dropbox_uploader./sh’. This can be run by entering the following 

command: 

sudo ./dropbox_uploader.sh 

The user then needs to follow the on-screen instructions to set up a new Dropbox App and enter the 

details requested.  When this is all done, the user will have successfully installed the programme and 

will be able to upload files from the Raspberry Pi directly into a Dropbox account which can be 

accessed from anywhere.  

To upload a file from the Raspberry Pi to Dropbox, the user must open the terminal and enter the 

following command:  

cd home/pi/Dropbox-Uploader 

Then the user must press ‘Enter’ before entering the following command: 
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sudo ./dropbox_uploader.sh upload /home/pi/name_of_upload_file name_of_upload_file 

The first ‘name_of_upload_file’ gives the location of the file the user wants to upload into their 

Dropbox. After a space, the user then enter the name that they want the uploaded file to have. 

These can be the same, or the file can be renamed upon uploading. For example, if the user wanted 

to upload ‘Picture1.jpg’ from their Pi Directory (itself a sub-directory of their Home Directory) to the 

Dropbox, and rename it to ‘Tardigrade Photo 1.jpg’ they would enter: 

sudo ./dropbox_uploader.sh upload /home/pi/Picture1.jpg TardigradePhoto1.jpg 

Upon opening Dropbox on another device, the user should be able to see the TardigradePhoto1.jpg 

file in their account. While using the browser to upload files could be done on the Raspberry Pi, 

using Dropbox Uploader has a few benefits. Firstly, it is arguably quicker to enter some simple 

commands than to open the webpage, log in and select the files required. More importantly, using 

Dropbox Uploader means that a graphical environment does not need to be active (that is, you could 

upload or download files by the command line alone, or when logged in remotely). You can also 

incorporate the commands into another programme to have data uploaded automatically.  

In this project, Dropbox-Uploader was used in the following way: 

1. A series of images were taken, each saved to a folder (/home/pi/Test1) with a unique 

filename (image_001.jpg, image_002.jpg … image_060.jpg). 

2. The Dropbox Uploader programme was opened, and the folder Test1 was uploaded to the 

Dropbox account using the following commands: 

cd home/pi/Dropbox-Uploader 

sudo ./dropbox_uploader.sh upload /home/pi/Test1/ Test1 

3. When the Dropbox was accessed on another computer, the Folder Test 1 contained all 60 

images from the image sequence.  

The programme in use can be seen in Figure 2.5.  
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Figure 2.5: The Dropbox Uploader programme is controlled by entering text in the terminal.  

Open CV 

 

OpenCV (Bardski, 2000) is an open source computer vision and machine learning software library, 

available across different platforms and programming languages, which is used for real-time video 

analysis. Computer vision is a huge and growing field, but OpenCV is a very popular system, as it is 

open source, allowing anyone to build upon and improve its existing feature set. It was originally 

designed by Intel, a huge player in the computer market, so it had a strong initial backing leading to 

OpenCV’s popularity. OpenCV has been used in a range of projects, from driver assistive 

technologies in cars (Garcia-Sierra, 2013) to popular camera apps for iPhone, such as HappyShutter 

(Sadun, 2012). 

There are many guides available online to help install OpenCV. This project used the guide by Adrian 

Rosebrock (2015) to get OpenCV working on the Raspberry Pi. 

Installing OpenCV is one of the hardest and longest parts of this project. On less powerful Raspberry 

Pi boards (Model A, B and Zero), this step can take up to 12 hours (providing it installs correctly first 

time). On the Pi 2 or 3, this is much quicker, due to the quad-core processor.  
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Motion Track 

 

Motion Track is a programme developed by Claude Pageau (2018). This piece of software analyses a 

live video feed and detects if motion has occurred between two adjacent frames. If the programme 

detects motion, it draws a green circle onto the output to highlight the location of movement (Figure 

2.6). Motion Track relies on OpenCV to compare frames from a video stream. This programme was 

used to track ants and observe their choice making behaviour and will be described in Chapter 4.  

 

 

 

 

 

 
 
 

Figure 2.6: The Motion Track programme opens several windows. In the window on the left, an ant 
has been detected moving, and is highlighted by a green circle in the bottom left hand side. The 
window on the right shows where the programme has detected a change between frames (faint grey 
pixels). 2  

This programme was modified to be more useful in the project. While the programme displayed 

movement and highlights where movement is being detected, it did not record these data 

anywhere. Due to the way the experiment was carried out, the X co-ordinate of the detected motion 

was the key piece of data needed. As a result, the programme was adapted to create a text file on 

opening, and it would modify this text file anytime movement was detected, adding the X co-

ordinate to a list. This file was then uploaded to the Dropbox and used to determine where in an 

arena an ant was present at any given time.  

                                                           
2 Please note, the threshold image has been edited for clarity; the pixels have been lightened to be more visible 
when printed; the threshold image is easier to see in motion. 
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I also changed some of the parameters of the file to change the threshold required for movement to 

be detectable. The modified python code can be found in Appendix 3. To install this programme, the 

user must enter the following command into terminal: 

curl -L https://raw.github.com/pageauc/motion-track/master/motion-track-install.sh | bash  

This same software could be applied in all sorts of situations, for example looking at when animals 

enter or leave a trap or nest, or studying decision making in other animals, as long as the programme 

is edited to make sure the necessary data are saved. Additional data, for example a timestamp or 

image could also be collected when motion is detected, allowing other observations to also be 

made.  

Please note, a newer version of this programme has been produced which utilises OpenCV3 and 

Python 3, neither of which were used in this project. 

 

Microscope Application 

 

A key aim of this study was to develop the microscope application further in such a way that a user 

could access the microscope without any need to interact with the computer via the keyboard or 

mouse. Previous versions of the microscope relied on the user entering commands into the terminal 

window to collect images or video, which is not ideal for someone who has never used such a system 

before. To improve upon this, I developed a graphical user interface (GUI) which allows the user to 

press buttons on the display to interact with the hardware (Figure 2.7). 

 When I created this programme, I had the following aims in mind: 

1) It had to be accessible for people who had never used Linux before. 

2) There had to be a clear guide and help menu. 

3) All of the key camera operations (a still image, a time-lapse recording and a movie file) had 

to be available to the user on the main menu, ideally with a single button click. 

4) The user had to be able to interact with or receive data from other connected devices (such 

as thermometers or lights) from within the programme. 
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5) It had to fit onto the official Touch Screen and make the most of the (relatively low) 

resolution.  

I chose to produce the programme in Python. Python is a relatively simple language that is suitable 

for beginners. Python also has a very good GUI toolkit built in which allowed me to easily design the 

GUI. Additionally, Python is cross-platform which allowed me to develop the programme on a 

Windows PC and test it out at different times.  

Figure 2.7: The main screen of the custom made Microscope GUI. The top section features the 
menu bar and down the right hand side are the buttons which activate features of the application.  
 

On the right hand side, there are 8 buttons which can be used to activate a range of functions.  

(1) Open Camera causes a preview of the camera to appear in the empty space on the screen for 10 

seconds. This allows the user to position the camera in its desired location.  

(2) Preview brings up a full screen 10 second preview; the image quality is better in this view, but it 

takes up the entire screen, overlapping the GUI.   

(3) Take Photo begins a 3 second countdown and then takes a still image and saves it to the 

directory of the microscope programme.  
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(4) Make Movie creates a ten second movie file and saves it to the directory of the microscope 

programme.  

(5) Time Lapse causes the Raspberry Pi to take 10 photos, with a one second pause between each 

image. These images are saved with an ascending 4-digit identifier.  

(6) Motion Track causes the Motion Track programme to run, shown in Figure 2.8. 

(7) Temperature causes a pop-up box to appear with the current external temperature, measured by 

external sensors. This window can be dismissed by clicking ‘Okay’ in the pop-up box. Dependent on 

the sensors attached, this button could also be labelled ‘Humidity’. 

(8) Quit causes the programme to quit.  

Across the top menu of the GUI is a detailed help section which provides the user with more 

information about how each button functions.   

 

 

Figure 2.8: The Motion Track Programme running within the Microscope Application.  
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One of the advantages to creating this in Python is that other users can very quickly and easily 

change settings. If a user wanted to make minute long movies as opposed to ten seconds, this would 

be a simple matter of changing a few numbers in the code, and restarting the programme. Its 

flexibility makes it perfect for beginners in computer science. 

The full code for the Microscope GUI application can be found in Appendix 4.  

In conclusion, through a range of programmes, the Pi can easily be given new features and abilities. 

These programmes are all free or custom produced for this project, so no additional money was 

spent, and they are all useful for a range of purposes and could provide easy extensions for this 

project.  

Part 3 - Additional Hardware  

 
One of the most exciting things about the Raspberry Pi is the huge range of external hardware that 

can be purchased for the computer and the number of potential projects this opens up. As we have 

already seen from the introductory chapter, a range of HATs can be purchased to provide additional 

sensors and outputs. Other hardware, such as lights, buzzers, motors, touch pads, servos and more 

can all be purchased and incorporated into projects. Some more specific and scientific equipment 

can also be made to interface with the Raspberry Pi, such as soil humidity monitors, light gates and 

dissolved oxygen probes. As part of this project there are a few key pieces of hardware that have 

been used, which will be detailed below.  

USB Power Bank 

 
As the Pi uses industry standard connections, the Pi can be used with a variety of hardware. One of 

the most helpful connectors is the microUSB power cable. Portable USB power banks (like those 

used to charge phones on the go) can be used to power the Raspberry Pi away from the mains 

power supply. The length of time a Pi can be operated in this way depends on the capacity of the 

battery pack and on how much power is being used by the Raspberry Pi. Some models, such as the Pi 
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Zero or Pi A+ require much less power than the Raspberry Pi 2, so can be run from a USB power bank 

for a considerable length of time.  

Raspberry Pi Camera 

 
For this whole project, the addition of a camera has been essential. The Raspberry Pi Foundation has 

produced several camera boards that can be used with the Raspberry Pi. A brief outline of these 

models is provided below in Table 2.3. This project mostly used the standard Camera Module (Figure 

2.9), but the other models have all been used at varying times. The cameras connect to the 

Raspberry Pi via a flexible ribbon cable. The included cable is about 15cm in length, but the camera 

board can be used with alternative cable lengths; cables up to 2m long are readily available.  

 Camera Module NoIR Camera 
Module 

Camera Module 
V2 

NoIR Camera 
Module V2 

Resolution 5 MP 5 MP 8MP 8MP 

Sensor OmniVision 
OV5647 

OmniVision 
OV5647 

Sony IMX219 Sony IMX219 

Infrared 
Capable 

No Yes No Yes 

Cost at launch $25 $25 $25 $25 

Launch Date 14/5/2013 28/10/2013 25/4/2016 25/4/2016 

Table 2.3: Key information about the different official Raspberry Pi Camera Modules.  

 

 

Figure 2.9: The 5 MP Raspberry Pi Camera Module (Raspberry Pi, 2019a). 

 

 

The official Pi cameras are sold as fixed focus cameras (although it is possible to break the glue 

holding the lens in place and adjust the focus manually by twisting the camera lens, voiding any 

warranty in the process).  

The Raspberry Pi Zero (v1.3 and newer) boards do feature a camera port, but it is different to the 

ones found on other sized Raspberry Pis. To connect a camera to the Pi Zero, a specific adaptor cable 

is required (Figure 2.10). 



56 
 

 
 

 
 
Figure 2.10: The Raspberry Pi Zero camera cable is a 
different size to the standard camera cable (Raspberry 
Pi, 2019b). 

 
 

 

In addition to the official cameras, third-party cameras are available from other vendors. One of the 

most popular is the WaveShare camera (shown below in Figure 2.11). This camera uses the 

OmniVision OV5647 sensor (the same sensor found in the official camera board) and all of the 

commands for the camera work as normal. However, this camera has adjustable focus, allowing it to 

take excellent photos across a room, but also down to the near microscopic level. This camera has 

been used to take pictures of hydra (approximately 1mm long) and even individual tardigrades 

(approximately 500µm in length) (images shown in Figure 2.12).  

Unfortunately, the flexible cable that comes with this camera is very sensitive and swapping it for 

another cable can break the camera board. The units that have been tested do not work with the 

extension cables and have caused power issues on the Raspberry Pi board when this was attempted. 

As a result, the Waveshare camera was not used in this project, and only official Raspberry Pi 

hardware was used instead.   

 

 

Figure 2.11: The Waveshare Camera has an adjustable lens which 

means the image focus can be changed (The Pi Hut, 2019) 

 

 



57 
 

 
 

 

Figure 2.12: Image taken using the 

Waveshare Camera board. In the same 

image, both a hydra (Hydra viridis) and 

a tardigrade (Dactylobiotus dispar) can 

be seen. The tardigrade is highlighted 

by the white circle.  

In the movie file, a ciliate can be seen 

moving away from the hydra. It is quite 

hard to see in this still, but is pointed 

out by the arrow. 

 

 

Environmental Sensors 
 

Thermocouple 

 

A thermocouple is a tool used to accurately measure temperatures, and can be used to monitor the 

temperatures of solids, liquids and gases. The probe is made up of two metals, each with slightly 

different conductive properties. When the probe comes into contact with a surface, a liquid or the 

air, the difference in the voltage across the two metals can be used to determine the temperature to 

a high level of accuracy. There are several types of thermocouple, and these are classified based on 

the types of metals used. 

The Raspberry Pi is able to interface with thermocouples. Adafruit, a leading producer of Raspberry 

Pi compatible hardware made the MAX31855 thermocouple board (shown in Figure 2.13). This 

allows a thermocouple to be attached to the Raspberry Pi via the GPIO interface. A python library 

produced by Adafruit was used to interpret the data from the thermocouple board. As the library 

was produced in Python, I was able to incorporate it into the Microscope GUI programme.  
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Figure 2.13: The MAX31855 

Thermocouple breakout board (the blue 

square to the bottom right marked with 

the arrow) attached to a K Type 

thermocouple (Adafruit, 2018b). 

 

 

 

 

DHT Sensors 

 

In addition to the thermocouple, I also wanted to know about the humidity in the environment, as 

this could affect how animals behave. Initially two DHT11 sensors were purchased (Figure 2.14a), a 

temperature and humidity sensor which also has a python library developed by Adafruit. We later 

also purchased a DHT22 sensor (Figure 2.14b). There are some slight differences between the DHT11 

and DHT22 which are described in Table 2.3.  

 DHT11 DHT22 

Temperature Readings 0-50°C temperature readings 
±2°C accuracy 
 

-40 to 80°C temperature readings 
±0.5°C accuracy 
 

Humidity Readings 20-80% humidity readings with 
5% accuracy 
 

0-100% humidity readings with 2-
5% accuracy 
 

Dimensions 15.5mm x 12mm x 5.5mm 
 

27mm x 59mm x 13.5mm 
 

Cost  £6.00 £10.00 

 

Table 2.3: The differences between the DHT11 and DHT22, temperature and humidity sensors 

produced by Adafruit.  

 

 

 

 

Figure 2.14: The (a) DHT11 temperature sensor and (b) the DHT22 temperature sensor (Adapted 

from Adafruit Industries (2018c) and Adafruit Industries (2018d). 

a b 

https://cdn-shop.adafruit.com/1200x900/269-02.jpg
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Evaluation of Temperature Sensors 

 

During testing of the DHT11 sensor, the humidity reading seemed to be low based on previous 

studies based in the same laboratory. The humidity readings produced by the hygrometer in the lab 

were consistently higher than the output from the DHT11, so I ran some tests to check the accuracy 

of the sensor.  

Initially we compared the temperature reading of two DHT11 sensors (referred to in this test as 

DHT1 and DHT2) to the hygrometer (which also records temperature) from the laboratory over a 90 

minute period, the results are shown in Figure 2.15 below.  

Figure 2.15: The results of a 90 minute test comparing two DHT11 sensors (referred to as DHT1 and 

DHT2) and a hygrometer. The temperature readings were fairly consistent over the 90 minutes, 

generally within 0.5°C of each other.  

However, the humidity readings varied by about 20% over the same period, so using a DIY method 

recommended by many animal keeping and cigar enthusiasts’ websites, I tested the accuracy of the 

sensors (McLeod, 2018; Normand, 2018; wikiHow, 2018).  

A plastic milk bottle lid was filled level with salt. To this, 5 drops of tap water were added. This bottle 

lid, the calibrated hygrometer and a Raspberry Pi connected to a DHT11 sensor and powered by a 
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USB battery pack were placed into a sealable plastic bag. This should produce an environment within 

the sealed bag with a relative humidity of 75%.  

The Raspberry Pi in the bag logged the temperature and the relative humidity every minute over a 6 

hour period. These readings were then uploaded to the Dropbox, and copied into an Excel file on a 

Windows computer.  

Another Raspberry Pi (positioned above the bag) ran a programme that took a picture of the 

hygrometers display every minute over the same time course, and was started simultaneously. 

These pictures were manually checked, and the temperature and humidity readings were placed 

into the same Excel file.  

The temperatures were again within 0.5-1°C of each other and I believe the temperature sensor to 

be accurate. However, the humidity readings again varied. This test was repeated using the second 

DHT11 (DHT2) sensor and this produced the same pattern. The average of the humidity reading from 

both tests are plotted in Figure 2.16.   

Figure 2.16: The DHT11 and hygrometer humidity readings varied by around 35% humidity, despite 
being in the same sealed environment.  
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As a result, I purchased a DHT22 to check the accuracy of this sensor. This sensor was subjected to 

the same test, and both temperature (shown in Figure 2.17) and humidity (Figure 2.18) were 

recorded. 

Figure 2.17: The DHT22 and hygrometer temperature readings matched very closely, never more 
than 0.5°C out from each other.  
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Figure 2.18: The DHT22 and hygrometer readings for relative humidity were also very close and 
showed the same trend. This is well within the manufacturer’s stated error range.  

Any of the above solutions would be ideal for a cheap and easy digital thermometer system for 

investigating the effects of changing external conditions on animal behaviour. The high accuracy and 

small probe made the thermocouple the most appealing choice for examining tardigrade behaviour. 

Thermocouples also have the advantage that they can get wet and survive more extreme 

temperatures.   

However, in general, the DHT22 would be appropriate for most experiments, especially at school 

level and are cheaper and arguably easier to set up and use. Plus, they can sense moisture in the air, 

unlike the thermocouple, making them ideal to study plant and animal behaviour.  

In conclusion, the Raspberry Pi is an ideal platform to base school experiments and scientific 

research around. It is inexpensive, well supported by industry, and additional components, such as 

60

65

70

75

80

85

0 100 200 300 400 500

R
el

at
iv

e 
H

u
m

id
it

y 
(%

)

Time (minutes)

Comparing DHT22 Sensor to a calibrated hygrometer

DHT22 Hygrometer



63 
 

 
 

cameras and sensors, can easily be purchased. Most crucially, the Raspberry Pi is adaptable to the 

users’ specific needs. 

Part 4 - The Microscope 
 

The microscope used in this project is developed from an initial guide from Yoshinok (2013) who 

produced a DIY guide on a popular website, “Instructables”. This guide shows how to use cheap 

materials, such as wood, Perspex® and cheap lenses to produce a smartphone microscope that can 

capture high quality images.  

Some modifications were made to this design to allow the Raspberry Pi camera module to be used 

instead of a smartphone. The actual design for the microscope will vary dependant on the users’ 

needs and available hardware.  

The microscope has many advantages over conventional classroom microscopes, which make it ideal 

for use in a classroom setting. As with anything, there are of course some downsides to using it over 

the typical hardware used in schools, but there are also novel learning opportunities to using this 

hardware in lessons.  

Firstly, it is important to remember that this is something that young people could make for 

themselves. Hardware that can easily be produced by students and then used in lessons can help 

young people take ownership of their learning. In comparison to conventional microscopes, the 

materials used in this hardware are inexpensive, easy to obtain (and therefore replace) and 

hardwearing. The wood and Perspex® are able to take a fair amount of damage before breaking. The 

cost of replacement parts are also far lower than a conventional microscope, and can often be 

produced on site, as opposed to waiting for help from the manufacturer and the costs associated 

with this.  

The portability of the hardware also allows for new ways to teach practical science. It would not 

normally be possible to take a class outside to study organisms in their natural environment and use 
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a microscope. However, the DIY microscope could easily be flat packed and taken outside of the 

classroom for field trips and lessons outside, without risk of damaging expensive hardware (or 

having to carry it around). In addition, the students would be able to use their own phones to 

capture and store the images and films, allowing them to take ownership of their results, and easily 

incorporate these into classwork or homework presentations.  

Of course, although there are many benefits to the DIY microscope, there are some issues. Firstly, 

the level of magnification that can be achieved is much lower than that of a traditional light 

microscope, and there is not (at present) a set of lenses with different magnifications that could be 

swapped out to look at the specimen in more detail.  

It’s also important to note that the working distance on this microscope is quite limited. In general, 

this is not a problem in a school practical (it is a similar issue on school light microscopes anyway). 

However, tasks that include manual labour (for example dissections or isolating tardigrades) would 

be difficult. For such tasks, a dissecting microscope would be more suitable. This is not to say that 

you cannot get larger specimens under the microscope though. For example, spiders have been 

placed under the microscope to get images like the ones shown below in Figure 2.19, captured in 

daylight and under infrared light.  

 
Figure 2.19: Photos 
taken on the Raspberry 
Pi microscope of a 
spider under (a) 
daylight and (b) 
infrared light. 

 

 

I did consider attempting to produce the lenses in-house using plastic polymers. This unfortunately 

never happened due to lack of the chemical required and time constraints but there are methods to 

produce a high quality lens without relying on glass or expensive manufacturing processes (Lee et 

a b 
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al., 2014). These lenses may be producible in school, depending on the school’s chemical policies 

and budgets.  

Overall, this tool would be suitable to be used alongside current light microscopes in a cost and 

space effective manner, with many advantages and novel teaching opportunities presented to 

students. Combining this practical, hands-on approach to hardware, and introducing students to 

setting up their own software for classroom led research projects gives a whole new way to look at 

how science can be taught in a truly cross-curricular way.  
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Chapter 3 Hunting for Microscopic Animals: A School Science Practical 
 

Abstract  

 
When we think of microscopic organisms, most people will imagine bacteria and ‘germs’, yet few will 

be aware of the incredible multicellular animals that live solely in the microscopic world. Even within 

a clump of moss in the pavement, there is a whole ecosystem, full of animals that exhibit some of 

natures’ most interesting characteristics. This chapter will look at how schools can search for animals 

in their natural environment, how they can easily be identified and how inexpensive hardware, such 

as the Raspberry Pi, can be used to produce an interactive, portable digital microscope which can be 

used to study the behaviour of these animals.  

Introduction 

 
Tardigrades (Figure 3.1) are microscopic animals, most notably known for their ability to endure 

environmental extremes, including radiation (Horikawa et al., 2006), extremes of temperatures 

(Hengherr et al., 2009; Tsujimoto, Imura and Kanda, 2016), pressure (Seki and Toyoshima, 1998) and 

exposure to the vacuum of space (Jönsson et al., 2008).  

 

 

Figure 3.1: A scanning electron micrograph of a tardigrade of the 
species Hypsibius dujardini produced by Madden and Goldstein of 
the University of North Carolina (2012). 

 

 

 

In more recent years, tardigrades have started making their way into popular culture, for example, 

tardigrades have featured in Star Trek: Discovery, the popular video game Tardigrades, and also in 
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Marvel’s Ant Man and the Wasp.  

However, what might be less well known is the fact that tardigrades (or moss piglets as they are also 

known) are cosmopolitan animals that live in all sorts of environments. Tardigrades have been found 

in the Artic (Gąsiorek et al., 2017) and Antarctic (Tsujimoto, Imura and Kanda, 2016), in rainforests 

(California Academy of Sciences, 2017) and open water (Cavalcanti Da Rocha et al., 2013). There are 

already over 1150 known species of tardigrades (Degma, Bertolani and Guidetti, 2018; Degma, 

Bertolani and Guidetti, no date) with new species being regularly described (for example Stec, 

Arakawa and Michalczyk, 2018) and countless more waiting to be discovered.  

Tardigrades are the ideal test animals to be used in a school setting to examine all sorts of life 

processes. Their incredible abilities make them exciting for students to study and the fact that they 

can be gathered from just about any location makes them a popular choice. One of the key abilities 

is the tardigrade’s survival when dehydrated (anhydrobiosis) (Rebecchi, Altiero and Guidetti, 2007) 

which can be beautifully demonstrated in the school practical I describe in this chapter.  

Tardigrades can enter the tun form and slow down their metabolic processes dramatically in order 

to survive. When the dehydrated organisms are exposed to water, the tardigrades can reanimate. 

This process is shown brilliantly in a YouTube video by Daiki D. Horikawa (2010). 

This chapter will describe the process of ‘tardigrade hunting’, showing techniques used in 

undergraduate practicals and school visits at the University of Sussex, as well as at the British 

Science Festival in 2017, and give guidance on how to use existing school light microscopes to 

identify the organisms found. It will then look at how schools could use the DIY microscope to locate 

and identify tardigrades, and capture footage or images for study and discussion. The same 

techniques will also allow other microscopic animals, such as rotifer and nematodes, to be studied.  

One of the big fears when carrying out a practical in a classroom is that the practical won’t work. 

However, Table 3.1 shows that this set up has been successfully used with well over 700 people over 



68 
 

 
 

the last 3 years, and so far, it has never failed; in every session some microscopic animals have been 

successfully found in moss.   

Setting Number of 
Participants 

Group of participants Aim of practical 

University of Sussex >500 (over 3 years) Undergraduate Life 
Science students 

Identify organisms found 
in fresh moss using 
microscopes 

University of Sussex 200 (approx.) (over 3 
years) 

School students and 
teachers on campus 
visits  

Collect moss from 
campus 
Identify organisms found 
in moss using 
microscopes 

University of Sussex 80 (approx.) over 4 days Potential Life Science 
students on applicant 
visit day 

Look for organisms in 
moss 
Exposure to university 
style teaching 

Brighton Library  80 (approx.) over 1 day Members of the public 
as part of British Science 
Festival 

Hunt for tardigrades and 
other organisms in moss 
supplied using university 
microscopes 

King’s School, Hove 13 Year 8 students on 
Enrichment Day  

Collect moss from school 
playground and look for 
and identify animals in it 
using the school’s light 
microscopes.  

Table 3.1: Table showing the groups that have taken part in practical sessions I have been involved in 
leading during the course of this project. These groups vary in greatly in age and previous experience 
of science knowledge.  

 

In each of these sessions I have delivered a very short talk before the practical, describing the key 

safety aspects of the practical, and outlining some of the things that might be found.  

It’s also really important to highlight that some students may not see everything. By setting this 

expectation at the start, you can reduce the sense of frustration some participants may experience, 

and you also get the opportunity to encourage participants to work together and share their finds 

with each other. It’s also good to show participants that science doesn’t always go the way you want 

to, and you may need to repeat an experiment or observation before finding the thing you’re looking 

for.  
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Part One: Tardigrade Hunting 
 

Equipment 
 

This project relies on very little expensive equipment beyond what would reasonably be expected to 

be in a school’s science laboratory. All of the equipment can be reused after the practical (except 

potentially the glass slides, depending on the school’s glassware policy) and the samples can be 

obtained from the natural environment.  

Box One provides a list of the necessary equipment for observing tardigrades using a school’s light 

microscope. Box Two provides a list of the hardware required to use the DIY digital microscope to 

observe and capture images or movies of the tardigrade and for the use of the infrared capabilities 

of the Raspberry Pi’s camera module.  

 

 

 

 

  

Box One 

Light microscope 

Light source 

Glass slide 

Coverslips 

Petridish or plastic container 

Plastic pipette 

Distilled or mineral water 

Box Two 

Raspberry Pi 

Raspberry Pi camera module  

Raspberry Pi touch screen (or monitor) 

Power supply (USB power bank or access to plug) 

Internet connection  

Optional: 

Raspberry Pi NoIR camera module 

Infrared light source 

Box to enclose microscope 

DHT22 sensor 
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Step 1: Collecting samples 

 
Tardigrades can be found in many locations. Almost any sample of moss (regardless of its moisture 

level) will generally contain some number of tardigrades within it. I have successfully located 

tardigrades in moss collected from the pavement, from trees, from concrete statues and from 

guttering. A small sample is all that is needed, no more than a clump that can be lifted between the 

thumb and forefinger and should be placed straight into a petri dish after collection. Teachers could 

go into their school’s grounds and find different sources of moss growing in varied environments. 

Furthermore, the cost involved (i.e. nothing) is crucial as school’s spending on pupils is decreasing 

(Weale, 2018). 

Step 2: Preparing the sample 

 
A small amount of the moss sample is placed in a petri dish and distilled water is added to soak the 

sample. It is left for around 20 minutes to allow the water to saturate the sample.  

For this practical, the slides are prepared in a special way to ensure that the animals are not injured 

or affected by downward pressure applied during the observations. This slide production method 

also has the advantage of creating a limited area for the animals to be located within. The steps for 

producing this slide are detailed below and shown in Figure 3.2 and Figure 3.3.  

A glass slide is placed on the work surface. To this, two drops of distilled (or mineral) water are 

added (approximately 2cm apart). Onto each drop, one cover slip is placed. The water acts to adhere 

the cover slip to the slide. Into the gap between these two cover slips, some of the moss sample is 

added. This is a tiny amount, a few leaves and some of the stem are all that is needed. Then a fresh 

pipette is pushed into the moss sample and some ‘moss juice’ is extracted. This liquid contains a 

mixture of particles from the moss and any animals that have been released from the surface of the 

moss when the water was added to the moss. This ‘moss juice’ is then dripped onto the moss leaves 

in the gap on the slide. A thin, even covering of the gap is ideal.  
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Finally a third coverslip is added to the slide, held up between the first two coverslips. This creates a 

walled environment for the organisms to be contained within. It also allows for additional liquid to 

be applied to the slide if the sample begins to dry out.  

 

 

 

 

 

Figure 3.2: The stages involved in producing the moss observation slide. (a) Two drops of water are 
applied to the slide; (b) coverslips are placed directly onto drops; (c) some of the leaf material is 
placed onto the slide and moss juice added onto it; (d) the third coverslip is placed onto the slide, 
overlapping both the other coverslips.  

 

Figure 3.3: An illustration of the completed slide, drawn side on. The moss juice also helps to reduce 
the air interface.  

 

Step 3: Locating animals under the microscope 

 
Tardigrades are generally between 400-600µm in length, although they can vary between 0.1 and 

1.2mm in length (Seckbach and Rampelotto, 2015). This makes them easily visible under 10x 

objective magnification (the sort of magnification you would expect to find on a school science 

microscope). The University’s microscopes have a 10x eyepiece lens and variable objective lenses on 

a rotating turret system, with 4x to 100x magnification achievable (for a total magnification of 40-

1000x).   

a b 

c d 
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The method that I have found to be most reliable is to use the edge of a coverslip as the initial point 

to focus the microscope and then to slowly pan around the central gap, focusing especially on the 

edges of the coverslips (where animals are frequently observed) and the edge of the moss leaves. 

The focus should be changed slowly as the animals can sometimes be obscured by the moss. It takes 

a while to get used to looking for fine movements, but the user may see claws appearing from 

behind obstacles or see the edge of a body wiggling along. Over time, the observer will be able to 

differentiate between animal movement, and movement of air bubbles and particulates in the 

water.  

Step 4: Identifying the organisms 

 
It is likely that several different microscopic organisms will be seen in the moss sample, and they 

each have a fascinating lifestyle and set of adaptations for their environment. Just like tardigrades, 

some other microscopic organisms can survive extreme conditions, and have provided science with 

some key findings. Table 3.2 shows a list of some organisms that may be observed and some of their 

defining characteristics.  

Organism Illustration Photo Description 

Tardigrade   4 pairs of limbs, each ending 
in claws. 

Moves by walking around. 
Generally around 0.5-1mm in 

size 

 

Rotifer  

  

May be freely swimming or 

anchored to surface or moss. 

Contracts and extends body 
Cilia on mouth piece may be 

visible. 

Protozoa  

 

Single celled organisms 
May be able to see cilia 

around surface. 
Wide range of shapes and 

colours 
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Algae 

  

Single cellular or multicellular 
organisms 

Generally green 

May group together 

Worms 

 

 

Lots of different species 

Vary in colour 

Table 3.2: An identification chart for some of the organisms which may be located in a moss sample. 

This is a brief and generic description aimed at a wide audience, some specific details are therefore 

not included. Illustrations by Gemma Kent. (Tardigrade: Goldstein Lab, 2007; Rotifer: Loarie, 2014; 

Protozoa: Picturepest, 2014; Algae: Atriplex82, 2015; Worm: Schley, 2010). 

There are some distinctive movements which can help differentiate different microscopic animals 

from each other. 

Firstly, the tardigrade body is made up of 5 segments; 4 segments which each have two legs and the 

head segment. They tend to crawl or swim through the water, their legs showing little co-ordination. 

Other movements that may be seen include the protrusion of their mouth piece from the head and 

the tardigrade curling up. When interacting with other things, the tardigrade often uses its hind legs 

to grip onto something, like a moss leaf, and use its other limbs to propel itself or gather food. They 

can also be seen dragging material along, gripped by their hind limbs. Due to the transparent nature 

of some species, their gut contents may be visible. 

Rotifers have two distinct methods of movement. They will either be freely swimming (and move at 

quite a fast rate) or they will ‘inch-worm’, where they move in a concertina like fashion along a 

surface, contracting up their bodies before extending their anterior outward. They will anchor on 

and contract again, bringing their posterior closer to the front and retracting their rear-half. By 

repeating this pattern, the rotifer moves along a surface like a caterpillar. They also show another 

distinguishing behaviour, where they anchor onto something (such as the slide’s surface, or a piece 

of moss) and will then stretch out and use the cilia on their head (or “crown”) to produce a current 

and force particles into their mouth. Rotifers can be observed stretching out in multiple directions 

from one anchoring point to collect food from their environment.  

https://upload.wikimedia.org/wikipedia/commons/a/a7/Nematoda_Fadenwurm.jpg
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Nematode worms move in either a thrashing manner or move their body in a sinusoidal like manner. 

This ‘S-wave’ pattern can be easily identified compared to the motions used by other microscopic 

animals. Other worms may also be seen.  

Other organisms such as algae and protozoa may also be observed. These organisms are much 

simpler and tend to show almost random movement.  

Using a smartphone or DSLR lined up against the eyepiece of a light microscope, images of 

microscopic creatures have been captured, shown in Figure 3.4.  

Figure 3.4: Microscopic creatures captured through eyepiece of light microscope. (a) A tardigrade 
seen in shed cuticle x200) captured on a Sony A58 DSLR; (b) nematode worms captured on an 
iPhone 5s.  

 

Part Two: Utilising DIY hardware 

 
While using existing technology to study microscopic animals is a great practical in itself, and opens 

up new areas of study for staff and students alike, the ability to be able to see this microscopic world 

using hardware built from scratch in a cross-curricula way makes the practical an even more 

educationally powerful project.  

By using the hardware described in Chapter 2, these microscopic animals are easily visible using 

either a mobile phone or the Raspberry Pi based microscope (Figure 3.5). 

a b 
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Figure 3.5: Microscopic organisms seen under the DIY microscope, images captured from movie 
recorded on the Raspberry Pi. (a) A tardigrade seen moving on moss. (b) Nematode worms moving 
on slide. (c) A rotifer can be seen with its mouth piece extended toward the bottom of the image.   

 

The distinctive movement patterns of the animals can also be seen using this DIY digital microscope, 

and still images or video footage can be produced easily in real time, allowing for students and staff 

to easily share their discoveries and discuss them in a biological context.  

While the magnification is not as high as that available from the light microscope set up, it is possible 

to clearly see and identify microscopic organisms and to monitor their behaviour using equipment 

that can be built and maintained by students themselves. 

To enhance the contrast between the animals and the leaf material, an infrared lightsource and the 

Pi’s NoIR camera module can be used. This allows the capture of images such as the ones below in 

Figure 3.6. In these images, the animals can really clearly be seen, due to the high contrast between 

them and the background.  

Figure 3.6: Microscopic organisms seen under infrared light, images taken from videos captured by 
DIY microscope utilising infrared camera. Images are blurry as stills are taken from movies. (a) 
Tardigrade, (b) Nematode worm, (c) Rotifer. 

a b c 

a b c 
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Possible Extensions  

 
While this practical project is fairly simple in how it is carried out, there are many opportunities to 

extend it, based on the skills and needs of the group carrying out the work.  

Some ideas that would be possible in a school setting include carrying out an investigation into how 

the number of tardigrades present in a sample varies dependent on where the sample is collected 

from (eg. shaded vs non-shaded environment, different altitudes, prevailing wind conditions, 

exposure to rain, etc).  

As has been previously mentioned, tardigrades can survive long periods when dehydrated. 

Tardigrades enter the tun form and slow down their metabolic processes dramatically in order to 

survive. When the dehydrated organisms are exposed to water, the tardigrades (and to a degree 

both rotifers and nematodes too) can reanimate (as described earlier). This can be observed down 

the microscope in real time if the moss is sufficiently dry, and the observer can correctly identify a 

tun. The environment in which the tardigrade dehydrates has an impact on the likelihood of the 

survival of the tardigrade (Lundstrom and Stvensson, 2006). The tardigrades are far more likely to 

survive when dehydrated within the moss, as the process occurs slowly and gives the animal time to 

adapt to its changing environment and synthesise any necessary metabolic compounds.  

Tardigrade hunting sessions have taken place in practical sessions at the University of Sussex using 

both fresh moss collected that day, and also using moss samples that have been stored in a dry 

plastic bag in the relatively warm laboratory for months, dehydrated to the point that the moss 

crumbles upon being touched. Even within these samples, tardigrades have been successfully seen 

to reanimate after being rehydrated by the addition of water.  

A project could investigate how long the tardigrades can survive in dehydrated moss, looking at 

samples taken over a school year and see how the distribution of tardigrades changes in the older, 
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more dehydrated moss compared to fresh moss, and how many individuals can be seen successfully 

coming out of the tun form.  

An extension on this project could be to investigate how the humidity of the environment the moss 

is dehydrated in or stored in affects the survival rate of the tardigrades upon reanimation. This could 

be carried out using the DHT22 humidity sensor discussed in Chapter 2 to log the humidity and 

temperature in an environment.  

Conclusions 

 
The hardware developed for this project can open up interesting new avenues for the way that 

practicals could be carried out within the school environment, utilising DIY hardware to maximise 

the value for students and enhancing their knowledge base.  

There are obviously things to consider, such as time constraints in a school day, but the core 

tardigrade hunting exercise could easily be completed within a typical school lesson.  

The practical described in this chapter and the extension tasks suggested could be run as an after-

school project or as a small part of a normal lesson and spread out over several weeks.  

I hope that the open source nature of this equipment will act as an example to enable schools on 

tight budgets to think creatively about what practicals can be developed and enhanced by using 

open source hardware and software and how on-site cross-curricula teaching could give students a 

chance to put into practice skills from multiple subjects in one practical project.  

 

YouTube Videos 
The stills in these figures have been taken from movies that are available on the Microsco-Pi 

YouTube channel (https://www.youtube.com/channel/UCpicdd5Ppa-lDq-Z9PX40ew).  

https://www.youtube.com/channel/UCpicdd5Ppa-lDq-Z9PX40ew
https://www.youtube.com/channel/UCpicdd5Ppa-lDq-Z9PX40ew
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Chapter 4:  A DIY Approach to Monitoring Ant Decision Making in 
Response to Chemicals in their Environment 
 
Abstract 

Despite their small size, ants are some of the most successful animals on the planet, estimated to 

make up around 15-20% of the world’s terrestrial biomass (Schultz, 2000). Discoveries in ants have 

led to all sorts of scientific advancements and ants are very prominent in the public conscious.  

This chapter uses the idea that ants are a well known, easily locatable study subject and creates a 

simple classroom practical session that looks at ant decision making using equipment that a school 

might have to hand. It then looks at how cheap, easily accessible hardware (such as the Raspberry 

Pi) could be used to set up an automated insect tracker that could record and analyse ant decision 

making in a school setting, and highlights some possible improvements to this set up.  

Introduction 

Ants are members of the Hymenoptera, the second largest order of insects. Ants have been 

referenced in the literature in almost every civilization; from ancient Hebrew literature (Proverbs 

6:6-8, Holy Bible) through to comparatively recent authors such as Mark Twain (Twain, 1880). More 

recently, several movies have made ants their focus, from Dreamwork’s Antz, Pixar’s Bugs Life and 

Marvel’s Ant Man movies.  

Ants have adapted to successfully fill a range of ecological niches. This is partially due to their 

successful division of labour, and their ability to effectively communicate through a variety of 

methods, including audible cues (Hickling and Brown, 2000), physical interactions (Holldobler and 

Wilson, 1990; Franks and Richardson, 2006) and by chemical communication, for example to 

mediate nestmate discrimination (Lahav et al., 1999; Wagner et al., 2000), mediate aggression 

(Liang, Blomquist and Silverman, 2001) and play a role in queen-worker interactions interactions 

(Dietemann et al., 2003; Vásquez, Schal and Silverman, 2008).  
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Ants show some of the most fascinating behaviour among the insects, for example they have been 

shown to farm other animals as a food source (Schneider et al., 2013), self-medicate (Bos et al., 

2015), farm crops (Ariniello, 1999), teach each other routes (Franks and Richardson, 2006) and take 

slaves (Gladstone, 1981). However, for the general public, ants are often seen as a pest that invade 

the home and leave a mess everywhere.  

As part of this project, I wanted to see if everyday household products that have been claimed to be 

natural ant repellents are effective, and design a simple practical project that could be carried out in 

a school setting to test these products. There are many natural methods reported on websites to try 

and prevent ants from entering households, so as part of this project I tested some of the most 

popular suggestions; lemon juice and vinegar (The Frugal Life, 2014; Pest Kill, 2018; Reader's Digest, 

2018).  Through this practical, students (and staff) would explore to see if myths online could be 

trusted, and it would open up opportunities to think about the ideas of repeats, limitations and 

experimental design. Insects are easy to obtain and have very interesting behavioural adaptations, 

so they are an ideal subject for schools to study. 

I also wanted to show that open source hardware and software could be used as a powerful, yet 

inexpensive, teaching tool. There have been many interesting ant studies that use very inventive 

methods to monitor ant behaviour, for example, the QR work by Mersch, Crespi and Keller (2013), 

and the RFID studies by Robinson et al. (2009). However, these experiments required expensive 

hardware and were very time consuming, two things to avoid in the average school environment.  

By using simple, inexpensive technology and freely available software (described in Chapter 2), I 

wanted to encourage staff and students to produce their own equipment that could be used to 

direct their own learning. To this end, I wanted to show that the Raspberry Pi, with a camera 

attached, could be used to track an ant’s position, and allow students to use the recorded data to 

look at decision making in ants.   
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In addition to this, there is very little about behaviour in the school curriculum. Further, despite 

looking at animals in exotic environments (like the artic and the desert), students often do not look 

at local animals and their own interesting adaptations. I felt that this simple set up would allow for 

students to make a very visual, hands on link between animal behaviour and responses to their 

environment.  

Therefore, to sum up, my two aims were:  

1. To develop a simple ant experiment, using inexpensive, everyday products that could teach 

students about ant decision making.  

2. To show that the Raspberry Pi, originally purchased for a microscopy project, could easily be 

used in a completely different way as an automated insect tracker that could monitor ant 

decision making. 

Part One: Developing a simple experimental assay 
 

Study Species 
This project focuses on two common ants found in Britain; Lasius flavus and Lasius niger, shown in 

Figure 4.1.  These ants were chosen as they are readily available for schools to collect and they are 

some of the more common species in the literature.  

 

 

 

 

Figure 4.1: Lasius flavus, the yellow meadow ant (left) (Specimen CASENT0179923 from antweb.org; 
Padro, 2011a) and Lasius niger, the common black ant (right) (Specimen CASENT0179929 from 
antweb.org; Padro, 2011b).  
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L. flavus is known as the yellow meadow ant and is often found in grassy areas. This species builds 

distinctive mounds in grass, and are found all across the Northern Hemisphere. L. flavus has a 

yellow-orange colouration, although this colour tends toward brown with age, and can often be 

mistaken for red ants. Workers range in size from around 2-4mm in length. As underground 

foragers, L. flavus are not often seen on the surface. As a member of the Formicinae (a subfamily of 

the Formicidae), Lasius flavus produces formic acid as a defensive substance, and fires it at enemies 

through its acidophore.  

L. flavus were collected from a field bordering the University of Sussex campus. The top layer of their 

mounds were cut into at right angles using a shovel, and this top layer of soil was lightly shaken into 

a fluon lined plastic box (measuring 30x30x10cm). Then, additional clumps of soil were picked up 

and shaken into the box. The aim was to collect as many workers and brood as possible, but without 

putting too much soil into the enclosure. A lid (with mesh-covered air flow holes) was placed on the 

box, and the ants were kept in a shelfing unit. All experimental colonies were queenless.  

L. niger is known as the common black ant, or the pavement ant and is found across most of the 

Northern Hemisphere. It has a very closely related species, Lasius japonicas, in Asia. L. niger workers 

are bigger than L. flavus, around 3-5mm and have a jet black gaster, with some brown bands on their 

legs. Like L. flavus, L. niger are also Formicinae ants, and use formic acid as a defence against threats. 

However, they have been more intensely studied; in particular, the profile of the chemicals on their 

cuticle and their trail pheromones are well established in the literature (Lenoir et al., 2009). 

L. niger colonies were collected from underneath paving slabs across the University of Sussex 

campus. These were carefully lifted and a handheld vacuum cleaner was used to collect as many 

workers (and some brood) as possible. These were then ejected into a fluon-lined plastic box, with a 

plaster base and plaster nest inside and covered with a lid containing mesh-covered air flow holes.   

Both species of ants were given water tubes (capped with cotton wool) and fed protein jelly 

regularly. 
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The test arena (shown in Figure 4.2a) was built using three clear plastic petri dishes, each 9cm in 

diameter and 1cm in height. Dish A and B had their bases carefully removed using a sharp knife, and 

were then internally coated with fluon. Fluon is a readily available liquid polymer which acts as a 

barrier that insects find very difficult (although not impossible) to cross. Dish C acts as the base and 

was also lined with fluon. Then, the rims of Dish A and B were stacked on top of Dish C and the 

entire structure was covered externally with silver duct tape. This held Dish A and Dish B in place, 

removed visual information from the ant and also reduced glare from the plastic refracting incoming 

light. 

A simple paper disc (the exact diameter of the arena) was inserted into the arena using forceps. This 

paper disc was divided in half with a black line, which acts as the key reference point for the decision 

making (Figure 4.2b).  

 

 

 
 
 
 
 
 
 
 

Figure 4.2: The resources required to build the test arena. (a) 2 petri dishes (A and B) have their 
bases removed and stacked upon a third dish (C), held together by duct tape and coated internally 
with fluon. (b) Paper discs were printed that could fit inside the arena, with the centre of the circle 
marked with a black line.  

Trial Substances 
In this practical, lemon juice and vinegar were chosen as the test materials (Table 4.1). Both are 

easily available and non-harmful, which makes them useable in a school setting. Water was chosen 

as the control substance, to ensure that the ants were not just responding to the presence of liquid 

in their environment.  

 

C 

B 

A 

a b 
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Treatment Number Household Substance Species Tested 

1 Control - None L. niger 

2 Control - None L. flavus 

3 Control – Water L. niger 

4 Control – Water L. flavus  

5 Lemon juice L. niger 

6 Lemon juice L. flavus 

7  Vinegar L. niger 

Table 4.1:  Household substance trial tests. 

Trial Procedure 
An everyday substance that is supposed to act as a DIY ant repellent was applied to half of the paper 

disc using a soft paintbrush in a repeated way for each test. The paper disc was placed into the petri 

dish arena. A foraging ant was selected from the colony box and transferred to a fluon lined tube 

using soft forceps. This tube was placed open-end down in the centre of the arena and the ant was 

left for 1 minute to acclimatise to the apparatus.  Then, the tube was removed and the ant was 

monitored for 5 minutes before being removed from the arena and placed in a holding box until all 

the trials were completed. The paper disc was removed after each test, and between different 

substances the fluon was reapplied.  

While the ant is exploring the arena, a stop watch is used to record the amount of time the ant 

spends on each side of the arena and this can be collated across the repeats.  

Part Two: a DIY insect tracker 
Once I had established a repeatable, simple ant decision making assay that was suitable for use in a 

school setting, I then wanted to see if I could develop a novel insect tracker that would be suitable 

for a school setting in terms of cost, ease of use and reliability.  
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While there have been lots of successful insect trackers used in a range of contexts before, these 

generally rely on expensive hardware and labour-intensive setting up. For example, the RFID work by 

Robinson et al. (2009) and the QR study by Mersch, Cerspi and Keller (2013) have uncovered very 

interesting patterns in ant behaviour, but unfortunately are very time consuming and expensive, 

both issues to be avoided for an educational based project. Instead, with budget constraints and 

severe pressures on teachers’ time in mind, this project aimed to identify something inexpensive, 

well supported and easy to use, like the Raspberry Pi.  

By using simple, inexpensive technology, I wanted to encourage staff and students to produce their 

own equipment to direct their own learning. Everything used in this study was purchased from large 

name online retailers, and all software was free to download, making it accessible for schools on a 

tight budget.   

Hardware and Software 
The tests were captured on a Raspberry Pi 2 Model B running Raspbian Jessie (2015-09-28). The 

official Raspberry Pi camera (Version 1) was used (5-megapixel OmniVision OV5647 sensor). Despite 

its low cost, the Raspberry Pi is a very capable computer, able to utilise OpenCV to analyse video in 

real-time. The official Raspberry Pi 7 inch touch screen was used as the main user input. A slightly 

modified version of the Motion-Track programme (Pageau, 2018; released under LICENSE) was used 

to collect the location of the ant in real time at approximately 10 frames per second, capturing the 

video stream in a 320 x 240 pixel window. Co-ordinate files were saved in a text file, subsequently 

uploaded to a Dropbox account using Dropbox Uploader (Fabrizi, 2016) and analysed on a Windows 

10 computer in Microsoft Excel. Statistical analysis was carried out in IBM SPSS Statistics 23. 

Automated Ant Tracking 
In this study, the ants are tracked using an automated process. The Motion Track programme 

compares two frames (e.g. Frame T and Frame T-1) and, if the two frames are sufficiently different 

(i.e. they meet the threshold criteria set by the user) a green circle marks the target. This happens at 

about 10 frames per second, and the X co-ordinate of the ant is logged in a data file. This data can be 
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displayed visually, as in Figure 4.3, where the far left of the image is given the value 0, the midpoint 

of the test arena is given the value 160 and the far right of the image is given the value 320. In this 

example, the ant was most frequently detected near the centre of the arena. 

 

Figure 4.3: A graph showing the position of the ant within an arena. It was most frequently detected 

moving near the centre of the arena, with a high amount of motion detected near to the right hand 

of the arena too. 

Calibration of hardware  
If an ant is completely stationary between frames, then the programme is unable to detect a 

position for the ant itself. This is generally not an issue, as the ants spent very little time completely 

still. Even the movement of antennae is generally (though not always) enough for the ant to be 

detected.  

Just to ensure that the issue of an ant being missed wouldn’t affect the results too much, a 

calibration experiment was carried out. Blank paper discs with no substances applied to them were 

placed into the arenas, and the test was carried out as per the experimental procedure. However, 
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while the experiment was running, stopwatches were used to record the percentage of time the ant 

spent on the right hand side of the arena, and this was compared to the output from the Raspberry 

Pi. This test was repeated 15 times and the results of this test are presented in Figure 4.4. 

 
Figure 4.4: On the whole, the Pi is fairly accurate, with differences between manual observation and 
computational analysis falling within a few percent across all 15 trials. The mean difference is 3.88% 
across all 15 calibration tests. The results from the Raspberry Pi are not significantly different to the 
results measured by eye (T-test, p=0.2274). 

Generally, the percentage of time (measured by eye and stop watch, shown in orange) or frames 

(detected on the Raspberry Pi and shown in blue) matched up fairly closely, with a few percent 

difference between the two. 

For ant number 4 and ant number 5, there is quite a large difference. This is because the ants in 

those two tests spent a long time stationary on the left hand side, but spent more time moving on 

the right hand side. It is important to note that this was only an issue in 2 out of 15 trials in the 

calibration, and across the experimental trials was rarely seen, but it is a limitation which could be 

discussed in an educational setting.  

Comparison of automated tracking to manual 

observations 
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Results 

Statistical Analysis 

Statistics were carried out in SPSS 23. T-tests were chosen because they are (a) fairly robust in terms 

of variance, (b) the simplest way of analysing the change between the control and the treatment is 

to compare the means and (c) it’s a simple statistical test, suitable for school students. 

Controls  

Treatment Number 1 
L. niger workers were placed in an untreated arena. Results shown in Figure 4.5.  

Figure 4.5: L. niger workers were placed in an untreated arena. Graph shows mean number of 
frames spent on either side of the arena (n=20). 
 

Treatment Number 2 

L. flavus workers were also placed into untreated arenas, and the results of this control are shown in 
Figure 4.6.  

Figure 4.6: L. flavus workers were placed in an untreated arena. Graph shows mean number of 
frames spent on either side of the arena (n=20). 

50.15
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The results of Treatment 1 and Treatment 2 show that there is no inherent bias in the set up. When 

in an arena that has not been exposed to any substances, the ants spend roughly 50% of their time 

on either side of the paper disc. There was no internal or external cue that caused the ants to spend 

more time on a particular side.  

Treatment Number 3 
 
To test whether just the wetness of the substrate affected the behaviour of Lasius spp., half of the 

paper disc was treated with mineral water. Initially I compared the time on the water compared to 

the time on the dry surface. Later, when analysing the results of the different substances, I 

compared the percentage of frames on the trial substance to those on the water. This ensured I 

accounted for the effect of surface moisture.  

Lasius niger showed a clear preference to being on the dry side of the paper, shown in Figure 4.7. 

 
Figure 4.7 L. niger workers show a statistically significant preference for the dry region, compared to 
the wet half of a paper dish that has 50% of the surface lightly brushed with water (n=20, T-test p= 
0.016). 
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Treatment 4 

Lasius flavus showed a slight preference to being on the wet side of the dish (shown in Figure 4.8). 

 
Figure 4.8: L. flavus workers were placed in an arena in which half the arena had been lightly 
brushed with water. The workers showed a slight preference to the wet side of the dish, but 
comparing wet to dry, this showed to be non-significant (n=20, T-test p=0.459).  
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Treatment 5 – Lemon Juice 

L. niger workers were exposed to lemon juice, and showed a preference to the side not treated with 

lemon juice.  

  

  

  

  

 

 

 

Figure 4.9: L. niger workers were exposed to a paper disc that had been brushed with lemon juice. 
The ants showed a preference to the dry side, but this was not statistically significant to the wet/dry 
control, Treatment 3, (n=20, T-test, p=0.777). 
 

Treatment 6 – Lemon Juice 

When L. flavus workers were exposed to lemon juice there was no statistically significant difference 

compared to the wet/dry control test. The ants showed slight preference to the dry (non-lemon) 

side, shown in Figure 4.10.  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
Figure 4.10: L. flavus workers were exposed to lemon juice. The ants showed a slight preference to 
the dry side, but this was not significant compared to the wet/dry control, Treatment 4 (n=20, T-test, 
p= 0.555).  
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Treatment 7 – Vinegar 

In treatment 7, L. niger workers were exposed to vinegar. While the ants appeared to show 

avoidance of the vinegar (this was the most definitive response to a substance), there was no 

significant difference compared to the wet/dry control (Treatment 3) (Figure 4.11). 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
Figure 4.11: L. niger workers in an arena in which vinegar had been placed showed a clear 
preference for the dry side of the arena, but this was not significantly different to the wet/dry 
control test (Treatment 3) (n=20, T-test, p=0.270). 

All of the results are summarised in Table 4.2 below. 

Household 
substance 

Tested species 
Percentage of frames on 

trial substance 
Percentage of frames not on  

trial substance 
p 

value  

None (Treatment 1) L. niger (left hand side)1 (right hand side)1 n/a 

None (Treatment 2) L. flavus (left hand side)1 (right hand side)1 n/a 

Water (Treatment 3) L. niger 43.96 56.04 0.0162 

Water (Treatment 4) L. flavus 51.49 48.51 0.4592 

Lemon (Treatment 5) L. niger  42.90 57.10 0.7773 

Lemon (Treatment 6) L. flavus 48.65 51.35 0.5554 

Vinegar (Treatment 

7) 
L. niger 39.75 60.25 

0.2703 

1 – as these are controls, they cannot be “on the trial substance”, therefore the ants were monitored to find the percentage of frames they were moving on 

the left hand and right hand side of the arena.  

2 – comparing the wet side to the dry side across all trials.  

3 – compared against Treatment 3 

4 – compared against Treatment 4 

Table 4.2: Summary of the results from the ant behavioural trials.  
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Discussion 
As far as I am aware, this is the first time that a Raspberry Pi computer has been used to observe the 

behaviour of an animal in response to chemicals in its environment. Overall, the hardware worked as 

expected, providing really useful data, and cut down dramatically on time needed to input manually 

collected timings.  

However, there were some issues with the experimental design which could be masking more 

conclusive results, due to specific behaviours that relate to ants. These issues could be overcome 

with some adjustments to the design, and also provide opportunities to think about experimental 

design and limitations.  

Firstly, there is the issue of edge (or wall) following. A study by Dussutour, Deneubourg and 

Fourcassie (2005) has shown that individual ants actively seek out edges to stay in contact with, and 

that this individual choice is amplified over time in a colony context. Although this test only looked at 

individual ants, edge following was clearly seen during the trials. In the circular arenas used in this 

study, there is a continual wall for the ants to remain in contact with and they can just circle the test 

environment. The physical sensation of being near the wall may be more important to the ant than 

avoiding the marked area. At the very least, the role of wall following might affect how likely an ant 

is to avoid the trial condition. Each individual would have to make a choice between avoidance of a 

substance in an environment and spending time in contact with the edge of the arena.  

Secondly there is the issue of escapes. Actual escapes from the arena were rare due to the fluon 

lining the walls, but ants were able to climb onto the side. They generally fell off after a short 

amount of time, but if an ant escaped, it was discounted from the experiment. The fluon was 

replaced regularly throughout the tests to ensure a good covering up the arena walls. Occasionally, 

ants escaped under the paper disc, and again, these were discounted from the experiment. Escaping 

under the paper was more commonly seen in L. flavus, due to their smaller size and underground 

nature, while L. niger were more likely to climb and escape the arena itself. 
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In this experiment, avoidance was defined as time spent in the half of the arena that had not been 

treated with the chemical. However, this definition doesn’t allow for the fact that an ant could be 

avoiding the treated paper by attempting to climb up the arena walls. If avoidance is defined as time 

not spent in direct contact with the treated surface, then the results could be even more substantial, 

and the results displayed in this chapter could be under representative of the actual effect.  

In its current state, the programme only records an X position for the ant, however, at any given X 

position, the ant could have one of many Y and Z positions (e.g., the ant could be climbing on the 

wall of the arena). In hindsight, also tracking the Y position to give an absolute 2D position of each 

ant would provide more helpful data, as the effect of wall following could be quantifiably 

established. 

Both wall following and wall climbing could be hiding a more significant result, and could explain 

why T-Mazes are more commonly used to study ant behaviour. Indeed, this same set up could be 

used to monitor and detect ant choices made on a T-Maze with a little modification. 

A T-maze (Figure 4.12) uses plastic/other materials to create a (generally) elevated path for ants to 

walk across and explore, and at the far end (i.e. the one furthest from the starting point) the ants 

make a choice to either go left or right. These arms can be treated before the experiment so the ant 

will make a choice between two situations. Ants can be trained, for example, to a food source on 

one arm, and other time, the workers will repeatedly make that choice at the junction, through trail 

laying behaviours. You can then use this to collect trail marked papers to use in other tests, or move 

the marked paper to influence decision making. These T-mazes can become more complicated, to 

find more complex decision making patterns.  
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Figure 4.12: A T-Maze, with the starting point (SP) and decision point (DP) marked with an arrow. 
When a forager arrives at the decision point, it has to choose between the left or right arm.  

T-mazes are quite hard to put together, quite flimsy and wouldn’t be ideal in a school setting. They 

take time for the ants to arrive on them, and ants are prone to escaping by climbing or falling. 

However, a DIY approach could be used to make a simple binary choice for the ants, which may 

produce a more reliable outcome in a school setting. Toy bricks could be used to produce a thin 

corridor with treated paper on the arms after the decision point. The plastic bricks could be coated 

with fluon to prevent escapes, and the blocks could be reused and would be cheap compared to 

producing acrylic bridges.  

Even with the design of the arena put aside, there are some important things to take from the study.  

Firstly, the control tests came very close to 50:50 in every trial. This matches other results where 

ants are given free choices (Devigne and de Biseau, 2012) and shows that there was no inherent bias 

in my apparatus. 

When looking at the results of the treatments, there are some interesting insights that can be taken 

away. L. flavus doesn’t really show much of a change between the response to water and to lemon, 

although there is more of an avoidance of lemon juice. However, L. niger shows a much stronger 

avoidance of any wet surface, and this avoidance increases as the treatment increases in similarity to 

components of ant defence substances. Vinegar is made up of acetic acid, a simple carboxylic acid 

(CH3COOH), a compound closely related to formic acid (HCO2H). Formic acid is the defensive 

compound of L. niger. The presence of vinegar caused strong avoidance by L. niger. Again, while this 
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result was not significantly different from the control tests carried out, there was an increase in 

avoidance and this test provided the most substantial result throughout the experiment.  

L. flavus did not show a strong avoidance or attraction to either wet surfaces in general, or to the 

lemon juice. L. flavus uses a trail component that has a similar scent to lemon. I had expected to see 

some sort of attraction to the lemon juice, but this was not apparent. A study by Steinmeyer, 

Pennings and Foitzik (2012) suggests that L. flavus do not show particularly aggressive responses to 

non-nestmates, so the presence of foreign substances may not necessarily elicit much reaction at all. 

Due to time constraints, the effect of vinegar was not tested on L. favus, but it would be interesting 

to see if the same trend continues.  

Ideally, I was hoping to see very clear differences in the behaviour of ants in response to different 

household items, rather than the non-significant (but trend revealing) results that were obtained. 

However, this just means that the online methods may not be as effective as claimed, or maybe not 

enough was being used. There’s also the noise caused by edge following, stationary ants and wall 

climbing that all introduce difficulties in coming to a clear cut answer to the question “do these 

every day household items act as effective natural ant repellents?”  

Clear cut results could have been more beneficial for teachers and students, although the limitations 

of the current set up could prompt discussion in classes, introducing the ideas of repeats, reliability 

and improving designs as you go along and to teach the important scientific fact that experiments 

often don’t “work”. 

The Pi itself worked as it was expected to, and was very reliable, capable of tracking individual 

worker ants. Once a school has invested in a Raspberry Pi, it isn’t limited to just doing one job. A 

whole range of other potential practicals become possibilities, including monitoring biodiversity in a 

school playground, DIY light gates or pretty much anything else that a school might want to do, using 

the wide range of peripherals that can be purchased and connected to the Pi.  
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In conclusion, the experiment described here is a good starting point for a practical set up for 

schools. The lack of a clear, decisive attraction to or avoidance of some easily obtainable household 

products – though there may still be some household substance that would give clearer results – is 

not in itself a negative thing.  

The hardware for this project could be used to teach other aspects of animal decision making; a solid 

potential opportunity could be to use the set up to discuss decision making in woodlice, with respect 

to moisture in the environment. The effects of light and dark could also be studied, with some slight 

adaptations to the setup of the equipment. Another option would be to use the T-maze described 

earlier which may provide cleaner data with less noise introduced.   
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Chapter 5 – Conclusions and Further Work 

 
There has been a lot covered throughout the work that has gone into this Masters Project. While 

fairly wide ranging, the main premise has been clear; can we produce, using easily available 

resources, pieces of equipment that can be used to help boost science education in the classroom in 

a cost effective and cross-curricula way? 

While the individual studies contained in this thesis have not produced particularly successful results 

they have led to some interesting avenues for further study and have shown the potential of the 

hardware developed in this project. 

It is really important to consider that for less than £100, I have shown it is possible to purchase the 

necessary hardware to make a multi-purpose tool that could be used for all sorts of experiments in 

the science classroom, from microscopy to studying animal behaviour. With some basic coding (all of 

which can be learnt online easily), a school science technician could easily set up a classroom 

visualiser, a temperature probe, a humidity sensor, a soil saturation sensor or a DIY digital 

microscope. The hardware can be adapted to be used in a range of practicals, across the sciences, 

for all age groups.  

I have also shown that the hardware used in this project can successfully track insect movement 

patterns and use this to analyse ant choice making behaviour. This would cost a lot more using 

conventional hardware and the equipment is nowhere near as portable, easy to use or customisable 

as the set up described here.This could be an ideal method for students studying animal behaviour, 

right up to University level. 

This project has also shown that simple DIY equipment can be used to visualise the microscopic 

world and to monitor the behaviour of animals less than half a millimetre in size to a high level of 

accuracy, while simultaneously recording information about the local environment of the animal.  
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The equipment produced in this project has been used in a range of settings, from the laboratory, in 

schools in teaching sessions, as part of undergraduate teaching projects and as part of the British 

Science Festival 2017 in a hands-on microscopy session where it has received positive feedback.  

I had hoped that the ant choice paradigm would lead to repetitive choices being made, specifically 

with the home-made substance tests, as this would be easily reproducible (and safe), making it ideal 

to carry out in a school science lesson. While the hardware worked exactly as it was programmed to 

perform, the ants do not seem to make a clear choice to avoid certain substances when exposed to 

them. There may be other substances (like essential oils) which may lead to ants showing avoidance 

behaviour and lead to a statistically significant result. However, even without a clear choice, the 

project described in Chapter 4 can be used to teach students about the importance of controls and 

repeating a test to increase the validity of results, and teach some basic statistical analysis.  

It has been very interesting to observe ant behaviour using this equipment. There are several studies 

that could use this equipment to look at choice making behaviour, especially around biological 

compounds produced by ants that could have interesting pharmacological properties.  

Some species of ants, including Lasius flavus produce a chemical called micromolide (Butterfield, 

2017). Micromolide has been shown to have anti-microbial properties, including the ability to 

combat tuberculosis bacteria. It appears that this compound is laid by L. flavus when it walks around 

and is passively laid through pores on the legs.  

If this is the case, paper that has been trampled by L. flavus should have micromolide present. It is 

believed that the ants use this to help protect the colony from disease. If this is the case, do worker 

ants specifically treat larvae with the chemical? An interesting choice test would be to see if workers 

move larvae into an area that contains trampled paper and is therefore perhaps more sterile. 

Another choice test would be to investigate how ants respond to paper treated with artificially 

produced micromolide as opposed to an area that has been untreated (or actively treated with some 

negative compound).  
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This could lead to further studies into how ants use chemicals to treat diseases. It has already been 

shown that ants can learn to self-medicate and (individually) show self-control (Wendt and Czaczkes, 

2017) so it would be interesting to know how ants use chemicals that they produce in terms of 

keeping future generations safe.  

In hindsight, some other practical tests could have been carried out to look at decision making 

behaviour in ants. While looking at ants, some trail pheromone marked paper could have been used 

to show the ants ability to detect and follow trail pheromone compared to virgin paper. This 

hopefully would have led to a more clear-cut result and does not require any chemicals to carry out 

(but does require a large nest, bridges to be constructed and would take significantly longer to do).  

Other animals could also have been studied using the same equipment. For example, monitoring the 

choices of woodlice presented with a damp and a dry environment (making sure that humidity in the 

air is also recorded simultaneously to interpret the results). This practical would also need to think 

about how to record the times that movement is detected to account for any time that the 

woodlouse remains stationary when it has found its preferred environment.  

In terms of educational usage, there are almost endless uses for the Raspberry Pi in a school setting. 

These have been alluded to throughout this thesis, in terms of additional hardware that could be 

purchased or adapted for use. Along with 3D printing and robotics, there are hundreds of different 

projects that could be carried out in a school and be used across many subjects in the curriculum.  

Utilising the external hardware available for the Raspberry Pi, there are experiments to enhance the 

knowledge of tardigrade behaviour that could be carried out. Does the temperature in the 

environment affect tardigrade behaviour? Do individuals change speed in response to a drop or 

increase in temperature? Do individuals aggregate in response to such conditions? Does the 

humidity of the environment affect tardigrade aggregation? Does the size of the arena alter this? 

Taking this even further, looking at aggregation behaviours over a long-time period using this DIY 
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microscope could give us insights into how groups of tardigrades cope with desiccation and how 

they interact with each other in close proximity.  

Overall, this thesis has shown that the Raspberry Pi (and other similar small computers) can be 

utilised to teach traditional science and computer science in a novel way, at all levels from Primary 

through to University level education and beyond to a range of people with no computer science 

background. My hope is that this thesis will encourage science educators to experiment with open 

source hardware to explore new ways to teach students and to increase their digital literacy, a key 

skill for future generations of scientists.  
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Appendix 2 – Software Guides 
 

ImageJ (Schneider et al., 2012) 

Download and Documentation available from:  https://imagej.nih.gov/ij/ 

MTrackJ (Meijering, 2018) 

Download and Documentation available from: 

https://imagescience.org/meijering/software/mtrackj/ 

Dropbox Uploader (Fabrizi, 2016) 

Documentation available from: https://github.com/andreafabrizi/Dropbox-Uploader 

OpenCV (Bardski, 2000) 

Documentation available from : https://opencv.org/ 

Raspberry Pi Open CV installation guide available from Rosebrock (2015) : 
https://www.pyimagesearch.com/2015/02/23/install-opencv-and-python-on-your-raspberry-pi-2-and-b/ 

Motion Track (Pageau, 2018) 

Documentation available from: https://github.com/pageauc/motion-track 

Raspbian (Raspbian, 2018) 

Download from : https://www.raspberrypi.org/downloads/raspbian/ 

Historical versions available from: http://downloads.raspberrypi.org/raspbian/images/ 

Win32 Disk Imager (SourceForge, 2018) 

Download and documentation available from: https://sourceforge.net/projects/win32diskimager  
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Appendix 3 – Motion Track Code 
The initial version of this programme was created by Claude Pageau, and edited slightly to ensure 

the ants were successfully detected and their position was exported in a text file for further analysis.  

The Motion Track programme was released under the MIT License (MIT), provided the following 

notice is included:  

Copyright (c) 2015 Claude Pageau 

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and 

associated documentation files (the "Software"), to deal in the Software without restriction, 

including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, 

and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do 

so, subject to the following conditions: 

The above copyright notice and this permission notice shall be included in all copies or substantial 

portions of the Software. 

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 

INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT 

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF 

CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 
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Appendix 4 – Microscope GUI 
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Appendix 5 – British Science Festival Promotional Materials 

 

Post card produced for British Science Festival 2017 Activity Day (Adapted, 2019) 
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